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Minimum Polarized  Distance Codes 

Abstract: The choice of a code for  a  given  application is influenced by many factors, such  as  economics, 

compatibility, and  reliability. This paper i s  concerned solely with the reliability of codes, and shows  how, 

for  a  given number of bits per character and a  given  minimum distance, the probability of undetected error 

in  an asymmetric channel may be reduced by many orders of magnitude merely by the proper selection of 
coded  characters. For a  given  minimum distance, an optimum selection of characters  requires,  as nearly as 

possible, the same number of "one" and "zero" bit failures  to change  one  character to another. The 

concept of  polarized distance i s  introduced, and  it i s  shown how the probability  of undetected error i s  related 

to the minimum distance of  a code only in a symmetric  channel, while the probability  of undetected error i s  
related  to the minimum  polarized distance in  both symmetric and asymmetric channels. 

The purpose of this paper i s  to present new theoretical concepts useful in the evaluation of codes, and not 

to recommend one  code over another. The codes in the paper are used only as examples to illustrate the 
theoretical concepts involved. 

Minimum distance 

The distance between  two  coded characters is the number 
of bits that must change in one character so that the 
other character results. For example, the distance between 
the characters 11100 and 01010 is three, since the first, 
third, and fourth bits  must change in order to go from 
one character to  the other. 

The minimum distance of a code  is the minimum num- 
ber of bits that must change in a coded character so that 
another valid character of the code will  result. 

In the hypothetical three-character code 

A 1 1 1 0 0  

B 0 1 0 1 0  

c 1 0 1 0 1  

the distance between A and B is three; between B and C,  
five; and between A and C,  two. The minimum distance 
of this code  is therefore two. 

The relationship between the minimum distance and 
the amount of error detection and correction possible is 

M-l=C+D whereC<D, 

M is the minimum distance of a code, C is the number of 
bits in error that can be corrected, and D is the number 
of  bits in  error than can be  detected. 

Since no error can be corrected without being detected, 

All  possible  values for C and D for values of M up to 
C cannot be greater than D. 

six are-tabulated below: 

M C D  

1 0 0  

2 0 1  

3 0 2  
1 1  

4 0 3  
1 2  

5 0 4  
1 3  
2 2  

6 0 5  
1 4  
2 3  

Note  that Dm,,=" 1, while C,,,< 2 '  

both maximums, of course, being  integers. 24 1 
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If a code is  used for detection only, the minimum num- 
ber of bits that must fail (change) so that  an undetected 
error occurs is equal to the minimum distance of the 
code. 

Codes  with a minimum distance of one have no check- 
ing; the failure of one or more bits in a character can 
result in another valid character and therefore the error 
cannot be  detected by a character check. 

Codes with a minimum distance of two are single- 
error detecting codes. The failure of one bit in a character 
will always  result in an invalid character, and therefore 
the error can be detected. The failure of two or more bits 
can result in another valid character, and therefore these 
errors cannot be detected. 

Codes  with a minimum distance of three are usually 
referred to as single-error correcting codes. The location 
of one bit  in error can be determined and therefore the 
error can be corrected; the failure of two or more bits 
can appear to the error-correction system as a single 
error and an erroneous correction (undetected error) can 
result. If no correction is  desired, double-error detection 
can be obtained with  these  codes. The failure of one or 
two  bits in a character will  always result in an invalid 
character and therefore the  error can be detected. The 
failure of three or more bits, with or without correction, 
can result in another valid character and therefore these 
errors cannot be detected. 

Codes  with a minimum distance of four are usually 
referred to as single-error correcting double-error detect- 
ing  codes. The location of one bit in  error can be deter- 
mined and therefore the  error can be corrected; the 
failure of two  bits can always  be detected but their loca- 
tion cannot be determined for correction; the failure of 
three or more bits can appear to the error-correction 
system  as a single error and an erroneous correction 
(undetected error) can result. If no correction is desired, 
triple-error detection can be obtained with  these  codes. 
The failure of one, two or three bits in a character will 
always result in an invalid character and therefore the 
error can be detected. The failure of four or more bits, 
with or without correction, can result in another valid 
character and therefore these errors cannot be  detected. 

