Short Communication

G. J. Fan

A Note on the Resonant Modes and Spatial
Coherency of a Fabry-Perot Maser Interferometer

Introduction

The resonant modes and spatial coherency obtaining in a
Fabry-Perot maser interferometer have been studied by
Fox and Li,' and Wolf,”> and others. Fox and Li used an
iteration method which describes transmission through
an array of perfectly absorbing screens of appropriate
aperture to show that after many transmissions a state
is reached in which the relative field distribution does not
vary from transit to transit. The steady state field distri-
bution is regarded as a normal mode. Wolf showed that
with the same periodic structure an incoherent beam be-
comes completely spatially coherent after a sufficient
number of transmissions.

In this communication we establish mode selection and
complete spatial coherency conditions for an illuminated
Fabry-Perot cavity, both with and without an internal
active medium. It is shown that after a sufficient number
of reflections the output beam contains a single mode only
if the cavity contains an active medium. In the case of a
passive medium, however, it is not possible to obtain a
single mode output if the input contains more than one
mode, although the ratio of the energy of the mode of
lowest order to that of any other mode can be quite large.

Finally, spatial coherency is examined by means of the
mutual coherence function as defined in Ref. 2; it is shown
that single mode oscillation is the necessary and sufficient
condition for complete spatial coherency. Hence, in
principle, a Fabry-Perot cavity with an active medium
should generate spatial coherency.

In this analysis one makes the usual assumption of a
linear medium, by which it is meant that the propagation
vector K is a constant with respect to input, although the
propagation vector may have a negative imaginary part
which gives rise to gain in the system. In an actual sys-
tem, however, K may be dependent to the input, consti-
tuting a case which is somewhat involved and beyond the
scope of the present analysis.

Analysis

Following the notation of Ref. 1, the integral equation
governing the complex wave field distribution U can be
written as

Uq+1("2, ¢2) (la)

j a 27 e—KR b
= 5/; /‘; Uq(”l, ¢1) R (1 + E)rldrldd)l’

in which U(r, ¢,) is the field on the first mirror, K is the
propagation constant, and other parameters are as indi-
cated in Fig. 1. It can be shown that Eq. (1a) is a form of
the Fresnel-Kirchhoff diffraction integral when the radius
of curvature of the wave is sufficiently large. By separat-

Figure 1 Arrangement of circular plane mirrors
constituting the Fabry-Perot cavity.
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ing the dependences on v and ¢ and carrying out the inte-
gration with respect to ¢, the integral equation is reduced to

R:L(’é)\/rz = A ﬁ K:L(l‘z, rl)Rn(rl) dr, (lb)
where
K raly R riiiraisa
Ki(rs, 1) = J"<K —) \/,-lrze PR (rattrat/2n)
b b
(1¢)

By an iterative procedure stationary fields were found
as solutions in Ref. 1. The stationary fields are the proper
functions of the integral equation, hence the normal
modes of the cavity. The iterative procedure is as follows:
With the integral equation in operator notation

Uy = LU, 2

where L is the integral operator, if we take a function U
that can be expanded into a set of the proper function
of L such that

k
Uy = Z Cips,
i=1
then
i3
U, = L"Uy, = Z C: N, (3)
i=1

By working with this restricted class of U we avoid any
assumption on the completeness of the proper function.
Physically, it is clear that the ¢,’s cannot be complete, for
a wave which does not touch either of the mirrors cannot
be expanded in ¢,’s. But such waves are not pertinent
for they disappear after a few iterations. Hence, to assume
this restricted class of U does not occasion much loss of
generality. Thus, when the largest proper value is non-
degenerate so that the ordering Ay > N\, 2> A3 -+ > g
is possible, it is evident that the ratio \}/A] — 0, as
n— o, for J £ 1. The iterative procedure and the corre-
sponding periodic structure thus give complete mode
selection.

The case of the Fabry-Perot cavity is slightly more in-
volved since because of multireflections one must deal
with a sum of wave amplitudes. The wave amplitude inci-
dent on the mirror, f(r), can be written as

fr) = Uy + KiK:Up + K K U, -+ KK Usy, (4)

in which K, K, are the reflection matrix of the mirrors
at either end of the cavity. It is possible to include the
reflection loss in A, however it is preferable to keep it in
the present form since K, K, and X are losses due to dif-
ferent physical phenomena.

Neglecting the effect of transit time on the coefficient
Cy’s, Eq. (4) can be rewritten as

N
fr) = Z (CAT¢, + CAT'$,

+ CAips -+ Cx\udr)( K, Ko)". ©)

Physically, neglecting the effect of transit time means that
either the incident wave has a sufficiently long coherence
time or that the observation time is sufficiently long to
make stationary the average value of the C,’s over the
period of observation.

