60

C. H. West
P. Zafiropulo

Automated Validation of a Communications Protocol:
the CCITT X.21 Recommendation

Abstract: The call establishment procedure of the X.21 interface recommended by the International Telegraph and Telephone Consul-
tative Committee (CCITT) has been validated as a test of a recently developed theory and of an implemented system for automated
communications protocol validation. The test demonstrated the applicability of the validation technique and identified a number of
points where the interface state diagram does not completely define the interface behavior.

Introduction

A recent theory due to Zafiropulo [1] has shown that it is
possible to validate the syntax of a communications
protocol between two processes that can be represented
as a pair of directed graphs. A reformulated version of the
theory has been programmed in a system that enables er-
rors in protocols to be automatically identified [2].

The work described in this paper was undertaken in or-
der to test the above theory and validation system in a
real environment, by validating a reasonably complex
protocol.

The X.21 interface has been chosen as a test case be-
cause of its current interest and also because it is formally
defined in state diagram form and so can be readily vali-
dated.

In this paper we first briefly describe the X.21 interface
and how its specification was interpreted for the purpose
of validation. The results of the validation are then pre-
sented and their significance discussed.

X.21 interface specification

The X.21 interface is a recommendation of the Inter-
national Telegraph and Telephone Consultative Com-
mittee (CCITT) for a standard means of connecting Data
Terminal Equipment (DTE) to Data Circuit-termination
Equipment (DCE) in a public data network [3]. In particu-
lar, it is the recommended interface for user classes of
service employing a synchronous transmission mode.
The interface is defined in detail in [3], which we refer to
as the X.21 specification.

The X.21 specification defines all aspects of the inter-
face, including the signaling protocol between the DCE
and DTE, as well as signal formats and mechanical and
electrical characteristics of the interface. Some of the
above are indirectly defined by reference to other recom-
mendations or standards.

The validation procedure we have developed has been
applied only to the logical structure of the call establish-
ment procedure for circuit switched service described in
the X.21 specification. The call establishment procedure
is described in [3] in four ways:

1. A text description of the states of the interface system
during call establishment.

2. A state diagram specifying the signals sent between
the DCE and DTE and the possible state sequences.
Copies of the two sections of the state diagram are
shown in Fig. 1.

3. Tables of time limits and timeouts, which give the
maximum times available for the two processors to re-
spond to each other’s actions and the procedures to be
adopted when no response is received.

4. Sequence diagrams that show typical timings of inter-
actions between the DTE and DCE.

The X.21 specification clearly states that the sequence
diagrams show only sample sequences derived from the
state diagram and that the latter defines the logical rela-
tionships of the events at the interface.

Copyright 1978 by International Business Machines Corporation. Copying is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title
and abstract may be used without further permission in computer-based and other information-service systems. Permission to republish

other excerpts should be obtained from the Editor.

C. H. WEST AND P. ZAFIROPULO

IBM J. RES. DEVELOP. & VOL. 22 4 NO. 1 &4 JAN 1978

We have therefore interpreted the state diagram as
being the definitive specification of the interface and the
text description as providing supplementary information
that helps a reader of the specification to understand the
state diagram. The implication is that in the event of pos-
sible inconsistencies between the text and the state dia-
gram, the latter will be interpreted as being definitive.

We have not addressed the problem of validating the
time limits and timeouts which are defined to ensure con-
tinuing operation of the interface when either the DTE or
DCE fails to respond to the other within a reasonable
time. The lengths of timeouts are generally set in relation
to the operating environment and the implementations for
which an interface is envisaged. An evaluation of the ac-
tions taken can only be made if a detailed study of the
possible causes of a response failure is made. We consid-
er such a study to be beyond the scope of the current
validation, which addresses only the operation of the in-
terface in an error-free transmission environment. In gen-
eral, the results presented below are insensitive to the
specified timeout mechanisms, as the interaction se-
quences we have validated can all be executed without
invoking timeouts.

X.21 state diagram and the options considered
The state diagram given in the X.21 specification is in two
parts, as reproduced in Fig. 1.

The specification describes the state diagram as defin-
ing the logical relationship of events at the interface. Each
state traversed by the interface system is represented as
an ellipse, with rectangles representing related sequences
of states and transitions which are not specified in detail.
The top half of each ellipse and rectangle contains an
identifying state name and number, and the bottom half
the signals on four interchange circuits between the DTE
and DCE that collectively define the state of the system.
The top two signals refer to the Transmit (T) and Control
(C) Interchange Circuits that carry signals from the DTE
to the DCE; the bottom two, to the Receive (R) and In-
dication (I) Interchange Circuits carrying signals from the
DCE to the DTE. Allowed transitions between states are
indicated by directed links between them that are labeled
either DTE or DCE to indicate the processor initiating the
transition.

Either the DTE or DCE can initiate a call establishment
sequence. In the case of the DTE, it first sends a caLL
REQUEST, which is acknowledged by the DCE: it then in-
dicates the call destination and facilities required by
means of SELECTION SIGNALS. The DCE returns signals
indicating the CALL PROGRESS and an optional CALLED
LINE IDENTIFICATION, which are followed by a further
exchange of signals leading to the data transfer state.

