M. P. Marcus

Minimum Polarized Distance Codes

Abstract: The choice of a code for a given application is influenced by many factors, such as economics,
compatibility, and reliability. This paper is concerned solely with the reliability of codes, and shows how,
for a given number of bits per character and a given minimum distance, the probability of undetected error
in an asymmetric channel may be reduced by many orders of magnitude merely by the proper selection of
coded characters. For a given minimum distance, an optimum selection of characters requires, as nearly as
possible, the saume number of “one” and “zero” bhit failures to change one character to another. The
concept of polarized distance is introduced, and it is shown how the probability of undetected error is related
to the minimum distance of a code only in a symmetric channel, while the probability of undetected error is
related to the minimum polarized distance in both symmetric and asymmetric channels.

The purpose of this paper is to present new theoretical concepts useful in the evaluation of codes, and not
to recommend one code over another. The codes in the paper are used only as examples to illustrate the
theoretical concepts involved.

Minimum distance

The distance between two coded characters is the number Since no error can be corrected without being detected,
of bits that must change in one character so that the C cannot be greater than D.
other character results. For example, the distance between All possible values for C and D for values of M up to
the characters 11100 and 01010 is three, since the first, six are tabulated below:
third, and fourth bits must change in order to go from
M C D
one character to the other.
The minimum distance of a code is the minimum num- 1 00
ber of bits that must change in a coded character so that
another valid character of the code will resulit. 2 01
In the hypothetical three-character code 3 0 2
A 11100 11
B 01010 4 0 3
1 2
C 10101
5 0 4
the distance between A and B is three; between B and C, 1 3
five; and between A and C, two. The minimum distance 2 2
of this code is therefore two.
The relationship between the minimum distance and 6 0 5
the amount of error detection and correction possible is ; ;1'
M~—1=C+D where C<D,
M is the minimum distance of a code, C is the number of Note that Dyax=M—1, While Crax< Doex )
bits in error that can be corrected, and D is the number 2
of bits in error than can be detected. both maximums, of course, being integers.
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If a code is used for detection only, the minimum num-
ber of bits that must fail (change) so that an undetected
error occurs is equal to the minimum distance of the
code.

Codes with a minimum distance of one have no check-
ing; the failure of one or more bits in a character can
result in another valid character and therefore the error
cannot be detected by a character check.

Codes with a minimum distance of two are single-
error detecting codes. The failure of one bit in a character
will always result in an invalid character, and therefore
the error can be detected. The failure of two or more bits
can result in another valid character, and therefore these
errors cannot be detected.

Codes with a minimum distance of three are usually
referred to as single-error correcting codes. The location
of one bit in error can be determined and therefore the
error can be corrected; the failure of two or more bits
can appear to the error-correction system as a single
error and an erroneous correction (undetected error) can
result. If no correction is desired, double-error detection
can be obtained with these codes. The failure of one or
two bits in a character will always result in an invalid
character and therefore the error can be detected. The
failure of three or more bits, with or without correction,
can result in another valid character and therefore these
errors cannot be detected.

Codes with a minimum distance of four are usually
referred to as single-error correcting double-error detect-
ing codes. The location of one bit in error can be deter-
mined and therefore the error can be corrected; the
failure of two bits can always be detected but their loca-
tion cannot be determined for correction; the failure of
three or more bits can appear to the error-correction
system as a single error and an erroneous correction
(undetected error) can result. If no correction is desired,
triple-error detection can be obtained with these codes.
The failure of one, two or three bits in a character will
always result in an invalid character and therefore the
error can be detected. The failure of four or more bits,
with or without correction, can result in another valid
character and therefore these errors cannot be detected.

The extension to codes of greater minimum distance
should be obvious.

Probability of undetected error

To compare all codes on the same basis, it will be assumed
that they are used for detection only and that a perfect
check is applied. (A perfect check is one in which each
character is checked to ascertain whether it is one of the
valid characters in the code.)

