Vijay Ahuja

Determining Deadlock Exposure for a Class of Store and
Forward Communication Networks

Given a network design, is the network exposed to deadlock for message buffers? This problem is addressed for a class of
networks called *‘routed networks.”” A routed network is a store and forward communication network in which all trans-
missions follow predefined routes through the network. It is shown that a routed network is exposed to deadlock if and
only if there exists a complete weighted matching of an appropriately defined bipartite graph for some subgraph of the
network graph. An approach for determining whether a deadlock can occur is presented.

1. Introduction

Consider a store and forward communication network in
which the task of transmitting messages between the
nodes is accomplished by moving the message through
various transmission links and message buffers along
fixed routes. A message is stored and then transmitted to
the next node on the route. Transmission of a message
from a node does not start until a buffer at the next node
on the route has been allocated to it. A deadlock will oc-
cur in such a network if two or more messages, collec-
tively occupying all the buffers in some nodes, wait for
each other to release a buffer. Figure ! illustrates a store
and forward communication network with one buffer in
each node. Figure 2 illustrates a deadlocked condition in
this network, since each task has one buffer but requires
two, one at each end of the transmission link.

The general problem of predicting deadlock in a system
has been treated by several authors [1-3]. The problem
can be simplified if it is restricted to a single class of sys-
tems and a single class of resources. In this paper, we
restrict the problem to the class of store and forward com-
munication networks that have fixed routes for message
transmission between any two nodes [4]. The only class
of resources treated here is the message buffers at the
nodes of the networks.

The above problem is similar to detecting the existence
of direct and indirect store and forward deadlocks in the

Transmission links

Node C

Node B

Figure 1 A store and forward communication network.

Node A
Message occupying a buffer

Figure 2 A deadlocked condition of the network in Fig. 1. (The
direction of the arrow indicates that the message on its trailing
end is waiting for a buffer in the node at its leading end.)

Copyright 1980 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1)
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page.
The title and abstract may be used without further permission in computer-based and other information-service systems. Permission

to republish other excerpts should be obtained from the Editor.

IBM J. RES. DEVELOP. e VOL. 24 ® NO. 1 e JANUARY 1980

49

VIJAY AHUJA

50

VIJAY AHUJA

N=(X,A, B,R. M)

X,A: The set of nodes
and directed arcs

as shown above.
b, =2i=1to4}
{riory,ry}
Fo=(xx,, X X,)
r, = (xx,)
r, = (xzx,)

M. {m, =2i=1to3}

Figure 3 A routed network.

ARPA network described in [5, 6]. The difference, how-
ever, lies in our restriction of fixed routing as compared to
the adaptive routing in the ARPA network. Our model for
network deadlocks does not allow any actions taken by
the networks to prevent the congestion that usually pre-
cedes a deadlock. Raubold e al. [7] have developed a
buffer allocation scheme that prevents occurrences of
store and forward deadlocks. Our approach does not
impose any buffer allocation restrictions on the network
operation. Instead, it examines the network design to de-
termine whether a deadlock can occur. Finally, as we
point out later, any deadlock state detected by these re-
sults may not be reachable.

In Section 2 of this paper, a graph model is developed
for the class of store and forward communication net-
works described above. In Section 3, the problem of de-
termining whether such a network is exposed to deadlock
is transformed to a matching problem. In Section 4, re-
sults from network flow theory are used, and an approach
to solve the problem is provided.

2. A graph model

The nodes, links, and buffers in a communication net-
work can be represented by a directed graph in which
each node is labeled with the number of buffers in it. The
graph should have no self-loops, since we do not wish to
consider links that initiate and terminate on the same

node. So a network graph G = (X, A, B) is a triple, where
X is a finite nonempty set representing the nodes of the
network, A is an irreflexive relation X X X, representing
the directed links of the network, and B is a function on X
to the set of positive integers: B(x,}, or simply b,, repre-
sents the number of buffers in node x;.

A route of a network graph G = (X, A, B) from node x,
to node x, is simply a directed path from x, to x, in G.

Qur definition for a network also includes a maximum
number of messages allowed on each route at any time. In
this context, a message is simply a unit of data that oc-
cupies one buffer. Thus, a routed network is a quintuple
N = (X, A, B, R, M), where (X, A, B) is a network graph
G, Ris a set of routes of G, and M is a function on R to the
set of positive integers; M(r,), or simply m,, represents the
maximum number of messages allowed on route r, at any
time.