The DCE starts a call establishment procedure by sig-
naling an INCOMING cALL, which is acknowledged. It may

IBM J. RES. DEVELOP. & VOL. 22 ¢ NO. 1 & JAN 1978

DTE
9
CALL ACCEPTED
Ljon
BEL, OFF

*DTE DCE

10 BIS CALLING LINE
IDENTIFICATION

4 10]carLED

SELECTION SIGNALS LINE IDENTIFICATION]

145, ON 1, on 1,08

+., OFF
. BCE 1A, OFF 1AS, OFF

DTE *DCE

; /"65
DTE WAITING - DCE WAITING
DCE

1, 0N 1,0n
+,0FF SYN, OFF

6c

DCF WAITING
1,08

SYN, OFF

*DCE

6a
DCE WAITING

11 connEec-

TION IN PROGRESS
1,08

1, oFF

7 cALL|PROGRESS
SIGNALS

1,08 DCE L,oN
SYN, OFF 1AS, OFF

13
DATA TRANSFER READY FOR DATA
-t
D, ON 1,08
D, ON 1,0N

(a)

ANY STATE

XX

DTE Xx DCE
16 pTE 19DCcE
CLEAR REQUEST CLEAR INDICATION
0, OFF XX
XX 0, OFF
DCE *bee DTE
17pcE 21DCE READY 20DTE
CLEAR CONFIRMATION (DTE UNCONTROLLED CLEAR CONFIRMATION
0, OFF pee \NOTREADY) 0, OFF DCE 0, OFF
0, OFF 1, OFF 0, OFF
4
18 14
DTE READY DTE} PDTE DTE CON-
(DCE NOT READY) TROLLED NOT READY
1, 0FF DCE { DTE 1, oFF
0, OFF (NOTE 1), OFF
DCE L READY DTE

L, oFF
1, OFF

NOTE 1: The condition of the R circuit
is for fusther study.

(b)

Figure 1 Two-part X.21 state diagrams from [3]. Transitions
not included in the validation are indicated by asterisks. Signals
are indicated as X when any signal may be present on the circuit.

then identify the caller. The remainder of the call estab-
lishment procedure is identical to the latter part of the one
initiated by the DTE. If both the DTE and DCE simulta-
neously try to establish a call, a CALL COLLISION state is
entered and the outgoing call is given priority.

Either processor can at any time issue a CLEAR
REQUEST, which initiates a clear sequence that leads back

C. H. WEST AND P. ZAFIROPULO

61

62

to the READY state. Thus, whereas there are only a few
interaction sequences that lead to the DATA TRANSFER
state, there are many ways in which a partially completed
call establishment sequence can be terminated.

Figure 1 also shows a number of states that the DTE
and DCE can enter when one of them is not ready to exe-
cute a call establishment procedure. Some of the states
shown on the state diagram are described in the text as
being optional, making possible a number of variations of
the interface that may, for example, be defined by the net-
work to which the equipment is attached. Rather than val-
idate all combinations of options, we have chosen to vali-
date a single configuration in which all of the optional
states are included. We have thus studied an interface in
which the states numbered 4, 7, 6B, 10, 6C, and 11 are tra-
versed by sequences starting with the DTE initiating a
CALL REQUEST, and the states 10bis, 6C, and 11 are tra-
versed when the DCE signals an INCOMING cALL. To en-
sure these conditions, all links bypassing these states
have been suppressed. Such links are indicated by aster-
isks preceding their labels in Fig. 1.

The optional bypassing of the DCE CLEAR CON-
FIRMATION state 17 has been similarly suppressed.

Two minor points about our interpretation should be
mentioned for completeness. The condition of the R cir-
cuit in state 14 (DTE CONTROLLED NOT READY) is noted as
being for further study. We have for present purposes de-
fined it as being 1 because any other assignment would
require the insertion of an intermediate state between the
states READY and DTE CONTROLLED NOT READY.

The specification also states that the DCE CLEAR IN-
DICATION and DTE CLEAR REQUEST states may be entered
from all states. We have interpreted this as meaning all
states during call establishment, but not including the
READY state itself. This was the interpretation given in a
recent paper on the X.21 interface [4]. Allowing these
states to be entered from the READY state would render
ambiguous a signaled transition into a NOT READY state,
which is obviously not the intention of the interface de-
signers.

Apart from the options considered and the two minor
points of interpretation, we believe that we have vali-
dated the interface as it is specified.

Problems of interpretation of the state diagram
The X.21 interface specification gives the possible se-
quences of events in the X.21 interface in the form of a
state diagram for the combined DTE-DCE system. The
protocol validation procedure described in [1, 2] can only
be applied to a pair of separately defined communicating
processors.

To validate the X.21 interface, we have therefore had
to go through a step that every designer implementing the
interface must also go through, namely, one of deriving

C. H. WEST AND P. ZAFIROPULO

the logical structure of the DCE and DTE that are to com-
municate according to the state diagram in the X.21 speci-
fication.

Whereas the existence of the X.21 specification in the
form of a combined state diagram implies that this can be
done, it does not define an algorithm for doing it.

This raises a number of questions that should be con-
sidered. First, is there a unique, correct algorithm by
means of which the logical structure of the DCE and DTE
can be derived from the state diagram? If this is not the
case, it is possible that different pairs of processors can be
derived that can execute the X.21 interface specification.

In the latter case, suppose that two algorithms A and B
exist that can each be used to derive a DTE/DCE pair. It
is not immediately obvious that the DCE derived from
algorithm A will operate correctly with the DTE derived
from algorithm B. If it does not, it is conceivable that
equipment designed by different manufacturers as imple-
mentations of the same standard may not be compatible.
We know of no theory which proves that the combined
state diagram used in the X.21 specification permits a
unique derivation of the logical structure of the DTE and
DCE. There are, however, a number of conditions that
must be satisfied for such a derivation to be possible.

The first is that the combined state diagram must define
the complete interaction domain of a DTE and DCE. Sup-
pose that no provision had been made in the combined
state diagram for a possible call collision. System behav-
ior would then not be defined if a call collision occurred,
and it would not be possible to uniquely define processors
that could handle a call collision.

