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A VLSI chip for data compression has been
implemented based on a general-purpose
adaptive binary arithmetic coding (ABAC)
architecture. This architecture permits the reuse
of adapter and arithmetic coder logic in a
universal way, which together with application-
specific model logic can create a variety of
powerful compression systems. The specific
version of the adapter/coder used herein is the
“Q-Coder,” described in various companion
papers. The hardware implementation is in a
single HCMOS chip, to maximize speed and
minimize cost. The primary purpose of the chip
is to provide superior data compression
performance for bilevel image data by using
conditional binary source models together with
adaptive arithmetic coding. The coding scheme
implemented is called the Adaptive Bilevel
Image Compression (ABIC) algorithm. On
business documents, it consistently outperforms
such nonadaptive algorithms as the CCITT
Group 4 (T.6) Standard and comes into its own
when adapting to documents scanned at
different resolutions or which include
significantly different data such as digital
halftones. The multi-purpose nature of the chip
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allows access to internal partition combinations
such as the “Q” adapter/coder, which in
combination with external logic can be used to
realize hardware for other compression
applications. On-chip memory limitations can
also be overcome by the addition of external
memory in special cases. Other options include
the uploading and downloading of adaptive
statistics and choices to encode or decode, with
or without adaptation of these statistics.

Introduction

o Data compression algorithms
Data compression algorithms are used to transform digital
data into equivalent, but usually smaller, “compressed”
representations. They are used in such applications as digital
facsimile or image processing systems, to decrease the
average amount of data to be transmitted or stored. Such
algorithms are designed using the principles of information
theory, which are introduced in a number of textbooks such
as those written by Abramson [1] or Ash [2]. For bilevel
image data compression, Arps has written a tutorial and
detailed summary of the art in Chapter 7 of Image
Transmission Techniques [3], as well as detailed
bibliographies [4, 5].

Figure 1 illustrates these basic concepts for our Adaptive
Bilevel Image Compression (ABIC) algorithm, designed for
images digitized with only two levels of amplitude'. A

' Such images are binary in amplitude, with “white” or “black” picture elements (pels)

typically represented by the bits 0 or 1, respectively. 775
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: Compressmn of business document by binary-image compression algorithm: (a) CCITT-1 orlgmal image (513 216 bytes) (b) ABIC-encoded
image (14,969 bytes).

-

Table 1 Compression ratio comparison of ABIC algorithm vs. G4 (T.6) algorithm.

Test data G4 (T.6) algorithm ABIC algorithm Result
File name Original Compressed Compression Compressed Compression Change
size size ratio size ratio (%)
(bytes) (bytes) (bytes)

Conventional documents

CCITTI 513,216 18,103 28.35 14,969 34.29 +20.9
CCITT2 513,216 10,803 47.51 8,946 57.37 +20.8
CCITT3 513,216 28,706 17.88 23,466 21.87 +22.3
CCITT4 513,216 69,275 7.41 55,852 9.19 +24.0
CCITT5 513,216 32,222 15.93 26,986 19.02 +19.4
CCITT6 513,216 16,651 30.82 14,032 36.57 +18.7
CCITT7 513,216 69,282 7.41 58,529 8.77 +18.4
CCITT8 513,216 19,099 26.87 15,596 3291 +22.5

Digital halftone documents

BOAT2 46,848 33,418 1.40 17,187 273 +94.4
PANDAQ 46,800 23,685 1.98 10,948 4.27 +116.3
PANDA 46,800 24,043 1.95 11,163 4.19 +115.4
ERD 46,800 90,699 0.52 23,027 2.03 +293.9
DIT 46,800 70,334 0.67 15,766 2.97 +346.1
SUPC 46,800 49,485 0.95 16,653 2.81 +197.2

776

R. B. ARPS ET AL. IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988




business letter, Figure 1(a), is shown along with a pseudo-
image, Figure 1(b), displaying the bits resulting from its
compression. The latter image was created by assembling
compressed bits into the top of an area the same size as the
original image, padding any unused area with white pels.
The bit savings resulting from compression can be visualized
by comparing the area (bits) of the original image with the
“salt-and-pepper” area (bits) of compressed data in the
pseudo-image. We use the term “compression ratio” to
express the bit savings obtained, illustrated here as the ratio
between the original and compressed image areas. In the
example of Figure 1, the ABIC algorithm reduced the
original 513K-byte source image to 15K bytes, yielding a
compression ratio of 34.3.

The illustrated algorithm is “lossless,” in that the original
image can be reconstructed exactly by decompressing the
data illustrated in its pseudo-image. “Lossy” algorithms are
characterized by compression that is not reversible, wherein
any loss is usually designed to be acceptable to the intended
final user of the data. Compression for bilevel image data is
typically lossless, since it is already preceded by the lossy step
of forcing the original image pixels to two amplitudes. The
latter step precludes much further lossy image processing
without becoming unacceptable to the user and is similar to
the thresholding which occurs in a typical copying machine.

Figure 2 illustrates the compression performance for a
more difficult type of bilevel data—digital halftones. As can
be seen in the pseudo-image of Figure 2(c), the ABIC
algorithm now attains a compression ratio of only 2.7. In
general, the compression process is highly data-dependent,
and for bilevel data the most difficult images are those in
which the percentages of black and white pels are about
equal. The difficulty in compressing halftones is even more
pronounced in Figure 2(b), which illustrates that a
compression ratio of only 1.4 is achieved with the
international standard Group 4 (T.6) algorithm [6] from the
Consultative Committee for International Telephony and
Telegraphy (CCITT). This dramatic difference in
compression performance is due primarily to the fact that
the ABIC algorithm is adaptive and the CCITT algorithm is
nonadaptive (“static”). Notice also that the pseudo-image no
longer appears to be completely random. This is a practical
clue that there is potential for further compression than this
algorithm has fully realized.

A more detailed comparison of these two algorithms is
summarized in Table 1. Two categories of data are
represented—business documents and digital halftones. The
business document data are from the commonly used
CCITT test set of documents [6]. The digital halftone data
consist of the high-detail “BOAT2” image of Figure 2, plus
lower-detail images for a set of different halftone algorithms test document. A percent-change column has been included

(d)

(c)

Compression of halftone image by static and adaptive algorithms: (a)
“BOAT?2"” original image (46,848 bytes); (b) encoded by G4 MMR
static algorithm (33,418 bytes); (c) encoded by ABIC adaptive
algorithm (17,187 bytes).

applied to the same picture of a face [7]. Compression to facilitate comparison of the algorithms.
performance results are reported both as actual compressed The ABIC algorithm performs uniformly better than the
data sizes and as the compression ratios achieved for each CCITT algorithm for all of the data. It performs 777
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Block diagram for adaptive data compression.

approximately 20 percent better on the business documents,
Jor which the CCITT algorithm has been explicitly
optimized. Note that the results for the ABIC algorithm have
been obtained without prior optimization on any test data
set at all. Its adaptive process is initialized with random
information. For the halftone data, the ABIC algorithm
performs from 2.0 to 4.5 times better than the static CCITT
algorithm. In some cases, the latter algorithm does not
compress at all, but rather expands the data.

The ABIC algorithm is explained in detail in later sections,
following discussion of the architectural concepts used to
obtain adaptive data compression and implement it
compactly.

o VLSI implementations

For systems that process bilevel images, data compression is
imperative because of the large size of uncompressed image
records and the large compression ratios that can be
achieved. However, these systems also need very-high-speed
compression/decompression (or “comdec”) hardware
implementations, in order to achieve split-second capture
and retrieval of images. A comdec built with dedicated
hardware offers the maximum in attainable speed, especially
when built on one chip where interconnection delays can be
minimized.

