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Theory  on the Speed of Convergence 
in Adaptive  Equalizers for Digital  Communication* 

Abstract: This  paper  presents an  analysis of the  convergence  properties of adaptive  transversal equalizers minimizing mean-square dis- 
tortion.  The intention is to reveal the influence on  the speed of convergence  exerted by the  number of taps,  the step-size parameter in 
the  adjustment  loops,  and  the  spectrum of the unequalized signal. Attention  is  focused  on  the  convergence of the  expected mean-square 
distortion.  Several approximations are made in the analysis,  among them  the approximation of higher-order statistics by second-order 
statistical parameters.  Comparison with results  obtained by computer simulation,  however, shows  that  the  theory developed renders a 
quite accurate  picture of the  convergence  process. 

Previous work in this field demonstrated  the limits set  to  the  speed of convergence by the  extreme values of the  power  spectrum of the 
unequalized signal. I t  is shown  here  that, with regard to  the  mean-square  distortion,  the influence of the  number of taps will usually domi- 
nate by far.  The theory  provides a simple  criterion for  convergence and answers  the question of how to attain the  fastest  convergence. 

Introduction 
Synchronous  data transmission over  the existing  tele- 
phone  network  at  speeds of several  kbps  requires equali- 
zation. Most equalizers presently  used in  modem re- 
ceivers  are of the  transversal filter type.  Various  methods 
for adjusting their  tap gains  automatically have  been  de- 
scribed in the  literature [ l -91. Basically there  are  two 
kinds of automatic  adjustment  processes.  The first in- 
volves  sending a series of isolated test  pulses  prior  to 
data transmission. The equalizer  settings derived in this 
initial “training”  period are  kept  constant during the sub- 
sequent period of data transmission. The  second is known 
as adaptive  equalization. Here  the equalizer  settings are 
directly derived from the received data signal. Adaptive 
equalizers seek continuously to minimize the deviation 
of their sampled output signal from a quantized  reference 
signal that resembles the  transmitted  pulse amplitudes. 
During the initial training  period an ideal reference signal 
can  be  made available to  the equalizer  by  transmitting 
a  known sequence of pseudorandom  dataover  the channel 
and by generating  internally in the  receiver  an identical 
sequence in proper synchronism.  When  actual data  are 
transmitted,  the residual  distortion has usually decreased 
to a small value. The equalizer can  then  use  the  recon- 
structed  output signal of the  receiver  as a reference sig- 
nal. In this  so-called decision-directed  mode the effect 
of false  decisions is usually negligible. Thus  the  adapta- 
tion mechanism continues  to  be effective during the en- 
tire period that  data  are  transmitted. 

In many practical  applications the  transmitted mes- 
546 sages  are  short.  The  start-up time  (during which the  re- 
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ceiver  locks  on  to  the  carrier, establishes bit syn- 
chronization,  and performs automatic  equalization) may 
constitute a substantial  portion of the total holding time. 
Particularly in multiparty polling systems,  the  start-up 
time of the individual receivers can seriously affect the 
line utilization. For  the early automatic equalizers,  set- 
tling times in the  order of seconds  have been reported.  In 
the meanwhile great  improvements  have  been achieved. 

In this paper  we shall present a theory  on  the con- 
vergence process in adaptive equalizers  which  employ 
the mean-square (MS) algorithm [3 -71. The aim of the 
analysis is to  reveal  the influence of various system pa- 
rameters  on  the convergence process and thus  to  estab- 
lish the limits of the  speed of convergence. 

In a similar investigation Gersho [ 5 ]  considered the 
expected tap-gain errors relative to  their optimum 
settings. He  showed  that  the optimum speed at which 
these  expectations may converge  to  zero is largely  de- 
termined by the maximum and minimum values of the 
power density spectrum of the unequalized signal. 
Gersho’s analysis  suggests that  the  number of taps ap- 
parently has little influence on  the  convergence  process. 
Similar results,  but not for  exactly  the  same equalizer, 
have been reported by Chang [SI and Kobayashi [ 9 ] .  
Gersho  also  considered  the  expected  variance of the 
tap-gain errors  and  presented a  general  proof of con- 
vergence. Here  we shall extend  Gersho’s analysis. Con- 
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sidering the mean-square  distortion, we show  that  the 
number of taps is generally  much more important than 
the  extreme values of the  power  density  spectrum. A 
criterion for stability is derived  and  the question of how 
to  attain  fastest  convergence is addressed. 

