
M. N. El Agizy 

Dynamic  Inventory  Models  and  Stochastic  Programming* 

Abstract: A wide  class  of single-product, dynamic  inventory  problems  with  convex  cost  functions  and a finite  horizon  is  investigated 
as a stochastic  programming  problem.  When  demands  have  finite  discrete  distribution  functions, we  show that the  problem  can be 
substantially  reduced  in  size to a linear  program  with  upper-bounded  variables.  Moreover,, we  show that  the  reduced  problem  has a 
network  representation; thus network  flow  theory  can  be  used for solving  this  class  of  problems. A consequence of this  result is that, 
if we are dealing  with  an  indivisible  commodity, an integer  solution of the dynamic  inventory  problem  exists.  This  approach  can  be 
computationally  attractive if the  demands  in  different  periods  are  correlated  or if ordering  cost is a function of demand. 

Introduction 
The purpose of this  paper is twofold, to formulate a 
wide class of dynamic inventory models as a  stochastic 
programming  problem that can  be reduced to a linear 
program with upper-bounded variables and  to show 
that  the special structure of the problem allows the use 
of network flow solution techniques in preference to the 
simplex method of linear programming. To keep the 
exposition in terms of one  particular model we restrict 
our initial discussion to  the single-commodity, multi- 
period inventory model with no back orders and with a 
finite horizon.  Later, attention is turned to  other models to 
which our  approach applies. 

The model to be considered in detail is described as 
follows: A decision maker  can  procure  a single item 
in  any of a finite number of time periods. We assume that 
procurements are accomplished immediately and  that  the 
distribution of the demand for  the item is known for each 
period. The decision maker balances the discrepancy 
between stock on  hand  and  the  actual demand  either by 
holding the item in inventory or by emergency purchasing. 
His economic problem arises because he  can expect to 
accrue savings by buying in  one period, while facing the 
demand uncertainty, and then holding the item  in  in- 
ventory for  future periods. 

The problem is formulated in  the next section as a 
stochastic  program and assumptions are  made  about 
the different cost elements. Then we focus attention  on 
the discrete demand-distribution case and formulate the 
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problem as a  linear  program. Using optimality condi- 
tions and  additioml assumptions, we reduce the linear 
program to an equivalent one with upper-bounded vari- 
ables and with significantly fewer equations and vari- 
ables. We also show that  the reduced problem  can  be 
solved as  a  network flow problem. In  the last section we 
show that  our  approach also applies to the inventory 
problem in which back orders  are allowed. 

No attempt  has been made to compare the network 
flow approach with dynamic  programming for compu- 
tational efficiency. 

Dynamic inventory model 

9 Stochastic program (without back orders) 
We now formalize the discussion in  the preceding section. 
Let x, denote the amount of stock  procured at  the be- 
ginning of period t and let c ,  be the associated unit cost. 
Let b,  be a random variable  denoting the  total demand 
for  the item  during  period t ,  t = 1 , . . . , k .  To simplify the 
description we assume that  the demand in period t is 
stochastically independent of the demand  in the pre- 
ceding periods. At the  end of each period let the excess 
of demand over supply be u t  and let the associated unit- 
shortage cost or emergency-purchase cost be a,. The excess 
of supply over demand is denoted by u,  and  the associated 
unit cost by pi. The variables u t ,  ut  and x, +1 are functions 
of bl,  . . . , 6, and all costs are appropriately discounted. 

The inventory problem  can be stated mathematically 
as follows: 
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where E denotes expectation with respect to bl, . . . , bk ,  
subject to 

bt = ut-1 + xt + ut - u t ,  

x, 2 0, u ,  2 0, u t  2 0 and u t u t  = 0, 

where t = 1, . . . , k and uo is  prespecified (e.g., uo = 0). 
The problem is characterized by a sequence of ordering 

decisions over a  horizon of k periods. At  the beginning 
of each period t ,  we start with an initial stock u t - l  and 
we are allowed to order additional stock x,. Orders are 
assumed to be filled immediately. When a random event 
occurs that specifies a  particular value of b, ,  the  total 
demand  during  period t ,  immediate action is taken  to 
compensate for imbalance between supply and demand. 
The excess u = [(u + x,) - b ,] 2. 0 of supply over 
demand is transferred to  the next period; however, the 
shortage u t  = [b ,  - (v + x,)] 2 0 cannot be  back- 
logged. The problem for  the decision maker is to choose 
sequentially for each period the optimal order quantity 
that will minimize his expected cost. 