IBM built one of the first binary-image comdec chips in
the early 1970s [8], using the LSI technology of that period.
Early in the 1980s, the CCITT Standard Group 3 and 4
binary-image compression algorithms [6] were put into one
chip by AMD [9]. Both of these chips implemented
nonadaptive algorithms that were based on variations of run-
length coding [3]. Building adaptive forms of such
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algorithms represented a formidable increase in complexity,
tending to exceed the capacity of single-chip architectures.

With the development of “arithmetic coding” for data
compression [10-17] and the increasing complexity possible
with VLSI technology, the environment has changed
dramatically. We are now able not only to integrate adaptive
compression algorithms into single VLSI chips but, with
arithmetic coding, also to create superior algorithms that
were heretofore impractical to realize.

Using a general-purpose architecture for compression
algorithms based on our adaptive binary arithmetic coding
(ABAC) technology, we have been able not only to design
such a chip for adaptive binary-image compression but also
to make it a multi-purpose device. It offers separately
accessible combinations of partitions, for use as building
blocks in building hardware comdec prototypes for other
applications. It also offers the ability to initialize or dump
the statistics for adaptation, to select among adaptive and
nonadaptive modes and other features, and to make the
normal choices between encode and decode modes of
operation. This paper reports the algorithmic and hardware
design of two generations of such a chip, as well as the
successful completion and fabrication of the second
generation of our design by a “silicon foundry.”

Overview of key concepts

o Adaptive data compression

The architecture we use for adaptive data compression or
decompression uses three basic components: a model, an
adapter, and a coder, as illustrated in Figure 3. The model
and coder components can be defined in classical terms such
as might be used to describe nonadaptive algorithms. For
instance, the model for the CCITT Group 3 algorithm [6}
assembles “outcomes” which are contiguous “runs” of black
or white pels, for subsequent coding using corresponding
code words of some appropriate length. Such code words are
designed using a fundamental relationship from information
theory,

li = _10g2 (p; )’

which relates the probability p; of each possible output i
from the model to an ideal code-word length /,. Code words
approximating this ideal length should be used to encode
each outcome during compression or decode it during
decompression.

The challenge, in making this methodology adaptive, is to
find a practical method by which real-time changes in the
probability distribution for model outcomes can be turned
into appropriate changes in the lengths of code words in the
coder. In Figure 3 the adapter component performs the
function of tracking model outcomes, in order to continually
estimate their probability distribution. It also passes
probability-estimate information, for each model outcome to
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be encoded or decoded, to an instantaneously reconfigurable
coder. Note that the model/adapter combination must
function identically during both of these modes.
Additionally, the compression-mode adapter must use only
that model information which the decompressor model at
that point can already have reconstructed (i.c., the adapter
must be causal).

A general-purpose reconfigurable coder should be able to
adjust to all possible distributions over codebooks of a given
size and still generate efficient code words dynamically. The
difficult problem of designing such a coder is solved by
breaking it into the following two steps:

Step I A reconfigurable coder for all possible binary
(two-code-word) codebooks is used [12].

Such binary coders, based on arithmetic compression
coding, are only described behaviorally here; the next section
contains a more complete description of the specific coder
we used.

Step 2 Any nonbinary model using an arbitrary but fixed
codebook size is decomposed into a repeating sequence of
conditional binary models [13].

In effect, this is a parallel-to-serial conversion of the bits in
the outcomes of any desired nonbinary model. The resulting
conditional binary models are then serially encoded by
multiplexing their outcomes to the reconfigurable binary
arithmetic coder.

The key concept in Step 2 comes from the chain rule for
entropies in information theory [2]. Simply stated, one can
serialize the outcomes of a nonbinary model into a sequence
of outcomes from conditional binary models without any
change in the potential for compression (entropy).
Mathematically, this is formalized as

H(abc---h)y=H(a)+ H(bla)---+ H(hlabc---g),

where H( . ) is the classical entropy function. For this
example, the set {abcdefgh} might represent the combination
of bits abcdefgh, enumerating any outcome from a model
representing the coding of arbitrary bytes of digital data.

o Compressing binary models

To accomplish Step 1 in our adaptive compression
architecture, one must be able to compress binary models.
The ideal lengths of the two code words for a binary model
include one which is less than one bit long (if there is any
potential for compression). When methods such as Huffman
coding [1] are used to generate code words for these ideal
lengths, the code words that result are again one bit in
length, resulting in no compression.

The classical solution to this problem is to group together
N outcomes from a binary model, estimate probabilities for
the 2V possibilities that arise, and treat them as if they were
outcomes from an Nth extension of the original model.

IBM J. RES. DEVELOP. VOL. 32 NO. 6 NOVEMBER 1988
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(a) Concatenation coding; (b) arithmetic coding.

Application of Huffman coding techniques to such a
nonbinary model can then yield variable-length code words
and the potential for compression.

Note that grouping of binary outcomes into an extension
precludes the use of a reconfigurable binary coder and
conditional binary models—as required by our general
solution for adaptive compression coding. In contrast to this,
arithmetic compression coding can encode binary models
directly, without having to resort to grouping outcomes into
an Nth extension! It accomplishes this by its unique ability
to encode even fractional bits of information.

To better understand arithmetic coding, it is useful to
compare its behavior with that of the classical approach,
which we shall call “concatenation” coding. That is, block
codes [1] such as Huffman coding typically assemble
variable-length code words into a code string by using a
register, as is illustrated in Figure 4(a). This process consists
of alternating between the LOAD of some number L of
code-word bits into the register and the SHIFT of a
corresponding number of bits, S, out of the register into the
code string (i.c., S=L).

In contrast to this, arithmetic coding, as shown in Figure
4(b), permits its code-string assembly register to shift out /ess
than the size of the code word that was last loaded (i.e.,

S < L). There may be leftover data in the register when the
next code word is to be assembled, so that the previous
LOAD operation must be redefined. Its operation becomes
binary arithmetic (i.e., ADD), hence the name arithmetic
coding.

R. B. ARPS ET AL.
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7-bit template.

The point, specifically, is that with arithmetic coding one
can encode code words that ideally require fractional bits of
length and, in particular, the fractional ideal code-word
lengths required to be able to compress a simple binary
model. Of course, it must be possible for a decompressor to
undo the code from such a nonblock code. The theory of
arithmetic coding specifies the extent to which its code words
may be overlapped when assembling them into a code string
and still retain “unique decodability” [1].

This powerful result includes the ability to instantaneously
change the probability distributions used in creating code
words, even though the code words are mixed into a
nonblock code string. Decompression is possible so long as
the binary decoder receives a sequence of distributions
identical to that used during encoding. It is thereby possible
to adapt after each new data bit, to readily encode
conditional binary model data [16], and to realize the desired
general-purpose coder design strategy.

ABIC algorithm

e ABIC model

The potential for compressing bilevel data with conditional
binary models was investigated theoretically [18], in entropy
studies, for some time before it became practical to actually
realize implementations. One such model is illustrated in
Figure 5, wherein each binary pel is encoded based on the
conditional state or context of a set of 7 neighboring pels.
The classical challenge was how to encode such a conditional
binary source in the face of a conflicting need to take Nth
extensions.

Preuss [19] developed the first algorithm that
accomplished this, although it still had severe practical
limitations. He created multiple Nth extensions for the
separate states of a conditional binary Markov model, by
demultiplexing the pels in a raster image into parallel state-
dependent strings [3]. Each of these strings needed a separate

R. B. ARPS ET AL.

paraliel coder; the illustrated 7-pel model, for example,
would have required 128 of them.
Langdon and Rissanen [16] elegantly simplified this

* problem by the application of ABAC technology. They first

stored the conditional probability distributions for the 128
states illustrated. When the pels in a raster image were then
applied to a reconfigurable binary arithmetic coder, they
simultaneously applied probabilities from the appropriate
distribution. This distribution address was determined as the
state (or context) of the 7-pel model. They took maximal
advantage of the instantaneously reconfigurable coder as
well, by adapting the probability distributions. Note that
although this approach uses additional storage for the 128
distributions, it requires the use of only one arithmetic coder.

