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Periodic Solutions of the Wave  Equation 
with a  Nonlinear Interface Condition 

Abstract: In this paper  we consider the problem  of the voltage oscillations in a transmission line  when a diode 

represented as a nonlinear capacitance is  placed  in shunt in  that line. In particular we consider the response 

of this line to periodic driving voltages and study the periodic responses. This physical situation is shown to 

lead to the mathematical model of the wave equation in the voltage in a domain  with an internal  boundary 

(the interface), at  which the voltage i s  required to satisfy a nonlinear jump condition. By an application of 

Gauss’ theorem, the problem is reduced to a nonlinear  difference-differential equation. In the case that  the 

generator driving the line is  matched to it, this family of equations reduces  to a family of nonlinear  differ- 

ential equations. The paper is  concerned with Q study of the periodic solutions of these two classes of 

equations. 

1. Introduction and derivation of model 

e 1. Introduction and description of contents 

In this paper we will consider the  propagation of voltage 
waves down a  transmission line when  a diode is placed in 
shunt  in  that line. We  show  that this state of affairs can  be 
described by a boundary value  problem for  the wave 
equation  for  the voltage  across the  line coupled  with  a 
nonlinear  voltage drop across the capacitor. Thus this 
problem  bears certain similarities to  the  problem  of  the 
bowing of a violin string treated by Lord Rayleighl and 
J. B. Keller.2 

In Section 2 we make use of the  fact  that a diode  can 
be characterized  as a capacitor,  in which the  capacitance 
is a function of the voltage drop,  to derive the wave equa- 
tion model for  our problem.  We then  show by an applica- 
tion of Gauss’s theorem  to solutions of the wave equation 
that  the  boundary  value  problem is equivalent to solving 
a nonlinear difference-differential equation ( 2 . 2 2 ) .  In  the 
special  case where  the generator  driving the  line is 
matched to the line, this functional  equation reduces to a 
nonlinear differential equation ( 2 . 2 3 ) .  In Section 3 to 
Section 6 we discuss the properties of solutions of the dif- 
ferential  equation.  Section 3 and Section 4 are coupled 
into Part I1 of this paper.  This  part uses the topological 
techniques of phase  plane analysis and Banach  space 
methods to deduce general  qualitative  properties of solu- 
tions of the differential equation. 

In Section 3 we use phase  plane methods to demon- 
strate  the existence, uniqueness and stability of a periodic 
solution of the differential  equation. We  then  point  out 
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the consequence that  the voltage  variation of a lumped 
R-C circuit can  have  neither  subharmonic  nor  superhar- 
monic  response to a harmonic voltage source. A special 
case of voltage  variation of the nonlinear capacitance 
which is of interest (capacitance = c( 1 + p v )  , where v is 
voltage, and c and p are  constants), is then discussed by 
making use of singular point analysis. 

In Section 4 we consider the question of existence, 
uniqueness and stability of a  periodic  solution  in the spe- 
cial case, c ( ~ )  =c (  1 + p w ) ,  just mentioned. Because of 
the presence of singular  points of the differential equa- 
tion, we are obliged to  resort  to  certain Banach  space 
methods to  deduce these results. The methods used are 
the implicit function  theorem  and  the  Picard Fixed Point 
Theorem.  We  point  out  that this discussion motivates and 
justifies the use of a perturbational  procedure employed 
in  Part I11 of this paper. 

In  Part I11 we continue  our analysis of the special case, 
c(v) =c( 1 + pv) , by means  of  perturbational methods. 
In Section 5 we use these  methods to  obtain  the response 
curve  (amplitude of the  harmonic  output versus applied 
frequency) of the periodic  solution in response to a har- 
monic driving voltage. We then sketch  a plausibility argu- 
ment  for  the nonexistence of subharmonic response and 
point  out how such responses can be  achieved by modi- 
fications of the circuit under discussion. 

In Section 6 we consider the question of amplification 
and conversion. Thus we drive our circuit  with  a  combi- I 



nation of harmonic  inputs  and discuss the  transfer  of 
energy from  the components of the  input  to  the compo- 
nents of the  output. By the  perturbational procedure we 
deduce  the extent to which  this  device (commonly  de- 
scribed  as  a carrier  and signal combination) is of  practi- 
cal  importance.  We then derive the response  relation 
pertaining to this  situation. 

In  Part I11 we turn  to  the nonlinear difference-differen- 
tial equation (2.22). In Section 7 we consider the case 
when the period T and  the lag T are commensurable. In 
this case we reduce the solving of the difference-differen- 
tial equation  to solving successively two  simpler equa- 
tions. The first of these is a  linear difference equation and 
the second is a transcendental  equation.  In Section 8 we 
use perturbational methods to derive the response  rela- 
tions for periodic  solutions in the general case when there 
is no commensurability  restriction. 

In Section 2 we state  our problem and derive the 
mathematical model used to describe it. 

2. Statement of the problem and derivation of the 
mathematical  model 

A  crystal diode placed in a  transmission  line behaves in 
many respects as a capacitor in shunt in that transmission 
line, provided that  the capacitance is taken  to be a func- 
tion of the voltage across  it.3  Consider  then  a segment of 
transmission line of length I1+ l2 .  At the  left  end of the 

0 
i "" 

line, let there be  a  generator, while at the  right end,  let 
the line be terminated  in an impedance Z .  At distance 
I I  from  the generator (at x=O, in the figure) let a  capaci- 
tor, of capacitance c(v), be placed in shunt. If v(x, t )  
and i(x, 1) are, respectively, the voltage across the line 
and  the  current flowing down the  line at position x and 
time t, we have  the  transmission  line  equations for a 
lossless line 

Here L and C are, respectively, the series inductance  per 
unit  length of line and  the  shunt capacitance per  unit 
length of the line. Combining (2.1) and (2.2) gives 

At x=O, the  current flowing down  the line suffers a 
jump  equal  to  the  current flowing through  the  capacitor. 
If  we use the notation [f] = f ( O + )  - f ( o - )  to denote 

the  jump in  a quantity at x=O, we have4 

d q  dv 

d v  d t  
[i] =qt= - - = - - ~ ( v ) v t ,  

where q ( t )  is the  charge  on  the capacitor.  Differentiating 
(2.4) with  respect to t yields 

[it1 = - ( c ( v ) v d t  . (2.5) 

Combining (2.1) and (2.5), gives 

[vz l  =L(c (v )v t ) t .  (2.6) 

At x = - l ~ ,  we have 

v=+(t> 3 (2.7) 

where +( t )  denotes the  input voltage at  the generator. At 
x=12,  we have  the  impedance  boundary condition5 

v,+CZvt=O. ( 2 . 8 )  

If we denote by f ( x )  and - g ( x ) / C  the voltage across 
the line and  the  current gradient  down the  line  at time 
t = O ,  we have  the following boundary  value problem 
with  a  nonlinear  interface  condition for ~ ( x ,  t ) .  

1 

a0 
vzz= - vt t ,  ao= (LC)-l/*,  t>O, - l l < x < l z ,  x#O , 

(2.9) 

v(x, 0 )  = f ( x ) ,  Vt(X, 0 )  =&?(x) 9 (2.10) 

w,+avt=O, a=cz, x = 1 2 ,  

v=+(t) ,  x = - & ,  

(2.11) 

(2.12) 

2 aoL 

a0 2 
[v,]= - ( c ( v ) v ~ ) ~ ,  E ( v ) =  - c ( v ) ,  x = O  . (2.13) 

We will now drop  the  bar in (2.13) and show that  the 
boundary value  problem (2.9) - (2.13) is equivalent to 
a nonlinear functional  equation. 

If D is a domain  in x- t space in  which v ( x ,   t )  is a 
solution of the wave equation,  then Gauss's theorem 
yields 

O =  / /(aozvzz-vtt)dxdt D 

= $[a&~, cos(n, x)  -ut cos(n, t ) ] d s  . (2.14) 

The integral  in the right member of (2.14) is a line inte- 
gral taken  around  the  boundary B of D. Then s, the  arc 
length of B, is taken  as  increasing if one traverses B with 
D lying to  the left. Cos(n, x) and  cos(& t )  are  the direc- 
tion cosines of the  exterior  normal  to B.  

We apply the  formula (2.14) to  the two domains indi- 
cated  in  Fig. 1. The  domain  bounded by P ,  AI,  P I ,  Ai?, . . . 
A,,, B, 0, P and  the  domain bounded by P ,  0, 12,  D, P .  The 
diagonal lines in the figures are segments of characteris- 
tics of the wave equation, i.e., lines  with  slope fao-l .  

