34

S. Shapiro,* P. H. Smith,* J. Nicol,*
J. L. Miles,* P. F. Strongt

Superconductivity and Electron Tunneling

Abstract: Experiments on the tunneling of electrons through a thin dielectric layer separating two
superconducting metals are reported. Data are presented for the pairs Al-Pb, Sn-Pb, and In-Sn.
Particular attention is paid to the form of the tunneling current vs voltage characteristics and to the
changes observed as a function of temperature. Experimental details relative to the measurement
techniques, the preparation of the samples, and the preparation of the dielectric layers are presented.
An analysis of the problem is presented which is based on the simple, one-dimensional model of the
electron energy spectrum of a superconductor given by the theory of Bardeen, Cooper, and Schrieffer.
Close quantitative agreement is obtained between the results of the calculations and the observed

characteristics.

Introduction

Much attention has recently been devoted to the prob-
lem of electron tunneling through thin dielectric
layers between two metals,! ~3 one or both of which
were superconducting. Observation at small voltages
revealed a linear tunneling current vs voltage charac-
teristic when both metals were normal, the appearance
of a nonlinear region when one metal became super-
conducting and, further, the appearance of a negative
resistance region when both metals were supercon-
ducting. The measurements were interpreted in terms
of a simple, one-dimensional model of the electron
energy spectrum of a superconductor, namely that
given by the theory of Bardeen, Cooper, and Schrieffer
(BCS).* It was shown that the experiments provided a
direct measure of the energy gap of a superconductor.
Certain assumptions were necessary, the most
stringent being that the probability for electron
transfer through the barrier can be treated as constant
over the range of energies of interest. Recently
Bardeen® has found it plausible to take the tunneling
probability as constant when interpreting such experi-
ments.

In their Letter, Nicol, Shapiro, and Smith? presented
the essentials of the analysis and a comparison with
experiment of certain preliminary results of machine
computation based upon that analysis.® This paper
gives complete details of the analysis, in particular as
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they relate to the reduction of the expressions involved
to a form suitable for machine computation. The
calculations are carried through entirely within the
spirit of the simple model provided by the BCS theory,
together with the simplifying assumption referred to
above. In particular, the density-of-states curve given
by BCS is used unmodified by any rounding-off
parameter.” The predictions of the analysis are com-
pared with the results of experiments on the super-
conducting pairs Al-Pb, Pb-Sn, and Sn-In, Comparison
of the measured temperature dependence of the
energy gap for Sn with that predicted by BCS is also
included.

The calculations reveal the existence of a symmetric,
logarithmic singularity in the current at the lower
voltage limit of the negative resistance region and a
finite, discontinuous current jump at the upper voltage
limit. The effect of the finite lifetime of the excited
states of a superconductor is to remove the singularity,
although a cusp-like peak remains, and to spread the
current jump over a small voltage interval. When
allowance is made for this effect, close quantitative
agreement is obtained with experiment.

Some applications of the tunneling technique to
other problems in superconductivity are mentioned.

Analysis

Figure 1 is a sketch of the electron energy spectrum in
a small energy interval about the Fermi level for a
sandwich formed of two different superconductors




separated by a thin dielectric layer. In the absence of an
applied voltage, the Fermi levels for both metals lie at
the same energy. When a voltage is applied, the energy
spectrum for one metal shifts with respect to that of the
other metal by the energy equivalent of the voltage.
The convention adopted in Fig. 1 will be used
throughout the paper; namely, positive voltage is
applied to Metal 1, and Metal 2 is considered shifted
in energy with respect to Metal 1.