The extension to codes of greater minimum distance 
should  be  obvious. 

Probability of undetected error 

To compare all codes on the same  basis, it will  be  assumed 
that they are used for detection only and  that  a perfect 
check is applied. (A perfect check  is one in which each 
character is  checked to ascertain whether it is one of the 
valid characters in the code.) 

The following  symbols  will be used: 

PI probability of a one bit in error (dropping a  bit), 

PO probability of a zero bit in error (picking up  a bit), 

P,,, the larger of PI and PO, 

242 Pain the smaller of PI and PO, 

P used to designate either P1 or PO when PI = PO, 

P, probability of undetected error, 
w - - "is  of the order of magnitude of". 

The following assumptions are made: the probability 
of bit error is  small;  bit errors occur randomly and are 
independent; all characters in a code occur randomly and 
are equally probable; the checking  system  will operate 
without failure. 

Symmetric channels 

In this section, only symmetric channels (P1=Po)  are 
considered. 

For small  values  of P1 and Po, the following approxi- 
mation can be shown to be valid: 

r=P 
s=o  

P,  = C,.P1'POS 
s z M  
T= n 

where r is the number of one bits in error and s is the 
number of zero bits  in error, r+s equaling the minimum 
distance, M ,  of the code; C, is the average number of 
combinations per character in which  these  bits can cause 
an undetected error. This approximation implies that 
only the lowest-order undetected error need  be con- 
sidered  in the evaluation of P,. 

More explicitly, 

P,"coP~~Po"+c1P1~Po"-~+ . . . +C,P~~POO 

Of major importance is the order of magnitude of P, 
(as defined by  P1'P08) ; of  only secondary importance is 
the value of the coefficient C,. Therefore, in the discus- 
sion that follows, the C,'s will be  ignored and only the 
orders of magnitude will  be considered. (It is  assumed 
that all Cy's are of the same order of magnitude.) 

Thus 

P,zP~oPo' +P1To"-l+ . . . fP1"PoO . 
With some  codes,  some of the terms in the above 

expression equal zero; with other codes, all of the terms 
have some  positive  value. For instance, consider two 
single-error detecting ( M =  2 )  five-bit  codes illustrated in 
Table 1. With Code A, where an undetected error can be 
caused by the failure of two zero bits, or one one bit and 
one zero bit, or two one bits, 

PutP10P02 +Pl~PO~+Pl*POO , 
while  with Code B, where an undected error can be 
caused  only by the failure of one one bit and one zero bit, 

PuBP11POl . 
In both codes, in a symmetric channel, since P,=PO, 
P,tPZ = P". 

Asymmetric  channels 

These same two  codes  will  now  be  considered in an asym- 
metric channel where Pmax>>Pmin. The approximations in 
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Code A Decimal Code B 

0 0 0 1  1 1 1 1 0 0 0  

0 0 1 0 1  2 1 0 1 0 0  

0 0 1 1 0  3 0 1 1 0 0  

0 1 0 0 1  4 1 0 0 1 0  

0 1 0 1 0  5 0 1 0 1 0  

0 1 1 0 0  6 0 0 1 1 0  

0 1  1 1  1 7 1 0 0 0 1  

~ 1 0 0 0 1  8 0 1 0 0 1  

1 1 0 0 1 0  9 0 0 1 0 1  ’ 1 0 1 0 0  0 0 0 0 1 1  

~ M = 2  M = 2  , 
~ K,L=O,2  
I P,%Pminh-PmaxL 

Pmax’ 

In a symmetric channel,  P$,,P”,,, reduces to PJf,  and P~ax=Pminpmlx=p~. 

the previous section hold for these codes in an asym- 
metric channel. They do not hold for all codes in an 
asymmetric channel, however (see Appendix I). 

