
lb. J ~ 5 ~ Field Engineering

Theory of Operation

Computing Element

SFN-0201-1

PREFACE

This manual describes the operation of the IBM 7201-02
Computing Element which is used in the IBM 9020D and
9020E systems for air traffic control. The manual is divided
into four chapters and four appendices:

Chapter 1, Introduction, describes how the Computing
Element fits into the 9020D and 9020E Systems,
discusses the program execution and control, intro
duces the functional units (adders, registers, counters,
etc.) in the Computing Element, and describes the
instruction set with which the Computing Element
operates.

Chapter 2, Functional Units, analyzes the operation of
each functional unit individually, except where two
functional units work together to perform a specific
function (for example, variable-field-length register and
its associated byte counter).

Chapter 3, Principles of Operation, analyzes in detail
instruction fetching and instruction execution by
instruction class.

Chapter 4, Manual Controls and Maintenance Facilities,
discusses the operation of controls on the Computing
Element's control panel and describes the maintenance
facilities for the Computing Element.

Appendix A, Special Circuits, identifies the special
circuits in the Computing Element.

Appendix B, Interface Lines, defines all interface lines
between the CE and other elements/units in the
system.

Appendix C, 1052 Adapter, describes the operation of
the 1052 Adapter attached to the Computing Element.

Appendix D, Numbering Systems, Instruction Coding,
and Data Formats, discusses (1) the hexadecimal (hex)

First Edition (July, 1970)

number system, (2) the eight-bit zoned character codes,
(3) the instruction formats and operand designations,
and (4) the various data formats.

The illustrations supporting the text in this manual are
divided into two groups: (1) purely instructional and (2)
maintenance oriented. The purely instructional illustrations
are referred to as "figures" (e.g., Figure 3-1) and are located
in this manual. The maintenance-oriented illustrations are
referred to as "diagrams" (e.g., Diagram 4-3, FEMDM) and
are located in the companion FE Maintenance Diagrams
Manual.

Prerequisite and companion manuals are:

Prerequisite Manuals
9020E System Introduction, Theory of Operation

Manual, Form SFN-0103
9020D Syst~m Introduction, Theory of Operation
Manual, Form SFN-0104

Companion Manuals
7201-02 Computing Element, Maintenance Diagrams
Manual, Form SFN-0202

7201-02 Computing Element, Maintenance Manual,
Form SFN-0203

7201-02 Computing · Element, Installation Manual,
Form SFN-0204

7201-02 Parts Catalog, Form SFN-0205
9020 D/E Power Controls and Distribution, Theory of

Operation Manual, Form SFN-0105

This manual has been prepared by IBM Product Publications, Kingston, N.Y.

©International Business Machines Corporation, 197 0

ii (7 /70)

CHAPTER 1 INTRODUCTION 1-1

SECTION 1 RELATIONSHIP OF THE CE TO THE 9020D
AND 9020E SYSTEMS 1-1

IBM 9020D Central Computer Complex (CCC) 1-1
IBM 9020£ Display Channel Processor (DCP) 1-2
CE Interfacing 1-2
Control Program 1-4

Privileged Instructions 1-4
Configuration Control 1-4
Address Translation 1-4
Preferential Storage Areas 1-5
Direct Control 1-5
Interruptions 1-5

Machine-Check Interruptions 1-6
Program Interruptions 1-6
Supervisor Call Interruptions 1-7
External Interruptions . . . 1-7

Input/Output Interruptions . . 1-7
Responsibilities of the Control Program 1-7

Element States 1-8
Program Status Word . . 1-8

Program States 1-10
Problem/Supervisor 1-11
Operating/Stopped 1-11
Running/Wait . . . 1-11
Interruptable/Masked 1-11
Interruption Masking 1-12

Preferential Storage Area 1-13
Control of 1/0 Operations 1-14

Instructions, Commands, and Orders 1-14
1/0 Control Words 1-15

Channel Address Word . 1-15
Channel Command Word 1-15
Channel Status Word 1-15

1/0 System Operation 1-16

SECTION 2 CE DESCRIPTION 1-17
Timing 1-17
Data Transfer 1-1 7
Read-Only Storage 1-17

Relationship of ROS to Conventional Controls 1-19
ROS Word 1-19
ROS Addressing and Branching 1-20

No Branch Specified . 1-21
Y- and/or Z-Branches 1-23
X-Branches 1-23
Overriding Branches 1-23

ROS Data Flow . . 1-23
ROS Control of CE 1-24

PSW Register 1-27
Configuration Control 1-29

Configuration Control Register (CCR) 1-30
External Register 1-30
Select Register 1-30

Storage Addressing . 1-31
Address Translation Register (ATR) 1-31
Preferential Storage Base Address Register

(PSBAR) 1-31
Storage Control Interface (SCI) 1-33

Major Interface Lines
CE Storage Requests
Page Controls . . .

Instruction Fetching .
Functional Units Used

Q-Register
R-Register
£-Register
Instruction Counter
D-Register

Instruction Path . . .
Prefetching of Operands
Obtaining New Instructions from Main Storage
Interruption and Exceptional Condition

Recovery
Instruction Execution

Functional Units Used
AB Register
ST Register
AB and ST Byte Counters
Mark Triggers
F-Register
G-Register
K-Register
N-Register
LM-Register
Mixer
XY Register
Serial Adder
Parallel Adder
Local Storage
Local Storage Address Registers (LAL and

LAR)
Status Triggers

Fixed-Point Instructions
Instruction Formats .
Data Flow
Program Interruptions
Condition Codes

Floating-Point Instructions
Instruction Formats .
Data Flow
Program Interruptions
Condition Codes

Decimal Instructions .
Data Handling
Instruction Format
Data Flow
Program Interruptions
Condition Codes

Logical Instructions
Instruction Formats
Data Flow
Program Interruptions
Condition Codes

Branching Instructions
Instruction Formats
Data Flow
Program Interruptions
Condition Codes

Status Switching Instructions

CONTENTS

1-33
1-35
1-35
1-35
1-36
1-36
1-36
1-37
1-37
1-39
1-39
1-41
1-44

1-46
1-46
1-47
1-47
1-47
1-47
1-47
1-47
1-48
1-48
1-48
1-48
1-48
1-48
1-48
1-49
1-51

1-52
1-52
1-52
1-58
1-58
1-59
1-59
1-59
1-66
1-66

. 1-67
1-67
1-68
1-68
1-72
1-72
1-73,,
1-73
1-73
1-77
1-77
1-78
1-78
1-79

. 1-81
1-81
1-82
1-82
1-82

7201-02 FETOM (7/70) iii

Instruction Formats .
Data Flow
Program Interruptions
Condition Codes

Input/Output Instructions
Instruction Format
Data Flow
Program Interruption
Condition Codes

Multiple Computing Element Instructions
Instruction Formats .
Data Flow
Program Interruptions
Condition Codes

Display Instructions
Instruction Formats
Data Flow

·Program Interruptions
Condition Codes

Maintenance Facilities
Logout
Diagnose Instruction
ROS Tests and FLTs
Microprogram Diagnostic
Ripple Tests
Diagnostic Programs
Marginal Checking

Power

CHAPTER 2 FUNCTIONAL UNITS

SECTION 1 TIMING AND CLOCK CONTROL
Clock Signal Generators
Clock Timing
Clock Control and Signal Distribution

SECTION 2 READ-ONLY STORAGE
Capacitive Read-Only Storage Array

CROS Electrical Theory
CROS Planes .

Sense Lines . .
Bit Capacitors
Physical Package

ROS Addressing . .
Read-Only Storage Address Register

ROSAR(0-5)
ROSAR(6-9)
ROSAR(lO)
ROSAR(ll)

ROSAR(0-10) Decoding
Strobe Drive Lines
Select Lines
Array Drivers . .

Sense Amplifiers
ROSAR(11) Function

ROS Data Flow
ROS Sense Latches
ROS Data Registers and ROSDR Latches
ROS Decoders
ROS Timing
Maintenance Aids

ROSAR Latches
Previous ROS Address Registers
PROSAR A and PROSAR B Alternator
ROS Back-Up Register

iv (7/70)

1-83
1-83
1-85
1-86
1-86
1-86
1-87
1-87
1-87
1-87
1-87
1-87
1-89
1-89
1-89
1-89
1-90
1-91
1-91
1-91
1-91
1-91
1-91
1-92
1-92
1-92
1-92
1-92

2-1

2-1
2-1
2-1
2-2

2-5
2-5
2-5
2-5
2-6
2-7
2-8
2-8
2-9
2-11
2-12
2-12
2-12
2-12
2-12
2-12
2-13
2-13
2-13
2-13
2-13
2-13
2-13
2-14
2-14
2-14
2-15
2-15
2-15

ROS Error Checking .
Scan Mode Operations

SECTION 3 DATA AND CONTROL REGISTERS
Q-Register

Input
Op Code Transfer
B-Field and D-Field Transfer

B-Field Transfer
D-Field Transfer

R-Register
Input
Output
Predecoding

E-Register
Input
Output
lncrementers

Instruction Counter
Input
Output
Incrementing IC(0-20) -,
Incrementing IC(21-23)

D-Register
Input
Output
Operational Functions

Branch and Execute Operations
Shift Operations
VFL Operations
Fixed-Point Operations .
Floating-Point Operations
Manual-Control Operations
Interruption Operations

AB Register
Input
Output

ST Register
Input
Output

AB and ST Byte Counters
AB Byte Counter
ST Byte Counter

Mark Triggers
F-Register

Input
Output

G-Register
PSW Register
MCW Register
PSBAR
Address Translation Register (ATR)
Diagnose Accessible Register (DAR)
Diagnose Accessible Register Mask (DAR MASK)
Configuration Control Register (CCR)

Input
Output

Select Register
Input
Output

Processor Interrupt Register (PIR)
External Register

Input
Output

Check Registers

2-17
2-17

2-19
2-19
2-19
2-20
2-20
2-20
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-21
2-24
2-24
2-24
2-24
2-26
2-26
2-26
2-26
2-26
2-28
2-28
2-28
2-28
2-28
2-28
2-28
2-28
2-29
2-29
2-29
2-29
2-29
2-33
2-33
2-33
2-33
2-34
2-34
2-34
2-36
2-36
2-36
2-38
2-38
2-41
2-41
2-41
2-42
2-43
2-43
2-43
2-43
2-43
2-44
2-44
2-44
2-44
2-44

Display Registers: LM, Mixer, XY, K, and N
LM Register

Input
Output

Mixer
XY Register

Input
Output

K Register
Input
Output

DE Wrap Bus
N-Register

Input
Output

SECTION 4 LOCAL STORAGE
Addressing and Data Flow ·
Data Transfer Controls

Read LS Operation
Write LS Operation
LS Timing

SECTION 5 SERIAL AND PARALLEL ADDERS
Serial Adder

Input and Output
Adder Operation
Controls
Functional Description

Binary Add ...
Decimal Operation
Logical Functions
Parity Correction
Error Detection

Parallel Adder
Data Input
Individual Bit-Position Logic

Half Adder
Carry-into-Bit Logic
Full Sum Logic . .
Latch Shifter Logic

. Carry Lookahead
Group-Level Carry Logic
Section-Level Carry. Logic
Section-Level Carry-Into Logic
Group-Level Carry-Into Logic
Bit-Level Carry-Into Logic

Full-Sum Development . . .
Arithmetic Function Sequence
Parity Predict Logic
Error Checking

Half-Sum Checking
Full-Sum Checking

Convert-to-Decimal Operation
Set Condition Code

SECTION 6 STATUS AND CONTROL TRIGGERS
STAT A
STATB
STATC
STATD
STATE
STATF
STATG
STATH
Control Triggers

2-44
2-44
2-44
2-44
2-44
2-46
2-46
2-46
2-48
2-48
2-48
2-48
2-49
2-49
2-49

2-52
2-52
2-52
2-55
2-55
2-55

2-56
2-56
2-56
2-56
2-56
2-59
2-59
2-59
2-60
2..()0
2..()5
2..()5
2..()5
2..()5
2-68
2..()8
2..()9
2..()9
2-69
2-70
2-70
2-70
2-73
2-73
2-74
2-74
2-76
2-76
2-77
2-77
2-77
2-78

2-79
2-79
2-79
2-81
2-81
2-82
2-82
2-82
2-82
2-82

Page of SFN-0201-1
Revised by TNL: GN31-0001

SECTION 7 STORAGE CONTROL INTERFACE
General Description

Basic Interface Considerations
Simplex Control Lines . . .
Distributed Simplex Lines
Multiple Driver ·simplex Lines
Basic Operating Considerations
Basic Control and Timing Considerations
Basic Operational Sequence . .

Detailed Analysis of SCI Functions
lnitfal Handling of Requests·
Address Decode and Gating
Select to Storage
Stopping the CE Clock . .
Detection and Handling of Invalid Address
Storage Timeout
SCI Error Handling
PSBAR Operations
Page Control
Converting SAB Parity
Resetting of SCI L()gic

Detailed Analysis of SCI Operations
Three- and Four-Cycle Fetch Operation
Store Operation . .
Insert-Key Operation .
Set-Key Operation . .
Test-and-Set Operation
Single-Cycle Operation

CHAPTER 3 PRINCIPLES OF OPERATION

SECTION 1 INSTRUCTION FETCHING
Basic End-Op Cycle

Prefetching of Operands During End Op
Fetching of Instructions by End-Op Micro-Order

Requests During End Op ...
Requests During Early End Op

Selection of I-Fetch Microprogram
Basic RR I-Fetch
Basic RX I-Fetch
Basic RS and SI I-Fetch
Basic SS I-Fetch . . .

Address Storage Compare (ASC) Test
I-Fetch Microprogram

I-Fetch Control If at End Op IC(21,22) = 0
I-Fetch Control If at End Op IC(21,22) = 01
I-Fetch Control If at End Op IC(21,22) = 10
I-Fetch Control If at End Op IC(21,22) = 11

Deviations from Basic End Op and I-Fetch
I-Fetch Sequencers
Block I-Fetch Trigger

Interruptions and Exceptional Conditions
Timer Exceptional Condition
CPU Store in Progress Exceptional Condition
Machine Check Interruption
Program Interruption
Supervisor Call Interruption
External Interruption
1/0 Interruption
Common Interruption Routine
Stop, Wait, and Repeat ExceptionatConditions
Program Store Compare Exceptional Condition
Invalid Instruction Address Test Exceptional
Condition

Specification Detection .
Invalid Address Detection

2-85
2-85
2-85
2-86
2-88
2-89
2-89
2-91
2-93
2-93
2-93
2-95
2-96
2-96
2-97
2-98
2-98
2-99
2-99
2-100
2-100

• 2-101
2-101
2-101
2-101
2-102
2-102
2-102

3-1

3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-5
3-6
3-6
3-7
3~9

3~9

3-11
3-12
3-12
3-12
3-12
3-12
3-13
3-14
3-14
3-15
3-15
J-1_6
3-16
3-17
3-17
3-18
3-18
3-19

3-19
3~20
3-20

7201-02 FETOM (6/71) v

Fetch Protection Detection
Invalid Instruction Address Microprogram

Q-Register Refill Exceptional Condition
Two-Cycle RR I-Fetch . . .
Forced-Cycle RX I-Fetch . .
Two-Cycle RS and SI I-Fetch

SECTION 2 FIXED-POINT INSTRUCTIONS
Load

Load, LR (18)
Load, L (S~)
Load Halfword, LH (48)
Load and Test, LTR (12)
Load Complement, LCR (13) ·.
Load Positive, LPR (10)
Load Negative, LNR (11)
Load Multiple, LM (98)

Add-Type Instructions
Add, AR (IA)
Add, A (SA)
Add Halfword, AH (4A)
Add Logical, ALR (lE)
Add Logical, AL (SE)
Subtract, SR (lB) . .
Subtract, S (SB) . . .
Subtract Halfword, SH (4B)
Subtract Logical, SLR (IF)
Subtract Logical, SL (SF)
Compare, CR (19)
Compare, C (S9)
Compare Halfword, CH (49)

Multiply
Multiply, MR (IC)
Multiply, M (SC)
Multiply Halfword, MH (4C)

Divide
Divide, DR (lD) . . .

General Discussion
Detailed Discussion

Divide, D (SD)
Convert

Convert to Binary, CVB (4F)
Convert to Decimal, CVD'(4E)

Store
Store, ST (SO)
Store Halfword, STH (40)
Store Multiple, STM (90)

Shift
· Shift Left Single, SLA (8B)
Shift Left Double, SLDA (8F)
Shift Right Single, SRA (8A)
Shift Right Double, SRDA (8E)

SECTION 3 FLOATING-POINT INSTRUCTIONS
Exponent Overflow and Underflow
Zero Results
Conditions at Start of Execution .
Load

Load, LER (38) - RR Short Operands
Load, LE (78) - RX Short Operands .
Load, LDR (28) - RR Long Operands
Load, LD (68) - RX Long Operands .
Load and Test, LTER (32) - RR Short Operands
Load and Test, LTDR (22) - RR Long Operands
Load Complement, LCER (33) - RR Short
Operands

vi (7/70)

3-22
3-23
3-24
3-24
3-24
3-2S

3-27
3-27
3-27
3-27
3-28
3-29
3-29
3-30
3-30
3-31
3-32
3-33
3-33
3-33
3-34
3-35
3-3S
3-36
3-36
3-37
3-37
3-38
3-38
3-39
3-39
3-40
3-44
3-44
3-44
3-45
3-46
3-47
3-49
3-49
3-Sl
3-53
3-S5
3-S5
3-S6
3-S7
3-S8
3-S8
3-60
3-62
3-63

3-65
3-65
3~6s

3-66
3"'66
3"'66
3-66
3"'67
3"'67
3-68
3-68

3-69

Load Complement, LCDR (23) - RR Long
Operands . 3-69

Load Positive, LPER (30) - RR Short Operands 3-70
Load Positive, LPDR (20) - RR Long Operands 3-70
Load Negative, LNER (31) - RR Short Operands 3-70
Load Negative, LNDR (21) - RR Long Operands 3-71

Add, Subtract, and Compare 3-71
Add Normalized, AER (3A) - RR Short Operands 3-73
Add Normalized, AE (7 A) - RX Short Operands 3-77
Add Normalized, ADR (2A) - RR Long Operands 3-78
Add Normalized, AD (6A) - RX Long Operands 3-79
Add Unnormalized, AUR (3E) - RR Short

Operands 3-80
Add Unnormalized, AU (7E) - RX Short Operands 3-80
Add Unnormalized, AWR (2E) - RR Long Operands 3-81
Add Unnormalized, AW (6E) - RX Long Operands 3-82
Subtract Normalized, SER (3B) - RR Short

Operands 3-82
Subtract Normalized, SE (7B) - RX Short

Operands 3-83
Subtract Normalized, SDR (2B) - RR Long

Operands 3-83
Subtract Normalized, SD (6B) - RX Long

Operands 3-84
Subtract Unnormalized, SUR (3F) - RR Short

Operands 3-84
Subtract Unnormalized, SU (7F) - RX Short

Operands 3-8S
Subtract Unnormalized, SWR (2F) - RR Long

Operands 3-85
Subtract Unnormalized, SW (6F) - RX Long
Operands 3-86

Compare, CER (39) - RR Short Operands 3-86
Compare, CE (79) - RX Short Operands 3-87
Compare, CDR (29) - RR Long Operands . 3-87
Compare, CD (69) - RX Long Operands 3-88

Halve 3-88
Halve, HER (34) - RR Short Operands 3-88
Halve, HDR (24) - RR Long Operands 3-89

Multiply 3-89
Data Flow and Algorithm 3-90
Multiply, MER (3C) - RR Short Operands 3-93
Multiply, ME (7C) - RX Short Operands 3-94
Multiply, MDR (2C) - RR Long Operands 3-95
Multiply, MD (6C) - RX Long Operands 3-9S

Divide 3-96
Characteristic Computation 3-97
Normalization 3-98
Fraction Division 3-98
Data Flow and Algorithm 3-100
Divide, DER (3D) - RR Short Operands 3-102
Divide, DE (7D) - RX Short Operands 3-103
Divide, DDR (2D) - RR Long Operands 3-104
Divide, DD (6D) - RX Long Operands 3-105

Store 3-106
Store, STE (70) - RX Short Operands 3-106
Store, STD (60) - RX Long Operands 3-107

SECTION 4 DECIMAL INSTRUCTIONS 3-108
Instruction Handling 3-108
Word Overlap Condition 3-108
General Initialization Sequence 3-111
Add, Subtract, and Compare 3-111

Add, AP (FA) and Subtract, SP (FB) 3-111
GIS for Add and Subtract 3-112

True Add Sequence
Complement Add Sequence

Compare, CP (F9) . .
Zero and Add, ZAP (F8)
Multiply, MP (FC) ...

General Description
General Initialization Sequence
Specification Test
Incorrect Specification
Multiplier Left-Adjust Sequence
L2 Restoration
Multiplier Right-4 Shift to Drop Sign
Sign Handling
Basic Multiply Add or Subtract Sequence
for Left Digit ·

Product Byte Store
Multiplicand Request
Partial Product Right-4 Shift to Drop
Digit

Ll = L2
Complete Multiplicand Byte Fetch .
Basic Multiply Add or Subtract Sequence for
Right Digit, and Shift Right-4 Sequence

Multiplicand Zero Test and Partial
Product Store

Detailed Description
General Initialization Sequence
Multiplier Left-Adjust Sequence
Multiplier Right-4 Shift and L2

Restoration
Sign Handling
Basic Multiply Add or Subtract Sequence
Product Byte Store, PP Right-4 Shift to

Drop Digit, Multiplicand Request ...
Complete Multiplicand Byte Fetch . . .
Basic Multiply Add or Subtract Sequence
for Right Digit, and Shift Right-4
Sequence

Multiplicand Zero Test and Partial
Product Store

Divide, DP (FD)
General Description

General Initialization Sequence
Specification Test
Incorrect Specification
Divisor Left-Adjust Sequence
Dividend Fetch and Left-Adjust

Sequence
Restore L 1 and L2 to E
Assemble Divisor in AB and Dividend

in ST
Trial Subtraction
Shift Dividend One Digit to Left .
Generate Quotient and Left-Digit

Sequence
Correct Low-Order Remainder Byte
Generate Next Quotient Digit and

Right Digit Sequence
Detailed Description

General Initialization Sequence
Divisor Left-Adjust Sequence
Dividend Fetch and Left Adjust

Sequence
Assemble Divisor in AB and Dividend
in ST

Trial Subtraction

3-112
3-115
3-116
3-117
3-118
3-120
3-1io
3-120
3-120
3-120
3-124
3-124
3-125

3-125
. 3-125

3-125

3-125
3-125
3-125

3-125

3-126
3-126
3-126
3-126

3-126
3-126
3-126

3-127
3-127

3-127

3-127
3-127
3-130
3-130
3-130
3-130
3-133

3-133
3-134

3-134
3-134
3-136

3-136
3-136

3-136
3-136
3-137
3-137

3-137

3-137
3-137

Dividend (or Partial Remainder) Left-4
Shift

Generate Quotient Sequence
Left-Digit Sequence
Correct Low-Order Remainder Byte
Right-Digit Sequence
Process Quotient Sign Byte
Store Remainder Routine .

Pack, PACK (F2)
Instruction Execution, Not Word Overlap

Process Sign Byte
Generate Right Destination Digit
Generate Left Destination Digit
Exit Conditions
Extension of Source Bytes with High-Order

Zeros
Source Fetch Routine

Instruction Execution, Word Overlap
Process Sign Byte
Update AB from ST
Generate Right Destination Digit
Generate Left Destination Digit
Source Fetch Routine

Unpack, UNPK (F3)
Instruction Execution, Not Word Overlap

Process Sign Byte
Process Right Source Digit
Process Left Source Digit .
Exit Conditions
Extension of Source Bytes with

High-Order Zeros
Source Fetch Routine
Destination Store Routine

Instruction Execution, Word Overlap
Process Sign Byte
Update AB from ST ...
Process Right Source Digit
Process Left Source Digit
Source Fetch Routine

Move With Off set, MVO (F 1)
Instruction Execution, Not Word Overlap

Cycle 1•.
Cycle 2
High~Order Zero Extend Routine
Destination Store Routine
Source Fetch Routine

Instruction Execution, Word Overlap
Cycle 1
Cycle 2•
Cycle 3•..•
High-Order Zero; Destination Store,

and Source Fetch Routines

SECTION 5 LOGICAL INSTRUCTIONS
General Initialization Sequence
Move

Move, MVI (92)
Move, MVC (D2)
Move Numerics, MVN (D 1)
Move Zones, MVZ (D3)

.Compare
Compare Logical, CLR (15)
Compare Logical, CL (55)
Compare Logical, CLI (95)
Compare Logical, CLC (D5)

AND

..

3-138
3-138
3-138
3-138
3-139
3-139
3-139·
3-139
3-140
3-140
3-140
3-140
3-140

3-140
3-141
3-141
3-141
3-141
3-141
3-141
3-141
3-141
3-142
3-142
3-142
3-142
3-142

3-142
. 3-143

3-143
3-143
3-143
3-143
3-143

. 3-143
3-143
3-143
3-144
3-144

. 3-144
3-144

. 3-144
3-144
3-144

. 3-145

. 3-145
3-145

3-145

. 3-146
3-146
3-146
3-146
3-146
3-147
3-148
3-149
3-149

• 3-149
3-149
3-150
3-150

7201-02 FETOM (7/70) vii

Page of SFN-0201-1
Revised by TNL: SN31-0020

AND, NR (14)
AND, N (54)
AND, NI (94) .
AND, NC (D4)

OR ·
OR,OR (16)
OR, 0 (56) .
OR, OI (96)
OR, OC (D6)

Exclusive-OR .
Exclusive-OR, XR (17)
Exclusive-OR, X (57)
Exclusive-OR, XI (97)
Exclusive-OR, XC (D7)

Test Under Mask, TM (91)
Insert Character, IC (43)
Store Character, STC (42)
Loa_d Address, LA (41) .
Translate, TR (DC)
TranSlate and Test, TRT (DD)
Edit and Edit and Mark, ED and EDMK (DE and

DF)
I.ntroduction to Edit Operation
Introduction to Edit and Mark Operation
General Data Handling ..
Microprogram Description

First Cycle . .
Second Cycle .
Exit Conditions

Shift
Shift Left Single, SLL (89)
Shift Left Double, SLDL (8D)
Shift Right Single, SRL (88)
Shift Right Double, SRDL (8C)

SECTION 6 BRANCHING INSTRUCTIONS
Branch on Condition, BCR (07)

Successful Branch
Unsuccessful Branch . . .

Branch on.Condition, BC (47)
Branch and Link, BALR (05)

Unsuccessful Branch . .
Successful Branch

Branch and Link, BAL (45) .
Branch on Count, BCTR (06)

Successful Branch . . .
Unsuccessful Branch . . .

Branch on Count, BCT (46) .
Branch on Index High, BXH (86)
Branch on Index Low or Equal, BXLE (87)
Execute, EX (44)

SECTION 7 INPUT/OUTPUT INSTRUCTIONS

SECTION 8 STATUS SWITCHING
INSTRUCTIONS

Load PSW, LPSW (82)
Set Program Mask, SPM (04)
Set System Mask, SSM (80)
Supervisor Call, SVC (OA) .
Set Storage Key, SSK (08)
Insert Storage Key, ISK (09)
Write Direct, WRD (84)
Read Direct, RDD (85)
Diagnose (83)

viii (5/72)

. 3-151
3-151
3-152
3-152
3-152
3-153
3-153
3-153
3-154
3-154
3~154

3-155
3-155
3-155
3-156
3-156
3-156
3-157
3-157
3-158

3-160
3-160
3-162
3-162
3-163
3-163
3-163
3-163
3-164
3-164
3-164
3-165
3-165

3-166
3-166
3-166
3-167
3-167
3-168
3-168
3-169
3-170
3-171
3-172
3-172
3-172
3-172
3-174
3-175

3-178

3-180
3-180
3-181
3-181
3-181
J-182
3-183
3-184
3-185
3-185

SECTION 9 MULTIPLE COMPUTING ELEMENT
INSTRUCTIONS 3-187

Load Identity, LI (QC) 3-187
Insert ATR, IATR (OE) . . . 3-187
Delay, DLY (OB) 3-188
Store Preferential-Storage Base Address

Register, SPSB (AO) 3-188
Load Preferential-Storage Base Address,

LPSB (Al) 3-189
Move Word, MVW (D8) 3-189

Case A: Source and Destination on
Doubleword Boundary 3-190

Case B: Source and Destination on
Word Boundary 3-190

Case C: Source on Doubleword
Boundary, Destination on Word
Boundary 3-191

Case D: Source on Word Boundary,
Destination on Doubleword
Boundary

Start 1/0 Processor, SIOP (9A) . .
Set Address Translator, SATR (OD)

Introduction to Address Translation
Instruction Execution in the Issuing

CE
Action Initiated by SATR Select in a

Receiving CE
SetConfiguration, SCON (01)
Test and Set, TS (93)

SECTION 10 DISPLAY INSTRUCTIONS
Introduction to Display Instructions

Introduction to RPSB
Introduction to CSS and CVWL

Repack Symbols, RPSB (OF)
Descriptors Section
Symbols Section

Convert and Sort Symbols, CSS (02)
Primary Radar/Single Symbol Input
Beacon Input

Convert Weather Lines, CVWL (03)
Load Chain, LC (52)

CHAPTER 4 7201-02 MANUAL CONTROLS
AND MAINTENANCE FACILITIES

SECTION 1 7201-02 MANUAL CONTROLS
CE Control Panel Switches and Functions
SYSTEM INTERLOCK Switch
TEST Switch
SYSTEM RESET Pushbutton
STOPLoop
STOP Pushbutton
CHECK RESET Pushbutton
START Pushbutton
MAIN STORAGE SELECT and LOAD UNIT Switches
LOAD Pushbutton
IPL

System IPL ..
Subsystem IPL

DATA Switches .
ADDRESS Switches
ADDRESS COMP ARE STOP /PROC/LOOP Switch

STOP Position

3-191
3-191
3-192
3-192

3-193

3-195
3-196
3-197

3-199
3-199
3-199
3-201

. 3-204
3-209

. 3-211'
3-214
3-219
3-220
~-221
3-228

. 4-1

. 4-1

. 4-1

. 4-3

. 4-3

. 4-3

. 4-3

. 4-4

. 4-4

. 4-4

. 4-4

. 4-4

. 4-4

. 4-4

. 4-5

. 4-5

. 4-5

. 4-8

. 4-8

PROC (Process) Position
LOOP Position

STORAGE SELECT Switch.
DEFEAT INTERLEAVING Switch
SET IC Pushbutton
RATE Switch

Process Position . .
INSN STEP Position
SINGLE CYCLE Position
SINGLE CYCLE STORAGE INHIBIT Position

REPEAT INSN Switch
STORE Pushbutton
DISPLAY Pushbutton
REGISTER SELECT Switch
REGISTER SET Switch
ROS TRANSFER Pushbutton
Storage-Ripple Microprogram

Storage-Ripple-Store Function
Storage-Ripple-Display Function

Stop on ROS Address/Repeat ROS Address Switch
System and Subsystem PSW Restart and Wait State
DISABLE INTERVAL TIMER Switch
INTERRUPT Pushbutton ...
CE CHECK CONTROL Switch
INHIBIT CE HARDSTOP Switch
PULSE MODE Switch

PROC Position
TIME Position
COUNT Position

360 MODE Switch
LOG OUT Pushbutton
SCAN MODE ROS/PROC/FLT Switch
SCAN MODE, REPEAT Switch
BACKSPACE FLT Pushbutton
FREQUENCY ALTER.ATION S.witch
LAMP TEST/ALLOW INDICATE Pushbutton
INDICATE RLR 1POSITION6 ..
7201-02 CE Control Panel Indicators
Power Controls and Indicators . . .

SECTION 2 MAINTENANCE FACILITIES
Diagnose Instruction and MCWs
The MCW

•,

Diagnose Instruction MCW for CE in State 0
Diagnose Instruction MCW for CE in State Three,

Two, or One .
ROS Test MCW . . .
FLTMCW

Resident Micro-Diagnostic
Introduction to Logout, ROS Tests, and

FLTs
Scan Logic Functional Units

Scan Timing
Scan Clock Highlights
FLT Clock Highlights
Scan Counter Latches and Decrementer

Input and Output
Scan Counter Decrementer

Address Sequencer
Address Sequencer Decoder
Storage Address Generator
FLT Counter

Input
FLT Counter Decrementing
Cycle Counter

ROS Test Sequencer

. 4-8

.. 4-8

. 4-8
4-9
4-9
4-9
4-10
4-10
4-10
4-10
4-10
4-11
4-12
4-12
4-12
4-12
4-13
4-13
4-13
4-13
4-13
4-14
4-14
4-14
4-15
4-15
4-15
4-15
4-15
4-16
4-16
4-16
4-16
4-17
4-17
4-17
4-17
4-17
4-18

4-19
4-19
4-19
4-19

4-20
4-20
4-21
4-21

4-21
4-22
4-22
4-22
4-23
4-23
4-24
4-25

. 4-25
4-25
4-26
4-27
4-27
4-27
4-28
4-28

Scan-Out Bus . 4-29
Logout Controls . 4-30

Scan Out Sand T ~ 4-30
Scan Stop-CE-Clock Logic . 4-30
Control Triggers 4-31

· Scan Mode Control or ROS 4-31
CE Scan/IOCE Interface 4-31

Logout 4-32
Introduction 4-32
Operational Analysis 4-32

· Hardware-Controlled Sequence 4-32
ROS-Controlled Sequence 4-33

ROS Tests . 4-34
Introduction . 4-34
Operational Analysis 4-35

ROS Test Tape 4-35
ROS Test Setup 4-36
Initial IPL Highlights 4-36
Loader . 4-36
Hardcore Test 4-37
Theory of Hardcore Tests . 4-38

Summary of Hardcore Tests . 4-38
ROS Bit Tests . . 4-39

ROS Test State 7 4-39
ROS Test State 6 4-39
ROS Test State 5 4-39
ROS Test State 4 4-39
ROS Test State 3 . 4-40
ROS Test State 2 4-40
ROS Test State 1 4-40
ROS Test State 0 4-40

FLT Tests 4-41
Introduction 4-41
FLT Tapes 4-41
Tape Generation 4-42
FLT Hardcore Tests 4-43
Zero-Cycle Tests . 4-43
One-Cycle Tests 4-43
Operational Analysis 4-44

FLT Tests 4-44
FLT Tape 4-44
FLT Test Setup 4-46
Loader . 4-46
Hardcore Tests 4-47

Zero-Cycle and One-Cycle Tests 4-47
Scan-In Highlights 4-48

Test Cycles 4-48
Scan-Out 4-48
Result Comparison . 4-49
Terminate or Continue . 4-49
TN/ATN Comparison 4-49

Ripple Tests 4-50
Diagnostic Programs 4-50
Marginal Checking 4-50

SECTION 3 DE FORCE REQUEST AND DE
WRAP OPERATIONS . 4-51

General Description .. . 4-51
DE Force Request Operation 4-51
DE Wrap Operation . 4-53

APPENDIX A SPECIAL CIRCUITS . A-1

APPENDIX B INTERFACING LINES . B-1
CE-CE Interfacing . B-1
CE-SE Interfacing . B-2

7201-02 FETOM (7/70) ix

Page of SFN-0201-1
Revised by TNL: GN31-0001

CE to. SE Interface . B~2 Keyboard Controls C-'21
SE to CE Interface . B-3 REQUEST Pushbutton . C-21

CE-DE Interfacing . B-4 READY and NOT READY Pushbuttons . C-21
CE to DE Interface . B"4 ENTER Pushbutton . C-21
DE to CE Interface . H-5 CANCEL Pushbutton . C-21

CE-IOCE Interfacing . B-6 POWER Indicator . C-21
CE to IOCE Interface . B-6 CE (Test) Panel . C-21
IOCE to CE Interface . B-7 Switches . C-21 I CE-PAM/TCU, SCU Interfacing .. . B-8 Lights . c~23
CE to PAM/TCU, SCU Interfacing . B-8
PAM/TCU to CE Interface . B-9 SECTION 3 OPERATION . C-26

CE-System Console (SC) Interfacing . B-9 Write . C-26
CE to SC Interface . B-9 Initial Selection Sequence . C-26
SC to CE Interface . B-9 Data Transfer Sequence . C-26

CE-CC Interfacing . B-10 Ending Sequence . C-27
CE to CC Interface . B-11 Write-ICR . C-27
CC to CE Interface . B-11 Write-ACR . C-28

Read . C-28
APPENDIX C 105 2 ADAPTER . C-1 Initial Selection . C-28

Data Transfer . C-28

SECTION 1 INTRODUCTION . C-1 Ending Sequence . C-29

Channel Interface Signal Sequence . C-1 Status Byte Composition . C-29

Initial Selection . C-1 Sense Command . C-29

Data Service . C-2 Initial Selection Sequence . C-29

End Sequence . C-2 Sense Byte Transfer Sequence . C-30

Interface Lines . C-2 Ending Sequence . C-30

Commands . C-5 Control Commands . C-30

Read . C-6 Test 1/0 . C-30

Write . C-6 Halt 1/0 . C-30

Write-A CR . C-6
General Or Selective Reset . C-31

Write-I CR . C-6
APPENDIX D NUMBERING SYSTEMS, INSTRUCTION

Test 1/0 . ·c~6
CODING, AND DATA FORMATS . D-1

Control No-Op . c~
Hexadecimal Number System . C-1

Control Alarm (No-Op) . C-6
Eight-Bi!_ Zoned Character Code . D-1

Sense . C-6
105 2 Adapter Priority . C-6

Instruction Coding . D-2
Instruction Formats . D-2

Data Flow . C-7
Operand Addressing . D-3

Controls . ·c-1
Write Data Path . C-7 Effectively Addressed Operands . D-3

Read Data Path . C-8 Immediate Operands . D-4

Address-In, Sense, and Status Bytes . C-8 Operands In Local Storage . D-4
Data Formats . D-5

Fixed-Point Data . D-5
SECTION 2 FUNCTIONAL UNITS . C-10 Number Representation . D-5
Data Register . C-10 Formats . D-5

Write Operation . C-10 Floating-Point Data . D-6
Read Operation . C-11 Number Representation . D-6

Read/Write Clock . C-11 Formats . D-8
Printer Translator .: C-14 Normalization . D-8
Keyboard Translator . C-14 Decimal Data . D-9
Shift Controls . C-14 Number Representation . D-9
Function Decoder . C-16 Formats . D-10
1052 Printer-Keyboard . C-18 Logical Data . D-10

Printer . C-18
Keyboard . C-18 INDEX . X-1

x (6/71)

Page of SFN-0201-1
Revised by TNL: GN31-0001

·ILLUSTRATIONS

1-1 Computing Element Interfacing 1-3 2-31 DAR Mask and Select Register Data
1-2 Example of Need for Interruption Masking 1-13 Flow ·" 2-42
1-3 Data Transfer Scheme 1-18 2-32 CCR Data Flow · · . : . . 2-42
1-4 ROS Addressing and Branching 1-21 2-33 External Register Bit Position
1-5 ROS Addressing Block Diagram 1-22 Assignments 2-45

1-6 ROS Data Flow 1-25 2-34 External Register Data Flow . 2-46

1-7 ROS Timing 1-27 2-35 Check Register Bit Assignment 2-47

1-8 ROS Control of CE Operations 1-28 2-36 LM and XY Registers, Data.Flow 2-48

1-9 Status Information Contained in PSW 2-37 XY Register Parity Prediction Logic 2-50

Register 1-29 2-38 K-Register Data Flow 2-51

1-10 Configuration Control Data Paths 1-30 2-39 N-Register Data Flow 2-51

1-11 Storage Addressing Flow, Simplified 1•32 2-40 Local Storage Data Flow 2-53

1-12 Basic CE to SE/DE Interface 1-34 2-41 9020~to-LS Data Bus Gate Logic . ~ . 2-54

1-13 Q-Register Halfword Outgatng per 2-42 Serial Adder Data Flow 2-57

IC(21,22) 1-37 2-43 True-Complement Data Entry· •' 2~58

1-14 Instruction Addressing 1-38 2-44 Serial Adder (Simplified) 2-58

1-15 Operand Data Byte Selection per 2-45 Half-Sum and Full-Sum Logic . 2..:59

IC(21-23) 1-39 2-46 Carry Lookahead, Block Diagram 2-59

1-16 Basic Instruction Path 1-40 2-47 Serial Adder Gating Controls 2-61

1-17 Path Through Q-, R-, and £-Registers 2-48 Serial Adder Parity Predict Logic 2-63

of Op-Code Halfword· 1-42 2-49 Half-Sum·and Full-Sum Error Logic 2-65

1-18 . Basic Scheme for Operand Prefetching 1-43 2-50 Parallel Adder Data Flow 2-66

1-19 Q-Register Refill Addressing Scheme 1-45 2.:.51 Parallel Adder Functional Breakdown 2-67

1-20 Decimal Format Serial-Adder Data Flow 1-50 2-52 Parallel Adder Input Bu.ses 2-68

1-21 }>arallel Adder Logical Functions 1-51 2-53 Bit Position Block Diagram 2-68
1-22 Parallel Adder Group/Section Breakdown 1-52 2-54 Parallel Adder Carry Lookahead Data
2-1 Trigger and Latch Data Relationship 2-12 Flow ... 2-71
2-2 Typical Clock Signals . 2-3 2-55 Actual and Predicted Carry Origin
2-3 Clock Signal Development and for PA(44) 2-73

Distribution 2-4 2-56 Full-Sum Development Logic 2-74
2-4 Basic 4 x 4 CROS Matrix 2-6 2-57 Parallel Adder Logic Function
2-5 Bit Plate 2-7 Sequence 2-75
2-6 Sense Lines 2-8 2-58 Convert-to-Decimal Data Flow to
2-7 Sense Line Layout 2-9 Parallel Adder 2-78

2-8 Bit Capacitors 2-10 2-59 Summary of Setting of STAT's 2-8.0

2-9 CROS Plane Pressure Mounting Assembly 2-11 2-60 Basic Storage Configuration 2-85
2-10 Control Field A Decoder 2-14 2-61 Storage Interface Lines (3 Sheets) 2-87
2-11 Detailed ROS Timing 2-15 2-62 Basic Organization of a Main Storage

2-12 PROSAR A.and PROSAR B Alternator 2-16 Element (SE or i>E) · 2-90

2-13 ROS Parity Checking 2-18 2-63 Basic Scheme for Processing Storage

2-14 Q-Register Data Flow 2-19 Requests 2-92

2-15 Q-Register Halfword Transfer per 2-64 Basic SCI Operation 2-94

IC(21,22) 2-20 2-65 Decode Odd/Even Address 2-96

2-16 R-Register Data Flow 2-22 2-66 Page Gates for D and IC 2-100

2-17 £-Register Data Flow 2-23 2-67 'BCU Cleanup' Logic and.Timing 2-101

2-18 Instruction Counter D~ta Flow 2-25 3-1 Typical Microprogram Sequence 3-1

2-19 D-Register Data Flow 2-27 3-2 Basic Sequencing for SS Instructions 3-8

2-20 AB-Register Data Flow 2-30 3-3 ASC Test for SS Insti:uctfons 3-10

2-21 ST-Register Data Flow· 2-31 3-4 Detection of Invalid Instruction

2-22 PSW Input to S(20-31) 2-32 Address 3-21

2-23 F-Register Data Flow : 2-35 3-5 Detection of Fetch-Protected Instruction

2~24 G-Register Data Flow 2-36 Address J-23

2-25 PSW Register Data Flow 2-37 3-6 Fixed-Point Muitiply, Example No. 1 (RR

2-26 PSW Register (0,6) Logic 2-37 Format) 3-42

2-27 MCW Register Data Flow 2-38 3-7 Fixed-Point Multiply, Example No. 2 ·

2-28 PSBAR Loading . 2-39 (RR Format) 3-43

2-29 PSBAR and ATR Data Flow for Main 3-8 Fixed-Point Divide, Example No. 1 3-50

Storage Addressing 2-40 3-9 Fixed-Point Divide°, Example No. 2 3-50

2-30 DAR Data Flow arid Bit Assignme.nts 2-41 3-10 Convert to Decimal Example 3-54

7201-02 FETOM (6/71) xi

3-11 Restore and Non-Restore Division 3-99 4-4 Address Sequencer Data Flow . 4-26
3-12 Fraction Divide Example 3-100 4-5 Address Sequencer Decoder . 4-26

3-13 Floating-Point Divide Example 3-104 4-6 FLT Counter Data Flow . 4-28

3-14 Operand Specifications for Decimal 4-7 Cycle Counter Data Flow 4-29

Multiply Instruction 3-120 4-8 ROS Test Sequencer Data Flow . 4-29

3-15 Typical Multiply Add Sequence . 3-121 4-9 DE Force Request and DE Wrap,

3-16 Typical Multiply Subtract Sequence 3-122 Simplified 4-52

3-17 Data Handling During GIS of Decimal 4-10 Wrap Operation Microprogram . 4-54

Multiply 3-123 C-1 Channel Interface Signal Sequence . C-3
3~18 Data Handling During Multiplier C-2 1/0 Interface Interconnections . C-7

Left-Adjust Sequence 3-124 C-3 1052 Keyboard Code Translation and
3-19 Data Flow for Right-4 Shift of ST Printer Output . C-9

to AB, Decimal Multiply 3-128 C-4 Data Register, Input and Output
3-20 Operand Specification~ for Decimal Controls . C-10

Divide 3-130 C-5 Read/Write Clock . C-12
3-21 Example of a Typical Divide Sequence 3-131 C-6 Printer Translator (Translate 8-Bit
3-22 Data Handling During GIS of Decimal to Tilt/Rotate) . C-13

Divide 3-132 C-7 Keyboard Translator . C-15
3-23 Data Handling During Divisor Left-Adjust C-8 Shift Controls . C-16

Sequence 3-133 C-9 Function Decoder . C-17
3-24 Data Handling During Dividend Fetch and C-10 1052 Internal '.filt/Rotate Code . C-19

Left-Adjust Sequence 3-135 C-11 1052 Keyboard . C-19
3-25 Simplified Data Flow for AND, OR, and C-12 1052 Latch, Bail, and Keystem Contact

Exclusive OR Instructions 3-151 Arrangements . C-20
3-26 Example of Use of Branch and Link C-13 1052 CE (Test) Panel . C-22

Instruction 3-169 C-14 CE Write .. . C-23
3-27 Storage Protection Key Assignments 3-183 C-15 CE (Test) Continuous Write Mode -
4-1 Data Switch Gating • 4-6 Wiring Chart . C-24
4-2 Address Switch Gating 4-7 C-16 EBCDIC Code Set . C-25
4-3 Scan Counter Latches and Decrementer D-1 Instruction Formats •· D-3

Data Flow 4-24 D-2 Main Storage Integral Boundaries .D-4

TABLES

1-1 Effect of Element State on CE 3-2 Value of Multiple Determiried by
Operation 1-9 Multiple Selection Bits (Fixed-

1-2 Program States l-10 Point) 3-41
1-3 PSW Interruption Mask Bit 3-3 Divide Multiple Values, Fixed~Point 3-48

Designations 1-12 3-4 Conversion to Decimal (Excess-6) 3-53
1-4 Preferential Storage Areas 1-14 3-5 Excess-6 Conversion, B(60-63) 3-56
1-5 ROS Word Breakdown 1-20 3-6 Operand Bits Transferred, STH
1-6 CE Actions in Response to Exceptional Instruction 3-57

Conditions 1-46 3-7 Left Shift Combinations 3-60
1-7 Fixed-Point Instructions 1-53 3-8 Right Shift Combinations 3-63
1-8 Floating-Point Instructions 1-60 3-9 Examples of Branching on Characteristic
1-9 Decimal Instructions 1-69 Difference 3-75
1-10 Logical Instructions 1-74 3-10 Multiplier Bits Selected, Floating-Point
1-11 Branching Instructions 1-80 Multiply 3-91
1-12 Status Switching Instructions 1-84 3-11 Value of Multiple Determined by Multiple
1-13 Input/Output Instructions 1-86 Selection Bits (Floating-Point) 3-92
1-14 Multiple Computing Element Instructions 1-88 3-12 Condition Code Setting Per Hardware
1-15 Display Instructions 1-90 Conditions, Decimal Instructions 3-115
2-1 Format Micro-orders 2-49 3-13 Condition Code Settings, 1/0
2-2 Decimal Correction for Erroneous Instructions 3-179

Numeric Characters 2-60 4-1 CE Switches and Their Operational
2-3 Control Triggers 2-83 Environment . 4-2 -

3-1 Q-Register Refill Exceptional D-1 Characteristic Notation . D-7
Conditions 3-25

xii (7/70)

Page of SFN-0201-1
Revised by TNL: GN31-0001

ABBREVIATIONS

ABC AB register byte counter DSU Disk Storage Unit
ac alternating current DX first byte in a series of destination bytes
ACR Automatic Carrier Return DX+l second byte in a series of destination bytes
adr address, addressed, addressing DX+2 third byte in a series of destination bytes
ALO automated logic diagram
ALTN Alternate ELC element check
amp ampere end op end operation
APSA alternate preferential storage area EOB end of block
ASC address store compare EOL End-of-Line
ATC air traffic control EPO emergency power off
ATN alternate test number ERSLT expected result
ATR address translation register EXC Executive Control Program
Attn attention exp ovflo exponent overflow
Aux Auxiliary Magnet exp unflo exponent underflow

BCD binary-coded decimal F fuse
BCU bus control unit (alternate terminology FEMDM Field Engineering Maintenance Diagrams

for SCI) Manual
BL blink FEMI Field Engineering Manual of Instruction
BR brightness FEMM Field Engineering Maintenance Manual
BSM basic storage module FETOM Field Engineering Theory of Operation

Manual
c capacitor fix-pt ovflo fixed-point overflow
CAS control automation system FLT fault locating test
CAW channel address word flt-pt div floating-point divide.
CB circuit breaker FMTN Format New
cc condition code, also Configuration Console FMTO Format Old
CCC Central Computer Complex FMTW Format Weather
CCR configuration control register FPR Floating-point register
ccw channel command word fract fraction
CE Computing Element
Charistic Characteristic
CLO control automation system logic diagram GIS general initialization sequence
CLU Common Logic Unit GPR general-purpose register
Cmd command
CPU Central Processing Unit (alternate hex hexadecimal

terminology for CE) Hz Hertz
CR diode or Carrier Return
CROS capacitive read-only storage IC instruction counter
csw channel status word ICR inhibit carrier return
CT conditional terminate IDES inhibit display element stop
CTC channel-to-channel I-Fetch instruction fetching
cu Control Unit ILC instruction length code
CVG Character Vector Generator ILOS inhibit logout stop

I nit initial
DA dash 1/0 input/output
DAR diagnose accessible register IOCE Input/Output Control Element
DARM diagnose accessible register mask IPL initial program load
DASF Direct Access Storage Facility
DAU Data Adapter Unit K kilo; also relay
de direct current kHz kilohertz
DCP Display Channel Processor
DE Display Element LAB logical address bus
dee decimal LADS Logic Automation Documentation System
dee div decimal divide LAL local storage address latches
dee ovflo decimal overflow LAR local storage address register
DG Display Generator LC lower case
Disc disconnect LF line feed
dly delay LOS logout stop
Dply display LS local store
dsbl disable LSWR local storage working register

7201-02 FETOM (6/71) xiii

Page of SFN~0201-1
· Revised by TNL: GN31-0001

MACH maintenance and channel (storage) SAA serial adder A-side
max maximum SAB storage address bus, also serial adder B-side
MC machine check SAL serial adder latch
MCW maintenance control word SATR set Address Translation Register
mHz megahertz SBA serial adder bus A
MMSC maintenance mode stop clock SBB serial adder bus B
Mp le Multiple SC System Console
MPR multiplier SCI storage control interface
MPX multiplex SCON set Configuration Control Register
ms millisecond SCOPEX scoping index

SCR silicon-controlled rectifier
NDT new descriptor tables scu storage control unit
no op no operation SDBI storage data bus in
NRM new refresh memory SDBO storage data bus out
NRMA new refresh memory address SE Storage Element
ns nanosecond Sel select

Serv service
OBS on battery signal signif significance
ODT old descriptor tables SLT solid logic technology
op code opera ti on code SMMC system maintenance monitor console
op er operation SMS standard modular system
opr operand SOROS scan out read-only storage
ORM old refresh memory spec specification
ORMA old refresh memory address SRL Systems Reference Library
OTC out of tolerance check ssu storage switching unit

STAT status trigger
p parity STC ST register byte counter
PAA parallel adder A-side stg storage
PAB parallel adder B-side SU switch unit
PAL parallel adder latch sync synchronizing
PB pushbutton
pf picofarad T transformer
PK power contactor TC time clock (interval timer)
pp partial product TCU tape control unit
PQ partial quotient T(DX) table byte specified by DX
priv oper privileged operation T(DX+l) table byte specified by DX+l
proc process TIC transfer in channel
prog program TN test number
PROSARA previous read-only storage address register A T/R tilt/rotate
PROSARB previous read-only storage address register B TU tape unit
prot protection
PS power supply UC upper case
PSA preferential storage address uf microfarad
PSBA preferential storage base address usec microsecond
PS BAR preferential storage base address register UT unconditional terminate
PSW program status word
PVD Plan View Display v volt

VFL variable-field length
VFR visual flight rules

R resistor
RCU Reconfiguration Control Unit Xlat translate
reg register
RKM Radar Keyboard Multiplexo! > greater than or equal to
ROS read-only storage < less than or equal to
ROSAR read-only storage address register
ROSBR read-only storage backup register equal to

ROSDR read-only storage data register :fa not equal to
RST Reset & and

xiv (6/71)

IBM 7201-02 Computing Element

xvi (7/70)

This chapter introduces the IBM · 7201-02 Computing
Element (CE), which is an integral part of the IBM 9020D
and 9020E systems for air traffic control. The chapter is
divided into two sections.

Section 1 describes the relationship of the ·CE to the
9020D and 9020E systems and discusses the overall
operation of the systems under the control program.

Section 2 introduces the functional units within the CE
and describes the major CE operations and facilities; i.e.,
configuration control, storage addressing, instruction fetch
ing and execution, interruption and direct control facilities,
interfacing with other elements, and maintenance features.

SECTION 1. RELATIONSHIP OF THE CE TO THE
9020D AND 9020E SYSTEMS

The IBM 7201-0,2 Computing Element (CE) is the nucleus
of the 9020D Central C9mputer Complex (CCC) and the
9020E Display Channel Processor (DCP) systems. It is the
primary element for computation, logic, and control within
these systems.

Because the two systems differ in structure and in the
tasks they perform, the Junction of the CE is somewhat
different in the two systems. The CEs are physically the
same, however; each is equipped to perform all of the
functions required by either system. Specific physical
adaptation required for a CE to operate in a . particular
system is provided by plug cards contained in the logic. The
physical plugging of these cards provides such information
to the CE as type of system, amount of available storage,
number of other elements installed on the system, etc.
These plug cards can be altered by maintenance personnel if
the system structure is changed for any reason.

The two systems are described briefly in the· following
paragraphs. For an extensive introduction to either system,
refer to the applicable introduction manual:

9020E System Introduction Manual.
9020D System Introduction Manual.

Page of SFN~0201-l
Revised by TNL: GN31-0001

CHAPTER 1. INTRODUCTION

IBM 9020D CENTRAL COMPUTER COMPLEX (CCC)

The IBM 9020D Central Computer Complex (CCC) is the
collection of computers and computer-controlled ·equip
ment responsible for the real~time processing of air traffic
data for subsequent use by flight controllers in performing
the air traffic control' task. The CCC receives data from
many sources, processes it,· and makes it available in the
form of flight progress strips; various operational messages,
and display ·data. It is directly responsible for outputting
flight strips and operational messages, and passes partially
processed radar and weather data for additional processing
to an IBM 9020E Display Channel Processor (or similar
display processing equipment).

A CCC may contain as many as four CEs. These CEs
provide a pool of processing capability more than equal to
the air traffic control {ATC) task; thus, a malfunction in
one CE can be tolerated even under the heaviest workload.

In the CCC, The CEs operate in conjunction with the
following elements:
1. IBM 7251-09 Storage Elements {SEs)
2. IBM 7231-021/0 Control Elements {IOCEs)
3. IBM 72.89-02 Peripheral Adapter Modules (PAMs)
4. IBM 7265-02 System Console {SC)
5. IBM 2803-01 Tape Control Units {TCUs)

I 6. IBM 2314-Al Storage Control Units· (SCUs)

The CEs do not contain main storage or channels;
instead they ·depend on SE~ and IOCEs to. provide these
functions, A maximum of ten SEs provide main storage in
blocks of 524,288 bytes per SE. 1/0 channels are provided
by lOCEs which, under control of the CEs, perform all 1/0
operations for the CCC. Because the IOCEs have direct
access to main storage, this arrangement frees the CEs from
the time-consuming process of transferring large amounts of
1/0 data to and from storage. A maximum of three IOCEs
may be installed, each of which may have one multiplexer
channel and three selector channels (except for the third
IOCE, which may have only two selector channels). A
selector channel operates with one device at a time; a
multiplexer channel is time-shared between several devices.
In addition to channels, IOCEs also contain an IOCE
processor feature, which enables a CE to delegate minor
tasks to the IOCE.

The· P AMs contain adapters of various types so that the
CCC niay interface with a variety of external equipment for
data input ap.d output. A maximum of three P AMs may be_
installed on the CCC system.

7201-02 FETOM (6/71) 1-1

· Page of SFN-0201-1
Revised by TNL: GN31-0001

Up to three TCUs control the operation of IBM 2401
Magnetic Tape Units (TUs). Each TCU has a dual interface,
which permits it to be connected to selector channels in
two different IOCEs.

I Up to three SCUs can be attached to each CE SCON
interface. Each SCU has a dual interface which permits it to
be connected to selector channels in two different IOCEs.

The SC provides a central location for monitoring and
control of the 9020D system. Only one SC is provided,
since all critical controls and indicators are duplicated
elsewhere in the system. The SC contains an adapter for an
IBM 1052 1/0 Writer and manual controls for attaching the
1052 to any installed IOCE. An IBM 2821 1/0 Control Unit
is also manually switched at the SC to any of the attached
IOCEs. The 2821 is.the control unit for an IBM 2540 Card
Reader/Punch and an IBM 1403 High Speed Printer. An
interface is also provided to a system maintenance monitor
console (SMMC) which monitors both the CCC and the
DCP systems.

IBM 9020E DISPLAY CHANNEL PROCESSOR (DCP)

The IBM 9020E Display Channel Processor (DCP) receives
radar and weather data from the CCC system via channel
to-channel (CTC) adapters, which connects IOCEs in the
two systems. This data is further processed and passed on
to display equipment. The DCP also handles input and
output data for radar keyboard equipment. The display and
rader keyboard equipment are external to the DCP system.

A DCP system may contain as many as four CEs, which,
as in the CCC system, provide sufficient redundancy so that ·
a malfunctioning CE can be tolerated under peak workload
conditions. CEs in the DCP system utilize special display
instructions for the processing of radar and weather data.
These display instructions are implemented in the CEs of
the CCC system as well, since all 7201-02 CEs are alike.
However, it is only in the DCP system that these instruc
tions are useful.

In the DCP system, the CEs operate in conjunction with
the following elements:
1. IBM 7251-09 Storage Elements (SEs)
2. IBM 7289-04 Display Elements (DEs)
3. IBM 7231-021/0 Control Elements (IOCEs)
4. IBM 7265-03 Configuration Console (CC)
5. IBM 2803-01 Tape Control Units (TCUs)
6. IBM 2701-01 Data Adapter Units (DAUs)

The SEs, IOCEs, and TCUs are the same as those in the
9020D CCC system and perform the same functions. The
DEs, CC, and DA Us are used in the DCP system only.

A DE is similar to an SE in many respects. The storage
section of a DE is used to buffer display data for the
display equipment. The switch unit portion of a DE
interfaces with up to four display generators (DGs), each of

1-2 (6/71)

which control six character vector generators (CVGs). The
CVGs request and receive data from the DEs and use the
data to control plan view displays (PVDs), one PVD per
CVG.

Each DE is also capable of interfacing with four CEs and
receives data from them as a result of the CEs execution of
the display instructions. The DEs are also provided with a
wrap bus, which makes possible the testing of DEs by
returning data (which would normally go to CVGs) to the
CEs for checking. The CE is provided with a DE wrap
interface for this purpose.

The DAU connects to radar keyboard multiplexers
(RKMs) to provide a data path between IOCE multiplexer
channels and keyboard equipment located at the radar
consoles.

The CC is similar to the SC in the CCC system, with the
following exceptions:
1. Additional units, called reconfiguration control· units

(RCUs), are housed within the CC. The function and
purpose of the RCUs is explained in the 9020E System
Introduction Manual.

2. No 1052 adapter is housed in the CC; adapters housed in
the CEs are used instead.

3. The SMMC interface. is of a different type. The SMMC
interface for each system is explained in Chapter 3 of .
the respective System Introduction Manuals.

4. Additional indicators are installed to permit the status of
display equipment to be indicated.

CE INTERFACING

As the controlling element in the system, the CE interfaces
with every major element and unit. A brief discussion on
CE interfacing is presented below. (For a complete dis
cussion of element interfacing, refer to Appendix B of this
manual.)

Figure 1-1 shows CE interfacing in simplified form. Five
main types of interfaces are shown:
1. CE-CE
2. CE-SE and DE

I 3. CE-TCU, SCU, and PAM or RCU
4: CE-IOCE
5. CE-SC or CC

The CE to CE interface provides data paths for configura
tion information, ATR information, and direct control.
(Note that each CE also interfaces with itself for these
purposes.) Other interface lines conduct the system reset,
direct control signals, and the 'element check' (ELC) signal.
These control lines enable any CE to mo.nitor the operation
of the other CEs and to coordinate them in multisystem
operation.

Each CE interfaces with each SE and DE in the system.
These interfaces are very similar. A Storage Data Bus In
(SDBI) and a Storage Data Bus Out (SDBO) provide for the

3 IOCEs j
Max ~

3 IOCEs {
Max

To SC/CC

CE-IOCE

Control Bus:
SCON and SATR
1/0 Instructions
IPL, Interrupts
Logout
Start 1/0 Processor

Write Direct Signals
Reset
Misc Controls

Condition Code ·
Resporises
Interrupt R!!quests
Abnormal Cond's
Misc Signals

CE-SC/CC

Indicator Lines:
Address
Data

CE
Logic

CE-CE

Control Bus:
SCON and SATR

Direct Control:
Data and signals

Reset
ELC
Misc Controls

CE-SE/DE

SDBI:
Data
SCON

Address, Keys
Reset
Misc Signals

SDBO: Data
Keys
Abnormal Cond.
Misc Signals

Page of SFN-0201-1
Revised by TNL: GN31-0001

l To
(Other •

CEs

}

From
Other
CEs

} SE•/D"

} S"/D"

·State
Errors and Conditions

CE-TCU, SCU, and PAM/RCU

From
SC/CC

Controls
Address
Data

IOCE MPX -'-----+-f"f---------------
Channel 1052

1052 at
cc

Adapter
for
9020E

•Figure 1-1. Computing Element Interfacing

transfer of data, a doubleword at a time, between the CE
and storage. The SDBI is also used to transfer configuration
data to SEs and DEs. No separate configuration bus exists
to these elements. Separate interface lines are provided for
storage addresses and keys. A number of additional
interface lines permit synchronized operation and permit
the CE to monitor for SE or DE errors or abnormal
conditions.

In the CE to DE interface, special lines permit the
testing of DEs without interfering with display equipment.
Request lines from ·the CE to the DE permit the CE to
request data from the DEs which normally would be
transferred to the display equipment. A special "DE Wrap"
bus is provided for return of the data to the CE.

I The CE interfaces with TCUs, SCUs, and with eithe~
PAMs or RCUs, depending on whether the system is a
9020D or a 9020E. These interfaces are very similar.
Provision is made for configuration data to be transferred

Configuration
SCON Select
Reset

} TCUs, SCUs

} PAMs/RCUs

ELC
SCON Response

}r.· cu., scu,

} PAMs/RCUs

to these units and for the signals necessary to permit the CE
to select the units for configuration and monitor them for
errors or abnormal conditions.

The CE to IOCE interface is relatively complex com
pared with the other interfaces although no direct data path
is available between thes·e two element types. Shared
storage is used for this purpose. The major portion of the
CE to IOCE interface consists of a control bus used for the
following purposes: SCON and SATR information, IOCE
processor start, I/O instructions, IPL, interrupts, and
logout. In all but the first two of these, the CE's PSBAR is
placed on the bus to enable the IOCE to access the PSA.
The IOCE to CE interface lines consist mainly of signal
lines which permit CE and IOCE operation to be synchro
nized when necessary and which permit the CE to monitor
for errors and abnormal conditions. Direct control signals
are provided between CEs and IOCEs, but no direct control
data path exists:

7201-02 FETOM (6/71) 1-3

The CE interfaces with the SC or CC to enable the CE
status to be displayed at the console and to enable various
CE control panel functions to be controlled remotely from
the console.

In all the interfaces mentioned, certain common char
acteristics exist. Provision is made for the CE to configure
all elements and to monitor them for abnormal conditions.
A system reset signal is also provided to each element.

Note in Figure 1-1 that lines are shown entering and
leaving the CE to connect with a 1052 adapter. This
adapter is housed in the CE for use in the 9020E system. It
connects an IOCE multiplexer channel to a 1052 I/O writer
located at the CC. (The operation of the 1052 adapter is
described in Append'x C of this manual.)

CONTROL PROGRAM

Because of the size and internal processing speed of the
9020 systems, it is not practical to manually load and
control the many subprograms (which run in as many as
four CEs), nor is it possible to respond manually to all of
the exceptional and abnormal conditions that arise and still
retain real-time processing capability. Therefore, the 9020
systems are designed to operate under a control program
(sometimes called a supervisor or monitor program). The
control program, operating at machine speed, can respond
rapidly to changes in workload and to various exceptional
and abnormal conditions.· This rapid response is necessary
for the fail-safe, fail-soft operation required by the ATC
task. The control program for the ATC system is called the
executive control program (EXC).

The EXC program is responsible for many different
aspects of system operation. This section discusses these
various aspects and describes how certain hardware
implemented facilities of the 9020 systems enable the EXC
program to achieve control over them.

Privileged Instructions

The EXC program has available to it certain privileged
instructions. These instructions, which can be executed
only by the control program, enable the EXC program to
initialize and control a number of operations and system
conditions. For example, all I/O instructions are privileged,
thus placing all I/O operations under direct control of the
EXC program.

The manner in which privileged instructions are reserved
for control program use is shown later in this section.

Configuration Control

As noted in the system descriptions, the 9020 systems
contain more elements than are required to perform the

1-4 (7 /70)

. ATC task, even under peak workload conditions. The spare
elements are termed redundant; they may be used to
replace failing elements. Elaborate interfaces between
elements enable one element to be substituted for another
by changing the interface gating. This gating is controlled
by a configuration control register (CCR) in each major
element and unit. Because manual reconfiguration is too
time-consuming, the 9020 systems are designed to be
reconfigured under program control. A privileged instruc
tion called Set Configuration (SCON) enables the EXC
program to set the CCRs in each element unit.

Fields in the CCR determine for each element (1) other
elements/units with which it may communicate, (2) CEs
from which it may accept future reconfigurations, and (3)
the element state it is to assume. The first of these is
self-explanatory. The second field mentioned, called the
SCON field, enables the EXC to force an element to accept
reconfigurations only from the CE in which the EXC, itself,
is running.

The element state field determines, for each element,
which manual controls are enabled. This enables the EXC
program to place the element under tight control or to
permit varying degrees of manual control for such purposes
as maintenance or program debugging.

Element states are discussed more fully later in this
section. The subject of configuration control is discussed in
relation to the CE in Section 2. System aspects of
configuration control are described in detail in Chapter 4 of
the system introduction manuals cited at the beginning of
this chapter.

Address Translation

Storage elements are reconfigurable even though each SE
represents a fixed block of addresses which ordinarily could
not be substituted for a different block of fixed addresses.
This substitution is made possible by an address translation
facility implemented in the CEs and IOCEs. The address
translation facility enables automatic translation of logical
addresses from the program into physical addresses in the
SE actually occupying a particular address block. This is
accomplished via an address translation register (ATR) in
each CE and IOCE. There are ten slots in the ATR for SE
identifiers (SE and DE identifiers in the 9020E system).
High-order bits of a Jogical address decode ATR slots rather
than SEs. The EXC program can set SE identifiers into the
ATR slots via another privileged instruction called set
address translator (SATR). This must be done prior to
executing the SCON instruction so that CEs and IOCEs will
decode the proper SEs to which they are configured. By
changing the ATR setting, the EXC program can substitute
one SE for another in the event of an SE failure.

The subject of storage addressing is discussed more fully
in Section 2 of this chapter and is described in detail in

Chapter 5 of the system introduction manuals cited at the
beginning of this chapter.

Preferential Storage Areas

Each CE in the system must have a unique area of storage,
called the preferential storage area (PSA), which is set aside
for storing certain data critical to the operation of that CE's
programs. The PSA occupies 4096 bytes of storage. As will
be seen later, in the discussion of interruptions, the PSA
must be accessible both to the CE's programs and to
hardware.

In the 9020 systems, in which SEs may be substituted
for each other, the PSA for a particular CE may be located
anywhere in storage on 4096-byte boundaries. A special
register, called the preferential storage base address register
(PSBAR) is used in each CE and IOCE to retain the current
location of the PSA. When a program running in the CE
addresses the lowest 4096 bytes of storage available to that
CE, address bits from PSBAR are substituted automatically
so that the actual location of the PSA is generated.
Low-order bits of the original address are retained so that
the program may specify particular locations within the
4096-byte PSA.

Again, a privileged instruction is available to the EXC
program for loading the PSBAR. This instruction is called
Load Preferential Storage Base Address (LPSB).

Provision is made to automatically search the ATR for
the next configured SE should a CE fail to gain access to
the SE containing its PSA. The EXC program is responsible
for establishing, in addition to PSAs, alternate PSAs for
each CE. The alternate PSA must be kept updated so that
data critical to continued operation will be available in the
event of a malfunction in the PSA SE.

This subject is discussed more fully in Section 2 of this
chapter and is described in detail in Chapter 5 of the system
introduction manuals cited at the beginning of this chapter.

Direct Control

Provision has been made for CEs to pass data directly
between them, one byte at a time, and for direct control
signals to pass between them. Certain direct control signals
may be passed between CEs and IOCEs also, but no direct
control data path exists between them. This facility
provides the EXC program with the ability to coordinate
simultaneous operation of CEs so that more than one
subsystem may operate under EXC program control. Via
this facility, the EXC program can start and stop CEs and
IOCE-processors and direct their activities into a coor
dinated multisystem operation.

The direct control instructions are discussed in Section 2
of this chapter. A description of multisystem operation is
given in Chapter 6 of the system introduction manuals cited
at the beginning of this chapter.

Interruptions

An interruption may be considered as an automatic
program branch. That is, the current sequence of instruc
tions is interrupted, and a branch (interruption) is taken to
a new instruction sequence. The interruption facility of the
9020 is hardware-implemented and, in most cases, is
completely automatic.

When an interruption occurs, the current status of the
CE is stored in a fixed location within the CE's PSA.
Information is fetched from another location in the PSA to
control CE operation while the interruption is being
handled. For this reason, each CE must have a unique PSA
accessible by hardware as well as the program.

The status of the CE is saved at the time of the
interruption in a doubleword called a program status word
(PSW). The contents of the PSW describe the CE's status
completely so that the original instruction sequence can be
continued later as though no interruption had occurred.
PSWs in which status is saved during an interruption are
called old PSWs. Information fetched to control the CE
during the handling of an interruption is in the form of a
new PSW. Both old and new PSWs have fixed locations
within a CE's PSA so that they can be stored and fetched
automatically when an interruption occurs.

The EXC program is responsible for establishing the new
PSWs in its own PSA so that they will properly direct the
CE's operation when called into use during an interruption.
This includes setting next-instruction addresses in each new
PSW that point to instructions that will handle the
particular type of interruption.

Five classes of interruptions occur in the 9020 systems:
1. Machine-check
2. Program
3. Supervisor call
4. External
5. Input/output

Both an old and a new PSW location exist in a CE's PSA
for each class of interruption; thus, there are five old PSW
locations and five new PSW locations. The current status of
the CE is contained in the current PSW, which is not
located in storage at all. The current PSW is the total status
of the CE as represented by a number of control triggers in
the CE circuitry. There is no single location for all the bits
of the current PSW.

7201-02 FETOM (7 /70) 1-5

As an interruption occurs, the condition of all the
triggers making up the current PSW is saved in the old PSW
for that interruption class. The new PSW for that interrup
tion class is then fetched, and the triggers making up the
current PSW are set to agree with the bits of the new PSW.
This is shown in Figure 1-1 for a supervisor call interrup
tion.

A special field in the old PSW is used to retain an
interruption code which provides the reason for the
interruption. Since the old PSW is accessible to the program
as well as to hardware, the program can examine this
interruption code to determine what action is required.

A privileged instruction called Load Program Status
Word (LPSW) provides the EXC program with the cap
ability to load a PSW into the current PSW hardware from
anywhere in storage. Thus, after handling an interruption,
the EXC program can return to the original instruction
sequence simply by loading a PSW from the old PSW where
status was originally saved. For example, in the supervisor
call interruption, the EXC program would do an LPSW
from the location of the supervisor call old PSW to return
to the original instruction stream.

External Old

Supervisor Coll Old

Program Old

Machine Check Old

1/0 Old

Current PSW

External New

Supervisor Coll New

Program New

Machine Check New

1/0 New

PSA

The contents of the PSW are described later in this
chapter. For the present, it is pointed out that each PSW
contains program state bits, one of which indicates whether
the CE is in supervisor state or not. Only in supervisor state
can privileged instructions be executed. Since LPSW is a
privileged instruction, the EXC program can load PSWs for
subprograms so that they do not run in supervisor state,
reserving that state for itself. It also is pointed out here that
provision is made in the PSW for masking interruptions.

1-6 (7 /70)

That is, a mask field in the PSW with bits corresponding to
interruption types may be used either to permit an
interruption to occur or to prevent it from occurring (mask
it off). This allows interruptions to be handled in an orderly
fashion and avoids the condition in which one interruption
follows immediately after another before the first can be
handled.

The five classes of interruptions provide the EXC
program with a high degree of control over system
operation and with the capability to monitor for error and
abnormal conditions. Each interruption class is discussed
here in terms of the special facilities it provides to the EXC
program. Masking is not considered here. A complete
introduction to interruptions is included later in this
section.

Machine-Check Interruptions

A machine-check interruption is caused by machine
checking circuits detecting a machine malfunction. A CE
automatically logs the contents of various triggers and
registers into a logout area in the PSA when a machine
check occurs. At completion of the logout, a machine
check interruption takes place-so that the control program
can analyze the logout and take appropriate action.

A machine check condition in an IOCE also results in a
logout into the PSA of the controlling CE, but the IOCE
must first request permission to log out and to interrupt.
Facilities are also available to enable a CE to request logout
information from SEs and DEs when the need arises.

The machine-check interruption facility alerts the con
trol program to malfunctions irt its immediate subsystem;
the logout facility provides additional information about
the malfunction so that the machine-check handling routine
in the control program can initiate appropriate action. For
example, the control program may elect either to replace
the failing element through system reconfiguration or
simply to record the error and restart the program
operation.

Program Interruptions

A program interruption occurs when certain conditions
(such as incorrect operands or programming errors) are
encountered in a program. The exact error is indicated in
the interruption code of the program old PSW. Program
interruptions alert the control program to program errors
within itself or within subprograms for which it is re
sponsible. Depending on the cause of the interruption, the
instruction being processed may be suppressed, terminated,
or allowed to continue.

Supervisor Call Interruptions

The supervisor call interruption results from the execution
of the Supervisor Call (SVC) instruction. The interruption
code is used to convey the reason for the SVC. In this way,
a subprogram may call upon the control program to
perform various services such as initiation of I/O instruc
tions, handling of unusual conditions encountered by the
subprogram, allocation of additional storage, etc.

External Interruptions

The external interruption facility of the 9020 systems is
quite elaborate because it is the primary means available to
the EXC program of monitoring for malfunctions and
abnormal conditions in the entire system. External inter
ruptions result from four sources, which are described in
the following paragraphs.

Interval Timer at Limit. The interval timer is a fullword at
location 50 hex in the PSA, which is automatically fetched
from storage approximately every 16.7 ms, decremented,
and stored back again. It can be used for keeping the
correct time or for timing intervals between events. When
the timer overflows from a positive to a negative value, an
external interruption occurs. This permits the program to
reinitialize the timer values.

Interrupt Pushbuttons. An external interruption may be
manually initiated from a pushbutton on the CE control
panel or from a pushbti tton on the system or configuration
console.

Direct Control. CEs and IOCE-processors can initiate
external interruptions via direct control. These are gated by
the CCR in the CE so that they will not be accepted if the
CE is not configured to the interrupting element.

A special register, the processor interrupt register (PIR),
is used in the CE to identify an interrupting IOCE
processor. A PIR bit in the external old PSW interruption
code alerts the program to examine the PIR. CEs sending
direct control interruptions are identified directly in the
interruption code.

Abnormal Condition Signals. For external interruptions
resulting from abnormal condition signals, the interruption
code is not sufficient to code all the possibilities. Its
function is expanded by a register called the diagnose
accessible re·gister (DAR) in the same way as it is expanded
by the PIR for. IOCE-processor interruptions. As stated
previously, facilities are available in the PSW for masking
off interruptions. These facilities,, too, are expanded by a
register, the DAR mask register (DARM). This is discussed
later in this section under "Interruption Masking".

Page of SFN~o201-1
Revised by TNL: GN31-0001

Bits are set in the DAR of a CE by abnormal condition
signals received from CEs (including ·itself), SEs, IOCEs,
TCUs, and P AMs or RCUs. The abnormal condition signals
include: 'element check' · (E~C), 'out-of-tolerance check'
(OTC), and 'on battery' signal (OBS). In general, an ELC
indicates a malfunction in the logic of an element, an OTC
indicates an overtemperature condition, and OBS indicates
that an element has switched over fo battery backup power.
For details regarding the meaning of these signals, as sent
by different elements, refer to Chapter 8 of the system
introduction manuals cited at the beginning of this chapter.
The last point, OBS, should be clarified here, however.

Each major element is equipped with a battery backup
power source capable ·of sustaining operation for approxi
mately 5 seconds (in the event of loss of external power).
Receipt of the OBS signal permits the EXC program to
close out operation of an element (or the whole system if
all power is lost), in a convenient and orderly manner, in
preparation for a power-down condition at the end of the 5
seconds. In this way, checkpoints can be established by the
program so that very little reinitialization is required when
power is restored.

Receipt of an abnormal condition signal from a given
element sets a particular bit in the DAR and, provided all
masking conditions are met, initiates an external interrup
tion. A DAR bit in the external old PSW alerts the control
program to examine the DAR and determine the exact
cause of the interrupt.

Input/Output Interruptions

I/O interruptions provide a means by which IOCEs can
notify their controlling CE of special conditions concerning
the attached I/O devices. The address and channel of the
interrupting device is made available in the I/O old PSW
interruption code.

Responsibilities of the Control Program

We have examined the special facilities that are available to
the control program and which enable it to monitor and
exert control over total system operation. Now, the various
responsibilities of the control program may be summarized.
The major responsibilities of the control program are listed
as follows:

1. Configuring the system into subsystems appropriate for
the current tasks and, also, reconfiguring as conditions
vary.

2. Assigning SEs to subsystems and initializing the address
translation hardware in the CEs and IOCEs.

3. Establishing PSAs and alternate PSAs and initializing
PSBAR in the CEs.

4. Loading and operating subprograms.

7201-02 FETOM (6/71) 1-7

5. Sharing . areas of main storage among subprograms
needing access to common information.

6. Scheduling and controlling I/O operations.
7. Providing services to subprograms, when requested via

supervisor calls.
8. Coordinating multisystem operation.
9. Monitoring for errors, malfunctions, and other ab

normal or exceptional conditions.
10. Keeping a running log of machine checks and I/O

11.

12.

13.

errors.
Providing standard error- and malfunction-handling
routines, such as error analysis and reconfiguration.
Accommodating manually entered requests for mainte
nance elements or subsystems when conditions permit.
Interfacing with operating perso~nel via operational

\messages.

ELEMENT STATES

Each major element and unit in the 9020 systems can
operate in any one of four element states, depending on the
state bit settings in the CCR. The. state of an element
largely determines its availability to the ATC system
because it affects the element's response to reconfiguration
and the degree to which manual control over the element is
permitted. In the case of the CE, the capability to execute
the SCON instruction effectively and the capability to mask
ELCs received from other CEs is also affected by the state.

There are four element states, 0 through 3. State 3 is the
highest operational state; i.e., it is the state in which the
EXC program has maximum control of the element and
manual control is minimal. State 0 is the lowest operational
state, with maximum manual control permitted.

State 0 is divided into two substates by a TEST switch
on each element (including the CE). The major effects of
placing .an element in 'test' (turning the TEST switch on)
are preventing the element from being "configured away"
by some CE executing a SCON instruction and enabling
maintenance personnel to power the element up and down.

Table 1-1 summarizes the effects of element state on a
CE. Table 4-1 in Chapter 4 shows how manual controls are
affected by state and by the setting of the TEST switch. In
connection with the. enabling and disabling of manual
controls, one other condition must be considered. That is
the setting of the SYSTEM INTERLOCK switch. This
locking switch enables certain CE panel controls to permit
SC or CC functions to be duplicated at the CE.

A similar SYSTEM INTERLOCK switch at the system or
configuration console permits a number of CE panel
control functions to be initiated from the console. The
SYSTEM INTERLOCK switch at the console overrides the
switch on the CE panel if both are turned on.

1-8 (7 /70)

PROGRAM STATUS WORD

A doubleword, the program status word (PSW), contains ·
the information required for proper program execution. In
general, the PSW controls instruction sequencing and holds
and indicates the status of the CE in relation to the
program being executed. The PSW has the following
format:

System Mask Interruption Code

71 11 12 13 14 15 16 19 20 31

\1Lcjcc I ~ik I Instruction Address

32333'3536 3940 63

Bits 0-7 and 16-19, System Masks. Associated with I/O
and external interruptions as follows:

System Mask Bit

0
1
2
3
4
5
6
7

16
17
18
19

Interruption Source

Multiplexer channel 0
Selector channel 1
Selector channel 2
Selector channel 3
Multiplexer channel 4
Selector channel 5
Selector channel 6
Timer, Interrupt pushbuttons, Direct
Control, Pl R, and DAR
Selector channel 7
Multiplexer channel 8
Selector channel 9
Selector channel A

~ Channels 0-3 = IOCE 1; channels 4-7 = IOCE 2; channels
8-A = IOCE 3

When a system mask bit is 1, the associated source can
interrupt the CE; when bit is a 0, the interruption remains
pending.

Bits 8-11, Key. Contain the CE storage protection key.
The key is matched with the storage key whenever data is
stored or whenever data is fetched from a location that is
fetch-protected.

Bit 12, U (USASCII-8). Affects decimal operations only.
When bit is a 1 and in unpacked format, decimal digits are
represented by USASCII-8. When bit is a 0, EBCDIC is
specified.

Bit 13, M (Machine-Check Mask). When bit is a 1, a
machine check causes the CE to log out its status to main
storage and to take a machine-check interruption. If the
machine-check mask is a 0, the machine check remains
pending. As a maintenance aid, the CHECK CONTROL

Table 1-1. Effect of Element State on CE Operation

CE Panel Controls (Note 7) System
or

Execute Issue Accept CE ELC Configuration
CE SCON SCON SCON (Note 6) CCR, Console
State Instruction (Note 3) (Note 4) Maskable Operator Maintenance Power Controls

Three Yes Yes Yes Yes No No No Yes (Note 8)

Two No (Note 1) N/A Yes No No No No Yes
One No (note 1) N/A Yes No Yes No No Yes
Zero, and
Test Switch
Off Yes Yes Yes No Yes Yes No Yes
Zero, and
Test Switch
On Yes (Note 2) No (Note 3) No (Note 5) Yes Yes Yes Yes No

Notes:
(1) Execution of Set Configuration instruction is suppressed and a specification interruption is taken.

(2) Manual control of CCR settings is provided. The Set Configuration instruction may be executed when the state bits are manually

set to Three or Zero. The selection of other system elements and the propagation of the configuration mask are suppressed. All

instruction exceptions are recognized and program interruptions are taken. If Set Configuration instruction is attempted wh ife the

state bits are set to One or Two, note (1) applies.

(3) "Issue SCON'' refers to the ability to select external elements and present the configuration mask information when executing the

Set Configuration instruction.

(4) "Accept SCON'' means to accept the configuration mask bits into the CCR. The Scan bit for the issuing CE must be already set in

the receiving CCR. ff either the Scan bit is off or the mask is accepted with improper parity, condition code 2 is set in the issuing

CE. (Two important exceptions to this rule should be noted: Whenever any receiving element has detected improper parity on the

content of its CCR, or has its state bits set to Three, Two, or One and has all scan bits set off in its CCR, configuration mask bits

are unconditionally accepted from any issuing CE.)

(5) All external configuration selection and mask signals are ignored. A self-issued configuration mask is accepted provided its own scan

bit is already set in the CCR.

(6) Incoming CE ELC's (element checks) are masked off when the Scan bit for the issuing CE is off in the CCR of the receiving CE.

Where "yes" is entered the CE E LC is also maskable by the external interruption mask, PSW bit 7. "No" indicates that any

additional masking provided is ignored. The receiving CE has its state bits set to Three, and an abnormal condition interruption is

taken. Refer to chapter 7 of 9020 System Introduction Manuals for details.

(7) A limited number of operator's controls on the CE control panel are activated. Refer to Table 4-1 in Chapter 4.

(8) A number of the CE control panel facilities are enabled on the system console and configuration console.

switch on the system control panel can modify the
machine-check mask bit functions when the CE is in state
0. This bit also masks the IOCE special machine-check
interruption.

Bit 14, W (Wait State). When bit is a 1, CE is in the Wait
state; instructions are not executed until an external or 1/0
interruption or an IPL occurs. When bit is a 0, th~ CE is in
the Running state.

Bit 15, P (Problem State). When bit is a 1, CE is in the
Problem state. When bit is a 0, CE is in the Supervisor state.

Bits 20-31, Interruption Code. Identify the cause,
purpose, or source of the interruption. (Code has no
meaning in a new PSW .)

Bits 32 and 33, ILC (Instruction Length Code). Indicate
the length, in halfwords, of the last processed instruction.
This code is predictable only for most program and

supervisor call interruptions. For I/O and external interrup
tions, the interruption is not caused by the last interpreted
instruction, and the code is not predictable for these
instructions. For machine-check interruptions, the setting
of the code may be affected by the malfunction and,
therefore, is unpredictable. A code of 0, used only for
program interruptions, indicates that the instruction ad
dress in the PSW is not the location of the instruction
following the instruction that caused the program interrup
tion.

Bits 34 and 35, CC (Condition Code). Contain the
condition code that reflects the result of most arithmetic,
logical, or I/O instructions. Each of these operations can set
the code to any one of four states, and the conditional
branch instructions can specify the state to be used as the
criterion for branching. For example, the CC may reflect

7201-02 FE TOM (7 /7 O) 1-9

such conditions as nonzero, overflow, and underflow. Once
set, the CC remains unchanged until modified by an
instruction that reflects a different code. The two bits of
the CC provide for four possible binary settings: 00, 01, 10,
and 11. This manual refers to the CCs as 0, 1, 2, and 3. (The
CC has no meaning in a new PSW.)

Bits 36-39, Program Mask. Each bit is associated with a
program interruption as follows:

Program Mask Bit

36
37
38
39

Program Interruption

Fixed-point overflow
Decimal overflow
Exponent underflow (floating-point)
Significance (floating-point)

When a program mask bit is a 1, the associated program
interruption results in an interruption; when bit is 0, the
interruption is lost.

Bits 40-63, Instruction Address. Specify the leftmost
byte address of the next instruction.

The active or controlling PSW is called the current PSW.
The information making up the current PSW is held in
triggers and registers in the CE and is constantly updated as
instructions are executed. (The instruction-address field of
the PSW, for example, is held in the instruction counter and
is updated to give the address of the next instruction to be
executed.) When an interruption is taken, the PSW is
assembled in the ST register and is transferred to a fixed
location in main storage corresponding to the interruption.
(The stored PSW is called the old PSW.) In this way, the
program can preserve, for subsequent analysis, the status of
the CE at the time of interruption. To complete the
interruption, a new PSW is introduced into the CE from
another unique main storage location, and the instruction
at the specified location is fetched.

In certain circumstances, the entire PSW is loaded into
the CE; in others, only part of it. As explained in the
preceding paragraph, when the CE is interrupted, the entire
wrrent PSW is stored, and an entire new PSW is loaded.
The state of the CE may be changed by executing the Load
PSW instruction, which introduces a new PSW. New
program mask and system mask bits may be specified by
altering the corresponding fields in the PSW through the Set
Program Mask and Set System Mask instructions, re
spectively. The Set Program Mask· instruction also changes
the condition code.

Program States

There are eight paired states, Problem/Supervisor, Oper
ating/Stopped, Running/Wait, and Interruptable/Masked.
All of these states, except Stopped, are defined in the PSW.

1-10 (7 /70)

The following paragraphs define the program states and
discuss the PSW. The eight program states that determine
the overall CE status differ in he way they affect the CE
functions and in the way their status is indicated. Refer to
Table 1-2 for pertinent information about the program
states.

Table 1-2. Program States

State

Problem

Supervisor

Operating

Stopped

Running

Wait

I nterru ptable

Masked

Comments

Load PSW, Set System Mask, Diagnose, Load
PSBAR, Store PSBAR, Set Configuration, Set
Address Translator, and Start I /0 Processor
instructions, and al I I /0, storage protection, and
direct control instructions are invalid. These
instructions are termed privileged instructions.

All instructions are valid.

CE processes instructions (if not in Wait state)
and interruptions (if not masked off). Entered
by:
1. Depressing ST A RT at SC or CC with CE

selected and SYSTEM INTERLOCK on.
2. Depressing START on CE control panel with

CE in.state zero or with SYSTEM INTER
LOCK on at CE and off at SC or CC.

3. Starting an I PL operation.

Instructions and interruptions are not processed;
interruptions remain pending. The timer is not
updated. Execution of program is not affected
by stopping CE. Entered by:
1. Depressing STOP at SC or CC with CE

selected and SYSTEM INTERLOCK switch
on or, depressing ALL STOP at SC or CC
with SYSTEM INTERLOCK switch on.

2. Depressing STOP on CE control panel with
CE in state zero or with SYSTEM INTER
LOCK on at CE and off at SC or CC.

3. Detecting equality on an address-compare
stop operation with CE in state zero or one
with SYSTEM INTERLOCK on at CE and off
at SC or CC.

4. Completing one instruction when in instrl:!c
tion-step mode with CE in state zero or one
with SYSTEM INTERLOCK on at CE and off
at SC or CC.

5. Turning power on or following a system reset
with CE in state zero and TEST switch on.

Instruction processing proceeds in normal
manner.

No instructions are processed, and main storage
is not addressed. The CE waits for an 1/0 or
external interruption to occur before executing
further instructions, or for an IPL operation.

Interruptions are accepted.

System and machine-check interruptions remain
pending, and program interruptions are ignored.

Problem/Supervisor

In the Problem state, all privileged instructions are invalid.
A privileged instruction encountered in the Problem state
constitutes a privileged-operation interruption and inter
rupts the operation. In the Supervisor state, all instructions
are valid. Because of the Problem/Supervisor program
states, programs run in Problem state (such as subprograms
running under the EXC program) are often called problem
programs and programs like the EXC are often called
supervisor programs.

The CE is switched between the Problem and Supervisor
states by changing PSW (15). When PSW (15) is a 1, the CE
is in the Problem state; when a 0, the CE is in the
Supervisor state. This bit can be changed only by intro
ducing a new PSW. Thus, the status switching for Problem/
Supervisor state may be performed by an interruption
operation or by a Load PSW instruction containing a new
PSW with the desired value in bit 15. Because the Load
PSW instruction is a privileged instruction, the CE must be
in the Supervisor state before the switch. The CE status can
also be changed between Problem and Supervisor states by
issuing a Supervisor Call instruction or an initial program
load (IPL). The Supervisor Call instruction causes an
interruption which will load new PSW data. This new PSW
data may change the state of the CE. Similarly, the IPL
introduces a new PSW. The new PSW may introduce the
Problem or Supervisor state, regardless of the preceding CE
state.

Operating/Stopped

When the CE is in the Stopped state, instructions and
interruptions are not executed. When the CE is in the
Operating state, instructions are executed as long as the CE
is not also in the Wait state. Interruptions are taken if they
are not masked off. A change in the Stopped/Operating
states can occur only by manual intervention or by machine
malfunction. No instruction or interruption can start or
stop the CE. The CE is placed in the Stopped state when
STOP on the CE control panel is depressed, detecting
equality on an address-compare-stop operation, completing
one instruction when in instruction-step mode, and after
power is turned on or following a system reset, except
during IPL. For these manual controls to be enabled, the
CE must be in element state 0, 1, or test; or must have the
SYSTEM INTERLOCK switch (at the CE control panel)
turned on while the SYSTEM INTERLOCK at the SC or
CC is turned off. The CE may also be placed in the Stopped
state from the SC or CC by turning on the SYSTEM
INTERLOCK switch there and depressing ALL STOP or
STOP with that CE selected.

The CE is placed in the Operating state by depressing
START or LOAD on the CE control panel, provided the CE

is either in state 0, 1, or test; or if the SYSTEM
INTERLOCK switch is turned on at the CE control panel
and off at the SC or CC. The CE is also placed in the
operating state if START or LOAD is depressed at the SC
or CC with the CE selected and the SYSTEM INTERLOCK
switch on at the SC or CC.

Changing from the Operating state to the Stopped state
occurs at the end of instruction execution and before the
start of the next instruction execution. When the CE is in
the Wait state, the change from Operating to Stopped
occurs immediately. All interruptions pending and not
masked off are taken while the CE is still in the Operating
state. The interruptions cause an old PSW to be stored and
a new PSW to be fetched before entering the Stopped state;
interruptions are no longer taken but remain pending.

Running/Wait

In the Wait state, no instructions are processed, and main
storage is not addressed. In the Running state, instruction
fetching and execution proceed in the normal manner. The
CE status is switched between the Wait and Running states
by PSW(14). When PSW(14) is a 1, The CE is in the Wait
state; when a 0, CE is in the Running state. This bit can be
changed only by introducing a new PSW. Thus, switching
from the Running to the Wait state may be achieved by the
privileged instruction Load PSW, by an interruption such as
given by a Supervisor Call instruction, or by an IPL.
Switching from the Wait to the Running state may be
achieved by an I/O or external interruption or by an IPL.
The new PSW may introduce the Wait or Running state
regardless of the preceding CE state.

Interruptable/Masked

The Interruptable/Masked state of the CE is determined by
the system mask bits PSW(0-7, 16-19), the machine-check
mask bit PSW(I3), and the program mask bits
PSW(36-39). If a mask bit is a 1, the associated interrup
tion is accepted; if it is a 0, system and machine-check
interruptions remain pending, and program interruptions
are ignored. The PSW bits and interruptions that will occur
if the bit is active are listed in Table 1-3.

The Interruptable/Masked state of the CE is switched by
changing the mask bits in the PSW. The program mask may
be changed separately by the Set Program Mask instruction,
and the system mask may be changed separately by the Set
System Mask instruction. The machine-check mask bit can
be changed only by introducing an entirely new PSW, as in
the Problem/Supervisor and Wait/Running states. Thus, a
change in the entire masked status may be achieved by the
privileged instruction Load PSW, by an interruption (such
as for the Supervisor Call instruction), by an IPL, or by a

7201-02 FETOM (7 /70) 1-11

Table 1-3. PSW Interruption Mask Bit Designations

PSW Bit Interruptions

System Mask
0 Multiplexer Channel 0
1 Selector Channel 1
2 Selector Channel 2
3 Selector Channel 3
4 Multiplexer Channel 4
5 Selector Channel 5
6 Selector Channel 6
7 Timer, INTERRUPT Pushbuttons,

External Signals, DAR, or Pl R
16 Selector Channel 7
17 Multiplexer Channel 8
18 Selector Channel 9
19 Selector Channel A

Machine-Check Mask

13 Machine-Check
Program Mask

36 Fixed-Point Overflow
37 Decimal Overflow
38 Exponent Underflow (Floating-Point)

39 Significance (Floating Point)

PSW restart operation. Regardless of the preceding program
state, the new PSW may introduce a new mask status.

Interruption Masking

Sometimes it is not desirable to allow an interruption. This
condition becomes apparent when I/O interruptions are
considered (Figure 1-2). Assume an I/O operation is
completed, resulting in an I/O interruption. The current
PSW is stored as the old PSW to give the supervisor the
reason for (or the source of) the interruption. This old PSW
also enables the supervisor to return to the interrupted
problem program. A new PSW is then brought out of
storage to become the current PSW, which indicates the
first instruction of the I/O interruption-handling routine.
At this time, if a second I/O interruption (perhaps caused
by operator intervention at an 1/0 device of another
channel) were allowed, the old PSW stored as a result of the
first 1/0 interruption would be lost. The supervisor can
prevent this second 1/0 interruption from being accepted
until it has processed the first 1/0 interruption by means of
mask bits in the new PSW. If the corresponding mask bit is
a 1, the interruption is taken; if bit is a 0, the interruption
is ignored or remains pending. External and 1/0 interrup
tions may be masked· off by the system mask field of the
PSW; machine-check interruptions may be masked off by
the machine-check mask bit; 4 of the 15 program interrup
tions may be masked off by the program mask field.
System Mask Field. The system mask field consists of 12
bits PSW(0-7, 16-19), which can be used selectively or

1-12 (7 /70)

collectively to mask all 1/0 and external interruptions.
These are shown in Table 1-3.

To prevent an 1/0 or external interruption before the
first interruption has been processed, the system mask of
the new PSW should contain O's. When a system mask bit is
a 0, the associated I/O or external interruption remains
pending.

The system mask field may be changed by introducing a
new PSW, or it may be changed separately by the Set
System Mask instruction.

External interrupts resulting from bits set in DAR by
abnormal condition signals are masked by corresponding
bits in the DAR mask register. These bits are set via a
privileged instruction called Diagnose. Refer to Chapter 7
of the system introduction manuals cited at the beginning
of this chapter for further discussion.
Machine-Check Mask Bit. The machine-check mask. bit
PSW(13) controls the acceptance of a machine-check
interruption. If this bit is a 0, machine-check interruptions
are ignored and remain pending. If this bit is a 1,
machine-check interruptions are taken, depending on the
position of the CHECK CONTROL switch on the CE
control panel. If this switch is in the PROC (normal)
position, the CE stops, and the status is logged into main
storage; a machine-check interruption then takes place. If
the CE CHECK CONTROL switch is in the DSBL (disable)
position, the CE does not stop upon detection of a machine
check, and no logout or interruption takes place. If the
switch is in the STOP position, the CE stops upon detection
of a machine check, but there is no logout of data, and no
interruption takes place.

The usual mode of operation is to have the CHECK
CONTROL switch set to the PROC position and PSW(13)
set to a 1.

The machine check mask bit can be changed only by
introducing a new PSW.
Program Mask Field. The program mask field consists of
four bits, PSW(36-39), each of which is associated with a
program check:

Program Mask Bit

36
37
38
39

Program Interruption

Fixed-point overflow
Decimal overflow
Exponent underflow (floating-point)
Significance (floating-point)

When a program mask bit is a 1, the associated program
check results in an interruption; when a 0, no interruption
occurs, and the condition does not remain pending.

The program mask field may be changed by introducing
a new PSW, or it may be changed separately by the Set
Program Mask instruction.

PROBLEM PROGRAM

Instr

Instr

Instr

Instr

Instr

I t ns r

SUPERVISOR
(110 INTERRUPTION-
HANDLING ROUT! NE)

Instr•

Instr

Instr

""'-

In;_

Instr [Load (Old) PSW]

Assume first 1/0 interruption
occurs at this time. As a
result, the current PSW is
stored into location 56 as
the old PSW, and a new
PSW is fetched from location
120. This new PSW becomes
the current PSW, which
addresses the first instruction
of the 1/0 interruption
handling routine.

\

/
/

/

/

~ ..

If a second 1/0
were al lowed to

interruption
occur at

urrent PSW
at location

this time, the c
would be stored

/

L
56, thus destroying the old
PSW from the problem program.