Frequently,  in practice, there will be no penalty cost 
associated with the storage activity, so that f i t  = 0 for 

to reduce the general problem to  one with f i t  = 0. To  do 
this we substitute 

t 1, . . .  , k. In fact, it is mathematically convenient 

ut = U t - 1  + X /  + ut - bt 

(in the  order t = k ,  k - 1, . . . , 1) in the functional (1). 
The coefficients c,, CY,  and f i t  in (1) are replaced, respec- 
tively, by c, + xt=tfih, CY,  + Et=, f i h  and 0. Now we 
can impose the assumption that f i t  = 0 with no loss of 
generality in the remainder of the paper. 

In most real problems it is reasonable to expect that 
the following assumptions will  be satisfied: 

1. CYt > C, > 0. 

2. CY, > C , + l .  

The first assumption  states that  for any period t the 
shortage cost is greater than  the procurement cost. If  this 
assumption were not satisfied, the optimal policy would 
be to make no orders and to pay the cost associated with 
the shortage. We require that  the sum of the procurement 
cost in period t and  the discounted holding costs in periods 
t ,  t + 1, . . . , k be positive. The problem would become 
trivial if this condition were violated. Assumption 2 
stipulates that  the emergency purchase cost plus the 
holding cost in one period is greater than  the ordering 
cost in the next period. These mild assumptions  guarantee 
that  an  optimal solution exists and  that u t  and u t  are 
not  both positive at optimality. 

Dynamic programming has been used very elegantly to 
352 solve the multiperiod inventory p r~b lem"~  by the appli- 

cation of the principle of optimality. It is computationally 
attractive when the current  demand is independent of 
the demand  during the preceding periods and  the cost 
elements are independent of the realized demand. However, 
if the values of demand in different periods are correlated 
or if the costs are dependent on  the demand, the computa- 
tional requirement of dynamic programming becomes 
enormous. 

Deterministic-equivalent linear program 
Concerning ourselves now with finite discrete values of 
demand, we show how the problem  can be solved using 
network flow techniques. We assume that  the demand  in 
period t is statistically independent of the demand  in  pre- 
ceding periods, that  the number of possible b ,  is the 
same for all t and  that  the procurement cost is independent 
of demand. It will be clear later  that  our analysis would 
still be valid if these assumptions were  waived. 

Our objectives are (a) to consider the deterministic 
linear  program equivalent to  the program (1) and  to 
state  (without  proof) necessary and sufficient conditions 
for optimality of the  latter  program; (b) to use optimality 
conditions and assumptions 1 and 2 to reduce the deter- 
ministic program to  an equivalent linear  program with 
upper-bounded variables and with considerably fewer 
equations and variables; and (c) to show that  the reduced 
problem has a  network  representation. 

When the  random variable b ,  has a finite discrete 
distribution we can denote the possible outcomes by 
b t l  (where f t  = 1, . . . , L) and  the corresponding prob- 
abilities by p t l l  (where p t L l  = 1). (To simplify the 
notation, from this  point we suppress the subscript on 1 
when I itself  is a subscript.) In program (1) the variable 
x, is a function of the sequence of random variables 
bl, . . . , b,-l or is, equivalently, a  function of the sequence 
of indices 11, . . . , Also, the variables ut  and u t  
are functions of the sequence of indices I , ,  . . . , I,. For 
each possible sequence of indices we define the cor- 
responding variables X J - ~ ) ,  ut&) and v t ( l t ) ,  where 1, 
denotes the vector (Il, . . . , I t ) .  For any variable, e.g., 
u,, we use the  notation u,( l t - , ,  I , )  or ~ , ( l ~ - ~ ,  I) inter- 
changeably with u, ( l t )  for convenience. 

Following Dantzig's approach5" we write the program 
(1) as a linear  program with explicit constraints  cor- 
responding to each possible value of the  random vector 
(b l ,  . . . , bh) as follows: 
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Proposition 1 
Necessary and sufficient conditions for solvability of b, ,  - bt.1-I 2 U t ( . L l ,  1) - ut(1t-1, 2 - 1) 2 0, 

program (2) are  that C ,  2 0 and at 2 0 for t = 1,2, . . . , k.  I = 2 ,  . * .  , L .  (7) 

Proposition 2 
A sufficient condition that some  optimal  solution of 
program (2) satisfies u,(l,)u,(l,) = 0 for all 1, is that 
~ , > 0 , a , ~ O a n d o l , ~ m i n ( o l ~ + ~ , ~ , + ~ ) f o r t = 1 , ~ ~ ~ , k .  
n h i s  is a relation among cost elements which ensures 
that program (2) satisfies u,(l,)u,(l,) = 0 at optimality.] 