With Code A, if Pl<<PO, the probability of two zero 
bits failing is very much greater than the probability 
of one one bit and  one zero bit failing or the probability 
of two one bits failing; thus P10P02 is very much larger 
than Pl1PO1 or P12Poo, and 

P,4PIOPO2 =Po’= Pma,2 . 
If Pl>>Po, P12P02 is very much larger than Pl1Po1 or 
P10P02, and 

P,tP12POQ = PI2 = P,,,2 . 
Thus, if Pmax>>Pmin, 

P,tPma,2 . 
On the  other hand, with Code B, regardless of whether 

Pl=PO, PI<<Po, or Pl>>PO, an undetected error can  be 
caused only if one one bit and  one zero bit fail, and 

P,4Pl’P0l=PminPm, 

Comparing these two codes - both have the same 
number of bits per character,  the same minimum dis- 
tance, and  the same check applied - it is found  that the 
probability of undetected error with Code A is P2,,,/ 
PminPmax=  Pmax/P,i,, times the probability of undetected 
error with Code B. 

P ,  for Code B is  of the order of magnitude of PIPo= 
P ,  for Code A is thus approximately 100,000,000 

times that of Code B. 
Note that the basic difference in the two codes is in the 

choice of the ten coded characters. 
The key  difference  is that  in Code A, one character may 

be changed to another character by the failure of only 
one type of bit (only one’s failing or only zero’s failing), 
while  in Code B, coincident failures of both types of bits 
(both one’s and zero’s) are always required to change 
one  character  to  another. For a given number of bits per 
character,  a choice of coded characters always requiring 
failures of both types of bits, to change one character to 
another, will result in  a lower P,. (It should be noted that 
m-out-of-n codes satisfy this condition.) In  fact,  for a 
given minimum distance, a choice of characters  requir- 
ing, as nearly as possible, the same number of each type 
of bit failure, maximizing the exponent of Pmin and mini- 
mizing the exponent of P,,,, results in the minimum P,. 

Note also that the minimum distance is not an adequate 
description in an asymmetric channel: although both 
codes had the same value of M ,  Code A had  a P,BPmax2 
while Code B had  a P,%PminPma,. A new concept of code 
distance that will describe codes in both symmetric and 
asymmetric channels will therefore be introduced; this 
will be called the polarized distance. 

Minimum polarized  disfance 

The polarized  distance, k,  1, between two coded charac- 
ters is the number of bits of each type that must change in 
one character so that the  other  character results. The 
polarized distance is thus  made up of two numbers 
whose sum is equal to the distance between the charac- 
ters. The convention will be established that if the two 
numbers are not equal, the smaller will  be written first, 
that is, k < 1. 

For example, the polarized distance, k,  I between the 
characters 11100 and 01010 is I ,  2; in going from the 
first character  to the second, one zero bit and two one 
bits must change; in going from the second character  to 
the first, one one bit and two zero bits must change. 

The minimum polarized distance(s) is obtained as fol- 
lows: 

Consider the distances between all possible pairs of 
characters in the code. Starting with the minimum dis- 
tance, arrange these distances in increasing order. 

For each distance, consider only the corresponding 
polarized distance with the minimum k .  Leave these po- 
larized distances in the same relative order  as  their 
corresponding distances. 

The first polarized distance is a (the) minimum 
polarized  distance. This will  be symbolized by K,   L .  

The next polarized distance with a k<K, if any, is also 
a minimum polarized distance. This will  be symbolized 
by K‘, L’. (K’+L’>K+L).  243 

( K + L = M ) .  
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The next polarized distance with a k<K', if any, is 
also a minimum polarized distance. This will  be  symbol- 
ized  by K",   L".   (K"+L">K+L') .  

This process is continued until the minimum polarized 
distance with the absolute minimum k is obtained. 

