
Vijay Ahuja 

Determining  Deadlock  Exposure  for  a  Class of Store  and 
Forward Communication  Networks 

Given  a  network  design, is the  network  exposed  to  deadlock  for  message  buffers?  This  problem  is  addressed  for  a  class of 
networks  called  “routed  networks.” A routed  network  is  a  store  and  forward  communication  network  in  which all truns- 
missions  follow  predefined  routes  through  the  network.  It  is  shown  that  a  routed  network  is  exposed  to  deadlock if and 
only if there  exists  a  complete  weighted  matching  of an appropriately defined bipartite  graph for  some  subgraph of the 
network  graph. A n  approach for  determining  whether  a  deadlock  can  occur  is  presented. 

1. Introduction 
Consider  a store  and forward  communication network in 
which the  task of transmitting  messages  between the 
nodes  is accomplished by moving the message  through 
various  transmission links and message buffers along 
fixed routes. A message is  stored  and then  transmitted to 
the  next  node  on the  route.  Transmission of a  message 
from  a  node does  not  start until a buffer at  the next  node 
on  the  route  has been  allocated to  it. A deadlock will oc- 
cur in such a network if two or more  messages,  collec- 
tively occupying all the buffers in some  nodes, wait for 
each  other  to release  a buffer. Figure 1 illustrates  a store 
and  forward  communication network with one buffer in 
each node.  Figure 2 illustrates a deadlocked condition in 
this network,  since  each task has  one buffer but requires 
two,  one  at  each  end of the transmission  link. 

The general  problem of predicting  deadlock in a system 
has been treated by several authors [l-31. The problem 
can be simplified if it is restricted to a single class of sys- 
tems  and a single class of resources.  In this paper, we 
restrict the problem to  the  class of store and  forward  com- 
munication networks  that  have fixed routes  for message 
transmission between any two  nodes [4]. The only class 
of resources  treated here is the message buffers at  the 
nodes of the  networks. 

The  above problem is similar to  detecting  the  existence 
of direct  and indirect  store  and  forward deadlocks in the 

Transmission links 

Figure 1 A store and  forward communication network. 

Node A 
Message occupying a buffer 

Figure 2 A deadlocked condition of the network in Fig. 1 .  (The 
direction of the arrow indicates that the message on its trailing 
end is waiting for a buffer  in the node at its leading end.) 

Copyright  1980 by  International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) 
each reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the  first page. 
The  title  and abstract may  be used without further permission in computer-based and other information-service systems. Permission 
to republish other excerpts should be obtained from  the Editor. 



node. So a network  graph G = ( X ,  A ,  E )  is a triple, where 
X is a finite nonempty  set  representing the nodes of the 
network, A is an irreflexive relation X x X ,  representing 
the  directed  links of the network, and B is a function on X 
to the  set of positive  integers: B(x,),  or simply bi, repre- 
sents  the  number of buffers in node x,. 

A route of a  network graph G = ( X ,  A ,  B)  from node x, 
to node x. is simply a directed path from xa to x. in G. 

N = ( X ,  A ,  B ,  R,  M )  

X ,  A:  The  set of nodes 
and directed  arcs 
as shown above. 

B: {b,  = 21i = 1 to 4} 

r1 = (.x,x,, x1xJ 

r2 = (x1x3) 

r3 = (x3x,) 

M. {mi = 21i = 1 to 3) 

Figure 3 A routed network. 

ARPA network described in [5, 61. The difference,  how- 
ever, lies in our restriction of fixed routing as  compared  to 
the adaptive  routing in the ARPA network.  Our model for 
network deadlocks  does not allow any  actions taken by 
the  networks  to  prevent  the congestion that usually pre- 
cedes a deadlock. Raubold et al. [7] have  developed a 
buffer allocation scheme  that  prevents  occurrences of 
store and  forward deadlocks.  Our  approach  does not 
impose any buffer allocation  restrictions on  the network 
operation.  Instead,  it  examines  the  network design to de- 
termine whether a  deadlock can  occur. Finally, as we 
point out later,  any deadlock state  detected by these  re- 
sults may not be reachable. 

In Section 2 of this paper, a  graph model is developed 
for  the  class of store  and forward  communication net- 
works described  above.  In Section 3 ,  the problem of de- 
termining whether  such a  network is  exposed  to deadlock 
is transformed to a matching problem.  In Section 4, re- 
sults  from  network flow theory  are  used, and an approach 
to solve the problem is provided. 

