W. L. Miranker

Periodic Solutions of the Wave Equation
with a Nonlinear Interface Condition

Abstract: In this paper we consider the problem of the voltage oscillations in a transmission line when a diode
represented as a nonlinear capacitance is placed in shunt in that line. In particular we consider the response
of this line to periodic driving voltages and study the periodic responses. This physical situation is shown to
lead to the mathematical model of the wave equation in the voltage in a domain with an internal boundary
{the interface), at which the voltage is required to satisfy a nonlinear jump condition. By an application of
Gauss’ theorem, the problem is reduced to a nonlinear difference-differential equation. In the case that the
generator driving the line is matched to it, this family of equations reduces to a family of nonlinear differ-
ential equations. The paper is concerned with a study of the periodic solutions of these two classes of

equations.

1. Introduction and derivation of model
e [. Introduction and description of contents

In this paper we will consider the propagation of voltage
waves down a transmission line when a diode is placed in
shunt in that line. We show that this state of affairs can be
described by a boundary value problem for the wave
equation for the voltage across the line coupled with a
nonlinear voltage drop across the capacitor. Thus this
problem bears certain similarities to the problem of the
bowing of a violin string treated by Lord Rayleigh® and
J. B. Keller.2

In Section 2 we make use of the fact that a diode can
be characterized as a capacitor, in which the capacitance
is a function of the voltage drop, to derive the wave equa-
tion model for our problem. We then show by an applica-
tion of Gauss’s theorem to solutions of the wave equation
that the boundary value problem is equivalent to solving
a nonlinear difference-differential equation (2.22). In the
special case where the generator driving the line is
matched to the line, this functional equation reduces to a
nonlinear differential equation (2.23). In Section 3 to
Section 6 we discuss the properties of solutions of the dif-
ferential equation. Section 3 and Section 4 are coupled
into Part II of this paper. This part uses the topological
techniques of phase plane analysis and Banach space
methods to deduce general qualitative properties of solu-
tions of the differential equation.

In Section 3 we use phase plane methods to demon-
strate the existence, uniqueness and stability of a periodic
solution of the differential equation. We then point out
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the consequence that the voltage variation of a lumped
R-C circuit can have neither subharmonic nor superhar-
monic response to a harmonic voltage source. A special
case of voltage variation of the nonlinear capacitance
which is of interest (capacitance = c(1+-pv), where v is
voltage, and ¢ and p are constants), is then discussed by
making use of singular point analysis.

In Section 4 we consider the question of existence,
uniqueness and stability of a periodic solution in the spe-
cial case, ¢(v)=c(1+pv), just mentioned. Because of
the presence of singular points of the differential equa-
tion, we are obliged to resort to certain Banach space
methods to deduce these results. The methods used are
the implicit function theorem and the Picard Fixed Point
Theorem. We point out that this discussion motivates and
justifies the use of a perturbational procedure employed
in Part III of this paper.

In Part 111 we continue our analysis of the special case,
c(v) =c(1+pv), by means of perturbational methods.
In Section 5 we use these methods to obtain the response
curve (amplitude of the harmonic output versus applied
frequency) of the periodic solution in response to a har-
monic driving voltage. We then sketch a plausibility argu-
ment for the nonexistence of subharmonic response and
point out how such responses can be achieved by modi-
fications of the circuit under discussion.

In Section 6 we consider the question of amplification
and conversion. Thus we drive our circuit with a combi-




nation of harmonic inputs and discuss the transfer of
energy from the components of the input to the compo-
nents of the output. By the perturbational procedure we
deduce the extent to which this device (commonly de-
scribed as a carrier and signal combination) is of practi-
cal importance. We then derive the response relation
pertaining to this situation.

In Part IIT we turn to the nonlinear difference-differen-
tial equation (2.22). In Section 7 we consider the case
when the period T and the lag r are commensurable. In
this case we reduce the solving of the difference-differen-
tial equation to solving successively two simpler equa-
tions. The first of these is a linear difference equation and
the second is a transcendental equation. In Section 8 we
use perturbational methods to derive the response rela-
tions for periodic solutions in the general case when there
is no commensurability restriction.

In Section 2 we state our problem and derive the
mathematical model used to describe it.

® 2. Statement of the problem and derivation of the
mathematical model

A crystal diode placed in a transmission line behaves in
many respects as a capacitor in shunt in that transmission
line, provided that the capacitance is taken to be a func-
tion of the voltage across it.> Consider then a segment of
transmission line of length /;+4/». At the left end of the

:

line, let there be a generator, while at the right end, let
the line be terminated in an impedance Z. At distance
I; from the generator (at x=0, in the figure) let a capaci-
tor, of capacitance c¢(v), be placed in shunt. If v(x,t)
and i(x, t) are, respectively, the voltage across the line
and the current flowing down the line at position x and
time ¢, we have the transmission line equations for a
lossless line

ov 3 0i 2.1
ox ot 1)
0i ov
— =—C —. (2.2)
ox ot

Here L and C are, respectively, the series inductance per
unit length of line and the shunt capacitance per unit
length of the line. Combining (2.1) and (2.2) gives

0%v a%v

=LC . 2.3
0x2 o (2.3)

At x=0, the current flowing down the line suffers a
jump equal to the current flowing through the capacitor.
If we use the notation [f]=f(0+)—f(0—) to denote

the jump in a quantity at x=0, we have*

dg dv
i]=¢i= — — =—c(v)v:, (2.4)
[i]=q: > (v)v:
where g(¢) is the charge on the capacitor. Differentiating
(2.4) with respect to ¢ yields

[i]=—(c(v}vy),. (2.5)
Combining (2.1) and (2.5), gives
[ve]=L(c(v)ve):. (2.6)

At x=—1;, we have
v=¢(1), 2.7)

where ¢ () denotes the input voltage at the generator. At
x=Is, we have the impedance boundary condition?

v,+CZv,—0. (2.8)

If we denote by f(x) and —g(x)/C the voltage across
the line and the current gradient down the line at time
t—=0, we have the following boundary value problem
with a nonlinear interface condition for v(x, t).

Vyz= pv Vy, ap=(LC)/2, >0, -1 <x<lp, x50,

(2.9)
v(x, 0)=f(x), vi(x,0)=g(x), (2.10)
vetav=0, «a=CZ x=l, (2.11)
v=¢(1), x=-—h, (2.12)
[vz]=azo-(é(v)vt)t,c'(v)=@;c(v),x=0. (2.13)

We will now drop the bar in (2.13) and show that the
boundary value problem (2.9) —(2.13) is equivalent to
a nonlinear functional equation.

If D is a domain in x—¢ space in which v(x,¢) is a
solution of the wave equation, then Gauss’s theorem
yields

0= //(aozvm~v”)dxdt
D

= %[aozvx cos(n, x) —ve cos(n, t)]ds . (2.14)
The integral in the right member of (2.14) is a line inte-
gral taken around the boundary B of D. Then s, the arc
length of B, is taken as increasing if one traverses B with
D lying to the left. Cos(n, x) and cos(n, t) are the direc-
tion cosines of the exterior normal to B.

We apply the formula (2.14) to the two domains indi-
cated in Fig. 1. The domain bounded by P, 4,, Py, 4,,...
A, B, 0, P and the domain bounded by P, 0, /5, D, P, The
diagonal lines in the figures are segments of characteris-
tics of the wave equation, i.e., lines with slope *ap.

Since we are ultimately interested in the steady state
we will assume that f(x) =g(x) =0. Now application of
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(2.14) to the two domains in question yields respectively:

T n(T)
/aoz'l)x(O—, t)ydt—aogv(P) +2a, 2 [¢(4;) —v(P;)]=0
° = (2.15)

D

0
/aozvx(0+, t)dt—ao’l)(P)-*—ao?)(D)-l-/ aoz'l)x(lg, t)dt=0 .
T [

(2.16)
Adding (2.15) and (2.16) gives
T 2 2 n(T)
- f [0:]di= 2 o(P)+ S [o(P)—(4p]
0 do Ao j=1
D
_ D) —/vx(lg,t)dt. (2.17)
do 0

If we insert (2.11) and (2.13) into (2.17), it becomes

T n(T)
/ —(c(W)v)dt=v(P)+ 3T [v(P;)—¢(4)]
0

j=1

—1/2[v(D) —aof l’;)t(lz, t)dt] . (2.18)
Performing the integrations ;n (2.18) gives
—c(v)vt(P)=v(P)+’;§) [0(P) — (4]

_ 1;21;(0) (1—aa0) . (2.19)

The presence of the load Z at a distance I from the
diode will cause reflections of voltage waves to pass
through the diode. Thus the effect of a voltage wave
generated at x=—1I; passing through the diode is not
altered by the presence of Z. Since we are fundamentally
interested in the effect of the nonlinearity on a voltage
wave and not upon the complications due to the passage
of reflections, we make the assumption that l,=o0 or
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equivalently that 1—weao=1—Z(C/L)/2=0 (i.e., Z is
matched to the line). Then (2.19) becomes

n(T)

—c()v(P)=v(P)+ 3 [v(P;) —¢(4))].

j=1

(2.20)

Now let

21
7= | Pj—Pya| = ——
o

(2.21) .

