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A Method for Key-to-Address Transformation 

Abstract:  Techniques  used in  the  theory  of  error-correcting codes are applied to  solve the  problem of address- 

ing a large file. This novel  approach  to  the  file  addressing  problem is illustrated with a specific  design  to 

show feasibility. Its  effectiveness is further illustrated by comparing test  results obtained from a  simulated 

calculation,  which used typical data, against values  calculated  from an ideal model. 

Introduction 
The problem of addressing a large file is often  handled 
by using a portion of each  record in  the file for unique 
identification. This  portion is usually called the key, and 
could  be a number, as in  shop-order  numbers, or a group 
of alphanumerical  characters,  as  in  records identified by 
name and address. This  paper develops a method for 
attacking  this  problem using the tools developed in the 
theory of error-correcting codes. 

In  the case where the keys consist of a sequential set of 
numbers, the record key can readily be converted to a 
memory address if all  records are of a fixed length. More 
generally, however, the record keys are  not sequential, and 
only a small fraction of all allowable keys are employed; 
within this  fraction,  there is no orderly selection. Examples 
of this  type of  key are  parts numbers, tool numbers, and 
word orders. For example, if the record key were to 
consist of 20 alphanumeric  characters, then there would 
be 2120 E! possible keys, assuming 6 bits per character. 
For this more general case, usually no simple relation is 
definable between record key and  an assignable storage 
address. 

Addressing a file made  up of such  records  can be 
handled by two general methods;  the first commonly 
known approach is the use of tables to store  the relation- 
ship between record key and memory address. Whenever 
a record has  to be accessed in the file, its key is used to 
scan the tables to find a starting address.’ This approach 
is often called the table-lookup  method. 

The second method  often employed is to transform the 
record key into a storage  address by techniques which 
effectively compress the allowable range of record keys 
into  the allowable range of storage addresses. These 
methods are often called key-to-address transjormations or 
randomizing schemes.*-’ For convenience, we can divide 
these transformations into  two classes: those which require 

prior knowledge of the key set and those which require 
no prior  examination of the key set. Examples of the first 
class are given in Refs. 2 and 4. The “ideal” result we 
might expect for this class would be a uniform assignment 
of records to all  storage locations, since the complete key 
set is available for inspection prior to  the formulation of 
our transformation. For example, assume that a file 
consists of lo5 records, each being 100 characters in 
length, and also that there are lo5 storage  locations,  each 
100 characters in length. A uniform  transformation would 
ideally assign all lo5 keys uniformly to all lo5 locations. 
Clearly any  records  added or deleted to  an existing file 
require changes to the transformation if the ideal is to  be 
maintained. To our knowledge, no such scheme has yet 
achieved the “uniform” ideal. 

The second class does not assume a priori knowledge of 
the key set and employs a fixed transformation which 
uniquely derives a storage  address from each key. The 
“ideal” model for this class is more imperfect and assumes 
that  the transformed keys  will be randomly assigned to 
storage  locations, hence the  term “randomizing.” For 
random transformations, the possibility of two or more 
keys being transformed to the same address  must, of 
course, exist and such keys are called synonyms. Examples 
of this class have been given  previously.3.4 ’ 6  

The method of transformation used in this  paper 
employs the tools that have been developed in  the theory 
of error-correcting codes. The presentation in this  paper 
has been oriented primarily to those concerned with the 
file problem and most of the material will be familiar to 
the specialist in error-correcting codes. The first part of 
the paper develops the equivalence between a certain 
formulation of the file problem and  the main  problem of 
the theory of error-correcting  codes; the  theory of the 
actual  transformation is then derived. Following this, the 
remainder of the paper gives an illustrative  equipment 121 
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design to indicate the economy of the technique plus a 
derivation of performance for an “ideal” or random  trans- 
formation. 

A processor with a large file could be equipped with this 
design so that hardware accomplishes the transformation 
rapidly under  program  control by adding an extra instruc- 
tion TRANSFORM to  the central machine. Alternatively, the 
technique can of course by accomplished using the existing 
order code of the machine in a fixed subroutine. 

should be as large as possible. This maximal d will be 
denoted by D. We have, therefore, assumed that the only 
restriction in any input set S is that no cluster will exceed 
diameter D.  