2. A graph model 
The nodes, links,  and buffers in a communication  net- 
work  can be  represented by  a directed graph in which 
each node is labeled with the  number of buffers in it.  The 
graph  should  have no self-loops, since  we  do not  wish to 
consider  links that initiate and  terminate  on the  same 

Our definition for a  network also includes  a  maximum 
number of messages allowed on  each  route  at any  time. In 
this context, a message is simply a unit of data  that  oc- 
cupies one buffer. Thus, a routed  network is a  quintuple 
N = ( X ,  A ,  B ,  R ,  M ) ,  where ( X ,  A ,  B )  is a network  graph 
G, R is a set of routes of G, and M is a  function on R to  the 
set of positive  integers; M(r,),  or simply m,, represents  the 
maximum number of messages allowed on  route ri at any 
time. 

Routed networks  have fixed routes and allow no more 
than a fixed number of messages on  each  route  at any 
time. (There may be more  than one fixed route  between  a 
given pair of nodes.) A  direct  analogy is a fixed-route net- 
work that employs  end-to-end flow control  permitting  a 
fixed number (mi) of messages on  each route (r i ) .  

In  order  to define a  deadlock condition in a routed  net- 
work, we need to describe its activity in terms of “tasks” 
and “states.” A task,  as defined next,  represents a mes- 
sage and  can be identified by the  route and an index. The 
index  distinguishes  a given task  from  other  tasks  on  the 
same route. So, in a routed  network N = ( X ,  A ,  B ,  R ,  M ) ,  
a tusk is defined by a  pair ( v i ,  p ) ,  where ri is a  route in N 
and p is a  positive  integer  less  than or  equal to the  number 
of messages mi allowed on r,. 

Now,  once a message  reaches its destination node,  it 
does not  require any more buffers for transmission. A 
state maps a given task to a node,  other than the last 
node, on  its  route.  Furthermore,  the number of tasks 
mapped to a  given  node  cannot exceed its  number of buf- 
fers. So, astute S of a routed network N = ( X ,  A ,  E ,  R ,  
M )  is a function 

S: 7’ + ( X  U {z}), such  that 

1. For each  task t = ( r ,  p )  in T ,  if S ( t )  is in X ,  then S ( t )  is a 

2. For  each  node xi in X ,  the  number of tasks in {tlS(t) = 

node,  other  than the  last node, in r .  

x i }  is not greater than  the number of buffers b, in x i .  

Here, T is the  set of all tasks of N ,  

T =  ((rl, I ) ,  . . . , ( r 1 3  ml), . . . , ( r l R l ,  I ) ,  . . . , ( r I R I ,  m,Rl)), 

and z is a fictitious node, not in X .  

IBM J .  RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980 



The  state function maps those  tasks  to z which do not 
exist in the network at that  time. 

We can now describe the deadlock condition of a net- 
work. We begin by observing that in order  to transmit  a 
message to its  destination  node, a task requires a buffer in 
the  next  node  along its route. So, consider  a state, say D ,  
in which the  tasks in a set T’ T are waiting for  each 
other  for a buffer. Furthermore,  there  are no free buffers 
in any  node  with one or more tasks of T‘. Clearly, such a 
wait is not  resolvable  and therefore implies a deadlock. 
So, a deadlock or a deadlock stute is a state D of a routed 
network N = ( X ,  A ,  B ,  R ,  M ) ,  in which there exists a 
nonempty set T’ C Tof tasks such  that for each task t = 

( r ,  P )  in T ’ ,  

1. The  next  node, say x k ,  after D(r) in route r, is in the  set 

2. The number of tasks in {t i  E T’ and DOi) = x,} is  equal 
{D(ti)lti E TI}; 

to  the  number of buffers b, in node xk.  

The  set {xlx = D(t)}  of nodes is called a deadlock se t .  Fi- 
nally,  a  routed  network is exposed  to deadlock if it has a 
deadlock state. (We do not address  the problem of deter- 
mining whether a given deadlock state is “reachable,” 
i . e . ,  it can be reached by some task sequence from an 
initial state.) 

