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R. F. Filipowsky

On the Correlation Matrices of Trigonometric

Product Functions

Abstract: Sets of waveforms called TPF’s, which are products of trigonometric functions, may have application in comunications
technology, network analysis and signal processing. This communication briefly reviews the characteristics of TPF’s and presents
methods for calculating their cross-correlation coefficients when 1) all TPF’s in a set have harmonic factors with the same set of values,

and 2) the harmonic factors have different values.

Introduction .

This communication discusses a class of band-limited
waveforms called trigonometric product functions (TPF’s).
These waveforms have potential application in communi-
cations technology, network analysis and signal processing.
Of particular interest is the identification of sets of orthog-
onal TPF’s, i.e., those TPF’s whose cross-correlation
coefficients are zero.

The orthogonal sets of TPF’s have important advan-
tages in comparison with other band-limited orthogonal
signal sets used for data transmission." With respect
to frequency-divided codes®® and block-orthogonal
codes,”” orthogonal TPF codes have few discontinuities
both within the time interval over which they are defined,
and at the ends of the interval. The time-divided type of
orthogonal codes® has a significantly higher peak-to-
average power ratio and requires considerably larger
time-bandwidth products for a given size code.

Other publications by the author® '° contain more
extensive discussions of the characteristics of TPF’s than
does this one. A technical report'’ gives some algorithms
for finding orthogonal sets of TPF’s. Additional infor-
mation about orthogonal codes in general may be found
in publications by Harmuth.'”"*®* The main purpose of
the present work is to show the methods that can be used
to calculate the correlation coefficients for certain sets
of TPF’s.

Definitions
In terms of their application to communications tech-
nology, trigonometric product functions can be con-
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sidered to be an encoding of a p-bit word into a product
of sine and cosine factors. For example, the 3-bit words
000, - - -, 111 are represented by

000 = sin o;x sin asx Sin azx
001 = sin a;x Sin X COS azX

111 = cos ayx COS apXx COS agx,

where the sines represent ZEROs and the cosines represent
ONES. The harmonic factors «;, oy, a3 are distinct, positive
integers assumed to be given in increasing order. A binary

word, b, - - - b, is represented in general by
D

by -++ b, = ][] sin (x + bdm), ¢))
i=1

where x = wgf; 1.e., time is normalized with respect to a
frequency appropriate to the operating band. The TPF’s
discussed in this paper are all truncated at x = 437 to
form pulses of duration T = /w,. We adopt the notation
F(p, k, q) to identify a given TPF (within a specified set,
or block), which is assumed to be normalized to unit
energy over its interval of definition. The value of p is
the number of factors in the function and is called the
order of the TPF; k is the integer value of the highest
harmonic factor o, and is called the class of the TPF;
and g identifies the rank of the TPF in an ordered list
of TPF’s of given order and rank.® We call a set of TPF’s
a block if it contains ali of the 2° TPF’s that each have
the same harmonic factors. For a given order and class,
there are Ny = (Z:;) blocks, and a total of 2°Ny TPF’s.
The large number of TPF’s that one may choose from
to specify a set of signals with desired properties is ex-
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Figure 1 Some trigonometric product functions and their spectra.

emplified when one evaluates 2°Ny for TPF’s containing
five or fewer harmonic factors. The calculation yields
270,262 different waveforms.

In their application to communications technology
the product encodings convert binary data to analog
forms in a manner similar to the function of data modems.
By expanding the products into sums of harmonic terms,
the encoding takes on the appearance of “multitone”
or “parallel subcarrier” transmission of data. However,
the product form provides a highly redundant encoding
having resistance to channel noise and to interference
from other users on a channel operating in a random-
access mode.

Figure 1 shows a selection of TPF’s and their spectra.

The main contribution of this communication is the
method developed to evaluate the matrix of cross-correla-
tion coefficients between the 2° words of a binary set
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b, --- b,. We consider the cases in which 1) the set of
harmonic factors {e;}, j =1, -+ , p, is the same for all

binary words, and 2) the set {«;} varies for any given word.
The cross-correlation coefficients to be evaluated are
given by

+7/2

Mo = o= @) [ R@E® d, @

-%/2

where o7 and ¢ are the energies per TPF given by

+7/2
7i = / Fix) dx;  (3)

/2

+T/2
o = f Fi(x) dx,
-7/2

F, is the ith waveform in an encoding («; -+ a,) and
F; is the jth waveform in the same encoding or another
one (af +- o).

