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A VLSl chip  for  data  compression  has  been 
implemented  based  on  a  general-purpose 
adaptive  binary  arithmetic  coding (ABAC) 
architecture.  This  architecture  permits  the  reuse 
of  adapter  and  arithmetic  coder logic in a 
universal way, which  together  with  application- 
specific mode/ logic can  create  a  variety of 
powerful compression  systems.  The  specific 
version of the  adapter/coder  used  herein is the 
“Q-Coder,” described in various  companion 
papers.  The  hardware  implementation is  in a 
single HCMOS chip, to maximize  speed  and 
minimize  cost.  The  primary  purpose of the chip 
is  to provide  superior  data  compression 
performance  for bilevel image  data by using 
conditional  binary  source  models  together  with 
adaptive  arithmetic  coding. The coding  scheme 
implemented is called the Adaptive  Bilevel 
Image  Compression  (ABIC)  algorithm. On 
business  documents, it consistently  outperforms 
such  nonadaptive  algorithms as the CCllT 
Group 4 (T.6) Standard  and  comes into its own 
when  adapting to documents  scanned  at 
different  resolutions or  which  include 
significantly  different  data  such  as digital 
halftones.  The  multi-purpose  nature  of  the chip 
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allows  access to internal partition combinations 
such  as  the “Q” adapter/coder,  which in 
combination  with  external logic can be used to 
realize  hardware  for  other  compression 
applications.  On-chip  memory limitations can 
also be overcome  by  the  addition of external 
memory in special  cases.  Other  options  include 
the  uploading  and  downloading  of  adaptive 
statistics and  choices to encode  or  decode, with 
or  without  adaptation of these  statistics. 

Introduction 

0 Data compression  algorithms 
Data  compression  algorithms  are  used  to  transform  digital 
data into  equivalent,  but  usually  smaller,  “compressed” 
representations.  They  are  used in such  applications  as  digital 
facsimile  or  image  processing  systems, to decrease  the 
average  amount of data to be transmitted  or  stored.  Such 
algorithms  are  designed  using  the  principles of information 
theory,  which  are  introduced in  a  number of textbooks  such 
as those  written  by  Abramson [ 11 or  Ash [2]. For bilevel 
image data  compression,  Arps  has  written  a  tutorial  and 
detailed  summary of the art in Chapter 7 of Zmuge 
Transmission  Techniques [3], as well as detailed 
bibliographies [4,5]. 

Figure 1 illustrates  these  basic  concepts  for  our  Adaptive 
Bilevel  Image  Compression  (ABIC)  algorithm,  designed  for 
images  digitized  with  only two levels of amplitude’.  A 

I Such  images are binary  in  amplitude, with “white” or “black” picture elements (pels) 
typidy represented  by  the  bits 0 or I ,  respectively. 
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business letter, Figure l(a), is  shown along with a pseudo- 
image,  Figure l(b), displaying the bits  resulting from its 
compression. The latter image  was created by assembling 
compressed  bits into the top of an area the same size as the 
original  image, padding any unused area with  white  pels. 
The bit  savings  resulting  from  compression can be visualized 
by comparing the area (bits) of the original  image  with the 
“salt-and-pepper’’ area (bits) of compressed data in the 
pseudo-image. We  use the term “compression ratio” to 
express the bit savings obtained, illustrated here as the ratio 
between the original and compressed  image  areas. In the 
example of Figure  1, the ABIC algorithm reduced the 
original 5 13K-byte source image to 15K  bytes,  yielding a 
compression ratio of  34.3. 

The illustrated algorithm is  “lossless,” in that  the original 
image can be reconstructed exactly by decompressing the 
data illustrated in its pseudo-image.  “Lossy” algorithms are 
characterized by compression that is not reversible,  wherein 
any loss  is  usually  designed to be acceptable to the intended 
final  user of the data. Compression for  bilevel  image data is 
typically  lossless,  since it is already  preceded by the lossy step 
of forcing the original  image  pixels to two amplitudes. The 
latter step precludes much further lossy  image processing 
without becoming unacceptable to the user and is similar to 
the thresholding which  occurs in a typical  copying machine. 

Figure 2 illustrates the compression performance for a 
more difficult type of  bilevel  data-digital  halftones. As can 
be seen in the pseudo-image of Figure  2(c), the ABIC 
algorithm now attains a compression ratio of only 2.7.  In 
general, the compression process is  highly data-dependent, 
and for bilevel data the most  difficult  images are those in 
which the percentages of black and white  pels are about 
equal. The difficulty in compressing halftones is  even more 
pronounced in Figure 2(b), which illustrates that a 
compression ratio of only  1.4  is  achieved  with the 
international standard Group 4 (T.6) algorithm [6] from the 
Consultative Committee for International Telephony and 
Telegraphy  (CCITT). This dramatic difference in 
compression performance is due primarily to the fact that 
the ABIC algorithm is adaptive and the CCITT algorithm is 
nonadaptive (“static”). Notice  also that the pseudo-image no 
longer appears to be  completely random. This is a practical 
clue that there is potential for further compression than this 
algorithm has  fully  realized. 

A more detailed comparison of these  two algorithms is 
summarized in Table 1. Two  categories of data are 
represented-business documents and digital  halftones. The 
business document data are from the commonly used 
CCITT test  set of documents [6] .  The digital halftone data 
consist of the high-detail  “BOAT2”  image of Figure  2,  plus 
lower-detail  images for a set of different halftone algorithms 
applied to the same picture of a face [7]. Compression 
performance results are reported both as actual compressed 
data sizes and as the compression ratios achieved for each 

test document. A percent-change column has been included 
to facilitate comparison of the algorithms. 

The ABIC algorithm performs uniformly better than the 
CCITT algorithm for  all of the data. It performs 777 
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Data  Data’  Code 

Decompression mode 
Code  Data’  Data 

1 Block diagram for adaptive data compression. 

approximately 20 percent better on the business documents, 
for which  the CCITT algorithm  has  been explicitly 
optimized. Note that the results for the ABIC algorithm have 
been obtained without prior optimization on any test data 
set at all.  Its adaptive process  is initialized with random 
information. For the halftone data, the ABIC algorithm 
performs from 2.0 to 4.5 times better than the static CCITT 
algorithm. In some cases, the latter algorithm does not 
compress at all, but rather expands the data. 

following  discussion of the architectural concepts used to 
obtain adaptive data compression and implement it 
compactly. 

The ABIC algorithm is  explained in detail in later sections, 

VLSI implementations 
For systems that process  bilevel  images, data compression is 
imperative because of the large  size  of uncompressed image 
records and the large compression ratios that can be 
achieved.  However,  these  systems  also  need  very-high-speed 
compression/decompression (or “comdec”) hardware 
implementations, in order to achieve  split-second capture 
and retrieval of  images.  A comdec built with dedicated 
hardware offers the maximum in attainable speed,  especially 
when built on one chip where interconnection delays can be 
minimized. 

IBM built one of the first  binary-image comdec chips in 
the early 1970s [8], using the LSI technology of that period. 
Early in the 1980s, the CCITT Standard Group 3 and 4 
binary-image compression algorithms [6] were put  into  one 
chip by  AMD [9]. Both of these chips implemented 
nonadaptive algorithms that were  based on variations of run- 
length coding [ 31. Building adaptive forms of such 

algorithms represented  a formidable increase in complexity, 
tending to exceed the capacity of single-chip architectures. 

With the development of “arithmetic coding” for data 
compression [ 10- 171 and the increasing complexity possible 
with VLSI technology, the environment has  changed 
dramatically. We are now able not only to integrate adaptive 
compression algorithms into single VLSI chips but, with 
arithmetic coding,  also to create superior algorithms that 
were heretofore impractical to realize. 

Using  a  general-purpose architecture for compression 
algorithms based on our adaptive binary arithmetic coding 
(ABAC) technology, we have  been able not only to design 
such  a chip for adaptive binary-image compression but also 
to make it a multi-purpose device. It offers  separately 
accessible combinations of partitions, for use as building 
blocks in building hardware comdec prototypes for other 
applications. It also  offers the ability to initialize or dump 
the statistics for adaptation, to select among adaptive and 
nonadaptive modes and other features, and  to make the 
normal choices  between encode and decode modes of 
operation. This paper reports the algorithmic and hardware 
design  of  two generations of such a chip, as well as the 
successful completion and fabrication of the second 
generation of our design  by  a  “silicon foundry.” 