For the simple one-dimensional model, the one-way
tunneling current is proportional to an integral over
all energies of the product of the number of electrons
in one metal by the number of unoccupied states
(holes) in the other metal at the corresponding energy
times the probability for an electron at that energy to
tunnel through the barrier.® The net current is given
by the difference in the opposed one-way currents. It is
convenient to take the energy zero at the Fermi level
for Metal 1, E;, and to express all energies in units
of kT. Then

I f " {palE =~ MII(E = Vo (B~ FENPs

—pE = V)[1 = f(E = V)]py(E)f(E)Py..,} dE, (1)

where ¥ is the energy equivalent of the applied
voltage, p, and p, are the density-of-states functions
for Metals 1 and 2 respectively, P,_,, and P, _,, are the
probabilities of an electron tunneling from Metal 2
to Metal 1, and vice-versa, and f(E) is the Fermi
function,

fE)=1/(1 +¢€5). )

Figure 1 The density-of-states function and the
filled states sketched in a small energy
interval about the Fermi level for a
sandwich formed of two different super-
conductors separated by a thin insulat-
ing layer. A positive voltage, V, is applied to
Metal 1.
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For mathematical convenience, the lower limit of inte-
gration is extended to — oo, although strictly it should
be taken as — E,. Because of the action of the Fermi
functions, the important region of integration is
confined to an interval of a few kT about the Fermi
level. With the assumption that the tunneling proba-
bility is constant over this energy interval and that P, _,
is equal to P, ,,, Eq. (1) reduces to

I = const

< [7 o=V BUE- V) - 1@ dE, O

which is Eq. (3) of Ref. 2.

If p,(E) is the density-of-states in the normal state,
then py(E), the density-of-states in the superconducting
state,* differs from it by a factor G(E, ¢),

p(E) = G(E, e)p,(E) 4
with

1
G(E, 5) = |E|RP {[Ez_ . T)Z]‘/’} , )
where 2¢(T) is the temperature-dependent energy gap
and RP designates the real part. p,(E) is, generally,
only slowly varying in the vicinity of the Fermi level,
especially in comparison with G(E,g). In the
following, p,(E) shall be taken as constant for both
Metals 1 and 2 at the value it has at the Fermi level. In
Eq. (3) it is convenient to combine these two constants
into the proportionality constant and to use a system of
current units such that the proportionality constant has
the value unity.
Three cases are of interest.

Case I. Both metals normal. The current is given by

_ f f S(E, V) dE , ©
where
1 1
P, V)= [1 +exp(E—V) 1+exp E]

_ exp E[1 — exp( — V)]
" [1 +exp(E - V)][1 +expE]

This case has been discussed by Giaever! and by
Fisher and Giaever® and will not be further examined
here except to note that the observed features of the
I-V characteristic, namely symmetry in the origin and
I proportional to V, are easily obtained from Eqs. (6)
and (7), provided ¥V is small relative to the Fermi
energy.

M

Case II. One metal superconducting. The current is
given by

I= f f GE — V, &)$(E, V) dE . )
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Since G(E — V, &) is discontinuous at £ = V + ¢, the
range of integration must be subdivided at those
points. Let

I=I1+12

[ Ve (E-V)

e JE=-VPE 4
x{ ! - ! }dE 9)
l+exp(E—V) 1+expE
© (E-V)

I = 2 2
y+eJ(E—V) —¢
x{ 1 1 }
l+exp(E—V) 1+4+expE

In both of these integrals let

u=[E~V)?—-¢]%. (10)
Note that in I, this is interpreted to mean
E=V—[u*+¢]%, (11)
while in 7, ,

E=V +[u®+¢&]%. (12)

As a result of this substitution the singularities are
removed from the real axis and the following relations
are obtained:

® expV —1
I, = d
! \[‘0 (1 + exp r)(l + CXp[V - I‘]) ! (13)
[ __f‘” expV — 1 J
25 ) W rexpl—rD(L +exp[V +r]) T

where r = [u? + ¢2]%.

These integrals can be evaluated numerically on a
reasonably coarse mesh. Since, for large values of w, the
integrand decays exponentially with u, a simple rule
for terminating the integration can be found by
writing the asymptotic expansion of

A=j exp(—\/u2 + &%) du
\/a2+52 2 2
~YT T exp(—Jai + )+ (14)
a

Obviously, therefore, as soon as the integrand becomes
negligible the remainder of the integral is also
negligible.