The technology used for the reconfigurable coder and its
accompanying adapter evolved through a series of
generations. Our chip design first used the “skew” form of
coder [12] and “Monte Carlo” [20] form of adapter. We
subsequently updated the ABIC algorithm and redesigned
the chip to use an improved adapter/coder called the “Q-
Coder” [21-24]. Developed jointly with colleagues at the
IBM T. J. Watson Research Center, it permits the
implementation of fast software as well as hardware. It has
also improved the compression ratios achieved on the
CCITT documents. The next sections describe our hardware
Q-Coder implementation, after introducing more detailed
arithmetic coding concepts.

e ABIC coder

Fundamentals: Intervals on the number line

Arithmetic coding is a coding technique used for lossless
data compression, that is, an invertible mapping between
any data file and a more compact representation of the same
information. From an idea originally proposed by Peter Elias
[1], arithmetic coding maps mutually exclusive outcomes of
a probabilistic “event” into nonoverlapping intervals on a
real number line. A particular outcome may be specified by
giving the numerical value of any point in the corresponding
interval. For data compression, each symbol from the source
file is an event, the values the symbol may have are the
possibie outcomes of the event, and the widths of the
intervals are chosen to be approximately proportional to the
probabilities of the values. The compression occurs when
more likely events correspond to larger intervals, because it
takes fewer bits to specify some point in a large interval than
in a small one.”

Iteration and strings
The benefit of arithmetic coding comes from encoding not
just a single event or symbol but a sequence of events (string

‘of course, some small intervals could be specified with just a few bits, but these cases
are so unusual that most arithmetic coding algorithms do not take advantage of them.
The number of bits necessary to specify an arbitrary interval grows as the negative of
the logarithm of the width of the interval.
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of symbols). This is done iteratively as follows. Start with a
given interval on the real number line. Any finite interval
will do, but the ABIC uses the “unit interval” (numbers
between zero and one). For each symbol, establish a
correspondence between its possible values and
nonoverlapping subintervals. The actual value of the symbol
selects one of these subintervals. Further divide this new
interval by subsequent symbols in the same manner. When
the end of the source is reached, transmit a binary fraction
to specify some point in the final subinterval. We will call
the point so chosen the code point.

Decoding

The decoder starts with the same initial interval as the
encoder, and establishes the same correspondence between
possible values of each symbol and nonoverlapping
subintervals. At each step it examines the binary fraction
from the encoder to determine which subdivision was taken,
and outputs the appropriate symbol. As in the encoder, this
new interval is further subdivided untit all of the original
decisions have been reconstructed.

This technique uniquely reconstructs the original sequence
regardless of how the subintervals are chosen, provided they
are nonoverlapping and that both the encoder and decoder
subdivide the intervals in the same way. When the goal is
data compression, though, a wise use of code space must be
made. It turns out that, on the average, the fewest bits are
necessary to specify a point in the final interval if at each
iteration the width of each subinterval is made proportional
to the relative probability of its corresponding symbol.

Conditioning

The probability distribution for a given symbol, or even its
alphabet, need not be fixed but may be conditioned on
preceding symbols in the file. This is possible because at the
time a given interval is to be subdivided, both the encoder
and decoder know the value of all previous symbols, and
hence can make identical assignments to possible
subintervals. This fact allows arithmetic coding great
flexibility in encoding Markov strings and in adapting to
fluctuating source statistics. For example, in Figure 6, the
alphabet and/or probability distribution for the second
symbol might have been different if the first symbol had
assumed value “A” or “C” instead of “B.” When the first
symbol was “B,” its possible successors were “D,” “E,” and
“F,” but if the value of the first symbol had been “A,” its
possible successors might have been “TRUE” and “FALSE”;
similarly, the possible successors of “C” might have been
“RED,” “YELLOW,” and “GREEN.” The system works as
long as the encoder and decoder have prior agreement about
the set of successors (and their probabilities) for each history.

Relationship of coder to model and adapter
Refining the definition of the “Model-Adapter-Coder”
architecture described earlier, the model maps the incoming
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data into a series of symbols, or probabilistic events, to be
encoded. Accompanying each symbol the model also
delivers a summary of the previously processed data,
expressed as a single number called a context [16]. Given this
context, the adapter provides an estimate of the probability
distribution of the symbol, based on the values which were
actually seen accompanying previous occurrences of the
same context. Next, the coder subdivides the interval on the
number line according to this probability estimate and the
actual symbol value. Finally, the adapter revises its state
based on the symbol value just encoded.

Finite-precision arithmetic

A direct implementation of the technique for subdividing
intervals on the number line would require arbitrarily long
word lengths for the calculations involved [25]. To avoid
this, we use a kind of floating-point arithmetic which takes
advantage of the fact that (usually) as the sequence
progresses, the interval being considered becomes smaller in
such a way that all points in it have the same leading (more
significant) bits. Thus, it is usually possible to transmit these
bits long before the subdivision process is complete, and
focus attention on the less significant bits [11]. Figure 7
illustrates this. The exception, where the interval persistently
spans a roll-over of a more significant bit, is considered later
as a special case.

Registers and variables

Because it takes two numbers to define an interval on the
number line (either as two endpoints or as one endpoint and
a width), every arithmetic coder needs two registers to keep
track of the current interval [17]. In the Q-Coder used in the
ABIC, they are called the A and C registers. For both encode
and decode, the A register represents the width of the current
interval. For encode, the C register represents the lower

R. B. ARPS ET AL.
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endpoint of the current interval, as shown in Figure 8. For
decode, the C register represents the position of the code
point relative to the lower endpoint of the current interval
(i.e., the value of the code point minus the lower endpoint of
the current interval).

Both of these registers have twelve bits to the right of an
imaginary radix point. The A register has one bit left of the
radix point, and the C register has four. The bits left of the
radix point in the C register are called “spacer” bits. The

R. B. ARPS ET AL.

internal function of “spacer” bits is discussed later under
“Long carries and spacer and stuff bits.”

Model initialization

The ABIC model memory is initialized such that the
previous line (above the top edge of the image being
encoded) is assumed to be all 0 (white).

Coder initialization

For both encoding and decoding, the A register is initialized
to 1.0. For encoding, the C register is initialized to 0.0.
Together, these values designate the initial interval to be the
interval between zero and one. By convention, the first byte
transmitted from the ABIC consists of the eight bits from the
C register just right of its implied radix point (i.e., none of
the four “spacer” bits mentioned under “Registers and
Variables” are transmitted). In other words, the bits of the
first byte have weights one-half, one-fourth, one-eighth, etc.,
beginning with the most significant bit (MSB).

For decoding, the four “spacer” bits to the left of the radix
point of the C register are set to zero, and the bits to the
right of the radix point are initialized to the first twelve bits
of the code string.

Binary arithmetic coder

The coder portion of the ABIC is one of a class of arithmetic
coders which consider only binary symbols. That is, each
iteration considers an event with just two possible outcomes,
and divides the interval into just two subintervals. The two
possible values for each binary symbol (bit) to be encoded
are called “more probable symbol” (MPS) and “less probable
symbol” (LPS). By convention, the ABIC assigns the LPS at
each iteration to the lower subdivision of the current interval
(adjacent to C), and the MPS to the upper (greater than C).
This is shown in Figure 9.

Q-Coder

The ABIC algorithm adapter and coder together are called a
“Q-Coder.” Each time an interval on the number line is to
be divided, the width of the subinterval corresponding to an
LPS is chosen from a fixed table called a Q-table. The
remainder of the original interval corresponds to an MPS.
The choice of which table entry to use is made by a finite-
state machine in the adapter. Its state transitions are
triggered by feedback from the coder, as discussed in the
subsection on the ABIC adapter.

