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Theory on the Speed of Convergence
in Adaptive Equalizers for Digital Communication*

Abstract: This paper presents an analysis of the convergence properties of adaptive transversal equalizers minimizing mean-square dis-
tortion. The intention is to reveal the influence on the speed of convergence exerted by the number of taps, the step-size parameter in
the adjustment loops, and the spectrum of the unequalized signal. Attention is focused on the convergence of the expected mean-square
distortion. Several approximations are made in the analysis, among them the approximation of higher-order statistics by second-order
statistical parameters. Comparison with results obtained by computer simulation, however, shows that the theory developed renders a

quite accurate picture of the convergence process.

Previous work in this field demonstrated the limits set to the speed of convergence by the extreme values of the power spectrum of the
unequalized signal. It is shown here that, with regard to the mean-square distortion, the influence of the number of taps will usually domi-
nate by far. The theory provides a simple criterion for convergence and answers the question of how to attain the fastest convergence.

Introduction
Synchronous data transmission over the existing tele-
phone network at speeds of several kbps requires equali-
zation. Most equalizers presently used in modem re-
ceivers are of the transversal filter type. Various methods
for adjusting their tap gains automatically have been de-
scribed in the literature [1-9]. Basically there are two
kinds of automatic adjustment processes. The first in-
volves sending a series of isolated test puises prior to
data transmission. The equalizer settings derived in this
initial “training” period are kept constant during the sub-
sequent period of data transmission. The second is known
as adaptive equalization. Here the equalizer settings are
directly derived from the received data signal. Adaptive
equalizers seek continuously to minimize the deviation
of their sampled output signal from a quantized reference
signal that resembles the transmitted pulse amplitudes.
During the initial training period an ideal reference signal
can be made available to the equalizer by transmitting
a known sequence of pseudorandom data over the channel
and by generating internally in the receiver an identical
sequence in proper synchronism. When actual data are
transmitted, the residual distortion has usually decreased
to a small value. The equalizer can then use the recon-
structed output signal of the receiver as a reference sig-
nal. In this so-called decision-directed mode the effect
of false decisions is usually negligible. Thus the adapta-
tion mechanism continues to be effective during the en-
tire period that data are transmitted.

In many practical applications the transmitted mes-
sages are short. The start-up time (during which the re-
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ceiver locks on to the carrier, establishes bit syn-
chronization, and performs automatic equalization) may
constitute a substantial portion of the total holding time.
Particularly in multiparty polling systems, the start-up
time of the individual receivers can seriously affect the
line utilization. For the early automatic equalizers, set-
tling times in the order of seconds have been reported. In
the meanwhile great improvements have been achieved.

In this paper we shall present a theory on the con-
vergence process in adaptive equalizers which employ
the mean-square (MS) algorithm [3-7]. The aim of the
analysis is to reveal the influence of various system pa-
rameters on the convergence process and thus to estab-
lish the limits of the speed of convergence.

In a similar investigation Gersho [5] considered the
expected tap-gain errors relative to their optimum
settings. He showed that the optimum speed at which
these expectations may converge to zero is largely de-
termined by the maximum and minimum values of the
power density spectrum of the unequalized signal.
Gersho’s analysis suggests that the number of taps ap-
parently has little influence on the convergence process.
Similar results, but not for exactly the same equalizer,
have been reported by Chang {8] and Kobayashi [9].
Gersho also considered the expected variance of the
tap-gain errors and presented a general proof of con-
vergence. Here we shall extend Gersho’s analysis. Con-

*This paper is based in part on the author’s presentation at the IEEE International
Conference on Communications, Philadelphia, Pennsylvania, June 1972.
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sidering the mean-square distortion, we show that the
number of taps is generally much more important than
the extreme values of the power density spectrum. A
criterion for stability is derived and the question of how
to attain fastest convergence is addressed.

We first review the fundamentals of this type of equal-
izer. Later on, a theory on the convergence of the ex-
pected mean-square distortion is developed. The theoret-
ical results are then compared with results obtained by
computer simulation.