Computations based on integrals (13) have been
reported and discussed as Fig. 2 of Ref. 2. Excellent
quantitative agreement is obtained with the results of
experiments employing Pb in the superconducting state
and Al in the normal state.
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Case I11. Both metals superconducting. The current
is given by

1= J ) G(E, £,)G(E — V, &)

-~

1 1
- dE . 1
X {1 +exp(E—V) 1+4+exp E] E (13

Singular points may occur at E = +¢g, V + g,.
Some of the singular points may be suppressed for
certain ranges of the voltage, and at particular values
of V certain of them may coincide. Without loss of
generality it may be assumed that ¢, < g, and V> 0
(for V' = 0, obviously I = 0).

It is now clear that three ranges of ¥ must be inves-
tigated. In fact,

I=1,+1,, O<V<e —eg
I=1,+1;, gy, —E <V <égy+eg
IT'=I,+1s+1,, e,+e <V,
where
= J‘V‘sz E(V — E)
cw JER—e A J(V — E)? ~ 2
x ¢(E, V) dE
- jw E(E—V)
Vi E2 — e/ (E — V)2 — 6,2
< x ¢(E, V) dE (16)
. _J—m E(V — E)
—o VEP— 6,2 /(V —E? —&,2
x ¢(E, V) dE
[ = V-e E(V — E)
o \/Ez—slz\/(V—E)z—szz
x ¢(E, V) dE
with ¢(E, V) given by Eq. (7).
In 7, and I; the sign of E is changed to yield
I = [ EE+ V)
Jaov VER =& 2 (E+ V) —5)°
x ¢(—E, V) dE (17
- o E(E+ V)
Jo VE* — e A J(E + V) = ¢,?
x ¢(—E, V) dE .

The integrands of I,, 7,, and I are singular at the
lower limit of integration, while the integrand of I, is
singular at both limits. The technique for disposing of
these singularities, in order to permit numerical




integration, is essentially the same in all cases and will
be illustrated by a consideration of 1.

The denominator of the integrand of I, may be
written as

D=J(E-e)E+V —¢y)

X JE+e)E+V +6). (18)

The singular behavior of the integrand stems from the
first square root only; the rest of the integrand is
tractable. In order to deal with this singularity let

E=acoshu+ g, (19)

and let o and f be determined so that

(E—-eE+V —¢g)=a’sinh?u. (20)

In this case

{d =i, —& V) 1)
B=3%e,+e — V).

Now

dE = o sinh u du , 22)

so that the factor sinh u in the denominator of the
integrand cancels when the substitution for E is made.
Finally, therefore,

(" E(E + V)
o JEFENE+V +6y)

¢(—E, V)du, (23)

Figure 2 Voltage vs tunneling current charac-
teristic (solid line) calculated for an
Al-Pb sandwich at 0.8°K. The current is
normalized so that the normal state resistance is
represented by a line (dashed) with a 45° slope.
Experimental values for the energy gaps were
used in the calculations.
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where
E=4e,—¢ — V)coshu + 3(e, + 6, = V). (24)

The integrals I, and I also yield to similar substitu-
tions of the form of Eq. (19), and since for large values
of u the integrands behave as exp(— cosh u), the
numerical integration process can be safely terminated
as soon as the integrand is negligible.

The integral I, is also quite similar, but requires the
substitution of a circular rather than a hyperbolic
function. The result is that

I, = rﬂ HL5 (E, V)du , (25)
w2/ (E+8)(V — E +6))

where

E=3V —¢g, —g)sinu+ 3V +e —¢,). (26)

Note that in /, the value of E is constant when
V = ¢, — ¢. Since the range of integration is un-
limited, the value of I, will be infinite. The mathe-
matical singularity in the current is of a logarithmic
type (cf. Appendix). This result is a consequence of
using the strict BCS form of the density-of-states, a
function which itself has a singularity. For a real
system the density-of-states would be rounded-off.”
For such a modified function the infinity in current
would be removed. The analysis does predict a sharp,
symmetric, cusp-like peak of current within a narrow
range of voltage about ¥V = ¢, + ¢; because of the
logarithmic nature of the mathematical singularity.

