
John F. Sowa

Interactive Language Implementation System

The Interactive Language Implementation System (ILIS) is a tool for implementing language processors. It is fast enough for
conventional compilers and general enough for processing natural languages. ILIS is built around a language for writing
grammars. Unlike most compiler-compilers, the language includes a full range of semantic operators that reduce or eliminate
the need for invoking other programming languages during a translation. ILIS is also highly interactive: I t has facilities for
tracing a parse and for adding or deleting grammar rules dynamically. This paper describes the features of ILIS and its use in
several different projects.

Processing languages with lLlS
The Interactive Language Implementation System (ILIS) is
a tool for rapid prototyping. Using it, a programmer can
quickly implement a language or interface and test its human
factors with actual users. If some feature proves hard to
understand or awkward to use, the designer can change the
syntax in a few minutes and test it again.

I L K can support any language for which a grammar can
be written: a command facility, a macro processor, an
application driver, a help facility, a conversion aid, a checker
and formatter for programming standards, or a dialog han-
dler for computer-aided instruction. As a parser, ILIS is
equivalent to an augmented transition net [11; for computa-
tion, its semantic operators are as general as a Turing
machine. I L K can also be used for teaching grammar
theory; it is simple enough that students can begin to use it
after a one-hour introduction.

Natural languages like English are more difficult to
handle than programming languages. Compilers use syntax
alone in parsing programming languages. But when people
use language, they take advantage of their background
knowledge about the subject matter. Unrestricted natural
language requires a richer semantic, pragmatic, and deduc-
tive component than ILIS supports [2]. Yet restricted sub-
sets of natural language have been implemented in ILIS: an
English query language for a database system and a
Japanese front-end to some English-oriented systems. By

restricting the vocabulary and range of topics, these systems
make the language more manageable.

This paper describes the use of ILIS in several projects. It
then proceeds with a systematic description of the features of
ILIS and their use in language processing. Finally, it
discusses the design considerations that led to the ILIS forms
and their implications for efficiency and generality.

Applications of lLlS
The original version of ILIS was designed as a language
handler for invoking application programs. As it evolved,
new features and operators were added to make it a general
language processor. Within IBM, ILIS has becn used as an
experimental tool for implementing several prototype sys-
tems:

e Natural language parsing The ILIS parser normally
runs top-down with backtracking. It also manipulates
stacks and registers that make it similar to an augmented
transition net, but with a notation of grammar rules
instead of networks. Since it is implemented in optimized
PL/I, it runs faster than most parsers implemented in
LISP. With the interactive editing and debugging tools of
ILIS, Handel [3] wrote a grammar for an interesting
subset of English in about a month.
Microcode assembler The SWARD project at the IBM
Systems Research Institute involved designing a software-

0 Copyright 1984 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of
royalty provided that (1) each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on
the first page. The title and abstract, but no other portions, of this paper may be copied or distributed royalty free without further permission by
computer-based and other information-service systems. Permission to republish any other portion of this paper must be obtained from the

28 Editor.

JOHN F SOWA IBM J. RES. DEVELOP. VOL. 28 NO. 1 JANUARY 1984

directed machine architecture [4]. Hocker [SI used ILIS
to write an assembler that generated the special microcode
used in SWARD. The entire assembler was written in
ILIS except for a final PL/I routine that mapped ILIS
character strings into bit strings.
RENDEZVOUS query project At the IBM Research
Laboratory at San Jose, California, Codd et al. [6]
designed an Engish query facility for a relational database.
Their initial implementation used a pattern matcher writ-
ten in APL that was too slow for practical use. Since their
pattern rules were nearly a subset of the ILIS facilities, the
designers were able to map them into ILIS. As a result, the
CPU time for parsing a typical query was reduced from 10
seconds to 0.16 second; the generation time for a series of
responses was reduced from 37 seconds to 0.26 second.
Although most ILIS parsers run top-down, RENDEZ-
VOUS used the associative pattern matching of ILIS to
implement a bottom-up parser.

0 Japanese front-ends At the IBM Tokyo Scientific Cen-
ter, ILIS was used to support Japanese-style inputs and
outputs to English-oriented systems, including STAIRS/
VS, PASCAL, and PSL/PSA. Since ILIS imposes no
restrictions on the character set, it accepts Japanese-style
input in kanji characters, translates it into an English-style
command, and passes it to the back-end system as though
it had been typed directly in that form. When the system
generates a response, ILlS intercepts it, translates it into
Japanese, and sends it to the output handler in kanji form.
Of these efforts, the most complete was the JISDOS
project in which a front end to PSL/PSA was developed
[7]. In these projects, ILIS served as a more general
translator than a simple table of synonyms: It had to
rearrange the word order, recognize Japanese particles
that had no equivalents in English, and generate correct
syntactic forms in the target languages. Because of the
limited domain of discourse, however, the conversion was
far easier than full translation of unrestricted natural
language.
General syntax checker To check a file while it is being
edited, Lawrence Margolis wrote an interface to ILIS
from one of the standard editors. When the user hits a
program function key, the checker notes what type of file is
being edited, searches for a table of grammar rules for that
type, invokes ILIS to parse the file, and displays error
messages in the lower half of the screen keyed to line
numbers in the upper half. Then the user can correct the
errors and recheck the file without leaving the editing
environment. Margolis mapped a grammar for Pascal into
ILIS form in less than twenty minutes; writing error
messages and inserting them in the rules at the appropriate
points took about two days. More complex languages take
more time: Writing a syntax checker for Ada took two
weeks; an analyzer for COBOL took about a month. Once
a syntax checker has been written, other features can

IBM J . RES. DEVELOP. VOL. 28 NO. 1 JANUARY 1984

easily be added: a formatter for standardizing the indenta-
tion; a preprocessor for expanding synonyms and macros;
or a programming aid that generates code skeletons for
procedure headers, loops, and other coding sequences.
Teaching aid Since 1976, ILIS has been used for
teaching courses on compiler design and natural language
processing. Feedback from the students helped to refine
the system and make it more general, more flexible, and
easier to use. After a short course (18 hours in the
classroom), students were able to implement simple lan-
guage processors: a compiler from a subset of BASIC to
System/370 assembler, a compiler from a PL/I-like lan-
guage into assembler for a microprocessor, and a syntax
checker for the SQL query language. Other students
implemented various games and novelties, including a
guide to Japanese restaurants in New York and an ana-
lyzer for barbershop quartet harmony.

