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Techniques  of  statistical  design  of experiments have  been  successfully  employed for many decades in a variety  of 
applications in industry, agriculture, medicine,  psychology, and other  physical and social sciences. Their aim is to 
provide scientiJic and eficient  means of  studying the  effects, on one or more variables of interest,  of varying multiple 
controllable factors in an experiment. These  techniques have not  been widely used in the study of computer  systems, 
although they  can potentially  have as large an impact as they have had in other5elds. The purpose of  this paper is to re- 
view some of the basic concepts underlying the statistical  design and analysis  of  experiments and to illustrate them by 
means of examples drawn from studies  of computer  system  performance. The examples include  comparisons of alternate 
page replacement and free storage management algorithms,  optimization  of a scheduler, and validation of a  system 
simulation model. 

1. Introduction 
Performance  measurement  frequently has  as its  purpose computer studies. The  consequences may include  unnec- 
to evaluate the effects of changes to a system. Such essary  expense, undue  time delays, loss of information, 
changes might include  software  options (e.g., choice of misinformation, and  incorrect conclusions. 
access  methods, scheduling parameters, system  genera- 
tion options) as well as  hardware changes (e.g., amount  The  purpose of this paper  is  to introduce  some of the 
of main storage, number of channels,  etc.). In some  basic  ideas  underlying the statistical design of experi- 
instances such evaluations are carried  out on fixed bench-  ments  and to illustrate these by  means of real examples 
mark workloads, while in others they may be carried  out  drawn from computer performance  evaluation work un- 
with real users.  Purposes of such experimentation may be dertaken  at this  location over a number of years.  In all 
to  compare  the performance  implications of the changes  experimental design work, we envision  a  statistical model 
to the  system or to optimize or tune  the  system. In either which relates  some  measurable response (or responses) 
event, we would like to  carry  out  the experimental to  the  factors varied in the  experiment. In this paper, we 
program as quickly and economically as possible, while at confine our  attention  to  the so-called fixed effects  analy- 
the same  time being able  to  assure  ourselves of the 
accuracy  and validity of the  results. 

When dealing with complex computer  systems, many 
factors, controllable by the  experimenter, can  have major 
effects on  system  performance.  The  theory of statistical 
design of experiments  provides  methodology for design- 
ing and  analyzing experiments involving simultaneous 
variation of multiple factors. Historically, there has  exist- 
ed a major communication gap  between  computer scien- 
tists,  system programmers, and  designers,  on  the  one 

sis of variance  model, which expresses  the  response  as a 
linear  function of the  factors, plus an additive  random 
error term.  This is essentially  a  linear  regression  model, 
in which the independent  variables are dummy  variables 
indicating the presence or absence of a specified value, or 
level, of a  corresponding factor.  The  parameters, or 
coefficients, of the linear model then measure the effects 
of variations in the  factors,  both singly (main effects)  and 
in combination  (interaction effects). The general  form of 
this model is given in Eq. (1). 

hand, and statisticians, on  the  other. As a result, statisti- Given this form of the model, the design of experiments 
cal design and  analysis of experiments is rarely applied in is concerned with procedures which will enable us to 

Copyright 1981 by  International Business Machines Corporation. Copying is permitted  without  payment of royalty provided that (1) 
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. 
The  title  and  abstract  may be used without  further permission in computer-based and other information-service systems. Permission 

848 to republish other excerpts should be obtained from  the Editor. 

MARTIN SCHATZOFF IBM J .  RES. DEVELOP. VOL. 25 NO. 6 NOVEMBER 1981 I 



estimate these  parameters efficiently and draw  statistical- 
ly valid conclusions, while minimizing or eliminating the 
effects of extraneous  factors  that may be  beyond our 
control.  Additionally, we must  be  able to  test  the validity 
of the model itself,  based  upon the resulting data.  Thus, 
the entire  process is illustrative of the scientific method 
itself, wherein we may go through  iterative  cycles of 
stipulating hypotheses, carrying out  experiments, testing 
the  hypotheses and  the model  upon  which  they are  based, 
and possibly reformulating the model and trying again. 

The subject begins to  take  on real significance when we 
are dealing with multiple factors.  Then, it is always better 
to vary the  factors simultaneously, rather than one  at a 
time (as  frequently done by engineers unfamiliar with 
experimental  design);  design  techniques are available for 
drastically  reducing the  total number of combinations that 
must be run, resulting in savings in cost  and/or time. In 
the ensuing sections,  we  develop  the ideas of randomiza- 
tion,  factorial experiments, fractional  replication, block- 
ing, and  response surface exploration. These  are illustrat- 
ed by real examples ranging from benchmark experiments 
to experiments  carried out  under  actual operating  condi- 
tions and live workloads. The objective is not to train the 
non-statistician to become a statistician in one  easy 
lesson, but rather  to help him gain an appreciation for  the 
subject, the potential power it offers, and  its applicability 
to real  performance  evaluation  problems. 

2. Some  basic concepts 
The performance of a computing system is a  function of 
the hardware  configuration, the operating  system  and 
associated  application  software support required to run it, 
and the workload  imposed on it by its  users. A key 
objective of performance  evaluation is to understand the 
relationships  among these constituent system elements 
from the standpoint of how  they affect system  perform- 
ance. The ideal way of meeting  this  objective would be to 
have a  detailed  mathematical model which explicitly 
displays the  nature of these relationships.  Such  a model 
could then  be  used to study the effects of hardware, 
software, and workload  variations  upon system perform- 
ance, and thus provide  a  means of predicting  and  optimiz- 
ing such performance  with  respect to  these  factors. 

When mathematical  system  models of sufficient detail 
and accuracy  cannot be  readily derived,  the only  alterna- 
tives are  to  conduct  experiments on the system  itself, or 
on a simulation model of it. The objectives  remain the 
same, but the methodological approach now involves 
derivation of a  suitably  parameterized  empirical  model, 
where the model is an equation  whose parameters  are  to 
be estimated from the  data.  The statistical design of 
experiments  provides techniques  for designing and  ana- 

lyzing experiments in such a way as  to  derive  such 
models efficiently and make  statistically valid inferences 
about the underlying  mechanisms. 