Overview of key  concepts 

Adaptive data compression 
The architecture we use for adaptive data compression or 
decompression uses three basic components: a model, an 
adapter, and a coder, as illustrated in Figure 3. The model 
and coder components can be  defined in classical terms such 
as  might  be  used to describe nonadaptive algorithms. For 
instance, the model for the CCITT Group 3 algorithm [6] 
assembles “outcomes” which are contiguous “runs” of black 
or white  pels, for subsequent coding using corresponding 
code  words of some appropriate length. Such code words are 
designed  using  a fundamental relationship from information 
theory, 

lj = -log* (Pi 1, 
which  relates the probability pi of each  possible output i 
from the model to an ideal code-word  length I,. Code  words 
approximating this ideal length should be  used to encode 
each outcome during compression or decode it during 
decompression. 

find  a practical method by which  real-time  changes in  the 
probability distribution for model outcomes can be turned 
into appropriate changes in the lengths of code words in  the 
coder. In Figure 3 the adapter component performs the 
function of tracking model outcomes, in order to continually 
estimate their probability distribution. It also  passes 
probability-estimate information, for  each model outcome to 

The challenge, in making this methodology adaptive, is to 
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be  encoded or decoded, to an instantaneously reconfigurable 
coder.  Note that the model/adapter combination must 
function identically during both of these  modes. 
Additionally, the compression-mode adapter must use  only 
that model information which the decompressor model at 
that point can  already  have reconstructed (i.e., the adapter 
must be  causal). 

A  general-purpose  reconfigurable coder should be  able to 
adjust to all  possible distributions over codebooks of a  given 
size and still generate efficient code words  dynamically. The 
difficult  problem of designing  such  a coder is  solved  by 
breaking it into the following  two  steps: 

Step I A  reconfigurable coder for all  possible binary 
(two-code-word)  codebooks  is  used [ 121. 

Such binary  coders,  based on arithmetic compression 
coding, are only  described  behaviorally  here; the next  section 
contains a more complete description of the specific  coder 
we  used. 

Step 2 Any nonbinary model  using an arbitrary but fixed 
codebook size  is  decomposed into a repeating sequence of 
conditional binary models [ 131. 

In effect, this is  a  parallel-to-serial  conversion of the bits in 
the outcomes of any desired nonbinary model. The resulting 
conditional binary models are then serially encoded by 
multiplexing their outcomes to the reconfigurable  binary 
arithmetic coder. 

The key concept in Step 2 comes from the chain  rule for 
entropies in information theory [2].  Simply stated, one can 
serialize the outcomes of a nonbinary model into a  sequence 
of outcomes from conditional binary models without any 
change in the potential for compression (entropy). 
Mathematically, this is  formalized as 

H(abc...h)=H(a)+H(bIa)...+H(hIabc...g), 

where H( ) is the classical entropy function. For this 
example, the set (abcdejgh) might represent the combination 
of bits abcdefgh, enumerating any outcome from a model 
representing the coding of arbitrary bytes of digital data. 

Compressing  binary models 
To accomplish Step 1 in  our adaptive compression 
architecture, one must be able to compress binary models. 
The ideal  lengths of the two code words  for  a binary model 
include one which  is  less than one bit long (if there is any 
potential for compression). When methods such as Huffman 
coding [ 11 are used to generate  code  words  for  these  ideal 
lengths, the code  words that result are again one bit in 
length,  resulting in no compression. 

The classical solution to this problem is to group together 
N outcomes from  a  binary model, estimate probabilities for 
the 2N possibilities that arise, and treat them as if they were 
outcomes from an  Nth extension of the original  model. 