Comparisons with other systems
ILIS belongs to the general class of translator writing
systems. It also has a lot in common with macro processors
and pattern matching languages like SNOBOL. Basically, a
macro processor is a system for replacing one string of
symbols with another. Such systems are useful for adding
synonyms and abbreviations to a language, but they usually
have a limited scope. Besides replacing strings, ILIS can do
the following:

0 When given the grammar of an input language, ILIS can

0 While parsing, it can call external programs to do I/O,

It can dynamically create new rules and add them to its

It is general enough to support parsers for English and

do a complete parse.

perform computations, or run some other system.

internal tables.

other natural languages.

Like the ILIS parser, the SNOBOL pattern matcher is a
top-down parser with backtracking, but its pattern matching
is limited to character strings. ILIS, however, matches lists
of words, each with its own string of indicator bits. The
difference is partly a matter of efficiency: ILIS can run
faster because it has fewer units to process. But the most
important difference is the structure of the data. Each ILIS
word is a unit with associated information, such as indicator
bits that specify the syntax and a type field that specifies the
semantic category.

ILIS, like many translator writing systems, separates the
parsing phase into an initial scan that chops the string into a
list of words and a secondary stage that applies grammar
rules to the list. For a survey of the field, see [8]. But ILIS
has the following combination of features that is rarely found
in other translator writing systems: 29

JOHN F. SOWA

Command
processor

+ ,
Input Input
string-) tokenizer

- analyzer
output output
formatter -string

SPACEKOR External
rules programs

Figure 1 ILlS system components.

An interactive mode that permits new rules to be defined

A simple syntax for rules that allows rules to treat other

A trace mode for displaying every operator as it is

The option of using top-down, bottom-up, or mixed parsing
strategies for any source language,
The efficiency of deterministic parsing for programming
languages and the power of an augmented transition net
for natural languages,
Techniques for handling context-sensitive and transforma-
tional grammars by testing and setting indicators, regis-
ters, and stacks,
The option of having multiple sets of grammar rules for
different languages and sublanguages and switching from
one to the other automatically,
An output formatter that formats output according to the

and used immediately,

rules as data and dynamically update the workspace,

executed,

conventions of the target language.

System components
At the heart of the ILIS system is the rule interpreter called
SPACEKOR. This name is an acronym for the first eight
operators used to define the syntax and the semantics of a
language. When a user enters an input statement, SPACE-
KOR rules analyze it, manipulate stacks and registers to
generate a translation, and invoke external procedures to
perform additional services. Figure 1 shows how the SPACE-
KOR analyzer is related to the other system components.

The six components illustrated in Fig. 1 make up the lLlS
system for processing languages and driving application
programs:

30

JOHN F. SOWA

1. The input tokenizer takes a character string and breaks it
down into a list of separate words or tokens.

2. A table of SPACEKOR rules defines the grammar of an
input language and the associated semantic operations.

3. The SPACEKOR analyzer uses the rules to parse the
input language and execute the semantic operators.

4. Externalprograms do computations and perform services
that are more convenient to write in a conventional
programming language, such as PL/I.

5 . A command processor interprets system commands for
loading and saving workspaces, for displaying informa-
tion about the system, and for entering, editing, and
debugging SPACEKOR rules.

6. An outputformatter types a list at the terminal or writes
it to a file under the control of format commands, such as
indent and tab.

Of these components, four are a basic part of ILIS itself
input tokenizer, SPACEKOR analyzer, output formatter,
and command processor. These need not change from one
application to the next. The table of SPACEKOR rules and
the external programs, however, are tailored for each appli-
cation. The SPACEKOR rules define the input language,
and the programs are called by the SPACEKOR analyzer to
do the actual processing.

The external programs may include simple functions like
TIME or DATE as well as large application packages. For
the Japanese front-ends mentioned earlier, systems as large
as STAIRS/VS or PSL/PSA run as external programs
under ILIS. Since ILIS is implemented in PL/I, it can
directly call other PL/I programs. Applications written in
COBOL, FORTRAN, or PASCAL may be called from an
interface routine written in PL/I. An interface to the IBM
CMS Operating System commands or EXEC routines is
provided by the procedure SYSTEM. Although ILIS is
designed as an integrated system, it is completely modular,
and various pieces can be incorporated separately in other
packages. For a particular application, a programmer might
use the complete system while debugging and testing
SPACEKOR rules. For the finished product, however,
everything but the SPACEKOR analyzer and the final set of
rules could be stripped out of ILIS and linked with the other
package.

Data formats
ILIS has only one primitive data type, the word, which has
seven subfields: a pointer NEXT, which points to the next
word in a list or to nil if it is the last word; two integers
LINE# and COL#, which show the original position of the
word in the input stream; an integer TYPE, which represents
the type of concept or data associated with the word; an
integer LEN, which specifies the word length; a character
string LETTERS, which represents the printed form of the
word; and a bit string INDICATORS, which may be set or
tested by the INDICATOR operator. In the current imple-
mentation, a word is a block of storage defined by the
following PL/I declaration:

IBM J . RES. DEVELOP. VOL. 28 NO. 1 JANUARY I ,9x4

DECLARE 1 WORD BASED,
2 NEXT POINTER, /* To next word * /
2 LINE# FIXED BINARY(1 9 , / * Line number */
2 COL# FIXED BINARY(1 3 , /* Column number */
2 TYPE FIXED BINARY(15), / * Concept type */
2 LEN FIXED BINARY(lS), / * Word length */
2 LETTERS CHARACTER(12), / * Printable form */
2 INDICATORS BIT(64); / * Indicator bits */

The LETTERS field is of length 12, but words may be up
to 255 characters long. If a word is longer than 12, it is
continued in as many additional blocks as needed. The
implementation details, however, are completely invisible to
the ILIS programmer. The operators test and set various
fields, but the programmer never needs to know the internal
formats.