In a  designed experiment, variables that  are  to be 
controlled are referred to asfactors. The different values 
or  states of a factor  are referred to  as levels of that  factor. 
For example, in an  experiment aimed at comparing the 
performance of two different page replacement algo- 
rithms, say A  and B, the variable called algorithm is a 
factor, and its  two possible states, A and B, are  its levels. 
Some factors may be quantitative in nature.  Thus, sup- 
pose that a scheduling algorithm makes  decisions  based 
upon whether or not the page  steal rate  observed in the 
system over  the  past minute exceeds a specified thresh- 
old. The possible  numerical  values  assigned to  that 
threshold in the  experiment  are levels of the page steal 
threshold factor. 

A multifactor experiment is one in which two or more 
factors are varied simultaneously.  A  particular  combina- 
tion of factor/levels for  an experimental  run is called a 
treatment, deriving from agricultural experiments in 
which different combinations of chemicals were adminis- 
tered to different plants. An experimental  design defines 
the  treatments, or factorflevel  combinations, at which 
experimental runs  are  to be carried  out.  The  theory of 
design of experiments is concerned with principles for 
constructing  experimental  designs in such a way as  to be 
able to estimate the effects of the different treatments  on 
the response variable(s) of interest  as efficiently as possi- 
ble ( i .e . ,  minimizing the required  number of observations, 
the  cost, and/or the time  required to  conduct  the experi- 
ment). The  theory  is predicated on  an underlying  mathe- 
matical model that  expresses  the  response variable as a 
function of the  treatments, with  unknown parameters, 
which represent  the  treatment effects, to be  estimated 
from the  data.  The model that we discuss is called the 
fixed effects analysis of variance  model, which is essen- 
tially a  special case of the well known  least squares linear 
regression model 

yi = eo + xlie, + xZie2 + . . . + xpiep + Ei 

( i  = 1 ,  2 ,  . . ., n) (1)  

where Yi are  the values of the n random response 
variables, Xji ( j  = 1, 2, . . ., p )  are  the known  values of 
the p independent  variables for each of the n design 
points, 5 are  the p + 1 unknown  regression coefficients, 
and are random error  terms having the  properties 

E(Ei) = 0 , 

E(& = 6i,kcTz , 849 
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where a’, the  variance of the  error  term, is an unknown 
constant, and the  operator E(z) represents  the  expected 
value of z .  

The  further assumption that  the si are normally distrib- 
uted  leads to normal  distribution theory  for inferences 
concerning the unknown Oj and a’. The normality as- 
sumption  can be  tested by  examining the residuals  from 
the fitted model. 

In  the special case of designed experiments,  the inde- 
pendent  variables in Eq. (1) are defined to be  indicator 
variables having the values one  or  zero, depending on 
whether the effects Oj are  present  or  absent in the experi- 
mental conditions corresponding  to  the  respective  obser- 
vations. An effect corresponding  to variation of a single 
factor is called a main effect. An effect corresponding to 
simultaneous  variation of two  or more factors  is called an 
interaction effect. It is represented in the model by 
introducing a new independent variable which is the 
product of those  independent variables  corresponding to 
the given interaction. 

A complete  factorial experiment is a  multifactor  experi- 
ment in which every possible  factor/level  combination is 
included. If there  are  two  or more observations  at  each 
experimental  design  point, the experiment is said to be 
replicated. If the  experimental design has  the  same num- 
ber of observations  at  each design point, the design has 
the property of orthogonality. That  is,  the  vectors Xj = 

corresponding to  the levels of any  two  factors,  are 
orthogonal to  one  another. Orthogonality in a  designed 
experiment is very important,  because it permits  indepen- 
dent  estimation of all of the effects. 

{Xj, ,   Xj2’ * * 9 Tn> and = { x k l ’  x k 2 9  ‘ Xkn}7 

Replication in an experiment provides a direct  means of 
estimating the unknown  variance a2 of the  random  error 
term, since  according to  the model (l) ,  the only difference 
between two  observations  taken  at  the  same  data point is 
that their  random error  terms  are different in value. Thus, 
for two replicated observations Yi and Yk,   (Yi  - Yk) = ( E ~  

- E ~ )  is a random  variable  which has  expectation  equal  to 
zero  and variance equal  to 2a2. Hence, (Yi - Yk)*/2 
provides an unbiased estimate of a’. Estimates of this 
form,  computed  at all replicated  points in an  experiment, 
may be  averaged together  to  provide a better estimate of 
J. 

The importance of estimating a2 accurately is that it 
provides a yardstick  against which the statistical signifi- 
cance of experimental effects may be assessed.  Thus, if a 
calculated estimate of variation due  to a  particular  factori- 

850 al effect is sufficiently larger than  the estimated error 

variance $2, one would infer that  the effect is real-that 
is, it is significantly larger than would be expected if the 
experimental treatment had no real  effect,  and we were 
measuring only random variation. 

Since  economy is an  important  aspect of an experimen- 
tal program,  replication  should be avoided where possi- 
ble,  since  additional observations  represent a duplication 
of effort. In some instances,  the  experimenter may have 
estimates of the experimental error obtained  from  previ- 
ous experiments. For example, suppose  that a fixed 
benchmark has been  used in previous experiments from 
which a* has been estimated.  New experiments involving 
the  same  benchmark may be assumed  to  have  the  same 
error  variance, provided that  other experimental  condi- 
tions have not changed  materially.  Replication at a small 
number of design  points can be  employed for confirma- 
tion. 

When  previous estimates of a2 are not available, it can 
frequently  be assumed  that higher order interaction terms 
are insignificant, and hence that  they essentially  measure 
random Variation. In  such  cases,  these higher order 
interaction terms  are used to provide estimates of the 
error variance. 

In order  to make these  ideas more precise, we re- 
parameterize the regression  model (1) to reflect more 
succinctly the situation encountered in factorial  experi- 
ments. For illustrative purposes, we consider the simple 
case of a two  factor  experiment, in which factor A is 
varied at I levels and  factor B at J levels.  We assume also 
that  there  are K replications at each point.  Since the Xji in 
(1) are  equal  to  zero  or  one, we can eliminate those  terms 
for which Xji = 0 and  suppress  the symbol Xji when it is 
equal to  one. Also the  parameters e,,, 1 a ,  Op in the 
regression  equation (1)  are replaced  by the notation in Eq. 
( 2 ) ,  which is commonly used in experimental design 
models. Equation (1) thus  becomes 

Y..  = p + a i + p . +  -y..+&.. 
rJk J r~ rJk 

( i  = 1, 2 ,  . ., I ,  
j = 1 ,  2 ,  1 * ,  J ,  
k = 1 ,  2 ,  ’ ’, ZQ, 

where 

p = general mean, 
ai = main effect of factor A at level i ,  
p.  = main effect of factor B at level j ,  
$ = interaction effect of factor A at level i and factor B at 

level j .  

