

Maintenance Diagrams

This manual contains the maintenance-oriented and recall diagrams referenced in the companion 7201-02 Computing Element FETOM (Form SFN-0201) and in the 7201-02 Computing Element FEMM (Form SFN-0203).

The diagrams in this manual are arranged into six categories:
Category 1. Diagnostic Techniques
Category 2. Overall Data Flow
Category 3. Data Flow by Instruction Class
Category 4. Functional Units
Category 5. Operations
Category 6. Manual Controls and Maintenance Facilities
All diagrams are in numerical order. The first digit of the diagram number reflects the category; for example, Diagram 4-210 belongs to Category 4, Functional Units. A category may be further subdivided into functional groups; for example, in Category 4, the diagrams have been grouped as follows:
Group 1. Timing and Clock Control
Group 2. ROS
Group 3. Data and Control Registers

Group 4. Local Storage
Group 5. Serial and Parallel Adders
Group 6. Status and Control Triggers
Group 7. SCI
Prerequisite and companion manuals are:
Prerequisite Manuals
9020 E System Introduction, Theory of Operation Manual, Form SFN-0103
9020D System Introduction, Theory of Operation Manual, Form SFN-0104

Companion Manuals

7201-02 Computing Element, Theory of Operation Manual, Form SFN-0201
7201-02 Computing Element, Maintenance Manual, Form SFN-0203 7201-02 Computing Element, Installation Manual, Form SFN-0204 7201-02 Parts Catalog, Form SFN-0205
9020 D/E Power Controls and Distribution, Theory of Operation Manual, Form SFN-0105.

First Edition (July, 1970)
This manual has been prepared by IBM Product Publications, Kingston, N.Y.

, Cy, RS, and ST-Fet 5-10
5-12SS and SI I-Fetch5-14
-Fetch Sequencers (2 Sheets)lock I-Fetch Trigger5-16
CPU Store in Progress Exceptional Condition
Interruption 5-19tting of Interrupt Code Trigge
rruption 5-21
External Interruption $5-23$
$5-24$
/O Interruption (2 Sheets) $5-26$
$5-26$
Program Store Compare Exceptional Condition 5-27
In Condition (2 Sheets) 5-29
Group 2: Fixed-Point Instructions 5-101oad Halfword, LH (48)
-103oad Com, LTR
Load Positive, LPR (10)Load Multive, LNR (11)Fixed-Point Add-Type Instructions (2 Sheets)Fixed-Point Multiply (3 Sheets)Fixed-Point Divide (6 Sheets)Convert to Binary, CVB (4F) (2 Sheets)tore, ST (50)tore Multiple, STM (90) (2 Sheets)hift Left Double SLDA (8F) (4 Sheets)5-116
Shift Right Single, SRA (8A) (3 Sheets) 5-118
Group 3: Floating-Point Instructions
Load LER (38) - Short Operands; Load LDR (28) - Long Operand -201
Load, LE (78) - Short Operands; Load, LD (68) - Long Operands 5-203
(32); Load Complement, LCER (33) - Short Operands5-204
(22); Load Complement, LCDR (23) - Long Operands-206
Foating-Point Add, Subtract, and Compare - Long Operands (5 Sheets) 5-20
live, HDR (24) - Long Operands 5-209
loating-Point Multiply, Short Operands (4 Sheets) -21loating-Point Divide Data Path5-213
-215Floating-Point Divide, Long Operands (5 Sheets)GIS for Decimal Add Subtract, and Compare5-301
True Add Sequence for Decimal Add, Subtract, and Compare (3 Sheets)5-303
Zero and Add (4 Sheets) -30
Decimal Divide (9 Sheets) 5-306
Pack, Not Word Overlap Sequence -308
Unpack, Not Word Overlap Sequence 5-310
Move With Offset, Not Word Overlap Sequence 5-31
Group 5: Logical InstructionsLogical Move Instructions-40
ogical AND Instructions 5403
ogical Exclusive-OR Instructions -405
est Under Mask, TM (91) 5-407
oad Address, LA (41) $5-409$
Edit, ED (DE); Edit and Mark, EDMK (DF) -411
Branch On Condition, BCR (07); BC (47) (2 Sheets) 5-501
Branch and Link, BAL (45) (2 Sheets)5-504

*Note: 1052 Adapter is used only with the 9020E configuration.

ABC	AB register byte counter
ac	alternating current
ACR	Automatic Carrier Return
adr	address, addressed, addressing
ALD	automated logic diagram
ALTN	Alternate
amp	ampere
APSA	alternate preferential storage area
ASC	address store compare
ATC	air traffic control
ATN	alternate test number
ATR	address translation register
Attn	attention
Aux	Auxiliary Magnet
BCD	binary-coded decimal
BCU	bus control unit (alternate terminology for SCI)
BL	blink
BR	brightness
BSM	basic storage module
C	capacitor
CAS	control automation system
CAW	channel address word
CB	circuit breaker
CC	condition code, also Configuration Console
CCC	Central Computer Complex
CCR	configuration control register
CCW	channel command word
CE	Computing Element
Charistic	Characteristic
CLD	control automation system logic diagram
Cmd	command
CPU	Central Processing Unit (alternate terminology for CE)
CR	diode or Carrier Return
CROS	capacitive read-only storage
CSW	channel status word
CT	conditional terminate
CTC	channel-to-channel
CU	Control Unit
CVG	Character Vector Generator

dash
diagnose accessible register
diagnose accessible register mask
Data Adapter Unit
direct current
Display Channel Processor
Display Element
decimal
decimal divide
decimal overflow
Display Generator
disconnect
delay
display
disable
first byte in a series of destination bytes second byte in a series of destination bytes
third byte in a series of destination bytes
element check
end operation
nd of block
End-of-Line
mergency power off
expected result
Executive Control Program
exponent overflow
exponent underflow

fuse

Field Engineering Maintenance Diagrams Manual Field Engineering Manual of Instruction Field Engineering Maintenance Manual Field Engineering Theory of Operation Manual
fixed-point overflow
fault locating test
loating-point divide
Format New
Format Old
Format Weather
Floating-point register
fraction

GIS	general initialization sequence	PSBAR	preferential storage base address register
GPR	general-purpose register	PSW	program status word
		PVD	Plan View Display
hex	hexadecimal		
Hz	Hertz	R	resistor
		RCU	Reconfiguration Control Unit
IC	instruction counter	reg	register
ICR	inhibit carrier return	RKM	Radar Keyboard Multiplexor
IDES	inhibit display element stop	ROS	read-only storage
I-Fetch	instruction fetching	ROSAR	read-only storage address register
ILC	instruction length code	ROSBR	read-only storage backup register
ILOS	inhibit logout stop	ROSDR	read-only storage data register
Init	initial	RST	Reset
I/O	input/output		
IOCE	Input/Output Control Element	SAA	serial adder A-side
IPL	initial program load	SAB	storage address bus, also serial adder B-side
		SAL	serial adder latch
K	kilo; also relay	SATR	set Address Translation Register
kHz	kilohertz	SBA	serial adder bus A
		SBB	serial adder bus B
LAB	logical address bus	SC	System Console
LADS	Logic Automation Documentation System	SCI	storage control interface
LAL	local storage address latches	SCON	set Configuration Control Register
LAR	local storage address register	SCOPEX	scoping index
LC	lower case	SCR	silicon-controlled rectifier
LF	line feed	SDBI	storage data bus in
LOS	logout stop	SDBO	storage data bus out
LS	local store	SE	Storage Element
LSWR	local storage working register	Sel	select
		Serv	service
MACH	maintenance and channel (storage)	signif	significance
max	maximum	SLT	solid logic technology
MC	machine check	SMMC	system maintenance monitor console
MCW	maintenance control word	SMS	standard modular system
mHz	megahertz	SOROS	scan out read-only storage
MMSC	maintenance mode stop clock	spec	specification
Mple	Multiple	SRL	Systems Reference Library
MPR	multiplier	SSU	storage switching unit
MPX	multiplex	STAT	status trigger
ms	millisecond	STC	ST register byte counter
		stg	storage
NDT	new descriptor tables	SU	switch unit
no op	no operation	sync	synchronizing
NRM	new refresh memory		
NRMA	new refresh memory address	T	transformer
ns	nanosecond	TC	time clock (interval timer)
		TCU	tape control unit
OBS	on battery signal	T(DX)	table byte specified by DX
ODT	old descriptor tables	$\mathrm{T}(\mathrm{DX}+1)$	table byte specified by DX +1
op code	operation code	TIC	transfer in channel
oper	operation	TN	test number
opr	operand	T/R	tilt/rotate
ORM	old refresh memory	TU	tape unit
ORMA	old refresh memory address		
OTC	out of tolerance check	uc	upper case
		uf	microfarad
P	parity	usec	microsecond
PAA	parallel adder A-side	UT	unconditional terminate
PAB	parallel adder B-side		
PAL	parallel adder latch	V	
PB	pushbutton	VFL	variable-field length
pf	picofarad	VFR	visual flight rules
PK	power contactor		
PP	partial product	Xlat	translate
PQ	partial quotient		
priv oper	privileged operation	\geq	greater than or equal to
proc	process	\geq	greater than or equal to
prog	program	$\overline{\text { e }}$	less than or equal to
PROSAR A	previous read-only storage address register A		less than or equal to
PROSAR B	previous read-only storage address register B	\leqq	less than or equal to
prot	protection	=	equal to
PS	power supply	\#	not equal to
$\stackrel{\text { PSA }}{ }$	preferential storage address	\&	and

H

Diagram 1-2. ROS Test Flowchart (Sheet 2 of 3)

Condition	From Sense Amp Input to	Resistance
Normal	DC return. Any other sense amp input. Any drive/balance line.	16.5 ohms 33.0 ohms Open
Sense - sense line short	$D C$ return. input of sense amp to which it is shorted. Any other sense amp input. Any drive/balance line.	8.25 ohms 0 ohm 24.75 ohms Open
Sense - DC return short	$D C$ return. Any other sense amp input. Any drive/balance line.	0 ohm 16.5 ohms Open
Sense - drive/balance line short	DC return. Drive/balance line to which it is shorted. Any drive/balance line in same or opposite plane, except line to which it is shorted. Any drive/balance line not in same or opposite plane.	16.5 ohms 0 ohm 200 ohms plus short resistance Open

Diagram 1-2. ROS Test Flowchart (Sheet 3 of 3)

Diagram 1-3. FLT Flowchart

F

G

H

Diagram 3-1. Fixed Point Instruction Data Flow

G

H

Diagram 3-2. Floating-Point Instruction Data Flow

F Diagram 3-3. Decimal and Logical Instruction Data Flow

G

H

Diagram 3-4. Branching Instruction Data Flow

Diagram 3-5. Status Switching Instruction Data Flow

H

Diagram 3-6. Input/Output Instruction Data Flow

Diagram 3-7. Multiple Computing Element Instruction Data Flow

Diagram 3-8. Display Instruction Data Flow

Diagram 4-1. Clock Control Logic

Diagram 4-2. Reference Oscillator

E

G

[^0]

B

Diagram 4-101. ROSAR (0-5) Logic

Diagram 4-102. ROSAR (6-9) Logic

Diagram 4-103. ROSAR (10) Logic

Diagram 4-104. ROSAR (11) Logic

Diagram 4-105. ROS Addressing and Data Flow (Sheet 2 of 2)

Diagram 4-106. Array Drivers

B

D

E

Diagram 4-107. ROS Data Register

F
\rightarrow

G
$>$

H

Diagram 4-201. Q-Register B-Field Transfer Controls

Diagram 4-202. R-Register Transfer to LAL

Diagram 4-203. E-Register Incrementer, Bits 14 and 15

E
都

F

G

H

Diagram 4-204. E-Register Parity Prediction after Incrementing

Diagram 4-205. Parity Adjustment for IC (21, 22) Stepping

E

H

[^1]

Diagram 4-207. AB Byte Counter

E

F

G

H

Diagram 4-208. ST Byte Counter

Diagram 4-209. Mark Trigger Logic

G

H

Diagram 4-210. CCR Output Logic and Control Paths (Sheet 3 of 3)

Diagram 4-211. LM to XY Reformatting via Mixer (Sheet 2 of 2)

D

E

F

G

H

Diagram 4-212. XY Register Parity Prediction Logic

C Diagram 4-213. Select Register - Select Signal Generation and Response Reset

- Diagram 4302. 9020 Out Bus to LS Data Bus Gating Logic

Diagram 4-303. LS Bus Parity Generation or Check

G

Diagram 4-401. Serial Adder Input Bus Logic

D
Diagram 4-402. Carry Lookahead Logic, SAL(0-3)

$\boldsymbol{t}_{\text {ROS Micro-order }}$

[^2]

E
Diagram 4-404. Decimal Correction Logic For SAL (0-3)

.
-

ROS Micro-order

- Diagram 4-406. Logical Functions, SAL (0)

Diagram 4-407. Serial Adder Parity Predict Logic

Diagram 4-408. Serial Adder Product-Quotient Bit Logic

Diagram 4-409. Gate Control Triggers for ' $\mathrm{B}+\mathrm{T}$ ' Micro-order

B

Diagram 4410. Parallel Adder Bit-Position Logic (Bit 47)

F

G

H

c

\rightarrow

$*$ Timing for direct carry not requiring a
corry
lookchead group carry.

