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Superconductivity  and  Electron  Tunneling 

Abstract: Experiments on the tunneling of electrons through a thin dielectric  layer separating two 
superconducting metals are reported. Data  are presented for the pairs AI-Pb, Sn-Pb, and  In-Sn. 
Particular attention is paid to  the  form of the tunneling  current vs voltage characteristics and to  the 
changes  observed  as a function of temperature. Experimental details relative  to  the measurement 
techniques, the preparation of the samples,  and the preparation of the dielectric layers are presented. 
An analysis of the problem is  presented which is  based  on the simple, one-dimensional model of the 
electron energy spectrum of a superconductor  given by the theory of Bardeen, Cooper, and Schrieffer. 
Close quantitative agreement is obtained between the results of the calculations  and the observed 
characteristics. 

Introduction 

Much attention  has recently been devoted to  the  prob- 
lem of electron tunneling through  thin dielectric 
layers between two metals,"3 one  or  both of  which 
were superconducting. Observation at small voltages 
revealed a linear tunneling current vs voltage charac- 
teristic when both metals were normal,  the  appearance 
of a nonlinear region when one metal became super- 
conducting and, further, the appearance of a negative 
resistance region  when both metals were supercon- 
ducting. The measurements were interpreted in terms 
of a simple, one-dimensional model of the electron 
energy spectrum of a  superconductor, namely that 
given  by the  theory of Bardeen, Cooper, and Schrieffer 
(BCS).4 It was shown that  the experiments provided a 
direct measure of the energy gap of a  superconductor. 
Certain assumptions were necessary, the most 
stringent being that  the probability for electron 
transfer through  the barrier can be treated  as  constant 
over the range of  energies  of interest. Recently 
Bardeen' has found it plausible to take  the tunneling 
probability as  constant when interpreting such experi- 
ments. 

In their Letter, Nicol, Shapiro, and Smith' presented 
the essentials of the analysis and a comparison with 
experiment of certain preliminary results of machine 
computation based upon that analysis.'j This paper 
gives complete details of the analysis, in particular as 
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they relate to  the reduction of the expressions involved 
to a  form suitable for machine computation.  The 
calculations are carried through entirely within the 
spirit of the simple model provided by the BCS theory, 
together with the simplifying assumption referred to 
above. In particular,  the density-of-states curve given 
by  BCS  is  used unmodified by any rounding-off 
~ a r a m e t e r . ~  The predictions of the analysis are com- 
pared with the results of experiments on  the super- 
conducting pairs A1-Pb, Pb-Sn, and Sn-In. Comparison 
of the measured temperature dependence of the 
energy gap for Sn with that predicted by  BCS is also 
included. 

The calculations reveal the existence  of a symmetric, 
logarithmic singularity in the current at  the lower 
voltage limit of the negative resistance region and a 
finite, discontinuous current  jump at the upper voltage 
limit. The effect  of the finite lifetime of the excited 
states of a  superconductor is to remove the singularity, 
although  a cusp-like peak remains, and  to spread the 
current jump over a small voltage interval. When 
allowance is made for  this effect, close quantitative 
agreement is obtained with experiment. 

Some applications of the tunneling technique to 
other problems in superconductivity are mentioned. 

Analysis 

Figure 1 is a sketch of the electron energy spectrum in 
a small energy interval about  the Fermi level for a 
sandwich formed of two different superconductors 



separated by a thin dielectric layer. In the absence of an 
applied voltage, the Fermi levels for  both metals lie at 
the same energy. When a voltage is applied, the energy 
spectrum for  one metal shifts with respect to that of the 
other metal by the energy equivalent of the voltage. 
The convention adopted in Fig. 1 will be used 
throughout the  paper; namely, positive voltage is 
applied to  Metal 1, and Metal 2 is considered shifted 
in energy with respect to Metal 1. 