7/2 is the time it takes an impulse produced at the gener-
ator to reach the capacitor.

If we write (2.20) with P replaced by Py (i.e., with T
replaced by T—7), and subtract the result from (2.20),
we obtain after replacing T by ¢, the following functional
equation for v(t) =v(0, t)

¢
c(v)v, =—v()+p(t—1/27).

t-T

(2.22)

This equation may be further simplified by making an
assumption based upon the above reasoning which led to
setting /= co. If we assume that the generator is matched
to the line or that /; =, (and therefore that r=o0), and
if we denote by ¢(r), the limit as r—>o0 of ¢(t—1/27),
(2.22) becomes, upon dropping the bar,

c(v)vi=—v+d. (2.23)

In this equation ¢ is the voltage generated at an infinite
distance from the capacitor.

We remark that v(x, ¢) in the infinite line is computa-
ble from (0, t) by the formula

X X
2v(x, t) =v<0, t— —) +v (0, t+ ——) .
ap ap

Even in the case of the finite line v(x,t) is readily
computed once (0, 7) is known. One method of finding
v(x, t) after v(0, t) is known, is to take Laplace trans-
forms. However, we will not dwell upon this matter, since
the procedure is classical.

Our point of view in this paper will be to analyze the
periodic solutions of the nonlinear equations (2.22) and
(2.23). We consider what can be said in general about
these equations when ¢(¢) is periodic and then specialize
to the case when

(2.24)

c(v)=c(1+pv), (2.25)

with ¢ a constant and p a parameter, and for various har-
monic ¢(#) such as

(1) =F cos of . (2.26)
and
¢(t) =F; cos w1t+Fa cos wat . (2.27)

In the following part of this paper we consider the
questions of existence, uniqueness and stability of peri-
odic solutions of (2.23).




Il. Topological methods of studying the existence,
uniqueness, and stability of periodic solutions of
the differential equation

® 3. Phase plane analysis
In this section we will study equation

dv —v+¢
- (3.1)
c(v)

where ¢(¢) is a periodic function of time. We will inves-
tigate the questions of existence, uniqueness, and stability
of periodic solutions of this equation.

Suppose first of all that ¢(v) is a real physical capaci-
tance so that ¢(v) >0 for all ». In this case we can enun-
ciate the following:

® Theorem

Let c(v) and $(t) be continuous functions of their argu-
ments. If ¢(t) is periodic with period T and c(v)>0, then
there exists one and only one periodic solution of the
differential equation (3.1). Moreover, this solution has
the period T and is stable in the sense that all solutions of
(3.1) approach it as t—>c0.

® Proof
(i) Existence
Since ¢(v) >0,
. dv
signum <d_t> =signum (¢p—v). (3.2)

Since ¢(¢) is a continuous periodic function, it has a
maximum and a minimum which we denote respectively
by Vi and V,,,. Then by (3.2), (see Fig. 2),

. dv
signum <_dt—) >0,forv<<Vn (3.3)
and
. dv
signum <7> <0, for v>Vy. (3.4)
v dv/dt < 0
S
Vi \\‘ \ \ \
o .t
Vm
7 el
/ e e /
dv/dt > 0
Figure 2

Thus any solution of (3.1) which at t=0 is less than or
equal to Vy will reach t=T at a value of v<Vy, i.e.,

2(0)<Vy=v(T)<Vy. 3.5)
Similarly
W) ZVm=0(T) >V . (3.52)

Since ¢(v)>0 and ¢ (1) <V, and these functions are
continuous, any solution of (3.1) which crosses the line
t=0, will also cross the line =T, and these solutions
define a continuous map of the line t=0 into the line
t=T. We have just observed that this map takes the closed
interval on =0,

VmS'USVM, (36)
into the same closed interval on t=T.

Thus the differential equation defines a continuous map
of the closed interval (3.6) of the real line into itself. By
Brouwer’s Fixed Point Theorem,® this map has a fixed
point. In terms of the differential equation this means
that there is a solution which crosses t=0 and ¢t=T at
exactly the same value of v. Since the right member of
(3.1) is periodic of period T and since (3.1) is an equa-
tion of the first order, this solution will be identical in any
period strip ¢ to t+T, i.e., this solution is periodic with
period T.

(ii) Uniqueness

The differential equation (3.1) may be written as a
system of differential equations

dv _

T

dt

d_-,- —’ZC('U) . (3.7)

The parameter + induces a flow in the z-v plane which
is a continuous transformation of this plane. Thus a sim-
ply connected set in this plane will be transformed into
another such set. The area of any set is altered by this
flow. Indeed if we denote the area of a set as usual by

//dvdt , (3.8)
A

we have
d
— || dvdt= || Jdvdt, (3.9)
dT A A
where
dv dt
) ()
J = trace _<_i7_'_‘_h_
2(v, 1) (3.10)
-1 ¢
=trace =—1.
¢ 0
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Thus all areas are reduced by this flow (i.e., as 7 in-
creases).?

Suppose then that there exist two periodic solutions of
(3.1), v, with period T and v, with period 7-. If T; and
T. are commensurable, there exists a pair of integers p
and g, such that v; and v, have the period

Ts=pT +qT;. (3.11)

Consider the domain delimited by v, and v. as upper
and/or lower boundaries and t=0 and T==T73 as left and
right boundaries. This domain must be congruent to the
domain bounded by v; and v, and the abcissa t=T3 and
t=2T; since v, and v, have the period 7. This, however,
is impossible since the second domain is the image of the
first under the flow induced by 7, and must therefore have
a smaller area. Thus T is a multiple® of T and v, =va,
i.e., T,= To= T.

The proof when T, and T» are incommensurable pro-
ceeds in a similar fashion.

(iii) Stability
Let vo(¢) denote the periodic solution of (3.1) and

suppose to the contrary that there exists a solution v1(¢)
of (3.1) with the property that

01(T) —2(T) =v1(T) —0o(0) 2v:1(0) —20(0) . (3.12)

Since v1(¢) is not periodic, we must have a strict in-
equality in (3.12). Let v2(¢) be a solution of (3.1), with
the property

v2(0) =, (T) . (3.13)

In Fig. 3 the domain A4 is mapped under the flow into a
domain congruent to the domain A+ B. This is impossi-
ble since the area of B is positive. Thus

v1(T) —0o(T) <1(0) —0(0) .

Our assertion is proved when we observe that 0 and T
in this argument can be replaced by 0+¢ and T+t for
any ¢, and that the area flow causes an exponential de-
crease in the area itself (viz., (3.8)-(3.10) ). A significant
consequence of this theorem is the following:

(3.14)

Corollary: If ¢(t) is harmonic, the differential equa-
tion (3.1) can have no subharmonic nor any superhar-
monic solutions.

It is easy to see that this implies that no lumped circuit
with a capacitance and a resistance can have subhar-
monic or superharmonic solutions.®

The above theorem can be extended to cases when
¢(v) +0, but changes in sign. Of course when c¢(v) <0,
we may not have a physical situation. However, in trying
to describe a device by endowing it with a nonlinear
capacitance, the analytic expression for the capacitance
may be valid and positive only for certain values of the
voltage. When the voltage leaves this range, the expres-
sion for ¢(v) may have no physical meaning. Neverthe-
less, the behavior of the device in the range of validity of
the particular expression for capacity may be profitably
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studied by considering the fictitious behavior of the de-
vice outside of this range.