The model generalizes in an obvious  manner as  the 
number of factors  increases, so that  for  experiments with 
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p factors,  there  are interaction terms of order I ,  2 , 3 ,  * 1 a ,  

p - 1, where  a kth order interaction refers  to  the 
interaction of k + 1 terms.  The  terms of Eq. (2) are 
estimated by least  squares.  That  is, we minimize the sum 
of squared  deviations of the  observations  about their 
fitted values by differentiating the expression 

Xi=,Zj j .=,Xk=,(Yi jk  - p - ai - P .  - Y..) 2 
J V  (3) 

with respect  to  the unknown parameters. Since the vari- 
ous main effects and  interactions  are deviations about a 
mean,  side  conditions such  as 

X i f f i  = 0, Zjpj = 0, zizjyij = 0 

must be introduced.  The resulting formulas,  for  cases of 
orthogonal  designs, are provided in most textbooks deal- 
ing with the subject of designed experiments.  For exam- 
ple, the estimate f i  of the general mean p is given by the 
sample mean of all the observations: 

b = Y. . . = (Zi_,Xjj=IXk=lY,j,)lZJK, (4) 

while the estimate 6 of a is given by 

aii= y i , , -  Y . . ,  ( i =  1,2;*.,Z), ( 5 )  

where Yi , . = (x j= ,X,=, YJJK . 

in simple words,  the ith main effect of factor A is 
estimated as the difference between the mean of all 
observations  taken  at level i of factor A  and the general 
mean. The  dot (.) notation  employed in the  subscripts of 
Y in the  above  equations  denotes averaging over  the 
subscript  indices that  have been  replaced by the  dots. 
Similarly, thejth main effect of factor B, pj, is estimated 
as  the difference between  the mean of all observations 
taken  at  level j of factor B and  the general  mean. The AB 
interaction effect is a bit more  complicated. In essence, it 
measures the  extent  to which deviations of the YUk about 
Yi , . are  dependent upon the level of factor B (and vice 
versa).  Formally, the AB interaction effect when factor A 
is at level i and  factor B is at level j is given by fc = Yij , - 
y. . .  - Y j .  -t Y . , ,  . 

The technique  used to analyze data from  a  designed 
experiment is called the Analysis of Variance,  frequently 
referred to by its  acronym, ANOVA. This is an algebraic 
decomposition of the sum of squares of the  observations 
about their general  mean into additive sums of squares 
due  to the  various  effects. Thus, in our two factor 
example we  have 

~ i = r Z j = l ~ k = l ( Y v k  - Y, , .I2 = JKZ,=,ci; + IKzj=& 

+ KZi= ,Xj=  ,fi. 
+ X i = l Z j ~ l X , = I ( y ~ ,  - Yii .I2 

(6). 
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Since  the terms in each sum of squares in (6) represent 
deviations about estimated means, the “degrees of free- 
dom”  (or  ranks of the corresponding  sub-spaces) are 
given, respectively, by 

Source Degrees of freedom 

Total IJK - 1 
A I -  1 
B J -  1 
AB ( I  - 1)(J - 1) 
ERROR ZJ(K - 1) (7) 

Thus,  the degrees of freedom for  the  total experiment are 
given by the total  number of observations, ZJK, minus 1. 
Similarly, for a main effect such  as A, the  degrees of 
freedom are given  by the number of levels of factor A, in 
this case I ,  minus 1.  The  “total” number of degrees of 
freedom is equal to  the sum of the  degrees of freedom for 
the individual sources of variation. Each  sum of squares 
in (6) when divided by.  its corresponding  degrees of 
freedom  in (7) is called a mean square and is an estimate 
of the variation due  to  its corresponding source. 

An important  principle inherent in factorial  experi- 
ments is that it is  better  to vary factors simultaneously 
than one  at a time. The  advantages are twofold. First, all 
of the  observations  from a factorial experiment  can  be 
used to estimate each of the effects as well as  the  error 
variance. Second, simultaneous  variation also permits 
estimation of the interactions. To illustrate these points, 
we consider as an example  the simplest type of factorial 
experiment, one in which each  factor  is varied at two 
levels. Experiments of this type  are called 2“ factorials, 
reflecting the fact  that  there  are 2” experimental runs 
when each of n factors is varied at  two levels. 

Figure 1 provides a geometric representation of a Z3 
experiment. Each pair of parallel faces on the  cube 
represents  four  observations  at  the indicated  levels for a 
particular factor.  For  example,  the vertices on  the  top 
face of the  cube  represent  the “high”  level of factor B, 
while those  on  the bottom face  represent  the ‘‘low’’ level. 
Furthermore, each of these  faces  contains  two  vertices  at 
which each of the  other  factors is at  the “high”  level and 
two at which they are at the “low”  level. Thus, in 
comparing the  observations  on  any  two parallel faces,  the 
effects of the factors  represented by the remaining faces 
are balanced out. This is  an illustration of the orthogonali- 
ty  principle, which ensures  that  the various main effects 
and  interactions  can be  estimated independently of one 
another. 

For example, half the difference in the  average value of 
the  four observations  on  the  top  face  and  those  on  the 



Factor 

Factor A 

Figure 1 One-half  replicate of a 23 fractional  factorial design. 

bottom face measures the main  effect of factor B, inde- 
pendent of factors A and C. Similar comparisons on the 
other pairs of parallel faces provide estimates of the main 
effects of their corresponding factors. The interaction 
between factors A and B is  measured by  half the differ- 
ence of the effect of factor A when factor B is at the high 
level  and its effect  when factor B is at the low level. 