The only lists that the SPACEKOR analyzer processes are
lists of words. A rule is a list of words, some of which may be
operator strings. For efficiency, the SPACEKOR compiler
converts rules to an internal form for pattern matching, but a
rule in its external form can be constructed and manipulated
by the standard list handling techniques. The empty list nif
can be considered as either a list of no words or a rule with no
operators. The SPACEKOR stacks and registers are treated
as lists of lists of words. No deeper nesting of lists is
possible.

SPACEKOR operators
The SPACEKOR operators fall into three major categories:
pattern-matching operators that match something in the
input stream; action operators that do some computation;
and control operators that define a loop, a list of options, or
an invocation of some other rule. Some of the operators have
several variants to make a total of 50 different operators or
variants. The appendix to this paper lists all of them; this
section briefly illustrates a few of them.

An example of a pattern-matching operator is $A*2. The
symbol $ is the escape character that starts every string of
operators. The letter A names the ANY operator, and *2 is a
qualifier that specifies a length of exactly two words. During
pattern matching, the operator $A*2 would match any list of
two words. The KEEP operator $K is an example of an action
operator. It takes a list that has just been matched and keeps
it on a stack for further processing. The sequence

$A*2 $K

would match two words from the input stream and keep them
on the stack. An example of a control operator is $0 for
OPTION. The sequence

$0 CAT 1 DOG I FLOWER O$

matches any one of the three words “CAT,” “DOG,” or

“FLOWER.” The vertical bar separates options, and the
symbol O$ terminates the option list. Any word that is not
part of an operator string is assumed to be a literal that is
matched to the input stream.

Certain combinations of operators occur so frequently that
they become standard idioms. The string $AEK, which is
equivalent to the sequence $A $E $K, starts with the ANY
operator $A to match any list of zero or more words, matches
the END of the input stream with $E, and KEEPS the list on
the stack with $K. The SPACEKOR programmer can just
think of $AEK as a primitive operator that takes the
remainder of the input stream and puts it on the stack.
Another example is the string $RS in the sequence,

$AK DON’T $RS DO NOT S$

First, $A matches any list up to but not including the word
“DON’T,” and $K keeps it on the stack. Then the word
“DON’T” is matched, and the REJECT operator $R throws
it away. The STACK operator $S then places the list “DO
NOT” on the stack; the symbol S$ terminates the list started
by $S. To the programmer, the combination $RS may be
considered as a substitution operator that throws away one
list and replaces it with another.

SPACEKOR rules
A SPACEKOR rule is any sequence of SPACEKOR opera-
tors and literal words. It may be invoked in either of two
ways: associatively, when the pattern part of the rule
matches something in the input stream, or explicitly, when it
is called from some other rule by a MATCH or PERFORM
operator. The following rule would normally be invoked
associatively:

RULE (TIME): $A TIME $A ? $C=TIME.

The keyword “RULE” indicates the start of a rule. In
parentheses is the index word “TIME,” which will cause this
rule to be invoked if a matching word occurs in the input
stream. Since the ANY operator $A matches any list of
words, the pattern part matches inputs like “What time is
it?” or just “time?” When the pattern part successfully
matches the input stream, the CALL operator $C=TIME
calls the external program named TIME to get the current
time of day.

Before a rule can be called explicitly, it must have a name.
The following rule is named S; it uses the MATCH operator
$M to call two other rules, named NP and VP:

RULES: $M=NP $M=VP.

Words in parentheses after the keyword “RULE” are index
words to the rule. An alphanumeric word that is not in
parentheses is the name of the rule. This rule named S may
be part of a grammar for recognizing English sentences. It 31

JOHN F. SOWA 1BM J. RES. DEVELOP. VOL. 28 NO I JANUARY 1984

first calls a noun phrase rule N P to match the beginning of a
sentence. Then it calls a verb phrase rule VP to match the
remainder.

A rule can have both a name and a list of index words. The
following rule can be called explicitly by the MATCH
operator $M= LOGOFF or the PERFORM operator
$P=LOGOFF. It can also be invoked associatively when
any of its four index words (BYE GOODBYE LOGOFF
LOGOUT) appears in the input stream:

RULE LOGOFF (BYE GOODBYE LOGOFF
LOGOUT):$S CP LOGOFF S$ $C=SYSTEM.

Since the pattern part of this rule is empty, it will succeed no
matter how it is invoked. The STACK operator $S puts the
list “CP LOGOFF” on the stack. Then the CALL operator
$C passes that list to the external program named SYSTEM.
Under IBM’s VM/370, the effect is to terminate the
session.

Representing grammar rules
Context-free grammar rules map directly to SPACEKOR
rules. Terminal symbols in the grammar map to literals, and
nonterminal symbols map to the MATCH operator $M. The
following grammar rule defines an expression EXPR as a
TERM followed by zero or more repetitions of the terminal
symbol “+” followed by another TERM:

EXPR - TERM [“+” TERM]. . .

In this notation, square brackets represent an optional con-
stituent; three dots, one or more repetitions; and brackets
followed by three dots, zero or more repetitions. In SPACE-
KOR, the LOOP operator $L executes a string of operators
zero or more times as long as the pattern matching succeeds.
The above grammar rule becomes the SPACEKOR rule,

RULE EXPR: $M=TERM $L + $M=TERM L$.

This rule can do the parsing, but it has no semantics. To
specify some action to be taken or result to be generated,
action operators are inserted among the pattern matching
operators.

As the input language is parsed, values generated by one
rule are left on the SPACEKOR stack to be processed by
other rules. When a rule is invoked by the MATCH operator,
values passed to it are called inherited attributes; values
returned by a rule are called synthesized attributes. In an
interpreter for arithmetic expressions, the synthesized values
are the numbers that result from the computation. When the
TERM rule leaves a synthesized number on the stack, the
EXPR rule that called it uses the external program
DYADIC to add it to the previous result:

RULE E ,XPR: $M=TERM $L +
$C=DYADIC L$.