Figure 1-2. Example of Need for Interruption Masking

PREFERENTIAL STORAGE AREA

/
/

Each CE in a 9020 system has a 4096-byte area of its
assigned storage set aside for the storage of PSWs, channel
control words (CAW and CSW), interval timer, and the
diagnostic logout area. This area is called the preferential
storage area (PSA). Table 1-4 shows those contents of the
PSA that must be at fixed locations within the PSA so that
they are accessible to hardware. The remaining portion of
the 4096-byte area may be used at the discretion of the
programmer.

Programs written for the 9020 are based on the
assumption that the PSA is in the lowest 4096 bytes of
storage. Thus, referring to Table 1-4, the CSW is accessed
by addressing the doubleword at the absolute address of

/

r- - - - ------,
I MAIN STORAGE I

I
Location 56 r1 OldPSW

......------. I

Current PSW I :

/

/
/

/

Lll LoooHo" 120

I I
. New PSW

/
/

/

/
/

/

I /------
I/ L _________ _J

hex 40. This assumption is valid provided the control
program has properly initialized the PSBAR in the CE that
is executing the program. Hardware in the CE monitors for
addresses having the 12-high-order bits O's. Such an address
indicates that the program is attempting to access the PSA.
When such an address is detected, high-order bits from
PSBAR are ORed with the address, and the location in the
actual PSA is accessed.

The IOCE is often required to access its controlling CE's
PSA. For example, the CE's PSA must be accessible to the
IOCE for I/O operations, interruptions, and an IOCE
logout. A PSBAR in the IOCE is updated by the CE, via a
bus called the control bus, whenever the CE requests the
IOCE to perform an I/O operation (including IPL) or grants
permission to interrupt on logout.

7201-02 FETOM (7 /70) 1-13

Table 1-4. Preferential Storage Areas

Main Storage
Address

Dec Hex Length

0 0 Doubleword

8 8 Doubleword

16 10 Doubleword

24 18 Doubleword

32 20 Doubleword

40 28 Doubleword

48 30 Doubleword

56 38 Doubleword

64 40 Doubleword

72 48 Word

76 4C Word

80 50 Word

84 54 Word

I 88 58 Doubleword

96 60 Doubleword

104 68 Doubleword

112 70 Doubleword

120 78 Doubleword

128 80 64 dou blewords

1-14 (7/70)

Information Stored

Initial program loading
PSW

Initial program loading
Channel Command
Word 1 {CCW 1)

Initial program loading
ccw 2

External interruption,
old PSW

Supervisor call inter-
ruption, old PSW

Program interruption,
old PSW

Machine check inter-
ruption, old PSW

1/0 interruption, old
PSW

Channel Status Word
{CSW)

Channel Address Word
{CAW)

Unassigned

Timer

Unassigned

External interruption,
new PSW

Supervisor call inter-
ruptian, new PSW

Program interruption,
new PSW

Machine check inter-
ruption, new PSW

1/0 interruption, new
PSW

Diagnostic log-out area

Note that an IOCE-processor has a PSA also, but it is
located in an internal storage, called MACH, which is not
part of main storage and is unrelated to PSBAR.

CONTROL OF I/O OPERA TIO NS

The following paragraphs discuss how I/O operations are
controlled by instructions, commands, orders, and control
words; and illustrate how the I/O system works, using the
Start 1/0 instruction as an example.

Instructions, Commands, and Orders

Input/output operations are initiated and controlled by
three types of information: instructions, commands, and
orders. Instructions are decoded by the CE and are part of
the CE program. Commands are decoded and executed by
the IOCE, and they initiate I/O operations such as reading
and writing. Instructions and commands are fetched from
main storage and are common to all types of devices.
Orders specify functions peculiar to an I/O device, such as
rewinding tape or spacing a line on a printer. Orders are
contained in the control command; they are decoded and
executed by the device.

The action in an I/O device initiated by a command is
termed an I/O operation. Five I/O operations are available:
write, read, read backward, control, and sense. The IOCE
channel initiates the operation by executing the associated
command.

The Write command initiates a write operation at the
device. Data from main storage is fetched in an ascending
order of addresses and transferred to the device.

The Read command initiates a read operation at the
device. Data is read from the device in the same sequence as
it was written by a Write command. Data is placed into
main storage in an ascending order of addresses.

The Read-Backward command initiates a read-backward
operation at the device. Data is read from the device in a
sequence opposite to that in writing. Data is placed into
main storage in a descending order of addresses.

The Control command contains information, termed
orders, that· controls the selected device. Orders are unique
to the particular device in use and specify such functions as
backspacing or rewinding magnetic tape. Orders are fetched
from main storage in an ascending order of addresses and
transferred to the device.

The Sense command initiates a sense operation at the
device. Data transferred during a sense operation provides

information about unusual conditions detected during the
last operation and the status of the device. Data is placed
into main storage in an ascending order of addresses.

I/O Control Words

Three I/O control words are used during an I/O operation:
1. Channel address word (CAW), which initiates I/O se

quencing.
2. Channel command word (CCW), which controls I/O

operations and sequencing.
3. Channel status word (CSW), which indicates channel

status.

Channel Address Word

The CAW specifies the address of the first CCW associated
with the Start I/O instruction. The CAW is assigned
permanent main storage address 72 (decimal). The IOCE
channel refers to the CAW only during execution of the
Start I/O instruction. The pertinent information is stored in
the IOCE channel, and the CE program is free to change the
contents of the CAW. The CAW has the following format:

Key jo o o oj Command Address

0 3 4 7 8 31

Bits 0-3 Key. Specifies the storage protection key for
all commands associated with the Start I/O instruction.

Bits 4-7. Must be all O's.
Bits 8-31, Command Address. Designates location of

the first CCW in main storage.

Channel Command Word

The CCW specifies the command to be executed and, for
comip.ands initiating I/O operations, designates the main
storage area associated with the operation and the action to
be taken whenever data transfers to or from main storage
are completed. The CCWs can be loc~ted anywhere in main
storage, and more than one can be associated with a Start
I/O instruction. The channel refers to a CCW in main
storage only once, whereupon the pertinent information is
stored in the channel. The first CCW is fetched during
execution of the Start I/O instruction. Each additional
CCW is obtained when the operation has progressed to the

point where the additional CCW is needed. The CCW has
the following format:

I Command Code I Data Address

0 7 8 31

\ Flags looor#A Count

32 3637 3940 47 48 63

Bits 0-7, Command Code. Specifies I/O operation to be
performed.

Bits 8-31, Data address. Specifies location of an
eight-bit byte in main storage; it is the first location
referred to in the main storage area designated by the CCW .

. Bits 32-36, Flags. Cause certain functions to be
performed that modify the operation.

Bits 37-39. Must be all O's for every CCW other than
the CCW that specifies a transfer-in-channel operation.

Bits 40-47. Not used.
Bits 48-63, Count. Specifies the number of eight-bit

byte locations in the main storage area designated by the
data-address field in the CCW.

Channel Status Word

The CSW provides the program with the status of an I/O
device or the condition under which an I/O operation has
been finished. The CSW is formed, or parts of it are
replaced, in the process of I/O interruptions and during
execution of the Start I/O, Test I/O, and Halt I/O
instructions. The CSW is placed into main storage location
40 hex and is available to the program at this location until
the next I/O interruption occurs ·or until another I/O
instruction causes its contents to be replaced, whichever
occurs first. The CSW has the following format:

I Key loo o ol Command Address)
0 3 4 7 8 31

~ Status Count

32 47 48 63

Bits 0-3, Key. Contains the storage protection key that
was used in the I/O operation initiated by the last Start I/O
instruction.

Bits 4-7. Must be all O's.
Bits 8-31, Command Address. Identifies the last CCW

used.
Bits 32-47, Status. Identifies the conditions in the I/O

device and channel that caused the CSW to be stored.
Bits 48-63, Count. Contains the residual count of the

last CCW used.

7201-02 FETOM (7/70) 1-15

1/0 System Operation

The CE program initiates I/O operations by means of the
Start I/O instruction. The instruction is decoded by the CE,
and the following data is placed on the CE-IOCE control
bus: unit and channel address, 1/0 op code, and PSBAR.
The IOCE is then signaled via a line called 'I/O instruction'.
This instruction identifies the I/O device and causes the
IOCE channel to fetch the CAW from main storage location
48 hex. The CAW designates the location in main storage
from which the channel subsequently fetches the first CCW.
The CCW specifies the command to be executed, the main
storage area to be used, and the number of data bytes to be
transferred, if any.

The channel attempts to select the device by sending the
address of the device to all attached control units. Upon
recognizing the address, the control unit associated with the
addressed device connects itself logically to the channel.
The channel subsequently sends the command code to the
device, and the device responds by indicating whether it can
execute the command.

At this time, the IOCE releases the CE, and execution of
the Start I/O instruction is terminated. The CE then
continues with its program. The results of the attempt to
initiate command execution are indicated in the PSW
condition code and, under certain conditions, by storing a
portion of the CSW.

If the operation' is initiated by the I/O device and it~

execution involves transfer of data, the channel responds to
service requests from the device and assumes control of the

1-16 (7 /70)

operation. For operations that do not require transfer of
data, the device signals the end of the operation im
mediately on receipt of the command code, and the
channel is immediately available for a new 1/0 operation.

An I/O operation may involve transfer of data to or
from one main-storage area, designated by a single CCW, or,
when data chaining is specified, to or from a .number of
noncontiguous main-storage areas. In the latter case, a chain
of CCWs is used in which each CCW designates an area in
main storage for the continuation of the original command
(operation).

Termination of the 1/0 operation normally is indicated
by two conditions: channel end and device end. The
channel-end condition indicates that the 1/0 device has
received or provided all information associated with the
operation and no longer needs channel facilities. The
device-end condition indicates that the device has finished
the operation.

Facilities are provided for the program to initiate
execution of a chain of commands with a single Start 1/0
instruction. When command-chaining is specified, the de
vice-end condition causes the channel to fetch a new CCW
that specifies a new operation at the device.

Conditions that initiate 1/0 interruptions are asynchro
nous with the activity in the CE, and more than one

interruption condition can occur at the same time. A
priority has been established among the conditions so that
only one interruption is processed at a time. The I/O
interruption conditions are preserved in the 1/0 devices and
channel until accepted by the CE.

SECTION 2. CE DESCRIPTION

This section discusses (1) CE control and data transfer, (2)
instruction fetching and execution, (3) the instruction set
by instruction class, (4) interfacing and intercommunica
tion between the CE and other elements in the system, and
(5) maintenance features and power considerations.

TIMING

• Basic clock cycle period is 200 ns.

• Symmetrical clock signal consists of 100-ns clock por
tion and 100-ns not-clock portion.

• Unsymmetrical clock signal consists of 80-ns clock
portion and 120-ns not-clock portion.

The basic CE clock cycle period is 200 ns, divided into
clock and not-clock portions. A clock signal generator
provides a 5-mHz symmetrical (100-ns/100-ns) clock signal.
To provide additional time for CE logic functions, the
symmetrical clock signal is modified to give a 5 -mHz
unsymmetrical (80-ns/120-ns) clock signal. Finer intracycle
control is obtained by dividing each of the two clock signals
into 20 intervals of approximately 10 ns each. These
intervals, named PO, Pl, P2, ... Pl9, are created by
inverters which delay the signal by about 10 ns. Thus, the
notations PO, Pl, P2, ... Pl 9 refer to signals which are
inverted and are delayed 10 ns with respect to the previous
signal:

Symmetrical
Clock Signal

r--200 .. ~
_JIOO-ns Clacd Not-Clock,.l ---.. ----

120-ns
Unsymmetrical _j BO-ns Not-Clock
Clock Signal Clack

PO PB Pl9

10-oo J"tecvol" 11111 11111 I 1111111111111111111 1111111111 II I
PO_j
Pl• .. __ _

The clock signals are distributed to logic gates A through
L. Adjustable time delays within the logic gates synchronize
the clock signals with a reference signal, thereby eliminating
the various amounts of delay introduced by the distribution

cables. The distribution of the clock signals to the CE
processing logic is stopped upon detection of an error or
during scan, logout, single-cycle, and certain ROS opera
tions. During maintenance operations (such as scan, logout,
and single-cycle operations) the clock signals may be
stopped or permitted to run intermittently.

DAT A TRANSFER

Data is transferred into a register, into an adder, and into
and out of LS by gating signals controlled by ROS (Figure
1-16). Referring to Figure 1-3, note that data from PAL is
always available at the A-register, B-register, and T-register,
but is transferred only into the selected register by means
of the corresponding gating signal from ROS. When. gating
data into an adder, timing considerations require the use of
'gate control' triggers; these triggers, which are set by the
ROS decode logic, generate the required gating signal.

When transferring data into LS, the gating signal from
ROS is combined with a signal from the LS addressing logic
to develop a 'write LS' signal, which gates the data into LS.
When transferring data from the LS, an address signal
selects 1 of 24 LS registers, the contents of which are
transferred to the LS bus. A second gating signal transfers
the data from the LS bus to the S- or T-register.

READ-ONLY STORAGE

The CE is controlled by ROS, a permanently recorded
microprogram, supplemented by conventional control logic.
A read-only storage is a storage device which contains
information (1 's and O's) of a nondestructive nature. The
7201-02 CE utilizes a capacitive read-only storage, in which
bits are stored in the form of a capacitance between a fixed
drive-plate pattern etched at right angles to a sense-plate
pattern. Sense and drive plates are separated by a Mylart
film (approximate~y 1 mil thick), and the resulting sand
wich is held together under pressure. A I-signal is coupled
from a drive line to one of a pair of sense lines, and a
0-signal is coupled to the other. Sense line outputs are
detected in a differential amplifier which in turn feeds a
latch. When decoded, the information in ROS controls
gates to route data in the CE. Access time is approximately
95 ns.

tTrademark of E. I. duPont de Nemours & Co. (Inc.)

7201-02 FETOM (7 /70) 1-17

Gate T to LS

LS Address Reg

Gate LS to S

Gate PAL to T
0

Decode T to PAL

Clock

Figure 1-3. Data Transfer Scheme

0

Local Storage
0

0

LS Address Reg Latch

Gate
Control

32

31-32
RS T ·1

32

32 63

PAA

PAL
4

63

32

31

LS
31

·31

63

63

63

63

/
/

Gate PAL to B

Gate PAL to A

/
/

-
/

AP
67

/

63//
/

63

A i 6~78 1 63i .

Relationship of ROS to Conventional Controls

• ROS words replace most conventional sequence triggers
and control lines.

• ROS word is a unique bit configuration and controls CE
during machine cycle it is in use.

• In addition to control data, ROS word holds address of
next ROS word and branch tests, if any.

• For branches, 1 ROS word is associated with each
possible condition.

To understand ROS operation, it is helpful to note its
relationship to conventional controls. Conventional con
trols may be characterized by sequence triggers, and by the
control lines activated by the sequence triggers as a
function of the operation to be performed and data
conditions. Each cycle that the CE may take represents a
state of the CE as defined by the control circuits. Each
state, in turn, specifies which control lines are to be
activated during that cycle and which state is to follow
next. The defined state will cause the next sequence trigger
to be set in the following cycle. In some cases, the next
state may be contingent upon a branch condition in which
one or two or more sequence triggers must be selected.

In a ROS-controlled processor, the s~quence triggers are
replaced by micro-instructions or ROS words. Each ROS
word consists of a predetermined bit pattern and represents
a state of the CE. A micro-instruction is read into the sense
latches from the ROS device as follows:

Address of Next ROS Word ROS Device
2816 100-Bit Words

Address Modifers

Sense Latches
100 Bits

Base Address
of Next
ROS Word

Address Decoder Control Decoder

CE Control Lines

Decoding of the bit pattern activates control lines which
initiate operations or functions in the CE under timing
control of ROS decode logic. The base address of the next
ROS word to be used is also included in each ROS word.
Data conditions within the CE may modify the address if
the bit pattern indicates a test for branching (e.g., branch. if
overflow occurs). One ROS word is associated with each
possible condition; the base address is modified to address

the ROS word which satisfies the data conditions. Thus
ROS eliminates the need for most of the complex se
quencing networks.

ROS Word

• ROS word is divided into 100 bits, grouped into 22
control fields.

• Number of bits within field determines number of
unique control signals within field.

• Control signals are termed micro-orders.

The ROS is physically organized into 16 planes, each plane
holding 88 200-bit words. Through addressing, the 200-bit
word is further divided in half to yield 2816 100-bit words,
hereafter referred to as ROS words. Each ROS word
consists of a unique predetermined bit configuration
grouped into 22 control fields (Table 1-5). The number of
bits within a field determines the number of unique control
signals (micro-orders) available within that field. (In a
four-bit field, for example, 16 distinct micro-orders can be
defined, only one of which can be activated at any one
time.) The micro-orders are grouped functionally within the
fields according to two rules:
1. Micro-orders that are functionally similar (such as

micro-orders that control ingating to the AB register) are
grouped in one field for ease of decoding.

2. All micro-orders grouped in a field must be mutually
exclusive because only one micro-order within that field
may be specified at a time.

Usually, rule 1 results in rule 2.

When decoded, each micro-order activates one or more
control lines that condition gates to perform the function
specified by the micro-order. Each micro-order is assigned a
mnemonic code (up to 12 characters) that defines the
control function performed. For example, the micro-orders,
their bit configurations and functions, associated with
control field V of the ROS word are shown below.

Bit
Configuration Micro-

Order
97 98 99 Mnemonic Function

0 0 0 0 Zero gated with parity

0 0 1 E3 E(12-15) to PB(60-63)·

0 1 0 E2 E(8-11) to PB(60-63)
0 1 1 E23 E(8-15) to PB(56-63)
1 0 0 07 0(52-63) to PB(52-63)

1 0 1 05 0(36-47) to PB(52-63)
1 1 0 03 0(20-31) to PB(52-63)
1 1 1 01 0(4-15) to PB(52-63)

7201-02 FETOM (7 /70) 1-19

Table 1-5. ROS Word Breakdown

Control

Bits Field Function Controlled

0 - Parity

1 - Spare

2--5 w FAA and miscellaneous control lines

6--9 A A-, B-, and IC-register ingating

10, 11 B LS to S- and T-register ingating

12--16 c PSW and S-, T-, D-, G-, and 0-register
ingating

17--19 Dt F-register ingating, and end-op signals

20 - Parity

21--24 E* E- and R-register- ingating if

bit 81 off; Emit field if bit

81 on.

25--30 Ft Status triggers and miscellaneous

control lines

31--35 Gt Status triggers, IC, and miscellaneous
control lines

36--42 H LS, FAA Read/Write
controls and LS
addressing.

43--46 L Storage requests and setting of mark
triggers

47--56 NA Base address of next ROS word
57--61 K Y-conditional branches

62--68 J Z- (and X-) conditional branches

69--73 M Serial adder A bus
74--77 N Serial adder B bus
78--80 p Parallel adder latches

81 * Blocks normal gates to
serial adder and gates
N-register

82--84 0 Hot 1 's to parallel adder A-side

85 - Parity

86 R F- and AB-register outgating to serial

adder A-bus

87--90 T A-, 8-, IC-, and F-register outgating to
parallel adder B-bus

91 - Parity

92--96 u S-, T-, and D-register outgating to

parallel adder A-bus,
mixer controls

97--99 v E- and 0-register outgating to parallel

adder B-bus

t Control fields D, F, and G serve two functions. In the normal
processing mode, they are decoded to yield standard CE
micro-orders; in the scan mode, they are identified as field S, and
they yield special scan micro-orders (using common micro-order
codes). The choice of modes is controlled by a 'scan mode'
trigger.

* Bit 81 is the high-order bit of the E-field.

Each ROS word is "represented by a block on a Control
Automation System (CAS) Logic Diagram (CLD). The CLD
is to the ROS microprogram what an ALD (Automated
Logic Diagram) is to logic. The blocks are connected to
show the logical sequence of ROS words to perform the
specific function. Refer to ALD A6281 for a definition of
the CLD format and content, and of the ROS block
language and information contained within the block.

1-20 (7 /70)

ROS Addressing and Branching

• Conditional branches are dependent on internal condi

tions of previous cycle.

• Word addressed as result of branch test is not available

until 1 cycle later.

• ROS word is addressed by 12-bit binary address:

0-9 is 10-bit base address.

10 is Y-branch bit.

11 is Z-branch bit.

• X-branch (functional branch) affects more than 1 bit.

• Overriding branch blocks 12-bit address and forces new

12-bit address into ROSAR.

As described earlier, the machine cycle presently being

executed is controlled by the ROS word addressed during
the previous cycle. Referring to Figure 1-4, A, the normal

sequence of ROS words is achieved by placing the address

of ROS word 2 into ROS word 1, the address of ROS word
3 into ROS word 2, and so on. The address of the next
ROS word is decoded during clock time of the cycle
controlled by the present ROS word; the next ROS word is

accessed during not-clock time of the cycle.

Conditional branches are dependent on the internal
conditions of the previous cycle. It is important to note
that the ROS word addressed as a result of the branch test
is not available until one cycle later. To explain this I-cycle

· delay in addressing, assume that ROS word 6 contains the
micro-orders necessary to subtract the contents of the
I-register from the contents of the B-register and to place
the result into the I-register (Figure 1-4, B). Assume
further that if the result is zero, a branch will be made to
ROS word 13; if not zero, the next ROS word addressed
will be 14. Contained in ROS word 6 is the address of ROS
word 7, which defines the branch test and contains the
associated branch addresses.

The results of the arithme.tic operation performed in
cycle 6 are tested during clock time of cycle 7. It is during
this time that the address of ROS word 13 or 14
(depending on the results of the branch test) is decoded:
the selected ROS word is accessed during not-clock time of
cycle 7. Hence, the ROS word branched to as a result of the
arithmetic operation performed during cycle 6 is not
available until cycle 8.

ROS words are selected by means of a. 12-bit binary
address. The address is held in the ROS address register
(ROSAR), whose bit positions are numbered 0 through 11,
high order to low order. Bits 0 through 10 specify a 200-bit
doubleword in ROS; bit 11 gates the proper 100-bit half to
the ROS sense latches (Figure 1-5).

I Clock Cycle 1 Clock Cycle 2 I Clock Cycle 3 Clock Cycle 4 I I
I , .. 200 ns ..,
I 1-- 80 ns -J I
I

Clock --l I I+- 120 ns

I Not Clock I

J I

I
ROS Word 1 ROS Word 2 I

I
I ROS Word 3 ROS Word 4

,.,. __
Decode Address/

.. , .. ~L ... os
of ROS Word 3 Word 3

A. Sequential ROS Word Addressing

Clock Cycle 6

B-T ____. T

ROS Word 6

Clock Cycle 7 Clock Cycle 8

ROS Word 7

Branch tests_./
performed here

Result is zero •---------
ROS Word 13

Result is not zero ,_. ________ _

ROS Word 14
ROS word- I /
branched to ~
available here

B. Conditional Branch ROS Word Addressing

Figure 1-4. ROS Addressing and Branching

The 12-bit address is made up of three components:
1. A 10-bit base address, bits 0-9.
2. A conditional branch test, or an unconditional value of 0

or 1 applying to bit 10, designated Y-branch.
3. A conditional branch test, or an unconditional value of 0

or 1 applying to bit 11, designated Z-branch.

Included in the Z-branch field of micro-orders is a subset
of branch micro-orders called X-branch or functional
branch micro-orders. The X-branch micro-orders affect
more than one bit of the ROS address.

Included in the Y-branch field of micro-orders is a subset
of overriding branch micro-orders. When the conditons
tested by these micro-orders are satisfied, the full 12-bit
address is blocked and a new 12-bit address is forced into
RO SAR.

If branching conditions are to be tested, the address bits
that may be affected by the branch must be set to O's,

except in the case of an overriding branch. If the branch is
satisfied, 1 's are forced into the ROSAR bit positions
associated with that branch test; if the branch condition is
not satisfied, the bits remain O's. Thus the address is
modified only if the branch is to be taken.

Addresses can be grouped into four categories: (1) no
branch specified, (2) Y- and/or Z-branches, (3) X-branches,
and (4) overriding branches. The following paragraphs
discuss the addressing for each category. Refer to ALD
A628 l for a definition of ROS addressing and branching
terms used in the following paragraphs.

No Branch Specified

If no branch tests are to be made, there is only one possible
ROS word that can follow, and hence only one possible
next address. Accordingly, the 10-bit base address (bits

7201-02 FETOM (7 /70) 1-21

Select 200-Bit Doubleword

Sense
Latches

43

Control Field
NA

ROS
Device

Upper
Word
(100 Lines)

Control Field
K

Lower
Word
(100 Lines)

Gate Upper or Lower Word

Control Field.
J

61 62

68

'
... 47...._ __ ..,_ _ ___...5=6 57 61 62 68

To ROSBR

To ROSAR
Latches

0

Base
Address of
ROS Word

I ROSAR
0

0

Decode

Over-
y

riding Condi-
tional Branch
Branch

Yt
Next

I 6

Address Decoding

Figure 1-5. ROS Addressing Block Diagram

1-22 (7 /70)

Decode

Fune- z
tional Condi-

ti on al Branch
Branch

Jg_Jj
9.

11

~I
11

f Inhibit 12-bit
address and force
a new 12-bit
address into ROSAR.

0-9) and absolute values of 1 or 0 for bits 10 and 11 are
specified. The micro-orders that unconditionally set an .
absolute value into bits 10 and 11 are:
1. 0 in left of R-line (KO), which sets bit 10 to a 0.
2. 1 in left of R-line (Kl), which sets bit 10 to a 1.
3. 0 in right of R-line (JO), which sets bit 11 to a 0.
4. 1 in right of R-line (JI), which sets bit 11 to a 1.

The appropriate Y- and Z-branch micro-orders are
selected, and bits 10 and 11 are set correspondingly.

Y- and/or Z-Branches

Conditional branch addresses may be specified inwhich bits
10 and/or 11 are affected.

Only a Y-branch can be executed as follows. A 10-bit
base address and an absolute value or X for bit 11 are
specified. A branch test is defined in the Y-branch
micro-order control field. If the branch condition is
satisfied, bit 10 is set to a 1; if not, bit 10 remains a 0. For
example, micro-order 'WCRY' sets bit 10 to a 1 if a carry is
detected in the serial adder. If there is no carry, bit 10
remains a 0.

Conversely, only a Z-branch can be executed as follows.
Here, a 10-bit base address and an absolute value for bit 10
are specified. If the branch test defined in the Z-branch
micro-order control field is satisfied, bit 11 is set to a 1; if
not, bit 11 remains a 0.

Certain situations require the use of both Y- and
Z-conditional branches simultaneously. The 10-bit base
address is specified, and bits 10 and 11 may assume one of
the following values:

Bits
10 11 Branch Results

0 0 Y- and Z-branch conditions both unsatisfied.
0 1 Z-branch condition only satisfied.

1 0 Y-branch condition only satisfied.
1 1 Y- and Z-branch conditions both satisfied.

X-Branches

Where a branch to one of four or more possible addresses is
required (as well as some special 64-way branch tests), an
X-branch is used. The X-branch may affect bits 10 and 11
(four-way branch), bits 9-11 (eight-way branch), bits 8-11
(16-way branch), or bits 6-11 (64-way branch). An
example of an X-branch is the 64-way branch,
'E(2-7)~ROA', made at the end of the I-Fetch sequence
per the op cod~ to enter the execution phase of the specific
instruction ..

For these multiway branches, one condition sets the
associated address bit to a 1. To illustrate, assume condi-

tions A, B, and C sets bits 9, I 0, and 11, respectively, to a
I. The possible results are:

Bits

9 10 11 Branch Results

0 0 0 None of the conditions is satisfied.

0 0 1 Condition C is satisfied.

0 1 0 Condition B is satisfied.

0 1 1 Condition Band Care satisfied.

1 0 0 Condition A is satisfied.
1 0 1 Conditions A and Care satisfied.

1 1 0 Conditions A and Bare satisfied.
1 1 1 All three conditions are satisfied.

The addressing is similar to that previously discussed. A
10-bit base address is specified, with those bits that may be
affected by the X-branch set to 0. Thus, for the example
given above, bit 9 of the base address is set to 0, the
Y-branch micro-order control field contains micro-order 0
in left of R-line to set bit 10 to 0, and bit 11 is
automatically set to 0 when the X-branch is specified.
Subsequently, the bit(s) associated with successful condi
tion(s) is set to 1. The ROS word addressed will be that
ROS word whose address satisfies the branch conditions.

Overriding Branches

There are exceptional machine conditions (such as interrup
tions) for which the normal ROS word sequence must be
stopped and a new sequence started. This change is
accomplished by an overriding branch specified in the
Y-branch micro-order control field.

The normal sequencing address is made up of (1) the
10-bit base address and (2) bit 11 set to 0 automatically
because the overriding branch is a function of the Y-field.
Because the overriding branch is specified in the Y-control
field, no Y-branch can be specified.

If the overriding branch condition is satisfied, the
normal full 12-bit address is blocked and a new address, as
determined by the overriding branch condition, is forced
into ROSAR.

ROS Data Flow

• ROS data flow units are:
100 sense latches, 1 per ROS word bit
RO SAR
ROSAR latches.
PROSAR A and PROSAR B
ROSDR
ROSDR latches
ROSBR
Decode logic

7201-02FETOM (7/70) 1-23

• Control fields may be:
Decoded directly from sense latches.
Placed into ROSDR and subsequently decoded.
Placed into ROSDR, sent to ROSDR latches, and then

decoded.

The 100-bit ROS word is divided into 22 control fields.
When read out from ROS, the ROS word is placed into 100
sense latches, one latch for each bit position. The control
fields are handled according to the functions they control.
They may be (Figure 1-6):
1. Decoded directly from the sense latches (control fields

L, K, J, R, T, U, and V) or transferred directly to
ROSAR (control field NA).

2. Placed into the ROS data register (ROSDR) and decoded
(control fields H, M, N, P, and Q).

3. Transferred to ROSDR latches from ROSDR (control
fields A-G and W).

Assuming ROS words and the cycles they control are
designated 1, 2, and 3, ROS word 1 is set into the sense
latches during not-clock time of cycle 0 (Figure 1-7). The
control fields used during clock time of cycle 1 are decoded
directly from the sense latches (case 1 above). These
control fields, which may be considered critical timing
fields, control inputs to the adders, define the base address
and branch tests for the next ROS word, and control the
storage-request and mark triggers.

Although the ..5ense latches are cleared at not-clock time
of cycle 1, the control fields of ROS word 1 that are
required during that time (case 2 above) are placed into
ROSDR at clock time of cycle 1. These signals control the
adders and LS. Note that both portions of the ROSDR
associated with the adders are packaged physically with the
adders they control. The balance of the ROSDR serves
control fields A-Hand W.

Control fields A-G and W control register inputs and
triggers that are to be set during clock time of cycle 2 (case
3 above). Although the ROSDR is reset at the end of cycle
1, the ROSDR latches keep control fields A-G and W
available for that additional 80 ns (Figure 1-7).

Control fields L, NA, K, J, R, T, U, and V are sent to the
ROS backup register (ROSBR) from the sense latches. The
ROSBR does not play a part in the ROS functions: it
provides an indication of the subject fields during main
tenance (Test) mode. When the CE stops on an error during
test mode, the ROSBR contents can be used by main
tenance personnel to help isolate malfunctions.

The NA control field, in addition to being stored in the
ROSBR, is stored in ROSAR and provides the base address
as previously explained. During each ROS cycle, the
contents of ROSAR are sent to the ROSAR latches which,
in turn, are alternately gated (by means of an 'A-gate'
signal) to the previous ROS address register A (PROSAR A)
and the previous ROS address register B (PROSAR B).

1-24 (7 /70)

These registers serve the same purpose as the ROSBR, i.e.,
provide an indication for maintenance use during Test
mode. When an error causes the CE to stop in Test mode,
ROSAR, PROSAR A and PROSAR B provide the addresses
of the next ROS word, current ROS word, and previous
ROS word (Figure 1-7).

ROS Control of CE

Efficient control of CE operations is achieved by overlap
ping ROS words. Clock signals (PO-Pl9) time ROS sense
latches, ROSDR, and ROSDR latches, thus allowing the
processing of parts of more than one ROS word simul
taneously. To illustrate, Figure 1-8 shows the ROS word
timing relationship for a hypothetical example.

The address of word 1 is gated into ROSAR from the
ROS sense lalches at PS of word 0. lROSAR(ll) may be
set as late as P7 .] Information from word 1 enters the ROS
sense latches at PO+ 160 ns (Pl6). (In normal operation, a
new word enters the ROS sense latches every 200 ns.) In
the example, word 1 controls: (1) register output, (2) main
storage request, (3) adder shift, (4) local storage write, and
(5) register input. A register otitput micro-order gates
register data into an adder at P2 by means of 'gate control'
triggers. Note that register output arid the main storage
request are decoded directly from the ROS sense latches. A
three-cycle main storage request is initiated at P4 to fetch
information which is used three cycles later. The clock is
stopped as shown in Figure 1-8 to account for cable delays
and storage busy delays. The 'accept' signal from storage is
used to turn the CE clock back on in order to sync it with
data on the SDBO.

Bits 2-42 enter ROSDR at PO, and bits 69-80 and
82--84 enter ROSDR at P2; they are decoded for ~dder
control and LS operations. In the example, micro-orders
generate an adder shift and a local storage write operation.
The shift is performed immediately, but the local storage
write operation is delayed because a local storage read
operation is automatically set up first. The LS address is
entered into the local storage address latches (LAL); a read
operation is performed, but data is not gated into a register.

The address then is gated into the local storage address
register (LAR) to perform the write operation. Note that
the write condition, ordered by word l, starts after word 2
has been transferred to the ROSDR. The figure shows an
LS read operation for every word because this sequence
happens even if it is not ordered. When no order is given to
LS, a readout of LS address 0 is performed but the data is
not used. Forcing the read operation saves time if it is
needed.

ROSDR(2-35) is gated to the ROSDR latches at P7 to
retain word 1 information at the same time word 2 is set
into ROSDR. In the example, word 1 transfers data into a
register at clock time (P2) of word 2. This action, along

w A c

5 6 9 10 11 12 16 17

100
Sense
Latches
(EF)

II

PROSAR A ~1
To I ndi ca tors

Figure 1-6. ROS Data Flow

D

19 20 21 24 25

ROS DR

ROSDR Laiche•

Decoder

Register Ingoting
Control

ROSAR latches

To Selected Drive Line

11

~1
11

G

30 31 35 36

35 36

35

RY

PROSAR B

+
To Indicators

Gate Upper or Lower Word

99

H NA K M N Q ** R u v

42 43 46 47 56 57 61 62 68 69 73 74 77 78 80 81 82 84 85 86 87 90 91 92 96 97 99

~1

Decoder

local Storage
Control

11

~1

42

Decoder

Main Storage
Requests

Base
Address of
Next
ROS
Word

Force New
Address 0-11

RO SAR

9 10

Decoder

62

External
Conditions

Decoder

Over- Fune•
riding Y-Branch tional Z-Bronch

68

Bron ch::b"-'ra'O'nc:..;h'-'--..---'

43

~1
11

ROSBR

+ To I ndi cotors

11 t

ROS DR

Decoder

Serial
Adder Bus
Control

-AR ROS DR

Decoder

Parallel
Adder Bus
Control

Legend:

•;::>pare

-AP

86

•• = Bit 20 = parity For bits 0-42.
Bit 85 = parity For bits 43-68.

Decoder

Outgate
to Serial
Adder

ROS BR

+ To Indicators

Bit 91 =parity For bits 69-99.
fROSAR(ll) set selects lower word.

Decoder

Outgate
to Parallel
Adder

99

AP~,1
RQ,RT

7201-02 FETOM (7 /70) 1-25/26

l Cycle O j Cycle 1 ~Cycle 2-,- Cycle 3 --r-- Cycle 41
I Clock I Clock I Clock I Clock I Clock

CE Clock PO Not Clock Not Cloe Not Clock Not Clock ot Clock

Word 1 Address in ROSAR

Access Word 1 (Drive)

Word 1 in Sense Latches

Word 1 in ROSDR and ROSBR

Word 1 in ROSDR Latches

Word 1 Address in PROSAR A

Word 2 Address in ROSAR

Access Word 2 (Drive)

Word 2 in Sense Latches

Word 2 in ROSDR and ROSBR

Word 2 in ROSDR Latches

Word 2 Address in PROSAR B

Word 3 Address in ROSAR

Access Word 3 (Drive)

Word 3 in Sense Latches

Word 3 in ROSDR and ROSBR

Word 3 in ROSDR Latches

Word 3 Address in PR OSAR A

-

-

t----------------t ___ _

I
t_

t ___ _

I t ___ _

I
t ___________ __

A-Gate t----- I
t ____ _

f If an error is detected in cycle 1, these steps are not perform.ed.

Figure 1-7. ROS Timing

with an LS write operation, illustrates ROS word overlap
because these operations are performed at the same time
the register out condition is energized from the decoding of
word 2.

Word 2 has only one micro-order, register output, but
gates are conditioned to transfer word 2 data from the ROS
sense latches to the ROSDR and then to the ROSDR
latches. Note that the LS read micro-order is active, though
not ordered. Word 3 operates in a similar manner, but the
only micro-order is a register input which takes place during
word 4.

As the ROS words are executed, the main storage
request is processed and data is returned on the Storage
Data Bus Out (SDBO); word 4 contains the micro-order to
gate the data into a register for further processing.

PSW REGISTER

Program status words (PSW's) contain detailed information
pertaining to the particular mode in which the CE is
operating. These status words are composed of a system

7201-02 FETOM (7/70) 1-27

.....
N
00 P2 P4 P6 PS P10P12P14 P16Pl8PO P2

-----Word 0 ----->-----Word 1-----1• ... 1••----Word 2----•1•1----- WoSrede3Note1 'I" Word 4 IWord 5

I ? I ? I Pl?\ ~91~ 1IP~31Pll 5\P~ 7\P191 Pll I 80 ns

___J I 120ns ,...--11 --\ 120ns I ~~\ u-!,...--1 ---.,, 1' IL_
---W•o•r•d•l•A•d•r--_.• Word 2 Adr ____ w.o.rd•3-A.dr____ Word 4Adr Word 5 Adr

P2

RO SAR

ROS SENSE Latches

Register Output

Storage Request

SDBO

ROSDR

Adder Control

LAL {LS Address Latches}

Local Storage Read

LAR (LS Address Register)

ROSDR Latches

Register Input

Figure 1-8. ROS Control of CE Operations

Word 1 Data Ward 2 Data Ward 3 Data
1
word 4 Data I Word 5 Data -----I

Gate Decode - I
Gat=ode

Register-Out Condition I Register-Out Condition -----------
Storage Request {3-Cycle)

14-----+-------+-----S-to_r_ag_e_A_c_c_es_s__,~t,_-+-----+-------

(69-80, 82-84)

(2-4\2)1 ~ , i.... Ward 1 Data Ward 2 Data Word 3 Data Word 4 Data
I

Word 5 Data

1
SDBO per Word 1

Adder Control {Shift)

Sample LAL Word 1 Sample LAL Word 2 Sample LAL Word 3 Sample LAL Word 4

LS Read I LS Read I LS Read I LS Read I
I

LAR (Write)

Write Cond

Word 1 Data Word 2 Data Word 3 Data Word4Data ~

I I
Reg In Sample

I
Reg In Sample

I
Reg In Sample

Note:
Clock stops to wait for accept from storage.

mask, storage key, program state, interruption code, in
struction length code, condition code, program mask, and
an instruction address that enables the interrupted program
to resume at the correct location.

Status information concerning the current operating
program is contained in several groups of triggers, from
where it controls all system operations essential to that
particular program mode. These groupings of control
triggers, although not adjacently located in logic, are
collectively referred to as the PSW register. Although a
completely assembled PSW is 64 bits long, only 28
positions of status word data are contained in the PSW
register. The remaining information (generated by the CE at
the time of the interruption) is not retained when a
previously stored PSW is reloaded, because its function is
only to identify the cause of the interruption and to return
the CE to the correct program location. (This information
is gated directly from ST when the old PSW is recalled from
main storage.) Figure 1-9 shows an assembled PSW and
those areas of control information retained in the PSW
register.

CONFIGURATION CONTROL

The 9020 systems have the facility to alter system
configuration under program control. The reconfiguration

capability is made possible by the existence of redundant
elements and the extensive interfacing between system
elements. . These interfaces' -are gated by configuration
control registers (CCRs). The CE, like other major system
elements, contains a CCR. This CCR determines three
conditions for the CE: (1) other elements with which it
may communicate, (2) element-state it is to assume, and (3)
. from whfofi CE~ ltma'y accept a reconfiguration.

The CE has the capability of setting the CCRs in any
element, including itself: Therefore, hardware exists in the·
CE for both sending and receivirig configuration data. CEs
'send configuration data to other elements (or to them
selves) by executing the Set Configuration (SCON) instruc
tion.

Special interface lines exist to· most elements to transfer
the configuration data. In the· case of the SEs and the DEs,
configuration data is sent over the Storage Data Bus In.
(SDBI).

In the 9020E system, RCUs extend the reconfiguration.
capability to the DAUs and certain display equipment, but
the RCU.s. dp not use the SCON .irist!ucti_ori tg qo: ~o. The
RCUs do have to be configured via a SCON instruction,
however.

Figure 1~10 shows the simplified data path for configura
tion control. Three registers are used which have not been·
discussed so far: the CCR, the external register, and the'
select register.

Placed into ST at
time of interruption (by
interrupt logic) and
stored with assembled PSW.

Assembled PSW r-----r----r---r---T----..,..--.....----r--.....---------.
(in ST) System Prog System Interruption Prog

Key State Mask Code ILC CC Mask Instruction Address
OMask 78 1112 1516 1920 313233343536 3940 63

7 8 l l 12 15 l b 19 34 35 36 39
---- Instruction

length code
(machine-
generated)

0

Figure 1-9. Status Information Contained in PSW Register

7201-02 FETOM (7/70) 1-29

Page of SFN-0201-1
Revised by TNL: GN31-0001

LS Bus
I~

9020 Out Bus
,~

__.,, ...

,~

0 1 31 32

lo
5

31 :32
RS I T

0

SDBI ~

132

Note:
Configuration data is transferred
to SEs and DEs via the SDBI,

,~

0 31 0

lo
Select ~:I IO Extemal

0 31 0

Select I ines --- to al I elements I

,~ • ----
•Figure 1-10. Configuration Control Data Paths

Configuration Control Register (CCR)

The CCR in the CE is a 32-bit register consisting of a state
field, a SCON field, and a communications field. Addi
tionally, an inhibit logout-stop (ILOS) bit is contained in
the CCR. An explanation of these fields is given in the
system introduction manuals, together with an extensive
introduction to configuration control.

The CCR is set from the external buses of each CE in the
system. (Refer to Figure 1-10.) A particular CE's external
bus also wraps back to itself so that it can set its own CCR.·
One additional input, pseudo SCON, is used by the CE to
force a configuration of itself during system IPL or system
PSW restart. The CCR can be gated to the 9020 Out Bus
and into Sor T via the Local Store Bus.

External Register

T4e External bus of each CE originates in that CE's
external register. There is no further gating, so that data in

1-30 (6/71)

--._

63

:~I
63

63

... --
Extemal I -Buses from --other CEs

...
and this one ----..

r

Pseudo SCON --... 31 0 31

~:I 1
0

CCR F3~1
31 0 31

To CEs (including this
..... one), IOCEs, SCUs, -- TCUs and PAMs/RCUs

a CE's external register is effectively on the external Bus.
The external register is a 32-bit register which provides

I. for the storage of data to be routed. to CEs, IOCEs, TCUs,
SCUs, and P AMs or RCUs. Between CEs and between CEs
and IOCEs, the external bus is used for other purposes in
addition to the transmission of configuration data. For this
reason, it is often called the Control Bus. The external
register may also be gated onto the 9020 Out Bus.

-Select Register

The sel~ct register is a 32-bit register whose bit settings
define the elements to be selected during execution of a
SCON instruction. Lines from the bit positions carry the
'select' signal to the corresponding elements. These 'select'
signals are then used by the selected elements to gate the
configuration data into their CCRs.

The select register is also used to select CEs and IOCEs
during a Set Address Translator (SATR) instruction, as is·
explained later. The output of the select register may also

be gated onto the 9020 Out Bus for transfer to Sor T. This
is necessary because the bits of the select register are
normally reset by responses from the individual elements
selected by the SCON instruction and a path is needed to
enable the microprogram to examine the select register to
determine whether all elements responded. This is discussed
further later in this chapter when the SCON and SATR
instructions are introduced.

STORAGE ADDRESSING

Main storage in the 9020 systems is external to the CEs
being provided by stand-alone storage elements (SEs). The
SEs use two-way data interleaving to achieve a faster
effective access time. This is accomplished by storing
consecutive doublewords in separate basic storage modules
(BSM) within each SE. Even-numbered doublewords are
stored in an even BSM; odd-numbered doublewords are
stored in an odd BSM. Since buses and SE common
circuitry are required only during the read portion of a
storage cycle, a second storage cycle can be initiated for the
other BSM while the write half of the cycle for the first
BSM is being completed. This represents a large saving of
time, especially when a series of consecutive doublewords
are being accessed.

Provision is made to defeat this interleaving for mainte
nance purposes, so that a program can be loaded in one
BSM or the other should one BSM be failing.

Storage is addressed by the storage control interface
(SCI) portion of a CE based on the program-established
setting of certain registers. These registers are the address
translation register (ATR) and the preferential storage base
address register (PSBAR). These registers enable the recon
figuration of SEs and DEs and make possible the pro
grammed establishment of PSAs. The SCI is discussed after
the description of these registers and their interrelationship.

Address Translation Register (ATR)

The ATR comprises two registers: a 32-bit (plus four parity
bits) register (ATR 1), and an eight-bit (plus parity) register
(ATR 2). The two together may be logically considered as
one 40-bit register. This 40-bit register is divided into ten
four-bit sections called slots. Bits 9~ 12 of a logical address
are used to select an ATR slot. The selected slot contains an
SE identifier, placed in the slot by programming, which is
substituted for bits 9-12 of the logical address to produce
the translated address. The program uses the Set Address
Translator (SATR) instruction to initialize the ATR.

Preferential Storage Base Address Register (PSBAR)

PSBAR also comprises two registers (called physical PS BAR
and logical PSBAR). Logical PSBAR is a 12-bit register
which can be set by execution of the Load Preferential
Storage Base Address (LPSB) instruction. It contains bits
8-19 of the address of the PSA. These bits are sufficient to
define the PSA location because the PSA is a 4096-byte
area of storage. The missing low-order bits would define a
location within the 4096-byte area specified by PSBAR.

Physical PSBAR is a four-bit register which contains the
SE identifier representing the ATR-translated value of bits
9-12 from logical PSBAR. Physical PSBAR is translated via
the ATR and is set during exe-cution of the LPSB
instruction.

Through programming convention, the PSA is accessed
by addressing the lowest 4096-byte area of available
storage. These addresses are handled by PSBAR in such a
manner as to access the actual location of the PSA. All
other accesses · from the program are called "normal
accesses" and are handled by the ATR. The two types of
acGesses are differentiated by the CE through examination
of the 12 high-order bits of the address. An all-O's condition
indicates a PSA access.

Figure 1-11, in simplified form, shows the relationship
between the registers used for normal and PSA storage
accesses. The ATR is set from S(0-31) and T(32-39)
during the SATR instruction execution. Outputs are pro
vided to the 9020 Out Bus for examining the ATR during
execution of the Insert Address Translator (IATR) instruc
tion. Each slot can be gated independently to the storage
address bus (SAB) and storage selection logic located in the
SCI.

An ATR slot decoder controlled by bits 9-12 of logical
PSBAR enable the translation of those bits into the proper
identifier to be set into physical PSBAR. During PSA
accesses, physical PSBAR, bits 13-19 of logical PSBAR,
and the low-order bits of the original address are ORed to
produce the actual PSA address for storage accessing. These
bits from PSBAR are shown in Figure 1-11 being sent to
the SAB and storage selection logic for this purpose. Data
paths are also available from both logical and physical
PSBAR to the 9020 Out Bus so that their contents may be
stored for program examination through execution of a
Store Preferential Storage Base Address (SPSB) instruction
(which is described later).

The PSBAR counter shown in Figure 1-11 makes
possible the automatic stepping of PSBAR when a CE is
unable to access the original PSA. In the event of such a
malfunction, the gate to bits 9-12 of logical PSBAR causes
the output of the PSBAR counter to be gated in. The

7201-02 FETOM (7/70) 1-31

~ S(0-31) T(32-39) w
N

,-...
-..J --..J

8

0 31 0 7

ATR l FAIATR2 FAI
8 11 16 19 24 27 32 35

20 23

0

0

8

Figure 1-11. Storage Addressing Flow, Simplified

ATR
Slot
Decade

storage select

{

To SAB and

'------t~ logic for normal
accesses

31

19 26 29

9020 Out Bus

f
To ST

T(40-51)

8

*
19

9 12 9 12

PS BAR -Physical MP
Logical

8 9 12

8 12 13 19

To SAB
and storage
select logic

9 12 for PSA
accesses

PS BAR
Counter

PSBAR counter is always incremented by 1 so that the
next-higher ATR slot is set into logical PSBAR. When the
next configured SE is found, the value from the new ATR
slot is set into physical PSBAR, and a new PSA access is
initiated.

The SCI portion of the CE controls storage accessing and
the stepping of PSBAR.

STORAGE CONTROL INTERFACE (SCI)

Storage control interface (SCI) is a major section of the CE
and contains all necessary logic for handling of CE storage
requests. When a storage request is issued by the CE, SCI
gates an address from D, IC, or PAL (according to the type
of request) and issues a 'select' pulse to the proper SE or
DE. SCI logic will stop the clock at the end of the cycle
following a select pulse cycle and will restart it after
receiving an 'accept' signal from the SE or DE.

Major Interface ,Lines

The CE to SE and DE interface lines are classified by three
terms, as defined below.
1. Distributed simplex. Bus and control lines that are

common to all SEs and DEs in a S¥stem and carry signals
from a CE, e.g., SAB{19+ IP).

2. Multiple driver distributed simplex. Bus and control lines
that are common to all SEs and DEs in a system and
carry signals to a CE, e.g., SDBO (64 + 8P).

3. Simplex. One-way control lines that carry signals be
tween a CE and each SE or DE individually, e.g., SAB
P(A) SEI.

The interface lines shown in Figure 1-12 are defined as
follows:
1. Storage Address Bus {SAB). This distributed simplex bus

carries the signals for a 19-bit address with 1 parity bit
(for SAB 1-5) to all SEs and DEs in a system.

2. Storage Address Bus Parity - SAB P{A) and SAB P(B).
These two groups of simplex lines carry the parity bit
signals for SAB(6-12) and SAB{13-19), respectively.

3. Storage Data--Bus Out {SDBO). This multiple driver
simplex bus carries the storage data and parity signals
from all SEs and DEs in a system to a CE. SDBO consists
of 64 data and 8 parity lines.

4. Storage Data Bus In (SDBI).· This distributed simplex
bus carries the storage data and parity signals from a CE
to all SEs and DEs in a system. SDBI consists of 64 data
and 8 parity lines.

5. Mark Bus. This distributed simplex bus carries signals
that designate which bytes on the SDBI are to be stored
into main storage. A mark line corresponds to each byte

of the doubleword. If a mark signal is active, the byte on
SDBI that corresponds will be stored; if the mark signal
is not active, data from storage will be restored by the
SE or DE. Mark bus has eight mark lines and one parity
line.

6. In Key Bus. This distributed simplex bus carries storage
protection key signals from a CE during fetch and store
data cycles and during store key cycles. It has five key
lines and one parity line.

7. Out Key Bus. This multiple driver simplex bus carries
storage protection key signals to a CE during insert key
storage cycles. It has five key lines and one parity line.

8. Select Odd an4 Select Even. These two groups of
simplex control lines carry 'select' signals from a CE to
each SE and DE in a system (one 'select odd' and one
'select even' line to each SE and DE). A 'select' signal
will cause a SE or DE to establish priority for the CE
and start a storage cycle when priority is granted.

9. Accept. This group of simplex control lines carries
signals to indicate to a CE that a stqrage cycle has been
started as a result of a 'select' signal from the CE.

Storage requests are generated in the CE and sent to the
SCI to develop a 'select' signal to an SE or DE. The signals .
that perform this function are related to the source of the
storage address as follows:
I. D storage request. The storage address is in the D

register.
2. IC storage request. The storage address is in the

instruction counter.
3. Scan storage request. The storage address is developed in

scan logic.

The signals developed by the SCI to control the buses
are:

1. 'Gate IC to SAB'. Gates the contents of the instruction
counter to SAB.

2. 'Gate D to SAB'. Gates the contents of the ST register
to SDBI.

3. 'Gate scan to SAB'. Gates the address developed by the
scan logic to SAB.

4. 'Gate F to key-in'. Gates the contents of the F-register
to the 'key in' bus.

5 ~ 'Gate ST to SDBI'. Gates the contents of the ST
register to SDBI.

6. 'Gate XY to SDBI'. Gates the contents of the XY
register to SDBI.

7. 'Stop CPU clock'. Stops the clock when a 'select' signal
is sent to an SE or DE.

8. 'Gate SDBO to AB'. Gates the data on SDBO into th.e
AB register.

9. 'Gate SDBO to LM'. Gates the data on SDBO into the
LM register.

10. 'Gate SDBO to Q'. Gates SDBO into the Q-register.

7201-02 FETOM (7/70) 1-33

CE
T

IC Storoge Request ... SAB (19+1P)---
~--................... .-. .. ~~~

SEl D Storoge Request SCI

Scon Storage Request __

Oscillator (Clock) r

... Gate IC to SAB

.... Gate D to SAB

... Gate Scan to SAB

... Gate F to in Key

... Gate ST or XY to SDBll

...__ Stop Clock J
-- Gate S DBO to AB or L1
... I

Bus Inputs

.... Bus Outputs

I
I

.... 1

I
I
I
I
1

...

+
t

I
t

• +

• •
--.
--·

Figure 1-12. Basic CE to SE/DE Interface

1-34 (7 /70)

SAB P(A) SEl

SAB P(A) SE/DE 10

SAB P(B) SEl

SAB P(B) SE/DEIO

SDBO {64+8P)

SDBI (64+8P)

Mark Bus (8+ 1 PJ

In Key Bus (5+ 1 P)

Out Key Bus (5+ 1 P)

Select Odd SEl

Select Odd SE/DElO

Select even SEl

Select Even SE/DElO

Accept SEl

Accept SE/DEl 0

--
....

....

.. ...

.. ...

....

,....-----,

~ SE/DE
10

...

... ...

....

-

CE Storage Requests

• Address is decoded to select SE or DE.

• Invalid address is detected if selected SE or DE is
stopped or not ready.

• Step PSBAR to alternate SE.

For the following discussion, the reader must be aware of
two numbering schemes used to identify main storage
address bits. The D- and IC-registers (sources of main
storage address) are displayed on the CE panel as bits 8-31;
these bits are designated as 0-23 in the ALDs. To be
consistant with the ALDs, this discussion references the
address bits and related SCI logic as 0-23. The following
listing shows how the two numbering schemes relate to
each other.

CE Console CE Logic Line
Labeling For Labeling For D and IC
D and IC Register Registers, and All
Display SCI Logic

8 0
9 1

10 2
11 3
12 4
13 5
14 6
15 7
16 8
17 9
18 10
19 11
20 12
21 13
22 14
23 15
24 16
25 17
26 18
27 19
28 20
29 21
30 22
31 23

SCI contains logic for handling storage requests from the
CE. A storage request is generated from one of three
sources: (I) instruction fetch logic to refill the instruction
buffer (Q-register), (2) microprogram to fetch or store data,
and (3) scan logic.

The address of the desired doubleword in main storage is
located in D- or IC-register or is generated by the scan logic.
SCI logic decodes the address to activate a 'select' pulse to
the SE or DE.

The SE or DE is selected in one of two ways: (I) if the
address supplied by the CE contains all O's in bits 0-11
(preferential storage area address), the contents of physical
perferential storage base address register (physical PSBAR)
are decoded, or (2) if address bits 0-11 are not all O's, bits
1-4 of the address are decoded to select four bits of the
address translation register (ATR slot), which are decoded.

An invalid address condition will be detected in SCI
logic if the selected SE or DE is not ready (power down,
state 0 with test switch in TEST position, or not configured
to the CE) or is stopped for a logout. This condition will
cause a program interrupt.

If there is no invalid address condition, a select pulse is
sent to the decoded SE or DE. The clock is stopped at the
end of the cycle following a select cycle and restarted after
an 'accept' pulse is received from the SE or DE.

SCI logic develops the gating signals for SAB, SDBO,
SDBI, 'mark' bus, and the storage address protection keys.
It checks for errors and handles error signals from SEs and
DEs. If an invalid address condition or a storage error is
detected during a PSA access, SCI logic will "step PSBAR"
to relocate the PSA in an alternate SE.

Page Controls

• Page of data on 512-byte bounds.

• Page controls provide linkage to page overflow address.

A page of data is a maximum of 512 bytes stored on '512
byte bounds; it may be overflowed into another page. Page
controls in SCI logic provide a means of linkage to a page
overflow address when fetching (radar) data.

The page overflow address will be in bits 40-60 of the
last doubleword in a page. When fetching radar data, the
microprogram tests for a PAL 512 carry as the storage is
incremented by 8. When a 512 carry is detected, page
controls block normal resetting of SCI logic, which forces
an additional storage fetch cycle to the next sequential
doubleword. Page control logic gates SDBO (40-60) to D
or IC, according to the type of request, and the page
operation is complete.

INSTRUCTION FETCHING

The processing of an instruction is divided into two phases:
instruction fetching and execution. Instruction fetching, or
I-Fetch, retrieves instructions from main storage and
performs operations common to many instructions. For the
most part, I-Fetch, which is controlled by ROS and
conventional hardware:
1. Determines the address to be placed into the instruction

counter (IC).

7201-02 FETOM (7 /70) 1-35

2. Fetches instructions from main storage.
3. Determines the instruction format (RR, RX, RS, Sl, or

SS).
4. Calculates the effective operand address (adds the

D-field, the contents of the LS register designated by the
B-field, and the index, if required) for those formats that
require that function.

5. Places the operands specified by RX format instructions
into the applicable registers (AB, ST, and D). For the
other formats, I-Fetch issues a storage request for the
second operand. The second operand is placed into the
registers during the execution phase.

6. Passes control to the specific execution phase by means
of a 64-way branch.

The transition from the execution phase of an instruc
tion to the I-Fetch sequence of the next instruction is
achieved by an end-op cycle, the last cycle of the execution
phase. The end-op cycle completes the execution phase of
the instruction being processed by:
1. Setting the condition code to reflect the result of the

instruction, if applicable.
2. Detecting exceptional conditions and interruptions.

The end-op cycle initiates the I-Fetch sequence for the
next instruction by:
1. Decoding the format of the next instruction.
2. Initiating operand fetches as required by that format.
3. Performing a 64-way branch to establish the correct

I-Fetch sequence for that format.
4. Fetching more instruction halfwords, if required.

Functional Units Used

Five registers play vital roles in the I-Fetch sequence: Q, R,
E, IC, and D. The following paragraphs discuss the
functions generally performed by these five registers.

Q-Register

• Buffers four instruction halfwords received from main
storage.

• Provides for overlap of I-Fetch and instruction execu
tion.

• Transfer of B- and D-fields from Q reduces instruction
processing time.

The Q-register is a 64-bit (plus eight parity bits) trigger
register that buffers all instructions entering the CE from
main storage (Diagram 2-1, FEMDM). It is divided primarily

1-36 (7/70)

into four halfword (16-bit) areas. This arrangement pro
vides for the buffering of four instruction halfwords (eight
bytes), thus increasing processing efficiency and reducing
the length of main storage time required by the CE. The
Q-register is loaded directly from the SDBO; information is
transferred to the LS address register [LAL (Read) and
LAR (Write)], to the R-register, and to the parallel adder.

After being loaded with a doubleword from main
storage, those Q-register halfwords containing instruction
op codes are sequentially transferred to R (for subsequent
execution in E). When the last op-code halfword has been
transferred from Q, a new doubleword is again loaded into
Q from main storage. This process of continuously refilling
Q with instructions is overlapped with instruction execu
tion whenever possible.

Additional Q-register information selects the instruction
fields to be sent to LAR and to the parallel adder. Such
information consists of four four-bit fields (B-fields) speci
fying LS registers and four 12-bit fields (D-fields) con
taining the displacement for main storage addresses.
Transferring this information directly from Q instead of via
R or E provides a lookahead capability by allowing both LS
and effective addresses to be available before the execution
time of the associated instruction. Transferring of these 4-
and 12-bit fields is performed selectively so that the
information is associated with the correct instruction. A
parity generator, associated with the Q-register, adjusts
parity for the half-byte portion of these fields before they
are tr an sf erred through the parallel adder.

Before an instruction is executed, it is tested for odd
parity. The op-code halfword is tested in the E-register. The
remaining halfwords, if any, are tested by the parallel adder
half-sum checking circuits as the effective address is
calculated.

R-Register

• Only op-code halfwords are transferred from Q to R.

• Selection of op-code halfword is determined by
1C(21,22).

The R-register is a halfword (16 bits plus two parity bits)
trigger register, providing intermediate buffering of op-code
halfwords between Q and E (Diagram 2wl, FEMDM). This
buffering extends the total instruction buffering capability
to five halfwords (five instructions in the event of all RR
formats), as Q is normally refilled after the last op-code
halfword has been transferred to R. The use of two separate
registers (Q and R) for containing op-code halfwords also
provides double buffering. This scheme allows storage
requests to be generated immediately upon transferring the
last op-code halfword from Q, instead of having to wait

until the instruction in E has been executed, as would be
required if halfwords from Q were transferred directly to E.

Because op-code information is all that is required to
initiate execution, only those halfwords in Q containing op
codes are gated to R. Also, because RX, RS, SI, and SS
instructions are composed of either two or three halfwords
(only the first of which contains the op code), it is
necessary to select the proper halfword to be transferred to
R, rather than merely proceeding sequentially through the
four halfwords. Selection of the halfword for transfer to R
is determined by IC(2 l ,22) as follows. Depending on the
format, instructions may be l, 2, or 3 halfwords long. The
number of halfwords in an instruction is specified by the
first two bits of the op code as follows:

Op Code Positions Instruction Length
Format 0 and 1 in Halfwords

RR 00 1
RX 01 2
RS and SI 10 2
SS 11 3

Because the op code of the next instruction to be
executed is always in R, its format (positions 0 and I) can
be predecoded to determine the number of halfwords that
compose that instruction and thus indicate which of the
four Q-register halfwords contains the next sequential
instruction op code. This predecoding occurs at end-op
time of each instruction; the result (Q halfword number) is
set into IC(21 ,22), which in turn selects a subsequent
I-Fetch ROS word that specifies the next op-code Q-half
word to be transferred to R. The IC(2 l ,22) values
associated with each Q-register halfword are illustrated in
Figure 1-13.

IC

21 22

Figure 1-13. Q-Register Halfword Outgating per IC(21,22)

R(8-J 1) or R{l 2-15) is sent to LS address register to
prefetch an operand for RR format instructions during end
op of the preceding instruction. This transfer can be done
from R rather than from Q because RR instructions are
completely contained in R; eight additional paths from Q
to LAL are, therefore, not needed.

E-Register

The E-register (Diagram 2-l, FEMDM) is a halfword (16
bits plus two parity bits) trigger register that contains the
first halfword (op-code halfword) of the instruction being
executed. Portions of the op-code halfword in E are
transferred to LAL, the op-code decoder, the parallel adder,
the E-register incrementer, and, if the Direct Control
feature is installed, an external device. The contents of the
E-register are parity-checked.

Instruction Counter

• IC is divided into two sections: IC(0-20) and
IC(21-23).

• IC(0-20) addresses a doubleword from main storage.

• IC(2 l) specifies left or right word within accessed
doublcword: IC(2 I) == 1, select right word; IC(21) == 0,
select left word.

• IC(22) selects left or right halfword from selected word:
IC(22) == l, select right halfword; lC(22) = 0, select left
halfword.

• IC(2 l ,22) specifies Q-register halfword that contains op
code of next instruction to be executed.

• During VFL operations, IC(2 l-23) specifies addressed
byte within doubleword addressed by IC(0-20).

The Instruction Counter (IC), (Diagram 2-1, FEMDM) is a
24-bit trigger register used primarily for accessing the next
sequential doubleword of instructions from main storage
(excluding those specified by branch instructions, which are
handled by the D-register). Source operand data is also
addressed by the IC during VFL instructions.

The IC is divided into two logical sections: IC(0-20)
and IC(2 l-23). These sections function in the following
manner. The main storage area used with the CE is
addressable on a byte (eight-bit) basis, each address placed
into the IC referring to a particular byte. However, because
the Q-register is of doubleword (64-bit) length, instructions
are accessed from main storage in doubleword (eight-byte)
groups. The address of the first byte of each doubleword is
all that is required in accessing these doublewords from
main storage, and this address is obtained from positions
IC(0-20), regardless of the complete address. [Any address
represented only by IC(0-20) is a multiple of 8 and lies on
a doubleword integral boundary.]

Following the accessing of each doubleword from main
storage, IC(0-20) is incremented by 8 (via the parallel

adder) to develop the next sequential doubleword address

7201-02 FETOM (7 /70) 1-37

in main storage (eight byte addresses ahead of the double
word previously accessed).

Once the doubleword addressed by IC(0-20) is read
into the CE, the remaining portion of that complete address
[IC(2 l -23)] selects either instruction halfwords or data
bytes from the doubleword. When instructions are ad
dressed by the IC, IC(2 l ,22) only is used to extract the
op-code halfword of the addressed instruction in the
Q-register; IC(2 l) selects the right or left word within the
doubleword, and IC(22) then selects the right or left
halfword from the specified word. (In both cases, a 1
specifies the right portion and a 0 the left portion.)
IC(21,22) values of 00, 01, 10, and 11 correspond
respectively to the four (1-4) Q-register halfword portions.
Figure 1-14 illustrates the Q-register halfword selection for
a specified main storage instruction address of 468 (I D4
hex or 111010100 binary).

Note: Because instructions are restricted to even-numbered
storage locations, IC(23) must always contain a 0 during

Example Address: 468 (1 D4 Hex, or 111010100 Binary)

I
I

. I
I

I
I

instruction addressing. Detection of a 1 in IC(23) during
instruction addressing produces an exceptional condition
followed by a program interruption.

At end op of each instruction, the format of the
instruction just transferred from Q and its location in Q
[per IC(21,22)] are examined to determine the location in
Q of the op-code halfword of the next sequential instruc
tion. Both format and Q-register location must be con
sidered to avoid transferring the remaining non-op-code
halfwords of a multi-halfword instruction (RX, RS, SI, or
SS) to R.

When the IC is used for addressing source operands
during VFL operations, doublewords containing the ad
dressed byte(s) are referenced by IC(0-20) in the same
manner as in instruction addressing. However, the accessed
doubleword is read out to AB instead of to Q. IC(21-23)
then specifies the addressed byte within this doubleword to
be gated to the serial adder. [The initial IC(21-23) value is

I 1

lo o lo o o

I
I

Iii
D I 4

I

IC I 0 +I 0 al

0 20 21 22 23

Main storage
doubleword address
of the doubleword
to be loaded

-------...-----------1 r T Used in VFL byte
Select .__ __ selection only.

left or right NOTE:
word from
doubleword. IC(23) must equal 0

during instruction
into Q. Select left or addressing or

right halfword from specification check
specified word. occurs.

465 466 467 468 469 470 471 472

Main Storage Doubleword

Q Halfword 1 Halfword 2 -RQ

0 15 16 31 63

0 0
IC(21,22) ="00 IC(21,22) = 01 IC(21,22) = 10 IC(21,22) = 11

Op-code ha I fword
specified by
address I D4 (hex).

Figure 1-14. Instruction Addressing

1-38 (7/70)

set into the AB counter, which is incremented or decre
mented, as required, to perform right-to-left or left-to-right
processing of the data in AB.] Figure 1-15 illustrates the
byte selection as determined by IC(21-23).

Doubleword ~
operond address
specified by Ma in Storage
IC(0-20). Doubleword

• 'By;e I 1 I

Figure 1-15. Operand Data Byte Selection per IC(21-23)

Note: During VFL operation, the instruction address
contained in the IC is temporarily stored into the LS
working register (LSWR).

Storage requests are generated to access the next
doubleword whenever IC(21-23) indicates that all the
information in the present doubleword (op-code halfword
in Q-register or data bytes in AB) has been processed.

D-Register

The D-register (Diagram 2-1, FEMDM) is a 24-bit (plus
three parity bits) trigger register that functions as a main
storage address register during manual-control, branching,
and certain arithmetic operations, and as a channel and unit
address register during I/O instructions. When addressing
main storage, D(0-20) references a doubleword; D(21,22)
then extracts the desired instruction halfword and D(23)
extracts the desired byte depending on the operation.

For RS instructions, the I-Fetch routine adds the base
and displacement values, and places the result into D.
Normally, this result is the effective second operand
address. For shift instructions, however, this total specifies
the number of bit positions to be shifted.

In the Stopped state, D contains the main storage
address of the next instruction to be executed (address of
instruction in R). (This address is generated and placed into
D by the stop-loop microprogram that is in process
whenever the CE enters the Stopped state.) The stop-loop
routine subtracts 8 or 16 (decimal) from the updated IC

address and places the result into D. In this case, D(0-20)
indicates the doubleword address of the instructions in Q,
and D(21,22) specifies the location of the op-code halfword
within that doubleword.

Instruction Path

• Instructions are fetched into Q from main storage four
halfwords at a time.

• R contains first halfword of instruction to be executed
next.

• E containsfirst halfword of instruction being executed.

• IC specifies location in main storage from which next
instructions will be fetched and also instruction in Q to
be executed next:
IC(0-20) addresses main storage.
IC(21,22) indicates which op-code halfword in Q has
been transferred to R and is to be executed nexL
IC(23) must be 0 when addressing instructions.

The basic path for instructions entering the CE is illustrated
in Figure 1-16. The first register in the instruction path is
the four-halfword instruction buff er called the Q-register.
For each access, four instruction halfwords are fetched
from a doubleword location in main storage (addressed by
the IC) and loaded into the Q-register from the SDBO.
Because instructions can vary from one to three halfwords
in length, as many as four complete instructions (RR
format) or as few as 1-1/3 instructions (SS format) may
reside in the Q-register.

Instructions in the Q-register are sequentially selected
for processing by means of IC(21,22), which indicates the
first halfword (the halfword containing the op code) of the
instruction to be executed next. The op-code halfword thus
selected is transferred to the R-register, where format
predecoding takes place during the end-op cycle. If the
instruction is of the single halfword RR-format, the
R-register contains the entire instruction. In the case of a
two- or three-halfword instruction (RX, RS, SI, or SS
format), the R-register contains only the first halfword; the
balance (second or second and third halfwords) is not
transferred but remains in the Q-register. For this reason,
each halfword field of the Q-register is equipped with
appropriate transfer paths for processing of the B and D
fields of the instruction.

The format of the upcoming instruction (in R) is
established by examining R(O,l). This predecoding groups
the instructions into four general categories (RR, RX, RS
or SI, and SS) to allow loading of the appropriate data
registers with operands and operand addresses. Thus oper
and prefetching is initiated before execution time.

7201-02 FETOM (7 /70) 1-39

SAB

Io
IC ~I lo

D

0 20 0

Q-to-R
Transfer
Control

B-field gated
to LAL.

D-field gated
to parallel adder.

Figure 1-16. Basic Instruction Path

1-40 (7 /70)

Main Storage

0

RRI Op Code Rl R2

7 8 11 12

:I RXI I Op Code RI X2

7 8 1112

20 Instructions RSI Op Code I Rl R3

2122 7 8 II 12

SI I Op Code 12

7 8

ssj Op Code L1 I L2
7 8 11 12

0 r
Q 1st 2nd I 3rd

Halfword Halfword : Halfword 0
0 3 16 19 32 35

~ I I I
4 15 20 31 36

0 15 16 31 32

0 15

D
Format i..~------------~5 Predecoder ~

Operation
Decoder

~
L__iiJ
0 7

63

15

I 82

15 16 19 20

B2 I
15 16 19 20

Bl

15 16 1920

I Bl I~~ DI I
15 16 19 20 31 32

63

I 4th
I
I Halfword

48 51

T
47 52 63

47 48 63

D2

31

D2
31

DI

31

82 IH3
35 36 •7

The 16-bit E-register (Figure 1-16) contains the op-code
halfword of the instruction presently being executed. This
halfword remains in the E-register until the execution phase
is completed, at which time it is replaced by the op-code
halfword of the next instruction. During each execution
phase, the instruction op code contained in E(O-7) is
decoded and the specific operations necessary to execute
the instructions are performed.

The functions performed during the end-op cycle and
the I-Fetch sequence are implemented while the instruction
halfwords are in the Q-, R-, and E-registers. The path and
the movement of the op-code halfword between the
registers for the five formats are shown in Figure 1-1 7. To
illustrate, the following paragraphs trace an RR instruction
through the Q-, R-, and E-registers (Figure 1-17). Note that
an RR instruction is composed of only the op-code
halfword; therefore, the complete instruction fits in the R
and E- registers. For the other formats, only the op-code
halfword moves through the R- and E-registers; the other
halfwords are not transferred from the Q-register. For the
example, assume that:
1. All instructions have the RR format.
2. The instruction being executed is No. 4, the next

instruction is No. 5, the following instruction is No. 6,
and so on.

3. Instruction No. 5 is the one under consideration.

During the I-Fetch sequence of No. 4, instruction No. 5
is placed into the R-register. Here, during the end-op cycle
of No. 4, the format of No. 5 is established, operand
refetching is initiated, No. 5 is transferred to the E-register,
and the I-Fetch sequence for No. 5 is entered.

During the I-Fetch sequence for No. 5, prefetching of
operands for No. 5 is completed, the execution routine for
No. 5 is established, and No. 6 is transferred to the
R-register. The CE enters the execution phase for No. 5.

During its end-op cycle, the condition code is set (if
applicable) and any exceptional conditions and interrup
tions are detected. The remaining functions performed
during the end-op cycle of No. 5 are devoted to initiating
the I-Fetch sequence for No. 6.

Prefetching of Operands

• Operand prefetching starts before instruction execution.

• Depending on instruction format, operands are in LS or
main storage:
RR-both operands are in LS.
RX, RS, S~-one operand is in LS, the other is in main
storage.
SS-both operands are in main storage.

• Address computation for main storage operands always
starts first.

To increase the speed of instruction processing, the
operands and operand addresses specified in the upcoming
instruction are assembled into appropriate registers. For RR
instructions, the operands are obtained directly from the
LS. For instructions specifying operand addresses in main
storage, address calculations take place, and the D-register
prefetches an operand from main storage.

The major registers employed for operand prefetching
are shown in Figure 1-18. Prefetching of operands begins
when the op-code halfword of the instruction is in R and is
completed after this halfword has been transferred to E.
R(O,l) establishes the instruction format and, conse
quently, the type of operand fetch that must be performed.

For one-halfword instructions (RR format), R contains
the entire instruction. The first operand is fetched by
transferring R(8-11) to LAL. After the first operand is
retrieved from the LS, it is usually placed into A, B, and D.
The second operand is usually fetched after the instruction
is transferred to E by transferring E(12-15) to LAL. When
the second operand is accessed, it is normally placed into S
and T.

For two-halfword instructions (RX, RS, and SI formats),
the first halfword is transferred to R while the second
halfword is processed directly from Q. Address calculation
for the operand in main storage is performed first so that
this operand may be requested as soon as possible. This
calculation is accomplished by transferring the appropriate
B-field from Q to LAL. If the B-field is not zero, the
contents of the LS register specified by the B-field are then
routed to the parallel adder, where they are added to the
D-field (transferred directly from Q). The sum constitutes
the operand address specified by RS and SI instructions.
This address is transferred to D, from which a storage
request for the operand is made.

For indexed RX instructions, that is, when the X2 field
is not zero, an additional step is required to derive the
operand address. Consequently, the partial sum (LS con
tents per B-field, plus D-field) is temporarily stored into B.
The LS is then addressed by the X2 field of the instruction.
At this time, the instruction op-code halfword is in E, with
E(l 2-15) containing the X2 field. The contents of the LS
register accessed by the X2 field are then summed with the
contents of B in the parallel adder to obtain the operand
address. This address is transferred to D, and a storage
request for the operand is initiated.

The operand setup for two-halfword instructions is
completed by fetching the first operand from the LS (not
used by SI instructions). This action is performed by
transferring E(8-l l) to LAL. The first operand is usually
loaded into A and B. S and T are usually loaded with the

7201-02 FETOM (7 /70) 1-41

A. RR-Format {1-Halfword) Instructions

B. RX- 1 RS- 1 and SI-Format (2-Holfword) Instructions

Initiate 3-cycle
storage request
to refill Q

4 instruction
ho I fwords from
main s toroge
as a result of
storage request

Initiate 3-cycle
storage request
to refill Q.

4 instruction
halfwords from
main storage
as a result of
storage request.