An example of a  routed  network is illustrated in Fig. 3. 
Consider the  state D of this  routed  network that maps the 
two tasks of route r ,  to node x, ,  those of r, to x,, and those 
of r3 to x3 (Fig. 4). Then each task residing in a  node in the 
set ( x , ,   x 3 ,  x4) of nodes requires a buffer from another 
node in this set, and  there is no  free buffer. So D is a 
deadlock state,  and the set ( x , ,   x 3 ,  x4) of nodes is a dead- 
lock set. 

3. Assignment of tasks to buffers 
In  order  for a  given set X ’  of nodes to be a  deadlock set in 
a  deadlock state D ,  there must exist a set T’ of tasks  that 
occupy each buffer in X ’ .  Also, for  each task t = ( r ,  p )  in 
T ’ ,  the  next  node in route r after node D(t)  must be in 
X ’ .  This can be established by matching eligible tasks to 
buffers in the given set of nodes.  This approach of match- 
ing tasks  to buffers through  bipartite  graphs  permits the 
use of graph theory results in examining  networks for 
deadlock exposure. Before  describing  this approach, we 
present some  pertinent graph theory definitions. 

In a  graph G = ( X ,  E ) ,  two nodes x ,  y in X are adjacent 
if there  exists  an edge (xy) E E .  A bipartite  graph H = 

( X , ,   X , ,  E )  is an undirected  graph ( X ,  U X,, E )  whose 
nodes have been  partitioned  into two disjoint sets, X ,  and 
X,, whereby no  two nodes in any one of the  subsets  are 
adjacent. 

IBM J. RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980 

‘31 ‘32 

Figure 4 A deadlock  state in the routed network of Fig. 3.  (An 
arrow indicates that the task on  its trailing end requires a buffer 
in the node at its leading end.) 

Consider  the subgraph S, = (Xf, A ’ )  generated by X ’  C 
X on a network graph G = ( X ,  A ,  B ) .  It is to be deter- 
mined if X ’  is a deadlock  set. We represent  the subgraph 
S, and  the  tasks associated with it by a  bipartite graph. 
One set of nodes of the  bipartite  graph represents  the 
nodes of S, and  the  other  set of nodes  represents  the  set 
of routes.  The edges of the bipartite  graph represent  each 
task that  can  have a buffer allocated in some  node of S, 
and  requires a buffer in some other node in it.  Thus, node 
xi is connected  to  route rj only if xi is a  node on rj and  the 
next  node on rj ,  after x i ,  is in S,. This is defined next. 

Let S, = ( X ’ ,  A’) be the  subgraph  generated by X ’  C X 
on a network  graph G = ( X ,  A, B )  of a  routed network 
N = ( X ,  A, B ,  R ,  M ) .  Then we say that H = ( X r ,  R ,  E )  is 
the bipartite graph for the subgraph S,, where E is the  set 
of edges such  that  the number of edges connecting  a  node 
xi  E X ‘  and a route rj  E R is 

1 .  Min (bi,  mj) if node xi is on  route rj and  the  next node 

2 .  Zero otherwise. 
after x i ,  on rj, is in x‘; 

Next, a  “weighted matching” of such a  bipartite  graph 
is defined. Any matching of tasks to buffers must corre- 
spond to a feasible state. Since the edges of a bipartite 
graph represent  the  tasks, there cannot be  more  than bf 
edges connected  to a node xi and no more  than mj edges 
connected  to a route rj, Let H = ( X ‘ ,  R ,  E )  be the bipar- 
tite  graph of a subgraph Sg = ( X ’ ,  A’) generated by X ’  C_ X 
on a network  graph G = ( X ,  A ,  B )  of a routed network 
N = ( X ,  A ,  B ,   R ,  M ) .  Then a weighted matching of the 
bipartite graph H is a set E, C_ E of edges  such  that 

1 .  For  each  node xi E X ’ ,  there  are  no more than bi edges 
in E, connected  to xi, and 

‘IJAY P 

51 

rHUJA 



52 

VIJAY AHUJA 

Figure 5 A maximum weighted matchinq of the bipartite graph. 
H = ({xl, .x3, .x4}, R ,  E )  generated by X = (xl, .x3, x,) on the 
network graph of Fig. 3.  