$K $hi = TER .M $S*3

Inside the loop, the literal “+” matches a plus sign, and $K
keeps it on the stack. The following $M=TERM operator
evaluates another term and leaves the resulting number on
the stack. Then the last three lists contain a number, the
word “+”, and another number. The STACK operator $S*3
concatenates the three lists of one word each into a single list
of three words. That list is then passed to DYADIC by the
CALL operator, and DYADIC returns the sum as result.
That number remains on the stack, and each iteration of the
loop adds another number to it until all occurrences of “+”
followed by a term have been processed.

SPACEKOR rules permit any regular expression on the
right-hand side of a rule. The next grammar rule defines a
noun phrase N P as an optional determiner DET, an optional
string of adjectives ADJ, a required NOUN, and an optional
prepositional phrase PP, participial phrase PARTP, or rela-
tive clause RELC:

N P - [DET] [ADJ] . . . NOUN [PPI PARTP I RELC]

In SPACEKOR notation, that rule becomes

RULE NP: $0 $M = DET I O$ $L $M = ADJ L$
$M=NOUN
OM=PPI$M=PARTPI$M=RELCIO$.

To represent an optional constituent, the OPTION operator
$0 permits an empty option represented as just a blank.

Context-sensitive conditions are handled by operations on
registers, stacks, and symbol tables. The simplest context-
sensitive language is the one consisting of an arbitrary
number of A’s followed by exactly the same number of B’s
and the same number of C’s. That language can be parsed in
several different ways, each of which illustrates an interest-
ing SPACEKOR technique.

The first method is to use a counter on the stack. The
following rule named AB calls itself recursively to match
pairs of A and B. For each pair, it calls the external program
ADD1 to increment a number left at the end of the stack:

RULE AB: A $0 $ M = A B) O$ B $C=ADDl.

This rule is called by the following rule, whose index word is
“A.” After it initializes the stack to zero with $S 0 S$, it calls
the AB rule:

RULE (A): $S 0 S$ $M=AB
$LC $C=SUBI L$ $EP 0 P$.

The $L loop matches a letter C, calls SUB1 to decrement the
counter, and repeats. Then $E checks for the end of input,
and the PERFORM operator $P 0 P$ matches 0 to the
counter on the stack.

IBM J. RES. DEVELOP. VOL. 28 NO. 1 JANUARY 1984

Another method for parsing the ABC language is to build
a list of C’s for each AB pair and then compare that list with
the remaining input. The following version of the AB rule
builds the first list of C’s on the stack:

RULE AB: A $0 $M=AB 1 O$ B $S C S$ $S*2.

The STACK operator $S C S$ puts one C on the stack for
every pair of A and B; the concatenate variant $S*2 concat-
enates the new C on the stack to the previous list of C’s. The
following rule is triggered by the index word “A.” It initial-
izes the stack to nil with $S s$ before it calls the AB rule:

RULE (A): $S S$ $M=AB $RAEKH%C $V=C.

The REJECT operator $R causes the list of A’s and B’s
matched by the AB rule to be ignored in further processing.
Then $A matches any list up to the end $E and keeps it on the
stack with $K. At this point, the last two lists on the stack
should contain strings of C’s. To check that they are equal,
$H%C HOLDS the last list in a register named C and pops
the stack. Finally, $V=C VERIFIES that the last list on the
stack is now equal to the list in register C.

To illustrate the ease of creating and using rules dynami-
cally, the next rule shows another method of matching the
two strings of C’s. It first creates a special rule that matches
exactly the correct number of C’s:

RULE (A): $S RULE C: S$ $M=AB $S . S$ $S*3
$C = MATCH $M = C $E.

This rule creates a list of the form

R U L E C : C C C C C C C C ,

where the list of C’s to be matched was left on the stack by
the call to AB with $M=AB. Then $C=MATCH invokes
the SPACEKOR analyzer recursively to enter this list as a
new rule in the current workspace. Finally, $ M = C calls that
rule to match the remaining list of C’s in the input stream,
and the operator $E tests for the end of input. All three of
these techniques parse the ABC language in linear time. The
rule that uses a counter is slightly faster, but the other two
techniques can be generalized to more complex languages.

Production system
Production systems are frequently used for computations in
artificial intelligence [9]. Each rule in a production system
has a pattern part and an action part; if the pattern matches
something in working storage, the action is performed. When
SPACEKOR rules are triggered associatively, they can be
used as a production system. The input stream is the working
data, and the action operators put their changes on the stack.
Then the rescan variant of the PERFORM operator $P= *
concatenates the modified list on the stack with anything left
in the input stream and treats the result as new input.

IBM J . RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

As with all production systems, ILIS must have some
convention for determining which rule to try when multiple
patterns match the same data. Consider the next two rules:

Rule (TIME): $A CPU TIME $A ? $C=CPUTIME.
Rule (?): $A ? $S WHY DO YOU ASK? S$.

The first rule will match a sentence like “How much CPU
time have I used?” and then call the procedure CPUTIME;
the second rule will match any sentence containing “?” and
generate the response “WHY DO YOU ASK?”. Since both
rules are capable of matching the same sentence, the
SPACEKOR analyzer must adopt some strategy for resolv-
ing the conflict. To determine which rule to invoke, it starts
at the beginning of the input stream, looks up each word in its
index, and takes the following actions:

If the word is not in the index, then the SPACEKOR

If the word is in the index, the analyzer invokes the

If the rule matches, the analyzer sets a flag to indicate
success and returns whatever is left on the stack as the
result.

0 If the rule fails to match, the analyzer checks whether
there is another rule with the same index word and invokes
it; when two rules have the same index word, the more
recently defined one is tried first.

0 If all rules associated with the index word fail, the analyzer
takes the next word of input as a possible index.

0 If the end of the input is reached before any rule matches,
the analyzer returns the input stream unchanged and sets a
flag to indicate failure.

When the SPACEKOR analyzer gets the input “What’s
the CPU time?” it reaches the index word “CPU” before it
reaches the index word “?”. Therefore, the first rule is
invoked to give the CPU time. If the input stream were “How
fast is the CPU?” then the rule with index word “CPU”
would be invoked first. But since that rule does not match the
input, it causes a failure, and the SPACEKOR analyzer goes
on to the index word “?”. The rule with that index word then
succeeds and generates the output “WHY DO YOU
ASK?”.