Rather than contrive theorems pertaining to this state
of affairs, we consider a special case of interest to illus-
trate the possibilities.

va o) /

B
vi(T) vi(t) —_v1{T)

v](o)/ A

vo(0) o v0(0)

0 T

Figure 3
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Suppose that

c(v)=c(1+pv), (3.15)

where c is a positive constant and p is a parameter con-
sidered to be small. When pv<—1, this expression for
the capacitance of a device ceases to have physical mean-
ing. For definiteness let us assume that

(t)=Fcosaut, F>O0. (3.16)

Inserting these expressions into (3.1) gives the differen-
tial equation

dv F cos ot—v
-, (3.17)
dt c(1+4pv)
If we introduce the transformations

—ot, v(t)=u(d), W=oc, (3.18)
then (3.17) becomes
d F cos —

el (3.19)

49 W(l+pu)

In Fig. 4 we plot signum du/df in a (6, u) plane for
the case that the parameter

=pF<1.

Our previous theorem is applicable to this situation.
We have only to observe that the fixed-point argument
applies to the domain |u| <F in this case, while all other
arguments apply universally. We formulate these obser-
vations in the following:

(3.20)

® Theorem

The differential equation (3.17) has one and only one
periodic solution. This solution has the frequency o, it is
stable and has the property that its amplitude is not
greater than F.

Suppose now that the parameter £> 1. Then the situa-
tion is as in Fig. 5.

The points S and N are singular points of the differen-
tial field, i.e., points when the numerator and denominator
in (3.19) vanish simultaneously.

To determine the nature of these singular points, we
proceed as follows. Write (3.19) as

du (14ecos ) —(1+pu)

— = . 3.21
P dp W (1+pu) ( )
Let
1+pu=y, pdu=dy

dx dx
1+ecos=x, di= - = .
—esin 8 Fye?—(x—1)2
(3.22)

Here x=0, y=0 are the singular points. The upper sign
refers to a neighborhood of N and the lower sign to a
neighborhood of S.

*‘,\

——9
\‘/
Y7 -
\ J
‘ - i
| \
Figure 6
The differential equation is now
d x—
y (x—y) (3.23)

dx I\ e—(x—1)2Wy

Now we reduce (3.23) to a neighborhood of § and N
and obtain

dy x—y
— = . 3.2
dx FVe2—1Wy (3:24)
Now consider
A=1F4\/—1IW

. (3.25)

D==5\/e2—1W

For S we have A>0 and D>0 so that S is a saddle
point.1® For N we have D <0 and

1
A0 f——exs > W, low frequ 3.25a
i eI ( quency)  ( )
1
A=0if —— =W 3.25b
' 4v/e2—1 ( )
1
AL if ——e <W high frequency). (3.25¢
i T < (high frequency) . ( )

In the first case N is a node, in the second case it is a
degenerate (or spiralar) node, and in the third case it is
a spiral. We remark that the primary significance of the
occurrence of S and N is that they are points where solu-
tions of the differential equation cross. Indeed at § two
solutions cross while at N infinitely many cross.

In Fig. 6 we sketch a possible state of affairs for the
case of low frequency. This Figure illustrates a number
of particular solutions of the differential equation.
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The arguments concerning existence, uniqueness and
stability of a periodic solution which we have discussed
previously break down in this case (¢>1). For one
thing, the mapping is no longer into, because the direc-
tion field points down both above and below the f-axis
(or t-axis). Because of singular points the map is no
longer continuous.

To study the properties of periodic solutions in this
case requires different procedures. This question forms
the contents of the following section. The methods which
we use are topological also, but they are conducted in
function spaces rather than in Euclidean spaces. While
the methods to be used are more complicated than those
already considered, they motivate and justify a perturba-
tional procedure which obtains concrete analytic infor-
mation concerning the periodic solutions.

® 4. The properties of periodic solution when there are
singular points

In this section we will consider the differential equation

dv F cos ot—v 4.1
dt  c(l+pv) ° '

in the case that there are singular points, i.e., when
e=pF>1. (4.2)
We will prove the following

® Theorem

There exists a periodic solution of period 2w/w of the
differential equation. This solution is an analytic function
of p and its amplitude is less than 1/p.

This theorem assures us that there is a periodic solution
and that it lies entirely away from the singular points dis-
cussed in the previous section. Of course the methods
used here apply without exception to the case when there
are no singular points. With this information we are able
to prove the uniqueness and stability of this solution. We
state this as a theorem.

® Theorem

The periodic solution of (4.1) with amplitude less than
1/p is unique among all such solutions with this property
and stable in the sense that neighboring solutions tend to
it as t—>c0.

® Proof
(i) Uniqueness

Since we are confining our attention to periodic solu-
tions which are bounded away from the singular points,
our proof ef uniqueness in Section 3 is valid here. We
present instead, however, an alternate proof because of a
property of the periodic solutions which it derives and
makes use of. Let

q(v)=/ c(o)do. (4.3)
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(g(v) is of course, the charge on the capacitor. How-
ever, we need not be concerned with this fact.) Now if
v is a periodic function of time, so then is g(v). Then
dg/dt is also a periodic function of time. Let the period
in question be denoted by T=27/w. Thus we have

T dq
h) t

Thus dq/dt has mean zero over a period. But (4.1) may
be written as

dv
c(v) —— —F cos ot =—2 4.5)
dt
or
dq F t (4.6)
—— —Fcoswt=—". .
i 0S o

The left member has mean zero over a period. Thus v
itself has this property.i*

Now suppose there were two solutions of period T,
both of which have amplitudes less than 1/p. If this is
the case these two periodic solutions can not cross since
they are bounded away from the singular points, and no
two different solutions of a first-order differential equa-
tion can cross at a regular point of the trajectory field.
But both of these periodic solutions must have mean zero.
Thus they must cross. This contradiction implies the
result.

(ii) Stability

This fact follows exactly as in the stability proof of
Section 3 when we use the observation that the periodic
solution is bounded away from the singular points. We
must note, however, that in the case of Section 3, i.e., no
singular points, every solution tended toward the periodic
solution. In the present case only neighboring solutions
need do this.

We now turn to the proof of the existence theorem. It
proceeds in two parts. The first part assumes that there
are solutions of (4.1) which start out at /=0 and cross
the line t=T(=2n/0) and which depend analytically on
p. If we examine the phase plane diagram sketched in
Fig. 6, we see that there are trajectories of this type.
Using this assumption it is shown that there is a value of
v(0) =A such that the solution with this value at =0
has the property v(T) =A. This solution is then of course
periodic, since our equation is of the first order and its
coefficients have period T. The second part of the proof
produces a class of solutions which are analytic in p and
which cross both t+=0 and t=T. Moreover, it shows that
the solution with v(0) =4 lies in this class.

The first part of the proof produces the result that
2(0) =A is a quantity which depends on the frequency o.
This is to be expected since at each applied frequency
only certain trajectories will be periodic. This fact also
forms the basis of the perturbational procedure to be ex-
plored in Section 5. This relation, of course, justifies the
use of this procedure.




The second part of the proof requires that the applied
frequency be not too small.
We now turn to the

o Proof of Part 1

The differential equation (4.1) may be written in the
following form

c (v—i— % 'vz) =F cos of—v . 4.7)
t

Equation (4.7) is equivalent to the integral equation

1 P t F
V= —| — C3 cv?— | v(r)dr+ — sin ot
[

¢ [0

i <A+ % A2>_J , (4.8)

where we have assigned
v(0)=A. (4.9)

Now we assume that v depends analytically on p for
p near zero, and we denote this dependence on p by affix-
ing a subscript p to various quantities. Now suppose that
v, had a period T,. Then v,(T,) =»(0), or

vp(Tp) —A=0. (4.10)

(4.10) is an equation for T, in terms of A. Now indeed
T, is known, for we want to produce a solution of period
T=27/w. Thus while we regard (4.10) as an equation
for T, in terms of A, it is really an equation for A4 in
terms of T'p. Inserting v, as given in (4.8) into (4.10)
yields

Tp F
0=/ Vp(r)dr— —sin o T, =P(vp, Tp, A) (4.11)
0 «

for the periodicity condition. We want to solve this equa-
tion for Ty in terms of 4 for p near zero. Since v, de-
pends analytically on p for p near zero, so will Tp. Thus
we apply the implicit function theorem to (4.11), i.e.,
we show that we can solve (4.11) for T in terms of A
for p=0. Then we show that the derivative of T, with
respect to 4 at p=0 does not itself vanish at the solution
corresponding to p=0. This is sufficient since all quan-
tities are analytic in p. At p=0, (4.11) becomes

To F

0=[ Vo(7)dr— —sin 0T . (4.12)
0 o

From (4.7), we compute v4(t), viz.,

(1) =A(COs wt+sin wt) (4.13)

provided

a-_r (4.14)
1+4+c%w?

