
Martin Schatroff

Design of Experiments in Computer Performance
Evaluation

d

I

Techniques of statistical design of experiments have been successfully employed for many decades in a variety of
applications in industry, agriculture, medicine, psychology, and other physical and social sciences. Their aim is to
provide scientiJic and eficient means of studying the effects, on one or more variables of interest, of varying multiple
controllable factors in an experiment. These techniques have not been widely used in the study of computer systems,
although they can potentially have as large an impact as they have had in other5elds. The purpose of this paper is to re-
view some of the basic concepts underlying the statistical design and analysis of experiments and to illustrate them by
means of examples drawn from studies of computer system performance. The examples include comparisons of alternate
page replacement and free storage management algorithms, optimization of a scheduler, and validation of a system
simulation model.

1. Introduction
Performance measurement frequently has as its purpose computer studies. The consequences may include unnec-
to evaluate the effects of changes to a system. Such essary expense, undue time delays, loss of information,
changes might include software options (e.g., choice of misinformation, and incorrect conclusions.
access methods, scheduling parameters, system genera-
tion options) as well as hardware changes (e.g., amount The purpose of this paper is to introduce some of the
of main storage, number of channels, etc.). In some basic ideas underlying the statistical design of experi-
instances such evaluations are carried out on fixed bench- ments and to illustrate these by means of real examples
mark workloads, while in others they may be carried out drawn from computer performance evaluation work un-
with real users. Purposes of such experimentation may be dertaken at this location over a number of years. In all
to compare the performance implications of the changes experimental design work, we envision a statistical model
to the system or to optimize or tune the system. In either which relates some measurable response (or responses)
event, we would like to carry out the experimental to the factors varied in the experiment. In this paper, we
program as quickly and economically as possible, while at confine our attention to the so-called fixed effects analy-
the same time being able to assure ourselves of the
accuracy and validity of the results.

When dealing with complex computer systems, many
factors, controllable by the experimenter, can have major
effects on system performance. The theory of statistical
design of experiments provides methodology for design-
ing and analyzing experiments involving simultaneous
variation of multiple factors. Historically, there has exist-
ed a major communication gap between computer scien-
tists, system programmers, and designers, on the one

sis of variance model, which expresses the response as a
linear function of the factors, plus an additive random
error term. This is essentially a linear regression model,
in which the independent variables are dummy variables
indicating the presence or absence of a specified value, or
level, of a corresponding factor. The parameters, or
coefficients, of the linear model then measure the effects
of variations in the factors, both singly (main effects) and
in combination (interaction effects). The general form of
this model is given in Eq. (1).

hand, and statisticians, on the other. As a result, statisti- Given this form of the model, the design of experiments
cal design and analysis of experiments is rarely applied in is concerned with procedures which will enable us to

Copyright 1981 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

848 to republish other excerpts should be obtained from the Editor.

MARTIN SCHATZOFF IBM J . RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981 I

estimate these parameters efficiently and draw statistical-
ly valid conclusions, while minimizing or eliminating the
effects of extraneous factors that may be beyond our
control. Additionally, we must be able to test the validity
of the model itself, based upon the resulting data. Thus,
the entire process is illustrative of the scientific method
itself, wherein we may go through iterative cycles of
stipulating hypotheses, carrying out experiments, testing
the hypotheses and the model upon which they are based,
and possibly reformulating the model and trying again.

The subject begins to take on real significance when we
are dealing with multiple factors. Then, it is always better
to vary the factors simultaneously, rather than one at a
time (as frequently done by engineers unfamiliar with
experimental design); design techniques are available for
drastically reducing the total number of combinations that
must be run, resulting in savings in cost and/or time. In
the ensuing sections, we develop the ideas of randomiza-
tion, factorial experiments, fractional replication, block-
ing, and response surface exploration. These are illustrat-
ed by real examples ranging from benchmark experiments
to experiments carried out under actual operating condi-
tions and live workloads. The objective is not to train the
non-statistician to become a statistician in one easy
lesson, but rather to help him gain an appreciation for the
subject, the potential power it offers, and its applicability
to real performance evaluation problems.

2. Some basic concepts
The performance of a computing system is a function of
the hardware configuration, the operating system and
associated application software support required to run it,
and the workload imposed on it by its users. A key
objective of performance evaluation is to understand the
relationships among these constituent system elements
from the standpoint of how they affect system perform-
ance. The ideal way of meeting this objective would be to
have a detailed mathematical model which explicitly
displays the nature of these relationships. Such a model
could then be used to study the effects of hardware,
software, and workload variations upon system perform-
ance, and thus provide a means of predicting and optimiz-
ing such performance with respect to these factors.

When mathematical system models of sufficient detail
and accuracy cannot be readily derived, the only alterna-
tives are to conduct experiments on the system itself, or
on a simulation model of it. The objectives remain the
same, but the methodological approach now involves
derivation of a suitably parameterized empirical model,
where the model is an equation whose parameters are to
be estimated from the data. The statistical design of
experiments provides techniques for designing and ana-

lyzing experiments in such a way as to derive such
models efficiently and make statistically valid inferences
about the underlying mechanisms.

In a designed experiment, variables that are to be
controlled are referred to asfactors. The different values
or states of a factor are referred to as levels of that factor.
For example, in an experiment aimed at comparing the
performance of two different page replacement algo-
rithms, say A and B, the variable called algorithm is a
factor, and its two possible states, A and B, are its levels.
Some factors may be quantitative in nature. Thus, sup-
pose that a scheduling algorithm makes decisions based
upon whether or not the page steal rate observed in the
system over the past minute exceeds a specified thresh-
old. The possible numerical values assigned to that
threshold in the experiment are levels of the page steal
threshold factor.