Ideally (for best compression), if 4 is the width of the
current interval in the A register, and ¢ is the probability
that the next symbol is an LPS, then the width of the
subinterval corresponding to an LPS should be
approximately 4q and the width of the subinterval
corresponding to an MPS should be approximately A(1 — g).
The Q-table approximates 4g with value Q, to avoid a
multiplication, as is discussed in the subsection on the Q
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approximation. Figure 9 shows how the Q-value partitions
the interval into LPS and MPS subintervals. The encoding
caculation for subdividing an interval is

if MPS then begin
C:=C+Q,;, (*move lowerend*)
A:=A—-Q,; ("narrow width *)
end
else
A:=Q,; (* narrow width *)

The corresponding decoding operation is

if C >= Q, then decode an MPS
else decode an LPS;

if MPS then begin
C:=C—-Q.; (*movelowerend™)
A:=A-Q,; (*narrow width*)
end
else
A:=Q,; (* narrow width *)
Renormalization

As mentioned above, the ABIC avoids the need for infinite-
precision registers by using a form of floating-point
arithmetic. After each iteration, the A register, which defines
the width of the subinterval chosen, is “renormalized,” or
shifted left such that its leading bit (the bit left of the radix
point) is 1. Renormalization essentially “zooms in” or
magnifies the current interval by a power of two, so that it
fills at least half the capacity of the A register. The C register,
which defines the lower endpoint of the interval, is also
shifted left by the same number of places, so that bits in the
C register always have the same algebraic weight as the
aligned bits in the A register. During the encoding operation,
bits shifted out of the left (most significant) end of the C
register are buffered and, eventually, transmitted as the code
string; we show later how this works. During the decoding
operation, new bits from the code string fill the vacated least
significant bit positions of the C register. Now the Q-Coder is
ready to process the next symbol.

The Q approximation

For ideal compression performance, 0, = Aq. However, the
optimum is rather broad, and an approximate value for g,
which depends only on g can avoid this multiplication and
still provide reasonable performance. The Q-table need not
be very large; in the ABIC it has just 30 entries for
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probabilities in the range from 1/2 down to 272, Because of
the renormalizations, 4 is nearly constant (within a factor of
two). In other words, since the single bit left of the radix
point in the A register is always 1, we note that

I=s4<?2.
Knowing this, we can approximate Q, = Aq as

O.=kq

for some constant k. Previous work [22] has assigned

k = 4/3. To understand why this is reasonable, the section
“Optimally filling the Q-table” finds for each gP the value of
Q. which minimizes the code space taken, and demonstrates
that the ratio Q,/q is only weakly dependent on ¢. Along
with the definition of LPS (that ¢ <0.5), this implies Q, < 1
and hence that Q-values need no places left of the radix
point. In ABIC, the Q-values are expressed to 12 binary
places to the right of the radix point.

o ABIC adapter

For the Q-Coder, it is the job of the adapter to provide the
appropriate value of Q, for each symbol (bit) to be encoded.
The adapter is a finite-state machine multiplexed to
maintain a separate state record for each context. The
multiplexing is implemented by a random-access memory
(RAM) whose address or index is the context and whose
data are the state records for each context. The state record
consists of

o A single bit, which records whether a 0 or a 1 is more
likely to be emitted next by the source.

e A 5-bit number called the Q-index, which selects from a
fixed table one of 30 possible Q-values to be provided to
the coder.

As discussed above, these Q-values purport to be
approximately 4/3 times the probability that the next bit will
be an LPS. The complete table for the ABIC is shown in
Figure 10.

The state record for each context can be thought of as
marking a position on one of two ladders, each having rungs
labeled with the various Q-values. There is one ladder for
MPS = 0 and another for MPS = 1. When a given context
occurs, after its state record provides an MPS-value and
Q-value for the coder, a new state may be entered for that
context (i.e., the state record may be modified). If an MPS
occurred, the state may climb a step further up the ladder it
is on, selecting for next time an even smaller probability that
the next symbol will be an LPS, unless it is already on the
top rung of the ladder. If an LPS occurred, the state descends
a little on its ladder, increasing the probability that the next
symbol will be an LPS, unless it is already at the bottom
rung, in which case it steps over to the bottom rung of the
other ladder, reversing the expected symbol. Figure 10 shows

the state assignments and transition rules for all 60 states. 783
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Q-index  Q-value MPS MPS
(decimal)  (hex)

29 001
28 003
27 005
26 007
25 00B
24 013
23 017
22 027
21 053
20 059
19 071
18 0Al
17 0El
16 121
15 181
14 241
13 281
12 2C1
11 301
10 381
9 441
8 481
7 501
6 601
5 681
4 701
3 901
2 A0l
1 A8l
0 AC]

State-transition diagram for Adapter.

Adapter initialization

The adapter memory is initialized such that for each context
the most probable symbol (MPS) is a 0 (white pixel) with
Q-index 0 (the bottom rung of the ladder). Although the
Q-value on this bottom rung corresponds approximately to
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probability 1/2, it is necessary that both the decoder and
encoder agree as to which is the MPS, so that the sense of
the first symbol is correct.

Renormalization-driven adaptation

We observe above that “the state may climb a step further
up the ladder.” Seeing an MPS is not surprising. It confirms
our prediction and tends to reduce our expectation of seeing
an LPS, but not so drastically that we would want to climb
to a new rung on the ladder every time an MPS occurred.
One previous adapter design [14] counted MPS occurrences
and took a step after a large number had been seen, but this
required a large-modulus counter for highly skewed cases
(cases where the LPS was expected to be extremely rare).
Another design [20], called Monte Carlo, flipped a skewed
coin to decide whether it was time to take a step, but this
required a coin flip at each iteration, when a step was only
occasionally required. With a very clever insight [22],
Pennebaker and Mitchell showed that the right amount of
adaptation is provided when it is triggered by a
renormalization of the A register: If the estimated probability
of an LPS is small, an MPS is not very surprising. In this
case, the Q-value subtracted from 4 when an MPS occurs is
small and only occasionally results in a renormalization.
Thus an MPS only occasionally causes a step up the ladder.
Conversely, an LPS is always surprising. Since an LPS
replaces 4 with some Q,, and every Q, is less than 1, each
LPS automatically triggers a renormalization. Thus, an LPS
always causes the adapter to descend the ladder. The effect is
optimized by including on each rung of the Q-value ladders
an additional entry, which says 2ow far down the ladder to
descend when an LPS is encoded. A very surprising LPS
causes the adapter to take several steps down the ladder.
This is shown in Figure 10.

In the ABIC, the state record for each context is initialized
to expected MPS = 0 with Q-index = 0. A renormalization
caused by encoding an MPS increments the Q-index for the
current context, unless it is already at its maximum value.
Encoding an LPS replaces the Q-index for the current
context with the new Q-index from the table, unless it is at
its minimum value, in which case the MPS value is reversed.

Long carries and spacer and stuff bits

The lower endpoint of the current number-line interval is
represented by a long fixed-point binary fraction, whose less
significant bits are still in the C register and whose more
significant bits were shifted out of its left end during the
renormalization process. The code point, or final point later
chosen to designate the innermost subinterval, usually has
the same more-significant bits. Thus, the bits shifted from
the C register usually constitute the desired code string. The
exception to this is when a subsequent MPS adds to C a
Q-value large enough to cause a carry to propagate into the
bits which have already left the C register. When this
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happens, the carry must be resolved so that the bits sent to
the decoder accurately represent the code point. This is
accomplished by using a combination of spacer bits [26] and
stuff bits [27].