H Diagram 4-411. Parallel Adder Carry Lookahead Logic

Diagram 4-412. Parity Generation, PAL (48-55)
G

H

E Diagram 4-413. Parallel Adder Half-Sum Checking Logic, PA (48-55)

- Diagram 4-414. Parallel Adder Full-Sum Checking Logic, PA(48-55)

E
\rightarrow

F

G

$t_{\text {ROS }}$ Micro-order
C. Diagram 4-415. Parallel Adder Excess 6 Logic

Diagram 4-416. Parallel Adder Set-Condition-Code Logic

Diagram 4-603. SCI Control Logic for CE Clock

-

Diagram 4-604. Invalid Address and Frame Stopped Logic (Sheet 2 of 2)

B

Notes:
1.
'Storage timeout' is activated if 'select outstanding' remains
active through two '60-cycle pulses'.
'Select outstanding' may come ot any time; the
'Select outstanding' may come ot any time; the
example shown is for the leost amount of time necessary to
set 'storage timeout'.
'Select outstanding' is deactivated by 'accept' from storage

Diagram 4-605. Storage Timeout Logic

D

E

F

G

H

Diagram 4-606. Error Handling Logic

Diagram 4-607. PSBAR Step Control Logic

C
-

E Diagram 4-609. Page Control Logic and Timing

F

G

H

G

H

Diagram 4-611. Servicing of Storage Requests in Single-Cycle Mode (Sheet 2 of 2)

D

E

F

G

- Diagram 4-612. Servicing of Storage Requests in Single-Cycle Mode

Diagram 5-1. Operand Prefetching During End Op

G

H

Diagram 5-3. Instruction Requests During Early End Op

Diagram 5-4. Branch Requests

E

F

G

H

Diagram 5-5. Selection of I-Fetch Sequence

G

H Diagram 5-7. One-Cycle RR I-Fetch

0	15
	RR
0	15
0	15
0	15
	RE
0	15

B

Diagram 5-8. Two-Cycle RR I-Fetch
D

E

F

G

Diagram 5-9. RX I-Fetch

Diagram 5-10. One-Cycle RX, RS, and SI I-Fetch

H

- Diagram 5-11. Two-Cycle Indexed RX I-Fetch

F

G

H

Diagram 5-13. RS and SI I-Fetch

Diagram 5-14. SS I-Fetch (Sheet 1 of 2)
G

H

G
Diagram 5-14. SS I-Fetch (Sheet 2 of 2)

Diagram 5-15. I-Fetch Sequences (Sheet 1 of 2)

[^3]

Reset I-Ferch Sequencers
Inhibit Updating of IC(21,22) Inhibit Updating of IC(21,22
Block Q-to-R Transfer Block Storage Requests During l-Fetch Block PAL-to-T, D Transfer
b. Block PAL-to-T, D Transfer
Block Decoding of F1 through F7 Micro-orders

Block Invalid Instruction Address Test

Diagram 5-16. Block I-Fetch Trigger
D

E

F

G

H

Diagram 5-17. Timer Exceptional Condition
H

Diagram 5-18. CPU Store In Progress Exceptional Condition

E

F

G

H

G Diagram 5-19. Machine Check Interruption

H
Diagram 5-20. Non-Branch Setting of Interrupt Code Triggers

Diagram 5-21. SPEC Y-Branch Setting of Interrupt Code Triggers

Diagram 5-22. Program Interruption

Diagram 5-23. Supervisor Call Interruption

Diagram 5-24. External Interruption

E
Diagram 5-25. I/O Interruption (Sheet 1 of 2)

Diagram 5-25. I/O Interruption (Sheet 2 of 2)

H

Diagram 5-26. Common Interruption Routine

Diagram 5-27. Manual Control Exceptional Conditions

Diagram 5-28. Program Store Compare Exceptional Condition

Diagram 5-29. Invalid Instruction Address Test Exceptional Condition (Sheet 1 of 2)

G

H

Diagram 5-29. Invalid Instruction Address Test Exceptional Condition (Sheet 2 of 2)

G

H
A

Bit	Setting Condition
0-5	$\mathrm{o}^{\prime \prime}$ 'sunconditional)
${ }_{7}^{6}$	${ }^{1}$ (unconditional) ${ }_{\text {dor }}$
$\stackrel{8}{9}$	
10	
11	0 (unconditional)

Note: End-op word request for new instructions is

Diagram 5-30. Test for Q-Register Refill Exceptional Condition

- RR format.

Purpose: Load 2nd operand (in GPR, per R2)
into 1st operand location (in GPR, per RI) into lst operand location (in GPR, per RI)
A. Lood, LR (18)

B. Lood, L (58)

- Purpose: Load halfword 2nd operand (in storage) into 1st operand location (in GPR, per R1).
- Conditions at start of execution:

1. 1st 16 bits of instruction are in E.
2. 1st operand is in S and T (not used)
3. Main storage request for 2 nd

2nd operand has been issued per D.

- Diagram 5-102. Load Halfword, LH (48)

Diagram 5-103. Load and Test, LTR (12)

D

E

F

G

Diagram 5-104. Load Complement, LCR (13)

H

Diagram 5-105. Load Positive, LPR (10)

F

G

H

Diagram 5-106. Load Negative, LNR (11)

E

F

G

H

c

$F 11000000$

- Purpose: Lood 2nd operand (os many words as required; in storage) into GPR's, in oscending order,
storting with 1 ist operand location (per RI) and ending with 3 rd operand location (per R33).

Conditions ot start of execution: 1. 1st 16 bits of instruction ore in E .
2. st poerand is in Sond (not used)
2nd operand address is in 4. 2nd operand address is in D.
4. . storage request for 2 nd operand has been issued per D.

D

E

F

G

Diagram 5-107. Load Multiple, LM (98)

Diagram 5-108. Fixed-Point Add-Type Instructions (Sheet 1 of 2)

Diagram 5-108. Fixed-Point Add-Type Instructions (Sheet 2 of 2)

- RR for RR formot:

IC	R 1	R 2	
0		78	112^{2}

- Purpose: Multiply 1 Ist operand (in GPR, per R1 + 1) by
2nd perand ((in GPR, per R2) and ploce b4-bit resslty
into lst operand location (in GPR, per R1 ond RI +1).

Conditions ot start of execution:
Contents of even-address GPR secified by R1 is
in A, B, and D (not used).
3. Muttiplicand (1 st operand) is in odd-address GPR

$$
\begin{aligned}
& \text { specified by } \mathrm{RI}+\mathrm{I} \text {. } \\
& \text { 4. Multiplier (2nd operand) is in } \mathrm{S} \text { and } \mathrm{T} \text {. }
\end{aligned}
$$

B

C

Siagrom $5-22$
$\begin{array}{l}\text { Program } \\ \text { interruption. }\end{array}$

- RX forma

$5 \mathrm{SC}, 4 \mathrm{C}$	R 1	X 2	$\mathrm{B2}$		D 2
	78				

- Purpose:

1. M - Multiply 1 st operand (in GPR, per R1 +1) and
2nd operand (in storage) and ploce 64 -bit result into 2nd operand (in storage) and ploce 64 -bit result ;
lst operond location (in GPR, per R1 and $\mathrm{R1}+1$).
2. MH M Multiply 1 ts operand (in GPR, per R1) and
Molf ford 2nd
holfow 2nd operand (in storage) and per R1ace and low-order
32 bits of result into lst operand location.

- Conditions at stort of execution:

1. $1 s t$ to bits of instruction are in
2. Ist 16 bits of instruction are in E .
3. Contents of even-cddress $G P R$ specified by RI is
Sind
S and T for M instruction (not used).
4. 1 ist operand for M instruction is in odd-address GPR
5. specified by $\mathrm{RI}+1$.

D
$-$
E

Diagram 5-109. Fixed-Point Multiply (Sheet 1 of 3)

Diagram 5-109. Fixed-Point Multiply (Sheet 2 of 3)

Diagram 5-109. Fixed-Point Multiply (Sheet 3 of 3)

G
-

H

H Diagram 5-110. Fixed-Point Divide (Sheet 1 of 6)

Diagram 5-110. Fixed-Point Divide (Sheet 2 of 6)

H
Diagram 5-110. Fixed-Point Divide (Sheet 3 of 6)

- B) Transfer of Low-Order Dividend Bits

Diagram 5-110. Fixed-Point Divide (Sheet 5 of 6)

G

H

Diagram 5-110. Fixed-Point Divide (Sheet 6 of 6)
E

F

G

H

Diagram 5-111. Convert to Binary, CVB (4F) (Sheet 1 of 2)

Diagram 5-111. Convert to Binary, CVG (4F) (Sheet 2 of 2)

Diagram 5-112. Convert to Decimal, CVD (4E)

Diagram 5-113. Store, ST (50)

G

H

Diagram 5-115. Store Multiple, STM (90) (Sheet 2 of 2)

Diagram 5-116. Shift Left Single, SLA (8B) (Sheet 1 of 2)

H

Diagram 5-116. Shift Left Single, SLA (8B) (Sheet 2 of 2)

Diagram 5-117. Shift Left Double, SLDA (8F) (Sheet 1 of 4)

H

Diagram 5-117. Shift Left Double, SLDA (8F) (Sheet 2 of 4)

Diagram 5-117. Shift Left Double, SLDA (8F) (Sheet 4 of 4)

F Diagram 5-118. Shift Right Single, SRA (8A) (Sheet 1 of 3)

G

Diagram 5-118. Shift Right Single, SRA (8A) (Sheet 2 of 3)

- Diagram 5-119. Shift Right Double, SRDA (8E) (Sheet 1 of 4)

G Diagram 5-119. Shift Right Double, SRDA (8E) (Sheet 3 of 4)

B

Diagram 5-201. Save Signs and Insert Sign Functions, and CC Setting

D
Diagram 5-202. Load, LER (38) - Short Operands; Load, LDR (28) - Long Operands

Diagram 5-203. Load, LE (78) - Short Operands; Load, LD (68) - Long Operands

Diagram 5-204. Load Positive, LPER (30); Load Negative, LNER (31); Load and Test, LTER (32); Load Complement, LCER (33) - Short Operand

G

H

G
Diagram 5-205. Load Positive, LPDR (20); Load Negative, LNDR (21); Load and Test, LTDR (22); Load Complement, LCDR (23) - Long Operands

A

B

C

D

F

G

H

Diagram 5-206. Floating-Point Add, Subtract, and Compare - Short Operands (Sheet 1 of 5)

Diagram 5-206. Floating-Point Add, Subtract, and Compare - Short Operanes (Sheet 2 of 5)

Diagram 5-206. Floating-Point Add, Subtract, and Compare - Short Operands (Sheet 3 of 5)

H Diagram 5-206. Floating-Point Add, Subtract, and Compare - Short Operands (Sheet 4 of 5)

Diagram 5-206. Floating-Point Add, Subtract, and Compare - Short Operands (Sheet 5 of 5)

G Diagram 5-207. Floating-Point Add, Subtract, and Compare - Long Operands (Sheet 1 of 5)

A

C

QTOOI

- Conditions at start of execution:

2. Instruction is in
fraction only).
3. 32 bits of 2 nd operand are in S and T.
4. Low-order fraction of 1 st and $2 n d$ operand is in $L S$.
5. STC $=4$.

Op Codes:

- OP Codes:

1. $A D R=2 A$.
2. $A W R=2 E$.
3. $\quad S D R=2 B$.
4. $S W R=2 F$.
5. $C D R=29$

- RX Format - Long Operands

Op Code	R1	X2	B2	D2		
0		78	1112	1510	1920	
0						

- Conditions at start of execution:

1. Ist 16 bits of instruction are in E.
2. 32 bits of 1 st operand are in S and T.
3. Low-order fraction of 1 st operand is
4. Effective address of 2nd operand is in D.
5. 2nd operand is in main storage.

- Op Codes:

2. $A D=6 A$.
3. $S D=6 B$.
4. $S W=6 F$.
5. $\mathrm{CD}=09$.

F

Diagram 5-207. Floating-Point Add, Subtract, and Compare - Long Operands (Sheet 2 of 5)
G

H

Diagram 5-207. Floating-Point Add, Subtract, and Compare - Long Operands (Sheet 3 of 5)

Diagram 5-207. Floating-Point Add, Suktract, and Compare - Long Operands (Sheet 4 of 5)

Diagram 5-207. Floating-Point Add, Subtract, and Compare - Long Operands (Sheet 5 of 5)

Diagram 5-208. Halve, HER (34) - Short Operands

F

G

H

Diagram 5-209. Halve, HDR (24) - Long Operands

A

A. Sign and Characteristic Data Paths.

Notes:

1. In 2065 floating-point multiply operations, roles of 1st and 2nd operands are reversed from roles defined in
System $/ 360$ Principles of Operation, SRL, Form A22-6821-6 System $/ 360$ Principles of Operation, SRL, Form A22-6821-6 That is, 2nd operand is multiplicand and 1 st operand is multiplier. (Interchanging operand roles does not
affect product. Result, however, still replaces 1 st operand.)
2. For an RX instruction with normalized 1 lst operand, the Ist operand charistic and sign are in S or T and the 2nd operand charistic and sign are in A .

