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Dynamic Inventory Models and Stochastic Programming®

Abstract: A wide class of single-product, dynamic inventory problems with convex cost functions and a finite horizon is investigated
as a stochastic programming problem. When demands have finite discrete distribution functions, we show that the problem can be
substantially reduced in size to a linear program with upper-bounded variables. Moreover, we show that the reduced problem has a
network representation; thus network flow theory can be used for solving this class of problems. A consequence of this result is that,
if we are dealing with an indivisible commodity, an integer solution of the dynamic inventory problem exists. This approach can be

computationally attractive if the demands in different periods are correlated or if ordering cost is a function of demand.

Introduction

The purpose of this paper is twofold, to formulate a
wide class of dynamic inventory models as a stochastic
programming problem that can be reduced to a linear
program with upper-bounded variables and to show
that the special structure of the problem allows the use
of network flow solution techniques in preference to the
simplex method of linear programming. To keep the
exposition in terms of one particular model we restrict
our initial discussion to the single-commodity, multi-
period inventory model with no back orders and with a
finite horizon. Later, attention is turned to other models to
which our approach applies.

The model to be considered in detail is described as
follows: A decision maker can procure a single item
in any of a finite number of time periods. We assume that
procurements are accomplished immediately and that the
distribution of the demand for the item is known for each
period. The decision maker balances the discrepancy
between stock on hand and the actual demand either by
holding the item in inventory or by emergency purchasing.
His economic problem arises because he can expect to
accrue savings by buying in one period, while facing the
demand uncertainty, and then holding the item in in-
ventory for future periods. '

The problem is formulated in the next section as a
stochastic program and assumptions are made about
the different cost elements. Then we focus attention on
the discrete demand-distribution case and formulate the
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problem as a linear program. Using optimality condi-
tions and additional assumptions, we reduce the linear
program to an equivalent one with upper-bounded vari-
ables and with significantly fewer equations and vari-
ables. We also show that the reduced problem can be
solved as a network flow problem. In the last section we
show that our approach also applies to the inventory
problem in which back orders are allowed.

No attempt has been made to compare the network
flow approach with dynamic programming for compu-
tational efficiency.

Dynamic inventory model

o Stochastic program (without back orders)
We now formalize the discussion in the preceding section.
Let x, denote the amount of stock procured at the be-
ginning of period ¢ and let ¢, be the associated unit cost.
Let b, be a random variable denoting the total demand
for the item during period ¢, ¢t = 1, - - - , k. To simplify the
description we assume that the demand in period ¢ is
stochastically independent of the demand in the pre-
ceding periods. At the end of each period let the excess
of demand over supply be u, and let the associated unit-
shortage cost or emergency-purchase cost be ;. The excess
of supply over demand is denoted by v, and the associated
unit cost by 3,. The variables #,, v, and x, ., are functions
of by, --- , b, and all costs are appropriately discounted.

The inventory problem can be stated mathematically
as follows:

k

min E ‘z; (Cz-xt + au, + Btut)’ (1)

z k
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where E denotes expectation with respect to by, - -, by,
subject to

b,=v,,+ x, + u, — v,

x, >0, u, >0, v, >0 and wuw, =0,

where t = 1, --- |, k and v, is prespecified (e.g., v, = 0).

The problem is characterized by a sequence of ordering
decisions over a horizon of &k periods. At the beginning
of each period ¢, we start with an initial stock v,_; and
we are allowed to order additional stock x,. Orders are
assumed to be filled immediately. When a random event
occurs that specifies a particular value of b,, the total
demand during period ¢, immediate action is taken to
compensate for imbalance between supply and demand.
The excess v, = [(v,_1 + x.) — b,] > 0 of supply over
demand is transferred to the next period; however, the
shortage u, = [b, — (,-1 + x,)] 2 0 cannot be back-
logged. The problem for the decision maker is to choose
sequentially for each period the optimal order quantity
that will minimize his expected cost.

Frequently, in practice, there will be no penalty cost
associated with the storage activity, so that 8, = 0 for
t =1, -++ | k. In fact, it is mathematically convenient
to reduce the general problem to one with 8, = 0. To do
this we substitute

v, = vt x,+u — b,

(in the order t = k, k — 1, -+ , 1) in the functional (1).
The coefficients ¢,, o, and 3, in (1) are replaced, respec-
tively, by ¢, + 2 f_.Bu o, + 2_t_, B, and 0. Now we
can impose the assumption that 8, = 0 with no loss of
generality in the remainder of the paper.