A multifactor experiment is one in which two or more
factors are varied simultaneously. A particular combina-
tion of factor/levels for an experimental run is called a
treatment, deriving from agricultural experiments in
which different combinations of chemicals were adminis-
tered to different plants. An experimental design defines
the treatments, or factorflevel combinations, at which
experimental runs are to be carried out. The theory of
design of experiments is concerned with principles for
constructing experimental designs in such a way as to be
able to estimate the effects of the different treatments on
the response variable(s) of interest as efficiently as possi-
ble (i .e . , minimizing the required number of observations,
the cost, and/or the time required to conduct the experi-
ment). The theory is predicated on an underlying mathe-
matical model that expresses the response variable as a
function of the treatments, with unknown parameters,
which represent the treatment effects, to be estimated
from the data. The model that we discuss is called the
fixed effects analysis of variance model, which is essen-
tially a special case of the well known least squares linear
regression model

yi = eo + xlie, + xZie2 + . . . + xpiep + Ei

(i = 1 , 2 , . . ., n) (1)

where Yi are the values of the n random response
variables, Xji (j = 1, 2, . . ., p) are the known values of
the p independent variables for each of the n design
points, 5 are the p + 1 unknown regression coefficients,
and are random error terms having the properties

E(Ei) = 0 ,

E(& = 6i,kcTz , 849

MARTIN SCHATZOFF IBM J. RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981

where a’, the variance of the error term, is an unknown
constant, and the operator E(z) represents the expected
value of z .

The further assumption that the si are normally distrib-
uted leads to normal distribution theory for inferences
concerning the unknown Oj and a’. The normality as-
sumption can be tested by examining the residuals from
the fitted model.

In the special case of designed experiments, the inde-
pendent variables in Eq. (1) are defined to be indicator
variables having the values one or zero, depending on
whether the effects Oj are present or absent in the experi-
mental conditions corresponding to the respective obser-
vations. An effect corresponding to variation of a single
factor is called a main effect. An effect corresponding to
simultaneous variation of two or more factors is called an
interaction effect. It is represented in the model by
introducing a new independent variable which is the
product of those independent variables corresponding to
the given interaction.

A complete factorial experiment is a multifactor experi-
ment in which every possible factor/level combination is
included. If there are two or more observations at each
experimental design point, the experiment is said to be
replicated. If the experimental design has the same num-
ber of observations at each design point, the design has
the property of orthogonality. That is, the vectors Xj =

corresponding to the levels of any two factors, are
orthogonal to one another. Orthogonality in a designed
experiment is very important, because it permits indepen-
dent estimation of all of the effects.

{Xj, , Xj2’ * * 9 Tn> and = { x k l ’ x k 2 9 ‘ Xkn}7

Replication in an experiment provides a direct means of
estimating the unknown variance a2 of the random error
term, since according to the model (l) , the only difference
between two observations taken at the same data point is
that their random error terms are different in value. Thus,
for two replicated observations Yi and Yk, (Yi - Yk) = (E ~

- E ~) is a random variable which has expectation equal to
zero and variance equal to 2a2. Hence, (Yi - Yk)*/2
provides an unbiased estimate of a’. Estimates of this
form, computed at all replicated points in an experiment,
may be averaged together to provide a better estimate of
J.

The importance of estimating a2 accurately is that it
provides a yardstick against which the statistical signifi-
cance of experimental effects may be assessed. Thus, if a
calculated estimate of variation due to a particular factori-

850 al effect is sufficiently larger than the estimated error

variance $2, one would infer that the effect is real-that
is, it is significantly larger than would be expected if the
experimental treatment had no real effect, and we were
measuring only random variation.

Since economy is an important aspect of an experimen-
tal program, replication should be avoided where possi-
ble, since additional observations represent a duplication
of effort. In some instances, the experimenter may have
estimates of the experimental error obtained from previ-
ous experiments. For example, suppose that a fixed
benchmark has been used in previous experiments from
which a* has been estimated. New experiments involving
the same benchmark may be assumed to have the same
error variance, provided that other experimental condi-
tions have not changed materially. Replication at a small
number of design points can be employed for confirma-
tion.

When previous estimates of a2 are not available, it can
frequently be assumed that higher order interaction terms
are insignificant, and hence that they essentially measure
random Variation. In such cases, these higher order
interaction terms are used to provide estimates of the
error variance.

In order to make these ideas more precise, we re-
parameterize the regression model (1) to reflect more
succinctly the situation encountered in factorial experi-
ments. For illustrative purposes, we consider the simple
case of a two factor experiment, in which factor A is
varied at I levels and factor B at J levels. We assume also
that there are K replications at each point. Since the Xji in
(1) are equal to zero or one, we can eliminate those terms
for which Xji = 0 and suppress the symbol Xji when it is
equal to one. Also the parameters e,,, 1 a , Op in the
regression equation (1) are replaced by the notation in Eq.
(2) , which is commonly used in experimental design
models. Equation (1) thus becomes

Y.. = p + a i + p . + -y..+&..
rJk J r~ rJk

(i = 1, 2 , . ., I ,
j = 1 , 2 , 1 * , J ,
k = 1 , 2 , ’ ’, ZQ,

where

p = general mean,
ai = main effect of factor A at level i ,
p. = main effect of factor B at level j ,
$ = interaction effect of factor A at level i and factor B at

level j .