D

$\dagger_{\text {PP Developed in }} \mathrm{AB}(6-67)$.
Final Product in $A B(8-63)$.
B. Fraction Data Path.

- Diagram 5-211. Floating-Point Multiply, Short Operands (Sheet 1 of 4)

H
Diagram 5-211. Floating-Point Multiply, Short Operands (Sheet 2 of 4)

- Diagram 5-211. Floating-Point, Short Operands (Sheet 3 of 4)

Diagram 5-212. Floating-Point Multiply, Long Operands (Sheet 1 of 4)

Diagram 5-212. Floating-Point Multiply, Long Operands (Sheet 2 of 4)

- Diagram 5-212. Floating-Point.Multiply, Long Operands (Sheet 3 of 4)

Diagram 5-212. Floating-Point Multiply, Long Opernads (Sheet 4 of 4)

Diagram 5-213. Floating-Point Divide Data Paths

H
Diagram 5-214. Floating-Point Divide, Short Operands (Sheet 1 of 4)

B

C

Figure 5-214. Floating-Point Divide, Short Operands (Sheet 2 of 4)

- Diagram 5-214. Floating-Point Divide, Short Operands (Sheet 3 of 4)

Diagram 5-215. Floating-Point Divide, Long Operands (Sheet 1 of 5)

Diagram 5-215. Floating-Point Divide, Long Operands (Sheet 2 of 5)

Diagram 5-215. Floating-Point Divide, Long Operands (Sheet 3 of 5)

Diagram 5-215. Floating-Point Divide, Long Operands (Sheet 4 of 5)

Diagram 5-215. Floating-Point Divide, Long Operands (Sheet 5 of 5)

Diagram 5-216. Store, STE (70) - Short Operands; Store, STD (60) - Long Operands

G

B

C

-

Contains 2nd Operand Address

D

Diagram 5-302. True Add Sequence for Decimal Add, Subtract, and Compare (Sheet 1 of 3)

Diagram 5-302. True Add Sequence for Decimal Add, Subtract, and Compare (Sheet 2 of 3)

Diagram 5-303. Complement Add Sequence for Decimal Add, Subtract, and Compare (Sheet 2 of 3)

Diagram 5-304. Zero and Add (Sheet 1 of 4)

Diagram 5-304. Zero and Add (Sheet 3 of 4)

A) Overall Flow Chart

Contains Multiplier Address

F

Diagram 5-305. Decimal Multiply (Sheet 1 of 7)

Diagram 5-305. Decimal Multiply (Sheet 2 of 7)

Diagram 5-305. Decimal Multiply (Sheet 3 of 7)

[^4]

H
Diagram 5-305. Decimal Multiply (Sheet 5 of 7)

[^5]

[^6]

Diagram 5-306. Decimal Divide (Sheet 2 of 9)

Diagram 5-306. Decimal Divide (Sheet 3 of 9)

[^7]G

H

Diagram 5-306. Decimal Divide (Sheet 7 of 9)

Diagram 5-306. Decimal Divide (Sheet 8 of 9)

Diagram 5-306. Decimal Divide (Sheet 9 of 9)
G

H

- SS format:

- Op Code:

1. Pack (PACK) - F2
2. Unpack (UNPK) - F3.

- Purpose:

1. Pack - Convert format of 2 nd operand (in storage)
from zoned to packed and place result into lst
2. Unerand location (in storage).
3. Unpack - Convert format of 2nd operand (in storage)
from packed to zoned and place result into 1 st
4. Move with Offset - Store 2nd operand (in storage)

Move with Oftset - Store 2nd operand (in storage)
to left of and adjacent to low-order 4 bits of list operand (in storage).

- Conditions at end of 1 -Fetch:

1. Main storage request for doubleword containing
low-order byte of lst operand (destination) has
been issued per D.
2. D contains low-order byte address (contents of GPR
addressed by $\mathrm{BI},+\mathrm{DI}+\mathrm{L1}$) of 1 st operand.
IC contains high-order byte address (contents of GPR addressed by B2, + D2) of 2nd operand.

Diagram 5-307. GIS for Pack, Unpack, and Move With Offset

Diagram 5-308. Pack, Not Word Overlap Sequence

Diagram 5-309. Pack, Word Overlap Sequence

Diagram 5-311. Unpack, Word Overlap Sequence

Diagram 5-312. Move With Offset, Not Word Overlap Sequence

Diagram 5-313. Move With Offset, Word Overlap Sequence

F Diagram 5-401. GIS for Logical Instructions

G

A. Move, MVI (92)

B

B. Move, MVC (D2)

Diagram 5-402. Logical Move Instruction

A. Compare Logical, CLR (15)

F

B. Compare Logical, CL (55)

Diagram 5-403. Logical Compare Instructions

A. AND, NR (14)

B

B. AND, $N(54)$

-
.

- RR formar.
- Purpose: AND 1st operond (in GPR, per R1) with 2nd
operand (in GPR, per R2) operand (in GPR, per R2)
and place result into 1st operand location.
operana location.
- Purpose: AND 1st operand (in GPR, per R1) with 2nd operand (in storage) and
place result into Ist operand location.
B.

Diagram 5-404. Logical AND Instructions

D
-

- RR format.
- Purpose: OR 1st operand (in GPR, per RI) with 2nd operand (in GPR, per R2) and place result into lst operand location.
A. $O R, O R(16)$

F

B. $O R, O(56)$

- Purpose: O

Purpose: OR 1st operand
(in GPR, per R1) (in GPR, per R1) with 2nd operand (in storage) and place result into 1 st
operand location.

- SI format.
- Purpose: OR immediate
operand (12 of instruction)
with 1st operand (in storage)
and place result into lst operand location.
c. OR, OI (96)

[^8]G
'Diagram 5-405. Logical OR Instructions

A. Exclusive-OR, XR (17)

B

B. Exclusive-OR, X (57)

- RR formar.
- Pupose: Exclusive-OR 1st operand (in GPR, per RI)
with 2nd operand (in GPR, operand ind operand (in GPR,
with 2nd and place result into per R2) and place result in
1st operand location.

Diagram 5-406. Logical Exclusive-OR İnstructions

D

Diagram 5-407. Test Under Mask, TM (91) with 2nd operand (in storage) with 2nd operand (in storage)
and place result into 1st operand location.
.

C. Exclusive-OR, XI (97)

D. Exclusive-OR, XC (D7)

- RX format.
- Purpose: Insert 2nd operand Purpose: Insert 2nd operand
(byte; in storage) into bits
$24-31$ of 24-31 of 1st perand
location (in GPR, per RI).
F
A. Insert Character, IC (43)

Diagram 5-408. Insert Character, IC (43); Store Character, STC (42)

G

Diagram 5-409. Load Address, LA (41)

A. Translate, $T R(D C)$

B. Translate and Test, TRT (DD)

Diagram 5-410. Translate, TR (DC); Translate and Test, TRT (DD)

D

E

F

G

H

Diagram 5-411. Edit, ED (DE); Edit and Mark, EDMK (DF)

- Diagram 5-412. Logical Shift Instructions

Diagram 5-501. Branch On Condition, BCR (07); BC (47) (Sheet 1 of 2)
E

F

A

B

C

D
-

E
-

F

-

G

Diagram 5-501. Branch On Condition, BCR (07); BC (47) (Sheet 2 of 2)

D

E

G

H

- Diagram 5-502. Branch and Link BALR (05) (Sheet 2 of 2)

Diagram 5-503. Branch and Link, BAL (45) (Sheet 1 of 2)

Diagram 5-503. Branch and Link, BAL (45) (Sheet 2 of 2)

Diagram 5-504. Branch On Count, BCTR (06); BCT (46) (Sheet 1 of 2)

Diagram 5-504. Branch On Count, BCTR (06); BCT (46) (Sheet 2 of 2)

Diagram 5-505. Branch on Index High, BXH (86); Branch on Index Low or Equal, BXLE (87) (Sheet 1 of 3)

A

B

C

D

[^9]

Diagram 5-505. Branch on Index High, BXH (86); Branch on Index Low or Equal, BXLE (87) (Sheet 3 of 3)

F Diagram 5-506. Execute, EX (44) (Sheet 1 of 2)

G

H

- Purpose: Execute subiect instruction at location specified by 2nd operand address.
Subiect instruction may be modified by lst operand (in GPR, per R1) if $E(8-11)$

Subiect instruction may be modified by ist operond (in GPR, per R1) if $E(8-11)$
Conditions ot start of execution

1. ist operand is in S and T .
2. Address of subiect instruction is in D.
3. 3-cycle storage request for subject instruction has been issued per D.
4. Ist 16 bits of instruction are in E.

-

\square

\checkmark

- Replace CC and program mask (bits 34-39) of current PSW with bits 2-7 of 1st operand (in GPR, per R1)
- Conditions at start of execution: 1. Instruction is in E .

2. Ist operand is in A, B, and D.
3. 2nd operand is not used.

- Bits 2-7 of 1 st operand may have been loaded from PSW-register by a previous Branch and Link instruction.
- Program mask format (set mask bit permits interruption):
Bit 36 - Fixed-point overflow mask.
Bit 38 - Exponent underflow (floating-point)
mask. 39 - Significance (floating-point) mask.

Diagram 5-603. Set System Mask, SSM (80)

H

- RR Format: | 0 OA | 1 |
| :--- | :--- |
| 0 | 15 |
- Cause supervisor call interruption; replace oldproviding interruption code.
- Conditions at start of execution

1. Instruction is in E .
2. $E(8-15)$ contains interruption code

Diagram 5-604. Supervisor Call, SVC (0A)

H
Diagram 5-605. Set Storage Key, SSK (08)

Diagram 5-606. Insert Storage Key, ISK (09)

-	2	∇	3	∇	4	∇	5	∇	6

A

B
-
-

C

\checkmark
\downarrow

D

E

F
-

G
-

H
-

都

都

| Gote B Bo |
| :--- | :--- |
| PAL |
| for timeck |
| for timeout. |

 operation gates simplex control line to iocE selected per 12 field and sets condition code to volue received
from selected $1 O C E$.

- Conditions of start of execution:

Operation	Operation				Element Selected			
	8	9	10	11	12	13	14	15
$\begin{gathered} \text { CE-to-CE } \\ \text { data transfer } \end{gathered}$	0	0	0	0	$\stackrel{C E}{1}$	$\underset{2}{\mathrm{CE}}$	$\stackrel{\text { CE }}{3}$	$\begin{array}{r}\text { CE } \\ 4 \\ \hline\end{array}$
CE external start	0	0	0	1	${ }_{1}^{C E}$	$\underset{2}{\mathrm{CE}}$	$\stackrel{C}{C}$	$\stackrel{\mathrm{CE}}{4}$
${ }^{C E}{ }_{\text {logout }}$	0	0	1	0	${ }_{1}^{C E}$	$\stackrel{\text { CE }}{2}$	$\stackrel{C}{C}$	$\stackrel{C}{C}$
$\underset{\text { logout }}{\text { loCE }}$	0	0	1	1	$10 \mathrm{CE}$	$\begin{gathered} 10 \mathrm{CE} \\ 2 \end{gathered}$	$\underset{3}{10 C E}$	0
CĖ external stop	0	1	0	0	$\stackrel{C}{C}$	$\underset{\substack{\text { CE } \\ 2}}{ }$	${ }_{\text {CE }}{ }_{3}$	${ }_{\text {CE }}$
IOCE processor start	0	1	0	1	$10 C E$	$\begin{gathered} 10 C E \\ 2 \end{gathered}$	$\begin{array}{\|c} 10 \mathrm{CE} \\ 3 \end{array}$	0
IOCE processor stop	0	1	1	0	$\underset{\substack{10 C E \\ 1}}{\text { 10ce }}$	$\underset{2}{1 O C E}$	$\begin{array}{\|c\|c\|} \hline 1 \mathrm{OCE} \\ \hline \end{array}$	0
IOCE processor interrupt	0	1	1	1	$\stackrel{1 O C E}{1}$	$\underset{2}{1 O C E}$	10CE 3	0

Note: $\begin{aligned} & \text { 12 ifeld decoding is done by hardware, and the select to the proper element } \\ & \text { is also hardware-developed. }\end{aligned}$

Diagram 5-607. Write Direct, WRD (84)

Diagram 5-608. Read Direct, RDD (85)

G

H

A

Table 1

EReq $11-15$	STAT H	STAT D	STAT G	Register Logged Out
$16-23$	Off	Off	Off	FLT Point
$00-15$	Off	Off	Off	Gen Purpose
01	On	Off	Off	CCR
01	On	Off	Off	DAR Mask
01	On	Off	On	Ext Req
01	On	On	Off	Check Req
01	On	On	On	ATR 1
00	On	Off	Off	ATR 2
00	On	Off	On	DAR

Note 1.
The Diagnose instruction may branch to any
ROS address; only the most frequently usid
Ros shown here.