In most  codes, there will  be  only one minimum polar- 
ized distance, K ,  L, (K being the absolute minimum k). In 
the discussion that follows, only this case will  be  consid- 
ered. (The case of codes  with multiple minimum polar- 
ized distances will  be  discussed in Appendix I.) 

For an example, refer to Code A polarized distance 
chart  in Table 2. There  are only two distances  between 
the possible pairs of characters: 2 and 4. The correspond- 
ing  polarized  distances  with the minimum k, in each case, 
are 0, 2 and 1, 3 respectively. The minimum  polarized 
distance, K ,  L of this code  is thus 0, 2. 

With the 2-out-of-5 code, the polarized  distances  with 
the minimum k are 1, 1 and 2, 2. Thus, the minimum 
polarized distance, K ,  L, of Code B is 1, 1. 

In a symmetric channel, the minimum distance of a 
code is related to the probability of undetected error as 
follows : 

P,%PM. 

In an asymmetric channel the minimum polarized 
distance of a code is related to the probability of unde- 

244 tected error as follows: 

P,?!PminKPma4 . 
This expression  also  applies in a symmetric channel, where 
Pmin= P,,, = P ,  the expression reducing to P,%PKPL = 

p K + L  ,pX. 
(The order of magnitude of P ,  can be expressed  in the 

following form: 

Pu%PminoPmaxM+  Pm*nlPmax"l+  Pmin2Pp,ax"2+ . . 
In  an asymmetric channel where Pmax>>Pmin, the first 
term is the largest, with each succeeding term diminish- 
ing in order of magnitude. Therefore, P ,  is  of the order 
of magnitude of the first non-zero term encountered. The 
method of obtaining K ,  L in effect  specifies  this term.) 

Optimum minimum polarized distance 

From the expression P,%PmingPmaxL it can be seen that, 
for a given M ,  P ,  is a minimum when the coded charac- 
ters are chosen so that K is a maximum and L is a mini- 
mum. Therefore, for a given M ,  KmaxLmin defines the 
optimum minimum polarized distance. For instance, 
comparing some  codes  with M = 5 :  

If K ,  L=O, 5, P,%Pm,,5 

If K, L= 1,4, Pu%PminPmax4 

If K ,  L=2,  3, P,tPmin2Pmax3 
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The last case illustrates the optimum minimum polarized 
distance ( K ,  L = 2 ,  3) for M = 5 .  

It is  obvious that if Pmax>>Pmin, the P ,  of the second 
code can be orders of magnitude lower than that of the 
first  code, and the P, of the third code can be orders of 
magnitude lower than that of the first and second  code. 

Thus, two  codes  may have the same number of bits per 
character, the same minimum distance, and the same 
check applied, and yet the probability of undetected error 
in an asymmetric channel may  be orders of magnitude 
lower in one  of the codes,  owing to the choice of coded 
characters. If the characters are chosen so as to maxi- 
mize K and minimize L (requiring, as nearly as  possible, 
the same number of each type of  bit failure to change one 
character to  another),  a code with a minimum P, will 
result. 

It should be noted that if a character consisting of all 
one’s or all zero’s is chosen, K=O, and the least desirable 
minimum  polarized distance results. 

In a highly asymmetric channel, the probability of 
undetected error of one code may  be orders of magnitude 
lower than that of another code having a greater mini- 
mum distance. (This will  be  discussed in Appendix 11.) 

Maximum number of coded characters 

If, for  a specified number of bits per character and a 
specified minimum distance, the coded characters are 
chosen so as to obtain the optimum minimum polarized 
distance, it should be expected that  a smaller number of 
possible characters may result than would  otherwise. The 
following  questions are therefore logically  raised:  given 
a specified number of bits per character and a specified 
minimum distance, what is the maximum number of 
coded characters that can be obtained? What is the maxi- 
mum number of coded characters that  can be obtained 
for  the various possible  minimum polarized distances, 
and, in particular, for the optimum minimum polarized 
distance? 