Since we are ultimately  interested  in the steady state 
we  will assume that f ( x )  =g(x) =O. Now application of 3 
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Figure I 

(2.14) to  the two domains in  question yields respectively: 

"- w(D) [:& t ) d t  . (2.17) 
a0 J o  

If we insert (2.11) and (2.13) into (2.17), it becomes 

~ T - ( C ( w ) w t ) * d t = w ( P ) +  2 [v(Pj)-")I 
n ( T )  

I = l  

- 1/2[w(D) -a0 wt(Z2, t ) d t ]  . 
1 0  

(2.18) 

Performing  the integrations in (2.18) gives 
n ( T )  

-c(w)wt(P) =w(P)+ 2 [v(Pj)"(Aj)l 
j=1 

- 1/2w(D) ( 1  -a@) . (2.19) 

The presence of the  load Z at a distance lz from the 
diode will cause reflections of voltage waves to pass 
through  the diode. Thus  the effect of a  voltage wave 
generated at x= -I1 passing through  the  diode is not 
altered by the presence of Z .  Since we are  fundamentally 
interested  in the effect of the nonlinearity on a voltage 
wave and  not  upon  the complications due  to  the passage 
of reflections, we make  the assumption that Zs= co or 

equivalently that l - a ~ = l - Z ( C / L ) 1 / 2 = 0  (ix., Z is 
matched to  the  line).  Then (2.19) becomes 

-c(w)wt(P) =w(P)+ 2 [V(Pj)"(Aj)]  . (2.20) 
n ( T )  

j=1 

Now let 
^. 

T=IPj-Pj- l [  - A11 

a0 
(2.21) . 

T / 2  is the  time it takes an impulse produced  at  the gener- 
ator  to  reach  the capacitor. 

If we write (2.20) with P replaced by P1 (i.e., with T 
replaced by T -  T) , and  subtract  the result from (2.20), 
we obtain  after replacing T by t ,  the following functional 
equation  for w ( t )  = w (0,  t )  

C ( w ) V t  = - v ( t )  + + ( t -  1/2T). I J-, (2.22) 

This  equation  may be further simplified by making  an 
assumption based upon  the above  reasoning which led to 
setting Z2 = 00. If we assume that  the generator is matched 
to  the  line or that ZI = 00, (and  therefore  that T =  00 ) , and 
if we denote by + ( t ) ,  the limit  as T + a  of + ( t -  1/27), 
(2.22) becomes, upon  dropping  the  bar, 

c(w)vt=-w++. (2.23) 

In this equation + is the voltage  generated at  an infinite 
distance from  the capacitor. 

We  remark  that w(x, t )  in  the infinite line is computa- 
ble from v(0, t )  by the  formula 

2,244 t )=w 0, t -  - +w 0, t + -  . ( :) ( 3 (2.24) 

Even in the case of the finite line w ( x ,  t )  is readily 
computed  once w(0,t) is known. One  method of finding 
w(x, t )  after w(0, t )  is known, is to take  Laplace trans- 
forms.  However, we will not dwell upon this matter,  since 
the  procedure is classical. 

Our point of view in this paper will be to analyze the 
periodic  solutions of the nonlinear equations (2.22) and 
(2.23). We consider what  can  be said in general about 
these equations  when +( t )  is periodic and  then specialize 
to  the case when 

c(w) =c(l+pw),  (2.25) 

with c a constant  and p a parameter,  and  for various har- 
monic +( t )  such as 

+ ( t )  = F  COS o f .  (2.26) 

and 

+ ( t )  =F1 COS o l t+Fz  COS o2t .  (2.27) 

In  the following part of this paper we consider the 
questions of existence,  uniqueness and stability of peri- 
odic  solutions of (2.23). 
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I I .  Topological methods of studying the existence, 
uniqueness, and stability of periodic solutions of 
the differential equation 

3. Phase plane analysis 

In this section we  will study equation 

dv -v++ 
_.EP 

dt c ( v )  ' (3.1) 

where + ( t )  is a  periodic function of time. We will inves- 
tigate the questions of existence,  uniqueness, and stability 
of periodic  solutions of this  equation. 

Suppose first of all that c ( v )  is a real physical capaci- 
tance so that c ( v )  > O  for all v. In this  case we can enun- 
ciate  the following: 

Theorem 

Let  c(v) and +(t) be continuous functions of their argu- 
ments. If +(t) is periodic with period T and c(v)> 0, then 
there exists one and only one periodic solution of the 
differential equation (3.1). Moreover,  this solution has 
the period T and is stable in the sense that all solutions of 
(3 .1)  approach it as t+w. 

Proof 

(i) Existence 

Since c (  v )  > 0,  

Thus any solution of (3.1) which at t=O is less than or 
equal  to V M  will reach t= T at a  value of v l   V M ,  i.e., 

~ ( 0 )  IV&r*V(T) 5V" .  (3.5) 

Similarly 

w ( 0 ) 2 V , * v ( T ) 2 V m .  (3.5a) 

Since c ( v )  > 0 and + ( t )  5 V M ,  and these functions  are 
continuous,  any  solution of (3.1) which  crosses the  line 
t=O, will also cross the  line t=  T,  and these  solutions 
define a continuous  map of the  line t=O into  the  line 
t=T. We  have just observed that this map takes the closed 
interval on t=O, 

V m I W 5 V M ,  (3.6) 

into  the  same closed interval on t = T.  

Thus  the differential equation defines a continuous  map 
of the closed interval (3.6) of the  real  line  into itself. By 
Brouwer's  Fixed Point Theorem,G this map  has a fixed 
point. In terms of the differential equation this  means 
that  there is a  solution which crosses t=O and t= T at 
exactly the  same  value of v. Since the  right  member of 
(3 .1  ) is periodic of period T and since (3.1 ) is an equa- 
tion of the first order, this  solution will be  identical  in any 
period strip t to t+T, i.e., this  solution is periodic  with 
period T. 

(ii) Uniqueness 

signum - =signum ( 4 - v )  . (2)  (3.2) 
The differential equation  (3.1) may be written  as  a 

system of differential equations 

maximum and a  minimum  which we denote respectively __ dv 

by V M  and V ,  . Then by (3.2), (see  Fig. 2) ,  dr 

Since + ( t )  is a continuous periodic function,  it  has a 
=+-v 

and 

signum (%) < 0,  for v > vM. 

" 
I d v / d t  < 0 

dt 
(3.3) = c ( v )  , (3.7) 

The  parameter T induces a flow in the t-v plane which 
(3.4) is a continuous  transformation of this plane. Thus a sim- 

ply connected  set in this plane will be transformed  into 
another  such set. The  area of any  set is altered  by  this 
flow, Indeed if we denote  the  area of a  set as usual  by 

- t  

1 d v / d t  > 0 I 

Figure 2 

we have 

L / / d v d t = / /  Jdvdt , 
dT A A 

where 

J = trace 
t )  

- 1  +' 

(3.9) 

(3.10) 

5 
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Suppose  then that  there exist two  periodic  solutions of Rather  than contrive  theorems  pertaining to this state 
( 3 . 1 ) ,  w1 with  period T1 and w2 with  period T 2 .  If T1 and of affairs, we consider  a special case of interest to illus- 
TZ are commensurable, there exists a pair of integers p trate  the possibilities. 
and q, such  that w1 and w2 have the period 

Ts=PTl+qTz. (3 .11)  

Consider the  domain delimited by w1 and w2 as  upper 
and/or lower  boundaries and t = O  and T =  T3 as left  and 
right  boundaries. This  domain must be congruent  to  the 
domain  bounded by w1 and w2 and  the abcissa t = T3 and 
t=2T3 since w1 and wz have  the period T 3 .  This, however, A 

is impossible since the second domain is the image of the 
first under  the flow induced by T, and must therefore  have 
a smaller  area. Thus T1 is a  multiple* of T2 and w1 WZ, 
i.e., TI=   T2  = T .  

The proof when Tl and T2 are  incommensurable  pro- 
ceeds in  a  similar  fashion. 

v z ( t )  

V l ( t )  VI(T) 
B 

I- t * 

0 T 

(iii) Stability 

Let w ~ (  t )  denote  the periodic  solution of (3.1)  and 
suppose to  the  contrary  that  there exists a  solution wl(t) 
of (3.1 ) with the  property  that 

v ~ ( T )  - v ~ ( T ) = D ~ ( T )  - v o ( O ) ~ W ~ ( O )  " ~ o ( 0 ) .  (3.12) 

Since wl( t )  is not periodic, we must have a  strict in- 
equality  in (3 .12 ) .  Let w2(t) be a  solution of ( 3 . 1 ) ,  with 
the  property 

W Z ( O ) = W I ( T ) .  (3 .13)  

In Fig. 3 the  domain A is mapped under  the flow into a 
domain  congruent  to  the domain A +B.  This is impossi- 
ble  since the area of B is positive. Thus 

VI(T) -Vo(T)<Wl(O) -vo(O). (3 .14 )  

Our assertion is proved when we observe that 0 and T 
in  this argument  can be  replaced  by O + t  and T + t  for 
any t ,  and  that  the  area flow causes an exponential  de- 
crease in  the  area itself (viz., ( 3 . 8 ) - ( 3 . 1 0 ) ) .  A significant 
consequence of this theorem is the following: 

Corollary: If + ( t )  is harmonic,  the differential equa- 
tion (3.1 ) can  have  no  subharmonic  nor any superhar- 
monic solutions. 