2. For  each  route rj E R ,  there  are  no  more  than mi edges 
in E, connected  to r j .  

A weighted matching E, of a bipartite graph H = (Xt,  R ,  
E) is complete if, for  each node xi E X ’ ,  the  number of 
edges in E, connected  to xi is bi. Finally, a maximum 
weighted matching E, of a bipartite  graph H = ( X ’ ,  R ,  E )  
is a weighted matching such  that if Ei is a weighted match- 
ing of H ,  then lEi\ 5 \E,\. A maximum  weighted  matching 
is not necessarily unique.  Also, it can be  readily  seen that 
a  complete  weighted  matching is also  maximal. Further- 
more, a complete weighted  matching is not  necessarily 
unique, but if one maximum  weighted  matching is com- 
plete, then  every maximum  weighted  matching is  com- 
plete. An example of a weighted matching for a bipartite 
graph H = ( X ’ ,  R ,  E )  generated by X‘  = ( x l ,  x3, x,) on 
the network graph of Fig. 3 is illustrated in Fig. 5. The 
edges of the matching are indicated  by darker lines. This 
matching is also maximal  and complete.  It  corresponds 
to  the  deadlock  state  represented in Fig. 4. 

The  above definitions are used to  establish an approach 
that  can  determine if a given set of nodes is a deadlock 
set. We begin by the intuitively obvious result that a sub- 
graph generated by  a  deadlock set must  contain a cycle. 
(A cycle is a directed  path of a graph  that initiates and 
terminates  at  the  same  node.) 

Theorem I 
The subgraph  generated by a deadlock  set  contains a 
cycle. 

The proof is straightforward. The  tasks in each node in 
a  deadlock set  are waiting for a buffer within the  deadlock 
set.  Construct a directed  path  where each  arc is between 
the node where a task is residing and  the node  containing 
the buffer for which it is waiting. Since  the deadlock set is 
a finite set of nodes,  the directed path must  revisit a node, 
thereby resulting  in a cycle. Details of the proof are given 
in [8, 91. 

The  above is a  necessary  condition for a network to be 
exposed  to  deadlock.  It is now shown  that  the problem of 
determining whether a given set X ’  of nodes is a deadlock 
set  can be transformed  into  that of the  existence of a  com- 
plete  weighted  matching of the  bipartite  graph for  the sub- 
graph generated by X ’ .  

Theorem 2 
In a routed  network N = (X, A ,  B ,  R ,  M), a  nonempty 
connected  set X ’  c X of nodes is a  deadlock set if and 
only if there  exists a complete  weighted matching of the 
bipartite graph H = ( X ’ ,  R ,  E) for  the  subgraph  generated 
by X ’ .  

Proof 
1. First, we assume  that E, is a complete  weighted 
matching of H and show that X ‘  is a  deadlock set. 

We label the  edges of E by letting eijk E E, denote  the 
kth  edge connecting xi and ri, where 1 5 k 5 min (bi ,  mj) .  
Then  the matching E, can be associated with the  state S 
such  that,  for  each edge euk E E,, there is a task  t = ( r j r  k) 
and S(t)  = xi .  State S is a feasible state since, by definition 
of a weighted matching for  each  node xi E X ’  and each 
route rj E R ,  E, cannot  have more  than b, and mj edges, 
respectively. 

Consider a task t = ( r j ,  k) E T‘ = { t  E TIS(t) E X ’ }  such 
that S( t )  = xi .  Then, there is a corresponding edge eijk E 
E, connecting  node xi and route rj ,  

The definition of the bipartite  graph for a subgraph im- 
plies that  the next node  after xi on r j ,  say xQ, is in X‘. Also, 
since E, is a complete weighted matching,  the  number of 
buffers assigned in node xQ, as  represented by the  number 
of edges in E, connected to xQ, is bQ. 

Since  this  argument  holds for  an  arbitrary task t in T’ ,  it 
holds for all tasks in T ’ .  It  follows that S is a  deadlock 
state  and X ’  is a  deadlock set. 

2. Now it will be  shown that if X ’  is a  deadlock set, then 
H has a complete weighted matching. Let D be the  dead- 
lock state  that  corresponds  to  the  deadlock  set X ’ .  

We construct a weighted matching E of H by selecting 
an edge eijk E E for  each task  t = ( r i ,  k) and D(t)  = xj .  
There  are sufficient edges in E to allow such a  selection. 
This is true  since H is a  bipartite graph for a subgraph. 