Thus

T0=2\/;§ . (4.15)

Now we want to find

ar
ainll _ _dPo/dd . (4.16)
dA |0 dPo/dTo

However, when we insert (4.13) and (4.15) into (4.12)
(ie., set p=0 in 4.12), we find that (4.12) is satisfied
identically and there is nothing left to differentiate (i.e.,
Po(vo, Ty, A)=0). Thus before we let p—>0 in (4.12)
we divide P, by p. This does not affect our previous argu-
ments. Denote

Qo=Pyo/p 4.17)
and let
To=To+pn(p), 7(0)F#0, (4.18)

with T, as given by (4.15). (If (0) =0, we must divide
P, by a higher power of p in (4.17).) Now we find by a
simple computation that

‘ljig(l) Q(vp, To+pn(p), A) =0 (4.19)

becomes the equation

7(0)(A—F)=0. (4.20)

Then

dn(0)  dQo/dd 7(0) . (4.21)
dA dQo/dn(0) A—F

Thus we may indeed find T in terms of 4 for p near zero.
We now turn to the

® Proof of Part 2

We find it more convenient to use the (6, u) variables
introduced in Section 3. (ot=6, v{(t) =u(f), vc=W).
Then our equation may be written in the form

% (u+ % u2> ——utFcosf,u(0)=A.  (422)
[}
or
1 p . 4
U= —| — — Wur+Fsin 80— | udd
w 2 0
+W (A+ %A2>] ) (4.23)

We consider (4.23) to be a map defined on the Banach
space of functions of two variables, u(d, p). The ele-
ments of our Banach space B are to be continuous in 6
and in p and analytic in p. 6 varies in an interval

0<0<l, (4.24)
where [ >2n. p varies in
[p|<R, (4.25)

where R is to be specified. Of course u as a function of p
is continuous for p on the set |p| <R but analytic on the
set p<R. The norm of u is
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[u]] =max|u(d, p)|. (4.26)

lp|<k
Let S be the set in B, where
Hul) <M, (4.27)
M to be specified, and
u(0)=A. (4.28)

We see that § is a closed set in B. We now wish to
determine for which 4 and W the map (4.23) has a fixed
point in S.

Let #; be the image of #; under (4.23). Then

1 ]
171—52‘—‘* —;" (u1+U2) (ul-—uz)— —W— A (ul—uz)dﬂ .
(4.29)

Then

_ l
| lm—u2]| < A +RM )| us—usl|. (4.30)

Thus if

)
— +RM<L1, (4.31)
w

the map (4.23) will be contracting on S. This will be the
case if

w>1 (4.32)

and whatever M is, R is chosen to be sufficiently small.
Now # is continuous in # and analytic in p whenever
u is, and indeed #(0)=A if u(0)=A. Thus the map
takes B into itself. To see if the map takes § into itself,
we make the following estimate from (4.23):
s S met o+ 2 2 e a3
al| < — —_t — — (4.
2 w w 2

Thus since we must have | ||| <||u(| <M, we need con-
sider the inequality

R 20 ™M e B e, a3
2 wow 2T '
when |4| <M.

This is only possible if the following polynomial in M
has a positive root:

R 1 F R
— M+ [ — —1) M+ — 4 |A|+ — |4]?=0.
w w 2

2
(4.35)

The roots of this polynomial are

1 I
= 1— —
R[ W

< (1= LY —2r F+[A]+R|Al2 (4.36)
=\(1-5) =R (G e ian) e

T
|
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If these roots are real, they are both positive, if one is.
For them to be positive we must have

1
—<1. 4.37
7 < (437)

For the roots to be real, we must have

I\2 F R
_ — — 2} >0. 4.38
<1 W) 2R<W+[A[+ 5 |A|>_ (4.38)

This is a condition on A4. In addition to |4 | <M, A4 must
be smaller than the larger root in (4.36). This gives a
second condition on A4:

1 ]
lAls—[l—-—
R w
1 \2 F R
+\/(1—7> —2R (W+|Al+-2— |A4] )] .(4.39)
or

< \/<1— TIV-)Z _2R (—:—;—+|A|+ % 1A|2> . (4.40)

The left member of (4.40) is negative or not. If it is
negative, the only restriction on 4 is (4.38). If it is posi-
tive we square (4.40) to obtain

!
Rz(A[2—2R<1——> |4l <
w

—2R (£_+1A|+—R_|A|2) ) (4.41)
w 2
or
R? 2R
2 2 = . 4.42
(R+ W)lA] +2R|A|+ 7 F<0 (4.42)

Equation (4.42) is never satisfied for any A. Thus the
left member of (4.40) must be negative, i.e.,

w-—1

4] < (4.43)

Since W >I, this inequality is possible. Now (4.38) as-

serts that
2RF I \2
R2|A|2+2R|A|+ (1— ) <0. (4.44)

W W
For this to be satisfied, the corresponding polynomial in
| 4| must have a positive root. Its roofs are

1
[AI=—-——[—2R
2Rz

RF \*
+ \/ 4R?—A4R? iW—— (1—7> >] (4.45)




For the larger of these two numbers to be positive, we
must have,

2RF 1\
a2 (1Y V>0, (4.46)
&%)

or

l 2
2RF£W<1— —) (4.47)
w

Now for any fixed W>I, (4.47) may be arranged by
choosing R sufficiently small. Or for a fixed RF(~¢>1),
(4.47) may be arranged by choosing W sufficiently large.

There remains only to see if the A4 produced in the
proof of Part 1 of this theorem satisfies the restriction
(4.43).

From (4.14) we have

F

. 4.48
1+ w2 ( )

Thus by making W sufficiently large we may make A as
small as we please. Combining (4.43) and (4.45) we get

F w1
< (4.49)
1+w: = RW
or
14+ W
RF< w-1. (4.50)

Thus for a given RF(~e¢>1), by making W suffi-
ciently large, (4.50) may be arranged.
Equation (4.36) shows that

1 1
[A|SM<— < —. (4.51)
R — |pl
Thus our periodic solution is bounded in amplitude by
1/[pl, i-e., is bounded away from the singular points.
This concludes our proof.

lil. Perturbational analysis of the differential
equation

In this part of the paper we will apply a perturbational
procedure to the differential equation to compute approx-
imations to the periodic solutions. In Section 5 we will
consider harmonic response to harmonic input, while in
Section 6 we consider combination oscillations to so-
called carrier and signal inputs. In Section 6 the phe-
nomena of amplification and conversion are discussed.

8 5. Harmonic response to harmonic input

In this section we will consider the equation

c(1+pv)vi=—v+¢ (5.1)
when
(1) =F cos ot, (5.2)

i.e., the line is being driven harmonically. We wili inves-
tigate the periodic solutions of (5.1).

First let

O=wt, nu(@)—=v(), W=oc. (5.3)

Then our equation is

W(1-+pu)ty=—1u-+F cos 6 . (5.4)
For definiteness, let us suppose that

u(0)=4. (5.5)

Now in fact A is not known, while W is indeed pre-
scribed in advance. However, we have seen in Section 4,
that this reversing procedure will enable one to derive the
amplitude-versus-frequency relation for a periodic u(9).
This is merely a point of view and only serves to facilitate
the procedure. Thus let us look for u# and W which satisfy
(5.4) subject to (5.5) and a condition of periodicity on
u, in the form of perturbation series in the parameter p,
viz:

u=tp-rpiy--..., (5.6)
W=WotpWit... . (5.7)
We cause (5.6) to satisfy (5.5) by requiring that
uo(0) —A (5.8)
10, (0)y=0, i>0. (5.9)

Now if we insert (5.6) and (5.7) into (5.4), and
equate the coefficients of the powers of p to zero, we
obtain a sequence of equations, the first two members of
which are

Wotto' +tip—F cos 0 (5.10)
W01I1/‘}‘lll‘:'Wullouo,—Wlllo' . (511)

Here. and in what follows, a prime denotes differentiation
with respect to 0. Now the most general solution of
(5.10) is

0
Hp=A exp(W > “+aosin 0+Bocos . (5.12)
o

Since u, is to be periodic because u is, and W is to be
real because W is, we must have A =0. If we insert (5.12)
into (5.10), and set the coefficients of sin # and cos 8 to
zero. we obtain two equations for the determination of
o, ﬁo. and Wn.