As the  number of factors to be included in an experi- 
ment increases, the total number of observations required 
for a full factorial grows  geometrically. However, if  we 
are willing to ignore the effects of  high order interactions, 
which frequently prove to be  negligible, it is possible  to 
carry out a fraction of a full experiment, while  still 
maintaining orthogonality and the ability to estimate main 
effects  and low order interactions. In  Fig. 1, the circled 
vertices represent a balanced one-half fraction of the full 
z?~, while the uncircled vertices represent the complemen- 
tary  one-half fraction. Either fraction could  be  used to 
estimate the main effects of the three factors, assuming 
their interactions to be nonexistent. Instead of having 
four observations on each of any  pair of parallel faces of 
the cube, we  now have only two. The design  is  still 
balanced, however, since at each level of a particular 
factor, there is one observation at each level of the other 
two factors. 

As the number of factors increases, the degree of 
possible fractional  replication also increases, permitting 

852 much larger economies. For example, in a 27 experiment, 

a one-fourth replicate (32 out of 128 possible combina- 
tions) will  yield estimates of  all  main  effects  and  first 
order interactions. While the concept offractional factori- 
al experiments is most  readily understood in the case of 
the 2" series, such designs also exist for experiments in 
which some factors are varied at more than two levels. 
Actual  collections of designs, as well as algorithms for 
constructing them, may  be found in a number of books 
such as Cochran  and  Cox [l] and  Davies [2]. An excellent 
discussion of fractional factorials in the 2" series is 
provided  by  Box  and Hunter [3]. The original  idea  was 
introduced by Finney [4]. 

Other classes of designs  aimed at producing  limited 
information  in a minimum number of runs include the 
Plackett-Burman [51 (1946), Addelman-Kempthorne [61, 
and  Addelman [7] plans. The 2'"' fractional factorials are 
a subset of the Plackett-Burman designs. Still other 
classes of designs achieve economies by sacrificing or- 
thogonality, as described by  Margolin [81. It is beyond the 
scope of this paper to describe the principles  and proper- 
ties  underlying these various schemes; however, the 
interested reader may  wish to refer to some of the above 
referenced works. Also  recommended is an expository 
paper by Kleijnen [9], which discusses and compares the 
properties of a number of experimental designs for 
screening  large numbers of factors. 

Once a specific experimental design has been selected 
for a given situation, the next step is that of assigning the 
experimental treatments to  the experimental units. In 
computer experiments, this process usually refers to the 
method  used for ordering the set of experimental runs. 
The  basic  principle  underlying this allocation, or sequenc- 
ing, process is that of randomization. That is, a random- 
ization procedure is employed to decide which treatments 
are allocated to which experimental units, in order to give 
each unit the same chance of receiving  any treatment. 
The  idea is to protect against inadvertent introduction of 
systematic, uncontrollable effects that might  be associat- 
ed  with  an  allocation procedure governed by some  non- 
random process. 

In carrying out experiments on real systems, we distin- 
guish between two cases, namely, that in  which  we 
specify the workload and hold it fixed  during the period of 
experimentation, and that in  which the experimentation is 
carried out during periods of actual system operation, 
with real, uncontrollable  workloads. The first approach 
includes  benchmark tests on real systems as well as 
experiments carried out on system simulators. It has the 
advantage of providing a completely controlled environ- 
ment,  with reproducible results. However, conclusions 
drawn  from such experiments are dependent on the 
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particular  workload, and it may  be  very difficult to 
extrapolate the  results  to  other  workloads, including real 
ones  encountered at a particular  installation. In  the 
second instance, we are sampling the workload of a given 
installation during periods of actual system operation, 
and  hence  can make valid inferences  about  the effects of 
varying hardware and/or software factors in that installa- 
tion. However,  since  the workload is uncontrollable, the 
results can be affected by variations in the workload over 
the period of experimentation. Fortunately, design and 
analysis  techniques are available for eliminating, or sub- 
stantially reducing, the effects of such uncontrolled varia- 
tion. One such technique is  that of randomization, as 
described above. 

To illustrate, we consider  an example reported by 
Margolin, Parmelee,  and Schatzoff [lo] in which two 
different free  storage  algorithms for IBM’s CP-67 were to 
be compared under live loads.  It  was decided that  each of 
two different versions of the  system would be run on 
different days,  over a two week  period. In  order  to  ensure 
an equal  number of trials under  each condition, we could 
use a  table of pseudo random  numbers to randomly select 
five digits and  associate  these with the corresponding 
days of the  two week  period. Thus, if the random 
selection yielded the digits 8, 3, 4, 5, 1, we would run one 
of the  two  versions on  Monday,  Wednesday,  Thursday, 
and Friday of week one  and Wednesday of week  two. The 
other version would be  run on  the remaining five days. 
Furthermore, we could decide, by randomization, which 
version of the  system would be run on which set of days. 

An obvious  shortcoming of this procedure is that  there 
might be significant differences  in  workload between 
week 1 and  week 2 or  among given days of the week. The 
above  selection  lacks balance with respect  to  both of 
these factors.  The  actual plan  used  in  this experiment  is 
reproduced in Table 1, which exhibits the following 
properties: 

1. Each version is run the  same  number of times  in each 

2. Each version is run  once on each day of the week. 
3. The design provides  protection  against any possible 

week. 

linear or quadratic  time trend in the  data. 

Another way of summarizing the  above  properties 
would be to state  that  sums of squares  for  day and week, 
or for  linear and  quadratic  trends,  can be  isolated  from 
the  treatment (algorithm) sum of squares.  Once  the design 
has been constructed, randomization is  used only to 
decide which version corresponds  to A and which to B. 

Another  technique for isolating uncontrollable  effects is 
that of blocking, a device  for grouping together experi- 
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Table 1 Experimental design for free storage experiment. 

Monday  Tuesday  Wednesday  Thursday 

Week 1 A B B 
Week 2 B A A B 

A 

mental units that  are similar in nature  and applying 
treatments  randomly to units within blocks.  This termi- 
nology, again, stems from  agricultural  experimentation, 
in which areas of land  were laid out in rectangular  blocks, 
and specified treatment combinations  were  applied to 
plants within each block. As  in the  case of fractional 
replication, the basic  idea is  to  assume  that high order 
interactions are negligible, and then design the experi- 
ment in such a way as  to confound these selected 
interaction  effects  with the block effects. That  is,  the 
calculation of sums of squares  between blocks will be 
exactly  the same  as  the calculation of the  sums of squares 
for those  interaction  effects with which the block  effects 
are confounded. Also, mutual  orthogonality will be main- 
tained among the main effects and  the block  effects. 

