G. Schay
N. Raver

A Method for Key-to-Address Transformation

Abstract: Techniques used in the theory of error-correcting codes are applied to solve the problem of address-

ing a large file. This novel approach to the file addressing problem is illustrated with a specific design to

show feasibility. Its effectiveness is further illustrated by comparing test results obtained from a simulated

calculation, which used typical data, against values calculated from an ideal model.

Introduction

The problem of addressing a large file is often handled
by using a portion of each record in the file for unique
identification. This portion is usually called the key, and
could be a number, as in shop-order numbers, or a group
of alphanumerical characters, as in records identified by
name and address. This paper develops a method for
attacking this problem using the tools developed in the
theory of error-correcting codes.

In the case where the keys consist of a sequential set of
numbers, the record key can readily be converted to a
memory address if all records are of a fixed length. More
generally, however, the record keys are not sequential, and
only a small fraction of all allowable keys are employed;
within this fraction, there is no orderly selection. Examples
of this type of key are parts numbers, tool numbers, and
word orders. For example, if the record key were to
consist of 20 alphanumeric characters, then there would
be 2'%° = 10% possible keys, assuming 6 bits per character.
For this more general case, usually no simple relation is
definable between record key and an assignable storage
address.

Addressing a file made up of such records can be
handled by two general methods; the first commonly
known approach is the use of tables to store the relation-
ship between record key and memory address. Whenever
a record has to be accessed in the file, its key is used to
scan the tables to find a starting address.! This approach
is often called the rable-lookup method.

The second method often employed is to transform the
record key into a storage address by techniques which
effectively compress the allowable range of record keys
into the allowable range of storage addresses. These
methods are often called key-fo-address transformations or
randomizing schemes.?~7 For convenience, we can divide
these transformations into two classes: those which require

prior knowledge of the key set and those which require
no prior examination of the key set. Examples of the first
class are given in Refs. 2 and 4. The “ideal” result we
might expect for this class would be a uniform assignment
of records to all storage locations, since the complete key
set is available for inspection prior to the formulation of
our transformation. For example, assume that a file
consists of 10° records, each being 100 characters in
length, and also that there are 10° storage locations, each
100 characters in length. A uniform transformation would
ideally assign all 10° keys uniformly to all 10° locations.
Clearly any records added or deleted to an existing file
require changes to the transformation if the ideal is to be
maintained. To our knowledge, no such scheme has yet
achieved the ““uniform” ideal.

The second class does not assume a priori knowledge of
the key set and employs a fixed transformation which
uniquely derives a storage address from each key. The
“‘ideal” model for this class is more imperfect and assumes
that the transformed keys will be randomly assigned to
storage locations, hence the term ‘“randomizing.” For
random transformations, the possibility of two or more
keys being transformed to the same address must, of
course, exist and such keys are called synonyms. Examples
of this class have been given previously.3:4.6

The method of transformation used in this paper
employs the tools that have been developed in the theory
of error-correcting codes. The presentation in this paper
has been oriented primarily to those concerned with the
file problem and most of the material will be familiar to
the specialist in error-correcting codes. The first part of
the paper develops the equivalence between a certain
formulation of the file problem and the main problem of
the theory of error-correcting codes; the theory of the
actual transformation is then derived. Following this, the
remainder of the paper gives an illustrative equipment

121

IBM JOURNAL ¢ APRIL 1963

122

design to indicate the economy of the technique plus a
derivation of performance for an “ideal”” or random trans-
formation.

A processor with a large file could be equipped with this
design so that hardware accomplishes the transformation
rapidly under program control by adding an extra instruc-
tion TRANSFORM to the central machine. Alternatively, the
technique can of course by accomplished using the existing
order code of the machine in a fixed subroutine,

The problem

Addressing a random access memory by means of key-to-
address transformation requires an algorithm for trans-
forming or mapping the key efficiently onto memory
storage locations, We have chosen for the ideal result the
case where the transformed keys have a ‘“‘uniform” prob-
ability distribution over all buckets. This ideal model is
rigorously defined in the section on test results.