These equations are

ap— WoBo=0 (5.13)
Woao+Bo=F . (5.14)
Thus

L (5.15)
14+ W,?

and

Bo= —f—- . (5.16)
1+ We2

11
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Now if we apply (5.8) to (5.12), we have 4=, or,
using (5.16),

F—A
Wo2— , ,
o p (5.17)

If we introduce the notation
p= —A— , (5.18)
F
equation (5.17) becomes
I—pu
o

From this we may conclude that p<1.
Now if we insert (5.12) into (5.11), (5.11) becomes

Wouy' +ur=—Wo[ % (an?— Bo?)sin 26+ oo cos 26 ]
~Wi(ap cos #—Bosin 4) . (5.20)

Wo?=

(5.19)

The most general periodic solution of (5.20) is
Uy =cy1 sin @4 B11 cos B+ ays sin 26+ B2 cos 20, (5.21)

where a1, 811, @12, and B2 are determined by inserting
(5.21) into (5.20) and equating the coefficients of sin 6,
cos 6, sin 24, and cos 26 to zero. This procedure leads to
the following four equations for determining a1, Bi1,
«12, 1812, and W1.

a11—WoB11=Wif8
Woa1r+B11=—Wiao
012 —2WoB12=—3Wo(ap®— Bo?)

2Woarz+ Brz=—Woaofs . (5.22)
These four linear equations yield
a11=W1F—~—1—hﬁ2— (5.23)
(1+We?)*
2WoWLF
Bu=— (—IW (5.24)
2 2
aem (1Z$E:)V<Vf+ éﬂ> ¢-23)
F2W (W2 —2
fra= (1+4W002(> i W;)z ‘ (:26)

Now if we apply (5.9) to (5.21), we obtain 811+ B12
=0, or from (5.24) and (5.26)

Wo?F2(Wo*—2)

—2W WiF+
1+4W,?

0. (5.27)

This equation may be solved for W, in terms of W,
and F, viz.,
wyo el W2 (5.28
T et 2%

Combining this and (5.7) gives us the following ex-
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pression for W

W==Wo|:1+ _pIiWL—Z__:I +0(p?) . (5.29)
2 4AWgr4-1
Let us introduce the abbreviation
e=pF, (5.30)
in (5.19) and (5.29). This gives finally
W= —ll[ui 1_3”] (5.31)
s 2 4-3pu

to within an error of order p%. Introduction of (5.19)
into (5.15), (5.16), (5.23) —(5.26) gives us ao, Bo, a1,
B11, a1z and Bis in terms of 4, F, and p. These expres-
sions are

-
I

a0=—A

180=A ’

1—p 1-3
ay=A — a
po 4=3u

@2u—1),

Bi11=—24F(1—pu)

1-3u
4—

1— 1-3
/312=AF£_’2(__ﬂ)_ . (5.32)
4—3pu
Inserting (5.32) into (5.12) and (5.21) and the result
into (5.6), we obtain u in terms of 4, F, u, and &;

e 1-3

[T=pu | o l .
== f— | —1— -1
u \/ 1 3 (2p—1) |sin @

1-3
+A4 [:1—25(1—“) ‘u:‘cosﬁ
4—3pu

—u 5-6
_%A,w\/l B 27O Gn2g
B 4-3u
(1—p) (1=3p)
E—m————Ci
4—3pu

+4 0s 20 (5.33)

to within terms of order p?. From (5.33) we may com-
pute the ratio of the output amplitudes squared to the
input amplitude squared. Using Parseval’s equality, we
obtain

[ul]?
F2

B _ . 1-3u
—,u[l 2(1—p) 23, e], (5.34)

to within terms of order p2.
There remains, then, to analyze the response relation
(5.31).

(i) Analysis of response curve

In Fig. 7 we plot the curve (5.31) for several values




Figure 7

of e. This is a plot of the normalized amplitude at §=0,
A/p, of the periodic solution versus frequency. All
curves are asymptotic to the W axis.

For £=0 the response curve is a bell-shaped curve tan-
gent to u=1 at W=0. As ¢ increases from zero to one the
same situation prevails, the bells becoming lower. This
situation corresponds to the fact pointed out in Part II,
that the amplitude of the periodic solution lies some-
where between O and F or in terms of g, for p between
zero and one. We see that this is indeed the case and that
at least for small frequency the amplitude at =0, i.e., 4,
gets very near F. Of course for larger frequency the
amplitude at zero is less than F, but it might get as large
as F for §70. This is probably what happens and could
be decided by analyzing (5.34). When £>>1 the response
curve no longer passes through p= 1. The response curves
rise from zero at W= to

8+¢
p=% 5T (5.35)

at u=0. This is consistent with what we have seen in
Part II. Namely, that the amplitude of the solution lies
between zero and F if ¢ < 1. But if £¢> 1, the amplitude is
less than F and only possibly as large as 1/p. The inter-
cept given in (5.35) decreases from one at e=1to 2/3 at
£=o00.

The actual curve of normalized amplitude versus nor-
malized amplitude at §=0, (5.34), is plotted in Fig. 8.
The curves for £>1 do not cover the entire range
0<u<1. The curves for 0<¢<1 lie slightly above
[|ul|2/F2=1 for p slightly less than one. This is prob-
ably due to a truncation error.

Figure 8

(ii) Subharmonics

In this section we interpolate a short plausibility argu-
ment to demonstrate the nonexistence of subharmonic
response based upon simple perturbational methods. This
fact was rigorously proved in Section 3, however, by
using not too simple methods. We consider the first per-
turbation equation, viz.,

Wouo' +uo=F cos 8 . (5.10)

If there were a subharmonic response, this equation
should, e.g., have a solution of the form

g 0

Uo=ag SIN — +ﬁo COs — . (536)
n n

Then we must have

—Woﬂ)- +ap=0, (5.37)

n
and
Wo-2 4 Bo=0 (5.38)
n

for the determination of o and So. To find a nonzero
solution to (5.37) and (5.38), the determinant of the
coefficient matrix must vanish, i.e.,

W2
1+ =0. (5.39)

n2

Clearly no value of n or real W, will cause this result.
From a mathematical point of view the reason for the
nonexistence of subharmonic response to the differential
equation is because the order of the equation is too low,
it being only a first-order equation, i.e., the equation,
being too simple, does not possess many solutions and in
particular, does not possess subharmonic solutions. It is
fairly easy to see that if the equation were of second
order that there would be subharmonic solutions. By
coupling the capacitor with an inductance, the order of
the equation will be raised and subharmonic response
will exist. These matters will be discussed in a subsequent

paper.
® 6. Amplification and conversion

In this section we will consider the response of our differ-
ential equation, when it is driven by a pair of harmonic
functions of different frequencies, in particular

¢(t) =F1 cos w1+ F2 COS waf . (61)

We will see below that a solution to our differential
equation in response to this forcing term will have fre-
quency components in the frequencies wi, w2, 01wz,
01— o2 and many others. Our point of view in this sec-
tion will be slightly different from that of the previous
section. This is true because more natural and pertinent
questions are presented for (6.1). These questions con-
cern the phenomena of amplification and conversion. To
establish the ideas, suppose that F; is small compared to

13
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F». The response to ¢(¢) in the frequency oy will have an
amplitude which depends on F; and because of the pres-
ence of F2 ¢os wof this amplitnde may depend on F, i.e.,
the response in frequency o; borrows energy from the
input of frequency of w.. Were this to be the case, we
could then consider the device to be an amplifier in the
specific frequency ;. Similarly the fact that the response
has components of frequencies other than o; and w:, in
particular @) & o2 shows that energy is converted from the
frequencies o1 and o, into other frequencies. This phe-
nomenon of conversion can also be exploited as amplifi-
cation.

To consider what happens we proceed as follows. Con-
sider the differential equation

c(1+pv)vi=—v+F1 cos mt+Fa cos mat . (6.2)

The perturbation procedure applied to this equation

proceeds in a straightforward manner. However, it is not

clear how to apply initial conditions because of the pres-

ence of multiple frequencies. We must, however, pursue

the perturbation procedure in order to motivate the

method of undetermined coefficients which we will use.
We suppose then for the time being that

V=Vot+pVi+... (6.3)

Insertion of (6.3) into (6.2) and equating the coefficients
of the various power of p to zero gives rise to a system of
equations, the first two of whose members are

cvy' +vo="F1 €08 01tF3 cOS wat (6.4)
vy +v1=—cvoVo . (6.5)
The solution of (6.4) is

Vo= ;o SIN (v)1t+,810 COS w1l + ago SiN a)21+B20 COS wal ,
(6.6)

with w10, B\(\, 20, and Bz() determined in the usual
manner.
With vy determined, (6.5) becomes

cv +vi=F101 sin w11+ Fs02 Sin oat
+ M sin 2011+ N1 cos 2ot
+ Mo sin 2wzt + N2 c0s 20st
+M; sin(w1+w2)t+ N3 cos(wr+awz)t
+ M, sin{(o;—w2)t+ Ny cos(w~w2) . (6.7)

Here My, M, ..., N4 are certain constants.