We first review the  fundamentals of this type of equal- 
izer. Later  on, a theory  on  the  convergence of the ex- 
pected  mean-square distortion is developed.  The  theoret- 
ical results  are  then  compared with results obtained  by 
computer simulation. 

Review of fundamentals 
The equalizer  considered in this paper is depicted in 
Fig. 1. It  consists basically of a linear  transversal filter 
that  transforms  the  input signal x ( t )  into  the  output signal 
z ( t ) .  The equalized signal is sampled at regular  intervals 
T .  As  the input signal we consider a PAM base-band 
signal 

+P 

~ ( t )  = a,h(t - n T )  + ~ ( t )  , (1) 
n=-m 

where  the {a , }  are quantized  pulse  amplitudes, h ( t )  is 
the  channel  response, T the baud interval,  and w ( t )  the 
additive  noise. Let c, be  the  vector of tap gains of the 
transversal filter, and x, the  vector of tap  output signals, 
both  at  the nth  sampling instant.  These  vectors  are 
N-dimensional,  N  being the number of taps.  Throughout 
the  paper a  prime ( ') denotes transposition. At the nth 
sampling instant  the  output signal of the equalizer reads 
z ,  = c,'x,. It deviates  from  the originally transmitted 
pulse amplitude by e ,  = z ,  - a,. In this  study we adopt 
the familiar  mean-square  distortion  criterion. For a 
particular c, the mean-square  distortion is defined as  the 
average  value of e,' over all possible pulse amplitude and 
noise sequences [ 3 - 91 : 

(e,') = ((c,'x, - an)')  = c,'Rc, - 2cn'b + (anz)  . ( 2 )  

Here R is a positive  definite  N X N matrix with elements 

rik = (xni  . x,), 1 5  i , k 5  N ,  ( 3 )  

and b denotes an N-dimensional vector with elements 

bi = ( a n  . X n i ) ,  l 5 i l N .  (4) 

R and b do  not  depend  on n since  we  assume  that  both  the 
sequence {a, } and the noise w ( t )  are  stationary. 

The mean-square  distortion assumes  its minimum 
value, (eop:), when c, is  chosen  equal to 

copt = R"b . ( 5 )  

Introducing a tap-gain error  vector 

P, = c, - C",t (6) 

we have 
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(e,') = P,'RP, + (e,,:) . (7)  

The MS algorithm [ 3 - 71, the  convergence  properties 
of which will be investigated in this paper, is intended  to 
minimize the  mean-square distortion. Note  that this is 
equivalent to minimizing the positive  definite quadratic 
term p,'Rp, ("excess mean-square  distortion").  New 
values are assigned to p,, and  hence  to c,, at  each sam- 
pling instant by estimating the  gradient a(e,')/ap, and 
modifying p, accordingly. The MS algorithm results from 
taking aen21ap, = 2 e,xn as  an unbiased estimate of 
a(e,')/ap,. This  leads,  then,  to  the iterative formula 

Pn+l = Pn - a ( n ) e n x n .  (8 1 
Defining enopt = cOpt'xn - a, we  have 

e ,  = enopt + P,'x,. (9 )  

Note  that 

(e,upt . X,) = 0 . (10) 

Fig.  1 shows  the implementation of the algorithm. 
The step-size parameter a(,) may vary  as a function of 

time. To begin with we shall consider a constant  step- 
size parameter.  For a > 0 and sufficiently small, p, con- 
verges in the mean towards 0 from arbitrary initial set- 
tings po because of the positive  definite quadratic  nature 
of the  excess mean-square  distortion. Noise  and  the 
finiteness of the  number of taps  make  it impossible to 
attain  zero mean-square  distortion. Thus, in the  steady 
state, finite output  errors e, cause p, to fluctuate  ran- 
domly about  0-with  zero mean, but finite variance. 

Our major concern in the analysis will be  devoted  to 
the  speed of convergence of the  expected  mean-square 
distortion,  denoted by E((e, ' ) ) .  This quantity represents 
the  ensemble  mean value of (e,'), subject  to averaging 
(en2) over p,. E ( ( e n Z ) )  converges  towards (eop:) as p, 
converges  towards 0, but  because of the finite variance of 
p, in the  steady  state, it will settle  at a value  greater 
than (eop:). 

