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Interactive Language  Implementation  System 

The  Interactive Language Implementation  System  (ILIS)  is  a  tool  for implementing language processors. It is  fast enough for  
conventional compilers and general enough for  processing  natural  languages.  ILIS is built around a language for  writing 
grammars.  Unlike  most  compiler-compilers, the language includes a  full range of semantic operators  that reduce or  eliminate 
the need for  invoking other  programming languages  during a  translation. ILIS is  also highly  interactive: I t  has facilities  for 
tracing a  parse and for  adding  or  deleting  grammar rules dynamically.  This  paper describes  the features  of ILIS and its use in 
several different projects. 

Processing languages  with lLlS 
The  Interactive  Language  Implementation  System  (ILIS) is 
a tool for rapid  prototyping. Using  it, a programmer  can 
quickly  implement  a language or interface  and  test its human 
factors with actual users.  If some  feature proves hard  to 
understand or awkward  to use, the designer can  change  the 
syntax in a few minutes  and  test  it  again. 

I L K  can  support  any  language for which a grammar  can 
be written: a command facility,  a macro processor, an 
application driver, a  help  facility,  a conversion aid, a  checker 
and  formatter for programming  standards, or a  dialog han- 
dler  for computer-aided  instruction. As a parser,  ILIS is 
equivalent to  an  augmented  transition  net [ 11; for computa- 
tion,  its semantic  operators  are  as  general  as a Turing 
machine. I L K  can also be used for teaching  grammar 
theory;  it is simple enough  that  students  can begin to  use it 
after a one-hour  introduction. 

Natural  languages like English are  more difficult to 
handle  than  programming  languages.  Compilers use syntax 
alone in parsing programming  languages.  But when people 
use language,  they  take  advantage of their  background 
knowledge about  the  subject  matter.  Unrestricted  natural 
language  requires a richer  semantic,  pragmatic,  and deduc- 
tive component than ILIS supports [2]. Yet  restricted  sub- 
sets of natural  language have been implemented in ILIS:  an 
English query  language for  a database system and a 
Japanese  front-end  to  some English-oriented  systems. By 

restricting  the vocabulary and  range of topics, these systems 
make  the  language  more  manageable. 

This  paper describes the use of ILIS in several projects. It 
then proceeds with a systematic description of the  features of 
ILIS  and  their use in language processing. Finally, it 
discusses the design  considerations that led to  the  ILIS  forms 
and  their implications  for efficiency and  generality. 

Applications of lLlS 
The original version of ILIS was  designed as a language 
handler for invoking application programs. As it evolved, 
new features  and  operators were added  to  make it  a general 
language processor. Within  IBM, ILIS has becn used as  an 
experimental tool for  implementing  several  prototype sys- 
tems: 

e Natural language parsing The  ILIS  parser normally 
runs top-down with backtracking.  It also manipulates 
stacks  and registers that  make it similar  to  an  augmented 
transition net, but with  a  notation of grammar rules 
instead of networks. Since it is implemented in optimized 
PL/I, it runs faster  than most parsers implemented in 
LISP.  With  the  interactive  editing  and debugging tools of 
ILIS,  Handel [3] wrote  a grammar for an  interesting 
subset of English in about a month. 
Microcode  assembler The  SWARD project at  the  IBM 
Systems  Research  Institute involved designing  a software- 
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directed  machine  architecture [4]. Hocker [SI used ILIS 
to  write  an  assembler  that  generated  the special  microcode 
used in SWARD.  The  entire  assembler was written in 
ILIS except  for  a final PL/I  routine  that mapped ILIS 
character  strings  into bit strings. 
RENDEZVOUS query project At  the  IBM  Research 
Laboratory at  San Jose, California,  Codd  et  al. [6] 
designed an Engish query facility for a relational  database. 
Their initial implementation used a pattern  matcher writ- 
ten in APL  that was  too slow for practical use. Since  their 
pattern rules  were nearly a  subset  of the  ILIS facilities, the 
designers  were able  to  map  them  into  ILIS.  As a result,  the 
CPU  time for parsing a  typical query was reduced  from  10 
seconds to  0.16 second; the  generation  time for  a  series of 
responses was reduced from 37 seconds to 0.26 second. 
Although most ILIS  parsers  run top-down, RENDEZ- 
VOUS used the associative pattern  matching of ILIS  to 
implement  a bottom-up  parser. 

0 Japanese front-ends At  the  IBM Tokyo  Scientific Cen- 
ter,  ILIS was used to  support  Japanese-style  inputs  and 
outputs  to English-oriented  systems,  including STAIRS/ 
VS, PASCAL,  and  PSL/PSA.  Since  ILIS imposes no 
restrictions on the  character  set,  it  accepts  Japanese-style 
input in kanji characters,  translates it into  an English-style 
command,  and passes it to the back-end  system as though 
it  had been typed directly in that  form.  When  the system 
generates a  response, ILlS  intercepts  it,  translates it  into 
Japanese,  and sends it  to  the  output  handler in kanji form. 
Of these efforts, the most complete was the  JISDOS 
project in which a front end to  PSL/PSA was developed 
[7]. In these  projects, ILIS served as a  more general 
translator  than a  simple table of synonyms: It  had  to 
rearrange  the word order, recognize Japanese  particles 
that  had no equivalents in English, and  generate  correct 
syntactic forms in the  target languages.  Because of the 
limited domain of discourse, however, the conversion was 
far  easier  than full translation of unrestricted  natural 
language. 
General syntax checker To check  a file while it is being 
edited, Lawrence Margolis wrote an  interface  to  ILIS 
from one of the  standard editors. When  the user  hits  a 
program function key, the  checker notes what  type of  file is 
being edited,  searches for a table of grammar rules  for that 
type, invokes ILIS  to  parse  the file, and displays error 
messages in the lower half of the screen keyed to line 
numbers in the  upper half. Then  the user can  correct  the 
errors  and recheck the file without leaving the  editing 
environment. Margolis mapped  a grammar for Pascal  into 
ILIS  form in less than  twenty  minutes; writing error 
messages and  inserting  them in the rules at  the  appropriate 
points took about two days.  More complex languages  take 
more time:  Writing a syntax  checker for Ada took two 
weeks; an  analyzer for COBOL took about a month.  Once 
a syntax checker has been written,  other  features  can 
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easily be added: a formatter for standardizing  the  indenta- 
tion;  a  preprocessor  for expanding synonyms and macros; 
or a programming aid that  generates code  skeletons for 
procedure headers, loops, and  other coding  sequences. 
Teaching aid Since  1976,  ILIS has been used for 
teaching courses on compiler design and  natural  language 
processing. Feedback  from  the  students helped to refine 
the system and  make  it more general,  more flexible, and 
easier to use. After a short course (18 hours in the 
classroom), students were able  to implement  simple  lan- 
guage processors: a  compiler from a subset of BASIC  to 
System/370  assembler, a  compiler from a PL/I-like  lan- 
guage  into assembler  for  a  microprocessor, and a syntax 
checker for the  SQL  query  language.  Other  students 
implemented  various games  and novelties, including  a 
guide  to  Japanese  restaurants in New York and  an  ana- 
lyzer  for barbershop  quartet harmony. 