I
Execu;ion of I End ~p of 11-fet~h of I Execu;ion of I End

9
0p of

~~~~~ I 
I"- Fetch of* I Execution of I 

11 11 

rm~ / 
@] @] @] 

Initiate 3-cycle 4 instruction 
storage request halfwords from 
to refill Q. main storage 

as a result of 
storage request. 

Note; Numbers indicate halfword sequence 
r~ferenced to their location in Q. 

For 2- and 3-halfword instructions, 
lines at bottom of Q group the 4 
halfwords into instructions or por
tions of instructions. 

Movement is referenced to associated 
ROS control word. 

* Deloy transferring to R until instruction 
halfwords arrive from main storage. 

I 
I-fetch of I Execution of 1· End Op of I I-fetch of I Execution of I End Op of I I-fetch of I Execution of I End Op of I I-Fetch of* I Execution of I End Op of I 

4 4 4 5 5 5 8 8 8 11 11 11 

° F m m? ~ ~ T ~ ~ L\i/4'15'16, ~ ~ 

I-Fetch of* I Execution of I End Op of I I-fetch of I Execution of I 
14 14 14 17 17 

17 1s 19 20 ~ ~ ~ Lt!ElillEI 

R [}] ill ill7 ill ill ill7 @] @] @17 [ill [ill [jj]7 

Eill ill ill ill 0 ill ill ill ~ @] ~ ~ 
Initiate 4-cycle 
storage request 
to refill a. 

C. SS-Format (3-Holfword) Instructions 

4 instruction 

I 
ho l_fwords from 
main storage 
as a result of 
storage request. 

Figure 1-17. Path Through Q-, R-, and E-Registers of Op-Code Halfword 

Initiate 3-cycle 
storage request 
to refill Q. 

4 instruction Initiate 4-cycle 
halfwords from storage request 
main storage to refill Q 

as a result of 
storage request. 

4 instruction 
halfwords from 
main storage 
as a result of 
storage request. 

@]7 @] 
Initiate 4-cycle 
storage request 
to refill Q. 

if~ 
4 instruction 
halfwords from 
main storage 
as o result of 
storage request. 



23 I 23 RRI 

I 0 

Local 

lo ~I lo ~I Storage I IC 

20 21 22 I 0 20 21 22 
31 ..,.- L-..! -..,- RXI I I 

I I 
0 

L _________ 

Instructions 
RSI 

0 

s1j 
0 

ssl 
0 

31 32 63 31 32 63 

lo ~1,32 ~31 lo 
A ~132 63! ~I 

31 32 63 31 32 63 

B-f;elds 

D-f;elds 

32 63 

63 

PAA 
R-F;elds 

R or X2 Reid 

Figure 1-18. Basic Scheme for Operand Prefetching 
'.::J --..) 8 

Main Storage 

SOBO 

Op Code ,I, Rl ),, R2 I 
" 

Op Code ,I, Rl ,,I,, X2 J .. 

Op Code ,I, Rl ),, R3 

..I .. 

Op Code ,I, 12 ,,I .. 

LL 
,----"------. 

Op Code 
I 

L1 
78 

r:--E1 
L_iil 

8 11 1215 

15 

15 

r:--E1 
L_iil 

8 11 1215 

TT 

),, L2 . .I.. 

63 

B2 I 02 I 
1920 31 

B2 .,I,. 02 I 
31 

Bl 
.. 1,. 01 I 

31 

Bl JJ~ o:.L B2 JJ[§J 

63 



second operand when it arriv'es on the SDBO during the 
execution phase. 

For three-halfword instructions (SS format), the first 
halfword is transferred to R and the remaining two 
halfwords are processed directly from Q. The main storage 
addresses for the first and second operands are calculated in 
a manner similar to that of two-halfword instructions. The 
first-operand address is computed first and loaded into D, 
and a storage request to prefetch the operand is initiated. 
The second-operand address is then computed while the 
contents of the IC are transferred (via the parallel adder) to 
the LSWR. When the second-operand address is computed, 
the address is loaded into the IC, from which a storage 
request for the operand is later made. Upon execution of an 
SS instruction, the instruction address is restored to the IC 
so that it again selects the next instruction. 

Obtaining New Instructions from Main Storage 

• Requests for new instructions are made before CE 
exhausts instructions in Q. 

• Usually, three- or four-cycle requests are made from IC. 

• Settings of IC(21,22) and R(0,1) determine whether 
request is needed. 

• IC is incremented by 8 after each request. 

• For branch instructions, requests are made from D. 

• If branch is unsuccessful, instructions accessed by 
request are ignored. 

• If branch is successful, instructions are used and instruc
tion address is transferred from D to IC. 

Requests to refill Q with new instructions overlap most of 
the storage access time with processing of the remaining 
instructions in Q. The basic scheme used in requesting new 
instructions from main storage is shown in Figure 1-19. 

During normal instruction sequencing, IC(21,22) is 
examined to establish the number of halfwords in Q that 
remain to be processed. These bits indicate the op-code 
}\alfword of the instruction that has been transferred to R 
and is to be executed next. Depending on the format of the 
upcoming instruction decoded from R(O,l), a request for 
new instructions may be initiated when 2, 3, or all 4 
halfwords in Q remain to be processed. The time required 
to access new instructions from main storage is then used to 
process the remaining instruction(s) in Q. This access time 
is specified by the type of request generated by the CE. 

Depending on its instruction status, the CE can generate 
a three- or a four-cycle request. When a three-cycle request 

1-44 (7 /70) 

is issued, three machine cycles must elapse before instruc
tions arrive from main storage. Thus, new instructions are 
gated into the CE on the fourth cycle following the request. 
Similarly, when a four-cycle request is generated, new 
instructions are gated into the CE on the fifth cycle 
following the request. The difference in access times for a 
three- and four-cycle request is illustrated in Figure 1-19. 

IC(0-20) normally specifies the address of new instruc
tions to be accessed from main storage. When it is 
established that the CE needs instructions, a request is 
made, and IC(0-20) is transferred to the SAB. The IC is 
then incremented to address the next successive storage 
location from which subsequent instructions are to be 
fetched. (Because the SCI dictates that the address of each 
successive main storage location must be valid in the IC for 
at least two cycles, updating of the instruction address is 
not initiated until two cycles following the request.) 
Depending on the format of the upcoming instruction, 
incrementing of the IC is controlled by the CE hardware 
(for all formats except SS) or by the ROS microprogram 
(for SS format). In either case, the IC is incremented by 
transferring its contents to the parallel adder, where a 1 is 
added to IC(20) (equivalent to advancing the IC address by 
8). The updated address is then routed back to the IC so 
that a new storage request may be initiated immediately 
upon detecting the need to refill Q. 

A departure from the normal sequencing described 
above occurs when the instruction being fetched is a branch 
instruction. To anticipate branch instructions, R (which 
always contains the first halfword of an upcoming instruc
tion) is connected to a branch predecoder. Execution of a 
branch instruction may alter· the main storage address from 
which new instructions are to be fetched. If the branch 
instruction is successful, the address spedfied by that 
branch becomes the new instruction address. If, however, 
the branch is not successful, the address specified by that 
branch must be ignored. Because it is assumed that branch 
instructions are successful (the only exception is the Branch 
on Condition instructions), a request for instructions is 
initiated as soon as the address specified by the branch is 
placed into D. Thus, a request is made and the contents of 
D are transferred to the SAB before establishing that the 
branch is indeed successful. If it is later found that the 
branch instruction is not successful, the instructions ac
cessed by that branch are not transferred into Q and a new 
storage request is generated from the IC, if necessary. 
Otherwise, upon establishing a successful branch, the 
contents of D are transferred to the parallel adder, 
incremented by 8, and transferred to the IC. Normal 
sequencing is resumed by the IC until another branch 
instruction is encountered. 

The Branch on Condition instructions must be treated 
differently from other branch instructions. For this reason, 
a separate detection circuit is provided to anticipate this 
branch. Whether a Branch on Condition instruction is 



lo 
D ~I lo IC 

20 0 

21 22 
--T 

I 

L-------

Storage Request 
Logic 

~I 
20 

2122 

3- or 4-Cycle 
Request per IC 

3- or 4-Cyde 
Request per D 

IC(0-20) 

D(0-20) 

3-Cycle Request 

4-Cycle Request 

63 

Main Storage 

0 SDBO 

j I 1 I 2 I 3 I 4 
I I I I I 

~ i 1 : I : SDBO 
I I I I I toQ 
I I I I I 
I I I I I 
I I I I 

i 

63 

5 I 
I 
I 
I 

I 
I 
I 
I 

I 
I 

Q 1st I 2nd 3rd : 4th RQ 

0 Halfword : Halfword 
1 

Halfword 
1 

Halfword 63 

Request 
Made 

Gate 
SDBO 
to Q 

0 15 16 31 32 47 48 63 

I . --15 ..... 1--

Format 

All Branch 
Instructions ..------..... 

Branch on 
Condition Instruction 

Branch 
Predecader 

Figure 1-19. Q-Register Refill Addressing Scheme 

1,-:1 
L2J 
0 l 

7 

successful depends on the condition code setting estab
lished by a previous instruction. Therefore, the outcome of 
this branch instruction is known at the time of the request. 
If the branch is unsuccessful, the request from D is 
inhibited and, if Q needs refilling, an IC request is generated 
instead. 

Another instruction that falls in the branch category and 
requires unique treatment is the Execute instruction. This 
instruction designates a single instruction (subject instruc
tion) to be inserted into the instruction sequence. Briefly, 
the Execute instruction initiates the following I-Fetch 
actions: 
1. During I-Fetch of an Execute instruction (RX format), 

IC(21,22) is advanced to indicate the first halfword of 
the next instruction; that is, the instruction immediately 
following the·Execute instruction in Q. 

2. The address of the subject instruction specified by the 

Execute instruction is computed and placed into D. A 
storage request from Dis then made. 

3. When the four instruction halfwords accessed by this 
request are gated to Q, the subject instruction is selected 
from Q by examining 0(21,22). 

4. Upon executing the subject instruction, and if the 
subject instruction is not a successful branch, a storage 
request for the instructions previously contained in Q is 
made from the IC. This request is performed by the 
program store compare exceptional condition. (If the 
subject instruction is a successful branch, the request for 
new instructions is made from D and normal processing 
is resumed.) 

5. When the instructions previously contained in Q are 
refetched, IC(21,22) is examined to select the instruc
tion following the Execute instruction, and normal 
processing is resumed. 

7201-02 FETOM (7/70) 1-45 



Interruption and Exceptional Condition Recovery 

I-fetch recognizes the five classes of interruptions: external, 
supervisor call, program, machine check, and 1/0. CE 
recovery from these interruptions requires additional proc
essing time for storing the old PSW into main storage and 
fetching a new PSW and new instructions from main storage 
into the CE. 

In addition, I-fetch recognizes eight exceptional condi
tions which require special handling by the CE. These 
exceptional conditions and the corresponding actions per
formed by the CE are shown in Table 1-6. Note that the 
Timer Exceptional condition actually consists of four 
separate conditions. Three of these (External Start, Ex
ternal Stop, and Receive ATR) may be considered a subset 
of the Timer Exceptional condition as shown in the table 
and explained later in the text. 

When one or more interruptions or exceptional condi
tions occur, processing of the next instruction is delayed 
until all such conditions are cleared in the order of their 
priority. 

Processing of interruptions and exceptional conditions is 
initiated during the first cycle of I-fetch. This cycle issues 
an 'EXCEP' micro-order to establish whether any interrup
tions or exceptional conditions have resulted from execu
tion of the preceding instruction. If one or more 
interruptions or exceptional conditions did occur, the 
'EXCEP' micro-order overrides the basic I-fetch actions and 
transfers control to an appropriate microprogram for 
clearing the condition that is assigned the highest priority. 
After processing this condition, the remaining interruptions 
and exceptional conditions, if any, are handled in the order 
of their priority. When all interruptions and exceptional 
conditions have been processed, the microprogram resumes 
the I-fetch sequence for the next instruction. 

The priority of interruptions and exceptional condi
tions is: 

1. Timer exceptional condition: 
a. External Start or Stop 
b. Receive ATR 
c. Time clock step 

2. CPU Store in progress exceptional condition 
3. Machine-check interruption 
4. Program interruption 
5. Supervisor call interruption 
6. External interruption 
7. 1/0 interruption 
8. Manual control stop exceptional condition 
9. Manual control wait exceptional condition 

10. Manual control repeat exceptional condition 
11 . Program store compare exceptional condition 
12. Invalid instruction address test exceptional condition 
13. Q-register refill exceptional condition 

1-46 (7/70) 

Table 1-6. CE Actions in Response to Exceptional Conditions. 

Exceptional 
Condition 

Timer: 

External Start 

External Stop 

Receive ATR 

Time Clock Step 

iCPU Store in Progress 

Manual Control Stop 

Manual Control Wait 

Manual Control Repeat 

Program Store Compare 

CE Action 

This exceptional condition results 
from the 'time clock step' trigger 
being turned on by one of four 
conditions as shown below. CE 
actions depend on the resu Its of 
ROS branching to determine 
which condition exists. 

CE resets and performs a PSW 
Restart. 

CE resets and goes to the stopped 
state. 

CE performs the Receive A TR 
microprogram to gate data into its 
ATR from another CE. 

CE fetches the timer value from 
main storage, decrements this 
value, and stores it back into main 
storage. 

Extra cycles are added to I-fetch. 

An address is forced into ROSAR 
that places the CE into the stop 
loop. 

An address is forced into ROSAR 
that places the CE into the Wait 
state. 

An address is forced into ROSAR 
that places the CE into the repeat 
instruction loop. 

The CE obtains the address for 
the next instruction and refetches 
it from main storage. 

Invalid Instruction Address Test A program interruption is forced 
when the CE tries to use an 
erroneously addressed instruction. 

0-Register Refill One or two extra I-fetch cycles 
are added, delaying execution of 
the next instruction. 

INSTRUCTION EXECUTION 

The execution phase of instruction processing manipulates 
the data to execute the instruction prepared by I-Fetch. 
The following paragraphs introduce the functional units 
that are used primarily in the execution phase and discuss 



the nine classes of instructions: fixed-point, floating-point, 
decimal, logical, branching, status switching, 1/0, multiple· 
computing element, and display. 

Functional Units Used 

The following discussion of functional units is based on 
Diagram 2-1, FEMDM. For a detailed discussion, refer to 
Chapter 2. 

AB Register 

The AB register is a 64-bit (plus eight parity bits) trigger 
register that functions as a working register and also as a 
buffer for doubleword operands received from main stor
age. 

The AB register is logically divided into two 32-bit (plus 
four parity bits) registers, A and B. A four-position 
extension, B(64-67), provides for retaining low-order 
significance during certain arithmetic and shifting opera
tions. 

Byte gating into and out of A and B facilitates their use 
with the serial adder for VFL operations. A three-position 
counter, the AB byte counter (ABC), controls the outgating 
selection of the eight bytes in the AB. AB information is 
also processed in the parallel adder. Both A and B outgating 
controls are capable of shifting data left two positions en 
route to the parallel adder. (Combined shifting capabilities 
of ST, AB, and the parallel adder thus enable any amount 
of shift in any direction.) 

Inputs to the AB register are from storage (via SDBO) 
and from the parallel adder. 

Outputs from the AB register are to the serial adder, the 
parallel adder, and the MCW register. 

ST Register 

The ST register is a 64-bit (plus eight parity bits) trigger 
register that functions as an operand buffer between main 
storage, LS, and the CE, and also as a working register for 
arithmetic and logical operations. 

The ST register is logically divided into two 32-bit (plus 
four parity bits) registers, S and T, which serve as working 
registers for all operations. They also serve as a final 
assembly area for resultant data to be entered into either 
LS (T only) or main storage (S and T). Byte gating of ST 
inputs and outputs facilitates their use with the serial adder 
for VFL operations. A three-position ST byte counter 
(STC) and incrementer control the gating of the eight ST 
bytes. 

ST information can also be processed in the parallel 
adder. T-data can be sent to the parallel adder in either true 

or complement form, and with a left 1 shift for certain 
operations. (Scan operations also utilize ST inputs from the 
parallel adder.) Multiply logic extracts data, in byte lengths, 
from S via the multiplier bus, and PSW information is 
sampled from ST(0-39) via the PSW bus. 

Inputs to the ST register are from main storage, LS, 
parallel adder, serial adder, PSW register, Data switches, and 
the special 9020 registers. 

Outputs from the ST register are to main and display 
storage, LS, PSW register, serial adder, parallel adder, 
multiply /divide logic and some special purpose registers 
(external, DAR, etc.). 

AB and ST Byte Counters 

For operations involving the serial ·adder, it must be 
possible to extract bytes from doublewords contained in 
AB and ST and to assemble bytes in ST for subsequent 
storage. These capabilities are provided by two byte 
counters: the ABC for controlling AB byte transfer and the 
S.TC for controlling ST byte input and output. 

Mark Triggers 

Eight mark triggers are contained within the CE._ During 
store-data operations, these triggers indicate to main storage 
which bytes of doubleword data placed on the SDBI are to 
enter storage. The mark triggers thus serve to store CE data 
into main storage on a byte (eight-bit plus parity) basis. 

An active mark bus line specifies the corresponding byte 
for storage entry: mark trigger 0 specifies byte 0, or 
SDBI(0-7); mark trigger 1 specifies byte 1, or 
SDBI(8-15); and so on, through mark trigger 7, which 
specifies byte 7 or SDBI(56-63). Any mark trigger not set 
causes its corresponding byte of original storage data to be 
regenerated into the addressed location. Complete absence 
of mark signals on the mark bus occurs only on a fetch 
operation. 

F-Register 

The F-register is a one-byte (eight-bit plus parity) trigger 
register used in certain arithmetic, logical, and data-transfer 
operations. Functions such as developing quotients, saving 
floating-point characteristics, converting routines, and proc
essing storage-protection keys are performed in F, and, 
during direct-control read operations, F serves as an entry 
buffer for data from the sending CE. 

The F-register is also utilized by the Load Identity (LDI) 
instruction and by diagnose operations (store PIR and 
define storage). 

F-register parity circuits generate correct parity for all 
information received by the register. 

7201-02 FETOM (7 /70) 1-47 



G-Register 

The G-register is an eight-bit trigger register used primarily 
for buffering a byte of data in the sending CE for transfer 
to another CE during direct-control write operations. 

K-Register 

The K-register is a 32-bit (plus 4 parity bits) register used 
primarily for the DE wrap function of the Diagnose 
instruction. DE wrap is discussed under "Maintenance 
Features" later in this chapter. The output of the K-register 
feeds the A-side of the parallel adder. During the DE wrap 
operation, data is set into the first or second half of the 
K-register via a 16-bit wrap bus from a DE. An additional 
input to bits 0-31 of the K-register is available from the 
parallel adder. This input is used during execution of the 
three display instructions that use the K-register: Convert 
and Sort Symbols (CSS), Convert Weather Lines (CVWL), 
and Repack Symbols (RPSB). 

.N-Register 

The N-register is a 16-bit (plus 2 parity bits) register used in 
the execution of the display instruction Repack Symbols 
(RPSB). Inputs to the N-register are from the LM register 
and the serial adder. The output of the N-register feeds the 
B-side of the serial adder. 

LM Register 

The LM register is a doubleword register ( 64 bits plus 8 
parity) used during execution of two of the display 
instructions: Convert Weather Lines (CVWL), and Repack 
Symbols (RPSB). The LM register has inputs from the 
Storage Data Bus Out (SDBO) and the T-register. The 
output feeds the XY register via the mixer. Also, any 
halfword of the LM register may be gated to the N-register. 
This output gating to the N-register is used during execu
tion of Repack Symbols (RPSB). 

Mixer 

The mixer is the functional unit, consisting of logic and 
gating circuitry, which alters the format of data from the 
LM register before that data is transferred to the XY 
register. Gating in the mixer is under microprogram control. 
Any one of a number of format changes can be made 
during the tra'nsfer of data from LM to XY, depending on 
the particular micro-order that is active during the transfer. 

1-48 (7/70) 

Three classes of micrq-orders control mixer gating: format 
old (FMTO), format new (FMTN), and format weather 
(FMTW). 

XY Register 

The XY register is a doubleword register ( 64 bits plus 8 
parity) which receives its input from the mixer. The output 
of the XY register can be gated to the Storage Data Bus In 
(SDBI) for transfer to main storage. The XY register is used 
during execution of two display instruction: Convert 
Weather Lines (CVWL) and Repack Symbols (RPSB). It 
receives the LM register data which has been reformatted 
by the mixer and buffers it preparatory to transferring it to 
main storage. 

Serial Adder 

The serial adder processes information from ST, AB, F, and 
N on a byte basis, and is capable of performing binary and 
decimal arithmetic in addition to logical AND, OR, and 
Exclusive-OR operations. Other miscellaneous functions 
performed by the serial adder logic include sign insertion 
and correction, digit insertion, invalid character detection, 
zone correction (EBCDIC and USASCII-8), zero and 
nonzero recognition, and parity adjustment. Parity-predict 
logic and carry lookahead logic are employed to improve 
operational speeds, with checking performed on both a 
half-sum and full-sum basis. 

Arithmetic Functions. Highlights: 

• Operates on binary or decimal data. 

• Processes decimal bytes as two four-bit groups. 

• Each four-bit group represents one BCD digit. 

• Employs excess-6 arithmetic when processing decimal 
data. 

• Decimal arithmetic results are produced in BCD form. 

• Multiply/ divide results are assembled in serial adder. 

Serial adder logic is capable of performing both binary and 
decimal arithmetic operations. For binary operations, the 
adder functions as an eight-bit (plus parity) binary adder, 
processing bytes from either the ST register, N-register, or 
bits 21-24 of the ROS word (B side input) and either AB or 



F (A side input). High-order c~rries resulting from arith
metic operations are stored in Status Trigger (STAT) H for 
use in processing the next two bytes of that operation. 

Output from the serial adder is through the Serial Adder 
Latches (SALs) to the ST, F, N, or G-register. 

For decimal operations, each byte of data from ST, AB, 
or F is treated as two individual four-bit groups, which are 
then processed with excess-6 arithmetic. This feature 
provides a programming advantage by enabling the adder to 
accept data in binary-coded decimal (BCD) form (packed 
digits) and to produce results which are also in decimal 
format. 

Excess-6 arithmetic involves adding 6 (under ROS 
control) to incoming first operands. This is necessary to 
preserve the decimal value in a four-bit binary character. 
Each binary character (four bits) has a maximum decimal 
value of 15 (1111 binary), which is 6 more than the 
maximum valid decimal character of 9 (1001 binary). When 
the second operand is added and the total exceeds 15 (1111 
binary), the carry is a decimal value carry and leaves a 
correct decimal value in the four binary bits. If no carry 
occurs after the addition, the character is an erroneous 
decimal value (it is too large by 6) and the excess 6 is 
subtracted. The decimal values of the binary character 
under no-carry conditions are 6-15 (actual value of 0-9 
after correction). 

The following examples show excess-6 addition. Note 
that correction occurs when there is no carry irrespective of 
the decimal validity of the sum. 

1 + 1 3+ 5 6+ 9 

Operand 1 (SBA) 0001 0011 0110 

Excess-6 0110 0110 0110 

SAA 0111 1001 1100 

Operand 2 (SBB) 0001 0101 1001 

Sum 1000 1110 +-()101 

Correction 0110 0110 

Result 0010 1000 +-()101 

(2) (8) (15) 

In the first case (1 + 1) the sum is a valid decimal 
character (8), but the absence of a carry indicates an 
erroneous result calling for subtracting the excess 6. The 
second case (3 + 5) is similar except that the sum is not a 
decimal character. In the third case ( 6 + 9) there is a carry 
into the decimal tens position and the sum (5) does not 
need correction. 

Figure 1-20 shows the excess-6 data paths through the 
serial adder and illustrates the adder operation by means of 

the decimal example: 46 + 28 = 74. Note that +6 constants 
are logically added to the A-side digits that are in packed 
format before entry into the adder (by final-bus-A-gating 
logic), and that subtraction of the +6 constants (decimal
correct) is performed on each four-bit group in which a 
group carry (carry from high-order position of group) does 
not occur as a result of the arithmetic operation. 

When a ROS micro-order calls for complement add, the 
data entering SAA is converted to 2's-complement form. 
This conversion is accomplished by complementing the bit 
configuration on the A-side entry and adding a hot carry to 
the input of SAL(7). For complement add decimal opera
tion, +6 constants are not combined with SBA inputs. 
When complementing BCD, the excess-6 is effectively 
added because the resultant complement is a character 
based on 16 rather than 10. To illustrate, the 1 O's
complement of 7 is 3, but the 2's-complement of 7 (0111) 
is 9 (1001) or 6 more than the lO's-complement. The 
addition then occurs as in true +6 add, and the absence of a 
carry likewise forces decimal correction of the sum. A carry 
out of the high-order adder position [serial adder bit carry 
(O)] sets STAT H for use in processing the next data byte 
of that operation. 

Figure 1-20 also shows the serial adder operation fora 
complement add example: 46 - 28 = 18. Note that +6 
constants are not added to the A-side digits, but decimal 
correction is performed in the same manner as for a true 
add operation. 

Logical Functions. The serial adder also performs logical 
AND, OR, and Exclusive-OR functions. To implement the 
logical functions, each bit position of the serial adder is, in 
effect, a separate unit. The logical functions are defined as 
follows: 
1. AND. If both operand bits are 1 's, the resulting bit is a 

1; otherwise, the result is a 0. (Carries between bits are 
suppressed.) 

2. OR. If e~ther operand bit is a 1, the resulting bit is a 1; 
otherwise, the result is a 0. (Carries between bits are 
suppressed.) 

3. Exclusive-OR. If one and only one of the operand bits is 
a 1 , the resulting bit is a 1 ; otherwise, the result is a 0. 
(Carries between bits are suppressed.) 

If the conditions for the corresponding function is met, 
the associated serial adder latch is set. 

Parallel Adder 

• 60-bit (plus parity) full-binary adder. 

• Inputs are from S, T, D, A, B, Q, IC, E, and F. 

7201-02 FETOM (7/70) 1-49 



Final Bus B(0-7) 

0 

r----1----., I I I 
I Decimal I Decimal I 

L~~·--f ~~-J 7 

7 

B-Side 

0 3 4 

Group 2 --++--Group l 

Logically subtract 
6 from group 2 if 
no carry out of 
group 2 occurs. 

Logically subtract 
6 from group l if 
no carry out of 
group l occurs. 

Sum Latches 0-7 

0 

r-----L--., 
I Resulting : Resulting I 

7 

7 

Final Bus A(0-7) 

*Note: 
+6 constants are logically combined with A-side 
digits by final-bus-A gating logic for true add 
operation only. For complement add operation, 
A-side bits are inverted and a l is added to A(7), 
resulting in 2's complement form of the number on 
final-bus-A. 

I Decimal I Decimal I 
I Digit I Digit JI 

L-----t •. -_-_-_-________________________ La•t•c•he•d-Su•m-O•u•tiilpu•t•(•0•-7•)-tl~ 
Decimal Arithmetic Example: 46 + 28 = 74 

A-side operand byte (4610) 0100 0110 

Convert A-side digits to excess-6 
(Logi ca 11 y add +6 to both 
groups at final bus.) 0110 0110 

A-side digits in excess-6 value 1010 1100 

B-side operand byte (2810) 0010 1000 

I+- Group 2 ----14-- Group l -+I 

A-side adder entry 
B-side adder entry 

Logical sum 
Decimal correction 

(Logically subtract. 
6 from group 2 . ) 

Decimal result (7410) 

1010 
0010 

1101 

0110 

0111 

Figure 1-20. Decimal Format Serial-Adder Data Flow 

1-50 (7/70) 

1100 
1000 

0100 

Decimal Arithmetic Example: 46 - 28 = 18 

A-side operand byte (2810) 
Complement 
+l to A(7) 

2's complement of A-side digit 

B-side operand (46 10) 

A-side adder entry 
B-side adder entry 

Logical sum 
Decimal correction 

(Logically subtract 
6 from group l) 

Decimal result (18 10) 

0010 1000 
1101 0111 

l 

1101 1000 

0100 0110 

f4- Group 2~ Group l ~ 

1101 
0100 

0001 

1000 
0110 

1110 

0110 

1000 



• Inputs from T and D are 2's complemented for subtract 
and compare operations and address updating. 

• Output data can be shifted left 4 or right 4 into the 
parallel adder latches; parity is adjusted accordingly. 

• Adder employs carry-lookahead and parity-predict logic. 

• Adder includes half-sum and full-sum error checking. 

The parallel adder is a 60-bit (plus parity) full-binary 
arithmetic unit. In addition to arithmetic functions, the 
parallel adder performs certain logical operations (e.g., 
convert routines) and is involved in most intra-CE data 
transfers. Correct parity (odd) is generated with all adder 
output data. Immediate left 4 and right 4 shifting capabili
ties are available at the adder output, with parity adjusted 
accordingly. Error-checking facilities within the adder 
provide for validity checking of both incoming operands 
and full-sum results. 

The parallel adder has true-complement gating controls 
on adder entries from T and D. For subtract and compare 
instructions, operands from T are 2's complemented and 
presented to the A-side of the adder. (The binary bits are 
inverted and a hot-carry is added to position 63 .) From this 
point, add and subtract operations are the same. Comple
ment entries from D are used for address compare and 
address update operations and for floating-point operations. 

The parallel adder has full-binary capabilities (half-adder 
and full-sum functions), with immediate left-4/right-4 shift 
logic included on its output to facilitate data shifting 
without the need of an additional machine cycle. Figure 
1-36 illustrates the logical functions of the parallel adder. 
Note the four-position adder extension, P AB( 64-6 7); it 
serves to retain low-order significance during certain right
shift operations. 

63 63 6~7 
/ 

/ 
/ 

PAA PAB / 
/ 

/ 
/ Half 

/ 

i'- 4-Position 
I Extension Area 

Adder 63 

Full l Bit Transmits 
Adder Bit Carries 

______ 1---H-al_f-S_um_s ___ -I 

Full-Sum Logic 

I 
I 
I 
I 

Latch-Shifter I 
Logic (Left 4/Right 4) 

63 67
1 

--- - - - - - ___ L...;.._ ______ _.__j 

Figure 1-21. Parallel Adder Logical Functions 

Half-adder functions supply information concerning 
incoming operands for use in both checking the validity of 
the operands and producing carry information for full-sum 
development. Full-sum logic combines half-adder outputs 

with carry information to produce the final or full-sum 
result. Parity information is also developed by logically 
combining half-adder and carry functions and is normally 
supplied on a byte basis, although certain adder areas (bits 
4-8 and 64-6 7) require half-byte or four-bit group parity. 

Carry-lookahead and parity-predict facilities are em
ployed within the parallel adder. These features provide for 
the immediate development of full-sum results (and parity), 

without the need for additional cycles in which to 
incorporate carry information and generate parity. The 
lookahead and predict circuitry is implemented through 
logic in which the 60 bit positions are arranged in four-bit 
groups, and these groups divided into four sections. Figure 
1-22 illustrates the logical grouping of the 60 bit positions. 

All adder results are checked using half-sum and full-sum 
error-checking logic. Half-sum checking determines the 
validity of incoming operands by comparing the odd/even 
bit count with the assigned parity. Full-sum checking 
involves comparing the full-sum resultant bit count with the 
independently generated full-sum parity; an inconsistency 
in either causes a full-sum error. 

Local Storage 

A high-speed transistor storage area, local storage (LS), is 
located within the CE to reduce the number of main 
storage references required by the CE during each opera
tion. The LS consists of 25 registers for use in storing 
address information, fixed-point, logical, and floating-point 
operands, and the IC contents (IC contents stored in LS 
working register, LSWR, only). Local storage data is 
available to the CE at 200-ns intervals. In addition to 
reducing the main storage reference, this access time 
increases operational speeds within the CE. 

The 25 LS registers are grouped as follows: 16 (0-15) 
general-purpose registers (GPR's), 8 (16-23) floating-point 
registers (FPR's), and 1 (24) working register called the 
LSWR. Each register contains 32 data (plus 4 parity) 
positions, and is directly addressable by the Rl, R2, R3, 
Bl, B2, and X2 fields of the instructions, with the 
exception of register 24. Register 24 (LSWR) is not 
available to the operational program. It is reserved for use 
by ROS microprograms in manipulating information during 
execution of certain instructions. (Such applications in
clude temporary storage for the contents of the IC when 
the IC is to be used as an operand address register, and 
temporary storage for floating-point second operands while 
prenormalizing the first operand.) 

The eight FPR's (16-23) function as four double-length 
( 64-bit) registers. Each double-length register consists of 
two single-length (32-bit) registers coupled as follows: 16 
and 17, 18 and 19, 20 and 21, and 22 and 23. Only the 
leftmost 32 bit positions are used in short-operand floating
point instructions, with all 64 positions participating in 

7201-02 FETOM (7 /70) 1-51 



long-operand floating-point instructions. For either short or 
long operands, only the leftmost (even-numbered) registers 
must be addressed. 

Data transferred from LS is parity checked on the LS 
out bus. 

Local Storage Address Registers (LAL and LAR) 

Two five-bit registers (LAL for Read and LAR for Write) 
are used in selecting the 25 individual local storage registers. 
Inputs to these registers are from the Q-, R-, or E-registers 
as well as directly from the Read Only Storage Data 
Register (ROSDR). 

Status Triggers 

The CE contains eight commonly available status triggers 
(STAT's) to record information that may be significant in 
the execution of present instruction operations. These eight 
triggers are designated as STAT's A-H, and retain such 
information as invalid digit-detection, overflow and carry 
conditions, and negatively signed operands. The STAT's are 
reset at each I-Fetch. 

Certain STAT's serve multiple functions and are capable 
of receiving several types of information for use with 
different instructions. The outputs of these multiple-use 
triggers are distributed, via line-sense amplifiers, to the CE 
areas requiring this information. 

Scan operations test STAT's; during scan in, the eight 
STAT's are set to the state of T(38) and T(54-60). 

All STAT's are reset by either 'system reset' or 'I-Fetch 
reset' signals, with certain STAT's containing additional 
individual resets. 

In general, all STAT's are reset and set during clock time 
of the basic machine cycle. However, certain clock signals 
that control these triggers are delayed 180 ns. This delayed 
operation is necessary to prevent timing problems that 
could arise if the detected conditions occurred too late to 
set a ST AT with normal clock signals. All clock signals that 
control the STAT's are inhibited during scan-in operations 
by an 'FLT inhibit clock' signal. 

Fixed-Point Instructions 

The fixed-point instruction set performs binary arithmetic 
on operands serving as data, addresses, index quantities, and 
counts. Instructions are provided for loading, adding, 
subtracting, comparing, multiplying, dividing, shifting, 
storing, and converting from binary to decimal and from 
decimal to binary. Table 1-7 lists the fixed-point instruc
tions. 

For a discussion of number representation, data formats, 
and operand addressing, refer to Appendix D of this 
manual. 

1-52 (7 /70) 

I' 
I~ 

-0 \ 

\ 
\ 

\ 
\ 

\ 

' \ \ 

' ' \ \ 
\ 

\ 

' \ 
' ' \ 

\ 
'--------~ 

-o I 
::z;1 

a. M M 
:> -0 -0 
o-
0 0 

-0 
0-
lt) 

;g 
!"R 
N 
lt) 

;;:; 

~ 

~ 
~ 

'.;t 
0 
~ 

~ u 

~ 
·c;, 
..3 

lt) 

£ M 

N j M 

;;; 
co 
N 

~ 
~ 

~ 
N 

M 
N 

:: 
~ 
~ 

~ 
~ 

~ 
~ 

~ 

:: 
;!: 

co 
!'-. 

~ 
~ ~ 

i:: 
~ 
0 

'O 
~ 
ell 
Q) 

"" i:::Q 

i:: 

:8 
u 
Q) 

r/.l 
P; 
;:s 
0 
"" C,'.j 

~ 
'O 
'O 
< 
~ 
ell 

~ 
~ 

N 
C";l -Q) 

"" ;:s 
.all 
J:l.. 



Table 1-7. Fixed-Point Instructions 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Add A 5A RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in Prot (F) 0: Sum= 0 
02(X2, 82) GPR per R1) & place result into 1st opr location. Adr 1: Sum<o 

0(21) determines which word of doubleword Spec 2: Sum>o 
from stg is 2nd opr: if 1, right word; if 0, left Fix-Pt Ovflo 3: Overflow 
word. 

Add AR 1A RR R1 Algebraically add 2nd opr (in GPR per R2) to 1st Fix-Pt Ovflo 0: Sum= 0 
R2 opr (in GPR per R1) & place result into 1st opr 1: Sum<o 

location. 2: Sum >o 
3: Overflow 

Add Halfword AH 4A RX R1 Algebraically add halfword 2nd opr (in stg) to 1st Prot (F) 0: Sum= 0 
02(X2, 82) opr (in GP R per R 1) & place resu It into 1st opr Adr 1: Sum<o 

location. Spec 2: Sum>o 
1. O (21) determines which word of doubleword Fix-Pt Ovflo 3: Overflow 

from stg contains halfword 2nd opr: If 1, 
right word; if 0, left word. 

2. 0(22) determines which half of word is 
halfword 2nd opr: If 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to full word 
before addition by propagating sign bit 
through 16 high-order bits. 

Add Logical AL 5E RX R1 Algebraically add 2nd opr (in stg) to 1st opr (in Prot (F) 0 : Sum= 0 (no carry) 
02(X2, 82) GPR per R1) & place result into 1st opr location. Adr 1 : Sum :;to (no carry) 

1. 0(21) determines which word of doubleword Spec 2 : Sum= 0 (carry) 
from stg is 2nd opr: if 1, right word; if 0, left 3: Sum :;to (carry) 
word. 

2. Sign bit of result is treated as high-order 
integer & is tested for carry to determine CC. 

Add Logical ALR 1E RR R1 Algebraically add 2nd opr (in GPR per R2) to 1st None 0: Sum= 0 (no carry) 
R2 opr (in GPR per R1) & place result into 1st opr 1 : Sum :;to (no carry) 

location. 2 : Sum = 0 (carry) 
Sign bit of result is treated as high-order integer 3: Sum :;to (carry) 
& is tested for carry to determine CC. 

Compare c 59 RX R1 Algebraically compare 1st opr (in GPR per R 1) with Prot (Fl 0 : Opr 1 = Opr 2 
02(X2. 82) 2nd opr (in stg) & set CC according to result. Adr 1 : Opr 1 < Opr 2 

0(21) determines which word of doubleword Spec 2: Opr 1 >opr2 
from stg is 2nd opr: if 1, right word; if 0, left 
word. 

Compare CR 19 RR R1 Algebraically compare 1st opr (in GPR per R1) with None 0 : Opr 1 = Opr 2 
R2 2nd opr (in GPA per R2) & set CC according to 1 : Opr 1 < Opr 2 

result. 2 : Opr 1 > Opr 2 

Compare Halfword CH 49 RX R1 Algebraically compare 1st opr (in GPR per R1) with Prot (F) 0 : Opr 1 = Opr 2 
02(X2, 82) halfword 2nd opr (in stg) & set CC according to Adr 1:0pr1<0pr2 

result. Spec 2 : Opr 1 > Opr 2 
1. 0(21) determines which word of doubleword 

from stg contains halfword 2nd opr: if 1, 
right word; if 0, left word. 

7201-02 FETOM (7 /70) 1-53 



Table 1-7. Fixed-Point Instructions (cont) 

Mne- Op 

Instruction monic Code Format 

Convert to Binary CVB 4F RX 

Convert to Decimal CVD 4E RX 

Divide D 5D RX 

Divide DR 1D RR 

1-54 (7 /70) 

Operands 

R1 
D2(X2, 82) 

R1 
D2(X2, 82) 

R1 

Function 

2. D(22) determines which half of word is 
halfword 2nd opr: if 1, right half; if 0, left 

half. 
3. Halfword 2nd opr is expanded to full word 

before comparison by propagating sign bit 
through 16 high-order bits. 

Convert radix of 2nd opr (in stg) from decimal to 
binary & place result into 1st opr location (in GPA 

per R1). 
1. 2nd opr is doubleword in packed format. 
2. High-order word is converted first. 
3. Max positive integer that can be converted is 

+2, 147.483,647. 
4. Max negative integer that can be converted is 

-2, 147.483,648. 

Convert radix of 1st opr (in GP R per R 1) from 
binary to decimal & place result into 2nd opr 
location (in stg). 

1. Result is in packed format on doubleword 
boundary. 

2. Low-order 4 bits of field are sign. 
3. If PSW(12) = 1, use USASCI 1-8 code for sign; 

if PSW(12) = 0, use EBCDIC code. 

Divide 1st opr (in GPA per R1 & R1 + 1) by 2nd 
D2(X2, 82) opr (in stg) & place result into 1st opr location 

(remainder in GPA per R 1; quotient in GPA per R 1 

+ 1). 

R1 
R2 

1. R 1 must be even adr. 
2. D(21) determines which word of doubleword 

from stg is divisor: if 1, right word; if 0, left 

word. 
3. Relative value of opr's must result in 

quotient expressible in 32-bit signed integer. 
4. Sign of quotient is determined algebraically, 

except 0 quotient is positive. 
5. Sign of remainder is same as sign of dividend, 

except 0 remainder is positive. 

Divide 1st opr (in GPA per R 1 & R 1 + 1) by 2nd 
opr (in GPA per R2) & place result into 1st opr 
location (remainder in GPA per R 1; quotient in 
GPA per R1+1). 

1. R 1 must be even adr. 
2. Relative value of opr's must result in 

quotient expressible in 32-bit signed integer. 
3. Sign of quotient is determined algebraically, 

except 0 quotient is positive. 
4. Sign of remainder is same as sign of dividend, 

except 0 remainder is positive. 

Program 
Interruptions 

Prot (F) 

Adr 
Spec 
Data 
Fix-Pt Div 

Prot (S) 
Adr 
Spec 

Prot (F) 

Adr 
Spec 
Fix-Pt Div 

Spec 
Fix-Pt Div 

Condition Code 

Unchanged 

Unchanged 

Unchanged 

Unchanged 



Table 1-7. Fixed-Point Instructions (cont) 

Instruction 

Load 

Load 

Load & Test 

Load Complement 

Load Halfword 

Load Multiple 

Load Negative 

Mne- Op Program 
monic Code Format Operands Function Interrupt ions 

L 58 RX R1 Load 2nd opr (in stg) into 1st opr location (in GPA Prot (F) 

LR 18 RR 

LTR 12 RR 

LCR 13 RR 

LH 48 RX 

LM 98 RS 

LNR 11 RR 

02(X2, 82) 

R1 
R2 

per R1). Adr 
1. 0(21) determines which word of doubleword Spec 

from stg is to be stored: if 1, right word; if 0, 
left word. 

2. 2nd opr is unchanged. 

Load 2nd opr (in GPA per R2) into 1st opr loc:ation 
(in GPA per R1). 

2nd opr is unchanged. 

None 

R1 Load 2nd opr (in GPA per R2) into 1st opr location None 
R2 (in GPA per R 1) & set CC according to result. 

2rid opr is unchanged. 

R 1 Load 2's complement of 2nd opr (in GP R per R 2) Fix-Pt Ovflo 
R2 into 1st opr location (in GPA per R1) & set CC 

according to result. 
Overflow occurs only if max negative number is 
2's complemented. 

R 1 Load halfword 2nd opr On stg) into 1st opr location Prot ( F) 
02(X2, 82) (in GPA per R1). Adr 

R1 
R3 
02(82) 

R1 
R2 

1. 0(21) determines which word of doubleword Spec 
from stg contains halfword 2nd opr: if 1, 
right word; if 0, left word. 

2. 0(22) determines which half of word is 
halfword 2nd opr: if 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to full word 
before loading by propagating sign bit 
through 16 high-order bits. 

Load 2nd opr (as many words as required; in stg) Prot (F) 
into GPR's, in ascending order, starting with 1st opr Adr 
location (per R 1) & ending with 3rd opr location Spec 
(per R3). 

1. 2nd opr is unchanged. 
2. If R 1 = R3, only 1 word is loaded. 
3. If R3 < R1, GPA adr's wraparound from 15 

to 0. 
4. 0(21) determines which word of doubleword 

from stg is to be loaded into LS: if 1, right 
word; if 0, left word. 

Load 2nd opr (unchanged if negative, 2's 
complemented if positive; in GPA per R2) into 1st 
opr location (in GPA per R1). 

If 2nd opr = 0, unchanged with plus sign. 

None 

Condition Code 

Unchanged 

Unchanged 

0: Result= 0 
1 : Result <o 
2: Result >o 

0: Result= 0 
1 : Result <o 
2: Result >o 
3: Overflow 

Unchanged 

Unchanged 

0: Result= 0 
1 : Result <o 

7201-02 FETOM (7/70) 1-55 



Table 1-7. Fixed-Point Instructions (cont) 

Mne- Op 
Instruction monic Code Format 

Load Positive LPR 10 RR 

Multiply M 5C RX 

Multiply MR 1C RR 

Multiply Halfword MH 4C RX 

Shift Left Double SLDA BF RS 

Shift Left Single SLA BB RS 

1-56 (7 /70) 

Operands 

R1 
R2 

R1 
D2(X2, 82) 

R1 
R2 

R1 
D2(X2, 82) 

R1 
02(82) 

R1 
02(82) 

Program 
Function Interruptions 

Load 2nd opr (unchanged if positive, 2's Fix-Pt Ovflo 
complemented if negative; in GPR per R2) into 1st 
opr location (in GPR per R1). 

Overflow occurs only if max negative number is 
2's complemented. 

Multiply 1st opr (in GPR per R1+1) & 2nd opr (in 
stg) & place 64-bit result into 1st opr location (in 
GPR per R1 & R1+1). 

1. R 1 must be even adr. 
2. 0(21) determines which word of doubleword 

from stg is 2nd opr: if 1, right word; if 0, left 
word. 

Multiply 1st opr (in GPR per R1 + 1) by 2nd opr 
(in GPR per R2) & place 64-bit result into 1st opr 
location (in GPR per R1 & R1+1). 

R 1 must be even adr. 

Multiply 1st opr (in GPR per R1) & halfword 2nd 
opr (in stg) & place low-order 32 bits of resu It into 

Prot (Fl 
Adr 
Spec 

Spec 

Prot (Fl 
Adr 

1st opr location. Spec 
1. 0(21) determines which word of doubleword 

from stg contains halfword 2nd opr: if 1, 
right word; if 0, left word. 

2. 0(22) determines which half of word is 
halfword 2nd opr: if 1, right half; if 0, left 
half. 

3. Halfword 2nd opr is expanded to full word 
before multiplication by propagating sign bit 
through 16 high-order bits. 

Shift 1st opr (in GPR per R1 & R1+1) left number 
of bit positions specified by low-order 6 bits of 2nd 
opr adr & place result into 1st opr location. 

1. R 1 must be even adr. 
2. High-order bits of 1st opr are shifted out & 

lost; low-order vacated bits are made O's. 
3. If bit unlike sign bit is shifted out of bit 

position 1 of even register, fixed-point 
overflow occurs. 

Shift 1st opr (in GPR per RH left number of bit 
positions specified by low-order 6 bits of 2nd opr 
adr & place result into 1st opr location. 

1. High-order bits of 1st opr are shifted out & 
lost; low-order vacated bits are made O's. 

2. If bit unlike sign bit is shifted out of bit 
position 1 of even register, fixed-point 
overflow occurs. 

Spec 
Fix-Pt Ovflo 

Fix-Pt Ovflo 

Condition Code 

0: Result= 0 
2: Result >o 
3: Overflow 

Unchanged 

Unchanged 

Unchanged 

0: Result= 0 
1 : Result <o 
2: Result >o 
3: Overflow 

0: Result= 0 
1 : Result <o 
2: Result >o 
3: Overflow 



Table 1-7. Fixed-Point Instructions (cont) 

Instruction 

Shift Hight Double 

Shift Right Single 

Store 

Store Halfword 

Store Multiple 

Subtract 

Subtract 

Mne- Op 
monic Code Format Operands 

SRDA 8E RS R1 

SRA 8A 

ST 50 

STH 40 

STM 90 

s 58 

SR 18 

RS 

RX 

RX 

RS 

RX 

RR 

02(82) 

R1 
02(82) 

R1 
D2(X2, 82) 

R1 
D2(X2, 82) 

R1 
R3 
02(82) 

R1 
D2(X2, 82) 

R1 
R2 

Program 
Function Interruptions 

Shift 1st opr (in GPR per R1 & R1 + 1) right Spec 
number of bit positions specified by low-order 6 
bits of 2nd opr adr & place resu It into 1st opr 
location. 

1. R 1 must be even adr. 
2. Low-order bits of 1st opr are shifted out & 

lost; high-order vacated bits are made equal 
to sign bit. 

Shift 1st opr (in GPR per R1) right number of bit 
positions specified by low-order 6 bits of 2nd opr 
adr & place result into 1st opr location. 

Low-order bits of 1st opr are shifted out & lost; 
high-order vacated bits are made equal to sign 
bit. 

Store 1st opr (in GPR per R 1) into 2nd opr location 
(in stg). 

1. PAL(61) determines into which word of 
doubleword in stg 1st opr is to be stored: if 
1, right word; if 0, left word. 

2. 1st opr is unchanged. 

Store halfword 1st opr (in GPR per R1) into 2nd 
opr location (in stg). 

1. ABC selects 16 low-order bits of 1st opr for 
storage; high-order bits are ignored. 

2. STC [0(21-23)) positions 16 low-order bits 
of 1st opr into doubleword 2nd opr location. 

3. 1st opr is unchanged. 

None 

Prot (S) 

Adr 
Spec 

Prot (S) 
Adr 
Spec 

Store into 2nd opr location (as many words as Prot (S) 
required; in stg) contents of GPR's, in ascending Adr 
order, starting with 1st opr location (per R1) & Spec 
ending with 3rd opr location (per R3). 

1. GPR aclr's wrap around from 15 to 0. 
2. 0(21) determines into which word of 

doubleword in stg contents of 1st GPR are to 
be stored: if 1, right word; if 0, left word. 

3. If R1=R3,1 word is stored. 

Algebraically subtract 2nd opr (in stg) from 1st opr 
(in GPR per R1) & place result into 1st opr 
location. 

0(21) determines which word of doubleword 
from stg is 2nd opr: if 1, right word; if 0, left 
word. 

Algebraically subtract 2nd opr (in GPR per R2) 
from 1st opr (in GPR per R1) & place result into 
1st opr location. 

Prot (F) 

Adr 
Spec 
Fix-Pt Ovflo 

Fix-Pt Ovflo 

Condition Code 

0: Result= 0 
1: Result<o 
2: Result >o 

0: Result= 0 
1 : Result <o 
2: Result >o 

Unchanged 

Unchanged 

Unchanged 

0: Dif = 0 
1: Dif<O 
2:Dif>O 
3: Overflow 

0: Dif = 0 
1: Dif<O 
2: Dif>O 
3: Overflow 

7201-02 FETOM (7/70) 1-57 



Table 1-7. Fixed-Point Instructions (cont) 

Mne- Op Program 

Instruction monic Code Format Operands Function Interruptions Condition Code 

Subtract Halfvvord SH 48 RX R1 Algebraically subtract halfword 2nd opr (in stg) Prot (F) 0: Oif = 0 
1: Oif<O 
2: Oif >o 
3: Overflow 

Subtract Logical SL 5F RX 

Subtract Logical SLR 1F RR 

Instruction Formats 

02(X2, 82) from 1st opr (in GPR per R1) & place result into Adr 
1st opr location. Spec 

1. 0(21) d·etermines which word of doubleword Fix-Pt Ovflo 
from stg contains halfword 2nd opr: if 1, 
right vvord; if 0, left word. 

2. 0(22) determines which half of word is 
halfword 2nd opr: if 1, right half; if 0, left 
half. 

3. Halfvvord 2nd opr is expanded to full word 
before subtraction by propagating sign bit 
through 16 high-order bits. 

R1 Algebraically subtract 2nd opr (in stg) from 1st opr Prot (F) 
02(X2,82) (in GPR per R1) & place result into 1st opr Adr 

R1 
R2 

location. Spec 
1. 0(21) determines which word of doubleword 

from stg is 2nd opr: if 1, right word; if 0, left 
word. 

2. Sign bit of result is treated as high-order 
integer & is tested for carry to determine CC. 

Algebraically subtract 2nd opr (in GPR per R2) None 
from 1st opr (in GPR per R1) & place result into 

1st opr location. 
Sign bit of result is treated as high-order integer 
& is tested for carry to determine CC. 

1 : Oif =Fo (no carry) 
2 : Oif = 0 (carry) 
3: Oif :;to (carry) 

1 : Oif =Fo (no carry) 
2 : Oif = 0 (carry) 
3 : Oif *(carry) 

The fixed-point instruction set uses three instruction 
formats: 

In the RS format, RI specifies the address of the GPR 
containing the first operand. The contents of the GPR 
specified by the B2 field are added to the contents of the 
D2 field to form an address. This address designates the 
main storage location of the second operand for Load 
Multiple and Store Multiple instructions. In shift opera
tions, the low-order six bits of the address specify the 
number of bit positions to be shifted. The R3 field specifies 
the address of GPR for Load Multiple and Store Multiple 
instruction and is ignored in the shift operations. 

RR 

Op Code Rl R2 
7 8 11 12 15 

RX 

Op Code Rl I X2 82 02 
7 8 11 12 15 16 19 20 31 

RS 

Op Code Rl R3 82 02 
7 8 11 12 15 16 19 20 31 

In the RR format, RI specifies the address of the GPR 
containing the first operand and R2 specifies the address of 
the GPR containing the second operand. Both the first and 
second operands may be specified by the same GPR. 

In the RX format, RI specifies the address of the GPR 
containing the first operand. The contents of the GPR 
specified by the X2 and B2 fields are added to the contents 
of the D2 field to form an address designating the main 
storage location of the second operand. 

1-58 (7 /70) 

Data Flow 

The data flow path for fixed-point operations is shown in 
Diagram 3-1, FEMDM. The functional units used to 
perform the major functions for fixed-point operations are: 
1. ST. Holds the second operand and assembles data before 

it is sent to LS or main storage. (T is the only register 
that can transfer data to the LS.) 

2. AB. Holds the first operand and assembles data during 
an operation. 

3. F. Assembles product and quotient bits during multiply 
and divide operations; holds the binary bits to be 
converted during convert operations. 

4. E. Controls product and quotient derivation; also con
tains instruction op code and number of shifts when 
performing shift instructions. 



5. Parallel adder. Manipulates the operands to obtain the 
desired result. Is also the central point in the data path 
between ST and AB. 

6. Serial adder. Calculates product and quotient bytes. Is 
also the central point in the data path between F and AB 
and between F and ST. 

7. STC. Controls selection of data from and placement of 
data into ST, primarily during multiply, divide, and 
convert operations. 

8. D. Addresses second operand located in main storage. 

Program Interruptions 

Six program interruptions can occur during execution of 
fixed-point instructions. Of the six, only fixed-point over
flow can be masked off; the others are unconditionally 
taken. If the fixed-point overflow mask bit [PSW(36)] is a 
0, the fixed-point overflow interruption is ignored; if a 1, it 
is taken. 

The six interruptions and their causes are: 
1. Protection. The storage key of a main storage location 

does not match the storage protection key in the PSW. 
The instruction is suppressed for a store violation, unless 
it is the Store Multiple instruction, which is terminated. 
For a fetch violation, the instruction is terminated. 

2. Addressing. An address designates a location outside the 
available main storage capacity. The instruction is 
terminated except for the Store, Store Halfword, and 
Convert to Decimal instructions, which are suppressed. 
Operand addresses are tested only when used to address 
storage. Addresses used as a shift amount are not tested. 
The address restrictions do not apply to the D2 field or 
to the contents of the GPR's addressed by the X2 and 
B2 fields. 

3. Specification. A data, instruction, or control word 
address does not specify an integral boundary for the 
unit of information, or the RI field of an instruction 
specifies an odd register address for a pair of GPR's that 
contain a doubleword operand. The operation is sup
pressed. 

4. Data. A sign or digit code of the decimal operand in the 
Convert to Binary instruction is incorrect. The operation 
is terminated. 

5. Fixed-point overflow. A high-order carry occurs, or 
high-order significant bits are lost in load, add, subtract, 
or shift operations. The instruction is completed by 
ignoring the overflow. The interruption may be masked 
off by making the fixed-point overflow mask bit 
[PSW(36)] a 0. If the mask bit is a l, the interruption is 
taken. 

6. Fixed-point divide. The quotient of a division, including 
division by zero, exceeds the register size, or the result 
of the Convert to Binary instruction exceeds 31 bits. If 
the interruption occurs during division, the operation is 

suppressed. If the interruption occurs during the Convert 
to Binary instruction, the conversion is completed but 
only the low-order 32 bits of the converted data are 
placed into LS. 

Condition Codes 

The results of fixed-point load, add, subtract, compare, and 
shift instructions set the CC in the PSW (Table 1-7). All 
other fixed-point instructions leave the CC undisturbed. 

For fixed-point arithmetic operations, the CC can be set 
to reflect three types of results: 
1. For most operations, codes 0, 1, and 2 indicate the 

result is zero, less than zero, or greater than zero, 
respectively, and code 3 indicates fixed-point overflow. 

2. For compare operations, codes 0, 1, and 2 indicate that 
the first operand is equal to, lower than, or higher than 
the second operand, respectively. 

3. For Add Logical and Subtract Logical instructions, 
codes 0 and 1 indicate a zero and non-zero result, 
respectively, in the absence of a logical carry out of the 
sign position; codes 2 and 3 indicate a zero and nonzero 
result, respectively, with a carry out of the sign position. 

Floating-Point Instructions 

The floating-point instructions serve to load, add, subtract, 
compare, halve, multiply, divide, and store floating-point 
numbers. These instructions may occur in the RR format 
for register-to-register transfers or in the RX format for 
register-to-storage transfers. Eight 32-bit FPR's in LS are 
reserved exclusively for floating-point instructions. They 
are logically connected by pairs to form four 64-bit FPR's. 
At the end of the execution of the floating-point add, 
subtract, compare, and certain load instructions, a CC is set. 

Operands may be either short or long. Short operands 
are a word long (32 bits) and long operands are a 
doubleword long (64 bits). Long operands provide greater 
precision; however, where great precision is not necessary, 
short operands reduce instruction execution time and the 
amount of storage required. 

Operands and final arithmetic results are always in true 
form (as opposed to complement form). A 0 in the sign 
position indicates a positive fraction; a 1, a negative 
fraction. If intermediate results are in complement form, 
they are changed to true form before the final result is 
stored into the first operand location. For the add, 
subtract, multiply, and divide instructions, the result signs 
are determined algebraically. 

Table 1-8 lists the floating-point instructions. For a 
discussion of number representation, data formats, normal
ization, and operand addressing, refer to Appendix D of 
this manual. 

7201-02 FETOM (7 /70) 1-59 



Table 1-8. Floating-Point Instructions 

Instruction 

Add Normalized 
(long) 

Add Normalized 
(long) 

Add Normalized 
(short) 

Add Normalized 
(short) 

Add Unnormalized 
(long) 

Add Unnormalized 
(long) 

Add Unnormalized 
(short) 

1-60 (7/70) 

Mne
monic 

AD 

ADR 

AE 

AER 

AW 

AWR 

AU 

Op 
Code Format 

6A RX 

2A RR 

7A RX 

3A RR 

6E RX 

2E RR 

7E RX 

Operands 

R1 
D2(X2, B2) 

R1 
R2 

R1 
D2(X2, B2) 

R1 
R2 

R1 
D2(X2, B2) 

R1 
R2 

R1 
D2(X2, 82) 

Function 

Algebraically add 2nd opr (in stg) to 1st opr (in 
FPR per R1 & R1 + 1) & place normalized result 
into 1st opr location. 

1. Low-order fraction of 1st opr must be 
fetched from LS. 

2. Set CC per result sign & magnitude. 

Algebraically add 2nd opr (in FPR per R2 & R2 + 
1) to 1st opr (in FPR per R1 & R1+1) & place 
normalized result into 1st opr location. 

1. Low-order fractions of 1st & 2nd opr's must 
be fetched from LS. 

2. Set CC per result sign & magnitude. 

Algebraically add 2nd opr (in stg) to 1st opr (in 
FPR per R1) & place normalized result into 1st opr 
location. 

1. Low-order half of FPR is ignored & 
unchanged. 

2. 0(21) determines which half of doubleword 
from stg is 2nd opr; if 1, right half; if 0, left 
half. 

3. Set CC per result sign & magnitude. 

Algebraically add 2nd opr (in FPR per R2) to 1st 
opr (in FPR per R1) & place normalized result into 
1st opr location. 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC per result sign & magnitude. 

Algebraically add 2nd opr (in stg) to 1st opr (in 
FPR per R1 & R1+1) & place unnormalized result 
into 1st opr location. 

1. Low-order fraction of 1st opr must be 
fetched from LS. 

2. Set CC per result sign & magnitude. 

Algebraically add 2nd opr (in FPR per R2 & R2 + 
1) to 1st opr (in FPR per R1 & R1 + 1) & place 
unnormalized result into 1st opr location. 

1. Low-order fractions of 1st & 2nd opr's must 
be fetched from LS. 

2. Set CC per result sign & magnitude. 

Algebraically add 2nd opr (in stg) to 1st opr (in 
FPR per R1) & place unnormalized result into 1st 
opr location. 

1. Low-order half of FPR is ignored & 
unchanged. 

2. 0(21) determines which half of doubleword 
from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Set CC per result sign & magnitude. 

Program 
Interruptions 

Prot (F) 
Adr 
Spec 
Exp Ovflo 
Exp Unflo 
Sign if 

Spec 
Exp Ovflo 
Exp Unflo 
Sign if 

Prot (F) 
Adr 
Spec 
Exp Ovflo 
Exp Unflo 
Sign if 

Spec 
Exp Ovflo 
Exp Unflo 
Sign if 

Prot (F) 
Adr 
Spec 
Exp Ovflo 
Sign if 

Spec 
Exp Ovflo 
Sign if 

Prot (F) 
Adr 
Spec 
Exp Ovflo 
Sign if 

Condition Code 

0: Fract = 0 
1: Fract<o 
2: Fract >o 

0: Fract = 0 
1 : Fract <o 
2: Fract >o 

0: Fract = 0 
1 : Fract <o 
2: Fract >o 

0: Fract = 0 
1 : Fract <o 
2: Fract >o 

0: Fract = 0 
1: Fract<o 
2: Fract>o 

0: Fract = 0 
1 : Fract <o 
2: Fract>o 

0: Fract = 0 
1 : Fract <o 
2: Fract >o 



Table 1-8. Floating-Point Instructions (cont) 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Add Unnormalized AUR 3E RR R1 Algebraically add 2nd opr (in FPR per R2) to 1st Spec 0: Fract = 0 
(short) R2 opr (in FPR per R 1) & place unnormalized result Exp Ovflo 1: Fract<o 

into 1st opr location. Sign if 2: Fract>o 
1. Low-order halves of FPR's are ignored & 

unchanged. 
2. Set CC per result sign & magnitude. 

Compare (long) CD 69 RX R1 Algebraically compare 1st opr (in FPR per R1 & R1 Prot (F) 0 : Opr 1 = Opr 2 
D2(X2, 82) + 1) with 2nd opr (in stg); CC indicates result. Adr 1: Opr 1 <opr2 

1. Low-order fraction of 1st opr must be Spec 2:0pr1>0pr2 
fetched from LS. 

2. Opr's remain unchanged. 

Compare (long) CDR 29 .RR R1 Algebraically compare 1st opr (in FPR per R1 & R1 Spec 0 : Opr 1 = Opr 2 
R2 + 1) with 2nd opr (in FPR per R2 & R2 + 1); CC 1 : Opr 1 < Opr 2 

indicates result. 2 : Opr 1 > Opr 2 
1. Low-order fractions of 1st & 2nd opr's must 

be fetched from LS. 
2. Opr's remain unchanged. 

Compare (short) CE 79 RX R1 Algebraically compare 1st opr (in FPR per R1) with Prot (F) 0 : Opr 1 = Opr 2 
D2(X2, 82) 2nd opr (in stg); CC indicates result. Adr 1 : Opr 1 < Opr 2 

1. Low-order half of FPR is ignored. Spec 2 : Opr 1 > Opr 2 
2. 0(21) determines which half of doubleword 

from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Opr's remain unchanged. 

Compare (short) CER 39 RR R1 Algebraically compare 1st opr (in FPR per R1) with Spec 0 : Opr 1 = Opr 2 
R2 2nd opr (in FPR per R2); CC indicates result. 1 : Opr 1 < Opr 2 

1. Low-order halves of F PR' s are ignored. 2: Opr 1>opr2 
2. Opr's remain unchanged. 

Divide (long) DD 60 RX R1 Divide 1st opr (in FPR per R1 & R1 + 1) by 2nd Prot (F) Unchanged 
D2(X2, 82) opr (in stg) & place normalized quotient into 1st Adr 

op~ location. Spec 
1 . Low-order fraction of 1st opr must be Exp Ovflo 

fetched from LS. Exp Unflo 
2. Opr's are prenormalized. Flt-Pt Div 
3. Remainder is not saved. 

Divide (long) DOR 20 RR R1 Divide 1st opr (in FPR per R1 & R1 + 1) by 2nd Spec Unchanged 
R2 opr (in FPR per R2 & R2 + 1) & place normalized Exp Ovflo 

quotient into 1st opr location. Exp Unflo 
1. Low-order fractions of 1st & 2nd opr's must Flt-Pt Div 

be fetched from LS. 
2. Opr's are prenormalized. 
3. Remainder is not saved. 

7201-02 FETOM (7 /70) 1-61 



Table 1-8. Floating-Point Instructions (cont) 

Mne- Op Program 

Instruction monic Code Format Operands Function Interruptions Condition Code 

Divide (short) DE 7D RX R1 Divide 1st opr (in FPR per R1) by 2nd opr (in stg) Prot (F) Unchanged 

D2(X2, 82) & place normalized quotient into 1st opr location. Adr 

1 . Low-order half of FPR is ignored & Spec 

unchanged. Exp Ovflo 

2. D(21) determines which half of doubleword Exp Unflo 
from stg is 2nd opr: if 1, right half; if 0, left Flt-Pt Div 

half. 
3. Opr's are prenormalized. 
4. Remainder is not saved. 

Divide (short) DER 3D RR R1 Divide 1st opr (in FPR per R1) by 2nd opr (in FPR Spec Unchanged 

R2 per R2) & place normalized quotient into 1st opr Exp Ovflo 

location. Exp Unflo 

1. Low-order halves of FPR's are ignored & Flt-Pt Div 

unchanged. 
2. Opr's are prenormalized. 
3. Remainder is not saved. 

Halve (long) HDR 24 RR R1 Divide 2nd opr (in FPR per R2 & R2 + 1) by 2 & Spec Unchanged 

R2 place normalized quotient into 1st opr location (in Exp Unflo 

FPR per R1 & R1 + 1). 
Low-order fraction of 2nd opr must be fetched 
from LS. 

Halve (short) HER 34 RR R1 Divide 2nd opr (in FPR per R2) by 2 & place Spec Unchanged 

R2 normalized quotient into 1st opr location (in FPR Exp Unflo 

per R1). 
Low-order halves of FPR's are ignored & 
unchanged. 

Load (long) LD 68 RX R1 Load 2nd opr (in stg) into 1st opr location (in FPR Prot (Fl Unchanged 

D2(X2, 82) per R 1 & R 1 + 1 ) . Adr 
Spec 

Load (long) LDR 28 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec Unchanged 

R2 opr location (in FPR per R1 & R1+1). 
Low-order fraction of 2nd opr must be fetched 
from LS. 

Load (short) LE 78 RX R1 Load 2nd opr (in stg) into 1st opr location (in FPR Prot (Fl Unchanged 

D2(X2, 82) per R1). Adr 
1. D(21) determines which half of doubleword Spec 

from stg is 2nd opr: if 1, right half; if 0, left 
half. 

2. Low-order half of FPR is ignored & 
unchanged. 

Load (short) LER 38 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec Unchanged 

R2 (in FPR per R1). 
Low-order halves of FPR's are ignored & 
unchanged. 

1-62 (7 /70) 



Table 1-8. Floating-Point Instructions (cont) 

Mne- Op Program 
Instruction monic Code Format Operands Function Interrupt ions Condition Code 

Load & Test (long) LTDR 22 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec 0 : 2nd opr fract = 0 
R2 opr location (in FPR per R1 & R1+11. 1: 2nd opr<o 

1. Low-order fraction of 2nd opr must be 2: 2nd opr >o 
fetched from LS. 

2. Set CC according to sign & magnitude. 

Load & Test (short) LTER 32 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec 0 : 2nd opr fract = 0 
R2 (in FPR per R1). 1: 2nd opr<o 

1. Low-order halves of FPR's are ignored & 2: 2nd opr >o 
unchanged. 

2. Set CC according to sign & magnitude. 

Load Complement LCDR 23 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec 0 : 2nd opr fract = 0 
(long) R2 opr location (in FPR per R 1 & R 1 + 1 I with sign 1 : Orig sign + 

complemented. 2 : Orig sign -
1 . Low-order fraction of 2nd opr must be 

fetched from LS. 
2. Set cc according to original sign & 

magnitude. 

Load Complement LCER 33 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec 0 : 2nd opr fract = 0 
(short) R2 (in FPR per R1) with sign complemented. 1 : Orig sign + 

1. Low-order halves of FPR's are ignored & 2 : Orig sign -
unchanged. 

2. Set cc according to original sign & 
magnitude. 

Load Negative (long) LNDR 21 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec 0 : 2nd opr fract = O 
R2 opr location (in FPR per R1 & R1 + 1) with sign 1: 2nd opr<o 

made minus. 
1. Low-order fraction of 2nd opr must be 

fetched from LS. 
2. Set CC according to result sign & magnitude. 

Load Negative (short) LNER 31 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec 0 : 2nd opr fract = 0 
R2 (in FPR per R1) with sign made minus. 1: 2nd opr<o 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC according to result sign & magnitude. 

Load Positive (long) LPDR 20 RR R1 Load 2nd opr (in FPR per R2 & R2 + 1) into 1st Spec 0 : 2nd opr fract = 0 
R2 opr location (in FPR per R 1 & R 1 + 1 I with sign 2: 2nd opr >o 

made plus. 
1 . Low-order fraction of 2nd opr must be 

fetched from LS. 
2. Set CC according to result sign & magnitude. 

Load Positive (short) LPER 30 RR R1 Load 2nd opr (in FPR per R2) into 1st opr location Spec 0 : 2nd opr fract = 0 
R2 (in FPR per R1) with sign made plus. 2: 2nd opr >o 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC according to result sign & magnitude. 

7201-02 FETOM (7/70) 1-63 



Table 1-8. Floating-Point Instructions (cont) 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Multiply Uong) MD 6C RX R1 Multiply 1st opr (in FPR per R1 & R1 + 1) & 2nd Prot (F) Unchanged 
D2(X2, B2) opr (in stg) & place normalized product into 1st opr Adr 

location (in FPR per R1 & R1 + 1). Spec 
Opr's are prenormalized. ExpOvflo 

Exp Unflo 

Multiply (long) MOR 2C RR R1 Multiply 1st opr (in FPR per R1 & R1 + 1) & 2nd Spec Unchanged 
R2 opr (in FPR per R2 & R2 + 1) & place normalized Exp Ovflo 

product into 1st opr location (in FPR per R 1 & R 1 Exp Unflo 
+ 1). 

Opr's are prenormalized. 

Multiply (short) ME 7C RX R1 Multiply 1st opr (in FPR per R1) & 2nd opr (in stg) Prot (F) Unchanged 
D2(X2, B2) & place normalized product into 1st opr location Adr 

(in FPR per R1 & R1+1). Spec 
1. 0(21) determines which half of doubleword ExpOvflo 

from stg is 2nd opr: if 1, right half; if 0, left Exp Unflo 
half. 

2. Opr's are prenormalized. 

Multiply (short) MER 3C RR R1 Multiply 1st opr (in FPR per R1) & 2nd opr (in Spec Unchanged 
R2 FPR per R2) & place normalized product into 1st Exp Ovflo 

opr location (in FPR per R1 & R1+1). Exp Unflo 
Opr's are prenormalized. 

Store (long) STD 60 RX R1 Store 1st opr (in FPR per R1 & R1 + 1) into 2nd Prot (S) Unchanged 
D2(X2, B2) opr location (in stg). Adr 

1st opr is unchanged. Spec 

Store (short) STE 70 RX R1 Store 1st opr (in FPR pe.r R1) into 2nd opr location Prot (S) Unchanged 
D2(X2, B2) (in stg). Adr 

1. PAL(61) determines into which half of Spec 
doubleword in stg 1st opr is to be stored: if 
1, right half; if 0, left half. 

2. Low-order half of FPR is ignored. 
3. 1st opr is unchanged. 

Subtract Normalized SD 6B RX R1 Algebraically subtract 2nd opr (in stg) from 1st opr Prot (Fl 0: Freet= 0 
(long) 02(X2, B2) (in FPR per R1 & R1 + 1) & place normalized result Adr 1: Fract<o 

into 1st opr location. Spec 2: Fract>o 
1. Low-order fraction of 1st opr must be Exp Ovflo 

fetched from LS. Exp Unflo 
2. Set CC per result sign & magnitude. Sign if 

Subtract Normalized SOR 2B RR R1 Algebraically subtract 2nd opr (in FPR per R2 & Spec 0: Fract = 0 
(long) R2 R2 + 1) from 1st opr (in FPR per R1 & R1+1) & Exp Ovflo 1: Fract<o 

place normalized result into 1st opr location. Exp Unflo 2: Fract >o 
1. Low-order fractions of 1st & 2nd opr's must Sign if 

be fetched from LS. 
2. Set CC per result sign & magnitude. 

1-64 (7/70) 



Table 1-8. Floating-Point Instructions (cont) 

Instruction 

Subtract Normalized 
(short) 

Subtract Normalized 
(short) 

Subtract Unnormalized 
(long) 

Mne
monic 

SE 

SER 

SW 

Subtract Unnormalized SWR 
(long) 

Subtract Unnormalized 
(short) 

SU 

Subtract Unnormalized SUR 
(short) 

Op 
Code 

78 

38 

6F 

2F 

7F 

3F 

Format 

RX 

RR 

RX 

RR 

RX 

RR 

Operands 

R1 
02(X2, 82) 

R1 
R2 

R1 
02(X2, 82) 

R1 
R2 

R1 
02(X2, 82) 

R1 
R2 

Function 

Algebraically subtract 2nd opr On stg) from 1st opr 
On FPR per R1) & place normalized result into 1st 
opr location. --

1. Low-order half of FPR is ignored & 
unchanged. 

2. 0(21) determines which half of doubleword 
from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Set CC per result sign & magnitude. 

Algebraically subtract 2nd opr (in FPR per R2) 
from 1st opr (in FPR per R1) & place normalized 
result into 1st opr location. 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC per result sign & magnitude. 

Algebraically subtract 2nd opr (in stg) from 1st opr 
On.FPR per R1 & R1 + 1) & place unnormalized 
result into 1st opr location. 

1. Low-order fraction of 1st opr must be 
fetched from LS. 

2. Set CC per result sign & magnitude. 

Algebraically subtract 2nd opr (in FPR per R2 & 
R2 + 1) from 1st opr (in FPR per R1 & R1 + 1) & 
place unnormalized result into 1st opr location. 

1. Low-order fractions of 1st & 2nd opr's must 
be fetched from LS. 

2. Set CC per result sign & magnitude. 

Algebraically subtract 2nd opr (in stg) from 1st opr 
(in FPR per R1) & place unnormalized result into 
1st opr location. 

1. Low-order half of FPR is ignored & 
unchanged. 

2. 0(21) determines which half of doubleword 
from stg is 2nd opr: if 1, right half; if 0, left 
half. 

3. Set CC per result sign & magnitude. 

Algebraically subtract 2nd opr (in FPR per R2) 
from 1st opr (in FPR per R1) & place unnormalized 
result into 1st opr location. 

1. Low-order halves of FPR's are ignored & 
unchanged. 

2. Set CC per result sign & magnitude. 

Program 
Interruptions 

Prot (Fl 
Adr 
Spec 
Exp Ovflo 
Exp Unflo 
Sign if 

Spec 
Exp Ovflo 
Exp Unflo 
Signif 

Prot (F) 
Adr 
Spec 
Exp Ovflo 
Sign if 

Spec 
Exp Ovflo 
Sign if 

Prot (Fl 
Adr 
Spec 
Exp Ovflo 
Sign if 

Spec 
Exp Ovflo 
Sign if 

Condition Code 

0: Fract= 0 
1: Fract<o 
2: Fract>o 

0: Fract= 0 
1: Fract<o 
2: Fract>o 

0: Fract = 0 
1 : Fract<o 
2: Fract>o 

0: Freet= 0 
1 : Fract<o 
2: Fract>o 

0: Freet= 0 
1: Fract<o 
2: Fract>o 

0: Fract = 0 
1 : Fract<o 
2: Fract>o 

7201-02 FETOM (7/70) 1-65 



Instruction Formats 

• Floating-point instructions use RR and RX formats. 

• Programmer must specify even FPR of even/odd pair (0, 
2, 4, or 6). 

• Main storage address of second operand must designate 
word boundaries (bits 22 and 23 = 00) for short 
operands and doubleword boundaries (bits 2I, 22, and 
23 = 000) for Jong operands. 

Floating-point instructions occur in the RR and RX 
formats: 

RR Format 

OP Code R l R2 

7 8 11 12 15 

RX Format 

OP Code R l X2 B2 02 

7 8 11 12 15 16 19 20 31 

In these formats, RI is the address of an FPR that 
contains the first operand. The second operand location is 
defined differently for the two formats. 

In the RR format, R2 is the address of an FPR 
containing the second operand. The same FPR may be 
specified for the first and second operands. 

The RI and R2 fields must specify 0, 2, 4, or 6, or a 
specification program interruption occurs. The specification 
check is made by testing E(8) and E(l I) for zero; for RR 
instructions, E(l 2) and E(l 5) are tested for zero. If E(l I) 
or E( I 5) does not equal zero, an odd address has been 
specified. If E(8) or E(l 2) does not equal zero, the 
specified FPR address is greater than 7. Thus, if any of the 
tested E bits equals I, a specification program interruption 
is taken. 

In the RX format, the contents of the GPR's specified 
by X2 and B2 are added to the contents of the D2 field to 
form an effective address designating the main storage 
location of the second operand. A zero in an X2 or B2 field 
indicates that no index or base component is to be used. 
The main storage address should designate word boundaries 
for short operands (bits 22 and 23 = 00) and doubleword 
boundaries (bits 2I, 22, and 23 = 000) for long operands. 
Otherwise, a specification program interruption occurs. 

The results replace the first operand except for store 
operations, where result replaces the second operand. 
Except for the storing of the final result, the contents of all 
LS registers and main storage locations participating in 
operand addressing or operation execution remain 
unchanged. 

1-66 (7 /70) 

Data Flow 

• Eight 32-bit LS registers are reserved for floating-point 
instructions. 

• Micro-orders control low-order fraction fetch. 

• LS FPR address specified must be even (0, 2, 4, or 6). 

• Sign-handling is achieved via serial adder or STAT's. 

• Characteristic-handling is performed via serial adder. 

• Fraction-handling is performed via parallel adder. 

Eight 32-bit LS registers (addresses I 6-23) are reserved for 
floating-point instruction operands and results (Diagram 
3-2, FEMDM). An even/odd pair of these registers functions 
as a double-length (64-bit) register with an assigned address 
of 0, 2, 4, or 6. A 0 in the RI or R2 field of a floating-point 
instruction specifies LS locations I 6 and I 7; a 2 specifies 
locations I8 and I9; a 4 specifies locations 20 and 2I; a 6 
specifies locations 22 and 23. 

In instructions other than floating-point, addressing is 
limited to I 6 GPR's because the RI and R2 fields contain 
four bits each. The LS address register (LAL), however, 
contains five bits; LAL(O) is used to address the FPR's. 
Because floating-point instructions must specify an LS 
address of 0, 2, 4, or 6 in the RI and R2 (RR only) fields, 
and use only the FPR's for operands, a I is forced into 
LAL(O) when accessing LS during execution of a floating
point instruction. (Note that, for RX format instructions, 
the base and index register fields specify GPR's.) For 
example, if address 0 is specified by the RI or R2 field, LS 
accesses LS register I 6 (LAL = 10000). Short operand 
instructions fetch only 32 bits (single word) from the 
specified FPR. Because ingating and outgating of LS are 
limited to 32 bits each, long floating-point operands must 
be divided into two 32-bit words stored in an even/odd pair 
of FPR's. Under micro-order control, a I is forced into the 
low-order bit position of LAL [LAL( 4)] to fetch or store 
the low-order 32 bits of a long operand from RI plus I or 
R2 plus 1. For example, the 'RF*E3.QI' micro-order 
specifies the FPR addressed by E(l 2-I 5) + I. The RI + I 
and R2 + I registers are the odd-numbered addresses of 
FPR's. 

At the beginning of the execution phase of floating
point instructions, a specification test establishes that: 
I. An even register is specified in the RI and R2 (RR 

format only) fields. 
2. A register address greater than 6 is not specified in the 

RI and R2 (RR format only) fields. 
3. The effective main storage address is on a doubleword 

boundary for long operands and on a word boundary for 
short operands. 



Data flow may be divided into two paths: the fraction 
path and the sign and characteristic path. The fractions are 
transferred, added, or shifted via the parallel adder. The 
operands are located in DT, ST, and AB. For floating-point 
instructions, the parallel adder shifts operands right or left 
four bit positions under micro-order control. For floating
point, the contents of PAL can be gated to T, D, A, and B. 

The sign and characteristic path is from ST or AB to F, 
via the serial adder. The byte gated to the inputs of the 
serial adder depends upon the STC and the ABC values. For 
floating-point, the STC is normally set to 4 to specify the 
first byte of T, and the ABC is set to 0 to specify the first 
byte of A. The data from F is gated to the serial adder. 
From the serial adder, the data is transferred to ST per the 
STC. For floating-point operations, the serial adder adds 1 
to, or subtracts 1 or 64 from, the characteristic at the 
inputs of the serial adder under micro-order control. 

In floating-point instructions, the signs are saved in 
STAT's under micro-order control. When the 'SAVE 
SIGNS' micro-order is executed, bit 0 of the ST byte 
selected by the STC is gated in true or complement form, 
depending upon the instruction, to STAT C. Because the 
STC is set to 0 or 4 before issuing the 'SAVE SIGNS' 
micro-order, the contents of either S(O) or T(32), which
ever contains the sign of the operand, is saved in ST AT C 
via the serial adder. At the same time, the sign of the 
operand in AB is sent to ST AT F. If the instruction is a 
multiply or divide and SAL(O) = 1 (indicating a carry 
resulted from the characteristic addition or subtraction), 
STAT Dis set. 

When the results of the execution of a floating-point 
instruction are to be stored, the STAT's are decoded, under 
micro-order control, to determine the sign of the result. If 
the sign is minus, the 'INSERT SIGN' micro-order forces a 
1 to bit 0 of the FPR (on the LS bus in) addressed by RI 
and inhibits gating of T(32) to LS. The result sign is minus 
under the following conditions: 
1. Multiply or divide and signs (ST A T's C and F) are 

unlike. 
2. Load complement and STAT C equals 0. 
3. Halve, load, or load and test, and ST AT C equals I . 
4. Add, subtract, or compare and sign of the larger operand 

is minus. 
5. Load negative. 

Program Interruptions 

Seven program interruptions can occur during execution of 
floating-point instructions. Of the seven, "exponent under
flow" and "significance" can be masked off; the others are 
unconditionally taken. If the associated mask bit [PSW(38) 
and PSW(39), respectively] is a 0, the interruption is 
ignored; if a 1, it is taken. 

The seven interruptions and their causes are: 
1. Protection. The storage key does not match the protec

tion key in the PSW for all RX instructions. When an 
instruction causes a fetch-protection violation, instruc
tion execution is terminated, the program execution is 
altered by a program interruption, and a protection 
program interruption is indicated in the old PSW. When 
an instruction causes a store-protection violation, the 
operation is suppressed. 

2. Addressing. An address designates a location outside the 
available storage for the installation. The operation is 
terminated. 

3. Specification. A short operand is not located on a word 
boundary, a long operand is not located on a double
word boundary, or an FPR address other than 0, 2, 4, or 
6 is specified. The instruction is suppressed. The address 
restrictions do not apply to the components (contents of 
the D2 field and the contents of the LS registers 
specified by X2 and B2) from which an address is 
generated. 

4. Exponent overflow. The result exponent (characteristic) 
of an addition, subtraction, multiplication, or division 
overflows, and the result fraction is not zero. The 
operation is completed by making the characteristic 128 
smaller than the true result; the sign and fraction remain 
unchanged. 

5. Exponent underflow. The result of an addition, subtrac
tion, multiplication, or division underflows, and the 
result fraction is not zero. A program interruption 
occurs if the exponent-underflow mask [PSW(38)] is a 
I. The operation is completed by replacing the result 
with a true zero, if the mask is off. If the mask is on, the 
characteristic is made 128 larger than the true result and 
the sign and fraction remain unchanged. 

6. Significance. The result fraction of an addition or 
subtraction is zero. A program interruption occurs if the 
significance mask [PSW(39)] is a I. The mask bit also 
affects the result of the operation. When the significance 
mask bit is a 0, the operation is completed by replacing 
the result with a true zero. When the significance mask 
bit is I, the operation is completed without further 
change to the characteristic of the result. In either case, 
the CC is set to 0. 

7. Floating-point divide. Division by a number with a zero 
fraction is attempted. The division is suppressed, but the 
CC and the data in storage remain unchanged. 

Condition Codes 

The results of floating-point add, subtract, compare, and 
certain load operations set the CC (Table 1-8). Multiplica
tion, division, and storing leave the CC unchanged. 

7201-02 FETOM (7 /70) 1-67 



The CC can be set to reflect two types of results for 
floating-point arithmetic. For most operations, CC's of 0, l, 
and 2 respectively indicate that the result register contains 
zero, less than zero, and more than zero. A zero result is 
indicated whenever the result fraction is zero, including a 
forced zero. A CC of 3 is never set by floating-point 
instructions. 

For compare instructions, CC's of 0, l, and 2 respective
ly indicate that the first operand is equal to, lower than, 
and higher than the second operand. 

Decimal Instructions 

The decimal instructions provide for addition, subtraction, 
comparison, multiplication, division, and format conversion 
of variable-field length (VFL) operands. The VFL data, 
which may range from 1 to 16 bytes in length, resides in 
main storage only. All decimal instructions are therefore in 
the SS format to provide for storage-to-storage operations. 
In general, most decimal instructions requiie fetching the 
operands from main storage, performing the operations 
specified by the instruction op code, and storing the results 
in main storage. A list of the decimal instructions is 
contained in Table 1-9. 

For a discussion of number representation, data formats, 
and operand addressing, refer to Appendix D in this 
manual. 

Data Handling 

• Decimal arithmetic is performed by either true add or 
complement add sequence, using excess-6 arithmetic. 

• True add sequence adds 6 to each digit gated to A-side 
of serial adder. 

• Complement add sequence gates -2's complement of each 
digit to A-side of serial adder. 

• Inputs to B-side of serial adder are unchanged. 

• Each digit which did not cause a carry at output of serial 
adder is reduced by 6 (decimal corrected). 

• If no carry from high-order digit, result is in complement 
form and must be recomplemented. 

Decimal arithmetic operations are performed in the serial 
adder on a byte basis. A true add or a complement add 
sequence is used depending upon the instruction and the 

1-68 (7 /70) 

operand signs. Because decimal digits are in BCD format, 
excess-6 arithmetic is used. 

As stated previously, the decimal digits are represented 
by a binary code. Each digit consists of a four-bit field, bit 
combinations 0000-1001 corresponding to decimal digits 
0-9. This system of decimal notation allows relatively 
simple binary techniques to be applied when operating with 
decimal data, and also facilitates direct reading of decimal 
results. However, two problems are encountered. One 
problem is that the four-bit field used to represent decimal 
digits has 16 possible codes, of which 6 (binary combina
tions for 10 through 15 inclusive) are invalid as decimal 
digits. Thus means must be provided to correct invalid · 
results when they occur in an arithmetic operation. For 
example, the addition of decimal digits 0110 (six) and 0101 
(five) must yield a decimal result of 0001 0001 (eleven). If, 
however, a pure binary addition is carried out, it will yield 
an unacceptable result: 

0110 (decimal, or binary 6) 
0101 (decimal, or binary 5) 

1011 (invalid as decimal, but 11 in binary) 

The second problem is in the generation of a decimal 
carry. When the sum of two decimal digits exceeds 9, a 
carry must be sent to the next high-order digit. However, a 
pure binary addition does not yield a carry unless the sum 
of the digits exceeds 1111 (15), which has the effect of a 
hex carry; i.e., carrying the order of 16 rather than 10. 

Both of the above problems are solved by the excess-6 
arithmetic scheme and the decimal correction functions of 
the serial adder. In the excess-6 scheme, often referred to as 
true +6 arithmetic, a 6 is added to each digit as it is gated to 
the A-side of the adder, one byte (two digits) at a time 
from the second operand; the digits gated to the adder 
B-side, one byte at a time from the first operand, are not 
affected: 

True Digits B A True Digits+ 6 

If the sum of the two digits to be added is 10 or greater, 
the true +6 scheme automatically eliminates the unwanted 
binary configuration and also supplies a decimal carry in 



Table 1-9. Decimal Instructions 

Instruction 

Add Decimal 

Compare Decimal 

Divide Decimal 

Move with Offset 

Mne
monic 

AP 

CP 

DP 

MVO 

Op 
Code Format Operands 

FA SS D1(L1, 81) 
D2(L2, 82) 

F9 

FD 

F1 

SS 

SS 

SS 

D1(L1,81) 
D2(L2,82) 

D1(L1, 81) 
D2(L2, 82) 

D1(L1, 81) 
D2(L2, 82) 

Function 

Algebraically add 2nd opr (in stg) to 1st opr (in stg) 
& place resu It into 1st opr location. 

1. Opr's & result are in packed format. 
2. Opr fields may overlap if low-order bytes 

coincide. 
3. Right to left, byte by byte. 
4. Shorter opr is extended with high-order O's. 
5. 1st opr field must be large enough to contain 

all 2nd opr significant digits. 

Algebraically compare 1st opr (in stg) with 2nd opr 
(in stg) & set CC according to result. 

1. Opr's are in packed format. 
2. Shorter opr is extended with high-order O's. 
3. Opr fields may overlap if low-order bytes 

coincide. 
4. Right to left, byte by byte. 
5. Result is not stored & opr fields are 

unchanged. 

Program 
Interruptions Condition Code 

Prot (S,F) 0 : Sum= 0 
Adr 1: Sum<o 
Data 2: Sum >o 
Dec Ovflo 3 : Overflow 

Prot (F) 
Adr 
Data 

0 : Opr 1 = Op'r 2 
1 : Opr 1 < Opr 2 
2: Opr 1>opr2 

Divide 1st opr (in stg) by 2nd opr (in stg) & place Prot (S,F) Unchanged 
result into 1st opr location (quotient is leftmost in Adr 
1st opr location; remainder, rightmost). Spec 

1. Opr's are in packed format. Data 
2. Dividend must contain at least 1 high-order Dec Div 

0. 
3. Max dividend field = 16 bytes (31 digits & 

sign); L 1=15. 
4. Max divisor field= 8 bytes (15 digits& sign); 

L2 = 7. 
5. Divisor field must be <dividend field (L2 < 

L1). 
6. Max quotient field = 15 bytes. 
7. Quotient field = dividend field minus 

remainder (divisor) field (L 1 minus L2). 
8. Remainder field = divisor field. 
9. Opr fields may overlap if low-order bytes 

coincide. 
10. Sign of quotient is determined algebraically, 

except 0 result is positive. 
11. Sign of remainder is same as dividend sign. 

Store 2nd opr (in stg) to left of and adjacent to 
low-order 4 bits of 1st cipr (in stg). 

1. Opr's are in packed or unpacked format. 
2. If 2nd opr is shorter than 1st opr, fill 1st opr 

field with high-order O's. 
3. If 2nd opr is longer than 1st opr, ignore 

excess 2nd opr high-order digits. 
4. Right to left, byte by byte. 

Prot (S,F) 
Adr 

Unchanged 

7201-02 FETOM (7 /70) 1-69 



Table 1-9. Decimal Instructions (cont) 

Instruction 

Multiply Decimal 

Pack 

Subtract Decimal 

Unpack 

Zero & Add 

1-70 (7 /70) 

Mne- Op 
monic Code Format Operands 

MP FC SS D1(L1, 81) 
D2(L2, 82) 

PACK F2 

SP FB 

UNPK F3 

ZAP F8 

SS 

SS 

SS 

SS 

D1(L1, 81) 
D2(L2, 82) 

D1(L1, 81) 
D2(L2, 82) 

D1(L1,81) 
D2(L2, 82) 

D1(L1, 81) 
D2(L2, 82) 

Program 
Function Interruptions 

Multiply 1st opr (in stg) by 2nd opr (in stg) & place Prot (S,F) 
result into 1st opr location. Adr 

1. Opr's are in packed format. Spec 
2. Product must contain at least 1 high-order 0. Data 
3. Max multiplicand field = 16 bytes (31 digits 

& sign); L 1=15. 
4. Max multiplier field = 8 bytes (15 digits & 

sign); L2 = 7. 
5. Multiplier field must be< multiplicand field 

(L2<L1 ); max value of L2 = 7. 
6. Multiplicand field initially contains high

order 0-field equal in length to multiplier 
field. 

7. Max product field = 16 bytes (31 digits & 
sign). 

8. Sign of product is determined algebraically, 
except 0 result is positive. 

Convert format of 2nd opr (in stg) from zoned to 
packed & place result into 1st opr location (in stg). 

1. 2nd opr is in zoned format. 
2. No restriction on overlapping fields. 
3. Extend 2nd opr with high-order O's, if 

necessary. 
4. If 1st opr field is too short to contain all 

significant digits of 2nd opr field, ignore 
excess 2nd opr high-order digits. · 

5. Right to left, byte by byte. 

Algebraically subtract 2nd opr (in stg) from 1st opr 
(in stg) & place result into 1st opr location. 

1. Opr's & result are in packed format. 
2. Opr fields may overlap if low-order bytes 

coincide. 
3. 1st opr field must be large enough to contain 

all 2nd opr significant digits. 
4. Shorter opr is extended with high-order O's. 
5. Right to left, byte by byte. 

Convert format of 2nd opr (in stg) from packed to 
zoned & place result into 1st opr location (in stg). 

1. 2nd opr is in packed format. 
2. No restriction on overlapping fields. 
3. Extend 2nd opr with high-order O's, if 

necessary. 
4. If 1st opr field is too short to contain all 

significant digits of 2nd opr field, ignore 
excess 2nd opr high-order digits. 

5. If PSW(12) = 1, use USASCll-8 code for 
zones; if PSW(12) = 0, use EBCDIC. 

6. Right to left, byte by byte. 

Place 2nd opr (in stg) into 1st opr location (in stg). 
1. 2nd opr is in packed format. 
2. Opr fields may overlap if low-order byte of 

1st opr coincides with or is to the right of 
low-order byte of 2nd opr. 

3. 1st opr field must be large enough to contain 
all 2nd opr significant digits. 

Prot (S,F) 
Adr 

Prot (S,F) 
Adr 
Data 
Dec Ovflo 

Prot (S,F) 
Adr 

Prot (S,F) 
Adr 
Data 
Dec Ovflo 

Condition Code 

Unchanged 

Unchanged 

0: Dif = 0 
1: Dif<O 
2: Dif>O 
3: Overflow 

Unchanged 

0: Result= 0 
1: Result<o 
2: Result >o 
3: Overflow 



terms of a hex carry. In true +6 arithmetic, the previom. 
add example of digits 5 and 6 is executed as follows: 

0110 (Six) 

0101 (Five, True) 
0110 Plus Six) 
1011 (Excess-6 

Addition of a 6 in all cases, however, may create an 
erroneous and sometimes invalid result. This occurs if the 
sum of the two digits to be added is less than 10. For 
example, consider the addition of decimal digits 1 and 2: 

0010 (Two) 

In the above case, the result (9) is clearly in excess-6 form; 
the digit 6 must be subtracted from the result to obtain the 
correct answer. 

A further example illustrates how an excess-6 digit may 
generate an invalid result. Consider the addition of decimal 
digits 0 and 5: 

0101 (Five) 
A 

0000 (Zero, True) 
0110 (Plus Six) 
0110 (Excess-6) 

(Binary combination 11 is 
...__ __ _,_ __ __, an invalid decimal digit) 

Note that both the erroneous and the invalid results are 
characterized by a no-carry to the next high-order digit. 
This condition holds true in all cases when incorrect data is 
generated, and is utilized by the decimal correction logic of 
the adder. When a no-carry condition is detected, this logic 

automatically deducts 6 from the result, thus supplying the 
correct digit to the adder output. 

The decimal correct function of the adder is also used 
during complement add operations. The binary codes of the 
decimal digits at the adder A-side are gated in 2's 
complement form; excess 6's are not supplied. The digits at 
the B-side of the adder are gated in true form. The result of 
a complement add operation may be in true or complement 
form. 

For clarity, the previous examples have shown opera
dons that use only one digit. However, the serial adder 
normally handles one byte (two digits) at a time. To 
demonstrate the operation of the serial adder during 
decimal operations, the following examples deal with a byte 
of data. 

If the first operand is larger than the second, the result is 
in true form. Consider complement addition of decimal 
digit 5 to 6; that is 6 minus 5: 

1,st Operand (Six) 
True 

0000 0110 

2nd Operand (Five) 
2's Complement 

1111 10 l l .. ~i-----0000 010 l 

A true result during a complement add operation is 
always characterized by a carry from the last high-order 
digit. As in the case of the true add operation, a carry to 
the next digit indicates that no decimal correction of that 
digit is necessary. 

If the first operand is smaller than the second, the result 
is in complement form. Because decimal data is always 
stored in true form, the result must be recomplemented. 
Consider complement addition of the decimal digit 6 to 5; 
that is, 5 minus 6: 

1st Operand (Five) 
True 

0000 0101 
2nd Operand (Six) 
2's Complement 

1111 1010-r---0000 0110 

1001 1001 

Note that the decimal correction feature of the adder 
always subtracts 6 from each digit position which does not 
produce a carry. In a complement add operation, a no-carry 
condition from the last high-order digit also indicates that 

7201-02 FETOM (7/70) 1-71 



the result is in complement form and must be recomple
mented. This requires a second pass through the adder: 

(Zero} 

0110 
0000 
0110 
0110 

1001 1001 1st Pass Result 

~ 
0110 0111 2's Complement 

0000 0001 2nd pass result (corrected result) 

Instruction Format 

• Instructions specify two addresses. 

• Bl (contents) + Dl + L1 specifies rightmost byte of 1st 
operand. 

• B2 (contents) + D2 + L2 specifies rightmost byte of 2nd 
operand. 

• Results are stored in true form at first operand location. 

All decimal instructions use the SS format: 

_o_p c_oc1_e __ L_1 ...... l_L2_l __ s1 __ I ~~ 01 I B2 I ~0 
0 78 11 12 15 16 19 20 31 32 35 36 47 

An SS instruction operates on two operands in main storage 
and stores the result into the same location from which the 
first operand was obtained. Therefore, the address of the 
first operand is also the destination address; the address of 
the second operand is commonly referred to as the source 
address. 

The contents of the GPR specified by the B 1 field are 
added to the D 1 field to form an address. This address 
specifies the leftmost byte of the first operand. The number 
of operand bytes to the right of this byte is specified by the 
L1 field of the instruction. The L1 field may specify up to 
16 bytes. Similarly, the address .of the second operand is 
specified by the B2, D2, and L2 fields of the instruction. A 
zero in the Bl or B2 fields indicates the absence of the 
corresponding address component. 

Normally, decimal operands are processed from right to 
left. Thus the address for the initial operand fetch is: 

LS register per B-field + D-field + L-field. 
Operands are fetched from main storage one doubleword, 
or eight bytes, at a time. Because the L-field may specify up 
to 16 bytes, several operand fetches may be required to 
completely access the operand. After each fetch,. the 

1-72 (7 /70) 

operand address is decremented by 8 to access the next 
high-order eight bytes of the operand. 

The results of decimal operations are placed into the 
first operand field and must be in true form. The result is 
never stored outside the first operand field specified by the 
instruction. If the first operand is longer than the second, 
the second operand is extended with high-order zeros up to 
the length of the first operand. Such extension does not 
modify the second operand in main storage, where it 
remains unchanged. 

Data Flow 

• All decimal instructions use serial adder. 

• First operand is placed into ST; second operand into AB. 

• STC specifies which ST byte is to be processed. ABC 
specifies which AB byte is to be processed. 

• Destination bytes replace first operand bytes in ST. 

• D contains first operand and destination address. 

• IC contains second operand address. 

• L1 and L2 specify number of first and second operand 
bytes, respectively, to be processed. 

The data path used for decimal operations consists pri
marily of ST, AB, and the serial adder (Diagram 3-3, 
FEMDM). ST contains the first operand, and AB the 
second. The input byte to the adder A-side is selected from 
AB under control of the ABC. The input to the B-side of 
the adder is selected from ST under STC control. The 
selected bytes are gated to the adder simultaneously. 

The serial adder handles the data at a rate of one byte 
per cycle; i.e., for each two input bytes, one output byte is 
generated at the SAL. The output byte is gated from SAL 
to ST under control of the STC, after which the ABC and 
the STC are decremented and a new cycle is started. Thus, 
as the operation progresses, the first operand bytes in ST 
are replaced by the destination bytes. 

The number of first and second operand bytes processed 
depends upon length fields L1 and L2, respectively. The L1 
count contained in E(8-11) is decremented once for each 
byte of first operand that is processed. Similarly, the L2 
count in E(l 2-15) is decremented once for each second 
operand byte processed. 

D contains the address of the first operand, which is also 
the address of the destination. The initial address in D 
specifies the doubleword containing the rightmost byte of 



the operand. When the STC is decremented to zero, 
indicating that all first operand bytes in ST have been 
processed, the contents of ST are stored into main storage. 
If additional first operand bytes remain in main storage (the 
LI count has not stepped to· zero), the D-address is 
decremented by 8, and a fetch of the next operand 
doubleword is made to ST. 

Storage of the destination bytes in ST is controlled by 
the mark triggers. The mark triggers permit alteration of 
only those bytes in main storage that belong to the field 
being processed. There is one mark trigger for each of the 
eight bytes in ST. As a byte of processed data is gated to 
ST, the corresponding mark trigger is set, thus designating 
the byte for main storage. 

The IC contains the address of the second operand. (The 
instruction address is held in the LSWR during execution of 
SS instructions.) The initial IC address specifies the 
doubleword containing the rightmost byte of the second 
operand. When the ABC is decremented to zero, alt"operand 
bytes in AB have been processed. If additional second 
operand bytes remain in main storage (L2 count has not 
stepped to zero), the IC address is decremented by 8 and a 
fetch is made of the next second operand doubleword to 
AB. 

This pattern of fetching data, processing via the serial 
adder, assembling the results in ST, and storing the contents 
of ST into main storage is continued until either the first or 
the second operand length field (LI or L2 count, respec
tively) has counted below zero. The operation at this point 
depends upon the individual instruction. If L2 has been 
exhausted but not LI, some instructions may require 
extension of the remaining first operand bytes with 
high-order zeros. On the other hand, if LI is exhausted 
before L2, the instruction may test the remaining second 
operand bytes for presence of significant digits. This test is 
performed to detect a possible overflow condition and is 
accomplished by running the excess second operand bytes 
through the serial adder and sensing nonzeros. In all cases, 
if both LI and L2 counts are exhausted, the instruction 
execution ends after the last destination word is stored into 
main storage. 

Some decimal operations require use of the parallel 
adder to perform a right-4 or left-4 shift of the entire 
operand. The "spilled" bits generated during the shift are 
held in B(64-67). 

Program Interruptions 

Six program interruptions can occur during execution of 
decimal instructions. Of the six., only decimal overflow can 
be masked off; the others are unconditionally taken. If the 
decimal overflow mask bit [PSW(37)] is a 0, the decimal 
overflow interruption is ignored; if a 1, it is taken. 

The six interruptions and their causes are: 
1. Protection. The storage key does not match the protec

tion key in the PSW. The operation is terminated for 
either a store or a fetch yiolation. 

2. Addressing. An address designates a location outside the 
available storage for the installed system. The operation 
is terminated. 

3. Specification. A multiplier or a divisor size exceeds 15 
digits and sign, or a divisor is equal to or greater than the 
dividend, or a multiplier is equal to or greater than the 
multiplicand. The instruction is suppressed. 

4. Data. A sign or digit code of an operand specified in the 
Add, Subtract, Compare, Zero and Add, Multiply, or 
Divide instruction is incorrect, a multiplicand has insuffi
cient high-order zeros, or the operand fields in these 
instructions overlap. The operation is terminated before 
any original data is changed in main storage, except for 
an invalid digit code which is detected after the first 
store cycle. 

5. Decimal overflow. Execution of the Add, Subtract, or 
Zero and Add instruction results in an overflow condi
tion. The program interruption occurs only when the 
decimal-overflow mask [PSW(37)] is a 1. The operation 
is completed by placing the truncated low-order result 
into the result field and setting the CC to 3. The sign and 
low-order digits contained in the result field are the same 
as they would have been for an infinitely long result 
field. 

6. Decimal divide. The quotient exceeds the specified data 
field, including, division by zero. Division is suppressed. 
Therefore, the dividend and divisor remain unchanged in 
storage. 

Condition Codes 

The results of the Decimal Add, Subtract, Compare, and 
Zero and Add instructions set the CC as shown in Table 
1-9. 

Logical Instructions 

The logical instructions provide for logical manipulation of 
data: moving, comparing, bit testing, bit connecting, 
translating, editing, and shifting. The logical instructions 
use all five instruction formats and work with both fixed
and variable-field length data. Table 1-10 lists the logical 
instructions. 

For a discussion of the eight-bit zoned character codes, 
data formats, and operand addressing, refer to Appendix D 
in this manual. 

7201-02 FETOM (7 /70) 1-73 



Table 1-10. Logical Instructions 

Mne- Op Program 

Instruction monic Code Format Operands Function Interruptions Condition Code 

AND N 54 RX R1 AND 1st opr (in GPR per R1) with 2nd opr (in stg) Prot (F) 0: Result= 0 

D2(X2, B2) & place result into 1st opr location. Adr 1 : Result :#=o 

Left to right, byte by byte. Spec 

AND NC D4 SS D1(L, B1) AND 1st opr (in stg) with 2nd opr (in stg) & place Prot (S,F) 0: Result= 0 

D2(B2) result into 1st opr location. Adr 1 : Result :#=o 
1. Left to right, byte by byte. 
2. Max number of bytes is 256. 

AND NI 94 SI D1(B1) AND immediate opr (12 of inst) with 1st opr (in Prot (S) 0: Result= 0 

12 stg) & place result into 1st opr location. Adr 1 : Result :#=o 

AND NR 14 RR R1 AND 1st opr (in GPR per R1) with 2nd opr (in None 0: Result= 0 

R2 GPR per R2) & place result into 1st opr location. 1 : Result :#=o 
Left to right, byte by byte. 

Compare Logical CL 55 RX R1 Binarily compare 1st opr (in GPR per R1) with 2nd Prot (F) 0 : Opr 1 = Opr 2 

D2(X2, B2) opr (in stg) & set CC according to result. Adr 1 : Opr 1 < Opr 2 

1. Left to right, byte by byte. Spec · 2 : Opr 1 >opr 2 

2. Terminate on inequality or end of fields. 

Compare Logical CLC D5 SS D1(L, B1) Binarily compare 1st opr (in stg) with 2nd opr (in Prot (F) 0 : Opr 1 = Opr 2 

D2(B2) stg) & set CC according to result. Adr 1: Opr 1 <opr2 

1. Left to right, byte by byte. 2 : Opr 1 > Opr 2 

2. Max number of bytes is 256. 
3. Terminate on inequality or end of fields. 

Compare Logical CLI 95 SI D1(B1) Binarily compare 1st opr (in stg) with immediate Prot (F) 0 : Opr 1 = Opr 2 

12 opr (12 of inst) & set CC according to result. Adr 1 : Opr 1 < Opr 2 

1. Left to right. 2: Opr 1>opr2 
2. Terminate on inequality or end of fields. 

Compare Logical CLR 15 RR R1 Binarily compare 1st opr (in GPR per R1) with 2nd None 0 : Opr 1 = Opr 2 

R2 opr (in GPR per R2) & set CC according to result. 1 : Opr 1 < Opr 2 
1. Left to right, byte by byte. 2 : Opr 1 > Opr 2 
2. Terminate on inequality or end of fields. 

Edit ED DE SS D1(L, B1) Change format of source (2nd opr; in stg) from Prot (S,F) 0: Result= 0 

D2(B2) packed to zoned, edit source under control of Adr 1: Result<o 
pattern (1st opr; in stg), & place result into 1st opr Data 2: Result >o 

location. 
1. Left to right, byte by byte. 
2. Max number.of bytes is 256. 

Edit & Mark EDMK DF SS D1(L, B1) Change format of source (2nd opr; in stg) from Prot (S,F) 0: Result=O 

D2(B2) packed to zoned, edit source under control of Adr 1 : Result <o 
pattern (1st opr; in stg). place result into 1st opr Data 2: Result >o 
location, & place location of each 1st sign ificani 
result digit into GPR 1. 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 

1-74 (7 /70) 



Table 1-10. Logical Instructions (cont) 

Instruction 

Exclusive OR 

Exclusive OR 

Exclusive OR 

Exclusive OR 

Insert Character 

Load Address 

Move 

Move 

Move Numerics 

Move Zones 

Mne
monic 

x 

xc 

XI 

XR 

IC 

LA 

MVC 

MVI 

MVN 

MVZ 

Op 
Code 

57 

07 

97 

17 

43 

41 

02 

92 

01 

03 

Format 

RX 

SS 

SI 

RR 

RX 

RX 

SS 

SI 

SS 

SS 

Operands 

R1 
02(X2,B2) 

01(L, 81) 
02(82) 

01(81) 
12 

R1 
R2 

R1 
02(X2, 82) 

R1 
02(X2,B2) 

01(L, 81) 
02(82) 

01(81) 
12 

01(L, 81) 
02(82) 

01(L, 81) 
02(82) 

Function 

Exclusive-OR 1st opr (in GPR per R1) with 2nd opr 
(in stg) & place result into 1st opr location. 

Left to right, byte by byte. 

Exclusive-OR 1st opr (in stg) with 2nd opr (in stg) 

& place result into .1st opr location. 
1. Left to right, byte by byte. 
2. Max number of bytes is 256. 

Exclusive-OR immediate opr (12 of inst) with 1st 
opr (in stg) & place result into 1st opr location. 

Exclusive-OR 1stopr (in GPR per R1) with 2nd opr 
(in GPR per R2) & place result into 1st opr 
location. 

Left to right, byte by byte. 

Insert 2nd opr (byte; in stg) into bits 24-31 of 1st 
opr location (in GPR per R1). 

Remaining bits in GPA are unchanged. 

Insert 2nd opr adr into bits 8-31 of GPR specified 
by R1. 

1. Bits 0-7 in GPA are made O's. 
2. 2nd opr. is not fetched from stg. 

Place 2nd opr (in stg) into 1st opr location (in stg). 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 
3: Move operation can be high or low speed. 

Place immediate opr (12 of inst) into 1st opr 
location (in stg). 

Place numeric portion (low-order 4 bits) of each 
byte of 2nd opr (in stg) into low-order 4 bits of 
corresponding byte of 1st opr (in stg). 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 
3. Zones (high-order 4 bits) in both opr's are 

unchanged. 
4. No restriction on overlapping fields. 

Place zone portion (high-order 4 bits) of each byte 
of 2nd opr (in stg) into high-order 4 bits of 
corresponding byte of 1st opr (in stg). 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 
3. Numerics (low-order 4 bits) in both opr's are 

unchanged. 
4. No restriction on overlapping fields. 

Program 
Interruptions 

Prot (F) 
Adr 
Spec 

Prot (S,F) 
Adr 

Prot (SI 
Adr 

None 

Prot (Fl 
Adr 

None 

Prot (S,FI 
Adr 

Prot (S) 
Adr 

Prot (S,F) 
Adr 

Prot (S,F) 
Adr 

Condition Code 

0: Result= 0 
1: Result =#=o 

0: Result= 0 
1: Result=#=O 

0: Result= 0 
1: Result=#=O 

0: Result= 0 
1: Result =#=o 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

7201-02 FETOM (7 /70) 1-75 



Table 1-10. Logical Instructions (cont) 

Mne- Op Program 

Instruction monic Code Format Operands Function Interruptions Condition Code 

OR 0 56 RX R1 OR 1stopr (in GPA per R1) with 2nd opr (in stg) & Prot (F) 0: Result= 0 
D2(X2, 82) place result into 1st opr location. Adr 1 : Result ::foo 

Left to right, byte by byte. Spec 

OR oc D6 SS D1(L, 81) OR 1st opr (in stg) with 2nd opr (in stg) & place Prot (S,F) O: Result= 0 
D2(82) result into 1st opr location. Adr 1: Result ::foo 

1. Left to right, byte by byte. 
2. Max number of bytes is 256. 

OR 01 96 SI D1(81) OR immediate opr (12 of inst) with 1st opr (in stg) Prot (S) O: Result= 0 

12 & place result into 1st opr location. Adr 1: Result ::foo 

OR OR 16 RR R1 OR 1st opr (in GPA per R1) with 2nd opr (in GPA None 0: Result= 0 
R2 per R2) & place result into 1st opr location. 1 : Result ::foo 

Left to right, byte by byte. 
" 

Shift Left Double SLDL SD RS R1 Shift 1st opr (in GPA per R1 & R1+1) left number Spec Unchanged 

Logical D2(82) of bit positions specified by low-order 6 bits of 2nd 
opr adr. 

1. R 1 must be even adr. 
2. High-order bits of 1st opr are shifted out & 

lost; vacated low-order bits are made O's. 

Shift Left Single SLL 89 RS R1 Shift 1st opr (in GPR per R1) left number of bit None Unchanged 

Logical D2(82) positions specified by low-order 6 bits of 2nd opr 
adr. 

High-order bits of 1st opr are shifted out & lost; 
vacated low-order bits are made O's. 

Shift Right Double SRDL SC RS R1 Shift 1st opr (in GPA per R 1 & R 1 + 1) right Spec Unchanged 

Logical D2(82) number of bit positions specified by low-order 6 
bits of 2nd opr adr. 

1. R 1 must be even adr. 
2. Low-order bits of 1st opr are shifted out & 

lost; vacated high-order bits are made O's. 

Shift Right Single SAL 88 RS R1 Shift 1st opr (in GPA per R 1) right number of bit None Unchanged 

Logical D2(82) positions specified by low-order 6 bits of 2nd opr 
adr. 

Low-order bits of 1st opr are shifted out & lost; 
vacated high-order bits are made O's. 

Store Character STC 42 RX R1 Store bits 24-31 of 1st opr (in GPR per R 1) into Prot (S) Unchanged 
D2(X2, 82) 2nd opr location (in stg). Adr 

Test Under Mask TM 91 SI D1(81) Set CC according to state of 1st opr bits (in stg) Prot (F) 0 : Selected bits 

12 selected by mask bits ( 12 of inst). Adr all O's (mask is 
1. If mask bit = 1, test corresponding 1st opr all O's) 

bit; if mask bit= 0, ignore corresponding 1st 1 : Selected bits 
opr bit. mixed O's & 1 's 

2. Character in stg is unchanged. 3 : Selected bits 
all 1 's 

1-76 (7/70) 



Table 1-10. Logical Instructions (cont) 

Mne- Op 
Instruction monic Code Format Operands 

Translate TR DC SS D1(L, 81) 
D2(82) 

Translate & Test TRT DD SS D1(L, 81) 
D2(82) 

Instruction Formats 

Logical instructions use the following five formats: 

RR 

Op Code R 1 R2 I 
0 7 8 11 12 15 

RX 

I Op Code I Rl I X2 82 02 

0 7 8 11 12 15 16 19 20 

RS 

Op Code Rl I R3 s2 I 02 
78 II 12 15 16 19 20 

SI 

Op Code 12 Bl 01 
0 7 8 15 16 19 20 

SS 

Program 
Function Interrupt ions Condition Code 

Add 1st opr byte (argument; in stg) to effective 2nd Prot (S,F) Unchanged 
opr adr, use result as stg adr, & place function byte Adr 
from resulting stg adr into corresponding 1st opr 
byte location. 

1. Effective 2nd opr adr = contents of GPR adr 
by 82, + D2. 

2. LL= number of bytes to be translated. 
3. 1st opr bytes are processed left to right. 

Add 1st opr byte (argument; in stg) to effective 2nd Prot (F) 0: All bytes tested 
opr adr, use result as stg adr, & test functiQn byte Adr are all O's 
from resulting stg adr. If 0, translate & test next 1 : Non-0 byte found 
argument byte; if non-0, complete operation by before last byte to 
inserting related argument adr into GPR1 & be tested 
function byte into GPR2. 2 : Non-0 byte found 

1. Effective 2nd opr adr = contents of GPR adr as last byte to be 
by 82, + D2. tested 

2. LL= number of bytes to be translated. 
3. 1st opr bytes are processed left to right. 
4. Set CC according to ending condition. 

31 

31 

31 

are added to the contents of the D 1 field to form an 
address. This address designates the leftmost byte of the 
first operand field. The number of bytes to the right of this 
first byte is specified by the LL field in the SS instruction. 
In the SI format, the operand size is one byte. 

In the RR format, the R2 field specifies the GPR 
containing the second operand. The same GPR may be 
specified for the first and second operands. 

In the RX format, the contents of the GPR's specified 
by the X2 and B2 fields are added to the contents of the 
D2 field to form the address of the second operand in main 
storage. 

In the RS format, used for shift operations, the contents 
of the GPR specified by the B2 field are added to the 
contents of the D2 field. This sum is not used as an address 
but the low-order six bits specify the number of bits of the 
shift. The R3 field is ignored in the shift operations. 

In the SI format, the second operand is the eight-bit 
immediate data field, 12, of the instruction. 

In the SS format, the contents of the CPR specified by 
B2 are added to the contents of the D2 field to form the 
address of the second operand. The second operand field 
has the same length as the first operand field. 

l~o_p_co_de_... __ LL_.......__s1---r-1I ~~ 01 I s2 I~§ 

A 0 in the X2, Bl, or B2 field indicates the absence of 
the corresponding address or shift-amount components. An 
instruction can specify the same GPR both for address 
modification and for operand location. Address modifica
tion is always completed before operation execution. 

0 78 15 16 19 20 3132 35 36 47 

In the RR, RX, and RS formats, the contents of the 
GPR specified by RI are called the first operand. In the SI 
and SS formats, the contents of the GPR specified by Bl 

Data Flow 

Data paths used by the logical instructions are identical to 
those used by the decimal instructions, with one exception 

7201-02 FETOM (7/70) 1-77 



(Diagram 3-3, FEMDM). For decimal instructions, E(8-15) 
is divided into L1 and L2 fields. For logical instructions, 
E(8-15) is one field (LL). 

The logical instructions operate on data which may 
range from 1 to 256 bytes in length. The operands are 
obtained either from the main storage or from a GPR. 
Sometimes, the operand may be contained in the instruc
tion itself. 

Processing of data in main storage proceeds from the 
high-0rder to the low-order address, or from left to right. 
The initial byte selected for processing may be at either an 
odd or even main storage address. As a rule, processing of 
data in a GPR involves the complete register contents. 
Except for the editing instructions, data is not treated as 
numbers. 

Generally, the operands are treated as eight-bit bytes. In 
a few cases, the left or right four bits of a byte are treated 
separately or operands are shifted a bit at a time. 

Results replace the first operand, except in the Store 
Character instruction, where the result replaces the second 
operand. A variable-length result is never stored outside the 
field specified by the address and length. 

The contents of all GPR's and storage locations partici
pating in the addressing or execution of an operation 
generally remain unchanged. Exceptions are the move 
instructions, and the result locations, GPRl in the Edit and 
Mark instruction, and GPR's 1 and 2 in the Translate and 
Test instruction. 

Editing operations provide transformation from packed 
decimal digits to alphanumeric characters; i.e., editing 
requires a packed decimal field and generates zoned decimal 
digits. The digits, signs, and zones are recognized and 
generated as for decimal arithmetic; all bit configurations 
are considered valid. 

The translating operations use a list of arbitrary values. 
A list provides a relation between an argument (the 
quantity used to reference the list) and the function (the 
contents of the location related to the argument). The 
purpose of the translation may be to convert data from one 
code to another code or to perform a control function. The 
list is specified by an initial address, the address designating 
the leftmost byte location of the list. The byte from the 
operand to be translated is the argument. The address used 
to address the list is obtained by adding the argument to 
the low-0rder positions of the initial address. As a conse
quence, the list contains 256 eight-bit function bytes. 
Where it is known that not all eight-bit argument values will 
occur, it may be possible to reduce the size of the list. 

Use of GPRl is implied in Edit and Mark and in 
Translate and Test instructions. A 24-bit address may be 
placed into this register during these operations. The 
Translate and Test instruction also implies GPR2. The 
low-0rder eight bits of GPR2 may be replaced by a function 
byte during a translate-and-test operation. 

1-78 (7 /70) 

Program Interruptions 

Four program interruptions can occur during execution of 
logical instructions: 

1. Protection. The storage key of a result location in main 
storage does not match the protection key in the PSW. 
The operation is suppressed on a store violation. The 
only exceptions are the variable length storage-to-storage 
operations, which are terminated. The operation is 
terminated on a fetch violation. 

2. Addressing. An address designates a location outside the 
available storage for the installed system. In most cases, 
the operation is terminated. The exceptions are the 
AND, Exclusive-OR, OR, and Move instructions that 
have the SI format, and the Store Character instruction. 
These instructions are suppressed. Operand addresses are 
tested only when used to address storage. Addresses used 
as a shift amount are not tested. Similarly, the address 
generated by the use of the Load Address instruction is 
not tested. The address restrictions do not apply to the 
contents of the DI and D2 fields, or to the contents of 
the GPR's specified by X2, Bl, and B2. 

3. Specification. A full-word operand in a storage-to
register operation is not located on a 32-bit boundary, or 
an odd register address is specified for a pair of GPR's 
containing a 64-bit operand. The operation is sup
pressed. 

4. Data. A digit code of the second operand in the Edit or 
Edit and Mark instruction is invalid. The operation is 
terminated. 

Condition Codes 

The results of most logical operations set the CC in the PSW 
(Table 1-10). The Load Address, Insert Character, Store 
Character, Translate, and the moving and shift instructions 
leave this code unchanged. 

The CC can be set to reflect five types of results for 
logical operations. For the Compare Logical instructions, 
the 0, 1, and 2 states indicate that the first operand is equal 
to, less than, or greater than the second operand, respec
tively. 

For the logical AND, OR, and Exclusive-OR instruc
tions, the states 0 and 1 indicate a zero or nonzero result 
field, respectively. 

For the Test under Mask instruction, the states 0, 1, and 
3 indicate that the selected bits are all-zero, mixed zero and 
1, or all-1, respectively. 

For the Translate and Test instruction, the states 0, 1, 
and 2 indicate an all-zero function byte, a nonzero function 
byte with the operand incompletely tested, or a last 
function byte nonzero, respectively. 



For editing, the states 0, 1, and 2 indicate a zero, 
less-than zero, or greater-than-zero content of the last result 
field, respectively. 

Branching Instructions 

• Branching causes departure from normal instruction 
sequencing. 

• Branch address is introduced as next sequential address. 

• Branch address is obtained from GPR or specified as 2nd 
operand address. 

• Branch may be conditional or unconditional. 

• Conditional branches (may or may not use branch 
address): 
Branch on condition 
Branch on count 
Branch on index 

• Unconditional branches (always use branch address): 
Branch and link 
Execute 

• On branch, normal storage request per IC to fill Q is 
blocked; branch logic will make request for IC if the 
branch is unsuccessful and Q needs to be refilled. 

• If branch is unsuccessful, Q is refilled if required. 

Normally, the CE is controlled by instructions taken in 
sequential order. That is, an instruction is fetched from a 
main storage location specified by the instruction address in 
the IC. The address is then increased by the number of 
bytes needed to address the next instruction in sequence, 
and this updated address replaces the old address in the IC. 
The current instruction is executed, and the same steps are 
repeated using the updated instruction address to fetch the 
next instruction. 

A departure from the normal instruction sequence 
occurs when branching is performed. A branch address is 
introduced as the next instruction address. This branch 
address may be obtained from one of the GPR's or it may 
be the second operand address specified by a particular 

instruction. Depending upon the format and the instruc
tion, branching may be either conditional or unconditional. 
The conditional branches are branch on condition, branch 
on count, and branch on index. The unconditional branches 
are branch and link and execute. Conditional branches may 
or may not use the branch address. If the branch is 
successful (that is, the branch is taken), the branch address 
is used and the storage request issued per the IC during 
I-Fetch is blocked. If the branch is unsuccessful, the 
instruction address in the IC is used to fill Q. Unconditional 
branches are always taken and use the branch address. 

Whether a conditional branch is successful depends upon 
the result of operations concurrent with the branch or 
preceding the branch. The first case is represented by the 
branch on count and branch on index instructions. The 
second case is represented by the branch on condition 
instructions, which inspect the CC that reflects the result of 
a previous arithmetic, logical, or 1/0 operation. 

Branching is used to reference a subroutine, to resolve a 
two-way choice, or to repeat a portion of a program. To 
save time and increase the speed of the operating program, 
branching is always considered to be successful unless 
proven otherwise. (The branch conditions for branch on 
condition instructions is tested during I-Fetch for a 
successful or unsuccessful branch, and a D or IC request is 
issued dependent upon this test.) Therefore, whenever a 
branch instruction is decoded during I-Fetch, the next 
instruction address is the branch address located in D. If the 
branch is found to be unsuccessful (determined during 
execution of the branch instruction), the instruction 
address from D is ignored, and the correct instruction 
address is obtained from the IC. 

There are two methods of performing an end-op cycle in 
the branch operations: normal end op and branch end op. 
The normal end-op cycle allows decoding of the next 
instruction format from R and of the instruction address 
from the IC, and is normally used when ending an 
operation. Decoding off R is possible because the data 
placed into the register has become stable by the time the 
end-op cycle begins. The branch end-op cycle, on the other 
hand, allows decoding of the next instruction format from 
the SDBO and of the instruction address from D. This 
end-op cycle is used when the data, which has been placed 
into R, is not yet stable and is some halfword other than 
the last halfword of Q. Decoding from the SDBO saves the 
time it takes for the data to stabilize in R and the 
instruction address to stabilize in the IC. 

Table 1-11 lists the branching instructions. 

7201-02 FETOM (7 /70) 1-79 



Table 1-11. Branching Instructions· 

Instruction 

Branch & Link 

Branch & Link 

Branch on 
Condition 

Branch on 
Condition 

Branch on Count 

Branch on Count 

Branch on Index 
High 

1-80 (7/70) 

Mne
monic 

BAL 

BALR 

BC 

BCR 

BCT 

BCTR 

BXH 

Op 
Code Format Operands 

45 RX R1 

05 RR 

47 RX 

07 RR 

46 RX 

06 RR 

86 RS 

D2(X2, 82) 

R1 
R2 

M1 
D2(X2, 82) 

M1 
R2 

R1 
D2(X2, 82) 

R1 
R2 

R1 
R3 
02(82) 

Function 

Store PSW(32-63), link information, into GPR (adr 
by R 1) & branch to location specified by 2nd opr 
adr. 

1. Branch is unconditional. 
2. Link information is stored whether or not 

branch is successful. 

Store PSW(32-63), link information, into GPR (adr 
by R1) & branch to location specified by GPR (adr 
by R2). 

1. Branch is unsuccessful if R2 = O; use next 
sequential instr adr. 

2. Link information is stored whether or not 
branch is successful. 

Branch to location specified by 2nd opr adr if state 
of CC is as specified by M 1. 

1. Branch is unconditional if M 1 is all 1 's. 
2. Branch is unsuccessful if M1 is all O's; use 

next sequential instr adr. 

Branch to location specified by GPR (adr by R2) if 
state of CC is as specified by M 1 . 

1. Branch is unconditional if M 1 is all 1 's and 
R2:y!:O. 

2. Branch is unsuccessful if R2 = O or if M1 is 
all O's; use next sequential instr adr. 

Subtract 1 from 1st opr (in GPR per R 1 I; if resu It * 
0, branch to location specified by 2nd opr adr. 

1. Place result of subtraction into 1st opr 
location. 

2. Branch is unsuccessful if result = O; use next 
sequential instr adr. 

3. If 1st opr = 1, no branching occurs. 

Program 
Interruptions Condition Code 

Prot (F)t Unchanged 

Prot (F)t Unchanged 

Prot (Flt Unchanged 

Prot (F)t Unchanged 

Prot (Flt Unchanged 

Subtract 1from1stopr (in GPR per R11; if result* Prot (F)t Unchanged 
0, branch to location specified by GPR (adr by R21. 

1. Place result of subtraction into 1st opr 
location. 

2. Branch is unsuccessful if result= 0 or if R2 = 
O; use next sequential instr adr. 

3. If 1st opr = 1, no branching occurs. 

Add increment (3rd opr; in GPR per R3) to 1st opr Prot (Flt 
(in GPR per R11. algebraically compare result 
(index) with comparand (in odd-adr GPR specified 
by R3 or R3 + 11; if index >comparand, branch to 
location specified by 2nd opr adr. 

1. Place index into 1st opr location. 
2. Stanch is unsuccessful if index = or < 

comparand; use next sequential instr adr. 

Unchanged 



Table 1-11. Branching Instructions (cont) 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Branch on Index BXLE 87 RS R1 Add increment (3rd opr; in GPR per R3) to 1st opr Prot (Flt Unchanged 
Low or Equal R3 (in GPR per R1), algebraically compare result 

D2(B21 (index) with comparand (in odd-adr GPR specified 
by R3 or R3 + 1); if index = or < comparand, 
branch to location specified by 2nd opr adr. 

1. Place index into 1st opr location. 
2. Branch is unsuccessful if index >comparand; 

use next sequential instr adr. 

Execute EX 44 RX R1 Execute subject instr at location specified by 2nd Execute Set by subject 
D2(X2, B2) opr adr. Subject instr may be modified by 1st opr Prot (Fl instr 

(in GPR per R1) if E(8-11) :;to. Adr 
Modification is achieved by OR'ing bits 8-15 of Spec 
subject instr with bits 24-31 of 1st opr; if R 1 = 
0, no modification takes place. 

tFetch protected: bit 4 of storage protect set. 

Instruction Formats 

Branching instructions use the RR, RX, and RS formats: 

RR 

Op Code 1%1. R2 
7 8 11 12 1.5 

RX 

Op Code 1%1 X2 82 02 
7 8 11 12 1.5 16 19 20 31 

RS 

Op Code R 1 I R3 82 02 
7 8 ff 12 1.5 16 19 20 31 

In the formats shown above, bits 8-11 are normally the 
Rl field that specifies the address of a GPR containing the 
first operand. In the branch on condition instruction, 
however, bits 8-11 are designated as Ml and contain mask 
bits used in conjunction with the PSW CC to determine 
whether the branch is successful. 

In the RR format, the R2 field specifies the address of a 
GPR that contains the branch address, except when R2 = 0, 
in which case no branching is to take place. 

In the RX format, the contents of the GPR's specified 
by the X2 and B2 fields are added to the D2 field to form 
the branch address. 

In the RS format, which is used in branch on index 
operations, the contents of the GPR specified by the B2 
field are added to the D2 field to form the branch address. 

The R3 field specifies the address in LS of an increment 
value (third operand) which is added to the first operand to 
determine the index value. R3, if odd, also is the 
comparand; if R3 is even, R3 + 1 is the comparand. 

Data Flow 

Diagram 3-4, FEMDM, is a diagram of the basic data flow 
for the branching instructions. The main functional units 
used to determine addresses and instructions in the branch
ing operations are Q, R, E, D, and the IC. The secondary 
functional units, T, AB, parallel adder, STC, and ABC, 
determine whether the branch is successful when the 
branch being executed is a conditional branch. The purpose 
of each functional unit is as follows: 

1. Q. Holds the doubleword that contains the instruction 
addressed by the branch instruction if the branch is 
successful. 

2. R. Contains the instruction to be performed after 
execution of the branch instruction. 

3. E. Contains the branch instruction presently being 
executed. 

4. D. Holds the address of the doubleword which, if the 
branch is successful, contains the next instruction to be 
executed. 

S. IC. Holds the address of the doubleword which, if the 
branch is unsuccessful, contains the next instruction to 
be executed. 

6. T. Buffers the operand being tested and operated on. 
7. AB. Holds the first operand when added to some other 

value to determine whether the branch is successful. 
8. Parallel adder. Determines whether conditions have 

been met when a conditional branch is being executed. 

7201-02 FETOM (7 /70) 1-81 



9. STC. Allows transfer of last byte of T during an 
Execute instruction when modifying the subject in
struction of the Execute instruction. 

10. ABC. Selects data being modified in the subject 
instruction during an Execute instruction. 

Program Interruptions 

Four program interruptions can occur during execution of 
branching instructions: 
1. Execute. The subject instruction of an Execute instruc

tion is another Execute instruction. The operation is 
suppressed. 

2. Protection. The branch address of an Execute instruc
tion is protected. The branch-to address of any branch 
instruction may be fetch-protected. In this case, the·PSW 
key must match the storage key or must be a master key 
of 0. The operation is suppressed. 

3. Addressing. The branch address of an Execute instruc-· 
tion designates an instruction-halfword location outside 
the available storage area. The operation is suppressed. 

4. Specification. The branch address of an Execute instruc
tion is odd. The operation is suppressed. 

Condition Codes 

The branching instructions leave the CC unchanged, except 
for the Execute instruction. If the CC is set during the 
Execute instruction, it is set by the subject instruction. 

Status Switching Instructions 

• Load PSW, Set Program Mask, Set System Mask, and 
Supervisor Call instructions control status of CE. 

• Set Storage Key and Insert Storage Key instructions 
control status of data in main storage. 

• Write Direct and Read Direct instructions control status 
of external element (also transfer data bytes). 

• Diagnose instruction controls status of CE. 

The status switching instructions can change the status of 
the CE, the channels, the external device, and the data in 
main storage. The status of a unit may also be changed by 
manual intervention and by interruptions (described else
where in this manual). The overall status of the CE is 
determined by the current PSW and associated logic. (For a 
discussion of the PSW and of the eight CE program states, 
refer to Section 1 of this chapter.) Any field in the current 
PSW may be changed directly by the Load PSW instruction, 

1-82 (7 /70) 

if the CE is in the Supervisor state. Thus, the Load PSW 
instruction may be used to switch from the Supervisor state 
to the Problem state, between the Wait and Running states, 
and between the Masked and Interruptable states. At any 
time, the Set Program Mask instruction may be used to 
switch any of the four program mask bits between the 
Masked and Interruptable states. When in the Supervisor 
state, the Set System Mask instruction may be used to 
switch any of the eight system mask bits between the 
Masked and Interruptable states. The Supervisor Call 
instruction allows a problem program to switch the CE 
from the Problem state to the Supervisor state; simul
taneously, a byte of information is passed to the supervisor 
program via the interrupt code of the Supervisor Call old 
PSW. 

Two instructions control the protection status of data in 
main storage. The Set Storage Key and Insert Storage Key 
instructions are privileged instructions for controlling the 
protection status of main storage data in 2048-byte blocks. 
The Set Storage Key instruction changes the storage 
protection keys in main storage. The Insert Storage Key 
instruction fetches the keys from main storage for inspec
tion by the program. 

The Write Direct and Read Direct instructions are part 
of the direct control function. The direct control provides 
the CE with certain facilities for communication with other 
CEs and for control of both CEs and IOCEs. These facilities 
are important to the CE's capability for coordinating the 
operation of a multisystem. 

The Write Direct and Read Direct instructions utilize 
two sets of lines between CEs and a single set of lines to the 
IOCEs. Between CEs, 'direct out' lines and 'signal out' lines 
are used for data communication and control, respectively. 
'Signal out' lines to the IOCEs permit the CE to perform 
certain IOCE control functions. Note that the IOCE is also 
implemented with the direct control feature to the extent 
that an IOCE-processor can initiate an external interrupt in 
a CE. No other direct control functions are available to the 
IOCEs. 

In the CE, the Write Direct instruction can be used to 
perform eight functions. These eight functions are coded 
into the I2 field of the instruction and subsequently result 
in signals on the five 'signal out' lines. The eight functions 
are: 
1. To indicate that a data byte is being sent to a particular 

CE (on the direct out lines, via a Write Direct instruc
tion) by initiating an external interruption in the 
receiving CE. 

2. To cause a particular CE to perform the external start 
operation. 

3. To cause an automatic logout of a CE. 
4. To cause an automatic logout of an IOCE. 
5. To cause another CE to reset and go to the Stopped 

state. 
6. To stop an IOCE-processor. 



7. To start an IOCE-processor after it has been stopped. 
8. To cause an external interrupt of an IOCE-processor. 

The Read Direct instruction is used by a CE to accept 
the data byte from the 'direct in' lines from another CE 
executing the Write Direct instruction. The Read Direct 
instruction also initiates an external interruption in the 
sending CE to inform it that the data byte has been 
accepted. 

For a detailed description of the direct control function, 
refer to Chapter 6 of the 9020D or 9020E System 
Introduction Manuals. 

The Diagnose instruction controls the status of the CE. 
Unlike the Load PSW, Set Program Mask, Set System Mask, 
and Supervisor Call instructions that switch the CE's status 
by changing the current PSW, the Diagnose instruction 
switches the CE's status by setting control triggers (such as 
'defeat interleave' and 'diagnose FLT') through the use of a 
maintenance control word. Some functions of the Diagnose 
may also be used by the ATC programmer, when the CE is 
in state 3, 2, or I for various operations (Store DAR, Store 
PIR, etc.). 

Table I-I 2 lists the status switching instructions. 

Instruction Formats 

Status switching instructions have two formats: 

RR 

Op Code Rl R2 I 
0 7 8 11 12 15 

SI 

I Op Code 12 Bl I Dl 

0 7 8 15 16 19 20 31 

In the RR format, the RI and R2 fields specify GPR's 
except when used in the Supervisor Call instruction. The 
RI and R2 fields in the Supervisor Call instruction are 
replaced by an I-field which contains an eight-bit interrup
tion code. In the Set Program Mask instruction, the R2 
field is ignored. 

In the SI format, the I2 field is ignored for the Load 
PSW, Set System Mask, and Test and Set instructions. In 
the Write Direct and Read Direct instructions, the I2 field 
contains a command and specifies the unit to receive the 
command. In the Diagnose instruction, the I2 field contains 
a code for controlling certain maintenance aids. The 
contents of the GPR specified by the BI field are added to 
DI to form a main storage address of an operand to be 
fetched by the instruction specified, except for Read 
Direct. The Read Direct instruction uses the address derived 
for storing data from an external device. Only one storage 

address is required in status switching operations. A 0 in the 
Bl field indicates the absence of the base address 
component. 

Data Flow 

• Each status switching instruction has different data flow. 

• ST is used by most instructions as buff er before final 
data transfer. 

The status switching instructions transfer data from one 
unit to another; except for the Insert Storage Key 
instruction, there is no intermediate processing. Depending 
on the instruction, the data is obtained from LS, main 
storage, or the 'direct control bus in' lines and is transferred 
to either LS, main storage, CE control triggers, or the 
'direct control bus out' lines. A generalized data flow is 
shown in Diagram 3-5, FEMDM. The following is a list of 
the functional units and their purposes. 

I. SCI. Primarily used for 3-cycle fetches of storage 
operands per D. During the Load PSW instruction, a 
3-cycle fetch per the IC is made for the next 
instruction after the new PSW has been loaded into the 
CE. For the Set Storage Key, Insert Storage Key, and 
Test and Set instructions, the SCI performs a four-cycle 
set-key operation per D, a 3-cycle insert-key operation 
per D, and a 3-cycle test-and-set operation per D, 
respectively. During the Read Direct instruction, a 
three-cycle store operation per Dis made. 

2. Q. Holds the doubleword containing the instruction 
being executed. It may also hold the next sequential 
doubleword if a Q-refill operation occurred during 
I-Fetch. The Load PSW instruction refills Q with the 
next instruction regardless of its storage location. 

3. R. Contains the instruction to be performed after 
execution of the status switching instruction. 

4. E. Contains the status switching instruction (or the first 
I6 bits of the instruction) being executed. E(0-7) 
contains the R code for the Write Direct, Read Direct, 
and Diagnose instructions, and E(8- I 5) contains an 
immediate operand. For the Supervisor Call instruc
tion, E(8-I 5) contains a supervisor call interruption 
code. For the Insert Storage Key instruction, E(8-I I) 
contains the address of the GPR into which the 
protection key is to be inserted. 

5. D. Contains the main storage address for storage 
requests issued during execution of the Set Storage 
Key, Insert Storage Key, and Read Direct instructions. 
This register also selects the byte to be used in the Set 
System Mask and Write Direct instructions. 

6. IC. Contains the main storage address of the next 
instruction during execution of the Load PSW instruc
tion. 

7201-02 FETOM (7 /70) 1-83 



Table 1-12. Status Switching Instructions 

Instruction 

Diagnose 

Insert Storage Key 

Load PSW 

Read Direct 

Set Program Mask 

Set Storage Key 

Set System Mask 

1-84 (7 /70) 

Mne
monic 

None 

ISK 

LPSW 

ADD 

SPM 

SSK 

SSM 

Op 
Code Format Operands 

83 SI D1(B11 

09 RR 

82 SI 

85 SI 

04 RR 

08 RR 

80 SI 

12 

R1 
R2 

D1(B1) 

D1(B1) 
12 

R1 

R1 
R2 

D1(B1) 

Function 

Load word designated by stg opr adr into MCW, set 
or reset certain control triggers, & branch to ROS 
adr specified by MCW. 

Insert stg protection key for 2048-byte stg block, 
adr by bits 8-20 of 2nd opr (in GPA per R2), into 
bits 24-28 of 1st opr (in GPA, per R11. 

1. 1st opr: bits 0-23 are unchanged; bits 
4!9-31 are cleared. 

2. 2nd opr: bits 0-7 & 21-27 are ignored; bits 
28-31 must= O's. 

3. Key is fetched twice because of 2-way 
interleaving. 

Load doubleword stg opr (designated by stg opr 
adr) into CE, thus replacing current PSW, & branch 

Program 
Interruptions Condition Code 

Priv Oper Unpredictable 
Prot (S,F) 
Adr 
Spec 

Priv Oper 
Adr 
Spec 

Priv Oper 
Prot (F) 

Unchanged 

Set by new PSW 
bits 34 & 35 

to new instr sequence. Adr 
1. Bits 0-15: system mask, protection key, Spec 

program state. 
Bits 16-33: ignored. 
Bits 34-39: CC, program mask. 
Bits 40-63: instr adr. 

2. If PSW(14) = 1, enter Wait state. 
3. If PSW(15) = 1, enter Problem state. 
4. Load PSW instr is only instr available for 

entering Problem or Wait state. 

Send 'direct control read out' signal & timing signal 
code (12; in instr) to external device for about 0.6 
usec; store 1 data byte from external device into stg 
(per stg opr adr) when 'direct control hold in' signal 
is absent. 

Replace CC & program mask (bits 34-391 of 
current PSW with bits 2-7 of 1st opr (in GPA per 
R1). 

Set stg key (bits 24-28 of 1st opr; in GPR per R1) 
for 2048-byte stg block (adr by bits 8-20 of 2nd 
opr; in GPA per R2) into stg protection logic in 
main storage. 

1. 1st opr: bits 0-23 & 29-31 are ignored. 
2. 2nd opr: bits 0-7 & 21-27 are ignored; bits 

28-31 must= O's. 
3. Key is set twice because of 2-way 

interleaving. 

Replace system mask (bits 0-7) of current PSW 
with byte from location designated by stg opr adr. 

Oper 
Priv Oper 
Prot (SI 
Adr 

None 

Priv Oper 
Adr 
Spec 

PrivOper 
Prot (Fl 
Adr 
Multisys 

Unchanged 

Set by opr 1 
bits 2& 3 

Unchanged 

Unchanged 



Table 1-12. Status Switching Instructions (cont) 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Supervisor Call SVC OA RR I Cause supervisor call interruption; replace old None Unchanged 
PSW(24-31) with I-field (bits 8-15) of instr, 
providing interruption code. 

1. Clear PSW(16-23). 
2. Store old PSW at stg location 32 (decimal). 
3. Fetch new PSW from stg location 96 

(decimal). 

Write Direct WAD 84 SI D1(B1) Send 'direct control write out' signal & timing signal Oper Unchanged 
12 code (12; in instr) to external device for about 0.8 Priv Oper 

usec; make 1 data byte from stg (per stg opr adr) Prot (F) 
available to external device until next WAD is Adr 
executed. 

7. AB. Buffers operands for the serial adder and the 
parallel adder. During I-Fetch of the Set Program Mask, 
Set Storage Key, and Insert Storage Key instructions, 
the first operand is placed here. During the Set System 
Mask and Diagnose instructions, doublewords from 
storage are received here. 

8. ST. Buffers operands for the serial adder and the 
parallel adder. Data is received here from main storage 
for the Load PSW instruction and from LS for the Set 
Storage Key and Insert St&rage Key instructions. Data 
is stored from here into main storage during the Read 
Direct instruction and from LS during the Insert 
Storage Key instruction. The Load PSW, Set Program 
Mask and Set System Mask instructions cause all or 
part of the PSW register to be changed per ST. The 
Diagnose instruction causes the MCW register, scan 
counters, and ROSAR to be changed per ST. 

9. ABC and STC. Controls selection of data from and 
placement of data into AB and ST, respectively. Also, 
during the Read Direct instruction, STC sets a mark 
trigger. 

10. Mark. Identifies the byte to be used by main storage 
during the Read Direct instruction. All mark triggers 
are set during the Set Storage Key instruction by a 
ROS micro-order. 

11. F. Buffers the storage key before it is placed into main 
storage during the Set Storage Key instruction and 
after it is taken from main storage duriilg the Insert 
Storage Key instruction. This register also buffers data 
received from another CE during the Read Direct 
instruction. 

12. G. Buffers a byte of data being sent to another CE 
when executing a Write Direct instruction. 

13. PSW register. Contains a portion of the current PSW. 
All or part of the PSW register contents is changed 
directly by the Load PSW, Set Program Mask and Set 
System Mask, instructions. Because the Supervisor Call, 
Write Direct, Read Drrect, and Diagnose instructions 

may cause an interruption after being executed, they 
may indirectly change all of the PSW register contents. 

14. MCW register. Controls CE or channel diagnostic 
functions during and after execution of the Diagnose 
instruction. 

15. Parallel adder. Provides the data transfer path between 
AB, ST, D, and the IC. Adds 8 to the IC and D for 
address updating. Subtracts 8 from A during the Set 
Storage Key and Insert Storage Key instructions so that 
a re-entrant loop may be constructed. Calculates IC - D 
+ 7 for the address store compare tests made during 
Read Direct instruction. 

16. Serial adder. Provides the data transfer path from AB 
to ST and G. During the Insert Storage Key instruction, 
the contents of Fare logically OR'ed with the contents 
of T via the serial adder. 

17. LS. Contains operands required by the Set Program 
Mask, Set Storage Key, and Insert Storage Key instruc
tions. Only the Insert Storage Key instruction transfers 
data into LS. 

Program Interruptions 

Four program interruptions can occur during execution of 
status switching instructions: 
I. Privileged Operation. Occurs if a Load PSW, Set System 

Mask, Set Storage Key, Insert Storage Key, Write Direct, 
Read Direct, or Diagnose instruction is encountered 
while the CE is in the Problem state. The operation is 
suppressed. 

2. Protection. Occurs if the storage key of the location 
designated by the instruction does not match the 
protection key in the current PSW. 

3. Addressing. Occurs if an address designates a location 
outside the available main storage. 

4. Specification. Occurs if (1) the operand address of a 
Load PSW or Diagnose instruction does not have O's in 

7201-02 FETOM (7 /70) 1-85 



Input/Output Instructions the three low-order bit positions, or (2) the block 
address specified by the Set Storage Key or Insert 
Storage Key instruction does not have O's in the four 
low-order bit positions. The operation is suppressed. 

The CE has five I/O instructions: Start I/O, Test I/O, Halt 
I/O, Test Channel, and Set PCI (Table 1-13). 

Condition Codes Instruction Format 

The five I/O instructions use the SI format: 

OpCode ~ Bl Dl 

0 78 15 16 19 20 31 

Three status switching instructions affect the condition 
code: Load PSW, in which the CC is set by new 
PSW(34,35); Set Program Mask, in which the CC is set by 
bits 2 and 3 of the first operand; and Diagnose, in which 
the CC is unpredictable (except during diagnose storage 
logout when a CC of one indicates a timeout on storage 
interface). The remaining status switching instructions leave 
the CC unchanged. 

Bits 8-15 are ignored. The base plus the displacement 
determines the channel and I/O unit address: bits 16-23 of 

Table 1-13. Input/Output Instructions 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruptions Condition Code 

Halt 1/0 HIO 9E SI 01(81) Terminate current 1/0 operation at selected channel Priv Oper 0 : Interruption 
& 1/0 unit. in channel 

1. 0(13-15) is channel adr. 1 : CSW stored 
2. 0(16-23) is 1/0 unit adr. 2: Halted 

3 : Unavailable 

Set PCI SPCI 98 SI 01(81) Sets the PCI flag bit in the subchannel controlling Priv Oper 0 : Subchannel 
the addressed device and causes the subchannel to not working. 
request an 1/0 interruption. No action has 

been caused. 
1 : CSW Stored 
2 : PCI Flag Set 
3: Invalid 1/0 

Address Format. 

Start 1/0 SIO 9C SI 01(81) Select specified 1/0 unit & initiate channel Priv Oper 0: Available 
command to that unit. 1 : CSW stored 

1. 0(13-15) is channel adr. 2: Working 
2. 0(16-23) is 1/0 unit adr. 3 : Unavailable 
3. CAW, which specifies address of 1st CCW, is 

fetched from location 72 (48, hex). 

Test Channel TCH 9F SI 01(81) Test state of selected channel & set CC accordingly. Priv Oper 0: Available 
1. 0(13-15) is channel adr. 1: CSW ready 
2. 0(16-23) is ignored. 2: Working 
3. State of channel is not affected. 3 : Unavailabl11 

Test 1/0 TIO 90 SI 01(81) Clear interruption condition in addressed channel or Priv Oper 0: Available 
associated 1/0 units, & set CC according to status of 1 : CSW stored 
addressed channel & 1/0 units. 2: Working 

1. 0(13-15) is channel adr. 3: Unavailable 
2. 0(16-23) is 1/0 unit adr. 
3. CSW is stored at location 64 (40, hex) if: 

a. 1/0 unit or control unit contains pending 
interruption. 

b. 1/0 unit or control unit is executing 
previous operation, or there is pending 
channel-end/control unit-end for another 
1/0 unit. 

c. 1/0 unit or its control unit detects 
machine error. 

1-86 (7 /70) 



the sum are the channel address (of which only bits 21-23 
are valid), and bits 24-31 of the sum are the 1/0 unit 
address. 

Data Flow 

The CE operation for the five 1/0 instructions is identical. 
The data flow path used for the 1/0 instructions is shown in 
Diagram 3-6, FEMDM. Listed below are the main func
tional units used to perform the instructions. 
1. D. Contains the channel and unit addresses at the 

beginning of execution. 
2. L.PSBAR and P.PSBAR. Combine to form the one 

address (the IOCEs PSBA) sent to the IOCE. 
3. B and S. Hold the channel and unit addresses tempor

arily while they are being gated to T. 
4. F. Used when combining logical and physical PSBARs in 

assembly of IOCEs PSBA. 
5. Serial adder. Data path for gating B-bytes to S. 
6. T. Holds the one-word format that is shipped to the 

IOCE. 
7. External register. Gates the one-word format onto the 

control (external) bus for transfer to the selected IOCE. 

Program Interruption 

The only program interruption that may occur for an 1/0 
instruction is the privileged-operation interruption. It 
occurs if the CE is in any state other then Supervisor. The 
instruction is suppressed before the channel is selected. The 
CSW, the CC in the PSW, and the state of the addressed 
channel and of the 1/0 unit remain unchanged. The 
interruption code in the program old PSW(20-31) is 0000 
00000010. 

Condition Codes 

When the CE is released from an I/O instruction, one of 
four CC's is set into the CC register of the CE and becomes 
a part of the current PSW. This CC is the result of tests by 
the IOCE, the channel, or the 1/0 unit and indicates various 
conditions that exist in the channel, the control unit, or the 
1/0 unit. The CC's for the five 1/0 instructions are 
summarized in Table 1-13. For a detailed discussion of the 
setting of the CCs, refer to the 9020 D/E Principles of 
Operation. 

Multiple Computing Element Instructions 

This section discusses the ten instructions (Table 1-14) that 
make up the multiple computing element instruction set. 

The need for this instruction set develops when multiple 
computing elements must operate simultaneously, without 
conflict, in a multiple element shared storage environment 
such as the 9020D/E system. These instructions provide for 
system configuration, storage assignment, and preferential 
storage area assignment in the 9020D/E system. 

Instruction Formats 

The multiple computing element instructions use three 
formats: 

RR 

OP Code Rl R2 

7 8 11 12 15 

SI 

OP Code 12 Bl Dl 
7 8 15 16 19 20 31 

SS 

OP Code L Bl I~~ Dl I B2 l~G 
7 8 11 12 15 16 19 20 31 32 35 36 47 

In the RR format, RI specifies the address of a GPR 
into which data is loaded or which contains the first part of 
data to be gated to selected system elements. The R2 field 
specifies the address of a GPR which contains the second 
part of the data to be gated to selected system elements 
and/or a selection mask. 

In the SI format, the contents of the GPR specified by 
the Bl field are added to the contents of the DI field to 
form the address at which the first operand is to be fetched 
or stored. The 12 field, when used, contains data to be 
gated to selected system elements. 

In the SS format, the contents of the GPR specified by 
the Bl field are added to the DI field to form the address 
of the leftmost byte of the destination field. The contents 
of the GPR specified by the B2 field are added to the D2 
field to form the address of the leftmost byte of the source 
field. The LI and L2 fields are combined to form one L 
field, which contains the number of words to be moved 
from one location to another. 

Data Flow 

The data flow paths for these instructions are shown in 
Diagram 3-7, FEMDM. Some of the main functional units 
and their functions are listed below. 

1. Local Storage. Holds the operands and/or masks of 
many of the instructions. 

7201-02 FETOM (7 /70) 1-87 



Table 1-14. Multiple Computing Element Instructions 

Instruction 

Delay 

Load Identity 

Load PS Base 
Address 

Store PS 
Base Address 

Set Con· 
figuration 

Set Address 
Translator 

Insert ATR 

Move Word 

Start 1/0 
Processor 

Test and 
Set 

1-88 (7/70) 

Mne· 
monic 

DLY 

LI 

LPSB 

SPSB 

SCON 

SATR 

IATR 

MVW 

SIOP 

TS 

Op 
Code Format Operands 

OB RR N 

OC RR R1 

A1 SI D1(B1) 

AO SI 

01 RR 

OD RR 

OE RR 

DS SS 

9A SI 

93 SI 

D1(B1) 

R1,R2 

R1,R2 

R1,R2 

D1(B1) 
D2(B2) 

12 

D1(B11 

Function 

Provides variable delay determined by value of N 
times 256 microseconds. 

Loads CE identity into GPA specified by R 1 field. 

The preferential-storage base address register is 
loaded from the operand location. 

The contents of the logical and physical 
preferential-storage base address registers are stored 
at the operand location. 

Select elements indicated in select mask and set 
selected elements CCRs according to the 
configuration mask. 

Select elements indicated in select mask and set 
selected elements ATRs according to the storage 
element assignment mask. 

Content of ATR is placed in a pair of registers 
specified by R 1 and R 2 fields. 

The second operand field is moved to the first 
operand location. 

The operand address and a protection key are made 
available to the designated IOCE.Processor. 

Test high-order bit (0) of the addressed storage 
byte. Set CC according to state of tested bit, and set 
addressed byte back into storage as all 1 's. 

Program 
Interruptions 

None 

None 

Priv Oper 
Prot (F) Adr 
Spec 

Priv Oper 
Prot (s) Adr 
Spec 

Spec 
Priv Oper 

Spec 
Priv Oper 

None 

Prot (F) (S) 
Adr 
Spec 

Priv Oper 

Prot (S,F) 
Adr. 

Condition Code 

Unchanged 

Unchanged 

Unchanged 

Unchanged 

0 = all selected 
elements accepted 
CCR info with 
correct parity 

2 = one or more 
elements failed to 
accept the CCR 

0 = all elements 
accepted mask 

1 = some element 
not configured. 

2 = some element 
detected parity 
error in mask. 

3 = selection mask 
is all Os 

Unchanged 

Unchanged 

O=PSW 
loaded in IOCE. 

1 =Invalid 
PSW. 

3= Not 
Operational 

0: High-order 
bit= 0 

1: High-order 
bit= 1 



2. Control (External) Bus. Provides the data path for the 
transfer of data from a unit in one element to a unit in 
another element. 

3. External register. Holds data that is gated onto the 
control bus. 

4. Select register. Holds the select bits of elements 
involved in the execution of the instruction. The bits of 
this ·register become the actual 'select' lines to the 
selected elements. 

5. 9020 Out Bus. The bus that provides the data path for 
gating the contents of the multiple computing element 
registers onto the local storage out bus and into ST for 
processing. 

6. CCR. Its contents determine the configuration of the 
system and set up communication paths between the 
elements of the system. Set, via the control bus, with 
information obtained from local storage. 

7. ATR. Holds the addressing information that determines 
the physical configuration of storage elements. Set 
directly from ST. 

8. ABC and STC. Control selection of data from, and 
placement of data into, AB and ST, respectively. 

9. Serial Adder. Provides the data transfer path from AB 