Stacks and registers
For working storage, the SPACEKOR stack is a list of lists
that is manipulated by the action operators. As a rule is
processed, the stack works in a LIFO order: The last list put
on the stack is the first one used. The CALL operator $C
passes the last list to external programs and replaces it with
the result they return. When a SPACEKOR rule r is called
by the MATCH operator $M=r, the lists left on the stack
are available to operators in r. The lack of explicit parame- 33

analyzer skips it and goes on to the next word.

associated rule.

JOHN F. SOWA

ters for SPACEKOR rules makes calling and backtracking
more efficient since the amount of saving and restoring is
minimized.

All operators except PERFORM continue to use the same
stack. The PERFORM operator $P saves the current stack
and creates a new stack that is initially empty; when PER-
FORM finishes, the contents of the new stack replace the last
list of the previous stack. A recursive call on the SPACE-
KOR analyzer by the operator $C = MATCH also creates a
new stack.

Some variants of the STACK operator manipulate lists
that are deeper in the stack. The operator $S*n concatenates
the last n lists into a single list; the head of each list is
concatenated to the end of the preceding list. The operator
$S%n interchanges the last list with the nth list from the end,
and $ST n deletes the nth list.

During processing, the stack operates in a LIFO fashion.
At the end of processing, however, all lists are concatenated
into a single list in a FIFO fashion-the oldest one at the
head. This convention is good for most language processing.
As rules parse the input stream from left to right, they build
up the translated results on the stack. The most frequent
processing takes place at the end of the stack, but the result
should be read from the beginning.

The stack may be compared to human short-term mem-
ory. For most processing, it rarely has more than seven lists,
although each list may be arbitrarily long. For global long-
term memory, there is a set of named registers. Each register
contains a list of words, which like the stack can be processed
in either a LIFO or FIFO fashion with the GET and HOLD
operators. The HOLD operator $H transfers the last list on
the stack to a register, and GET $G transfers a register to the
end of the stack. For dictionaries and symbol tables, the call
$C=DEFINE saves a list indexed by its first word, and
$C=LOOKUP retrieves a previous list.

Backtracking
The SPACEKOR analyzer does automatic backtracking:
Whenever an operator or word match fails, the analyzer
backs up to a previous option, called a choice point. For a
deterministic grammar, backtracking is not necessary during
the parsing phase, but it may be needed when generating
diagnostics for a syntax error. Even programming languages
like PL/I may require backtracking to handle forms that
cannot be parsed with an LL(1) grammar. Typical problems
arise in PL/I when the compiler cannot tell whether an
identifier is a keyword or the name of a variable:

34

JOHN F. SOWA

I F (X + Y) = 15.7 THEN GO TO HOME;
I F (X + Y) = 15.7;

In the first statement, the keyword I F introduces a condi-
tional. The second statement is an assignment to the vector
I F indexed by X + Y . The parser, however, cannot tell how to
interpret the first word “IF” until it reaches the ninth word
“THEN” or <<.?I , .

A potential source of inefficiency in backtracking is the
need to undo changes that had been made to the environment
by operators that lay along a failing path. To minimize the
effort lost, SPACEKOR does not do a perfect restoration: It
throws away new additions to the stack by operators along a
failing path, but it does not undo all side effects or changes to
lists that were put on the stack before the previous choice
point. In most cases, this minimal restoration is sufficient. In
other cases, the programmer can postpone nonrestorable
operators until the critical pattern matches have been com-
pleted.

When syntax analysis has reached a certain stage, the
programmer may decide to commit the analyzer to the
current path and eliminate all possibility of backup to
pending, untaken options. To do that, the UNOPTION
operator $U clears out the list of choice points. Most systems
that do backtracking have a similar facility for stopping the
backtracking: SNOBOL has the FENCE operator, PRO-
LOG has the CUT operator, and MICROPLANNER has
FINALIZE.

Types and indicator bits
Dictionaries represent two kinds of information about words:
syntactic features that specify parts of speech, and semantic
types that specify the associated concepts. Programming
languages make a similar distinction between the syntactic
categories like operator or variable, and the semantic catego-
ries called data types. Some systems represent the syntactic
features with binary options, such as +SING +TRNS
+VERB for a singular, transitive verb [101. Semantic
grammars [111 represent a hierarchy of concept types, such
a s BEAGLE<DOG, DOG<ANIMAL, and ANI-
MAL<ENTITY. Heidorn’s N L P system [12] supports
both a string of indicator bits for the syntactic features and a
hierarchy of types for the semantics. ILIS follows N L P in
maintaining two fields with each word: a 64-bit field of
indicators for the syntax and a 16-bit integer for the semantic
tY Pe.

The first four indicator bits are set by the tokenizer. They
specify whether the word is purely alphabetic, alphanumeric,
integer, real, punctuation, quoted string, or compound sym-
bol like := or **. The other 60 bits can be named, set, and
tested by the INDICATOR operator $1. For parsing
English, the programmer may have named bit 17 VERB and
bit 21 TRNS. Then the following operator tests whether the
current word is a transitive verb:

I IBM J. RES. DEVELOP.. VOL. 28 NO. 1 JANUARY 1984

$ I + VERB TRNS I$

The qualifier + after $I requires that all named bits must be
1; the other bits are ignored. The symbol I$ terminates the
list of indicators. For words in the dictionary, the call
$C=LOOKUP replaces a word with a definition that has set
the appropriate bits. Since a word may have more than one
part of speech, a word like “MOVE” would have bits for
noun, verb, transitive, and intransitive.

Most programming languages require identifiers to be
alphabetic or alphanumeric strings starting with a letter. The
following rule matches any identifier:

RULE IDENT: $1- 1 2 3 I$.

Indicator bits that have not been named can be specified by
their positions. This operator matches any word whose first
three bits are zero. Since the tokenizer sets the first four bits
to 0000 for purely alphabetic strings and 0001 for alphanu-
meric strings starting with a letter, this combination matches
any valid identifier.