I t  is easy to see that this implies that no lumped circuit 
with a capacitance and a resistance can have subhar- 
rnonic or superharmonic solutions.9 

The above theorem  can be extended to cases when 
c(w)>O, but changes in sign. Of course  when c(w)<O, 
we may not  have a physical situation.  However, in trying 
to describe  a device by endowing it with a nonlinear 
capacitance, the  analytic expression for  the  capacitance 
may  be valid and positive only for  certain values of the 
voltage. When  the voltage leaves this  range, the expres- 
sion for c (w)  may have  no physical meaning.  Neverthe- 
less, the behavior of the device in the  range of validity of 

6 the  particular expression for capacity  may  be profitably 
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Suppose that 

c ( v )  =c(  1 t p v )  , (3.15) 

where c is a positive constant and p is a parameter con- 
sidered to be  small. When pv <- 1 ,  this  expression for 
the  capacitance  of a  device ceases to have physical mean- 
ing. For definiteness let us assume that 

+ ( t )  =-F COS wt, F > O  . (3.16) 

Inserting  these expressions into (3.1) gives the differen- 
tial equation 

dv  F COS ot--2, 
" 

- (3.17) 
dt c ( l + p V )  

If we introduce  the  transformations 

0=wt, V ( t )  = u ( B ) ,  w=oc, (3.18) 

then (3.17) becomes 

du FCOS 0 - u  - ~- - (3.19) 
d6' W ( l + p u )  

In Fig. 4 we plot signum du/dB in  a ( e ,  u )  plane for 
the  case that  the  parameter 

&==pF< 1 .  (3.20) 

Our previous  theorem is applicable to this  situation. 
We have only to observe that  the fixed-point argument 
applies to  the  domain I u 1 I F  in this case, while all other 
arguments  apply  universally.  We formulate these  obser- 
vations in the following: 

Theorem 

The differential equation (3.17) has  one and only  one 
periodic solution.  This  solution has the  frequency o, it is 
stable and has the  property  that its amplitude  is  not 
greater than F. 

Suppose now  that  the  parameter E > 1. Then  the situa- 
tion is as in  Fig. 5. 

The points S and N are singular points of the differen- 
tial field, i.e., points  when the  numerator  and  denominator 
in (3.19) vanish  simultaneously. 

To determine  the  nature of these  singular  points, we 
proceed as follows. Write (3.19) as 

d u   ( l + E C o s e ) - ( l + p u )  
P - =  (3.21) 

dP W(l+PU) 

Let 

l + p u = y ,  pdu=dy 

dx  dx 
1 + ~  COS 8=x, dB= =I 

- & s i n e  ~d~2-(.x-l)* 
(3.22) 

Here x=O, y = O  are  the singular points. The  upper sign 
refers to a neighborhood of N and  the lower sign to a 
neighborhood of S. 

Figure 6 

The differential equation is  now 

dY 
" - ( X - Y )  
dX T de'- ( X -  1 ) 2  W y  

(3.23) 

Now we reduce (3.23) to a  neighborhood of S and N 
and  obtain 

Now consider 

A = l T 4 \ / X W  

D = T ~ E ' - ~ W  
-. 

(3.24) 

(3.25) 

For S we have A > O  and D > O  so that S is a  saddle 
point.1° For N we have D < 0 and 

A>O if 
1 

4 d X  
> W ,  (low  frequency) (3.25a) 

1 
A=O if 

4 d 7 T -  
= W  (3.25b) 

A<O if < W (high  frequency) . ( 3 . 2 5 ~ )  

In  the first case N is a  node, in  the second  case it is a 
degenerate  (or  spiralar) node, and in the  third case it is 
a spiral.  We remark  that  the  primary significance of the 
occurrence of S and N is that they are points where solu- 
tions of the differential equation cross.  Indeed at S two 
solutions  cross while at N infinitely many cross. 

In Fig. 6 we sketch a possible state of affairs for the 
case of low  frequency. This  Figure illustrates  a number 
of particular solutions of the differential equation. 

1 
4dzi- 

7 
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The  arguments concerning existence, uniqueness and 
stability of a  periodic  solution  which we have discussed 
previously  break down  in this  case ( E  > 1). For  one 
thing, the  mapping is no longer into, because the direc- 
tion field points down  both above and below the 9-axis 
(or  t-axis). Because of singular  points the  map is no 
longer  continuous. 

To study the properties of periodic  solutions in this 
case requires different procedures. This question forms 
the  contents of the following  section. The methods  which 
we use are topological  also, but they are  conducted  in 
function spaces rather  than in Euclidean spaces. While 
the  methods to be used are  more complicated than  those 
already  considered,  they  motivate and justify  a perturba- 
tional procedure which  obtains concrete analytic infor- 
mation concerning the periodic  solutions. 

e 4 .  The properties of periodic solution when there are 
singular points 

In this section we  will consider the differential equation 

(4.1) 
dv F COS ot-V 
- =  

dt C(l+PV) ’ 
in the case that  there  are singular  points, i.e., when 

E = ~ F >  1 . (4.2) 

We will prove  the  following 

Theorem 

There exists a periodic solution of period ~ T / W  of the 
differential equation. This solution is an analytic function 
of p and its amplitude is less than I / p .  

This  theorem assures us that  there is a  periodic  solution 
and  that  it lies  entirely  away from  the singular  points dis- 
cussed in  the previous section. Of course the  methods 
used here apply without exception to  the case  when there 
are  no singular points. With this information we are  able 
to prove  the uniqueness and stability of this  solution.  We 
state this  as  a  theorem. 

e Theorem 

The periodic solution of (4.1) with amplitude less than 
I / p  is unique among all such  solutions with this  property 
and stable in  the sense that neighboring solutions tend to 
it as t+w. 

Proof 

(i) Uniqueness 

Since we are confining our  attention  to periodic  solu- 
tions  which are bounded  away from  the singular  points, 
our proof sf uniqueness in Section 3 is valid here. We 
present  instead,  however, an  alternate proof because of a 
property of the periodic  solutions  which it derives and 
makes use of. Let 

q ( v )  = c (a )da  . LV (4.3) 

( q ( v )  is of course, the  charge  on  the capacitor. How- 
ever, we need not  be  concerned with  this fact.)  Now if 
v is a  periodic function of time, so then is q(v )  . Then 
dq/dt is also a  periodic function of time. Let  the period 
in question be denoted by T=2~;/w.  Thus we have 

LT % d t = q ( T )  -q(O) =o . (4.4) 

Thus dq/dt has  mean zero over a  period. But (4.1) may 
be written  as 

dv 
dt  

C(V) - - F  COS o t = - ~  

or 

(4.5) 

(4.6) 

The  left  member  has  mean  zero over  a  period. Thus v 
itself has this property.11 

Now suppose there were  two  solutions of period T ,  
both of which have amplitudes less than l /p .  If this is 
the case  these  two  periodic  solutions can  not cross since 
they are  bounded away from  the singular  points, and  no 
two different solutions of a  first-order differential equa- 
tion can cross at a  regular point of the trajectory field. 
But both of these  periodic  solutions  must  have mean zero. 
Thus they must cross. This  contradiction implies the 
result. 

(ii) Stability 

This  fact follows exactly as  in the stability proof of 
Section 3 when we use the observation that  the periodic 
solution is bounded  away from  the singular points. We 
must note, however, that in the case of Section 3, i.e., no 
singular  points,  every  solution  tended toward  the periodic 
solution. In  the present case only  neighboring  solutions 
need do this. 

We now turn  to  the proof of the existence theorem. It 
proceeds  in  two  parts. The first part assumes that  there 
are solutions of (4.1) which start  out  at t=O and cross 
the line t=T( = ~ T / w )  and which  depend  analytically on 
p. If we examine the phase plane diagram  sketched in 
Fig. 6, we see that  there  are trajectories of this  type. 
Using  this  assumption it is shown that  there is a value of 
~ ( 0 )  = A  such  that  the solution  with  this  value at t=O 
has  the  property v( T )  = A .  This solution is then of course 
periodic,  since our  equation is of the first order  and its 
coefficients have period T .  The second part of the proof 
produces a  class of solutions  which are analytic  in p and 
which  cross both t=O and t= T .  Moreover, it shows that 
the  solution  with v (0) = A  lies in  this class. 

The first part of the proof produces the result that 
v (0) = A  is a quantity which  depends on  the  frequency O. 

This is to be expected  since at  each applied  frequency 
only certain trajectories will be periodic. This  fact also 
forms  the basis of the  perturbational  procedure  to be ex- 
plored  in  Section 5. This  relation, of course, justifies the 
use of this  procedure. 
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The second part of the proof requires  that  the applied 

We now turn  to  the 
frequency be not too small. 