to ST. The adder latches are tested in many instruc
tions to determine the )mlue of some byte or partial 
byte. 

10. F. Buffers data during some operations. Used as a 
counter in conjunction with the serial adder in many 
operations. 

Program Interruptions 

Four program interruptions can occur during execution of 
the special 9020 instructions. In all cases the operation is 
suppressed. 
1. Privileged Operation. Occurs if an LPSB, SPSB, SATR, 

SIOP, or SCON is encountered while the CE is in the 
problem state. 

2. Protection. Occurs if the storage key of the location 
designated by an LPSB, SPSB, or MVW does not match 
the protection key in the PSW. 

3. Addressing. Occurs if an address designates a location 
outside the available storage for the particular installa
tion, or outside the configured storage or storage 
assigned by the storage address translator for a particular 
CE. 

4. Specification. Occurs if: 
a. The operand address of an LPSB, MVW, or SPSB does 

not have the two low-order bits both 0. 
b. Bit positions 8-19 of the operand addressed by LPSB 

do not specify a location within a storage elemen~ 
provided in the ATR or do specify a DE in a 9020E 
system. 

c. Execution of SCON or SATR is attempted by a CE 
whose own SCON bit is off in its CCR or whose state 
bits are set to 1 or 2. 

d. A configuration mask has all SCON-field bits O's. 
e. A selection mask has an IOCE selection bit set when 

two or more CE communications bits are set in the 
configuration mask. 

f. A storage assignment mask references a storage 
module not available to a particular installation, 
assigns an SE module to a position reserved for a DE 
module in the particular installation, or assigns a DE 
module to other than positions 6-10 on a 9020E 
system. 

g. A SIOP does not select an IOCE, selects more than 
one IOCE or the first operand address does not 
reference a doubleword storage location or a key of F 
(hex) was given, or bit 15 was not 0. 

Condition Codes 

Four multiple computing element instructions (SCON, 
SATR, TS, and SIOP) set the condition code. These 
instructions operate with other system elements, and the 
condition codes that result indicate the status of the 
affected elements. The resulting condition codes are shown 
in Table 1-14. 

Display Instructions 

The display instructions (Table 1-15) provide for data 
management of display storage, for processing of radar and 
weather line input data, and . for storage paging in the 
environment of the 9020E Display Channel Processor. The 
main objective of the display instructions is to provide an 
up-to-date display image for each of the PVDs attached to 
the 9020E system. 

Instruction Formats 

The display instructions use two instruction formats: 

RR 

I Op Code Rl R2 I 
7 8 11 Ill 15 

RX 

Op Code I R 1 I X2 I 82 I · 02 

0 7 8 11 12 15 16 19 20 31 

In the RX format, used by the Load Chain instruction, 
the first operand is the contents of the even GPR of an 

7201-02 FETOM (7/70) 1-89 



Table 1-15. Display Instructions 

Mne- Op Program 
Instruction monic Code Format Operands Function Interruption Condition Code 

Load Chain LC 52 RX R1, X2, Moves first operand to third operand location and Prot (F) 0 =Bit 31 of 2nd 
B2, 02 second operand to first operand location. Adr operand is 0 

3 =Bit 31 of 2nd 
operand is 1 . 

Convert and Sort css 02 RR R1, R2 Submits an input stream of primary radar or beacon Prot (F) (S) 0 = processing 
Symbols data to ohe PVDs geographic and sterile area filters Adr complete, no data 

and stores an output word into one of sixteen sort Spec stored 
bins for each input target that passes all filters. 1 = processing 

complete data 
stored 

2 = page boundary 
encountered 

3 =invalid beacon 
format 

Convert Weather CVWL 03 RR R1, R2 Submits an input stream of weather line coordinates Prot (F) (S) Unchanged 
Lines to one PVDs geographic and sterile area filters and Adr 

stores an output doubleword in the PVDs refresh Spec 
memory for each input line that passes all filters. 

Repack Symbols RPSB OF RR none Assembles an updated display image for one- Prot (F) (S) O = processing 
sixteenth of a PVDs area. Adr complete 

even/odd pair of GPRs specified by the RI field. The 
contents of the odd GPR of this pair is the third operand. 
The contents of the GPRs specified by the X2 and B2 fields 
are added to the content of the D2 field to form the 
address of the second operand. 

In the RR format, used by the three other display 
instructions, the RI field is used to identify the type of 
input to be processed by CSS. CVWL and RPSB ignore the 
RI field. 

The R2 field is used by CSS and CVWL to address the 
GPR containing the address of the input data; it is ignored 
by RPSB. The address of the input stream is contained in 
GPR9, so the R2 field must always contain the value 9. 

Data Flow 

The display instructions accomplish most of their tasks by 
moving data from one main storage location to another, 
reformatting it in the process in some cases. The main data 
flow paths are shown in Diagram 3-8, FEMDM. The main 
functional units used, and their purposes, are listed below: 

1. AB. Holds data to be moved during instruction 
execution. Also used in boundary calculations. 

2. IC. Addresses main storage area for the source data 
(data to be moved) on most operations. 

1-90 (7/70) 

Spec 2 = page boundary 
encountered 

3. D. Addresses main storage area for the destination of 
the data (location to which the data is moved). 

4. ST. Used in boundary calculations. ls the data path for 
data from the GPRs to all other registers. Is also a data 
path to the M-register. 

5. LM. Holds data read from main storage (data which 
requires reformatting before being stored into the new 
location). 

6. Mixer. Reformats data in LM by gating it, according to 
conditions present, to the proper positions in XY. 

7. XY. Holds reformatted data from the mixer and gates 
the data onto SDBI for storage at a new location in 
main storage. 

8. K. Holds data for later use and accumulates total 
counts of the data being moved. 

9. Local Storage. Contains control information for the 
display instructions. Provides work area for certain 
operations. 

10. Serial Adder. Provides a data path from AB to ST. 
Rearranges hex characters within a byte where needed. 
Compares bytes from different registers where 
required. 

I I. N. Holds current descriptor during that portion of 
RPSB execution. 

l 2. Parallel Adder. Performs boundary calculations and 
total count additions; provides main data path from AB 
to ST. 



Program Interruptions 

Three program interruptions can occur during execution of 
the display instructions. 
1. Protection. Occurs if the storage key of an accessed 

location does not match the protection key in the PSW 
and either the storage key or the protection key is not 0. 

2. Addressing. Occurs if an address designates a location 
outside the available storage for the particular installa
tion, or outside the configured storage or storage 
assigned by the storage address translator for a particular 
CE. 

3. Specification. Occurs if (1) the second operand address 
of the LC instruction is not on a doubleword boundary, 
(2) in CSS, CVWL, or RPSB, the data chain address 
contained in bytes 5-7 of the doubleword following a 
512-byte page is not on a doubleword boundary, or (3) 
if either the old refresh memory address or the new 
refresh memory address is not on a doubleword 
boundary in RPSB. 

Condition Codes 

Three display instructions set the condition code: LC, CSS, 
and RPSB. These instructions set codes which indicate the 
status of their execution or the reason for their termina
tion. The resulting condition codes are shown in Table 
1-15. 

MAINTENANCE FACILITIES 

Maintenance and troubleshooting of the CE is facilitated by 
the use of Logout, the Diagnose instruction, ROS tests, 
fault locating tests (FLT's), ripple test, diagnostic programs, 
and marginal checking. The CE contains special hardware 
facilities for each of these functions. A brief description of 
these functions and the associated hardware is provided in 
the following paragraphs. 

Logout is the process of storing the status of the CE control 
panel indicators into the logout area of the PSA. Special 
circuitry called scan logic is incorporated into the CE to 
perform the logout. The scan logic provides a separate 
means of control and special data paths, so that a logout 
may be obtained even though normal CE logic is disabled 
by a malfunction. 

A number of checks are made during logout to insure 
the accuracy of the logout data. For example, any of the 
following checks cause the CE to hards top: 
1. Log ROS Check: CE accesses a ROS word not in the 

logout routine. 
2. Log ADR Check: CE attempts to store data outside the 

logout area. 
3. PSBAR Parity Check: PSA location may not be correct. 
4. PSBAR Alternate Check: An attempt has been made to 

step PSBAR a second time. 
5. Storage Address or Storage Data Check. 

In normal operation, the logout occurs automatically 
when a machine check occurs (CHECK CONTROL switch 
in PROC position and machine-check interruptions not 
masked off). A logout can also be initiated manually via a 
pushbutton on the CE control panel. 

Diagnose Instruction 

The Diagnose instruction provides for a number of special 
operations to be performed by a program running in states 
3, 2, or 1; these include logout of an SE, reset check, 
reading the DAR and PIR, setting the DARM, and others. 
For maintenance purposes, however, the Diagnose instruc
tion provides a much broader range of operations for 
diagnostic programs running in state 0. These include 
defeating of storage interleaving, running portions of FLT 
tests, forcing certain incorrect parity conditions to test 
error detection circuitry, entering a microprogram at any 
desired point, and a special DE wrap function used in the 
9020E system. The Diagnose instruction utilizes a register 
called the maintenance control word (MCW) register. MCW 
information in the Diagnose (operand address field) is set 
into the MCW register during execution of the Diagnose 
instruction. Bits in the MCW register then cause the desired 
operation to be performed by the hardware. 

Other Diagnose functions are not mentioned here, but a 
complete explanation is provided in Chapter 4. 

ROS Tests and FLTs 

ROS tests and FLTs utilize the same special scan logic as 
Logout, together with the MCW register. These tests are 
read into the CE from tapes which are computer-generated 
from source data used in the manufacture of the CE ROS 
planes and logic. The ROS tests check each bit of each ROS 
word. The FLTs scan data into the CE hardware, advance 
the clock if necessary, and log the data out again. In this 

7201-02 FETOM (7 /70) 1-91 



manner, the circuitry may be tested without performing 
any instructions. Fault detection is performed at the logic 
level (i.e., at the level of the individual AND, OR, and 
Invert blocks making up the CE logic). 

Microprogram Diagnostic 

A microprogram, starting at ROS address FAA, may be 
manually initiated to check out most CE registers by means 
of the DATA keys. Normal parity checking is used to 
detect errors. 

Ripple Tests 

Ripple tests provide for the testing of local and main 
storage by rippling data from the data switches throughout 
the desired storage. These tests provide a quick check of a 
large portion of CE and storage hardware (SCI, CE to SE 
interface, etc.). The ripple tests provide a quick confidence 
test of CE and SE operation and, used in combination with 
the parity check indicators, a means of identifying a failing 
major area within them. 

1-92 (7/70) 

Diagnostic Programs 

Diagnostic programs provide a major means of maintaining 
and confidence-testing the CE. These programs use normal 
instructions and hardware, except for the Diagnose, as 
mentioned previously. Separate documentation is provided 
with the diagnostic programs. 

Marginal Checking 

Marginal checking is the process of testing the CE while it is 
operating under nonstandard voltages or clock frequency. 
This procedure provides a means of detecting circuits which 
have become voltage- or frequency-sensitive, often before 
they fail in normal operation. 

POWER 

All CE power, from the theory of operations standpoint, is 
covered in the 9020D/E Power Controls and Distribution 
Manual. Chapter 1 covers the system aspects of power; 
Chapter 2 covers CE power specifically. Power maintenance 
information is provided in the CE FEMM. 



This chapter is divided into seven sections: 

Section 1, Timing and Clock Control. 
Section 2, Read-Only Storage. 
Section 3, Data and Control Registers. 
Section 4, Local Storage. 
Section 5, Serial and Parallel Adders. 
Section 6, Status and Control Triggers. 
Section 7, Storage Control Interface. 

Each functional unit is described separately, in regard to 
operation, operational timing, and functional application. 
Supporting the descriptions are simplified, positive-logic 
upper-level diagrams, flowcharts, and timing charts. 

SECTION 1. TIMING AND CLOCK CONTROL 

The CE operates with a basic clock cycle of 200 ns, i.e., a 
5-mHz clock frequency. Each cycle comprises clock and 
not-clock portions, used for data transfer and logic func
tions, respectively. The 200-ns clock cycle is divided into 
twenty 10-ns intervals for intracycle timing. 

CLOCK SIGNAL GENERATORS 

The CE uses a 5-mHz gated delay-line oscillator to provide 
the basic clock signal. The gated delay-line oscillator can be 
inhibited by the SCI during a storage request'(Diagram 4-1, 
FEMDM). The oscillator is inhibited within one cycle after 
the SCI issues a 'select' signal to storage. When the 'accept' 
signal is received from storage, the clock is restarted after a 
pre-adjusted time delay which synchronizes the CE with the 
arrival of data from storage. 

The gated delay-line oscillator reduces the time required 
to restart the clock. It is not necessary to wait a full 
oscillator cycle (200 ns) to restart the clock as would be the 
case with a continuously running oscillator. The delay-line 
oscillator provides stable clock signals immediately upon 
restart. The negative-going signal into the oscillator not 
only starts the oscillator but becomes part of the first 
output cycle. 

A continuously running crystal-controlled oscillator, 
(Diagram 4-2, FEMDM) provides a 5-mHz reference fre-

CHAPTER 2. FUNCTIONAL UNITS 

quency for adjusting the 5-mHz delay-line oscillator fre
quency. A comparator circuit (Diagram 4-3, FEMDM) 
mixes the two signals and provides an output that is the 
absolute difference between the two. When the two signals 
are within 1 kHz of each other, the output of the 
comparator circuit is a null, indicating that the delay-line 
oscillator frequency is within 0.02% of the crystal
controlled oscillator frequency. 

For test purposes (CE in state 0), the clock signal 
generator may be operated at a higher output frequency 
(5.128 mHz), thereby shortening the clock cycle period by 
2.5% (from 200 ns to 195 ns). The higher frequency is 
obtained from both the CE and the reference oscillators by 
setting the FREQUENCY ALTERATION switch to the 
down position and the TEST switch to the TEST position. 
Both switches are located on the CE control panel. 

CLOCK TIMING 

• Triggers are set and reset at clock time. 

• Latches are set and reset at not-clock time. 

• Logic operations normally occur at not-clock time; 
subsequent data transfers occur at following clock time. 

• Symmetrical and unsymmehical clock signals are used, 
depending on logic function. 

• Twenty 10-ns delay intervals provide for intracycle 
timing. 

Throughout the CE, trigger and latch logic is used for all 
data-handling and control functions. Although imple
mented with the same logic components (ANDs, ORs, and 
inverters), triggers (by definition) are set or reset at clock 
time, whereas latches (by definition) are set or reset at 
not-clock time. In general, the data registers consist of 
triggers, and all intermediate logic units (such as adders, 
incrementer/decrementers, and decoders) consist of latches. 
Control logic consists of both triggers and latches. The CE 
design provides for all intra-CE data manipulation to be 
done by register-to-latch-to-register (trigger-to-la~ch-to

trigger) sequences, in lieu of direct register-to-register 
(trigger-to-trigger) transfer. Continuous availability of stable 
data results from the overlapping of the trigger and latch 
set/reset states (Figure 2-1). Note that the data (e.g., "A" in 
the figure) is stable in either a trigger or a latch at any one 

7201-02 FETOM (7/70) 2-1 



80 ns 
Clock 120 ns 

New Doto (A) New Data (B) New Data (C) 

+ + + 
,-------"---., 

Set or Reset Stable (B) Trigger -~~~s~-- ...., ___ s_ta-bl-e(_A_) ___ .._ _______ ...., ________ _.._ 

1 
To 

1 
+ 

Transfer (A) 

+ 

Latch Set or Reset -------

i 
To 

1 
Trigger 

Figure 2-1. Trigger and Latch Data Relationship 

time during the indicated two clock cycles, but that the 
trigger and latch are available for new data ·("B") in the 
next clock cycle. 

Each logic component within the CE introduces some 
degree of signal delay which must be considered in the CE 
operation. All logic blocks with inversion introduce be
tween 3 ns and 20 ns of delay, with 10 ns as the average. 
(Some special circuits introduce either 30 ns or 700 ns.) All 
logic blocks without inversion introduce less than 3 ns of 
delay. In addition, approximately 10-ns to 12-ns delay is 
created by every 6 feet of signal transmission line. 

Because of these delays, the clock signal is converted 
from a 5-mHz symmetrical signal to a 5-mHz unsym
metrical signal, with an 80-ns clock time and a 120-ns 
not-clock time. This unsymmetrical signal provides the 
needed extra time for logic operations during not-clock 
time and still leaves sufficient time for trigger input at clock 
time .. 

Many logic blocks are used in the parallel adder at clock 
time, thus causing excess delay. To overcome this delay, the 
unsymmetrical clock signal is extended to a symmetrical 
clock signal with a 100-ns clock time and a 100-ns 
not-clock time; this conversion is made within the parallel 
adder. Some of the parity checking and sign propagating 
circuits are timed by the unsymmetrical clock signals. 
Primary concern in clock timing is to provide stable 
information at sampling time. 

Oscillators A through E (Diagram 4-1, FEMDM) set up 
controls to stop, start, or control the clock. These signals 
are used in advance of clock time so that the controls are 
stable when they are needed. 

With most of the CE logic blocks introducing lO ns of 
delay, the 200-ns clock cycle period is divided into twenty 
10-ns delay intervals to provide timing within a clock cycle 
(Figure 2-2). These delay intervals are called "B" time or 

2-2 (7 /70) 

+ 
Transfer (B) 

+ 
Stable (A) Set or Reset 

i 
Transfer (A) 

+ 

Set or Reset Stable (A) 

Stable (B) 

+ Transfer (B) 

+ 

I 
I 
I 
I 
I 

,---->-----... I 
_2:t~.!e..:..:_t __ ~ 

"P" time and are relative to the start of the clock cycle. 
"B" time refers to symmetrical clock signals; "P" time 
refers to unsymmetrical clock signals. The delayed clock 
signals are created by series inverters (each inverter intro
ducing one 10-ns delay interval) or by time delays (e.g., BO, 
Bl, B2, .... , and P0-1, PO, Pl, P2, .... ). 

CLOCK CONTROL AND SIGNAL DISTRIBUTION 

• Manual, SCI, and ROS operations and errors affect clock 
signal availability. 

• Two clock signals, one symmetrical and one unsym
metrical, are distributed throughout logic gates. 

• Time delays unskew and synchronize clock signals 
within and between sections of logic. 

The availability of the clock signals to the CE processing 
logic is controlled by the clock-stopping logic (Diagram 
4-1 ). The SCI has the ability to inhibit the clock signal 
generator to account for the cabling delays to the storage 
elements (Diagram 4-1). During maintenance operations 
(such as scan, log-out, single-cycle, DE wrap, and diagnose 
log-out storage), the clock signals may be stopped or 
permitted to run intermittently. 

The 'pass pulse' trigger (Diagram 4-1) provides clock 
signal distribution control during both normal (continual) 
and single-cycle operations. A start, load, or reset operation 
sets the 'pass pulse' trigger and permits the clock signals to 
be passed on to the logic. When in the single-cycle mode, 
the 'block' trigger (set by the same operations) resets the 
'pass pulse' trigger and blocks the clock signals before the 
next clock cycle (unless the SCI holds the clock on). 



,____ ______ 200 ns------~ 

lntracycle Timing Intervals I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 
l 2 4 5 10 15 0 5 10 15 0 5 10 

I I I I I 
' I I 1 I 
I I I I I 
'-l•-'-l--'--100 ns 100 ns-+-1 I 

+BO 
I I : ,.I -------.: 

'--------+-----' '---------~ 

Symmetrical 
Clock Signals -8 l 

Unsymmetrico I 
Clock Signals 

Note: 

+ 82 

+80-2(818) 

+PO 

I I I I 

I I I 
I I I I 
I I I H-f-ao ns --•"""'I •,____,t----120ns---~•1 

I I 
I I I 

I I 
I I 
I I 

Heavy portion of timing signals indicates 
the active portion for the signal function. 

Figure 2-2. Typical Clock Signals 

The 'stop clock' trigger (Diagram 4-1) provides SCI 
control of the clock signal distribution. If the SCI cannot 
process a CE storage request immediately (due to a busy SE 
or DE), the SCI sets the 'stop clock' trigger and blocks the 
clock signals. When the request can be completed, the SCI 
generates the 'BCU cleanup' signal, which resets the 'stop 
clock' trigger. 

During certain operations, the ROS microprogram may 
stop the CE clock signal distribution for one or two cycles 
('STOP I' or 'STOP2' micro-orders). The 'stop clock ROS' 
trigger provides this control from the bit configuration of 
ROS word bits 45 and 46 (Diagram 4-1). 

The distribution of clock signals to portions of the ROS 
logic is stopped while the CE is in the Wait state (Diagram 
4-1). The Wait state is entered if PSW (14) = 1 at end op. 
An interruption or entering the stop loop removes the wait 
state block of the ROS signals. The 'time clock step' trigger 
coming on also removes the Wait state block of ROS 
(Diagram 6-20, FEMDM). In this case, ROS branches to a 
microprogram which steps the time clock, and upon 
completion of this, if there has been no change in PSW 
(14), the CE re-enters the Wait state. 

Clock signal distribution to the CE processing logic is 
stopped when the 'error' trigger is set and the CE CHECK 
CONTROL switch is not in the DSBL (disable) position. 

Error detection occurs during clock time, and the clock 
signals cease with the next not-clock time: 

+PO 

/ 

Clock Degated 

~x 
x 

Error Detected 

.------, 
I 

Necessary information for error analysis is thus held in 
latches and triggers to be examined directly or to be stored 
by a logout operation. Note that the DLY (delay) units 
allow the clock to finish the cycle started by' the last clock 
signal. The clock may be restarted by the CE CHECK 
CONTROL switch, by internal circuits, or by resetting the 
'error' trigger (inputs to clock inhibit, Diagram 4-1 ). 

The clock signal development and distribution concept is 
shown in Figure 2-3; note that it is not representative of 
any logic gate. Figure 2-3 (A) shows how the master 'clock' 
signal is distributed to the gates. Figure 2-3 (B) shows 
distribution within a typical gate, with a separate delay 
logic for every two SLT boards. The adjustable time delay 
shown in Figure 2-3 (C) allows for unskewing of the clock 
signals, i.e., aligning all 'PO' signals. The 'special sync for PO 
BO' signal is used to adjust the time delays so that all 'PO' 
signals occur simultaneously. 

7201-02 FETOM (7/70) 2-3 



DL Y 11-........ ---1 DLY 

D LY ti-...... ---1 DL Y D LY t-~t-----1 D LY 

A. Clock Distribution 

SLT Boards 

A c D 

-Clock 

-Clock 

B. Typical 5 X 4 Gate 

+PO 

__ ..... -----,/// 
....-- / 

....--- - //-PO-I -- // 

I 
I 

) 

,.,----- -- -- - - --- -, 
// I I 

/ I I 
/ / I Clock Control I 

I Signal Logic t-•--• 
I Generator 
I KCIOI 

KCOll 

-- I I ----.J.... __ ----- - - - __ ;__ _..J 

-Pl 

-Clock 

K 
SL T Gates 

L 

DLY __ ,.__..,. 

Note: Total delay includes JO ns per 6 feet of wire plus adjustable time delay. 

+P2 

TD is adjusted to synchronize each PO with 'special sync far PO BO' 
signal shown on ALD ZAOOI. Each PO must coincide with every 
other PO in any SLT gate. 

Number of inverters varies from gate to gate, depending on need far 
particular signal. 

-P3 

(~_-_::-:_ ___ ---- --( / 

I 
I 

To DLY on Ad'acent Board 

-Clock 

I 
I I L ___________ ...J 

-P0-1 +PO -Pl +P2 -P3 

C. Unskewing Delay Logic 

Figure 2-3. Clock Signal Development and Distribution 

2-4 (7 /70) 



SECTION 2. READ-ONLY STORAGE 

The read-only storage (ROS) is a device containing a 
permanently recorded microprogram used to control CE 
operations. The microprogram is in the form of 100-bit 
micro-instructions (ROS words), each of which has a 
unique predetermined bit pattern. The ROS words can be 
read out as required, but a physical modification is 
necessary to change the stored information. When decoded, 
the bits of the ROS word condition gates whose outputs 
perform the necessary functions to execute an operation. 
Thus, ROS eliminates the need for most complex instruc
tion decoders and sequencing networks and introduces a 
flexibility to machine design not previously available in 
control hardware. This flexibility allows changes to be 
made to control circuits (for special features) by replacing 
printed circuit sheets in ROS. 

CAPACITIVE READ-ONLY STORAGE ARRAY 

The capacitive read-only storage (CROS) array consists of 
2816 100-bit ROS words, which are addressed by a 12-bit 
ROS address register (ROSAR). The array consists of 16 
planes, each of which is divided into 4 quarter planes. Each 
quarter plane has one array driver energizing 1 of 22 select 
lines. Each select line causes two ROS words to be read out. 
To address a particular drive line from ROSAR, bits 0-3 
select a plane, bits 4 and 10 select a quarter plane, and bits 
5-9 energize one select line. Bit 11 of ROSAR selects one 
of the two ROS words (upper or lower) read out each 
cycle. 

CROS Electrical Theory 

The CROS operates on the presence or absence of a 
capacitor between a drive line and a sense line. Only one 
driver at a time may be energized. In the example shown in 
Figure 2-4, when driver 1 is energized, an impulse is 
coupled through capacitor C 1 to differential sense amplifier 
D, producing the "D" bit. The same drive results in inputs 
to differential sense amplifiers A, B, and C, but the polarity 
is reversed and no bits are generated. To equalize the 
capacitive load (impedance) to all sense amplifiers, a 
balance line is provided with each driver and is allowed to 
"float". 

Note: Because the balance line function was found to be 
unnecessary, later machines do not use the balance line, 
although it is still printed on the ROS planes. 

Some unwanted capacitive coupling exists in this type of 
matrix. In Figure 2-4, when driver 1 is energized, C 1 
couples the voltage shift to sense line D, C2 couples the 
voltage shift to drive line 2, and C3 couples the voltage shift 
to sense line B. This unwanted signal is very low because it 
passes through three elements in cascade. The threshold of 
the sense amplifier is designed so that the low signal is 
rejected while the desired signal is amplified. 

CROS Planes 

The 2816 words of ROS are stored in 16 planes. Each plane 
contains the capacitors, drive lines, balance lines, and sense 
lines for 17 6 100-bit ROS words. The drive and balance 
lines are independent, whereas the sense lines feed common 
sense amplifiers. Planes 0-7 are on gate C, and planes 8-15 
are on gate D: 

Drive and Balance Lines (Bit Plates) 

The drive and balance lines are photo-etched from a sheet 
of copper that is bonded to epoxy glass (Figure 2-5). The 
resulting epoxy sheet with copper drive and balance lines is 
called a bit plate. A separate bit plate controls the bit 
configuration for each CROS plane. 

Tabs at the top and bottom of the bit plate are used for 
electrical connections to the drive and balance lines. The 
top tabs connect the drive and balance lines to terminating 
resistors. The bottom tabs connect the drive lines to the 
drive circuits. 

Four holes in the bit plate align the bit plate to the sense 
plane. The two outer holes snap over locating studs in the 
sense plane, and the inner two holes provide clearance for 
the center studs. 

7201-02 FETOM (7 /70) 2-5 



Drive/ 
Line 

Driver 

r -1* 
I I 
I I L __ ...J 

Driver 
2 

Figure 2-4. Basic 4 x 4 CROS Matrix 

Sense Lines 

,,,..--
( +6V) 
\. / 

r -1* 
I I 
I I 
L -' 

• 200 pairs of sense lines are in each CROS plane. 

Driver 
3 

• A pair of sense lines carries signal for one ROS-word bit 
position. 

• 200 pairs of sense lines read out two 100-bit ROS words 
simultaneously. 

2-6 (7 /70) 

Driver 
4 

Sense 
Amp I A-Bit 
A 

Sense 
Amp I B-Bit 
B 

Sense 
Amp I 
c 

Sense 
Amp I 
D 

...___Balance Line 

C-Bit 

D-Bit 

*Resistor and connector 
removed on later machines. 

The sense lines are photo-etched into copper-covered 
epoxy-glass plates (Figure 2-6). The sense-line plates are 
permanently mounted to the array gates. Electrical con
nections from the sense lines to the terminating resistors 
and sense amplifiers are made with low-temperature solder. 

There are 200 pairs of sense lines in each CROS plane. 
Two sense lines are required to read out one bit position of 
the ROS word. One drive line simultaneously reads out two 
100-bit ROS words, which use 200 pairs of sense lines. 



Terminating 
Resistor 
Tabs 

Alignment 
Hole 

Center 
Stud 
Holes 

Alignment 
Hole 

[ 

Drive Line 

Driver Lines Tabs 

Figure 2-5. Bit Plate 

Figure 2-7 shows the layout of the sense lines in the 
ROS planes. The top pair of sense lines is bit 0 of the upper 
word. The next lower pair of sense lines is bit 0 of the 
lower word. This order continues to the bottom pair of 
sense lines, which is bit 99 of the lower word. The upper 
and lower words are read out simultaneously. Each sense 
line is terminated through a resistor to ground. Note the 
distribution of sense lines through the planes to the 
differential sense amplifiers. The sense lines through the 
planes on both sides of a gate are tied together for each bit. 
The pair of sense lines from each gate is then ORed in the 
sense amplifier for each bit. Because only one plane has an 
active drive line for a given ROS address, the sense amplifier 
receives only one input signal. 

Bit Capacitors 

The bit capacitors are formed by sandwiching a sheet of 
Mylart between the bit plate and the sense lines (Figure 
2-8). Pressure plates hold these pieces firmly together. The 
Mylar is the dielectric, and the drive, balanct., and sense 
lines become the plates of the capacitors. 

Tabs on the drive and balance lines increase the size of 
the capacitors to form the bit configuration. The effective 
capacitive coupling of a drive line to a sense amplifier is 
equal to C 1 minus C2. The size of this effective capacitor is 
approximately 0.5 pf. 

tTrademark of E. I. duPont de Nemours & Co. (Inc.) 

7201-02 FETOM (7 /70) 2-7 



Figure 2-6. Sense Lines 

The bit configuration within a CROS plane is controlled 
by the bit plate. Therefore, the ROS word can be changed 
by replacing the bit plate that contains the word. 

Physical Package 

A CROS plane consists of a sandwich comprising the sense 
line board, a dielectric sheet, and a bit plate. These pieces 
are held firmly together by pressure plates (Figure 2-9). 

A pressure plate, with a neoprene pad, fits over each 
group of capacitors in the plane. The plates are loosely 
connected to a pressure frame that is bolted to the gate. 
Adjusting screws in the frame squeeze the pressure plate 

2-8 (7/70) 

against the bit plate. Because the sense lines are on a rigidly 
mounted board, the pressure plate holds the bit-capacitor 
sandwich firmly together. 

Electrical connections to the bit plate are also made 
through pressure connections. 

ROS ADDRESSING 

ROS word addresses are assembled in the 12-bit read-only 
storage address register (ROSAR). Each ROS word contains 
the basic address of the next ROS word. The basic address 
may be modified by machine operation or by error 
conditions. 



Plane 15 Planes 13 and 11 Plane 9 

Plane 14 Plane 8 

Plane 7 Pl ones 5 and 3 Plane 1 

Plane 6 Plane 0 

Figure 2-7. Sense Line Layout 

Read-Only Storage Address Register 

• ROSAR(0-11) supplies 12-bit address that selects next 
ROS word. 

• Overriding branch and manual ROS operations force 
new address to ROSAR. 

The ROSAR, a 12-position (labeled 0-11) latch register, 
supplies the address to select the next ROS word. The 
configuration of the ROSAR contents (address) is con
trolled by the NA, K, and J control fields of the present 
ROS word. A new address is available in ROSAR 50 ns 
after each P2 clock time. Although each ROS word 
contains the address of the next word to be accessed, 
address modifications can result by satisfying data
dependent branch conditions. These data conditions are 
stable at ROSAR(0-10) by P2 + 30 ns and at ROSAR(l 1) 

r--- - --~--- -
I Sense Amplifier 

Gate D Bit 0 Upper Word I 

Gate C Bit 0 Upper Word 

Bit 0 Lower Word L-----------

Bit 1 Upper Word 

Bit 1 Lower Word 

Bit 99 Upper Word 

Bit 99 Lower Word 

by P2 + 50 ns. The gate at ROSAR is a P4 clock pulse. To 
prevent late branching, the output of all ROSAR bits must 
be stable by P2 + 60 ns; at approximately PO minus 30 ns, 
the ROS sense latches are sampled. This sequence is 
repeated every machine cycle. 

The ROSAR bit positions can be divided arbitrarily into 
four groups, according to their inputs. These groups are: (1) 
ROSAR(0-5), which normally receives only the six high
order bits of the base address; (2) ROSAR(6-9), which can 
receive the four low-order bits of the base address and/or 
the output of the X-branch decoder; (3) ROSAR(IO), 
which can receive data from either the X-branch decoder or 
the Y-branch decorder; and ( 4) ROSAR(l l), which can 
receive data from either the X-branch decoder or the 
Z-branch decoder. [Note the overlap between the base 
address and X-branches on ROSAR(6-9).] An overriding 

· branch, however, affects all positions of the ROSAR. 

7201-02 FETOM (7/70) 2-9 



Sense 
Amp I 

Sense Line 

+6V 

Driver 

{ 
Epoxy Gloss --'. --------------____.1 Bit Plate - L 
~.rive and Ba I once --------; .. ~!ii2L./.L.2:...:2:::..2c..L.2..L.2::...2c..L.2.L.2:...:2::..2w2::...2u2:.....2w2::...L.2...t.2::...2u2:...:2::_.Z!LJ 
Lines 

Dielectric-----------"L------------------_J 

Sense Lines--------~~CZZI.. : : : 

EpoxyGlass-------j~zz::zz:zz 
22

;zz1 
Ground Plane ------

Figure 2-8. Bit Capacitors 

2-10 (7/70) 

Driver 

Exploded 
Cross-Section 

I 



Pressure Frame 

Center Stud and Cap Nut 

Loose Screws (to hold 
plate in position) 

Dielectric Center Stud Sense Line Plate 

Neoprene Pad 

Pressure Plate Loose Screws (to hold plates Cap Nut Pressure Screws 
in position) 

Figure 2-9. CROS Plane Pressure Mounting Assembly 

The following micro-orders can cause an overriding 
branch: 'T~RAR', 'EXCEP', and 'SPEC'. If control field K 
contains the 'T~RAR' micro-order, the base address is 
inhibited and T(40-51) is transferred to ROSAR(0-11). 
This branch is unconditional. An 'EXCEP' micro-order 
inhibits the base address if an interruption is pending. The 
source of the interruption provides the branch address. 
When an 'SPEC' micro-order is specified, a specification 
program interruption forces the branch address into the 
ROSAR. In addition, a local store write operation is 
blocked. 

Certain FLT operations force a new address into 
ROSAR (Diagram 4-101, FEMDM). 

Two manual operations cause the contents of the 
ADDRESS switches to be forced into ROSAR: depressing 
the ROS TRANSFER pushbutton and activating the 
REPEAT ROS ADDRESS switch. The operation of these 
controls is described in Section 1 of Chapter 4. 

ROSAR(0-5) 

ROSAR(0-5) (Diagram 4-101, FEMDM) can be set from 
one of three sources: ROS sense latch bits 47-52, 
T( 40-45), or ADDRESS keys 8-13. Normally, positions 
0-5 receive the five high-order bits of the base address 

7201-02 FETOM (7/70) 2-11 



from the NA control field of the current ROS word 
contained in the ROS sense latches. However, if control 
field K contains an overriding branch and the branch 
condition is met, or if an FLT operation is in progress and 
certain conditions are present, or if certain manual opera
tions are being performed, the base address is inhibited 
from entering the ROSAR and ROSAR(0-5) is set from 
the ST bus or the ADDRESS switches. 

ROSAR(6-9) 

ROSAR(6-9) (Diagram 4-102, FEMDM), in addition to 
receiving the low-order bits of the base address and the 
overriding branch address, can be set individually by 
X-branches (functional branches) specified by control field 
J (bits 62-68) of the ROS word. The control field J 
micro-orders that specify X-branches are listed as 196 to 
1125 on ALD A6231, which also shows the ROSAR bits 
that are set under specific conditions for each X-branch 
micro-order. When an X-branch is executed, the high-order 
positions [ROSAR(0-5)] remain unchanged; i.e., they still 
contain the high-order bits of the base address. The base 
address bit positions corresponding to the bits affected by 
the X-branch must be set to zero when an X-branch 
micro-order is given. For example, if ROSAR(6) can be set 
to a 1 by a certain micro-order, ROS sense latch bit 53 
must be 0 in the ROS word that contains the branch. 

ROSAR(lO) 

RO SAR( 10) (Diagram 4-1 03, FEMDM) can be set by an 
X-branch, an overriding branch, and/or a Y-branch. The 
base address, however, has no effect on this bit. Also, 
because an overriding branch and a Y-branch are both 
decoded from bits in control field K (bits 57-61) of the 
ROS word, only one of the two branches can be executed 
at a time; they cannot be executed together. That is, if 
control field K specifies an overriding branch, a Y-branch 
cannot be specified, and vice versa. 

However, a Y-branch and an X-branch can be executed 
together because they are functions of micro-orders in 
separate control fields (Kand J). The result of ROSAR(IO) 
is as follows: if neither the X-branch condition nor the 
Y-branch condition is met, ROSAR(lO) remains a O; if 
either or both of these conditions are met, ROSAR( 10) is 
set to a 1. The Y-branch micro-orders that affect 
ROSAR( 10) are listed in the K field on ALD A6241 in the 
same manner as that of X-branches. 

ROSAR(l 1) 

ROSAR(l 1) (Diagram 4-104, FEMDM) can be set by an 
X-branch, an overriding branch, or a Z-branch. The base 

2-12 (7/70) 

address,. just as for ROSAR( I 0), has no effect on 
ROSAR(l I). Because an X-branch and a Z-branch are both 
decoded from bits in control field J (bits 62-68), only one 
of the two branches can be executed at one time. ALD 
A623 l lists the Z-branch micro-orders. 

However, a Y-branch and a Z-branch can be executed 
together. The effects on ROSAR(l0,11) are as follows: if 
neither condition is met, both ROSAR bits remain a O; if 
either condition is met, the associated ROSAR bit is set to 
l; if both conditions are met, both bits are set to l's. 

If control field K contains an overriding branch and 
control field J contains a Z-branch, and if the overriding
branch condition is met, the result of the Z-branch is 
inhibited and ROSAR( 11) is set as specified by the 
overriding branch. 

ROSAR(0-10) Decoding 

ROSAR decode logic decodes the address in 
ROSAR(0-10) to select 1 of 1408 array drive lines. 
ROSAR(0-4,10) is decoded into 1 of 64 drive lines; 
ROSAR(5-9) is decoded into 1 of 22 select lines; and 
ROSAR(O) selects gate C or D. One select line and one 
drive line then select 1 of the 1408 array drive lines. See 
Diagram 4-105, FEMDM, for decode flow. ROSAR(ll) is 
decoded to select one of the two ROS words read out each 
cycle. (If bit 11 = 1, the lower word is selected; if bit 11 = 
0, the upper word is selected.) 

Strobed Drive Lines 

A ROSAR address selects 1 of 64 strobed drive lines by 
decoding ROSAR(0-4,10) as shown in A of Diagram 
4-105, FEMDM. The decoded address is a gate-drive signal 
to the array drivers. Each strobed drive line controls the 
array drivers for one CROS quarter plane. 

Decoding is accomplished in two levels. In the first level, 
bits 3, 4, and 10 are decoded to activate 1 of 8 lines, and 
bits 0, 1, and 2 activate 1 of 8 lines. The outputs of the two 
first-level decoders are then combined with a gate-drive 
signal to activate 1 of 64 drive lines. 

Select Lines 

One of 44 select lines is activated by decoding 
ROSAR(0,5-9) (B of Diagram 4-105). Twenty-two of 
these select lines are connected to gate C, and 22 to gate D. 
ROSAR(O) is· decoded to select the gates, and 
ROSAR(S-9) is decoded to activate a select line within a 
gate. Although ROSAR(S-9) can be decoded 32 different 
ways, only the first 22 combinations are considered valid 
addresses; the other 10 combinations are not tested. If an 



illegal bit combination is entered into these bit positions, 
no select line is activated. Illegal addresses are addresses in 
which ROSAR( 5 ,6) = 11. 

Decoding is accomplished in two levels. In the first level, 
bits 7, 8, and 9 are decoded to activate 1 of 7 lines, and bits 
0, 5, and 6 are combined with a 'gate word select' signal 
(clock P2 delayed) to activate 1 of 6 lines. (Note that when 
bits 5 and 6 = 11, no signals are developed from the 
first-level decoder.) The outputs of the two first-level 
decoders are then combined in the second-level decoder to 
activate one of the 44 select lines. 

Array Drivers 

There are 1408 array drivers in ROS, 704 on gate C, planes 
0-7, and 704 on gate D, planes 8-15. Diagram 4-105, C, 
shows how the drive-line signals are developed and dis
tributed. Each array driver is an AND that ANDs 1 of 64 
drive lines with 1 of 22 select lines (details are shown in 
Diagram 4-106, FEMDM). The ANDs are single transistors; 
the drive lines condition the emitters while the select lines 
control the bases. Voltage is supplied to the collectors 
through the array drive-line-terminating resistors. 

Sense Amplifiers 

The sense amplifiers increase the voltage difference between 
paired 1 and 0 sense lines. The first stage of the sense 
amplifiers (D of Diagram 4-105, FEMDM) consists of two 
differential amplifiers, one for gate C sense lines and one 
for gate D sense lines. Because only one array driver is 
active for a machine cycle, the sense lines of only one gate 
carry a signal during a machine cycle. The first-stage 
differential amplifier increases the voltage difference be
tween paired sense lines and sends this signal to the 
second-stage amplifier. The second-stage further amplifies 
the signal and transmits it to the ROS sense latches. 

ROSAR( 11) Function 

Each cycle, 200 bits are sent to the sense latches. 
ROSAR(l 1) divides this information into two 100-bit 
words. If ROSAR( 11) = 1, the lower word is selected; if 
ROSAR(l I)= 0, the upper word is selected. 

ROS DATA FLOW 

ROS word data is transferred from the sense amplifiers to 
the sense latches. A portion of the word is immediately 
decoded, while other portions step through registers and 

latches to provide a delay so that the data is available at the 
desired time. The ROS word data flow is shown in F of 
Diagram 4-105. 

ROS Sense Latches 

The 100 ROS sense latches hold the ROS word for 
decoding and for setting ROSDR at PO of the next machine 
cycle. The sense latches are set by strobing either the upper 
or lower word sense amplifier outputs and are reset 
approximately 120 ns after PO of the machine cycle (E of 
Diagram 4-105). 

ROS Data Register and ROSDR Latches 

The ROS data register (ROSDR) holds fields A through H, 
and M, N, P, Q, and W of the ROS word for use in the next 
machine cycle. Fields H, and M, N, P, and Q are decoded 
directly from the ROSDR to control LS and the adders, 
respectively. Fields A-G and W, however, are further 
delayed by holding them in the ROSDR latches. These 
fields are used for register ingating. 

The ROSDR latches allow a ROS word to control 
certain gates during the register set time of the next cycle. 
For example, one ROS word may contain the micro
instruction: add the contents of T and A, and store the 
answer into A. The ROS word adds the contents of the 
registers on one machine cycle and stores the sum from the 
parallel-adder-out bus at register set time of the next cycle. 

Diagram 4-107, FEMDM, is a simplified diagram of 
ROSDR. In this diagram, each main division of ROSDR is 
represented by a single bit position. At clock P0-1 of each 
machine cycle, ROSDR is reset. At not-clock P0-1, the 
contents of the ROSDR (bits 6-36) are sent to the ROSDR 
latches. At clock PO, the contents of the sense latches are 
transferred to the ROSDR. The output of the ROSDR 
latches (containing the previous ROS word) and the output 
of ROSDR (38-42, 69-77, and 78-84) are then decoded 
to perform the selected micro-orders. 

ROS Decoders 

The ROS decoders use the bits from the ROS word to 
develop control lines. One micro-instruction may activate a 
number of control lines. Timing consideration governs the 
source of the lines, i.e., sense latches, ROSDR, ROSDR 
latches. 

Field A (bits 6-9 of the ROS word) in Figure 2-10 is an 
example of a decoding network to develop control lines 
from ROS bits. Line A ['gate MlM2 to PAL(64,65)'] is 
decoded from ROSDR because it updates PAL( 64,65) 

7201-02 FETOM (7/70) 2-13 



ROS DR 

RY021 

7 

L..--

RY021 

.-L-
L 

RY021 

.--1--
L 

8 

9 

h 

To RO SDR 

L..--
Latch Inputs 

RY021 

Not Inhibit Ingoting 

I-Fetch 2 Latch 

Not Excep Cond to I-Fetch 

Not I-Fetch 1 Latch 

ROS DR 6 

LoL:h•>~ 
r--c-- N Not6 

RY021 
7 

~ 
.____ 

8 

RY021~ 
~ N Not8 

1.....-- 9 

RY021~ 
~ Not9 

L N 

RY021 

Not 9 

Not 6 

8 

Not 6 

9 

6 

7 

8 

Not 6 

7 

Not 8 

Not 7 

8 

Not 9 

Not 7 

8 

9 

Not 6 

7 

7 

8 

Not 9 

Not 6 

7 

8 

7 

Not 8 

9 

7 

Not 8 

9 

Not 7 

8 

Not 9 

Figure 2-10. Control Field A Decoder 

2-14 (7/70) 

A 

DR021 

,....--,......, 

A 

t--
OR 

A 

t--
A 

.....____.___. 
DR021 

,....--,---, 

A 

1---1 OR 

A 

~ 

DR021 

,.....--,--

A 

t--1 OR 

A 

~ 

DR021 

n 
J A I 
DR02l 

r--r--

A 

1----1 
OR 

A 

~ 

r--r--

A 

t--1 

A 
OR 

t--

A 

L-L-..l 

DR021 

j A 

-DR021 

Gate Ml,M2 
to PAL(64, 65) 

Gate PAL(32-6 3) 
to B(32-63) 

Gate PAL(8-2 3) 
to A(8-23) 

Gate PAL(40-63) 
to IC 

Gate PAL(32-63) 
to A(0-31) 

Gate PAL(24-31) 
to A(24-31) 

A 

c 

D 

before PAL is gated to AB. The 'B38M' micro-order (A7), 
shown on ALD M7001, uses line A to update PAL(64,65) 
during not-clock time. Then, lines B, F, and G are 
developed from ROSDR latches 6-9 to gate PAL(24-67) 
to AB(24-67) during the next clock time. Note that the 
'B38M' micro-order results when bit 6 = 0 and bits 7, 8, and 
9= Ill. 

This example demonstrates the. register-to-latch-to
register timing that controls the source of the decoded 
control lines. The other micro-order control fields are 
decoded in a similar manner to provide the control lines at 
the proper time . 

ROS Timing 

ROS timing is controlled by the master clock signals. At PO 
+ 160 ns, the ROS word is strobed (gated) into the sense 
latches, which are reset at PO+ 120 ns. Data from the sense 
latches is stable and available at P0-5 ns when it conditions 
ROSDR(6-42) for setting at clock PO and ROSDR(69-84) 
for setting at clock P2. Gate controls from the sense latches 
(register data transfer) are activated at clock P2, and remain 
up for 190 ns. ROSDR latches are set at P7 ('not clock 
P0-1' signal) and initiate register inputs during the following 
200 ns. Figure 2-11 shows the timing relationships of the 
registers and latches. These timings are theoretical and do 
not show the delays caused by the signals passing through 
inverters. 

Note: Initially, ROSDR is set to all l's; a 0 in a sense latch 
position resets the corresponding ROSDR position. 

Maintenance Aids 

When an error occurs, data leaves ROS registers and latches 
before the clock is stopped. To retain this information, 
which identifies the instruction that resulted in the error, 
secondary registers (which have no other purpose) are 

Gate PAL(64-
to B(64-67) 

67) provided: ROSAR latches, ROS previous address registers A 

Decode PAL 
ta IC 

G and B, and ROS backup register. 

H 

ROSAR Latches 

The ROSAR latches are loaded from ROSAR at Pl 1 time 
(not-clock P3 time) of each ROS cycle. At P4 time, the 
latch output is gated to the previous ROS address registers 
A and B (PROSAR A and PROSAR B) by an alternator. At 
the next PIO time (not-clock P2 time), the ROSAR latches 
are reset. 



1111111111111111111111111111 II 11111111 11111 111111111111111111 
PO P5 PIO Pl5 PO P5 PIO P15 PO P5 PIO Pl5 PO 

ROS Sense Latches Word 0 Word l Word 2 .._ _ __,!word 3 

ROS DR( 6-42) J Word 0 LJ Word l u Word 2 L 

Register Outgating 

ROS DR( 69-84) Word 0 LI Word l u Word 2 

ROS DR Latches ( 6-36) u Word 0 LI Word l LI Word 2 

Register Ingoting 

ROSAR LI Word l Address LI 

Figure 2-11. Detailed ROS Timing 

Previous ROS Address Registers 

The contents of the ROSAR latches are alternately gated to 
PROSAR A and PROSAR B, which alternately contain the 
address of the current and previous ROS words. These 
registers, which are loaded at P4 time of the ROS cycle, 
comprise polarity-hold circuits and retain their values until 
gated into again. Thus, if PROSAR A is loaded on one cycle 
and PROSAR B on the next cycle, the contents ·of 
PROSAR A are maintained until the third cycle, at which 
time a new address is loaded. The contents of PROSAR A 
and PROSAR B are indicated on the roller switch indi
cators: roller 1, position 4, bits 12-23 and bits 24-3S, 
respectively (Diagram 6-2, FEMDM). 

PROSAR A and PROSAR B Alternator 

The PROSAR A and PROSAR B alternator (Figure 2-12) 
causes the contents of the ROSAR latches to be sent 
alternately to the PROSAR A and PROSAR B indicators. 
Referring to Figure 2-12, assume that the latch is reset, the 
CE is at clock PO time, the A-gate is conditioned, and the 
B-gate is deconditioned. · 

At the following P3 time, AND 1 becomes conditioned, 
which in turn conditions AND 3. The output of AND 1 is 
also sent to AND 2, but AND 2 cannot be conditioned 
because the A-gate is set. The output of AND 3 gates the 
contents of the ROSAR latches to the PROSAR B indicator 
circuits. 

Because the B-gate is deconditioned at P6 time, the 'latch 
is set. On the rise of the -PS signal, the latch being set 
causes the B-gate to be conditioned and the A-gate to be 

Word 2 Address .LI Word 3 Address 

deconditioned. With the A-gate deconditioned, AND 2 is 
activated at P3 time (via AND 1) of the following cycle. 
This action gates the contents of the ROSAR latches to the 
PROSAR A indicator circuits. 

When the -PS signal drops, the latch is reset. The gates 
remain in this condition (A deconditioned, B conditioned) 
until the rise of the -PS signal. At that time, the A-gate is 
conditioned by the reset latch, and the B-gate is decondi
tioned by the A-gate. 

During the next two cycles and each cycle thereafter, 
the operation described above is repeated until the CE 
clock is stopped. At that time, the contents of the ROSAR 
latches are gated to the PROSAR indicators associated with 
the deconditioned gate. To indicate which ROS address is 
in which set of indicators, the latch output (inverted) is 
sent to the PROSAR A indicator (roller 3, position 4, bit 
34). When the latch is reset, the indicator is on, indicating 
that PROSAR A contains the address of the current ROS 
word and that PROSAR B contains the address of the 
previous ROS word; if off, the contents of PROSAR A and 
PROSAR B are reversed. 

ROS Back-Up Register 

The ROS back-up register (ROSBR) holds fields L, NA, K, 
and J (which are indicated on roller 3, position 4, bits 
7-32), and fields R, T, U, and V (which are indicated on 
roller 4, position 4, bits 17-30). These indicators combined 
with the ROSDR indicators provide maintenance personnel 
with a picture of ROS word contents when the CE (with 
the CHECK CONTROL switch in the STOP position) stops 
as the result of an error. 

7201-02 FETOM (7/70) 2-15 



P6 

Not PS 

Not System Reset 

Not Block 
ROSAR Reset 
P3 

Pl 

ALD: RX201 

I 
PO 

Pl 

P3 

PS 

P6 

Latch · 

B-Gate 

A-Gate 

ANDl 

I 

Not B-Gate 

'--------41---t N PROSAR A is Last 

11 I I I I I ' 
PS PlO PlS 

I I 
PO 

A-Gate 

Scan Out Word 16R or 
Roller 3 Position 4 

ROSAR(O) L 

Scan Out Word 1 or 
Roi ler 1 Position 4 

Gate ROSAR 
Latches (1-11) 

ROSAR(O) L 

Scan Out Word 18R or 
Roller 1 Position 4 

Gate ROSAR 
latches ( 1-11) 

I I I I ' 
PS PlO 

I I I 
PlS PO 

Indicate Roller 3 
Position 4, Bit 34 

Indicate Roller 1 
Position 4, Bit 12 

Indicate Roi I er 1 
Position 4, Bit 12 

PS 

AND 2 · PROSAR A L--~~~~~~~~~~~~~~~~~~~~~~~~~~~--lr--

AND 3 PROSAR B 

Figure 2-12 .. PROSAR A and PROSAR B 1Alternator 

2-16 (7/70) 



ROS Error Checking 

Before each ROS word is decoded, it is checked for correct 
parity. Parity is checked in three groups from the ROSDR 
and the ROSBR: 

w Fields Fields L, NA, 
Fields M, N, 

Spare Field A-H 
p 

ND, K, and J P, Q, R, T, p 
U, and V 

0 1 2-5 6 42 20 43 68 85 69 99 91 
~ 

Group 1 Group 2 Group 3 

Each group contains its own parity bit and must have an 
odd number of bits to result in correct parity. (There is also 
a parity bit for the entire ROS word, bit 0. This bit is not 
checked.) Figure 2-13 illustrates ROS parity checking for 
the three groups: A of the figure shows how parity is 
checked from the ROSDR for group 1; B of the figure 
shows how parity is checked from the ROSBR for group 2; 
C of the figure shows how parity is checked from the 
ROSDR and ROSBR for group 3. 

The clock reset is blocked in that part of the ROSDR or 
ROSBR containing the failing ROS word. The part, or 
parts, not in error are reset, and the next ROS word is gated 
to its respective register part(s). For example, if bits 43-68 
of a ROS word contain an error, the bits are retained for 
observation. The other two groups not in error (bits 0-42 
and 69-99) will change. The groups that change belong to 
the data word accessed by the failing word when the data 
register is examined. Thus, when a ROS parity error occurs 
in one part, the ROS bit indicators on the system control 
panel comprise bits from two different ROS words. 

A ROS parity error also prevents stepping ROSAR, 
PROSAR A, and PROSAR B, thus enabling the operator to 
establish the address of the current ROS word, the address 
of the previous ROS word, and the address of the next ROS 
word. The address of the previous ROS word should be 
particularly helpful when parity errors are caused by late 
ROS branches. 

Assume that ROS bit 40 fails. A parity error in bits 
2-42 is indicated, and the ROS previous address register 

indicated the failing word. Reference to the ROS bit plane 
description shows the expected bit content of the failing 
word. The incorrect bit (bit 40) can be determined directly 
by comparing the bit plane description with the indicators. 

To summarize, if a machine check is not disabled and a 
ROS parity error occurs, the parity group in error is not 
reset at CE clock time of the next cycle. The CE clock 
set-reset signal is blocked to the group that contains the 
parity error (Diagram 4-107, FEMDM). The new ROS 
word, however, is gated to the two groups not in error. 

If CHECK CONTROL is in the STOP position, the bit in 
error can be determined by displaying the ROS micro
instruction, noting which group of bits is in error, deciding 
which ROS address is in error, and referring to the listing of 
ROS micro-instructions. If a ROS parity error occurs and 
the machine check mask bit [PSW(13)] is set, a logout 
occurs (CHECK CONTROL in PROC). 

Scan Mode Operations 

Scan mode operations affect three fields of ROSDR: field 
D (bits 17-19), field F (bits 25-30), and field G (bits 
31-35). These fields serve dual functions. In the normal 
mode, they are decoded from the ROSDR latches as 
standard CE control lines. In Scan mode, they are decoded 
as special scan control lines and are referred to as field S. 

The Scan mode is controlled by the 'scan mode' trigger. 
When the 'scan mode' trigger is reset, the standard decode 
path is used. When the 'scan mode' trigger is set, however, 
the standard control lines are blocked, and scan control 
lines (using common CE control line codes) are activated. 

The 'scan mode' trigger can only be set in Manual mode 
and reset only in Scan mode. The scan control logic 
generates an 'inhibit register ingating' signal, which is sent 
to the ROSDR fields to block register inputs and to allow 
scan control use of the ROS in sequencing through its test 
operations. 

Scan also affects ROS microbranching. (See "Scan Mode 
Control of ROS" in Section 2 of Chapter 4.) 

7201-02FETOM (7/70) 2-17 



ROSDR(14) ROSDR(6) 

ROSDR(15) 

ROSDR(16) ROSDR(13) 
ROSDR(21) 

ROSDR(22) ODD 

ROSDR(23) 

ROSDR(24) 

ROSDR(18) 

ROSDR(19) ROS Error (2-42) Block ROSAR 

ROSDR(38) 
ROSDR(31) 

ROSDR(25) 

ROSDR(32) 

Clock PO Forced 
A 

ROS Parity Error (2-42) 

ROSDR(30) 

ROSDR(36) 

ROSDR(37) 
ROSDR(33) 

ROSDR(34) 

ROSDR(35) ODD 

RYOll 
Not Clock 
P2 Forced L_ __________________ ___. 

ROSDR(39) ROSDR(17) 
ROSDR(40) 

ROSDR(41) 

ROSDR(42) ROSDR(20) 

A. ROSDR(2-42) ROSDR(2) 

ROSDR(5) 
ROSBR(43) 

ROSBR(44) 

ROSBR(45) ODD 

ROSBR(46) 

ROSBR(47) 

r 
Not Error Reset Extended 

ROS(43-68) Parity Error 

ROSBR(54) 

ROSBR(55) 

ODD 
ROSBR(61) 

ROSBR(85) DS431 
Not Clock P2 

ROSBR(62) 

i 
ROSBR(68) 

B. ROS BR( 43-68, 85) 

ROSDR(69) 

ROSDR(73) ROSDR(74) 

ROSDR(75) 

ROSDR(76) 

ROSDR(78) ROSDR(77) 

ROSDR(79) 

ROSDR(80) 

ROSDR(81) 
ROSDR(82) 

ROSDR(83) 
Not Clock Pl ROS Parity Check (69-9~ 

ROSBR(86) 

i 
ROSBR(90) 

ROSDR(84) 

ROSBR(92) 

ROSBR(93) 

Cloe~ PO 
AP901 

ROSBR(97) 

ROSBR(94) 
ODD 

ROSBR(95) 

ROSBR(96) 
ROSBR(98) 

ROSBR(99) ROSBR(91) 

C. ROSDR(69-84) AND ROSBR(86-99) 

Figure 2-13. ROS Parity Checking 

2-18 (7/70) 



SECTION 3. DATA AND CONTROL REGISTERS 

This section describes the registers employed for CE data 
flow and control functions. For the overall register data 
flow, see Diagram 2-1, FEMDM. 

Q-REGISTER 

The Q-register is a doubleword ( 64 data bits plus 8 parity 
bits) buffer for instructions entering the CE from main 
storage on the SDBO (Figure 2-14). Data is transferred 

SDBO 

_ ___. __ . i-~ 
I 

LAL (Read) LS : LAR {Write) Ls 
o 4 I o 4 

L ____ j 

from the Q-register to the read or write local storage 
address latches (LAL), the parallel adder, or the R-register. 
The contents of the Q-regist~r are displayed at the CE 
control panel (rollers 3 and 4, position 2). 

Input 

Instructions are transferred from the SDBO into Q by 
means of a gate signal decoded from ~he ROSDR latches. 

0 63 

la ~1 
I 

Q I 
I 
I 

0 3 16 19 32 35 48 51 

4 15 20 31 36 47 52 63 

0 15 16 31 32 47 48 63 

0 15 

0 

4 

Local 
Storage 

63 

PAA 

PAL 

Figure 2-14. Q-Register Data Flow 

LS 
31 

~ 
L_iiJ 

52 63 

/ 

6~ 
/ 

/ 

PAB // 

/ 
/ -I AP 

63167 

/ 
/ 

/ 

7201-02 FETOM (7/70) 2-19 



The transfer of data is initiated by either the I-Fetch 
hardware or by the ROSDR latches at not-clock time; the 
transfer controls remain active for one cycle (200 ns). The 
instructions are transferred into Q at clock time. 

Op-Code Transfer 

. • Only halfwords containing op codes are transferred to R. 

• Selection of halfword containing op code is determined 
by IC(21,22). 

Only those halfwords in Q containing op codes are 
transferred to R. Because RX, RS, and SI instructioqs are 
composed of two halfwords and SS instructions are 
composed of three halfwords (only the first of which 
contains the op code), it is necessary to select the proper 
halfword to be transferred to R. Note that because RR 
instructions are composed of only one halfword, the next 
halfword to be transferred to R after an RR instruction is 
completed is the next sequential halfword in Q. 

Selection of the halfword for transfer to R is determined 
by IC(21,22), and transfer is performed either directly 
through hardware or as a result of an I-Fetch micro-order. 
Recall that during an I-Fetch operation the op code of the 
next instruction to be executed is transferred from R to E, 
with R then being refilled with the next sequential op code. 
Because the op code of the next instruction to be executed 
is always in R, its format (positions 0 and 1) can be 
predecoded to determine the number of halfwords that 
compose that instruction and thus indicate which of the 
four Q-register halfwords contains the next sequential 
instruction op code. This predecoding occurs at end-op 
time of each instruction; the result (Q halfword number) is 
set into IC(2 l ,22), which in turn selects a subsequent 
I-Fetch ROS word that specifies the next op-code halfword 
to be transferred to R. 

Note: IC(21,22) is not used in addressing main storage; it 
only specifies which of the four Q-register halfwords is to 
be transferred to R by the following I-Fetch sequence. The 
IC(21,22) values associated with each Q-register halfword 
are illµstrated in Figure 2-15. 

An exception to the normal I-Fetch ROS word method 
of transferring ~he Q-resister halfwords to R is as follows. 
Assume a condition whereby a four-byte (RX, RS, or SI 
format) instruction occupies the right half of Q, IC(21,22) 
= 10, and a storage request is generated to main storage. 
When the I-Fetch sequence loads the op code of this 
four-byte instruction into R, the predecode logic deter
mines that the next doubleword being accessed from main 
storage contains, in its leftmosf byte, the op code of the 

2-20 (7/70) 

next sequential instruction. [IC(21,22) is also stepped to 00 
during this particular I-Fetch.] When, during the following 
I-Fetch sequence, the contents of Rare transferred to E for 
execution, R is not refilled from Q in the normal manner 
because the particular I-Fetch ROS word selected to 
control this operation does not contain a micro-order 
specifying refilling of R. When that doubleword being 
brought from main storage enters Q, however, Q(0-15) 
(the op-code halfword) is allowed to proceed directly on 
into R. Thus, R again contains the op code of the next 
instruction to be executed, even though the instruction ·was 
not present during the I-Fetch seque:µce. This function is 
accomplished solely through the use of hardware that 
constantly tests for the presence of two signals: 'I-Fetch 
latch 1 and 3 set~ and 'IC(2 l ,22) = 00'. 

B-Field and D-Field Transfer 

The instruction B-field, which specifie$ LS registers, and the 
D-field, which is the main storage address displacement, is 
transferred from Q to LAL and the parallel adder, 
respectively. To save time, this information is transferred 
directly from Q instead of from R or E, thus allowing LS 
and the address to be available before the execution time of 
the associated instruction. Transferring these fields must be 
performed selectively so that the information is associated 
with the correct instruction. 

B-Field Transfer 

The four-bit Q-fields (B-field address data) are normally 
transferred to LAL at end-op time, under hardware control, 
per IC(21,22) or, for certain branch instructions, per 
D(21,22). (See Diagram 4-201, FEMDM.) 

For SS instructions, however, two B-field values must be 
transferred to LAL. The first B-field is transferred to LAL 
at end-op time, per IC(2 l ,22), under hardware control and 

IC 

21 22 

Figure 2-15. Q-Register Halfword Transfer Per IC(21,22) 

-RQ 

63 



in the normal manner. [D(21,22) is used for branch 
instructions.] The B-field of the second operand is then 
transferred to LAL (from the selected portion of Q) during 
I-Fetch of the SS instruction by a micro-order contained 
within one of the I-Fetch ROS words. 

All transfer of data from Q to LAL takes place at 
not-clock time; the data is transferred into 'Ls at clock 
time. 

Note: Because an RR instruction can be contained within R 
and E, only halfword transfers from Q to Rare required for 
RR instructions. All addresses for LAL can therefore be 
transferred directly from R or E. 

D-Field Transfer 

Selection of the Q-register D-field for transfer to the 
parallel adder (for use in address computation) is deter
mined by the particular ROS word selected for use. The 
D-field transfer occurs at clock time. 

R-REGISTER 

The R-register is a halfword (16 data bits plus 2 parity bits) 
register that provides intermediate buffering between Q and 
E for the halfword that contains the op code (Figure 2-16). 
This intermediate buffering speeds the refill of Q by 
allowing a storage request when the last op code has been 
transferred from Q but has not yet been executed. The 
R-register is displayed on roller 5, position 3, bits 0-17. 

The R-register is loaded with one of the four halfwords in Q 
at I-Fetch time under ROS control. The contents of 
PAL(56-63) are also transferred to R (at I-Fetch time of 
the subject instruction of an Execute instruction). 

Whenever the instruction in R is predecoded as an RR 
nonbranch instruction, R(8-11) is transferred to LAL at 
end-op time (Diagram 4-202, FEMDM). (The RR format 
indicates that R contains the entire instruction.) 

Whenever the instruction in R is predecoded as an RR 
branch instruction, R( 12-15) is transferred to LAL at 
end-op time. The contents of R are transferred to E at 
I-Fetch time under ROS control. 

Predecoding 

The R-register predecode logic samples R(0,1) at end-op 
time to determine the format of the next instruction. Time 
is saved because prefetching of operands per the format 
prepares data for use after the instruction is transferred to 
E. In addition, R(0,1) and IC(21,22) determine the need 
for storage requests to refill Q. 

R(0-4) is tested for shift instructions. Because shifting 
does not require a storage request, time is saved if a shift 
instruction is decoded when a Q-refill request is generated 2 
cycles before end op. The Q-register refill exceptional 
condition is eliminated because there is no interference 
between the shift instruction and the Q-refill storage 
request. 

R(O-7) is sampled for branch instructions so that 
prefetching of the new instruction· address can start 
immediately, thus saving time .. R(12-15) is sampled for a 
zero condition, which prevents the branch in the RR 
format. 

On a branch end op, the instruction halfword is still in 
the process of being requested from storage. To save time in 
prefetching operands, the instruction format is predecoded 
from the SDBO rather than waiting until the instruction 
becomes stable in R. 

E-REGISTER 

The E-register is a halfword ( 16 data bits plus 2 parity bits) 
register which contains the op-code halfword of the 
instruction being executed (Figure 2-17). The E-register 
contents are displayed at the CE control panel (roller 5, 
position 3, bits 18-35). 

An op-code halfword (including two parity bits) is trans
ferred from R to E during a normal I-fetch sequence under 
ROS control. On shift operations, D(18-21) is transferred 
to E(l 2-15) via the E-register incrementer. The data path 
from PAL(56-63) to E(8-15) is used in some SS format 
instructions to control the specified number of bytes. 

Op-code signals to control processing are decoded directly 
from E(O-7) without the use of gating logic. 

LS is addressed by transferring E(8-11) or E( 12-15) to 
LAL(l-4). E(8,ll,12,15) is examined for an LS address 

7201-02 FETOM (7 /70) 2-21 



r---1 
4 I 

I - I 
LAL (Read) LS I 
0 4 I 

L- - __ J 

0 

Local 
Storage 

I 
4 I 

-LAR (Write) LS 

0 4· 

LS 
31 

Figure 2-16. R-Register Data Flow 

2-22 (7/70) 

Predecode 
Shift and 
Branch 

RR 

PAA 

4 

Shift 

Branch 

0 

D 
8 11 12 15 

TT 
15 

0 

0 15 

r:-:;i 
L_jiJ 

.------'----. RR 

63 

Format RX 
Predecode RS-SI 
Logic 

PAL 

RR SS 

PAB // 

/ 

/ 
/ 

/ -I AP 
63 1 67 

56 63 

/ 
/ 

63/ 
/ 

/ 



~1 
18 21 

Op-Code 
Decoder 

DN 

0 4 
r----, 

1 I 4 

0 

4 

I 
I 
I 
I L __ ___, 

PAA 

Local 
Storage 

63 

Figure 2-17. E-Register Data Flow 

• LAR (Write) LS 

0 4 

LS 
31 

~1 
0 15 

8 15 

0 7 8 15 
~----~ ~~--~-

5 7 Direct Doto Timing To external device 

..__ ______ To PSW interruption code 
[S(20-3l)] and control triggers 8 ll 12 15 

T.__T___. __ T-A------To specification checking logic 
8 l l 12 15 

11 13 15 
L..__ Format LM Reg 

8 15 to XY Reg 

12 15 

8 11 12 15 

56 63 

29 31 

External Register 
0 

7201-02 FETOM (7/70) 2-23 



specification error. When manual operations are performed 
using LS, E(ll,12-15) is transferred to LAL(0,1-4) so 
that all registers may be addressed. Transferring E(8-11) to 
PAB(56-59), E(12-15) to PAB(60-63), and E(8-15) to 
PAB(56-63) provides for multiply and divide operand 
aligning, byte count control for SS format operation, and 
subsequent transfer to other registers. E(8-11), E(12-15), 
or E(8-15) may be sent to the E-register incrementer for 
alteration under ROS control. 

For Direct Control instructions (WRD,RDD), E-Reg bits 
(8-15) are decoded to select the receiving CE or lOCE and 
to develop the 'simplex' signal to inform the element of the 
operation it is to perform. These are gated by the 'timing 
gate' trigger. E(8-15) is tested for a specification error in 
an SIOP operation. E(8-15) is also sent to the PSW 
interruption code [S(20-31)] on a supervisor call interrup
tion only, and to control triggers such as 'disable inter
leaving' and 'diagnose FLT'. During execution of display 
instructions, E(l 3-15), under ROS control, are used to 
format the contents of the LM-registers into the XY
registers. 

Incrementers 

Two four-position incrementer registers are available, with 
ROS controls, for either treating E(8-11) and E(l 2-15) 
separately or treating E(8-15) as an entity. Positions 
E(8- l 1) and E(l 2-15) can be either incremented or 
decremented by 1, but E(8-15) can only be decremented 
by 1 (for example, used for reducing length fields in logical 
VFL operations). 

The E-register incrementers consist of latch circuits with 
logic decoder inputs (Diagram 4-203, FEMDM). The four~ 
position incrementers are not capable of counting; rather 
they decode the binary information at their input, generate 
a binary value of 1 greater (or 1 less), and then set that 
value into the latches. Processing E(8-15) as an entity is 
accomplished by logically connecting the two four-position 
incrementers. 

ROS controls also load constants into the E-register 
incremen ters during execution of certain instructions (e.g., 
fixed-point multiply or divide) in order to select serial 
adder positions when developing products or quotients. 

During shift instructions, D(18-21) is gated into the 
E(l 2-15) incrementer; decrementing functions reduce the 
specified shift amount as each shift operation is completed 
and, thus, control· the shift instruction. 

When E(8-15) is modified in the E-register incrementer, 
E(8-15) parity may change. Diagram 4-204, FEMDM, 
shows the parity prediction logic to yield correct parity for 
E. If, for example, E(15) = 0 and the 'add 1 to E(12-15)' 

2-24 (7/70) 

signal is active, the 'change parity of E(l 2-15)' signal is 
developed. Assuming E(8-15) is odd, the 'INCR(8-15) 
bits even' latch is set, which, in turn, sets the 'E(8-15) 
parity' trigger. Thus, parity is altered at the same time E is 
modified. 

INSTRUCTION COUNTER 

The instruction counter (IC) is a 24-bit (plus three parity 
bits) register used primarily in addressing doublewords of 
instructions from main storage (Figure 2-18). IC bits 0-23 
are displayed at the CE control panel as IC bits 8-31 (roller 
6, position 3, bits 9-35). 

PAL( 40-63) is transferred to IC(0-23) when incrementing 
the IC, or when entering a branch instruction as specified 
by D. Because IC(21,22) selects halfwords in Q, ROS 
controls the setting of IC(21,22) independently of the 
parallel adder. 

During execution of the 9020E Display instructions, 
IC(0-20) can be loaded, under hardware control, from 
SDBO( 40-60). In this case, the SDBO( 40-60) specifies the 
address of a page (512 bytes) in main storage. 

IC(0-23) is transferred to PAB(40-63) to be incremented 
by 8 so that the next sequential instruction address in main 
storage will be specified by the IC. When called for, the 
output of the IC is gated to the logical address bus (LAB), 
bits 0-11. If LAB(0-11) is equal to 0, physical 
PSBAR(9-12) and logical PSBAR(13-19) are gated to 
SAB(l-11). If LAB(0-11) is not equal to 0, LAB(l-4) is 
used to select an ATR slot which contains the physical 
address of the storage element (SE/DE) to be selected. The 
physical address is gated to SAB(l-4), and IC(5-1 l) is 
gated to SAB(5-11). SAB(12-23) is gated directly from 
IC. IC(23) is transferred to the specification logic to test for 
a 0-bit on instruction addressing; a I-bit indicates a 
specification error. 

In some instances, the address is for VFL data. Accord
ingly, IC(21-23) is transferred to ABC(0-2) on VFL 
operations to specify the desired data byte in AB. 
IC(2 l ,22), through ROS branching, specifies the Q-half
word to be transferred to R; IC(23) determines the byte 
within that halfword. 



5 

From PSBAR 
controls 

From A TR slot 
SCI or physical PSBAR 

Main 
Storage 

SDBO 

40 

0 2 

Hot 1 (+8) 

63 

PAA 

4 PAL 

40 

Figure 2-18. Instruction Counter Data Flow 

PAB 

20 

60 

40 

/ 

" 
" / 

-63 1 ~ 
63 

/ 
/ 

" / 

/ 
/ 

63 

6V6Z 
/ 

ROSDR ( 

==> Lotoh" 
31 

31 35 

ROS 
Decode 

Storage 
Address 
Bus 

0 20 21 22 -------
0 23 

IC 
0 

21 23 

0 23 

0 4 5 20 ------21 22 

5 11 12 20 23 

0 4 

To A TR Slot 
Decode 

'----+---+--1--- To PSBAR 
controls 

To 
specification 
interruption 
logic 

To ROSAR 
1---- branching 

logic 

i---- To Q-refi 11 
logic 

To Q-to-LAL 
gating logic 

7201-02 FETOM (7/70) 2-25 



Incrementing IC(0-20) 

• After each storage request is generated, IC(0-20) is 
incremented by 8 to develop address of next sequential 
doubleword in main storage. 

Incrementing (updating) IC(0-20) by 8 to develop the 
address of the next sequential doubleword in main storage 
is accomplished using the parallel adder. [IC(0-23) is gated 
to PAB, and a hot-I bit is forced into PAA(60).] 

At any given time, however, IC(0-20) may be either one 
or two doubleword addresses ahead of the doubleword in 
which the instruction being executed is located. These 
conditions occur as follows. When the instruction being 
executed is contained in a doubleword still present in Q, 
IC(0-20) has been updated and is one doubleword (8 byte 
addresses) ahead of the doubleword in Q. However, when 
the op-code halfword just transferred to R happens to 
occupy the last halfword portion of Q, [IC(0-20) already 
being one doubleword address ahead] , a storage request is 

·generated to access the next doubleword and the IC is again 
updated by 8. [IC(0-20) is now two doubleword addresses 
ahead of the doubleword in which the instruction being 
executed is located.] 

Incrementing IC(2 l-23) 

• After each op-code halfword is transferred from Q to R, 
IC(2 l ,22) is set to the value corresponding to the Q 
portion occupied by that halfword. 

IC(21,22) values of 00, 01, 10, and 11 correspond 
respectively to the four ( 1-4) Q-register halfword portions. 
On the same cycle in which the op-code halfword is 
transferred from Q, IC(21,22) is set to the value corre
sponding to that halfword portion. [IC(21-23) trigger 
circuitry is not capable of accumulating, but only of 
receiving, input values. Thus, these triggers are not stepped 
or incremented but, rather, set to values indicating the four 
Q-register halfword areas.] IC(2 l ,22) is controlled by ROS 
words (in the case of instruction sequencing, by the same 
ROS words that gate the Q-register op-code halfword to R). 

In the event of a non-RR instruction, IC(21,22) must be 
changed by 2 or 3 to skip over the non-op-code halfwords 
remaining in the instruction. This skipping is accomplished 
as follows. Two factors involved in the 64-way ROS branch 
(NEXT-INST*IC) occurring at end-op time of each instruc
tion are: (1) the format of the instruction op code 
previously transferred to R, indicating the number of 
halfwords composing that instruction; and (2) the contents 
of IC(21,22),, indicating the Q-register area occupied by 
that instruction. These factors enable the end-op branch to 
access the proper I-Fetch ROS word for gating out the next 
sequential op-code halfword and also setting IC(21,22) to 
the value corresponding to that particular halfword area. 

2-26 (7/70) 

IC(23), set only during VFL operations in which an 
odd-numbered operand address is set into the IC, is not 
otherwise subject to change. 

Note: IC(21-23) of the VFL operand addresses is placed 
into the AB counter, which then assumes the function of 
sequencing through the data-field bytes. 

When IC(21,22) is set to new values, the parity of 
IC(16-23) may change. Parity adjust logic (Diagram 4-205, 
FEMDM) conditions the IC P(16-23) bit when the 'set 
IC(21,22)' micro-order is executed. IC(21,22) is set before 
the 'adjust parity' trigger is set, but circuit delays hold the 
parity adjust condition until the trigger is set. In effect, the 
parity adjust logic subtracts the parity of the old value of 
IC(21,22) and then adds the parity of the new value of 
IC(2 l ,22), thus resulting in an updated IC P(l6-23). 

D-REGISTER 

The D-register is a 24-bit (plus three parity bits) register 
which functions as a main storage address register for 
certain operations and as an 1/0 channel and unit address 
register for 1/0 instructions (Figure 2-19). D-register bits 
0-23 are displayed at the CE control panel as D bits 8-31 
(roller 1, position 2, bits 9-35). 

Input 

Inputs to D are under ROS control. Main storage address 
information may come from either the parallel adder or the 
ADDRESS switches. Address information placed into 
D(l 7-20) is generated by the interruption logic. 

During execution of the 9020E Display instructions, 
D(0-20) can be loaded, under hardware control, from 
SDBO( 40-60). In this case, the SDBO specifies the address 
of a page (512 bytes) in main storage. 

Output 

When called for, the output of D is gated to the logical 
address bus (LAB) bits 0-11. If LAB(0-11) is equal to 0, 
physical PSBAR(9-12) and logical PSBAR(l3-19) are 
gated to SAB(l-11). If LAB(0-11) is not equal to 0, 
LAB(l-4) is used to select an ATR slot which contains the 
physical address of the storage element (SE/DE) to be 
selected. The physical address is gated to SAB(l-4), and 
D(5-l 1) is gated to SAB(5-l l). SAB(12-23) is gated 
directly from D. D(0-20) is transferred to the SCI to 
provide storage addressing. D(l 8-21) is sent to the 
E-register, via the E-register incrementer. D(21-23) is sent 
to the ST byte counter, ROSAR branching logic, and 



0 

0 

0 

ADDRESS Switches 

I 23 

~---------From SDBO (40-60) 
20 

PSW address 
-------- from interruption ili logic 

23 

~1 
T¥ I To PSBAR Controls 

ili.L '---------------To SCI 

~r 
To A TR slot 
decode 

0 

20 

18 21 

T 
21 23 

23 

2122 
E-Register 
lncrementer 

L To Q-to-LAL 
gating logic 

~----~--, To 0-refill logic 1--.-------To ROSAR branching logic 

0/Left l/or 
True-Complement 

True-Complement 

PAA 

PAL 
0 

Figure 2-19. D-Register Data Flow 

0 L----
2
----- Tp specification checking logic 

PAB // 

/ 
/ 

I A-; 
63 1 67 

/ 

/ 

63 / 67 
/ 

/ 

0 23 

7201-02 FETOM (7/70) 2-27 



specification checking logic.· D(21,22) determines which 
halfword of Q to use to provide LS address information. 
The transfer of D(0-23) to PAA(8-31) or PAA(40-63) 
provides the path to alter or update the D-register. 

Operational Functions 

Operations in which D participates are: (1) branch and 
execute, (2) shift, (3) VFL, ( 4) fixed-point, (5) floating
point, (6) manual-control, and (7) interruption. 

·Branch and Execute Operations 

For branch and execute instructions, the specified success
ful branch address (all branches are assumed to be 
successful until otherwise determined) is placed into D by 
the normal I-Fetch sequence. A storage request is then 
issued to the SCI per the D-register. D(21,22) specifies the 
particular op-code halfword within the doubleword in the 
same manner as IC(21,22) does for normal operation. If, 
during execution of a branch instruction, the branch is 
found to be successful (branch condition satisfied), the 
requested doubleword from main storage is gated into Q, 
and the branch address in D is sent to the parallel adder and 
updated by 8. The result is placed into the IC(replacing the. 
IC address), and the program proceeds in the normal 
manner. If, however, the branch instruction is found to be 
unsuccessful, the doubleword requested from main storage 
(per D) is not gated into Q, and the branch address in D 
does not replace the IC address. The program then proceeds 
with the next sequential instruction, per IC. 

Shift Operations 

For. RS instructions, I-Fetch adds the base and displace
ment values and places the result into D. Normally, this 
result is the second operand address. For shift instructions, 
however, this total specifies the number of bit positions to 
be shifted, and is used as follows .. The number of shifts 
specified by D(22,23), a maximum of 3, are executed 
immediately upon being computed in the parallel adder and 
without the use of D. The number of shifts remaining is 
now specified by D(18---:21), which indicates the number of 
shift· operations necessary to complete the shift instruction, 
provided four shifts are accomplished by each shift opera
tion. 

Because left · 4 and right 4 shifts are· possible in the 
parallel adder, the binary number in D(18-21) is trans
ferred to E(12-15), where the E-incrementer then controls 
the remaining number of left 4 or right 4 shift operations 
required to complete the instruction. 

2-28. (7 /70) 

VFL Operations 

For VFL operations, destination operand addresses are 
placed into D by the I-Fetch sequence. (Source operand 
addresses are placed into the IC.) Storage requests for 
destination operands are made per D(0-20), and the 
accessed doubleword is loaded into ST. D(21-23) is set 
into the ST byte counter to control ST byte transfer. The 
address in D is updated by 8 following each storage request, 
and, when the ST byte counter value reaches 7, another 
storage request is made per D to refill ST with destination 
operand data. · 

Fixed-Point Operations 

For fixed-point operations, operand addresses are placed 
into D by the I-Fetch sequence. Operand storage requests 
are made per D(0-20), with D(21) determining which 
32-bit word of the accessed doubleword is to be gated into 
ST. For halfword operation, D(22) determines which half 
of the 32-bit word specified by D(21) is to be gated into 
ST. 

Floating-Point Operations 

For floating-point operations using long operands, D and T 
provide for the handling of a 56-bit fraction. The high-order 
24 bits of long fractions are contained in D. 

Manual-Control Operations 

In manual-control operations (manual mode), addresses 
entered into the ADDRESS switches are transferred to D. A 
storage request is then made per D to reference main 
storage for operations such as storing and displaying. 

The address is entered into D as follows. Manual 
operation microprogram routines (for example, store or 
display) cause the parallel adder to generate all 1 'sand then 
transfer them to D. Those ADDRESS switches not de
pressed (not set to 1) cause their associated D-register 
positions to be reset to O; the resulting bit configuration in 
D is the address. 

Interrupt'ion Operations 

At end op of each instruction, ROSY-branch (overriding 
branch) tests are made to check for the presence of any 
interruptions. Each interruption forces a unique bit con
figuration into D(17-20), which is generated by the 
interruption-decode and forced-address logic. (This logic 
also forces an address into ROSAR to access the first ROS 



word of the associated interruption-handling routine.) 
These four positions constitute the low-order bits of 
doubleword addresses in main storage that contain the new 
PSW for the various interruptions. 

AB REGISTER 

The AB register is a doubleword (64 data bits plus 8 parity 
bits) register that serves as a working register and as a buffer 
for doubleword operands received from main storage 
(Figure 2-20). Note that the AB register is logically divided 
into two 32-bit (plus four parity bits) registers, A and B, 
and has a four-bit extension, B( 64-67), to retain low-order 
significance during certain shift and arithmetic operations. 
The contents of AB are displayed at the CE control panel 
(rollers 3 and 4, position 3). 

All AB positions are reset at clock Pl time of the cycle in 
which they are selected to receive information; data 
transfer then takes place at P2 time. 

Main storage information ( doubleword length) is trans
ferred into AB under ROS control by transferring 
SDB0(0-31) and SDB0(32-63), plus parity, to A and B, 
respectively. 

Parallel adder information (plus assigned parity) is also 
transferred to A and B under ROS control. Ingating of 
B( 64-67) from PAL( 64-67) or PAL(28-3 l) provides for 
maintaining high- and low-order significance during shift 
operations. Transferring PAL(24-31) to A(24-31) facil
itates processing of fixed-point divide instructions. 

All AB transfer is under ROS control and is accomplished 
primarily through the use of gate-control triggers. All 
gate-control triggers are reset at Pl time of each machine 
cycle; the specific triggers selected for use are set at P2 time 
of the cycle in which they are to functfon. (One level of 
logic delay is incurred in transition; as a result, the 
respective transfer controls are activated· at P3 time of that 
same cycle.) Selection of the gate-control triggers for use 
during any given cycle is determined either directly 
(through ROS decoding) or indirectly (through the AB byte 
counter). Parity information is transferred on a byte basis. 

On multiply operations, the partial product, B( 66,67), is 
· placed directly into the serial adder latches (SAL) per 

E(14,15). Divide operations transfer A(4) or A(28) to one 
position of SAL per a ROS micro-order and E(14,15). 

ST REGISTER 

The ST register is a doubleword ( 6.4 data bits plus 8 parity 
bits) register that serves as a buffer between main storage, 
LS, and the CE and also serves as a working register for 
arithmetic and logical operations (Figure 2-21 ). Note that 
the ST register is logically divided into two 32-bit (plus four 
parity bits) registers. The contents of ST are displayed at 
the CE control panel (rollers 1 and 2, position 3). 

• Inputs are from main storage, LS, parallel adder, serial 
adder, PSW register, interrupt logic, DAT A switches, and 
the 9020 out bus. 

When new data is transferred into ST, only the bit positions 
involved are reset. Resetting occurs at Pl time and data 
transfer at P2 time. Reset signals are generated by the 
gating signals so that doublewords may be assembled 
(Diagram 4-206, FEMDM). 

Main storage information is placed into ST by trans
ferring SDB0(0-63) to ST(0-63), SDB0(0-31) to 
S(0-31) or T(32-63), or SDB0(32-63) to T(32-63). LS 
information (32 data bits plus 4 parity bits) is transferred 
to either S or T. All ST storage activity i~ controlled by 
ROS. 

ROS also controls the loading of ST from the following 
9020 registers: the select-register, the address translation 
register (ATR), the diagnose accessible register mask (DAR 
mask), CCR, PSBAR, G register, external bus, and the 
external-register. This information is transferred to the ST 
via the 9020 output bus and the LS .output bus. 

PAL(32-63) or PAL(40-q3), plus parity, is transferred 
to T, and SAL(O_:_ 7), plus parity, is transferred to the ST 
byte per the ST ·byte counter and incrementer. ROS 
controls the transfer from the adders to the ST register. 

PSW information is transferred from the PSW register to 
S(0-15) and T(32-'-39) under ROS control. The interrup
tion code from the interrupt logic enters S(20-31) and is 
stored into the old PSW. Figure 2-22 shows S(20-31) input 
logic. 

For manual control operations, information from the 
DATA switches is placed into ST for subsequent entry into 
tnain storage (or LS) in the following manner. All positions 
of ST are set to l's by means of the parallel adder and LS 
ROS micro-orders. All DATA switches not set to l's cause 
their respective ST positions to be reset to 0. Thus, ST 
reflects the information contained in the DATA switches. 

7201-02 FETOM (7/70) 2-29 



Main Storage 24 31 

63 31 

SDBO 

63 

31 

31 32 63 64 67 

lo 
A ~132 B 

63: 64 ~ 
I Ase cwl 

16 23 32 39 48 55 66 67 

24 31 56 63 

To STAT F 
0 

28 32 

1.__SetSTAT B 
31 32 67 

7 

31 32 63 64 67 

31 32 55 

63 

PAA 

32 55 

28 31 64 67 

31 32 63 

31 

24 31 

Figure 2-20. AB-Register Data Flow 

2-30 (7/70) 



DATA Sw;tches 

From SDBO 
Storage 

To 
Storage 

PSW interruption code 
from interruption logic----------. 
(F;gure 2-34) 

SDBI 

0 

Set _j 
STAT C 

20 

19 

7 8 19 34 39 

I f<W3~ 
1932 ~ 

PSW 

19 32 39 

____ _._ __ 7 _20 __ ~ ___ 3_1 

MCW 

Figure 2-21. ST-Register Data Flow 

I 

31 32 

31 

32 39 

31 32 

RS I T 
31 32 

32 

40· 

63 

63 

63 

63 

LS Out Bus 

63 

~31 
63 

63 

51 

1
0

Select 

0 

0 

0 

l:AR 

O/Left 1/ 
True-Complement 

MPR Bus 

0 

l byte is 
selected per 
E(12,13). DP 

Local Storage 

19 

-'-----.....----31 32 39 

31 31 0 31 

~I 1
0

DAR 
MASi. ~I l:xternol ~I 

31 0 31 31 

31 32 63 

1~ 311~ ~I LS 
31 

31 

9020 Out Bus 

-:~I l~CR ~I l:K REG 2 :1 
31 31 31 

Ll 2 

0 2 



CE l RDD Interrupt Tgr 

CE 1 WRD Int Tgr 

CE 2 RDD Int Tgr 

CE 2 WRD Int Tgr 

Prog Int Code 128 

E(B) 

Supervisor Cal I Tgr 

Time Clock 

Ext lntrpt Priority 

Progrom Int Code 64 

Program Int Priority 

E(9) 

Console Signal 

PSW(20) 

~ 
KN211 

PSW(21) 

Fl;,; 
PSW(22) 

Fl;,; 
PSW(23) 

Fl;,; 
PSW_f14) 

A 

1--

A OR1------

PSW(25) ___.;...._., 

A 

I--

A OR1------t1 

A 
~...__.__ 

KN241 

__ P~ro~g~l_n_tC~o~d~e_3~2----l--1-__J...--J~ 
A 

E(lO) 

Prog Int Code 16 

Prog Int Priority 

E(l 1) 

Supervisor Call Tgr 

CE 3 WRD Int Tgr 

Externol Int Priority 

Prog Int Code 8 

E(12) 

CE 4 RDD Int Tgr 

Prog Int Code 4 

E(13) 

CE 4 WRD Int Tgr 

RDD Time Out 

Moch Ck Int Priority 

Prog Int Code 2 

E(14) 

Prog Int Reg Int Tgr 

A 

A OR1----

t--

A 

KN26l 
PSW928) 

A ORt-----

I-

A 

KN2si 

A 

A 
~ 

r-- OR1-----

A 

A 

KN28i 

A 

t--

A 
t--+--1 

1-- ORI-----

A 

t---1 
~-----------+-+~-----!--~ 

A OR1-------

CE 3 RDD Int Tgr 
A 

-KNUJ 

IOCE 2 Mach Check Req 

---....:.

1=.::....;0CE 3:....:.=.:::.:Mach'----II LJOR lluR t---_________. Check Req 
IOCE 1 Mach 
Check Req 

Figure 2-22. PSW Input to S(20-31) 

2~32 (7 /70) 

Prog Int Code 1 

E(15) 

DAR Int Tgr 

r 

A 

KN3o1 
PSW~ 

A 

A 
~ 

t-- ORt-----

A 

I

A 

KN3o'i 

To 5(20-31) 
(Figure 2-33) 



Output 

• Outputs are to main storage, LS, PSW register, serial 
adder, parallel adder, multiply/divide logic, MCW, ATR, 
Select, DAR Mask, external registers, and M register. 

All ST transfer is under ROS control. Transfers to the 
adders are performed by gate-control triggers. These triggers 
are reset at Pl clock time of every machine cycle; the 
specific triggers selected for use are set at P2 clock time of 
the cycle in which they are to function. (One level of logic 
delay is incurred in transition, and, as a result, each trigger 
activates its outgating circuitry at P3 clock time of that 
same cycle.) 

Selection of gate-control triggers for use on any given 
cycle is controlled either directly by ROS or indirectly by 
the ST byte counter during ROS-controlled VFL opera
tions. ST transfer to main storage takes place when a 
storage request is initiated with the 'store' trigger set; 64 
data (plus eight parity) bits are then transferred to the 
SDBI. (Only I-register information can be gated to the LS.) 

PSW information from S(0-15) and T(34-39) is trans
ferred to the PSW register under control of ROS micro
orders. In addition, the following 9020 registers can be 
loaded from ST: ATR, Select, DAR Mask, PSBAR, and 
External. 

The contents of ST, plus parity, can be transferred to 
PAA. In addition, T-to-PAA data transfer logic is capable of 
both true or complement and left 1 shift, and either 
T(32-47) or T(48-63) can be gated to PAA(48-63). 

Byte transfer from ST (for product and quotient 
insertion during multiply and divide operations) is con
trolled by E( 13-15). (The selected product/ quotient bytes 
are transferred to the MPR bus.) 

AB AND ST BYTE COUNTERS 

For operations involving the serial adder, it must be 
possible to extract bytes from doublewords contained in 
AB and ST and to assemble bytes into ST for subsequent 
storage. These capabilities are provided by two byte 
counters: the ABC for controlling AB byte transfer, and the 
STC for controlling ST byte ingating and outgating. ABC 
and STC are displayed on roller 6, position 2, bits 
24-26(ABC) and 33-35(STC). 

AB Byte Counter 

• Inputs are from PAL(61-63), T(57-59), E(13-15), and 
IC(21-23). 

• ABC logic increments, decrements, or retains absolute 
values. 

The ABC (Diagram 4-207, FEMDM) consists of three 
triggers and three incrementer latches. These components 
are designated TO, Tl, T2, and LO, LI, L2, in each group, 
and represent decimal values of 4, 2, and 1, respectively. 
Thus, the ABC is capable of selecting any AB byte from 0 
to 7. Both the trigger and latch groups are capable of 
receiving information (000-111 binary); modification 
(incrementing/decrementing) is performed through the use 
of incrementer-decoding logic on the input of the incre
menter latches. 

ROS controls the transfer of information into the ABC 
from PAL(61--63), E(l3-15), and IC(21--23); data from 
T(57-59) is controlled by scan logic. 

In operation, binary values of 000-111 (specifying AB 
bytes 0-7) are transferred into the ABC triggers at clock 
time under ROS control [ROSDR(25-30)]. The incre
menter-decoding logic samples the ABC triggers and, under 
ROS control, sets that value, incremented b¥ 1, decre
mented by 1, or absolute, into the incrementer latches at 
not-clock time. The incrementer latches are then sampled, 
and the outputs are decoded into eight lines (0-7) to select 
one of the eight AB bytes for transfer on the following 
machine cycle. In addition to controlling register transfer, 
ABC trigger outputs are utilized by scan operations and 
certain ROS-branch-decode functions. 

Note: E(l 3-15), or IC(2 l-23) can also be entered directly 
into the incrementer latches, at not-clock time, under ROS 
control. 

The ABC triggers are reset with a negative P 1 clock pulse 
at clock time of each machine cycle and set with incoming 
data at P2 clock time. The incrementer latches are reset 
with a negative P2 not-clock pulse at not-clock time of each 
machine cycle, with data transfer occurring at }>3 not-clock 
time. 

The contents of the ABC triggers are transferred to the 
incrementer latches, and the same value is returned to the 
ABC triggers (regenerated), during each machine cycle in 
which no other ABC transfer controls are specified by ROS 
(provided that an 'I-Fetch reset' signal does not occur). 

ROS control signals ('000 to ABC' and 'I-Fetch reset') 
reset the ABC and ABC incrementer to 0 by allowing both 
the triggers and the latches to reset on the following 
machine cycle. 

ST Byte Counter 

• Inputs are from PAL(61-63), T(54-56), E(l3-15), and 
D(21-23). 

• STC logic increments, decrements, or retains absolute 
value. 

7201-02 FETOM (7/70) 2-33 



The STC (Diagram 4-208, FEMDM) consists of three 
triggers, three bipolar (polarity-hold) latches, and three 
incrementer latches. The triggers are designated as TO, T 1, 
and T2 and the latches as LO, Ll, and L2, representing 
decimal values of 4, 2, and 1, respectively. Thus, the STC is 
capable of selecting any ST byte from 0 to 7. The STC 
triggers (with assocfated polarity-hold latches) and the STC 
incrementer latches are capable only of receiving informa
tion (000-1 I l binary); modification (incrementing/ 
decrementing) is accomplished through the use of incre
menter-decoding logic on the input of the incrementer 
latches. The polarity-hold latches retain each STC setting 
for one additional cycle, providing for a resultant data byte 
to be gated into ST at the same time the next sequential ST 
byte is being gated for processing. 

ROS controls the transfer of information into the STC 
from E(I3-15), D(21-23), and PAL(61-63). Entry of 
T(54-56) to the STC is controlled by scan logic. 

In operation, binary values of 000-111 (specifying ST 
bytes 0-7) are transferred into the STC triggers at clock 
time, with the associated polarity-hold latches assuming the 
same value at not-clock time of that same cycle. The 
incrementer-decoding logic samples the contents of the STC 
triggers and sets that value (incremented, decremented, or 
absolute) into the incrementer latches. The incrementer 
latches are then sampled, and the outputs are decoded into 
eight lines (0-7) to select the ST bytes for transfer during a 
subsequent machine cycle. 

Note: E(l3-15), D(21-23), or a defined constant can also 
be entered into the incrernenter latches under ROS control. 

The polarity-hold latches are set (or reset) at not-clock 
time to the value of the STC triggers. This value (specifying 
an ST byte) is retained in the polarity-hold latches until 
not-clock time of the following cycle. Thus, at clock time 
of the following cycle, with the STC triggers having been 
set to a new value and the incrementer latches possibly 
containing a modification of this new value, the previous 
STC-trigger setting is still present in the polarity-hold 
latches. This retained value now allows information from 
the serial adder to be placed into the ST byte that was 
previously transferred out, at the same time that the 
incrementer latch output is transferring the next sequential 
ST byte to the serial adder for processing. 

All incrementer latch decode lines are sent to the 
mark-trigger logic (specifying byte areas for main storage 
entry), and decode lines 0, 3, and 7 are sent to the branch 
logic controlling the ROSAR setting. An 'STC greater than 
3' signal is also transferred to the branch logic controlling 
ROSAR whenever incrementer latch 0 (binary value of 4) is 
set. 

Gating of the contents of the STC triggers into the 
incrementer latches and regeneration of that latch value to 
the triggers are performed each machine cycle in which no 

2-34 (7 /70) 

other STC ingating controls are specified by ROS (provided 
that an 'I-Fetch reset' signal does not occur). 

The '000 to STC' and 'I-Fetch reset' signals reset all STC 
triggers and latches on the following machine cycle. The 'l 
to STC bit O' and 'I-Fetch reset' (for RR instructions) 
signals cause the incrementer to assume a decimal value of 
4; the 'O 11 to STC' signal sets incrementer latches 1 and 2, 
thus setting the incrementer to a decimal value of 3. 

MARK TRIGGERS 

Eight mark triggers (contained in the CE) indicate which 
bytes of the doubleword on SDBI are to be entered into 
main storage on a store operation (roller 6, position 2, bits 
0-7). 

Mark trigger logic (Diagram 4-209, FEMDM) is ROS
controlled; operation is as follows. ROS control field L 
(ROS sense latch positions 43-46) is decoded to activate 
one or more of four mark trigger signal lines. These lines set 
the mark triggers as required: (1) individually, per the STC, 
(2) in groups of four (0-3 or 4-7), and (3) uncondi
tionally, by setting both the 0-3 and 4-7 groups. ROS 
micro-orders to set mark triggers also set the 'store' latch to 
generate a 'store' signal, which is sent to the selected 
storage unit. 

F-REGISTER 

The F-register is a one-byte (plus parity) trigger register that 
is used in certain arithmetic, logical and data-transfer 
operations (Figure 2-23). (F-register is displayed on roller 1, 
position 2, bits 0-7). 

Inputs to F are under ROS control. All positions involved 
in an operation are reset at Pl clock time of the same cycle 
in which they are to receive information, with the ingating 
occurring at P2 clock time. Data and external control 
information is received during direct-control read opera
tions, and serial adder outputs are received during VFL 
operations. F(0-3), F(0-4), and F( 4-7) are utilized by Set 
Key and Insert Key instructions, logical instructions, and 
decimal multiply and divide instructions. F( 6-7), F( 0-7), 
and F( 4-6) are used by the Load ID instruction and by the 
Diagnose instruction (define storage kernal, and store 
processor interruption . kernal operations). CE identity 
plugs, input to F(6-7), are plugged at installation time, to 
identify the CEs in the system (on card 01B-A4D3). CE 
identity bits 6 and 7 (plus a parity bit) are used by the 
Load ID instruction to indicate to the control program the 
identity of those CEs attached to this system. 



0 4 
lOCE Ext Interrupts 

Storage Main 
Protect Storage 
Key 

4 0 

rPiR1 
Plugs lL__1J 
ili 4 6 

~ 

I dent 
CE 

4 

Direct Control ______________ ~ 
Bus In 

0 

0 

0 

PAA 

4 

7 

SAB 

63 

To ROS branching 
circuits 

0 

7 

3 4 7 

Figure 2-23. F-Register Data Flow 

0 7 

0 7 

D 
0 4 

4 7 

--~:r 
0 7 

7 

7201-02 FETOM (7/70) 2-35 



SE definition plugs, input to F(0-7), are plugged at 
installation time to identify the SEs (and DEs) in the 
system (card 01B-A4D2). Storage identity bits 0-7 plus a 
parity bit are used by the Diagnose instruction (Define 
Storage kernal operation) to indicate the quantity and 
location of SEs (and DEs) attached to the system. 

Input to F(4-6) is received from the Processor Interrup
tion Register (PIR). External interruption requests from 
IOCE processors are preserved in PIR to be used by the 
Diagnose instruction (store PIR kernal operation). The 
external interruption is recognized only when the CE's PSW 
bit 7 is set to 1 and is processed after execution of the 
current instruction is completed (with the exception of 
Delay, Convert and Sort Symbols, Convert Weather Lines, 
and Repack Symbols instructions, which are terminated.) 
The interruption causes the old External PSW to be stored 
at PSA location 18 (hex) and a new External PSW to be 
fetched from PSA location 58 (hex). The type of the 
interruption is identified by interruption-code bit 30. The 
source of the interruption is identified by the PIR contents. 

All outputs are under ROS control. F(0-7) is transferred to 
the serial adder by means of a gate-control trigger at clock 
time, and F( 4-7) is transferred to the parallel adder under 
control of the parallel adder input logic. F(0-3) is 
transferred to the storage protect area during set-key 
operations. F( 4-7) is also used in ROS branching. 

F( 6-7) is gated to local storage during execution of the 
Load ID instruction. The Diagnose instruction stores 
F(0-7) in byte 3 of the word following the MCW, during 
the define storage kernal operation; F( 4-6) is stored in the 
same location during the store processor interrupt kernal 
operation. 

G-REGISTER 

The one-byte G-register (0-7) is indicated on roller 1, 
position 1, bits 19-26. Its only input is from SAL(0-7) 
(Figure 2-24). This register is the data buffer between an 
issuing CE and its Direct Control Bus Out. It is used by 
WRD instructions, which transfer data (CE to CE only). 
Also, the G-register can be gated via the 9020 Out Bus 
(24-31) to the LS Out Bus. This path is used during 
execution of the resident micro-diagnostic routine. 

PSW REGISTER 

• Inputs are from ST and interruption-control logic. 

• Outputs are sent to ST and CE control circuitry. 

2-36 (7/70) 

Although the PSW is 64 bits in length, the PSW register 
contains only 28 bits (Figure 2-25). The remaining informa
tion (generated by the CE at the time of an interruption) is 
used to identify the cause of the interruption and to allow 
the CE to return to the correct program address. 

PSW register trigger logic is shown in Figure 2-26. The 
'gate S(O-7) to PSW(O-7)' signal resets the triggers and, 
through the logic delay, provides the gating signal to allow 
the ST register information to enter the PSW register. Thus, 
the information remains in the PSW register until it is 
replaced by a new PSW. 

All PSW register input and transfer is initiated by ROS 
micro-orders. When an interruption occurs, a series of 
micro-orders in the accessed ROS word transfer the 
contents of the PSW register into ST for subsequent entry 
into main storage. 

The format of the instruction in E (interrupted instruc
tion) is decoded, thus providing the instruction-length code 
to be entered into the PSW register before transferring the 
contents of the PSW register to ST. Micro-orders also 
transfer the old PSW address (generated by the interruption 
control logic) for that particular interruption to D(l 7-20) 
to develop the old PSW address for that interruption. Either 

0 

0 7 

~ 
L_3 
0 7 

0 

7 0 

SAB 

SAL 

7 

Direct Control Bus-Out 
1------------------... -To other CE's 
I 
I 
L_ 9020 Out Bus (24-31 ) -------------, 

I 
24 I 31 

0 (Local Store Out Bus) 31 

I 
_o ___ ~---~31 ~32.;.__ __ _._ ___ ~6~3 

~I 
Figure 2-24. G-Register Data Flow 



SDBO (Load PSW) 

Address of Interrupted Instruction 
(moch i ne-generated) 

Interruption Code (machine-generated) 

Length of interrupted instruction 
(in halfwords) through decade of E(O, 1) 
(machine generated) 

Notes: 
1. Micro-orders within interruption 

ROS word transfer program status 
information from PSW register 
to ST. 

2. Micro-orders activated by Load 
PSW instruction transfer program 
status information from ST to 
PSW register. 

3. PSW register ALD's: 

System Mask - RWOl 1 - RW061, RW161 
Key - RW081 - RWlOl 
AMWP State - RW121 - RW151 
ILC - RW321 
CC - RW351 
Program Mask - RW361 - 381 

Figure 2-25. PSW Register Data Flow 

Gate S(0-7) to PSW(0-7)t 

t ROS Micro-Order 

* One level of logic delay 
to provide the set signal 
after the trigger is reset. 

Figure 2-26. PSW Register (0,6) Logic 

7 8 15 16 19 ----r--

7 8 15 16 __ __._ __ 
PSW 

System Mask Key ~~'(:P ~~sk 

7 8 11 12 15 16 19 ----r--- -.- -r- -,--

5(0) 

5(6) 

63 

63 

63 

SDBI 

34 3536 39 ~40:;._ ____ -r-:---~--:-:--~6~3 
Instruction address (to IC) 

PSW 
Register 

3 14 35 T To program-exception logic 
L~~~~~~~~-~-~-~--T-o~b-ra_n_c-h--o-n--c-o-n-di_ti_o_n_lo-g-ic 

RWOll 

Chan 
Mask 28 

T 

RW061 

To program-state triggers 

To storage-protect logic 

To channel decoder 

Channel Mask A 

To S(O) 

To Ind Lamp 

Channe I Mask 2 B 

To 5(6) 

To Ind Lamp 

7201-02 FETOM (7/70) 2-37 



8 or 16 (depending on the current instruction address) is 
subtracted from the IC and inserted into the instruction
address field of the assembled PSW. Remember, however, 
that IC contains the programmer's address, not the physical 
storage location, which will be either logical and physical 
PSBAR combined or an ATR slot and IC(5-11) combined. 

Micro-orders executed by the Load PSW, Set System 
Mask, or Set Program Mask instructions control the transfer 
of PSW information from the SDBO to ST and the transfer 
of PSW data from ST to the PSW register and the IC. The 
old PSW address (contents of D + 64, decimal) is generated 
in the parallel adder, also under ROS control. 

The PSW register does not contain data transfer logic; 
PSW information is constantly available throughout the CE 
for use as required. 

MCW REGISTER 

The MCW register is a 40-bit register that provides program 
control of scan operations (Figure 2-27). During execution 
of the Diagnose instruction, FLTs, or ROS tests, MCW 
(0-7, 20-31) is gated from T (32-39, 52-63), and MCW 
(32-51) is gated from B (32-51). The bits of the MCW are 
retained in the MCW register and are decoded by the MCW 

:71 
32 39 52 63 

.... o _ __,_ __ 7 _20 ____ ..._ ____ 31 _32 _____ 5_1 

I I I K5~l1 
25 26 29 30 31 32 -

0 7 20 21 25 26 29 30 31 32 51 

-----
• .. 
~ 

To Flt Clock 

MCW To Flt Scan Counter 
Decoder 

KU To Address Sequencers 

Figure 2-27. MCW Register Data Flow 

2-38 (7/70) 

I:, 
32 

decode circuitry, to perform the functions as specified in 
Chapter 4. MCW (21-31) can set values into the address 
sequencers, FLT scan counter, and FLT clock. 

Note: Four groups of MCWs use the same MCW register: (1) 
FLT, (2) ROS test, (3) Diagnose for the CE when in state 3, 
2, or 1, and ( 4) Diagnose for the CE when in state 0. See 
Chapter 4, Section 2, for the format of each MCW. 

PS BAR 

The preferential storage base address register (PSBAR) 
consists of two registers and an associated counter: logical 
PSBAR, physical PSBAR, and the PSBAR counter. The 
function of the two registers is to allow the programmer to 
place the preferential storage area (PSA) in any 1024- (dee) 
word block of storage and still access it with the same 
1024-word group of addresses, 0000-0FFF (hex). PSBAR is 
used only for PSA accesses: when a main storage access 
request is made, and bits 9-19 of the requested address 
equal 0, then PSBAR (9-19), rather than the O's, is gated 
to the storage address bus (9-19). Bits 9-12 are gated 
from physical PSBAR and 13-19 from logical PSBAR to 
SAB (Figure 2-29,B). The PSBAR registers may be loaded 

:I 
51 



either by the manual Register Set function (Figure 4-1) or 
by the Load PSBAR (LPSB) instruction (Figure 2-28,A). 

The PSBAR counter enables CE hardware to search for a 
valid SE by altering the bits in logical PSBAR. 

Logical PSBAR. Logical PSBAR (9-19) is loaded via 
T( 41-51) from either the data switches in a Register Set of 
PSBAR operation or from the location specified by an 
LPSB instruction. In a PSBAR counter stepping operation 
(search for valid SE), bits 9-12 are loaded directly from 
the PSBAR counter (Figure 2-28,B). 

Logical PSBAR outputs, bits 9-12 and bits 13-19, are 
used separately. Bits 9-12 are used in three operations to 
select an ATR slot from which data is gated into physical 
PSBAR: Register Set of PSBAR, execution of the LPSB 
instruction, or when the PSBAR counter is being stepped. 
Logical PSBAR bits 13-19 are gated to SAB to select a 
1024- (dee) word block within an SE for a PSA access 
(Figure 2-29,B). All of logical PSBAR (9-19) is gated to ST 
via the 9020 out bus and the LS out bus in the execution of 
the Store PSBAR (SPSB) instruction (Diagram 5-804). 

Physical PSBAR. The inputs to physical PSBAR (9-12) 
are from the ten ATR slots. The ATR slot to be gated in is 
selected by bits 9-12 of logical PSBAR for PSBAR 
counter-stepping. Register Set of PSBAR, or LPSB instruc
tion operation. The output of physical PSBAR (9-12) is 
gated to SAB, selecting an SE for a PSA access (Diagram 
4-602). 

PSBAR Counter. Input to the PSBAR counter is from 
the ATR decode of logical PSBAR bits 9-12. The counter, 
therefore, has a value of one greater than logical PSBAR 
bits 9-12 (Figure 2-28,B). The output of the PSBAR 
counter is gated to logical PSBAR (9-12) when the PSBAR 
counter is being stepped. This occurs whenever the CE 
hardware searches for a valid or selected SE in the following 
operations: system IPL, system PSW restart, external start, 
or 'step to alternate PSA' (which results from a PSA access 
error) (Diagram 4-608). In each case, 1he PSBAR counter 
(9-12) is gated to logical PSBAR bits 9-12. Logical 
PSBAR bits 9-12 are decoded to select an ATR slot, which 
is gated to physical PSBAR (9-12). Physical PSBAR is used 

I Dato fetched from location 
I specified by on LPSB instruction 

41 51 

41 ' 51 

-Logical PSBAR MP ATR 1 - -FA ATR2 FA 
9 12 13 19 3 4 7 9 11 12 15 16 19 20 23 24 27 28 31 0 3 4 

9 12 27 0 

ATR Decode 
.._ ___ ..,.~ {Select One 1----------------1 

ATR Slot) 

A. PSBAR Loading: LPSB Instruction 

I 
Logical PSBAR 

12 13 -MP 
19 

12 

ATR Decode 
(Increment 
Input By I) 

12 

B. PS BAR Loading: PSBAR Counter Stepping (A TR Search} 

Figure 2-28. PSBAR Loading 

PSBAR Counter Stepping: 

I. Gate counter to logical 9-12. 
2. Decode logical 9-12, ond gate 

to counter ond physical. 

7201-02 FETOM (7/70) 2-39 



11 12 

11 

-A TR 1 FA 

15 16 19 20 23 24 27 28 31 

16 27 

ATR Decode 
(Increment 
Input by 1 to 
Select Slot 

ATR2 FA 

7 

IC or D (Requested Address) 

19 20 

(Always Equals Zero) 

A. PSBAR and ATR Data Flow: Normal (Non-PSA) Addressing. 

IC or D (Requested Address) 

8 9 12 13 19 20 28 29 31 

-Logical PSBAR MP 

9 12 13 19 

PHY -
PSB MP 

12 

9 12 

13 19 

20 31 

~-5~~~~-1_1 _12~~~~~~~~~2_3 
415 

SAB I 
11!]2 20121 23 

IJO Ll 

4 

~ 
12 

L D::bleword 

L 1024 (Dec) Word Block 

Storage Element 

(Always Equals Zero) 

B. PSBAR and ATR Data Flow: PSA Addressing. 

Figure 2-29. PSBAR and ATR Data Flow for Main Storage Addressing 

2-40 (7 /70) 

28 29 31 



in a comparison to determine whether or not it specifies the 
selected, and/or valid, SE. If it does not, the PSBAR 
stepping procedure is repeated (Diagram 4-608). 

ADDRESS TRANSLATION REGISTER (ATR) 

The ATR comprises two registers: a 32-bit (plus 4 parity 
bits) register ATR-1, and an 8-bit (plus I parity bit) register 
ATR-2. ATRs I and 2 can be logically considered as one 
40-bit register (Figure 2-29). The ATR provides dynamic 
address translation of logical address blocks into selectable 
physical address blocks. Address translation takes place for 
both normal addressing and preferential storage addressing. 
ATR is parity-checked. 

ATR-1 (0-31) is loaded from S(0-31), and ATR-2 
(32-39) is loaded from T(32-39). During address transla
tion, the ATR decoder outgates a selected 4-bit slot from 
the ATR to the SAB. 

DIAGNOSE ACCESSIBLE REGISTER (DAR) 

The diagnose accessible register (DAR) is addressable only 
by the Diagnose instruction. This register is used to store 
and identify hardware-generated external interruption re
quests. At the time of an external interruption, the DAR 
contents are read out to supplement the PSW; bit 31 of the 
PSW is set to indicate a DAR read-out. 

The DAR bit layout is shown in Figure 2-30. When an 
external element generates one of the specified interruption 
requests, its identification bit is set in DAR. This bit causes 
an external interruption, . provided the following mask 
conditions are met: 
·I: Each bit position of the ·DAR has a corresponding bit 

position in the mask register associated with DAR. If the 
corresponding DAR mask bit is set to I, and bit 7 in the 
current PSW is set to I, an external interruption occurs 
at the completion of the current instruction. 

2. When the CE is in state 2, I, or 0 (with the TEST switch 
in· the off position), the CE's element check (ELC) 
signals cannot be masked off; i.e., PSW(7) and DAR 
Mask bits are ignored. Thus, if the CE is configured to 
receive a SCON instruction from a CE which is gener
ating an ELC signal, an .external interruption is recog
nized. 

Note that there afe only two bits allotted for each IOCE, 
and they are not sufficient to indicate the necessary 
conditions. Consequently, these bits are encoded (Figure 
2-30)·and cannot be considered distinct indications. 

The DAR contents are preserved until read out by the 
Diagnose instruction, at which time the entire register is 

Page of SFN-0201-1 
Revised by TNL: GN31-0001 

-reset.· The·· Diagnose instruction· reads the entire DAR 
contents artd ignores any mask bits that may be set to 
control interruptions. During the read operation, no new 
interruptiOns can be set into DAR. 

ELC 

I 31 

IQ 
DAR ~11 

~ 
3] 
31 

1 .. 
9020 Out Bus 

BF I 

0 0 N~ Checks Signals 

0 l OBS (Note: Pulse= CCR Parity; Level =.OBS) 

0 OTC 

1 0 ELC 

• Figure 2-30. DAR Data Ffow and Bit Assignments 

DIAGNOSE ACCESSIBLE REGISTER 
MASK (DAR MASK) 

The DAR MASK (Figure 2-31) is addressable only by the 
Diagnose instruction, loaded from T(32~63) during execu
tion of the Set DAR Mask kernal. By writing a mask bit 
pattern into DAR Mask, the Diagnose instruction estab
lishes which elements in the system will be allowed to cause 
an external interruption in the CE. The DAR Mask output 
is to T(32-63) via the 9020 out bus and LS out bus, under 
ROS control. 

DAR Mask bit positions correspond to bit positions· of 
DAR. If the DAR Mask position is set to I (and PSW bit 7 
is set_ to 1), a corresponding interruption requestthrough 
DAR sets PSW bit 3 f and requests an external interruption. 
If the DAR Mask bit is 0, the corresponding position of 
DAR is not allowed· to propagate the DAR bif into the _ 
PSW. 

7201-02 FETOM (6/71) 2-41 



Reset from 
Reconfigure 
Responses 

Configuration 
Mask to 
CE to element 
Simplex Cables 

0 

, ielect 

0 

0 

0 

RS I T 
3132 

32 

9020 Out Bus 

Figure 2-31. DAR Mask and Select Register Data Flow 

31 

;: I 
31 

31 

31 

DAR Mask will mask both bits for each IOCE with a 
single mask bit. Specifically, DAR Mask bits 0, 2, and 4 are 
used to mask IOCEs 1, 2, and 3, respectively. (DAR Mask 
bits 1, 3, and 5 are not used.) 

IOCE Mask Bits 
DAR Mask 

0 2 3 4 5 

t t t --------------------------
IOCE IOCE IOCE DAR 

1 2 3 
0 2 3 4 5 

CONFIGURATION CONTROL REGISTER (CCR) 

The CCR is a one-word register (32 control· bits plus 4 
parity bits) used to define the intercommunication between 
elements in a system (Figure 2-32). It is loaded with the 
configuration mask bits during execution of a SCON 
instruction. The SCON instruction may be executed.within 
the CE or by another CE. The CCR in the CE consists of a 
state field (bits 0, 1), SCON field (bits 2-5), inhibit 
logout-stop field ILOS (bit 6), and a communication field 
(bits 8-17, 20-23, and 29-31). 

2-42 (7/70) 

63 

0 31 

lo DAR Mmk :~I 
0 31 

State Field. CCR bits 0. and 1 provide four possible 
states, which provide the following controls in the CE: 
1. State 0 CCR (0, 1) = 00 is used to gate many of the 

manual control switches on the CE console. The TEST 
switch is active only when the CE is in state O; when on 
in state 0, it sets test on latched, which guarantees that 
the CE cannot have its state changed by external 
intervention as long as the TEST switch remains on. 

2. State 1 CCR (0, 1) = 01 gates a limited number of the 
same manual controls as state 0 and is recallable to state 
3 if required. 

CE External Bu s 1 _... -
2 

_... --
3 ..... -
4 ..... . 

Psuedo SCON 
....... --

0 31 

lo 
CCR ~ 

0 31 

.__ -
• l 9020 Out Bus BF] 

Figure 2-32. CCR Data Flow 



3. State 2 CCR (0, 1) = 10 is capable of being recalled to 
state 3 but is not capable of initiating system recon
figuration. 

4. State 3 CCR (0, 1) = 11 is highest operational state 
capable of initiating system reconfiguration under pro
gram control. 

SCON Field (CCR bits 2-5) designates which CEs will 
be allowed to issue a reconfiguration to this CE. One bit is 
allocated to each of four CEs. 

ILOS Field (CCR bit 6) controls issuing of a 'logout 
stop' signal by the CE to the SE. If the bit is on, the CE will 
not issue a 'logout' stop signal to the SE when the SE 
-signals a storage check (error gate). 

Communication Fields. When a communication bit is 
set, it enables the interface from the associated unit, which 
might involve control lines alone or in conjunction with 
data lines. If the communication bit is not set, the interface 
from the associated unit is <legated, thus providing isolation 
from elements that are not configured to this subsystem. 

Three communication fields are used in the CE: (1) to 
define SEs (bits 8-17); (2) to define CEs (bits 20-23); and 
(3) to define IOCEs (bits 29-31). 

Diagram 4-210, FEMDM shows how the presence or 
absence of bits in the CCR communication fields allows or 
prevents interacticrn between the CE and other elements in 
the 9020 system. 

The CCR formats for the 9020D and 9020E systems are 
shown below: 

90200 Co~figuratian Control Register Format 

9020E Configuration Control Register Format 

O I 2 17 18 19 20 

* Denotes unused bits which may be 1 or 0. 

Input to the CCR is via the CE external bus in; it consists of 
the configuration mask bits gated during execution of the 
SCON instruction. An additional input, called pseudo
SCON is a hardware-controlled function initiated, in Sys
tem mode, by the LOAD (IPL) or PSW RESTART 
pushbutton, with the interlock key on. 

I 

Page of SFN-0201-1 
Revised by TNL: GN31-0001 

Output 

The contents of the CCR may be gated to ST (32-63) via 
the 9020 out bus. The CE control logic and communication 
lines fed by the CCR are shown in Diagram 4-210, FEMDM. 

SELECT REGISTER 

The select register is a one-word register (32 data bits plus 4 
parity bits) that defines the elements to be configured by 
the SCON or the SATR instructions (Figure 2-31). 

During execution of the SCON instruction, the select 
register is loaded with the selection mask from the 
T-register. The select register formats for the 9020D and 
9020E systems are shown below: 

90200 Selection Mask Fonnat 

9020E Selection Mask Fonnat 

0 1 2 3 s 6 7 8 12 13 

*Denotes unused bits. 

The Select Register bits, which have been set to 1 by 
loading a selection mask, are gated to CE-to-Element 
simplex cables or multiplex lines by ANDing 'timing gate' 
trigger with Stat G for SCON Select: Thus, external 
elements are selected by the contents of the select register 
during execution of the SCON instruction. 

The responses from the elements that had their mask 
bits set in the select register are received via the Element
to-CE simplex cables or multiplex lines to reset the 
corresponding bit in the CE's select register. The contents 
of the select register are then gated, via the 9020 out bus, 
to ST for checking. If one or more bits is still on (any 1 's), 
a condition code 2 is set to indicate that one or more 
elements did not respond (Diagram 4-213, FEMDM). 

7201-02 FETOM (6/71) 2-43 



PROCESSOR INTERRUPT REGISTER (PIR) 

The processor interrupt register (Figure 2-23) is a three-bit 
register used to preserve external interruption requests from 
IOCE processors. 

Input is from the IOCE-to-CE simplex receivers. 
Output is gated to bits 4-6 of the F-register. 
The Diagnose instruction (Store PIR CE Diagnose Kernal 

operation) can cause the PIR contents to be stored in byte 
3 (bits 28-30) of the word following the MCW; the PIR 
contents are then reset. (See Diagnose Diagram 5-609 .) 

EXTERNAL REGISTER 

The external register is a one-word (32 data bits plus 4 
parity bits) register that specifies the unit and channel 
address, as well as 1/0 operation codes, i.e., normal 1/0 
operations, 1/0 operation for FLT, IPL, and 1/0 processor 
operations. This register is also used for transfer of data to 
other system components during execution of the SCON 
and SATR instructions. 

The bit position assignments for the external register are 
shown in Figure 2-33. Data. flow for the external register is 
shown in Figure 2-34. 

During IPL and FLT operations, inputs to the external 
register are from the LOAD UNIT switches and from T. 
During normal operations and during SCON and SATR 
operations, inputs are from T(32-63). During 1/0 and 1/0 
processor operations inputs are from T(32-63) and from 
E(5-7). 

Output 

The external register output goes to the 9020 out bus and 
to the CE external bus out. 

CHECK REGISTERS 

Two check registers are provided (check register 1 and 
check register 2) for presentation of check indications from 
CE checking circuits. 

Fault detection circuits set a unique bit in the check 
registers. Figure 2-35 shows the bit assignment for each 
position of the check registers. Both check registers are 
displayed on the CE control panel, and their contents are 
included in the logout information. 

2-44 (7/70) 

Whenever an appropriate bit is set in check register 2, 
the CE issues an ELC signal to all other CEs. Then, if PSW 
bit 13 is on, the CE logs out and performs a machine check 
interruption. If PSW bit 13 is not on (masked off), the 
logout and machine check interruptions are deferred until 
software masks the bit on again. Manual controls may 
modify the internal CE operations upon the occurrence of a 
malfunction when the machine is in the Test mode. When 
the CHECK CONTROL switch is in PROC position, the 
ELC signal is always issued when a malfunction is detected, 
unless a hard stop condition occurs and the INHIBIT. CE 
HARDSTOP switch is active. 

Execution of the Reset Checks CE Diagnose Kernal (by 
the Diagnose instruction) will cause check registers 1 and 2 
in the issuing CE to be reset. (See Diagnose Diagram 5-609 .) 

DISPLAY REGISTERS: LM, MIXER, XY, K, and N 

These registers are used during execution of the display 
instructions by the 9020E System. (One exception is the 
K-register which is also used by the DE-Wrap Kernal 
operation of the Diagnose instruction.) 

The subsequent paragraphs describe the basic operations 
and data paths used by the display registers. Specific 
register applications during execution of the display instruc
tions are described in Chapter 3, Section 10. 

LM Register 

The LM register is a doubleword ( 64 data bits plus 8 parity 
bits) used during execution of the Convert Weather Lines 
(CVWL) instruction and the Repack Symbols (RPSB) 
instruction. 

Input 

The inputs to the LM register (Figure 2-36) are from 
storage (SDBO) and from the T-register. 

Output 

The LM register provides output to the N-register and to 
the XY register (via the Mixer). The mixer operation is 
described below. 

Mixer 

During execution of the Convert Weather Lines and Repack 
Symbols instructions, it is necessary to transfer data -



External 
Register 00 17 18 19 20 24 

SCON 
I STATE SCON SE2 SE3 * I CEl CE2 CE3 CE4 I * SE4 SE5 IDE l DE2 DE3 DE4 DE5 I 

9020E 

SCON I STATE 9020D SE I * * I CEl CE2 CE3 CE4 I * 
10 vo scoN 11Los I * -lsE1 

INTERRUPT ~--•-----SPARE .,1>4 PSBA------------------------OR LOGOUT ------..-----------~ 

SATR {AjR I 
A~R I 

SIOP I 
1/0 INST I 
IPL or FLT OPI 

*not used 

SLOT l 

SLOT 9 

KEY 

SLOT 2 SLOT 3 

SLOT 10 

Unit address 

Un it address 

SLOT 4 SLOT 5 SLOT 6 

New PSW address 

Channel I address 
PSBA 

Channel I * address 
PSBA 

SPARE 

SLOT 7 

1/0 INSTRUCTION 

SIOP 

SPCI 

SIO 

TIO 

HIO 

TCH 

Figure 2-33. External Register Bit Position Assignments 

* ll~CE 1~c'I 
.. , 

SLOT 8 I 

I 0 0 0 I 
* I 1/0 inst I code 

* I 

Ext Reg 
Op code 

Code 29 31 

9A 0 l 0 

9B 0 l l 

9C l 0 0 

9D l 0 l 

9E l l 0 

9F l l l 



LS Out Bus 

0 31 32 63 

-1 RS T 

31 32 ~I 
32 63 

0 15 

D 5 

5 7 

Load Unit 
Switches ill 20123 

~ 
0 31 

External -FE 

0 
Register 31 

0 31 

• CE External 
Bus Out 0 31 

'" 

9020 Out Bus 
311 

0 31 

Figure 2-34. External Register Data Flow 

between various storage areas and to reformat this data as it 
is transferred. This is accomplished by moving the data 
from the LM register to the XY register, via the Mixer. 

Diagram 4-211, FEMDM, shows the LM-to-XY refor
matting of data via the Mixer. The Mixer ANDs the output 
of the ROS field (ROSDR 92-96) (decoded as 'format 
old', 'format new', or 'format weather') with the contents 
of £(13-15) to generate the proper gates for transferring 
the desired bit positions from the LM register to the desired 
bit positions in the XY register. For 'format weather', only 
£-register bits 14 and 15 are examined since there are only 
three format weather lines micro-orders. (See Table 2-1 .) 

Since reformatting involves splitting bytes, parity must 
be examined as data is moved from the LM to the XY 
register (so that good parity is generated in XY). The XY 
parity prediction logic is shown in Figure 2-37 and in 
Diagram 4-212. 

2-46 (7/70) 

XY Register 

The XY register is a doubleword (64 data bits plus 8 parity 
bits) register used during execution of Convert Weather 
Lines and Repack Symbols instructions (Figure 2-36). 

Input 

Input to the XY register is from the LM register via the 
mixer. 

Output 

Output from the XY register is to storage via the SDBI. 



I 

-..J 
N 
0 
I-" 

6 
N 
'Tj 

~ 
0 
~ 

~ 
-..J 

~ 

~ 
.i:.. 
-..J 

1r PADDER FULL SUM 

Roller 2 
Position 2 

Indicator 
Bit 

-.,m 
>,., 
2!!m 
=< G'l 4-7 8-15 16-23 24-31 32-39 

Position -o 

Roller6 
Position 5 

Indicator 
Bit 

*STOR UNIT CHECK JD 

Position -o 4 

*These bits are decoded binarily to 
determine which SE or DE 
caused the check on an SE Timeout, 
Address, Data or Fetch check, 

'. 

40-47 48-55 

7 

•Figure 2-35. Check Register.Bit Assignment 

1 

56-63 64-67 

·9 10 

() VI 

:r:> 

"'"' 
~ 
::::; 
-< 

10 

Check Register 1 

~ ~ 1r 
8~ 
~~ 
...,;:;; 
;; "' 
~ 

11 12 13 14 15 16 17 18 

()"' VI r-:r;O -t VI () VI () VI ·-t 0 
"'52 :r: -t :r: -t 

~o ,._G') ,._G') OG'l 

~ ~g os-; > 0 
() ,, 

0 > :r:~ 
::::; CG') 

~ > "'() ~ -t -< -t m :r: 

11 12 13 14 15 16 17 18 

PADDER HALF SUM 
11 r-ROS PARITY-,1SADD--. 

-t m 
Gl"' 
"'~ HALF FULL 

4-7 8-15 16-23 24-31 32-39 40-47 48-55 56-67 2-42 43-68 69-99 SUM SUM 

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 

Check .Register 2 ----------------------. 

...,..., 
() () () )> >"' ()..., () r-

2!!:: Fllo :r: () :r: -t o~ r- VI () r- :r:O 
-t "' 

=< :: VI() "'"' "'"' z> 0""" :r:O "'Gl ;;., () 
~g """m () r-

~ ~ 
,,,., G'l!:: "'G'l mm 

:J: VI () > 
z 0 -t > 0 r-

() :r:22 >""" ~ 
0 0 0 

:r: "'"' ::::; ::::; "'::<! g r- VI s ~ s "' ~ -< -< -t:t> G'l 

19 20 21 22· 23 : 24 25 26 27 28 29 30 31 32 33 34 35 

:;ti "'C 
~~ 
..... (1) 

~ 0 0. ....., 
cr' t;/l 
'< 'Tj 

'""3 ~ zo 
t'"" N 
.. 0 

I-" 

() .!... 
z 
w 
I-" 

6 
0 
0 
I-" 



From _,_,.... .... ~-------""S_DB.;...;O"-----------. 
Storage 0 63 

32 63 

_0 ___ 1 .... s ....,16_...,..._3_1 ..... 32_...,..._4.._7 _4a_..,....._63_ 

0 63 

0 63 

Mixer 
(XM Logk) I 

::::::::::~~:~~:~_-=_-=,::=_-3-3:1-1~=3-::2~:~:.::F">J~~::_~:::::::::: 
xx y 
31: 32 -1 

0 
To Storage _________ S_DB_I _____ -' 

I~ 
0 

Figure 2-36. LM and XY Registers, Data Flow 

K-Re.gister 

The K-register is a one-word (32 data bits plus 4 parity bits) 
register which is used during execution of the display 
instructions (CSS, CVWL, and RPSB) and during DE wrap 
test operation. The K-register data flow is shown in Figure 
2-38. 

Input 

Input to the K-register is from PAL(32-63) and from the 
DE wrap bus. 

Output 

The K-register provides an output to the parallel adder 
PAA(32-63). 

2-48 (7/70) 

~I 
63 

0 15 

~I 
63 

DE Wrap Bus 

A distributed simplex bus (DE wrap bus) is provided on 
each CE to allow testing of the system display elements 
(DE). This operation is available via the Diagnose instruc
tion while the CE is in state 0 (Diagram 5-609). 

The Wrap operation provides a facility which allows a 
CE to attach to a DG interface of a selected DE and, once 
attached, to simulate a DG by accepting data from the DE. 

The DE wrap bus is a 16-bit bus from the DE which is 
gated alternately to K(0-15) and K(16-31). Prior to being 

· gated to the K-register, good parity is generated 'within the 
CE (parity is not sent by the DE). For a more detailed 
discussion of the DE wrap bus, refer to Chapter 4, Section 
3 of this manual. 



N-Register 

The N-register is a halfword (16 data bits plus 2 parity bits) 
register used during execution of the Repack Symbols 
instruction. The N-register data flow is shown in Figure 
2-39. 

Input 

Inputs to N are under ROS control. The contents of the LM 
register, in two-byte groups, can be gated to N per IC 
(21,22). SAL(0-7) can be gated to N(8-15). 

Output 

Output from N is gated, under ROS control, to the serial 
adder B-side from either N(0-7) or N(8-15). 

Table 2-1. Format Micro-orders 

(Format Micro-orders for Convert Weather Lines) 

FMTW-

Micro-order 

FMTW-0 

FMTW-2 

FMTW-1 

These micro-orders are used when assem
bling the CVWL output doubleword. A 
format word is assembled in T, Tis gated to 
M, and, from there, the format word is 
gated through the mixer into XV by one of 
the FMTW micro-orders. This is done three 
times (first using FMTW-0, next FMTW-2, 
and, finally, FMTW-1) in order to gate one 
complete output doubleword into XV. 

Description 

Gates DA, DL, BL, BR, Sand Symbol, CO, 
C1, !J.VS, and !J.xs bits from M to their 
assigned positions in output doubleword. 

Gates !J.v2 and !J.x2 coordinates from M to 
their assigned positions in output double
word. 

Gates V1 and V2 coordinates from M to 
their assigned positions in output double
word. 

(Format Micro-orders for Repack Symbols) 

FMTO-

Micro-order 

FMT0-0 

FMT0-1 

FMT0-2 

FMT0-4 

FMT0-5,6 

FMTN-

Micro-order 

FMTN-0 

FMTN-1 

FMTN-2 

FMTN-6 

FMTN-7 

These micro-orders are used when history or 
current data is moved from Old Refresh 
memory to New Refresh memory. 

Description 

Used to gate current data. Gates LM to XV 
with no changes. 

Used to gate current data and change target 
1 and target 2 to history data. Gates LM to 
XV and turns off BR1 bit (5). 

Used to gate history data and change both 
target 1 and target 2 to history data. Gates 
LM to XV and turns off BR1 and BR2 bits 
(bits 5 and 7, respectively). 

Gates all target 2 data from LM into 
positions in XV to make it target 1 and 
drops target 1 data. Resets P2 bit (P2 bit on 
indicates to display that target 2 is to be 
displayed). 

Same as FMT0-4, but resets target-2 BR bit 
in the process (makes it history data). 

These micro-orders are used when new data 
(from CSS execution) is moved from a sort 
bin to New Refresh memory during execu
tion of Repack Symbols instruction. 

Description 

Used when sort bin word is in M only. Turns 
on P2 bit. Gates CSS target from M reg into 
XV output target-2 positions. Gates nothing 
into target-1 positions in XV. 

Used when sort bin words are in L and M 
both. Gates L target to target-1 positions in 
XV and M target to target-2 positions in 
XV. Sets P2 bit to 1. 

Used when sort bin word is in L only. Gates 
L target to target-1 positions in XV. Resets 
P2 bit in the process. Gates nothing into the 
target-2 positions in XV. 

Used when sort bin word is in L only. Gates 
L target to target-2 positions in XV and sets 
P2 bit. Gates nothing to target-1 positions in 
xv. 

Used when sort bin word is in M only. Gates 
M target to target-1 positions in XV and 
resets P2 bit. Gates nothing into target-2 
positions in XV. 

7201-02 FETOM (7/70) 2-49 



SDBO 

I 
T Reg 

I 
63 PO P7 (See Note) 

32 63 PO P7 

LM Reg (lths) XL :;1 I Pority I 
M"P ~ 48"J"63" ~ 

I 
63 PO I P7 

63 

Mixer J 
Format Micro-~ 

orders Control '----------------------0 

Note: 
SDBO parity bits 
shown are grouped together 
for simplification. 

Figure 2-37. XY Register Parity Prediction Logic 

2-50 (7/70) 

PO 

63 

Pl P2 P3 

To 
SDBI 

P4 

~1 Gating To N Reg 

~l 
Parity Prediction 

PO Pl P2 P3 P4 P5 P6 P7 

63 

P5 P6 P7 



DE Wrap Bus 'r--------. 

0 15 16 31 

0 31 

0 31 

32 63 

63 

PAA 

4 

32 63 

Figure 2-38. K-Register Data Flow 

~I -1 XL M 
3132 

0 15 16 31 32 47 48 63 -------------------------.---- ----.....-----
0 15 

8 15 

.... o _ _,... __ 7 _a _ _,..._1_5 

0 7 

7 

SAB 

0 

0 7 

Figure 2-39. N-Register Data Flow 

7201-02 FETOM (7/70) 2-51 



SECTION 4. LOCAL STORAGE 

This section describes the operation of the 25-register local 
storage (LS). 

ADDRESSING AND DAT A FLOW 

• Five-position address registers [LAL (Read) and LAR 
(Write)] address LS. 

• Input to LS is from T only; output is sent to Sand/or T, 
under ROS control. 

Two five-position LS address registers [LAL (Read) and 
LAR (Write)] select the 25 individual LS registers (Figure 
2-40). The LS address is received from Q, R, or E under 
ROS control (or directly from ROS control words when 
addressing the LSWR). The particular register (Q, R, or E) 
and field within that register to be set into LAL is 
determined by decoding ROSDR(36-42). The four-bit LS 
addresses are gated into the four low-order positions of 
LAL from Q, R, or E fields. These four-bit addresses are 
capable of directly addressing registers 0-15 (general
purpose registers). For floating-point operations (requiring 
the use of registers 16-23), a 1-bit is forced into the 
high-order position of LAL upon decoding of the floating
point op code. This action increments the four-bit address 
from Q, R, or E by 16, thus forcing the use of 
floating-point registers 16-23. 

Note: Floating-point instructions are restricted to the use 
of even LS addresses 0, 2, 4, and 6. Automatic incre
menting of these values by 16 then generates LS addresses 
of 16, 18, 20, and 22. 

Long-operand floating-point op codes also force a 1-bit 
into the low-order position of LAL, in addition to the 
high-order 1-bit forced by all floating-point op codes. This 
additional bit further increments the 16, 18, 20, and 22 
floating-point addresses by 1, thus generating the second 
(RI + 1) register address required for long-operand (64-bit) 
instructions. 

For operations requiring use of the LSWR (register 24), 
the ROS words controlling these operations force 1-bits 
into the two high-order positions of LAL [LAL(0,1)]. This 
action generates a binary address of 24 and is the only 
means of selecting the LSWR. 

Selection of the Q, R, or E field to be entered into LAL 
is determined by decoding ROSDR(36-42) of the con
trolling ROS word or by selecting 'NEOP' or 'BEOP' 

2-52 (7/70) 

micro-orders, depending on the next programmed instruc
tion. Regardless of the address source or of whether a read 
LS or write LS operation is indicated, the contents of the 
addressed register are always read out onto the LS data bus. 
If a read LS operation is indicated, decoding of 
ROSDR(I0,11) of the controlling ROS word gates the 
contents of the LS data bus into S, T, or both S and T. 
When a write LS operation is indicated, the contents of the 
addressed LS registers are gated out onto the LS data bus in 
the same manner, but the output resulting from decoding 
ROSDR(I0,11) remains inactive and does not condition the 
ST ingating controls. A 'write into LS' signal, resulting from 
the ROSDR(36-42) decoder, then gates the ST bus 
(T-data) into the addressed LS register. 

Information into the LS data bus can come either from 
the LS, or from the 9020 out bus. When information is 
gated from the 9020 out bus, the '9020 reg to LS out' line 
is activated to block normal readout per LAL. (Since, at 
this time, LAL contains all O's, a LAL readout would access 
LS register 0.) The LS data bus gating logic is shown in 
Figure 2-41 and in Diagram 4-302, FEMDM. 

During execution of two operational kernals used by the 
Diagnose instruction, logout local store registers (FD2) and 
store DAR (FD4), and when the select register is gated to T 
during a SCON or SATR instruction, it may be necessary to 
generate parity bits for one or more of the four bytes being 
gated to S and/or T since the information in DAR, DAR 
Mask, check register 2 or the select register may be in either 
even or odd parity. 

The 'local store bus check' latch is blocked from setting, 
and each byte on the local store bus is checked for an odd 
count. If parity is odd, a parity bit is not needed, but, if the 
count is not odd, a parity bit is generated to provide odd 
parity for each byte to be gated to S and/ or T. 

The 'generating LS bus parity' line is controlled by a 
micro-order and is inactive except in the above situations, 
thus allowing normal parity-checking when gating other 
9020 registers via the local store data bus (Diagram 4-303, 
FEMDM). 

DATA TRANSFER CONTROLS 

The following paragraphs describe the LS logic involved in 
read LS and write LS operations. Diagram 4-301, FEMDM, 
illustrates the read/write logic of LS register 0 and also the 
common control circuit timings for each 200-ns LS cycle. 
(Registers 1-24 are identical with register 0.) 



~~ 
~~ 

10 11 36 42 

Decode 
B Field 

DR. 

LAR 
Input 

Write in to LS 

0 3 

r-:-:1 
~ 

8 11 1215 

~ 
~ 

8 l I 12 15 

16 19 32 35 48 51 

Selection '4------------+------------------------~ 

LAL (Read) LS 

0 4 
-LAR (Write) LS 

0 4 
0 4 0 4 

Decode LS 
Input ._ ___ ~Controls 

Decode LS 

1.--~ .. -------t~ Output 
Controls 

Reg 0 ) 

; ,: 
Reg; l 

; 24 

Gate LS to S, T, or Sand T (Read operation only) 

0 

Figure 2-40. Local Storage Data Flow 

0 

0 

Local Storage 

16 General Purpose 
Registers 

8 Floating-Point 
Registers 

l Working Register 

ST 
Input 
Selection RT 

32 

31 

LS 

LS 

LS 

Control 
Registers: 
PSBAR, DAR, 
DAR Mask, 
CCR, ATR, G, 
External, 
Select & Check 

9020 Out Bus 

9020 to LS 
Data Bus 
Gate Logic 
(See Fig. 
2-41) 

63 

~I 
63 

ST Bus 

7201-02 FETOM (7/70) 2-53 



Not ROS Bits 36 ond 37 

ROS 38-42 Decode 

E Re Bits 8-15 

ROS Bit 37 5 
ROS Bits 38-42 

ROS Bit 36 and Not Bit 37 

Sel Ext Reg 
A 

Ext Reg Bits 0-31 

Sel PSBAR 
A 

PS BAR (0-31) 

Sel Select Reg 
A 

Sel Reg (0-31) 

Sel DAR 
A 

DAR (0-31) 

Sel DAR Mask 
A 

DAR Mask 0-31 

Sel CCR 
A 

CCR 0-31 

Sel ATR-1 
A 

ATR-1 0-31 

Sel ATR-2 
A 

ATR-2 32-39 

Sel G Reg 

G Reg 0-7 

Sel Ext Bus 

Ext Bus 0-31 

Sel Ck Reg 
A 

Ck Reg (0-31) 

Figure 2-41. 9020-to-LS Data Bus Gate Logic 

2-54 (7/70) 

Decode 
LS 0-24 
Output 
Controls 

0 
GPR 0 

31 

0 GPR l 
31 

0 GPR 2 
31 

0 
GPR 3 

31 

~l GPR 4 

O GPR 23 
31 

~l GPR 24 

OR 

LS Data 
Bus (0-31) 



Local storage addressing and all LS register-operating 
logic are implemented in 10-ns circuitry; the polarity-hold 
latches and associated input logic are implemented in 30-ns 
circuitry. 

Read LS Operation 

• ROSDR (36-42) sets LAL from specified Q, R, or E 
field. 

• LAL gates contents of selected LS register to LS data 
bus. 

• ROSDR(l0,11) gates LS data bus into ST. 

Read LS operations are initiated at not-clock time when 
LAL (Read) is set with Q, R, or E information, as 
determined by ROSDR(36-42). The LSWR address and 
the floating-point register address bits are also entered into 
LAL at this time, depending on ROSDR(36-42). The 
contents of LAL (Read) are decoded, and the decoder 
outputs gate the contents of the selected register polarity
hold latches to the LS data bus. ROSDR(l0,11) then 
activates the required ST input logic, and, at clock time of 
the following cycle, the LS data bus information is set into 
the ST triggers. Polarity-hold circuits provide nondestruc
tive readout, eliminating the need for regeneration. (Refer 
to the timing chart in Diagram 4-301 for relative control 
timings.) 

Note: The contents of LAL (Read) are transferred to LAR 
(Write) every cycle, but no addressing is performed unless a 
write LS micro-order is decoded in ROS. 

Although LS data is available to the CPU approximately 
100 ns after the setting of LAR, consecutive LS data 
readout is limited to 200 ns. LS cycles are therefore defined 
as being 200 ns long. 

Write LS Operation 

• ROSDR(36-42) sets LAL (Read) to specified Q, R, or E 
field. 

• LAL (Read) contents are transferred to LAR (Write). 

• LAR (Write) decoder selects specified LS register. 

• ROSDR(36-42) gates ST bus data into selected LS 
register. 

On write-LS operations, LAL (Read) latches are set at 
not-clock time with the specified Q, R, or E information. 
At the beginning of the following cycle, LAL (Read) is 
transferred into LAR (Write) in the same manner as for a 
read operation. The selected LS register is also gated to the 
LS data bus as in read operations; up to this point, read and 
write operations are identical. (On write LS operations, 
however, LS data bus information is not gated into the ST 
register.) 

At the beginning of the following cycle, LAL (Read) is 
transferred into LAR (Write). Further decoding of 
ROSDR(36-42) generates a 'write into LS' signal that sets 
the 'write LS' trigger at PO time. This trigger provides the 
signal to gate the ST bus (T-data) into the selected LS 
register at not-clock time of the following cycle. (Refer to 
the timing chart in Diagram 4-301 for relative write control 
timings.) Negative levels on the ST bus represent 1-bits and 
set the respective polarity-hold latches; positive levels 
represent O's and reset the respective polarity-hold latches. 

For an 'insert sign' micro-order when the result sign is 
minus, T(32) is forced to a 1. To preserve proper parity for 
this operation, the parity bit for T(32-39) is inverted 
before it is transferred to LS. 

There are situations when writing into LS must be 
inhibited. When such a situation occurs, the 'SPEC' (K31) 
micro-order causes a set signal to the 'inhibit LS write' 
trigger so that the LS positions remain unchanged. 

Note that a minimum of 40-ns coincidence must exist 
between stable ST bus data (l's or O's) and an active 'gate T 
to LS' polarity-hold-latch control signal to give correct data 
entry. When the 'gate T to LS' signal is deactivated, 
polarity-hold latches of the selected register remain in their 
present state until new data is entered on a subsequent 
write LS operation. 

Note, too, that LS data is not parity-checked until it 
enters an adder at a later time. 

LS Timing 

Separate address registers for reading and writing coor
dinate the LS timing to other CE functions. The 'gate LS 
reg n' signal is generated by LAL (latch timing) to make the 
LS data available at clock time for entry into a register. 
LAR, at not-clock time, allows the data entered into T 
early in the cycle to be entered into LS late in the cycle. 
Refer to Diagram 4-301, which illustrates the entry of new 
data into T (reflected by the shift in the ST bus data line) 
and the subsequent storage of that data into LS. 

7201-02 FETOM (7 /70) 2-55 



SECTION 5. SERIAL AND PARALLEL ADDERS 

This section describes the operation and application of the 
serial and parallel adders. 

SERIAL ADDER 

The serial adder (8 data bits plus 1 parity bit) processes 
data in binary or decimal format, performs logical AND, 
OR, and Exclusive-OR functions, and assembles multiply/ 
divide results. 

Data flow for the serial adder is illustrated in Figure 
2-42. Note that data entered into the A-side of the adder 
(via final bus-A) comes from either AB or F under ROS 
control. 

Data entering the serial adder is in true or complement 
form. For a true add operation, the data is entered directly; 
for a complement add operation, the input data to the 
serial adder A-side (SAA) is inverted (Figure 2-43). 

The 2's complement value is achieved by forcing a hot-1 
to the input logic for serial adder latch (SAL) position 7. 

Input and Output 

Inputs to the serial adder A-side (SAA) are the contents of 
F or a selected byte from AB (per the ABC); the input to 
the serial adder B-side (SAB) is a selected byte from ST (per 
the STC). A bus arrangement transfers data from the 
registers to the serial adder as follows: 

ROS Controls 

SBB SBA 

ROSDR 

During transfer from the serial adder bus A (SBA) to the 
SAA or from the serial adder bus B (SBB) to the SAB, ROS 
controls can alter the data being transferred. The SAA 
input can be altered by the following functions: decimal 
excess-6, complement add, shift, crossgating (interchanging 
of incoming bits 0-3 with bits 4-7), and zone and sign 
insertion. The SAB input may be altered by the following 
functions: sign insertion, special digit insertion, and special 
gating for changing destination (for example, placing bits 
0-3 into bit positions 0-3 and 4-7). 

2-56 (7/70) 

After the sum has been developed and placed into SAL, 
gating signals from ROS allow the information to be 
transferred to F, to G, to N, or to a selected byte in ST. 

Adder Operation 

A simplified summary of serial adder operation is shown in 
Figure 2-44. SAA and SAB are combined in the serial adder 
to produce a bit-carry, a bit-transmit, or a half-sum. A 
bit-carry is developed when both input bits are present, a 
bit-transmit when either input is present, and a half-sum 
when only one of the input bits is present (Figure 2-45). 
Carry-in and half-sum conditions combine to produce a full 
sum. The table in Figure 2-45 shows the conditions that 
produce a full-sum bit. For example, if SAA is a 1-bit and 
SAB is a 0-bit, there will be no bit-carry, but a bit-transmit 
and a half-sum will be produced. If no 'carry in' signal is 
present, the full-sum is a 1. 

The 'carry in' signal is developed by the carry lookahead 
logic. A test is made for a carry from the next-lower 
position or for a carry developed from bit-transmits and a 
lower-order carry (Figure 2-46). The carry lookahead logic 
saves time by providing an immediate carry rather than 
using another cycle to ripple a low-order carry through the 
adder. 

Accurate results are achieved by parity-checking and 
parity-correction circuits. Tests for error conditions are 
made at half-sum and full-sum levels as well as on decimal 
input data. 

Controls 

• Selected data enters on SBA and SBB. 

• Data is first modified on transfer from SBA to SAA and 
from SBB to SAB. 

• Final modification occurs as data enters SAL. 

There are three control areas: input bus, final bus, and SAL 
(Figure 2-4 7). 

ROS sense latch 86, field R, selects F or AB as a data 
source for SBA. If the latch is set, F is selected; if it is reset, 
AB is selected. Gate control triggers provide the gating 
signals to transfer data to the buses. For SBA, if F is not 
selected, an AB gate control trigger is selected by the value 
in the ABC (Diagram 4-401, FEMDM). Similarly, the STC 



Figure 2-42. Serial Adder Data Flow 

ROSDR so 
21 24 

15 

~ 
~ 

0 7 8 15 

7 

SAB 

0 7 

D 
·o 7 

Final-Bus-A 

4 28 

Select 
l Latch 

Select ...._---------------------f 2 Latches ____ _. 

0 7 

~ 
~ 
--11,--- Direct Control 

I Bus Out 

l!:-: -=---=-~-=--=--=-~ 



True Add 

SBA(O) 

Complement Add 

SBA(l) 

SBA(7) 

SAA(O) 
ORt------~ 

SAA(l) 

ORi-----SA_A_(7_) 

selects an ST gate control trigger. One byte of data is 
selected by each gate control trigger, and two gate control 
triggers are selected (one for SAA and one for SAB) each 
machine cycle whether or not the data will be used. 

Figure 2-43. True-Complement Data Entry 

ROS fields: M(bits 69-73), N(bits 74-77), E(bits 
21-24, 81), C(bits 12-16), and \.Y(bits 2-5) govern the 
second area of data control, that is, the transfer of data 
from the input buses to the A- and B-sides of the adder. 
ROSDR(69-73) provides signals to control transfer from 
SBA to SAA. When no control is present, SAA(O-7) is, in 
effect, 0. Micro-orders allow true-complement transfer, 
crossgating, excess-6 adding for decimal operations, forcing 
of certain bits, and sign insertion (Diagram 4-401 ). 
ROSDR(74-77), (21-24, 81), (12-16), and (2-5) provide 
similar control for transfer from SBB to SAB. ROSDR bit 
81 blocks ingating to SBB from ST, and allows gating 
ROSD R bits 21-24 into SBB as an emit field. If no bits are 
present in ROSDR (21-24), ROSDR(81) can be set to 
allow gating byte 1 or byte 2 of the N-register to SBB per 
ROSDR bits 2-5. A list of the micro-orders generated by 

Final Bus B(0-7) i 

0 

A-Side Parity Adjust 

B-Side Parity Adjust 

Figure 2-44. Serial Adder (Simplified) 

2-58 (7/70) 

7 0 

7 

Sum Latch Input Logic 

Full-Sum 
Latches 

Group 2-....,..__ 

0 3 4 7 
L-------'-----~ 0 7 

Final Bus A(0-7) 

I 

} 
Half-Sums 
Bit Transmits 

l 
Bit Carries 

Full Sums 
Group Carries 

7 

Latched Sum Output (0-7) 

Serial Adder Parity 

Half-Sum Error 

Full-Sum Error 

T 
Half 
Adder 

I Full t 
1

Adcler 

I 



SAA 

SAB 

SAA 

SAB 

Bit Carry 

Bit Transmit 

Half-Sum 

Carry In 

Full-Sum 

0 

0 

0 

0 

0 

0 

0 

1 

0 

0 

1 

1 

0 

1 

0 1 

1 1 

0 1 

1 1 

1 0 

0 0 

1 0 

Bit Carry 

Bit Transmit 

Half-Sum 

Carry In 

0 1 0 1 

0 0 1 1 

0 0 0 1 

0 1 1 1 

0 1 1 0 

1 1 1 1 

1 0 0 1 

Figure 2-45. Half-Sum and Full-Sum Logic 

Carry Out of Group 1 Carry Into Bit 3 

Carry Carry Into Bit 2 

Carry/Transmit (3) 
Logic i----------

Carry/Transmit (2) 

Carry _____ C_a_rr.;...y_ln_to_Bi_t _1 
Logic 

C_arry Into Bit 0 

Carry/Transmit (1) 

Figure 2-46. Carry Lookahead, Block Diagram 

control fields M and N is contained in ALD A6261; by 
control fields C and E in ALD A6201, and control field W 
in A6261. 

The third control area, SAL input, is also governed by 
ROS fields M and N. Controls include logical functions, 
decimal correction, product/quotient operations, and a 
hot-carry to SAL(3) or SAL(7) for complement add 
operations. 

A 

Functional Discription 

Because the serial adder is used in many operations and is 
so versatile, a general discussion is not sufficient. Accord
ingly, the following paragraphs discuss the adder functions 
individually. 

Binary Add 

For binary add, data on SBA is entered in true or 
complement form and is combined with SBB data which 
may be O's, forced bits, or data from ST or N. Combination 
takes place in the half-sum and full-sum logic, with carry 
signals from the carry lookahead logic (Diagram 4-402, 
FEMDM). 

Decimal Opera ti on 

• Excess-6 is provided in input logic to SAA. 

• Decimal correction is made in set-SAL logic. 

• Validity tests are made on input digits and signs. 

The excess-6 operation for decimal instructions is imple
mented by logical circuits rather than by using extra adder 

7201-02 FETOM (7/70) 2-59 



cycles. The decimal character entering on SBA is increased 
by 6 as it is transferred to SAA (Diagram 4-403, FEMDM). 
Note that no time is lost in this operation; the circuits 
select the SAA positions which are 6 (0110) greater than 
the value on SBA. 

The two operands are combined in the half-sum logic. If 
no group carry results, decimal correction is initiated by a 
ROS micro-order (Diagram 4-404, FEMDM). Decimal cor
rection removes the excess-6 factor by using logical circuits 
to set SAL to a value 6 less than the full-sum value. Table 
2-2 shows the decimal-corrected values for all possible 
erroneous characters. Again, because the circuits have been 
preconditioned, no cycles are lost, and the decimal opera
tion proceeds at full speed. 

Table 2-2. Decimal Correction for Erroneous 
Numeric Characters 

Group 1 Result Group 1 Result 
Deci ma I-Corrected 

Binary Position (Bi nary Position) 
Decimal 4 5 6 7 4 5 6 7 

15* 1 1 1 1 1 0 0 1 
14* 1 1 1 0 1 0 0 0 
13** 1 1 0 1 0 1 1 1 
12** 1 1 0 0 0 1 1 0 
11*** 1 0 1 1 0 1 0 1 
10*** 1 0 1 0 0 1 0 0 
9**** 1 0 0 1 0 0 1 1 
8**** 1 0 0 0 0 0 1 0 
7* 0 1 1 1 0 0 0 1 
6* 0 1 1 0 0 0 0 0 

5 

j Valid digits; no correction required 

* 1-bits in positions 5 and 6: reset positions 5 and 6. 

**** 

A 0 in position 6: set position 6 and reset position 4. 
A 1-bit in position 6 and a 0 in position 5: set position 5 and 
reset position 4. 
O's in positions 5 and 6; set position 6. 

The following is an example of decimal correction 
for SAL(0-3) using Diagram 4-404: 

Uncorrected binary result to SAL(0-3) = 1011. 
SAL(3): No correction is made. It is set to 1 per binary addition. 
SAL(2): Requires carry ·plus half-sum, or no carry plus no half-sum 

(effective 0 result). Conditions are not met and SAL(2) is 
not set. 

SAL(1 ): Requires effective 0 and full-sum (2). Conditions are met 
and SAL(1) is set. 

SAL(O): Requires effective 1 plus full-sum (1 and 2). Conditions 
are not met and SAL(O) is not set. 

Corrected result in SAL{0-3) = 0101. 

Incoming data is examined for validity on decimal 
instructions. If either character on SBA or SBB exceeds a 
value of 9 (binary 1001), an 'invalid digit' signal is 

2-60 (7/70) 

generated and STATE is set (Diagram 4-405, FEMDM). At 
the same time, 1 's are forced into SAL to yield correct 
parity for the number transferred to S. 

The invalid digit logic is also used to test the sign 
character entering the serial adder. An 'invalid sign' signal is 
developed if the sign character does not have a value of 
10-15 (binary 1010-1111 ). 

For multiply operations, the product is sent from 
B( 66,67) to selected pairs of SAL bits to accumulate a byte 
of data. On non-decimal divide operations, bits are sent 
from A( 4) and A(28) to selected SAL positions to 
accumulate a byte of data. 

Logical Functions 

Logical functions (AND, OR, and Exclusive-OR) are per
formed in the serial adder. These functions produce 
full-sum latch settings (carry information from adjacent 
positions is disregarded), as follows (Diagram 4-406, 
FEMDM): 
1. AND: The combination of an active AND control signal 

and a bit-carry from the half-adder of that position. 
2. OR: The combination of an active OR control signal 

with a bit-carry or a half-sum (in effect, a bit on either 
or both inputs) from the half-adder of that position. 

3. Exclusive-OR. The combination of an active OER 
control signal with a half-sum (in effect, either input bit 
but not both) from the half-adder of that position. 

Results are transferred to selected bytes in ST or N. 

Parity Correction 

• Parity bit is set if numbers of bits in SAL(0-3) and 
SAL( 4-7) are both odd or both even. 

• Additional logic predicts parity for decimal operations. 

• Parity is reversed on multiply and divide operations if 
only one bit is sent to SAL. 

• Logical operations develop parity through unique logic. 

Correct (odd) parity for the serial adder outputs i~ 

generated in the parity predict logic (Diagram 4-407, 
FEMDM). There are two basic areas of parity generation: 
(1) arithmetic and (2) logical (AND, OR, and e'xclusive
OR). The arith.i;netic parity generation is further divided 
into binary and decimal. See Figure 2-48, a block diagram 
of parity predict logic. 

Binary parity predict logic includes factors Kl and K2, 
half-sum (0), and an odd or even number of transmit bits 
(1-3 and 5-7). Kl and K2 are established by carry and 



I ROS Sense Latches 

0 

l Control l 
Field 

E 
2 5 12 16 21 24 -,..-

J 

(1010) Gate N 00-07 to SBB 00-07** 

(1110) Gate N 08-15 to SBB 00-07** 

* ROS control field R (bit 86) 
determines whether AB or 
F data is presented to 
final-bus-A gating logic, 

Figure 2-47. Serial Adder Gating Controls 

ROS 

**Either of these two micro-orders 
activates E16 micro-order (ROSDR 81) 
to block gating ST bytes to SiBB. 

Gate 
ROS DR 
21-24 to 
SIBB0-3 
as Emit 
Field 