Analysis of the convergence  process 
We shall first introduce a  transformation that consider- 
ably facilitates further analysis. The  convergence  proper- 
ties of E(p,) can  then  easily be examined. In  the re- 
mainder of this section a theory on the  convergence of 
E((e,')) will be developed. 

Coordinate transformation 
Since R is symmetric it can  be represented in the form 

R =  U Diag ( p )  U' . ( 1  1 )  

( p  is the  vector of the eigenvalues of R; pi > 0, 1 5 i 5 N ,  
since R is positive  definite; U is the unitary  matrix  whose 547 

ADAPTIVE  TRANSVERSAL EQUALIZERS 



Unequalized 

Switch position 
1 : Training mode 
2: Decision-directed mode 

Reconstructed 

""_ ""_ 

""_ 

Figure 1 Adaptive  transversal  equalizer  employing  the MS algorithm with controlled  step-size  parameter. 

ith  column is the eigenvector ui of R, associated with 
pi. ) We now introduce 

Y ,  = U'X, 9 (12) 

and 

4, = U'P, . (13) 

This transformation is equivalent to a  rotation of the 
coordinate  system.  The  elements of the modified tap- 
gain vector y ,  are  uncorrelated: 

(Y,i . Y,) = 0,  i # k  
- - Pi7 i = k .  (14) 

Multiplication of ( 8 )  by U' from the left yields 

% + I  = 9, - aenYn.  (15) 

Similarly, we obtain from (9) and ( l o ) ,  

e ,  = enopt + 9,'Y, (16) 

and 

(enopt . Y,)  = 0 .  (17) 

Convergence  properties of E (p,) and E (9,) 
From ( 1  S ) ,  (16), and (17)  it follows that 

E(q,+,) = E ( % )  - a  E [ ( q , ' y , )  Y, l  . (18 )  

In  order  to facilitate further mathematical treatment, 
p, and x, are  assumed  to  be statistically independent of 
each other. The  same applies then to q, and y ,  and  thus 

548 E (9,) can be extracted  from  the rightmost term in (18 ) .  

Since p, depends  on x,-z, . * *, and X, merely  com- 
prises  the  tap  output signals after  another baud  interval 
(x,(~+~) = 1 5 i < N ) ,  the  assumption is not 
strictly true.  In view of small step-size  parameters, how- 
ever,  Gersho [ S I  felt  that  the  dependence  between p, 
and x, is weak and  can  therefore  be neglected. With this 
assumption,  (1 8 )  assumes  the form 

E(q,+,) = Diag (1 - a p )  E(q,).  (19) 

It should  be  mentioned here  that in a recent  paper [ 1 1 ] 
an  attempt was made  to include the  dependency  between 
p, and x, in the analysis. 

Several  authors [ 5 , 9 ]  have  shown  that  the eigenvalues 
of R are bounded by 

- I n f P * ( w ) < p , < T S u p P * ( o ) ,  1  1 l Z i Z N ,  (20) T 

where P * ( o )  represents  the periodic power density 
spectrum of the sampled  unequalized signal: P*(o) 
= P* [o + ( 2 7 r / T ) ] .  The  extreme eigenvalues approach 
the bounds as N goes  to infinity. 

Let pmin and p,,, denote  the smallest  and the largest 
eigenvalues of R. From  (19) it follows that E (9, ) con- 
verges  to 0 if 

0 < a < 2Ipmax. (21 1 
Because of (13),  the  same applies to E(p,).  Gersho [ S I  
has  shown  that  for a = 2/ (pmin + p,,, ) fastest conver- 
gence  takes place. The Euclidian  norm of E (9, ) , which 
is equal to  the Euclidian  norm of E (p, ) , is then reduced 
at  least by the  factor (p,,, - pmi,,)/(pmax + pmin) in 
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each iteration. Since pmin and pmax resemble in good ap- 
proximation the  extreme values of P* (o), a direct rela- 
tionship between P * ( w )  and the optimum speed of con- 
vergence of E(q, ) results. 