Comparisons with other systems 
ILIS belongs to  the  general class of translator writing 
systems. It also  has  a lot in common with macro processors 
and  pattern  matching  languages like SNOBOL. Basically,  a 
macro processor is a  system  for  replacing  one string of 
symbols with another.  Such systems are useful  for adding 
synonyms and abbreviations to a language,  but they  usually 
have  a  limited scope. Besides replacing strings,  ILIS  can  do 
the following: 

0 When given the  grammar of an  input  language,  ILIS  can 

0 While  parsing,  it can call external  programs  to  do I/O, 

It  can dynamically create new rules and  add  them  to its 

It is general enough to  support  parsers for English and 

do a complete parse. 

perform computations, or run some other system. 

internal  tables. 

other  natural  languages. 

Like  the  ILIS  parser,  the  SNOBOL  pattern  matcher is a 
top-down parser with backtracking,  but  its  pattern  matching 
is limited to  character strings. ILIS, however, matches lists 
of words, each with its own string of indicator bits. The 
difference is partly a matter of efficiency: ILIS  can  run 
faster because  it has fewer units  to process. But the most 
important difference is the  structure of the  data.  Each  ILIS 
word is a  unit with associated  information,  such as  indicator 
bits that specify the  syntax  and a type field that specifies the 
semantic category. 

ILIS, like many  translator writing  systems, separates  the 
parsing  phase into  an initial scan  that chops the  string  into a 
list of words and a  secondary stage  that applies grammar 
rules to  the list. For a  survey of the field, see [8]. But ILIS 
has  the following combination of features  that is rarely  found 
in other  translator writing  systems: 29 
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Figure 1 ILlS system components. 

An  interactive mode that  permits new rules to be defined 

A  simple syntax for rules  that allows rules to  treat  other 

A trace mode  for  displaying every operator  as it is 

The option  of  using  top-down, bottom-up, or mixed  parsing 
strategies for any source language, 
The efficiency of deterministic parsing  for programming 
languages  and  the power of an  augmented  transition  net 
for natural  languages, 
Techniques for handling context-sensitive and  transforma- 
tional grammars by testing  and  setting  indicators, regis- 
ters,  and  stacks, 
The option of having  multiple sets of grammar  rules for 
different languages  and  sublanguages  and switching from 
one  to  the  other  automatically, 
An  output  formatter  that  formats  output  according  to  the 

and used immediately, 

rules as  data  and  dynamically  update  the workspace, 

executed, 

conventions of the  target  language. 

System  components 
At  the  heart of the  ILIS system is the  rule  interpreter called 
SPACEKOR.  This  name is an  acronym for the first  eight 
operators used to define the  syntax  and  the  semantics of a 
language.  When a  user enters  an  input  statement,  SPACE- 
KOR rules analyze  it,  manipulate  stacks  and  registers  to 
generate a translation,  and invoke external procedures to 
perform additional services. Figure 1 shows how the  SPACE- 
KOR  analyzer is related  to  the  other system  components. 

The six components  illustrated in Fig. 1 make  up  the  lLlS 
system for processing languages  and driving  application 
programs: 
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1. The input  tokenizer takes a character  string  and  breaks it 
down into a list of separate words or tokens. 

2. A table of SPACEKOR rules defines the  grammar of an 
input  language  and  the associated semantic operations. 

3.  The  SPACEKOR analyzer uses the rules to  parse  the 
input  language  and  execute  the  semantic  operators. 

4. Externalprograms do  computations  and perform services 
that  are more  convenient to  write in  a  conventional 
programming  language,  such  as  PL/I. 

5 .  A command  processor interprets system commands for 
loading and saving  workspaces,  for  displaying informa- 
tion about  the  system,  and for entering,  editing,  and 
debugging  SPACEKOR rules. 

6. An outputformatter types  a list at  the  terminal or writes 
it to a file under  the  control of format  commands,  such  as 
indent and tab. 

Of  these  components, four  are a  basic part of ILIS  itself 
input tokenizer, SPACEKOR  analyzer,  output  formatter, 
and  command processor. These need not change  from  one 
application to  the next. The  table of SPACEKOR rules and 
the  external  programs, however, are tailored  for each  appli- 
cation.  The  SPACEKOR rules  define the  input  language, 
and  the  programs  are called by the  SPACEKOR  analyzer  to 
do  the  actual processing. 

The  external  programs  may  include simple  functions like 
TIME or DATE  as well as  large  application packages.  For 
the  Japanese  front-ends mentioned earlier, systems as  large 
as  STAIRS/VS or PSL/PSA run as  external  programs 
under  ILIS.  Since  ILIS is implemented in PL/I, it can 
directly call  other PL/I  programs. Applications written in 
COBOL,  FORTRAN, or PASCAL  may  be called from  an 
interface  routine  written in PL/I.  An  interface  to  the  IBM 
CMS Operating  System  commands or EXEC routines is 
provided by the  procedure  SYSTEM. Although ILIS is 
designed as  an  integrated system,  it is completely modular, 
and various pieces can be incorporated  separately in other 
packages.  For  a particular application,  a programmer might 
use the complete  system while debugging and  testing 
SPACEKOR rules.  For the finished product, however, 
everything  but  the  SPACEKOR  analyzer  and  the final  set of 
rules could be stripped  out of ILIS  and linked with the  other 
package. 