-

~~~~ol l ;~~~ol 11 El 
42 M f'-1 78

69 73 74 77 ~

l
l

,.-------.,Adder Unit
Decoder
Final Bus B
and
Serial Adder
Controls

AR

,...

Controls

Final Bus
Controls

Inhibit ST to SIBB

Invalid
Digit and
Zero
Detection

Logic AR

Serial In Bus B(0-7)

GT

0

I

GT
Final
Bus B
Gating
Logic

8 J 15

86 ..,... * -RY

84

J
Decoder
Final Bus A
and
Serial Adder
Controls

AR

Adder Unit
Controls

Final Bus
Controls

Final Bus B(0-7)

Parity

AR
Parity Adjust _l

....c. ,

0 l 7

D
0 7

Invalid
Digit and
Zero
Detection
Logic

0 1

GT

Final
Bus A
Gating
Logic

AR

AR

7

Final. Bus A(0-7)

Parity

Parity Adjust

0 l

lfa l, use F-Reg; lfaO, use AB Reg

Serial In Bus A(0-7)

7

SAB~ Serial'
Adder
Parity Serial Adder Parity
Predict

0 -7 Logic, -l
SAL AS AS

0 7

_t

I
GT

ROS(86)
-

7201-02 FETOM (7/70) 2-61/62

SAB Parity

Final Bus B SAB Parity Adjust
Gating Logic

SAB(0-7)

SAA(0-7)

0

SAL AS

0 7

Figure 2-48. Serial Adder Parity Predict Logic

Final Bus A
Gating Logic

SAA Parity

SAA Parity Adjust

Exclusive-OR result (odd)
of final bus A and B parity and parity adjust

Bit Transmits {0-7)

Half-Sums
Bit Transmits
Bit Carries

Logic Functions (AND/Exclusive-OR)

Corry Into Group 2
Corry Out of Group 2

Half-Sums
Bit Transmits
Bit Carries
Corry Out of Group l
Hot Corry Into Bit 7

Decimal
Correct

M-D Invert

Decimal
Correct

Parity
Predict
Correction
Factors
Kl,K2,K3

Parity
Predict
Correction
Factors
Kl ,K2,K3

*Kl, K2, and K3 are defined factors of serial
adder half-sum, bit-transmit, bit-carry,
group-carry, and carry-into-group functions.
(K3 factor is activated during decimal-correct
operations only.)

Even

Kl (0-3)
SAL(0-3) Parity (0-3)
Even Parity

K2 (0-3) Logic
(Decimal

K3 (0-3) Correct Only)

Even
SAL(0-4) Parity (4-7)

1--------fEven Pari tyi-----""--'----'-----1
Kl (4-7)

K2 (4-7)
1---------tlogic__ ___ _.

K3 (4-7)
(Decimal
Correct only)

Reset (P2 Not-Clock)

Logical
Functions

A.rithmetic
Functions

SAL(0-7)
Parity
Logic

Serial Adder
Parity

Serial
Adder Poritx

Sum Lotch(0-7)
Output Doto

transmit bits (Diagram 4-407). The signal resulting from
these factors reflects the odd or even numbers of bits in
SAL(0-3) and in SAL(4-7). If both are odd or both are
even, the serial adder parity latch is set. If only one is odd,
the parity latch is not set.

The shaded area in Diagram 4-407 indicates the addi
tional control (K3) used for decimal operations. A decimal
correction must be set up (decimal operation and no group
carry) to allow energizing of the K3 signal. An examination
of carry and half-sum (1, 2, 5, 6) allows the prediction of
parity after the excess-6 factor is subtracted from SAL.

Multiply-divide operations present a different problem in
that data is presented directly to SAL and is not processed
through normal parity-predict logic. A test is performed on
the two partial product bits or the one quotient bit
(Diagram 4-408, FEMDM). A I-bit change causes an 'invert
predicted parity' signal which energizes K2 (4-7). Because
no carries are generated, K2 would not normally be
energized; thus, the K2 sign'al inverts the predicted parity.

Logical operations disable arithmetic parity prediction
and energize a different-parity predict circuit. Three condi
tions are tested to set the SAL parity latch: (1) input
parity, (2) parity adjust, and (3) odd-even transmit bits
(Diagram 4-407). The development of each is as follows:
1. Parity: Normally presents the original parity (1 or 0) of

the byte being entered on the input bus (one byte for
SBA and one byte for SBB).