A simple example of the  use of this  technique is 
provided in a paper by  Bard [ll]. The objective  was to 
compare  the performance of two different  page  replace- 
ment  algorithms under live load conditions. The  system 
was instrumented in such a way that  the algorithms could 
be  switched  automatically at prescribed  time  intervals. 
Thus, instead of running different algorithms on different 
days, as in the  free  storage  experiment,  the page  replace- 
ment algorithms  were  switched  back and  forth  every five 
minutes. Each  ten minute  interval then provided a com- 
parison of the  two algorithms, and workload  variations 
between ten minute intervals, or blocks, could be elimi- 
nated from the comparison. Measurements  were  taken at 
one minute intervals. In  order  to eliminate the effect of 
switching between  algorithms, the first observation in 
each five minute interval was eliminated  from the analy- 
sis. At fixed intervals during the  experiment, a small 
FORTRAN  benchmark  program was  executed  and timed 
in order  to measure the  responsiveness of the  system. 

Randomization was not  employed in this experiment, 
since it was  not felt  that  there  was any possibility of 
systematic or biased behavior in workloads over succes- 
sive ten minute intervals.  A  summary of the resulting data 
is presented in Table 2 ,  which clearly shows  that algo- 
rithm A was  superior in  performance to algorithm B, with 
respect  to each of the measured  variables  (average  bench- 
mark completion  time in seconds, problem state time,  and 
page read rate),  for  each  day of the  experiment.  Howev- 853 
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Table 2 Results of paging experiment. 

Day  Average  Percentage  Page  reads 
benchmark  problem  state  per  second 
completion  time 

time 

Alg. Alg. Alg. Alg. Alg. Alg. 
A B A B A B 

1  7.0 8.4 45.6 42.6 29.0 29.7 
2 7.6 8.5 49.1 43.6 30.0 32.6 
3 7.1 10.4 39.5 31.5 26.9 32.1 
4 12.1 16.6 42.8 39.3 33.1 36.1 

Average 8.6  11.0  44.4 40.7 19.7  32.6 

Table 3 Analysis of variance for paging experiment. 
.. 

Source of Percent  problem  state  time 
variation I__ 

Sum of Degrees of Mean F 
squares freedom squares ratio 

(SS) (DF)  (Ms)  
~ 

Blocks, day 1 5.02 
Blocks, day 2  5.28 
Blocks, day 3 6.40 
Blocks, day 4 6.59 
Days 0.81 
Algorithms  0.29 
Replications 7.34 
Lack of fit 4.14 

Total 35.81 

26 0.19 17.04 
26 0.20 17.91 
26 0.25 21.71 
26 0.25 22.35 
3 0.21 23 .I3 
1 0.29 25.97 

648 0.01 13 
101 0.0387  3.41 

863 

er, it is interesting to note that the uncontrolled  workload 
variation  was  sufficiently  large to have  produced the 
wrong conclusions  had the experiment consisted of run- 
ning  algorithm A on day 4 and  algorithm B on day 2. For 
example,  the  average  benchmark  completion  time  for 
algorithm A on  day 4 was 12.1 seconds, which is substan- 
tially  higher  than the benchmark  completion  time for 
algorithm B on day 2, which  was 8.5 seconds. 

The  resulting  analysis of variance  is presented in Table 
3. It shows  that about two thirds of the variability in the 
experiment, as measured by the sum of squares of  blocks 
within days and that between days, was due to workload 
variations. The estimate of error variance, derived  from 
the  replication  sum of squares, is an under-estimate of the 
true sum  of squares, since the replications are positively 
correlated in time. A more appropriate estimate is  given 
by the  “lack of fit” mean square, which represents the 

654 interactions, both of blocks  and days, with  algorithms. 
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There is no reason to expect these interactions to be 
significant,  and  hence  they  may  be  assumed to provide 
valid estimates of experimental error. Experiments car- 
ried  out on fixed benchmarks, as well as those performed 
on simulators,  can  benefit also from the randomized 
block approach. Usually,  such experiments consist of 
relatively  lengthy  runs  made  under a given set of condi- 
tions, without  replication or other means of estimating 
error, and hence  assessing  significance of results. Since 
workloads  typically  exhibit  very  high  variability,  the 
sequential  blocking scheme can produce substantial sav- 
ings  in testing  time.  Alternatively, the process may be 
viewed as one which  can provide information on a 
number of factors in a single run. As in the paging study 
just described, a given  experiment may  be replicated 
many  times  by  using  sufficiently short blocking intervals, 
thus  providing  many independent estimates of the treat- 
ment effects. 

Thus far, we have discussed design techniques for 
reducing, or isolating, the effects of uncontrollable  varia- 
tions, usually associated with  workload factors. Such 
techniques  are  employed  during  the conduct of the ex- 
periment  and are dictated in advance by the  experimental 
plan.  After the experiment has been completed, such 
effects may be further reduced by analysis techniques. 
The  basic  idea  is to capture workload related data that 
might have an effect on the measured  performance re- 
sponses, and to use these data to adjust the results. For 
example, in our work  with VMl370 performance data, we 
usually  plot  performance  variables  such as response 
times, CPU throughput, overhead, and  paging rates as 
functions of the number of active users on the system. A 
plot of this type for the paging experiment  described 
previously  is  shown in Fig. 2. Although there are other 
workload dependent factors that may influence  system 
performance, we have at least eliminated the effect of a 
single  major one. 

In  terms of our linear  model, we  may  in fact introduce 
terms  explicitly  representing  such  concomitant factors, or 
covariates, as in Eq. (8) below: 

where X, is a vector of observations on a set of concomi- 
tant factors, or covariates, p is a corresponding  set of 
regression  coefficients, represents the treatment ef- 
fects, and B, represents the  block  effects. 