Diagram 5-609. Diagnose (83) (Sheet 2 of 3)

- RR Format: L1

$O C$	$R 1$	R2	
0	78	1112	15

- Purpose: Loads identity of CE executing instruction into bits $28-31$ of GPR specified by R1 field.

Diagram 5-801. Load Identity, LI (0C)

D

E

F

G

H

Diagram 5-802. Insert ATR, IATR (0E)

A

B

C
-

D

Diagram 5-9
RR I-Fetch

4
∇

- Purpose: Provides a variable delay (256 usec $\times N$) dependent on the value of N.
- Conditions at the beginning of execution: Instruction and N are in E .

E
Diagram 5-803. Delay, DLY (0B)

F

G

H

Diagram 5-804. Store PSBAR, SPSB (A0)

[^10]

Diagram 5-806. Move Word, MVW (D8) (Sheet 1 of 3)

Diagram 5-806. Move Word, MVW (D8) (Sheet 2 of 3)

Diagram 5-806. Move Word, MVW (D8) (Sheet 3 of 3)

Diagram 5-807. Start I/O Processor, SIOP (9A)

Diagram 5-808. Set Address Translator, SATR (0D), Execution in Issuing CE (Sheet 2 of 6)

H

Diagram 5-808. Set Address Translator, SATR (OD), Execution in Issuing CE (Sheet 3 of 6)
F

Diagram 5-808. Set Address Translator, SATR (0D), Execution in Issuing CE (Sheet 4 of 6)

Diagram 5-808. Set Address Translator, SATR (0D), Execution in Issuing CE (Sheet 5 of 6)

F

G

H

Diagram 5-809. Set Address Translator, SATR (0D), Execution in Receiving CE (Sheet 1 of 3)

Diagram 5-809. Set Address Translator, SATR (0D), Execution in Receiving CE (Sheet 2 of 3)

H

[^11]H

- Purpose: To transfer configuration mask to CCR of element(s) specified by selection mask.

Conditions at the end of I-Fetch
A-reg has lst word of configuration mask (contents of

1. A-reg has 1 st word of configuration mask (contents of
GPR specified by R1).

T -reg has selection
R2).

- Configuration and selection mask formats:
. 90200 System

C
2. 9020 E System

D

E

Legend:

* Spare Bit
$\begin{array}{ll}\text { - } & \text { Reserved Bit } \\ \neq & \text { Inhibit Logout Stop Bit } \\ \text { 三 } & \text { Inhibit DE Stop Bit }\end{array}$

Diagram 5-810. Set Configuration, SCON (01) (Sheet 1 of 6)

Diagram 5-810. Set Configuration, SCON (01) (Sheet 2 of 6)

Diagram 5-810. Set Configuration, SCON (01) (Sheet 3 of 6)

Diagram 5-810. Set Configuration, SCON (01) (Sheet 6 of 6)

G

H

Diagram 5-811. Test and Set, TS (93)

Diagram 5-901. Repack Symbols, Simplified Flow Chart

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 1 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 2 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 3 of 21)

H

[^12]

- Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 5 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 6 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 8 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 9 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 10 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 11 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 12 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 13 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 14 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 15 of 21)
H

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 16 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 18 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 20 of 21)

Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 21 of 21)

Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 1 of 10)
5-903, Sh 1 (7/70)

Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 3 of 10)

Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 4 of 10)

Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 5 of 10)

- Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 6 of 10)

Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 7 of 10)

- Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 8 of 10)

Diagram 5-903. Convert and Sort Symbols, CSS (02) (Sheet 9 of 10)

Diagram 5-904. Convert Weather Lines, Simplified Flowchart

Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 1 of 9)

Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 2 of 9)

G

[^13]

Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 4 of 9)

- Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 5 of 9)

Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 7 of 9)

Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 8 of 9)

Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 9 of 9)

G

H

-

C

1	Atr 1
2	CHECK REG 1
${ }^{3}$	$\mathrm{T}_{\text {teg (32-33) }}$
4	rosop (0-35)
5	x Reg (0-31)
-	K REG (0-31)

D

2											
${ }^{3}$											
5											

1	
2	Q rec (0-31)
3	A REG (0-31)
4	ROSSD (30-88)
5	IOCE CIIS, NREG(0-15)
6	$\mathrm{Y}_{\text {neg (32-33) }}$

E
Diagram 6-2. CE Roller Switch Indicators (Sheet 1 of 2)

B
-

display 5	
1	Pstar, Sys mask, nvirpts
2	mCW And fit control
3	Rreg, ereg
4	gate control tors
5	ccr
-	DAR M Msk

1	PADDL (32-63)
2	MARK, LAR, B REG ABC, PADDL, STC
3	SADD, ic
4	dar
5	CHECK REG 2
6	mcw (32-51)

Diagram 6-2. CE Roller Switch Indicators (Sheet 2 of 2)

Diagram 6-3. Pushbutton Signal Generation (Sheet 1 of 2)

- Diagram 6-3. Pushbutton Signal Generation (Sheet 2 of 2)

E
Diagram 6-4. Stop Loop Routine (Sheet 1 of 2)

в

Diagram 6-6. Stop, Manual, Address Compare Triggers, and Block Interrupt Latch (Sheet 1 of 2)

G
$>$

Diagram 6-6. Stop, Manual, Address Compare Triggers, and Block Interrupt Latch (Sheet 2 of 2)

Diagram 6-7. CE Machine Reset and Force Address

D

E

F

G

H

Diagram 6-8A. System Operation: IPL or PSW Restart

Diagram 6-8B. Subsystem Operation: IPL or PSW Restart

Diagram 6-9. Common Routine: IPL or PSW Restart (Sheet 1 of 2)

H

Legend: Heavy dashed lines indicate data flow.

Diagram 6-9. Common Routine: IPL or PSW Restart (Sheet 2 of 2)
F

Diagram 6-10. STORAGE SELECT Switch Gating

- Diagram 6-11 DEFEAT INTERLEAVING Switch Gating

Diagram 6-12. RATE Switch Logic
G

H

Diagram 6-13. Instruction Step Routine

G

H

E
Diagram 6-14. Single-Cycle and Single-Cycle-Inhibit Routine

Diagram 6-15. Repeat Instruction Switch Logic

Diagram 6-16. Repeat Instruction Switch Routine

Diagram 6-17. ROS TRANSFER and REPEAT ROS ADDRESS Switch Gating
E

F

G

H

- Diagram 6-18. Storage Ripple Loop (Store and Display) Routine

G

[^14]

Diagram 6-22. CE Check Control and Inhibit CE Hardstop Switches, Logic and Error Controls

Diagram 6-23. Pulse Mode Controls

F

G

н

D

E

Diagram 6-26. SCAN MODE, ROS/PROC/FLT Switch Logic
G

H

G
Diagram 6-27. FLT BACKSPACE Pushbutton Logic and Flow

Diagram 6-29. 1052 Adapter Initial Selection - Read, Write, Sense

A

B To
Chorinel $\stackrel{\text { Request } \ln }{ }$

C
C
-

D

$$
\begin{aligned}
& \text { To } \\
& \text { Channel }
\end{aligned}
$$

$$
4{ }^{\text {Service } \ln }
$$

F
Diagram 6-30. 1052 Adapter Data Transfer - Write

G

H

Diagram 6-31. 1052 Adapter Data Transfer - Read

[^15]

Diagram 6-33. 1052 Adapter Sense and Status Bytes

Diagram 6-102. Scan Clock
D

Diagram 6-103. FLT Clock

F

G

H

D Diagram 6-104. Scan Counter Latches and Decrementer

A

C

SAB	
	01234567891011121314151617181920212223

[^16]E
-

F

Diagram 6-105. Scan Storage Address Generator

Diagram 6-107. Scan-Out Bus Data Flow

D Diagram 6-108. Logout Control Logic

E

ROS Gate PADDL(48-55) | ROS Gate P |
| :--- |
| Ho T(48-55) |

Diagram 6-109. Scan-Out Path For One Bit

F
Sync Tgr

H

[^17]

Diagram 6-111. Scan Control Triggers

Not Repeat Latch.

E

G

H Diagram 6-112. Scan Control of ROS Microbranching

Diagram 6-113. CE Scan/IOCE Interface

F

- Diagram 6-114. Logout Sequence (Sheet 1 of 2)

Diagram 6-114. Logout Sequence (Sheet 2 of 2)

Diagram 6-115. ROS Test Sequence (Sheet 1 of 5)

B
CE Clock:
Unsymmetrical ($80 \mathrm{~ns}+120 \mathrm{~ns}$).
Controlled by 'maintenance mode stop clock' trigger or by 'Pass Pulse' trigger
during ROS Tests. during ROS Tests.

- Scan Clock:

Scan Clock:
Symmetrical ($100 \mathrm{~ns}+100 \mathrm{~ns}$).
Controlled by the 'Pass Pulse' trigger.

C when both are running.

[^18]

Diagram 6-115. ROS Test Sequence (Sheet 3 of 5)

- Diagram 6-115. ROS Test Sequence (Sheet 4 of 5)

Diagram 6-115. ROS Test Sequence (Sheet 5 of 5)

$-\quad$ Diagram 6-116. FLT Sequence (Sheet 1 of 5)

H
Diagram 6-116. FLT Sequence (Sheet 2 of 5)

G
Diagram 6-116. FLT Sequence (Sheet 3 of 5)

Diagram 6-116. FLT Sequence (Sheet 4 of 5)
G

H

H

Diagram 6-118. SE Logword Formats

Diagram 6-119. DE Logword Formats

A-Register (see AB-Register)
AB -Register:
Data Flow 2-1
Usage:
Add, Subtract, and Compare Decimal 5-302 (Sheet 1)
Branching Instructions 3-4
Decimal Instructions 3-3
Divide, Decimal 5-306 (Sheet 1)
Divide, Fixed-Point 5-110 (Sheet 4)
Divide, Floating-Point 5-213
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
I/O Instructions 3-6
Logical Instructions 3-3
Multiply, Decimal 5-305 (Sheet 1)
Multiply, Fixed-Point 5-109 (Sheet 3)
Multiply, Floating-Point 5-210
RR I-Fetch, One-Cycle 5-7
RX I-Fetch, Two-Cycle Indexed 5-11
Status Switching Instructions 3-5
AB-Register Byte Counter (see ABC)
ABC :
Data Flow 2-1
ncrementer Latches 4-207
Positive Logic Diagram 4-207
Triggers 4-207
Usage:
Decimal Instructions 3-3
Divide, Decimal 5-306 (Sheet 1)
Divide, Floating-Point 5-213
Floating-Point Instructions 3-2
Logical Instructions 3-3
Multiply, Floating-Point 5-210
Status Switching Instructions 3-5
Accept Trigger 4-604 (Sheet 1)
Add, A (5A); Fix Pt, RX 5-108
Add, AP (FA); Dec, SS:
Complement Add Sequence 5-303
GIS 5-301
True Add Sequence 5-302
Add, AR (1A); Fix Pt, RR 5-108
Add Halfword, AH (4A); Fix Pt, RX 5-108
Add Logical, AL (5E); Fix Pt, RX 5-108
Add Logical, ALR (1E); Fix Pt, RR 5-108
Add Normalized, AD (6A); Fl Pt, RX (Long) 5-207
Add Normalized, ADR (2A); Fl Pt, RR (Long) 5-207
Add Normalized, AE (7A); Fl Pt, RX (Short) 5-206
Add Normalized, AER (3A); Fl Pt, RR (Short) 5-206
Add Unnormalized, AU (7E); Fl Pt, RX (Short) 5-206
Add Unnormalized, AUR (3E); Fl Pt, RR (Short) 5-206
Add Unnormalized, AW (6E); FI Pt, RX (Long) 5-207
Add Unnormalized, AWR (2E); Fl Pt, RR (Long) 5-207
Address Compare Trigger 6-6
Address Decode Logic, SCI 4-602
Address Gating Logic, SCI 4-602
Address Gating, SCI 4-602
Address Generator, Storage; Scan 6-105
Addressing, ROS 4-105 (Sheet 1)
Adjust Parity Flip-Latch 4-205
And, N (54): Logic RX 5-404
And NC (D4): Logic, SS 5-404
nd NI (94); Logic, SI 5-404
And, NI (94); Logic, SI 5-404
ND Function SAL(0) 4-406
Fen SAL 4.406
ny Storage Error Trigger 4-60
Array Drivers, ROS 4-106
ATR
Data Flow 2-1
Jsage:
Insert ATR 5-802
Load PSBAR 5-805
Set ATR (In issuing CE) 5-808
Set ATR (In receiving CE) 5-809