One might suspect  that p m i n  and pmax determine  to a 
similar extent  also  the optimum speed of convergence of 
the  expected  mean-square distortion, E((e,')). Later in 
this paper,  however, we shall see  that  the  convergence 
properties of E((e,')) depend, unlike E(q,), also  on  the 
number of taps, N .  In  fact, for  most  practical cases N will 
be the dominating factor which, for  convergence of 
E ((e,')), imposes a condition much  tighter than ( 2  1 ) on 
the values of a. There  exist values of a for which E(q,) 
converges,  but E((e,')) diverges. This  property suggests 
that, if both quantities  converge, E (9, ) will generally 
converge much faster than E((e, ' ) ) .  In  the following 
analysis we may therefore  assume  that E ( q ,  ) becomes 
rapidly negligible during the equalization process if it 
were not  already zero from the beginning, i.e., 

E(q,) M 0 .  (22) 

Convergence  properties of ~ ( ( e , ' ) )  
Equation ( 1 3 )  enables us to  decompose p,'Rp, into N 
components. Actually we are  interested in the  expecta- 
tion thereof 

v 
E(P,'RP, 1 = C p i E ( q n i 2 )  = P'S,. ( 2 3  1 

i = l  

Using ( 2 2 )  and  the  assumption  that q, and y, were  sta- 
tistically independent of each  other,  and making some 
further  approximations, we show in the  Appendix  that 

s,,, -N As, + i2 (eOpt')p, ( 2 4 )  

where 

L a:r 1 ( 1  - f f p l  1' ff2p,p,  . . .  

A = a 2 p z p l  ( 1  - ap2) '  . . . a P2PN 

"'PN P ,  (1 -cup,)? ( 2 5 )  

The matrix A is symmetric and its  elements  are all posi- 
tive. The matrix, however, is not  necessarily  positive 
definite. Similarily to ( 1 1 ), we introduce 

A = V Diag (A)  V' . ( 2 6 )  

(A is the  vector of the eigenvalues of A; V is the unitary 
matrix whose ith column is the  eigenvector vi of A, as- 
sociated with A i . )  Let (;') denote  the mean-square  value 
of the  tap  output signals. Using the relation 

N ( x 2 )  = trace R = C p i ,  ( 2 7 )  

it can  be shown  that  the solution of (24) reads 

Y 

i = l  
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where yi is determined by the initial conditions 

where 

t i i  = ( v , ' p )  . y i  . (30) 

In ( 2 9 )  the first term  on  the right-hand  side describes  the 
transient  behavior of E((e,'))) ,  whereas  the  second  term 
represents  its  steady-state value. 

Transient  behavior of E((en2))  
In investigating the  properties of A we shall be  able  to 
make  some  observations concerning the  transient be- 
havior of E((e , ' ) ) .  Among  them we  present a new cri- 
terion for stability.  We also indicate that a spread of the 
eigenvalues of R has not the  strong influence on  the  speed 
of convergence of E((e,')) that might be  expected  from 
considering the  convergence  properties of E (9, ) . 
Furthermore,  for all eigenvalues of R being equal we 
show  that only the  largest eigenvalue of A determines  the 
speed of convergence of E((e, ' ) ) :  

a) All eigenvalues of A are real numbers  since A is 
symmetric. Hence,  the  transient of E((e,')) will ex- 
hibit no oscillations. 

b)  For a - 0 all eigenvalues of A approach unity. 
c)  The equalizer is stable  and  the  expected  mean-square 

distortion converges  to a steady  state if /A i l  < 1, 
1 5 i 5 N .  This will be  the  case if a satisfies 

N 

0 < a < 2 / N  ( x 2 )  = 2 / C p i .  
i = l  

Proof: The N elements of the ith  row of A add  up to 

N 

XU, = 1 - "pi ( 2  - a N (x'))  . 
k = l  

If a satisfies ( 3  1 ), then  each  row  sum of A is smaller 
than  unity. A matrix  which  has  this property  and 
whose  elements  are all positive  can have only eigen- 
values with absolute value  smaller  than  unity [ l o ] .  