Data formats 
ILIS  has only one  primitive data type, the word, which has 
seven subfields: a  pointer NEXT, which points to  the next 
word in a list or to nil if it is the  last word;  two integers 
LINE#  and  COL#, which show the original position of the 
word in the  input  stream;  an integer TYPE, which represents 
the  type of concept or data associated with the word; an 
integer LEN, which specifies the word length; a character 
string  LETTERS, which represents  the printed form of the 
word; and a  bit string  INDICATORS, which may be set or 
tested by the  INDICATOR  operator. In the  current imple- 
mentation, a word is a block of storage defined by the 
following PL/I  declaration: 
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DECLARE 1 WORD  BASED, 
2 NEXT  POINTER, /* To next word * /  
2 LINE#  FIXED  BINARY( 1 9 ,  / *  Line  number */ 
2 COL# FIXED  BINARY( 1 3 ,  /*  Column  number */ 
2 TYPE  FIXED  BINARY(  15), / *  Concept type */ 
2 LEN  FIXED  BINARY(lS), / *  Word  length */ 
2 LETTERS  CHARACTER(  12), / *  Printable  form */ 
2 INDICATORS  BIT(64); / *  Indicator bits */ 

The  LETTERS field  is of length  12,  but words may be up 
to  255  characters long. If  a word is longer than 12, it is 
continued in as  many  additional blocks as needed. The 
implementation  details, however, are completely invisible to 
the  ILIS  programmer.  The  operators  test  and  set various 
fields, but  the  programmer never needs to know the  internal 
formats. 

The  only lists that  the  SPACEKOR  analyzer processes are 
lists of words. A rule is a list of words, some of which may be 
operator strings.  For efficiency, the  SPACEKOR compiler 
converts  rules to  an  internal  form for pattern  matching, but  a 
rule in its  external  form  can  be  constructed  and  manipulated 
by the  standard list handling techniques. The  empty list nif  
can be considered as  either a list of no words or a rule with no 
operators.  The  SPACEKOR  stacks  and registers are  treated 
as lists of lists of words. No  deeper nesting of lists is 
possible. 

SPACEKOR operators 
The  SPACEKOR  operators fall into  three  major categories: 
pattern-matching operators that  match  something in the 
input  stream; action operators that  do some computation; 
and control operators that define  a loop, a list of options, or 
an invocation of some  other rule. Some of the  operators have 
several variants  to  make a total of 50 different operators or 
variants.  The  appendix  to this paper lists  all of them; this 
section briefly illustrates a few  of them. 

An example of a pattern-matching  operator is $A*2.  The 
symbol $ is the  escape  character  that  starts every string of 
operators.  The  letter A  names the  ANY  operator,  and  *2 is a 
qualifier that specifies a  length of exactly two words. During 
pattern  matching,  the  operator  $A*2 would match  any list of 
two words. The  KEEP  operator  $K is an  example of an action 
operator.  It  takes a list that  has  just been matched  and keeps 
it on a stack for further processing. The  sequence 

$A*2  $K 

would match two words from the  input  stream  and keep them 
on the  stack.  An  example of a control  operator is $0 for 
OPTION.  The  sequence 

$0 CAT 1 DOG I FLOWER O$ 

matches  any  one of the  three words “CAT,”  “DOG,” or 

“FLOWER.”  The vertical bar  separates options, and  the 
symbol O$ terminates  the option  list. Any word that is not 
part of an  operator  string is assumed  to be a literal  that is 
matched  to  the  input  stream. 

Certain combinations of operators occur so frequently  that 
they become standard idioms. The  string  $AEK, which is 
equivalent to  the sequence $A  $E  $K,  starts with the  ANY 
operator  $A  to  match  any list of zero or more words, matches 
the  END of the  input  stream with $E,  and  KEEPS  the list on 
the  stack with $K.  The  SPACEKOR  programmer  can  just 
think of $AEK  as a  primitive operator  that  takes  the 
remainder of the  input  stream  and  puts it on the  stack. 
Another  example is the  string  $RS in the sequence, 

$AK  DON’T  $RS DO NOT S$ 

First,  $A  matches  any list up to but not including the word 
“DON’T,”  and  $K keeps it on the  stack.  Then  the word 
“DON’T” is matched,  and  the  REJECT  operator  $R throws 
it away.  The  STACK  operator $S then places the list “DO 
NOT” on the  stack;  the symbol S$ terminates  the list started 
by $S. To  the  programmer,  the combination $RS may  be 
considered as a substitution  operator  that throws away  one 
list and replaces  it with another. 

SPACEKOR rules 
A SPACEKOR  rule is any sequence of SPACEKOR  opera- 
tors  and  literal words. It  may be invoked in either of two 
ways: associatively, when the  pattern  part of the  rule 
matches something in the  input  stream, or explicitly, when it 
is called from some other  rule by a MATCH or PERFORM 
operator.  The following rule would normally be invoked 
associatively: 

RULE  (TIME):  $A  TIME  $A ? $C=TIME. 

The keyword “RULE” indicates the  start of a  rule. In 
parentheses is the index  word “TIME,” which will cause  this 
rule  to be invoked if a matching word occurs in the  input 
stream.  Since  the ANY operator  $A  matches  any list of 
words, the  pattern  part  matches  inputs like “What  time is 
it?” or just  “time?”  When  the  pattern  part successfully 
matches  the  input  stream,  the  CALL  operator  $C=TIME 
calls the  external  program  named TIME to  get  the  current 
time of day. 

Before a rule  can be called  explicitly,  it  must  have  a name. 
The following rule is named S; it uses the  MATCH  operator 
$M  to  call two other rules, named NP  and VP: 

RULES:   $M=NP  $M=VP.  

Words in parentheses  after  the keyword “RULE”  are index 
words to  the rule. An  alphanumeric word that is not in 
parentheses is the  name of the rule. This  rule  named S may 
be part of a grammar for  recognizing  English  sentences. It 31 
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first calls a noun phrase  rule N P  to  match  the beginning of a 
sentence. Then  it calls  a verb  phrase  rule  VP  to  match  the 
remainder. 

A rule  can have  both  a name  and a list of index  words. The 
following rule  can be called  explicitly by the  MATCH 
operator $M=  LOGOFF or  the  PERFORM  operator 
$P=LOGOFF.  It  can also be invoked associatively when 
any of its four index words (BYE  GOODBYE  LOGOFF 
LOGOUT)  appears in the  input  stream: 

RULE  LOGOFF  (BYE  GOODBYE  LOGOFF 
LOGOUT):$S  CP  LOGOFF S$ $C=SYSTEM. 

Since  the  pattern  part of this  rule is empty, it will succeed no 
matter how it is invoked. The  STACK  operator $S puts  the 
list “CP  LOGOFF” on the  stack.  Then  the  CALL  operator 
$C passes that list to  the  external  program  named  SYSTEM. 
Under IBM’s VM/370,  the effect is to  terminate  the 
session. 