The model generalizes in an obvious manner as the
number of factors increases, so that for experiments with

MARTIN SCHATZOFF IBM I. RES. DEVELOP. 0 VOL. 25 NO. 6 NOVEMBER 1981

p factors, there are interaction terms of order I , 2 , 3 , * 1 a ,

p - 1, where a kth order interaction refers to the
interaction of k + 1 terms. The terms of Eq. (2) are
estimated by least squares. That is, we minimize the sum
of squared deviations of the observations about their
fitted values by differentiating the expression

Xi=,Zj j .=,Xk=,(Yi jk - p - ai - P . - Y..) 2
J V (3)

with respect to the unknown parameters. Since the vari-
ous main effects and interactions are deviations about a
mean, side conditions such as

X i f f i = 0, Zjpj = 0, zizjyij = 0

must be introduced. The resulting formulas, for cases of
orthogonal designs, are provided in most textbooks deal-
ing with the subject of designed experiments. For exam-
ple, the estimate f i of the general mean p is given by the
sample mean of all the observations:

b = Y. . . = (Zi_,Xjj=IXk=lY,j,)lZJK, (4)

while the estimate 6 of a is given by

aii= y i , , - Y . . , (i = 1,2;*.,Z), (5)

where Yi , . = (x j= ,X,=, YJJK .

in simple words, the ith main effect of factor A is
estimated as the difference between the mean of all
observations taken at level i of factor A and the general
mean. The dot (.) notation employed in the subscripts of
Y in the above equations denotes averaging over the
subscript indices that have been replaced by the dots.
Similarly, thejth main effect of factor B, pj, is estimated
as the difference between the mean of all observations
taken at level j of factor B and the general mean. The AB
interaction effect is a bit more complicated. In essence, it
measures the extent to which deviations of the YUk about
Yi , . are dependent upon the level of factor B (and vice
versa). Formally, the AB interaction effect when factor A
is at level i and factor B is at level j is given by fc = Yij , -
y. . . - Y j . -t Y . , , .

The technique used to analyze data from a designed
experiment is called the Analysis of Variance, frequently
referred to by its acronym, ANOVA. This is an algebraic
decomposition of the sum of squares of the observations
about their general mean into additive sums of squares
due to the various effects. Thus, in our two factor
example we have

~ i = r Z j = l ~ k = l (Y v k - Y, , .I2 = JKZ,=,ci; + IKzj=&

+ KZi= ,Xj= ,fi.
+ X i = l Z j ~ l X , = I (y ~ , - Yii .I2

(6).

IBM I . RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981

Since the terms in each sum of squares in (6) represent
deviations about estimated means, the “degrees of free-
dom” (or ranks of the corresponding sub-spaces) are
given, respectively, by

Source Degrees of freedom

Total IJK - 1
A I - 1
B J - 1
AB (I - 1)(J - 1)
ERROR ZJ(K - 1) (7)

Thus, the degrees of freedom for the total experiment are
given by the total number of observations, ZJK, minus 1.
Similarly, for a main effect such as A, the degrees of
freedom are given by the number of levels of factor A, in
this case I , minus 1. The “total” number of degrees of
freedom is equal to the sum of the degrees of freedom for
the individual sources of variation. Each sum of squares
in (6) when divided by. its corresponding degrees of
freedom in (7) is called a mean square and is an estimate
of the variation due to its corresponding source.

An important principle inherent in factorial experi-
ments is that it is better to vary factors simultaneously
than one at a time. The advantages are twofold. First, all
of the observations from a factorial experiment can be
used to estimate each of the effects as well as the error
variance. Second, simultaneous variation also permits
estimation of the interactions. To illustrate these points,
we consider as an example the simplest type of factorial
experiment, one in which each factor is varied at two
levels. Experiments of this type are called 2“ factorials,
reflecting the fact that there are 2” experimental runs
when each of n factors is varied at two levels.

Figure 1 provides a geometric representation of a Z3
experiment. Each pair of parallel faces on the cube
represents four observations at the indicated levels for a
particular factor. For example, the vertices on the top
face of the cube represent the “high” level of factor B,
while those on the bottom face represent the ‘‘low’’ level.
Furthermore, each of these faces contains two vertices at
which each of the other factors is at the “high” level and
two at which they are at the “low” level. Thus, in
comparing the observations on any two parallel faces, the
effects of the factors represented by the remaining faces
are balanced out. This is an illustration of the orthogonali-
ty principle, which ensures that the various main effects
and interactions can be estimated independently of one
another.

For example, half the difference in the average value of
the four observations on the top face and those on the

Factor

Factor A

Figure 1 One-half replicate of a 23 fractional factorial design.

bottom face measures the main effect of factor B, inde-
pendent of factors A and C. Similar comparisons on the
other pairs of parallel faces provide estimates of the main
effects of their corresponding factors. The interaction
between factors A and B is measured by half the differ-
ence of the effect of factor A when factor B is at the high
level and its effect when factor B is at the low level.

As the number of factors to be included in an experi-
ment increases, the total number of observations required
for a full factorial grows geometrically. However, if we
are willing to ignore the effects of high order interactions,
which frequently prove to be negligible, it is possible to
carry out a fraction of a full experiment, while still
maintaining orthogonality and the ability to estimate main
effects and low order interactions. In Fig. 1, the circled
vertices represent a balanced one-half fraction of the full
z?~, while the uncircled vertices represent the complemen-
tary one-half fraction. Either fraction could be used to
estimate the main effects of the three factors, assuming
their interactions to be nonexistent. Instead of having
four observations on each of any pair of parallel faces of
the cube, we now have only two. The design is still
balanced, however, since at each level of a particular
factor, there is one observation at each level of the other
two factors.

As the number of factors increases, the degree of
possible fractional replication also increases, permitting

852 much larger economies. For example, in a 27 experiment,

a one-fourth replicate (32 out of 128 possible combina-
tions) will yield estimates of all main effects and first
order interactions. While the concept offractional factori-
al experiments is most readily understood in the case of
the 2" series, such designs also exist for experiments in
which some factors are varied at more than two levels.
Actual collections of designs, as well as algorithms for
constructing them, may be found in a number of books
such as Cochran and Cox [l] and Davies [2]. An excellent
discussion of fractional factorials in the 2" series is
provided by Box and Hunter [3]. The original idea was
introduced by Finney [4].