Second, any DTE or DCE derived from the combined
state diagram should be capable of executing the com-
plete execution domain of the state diagram. Otherwise
one might initiate an interaction sequence that might not
be executable by the other.

The first condition can be partially verified by a process
of validation. The second can be verified by comparing
the possible interaction sequences of each processor with
those of the X.21 state diagram.

Method used to derive the DTE and DCE processors
In this section we discuss how we have derived the logical
structure of the DTE and DCE processors from the state
diagram. The derivation is reasonably simple, but we
have no proof that it represents a unique interpretation of
the specification.

Inspection shows that all transitions in the state dia-
gram represent either a DTE- or DCE-initiated transition.
This is indicated directly by the label of the link between
each pair of states and may also be inferred from changes
in the signals in the interchange circuits when the transi-
tion is executed.

IBM J. RES. DEVELOP. @ VOL. 22 @ NO. 1 ¢ JAN 1978

All transitions result in changes of either the T and/or C
circuits or of the R and/or T circuits, but not simulta-
neously of both pairs. There are thus two possible transi-
tion types between an arbitrary state pair A and B that can
be characterized as in Fig. 2. The signals on the T, C, R,
and I circuits in state A are shown as t(A), c(4), r(4), and
i(A), respectively. If the transition to state B is DCE-ini-
tiated, the T and C circuits contain the same signals in
state B, namely t(4) and c(A). Either or both of the R and
I circuits are redefined to new values, which is indicated
by relabeling the R and I signals in state B as r(B) and i(B).

Similarly, in a DTE-initiated transition, the R and I cir-
cuits are unchanged, but either or both of the signals on
the T and C circuits are redefined in state B to be t(B) and
c(B).

We have therefore modeled all transitions as being as-
sociated with an information exchange between the two
processes. This is represented as in [1, 2] by the transmis-
sion of an indivisible unit of information or event from
one process to the other. We define an event as being the
new signals on the T and C circuits [t(B), c(B)] in the case
of a DTE-initiated transition and those on the R and I
circuits [r(B), i(B)] in the case of a DCE-initiated transi-
tion.

We then assume that a transition in the X.21 state dia-
gram represents a related pair of transitions in the DTE
and DCE. In one processor there is a transition associat-
ed with the transmission of an event; in the other proces-
sor, a transition resulting from the reception of the same
event.

Figure 3 shows how the two types of transitions, DTE-
initiated and DCE-initiated, are modeled in the two
processors. In both cases the initiating processor trans-
mits the event, the other receives it. If this transformation
is applied to each transition in the state diagram, state
diagrams for both the DTE and DCE can be derived, as
shown in Fig. 4. Both have the same topology and num-
ber of states as the original diagram. Transitions between
corresponding pairs of states in the two diagrams indicate
changes in either the T and/or C circuits or the R and/or I
circuits and are symmetric in the sense that they corre-
spond to transmission and reception of the same event.

It should be noted that the final transition in the X.21
state diagram, i.e., to the DATA TRANSFER state, has been
excluded. This is a transition that is not initiated by one of
the processors in the same way as all others in the X.21
state diagram. It can occur as soon as the READY FOR
DATA state is reached and is not considered to be part of
the call establishment procedure.

The combined state diagram representation used in the
X.21 specification appears to have the property that the
structure of a pair of derived DTE and DCE state diagrams
must have the same topology and the same send/receive
symmetry that we have noted above. It is therefore only

IBM J. RES. DEVELOP. & VOL. 22 & NO. 1 ® JAN 1978

-
|

\

State 4

t(A4) c(A)
r(4) i(A)

\

/S;te B

State 4

t(4) c(A)
r(A) i(A)

f

DTE

_f

)

State B
t(A) c(A) (B c(B)
r(B) i(B) r(A4) i(4)

(a) (b)

Figure 2 Characteristic DCE-initiated (a) and DTE-initiated (b)
transitions in the X.21 state diagram.

Figure 3 Transformation of a DCE-initiated (a) and a DTE-ini-
tiated (b) transition.

State A State 4

{
10

RECEIVE SEND

[r(8),i(B)] [r(B),i(B)]

State B State B

O‘f
O

IN THE DTE iN THE DCE

(a)

State 4 State 4

0
9

SEND RECEIVE
[t(B),c(B)] [t(B),c(B)]

State B State B

0
0

IN THE DTE IN THE DCE

(b) 63

C. H. WEST AND P. ZAFIROPULO

64

ANY STATE
IN CALL
ESTABLISHMENT

s[0, oFF] R[0, OFF]
16
DTE CLEAR
REQUEST

19
DCE CLEAR
INDICATION

Rr[0, OFF] s[0, oFF]
y

21

17 DCE READY 20
DCE CLEAR (DTE UNCONTROLLED = DTE CLEAR
CONFIRMATION NOT READY) [1 OFF] CONFIRMATION

s[0,oFr]

s[1,oFF]

18 14
DTE READY DTE CONTROLLED
(DCE NOT READY) R[1, oFF] y S[0L0FF] NOT READY

r[0, OFF] s{1, oFF]
s{0, oN}

R[BEL, OFF]

2
CALL REQUEST

8
INCOMING CALL

R[BEL, OFF]

15
CALL COLLISION

R[+, OFF]
9

CALL ACCEPTED

ANY STATE
IN CALL
ESTABLISHMENT

r[0, OFF] s[0, oFF]

16
DTE CLEAR
REQUEST

19
DCE CLEAR
INDICATION

s[0, oFF] r[0, oFF]

21

17 DCE READY 20
DCE CLEAR (DTE UNCONTROLLED s DTE CLEAR
CONFIRMATION NOT READY) CONFIRMATION

[1,0FF])