Representing grammar  rules 
Context-free  grammar rules map  directly  to  SPACEKOR 
rules. Terminal symbols in the  grammar  map  to  literals,  and 
nonterminal symbols map  to  the  MATCH  operator  $M.  The 
following grammar  rule defines an expression EXPR  as a 
TERM followed by zero or more repetitions of the  terminal 
symbol “+” followed by another  TERM: 

EXPR - TERM [“+” TERM]. . . 

In this  notation,  square  brackets  represent  an optional  con- 
stituent;  three  dots,  one or more  repetitions; and  brackets 
followed by three  dots, zero or more  repetitions. In  SPACE- 
KOR,  the  LOOP  operator  $L executes  a string of operators 
zero or more times  as long as  the  pattern  matching succeeds. 
The above grammar  rule becomes the  SPACEKOR  rule, 

RULE  EXPR:  $M=TERM  $L + $M=TERM L$. 

This  rule  can  do  the parsing, but it has no semantics. To 
specify  some  action to be taken or result to  be  generated, 
action operators  are inserted among  the  pattern  matching 
operators. 

As the  input  language is parsed, values generated by one 
rule  are left on the  SPACEKOR  stack  to  be processed by 
other rules. When a rule is invoked by the  MATCH  operator, 
values passed to  it  are called inherited attributes; values 
returned by a rule  are called synthesized  attributes. In an 
interpreter for arithmetic expressions, the synthesized  values 
are  the  numbers  that result  from the  computation.  When  the 
TERM  rule leaves a  synthesized number on the  stack,  the 
EXPR  rule  that called  it uses the  external  program 
DYADIC  to  add it to  the previous result: 

RULE E ,XPR:  $M=TERM  $L + 
$C=DYADIC  L$. 

$K $hi = TER .M $S*3 

Inside  the loop, the  literal “+” matches a  plus  sign, and $K 
keeps it on the  stack.  The following $M=TERM operator 
evaluates  another  term  and leaves the resulting number on 
the  stack.  Then  the  last  three lists contain a number,  the 
word “+”, and  another  number.  The  STACK  operator  $S*3 
concatenates  the  three lists of one word each  into a  single list 
of three words. That list is then passed to  DYADIC by the 
CALL  operator,  and  DYADIC  returns  the sum as  result. 
That  number  remains on the  stack,  and  each  iteration of the 
loop adds  another  number to it until all  occurrences of “+” 
followed by a term have been processed. 

SPACEKOR rules permit  any  regular expression on the 
right-hand side of a rule.  The next grammar  rule defines a 
noun phrase N P  as  an optional determiner  DET,  an optional 
string of adjectives ADJ, a  required NOUN,  and  an optional 
prepositional phrase  PP,  participial  phrase  PARTP, or rela- 
tive clause  RELC: 

N P  - [DET]  [ADJ] . . . NOUN  [PPI  PARTP I RELC] 

In SPACEKOR  notation,  that  rule becomes 

RULE  NP: $0 $M = DET I O$ $L  $M = ADJ  L$ 
$M=NOUN 
$O$M=PPI$M=PARTPI$M=RELCIO$. 

To represent an optional constituent,  the  OPTION  operator 
$0 permits  an  empty option  represented as  just a  blank. 

Context-sensitive  conditions are handled by operations on 
registers, stacks,  and symbol tables. The simplest  context- 
sensitive language is the  one consisting of an  arbitrary 
number of  A’s followed by exactly the  same  number of B’s 
and  the  same  number of C’s. That  language  can be parsed in 
several  different ways, each of which illustrates  an  interest- 
ing SPACEKOR technique. 

The first method is to use  a counter on the  stack.  The 
following rule  named  AB calls itself recursively to  match 
pairs of A and B. For each  pair, it  calls the  external  program 
ADD1  to  increment a number left at  the  end of the  stack: 

RULE  AB: A $0 $ M = A B )  O$ B $C=ADDl.  

This  rule is called by the following rule, whose index word  is 
“A.”  After  it initializes the  stack  to zero with $S 0 S$, it calls 
the  AB rule: 

RULE  (A): $S 0 S$ $M=AB 
$LC  $C=SUBI  L$  $EP 0 P$. 

The  $L loop matches a letter  C, calls SUB1  to  decrement  the 
counter,  and repeats. Then  $E checks for the end of input, 
and  the  PERFORM  operator  $P 0 P$ matches 0 to  the 
counter on the  stack. 
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Another method  for  parsing the  ABC  language is to build 
a list of C’s for each  AB pair and  then  compare  that list with 
the  remaining  input.  The following version of the  AB  rule 
builds the first list of C’s on the  stack: 

RULE AB:  A $0 $M=AB 1 O$ B $S C S$ $S*2. 

The  STACK  operator $S C S$ puts  one C on the  stack for 
every pair of A and B; the  concatenate  variant $S*2 concat- 
enates  the new C on the  stack  to  the previous list of C’s. The 
following rule is triggered by the index word “A.”  It initial- 
izes the  stack  to nil with $S s$ before  it  calls the  AB rule: 

RULE (A): $S S$ $M=AB  $RAEKH%C  $V=C. 

The  REJECT  operator  $R causes the list of  A’s and B’s 
matched by the  AB  rule to be ignored in further processing. 
Then  $A  matches  any list up to  the end $E  and keeps it on the 
stack with  $K. At  this point, the  last two lists on the  stack 
should contain  strings of C’s. To  check  that  they  are  equal, 
$H%C  HOLDS  the  last list in a register  named C and pops 
the  stack. Finally, $V=C  VERIFIES  that  the  last list on the 
stack is now equal  to  the list in register  C. 

To  illustrate  the  ease of creating  and using rules dynami- 
cally, the next rule shows another method of matching  the 
two strings of C’s. It first creates a  special rule  that  matches 
exactly the  correct  number of C’s: 

RULE  (A): $S RULE  C: S$ $M=AB $S . S$ $S*3 
$C = MATCH  $M = C $E. 

This  rule  creates a list of the  form 

R U L E C : C C C C C C C C ,  

where the list of C’s to be matched was  left on the  stack by 
the  call  to  AB with $M=AB.  Then  $C=MATCH invokes 
the  SPACEKOR  analyzer recursively to  enter  this list as a 
new rule in the  current workspace.  Finally, $ M = C  calls that 
rule  to  match  the  remaining list of C’s in the  input  stream, 
and  the  operator  $E  tests for the  end of input. All three of 
these  techniques parse  the  ABC  language in linear  time.  The 
rule  that uses a counter is slightly faster,  but  the  other two 
techniques can be generalized to  more complex  languages. 