2. Parity-adjust: In effect, inverts the incoming parity
regardless of the actual 1 or 0 parity. Parity-adjust is
energized when a micro-order alters incoming data [for
example, if SBA(O) enters as a 1 and a ROS micro-order
forces SBA(O) to a 0, parity-adjust is energized] .

3. Odd-even transmit bits: Exclusive-OR circuits analyze
the developed transmit bits of all positions and produce
signals denoting an odd or even number of transmit bits.

Parity generation for an OR function is based on the OR
command and the OE transmit bits. Because only effective
transmits are used to set SAL(O-7), parity generation needs
only an even number of transmit bits to set the parity latch.
The following is an example of parity generation for an OR
function:

Bit
SBA
SBB
Transmit
SAL

0 1
1 0
0 0

0
0

2 3 4 5 6 7 p
0 0 0 0 0

0 0 0 0
0 0
0 0

0
0

4 (even) transmit bits; Parity is set.

Even

The exclusive-OR function requires the parity and
parity-adjust exclusive-OR logic to generate correct parity.
(Because the transmit bits do not reflect parity for
exclusive-OR, they are not used.) Regardless of the number
of 1 bits, if the parity of the two input data bytes is

2-64 (7/70)

different, the resultant will be an odd number of bits, and
the parity bit will not be set. An exception is caused by
micro-order insertion of data over the byte data. This
condition is corrected by means of the parity adjust
circuits, as shown by the following example:

ROS Force 0
2 3 4 5 6 7 p Bit \0

SBA 1 1 0 0
SBB 1 0 0 1 0 1 0 0 0
SAL 1 0 0 0 0

SBA(P)

Par Adj A

SBB(P) Parity is set.

Par Adj B

When the AND function is used, all three signals (SBA
and SBB parity, SBA and SBB parity adjust, and odd-even
transmit bits) are analyzed to generate parity. The serial
adder parity latch is set when the result of the parity and
parity-adjust signals matches the odd-even transmit bits
signal, indicating an even number of bits have been
generated; a parity bit is thus needed. An example of parity
generation for a logical AND operation follows:

ROS Force~
Bit 0 1 2 3 4 5 6 7 p

SBA 0 0 0 1 0 1
SBB 1 1 0 0
Transmit 0 1 1 1 1 Odd
SAL 0 0 0 0 0 0

SBA(P)

Par Adj A

Even 0 A

SBB(P)
Odd 1 A

Par Adj B

Parity is set.

Note: In four special cases the SBB input parity bit is set:
(1) no-operation, when SBA is all O's, (2) when -64 (1100
0000 binary) is forced, (3) when subtract 1 (1111 1111
binary) is forced, and (4) on partial product entry when
SBB is 0. In addition, the SBB parity bit is held off on add
1(00000001 binary) because it is incorrect parity.

When an invalid digit is detected on a decimal operation
and all 1 's are forced to SAL(O-7), the parity predict logic
is bypassed, and the SAL parity latch is set to give proper
parity for the byte sent to ST.

Error Detection

Serial adder data is parity-checked on both a half-sum and a
full-sum basis. Error indications are retained in the half-sum
error or full-sum error latches (Figure 2-49).

Half-sum error logic tests the incoming data for ac
curacy. The signals tested are (1) half-sum(O-7), and (2)
input parity and parity-adjust for both A- and B-sides of the
adder. When an input parity is in error (even parity), the
combined signals produce an odd result, and the 'half-sum
error' trigger is set.

Full-sum error logic tests the accuracy of the final
answer by combining the SAL outputs and the resulting
state of the parity latch. An even result sets the 'full-sum
error' trigger.

The error triggers remain set until reset by the 'error
reset gate' signal. To avoid meaningless error indications
and subsequent logout operations, the set error trigger
signals are blocked when:
1. The 'inhibit serial adder parity check' micro-order is

active.
2. An invalid digit is detected during a decimal operation

(all serial adder latches, including the parity latch, are
set).

3. The 'logout' trigger is set.

PARALLEL ADDER

The parallel adder, 60 data bits plus parity, performs
arithmetic and logical functions and is involved in most

Serial
Adder

0

0

7

SAB

SAL AS

Half-Sums

Exclusive-OR result of parity and
parity-adjust from final-bus A and
B gating logic.

Latched Sums

Generated parity from parity-
predict logic {parity latch). Detect

t-----1--.---_.:_ __ .:;.__:____:__ ___ ---I Logic

Inhibit Serial Adder Parit Check

Log Out Trigger
OR

Gate All l's to Serial Adder

Error-Reset Gate

intra-CE data transfers. Data flow for the parallel adder is
shown in Figure 2-50.

The parallel adder bit positions are divided into sections
and groups to implement carry lookahead and parity
predici functions (Figure 2-51). Additional functions il
lustrated in the figure are half-sum, full-sum, and
latch-shifter logic.

Data Input

Data is transferred to the parallel adder from various
registers by means of input buses controlled by ROS
micro-orders (Figure 2-52). More than one bus may enter
the same side of the parallel adder, but only one bus is
active at a given time.

ROS fields T and U control inputs to bus B and bus A,
respectively. Gate control triggers for adding B and T are
shown in Diagram 4-409, FEMDM. ROS sense latches are
decoded at P2 time to select a gate control trigger; the
trigger remains set until the following Pl time to make the
data available as long as the parallel adder needs it. Note in
Diagram· 4-409 that only three of the four bits of the ROS
fields are used; the state of the fourth bit does not affect
the gate control triggers shown but does affect other gate
control triggers.

Individual Bit-Position Logic

• Full-binary capabilities (half-adder and full-sum logic)
are provided.

Half-sums plus parity and
parity-adjust lines add.

Full-sums plus
N generated parity even.

A

Reset

A

Reset

Half-Sum
Error

Full-Sum
Error

Half-Sum Error
(half-sum parity odd)

Full-Sum Error
{even parity detected)

Sum Latch (0-7)
Out ut Data

Not Scan and Invert Parit
(CHECK RESET Pushbutton)

Figure 2-49. Half-Sum and Full-Sum Error Logic

7201-02 FETOM (7/70) 2-65

Tostorogeoddressbus

lo
D ~1 D

D 5

lo ~I D s RSI T
31:32

-

I 0 K ~I
2431

lo ~I Ri:I B
A I

3132 63!

£ I
31 32

$67 1

4 31

31 32 63 64 67

~ J

~I

Figure 2-50. Parallel Adder Data Flow

2-66 (7/70)

_,
_,
8

Half
Adder

A-Side
Data

Sections

Groups

PAA

15 14 J3 12

63

Bit Transmits

and
Bit Carries

63

B-Side
Data

Bit Transmits and Bit Carries

- - - - - - - - --'----------..---------~

Latch-Shifter logic

Figure 2-51. Parallel Adder Function Breakdown

I
I

63 !?J

!
I
I

I
I

I
Corry Into Groupis'1

Shift Instructions

S-Reg
~ Gate

True/ Shift Control
T-Reg Comp

......
Para I lel Triggers
Adder

l A-Side

ROS Micro-orders PA
r Bus A

~

D-Reg True/ Gate
Comp Shift Control

Triggers

Figure 2-52. Parallel Adder Input Buses

• Shift logic (latch-shifter) is included at the output.

The logic functions associated with each adder position are
shown in block form in Figure 2-53. These functions
(half-adder, carry-into-bit, full-sum, and latch-shifter) con
stitute the full-binary logic of each bit position; operation is
as follows. The status of corresponding A- and B-side
operand bits is entered into the half-adder, where they are
combined to produce bit-transmits, bit-carries, and half
sums. The bit-transmit/bit-carry is sent to carry lookahead
logic to produce predicted carry information, and the
half-sum is sent to the full-sum logic. The carry-into-bit
logic combines the immediately available bit-transmit/bit
carry from adjacent lower-order adder positions (repre
senting an actual carry) with the somewhat later-returning
predicted carry. This predicted-carry output (carry-into-bit)
is also sent to the full-sum logic, where it .is combined with
the half-sum from the half-adder logic to generate a final
full sum (1 or O) for that adder position. This full sum or,
possibly, the full sum from four positions to either the left
or the right (depending on .the particular shift control) is
gated into the adder latch. Latched sum data is retained

A Op '} B"t T eran I ransm1
Carry

Half- Bit Carry Lookahead
Adder

B Operand Logic Half-Sum

[~J Error
Bit Transmits Checking

Full-

Bit Carries Carry- Sum

into-Bit t--- Logic

Predicted Carry Logic

L
4-Bit Positions Before

Latch- PAL Output
4-Bit Positions After Shifter

Shift Instructions Logic

Figure 2-53. Bit Position Block Diagram

2-68 (7 /70)

A-Reg
Gate
Control Shift Parallel

r
Triggers B-Reg

Adder
B-Side •

PA
""'--

ROS Micro-orders
Bus B ~

,,
IC

Gate E-Reg

..... Control Q-Reg
Triggers F-Reg

until the following cycle for sampling into the selected
register(s). The following paragraphs discuss the logic
involved in each function.

Half Adder

The logic involved in bit-transmit, bit-carry, and half-sum
functions is:
1. Bit-transmit: At least one and possibly two 1-bits are

contained in the two corresponding A- and B-side
operand positions.

Note: For certain operations, the parallel adder is set to
~s by a micro-order which forces all 1 's into the
A-side of the half-adder (Diagram 4-410, FEMDM).

2. Bit-carry: Two 1-bits are contained in the corresponding
A- and B-side operand positions.
Half-sum: A single 1-bit, but not two, is contained in the
corresponding A- and B-side operand positions.

Carry-into-Bit Logic

• Detects "carry-into" conditions affecting each particular
bit position.

The carry-into-bit logic of each adder position detects
whether a carry-into condition prevails, resulting from
either an actual carry or a predicted carry. Carry-into-bit
circuitry logically ORs the actual carry (prevailing carry
conditions from immediately adjacent lower-order posi
tions) with predicted carry (carry-into-group indications
from lookahead logic, signifying that effective carry condi
tions exist in the more extreme lower-order areas).

The actual carry into any particular adder position is
determined by logically testing all remaining lower-order bit
positions within that same group or, if the particular adder
position happens to be the low-order group position, testing

all four bit positions of the next lower-order group.
(Predicted carries are discussed in "Carry Lookahead".)

Note: Either an actual carry (from adjacent positions) or a
predicted carry (from carry lookahead) is allowed to affect
a particular position, but not both. Where both carries
occur, conditions producing the actual carry also function
to inhibit the predicted carry from entering the affected bit
position(s). This inhibit logic is illustrated in Diagram
4-410, FEMDM, as follows: Carry conditions from posi
tions 48-51 generate both a predicted carry to position 47
(carry-into-group 5), via carry lookahead logic, and an
actual carry in the form of bit-transmit/bit-carry signals.
Because group 4 positions (48-51) represent the actual
carry source, the group-4-carry condition is then inverted to
inhibit predicted carry entries into position 4 7.

Full-Sum Logic

The full-sum logic for any particular adder position
combines (by means of an exclusive-OR) the carry-into-bit
output with the half-sum output of the half-adder, devel
oping a 1 or 0 full-sum for that adder position.

Latch-Shifter Logic

Latch-shifter logic facilitates the left 4/right 4 shifting of
the full sum during the same cycle in which it is developed.
(Logical and data-transfer operations also utilize this logic.)
For any particular adder position, zero-shift, left-4 shift,
and right-4 shift controls (respectively) gate the full sum
into the latch associated with that position, into the latch
associated with the position four places to the left, and into
the latch associated with the position four places to the
right. (Scan-out operations also utilize the latch-shifter logic
but only for its data path facilities.) All latches retain the
latched sum until the following cycle, and extended-clock
signals delay resetting the latches long enough for the
error-checking logic to function.

Note: An adder-hold ('--+HOLD') micro-order, used during
certain operations, blocks the extended-clock reset signal
and causes the latches to retain their data for one additional
cycle.

Carry Lookahead

• Predicts carry before full-sum development.

• Reduces time required to provide full sum.

• Lookahead logic divides 60-position adder into 15
four-bit groups and divides these groups into four
sections.

• Lookahead information is developed in form of bit
position carry, group carry, and section carry and is then
fed back into individual positions as predicted carries.

The carry lookahead function provides the adder with the
capability of entering full sums directly into the adder
latches. Lookahead functions effectively predict the carry
resulting from combining two operands and use this
predicted carry to convert half-sums to full sums before the
entry of information into the adder latches. This sequence
eliminates the additional time required by ripple opera
tions, which would be necessary in converting half-sums to
full sums if half-sums were entered directly into the latches.

For design reasons, the 60-position adder is divided into
15 four-position groups; these groups are subdivided into
four sections. This group/section arrangement reduces the
logic decoding required in implementing the carry look
ahead functions. Group/section arrangement and carry
lookahead data flow are shown in Figure 2-54.

Lookahead logic is designed so that, for any particular
position, the effective carry conditions in all lower-order
positions (except for an adj a cent few) are logically pre
dicted for that position. Carry conditions that would later
be produced in these same adjacent few positions as a result
of propagated lower-order carries are predetermined by the
lookahead functions and logically entered into that position
as a predicted carry. Two things must be known to predict
a carry for a particular bit position: (1) whether carries
exist in any of the lower-order bit positions and (2)
whether intervening bit positions can transmit a carry to
the bit position in question. This information is available to
the carry lookahead logic in terms of bit-carries and
bit-transmits. Using this method, each bit position then
requires only that logic necessary to detect prevailing
carries (actual carry) in the adjacent positions and to
logically OR the actual and predicted carries when devel
oping the full sum. Predicted carries are presented to the
input logic of individual positions as 'carry into group'
signals. Figure 2-55 illustrates the adder areas supplying
source information for actual and predicted carry signals to
adder position 44. Note that, although lower-order carry
conditions exist in both examples, they are represented by
an actual carry in example 1 and by a predicted carry
(carry-into-group-5) in example 2. (Recall also, from the
previous discussions, that where both actual and predicted
carries are generated to a particular position, only the
actual carry is entered; the predicted carry entry is
blocked.)

In the lookahead logic, predicted carry information is
developed by testing each adder group for bit-position carry

7201-02 FETOM (7 /70) 2-69

conditions, combining these conditions to form group-carry
conditions, and then similarly combining the group-carry
indications to produce section-carry conditions. All lower
order carry conditions affecting any individual adder
position (with the exception of the positions immediately
adjacent to that position) are then collectively represented
to the lookahead logic as section-level carry information.
Section-carry information from each section is then (after
being combined with lower-order section-carry indications)
sent to higher-order sections, where it is combined with the
group-carry conditions within these sections to produce
'carry into group' signals. As previously described, these
'carry into group' (predicted-carry) signals are then logically
ORed with actual carries within the carry-into-bit logic of
each individual adder position and combined with half-sum
information to generate a full sum. (Recall also that, where
both actual and predicted carries are generated to a
particular position, only the actual carry is entered and the
predicted carry entry is blocked.)

The following paragraphs give detailed descriptions of
group-level and section-level carry-predict functions.

Group-Level Carry Logic

• Bit-position carry conditions are combined in four-bit
groups to generate group-carry conditions.

• Group-carry logic outputs define effective status of all
bit positions composing a group.

• Group-carry outputs are sent to section-carry logic.
I

The group-level carry information generated for any partic
ular group is determined by logically combining the
bit-transmit/bit-carry outputs of all four positions within
that group. Group-transmit/group-carry signals are then
generated and sent to the section-level carry logic of the
section in which the particular group is located. Group-level
carry logic outputs indicate the following:
1. Group transmit: Signifies that all bit positions within

that group have received at least one bit of operand data;
i.e., bit-transmit conditions exist throughout the group.

2. Group carry: Signifies that bit-transmit/bit-carry condi
tions within that group are such that an effective carry
condition exists from the high-order position of that
group.

Group-level carry logic is illustrated in Diagram 4-411,
FEMDM. Note (in the diagram) that group-transmit/group
carry outputs are determined solely by bit-transmit/bit
carry conditions, which represent incoming data only
(without the use of any propagated carry information).

2-70 (7/70)

When.group-carry conditions are sent to their associated
section-level carry logic, they may also (at the same time)
generate 'carry into group' signals to adjacent higher-order
groups within that same section. This sequence results in
the immediate propagation of group-carry information
(within that same section). Carry-into-group circuits that
are not activated at this particular time may be activated
somewhat later by incoming section-carry signals from
lower-order sections.

Because group-carry conditions are used in developing
section-carry conditions, a time differential exists between
the two logic functions. The timing relationships between
bit-carry, group-carry, section-carry, and carry-into-group
are discussed in "Arithmetic Function Sequence".

Section-Level Carry Logic

• Group-level carry conditions are combined to develop
section-level carry conditions.

• Section-carry outputs define effective carry conditions
of all bit positions within a particular section.

• Section-carry outputs are sent to higher-order sections as
predicted carry information.

Section-level carry information is determined by logically
combining the group-transmit/group-carry outputs of all
groups within a section. Like group-carry generation,
section-carry outputs are also determined solely by group
carry conditions (without the use of any carry propaga
tion). Section-level carry logic outputs signify the
following:
1. Section-transmit: Indicates that all bit positions of all

groups within that section have received at least one bit
of operand data (i.e., group-transmit conditions exist
throughout the section).

2. Section-carry: Signifies that group-transmit/group-carry
conditions within that section indicate that an effective
carry condition exists in the high-order bit position of
that section.

The section-level carry logic (Diagram 4-411) develops a
'section 1 transmit' signal from group transmits and a
'section 1 carry' signal from combinations of group
transmits and carries.

Section-Level Carry-Into Logic

A section-carry generates a carry into the next-higher-order
section. The section-level-carry-into logic (Diagram 4-411)

4 63~~~~~63_..---~:::/;:7
~ ~B -/ ,.,..

/
/ -~-----.--------r----------------"-1" I

Section 4 Section 3 Sec ti on 2 Sect ion 1

15 " J 13 12

4 IS 16

T ,___I ,-- T I_I L.III T II I
I.

Bi~ Carries 0·1d

Bit T ra nscn it~,

I
I
I
I
I

Group
Carry

Logic

(Groups
I, 2, :0,4)

Group Corr1es

Group Trans.mito,

Hot (r11"ry into PAi'63'1

Section i
Carry

Logic
Secion l Transmit

L.... __ __r----------- -

1:Cc.i11y info .5ection 11

l

.. . . 1
I

i

I
I

t---------~1-r-' +---+--~----,.------~---r--:
! I !

I I
I j
I

!Bit Carries and

IBit Transrrii·~

l

I
I
I
I

I
I
I
I
I

Bit Carries aid
Bit T ransrni ts

I
I
I
I
I
I
I
I
I

I l.3-i~ Corri es ond
IBi~ Trcrnsmits

l

Group
Carry

Logic

(Groups
5,6, 7 ,8)

Grrn1p

Corry

Logic

!Groups
9_, 10, 11, 12,1

Group
Carry

Logic

(Groups

Grc·up :.=orries

Group Trons.mits

Gr::iup Carries

Gr()\JP Transmits

L ,----------,
Carry
into Corry :ntu Groups 13, 14, 15 Group C:nrriP.s

Gr-:Jup T~ansmds 13, 14, I~) """' __________,

'"''''°''' (,,,,(~~'." c,,,,, '" ,~,-!----~-- ----- --- ----------------1
----ll------·-------·----------------------+--·-·--------------------

~Predicted Carries Into Groups 9, 1G, 11, 12)
---- ·----- --~----+-------------- ----------·-·-~---------------------~-------~---~----·----------------------

l Half-

(Predicted Carries in·a Group<> 5£6,7.8 1

1

~---r--------1------------------------~-----1-Pr-ed_i_c_te_d_C_o_rr-,e-s-in-to_G_ro_v_p_s-1,-2-,3-,-4-i---~----------------------------~

l • L1 , C1 i D :------:·
j l ~"::~' j l ~~~·· l [~:::" l [~~f· j l ~:~' j l ~:~' j l ~:~' 1 ! Sum

Fu Ii-Sum Logic I
l l I I

Fu I I-Sum logic I Full-Sum hgic l Fu I I-Sum Logic

Lotch-Shifter
AP

'---~----------------------------------63~--2~

Figure 2-54. Parallel Adder Carry Lookahead Data Flow

;_,

7201-02 FET0:\1 (7/70) 2-71/72

(No Predicted Carry)
r-------------~1

I I
I I

I i

I
I

I
I

I
I

I

Carry
Lookahead
Logic

Actual
Carry
into ~
Position 44 ,_--, "'-

//~~~~~~~~~~~~~~~~~"-~~~~~~~~~~~~~~~------

Group 5 I

J _
44
____.__r_c__.__:,_

/

I
T I

I
48 !

Group 4 Group 3

T T
T I T I T

I I
l l 51

T T T

52

Group 2 Group 1

T T T T T T T T T

55 56 59 60 63

Example No. 1 - No Predicted Carry

(Predicted Carry)

Predicted
Carry
into
Position 44

Group 5

J ...__44__.__T __.__T_:___,?

T
T I

I
48 l

Group 4 Group 3

I T
T I T I T

I I
I I
I J 51

T T T

52

Carry
Lookahead
Logic

T T

55 56

Group 2

I
T I T

I
I

Group 1

T T T C T

59 60 63

T Bit-Transmit Condition Example No. 2 - Predicted Carry

C Bit-Carry Condition

Figure 2-55. Actual and Predicted Carry Origin for PA(44)

develops carry-into-section signals, starting with a 'carry
into section l' signal produced by a hot-carry. Carry into
sections 2, 3, and 4 are developed by section-transmit and
section-carry logic.

Group-Level Carry-Into Logic

Carry-into-section signals produce a carry-into-group signal
for at least the low-order group of the section. Develop
ment of additional carry-into-group signals is dependent on
group carry/transmit conditions (Diagram 4-411). Note that
carry-into-group signals may be developed independently
from the carry-into-section signals.

Bit-Lev~l Carry-Into Logic

Carry lookahead conditions the bit-level carry-into logic of
the low-order group position if no group carry is present
from the next-lower-order group. Other bits in the group
are conditioned if intervening low-order transmit bits are
present (Diagram 4-411). For example, if a bit 49 carry and
a bit 48 transmit have been developed, the result is a group
4 carry that generates a section 1 carry. The section 1 carry
and a section 2 transmit produce a 'carry into section 3:
signal. A 'carry into group 9' signal results from the 'carry
into section 3' signal. When bit-transmits 30 and 31 are
present, a carry into bits 29 and 30 takes place to develop
full sums.

7201-02 FETOM (7/70) 2-73

Diagram 4-411 shows the timing relationships for carry
lookahead. Note that although a direct carry occurs before
a carry lookahead, this time difference does not affect the
final sum development which takes place after all carry
circuits have settled down.

Full-Sum Development

• Half-sums are combined with carry information (actual
and predicted) to develop full sum.

The manner in which carry lookahead and half-sum
functions are logically combined to produce a full-sum
result is illustrated in Figure 2-56. Note that all group-level
and section-level functions are arranged on a section
(four-section) basis, whereas carry-into-bit and full-sum
functions appear in each adder position.

The complete carry lookahead system is shown in
Diagram 4-411; a summary of carry-predict operation is as
follows. When operand data is presented to the A- and
B-sides of the adder, the half-adders of all positions are
sampled for bit-transmit/bit-carry information. (Half-sums
are also generated from the half-adders and presented to the
full-sum logic of each position at this time.) All
bit_.transmit/bit-carry information is sent to the associated
group-carry logic, and all group-carry outputs are entered
into their respective section-carry logic. Section-carry out
puts now represent the carry status that logically prevails in
the high-order position of each section (without any effects
of carry propagation). All section-level carry outputs are
then combined with lower-mder section-carry information
to determine whether a 'carry into section' (predicted
carry) signal is generated for the higher-order section(s).
'Carry into section' signals sent to higher-order sections
combine with group-carry conditions within those sections
to produce the carry-into-group conditions that represent
predicted carries for the individual bit positions. The
carry-into-bit logic of each individual position then logically
ORs 'carry into group' (predicted-carry) signals with actual
carry indications, and this output combines with the
half-sum to produce the full-sum result.

Note that throughout the lookahead sequence no ripple
operations are required. Definite cycle times, however, are
associated with each predict function (bit-carry, group
carry, section-carry, carry-into-section, and carry-into
group); these times are discussed in the following
paragraph.

Arithmetic Function Sequence

• Eight logical delay levels are required for . arithmetic
functions.

2-74 (7/70)

(Bit Transmits)

Group
Transmits

Section
Transmit

Half-Sum

(Bit Carries)

Section
Carry

This logic is contained
in each individual
adder positian.

Figure 2-56. Full-Sum Development Logic

• Extended clock signals are used within adder.

• Full-sum results are latched (retained) for 1 cycle.

The timing sequence in which all adder logic operates to
develop and check full-sum information is shown in Figure
2-57. Three delay levels (P4-P7) occur between the time at
which data is placed on the adder input bus (by the
associated gate-control triggers) and the time at which the
same data enters the half-adders. (Two of these delay levels
result from bus-gating delays; the third, from the signal
cables.) Eight levels of signal delay, therefore, are required

A- and B-Side
Operand Parity

Parity Adjust
(Shift Operations)

ST or D
Do ta

A-Side Bus
Controls

A-Side Doto

Holt-sums

Full Sum
Logic

Latch-Shifter
(R4/L4)