Review of fundamentals

The equalizer considered in this paper is depicted in
Fig. 1. It consists basically of a linear transversal filter
that transforms the input signal x(¢) into the output signal
z(¢). The equalized signal is sampled at regular intervals
T. As the input signal we consider a PAM base-band
signal

+%
x(t) =Y a,h(t —nT) +w(1), (1)
n=—cw

where the {a,} are quantized pulse amplitudes, 4 (t) is
the channel response, T the baud interval, and w(t) the
additive noise. Let ¢, be the vector of tap gains of the
transversal filter, and x, the vector of tap output signals,
both at the nth sampling instant. These vectors are
N-dimensional, N being the number of taps. Throughout
the paper a prime (') denotes transposition. At the nth
sampling instant the output signal of the equalizer reads
z, =¢,'x,. It deviates from the originally transmitted
pulse amplitude by e, =z, — a,. In this study we adopt
the familiar mean-square distortion criterion. For a
particular ¢, the mean-square distortion is defined as the
average value of en2 over all possible pulse amplitude and
noise sequences [3-9]:

e,y =((c,'x,— a,)’y =¢,'Re, — 2¢,'b +(a,") . (2)
Here R is a positive definite N X N matrix with elements
P = (X " Xt 1=ik=N, 3)
and b denotes an N-dimensional vector with elements
1<i=N. 4)

b;=(a, " x,),

R and b do not depend on » since we assume that both the
sequence {a,} and the noise w(¢) are stationary.

The mean-square distortion assumes its minimum
value, (e, ), when ¢, is chosen equal to

Copt — R-lb . (5)
Introducing a tap-gain error vector
P, = €, — Copt (6)

we have
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(e, =p,'Rp, +{eopt?) - (7)

The MS algorithm [3-7], the convergence properties
of which will be investigated in this paper, is intended to
minimize the mean-square distortion. Note that this is
equivalent to minimizing the positive definite quadratic
term p,'Rp, (“excess mean-square distortion”). New
values are assigned to p,, and hence to ¢,, at each sam-
pling instant by estimating the gradient a(e,f)/apn and
modifying p, accordingly. The MS algorithm results from
taking ae,f/ op,=2e,x, as an unbiased estimate of
a(e,")/ap,. This leads, then, to the iterative formula

L =P~ a(n)enxn‘ (8)

Defining e, = ¢,p'%x, — @, we have

€, = eopt T P,’X, - (9
Note that
<enopt ) Xn>=0. (10)

Fig. 1 shows the implementation of the algorithm.

The step-size parameter o, may vary as a function of
time. To begin with we shall consider a constant step-
size parameter. For o > 0 and sufficiently small, p, con-
verges in the mean towards 0 from arbitrary initial set-
tings p, because of the positive definite quadratic nature
of the excess mean-square distortion, Noise and the
finiteness of the number of taps make it impossible to
attain zero mean-square distortion. Thus, in the steady
state, finite output errors e, cause p, to fluctuate ran-
domly about 0—with zero mean, but finite variance.

Our major concern in the analysis will be devoted to
the speed of convergence of the expected mean-square
distortion, denoted by E((enz)). This quantity represents
the ensemble mean value of (enz), subject to averaging
(ef) over p,. E ((ef)) converges towards (eo,c) as P,
converges towards 0, but because of the finite variance of
p, in the steady state, it will settle at a value greater
than (eopf).

Analysis of the convergence process

We shall first introduce a transformation that consider-
ably facilitates further analysis. The convergence proper-
ties of E(p,) can then easily be examined. In the re-
mainder of this section a theory on the convergence of
E ((enz)) will be developed.

e Coordinate transformation
Since R is symmetric it can be represented in the form

R=UDiag (p) U'. (11)

(p is the vector of the eigenvaluesof R; p, > 0, 1 S i= N,
since R is positive definite; U is the unitary matrix whose
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Figure 1 Adaptive transversal equalizer employing the MS algorithm with controlled step-size parameter.

ith column is the eigenvector u; of R, associated with
p;-) We now introduce

y,=Ux,, (12)
and
qn=U’pn’ (13)

This transformation is equivalent to a rotation of the
coordinate system. The elements of the modified tap-
gain vector y, are uncorrelated:

(ym.-ynk)=0, i#*k

=p, i=k. (14)
Multip]ication of (8) by U’ from the left yields
Gpir = Q, — ¥€,Y, - (15)
Similarly, we obtain from (9) and (10),
€= et +4,'Y, (16)
and
(€popt " ¥) = 0. (17)
s Convergence properties of E(p,) and E(q,)
From (15), (16), and (17) it follows that
E(q,,,) =E(q,) —a E[(q,'y,) ¥,]. (18)

In order to facilitate further mathematical treatment,
p, and x, are assumed to be statistically independent of
each other. The same applies then to q, and y, and thus
E(q,) can be extracted from the rightmost term in (18).
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Since p, depends on x,_,, X, ,, - - -, and x, merely com-
prises the tap output signals after another baud interval
(Xpisny = Xgony» 1 =i < N), the assumption is not
strictly true. In view of small step-size parameters, how-
ever, Gersho [5] felt that the dependence between p,
and x, is weak and can therefore be neglected. With this
assumption, (18) assumes the form

E(q,,,) =Diag (1—ap) E(q,) .

It should be mentioned here that in a recent paper [11]
an attempt was made to include the dependency between
p, and x,, in the analysis.

Several authors [5,9] have shown that the eigenvalues
of R are bounded by

(19)

%Inf}’*(w) <pi<%Sup P(w), 1<i=<N, (20)

where P*(w) represents the periodic power density
spectrum of the sampled unequalized signal: P*(w)
= P*[w + (2w/T)]. The extreme eigenvalues approach
the bounds as N goes to infinity.

Let pmin and ppay denote the smallest and the largest
eigenvalues of R. From (19) it follows that E(q,) con-
verges to 0if

0 < a<2/pms- 1)

Because of (13), the same applies to E(p,). Gersho [5]
has shown that for a = 2/(p,,,m + pmax ). fastest conver-
gence takes place. The Euclidian norm of E{(q, ), which
is equal to the Euclidian norm of E (p,). is then reduced
at least by the factor (pmax — Pmin )/(pmax + pmin) in
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each iteration. Since py;, and pp,, resemble in good ap-
proximation the extreme values of P*(w), a direct rela-
tionship between P*(w) and the optimum speed of con-
vergence of E(q, ) results.

One might suspect that p.;, and py.. determine to a
similar extent also the optimum speed of convergence of
the expected mean-square distortion, E ((enz)). Later in
this paper, however, we shall see that the convergence
properties of E((e,f)) depend, unlike E(q,, ), also on the
number of taps, N. In fact, for most practical cases N will
be the dominating factor which, for convergence of
E ((en2>), imposes a condition much tighter than (21) on
the values of a. There exist values of « for which E(q,)
converges, but E((enz)) diverges. This property suggests
that, if both quantities converge, E(q,) wiil generally
converge much faster than E ((enz)). In the following
analysis we may therefore assume that E(q,) becomes
rapidly negligible during the equalization process if it
were not already zero from the beginning, i.e.,

E(q,) ~0. (22)

e Convergence properties ofE((enz))

Equation (13) enables us to decompose p,'Rp, into N
components. Actually we are interested in the expecta-
tion thereof:

N
E(pn’an) = EpiE(qnil) =P’Sn‘ (23)
i=1
Using (22) and the assumption that q, and y, were sta-
tistically independent of each other, and making some
further approximations, we show in the Appendix that

S,,, = As, + o (e )P (24)
where

(1—ap,)” o’p,p, o a’pp,
A=| o’p,p, (1—ap,)® -+ op,p,

aZprl (- csz)2 (25)

The matrix A is symmetric and its elements are all posi-
tive. The matrix, however, is not necessarily positive
definite. Similarily to (11), we introduce

A=V Diag (A\) V. (26)

(A is the vector of the eigenvalues of A; V is the unitary
matrix whose ith column is the eigenvector v; of A, as-
sociated with A,.) Let (x") denote the mean-square value
of the tap output signals. Using the relation

N
N (x" = trace R= Epi s (27)

i=1

it can be shown that the solution of (24) reads
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2
a<eom >

et/ 28
(2 — aN (x%) (28)

N
n
S, Yy N+
i=1

where v, is determined by the initial conditions

a<eopt2> .
'yizvi'<so-———-———-T ), 1=i=N,
(2—aN {x))
su=E(q,’) =E[(u/p,)’], 1Si=N.