B-Field Transfer to LAL 4-301
B-Register (see AB-Register)
Bit Position Logic, Bit 47; Parallel Adder 4-410
Block I-Fetch Trigger - 5-16
Block Trigger 4-1, 6-12, 6-10
Branch and Link, BAL (45); Br, RX 5-503
Branch and Link, BALR (05); Br, RR 5-502
Branch Invalid Address Trigger 5-29 (Sheet 1)
Branch on Condition, BC (47); Br, RX 5-501
Branch on Condition, BCR (07); Br, RR 5-501
Branch on Count, BCT (46); Br, RX 5-504
Branch on Count, BCTR (06); Br, RR 5-504
Branch on Index High, BXH (86); Br, RS 5-505
Branch on Index Low or Equal, BXLE (87); Br, RS 5-505
Branch Requests 5-4
Branching Instructions:
Branch and Link, BAL (45); RX 5-503
Branch and Link, BALR (05); RR 5-502
Branch on Condition, BC (47); RX 5-501
Branch on Condition, BCR (07); RR 5-501
Branch on Count, BCT (46); RX 5-504
Branch on Count, BCTR (06); RR 5-504
Branch on Index High, BXH (86); RS 5-505

Branch on Index Low or Equal, BXLE (87); RS 5-505
Data Flow 3-4
Execute, EX (44); RX 5-506
Buffer 1 Trigger and Latch 6-105

Carry Lookahead Logic.
Parallel Adder 4-411
SAL(0-3) 4-402
CC Logic, Parallel Adder 4-416
CCR:
Data Flat
CE Control 4-210
Psuedo-SCON (IPL or PSW Restart) 6-8A
SCON $\quad 5-810$
CE:
CHECK Switch Logic 6-22
Control Panel 6-1
Data Flow 2-1
Force Address 6-7
IPL 6-8
MACHINE RESET \& FORCE ADDRESS 6-7
PSW RESTART 6-8
Request:
Sensing Logic, SCI 4-601
Timing, Typical 4-611
Roller Sw Indicators 6-2
TEST Switch 4-3
Characteristic Data Path:
Floating-Point Divide 5-213
Floating-Point Multiply 5-210
Check Registers:
Inputs 6-22
Roller Display 6-2
Check Reset 6-7
Clock:
Control Logic 4-3
Control Logic Functional Sequence, SCI 4-603
LT 6-103
$\begin{array}{ll}\text { Scan } \\ \text { Signal Generator } & \text { 4-3 }\end{array}$
$\begin{array}{lll}\text { Signal Generator } & \text { 4-3 } & \\ \text { Sompare C (59); Fix Pt, RX } & 5-108\end{array}$
Compare C (59); Fix Pt,
Compare, CD (69); Fl Pt, RX (Long) 5-207
Compare, CDR (29); F1 Pt, RR (Long) 5-207
Compare, CE (79); Fl Pt, RX (Short) 5-206
Compare, CER (39); Fl Pt, RR (Short) 5-206
Compare, CL (55); Logic, RX 5-403
Compare, CLC (D5); Logic, SS 5-403
Compare, CLI (95); Logic, SI 5-403
Compare, CLR (15); Logic, RR 5-403
Compare CP (F9); Dec, SS:
Complement Add Sequence 5-303
GIS 5-301
True Add Sequence 5-302
Compare, CR (19); Fix Pt, RR - 5-108
Compare, Halfword, CH (49); Fix Pt, RX 5-108
Console Logout Latch 6-25
Console Signal Trigger 5-24
Convert to Binary, CVB (4F); Fix Pt, RX 5-111
Convert to Decimal CVD (4E); Fix Pt RX 5112
CPU Clock Go Trigger 6-102, 4-603
CPU 5 Trigo Tra
PU 4 Triger and Latch 4603
CPU Trger and Latch 4
PPU Sequen 603
CPU Sequencers 4-603
CPU Store in Progress Exceptional Condition 5-18
CPU Store Trigger 5-18
CPU 3 Trigger and Latch 4-603
CPU 2 Trigger and Latch 4-603

D-Register:
Address Gating, BCU 4-602
Data Flow 2-1
Usage:
Add, Subtract, and Compare, Decimal 5-302 (Sheet 1)
B-Field Transfer to LAL 4-201
Branching Instructions 3-4
Decimal Instructions 3-3
Divide, Decimal 5-306 (Sheet 1)
Divide, Floating-Point 5-213
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
Instruction Requests During End Op 5-2
I/O Instructions 3-6
Logical Instructions 3-3
Multiply, Decimal 5-305 (Sheet 1)
Multiply, Floating-Point $\quad 5-210$
Operand Prefetching During End Op 5-1
RR I-Fetch, One-Cycle 5-7
RS I-Fetch, One-Cycle 5-10
RX I-Fetch, One-Cycle 5-10
RX I-Fetch, Two-Cycle Indexed 5-11
Selection of I-Fetch Sequence 5-5
SI I-Fetch, One-Cycle 5-10
Status Switching Instructions 3-5
D Request Trigger 4-601
D Sync Trigger and Latch 4-601

DAR.
Data Flow 2-1
Usage (Diagnose) 5-609
DAR MASK:
Data Flow 2-1
Usage (Diagnose) 5-609
Data Flow:
Branching Instructions 3-4
CE 2-1
Decimal Instructions 3-3
Direct Control Operation 5-607 (Sheet 2)
Divide, Fixed-Point 5-110 (Sheet 4)
Divide, Floating-Point 5-213
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
I/O Instructions 3-6
Logical Instructions 3-3
Multiply, Fixed-Point 5-109 (Sheet 3)
Multiply, Floating-Point 5-210
ROS 4-105 (Sheet 2)
Scan 6-101
Status Switching Instructions 3-5
DE Wrap:
Bus Controls 6-201
Data Flow 2-1
Decimal Add 6 Logic, Serial Adder 4-403
Decimal Add 6 Logic, Serial Adder
Decimal Correction Logic, SAL(0-3) 4-404
Decimal Instructions:
Add, AP (FA); SS
Complement Add Sequence 5-303
GIS 5-301
True Add Sequence 5-302
Compare, CP (F9); SS:
Complement Add Sequence 5-303
GIS 5-301
True Add Sequence 5-302
Data Flow 3-3
Divide, DP (FD); SS 5-306
Move With Offset, MVO (F1); SS:
GIS 5-307
Not Word Overlap Sequence 5-312
Word Overlap Sequence 5-313
Multiply, MP (FC); SS 5-305
Pack, PACK (F2); SS:
GIS 5-307
Not Word Overlap Sequence 5-308
Word Overlap Sequence 5-309
Subtract, SP (FB); SS
Complement Add Sequence 5-303
GIS 5-301
True Add Sequence 5-302
Unpack, UNPK (F3); SS:
GIS 5-307
Not Word Overlap Sequence 5-310
Word Overlap Sequence 5-311
Zero and Add, ZAP (F8); SS 5-304
DEFEAT INTERLEAVING Switch Gating 6-11
Delayed Block I-Fetch Trigger 5-29 (Sheet 1)
Delayed I-Fetch Protection Gate Trigger 5-29 (Sheet 1)
Delayed I-Fetch Storage Request Trigger 5-29 (Sheet 1)
Diagnose (83); Stat Sw, SI 5-609
Direct Control Operation
Data Flow 5-607
Direct Control Interface 3-5
Read Direct, RDD (85); Stat Sw, SI 5-608
$\begin{array}{lll}\text { Read Direct, RDD (85); Stat Sw, SI } & 5-608 \\ \text { Write Direct, WRD (84); Stat Sw, SI } & 5-607\end{array}$
Disable Interleaving and Reverse Storage Address Trigger 6-1
Disable Interleaving Trigger 6-11
Disable Interval Timer Logic 6-21
Display Instructions:
Convert and Start Symbols, CSS (02); DSPY, RR 5-903
Convert Weather Lines, CVWL (03); DSPY, RR 5-905
Load Chain, LC (51); DSPY, RX 5-906
Repack Symbols, RPSB (0F); DSPY, RR 5-902
Divide, D (5D); Fix Pt, RX 5-110 (Sheet 2)
Divide, DD (6D); F1 Pt, RX (Long) 5-215
Divide, DDR (2D); Fl Pt, RR (Long) 5-215
Divide, DE (7D); Fl Pt, RR (Long) 5-215
Divide, DER (3D); FI Pt, RR (Short) 5-214
Divide, DP (FD); Dec, SS 5-306
Divide, DR (1D); Fix Pt, RX 5-110 (Sheet 1)
Divide, Fixed-Point:
Algorithm 5-110 (Sheet 3)
Data Flow 5-110 (Sheet 4
Initialization 5-110 (Sheets 1 and 2)
Termination 5-110 (Sheets 5 and 6)
Divide, Floating-Point; Data Flow 5-213
Dividend Bits, Transfer of Low-Order; Fixed-Point 5-110 (Sheet 4)
Divisor Multiple, Derivation of; Fixed-Point 5-110 (Sheet 4)
Drive Line Decode, ROS 4-105 (Sheet 1)
E-Register:
Data Flow 2-1
Incrementer, Bits 14 and 15 4-203
Parity Prediction After Incrementing 4-204
Usage:
Branch Requests 5-4
Branching Instructions 3-4
Decimal Instructions 3-3
Direct Control Operation $5-607$
Divide, Floating-Point 5-213
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2

I/O Instructions 3-7
Logical Instructions 3-3
Multiply, Floating-Point 5-210
RR I-Fetch, One-Cycle 5-7
RR I-Fetch, Two-Cycle 5-8
RX I-Fetch, One-Cycle 5-10
RX I-Fetch, Two-Cycle 5-12
RX I-Fetch, Two-Cycle Indexed 5-11
RX I-Fetch, Two-Cycle Nonindexed 5-12
SI I-Fetch, One-Cycle 5-10
SI I-Fetch, Two-Cycle 5-12
Status Switching Instructions 3-5
E-Register Incrementer:
Bits 14 and 15, Positive Logic Diagram 4-203
Parity Prediction After Incrementing 4-204
Early End Op, Instruction Requests 5-3
Edit, ED (DE); Logic, SS 5-411
Edit and Mark, EDMK (DF); Logic, SS 5-411
EEOP Request Trigger 5-30
E(8-15) Parity Trigger 4-204
End Op :
nstruction Requests 5-2
Operand Prefetching 5-1
Error Controls 6-22
Error Trigger 4-606, 4-413, 4-414, 6-22, 6-108
Exceptional Conditions:
CPU Store In Progress 5-18
Invalid Instruction Address Test 5-29
Manual Control 5-27
Program Store Compare 5-28
Q-Register Refill 5-30
Timer 5-17
Excess-6 Logic, Parallel Adder 4-415
Exclusive-OR Function, SAL(0) 4-406
Exclusive-OR, X (57); Logic, RX 5-406
Exclusive-OR, XC (D7); Logic, SS 5-406
Exclusive-OR, XI (97); Logic, SI 5-406
Exclusive-OR, XR (17); Logic, RR 5-406
Execute, EX(44); Br, RX 5-506
External Interruptions. 5-24
External Register:
Data Flow 2-1
Usage:
SATR 5-808, 809
SCON 5-810
SIOP \quad 5-807
External Signal Flip-Latches 5-607
External Signal Trigger 5-24

F-Register:
Data Flow 2-1
Usage:
Add, Subtract, and Compare, Decimal 5-302 (Sheet 1)
Direct Control Operation 5-607 (Sheet 2)
Divide, Decimal 5-306 (Sheet 1)
Divide, Fixed-Point 5-110 (Sheet 4)
Divide, Floating-Point 5-213
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
Multiply, Decimal 5-305 (Sheet 1)
Multiply, Fixed-Point 5-109 (Sheet 3)
Multiply, Floating-Point 5-210
Status Switching Instructions 3-5
Fail Trigger 6-111, 6-112
Fault Locating Test (see FLT)
Final Error Latch 4-413, 4-414
Fixed-Point Instructions:
Add, A (5A); RX 5-108
Add, AR (1A); RR 5-108
Add Halfword, AH (4A); RX 5-108
Add Logical, AL (5E); RX 5-108
Add Logical, ALR (1E); RR 5-108
Compare, C (59); RX 5-108
Compare, CR (19); RR 5-108
Compare Halfword, CH (49); RX 5-108
Convert to Binary, CVB (4F); RX 5-111
Convert to Decimal, CVD (4E); RX 5-112
Data Flow 3-1
Divide:
Algorithm 5-110 (Sheet 3)
Data Flow 5-110 (Shet 4)
Initialization 5-110 (Sheets 1 and 2)
Termination 5-110 (Sheet 2)
Divide, D (5D); RX 5-110 (Sheet 2)
Divide, DR (1D); RR 5-110 (Sheet 1)
Load, L (58); RX 5-101
$\begin{array}{ll}\text { Load, L(} \\ \text { Load, } & \text { LR (18); RR } \\ \text { 5-101 }\end{array}$
Load and Test, LTR (12); RR 5-103
Load Complement, LCR (13); RR 5-104
Load Halfword, LH (48); RX 5-102
Load Multiple, LM (98); RS 5-107
Load Negative, LNR (11); RR 5-106
Load Positive, LPR (10); RR 5-105
Multiply:
Algorithm 5-109 (Sheet 2)
Data Flow 5-109 (Sheet 3)
Initialization 5-109 (Sheet 1)
Multiply, M (5C); RX 5-109
Multiply, MR (1C); RR 5-109
Multiply Halfword, MH (4C); RX 5-109
Shift Left Double, SLDA (8F); RS 5-11
Shift Left Single, SLA (8B); RS 5-116
Shift Right Double, SRDA (8E); RS 5-119