This outlined formulation makes the problem equivalent 
to  the main problem of the theory of error-correcting 
codes. The method of Varsharmov and Gilbert can be 
adapted to find D, while the Bose-Chaudhuri method  is 
used to construct an actual transformation.8 

The problem The  basic formulation 

Addressing a random access memory by means of key-to- 
address transformation requires an algorithm for  trans- 
forming or mapping the key  efficiently onto memory 
storage locations. We have chosen for the ideal result the 
case where the transformed keys have a “uniform”  prob- 
ability distribution over all buckets. This ideal model is 
rigorously defined in the section on test results. 

We define the set of all possible keys as  the set K, 
which is generally very large, as illustrated in  the  Intro- 
duction. Generally, the keys are strings of length n of 
symbols, each symbol being taken from  an alphabet of 
2“ symbols, where q is the number of bits per character. 
The actual keys appearing in a particular file form a 
small subset S of the set K. We further assume that  the 
memory has M addresses numbered from 1 to M and will 
call this set A.  Obviously, the number of elements of any 
S must not exceed M. 

An examination of actual key sets S reveals that a 
typical characteristic is the occurrence of clusters. For 
example, ABCD and ACBE are  at Distance 3 from each 
other in  any alphabet which contains A, B, C, D, and E. 
This distance definition, however, depends on  the repre- 
sentation. For example, if we code A, B, C, D, E respec- 
tively as 000, 001,  010,  011, 100, then  ABCD becomes 
000001010011 and ACBE becomes  000010001100, and 
the distance of the two keys in this two-symbol representa- 
tion is 7 and  not 3. For this reason we use a fixed repre- 
sentation, that is, a fixed q. Clusters can be defined now 
as sets of keys,  which are near to each other. To be more 
precise,  we define a cluster of diameter d as any set of 
keys, in which the maximum distance between pairs  is d.  
For example, the following set of names is a cluster of 
Diameter 4 in any  alphabet containing A, B, C, N, 0, 
R, U, W: 

B R   A U  N A B 

B R   A U  N A C 

B R   A U  N B C 

B R   O W  N A A 

Our aim is to partition  the given set K into M subsets in 
such a way that  the elements in each subset are  at least 
distance D away from each other.  This is equivalent to 
our original formulation, since numbering these subsets 
from 1 to M and considering the transformation which 
maps every  key into the number of the subset containing 
it, we have a transformation which maps any two keys, 
that  are  at a distance less than D from each other, into 
different numbers. 

To be able to apply the familiar methods of algebra, K 
and A will  be regarded as respectively n and m dimensional 
vector spaces over the field  of 2q elements. Since we take 
the symbols of the alphabet as  the elements of a field, 
one of them is the 0 of the field. The weight w(x) of any 
key vector of x is then defined as  the number of its nonzero 
components. The distance d(x ,   y )  of any two keys x and y 
equals the weight of x - y .  

We seek a linear transformation from a key (al, . . - , a,) 
to  an address (pl, - . . , p,,,), i.e., one of the form 

2 tiiai = pi f o r i  = 1, e - .  , m .  (1) 

Here ( t i i )  is the required transformation  matrix and  it 
has to have m rows and n columns. 

Theorem 
The distance between every pair  of  keys mapped into the 
same  address by the transformation matrix ( t i i )  is larger 
than D if, and only if, every D columns of the matrix are 
independent. This implies in particular that D has to be 
less than  or equal to m. 

Proof. We want distances only larger than D to exist 
between  keys mapped into  the same address. Thus  the 
weight  of the difference  of two such keys has to be larger 
than D. Let us consider then two keys a and b, which 
map  into  the same address p ,  and whose difference has 
weight D, that is, n - D zero digits. The transformation 
formula (1) gives 

i - 1  

ll n ” 
tiiai - t i i b i  = t i i (a i  - bi )  = 0 

i - 1   i - 1   i - 1  

B R  O W  N B A 

Following Lin,* we also assume that  the transform  must since a and b map into  the same p .  Now if n - D of the 
destroy the clusters in the set S and disperse the elements (ai - bi)’s are zero, then to satisfy our requirement that 
of a cluster amongst the storage buckets. ,Our trans- this  should  make all (ai - bi)’s zeros, the equations (2) 
formation must map the elements of any cluster whose should give at least D independent equations for  the 

122 diameter is less than d into a different address and d D (ai - bi)’s which  were not assumed to be 0. This require- 
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ment is equivalent to saying that every D columns of the 
matrix tdi have to be  independent of  each  other. 