Other classes of designs aimed at producing limited
information in a minimum number of runs include the
Plackett-Burman [51 (1946), Addelman-Kempthorne [61,
and Addelman [7] plans. The 2'"' fractional factorials are
a subset of the Plackett-Burman designs. Still other
classes of designs achieve economies by sacrificing or-
thogonality, as described by Margolin [81. It is beyond the
scope of this paper to describe the principles and proper-
ties underlying these various schemes; however, the
interested reader may wish to refer to some of the above
referenced works. Also recommended is an expository
paper by Kleijnen [9], which discusses and compares the
properties of a number of experimental designs for
screening large numbers of factors.

Once a specific experimental design has been selected
for a given situation, the next step is that of assigning the
experimental treatments to the experimental units. In
computer experiments, this process usually refers to the
method used for ordering the set of experimental runs.
The basic principle underlying this allocation, or sequenc-
ing, process is that of randomization. That is, a random-
ization procedure is employed to decide which treatments
are allocated to which experimental units, in order to give
each unit the same chance of receiving any treatment.
The idea is to protect against inadvertent introduction of
systematic, uncontrollable effects that might be associat-
ed with an allocation procedure governed by some non-
random process.

In carrying out experiments on real systems, we distin-
guish between two cases, namely, that in which we
specify the workload and hold it fixed during the period of
experimentation, and that in which the experimentation is
carried out during periods of actual system operation,
with real, uncontrollable workloads. The first approach
includes benchmark tests on real systems as well as
experiments carried out on system simulators. It has the
advantage of providing a completely controlled environ-
ment, with reproducible results. However, conclusions
drawn from such experiments are dependent on the

MARTIN SCHATZOFF IBM I. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981

particular workload, and it may be very difficult to
extrapolate the results to other workloads, including real
ones encountered at a particular installation. In the
second instance, we are sampling the workload of a given
installation during periods of actual system operation,
and hence can make valid inferences about the effects of
varying hardware and/or software factors in that installa-
tion. However, since the workload is uncontrollable, the
results can be affected by variations in the workload over
the period of experimentation. Fortunately, design and
analysis techniques are available for eliminating, or sub-
stantially reducing, the effects of such uncontrolled varia-
tion. One such technique is that of randomization, as
described above.

To illustrate, we consider an example reported by
Margolin, Parmelee, and Schatzoff [lo] in which two
different free storage algorithms for IBM’s CP-67 were to
be compared under live loads. It was decided that each of
two different versions of the system would be run on
different days, over a two week period. In order to ensure
an equal number of trials under each condition, we could
use a table of pseudo random numbers to randomly select
five digits and associate these with the corresponding
days of the two week period. Thus, if the random
selection yielded the digits 8, 3, 4, 5, 1, we would run one
of the two versions on Monday, Wednesday, Thursday,
and Friday of week one and Wednesday of week two. The
other version would be run on the remaining five days.
Furthermore, we could decide, by randomization, which
version of the system would be run on which set of days.

An obvious shortcoming of this procedure is that there
might be significant differences in workload between
week 1 and week 2 or among given days of the week. The
above selection lacks balance with respect to both of
these factors. The actual plan used in this experiment is
reproduced in Table 1, which exhibits the following
properties:

1. Each version is run the same number of times in each

2. Each version is run once on each day of the week.
3. The design provides protection against any possible

week.

linear or quadratic time trend in the data.

Another way of summarizing the above properties
would be to state that sums of squares for day and week,
or for linear and quadratic trends, can be isolated from
the treatment (algorithm) sum of squares. Once the design
has been constructed, randomization is used only to
decide which version corresponds to A and which to B.

Another technique for isolating uncontrollable effects is
that of blocking, a device for grouping together experi-

IBM J . RES. DEVELOP. VOL. 2.5 NO. 6 NOVEMBER 1981

Table 1 Experimental design for free storage experiment.

Monday Tuesday Wednesday Thursday

Week 1 A B B
Week 2 B A A B

A

mental units that are similar in nature and applying
treatments randomly to units within blocks. This termi-
nology, again, stems from agricultural experimentation,
in which areas of land were laid out in rectangular blocks,
and specified treatment combinations were applied to
plants within each block. As in the case of fractional
replication, the basic idea is to assume that high order
interactions are negligible, and then design the experi-
ment in such a way as to confound these selected
interaction effects with the block effects. That is, the
calculation of sums of squares between blocks will be
exactly the same as the calculation of the sums of squares
for those interaction effects with which the block effects
are confounded. Also, mutual orthogonality will be main-
tained among the main effects and the block effects.

A simple example of the use of this technique is
provided in a paper by Bard [ll]. The objective was to
compare the performance of two different page replace-
ment algorithms under live load conditions. The system
was instrumented in such a way that the algorithms could
be switched automatically at prescribed time intervals.
Thus, instead of running different algorithms on different
days, as in the free storage experiment, the page replace-
ment algorithms were switched back and forth every five
minutes. Each ten minute interval then provided a com-
parison of the two algorithms, and workload variations
between ten minute intervals, or blocks, could be elimi-
nated from the comparison. Measurements were taken at
one minute intervals. In order to eliminate the effect of
switching between algorithms, the first observation in
each five minute interval was eliminated from the analy-
sis. At fixed intervals during the experiment, a small
FORTRAN benchmark program was executed and timed
in order to measure the responsiveness of the system.

Randomization was not employed in this experiment,
since it was not felt that there was any possibility of
systematic or biased behavior in workloads over succes-
sive ten minute intervals. A summary of the resulting data
is presented in Table 2 , which clearly shows that algo-
rithm A was superior in performance to algorithm B, with
respect to each of the measured variables (average bench-
mark completion time in seconds, problem state time, and
page read rate), for each day of the experiment. Howev- 853

MARTIN SCHATZOEE

Table 2 Results of paging experiment.