Proof of Part I 
The  differential equation (4.1) may be written in the 
following form 

c (w+ $- ~ Z ) ~ = F c o s o t - v .  (4.7) 

Equation  (4.7) is equivalent  to the integral  equation 

+ c ( A +  f A 2 ) ] ,  

where we have assigned 

v(0) = A  . (4.9) 

Now we assume that w depends analytically on p for 
p near zero, and we denote  this  dependence on p by affix- 
ing a subscript p to various  quantities.  Now  suppose that 
v, had a  period T,.  Then vp ( T , )  = w (0) , or 

v,(Tp)   -A=O . (4.10) 

(4.10) is an equation for T ,  in terms of A .  Now indeed 
T ,  is known, for we want to produce  a solution of period 
T = 2 ~ / o .  Thus while we regard (4.10)  as  an equation 
for T ,  in  terms of A ,  it is really an equation for A in 
terms of T,. Inserting a, as given  in (4.8)  into (4.10) 
yields 

F 
O=LTpv , , (T )dr -  -sinoT,rP(w,, T , ,  A )  (4.11) 

w 

for the periodicity condition. We want to solve this equa- 
tion for T ,  in terms of A for p near  zero.  Since w p  de- 
pends analytically on p for p near  zero, so will T p .  Thus 
we apply the implicit function  theorem to  (4.11), i.e., 
we show that we can solve (4.1 1 )  for T ,  in terms of A 
for p=O. Then we show that  the derivative of T ,  with 
respect to A at p=O does not itself vanish at the  solution 
corresponding  to p=O. This is sufficient since all quan- 
tities are analytic in p. At p=O, (4.11) becomes 

F 
o = ~ ’ o  wo(r)dT- -sin oT0. (4.12) 

0 

From  (4.7), we compute vo(t), viz., 

vo ( t )  = A  (cos ot + sin ut) (4.13) 

provided 

(4.14) 

(4.15) 

Now we want to find 

dPo/dA 

dA p=o dPo/dTo 
= (4.16) 

However,  when we insert (4.13)  and  (4.15)  into  (4.12) 
(i.e., set p=O in 4.12), we find that  (4.12) is satisfied 
identically and  there is nothing left  to differentiate (i.e., 
Po(vo, To,  A ) - O ) .  Thus before we let p-0 in  (4.12) 
we divide P ,  by p. This does not affect our previous argu- 
ments. Denote 

e, =P,/p (4.17) 

and  let 

T p = T o + p ~ ( p ) >  q ( O ) # O  9 (4.18) 

with To as given by (4.15).  (If ~ ( 0 )  =0, we must divide 
P, by a higher  power of p in  (4.17).) Now we find by a 
simple  computation that 

lim Q(v,, T o + P T ( P ) ,  A )  =O (4.19) 
P - t O  

becomes the equation 

v ( 0 )  ( A - F )  =o . (4.20) 

dT(0) _ _  dQo/dA = d o )  

Then 

___- 
dA dQo/&(o)  

(4.21) 

Thus we may indeed find T ,  in terms of A for p near zero. 

A - F  

We now turn  to  the 

Proof of Part 2 

We find it more convenient to use  the ( 8 ,  u )  variables 
introduced in Section 3. ( ~ t = 8 ,  w ( t )  =u(O),  uc=W). 
Then  our equation may be written in the form 

or 

U =  -[ 1 - Wu2+Fsin O - l e u d +  
W 2 

+w (A+ 5491. (4.23) 

We consider (4.23)  to be a map defined on the  Banach 
space of functions of two variables, u (  8, p)  . The ele- 
ments of our Banach  space B are tu be continuous in 8 
and  in p and  analytic in p. 8 varies in an  interval 

O_<O_<1 ,  (4.24) 

where I >  2 ~ .  p varies in 

IPl<R, (4.25) 
where R is to be specified. Of course u as a function of p 
is  continuous for p on the set I pi I R  but  analytic on  the 
set p < R .  The  norm of u is 9 
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I I ~ I  I =maxlu(e, p )  I .  
osezi 

I P I s R  

Let S be the set  in B, where 

I Iul I S M ,  

M to be specified, and 

u ( 0 )  = A  . 

(4.26) 

(4.27) 

(4.28) 

We see that s is a closed set  in B. We now wish to 
determine  for which A and W the  map (4.23) has a fixed 
point  in S. 

Let Uj be the image of uj under (4 .23 ) .  Then 

U1-U2=- - (uI+u2)(u1-u2)-  - P 
2 le ( u l - u d d O .  

Then 
(4 .29)  

(4.30) 

Thus if 

1 
W (4 .31)  

the  map (4 .23)  will be contracting  on S. This will be the 
case if 

- + R M < l ,  

W>I (4.32) 

and whatever M is, R is chosen to be sufficiently small. 
Now U is continuous in 0 and analytic in p whenever 

u is, and indeed U ( 0 )  = A  if u ( 0 )  = A .  Thus  the  map 
takes B into itself. To see if the  map takes S into itself, 
we make  the following  estimate from (4.23) : 

I l U J I - < - M M 2 + -  R F + - IM + l A l + -  R 1AI2 . (4 .33 )  
2 w w  2 

Thus since we must have 1 I El I 5 I 1 ul I 5 M ,  we need  con- 
sider the inequality 

R F 1M R 
2 w w  2 

"'+- + - + + J A ( + -  I A ( ' i M ,   ( 4 . 3 4 )  

when IA 1 < M .  

This is only possible if the following polynomial  in M 
has  a positive root: 

(4 .35)  

The roots of this  polynomial are 
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If these roots are real,  they are both positive, if one is. 
For them to be positive we must have 

1 
W 

For  the roots to be real, we must  have 

- <l. (4.37) 

This is a  condition on A .  In addition to I A I 5 M ,  A must 
be smaller than  the  larger  root in (4 .36) .  This gives a 
second  condition on A : 

+ ~ ( l - ; ) 2 - 2 R ( ~ + l A l + - l A l '  2 )I . ( 4 . 3 9 )  
or 

_ < d ( l - - w ) l - Z R ( ~ + l A I + I I I A I ' ) .  (4 .40)  
2 

The  left  member of (4 .40)  is negative or not. If it is 
negative, the only  restriction on A is (4 .38 ) .  If it is posi- 
tive we square (4 .40)  to  obtain 

1 

" 2 R  (,+lAl+l F R IAIZ) , 

or 

(4.41) 

(Rz+$)   (A12+2RIAI+-   2R  FiO 
W 

(4.42) 

Equation (4 .42)  is never satisfied for  any A .  Thus  the 
left member of (4.40) must be negative, i.e., 

( A I _ <  -. w-1 
RW 

(4 .43)  

Since W>Z, this  inequality is possible. Now (4 .38 )  as- 
serts that 

R 2 / A / ' + 2 R l A 1 + - -  2RF ( 1  - ;)z i o .  (4 .44)  
W 

For this to be satisfied, the corresponding  polynomial  in 
IA 1 must  have  a positive root. Its roots are 

i. d 4RZ-4R2 ($ - (1-;)')I . (4.45 



First let 

O = c r 1 t ,  I f ( 0 )  - v ( t )  , w=wc. (5.3) 

Then our equation is 

I V ( ~ - ~ O I I ) ~ ~ ~ = - - ~ I I + F C O S ~ .  (5.4) 

For definiteness, let us suppose that 

ff(0) = A  . (5 .5 )  

Now i n  fact A is not known,  while W is indeed  pre- 
scribed in advance.  However, we have seen in Section 4, 
that this reversing procedure will enable  one  to derive the 
amplitude-versus-frequency  relation for a  periodic u(  0 ) .  
This is merely a  point of view and only serves to facilitate 
the procedure. Thus  let us look for u and W which satisfy 
(5.4) subject to ( 5 . 5 )  and a  condition of periodicity on 
11. in the  form o f  perturbation series in the  parameter p, 
viz: 

u = = u ~ - I - p ~ d .  . . , (5.6) 

IY- J P ' ~ j + - p W ' ~  - } -  . . . . (5.7) 

We cause (5.6) to satisfy (5.5) by requiring that 

r f o ( 0 )  - A  (5.8) 

I l i ( O )  = o ,  i>o. (5.9) 

Now if  we insert (5.6) and (5.7) into (5.4), and 
equate the coefficients of the powers of p to zero, we 
obtain a sequence of equations, the first two members of 
which are 

Fv~ll~l '+?l(~-F cos 0 (5.10) 

w"ul'-klf~= - W ~ Z l , , U ~ "  WlUO' . (5.11) 

Here.  and in what follows, a prime denotes  differentiation 
with  respect to 0. Now  the most general solution of 
(5.10) i s  

For the  larger of these  two numbers  to be positive, wc 
must  have, 

or 

(4.46) 

(4.47) 

Now  for  any fixed W>1, (4.47) may be arranged by 
choosing R sufficiently small. Or for a fixed RF( - F >  l ) ,  
(4.47) may  be arranged by choosing W sufficiently large. 

There  remains only to see if the A produced  in the 
proof of Part 1 of this theorem satisfies the restriction 
(4.43). 