Spacer bits are the bits to the left of the radix point in the
C register. They provide a pipeline through which the bits
shifted left must pass before leaving the register and being
transmitted. Carries propagating from the active portion of
the C register into these spacer bits are often resolved there.
Only if the spacer bits are all 1 does a carry propagate
through them and out of the C register. No matter how
many spacer bits are provided, this will happen with nonzero
probability. Inserting stuff bits provides a solution.

In viewing the code string as a binary fraction representing
a point on the number line, each of its bits normally has half
the algebraic weight of its predecessor. A stuff bit is an
exception to this rule, in that it is an extra bit position with
the same algebraic weight as its predecessor. The value of the
fraction is the weighted sum of its bits, where the weights are
negative powers of two. In computing the effective value of
the fraction when a stuff bit is inserted, the two bits having
the same weight may be added together.

This idea can prevent a carry from propagating into that
part of the code string which has already been transmitted:
Bits shifted out of the C register are buffered for a time
before transmission. When the buffer contains a run
(continuous sequence) of 1s, presenting a danger that a carry
propagating into them would propagate through and out
into the code string, a 0 stuff bit is inserted just below the
run. Should a carry arrive from the C register, it sets the stuff
bit to 1. This achieves the correct algebraic result but
without propagating a carry through the run above it. Since
the decoder can recognize the same run of 1s, it knows
which bit is the stuff bit, and can assign it the correct
algebraic weight.

In the ABIC, the stuff scheme is tied into the buffering
that groups the bits shifting one at a time from the C register
into eight-bit bytes. Each time a code byte with hexadecimal
value 'FF’ is transmitted, a stuff bit is inserted into the code
string at the high-order bit of the following byte. Subsequent
bits from shifting the C register are held back to make room.
The stuff bit (which has the same weight as the low-order bit
in the 'FF’ byte just transmitted) catches any carry which
would otherwise be added into the ' FF’ and propagate out
into the part of the code string which has already been
transmitted.

The use of stuff bits implies that different code strings
could have the same arithmetic value, depending on whether
a carry settles naturally or propagates until it is “caught” in a
stuff bit. By increasing the number of shift-register bits
(called “spacer” bits) between the active C register and the
serial-to-parallel conversion, the probability is increased that
a carry settles in the registers before it gets to the stuff
position. In order to replicate exactly the code string the
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ABIC produces, it is necessary to understand exactly what
buffering and stuff bits are required. The following
paragraphs detail what must be done.

Bits which are shifted out of the left end of the C register
during renormalization are not transmitted immediately;
instead, they are queued in an extension of the C register so
that carries propagated out when a Q-value is added into C
may be resolved. When this queue gets sufficiently long, its
high-order bits are moved to a code-byte buffer and later
transmitted into the code string.

The fixed-point C register has twelve fractional bits to the
right of the radix point. To the left of the radix point are up
to twelve additional “extension” bits, the exact number
depending on how many renormalization shifts have
occurred since the last transmission of a code byte. Initially
there are no extension bits. Each renormalization shifts C
left and increases by one the number of extension bits. There
is a means of counting the number of extension bits which
have been shifted from C.

When a carry propagates above the radix point of C, it
propagates into the extension bits. This does not increase
their number, but it does increment their value. If all the
extension bits happen to have value 1, the carry propagates
through all of them (and out the other side). A “carry flag”
records when this has happened. This flag has the same
arithmetic weight as the LSB of the code-byte buffer (double
the weight of the leftmost extension bit).

The first time the count of extension bits reaches twelve,
the highest eight of them are moved into the code-byte
buffer, reducing the number of extension bits to four. The
bit positions allocated for these four extension bits are also
called “spacer” bits. The code byte in the buffer is not
transmitted yet; it is held in the buffer for possible
incrementation.

Each time thereafter that the count of extension bits again
reaches twelve, it is time to transmit a code byte. If the code
byte in the buffer is not X’'FF’, the code byte is incremented
and the carry flag is cleared. Next, the code byte is
transmitted. The value actually transmitted determines
whether the following byte is to include a stuff bit.

If the value so transmitted was other than X’FF’, then no
stuff bit is called for. In this case, the code-byte buffer
receives the eight highest extension bits, reducing the
number of extension bits to four. But if the byte just
transmitted was X’FF’, then a stuff bit is called for. In this
case, the code-byte buffer receives a stuff bit and seven data
bits; its MSB receives the carry flag, and its low seven bits
receive the high seven extension bits, leaving five extension
bits behind. The stuff bit will be a 1 if and only if there was a
carry from the bits below (following) it which could not
propagate into the byte above because it was already X'FF’.
Conversely, it should be 0 if either there was a carry from
the bits below which did propagate into the byte above,
turning it from X'FE’ into X’FF’, or the byte above was
already X’FF’ and there was no carry.

R. B. ARPS ET AL.
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Unstuffing carries

When an X’FF’ is encountered in the data stream, the
decoder knows that the MSB of the following byte is a stuff
bit. This stuff bit has the same numeric weight as the LSB of
the X’FF’ byte, and must be added into the latter in order
that the carry which it “caught” may be released and allowed
to complete its propagation. This action (called resolving the
stuff) must take place early enough that decoding decisions
based on the numeric weight of the code string are made
correctly. We will see that correct decoding results if the stuff
is resolved anytime prior to decoding the symbol whose
encoding caused the carry-over into the stuff position.3 In
any case, the X’FF’ preceding the stuff bit can be completely
shifted into the C register during decoding before the carry is
propagated. This is because the code string is a sum of
appropriately shifted Q-values corresponding to MPS events
(recall that encoding an MPS results in some Q-value being
added into the C register, whereas an LPS adds nothing to
the C register). The X'FF’ was already part of the code
string before the carry-causing MPS was encoded. Because
the adding of the carry-causing MPS did not create the
X'FF’, the Q-values pertaining to all prior MPSs are
included in the code string through the X’FF’, and hence we
can decode the code string completely through the X’FF’
before we need to propagate the carry.

Termination

Until now, we have stated that any point in the innermost
subinterval is adequate for unique decoding. By convention,
ABIC chooses the lower endpoint of the final interval to be
the code point. This simplifies the hardware design because
the C register already contains this value. After the last
symbol from the source has been encoded, along with any
concomitant renormalization, the C register is shifted left
until its least significant bit has been shifted out into the
code string, adding zeros if necessary to complete a byte. In
the rare event that this last byte happens to take on the value
X'FF’, an additional byte is transmitted containing X’00’,
to satisfy any logic which automatically looks for a “stuff”
bit following an X’FF’.* Decoding is terminated when the
prearranged number of bits have been decoded.

Optimally filling the Q-table

This section seeks the best value to use for Q, in a Q-Coder,
given probability ¢ that the next symbol to be encoded is an
LPS. In a Q-Coder, the value 4 in the A register represents
the width of the current interval on the number line. If an
LPS occurs, the new interval has width Q,; otherwise the

G. G. Langdon, Jr., University of California, Santa Cruz, CA, private
communication.

A proposed optimization is that any trailing zero bytes could be omitted from the
code string, provided that the decoder can infer zeros if it needs additional bits after
reaching the end of the code file. The present ABIC algorithm does not provide this
feature.
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new interval has width 4 — Q,. Here “best” means
minimizing the average code space taken to encode the next
bit, where

width of current interval
width of new interval /'

code space taken = log <

We want to select the value of Q, that minimizes the
expected value of this function of two independent random
variables: (1) the current contents of the A register, and (2)
whether an LPS or an MPS is to be encoded. We first derive
an expression for the code space taken, then take its
expected value over the two random variables. The resulting
function of Q, is then minimized by finding zeros of its
derivative.

1. Since the A register has just been renormalized, 1 < 4 < 2.
If we assume that A is uniformly distributed on this inter-
val, its probability density function is

_J1 if l=a<?2,
pA) = {0 else.