Shift Right Single, SRA (8A); RS 5-118
Store Halfword, STH (40); RX 5-114
Store Multiple, STM (90); RS 5-115
Store, ST (50); RX 5-113
Subtract Halfword, SH (4B); RX 5-108
Subtract Logical, SL (5F); RX 5-108
Subtract Logical, SLR (1F); RR 5-108
Subtract, S (5B); RX 5-108
Subtract, SR (1B); RR 5-108
Floating-Point Instructions:
Add Normalized, AD (6A); RX (Long) 5-207
Add Normalized, ADR (2A); RR (Long) 5-207
Add Normalized, AE (7A); RX (Short) 5-206
Add Normalized AER (3A); RR (Short) 5-206
Add Unnormalized AU (7E); RX (Short) 5-206 Add Unnormalized AUR (3E); RR (Short) 5-206 Add Unnomalized AW (6E); RX (Short) 5-206 Add Unomalized AWR (2E); RR (Long) 5-207
Add Unnormalized, AWR (2E); RR (Long) 5-207
CC Setting 5-201
Compare, CD (69); RX (Long) 5-207
Compare, CDR (29); RR (Long) 5-207
Compare, CE (79); RX (Short) 5-206
Compare, CER (39); RR (Short) 5-206
Data Flow 2-1
Divide, Data Flow 5-213
Divide, DD (6D); RX (Long) 5-215
Divide, DDR (2D); RR (Long) 5-215
Divide, DE (7D); RX (Short) 5-214
Divide, DER (3D); RR (Short) 5-214
Halve, HDR (24); RR (Long) 5-209
Halve, HER (34); RR (Short) 5-208
Load and Test, LTDR (22); RR (Long) 5-205
Load and Test, LTER (32); RR (Short) 5-204
Load Complement, LCDR (23); RR (Long) 5-205
$\begin{array}{ll}\text { Load Complement, LCDR (23); RR (Long) } & \text { 5-205 } \\ \text { Load Complement, LCER (33); RR (Short) } & \text { 5-204 }\end{array}$
Load Complement, LCER (33); RR
Load, LD (68); RX (Long) $5-203$
Load, LDR (28); RR (Long) 5-202
Load, LDR (28), RR (Long) 5-202
Load, LER (38); RR (Short) \quad 5-202
Load, LER (38); RR (Short) 5-202
Load Negative, LNDR (21); RR (Long)
Load Negative, LNDR (21); RR (Long) 5-205
Load Negative, LNER (31); RR (Short) 5-204
Load Positive, LPDR (20); RR (Long) 5-205
Load Positive, LPER (30); RR (Short) 5-204
Multiply, Data Flow 5-210
Multiply, MD (6C); RX (Long) 5-212
Multiply, MDR (2C); RR (Long) 5-212
Multiply, ME (7C); RX (Short) 5-211
Multiply, MER (3C); RR (Short) 5-211 Save Signs and Insert Sign Function 5-201
Store, STD (60); RX (Long) 5-216
Store, STE (70); RX (Short) 5-216
Subtract Normalized, SD (6B); RX (Long) 5-207
Subtract Normalized, SE (7B); RX (Short) 5-206
Subtract Normalized, SER (3B); RR (Short) 5-206
Subtract Unnormalized, SU (7F); RX (Short) 5-206
Subtract Unnormalized, SUR (3F); RR (Short) 5-206
Subtract Unnormalized, SW (6F); RX (Long) 5-207
Subtract Unnormalized, SWR (2F); RR (Long) 5-207 FLT:

Backspace $\mathrm{Pb} \quad 6-27$
Clock 6-103
Counter, Decrementing 6-106
Sequence 6-116
FLT Counter $=0$ Latch 6-106
FLT Test Trigger 6-26, 6-111
Force Address Latch 4-1, 6-7
Fraction Data Path:
Floating-Point Divide 5-213
Floating-Point Multiply 5-210
FREQUENCY ALTERATION Switch, Clock Signal Generator 4-3
Full-Sum Checking Logic, PA(48-55) 4-514
Full Sum Error (48-55) Trigger 4-514
Functional Units (see Specific Unit)

G-Register

Data Flow 2-1
Usage:
Direct Control Operation 5-607
Status Switching Instructions 3-5
GAP Latch 6-113
Gate A(8-15) to SBA Trigger 4-401
Gate A(0-7) to SBA Trigger 4-401
Gate B(56-63) to SBA Trigger 4-401
Gate Control Triggers for ' $\mathrm{B}+\mathrm{T}$ ' Micro-order 4-409
Gate F to SBA Trigger 4-401
Gate I-Fetch Invalid Address Trigger 5-29 (Sheet 1)
Gate IL Not Available Trigger 5-16
General Initialization Sequence (see GIS)
GIS:
Add, AP (FA); Dec, SS 5-301
Compare, CP (F9); Dec, SS 5-301
Logical Instructions 5-401
Move With Offset, MVO (F1); Dec, SS 5-307
Pack, PACK (F2); Dec, SS 5-307
Subtract, SP (FB); Dec, SS 5-301
Unpack, UNPK (F3); Dec, SS 5-307

Half-Sum Checking Logic, PA(48-55) 4-413
Half-Sum Error Trigger 4-413
Half-Sum Precheck Error (48-55) Trigger 4-413
Halt I/O, HIO (9E); I/O, SI 5-703
Halve, HDR (24); Fl Pt, RR (Long) 5-209

Halve, HER (34); F1 Pt, RR (Short) 5-208
Hold In Flip-Latch 5-607 (Sheet 2)
Hold MC IPL Latch 6-9
I-Fetch:
Block I-Fetch Trigger 5-16
Branch Requests 5-4
Common Interruption Routine 5-26
CPU Store in Progress Exceptional Condition 5-18
External Interruptions 5-24
Instruction Requests During Early End Op 5-3
Instruction Requests During End Op ${ }^{\text {* }}$ 5-2
Interrupt Code Triggers:
Nonbranch Setting of 5-20
Program Interruption Code 5-22
Spec Y-Branch Setting of 5-21
Invalid Instruction Address Test Exceptional Condition 5-29
I/O Interruption 5-25
Machine Check Interruption 5-19
Manual Control Exceptional Conditions 5-27
Operand Prefetching During End Op 5-1
Program Interruptions 5-22
Program Store Compare Exceptional Condition 5-28
Q-Register Refill Exceptional Condition 5-30
RR, Flowchart 5-6
RR, One-Cycle 5-7
RR, Two-Cycle 5-8
RS, Flowchart 5-13
RS, One-Cycle 5-10
RS, Two-Cycle 5-12
RX, Flowchart 5-9
RX, One-Cycle 5-10
RX, Two-Cycle Indexed 5-11
RX, Two-Cycle Nonindexed 5-12
Sequence, Selection of 5-5
Sequencers 5-15
SI, Flowchart 5-13
SI, One-Cycle 5-10
SI, Two-Cycle 5-12
SS, Flowchart 5-i 4
Supervisor Call Interruption 5-23
$\begin{array}{ll}\text { Timer Exceptional Condition } & 5-17\end{array}$
I-Fetch Invalid Address Trigger 5-29 (Sheet 1)
I-Fetch Request Trigger 5-29 (Sheet 1)
IC:
Address Gating, BCU 4-602
Data Flow 2-1
Parity Adjustment 4-205
Usage:
Add, Subtract, and Compare, Decimal 5-302 (Sheet 1)
B-Field Transfer to LAL 4-201
Branching Instructions 3-4
Decimal Instructions 3-3
Divide, Decimal 5-306 (Sheet 1)
Fixed-Point Instructions 3-1
I-Fetch Sequencer Control 5-15
Instruction Requests During Early End Op 5-3
Instruction Requests During End Op 5-2
Logical Instructions 3-3
Multiply, Decimal 5-305 (Sheet 1)
Operand Prefetching During End Op 5-1
RR I-Fetch, One-Cycle 5-7
RS I-Fetch, One-Cycle 5-10
RX I-Fetch, One-Cycle 5-10
RX I-Fetch, Two-Cycle Indexed 5-11
Selection of I-Fetch Sequence 5-5
SI I-Fetch, One-Cycle 5-10
Status Switching Instructions 3-5
IC P(16-23) Flip-Latch 4-205
IC Request Trigger 4-601
IC Sync Latch 4-601, 5-15 (Sheet 1)
IC Sync Trigger 4-601
Inhibit LS Write Trigger 5-21
Initial Program Load (See IPL)
Input/Output (see I/O)
Insert Character, IC(43); Logic, RX 5-408
Insert Key Trigger 4-601
Insert Storage Key, ISK (09); Stat Sw, RR 5-606
Instruction:
Requests:
During Early End Op 5-3
During End Op 5-2
Step Routine 6-13
Instruction Counter (see IC)
Instruction Fetching (see I-Fetch)
Instruction Length Not Available Trigger 5-20
Instruction Step Latch 6-12
Instructions (see Specific Instruction or Class)
Interrupt Code Triggers 5-20, 5-21, 5-22
Interruptions:
Common Routine 5-26
External 5-24
Gating, Block 6-6
Interrupt Code Triggers 5-20, 5-21, 5-22
I/O $\quad 5-25$
Machine Check 5-19
Program 5-22
Supervisor Call 5-23
Interrupts Latch 6-6
Invalid Address Logic, SCI 4-604
Invalid Digit Logic, Serial Adder 4-405
Invalid Instruction Address Test Exceptional Condition 5-29
Invalid Instruction Address Trigger 5-29 (Sheet 1)

I/O:
Instructions:
Data Flow 3-6
Halt I/O, HIO (9E); SI 5-703
Start I/O, SIO (9C); SI 5-701
Test Channel, TCH (9F); SI 5-704
Test I/O, TIO (9D); SI 5-702
Interruption 5-25
System Data Flow 2-1
IPL:
Gating 6-9
Operation 6-8
K-Register:
Data Flow 2-
Usage:
Convert and Sort Symbols 5-903
Convert Weather Lines 5-905
Delay 5-803
DE Wrap 6-201
Mode Word 5-806
Repack Symbols 5-902

Late BCU Cleanup Latch 4-208
LM-Register:
Data Flow 2-1
Usage:
Convert Weather Lines 5-905 LM to XY Formatting 4-211 Repack Symbols 5-902
Load Address, LA (41); Logic, RX 5-409
Load and Test, LTDR (22); FI Pt, RR (Long) 5-205
Load and Test, LTER (32); Fl Pt, RR (Short) 5-204
Load and Test, LTR (12); Fix Pt, RR 5-103
oad Complement, LCDR (23); Fl Pt, RR (Long) 5-205
Load Complement, LCER (33); F1 Pt, RR (Short) 5-204
Load Complement, LCR (13); Fix Pt, RR 5-104
Load Halfword, LH (48); Fix Pt, RX 5-102
Load, L (58); Fix Pt, RX 5-101
Load, LD (68); Fl Pt, RX (Long) 5-203
Load, LDR (28); Fl Pt, RR (Long) 5-202
Load, LE (78); Fl Pt, RX (Short) 5-203
Load, LER (38); Fl Pt, RR (Short) 5-202
oad, LR (18); Fix Pt, RR 5-101
Load Multiple, LM (98); Fix Pt, RS 5-107
Load Negative, LNDR (21); Fl Pt, RR (Long) 5-205
Load Negative, LNER (31); Fl Pt, RR (Short) 5-204
Load Negative, LNR (11); Fix Pt, RR 5-106
Load Positive, LPDR (20); Fl Pt, RR (Long) 5-205
Load Positive, LPER (30); F1 Pt, RR (Short) 5-204
Load Positive, LPR (10); Fix Pt, RR 5-105
Load PSW, LPSW (82); Stat Sw, SI 5-601
Local Storage:
Data Flow 2-1
Read/Write Controls 4-301
Usage:
B-Field Transfer to LAL 4-201
Branching Instructions 3-4
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
Operand Prefetching During End.Op 5-1
R(8-11) or R(12-15) Transfer to LAL 4-202
RR I-Fetch, One-Cycle 5-7
RS I-Fetch, One-Cycle 5-10
RX I-Fetch, One-Cycle 5-10
RX I-Fetch, Two-Cycle Indexed 5-11
Scan 6-101
SI I-Fetch, One-Cycle 5-10
Status Switching Instructions 3-5
LOG OUT Pushbutton Logic 6-25
Logical Function, SAL(0) 4-406
Logical Instructions:
AND, N (54); RX 5-404
AND, NC (D4); SS 5-404
AND, NI (94); SI 5-404
AND, NR (14); RR 5-404
Compare, SL (55); RX 5-403
Compare, CLC (D5); SS 5-403
Compare, CLI (95); SI 5-403
Compare, CLI (D5), SI 5-403
Compare, CLR (15); RR 5-403
Data Flow $3-3$
Data Flow 3-3
Edit, ED (DE); SS 5-411
Edit and Mark, EDMK (DF); SS 5-411
Exclusive-OR, X (57); RX 5-406
Exclusivo-OR, XC (D), SS 5-406
$\begin{array}{ll}\text { Exclusive-OR, XI (97); SI } & 5-406 \\ \text { Exclusive-OR, XR (17); RR } & 5-406\end{array}$
Exclusive-OR
GIS $\quad 5-401$
Insert Character, IC (43); RX 5-408
Load Address, LA (41); RX 5-409
Move, MVC (D2); SS $\quad 5-402$
$\begin{array}{lr}\text { Move, MVI (D2); SI } & \text { 5-402 }\end{array}$
Move Numerics, MVN (D1); SS 5-402
Move Zones, MVZ (D3); SS 5-402
OR, O(56); RX 5-405
OR, OC(D6); SS 5-405
OR, OI (96); SI 5-405
OR, OR (16); RR 5-405
Shift Left Double, SLDL (8D); RS 5-412
Shift Left Single, SLL (89); RS 5-412
Shift Right Double, SRDL (8C); RS 5-412
Shift Right Single, SRL (88); RS 5-412