[0, OFF}

rf1,0FF]

18 14
DTE READY DTE CONTROLLED
(DCE NOT READY) s[1,0FF] r[01, oFF] NOT READY

s[0, oFF]

r[0, oN]

S[BEL, OFF] 8

INCOMING CALL

S[BEL, OFF]

r[0, oN]

15
CALL COLLISION

s[+, OFF]

3
PROCEED TO
SELECT

CALL ACCEPTED

R[1A5, oFF] r{1a5, oN]
A Y

4 10 10 B1S 4 10 10 BIS

SELECTION CALLED LINE CALLING LINE SELECTION CALLED LINE CALLING LINE
SIGNALS IDENTIFICATION IDENTIFICATION SIGNALS IDENTIFICATION IDENTIFICATION
s[1,0N] I Y 1
R[SYN, OFF] r[1, on] s[sYN, oFF]
v R[1AS, OFF] ’ v s[1AS5, OFE] S[SYN, OFF] A ’
5 6B 6c 5 6B 6c

DTE WAITING DCE WAITING DCE WAITING

R[IAS, OFF] rf1, 0FF]

R[SYN, OFF]

v R[SYN, OFF] v

7 11
CALL PROGRESS CONNECTION
SIGNALS IN PROGRESS

6A
DCE WAITING

[1a5, OFF]

12
READY FOR
DATA

(a)

DTE WAITING DCE WAITING DCE WAITING

[
s[sYN, OFF] s(1a5, oFF] s[1,0FF]
Y s[sYN, OFF} y {’
6a 7 11
DCE WAITING CALL PROGRESS CONNECTION
SIGNALS IN PROGRESS
[145, OFF]
s{1,on]
\

12
READY FOR
DATA

(b)

Figure 4 Derived state diagrams for the DTE (a) and DCE (b), where S indicates send and R receive.

suitable for the representation of a restricted class of in-
teracting processors. One implication of this is discussed
in a subsequent section.

The DTE and DCE state diagrams, derived as de-
scribed above and shown in Fig. 4, are in a form suitable
for application of the validation procedure described in
[1, 2]. It is merely necessary to identify each distinct
event exchanged across the interface with an integer and

C. H. WEST AND P. ZAFIROPULO

to label transitions in the state diagrams with positive or
negative integers, indicating that a given event is received
or transmitted, as described in [1].

Outline of the validation procedure

The validation procedure applied to the DTE and DCE
state diagrams derived above is discussed in detail in
[1, 2] and so is only briefly reviewed here.

IBM J. RES. DEVELQP. @ VOL. 22 ¢ NO. 1 ¢ JAN 1978

Each state diagram is expressed in terms of a transition
matrix whose elements contain the labels of the transi-
tions between states. Paths consisting of a sequence of
transitions in the state diagram are derived by iteratively
multiplying the transition matrix by itself in the set theo-
retic sense. When the transition matrix is raised to the
power N, its elements contain all paths of length N in the
state diagram. After each iteration, paths that start at and
return to the initial state (in this case the READY state) are
saved. In this way all possible paths or interaction se-
quences that both processors can execute can be deter-
mined.

We refer to an individual interaction sequence starting
from the initial state as a unilogue. The Cartesian product
of the set of unilogues derived for the DTE with that de-
rived for the DCE is a set of duologues, or pairs of poten-
tial interaction sequences that collectively represent the
total interaction domain of the two processors. Each duo-
logue is individually tested to determine whether it can be
correctly executed, is nonoccurrable, or is erroneous.

A duologue is correctly executable if an attempt to exe-
cute it results in both processors returning to the initial
state having correctly received all events transmitted by
the other.

A duologue is nonoccurrable if its attempted execution
invariably results in the execution of some other duologue
being completed.

A duologue is erroneous if its attempted execution
brings the system into a deadlock condition or results in
an event being transmitted by one processor that cannot
be subsequently received by the other.

The validation procedure validates the ‘‘syntax’’ of the
interaction, whether or not the exchange of messages al-
ways takes place in a predefined and predictable way. It
does not address the problem of the validity of the ‘‘se-
mantics’’ of the interaction, namely, whether or not the
executable interactions accomplish a meaningful ex-
change of control information or data.

Determination of the set of duologues

The validation procedure described in [1, 2] can be ap-
plied to protocols between processors that return to an
initial state after a finite number of event exchanges. The
procedure is thus limited in its application to protocols
that do not contain loops, i.e., cycles of state transition
sequences that can be repeatedly executed without the
processes traversing their initial states.

It has been assumed in the validation procedure for the
DTE and DCE that each starts in the READY state. Sever-
al other states, such as DTE CONTROLLED NOT READY Or
DTE READY (DCE NOT READY), could also have been cho-
sen as the initial state. Other choices would have had the
disadvantage of increasing the number of loops not tra-
versing the initial state.

IBM J. RES. DEVELOP. @ VOL. 22 @ NO, | ® JAN 1978

With the choice of the READY state as the initial state,
there is one loop in each processor that makes the poten-
tial interaction domain infinite. This is the loop between
CALL PROGRESS SIGNALS (state 7) and DCE WAITING (state
6B) that enables multiple cALL PROGRESS blocks to be
transmitted. In any practical implementation, the number
of cCALL PROGRESS blocks transmitted will be finite, so that
we can consider a finite interaction domain containing all
interaction sequences starting with a CALL REQUEST that
contains any number of CALL PROGRESS blocks up to a
predetermined maximum.

In the validation we have performed, we have arbi-
trarily set this number as three, by not considering uni-
logues that contain more than three traversals of any indi-
vidual state.