For the particular case in which the alphabet consists 
of 2'j symbols, that is, all operations are performed in the 
Galois field  of 26 elements, and the number of elements 
of K is 2lSo and that of A is yo, that is, n = 180/6 = 30 
and rn = 3016 = 5. Varsharmov and Gilbert's  method for 
the construction of such  matrices  gives D = 5. (See Ref. 8). 

The above  theorem  establishes the relationship  between 
the  coding and addressing  problems,  since this class  of 
matrices,  deduced  here for the latter, plays a basic  role 
in coding theory. 

One  such transformation can be  constructed by the 
method of  Bose and Cha~dhuri'.~ using a polynomial 
representation  equivalent to the matrix  representation 
given  here. This method  leads to a simple  implementation. 
The keys and addresses  have to be  represented in it as 
polynomials : 

K(x)  = six"", R(x) = p i x i - ' .  (3) 

Let a be a primitive  element of GF(23 (that is a2"l = 1 
but ai # 1 for i < 2 O  - 1) and consider the polynomial 

n n 

i - 1  6-1 

d - I  

g(x) = ( x  - a)(. - a2) . * f ( x  - ad"') = gix i ,  (4) 
i = O  

where d 5 D. 

remainder of the division  of K(x) by g(x), that is, 

K(x) = Q(x)g(x) + R(x), degree  of R(x) < d - 1, (5) 

then the minimum distance between  two  keys  giving the 
same R is at least d. 

Figure I Gross logic for calculating R(x) .  

The Bose-Chaudhuri  theorem states that if R(x) is the 

Implementation 

The basic equation to be implemented  is  Eq. (5) .  It may 
be written as 

The division of two  polynomials  can  be  carried out by 
the equipment  shown  in  Fig. 1. Peterson gives additional 
background on hardware  implementation.* The K register 
consists of KO,   K l   Kg ,  and each K unit contains 6 
flip-flops. The individual coefficients  of K(x) are suc- 
cessively shifted into the K register so that after 5 such 
shifts,  each  stage of the K register  will contain: 

KO 4 K z  Ka K4 

a26 a27 a28 a29  a30 

The output of the K c  stage is coupled through the S 
unit to the various G units.  Each Gi unit multiplies the 
coefficient in K 4  by the coefficient gi of G(x). No G s  unit 
is  needed  since g6 = 1. 

Each G unit consists of a logic array which performs the 
straight Boolean  multiplication  directly. Table 1 shows 
the direct  multiplication of two  elements of a GF(2'j) for 
the general  case.  Table 2 gives the specific  Boolean equa- 
tions for Go and G 4 .  The worst  case is G4,  which requires 
6 successive additions for d6, or a propagation time for 
6 stages  of EXCLUSIVE OR'S. Hence, it is reasonable to 
assume that this  method can accomplish the multiplication 
in one clock  time tc. Total subcycle  time for one K register 
shift  followed by the multiplication and addition should 
not exceed  two  clock  times. 

The S unit in Fig. 1 merely regenerates the K4 outputs 
with  sufficient  power to drive Go through G 4 ,  and all the 

@ ADDER UNIT 

6-BIT CHARACTER SIGNAL 
7 

G- MULTIPLYING  UNIT 

K - CHARACTER STORAGE (6  FLIP-FLOP) 
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G units are networks of Boolean logic consisting of Table 2 Boolean  functions for G multipliers. 
approximately 53 EXCLUSIVE OR gates. 

The equipment in Fig. 1 requires the following: 

Number of Number of 
flip-flops EXCLUSIVE OR gates 

K register 30 0 
G unit 0 53 
Adder 0 30 

30 83 

Some  test  results 

In order to illustrate the effectiveness  of the technique, 
a test run was made using raw data  taken  from a typical 
customer. The transformation was simulated on an IBM 
7090 for selected ranges of parameters. These results are 
best evaluated after the ideal model is developed. 