Day Average Percentage Page reads
benchmark problem state per second
completion time

time

Alg. Alg. Alg. Alg. Alg. Alg.
A B A B A B

1 7.0 8.4 45.6 42.6 29.0 29.7
2 7.6 8.5 49.1 43.6 30.0 32.6
3 7.1 10.4 39.5 31.5 26.9 32.1
4 12.1 16.6 42.8 39.3 33.1 36.1

Average 8.6 11.0 44.4 40.7 19.7 32.6

Table 3 Analysis of variance for paging experiment.
..

Source of Percent problem state time
variation I__

Sum of Degrees of Mean F
squares freedom squares ratio

(SS) (DF) (Ms)
~

Blocks, day 1 5.02
Blocks, day 2 5.28
Blocks, day 3 6.40
Blocks, day 4 6.59
Days 0.81
Algorithms 0.29
Replications 7.34
Lack of fit 4.14

Total 35.81

26 0.19 17.04
26 0.20 17.91
26 0.25 21.71
26 0.25 22.35
3 0.21 23 .I3
1 0.29 25.97

648 0.01 13
101 0.0387 3.41

863

er, it is interesting to note that the uncontrolled workload
variation was sufficiently large to have produced the
wrong conclusions had the experiment consisted of run-
ning algorithm A on day 4 and algorithm B on day 2. For
example, the average benchmark completion time for
algorithm A on day 4 was 12.1 seconds, which is substan-
tially higher than the benchmark completion time for
algorithm B on day 2, which was 8.5 seconds.

The resulting analysis of variance is presented in Table
3. It shows that about two thirds of the variability in the
experiment, as measured by the sum of squares of blocks
within days and that between days, was due to workload
variations. The estimate of error variance, derived from
the replication sum of squares, is an under-estimate of the
true sum of squares, since the replications are positively
correlated in time. A more appropriate estimate is given
by the “lack of fit” mean square, which represents the

654 interactions, both of blocks and days, with algorithms.

MARTIN SCHATZOFF

There is no reason to expect these interactions to be
significant, and hence they may be assumed to provide
valid estimates of experimental error. Experiments car-
ried out on fixed benchmarks, as well as those performed
on simulators, can benefit also from the randomized
block approach. Usually, such experiments consist of
relatively lengthy runs made under a given set of condi-
tions, without replication or other means of estimating
error, and hence assessing significance of results. Since
workloads typically exhibit very high variability, the
sequential blocking scheme can produce substantial sav-
ings in testing time. Alternatively, the process may be
viewed as one which can provide information on a
number of factors in a single run. As in the paging study
just described, a given experiment may be replicated
many times by using sufficiently short blocking intervals,
thus providing many independent estimates of the treat-
ment effects.

Thus far, we have discussed design techniques for
reducing, or isolating, the effects of uncontrollable varia-
tions, usually associated with workload factors. Such
techniques are employed during the conduct of the ex-
periment and are dictated in advance by the experimental
plan. After the experiment has been completed, such
effects may be further reduced by analysis techniques.
The basic idea is to capture workload related data that
might have an effect on the measured performance re-
sponses, and to use these data to adjust the results. For
example, in our work with VMl370 performance data, we
usually plot performance variables such as response
times, CPU throughput, overhead, and paging rates as
functions of the number of active users on the system. A
plot of this type for the paging experiment described
previously is shown in Fig. 2. Although there are other
workload dependent factors that may influence system
performance, we have at least eliminated the effect of a
single major one.

In terms of our linear model, we may in fact introduce
terms explicitly representing such concomitant factors, or
covariates, as in Eq. (8) below:

where X, is a vector of observations on a set of concomi-
tant factors, or covariates, p is a corresponding set of
regression coefficients, represents the treatment ef-
fects, and B, represents the block effects.

This model is known as an analysis of covariance
model. The analysis itself is performed in two steps.
First, a stepwise regression analysis is performed on the
set of covariates, and then an analysis of variance is
carried out on the adjusted treatment and block terms.

IBM J. RES. DEVELOP. VOL. 25 0 NO. 6 NOVEMBER 1981

This has the effect of eliminating any linear effects of the
selected covariates, or uncontrolled factors, from the
analysis, in order to better estimate the effects of the
controlled experimental factors. In computer evaluation
studies on live workloads, reasonable choices for covar-
iates might include workload dependent variables, such
as number of users, or linear or quadratic time trends.
The latter may be introduced by means of artificially
constructed variables, namely, first and second degree
orthogonal polynomials (see Anderson [12, Chapter 31).

3. Further applicatlons of designed experiments

Model validation
A problem encountered at all levels of modeling, both
analytic and simulative, is that of validation. In a sense,
complex system models can never be completely validat-
ed, since it is virtually impossible to check the model
against the modeled system under all conceivable condi-
tions of workload variation and system configuration.
The most that can be hoped for in most instances is to be
able to demonstrate that the model represents the system
satisfactorily for the purposes intended by its builders.

Any model, whether analytic or simulative, has a
defined set of input and output variables. The problem of
validation is that of verifying that the model accurately
predicts the set of outputs for a wide range of input
conditions. The dilemma posed by this problem is that of
specifying an adequate set of input variable values, as
well as an acceptable and measurable level of predictive
accuracy. A reasonable solution is to carry out identical
multifactor experiments on both the system and its mod-
el. Analysis of the results of both experiments will then
indicate whether or not there is agreement as to which
main effects and interactions are statistically significant.
Furthermore, the degree of accuracy can be assessed in
terms of the error variance of the model, which can be
measured by means of replicated measurements on the
real system.

