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Short Communication 

A Note on the  Resonant  Modes and Spatial 
Coherency  of  a Fabry-Perot Maser  Interferometer 

Introduction 

The resonant modes and spatial coherency obtaining in a 
Fabry-Perot maser  interferometer  have  been studied by 
Fox and Li,’ and Wolf: and others.  Fox and Li  used an 
iteration method which  describes  transmission through 
an array of perfectly absorbing screens  of appropriate 
aperture to show that after many  transmissions a state 
is  reached  in which the relative field distribution does not 
vary  from transit to transit. The steady state field distri- 
bution is regarded as a normal mode. Wolf showed that 
with the same  periodic structure an incoherent beam be- 
comes  completely  spatially  coherent after a sufficient 
number of transmissions. 

In this communication we establish mode selection and 
complete spatial coherency conditions for an illuminated 
Fabry-Perot cavity, both with and without an internal 
active  medium. It is  shown that after a sufficient  number 
of reflections the output beam contains a single  mode  only 
if the cavity contains an active  medium. In  the case of a 
passive  medium,  however, it is not possible to obtain a 
single  mode output if the input contains more than one 
mode, although the ratio of the energy of the mode of 
lowest order to that of any other mode can be quite large. 

Finally, spatial coherency  is  examined by  means  of the 
mutual coherence function as defined in Ref. 2; it is  shown 
that single  mode  oscillation  is the necessary and sufficient 
condition for complete spatial coherency.  Hence,  in 
principle, a Fabry-Perot cavity with an active  medium 
should  generate spatial coherency. 

In this analysis  one  makes the usual  assumption of a 
linear  medium, by  which it is  meant that  the propagation 
vector K is a constant with  respect to input, although the 
propagation vector  may  have a negative  imaginary part 
which  gives  rise to gain in the system. In an actual sys- 
tem, however, K may  be  dependent to  the input, consti- 
tuting a case which  is  somewhat  involved and beyond the 
scope of the present  analysis. 

Analysis 

Following the notation of Ref. 1, the integral equation 
governing the complex  wave  field distribution U can be 
written as 

U,+l(UZ, 42) (14  

in  which U(rl, 41) is the field on the first mirror, K is the 
propagation constant, and other parameters are as indi- 
cated in Fig. 1. It can be  shown that E q .  (la) is a form of 
the Fresnel-Kirchhoff  diffraction integral when the radius 
of curvature of the wave  is  sufficiently  large. By separat- 

Figure I Arrangement of circular plane mirrors 
constituting  the  Fabry-Perot  cavity. 
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ing the dependences on y and + and carrying out the inte- f ( r )  = (C,X?,#,, + c,~","~ 
gration with  respect to 4, the integral equation is reduced to 

R L ( r 2 ) d G  = [ K:(r2,  rl)Rn(rl)  dr , ,  

n=O 

+ CJ?,#,3 . . * CKX%K)( K1 K,)". (5 )  

(Ib) Physically,  neglecting the effect  of transit time  means that 

where either the incident wave has a sufficiently long  coherence 
time or that the observation  time is sufficiently  long to 
make stationary the average  value of the Ci's over the 
period of observation. 

(1 c> To consider the mode  selection of the cavity  one  has 
to consider only the ratio of the coefficient  of &, M ,  to 

By an iterative  procedure stationary fields  were found the largest coefficient M ~ .  Since 
as solutions in Ref. 1. The stationary fields are the proper 
functions of the integral equation, hence the normal M ,  = c , x ~ (  K~ ~ ~ ) n  = ci 
modes of the cavity. The iterative  procedure is as follows : l%= 1 1 - X:K,K2 ' 

N 1 - (X:KIK,)N" 

With the integral equation in operator notation Mi ( K 1  K,X:)Nfl - 1 Ci K1  K2X: - 1 
" 

(2) M I  [( Kl K2XT)N" - 1 
- ] ( E ) ( K , K . &  - 1 

u,,, = LU, ,  

where L is the integral operator, if we take a function u It is convenient to consider  two  ranges Of X'S, namely those 
that can be  expanded into a set of the proper function for which K1K2X2 > 1 and K1K2X2 < 1. The first case  is 
of L such that that in which the active  medium  has a gain  greater than 

(KlK2)-1'Z per  pass, and the second  case  is that for the 
Fabry-Perot cavity  without an active  medium, or for a 

k 

uo = C i h ,  

then it is  interesting to note that as N approaches m 

i = l  gain  less than (K1K2)-1'2 per  pass. For the case KlK,X2 < 1 

By working  with this restricted  class of U we avoid  any 
assumption on the completeness of the proper function. 
Physically, it is  clear that the &'s cannot be  complete, for 
a wave  which  does not touch either of the mirrors cannot 
be expanded in &'s. But  such  waves are not pertinent 
for they  disappear after a few iterations. Hence, to assume 
this restricted  class of U does not occasion  much  loss of 
generality. Thus, when the largest  proper  value is non- 
degenerate so that the ordering X1 > X, 2 X, . . 2 X, 
is  possible, it is  evident that  the ratio Xy/X; 4 0, as 
n -+ , for J # 1. The iterative  procedure and the corre- 
sponding  periodic structure thus give complete  mode 
selection. 