With this limitation, a total of 153 unilogues was de-
rived by multiplication of the transition matrix for each
processor, so that there was a total of 23 409 duologues
to be validated.

This number was considerably higher than we had ex-
pected. It was found to be a result of a property of the
X.21 state diagram that we had not foreseen and is a re-
sult of the way a call collision is represented.

The text description of the CALL COLLISION state in the
X.21 specification is as follows:

““A CALL COLLISION is detected by a DTE when it re-
ceives INCOMING CALL in response to CALL REQUEST. It is
detected by a DCE when it receives CALL REQUEST in re-
sponse to INCOMING CALL.”’

Our interpretation of the above was that the statements
represented the only circumstances in which the caLL
COLLISION state was entered, although this is not explicit-
ly stated.

The paths in the derived state diagrams that correspond
to the above interpretation are shown in Fig. 5.

An examination of the generated sets of unilogues
showed that the CALL coLLIsION state could be entered in
other circumstances. Figure 6 shows two alternative
paths that can also lead to the CALL COLLISION state.
These correspond to the DCE signaling INCOMING CALL
after it has received cALL REQUEST and the DTE initiating
a CALL REQUEST after it has received an INCOMING CALL
signal. It is not clear that these two alternative ways of
entering the CALL COLLISION state are intended to be
available in the X.21 interface. They can be excluded by
removing the transition from CALL REQUEST t0 CALL COL-
LisION in the DCE state diagram and that from INCOMING
CALL to CALL COLLISION in the DTE state diagram. How-
ever, the resulting state diagrams are then topologically
different and the interface can no longer be represented
by a combined state diagram of the form given in the X.21
specification.

As we have interpreted the state diagram in the X.21
specification as being definitive, we have left these transi-

C. H. WEST AND P. ZAFIROPULO

65

66

R[BEL, OFF]

8
INCOMING
CALL

2
CALL REQUEST

R[BEL, OFF] s[0,0nN]

15
CALL
COLLISION

r[+, OFF)

3
PROCEED TO
SELECT

ETC. (a)

s{BEL, OFF]

8
INCOMING
CALL

2
CALL REQUEST

s[BEL, OFF] R[0, 0N]

PROCEED TO
SELECT

ETC. (G

Figure 5 Call collision implied by text. DTE state diagram is at
(a) and DCE state diagram at (b).

Figure 6 Alternative ways of entering the CALL COLLISION
state. At (a) DCE signals INCOMING CALL after receiving
CALL REQUEST; at (b) DTE signals CALL REQUEST after
receiving INCOMING CALL.

DTE

s[0, oN]

R[BEL, OFF])

15
CALL
COLLSION

S[BEL, OFF]

(a)

DTE DCE

S[BEL, OFF]

8
INCOMING
CALL

INCOMING
CALL

s[0, oN]

15
CALL
COLLISION

15
CALL
COLLISION

(b)

C. H. WEST AND P. ZAFIROPULO

tions in the state diagrams we have validated. They do not
influence the results of our validation, but their inclusion
modifies the way in which the interface operates.

Validation results

The 23 409 duologues have been validated according to
the procedure described in [1, 2]. A total of 29 error con-
ditions was indicated by the programs. All were examples
of one processor being in a state such that no means of
accepting an event transmitted by the other was defined.
We use the term ‘‘error’’ to describe such a condition, but
in applying it to the X.21 specification as it exists at pres-
ent, it should be remembered that some features of the
X.21 interface are under study, and the ‘‘errors’’ we have
found can be interpreted as indicating areas of the inter-
face specification that are incompletely defined.

The 29 errors detected can be divided into three
classes.

The first class consists of eight errors that are the result
of collisions resulting when either the DCE or DTE in-
dicates a transition to a NOT READY state at the same time
that the other is initiating a call establishment procedure
or is itself making a transition to a NOT READY state.

The second class consists of ten errors which are prob-
ably less significant, being the result of collisions that can
occur when a call establishment procedure is cleared by
the DTE or DCE when a response from the other is out-
standing.

The remaining 11 may be classified as miscellaneous.
Some are secondary errors that may occur in interaction
sequences after one of the collisions described above has
occurred. Others are conditions that have been flagged as
errors as a result of the way the validation procedure has
been defined, and inspection shows that they do not rep-
resent actual errors in the interface.

These three classes of errors are discussed in more de-
tail in the following sections.

With some justification, it may be argued that inclusion
of the timeouts in the validation would permit most of the
collisions identified by the validation to be resolved. In
order to do this, it is necessary to make assumptions
concerning the behavior of a processor after it has re-
ceived an event not explicitly provided for in the state
diagram and in circumstances which are possibly unfore-
seen by an implementer. Rather than make specific as-
sumptions, we consider the behavior of a processor in
such circumstances to be undefined. Readers who are
particularly interested in the validation results as they
pertain to the X.21 interface should bear this in mind.

o Collisions due to transitions to NOT READY states

The X.21 interface specification recognizes that collisions
are possible when both the DTE and DCE independently
initiate a call establishment procedure. In this case the

IBM J. RES. DEVELOP. @ VOL. 22 @ NO. 1 ® JAN 1978

Table 1 Error conditions due to NOT READY transitions.

