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Abstract: Sets of waveforms called TPF‘s, which are products of trigonometric functions, may have application in comunications 
technology, network analysis and signal processing. This communication briefly  reviews the characteristics of TPF’s and presents 
methods for calculating their cross-correlation coefficients when 1) all  TPF‘s in a set have harmonic factors with the same set of values, 
and 2) the harmonic factors have different values. 

Introduction 
This  communication discusses a class of band-limited 
waveforms called trigonometric product functions (TPF’s). 
These waveforms have  potential  application in communi- 
cations technology, network analysis and signal processing. 
Of particular  interest is the identification of sets of orthog- 
onal TPF’s, i.e., those TPF’s whose cross-correlation 
coefficients are zero. 

The orthogonal sets of TPF’s have important advan- 
tages in comparison with other band-limited orthogonal 
signal sets used for  data transmission.’ With respect 
to frequency-divided and block-orthogonal 
 code^,^" orthogonal TPF codes have few discontinuities 
both within the time  interval over which they are defined, 
and  at  the ends of the interval. The time-divided type of 
orthogonal codes’ has a significantly higher peak-to- 
average power ratio  and requires considerably larger 
time-bandwidth  products for a given size code. 

Other publications by the author8-’’ contain more 
extensive discussions of the characteristics of TPF’s than 
does  this  one. A technical report” gives some  algorithms 
for finding orthogonal sets of TPF’s. Additional infor- 
mation about  orthogonal codes in general may be found 
in publications by Harm~th.’’-’~  The main  purpose of 
the present work is to show the methods that  can be used 
to calculate the correlation coefficients for certain sets 
of  TPF’s. 

Definitions 
In terms of their  application to communications tech- 
nology, trigonometric product functions  can be con- 
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sidered to be an encoding of a p-bit  word into a product 
of sine and cosine factors. For example, the 3-bit words 
000, . . . , 11 1 are represented by 

000 = sin a lx  sin azx sin a3x 
001 = sin a,x sin azx cos a3x 

11 1 = cos ff1x cos azx cos asx, 

where the sines represent ZEROS and  the cosines represent 
ONES. The harmonic  factors a,, az, as are distinct, positive 
integers assumed to be given in increasing order. A binary 
word, b, . . . b,, is represented in general by 

b, . . b, = n sin (six + b&), ( 1 )  

where x = mot; i.e., time is normalized with respect to a 
frequency appropriate  to  the operating  band. The  TPF’s 
discussed in this paper  are  all  truncated  at x = =t+.lr to 
form pulses of duration T = n-/mo. We adopt  the  notation 
F(p, k, q) to identify a given TPF (within a specified set, 
or block), which is assumed to be normalized to unit 
energy over its interval of definition. The value of p is 
the number of factors in  the function and  is called the 
order of the TPF; k is  the integer value of the highest 
harmonic factor a,, and  is called the class of the  TPF; 
and q identifies the  rank of the TPF in  an ordered list 
of  TPF‘s of given order  and rank.’ We call a set of TPF’s 
a block  if it contains all of the 2” TPF’s that each have 
the same  harmonic  factors. For a given order  and class, 
there are NB = (:I:) blocks, and a total of 2”NB TPF’s. 
The large number of TPF’s  that  one may choose from 
to specify a set of signals with desired properties is ex- 
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F ( x )  
4 sinx * cos2x sin3x 
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_” periodical  waveforms  (period 7 or 2 7 )  represented by the  trigonometric  polynomial 

”” Periodical  waveforms  (period 7 )  represented by the  Fourier  expansion 

Figure 1 Some  trigonometric  product  functions and their  spectra. 
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emplified when one evaluates 2”NS for  TPF’s containing 
five or fewer harmonic  factors. The calculation yields 
270,262 different waveforms. 

In  their application to communications technology 
the product encodings convert binary data  to analog 
forms  in a manner similar to  the function of data modems. 
By expanding the products into sums of harmonic terms, 
the encoding takes on  the appearance of “multitone” 
or  “parallel  subcarrier” transmission of data. However, 
the  product  form provides a highly redundant encoding 
having resistance to channel noise and  to interference 
from  other users on a  channel  operating in a random- 
access mode. 