We define the set of all possible keys as the set K,
which is generally very large, as illustrated in the Intro-
duction. Generally, the keys are strings of length n of
symbols, each symbol being taken from an alphabet of
2? symbols, where ¢ is the number of bits per character.
The actual keys appearing in a particular file form a
small subset S of the set X. We further assume that the
memory has M addresses numbered from 1 to M and will
call this set 4. Obviously, the number of elements of any
S must not exceed M.

An examination of actual key sets S reveals that a
typical characteristic is the occurrence of clusters. For
example, ABCD and ACBE are at Distance 3 from each
other in any alphabet which contains A, B, C, D, and E.
This distance definition, however, depends on the repre-
sentation. For example, if we code A, B, C, D, E respec-
tively as 000, 001, 010, 011, 100, then ABCD becomes
000001010011 and ACBE becomes 000010001100, and
the distance of the two keys in this two-symbol representa-
tion is 7 and not 3. For this reason we use a fixed repre-
sentation, that is, a fixed 4. Clusters can be defined now
as sets of keys, which are near to each other. To be more
precise, we define a cluster of diameter d as any set of
keys, in which the maximum distance between pairs is d.
For example, the following set of names is a cluster of
Diameter 4 in any alphabet containing A, B, C, N, O,
R, U, W:

BR AU
BR AU
BR AU
BR OW
BR OW N B A

A
A
B
A

2z z z Zz
> 0 0w

Following Lin,? we also assume that the transform must
destroy the clusters in the set S and disperse the elements
of a cluster amongst the storage buckets. Our trans-
formation must map the elements of any cluster whose
diameter is less than 4 into a different address and d

G. SCHAY AND N. RAVER

should be as large as possible. This maximal d will be
denoted by D. We have, therefore, assumed that the only
restriction in any input set S is that no cluster will exceed
diameter D,

This outlined formulation makes the problem equivalent
to the main problem of the theory of error-correcting
codes. The method of Varsharmov and Gilbert can be
adapted to find D, while the Bose-Chaudhuri method is
used to construct an actual transformation.’

The basic formulation

Our aim is to partition the given set K into M subsets in
such a way that the elements in each subset are at least
distance D away from each other. This is equivalent to
our original formulation, since numbering these subsets
from 1 to M and considering the transformation which
maps every key into the number of the subset containing
it, we have a transformation which maps any two keys,
that are at a distance less than D from each other, into
different numbers.

To be able to apply the familiar methods of algebra, K
and A will be regarded as respectively n and m dimensional
vector spaces over the field of 2¢ elements. Since we take
the symbols of the alphabet as the elements of a field,
one of them is the 0 of the field. The weight w(x) of any
key vector of x is then defined as the number of its nonzero
components. The distance d(x, y) of any two keys x and y
equals the weight of x — y.

We seek a linear transformation from a key (ay, « - - , a,)
to an address (py, *** , p.), i.€., one of the form

n

Z t;;a; = p;

i=1

fori=1,:--,m. (1)

Here (z;;) is the required transformation matrix and it
has to have m rows and n columns.

o Theorem

The distance between every pair of keys mapped into the
same address by the transformation matrix (t;;) is larger
than D if, and only if, every D columns of the matrix are
independent. This implies in particular that D has to be
less than or equal to m.

Proof. We want distances only larger than D to exist
between keys mapped into the same address. Thus the
weight of the difference of two such keys has to be larger
than D. Let us consider then two keys a and b, which
map into the same address p, and whose difference has
weight D, that is, n — D zero digits. The transformation
formula (1) gives

n

” n
Zl Liia; — El tiib; = Z tii(a;
i= i=

i=

fori=1,:-,m, 2

since a and b map into the same p. Now if n — D of the
(a;, — b;)’s are zero, then to satisfy our requirement that
this should make all (a; — b;)’s zeros, the equations (2)
should give at least D independent equations for the
D (a; — b;)’s which were not assumed to be 0. This require-

ment is equivalent to saying that every D columns of the
matrix f;; have to be independent of each other.