This  model  is  known as an analysis of covariance 
model.  The analysis itself is performed in two steps. 
First, a stepwise  regression analysis is  performed on the 
set of covariates, and then an analysis of variance is 
carried  out on the adjusted treatment and  block  terms. 
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This has  the effect of eliminating any linear  effects of the 
selected covariates,  or uncontrolled factors, from the 
analysis, in order  to  better  estimate  the effects of the 
controlled  experimental factors. In computer evaluation 
studies on live workloads, reasonable choices for  covar- 
iates might include  workload dependent variables, such 
as  number of users,  or linear or  quadratic time trends. 
The latter may be  introduced  by means of artificially 
constructed  variables,  namely, first and  second degree 
orthogonal  polynomials (see  Anderson [12, Chapter 31). 

3. Further  applicatlons of designed  experiments 

Model validation 
A problem encountered  at all levels of modeling, both 
analytic and simulative, is  that of validation. In a sense, 
complex system  models can never  be  completely  validat- 
ed, since it is virtually  impossible to  check  the model 
against the modeled system  under all conceivable  condi- 
tions of workload  variation and  system configuration. 
The  most that  can  be hoped for in most  instances is to be 
able to  demonstrate  that  the model represents  the  system 
satisfactorily for  the  purposes intended by its  builders. 

Any model, whether analytic or simulative, has a 
defined set of input and  output variables. The problem of 
validation is  that of verifying that  the model accurately 
predicts the  set of outputs  for a wide range of input 
conditions. The dilemma  posed by this  problem is that of 
specifying an  adequate  set of input  variable  values, as 
well as  an acceptable and measurable  level of predictive 
accuracy. A reasonable  solution is to  carry  out identical 
multifactor experiments on both the  system  and  its mod- 
el. Analysis of the  results of both  experiments will then 
indicate whether or not there  is agreement as  to which 
main effects and interactions  are statistically significant. 
Furthermore, the  degree of accuracy  can be assessed in 
terms of the  error variance of the  model, which can be 
measured by  means of replicated measurements on the 
real system. 

An analysis of this type was  carried out by Schatzoff 
and Tillman [13], who carried  out identical  half-replicates 
of a 25 experiment on CP-67 and on a detailed  simulation 
model driven  by reduced full instruction trace  streams. 
Specifically, a forty  user benchmark  workload,  consisting 
of different combinations of assemblies, compilations, 
and interactive sessions, was  used to drive the real 
system,  and  compressed data  derived from full instruc- 
tion traces of these  same workloads were used to  drive 
the simulation model. Since  the main reason  for develop- 
ing the simulator was  to  evaluate different resource 
management algorithms, it was  felt that a satisfactory 
basis for validation would be  provided by identical  ex- 

40 

Algorithm B 
days 3 and 4 

g o  I 1 1 I I I 
1-5 6-10 11-15 16-20 21-25  26-30 31-35 36-4 

Active users 

Figure 2 Page replacement algorithms-omparison of results 
by day. 

periments in which parameters of the dispatching and 
scheduling algorithms  were  varied as design factors.  Each 
such  experiment  consisted of a one-half  fraction of a Z5 
factorial. The main effects and first order  interactions  for 
three response variables,  proportion prohlem state time, 
proportion  supervisor state time, and page reads  per 
second, are shown for  both  the  actual  system and the 
simulator in  Table 4. The  factors  represented on-off 
switches for five different control mechanisms, as fol- 
lows: 

X, Paging penalty, 
X, CPU usage penalty, 
X, Maximum page I/O preemption, 
X, Maximum allowable multiprogramming level, 
X, Two level Q1 (interactive  dispatching  queue). 

The corresponding estimates of the main effects and first 
order interaction  effects are  denoted by at and hi,j (i = 1 ,  
. ., 5 ; j  = 1 ,  - . ., 5) ,  as indicated  in  column 1 of Table 4. 
The overall mean is indicated  by 3. Underlined  values in 855 
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Table 4 Factorial effects. 

Proportion  problem  state  Proportion  supervisor  state  Page  reads  per  second 

Act.  Sirn. ' Act.  Sim. 
- ~~ 

Act.  Sirn . 
-~ "" "" 

80 0.3684 0.41 1 1  0.2814 0.2730 58.9133 65.3156 

"_______...__ 

?I 

!2 

e3  

!4 05 

0.0026 -0.0049 0.0011 0.0009 0.3438 
0.0018 0.0023 -0.0031 0.0034 - I .0032 
0.0268 

-0.0359 
0.0034 

0.0065 
0.0050 
0.0001 
0.0029 
0.0029 

-0.0010 
0.0000 

0.0040 
0.0195 

-0.0076 

0.0247 -0.0105 -0.0116 
-0.0478 0.0466 0.0414 22.0428 

-6.3814 

0.0012 -0.0100  "o.0105 -3.2128 
0.0031 
0.0004 

-0.0073 
-0.0043 
-0.0003 

0.0042 
0.0047 

- 0.0064 
0.0033 

0.0281 

0.0039 
0.0010 
0.0009 

-0.0022 
0.0013 

-0.0024 
0.0000 

-0.0100 
-0.0046 

0.0050 

Table 4 represent statistically significant effects. All ef- 
fects involving X, and X, were significant well beyond 
the 1% level, while the X, effects were significant near  the 
2% level. The  error  variance, estimated by means of 
replicated measurements on  the  real  system,  was used as 
the basis for assessing  statistical significance. A separate 
analysis, reported in the  paper,  showed  that discrepan- 
cies in estimated  effects between  the  system  and  the 
simulator were no  greater  than would be  expected in 
replicated measurements on  the real system. 

The results  shown in Table 4 are striking, because they 
show complete  agreement in picking out  the significant 
effects in both  the  system  and  its model. Furthermore, 
these  effects are almost  identical  in all cases. 