For  the simple one-dimensional model, the one-way 
tunneling  current is proportional to  an integral over 
all energies of the product of the number of electrons 
in one metal by the number of unoccupied states 
(holes) in the  other metal at  the corresponding energy 
times the probability for an electron at  that energy to 
tunnel  through  the barrier.' The net current is  given 
by the difference in the opposed one-way currents.  It is 
convenient to  take  the energy zero at  the Fermi level 
for Metal 1 , E,,, and to express all energies in units 
of kT. Then 

Ia Sm - V f ( E  - V)P,(JN1 - f ( E ) I P , + ,  
- m  

-P@ - vc1 -f@ - V I P l ( E ) f ( E ) P 1 + 2 )   d E  > (1) 

where V is the energy equivalent of the applied 
voltage, p1 and p2 are  the density-of-states functions 
for Metals 1 and 2 respectively, P,, , and P, +, are  the 
probabilities of an electron tunneling from Metal 2 
to Metal 1 ,  and vice-versa, and f ( E )  is the Fermi 
function, 

f ( E )  = 1/(1 + eE)  . (2) 

Figure I The density-of-states function and the 
filled states  sketched in a small energy 
interval about the  Fermi level for a 
sandwich formed of two different super- 
conductors  separated by a thin insulat- 
ing layer. A positive  voltage, V, is applied to 
Metal I .  

0 OCCUPIED STATES 

AVAILABLE STATES 

For mathematical convenience, the lower limit of inte- 
gration is extended to - c o y  although strictly it should 
be taken as - E/.,. Because of the action of the Fermi 
functions, the  important region of integration is 
confined to  an interval of a few kT  about  the Fermi 
level. With the assumption that  the tunneling proba- 
bility  is constant over this energy interval and  that P,,, 
is equal to P,,,, Eq. (1) reduces to 

I = const 

x P2(E - V)P,(E)Cf(E - V )  - f ( E ) 1   d E  , (3) 
- m  

which  is Eq. (3) of Ref. 2 .  
If p,(E) is the density-of-states in the  normal  state, 

then p,(E), the density-of-states in the superconducting 
state,4 differs from it by a  factor G(E, E), 

&(E) = w ,  E)P"(E) (4) 
with 

G(E, E )  = IElRP 

where 24T) is the temperature-dependent energy gap 
and R P  designates the real part. p,(E) is, generally, 
only slowly varying in the vicinity  of the Fermi level, 
especially in comparison with G(E, E). In the 
following, p,(E) shall be taken as  constant  for  both 
Metals 1 and 2 at  the value it has at  the Fermi level. In 
Eq. (3) it is convenient to combine these two constants 
into  the  proportionality  constant and  to use a system of 
current units such that  the  proportionality  constant has 
the value unity. 

Three cases are of interest. 

Case I .  Both metals normal. The current is  given  by 

I = 4 ( E ,  V )  d E  , 

where 
- m  

1 '(" ') = [ 1 + exp(E - V )  1 + exp E 
- 

exp E[1 - exp( - V)]  
[ 1 + exp(E - V)][l + exp E ]  ' 

This case has been discussed by Giaever' and by 
Fisher and Giaeverg and will not  be  further examined 
here except to  note  that  the observed features of the 
I- V characteristic, namely symmetry in the origin and 
I proportional  to V, are easily obtained  from Eqs. (6)  
and (7), provided V is small relative to  the Fermi 
energy. 

given  by 

- - (7) 

Case II. One metal superconducting. The current is 

I = fm G(E - V ,  &)$(E, V )  dE . (8) 
- m  35 
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Since G(E - V, E )  is discontinuous  at E = V E ,  the 
range of integration  must be subdivided at  those 
points.  Let 

i I = I ,  + I ,  

V “ E  ( E  - V )  
“ = J ( E  - V)’ - c 2  

( E  - V )  

( E  - V ) 2  - 

In  both of these  integrals let 

u = [ ( E  - V)’ - E’]’ . (10) 

Note  that in I ,  this is interpreted to mean 

E = V-[U’ + E ~ ] % ,  (1 1) 

while in I ,  , 

E = V + [u’ + E’]’ . (12) 

As a result of this substitution  the singularities are 
removed from  the real axis and  the following relations 
are  obtained : 

exp V - 1 
(1 + exp r)(l  + exp[V - r]) 

du 

(13) 
exp V - 1 

(1 + exp[ - r ] ) ( ~  + exp[T/ + r]) du 2 

where r = [u’ + E’]‘. 