In most real problems it is reasonable to expect that
the following assumptions will be satisfied:

1. o, > ¢, > 0.
2. (o > Ciite

The first assumption states that for any period ¢ the
shortage cost is greater than the procurement cost. If this
assumption were not satisfied, the optimal policy would
be to make no orders and to pay the cost associated with
the shortage. We require that the sum of the procurement
cost in period ¢ and the discounted holding costs in periods
t,t+ 1, --- , k be positive. The problem would become
trivial if this condition were violated. Assumption 2
stipulates that the emergency purchase cost plus the
holding cost in one period is greater than the ordering
cost in the next period. These mild assumptions guarantee
that an optimal solution exists and that #, and v, are
not both positive at optimality.

Dynamic programming has been used very elegantly to
solve the multiperiod inventory problem'™ by the appli-
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cation of the principle of optimality. It is computationally
attractive when the current demand is independent of
the demand during the preceding periods and the cost
elements are independent of the realized demand. However,
if the values of demand in different periods are correlated
or if the costs are dependent on the demand, the computa-
tional requirement of dynamic programming becomes
enormous.

o Deterministic-equivalent linear program

Concerning ourselves now with finite discrete values of
demand, we show how the problem can be solved using
network flow techniques. We assume that the demand in
period ¢ is statistically independent of the demand in pre-
ceding periods, that the number of possible b, is the
same for all r and that the procurement cost is independent
of demand. It will be clear later that our analysis would
still be valid if these assumptions were waived.

Our objectives are (a) to consider the deterministic
linear program equivalent to the program (1) and to
state (without proof) necessary and sufficient conditions
for optimality of the latter program; (b) to use optimality
conditions and assumptions 1 and 2 to reduce the deter-
ministic program to an equivalent linear program with
upper-bounded variables and with considerably fewer
equations and variables; and (c) to show that the reduced
problem has a network representation.

When the random variable b, has a finite discrete
distribution we can denote the possible outcomes by
b,;,, (where [, = 1, --- , L) and the corresponding prob-
abilities by p,;, (where Y p,, = 1). (To simplify the
notation, from this point we suppress the subscript on /
when [ itself is a subscript.) In program (1) the variable
x, is a function of the sequence of random variables
by, -+, b,_; oris, equivalently, a function of the sequence
of indices /,, --- , [,_;. Also, the variables «, and v,
are functions of the sequence of indices /,, --- , /,. For
each possible sequence of indices we define the cor-
responding variables x,(1,_,), «,(,) and v,(1,), where 1,
denotes the vector (/;, --- , /,). For any variable, e.g.,
u,, we use the notation u,(1,_,, {/,) or u,(l,_,, ) inter-
changeably with u,(1,) for convenience.

Following Dantzig’s approach&7 we write the program
(1) as a linear program with explicit constraints cor-
responding to each possible value of the random vector
(by, -+, by) as follows:

min {; ; Dt ; Di-i
X[ct-xt(lt—l) + ; ptlatut(lt)]} (2)

subject to

b = v,.(,20) + x(,-) + w.d) — vly),
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x(,-) =20, ud)=>0, v(,)>0 and
u, (), 1) = 0.
Proposition 1

Necessary and sufficient conditions for solvability of
program (2)are thatc, > Oand @, > Oforr= 1,2, --- , k.

Proposition 2

A sufficient condition that some optimal solution of
program (2) satisfies u,(1,)v,(1,) = 0 for all 1, is that
¢,>20,a, 2 0and o, > min (o, ,q,c,)fort=1,--- k.

[This is a relation among cost elements which ensures
that program (2) satisfies u,(1,)v,(1,) = 0 at optimality.]

Assume for each ¢ in (2) that the b,; are ordered as
increasing in /. In an optimal solution of program (2), if
u,(l, 1, r) is positive for 1 < r < L, then

w,_, L) > u(l,_y, L—~1)>--+>u(l,_,,r)>0
and

v(l,_y, L)y =v,(1,_y, L—1)= -+ =p,(l,_,r) = 0.
Similarly, if v,(1,_,, ) is positive, then

L, 1) > 0,11, 2) > -+ > 0,1, 7) > 0 and
w1, 1) = u(l,.,,2) = -+ = u(l,_,r) = 0.