For the particular case in which the alphabet consists
of 2° symbols, that is, all operations are performed in the
Galois field of 2° elements, and the number of elements
of K is 2'® and that of A4 is 2%°, that is, n = 180/6 = 30
and m = 30/6 = 5. Varsharmov and Gilbert’s method for
the construction of such matrices gives D = 5. (See Ref. 8).

The above theorem establishes the relationship between
the coding and addressing problems, since this class of
matrices, deduced here for the latter, plays a basic role
in coding theory.

One such transformation can be constructed by the
method of Bose and Chaudhuri®® using a polynomial
representation equivalent to the matrix representation
given here. This method leads to a simple implementation.
The keys and addresses have to be represented in it as
polynomials:

n

K(x) = 2 ax'", R(x) = i pix' (3)

im] i=]1

Let @ be a primitive element of GF(2%) (that is o2~ =1
but ¢ 5 1 for i < 2?2 — 1) and consider the polynomial

g0) = (x —a)(x — o) -+ (x—a') = Z g’ (4)

where d < D.
The Bose-Chaudhuri theorem states that if R(x) is the
remainder of the division of K(x) by g(x), that is,

K(x) = Q(x)g(x) + R(x), degree of R(x) <d — 1, (5)

then the minimum distance between two keys giving the
same R is at least d.

Implementation

The basic equation to be implemented is Eq. (5). It may
be written as

k&) _ R(x),
o o(x) + (o) (6)
The division of two polynomials can be carried out by
the equipment shown in Fig. 1. Peterson gives additional
background on hardware implementation.® The K register
consists of K,, K; --- K, and each K unit contains 6
flip-flops. The individual coefficients of K(x) are suc-
cessively shifted into the K register so that after 5 such
shifts, each stage of the K register will contain:

KO K1 K2 K3 K4

Q¢ Ag7 Q23 Qg9 Q3o

The output of the K, stage is coupled through the S
unit to the various G units. Each G; unit multiplies the
coefficient in K, by the coefficient g; of G(x). No G5 unit
is needed since g5 = 1.

Each G unit consists of a logic array which performs the
straight Boolean multiplication directly. Table 1 shows
the direct multiplication of two elements of a GF(2%) for
the general case. Table 2 gives the specific Boolean equa-
tions for G, and G .. The worst case is G, which requires
6 successive additions for ds, or a propagation time for
6 stages of EXCLUSIVE OR’s. Hence, it is reasonable to
assume that this method can accomplish the multiplication
in one clock time ¢,. Total subcycle time for one K register
shift followed by the multiplication and addition should
not exceed two clock times.

The S unit in Fig. 1 merely regenerates the K, outputs
with sufficient power to drive G, through G, and all the

Figure 1 Gross logic for calculating R(x).
Q(x)
L l; L x
Go G Gy Gs Gy
‘ S
K {X)
Ko K Ko K3 Kq

@ ADDER UNIT

6-BIT CHARACTER SIGNAL

G~ MULTIPLYING UNIT
K — CHARACTER STORAGE (4 FLIP-FLOP)

S — DRIVER

123

KEY-TO-ADDRESS TRANSFORMATION

124

Table I Multiplication of two elements in GF(29).

wingl +a=o’,at+a’=4d, -

Expanding, reducing and collecting like terms then gives:

dy = boco + bsc1 + bycz + bscs + bocy + bics

@™ = a'a™ = (b + b F b’ + by + biat + be’)co + i + d” + 0’ + cid® +),
4 5 10
a +ao =«

an+m = do + d,ozl + d2a2 + d3a3 + d4a4 + d5a5°

di = bico + bocr + bser + bacs + bscs + bacy + bics + bsca + bycs + bacs -+ bocs
ds = boco = bicy + boce + bsca + bucs -+ bycy + bocs + bscs - bics - bacs

ds = basco - bacr + bice + bocs + bscs + becs + bscs + bscs F bucs

dy = bscy -+ bser -+ by + bics + bocy + bscs -+ bics + bscs

ds = bycy + bser + bscy + bes + bies -+ bocs 1 bics.