Routed networks have fixed routes and allow no more
than a fixed number of messages on each route at any
time. (There may be more than one fixed route between a
given pair of nodes.) A direct analogy is a fixed-route net-
work that employs end-to-end flow control permitting a
fixed number (m,) of messages on each route (r;).

In order to define a deadlock condition in a routed net-
work, we need to describe its activity in terms of ‘*tasks’’
and ‘‘states.”’ A task, as defined next, represents a mes-
sage and can be identified by the route and an index. The
index distinguishes a given task from other tasks on the
same route. So, in a routed network N = (X, A, B, R, M),
a task is defined by a pair (r,, p), where r, is a route in N
and p is a positive integer less than or equal to the number
of messages m, allowed on r,.

Now, once a message reaches its destination node, it
does not require any more buffers for transmission. A
state maps a given task to a node, other than the last
node, on its route. Furthermore, the number of tasks
mapped to a given node cannot exceed its number of buf-
fers. So, a state S of a routed network N = (X, A, B, R,
M) is a function

S: T — (X U {z}), such that

1. Foreachtaskt=<(r,p)inT,if S(¢)isin X, then S{#)is a
node, other than the last node, in r.

2. For each node x; in X, the number of tasks in {#5(s) =
x;} is not greater than the number of buffers b, in x,.

Here, T is the set of all tasks of N,
T= (<r1a 1>s T ',(7‘1, m1>s T "<r\R\’ l), Tt

and z is a fictitious node, not in X.

i M)

IBM I. RES. DEVELOP. e VOL. 24 ¢ NO. 1 ® JANUARY 1980

The state function maps those tasks to z which do not
exist in the network at that time.

We can now describe the deadlock condition of a net-
work. We begin by observing that in order to transmit a
message to its destination node, a task requires a buffer in
the next node along its route. So, consider a state, say D,
in which the tasks in a set T' C T are waiting for each
other for a buffer. Furthermore, there are no free buffers
in any node with one or more tasks of T’. Clearly, such a
wait is not resolvable and therefore implies a deadlock.
So, adeadiock or adeadlock state is a state D of a routed
network N = (X, 4, B, R, M), in which there exists a
nonempty set T’ C T of tasks such that for each task ¢ =
(r,p)in T,

1. The next node, say x,, after D(r) in route r, is in the set
{D@t)r, e T'};

2. The number of tasks in {r, € T' and D(r,) = x,} is equal
to the number of buffers b, in node x,.

The set {xlx = D(#)} of nodes is called a deadlock set. Fi-
nally, a routed network is exposed ro deadlock if it has a
deadlock state. (We do not address the problem of deter-
mining whether a given deadlock state is ‘‘reachable,”
i.e., it can be reached by some task sequence from an
initial state.)

An example of a routed network is illustrated in Fig. 3.
Consider the state D of this routed network that maps the
two tasks of route 7, to node x,, those of r, to x,, and those
of r, to x, (Fig. 4). Then each task residing in a node in the
set (x,, x,, x,) of nodes requires a buffer from another
node in this set, and there is no free buffer. So D is a
deadlock state, and the set (x,, x,, x,) of nodes is a dead-
lock set.

3. Assignment of tasks to buffers

In order for a given set X’ of nodes to be a deadlock set in
a deadlock state D, there must exist a set T' of tasks that
occupy each buffer in X'. Also, for each task f = {r, p) in
T', the next node in route r after node D(1) must be in
X’. This can be established by matching eligible tasks to
buffers in the given set of nodes. This approach of match-
ing tasks to buffers through bipartite graphs permits the
use of graph theory results in examining networks for
deadlock exposure. Before describing this approach, we
present some pertinent graph theory definitions.

Inagraph G = (X, E), two nodes x, y in X are adjacent
if there exists an edge (xy) € E. A bipartite graph H =
{X,, X,, E) is an undirected graph (X, U X,, E) whose
nodes have been partitioned into two disjoint sets, X, and
X,, whereby no two nodes in any one of the subsets are
adjacent.