AB, Q, IC, or E
Doto

B-Side Dato

B-Side Bus
Controls

Bit Transmits

Carry into Bit

R4/L4 Shift Controls

Corry
Predict

Full-Sum
Parity
Check

Bit Carries

Corry into Group

R4/L4 Shift Controls

To ROS
Branch Logic

Full-Sum
Error

CPU·Clock

Register Dato Gated to Adder Dato Bus

A- and B-Side Dato Entered into Adder

Full-Sum Dato Set into _Latch-Shifter

Latch-Shifter Data Stobie for Sampling

j

Adder Output
Dato

l

PO

Clock

I
I

P4

PS PO
Not-Clock

P3

: Deloy i-P'-7--------------------__:'P....;,4
-----~'~.__ __ ~__, L__

Half-Sum Input

Bit Corry/Transmit

Group Corry/Transmit

Section Corry/Transmit

Corry into Section

Carry into Group

Predicted }
Direct Corry into Bit
Inverted

Full Sum

---------~l·~::::::::_A_d_de_r_~_g_ic_-_-,.:-_-_-_-_-_-,.:-_-_:-__.rl'
PO

~~~~~~~~~~~~~~~~~~~~~---"r?,1',1'/,1'/,.7,4',.07,-7~ 
P2 

Adder Output Dato Gated in.to Selected Register -----------------------------' 

Figure 2-57. Parallel Adder Logic Function Sequence 

Parity 
Predict 

Output Doto 
Parity 

7201-02 FETOM (7/70) 2-75 



within the adder for the full-sum development process. As 
noted on the timing chart in Figure 2-57, the logic 
functions that require the eight delay times occur in the 
following sequence: 
1. Bit-carry/transmit. 
2. Group-carry/transmit; carry-into-bit (direct). 
3. Section-carry/transmit. 
4. Carry-into-section. 
5. Carry-into-group. 
6. Carry-into-bit (predicted). 
7. Carry-into-bit (inverted). 
8. Full-sum. 

Note: A carry-into-bit can originate early from a direct 
carry or late from the predicted carry logic. 

Extended clock signals are used within the parallel adder 
to control all latches. The clock portion of the normal CPU 
clock signal is extended two delay levels (approximately 20 
ns), producing a symmetrical clock signal of 100-ns clock 
and not-clock times. These extended clock signals result in 
delaying both the setting and resetting of the adder latches. 
Delaying the setting of the full-sum latches provides 
additional time for carry-predict functions, and delaying 
the resetting of the latches retains latched sum information 
long enough for sampling by the error-checking logic. 

Full-sum information contained in the adder latches is 
normally retained one cycle. For certain operations, how
ever, an adder-hold ('--+HOLD') micro-order inhibits the 
clock signal that resets the adder latches, thus retaining 
latched sum information for one additional cycle. 

Parity-Predict Logic 

• Odd parity is supplied with each byte (or half-byte) of 
adder output data. 

• Parity generation is simultaneous with full-sum develop
ment. 

• Parity-predict logic utilizes inputs from half-adders and 
carry lookahead logic. 

• Parity generation is corrected accordingly for left-4/ 
right-4 data shifting. 

Odd parity is generated for each byte (or half-byte in the 
case of positions 4-7 and 64-67). Predict logic is 
employed, allowing parity information to be generated 
simultaneously with the development of full-sum data. 
(This scheme eliminates the time involved in analyzing the 
full-sum bit count to determine parity.) Parity is initially 
predicted for each four-bit group of adder output data. For 

2-76 (7/70) 

the eight-bit byte outputs, the parity information predicted 
for the two adjacent four-bit groups that constitute a 
particular byte is combined ( exclusive-ORed) to determine 
the full-sum parity of that byte. Because the adder is also 
capable of shifting full-sum data left 4 and right 4 (before 
entry into the adder latches), generation of correct byte 
parity for left-4/right-4 operations then becomes a matter 
of selecting which two adjacent four-bit group parity 
outputs to combine when determining the parity of a 
particular output byte. 

Parity is logically predicted through functions of the 
incoming operand data; operation is as follows. At the same 
time half-adder outputs are sent to the lookahead logic (to 
predict carry information), they are also sent to four-bit 
group parity-predi'ct logic. A typical four-bit group parity
predict function is shown in Diagram 4-412, A, FEMDM. 
(Group 4 is used as an example; all groups are similar.) For 
each four-bit group, bit-transmit, bit-carry, and half-sum 
outputs from half adders and carry-into-group outputs from 
the lookahead logic are combined to logically predict 
whether the resultant full-sum bit count for that particular 
group will be odd or even. Note in the diagram that 
duplicate decoder logic is present in each four-bit group 
parity-predict circuit. This duplicate logic simultaneously 
produces the opposite polarity (out-of-phase) signals re
quired for use in the eight-bit parity latch-shifter logic 
without the signal delay introduced if an additional 
inversion component were used. 

Typical parity latch-shifter logic used in combining two 
adjacent four-bit group parities to determine eight-bit byte 
parity is shown in Diagram 4-412, B. (Adder output byte 
48-55 is used as an example; all byte parity logic is 
similar.) Note in the diagram that the two four-bit group 
parity outputs to be combined (Exclusive-ORed) when 
determining byte parity are selected according to the type 
of shift operation in process, i.e., left 4, right 4, or no shift 
(straight transfer). The generated parity for each adder byte 
(or half-byte in the case of positions 4-7 and 64-67) is set 
into the corresponding parity latches for transfer with the 
data and sent to the full-sum error-checking logic. Because 
parity information is used in full-sum error checking and 
both parity and full-sum information are formed inde
pendently, an inconsistency in either will cause a full-sum 
error. 

Error Checking 

Parallel adder logic employs both half-sum and full-sum 
checking facilities. Half-sum checking verifies incoming data 
(in regard to assigned parity only); this test also results in 
verifying half-adder operations because half-sum outputs 
are used in half-sum checking logic. Full-sum checking logic 
compares the full-sum bit count (odd/even) with the 



generated parity information on a byte (or half-byte) basis. 
Because full-sum and parity information are formed inde
pendently, an inconsistency in either results in a full-sum 
error. 

Half-Sum Checking 

• Compares half-sums with incoming operand parity. 

Half-sum checking logic combines the parity information 
assigned to incoming A- and B-side operand data with the 
half-sum generated when the same two operands are 
combined in the half-adders. This combining of parity and 
half-sums is performed on a byte (or half-byte) basis, with 
detected errors stopping the CE clock and lighting indi
cators signifying the byte (or half-byte) in error. 

Half-sum checking logic, illustrated in Diagram 4-413, 
FEMDM, operates as follows. A stage of precheck logic for 
each byte (or half-byte) combines half-sums with the 
corresponding A- and B-side parity information in, odd
det~ct (exclusive-OR) circuits. (The precheck logic shown 
in Diagram 4-413 monitors adder positions 48-55.) This 
logic functions so that, if the number of half-sums plus the 
A- and B-side parity bits, results in an odd bit count, the 
half-sum precheck trigger for that associated adder area is 
set. Precheck outputs from all adder areas are then 
combined with left-shift logic at the input to the 'half-sum 
error' trigger. This left-shift logic determines whether an 
actual half-sum error exists or whether shifting the register 
data left 1 or left 2 positions (while en route to the adder) 
has forced a half-sum error. 

Note: Left-shifting the adder input data left 1 or left 2 
positions invalidates the assigned parity information, thus 
forcing half-sum errors. The number of half-sum errors 
created, however, should result in an even number; i.e., the 
half-sum errors forced into positions 4-31 should equal the 
number of half-sum errors forced into positions 32-63. 
Odd-detect logic, therefore, allows only an odd number of 
half-sum precheck indications to set the 'half-sum error' 
trigger during a left I/left 2 shift operation. 

If a valid half-sum error exists, the 'half-sum error 
trigger is set, thus setting the 'final error' latch. Setting the 
'final error' latch prevents the 'half-sum error' trigger from 
automatically resetting, which in turn prevents resetting the 
precheck logic for the area in which the half-sum error 
occurred. Inhibiting these resets causes the CE program to 
stop on the following cycle (provided the CE CHECK 
CONTROL switch is in the STOP position), with the HALF 
SUM error indicator for the area incurring the error 
displayed on the roller switch in'dicators. 

The half-sum error indications are reset by the 'error 
reset gate' signal (SYSTEM RESET or CHECK RESET 
pushbutton). 

Full-Sum Checking 

• Compares latched sum information with generated 
parity. 

Full-sum checking logic combines latched sum information 
with generated parity information on a byte (or half-byte) 
basis. {Full-sum checking for adder positions 48-55 is 
shown in Diagram 4-414, FEMDM.) Because the CE 
operates with odd parity, combining full-sum bits with 
generated parity should always result in an odd bit count. 
Detecting an even latched-sum-plus-parity bit count sets the 
'full-sum error' trigger for that particular adder byte area, 
which, in turn, sets the 'final error' latch. The error signal 
that sets the 'full-sum error' trigger stops the CE program 
on the following cycle (provided the CE CHECK CON
TROL switch is in the STOP position) and lights a 
FULL-SUM error indicator on the roller switch indicators, 
signifying the area incurring the full-sum error. 

For practical reasons, combining full sums with parity is 
logically accomplished by first exclusive-ORing the gener
ated parity with a single latched sum position (Diagram 
4-414) and, then, combining that result with the remaining 
latched sums of that particular byte. An odd result 
(signifying an even overall bit count) then sets the 
associated 'full-sum error' trigger. 

Full-sum error conditions are reset by the 'error reset 
gate' signal (SYSTEM RESET or CHECK RESET pushbut
ton). 

Convert-to-Decimal Operation 

Special circuits, used only in the convert-to-decimal opera
tion, provide excess-6 decimal correction when required. 
Excess-6 is forced on the P AB bus when a test of a four-bit 
group indicates a decimal value higher than 9. For this 

operation, parallel adder bit positions 28-63 are logically 
divided into four bit groups, each group representing a 
decimal digit in the packed format. Diagram 4-415, 
FEMDM, shows the development of excess-6 signals for 
PAB(28-31) and PAB(60-63). Note that these signals are 
activated only when ROS has developed the excess-6 gate 
and when the AB bits indicate the need for decimal 
correction. 

For this operation, data is brought into the parallel 
adder one bit at a time by transferring one byte of data to 
the serial adder and sampling SAL(O). If SAL(O) = 1, the 

7201-02 FETOM (7/70) 2-77 



'conv dee' trigger is set and a hot-carry sets PAL(63) 
(Figure 2-58). The contents of the serial adder are then 
shifted left 1 position so that the next bit can be sent to the 
parallel adder (which is also shifted left one position). [For 
details, see Chapter 3, Section 2, "Convert to Decimal, 
CVD ( 4E)" .] Because data is processed through normal 
parallel adder entry logic, parity generation takes place in a 
normal manner. 

Gate Excess 6 f Conv Dec 
SAL(O) 

D 
u Complomoot 

Control 

AP737 
ASOOl 

f Ros Micro-order 

AP734 

Hot Carry 
to PA(63) 

Figure 2-58. Convert-to-Decimal Data Flow to Parallel Adder 

2-78 (7/70) 

Set Condition Code 

After an operation, PAL is analyzed to set the PSW 
condition code (CC). CCs are set in many ways, with many 
variables for different instructions; Diagram 4-416, 
FEMDM, shows a typical example. Various sections of PAL 
are examined for a 0 condition; combinations of PAL equal 
0 and micro-orders set ST AT A, which is sampled by the 
instruction and the result sign to set the CC. 

In the example, if PAL(32-63) is not equal to 0 and the 
result is negative, a CC of 1 is set on a fixed-point 
operation. (This setting indicates a number less than 0.) 
Note that an overflow condition on a fixed-point instruc
tion sets both CC bits, regardless of the condition of PAL. 

For a floating-point operation PAL(7-67) is examined 
for 0. A not-0 condition and a plus result set a CC of 2. 



SECTION 6. STATUS AND CONTROL TRIGGERS 

This section discusses the eight status triggers (ST A Ts 
A-H) and miscellaneous control triggers. A summary of the 
conditions that set STAT's A-H is shown in Figure 2-59, 
and a typical example of STAT logic (showing STAT B)is 
illustrated in Diagram 4-501, FEMDM. 

STAT A 

• STAT A indicates: 
Zero condition for parallel adder. 
Nonzero condition for serial adder. 
Digit condition on edit operations. 

STAT A primarily indicates zero-detect conditions. Except 
duri_ng scan-in, when it is set directly to the value of T(54), 
STAT A is normally set at P2 clock time by one of the 
following conditions: 
1. 'Set ST AA if SAL(O-7) not equal to zero' signal, with 

SAL(0-7) not containing all O's. 
2. 'Edit set STAA' signal (edit operations). 
3. 'Serial adder (0-3 or 4-7) not zero' signal, from the 

'serial adder not zero' (SNZ) latch (indicating that the 
serial adder latched outputs do not contain all O's). 

Note: The 'SNZ' latch is set at not-clock time by the 
'decimal correct 0-3 set STAT's AE', or 'serial carry-7 
STAT's AE decimal correct 4-7' signal. 

4. 'Set STAA if PAL(7-63) equals zero' signal, with 
PAL(7-63) latched outputs containing all O's. 

5. 'Set STAA if PAL(32-63) equals zero' signal, with 
PAL(32-63) latched outputs containing all O's. 

6. 'Set ST AA if PAL equals zero and insert sign' signal, 
with E( 6) = 1. 

The output of ST AT A is entered directly into a 
polarity-hold latch, which unconditionally assumes the 
same binary state as ST AT A at P 1 not-clock time. (This 
latch retains its assumed state until not-clock time of the 
cycle in which STAT A is reset.) 

STAT A is reset at Pl clock time if one of the following 
conditions is active: 
1. 'ST AT trigger reset' signal (conditioned by either a 

'system reset' or an 'I-fetch reset' signal). 
2. 'Reset ST AA' signal, which is conditioned when any one 

of the following is active: 
a. 'Edit reset ST AA' signal. 
b. 'Set STAA if PAL(0-63) equals zero' signal. 

c. 'Set STAA if PAL(32-63) equals zero' and signal. 
d. 'Set STAA if PAL(32-63) equals zero and insert sign' 

signal, with E( 6) = I. 
e. 'Reset STAA if PAL(32-63) not equal zero' signal, 

with STAA polarity-hold latch set. 

Note: If PAL(32-63) contains all O's and the STAA 
polarity-hold latch is set, the 'reset ST AA if 
PAL(32-63) not equal zero' signal is inhibited from 
resetting STAT A. 

f. 'Set STAA if SAL(O-7) not equal zero' signal. 

STAT B 

• STAT B indicates: 
Zero-condition for serial adder. 
Overflow condition for decimal, fixed point, left-shift 

operations. 
Condition of P AL(31 ). 
Condition of B(32). 

ST AT B primarily indicates overflow conditions. Except 
during scan-in, when it is set directly to the value of T(55), 
ST AT B is normally set at P2 clock time by one of the 
following conditions: 
1. 'Set STAB if SAL(O-7) equals zero' signal, with 

SAL(0-7) containing all O's. 
2. 'Set STAB on decimal overflow' signal, with the 'decimal 

overflow' latch set. 

Note: The 'decimal overflow' latch is set at not-clock 
time of a decimal-compare cycle in which: 

a. The 'serial adder in bus A(7)' contains a I-bit, and 
either STAT A, STAT D, or STAT His reset. 

b. The 'serial adder in bus A(0-6)' is not equal to 0. 
c. STAT H is set, with STAT C and STAT F either 

both set or reset. 

3. 'Set STAB if PAL(31) equals 1' signal, with PAL(31) = 
1. 

4. 'Gate fixed-point overflow to ST AB' signal, with a 
fixed-point overflow condition prevailing. 

5. 'Set STAB on left shift overflow' signal, with a left-shift 
overflow condition detected. 

6. 'B(32) to STAB and T(32) to STAG' signal, with B(32) 
= 1. [ST AT B is set at P2 + 140 ns under this condition 
to allow B(32) to become stable before it is sampled.] 

7201-02 FETOM (7 /70) 2-79 



PAL = 0 Condition 

Digit Condition for Edit 
OR 

Set STAT A 

SAL Not 0 Condition 

~ SAL 0 Cood;Hoo 

...____. 
KS021 

Decimal or Fixed-Point O'flow 

Left Shift O'flow 
OR 

Set STAT B 

PAL(3l)=l 

B(32) = l 
...._ 

Sign Correction KS031 

Neg Sign SBA 

Save Signs 

SBB(O) = l SetSTATC 
OR 

Set Signs 

Pos Sign SBA(4-7) KS041 

VFL Operation 

S(O) = l 

Save Signs 

FLT-PT Mult 

SAL{O) = l 

Set STAD Set STAT D 
OR 

Q to LAL = 0000 

Set Signs KS051 

VFL 

Invalid Si n 

Invalid Digit (Dec) 
Set STAT E 

Save Signs 

Not FLTPT 

Invalid Sign SBA(4-7) 

Sign Correction 

Set Signs 
Decimal VFL 

Neg Sign SBB(4-7) 

Neg Sign SBB 

Save Signs 
A SetSTATF 

OR 

Save Signs 

Floating Point KS071 

STAT C 

STAC ta STAF 

Set STAG 

Set STAT G 
T(32) 

Set STAH KSOBl 

Set STAT H 
SADDL Carr Out of Grau OR 

Save SA Carry AS105 

Dec Correct {0-3) 

Figure 2-59. Summary of Setting of STAT's 

2-80 (7/70) 



The outputs of STAT B are sent directly to a polarity
hold latch. This latch unconditionally assumes the state of 
STAT B at not-clock time of the cycle in which STAT B is 
set and retains this information until not-clock time of the 
cycle in which STAT Bis reset. The output from the STAT 
B polarity-hold latch inhibits the resetting of ST AT B 
whenever ST AT B is set during the same cycle in which 
either a fixed-point overflow or a left-shift overflow i~ 

detected. (Either of these overflow conditions causes a 
program interruption requiring that STAT B remain set for 
interrogation.) 

ST AT B is normally reset at P 1 clock time if one of the 
following conditions is active: 
1. 'ST AT reset' signal (conditioned by either a 'system 

reset' or an 'I-fetch reset' signal). 
2. 'Reset ST AB' signal, which is conditioned if one of the 

following signals is active: 
a. 'Set STAB if PAL(31) equals l'. 
b. 'Gate fixed-point overflow to STAB'. 
c. 'Set ST AB on left shift overflow'. 
d. 'B(32) to STAB and T(32) to STAG' (resets STAT B 

at Pl+ 140 ns). 

STATC 

• STAT C holds: 
'Serial adder in bus A' sign on sign-correction VFL 

operations. 
'Serial adder in bus B' sign on save-signs VFL operations. 
Sign for set-signs on VFL and non-VFL operations. 

STAT C primarily indicates the sign of a source operand. 
Except during scan-in, when it is set to the value of T(S6), 
STAT C is set at P2 + 140 ns clock time by one of the 
following conditions: 
1. 'Sign correct SA( 4-7)' signal, with a negative sign 

detected on 'serial adder in bus A'. 
2. 'Save signs' signal, with 'serial adder in bus B' position 0 

containing a I-bit during subtract or compare operations 
and a 0-bit during all others. 

3. 'Set signs' signal during VFL instructions in which 'serial 
adder in bus A' positions 4-7 contain a positive sign 
during subtract or compare operations and a negative 
sign during all others. 

4. 'Set signs' signal during any non-VFL operation in which 
S(O) = 1. 

S. 'SA TR set ST AC' signal. 

ST AT C is normally reset at P 1 clock time by the 'ST AT 
trigger reset' signal (activated by either a 'system reset' or 

an 'I-fetch reset' signal). STAT C is also reset at Pl + 140 ns 
whenever the 'set signs' signal is activated for operations 
other than VFL operations or when activated by 'SATR 
reset ST AC' signal. 

STATD 

• Used by microprogram to retain ROS branch informa
tion. 

• Indicates sign for save-signs operation on floating-point 
multiply and divide. 

• Indicates Q-to-LAL equals 0000. 

STAT D stores a characteristic carry from SAL(O) during 
floating-pointmultiply and divide operations and indicates 
that the B 1 or B2 field of an instruction equals 0. For 
operations other than floating-point multiply. and divide 
and scan-in operations, STAT D is available for arbitrary 
microprogram use and can be unconditionally set or reset 
by the 'set STAT D' and 'reset STAT D' signals, respec
tively. (Such operations include storing of the dividend sign 
on fixed-point operations.) Except during scan-in opera
tions, when it is set directly to the value of T(S7), STAT D 
is normally set at P2 + 140 ns by one of the following 
conditions: 
1. 'Set ST AT D' signal. 
2. 'Save signs' signal during floating-point multiply and 

divide operations in which SAL(O) = 1. (STAT Dis set at 
P2 clock time under this condition.) 

3. 'Gate Q to LAL 0000' signal. 

Note: This signal is activated whene'1'er the B 1 or B2 
field of an instruction is being gated from Q to LAL and 
is found to equal 0. Although ST AT D is always set on 
this condition, its significance is of value only during an 
SS-format instruction when a B2 = 0000 indication must 
be retained for more than one cycle. (Used in setting 
ROSAR when selecting I-fetch ROS words for SS-format 
instructions.) 

4. 'Set D on set or insert key' signal. 

STAT Dis normally reset at Pl clock time by the 'STAT 
trigger r~set' signal, which is activated by either a 'system 
reset' or an 'I-fetch reset' signal, 'Reset STAD' and 'gate 
I-fetch invalid address' signals reset STAT D at PO+ 140 ns. 
The 'reset ST AD on decimal overflow' signal resets ST AT D 
at P2 clock time. 

7201-02 FETOM (7 /70) 2-81 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

STATE 

• Indicates invalid digits and signs. 

ST AT E primarily indicates the detection of invalid data 
during decimal operations. Except during scan-in, when it is 
set to the value of T(58), STATE is normally set at clock 
P2 + 140 ns by one of the following conditions: 

1. 'Set signs' signal during VFL operations in which an 
invalid sign is detected on either the 'serial adder in 
bus-A' or '-B'. 

2. 'Save signs' signal for operations other than floating
point operations in which an invalid sign is detected on 
the 'serial adder in bus B( 4-7)'. 

3. 'Sign correct SA( 4-7)' signal with the detection of an 
invalid sign on the 'serial adder in bus A( 4-7)'. 

4. Detection of an invalid digit on either side of the 'serial 
adder. in bus'. 

5. Detection of an invalid digit on the 'serial adder in bus 
A(0-3)', with the 'digit examine' latch set (edit opera
tions). 

ST AT E is reset at P 1 clock time by the 'ST AT trigger 
reset' signal (activated by either a 'system reset' or an 
'I-fetch reset' signal). 

6. 'Set STAE 1/0 error' signal. 

STAT F 

• STAT F holds: 
'Serial adder in bus B' sign on set-signs decimal opera

tions. 
'Serial adder in bus B' sign on save-signs operations. 
Condition of STAT C~ 

ST AT F primarily indicates . the sign of VFL destination 
operands. Except during scan-in, when it is set to the value 
of T(59); STAT Fis normally set at P2 + 140 ns by one of 
the following conditions: 
1. 'Set signs' signal during a VFL decimal operation, with a 

negative sign detected on 'serial adder in bus B( 4-7)'. 
2. 'Save signs' signal during operations other than floating

point operations, with a negative sign detected on 'serial 
adder in bus B'. 

3. 'Save signs' signal during a floating-point operation, with 
A(O) = 1. 

4. 'STAC to STAF' signal, with STAT C set. (Sets STAT F 
at P2 clock time.) 

STAT F is normally reset at Pl clock time by the 'STAT 
trigger reset' signal (activated by a 'system reset' or an 

2-82 (6/71) 

'I-fetch reset' signal). The 'STAG to STAF' signal also resets 
STAT F at PO clock time in preparation for setting STAT F 
again at P2. 

STATG 

• Used by microprogram to retain ROS branching in
formation. 

• Indicates state of T(32). 

ST AT G is available for arbitrary microprogram use and for 
indicating the state of T(32). Except during scan-in, when it 
is set to the value of T( 60), STAT G is normally set at P2 + 
140 ns by one of the following condi~ions: 
1. 'B(32) to STAB and T(32) to STAG' signal, with T(32) 

= 1. 
2. 'Set STAG' signal. 

ST AT G is normally reset at PO + 140 ns by the 'reset 
ST AG' or 'B(32) to STAB and T(32) to ST AG' signal. A 
'system reset' signal and an 'I-fetch reset' signal also reset 
STAT G. 

STATH 

• Used for serial adder carry-control functions and ROS 
branching information. 

ST AT H indicates a serial-adder carry. Except during 
scan-in, when it is set to the value of T(38), STAT His set 
by one of the following conditions: 
1. 'Set STAH' signal and clock time P2 + 140 ns. 
2. The output of a latch set at not-clock time by either a 

'decimal correct 0-3 and set ST AT' s AE' or a 'save serial 
adder carry' signal in conjunction with a serial adder 
carry from group 2. The set condition is timed at P2 
clock time. 

ST AT H is . reset at PO. ciock time with the following 
signals: (1) 'branch on ATR select in', (2) 'dee cor 0-3 set 
STATS AE', (3) '1th I-fetch reset', and (4)''save SA carry'. 
It is also reset at P2 clock time with 'reset serial carry to 
ST AH' and by 'master reset' with no time consideration. 

CONTROL TRIGGERS 

A num.ber of control triggers perform functions similar to 
STATs. Table 2-3 lists the most significant triggers, sum
marizes their functions, and provides ALO and FETOM 
references. 



Table 2-3. Control Triggers 

ALO FE TOM Roller Switch 
Trigger Function Reference Reference Indicator 

Right Digit Selects digit from AB byte KZ321 Volume 2, Chapter 3, RT DIG 
on edit operations. Section 5, "General Roller 4 

Data Handling" Position 4 
Bit 32 

s Indicates source character, KZ321 Volume 2, Chapter 3, s 
rather than fill character, Section 5, "lntroduc- Roller 4 
on edit character transfers. tion to Edit Operation" Position 4 

Bit 33 

Leave Controls 'serial adder bus KZ201 LEAVE 
B' on edit operations. Roller 4 

Position 4 
Bit 34 

Step ABC Increments ABC on edit KZ501 STEP ABC 
operations, if 'right digit' Roller 4 
trigger is set. Position 4 

Bit 35 

Block I-Fetch Prevents most I-Fetch KD501 Volume 2, Chapter 3, BLOCK 
functions when interrup- Section 1, "Block Roller 4 
tion or exceptional con- I-Fetch Trigger" Position 5 
dition is to be processed. Bit 8 

Branch Invalid Indicates branch address KD701 Volume 2, Chapter 3, BR INVLD ADR 
Address of successful branch is Section 1, "Invalid Roller 4 

invalid. Address Detection" Position 5 
Bit 16 

I-Fetch Invalid Indicates Q has been KD711 Volume 2, Chapter 3, INVLD ADR 
Address refilled from invalid Section 1, "Invalid Roller 4 

address. Address Detection" Position 5 
Bit 17 

Instruction Resets I LC in old PSW and KM851 Volume 2, Chapter 3, IL NOT AVAIL 
Length Not resets all interrupt code Section 1, "Fetch Roller 4 
·Available triggers except 'interrupt Protection Detection" Position 5 

code 4' trigger. Set by Bit 18 
"late" storage protection 
check. 

Time Clock Indicates timer has been KM221 Volume 2, Chapter 3, TC AT LIMIT 
at Limit decremented past 0 and Section 1, "Timer Roller 4 

requests external interrup- Exceptional Condition" Position 5 
ti on Bit 19 

Timing Gate Controls duration of 1/0 KX311 Volume 2, Chapter 3, TIME GATE TGR 
control or direct-control Section 7, "Write Roller 4 
signals. Set and reset by Direct, WRD(84)" Position 5 
microprogram. and "Read Direct, Bit 35 

RDD(85)" 

7201-02 FETOM (7/70) 2-83 



Table 2-3. Control Triggers (Cont.) 

ALD FE TOM Roller Switch 
Trigger Function Reference Reference Indicator 

No Retryt Indicates to diagnostic KS321 NO RETRY 
programmer instruction Roller 4 
retry may give unpre- Position 1 

dictable results. Set by Bit 18 
(1) 'store per D' signal, 

(2) 'PAL to IC' signal and 
not SS format, and (3) 
'write local star' signal 
and LSWR not selected. 

IC in LSWRt Indicates IC is saved in KS321 IC IN LSWR 
LSWR. Occurs only on Roller 4 

SS format operations. Position 1 
Bit 19 

t 'No retry' and 'IC in LSWR' triggers perform no control function but indicate machine conditions only. 

2-84 (7 /70) 



SECTION 7. STORAGE CONTROL INTERFACE 

The storage control interface (SCI), an integral part of the 
Computing Element, governs the transfer of all information 
between the Computing Element and the Storage and 
Display Elements in the system. The SCI regulates the flow 
of addresses, data, key information, and control signals 
associated with main storage. 

GENERAL DESCRIPTION 

The CE uses a combination of simplex, distributed simplex, 
and multiple driver simplex lines to communicate with SEs 
and DEs. Figure 2-60 shows how these lines connect each 

SE 1 

Distributed simplex 
and multiple driver 
simplex lines for CE 1 

Simplex Control 
Line Groups 

~ 

SCI 

CE 1 

SE 2 

Figure 2-60. Basic Storage Configuration 

DE 1 

CE, through its storage control interface(SCI), with allSEs 
and DEs in the system. 

Basic Interface Considerations 

The buses and. control lines for the SCI are 'shown in Figure 
2-61: The term "simplex" refers to the lines going from one 
CE to each SE and DE. A signal sent from a CE on a 
simplex line is available to only one SE or DE. The term 
"distributed simplex" refers to the lines going from one CE 
to all SEs and DEs in the· system. A signal sent from a CE 
on a distributed simplex line is available to all SEs and DEs. 

9020 .E Only 

Distributed simplex 
and multiple driver 
simplex I ines for CE 2 

Simplex Control 
Line Groups 

~ 

SCI 

CE 2 

DE 2 

7201-02 FETOM (7 /70) 2-85 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

The term "multiple driver simplex" refers to lines going 
from all SEs and DEs in the system to one CE. The 
functions of the bus and control lines are defined below. 

Simplex Control Lines 

Select Storage Odd. This signal is activated by a CE to 
request a storage cycle in the odd BSM. (SAB bit 20 = 1 has 
been decoded by the SCI to. indicate an odd doubleword 
address.) 

Select Storage Even. This. signal.is activated by a CE to 
request a storage cycle in the even BSM. {SAB bit 20 = O 
has been decoded by the SCI to indiCate an even double
word address.). 

Logout Stop. This control line is pulsed by a CE in 
response to an 'SE' or 'DE check' signal or an 'element 
check' (ELC) signal and during a diagnose 'SE logout'. The 
'logout stop' causes the SE or DE to halt all activity at the 
end of the cycle in progress and to activate logout priority 
for the CE controlling the logout. 

Logout Select. This is a special signal provided by the CE 
to request a doubleword of logout data from an SE or DE.· 

Logout Complete. This control line is activated when a 
CE completes logout of an SE or DE, or during a subsystem 
reset. The 'logout complete' resets the check condition in 

. the associated SE or DE. 
Reconfigure Select. When executing a SCON instruction, 

the CE activates 'a reconfigure select' signal to each SE and 
DE selected by the selection mask. This signal causes the SE 
or DE to gate the contents of SDBI to its configuration 
control register. 

Suppress Log Check. This control line is activated by a 
CE along with a 'select odd' or 'select even' signal; it causes 
suppression of a 'data check' or an 'ELC' signal during that 
cycle. I.t is used while logging out the ST register, which 
may have bad par~ty. 

Request Acknowledged. This control line is not used in 
the CE. 

Accept. This control line is activated by an SE'or DE to 
indicate to a CE that a storage cycle has been started for its 
request. This signal also sets the CE response latch for · 
logout purposes. 

Reconfigure Accept. This control line is 'activated by al1 
SE or DE to indicate to a CE that the contents of the SDBI 
have been loaded into the SE or DE CCR and that no parity 
errors exist. 

Logout Advance. This control line is activated by an SE 
or DE in response to 'logout select' from a CE when logout 
data has been placed on SDBO. 

2-86 (6/71) 

Element Check (ELC). This control line is activated by 
an SE or DE. to alert all CEs that the SE or DE has an error 
condition. The 'ELC' signal may be a pulse or a level, 
'depending on the error condition: 

1. Pulsed ELC: 
a. CCR parity error. 
b. Temperature marginal. 
c. On battery. 
d. Storage checks (mark parity, address parity, key 

parity, data parity, double cycle timeout, or box tag 
mismatch). 

2. Level ELC: 
a. Over or under voltage, or overcurrent condition. 
b. Power off. 
c. SE Stopped. 

SE Ready. This control line is activated by an SE or DE 
to indicate to the CE that storage is available for use, i.e., 
power on, configured to the CE, and not in Test mode. 

SE Stopped. This control line is activated by an SE or 
DE to indicate that it is being logged out. All operations of 
the SE or DE are inhibite.d, except logout and reconfigura
tion. 

SBO Gate. This control line· is activated by an SE or DE 
to identify the source of data on the SDBO during a fetch 
cycle or to identify the source of a check signal when an· 
error is detected by the SE or DE. 

SAB PA· This line carries the parity bit generated in the 
SCI for SAB ( 6- i 2). 

SAB PB. This line carries the parity bit generated in the 
SCI for SAB {13-19). 

Storage Data Check. This control line is activated by an 
SE or DE when a parity error is detected in its data register 
during a store, test and set, or fetch operation or when a 
multiaccept error is detected. {A multiaccept condition 
occurs when two or more accept lines are activated at the 
same time.) 

Storage Address Check. This control line is activated by 
an SE or DE on a multiaccept condition or'when a parity 
error is detected in one of the following SE or DE registers: 
{l) the address register during a store, test and set, or fetch 
operation; (2) the mark register during a store or test and 
set operation; (3) the storage protect address register during 
a store, test and set, fetch, set key, or insert key operation; 
and ( 4) the key register during a store, test and set, fetch, 
or set key operation. It is also activated if the 'normal op' 
control line is active during a test and set, set key, insert 
key' double cycle, or suppress log check operation or 
inactive during a fetch or store operation. 



I 

CE Simplex Lines - One Line to Each SE/DE 

r--
SCI Select Storage Odd 

Select Storage Even 

Logout Stop 

Logout Select 

Logout Complete 

Reconfigure Select 

Suppress Log Check 

l...it_ Request Acknowledged 
..... 
l..t_ Accept 
I"""" 
...._ Reconfigure Accept 
,. 

l...it_ Logout Advance 
~ 

..... Element Check 
I" 
l...it_ SE Ready 

~ 

i.... SE Stopped 

I" 

1..1111.. 
SBO Gate 

..... 
SAB P (A) 

SAB P(B) 

i.... Storage Data Check 
~ 

i... Storage Address Check 

~ 

•Figure 2-61. Storage Interface Lines {Sheet 1 of 3) 

Distributed Simplex Lines 

Storage Address Bus (SAB). This bus (19 address lines and 
1 parity line) designates the address of a doubleword in 
main storage. (Two additional SAB parity bits are sent on 
simplex lines.) Bits 1-4 (referred to as the box tag) 
designate the SE or DE, and bits 4-19 designate the 
doubleword within the odd or even portion of the SE or 
DE. (The odd or even portion of the SE or DE is selected in 
the CE by SAB bit 20.) 

Storage Data Bus In (SDBI). This bus (64 data lines and 
8 parity lines) carries data sent from the CE to the SEs and 
DEs. 

Mark Bus. This bus (eight control lines and one parity 
line) designates which data bytes on the SDBI are to be 
stored into the selected SE or DE; a mark line corresponds 
to each byte on the SDBI. No signals are on the mark bus 
during a fetch operation. 

In Key Bus. This bus (five key lines and one parity line) 
is used during fetch, store, and set-key operations to 
transfer the storage protection key from the CE to the 
storage protection area in the selected SE or DE. 

Page of SFN-0201-1 
Revised by TNL: GN31-0001 

SE/DE 

.... 
ri 

...... ..... 
_.. .... 
...... -.... 
Jllo. ..... 
_.. ..... 
_.. 
II"" 

...... 
II"" 

... .... 

Set Key. This control line is activated by a CE causing 
the selected SE or DE to store the contents of the In Key 
bus into its storage protection area. 

Insert Key. This control line is activated by a CE causing 
the selected SE or DE to outgate the . specified storage 
protection key to the Out Key bus. 

Store. This control line is activated by a CE to permit an 
SE or DE to store data. 

Test and Set. This control line is activated by a CE to 
cause the selected SE or DE to perform a test-and-set cycle. 

Note: If none of the above control lines are active during a 
'select odd' or 'select even' pulse time, a fetch data cycle 
will result. 

Cancel. This control line is activated by a CE when it 
detects an invalid address condition or a specification error. 
This signal causes the SE or DE to regenerate the data· read 
from core storage and prevents data transfer to and froin 
the CE. 

Defeat Interleave. When this control line is activated by 
a CE, it causes the SCI to interchange SAB bits 20 and 6. 

7201-02 FETOM {6/71) 2-87 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

CE Distributed Simplex Lines SE/DE 

~ Storage Address Bus (SAB) 19 + l Parity_.. 
-.-

Storage Data Bus In (SDBI) 64 + 8 Parity_.. 

Mark Bus 8 + l Parity: 
.... 

In Key Bus 5 + l Parity__.. 

Set Key l 

Insert Key l 

Store l 

Test and Set l 

Cancel l 

Defeat Interleave l 

Defeat Interleave and Reverse l 

Address Compare Sync l 

System Reset 2 

CE Power On l 

Double Cycle l 

Normal Op l 

Logout Word Number 3 

Figure 2-61. Storage Interface Lines (Sheet 2 of 3) 

This has the effect of causing requests or stores to be taken 
from consecutive even addresses if SAB (6) is 0, or 
consecutive odd addresses if SAB (6) is 1. 

Defeat Interleave and Reverse. This control line has the 
same effect as 'defeat interleave' except the value of SAB 
(6) is reversed; i.e., odd addresses are requested if SAB (6) 
is 0, and even addresses are requested if SAB (6) is 1. 

Address Compare Sync. This line provides a signal to all 
SEs and DEs when the MAIN STORE ADDRESS COM
P ARE key setting (on the CE control panel) matches the 
SAB and the ADDRESS COMP ARE switch is in the PROC 
position. 

System Reset. Two lines are activated by a system reset 
condition in any CE. They cause a storage reset in all SEs 
and DEs regardless of their CCR setting. Line 1 must be 
minus, and line 2 must be plus to generate a storage reset. 
The CCR communication bits in each SE and DE are set to 
0, and the SCON bits are set to ones (good CCR parity is 
preserved). 

CE Power On. This control line goes to ground level just 
before CE power goes off; it remains there until after CE 
power-on reset. It inhibits the output of the CCR communi
cation bit for that CE in all SEs and DEs. 

2-88 (6/71) 

.... 
__... .... 
__... .... 
_ ... -.... 
__... 
-..... 
__... .... 
__... 
.... 

_... -.... 
__... 
--....-
__... .... 
_... .... 
__... ... 
__... 
--.... 
__... .... 

Double Cycle. This control line is activated by a CE 
when executing the logical AND, OR, or Exclusive OR 
immediate instructions. It has no effect at the DE, where 
the line is used only for checking the 'normal op' line. 
However, at the SE, 'double cycle' ensures that no other CE 
or IOCE will alter the data between the two accesses 
required to perform the AND, OR, or Exclusive OR. This is 
accomplished by preventing the SE from giving priority to 
another CE or IOCE until two successive storage cycles 
have been completed. To ensure that a double cycle is 
obtained, the CE must issue the second select within 5 usec 
after the first storage cycle is completed. Note that the 
three logical instructions mentioned may be executed on 
data in a DE with no difference in SCI operation. The 
double cycle protection is not implemented in the DE 
however. 

Normal Op. This control line is activated by the CE as an 
interlock to prevent control-line-driver or receiver failures 
from causing unwanted storage cycles or multiple excep
tions (such as simultaneous fetch and set key operations, 
which could result in destroyed storage data). It must be 
active with fetch and store operations and inactive with test
and set, set key, insert key, double cycle, and suppress log 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

CE Multiple Driver Simplex Lines SE/DE 

~ _..._ . Storage Data Bus Out (SDBO) 64 + 8 Parity 
....-
..... Out Key Bus 5 + l Parity 
...... 

L....t Advance SDBO l 
J"""ll° 

~ 
Advance Keys l 

f""'lll" 

1...111._ Protect Address Check l 
~ 

I 

•Figure 2-61. Storage Interface Lines (Sheet 3 of 3) 

check operations. Violation causes the SE or DE to stop, 
'storage address check' to be sent to the using CE, and the 
'element check' signal to be sent to all CEs in the system. 

Logout Word Number. These three lines are used by the 
CE to control the gating of logout words to the SDBO 
during logout of an SE or DE. 

Multiple Driver Simplex Lines 

Storage Data Bus Out (SDBO). This bus (64 data lines and 
8 parity lines card~s data sent from the SE or DE to the 
CE. 

Out Key Bus. This bus (five key lines and one parity 
line) is used only during the insert-key operation· that 
transfers the storage protection key from an SE or DE to a 
CE. 

Advance SDBO. This control line is activated by an SE 
or DE before data is gated to the SDBO. 

Advance Key. This control line is activated by an SE or 
DE before key data is gated to the out key bus on an insert 
key cycle. 

Protect Address Check. This control line is activated by 
an SE or DE when the key supplied by the CE does not I match the key of the block accessed. 

Basic Operating Considerations 

• Requests are issued by; (1) I-fetch, (2) microprogram, 
(3) scan. 

• CE clock is stopped at the end of the cycle following a 
'select' cycle. 

• SCI interleaves 'odd' and 'even' selects. 

• Storage keys protect storage contents. 

• Insert key operation fetches key to CE. 

• Set key operation replaces key in main storage. 

• Logical and physical PSBARs specify PSA for a CE. 

• Contents of ATR slot are decoded to select SE or DE. 

The SCI resides in, and is a logical but independent part of, 
the CE. To enable efficient handling of main storage 
requests, the SCI and CE clocks are synchronized. The SCI 
is designed to ·accept storage requests from the CE every 
400 ns (every other clock cycle). However, the speed with 
which these requests are serviced depends· on the priority 
logic within the ·SE or DE, which must handle requests 
from other CEs and IOCEs in the system. (The term "main 
storage" refers to all the SEs and DEs in the system.) 

The CE can issue five types of requests to the SCI: fetch 
data, store data, insert key, set key, and test and set. The 
SCI decodes the address supplied by the CE and issues a 
select to the proper SE or DE. The SCI stops the CE clock 
two cycles after issuing select to main storage and restarts it 
upon receiving an 'accept' response. 

Figure 2-62 shows the basic organization of storage 
elements and display elements; Interface lines from CEs and 
IOCEs connect to the storage switching unit (SSU) in the 
SE and to the switch unit (SU) in the DE, which contain 
logic that maintains a priority scheme. If a CE or IOCE 
issues a request to a busy SE or DE, priority is granted after 
all higher-priority requests have been serviced. The request 
is sent through common logic to the basic storage module 
(BSM) selected. The BSM operates independently after it 
receives a request. This allows interleaving between an odd 
and an even BSM. The request is also sent through common 

7201-02 FETOM (6/71) 2-89 



IOCE 1 Interface* 

IOCE 2 Interface* 

IOCE 3 Interface* 

CE 1 Interface 

CE 2 Interface 

CE 3 Interface 

CE 4 Interface 

ssu 
(SE) 

SU 
(DE) 

Common 
Logic 

Odd BSM 1 

Even BSM 1 

Odd BSM 2 
(SE Only) 

Even BSM 2 
(SE Only) 

* IOCE will interface with SE's only. 

Figure 2-62. Basic Organization of a Main Storage Element (SE or DE) 

logic to the storage protect (SP) unit to start an SP cycle. 
Protect key comparison is made in the common logic. 

A need to fetch new data is detected in the CE three or 
four cycles before this data is required. Accordingly, a 
three- or four-cycle fetch request is issued to the SCI, 
indicating that data will be reqtiired after three or four 
cycles have elapsed from the time of the request. 

Requests to store data are initiated in the CE by the 
microprogram or by the scan controls; these requests are 
always accompanied by the 'mark' signals, which designate 
the bytes to be stored. Store requests are not categorized 
into the three- and four-cycle types since no critical transfer 
into the CE is involved; once the SE or DE is selected, the 
CE no longer depends upon the SE or DE operations. 

The insert key, set key, and test and set requests are 
issued by the CE microprogram. Basically, the insert key 
request is a fetch operation to obtain the protection key 
from main storage. The set key request is a store operation 
which transfers the five.-bit (plus parity) storage protection 
key from the CE into a specified storage protect area of 
main storage. The test and set request is essentially a 
combined fetch/store operation effected in a single storage 
cycle. 

A storage protection capability is provided to prevent 
the contents of main storage from being used or destroyed 
by mistake. Both fetch and store operations are subject to 
this protection. Protection is accomplished by dividing each 
SE and DE into 2048-byte blocks and assigning a one-byte 
protection key pattern to each block. The assigned key 
patterns for all 2048-byte blocks within a storage element 
are recorded in the storage protection (SP) unit of that 

2-90 (7 /70) 

element. During a storage request, the SP unit compares the 
key pattern for the addressed block with the key pattern 
supplied by the requesting CE. (Keys are gated from the 
SCI over the 'in key' bus during the storage request.) A 
mismatch in keys results in a protection violation; the 
storage request is not honored, and a 'protect address 
check' signal is sent to the requesting CE. (A zero key from 
the CE or from the SP unit will result in a match.) 

The protection key for any 2048-byte block of storage 
can be fetched from the SP unit and brought into the CE 
for inspection. This operation is performed through execu
tion of the Insert Storage Key (ISK) instruction, which 
issues a fetch request directly into the SP unit of the 
storage element. Conversely, the protection key for any 
2048-byte block of storage can be changed through 
execution of the Set Storage Key (SSK) instruction by a 
CE. This instruction provides a new key pattern and issues a 
store request into the SP unit. 

The ISK and SSK instructions can be executed only in 
the PSW Supervisor state and are not available to the 
problem programmer. A programmed protection of storage 
can be achieved by means of the Test and Set (TS) 
instruction. When the TS instruction is executed by a CE, a 
doubleword is fetched from main storage, and the CE 
inspects the addressed byte of that doubleword. The SE or 
DE sets the addressed byte to all-1 's, while the remaining 
bytes in the doubleword are not changed. Thus, pro
grammed storage protection is achieved (in the sense that a 
CE can later inspect the first byte of a particular storage 
block to establish whether this block has been previously 
processed). 



A test and set storage request combines aspects of both 
fetch and store operations; therefore, it requires special 
handling by the SCI and the SE and DE. From the SCJ 
viewpoint, the TS instruction is the only one that generates 
a 'mark' signal during a fetch request. The SCI sends the 
'mark' signal and the 'test and set' signal to the SE to DE. 
During the storage write cycle, all bytes except the byte 
specified by the 'mark' signal are regenerated into the core 
array; all-1 's are generated into the byte location specified 
by the 'mark' signal. 

The preferential storage area (PSA) of a CE is a 
4096-byte block of main storage that a CE must have to 
maintain its operation. Because of the flexibility required 
of the 9020 system, it is necessary to be able to designate 
any 4096-byte block of main storage in any SE (a DE may 
not be used) as a PSA for a CE and to be abl~ to make a 
reassignment as the need arises. Two registers, logical 
preferential storage base address register (logical PSBAR) 
and physical PSBAR, contain the address of the PSA; 
reassignment is accomplished by executing a Load Prefer
ential Storage Base Address (LPSB) instruction. The assign
ment must be made to an SE that is configured to the CE 
(communication bit on for that SE). 

The address translation register (ATR) is a 40-position 
register in the CE that is logically divided into ten 
four-position "slot.s". The ATR provides the capability for 
the CE to relocate a span of logical main storage addresses, 
on SE and DE boundaries, to any SE or DE configured to it 
by changing the contents of the ATR. 

The term "logical address" refers to an address as 
designated by a program; "physical address" refers to an 
address that has been translated by the ATR to designate a 
particular SE or DE. The four high-order bits of the logical 
address select an ATR slot, and the contents of the ATR 
slot select the physical address of an SE or DE. 

Basic Control and Timing Considerations 

• Requests are recorded by sync trigger/latches. 

• SCI decodes address supplied by CE to issue an odd or 
even select to SE or DE. 

• 'Select' signal initiates a storage cycle in SE or DE. 

• Access time to a nonbusy SE or DE is approximately 
600 ns. 

The scheme for processing storage requests by the SCI is 
shown in Figure 2-63. Requests are entered into the SCI 

request sensing logic and are recorded by the corresponding 
sync trigger/latch circuits of the SCI. The storage address is 
then gated from the IC, D, or PAL to the SCI for decoding. 
At completion of the decoding, the SCI initiates a storage 
cycle by gating the storage address to the storage address 
bus (SAB) and sending a 'select odd' or 'select even' signal 
to the SE or DE. Priority logic in the SE or DE allows an 
'accept' response when no higher-priority CEs, IOCEs, or 
CVGs (DE only) are requesting service. When the SCI 
receives an 'accept' response, it restarts the CE clock and 
continues processing data. 

On a fetch data request, the SE or DE gates one 
doubleword of data into the SDBO for the requesting CE. 
On a store data request, the SE or DE replaces the contents 
of the addressed location with the data sent over the SDBI 
from the CE. Only those bytes designated by the 'mark' 
signals are placed into main storage; in the absence of 
'marks', bytes already in storage remain unaltered. 

To provide the necessary control signals at the correct 
time, the SCI makes extensive use of trigger/latch circuits. 
SCI triggers are set at clock time of the machine timing 
signal and are reset at the following clock time. Conversely, 
the latch circuits are set at not-clock time of the· timing 
signal and are reset at the following not-clock time. Thus, 
SCI timing sequences are carried out by sequential shifting 
of status information through latch-to-trigger-to-latch cir
cuits. A typical arrangement is shown below. Note that the 
state of a particular trigger or latch at any particular time is 
indicative of the ·progress made since the issue of the 
request: 

D Reg Storage D Sync D Sync D Request 

Clock 1 ]A T Not Clock 1 J A L Clock 2 jA T -
Clock 2 Not Clock 2 BCU Cleanup --

D Sync Trigger 

D Sync Latch 

D Request Trigger 

As mentioned previously, the CE can generate eith,er a 
three- or four-cycle fetch request to specify the exact time 
at which the SDBO is to be gated to the CE. Data will be 
available on SDBO after three cycles have elapsed from the 
time of 'accept'. To meet the requirement of a four-cycle 
request, the SDBO is held valid for an additional machine 

7201-02 FETOM (7/70) 2-91 



IC, D, and 
Scan requests 

Start/Stop Clock 

D Register 

IC Register 

PAL 

CE 
Interface 

PSW Register 

Key Register 

I 
ST Register 

XY Register 

I 
Data to CE 

OR 

Request 
Triggers 

6 and 20 

ATR 
Decoder 

Select A TR 
Slot 

~--~ LAB (0-11) = 0 
Zero 
Detect LAB (0-11) .. 0 

12-19 

Figure 2-63. Basic Scheme for Processing Storage Requests 

2-92 (7/70) 

Sequence 
Counter 

12 

---i-,--------x 

Logicol 
9 PSBAR 19 

SAB (5-10) 

SDBI 

Mork Bus 

I SDBO 



cycle. This provides for data to be present at the SDBO 
during the four-cycle sample pulse: 

Clock Pulses 

3-or 4-Cycle I I Request .., I 
SDBO Valid I I 

I r- I 
3-Cycle ingate I 

I I 
4-Cycle ingate I I r-

Basic Operational Sequence 

• CE sequencers count CE cycles following a storage 
request. 

• Address is developed and sent to storage. 

• 'Select odd' or 'select even' is generated if selected SE or 
DE is ready and not stopped. 

The basic operational sequence of handling storage requests 
is shown in Figure 2-64. 

Storage requests are issued by one of three functional 
areas within the CE: I-fetch logic, ROS microprogram, or 
scan controls. Once the request is issued, a group of CE 
sequencers is activated in the SCI. These sequencers provide 
for stopping the CE clock two cycles after 'select' is issued 
to storage. 

During the following discussion, be. aware of the two 
numbering schemes that exist for main storage address bits. 
D and IC registers (sources of main storage addresses) are 
displayed on the CE console as bits 8-31, but they are 
referenced in the ALDs as bits 0-23. In this discussion, all 
reference to storage address bits and related SCI logic is 
consistant with ALD reference (using the 0-23 scheme). 
Chart 2 of Diagram 4-602, FEMDM shows how the two 
numbering schemes relate to each other. 

The outputs of the IC, D, or scan sync latches and 
request triggers are used to gate an address from D or IC 
(0-11) or from PAL (40-51) to logical address bus (LAB) 
bits 0-11. If LAB (0-11) is equal to 0, physical PSBAR 
(9-12) and logical PSBAR (13-19) are gated to SAB 
(1-11). If LAB (0-11) is not equal to 0, LAB (1-4) is 
used to select an ATR slot, which contains the physical 
address of the ·element to be selected. The physical address 
is gated to SAB (1-4), and D or IC (5-11) or PAL 
(45-51) are gated to SAB (5-11). SAB (12-23)isalways 
gated from D or IC (12-23) or PAL (52-63). SAB bits 
1-9 are sent to the SE or DE for decoding and checking. 

The 'select' signal is developed by decoding SAB (1-4) 
to determine the element, and SAB (2) determines whether 
the select is even or odd. If the selected SE or DE is 
stopped or not ·ready (power down or not configured), an 
'invalid address' signal will be developed. 

DETAILED ANALYSIS OF SCI FUNCTIONS 

For purposes of discussion, the SCI is divided into a 
number of functionally distinct logic areas. The subsequent 
paragraphs describe the functions performed by each area 
and explain how these functions fit into the overall 
operational sequence of the SCI. 

The following discussions reference functional diagrams 
in the companion FEMDM. These diagrams are based on 
the ALDs and maintain the same line terminology as the 
ALDs. In the ALDs, the SCI is referred to as the Bus 
Control Unit (BCU), and the CE is referred to as the 
Central Processing Unit (CPU). To conform with the ALDs, 
the terms BCU and CPU also appear on some diagrams of 
the FEMDM. 

Initial Handling of Requests 

• CE requests during clock time are recorded by sync 
triggers. 

• CE requests during not-clock time are recorded by sync 
latches. 

The SCI logic used for initial sensing and for recording main 
storage requests is shown in Diagram 4-601, FEMDM. 

Storage requests from the CE can be issued to the SCI at 
either clock or not-clock time of the machine cycle. To 
synchronize the clock and not-clock requests, the SCI 
employs a trigger/latch sync arrangement. Requests re
ceived at clock time are first entered into the SCI sync 
triggers; they are then propagated (at not-clock time) into 
the sync latches. Requests received at not-clock time are 
entered directly into the sync latches. Thus, at the 
completion of one machine cycle, all requests are reduced 
to a common time-reference frame. 

From the SCI "viewpoint", the storage requests issued 
by the CE can be placed into one of three general 
categories: 
1. Requests Generated by Microprogram. These requests 

are decoded at clock time and, depending on the address 
source (IC or D), are entered into the corresponding SCI 
sync triggers. Furthermore, all fetch requests must be 
specified as being either 3 or 4 cycles in duration. This is 
to inform the SCI of the specific time at which the 
requested data must be gated into the CE. The presence 

7201-02 FETOM (7/70) 2-93 



Gate D, IC, 
or PAL to 
SAB 5-11 

Set 
Appropriate 
Sync 
Latch/Trigger 

Gate Address 
from D, IC, 
or PAL to 
LAB 0-11 and 
SAB 12-23 

Gate Data 

Request per D, IC, or Scan 

Decode ATR 
Slot 
From LAB 1-4 

Gate ATR Slot 
Contents 
to SAB 1-4 

Develop 
Select Odd 
or Select 
Even and 
Send to 
Storage 

Reset SCI 
Triggers and 
Latches 

Figure 2-64. Basic .SCI Operation 

2-94 (7 /70) 

Start 
Sequencers to 
Control 
Machine 
Cycle 
Progression 

Gate PSBAR 
to SABl-11 

Pulsed 
Invalid 
Address 

Program 
Interrupt 

Yes 

Step PSBAR 



or absence of the '3-cycle access' signal from the CE 
indicates whether a three- or four-cycle fetch has been 
initiated; i.e., the '3-cycle sync' trigger (in the SCI) is set 
on all 3-cycle fetch requests and reset on all four-cycle 
fetch requests. Upon the setting of the appropriate sync 
trigger in the SCI, the request is propagated (at not-clock 
time) into the corresponding sync latch. 

2. Requests generated by I-fetch hardware. These requests 
are decoded at not-clock time and, therefore, are entered 
directly into the corresponding IC or D latch and the 
'3-cycle sync' latch. 

3. Requests generated by scan controls. These requests, 
generated during logout and ROS test operations, are 
decoded at clock time of the machine cycle. Accord
ingly, the requests are first entered into the scan-sync 
trigger and are then propagated into the 'scan-sync' latch 
at not-clock time. Fetch requests initiated by scan 
operations are always specified as four-cycle requests; 
i.e., the '3-cycle' trigger is not set. 

At clock time of the machine cycle following the 
requests, the signals from the sync latches are further 
propagated into the appropriate request triggers and into 
the 'CPU request' trigger. They also feed the CPU sequencer 
and clock control logic, which stops the CE clock two 
cycles after select is issued. 

D, IC, or PAL is gated to SAB according to the type of 
request, i.e., from D for a request per D, from IC for a 
request per IC, and from PAL for a request per D or IC 
when PAL is gated to Dor IC. The latter case allows PAL 
to be gated to SAB and to Dor IC at the same time. 

In conjunction with a request per D, the CE may issue 
an 'insert key', 'set key', or 'test and set' signal to the SCI. 
These signals are recorded into the appropriate SCI triggers 
and are later used to modify the handling of the storage 
request. Basically, these modifications are as follows: 
1. The 'insert key' trigger causes an 'insert key' signal to be 

sent to storage during the handling of the request. 
2. The 'set key' trigger issues a 'set key' signal to storage 

and gates the F register (0-3) to the 'in key' bus. 
3. The 'test and set' trigger causes a 'test and set' signal to 

be sent to storage during the handling of the request. 

If n9ne of the above three triggers are active, the 'normal 
operation' control line to all SEs and DEs in the system is 
activated. 

If the CE decodes an operation code of 94 (AND), 96 
(OR), or 97 (XOR), the SCI sets the 'double cycle' trigger. 
This makes the 'double cycle' interface line active, which 
conditions priority logic in the SE or DE to allow an 
additional storage cycle without interference from another 
CE or IOCE. 

The 'XY sync' latch is set by a micro-order and controls 
gating to SDBI: if the latch is set, data is gated from the XY 

register; if the latch is not set, data is gated from the ST 
register. 

During a machine check logout, the 'suppress log check' 
signal is activated as log word 23 (ST register) is stored. 
This prevents a storage data check if the ST register has a 
bad parity condition. 

Address Decode and Gating 

• Storage address is gated from D, IC, or PAL. 

e If 'gate PSBAR to SAB' is active, logical PSBAR and 
physical PSBAR are gated to SAB (1-11). 

• If 'gate PSBAR to SAB' is not active, LAB (1-4) is 
decoded to gate an ATR slotto SAB (I-4). 

• SAB (6) and SAB (20) are used in conjunction with 
DEFEAT INTERLEA YING switch to develop 'decode 
old address' or 'decode even address' signals. 

Diagram 4-602 shows the various address translation func
tions performed by the SCI. The diagram includes two 
charts: chart 1 shows the range of addresses for SEs and 
DEs, and chart 2 shows the CE console labeling for D and 
IC register display translated to CE logic line labeling; e.g., 
CE console D register bit 8 corresponds to CE logic D 
register bit 0. 

D, IC, or PAL is gated to logic~l address bus (LAB) bits 
0-11 and to the internal storage address bus (SAB) bits 
5-23. (This discussion refers to the internal/external SAB 
to distinguish between the SAB bits in the SCI logic and the 
SAB interface lines to storage.) 

If the request is made to a preferential storage area, LAB 
(0-11) equals 0, and 'gate PSBAR to SAB' is activated. 
This control line gates physical PSBAR (1-4) to SAB 
(1-4) and logical PSBAR (13-19) to SAB (5-11). If the 
request is not made to a preferential storage area, 'gate 
PSBAR to SAB' is not activated'. In this case, the ATR slot 
is decoded from LAB (1-4), and its contents are gated to 
SAB (1-4); logical PSBAR (13-19) is gated to SAB 
(5-1,1), and SAB bits 12-19 are sent directly to SAB 
(12-19). 

Interleaving of storage requests is accomplished by 
alternating requests between odd and even basic storage 
modules (BSMs) within the same element. This allows a 
storage cycle to be started before the preceeding cycle has 
been completed. SAB (6) and (20) are decoded in the SCI 
to generate selects to the odd/ even BSMs. The manner in 
which the SCI decodes these bits depends on the position 
of DEFEAT INTERLEAVING switch (see Figure 2-65). 
When the switch is in the normal (PROC) position, the 

7201-02 FETOM (7/70) 2-95 



SAB Internal (20) 

Defeat Interleave and Reverse 

Defeat Interleave 

SAB (6) 

Defeat Interleave and Reverse 

DEFEAT 
INTERLEAVING 

Decode Even Address 

MC 701 

'-----IN Decode Odd Address 

NO Defeat Interleave '- -
REV ----+ ••----------------'2) 

PROC----+• 

Figure 2-65. Decode Odd/Even Address 

'defeat interleave' line is not active, and SAB (20) deter
mines even or odd storage BSM (even if SAB internal (20) 
equals 0, odd if SAB internal (20) equals 1). When the 
switch is set to the REV position, the function of SAB ( 6) 
is reversed (selects even if SAB ( 6) equals 1, selects odd if 
SAB (6) equals 0). When the switch is set to NO REV, SAB 
(6) determines the even or odd storage area (selects even if 
SAB (6) equals 0, selects odd if SAB (6) equals 1). In both 
the REV and NO REV positions, the internal SAB (20) is 
sent to storage as SAB (6). 

Select to Storage 

• 'Decode odd address', 'decode even address', and SAB 
(1-4) activate a 'select' line to storage. 

The storage frame is decoded from SAB (1-4) as shown in 
Diagram 4-602, FEMDM. If the decoded SE or DE is 

2-96 (7 /70) 

Defeat Interleave and Reverse 

configured, ready, and not stopped, the 'select timing 
pulse', 'SE decoded', and 'decode even address' or 'decode 
odd address' are ANDed to activate one 'select' line to 
storage. 

The 'storage 2' trigger is turned on by D, IC, or 'scan 
request' trigger and is reset on the following clock cycle. 
The 'select timing pulse' is activated by the 'BCV oscillator' 
when 'storage 2' trigger is on; it provides a means of timing 
the 'select' pulse with the address bus at the SE or DE. 
Timing adjustment is achieved by means of delay tap 
selection in the select timing pulse circuitry. 

Stopping the CE Clock 

• CE sequencers control distribution of clock timing 
within CE. 

• CE sequencers are started at clock time of cycle 
following request. 



• Sequence in which sequencers are stepped varies with 
request being processed: 
1. Four-cycle fetch: 'CPU 2' trigger, 'CPU 2' latch. 'CPU 

3' trigger, 'CPU 3' latch, 'CPU 4' trigger, 'CPU 4' 
latch, 'CPU 5' trigger, 'CPU 5' latch. 

2. Three-cycle fetch: 'CPU 2' trigger, 'CPU 2' latch, 
'CPU 3' trigger, 'CPU 4' latch, 'CPU 5' trigger, 'CPU 
5' latch. 

3. Store or set key: 'CPU 2' trigger, 'CPU 2' latch, 'CPU 
3' trigger. 

4. Insert key: 'CPU 5' trigger, 'CPU 5' latch. 

• Conditions that stop CE clock: 
1. 'CPU 2' latch is set. 
2. Insert-key operation. 

A group of CE sequencers (four trigger/latch combinations) 
is used in the SCI to control CE cycle progression after each 
storage request. These sequencers control the 'stop CPU 
clock' trigger in the SCI. The 'stop CPU clock' trigger has 
direct control of the CE clock: setting this trigger stops the 
CE (on the following cycle); resetting this trigger starts the 
CE (on the following cycle). Diagram 4-603, FEMDM, 
shows the CE sequencers and the control logic for the 'stop 
CPU clock' trigger. The sequencers are started on the CE 
cycle following a storage request and are advanced by the 
subsequent CE clock signals. The 'CPU 2' trigger and latch 
are set during the first CE cycle following the request; the 
'CPU 3' trigger and latch are set during the second CE cycle 
following the request, and so on. 

The 'stop CPU clock' trigger is designed so that if its 
reset logic is active its set logic is prevented from setting the 
trigger. Because of this method of implementation (Dia
gram 4-603), if the 'CPU 2' latch is set (first cycle following 
a storage request), the 'stop CPU clock' trigger will be set 
on the next cycle (second cycle following the request), and 
the CE clock will be inhibited from performing the third 
processing cycle. This clock stopping sequence occurs 
during both fetch and store operations, retaining the 
storage address in the IC, D, or scan controls until the SE or 
DE responds with an 'accept' signal. The 'stop CPU clock' 
trigger is reset by the 'BCU cleanup select successful' signal, 
the CE clock is started, and both CE processing and further 
sequencer .stepping are continued. 

For store data operations, the CE sequencers are started 
in the normal manner. However, the output of the 'store' 
latch modifies the subsequent sequencer stepping as fol
lows: 'CPU 2' trigger and 'CPU 2' latch are set on the first 
cycle following the request; 'CPU 3' trigger is set on the 
second cycle following the request. Further sequencer 
advance is inhibited during store operations because in
gating is not required. 

Detection and Handling of Invalid Address 

• SE or DE not configured. 

• SE or DE has power down or is in state zero with TEST 
switch set to ON. 

• SE or DE stopped for logout. 

• Force 'select' to PSA SE for resetting SCI logic. 

An invalid address condition is detected in the SCI logic if 
an attempt is made to select an SE or DE that is stopped or 
not ready (power down, not configured, or in state zero 
with TEST switch on). The invalid address detection logic, 
with an error-handling flowchart, is shown in Diagram 
4-604, FEMDM. For detailed timing refer to ALDA 7511. 

The 'test for invalid address' trigger is turned on for each 
storage request. The output of this trigger monitors the 
operational condition of the decoded SE or DE. If the SE 
or DE is not ready, the 'invalid address' trigger is set; if 
stopped, the 'SE/DE stopped' trigger is set. Either case 
results in a program interruption. 

When a request trigger is set, 'issue a select' is activated, 
and the 'storage 2' trigger is set. The output of the 'storage 
2' trigger activates 'select timing pulse' and sets 'inhibit 
storage select' latch to prevent additional 'select timing' 
pulses. If the selected SE or DE is stopped or not ready, an 
additional select timing pulse is forced (to reset SCI) when 
the 'inhibit storage select' latch is turned off. (The request 
trigger remains on until an 'accept' pulse is received.) 

The following discussion considers three cases: (1) a 
request to a stopped SE or DE, (2) a request to a not-ready 
SE or DE, and (3) a PSA request to a stopped or not-ready 
SE (PSA cannot be assigned to a DE). 
1. Request to a stopped SE or DE: The 'decoded SE/DE 

stopped' signal is activated, and it sets the 'SE/DE 
stopped' latch and trigger. The output of the 'SE/DE 
stopped' trigger causes a program interruption, sends a 
cancel signal to all SEs and DEs, and activates a 'select 
SE even' signal to the SE containing the PSA. The PSA 
SE responds with an 'accept' signal, but no data transfer 
takes place because 'cancel' is active. Processing con
tinues. 

2. Request to a not-ready SE or DE: The 'invalid address' 
trigger is set; its output causes a program interruption, 
causes a 'cancel' signal to be sent to all SEs and DEs, and 
causes a 'select SE even' signal to be sent to the SE 
containing the PSA. The PSA SE responds with an 
'accept' signal, but no data transfer takes place because 
'cancel' is active. Processing continues. 

7201-02 FETOM (7 /70) 2-97 



3. PSA request to a stopped or not-ready SE: Program 
interruption and 'cancel' signal are developed as in the 
previous two cases. If the 'alternate' latch is on, the CE 
checks stop and issues a static element check (ELC). If 
'alternate' latch is off, it is turned on. The 'gate PSBAR 
to SAB' signal is active as a result of the PSA request, 
and it sets the 'PSA request' trigger. The output of this 
trigger activates the 'step PSBAR to alternate' signal. If 
inhibit log out stop (ILOS) function is active, the 'step 
PSBAR' signal is blocked, and the 'select SE even' signal 
is forced to the same PSA SE. If the SE is still stopped, 
the CE senses the 'alternate' latch on, checks stop, and 
issues a static ELC. If the ILOS function is not active, 
PSBAR.steps to the next configured SE (alternate PSA), 
and a 'select SE even' signal is forced to that SE. If the 
alternate PSA SE responds with an 'accept' signal, 
processing continues; if the SE is stopped or not ready, 
the CE senses the alternate latch on, checks stop, and 
issues a static ELC. 

Storage Timeout 

• SE or DE fails to respond to 'select' pulse within allowed 
time. 

A storage timeout condition is detected in SCI logic as 
shown in Diagram 4-605, FEMDM. The 'select outstanding' 
signal is activated when a storage request is made to an SE 
or DE that is ready and not stopped. This signal is ANDed 
with a '60-cycle' pulse (300-ns pulse every 16 ms) to turn 
'latch l' on. 'Latch 2' is turned on by the output of 'latch 

1' when the '60-cycle' pulse becomes inactive. When the SE 
or DE responds with an 'accept', the 'select outstanding' 
signal is deactivated, and processing continues. If the 'select 
outstanding' signal is still active when the following 
'60-cycle' pulse is activated, a 'storage timeout' pulse is 
generated to set the 'storage timeout' latch. The time 
allowed for a timeout check varies from 16 ms to 3 2 ms 
and depends on the length of time between 'select 
outstanding' becoming active and the following '60 cycle' 
pulse. 

The 'set storage timeout on logout' signal (Diagram 
4-605) is used to activate the 'storage timeout' pulse, both 
of the signals are generated only during logout. 

SCI Error Handling 

• SE and DE can issue: 
1. Storage address check. 
2. Storage data check. 
3. SDBO parity error. 

2-98 (7/70) 

• Errors detected in SCI logic are: 
1. Storage timeout. 
2. Fetch data parity. 
3. SDBI parity. 

This paragraph describes the handling of errors detected in 
SCI logic and error signals received by the SCI from an SE 
or DE. Reger to Diagram 4-606, FEMDM. 

The errors may be divided into two classifications: (1) 
errors that cause a 'hard stop' condition, and (2) errors that 
cause a 'check stop' condition. A 'hard stop' condition 
inhibits the CE oscillator and requires intervention from 
another CE or from an operator. A 'check stop' condition 
starts a logout of the CE and causes a machine check 
interruption. 

The 'hard stop condition' latch is set by one of the 
following conditions: 
1. An address is detected outside the PSA during logout. 
2. No alternate PSA (APSA) is available. 
3. A search for APSA is made when already at alternate. 
4. A parity error is detected in logical or physical PSBAR 

or in the PSBAR counter. 
5. A 'PSA lockout' signal is received from an IOCE when 

the CE is in 360 mode. 
6. An 'SE stopped' signal is received from a configured SE 

when the CE is in 360 mode. 
7. An ROS padty error is detected during logout. 
8. A 'storage address check' or 'storage data check' signal is 

received from PSA SE during logout. 

The output from 'hard stop condition' latch inhibits the 
CE oscillator and raises a level ELC to all other CEs. The 
'hard stop condition' latch is reset by a 'hard stop reset' or 
a 'search complete' signal. A 'hard stop reset' signal is 
activated by a 'logout start'· signal from another CE; a 
'search complete' signal is activated by a subsystem IPL, a 
subsystem PSW restart, or an external start from another 
CE. 

'Inhibit clock CE check' (check stop) is activated by an 
error condition in check register 1 or check register 2. 
Check register 1 monitors CE parity errors. Check register 2 
monitors the following errors: 
1. 'Storage error' trigger active. 
2. SDBI parity check. 
3. LS bus parity check. 
4. 'IOCE check response' trigger active. 
5. SAB parity check. 
6. CCR parity check. 
7. ATR parity check. 

'Any storage error' and 'storage error' triggers are set by 
'storage data check', 'storage address check', 'storage 
timeout', or 'fetch data check' signals. The output of 'any 



storage error' trigger activates the 'storage check step 
PSBAR' signal and is ANDed with 'not storage timeout' and 
'not fetch data check' to send a 'logout stop' (LOS) pulse 
to the SE or DE that detected the error. (The SE or DE is 
identified by the 'SBO gate'.) 

The 'split log' latch is set if an invalid address, storage 
timeout, or ROS error is detected during a logout, and it 
causes a logout to be started in the APSA .. The APSA 
receives a complete set of log data; however, due to a PSA 
change during logout, this data may not be identical with 
that in the primary PSA. 

PSBAR Operations 

• Physical relocation of PSA. 

• Search ATR. 

• Step to alternate PSBAR. 

SCI has the capability of dynamically relocating its prefer
ential storage area (PSA) by "stepping PSBAR". The 
PSBAR step control logic is shown in Diagram 4-607, 
FEMDM. 

When 'search ATR' signal or 'step to alternate' signal is 
activated, it ANDs with 'not clock' and 'not end latch or 
ELC' to start a stepping sequence of 'latch 1 ', 'trigger I', 
'latch 2', and 'trigger 2'. This sequence is repeated until it is 
blocked by 'end latch' or 'ELC' becoming activated. 

When 'gate new count' signal is not active, it gates an 
encoded value, which is one greater than the contents of 
logical PSBAR (9-12), to PSBAR counter (9-12). The one 
exception is a logical PSBAR (9-12) binary value of 1001 
and PSBAR counter (9-12) binary value ofOOOO. 

The 'gate new count' signal is activated when 'trigger 1' 
is set. This signal gates PSBAR counter (9-12) to logical 
PSBAR (9-12). The value in logical PSBAR(9-12) is 
decoded to gate the contents of an ATR slot to physical 
PSBAR (9-12). The stepping process is repeated until 
physical PSBAR (9-12) and CCR (8-17) are decoded to 
activate the 'any frame valid' signal, which sets the 'end 
latch' to complete the operation. Physical PSBAR (9-12) 
and CCR (8-17) are also decoded to activate one of ten 
'frame valid' signals used during search for a particular SE 
on a subsystem IPL or a subsystem PSW restart. These 
signals are ANDed with the 'decode SE' signals, which are 
decoded from bits 4-7 of MAIN STORAGE SELECT 
switch. The ANDing of a particular 'frame valid' signal with 
the corresponding 'decode SE' signal activates the 'SE 
compare' signal, which sets the 'end latch'. 

The 'search ATR' and 'step to alternate PSBAR' 
operations are shown in Diagram 4-608, FEMDM. 

When a subsystem IPL or a subsystem PSW restart is 
started, logical PSBAR (9-19) is reset, and 'search ATR' 

signal is activated. The PSA SE is located by comparing 
MAIN STORAGE SELECT switch setting (4-7) with 
physical PSBAR (9-12). PSBAR is stepped, beginning with 
ATR slot 1, until an equal comparison is detected. If no SE 
is configured to compare with the switch setting, the 
PSBAR counter is stepped to the binary value 1001, and 
the 'hard stop condition' latch is set. The CE oscillator is 
inhibited, and a level ELC is activated to all CEs. 

An 'external start' signal resets logical PSBAR (9-19) 
and activates 'search ATR' signal. A search is made, 
beginning at ATR slot 1, for the first configured SE. If 
there is no configured SE, PSBAR counter is stepped to the 
binary value 1001, and the 'hard stop condition' latch is 
set. The CE oscillator is inhibited, and a level ELC is 
activated to all CEs. 

'Step to alternate PSBAR' is activated when a storage 
error is detected in the SE containing the PSA. If the 
'alternate' latch is set, or if ILOS is active, the 'hard stop 
condition' latch is turned on. The CE oscillator is inhibited, 
and a level ELC is activated to all CEs. If the 'alternate' 
latch is not set, PSBAR steps, beginning with the current 
value, until a configured SE is located. If no other SE is 
configured, stepping is terminated by detecting logical 
PSBAR (9-12) binary value of 1001 the second time. This 
sets 'hard stop condition' latch, inhibits the CE oscillator, 
and activates a level ELC to all CEs. 

Page Control 

• A page of data is on 512-byte bounds. 

• Page controls provide linkage to page overflow address. 

A page of data is a maximum of 512 bytes stored on 
512-byte bounds. Page controls provide a means of linking 
two pages when fetching data for the 9020E Display 
instructions. (See Section 10, Chapter 3.) 

The address of the next page is specified in bits 40-60 
of the last doubleword in a page. If a '512 carry' is detected 
in PAL as the current data address is incremented by 8, the 
page control logic blocks the normal resetting of SCI logic, 
forces an additional fetch cycle to the next sequential 
doubleword, and gates SDBO( 40-60) to D or IC (Figure 
2-66). 

The page control hardware is shown in Diagram 4-609, 
FEMDM. A '512 carry sample page' signal is activated bya 
'512 carry' in PAL and is ANDed with 'page on next D 
request' and 'page on next IC request' signals to set 
'page/D' latch or 'page/IC' latch. 'Page l' latch is set to 
activate 'inhibit BCU cleanup successful', which has the 
effect of forcing an additional fetch data cycle to the next 
sequential doubleword. 'Page 2' latch is set when 'early 
accept' signal is received from the DE and provides a gate 
for SDBO( 40-60) to D or IC. A doubleword boundary 

7201-02 FETOM (7 /70) 2-99 



SDBO Gate New Addr 

40 60 Reset Parity P(l 6-23) 
56 60 

RD321 

CA241 
MB975 

Gate New Addr 
(Gate Page Address 
to D) 

Gate New Addr 
(Gate Page Address 

RD301 to IC) 
321 

CAOOl 
231 

I _o_
0 

______________________ ir~~~311 -~-c------------------------cA_23_1 
Figure 2-66. Page Gates for D and IC 

check on the page address occurs if SDB0(61-63) is not 
equal to 0. This check sets the 'page exception' trigger. A 
'page complete' signal is activated to reset the page control 
logic. SCI logic is reset in the normal manner. 

Converting SAB Parity 

• Generate parity bit for SAB (1-5). 

• Generate parity bit PA for SAB (6-12). 

• Generate parity bit Ps for SAB (13-19). 

The SAB parity conversion logic generates three parity bits: 
SAB P(l-5), PA for SAB (6-12), and Ps for SAB 
(13-19). This logic takes into account the setting of the 
DEFEAT INTERLEA YING switch on ~he CE control 
panel. If this switch is not in the PROC position, it causes 
SCI logic to reverse SAB (6) and SAB (20), and this same 
bit reversal must be performed in the parity conversion 
logic for generating PA and Ps parity bits. 

The 'gate PSBAR to SAB' signal also affects the parity 
conversion logic because it gates logical and physical 
PSBAR to SAB when it is active or gates the contents of an 
ATR slot to SAB when it is not active. The same gating 
must be performed in the parity conversion logic. 

2-100 (7 /70) 

The SAB parity conversion logic is shown in Diagram 
4-610, FEMDM. This logic uses exclusive-OR circuits to 
generate, subtract, and add parity bits until the required 
results are obtained. Note that the output of an exclusive
OR always excludes those bits on the inputs if both inputs 
are active. Thus, depending on the input bits, an exclusive
OR can be used as an adder or subtracter. 

When SAB P(0-3) is subtracted from SAB P(0-3, 6 or 
20, 7) at an exclusive-OR, the result is SAB P(6 or 20, 7); 
i.e., SAB P(0-3) has been canceled. In this manner, SAB 
P(l-5), PA and Ps are generated and sent to the SE/DE 
interface. 

Resetting of SCI Logic 

• 'Accept' signal from storage activates 'BCU cleanup' 
signal to reset SCI logic. 

'BCU cleanup' logic and timing are shown in Figure 2-67. 
When an 'accept' pulse is received from the selected SE or 
DE, it sets the 'accept' trigger. The 'accept' trigger activates 
'BCU cleanup' and starts a time delay. When the time delc,i.y 
times out, 'late BCU cleanup' is activated, and 'accept' 
trigger is reset. The 'late BCU cleanup for CPU requests' is 
activated by 'late BCU cleanup' at not clock time and is 
deactivated at the following not clock time. All SCI logic is 
reset by this action. 



Accept 
Accept from T 
SE/DE 1-10 gr 

Late BCU Cleanup 

Late BCU Cleanup for CPU Request 

Not Clock A 

Not Clock 

MC711 

30 ms 

-+I~ 
Memory Start I 

Accept from SE/DE ~'-------------
100 MS 

Time Delay 

BCU Cleanup 

Late BCU Cleanup 

Figure 2-67. 'BCU Cleanup' Logic and Timing 

DETAILED ANALYSIS OF SCI OPERATIONS 

The subsequent paragraphs describe the operational se
quences performed in the SCI during processing of CE 
storage requests. (See Diagram 4-611, FEMDM.) 

CE storage requests are issued to the SCI from I-Fetch, 
ROS, and Scan logic, and both the storage request and the 
resulting data transfer are overlapped with processing. 
Although all CE requests are handled by the SCI as basic 
fetch or store requests, the following variations exist: three
and four-cycle fetch, store, insert-key, set-key, test-and-set, 
and single-cycle operation. 

Three- and Four-Cycle Fetch Operation 

• lngating of requested storage data is specified at three or 
four cycles following storage request. 

Because the SCI operates at the same machine cycle speed 
as the CE, and because the access time to storage requires 
three cycles, the CE is allowed to continue processing for 
three cycles following the request. The SCI must keep track 
of the CE cycle progression so that the SDBO ingating is 
executed at the correct time. The '3-cycle' trigger affects 
the length of time the CE clock will be stopped by 
conditioning the setting of CPU sequencer latches 'CPU 3' 
and 'CPU 4'. For detailed timing of three- and four-cycle 
fetch operations, refer to ALDA 7501. 

Store Operation 

• Store-data requests are always made per D. 

Data from ST or XY registers is gated to the SDBI for 
transfer to storage. Mark trigger settings are transferred to 
storage (via the 'mark' bus) to specify which of the eight 
bytes of data are to be stored. For detailed timing of the 
store operation, refer to ALD A 7 521. 

Insert-Key Operation 

• 'D-storage request' and 'insert key' signals are sent from 
ROS to SCI. 

• Basic fetch operation is performed by SCI. 

• Five-bit (plus parity) storage protection key is trans
ferred from storage to CE via 'key out' bus. 

Essentially, insert-key operations are fetch requests per D, 
in which a five-bit (plus parity) storage protection key is 
obtained from the specified storage protection area of main 
storage and inserted into F(0-4) of the CE. These 
operations enable the CE to examine the key patterns used 
by the storage protection mechanism. 

An insert-key request sets the 'insert key' trigger in the 
SCI to modify the normal stepping of the 'CPU se
quencers': the 'CPU 5' trigger is set on the first cycle 

7201-02 FETOM (7 /70) 2-101 



following the insert-key request, and further sequencer 
stepping is not performed. The 'stop CPU clock' trigger is 
also set on the first cycle following the insert-key request. 
Thus, the CE clock is stopped on the second cycle after the 
request. 

The contents of D are gated to the SAB, and a 'select' 
signal is generated and sent to the addressed SE or DE 
together with an 'insert key' signal. In the SE or DE, the 
two signals ('select' and 'insert key') initiate an insert-key 
operation. SAB ( 6-13) is decoded to determine the 
protection key location, and the key pattern (five bits plus 
parity) is fetched from that location. The SE or DE then 
generates an 'advance key' signal, which prepares the SCI 
for ingating of the 'key out' bus into the F-register of the 
CE. A detailed timing chart for the insert-key operation is 
shown on ALD A7521. 

Set-Key Operation 

• 'D-storage request' and 'set key' signals are generated 
from ROS to SCI. 

• Basic store operation is performed by SCI. 

• Five-bit (plus parity) storage key is transferred from CE 
to storage via 'key in' bus. 

Essentially, set-key operations are store requests per D in 
which a five-bit (plus parity) storage protection key is 
obtained from F(0-4) in the CE and stored into the 
specified storage protection area of an SE or DE. These 
operations enable the CE to set new key patterns into the 
storage protection mechanism. 

A set-key request sets the 'set key' trigger in the SCI. In 
addition, all CE mark triggers are set during the set-key 
operation. Receipt of the D-storage request by the SCI then 
sets the 'store' trigger and starts the 'CPU sequencers' in the 
normal manner. The contents of D are gated to the SAB, 
and the 'select' and 'set key' signals are sent to the 
addressed SE or DE. (The sending of the 'store' signal to 
the SE or DE is inhibited during the set-key operation.) 

The 'select' and 'set key' signals initiate a set-key 
operation in the storage unit. SAB ( 6-13) is decoded to 
determine the protection key location, and the contents of 
the 'key in' bus are gated into that location. For a detailed 
timing chart of the set-key operation, see ALDA 7521. 

Test-and-Set Operation 

Although a test-and-set request combines aspects of both 
fetch and store operations, the basic handling of the request 

2-102 (7/70) 

by the SCI is similar to a three-cycle fetch per D. The major 
difference is that the SCI sends one mark signal and a 'test 
and set' signal to the SE or DE specified by the D-address. 

Single-Cycle Operation 

• START pushbutton provides for manual stepping 
through CE cycle. 

e RATE switch in SINGLE CYCLE STORAGE INHIBIT 
position provides for manual stepping through all cycles 
of the request sequence. (Storage unit is not selected; 
data transfer is inhibited.) 

e RATE switch in SINGLE CYCLE position enables CE to 
run automatically from the time 'select' signal is sent to 
storage until data transfer operation is completed. 

When CE operations are being tested in the single-cycle 
mode, the CE clock is stepped manually; one CE clock 
cycle results for each depression of the START pushbutton. 
The SCI clock, however, is not affected by the single-cycle 
mode and runs automatically, thus allowing the SCI to 
continue servicing storage requests from the CE. The 
servicing of storage requests during single-cycle mode is 
shown in Diagram 4-612, FEMDM. 

The single-cycle operation can be performed by the CE 
with or without access to storage. If the RATE switch is 
placed in SINGLE CYCLE position, the CE will access 
storage whenever it steps through a cycle specifying a 
storage request; if the RATE switch is in SINGLE CYCLE 
STORAGE INHIBIT position, all storage requests are 
ignored by the SCI. 

When servicing storage requests from the CE in the 
single-cycle mode, the SCI· must ensure that the gating of 
data to or from the CE is synchronized with the storage 
unit operation. To accomplish this function, special single
cycle logic in the SCI controls the CE clock and runs it 
automatically whenever synchronized ingating is required. 

To enable manual stepping through as many CE cycles as 
possible, the SCI delays sending the 'select' signal to storage 
until the 'CPU sequencers' stop the CE clock. The 
stop-clock condition indicates to the SCI that the data 
transfer between CE and storage must be executed on the 
next depression of the START pushbutton. At this point, 
the nature of the request is of primary consideration. If a 
fetch-data request is in progress, the SCI must override the 
single-cycle controls and run the CE clock automatically 
until the CE executes the ROS word with the 'ingate 
SDBO' micro-order. If a store-data request is in progress, 
the SCI need not control the CE clock because the CE data 
is placed on the SDBI when a 'select' signal is sent to 



storage, i.e., as soon as the START pushbutton is depressed. 
Thus, on store-type requests, the operator can single-cycle 
through every ROS word of the CE microprogram; on 
fetch-type requests, the operation automatically skips over 
one or two ROS words, depending on whether a three- or 
four-cycle request is specified. (Note that the time slice 
between two consecutive depressions of the START push
button does not enter into consideration; this time slice is 
much greater than the 600~ns time interval required to 
access storage.) 

When ST ART is depressed and an 'accept' signal is 
received from storage, the resulting 'BCU cleanup' signal 
restarts the CE clock. The state of the 'CPU sequencers' 
after the first CE clock signal is generated indicates the type 
of request in progress and whether additional stepping of 
the CE clock is required; this stepping is performed 
automatically under control of the 'CPU clock go' ·trigger. 
Note that the 'CPU clock go' trigger is always reset on the 
first clock signal after the 'CPU 5' latch is set. 

If a store-data request is in progress, the 'CPU 5' latch is 
set before the CE clock is restarted. Thus, as soon as the CE 
clock is restarted, the 'CPU clock go' trigger is reset to 
indicate that no additional CE clock cycles are required to 
complete the request. 

If a three-cycle fetch-data request is in progress, the 
'CPU 4' latch is set before the CE clock is restarted. When 
the CE clock is restarted, the first clock signal sets the 'CPU 

5' trigger/latch sequencers and accesses the ROS word with 
the 'ingate SDBO' micro-order. Note, however, that the 
ingating of the SDBO into the CE takes place on the 
following cycle. Thus, the CE clock must be automatically 
stepped an additional cycle to perform the ingating. This 
function is performed by the 'CPU clock go' trigger, which 
is reset by the same clock signal that gates the data into the 
CE. 

If a four-cycle fetch-data request is in progress, the 'CPU 
3' latch is set before the CE clock is restarted. In this case, 
the 'CPU clock go' trigger is not reset until two cycles after 
clock-restart. Thus, the CE clock is automatically stepped 
through two additional cycles to perform the required 
ingating. 

As mentioned previously, sending the 'select' signal to 
storage is delayed when servicing. requests in the single-cycle 
mode. This delay is accomplished as shown in Diagram 
4-612, FEMDM. 

When servicing requests in the single-cycle mode, the 
'CPU clock go' trigger is set and remains set until the 
request is completed. The 'request finishing' trigger pre
vents sending another 'select' signal if another sequential 
CE request (in single-cycle mode) has been entered into the 
sync latch. After the current request has been serviced, the 
'CPU clock go' and 'request finishing' triggers are both 
reset. 

7201-02 FETOM (7/70) 2-103 



This chapter, which discusses the 7201-02 CE instructions, 
is divided into ten sections: 

Section 1, Instruction Fetching. 
Section 2, Fixed-Point Instructions. 
Section 3, Floating-Point Instructions. 
Section 4, Decimal Instructions. 
Section 5, Logical Instructions. 
Section 6, Branching Instructions. 
Section 7, 1/0 Instructions. 
Section 8, Status Switching Instructions. 

SECTION 1. INSTRUCTION FETCHING 

Basic control for the instruction fetching (I-Fetch) 
operation is derived from one of four possible 
microprograms, depending on the format of the instruction 
being fetched. Each microprogram performs routines 
dictated by the instruction format (RR, RX, RS and SI, or 
SS) and is therefore common to many instructions. (The 
same microprogram governs the I-Fetch of RS and SI 
Instructions.) Subsequently, a branch is made to an 
appropriate microprogram for execution of a specific 
instruction. These individual execution sequences all 
terminate with a branch back to the I-Fetch microprogram 
to continue the sequence. 

A typical microprogram sequence is shown in Figure 3-1. 
The correct I-Fetch microprogram to be entered upon 
completion of an instruction is dependent on the format of 
the instruction to be executed next. A test for the format 
of the upcoming instruction is made on the last cycle of the 

CHAPTER 3. PRINCIPLES OF OPERATION 

Section 9, Multiple Computing Element Instructions. 
Section 10, Display Instructions. 

Machine operation during instruction fetching and 
execution is controlled by ROS microprograms which are 
represented by CLD~s. The discussions in the following 
sections are based upon simplified versions of the CLD's 
and upon upper-level, positive-logic diagrams located in the 
associated FEMDM. 

execution phase. The various actions performed during this 
last cycle (called the end operation or end-op cycle) must 
be thoroughly understood before undertaking a detailed 
analysis of each I-Fetch sequence. 

BASIC END-OP CYCLE 

• End-op cycle completes execution of instruction and 
initiates fetching of next instruction. 

• End-op cycle is governed by normal end-op or branch 
end-op ROS word. 

• Branch end op is used to speed execution of branch-type 
operations. 

The end-op cycle is the last cycle in the execution phase. 
During this cycle, actions dictated by the execution phase 
of the instruction are completed and the fetching of the 

f4---- I-Fetch -----Execution ----
1 I 

~ End Op r--
CPU Cycle 

I-Fetch 
Micro-Orders 

I 
I 
1 NEOP 
I 
I 

l NEXT- I 
I I 

i INST*IC : 
I : 

EXCEP : E (02-07) 
i-ROA 
! 

Figure 3-1. Typical Microprogram Sequence 

' I 

~ 
I : I 

: BEOP ! : 
I , I 

I ' ' I I I 

SPEC : NEXT- : EXCEP \ 
i INST*D i ! 
I I ' 
I I I 

7201-02 FETOM (7/70) 3-1 



next instruction begins. The execution phase is completed 
by setting the CC (if specified in the instruction) and by 
detecting interruptions or exceptional conditions that may 
have occurred during the execution phase. (The recovery 
microprograms are discussed after the basic end-op and 
I-Fetch sequences.) 

The instruction fetching begins by: 
1. Decoding the format of the upcoming instruction. 
2. Initiating the operand fetch required by that format. 
3. Establishing the correct I-Fetch sequence which is to 

follow. 
4. Detecting the need for more instructions, and requesting 

new instructions from main storage when the need 
exists. 

This discussion deals with those end-op actions that 
affect the subsequent I-Fetch sequence. Although 
instruction fetching begins during the end-op cycle, the 
next cycle is defined as the first I-Fetch cycle. 

The setting of the CC affects the subsequent I-Fetch 
only when the upcoming instruction is a Branch on 
Condition instruction. Depending on the CC, new 
instructions may be requested from D (condition met) or 
from the IC (condition not met). The manner in which the 
CC is set is discussed in the specific execution sequences 
described in this chapter (Sections 2 through 10). 

The actions performed during the end-op cycle are 
governed by two basic ROS end-op words: normal end-op 
and branch end-op. (Although they perform different 
functions during end-op, they perform the same functions 
for the subsequent I-Fetch sequence.) The normal end-op 
word is in control of the end operation if the address of the 
next instruction is specified by the IC. The next instruction 
is decoded from R. Conversely, the branch end-op word is 
in control if the address of the next instruction is specified 
by D. In this case, the next instruction is decoded from the 
SDBO (the effective R) at the start of the end operation. 

The primary function of the branch end-op word is to 
fulfill specific timing requirements imposed upon execution 
of some branch instructions (see Section 6 of this chapter). 
Two conditions lead to a branch end-op micro-order: 
1. Sometimes upon execution of a successful branch, 

end-op takes place before the address of new 
instructions (in D) has been transferred to the IC. In 
such cases, the branch end-op word is always in control. 
To establish the correct I-Fetch microprogram for the 
next instruction, the branch end-op word samples 
D(21,22) and the effective-R(O,l) bits; i.e., bits 0 and 1 
of the op-code halfword to be transferred to R are 
sampled directly from the SDBO. Thus, the I-Fetch 
microprogram for ·the next instruction is established as 
soon as the instructions (specified by the branch) arrive 
from main storage. 

2. Except for the Branch on Condition instructions, the 
Element assumes that all branches are successful. 

3-2 (7/70) 

Accordingly, upon predecoding a branch instruction, the 
Element inhibits any IC request to refill Q and, instead, 
requests instructions per the branch address (in D). If, 
during execution, the branch proves to be unsuccessful, 
the instructions accessed by the D-request are not gated 
into Q, and the Element must resume processing of the 
instructions specified by the IC. At this time it may be 
found that the unsuccessful branch was the last 
instruction in Q. Although a request per the IC is 
immediately generated, at least three CE cycles must 
elapse before the CE can resume normal processing. 
Also, because the format of the instruction is usually 
decoded from R(O,l), additional time would be lost if 
the first halfword (arriving from main storage) had to be 
gated to R before the I-Fetch microprogram for the 
instruction could be established. Under such conditions, 
use of the branch end-op word increases the speed in 
establishing the I-Fetch. microprogram for the next 
instruction. The instruction address (in the IC) is 
temporarily transferred to D. Instead of sampling R(O,l) 
the branch end-op word samples the effective-R(O,l) to 
establish the correct I-Fetch microprogram immediately 
upon arrival of the instructions from main storage. 

Prefetching of Operands During End Op 

• For RR instructions, one LS register is accessed by Rl 
field if not a branch instruction; by R2 field if branch 
instruction. 

• For RX, RS, SI, and SS instructions, one LS register is 
accessed by B-field. · 

During the end-op cycle, R contains the op-code halfword 
of the next instruction. The format of the instruction is 
established by sampling R(O,l), and the operand prefetch 
dictated by that format is initiated. The end-op cycle is 
completed with the 'R-+E' micro-order, which transfers the 
op-code halfword to E at the start of the I-Fetch sequence. 

The scheme for prefetching operands during end-op time 
is shown in Diagram 5-1, FEMDM. During this time, an LS 
register specified in the R or B field of the upcoming 
instruction is addressed and transferred to T. The desired 
LS register is addressed by gating the appropriate field of 
the instruction to LAL. Inga ting to LAL is initiated by the 
'NEOP' micro-order in the normal end-op word or by the 
'BEOP' micro-order in the branch end-op word. 

The format of the upcoming instruction is established by 
decoding R(0,1): 

Instruction Format 

00 RR 

01 RX 

10 RS or SI 

11 SS 



When an RR format is decoded, a further test is 
performed to determine whether the upcoming instruction 
is a branch. If the instruction is not a branch, the RI field 
[R(8-l 1)] is gated to LAL. For an RR branch, however, the 
R2 field [R(l 2-15)] is gated to LAL. This action is 
necessary because, for branch instructions, R2 specifies the 
LS register containing the branch address. Since in this case 
a storage request for new instructions must be made as soon 
as possible, R2 must be gated to LAL first. 

When an RX, RS, SI, or SS format is decoded, a test is 
made to determine which of the four halfword positions in 
Q contains the second halfword of the upcoming 
instruction. The B-field of the selected halfword is then 
always gated to LAL. Selection of the correct halfword in 
Q depends upon the ROS word (branch or normal) in 
control of the end-op. The normal end-op word specifies 
that the address of the upcoming instruction is contained in 
the IC. In this case, IC(21,22) indicates the Q portion from 
which the first halfword of the instruction has been 
transferred to R. Consequently, these bits are decoded to 
select the second halfword of the instruction in Q. The 
branch end-op word is in control when the address of the 
upcoming instructions is in D. Because in this case D(2 I ,22) 
points to the correct Q position, these bits are used to 
select the correct B-field in Q. 

Prefetching of operands from LS is from GPRs 0-15 
(decimal), unless an RR format, floating-point instruction 
has been predecoded. In this case, the FPR addressed by Rl 
is selected by forcing LAL(O) to 1. The contents of the LS 
register accessed during the end-op cycle are always 
transferred to T. This action is performed by the '~T' 
micro-order in the end-op word. Thus, at the start of an 
I-Fetch sequence, T always contains an operand (per 
R-field) or the base portion of an operand address (per 
B-field). 

At the completion of an end-op cycle, the halfword 
containing the op code of the instruction is transferred to E 
(initiated by the 'R~E' micro-order in the end-op word). 
Thus, further operand prefetching (by the subsequent 
I-Fetch sequence) is performed with the op code in E. 

Fetching of Instructions by End-Op Micro-Order 

A test to establish whether new instructions are required is 
always performed during end op. If the upcoming 
instruction is not a branch and Q needs to be refilled, a 
request for new instructions is generated at end op. If the 
upcoming instruction is a branch, the storage request is 
blocked during end op. 

Under certain conditions, it is possible to request new 
instructions from main storage one or two cycles before 
end-op. This action is initiated by the 'early end-op' 
(EEOP) micro-order, contained in the execution sequences 
of some instructions. All execution sequences, including 

those with the 'EEOP' micro-order, terminate with the 
end-op word. 

A Q-register refill exceptional condition usually follows 
an end-op request for new instructions. This exceptional 
condition adds one cycle to the basic RR, RX and RS, and 
SI I-Fetch routines. 

Requests During End Op 

During the end-op cycle, a test is made to establish whether 
Q needs to be refilled with new instructions. The outcome 
of this test depends upon the format of the upcoming 
instruction, on its position in Q, and on whether it is a 
branch or the subject instruction of an Execute instruction. 

As shown in Diagram 5-2, FEMDM, a test of the status 
of Q is initfated by the normal end-op (NEOP) or branch 
end-op (BEOP) micro-order contained in the normal or 
branch end-op word, respectively. Upon the decoding of 
the 'NEOP' micro-order, IC(21,22) is sampled to establish " 
which halfword position in Q has been transferred to R. 
The same function is performed by the 'BEOP' micro-order 
when the address of the upcoming instruction is contained 
in D. In this case, D(21,22) is examined to establish which 
halfword in Q is to be processed next. Depending on the 
instruction format decoded from R(O,l), and if the 
upcoming instruction is neither a branch nor the subject of 
an Execute instruction, storage requests per the IC may be 
generated when the first, second, or third halfword position 
in Q is to be processed next. 

Q-Position Setting of 
Transferred IC(21,22) Instruction Type of 

to R or 0(21,22) Format Request 

1st 00 SS 4-cycle 

2nd 01 SS 4-cycle 

RX, RS, 3-cycle 
or SI 

3rd 10 All formats 3-cycle 

4th 11 All formats None 

Q has already been refilled during the instruction being 
completed if bits 21 and 22 = 11; therefore, another 
refilling of Q is not necessary. 

Requests During Early End Op 

Execution sequences of some instructions contain the 
'EEOP' micro-order. The function of this micro-order, 
which is given 1 or 2 cycles before the 'NEOP' micro-order, 
is to examine the instruction status in Q and to initiate an 
early storage request if Q needs refilling. Requests initiated 

7201-02 FETOM (7/70) 3-3 



by the 'EEOP' micro-order are blocked if the next 
instruction to be executed is (1) a branch instruction, (2) 
an SS instruction, or (3) a subject of an Execute 
instruction. 

Early requests to refill Q are generated according to 
conditions shown in Diagram 5-3, FEMDM. The normal 
end-op request is blocked when an early request is in 
progress. Note that the 'EEOP' micro-order can only 
initiate a 4-cycle request. The advantage of an early request 
is that the SCI will address main storage 1 or 2 cycles 
before end op. When initiated 2 cycles before end op, the 
refilling of Q does not force the· Q-register refill exceptional 
condition if the instruction being fetched is of the RR or 
indexed RX format or is a shift instruction. 

Selection of I-Fetch Microprogram 

• Selection of I-Fetch sequence is controlled by 
'NEXT-INST*IC' micro-order during normal end op or 
by 'NEXT-INST*D' micro-order during branch end op. 

· • 'NEXT-INST*IC' micro-order specifies functional ROS 
branch per R(0,1), IC(21,22), B = 0, and X2 = 0. 

• 'NEXT-INST*D' micro-order specifies functional ROS 
branch per effective-R(O,l ), D(21,22), B = 0, and X2 = 
o. 

The correct I-Fetch sequence is entered by establishing the 
address of the first ROS word in that sequence. This 
address is then placed into ROSAR so that the desired ROS 
control word may be obtained on the following cycle. 

ROSAR(0-5) is furnished directly by the end-op word 
as 001000. These bits designate the address of a general 
I-Fetch operation about to take place. To arrive at the 
specific I-Fetch sequence (RR, RX, RS and SI, or SS), the 
bit configuration of ROSAR( 6-11) must be established. 
The manner in which ROSAR( 6-11) is established is 
determined by the ROS word (normal or branch) in control 
of the end op. 

The normal end-op word contains the 'NEXT-INST*IC' 
micro-order specifying a 64-way functional branch. This 
micro-order sets ROSAR( 6-11) according to the following 
conditions: 

ROSAR Bit 

6 

7 

8 

9 

10 

11 

3-4 (7/70) 

Condition 

Set if R(O) = 1 

Set if R(1) = 1 

Set.if instruction X2 field= 0, and RX 
format 

Set if instruction B field= O,'and not 
RR format 

Set if IC(21) = 1 

Set if IC(22) = 1 

The above actions specify the format of the upcoming 
instruction, the type of further operand fetch required, and 
the number of counts by which IC(21,22) must be 
increased to select the first halfword of the instruction 
following it in main storage. 

The registers affected by the 'NEXT-INST*IC' 
micro-order are shown in Diagram 5-5, FEMDM. The 
format of the upcoming instruction is decoded from 
R(O,l ). For non-RR instructions, a test is made to 
determine whether the B-field of the instruction is equal to 
zero and, in the case of RX instructions, whether the X2 
field is also zero. 

The zero test for the B and X2 fields is necessary to 
establish a correct address computation by the subsequent 
I-Fetch routine. To increase the speed of operand 
prefetching, the B-field is always gated to LAL during the 
end-op cycle. A zero address to LAL accesses LS register 0, 
the contents of which may not necessarily be zero. 
However, the condition of B-field being zero requires that 
the base portion of the operand address be zero. Thus, the 
subsequent I-Fetch sequence selected must ignore the 
contents of LS register 0 (accessed by a zero B field). 
Similarly, in the case of the X2 field being zero, the i-Fetch 
sequence selected must not address LS per the X2 field. 
The manner in which the correct I-Fetch sequence is 

· selected is described below. 
Four 4-way AND's simultaneously sample the four 

possible B-field locations in Q. Each AND is conditioned if 
its corresponding four-bit input ·consists of all zeros. As 
explained previously, IC(21,22) selects the first halfword of 
the instruction that has been transferred from Q to R. 
Therefore, these bits are used as gates to select the second 
halfword of the instruction in Q. If, for example, the first 
halfword position of Q has been transferred to R and 
decoding of R(0,1) shows that the instruction is not of the 
RR format, Q(16-19) must be selected to obtain the 
correct B-field. When the first halfword position in Q is 
transferred to R, IC(21,22) is set to 00. This setting 
(coupled with the absence of an 'RR block' signal) selects 
the output of the AND that samples the correct B-field; i.e., 
Q(l 6-19). When the B-field of the instruction is found to 
be zero, ROSAR(9) is set to 1. This action addresses an 
I-Fetch microprogram that ignores the contents of the LS 
register accessed by the B-field. 

When the upcoming instruction is of an RX format, a 
similar test is performed to establish whether the X2 field 
of the instruction, R(l 2-15), is equal to zero. Upon 
detecting a zero X2 field, ROSAR(8) is set to 1. This action 
dictates that the subsequent I-Fetch microprogram does not 
address LS per X2; i.e., E(12-15). 

The ROS branch specified by the 'NEXT-INST*IC' 
micro-order is completed by forcing IC(21,22) into 
ROSAR(I0,11). This action allows the first I-Fetch 
microinstruction to correctly update IC(21,22) and R 
without further testing. 



The 'NEXT-INST*D' micro-order in the branch end-op 
word sets ROSAR( 6-11) according to the following 
conditions: 

'ROSAR Bit 

6 

7 

8 

Condition 

Set if effective - R ( 0) = 1 

Set if effective - R ( 1) = 1 

Set if instruction X2fleld = 0, and RX 
format 

9 Set if instruction B field = 0, and not 
RR format 

10 Set if 0(21) = 1 

11 Set if D ( 22) = 1 

Note that ROSAR(6,7) is set from the effective-R rather 
than from R, and that ROSAR(I0,11) is set from D(21,22) 
rather than from IC(21,22). This is done because Rand IC 
are either still invalid or are just being set by the branch 
operation in progress. 

BASIC RR I-FETCH 

• RR format: 

Op Code R.1 R2 

. 7 8 11 12 15 

• Purpose: 
1. For non branch instructions, load 1st operand into A, 

B, and D. Load 2nd operand into Sand T. 
2. For branch instructions, load 2nd operand into A, B, 

and D. Load 1st operand into S and T. Request new 
instructions, if needed. 

3. Set STC to 100 and ABC to 000. 

• Conditions at start of I-Fetch: 
1. Instruction is transferred to E. 
2. If instruction is not a branch, 1st operand is in T; for 

a branch, 2nd operand is in T. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of RR 
instructions. It is assumed that no interruptions or 
exceptional conditions were detected in the preceding 
end-op cycle. 

The RR instructions basically require a I-cycle I-Fetch. 
The actions initiated during this cycle are governed by 1 of 
4 possible ROS control words selected at end-op time. 
Selection of the specific ROS word depends on the original 
position of the RR instruction in Q. This word contains the 
appropriate micro-orders for incrementing IC(2 l ,22) and 
for transferring the first halfword of the next instruction to 
R. Except for these actions, the functions performed by the 
four ROS words are identical. Diagram 5-6, FEMDM, is a 

simplified flowchart of an RR I-Fetch; Diagram 5-7 shows 
the data registers used. 

If no interruption or exceptional condition is detected, 
the entire RR instruction is transferred to E at the start of 
the I-Fetch cycle (by the 'R-+E' micro-order at end op). 
The operand prefetching, initiated at end op, is then 
continued. The order in which operands are prefetched 
depends on whether the instruction is a branch: 
1. For nonbranch instructions, the first operand (accessed 

during end op) is transferred from T via the parallel 
adder to A, B, and D. The second operand is then 
addressed by gating E(l 2--15) to LAL. When the second 
operand is accesseq, it is loaded into Sand T. 

2. The above order is reversed for branch instructions; i.e., 
the second operand (accessed during end op) is placed 
into A, B, and D while the first operand is placed into S 
and T. A storage request per the branch address is 
generated subject to the conditions shown in Diagram 
5-6. 

The correct execution sequence is entered by 
establishing the address of the first ROS word in that 
sequence. This address is determined by sampling the 
instruction op code from E(2-7) by means of the 
'E(02-07)-+ROA' micro-order. As stated earlier, this 
description of RR I-Fetch applies only when no exceptional 
conditions or interruptions are present. The ROS word 
governing the I-Fetch cycle always contains the 'EXCEP' 
micro-order, which . can override the functional branch per 
the instruction op code. Therefore, the branch to the first 
execution cycle occurs only when there are no 
interruptions or exceptional conditions. 

In addition to prefetching the operands, the I-Fetch 
ROS word contains appropriate micro-orders to increment 
IC(21,22) and to transfer the first halfword of the next 
instruction to R. IC(21,22) is set one count higher ('X-+IC' 
micro-order) to point at the next instruction. The first 
halfword of the next instruction is transferred to R by the 
'QXX-+R' micro-order. 

Included in the first RR I-Fetch word is the 'RESET' 
micro~order, which causes the following actions: 
1. During I-Fetch of branch instructions, initiates the 

request for new instructions (see Diagram 5-4) and gates 
E(8-1 l ), instead of E(l 2-15), to LAL. 

2. Resets all STAT's and Edit-instruction controls. 
3. Sets STC to 100 and ABC to 000. 
4. Forces LAL(O) to 1 for floating-point instructions, 

causing the FPR's to be addressed. 
5. Sets the 'stop' trigger if operating at the instruction-step 

rate. 

Note that IC(21,22) is not advanced, the Q-to-R transfer 
is not effected, and unsuccessful branch-on-condition 
requests are not generated if the 'execute in progress' 
trigger is set. The set state of this trigger indicates that the 
current I-Fetch is for a subject instruction of an Execute 

7201-02 FETOM (7/70) 3-5 



instruction. Therefore, the address of the RR instruction is 
specified by D and not by the IC. 

BASIC RX I-FETCH 

• RX format: 

Op Code R l X2 B2 

7 8 11 12 15 16 19 20 

• Purpose: 

D2 
31 

1. Compute address of 2nd operand and transfer to D; 
request 2nd operand from main storage, if necessary. 

2. Transfer 1st operand to Sand T. 

• Conditions at start of I-Fetch: 
1. 1st halfword of instruction is transferred to E; 2nd 

halfword is in Q. 
2. Contents of LS register specified by B2 are 

transferred to T. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of an 
RX instruction. It is assumed that no interruption or 
exceptional conditions were detected in the preceding 
end-op cycle. 

The RX instructions basically require a 1- or 2-cycle 
I-Fetch. The actions initiated during the first I-Fetch cycle 
are governed by 1 of 16 possible ROS control words 
selected at end-op time. This. selection depends on whether 
the B2 and/or X2 fields of the instruction are zero, and on 
the original position of the RX instruction in Q. The zero 
test establishes four separate cases for the I-Fetch routine: 
(1) B2 = 0 and X2 = 0, (2) B2 =:/= 0 and X2 = 0, (3) B2 = 0 
and X2 =:/= 0, ( 4) B2 =:/= 0 and X2 =:/= 0. The first two cases 
require a 1-cycle I-Fetch; the last two, a 2-cycle I-Fetch. 
Each of the above four routines contains appropriate 
micro-orders for incrementing IC(21,22) and transferring 
the first halfword of the next instruction to R. 
Consequently, a four-way branch is inherent in each 
routine, depending on the previous IC(21,22) setting; i.e., 
00, 01, 10, or 11. 

Diagram 5-9, FEMDM, is a simplified flowchart of an 
RX I-Fetch; Diagram 5-10 shows the data registers used. If 
no interruptions or exceptional conditions are detected, the 
op-code halfword of the RX instruction is transferred to E 
at the start of I-Fetch (initiated by the 'R-?E' micro-order 
at end op). The operand prefetch routine is then continued 
with the first halfword of the instruction in E and the 
second halfword in Q. The I-Fetch of non-indexed RX 
instructions (X2 = 0) is described first. 

The 'X-?IC' micro-order issued by the first I-Fetch word 
sets IC(21,22) two counts higher. The first halfword of the 
next instruction is transferred to R by the 'QXX-?R' 
micro-order if it is now in Q; that is, if IC(21,22) did not 
equal 10 at the start of I-Fetch. If the instruction is not 

3-6 (7/70) 

indexed, the address of the second operand is obtained by 
adding D2 to the base address. The contents of the LS 
register per B2 are placed into T at the start of I-Fetch. If 
B2 was found to be zero during end op, the contents of T 
are ignored, and the appropriate D2 field in Q is selected 
and routed to D via the parallel adder. However, if B2 =:/= 0, 
the contents of T and the D2 field are gated simultaneously 
to the parallel adder, and the resultant sum is transferred to 
D. A 3-cycle storage request for the second operand is made 
from D if the following conditions do not exist: 
1. A Q-register refill exceptional condition is in progress. 
2. The instruction is Store Halfword, Store Character, or 

Load Address. 
3. The instruction is an unsuccessful Branch on Condition. 

(A request for new instructions is issued from the IC, if 
necessary.) 
The first operand is obtained from LS per R1 and 

transferred to S and T. At the completion of the I-Fetch 
cycle, a branch is made to a specific execution sequence as 
determined by the 'E(02-07)-+ROA' micro-order. 

In the case of indexed RX instructions (X2 =:/= 0), two 
cycles are required to complete the I-Fetch routine 
(Diagram 5-11, FEMDM). During the first cycle, D2 is 
added to the contents of T (if B2 =:/= 0) and the result is 
temporarily stored into B. The LS register specified by X2 
is then accessed, and its contents are placed into T. The 
contents of T and B are added during the second cycle, and 
the sum (second operand address) is transferred to D. The 
conditional storage request is ·now made. After the first 
operand is obtained from LS and placed into S and T, a 
branch per the instruction op-code is made to enter the 
correct execution sequence. 

The 'RESET' micro-order: 
1. Resets all ST A T's and Edit instruction controls. 
2. Re.sets STC and ABC to 000. 
3. Initiates any necessary storage requests for branch 

instructions and for subject instructions of the Execute 
instruction. 

4. Forces LAL(O) to 1 for floating-point instructions, 
causing the FPR's to be addressed. 

5. Sets the 'stop' trigger if operating at the instruction-step 
rate. 

If the instruction being fetched is the subject of an 
Execute instruction ('execute in progress' trigger is set), the 
incrementing of IC, the Q-to-R transfer, and the 
unsuccessful Branch on Condition requests to refill Q are 
inhibited. 

BASIC RS AND SI I-FETCH 

• RS format: 

Op Code Rl R3 B2 

7 8 11 12 15 16 19 20 

02 
31 



• SI format: 

Op Code 12 Bl Dl 

7 8 15 16 19 20 31 

• Purpose: 
1. Add contents of LS register specified by B-field to 

D-field; place result into D. 
2. Request operand from main storage, if necessary. 
3. For RS instructions, load 1st operand into Sand T. 

(Contents of S and T are ignored for SI instructions.) 

• Conditions at start of I-Fetch: 
1. 1st halfword of instruction is transferred to E; 2nd 

halfword is in Q. 
2. Contents of LS register specified by B-field are 

transferred to T. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of RS 
and SI instructions. It is assumed that no interruptions or 
exceptional conditions were detected in the preceding 
end-op cycle; 

The RS and SI instructions basically require a I-cycle 
I-Fetch. The actions initiated during this cycle are governed 
by I of 8 possible ROS control words selected at end-op 
time. This selection depends on whether the B-field of the 
instruction is zero, and on the original position of the 
instruction in Q. The zero test establishes two distinct 
I-Fetch routines: (I) B = 0 and (2) B * 0. A four-way 
branch is inherent in each routine, depending on the 
previous IC(21,22) setting; i.e., 00, 01, 10, or 11. 

Diagram 5-13, FEMDM, is a simplified flowchart of RS 
and SI I-Fetch. If no interruptions or exceptional 
conditions are detected, the halfword containing the 
op-code of the RS or SI instruction is transferred to E at 
the start of I-Fetch (initiated by the 'R-+E' micro-order at 
end op). The operand pre fetch routine is then continued 
with the first halfword of the instruction in E and the 
second halfword in Q. 

The LS register specified by the B-field (Bl or B2) is 
accessed during end op, and its contents are placed into T 
at the start of I-Fetch. If the B-field was found to be zero 
during end op, the I-Fetch routine ignores the contents of 
T, selects the appropriate D-field (D 1 or D2) in Q and 
routes it to D via the parallel adder~ If the B-field is not 
zero, the contents of T and the D-field are gated 
simultaneously to the parallel adder and the sum is then 
transferred to D. A 3-cycle storage request for the second 
operand is then made from D if the following conditions do 
not exist: 
I. A request to refill Q was generated during the previous 

execution segment; i.e., IC(21,22) = 01 or 10. For this 
case, the ROS micro-order is not contained in the 
I-Fetch word. 

2. The E-register contains a shift, Store Multiple, Move 
(MVI), Test and Set, or 1/0 instruction. For this case, 
the 'D sync' latch is prevented from being set. 

3. The E-register contains a branch-on-index (BXH, BXLE) 
instruction. For this case, the 'RESET' micro-order 
resets the '3-cycle request' trigger, causing a 4-cycle 
storage request to be made from D regardless of 
IC(21,22). 
Upon loading D with the second operand address, the 

I-Fetch routine proceeds to set IC(21,22) two counts 
higher, to transfer the first halfword of the next instruction 
to R if it is in Q, and to establish the first ROS control 
word for the execution phase. Fetching of the first operand 
per E(8-11) is meaningful only for RS instructions. For SI 
instructions, E(8-11) contains a portion of the immediate 
operand. Since a common ROS control word governs the 
I-Fetch of both formats, E(8-ll) is always gated to LAL; 
the contents of the LS register thus accessed are placed into 
S and T. However, the subsequent execution sequences for 
SI instructions ignore the contents of S and T. 

In addition to causing a 4-cycle storage request during 
the I-Fetch of a branch-on-index instruction, the 'RESET' 
micro-order: 
1. Resets all STAT's and Edit-instruction controls. 
2. Resets STC and ABC to 000. 
3. Sets the 'stop' trigger if operating at the instruction-step 

rate. 

If the instruction being fetched is the subject of an 
Execute instruction ('execute in progress' trigger is set), the 
incrementing of IC and the Q-to-R transfer is inhibited. 

BASIC SS I-FETCH 

• SS format: 

Op Code I L 1 I L2 I B 1 I ~ ~ D 1 I B2 I ~ G 
7 8 11 12 15 16 19 20 31 32 35 36 47 

• Purpose: 
I. Transfer op-code halfword of next instruction to R; 

update IC and place into LSWR. 
2. Transfer computed address of 1st operand 

(destination) per instruction class to D; request 
destination operand from main storage (gated into 
CPU at start of 2nd execution cycle). 
a. Lowest destination address for logical instructions 

= base address (per B 1) + D 1. 
b. Highest des tin a ti on address for decimal 

instructions = base address (per B 1) + D 1 + LI . 

7201-02 FETOM (7/70) 3-7 



3. Transfer computed address of 2nd operand (source) 
to IC and T. Lowest source address = base address 
(per B2) + D2. 

4. Perform ASC test (and invalid instruction address test 
if complete instruction is in Q). 

• Conditions at start of I-Fetch: 

As previously stated, requests to refill Q are generated 
before the CE runs out of instructions. In describing the 
I-Fetch microprograms used for RR, RX, RS, and SI 
formats, it was assumed that the instruction to be executed 
was contained in Q. Because of the manner in which storage 
requests for instructions are generated, the assumption is 
valid for all 1- and 2-halfword instructions. For SS 
instructions, however, the I-Fetch routine may sometimes 
begin while the last half word of the instruction is still in 
main storage. Figure 3-2 shows all possible locations that 
the SS instruction may assume in Q and the manner in 
which storage requests are generated for more instructions. 
Storage requests for SS instructions are generated (at 
end-0p time) when IC(21,22) is set to 00, 01, or 10. If 
IC(21,22) = 00 or 01, the entire instruction is in Q at the 

1. 1st halfword of instruction is transferring to E, 2nd 
halfword is in Q, 3rd halfword is in Q if IC(21,22) =/= 

IO (otherwise 3rd halfword is gated to Q during 4th 
cycle of I-Fetch). 

2. Base address (per BI) is in T. 
3. Q refill is not in progress if IC(21,22) = 11. 

The I-Fetch of SS instructions differs considerably from the 
I-Fetch routines described thus far (RR, RX, RS, and SI) .. 
Differences arise from three characteristics of the SS 
format: (I) the SS format is three halfwords long,.(2) an SS 
instruction always stores the results into main storage, and 
(3) two main storage addresses are specified. 

start of I-Fetch. However, if IC(21,22) = 10, the last 
halfword of the instruction will arrive from main storage on 
the fourth cycle of I-Fetch. Consequently, processing of the 

IC(21,22) = 00 IC(21, 22) = 01 IC(21,22) = 10 

i l i 
Q SS----

Op-Code 
R Halfword 

IC(21, 22) = 00 

IC(21, 22) = 01 

IC(21,22) = 10 

IC(21, 22) = 11 

Op-Code 
Halfword 

End-Op 
Cycle 

Generate 
storage 
request 

Generate 
storage 
request 

Generate 
storage 
request 

Figure 3-2. Basic Sequencing for SS Instructions 

3-8 (7/70) 

I-Fetch 

Op-Code 
Halfword 

Set IC(21, 22) to 11, transfer 
last halfword from Q to R, 
and g_ate new instructions to Q. 

Set IC(21, 22) to 00, gate 
new instructions to Q, and 
then transfer 1st halfword 
from Q to R. 

Set IC(21, 22) to 01, gate 
new instructions to Q, and 
then transfer 2nd halfword 
from Q to R. 

Set IC(21, 22) to 10, and 
transfer 3rd halfword 
from Q to R. 

IC(21,22) = 11 

Gated from Main 
Storage during 
I-Fetch 

~ssl ! ·I 

Op-Code 
Halfword 

Genera I In i tia Ii zation 
and Execution 

End-Op 
Cycle 

Generate 
storage 
request if SS 
instruction 
is next. 

Generate 
storage 
request if RR 
instruction 
is not next 

Generate 
storage 
request 
always. 



third halfword of the instruction cannot start until Q is 
refilled. Finally, if IC(21,22) = 11, at end op, Q has been 
refilled as a result of a previous end-op cycle and Q(0-31) 
contains the balance of the upcoming SS instruction. 

An SS instruction operates on two operands obtained 
from main storage and stores the result into the same 
location from which the· first operand was obtained. 
Therefore, the address of the first operand is also the 
destination address; the address of the second operand is 
commonly referred to as the source address. The first and 
second operand addresses are calculated in a manner similar 
to that of two-halfword instructions. The address of the 
first operand is computed first and loaded into D, and a 
storage request for the operand is made. The partial address 
of the second operand is then computed while the contents 
of the IC are transferred to the LSWR. The partial second 
operand address is loaded into the IC. After completing the 
I-Fetch routine, a General Initialization Sequence, GIS, is 
performed, after which control is transferred· to the 
execution phase. (During GIS, the calculation of the second 
operand address is completed, and a storage request issued, 
if necessary.) Upon execution of the instruction, results are 
stored into main storage per the address in D (first operand 
or destination address). 

Address Store Compare (ASC) Test 

• Main storage address where data is to be stored is 
compared with address of current instructions. 

• Compariso·n is made whenever data is stored into main 
storage. 

• If data is stored at instruction address, 'PSC' trigger is set 
to indicate that instructions in Q must be refetched. 

• For SS instructions, ASC test is performed during 
I-Fetch. Lower and upper limits of destination address 
are compared with instruction address. 

An ASC test must be made each time the CE stores data 
into main storage. This test compares the destination 
address of the data with the current instruction address. If 
it is found that both adqresses are the same, the 'program 
store compare' (PSC) trigger is set, indicating a need to 
refetch instructions; i.e., the instructions. currently in Q 
must again be obtained from main storage because the next 
instruction to be executed may have been modified by the 
data just stored.t For all but SS instructions, the ASC test 
is made during the execution phase whenever a store 
operation is performed. Because, in the case of SS 
instructions, a store operation is always implied, an ASC 
test has been incorporated in the SS I-Fetch microprogram. 

tThe refetch routine is initiated if the result of a comparison of the 
destination and IC addresses falls within a 16-byte safety margin: 
Destination address (in D) = IC address ± 16 bytes. Thus, 
instructions in Q may not necessarily be modified by the store 
operation. 

For SS instructions, the ASC test must determine that 
instructions (currently in Q) were not obtained from a 
region defined by the upper and lower limits of the 
destination address for data. This test is made in two steps, 
as illustrated in Figure 3-3. The first step determines 
whether the lower limit of the destination address is above 
the instruction address in the IC. When the lower limit is 
above, the upper limit must also be above the IC, and the 
'PSC' trigger is not set. This condition indicates that current 
instructions (in Q) cannot be affected by the subsequent 
store operations. However, if the lower limit of the 
destination address is found to be below the IC, the 'PSC' 
trigger is set and a further test must be made to establish 
that data will not be stored in the instruction path. The last 
step compares the upper limit of the destination address 
with the IC. If the IC is found to be above the upper limit, 
the 'PSC' trigger is reset. In such cases the subsequent store 
operations will not extend to the IC location. On the other 
hand, if. the IC points below the upper limit, the 'PSC' 
trigger remains set, indicating that the subsequent store 
operations may affect the next instruction. Consequently, 
after execution of the instruction that caused the PSC 
condition, an exceptional condition microprogram is 
initiated to refetch the instruCtions in Q. The details of the 
refetch microprogram are described under "Program Store 
Compare Exceptional Condition". 

I-Fetch Microprogram 

• If request for new instructions has been generated at end 
op, I-Fetch routine requires 7 cycles; if not, I-Fetch 
requires 6 cycles. 

• Setting of IC(21,22) at end op determines manner in 
which I-Fetch is performed. 

The following paragraphs describe the basic actions 
initiated by the ROS microprogram during I-Fetch of SS 
instructions. It is assumed that no interruptions or 
exceptional conditions were detected in the preceding 
end-op cycle. 

The first halfword of the SS instruction is transferred 
from R to E at the start of I-Fetch. The operand prefetch 
(initiated at end op) is then continued with the first 
halfword in E, the second halfword in Q, and the third 
halfword in Q [or in main storage if IC(21,22) = 10], as 
shown in Diagram 5-14, FEMDM. 

The SS instructions require a 7- or 6-cycle I-Fetch. The 
actions initiated during the first I-Fetch cycle are governed 
by 1 of 8 possible ROS control words selected at end-op 
time. This selection depends on whether the B 1 field of the 
instruction is zero and on the setting of IC(21,22). The 
setting of IC(21,22) establishes four distinct cases for the 
SS I-Fetch microprogram: 
1. When IC(21,22) = 00, a 4-cycle storage request to refill 

Q is generated at end op. Because Q( 48-63) contains 

7201-02 FETOM (7/70) 3-9 



Successive 
locations in 
main storage 

Yes (Above) 

IC po in ts to this 
~egion and 'PSC' trigger 
1s not set. 

Lower limit 
of destination 
address for 
data 

1st Step 

Upper limit 
of destination 
address for 
data 

No (Below) 

No (Above) 

IC points to this 
region and 'PSC' trigger 
is set. 

Last Step 

IC points to 
this region and 

IC points to 
this region and 
'PSC' trigger 
is reset. 

'PSC' trigger---------~ 

remains set. 

Figure 3-3. ASC Test for SS Instructions 

the op-code halfword of the next instruction, the 
I-Fetch routine must transfer this halfword to R before 
the next doubleword arrives from main storage. Also, 
the I-Fetch routine must gate the new instructions to Q 
at the correct time. 

2. When IC(21,22) = 01, a 4-cycle request to refill Q is 
generated. Because Q contains no new instructions, the 
I-Fetch routine must wait until Q is refilled and then 
transfer the first halfword of the next instruction from 
Q to R. New instructions must be transferred to Q at the 
correct time. 

HO (7/70) 

3. When IC(21,22) = 10, a 3-cycle request to refill Q is 
generated. Because the third halfword of the SS 
instruction is in main storage, processing of this 
halfword is delayed until Q is refilled. New instructions 
must be transferred to Q at the correct time, after wh.ich 
the next instruction may be gated to R. 

4. When IC(21,22) = 11, a storage request is not generated 
because Q has been refilled as a result of the previous 
end op. Thus the I-Fetch routine is not concerned with 
transferring new instructions to Q. 



During the first I-Fetch cycle of all SS I-Fetch routines, 
the lower limit of the destination address is calculated and 
placed into D, and IC(21,22) is advanced to indicate the 
first halfworcl of the next instruction. At the start of 
I-Fetch, T contains the base portion of the destination 
address (LS contents per Bl). If Bl ::/= 0, the contents of T 
are added to the appropriate DI field and the sum is 
transferred to D. If, however, Bl = 0, the contents of Tare 
ignored and only the DI field is routed via the parallel 
adder to D. After the first I-Fetch cycle, D contains the 
lower limit of the destination address. 

The I-Fetch sequence after the first cycle differs for each 
setting of IC(2 l ,22). The following paragraphs describe the 
I-Fetch control for each setting. 

I-Fetch Control If at End Op IC(21,22) = 00 

• STAT Dis set to indicate B2 = 0. 

• Branch per instruction is made to establish starting 
destination address. 

• If 'execute in progress' trigger is reset, IC(20) is 
advanced by 1; if trigger is set, IC is not incremented. 

• Instruction address is stored into LSWR. 

• I-Fetch requires 7 cycles. 

If at end op IC(21,22) = 00, Q contains the remaining two 
halfwords of the SS instruction and Q( 48-63) contains the 
halfword of a new instruction. Q( 48-63) is transferred to 
R by the second ROS word in the I-Fetch sequence. This 
word also accesses the LS register specified by B2 and 
initiates the ASC test. The LS register is accessed by gating 
the B2 field [Q(32-35)] to LAR and transferring the LS 
contents to S. (STAT D records the condition when B2 = 0 
and· is interrogated when the source address is computed.) 
The ASC test is initiated by subtracting the lower limit of 
the destination address (contained in D) from the IC. If the 
difference is equal to or greater than zero, the 'PSC' trigger 
is set to indicate that the destination address may overlap 
the instruction path. 

A branch is made per the instruction op code to the 
third I-Fetch cycle. This branch establishes ·the manner in 
which the upper limit of the destination address must be 
obtained: 
I. For decimal instructions, the LI field [E(8-11)] is 

transferred to the parallel adder, where it is added to the 
contents of D. 

2. For logical instructions, the LL field [E(8-15)] is added 
to the contents of D. 
Also, depending on the instruction, either the upper or 

the lower limit of the destination address becomes the 
starting point from which operands are to be processed. For 
all decimal instructions, operand processing starts from the 
upper limit of the destination address and proceeds toward 

the lower limit. Conversely, for all logical instructions, 
operand processing starts from the lower limit and proceeds 
toward the upper limit. Thus, when a decimal instruction is 
decoded, the upper limit of the destination address is 
transferred to D and becomes the starting address from 
which the first operand will be requested. In the case of 
logical instructions, the original contents of D (lower limit 
of destination address) are not changed. Because the upper 
limit of the destination address is required to complete the 
ASC test, this address is temporarily stored into T. 

The fourth ROS word in the I-Fetch sequence initiates 
calculation of the source address and gating of new 
instructions to Q, and requests the first operand from main 
storage (per the destination address in D). At the start of 
the fourth cycle, ST AT Dis tested to establish whether the 
B2 field of the instruction is zero. If B2 is not zero (STAT 
D not set), the contents of S (where LS contents per B2 
have been placed) and the appropriate D2 field in Q are 
simultaneously gated to the parallel adder, and the sum is 
temporarily stored into B. If B2 = 0 (STAT D set), 
however, the contents of S are ignored and only the D2 
field is placed into B. With the completion of the above 
actions, all halfwords in Q have been processed and Q is 
refilled with new instructions. The fourth ROS word also 
initiates a 4-cycle request per D for the destination 
operand. A ROS micro-order in the first GIS word gates the 
destination operand into the CE. 

The fifth ROS word in the I-Fetch sequence completes 
the ASC test. The upper limit of the destination address 
(contained in T) is subtracted from the IC contents. If the 
difference is greater than zero, the 'PSC' trigger is reset. 
This condition indicates that the instruction address is 
above the highest main storage location into which data is 
to be stored. However, if the difference (IC minus T) is less 
than zero, the 'PSC' trigger remains set. The set .state of the 
'PSC' trigger initiates the program store compare 
exceptional condition after execution . of the current SS 
instruction. 

The sixth ROS word in the I-Fetch sequence usually 
increments the IC by 8 and then stores the updated address 
into the LSWR. Following each storage request from the 
IC, the contents of the IC must be updated by 8 to obtain 
the address of the next doubleword location from which 
subsequent instructions will be requested. An exception to 
this rule occurs if the SS instruction currently being 
processed is the subject of an Execute instruction. Because, 
upon execution of the subject instruction, the instructions 
previously contained in Q must be refetched from the main 
storage address specified in the IC, the contents of the IC 
are not updated. Thus, before storing the IC into the 
LSWR, a test must be made to determine whether an 
Execute instruction is in progress. This test is accomplished 
by examining the status of the 'execute in progress' trigger. 

7201-02 FETOM (7 /70) 3-11 



After the instruction address is transferred to the LSWR. 
the IC is ready to receive the address of the source operand. 
The seventh ROS word in the I-Fetch sequence transfers 
the lower limit of the source operand address (placed into B 
by the fourth ROS word) to the IC and to T. The 'RESET 
micro-order resets the STC. ABC. ST AT D. and the 
Edit-instruction controls. and sets the 'stop' trigger if 
operating at the instruction-step rate. 

At the completion of the SS I-Fetch. a General 
Initialization Sequence (GIS) is performed. This sequence 
sets up various initial conditions that arc required by logical 
or decimal SS instructions. The GIS is described in Sections 
4 and 5 of this chapter. 

I-Fetch Control If at End Op IC(21 .22)::: 0 I 

If at end op IC(21.~2) ::: 01. the balance of the SS 
instruction is contained in Q. The I-Fetch scqueni.:e for this 
case is similar to that performed if IC(21.22)::: 00 at end 
op. However, the following differences exist. 

Because no new instructions arc contained in Q at the 
start of I-Fetch. loading of R with the halfword of the next 
instruction is dclayc<l until Q is rc1111c<l. Because of the 
4-cydc request generated at end op. Q is refilled on the 
fifth I-Fetch cycle; on the sixth I-Fetch cydc, Q('O 15) is 
transferred to R. (The ·Ms__.,..o· and ·oxx~R· micro-orders 
arc issued one cycle before the actual transfer.) 

I-Fetch Control If at End Op 1('(21.22)::: I 0 

If at end op ICO I .22) ::: I 0, the second halfword of the SS 
instruction is in Q( 48- 63) and the third halfword is in 
main storage. Processing of the third halfword of the SS 

instruction and loading of R with the halfword of the next 
instruction arc delayed until Q is refilled. Because of the 
3-cycle request generated at end op. Q is refilled on the 
fourth cycle of I-Fetch. (The "MS-~Q' micro-order is issued 
one cycle before the actual trans fer.) Except for this 
difference in timing, the functions performed by the 
I-Fetch sequen<.:e are identical with those performed if 
IC(21,22)::: 00 at end op. 

If the fetching of the third halfword had resulted in an 
invalid address or a protection violation, the 'program 
interrupt' latch is found set during the fourth cycle. This 
suppresses both the remaining 1-f'ctch functions and the 
execution of the SS instruction. IC is incremented by 8 if 
the 'execute in progress' trigger is not set. and the CE clock 
is stopped one cycle to ensure that the SCI is not busy. The 
SS I-Fetch routine is then completed with a normal end op 
and the program interruption microprogram is forced. 

I-Fetch Control If at End Op IC(2 l ,22)::: 11 

If at end op IC(2 l .22) ::: I I, Q(0-31) contains the balance 
of the SS instruction. Because a request to refill Q is not 
generated. the I-Fetch sequence is not concerned with 

3-12 (7/70) 

transferring new instructions to Q and incrementing the IC 
by 8. (Consequently. only h cycles arc required to complete 
the 1-Feti.:h routine.) Except ror t hcsc differences, the 
functions performed by the routine arc identical with those 
performed if ICC 1 .~~)::: 00 at end op. 

DEVIATIONS FROM BASIC END OP AND I-FETCH 

Dete<.:tion of an interruption or exceptional i.:ondition at 
end-op modifies the basic end-op and I-Fetch sequences 
previously described. All interruptions and most 
exceptional conditions inhibit the following I-Fetch 
actions: 
l. Transfer of the next instruction from R to E. 
.., Incrementing of IC to select the next instruction. 
3. Transfer or the next instruction from Q to R. 

Two exceptional conditions do not modify I-Fetch in the 
above manner. These arc ( 1 ) the exceptional condition that 
tests for invalid address, and ( 2) the Q-rcgister refill 
exceptional condition. Because both of these conditions are 
detedcd during the first I-Fetch i.:ycle (i.e .. the cycle in 
which IC incrementing Q-to-R and R-to-E transfer takes 
plai.:e), these I-Fetch actions arc not inhibited. However. 
detection or an invalid address test or a Q-refill exceptional 
condition overrides the "E(02 -··07)~ROA' micro-order that 
may be in the first I-Fetch word and causes a branch to 
recovery microprogram. 

To understand how an interruption or exceptional 
condition modifies the subsequent I-Fetch sequence, the 
reader must be familiar with the operation of the following 
I-Fetch controls: (I) the I-Fetch sequencers, and (2) the 
·block I-Fetch' trigger. These controls arc described in 
subsequent paragraphs. 