2. Suppose we have a good estimate g of the probability that
the next symbol is an LPS.
« LPS occurs with probability g. If LPS occurs,
(a) Width of new interval is Q, .
(b) Code space taken is log (4/Q,) =log A —log Q..
& MPS occurs with probability 1 — g. If MPS occurs,
(a) Width of new intervalis 4 — Q, .
(b) Code space taken is log [4/(4 — Q,)] = log A — log
- Q).

Because of the independence, we can nest the expectation in
either order:

average code space taken = E,[E (code space taken)]

2
= J: {qllog 4 —log Q]
+ (1 —g)llog 4 —log (4~ Q,)]} d4

2
=f1 [logA—qlog Q. — (1 — q) log (4 — Q,)] dA4
2 2
= —ql 1dA
IlogAdA qongj:
2
—(l—q)J:log (4-Q,)dA,

and from the well-known [28] identity

f logxdx = xlog x — X,
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average code space taken ot NARA DA 5 g (A ;f‘/,f/ A
=2log2—-1-qlogQ.—(1-9q) i 1 N

X[(2-Q.)log(2-Q,)—(1-Q)log(1 - Q) 1].

The minimum value for this function of Q, can be found by
setting its partial derivative with respect to Q, equal to zero:

d(average code space taken

00,

=_5-e+(1 —g)llog (2~ Q,)—log (1 = Q)] =0.

Finally, to find the probability of g* for which a given Q,
value minimizes the average code space taken, the above
equation is solved for g:

gt = Qn2-Q)—In(l~0)]
1+Q[n 2-Q) —In(1-Q)]"

The results are tabulated in Table 2.

ABIC implementation L
ABIC-1 die photograph.

& Specifications

We implemented the ABIC algorithm in a custom
masterslice (Structured Array"‘)5 silicon chip manufactured
by LSI Logic Corporation [29]. The implementation of the

ABIC algorithm in this VLSI technology is called the Table 2 values of g for which each given Q-value is optimal.
ABIC-1 chip, shown in Figure 11. The masterslice contains

the desired combination of array logic and random-access Q-index Q-value (Q,) Q./1.333 q* Q.lq*
memory (RAM) embedded in the diffusion layer, as shown “Hex  Decimal Decimal  Decimal  Decimal

in Figure 12. A large region of the masterslice is devoted to
an array of transistors without pre-allocated routing channels
(Compacted Array™ )’ for logic circuits and arithmetic logic
units (ALUs). The RAMs and ALUs are provided by the
supplier as large, customized design patterns called
megacells. Since only metallization is needed to personalize
the megacells and logic arrays, it was possible to overlap
logic design and masterslice fabrication schedules. The logic

0.AC1 067212 0.50409 0.48456 1.387
0.A81 0.65649 0.49237 0.47239 1.390
0.A01 0.62524 0.46893  0.44833 1.395
0901 0.56274 0.42206 0.40107 1.403
0.701 043774 0.32831 0.30908 1.416
. 0.40649  0.30487  0.28646 1.419
0.601 037524 028143  0.26397 1.422
0.501 031274 0.23456  0.21929 1.426
0.481 0.28149 021112  0.19709 1.428
0.441  0.26587 0.19%540 0.18602 1.429

WO~ ANANUNBWRN—=O
(=
(=23
oo
-

array is based on 1.5-um drawn-transistor geometries (size of 10 0381 021899 0.16425 0.15292  1.432
smallest physical features) and a double-metal-layer high- 11 0.301 0.18774 0.14081 0.13094  1.434
performance complementary metal oxide semiconductor 12 02C1 017212 0.12909  0.11997  1.435
(HCMOS) process. This yields about 13,000 usable gates B lenr Ooots 14
(two-input NAND equivalents) for data path and control 15 0.181 0.09399 0.07050 0.06534  1.439
logic. The whole chip is estimated to have about 194,000 16 0421 007056 0.05292 0.04901  1.440

. T 2 . . . 17 0.0E1  0.05493 0.04120 0.03814 1.440
transistors and a die size of 1 cm”, Using this configuration, 18 0.0A1 003931 002048 002728  1.441
we enhanced a preliminary design based on previous 2.0-um 19 0.071  0.02759 0.02069 0.01914  1.442

20 0.059  0.02173  0.01630  0.01507 1.442

CMOS gate array and associated megacell technology.
21 0.053 0.02026 0.01520 0.01405 1.442

Two fast on-chip static RAM megacells were configured 2 0027 000952 000714 000660  1.442
by metallization of a prefabricated diffusion pattern to be 23 0.017 0.00562 0.00421 0.00389  1.442
256 words by 36 bits each (18,432 bits total). The RAM 24 0013 000464 0.00348 0.00322  1.443

. . .. 25 0.00B  0.00269 0.00201 0.00186 1.443
megacells store previous-line data for the model and statistics 2% 0007 000171 000128 000118  1.443

27 0.005 0.00122 0.00092 0.00085 1.443

28 0.003  0.00073 0.00055 0.00051 1.443

Structured Array™ and Compacted Array™ are trademarks of LSI Logic Corporation, 29 0.001 0.00024 0.00018 0.00017 1.443
Milpitas, CA. 787
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RAM RAM
megacell megacell
Sea of gates
ALU ALU

ABIC-1 “floor plan.”

8 8
Data : | _Pel Event e

D 8

8 M CTXT A Q-val C

» *
7 12
Control ﬁ @ ﬂ ll @ Gate
Global logic
6 3

ABIC-1 block diagram.

for the adapter. Uniform RAM format was selected to allow
memory pooling. This maximizes adapter RAM capacity for
various ABIC-1 operating modes. On-chip embedded RAMs
are used to eliminate I/O delays for speed, but off-chip
RAMs also are supported for flexibility. For high
performance, the design is pipelined with several stages and
logic is performed during both phases of the two-phase,
nonoverlapping clock cycle (two distinct, sequential clock
waveforms). We specified two 16-bit ALU megacells to
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obtain the fast arithmetic operations needed by the ABIC
algorithm. The ALUs perform addition and subtraction for
the A register and C register of the coder. The vendor
implemented their design of the ALUs as custom
metallization patterns in the logic array.

These megacells and the fast array logic are the basic
elements for this high-performance design. The original
design was targeted for two-phase clocking at 20 MHz
nominal (5.00 V, 25°C, nominal process variation),
equivalent to 10 MHz worst case (4.75 V, 70°C, worst-case
process variation). Timing analysis shows that the final
design achieved this goal with a significant margin.

The high level of integration results in a low-cost multi-
purpose chip for compression and decompression of bilevel
image data using adaptive binary arithmetic coding. The
same functional core is used in both compression and
decompression. For added flexibility and research purposes,
the chip also can operate with external RAMs. Since this
implementation of the algorithm fits in a single chip, the
ABIC-1 has a relatively low external pin count, with only 37
inputs, 35 outputs, and 10 power/ground pins. Hence it can
be packaged in an 84-pin ceramic pin grid array or in a
surface-mount package.

e Architecture

To avoid clock skew problems, we followed a latch-based
(level-sense) design discipline using two-phase
nonoverlapping clocks. To enhance testability, most latches
are scannable via multiplexers at their data inputs. This is
similar in purpose to level-sensitive scan design (LSSD) [30],
but does not conform strictly to the rules of that approach.
More than one third of the ABIC-1 design logic components
are latches, and use of LSSD latches would have increased
the gate count significantly at the expense of functionality.
Most ABIC-1 internal registers are accessible via 18 separate
scan paths. Some registers also are parallel-accessed via input
and output buses.

For uniformity and consistency, we chose to have all input
and output signals clocked by the same phase. Thus all
primary inputs and outputs are phase 1 (i.e., “.1”) signals.
The sources of all ABIC-1 inputs should be latched by phase
1 (¢,), since they are transferred to ABIC-1 latches clocked
by phase 2 (¢,). Similarly, all ABIC-1 outputs are latched
internally by ¢, and therefore are stable during ¢,. In
principle, then, the inputs and outputs of ABIC-1 are self-
consistent with respect to clock phases. A machine cycle is
thus defined to be a ¢,—¢, pair.