Store Character, STC (42); RX 5-408
Test Under Mask, TM (91); SI 5-407
Translate and Test, TRT (DD); SS 5-410
Translate, TR (DC); SS 5-410
Logout:
Control Logic 6-108
Sequence 6-114
Logout Trigger 6-108
LS (see Local Storage)

Machine Check Interrupt Trigger 5-19
Machine Check Interruption 5-19
Main Storage, Data Flow.
I/O Instructions 3-6
System 2-1
Maintenance Control Word (see MCW)
Maintenance Features:
Diagnose (83); Stat Sw 5-609
MCW 5-609 (Sheet 1)
Maintenance Mode Stop Clock (see MMSC)
Manual Control Exceptional Conditions 5-27
Manual Trigger 6-6
Mark Triggers:
Data Flow 2-1
Positive Logic Diagram $4-209$
Usage, Scan 6-101
MCW 5-609 (Sheet 1)
MCW-Register:
Data Flow 2-1
Usage:
Scan 6-101
Status Switching Instructions 3-5
Mixer:
Data Flow 2-1
Usage:
Convert Weather Lines 5-905
LM to XY Reformatting 4-211
Repack Symbols 5-902
XY Parity Prediction 4-212
MMSC Logic 6-110
MMSC Trigger 6-108, 6-110
Move, MVC (D2); Logic, SS 5-402
$\begin{array}{ll}\text { Move, MVC (D2), Logic, SS } & \text { 5-402 } \\ \text { Move, MVI (92); Logic, SI } & 5-402\end{array}$
Move Numerics, MVN (D1); Logic, SS 5-402
Move With Offset, MVO (F1); Dec, SS:
GIS 5-307
Not Word Overlap Sequence 5-312
Word Overlap Sequence 5-313
Move Zones, MVZ (D3); Logic, SS 5-402
Multiple Computing Element Instructions:
Delay, DLY(0B); Mple, RR 5-803
Insert ATR, IATR (0E); Mple, RR 5-802
Load ID, LI(0C); Mple, RR 5-801
Load PS Base Address (Preferential Storage), LPSB (A1); Mple, SI 5-805
Move Word, MVW (D8); Mple, SS 5-806
Set Address Translator, SATR (0D); Mple, RR Receiving 5-808
Set Configuration SCON (01); Mple, RR 5-810
Start I/O Processor, SIOP (9A); Mple, SI 5-807
Store PS Base Address (Preferential Storage), SPSB (A0); Mple, SI 5-804
Test \& Set, TS (93) Mple, SI 5-811
Multiple, Derivation of; Fixed-Point Multiply \quad 5-109 (Sheet 3)
Multiply, Fixed-Point:
Algorithm 5-109 (Sheet 2)
Data Flow 5-109 (Sheet 3)
Initialization 5-109 (Sheet 1)
Multiply Floating Point, Data Flow 5-210
Multiply Halfword, MH (4C); Fix Pt, RX 5-109
Multiply, M (5C); Fix Pt, RX 5-109
Multiply, MD (6 C); Fl Pt, RX (Long) 5-212
Multiply, MDR (2C); Fl Pt, RR (Long) 5-212
Multiply, ME (7C); Fl Pt, RX (Short) 5-211
Multiply, MER (3C); Fl Pt, RR (Short) \quad 5-211
Multiply, MP (FC); Dec, SS 5-305
Multiply, MR (1C); Fix Pt, RR 5-109

N -Register

Data Flow 2-1
Usage (Repack Symbols) 5-902

Operand Prefetching During End Op 5-1
OR Function, SAL(0) 4-406
OR, O (56); Logic, RX 5-405
OR, OC (D6); Logic, SS 5-405
OR, OI (96); Logic, SI 5-405
OR, OR (16); Logic, RR 5-405
Pack, PACK (F2); Dec, SS:
GIS 5-307
Not Word Overlap Sequence 5-308
Word Overlap Sequence 5-309
PAL(48-55) Parity Latch 4-412
Parallel Adder:
Address Gating, SCI 4-602
Bit-Position Logic, Bit 47 4-510
Carry Lookahead Logic 4-511
Data Flow 2-1
Excess-6 Logic 4-415
Full-Sum Checking Logic, PA(48-55) 4-414
Gate Control Triggers for ' $B+T$ ' Micro-order 4-409
Half-Sum Checking Logic, PA(48-55) 4-413
Parity Generation, PAL(48-55) 4-412
Set CC Logic 4-416

Usage:
Branching Instructions 3-4
Decimal Instructions 3-3
Divide, Decimal 5-306 (Sheet 1)
Divide, Fixed-Point 5-110 (Sheet 4)
Divide, Floating-Point 5-213
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
I-Fetch Sequencer Control 5-15
Logical Instructions 3-3
Multiply, Decimal 5-305 (Sheet 1)
Multiply, Fixed-Point 5-109 (Sheet 3)
Multiply, Floating-Point 5-210
RR I-Fetch, One-Cycle 5-7
RS I-Fetch, One-Cycle 5-10
RX I-Fetch, One-Cycle 5-10
RX I-Fetch, Two-Cycle Indexed 5-11
Scan 6-101
Scan-Out Path 6-107
SI I-Fetch, One-Cycle 5-10
Status Switching Instructions 3-5
Parity
Generation, PAL(48-55) 4-412
IC, Adjustment for Stepping 4-205
Predict Logic, Serial Adder 4-407
Prediction, after Incrementing E-Register Incrementer 4-204
Partial Product Bit, Derivation of; Fixed-Point Multiply 5-109 (Sheet 3)
Partial Product Byte, Derivation of; Fixed-Point Multiply 5-109 (Sheet 3)
Pass Pulse Trigger 4-1, 6-12, 6-102
Pass Trigger 6-112, 6-113
PIR:
Data Flow 2-1
Usage (Diagnose) 5-609
Power-on Reset 6-7
Product/Quotient Bit Logic, Serial Adder 4-408
Program Interrupt Flip-Latch 5-22
Program Interruptions 5-22
Program Status Word (see PSW)
Program Store Compare Exceptional Condition 5-28
PROSAR A, Data Flow 4-105 (Sheet 2)
PROSAR B, Data Flow 4-105 (Sheet 2)
Protected Branch Address Trigger 5-29 (Sheet 1)
Protection Check to CPU Latch 5-20
PSA Access Error 4-608
PSBAR (Preferential Storage Base Add Reg):
Counter 4-608
Logical:
Data Flow 2-1
Usage:
Address Decode \& Gating Logic 4-602
Load PSBAR 5-805
$\begin{array}{ll}\text { Store PSBAR } & 5-804\end{array}$
Physical:
Data Flow 2-1
Usage:
$\begin{array}{ll}\text { Load PSBAR } & 5-805\end{array}$
$\begin{array}{ll}\text { Store PSBAR } & \text { 5-804 }\end{array}$
PSW Register:
Data Flow 2-1
Usage:
Branching Instructions 3-4
Status Switching Instructions 3-5
Pulse Mode:
Controls 6-23
Operation 6-24
Pulse Mode Adjust Trigger 6-23
Pulse Mode Initialization Trigger 6-23
Pulse Mode Setup Latch 6-23
Pushbutton:
Gating, Stop Loop 6-5
Signal Generation 6-3

Q-Register:
Data Flow 2-1
Usage:
B-Field Transfer to LAL 4-201
Branching Instructions 3-4
I-Fetch Sequencer Control 5-15
Instruction Requests During Early End Op 5-3
Instruction Requests During End Op 5-2
Operand Prefetching during End Op 5-1
RR I-Fetch, One-Cycle 5-7
$\begin{array}{ll}\text { RR I-Fetch, One-Cycle } & 5-7 \\ \text { RR I-Fetch, Two-Cycle } & 5-8\end{array}$
$\begin{array}{lr}\text { RR I-Fetch, Two-Cycle } & 5-8 \\ \text { RS I-Fetch, One-Cycle } & 5-10\end{array}$
$\begin{array}{lc}\text { RS I-Fetch, One-Cycle } & 5-10 \\ \text { RS I-Fetch, Two-Cycle } & 5-12\end{array}$
$\begin{array}{ll}\text { RS I-Fetch, Two-Cycle } & 5-12 \\ \text { RX I-Fetch, One-Cycle } & 5-10\end{array}$
RX I-Fetch, Tne-Cycle
RX
I-Fycle Indexed
RX I-Fetch, Two-Cycle Indexed 5-11
RX I-Fetch, Two-Cycle Nonindexed $5-12$
RX I-Fetch, Two-Cycle Nonindexed 5-
Selection of I-Fetch Sequence 5-5
SI I-Fetch, One-Cycle 5-10
Status Switching Instructions 3-5
Q-Register Refill Exceptional Condition 5-30
Quotient Bits, Derivation of; Fixed-Point Divide 5-110 (Sheet 4)

R-Register:

Data Flow 2-1
Usage:
B-Field Transfer to LAL 4-201
Branch Requests 5-4
Branching Instructions 3-4
I-Fetch Sequencer Control 5-15
Instruction Requests During Early End Op 5-3
nstruction Requests During End Op 5-2
Operand Prefetching During End Op 5-1
$\mathrm{R}(8-11)$ or $\mathrm{R}(12-15)$ Transfer to LAL 4-202
RR I-Fetch, One-Cycle 5-7
RR I-Fetch, Two-Cycle 5-8
RS I-Fetch, One-Cycle 5-10
RS I-Fetch, Two-Cycle 5-12
RX I-Fetch, One-Cycle 5-10
RX I-Fetch, Two-Cycle Indexed 5-11
RX I-Fetch, Two-Cycle Nonindexed 5-12
Selection of I-Fetch Sequence 5-5
SI I-Fetch, One-Cycle 5-10
SI I-Fetch, Two-Cycle 5-12
Status Switching Instructions 3-7
RATE Switch Logic 6-12
Read Direct, RDD (85) 5-607
Read-Only Storage (see ROS)
Read-Only Storage Address Register (see ROSAR)
Read-Only Storage Backup Register (see ROSBR)
Read-Only Storage Data Register (see ROSDR)
Read-Only Storage Previous Address Register A and B (see PROSAR A and PROSAR B)
Read/Write Controls, Local Storage 4-301
$\mathrm{R}(8-11)$ or $\mathrm{R}(12-15)$ Transfer to LAL 4-202
REPEAT INSN Switch:
Logic 6-15
Routine 6-16
Repeat Instruction Adjust Trigger 6-15
Repeat Instruction Initialization Latch 6-15
Repeat ROS Address Flip-Latch 4-101
REPEAT ROS ADDRESS Switch Gating 6-17
Request Sensing Logic 4-601
Reset:
Machine 6-7
RESTART FLT I/O Pushbutton Logic 6-27
Ripple Storage, Loop Routine 6-18
Roller Switches 6-2
ROS:
Addressing:
Drive Line Decode 4-105 (Sheet 1)
Select Line Decode 4-105 (Sheet 1)
Sense Amplifiers 4-105 (Sheet 1)
Sense Latches 4-105 (Sheet 1)
Sense Line and Driver Distribution 4-105 (Sheet 1)
Array Drivers 4-106
Data Flow 4-105 (Sheet 2)
ROSAR(0-5) Logic 4-101
ROSAR (6-5) Logic 4-101
ROSAR(6-9) Logic 4-102
ROSAR(10) Logic 4-103
Timing 4-105 (Sheet 1)
ROS Microbranching, Scan Contr
ROS Test Initiate Trigger 6-26
ROS Test Latch $6-26$
ROS Test Sequence 6-15
ROS Test Trigger 6-112
ROS Transfer and Repeat Address Trigger and Latch 6-17
ROS TRANSFER Switch Gating 6-17
ROSAR:
Data Flow 4-105 (Sheet Z)
ROSAR (0-5) Logic 4-101
ROSAR(6-9) Logic 4-102
ROSAR(10) Logic 4-103
ROSAR(11) Logic 4-104
Selection of I-Fetch Sequence 5-5
Usage:
I-Fetch Sequencer Control 5-15
Scan 6-101
ROSAR Latches, Data Flow 4-105 (Sheet 2)
ROSBR, Data Flow 4-105 (Sheet 2)
ROSDR:
Data Flow 4-105 (Sheet 2)
Logic 4-107
ROSDR Latches, Data Flow 4-105 (Sheet 2)
RR I-Fetch:
Flowchart 5-6
One-Cycle 5-7
Two-Cycle 5-8
RS I-Fetch:
Flowchart 5-13
One-Cycle 5-10
Two-Cycle 5-12
RX I-Fetch:
Flowchart 5-9
One-Cycle 5-10
Two-Cycle Indexed 5-11
Two-Cycle Nonindexed 5-12