IBM J. RES. DEVELOP. e VOL, 24 ¢ NO. 1 e JANUARY 1980

t

a1 22

¥4

t

TR

XS
31 132

Figure 4 A deadlock state in the routed network of Fig. 3. (An
arrow indicates that the task on its trailing end requires a buffer
in the node at its leading end.)

Consider the subgraph S, = (X', A) generated by X' C
X on a network graph G = (X, A, B). It is to be deter-
mined if X' is a deadlock set. We represent the subgraph
S, and the tasks associated with it by a bipartite graph.
One set of nodes of the bipartite graph represents the
nodes of §_and the other set of nodes represents the set
of routes. The edges of the bipartite graph represent each
task that can have a buffer allocated in some node of §,
and requires a buffer in some other node in it. Thus, node
x, is connected to route r, only if x, is a node on r, and the
next node on r;, after x,, is in S,. This is defined next.

Let S, = (X', A") be the subgraph generated by X cx
on a network graph G = (X, A, B) of a routed network
N = (X, A, B, R, M). Then we say that H = (X', R, E) is
the bipartite graph for the subgraph S, where E is the set
of edges such that the number of edges connecting a node
x, € X' and aroute r; € R is

1. Min (b,, m) if node x; is on route r; and the next node
after x;, on r,, is in X'
2. Zero otherwise.

Next, a “‘weighted matching’’ of such a bipartite graph
is defined. Any matching of tasks to buffers must corre-
spond to a feasible state. Since the edges of a bipartite
graph represent the tasks, there cannot be more than b,
edges connected to a node x, and no more than m, edges
connected to a route r,. Let H = (X', R, E) be the bipar-
tite graph of a subgraph S, = (X', A") generated by X' C X
on a network graph G = (X, A, B) of a routed network
N = (X, A, B, R, M). Then a weighted matching of the
bipartite graph H is a set E, C E of edges such that

1. Foreachnode x, € X ', there are no more than b, edges
in E; connected to x;, and

51

VIJAY AHUJA

52

VIJAY AHUJA

x3 r.

4
3

Figure 5 A maximum weighted matching of the bipartite graph.
H = ({x, x,, x,}, R, E) generated by X' = (x, x,, x,) on the
network graph of Fig. 3.

2. For eachroute r; € R, there are no more than m, edges
in E, connected to r,.

A weighted matching E, of a bipartite graph H = (X', R,
E) is complete if, for each node x, € X', the number of
edges in E, connected to x,; is b, Finally, a maximum
weighted matching E, of a bipartite graph H = (X',R,E)
is a weighted matching such that if E, is a weighted match-
ing of H, then |E| < |E,|. A maximum weighted matching
is not necessarily unique. Also, it can be readily seen that
a complete weighted matching is also maximal. Further-
more, a complete weighted matching is not necessarily
unique, but if one maximum weighted matching is com-
plete, then every maximum weighted matching is com-
plete. An example of a weighted matching for a bipartite
graph H = (X', R, E) generated by X' = (x, x,, x,) on
the network graph of Fig. 3 is illustrated in Fig. 5. The
edges of the matching are indicated by darker lines. This
matching is also maximal and complete. It corresponds
to the deadlock state represented in Fig. 4.

The above definitions are used to establish an approach
that can determine if a given set of nodes is a deadlock
set. We begin by the intuitively obvious result that a sub-
graph generated by a deadlock set must contain a cycle.
(A cycle is a directed path of a graph that initiates and
terminates at the same node.)

® Theorem 1
The subgraph generated by a deadlock set contains a
cycle.

The proof is straightforward. The tasks in each node in
a deadlock set are waiting for a buffer within the deadlock
set. Construct a directed path where each arc is between
the node where a task is residing and the node containing
the buffer for which it is waiting. Since the deadlock set is
a finite set of nodes, the directed path must revisit a node,
thereby resulting in a cycle. Details of the proof are given
in [8, 9].

The above is a necessary condition for a network to be
exposed to deadlock. It is now shown that the problem of
determining whether a given set X' of nodes is a deadlock
set can be transformed into that of the existence of a com-
plete weighted matching of the bipartite graph for the sub-
graph generated by X'.

® Theorem 2

In a routed network N = (X, A, B, R, M), a nonempty
connected set X' C X of nodes is a deadlock set if and
only if there exists a complete weighted matching of the
bipartite graph H = (X', R, E) for the subgraph generated
by X'.