s U 

~~~~ 

,"C ,s .&'.Li . . . . . .. . . . . . . . ".  _.".. -.  ". 

i (a) Concatenation coding; (b) arithmetic coding. 

. . . ..  .. . 

Application of Huffman coding techniques to such a 
nonbinary model can then yield  variable-length code words 
and the potential for compression. 

Note that grouping of binary outcomes into  an extension 
precludes the use  of  a  reconfigurable binary coder and 
conditional binary models-as required by our general 
solution for adaptive compression coding. In contrast to this, 
arithmetic compression coding can encode binary models 
directly, without having to resort to grouping outcomes into 
an  Nth extension! It accomplishes this by its unique ability 
to encode even fractional bits of information. 

To better understand arithmetic coding, it is  useful to 
compare its behavior with that of the classical approach, 
which we shall  call "concatenation" coding. That is, block 
codes [ I ]  such as Huffman coding typically  assemble 
variable-length  code  words into a code string by  using  a 
register, as is illustrated in Figure 4(a). This process consists 
of alternating between the LOAD of some number L of 
code-word  bits into the register and the SHIFT of a 
corresponding number of bits, S, out of the register into the 
code string (i.e., S = L).  

In contrast to this, arithmetic coding, as shown in Figure 
4(b), permits its code-string  assembly  register to shift out less 
than the size  of the code word that was last loaded (i.e., 
S 5 L).  There may  be  leftover data in the register  when the 
next code word is to be  assembled, so that the previous 
LOAD operation must be  redefined. Its operation becomes 
binary arithmetic (i.e.,  ADD), hence the name arithmetic 
coding. 779 
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parallel  coder; the illustrated 7-pel model, for example, 
would  have required 128 of them. 

Langdon and Rissanen [ 161 elegantly  simplified this 
‘ problem by the application of  ABAC technology.  They  first 
stored the conditional probability distributions for the 128 
states illustrated. When the pels in a raster image  were then 
applied to a reconfigurable binary arithmetic coder, they 
simultaneously applied probabilities from the appropriate 
distribution. This distribution address  was determined as the 
state (or context) of the 7-pel  model. They took maximal 
advantage of the instantaneously reconfigurable coder as 

The point, specifically,  is that with arithmetic coding one 
can encode code  words that ideally require fractional bits of 
length and,  in particular, the fractional ideal  code-word 
lengths required to be  able to compress a simple binary 
model.  Of  course, it must be  possible  for a decompressor to 
undo the code from such a nonblock code. The theory of 
arithmetic coding specifies the extent to which its code words 
may  be  overlapped  when  assembling them into a code string 
and still retain “unique decodability” [ 11. 

This powerful result includes the ability to instantaneously 

accompanying adapter evolved through a series of 
generations. Our chip design  first  used the “skew” form of 
coder [ 121 and “Monte Carlo” [20] form of adapter. We 
subsequently updated the ABIC algorithm and redesigned 
the chip to use an improved adapter/coder called the “Q- 
Coder” [21-241. Developed jointly with  colleagues at the 
IBM T. J. Watson  Research Center, it permits the 
implementation of  fast  software as well as hardware. It has 
also improved the compression ratios achieved on the 
CCITT documents. The next  sections  describe our hardware 
Q-Coder implementation, after introducing more detailed 
arithmetic coding concepts. 

change the probability distributions used in creating code 
words,  even though the code  words are mixed into a 

ABIC  coder 

nonblock code string. Decompression  is  possible so long  as 
the binary decoder receives a sequence of distributions 
identical to that used during encoding.  It  is thereby possible 
to adapt after each new data bit, to readily encode 
conditional binary model data [ 161, and to realize the desired 
general-purpose coder design  strategy. 

ABIC algorithm 

ABIC model 
The potential for  compressing  bilevel data with conditional 
binary models was investigated  theoretically [ 181, in entropy 
studies, for some time before it became practical to actually 
realize implementations. One such  model  is illustrated in 
Figure 5, wherein  each binary pel is  encoded  based on the 
conditional state or context of a set of 7 neighboring  pels. 
The classical  challenge  was  how to encode such a conditional 
binary source in the face  of a conflicting  need to take Nth 

Fundamentals: Intervals on the  number  line 
Arithmetic coding is a coding technique used  for lossless 
data compression, that is, an invertible mapping between 
any data file and a more compact representation of the same 
information. From an idea  originally  proposed by Peter Elias 
[I], arithmetic coding maps mutually exclusive outcomes of 
a probabilistic “event” into nonoverlapping intervals on a 
real number line. A particular outcome may  be  specified  by 
giving the numerical value of any point in the corresponding 
interval. For data compression, each symbol from the source 
file is an event, the values the symbol may  have are the 
possible outcomes of the event, and the widths of the 
intervals are chosen to be approximately proportional to the 
probabilities of the values. The compression occurs when 
more likely events correspond to larger intervals, because it 
takes  fewer bits to specify some point in a large interval than 
in a small one.* 

extensions. 
Preuss [ 191 developed the first algorithm that 

Iteration  and  strings 
The benefit of arithmetic coding comes from encoding not 
just a single event or symbol but a sequence of events (string 

accomplished this, although it still had severe practical 
limitations. He created multiple Nth extensions for the 
separate states of a conditional binary Markov model, by 

dependent strings [3]. Each of these strings needed a separate the  logarithm ofthe width ofthe interval. 

&multiplexing the pels in a raster  image into parallel state- are so unusual  that  most  arithmetic  coding  algorithms  do  not  take advanme of them. 
Of course, some  small  intervals  could be specified with just  a few bits, but these cases 

The number of bits necessary to specify an  arbitrary  interval grows as the  negative of 
780 
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of symbols). This is done iteratively  as  follows. Start with a 
given interval on the real number line. Any finite interval 
will do, but the ABIC  uses the “unit interval” (numbers 
between  zero and one). For each  symbol,  establish a 
correspondence between  its  possible  values and 
nonoverlapping subintervals. The actual value of the symbol 
selects one of these subintervals. Further divide this new 
interval by subsequent symbols in the same manner. When 
the end of the source is reached, transmit a binary fraction 
to specify some point in the final subinterval. We  will call 
the point so chosen the code point. 

Decoding 
The decoder starts with the same initial interval as the 
encoder, and establishes the same correspondence between 
possible  values  of  each  symbol and nonoverlapping 
subintervals. At  each step it examines the binary fraction 
from the encoder to determine which  subdivision  was taken, 
and  outputs the appropriate symbol. As in  the encoder, this 
new interval is further subdivided until all  of the original 
decisions  have  been reconstructed. 

This technique uniquely reconstructs the original  sequence 
regardless  of  how the subintervals are chosen,  provided  they 
are nonoverlapping and that both the encoder and decoder 
subdivide the intervals in the same way. When the goal  is 
data compression, though, a wise  use  of code space must be 
made. It  turns out that, on the average, the fewest bits are 
necessary to specify a point in  the final interval if at each 
iteration the width of each subinterval is made proportional 
to the relative probability of its corresponding symbol. 

Conditioning 
The probability distribution for a given  symbol, or even its 
alphabet, need not be  fixed but may  be conditioned on 
preceding  symbols in the file. This is  possible  because at  the 
time a given interval is to be subdivided, both the encoder 
and decoder know the value of all  previous  symbols, and 
hence can make identical assignments to possible 
subintervals. This fact  allows arithmetic coding great 
flexibility in encoding Markov strings and in adapting to 
fluctuating source statistics. For example, in Figure 6, the 
alphabet and/or probability distribution for the second 
symbol might  have  been  different if the first  symbol had 
assumed  value  “A” or “C” instead of “B.” When the first 
symbol was “B,” its possible  successors  were “D,” “E,” and 
“F,”  but if the value of the first  symbol  had  been “A,” its 
possible  successors  might  have  been “TRUE”  and “FALSE”; 
similarly, the possible  successors  of “C ” might  have  been 
“RED,” “YELLOW,” and “GREEN.” The system  works as 
long as the encoder and decoder have prior agreement about 
the set of successors (and their probabilities) for each  history. 

Relationship of coder to model and adapter 
Refining the definition of the “Model-Adapter-Coder’’ 
architecture described earlier, the model maps the incoming 
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data into a series of symbols, or probabilistic events, to be 
encoded.  Accompanying  each symbol the model also 
delivers a summary of the previously  processed data, 
expressed as a single number called a context [ 161. Given this 
context, the adapter provides an estimate of the probability 
distribution of the symbol,  based on the values  which  were 
actually  seen accompanying previous occurrences of the 
same context. Next, the coder subdivides the interval on the 
number line according to this probability estimate and  the 
actual symbol  value. Finally, the adapter revises its state 
based on the symbol value just encoded. 

Finite-precision arithmetic 
A direct implementation of the technique for subdividing 
intervals on the number line would require arbitrarily long 
word  lengths for the calculations involved [25]. To avoid 
this, we  use a kind of floating-point arithmetic which takes 
advantage of the fact that (usually) as the sequence 
progresses, the interval being considered becomes smaller in 
such a way that all points in it have the same leading (more 
significant)  bits. Thus, it is usually possible to transmit these 
bits  long  before the subdivision process  is complete, and 
focus attention on the less  significant bits [ 1 11. Figure 7 
illustrates this. The exception, where the interval persistently 
spans a roll-over of a more significant bit, is  considered later 
as a special  case. 