The following symbols will be used:

Py probability of a one bit in error (dropping a bit),
Po probability of a zero bit in error (picking up a bit),
Pnax  the larger of P, and P,

Puin  the smaller of P; and Py,
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P used to designate either P; or Po when P, =P,
P, probability of undetected error,
¥ “is of the order of magnitude of”.

The following assumptions are made: the probability
of bit error is small; bit errors occur randomly and are
independent; all characters in a code occur randomly and
are equally probable; the checking system will operate
without failure.

Symmetric channels

In this section, only symmetric channels (P1=P,) are
considered.

For small values of P; and Py, the following approxi-
mation can be shown to be valid:

r=M

$=0
P, = 2 CrPl'rPos
r=0
s=M
where r is the number of one bits in error and s is the
number of zero bits in error, r+s equaling the minimum
distance, M, of the code; C, is the average number of
combinations per character in which these bits can cause
an undetected error. This approximation implies that
only the lowest-order undetected error need be con-
sidered in the evaluation of P,.

More explicitly,
Pu:COP]_OPoM‘i' C1P11P0M_1+ e +CMP1MP00

Of major importance is the order of magnitude of P,
(as defined by P1"Py*); of only secondary importance is
the value of the coefficient C.. Therefore, in the discus-
sion that follows, the C,’s will be ignored and only the
orders of magnitude will be considered. (It is assumed
that all C,’s are of the same order of magnitude.)

Thus

Pu9=('P10P0M +P11P0M_1+ - +P1MP00 .

With some codes, some of the terms in the above
expression equal zero; with other codes, all of the terms
have some positive value. For instance, consider two
single-error detecting (M =2) five-bit codes illustrated in
Table 1. With Code A, where an undetected error can be
caused by the failure of two zero bits, or one one bit and
one zero bit, or two one bits,

P, EP,°Py?+Py1Po*+P12Py°,

while with Code B, where an undected error can be
caused only by the failure of one one bit and one zero bit,

PEPy1Py .

In both codes, in a symmetric channel, since P1=P,,
P EP2—pP¥,

Asymmetric channels

These same two codes will now be considered in an asym-
metric channel where Ppg,>>> Pain. The approximations in




Table1 Comparison of two single-error detecting
five-bit codes with perfect check.

Code A Decimal Code B
00011 1 11000
00101 2 10100
00110 3 01100
01001 4 10010
01010 5 01010
01100 6 00110
01111 7 10001
10001 8 01001
106010 9 00101
16100 0 00011
M=2 M=2
K, L=0,2 K, L=1,1
PuEP i Proax® Py EPyinK P, L
=Ppax? =PrinPrmax
In a symmetric channel, PX, PZ _reducesto P¥, and P2 _—P_ P —p.

the previous section hold for these codes in an asym-
metric channel. They do not hold for all codes in an
asymmetric channel, however (see Appendix I).

With Code A, if P;<<P,, the probability of two zero
bits failing is very much greater than the probability
of one one bit and one zero bit failing or the probability
of two one bits failing; thus P,°Py? is very much larger
than P11P01 or P12Po°, and

Pu§P10P02=P02=Pmax2 .

If P;>> Py, P12Pg? is very much larger than P;2P,! or
P,oP, 02, and

Puéplzpoo =P12:Pmax2 .
Thus, if Prax>>> Prmin,
Pu-—)=erax2 .

On the other hand, with Code B, regardless of whether
P1=Py, P1<KPy, or P;>>P,, an undetected error can be
caused only if one one bit and one zero bit fail, and

Pu;ePllPOl:Pmiannx

Comparing these two codes — both have the same
number of bits per character, the same minimum dis-
tance, and the same check applied — it is found that the
probability of undetected error with Code A is P2,/
PrinPmax=Puax/Pmin times the probability of undetected
error with Code B.

As an example, assume P;=10~* and P;=10-2, P, for
Code A is of the order of magnitude of P12=10-3, while
P, for Code B is of the order of magnitude of P1Py=
10-2¢; P, for Code A is thus approximately 100,000,000
times that of Code B.

Note that the basic difference in the two codes is in the
choice of the ten coded characters.