These  integrals can be  evaluated numerically on  a 
reasonably  coarse  mesh. Since, for large values of u, the 
integrand decays exponentially with u, a simple rule 
for  terminating  the  integration  can be found by 
writing the  asymptotic expansion of 

A = fmexp(-JuZ + E ~ )  du 
J a  

Obviously, therefore, as soon as  the integrand becomes 
negligible the  remainder of the  integral is also 
negligible. 

Computations based on integrals (13) have been 
reported and discussed as Fig. 2 of Ref. 2. Excellent 
quantitative  agreement is obtained with the results of 
experiments employing Pb in the  superconducting  state 

36 and A1 in the  normal  state. 

Case III. Both metals superconducting. The  current 
is given  by 

I = [ G(E, E1)G(E - V ,  E ~ )  

m 

- m  

1 - ] d E .  
x [ 1 + exp(E - V )  1 + exp E 

Singular points may occur at E = k E ~ ,  V k E’ .  

Some of the singular points  may  be  suppressed  for 
certain  ranges of the voltage, and  at particular values 
of V certain of them  may  coincide.  Without loss of 
generality it may be assumed that < c2 and V > 0 
(for V = 0, obviously I = 0). 

It is now clear that  three ranges of V must be inves- 
tigated.  In  fact, 

I = I 1 + I 2 ,  O < V < & , - E ,  

I = I z + I 3 ,  E 2  - E ,  < V < E 2  + E ,  

I = I ,  + I ,  + I ,  , E ,  + < V ,  

where 

E ( E  - V )  

- V)’ - E,’ 

\ x 4 ( E ,  V )  d E  

with 4 ( E ,  V )  given by Eq. (7). 
In I, and I ,  the sign of E is changed to yield 

1 x 4 ( - E ,  V )  d E  
(17) 

x 4 ( - E ,   V ) d E .  

The integrands of I , ,  I,, and I ,  are singular at  the 
lower limit of integration, while the  integrand of I ,  is 
singular at  both limits. The technique  for  disposing of 
these singularities, in order to permit  numerical 
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integration, is essentially the same  in  all cases and will 
be illustrated by a consideration of I,. 

The  denominator of the integrand of I ,  may  be 
written as 

D = , / ( E  - cl)(E + V - E,) 

x J ( E  + &,)(E + V + E,) . (18) 
The singular behavior of the integrand stems from  the 
first square root  only;  the rest of the integrand is 
tractable.  In  order to  deal with this singularity let 

E = a c o s h u + p ,  (19) 

and let a and p be  determined so that 

( E  - el)(E + V - E J  a' sinh' u . (20) 

In  this  case 

a = +(E' - E l  - V )  

p = *(E2 + E ,  - V )  . 
Now 

dE = a sinh u du , 
so that  the  factor sinh u in the  denominator of the 
integrand cancels when the substitution  for E is made. 
Finally, therefore, 

Figure 2 Voltage vs tunneling current charac- 
teristic (solid line) calculated for an 
AI-Pb sandwich at 0.8"K. The  current  is 
normalized so that the normal state resistance is 
represented by a line (dashed) with a 45" slope. 
Experimental values for the energy gaps were 
used in the calculations. 

I V  IN MILLIVOLTS 

where 

E = +(E' - E ,  - V)cosh u + +(E, + - V )  . (24) 
The integrals I2 and I ,  also yield to similar substitu- 
tions of the  form of Eq. (19), and since for large values 
of u the integrands behave as exp(- cosh u), the 
numerical  integration process can  be safely terminated 
as  soon  as  the integrand is negligible. 