G units are networks of Boolean logic consisting of
approximately 53 EXCLUSIVE OR gates.
The equipment in Fig. 1 requires the following:

Number of Number of
flip-flops EXCLUSIVE OR gates
K register 30 0
G unit 0 53
Adder 0 30
30 83

Some 1est results

In order to illustrate the effectiveness of the technique,
a test run was made using raw data taken from a typical
customer. The transformation was simulated on an IBM
7090 for selected ranges of parameters. These results are
best evaluated after the ideal model is developed.

A bucket is defined as the smallest uniquely address-
able segment of memory and possible examples are a
track (2800 characters) or a cylinder (40 tracks X 2800
char.jtrack = 112,000 char.) in the IBM 1301. A cell is
defined as a segment of a bucket; as an example, if each
cell is assigned 100 characters, then for the IBM 1301,
each track will have 2800/100 = 28 cells and each cylinder
will have 112,000/100 = 1120 cells. Records are assigned
to storage by transforming the record key and using the
transformed result to designate a bucket. Within the
assigned bucket, the record will occupy a cell or group
of cells. Subsequent accesses to this record are accom-
plished by transformation of the record key and then
searching through the designated bucket for the cells
which contain the record. When synonyms occur, they
are assigned to the same bucket and when bucket capacity
is exceeded, remaining synonyms are considered over-
flow.1

G. SCHAY AND N. RAVER

Table 2 Boolean functions for G multipliers.

cg €1 ¢ €3 <4 C5

|

by ——
b ——]
by

Gn

by

by —-’mﬂ

bg — ——

Note: for all five G units, need about 53 EXCLUSIVE OR’s.

g(x) = go+ gix + gx2 + guxd + goxt 4 goxs
= 15 + adx _|.. ocllx? _.|_ asx3 _|_ abixt + X5

Set bq, by, - -« b, to g, values for each n.
b3=b5=1, b0=bx=b2=b4=0.
do = (3 -r Ci

GO, 8o = alﬁ’

d=ca+c+ cat cs
de= 2+ s+ s+ ¢
di= ¢+ s+ s+ e
d4=01+C4+ Cs
ds = ¢y + 2+ ¢s.

Gy, g1 = a7 by=0, bi=by=0b=0b,= b,
div=ci+ 2t s+ et ¢
di = ¢+ e
d2=co'|"cx+ C2
di=c+ i+ et c
di=ct+eat+ et et e

di=cotca+ e+t et o

Assume the file contains » independent records and that
each record is a call in length. Also, assume that the
number of storage locations or cells in memory is N.
If the transformation employed gave ideal results, i.e., the
transformed address set were random, then it can be shown
that the distribution of the number of records, k, having
an arbitrary common address would be approximately

(o[-5]

m=——"s, k=
k!

Here p, is the probability of finding k& records with the

same calculated address or & synonyms.

If the N storage locations or cells are grouped into
buckets, then if b cells are assigned per bucket, there will
be N/b buckets. Since we have assumed constant record
length of one cell, then storage density or effective utiliza-
tion of storage space will be d = r/N. It can be shown
that the average number of overflow records or excess
synonyms that will be assigned to a bucket of b cells
will be given by:

U SYT) (ed)exp [—bd]
T—b{b(d IH_Z% (b—k) ” } (8)

0,1,2, -+« (7)

Here T is given normalized to the number of storage
locations N, hence T X 1009, will give percent overflow.
For example, if T = 0.1 and N = 1000, then 109, or
100 records, will overflow their assigned or home buckets.
This formula is derived in Appendix 1.

In our test runs the input data involved numbers such
as the following:

1025AA-71-C-51
1026AA-72-B-S1

Cylinder Assy.
Cylinder Assy.