Assume for each t in (2) that  the b,, are ordered as 
increasing in I. In  an optimal  solution of program (2), if 
~ , ( 1 , ~ ~ ,  r)  is positive for 1 5 r 5 L, then 

u L ( L 1 ,  L )  > u f ( L 1 ,  L - I )  > . . *  > u,(I,-,, r )  > O 

and 

u , ( L 1 ,  L)  = u , ( L 1 ,  L - 1) = * . *  = u t ( l t - l ,  Y) = 0. 

Similarly, if u,(l,-,, r )  is positive, then 

u L ( l t - , ,  1) > U , ( I , - ~ ,  2) > . . .  > u,(l,-,, r )  > 0 and 

u L ( l , + l ,  1 )  = u,( l , - , ,  2)  = . . .  = ut(l,-1, Y) = 0. 

In  other words, an optimal  solution of program (2) must 
satisfy 

L + l  

~ l ( l l - l r  1) - L ' t ( L ,  1) = b,, - b" - Yt(1,-1, I ) .  

(9) 
1 = 1  

From Eqs. (3), (7) and (8) we obtain 

b: ,  2 Y 4 - 1 ,  1) 2 0, 

JJL(1f-1, L + 1) 2 0 (10) 

and  the conditions 

Yt(L1, 1) > 0,  (1 la> 

yf( l t - l ,  I - 1) = b{ , l - l  if y d L 1 ,  I )  > 0 

for 1 # 1 and (1 1b) 

y t L 1 ,  1 + 1) = 0 if h:, > Y , ( L ~ ,  I )  

for 1 # L + 1. (1 IC) 

The derivation of Eqs. (11) can be shown  as follows: 

l la .  This result is an immediate consequence of relations 
(7) and (8). 

l l b .  If ~ , ( l , - ~ ,  I) > 0,  then ~ , ( l , - ~ ,  I - 1) > 0 from (8) 
anditfollowsfrom(3)thatu,(l,-1,1- 1 ) =  ~ ~ ( 1 , - ~ , 1 -  2) 
= 0. Again using Eq. (8) we find y,(l,-,, I - 1) = b i , l - l .  

l l c .  If b:, > y,(l ,- , ,  I), then ~ , ( l , - ~ ,  I) > 0 from (8) 
and  it follows from (3) that  u,(l  t"l, I) = ~ , ( 1 , - ~ ,  I + 1)  
= 0. Using (8) we also obtain y,(l  ,-,, 1 + 1) = 0. 353 
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Substitutingu,(lt~l,l)andu,(1,~l,l)intermsof~,(l,-l,1) 
in program (2), we reformulate the inventory problem 
as  the linear program 

subject to the conditions 

L+1 L + 1  

bo ~k- l ( lk-2 ,  r )  + xk(lk-1) - ~ k ( l k - 1 ,  I ) ,  
r = l + l  1 = 1  

x1 2 0, ' '  ' 9 X k ( 1 k - 1 )  2 0,  

b:, 2 Y I ( ~ )  2 0,  ' ' '  , bkl 2 Yk(lk--l, 1) 2. 0 and 

Y l ( L  + 1) 2. 0, . . . 9 Y k ( 1 k - I ,  L + 1) 2 0, 

where, using P to denote probability, we have 

L 

6 , ~  P t h  = P[b, 2 b t , ] ,  1 = 1, " '  1 L ;  
h = l  

6 f . L + 1  = 0 ;  

b: ,  = b t l  - bo; and 

bit = btl - bt.1-1, 1 = 2, . . '  2 L .  

Proposition 3 
An  optimal  solution of program (12) is also a solution 
of program (2) and conversely. 

Proof 
There is a one-to-one correspondence between feasible 
solutions of programs (2) and (12) if  we impose conditions 
(11) on the  latter program. Moreover, the values of the 
two objective functions coincide under the correspondence. 
On  the other hand, the hypotheses of Propositions 1 and 
2 immediately imply that  an optimal solution to (12) 
satisfies conditions (1 1). 

Proposition 4 
Program (12) is equivalent to a directed network. 