The  integral Z4 is also  quite  similar,  but  requires  the 
substitution of a  circular  rather  than  a  hyperbolic 
function.  The result is that 

where 

E = +(V - - &,)sin u + &(V + E ,  - E ' ) .  (26) 

Note  that in I ,  the value of E is constant when 
V = e2 - E , .  Since the range of integration is un- 
limited, the value of I ,  will be infinite. The  mathe- 
matical singularity in the  current is of a  logarithmic 
type (cf. Appendix). This result is a consequence of 
using the strict BCS form of the  density-of-states,  a 
function which itself has a singularity. For a  real 
system the  density-of-states would be rounded-off.' 
For such a modified function  the infinity in current 
would be removed. The analysis does predict a sharp, 
symmetric, cusp-like peak of current within a  narrow 
range  of voltage about V = c2 + E ,  because of the 
logarithmic  nature of the mathematical  singularity. 

The integrand of I4 is likewise a  constant when 
V = E ,  + E,. Since the  range of integration is finite, I, 
can  be readily evaluated at this voltage. The result is 

Thus  the analysis predicts  a  discontinuity  in the  graph 
of the  current when V = E ,  + E,, and also  predicts 
that  the height of the current jump will be  propor- 
tional to  12. A  typical  calculated curve for a Pb-A1 
sandwich is shown in Fig. 2. Experimental values for 
the energy gaps were used in the calculations. Again, 
for a real system, one consequence of the rounding-off 
of the density-of-states curve would  be to  spread  the 
current  jump over a small region of voltage about  the 
value V = c1 + E ~ .  

Experimental details 
Most experiments involved vacuum-deposited metal 
films. Samples were prepared by depositing a strip of 
metal on a glass substrate, overlaying the  strip with a 
thin dielectric layer formed  in a variety of ways, and 
then  depositing  up to three cross strips of another 
metal.  Figure  3 shows such a  sample  ready  for testing. 
For  the AI-Pb sandwiches, the A1 was deposited first 37 
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Figure 3 Typical specimen,  showing three tun- Figure 4 Double-exposure photograph of the 
neling sandwiches. V-l characteristic of an AI-Pb sandwich 

at 1.28"K (smaller negative resistance 
region),  and at 1.00"K. The voltage scale 
(vertical) is I mv per large division, and  the 
current scale is 10 pamp per large division. 

and allowed to oxidize  in air to form  a layer of 
dielectric A1,0,. 

For  other samples, monolayers of barium  stearate 
were  used as the dielectric barrier." The technique for 
forming and transferring such monolayers has been 
known for some time and is described by Blodgett and 
Langmuir." Briefly, the procedure is to  spread 
stearic acid dissolved  in benzene on  the surface of a 
dilute aqueous solution of barium  carbonate.  The 
acid spreads with its carboxyl group in contact with the 
water and its hydrocarbon chain nearly vertical. The 
molecules can then be compressed into a closely 
packed monolayer by  use of a piston oil. The extent of 
conversion of the monolayer to barium  stearate is 
controlled by the  pH of the solution. Films are  trans- 
ferred to a solid surface by passing the glass substrate, 
with a metal strip already deposited on it, through  the 
surface of the  aqueous  solution. 

For most measurements an alternating current at 
some audio frequency was passed from  one metal strip 
to  the other and  the voltage across the dielectric layer 
displayed on  an oscilloscope as  a function of the 
current.  Conditions approximated constant voltage 
operation.  A specially built curve tracer  incorporating 
a number of convenient features was employed. The 
resistance of each metal film  was also measured. The 
upper frequency of operation was limited to about 
400 cps by relative phase shift in the amplifiers. The 
shape of the V-I traces obtained was independent of 
the observation frequency. 

The sample was immersed in liquid helium at 4.2"K 
and below. Temperatures as low as 03°K were 
obtained by pumping on the liquid helium bath. Tem- 
perature was determined from  the liquid helium vapor 
pressure or  from  a  carbon resistance thermometer. By 
appropriate choice of temperature, the tunneling 
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characteristics could be obtained  for  both metals 
normal or one  or  both metals superconducting. 
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Experimental results 

The analysis of the second Section bears out  the con- 
tention' that  the voltage vs tunneling current charac- 
teristic measured for  a sandwich formed of two 
superconducting metals separated by a  thin dielectric 
layer provides a direct measure of the energy gap of a 
superconductor.  That  the qualitative features of the 
analysis are in agreement with experiment is readily 
apparent  from Figs. 4, 5,  and 6. 