In other words, an optimal solution of program (2) must
satisfy

(o, 2> u, -y, 1 — 1),
v, I — 1) 20,4, 0,
u(lyo.(,) = 0,
u(l,)> 0 and o,(1,) > 0. 3)
Let b, be an integer satisfying

b, < mtin (b1, 0). (4)
From the rth period constraints on (2) we have

by = v, (1) + (L) + a1y, ) — 01,21, D),

=1, ,L, and

by — b= —u(, 4, I — 1) +o,(,_,,1—1)
+ w1, D) —0,Q,_,, D),
l=2,---,L. (5)

Observing that

vi-i-) + x,(,-0) = 0, (6)
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from Egs. (3), (4) and (5) we conclude that any optimal
solution satisfies

by — by > u(l,_) >0, I=1,---,L, and

by — by > uz(:lc—la l)

—u(l,,, 1 —1) >0,

I=2,---,L. (7
For each t define a new set of variables,
ye(y, 1) = biy — w1y, 1),
yio, ) =60 + w1 — 1) — w,(1,, 1)
=v,(1,,,1 — 1) —v,(1,_,, ) and

»wo ., L+ 1) =0,.,,L),1=2---,L, (8)

where

b, = b,y — b, and

b, = by — by, =2 -, L

Then it follows that

!
ut<1t——1’ l) = b,y — by — Z yt(lt—l, r),
r=1

L+1

o, (L, 4, 1) = _}l:ly,(lt_l, r) and
o L+1
u(lioa, ) — ooy, 1) = by — by — ; yi(loy, D).
9
From "Egs. (3), (7) and (8) we obtain
iz yo, D 20,
yllia, L+ 1) 20 (10)
and the conditions
v,-, 1) > 0, (11a)
yu_y, I — ) =5b;,, if »Q_,H)>0
for 1#1 and (11b)
vy, I+ D=0 if b, > yA,_, 0D
for [ L+ 1. (11¢)

The derivation of Eqs. (11) can be shown as follows:

11a. This result is an immediate consequence of relations
(7) and (8).

1ib. If y,(1,_1, ) > 0, thenv,(1,_1, Il — 1) > 0 from (8)
and it follows from (3) that u,(1,_,, I — 1) = u,(1,_;, [ — 2)
= 0. Again using Eq. (8) we find y,(1,-,,/ — 1) = b, ,_,.

1lc. If !, > y, (1,4, D, then u,(1,_4, [) > 0 from (8)
and it follows from (3) thatv,(1,_,, ) = v, (1,_, I+ 1)
= (). Using (8) we also obtain y,(1,_,, [+ 1) = 0.
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Substituting u,(1,_,, ) and v,(1,_,, Dintermsof y,(1,_,,))
in program (2), we reformulate the inventory problem
as the linear program

L+1
min <{C1x1 — o Z 813
=1
L L+1
+ Z pll[c2x2(11) — Oy Z 521)’2(11, 1)] + e
=1 =1
L L
+ Z D " Z plc—l,l[ckxk<1k—l)
=1 =1
L+1 13
— O Z 6lclyk(1k4], l):I}> — by Z Qy (12)
=1 t=1

subject to the conditions

L+1

by = x; — Z .Vl(l)
=1
L+1 L+1
by = Z Jﬁ(") + xz(ll) - Z .V2<11, l)
r=l+1 1=1
L+1 ' L+1
by = Z )"kﬂ(lk—z, ") + xk(lk—l) - Z yk(lk—l, l),

r=0+1 =1
X1 __>_. 09 Tt xk(lk—l) Z 0,
b{l Z yl([) 2 0; T bl’cl > yk(lk—-ly l) 2 0 and

yl(L+ 1)2 0: 5yk(1k—17L+ 1)2 03

where, using P to denote probability, we have

L
0, = Zlhh = Plb, > b,],l=1, -, L;
W=t

5:,L+1 = 0;
:1 = b, — by and
b{z = by — b1, l=2,---,L.

Proposition 3
An optimal solution of program (12) is also a solution
of program (2) and conversely.

Proof

There is a one-to-one correspondence between feasible
solutions of programs (2) and (12) if we impose conditions
(11) on the latter program. Moreover, the values of the
two objective functions coincide under the correspondence.
On the other hand, the hypotheses of Propositions 1 and
2 immediately imply that an optimal solution to (12)
satisfies conditions (11).