Matching a number that is either integer or real requires
checking for two different patterns. The bit pattern is 1000
for integer and 1001 for real numbers. The following rule
matches either:

RULE NUMBER: $0 $ I = 1 I $ / $I= 1 4 I$ O$.

The first option tests whether the first bit is 1 and all other
bits are 0; the second option tests bits 1 and 4. Any
combination of 0 and 1 bits can be tested by $1 + and $I - on
the same word. Since every pattern match automatically
advances the cursor to the next word, the YET AGAIN
operator $Y must be used to move the cursor back for
another test. The following rule could also be used to match
numbers:

RULE NUMBER: $ I + 1 I$ $Y1- 2 3 I$.

The operator $ I+ tests for a 1 in the first position. Then the
$I - operator tests whether bits two and three are 0. Without
the intervening $Y, the operator $ I + would test the first
word of input, and $I - would test the second word.

The type field is intended for user-defined types, as in
Pascal or Ada, and for conceptual categories in natural
languages. The programmer can specify a set of type labels
with their position in the type hierarchy, such as D O G t A N -
IMAL or SHIP<MOBILE-ENTITY. ILIS then assigns a
16-bit integer to each label. The programmer does not refer
to the internal integer, but to the symbolic label: The
operator $ T t S H I P tests for any subtype of SHIP, and
$ T t Y A C H T tests only for yachts.

Top-down vs bottom-up parsing
For the past 20 years, arguments over top-down vs bottom-up
parsing have continued in the fields of compiler design and
natural language processing. ILIS supports both approaches.
Handel [3] used ILIS in a top-down mode for his English
parser, and in RENDEZVOUS [6] it was used as a bottom-
up production system. In the top-down parser, Handel
required all words to be defined before parsing began; if a
word was not in the dictionary, his system would ask the user
for its part of speech. RENDEZVOUS was more flexible. It
used associative indexing to find rules for appropriate seman-
tic patterns. When it found an approximate match, it would
fill in the slots of the pattern and ignore input words that did
not fit. Since approximate matching is error-prone, REN-
DEZVOUS mapped its interpretation back into an English
sentence and asked the user for confirmation. After a short
dialog, the user and the system would converge on a complete
and correct formulation of a database query.

Although Handel’s parser was top-down, he did use asso-
ciative indexing for idioms and abbreviations. The following
rule, for example, matches input containing the word
“DON’T,” replaces it with “DO NOT,” and uses the $P= *
operator to PERFORM a rescan:

RULE (DON’T): $AK DON’T $RS DO NOT S$ $P=*.

After making all the substitutions with rules of this form, the
system switched to a top-down mode for the actual parse. For
programming languages, associative indexing would be use-
ful for synonyms and macro expansions. After the macro
stage, the actual parsing could be done in a top-down mode.

For programming languages, ILIS runs best in top-down
mode with an LL(1) grammar [131. For efficiency, the
SPACEKOR analyzer looks ahead one word whenever it
finds a list of options. If the correct choice is found [always
possible with an LL(1) grammar] it takes that option
without backtracking. It thereby achieves the speed of a
purely deterministic parse, but with the option of backtrack-
ing to handle any context-free language.

Some translator writing systems use an LR parser genera-
tor, which supports a deterministic, bottom-up parse [14-
161. Although LR parsers can run about as efficiently as LL
parsers, they cannot be generalized to a wider class of
languages. Furthermore, LR parser generators cannot be as
interactive as I L K because they must process all the rules of
a grammar at once in order to create their parsing tables.
With ILIS, however, any rule can be added, deleted, or
modified without affecting any other rules in the workspace.

Input and output formats
A system that handles all possible languages must be able to
format those languages according to their standard conven-

IBM J. RES. DEVELOP. VOL 28 e NO. I JANUARY 1984

36

tions. For input, the ILIS tokenizer supports several options
that can be changed by the SET command:

Beginning and ending delimiters for comments and quoted

Distinctions between upper- and lower-case letters,
Compound operators like : = and ** that are tokenized as

Escape character for command strings,
Special characters defined as alphabetic (especially im-
portant for non-English languages),

strings,

single words,

Period or comma for the decimal point in real numbers,
End of each input stream signaled by the end of line,
special punctuation such as period or semicolon, or the end
of an entire file.

For each word, the tokenizer sets the first four bits of the
indicator field to show the token category, such as purely
alphabetic, alphanumeric, integer, real, quoted string, punc-
tuation, command string, compound operator, or other. One
of the set options allows the tokenizer to be turned off
completely so that SPACEKOR rules can parse everything.
This option is the most general, but it is less efficient than
allowing the tokenizer to group the input into tokens.

For output, the formatter converts a linked list of words
into lines. It normally inserts a blank between words, but it
suppresses the blank before a word with indicator bits for
punctuation. The formatter also recognizesformatting com-
mands embedded in the list. The command $B, for example,
breaks to a new line, $W=n sets the line width to n, $F=n
tabs forward to column n, $F+n tabs forward n spaces
beyond the current position, and $Z suppresses blanks until
the next formatting command. With the formatting com-
mands, a prettyprinter can parse a language and insert line
breaks and indentation to standardize the formatting.

The $X command for exact formatting positions each
word according to its own line and column number. The
input tokenizer sets the line and column number for each
word as it maps the input string into a list. Then those
numbers, which are carried through all the parsing and
transformations, are used by the formatter to recreate a line
that appears identical to the original. In SPACEKOR rules,
the JUNCTURE operator $J can test or set the line and
column numbers or copy them to the stack. Then a syntax
checker can print an erroneous statement exactly as it
appears in the input and generate a diagnostic message keyed
to the position where the error was found.