The criterion for stability thus  found imposes a much 
narrower  upper bound on a than ( 2  1 ) . It  clearly  ex- 549 
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hibits the significance of the  number of taps while 
showing no  dependence  on  the distribution of the 
eigenvalues of R. We recall that  fastest  convergence 
of E(q,) takes  place  for a = 2/(pmi, + p,,,). The 
new criterion indicates that with  this  step-size  pa- 
rameter E((e,'))  would diverge,  provided N > 2. 
Since E ( ( e n 2 ) )  is closely  related to  the probability of 
errors,  (3 1 ) must be  considered  as a necessary condi- 
tion.  Intuitively  this dependence  on  the  number of 
taps could be  expected,  since  for a given  step-size 
parameter  each additional tap  increases  through  its 
tap-gain fluctuations the  expected  excess mean- 
square distortion, E(p,'Rp,). Expansion of the num- 
ber of taps  without decreasing the  step-size parame- 
ter must therefore  lead  to instability. 

d )  A small eigenvalue of R (p i  + 0) leads  to a slowly 
converging term in (29), (hi  + 1 ) . But the slower the 
term  converges relative to the  other  terms,  the smal- 
ler  the probability that this term  contributes signifi- 
cantly to E((e, ' ) ) ,  ( s i  -+ 0). 

Proof: For pi = 0 the ith row of A reads (0; . .,O, 
aii = 1; . .,O}. Consequently, hi = 1 and vi' = 
{O; . .,O,yii = 1,O; . .,O}. Since vi'p = 0 it follows 
from  (30)  that Si = 0. 

Generally,  it is true  that a larger spread of the eigen- 
values of R leads  to slower  convergence.  But the  fact 
that  the slower-converging terms in (29)  are usually 
given  smaller  weights acts  to alleviate the effect. Thus 
a spread of the eigenvalues of R affects the  conver- 
gence of E (( e,')) less  than  the  convergence of E (q, ) . 

e)  For all eigenvalues of R being equal, i.e., pi = ( x 2 ) ) ,  

1 5 i 5 N, the largest  eigenvalue of A is given  by 

Aimax = 1 - a(X2) (2  - a N  (x')) . (32) 

The  other eigenvalues of A have  no influence on  the 
transient  behavior of E((e,'))  since Si = 0, i # i,,,. 

Proof: It  can easily be verified that Aimax is an eigen- 
value of A and  that vjmax' = N"" { 1,l; . ., 1 } repre- 
sents  the  associated eigenvector. I t  follows from  the 
Perron-Frobenius  theorem [ 101 on positive  matrices 
that himax is indeed the  largest eigenvalue of the posi- 
tive matrix A. The  theorem  says  that  the largest eigen- 
value of a positive  matrix is a positive real  number  and 
the  associated  eigenvector  consists entirely of posi- 
tive elements.  Because the  eigenvectors of A form a 
set of orthogonal vectors, only one  eigenvector  can 
have this property.  Since vimax consists entirely of 
positive elements, himax must be the largest  eigenvalue 
of A. Since vim,, is parallel to p, the  other eigenvec- 
tors of A are orthogonal to p. Consequently, 8, = 0, 

550 i f i,,,. 
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The  steady  state 
The rightmost term of (29)  reveals a simple relationship 
between a and  the  steady-state value of E ((e , ' ) ) .  We 
again see  that a steady  state  exists only if a,satisfies 
(3 1 ) . Equation  (28) indicated that in the  steady  state all 
elements of s, become  equal.  Taking  into  account 
E (qniqnrC ) -+ 0, i # k ,  as  shown in the  Appendix,  we 
find that in the  steady  state  the  tap gains  fluctuate  with 
equal  variance  but in an  uncorrelated fashion about  their 
optimum  settings. 

Optimum  speed  of  convergence  for all eigenvalues of 

Data communication over  telephone  channels suffers 
generally  more from  phase  distortion  than  from ampli- 
tude  distortion. If the modulation scheme  provides  for a 
flat amplitude characteristic  and  the  spectrum of the 
transmitted signal is not shaped by  coding techniques,  the 
eigenvalues of R will be  clustered closely about (x'). Let 
us  assume pi = (.x2), 1 5 i 5 N. It  follows then  from  what 
has been stated in the discussion of (32),  and  from  (29) 

E((e,+,'))  -N [ l  - a,(X2)(2 - a,N(x'))I . E((en2)) 

R being  equal 

+ 2an(i '~eopt2) . (33 

Equation  (33) is written with a time-dependent step-size 
parameter. It can easily be verified that 

(34) 

leads to fastest  convergence. 
Usually, E ((e,')) >> (eop:) at  the beginning of the 

equalization process.  Thus  we  have anopt M 1/N (x2) 
and 

E((e,+, ' ) )  (1 - l /N)  E ( ( e , ' ) ) .  (35) 

Approximately 2.3 N iterations are then  required  to re- 
duce E((e,'))  by one  order of magnitude. 