The A; are well known to be measures of the detecta-
bility of signals when correlating detectors are used. The
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distance d2; between F; and F; is determined by the
relation

d?i = 0? + U? — 20,0\, C)]

In those cases where ¢ = o} (ie., in the equi-energy
waveforms sets such as we consider here), the distance
equation reduces to

di; = 2651 — \;)). (%)

In nonrigorous terms, a ‘““‘good” set of waveforms is
one in which 1) the half-distance between the closest
members is enough greater than the length of a typical
noise vector to keep the error rate manageably low, while
2) the number of signals available in the set is large enough
to keep the data rate justifiably high under the given
constraints of channel capacity and cost.

Approaches to calculation of cross-correlation
coefficients

The most direct approach to evaluating the integrals
defining \,; is to substitute trigonometric sums for the
products. These sums are of only four possible types.
They contain

1) only cosine terms with even-numbered harmonics,
2) only sine terms with even-numbered harmonics,

3) only cosine terms with odd-numbered harmonics, or
4) only sine terms with odd-numbered harmonics.

For, as can be seen, a TPF, F(x), must equal either &= F(— x),
and at the same time, F(x) must equal either &=F(x + ).
Therefore, F(x) must expand to

2p—1

Flx) = &> Z (£) cos a;x

or

271
F(x) = 2" 2 (&) sin awx, ©6)
i=1
where the a; are either all even or all odd, and a,,-. =
oyt oy v ko
An ordering for the a; is then defined by

a; = a; + 2(ma, + may + -+ + Hp_10p_1), (7)

where ; = min a; = o, — (@p-1 + - + ), and n; =
0, 1. The decimal value of the ordering index i is given by
the equivalent binary number #,_, --- n;. It should be
observed that the 2°7 values of |g;| are not necessarily
distinct and nonzero—a fact that complicates the cal-
culation of the \;; and also bears on the signal detectability
and bandwidth.

o Calculation of \;; by use of Parseval’s theorem
It can be shown with the help of Parseval’s theorem that
when {a} for two product waveforms F; and F; are all
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odd or all even, the correlation integral can be taken
between the limits (— =, +7) as follows:

+a/2 +r
[ reE@e =4 [ roR@e ®
—-r/2 -7

This certainly is the case when F; and F; have the same
set of harmonic factors {ey}; for then, {a.} is the same
for both. As a result, in such cases Parseval’s theorem
applies and the integral is calculable as the accumulated
products of amplitudes of like harmonics at common
frequencies |a;| in both expansions.

If, further, all the |a;| are distinct and nonzero, then
corresponding amplitudes in F; and F; can differ only
in polarity. The value of \;; then is readily calculated
from
N = my 2,,_1, %)
where m;; equals the number of agreements in polarity
on like harmonics minus the number of disagreements.

Equation (9) is similar to the correlation between binary
code words in a (2°7', p — 1) code. [The conventionat
notation ““(n, k) code” means that each word has » bits
of which & are data bits and n — k are error-check bits.]
The similarity arises since the product encoding in effect
uses one bit to determine whether the sum ex-
pansion will be all sines or all cosines, and uses p — 1
bits to determine the polarity of the harmonics.

For waveforms F; and F; belonging to the same block,
m;; equals zero for all i # j. In the “classical” block,
where {a;} = 1,2, 4,8, ---, the product encoding trans-
forms binary words b, b, into orthogonal codes
transmitted on 2°~ " subcarriers spaced uniformly apart,
all subcarriers being sine or cosine on any one word.
Figure 2(a) shows the waveforms of all 16 TPF’s of the
classical orthogonal set of order four. Figure 2(b) shows
the energy density spectra of these same 16 TPF’s. Table 1
gives the matrix of cross-correlation coefficients for the
non-orthogonal block, {a;} = 1,2, 3, 4.