System tuning 
Given that a complex system  has many adjustable  param- 
eters whose  values can s e c t  various aspects of system 
performance, an  obvious problem of interest,  both  to 
system  designers and installation  managers, is that of 
finding a combination of parameter  values  that will opti- 
mize some specified measure of system performance. 
Since the number of parameters may be quite  large, the 
first step  is to carry  out  an initial screening experiment to 
isolate that  subset of parameters which affect the desired 
performance measure significantly. As previously noted, 
a very good exposition of such  procedures  is given by 
Kleijnen [9]. The  second  step  consists of sequential 
procedures to find values of the  parameter  subset of step 
one that will optimize the  performance  measure of inter- 
est.  The methodology for this step  is  based  on  the 

-0.0022 
-0.0030 

0.0058 
0.0006 
0.0023 

-0.0020 
0.001 1 

-0.oO82 
0.0016 
0.0036 

1.6413 
0.6251 
0.1856 

-0.5896 
0.2233 

-0.8409 
-0.0428 
-5.3464 
-2.0133 

2.0857 

0.4656 
0. I869 

-4.9806 
21.5206 
-4.3431 
-0.7831 
-0.6506 

0.4456 
0.2019 

-0.2294 
-0.1531 

1.2031 

0.2781 
I .7844 

-4.5631 

The basic  idea  underlying  this  technique is  to  assume 
that  the performance measure  can be approximated by a 
quadratic  function of the  parameter values. Then,  an 
experiment is designed for  purposes of estimating the 
coefficients of the  quadratic  function,  or  surface, and a 
hill-climbing procedure  is employed to find the maximum 
(or minimum) point of the function.  Box and Wilson have 
invented a class of experimental designs, called central 
composite  designs,  which have  certain desirable  statisti- 
cal  properties for estimating quadratic  surfaces. Their 
procedure calls for carrying out  an initial experiment to 
estimate the  quadratic function, and  then employing a 
"steepest  ascent"  method to  determine a direction of 
increased yield. One  or more  confirmatory observations 
are taken  along the  path of steepest  ascent, followed 
possibly by a second  experiment.  The  process can  contin- 
ue in an evolutionary manner until the  experimenter  is 
satisfied with the  results,  or  no  further improvement 
seems likely. 

Procedures of this type  have been  employed  success- 
fully on both CP-67 and VMl370. In  the first instance,  the 
CP-67 simulator was used to carry  out  the  experiment, 51% 
reported by Schatzoff and  Bryant [15], based on  the work 
of our colleague, Y. Bard. This  experiment involved five 
parameters of the dispatching and scheduling  algorithms. 
In  each  case,  the  parameter  was a numerical  threshold for 
some  system  activity  level, such  that  diferent  actions 
would be  taken depending on  whether  or not the thresh- 
old was exceeded.  The problem was  to find values for 
these  thresholds that would maximize problem state 
throughput, as measured  by  problem state time as a 
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Table 5 Response surface exploration"CP/67. 

Run 
no. 

x, 

System  scheduler  parameter  settings % Prob. 
state 

* 0.10 0.75  0.67 250 25 40.3 

1 0.06 0.50 0.11 175 150.0 45.6 
2  0.10 0.50 0.11 175 13.5 46. I 
3 0.06 0.70 0.11 175 13.5 42.1 

" "_ ~. 

After running the initial experiment, which consisted of 
27 runs,  as shown in Table 5 ,  the  quadratic function was 
automatically fit and  the next experimental point  was 
determined. The controlling  program would then  carry 
out an experiment at this  point,  add it to  the previous set 
of results,  and delete  that point  which  had  given the worst 
results. This  procedure was terminated  arbitrarily after 67 
runs, but  automatic  stopping procedures could have been 
employed. The  results showed that it was  possible to 
increase the proportion of problem state from 0.40 to 
0.47, even though we had started with a well tuned 
system. Subsequent confirmatory experiments were car- 
ried out to  substantiate  that this order of performance 
increase prevailed even  after randomly  perturbing other 
aspects of the experimental setup,  such  as initial place- 
ment of pages on  the paging drum  and log-on order.  In 
this instance, a 2* factorial  was  used to verify the  correct- 
ness of the initial conclusion. A logical next step would 
have been to  carry  out  an  automatic switching  experiment 
on a live workload, as in the paging experiment described 
in Section 2, to verify that  the new set of parameter 
values resulted in improved  performance. 

tMaximum 

14 0.10 0.50 0.19 325 13.5 34.4 

25 0.08 0.60 0. I5 250 4.0  44.0 
26 0.08 0.60  0.15 250 500.0 42.9 
27t 0.08 0.60 0.15 250 45.0  42.6 

28 0.10 0.50 0.11 166 11.2 45.8 
29 0.10 0.49 0.11 144 8.7  44.6 

44 0.10 0.43 0.11 161 25.0  47.4f 
45 0.10 0.43 0.11 163  19.1 43.5 
46 0.10 0.43 0.11 160 23.2 45.0 
41 0.10 0.43 0.11 160 26.2  45.3 
48 0.10 0.43 0.11 150 53.1 45.9 
49 0.10 0.43 0.1 1 160 27.4  44.0 

69 0.10 0.43 0.11 162 24.6 44.0 

1 *These refer to standard installation parameter settings. 
tRuns 1-27 represent the initial experimental design; the remaining  runs represent the automatic hill climbing procedure. 

produced the largest observed value of % problem state 
time (47.4), represented  parameter settings that  were very 
close to  those of run numbers 46, 47, 49, and 69, which 
produced  somewhat  smaller values, ranging from 44 to 
45.3. To overcome this difficulty, a new procedure was 
devised to  smooth  the  observed values  prior to fitting. 
Essentially, each  observed value was replaced  by  a 
weighted average of all the  observed  values, with the 
weights being decaying  exponential functions of the eu- 
clidean distances  between  the given  point and  each of the 
remaining points. Thus,  each point would in effect be 
approximated  by  something like an average of those 
points in its  immediate  vicinity.  Since  this weighting 
process produces  an analytic  function of the  observa- 
tions,  namely, a sum of weighted exponentials, it is  no 
longer necessary to assume a quadratic  response surface. 
Instead, using methods of nonlinear  optimization, the 
maximal point of this  function  can  be  found  directly. 
Each new point would then be added  to  the preceding set, 
but no deletions would be made, since the procedure 
would tend to move away  from  areas of poor  observed 
response, and points in such  areas would automatically 
carry small weights in areas of high response. 

A procedure of this type  was  carried  out by Bard 1161 
on an experimental  version of VM/370 employing a 

A problem observed with the  above  procedure was that 
the measured response  was sometimes  quite unstable in 
small neighborhoods of particular points of seemingly 
good performance. For example,  run  number 44, which 
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Table 6 Response surface exploration"VM/370. 