Production system 
Production systems are  frequently used for computations in 
artificial  intelligence [9]. Each  rule in a  production  system 
has  a pattern  part  and  an action part; if the  pattern  matches 
something in working storage,  the action is performed.  When 
SPACEKOR rules are triggered  associatively, they  can be 
used as a  production  system. The  input  stream is the working 
data,  and  the action operators  put  their  changes on the  stack. 
Then  the rescan variant of the  PERFORM  operator  $P= * 
concatenates  the modified list on the  stack with anything left 
in the  input  stream  and  treats  the result as new input. 
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As  with all production  systems, ILIS  must have some 
convention for determining which rule  to  try when multiple 
patterns  match  the  same  data. Consider the next  two  rules: 

Rule  (TIME):  $A  CPU  TIME  $A ? $C=CPUTIME. 
Rule (?): $A ? $S WHY  DO  YOU  ASK? S$. 

The first rule will match a sentence like  “How much  CPU 
time have I used?”  and  then  call  the  procedure  CPUTIME; 
the second rule will match  any  sentence containing “?” and 
generate  the response “WHY  DO  YOU  ASK?”.  Since both 
rules  are  capable of matching  the  same  sentence,  the 
SPACEKOR  analyzer  must  adopt  some  strategy for resolv- 
ing the conflict. To  determine which rule  to invoke, it starts 
at  the beginning of the  input  stream, looks up  each word in its 
index, and  takes  the following actions: 

If the word is not in the index, then  the  SPACEKOR 

If the word is in the index, the  analyzer invokes the 

If the  rule  matches,  the  analyzer  sets a flag to  indicate 
success and  returns whatever is left on the  stack  as  the 
result. 

0 If the  rule fails to  match,  the  analyzer checks whether 
there is another  rule with the  same index word and invokes 
it; when two rules  have the  same index  word, the more 
recently defined one is tried first. 

0 If all rules associated with the index word fail,  the  analyzer 
takes  the next word of input  as a possible index. 

0 If the  end of the  input is reached before any  rule  matches, 
the  analyzer  returns  the  input  stream  unchanged  and  sets a 
flag to  indicate  failure. 

When  the  SPACEKOR  analyzer  gets  the  input  “What’s 
the  CPU  time?” it reaches  the index word “CPU” before it 
reaches  the index word “?”. Therefore,  the first rule is 
invoked to give the  CPU  time. If the  input  stream were  “How 
fast is the  CPU?”  then  the  rule with index word “CPU” 
would be invoked first. But since that  rule does not match  the 
input, it  causes  a failure,  and  the  SPACEKOR  analyzer goes 
on to  the index word “?”. The  rule with that index word then 
succeeds and  generates  the  output  “WHY DO YOU 
ASK?”. 

Stacks and  registers 
For working storage,  the  SPACEKOR  stack is a list of lists 
that is manipulated by the action operators. As  a rule is 
processed, the  stack works in  a LIFO  order:  The  last list put 
on the  stack is the first one used. The  CALL  operator  $C 
passes the  last list to  external  programs  and replaces  it  with 
the result they  return.  When a SPACEKOR  rule r is called 
by the  MATCH  operator  $M=r,  the lists  left on the  stack 
are available to  operators in r. The lack of explicit parame- 33 
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ters for SPACEKOR rules makes calling and  backtracking 
more efficient since the  amount of saving and restoring is 
minimized. 

All operators  except  PERFORM  continue  to use the  same 
stack.  The  PERFORM  operator  $P saves the  current  stack 
and  creates a new stack  that is initially empty; when PER- 
FORM finishes, the  contents of the new stack  replace  the  last 
list of the previous stack. A  recursive call on the  SPACE- 
KOR  analyzer by the  operator  $C = MATCH also creates a 
new stack. 

Some  variants of the  STACK  operator  manipulate lists 
that  are  deeper in the  stack.  The  operator  $S*n  concatenates 
the  last n lists into a  single  list; the head of each list is 
concatenated  to  the  end of the preceding  list. The  operator 
$S%n  interchanges  the last list with the  nth list from  the  end, 
and $ST n deletes  the  nth list. 

During processing, the  stack  operates in  a LIFO fashion. 
At  the  end of processing, however, all lists are  concatenated 
into a  single list in a FIFO fashion-the oldest one at  the 
head.  This convention is good for  most language processing. 
As  rules parse  the  input  stream  from left to  right, they  build 
up  the  translated  results on the  stack.  The most frequent 
processing takes place at  the end of the  stack,  but  the result 
should be read from  the beginning. 

The  stack  may be compared  to  human  short-term  mem- 
ory.  For most processing, it rarely has more than seven lists, 
although  each list may be arbitrarily long. For global long- 
term memory, there is a set of named registers. Each register 
contains a list of words, which like the  stack  can  be processed 
in either a LIFO or FIFO fashion  with the  GET  and  HOLD 
operators.  The  HOLD  operator  $H  transfers  the  last list on 
the  stack  to a  register, and  GET $G transfers a register  to  the 
end of the  stack. For dictionaries  and symbol tables,  the  call 
$C=DEFINE saves  a list indexed by its first  word, and 
$C=LOOKUP retrieves  a previous list. 

Backtracking 
The  SPACEKOR  analyzer does automatic  backtracking: 
Whenever an  operator or word match fails, the  analyzer 
backs up  to a previous option,  called  a choice point. For a 
deterministic  grammar,  backtracking is not  necessary during 
the parsing  phase, but  it  may  be needed when generating 
diagnostics  for  a syntax  error. Even programming  languages 
like PL/I  may  require  backtracking  to  handle forms that 
cannot be parsed with an  LL(  1)  grammar.  Typical problems 
arise in PL/I when the compiler cannot tell whether  an 
identifier is a keyword or the  name of a  variable: 
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I F  ( X + Y )  = 15.7 THEN GO TO HOME; 
I F  ( X + Y )  = 15.7; 

In the first statement,  the keyword I F  introduces  a  condi- 
tional. The second statement is an assignment to  the vector 
I F  indexed by X + Y .  The  parser, however, cannot tell how to 
interpret  the first  word “IF”  until  it  reaches  the  ninth word 
“THEN” or <<.?I , .  