S-Register (see ST-Register)
SAB Parity Conversion Logic, SCI 6-10
SADDL Parity (0-7) Latch $4-407$
Sample Pulse Trigger 5-17
Scan Clock 6-102
Scan Control Triggers 6-111
Scan Counter Control Trigger and Latch 6-106
Scan Counter Latches and Decrementer 6-104
Scan/IOCE Interface 6-113
Scan Logic:
Control Triggers 6-111
Data Flow 6-101
FLT Clock 6-103
FLT Counter, Decrementing 6-106
Logout Control Logic 6-108

MMSC Logic 6-110
ROS Microbranching, Control 6-112
Scan Clock 6-102
Scan Counter Latches and Decrementer 6-104
Scan/IOCE Interface 6-113
Scan-Out Bus, Data Flow 6-107
Scan-Out Path 6-109
Scan Storage Address Generator 6-105
Scan MODE ROS/PROC/FLT Switch Logic 6-26
Scan Mode Trigger and Latch 6-108
Scan-Out Bus, Data Flow 6-107
Scan-Out Path 6-109
Scan-Out ROS (see SOROS)
Scan Request Trigger 4-601, 6-105, 6-108
Scan Storage Address Generator 6-105
Scan Sync Trigger and Latch $4-601,6-105,6-108$
SCI:
Address Decode Logic, Basic System 4-602
Address Gating Logic 4-602
CE Request Timing, Typical 4-601
Clock Control Logic 4-603
CPU Sequencers 4-603
Data Flow 2-1
Invalid Address Logic 4-604
Request Sensing Logic 4-601
SAB Parity Conversion Logic 4-610
Single-Cycle Mode, Servicing of Requests 4-612
Storage Error Logic 4-606
egmented Clock Inhibit Latch
Segmented Clock Storage Selected Latch 4-2
Select Line Decode, ROS 4-105 (Sheet 1)
Select Register:
Data Flow 2-1
Usage:
SATR 5-808, 809
SCON 5-810
Sense Amplifier, ROS 4-105 (Sheet 1)
Sense Latches, ROS:
Addressing 4-105 (Sheet 1)
Data Flow 4-105 (Sheet 2)
Sense Line and Driver Distribution, ROS 4-105 (Sheet 1)
Serial Adder:
AND Function, SLA(0) 4-406
Carry Lookahead Logic, SAL(0-3) 4-402
Data Flow 2-1
Decimal Add 6 Logic 4-403
Decimal Correction Logic, SAL(0-3) 4-403
Exclusive-OR Function, SAL(0) 4-406
nput Bus Logic 4-401
nvalid Digit Logic 4-405
Logical Function, SAL(0) 4-406
OR Function, SAL(0) 4-406
Parity Predict Logic 4-407
Product/Quotient Bit Logic 4-408

sage:

Add, Subtract, and Compare, Decimal 5-302 (Sheet 1)
Decimal Instructions 2-1
Direct Control Operation 5-607 (Sheet 2)
Divide, Decimal 5-306 (Sheet 1)
Divide, Fixed-Point 5-110 (Sheet 4)
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
Logical Instructions 3-3
Multiply, Decimal 5-305 (Sheet 1)
Multiply, Fixed-Point 5-109 (Sheet 3)
Multiply, Floating-Point 5-210
Status Switching Instructions 3-5
Set Program Mask, SPM (04); Stat Sw, RR 5-602
Set Storage Key, SSK (08); Stat Sw, RR 5-605
Set System Mask, SSM (80); Stat Sw, SI 5-603
Shift Left Double, SLDA (8F); Fix Pt, RS 5-117
Shift Left Double, SLDL (8D); Logic, RS 5-412
Shift Left Single, SLA (8B); Fix Pt, RS 5-116
Shift Left Single, SLL (89); Logic, RS 5-412
Shift Right Double, SRDA (8E); Fix Pt, RS 5-119
Shift Right Double, SRDL (8C); Logic, RS 5-412
$\begin{array}{ll}\text { Shift Right Double, SRDL (8C); Logic, RS } & 5-412 \\ \text { Shift Right Single, SRA (8A); Fix Pt, RX } & 5-118\end{array}$
$\begin{array}{lr}\text { Shift Right Single, SRA (8A); Fix Pt, RX } & \text { 5-11 } \\ \text { Shift }\end{array}$
SI I-Fetch:
Flowchart 5-13
One-Cycle 5-10
Two-Cycle 5-12
Sign Data Path:
Floating-Point Divide 5-213
Floating-Point Multiply 5-210
Single-Cycle Inhibit Routine 6-14
Single Cycle Latch 6-12
Single-Cycle Mode, Servicing of Requests by SCI 4-612
Single-Cycle Routine 6-14
SOROS Trigger 6-25, 6-10
SOROS Trigger 6-25, 6-108
ST Register:
Bits 15 and 16 4-306
Bits 15 and 16
Data Flow 2-1
Usage:
Add, Subtract, and Compare, Decimal 5-302 (Sheet 1)
Branching Instructions 3-4
Decimal Instructions 3-3
Direct Control Operation 5-607 (Sheet 2)
Divide, Decimal 5-306 (Sheet 1)
Divide, Fixed-Point 5-110 (Sheet 4)
Divide, Floating-Point 5-213
ixed-Point Instructions 3-1
Floating-Point Instructions 3-2
/O Instructions 3-7
Logical Instructions 3-3
Multiply, Decimal 5-305 (Sheet 1)
Multiply, Fixed-Point 5-109 (Sheet 3)
Multiply, Floating-Point 5-210
RS I-Fetch, One-Cycle 5-10
RX I-Fetch, One-Cycle 5-10
RX I-Fetch, Two-Cycle Indexed 5-11
Scan 6-101
SI I-Fetch, One-Cycle 5-10
Status Switching Instructions 3-5
ST-Register Byte Counter (see STC)
Start I/O, SIO (9C); I/O, SI 5-701
STAT A, Set CC; Parallel Adder 4-416
STAT B, Positive Logic Diagram 4-501
STAT C, Save Signs and Insert Sign; Floating-Point 5-201
STAT D, Save Signs and Insert Sign; Floating-Point 5-20
STAT F, Save Signs and Insert Sign; Floating-Point 5-201
Status Switching Instructions:
Data Flow 3-5
Diagnose (83); SI 5-609
Insert Storage Key, ISK (09); RR 5-606
Load PSW, LPSW (82); SI 5-601
Read Direct, RDD (85); SI 5-607
Set Program Mask, SPM (04); RR 5-602
Set Storage Key, SSK (08); RR 5-605
Set System Mask, SSM (80); SI 5-603
Supervisor Call, SVC (0A); RR 5-604
Test and Set, TS (93); SI 5-609
Write Direct, WRD (84); SI 5-607
STC:
Bipolar Latches 4-208
Data Flow 2-1
Incrementer Latches 4-208
Positive Logic Diagram 4-208
Triggers 4-208
Usage:
Decimal Instructions 3-3
Direct Control Operation 5-607 (Sheet 2)
Divide, Decimal 5-306 (Sheet 1)
Divide, Floating-Point 5-213
Fixed-Point Instructions 3-1
Floating-Point Instructions 3-2
Logical Instructions 3-3
Multiply, Floating-Point 5-210
Status Switching Instructions 3-5
Stop Clock Trigger 4-1
Stop Loop:
Pushbutton Gating 6-5
Routine 6-4
Stop Trigger 6-6
Storage Error Logic, SCI 4-606
Storage Ripple Loop Routine 6-18
STORAGE SELECT Switch Gating 6-10
Store Character, STC (42); Logic, RX 5-408
Store Halfword, STH (40); Fix Pt, RX 5-114
Store Latch 4-209
Store Multiple, STM (90); Fix Pt, RS 5-115
Store, ST (50); Fix Pt, RX 5-113
Store, STD (60); Fl Pt, RX (Long) 5-216
Store, STE (70); Fl Pt, RX (Short) 5-216
Store to LCS Flip-Latch 5-18
Store to Main Storage Flip-Latch 5-18
Subtract Halfword, SH (4B); Fix Pt, RX 5-108
Subtract Logical, SL (5F); Fix Pt, RX 5-108
Subtract Logical, SLR (1F); Fix Pt, RR 5-108
Subtract Normalized, SD (6B); Fl Pt, RX (Long) 5-207
Subtract Normalized, SDR (2B); Fl Pt, RR (Long) 5-207
Subtract Normalized, SE (7B); Fl Pt, RX (Short) 5-206
Subtract Normalized, SER (3B); F1 Pt, RR (Short) 5-206
Subtract, S (5B); Fix Pt, RX 5-108
Subtract, SP (FB); Dec, SS:
Complement Add Sequence 5-303
GIS 5-301
True Add Sequence 5-302
Subtract, SR (1B); Fix Pt, RR 5-108
Subtract Unnormalized, SU (7F); F1 Pt, RX (Short) 5-206
Subtract Unnormalized, SUR (3F); F1 Pt, RR (Short) 5-206
Subtract Unnormalized, SW (6F); F1 Pt, RX (Long) 5-207
Subtract Unnormalized, SWR (2F); Fl Pt, RR (Long) 5-207
Supervisor Call, SVC (0A); Stat Sw, RR 5-604
Supervisor Call Interruption 5-23
Supervisor Call Trigger 5-23
Sync Latch 6-108, 6-111
Sync Trigger 6-27, 6-108, 6-111

T-Register (see ST-Register)
1052 Adapter (9020E Only):
Block Diagram 6-28
Data Transfer-Read 6-3
Data Transfer-Write 6-30
Ending Sequence 6-32
Initial Selection-Read, Write, Sense 6-29
Sense and Status Bytes 6-33
$\begin{array}{ll}\text { Sense and Status Bytes } & 6-33 \\ \text { Test and Set, TS (93); Stat Sw, SI } & \\ 5-811\end{array}$
Test Under Mask, TM (91); Logic, SI 5-407
TIC Latch 6-112, 6-113
Time Clock at Limit Trigger 5-24
Time Clock Step Trigger 5-17
Timer Exceptional Condition 5-17
Timing Gate Trigger 3-6, 5-607 (Sheet 2)
Transfer In Channel (see TIC)
Translate, TR (DC); Logic, SS 5-410

Unpack, UNPK (F3); Dec, SS:
GIS 5-307
Not Word Overlap Sequence 5-310
Word Overlap Sequence 5-311

Wait State Gating and Microprogram 6-20
Wait State Trigger 6-20
Word Overlap Sequence:
Move With Offset, MVO (F1); Dec, SS 5-313
Pack, PACK (F2); Dec, SS 5-309
$\begin{array}{ll}\text { Pack, PACK (F2); Dec, SS } & \text { 5-309 } \\ \text { Unpack, UNPK (F3); Dec, SS }\end{array}$
$\begin{array}{ll}\text { Unpack, UNPK (F3); Dec, SS } & \text { 5-311 } \\ \text { Write Direct, WRD (84); Stat Sw, SI } \\ \text { 5-607 }\end{array}$
Write Direct, WRD (84); Stat Sw,
Write Local Store Trigger $4-301$

XY-Register:
Data Flow 2-1
Usage:
Convert Weather Lines 5-905
LM to XY Formatting 4-211
Repack Symbols 5-902
XY Parity Prediction 4-212

[^0]: Diagram 4-3. CE Clock Signal Generator

[^1]: Diagram 4-206. S-Register, Bits 15 and 16

[^2]: Diagram 4-403. Decimal Add 6 Logic

[^3]: Diagram 5-15. I-Fetch Sequencers (Sheet 2 of 2)

[^4]: Diagram 5-305. Decimal Multiply (Sheet 4 of 7)

[^5]: Diagram 5-305. Decimal Multiply (Sheet 7 of 7)

[^6]: Diagram 5-306. Decimal Divide (Sheet 1 of 9)

[^7]: Diagram 5-306. Decimal Divide (Sheet 5 of 9)

[^8]: D. $O R, O C(D 6)$

[^9]: Diagram 5-505. Branch on Index High, BXH (86); Branch on Index Low or Equal, BXLE (87) (Sheet 2 of 3)

[^10]: Diagram 5-805. Load PSBAR, LPSB (A1)

[^11]: Diagram 5-809. Set Address Translator, SATR (0D), Execution in Receiving CE (Sheet 3 of 3)

[^12]: Diagram 5-902. Repack Symbols, RPSB (0F) (Sheet 4 of 21)

[^13]: Diagram 5-905. Convert Weather Lines, CVWL (03) (Sheet 3 of 9)

[^14]: Diagram 6-19. Wait State Gating

[^15]: Diagram 6-32. 1052 Adapter Ending Sequence

[^16]:
 Stare withe the highest velue require and ade
 decremented to to to lowest value required.

[^17]: Diagram 6-110. Maintenance Mode Stop Clock Logic

[^18]: Diagram 6-115. ROS Test Sequence (Sheet 2 of 5)