A bucket is defined as the smallest uniquely address- 
able segment of memory and possible examples are a 
track (2800 characters) or a cylinder (40 tracks X 2800 
char./track = 112,000 char.) in the IBM 1301. A cefl is 
defined as a segment of a bucket; as  an example, if each 
cell is assigned 100 characters, then  for  the IBM 1301, 
each track will have 2800/100 = 28  cells and each cylinder 
will have 112,000/100 = 1120  cells. Records are assigned 
to storage by transforming the record key and using the 
transformed result to designate a bucket. Within the 
assigned bucket, the record will occupy a cell or group 
of  cells. Subsequent accesses to this record are accom- 
plished by transformation of the record key and then 
searching through the designated bucket for the cells 
which contain the record. When synonyms occur, they 
are assigned to the same bucket and when bucket capacity 
is  exceeded, remaining synonyms a.re considered over- 

~ 
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Assume the file contains r independent  records and  that 
each  record is a call in length. Also, assume that  the 
number of storage  locations or cells in memory is N. 
If the transformation employed gave ideal results, i.e., the 
transformed  address set were random,  then it can  be  shown 
that  the distribution of the number of records, k, having 
an  arbitrary common address would be  approximately 

(k)"exp [-X] 
I)k = k = 0 ,  1 ,  2, (7) 

k !  
Here p ,  is the probability of finding k records with the 
same calculated address or k synonyms. 

If the N storage  locations or cells are grouped into 
buckets, then if b cells are assigned per bucket, there will 
be N/b buckets. Since we have assumed constant  record 
length of one cell, then storage density or effective utiliza- 
tion of storage space will be d = r/N. It can be shown 
that  the average number of overflow records or excess 
synonyms that will be assigned to a bucket of b cells 
will be given by: 

b(d - 1) + (b -  k) 
k = h - l  (bd)kexp [ - bd] 
k = O  k! 

Here  T is given normalized to  the number of storage 
locations N, hence T X 1 0 0 ~ o  will  give percent overflow. 
For example, if T = 0.1 and N = 1000, then loyo, or 
100 records, will overflow their assigned or home buckets. 
This  formula is derived in Appendix I. 

In  our test  runs the  input  data involved numbers such 
as  the following: 

Cylinder Assy. 1025AA-71-C-S1 

Cylinder Assy. 1026AA-72-B-S1 

The test runs showed the results to correlate quite well 
with the  random model described by Eqs. 6 and 7. Table 
3 gives a typical tabulation of the numbers of buckets 
versus k assigned records; this comparison is for  the 
case of d = 1, N = 4096. 

Table 3 Sample of test  results against random 
(Poisson distribution). 

Number of Measured number Number of buckets 
records to of buckets having for  random set, 
a bucket k k records from E9. (7) 

0 1501 
1 1513 
2 750 
3 257 
4 63 
5 12 
6 0 

1510 
1510 
755 
252 

63 
13  
3 

In  the tests we also selected different bucket sizes to 
determine the number of records that would overflow 
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Figure 2 Test  runs giving overflow vs file density. 

their  home bucket. Figure 2 depicts some  test results 
from  the  raw  data;  the values calculated from Eq. (8) 
are superimposed. 

Although the present study  did not examine analytically 
how random  the transformed  set will be, this topic prob- 
ably deserves further  attention. It is, of course, the charac- 
teristics of the original key set which determine the 
randomness of the transformed results. 

Conclusions 

The present paper  demonstrates how the theory of error- 
correcting codes can be applied to the problem of ad- 
dressing a file. The necessary hardware is shown to be 
readily implemented, and  the results closely approximate 
the ideal model. 
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Appendix: Derivation of the overflow 

The probability that k records will be assigned to a bucket 
of b cells is given by 

k! 

This can be  demonstrated by taking the b-fold convolution 
of Eq. (7), the Poisson  distribution. From this, the ex- 
pected overflow Tb of records in a bucket of b cells will 
be : 

k = a  

Tt, = (k - b) 
k = b  k! 

Expanding and combining  terms and noting that 

k-eo 

C k  = b I_ (Poisson mean) and 
k=O k!  N' 

t-a 

C b  = b (sum of Poisson is l), 
k - 0  k! 

we obtain 

'br k = b - 1  

T b = l x - b -  k = O  (k-1) k!  

Since we have N / b  buckets and N cells or storage  locations, 
total overflow normalized to the number of cells is 
T = Tb X (N/b) X (l/N). Hence total overflow T is 
given  by 

J k = b - 1  

T = - b - - l  + ( b - k )  (L ) k - 0  k! 
Setting d = r / N  as a measure of storage density this 
becomes 

b(d - 1) f ( b  - k )  
k - b - 1  (bd)kexp [ - bd] 

k=O k! 
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