We must show  that E, is complete. Consider  a  node 
xi E X ’ .  Since X ’  is a  deadlock set,  the number of tasks in 
T”’ = {t E TID(t) = xi} is bi. Also, by construction,  there is 
an edge  in E, for  each  task t such  that D(t) = x i .  There- 

IBM I .  RES. DEVELOP. * VOL. 24 * NO. 1 * JANUARY 1980 



fore,  the  number of edges  connected  to xi in E, is bi. Since 
this is true  for  an  arbitrary node xi E X ’ ,  it is true  for  each 
node in X ’ .  Hence, E, is a complete weighted matching. 

This  completes  the proof. 

The next  corollary applies the  above result to  establish 
that  deadlock  exposure of a routed  network is equivalent 
to  existence  of a complete  weighted  matching of the bi- 
partite graph  for some  subgraph generated by a nonempty 
connected set of its  nodes.  Its proof  follows immediately 
from the definition of deadlock exposure of a routed  net- 
work and the  above  theorem. 

Corollary I 
A routed network N = ( X ,  A ,  B ,  R ,  M )  is exposed  to 
deadlock if and only if there  exists a  nonempty connected 
set of nodes X ’  X such that the bipartite  graph H = 
( X I ,  R ,  E )  for  the subgraph S, = ( X I ,  A’)  generated by X ’  
has a complete weighted  matching. 

The above corollary  establishes  both necessary  and 
sufficient conditions for a  routed network  to be exposed 
to  deadlock.  It is of interest to note  that a set X ’  of nodes 
cannot be a deadlock  set if the  total number of edges in 
the  bipartite graph  for  the  subgraph  generated by X ’  is 
less than  the  total number of buffers in the nodes  in X ’ .  
This is a strong necessary  condition that  can be  easily 
evaluated. 

Theorem 3 
Let H = ( X I ,  R ,  E )  be the bipartite  graph for a  subgraph 
S, = ( X ’ ,  A’ )  generated by a  nonempty connected  set X ’  
of nodes. Then, X ’  is not  a  deadlock set if the number of 
edges in E is less  than  the sum of the number of buffers in 
X ‘  . 

4. Application of network flow theory 
The  above  results provide  a  transformation of the prob- 
lem of determining whether a routed network is exposed 
to  deadlock  to  that of the  existence of a complete 
weighted matching for the bipartite  graph of some sub- 
graph of the  routed network. We first develop  an ap- 
proach to provide  a maximum weighted matching. 

IBM J. RES. DEVELOP. VOL. 24 NO. 1 JANUARY 1980 

Edmonds [IO] has developed a useful algorithm for 
solving the  more general case of the problem of obtaining 
a maximum weighted matching of a graph.  However,  for 
a bipartite graph, it can be readily shown [ll] that  the 
matching problem is equivalent to the maximum flow 
problem in a capacitated  network,  treated by Ford  and 
Fulkerson [12]. The matching problem of a  bipartite  graph 
can  be transformed  to a network flow problem as follows. 

Let H = (XI ,  R ,  E )  be a bipartite graph  for a subgraph 
Sg = ( X ’ ,  A’ ) .  Define a flow network by adding  a “source 
node,” s, and a “sink  node,” t ,  to  the  set X ’  U R .  The  set 
of arcs  for  the flow network is obtained by including an 
arc (xirj) from  node xi to  route rj if there is an edge in E 
connecting xi  and rj .  To this add a set of arcs  from  source 
node s to  each node in X ‘ ,  and a set of arcs from each 
route in R to sink node t .  Each  arc from s to some node 
x E X’ will have a flow capacity equal  to  the number of 
buffers in x. Each  arc (xirj) from node xi to route rj can 
have any finite capacity that is greater  than  the number of 
buffers (bi) in xi or number of messages (mi) allowed on 
route rj .  Finally, each  arc from a route rj E R to sink node 
twill  have a flow capacity  equal to  the maximum number 
of messages  allowed on  the  route r j .  

In  such a flow network, any flow that  conserves  arc 
flows at  each of its  nodes is called a “compatible flow.” 
Consider a compatible flow from s to 1. The maximum 
flow leaving each  node xi E X ’  is restricted to bi, and that 
arriving at  each  route rj E R is restricted  to mi. Also, a 
weighted matching E,, of H has no more than 6, edges con- 
nected to  node xi  and no more than m j  edges connected  to 
route rj .  Furthermore,  there is an  arc (xirj) in the flow net- 
work only if there is a nonempty set Efj  of edges in E that 
connects xi  and r j .  Thus,  the maximum flow from s to t in 
the flow network gives the maximum weighted matching 
of the bipartite graph.  Such a matching is obtained by se- 
lecting, for  each pair of connected  nodes (xi, rJ in H ,  the 
number of edges  equal  to  the maximum flow obtained for 
arc (xirj) in the flow network. Such  a flow network is de- 
fined next. 