When the Parseval expansion for \;; fails, or when the
|a;] are non-distinct, assignment of TPF’s to binary data
will result in a non-binary, non-equi-energy encoding.

o Calculation of \;; when Parsevals’ theorem does not apply
When Fi(x) = F; (x + @) but F; (x) = —F (x + =),
the integral for \;; cannot in general be taken from —
to 4-7. A direct evaluation is still possible if one substitutes
the sums for F; and F,. Only two basic cases arise; F;
and F; are both even or both odd functions, and one has
even numbered harmonics while the other has odd-
numbered harmonics. (If F; is even and F; is odd then
A = 0.) Thus the integral is calculable as a double sum
(of 2°* terms in each index) of integrals

+7/2
C., = / sin 2rx sin (2s — 1)x dx or (10)

/2
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Figure 2 (a) Waveforms and (b) energy density spectra of the 16 TPF’s of the “classical” orthogonal set of order 4.
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Table 1 Cross-correlation matrix of TPF block where {a;} =
function, respectively.

1, 2, 3, 4. The notation C and S stands for a sine function and cosine

g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ssss | 1] 1 0 0 +7§ 0 +é 7; 0 0 47; +~\7;§ 0 % 0 o +7é§
csss | 2| o 1 +7% 0 +ﬁ 0 0 +\7% _\/,% 0 0 _\7;3 0 +\/_;7 +T;3 o
scss | 3| o +T§7 1 0 —7% 0 0 +; +;. 0 0 _Til 0 +; _;7% 0
cess | 4 +7; 0 0 1 0 +7§ +% 0 0 —; _3\}—13 0 J% 0 0 +Tis
sscs | s| o +i—1 —:/% 0 1 0 0 7;7 _7;7 0 0 +7;3 0 +7;_7 _713 0
cscs | 6 +§ 0 0 +\7; 0 1 ‘7§ 0 0 ; 3% +Tés 0 +7-; 0 0 +Vé§
sces | 7 —7; 0 0 +§ 0 ~7; ! 0 0 +; wls 0 _é 0 0 +W}_3
cees [ 8| o | 4| 42 o | -] o 0 I S 0 R o | 4 ol o
sssc | 9| o \%7 + 0 T;7 0 o | + 1 0 0 +:/% o 3 _T/% 0
csse | 10 —7§ 0 0 —; 0 +37\;5 +$ 0 0 1 +3T}E 0 __; 0 0 +713
scse | 1 +\% 0 0 —3&15 0 +Tés \/—}3 0 0 +3JE 1 0 _’3‘\% 0 0 +i—3
ccsc [ 12| o 723 77% 0 +\/§§ 0 0 +Tz1 +—\/;1 0 0 1 0 +7;—1 +% 0
sscc | 13 —% 0 0 +; 0 +7; —é 0 0 g ‘3}}ﬁ 0 { 0 0 —3\/‘}3
csce |14] o +7;7 +% 0 +\7";7 0 0 +; —g 0 0 +\/% 0 1 _\/_;1 0
scce 15| o 7% _:/% 0 ﬁ\%} 0 0 +§/;T ;7;1 0 0 +§ 0 _Til 1 0
ccec | 16 +725 0 0 +\71§ 0 +7;§ +§1}'1’§ 0 0 3\;713 +}§ 0 4ﬁ 0 0 1

/‘ /2 However, the number of terms is large and no general

C,, = cos 2rx cos (2s — 1)x dx, an . . .
—r/2 patterns are easily discernible. The formula can never-

where r and s are integers such that 2r are harmonic
numbers of F; and (2s — 1) are harmonic numbers of F;.
The result of evaluating the integral is Z Z C,./ @ h.
Each C,, is elementary; in fact,

24 2B
C”_2r+2s—1 2r — (25 — 1) 2)
in which

A=1,if2r+2s—-1=1,59---
B=1if2r—Q2s—1)=1,59---

A= —1,if 2r+2s—1=13,7,11 ---
B=—1,iff2r—Qs— 1)=3,7,11 ---

FILIPOWSKY

theless be machine calculated.
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