Substituting (28) into (23) and observing (7) we final-
ly obtain

N 2<eop12>
RSN ' 29
Elte) = 200+ 5 oN e >
where
8= (v'p) v o

In (29) the first term on the right-hand side describes the
transient behavior of E ((en2>), whereas the second term
represents its steady-state value.

e Transient behavior of E((enz))

In investigating the properties of A we shall be able to
make some observations concerning the transient be-
havior of E (<en2)). Among them we present a new cri-
terion for stability. We also indicate that a spread of the
eigenvalues of R has not the strong influence on the speed
of convergence of E ((e,f}) that might be expected from
considering the convergence properties of E(q,).
Furthermore, for all eigenvalues of R being equal we
show that only the largest eigenvalue of A determines the
speed of convergence of E({e,”)):

a) All eigenvalues of A are real numbers since A is
symmetric. Hence, the transient of F ((ef)) will ex-
hibit no oscillations.

b) For a — 0 all eigenvalues of A approach unity.

c) The equaljzer is stable and the expected mean-square
distortion converges to a steady state if |A,| < I,
1 = i = N. This will be the case if « satisfies

0<a<2/N(x2)=2/§pi. (31)

Proof: The N elements of the ith row of A add up to

a,=1—ap,(2—aN{x%).

M=

k=1

If « satisfies (31), then each row sum of A is smaller
than unity. A matrix which has this property and
whose elements are all positive can have only eigen-
values with absolute value smaller than unity [10].

The criterion for stability thus found imposes a much
narrower upper bound on « than (21). It clearly ex-

549

ADAPTIVE TRANSVERSAL EQUALIZERS




d)

e)

550

G. UNGERBOECK

hibits the significance of the number of taps while
showing no dependence on the distribution of the
eigenvalues of R. We recall that fastest convergence
of E(q,) takes place for a =2/(pmin T Pmax). The
new criterion indicates that with this step-size pa-
rameter E((enz)) would diverge, provided N > 2.
Since E (<e"2>) is closely related to the probability of
errors, (31) must be considered as a necessary condi-
tion. Intuitively this dependence on the number of
taps could be expected, since for a given step-size
parameter each additional tap increases through its
tap-gain fluctuations the expected excess mean-
square distortion, E (p,'Rp,). Expansion of the num-
ber of taps without decreasing the step-size parame-
ter must therefore lead to instability.

A small eigenvalue of R (p, — 0) leads to a slowly
converging term in (29), (A, — 1). But the slower the
term converges relative to the other terms, the smal-
ler the probability that this term contributes signifi-
cantly to E((e,?), (5, ~ 0).

Proof: For p,= 0 the ith row of A reads {0, - -,0,
a;=1, - -0}. Consequently, \,=1 and v,/ =
{0,» - -,0,y,=1,0,- - -,0}. Sincev,/p =0 it follows
from (30) that 3,= 0.

Generally, it is true that a larger spread of the eigen-
values of R leads to slower convergence. But the fact
that the slower-converging terms in (29) are usually
given smaller weights acts to alleviate the effect. Thus
a spread of the eigenvalues of R affects the conver-
gence of E ((enz)) less than the convergence of E(q,, ).
For all eigenvalues of R being equal, i.e., p,= o™,
1 =i= N, the largest eigenvalue of A is given by
Amax = 1 — a(x® (2 — aN (x%)) . (32)
The other eigenvalues of A have no influence on the
transient behavior of E ((e,f}) since 8, = 0, i # ipax.