The integrand of I, is likewise a constant when
V = g; + &,. Since the range of integration is finite, I,
can be readily evaluated at this voltage. The result is

I§ = n/2/28,

1 —exp(—¢; — &)
8 {[1 + exp(—ey)][1 + eXp(—Sz)]: ' @n

Thus the analysis predicts a discontinuity in the graph
of the current when V = ¢, + &,, and also predicts
that the height of the current jump will be propor-
tional to I%. A typical calculated curve for a Pb-Al
sandwich is shown in Fig. 2. Experimental values for
the energy gaps were used in the calculations. Again,
for a real system, one consequence of the rounding-off
of the density-of-states curve would be to spread the
current jump over a small region of voltage about the
value V = g; + ¢,.

Experimental details

Most experiments involved vacuum-deposited metal
films. Samples were prepared by depositing a strip of
metal on a glass substrate, overlaying the strip with a
thin dielectric layer formed in a variety of ways, and
then depositing up to three cross strips of another
metal. Figure 3 shows such a sample ready for testing.
For the AI-Pb sandwiches, the Al was deposited first
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Figure 3 Typical specimen, showing three tun-
neling sandwiches.

and allowed to oxidize in air to form a layer of
dielectric Al,O,.

For other samples, monolayers of barium stearate
were used as the dielectric barrier.1® The technique for
forming and transferring such monolayers has been
known for some time and is described by Blodgett and
Langmuir.!! Briefly, the procedure is to spread
stearic acid dissolved in benzene on the surface of a
dilute aqueous solution of barium carbonate. The
acid spreads with its carboxyl group in contact with the
water and its hydrocarbon chain nearly vertical. The
molecules can then be compressed into a closely
packed monolayer by use of a piston oil. The extent of
conversion of the monolayer to barium stearate is
controlled by the pH of the solution. Films are trans-
ferred to a solid surface by passing the glass substrate,
with a metal strip already deposited on it, through the
surface of the aqueous solution.

For most measurements an alternating current at
some audio frequency was passed from one metal strip
to the other and the voltage across the dielectric layer
displayed on an oscilloscope as a function of the
current. Conditions approximated constant voltage
operation. A specially built curve tracer incorporating
a number of convenient features was employed. The
resistance of each metal film was also measured. The
upper frequency of operation was limited to about
400 cps by relative phase shift in the amplifiers. The
shape of the V-J traces obtained was independent of
the observation frequency.

The sample was immersed in liquid helium at 4.2°K
and below. Temperatures as low as 0.8°K were
obtained by pumping on the liquid helium bath. Tem-
perature was determined from the liquid helium vapor
pressure or from a carbon resistance thermometer. By
appropriate choice of temperature, the tunneling
characteristics could be obtained for both metals
normal or one or both metals superconducting.
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Figure 4 Double-exposure photograph of the
V-I characteristic of an Al-Pb sandwich
at 1.28°K (smaller negative resistance
region) and at 1.00°K. The voltage scale
(vertical) is 1 mv per large division, and the
current scale is 10 pamp per large division.

Experimental results

The analysis of the second Section bears out the con-
tention? that the voltage vs tunneling current charac-
teristic measured for a sandwich formed of two
superconducting metals separated by a thin dielectric
layer provides a direct measure of the energy gap of a
superconductor. That the qualitative features of the
analysis are in agreement with experiment is readily
apparent from Figs. 4, 5, and 6.