At a high level, the input and output data paths are
organized into two groups. The first group, BUS1.IN and
BUS1.0UT, is 8 bits wide. It is used to transfer
compressed/decompressed data to and from the chip. The
second group, BUS2.IN and BUS2.0UT, is 18 bits wide. It
is used to transfer additional parameters needed by
initialization and various operating modes. There is also a
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ABIC-1 Encode partitioning modes: (a) MAC, (b) AC, and (¢) C.

group of control inputs that address registers for parallel
access and select major operating states. Transfers on the
data buses between the chip and external logic are supervised
by a group of I/O “handshake” outputs from ABIC-1. For
maximum performance, the handshake allows a transfer
during each machine cycle. The data transfers are
semisynchronous, as they are timed by the machine-cycle
clocks.

In addition to normal encode/decode operation, ABIC-1
also supports loading and unloading of its internal RAMs.
This is necessary for initialization and also allows a
predetermined set of statistics to be stored in the statistics
RAM before encoding or decoding. The data for the RAM
are presented to the ABIC-1 via BUS2.IN as a burst transfer
without handshaking. Since this bus is only 18 bits wide and
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ABIC-1 Decode partitioning modes: (a) MAC, (b) AC, and (¢) C.

the RAM is organized as 256 X 36 bits, two machine cycles
are required to pack one full word for each RAM address.
Since a RAM read or write cycle can be accomplished in one
machine cycle, ABIC-1 takes advantage of this and
multiplexes the loading and unloading cycle. In LOAD
mode, the previous data in the RAM appear at BUS2.0UT
(multiplexed 18 bits at a time) as the new data are presented
at BUS2.IN. In DUMP mode, the contents of the RAM are
read out without being overwritten. The previous-line RAM
can be accessed similarly.

The ABIC-1 is partitioned into three functional blocks,
each with its own local control logic, and one global
“switchyard-interface” block, as shown in Figure 13. The
three functional blocks are the model, the adapter, and the
coder. This gives rise to the multi-partitioning modes of
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operation using appropriate combinations of M, A, and C
blocks. There are three primary partitioning modes, MAC,
AC, and C, as shown for Encode in Figure 14, and for
Decode in Figure 15. Compression (Encode) and
decompression (Decode) are done using the same “core”
logic blocks. In full-function (MAC) mode, the application is
compression/decompression of bilevel images. In
adapter/coder (AC) mode, the chip implements the Q-Coder
function to be used with user-supplied, external model
hardware. In coder-only (C) mode, the chip handles only the
encoding or decoding operation, while external logic
provides the necessary model and adapter functions. In
addition, the use of internal on-chip RAMSs and/or external
off-chip RAM:s is supported and provides two additional
partitioning modes, M’ AC and A’C. In M’ AC mode, an
external previous-line model RAM is used with the chip.
The external RAM is connected to the ABIC-1 via BUS2.IN.
In A’ C mode, similar to M’ AC, an external adapter RAM
is used with the chip together with the internal Q-Coder
adapter logic. The external RAM is interfaced to the ABIC-1
via BUS2.IN and BUS2.0UT. The internal-adapter-RAM
write control can be disabled to provide nonadaptive
operation. In addition to allowing access to a general-
purpose building block such as the Q-Coder, this partitioning
approach facilitated functional debugging in successive stages
during logic design and prototype evaluation.

System integration

This section analyzes some issues of data flow rate which
must be considered when building data compression into a
real-time system.

& Throughput characteristics: Compression ratio and clock
multiplier

The ratio between the number of raster bits in an image and
the number of code bits representing the same image is
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known as the compression ratio. For the ABIC algorithm,
the compression ratio depends on the image being encoded.
An image consisting of purely random pixels will generally
not compress at all, while a blank page compresses very well.
The bounds are easily established. The lower bound on
compression ratio is set by images which do not compress at
all (and may even expand); in this case the raster image can
be transmitted ahead.® Thus the lower bound is 1.0. The
upper bound is determined by the finite-precision arithmetic
of the ABIC algorithm. The most highly skewed symbols are
encoded with a Q-value of 272 It takes 2'> — 1 = 4095 such
Q-values to complete a renormalization shift cycle
(decreasing the A register from 1.FFE to 0.FFF hexadecimal,
when it is shifted to 1.FFE again). Hence the theoretical
maximum compression ratio is 4095, A finite-dimension
blank image does not quite achieve the bound, because the
adapter takes time to reach its most highly skewed state.
Practical images lie between these bounds. For example, the
ABIC compression ratio for the CCITT test set ranges from
8.8 for No. 7 through 57.4 for No. 2.

Every ABIC clock cycle processes either one bit of raster
data or one bit of code data (with a very few exceptions
relating to bit-stuffing and un-stuffing logic). This is because
each clock cycle is devoted to either an ALU cycle or a
renormalization shift. During encode (or decode) operation,
an ALU cycle encodes (or decodes) a raster data bit and a
renormalization emits (or accepts) a code data bit. The
process is symmetric; the time required to encode an image
is very nearly equal to the time required to decode it.

It is useful to define the term clock multiplier as the
average number of raster bits processed per clock cycle. If M
is the clock multiplier, and R is the compression ratio, then
the definition of compression ratio implies that the average
number of code bits per clock cycle is M/R. Since each clock
cycle handles either a raster bit or a code bit,

M
M+—==1.
+R

We may then solve for the clock multiplier and for the
average number of code bits per clock cycle:

R
M'R+r
M_ 1
R R+1’

These two expressions are plotted in Figure 16, as the
compression ratio R ranges between its bounds. The figure is
vertically symmetrical because the two rates sum to unity.
We conclude that the number of clock cycles required to
process an image equals the sum of the raster file size plus
the compressed file size (all sizes in bits). For example, the

°A single bit can prefix the code string, to provide an escape mechanism to indicate
that the raster image is being literally transmitted.
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CCITT test images are each 4,105,728 bits and compress
with ratios between 8.8 and 57.4, so they require between
4.18 and 4.57 million cycles to compress or decompress. At
a 10-MHz clock frequency this would take between 0.418
and 0.457 seconds. The relative constancy of processing
time, despite wide variations in compression ratio, is a
feature of the ABIC hardware implementation. The
compressed data rate varies widely with the compression
ratio, as is perhaps better illustrated by replotting the same
data on a logarithmic scale, with an assumed 10-MHz clock,
as shown in Figure 17.

& Application analysis

In a practical application, the ABIC will be installed between
two rate-limited channels, one handling uncompressed raster
data and the other handling compressed code data. Thus,
there are three potential bottlenecks:

¢ Raster data channel capacity.

& Compressed (code) data channel capacity.

o ABIC speed, determined by clock frequency and clock
multiplier.

To ensure that the ABIC is not a bottleneck in the system,
its throughput must be at least as fast as that of the slower of
the two channels with which it interfaces. However, the
capacities of the raster and code data channels cannot be
directly compared. Most system designs take advantage of
the expected compression ratio to permit a slower rate for
the code channel than for the raster channel. In order to
determine which is the limiting factor, one channel is chosen
as a reference point, and the rate of the other channel is
reflected through the ABIC to that reference point. If the
raster channel is chosen as the reference point, the capacity
of the code channel is multiplied by the compression ratio to
get its apparent capacity as seen from the point of view of
the raster channel. Because the compression ratio depends
on the image, a given system may have its bottleneck in the
raster channel for some images and in the code channel for
others. For example, suppose that a particular system can
process raster data at 8 megabits per second and compressed
data at 2 megabits per second. For images with a
compression ratio greater than 4, the capacity of the
compressed data channel is adequate but the raster data
channel is the limiting factor. For images with a compression
ratio less than 4, the situation is reversed.