A  potential  source of inefficiency in backtracking is the 
need to  undo  changes  that  had been made  to  the environment 
by operators  that  lay  along a  failing path.  To minimize the 
effort lost, SPACEKOR does not do a  perfect  restoration: It 
throws  away new additions  to  the  stack by operators  along a 
failing path, but it does not undo  all side effects or changes  to 
lists that were  put  on the  stack before the previous choice 
point. In most cases, this minimal restoration is sufficient. In 
other cases, the  programmer  can postpone  nonrestorable 
operators  until  the  critical  pattern  matches have been com- 
pleted. 

When  syntax analysis has reached  a certain  stage,  the 
programmer  may  decide to commit the  analyzer  to  the 
current  path  and  eliminate  all possibility of backup  to 
pending, untaken options. To  do  that,  the  UNOPTION 
operator $U clears  out  the list of choice  points. Most systems 
that  do  backtracking have  a  similar  facility  for  stopping the 
backtracking:  SNOBOL  has  the  FENCE  operator,  PRO- 
LOG  has  the  CUT  operator,  and  MICROPLANNER  has 
FINALIZE. 

Types and indicator bits 
Dictionaries represent two kinds of information about words: 
syntactic  features  that specify parts of speech, and  semantic 
types that specify the associated  concepts. Programming 
languages  make a similar distinction between the  syntactic 
categories  like operator or variable, and  the  semantic catego- 
ries  called data types. Some systems  represent the  syntactic 
features with binary options, such  as +SING  +TRNS 
+VERB for a singular,  transitive  verb [ 101. Semantic 
grammars [ 111 represent a hierarchy of concept  types,  such 
a s   BEAGLE<DOG,   DOG<ANIMAL,   and   ANI-  
MAL<ENTITY. Heidorn’s N L P  system [12]  supports 
both  a string of indicator  bits for the  syntactic  features  and a 
hierarchy of types for  the semantics. ILIS follows N L P  in 
maintaining two fields with each word: a 64-bit field of 
indicators for the  syntax  and a  16-bit  integer for the  semantic 
tY Pe. 

The first four  indicator  bits  are set by the tokenizer. They 
specify whether  the word is purely alphabetic,  alphanumeric, 
integer,  real,  punctuation,  quoted  string, or compound  sym- 
bol like := or **. The  other  60  bits  can be named,  set,  and 
tested by the  INDICATOR  operator $1. For parsing 
English, the  programmer  may have  named  bit 17 VERB  and 
bit 21 TRNS.  Then  the following operator tests  whether the 
current word is a transitive verb: 
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$ I +  VERB  TRNS I$ 

The qualifier + after $I  requires that all named bits must be 
1; the  other bits are ignored. The symbol I$ terminates  the 
list of indicators.  For words in the  dictionary,  the  call 
$C=LOOKUP replaces  a word with  a  definition that has  set 
the  appropriate bits. Since a word may have more  than one 
part of speech,  a word like “MOVE” would have  bits  for 
noun, verb, transitive,  and intransitive. 

Most programming  languages  require identifiers to  be 
alphabetic or alphanumeric  strings  starting with a letter.  The 
following rule  matches  any identifier: 

RULE  IDENT: $1- 1 2 3  I$. 

Indicator bits that have not been named  can be specified by 
their positions. This  operator  matches  any word whose first 
three bits are zero. Since  the tokenizer sets  the first four  bits 
to 0000 for  purely alphabetic  strings  and 0001  for alphanu- 
meric strings  starting with  a letter,  this combination matches 
any valid identifier. 

Matching a number  that is either integer or real requires 
checking for two  different patterns.  The bit pattern is 1000 
for integer and 1001 for  real numbers.  The following rule 
matches  either: 

RULE  NUMBER: $0 $ I =  1 I $ /  $I=  1 4 I$ O$. 

The first option  tests  whether the first  bit is 1 and all other 
bits are 0; the second option tests bits 1 and 4. Any 
combination of 0 and 1 bits can be tested by $1 + and $I - on 
the  same word. Since every pattern  match  automatically 
advances  the  cursor  to  the next  word, the  YET  AGAIN 
operator  $Y  must be used to move the  cursor back for 
another  test.  The following rule could  also be used to  match 
numbers: 

RULE  NUMBER: $ I +  1 I$ $Y1- 2 3 I$. 

The  operator $ I+  tests for a 1 in the first position. Then  the 
$I  - operator  tests  whether bits  two and  three  are 0. Without 
the intervening $Y,  the  operator $ I +  would test  the first 
word  of input,  and $I - would test  the second word. 

The  type field  is intended  for  user-defined  types, as in 
Pascal or Ada,  and for conceptual  categories in natural 
languages.  The  programmer  can specify  a  set of type labels 
with their position in the  type  hierarchy, such as D O G t A N -  
IMAL or SHIP<MOBILE-ENTITY. ILIS then assigns  a 
16-bit  integer to  each label. The  programmer does not  refer 
to  the  internal  integer, but to  the symbolic  label: The 
operator $ T t S H I P  tests for any  subtype of SHIP,  and 
$ T t Y A C H T  tests only for yachts. 

Top-down vs bottom-up parsing 
For the past 20 years, arguments over top-down vs bottom-up 
parsing  have  continued in the fields of compiler  design and 
natural  language processing. ILIS  supports both approaches. 
Handel  [3] used ILIS in a top-down mode for his English 
parser,  and in RENDEZVOUS  [6]  it was used as a  bottom- 
up production  system. In the top-down parser,  Handel 
required  all words to be defined before  parsing  began; if a 
word was not in the  dictionary, his system would ask  the user 
for its part of speech. RENDEZVOUS was more flexible. It 
used associative  indexing to find rules  for appropriate  seman- 
tic patterns.  When it found an  approximate  match, it would 
fill in the slots of the  pattern  and ignore input words that did 
not fit. Since  approximate  matching is error-prone,  REN- 
DEZVOUS mapped  its interpretation back into  an English 
sentence  and asked the user for confirmation. After a short 
dialog, the user and  the system would converge on a complete 
and  correct  formulation of a database  query. 

Although  Handel’s parser was  top-down,  he  did  use asso- 
ciative  indexing for idioms and  abbreviations.  The following 
rule,  for  example, matches input containing  the word 
“DON’T,” replaces  it with “DO NOT,”  and uses the  $P= * 
operator  to  PERFORM a  rescan: 

RULE  (DON’T):  $AK  DON’T  $RS  DO  NOT S$ $P=*.  