Figure 4 is a double-exposure photograph of the V-I
characteristic of an Al-Pb sandwich at two different
temperatures. In one trace, taken at 1.28°K, a tem-
perature just below that at which the Al became
superconducting, the negative resistance region is just
noticeable, corresponding to the very small energy gap
in Al near its transition temperature. In the other
trace, taken at 1.00°K, the negative resistance region
is much more extensive, corresponding to the extent
of the energy gap in Al at a temperature substantially
below the transition temperature. On the other
hand, the value of voltage at which the midpoint of
the negative resistance region occurs has remained
unaffected by the change in temperature. This corres-
ponds to the energy gap in the Pb having attained its
full limiting value, since both temperatures are well
below the Pb transition temperature of 7.2°K. To
facilitate comparison, reference may be made to
Fig. 8, which contains a plot of the variation of energy
gap with reduced temperature as predicted by BCS.

In Fig. 5, V-I characteristics taken at three different
temperatures for a Sn-Pb sandwich are reproduced in
a manner making intercomparison particularly simple.
From bottom to top, the three characteristics are for
temperatures of 3.75°K, 3.70°K, and 3.60°K, respec-
tively. Note particularly the gradual opening up in
voltage of the extent of the negative resistance region
corresponding to the increase in the magnitude of the




energy gap in Sn with decreasing temperature. The gap
in Pb at these temperatures is practically at its full
limiting value. Thus, from Eq. (27), the magnitude of
the current jump which occurs just at the high voltage
end of the negative resistance region should also in-
crease as the temperature decreases, since the jump is
approximately proportional to the square root of the
Sn gap. That this does occur is very clear from the
figure.

Figure 6 shows, with an expanded current scale, a
portion of a V-I characteristic for a Sn-Pb sandwich.
The cusp-like peak in the current at the lower voltage
end of the negative resistance region is evident as
predicted by the Analysis Section. The break in the
characteristic within the negative resistance region is
attributed to the onset of oscillation.

Figures 7a, 7b, and 7c¢ give a quantitative comparison
between the analysis and experiment for a Sn-Pb
sandwich at 3.40°K, 3.60°K, and 3.70°K, respectively.
The experimental points were determined from
photographs such as that shown in Fig. 5. The current
at each temperature was normalized so that the points
marked by arrows fell on the calculated curve. The
crossing area through which tunneling occurred
(cf. Fig. 3) was approximately 0.1 mm?. In the
calculations the experimental values of the energy gaps
were used. The agreement between the calculated
curve and the experimental points is excellent except

Figure 5 V-l characteristics for a Sn-Pb sandwich
at (bottom to top) 3.75°K, 3.70°K, and
3.60°K, respectively. The voltage scale
(vertical) is 0.5 mv per large division and the
current scale is 50 pamp per large division for
all three characteristics.

that the current jump is spread over a small region of
voltage and is not discontinuous. Figure 8 shows a
comparison with the experimentally determined tem-
perature dependence of the energy gap for super-
conducting tin and that predicted by the BCS theory.
Again the agreement is excellent.

The limiting full values of the energy gaps for
superconducting Al, Pb, and Sn, as determined from
experiments involving tunneling between supercon-
ductors, are given in Table 1.

Data were also taken for Sn-In sandwiches. Here
swept dc was applied to the sample and, after suitable
amplification, the V-I characteristic was plotted on an
X-Y recorder. Figure 9 shows a typical characteristic
taken at 1.98°K. It is immediately apparent that no
negative resistance region is present. Furthermore,
what has earlier been characterized as the current jump
is, in Fig. 9, spread over an appreciable region of
voltage. Although the energy gaps for Sn and In are
not immediately obtainable from Fig. 9, they are
expected to be nearly equal. Calculations were carried
out using the formulas of the Analysis Section, in
which the previously determined value of the gap for
Sn was used together with an average value for the In
gap obtained from the literature.!® It is clear from
these calculations (cf., for example, Figs. 10 and 11)
that the clear-cut V-I characteristic predicted for
tunneling sandwiches formed of superconductors with