The key difference is that in Code A, one character may
be changed to another character by the failure of only
one type of bit (only one’s failing or only zero’s failing),
while in Code B, coincident failures of both types of bits
(both one’s and zero’s) are always required to change
one character to another. For a given number of bits per
character, a choice of coded characters always requiring
failures of both types of bits, to change one character to
another, will result in a lower P,. (It should be noted that
m-out-of-n codes satisfy this condition.) In fact, for a
given minimum distance, a choice of characters requir-
ing, as nearly as possible, the same number of each type
of bit failure, maximizing the exponent of Pp,;, and mini-
mizing the exponent of Pp,,x, results in the minimum P,,.

Note also that the minimum distance is not an adequate
description in an asymmetric channel: although both
codes had the same value of M, Code A had a P, 2P,
while Code B had a P,2PyinPuax- A new concept of code
distance that will describe codes in both symmetric and
asymmetric channels will therefore be introduced; this
will be called the polarized distance.

Minimum polarized distance

The polarized distance, k, I, between two coded charac-
ters is the number of bits of each type that must change in
one character so that the other character results. The
polarized distance is thus made up of two numbers
whose sum is equal to the distance between the charac-
ters. The convention will be established that if the two
numbers are not equal, the smaller will be written first,
that is, k</.

For example, the polarized distance, k, I between the
characters 11100 and 01010 is /, 2; in going from the
first character to the second, one zero bit and two one
bits must change; in going from the second character to
the first, one one bit and two zero bits must change.

The minimum polarized distance(s) is obtained as fol-
lows:

Consider the distances between all possible pairs of
characters in the code. Starting with the minimum dis-
tance, arrange these distances in increasing order.

For cach distance, consider only the corresponding
polarized distance with the minimum k. Leave these po-
larized distances in the same relative order as their
corresponding distances.

The first polarized distance is a (the) minimum
polarized distance. This will be symbolized by K, L.
(K+L=M).

The next polarized distance with a k<K, if any, is also
a minimum polarized distance. This will be symbolized
by K', L. (K'+L'>K+L).
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Table 2 Polarized distance chart
Code A (K, L=0, 2).

From To— 0 1 2 3 4 5 6 7 8 9
\: 10100 00011 00101 00110 01001 01010 01100 01111 10001 10010
0

10100 2,2 1,1 1,1 2,2 2,2 1,1 1,3 1,1 1,1
1

00011 2,2 1,1 1,1 1,1 1,1 2,2 0,2 1,1 1,1
2

00101 1,1 1,1 1,1 1,1 2,2 1,1 0,2 1,1 2,2
3

00110 1,1 1,1 1,1 2,2 1,1 1,1 0,2 2,2 1,1
4 2,2 1,1 1,1

01001 > s ) 2,2 1, 1 1, 1 0,2 1, 1 2,2
3 2,2 1,1 2

01010 > H 2, 1, 1 1, 1 1, 1 0, 2 2, 2 1, 1
6 1,1 2,2 1

01100 s , 1, 1,1 1,1 1,1 0,2 2,2 2,2
7

01111 1,3 0,2 0,2 0,2 0,2 0,2 0,2 1,3 1,3
8 1,1 1 1

10001 y , 1 1, 2,2 1,1 2,2 2,2 1,3 1,1
0 1,1 1,1 2,2 1,1 2,2 2 1

10010 ’ ’ g ) » 1,1 2, 1,3 1,

The next polarized distance with a k<K', if any, is
also a minimum polarized distance. This will be symbol-
ized by K", L". (K"+L">K'+L").

This process is continued until the minimum polarized
distance with the absolute minimum k is obtained.

In most codes, there will be only one minimum polar-
ized distance, K, L, (K being the absolute minimum k). In
the discussion that follows, only this case will be consid-
ered. (The case of codes with multiple minimum polar-
ized distances will be discussed in Appendix 1.)

For an example, refer to Code A polarized distance
chart in Table 2. There are only two distances between
the possible pairs of characters: 2 and 4. The correspond-
ing polarized distances with the minimum %, in each case,
are 0, 2 and 1, 3 respectively. The minimum polarized
distance, K, L of this code is thus 0, 2.