Registers and variables 
Because it takes two numbers to define an interval on the 
number line (either as two endpoints or as one endpoint and 
a width),  every arithmetic coder needs  two  registers to keep 
track of the current interval [ 171. In the Q-Coder used in  the 
ABIC, they are called the A and C registers. For both encode 
and decode, the A register represents the width of the current 
interval. For encode, the C register represents the lower 
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internal function of “spacer” bits is  discussed later under 
“Long  carries and spacer and stuff  bits.” 

Model initialization 
The ABIC model  memory  is  initialized  such that the 

+ mmnmrn previous  line  (above the top edge  of the image  being 
encoded)  is  assumed to be all 0 (white). 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 l  

Coder initialization 
For both encoding and decoding, the A  register is initialized 
to I .O. For encoding, the C  register  is  initialized to 0.0. 
Together,  these  values  designate the initial interval to be the 
interval  between  zero and one. By convention, the first  byte 1 Finite-precision arithmetic. transmitted from the ABIC consists of the eight  bits from the - 
C  register just right  of its implied  radix point (i.e., none of 
the four “spacer”  bits mentioned under “Registers and 
Variables” are transmitted). In other words, the bits of the 
first  byte  have  weights  one-half, one-fourth, one-eighth,  etc., 
beginning  with the most  significant bit (MSB). 

For  decoding, the four “spacer” bits to the left  of the radix 
~ point of the C  register are set to zero, and the bits to the 

.A 
right  of the radix point are initialized to the first  twelve bits 

C of the code  string. 

Binary arithmetic coder 
The coder portion of the ABIC is one of a  class  of arithmetic 
coders  which  consider  only  binarv  svmbols. That is. each 

f A and and C registers during encode. iteration considers an event  with just two possible outcomes, 
and divides the interval into  just two subintervals. The two 

“ 

possible  values for  each  binary  symbol (bit) to be encoded 
are  called “more probable  symbol”  (MPS) and ”less  probable 
symbol”  (LPS). By convention, the ABIC  assigns the LPS at 
each iteration to the lower  subdivision  of the current interval 

I LPS , MPS I (adjacent to C),  and the MPS to the upper (greater than C). 
I ‘e C:Q,  A-Qe This is  shown in Figure 9. 

I 
C 

I 
Q-Coder 
The ABIC algorithm adapter and coder  together are called a 
“Q-Coder.”  Each time an interval on the number line  is to 
be divided, the width of the subinterval corresponding to  an 
LPS  is  chosen  from  a  fixed  table  called  a  Q-table. The 
remainder of the original interval corresponds to  an MPS. 
The choice of  which table entry to use is made by a finite- 

endpoint of the current interval, as shown in Figure 8. For 
decode, the C  register  represents the position of the code 
point relative to the lower endpoint of the current interval 
(i.e., the value  of the code point minus the lower endpoint of 
the current interval). 

Both  of  these  registers  have  twelve bits to the right of an 
imaginary  radix point. The A  register  has one bit left  of the 
radix point, and the C  register  has  four. The bits left  of the 

782 radix point in the C register are called  “spacer”  bits. The 

state machine in the adapter. Its state transitions are 
triggered  by  feedback from the coder, as discussed in the 
subsection on the ABIC adapter. 

Ideally (for best  compression),  if A is the width of the 
current interval in the A  register, and q is the probability 
that the next  symbol  is an LPS, then the width of the 
subinterval  corresponding to  an LPS should be 
approximately Aq and the width of the subinterval 
corresponding to an MPS  should be approximately A( 1 - 4). 
The Q-table approximates Aq with  value Q, to avoid  a 
multiplication, as is  discussed in the subsection on the Q 
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approximation. Figure 9 shows how the Q-value partitions 
the interval into LPS and MPS subintervals. The encoding 
caculation for subdividing an interval is 

if MPS then  begin 

C : = C + Q. ; (* move  lower  end *) 

A : = A  - Q.; (* narrow  width *) 

end 

else 

A := Q.; (* narrow  width *) 

The corresponding decoding  operatio’n  is 

if C >= Q. then  decode an MPS 

else  decode  an LPS: 

if MPS then  begin 

c := c - Q.; (*move lower  end *) 

A := A - Q.; (* narrow  width *) 

end 

else 

A := Q.; (* narrow  width *) 

Renormalization 
As mentioned above, the ABIC avoids the need  for  infinite- 
precision  registers by  using a form of floating-point 
arithmetic. After  each iteration, the A  register,  which  defines 
the width of the subinterval chosen, is “renormalized,” or 
shifted  left such that its leading bit (the bit  left of the radix 
point) is 1. Renormalization essentially “zooms in” or 
magnifies the current interval by a  power  of  two, so that it 
fills at least  half the capacity of the A  register. The C  register, 
which  defines the lower endpoint of the interval, is  also 
shifted  left  by the same number of  places, so that bits in  the 
C  register  always  have the same algebraic  weight as the 
aligned bits in the A  register. During the encoding operation, 
bits shifted out of the left (most significant) end of the C 
register are buffered and, eventually, transmitted as  the code 
string; we show later how this works. During the decoding 
operation, new bits from the code string fill the vacated  least 
significant bit positions of the C  register. Now the Q-Coder  is 
ready to process the next  symbol. 

The Q approximation 
For ideal compression performance, Q, = Aq. However, the 
optimum is rather broad, and an approximate value  for Q, 
which depends only on q can avoid this multiplication and 
still  provide reasonable performance. The Q-table need not 
be  very  large; in the ABIC it has just 30 entries for 

IBM 1. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988 

probabilities in  the range from 112 down to 2”’. Because of 
the renormalizations, A is  nearly constant (within a factor of 
two). In other words,  since the single bit left  of the radix 
point in the A  register  is  always 1, we note that 

1 S A < 2 .  

Knowing this, we can approximate a = Aq as 

kg 

for some constant k. Previous work [22] has assigned 
k = 413. To understand why this is  reasonable, the section 
“Optimally filling the Q-table”  finds for each qP the value of 
Q, which minimizes the code space taken, and demonstrates 
that the ratio Q,/q is only  weakly dependent on q. Along 
with the definition of  LPS (that q < OS), this implies a < 1 
and hence that Q-values  need no places  left  of the radix 
point. In ABIC, the Q-values are expressed to 12 binary 
places to the right of the radix point. 

ABIC adapter 
For the Q-Coder, it is the job of the adapter to provide the 
appropriate value of Q, for each symbol (bit) to be encoded. 
The adapter is  a  finite-state machine multiplexed to 
maintain a separate state record for each context. The 
multiplexing  is implemented by a random-access memory 
(RAM)  whose address or index is the context and whose 
data are the state records  for  each context. The state record 
consists of 

0 A  single bit, which records whether  a 0 or a 1 is more 
likely to be emitted next by the source. 

0 A  5-bit number called the Q-index,  which  selects from a 
fixed table one of 30 possible  Q-values to be provided to 
the coder. 

As discussed  above, these Q-values purport to be 
approximately 413 times the probability that the next bit will 
be an LPS. The complete table for the ABIC is  shown in 
Figure 10. 

The state record for each context can be thought of as 
marking a position on one of two ladders, each having rungs 
labeled  with the various Q-values. There is one ladder for 
MPS = 0 and  another for MPS = 1. When  a  given context 
occurs, after its state record provides an MPS-value and 
Q-value for the coder, a  new state may  be entered for that 
context (i.e., the state record may be  modified).  If an MPS 
occurred, the state may climb a step further up the ladder it 
is on, selecting for next time an even smaller probability that 
the next symbol will be an LPS,  unless it is already on the 
top rung of the ladder. If an LPS occurred, the state descends 
a little on its ladder, increasing the probability that the next 
symbol will  be an LPS, unless it is already at  the bottom 
rung, in which  case it steps over to the bottom rung of the 
other ladder, reversing the expected  symbol.  Figure 10 shows 
the state assignments and transition rules for all 60 states. 
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Q-index 
(decimal) 

29 

28 

27 

26 

25 

24 

23 

22 

21 

2n 

19 

18 

17 

16 

15 

14 

13 

12 

I I  

In 

9 

8 

I 

6 

5 

4 

3 

2 

1 

n 

Q-value MPS 
(hex) = 0 

no 1 

on3 

nos 
on7 

nnB 
013 

017 

027 

053 

n 

n 

059 

07 1 

OA I 

OE I 

121 

181 

24 1 

28 1 

2c I 

30 1 

381 

44 I 

48 1 

50 1 

60 I 

68 I 

70 1 

90 I 

MPS 
= I  

probability  1/2, it is  necessary that both the decoder and 
encoder agree  as to which is the MPS, so that the sense of 
the first  symbol  is correct. 

Renormalization-driven adaptation 
We  observe above that “the state may climb a step further 
up the ladder.” Seeing an MPS is not surprising. It confirms 
our prediction and tends to reduce our expectation of seeing 
an LPS, but not so drastically that we would  want to climb 
to a new rung on the ladder every time an MPS occurred. 
One previous adapter design [ 141 counted MPS occurrences 
and took a step after a large number had been  seen, but this 
required a large-modulus counter for highly  skewed  cases 
(cases  where the LPS was  expected to be  extremely  rare). 
Another design  [20],  called Monte Carlo, flipped a skewed 
coin to decide  whether it was time to take a step, but this 
required a coin flip at each iteration, when a step was only 
occasionally required. With a very  clever  insight  [22], 
Pennebaker and Mitchell  showed that the right amount of 
adaptation is  provided  when it is  triggered by a 
renormalization of the A register:  If the estimated probability 
of an LPS is small, an MPS is not very surprising. In this 
case, the Q-value subtracted from A when an MPS occurs is 
small and only  occasionally  results in a renormalization. 
Thus an MPS only  occasionally  causes a step up the ladder. 
Conversely, an LPS is  always  surprising.  Since an LPS 
replaces A with some Q,, and every Q, is  less than 1, each 
LPS automatically triggers a renormalization. Thus, an LPS 
always  causes the adapter to descend the ladder. The effect  is 
optimized by including on each rung of the Q-value ladders 
an additional entry, which  says howfur down the ladder to 
descend  when an LPS is encoded. A very surprising LPS 