The test runs showed the results to correlate quite well
with the random model described by Egs. 6 and 7. Table
3 gives a typical tabulation of the numbers of buckets
versus k assigned records; this comparison is for the
case of d = 1, N = 4096.

Table 3 Sample of test results against random
(Poisson distribution).

Number of Measured number Number of buckets
records to of buckets having for random set,

a bucket k k records from Eq. (7)

0 1501 1510

1 1513 1510

2 750 755

3 257 252

4 63 63

5 12 13

6 0 3

In the tests we also selected different bucket sizes to
determine the number of records that would overflow

70 S e

|
O THEORETICAL MODEL I
+ TEST VALUES \

|

| i
60 i | |
40 50 60 70 80 %0 100

PERCENT IN HOME LOCATION

PERCENT IN SYSTEM, OR FILE DENSITY, d

Figure 2 Test runs giving overflow vs file density.

their home bucket. Figure 2 depicts some test results
from the raw data; the values calculated from Eq. (8)
are superimposed.

Although the present study did not examine analytically
how random the transformed set will be, this topic prob-
ably deserves further attention. It is, of course, the charac-
teristics of the original key set which determine the
randomness of the transformed results.

Conclusions

The present paper demonstrates how the theory of error-
correcting codes can be applied to the problem of ad-
dressing a file. The necessary hardware is shown to be
readily implemented, and the results closely approximate
the ideal model.

Acknowledgments

The authors wish to express their thanks to F. P. Palermo
and M. Hanan for many interesting discussions, and in
particular for their suggestion to use the Bose-Chaudhuri
codes for the implementation. The raw data for the test

125

KEY-TO-ADDRESS TRANSFORMATION

results were supplied by R. M. Simons. The programing <br)’° [br:I
exp

effort to develop the simulated test results was accom- br k=b—1 N N
plished by G. H. Bean. T,=|y—bt— 2 k=1

par] K
Appendix: Derivation of the overflow Since we have N/b buckets and N cells or storage locations,

total overflow normalized to the number of cells is

The probability that & records will be assigned to a bucket T = T, X (NJB) X (1/N). Hence total overflow T is

of b cells is given by

given by
br)k I: bl‘] k
—Jexp| —— br br
(5l -5] N
: T=—1b(——1)+ b—k .
k! ALY kZ_; (b—k) 0
This can be demons.trated l?y tjdkll'l.g the b-fold cc_)nvolution Setting d = r/N as a measure of storage density this
of Eq. (7), the Poisson distribution. From this, the ex- becomes
pected overflow T, of records in a bucket of b cells will
be: 1 ! bd)*exp [—bd
T=—{b(d— D+ (b—k)(—)———p—[——] .
3 b k=0 k!
(o[4]
T, = kio k — b) \N/ L NJ References
k=b k! 1. W. W. Peterson, IBM Journal 1, 130 (1957).
. 2. H. M. Sierra, unpublished report, February, 1960.
Expanding and combining terms and noting that 3. A. D. Lin, unpublished report, May, 1961.
~ 4. A General Approach to Automatic Programmed Ad-
br* br dress Conversion, IBM Form No. J20-0235.
k=% N exp -N r 5. IBM 1410 Data Processing System—IBM 1301 Disk
Dk——= T —p, (Poisson mean) and Storage, Reference Manual, IBM Form A22-6670.
k=0 k! N 6. C. A. Olsen, unpublished report, November, 1961.
& ~ 7. S. Muroga, unpublished report, April, 1961,
br br 8. W. W. Peterson, Error Correcting Codes, MIT Press and
ke \y) P | TN o John Wiley & Sons, New York, 1961.
Z b———m————————= =} (sum of Poisson is 1), 9. M. Hanan and F. P. Palermo, this journal, p. 127.
E=0 k! 10. W. G. Dye, unpublished report, April, 1961.
we obtain Received March 20, 1962

126

G. SCHAY AND N. RAVER