Proof
1. First, we assume that E, is a complete weighted
matching of H and show that X is a deadlock set.

We label the edges of E by letting ¢,, € E, denote the
kth edge connecting x, and r;, where 1 = k < min (b, m].).
Then the matching E, can be associated with the state §
such that, for each edge e, € E,, there is a task 1 = (r;, k)
and S(¢) = x,. State § is a feasible state since, by definition
of a weighted matching for each node x, € X " and each
route r; € R, E cannot have more than b, and m, edges,
respectively.

Consider a task ¢t = (r,, k) € T' = {r € TIS(r) € X'} such
that S(#) = x,. Then, there is a corresponding edge ¢, €
E, connecting node x, and route r;.

The definition of the bipartite graph for a subgraph im-
plies that the next node after x, on r;, Say X, isin X'. Also,
since E, is a complete weighted matching, the number of
buffers assigned in node x,, as represented by the number
of edges in E, connected to x,, is b,.

Since this argument holds for an arbitrary task ¢tin 7', it
holds for all tasks in T'. It follows that S is a deadlock
state and X' is a deadlock set.

2. Now it will be shown that if X' is a deadlock set, then
H has a complete weighted matching. Let D be the dead-
lock state that corresponds to the deadlock set X'.

We construct a weighted matching E of H by selecting
an edge ¢, € E for each task 1 = (r;, k) and D(f} = x,.
There are sufficient edges in E to allow such a selection.
This is true since H is a bipartite graph for a subgraph.

We must show that E is complete. Consider a node
x, € X'. Since X' is a deadlock set, the number of tasks in
"

T" = {r € T\D(¥) = x;}is b,. Also, by construction, there is
an edge in E; for each task t such that D(r) = x,. There-

IBM 1. RES. DEVELOP. ¢ VOL. 24 ¢ NO. 1 ® JANUARY 1980

fore, the number of edges connected to x, in E_ is b;. Since
this is true for an arbitrary node x, € X', it is true for each
node in X'. Hence, E, is a complete weighted matching.

This completes the proof.

The next corollary applies the above result to establish
that deadlock exposure of a routed network is equivalent
to existence of a complete weighted matching of the bi-
partite graph for some subgraph generated by a nonempty
connected set of its nodes. Its proof follows immediately
from the definition of deadlock exposure of a routed net-
work and the above theorem.

o Corollary |

A routed network N = (X, A, B, R, M) is exposed to
deadlock if and only if there exists a nonempty connected
set of nodes X' C X such that the bipartite graph H =
(X', R, E) for the subgraph S, = (X', A") generated by X'
has a complete weighted matching.

The above corollary establishes both necessary and
sufficient conditions for a routed network to be exposed
to deadlock. It is of interest to note that a set X' of nodes
cannot be a deadlock set if the total number of edges in
the bipartite graph for the subgraph generated by X' is
less than the total number of buffers in the nodes in X'.
This is a strong necessary condition that can be easily
evaluated.

® Theorem 3

Let H = (X', R, E) be the bipartite graph for a subgraph
S, = (X', A") generated by a nonempty connected set X'
of nodes. Then, X’ is not a deadlock set if the number of
edges in E is less than the sum of the number of buffers in
X'

This theorem can be proved by showing its con-
trapositive, that is, if X' is a deadlock set, then
|E|= > b,
TEX'
By Theorem 2, H has a complete weighted matching, say
E . So
]

[E|=[E|= Y b,

TEX’

4. Application of network flow theory

The above results provide a transformation of the prob-
lem of determining whether a routed network is exposed
to deadlock to that of the existence of a complete
weighted matching for the bipartite graph of some sub-
graph of the routed network. We first develop an ap-
proach to provide a maximum weighted matching.

IBM J. RES. DEVELOP. ® VOL. 24 ¢ NO. 1 ¢ JANUARY 1980

Edmonds [10] has developed a useful algorithm for
solving the more general case of the problem of obtaining
a maximum weighted matching of a graph. However, for
a bipartite graph, it can be readily shown [11] that the
matching probiem is equivalent to the maximum flow
problem in a capacitated network, treated by Ford and
Fulkerson [12]. The matching problem of a bipartite graph
can be transformed to a network flow problem as follows.