Figure 1 shows a selection of TPF’s and  their spectra. 
The main  contribution of this  communication is  the 

method developed to evaluate the matrix of cross-correla- 
tion coefficients between the 2” words of a  binary set 

b1 . . . b,. We consider the cases in which 1) the set of 
harmonic  factors {ai } , j = 1, . . . , p ,  is the same for all 
binary words, and 2 )  the set {ai} varies for  any given word. 

The cross-correlation coefficients to be evaluated are 
given by 

+ */z 
x.. 11  = g.. 3 2  = - (uiui)-l F, (X) Fi (X) dx 3 (2 )  s_,,, 
where u: and u; are  the energies per TPF given by 

+ s/z + */2 

ut = F f ( x )  dx, = s_,,, F;(x) dx; (3) 

Fi is the ith waveform in  an encoding (a1 . %) and 
6 is  the  jth waveform in  the same  encoding or  another 
one (ai ... ai). 

The Xii are well known to be  measures of the detecta- 
bility of signals when correlating  detectors are used. The 681 
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distance d;i between Fi and F;. is determined by the 
relation 

dii = cr: + uf - 2aiuiXii. (4) 

In those cases where u: = crj (i.e., in  the equi-energy 
waveforms sets such as we consider here), the distance 
equation reduces to 

d;i = 2a3l - X i j ) .  ( 5 )  

In nonrigorous terms, a “good” set of waveforms is 
one in which 1) the half-distance between the closest 
members is enough greater than  the length of a typical 
noise vector to keep the error  rate manageably low, while 
2) the number of signals available in  the set is large enough 
to keep the  data  rate justifiably high under  the given 
constraints of channel capacity and cost. 

Approaches to calculation of cross-correlation 
coefficients 
The most direct approach to evaluating the integrals 
defining Xi i  is to substitute trigonometric sums for the 
products. These sums are of only four possible types. 
They contain 

1) only cosine terms with even-numbered harmonics, 
2) only sine terms with even-numbered harmonics, 
3) only cosine terms with odd-numbered harmonics, or 
4) only sine terms with odd-numbered harmonics. 

For,  as can be seen, a TPF, F(x), must equal either fF(- x), 
and  at the same time, F(x) must equal either fF(x + T). 
Therefore, F(x) must expand to 

2 P - - 1  

F(x) = (2”-l)-l (*) cos a;x 
i = l  

or 
Z P ” 1  

~ ( x )  = (2’-’)-’ sin a i x ,  (6) 

where the ai are either all even or  all  odd,  and azp- l  = 

%=I= 0Lp-l =!= . . .  f a1. 

ai = a1 + 2 h a 1  + n2az + . . . + np-lau-l), (7) 

i = l  

An ordering for  the ai is then defined by 

where a, = min ai = CY= - (o~p-~ + . + . + a,), and ni = 

0, 1. The decimal value of the ordering index i is given  by 
the equivalent binary number +, . . . n,. It should be 
observed that the 2’-l values of lail are  not necessarily 
distinct and nonzero-a fact that complicates the cal- 
culation of the Xi; and also bears on  the signal detectability 
and bandwidth. 

8 Calculation of hii by use of ParseVal‘s theorem 
It can be shown with the help of  Parseval’s theorem that 
when (ak}  for two product waveforms Fi and F, are  all 
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odd  or  all even, the correlation  integral  can be taken 
between the limits (-T, +T) as follows: 

+ r / 2  

s_ s / 2  s_:“ (8) 
Fi(x)F;(x) dx = 3 Fi(x)Fi(x) dx. 

This certainly is the case when Fi and F;. have the same 
set of harmonic  factors { ak} ; for then, { ak) is the same 
for both. As a result, in such cases Parseval’s theorem 
applies and  the integral  is calculable as  the accumulated 
products of amplitudes of like harmonics at common 
frequencies lakl in  both expansions. 

If,  further, all  the lakl are distinct and nonzero, then 
corresponding amplitudes in Fi and F, can differ only 
in polarity. The value of Xi; then  is readily calculated 
from 
iij = mii/2”-’, (9) 

where mii equals the number of agreements in polarity 
on like harmonics minus the number of disagreements. 