The first question has been  examined by Hamming,l 
Plotkin,2 and J o ~ h i . ~  There is no general formula for 
evaluating these maximums; the references contain many 
formulas giving upper bounds for maximums and actual 
values for certain cases. 

Table 3 shows the known values of the maximum num- 
ber of coded characters for up to eleven  bits per char- 
acter and up to a minimum distance of six. 

Given two of the three variables - minimum distance, 
number of bits per character, and maximum number of 
coded characters - the third can be obtained from the 
table. 

For example, the table shows that twelve characters 
are possible  with a ten-bit double-error correcting double- 
error detecting (minimum distance five)  code. 

Or given a maximum of six bits per character avail- 
able and a ten-character (numeric) code required, what 
is the best check that can be obtained? The table shows 
that  a minimum distance three code  allows only eight 
characters; therefore, at best  only a minimum distance 

Table 3 Maximum number of coded characters. 

Minimum distance 
No. of bits 

per character 1 2 3 4 5 6  

1 2 

2 4 2  

3 8 4 2  

4 @ 8 2 2  

5 3 2 @ 4  2 2 

6 64 32 8 4 2  2 

7 128 64 @ 8 2 2 

8 256 128 @ 4  2 
9 512 256 6 4  

10 1,024 512 0 6  
11 2,048 1,024 24 @ 

two (single-error detecting) code can be obtained. How- 
ever,  with a minimum distance two  code, six bits per 
character would not be required to give the desired ten 
characters; five bits per character allow  sixteen characters 
which  is  sufficient. 

If a ten-character single-error correcting (minimum 
distance three) code is desired, the table shows that seven 
bits per character are required. 

For each minimum distance, the minimum entry satis- 
fying the character requirements for  a numeric code (ten 
characters) has been circled. 

The second question is as yet unanswered, and the 
completion of a table such as Table 3, with each mini- 
mum distance replaced by all possible corresponding 
minimum  polarized  distances,  is a suggestion for future 
study. 

A portion of such a table is  shown in Table 4, where 
values for optimum minimum polarized distances corre- 
sponding to the circled entries in Table 3 are given. 
(These entries are termed “possible” rather than “maxi- 
mum” since no proof  is  given that they are maximum.) 

These entries will  now  be  discussed. 
For M = 1, the concept of minimum  polarized distance 

is trivial, and K, L must equal 0, 1. 
For M = 2 ,  the optimum K ,  L equals 1, 1. An example 

of  a numeric code  having  this  minimum  polarized  dis- 
tance is Code B. For such a code, PuZPminPmax. Code A 
has the same number of bits per character, but a 
P,ZP,,,Z. In an asymmetric channel, the probability of 
undetected error with Code A is Pmax/Pmin times that of 
Code B. 

For M = 3 ,  the optimum K, L equals 1, 2.  An example 245 
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satisfying the numeric code requirements follows: 

1 1 1 1 0 0 0  

1 1 0 0 1 1 0  

1 1 0 0 0 0 1  

1 0 1 0 1 0 1  

1 0 1 0 0 1 0  

0 1 1 0 0 1 1  

0 1 1 0 1 0 0  

0 0 0 0 1   1 1  

0 0 1 1 0 0 1  

0 0 1 1 1 1 0  

0 1 0 1 0 1 0  

0 1 0 1 1 0 1  

1 0 0 1 1 0 0  

1 0 0 1 0 1 1  

Any ten of the fourteen  characters  can be chosen for 
a numeric code. The P,~PminPmaX2. The seven-bit Ham- 
ming code has the same number of bits per character, but 
a P,tPmaX3. The P, for  the Hamming code is PmaX/Pmin 
times that for  the code illustrated. 