The ABIC is introduced as the third potentially limiting
factor, given its clock rate and the clock multiplier (a
function of compression ratio, as discussed above). For
example, on an image with a compression ratio of 9, an
ABIC clocked at 10 MHz achieves a raster data rate of 9
megabits per second and a compressed data rate of 1
megabit per second. It is instructive to plot the throughput at
the reference point as a function of compression ratio, for
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each of the three potential limiting factors, on the same set
of axes. Figure 18 exhibits this kind of plot for the present
example. A system can operate anywhere in the region below
all three limits.

In most systems, data channels having the capacity to
transmit raster images quickly are scarce and expensive. For
this reason, a wise system designer will locate data
compression at the extremities of the system, near the
sources and sinks of image data (scanners, displays, and
printers), so that only compressed data are handled on slow
buses.
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Summary

This paper describes the design and implementation of a
multi-purpose, adaptive data compressor/decompressor in a
single VLSI chip. The design has been optimized for speed,
flexibility, and modularity, while maintaining a limited
number of pins and employing an aggressive ASIC
technology. Its development required insight and extensive
trade-offs in the fields of both information theory and VLSI
design. The final design exceeded its speed objective of 10-
MHz (worst-case) operation, while also meeting throughput
goals to compress and decompress binary image documents
of all kinds at nearly uniform rates.

The ABIC algorithm for bilevel image data compression
has been shown to consistently outperform the nonadaptive
CCITT algorithm on the CCITT set of test documents. Even
better comparative performance has been demonstrated for
other kinds of data such as digital halftones. The
architectural principles used in designing this algorithm have
also been described in detail, to illustrate the use of adaptive
binary arithmetic coding (ABAC) technology.

In summary, the ABIC chip offers competitive and robust
compression performance in a low-pin-count, hence
inexpensive, VLSI package, which should make it attractive
for bilevel image systems of all kinds. Its adaptive arithmetic
coding technology, combined with the modularity designed
into the chip, also permits it to function as a research
component—for use, e.g., in building future hardware
implementations of more complex adaptive algorithms.

Glossary

A register A register representing the width of the
current interval on the number line. In
ABIC, it is a 13-bit register whose
highest-order bit position is always 1 or
else renormalized to be 1, and whose 12
lower-order bit positions are aligned

with the 12-bit Q-values.

ABIC Adaptive Bi-level Image Comdec. A
particular algorithm for compressing
binary images. VLSI circuit chip from
IBM Almaden Research Center. The

subject of this paper.

Adapter That portion of a data compression
system which estimates the probability
distribution of the next symbol from
the source, and then revises the
estimate for next time after seeing
which symbol actually occurs. Typically
the adapter is multiplexed over multiple
contexts, in which case its estimate is
based on the context, and revised for
the next occurrence of the same
context.
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Alphabet

ALU

Binary event

Bit

Byte
C register

CCITT

Clock multiplier

Code point

Code string

Coder

Compression

Compression ratio

Context

Entropy

The set of possible values a given
symbol can take on.

Arithmetic and logic unit. A circuit
capable of adding, subtracting, etc.

An event which can have one of two
outcomes.

A quantity which can take on only the
values 0 and 1.

A group of eight bits, taken as a unit.

A register representing the lower
endpoint of the current interval on the
real-number line. In ABIC, it is a 16-bit
register with an implied radix point
above the lower-order 12 bits which are
aligned with the 12-bit Q-values. The
leading bits are called “spacers.”
Encoded output is created by left-
shifting the C register into buffers which
handle the carry-over and align the
result to 8-bit bytes.

Consultative Committee for
International Telephony and
Telegraphy. An international standards
body.

The average number of raster bits
processed per clock cycle.

A point on the real number line, chosen
to designate the innermost subinterval
in an arithmetic encoding. The value of
the code string, taken as a binary
fraction.

A sequence of bytes from a coder
representing all the information from a
source file, but in a compact way.
That portion of a data compression
system which combines an estimate of
the probability distribution of the next
symbol from the source, with the actual
symbol emitted by the source, into a
code string.

Representing data in a more compact
way, eliminating redundancy.

The number of raster bits divided by
the number of code bits.

Information provided by the model
which helps the adapter estimate the
probability distribution of the next
symbol. Typically the context is a
subset or other function of the source
data which has already been processed.
A mathematical measure of
uncertainty, given by the expected
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Event

HCMOS

Lossless

LPS

LSB

LSSD

Markov string

Megacell

Model

MPS

MSB

Pel
Phase

Pixel

Q-Coder

logarithm of inverse probability:
H(P)=%, p;log (1/p).

A happening with an outcome which is
not known in advance.

High-performance complementary
metal-oxide-semiconductor. An
integrated-circuit technology featuring
low static power and high-speed
operation,

Applied to data compression, means the
source data can be reconstructed
exactly.

Less probable symbol. With a binary
source, the bit with thé lesser
probability.

Least significant bit. Rightmost bitin a
binary register.

Level-sensitive scan design. A logic
design discipline featuring delay-
independent (level-sensitive) operation
and a capability to interconnect all
latches into a shift-register chain for
loading and unloading test data (scan
design), usually implemented with two-
phase nonoverlapping clocks.

A string of symbols for which the
probability distribution of each symbol
depends on the value of the preceding
symbol.

A predesigned portion of very-large-
scale integrated circuit, in which usually
all layers have been customized to a
specific function.

That portion of a data compression
system which establishes the context.

More probable symbol. With a binary
source, the bit with the greater
probability.

Most significant bit. Leftmost bit in a
binary register.

Picture element. See pixel.

In clocked synchronous logic, a portion
of a clock cycle where one of several
clock signals is true.

Picture element. A number representing
the brightness of a single point in an
image. The ABIC compresses bilevel
images where pixels are constrained to
have values 0 and 1.

A particular adaptive arithmetic coder
featuring a renormalization-driven
adapter with sixty states per context.
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Q-index

Q-value

RAM

Raster

Renormalization

Skew

Skew coder

Source

Spacer

State

State record

Stuff

Symbol

A small integer selecting one of the
possible Q-values. In ABIC the Q-index
is a 5-bit integer, representing a number
in the interval 0 - - - 29,

A binary fraction representing
approximately 1.5 times the probability
that the next symbol will be an LPS. In
ABIC it is a 12-bit binary fraction, with
12 bits to the right of the radix point.

Random-Access Memory. In the ABIC,
two RAMs are used—one to store the
previous raster line and one to store the
adapter state for each context.

A means of converting an image to a
serial data stream, in wk-ch it is
scanned line by line.

Scaling the content of a register by
shifting it left so that the most
significant bit has value 1.

The degree of extremity of probability,
usually giveu by —log, [min (p, 1 — p)].
A coder where the Q-values are
constrained to be powers of 1/2 (of the
form 27" for integer k).

The uncompressed data, taken as input
to the coder.

Extra bit(s) at the most significant end
of a register, where carries may be
resolved, before being propagated out.

In a finite-state machine, the content of
the memory, giving the current
condition of the machine.

In a state machine multiplexed over
several tasks, a record in memory giving
the state of one of its tasks. See state.

A bit (or bits) inserted into a binary
number having the same algebraic
weight as its predecessor(s), for the
purpose of intercepting a carry which
would otherwise propagate through a
long run of 1s.

An element of source data to be
encoded in one iteration of the coding
algorithm. Generalized arithmetic
coding theory allows symbols to be
taken from large alphabets ( for
example, a byte is a symbol from an
alphabet with 256 elements). The Q-
Coder in the ABIC can only encode
binary symbols, which with the ABIC
model represent one binary image pixel
each. 793
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