With the 2-out-of-5 code, the polarized distances with
the minimum k& are 1, 1 and 2, 2. Thus, the minimum
polarized distance, K, L, of Code Bis 1, 1.

In a symmetric channel, the minimum distance of a
code is related to the probability of undetected error as
follows:

P EPY

*
Pu-‘—‘PminKPmaxL .

This expression also applies in a symmetric channel, where
Ppin=<Pn.x=P, the expression reducing to P, ZPXPL—
PE+L — PM .

(The order of magnitude of P, can be expressed in the
following form:

PuépminOPmax”’l"Pminlpmaxu_l'i'Pminszax 2+,

In an asymmetric channel where Puax>> Ppi,, the first
term is the largest, with each succeeding term diminish-
ing in order of magnitude. Therefore, P, is of the order
of magnitude of the first non-zero term encountered. The
method of obtaining K, L in effect specifies this term.)

Optimum minimum polarized distance

From the expression P,2P,,in®PaxL it can be seen that,
for a given M, P, is a minimum when the coded charac-
ters are chosen so that K is a maximum and L is a mini-
mum. Therefore, for a given M, KpaxLmin defines the
optimum minimum polarized distance. For instance,
comparing some codes with M=5:

If X, L=0,5, Py EPmay®
In an asymmetric channel the minimum polarized
. .y I ’ =1, > Pui‘—(‘PminP ax4
distance of a code is related to the probability of unde- X, L 4 "
244 tected error as follows: IfK,L=2,3, P, 2P in2Pmax®
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The last case illustrates the optimum minimum polarized
distance (K, L=2, 3) for M =35.

It is obvious that if Pmax>>> P, the P, of the second
code can be orders of magnitude lower than that of the
first code, and the P, of the third code can be orders of
magnitude lower than that of the first and second code.

Thus, two codes may have the same number of bits per
character, the same minimum distance, and the same
check applied, and yet the probability of undetected error
in an asymmetric channel may be orders of magnitude
lower in one of the codes, owing to the choice of coded
characters. If the characters are chosen so as to maxi-
mize K and minimize L (requiring, as nearly as possible,
the same number of each type of bit failure to change one
character to another), a code with a minimum P, will
result,

It should be noted that if a character consisting of all
one’s or all zero’s is chosen, K=0, and the least desirable
minimum polarized distance results.

In a highly asymmetric channel, the probability of
undetected error of one code may be orders of magnitude
lower than that of another code having a greater mini-
mum distance. (This will be discussed in Appendix II.)

Maximum number of coded characters

If, for a specified number of bits per character and a
specified minimum distance, the coded characters are
chosen so as to obtain the optimum minimum polarized
distance, it should be expected that a smaller number of
possible characters may result than would otherwise. The
following questions are therefore logically raised: given
a specified number of bits per character and a specified
minimum distance, what is the maximum number of
coded characters that can be obtained? What is the maxi-
mum number of coded characters that can be obtained
for the various possible minimum polarized distances,
and, in particular, for the optimum minimum polarized
distance?

The first question has been examined by Hamming,!
Plotkin,2 and Joshi.® There is no general formula for
evaluating these maximums; the references contain many
formulas giving upper bounds for maximums and actual
values for certain cases.

Table 3 shows the known values of the maximum num-
ber of coded characters for up to eleven bits per char-
acter and up to a minimum distance of six.

Given two of the three variables — minimum distance,
number of bits per character, and maximum number of
coded characters — the third can be obtained from the
table.

For example, the table shows that twelve characters
are possible with a ten-bit double-error correcting double-
error detecting (minimum distance five) code.

Or given a maximum of six bits per character avail-
able and a ten-character (numeric) code required, what
is the best check that can be obtained? The table shows
that a minimum distance three code allows only eight
characters; therefore, at best only a minimum distance

Table 3 Maximum number of coded characters.