Run System  scheduler  parameter  settings % Prob.  state 
no. 

x, x2 x, x4 Actual  Smoothed 

__ _" 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 t 

30 
20 
40 
13 
30 
30 
40 
30 
20 
47 
30 
30 
40 
20 
20 
30 
30 
30 
30 
40 
30 

30 
20 
40 
30 
47 
30 
40 
30 
40 
30 
30 
30 
20 
20 
40 
30 
13 
30 
30 
20 
30 

30 
35 
25 
30 
30 
30 
35 
39 
35 
30 
30 
21 
35 
25 
25 
30 
30 
30 
30 
25 
30 

100 
125 
75 

100 
100 
100 
125 
100 
75 

100 
100 
100 
75 
75 

125 
100 
100 
58 

142 
125 
100 

35.3 
51.8 
20.2 
35.6 
34.5 
36.6 
52.4 
56.7 
50.6 
35.8 
40.6 
17.3 
51.3 
20.6 
18.3 
31.5 
39.4 
38.2 
34.5 
18.8 
38.7 

36.5 
49.4 
22.7 
35.6 
34.5 
36.5 
50.0 
52.0 
48.2 
35.8 
36.5 
23.5 
48.8 
23.0 
20.7 
36.5 
39.4 
37.1 
35.9 
21.2 
36.5 

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

30 
30 
30 
30 
30 
30 
30 
30 
29 
36 
25 
32 
38 
32 
32 
31 
31 

30 
30 
30 
28 
34 
26 
28 
30 
35 
25 
26 
31 
34 
31 
31 
30 
32 

47 
55 
52 
50 
50 
49 
60 
48 
42 
43 
45 
46 
48 
45 
45 
47 
47 

94 
57 

192 
118 
114 
83 

290 
217 
315 
285 
260 
237 
248 
242 
243 
235 
223 

58.2 
57.4 
57.7 
57.6 
56.5 
55.9 
55.6 
59.1 
56.8 
56.8 
56.7 
59.3% 
56.9 
59.0 
56.6 
56.6 
58.0 

57.4 
57.3 
57.9 
57.4 
57.1 
56.9 
55.8 
58.0% 
57.0 
56.9 
56.9 
58.0% 
57.2 
58.0% 
58.0$ 
58.0% 
58.0% 

tRuns 1-21 represent the initial experimental design; the remaining  runs represent the automatic hill climbing procedure. 
$Maximum. 
Note: Standard system parameter settings as in Table 5 did not exist for this experimental scheduler. 

Bard [17]. Results of this experiment (Table 6)  show that 
a stable area in  which  problem state throughput was 
about 58% had  been found, after starting at points with 
very  much  lower values (20.7-52.0%). In fact, the very 
first  point  in the hill-climbing part of the experiment 
yielded a point that was  very close to the experimentally 
determined  optimal (57.4 vs 58.0%). 

A relevant point of interest, from a systems standpoint, 
is that the above experiment was carried out automatical- 
ly through a virtual machine  which  had  privileged access 
to the control program  and hence could change the 
parameter values. Such a capability  would  be very desir- 

858 able for any operating system for purposes of carrying out 

designed experiments either on benchmarks or live loads. 
The same  facility was used for the live  paging experiment 
previously described. In carrying out automatic tuning 
procedures on live loads, it is of course very important to 
prevent the tuning procedure from severely impacting 
system  performance  by inadvertently leading  it into re- 
gions of instability. To avoid such problems, high and low 
limits for each parameter can be established, with the aid 
of knowledgeable systems people and data acquired from 
benchmark experiments. The hill-climbing  algorithm can 
then  be  programmed in such a way as to prohibit excur- 
sions  beyond these limits. As a further precaution, since 
the system  is  continually  monitoring  its  own  perform- 
ance, it can quickly detect a condition of seriously 
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impacted performance following a change of parameter 
values, and  revert  to  the prior  setting. The  procedure 
could even be  programmed to  carry  out a small experi- 
ment in that region to  determine  whether  the degradation 
was due  to  the  change of parameter values or  to some 
other coincidental event. 

Benchmark experiments 
In software  development  programs, it is  customary  to 
benchmark  successive  program versions  under a variety 
of conditions in order  to  assess  the  nature of performance 
changes. A typical example of such a benchmark is one in 
which a new version of the  IBM Information Manage- 
ment System (IMS) was benchmarked in a z4 factorial, 
where the  factors consisted of two different CPU sizes 
(Systed370, Models 158 and 168), two different system 
configurations (uniprocessor and multiprocessor), two 
different terminal access  methods (BTAM and VTAM), 
and two different storage  access  methods (ISAM/OSAM 
and VSAM). An analysis of variance of the  results 
showed that all interactions  were negligible and  hence 
that the  same conclusions  could have  been  reached with a 
half-replicate. Adoption of this procedure in future work 
could result in savings of 50%. 

In  other benchmarking  programs, the number of factors 
may be  larger, and  hence  the potential  savings  realizable 
through fractional  replication will also be larger.  Alterna- 
tively,  additional factors  can  be  introduced without in- 
creasing the benchmarking budget,  thus providing  addi- 
tional information at no additional cost. 

Finally, where  practical, automatic switching of factor 
levels within a run, as in the paging experiment, can 
further reduce  the  overall  cost of benchmarking. Further- 
more, by blocking and measuring in small time intervals, 
it is possible to determine  whether valid conclusions can 
be  drawn  with shorter benchmarks. 

4. Summary 
We have  attempted  to explain  some of the basic princi- 
ples underlying the statistical  design and analysis of 
experiments and  to  show by example fruitful areas of 
application for  these  ideas in computer  performance 
evaluation  work.  Opportunities for  substantial savings, as 
well as improved  knowledge and insight into complex, 
poorly understood  computing processes,  abound  at all 
phases of the  product  cycle  from design to installation 
management. However,  the communication gap  between 
computer systems people  and  statisticians is still very 
large, so that  such opportunities are seldom  realized. In 
contemplating the many years of successful development 
and  application of principles of experimental  design in 
fields such as agriculture  and chemistry,  one is quickly 

led to  the conclusion that progress  in these fields has 
come  about largely through  application of the scientific 
method. However,  computer  system  development, par- 
ticularly on the software side,  appears  not  to  have fol- 
lowed this path  to any  noticeable  degree.  Designed ex- 
periments would provide a rewarding first step. 
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