An analysis of this type was carried out by Schatzoff
and Tillman [13], who carried out identical half-replicates
of a 25 experiment on CP-67 and on a detailed simulation
model driven by reduced full instruction trace streams.
Specifically, a forty user benchmark workload, consisting
of different combinations of assemblies, compilations,
and interactive sessions, was used to drive the real
system, and compressed data derived from full instruc-
tion traces of these same workloads were used to drive
the simulation model. Since the main reason for develop-
ing the simulator was to evaluate different resource
management algorithms, it was felt that a satisfactory
basis for validation would be provided by identical ex-

40

Algorithm B
days 3 and 4

g o I 1 1 I I I
1-5 6-10 11-15 16-20 21-25 26-30 31-35 36-4

Active users

Figure 2 Page replacement algorithms-omparison of results
by day.

periments in which parameters of the dispatching and
scheduling algorithms were varied as design factors. Each
such experiment consisted of a one-half fraction of a Z5
factorial. The main effects and first order interactions for
three response variables, proportion prohlem state time,
proportion supervisor state time, and page reads per
second, are shown for both the actual system and the
simulator in Table 4. The factors represented on-off
switches for five different control mechanisms, as fol-
lows:

X, Paging penalty,
X, CPU usage penalty,
X, Maximum page I/O preemption,
X, Maximum allowable multiprogramming level,
X, Two level Q1 (interactive dispatching queue).

The corresponding estimates of the main effects and first
order interaction effects are denoted by at and hi,j (i = 1 ,
. ., 5 ; j = 1 , - . ., 5) , as indicated in column 1 of Table 4.
The overall mean is indicated by 3. Underlined values in 855

MARTIN SCHATZOFF IBM J. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981

Table 4 Factorial effects.

Proportion problem state Proportion supervisor state Page reads per second

Act. Sirn. ' Act. Sim.
- ~~

Act. Sirn .
-~ "" ""

80 0.3684 0.41 1 1 0.2814 0.2730 58.9133 65.3156

"_______...__

?I

!2

e3

!4 05

0.0026 -0.0049 0.0011 0.0009 0.3438
0.0018 0.0023 -0.0031 0.0034 - I .0032
0.0268

-0.0359
0.0034

0.0065
0.0050
0.0001
0.0029
0.0029

-0.0010
0.0000

0.0040
0.0195

-0.0076

0.0247 -0.0105 -0.0116
-0.0478 0.0466 0.0414 22.0428

-6.3814

0.0012 -0.0100 "o.0105 -3.2128
0.0031
0.0004

-0.0073
-0.0043
-0.0003

0.0042
0.0047

- 0.0064
0.0033

0.0281

0.0039
0.0010
0.0009

-0.0022
0.0013

-0.0024
0.0000

-0.0100
-0.0046

0.0050

Table 4 represent statistically significant effects. All ef-
fects involving X, and X, were significant well beyond
the 1% level, while the X, effects were significant near the
2% level. The error variance, estimated by means of
replicated measurements on the real system, was used as
the basis for assessing statistical significance. A separate
analysis, reported in the paper, showed that discrepan-
cies in estimated effects between the system and the
simulator were no greater than would be expected in
replicated measurements on the real system.

The results shown in Table 4 are striking, because they
show complete agreement in picking out the significant
effects in both the system and its model. Furthermore,
these effects are almost identical in all cases.

System tuning
Given that a complex system has many adjustable param-
eters whose values can s e c t various aspects of system
performance, an obvious problem of interest, both to
system designers and installation managers, is that of
finding a combination of parameter values that will opti-
mize some specified measure of system performance.
Since the number of parameters may be quite large, the
first step is to carry out an initial screening experiment to
isolate that subset of parameters which affect the desired
performance measure significantly. As previously noted,
a very good exposition of such procedures is given by
Kleijnen [9]. The second step consists of sequential
procedures to find values of the parameter subset of step
one that will optimize the performance measure of inter-
est. The methodology for this step is based on the

-0.0022
-0.0030

0.0058
0.0006
0.0023

-0.0020
0.001 1

-0.oO82
0.0016
0.0036

1.6413
0.6251
0.1856

-0.5896
0.2233

-0.8409
-0.0428
-5.3464
-2.0133

2.0857

0.4656
0. I869

-4.9806
21.5206
-4.3431
-0.7831
-0.6506

0.4456
0.2019

-0.2294
-0.1531

1.2031

0.2781
I .7844

-4.5631

The basic idea underlying this technique is to assume
that the performance measure can be approximated by a
quadratic function of the parameter values. Then, an
experiment is designed for purposes of estimating the
coefficients of the quadratic function, or surface, and a
hill-climbing procedure is employed to find the maximum
(or minimum) point of the function. Box and Wilson have
invented a class of experimental designs, called central
composite designs, which have certain desirable statisti-
cal properties for estimating quadratic surfaces. Their
procedure calls for carrying out an initial experiment to
estimate the quadratic function, and then employing a
"steepest ascent" method to determine a direction of
increased yield. One or more confirmatory observations
are taken along the path of steepest ascent, followed
possibly by a second experiment. The process can contin-
ue in an evolutionary manner until the experimenter is
satisfied with the results, or no further improvement
seems likely.

Procedures of this type have been employed success-
fully on both CP-67 and VMl370. In the first instance, the
CP-67 simulator was used to carry out the experiment, 51%
reported by Schatzoff and Bryant [15], based on the work
of our colleague, Y. Bard. This experiment involved five
parameters of the dispatching and scheduling algorithms.
In each case, the parameter was a numerical threshold for
some system activity level, such that diferent actions
would be taken depending on whether or not the thresh-
old was exceeded. The problem was to find values for
these thresholds that would maximize problem state
throughput, as measured by problem state time as a

L

Table 5 Response surface exploration"CP/67.

Run
no.

x,

System scheduler parameter settings % Prob.
state

* 0.10 0.75 0.67 250 25 40.3

1 0.06 0.50 0.11 175 150.0 45.6
2 0.10 0.50 0.11 175 13.5 46. I
3 0.06 0.70 0.11 175 13.5 42.1

" "_ ~.