From (4.14) we have 

(4.48) 

Thus by making W sufficiently large we may make A as 
small as we please. Combining (4.43) and (4.45) we  get 

F w-1 
l+Wz RW 

I- (4.49) 

or 

1+wz 
W 

RFS - ( W - l )  . (4.50) 

Thus for a given RF( - E >  1). by making W sufi- 

Equation (4.36) shows that 
ciently large, (4.50) may be arranged. 

(4.51) 

Thus  our periodic  solution is bounded  in amplitude by 

This concludes our proof. 
1 /  1 p 1 ,  i.e., is bounded  away from the  singular points. 

111. Perturbational  analysis  of the differential 
equation 

In this part of the  paper we  will apply  a  perturbational 
procedure  to  the differential equation to  compute  approx- 
imations to  the periodic solutions. In Section 5 we  will 
consider harmonic response to  harmonic  input, while in 
Section 6 we consider  combination oscillations to so- 
called carrier  and signal inputs. In  Section 6 the phe- 
nomena of amplification and conversion are discussed. 

5. Harmonic response io hnrrnonic input 

In this  section we  will consider  the equation 

c(l+pw)vt=-w++ 

when 

+ ( t )  = F  COS u t ,  

i.e., the  line is being driven  harmonically.  We will inves- 
tigate the periodic  solutions of (5.1).  

(5.12) 

Since f1Q is to be periodic because u is, and Wo is to be 
real because W is,  we must  have X=O. If we insert (5.12) 
into (S.lO),  and set the coefficients of sin 19 and cos 0 to 
zero. we obtain two equations for  the  determination of 
CY,). @ , I .  and W,,. 
These  equations :Ire 

(5.13) 

(5.14) 

(5 .15 )  

(5.16) 11 
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Now if we apply ( 5 . 8 )  to (5.12), we have A =Po or, 
using (5.16), 

woz = ~ 

F-A 
A 

If we introduce  the notation 

A 
F p=- ,  

equation (5.17) becomes 

wo2= ~, 1-P 
P 

(5.17) 

(5.18) 

(5.19) 

From this we may conclude  that p I  1. 
Now if we insert (5.12) into (5.11), (5.11) becomes 

Woul'+ul= - Wo[3(aoZ-p02)sin 28+a0p0 cos 281 

- Wl(ao cos 8-po sin 8 ) .  (5.20) 

The most  general  periodic  solution of (5.20) is 

ul=all sin 8+,811 cos 6 + ( ~ 1 2  sin 284p12 cos 28, (5.21) 

where a11, ,611, a12, and P12 are determined by inserting 
(5.21) into (5.20) and equating the coefficients of sin 8, 
cos 8, sin 20, and  cos 28 to zero. This  procedure leads to 
the following four  equations  for determining all, p11, 
(~12, ,812, and WI. 

all- wop11= w1po 
woall+pll= - W1ao 

lv12-2w0p12=-3w0~~0~"0~) 

2woar1z+p12 = - woaopo . (5.22) 

These  four linear equations yield 

(5.23) 

(5.24) 

(5.25) 

(5.26) 

Now if we apply (5.9) to (5.21), we obtain ,81l+P12 
=0, or  from (5.24) and (5.26) 

(5.27) 

This  equation may be solved for W1 in  terms of Wo 
and F ,  viz., 

(5.28) 

12 Combining  this and (5.7) gives us  the following ex- 

pression for W 

(5.29) 

Let us introduce  the abbreviation 

c=pF, (5.30) 

in (5.19) and (5.29). This gives finally 

e 1-3p 
2  4-3p 

(5.31) 

to within an  error of order p2. Introduction of (5.19) 
into (5.151, (5.16),  (5.23)-(5.26) gives us ao, Po, all, 
,811, a12 and P12 in  terms of A, F ,  and p. These expres- 
sions are 

P11=-2AF(l-p) ~, 
1-3p 
4-3p 

(5.32) 

Inserting (5.32) into (5.12) and (5.21) and  the result 
into (5.6), we obtain u in terms of A, F, p, and E ;  

5-6p 
4-3p 

sin 28 

(5.33) 

to within terms of order p2. From (5.33) we may com- 
pute  the  ratio of the  output amplitudes squared  to  the 
input  amplitude  squared. Using Parseval's equality, we 
obtain 

(5.34) 

to within terms of order p2. 

(5.31). 
There remains, then,  to analyze the response  relation 

(i) Analysis of response  curve 

In Fig. 7 we plot the  curve (5.31) for several values 
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Figure 7 

of E .  This is a  plot of the normalized amplitude  at B=O, 
A / p ,  of the periodic  solution  versus  frequency. All 
curves are asymptotic to  the W axis. 

For E = O  the response curve is a bell-shaped curve  tan- 
gent to p= 1 at W=O. As E increases from  zero  to  one  the 
same situation prevails, the bells becoming  lower. This 
situation  corresponds to  the  fact pointed out  in  Part 11, 
that  the  amplitude of the periodic  solution lies some- 
where between 0 and F or in  terms of p, for p between 
zero  and one. We see that this is indeed the case and  that 
at least for small  frequency the  amplitude  at 0 =0, i.e., A ,  
gets very near F.  Of course for  larger  frequency  the 
amplitude  at  zero is less than F ,  but it might  get as large 
as F for 0 # 0. This is probably  what  happens  and could 
be  decided by analyzing (5.34). When E >  1 the response 
curve  no longer passes through p= 1. The response  curves 
rise from  zero  at W =  cc to 

8 + E  
p=3- 

2+E 
(5.35) 

at p=O. This is consistent  with what we have seen in 
Part 11. Namely,  that  the amplitude of the solution lies 
between zero  and F if E < 1. But if E > 1, the  amplitude is 
less than F and only possibly as large  as l /p.  The inter- 
cept  given  in (5.35) decreases from  one  at E = 1 to  2/3  at 

The  actual  curve of normalized amplitude versus nor- 
malized amplitude  at 8=0, (5.34), is plotted  in  Fig. 8. 
The curves for E >  1 do  not cover the  entire  range 
O l p l  1. The curves for 0 < E  5 1 lie slightly above 
I I u I 1 z / F 2 =  1 for p slightly less than one. This is prob- 
ably due  to a truncation  error. 

E=m. 

Figure 8 

1 

1 

~ 

(ii) Subharmonics 

In this section we interpolate a short plausibility argu- 
ment  to  demonstrate  the nonexistence of subharmonic 
response based upon simple perturbational methods. This 
fact was  rigorously  proved  in  Section 3, however, by 
using not  too simple  methods. We consider the first per- 
turbation  equation, viz., 

Wouo'+uo=F COS 0 . (5.10) 

If there were a subharmonic response,  this equation 
should, e.g., have  a  solution of the  form 

uo=ao sin - +Po cos - . (5.36) 

Then we must  have 

- wo- +ao=o,  

and 

e 0 
n n 

P O  (5.37) 
It 

al wo- -t-po=o (5.38) 
n 

for  the determination of a0 and PO. To find a  nonzero 
solution to (5.37) and (5 .38) ,  the  determinant of the 
coefficient matrix  must vanish, i.e., 

w o z  

n2 
I+-=O. (5.39) 

Clearly no value of n or real Wo will cause  this  result. 
From a mathematical  point  of view the reason for  the 
nonexistence of subharmonic response to the differential 
equation is because the  order of the equation is too low, 
it being  only  a  first-order equation, Le., the  equation, 
being too simple,  does  not possess many solutions and in 
particular, does not possess subharmonic solutions. It is 
fairly easy to see that if the  equation were of second 
order  that  there would be subharmonic solutions. By 
coupling the  capacitor with an inductance, the  order of 
the  equation will be  raised and  subharmonic response 
will exist. These  matters will be discussed in a subsequent 
paper. 

6.  Amplification  and  conversion 

In  this  section we will consider the response of our differ- 
ential  equation,  when  it is driven by a  pair of harmonic 
functions of different frequencies,  in particular 

+ ( t )  =F1 COS 0lt+F2 COS ozt . (6.1) 

We will see below that a  solution to our differential 
equation in  response to this forcing  term will have fre- 
quency  components in the frequencies O J ~ ,  m2, w ~ + w ~ ,  

w 1 - 0 2  and  many  others.  Our  point  of view in this sec- 
tion will be slightly different from  that  of  the previous 
section. This is true because more  natural  and  pertinent 
questions are presented for (6.1). These questions  con- 
cern  the  phenomena  of amplification and conversion. To 
establish the ideas,  suppose that F1 is small compared  to 13 
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Fz. The response to +(t)  in  the  frequency 0 1  will have an 
amplitude  which  depends on F1 and because of the pres- 
ence of Fz cos w2t this amplitude may  depend on  FZ, i.e., 
the  response  in frequency w1 borrows  energy from  the 
input of frequency of 02 .  Were  this to be the case, we 
could then consider the device to  be  an amplifier in the 
specific frequency 01. Similarly the  fact  that  the response 
has components of frequencies other  than w1 and w 2 ,  in 
particular o1 * O~ shows that energy is converted from  the 
frequencies 0 1 ~  and o2 into  other frequencies. This phe- 
nomenon of conversion can also be exploited  as amplifi- 
cation. 