Proposition 4
Program (12) is equivalent to a directed network.
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Proof

Identify each equation in (12) by the label (¢ :1,_,). This
labeling leads to a matrix representation of the linear
program as shown in Table 1. For time period 2 subtract
the equations labeled 2 : I+ 1), 3 : I+ 1, 1), «-- ,
(k:14+ 1,1, ---, 1) from the equation labeled (2 : J).
In general, for period t = 2, --+ ,kandfor/ =1, --- ,
L — 1 subtract the equations labeled (¢ : 1,_o, I -+ 1),
¢+ 11, 0+ 15,0, kil I+ 1,1, -0 1)
from the equation labeled (+ : 1,_,, /). The resulting
equivalent program has the property that each column
contains at most two nonzero entries (+1 or —1 or
both), which characterizes a network node-arc incidence
matrix. The network matrix representation of the dynamic
inventory problem obtained from the linear program
matrix (Table 1) is given in Table 2; the steps accomplishing
this transformation are listed in the Appendix.

Proposition 4 allows us to use network flow labeling
techniques in solving inventory problems. As an im-
mediate consequence of this proposition, if we are dealing
with an indivisible commodity, an integral solution to the
dynamic inventory problem exists. Veinott® has shown
that a nonsingular linear transformation exists that reduces
the constraint matrix of program (2) to a transportation
type matrix. In his work, contrary to our approach, no
reduction in the number of equations or variables is made.

& Stochastic program (back orders allowed)
When a stock shortage can be backlogged, the original
problem description applies with the exception that the
shortage u, = [b, — (v,—1 -+ x,)} = 0 will be transferred
to the next period and satisfied by the later order quantity.
The problem is again stated as a stochastic program,

k
min E Zl (Ctxc + a.u, + Blvt) 13)
ez ry=

k2 k

subject to
b= —u,_,+ v+ x.+ u, — v,
x, 20, u, 20, v,>20 and wuw, =0,

where t = 1, --- , k and (v, — u,) is prespecified [e.g.,
(vo — uy) = 0)]. Here the coefficients ¢,, o, and 8, can be

replaced by ¢, + 9 _¢_, Bi, @, + B. and 0, respectively,
without loss of generality. The modified assumptions
appropriate to this case are

1. ¢, > 0 and
2. a, > 0.

When the demand function has a finite discrete dis-
tribution, the deterministic-equivalent linear program with
upper bounded variables for this problem is
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L
min <{c1x1 - o Z 511)’1(1)
+ Z plll:czx2(ll) Q3 Z 621)’2(11, l):|+ tr
L L
+ IZ; Pu ot [Z:l pk—l.l[ckxk(lkrl)
— ay Z S ya(liot, 1)]}> = by Z ta,, (14)

subject to
L+1
by = x; — Z.Vl(l)
=1
L+1 L+1

b, = Z yl(l) + xz(ll) - Z J’2(11’ 1)

I=1 t=1

L+1 L+1
by = Z yk-l(lk—Za 1) + -xlc(lk—l) - Z J’k(lkﬂ, l);
i=1 t=1
x1 20, -+, xpllemy) 2 05
k-1
b= )’1(1), cee L bl Z b, > J/k(lk-l, 1) > 0;
=1
b, > yl(l) >0, ,b; > yk(llc—la 1) >0,
/l=2,---,L; and
WL+1D20,- o, L+ 1) 20
where
L
0, = szh, =1, ---,L;
h=1
0i,041 = 05
{1 = by — by; and
:l = b, — bc,l~1, l=2,---, L.

This program can also be reduced to a directed network.

At this point, it should be clear that the approach
developed applies without assumptions about the statistical
independence of demands, the equal number of possible
outcomes for all time periods or the independence of the
procurement cost of the demand.

Summary

We have shown that the stochastic, one-product, dynamic
inventory problem has a structure that can be reformu-
lated as a network flow problem and thus be made amen-
able to efficient computational procedures. (Our formula-
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tion is a special case of the general class of multiperiod
stochastic programming problems investigated in Ref. 9.)
In addition to the back-order problem discussed, the
network formulation is applicable to other inventory
situations, e.g., the case in which there is a time lag in
delivery of orders. Here network techniques are pref-
erable to dynamic programming because of the large
number of state variables involved. In general, the ap-
proach is to identify and exploit the special structure of
a stochastic programming problem to achieve a means of
practical computation; it is not specifically limited to
inventory problems.

Appendix

The transformation from the linear program matrix
(Table 1) to the network matrix (Table 2) is accomplished
by the following sequential subtraction of matrix rows:

@2 — 2:2) - (3:2, 1,
(22— (2:3)— (3:3, D,
.G, D) — (31,2,
(3:1,2) — (3:1, 3),
.(3:2,1) — (3:2,2),

. (3:2,2) — (3:2,3),
.(33,1) — (3:3,2) and

. (3:3,2) — (3:3,3).

0NN kW=
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