Since (enp:) is generally unknown  and estimation of 
E((e,')) is time-consuming, the optimum step-size param- 
eters given by (34)  cannot  be realized  exactly.  But the 
optimum trajectory of E((e, ' ) )  can  be closely approached 
if a is controlled in the following simple  manner: 

a)  Measure (x'). 
b)  Use a = 1/N ( x 2 )  during the  entire training  period. 

E ( ( e n 2 ) )  converges  towards 2(eop:). 
c) Reduce  the step-size parameter  to a = 1/5N (x2) 

when  the  equalizer is switched  into  the decision- 
directed mode. E((en2))  converges  further  towards 
1.1 (eopt') ((enp:) + 0.5 dB).  

A  step-wise  reduction of the step-size parameter  was 
already  proposed by Lucky in his  first paper  on  automatic 
equalization [ 1 1. It  is,  however, still surprising to  see 
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how  closely the optimum trajectory of E ( ( e n 2 ) )  is ap- 
proached by the simple  two-step procedure suggested 
above. Figure 2 shows the comparison. The implementa- 
tion of the  procedure is indicated in Fig. 1. In  practice 
modems are equipped  with automatic gain  control. If 
therewith (xz) is kept sufficiently constant,  no  further 
estimation of (xz) is required  and the division  by a vari- 
able(x2) in determining a is unnecessary. 

The  procedure  proposed  is  also applicable when  the 
eigenvalues of R are  spread  out  over a rather wide  range. 
This will be  demonstrated in the following section by 
computer simulation. 

Computer simulation 
Various approximations had  to  be  made in the  theoretical 
analysis. We shall  now check  the validity of the  theory by 
comparing the theoretical results with those  obtained by 
computer simulation. The investigation  was  based on  the 
following model. 

A random  sequence of polar  binary-signals (a, = +1) 
is transmitted  over a telephone  channel  at  the  speed of 
3600 baud.  Vestigal-sideband  amplitude  modulation is 
used  with the  carrier  located at 2.7 kHz.  The  transmitter 
filter exhibits  symmetrical cosine-roll-off characteristics 
with 6-dB  points at 0.9 and 2.7 kHz.  Three  telephone 
channels with characteristics  shown in Fig.  3 are con- 
sidered. A signal-to-noise  ratio of 30  dB  caused by  white 
Gaussian  noise is assumed.  The equalizer comprises 
N = 15 taps. Initially, the  tap gains  exhibit zero values. 
Thus  we  have po = -cOpt and ( e t )  = 1. An ideal reference 
signal is assumed to be  available in proper  phase  to  the 
equalizer. 

Two programs have been  written. The first program 
calculates the sample  values of the waveform h ( t )  for 
the modulation scheme envisaged and a given telephone 
channel. The  second program determines R, b, cOpt, the 
eigenvalues of R, etc.,  and finds the theoretical values of 
E((e,')) by  iteratively applying (24). Furthermore, it 
generates a random  data signal, adds noise to it, simu- 
lates  the equalizer, and calculates (en2) at each sampling 
instant by evaluating (7). 

At first we consider the  results obtained for  telephone 
channel-characteristic ( 1 ) (moderate amplitude and 
phase  distortion). A step-size  parameter a = 1/N (xz) 
was chosen.  The  results of five program  runs  with dif- 
ferent initializations of the random number  source  are 
presented in Fig. 4 (a ) .  Fairly  good agreement of the 
theoretical  and simulation  results can  be  observed.  On 
the  average,  however,  the mean-square  distortion  ob- 
tained by simulation appears  to  converge slightly faster 
than is theoretically  predicted. Looking  for a reason, we 
found that this  deviation can mainly be  attributed to the 
assumption of statistical independence  between p, and x, 
(equivalently q, and y n ) .  When additional  baud  intervals 

ITirne in sampling intervals 

Figure 2 Speed of convergence  with  optimum sequence of 
step-size parameters (anoDt) and with  the step-size parameters 
proposed (CY = 1 / N ( x 2 )  and 01 = 1 / 5 N ( x 2 ) ) .  