To consider  what happens we proceed  as follows. Con- 
sider the differential equation 

c ( ~ + ~ v ) v ~ = - v + F ~ c o s o I ~ + F ~ c o s w ~ ~ .  (6.2) 

The  perturbation  procedure applied to this equation 
proceeds  in  a straightforward  manner. However, it is not 
clear how  to apply  initial  conditions because of the pres- 
ence of multiple  frequencies. We must,  however, pursue 
the perturbation  procedure in order  to motivate the 
method of undetermined coefficients which we will use. 

We suppose  then  for  the time  being that 

v ~ v o t p v l t . .  . (6.3) 

Insertion of (6.3)  into  (6.2)  and equating  the coefficients 
of the various power of p to zero gives rise to a system of 
equations, the first two of whose members are 

CVO'+ vug -F1 COS w l t F 2  COS wat  (6.4) 

c z t l ' i - V l =  -CVoVo'.  (6.5) 

The solution of (6.4) is 

VUo'Rln sin taltSPlo COS olt+azo sin o z t + P z o  COS ozt , 
(6.6) 

with cv10,  PI", azo, and PZO determined in the usual 
manner. 

With vo determined,  (6.5) becomes 

mL'+ V I  = Flul sin W +  F 2 o z  sin ~ 2 t  

+ M I  sin 2wlt+N1 cos 2wlt 

+ M 2  sin 2 ~ ~ t  + N2 cos 2wzt 

+M:< sin(wl+w2)t'+N3 cos(w1+w2)t 

+M4 sin(col-o)z)t+N4 cos(o1"oz)t.  (6.7) 

Here MI, M z ,  . . . , N4 are  certain constants. 
The solution of (6.7) is a sum of sines and cosines of 

frequencies wl, 0 2 ,  2w1,  2w2, and WI+WZ. We use this pro- 
cedure to note  that if we look for a  solution of (6.2) in 
the form of sines and cosines of 01, 0 2 ,  2w1,  2w2, wl+oz, 
and ( I ) ~ - o J ~  that the coefficients of the  terms of frequen- 
cies W~ and w2 are of order PO, the coefficients of the terms 
of frequencies 201,  2wZ, w1+wz and w l - w z  are of order 
p', and by continuing  this procedure,  the coefficients of 
terms of other frequencies  (e.g., 3w1, 302, 2 ( 0 1 + 0 ~ ) ,  

14 2((o1-w2), 2 0 ~ t - ~ l ~ ~ ,  ~ ~ * 6 ) ~ ,  etc.)  are of higher order in 

p. With this information we may proceed with our analy- 
sis as follows: 

We look for a  solution of (6.2) in the  form 

?.'=al1 sin wlt+Pll  cos 0 ~ t + a 1 ~  sin wzt+pl2 COS wzt 

+az1 sin 2 ~ 0 ~ t + , 8 ~ ~  cos 2 ~ ~ t + a ~ ~  sin 202t+,&2 cos 202f 

+anl sin(w1+w2)t+P:;l cos(ol+o)z)t+a:tz sin(wl-wz)t 

+P:m cos(wl"o2)t 

+. . . ( 6 . 8 )  

We plan to insert  this  expression into  (6.2).  From  what 
we have just observed from  the  perturbation  procedure 
concerning orders of magnitude in p, we see that we may 
neglect any term which arises which is not of one of the 
six frequencies displayed in (6.8).  The details of this 
enterprise are not  noted.  We merely remark  that  after 
the steps are  carried  out, we obtain  an expression involv- 
ing  the  12 functions, sin a l l , .  . . , cos(ol--oz)t.  Equating 
the coefficients of these 12  functions  to  zero gives us 12 
equations,  coupled  only in pairs, for  the  determination of 
the  12 constants, all,  . . . , p 3 2 .  If we introduce the ab- 
breviations 

W1 = w l c  and W2 = Q ~ C  , (6.9) 

these 12  equations  are: 

sin wlt[all- Wlplll = O  (6.10) 

COS olt [ - W1a11- p11] = - F1 (6.11) 

sin wZt[a12- W2P12] = O  (6.12) 

COSw2~[-W2~12-~12]=-FZ  (6.13) 

sin 2~1t   r~2~-2W~Pz~-2W1/311~ [ 

c 
- - W1(a112+/3112) -0.  P 

2 1 

2 1 
[ 

(6.14) 

cos 2*~1t[-2W1Q2I-p21-pW1a11p111 =o (6.15) 

sin 2 ~ t  aZz - 2 WZPzz + p  W 2 p d  

+ - wz(al2*+p12) =o P (6.16) 

cos 2od[  -2W1a22-~22-pW2~12~121 =o (6.17) 

sin(ol+o2)t w- (WI+ Wz)P31 

+ - ( W l f   W z )  (alia12-pllp12) =o P 
2 1 

2 1 
(6.18) 

-(Wl+WZ)(Y31-P31 

- - (Wl+Wz)(allPlo+a12pll) =o . P 

(6.19) 
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and 

L 
P - - (W1- W2) (alIpl?-(Y12p11) =o . 
2 1 

(6.21) 

The solution to the systems (6.10)  to  (6.21)  are: 

(6.22) 

(6.23) 

(6.25) 

FI p11= ~ 

1 + W1' 

FZ 
p12= ~ 

1 + WZ' 

(6.28) 

(6.29) 

(6.30) 

(6.31) 

pFlF:!(W1+Wp)*(W]W2-2) 
31'2 ' rl+(wl+w*)~](1+w1~)(l+w~') (6.32) 

p s z =  - 3 ~ F I F s ( W ~ - W Z ) ~ ( W ~ W ~ + ~ )  
~ ~ + ~ ~ 1 - ~ 2 ~ ~ l ~ l + W 1 ~ ) ( 1 + W z ~ )  

. (6.33) 

(i) A mplification 

From  (6.22)  to  (6.33) we may deduce some informa- 

The power of the  output in the  frequency of or w2 

tion  concerning amplification. 

is respectively 

~~1=(Y112+p112+(Y21~+p212 (6.34) 

P , , = ( Y l z * + p 1 2 ~ + ~ 2 2 ~ + p z z ~  (6.35) 

correct  to within terms of order p4. Then 

P -- F12 ~ ' F I ~ W I '  (4w1'- I) '+ (4W1)* 
w1- + 1 + Wi2 4( 1 + w12)4 (4W1*+ 1)' 

(6.36) 

Thus there is no amplification to within terms of order p l .  
(One can easily see that  there will be higher order am- 
plification.) 

(ii) Conversion 

In a similar manner, we have 

(l+(Wl+W2)')2 1 
(6.38) 

(l+(W1-W2)')' 
(6.39) 

Thus  there is conversion of energy  in  the  second order 

To determine the response  relations from  the all , . . . , 
p32,  we proceed  as follows. In Section  5 we introduce as 
a parameter  the value of v at t=O.  Namely, 

of p. 

w(0) = A  . (6.40) 

(In actuality, A was the first Taylor coefficient of the first 
Fourier coefficient of w.) This led to  the relation (4  31) 
for W. In  our present  situation we have two frequencies, 
W1 and W2. To  obtain a  second  relation, we must intro- 
duce  another  parameter, viz., 

~ ' ( 0 )  = B .  (6.41) 

Of course in general one  cannot prescribe  two initial 
data  for the  solution of a first-order differential equation. 
However, we are  not really  doing this, because we are 
actually  prescribing no  data  for v ( t ) ,  but rather only  a 
periodicity requirement.  The two  conditions (6.40)  and 
(6.41) may be viewed as  conditions  relating W1 and W2 
to v. 

If we insert w to first order in p into  (6.40)  and  (6.41) 
we get the relations 

A=P11+P12 (6.42) 

and 

B=allw1+(~12~2.  (6.43) 

If we now assume that 

w1=wlo+pwlI+. . (6.44) 

and 

w2=w2o+pw21+ .  . , (6.45) 

(6.40) and (6.41 ) become in terms of the Wij 
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A =  FI + 
1 + WlO' 1 + w 2 0 2  

F z  

and 

CB = 
WIO' FI W20' Fz 
1 + Wl02 1 + w202 

+ 

(6.46) 

(6.47) 

If we solve (6.46) for Wlo2 and insert the result into 
(6.47), we obtain  the  equation 

( l + W 2 0 2 ) ( F ~ t F ~ - A - ~ B ) = 0 .  (6.48) 

This determines  a  relation between A and B, which in 
turn suggests that 

w 2 0  " w2 (6.49) 

is to be taken as  prescribed a  priori. Thus  from (6.46) 

F1 1 + w102= (6.50) 
Fz ' A- 

1 + WZ' 

w11= - 
2F1 

which is the zero-th order  approximation to the response 
relation. 