After running the initial experiment, which consisted of
27 runs, as shown in Table 5 , the quadratic function was
automatically fit and the next experimental point was
determined. The controlling program would then carry
out an experiment at this point, add it to the previous set
of results, and delete that point which had given the worst
results. This procedure was terminated arbitrarily after 67
runs, but automatic stopping procedures could have been
employed. The results showed that it was possible to
increase the proportion of problem state from 0.40 to
0.47, even though we had started with a well tuned
system. Subsequent confirmatory experiments were car-
ried out to substantiate that this order of performance
increase prevailed even after randomly perturbing other
aspects of the experimental setup, such as initial place-
ment of pages on the paging drum and log-on order. In
this instance, a 2* factorial was used to verify the correct-
ness of the initial conclusion. A logical next step would
have been to carry out an automatic switching experiment
on a live workload, as in the paging experiment described
in Section 2, to verify that the new set of parameter
values resulted in improved performance.

tMaximum

14 0.10 0.50 0.19 325 13.5 34.4

25 0.08 0.60 0. I5 250 4.0 44.0
26 0.08 0.60 0.15 250 500.0 42.9
27t 0.08 0.60 0.15 250 45.0 42.6

28 0.10 0.50 0.11 166 11.2 45.8
29 0.10 0.49 0.11 144 8.7 44.6

44 0.10 0.43 0.11 161 25.0 47.4f
45 0.10 0.43 0.11 163 19.1 43.5
46 0.10 0.43 0.11 160 23.2 45.0
41 0.10 0.43 0.11 160 26.2 45.3
48 0.10 0.43 0.11 150 53.1 45.9
49 0.10 0.43 0.1 1 160 27.4 44.0

69 0.10 0.43 0.11 162 24.6 44.0

1 *These refer to standard installation parameter settings.
tRuns 1-27 represent the initial experimental design; the remaining runs represent the automatic hill climbing procedure.

produced the largest observed value of % problem state
time (47.4), represented parameter settings that were very
close to those of run numbers 46, 47, 49, and 69, which
produced somewhat smaller values, ranging from 44 to
45.3. To overcome this difficulty, a new procedure was
devised to smooth the observed values prior to fitting.
Essentially, each observed value was replaced by a
weighted average of all the observed values, with the
weights being decaying exponential functions of the eu-
clidean distances between the given point and each of the
remaining points. Thus, each point would in effect be
approximated by something like an average of those
points in its immediate vicinity. Since this weighting
process produces an analytic function of the observa-
tions, namely, a sum of weighted exponentials, it is no
longer necessary to assume a quadratic response surface.
Instead, using methods of nonlinear optimization, the
maximal point of this function can be found directly.
Each new point would then be added to the preceding set,
but no deletions would be made, since the procedure
would tend to move away from areas of poor observed
response, and points in such areas would automatically
carry small weights in areas of high response.

A procedure of this type was carried out by Bard 1161
on an experimental version of VM/370 employing a

A problem observed with the above procedure was that
the measured response was sometimes quite unstable in
small neighborhoods of particular points of seemingly
good performance. For example, run number 44, which

IBM I. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981

scheduling algorithm of his own design, as described in 857

MARTIN SCHATZOFF

Table 6 Response surface exploration"VM/370.

Run System scheduler parameter settings % Prob. state
no.

x, x2 x, x4 Actual Smoothed

__ _"

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21 t

30
20
40
13
30
30
40
30
20
47
30
30
40
20
20
30
30
30
30
40
30

30
20
40
30
47
30
40
30
40
30
30
30
20
20
40
30
13
30
30
20
30

30
35
25
30
30
30
35
39
35
30
30
21
35
25
25
30
30
30
30
25
30

100
125
75

100
100
100
125
100
75

100
100
100
75
75

125
100
100
58

142
125
100

35.3
51.8
20.2
35.6
34.5
36.6
52.4
56.7
50.6
35.8
40.6
17.3
51.3
20.6
18.3
31.5
39.4
38.2
34.5
18.8
38.7

36.5
49.4
22.7
35.6
34.5
36.5
50.0
52.0
48.2
35.8
36.5
23.5
48.8
23.0
20.7
36.5
39.4
37.1
35.9
21.2
36.5

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

30
30
30
30
30
30
30
30
29
36
25
32
38
32
32
31
31

30
30
30
28
34
26
28
30
35
25
26
31
34
31
31
30
32

47
55
52
50
50
49
60
48
42
43
45
46
48
45
45
47
47

94
57

192
118
114
83

290
217
315
285
260
237
248
242
243
235
223

58.2
57.4
57.7
57.6
56.5
55.9
55.6
59.1
56.8
56.8
56.7
59.3%
56.9
59.0
56.6
56.6
58.0

57.4
57.3
57.9
57.4
57.1
56.9
55.8
58.0%
57.0
56.9
56.9
58.0%
57.2
58.0%
58.0$
58.0%
58.0%

tRuns 1-21 represent the initial experimental design; the remaining runs represent the automatic hill climbing procedure.
$Maximum.
Note: Standard system parameter settings as in Table 5 did not exist for this experimental scheduler.

Bard [17]. Results of this experiment (Table 6) show that
a stable area in which problem state throughput was
about 58% had been found, after starting at points with
very much lower values (20.7-52.0%). In fact, the very
first point in the hill-climbing part of the experiment
yielded a point that was very close to the experimentally
determined optimal (57.4 vs 58.0%).

A relevant point of interest, from a systems standpoint,
is that the above experiment was carried out automatical-
ly through a virtual machine which had privileged access
to the control program and hence could change the
parameter values. Such a capability would be very desir-

858 able for any operating system for purposes of carrying out

designed experiments either on benchmarks or live loads.
The same facility was used for the live paging experiment
previously described. In carrying out automatic tuning
procedures on live loads, it is of course very important to
prevent the tuning procedure from severely impacting
system performance by inadvertently leading it into re-
gions of instability. To avoid such problems, high and low
limits for each parameter can be established, with the aid
of knowledgeable systems people and data acquired from
benchmark experiments. The hill-climbing algorithm can
then be programmed in such a way as to prohibit excur-
sions beyond these limits. As a further precaution, since
the system is continually monitoring its own perform-
ance, it can quickly detect a condition of seriously

MARTIN SCHATZOFF IBM 1. RES. DEVELOP. 0 VOL. 25 0 NO. 6 0 NOVEMBER 1981

impacted performance following a change of parameter
values, and revert to the prior setting. The procedure
could even be programmed to carry out a small experi-
ment in that region to determine whether the degradation
was due to the change of parameter values or to some
other coincidental event.