causes the adapter to take several steps down the ladder. 
This is shown in Figure 10. 

In the ABIC, the state record for each context is initialized 
to expected MPS = 0 with  Q-index = 0. A renormalization 
caused by encoding an MPS increments the Q-index  for the 
current context, unless it is already at its maximum value. 
Encoding an LPS replaces the Q-index for the current 
context with the new Q-index from the table, unless it is at 
its minimum value, in which  case the MPS value is reversed. 

renormalization process. The code point, or final point later 
chosen to designate the innermost subinterval, usually has 

Adapter initialization the same more-significant  bits. Thus, the bits shifted from 
The adapter memory is initialized such that for  each context the C register  usually constitute the desired  code  string. The 
the most probable symbol  (MPS)  is a 0 (white  pixel)  with  exception to this is  when a subsequent MPS adds to C a 
Q-index 0 (the bottom rung of the ladder). Although the Q-value  large enough to cause a carry to propagate into the 
Q-value on this bottom rung corresponds approximately to bits  which  have already left the C register.  When this 784 
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happens, the carry must be  resolved so that the bits  sent to 
the decoder accurately represent the code point. This is 
accomplished by using a combination of spacer bits [26] and 
stuffbits [27]. 

Spacer bits are the bits to the left of the radix point in the 
C register. They provide a pipeline through which the bits 
shifted  left must pass  before  leaving the register and being 
transmitted. Carries propagating from the active portion of 
the C register into these spacer bits are often  resolved  there. 
Only if the spacer bits are all 1 does a carry  propagate 
through them and out of the C register. No matter how 
many spacer bits are provided, this will happen with nonzero 
probability. Inserting stuff bits provides a solution. 

In  viewing the code string as a binary fraction representing 
a point on the number line, each of its bits normally has half 
the algebraic  weight  of its predecessor. A stuff bit is an 
exception to this rule, in that it is an extra bit position with 
the same algebraic  weight as its predecessor. The value of the 
fraction is the weighted sum of its bits,  where the weights are 
negative  powers of two. In computing the effective  value  of 
the fraction when a stuff bit is inserted, the two bits having 
the same weight  may  be added together. 

This idea can prevent a carry from propagating into  that 
part of the code string which has already  been transmitted: 
Bits  shifted out of the C register are buffered  for a time 
before transmission. When the buffer contains a run 
(continuous sequence) of 1 s, presenting a danger that a carry 
propagating into them would  propagate through and out 
into  the code string, a 0 stuff bit is inserted just below the 
run. Should a carry arrive from the C register, it sets the stuff 
bit to 1. This achieves the correct algebraic  result but 
without propagating a carry through the run above it. Since 
the decoder can recognize the same run of Is, it knows 
which bit is the stuff bit, and can assign it the correct 
algebraic  weight. 

In the ABIC, the stuff scheme is tied into  the buffering 
that groups the bits shifting one at a time from the C register 
into eight-bit  bytes.  Each time a code  byte  with  hexadecimal 
value ’ FF ’ is transmitted, a stuff bit is inserted into the code 
string at the high-order bit of the following  byte. Subsequent 
bits from  shifting the C register are held  back to make room. 
The stuff bit (which has the same weight as the low-order bit 
in the ’FF’ byte just transmitted) catches any carry which 
would  otherwise  be added into  the ’ FF’ and propagate out 
into  the part of the code string which has already been 
transmitted. 

The use  of stuff  bits  implies that different code strings 
could hajre the same arithmetic value, depending on whether 
a carry  settles naturally or propagates until it is “caught” in a 
stuff  bit. By increasing the number of shift-register  bits 
(called “spacer” bits) between the active C register and the 
serial-to-parallel conversion, the probability is  increased that 
a carry settles in the registers  before it gets to the stuff 
position. In order to replicate  exactly the code string the 
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ABIC produces, it is  necessary to understand exactly  what 
buffering and stuff  bits are required. The following 
paragraphs detail what must be done. 

Bits  which are shifted out of the left end of the C register 
during renormalization are not transmitted immediately; 
instead, they are queued in an extension of the C register so 
that carries propagated out when a Q-value  is added into C 
may  be  resolved.  When this queue gets  sufficiently  long, its 
high-order  bits are moved to a code-byte  buffer and later 
transmitted into  the code string. 

The fixed-point C register has twelve fractional bits to the 
right  of the radix point. To  the left of the radix point are up 
to twelve additional “extension” bits, the exact number 
depending on how many renormalization shifts have 
occurred since the last transmission of a code byte. Initially 
there are no extension bits.  Each renormalization shifts C 
left and increases by one the number of extension bits. There 
is a means of counting the number of extension bits  which 
have  been shifted from C. 

When a carry  propagates above the radix point of C, it 
propagates into the extension bits. This does not increase 
their number, but it does increment their value. If all the 
extension bits happen to have  value 1, the carry propagates 
through all  of them (and out  the other side). A “carry flag” 
records  when this has happened. This flag has the same 
arithmetic weight as the LSB of the code-byte  buffer (double 
the weight  of the leftmost extension bit). 

The first time the count of extension bits reaches  twelve, 
the highest  eight  of them are moved into the code-byte 
buffer,  reducing the number of extension bits to four. The 
bit positions allocated for these four extension bits are also 
called “spacer” bits. The code  byte in the buffer  is not 
transmitted yet; it is  held in  the buffer for possible 
incrementation. 

Each time thereafter that  the count of extension bits again 
reaches  twelve, it is time to transmit a code  byte.  If the code 
byte in the buffer  is not X’FF’, the code byte  is incremented 
and the carry flag is  cleared. Next, the code byte  is 
transmitted. The value actually transmitted determines 
whether the following  byte  is to include a stuff bit. 

stuff bit is  called  for. In this case, the code-byte buffer 
receives the eight  highest extension bits, reducing the 
number of extension bits to four. But if the byte just 
transmitted was  X’FF’, then a stuff bit is called  for. In this 
case, the code-byte  buffer  receives a stuff bit and seven data 
bits; its MSB  receives the carry flag, and its low  seven bits 
receive the high  seven extension bits,  leaving five extension 
bits behind. The stuff bit will  be a 1 if and only if there was a 
carry from the bits below  (following) it which could not 
propagate into  the byte above because it was  already  X’FF’. 
Conversely, it should be 0 if either there was a carry from 
the bits  below  which did propagate into the byte  above, 
turning it from X’FE’ into X’FF’, or the byte above was 
already  X’FF’ and there was no carry. 

If the value so transmitted was other than X’FF’, then no 
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Unstufing carries 
When an X’FF’ is encountered in the data stream, the 
decoder knows that the MSB of the following  byte  is a stuff 
bit. This stuff bit has the same numeric weight as the LSB  of 
the X’FF’  byte, and must be added into the latter in order 
that the carry which it “caught” may be released and allowed 
to complete its propagation. This action (called resolving the 
stuff) must take place  early enough that decoding  decisions 
based on the numeric weight  of the code string are made 
correctly. We  will  see that correct decoding  results if the stuff 
is  resolved anytime prior to decoding the symbol  whose 
encoding caused the carry-over into  the stuff  position.’ In 
any case, the X’FF’  preceding the stuff bit can be  completely 
shifted into the C register during decoding  before the carry  is 
propagated. This is  because the code string is a sum of 
appropriately shifted  Q-values corresponding to MPS events 
(recall that encoding an MPS results in some Q-value  being 
added into the C register,  whereas an LPS adds nothing to 
the C register). The X’FF’ was already part of the code 
string before the carry-causing MPS was encoded. Because 
the adding of the carry-causing MPS did not create the 
X’FF’, the Q-values pertaining to all prior MPSs are 
included in the code string through the X‘FF’, and hence we 
can decode the code string completely through the X’FF’ 
before we  need to propagate the carry. 

Termination 
Until now,  we  have stated that any point in the innermost 
subinterval is adequate for unique decoding. By convention, 
ABIC chooses the lower endpoint of the final interval to be 
the code point. This simplifies the hardware design  because 
the C register  already contains this value.  After the last 
symbol from the source has been encoded, along with any 
concomitant renormalization, the C register  is  shifted  left 
until its least  significant bit has been  shifted out into  the 
code string, adding zeros  if  necessary to complete a byte. In 
the rare event that this last  byte happens to take on the value 
X’FF’, an additional byte  is transmitted containing X’OO’, 
to satisfy any logic  which automatically looks for a “stuff 
bit following an X’FF’.4 Decoding  is terminated when the 
prearranged number of bits have been decoded. 

Optimallyjilling the Q-table 
This section  seeks the best  value to use for & in a Q-Coder, 
given probability q that the next  symbol to be  encoded  is an 
LPS. In a Q-Coder, the value A in the A register represents 
the width of the current interval on the number line.  If an 
LPS occurs, the new interval has width Q,; otherwise the 

communication. ‘ A proposed  optimization is that any trailing  zero  bytes  could be omitted from the 
code  string, provided that  the  decoder  can  infer zeros if  it  needs  additional  bits  after 
reaching  the  end of the  code  file.  The  present  ABIC  algorithm  does  not  provide this 
feature. 

G. G. Langdon, Jr., University of California,  Santa  Cruz, CA, private 

new interval has  width A - (2. Here “best” means 
minimizing the average  code  space taken to encode the next 
bit,  where 

code space taken = log 
width of current interval 

width of new interval 

We want to select the value of & that minimizes the 