The next approximation  to  the response  relation is 

obtained  by  setting equal  to zero. This yields 

4F12W1~2 w11= 
(1+w102)2 2F1W1o [- ( 1 + 4 w 1 0 ~ ) ( 1 + w 1 0 ~ ) ~  

4Fz2W2' FlFz - 
( ~ + ~ W Z ~ ) ( ~ + W Z ' ) ~  (1+Wlo2)(1fWz2) 

+ 
(wlo+wz)2(w1ow2-2) 

- (w10-w2)2(w10w2+2) (6.51) 
1+(WlO"Z)2 

Inserting (6.50) and (6.51) into (6.44) would give us 
an expression for Wll in  terms of F1, F z ,  WZ, and A cor- 
rect  to  order p2.  Indeed (6.50) into (6.51) gives 

F1 FI 
Fz ( W24- 1) - Wz2( 1 + Wzz)  A- ~ 

4FlFz 1 + w22 + 
FI FI ( A -  &)(1+w22)  1+2( A-  ~ 1 + FZ w z z  )+2Wz2+[( A-  " F z  1 + w22 ) ' - W z 2 ]  

(6.52) 

Combining (6.44),  (6.50), and (6.52) gives a  relation 
between W1, Wp,  F1, F2, p and A which is the response 
relation. This relation  determines the  value of the peri- 
odic  solution v at t = O ,  A, in terms of the driving frequen- 
cies, their amplitudes, and  the degree of nonlinearity, p. 

IV. The difference-differential equation 

7. Periodic solutions under a  commensurability 
restriction 

In this  section we will obtain periodic  solutions of 

t 
C ( V ) V , I  = - V ( t ) + $ b ( t " T )  

t-r  

16 when 7 and  the period T of 4 are commensurable. 
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(i) Harmonics 

Let p and q be relatively prime integers, such  that 

pT=qT.  (7.2) 

Now consider 

C ( v ) V , l  t - T  = $ l ( t - T " T ) - " U ( t - T )  
t - 2 7  

. . .  

C ( V ) V t  = ( t - ( p - l ) ~ - & - - ~ ( t - ( p - l ) ~ ) .  (7 
t - (p - l )T  I t - p 7  

Suppose (7.1) has a  solution of period T .  Then this 
solution satisfies each equation  in (7.3). It must then 
satisfy the  sum of all equations in (7.1 ) and (7.3). This 
sum is 



c(w)v,l = 2 +(t-jr-1/2T)-w(t-j.r). 

Since PT=qT, this  reduces to 

t p-1 

t -pT  j = o  
(7.4) 

P - 1  o= 2 + ( t - j 7 - 1 / 2 7 )  " Z ) ( t - j T ) .  (7.5) 
j = o  

Thus  the totality of solutions of (7.5) contains the 
periodic  solutions (with period T )  of (7.1). The totality 
of solutions of (7.5) is a linear combination of exponen- 
tials plus the  particular solution +(t- 1 / 2 T ) .  Specifically, 

v ( t )  =+(t-  1/27) + x A,e-*aint/p. (7.6) 

Not all of the terms in (7.6) have period T ,  nor are 
all of them real.  Indeed not all of the  functions repre- 
sented by (7.6) are solutions of (7.1). To determine 
which of the expressions  in (7.6) satisfy the  three  prop- 
erties  just  mentioned requires special  choices of T and 
the A,. We will consider  these possibilities in general and 
in particular when + = F c o s ~ t ,  and c(v)=c(l+pw),  
(here c and p are  constants). 

Case 1:  Suppose that T is a  multiple of T ,  i.e., p =  1.  
Then (7.6) reduces to 

P - 1  

n = 1  

w ( t ) = +  t -  - . ( :;) (7.7) 

This is real and  has period T .  For it  to be a  solution Of 

(7.1) requires that 

or in our special case where c(w) ==c( 1 t -pv),  

Letting at= 6 ,  - = # , 

(7.9) becomes 

sin 6 cos  $-cos 8 sin #-sin 6 cos 3#+cos 8 sin  3$ 

+ - [sin 26 cos 2+-cos 26 sin 2#-sin 28 cos 6# 

m i  

7 - 

PF 
2 

+cos  28 sin 6$] =O . (7.10) 

Then we must have 

cos #-cos 31)=0, 

sin #-sin 3I)=O, 

COS 2#- COS 61) = 0 , 
sin 21,-sin 6#=0 . (7.11) 

The equations (7.1 1 ) each imply 

# = n x ,  (7.12) 

I.e., 

W T  = 2nx (7.13) 

or n = q .  

W T = ~ ~ T  is a  condition on  both w and T in  order  that 
(7.1) have a  periodic  solution. 

Case 2: If p is larger  than  one, so that  the  sum in 
(7.6) is not  empty, then  in order  to  make (7.6) real we 
must  have certain  relations among  the A,. 

If p is even, we must have 

If p is odd, we have 
11-1 

The  terms in the  sums  here will be periodic of period T ,  if 

nT 

P T  
- = IJ = integer , 

Le., if 

n = q a ,  

(7.16) 

(7.17) 

i.e., if q / n  ( q  divides n )  . 
Thus we must first of all have,  since n > p ,  that q<P. 

If this is not  the case, as in Case 1 above  where p =  1, we 
will have +( t- 1/27) as the only possible periodic Soh- 

tion of (7.1).  We  may  thus rewrite (7.14) and (7.15) as 

n= aq 
a>o 

The  upper limit,  which is an integer, is taken  in this 
expression. 

Now we must  insert  this into (7.1 ) . This yields 

2) n-1 I t  

?a= uq 
U>O I t-7 

L l ,  PE! 

= - 2 ' z 2  A,cosPT 2 ~ n t  . (7.19) 

9a= uq 
a>o 

Let us specialize c and + as  before.  We get 17 
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“c [ l+pFcosw(t- ~ ) + 2 p x  A,,cos 

3 2;;n(t- 7 )  
nA, sin 

P’ 1 
= - 2 z  A , ,  cos - . 2;;tlt 

p 7 
(7 .20)  

TO explore the possibilities, let us supposc  that the sutn Inserting (7 .26)  and (7 .27)  into (7 .28)  and  (7.29) gives 
reduces to a single entry. Setting the coefficients of sin 
and COS in the resulting expression cqual to zero givcs  cos - 7q +cos 3T;q - 2A,  
respectively, P 1) F 

=o , (7.30) 

1 and 

7 X I  (I A ,  4 2 4  
sin--s in3;r--2-s in2;r-+-=O.(7.31)  

and 1) I’ F p coF 

2 
(7 .22)  

The solution to these equations is 

1 
2 
- oT=ni; (7 .13)  

or 

4 “ n .  (7.24)  
P 

This is impossible since p > q .  Thus wc must ha\c  morc 
terms which are sines and cosines of 0 ) t .  Thc only way of 
producing  such  terms is to set 

- 

2i;n 

P‘ 
- = o  (7 .15)  

This implies that 

n = q ,  (7.26)  

and 

07=2x- 4 
P 

(7 .27)  

Thus q must be less than or equal  to p / 2  ~ I o r  p / 2  ~~ 1/2, 
whichever is an integer. 

With this  restriction on WT and n, equating cocfficicnts 
of sines and cosines to  zero as  before, givcs 

(7 .25)  

and 

- 1  . 3  
sln - w-ssln- UT- ~ sin - -1- - =O . 

(7 .29)  

4mA, 2i;n ?A,, 

2 2 p ~ w F  P cu,F 
18 

.. I hcsc cquations combine to yield 

(7.32) 

(7 .27)  and (7.32) are  the response relations for o, T 
and A,,. We  may  conclude from this  example that a  peri- 
odic  solution of (7 .1)  exists only when certain relations 
are satisfied by 0 )  and T. This example  here will serve to 
guidc our  perturbational analysis of (7.1),  which we will 
cxplorc in Section 4. 

Wc now inquire into  the questions of subharmonics. 

(ii) Suhhnrrnonics 

Thc analysis of this question  proceeds in a manner 
sinlilar to (i).  Thus we merely make the following ob- 
scrvations: 

If  wc want a solution v ( t )  of (7 .1) ,  with  period rT, 
but  with no smaller  period,  then the number p in equa- 
tion (7.5) should be replaced by a  multiple of itself if 
rXq. lndccd p is replaced by rp .  Then  (7.6) becomes 

v(f )=+(t -  1 7) + rp- Z A n e x p  1 (- rps 2~ in t )  . (7 .33)  

n=1 

The cxistcncc of subharmonics reduces to the  question 
of whether  the  sum in (7 .33)  has terms  with  period rT 
which are not periodic with a  smaller  period of the  form 
s7’. This will bc the case if 

nrT 

rPT 

” - intcgcr 

but 

nsT 
rpr 
- # integer . 

(7.34) 

(7.35) 
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These  conditions  reduce to 

n 
" - integer , (7.36) 
P 4  
and 

n s  

P4 r 
respectively. Thus we must have 

" # integer , (7.37) 

P41n > (7.38) 

but 

pqrXn . (7.39) 

This is the case if and  only if rXn, since rXs. 