Benchmark experiments
In software development programs, it is customary to
benchmark successive program versions under a variety
of conditions in order to assess the nature of performance
changes. A typical example of such a benchmark is one in
which a new version of the IBM Information Manage-
ment System (IMS) was benchmarked in a z4 factorial,
where the factors consisted of two different CPU sizes
(Systed370, Models 158 and 168), two different system
configurations (uniprocessor and multiprocessor), two
different terminal access methods (BTAM and VTAM),
and two different storage access methods (ISAM/OSAM
and VSAM). An analysis of variance of the results
showed that all interactions were negligible and hence
that the same conclusions could have been reached with a
half-replicate. Adoption of this procedure in future work
could result in savings of 50%.

In other benchmarking programs, the number of factors
may be larger, and hence the potential savings realizable
through fractional replication will also be larger. Alterna-
tively, additional factors can be introduced without in-
creasing the benchmarking budget, thus providing addi-
tional information at no additional cost.

Finally, where practical, automatic switching of factor
levels within a run, as in the paging experiment, can
further reduce the overall cost of benchmarking. Further-
more, by blocking and measuring in small time intervals,
it is possible to determine whether valid conclusions can
be drawn with shorter benchmarks.

4. Summary
We have attempted to explain some of the basic princi-
ples underlying the statistical design and analysis of
experiments and to show by example fruitful areas of
application for these ideas in computer performance
evaluation work. Opportunities for substantial savings, as
well as improved knowledge and insight into complex,
poorly understood computing processes, abound at all
phases of the product cycle from design to installation
management. However, the communication gap between
computer systems people and statisticians is still very
large, so that such opportunities are seldom realized. In
contemplating the many years of successful development
and application of principles of experimental design in
fields such as agriculture and chemistry, one is quickly

led to the conclusion that progress in these fields has
come about largely through application of the scientific
method. However, computer system development, par-
ticularly on the software side, appears not to have fol-
lowed this path to any noticeable degree. Designed ex-
periments would provide a rewarding first step.

References
1 . W. G. Cochran and G. M. Cox, Experimental Designs

(Second Edition), John Wiley & Sons, Inc., New York,
1957.

2. The Design and Analysis of Zndustrial Experiments, 0. L.
Davies, Ed., Oliver and Boyd, London, 1954.

3. G. E. P. Box and J. S. Hunter, “The 2k-p Fractional
Factorial Designs, Part 1 ,” Technometrics 3, 31 1-351 (1961).

4. D. J. Finney, “The Fractional Replication of Factorial
Arrangements,” Ann. Eugenics 12, 291-301 (1945).

5 . R. L. Plackett and J. P. Burman, “The Design of Optimum
Multifactorial Experiments,” Biornetrika 33, 328 (1946).

6. S. Addelman and 0. Kempthorne, “Orthogonal Main-effect
Plans and Orthogonal Arrays of Rank 2,” Ann. Math.

7. S. Addelman, “Orthogonal Main-Effect Plans for Asymmet-
rical Factorial Experiments,” Technometrics 4, 21-46
(1962).

8. B. H. Margolin, “Non-orthogonal Main-effect Designs for
Asymmetrical Factorial Experiments,” Roy. Statist. Soc. B
34, 431 (1972).

9. Jack P. C. Kleijnen, “Screening Designs for Poly-factor
Experimentation,” Technometrics 17, 487 (1975).

10. B. H. Margolin, R. I. Parmelee, and M. Schatzoff, “Analysis
of Free-Storage Algorithms,” ZBM Syst. J . 10, 283-304
(1971).

1 1 . Y. Bard, “Experimental Evaluation of System Perform-
ance,” IBM Syst. J . 12, 302-314 (1973).

12. T. W. Anderson, The Statistical Analysis of Time Series,
John Wiley & Sons, Inc., New York, 1971.

13. M. Schatzoff and C. C. Tillman, “Design of Experiments in
Simulator Validation,” ZBM J . Res. Develop. 19, 252-262
(1975).

14. G. E. P. Box and D. B. Wilson, “On the Experimental
Attainment of Optimum Conditions,” Roy. Statist. SOC. B 3,
1-45 (1951).

15. M. Schatzoff and P. G . Bryant, “Regression Methods in
Perfomance Evaluation: Some Comments on the State of the
Art,” Proceedings of Computer Science and Statistics, 7th
Annual Symposium on the Intetface, William J. Kennedy,
Ed., Iowa State University, Ames, IA, 48-57, October 18
and 19, 1973.

16. Y. Bard, “An Experimental Approach to System Tuning,”
Proceedings of the International Symposium on Computer
Performance Modeling, Measurement and Evaluation, Pe-
ter P. s. Chen and Mark Franklin, Eds., Harvard Universi-
ty, Cambridge, MA, March 29-31, 1976.

17. Y. Bard, “Application of the Page Survival Index (PSI) to
Virtualmemory System Performance,” ZBM J . Res. Devel-

Statist. 32, 1167-1176 (1961).

op. 19, 212-220 (1975).

Received July 21, 1980; revised June 1, 1981

The author is located at the IBM Data Processing Divi-
sion Scientific Center, 545 Technology Square, Cam-
bridge, Massachusetts 02138. 85g

MARTIN SCHATZOFF IBM I. RES. DEVELOP. VOL. 25 NO. 6 e NOVEMBER 1981