expected  value of this function of two independent random 
variables: (1) the current contents of the A register, and (2) 
whether an LPS or an MPS is to be encoded. We  first derive 
an expression for the code space taken, then take its 
expected  value  over the two random variables. The resulting 
function of Q, is then minimized by finding zeros of its 
derivative. 

1. Since the A register has just been renormalized, 1 5 A 5 2. 
If  we assume that A is uniformly distributed on this inter- 
val, its probability density function is 

2. Suppose we have a good estimate q of the probability that 
the next  symbol is an LPS. 

LPS occurs with probability q. If  LPS  occurs, 
(a) Width of  new interval is & . 
(b) Code  space taken is  log (A/&) = log A - log Q, . 

(a) Width of  new interval is A - Qe . 
(b)  Code  space taken is  log [A/(A - Q,)] = log A - log 

MPS occurs with probability 1 - q. If MPS occurs, 

(A  - &I. 

Because  of the independence, we can nest the expectation in 
either order: 

average  code  space taken = E,[E,(code  space taken)] 

= Jc’ {q[logA  -logQ,l 

and from the well-known [28] identity 

s logxdx = xlogx - x, 
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average  code  space  taken 

The minimum value  for this function of Q, can be found by 
setting its partial derivative  with  respect to Q, equal to zero: 

G(average code space taken 
'Qe 

=--  
R + (1 - q)[log (2 - Q,) - log ( I  - Q,)] = 0. 

Finally, to find the probability of q* for which  a  given Qe 

value minimizes the average  code  space taken, the above 
equation is  solved  for q:  

Q,[ln (2 - a) - In (1 - Q,)l 
1 + Q,[ln (2 - Q,) - In (1  - Qe)l' 

q* = 

The results are tabulated in Table 2. 

ABIC implementation 

Specijcations 
We implemented the ABIC algorithm in a custom 
masterslice (Structured Ar ra~" )~  silicon chip manufactured 
by  LSI  Logic Corporation [29]. The implementation of the 
ABIC algorithm in this VLSI technology  is  called the 
ABIC- 1 chip, shown in Figure 11. The masterslice contains 
the desired combination of array logic and random-access 
memory (RAM) embedded in the diffusion  layer, as shown 
in Figure 12. A  large  region  of the masterslice  is devoted to 
an array of transistors without pre-allocated routing channels 
(Compacted Arraymf for  logic circuits and arithmetic logic 
units (ALUs). The RAMS and ALUs are provided by the 
supplier as large, customized design patterns called 
megacells.  Since  only metallization is  needed to personalize 
the megacells and logic arrays, it was  possible to overlap 
logic  design and masterslice fabrication schedules. The logic 
array is  based on 1.5-pm drawn-transistor geometries  (size  of 
smallest  physical  features) and a double-metal-layer high- 
performance complementary metal oxide semiconductor 
(HCMOS) process. This yields about 13,000 usable  gates 
(two-input NAND equivalents) for data path and control 
logic. The whole chip is estimated to have about 194,000 
transistors and a die size  of 1 cm2. Using this configuration, 
we enhanced a preliminary design  based on previous 2.0-pm 
CMOS gate array and associated  megacell  technology. 

Two fast on-chip static RAM megacells  were  configured 
by metallization of a  prefabricated  diffusion pattern to be 
256  words  by 36 bits  each  (18,432  bits total). The RAM 
megacells store previous-line data for the model and statistics 

'Structured A m y "  and Compacted Amy" are trademarks of LSI Logic Corporation, 
Milpitas, CA. 

Table 2 Values of q for which each given Q-value is optimal. 

Q-index Q-value (Qe) QJ1.333 q* QJq* 
Decimal Decimal Decimal 

Hex Decimal 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 

O.AC1 
0.A8 1 
O.AO1 
0.901 
0.701 
0.681 
0.601 
0.50 1 
0.48 1 
0.441 
0.381 
0.301 
0.2c1 
0.28  1 
0.241 
0.181 
0.121 
O.OE 1 
O.OA 1 
0.07 1 
0.059 
0.053 
0.027 
0.017 
0.013 
O.OOB 
0.007 
0.005 
0.003 
0.001 

0.672 12 
0.65649 
0.62524 
0.56274 
0.43774 
0.40649 
0.37524 
0.31274 
0.28149 
0.26587 
0.2  1899 
0.18774 
0.17212 
0.15649 
0.14087 
0.09399 
0.07056 
0.05493 
0.0393 1 
0.02759 
0.02  173 
0.02026 
0.00952 
0.00562 
0.00464 
0.00269 
0.00171 
0.00122 
0.00073 
0.00024 

0.50409 
0.49237 
0.46893 
0.42206 
0.32831 
0.30487 
0.28  143 
0.23456 
0.21112 
0.19940 
0.16425 
0.1408 1 
0.12909 
0.1  1737 
0.10565 
0.07050 
0.05292 
0.04  120 
0.02948 
0.02069 
0.01630 
0.01520 
0.007  14 
0.0042 1 
0.00348 
0.0020 1 
0.00 128 
0.00092 
0.00055 
0.000 1 8 

0.48456 
0.47239 
0.44833 
0.40107 
0.30908 
0.28646 
0.26397 
0.21929 
0.19709 
0.18602 
0.15292 
0.13094 
0.1  1997 
0.10902 
0.09808 
0.06534 
0.04901 
0.038  14 
0.02728 
0.01914 
0.0 1507 
0.0 1405 
0.00660 
0.00389 
0.00322 
0.00 186 
0.00118 
0.00085 
0.0005  1 
0.00017 

1.387 
1.390 
1.395 
1.403 
1.416 
1.419 
1.422 
1.426 
1.428 
1.429 
1.432 
1.434 
1.435 
1.435 
1.436 
1.439 
1.440 
1.440 
1.441 
1.442 
1.442 
1.442 
1.442 
1.442 
1.443 
1.443 
1.443 
1.443 
1.443 
1.443 

IBM 1. RES.  DEVELOP, VOL. 32 NO. 6 NOVEMBER 1988 R. B. ARPS ET AL. 



~ 

megacell El  megacell 

Sea of gates 

ALU ALU I 

7 12 

I 1 
Control r ' ' t Gate 

Global logic w 
6 1  ' 3  

for the adapter. Uniform RAM format was  selected to allow 
memory pooling. This maximizes adapter RAM capacity  for 
various ABIC- 1 operating modes. On-chip embedded RAMs 
are used to eliminate 1/0 delays for speed, but off-chip 
RAMs  also are supported for flexibility. For high 
performance, the design  is pipelined with  several  stages and 
logic  is performed during both phases of the two-phase, 
nonoverlapping clock  cycle  (two distinct, sequential clock 
waveforms). We  specified  two  16-bit  ALU  megacells to 
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obtain the fast arithmetic operations needed by the ABIC 
algorithm. The ALUs perform addition and subtraction for 
the A register and C register  of the coder. The vendor 
implemented their design  of the ALUs as custom 
metallization patterns in  the logic array. 

These  megacells and the fast array logic are the basic 
elements for this high-performance  design. The original 
design  was  targeted for two-phase  clocking at 20 MHz 
nominal (5.00 V, 25'C, nominal process variation), 
equivalent to 10 MHz worst  case  (4.75 V, 70"C,  worst-case 
process variation). Timing analysis  shows that the final 
design  achieved this goal  with a significant margin. 

The high  level  of integration results in a low-cost multi- 
purpose chip for compression and decompression of  bilevel 
image data using adaptive binary arithmetic coding. The 
same functional core is  used in both compression and 
decompression. For added flexibility and research  purposes, 
the chip also can operate with external RAMs.  Since this 
implementation of the algorithm fits in a single chip, the 
ABIC-1 has a relatively  low external pin count, with  only 37 
inputs, 35 outputs, and 10 power/ground pins. Hence it can 
be packaged in an 84-pin ceramic pin grid array or in a 
surface-mount package. 

9 Architecture 
To avoid  clock skew problems, we followed a latch-based 
(level-sense)  design  discipline  using  two-phase 
nonoverlapping clocks. To enhance testability, most latches 
are scannable via multiplexers at their data inputs. This is 
similar in purpose to level-sensitive scan design (LSSD) [30], 
but does not conform strictly to the rules  of that approach. 
More than one third of the ABIC- 1 design  logic components 
are latches, and use  of LSSD latches would  have increased 
the gate count significantly at the expense  of functionality. 
Most  ABIC- 1 internal registers are accessible  via  18 separate 
scan paths. Some registers  also are parallel-accessed  via input 
and  output buses. 

For uniformity and consistency, we chose to have  all input 
and output signals  clocked by the same phase. Thus all 
primary inputs  and  outputs are phase 1 (i.e., ". 1")  signals. 
The sources of  all  ABIC- 1 inputs should be latched by  phase 
1 ( @ I  ), since they are transferred to ABIC- 1 latches clocked 
by phase 2 ( @2). Similarly,  all ABIC- 1 outputs are latched 
internally by @, and therefore are stable during @2. In 
principle, then, the inputs and  outputs of ABIC- 1 are self- 
consistent  with  respect to clock  phases. A machine cycle  is 
thus defined to be a pair. 

At a high  level, the input  and  output  data paths are 
organized into two groups. The first group, BUS 1 .IN and 
BUS 1 .OUT, is 8 bits  wide. It is  used to transfer 
compressed/decompressed data to and from the chip. The 
second group, BUS2.IN and BUS2.0UT, is 18 bits wide. It 
is  used to transfer additional parameters needed by 
initialization and various operating modes. There is  also a 
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group of control inputs that address registers  for  parallel 
access and select major operating states. Transfers on the 
data buses  between the chip and external logic are supervised 
by a group of 1/0 “handshake” outputs from ABIC- 1. For 
maximum performance, the handshake allows a transfer 
during each machine cycle. The  data transfers are 
semisynchronous, as they are timed by the machine-cycle 
clocks. 

In addition to normal encode/decode operation, ABIC- 1 
also supports loading and unloading of its internal RAMS. 
This is  necessary for initialization and also  allows a 
predetermined set of statistics to be stored in the statistics 
RAM  before encoding or  decoding. The  data for the RAM 
are presented to the ABIC-1  via  BUS2.IN as a burst transfer 
without handshaking. Since this bus is only 18 bits  wide and 
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ABIC-I  Decode partitioning modes:  (a)  MAC, (b) AC, and (c) C 

the RAM  is  organized as 256 X 36 bits,  two machine cycles 
are required to pack one full  word  for  each  RAM  address. 
Since a RAM  read or write  cycle can be  accomplished in one 
machine cycle,  ABIC-1 takes advantage of this and 
multiplexes the loading and unloading cycle. In LOAD 
mode, the previous data in the RAM appear at  BUS2.0UT 
(multiplexed 18 bits at a time) as the new data are presented 
at BUS2.IN.  In DUMP mode, the contents of the RAM are 
read out without being overwritten. The previous-line  RAM 
can be  accessed  similarly. 

The ABIC-1 is partitioned into three functional blocks, 
each  with its own  local control logic, and  one global 
“switchyard-interface’’  block, as shown in Figure 13. The 
three functional blocks are the model, the adapter, and the 
coder. This gives  rise to the multi-partitioning modes of 
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operation using appropriate combinations of M, A, and C 
blocks. There are three primary partitioning modes,  MAC, 
AC, and C,  as  shown for Encode in Figure 14, and for 
Decode in Figure 15. Compression (Encode) and 
decompression (Decode) are done using the same “core” 
logic  blocks.  In full-function (MAC) mode, the application is 
compression/decompression of  bilevel images.  In 