Figure 4 is a double-exposure photograph of the V-I 
characteristic of an A1-Pb sandwich at two different 
temperatures. In one  trace, taken at 1.28"K, a tem- 
perature  just below that  at which the A1 became 
superconducting, the negative resistance region is just 
noticeable, corresponding to the very small energy gap 
in A1 near its transition  temperature.  In  the  other 
trace, taken at l.OO"K, the negative resistance region 
is much more extensive, corresponding to the extent 
of the energy gap in A1 at  a  temperature substantially 
below the  transition  temperature. On the  other 
hand,  the value of voltage at which the midpoint of 
the negative resistance region occurs has remained 
unaffected by the change in temperature. This corres- 
ponds to  the energy gap in the  Pb having attained  its 
full limiting value,  since both temperatures are well 
below the  Pb transition  temperature of  7.2"K. To 
facilitate comparison, reference may be made to 
Fig. 8, which contains  a  plot of the variation of energy 
gap with reduced temperature  as predicted by BCS. 

In Fig. 5 ,  V-Z characteristics taken at three different 
temperatures for  a  Sn-Pb sandwich are reproduced in 
a manner making intercomparison particularly simple. 
From  bottom  to  top,  the three characteristics are for 
temperatures of 3.75"K,  3.7OoK, and 3.60°K, respec- 
tively. Note particularly the  gradual opening up in 
voltage of the extent of the negative resistance region 
corresponding to  the increase in the magnitude of the 



energy gap in Sn with decreasing temperature.  The gap 
in Pb  at these temperatures is practically at its full 
limiting value. Thus, from Eq. (27), the  magnitude of 
the current jump which occurs  just at  the high voltage 
end of the negative resistance region should  also  in- 
crease as  the  temperature decreases, since the  jump is 
approximately  proportional to the  square  root of the 
Sn gap. That this does occur is very clear  from the 
figure. 

Figure  6 shows, with an  expanded  current scale, a 
portion  of  a V-Z characteristic  for  a  Sn-Pb  sandwich. 
The cusp-like peak in the current at  the lower voltage 
end of the negative resistance region is evident as 
predicted by the Analysis Section. The break in the 
characteristic within the negative resistance region is 
attributed  to  the onset of oscillation. 

Figures 7a, 7b, and 7c  give a  quantitative  comparison 
between the analysis and experiment for  a  Sn-Pb 
sandwich at 3.40°K, 3.60°K, and 3.70°K, respectively. 
The  experimental  points were determined  from 
photographs  such  as  that shown in Fig. 5. The  current 
at each  temperature was normalized so that  the  points 
marked by arrows fell on  the calculated curve. The 
crossing area  through which tunneling  occurred 
(cf. Fig. 3) was approximately 0.1 mm'. In  the 
calculations the experimental values of the energy gaps 
were used. The agreement between the calculated 
curve and  the experimental  points is excellent except 

Figure 5 V-1 characteristics for a Sn-Pb sandwich 
at  (bottom  to  top) 3.75"K,  3.70°K, and 
3.60°K, respectively. The voltage scale 
(vertical) is 0.5 mv per large division and the 
current scale is 50 pamp per large division for 
all three characteristics. 

that  the current jump is spread over a small region of 
voltage and is not  discontinuous.  Figure 8 shows a 
comparison with the experimentally determined  tem- 
perature dependence of the energy gap  for super- 
conducting  tin and  that predicted by the BCS theory. 
Again the agreement is excellent. 

The limiting full values of the energy gaps  for 
superconducting Al, Pb,  and Sn, as  determined from 
experiments involving tunneling between supercon- 
ductors, are given in  Table I .  