After  making  all  the  substitutions with rules of this form,  the 
system  switched to a top-down mode  for the  actual parse. For 
programming languages,  associative  indexing would be use- 
ful for synonyms and  macro expansions. After  the  macro 
stage,  the  actual parsing could be done in a top-down mode. 

For programming languages, ILIS  runs best in top-down 
mode with an  LL( 1 )  grammar [ 131. For efficiency, the 
SPACEKOR  analyzer looks ahead  one word whenever it 
finds a list of options. If the  correct choice is found  [always 
possible with an  LL(1)  grammar] it takes  that option 
without backtracking.  It  thereby achieves the speed of a 
purely deterministic parse,  but with the option of backtrack- 
ing to  handle  any  context-free language. 

Some  translator writing  systems use an  LR  parser  genera- 
tor, which supports a deterministic,  bottom-up  parse [14- 
161. Although  LR  parsers  can run about  as efficiently as  LL 
parsers,  they cannot be generalized to a  wider  class of 
languages. Furthermore,  LR  parser  generators  cannot be as 
interactive  as I L K  because they must process all the rules of 
a grammar  at once in order  to  create  their parsing tables. 
With  ILIS, however, any  rule  can be added,  deleted, or 
modified without  affecting any  other rules in the workspace. 

Input and output  formats 
A  system that handles  all possible languages  must be able  to 
format those languages  according  to  their  standard conven- 
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tions. For  input,  the  ILIS tokenizer supports several  options 
that  can be changed by the  SET  command: 

Beginning and  ending  delimiters for comments  and  quoted 

Distinctions  between upper-  and lower-case letters, 
Compound  operators like : = and ** that  are tokenized as 

Escape  character for command  strings, 
Special  characters defined as  alphabetic (especially  im- 
portant for  non-English languages), 

strings, 

single words, 

Period or comma for the  decimal point in real numbers, 
End of each  input  stream signaled by the  end of line, 
special punctuation such as period or semicolon, or the  end 
of an  entire file. 

For each word, the tokenizer sets  the first four  bits of the 
indicator field to show the token category,  such  as purely 
alphabetic,  alphanumeric,  integer,  real,  quoted  string, punc- 
tuation,  command  string, compound operator, or other.  One 
of the set  options allows the tokenizer to  be  turned off 
completely so that  SPACEKOR  rules  can  parse everything. 
This option is the most general,  but it is less efficient than 
allowing the tokenizer to  group  the  input  into tokens. 

For output,  the  formatter converts  a  linked list of words 
into lines. It normally  inserts  a blank between  words, but it 
suppresses the  blank before  a word with indicator bits  for 
punctuation.  The  formatter also recognizesformatting com- 
mands embedded in the list. The  command  $B, for example, 
breaks  to a new line, $W=n sets  the line  width to n, $F=n 
tabs  forward  to column n, $F+n tabs  forward n spaces 
beyond the  current position, and $Z suppresses blanks  until 
the next formatting  command.  With  the  formatting com- 
mands, a prettyprinter can  parse a language  and  insert line 
breaks  and  indentation  to  standardize  the  formatting. 

The  $X  command for exact  formatting positions each 
word according  to  its own line and column number.  The 
input tokenizer sets  the line and column number for each 
word as it maps  the  input  string  into a list. Then those 
numbers, which are  carried  through  all  the parsing and 
transformations,  are used by the  formatter  to  recreate a line 
that  appears  identical  to  the original. In SPACEKOR rules, 
the  JUNCTURE  operator  $J  can  test or set the line and 
column numbers or copy them  to  the  stack.  Then a syntax 
checker  can  print  an erroneous statement exactly as it 
appears in the  input  and  generate a diagnostic message keyed 
to  the position where  the  error was found. 

Sample translation 
A feature  that distinguishes ILIS  from most parsing systems 
is the ability to  include action operators in the  grammar 
rules. To  illustrate  the  technique, consider the problem of 
translating  assignment  statements from  a programming  lan- 

guage  into Polish notation. The first step is to  write a 
grammar for the  language.  The following four rules  define  a 
statement  STMT  as  an identifier IDENT followed by an 
assignment operator ":=", an expression EXPR,  and a 
semicolon. An EXPR is a TERM followed by zero or more 
repetitions of "+" or "-" and  another  TERM. A TERM is 
a factor  FAC followed by zero or more  repetitions of "*" or 
"/" and  another  FAC. Finally,  a FAC is an identifier,  a 
number,  or  another expression in parentheses: 

STMT - IDENT ":=" EXPR ";" 
EXPR - TERM [("+"I "-")TERM] . . . 
TERM - FAC [(''*"I''/") FAC] . . .  
FAC - I D E N T I  NUMBER I y 1  EXPR 

These rules  have an  embedded recursion of EXPR inside 
of the  rule for FAC,  but  they have no left  recursions. The 
next step is to convert them  to  SPACEKOR rules: 

RULE  STMT (:=): $M=IDENT := $M=EXPR ; . 
RULE  EXPR:  $M=TERM  $L $0 + 1 - O$ 
$M =TERM L$. 
RULE  TERM:  $M=FAC  $L $0 * I  / O$ $M=FAC L$. 
RULE  FAC:  $O$M=IDENTI$M=NUMBERI 

( $M=  EXPR ) O$. 

The first rule  can be called by an  operator  $M=STMT or 
$P=STMT, or it can be triggered associatively by the 
occurrence of ":=" in the  input  stream.  The rules for 
IDENT  and  NUMBER were defined in earlier examples. 

As the  SPACEKOR rules  recognize each  type of phrase, 
the  translated  output  can be built on the  stack by the action 
operators.  Words  are  transferred  from  the  input  to  the  stack 
with $K, subphrases  are  concatenated  to form larger  phrases 
with $S*n, and  the  interchanges for  reverse Polish notation 
are  done with $S%n. Following is a complete set of SPACE- 
KOR rules for  translating simple assignment  statements  into 
reverse Polish form: 

RULESTMT (:=): $M=IDENT := $K  $M=EXPR 
$S%2 ; $R. 

RULE  EXPR:  $M=TERM  $L $0 + I - O$ $K 
$M=TERM $S%2 $S*3 L$. 

RULE  TERM:  $M=FAC  $L $0 * I  / O$ $K  $M=FAC 
$S%2 $S*3 L$. 

RULE FAC: $0 $M=IDENT~  $M=NUMBERI ( $R 
$M=EXPR ) $R O$. 