The  case of the Fabry-Perot cavity  is  slightly more in- 
volved  since  because of multireflections  one  must  deal 
with a sum of  wave amplitudes. The wave amplitude inci- 
dent on the mirror, f(r), can be written as 

Since  this ratio is  finite, all modes  will  be  present at the 
ends, and complete  mode  selection  is not possible.  Hence, 
in theory the externally  illuminated Fabry-Perot cavity 
will not in  itself  generate  complete  mode  selection, al- 
though the amplitude of  higher  modes  may  be quite small 
in  comparison  with that of the lowest  mode. 

When an active  medium  is  present  such that KlK,X2 > 1, 
the situation is quite different,  since as N approaches m , 
the ratio 

2 ( N + 1 )  5 = .(:) + 0 ( 8) 
M1 

for all j # 1. 
This  case is very similar to that of the periodic structure. 
It is  interesting to note that Eq. (8) implies that even  if there 
are two  modes  having a gain  per  pass, the mode  with the 
higher  gain  would dominate after a sufficient number of 

f ( r )  = U, + K1  K2 U, + K ;  K," U, . . . Kh[ K'jI U Z N ,  (4) We next  consider the relation between  mode  selection 
in which K1, Kz are the reflection  matrix of the mirrors and spatial coherency. It is well  known3 that  the complex 

at either  end of the cavity. It is  possible to include the degree of coherence of the light on  an aperture is  defined as 

reflection  loss in X, however it is  preferable to keep it in J(RlR2) 
the present  form  since K1, K ,  and X are losses due to dif- d R l R 2 )  = 4 (9) 
ferent  physical  phenomena. 

Neglecting the effect  of transit time on the coefficient  where J(R1, R,) is the mutual intensity function, defined 
336 " C1's, Eq. (4) can  be  rewritten as as (U(Rl ,  t ) ,  U*(R2, t ) ) ,  and Z(R,) = J(Rl, R,) is the time 

reflections. 

m l )  m z )  

" 
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average intensity at R,.  Any wave field U(R, t )  which can 
be expanded  in the 4i's can  be  put  in the  form 

If the original  beam  contains  more than  one mode, there 
will be more  than  one  term in the series and  the  mutual 
intensity function will form a matrix with elements 

J, , (RIR,)  = ( A i ( t )  Al*(f))4i(Rl)4t(RZ). ( 1  1) 

Bii = ( A i ( t ) A : ( t ) )  (12)  

It is clear that in general 

is a  Hermitian  matrix with a positive definite quadratic 
form. From Eqs. (lo), ( l l) ,  and (12), Eq. (9) takes the 
form 

ll(RlR2) 

To show that p(RlR2) < 1 one considers the  quantity 

~ ( a ,  = Bii[a4i(Rl) + P ~ ~ C R ~ > I  
i i  

. b 4 i ( R J  + P4i(R2)1*. (14) 

Since B i j  has a positive definite quadratic  form  for non- 
zero 4 then, if 4i and 4j are  not  proportional, F(a, 0) > 0 
for all non-zero a, P. Expanding Eq. (14) one  obtains 

F(a,  P )  = a + &P* + b*cr*P + c lP12, (15) 

where 

a = c &4i(Rl)4:(Rl), 

b = Bil4i(R1)4T(R2)> 

c = c fW%(~2)47(&). 

I 1  

1 1  

1 2  

Thus the  mutual coherence function is always less than 
unity and complete spatial coherency does not  appear 
possible.* 

When only one mode is present, E?q. (13) reduces to scalar 
form,  from which it can be seen by inspection that  the 
modulus of the  mutual coherence function is unity, which 
implies complete spatial coherency. 

Conclusion 

This communication  has considered the case of a Fabry- 
Perot cavity with  light impinging on  one end while the 
field distribution on  the  other  end is observed. It has 
been shown that if one  starts with a wave that  can be 
expanded into  the modes of the integral operator,  and if 
the medium in  the cavity is passive, more  than  one mode 
would be observed at  the  other end although  the ampli- 
tude of the  dominant  mode  can  be much  greater than  that 
of the  other modes. It was further shown that if there is 
present an active medium with sufficient gain there will be 
only a single mode, and  the single mode is necessary and 
sufficient for complete spatial coherency. 
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