Let H = (X', R, E) be a bipartite graph for a subgraph
S, = (X', A). Define a flow network by adding a **source
node,” s, and a **sink node,” 1, to the set X’ U R. The set
of arcs for the flow network is obtained by including an
arc (x;r)) from node x, to route 7, if there is an edge in E
connecting x, and r;. To this add a set of arcs from source
node s to each node in X', and a set of arcs from each
route in R to sink node ¢. Each arc from s to some node
x € X' will have a flow capacity equal to the number of
buffers in x. Each arc (x;r) from node x; to route 7, can
have any finite capacity that is greater than the number of
buffers (b,) in x; or number of messages (m,) allowed on
route r,. Finally, each arc from a route r,ERto sink node
t will have a flow capacity equal to the maximum number
of messages allowed on the route 7;.

In such a flow network, any flow that conserves arc
flows at each of its nodes is called a ‘‘compatible flow.”’
Consider a compatible flow from s to ¢. The maximum
flow leaving each node x, € X' is restricted to b,, and that
arriving at each route r; € R is restricted to m;. Also, a
weighted matching E, of H has no more than b, edges con-
nected to node x; and no more than m, edges connected to
route ;. Furthermore, there is an arc (xirj) in the flow net-
work only if there is a nonempty set E;; of edges in E that
connects x, and r,. Thus, the maximum flow from s to ¢ in
the flow network gives the maximum weighted matching
of the bipartite graph. Such a matching is obtained by se-
lecting, for each pair of connected nodes (x,, r) in H, the
number of edges equal to the maximum flow obtained for
arc (x;r)) in the flow network. Such a flow network is de-
fined next.

Let H = (X', R, E) be the bipartite graph for a subgraph
§ = (X', A’) generated by X' on a network N = (X, A, B,
R, M). Then a flow network H_for H is denoted by H =
(V, a,f), where V is the set of nodes X' U R U {s, #}, and
where s is a new source node and ¢ is a new sink node; «,
the set of arcs in H, is given by

{(sx)lx, € X'1u {(x;r))lx, is adjacent to r;in H}
U {(rpir; € R},

and f is a function on o to the positive integers such
that

53

VIJAY AHUJA

54

VIJAY AHUJA

X, T3

Figure 7 A maximum compatible flow for the flow network of
Fig. 6.

1. For each arc (sx,) € a,

Sfsx) =b,.
2. For each arc (xirj) € a,

Sf(x;r;) = any positive integer = min (b;, m,).
3. For each arc (r9) € a,

f (rg) = m,.

Here f(a,) is called the flow capacity of arc o, € a.

An example of a flow network for the bipartite graph of
Fig. 5 is illustrated in Fig. 6. A maximum compatible flow
of this flow network is shown in Fig. 7. The maximum
weighted matching for the bipartite graph, obtained from
this maximum flow, is shown in Fig. 5; it is also a com-
plete weighted matching.

Ford and Fulkerson [12] have described an algorithm to
obtain a maximum compatible flow of a given flow net-
work. The complexity of their algorithm has been im-
proved by Dinic [13]. Dinic’s algorithm is bounded by
ke operations, where v is the number of nodes, c is the
number of arcs in the flow network, and k is a constant
that is independent of the flow network.

We can now present an approach to determine whether
a given routed network N = (X, A, B, R, M) is exposed to

deadlock. The approach is based on the above results and
is described in four steps.

Step | Create an adjacency matrix for the routed net-
work graph.

Step 2 (a) Let the number of nodes in the routed network
be n. Then, generate a new n-bit binary number
every time this step is entered (from 1 to 2" — 1).
Proceed to step 2(b). When no new numbers can
be generated, the procedure terminates and the
routed network is not exposed to deadlock.
(b) For a given binary number 8 from (a), let X'
be the set of nodes that have the corresponding bit
on in B. If X’ is connected, then generate a sub-
graph S, = (X', A") on the network graph G =
(X, A, B). Next, define a bipartite graph H =
(X', R, E) for S, as described in Section 2.

Step 3 Check whether

El= 3 b,

rEX'
If so, then by Theorem 2, X' is not a deadlock set.
So proceed to step 2 to obtain a new set of nodes.
Otherwise, go to step 4.