State of DTE Event received Indicated
when error occurs R circuit I circuit DCE state
DCE READY (DTE
UNCONTROLLED NOT READY) BEL OFF INCOMING CALL
DTE CONTROLLED NOT READY BEL OFF INCOMING CALL
DCE READY (DTE DTE READY
UNCONTROLLED NOT READY) 0 OFF (DCE NOT READY)
DTE READY
DTE CONTROLLED NOT READY 0 OFF (DCE NOT READY)
State of DCE Event received Indicated
when error occurs T circuit C circuit DTE state
INCOMING CALL 01 OFF DTE CONTROLLED
NOT READY
DTE READY (DCE NOT READY) 0 ON CALL REQUEST
DCE READY (DTE
DTE READY (DCE NOT READY) 0 OFF UNCONTROLLED
NOT READY)
DTE READY (DCE NOT READY) 01 OFF DTE CONTROLLED
NOT READY

DTE is given priority when a transition to the CALL COL-
LISION state is made, and the DCE cancels the INCOMING
cALL. There is no indication in the specification of how
other possible collistons are to be handled. These can oc-
cur when the DTE or DCE attempts to establish a call
while the other is making a transition into a NOT READY
state or when both simultaneously go into a NOT READY
state.

A summary of the error conditions of this type that the
validation programs indicated is given in Table 1. This
shows for each processor the state it is in when the error
occurs, the signals on the incoming circuits for which no
transition from the current state is defined, and the state
of the other processor that these signals indicate.

In discussing the collisions that result in the errors list-
ed in Table 1, we concentrate on the one generated when
the DCE indicates INCOMING CALL while the DTE is mak-
ing a transition to DTE CONTROLLED NOT READY. This is
potentially an important case, as the CONTROLLED NOT
READY state is available to indicate to the network that
the terminal is operating off-line. Depending on the usage
patterns of a particular terminal, there may be a greater
probability of this collision occurring than there is of a
CALL cOLLISION. The validation procedure indicated that
there is no provision for [BEL, OFF] being received by
the DTE when it is in the state DCE READY (DTE CON-
TROLLED NOT READY) and for [01, OFF] being received
by the DCE in state INCOMING CALL. This situation arises
when the two processors simultaneously make transitions
from the READY state into the above states.

IBM J. RES. DEVELOP. e VOL. 22 ¢ NO. 1 e JAN 1978

R[BEL, OFF]/'

14
DTE CONTROLLED
NOT READY

S[BEL, OFF]

DCE R[L, oN]

9
CALL
ACCEPTED
DTE

Figure 7 A collision generated by a NOT READY transition.

Figure 7 shows this in detail. Part of the state diagrams
for both processors showing the transitions in question
are shown. The transitions that lead to the collision are
shown by broad arrows; needed departing links from the
states in which the errors occur that would resolve the
errors are indicated by dashed arrows.

We have carefully studied this example to convince
ourselves that the errors were due to incomplete specifi-
cation of the interface and were not a result of a misinter-
pretation of the specification or an erroneous validation
procedure.

A number of points discussed in the specification
should be mentioned. The CONTROLLED NOT READY state
is still a subject of further study by the CCITT; in later
versions it may be possible to enter it from other states,
and a family of CONTROLLED NOT READY signals may be
defined. Neither of these alternatives would directly re-

8 r[01, OFF]
INCOMING —
CALL

67

C. H. WEST AND P. ZAFIROPULO

68

solve the collision. A second point is that there is a time-
out after the DCE has indicated INCOMING cALL that al-
lows it to return to the READY state if the DTE does not
signal CALL ACCEPTED within a specified time. This time-
out is obviously disabled if a cALL coLLISION is detected,
but this is not stated explicitly in the specification. The
collision in question produces a situation similar to that in
which the CALL COLLISION state is entered. The DTE ap-
pears to respond to INCOMING CALL with a signal other
than the expected CALL ACCEPTED, and the specification
does not define whether or not the timeout remains acti-
vated in these circumstances.

We have investigated the possibility that the collision
manifests itself as a result of the way we have performed
the validation. To do this we considered two ways of im-
plementing the processors.

The first was a modular design in which each processor
contained an input decoder, whose function was to moni-
tor the signals on the input circuits, assemble characters
and messages, and indicate to a decision making unit
when a complete input signal or message had been re-
ceived. We concluded that the collision would manifest
itself in the decision making unit in the same way as it
occurs in the state diagrams, and we could see no way of
designing modular processors that would avoid it.

The second implementation was one in which the input
circuits were monitored directly by decision making logic
on a bit by bit basis. In this implementation, each serial
bit of a character would produce an intermediate state
change in a processor. We concluded that the collision
would still occur, but now in each of the intermediate
states.

We therefore concluded that the collision described
above can occur and that the X.21 specification as it cur-
rently exists contains no mechanism for resolving it.

Similar collisions occur when either the DTE enters
DTE UNCONTROLLED NOT READY or when the DCE enters
DCE NOT READY, while the other is initiating a call estab-
lishment sequence. These collisions are sufficiently simi-
lar to the one discussed that we will not describe the re-
sults in detail. 1t should be noted that the possibility of a
collision between DTE READY (DCE NOT READY) and CALL
REQUEST is mentioned in [3] during the discussion of test
loop activation. The collisions that occur when both
processors indicate NOT READY are also similar, but here
it should be noted that the possibility of both processors
indicating NOT READY is not discussed at all in the X.21
specification, although such states are obviously possible.

We have made no serious attempt to extend the com-
bined state diagram in the X.21 specification to resolve
the above collisions. Our brief investigations indicate that
it is difficult to represent such extensions in terms of a
combined state diagram without introducing undesirable
transitions. This appears to be another manifestation of

C. H. WEST AND P. ZAFIROPULO

the problems of a single state diagram representation as
discussed with respect to the CALL COLLISION state in an
earlier section.

o Collisions during clearing
Either the DTE or DCE can initiate a CLEAR REQUEST at
any time during a call establishment operation.

They do this by indicating [0, OFF], which initiates a
return to READY via a number of intermediate states.