For M = 4 ,  the optimum K, L equals 2, 2 .  An example 
satisfying the numeric code requirements follows: 

1 1  1 1 0 0 0 0  

1 1 0 0 1 1 0 0  

1 1 0 0 0 0 1 1  

1 0 1 0 1 0 1 0  

1 0 1 0 0 1 0 1  

0 1 1 0 0 1 1 0  

0 1 1 0 1 0 0 1  

0 0 0 0 1  1 1  1 

0 0 1 1 0 0 1 1  

0 0 1 1 1 1 0 0  

0 1 0 1 0 1 0 1  

0 1 0 1 1 0 1 0  

1 0 0 1 1 0 0 1  

1 0 0 1 0 1 1 0  

Again any ten of the  fourteen  characters  can be chosen 
for a numeric code. The PuL+Pmin2Pmax2. The eight-bit 
Hamming code has  the same number of bits per  charac- 
ter, but  a PUZPmax4. The P, for the Hamming code is 
( Pmax/Pmin) times that  for the code shown. 

246 (The seven-bit code previously illustrated was obtained 

Table 4 Possible number of coded characters. 

No. of bits 
per character 

Optimum nlinirnunt polarized distance 

0, 1 1, 1 1,2 2,2 2,3 3, 3 

4 @  

5 @ 
6 

7 

8 

9 

10 

11 

from this code by the elimination of the eighth bit.) 

satisfying the numeric code requirements follows: 
For M = 6 ,  the  optimum K, L equals 3, 3. An example 

1 0 1 1 1 0 0 0 1 0 1  

0 1 1 1 0 0 0 1 0 1 1  

1 1 1 0 0 0 1 0 1 1 0  

1 1 0 0 0 1 0 1 1 0 1  

1 0 0 0 1 0 1 1 0 1 1  

0 0 0 1 0 1 1 0 1 1 1  

0 0 1 0 1 1 0 1 1 1 0  

0 1 0 1 1 0 1 1 1 0 0  

1 0 1 1 0 1 1 1 0 0 0  

0 1 1 0 1 1 1 0 0 0 1  

1 1 0 1 1 1 0 0 0 1 0  

Any ten of the eleven characters  can be chosen for a 
numeric code. The PutPmin3Pmax3. The P, for a K, L=O, 
6 code t PmaX6, being (Pmax/Pmin)3 times that for the 
code shown. By the elimination of any  one column of the 
code illustrated, a ten-bit code with the  optimum K, L =2, 
3 can be obtained. 

Appendix I: Codes with multiple  minimum 
polarized distances 

Although most codes have only one minimum polarized 
distance, it is  possible to construct codes having multiple 
minimum polarized distances. 
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For example, the following hypothetical four-character 
code is analyzed: 

A 0 0 0 0 0 0 0 0  

B 0 0 0 1 1 1 1 1  

c 0 1 1 0 0 1 1 1  

D 1 1 1 1 1 1 1 0  

Between Distance Polarized distance 

A and B 5 095 

A and C 5 0, 5 

A and D 7 0, 7 

B and C 4 2, 2 

B and D 4 1, 3 

C and D 4 1 ,  3 

The distances are  arranged in  increasing order, along 
with each  corresponding polarized  distance  with the  min- 
imum k :  

Corresponding polarized distance 
Distance with minimum k 

4 193 

5 025 

7 097 

The first minimum polarized  distance, K ,  L,  equals 

The next  polarized  distance, 0, 5, has a k < K ( O < l )  ; 
therefore, it is also a minimum polarized  distance,  sym- 
bolized by K', L'. 

The next  polarized  distance, 0, 7, does not  have a 
k < K ;  therefore, it is not a minimum polarized  distance. 

Thus there  are two minimum polarized  distances for 
this code: 

1 ,  3 .  

K ,   L = l ,  3 

and 

K ,  L'=O, 5 

If there  are two minimum polarized distances, as  in 
this  example, K ,  L and  the relationship PuZPminKPmaxL 
apply  from symmetry to a certain ratio of asymmetry, 
while K ,  L' and  the relationship Pu2PminR'PmaxL' apply 
from this ratio of asymmetry to all  higher ratios of 
asymmetry. 