To consider the mode selection of the cavity one has
to consider only the ratio of the coefficient of ¢,;, M, to
the largest coefficient M,. Since

1 - ()‘?Kl Kz)NH
1 - )\JZK[KZ

M _ [(K1 KDY — 1](&)(1{11(2)\? — 1>' ©
M (K KDY — 1IN\C/NK KN — 1

N
M; = > CA(K.K)" = C;
n=1

1)

1t is convenient to consider two ranges of \’s, namely those
for which K;K,\* > 1 and K;K,\* < 1. The first case is
that in which the active medium has a gain greater than
(K.K2)"""* per pass, and the second case is that for the
Fabry-Perot cavity without an active medium, or for a
gain less than (K, K,)"/* per pass. For the case KiK,\* < 1
it is interesting to note that as N approaches «

2
M; G <1 — K1K2>\1>_

1 — K, K.\

M, G Q)

Since this ratio is finite, all modes will be present at the
ends, and complete mode selection is not possible. Hence,
in theory the externally illuminated Fabry-Perot cavity
will not in itself generate complete mode selection, al-
though the amplitude of higher modes may be quite small
in comparison with that of the lowest mode.

When an active medium is present such that K, K\, > 1,
the situation is quite different, since as N approaches «,
the ratio

Mi )\')2(N+l)

Mi (D 0 8
wo ) - (®)
for all j # 1.

This case is very similar to that of the periodic structure.
1t is interesting to note that Eq. (8) implies that even if there
are two modes having a gain per pass, the mode with the
higher gain would dominate after a sufficient number of
reflections.

We next consider the relation between mode selection
and spatial coherency. It is well known® that the complex
degree of coherence of the light on an aperture is defined as

J(R\R>)

——_—, 9
V I(R)) I(R) ®

where J(R,, R,) is the mutual intensity function, defined
as (U(Ry, 1), U*(R,, 1)), and I(R,) = J(R,, R)) is the time

u(R1R;) =




average intensity at R;. Any wave field U(R, f) which can
be expanded in the ¢,’s can be put in the form

UJR, t) = Z A,(D¢:(R). (10)

If the original beam contains more than one mode, there
will be more than one term in the series and the mutual
intensity function will form a matrix with elements

Jii(RiRs) = (A,(t) AXD))p.(R)$F(R,). (11)
It is clear that in general
By = (A1) A¥(1)) (12)

is a Hermitian matrix with a positive definite quadratic
form. From Egs. (10), (11), and (12), Eq. (9) takes the
form

#(R1R>)
Z B.,¢:(R.)¢%(R2)
[; B,1¢1(R1)¢’§(R1) Z B”¢’(R2)¢*;(R2)]1/2 (

13)

To show that u(R,R,) < 1 one considers the quantity
F(a, B) = Z Bii[a¢i(R1) + B¢i(R2)]

'[a¢i(Rl) + 6¢1(R2)]*' (14)

Since B;; has a positive definite quadratic form for non-
zero ¢ then, if ¢; and ¢; are not proportional, F(a, 8) > 0
for all non-zero «, 8. Expanding Eq. (14) one obtains

Fla, B) = a la|® + baB* + b*a*8 + c |8, (15)

where

a = Z Bii¢i(Rl)¢=‘;(Rl)a

b= 2 B:d:i(R)$H(R,),

I

¢ = 2 B, 0.(R2)9%(Ry).

If we set « = \/b*/be and 8 = ¢, with 6 and ¢ real,
then Eq. (15) is reduced to

Fla, B) = ab® + 2V b*b8¢ + c4’ > 0. (16)

Hence ac > bb* or
20 BiR)GHR) 2 By (R)$%(R,)

> !Z, B¢ (R)$:(R). (17)

Thus the mutual coherence function is always less than
unity and complete spatial coherency does not appear
possible.*

When only one mode is present, Eq. (13) reduces to scalar
form, from which it can be seen by inspection that the
modulus of the mutual coherence function is unity, which
implies complete spatial coherency.

Conclusion

This communication has considered the case of a Fabry-
Perot cavity with light impinging on one end while the
field distribution on the other end is observed. It has
been shown that if one starts with a wave that can be
expanded into the modes of the integral operator, and if
the medium in the cavity is passive, more than one mode
would be observed at the other end although the ampli-
tude of the dominant mode can be much greater than that
of the other modes. It was further shown that if there is
present an active medium with sufficient gain there will be
only a single mode, and the single mode is necessary and
sufficient for complete spatial coherency.
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