Figure 6 Portion of a V-l characteristic for a
Sn-Pb sandwich showing, with an ex-
panded current scale, the predicted
cusp at the lower voltage limit of the
negative resistance region. The break in
the characteristic within the negative resistance
region is attributed to the onset of oscillation.
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widely different energy gap values is no longer
exhibited when the gap values become nearly equal.
The calculated curves of Figs. 10 and 11 are broken at
the point where a mathematical singularity in the
current occurs-—namely at the voltage e, — &;,. Note
the change in current scale in Fig. I1. On the current
scale of Fig. 10, the current variation below approxi-
mately 2 mv at 2.0°K is not visible. Again, at least
qualitatively, the calculated curves and experimental
results are in agreement. No attempt has been made to
follow in detail the changes that occur in the charac-
teristics according to the equations of the Analysis
Section as the two energy gaps approach each other in
value.

B Sn - Pb: T = 3.40°K

—— CALCULATED CURVE

& EXPERIMENTAL POINTS
FITTED AT THE POINT
MARKED BY THE ARROW

CURRENT IN NORMALIZED UNITS
T

VOLTAGE IN MILLIVOLTS

Figure 7 (a) Comparison for a Sn-Pb sandwich
at 3.40°K between the calculated I-V
characteristic (solid curve) and experi-
mental points taken from photographs
such as those of Fig. 5. The current was
normalized so that the point marked by the
arrow fell on the curve. Experimental values for
the energy gaps were used in the calculations.

(b) Comparison for a Sn-Pb sandwich
at 3.60°K.

(¢) Comparison for 3.70°K.
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Conclusions

Detailed calculations based on a simple model of
electron tunneling are in excellent agreement with
experiments involving tunneling through a thin
dielectric layer between a normal and a superconduct-
ing metal and between two superconducting metals, at
least so long as the energy gaps involved are appreci-
ably different from one another. The relative ease of
experimentation employing the tunneling technique,
coupled with the fact that it provides a direct measure
of the energy gap of a superconductor, suggests its
applicability to a variety of problems in supercon-
ductivity. Among these are the determination of

3

T Sn- Pb: T=360°K
| —— CALCULATED CURVE
r e EXPERIMENTAL POINTS
FITTED AT THE POINT
r MARKED BY THE ARROW
(%}
o
pa
p=]
[a)
a
N
3
:
e}
z
Z
[
Z
&
as
o
=}
9] | |
3
VOLTAGE IN MILLIVOLTS
3
T Sn-Pb: T=2370°%
| —— CALCULATED CURVE
- ® EXPERIMENTAL POINTS
FITTED AT THE POINT
( MARKED BY THE ARROW
w
=
pra
]
o
[
N
o
:
o}
z
Zz
[
Z
&
o
=)
V] | i
3
VOLTAGE IN MILLIVOLTS




anisotropy in the energy gap for single-crystal speci-
mens, delineation of the variation of the energy gap
at the surface of inhomogeneous superconductors, and
the elucidation of the possible position dependence
of the energy gap,!* particularly in laminar super-

the behavior of the integral for small values of . Let

EE + V)

o

o0

_— \/Ez—alz\/(E—i- V)? —g,?