The solution of (6.7) is a sum of sines and cosines of
frequencies o1, w2, 201, 2ms, and o1+ 0z. We use this pro-
cedure to note that if we look for a solution of (6.2) in
the form of sines and cosines of w1, w2, 201, 202, o1+ w2,
and o; — oz that the coefficients of the terms of frequen-
cies o and o, are of order p°, the coefficients of the terms
of frequencies 2oy, 20z, o1 +oz and o1 —wz are of order
pl, and by continuing this procedure, the coefficients of
terms of other frequencies (e.g., 3w1, 3wz, 2(cn+w2),
2(o1—02), 201w, oy oy, etc.) are of higher order in
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p. With this information we may proceed with our analy-
sis as follows:
We look for a solution of (6.2) in the form

V=g SiN 01?1+ B11 COS w1/ + a1z Sin waof + B12 COS wat
+ az1 Sin 20114 P21 €08 2011 +azse Sin 2ost + B22 €08 20at
+ 31 sin(wr+w2) 14 B31 cos (o1 + o) f + azse sin (o1 —w2) ¢
+ B3z €08 (w1 —w2)!
+... (6.8)

We plan to insert this expression into (6.2). From what
we have just observed from the perturbation procedure
concerning orders of magnitude in p, we see that we may
neglect any term which arises which is not of one of the
six frequencies displayed in (6.8). The details of this
enterprise are not noted. We merely remark that after
the steps are carried out, we obtain an expression involv-
ing the 12 functions, sin wif, . . ., cos(w1—wz)t. Equating
the coefficients of these 12 functions to zero gives us 12
equations, coupled only in pairs, for the determination of

the 12 constants, @11, . .., B22. If we introduce the ab-
breviations
W1=w1C and Wo=uwsc . (69)

these 12 equations are:

sin wyt[ a1 — WiB11]=0 (6.10)
cos wyt[ — Wiai1—Bul=—Fy (6.11)
sin wot[a12— Wafi2] =0 (6.12)
cos wot| —Waaie—B12] =—F2 (6.13)

sin 21t I:nm— 2W1Bar—2W1B112

— _Z_ W1(a112+,3112):l =0. (6.14)
cos 2ent[ —2Wiaz — Bar— pWiann f11] =0 (6.15)
sin 2wzt l:azz —2W2B22+pW212?

+ = Wz(awzwm)] -0 (6.16)
€08 2wat [ —2Wiazz— Baz— pWaara812]1 =0 (6.17)
sin(o1+w2)t [a;n— (Wi+Ws) B

+ % W1+ Wz)(anam‘ﬂuﬁlz)]:o
(6.18)

cos(o1+az2)t I:— (Wi+W2)as1—Ba1

- —g‘ (W1+W2) (11812 +a12811) | =0.
(6.19)




sin(w;—ws2)t lia32+(W1‘ W3) Bs2

+ —’2)— (W1 —Ws) (annaiz+B11812) | =0
(6.20)
COS(w1*w2)t|i“(W1—Wz)asz*ﬁ:az‘

— —-2'2— (W,—Wy) (213812 — a12B811) ] =0.

(6.21)
The solution to the systems (6.10) to (6.21) are:
WaFy 6.22
a = ————
11 1+W12 ( . )
Wik 6.23
az— ——— .
T we (6:23)
pF12W1 4W12'—1
oy = — 1 6.24
2T we: awetd (6.24)
FoW,  4W,2—1
ap=—p 277 i (6.25)
(1+Wo2)2 4wyt 1
sy — 1 pFng(W1+W2) W1W2_2 1
——1
TAFWR) (14 Wa2) | 1+ (Wit Wa)?
(6.26)
1 pF]Fz(Wl—Wz) W2W2+2 1
b=t
TAEWE) (W) | T (Wi—Wa)e
(6.27)
Fi
Bii= Twe (6.28)
F,
2pF12W12
- 6.30
Bex (1+4W,2) (1+W;2)? (6.30)
—2pF22W22
= 6.31
Bz (1+4Wa) (14 W)z (631)
FiFo(Wa+ W) 2 (W Wa—2
By LTt ) P b7 2) (6.32)
[1+ (Wi+W2)2]1 (14+W;2) (1+Ws2)
FiFo(Wi— W) 2(W i Wat2
,332=—% pr 2(W1 2) ( 1Wa ) .(6.33)

[1+(W1—W2)2] (1+W1%) (1+W,2)
(i) Amplification
From (6.22) to (6.33) we may deduce some informa-
tion concerning amplification.

The power of the output in the frequency of o, or s
is respectively

Py, =an®+ B +azn®+ B2 (6.34)
Py, =a122+ B12? + ase® + Ba2? (6.35)
correct to within terms of order p*. Then

Fy? p?FitWi2  (4W2—1)2+ (4W,)?2

wy

+W | 4(1+ W) (AW ¥ 1)2

(6.36)

and
Fao? p2F ot W2
1+W¢ 4(14+-Wq2)+

(4Wo2— 1)+ (4W2)?
(AW 1)

(6.37)

Thus there is no amplification to within terms of order p*.
(One can easily see that there will be higher order am-
plification.)
(ii) Conversion
In a similar manner, we have
p*F2F2 (W1 +We)?
4(14+W2)2(1+Wl2)2
[( W1W2_2 +1>2 (W1‘|‘W3)‘)(W1W_:2)“’:|

l-f-(Wl-i'Wz)J + (1+(W1+W2)'))2
(6.38)

w140y =

pQFl'“’Fzz(W1~W2)2
4(1+ W) (1+W2?)*
[< WiWs+2 +1>2 (W1—W2)2(W1W2+2)2:,

-y =

+
1+ (W1—Ws)2 (1+(W1—W3)2)2
(6.39)

Thus there is conversion of energy in the second order
of p.

To determine the response relations from the ayq , . . .,
Bs2, we proceed as follows. In Section 5 we introduce as
a parameter the value of v at +=0. Namely,

v(0)=4. (6.40)

(In actuality, 4 was the first Taylor coefficient of the first
Fourier coeflicient of v.) This led to the relation (4.31)
for W. In our present situation we have two frequencies,
Wi and W.,. To obtain a second relation, we must intro-
duce another parameter, viz.,

v'(0)=B. (6.41)

Of course in general one cannot prescribe two initial
data for the solution of a first-order differential equation.
However, we are not really doing this, because we are
actually prescribing no data for v(¢), but rather only a
periodicity requirement. The two conditions (6.40) and
(6.41) may be viewed as conditions relating W, and W,
to v.

If we insert v to first order in p into (6.40) and (6.41)
we get the relations

A=p11+ P12 (6.42)

and

B=ai01+a1302 . (6.43)
If we now assume that

Wi=Wio+pWii+.. (6.44)

and

Wo=Wa+pWor+.., (6.45)

(6.40) and (6.41) become in terms of the W;;

15
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Fy F, which is the zero-th order approximation to the response
A= + (6.46) ;
1+ W102 1+ Wgo2 relation.
and The next approximation to the response relation is
dv
Wio? Fy W.2F obtained by setting — equal to zero. This yields
B= el (6.47) dp | p=o
+ 10 1+W20 (1+W102)2 4F12W102
If we solve ( §.46) for W12 and insert the result into n= 2F, Wio T (1 aWae?) (1+ Wie?)2
(6.47), we obtain the equation
4F 2 W2 FyFs
2 L F._ 4_ _ —
(1-+Wq?) (F1+F:—A—cB)=0. (6.48) (ATawn) (11 Wa)? (1+ Wae?) (14 W32
This determines a relation between 4 and B, which in (Wio+Wa)2(WioWa—2)
turn suggests that
14+ (Wie+Ws)?
Wa=W. 6.49
= : ¢ ) (Wio—W2)2(W1oW2t+2) (6.51)
is to be taken as prescribed a priori. Thus from (6.46) - 1+ (Wio— Wa)? . :
14+Wie?= Fi , (6.50) Inserting (6.50) and (6.51) into (6.44) would give us
_ Fy an expression for Wy, in terms of F1, Fz, W, and A cor-
1+W,2 rect to order p2. Indeed (6.50) into (6.51) gives
F 2 B Fy 1
. FZ '—'41712 _ FZ
- 1+ Wy 1+Ws2 4F,% Wyt
e r i . X 4F, Fi 2 (1—W) (1+W32)?
o [T —+A Fs ~ B
A\ w2 | 1+ W2 1+ W2
F, 1 F, _ ]
B W+ W=D+, F (Wat—1) —W22(14+W2?)
4F\F; 1+ W2 1+ W2 ;
Fi Fi 2 F1 2 2
_ F2 (1+W22) 1+2 . FZ +2W22+ A_ F2 —sz
1+ Wy2 1+ W2 1+Ws? .
(6.52)
Combining (6.44), (6.50), and (6.52) gives a relation (i) Harmonics
between Wi, W, F1, F2, p and 4 which is the response Let p and g be relatively prime integers, such that
relation. This relation determines the value of the peri-
odic solution v at t=0, A4, in terms of the driving frequen- pr=qT. (7.2)
cies, their amplitudes, and the degree of nonlinearity, p. Now consider
t-T
IV. The difference-differential equation c(v)oe ror =¢(t—7—%7) —v(t—7)
® 7. Periodic solutions under a commensurability
restriction
t~(p-1)T
— (1t — _ o — —_ —
In this section we will obtain periodic solutions of () v tpr == (p—r=37)—v(—(p—D7). (7.