Sample translation
A feature that distinguishes ILIS from most parsing systems
is the ability to include action operators in the grammar
rules. To illustrate the technique, consider the problem of
translating assignment statements from a programming lan-

guage into Polish notation. The first step is to write a
grammar for the language. The following four rules define a
statement STMT as an identifier IDENT followed by an
assignment operator ":=", an expression EXPR, and a
semicolon. An EXPR is a TERM followed by zero or more
repetitions of "+" or "-" and another TERM. A TERM is
a factor FAC followed by zero or more repetitions of "*" or
"/" and another FAC. Finally, a FAC is an identifier, a
number, or another expression in parentheses:

STMT - IDENT ":=" EXPR ";"
EXPR - TERM [("+"I "-")TERM] . . .
TERM - FAC [(''*"I''/") FAC] . . .
FAC - I D E N T I NUMBER I y 1 EXPR

These rules have an embedded recursion of EXPR inside
of the rule for FAC, but they have no left recursions. The
next step is to convert them to SPACEKOR rules:

RULE STMT (:=): $M=IDENT := $M=EXPR ; .
RULE EXPR: $M=TERM $L $0 + 1 - O$
$M =TERM L$.
RULE TERM: $M=FAC $L $0 * I / O$ $M=FAC L$.
RULE FAC: OM=IDENTI$M=NUMBERI

($M= EXPR) O$.

The first rule can be called by an operator $M=STMT or
$P=STMT, or it can be triggered associatively by the
occurrence of ":=" in the input stream. The rules for
IDENT and NUMBER were defined in earlier examples.

As the SPACEKOR rules recognize each type of phrase,
the translated output can be built on the stack by the action
operators. Words are transferred from the input to the stack
with $K, subphrases are concatenated to form larger phrases
with $S*n, and the interchanges for reverse Polish notation
are done with $S%n. Following is a complete set of SPACE-
KOR rules for translating simple assignment statements into
reverse Polish form:

RULESTMT (:=): $M=IDENT := $K $M=EXPR
$S%2 ; $R.

RULE EXPR: $M=TERM $L $0 + I - O$ $K
$M=TERM $S%2 $S*3 L$.

RULE TERM: $M=FAC $L $0 * I / O$ $K $M=FAC
$S%2 $S*3 L$.

RULE FAC: $0 $M=IDENT~ $M=NUMBERI ($R
$M=EXPR) $R O$.

RULE IDENT: $1- 1 2 3 I$ $K.
RULE NUMBER: $ I + 1 I$ $YI- 2 3 I$ $K.

If the user typed the following statement at the terminal,

XYZ := A*B + (C-D)*E;

these rules would generate the following output in reverse
Polish form:

X Y Z A B * C D - E * + : =

JOHN F. SOWA IBM J . RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

Design considerations
The original version of ILIS was designed as a pattern-
directed mechanism for invoking PL/I procedures. It was
intended to be fast and simple, and the programmer was
expected to use PL/I for general computation. The original
eight SPACEKOR operators did not include $M, which is
essential for top-down parsing, but they could be used as a
production system that was general enough to simulate a
Turing machine. The SPACEKOR operators turned out to
be so flexible that programmers chose to use them in
preference to invoking external programs. When the addi-
tional operators were added, ILIS developed into a complete
translation system. Margolis implemented a translator from
a subset of Ada into Pascal without invoking any external
programs other than those provided in the basic library.

As ILIS evolved, the original goal of simplicity was kept.
If some feature, like arithmetic computation or array han-
dling, could easily be done in PL/I, it was not added to ILIS.
Some features, like input and output formatting, could be
done in PL/I, but since they depended heavily on the internal
formats of ILIS data, a complete set was added to ILIS. To
keep the parser efficient, some implementation consider-
ations affected the definition of the operators:

All dynamic storage is maintained in fixed, 32-byte blocks.
This includes the internal forms for words, the activation
records for SPACEKOR rules, and the backtracking
information for choice points.
The SPACEKOR analyzer can always determine when a
list can be returned to the free list. As a result. no garbage
collection phase is needed.
Backtracking does not do a perfect restoration of the
environment: It just restores some pointers and erases new
lists that may have accumulated on the stack. The pro-
grammer can freely add new data to the stack, but must
postpone operators that change older data until the parsing
has reached a known state.
Since the arguments and results for SPACEKOR rules are
passed on the stack, the MATCH operator requires a
minimum of status saving. The SPACEKOR analyzer
automatically optimizes tail recursions: If a MATCH
operator occurs at the end of a rule or at the end of an
option that occurs before the end of a rule, it is executed by
a simple GO-TO instruction.

Acknowledgments
All the users of ILIS, especially the hundreds of students who
did their homework with it, have helped to improve the
system with their suggestions for enhancements and reports
of difficulties. Two of the users have made extensive addi-
tions to the implementation: James Rhyne, who was working
on the RENDEZVOUS project, made a number of exten-
sions including a new method for indexing the rules; and

IBM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1984

Lawrence Margolis, at the IBM Systems Research Institute,
has used ILIS in several projects and has implemented all the
extensions and modifications since 198 1. I would also like to
thank George Heidorn for numerous comments on the con-
tent and presentation of this paper.

Appendix: Summary of SPACEKOR operators
Following is a list of all SPACEKOR operators. A literal
string s that appears in a rule has exactly the same effect as
the operator $A=s. In this summary, stack[n] represents the
nth list on the stack counting from the end; stack[l] is the
last list.
$A

$A*n

$ASS

$A:s

$ C = p

$E

$ G = r

$G%r

$G:r

$ H = r

$H%r

$H:r

$H*r

$I= list I$

$I+ list I$

$1- list I$

$1: list I$

$1; list I$

$J

$J= n l n2 J$

Match ANY input list of zero or more
words.

Match ANY input list of exactly n
words.

Match ANY word exactly equal to
string s.

Match ANY word with initial letters
equal to string s.

CALL external procedure p.

Succeed if END of input list has been
reached.

GET a copy of list from register r to
stack[l].

GET list from register r to stack[I] &
clear r .

GET only first word from register r to
stack[l].

HOLD a copy of stack[11 list in register
r.

HOLD stack[1 J list in register r & pop
stack.

HOLD stack[11 concatenated with r in
r & pop stack.

HOLD r concatenated with stack[l] in
r & pop stack.

Check if INDICATORS in list are 1 &
all others are 0.

Check if INDICATORS in list are 1.

Check if INDICATORS in list are 0.

Set INDICATORS of word in stack[11
to list.

Merge INDlCATORS of word in
stack[1 J with list.

Transfer JUNCTURE line and column
position to stack[11.