8. Perturbational analysis 

In this section we will derive the response relation for 
periodic solutions of our equation. We do this  without 
imposing a  commensurability  restriction on T and 7. 

For definiteness we take 

+ ( t )  =F COS o f ,  (8.1) 

and 

c ( v )  = c ( l + p v ) ,  ( 8 . 2 )  

where p and c are constants  and p is considered to be 
small. 

Now we introduce the  transformation 

e = o t ,  w=@c, u ( e )  = v ( t ) .  (8.3) 

Our equation  then becomes 

W(l+pu(e))u,(e)-w(l+pu(B-$))ue(B-$) 

= - u ( O ) - F  COS(&+$).  (8.4) 

We introduce two auxiliary  parameters in 

u ( 0 )  = A  , (8.5) 

and 

~'(0) = B  . 
(i) Harmonic response 

From  what we have  deduced in Section 2, we know 
that a periodic  solution of  (8.4) will exist only if certain 
relations are satisfied by o and T (or W and $) . From our 
experience in Section 2, we may expect  these  relations to 
take  the  form of W and $ as  functions of  the initial con- 
ditions, A and B. Thus  in performing  perturbational 
analysis we are led to  look  for u, W ,  and $ in the  form 

u=uo+pu1+. . . (8.7) 

W=Wo+pW1+. . . (8.8) 

$=$o+p$1+. . . . (8.9) 

In addition we assign A and B among the coefficients in 
(8.7)  through 

uo(0)  = A  , u i (0 )  =0 ,  i>O , 
uo'(0) = B  , ui'(0) = O  , i>O . (8.10) 

The first two perturbation  equations are respectively 

w ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~ ~ - ~ ~ ~ I = - ~ ~ ~ ~ ~ - F c o ~ ~ ~ - ~ / ~ ~ ~ ~  
(8.11) 

wo[Ul'(e) - z l , ' ( e - + , ) 1  =-u1(e) - -of(wl+wouo) 

- Wo$luo"(8-$o) - F -  sin(&  1/2$0) . (8. 
$1 

2 

We look for a  solution of (8.1 1) in the form 

u o = a  sin 8+po cos 8 . (8.13) 

From  (8.10) we see that aO=B and /?,=A. Thus if  we 
insert (8.13) into  (8.1 1) and  equate coefficients of sin 8 
and cos 8 to zero, we obtain two equations involving the 
four quantities ao, Po, Wo and $o. These  equations  are 

Wo[ - P O - a o  sin $O+Po cos $01 +ao+F sin +$o=O 

and 

Wo [a,, - a0 cos - Po sin qO] +Po + F cos +q0 = 0 . 

(8.14) 

(8.15) 

Since a,, and Po are known in terms of A and B, we 
view (8.14)  and  (8.15) as  a  pair of simultaneous  tran- 
scendental  equations for  the determination of Wo and $0 .  

If WO is eliminated from  the pair (8.14)  and (8.15), 
there results, after some  manipulation, a quadratic  in 
sin $ 0 / 2 .  The  quadratic  has  an extraneous null root. The 
remaining  root is 

. $0 "WJF - BF sin - = 
2 ( ~ y 0 ~ + / 3 0 ~ )  ( A 2 + B 2 )  

- - " (8.16) 

With this information, Wo is readily found  to be 

( A z + B 2 )   ( B 2 + A 2 - F 2 )  wo = 
- 2 B F [ A F + d ( A 2 + B 2 ) 2 - B 2 F ]  ' 

(8.17) 

Continuing our procedure by inserting (8.13) into 
( 8 . 1 2 ) ,  leads us to look for a  solution of ( 8 . 1 2 )  in  the 
form 

ul=all  sin 8+pl1 cos 8+aI2 sin 28+p12 cos 28 . (8.18) 

The equations for all, pll, a12, and  are linear. 
After solving these equations, the initial conditions 

(8.10) give the following linear  equations for determin- 
ing q1 and W1. 

(8.19) 

Once q1 and W1 are determined, we can combine all 
of our results and obtain 

W =  Wo(A, B )  +pW1(A, B )   ( 8 . 2 0 )  

19 

IBM JOURNAL JANUARY 1961 

and 



$=$o(A, B )  +P$l(A, B )  , (8.21) Then equating coefficients of sin 8 / 2 ,  cos 0 / 2 ,  sin 6, 

which are  the response  relations. Thus  for  each value of 
driving  frequency, W ,  and  each value of i, one  or  more 
pairs ( A ,  B )  which fix the  magnitude  and phase of the 
harmonic u are determined. s ~ n - [ - ~ o - - ~ ~ - s m -  . e  Po1 a01 . $0 

A summary of these  manipulations for obtaining il 2 2 2 2 

and cos 0 to  zero gives 

( 8 . 2 2 )  

Ikl=(z,x3-x~~)/(x3y,-x4Y3), ( 8 . 2 3 )  

Xs=A(l-cos$O)+Bsin$o, 

Y3= WoB cos $a+ WoA sin $0- - cos - , 

X~=-B( l -cos$O)+Asin$o,  

Y4--BWo sin WOA cos $a+ - sin - , 

Z ~ = ~ I I ( ~ - W O ~ ~ ~ $ O ) + P I I W O ( - ~ + C O ~ $ O ) ,  

Z~=a11WO(l-cos$O)+P11(1-WOsin$0), 

- -3a l l=a1z=(Z1Y2-Z2Y1~/ (X1YZ-XzY1) ,  

"11=~12=(x1z2-x2z1)/(x1Y2-xzY1), 

F i o  
2 2 

F i o  
2 2 

X1=1-2W0 sin 2 $ 0 ,  

Y l = 2 ( - 1 + c o s 2 $ o ) ,  

Xz=2Wo( 1-cos 2$0) , 

Yz=1-2Wo sin 2 $ 0 ,  

Zl=- (AZ-B2)(1-cos2$0)+WoABsin2$0,  WO 
2 

wo 
2 

Z z =  - (A?-Bz)sin 2q0+ WoAB COS 2io-ABWo . 

In Figs. 9 and 10 we plot the response curves. 

(ii) Subharmonic response 

Let us obtain  the first harmonic.  Thus in (8.1 1 ) insert 

6 e 
2 2 

uO=ao1 sin- +Pol cos- +e02 sin 6 + P 0 2  cos 0 . (8 .24)  

We obtain 

a01 e-$0 Po1 @-$a 
- 

2 2 
+ - sin ~ 

2 2 
- cos ~ 

--cuo2 ~0~(6-$0)+P02 sin ( 0 - $ 0 )  

6 e 
= - a o l s i n - - ~ o ~ c o s -  -crozsinO 

2 2 

1 
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cos - wo " wo- cos - a01 $0 

2 e [  2 2 

- WO - sin - +Pol = O  , (8 .27)  Po1 $0 

2 2 1 
sin 6 [ - WoPo2 - Woao2 sin + W0/302 cos i o  

+nO2-Fsin 3$0]=0, (8 .28)  

and 

These  equations together with 

P o 1  + Po2 = A  , 
and 

(8 .30)  

- a01 
+ao2=B,  

2 
(8 .31)  

which are obtained from (8.5), ( 8 . 6 )  and (8 .24)  form a 
system of six equations  for  the six unknowns, sol, 0102, 

POI, POZ, WO and $0. 

A procedure  for solving these  equations is given as 
follows. First  we  note  that (8 .26)  and ( 8 . 2 7 )  are  linear 
homogeneous in aOl and Pol with coefficients given in 
terms of W o  and  In  order  to find a  nontrivial  solution 
of (8 .26)  and (8 .27)  the  determinant of the coefficient 
matrix of this system must vanish. This gives a  relation 
between Wo and viz., 

(l-?sin- wo i 0 ) z  ".- y ( 1-cos- ?)% = o .  ( 8 . 3 2 )  
2 

Now  equation ( 8 . 2 7 ) ,  say, may be solved for POI in 
terms of ml, and WO and provided 

(1-Wosin$0)~-W~2(1-cos$O)2#0, (8 .33)  

( 8 . 2 8 )  and (8 .29)  may  be solved for a02 and POZ in terms 
of Wo and q0. When these  values of POI, ~ O Z ,  and POZ are 
inserted into ( 8 . 3 0 )  and (8 .31 ) ,  we have  two equations 
for aOlr W o  and q0. Eliminating a01 gives 



2.5 

- S Y M - 1  

Figure 9 

4 I 

- A N T I  S Y M  

(8.34) 

Equations (8.32) and (8.34) must now be solved for 
Wo and $o. When this is done we may compute a01, POI, 
aOz, and Po, from (8.27) to (8.29). When these opera- 
tions are done, we insert UQ in (8.24) into (8.12) and 
obtain an equation for u1. We look for u1 in the  form of 
sines and cosines of 0/2, 0, 30/2 and 20. The resulting 
equations for determining the coefficients of u1 and $1 
and Wl are all linear now. The remainder of the proce- 
dure is straightforward. We eliminate all details. 
(For  references and footnotes,  see page 24.) 21 
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Figure 10 
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