Figure 3 Telephone  channel  characteristics. 
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were  introduced in the simulation between  those sam- 
pling instants  where tap-gain corrections  are  made,  suc- 
cessive  tap  output signals were  forced  to  be quasi- 
statistically independent of one  another.  In this way, 
without counting the additional  baud intervals, a  much 
better  agreement  between  theory and  simulation was 
obtained,  as indicated  in  Fig. 4 (b) . 

Further simulations with various step-size  parameters 
were performed for  the channel-characteristics ( 2 )  and 
(3)  presented in Fig. 3. In  order  to  obtain  equal eigen- 
values of R [P*(o) constant] with  channel-character- 
istic (2) (phase distortion only), a transmitter filter with 
ideal bandpass filter characteristic had to be  assumed, 
since  otherwise aliasing would have  converted  phase 551 
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Figure 4 Theoretically predicted convergence and results obtained by computer simulation for channel-characteristic ( 1 ) .' (a) regular 
simulation; (b)  additional  baud intervals introduced between sampling instants. 
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Figure 5 Theoretically predicted convergence and results obtained by computer simulation for channel-Characteristic (2).  

distortion into amplitude  distortion. Figure 5 shows  the 
results obtained for channel-characteristic (2) .  Cor- 
responding results  for channel-characteristic (3)  (ampli- 
tude distortion only)  are  presented in Fig. 6. On  the 
whole, the  results confirm the validity of the  theory,  but 
slightly faster  convergence  than predicted is consistently 
obtained. 

For channel-characteristic (3)  the largest and  the 
smallest  eigenvalues of R differ approximately  by the 
factor 10. This large  eigenvalue spread,  however, re- 
duces  the  speed of convergence only  by a factor of ap- 
proximately 2, relative to the speed of convergence with 
channel-characteristic (2) .  Our  theoretical finding that a 
spread of the eigenvalues of R affects the speed of con- 
vergence of E ( ( e n 2 ) )  less than the  speed of convergence 
of E (4, ) is  thus  corroborated. 

Figure 6 indicates that  for a  large spread of the eigen- 
values of R instability occurs  at a  value of a smaller than 
2/N (x2). In  the  example a = 1.5/N (xz) is close  to  the 
actual limit of stability. In this respect our theory fails 
for large-amplitude  distortion. The  discrepancy is again 
largely due  to  the assumption of statistical independence 
between p, and x,, . 
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The  curves  presented in Figs. 5 and 6 illustrate that in 
the initial phase  fastest  convergence  is in both  cases 
achieved by  a step-size  parameter  close  to 1/N (xz). The 
speed of convergence  does  not  appear  to  be  very sensi- 
tive  to variations of a about this value. The  procedure 
proposed at  the  end of the previous  section for controlling 
a is  therefore  also applicable for  channels  that exhibit 
considerable amplitude  distortion. 

Summary and conclusion 
A theory  has  been  presented  on  the  convergence of the 
expected  mean-square distortion at  the  output of adaptive 
transversal equalizers that employ the well-known MS 
algorithm. Several approximations had  to  be  made in the 
analysis, but simulation results  show  that  quite  an ac- 
curate picture of the  convergence  process  can  neverthe- 
less  be  developed.  The assumption of statistical  inde- 
pendence  between  the  tap  output signals at successive 
sampling instants  turned  out  to be the  weakest of the ap- 
proximations  made. 

Previous work  in the field emphasized the influence of 
the relative  difference between  the  largest  and  the smal- 
lest  eigenvalue of R on  the  speed of convergence. In 553 
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Figure 6 Theoretically  predicted  convergence  and  results obtained by computer simulation for  channel-characteristic (3  1. 

adaptive equalizers  which  employ the  MS algorithm, 
these earlier results apply  only to  the  expected tap-gain 
error  vector, E (p, ). The  convergence  speed of the  more 
important  expected  mean-square distortion, E((en2)) ,  
depends  to a large extent  on  the  number of taps:  The 
larger N ,  the slower the  speed of convergence. The eigen- 
values of R have  some influence on  the  speed of con- 
vergence of E((en2) ) ,  but this  influence is  not  as  distinct 
asinthecaseofE(p,) .  