conductors, 1316 x ¢(—E, V) dE (AD)
Appendix V—g,—g —1n (A2)
In order to show that the singularity in current is
logarithmic let V = ¢, — ¢, — # in I, and investigate E=u+¢ +1n. (A3)
Table 1 Full Limiting Value of the Energy Gap (2g,)
Transition Giaever Richards Ginsberg
Super- Temperature (7,) This Work and and and
conductor for This Work Megerle® Tinkham®  Tinkham(®
mv 2e0/kT. mv 2e0/kT Y 2e0/kT. D 2/kTD
Al 1.30°K 0.28 2.50 0.32 3.20 3.20 e
* * x * T
0.03 0.30 0.03 0.30 0.10®
Sn 3.80°K 1.02 3.10 1.11 3.46 3.60 3.30
* t - + + *
0.02 0.05 0.03 0.10 0.20 0.20
Pb 7.2°K 2.50 4.04 2.68 4.33 4.10 4.00
t + * * *t s
0.05 0.10 0.06 0.10 0.20 0.50
In 3.40°K <1 mv ~3 1.05 3.63 4.10 3.90
x x * x
0.03 0.10 0.20 0.30
() 1. Giaever and K. Megerle, Phys. Rev. 122, 1101 (1961),
() P L, Richards and M, Tinkham, Phys. Rev. 119, 581 (1960). 3.9
(¢) D, M. Ginsberg and M. Tinkham, Phys. Rev. 118, 990 (1960).
(3) These authors use the bulk transition temperature,
(¢) From M. A. Biondi and M. P, Garfunkel, Phys. Rev. 116, 853 (1959). 3.6
3.3
1.0
- 3.0
0'8__ ——BCS CURVE 27
0.6} o [e(t)/€(c)] FOR Sn 2.4
0.4; 2.1
° B 1.8
{ 0.2—
2 L 1.5
L | T T O T O O |
0 01 02 03 04 05 06 07 08 09 1.0 1.2 Smo-dni T =1.98%K
REDUCED TEMPERATURE, T/T¢ g 0.9
>
Figure 8 The energy gap for superconducting tin, S 0
determined from the V-l characteristics 2 0.3
obtained for electron tunneling between z -
superconducting lead and tin, plotted i T T maE
vs reduced temperature and compared
with the theoretical curve (solid line) of | IN MICROAMPERES

BCS. The point marked by an arrow was fitted
to the curve in order to obtain the limiting full
gap value, 2eq = 3.10kT., with T. = 3.80°K.

Figure 9 Voltage vs tunneling current charac-

teristic for a Sn-In sandwich at 1.98°K.
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Figure 10 Calculated voltage vs tunneling cur-
rent characteristic for a Sn-In sand-
wich at 3.20°K. Note the qualitative similarity
to the experimental curve (Fig. 9). The effect
of the mathematical singularity in the current,
which occurs at the break in the curve at 'V =
&s, — E1n extends over only a very small voltage
interval.

Sn - In: T =2320°%

ol T IrTT1TIT TTT T T T T T T T T i T e Td

Figure 11 Portion of the calculated voltage vs
tunneling current characteristic for a
Sn-In sandwich at 2.0°K. The current scale
has been expanded in order to show the detail
in the “negative resistance region”.
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Then
[ (u+e +n)u+ey)
P Jo Vulu+ myu + 28y + )u + 265)

I

1 1
{1 + exp(— u — &) 1+ exp(—u—¢g; — 11)} du .(A4)

Assume that # may be neglected in comparison with
the semigap-widths &; and ¢,.

Ilz.ro 1 { (u+e)u+e,)

0 \/u(u +n) \/(u + 2e)(u + 2¢,)
et e ““du (AS
YT iy s g | NS
orl, = ©_ge (A6)

o Jaurm

orl, ~ 1 —g(u)e'“ du + J-w __g(u)e‘“
P o Vu 1 ulu+m)

du . (A7)
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The second integral on the right is a constant C for
small values of #, so it need not be discussed further.

The expression g(u)e ™" has upper and lower bounds
(say A and B, respectively) which are greater than zero
in the interval 0 < u < 1, so

Ar——di—ﬂ c>BI1—dﬁ—— (A8)
ouwrmT T o Juw )

But

1 d
j ———i———=cosh“(z+l)zln4—lnn, (A9)
o Julu +1) n

which exhibits the logarithmic singularity.

Note that the quantity e ** — e~°2is a factor of the
integrand of I, in Eq. (A5). Therefore, when ¢; = &,,
the logarithmic singularity does not occur.
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