RULE  IDENT: $1- 1 2 3 I$ $K. 
RULE  NUMBER: $ I +  1 I$ $YI- 2 3 I$  $K. 

If the user  typed the following statement  at  the  terminal, 

XYZ := A*B + (C-D)*E; 

these  rules would generate  the following output in reverse 
Polish form: 

X Y Z A B * C D - E * + : =  
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Design  considerations 
The original version of ILIS was designed as a pattern- 
directed  mechanism for invoking PL/I procedures. It was 
intended  to  be  fast  and simple, and  the  programmer  was 
expected to use PL/I for general  computation.  The original 
eight  SPACEKOR  operators  did not include  $M, which is 
essential for top-down parsing,  but they could be used as a 
production  system that was general enough to  simulate a 
Turing machine. The  SPACEKOR  operators  turned  out  to 
be so flexible that  programmers chose to use them in 
preference  to invoking external programs. When  the  addi- 
tional operators were added,  ILIS developed into a  complete 
translation  system.  Margolis  implemented a translator from 
a subset of Ada  into Pascal  without invoking any  external 
programs  other  than those provided in the  basic  library. 

As  ILIS evolved, the original  goal of simplicity was kept. 
If some  feature, like arithmetic  computation or array  han- 
dling,  could  easily be done in PL/I, it was not added  to  ILIS. 
Some  features, like input  and  output  formatting, could be 
done in PL/I,  but since  they  depended heavily on the  internal 
formats of ILIS  data, a  complete  set  was added  to  ILIS.  To 
keep the  parser efficient, some  implementation consider- 
ations affected the definition of the  operators: 

All dynamic  storage is maintained in fixed, 32-byte blocks. 
This includes the  internal forms  for words, the activation 
records for SPACEKOR rules, and  the  backtracking 
information  for  choice points. 
The  SPACEKOR  analyzer  can  always  determine when a 
list can  be  returned  to  the  free list.  As  a result. no garbage 
collection phase is needed. 
Backtracking does not do  a  perfect restoration of the 
environment: It  just restores some pointers and  erases new 
lists that  may have accumulated on the  stack.  The pro- 
grammer  can freely add new data  to  the  stack, but must 
postpone operators  that  change older data until the parsing 
has reached  a known state. 
Since  the  arguments  and results  for SPACEKOR  rules  are 
passed on the  stack,  the  MATCH  operator  requires a 
minimum of status saving. The  SPACEKOR  analyzer 
automatically optimizes tail recursions: If a MATCH 
operator occurs at  the end of a rule  or at   the end of an 
option that occurs  before the  end of a  rule,  it is executed by 
a simple  GO-TO  instruction. 
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Appendix: Summary of SPACEKOR operators 
Following is a  list of all SPACEKOR  operators. A literal 
string s that  appears in a rule  has exactly the  same effect as 
the  operator  $A=s.  In  this  summary,  stack[n] represents the 
nth list on the  stack  counting  from  the  end;  stack[l] is the 
last list. 
$A 

$A*n 

$ASS 

$A:s 

$ C = p  

$E 

$ G = r  

$G%r 

$G:r 

$ H = r  

$H%r 

$H:r 

$H*r 

$I= list I$ 

$I+ list I$ 

$1- list I$ 

$1: list I$ 

$1; list I$ 

$J 

$J= n l  n2 J$ 

Match  ANY  input list of zero or more 
words. 

Match  ANY  input list of exactly n 
words. 

Match  ANY word exactly equal  to 
string s. 

Match  ANY word with initial  letters 
equal  to  string s. 

CALL  external  procedure p. 

Succeed if END of input list has been 
reached. 

GET a copy of list from  register r to 
stack[l]. 

GET list from register r to  stack[  I] & 
clear r . 

GET only first word from  register r to 
stack[l]. 

HOLD a copy of stack[ 11 list in register 
r. 

HOLD  stack[ 1 J list in register r & pop 
stack. 

HOLD  stack[ 11 concatenated with r in 
r & pop stack. 

HOLD r concatenated with stack[l] in 
r & pop stack. 

Check if INDICATORS in list are 1 & 
all others  are 0. 

Check if INDICATORS in list are 1. 

Check if INDICATORS in list are 0. 

Set  INDICATORS of word in stack[ 11 
to list. 

Merge  INDlCATORS of word in 
stack[ 1 J with list. 

Transfer JUNCTURE line and column 
position to  stack[ 11. 

Check JUNCTURE  at  line and column 
position n l  n2. 



$J< n l  n2 J$ Check JUNCTURE before line and $V=r 
column position n l  n2. 

$J> n l  n2 J$ Check JUNCTURE  after line and $V:r 
column position n l  n2. 

$J: nl n2  J$  Set  JUNCTURE to line and column $V<r 
positions n 1 n2. 

$K KEEP a copy of current  input sublist in $ y  
stack[ 1 1. 

$L r L$ LOOP repeatedly until first failure in 
rule r. 

$ M = n  MATCH rule named n to  input. 

VERIFY if stack[l] list equals list in 
register r. 

VERIFY if first word in stack[l] and 
register r are equal. 

VERIFY if stack[ I ]  list is sublist of list 
in register r. 

Move input  cursor back for YET 
another  match. 

I $N Succeed i f  next test does NOT SUC- 

ceed. 

$0 opt 1 opt 1 .  . . O$ List of OPTIONS tried from left to 
right. 

$P rule P$  PERFORM rule with stack[l] as 
input. 

$P=n  PERFORM  rule  named n with 
stack[ I ]  as input. 

$P= * Concatenate  stack to input and PER- 

$Q QUIT executing current  rule & exe- 

$ R  REJECT current  input sublist & start 

$R= * REJECT  current  input  sublist & 
return it to  free list. 

$S list S$ Put the enclosed list of words on 

FORM some rule. 

cute rule named QUIT. 

new sublist. 

STACK. 

$S*n Concatenate STACK lists n, n - 1, . . . , 
to stack[ I ] .  

$S=n Copy the  nth list on STACK to 
stack[ 11. 

$S= * Copy the entire STACK to stack[  I]. 
$ST n Delete the nth list on STACK. 

$S%n Interchange the nth STACK list  with 
stack[ 11. 

$T=t Check if TYPE of word  is identical to 
t. 

$T<t Check if TYPE of word  is subtype of t .  

$T>t Check if TYPE of word is supertype of 

$T:t Set  TYPE of first word in stack[l] to 

t. 

t. 

$U UNOPTION choice points for the cur- 
rent rule. 
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