Data were also  taken  for  Sn-In sandwiches. Here 
swept dc was applied to  the sample and, after  suitable 
amplification, the V-Z characteristic was plotted on an 
X- Y recorder.  Figure  9 shows a typical  characteristic 
taken at 1.98"K. It is immediately apparent  that no 
negative resistance region is present.  Furthermore, 
what  has earlier been characterized as  the  current  jump 
is, in Fig. 9, spread over an appreciable region of 
voltage. Although the energy gaps  for Sn and  In  are 
not immediately obtainable  from Fig. 9, they are 
expected to be nearly equal.  Calculations were carried 
out using the  formulas of the Analysis Section, in 
which the previously determined value of the  gap  for 
Sn was used together with an average value for  the In 
gap obtained  from the  1iterat~re.l~  It is clear from 
these calculations (cf., for example, Figs. 10 and 11) 
that  the clear-cut V-Z characteristic  predicted  for 
tunneling sandwiches formed of superconductors with 

Figure 6 Portion  of a V-1 characteristic  for a 
Sn-Pb sandwich showing, with  an ex- 
panded current scale, the  predicted 
cusp at the  lower voltage limit of the 
negative resistance region. The break in 
the characteristic within the negative resistance 
region is attributed to the onset of oscillation. 
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widely different energy gap values  is no longer 
exhibited when the  gap values  become nearly equal. 
The calculated curves of  Figs. 10 and 11 are broken at 
the point where a mathematical singularity in the 
current occurs-namely at  the voltage cSn - Note 
the change in current scale in Fig. 11. On the current 
scale of Fig. 10, the current variation below approxi- 
mately 2 mv at 2.O"K is not visible. Again, at least 
qualitatively, the calculated curves and experimental 
results are in agreement. No attempt has been made  to 
follow in detail the changes that occur in the charac- 
teristics according to the  equations of the Analysis 
Section as  the two energy gaps approach each other in 
value. 

I Sn - Pb: T = 3.40'K 

- CALCULATED CURVE 

EXPERIMENTAL POINTS 
FITTED AT THE POINT 
MARKED BY THE ARROW 

2 

IVOLTAGE IN MILLIVOLTS 

Figure 7 (a) Comparison for a Sn-Pb  sandwich 
at 3.40"K between the calculated I-V 
characteristic (solid  curve)  and experi- 
mental points taken from photographs 
such  as those of Fig. 5. The  current  was 
normalized so that the point marked by the 
arrow fell on the curve. Experimental values for 
the energy gaps were used in the calculations. 

(b) Comparison for a Sn-Pb  sandwich 
at 3.60"K. 

40 (c) Comparison for 3.70"K. 

Conclusions 

Detailed calculations based on  a simple model of 
electron tunneling are in excellent agreement with 
experiments involving tunneling through  a  thin 
dielectric layer between a  normal and a superconduct- 
ing metal and between two superconducting metals, at 
least so long as  the energy gaps involved are appreci- 
ably different from  one  another.  The relative ease of 
experimentation employing the tunneling technique, 
coupled with the fact that it provides a direct measure 
of the energy gap of a superconductor, suggests its 
applicability to a variety of problems in supercon- 
ductivity. Among these are  the determination of 

-1 Sn - Pb:  T = 3.60°K 

IVOLTAGE IN MILLIVOLTS 

1 Sn - Pb: T = 3.70°K I 

IVOLTAGE IN MILLIVOLTS 
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anisotropy in the energy gap for single-crystal speci- the behavior of the integral for small values of q. Let 
mens, delineation of the variation of the energy gap 
at the surface of inhomogeneous superconductors, and 
the elucidation of the possible position dependence " = j E 2 - v  J E Z  - cI2J(E + V ) 2  - cZ2 
of the energy gap,14 particularly in laminar super- 
c o n d u c t o r ~ . ~ ~ ~ ' ~  X 4( - E ,  V )  dE 

m E(E + V )  