Proof: It can easily be verified that A,y is an eigen-
value of A and that v,/ = N {1,1,- - 1} repre-
sents the associated eigenvector. It follows from the
Perron-Frobenius theorem [10] on positive matrices
that A« is indeed the largest eigenvalue of the posi-
tive matrix A. The theorem says that the largest eigen-
value of a positive matrix is a positive real number and
the associated eigenvector consists entirely of posi-
tive elements. Because the eigenvectors of A form a
set of orthogonal vectors, only one eigenvector can
have this property. Since v,ma.x consists entirely of
positive elements, \;m., must be the largest eigenvalue
of A. Since v,n.y is parallel to p, the other eigenvec-
tors of A are orthogonal to p. Consequently, 6, =0,
I 7 Ipax.

s The steady state

The rightmost term of (29) reveals a simple relationship
between a and the steady-state value of E((e,f)). We
again see that a steady state exists only if «,satisfies
(31). Equation (28) indicated that in the steady state all
elements of s, become equal. Taking into account
E(q,,q,) ~>0, i # k, as shown in the Appendix, we
find that in the steady state the tap gains fluctuate with
equal variance but in an uncorrelated fashion about their
optimum settings.

s Optimum speed of convergence for all eigenvalues of
R being equal
Data communication over telephone channels suffers
generally more from phase distortion than from ampli-
tude distortion. If the modulation scheme provides for a
flat amplitude characteristic and the spectrum of the
transmitted signal is not shaped by coding techniques, the
eigenvalues of R will be clustered closely about (x%. Let
us assume p, = (™, 1= i< N. It follows then from what
has been stated in the discussion of (32), and from (29)

%) 2 [1— o, )2 — a,N )] ECe,))

+ 2a,(x"Xeop ) -

E(e

n+1

(33)

Equation (33) is written with a time-dependent step-size
parameter. It can easily be verified that

L E(e,)) —(eon)
N (x*) E(e,))
leads to fastest convergence.

Usually, E((e,”) > (e, at the beginning of the

equalization process. Thus we have ., = 1IN %)
and

E(e

(34)

& opt =

)R (1—1/N) E((e,D)) . (35)

n+1

Approximately 2.3 N iterations are then required to re-
duce E((e,”)) by one order of magnitude.

Since (eopt2> is generally unknown and estimation of
E ((enz)) is time-consuming, the optimum step-size param-
eters given by (34) cannot be realized exactly. But the
optimum trajectory of E ((enz)) can be closely approached
if a is controlled in the following simple manner:

a) Measure {(x°).

b) Use a= 1/N () during the entire training period.
E ((enz)) converges towards 2<eomz>.

c) Reduce the step-size parameter to o= 1/SN (x*)
when the equalizer is switched into the decision-
directed mode. E ((enz)) converges further towards
L1(eon") (eopt) + 0.5dB).

A step-wise reduction of the step-size parameter was
already proposed by Lucky in his first paper on automatic
equalization [1]. It is, however, still surprising to see

IBM J. RES. DEVELOP.




how closely the optimum trajectory of E (<en2)) is ap-
proached by the simple two-step procedure suggested
above. Figure 2 shows the comparison. The implementa-
tion of the procedure is indicated in Fig. 1. In practice
modems are equipped with automatic gain control. If
therewith (x" is kept sufficiently constant, no further
estimation of (x) is required and the division by a vari-
able (x") in determining o is unnecessary.

The procedure proposed is also applicable when the
eigenvalues of R are spread out over a rather wide range.
This will be demonstrated in the following section by
computer simulation.

Computer simulation

Various approximations had to be made in the theoretical
analysis. We shall now check the validity of the theory by
comparing the theoretical results with those obtained by
computer simulation. The investigation was based on the
following model.

A random sequence of polar binary-signals (a, = *1)
is transmitted over a telephone channel at the speed of
3600 baud. Vestigal-sideband amplitude modulation is
used with the carrier located at 2.7 kHz. The transmitter
filter exhibits symmetrical cosine-roll-off characteristics
with 6-dB points at 0.9 and 2.7 kHz. Three telephone
channels with characteristics shown in Fig. 3 are con-
sidered. A signal-to-noise ratio of 30 dB caused by white
Gaussian noise is assumed. The equalizer comprises
N = 15 taps. Initially, the tap gains exhibit zero values.
Thus we have p, = —¢,, and {¢,”) = 1. An ideal reference
signal is assumed to be available in proper phase to the
equalizer,

Two programs have been written. The first program
calculates the sample values of the waveform k(z) for
the modulation scheme envisaged and a given telephone
channel. The second program determines R, b, ¢,,;, the
eigenvalues of R, etc., and finds the theoretical values of
E (<en2)) by iteratively applying (24). Furthermore, it
generates a random data signal, adds noise to it, simu-
lates the equalizer, and calculates (enz) at each sampling
instant by evaluating (7).