When [0, OFF] is indicated, each processor waits for
the same acknowledging [0, OFF] response from the oth-
er, which must arrive within a specified time. The valida-
tion procedure indicated that if the initial CLEAR REQUEST
were indicated when a response was expected as part of
the normal call establishment sequence, this could be re-
ceived before the acknowledging [0, OFF] in either the
DCE CLEAR INDICATION state of the DCE or the DTE
CLEAR REQUEST state of the DTE. The state diagrams
do not obviously indicate that this can occur. Figure 8
shows one example of this type of collision. The DTE has
initiated a call establishment procedure and followed the
CALL REQUEST sequence as far as state DTE WAITING
(state 5). While it is doing so, the normal signal exchange
has resulted in the DCE reaching the same state. The col-
lision occurs when the DTE at this point issues a CLEAR
REQUEST and goes to state 16 while at the same time the
DCE makes a transition to DCE WAITING (state 6A) by
sending [SYN, OFF]. When the DCE receives the CLEAR
REQUEST, it makes the transition to the DTE CLEAR
REQUEST state also, but the DTE will receive the [SYN,
OFF] signal in state 16 before the acknowledging [0,
OFF]. The X.21 state diagram shown in Fig. 1 shows that
the R and I circuits may contain any signals while the
system is in the DTE CLEAR REQUEST state, and this may
be interpreted as implying that the collision indicated is
covered by the X.21 specification. However, it is perhaps
not obvious to a designer that the R and I circuits in this
state may not only indicate several different signals but
may also change. A design that fails to take account of
this type of collision may result in a serious problem when
it occurs.

Table 2 shows all of the signals that the processors can
receive when a clear sequence has been initiated; one is
by no means obvious. This is the receipt of [01, OFF] by
the DCE in DCE CLEAR INDICATION, which can occur
when the DCE signals [BEL, OFF] to indicate INCOMING
caLL then immediately makes a CLEAR REQUEST. At the
same time the DTE goes into a CONTROLLED NOT READY
state by signaling [01, OFF], which is first detected by the
DCE when it reaches DCE CLEAR INDICATION. Such an
interaction sequence may not be possible in any given im-
plementation because of timing constraints, but it illus-
trates the exhaustive nature of the validation procedure
we are using.

IBM J. RES. DEVELOP. ® VOL. 22 @ NO. | ® JAN 1978

R[SYN, OFF]

16
DTE CLEAR
REQUEST

R[O, OFF]

¥

17
DCE CLEAR
CONFIRMATION

21
DCE READY
(DTE UNCONTROLLED,
NOT READY }

sf0, OFF] y

READY

2
CALL REQUEST

s[0,oN]

PROCEED TO
SELECT

SELECTION
SIGNALS

s[1,0N]

Figure 8 A collision generated during a clear sequence.

Note that the reception of [1, OFF] by the DTE in the
DTE CLEAR REQUEST state appears as an error as we
omitted the optional transition directly from DTE CLEAR
REQUEST 10 DCE READY (DTE UNCONTROLLED NOT READY)
from our validation. However, the inclusion of this tran-

sition makes it possible for the [1, OFF] sent to indicate

CONNECTION IN PROGRESS to be interpreted as DCE READY,
which can lead to further errors if the DCE replies to DTE
CLEAR REQUEST With DCE CLEAR CONFIRMATION.

IBM J. RES. DEVELOP. & VOL. 22 « NO. 1 & JAN 1978

16
DTE CLEAR
REQUEST

‘S[0,0FF]

21
DCE READY
(DTE UNCONTROLLED)
NOT READY)

17
DCE CLEAR
CONFIRMATION

r[0, OFF]

READY

2 R[0,0N]
CALL REQUEST

s[+, orF]

3
PROCEED TO
SELECT

R[1A5, ON]

4
SELECTION
SIGNALS

®r[1, oN]

DCE WAITING

e Otherindicated errors

The other 11 errors indicated by the validation procedure
are not very significant but are briefly mentioned for com-
pleteness. Most of them were indicated on interaction se-
quences that started with a collision and for which an er-
ror listed in Table 1 was also indicated. An extension of
the interface that resolved the collision problems dis-
cussed in the previous section would also resolve these
secondary errors.

69

C. H. WEST AND P. ZAFIROPULO

70

Table 2 Signals received as aresult of clear collisions.

State of DTE Event received Indicated
when error occurs R circuit I circuit DCE state
DTE CLEAR REQUEST BEL OFF INCOMING CALL
DTE CLEAR REQUEST + OFF PROCEED TO SELECT
DTE CLEAR REQUEST SYN OFF DCE WAITING
DTE CLEAR REQUEST IAS OFF CALL PROGRESS SIGNALS or
LINE IDENTIFICATION
DTE CLEAR REQUEST 1 OFF CONNECTION IN PROGRESS
DTE CLEAR REQUEST 1 ON READY FOR DATA
State of DCE Event received Indicated
when error occurs C circuit T circuit DTE state
DCE CLEAR INDICATION 01 OFF DTE CONTROLLED NOT READY
DCE CLEAR INDICATION 0 ON CALL REQUEST
DCE CLEAR INDICATION 1 ON READY FOR DATA
DCE CLEAR INDICATION 1A5 ON SELECTION SIGNALS

Two of these should, however, be discussed in more
detail. Referring to the state diagrams in Fig. 4, it can be
seen that a transition of the DCE to INCOMING CALL can
occur in collision with a transition of the DTE to uUNCON-
TROLLED NOT READY, as has been discussed in a previous
section. No error as a result of the collision is immediate-
ly found in the DCE as the incoming signal for DTE UN-
CONTROLLED NOT READY is the same as that for DTE
CLEAR REQUEST, which can be accepted in INCOMING
CALL.