H
c(v)v, =—v(t)+¢(t—37)

t—-7

(7.1)

when + and the period T of ¢ are commensurable.
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Suppose (7.1) has a solution of period T. Then this
solution satisfies each equation in (7.3). It must then
satisfy the sum of all equations in (7.1) and (7.3). This
sum is




c(v)’utt =pj1¢(t—jr—1/27)—'v(t—~jr). (7.4)

t-p7 j=o0

Since pr=qT, this reduces to

p-1
0= ¢(t—jr—1/27) —v(t—jr). (7.5)

j=0
Thus the totality of solutions of (7.5) contains the
periodic solutions (with period T) of (7.1). The totality
of solutions of (7.5) is a linear combination of exponen-
tials plus the particular solution ¢ (¢t—1/27). Specifically,

-1
v(t)=¢(t—1/27)—|—112 Ape2mint/p (7.6)
n=1
Not all of the terms in (7.6) have period T, nor are
all of them real. Indeed not all of the functions repre-
sented by (7.6) are solutions of (7.1). To determine
which of the expressions in (7.6) satisfy the three prop-
erties just mentioned requires special choices of = and
the A,. We will consider these possibilities in general and
in particular when ¢=F cos of, and c(v)=c(1-pv),
(here ¢ and p are constants).
Case 1. Suppose that r is a multiple of T, i.e., p=1.
Then (7.6) reduces to

1
'v(t):qb<t— - 7> . (1.7)

This is real and has period T. For it to be a solution of
(7.1) requires that

(- +))e(-1)

or in our special case where ¢(v) =c(1+4pv),

1 1
CFw|:1+pFCOSw<f———T> Sinw(t——*r)
2 2
1+pFc t 3 i t 3 0
- 0s ot~ — - = =0.
P o > T ) SN o > T

(7.9)

t
=0, (7.8)

-7

Letting wt=14, —o;—- =y,

(7.9) becomes

sin @ cos —cos § sin ¢y —sin § cos 3y +cos 6 sin 3y

+ fzi [sin 20 cos 2¢—cos 26 sin 2y —sin 26 cos 6y

+cos 26 sin 6¢] =0 . (7.10)
Then we must have

cos y—cos 3y=0,

sin ¢—sin 3y =0,

cos 2¢—cos 6y =0,

sin 2¢—sin 6y =0 . (7.11)

The equations (7.11) each imply

y=nr, (7.12)
ie.,

oT=2nm (7.13)
or n=q.

or=2gr is a condition on both » and 7 in order that
(7.1) have a periodic solution.

Case 2: If p is larger than one, so that the sum in
(7.6) is not empty, then in order to make (7.6) real we
must have certain relations among the 4.

If p is even, we must have

k4
1 7 2mnt
v(t)=¢|t— — 7 )+ 3 24, cos . (7.14)
2 n=1 pr
If p is odd, we have
p-1
1 2 2xnt
”(t)=¢<t— —-r> + > 24, cos i . (7.15)
2 n=1 PT

The terms in the sums here will be periodic of period T, if
nT
DT
ie., if
n=qgo, (7.17)

i.e., if g/n (q divides n).

=g =integer, (7.16)

Thus we must first of all have, since n>>p, that g<p.
If this is not the case, as in Case 1 above where p=1, we
will have ¢(¢—1/27) as the only possible periodic solu-
tion of (7.1). We may thus rewrite (7.14) and (7.15) as

2,222

2 2

1 27t
v(t) =¢<t~ — r> +2 E A, cos . (7.18)
2 DT

n=0q
a>0

The upper limit, which is an integer, is taken in this
expression.
Now we must insert this into (7.1). This yields

Let us specialize ¢ and ¢ as before. We get

17
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_‘1,

RESTTE 1 4= 2znt
c [H—F cos m<t— — 1-> +2p E A, cos :l —oFsno|lt——71)— — nA, sin
2 pT pT
n=o0q
. 3 47 . 2mn(t—7)
—oFsino(t— — 7)) — — nA, sin ————
2 pT pr

a>0

[1+chosw<z—__T>+2PZ :A..u)s 2zn(t—r7)

2 : 2xnt
-2 A, cos

To explore the possibilities, let us supposc that the sum
reduces to a single entry. Setting the coeflicients of sin w?
and cos ot in the resulting expression cqual to zcro gives
respectively,

. 1 3
sin th:Cu)F (—cos-? w-r—i—cos—z—- an'):l =0 (7.21)

and

1 3
€os ot| coF ( sin — oT—sin — o7 =0. (7.22)
2 2
The solution to these equations is
1
— oT=nT7 2
> OT=H (7.23)
or
q
2 . (7.24)
p

This is impossible since p>¢q. Thus we must have more
terms which are sines and cosines of of. The only way of
producing such terms is to set

27n
=0, (7.25)
pT
This implies that
n=gq, (7.26)
and
mT=27ri. (7.27)
p

Thus g must be less than or equal to p/2-- lor p/2-—-1/2,
whichever is an integer.

With this restriction on w7 and n, equating coeflicients
of sines and cosines to zero as before, gives

€05 — w7+ drndn g 7.28)
—Ccos — COS — oT— = 2
2 7 2 T ToFpr (
and
1 o3 4nA, 2=n 24,
sin — o7 —SIiN — oT— sin -+ =0
meF P coF
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(7.20)

Inserting (7.26) and (7.27) into (7.28) and (7.29) gives

: 3x 2A4
»cosT—q»!—cos a_ 1 =0, (7.30)
D D F
and
b A 24
sin =L _in 37— ! sin 2 — 1.0.(7.31)
P 14 F 14 coF
These equations combine to yield
F F(l+c
Ay=—| —cos n—q— +cos 371-i == ( ©)
2 D p 2(1+sin 27q/p)
(sin 4 —sin 3 E) . (7.32)
P 14

(7.27) and (7.32) are the response relations for o, 7
and A4,. We may conclude from this example that a peri-
odic solution of (7.1) exists only when certain relations
are satisfied by » and 7. This example here will serve to
guide our perturbational analysis of (7.1), which we will
cxplore in Section 4.

We now inquire into the questions of subharmonics.