At first we consider the results obtained for telephone
channel-characteristic (1) (moderate amplitude and
phase distortion). A step-size parameter o= 1/N (x)
was chosen. The results of five program runs with dif-
ferent initializations of the random number source are
presented in Fig. 4(a). Fairly good agreement of the
theoretical and simulation results can be observed. On
the average, however, the mean-square distortion ob-
tained by simulation appears to converge slightly faster
than is theoretically predicted. Looking for a reason, we
found that this deviation can mainly be attributed to the
assumption of statistical independence between p, and x,,
(equivalently q, and y,). When additional baud intervals
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Figure 3 Telephone channel characteristics.
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were introduced in the simulation between those sam-
pling instants where tap-gain corrections are made, suc-
cessive tap output signals were forced to be quasi-
statistically independent of one another. In this way,
without counting the additional baud intervals, a much
better agreement between theory and simulation was
obtained, as indicated in Fig. 4 (b).

Further simulations with various step-size parameters
were performed for the channel-characteristics (2) and
(3) presented in Fig. 3. In order to obtain equal eigen-
values of R [P*(w) constant] with channel-character-
istic (2) (phase distortion only), a transmitter filter with
ideal bandpass filter characteristic had to be assumed,
since otherwise aliasing would have converted phase
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Figure 4 Theoretically predicted convergence and results obtained by computer simulation for channel-characteristic (1). (a) regular
552 simulation; (b) additional baud intervals introduced between sampling instants.
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Figure 5 Theoretically predicted convergence and results obtained by computer simulation for channel-characteristic (2).

distortion into amplitude distortion. Figure 5 shows the
results obtained for channel-characteristic (2). Cor-
responding results for channel-characteristic (3) (ampli-
tude distortion only) are presented in Fig. 6. On the
whole, the results confirm the validity of the theory, but
slightly faster convergence than predicted is consistently
obtained.

For channel-characteristic (3) the largest and the
smallest eigenvalues of R differ approximately by the
factor 10. This large eigenvalue spread, however, re-
duces the speed of convergence only by a factor of ap-
proximately 2, relative to the speed of convergence with
channel-characteristic (2). Our theoretical finding that a
spread of the eigenvalues of R affects the speed of con-
vergence of E ((e,f)) less than the speed of convergence
of E(q, ) is thus corroborated.

Figure 6 indicates that for a large spread of the eigen-
values of R instability occurs at a value of « smaller than
2/N (x°). In the example a= 1.5/N (x") is close to the
actual limit of stability. In this respect our theory fails
for large-amplitude distortion. The discrepancy is again
largely due to the assumption of statistical independence
between p, and x,,.

NOVEMBER 1972

The curves presented in Figs. 5 and 6 illustrate that in
the initial phase fastest convergence is in both cases
achieved by a step-size parameter close to 1/N (x*). The
speed of convergence does not appear to be very sensi-
tive to variations of a about this value. The procedure
proposed at the end of the previous section for controlling
« is therefore also applicable for channels that exhibit
considerable amplitude distortion.

Summary and conclusion
A theory has been presented on the convergence of the
expected mean-square distortion at the output of adaptive
transversal equalizers that employ the well-known MS
algorithm. Several approximations had to be made in the
analysis, but simulation results show that quite an ac-
curate picture of the convergence process can neverthe-
less be developed. The assumption of statistical inde-
pendence between the tap output signals at successive
sampling instants turned out to be the weakest of the ap-
proximations made.