We  have suggested  a  simple  two-step procedure  for 
controlling the step-size parameter in order  to  achieve 
fast convergence of the  expected  mean-square distortion. 
The  true goal, however, should be  to  reduce  as quickly 
as possible the  expected probability of false  decisions, 
This probability depends  not only on the  expectation of 
the mean-square  distortion, but  also  to a certain  extent 
on  its variance. The analysis in this paper  is limited in that 
it provides only the  expectation of the  mean-square 
distortion. I t  is,  however,  obvious  that  the  variance of the 
mean-square  distortion  decreases monotonically  with the 

step-size  parameter.  In this respect step-size parameters 
slightly smaller than  we  have  proposed from the view- 
point of the  expected mean-square distortion  alone might 
be  preferable. 

We finally illustrate the theoretical results by a specific 
example. Assume  an  equalizer comprising  15 taps and a 
transmission speed of 3600 baud,  as  we did for  the com- 
puter simulation. During  the settling  time the mean- 
square  distortion  should  be  reduced  from 1 to 0.00 1, pro- 
vided it does  not level off at a larger value, i.e., (e,,:) 
> 0.001. According to (35), with phase distortion  only 
and  the step-size parameter optimally adjusted,  the equal- 
izer  settles in about 100 baud intervals,  or 28 milliseconds. 
Moderate amplitude  distortion will have  no  strong effect. 
With characteristic (1) of Fig. 3 the  optimum settling 
time is still of the  order of 30 milliseconds. For complete- 
ness,  it should be  noted  that this does not  include the  ad- 
ditional  time required  for  carrier acquisition,  sampling 
clock adjustment, and  synchronization with a known ref- 
erence sequence. 
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Appendix 

Derivation of Eq. ( 2 4 )  
Analysis of the convergence  properties of sni = E(q,,’)), 
1 I i 5 N, requires that we  consider initially also the 
mixed quantities E ( q n i  . qnb ), i # k .  Assume y, and q, 
were statistically  independent of each  other.  From ( 15) ,  
observing (14),  (16) and (17), it can then be shown that 

E(q(n+l)t . q(n+l)k)  = E ( % .   q n b )  . [1  - a(& + P,)l 
N N 

+ 2 2 E(qn/l . qnI2) ( y n i  . y n / l  . Yn/ : :  * ~ n b )  
11=1 l 2 = 1  

N 

+ 2 i 2  E ( q , , )  (enopt ~ , i  . Y,, . y n k )  
1=1 

+ (Y’ (enopt2 . yni  . ynb) ,  1 ‘= i, k f N . (AI)  

According to (14) and (17) the  quantities y n 1 ,  y,,, . * ., 
ynN,  and enopt are uncorrelated. Suppose they are almost 
statistically  independent. Then 

(e,o,t . Ylli . Y n ,  . Y , d  = 0 * 

Referring to (22), 

E(q, ,  1 M 0,  1 5 1 5 N .  

Hence,  the third  line of ( A l )  consists of products of 
small quantities  and  can thus be neglected. 

Similarly for i # k ,  

(Y,i . Yn,,  . Y,dq . Y n k )  = 0 7 

(enop? . yni  . Y,J F=! 0. 

Consequently, for i # k only the first line of ( A l )  is 
important.  Convergence of E(qni  . qnk)  takes  place if 
0 < (Y < 2/ (p ,  + p k  ). We may therefore assume  that 
these mixed terms become rapidly negligible during the 
equalization process if they  were not already negligible 
from the beginning: 

E(q,j  . q n k )  = 0,  i # k .  

When  this  is applied to  the second line of ( A I ) ,  then for 
1, # 1, we have  products of two small quantities.  Neglect- 
ing these  products reduces the double  sum to a simple 
summation.  Considering now only the  case i = k we find 

N 

q n + , ) i =  Snj(l - 2 q )  + i2 S,I (Y , /  . Y,j ) 
2 2  

1=1 (A21 

+ CY2 (e,upt . Y,i )> 
2 2  1 5 i Z N .  

We now approximate the higher-order expectations by 
second-order  statistical  parameters 

(Y,/ ’ Y,j ) 

(e,”,, . Y,j ) = (e0,t”)pt9 

2 2  14 1,iP N ,  (A3 1 
I 5 i 5 N .  (A41 e : :  

With these approximations (A2)  reads 
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