adapter/coder (AC) mode, the chip implements the Q-Coder 
function to be  used  with  user-supplied, external model 
hardware.  In coder-only (C) mode, the chip handles only the 
encoding or decoding operation, while external logic 
provides the necessary  model and adapter functions. In 
addition, the use  of internal on-chip RAMs and/or external 
off-chip  RAMs  is supported and provides  two additional 
partitioning modes, M‘AC and A‘C. In M’AC mode, an 
external previous-line  model  RAM  is  used  with the chip. 
The external RAM  is connected to the ABIC-1  via  BUS2.IN. 
In A‘C mode, similar to M’AC, an external adapter RAM 
is  used  with the chip together  with the internal Q-Coder 
adapter logic. The external RAM  is interfaced to the ABIC- 1 
via  BUS2.IN and BUS2.0UT. The internal-adapter-RAM 
write control can be  disabled to provide nonadaptive 
operation. In addition to allowing  access to a general- 
purpose building  block such as the Q-Coder, this partitioning 
approach facilitated functional debugging in successive  stages 
during logic  design and prototype evaluation. 

System integration 
This section  analyzes some issues  of data flow rate which 
must be considered  when building data compression into a 
real-time  system. 

Throughput  characteristics:  Compression ratio and  clock 
multiplier 
The ratio between the number of raster bits in an image and 
the number of code  bits  representing the same image is 

known as the compression ratio. For the ABIC algorithm, 
the compression ratio depends on the image  being encoded. 
An image  consisting of purely random pixels will generally 
not compress at all,  while a blank page  compresses  very  well. 
The bounds are easily  established. The lower bound on 
compression ratio is set by images  which do not compress at 
all (and may  even expand); in this case the raster  image can 
be transmitted ahead.6 Thus  the lower bound is 1 .O. The 
upper bound is determined by the finite-precision arithmetic 
of the ABIC algorithm. The most highly  skewed  symbols are 
encoded  with a Q-value of  2-12. It takes 2” - 1 = 4095 such 
Q-values to complete a renormalization shift  cycle 
(decreasing the A register from 1 .FFE to 0.FFF hexadecimal, 
when it is  shifted to 1.FFE again). Hence the theoretical 
maximum compression ratio is  4095. A finite-dimension 
blank  image  does not quite achieve the bound, because the 
adapter takes time to reach its most highly  skewed  state. 
Practical  images  lie  between  these bounds. For example, the 
ABIC compression ratio for the CCITT test set  ranges from 
8.8 for  No. 7 through 57.4 for No. 2. 

Every  ABIC  clock  cycle  processes either one bit of raster 
data or one bit of code data (with a very  few exceptions 
relating to bit-stuffing and un-stuffing  logic). This is because 
each  clock  cycle  is devoted to either an ALU  cycle or a 
renormalization shift. During encode (or decode) operation, 
an ALU  cycle  encodes (or decodes) a raster data bit and a 
renormalization emits (or accepts) a code data bit. The 
process  is symmetric; the time required to encode an image 
is  very nearly equal to the time required to decode it. 

It is  useful to define the term clock multiplier as the 
average number of  raster  bits  processed per clock  cycle.  If M 
is the clock multiplier, and R is the compression ratio, then 
the definition of compression ratio implies that the average 
number of code bits per  clock  cycle  is M/R. Since  each  clock 
cycle handles either a raster bit or a code bit, 

M 
M + - =  1. 

R 

We may then solve for the clock multiplier and for the 
average number of code  bits  per  clock  cycle: 

R 
R +  1 ’  

M = -  

M I  
R R + l ’  
-=- 

These  two  expressions are plotted in Figure 16, as the 
compression ratio R ranges  between its bounds. The figure  is 
vertically symmetrical because the two rates sum to unity. 

We conclude that the number of clock  cycles required to 
process an image equals the sum of the raster file  size plus 
the compressed file  size (all sizes in bits). For example, the 

A single bit can prefix the code  string, to provide an escape mechanism to indicate 
that the raster image is being literally transmitted. 
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CCITT  test  images are each 4,105,728 bits and compress 
with ratios between 8.8 and 57.4, so they require between 
4.18 and 4.57 million cycles to compress or decompress. At 
a  10-MHz  clock  frequency this would  take  between 0.418 
and 0.457 seconds. The relative  constancy of  processing 
time, despite  wide  variations in compression ratio, is a 
feature of the ABIC hardware implementation. The 
compressed data rate  varies  widely  with the compression 
ratio, as is perhaps better illustrated by replotting the same 
data on a logarithmic scale,  with an assumed  10-MHz  clock, 
as shown  in Figure 17. 

Application analysis 
In a  practical application, the ABIC  will be installed  between 
two  rate-limited  channels, one handling  uncompressed  raster 
data and the other handling  compressed  code data. Thus, 
there are three potential bottlenecks: 

e Raster data channel capacity. 
Compressed  (code) data channel capacity. 

e ABIC  speed, determined by  clock frequency and clock 
multiplier. 

To ensure that the ABIC  is not a  bottleneck in the system, 
its throughput must be at  least as fast as that of the slower  of 
the two channels with  which it interfaces.  However, the 
capacities of the raster and code data channels cannot be 
directly compared. Most  system  designs take advantage of 
the expected  compression ratio to permit a  slower rate for 
the code channel than for the raster channel. In order to 
determine which  is the limiting  factor, one channel is  chosen 
as a  reference point, and the rate of the other channel is 
reflected through the ABIC to that reference point. If the 
raster channel is  chosen  as the reference point, the capacity 
of the code channel is  multiplied by the compression ratio to 
get its apparent capacity as seen  from the point of  view  of 
the raster  channel. Because the compression ratio depends 
on the image,  a  given  system  may  have its bottleneck  in the 
raster channel for  some  images and in the code channel for 
others.  For  example,  suppose that a particular system can 
process  raster data at 8 megabits  per  second and compressed 
data at 2 megabits  per  second. For images  with  a 
compression ratio greater than 4, the capacity of the 
compressed data channel is adequate but the raster data 
channel is the limiting factor. For images  with  a  compression 
ratio less than 4, the situation is  reversed. 

The ABIC  is introduced as the third potentially  limiting 
factor, given its clock  rate and the clock multiplier (a 
function of compression ratio, as discussed  above).  For 
example, on an image  with  a  compression ratio of 9, an 
ABIC  clocked at 10 MHz achieves  a  raster data rate of 9 
megabits  per  second and a  compressed data rate of 1 
megabit  per  second.  It  is instructive to plot the throughput at 
the reference point as a function of compression ratio, for 

Raster bits/s 

. 
B Code bitsls 
0 IOOK 
6 
4 

10K 

1K 

ABIC compression ratio 

_".I 

Limit set by 10-MHz ABIC clock rate 

0 2 4 6 8 10 12 

Compression ratio 

each  of the three potential limiting factors, on the same set 
of  axes. Figure 18 exhibits this kind of plot  for the present 
example.  A  system can operate anywhere in the region  below 
all three limits. 

transmit raster  images  quickly are scarce and expensive.  For 
this reason,  a wise  system  designer  will locate data 
compression at the extremities of the system, near the 
sources and sinks of image data (scanners,  displays, and 
printers), so that only  compressed data are handled on slow 
buses. 

In most  systems, data channels having the capacity to 

79 1 

IBM 1. RES, DEVELOP.  VOL. 32 NO. 6 NOVEMBER 1988 R. B. A R B  ET AL. 



792 

Summary 
This paper describes the design and implementation of a 
multi-purpose, adaptive data compressor/decompressor in a 
single  VLSI chip. The design has been optimized for speed, 
flexibility, and modularity, while maintaining a limited 
number of pins and employing an aggressive  ASIC 
technology. Its development required insight and extensive 
trade-offs in the fields  of both information theory and VLSI 
design. The final  design  exceeded its speed  objective of 10- 
MHz (worst-case) operation, while  also  meeting throughput 
goals to compress and decompress  binary  image documents 
of all kinds at nearly uniform rates. 

The ABIC algorithm for  bilevel  image data compression 
has been  shown to consistently outperform the nonadaptive 
CCITT algorithm on the CCITT set of test documents. Even 
better comparative performance has been demonstrated for 
other kinds of data such as digital  halftones. The 
architectural principles used in designing this algorithm have 
also  been  described in detail, to illustrate the use  of adaptive 
binary arithmetic coding (ABAC)  technology. 

In summary, the ABIC chip offers competitive and robust 
compression performance in a low-pin-count, hence 
inexpensive,  VLSI  package,  which should make it attractive 
for bilevel  image  systems  of  all  kinds.  Its adaptive arithmetic 
coding technology, combined with the modularity designed 
into the chip, also permits it to function as a research 
component-for  use,  e.g., in building future hardware 
implementations of more complex adaptive algorithms. 

Glossary 
A register A register representing the width of the 

current interval on the number line. In 
ABIC, it is a 13-bit  register  whose 
highest-order bit position  is  always 1 or 
else renormalized to be 1, and whose  12 
lower-order bit positions are aligned 
with the 12-bit  Q-values. 

ABIC Adaptive Bi-level Image  Comdec. A 
particular algorithm for compressing 
binary  images. VLSI circuit chip from 
IBM  Almaden  Research Center. The 
subject of this paper. 

Adapter That portion of a data compression 
system  which estimates the probability 
distribution of the next symbol from 
the source, and then revises the 
estimate for next time after seeing 
which  symbol actually occurs.  Typically 
the adapter is multiplexed over multiple 
contexts, in which  case its estimate is 
based on the context, and revised for 
the next occurrence of the same 
context. 
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Alphabet 

ALU 

Binary event 

Bit 

Byte 
C register 

CCITT 

Clock multiplier 

Code point 

Code string 

Coder 

Compression 

Compression ratio 

Context 

Entropy 

The set of  possible  values a given 
symbol can take on. 
Arithmetic and logic unit. A circuit 
capable of adding, subtracting, etc. 
An event  which can have one of two 
outcomes. 
A quantity which can take on only the 
values 0 and I .  
A group of eight  bits, taken as a unit. 
A register  representing the lower 