Appendix 

In  order to show that  the singularity in current is 
logarithmic let V = - E' - q in 11, and investigate E = u + el  + q 

Table 1 Full Limiting Value  of the Energy  Gap (ZE,,) 

V = & Z - & ' - q  

Transition Giaever Richards Ginsberg 

conductor  for This Work Megerle'") Tinkham(b) Tinkham") 
Super- Temperature (T,) This Work and  and  and 

mv 2co/kTC mv 2 ~ ~ / k T c ( ~ )   2 ~ ~ / k T , ( ~ )   2 ~ , / k T , ( ~ )  

A1 

Sn 

Pb 

1.30"K  0.28 

0.03 
f 

330°K 1.02 

0.02 
f 

7.2"K 2.50 

0.05 
f 

In 3.40"K < 1  mv 

I. Giaever and K. Megerle, Phys.  Rev. 122, 1101 (1961). 
(b) P. L Richards and M Trnkham Phys. Reu 119 581 (1960). 
(c) D. M. Ginsberg and M. TinkhaA, Phys. RLv. lis, 990 (1960). 
(d) These authors use the bulk transition temperature. 
( O )  From M. A. Biondi and M. P. Garfunkel, Phys. Rev. 116, 853  (1959). 

c - 
Y 0 I l l l , l , l l / l j l l l l l l l  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7  0.8 0.9 1.0 

REDUCED  TEMPERATURE, T/Tc 

Figure 8 The energy gap for superconducting tin, 
determined from the V-l characteristics 
obtained for electron tunneling between 
superconducting  lead  and tin,  plotted 
vs reduced temperature and compared 
with  the theoretical curve (solid line) of 
6CS. The point marked by an arrow wasfitted 
to the  curve in order to obtain the limiting full 
gap value, 2 ~ 0  = 3.10kTc, with Tc = 3.80"K. 
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Sn - In : T = 1.98'K 

I I IN MICROAMPERES 

Figure 9 Voltage vs tunneling current charac- 
teristic for a Sn-In  sandwich at 1.98"K. 41 
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Figure 10 Calculated voltage vs tunneling cur- 
rent characteristic for  a Sn-In sand- 
wich at 3.20"K. Note the qualitative similarity 
to the experimental curve (Fig. 9). The effect 
of the mathematical singularity in the current, 
which occurs at the break in the curve at V = 
cSn - cln extends over only a very small voltage 
interval. 

f U ~ A l , l , , l , i , i i , l  A 
1 .o 2.0 

IVOLTAGE IN MILLIVOLTS 

Then 

(u + E1 + + E2) 

u(u + ?>J@ + 2E1 + V ) ( U  + 262) 

1 1 - ) du .(A4) 
1 + exp(- u - c2) 1 + exp(-u- el - q )  

Assume that q may  be  neglected  in comparison with 
the semigap-widths E~ and e2.  

1 (u + El)(U + E21 

J<. + 2El ) (U  + 2E2) 

e - e ~  - e - e ~  
]e"' du (A5) 

[l + exp(-u - ~,)][1 + exp(-u - E ~ ) ]  

g(u)e-" g(u)e"' 
du + du . (A7) 

42 

Figure 11 Portion of the calculated voltage VS 
tunneling current characteristic for  a 
Sn-In  sandwich at 2.O"K. The current scale 
has been expanded in order to show the detail 
in the "negative resistance reRion". 

Sn - In : T = 2.0°K 

(VOLTAGE IN MILLIVOLTS 

The second integral on the right is a constant C for 
small  values  of 1, so it need not be discussed further. 

The expression g(u)e-" has upper and lower bounds 
(say A and B, respectively)  which are greater than zero 
in the interval 0 < u < 1, so 

du 1 du -. (A8) 

But 

1 du 
~ = cosh" w In 4 - In r ,  (A9) 

which  exhibits the logarithmic singularity. 
Note  that the quantity e-'' - e-'2 is a factor of the 

integrand of I ,  in Eq. (A5). Therefore, when c1 = c2, 
the logarithmic singularity does not occur. 
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