In codes of this  type, the following  relationships exist: 

K +L=M 

K'+ L'> M 

K'+L'>K+L 

K >K 
L' > L 

L"L>K-K 

The relationship P,4PminKPm,xL applies in  the lower 
ranges of asymmetry where PminKPmaxL 2 PminK'PmaxL', or 
when PminK-Kr 2 PmasL"L. 

The relationship PuZPmingrPnmxL' applies in  the higher 
ranges of asymmetry where PminK-K'<  PmasL"L. 

In the  preceding  example, Pu4PminhPmaxL equal  to 
Pn1inPmax3 applies  when Pminl-o > Pmax5-3, or when 
Pnlin> P,,,?. The relationship PuZPminK'PnlaxL' equal  to 
P,11a,5 applies when Pmin < Pmax2. 

It is also possible to  construct codes  in  which there  are 
more  than  two  minimum polarized distances. For ex- 
ample, a code  can be constructed with the following 
minimum polarized  distances: 

K ,  L = 2 , 2  

K',  L' = 1 ,4  

K ' ,  L"= 0 ,  7 

The relationships  between K ,  L and K', L' are similar 
to those between K ,  L' and K", L"; these  relationships, of 
course,  extend to any  number  of  minimum polarized dis- 
tances. 

Minimum polarized  distance K ,  L and PuZPmi;sPma;z 
apply  in  the  lowest  ranges of asymmetry  where 
Pmin2-1>PmaxC2, or when Pmin>Pmax2. 

Minimum polarized  distance K' ,  L' and P,=WPminPm,,4 
apply  when Pmin< PrnaXr and when P,,,in1-0>Pmax7-4; that 
is, when Pmax3 < Pmin<  Pmax2. 

Minimum polarized  distance K ' ,  L" and P,tP,,,' ap- 
ply in  the highest  ranges of asymmetry  where Pmin<  PmaX3. 

It is possible for a minimum polarized  distance not  to 
apply  in  any range. For example, in a code with the fol- 
lowing minimum polarized  distances, 

K ,  L = 2 , 2  

K', L' = 1 ,4  

K", L"= 0 ,  6 

minimum polarized  distance K ,  L and Pu2Pmin2Pmar2 
apply when Pmin>Pmax2; K ,  L' and P,2PminPmax4 apply 
when Pmax2S  Pmin< Pmax2(?)  ; K', L" and P,2Pm,6 apply 
when Pmin<  Pmax2. Thus, K ,  L applies when Pmin>Pmax2 
and K", L" applies when Pmin<Pmax2, K ,  L' not 
applying  in any range. (K ' ,  L' can be  considered  as 
applying in  the case of Pmin=Pmax2, but this is trivial 
since in this  case K ,  L and K', L" also apply,  and 
PminZPmax2=PminPmaxQ=Pm,,6). 247 
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Appendix 11: Comparison  of codes with different 
minimum distances 

Codes  with  different minimum distances can be  com- 
pared using the principles discussed in  Appendix I, and 
the following  observations can be made:  in a highly 
asymmetric  channel, the probability of undetected error 
of one  code  may be orders of magnitude lower than  that 
of another  code having a greater minimum distance. 

For example, compare  the single-error  detecting 
( M = 2 )  five-bit Code B with the double-error  detecting 
( M =  3)  seven-bit Hamming code. For  Code B, K ,  L = l ,  
I, and P,tPmjnPmax; for  the  Hamming code, K ,  L=O, 3, 
and P,ZPmax3. 
In the  lower ranges of asymmetry,  when Pmin’-’> 

Pmax3-1, or when Pmin>Pmax2, the P, for  the  Hamming 
code is lower ( PminPmax> Pmax3). However, in  the higher 

ranges of asymmetry, when Pmin<Pmax2, the P, for  Code 
B is lower ( P n d m a x < P m a x 3 ) .  
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