Minimum distance
No. of bits

per character

1 2

2 4 2

3 8 4 2

4 g8 2 2

s 3 4 2 2

6 64 32 8 4 2 2
7 128 64 8 2 2
8 256 128 4 2
9 512 256 6 4
10 1,024 512 @ 6
11 2,048 1,024 24 @

two (single-error detecting) code can be obtained. How-
ever, with a minimum distance two code, six bits per
character would not be required to give the desired ten
characters; five bits per character allow sixteen characters
which is sufficient.

If a ten-character single-error correcting (minimum
distance three) code is desired, the table shows that seven
bits per character are required.

For each minimum distance, the minimum entry satis-
fying the character requirements for a numeric code (ten
characters) has been circled.

The second question is as yet unanswered, and the
completion of a table such as Table 3, with each mini-
mum distance replaced by all possible corresponding
minimum polarized distances, is a suggestion for future
study.

A portion of such a table is shown in Table 4, where
values for optimum minimum polarized distances corre-
sponding to the circled entries in Table 3 are given.
(These entries are termed “possible” rather than “maxi-
mum” since no proof is given that they are maximum.)

These entries will now be discussed.

For M =1, the concept of minimum polarized distance
is trivial, and K, L must equal 0, 1.

For M =2, the optimum K, L equals 1, 1. An example
of a numeric code having this minimum polarized dis-
tance is Code B. For such a code, PP pinPmax. Code A
has the same number of bits per character, but a
P, %P2 In an asymmetric channel, the probability of
undetected error with Code A is Pmayx/Pmin times that of
Code B.

For M =3, the optimum K, L equals 1, 2. An example
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satisfying the numeric code requirements follows:
1111000
1100110
1100001

101

01

0

p—

10
11

oS O o O O
- O
—

—
= 0 = O O

0
111
010
011
011

L = T = T B < R =B e R o
O R = OO O = = O O
P
ot

N
-0 O

0010

Any ten of the fourteen characters can be chosen for
a numeric code. The Pu,XPpinPmax2. The seven-bit Ham-
ming code has the same number of bits per character, but
a P,£Pp,,3. The P, for the Hamming code is Prax/Puin
times that for the code illustrated.

For M =4, the optimum K, L equals 2, 2. An example
satisfying the numeric code requirements follows:

11110000

11001100
11000011
10101010
10100101
01100110
01101001
00001111
00110011
00111100
01010101
01011010
10011001
10010110

Again any ten of the fourteen characters can be chosen
for a numeric code. The P,%2Ppnin2Pmax®. The eight-bit
Hamming code has the same number of bits per charac-
ter, but a P, £Pn,.,*. The P, for the Hamming code is
(Prax/Pmin) 2 times that for the code shown.

(The seven-bit code previously illustrated was obtained
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Table 4 Possible number of coded characters.

Optimum minimum polarized distance
No. of bits

per character

0,1 1,1 1,2 2,2 2,3 3,3

O 0 NN e AW N

®
®

from this code by the elimination of the eighth bit.)
For M =6, the optimum K, L equals 3, 3. An example
satisfying the numeric code requirements follows:

10111000101
001011
01
0
1

e e = R e T T =T =
—
p—
(=

O O o = m O e

011
111
110
100
600
001
010
101
011

—_ = = O

1
0
000

— e O o OO O e =
e T U e B S e S o B o B
e T T o T = T Y« B e B e

[ e e = T T T =)
=R == T S S i e )
S = O O O = =

110

Any ten of the eleven characters can be chosen for a
numeric code. The P 2P in3Pmax8. The P, for a K, L=0,
6 code £ Pp,x8, being (Pmax/Pmin)? times that for the
code shown. By the elimination of any one column of the
code illustrated, a ten-bit code with the optimum K, L=2,
3 can be obtained.

Appendix I: Codes with multiple minimum
polarized distances

Although most codes have only one minimum polarized
distance, it is possible to construct codes having multiple
minimum polarized distances.




For example, the following hypothetical four-character
code is analyzed:

00000000
00011111
011060111
11111110

U O = A

Between Distance Polarized distance
A and B 5 0,5
Aand C 5 0,5
A and D 7 0,7
Band C 4 2,2
Band D 4 1,3
Cand D 4 1,3

The distances are arranged in increasing order, along
with each corresponding polarized distance with the min-
imum k:

Corresponding polarized distance

Distance with minimum k
4 1,3
5 0,5
7 0,7

The first minimum polarized distance, K, L, equals
1, 3.