Equation (9) is similar to  the correlation between binary 
code words in a (2”-l, p - 1) code. [The conventional 
notation “(n, k )  code” means that each word has n bits 
of  which k are  data bits and n - k are error-check bits.] 
The similarity arises since the product encoding in effect 
uses one bit to determine whether the sum ex- 
pansion will  be all sines or all cosines, and uses p - 1 
bits to determine the polarity of the harmonics. 

For waveforms Fi and Fi belonging to the same block, 
mii equals zero for all i # j .  In  the “classical” block, 
where {ai) = 1,2, 4, 8, . . . , the  product encoding trans- 
forms binary words b, . . . b, into orthogonal codes 
transmitted on 2”-l subcarriers spaced uniformly apart, 
all subcarriers being sine or cosine on any  one word. 
Figure 2(a) shows the waveforms of all 16 TPF’s of the 
classical orthogonal set of order  four. Figure 2(b) shows 
the energy density spectra of these same 16 TPF’s. Table 1 
gives the matrix of cross-correlation coefficients for the 
non-orthogonal block, {ai) = 1, 2, 3,4. 

When the Parseval expansion for Xii fails, or when the 
lai] are non-distinct, assignment of TPF‘s to binary data 
will result in a non-binary, non-equi-energy encoding. 

Calculation of Xii when  Parseuals’ theorem does not apply 
When Fi(x) = Fi (x + T) but F, (x) = -Fi (x + T), 
the  integral for Xi i  cannot in general be taken from -T 

to +T. A direct evaluation is still possible if one substitutes 
the sums for Fi and 4. Only two basic cases arise; Fd 
and 6 are  both even or  both  odd functions, and one has 
even numbered harmonics while the other has odd- 
numbered harmonics. (If Fi is even and Fi is odd then 
Xi i  = 0.) Thus  the  integral  is calculable as a double sum 
(of 2’-’ terms in each index) of integrals 

C,, = L,,, sin 2rx sin (2s - 1)x dx or 
+ r / 2  
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sin r - sin 2x - sin 4.r - sin Xx 

cos x - sin 2.x sin 3r * sin 8.x 

Fin .x cos 2.x - sin 4x sin X.r 

cos x cos 2.x * sin 4.r - sin Xx 

sin x sin 2x * cos 4x sin Xx 

cos x - sin 2.x cos 4x - sin K X  

sin x . cos 2x cos 4x * sin Xx 

cos x * cos 2x cos 4x - sin 8x 

sinx.sin2x.sin4x.cos8x 

cos x - sin 2x * sin 4x - cos 8x 

sin x - cos 2x sin 4x - cos XX 

cos x * cos 2x sin 4x * cos XX 

sin x sin 2x cos 4x - cos’8s 

cos x sin 2x * cos 4x cos KX 

sin x cos 2x cos 4x cos 8.r 

cos x cos 2x cos 4x . cos 8x 
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Figure 2 (a) Waveforms and (b) energy density spectra of the 16 TPF’s of the “classical” orthogonal set of order 4. 



Table 1 Cross-correlation matrix of TPF block where ( a t }  = 1 ,  2, 3 ,  4. The  notation C and S stands for a sine function and cosine 
function, respectively. 

where r and s are integers such that 2r are harmonic 
numbers of Fi and (2s - 1) are harmonic  numbers of F,. 
The result of evaluating the integral is C,,/(2p")2. 
Each C,, is elementary; in fact, 

2 A  =F- 2 B  c,, = 

in which 

2r + 2s - 1 2r - (2s - 1) 

A = l , i f 2 r + 2 s - l  = 1 , 5 , 9  
B = 1 ,  if 2r - (2s - 1) = 1 ,  5 ,  9 . . . 
A = - l , i f 2 r +   2 s - 1  = 3, 7 ,  1 1  ... 
B = -1, if 2r -(2s  - 1) = 3, 7 ,  1 1  .. 684 
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However, the number of terms is large and  no general 
patterns are easily discernible. The formula  can never- 
theless be machine calculated. 
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