Thus, whereas no error is immediately found in the
DCE as a resulit of the collision, a situation leading to an
error develops as the DCE assumes that the DTE has re-
ceived INCOMING cALL and has immediately initiated a
clear sequence. The DCE responds to [0, OFF] accord-
ingly with the result that an error is flagged in state DCE
CLEAR CONFIRMATION, as the DCE can here detect a re-
turn of the DTE to the READY state.

A symmetric error was flagged in the DTE as a result of
a collision between CALL REQUEST and DCE NOT READY.

Whereas both of these errors would be eliminated by a
resolution of the initial collisions, the ambiguity between
the initiation of a clearing sequence and a transition to a
NOT READY state places constraints on how the collisions
may be resolved.

A few errors were flagged because the validation proce-
dure indicates errors when a process returns to its initial
state without receiving all events transmitted by the oth-
er. In the X.21 interface, it is conceptually possible to do
this, when both the DTE and DCE simultaneously cycle
from the READY state to a NOT READY state and back
again. The validation procedure records this as an error

C. H. WEST AND P. ZAFIRQPULO

when either returns to the READY state before detecting
the NOT READY signals from the other. This could not oc-
cur in any real implementation.

Two errors were flagged as a result of an ambiguity we
had inadvertently included in the validation procedure.
The whole validation procedure, including the derivation
of the state diagrams for the DCE and DTE, was automat-
ic once the single state diagram for the X.21 interface was
specified. The signals on the R and I circuits in both the
CALL PROGRESS and CALLED LINE IDENTIFICATION states
in the X.21 state diagram are both given as [IA5, OFF].
Only in an appendix in the specification is the format of
the signals specified that permits the DTE to distinguish
which of the two signals is being sent by the DCE. This
means that an automated validation based on the X.21
state diagram alone reflects an ambiguity between these
states which produced an error indication that would oc-
cur in practice only if the CALL PROGRESS and CALLED
LINE IDENTIFICATION signals were incorrectly inter-
preted.

Conclusions

The principal aim of the validation we have described was
to demonstrate that the validation procedure we have de-
veloped can be applied to a reasonably complex protocol.
The results demonstrate that a state diagram representa-
tion of a protocol permits automated analysis of system
behavior at the conceptual level. The use of a well-
defined mature interface as a test of the validation sys-
tem means that the results are not as significant as might
be obtained from validating a protocol at an earlier stage
of its development. Nevertheless, the results we have

IBM J. RES. DEVELOP. @ VOL. 22 o NO. 1 » JAN 1978

obtained are sufficiently interesting to confirm our belief
that the validation procedure described in [1, 2] is a use-
ful tool that will reduce the development time and in-
crease the reliability of communications protocols.

The validation procedure did not identify any errors in
the X.21 specification that could result in incorrect opera-
tion of the interface during the most probable call estab-
lishment procedures.

It did, however, identify a number of collision condi-
tions that have a small but finite probability of occurring
and which are not resolved by the specification as de-
scribed in [3].

Implementations that have been designed with the
knowledge that the conditions discussed above can occur
will certainly include mechanisms for resolving them. If,
however, some designers are unaware that the collisions
can occur, they may design interfaces that behave unpre-
dictably in such circumstances, possibly resulting in unre-
coverable execution errors.

As a result of validating the X.21 interface, we have
obtained a great deal of information about it that would
have been difficult to obtain otherwise. It is extremely dif-
ficult to understand exactly how two processors interact
via a protocol. Generating all of the possible interaction
sequences as part of a validation procedure is very useful
in this context. We have discussed a number of diffi-
culties resulting from the representation of the X.21 inter-
face in terms of a combined state diagram. It requires a
designer implementing the interface to go through a proc-
ess of interpretation which, even if well defined, is a step
which can result in errors that can be costly to correct at
later stages of processor development.

The single state diagram representation appears to im-
pose a symmetry on the DCE and DTE design that may

IBM J. RES. DEVELOP. & VOL. 22 ¢ NO. 1 & JAN 1978

prove undesirable in resolving interface problems that oc-
cur as the result of intrinsic collisions. We believe that a
specification of the interface in terms of separate state
diagrams for the two processors would help alleviate
these problems.

Acknowledgment
The authors thank E. Port for suggesting the investiga-
tion,

References

1. P. Zafiropulo, ‘‘Protocol Validation by Duologue Matrix
Analysis,”” Research Report RZ 816, 1BM Zurich Research
Laboratory, 8803 Riischlikon, Switzerland, 1977. See also
P. Zafiropulo, ‘‘A New Approach to Protocol Validation,”
Proceedings of the International Communications Confer-
ence, Vol. I1 (ICC 77), Chicago, June 1977, p. 259.

2. C. H. West, ““Computer Automated Protocol Validation,”
Research Report RZ 817, 1BM Zurich Research Laboratory,
8803 Riischlikon, Switzerland, 1977. See also C. H. West,
‘*‘An Automated Technique of Communications Protocol
Validation, Proceedings of the International Communica-
tions Conference, Vol. 11 (ICC 77), Chicago, June 1977,
p. 264.

3. *‘Recommendation X.21 (Revised),”” AP VI-No. 55-E, pub-
lished by the CCITT (International Telegraph and Telephone
Consultative Committee), Geneva, Switzerland, March 1976.

4, H. C. Folts, *“X.21—The International Interface for New
Synchronous Data Networks,” Proceedings of the Inter-
national Conference on Communications, Vol. 1 (ICC 75),
San Francisco, June 1975, p. 15.

Received June 28, 1977

The authors are located at the IBM Zurich Research
Division Laboratory, 8803 Riischlikon, Switzerland.

71

C. H. WEST AND P. ZAFIROPULO