The next polarized distance, 0, 5, has a k<K (0<1);
therefore, it is also a minimum polarized distance, sym-
bolized by K, L'.

The next polarized distance, 0, 7, does not have a
k<K'; therefore, it is not a minimum polarized distance.

Thus there are two minimum polarized distances for
this code:

K, L=1,3
and
K,L'=0,5

If there are two minimum polarized distances, as in
this example, K, L and the relationship P 2P ;,EP .~
apply from symmetry to a certain ratio of asymmetry,
while XK', L’ and the relationship P,£Pyin% Py, 2 apply
from this ratio of asymmetry to all higher ratios of
asymmetry.

In codes of this type, the following relationships exist:

K+L=M
K'+L'>M
K'+L'>K+L
K>K'

L'>L
L'-L>K—-K’

The relationship PuZPuin®Pra” applies in the lower
ranges of asymmetry where PuninXPmax® 2 Pmin® Pmax™', Or
when Puin5~8 > PyaxE-L.

The relationship PyZ2Puin™ Puax’ applies in the higher
ranges of asymmetry where P ©5' < Py, 2L,

In the preceding example, P EPyin*PmaE equal to
PoinPmax® applies when Puin'°2 Pua®?, or when
Puin > Puax®. The relationship Pu2Pin™ Prax™’ equal to
Pay® applies when P <Py’

It is also possible to construct codes in which there are
more than two minimum polarized distances. For ex-
ample, a code can be constructed with the following

minimum polarized distances:

K, L=22
K,L'=1,4
K”, L' —= 0, 7

The relationships between K, L and K’, L' are similar
to those between K', L' and K", L"; these relationships, of
course, extend to any number of minimum polarized dis-
tances.

Minimum polarized distance K, L and P,2Pmin*Prax®
apply in the lowest ranges of asymmetry where
Ppin?2 12 Pt 2, or when Puin > Prax’.

Minimum polarized distance K', L’ and P 2PyinPmax?
apply when Prin < Pmay? and when Pin'~02> Ppax™*; that
is, when P, 3 < Prin < Pmax?.

Minimum polarized distance K”, L” and P, £Pmn.<" ap-
ply in the highest ranges of asymmetry where Ppin < Pmas®.

It is possible for a minimum polarized distance not to
apply in any range. For example, in a code with the fol-
lowing minimum polarized distances,

K, L =2,2
K,L =1,4
K”, L' = 0’ 6

minimum polarized distance K, L and P,EP.in2Puax®
apply when Pyin>Pm,y?; K', L' and P EPpinPmax* apply
when Puax® < Puin < Prax®(?); K, L" and P,2P,,,,5 apply
when Pyin< Pmax®. Thus, K, L applies when Ppin > P,
and K”, L” applies when Pniun<Pma®, K, L' not
applying in any range. (K’, L' can be considered as
applying in the case of Ppin=Pna,?, but this is trivial
since in this case K, L and K", L"” also apply, and

Pminzpmax2=Pmianax4=Pmax6)-
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Appendix ll: Comparison of codes with different
minimum distances

Codes with different minimum distances can be com-
pared using the principles discussed in Appendix I, and
the following observations can be made: in a highly
asymmetric channel, the probability of undetected error
of one code may be orders of magnitude lower than that
of another code having a greater minimum distance.

For example, compare the single-error detecting
(M =2) five-bit Code B with the double-error detecting
(M =3) seven-bit Hamming code. For Code B, K, L=1,
1, and P 2PyinPmay; for the Hamming code, K, L=0, 3,
and P EPy a5,

In the lower ranges of asymmetry, when P>
Prax®t, or when Ppin>Pray?, the P, for the Hamming
code is lower (PminPmax> Pmax®) . However, in the higher
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ranges of asymmetry, when Pp iy < Puax?, the P, for Code
B is lower (PrinPmax<Pmax®).
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