Check JUNCTURE at line and column
position n l n2.

$J< n l n2 J$ Check JUNCTURE before line and $V=r
column position n l n2.

$J> n l n2 J$ Check JUNCTURE after line and $V:r
column position n l n2.

$J: nl n2 J$ Set JUNCTURE to line and column $V<r
positions n 1 n2.

$K KEEP a copy of current input sublist in $ y
stack[1 1.

$L r L$ LOOP repeatedly until first failure in
rule r.

$ M = n MATCH rule named n to input.

VERIFY if stack[l] list equals list in
register r.

VERIFY if first word in stack[l] and
register r are equal.

VERIFY if stack[I] list is sublist of list
in register r.

Move input cursor back for YET
another match.

I $N Succeed i f next test does NOT SUC-

ceed.

$0 opt 1 opt 1 . . . O$ List of OPTIONS tried from left to
right.

$P rule P$ PERFORM rule with stack[l] as
input.

$P=n PERFORM rule named n with
stack[I] as input.

$P= * Concatenate stack to input and PER-

$Q QUIT executing current rule & exe-

$ R REJECT current input sublist & start

$R= * REJECT current input sublist &
return it to free list.

$S list S$ Put the enclosed list of words on

FORM some rule.

cute rule named QUIT.

new sublist.

STACK.

$S*n Concatenate STACK lists n, n - 1, . . . ,
to stack[I] .

$S=n Copy the nth list on STACK to
stack[11.

$S= * Copy the entire STACK to stack[I].
$ST n Delete the nth list on STACK.

$S%n Interchange the nth STACK list with
stack[11.

$T=t Check if TYPE of word is identical to
t.

$T<t Check if TYPE of word is subtype of t .

$T>t Check if TYPE of word is supertype of

$T:t Set TYPE of first word in stack[l] to

t.

t.

$U UNOPTION choice points for the cur-
rent rule.

References
I . W. A. Woods, “Transition Network Grammars for Natural

Language Analysis,” Commun. ACM 13, 591-606 (1970).
2. J . F. Sowa, Conceptual Structures: Information Processing in

Mind and Machine, Addison-Wesley Publishing Co., Reading,
MA, 1984.

3. J . L. Handel, “An English Parser,” Technical Report T R
73-005, [BM Systems Research Institute, New York, 1980.

4 . G. J. Meyers, Advances in Computer Architecture, John Wiley
& Sons, Inc., New York, 1982.

5. D. G. Hocker, “AMAS: A Microcode Assembler for the
SWARD Processor,” Technical Report T R 73-018, IBM Sys-
tems Research Institute, New York, 198 1.

6 . E. F. Codd, R. S. Arnold, J.-M. Cadiou, C. L. Chang, and N.
Roussopoulos, “RENDEZVOUS Version I: An Experimental
English-Language Query Formulation System for Casual Users
of Relational Data Bases,” Research Report RJ-2144, IBM
Research Division, San Jose, CA, 1978.

7 . J. Murai, N. Saito, N. Doi, M. Morohashi, and T. Fujisaki,
“Requirement Specification Description in Japanese Language,
JISDOS,” Proceedings of 6th International Conference on
Software Engineering, IEEE Computer Society Press, New
York, 1982, pp. 127- 136.

8. Compiler Construction, F. L. Bauer and J. Eickel, Eds.,
Springer-Verlag New York, Inc., New York, 1976.

9 . R. Davis and J. King, “An Overview of Production Systems,” in
Machine Intelligence, Vol. 8, E. W. Elcock and D. Michie, Eds.,
John Wiley & Sons, Inc., New York, 1977, pp. 300-332.

10. F. B. Thompson and B. H. Thompson, “Practical Natural
Language Processing: The REL System as Prototype,” in
Advances in Computers, Vol. 1 3 , M. Rubinoff and M. C.
Yovits, Eds., Academic Press, Inc., New York, 1975, pp.

11. J. S . Brown and R. R. Burton, “Multiple Representations of
Knowledge for Tutorial Reasoning,” in Representation and
Understanding, D. G. Bobrow and A. Collins, Eds., Academic
Press, Inc., New York, 1975, pp. 3 I 1-349.

12 . G . E. Heidorn, “Natural Language Inputs to a Simulation
Programming System,” Report NPS-55HD72101A. Naval
Postgraduate School, Monterey, CA, 1972.

13 . M. Griffiths, “LL(I) Grammars and Analyzers,” in Compiler
Construction, F. L. Bauer and J. Eickel, Eds., Springer-Verlag
New York, Inc., New York, 1976, pp. 57-84.

14, A. V. Aho and J. D. Ullman, Principles of Compiler Design,
Addison-Wesley Publishing Co., Reading, MA, 1977.

15. J . Cohen and M. S. Roth, “Analyses of Deterministic Parsing
Algorithms,” Commun. ACM21,448-458 (1978).

16. J . J . Horning, “LR Grammars and Analyzers,” in Compiler
Construction, F. L. Bauer and J . Eickel, Eds., Springer-Verlag
New York, Inc., New York, 1976, pp. 85-108.

109-168.

$U= * UNOPTION choice points for all
38 options not taken. Received August 25, 1983; revised September 15, 1983

JOHN F. SOWA IBM J . RES. DEVELOP. VOL. 28 NO. 1 JANUARY 1984

John F. Sowa IBM Systems Research Institute, 205 East architecture, programming language design, and natural language
42nd Street, New York, New York 10017. Mr. Sowa is a senior staff processing. He designed the ILIS system as part of a project for
member a t the IBM Systems Research Institute. After graduating implementing user interfaces to application programs. His current
from the Massachusetts Institute of Technology in 1962, he joined research is on the theory of conceptual graphs and its applications to
an applied mathematics group at IBM. Four years later, he went to artificial intelligence. This theory is described in his recent book,
graduate school at Harvard University, under the IBM Resident Conceptual Structures: Information Processing in Mind and
Graduate Study Program. At IBM, he has worked on computer Machine.

39

IBM J. RES. DEVELOP. VOL. 28 NO. I JANUARY 1984 JOHN F. SOWA