Step 4 Define a flow network H = (V, a, f) for the bi-
partite graph as described earlier. Obtain a max-
imum compatible flow in H,_ by applying Dinic’s
algorithm [13], assuming zero initial flow in all
arcs in «. Obtain the maximum weighted match-
ingin H= (X', R, E) corresponding to the maxi-
mum flow. If the matching is complete, then the
routed network is exposed to deadlock and the
procedure terminates (Corollary 1). If the match-
ing is not complete, proceed to step 2.

It can be readily seen that, for an algorithm based on
the above approach, the total number of operations is
dominated by the number of executions of the maximum
flow algorithm. For an n-node network, there cannot be
more than 2" subgraphs. So, the total number of opera-
tions of such an algorithm will be O[2"(n + r)*c], where r
is the number of routes and c is the number of arcs of the
network graph.

5. Summary

In this paper, we have developed an approach to deter-
mine whether a given routed network is exposed to dead-
lock. Furthermore, this research has established a rela-
tion among the deadlock exposure of routed networks,
the matching problem in graph theory, and the network
flow problem in mathematical programming. These re-
sults are applicable to store and forward networks with
fixed routing. Further work is needed to extend these re-
sults to the general class of operating systems and to more
than one class of resources.

IBM J. RES. DEVELOP. & VOL. 24 ¢ NO. | ® JANUARY 1980

Acknowledgments

The research reported here was conducted under the ex-
cellent guidance and direction of Dr. V. L. Wallace at the
Department of Computer Science, University of North
Carolina, Chapel Hill. We wish to express our deep grati-
tude to Dr. Wallace for his extensive contributions in this
effort. (Dr. Wallace is currently at the University of Kan-
sas, Lawrence.)

References and note

1. E. G. Coffman, M. J. Elphick, and A. Shoshani, ‘‘System
Deadlocks,’” Computing Surv. 3, 67-78 (1971).

2. A. N. Habermann, ‘‘Prevention of System Deadlocks,”
Commun. ACM 12, 373-377, 385 (1969).

3. R. C. Holt, **On Deadlocks in Computer Systems,”’ Ph.D.
Thesis, Department of Computer Science, Cornell Univer-
sity, Ithaca, NY, 1971.

4. Some of the results described here were presented at the
1977 ACM Computer Science Conference.

5. R. E. Kahnand W. R. Crowther, ‘‘Flow Control in Resource
Sharing Computer Networks,” [EEE Trans. Commun.
COM-20, 539-545 (1972).

6. L. Kleinrock, Queuing Systems Volume 2: Computer Appli-
cations, John Wiley & Sons, Inc., New York, 1976, pp.
439-440.

IBM J. RES. DEVELOP. & VOL. 24 & NO. 1 & JANUARY 1980

7. E. Raubold and J. Haenle, ‘‘ A Method of Deadlock-free Re-
source Allocation and Flow Control in Packet Networks,”
Proceedings of the Third International Conference on Com-
puter Communication (Toronto, August 1976), p. 483-487.

8. V. Ahuja, “‘Exposure of Routed Networks to Deadlock,”
Ph.D. Thesis, Department of Computer Science, University
of North Carolina, Chapel Hiil, NC, 1976.

9. V. Ahuja, ‘*An Algorithm to Check Network States for
Deadlock,”” IBM J. Res. Develop. 23, 82-86 (1979).

10. J. Edmonds, ‘‘Paths, Trees and Flowers,”” Can. J. Math. 17,
449-467 (1965).

11. R. G. Busacker and T. L. Saaty, Finite Graphs and Net-
works: An Introduction with Applications, McGraw-Hill
Book Co., Inc., New York, 1965.

12. L. R. Ford, Jr. and D. R. Fulkerson, Flows in Networks,
Princeton University Press, Princeton, NJ, 1962.

13. E. A. Dinic, ‘*Algorithm for Solution of a Problem of Maxi-
mum Flow in a Network with Power Estimation,”” Soviet
Math. Dokl. 11, 1277-1280 (1970).

Received February 16, 1979; revised August 8, 1979

The author is located at the IBM System Communications
Division laboratory, Research Triangle Park, North
Carolina 27709.

55

VIJAY AHUJA