Previous work in the field emphasized the influence of
the relative difference between the largest and the smal-
lest eigenvalue of R on the speed of convergence. In
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Figure 6 Theoretically predicted convergence and results obtained by computer simulation for channel-characteristic (3).

adaptive equalizers which employ the MS algorithm,
these earlier results apply only to the expected tap-gain
error vector, E(p, ). The convergence speed of the more
important expected mean-square distortion, E ((enz)),
depends to a large extent on the number of taps: The
larger N, the slower the speed of convergence. The eigen-
values of R have some influence on the speed of con-
vergence of E ((enz)), but this influence is not as distinct
asin the case of E(p, ).

We have suggested a simple two-step procedure for
controlling the step-size parameter in order to achieve
fast convergence of the expected mean-square distortion.
The true goal, however, should be to reduce as quickly
as possible the expected probability of false decisions.
This probability depends not only on the expectation of
the mean-square distortion, but also to a certain extent
on its variance. The analysis in this paper is limited in that
it provides only the expectation of the mean-square
distortion. It is, however, obvious that the variance of the
mean-square distortion decreases monotonically with the

step-size parameter. In this respect step-size parameters
slightly smaller than we have proposed from the view-
point of the expected mean-square distortion alone might
be preferable.

We finally illustrate the theoretical resuits by a specific
example. Assume an equalizer comprising 15 taps and a
transmission speed of 3600 baud, as we did for the com-
puter simulation. During the settling time the mean-
square distortion should be reduced from 1 to 0.001, pro-
vided it does not level off at a larger value, i.e., (eomz)
> 0.001. According to (35), with phase distortion only
and the step-size parameter optimally adjusted, the equal-
izer settles in about 100 baud intervals, or 28 milliseconds.
Moderate amplitude distortion will have no strong effect.
With characteristic (1) of Fig. 3 the optimum settling
time is still of the order of 30 milliseconds. For complete-
ness, it should be noted that this does not include the ad-
ditional time required for carrier acquisition, sampling
clock adjustment, and synchronization with a known ref-

erence sequence.
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Appendix

* Derivation of Eq. (24)

Analysis of the convergence properties of 5, = E (qm.z),
1=i= N, requires that we consider initially also the
mixed quantities E(q,, * ¢,,), { # k. Assume y, and q,
were statistically independent of each other. From (15),
observing (14), (16) and (17), it can then be shown that

E(Gurryi * Drins) = E(q, " dy) - [1—alp,+p,)]

N N
2
ta E Z E(qnll : qnl.z) <ym' : ynl] . ynlz ’ ynk>
=1 ly=1
N

+ 20[2 2 E(qn,) <enopt Vi Yo ynk>

=1

T+ (Cpont Vit V) 1=LASN. (A1)

According to (14) and (17) the quantities y,,, v,.. - * *»
Yoy and e, o, are uncorrelated. Suppose they are almost
statistically independent. Then

(enopt Vi Vu© ynk> ~O.
Referring to (22),

E(q,) =0, 1SI=N.

Hence, the third line of (A1) consists of products of
small quantities and can thus be neglected.
Similarly for i # k,

<ym' ) yn[l ’ yn(.z ) ynk>N0’
2 st
<en0m * Vit ynk) ~0.

Consequently, for i # k only the first line of (Al) is
important. Convergence of E(q,, - q,,) takes place if
0<a<2/(p,+p,). We may therefore assume that
these mixed terms become rapidly negligible during the
equalization process if they were not already negligible
from the beginning:

E(q, " 4,)~0, i#k.

When this is applied to the second line of (A1), then for
[, # [, we have products of two small quantities. Neglect-
ing these products reduces the double sum to a simple
summation. Considering now only the case i = k we find

N

2 2 2

s(n+1)e'"\_/ sni(l - 20¢pi) t o 2 Snl <ynl : yni>
=1

2 2z 2
+a <enopt ) 2

(A2)
ISi=N.

NOVEMBER 1972

We now approximate the higher-order expectations by
second-order statistical parameters

Gt Vi) = Py I=Li<N, (A3)

(enopt2 ' ym'2> z<eopt2>pi» I=i=N. (A4)

With these approximations (A2) reads

N
2 2
Sne1)i T2 S (I—ap;) +a E SuPyP;
1=1
I

+ a¥ew)p, 1<i=<N. (A3)

Writing (A5) in vector form, we finally obtain (24).
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