endpoint of the current interval on the 
real-number line. In ABIC, it is a 16-bit 
register  with an implied radix point 
above the lower-order 12 bits  which are 
aligned  with the 12-bit  Q-values. The 
leading bits are called  “spacers.” 
Encoded output is created by left- 
shifting the C register into buffers  which 
handle the carry-over and align the 
result to 8-bit  bytes. 
Consultative Committee for 
International Telephony and 
Telegraphy. An international standards 
body. 
The average number of raster bits 
processed  per  clock  cycle. 
A point on the real number line, chosen 
to designate the innermost subinterval 
in an arithmetic encoding. The value of 
the code string, taken as a binary 
fraction. 
A sequence of bytes from a coder 
representing  all the information from a 
source  file, but in a compact way, 
That portion of a data compression 
system  which combines an estimate of 
the probability distribution of the next 
symbol from the source, with the actual 
symbol emitted by the source, into a 
code string. 
Representing data in a more compact 
way, eliminating redundancy, 
The number of raster bits divided  by 
the number of code bits. 
Information provided by the model 
which  helps the adapter estimate the 
probability distribution of the next 
symbol.  Typically the context is a 
subset or other function of the source 
data which has already been  processed. 
A mathematical measure of 
uncertainty, given  by the expected 
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Event 

HCMOS 

Lossless 

LPS 

LSB 

LSSD 

logarithm of inverse  probability: 
H(p)=ciPilOg(1/Pl). 
A happening with an outcome which  is 
not known in advance. 
High-performance complementary 
metal-oxide-semiconductor.  An 
integrated-circuit  technology featuring 
low static power and high-speed 
operation. 
Applied to data compression, means the 
source data can be reconstructed 
exactly. 
Less probable symbol. With a  binary 
source, the bit with the lesser 
probability. 
Least  significant bit. Rightmost bit in a 
binary  register. 
Level-sensitive  scan  design.  A  logic 
design  discipline featuring delay- 
independent (level-sensitive) operation 
and a capability to interconnect all 
latches into a  shift-register chain for 
loading and unloading test data (scan 
design),  usually implemented with  two- 
phase nonoverlapping clocks. 

Markov string A  string of symbols for which the 
probability distribution of each  symbol 
depends on the value of the preceding 
symbol. 

Megacell 

Model 

MPS 

MSB 

Pel 

Phase 

Pixel 

Q-Coder 

A  predesigned portion of  very-large- 
scale integrated circuit, in which  usually 
all  layers  have  been customized to a 
swcific function. 

Q-index 

Q-value 

RAM 

Raster 

Renormalization 

Skew 

Skew coder 

Source 

Spacer 

State 

That portion of a data compression 
system  which  establishes the context. 
More probable symbol. With a binary 
source, the bit with the greater 
probability. 
Most  significant  bit.  Leftmost bit in a 
binary  register. 
Picture element. See pixel. 

State record 

stuff 

In clocked synchronous logic,  a portion 
of a  clock  cycle  where one of several 
clock  signals  is true. 
Picture element. A number representing 
the brightness of a  single point in an 
image. The ABIC compresses  bilevel 
images  where  pixels are constrained to 
have  values 0 and 1. 
A particular adaptive arithmetic coder 
featuring a renormalization-driven 
adapter with  sixty states per context. 

SY ,mbol 

A  small integer selecting one of the 
possible  Q-values. In ABIC the Q-index 
is  a  5-bit  integer, representing a number 
in the interval 0 . . .29. 

A binary fraction representing 
approximately 1.5 times the probability 
that the next  symbol will  be an LPS. In 
ABIC it is a  12-bit binary fraction, with 
12 bits to the right of the radix point. 
Random-Access Memory. In the ABIC, 
two  RAMS are used-one to store the 
previous raster line and  one to store the 
adapter state for  each context. 
A means of converting an image to a 
serial data stream, in wt-ch it is 
scanned line by line. 
Scaling the content of a  register by 
shifting it left so that the most 
significant bit has value 1. 
The degree of extremity of probability, 
usually givci~ by  -log, [min ( p ,  1 - 1-71]. 
A coder where the Q-values are 
constrained to be  powers  of 112 (of the 
form  2-k for integer k).  
The uncompressed data, taken as input 
to the coder. 
Extra  bit(s) at the most  significant end 
of a  register,  where carries may  be 
resolved,  before  being propagated out. 
In  a  finite-state machine, the content of 
the memory, giving the current 
condition of the machine. 
In a state machine multiplexed  over 
several  tasks,  a  record in memory giving 
the state of one of its tasks. See state. 
A  bit (or bits) inserted into a binary 
number having the same algebraic 
weight as its predecessor(s), for the 
purpose of intercepting a carry which 
would  otherwise propagate through a 
long run of 1s. 

An element of source data to be 
encoded in one iteration of the coding 
algorithm. Generalized arithmetic 
coding theory allows  symbols to be 
taken from large alphabets (for 
example,  a  byte is a symbol from an 
alphabet with  256 elements). The Q- 
Coder in the ABIC can only encode 
binary  symbols,  which  with the ABIC 
model represent one binary image  pixel 
each. 793 
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IBM since 1963, starting in its Advanced  Systems Development 
Division at Los Gatos and currently in its Research  Division at San 
Jose. His assignments have included exploratory studies on 
processing and compressing binary images, advanced development 
of computer peripherals and systems, and research into hardware- 
optimized adaptive compression and implementation of algorithms 
in VLSI microsystems.  Dr.  Arps  received a Resident Study Award to 
Stanford University in 1967-69 and taught as  an IBM Visiting 
Scientist at the Swiss  Federal Institute of  Technology, Zurich, during 
1970-71. During 1977-78,  he was on leave as a visiting  associate 
professor at Linkoping University in Sweden. In 1979,  Dr. Arps 
published a chapter entitled “Binary  Image Compression” in Image 
Transmission Techniques (Academic Press, New York, 1979).  Dr. 
Arps  is currently manager of the VLSI-Oriented Algorithms project 
at the IBM Almaden  Research Center and architect of the ABIC 
VLSI chip for  Adaptive  Binary  Image Compression, His research 
interests include adaptive data compression algorithms as well as 
image  processing, office automation, and computer-aided design  of 
LSI. 

Thomas K. Truong IBM  Research Division, Almaden Research 
Center, 650 Harry Road, San Jose, California 95120. Mr. Truong is 
a Staff  Engineer and has been  with the VLSI-Oriented  Algorithms 
Project since 1983. He is the co-designer of the ABIC-1 chip and is 
also  responsible  for the design and implementation of various 
adaptive data compression prototypes. His research interests range 
from algorithms to implementations in VLSI. Mr. Truong has 
written numerous demonstration and application programs for the 
IBM host mainframe and PC workstation environments. He 
received  his B.S. in electrical engineering and computer science from 
the University of California at Berkeley in 1983, and his MS. in 
electrical  engineering from Stanford University through the IBM 
Honors Co-Operative program in 1987.  Mr. Truong is a member of 
Eta Kappa Nu, the Institute of Electrical and Electronics Engineers, 
and  Tau Beta  Pi. 

David J. LU IBM Research Division, Almaden Research Center, 
650 Harry Road, San Jose, California 95120. Dr. Lu received the 
B.A. in engineering and applied  physics,  with the Tau Beta Pi Prize 
for  excellence in engineering sciences, from Harvard University in 
1973. He received the MS.  in electrical engineering in 1975, and  the 
Ph.D. in electrical engineering with a minor in computer science in 
198 1, from Stanford University. Dr. Lu  was a Research  Associate in 
the Center for  Reliable Computing and the Computer Systems 
Laboratory at Stanford University, and a consultant in computer 
engineering, from 1981 to 1984. He joined IBM as a Research Staff 
Member in 1985.  Dr.  Lu  is a co-designer of the ABIC-I  VLSI  chip; 
his  research interests center on  the design and testing of application- 
specific integrated systems. He is a member of the Institute of 
Electrical and Electronics Engineers and  an associate member of 
Sigma  Xi. 

Richard c. PaSCO IBM  Research Division, Almaden Research 
Center, 650 Harry Road, San  Jose, California 95120. At the IBM 
Almaden  Research Center, as a contributor to the VLSI-Oriented 
Algorithms Project, Dr. Pasco has contributed to the design  of the 
ABIC chip as well as a VLSI display controller for fabrication by a 
gate-array vendor. His research interests include special-purpose 
architectures, information theory, user-friendly  systems, and 
computer-aided engineering.  Dr.  Pasco  received  his B.S. in electrical 
engineering from Rose-Hulman Institute of Technology, Terre 
Haute, Indiana, in 1972, and his M.S. and Ph.D. in electrical 
engineering from Stanford University in 1973 and 1976. He served 
on the technical staff at Bell Laboratories, Stanford 
Telecommunications, and TRW Vidar. At the Xerox Palo Alto 
Research Center, Dr. Pasco  designed  several experimental full- 
custom LSI devices (including a digital filter and  an Ethernet 
controller), and helped develop a course in user-designed full-custom 
VLSI.  As Manager of VLSI Design at Atari, he  led development of 
several vendor gate-array chips (including a RAM controller and 
memory management unit). Dr. Pasco is a member of the 
Association for Computing Machinery, Eta Kappa Nu, the Institute 
of  Electrical and Electronics Engineers, and  Tau Beta Pi. 

Theodore  David  Friedman IBM Research Division, Almaden 
Research Center, 650 Harry Road, San Jose, California 95120. A 
Research  Staff Member at the Almaden Research Center, in 1963 
Dr. Friedman joined the IBM T. J. Watson Research Center, where 
he managed the Machine Assisted  Design Project and developed 
“ALERT,” the first behavioral logic  design  synthesizer. In 1970  he 
transferred to  IBMs San Jose Research Laboratory, where  he 
designed  analysis tools for digital networks and devised an access 
control system for shared data. He also  worked in image 
enhancement and font design, as well as data compression. Prior to 
joining IBM, Dr. Friedman was a member of the scientific staff at 
Technical Research Group, Inc., where  he participated in the 
development of  space-vehicle guidance systems. He received a B.A. 
degree from the University of  Michigan in 1958, and M.S. and 
Ph.D.  degrees from the University of California, Berkeley, in 1973 
and 1976,  respectively. Dr. Friedman has received  IBM awards for 
his  work on logic  synthesis and font rescaling. 
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