(i1) Subharmonics

The analysis of this question proceeds in a manner
similar to (i). Thus we merely make the following ob-
scrvations:

If we want a solution »(¢) of (7.1), with period rT,
but with no smaller period, then the number p in equa-
tion (7.5) should be replaced by a multiple of itself if
r{q. Indeed p is replaced by rp. Then (7.6) becomes

1 -1 27 in
v(l):tﬁ(t* — r) + S Aqexp (~ t>. (7.33)
2 n=1 rpr

The existence of subharmonics reduces to the question
of whether the sum in (7.33) has terms with period rT
which are not periodic with a smaller period of the form
sT. This will be the case if

nrT .
= integer (7.34)
rpr
but
nsT .
7 integer . (7.35)
rpT




These conditions reduce to

n
—— = integer , (7.36)
pq
and
n s
— — #integer, (7.37)
pqr
respectively. Thus we must have
rqln, (7.38)
but
parin. (7.39)

This is the case if and only if r/{n, since r/fs.
® 8. Perturbational analysis

In this section we will derive the response relation for

periodic solutions of our equation. We do this without

imposing a commensurability restriction on T" and r.
For definiteness we take

¢(t)=F cos ot , (8.1)
and
c()=c(1+pv), (8.2)

where p and ¢ are constants and p is considered to be
small.
Now we introduce the transformation

f=ot, Y=0r, W=oc, u(d)=v(). (8.3)

Our equation then becomes

W(1+pu(8))us(6) —W(1+pu(f—y))us(6—4)

=—u(§)—F cos(6—3%y) . (8.4)
We introduce two auxiliary parameters in

u(0)=A4, (8.5)

and

' (0)=B. (8.6)

(i) Harmonic response

From what we have deduced in Section 2, we know
that a periodic solution of (8.4) will exist only if certain
relations are satisfied by  and = (or W and ¢). From our
experience in Section 2, we may expect these relations to
take the form of W and ¢ as functions of the initial con-
ditions, 4 and B. Thus in performing perturbational
analysis we are led to look for u, W, and ¢ in the form

u=uo+pu1+ e (8.7)
W=Wo+pWi+... (8.8)
v=votpiat ... (8.9)

In addition we assign 4 and B among the coefficients in
(8.7) through

up(0) =4,
uo'(0) =B,

u;(0)=0, >0,
;' (0)=0, i>0. (8.10)
The first two perturbation equations are respectively

Woluo'(6) —uo'(0—10) 1 =—uo(8) —F cos(6—1/2¢0)
(8.11)

]

Wolud (0) —u/ (0 —yo)1=—u1(8) —uo’ (W14 Wouo)

o~y

¥

—Wo%uo"(ﬂ—ll/o)—F—z— sin(6—1/2¢0) . (8.12)

We look for a solution of (8.11) in the form

uo=ap sin §+ B cos 4 . (8.13)

From (8.10) we see that «p=B and So=A. Thus if we
insert (8.13) into (8.11) and equate coefficients of sin
and cos § to zero, we obtain two equations involving the
four quantities ao, B0, Wo and . These equations are

Wo[—IBO—OLO sin l,’/o+,80 COs lllo] +(¥0+F sin %lpo:O
(8.14)
and

Wo[ag—ao CcOos lpo—ﬁo sin ¢lo] +,80+F Cos %500:0 .
(8.15)

Since ay and 3, are known in terms of 4 and B, we
view (8.14) and (8.15) as a pair of simultaneous tran-
scendental equations for the determination of Wy and .
If W, is eliminated from the pair (8.14) and (8.15),
there results, after some manipulation, a quadratic in
sin ¢o/2. The quadratic has an extraneous null root. The
remaining root is

Yo —aoF —BF
2 (@B (4B
With this information, W, is readily found to be
(A2+B?)(B*+A*—F*)
~2BF[AF++\/(A*+B?)*—B*F] ~

Continuing our procedure by inserting (8.13) into
(8.12), leads us to look for a solution of (8.12) in the
form

sin (8.16)

Wo= (8.17)

Uy =auy Sin 0+ By €os O-+asz sin 20+ B2 cos 20 . (8.18)

The equations for ai1, 811, e12, and B12 are linear.
After solving these equations, the initial conditions
(8.10) give the following linear equations for determin-
ing ¢y and Wi,
0=p11+L12
0=a11+2a12. (819)

Once 1 and W, are determined, we can combine all

of our results and obtain
W=W,(A, B)+pW.(4, B) (8.20)

and

[\

19
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Y=yo(4, B) +py1(4, B) ,

which are the response relations. Thus for each value of
driving frequency, W, and each value of ¢, one or more
pairs (A4, B) which fix the magnitude and phase of the
harmonic u are determined.

A summary of these manipulations for obtaining -
and Wi is:

Wi=(2:Y,—Z,Y3)/(X4Y5),
V1=(Z:X3—X4Z3) / (X3Y 41—~ X,Y3),
X3=A(1—COS lpo) + B sin 31/0 N

(8.21)

(8.22)
(8.23)

F
Y3=WoB cos yo+WoA sin yo— - cos ﬁ R

2
X4=—B(1_COS SI/O) +A sin EDO N

. F /
Y= —BW, sin o+ WoA cos Yo+ 3 sin i;jo- ,

Zz=az1(1—Wysin o) + B11Wo(—1-+cos ) ,
Zi=a11Wo(1—cos yo) + B11(1— Wy sin o) ,
—tani=a12=(21Y2—Z;Y1) /(X1Y:— X2Y1),
—Br1=PR12=(X1Z2—X2Z,) / (X1Y:— X2Y1),
X1=1-2Wjsin 2y,

Y1=2(—1+cos 2¢o),

Xo=2Wy(1—cos 2yy) ,

Y,=1—2W;sin 2y,

W,

Zi= 2° (A2—B2) (1—cos 2y) + WoAB sin 2y,
W, .

Zz= (A“—Bz)sm 2!#0—!- W(]AB Cos 21[/0‘—ABWO .

2
In Figs. 9 and 10 we plot the response curves.
(i1) Subharmonic response

Let us obtain the first harmonic. Thus in (8.11) insert

] ]
Uo =001 sin—i- +Bo1 cos—2— +ao2 sin 64 Boz cos 8. (8.24)

Then equating coefficients of sin 6/2, cos §/2, sin 6,
and cos 8 to zero gives

9
sin — | — W, Por — W ot sin ﬁ
2 2 2 2
e Lo cos Yo +a01:| —0, (8.26)
2 2
0
cos — | Wy o1 —Ws aor cos ﬂ
2 2 2
W, Bz"l Sin%-}-ﬁm] =0, (8.27)

sin @ [ - WO,BOZ_ Woaoz sin l//o+ Woﬂoz Ccos ¢lo

+0[02—F sin %l[/o] =0 s (828)
and
cos f [Woaoz— Woaoz Cos l//o— Wo,@oz sin t,[/o

+,802—F Cos i’lﬁo] =0. (829)
These equations together with
Bor+Boz=A4, (8.30)
and
% +a=B, (8.31)

which are obtained from (8.5), (8.6) and (8.24) form a
system of six equations for the six unknowns, ag1, aoz,
Bo1, Boz, Wo and .

A procedure for solving these equations is given as
follows. First we note that (8.26) and (8.27) are linear
homogeneous in a1 and B with coefficients given in
terms of W, and yo. In order to find a nontrivial solution
of (8.26) and (8.27) the determinant of the coefficient

We obtain matrix of this system must vanish. This gives a relation
W, [ ao cos b fon sin 6 ~+ a2 €os @ — Boz sin 6 petween Wo and o viz.
0 - — T o2 — oz
w 2 W2 2
2 L 2 <1— ® sin2° ) e (1—cosﬂ> —0. (8.32)
a0l 9—500 + B{n 9—11/0 2 2 4 2
2 cos 2 2 s 2 Now equation (8.27), say, may be solved for B¢ in
terms of aq1, Yo and W, and provided
— a2 €08 (8 — o) + Boz sin (8 —1) ] (1— W, sin o) 2— Wo2(1—cos 1) 250, (8.33)
.0 g . (8.28) and (8.29) may be solved for aoz and Boz in terms
= T o SI0 b3 ~Box cos e sin § of W, and . When these values of Bo1, a0z, and Bos are
inserted into (8.30) and (8.31), we have two equations
20 — Boz cos 0+ F cos (0—44¢o) . (8.25) for a¢1, Wo and . Eliminating ao1 gives
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-0.4
-0.6
-1.0
-1.5
-2.0
~ — : } .
| 1 2 3 ¥=0
~ SYM=—| ~ANTI SYM
Figure 9
—w 1—cos o _ Equations (8.32) and (8.34) must now be solved for
° Wo . o o W, and . When this is done we may compute ao1, So1,
1——2'8111—2 a2, and Boz from (8.27) to (8.29). When these opera-
(8.34) tions are done, we insert uy in (8.24) into (8.12) and

obtain an equation for u;. We look for u; in the form of
A—F[—~cos 4y0o(1— W sin ¢o) — W sin 3o(1—cos )]  sines and cosines of 6/2, §, 36/2 and 20. The resulting
(1—Wo sin ) 2— Wo2(1—cos o) 2 equations for determining the coefficients of u; and ¢1
— T — - — n — - . and W; are all linear now. The remainder of the proce-
B—Flsin 3y,(1 W0.51n ¥o) —Wo cos 3yo(1~Wosin go) ] dure is straightforward. We eliminate all details.
(1—Wo sin 0)2— Wo?(1—cos ¢) 2 (For references and footnotes, see page 24.) 21
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