Pro0 f 
Identify each equation in (12) by the label ( t  : l f - l ) .  This 
labeling leads to a matrix representation of the linear 
program as shown in Table 1. For time period 2 subtract 
the  equations labeled (2 : I + l ) ,  (3 : 1 + 1,  I), * , 
(k  : 1 + 1,  1, . . . , 1) from  the equation labeled (2  : l). 
In general, for period t = 2, . . , k and  for I = 1, * . , 
L - 1 subtract  the  equations labeled ( t  : l t - 2 ,  I + l ) ,  

from  the equation labeled ( t  : l t"2,  l). The resulting 
equivalent program has  the property that each column 
contains at most two nonzero entries (+1 or - 1 or 
both), which characterizes a network node-arc incidence 
matrix. The network matrix representation of the dynamic 
inventory problem obtained from  the linear program 
matrix (Table 1) is given in Table 2 ;  the steps accomplishing 
this transformation  are listed in the Appendix. 

( t f  1 :  11-2, 1 + 1,  l) ,  , ( k :  11-2, 1 + 1 ,  1, , 1) 

Proposition 4 allows us to use network flow labeling 
techniques in solving inventory problems. As an im- 
mediate consequence of this proposition, if we are dealing 
with an indivisible commodity, an integral  solution to  the 
dynamic inventory problem exists. Veinott' has shown 
that a nonsingular linear transformation exists that reduces 
the  constraint matrix of program (2) to a transportation 
type matrix. In his work, contrary to our approach, no 
reduction in the number of equations or variables is made. 

Stochastic  program (back orders allowed) 
When a stock shortage can be backlogged, the original 
problem description applies with the exception that  the 
shortage ut = [b, - (u t - l  + x , ) ]  2 0 will  be transferred 
to  the next period and satisfied by the later  order quantity. 
The problem is again stated  as  a stochastic program, 

k 

min E ( c f x f  + atut + A u t )  (1 3) 
z ~ , * * * . Z k  t - 1  

subject to 

bt = - ~ t - 1  + ut-1 + xt + ut - u t ,  

x ,  2. 0,  ut 2. 0,  u t  2 0 and u l u t  = 0, 

where t = 1, . . . , k and (uo - uo) is prespecified  [e.g., 
(uo - uo) = 01. Here  the coefficients c,, at and p,  can be 
replaced by c ,  + Et3, P h ,  at + p, and 0, respectively, 
without loss of generality. The modified assumptions 
appropriate to this case are 

1.  c f  > 0 and 

2. CY, > 0. 

When the demand function has  a finite discrete dis- 
tribution,  the deterministic-equivalent linear program with 
upper bounded variables for this problem is 
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6 t , , + I  = 0; 

b;, = b,, - bo; and 

b:, = b t ,  - b, , ,_ , ,  I = 2 ,  * . *  , L .  

This  program can also be reduced to a directed network. 
At  this  point, it should be clear that  the  approach 

developed applies without  assumptions about  the statistical 
independence of demands, the equal  number of possible 
outcomes for all  time periods or  the independence of the 
procurement cost of the demand. 

Summary 
We have shown that  the stochastic, one-product, dynamic 
inventory problem  has  a  structure that can  be reformu- 
lated as a network flow problem and  thus be made amen- 
able  to efficient computational procedures. (Our formula- 
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tion is a special case of the general class of multiperiod 
stochastic programming problems investigated in  Ref. 9.) 
In addition to  the back-order  problem discussed, the 
network  formulation is applicable to  other inventory 
situations, e.g., the case in which there is a  time lag in 
delivery of orders. Here network techniques are pref- 
erable to dynamic programming because of the large 
number of state variables involved. In general, the  ap- 
proach is to identify and exploit the special structure of 
a  stochastic  programming  problem to achieve a  means of 
practical computation;  it is not specifically limited to 
inventory problems. 

Appendix 
The transformation from the  linear  program matrix 
(Table 1) to  the network matrix (Table 2) is accomplished 
by the following sequential subtraction of matrix rows: 

1. (2~1)  - (2~2)  - ( 3 ~ 2 ,  l), 
2. (2~2)  - (213) - (3 :3, l), 
3. ( 3 ~ 1 ,  1) - (3~1 ,  2), 
4. ( 3 ~ 1 ,  2) - (3~1 ,  3), 
5. (3:2, 1) - (3:2, 2), 
6. (3:2, 2) - (3~2 ,  3), 
7. (3:3, 1) - (3:3, 2) and 
8. (3:3, 2) - (3:3, 3). 
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