Let H = ( X ’ ,  R ,  E )  be  the  bipartite  graph for a  subgraph 
S, = (XI ,  A ‘ )  generated by X ’  on a network N = ( X ,  A ,  B ,  
R ,  M ) .  Then  aflow network H,, for H i s  denoted by H ,  = 
(V ,  a , f ) ,  where  Vis  the  set of nodes X ‘  U R U {s, t } ,  and 
where s is a new source node  and f is a new sink node; a, 
the set of arcs in H ,  is given by 

{(sxJIx, E X ’ }  U {(xiri)lxt is adjacent  to rj in H }  

U {(rjt)lrj E R } ,  

and f is a function on a to  the positive  integers such 
that 53 

VIJAY AHUJA 





Acknowledgments 
The research reported here  was conducted under  the ex- 
cellent  guidance  and  direction of Dr. V. L. Wallace at the 
Department of Computer  Science, University of North 
Carolina,  Chapel Hill. We wish to  express  our  deep grati- 
tude to Dr. Wallace for his extensive contributions in this 
effort. (Dr. Wallace is currently at  the University of Kan- 
sas,  Lawrence.) 

References  and  note 
I .  

2. 

3. 

4.  

5 .  

6. 

E. G. Coffman, M. J. Elphick, and A. Shoshani,  “System 
Deadlocks,” Computing  Surv. 3, 67-78  (1971). 
A. N.  Habermann, “Prevention of System Deadlocks,” 
Commun.  ACM 12, 373-377, 385 (1969). 
R. C.  Holt,  “On Deadlocks in Computer  Systems,”  Ph.D. 
Thesis,  Department of Computer  Science, Cornel1 Univer- 
sity, Ithaca,  NY, 1971. 
Some of the results described here were presented  at the 
1977 ACM Computer Science Conference. 
R. E. Kahn  and W. R. Crowther,  “Flow Control in Resource 
Sharing Computer  Networks,” IEEE Trans.  Commun. 

L. Kleinrock, Queuing Systems  Volume 2: Computer  Appli- 
cations, John Wiley & Sons,  Inc., New York, 1976, pp. 

COM-20, 539-545 (1972). 

439-440. 

IBM J. RES. DEVELOP. VOL. 24 NO. I J ANUARY 1980 

7. 

8. 

9. 

10. 

1 1 .  

12. 

13. 

E. Raubold and J .  Haenle, “ A  Method of Deadlock-free Re- 
source Allocation and Flow Control in Packet  Networks,” 
Proceedings of the Third International  Conference on Com- 
puter Communication (Toronto, August 1976), p. 483-487. 
V. Ahuja, “Exposure of Routed Networks  to  Deadlock,” 
Ph.D. Thesis, Department of Computer  Science, University 
of North  Carolina, Chapel Hill, NC, 1976. 
V. Ahuja, “An Algorithm to  Check  Network  States  for 
Deadlock,” IBM J .  Res.  Develop. 23, 82-86 (1979). 
J. Edrnonds, “Paths,  Trees and Flowers,” Can. J .  Math. 17, 
449-467 (1965). 
R. G. Busacker  and T. L. Saaty, Finite Graphs  and  Net- 
works:  An  Introduction with Applications, McGraw-Hill 
Book Co.,  Inc., New York, 1965. 
L. R. Ford,  Jr.  and  D. R. Fulkerson, Flows in Networks, 
Princeton  University Press,  Princeton,  NJ, 1962. 
E. A. Dinic,  “Algorithm for Solution of a Problem of Maxi- 

Math. Dokl. 11, 1277-1280 (1970). 
mum Flow in a Network with Power Estimation,” Soviet 

Received  February 16, 1979; revised  August 8, 1979 

The  author  is  located at the IBM System  Communications 
Division  laboratory,  Research  Triangle  Park,  North 
Carolina 27709. 

55 

VIJAY AHUJA 