I-Fetch Sequencers 

• Three I-Fetch sequencers control Q refilling, IC(20) 
updating; instruction address checking. and ROS 
addressing of appropriate Q-refill exceptional condition 
microprogram. 

The I-Fetch sequencers (Diagram 5-15, FEMDM) are a set 
of three trigger-latch circuits activated when a need to refill 
Q is detected by the 'NEOP', 'BEOP', or 'EEOP' word. The 
sequencer status indicates the number of cycles that have 
elapsed from the time of the request. The I-Fetch 
sequencers control: 
I. IC(20) updating. The IC is updated when sequencer 2 is 

set and sequencer 1 is reset. This condition gates the 
contents of the JC to PAB(40-63) and, simultaneously, 
adds a I to PAA(60) to update IC(20). (This updating is 
equivalent to increasing the instruction address by 8.) 
The new instruction address is gated back to the IC. 



2. lngating of new instrm:tions to Q. After a request to 
refill Q is initiated, the sequencers keep track of the CPU 
cydcs to transfer new instructions to Q at the correct 
time. When sequem:crs 3 and I are both set, the new 
instructions are gated to Q on the next cycle. (Note that 
sequencer I is set by sequencer 2 and hy the 'RASCR' 
micro-order contained in the first word of the Q-register 
refill exceptional condition microprogram if not a 
2-cyde-early request.) If, when Q is refilled IC(21 ,22)"' 
00, the first halfword position in Q is automatically 
transferred to R. This transfer takes place because, at the 
time of request, the halfword of the next instruction was 
in main storage. Consequently, the transfer of the next 
halfword to R is delayed until this time. 

3. Address checking. The 'I-Fetch request' trigger is set 
when sequencer I is set and sequencer 3 is reset. This 
condition initiates the invalid instruction address test 
described later when discussing that exceptional 
condition. Operand addresses arc tested for specification 
violations from D, instead of the parallel adder, by the 
'SPEC' micro-order during execution of non-indexed RS, 
SI, or RS instructions if a Q-register refill is still in 
progress (sequencer 2 set). 

4. ROS addressing. The 'EXC EP' micro-order in the first 
I-Fetch word samples the sequencer status to establish 
whether a Q-register refill exceptional condition has 
priority. If Q-register refill priority is recognized, a new 
address is forced into ROSAR. This address is 
determined by the sequencer status and by the format of 
the upcoming instruction. The microprogram thus 
forced provides the time interval required to refill Q. 

Block I-Fetch Trigger 

• Set by detection of interruption or exceptional 
condition (except invalid instruction address test and 
Q-register refill). 

• Resets I-Fetch sequencers and blocks most actions of 
first I-Fetch word; chiefly, incrementing of IC, R-to-E 
transfer, Q-to-R transfer, and main storage requests. 

Upon entering the interruption-processing microprogram, 
the CE must contain the instruction that was responsible 
for the interruption. Except when a branch to a new 
address is anticipated, requests to refill Q are issued during 
end op and, sometimes, one or two cycles before end-op. 
On the other hand, the interruption-processing 
microprogram cannot start until the first I-Fetch cycle, at 
which time Q may be in the process of being refilled. For 
this reason, a means must be provided to inhibit the 
refilling of Q upon detection of exceptional conditions. 
This function is performed by the 'block I-Fetch' trigger. 
This trigger also inhibits those I-Fetch actions associated 
with the next instruction; namely, updating the IC, 
transferring R to E, and transferring Q to R. 

The 'block I-Fetch' trigger (Diagram 5-16, FEMDM) is 
set if an interruption or exceptional condition is detected 
and the instruction responsible for this condition is 
contained in the CE.t This trigger inhibits the following 
I-Fetch actions: 

1. Ingating of new instructions to Q. The output of the 
'block I-Fetch' trigger resets the I-Fetch sequencers to 
prevent ingating of new instructions to Q. Note that this 
function is significant only during I-Fetch of 1- and 
2-halfword nonbranch instructions. For branch and 
3-halfword (SS) instructions, ingating to Q is performed 
by the ROS execution microprogram, and the 
sequencers arc not activated; because upon detection of 
an exceptional condition this microprogram is not 
entered, ingating uf new instructions to Q docs not take 
place. 

..., Updating of IC(21,22) or D( 21,22 ). When a branch to an 
interruption-processing microprogram is performed, 
these bits must indicate the first half word of the 
instruction that caused the interruption. The "block 
I-Fetch' trigger inhibits these bits from being advanced 
to indicate the next instructions. 

3. Updating of IC(20) or 0(20). Because the trigger resets 
the I-Fetch sequencers, the address fur the next 
instructions in main storage is not incremented. 

4. Transferring R to E. The first halfword of the 
instruction that caused the interruption must he retained 
in E. The trigger prevents the halfword of the upcoming 
instruction from being transferred to E. 

5. Transferring Q to R. Because the halfword of the next 
instruction remains in R, the halfword of the upcoming 
instruction must remain in Q. The trigger inhibits any 
'QXXR' micro-order in the first I-Fetch word from 
effecting this transfer. 

6. Main storage requests. Requests for new instructions 
because of a predecoded branch instruction arc inhibited 
by blocking the decoding of the •RESET micro-order. 
Storage requests for operands arc inhibited by blocking 
the decoding of the 'MS-REQ*D-3' micro-order. 

7. Initiation of the invalid instruction address test. 

The 'block I-Fetch' trigger is not set by detection of the 
invalid instruction address test or Q-register refill 
exceptional conditions. In the first case, because addressing 
is at fault, the next address must be computed and retained 

i'The only exception to this rule occurs when the Execute 
instruction is in progress. In this case, the interruption-processing 
microprogram cannot be entered until execution of the subject 
instruction (specified by the Execute instruction) is completed. 
Therefore, a request for the subject instruction is not blocked. 
Setting of the 'block I-Fetch' trigger is inhibited by the set states of 
the 'execute in progress' trigger and STAT G (set by the Execute 
instruction). 

7201-02 rETOM {7 /70) 3-13 



for subsequent evaluation. In the second case, the trigger is 
not set because this action would inhibit the purpose of the 
Q-registcr refill except ion al cone.lit ion. 

The 'block l-Petd1' trigger is reset by the ·o~sT AT D' 
mino-urdcr issued hy the first word in the recovery 
microprogram. 

INTERRUPTIONS AND EXCEPTIONAL CONDITIONS 

When an interruption occurs, the interruption code is 
recorded in the current PSW of the CE. This PSW is then 
storc<l in main storage as the "old'' PSW. and the CE 
fetches a "new"' PSW from main storage. Both the old and 
the new PSWs have fixed locations within the CE's PSA. 
(Recall that an interruption can be masked off by the 
interruption field in the current PSW.) 

An exceptional condition opera ti on does not change the 
current PSW. nor docs the PSW contain mask bits for 
exceptional conditions. After the exceptional condition is 
processed. the instruction flow might be continued, 
stopped. repcate<l, or left. depen<ling on the specific 
exceptional con<lition. 

The suhsequent paragraphs describe the specific 
hardware an<l microprogram sequences used for processing 
each interruption and exceptional condition. The 
discussions of the interruptions and exceptional conditions 
follow the order of priority in which these conditions are 
processed hy the CE: 

1. Timer exceptional condition: 
a. External Start or Stop 
b. Receive ATR 
c. Time clock step 

2. CPU store in progress exceptional condition 
3. Machine-check interruption 
4. Program interruption 
5. Supervisor call iri tcrruption 
6. External interruption 
7. 1/0 interruption 
8. Manual control stop exceptional condition 
9. Manual control wait exceptional condition 

10. Manual control repeat exceptional condition 
11. Program store compare exceptional condition 
12. Invalid instruction a<ldrcss test exceptional condition 
13. Q-register refill exceptional condition 

Each interruption class (machine check, program, 
supervisor call, external, and 1/0) requires individual 
treatment before handling by a common ROS routine. 
Accordingly, the discussion of these interruptions follows 
the same pattern; i.e., the individual handling for each 
interruption is describe<l first, followed by a description of 
its common routine. 

3-14 (7/70) 

Timer Exceptional Condition 

• Decrements timer in location 50 (hex) per power-line 
frequency. 

• ·Time clock step· trigger is set when timer needs update. 

• ·Time dock step' trigger can also be set by other 
conditions: external start. external stop, or receive ATR. 

• Hardware controls cause machine reset if external 
start/stop; thus terminating timer update ROS routine. 

• ROS branch on 127 micro-order (ATRSEL) handles 
receive ATR. 

The timer exceptional condition occurs when the interval 
timer must be stepped (decremented). This condition is 
recognized by the 'time clock step' trigger, which is set by a 
positive swing or the line frequency. 

The 'time clock step' trigger (Diagram 5-17, FEMDM) is 
also set by three other conditions: external start, external 
stop. and receive ATR. Any one of these conditions causes 
the CE to enter the ·time clock step' microprogram. 
However. only the true timer exceptional condition will 
cause timer update. The external start or external stop 
condition and the receive A TR condition take priority by 
overriding the timer update microprogram. The external 
start condition causes the CE to reset and perform a PSW 
restart routine. The external stop condition causes the CE 
to reset and go to the stopped state. The receive ATR 
condition causes the CE to gate in ATR data from another 
CE wh.ich is performing a Set Address Translator (SATR} 
instruction. 

If none of these three conditions exist, the timer is 
updated as soon as the instruction in progress is finished. 
The CE generates main storage address 50 (hex), the 
location of the timer value. The timer value is fetched, 
stepped, and returned to location 50. If the timer value is 
stepped from a positive value to a negative value, a timer 
external interruption is processed next. Otherwise, 
processing continues with the next instruction. 

The microprogram accessed by the 'time clock step' 
trigger is shown in Diagram 5-17, FEMDM. Each time the 
positive swing of the power-line ac voltage occurs, the 
·sample pulse' trigger is set (via a 300-ns singleshot}, 
provided the DISABLE INTERVAL TIMER switch is not 
activated. The ·sample pulse' trigger, in turn, sets the 'time 
clock step' trigger, provided the CE is not currently in an. 
end-op cycle. 

The need to inhibit setting of the 'time clock step' 
trigger at end-op is twofold: ( 1) the timer exceptional 
condition is asynchronous with respect to program 



exei.:Ution. and (2) it has the highest priority. Because 
priority is established at end-op. samplinµ the timer 
exceptional conditions at this time rnuld result in a priority 
conflict with a pending interruption or exceptional 
condition. Thus. use or two triggers ensures that timer 
priority is present before entry into end-op: i.e .. if the need 
to update the timer arises at end-op. this is recorded by the 
'sample pulse' trigger. and the timer update microprogram 
is initiated on the next end-op cycle. 

The 'time clock step' trigger may also be set by another 
CF executing a Direct Control External Start or Stop or a 
Set Address Translator (SATR) instruction. In any case. 
priority must be established for the timer cxn~ptional 

condition. When end-op occurs. the trigger output is gated 
to alter the subsequent I-Fetch by inhibiting the loading of 
E from R. Dis set to .SO (hex) preparatory to obtaining the 
timer value from main storage. and. if an Execute 
instruction is not in progress, the 'block I-Fetch' trigger is 
set. The 'EXCEP' micro-order in the first I-Fetch cycle 
detects timer priority and forces address 014 (hex) into 
ROSAR. This is done without regard for the particular 
condition that sets the 'time clock step' trigger. Forcing 
address 014 in ROSAR causes the timer update 
microprogram to be entered. 

The 'block I-retch' trigger is reset by the 0 -+ Stat D 
micro-order in ROS word 036 or the timer update 
microprogram. A J27 micro-order (ATRSEL) in this same 
ROS word performs two functions. It is ANDed with 
external start or stop. and it represents a ROS branch 
condition if a receive ATR condition is present. 

If an external start or stop condition exists when the 
ATRSEL micrtH>rdcr is encountered, a machine reset is 
hardware-generated as a result of the ANDing mentioned 
previously. The reset forces ROS to the stop loop and, 
therefore, terminates the timer update microprogram. If the 
reset is caused by an external start condition, a branch from 
the stop loop occurs, and a PSW Restart (Diagram 5-601. 
FEMDM) is performed; otherwise, the CE remains in the 
stop loop. 

If no external start or stop condition exists. the 
ATRSEL micro-order causes the CE to test for a receive 
ATR condition. If the re<.:eive ATR condition is present. the 
receive ATR ROS routine is entered (Diagram 5-809, 
FEMDM); otherwise, the C'E continues the timer update 
ROS routine. 

The microprogram issues a three-cycle storage request 
per D to fetch the timer value. While the fetch is in 
progress, any protection checks from storage arc ignored. 
After the fetch. the 3 2-bit timer value is loaded into A and, 
then, decremented by 5. The updated timer value is placed 
into S and T and, then. stored per the D-address (location 
50, hex). Before storage, however, the timer value is 
sampled to sec if it has been decremented to less than 0. If 

this cundition l'Xists. the 'time clock at limit' latch is set to 
request an external interruption on the following end op. 

CPU Store in Progress Exceptional Condition 

The CPLH· store in progress exceptional condition 
accommodates the uniq uc situation in which a store 
operation is in progress at c1H.l-op. Since interruptions and 
e\:ccptional conditions arc detected during this end-op 
cydc. the CL would he unable to record a '"late" storage 
protection violation if one occurred. To prevent this 
situation. :i special circuit is provided to test for a 
store-in-progress condition at end-op (Diagram 5-18, 
FFMDM). If a11 exceptional condition to I-Fetch or a Load 
PSW instruction has been detected while a store operation 
is in progress. this circuit forces a microprogram that 
provides :..i two-cycle delay: this allows recording of a 
possible protection check and establishment of the correct 
priority for the subsequent program interruption. If a 
protect ion check occurs. a program interruption is 
processed next. Otherwise. processing continues with the 
next instruction. 

Machine Check Interruption 

• Follows log-out microprogram. 

• Sets interruption code to identify cause, resets STAT II, 
and enters common interruption routine. 

A machine check interruption is initiated by a logout 
operation, by an RDD (read direct) timeout or by an lOCE 
machine check request. The machine check interruption 
detection scheme is shown in Diagram 5-19, FEMDM. 

When the logout operation (initiated by the Diagnose 
instruction or a machine check error coupled with the 
machine check mask-hit being on) is about to be concluded. 
the · 1----MCH-CK-TRP' micro-order causes the 'machine 
check interrupt' trigger to be set. The ROD Timeout or 
IOCE Mad1ine Check request do not cause a 1-lgout in the 
CE hut set 'machine check' trigger directly. Once set, the 
trigger blocks any new machine checks from initiating 
another logout operation. This trigger also establishes 
machine check priority. and the operation then waits for 
the logout to finish (signified by an end op) before 
continuing. At end-op time. the set state of the 'machine 
check interrupt" trigger forces D to 30 (hex) and, if an 

tCPU stands for Central Processing llnit, a term carried over from 
other computing systems. It is retained in the ALDs and refers, 
generally, to the CL. 

7201-02 FETOM (7/70) 3-15 



Execute instruction is not heing rnnclucJed. sets the 'hlock 

I-fetch' trigger. inhibiting most of the I-fetch actions. 
The 'EXCEP' micro-urcJer in the first I-fetch cycle 

detects machine check: priority and forces address OOC 
(hex) into ROSAR. The ROSAR address causes a branch to 

an interruption microprogram that swres the ol<l PSW per 
the 0-address. Subsequently. the microprogram loads the 
new PSW per the address in D + 40 (hex). The operation 
then procec<ls as directed by the new PSW. 

A flowchart of the hardware operations just explained 
and of the beginning or the machine check microprogram is 
shown in Diagram 5-19. The microprogram starts by gating 

the interruption coJc to S( 16 -31) to begin forming the old 
PSW in ST. This is done by setting S( 16 -31) to all O's if the 

machine check was caused by the CE. If it was l.'.aused by an 

ROD Timeout. hit 29 is set and if the IOCE machine check 
request caused the interrupt. hits 30 JI cncude the IOCE 
identity. The "block I-fetch' trigger and STAT H arc reset. 
(STAT H is reset to modify the subsequent common 

interruption routine for specific machine check actions.) At 
this point, the machine check interruption microprogram 
enters the common interruption routine. 

Program Interruption 

• Initiated by 'program interrupt' latch. 

• Value in interrupt code triggers is transferred to 
S( 16 31) by 'priority I' latch. 

• Sets STAT H, enters common interruptiun routine. 

A program interruption results from improper conditions 
arising during the processing of data or instructions. 
Generally, these improper conditions can be described as 
errors in programming. When any of these conditions are 
detected, they cause a v<1lue to be placed into the eight 
'interrupt code' triggers. The value inserted reflects the 

condition responsible for the interruption. The conditions 
that cause a program interruption and their corresponding 
Interrupt Code trigger settings are shown in f'EMDM 

Diagrams 5-20, 5-11, and 5-21. 

Once any Interrupt Code trigger has been set, the 

'program interrupt' latch shown in Diagram 5-22 is set. 
(The 'INTRP X-branch' micro-order samples this latch to 
modify the execution sequence of instructions and the 

I-Fetch of SS format instructions. Once this latch is set, 

further program violations are lost with the exception of a 
"late" protection check.) This latch establishes priority for 

the program interruption by blocking the priority circuits 
of lower-priority interruptions and exceptional conditions. 

At end op, the output of the •program interrupt' latch is 

gated to force D to 28 (hex), to set the 'priority 1' latch, 
and, if an Execute instruction is not in progress to set the 

3-16 (7/70) 

'block I-Fetch' trigger. The 'EXCEP' micro-order in the first 

I-Fetch cycle detects program interruption priority and 
forces address OOA (hex) into ROSAR. This ROSAR 
address causes a branch to an interruption microprogram to 
store the old PSW per D. The 'priority I' latch causes the 
values in the Interrupt Code triggers (program-interruption 
code) to be gated to S as part of the old PSW. 
Subsequently, the microprogram loads the new PSW per the 
address in D + 40 (hex). CE operation then proceeds as 
dictated by the new PSW. 

Diagram 5-22 is a flowch<1rt of the hardware operations 
just described and of the beginning or the program 
interruption microprogram. The microprogrum starts by 
gating the interruption code from PSW( 16-31) to 
5(16-31). The 'block I-Fetch' trigger and STAT Dare 
reset. and ST AT H is set. (ST AT H mod ifics the subseq ucnt 
common interruption routine for specific program 
in tcrruption actions.) At this point. the program 
interruption microprogram enters the common interruption 

routine. 

Supervisor Call Interruption 

• Initiated by 'supervisor call' trigger, which is set by 
preceding Supervisor Call instruction. 

• E( 8- 1 5 ), which contains interruption code, is 
transferred to S(24-31 ). 

• Sets STAT H, enters common interruption routine. 

The supervisor call interruption results from execution of 
the Supervisor Call instruction. Its basic purpose is to 
initiate a branch to the supervisor program. When the 
priority of the interruption is established. an address is 
forced into ROSAR and into D. The address in ROSAR 
causes the operation to branch to a microprogram which 
stores the old PSW in the address forced into D and fetches 
a new PSW from the address in D + 40 (hex). This new PSW 
places the CE into the Supervisor state. 

Diagram 5-23, FEMDM, shows how the ·1~ 

INTREQ-TGR' micro-order tests for a Supervisor Call 
instruction and sets the ·supervisor call' trigger. This trigger 

is reset if the 'interrupt code 4' trigger is set. Because all 
program interruptions would have been handled before 
executing the Supervisor Call instruction, the •interrupt 
code 4' trigger can be set now only by a "'late" protection 

check. Therefore, performance of the supervisor call 
interruption is suppressed and a program interruption 

occurs in its place. If the 'interrupt code 4' trigger is not 

set, then the 'supervisor call' trigger is not reset. 
The 'supervisor call' trigger gates E(8--15) to S(24·· 31) 

to begin assembling the old PSW. (The 'supervisor call' 
trigger also sets the 'priority 1' latch; because the supervisor 



call and program interruptions cannot be pending at the 
same time, no conflict results from both setting an 
interruption priority code of 0 l.) 

Diagram 5-23 is a flowchart of the hardware operations 
just described and of the beginning of the supervisor call 
interruption microprogram. The minoprogram starts by 
gating the interruption code from PSW( I 6 3 I) to 
S(16-31). The 'block I-Fetch' trigger and STAT D arc 
reset. and STAT H is set. At this point. the supervisor call 
interruption microprogram enters the common interruption 
microprogram routine. 

External Interruption 

• Remains pending if external mask bit, PSW( 7). is not set, 
with the exception of ·rorce interrupt'. which bypasses 
the mask bit. PSW( 7). 

• Initiated by one of the following: 
I. Setting of 'time dock at limit' latch. 
2. Depression of INTERRUPT pushbutton. 
3. Setting a bit in DAR, for which there is a 

corresponding bit on in the DAR mask. 
4. Setting a bit in the PIR, for which there is a 

corresponding hit on in the CCR. 
5. Receiving one of six RDD or WDD signals from 

another CE. 

• "Time clock at limit', 'console' signal, "CE RDD' and 
·wnD' signals, 'DAR Interrupt' and •p1R interrupt' 
triggers arc transferred to S(20---3 I). 

• Sets STAT H. enters common interruption routine. 

An external interruption is caused by one of the following 
if the external bit of the PSW system mask is a 1: 
I. The set state of the "time clock at limit' latch (refer to 

'"Timer Exceptional Condition"). 
2. The depression of the INTERRUPT push but ton on the 

system control panel. 
3. The recognition of any signal on the 'external signal in' 

bus of the Direct Control feature. The external 
interruption circuits and a flowchart of the initiation of 
the external interruption microprogram are shown in 
Diagram 5-24, FEMDM. 

Once priority for the external interruption is established 
during end op, D is forced to 28 (hex), the 'priority 2' 
trigger is set, and, if an Execute instruction is not in 
progress, the 'block I-Fetch' trigger is set. The 'EXCEP' 
micro-order in the first I-Fetch cycle detects external 
interruption priority and forces address 006 (hex) into 
ROSAR. The ROSAR address causes a branch to an 
interruption microprogram to store the old PSW per D. The 

'priority 2' trigger causes the contents of the eight signal 
triggers (the interruption code) to be gated to S(20 31) as 
part or the old PSW. Subsequently. the microprogram loads 
the new PSW per the address in D + 40 (hex). CE operation 
then proceeds as dictated by the new PSW. 

The external interruption microprogram starts by gating 
status of the interrupt triggers to S(20 31 ). S( 16 19) is 
reset to zero. and correct (odd parity is assigned to 

S( 16-- · J 1 ). The 'block I-Fetch' trigger and ST AT D are 
reset. and STAT H is set. (ST AT H is set so that the 
common interruption routine skips micro-orders pertaining 
to the machine check interruption.) At this point the 
microprogram enters the common interruption routine. 

1/0 Interruption 

• Remains pending at IOCE if associated channel mask bit. 
in PSW(O -6, 16-· 19), is not set. 

• IOCE I has highest interruption priority, followed in 
order by IOCE 2 and 3. 

• Three-bit channel address and eight-bit unit address are 
transferred to S(2 I --31 ). 

• Sets STAT H: sends PSA address to IOCE, causing 
interruption. 

An 1/0 interruption results from the reception of a 
simplexed •interruption request' from an IOCE. When 
operating in 9020 mode, the CE makes its system mask 
available to the IOCE at all times. The IOCE determines 
whether to initiate an interrupt request by examining this 
mask. 

Channel priority is determined by hardware within the 
IOCE. In each IOCE, the multiplexor channel (channel 0, 4, 
8) is assigned the highest priority. followed in order by 
selector channels ( l, 5, 9), (2, 6. A). (3, 7) for IOCE's l 3. 

The priority of IOC E interruption requests is determined 
by hardware within the CE. with IOCE 1 having the highest 
priority, followed by IOCE 2, and with IOCE 3 having the 
lowest priority. The 1/0 interruption circuits and a 
flowchart of the initiation of the 1/0 interruption 
microprogram arc shown in Diagram 5-25, FEMDM. At the 
start of end op, the highest-priority trigger that is set resets 
all the others. 

Once priority for an 1/0 interruption is established 
during end-op, D is forced to 38 (hex), the 'priority I' and 
'priority 2' triggers are set, and, if an Execute instruction is 
not in progress, the •block I-fetch' trigger is set. The 
'EXCEP' micro-order in the first I-fetch cycle detects 1/0 
interruption priority and forl:es address OOE (hex) into 
ROSAR. This ROSAR address causes a branch to an 
interruption microprogram to store the old PSW per D. 

7201-02 FETOM (7/70) 3-17 



For 1/0 interrupts. the CE and IOCL share the 
responsibility for storing the 1/0 old PSW. in the proper 
PSA ;.irea. The CE stores hits 0 15 and bits 32---63. lt sends 
the proper physical address of the 1/0 old PSW location to 
the IOCE that initiated the request. The IOCE stores the 
interruption code (bits ::!0---31) containing the channel and 
device address in bits 20- 31 of the 1/0 old PSW location. 
At the same time. the lOCL in effect. propagates the 
extended system mask (bits 16-19 of the current PSW in 
the CE. which is available to all lOC E's via distributed 
simplex lines) into bits 16 -19 of the old 1/0 PSW area. 
thus completing the formation of the 64-bit l/0 old PSW. 
Subsequently. the mit:roprogram loads the new PSW per the 
address in D + 40 (hex). CE operatioll then proceeds as 
dictated by the new PSW. 

The 1/0 interruption microprogram starts by taking the 
contents of physical PSBAR and logical PSBAR and 
combining them to provide the address to be shipped to the 
IOCE (via the External register) to point to the PSA area 
where the IOCE is to store the interruption code. Then, the 
CE sends "permit interrupt' to the IOCE and waits in a 
timing loop for a "response' signal from the IOCE. After the 
receipt of "response', the CE stores the remainder of the l/0 
old PSW (bytes 0, I, and 4--7). STAT H is set so that the 
common interruption routine, which follows next, skips 
micro-orders pertaining to the machine check interruption. 

Common Interruption Routine 

• Program status is assembled in ST and is then stored into 
old PSW location per interruption cause. 

• System is reset if STAT H is reset (machine check 
interruption). 

• Applicable new PSW is fetched per D. 

• Processing resumes after new instructions have been 
fetched and placed into Q. 

The common interruption routine (Diagram 5-26, FEMDM) 
stores the old PSW into main storage and loads a new PSW 
into the CE. This routine is entered by all interruption 
microprograms, except 1/0 interruptions. 

The IC is reduced by 8 or I 6 to rel1ect the doubleword 
address of the instruction that caused the interruption. 

If the ·~IOERR' branch condition is met, indicating an 
'IOCE MCH CK'. a branch is taken to the 1/0 interruption 
microprogram. This address is placed into T( 40---63) as part 
of the old PSW. Next, the contents of the PSW register are 
gated to S(0-15) and T(32-39). This action completes the 
old PSW transfer to ST. The routine inhibits storage 
protection, sets marks O·-7, and initiates a four-cycle 
storage request to store the old PSW per the D address. An 

3-18 (7 /70) 

interruption reset clears the CE of the condition that 
initiated the access to the interruption microprogram. The 
"invalid branch· trigger. the 'invalid inst ruction address' 
trigger. and ST AT G arc reset. 

At this point, the common interruption routine checks 
STAT H to sec what class of interruption initiated the 
operation. If STAT H is reset, the operation is due to a CE 
machine check interruption. and the CE is placed in the 
scan mode. Three no-op cycles are taken to allow the CE 
and main storage to become quiescent. Then a "system 
reset" signal clears all control triggers. The ·scan mode' 
trigger is reset. and the routine prepares to load the new 
PSW. 

STAT H is set if the initiating interruption is other than 
a machine check. In this case, the CE is not placed in the 
scan mode and the system is not reset. 

To generate the address for the new PSW, 10 (hex) is 
placed into B. setting B(59) to 1. Next, the value in B is 
shifted left twice and gated to PAB as an effective value of 
40 (hex). Simultaneously, the old PSW address is gated 
from D to PAA. The sum, the address of the new PSW. is 
gated from PAL to D. Storage protection is then inhibited, 
and a 3-cyclc fetch per Dis initiated. 

The interruption microprogram has now finished the 
common interruption routine and enters the Load PSW 
microprogram (Diagram 5-60 I, FEMDM). When received 
from main storage. the new PSW is loaded into ST. Because 
the new PSW will require fetching of instructions from a 
new storage location, the 'I-Fetch invalid address' trigger is 
set to enable recording of any invalid address that may 
result on the subsequent fetch. Portions of the new PSW are 
loaded into the PSW register and into the IC and 0. A 
3-cyclc storage request per the IC is initiated, and the IC is 
incremented by 8. At this point, the program shifts to a 
common branch microprogram. The instruction address in 

D is incremented hy 8 and transferred to the IC in 
anticipation of a branch instruction. When the first 
doublewor<l arrives from main storage it is loaded into Q, 
and the op-code halfword of the first instruction is 
transferred to R. D( 21,22) is sampled to see if Q needs 
refilling: if so. a second request per the IC is initiated. If Q 
does not need refilling, the program generates an end op. 

Stop, Wait, and Repeat Exceptional Conditions 

The stop exceptional condition is caused by ( 1) depressing 
STOP, (2) detecting an address-compare condition when 
ADDRESS COMPARE STOP is in the STOP position. and 
(3) operating at the instruction step rate. The CE enters a 
"'stop loop" during which no instructions are processed and 
all interruptions are kept pending. Certain pushbuttons and 
external conditions arc sampled in the stopped state, which, 
if active, can cause the CE to exit from the stop loop. 
Pushbutton sampled arc: STORE, DISPLAY. SET IC, 



START. ROS TRANSFER. REG SET. LOAD. and PSW 

RESTART. The external conditions tested are IPL (system 

or subsystem). external start. and ATR select. 
The wait exceptional condition is caused by the wait 

mask bit. PSW( 14 ). being set to a I. CE dock signals arc 

inhibited. Processing continues when an external or 1/0 
interruption. an external start. or :.111 IPL operation is 

initiated. 
The repeat exceptional condition arises during the repeat 

instruction operation (a maintenance aid). The REPEAT 
INSN (instruction) switch on the CE control panel must he 

in the SINGLE position. 
The scheme for detecting a stop. wait, or repeat 

exceptional condition is shown in Diagram 5-27. FEMDM. 

When any one of these exceptional conditions has 
priority during end-op and an Execute instruction is not in 

prugress. the 'block I-Fetch' trigger is set. During the next 

cycle. the first I-Fetch cycle, the •EXCEP' micro-order 
forces an address into ROSAR: 026, 02A, and 028 (hex) 

for the stop. wait. and repeat exceptional condition, 

respectively. This address causes a functional branch to a 

loop microprogram. Because each of these exceptional 

conditions may be caused by manual intervention, their 

microprograms arc discussed in Chapter 4, Section l. 

Program Store Compare Exceptional Condition 

• Instruction refetch is performed when •psc' trigger is 

set. 

• Refetch routine decrements instruction address by 8 or 
16 and issues request to refill Q. 

A program store compare exceptional condition results if 

the next instruction to be processed must again be fetched 

into the Q-. R-. and E-registers. This need occurs after 
processing of the Execute. Diagnose or Load PSBAR 

instructions and after some store operations. Although the 

instruction to be executed next is held in the Q-register, 
this instruction has been modified in its main storage 
location. Therefore. to have the correct version of the 
instruction in the Q-register, the instruction must he 
rcfctched. 

An instruction refctch is initiated by the 'PSC' trigger. 

The scheme for detecting a program store compare 

exceptional condition and the instruction refctch 

microprogram llowchart are shown in Diagram 5-28~ 

FEMDM. 

A need to refetch instructions is treated as an 

exceptional condition by the CE. When this condition is 
detected, the •block I-Fetch' trigger changes the normal 

I-Fetch routine, and a branch to an instruction refetch 

microprogram is performed by the first I-Fetch word. 

The first ROS word in the rcfctch microprogram resets 

the "block I-Fetch' trigger so that normal I-Fetch can be 

resumed after Q is refilled. This word also establishes 

whether the address currently specified in the re is one or 

twu doublewords ahead or the current instruction. The 

address in the IC is always at least one doubleword ahead of 

the address for the instructions in Q. If Q was not refilled 

before the refctch routine, the IC is one doubleword (8 
bytes) ahead of the current instruction: if Q was just 

refilled. IC is two doublewords or 16 bytes ahead. 

IC(2 I ,22) indicates whether Q was rcl'illed before the 

rcfetch routine. If IC(2 I .22) is not set to 11. 3 request to 

refill Q (if generated) was blocked by the exception3J 
condition in progress (i.e .. the need for instruction refctch) 

and the IC is 8 bytes ahead of the current instruction. If, 
however, 1((21.22) = 11. the need ror an instruction 
refctch occurred after Q was refilled: IC(20) has been 
incremented. and the IC is 16 bytes ahead. Accordingly, the 
second ROS word in the rcfctch microprogram subtracts 8 
or 16 from the IC and issues a 3-cyclc request per the 

decremented address. This word also resets the 'PSC' and 
·execute in progress' triggers and then causes the Load PSW 
microprogram to be entered (as shown in Diagram 5-60 I, 

FEM OM). Entry corresponds to a point after the new PSW 

has been loaded but before the successful branch routine. 

IC is incremented by 8, the next instruction is transferred 

to R, and Q is refilled if necessary. before completing the 

program store compare exceptional condition 

microprogram with an end op. 

Invalid Instruction Address Test Exceptional Condition 

• Determines interrupt code triggers to be set if program 

check was detected while addressing instruction. 

The previously discussed exceptional conditions and 

interruptions result from unusual conditions occurring 
during execution of an instruction. In an invalid instruction 

address test exceptional condition, however, it is the 
address of the next instruction that is invalid, protected, or 
incorrectly specified. Thus, an interruption cannot occur 
until the CE attempts to execute that instruction. 

An invalid instruction address is one that fails to meet 

one or more of the following three requirements: 

1. Because instructions are specified on a 2-byte basis, the 

least significant bit of the instruction address must 
always be a zero. Failure lo meet this requirement 

results in a specification program interruption. 

2. The instruction address cannot exceed the storage 

capacity used with a given installation. ln addition, the 

storage unit containing the instruction must be available 

to the CE. An attempt by the CE to execute an 
instruction from an unavailable or nonexistent location 

7201-02 FETOM (7/70) 3-19 



results in an addressing program interruption (Diagram 
5-29). 

3. The instruction address cannot specify an area in main 
storage that is fetch-protected. An attempt by the CE to 
execute instruct ions from a fetch-protected location 
results in a protection program interruption. 

If any of these three requirements is not met, the CE 
hardware forces a new address into ROSAR. The 
microprogram accessed by this address sets the appropriate 
program interruption code (specification. addressing, or 
protection) into the CE. This microprogram is then 
followed by the program interruption microprogram 
previously described. The following paragraphs describe the 
methods used to detect each violation and to set the 
appropriate interrupt code triggers. 

Specification Detection 

Not all st~1rage requests for instructions result in Q being 
refilled. For example. end-op requests are ignored if the 
'block I-Fetch' trigger is set. Also. branch requests made 
during I-Fetch are ignored if the conditions for a successful 
branch are not met during the following execution 
(non-branch on condition instructions only). For this 
reason, the least significant address bit or the instruction, 
IC(23) l or D(23) if preceded by the 'BEOP' micro-order 1. 
is detected at the start of I-Fetch. However. because the 
specification interruption code is not yet set, the program 
interruption microprogram cannot be immediately entered. 
Instead, the invalid inst ruction address test exceptional 
condition microprogram is entered after processing all 
interruptions and higher-priority exceptional conditions. If, 
however. during this rorced microprogram, an invalid or 
fetch-protected address is requested, the specification 
interruption code is not set because in either case. the 
address is outside of "fetchable" storage. 

During execution of the Display instructions, if the new 
page address is not on a doubleword boundary, a 
microprogram branch is forced to address 007 (hex). It is 
then restored from the LSWR and a specification error is 
set. At end-op, the excep branch is made to the program 
interrupt microprogram. 

Invalid Address Detection 

e 'I-Fetch request' trigger prevents setting of addressing 
interruption code while refilling Q. 

• 'I-Fetch invalid address' trigger indicates IC request is 
invalid. 

• 'Branch invalid address' trigger indicates branch address 
of successful branch instruction is invalid. 

3-20 (7/70) 

Following a request to refill Q, the IC is incremented by 8 
to obtain the instruction address for the next request. The 
scheme of incrementing the IC ahead of time allows greater 
speed in requesting instructions from main storage. 
However, with the IC one doubleword ahead of the 
instructions in Q. a unique case occurs if the instructions in 
Q are obtained from the last available location in main 
storage. In this case, the incremented IC specifies an invalid 
address; i.e., an address that is in excess of the main storage 
capacity. Because the Q-register refill routine is initiated 
before the CE runs out of instructions, a request per the IC 
refills Q with instructions from an invalid address.t Even 
though Q contains invalid instructions, an addressing 
program interruption must not occur until the CE attempts 
to process these instructions. This condition arises because 
the last valid instruction being processed by the CE may 
result in a successful branch to a valid storage location. 

A similar situation may occur following an unsuccessful 
branch instruction that specifies a branch to the last 
available main storage location. Excluding the Branch on 
Condition instructions the CE assumes that the branch 
instruction is successful and, accordingly, issues a request 
per D. Following the request. D is updated by 8 and 
specifies an invalid address. In this case, an addressing 
program interruption must not occur because. upon 
establishing that the branch is unsuccessful, the CE resumes 
normal addressing per the IC. For branch instructions. an 
addressing interruption must occur only when the address 
specified by a successful branch is above the available main 
storage capacity. This situation may also exist after any 
load-PSW operation or after the program store compare 
exceptional condition. 

An invalid-address test is performed each time the CE 
issues a request to refill Q. Because a request for invalid 
instructions will not necessarily cause an interruption, 
setting of the interrupt code triggers must be blocked while 
Q is being refilled.tt The scheme used for detecting a 
"true" invalid instruction address error is shown in Figure 
3-4. 

The 'I-Fetch request' trigger prevents the invalid-address 
condition from causing an interruption while Q is being 
refilled. This trigger is set when a need to refill Q is 

tThe instruction address is considered invalid by the SCI upon 
detection of a carry from the most significant bit position in the IC. 
This bit position is defined by the size of the main storage in the 
particular installation. 

tt An exception to this rule occurs if the last one or two half words 
of an SS instruction are requested from an invalid address while the 
first halfword is contained in a valid storage location. In this case, 
the entire SS instruction is considered to have an invalid address, 
and, because the CE has attempted to process the instruction, the 
interrupt code triggers are set as soon as the request is generated. 



Block I-Fetch Tgr 

Delayed 
Block 

I-Fetch 

IFSR Inhibits setting of invalid 

(Nod NEOP or BEOP ,__ ___ oddress interruption code. 

Clocked 0 -- STAD 

Invalid Addr from BCU 

(Q-Refi 11 Necessary) 

I-Fetch 

Request 

f Includes lOms delay to allow 'gate I-Fetch invalid 

address' signal to reset 'I-Fetch invalid address' 

trigger before testing far set conditions. 

Late BCU Cleanup 

KD70l 

Unsuccessful Branch 

IF-INV-+-TGR A 

(Not) 1- INST-MSREQ A OR 

l-F etch Sequencer l 
~-----------t A Gate I-Fetch 

Invalid 

Address 

KD711 

O__..BR-INV-ADR 

Figure 3-4. Detection of Invalid Instruction Address 

I-Fetch 

Invalid 
Address 

KD71 l 

Branch 

Invalid 

Address 

K0701 

detected: depending on the current instruction status in the 

CE, the trigger is set as follows: 

I. For non-branch I - and 2-halfword instructions, the 

trigger is set by the I-Fetch sequencers. 
1 For hranch instructions, the trigger is set by the 

'1-+INST-MSREQ' micro-order given at the start of the 

branch execution. Note that if an unsuccessful Branch 

on Condition instruction occurs and IC(2 I ,22) == 00, the 
'I-Fetch request' trigger is not set because Q will not be 
refilled. 

NEOP or BEOP 

IC (21 , 22) = 00 

IC(21,22) = 11 

Predecode (Not) RR Format 

OR 
A 

Invalid 
lnstruc t ion 

Address 

KD71 l 

3. For SS instructions, the trigger is set if IC(2 I), or 0(21) 

for the 'BEOP' micru-ordcr, is equal to 0 during end op. 

This condition indicates that the complete SS 

instruction is already in Q and succeeding instructions 

arc being requested. 

The output of the 'I-Fetch request' trigger prevents the 

interrupt code triggers from being set by the 'invalid 

address' signal from the SCI. In addition, the output of the 

'I-Fetch request' trigger serves as one of the conditioning 

7201-02 fETOM (7 /70) 3-21 



inputs for the 'I-Fetch invalid address' and 'branch invalid 
address' triggers. One of these triggers is set whenever the 
SCI indicates that the address of the storage request 
exceeds the main storage capacity. The 'invalid address' 
signal sets the 'I-Fetch invalid address' trigger if the invalid 
address is due to the CE fetching ahead. Conversely, this 
signal sets the 'branch invalid address' trigger when the 
invalid address is the result of a successful branch 
instruction. 

The 'gate I-Fetch invalid address' trigger dictates 
whether the 'I-Fetch invalid address' or 'branch invalid 
address' trigger is to be set. When set, this trigger conditions 
the 'I-Fetch invalid address' trigger; when reset, the 'branch 
invalid address' trigger. Depending on the current 
instruction status in the CE, the 'gate I-fetch invalid 
address' trigger is set as follows: 
I. For non-branch 1- and 2-halfword instructions, the 

trigger is set by the I-Fetch sequencers. 
2. For SS instructions, the trigger is set by the 

'IF-INV~TGR' micro-order given at the start of the SS 
I-Fetch routine; i.e., the presence of the 'IF-INV~TGR' 
micro-order and the absence of the 'l~INST-MRSEQ' 
micro-order when the complete SS instruction is in Q. 

3. For unsuccessful branch instructions (except Branch on 
Condition), the trigger is set by the presence of the 
'IF-INV~TGR' micro-order and the absence of the 
'l~INST-MSREQ' micro-order; for an unsuccessful 
Branch on Condition instruction, the trigger is set by the 
simultaneous presence of the 'l~INST-MSREQ' and 
'IF-INV~TGR' micro-orders at the start of execution. 
(The various branching conditions that may arise are 
described in Section 6 of this Chapter.) 

When the 'gate I-Fetch invalid address' trigger is set, the 
'invalid address' signal is allowed to set the 'I-Fetch invalid 
address' trigger, indicating that Q has been refilled with 
instructions from an invalid address. However, because R 
may still contain a valid RR instruction, further testing is 
required to establish that a true interruption condition 
exists. The setting of IC(2 l ,22) during end op indicates 
whether a valid or an invalid instruction is contained in R. 
If IC(21,22) = 11 and an RR instruction is predecoded, R 
contains a valid instruction. When IC(2 l ,22) = 11 but the 
instruction is not of the RR format, the balance of the 
instruction has been obtained from an invalid location and 
the 'invalid instruction address' trigger is set. If IC(2 l ,22) = 
00, the 'invalid instruction address' trigger is set regardless 
of the instruction format; this condition indicates that R 
contains the first halfword of an invalid instruction. 

When the 'gate I-Fetch invalid address' trigger is not set, 
the 'invalid address' signal sets the 'branch invalid address' 
trigger. Because, in this case, the invalid address is the result 
of a successful branch instruction, the 'invalid instruction 
address' trigger is set without further testing being 
necessary. 

3-22 (7/70) 

Fetch Protection Detection 

• 'Delayed I-Fetch storage request' trigger prevents setting 
of protection interruption code while Q is being refilled. 

• 'Delayed I-Fetch protect gate' trigger is set if request is 
due to normal sequencing. 

• 'Protected branch address' trigger is set if branch is made 
to protected location. 

The CE cannot execute instructions from a fetch-protected 
area in main storage. Because the IC is always one 
doubleword ahead of the instructions in Q, a unique 
situation occurs if the instructions in Qare obtained from a 
main storage location adjacent to a protected area. In this 
case, the incremented IC specifies a protected address and, 
because the Q-register refill routine is initiated before the 
CE runs out of instructions, the request per the IC refills Q 
with instructions from a protected address. A protection 
interruption, however, does not occur until the CE 
attempts to execute the protected instructions. This 
condition arises because the last valid instruction being 
processed by the CE may result in a successful branch to a 
valid storage location. 

A protection test is performed each time the CE issues a 
request to refill Q. Because a request for protected 
instructions will not necessarily' cause an interruption, the 
setting of the 'protection check (to CE)' and 'instruction 
length not available' triggers is blocked while Q is being 
refilled. The scheme for detecting a "true" protection 
violation, shown in simplified form in Figure 3-5, is closely 
related to the invalid addressing detection scheme 
previously described. The major difference between the 
invalid-addressing and fetch-protection schemes is in 
timing: the 'invalid address' signal arrives at the CE 1 cycle 
after the request, while the 'protection check' signal arrives 
2 cycles after the request. For this reason a separate circuit 
is used for detecting a protection violation. 

The 'delayed I-Fetch storage request' trigger prevents the 
'protection check' signal from causing an interruption while 
Q is being refilled. This trigger is set one cycle after the 
'I-Fetch request' trigger is set by a request to refill Q. The 
output of the 'delayed I-Fetch storage request' trigger 
serves as one of the conditioning inputs for the 'delayed 
I-Fetch protect gate' trigger. This trigger is set ·if the current 
storage request is due to a nonbranch or unsuccessful 
branch request and is set by the same conditions that set 
the 'gate I-Fetch invalid address' trigger. When the 'delayed 
I-Fetch storage request' trigger and the 'delayed I-Fetch 
protect gate' trigger are both set, the 'protection check' 
signal sets the 'I-Fetch invalid address' trigger. The action at 
this point is identical to that described for detection of 
invalid addressing; i.e., a test is made to establish if the CE 
has attempted to execute instructions from a protected 



Block I-Fetch Tgr 

(Not) NEOP or BEOP 

Clocked 0 -sr AD 

Protect Check from BCU 

I-Fetch Sequencers 1 • (Not) 3 

1-JNST -MSREQ 

Predecode SS Format 

NEOP .,_ BEOP 

CPU 5 Latch I-Fetch Re uest T r 

P2 
A 

Delayed 
Block 
I-Fetch 

Delayed IF 
Storage 
Request 

KD721 

Block Protect lrpts Inhibits setting of protection 
interruption code 

IC(21,22) = 00 

Predecode (Not) RR Format 

IC(21,22) = 11 

NEOP or BEOP 

A 

OR 
A 

(Unsuccessful Branch) 

JF-JNV-TGR 

Delayed IF 
Protect 
Gate 

I-Fetch 
Invalid 
Address 

Jnvcilid 
Instruction 
Address 

'--------~A 
(Not) 1-JNST-MSREQ 

I-Fetch Sequencer 1 

KD721 

KD711 Gate IF Invalid Addr Tgr 

o-BR-INV-ADR 

Figure 3-5. Detection of Fetch-Protected Instruction Address 

area, and the 'invalid instruction address' trigger is set if a 
protect violation has occurred. · 

If the request to refill Q is a result of a branch 
instruction (as indicated by the reset state of the 'gate 
I-Fetch invalid address' trigger), the 'delayed I-Fetch 
protect gate' trigger is not set. In this case, the 'protection 
check' signal sets the 'protected branch address' trigger, 
which in turn sets the 'invalid instruction address' trigger. 

Invalid Instruction Address Microprogram 

• Issues second request for instruction. 

• Interrupt code triggers are set per highest-priority error 
detected: (I) addressing= 101, (2) protection= 100, (3) 
specification = 110. 

The detection of a specification, addressing, or protection 
exception . and the associated microprogram are shown in 

Diagram 5-29, FEMDM. Because all three exceptions access 
the same microprogram, the microprogram must 
re-establish the nature of the exception to set the proper 
interruption code. To establish which exception is currently 
in effect, the microprogram issues a second request for 
instructions. This time, however, the setting of the 
interrupt code triggers is not blocked; i.e., the appropriate 
interruption code is set immediately upon detection of a 
specification, addressing, or protection exception. 

Before generating a second request, the IC must be 
decremented to the address that caused the exception. The 
status of IC(21,22) indicates whether the current IC count 
is one or two doublewords ahead of the required address: if 
IC(21,22) is not set to 00, the IC is one doubleword ahead; 
if IC(21 ,22) = 00, the IC is two doublewords ahead. (The 
other recovery microprograms test IC(21,22) for a setting 
of 11 ; because the invalid instruction address test 
exceptional condition does not set the 'block I-Fetch' 
trigger, IC(21,22) is updated and tested for a setting of 00.) 

7201-02 FETOM (7 /70) 3-23 



Accordingly, the microprogram subtracts 8 or 16, 
decimal, from the IC, and loads the decremented address 
into D. The STC is then set to zero and a 3-cycle request is 
issued per D. After the request, the STC is incremented 
once during each subsequent cycle to provide the required 
wait interval between the request and what would be the 
cycle for transferring the instructions to Q. The appropriate 
interrupt code trigger(s) is then set upon receipt of a 
specification, addressing, or protection exception. Because 
the low-order bits of the addressing interruption code equal 
101, there is no need to block the protection interruption 
code (100) from also being set if it is received. However, if 
either of these conditions is set, the setting of the 
specification interruption code, 110, is blocked. The 
specification interruption code need only be set if IC(23) = 

1 ; because the invalid instruction address tes~ exceptional 
condition does not set the 'block I-Fetch' trigger, Iq23) = 

1 if D(23) equalled 1 during the preceding branch- end op. 
The invalid instruction address test exceptional 

condition microprogram terminates with a normal end op. 
If no higher-priority exceptional condition or interruption 
is detected, the program interruption microprogram is 
entered next. 

Q-Register Refill Exceptional Condition 

• One extra I-Fetch cycle is performed to allow refilling of 
Q without conflicting with execution sequence of next 
instruction. 

• Fetch sequencers are always activated. 

The Q-register refill exceptional condition arises when 
Q-register (instruction buffer) refilling conflicts with the 
start .of the next instruction. The exceptional condition 
delays processing of the next instruction by one (or two) 
cycles. 

Following each storage request for instructions, the IC is 
incremented by 8 to obtain the address from which 
instructions will be fetched by the next reg uest. This 
updating is accomplished by gating the contents of the IC 
to the parallel adder, adding a 1 to IC(20), and gating the 
incremented address back to the IC. The need to update the 
IC usually adds another cycle to the I-Fetch of RR, RX, 
RS, and SI instructions. There are two reasons for this extra 
cycle: 

I. The SCI requires that each main storage address be 
retained for at least two cycles. Therefore, main storage 
requests during the first I-Fetch cycle would interfere 
with end-op requests. 

2 .. Because the parallel adder is used to increment the IC, 
and the first cycle in the execution phase may also 

3-24 (7/70) 

require the use of the parallel adder, the execution phase 
must be delayed until the IC is incremented. 

The case when I-Fetch requires a second cycle (third if 
an indexed RX instruction) is treated as an exceptional 
condition in the CE. The 'EXCEP' micro-order in the first 
ROS word of the I-Fetch microprogram overrides the 
functional branch micro-order per the instruction op code 
[E(02-07)-?ROA] and forces a new address into ROSAR. 
This forced address is determined by the format of the 
upcoming instruction and the status of the I-Fetch 
sequencers (Diagram 5-30, FEMDM). Operation of the 
I-Fetch sequencers is initiated at end op when the need to 
refill Q exists and the next instruction to be executed is not 
in the SS format. If the request was generated two cycles 
before end op, sequencer 2 is latched at the start of I-Fetch; 
otherwise, sequencer 1 is being set. 

At the start of I-Fetch, The 'EXCEP' micro-order 
samples sequencer 1 to see if it is being set. If it is, a new 
address is always forced into ROSAR, causing one extra 
I-Fetch word to be added to the basic I-Fetch. 

If sequencer 2 is found latched, the parallel adder is 
available for use on the next cycle because IC(20) has 
already been incremented. I-Fetch of RR and shift instruc
tions does not require the fetching of an operand from 
main storage; also, storage operands for indexed RX 
instructions are not requested until the second basic I-Fetch 
cycle. For these reasons, sequencer 2 forces a new ROSAR 
address only if an RR, indexed RX, or shift instruction is 
not being fetched. 

The forced ROSAR addresses as a result of the Q-register 
refill exceptional condition are shown in Table 3-1. The SS 
format is included for completeness. However, because the 
I-Fetch sequencers are ~ot activated, a Q-register refill 
exceptional condition is never detected during the SS 
I-Fetch microprogram. Instead, the functions of the 
sequencers are initiated by micro-orders in that micro
program. 

Two-Cycle RR I-Fetch 

The actions of the first !"Fetch cycle are unchanged except 
for the overriding of the 'E(02-07)-?ROA' micro-order by 
the 'EXCEP' micro-order (Diagram 5-6). During the second 
RR I-Fetch cycle, sequencer 2 is set and sequencer 1 is 
reset. This status increases the IC by 8 and returns the new 
instruction address to the IC at the start of the next cycle, 
thus completing the updating of IC(20). During the next 
cycle (first execution cycle), sequencers 3 and 1 are both 
set by the 'RASCR' micro-order in the forced word. This 
condition indicates that new instructions are to be gated to 
Q at the start of the second execution cycle. The major 
registers and timing applicable to this sequence are shown 
in Diagram 5-8, FEMDM. 



Table 3-1. 0-Register Refill Exceptional Conditions 

Request Issued During Preceding: Forced 
ROSAR 

IC(21,22) EEOP NEOP,BEOP,orEEOP Address 
Instruction Being Fetched at End Op (2 Cycles Early) (1 Cycle Early) (Hex) 

RR 00, 01, or 11 Never Never None 

10 Yes Never None 

10 No Yes 030 

RX, RS, or SI 00 or 11 Never Never None 

Indexed RX, or shift RS 01 or 10 Yes Never None 

Indexed RX 01 or 10 No Yes 03A 

Non-indexed RX 01 or 10 Yes Never 022 

Non-indexed RX 01 or 10 No Yes 032 

Shift RS 01 or 10 No Yes 020 

Non-shift RS, or SI 01 or 10 Yes Never 024 

Non-shift RS, or SI 01 or 10 No Yes 034 

SS 11 Never Never None 

00, 01, or 10 Never Yes None 

t All shift instructions are of the RS format with an op code of 1000 lXXX. 

Forced-Cycle RX I-Fetch 

If the request to refill Q was not issued 2 cycles before end 
op, the actions of the second RX I-Fetch cycle include the 
same actions as the second RR I-Fetch cycle. Otherwise, 
IC(20) has already been incremented and sequencers 1 and 
3 are automatically set during the second cycle. If the RX 
instruction is indexed, then a second forced word is now 
performed; this word contains the same micro-orders as the 
second word of the basic RX I-Fetch. Otherwise, the first 
forced word completes the I-Fetch routine after issuing any 
request inhibited during the first I-Fetch cycle. This action 
is performed by the 'MS-REQ*D-3' micro-order. D is also 
transferred to PAL if the request for new instructions was 
issued 2 cycles before end op. Because in this case 
sequencer 2 is reset during the first execution cycle, a 
'SPEC' micro-order in the first execution word tests the 
storage address from PAL, not D. The new instructions are 

gated into Q [and the next op-code word to R from 
Q(0-15) if IC(21,22) = 10 at end op] at the start of the 
first execution cycle (second execution cycle if the request 
was not made two cycles early and the RX instruction is 
not indexed). The major registers and timing applicable to 
the non-indexed case are shown in Diagram 5-12, FEMDM. 

Two-Cycle RS and SI I-Fetch 

The major registers and timing applicable to the 2-cycle RS 
and SI I-Fetch are the same as that for the 2-cycle, 
non-indexed RX I-Fetch (Diagram 5-12). If the request to 
refill Q was not issued two cycles before end op, the actions 
of the second I-Fetch cycle include the same actions as the 
second RR I-Fetch cycle. Otherwise, IC(20) has already 
been incremented and sequencers 1 and 3 are automatically 
set during this forced cycle. This action results in the refill 
of Q at the start of the next cycle (first execution cycle). 

7201-02 FETOM (7 /70) 3-25 



Whichever cycle Q is refilled, Q(0-15) is also transferred to 
R if IC(21,22) was set to 10 during the preceding end op. 
This transferring of the op-code halfword is otherwise 
performed by an appropriate micro-order in the. first 
I-Fetch word. If an MVI, STM, TS, I/O, or shift instruction 
is being fetched, no further I-Fetch actions are necessary. 
However, fetching of other RS or SI inst ructions causes the 
storage request omitted by the first I-Fetch cycle to be 
issued now. This request is performed by the 'MS-REQ*D-
3' micro-order. Also, D is transferred to PAL if the 
Q-register refill request was issued two cycles before end 

3-26' (7 /70) 

op. Because in this case sequencer 2 is reset during the first 
execution cycle, any 'SPEC' micro-order tests the storage 
address from PAL, not D. 

It was previously stated that the last I-Fetch word 
always includes the 'E(02-07)-*ROA' micro-order. 
However, there is one exception to this. statement: the 
forced I-Fetch cycle for shift instructions includes the 
'E(04-07)-*ROA' micro-order, which, in turn, forces the 
first execution cycle to branch to the second cycle per D 
rather than per PAL. 



SECTION 2. FIXED-POINT INSTRUCTIONS 

This section discusses the 35 instructions of the fixed-point 
instruction set. These instructions use the RR, RX, and RS 
formats. Positive fixed-point numbers are expressed in true 
binary form, whereas negative numbers are expressed in 
complement binary form (2's complement form). One 
operand is always in 1 of the 16 GPR's; the other operand 
may be in either a GPR or in main storage. For a discussion 
of n um her re pre sen ta ti on, data formats, operand 
addressing, instruction formats, data flow, program 
interruptions, and condition codes, see Chapter 1. 

LOAD 

The fixed-point load instructions provide a means of 
loading operands into the LS GPR's. The load operation 
may be register-to-register (RR format) or 
storage-to-register (RX and RS formats). In any case, the 
instruction loads the second operand into the first operand 
location, and the second operand location remains 
unchanged. In addition, certain load instructions can test 
the second operand before loading it and can load the 
second operand 1n complement, positive, or negative form. 

Load, LR (18) 

• Load 2nd operand (in GPR per R2) into 1st operand 
location (in GPR per RI). 

• RR format: 

18 Rl R2 

7 8 11 12 15 

Fetch 2nd operand from GPR per R2. 

Load 2nd operand into GPR per R1. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is in S and T. 

The Load, LR, instruction loads the second operand from 
the GPR per R2 into the GPR per Rl. At the start of 

execution, the word-length second operand is in S and T. 
Because both operands are in GPR's, no specification test is 
performed. The second operand is loaded into the GPR 
specified by Rl, and an end-op cycle is taken. 

Load, L (58) 

• Load 2nd operand (in storage) into 1st operand location 
(in GPR per RI). 

• RX format: 

58 R1 X2 B2 D2 

7 8 11 12 15 16 19 20 31 

Fetch doubleword (containing word
length 2nd operand from main storage. 

Select word-length 2nd operand 
from doubleword per D(21). 

Load 2nd operand into G PR per R l . 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T (not used). 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 
perD. 

• D(21) determines which word of doubleword is to be 
stored: if a 1, right word; if a 0, left word. 

The Load, L, instruction loads the second operand from 
main storage into the GPR per Rl. Instruction execution 
starts with a specification test. If a program specification 
interruption occurs, an end op is forced and the instruction 
is suppressed. If no specification check exists, D(21) is 
tested to determine which word of the doubleword fetched 
from main storage will be gated from the SDBO to T. If 
D(21) = 1, the right word is gated; if D(21) = 0, the left 
word is gated. The contents of T are then loaded into the 
GPR specified by Rl, and an end-op cycle is taken. 

7201-02 FETOM (7/70) 3-27 



Load Halfword, LH ( 48) 

• Load halfword 2nd operand (in storage) into 1st 
operand location (in GPR per Rl ). 

• RX format: 

48 R 1 X2 B2 D2 
7 8 11 12 15 16 19 20 31 

Fetch doubleword {containing halfword 
2nd operand) from main storage. 

Select halfword 2nd operand from 
doub leword per D {21, 22). 

Expand halfword 2nd operand to 32-bit 
word by propagating sign bit to left. 

Load expanded 2nd operand 
into GPR per Rl. 

e Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T (not used). 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• Halfword operand is expanded to word by propagating 
sign of halfword into 16 high-order bits of word-length 
register. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a 1, right word; if a 0, left 
word. 

• D(22) determines which half of word contains halfword 
2nd operand: if a 1, right half; if a 0, left half. 

The Load Halfword, LH, instruction loads the halfword 
second operand (located, in main storage) into the GPR 
specified by Rl. The halfword obtained from main storage 
consists of 16 bits. Before loading the operand into LS, it is 
expanded to a 32-bit word by propagating the sign bit of 
the half word through the 16 high-order bits of a 
word-length register. 

3-28 (7/70) 

Diagram 5-102, FEMDM, is a flowchart of the Load 
Halfword instruction. At the start of execution, the first 16 
bits of the instruction are in E, the second operand address 
is in D, and the first operand is in S and T. (The first 
operand plays no part in the instruction; it is subsequently 
destroyed when data is loaded into T .) During I-Fetch, a 
storage request was made to obtain the doubleword 
containing the halfword second operand. 

The instruction first tests for a specification check 
condition. If a program specification interruption occurs, 
an end op is forced and the instruction is suppressed. If no 
specification check exists, the execution continues and may 
be divided into three general steps: 
1. Set up A to propagate the sign: 

a. Load l's into PAL(32-59), shift left four positions, 
and gate the result to A. ("A" now contains FFFF 
FFOO.) The 1 's are generated (ALD AP81 l) as a 
result of ROS word 0108 (CLD QBOll) containing 
100 in bit positions 82, 83, and 84 (CLD QZOl 1). 

b. Gate the contents of A to P AB, shift left four 
positions, and gate the result to A. ("A" now 
contains FFFF FOOO.) 

c. Gate the contents of A to PAB, shift left four 
positions, and gate the result to A. ("A" now 
contains FFFF 0000.) 

2. Examine D(21) and D(22) to determine which halfword 
of the doubleword operand brought out from main 
storage is to be used as the halfword operand. The 
specified halfword may be in any one of four possible 
positions of the doubleword specified by D(21) and 
D(22): 

0(21,22)-00 01 10 11 

D(22) = 0 D(22) = 1 D(22) = 0 D(22) = 1 I 
15 16 31 32 47 48 63 

D(21) = 0 D(21) = 1 

a. If D(21) = 0, gate SDB0(0-31) to T; if D(21) 1, 
gate SDB0(32-63) to T. 

b. If D(22) = 0, gate T(32-47) to PAA(48-63), and 
gate a 1 to PAA( 4 7) if T(3 2) = 0. If D(22) = 1, gate 
T(48-63) to PAA(48-63), and gate a 1 to PAA(47) 
if T(48) = 0. 

c. Gate the contents of A to PAB(32-63). 
3. Load the selected word: 

a. Gate PAL(32-63) to T. 
b. Gate the contents of T to the GPR specified by the 

Rl field in E(8-11 ). 
c. Take an end-op cycle. 



Load and Test, LTR (12) 

• Load 2nd operand {in GPR per R2) into 1st operand 
location (in GPR per RI) and set CC according to result. 

• RR format: 

12 Rl R2 

7 8 Ii 12 15 

Fetch 2nd operand from G PR per R2. 

Test 2nd operand sign, and 
2nd operand for 0 's. 

Load 2nd operand into GPR 
per R 1, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is in S and T. 

• Set STAT A if PAL is all O's. 

• Test T(32) for plus or minus sign. 

• STAT A and T(32) determine CC. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is less than zero: CC = 1 . 
Result in PAL is greater than zero: CC= 2. 

The Load and Test, LTR, instruction tests the second 
operand, from the GPR per R2, for all zeros and loads it 
into the GPR per RI. (If RI and R2 specify the same GPR, 
the operation is equivalent to a test of the data without 
movement of the data.) 

Diagram 5-103, FEMDM, is a flowchart of the 
instruction. The contents of T (second operand) are gated 
to PAA(32-63), and STAT A is set if PAL equals zero. The 
contents of T are then gated to the GPR specified by RI, 
and the CC is set as follows. If STAT A is set, the CC is set 
to 0. If STAT A is not set, the sign bit [T(32)] determines 
the CC: if the sign is minus [T(3 2) = 1 ] , the CC is set to 1 ; 
if the sign is plus, the CC is set to 2. An end op completes 
instruction execution. 

Load Complement, LCR (13) 

• Load 2's complement of 2nd operand {in GPR•per R2) 
into 1st operand location {in GPR per RI) and set CC 
according to result. 

• RR format: 

13 Rl R2 

7 8 II 12 15 

Fetch 2nd operand from GPR per R2. 

Obtain 2's complement 
of 2nd operand. 

Load result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is· in S and T. 

• Set STAT B if overflow occurred. 

• Set STAT A if PAL is all O's. 

• Test T(32) for plus or minus sign. 

• STAT's A and B, and T(32) determine CC. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is less than zero: CC = 1. 
Result in PAL is greater than zero: CC= 2. 
Overflow: CC = 3. 

The Load Complement, LCR, instruction loads the 2's 
complement of the second operand from the GPR per R2 
into the GPR per RI. 

See Diagram 5-104, FEMDM, a flowchart of the 
instruction. The contents of T (second operand) are gated 
in 2's complement form to PAA(32-63). STAT A is set if 
PAL equals zero, and STAT B is set if a fixed-point 
overflow occurs. (Overflow occurs if the maximum negative 
number is 2's complemented.) The contents of PAL are 
transferred (via T) to the GPR specified by RI, and the CC 
is set as follows. 

If STAT Bis set, the CC is set to 3. If STAT A is set, the 
CC is set to 0. If neither STAT is set, the sign bit [T(32)] 
determines the CC: if the sign is minus [T(32) = 1], the CC 
is set to I; if the sign is plus, the CC is set to 2. An end op 
completes instruction execution. 

7201-02 FETOM (7/70) 3-29 



Load Positive, LPR (10) 

• Load 2nd operand (unchanged if positive, 2's 
complemented if negative; in GPR per R2) into 1st 

· operand location (in GPR per R1 ). 

• RR format: 

10 Rl R2 

7 8 11 12 15 

Fetch 2nd operand from GPR per R2. 

Obtain positive value 
of 2nd operand. 

Load into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is in S and T. 

• Set ST AT A if PAL is all O's. 

• T(32) determines whether operand loaded is positive. 

• lfT(32) = 1, 2's complement operand. 

• Set ST AT B if overflow occurs. 

• STAT's A and Band T(32) determine CC. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Resultin PAL is greater than zero: CC= 2. 
Overflow: CC= 3. 

The Load Positive, LPR, instruction loads the absolute 
value of the contents of the GPR specified by R2 into the 
GPR specified by Rl. The instruction also tests for an 
all-zero result and for an overflow condition. (Overflow 
occurs only when the maximum negative number is 2's 
complemented.) The results of the tests are indicated by 
the CC. 

Diagram 5-105, FEMDM, is a flowchart of the Load 
Positive instruction. At the start of execution, the 
instruction is in E, the first operand is in A, B, and D, and 
the second operand is in S and T. The first cycle of the 
instruction places the contents of Tinto PAL(32-63) and 
tests PAL for all O's. If PAL equals zero, STAT A is set. The 
data in T is then loaded into the GPR per E(8-11) (R1 ). 

Because the purpose of the instruction is to load only 
positive numbers, a test for negative numbers is made by 
examining T(32). ff T(32) = 1, the data loaded in LS was a 
negative number. In this case, the contents of T must be 
converted to a positive number (true form) and reloaded 

3-30 (7/70) 

into the GPR per E(8-11 ), thus destroying the negative 
number in that location. 

While in PAL, the 2's complement form of the data is 
tested to see whether overflow occurred when the number 
was converted. If overflow occurred, ST AT B is set. 

If T(32) = 0, the data loaded in LS was positive and need 
not be changed. 

STAT's A and B, and T(32) determine the CC as follows. 
If STAT Bis set, the CC is set to 3. If STAT A is set, the 
CC is set to 0. If neither STAT is set, the sign bit [T(32)] 
determines the CC; however, the sign can only be plus 
[T(32) = O] and the CC is set to 2. An end-op cycle 
completes instruction execution. 

Load Negative, LNR (11) 

• Load 2nd operand (unchanged if negative, 2's 
complemented if positive; in GPR per R2) into 1st 
operand location (in GPR per R1 ). 

• RR format: 

11 Rl R2 

7 8 11 12 15 

Fetch 2nd operand from GPR per R2. 

Obtain negative value 
of 2nd operand. 

Load into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D (not used). 
2nd operand is in Sand T. 

• Set STAT A if PAL is all O's. 

• T(32) determines whether operand loaded is negative. 

• If T(32) = 0, 2's complement operand. 

• STAT A and T(32) determine CC. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is less than zero: CC = 1. 

The Load Negative, LNR, instruction loads the negative 
value of the contents of the GPR specified by R2 into the 
GPR specified by Rl. The LNR instruction also tests the 
operand for all zeros and indicates the result in the CC. 

See Diagram 5-106, FEMDM, a flowchart of the 
instruction. At the start of execution, the instruction is in 
E, the first operand is in A, B, and D, and the second 
operand is in S and T. The first cycle of the instruction 



places the contents of Tinto PAA(32-63) and tests PAL 
for all O's. If PAL contains all O's, STAT A is set. The data 
in T, regardless of whether the result equals zero, is loaded 
into the GPR per E(8-11) (RI). 

Because the purpose of the LNR instruction is to load 
only negative numbers, a test for positive numbers is made 
by examining T(32). If T(32) = 0, the data loaded into LS 
was a positive number. In this case, the contents of T must 
be converted to a negative number (2's complement form) 
and reloaded into the GPR per E(8-11 ), thus destroying 
the positive number in that location. If T(32) = 1, the data 
loaded into LS was a negative number and need not be 
changed. 

STAT A and T(32) determine the CC as follows. If 
STAT A is set, the CC is set to 0. If STAT A is not set, the 
sign bit [T(32)] determines the CC; however, the sign can 
only be minus [T(32) = 1] and the CC is set to 1. An 
end-op cycle completes instruction execution. 

Load Multiple, LM (98) 

• Load 2nd operand (as many words as required; in 
storage) into GPR's, in ascending order, starting with 1st 
operand location (per RI) and ending with 3rd operand 
location (per R3). 

• RS format: 

98 I R 1 I R3 B2 I D2 

7 8 11 12 15 16 19 20 31 

Load lst word into 
GPR per Rl. 

Load 2nd word into 
GPR per Rl + 1. 

Load I ast word into 
GPR per R3. 

Fetch 1st doubleword from main storage. 

Obtain 1st word from doubleword per 
D(21) and transfer it to T. 

Fetch next doubleword from 
main storage, if needed. 

Obtain 2nd word from doubleword 
and transfer it to T. 

Fetch next doubleword from 
main storage, if needed. 

Obtain last word from doubleword 
and transfer it to T. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T (not used). 
Starting operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• RI and R3 are compared to determine whether one or 
more words are to be loaded. 

• If RI = R3, only one word is to be loaded. 

• If R3 is less than RI, addresses wraparound from GPR 
15 to GPR 0. 

• D(21) determines which word of doubleword is to be 
loaded into LS: if a I, right word; if a 0, left word. 

• 8 is added to D when more than one word is to be 
loaded. 

• RI is incremented by 1 each time a new word is to be 
loaded. 

The Load Multiple, LM, instruction loads 32-bit words 
from main storage into LS. The GPR's are loaded in the 
ascending order of their addresses, starting with the GPR 
addressed by RI and continuing up to and including the 
GPR addressed by R3. All combinations of GPR addresses 
specified by RI and R3 are valid. When R3 is less than RI, 
the addresses wrap around from GPR 15 to GPR 0. 

Diagram 5-107, FEMDM is a flowchart of the Load 
Multiple instruction. At the start of execution, the first 16 
bits of the instruction are in E, the first operand is in S and 
T, and the starting operand address is in D.'During I-Fetch, 
a storage request was made to fetch the operand addressed 
byD. 

The instruction first tests for a specification check 
condition. If there is a specification check, a program 
specification interruption occurs and the operation is 
suppressed. Assuming there is no specification check, RI 
[E(8-11)] and R3 [E(l 2- I 5)] are compared to determine 
whether one or more words are to be loaded. If RI equals 
R3, only one word is to be loaded; if unequal, more than 
one word is to be loaded. 

Assume one word is to be loaded (RI = R3). D(2I) is 
tested to determine which word of the doubleword from 
main storage is to be loaded. If D(21) is a 0, the left word is 
selected; if a I, the right word is selected. The selected 
word is loaded into the GPR specified by RI, and an 
end-op cycle is taken, completing the instruction. 

If more than one word is to be loaded (RI and R3 are 
unequal), the main storage address in Dis incremented by 8 
to address the next doubleword in main storage, if it should 
be needed. D(21) is tested to determine which word of the 
doubleword from SDBO will be loaded first. R3 is 
decremented by I, and RI and R3 are again compared. As a 
result of these two tests, four possible conditions may exist, 
resulting in four different branches as follows: 
1. If D(21) = 0 and RI = R3, two words are to be loaded 

starting with the left word of the doubleword on the 

7201-02 FETOM (7/70) 3-31 



SDBO. In this case, no further main storage request is 
necessary. SDB0(0-3 I) is gated to T, SDB0(0-63) is 
gated to AB, and the contents of T are loaded into the 
GPR specified by RI. E(8-ll)(RI) is incremented by I 
to address the next sequential GPR, and the contents of 
B are transferred (via T) to the GPR specified by 
E(8-11) (RI + I). 

2. If D(2I) = 0 and RI does not equal R3, more than two 
words are to be loaded starting with the left word. A 
main storage request per D is initiated to fetch the next 
doubleword from main storage. The microprogram 
enters the basic loop, which loads a doubleword, one 
word at a time, in consecutive GPR's and initiates 
another main storage request. An exit from the basic 
loop is made when one or two words remain to be 
loaded. 

3. If D(2I) = 1 and RI = R3, two words are t.o be loaded 
starting with the right word. A main storage request per 
D is initiated because the second word to be loaded is 
contained in the next doubleword in main storage. 
SDB0(32-63) is transferred (via T) to the GPR 
specified by E(8- I I) (RI). E(8- l I) is incremented by 
I , and, when the next doubleword is available, 
SDB0(0-3I) is transferred (via T) to the GPR specified 
by E(8-I 1) (RI + I). 

4. If D(21) = I and Rl does not equal R3, more than two 
words are to be loaded starting with the right word. A 
main storage request per D is initiated to fetch the next 
doubleword from main storage, and SDB0(32-63) is 
transferred (via T) to the GPR specified by E(8-I I) 
(RI). E(8-11) is inc rem en ted by I to address the next 
sequential GPR, ·and D is incremented by 4 to address 
the next sequential doubleword in main storage. RI and 
R3 are again compared; if equal, only two more words 
are to be loaded. When the requested doubleword is 
available, it is loaded, one word at a time, into the two 
sequential GPR's specified. If RI does not equal R3, the 
microprogram enters the basic loop. 

Note that· the last time D was incremented, it was 
incremented by 4 rather than by 8. At the start of this 
sequence, D(2 I) equalled I, which is equivalent to a 
value of 4 in D. Adding 4 to D increases the value to 8, 
which will address the next sequential doubleword in 
main storage. D(21) has also been changed to a 0, which 
allows the microprogram to remain in the basic loop as 
long as is required. Note that a branch on D(21) is 
performed in the basic loop. 

The 4 that is added to D is developed in F. At the 
start of the instruction, F was set to -64 (1100 0000). 
F(O) is then set to 0, establishing a value of 0100 0000 
in F. F(0-3) and F(4-7) are transposed, giving a value 
of 0000 0100 (4) in F. When F(4-7) is added to D, Dis 
incremented by 4. 

When the last word has been loaded into the GPR 
specified by R3, an end-op cycle is taken, completing 
the instruction. 

3-32 (7/70) 

ADD-TYPE INSTRUCTIONS 

• Fixed-point add-type instructions use RR and RX 
formats. 

• 2nd operand is algebraically added to I st operand. 

• For subtract and compare instructions, 2nd operand is in 
2's complement form. 

• Except for compare instructions, result is stored into I st 
operand locatio~. 

• CC is determined by op code and hardware conditions. 

The fixed-point add-type instructions use the RR format 
with word-length operands, the RX format·. with 
word-length operands, and the RX format with a halfword 
second operand. 

At the start of execution of RR format fixed-point 
instructions, the first operand is in B (also in A and D) and 
the second operand is in T (also in S). 

At the start of execution of RX format fixed-point 
instructions, the first operand is in S and T, and a main 
storage request for the second operand has been issued per 
D. Because the second operand is fetched from main 
storage, a specification test is performed (Diagram 5-I 08, 
Sheet I, FEMDM), and a program specification interruption 
is taken if the second operand address does not specify 
integral boundaries. If a program specification interruption 
is taken, the instruction is suppressed. If no specification 
check occurs, the first operand is transferred from T to B, 
and the specified word of the doubleword requested from 
main storage is selected per D(2 I) and is gated to T. The 
first operand is now in B and the second operand is in T, 
which is the same condition which would exist after an RR 
I-Fetch. 

If the RX format instruction specifies a halfword second 
operand, two additional functions must be performed. The 
desired halfword [selected per D(22)] of the word in T 
[selected per D(21)] must be loaded into the low-order 
halfword of T, and the sign bit must be propagated left to 
fill the high-order halfword of T. 

The fixed-point add-type instructions may be divided 
into three functional groups: add, subtract, and compare. 
All add-type instructions set a CC, and all except compare 
instructions store the result into the first operand location. 

The CE performs fixed-point add-type instructions as 
follows (Diagram 5-108, Sheet 2): 
1. The second operand is algebraically added to the first 

operand and the result is stored (except for compare 
instructions) into the first operand location. For 
subtract and compare instructions, the second operand 
(sign bit and integer) is 2's complemented, which, in 
effect, inverts the sign. 

2. Because of the sign notation used, and because positive 
numbers exist in true binary form and negative numbers 
exist in 2's complement form, the operand signs are 
treated as high-order extensions of the integers. 



3. Except for Add Logical and Subtract Logical 
instructions, the sign bit of the result [T(32)] is used as 
one factor in determining the CC; carry conditions from 
the high-0rder digit and from the sign bit are tested for a 
fixed-point overflow condition (recorded in STAT B). 

4. For all fixed-point add-type instructions, a zero result is 
indicated by setting ST AT A. 

5. For Add Logical and Subtract Logical instructions, the 
sign bit of the result is treated as a high-0rder extension 
of the integer, and is tested for a carry condition to 
determine the CC. The result of Add Logical or Subtract 
Logical instructions is the same as for the corresponding 
add or subtract instruction, except that the result is not 
tested for a fixed-point overflow condition and the 
significance of the CC is different. (See Table in Sheet 2 
of Diagram 5-108.) 

Add, AR(lA) 

• Algebraically add 2nd operand (in GPR, per R2) to 1st 
operand (in GPR, per Rl) and place result into 1st 
operand location. 

• RR format: 

lA Rl R2 

7 8 11 12 15 

Fetch 1st operand 
from GPR per R 1 • 

Fetch 2nd operand 
from GPR per R2. 

Add 1st and 2nd operands. 

Store result into GPR 
per Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = 1, and STAT's A and B 
are reset] : CC = 1. 

Result is greater than zero [T(32) = 0, and STAT's A 
and Bare reset] : CC= 2. 

Overflow (STAT Bis set): CC= 3. 

The Add, AR, instruction algebraically adds the second 
operand (from the GPR per R2) to the first operand (from 
the GPR per R1) and stores the result into the first operand 

location. For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Add, A (SA) 

• Algebraically add 2nd operand (in storage) to 1st 
operand (in GPR, per Rl) and place result into 1st 
operand location. 

• RX format: 

SA Rl X2 B2 D2 

11 12 15 16 19 20 31 

Fetch 1st operand 
from GPR per Rl. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-length 2nd operand 
from doubleword per D(21). 

Add 1st and 2nd operands. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = 1, and STAT's A and B 
are reset] : CC = 1. 

Result is greater than zero [T(32) = 0, and STAT's A 
and B are reset] : CC = 2. 

Overflow (STAT Bis set): CC= 3. 

The Add, A, instruction algebraically adds the second 
operand (from storage) to the first operand (from the GPR 
per R1) and stores the result into the first operand location. 
D(21) determines which word of the doubleword fetched 
from main storage contains the word-length second 
operand: if D(21) = 1, the right word; if D(21) = 0, the left 
word. For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Add Halfword, AH (4A) 

• Algebraically add halfword 2nd operand (in storage) to 
1st operand (in GPR per R1) and place result into 1st 
operand location. 

7201-02 FETOM (7 /70) 3-33 



• RX format: 

4A RI X2 82 02 

II 12 15 16 19 20 31 

Fetch 1st operand 
from GPR per Rl. 

Fetch doubleword (containing 
halfword 2nd operand) 
from mo in storage . 

Select halfword 2nd operand from 
doubleword per 0(21, 22), 
and expand it to 32-bit word by 
propagating sign bit to left. 

Add ho I fword 2nd operand 
to 1st operand . 

Store result into GPR per 
R 1, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a l, right word; if a O, left 
word. 

• D(22) determines which half of word contains halfword 
2nd operand: if a 1, right half; if a 0, left half. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = 1, and STAT's A and B 

are reset] : CC= 1. 
Result is greater than zero [T(32) = 0 and STAT's A and 

Bare reset] : CC= 2. 
Overflow (STAT Bis set): CC= 3. 

The Add Halfword, AH, instruction algebraically adds the 
halfword second operand (from storage) to the first 
operand (from the GPR per RI) and stores the result into 
the first operand location. D(21) determines which word of 
the doubleword fetched from main storage contains the 
halfword second operand, and D(22) determines which 
halfword of that word contains the second operand, as 
follows: D(21) = 0, left word; D(21) = 1, right word; D(22) 
= 0, left halfword; D(22) = 1, right halfword. When the 
halfword second operand is selected, it is expanded to a 
word by propagating the sign bit through the 16 high-order 
bit positions of T. 

3-34 (7/70) 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Add Logical, ALR (IE) 

• Algebraically add 2nd operand (in GPR per R2) to 1st 
operand (in GPR per RI) and place result into 1st 
operand location. 

• RR format: 

lE 
0 

Rl R2 
7 8 11 12 15 

Fetch 1st operand 
from GPR per R 1 . 

Fetch 2nd operand 
from G PR per R2 . 

Add 1st and 2nd operands. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC setting: 
Result is zero and no carry from PAL(32) (STAT A is 
set and A(31) = O]: CC= 0. 

Result is not zero and no carry from PAL(32) [STAT A 
is reset and A(31) = O]: CC= 1. 

Result is zero and carry from PAL(32) [STAT A is set 
and A(31) = 1]: CC= 2. 

Result is not zero and carry from PAL(32) [STAT A is 
reset and A(31) = 1]: CC= 3. 

The Add Logical, ALR, instruction algebraically adds the 
second operand (from the GPR per R2) to the first operand 
(from the GPR per RI) and stores the result into the first 
operand location. The sign bit of the sum is treated as a 
high-order extension of the integer, and is tested for a carry 
condition [ A(31) = 1] to determine the CC. The sum is the 
same as for the AR instruction; the only difference in 
execution is that the sum is not tested for a fixed-point 
overflow condition, and that the significance of the CC's is 
different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 



Add Logical, AL (SE) 

• Algebraically add 2nd operand (in storage) to 1st 
operand (in GPR per RI) and place result into 1st 
operand location. 

• RX format: 

SE RI X2 B2 D2 

11 12 15 16 19 20 31 

Fetch l st operand 
from GPR per Rl. 

Fetch doubleword (containing 
word-length 2nd opera1nd) 
from moi n storage. 

Select word-length 2nd operand 
from doub I eword per D (21) . 

Add lst and 2nd operands. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruct.ion are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Result is zero and no carry from PAL(32) [STAT A is 

set and A(31) =OJ: CC= 0. 
Result is not zero and no carry from PAL(32) [STAT A 

is reset and A(3 l) =OJ : CC= 1. 
Result is zero and carry from PAL(32) [STAT A is set 

and A(31) = 1]: CC= 2. 
Result is not zero and carry from PAL(32) [STAT A is 

reset and A(31) = J]: CC= 3. 

The Add Logical, AL, instruction algebraically adds the 
second operand (from storage) to the first operand (from 
the GPR per RI) and stores the result into the first operand 
location. D(21) determines which word of the doubleword 
fetched from main storage contains the word-length second 
operand: if D(21) = 1, the right word; if D(21) = 0, the left 
word. 

The sign bit of the sum is treated as a high-0rder 
extension of the integer, and is tested for a carry condition 
[A(31) = I] to determine the CC. The sum is the same as 
for the A instruction; the only difference in execution is 
that the sum is not tested for a fixed-point overflow 
condition, and that the significance of the CC's is different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Subtract, SR ( 1 B) 

• Algebraically subtract 2nd operand (in GPR, per R2) 
from 1st operand (in GPR per Rl) and place result into 
1st operand location. 

• RR format: 

1 B Rl R2 

7 8 11 12 

Fetch l st operand 
from GPR per Rl. 

15 

Fetch 2nd operand 
from GPR per R2. 

Add 2 's complement of 2nd 
operand to l st opera1nd. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
I st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = 1 and STAT's A and B 
are reset] : CC = I. 

Result is greater than zero [T{32) = 0 and STAT's A and 
Bare reset]: CC= 2. 

Overflow (STAT Bis set): CC= 3. 

The Subtract, SR, instruction adds the 2's complement of 
the second operand (from the GPR per R2) to the first 
operand (from the GPR per Rt) and stores the result into 
the first operand location. The only difference between the 
SR and AR instructions is that the second operand is 2's 
complemented. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

7201-02 FETOM (7/70) 3-35 



Subtract, S (SB) 

• Algebraically subtract 2nd operand (in storage) from 1st 
operand (in GPR per R 1) and place result into 1st 
operand location. 

• RX format: 

SB Rl X2 1 B2 D2 

11 12 15 16 19 20 31 

Fetch 1st operand 
from GPR per R 1. 

Fetch doubleword (containing 
word-length 2nd oP'erand) 
from main stora,ge. 

Select word-length 2nd operand 
from doubleword per 0(21). 

Add 2's complement of 2nd 
opera1nd to 1st operaind. 

Store result into GPR per 
RI, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC set ting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = I and STA T's A and B 

are reset] : CC = l. 
Result is greater than zero {T(32) = 0 and STAT's A and 

Bare reset] : CC= 2. 
Overflow (STAT Bis set): CC= 3. 

The Subtract, S, instruction adds the 2's complement of the 
second operand (from storage) to the first operand (from 
the GPR per RI) and stores the result into the first operand 
location. The only difference between the S and A 
instructions is that the second operand is 2's 
complemented. 

For the instruction execution, refer to "'Add-Type 
Instructions" and Diagram 5-108. 

3-36 (7/70) 

Subtract Halfword, SH ( 48) 

• Algebraically subtract halfword 2nd operand (in storage) 
from 1st operand (in CPR per R 1) and place result into 
J st operand location. 

• RX format: 

48 Rl X2 82 02 

11 12 15 16 1'9 20 31 

Fetch I st operand 
from GPR per R 1 . 

Fetch doubleword (containing 
hol fword 2nd operand) 
from main s.tomge. 

Select halfword 2nd opera1nd from 
doubleword per 0(21, 22), and 
expand it to 32-bit word by 
propagating sign bit to left. 

Add 2's complement of halfword 
2nd operand to 1st operand. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction arc in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a 1, right word; if a 0, left 
word. 

• D(22) determines which half of word contains halfword 
2nd operand: if a 1, right half; if a 0, left half. 

• CC setting: 
Result is zero (STAT A is set): CC= 0. 
Result is less than zero [T(32) = 1 and STAT's A and B 

are reset]: CC= 1. 
Result is greater than zero [T(32) = 0 and STAT's A and 

Bare reset]: CC= 2. 
Overflow (STAT Bis set): CC= 3. 

The Subtract Halfword, SH, instruction adds the 2's 
complement of the halfword second operand (from storage) 
to the first operand (from the GPR per RI) and stores the 
result into the first operand location. The only difference 
between the SH and AH instructions is that the second 
operand is 2's complemented. 

For the instruction execution, refer to ••Add-Type 
Instructions" and Diagram 5-108. 



Subtract Logical, SLR (IF) 

• Algebraically subtract 2nd operand (in GPR per R2) 
from 1st operand (in CPR per RI) and place result into 
1st operand location. 

• RR format: 

lF Rl R2 

7 B II 12 

Fetch I st operand 
from GPR per Rl. 

15 

Fetch 2nd operand 
from GPR per R2. 

Add 2's complement of 2nd 
operand to l st operand. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC setting: 
Result is not zero and no carry from PAL(32) [STAT A 
is reset and A(31) = O]: CC= I. 

Result is zero and carry from PAL(32) [STAT A is set 
and A(31) = 1]: CC= 2. 

Result is not zero and carry from PAL(32) [STAT A is 
reset and A(31) =I]: CC= 3. 

The Subtract Logical, SLR, instruction adds the 2's 
complement of the second operand (from the GPR per R2) 
to the first operand (from the GPR per RI) and stores the 
result into the first operand location. The sign bit of the 
result is treated as a high-order extension of the integer, and 
is tested for a carry condition [ A(3 I) = I ] to determine the 
CC. The result is the same as for the ALR instruction; the 
difference in execution is that the second operand is 2's 
complemented, the result is not tested for a fixed-point 
overflow condition, and the significance of the CC's is 
different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

Subtract Logical. SL (SF) 

e Algebraically subtract 2nd operand (in storage) from 1st 
operand (in CPR per R 1) and place result into 1st 
operand location. 

• RX format: 

SF R l X2 B2 02 

II 12 15 16 19 20 31 

Fetch 1st operaind 
from GPR per R 1 . 

Fetch doubleword (containing 
word-length 2nd opercind) 
from main s.toroge. 

Select word-length 2nd operand 
from do,ubleword per D(2l}. 

Add 2's complement of 2nd 
operand to 1st operan,d. 

Store result into GP'R per 
R 1 , oind set CC. 

• Conditions at start of execution: 
First 16 bits of instruction arc in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(2 I) determines which word of doublcword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Result is not zero and no carry from PAL(32) [STAT A 

is reset and A(31) = O]: CC= 1. 
Result is zero and carry from PAL(32) [STAT A is set 

and A(31) = I ] : CC = 2. 
Result is not zero and carry from PAL(32) [STAT A is 

reset and A(3I) = 1]: CC= 3. 

The Subtract Logical, SL, instruction algebraically adds the 
2's complement of the second operand (from storage) to 
the first operand (from the GPR per RJ) and stores the 
result into the first operand location. The sign bit of the 
result is treated as a high-order extension of the integer, and 
is tested for a carry condition [ A(3 I)= 1] to determine the 
CC. The result is the same as for the AL instruction; the 
difference in execution is that the second operand is 2's 
complemented, the result is not tested for a fixed-point 
overflow condition, and the significance of the CC's is 
different. 

For the instruction execution, refer to "Add-Type 
Instructions" and Diagram 5-108. 

7201-02 FETOM (7/70) 3-37 



Compare, CR (19) 

• Algebraically compare 1st operand (in GPR, per RI) 
with 2nd operand (in GPR, per R2) and set CC 
according to result. 

• RR format: 

19 Rl R2 

7 8 . 11 12 15 

Fetch l st operand 
from GPR per Rl. 

Fetch 2nd operand 
from GPR per R2. 

Compare l st operand 
with 2nd operand. 

Set CC per resu It. 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• CC setting: 
Operands are equal (STAT A is set): CC= 0. 
1st operand is less than 2nd operand [STAT B i~ set or 
T(32) = 1] : CC = 1. 

1st operand is greater than 2nd operand [STAT Bis set 
and T(32) = 1, or STAT Bis reset and T(32) = O]: CC 
=2. 

The Compare, CR, instruction algebraically compares the 
first · operand (from the GPR per RI) with the second 
operand (from the GPR per R2) and sets the CC according 
to the result. The compare operation is accomplished by 
adding the 2's complement of the second operand to the 
first operand and setting the CC according to the result. 
The result is not stored. For the instruction execution, refer 
to "Add-Type Instructions" and Diagram 5-108. 

Compare, C (59) 

• Algebraically compare 1st operand (in GPR per RI) with 
2nd operand (in storage) and set CC according to result. 

3-38 (7/70) 

• RX format: 

59 Rl X2 82 02 

11 12 15 16 19 20 31 

Fetch lst operand 
from GPR per Rl. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-length 2nd operand 
from doubleword per 0(21). 

Compare lst operand with 2nd operand. 

Set CC per result. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

• CC setting: 
Operands are equal (STAT A is set): CC= 0. 
1st operand is less than 2nd operand [ST AT B is set or 
T(32) = 1] : CC = 1. 

1st operand is greater than 2nd operand [STAT Bis set 
and T(32) = 1, or STAT Bis reset and T(32) = O]: CC 
=2. 

The Compare, C, instruction algebraically compares the 
first operand (from the GPR per RI) with the second 
operand (from storage) and sets the CC according to the 
result. 

Because the word-length second operand is in main 
storage, D(21) determines which word of the doubleword 
fetched from main storage contains the second operand: if 
a 1, right word; if a 0, left word. The compare operation is 
accomplished by adding the 2's complement of the second 
operand to the first operand and setting the CC according 
to the result. The result is not stored. For the instruction 
execution, refer to "Add-Type Instructions" and Diagram 
5-108. 



Compare Halfword, CH ( 49) 

• Algebraically compare I st operand (in GPR per RI) with 
halfword 2nd operand (in storage) and set CC according 
to result. 

• RX format: 

49 Rl X2 82 D2 

11 12 15 16 19 20 31 

Fetch 1st operand 
from GPR per Rl. 

Fetch doubleword (containing 
ha I fword 2nd operand) 
from main storage. 

Select halfword 2nd operand from 
doubleword per 0(21,22), and 
expand it to 32-bit word by 
propagating sign bit to left. 

Compare 1st operand with 
ha I fword 2nd operand: 

Set CC per result. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a 1, right word; if a 0, left 
word. 

• D(22) determines which half of word contains halfword 
2nd operand: if a 1, right half; if a 0, left half. 

• CC setting: 
Operands are equal (STAT A is set): CC= 0. 
1st operand is less than 2nd operand [STAT B is set or 
T(32) = 1] : CC = 1. 

1st operand is greater than 2nd operand [ST AT B is set 
and T(32) = 1, or STAT Bis reset and T(32) = O]: CC 
= 2. 

The Compare Halfword, CH, instruction algebraically 
compares the first operand (from the GPR per RI) with the 
halfword second operand (from storage) and sets the CC 
according to the result. 

Because the halfword second operand is in main storage, 
D(21) determines which word of the douhleword fetched 
from main storage contains the halfword second operand: if 

a I, right word; if a 0, left word. D(22) determines which 
half of that word contains the second operand: if a 1, right 
half; if a 0, left half. The halfword second operand is 
expanded to word-length by propagating the sign bit 
through the high-order 16-bit positions of T. The compare 
operation is accomplished by adding the 2's complement of 
the halfword second operand to the first operand and 
setting the CC according to the result. For the instruction 
execution, refer to "Add-Type Instructions" and Diagram 
5-108. 

MULTIPLY 

There are three fixed-point multiply instructions: 
1. Multiply, MR, RR format - which uses a 32-bit 

multiplier and multiplicand, and produces a 64-bit 
product. 

2. Multiply, M, RX format - which uses a 32;.bit multiplier 
and multiplicand, and produces a 64-bit product. 

3. Multiply Halfword, MH, RX format - which uses a 
16-bit multiplier and a 16-bit multiplicand, and produces 
a 3 2-bit product. 

Note: In the Multiply, M, and Multiply Halfword, MH, 
instructions, the second operand is the multiplicand and the 
first operand is the multiplier. 

Each of the three fixed-point multiply instructions has a 
unique initialization routine. The initialization routines 
(Diagram 5-109, Sheet I, FEMDM) perform a specification 
test, set E(l 2-15) to 15, set the STC to 3, and establish the 
operands in S and T as follows: 
1. Multiply, MR, RR format - Transfers the multiplier 

(second operand from GPR per R2) to S and the 
multiplicand (first operand from GPR per RI+ 1) to T. 

· 2. Multiply, M, RX format - Transfers the multiplicand 
(first operand from GPR per RI + 1) to S and the 
multiplier (second bperand from main storage) to T. 

3. Multiply Halfword, MH, RX format - Transfers the 
multiplicand (first operand from GPR per RI) to Sand 
the multiplier (halfword second operand from main 
storage, expanded to word length by propagating the 
sign bit through the 16 high-order bit positions) to T. 

A common multiply microprogram is then entered. 
Multiples of T are selected per bit-pairs from S and are 
added to a partial product in B to form a new partial 
product. Low-order partial product bit-pairs are 
accumulated in F and SAL. When SAL has accumulated a 
partial product byte, it is stored into S, replacing the byte 
of S already used. Sixteen multiply cycles are taken until a 

7201-02 FETOM (7/70) 3-39 



word (four bytes) of product is accumulated in S. PAL now 
contains the high-order word of the product and S contains 
the low-order word of the product. The product is stored in 
an even/odd pair of GPR's specified by RI and RI + I, and 
an end-op cycle is taken to terminate the operation. (For 
the Multiply Halfword instruction, only the low-order 32 
bits of the product are stored into the GPR per RI.) 

Multiply, MR (1 C) 

• Multiply I st operand (in GPR per Rl + 1) by 2nd 
operand (in GPR per R2) and place 64-bit product into 
1st operand location (in GPR per RI and RI + 1 ). 

• RRformat: 

lC Rl R2 

7 8 11 12 15 

Fetch 1st operand (multiplicand) 
from GPR per Rl + 1 and place 
into T. 

Fetch 2nd operand (multiplier) 
from GPR per R2 and place 
into S. 

Multiply T by S. 

Store 64-bit product into 
GPR per R 1 and R l + l . 

• Conditions at start of execution: 
Instruction is in E. 
Contents of even-address GPR specified by Rl are in A, 

B, and D (not used). 
Multiplicand (1st operand) is in odd-address GPR 

specified by Rl + 1. 
2nd operand (multiplier) is in S and T. 

• Multiple selection bits (Ml ,M2) are selected from 
multiplier (in S) per E(l 2-15). 

• Multiples of multiplicand (in T) are selected by Ml ,M2 
bits and 'TX' trigger. 

• Multiples of multiplicand are added to partial product in 
B. 

• Partial product bits from B(66,67) are accumulated in 
SAL and F per E(14,l 5). 

• SAL contains byte of partial product when filled. 

• SAL is transferred to correct byte in S per STC. 

• When last (4th) byte is transferred to S, multiplier in Sis 
replaced by low-order half of product; high-order bits 
are in PAL. 

3-40 (7 /70) 

The Multiply, MR, instruction multiplies the contents of T 
(multiplicand) by the contents of S (multiplier). Because 
both the multiplier and the multiplicand are 32-bit signed 
integers, the product is a 64-bit signed integer and must be 
stored into an even/odd pair of GPR's. 

A flowchart of the operation is shown in Diagram 5-109, 
FEMDM. To correctly specify the even/odd GPR pair, the 
RI field of the instruction must refer to an even-address 
GPR or a program specification interruption occurs. After 
RI is tested to see whether it is even, 15 and 3 are placed 
into E(l 2-15) and the STC, respectively. The value in 
E(l2- I 5) selects the correct multiple selection bits 
(Ml ,M2) from the multiplier in S, and the value in the STC 
correctly positions the partial product byte in S. Each value 
is sequentially reduced during the operation. The value in T 
is now destroyed, and the multiplicand is transferred from 
the GPR per RI + 1 to T. At this point, S contains the 
multiplier and T contains the multiplicand. 

Execution of the MR instruction occurs in three iterative 
steps. 
I. Selection of multiplicand multiples. 
2. Addition of multiplicand multiples to partial product to 

form a new partial product. 
3. Extraction of partial product bits to form a product. 

Multiple selection bits (Ml ,M2) are selected from S per 
E(l 2-15), which is initially set to 15 (decimal) and is 
decremented by 1 each time multiple selection bits are 
selected. E(l 2,13) determines which byte of S is gated to 
the multiplier (MPR) bus, and E(14,I 5) determines which 
bit-pair of the selected byte is used to set Ml ,M2: 

Byte per E(l2, 13) to Multiplier Bus 

Byte 0 

$-Register I I I I I (Contains 32- · 

bit multiplier) ,_o ___ _.7 _a ___ 1s ...... _16 ___ 23-+_2~ ..... l-l ..... l_
2

....,.

1 

___.~l 

Bit-pairs per 
E(l4, 15) 

Bits Ml ,M2, which have the same bit configuration as 
the bit-pair selected from S by E(l 2-15), are used with the 
'TX' trigger to select a multiple of the multiplicand which 
will be added to a partial product to develop a new partial 
product. The multiple selected for all combinations of 
Ml ,M2 bits and the state of the 'TX' trigger is listed in 
Table 3-2. 

Four bit configurations of Ml ,M2 are possible, 
representing decimal values of 0, 1, 2, and 3. Five 
multiplicand multiples can be selected: 0 x T, 1 x T, -1 x T, 
2 x T and -2 x T. Multiplicand multiples are developed and 
applied as follows: 
1. 0 x T: Zero's are added to the partial product. 



2. 1 x T: The multiplicand (in T) is added to the partial 
product. 

3. -1 x T: The multiplicand is added in 2's complement 
form to the partial product. 

4. 2 x T: The multiplicand is gated to PAA, shifted left 
one bit position (in effect, doubles its value), and 
added to the partial product. 

5. -2 x T: The multiplicand, shifted left one bit position, is 
added in 2's complement form to the partial 
product. 

No provision has been made to develop a multiple of the 
multiplicand of 3 x T. Therefore, when Ml ,M2 has a 
decimal value of 3, a multiple of -1 x T is selected and the 
'TX' trigger is set and remains set into the next multiply 
cycle. Note in Table 3-2 that when the 'TX' trigger is set 
during the selection of a multiple, it has the effect of 
increasing the ·value of the multiple by 1 for the 
corresponding value of Ml ,M2. Because the partial product 
is shifted right two positions before each multiple is added, 
the value of the multiple is increased by a factor of 4. The 
effect of the 'TX' trigger's being set is to increase the value 
of the multiple (defined by Ml ,M2) by 4. Thus the 
multiplicand is, in effect, multiplied by -1 and +4 (plus the 
multiple which would have been selected if the 'TX' trigger 
were not set). 

When the partial product is shifted right two positions 
(right 4 and left 2) after each addition of the selected 
multiple of the multiplicand, the low-order bit-pair of the 

Table 3-2. Value of Multiple Determined by Multiple 
Selection Bits (Fixed-Point) 

Multiple Selection 
Bits 

'TX' T-Register Times 
M1 M2 Trigger Value Indicated 

0 0 0 OxT 

0 1 0 1xT 

1 0 0 2xT 

1 0 0 -2 x T 

1 1 0 -1 x T (2's Com-
plement) 

0 0 1 1 x T 

0 1 1 2xT 

1 0 1 -1 x T (2's Com-
plement) 

1 1 1 OxT 

Set 'TX' 
Trigger 

No 

No 

No 

Not 

Yes 

No 

No 

Yes 

Yes 

t Used on last multiple selection if multiplicand is negative. 

partial product is gated to SAL per E(14,15) and is added 
to the contents of F. When a byte of the partial product is 
accumulated in F, the byte is transferred to S per the STC 
(via SAL), replacing the byte of multiplier which has been 
used. 

When the low-order partial product bit-pair is gated to 
SAL, E(12-15) has been decremented twice and the 
low-order bit pair is stored into F(6,7) per the value of 01 
in E(14,15) (C of Sheet 3, Diagram 5-109, FEMDM). 

As previously mentioned, the partial product bits are 
transferred via SAL to F. This register accumulates a partial 
product byte (eight bits). When the last two partial product 
bits, required to complete a byte, are selected [E(14,15) = 
1 O], the contents of F are transferred to SAL, where the 
two partial product bits are positioned correctly. This byte 
is then transferred to S and positioned according to the 
value of the STC. At this point, the STC is equal to 011, 
thus placing the partial product byte into S(24-31). The 
STC and E( 12-15) are then reduced by 1, and selection of 
partial product bits is continued. The microprogram 
remains in the multiple selection loop until E(l 2,13) = 00 
when tested. At this time, E(12-15) contains 0001 and is 
decremented to 0000; and the microprogram enters the 
multiply termination routine. 

During the multiply termination routine, five events take 
place: 

1. A multiple is selected for the high-order bit-pair in S. 
2. Because there is a 2-cycle lag between the selection of a 

multiple and the storage of the corresponding partial 
product bit-pair into F, E(12-15) wraps around to 1110 
to control the storage of the last two bit-pairs of the 
partial product in F (via SAL). 

3. The high-order partial product byte is transferred from F 
to S per the STC. (The last bit-pair, however, does not 
go to F, because the last byte is gated directly from SAL 
to S.) 

4. The high-order word of the partial product is transferred 
from PAL to T, and from T to the GPR specified by RI. 

5. The low-order word of the partial product in S is 
transferred to T, and from T to the GPR specified by RI 
+ 1. 

This sequence places the complete product into the 
even/odd GPR pair in LS. An end-op cycle is then taken, 
and the operation is finished. 

The product sign follows the rules of algebra (except 
that the sign of a zero product is plus); however, the sign 
bits are manipulated as though they were high-order 
extensions of the integer throughout the multiply 
operation. Two multiply examples follow; the first, in 
Figure 3-6, uses two positive operands, and the second, in 
Figure 3-7, uses the same operands with minus signs. Note 
that the product is the same in both cases with no special 
handling of the sign bits required. 

7201-02 FETOM (7/70) 3-41 



Ml, M2 
'TX' 

Multiple Tgr 

0 
11 0 -1 x T 

1 
1 

00 1 1 x T 
0 
0 

1 0 0 2xT 
0 
0 

1 0 0 2xT 
0 
0 

00 0 OxT 
0 
0 

00 0 OxT 
0 
0 

00 0 OxT 
0 
0 

00 0 OxT 
0 
0 

00 0 OxT 

Decimal 

Multiplicand (in T) 
Multiplier (in S) 
Product (to S via F) 

OOlA 
OOA3 
108E 

0000 0000 0001 1010 
0000 0000 1010 0011 
0001 0000 1000 1110 

+26 
x +163 

+4238 

1. Ml, M2 bits are derived from S per E(12-15). 

2. See Table 3-2 for multiple selection. 

E(12-15) Remarks Contents in PAL 

1111 Initial partial product 0000 0000 0000 0000 
1111 + T (2 's complement) 1111111111100110 
1110 New partial product 1111 111111100110 
1110 Right 2 positions 1111111111111001 
1110 + T (true) 0000 0000 000 l 1010 
1101 New partial product 0000 0000 000 l 0011 
1101 Right 2 positions 0000 0000 0000 0100 
1101 +2T (true, left 1) 0000 0000 0011 0100 
1100 New partial product 0000 0000 0011 1000 
1100 Right 2 positions 0000 0000 0000 1110 
1100 + 2T (true, left 1) 0000 0000 0011 0100 
1011 New partial product 0000 0000 0100 0010 
1011 Right 2 positions 0000 0000 000 l 0000 
1011 Add O's 0000 0000 0000 0000 
1010 New partial product 0000 0000 0001 0000 
1010 Right 2 positions 0000 0000 0000 0100 
1010 Add O's 0000 0000 0000 0000 
1001 New partial product 0000 0000 0000 0 l 00 
1001 Right 2 positions 0000 0000 0000 0001 
1001 Add O's 0000 0000 0000 0000 
1000 New partial product 0000 0000 0000 0001 
1000 Right 2 positions 0000 0000 0000 0000 
1000 Add O's 0000 0000 0000 0000 
0111 New partial product 0000 0000 0000 0000 
0111 Right 2 positions 0000 0000 0000 0000 
0111 Add O's 0000 0000 0000 0000 

Accumulate Bit-Pairs 
in F; Trans fer Bytes to S 

lQ i 
10 

1J • n10 

QQ--i_ 
00 1110 

IQ~ 
1000 1110 

-c=_, 
QQ .t 

00 

QQ !_ 
0000 

Q..1----i_ 
01 0000 

QQ-. 
0001 0000 

~ ~ 
S+-- 0001 0000 1000 1110. 

and so on 

Notes: 
l. T = T-register. 
2. For RX format instruction. 

reverse multiplier and 
multiplicand. 

0 8 

Figure 3-6. Fixed-Point Multiply, Example No. 1 (RR Format) 

3-42 (7/70) 



Ml, M2 'TX' 
Tgr 

0 
0 1 0 

0 
0 

11 0 
1 
1 

0 1 1 
0 
0 

0 1 0 
0 
0 

l 1 0 
1 
l 

11 1 
l 
l 

l l 1 
l 
1 

11 l 
l 
l 

11 l 

Multiplicand (in T) 
Multiplier (in S) 
Product (to S via F) 

Hex 

FFE6 
FF5D 
JOSE 

1111111111100110 
1111 1111 0101 1101 
0001 0000 1000 1110 

Decimal 

-26 
x -163 

+4238 

1. M 1, M2 bits are derived from S per E(l2-15). 

2. See Table 3-2 for multiple selection. 

Multiple E(12-15) Remarks Contents in PAL Accumulate Bit-Pairs 
in F; Transfer Bytes to S 

1111 Initial partial product 
1 x T 1111 + T (true) 

1110 New partial product 
1110 Right 2 positions 

-1 x T 1110 + T (2's complement) 
1101 New partial product 
1101 Right 2 positions 

2xT 1101 + 2T (true, left 1) 
1100 New partial product 
1100 Right 2 positions 

1 x T 1100 + T (true) 
1011 New partial product 
1011 Right 2 positions 

-1 x T 1011 + T (2's complement) 
1010 New partial product 
1010 Right 2 positions 

OxT 1010 Add O's 
1001 New partial product 
1001 Right 2 positions 

OxT 1001 Add O's 
1000 New partial product 
1000 Right 2 positions 

OxT 1000 Add O's 
0111 New partial product 
0111 Right 2 positions 

OxT 0111 Add O's 

and so on 

0000 0000 0000 0000 
1111111111100110 
1111111111100110 
1111 1111 1111 1001 !Q :t. 
0000 0000 0001 1010 10 
0000 0000 0001 0011 
0000 0000 0000 0100 L! i 
1111 111111001100 1110 
1111 1111 1101 0000 
1111 1111 1111 0100 QQ---i 
llll 111111100110 00 1110 
llll llll llOl lOITY 
1111111111110110 !.Q--:t 
0000 0000 0001 1010 1000 1110 
0000 0000 0001 0000 
0000 0000 0000 0 l 00 QQ i_ 
0000 0000 0000 0000 00 
0000 0000 0000 0 l 00 
0000 0000 0000 0001 00 i_ 
0000 0000 0000 0000 0000 
0000 0000 0000 000 l 
0000 0000 0000 0000 9-!---i 
0000 0000 0000 0000 01 0000 
0000 0000 0000 0000 
0000 0000 0000 0000 QQ--.t 
0000 0000 0000 0000 0001 0000 

~ 
s-000100001000 1110 

-----.J 1...-.-...J 1...-.-...J .____, 

Notes: 
1 . T = T-register. 

2. For RX format instructions, 
reverse multiplier and 
multiplicand. 

0 8 

Figure 3-7. Fixed-Point Multiply, Example No. 2 (RR Format) 

7201-02 FETOM (7/70) 3-43 



Multiply, M (SC) 

• Multiply 1st operand (in GPR per Rl + 1) and 2nd 
operand (in storage) and place 64-bit result into 1st 
operand location (in GPR per Rl and Rl + 1 ). 

• See Note under "Multiply." 

• RX format: 

5C Rl X2 B2 D2 

11 12 15 16 19 20 31 

Fetch 1st operand from 
GPR per Rl + 1 and 
place into S. 

Fetch doubleword (containing 
word-length 2nd operand) 
from main storage. 

Select word-length 2nd operand from 
doubleword per D(21) and place into T. 

Multiply T by S. 

Store 64-bit product into 
GPR per Rl and Rl + 1. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Contents of even-address GPR per Rl are in S and T 

(not used). 
1st operand is in odd-address GPR per Rl + 1. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

perD. 

• D(21) determines which word of doubleword contains 
2nd operand: if a 1, right word; if a 0, left word. 

The Multiply, M, instruction multiplies the contents of T 
(second operand from storage) and the contents of S (first 
operand, from GPR per Rl + 1 ), and stores the 64-bit 
product into the GPR's per RI and RI + 1. Once the 
operands have been obtained, the operation is identical to 
that of the Multiply, MR, instruction, except that the roles 
of the multiplier and multiplicand are reversed. (See Note 
under "Multiply" and Diagram 5-109.) 

Multiply Halfword, MH ( 4C) 

• Multiply 1st operand (in GPR per RI) and halfword 2nd 
operand (in storage) and place low-order 32 bits of result 
into 1st operand location. 

3-44 (7/70) 

• See Note under "Multiply". 

• RX format: 

4C Rl X2 B2 
7 8 II 12 15 16 19 20 

Fetch 1st operand from GPR 
per Rl and place into S. 

02 

31 

Fetch doubleword (containing 
halfword 2nd operand) 
from main storage. 

Select halfword 2nd operand 
from doubleword per 
0(21,22) and place into T. 

Multiply T by S. 

Store low-order 32 bits of 
product into GPR per R 1. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(21) determines which word of doubleword contains 
halfword 2nd operand: if a 1, right word; if a 0, left 
word. 

• D(22) determines which half of word contains halfword 
2nd operand: if a 1, right half; if a 0, left half. 

The Multiply Halfword, MH, instruction multiplies the 
contents of T (expanded halfword second operand from 
main storage) and the contents of S (first operand from 
GPR per RI) and stores the 32 low-order bits of the 
product into the first operand location. 0(21,22) 
determines the location of the second operand within the 
doubleword obtained from main storage. The second 
operand is then expanded to a word-length operand by 
propagating the sign bit through the high-order 16 bit 
positions of T. 

From this point, the operation is identical to that of the 
Multiply, MR, instruction, except that the roles of the 
multiplier and multiplicand are reversed. (See Note under 
"Multiply.") For a flowchart of the operation, see Diagram 
5-109. 

DIVIDE 

Fixed point division is performed by repetitive reduction of 
the dividend by multiples of the divisor to obtain a 



remainder whose value is less than that of the divisor, and 
to accumulate partial quotient (PQ) bits derived from the 
partial remainders to form a quotient. The basic 
nonrestoring method is used, with the dividend in true 
form. Nonrestoring division means that if a negative 
remainder is obtained during the reduction cycles (an 
overdraw has been made), the remainder is not corrected, 
but instead the next divisor multiples are made positive 
until the remainder becomes positive again. (In most valid 
divide operations, the first reduction cycle is an intentional 
overdraw.) 

There are two fixed-point divide instructions: Divide, 
DR, RR format, and Divide, D, RX format. Each has a 
unique initialization routine. The initialization routines: 
provide a specification test; place the low-order half of the 
dividend into S and the high-order half of the dividend into 
B, in true form regardless of the sign; place the divisor into 
T; store the signs for later use; and set E(l 2-15) and the 
STC to 0. 

A common divide microprogram is then entered. Two 
bits of the low-order dividend are appended to the 
high-order dividend. A multiple of the divisor is selected to 
reduce the dividend to a partial remainder. The inverted 
sign of the partial remainder is stored into F as a partial 
quotient (PQ) bit. Thirty-two such reduction cycles are 
taken, accumulating PQ bits in F until a byte of quotient is 
obtained. The quotient byte is stored into S, replacing the 
byte of the low-order dividend which has been used. When 
four quotient bytes have been stored into S, S contains the 
quotient and B contains the remainder. 

The microprogram now enters one of four termination 
routines, determined by the sign of the divisor and the form 
(true or 2's complement) of the quotient. The termination 
routines establish the proper sign and form of the 
remainder and quotient, according to the .convention of 
fixed-point arithmetic and the rules of algebra. The 
remainder and quotient are then stored in an even/odd pair 
of GPR's specified by RI and RI + I, and an end-op cycle 
is taken to terminate the operation. 

Divide, DR (ID) 

• Divide I st operand (in GPR per RI and RI + I) by 2nd 
operand (in GPR per R2) and place result into 1st 
operand location (remainder in GPR per RI; quotient in 
GPR per RI +I). 

• RR format (See adjoining column.) 

• Conditions at start of execution: 
Instruction is in E. 
High-order half of dividend (1st operand) is in A, B, and 

D. 
Low-order half of dividend is in GPR per RI + I. 
Divisor (2nd operand) is in S and T. 

ID Rl R2 

7 8 11 12 15 

Fetch high-order word of dividend 
from GPR per Rl and place into B. 
Fetch low-order word of dividend 
from GPR per R 1 + 1 and place 
into S. 

Fetch divisor (2nd operand) from 
GPR per R2 and place into T. 

Divide B and S by T. 

Store remainder into GPR per Rl 
and quotient into GPR per Rl + l. 

The Divide, DR, instruction divides the contents of B 
(high-order bits of dividend) and S (low-order bits of 
dividend) by the contents of T (divisor). 

The dividend is a 64-bit signed integer occupying an 
even/odd pair of GPR's addressed by RI and RI + I, 
respectively. To correctly specify the even/odd pair of 
GPR's, RI must refer to an even-numbered GPR or a 
program specification interruption occurs. A 32-bit signed 
remainder and a 32-bit signed quotient replace the dividend 
in the even-numbered and odd-numbered GPR, 
respectively, of LS. The divisor is also a 32-bit integer. 

Two bits of the low-order half of the dividend are first 
placed into the high-order half of the dividend. A multiple 
of the divisor is then selected and subtracted from the 
high-order half of the dividend to form a partial remainder. 
The resultant value determines the partial quotient (PQ) bit 
which is placed into F to accumulate the bits until a PQ 
byte is available. This PQ byte is transferred to S, which 
contains the low-order half of the dividend, and replaces 
those bits that have already been used in the operation. 
This action continues until a complete quotient and 
remainder are available, at which time they are stored into 
LS and an end-op cycle is taken. 

The sign of the quotient is determined algebraically; four 
possible combinations of signs can occur: 
1. +dividend,+ divisor,+ quotient,+ remainder. 
2. - dividend, - divisor,+ quotient, - remainder. 
3. +dividend, - divisor, - quotient,+ remainder. 
.4. - dividend, + divisor, - quotient, - remainder. 

Note that if the dividend and divisor signs are alike the 
quotient is positive; if unlike the quotient is negative. Note 
also that the sign of the remainder is the same as the sign of 
the dividend, except for a zero result, which is always 
positive. 

When the relative magnitude of the dividend and divisor 
is such that the quotient cannot be expressed by a 32-bit 
signed integer, a program fixed-point divide interruption 
occurs. When this happens, the instruction is suppressed, 
leaving the dividend unchanged in local storage. 

7201-02 FETOM (7/70) 3-45 



General Discussion 

• Multiple selection bits are determined by E(l 2-15) and 
S bits. 

• Multiples of divisor are determined by 'DVD LI' or 
'DVDLO' micro-order, carry from PAL(28), and T(32). 

• PQ bits are transferred and accumulated in F per 
E(14,15), and 'DVDLI' or 'DVDLO' micro-order. 

• F contains byte of partial quotient when filled. 

• Contents of F are transferred to correct byte in S per 
STC. 

Execution of the DR instruction occurs in three iterative 
steps: 
1 . Transfer of bits from low-order half of dividend to 

high-order half of dividend. 
2. Selection of divisor multiple. 
3. Determination of quotient bits. 

Selection of the two bits from the low-order half of the 
dividend is shown in B of Sheet 4, Diagram 5-110, FEMDM. 
Multiple selection bits (Ml ,M2) are selected from S per 
E(l 2-15), which is initially set to 0 and is incremented by 
I after the selection of each pair of multiple selection bits. 
E(l 2,13) determines which byte of S is selected, and 
E(I 4, 15) determines which bit-pair of the selected byte will 
be used to set Ml, M2: 

Byte per E(l2, 13) 

Byte 0 Byte l Byte 2 Byte 3 

S-Register I I I I I (Contains 32-bit 

~~:i~:~;) ._o ___ _.7 s ____ 15....._1_6 ___ 2_3 ...... 2; ..... 

1

_

1

.....,

1

_

2
.....,

1

--1:1 

Bit-pairs per 
E(14, 15) 

Ml ,M2 has the same bit configuration as the bit-pair 
selected from S by E(12-15), and is inserted into B(64,65) 
[via PAL(64,65)] where it extends the high-order portion 
of the dividend in B. 

Selection of the divisor multiple is shown in A of Sheet 
4, Diagram 5-110. The factors which determine the divisor 
multiple are: 
I . The carry condition from P AL(28) from the previous 

add cycle. 
2. The state of T(32), which is the divisor sign bit. 
3. The 'DVD LO' or 'DVDLI' micro-order. 

Four divisor multiples are developed and applied as 
follows: 
I. TLO ( + 1 x T): The divisor in T is added to the partial 

remainder in AB. 
2. TCLO (-I x T):, The 2's complement of the divisor in T 

is added to the partial remainder in AB. 

3-46 (7 /70) 

3. TLI ( +2 x T): The divisor in T is shifted left one bit 
position (in effect, doubled in value) 
and is added to the dividend or partial 
remainder in AB. 

4. TCLI (-2 x T): The 2's complement of the divisor in T 
is shifted left one bit position and is 
added to the dividend or partial 
remainder in AB. 

The first divisor multiple is arbitrarily set to +2 x T if 
the divisor is negative (STAT G set) or to -2 x T if the 
divisor is positive (STAT G reset). This selection is done for 
two reasons: 
I. The carry condition from P AL(28), which is normally a 

factor in selecting a divisor multiple, is meaningless at 
this time, because no previous reduction cycle has taken 
place. 

2. If the relative magnitude of the dividend and divisor 
allows, the first reduction must be an overdraw. (Except 
for one special case, if the first reduction cycle does not 
result in an overdraw, the quotient and remainder will be 
invalid.) 

Determination of the PQ bit is shown in C of Sheet 4, 
Diagram 5-110. The result of adding the selected divisor 
multiple to the dividend or partial remainder is stored into 
AB as a new partial remainder. The PQ bit is decoded as the 
inverse of A(28), and is gated to F (via SAL) per E(14,15) 
and the 'DVDLO' or 'DVDLI' micro-Order in effect at that 
time. When a PQ byte has been accumulated in F, it is gated 
to S per the STC, where it replaces the byte of S which has 
already been used. When four PQ bytes have been stored 
into S, the complete quotient is in Sand the remainder is in 
B. 

At this point, STAT G is tested. (Recall that STAT G 
was set to the sign of the divisor.) If set, the divisor is 
negative and is in 2's complement form. Because the first 
reduction cycle is an attempt to overdraw the dividend, the 
negative divisor is shifted left I bit position (in effect, 
doubled in value) to P AA(3 I -62). If ST AT G is reset, the 
divisor is positive and must be 2's complemented and 
shifted left one bit position to reduce the dividend. During 
the addition, the sign of the divisor is propagated into 
PAL(24-31), and the result (remainder) is gated to 
AB(24-67). A(28) is then tested to determine the PQ bit. 
A remainder in true form [A(28) = O] causes a I-bit to be 
selected for the PQ bit; a 2's complement remainder [A(28) 
= I ] causes a 0-bit to be selected for the PQ bit. 

Two micro-orders, 'DVD LO' and 'DVDLI ', are 
alternately used in the divide algorithm. Each micro-order 
has two functions: (I) to determine the location of the PQ 
bit in SAL (and F) from the bit-pair selected by E(14,I 5), 
and (2) to determine the shifting of the divisor multiple to 
PAA. [The carry condition from P AL(28) and the state of 
T(32) determine whether the multiple will be in true or 2's 
complement form.] The 'DVDLO' micro-order causes the 
selected PQ bit to be placed into the odd SAL bit position 



of the bit-pair selected by E(l 4 ,15), thus locating the PQ 
bit in the PQ byte being accumulated in F. This micro-Order 
also determines that the divisor multiple will be gated to 
PAA(32-63) (no shift). The 'DVDLI' micro-order causes 
the selected PQ bit to be placed into the even SAL bit 
position, and also determines that the divisor multiple will 
be gated to PAA(31-62) (shifted left 1 bit position). 

Detailed Discussion 

• Select Ml ,M2 bits from S per E(l 2-15). 

• Insert Ml ,M2 bit-pair as low-order extension of 
high-order dividend in B. 

• Select divisor multiple per: carry condition from 
PAL(28), divisor sign [T(32)], and 'DVDLO' or 
'DVD LI' micro-order. 

• Reduce dividend (or remainder) in AB by divisor 
.multiple selected. 

• Determine PQ bits per A(28). 

• Accumulate PQ bits in F to form PQ byte. 

• Accumulate PQ bytes in S to form quotient. 

• Determine validity of quotient and remainder. 

A flowchart of the DR instruction is shown in Diagram 
5-110. At the start of execution, the instruction is in E, the 
high-order half of the dividend is in A, B, and D, and the 
second operand (divisor) is in S and T. (As previously 
mentioned, the dividend occupies an even-odd pair of 
GPR's.) To correctly specify the even-odd pair of GPR's, 
the RI field of the instruction must refer to an 
even-numbered GPR, or a program specification 
interruption occurs. 

The states of B(32) and T(32) are first tested. B, at this 
time, contains the high-order half of the dividend, and T 
contains the divisor. If B(3 2) = I , STAT B is set; if T(32) = 
I, STAT G is set. These STAT's are used in later operations 
to determine the correct sign of the quotient and 
remainder, and to obtain a dividend in true form in B and 
s. 

Recall that the dividend must be in true form. Because 
the dividend is a 64-bit operand and the maximum operable 
word length is 32 bits, the high-order half and the low-order 
half of the dividend must be treated separately when 
determining the true value of the dividend. To obtain a true 
value of a negative dividend, the dividend must be 2's 
complemented. Because the complementation process is 
always accomplished on a 2's complement basis during 
fixed-point operations, and because the high-order and 
low-order halves of the dividend are treated separately, the 
value of the high-order bits may be incorrect when in the 

true form. To prevent an incorrect high-order dividend 
from being operated on, the value of the low-order dividend 
bits is tested by checking for a carry out of the high-order 
bit location when 2's complemented. If a carry occurs, the 
high-order dividend bits are in the correct form. If a carry 
does not occur, the high-order bits are incorrect and a 
minus 1 must be added to the bits to obtain the desired 
dividend value. The following two examples illustrate this 
method (using only a 16-bit double word): 

Example 1: Correct Value Obtained. 

1111011000000000 
0000100111111111 

11110110 
00001001 

Long-hand method of 
obtaining 2's complement 

1 
00001010 

00000000} 
11111111 

.-0000000~ 
Carry 

Machine method of 
obtaining 2's com
plement 

Example 2: Incorrect Value Obtained and How It Is 
Corrected. 

1111011010000000} 
0000100101111111 

1 

0000100110000000 

Long-hand method of 
obtaining 2's complement 

11110110 
00001001 

1 

OOT10 

10000000} 
01111111 

Nr100000~ 
Carry 

Machine method of 
obtaining 2's com
plement but found 
to be incorrect 

00001010 
11111111 
00001001 10000000} 

Machine method of 
correction 

Sheet 2 of Diagram 5-110 illustrates the method used by 
the CE to obtain a positive dividend value in B and S. 

With the correct values of the dividend in B and S and 
the divisor in T, E(l 2-15) is set to 0000 to allow selection 
of the first byte of the low-order half of the dividend. The 
first partial remainder is obtained by transferring the 
cbntents of B (high-order half of dividend) to PAB(32-63) 
and placing the divide multiple selection bits, Ml ,M2, into 
PAL( 64,65). The divide multiple selection bits are 
determined by decoding E(l 2-15) and the S bits, as 
previously described. 

7201-02 FETOM (7/70) 3-47 



After selection of the Ml ,M2 bits, E{l 2-15) is 
incremented by 1, setting up conditions for selection of the 
next Ml ,M2 bits. The resultant value of the addition of 
Ml ,M2 .. to the high-order half of the dividend is transferred 
to AB(24-67), from where it is shifted left 2 into the 
parallel adder, introducing the Ml ,M2 bits into the partial 
remainder. 

Recall that ST AT G was set to the sign value of the 
divisor. At this point, STAT G is tested (Sheet 3 of Diagram 
5-110.) If set, the divisor is negative and is in 2's 
complement form, and is transferred to the parallel adder, 
shifting left 1 to PAA(3 l-62). If STAT G is reset, the 
divisor is positive and must be 2's complemented before 
being transferred to the parallel adder so that it can reduce 
the dividend. During the addition, the sign of the divisor is 
propagated into PAL(24-3 l) and is checked after the 
addition to determine the PQ-bit setting. 

At this point in the operation, the 'DVDLO' micro-order 
is in effect and causes the first PQ bit to be gated to the 
odd SAL bit position of the high-order bit-pair of SAL 
[E(14,15) = 01] (C of Sheet 4, Diagram 5-110). The first 
PQ bit is extraneous, because i~ reflects the condition of 
A(28) before the first reduction cycle, and it is replaced by 
a valid bit 2 cycles later. The result of the first reduction is 
placed into AB. 

A 'DVDLl' micro-order is issued next. This micro-order 
causes selection of a PQ bit per A(28). (AB presently 
contains the result of the first reduction.) If the result of 
the first reduction is negative [ A(28) = 1] , a 0 is the 
selected PQ bit; if positive [ A(28) = 0] , a 1 is the selected 
PQ bit. Because the 'DVDLl' micro-order is now in effect, 
the PQ bit is gated to the even SAL bit position of the 
high-order bit-pair of SAL [E(14,15) ~ 01], and SAL is 
gated to F. The contents of AB are transferred to PAB, and 
the divisor multiple [selected by the carry condition of 
PAL(28), the state of T(32), and the 'DVDLO' 
micro-order] is gated to PAA. The result of the addition, 
together with a new pair of multiple selection bits, is gated 
to AB as a new partial remainder. The next divisor multiple 
is selected per the carry condition of P AL(28), the status of 

Table 3-3. Divide Multiple Values, Fixed-Point 

Carry from PAL(28) T(32) 

Yes No 1 0 

x x 

x x 

x x 

x x 

3-48 (7/70) 

T(32) (which remains the same for the entire divide 
operation), and the 'DVDLl' micro-order. Refer to Table 
3-3 for the value of the divisor multiple for all conditions. 

Selection of the PQ bits and divisor multiples occurs as 
just described until a complete byte of the PQ is available: 
(1) the 'DVD LO' micro-order is issued, and the PQ bit 
obtained from the last addition is stored into the odd 
register location determined by E(l 4,15), (2) the next 
divisor multiple is selected, placed in the adder, and added 
to the partial remainder, and (3) a 'DVD LI' micro-order is 
issued. The 'DVDLl' micro-order accomplishes the same 
operation as the 'DVD LO' micro-order, except that it places 
the PQ bit into the even GPR location per E(14,15) and 
shifts the selected multiple left 1. (Refer to Sheet 3, 
Diagram 5-110.) 

When a byte of the PQ is obtained, it is transferred to S 
per the STC, replacing those bits of the low-order half of 
the dividend that have already been used. Operations 
continue in the same manner; i.e., PQ bits are selected to 
form a PQ byte, this byte is transferred to S, and the used 
dividend bits are replaced until a complete quotient is 
developed. 

Thirty-two reduction cycles are provided by the 
fixed-point divide microprogram. To obtain a valid quotient 
and remainder, the absolute value of the dividend and 
divisor must be so related that in 32 reduction cycles the 
dividend can be reduced to a remainder whose value is less 
than that of the divisor. If the highest-order significant bit 
of the dividend is less than 31 bit positions to the left of 
the highest-order significant bit of the divisor, the quotient 
is in true form and a valid result is obtained. If the 
highest-order significant bit of the dividend is more than 30 
bit positions to the left of the highest-order significant bit 
of the· divisor, the quotient is in 2's complement form and 
an invalid result is obtained unless the quotient is the 
maximum negative number (10000 ...... 000). Valid 
results are stored, but invalid result~ cause a program 
fixed-point divide interruption and the original operands 
remain unchanged in storage. 

Divide Multiple Micro-Order 

'DVD LO' 'DVDL1' 

2's complement of T. 2's complement of T shifted left 1. 

T. T shifted left 1. 

2's complement of T. 2's complement of T shifted left 1. 

T. T shifted left 1. 



When E(14,15) = 11 and the STC = 11 (when tested), 
E(l 2-15) is incremented to 0000, the next-to-last PQ bit is 
stored into F(6), and the last reduction cycle is taken 
(Sheet 3, Diagram 5-110). The last PQ bit is taken from the 
remainder in AB [A(28)] and is gated to SAL(7) [per 
E(14,15) = 00 and the 'DVDLO' micro-order]. This action 
completes the last byte in SAL, which is gated to S per the 
STC. 

A branch on divisor sign (STAT G) and quotient form 
(true or 2's complement, STAT C,) causes the 
microprogram to enter 1 of 4 termination routines. The 
purpose of the termination routines is to test for valid 
results, to establish the quotient and remainder in the 
proper form according to the proper sign, to store the 
corrected remainder and quotient, and to end the 
operation. 

Sheet 6 of Diagram 5-110 is a flowchart of the 
fixed-point divide termination routine if the quotient is in 
true form. In this case, the 'quotient and remainder are 
valid, and it is only necessary to store the results in the 
proper form. (Positive results must be stored in true form 
and negative results must be stored in 2's complement 
form, according to the convention of fixed-point arithmetic 
and the rules of algebra.) Because the dividend was stored 
in B and S in true form regardless of sign, the results may or 
may not be in the correct form. It is therefore necessary to 
branch on the original signs of the operands and on the 
form of the results to achieve the proper form for the 
results. If the remainder is in 2's complement form, it is the 
result of an overdraw, and must be corrected by adding the 
divisor in true form before storing or complementing the 
remainder according to the sign of the dividend. 

Sheet 5 of Diagram 5-110 is a flowchart of the 
fixed-point divide termination routine if the quotient is in 
2's complement form. If the quotient is in 2's complement 
form and it is the maximum negative number 
(10000 ...... 000), the results are valid and the 
termination routine must accomplish the same tasks as for 
the true form termination. If the quotient is not the 
maximum negative number, a program fixed-point divide 
interruption is taken and the original operands remain 
unchanged in storage. 

When the quotient and remainder are valid and have 
been converted to the proper form according to their 
algebraic sign, the remainder is stored into the GPR per 
E(8-11) and the quotient is stored into the GPR per 
E(8-1 l) + 1, replacing the high-order and low-order halves 
of the dividend respectively, and leaving the divisor 
unchanged in storage. An end-op cycle is taken, finishing 
the operation. 

Two examples of the fixed-point divide operation are 
presented in Figures 3-8 and 3-9. These examples are the 
inverse of the two fixed-point multiply examples (Figures 
3-6 and 3-7). 

Divide, D (SD) 

• Divide 1st operand (in GPR per Rl and RI + 1) by 2nd 
operand (in storage) and place result into 1st operand 
location (remainder in GPR per RI; quotient in GPR per 
RI + 1). 

• RXformat: 

SD Rl X2 B2 

7- 8 11 12 15 16 19 20 

Fetch high-order word of dividend 
from GPR per Rl and place into B. 
Fetch low-order word of dividend 
from GPR per Rl + 1 and place 
into S. 

D2 

31 

Fetch double"."ord [containg word
length divisor (2nd operand)] 
from main storage. 

Select word-length divisor 
from doubleword per D(21) 
and place into T. 

Divide B and S by T. 

Store remainder into GPR per R 1 
and quotient into GPR per R 1 + 1. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
High-order half of dividend (1st operand) is in S and T. 
Low-order half of dividend, is in GPR per RI + 1. 
2nd operand address is in D. 
Main storage request for 2nd operand has been issued 

per D. 

• D(21) determines which word of doubleword contains 
divisor: if a 1, right word; if a 0, left word. 

The Divide, D, instruction divides the contents of B 
(high-order bits of dividend) and S (low-order bits of 
dividend) by the contents of T (divisor). D(21) determines 
which word of the doubleword fetched from main storage 
contains the divisor: if a 1, right word; if a 0, left word. 
Once the divisor is obtained from main storage, the 
operation is identical to the operation of the DR 
instruction (Diagram 5-110). 

CONVERT 

There are two fixed-point convert instructions, both in the 
RX format: Convert to Binary and Convert to Decimal. 
These instructions convert the radix of an operand from 

decimal to binary and binary to decimal, respectively, and 

7201-02 FETOM (7/70) 3-49 



Dividend (in Band S} 
Divisor (in T} 
Quotient (to S via F} 

Hex 

TOBE 
OOTA 
OOA3 

0001 0000 1000 1110 
0000 0000 0001 1010 
0000 0000 1010 0011 

Decimal 

+4238 
+26 

+163 

1. Ml, M2 bits are derived from S per E(12-15}. 
2. Multiple selection per PAL(28} carry, T(32}, 

and 'DVDLO' and 'DVDLT' micro-orders (Table 3-3}. 
3. T = T-register. 

Accumulate PQ 
A B B(64,65} Remarks Bits in F, Byte to S 

0000 0000 0001 00 Dividend + M 1, M2 to AB 
00 0000 0000 0100 AB left 2 

1111 111111001100 + T (2's complement} left 1 

f 1111 111111010000 Remainder to AB 
0000 0 0000 0000 0001 1010 + T 

0000 of 1111 111111101010 00 Remainder to AB 
1111 1111 1010 1000 AB left 2 
0000 0000 0011 0100 + T left 1 

0000 oJ 1111 1111 1101 1100 Remainder to AB 
0000 0000 0001 1010 + T 

0000 ooJ "1'111 1111 1111 0110 10 Remainder to AB 
To S 1111 1111 1101 1010 AB left 2 

0000 0000 0011 0100 + T left 1 

f '"'0000 0000 0000 1110 Remainder to AB 
1 1111 1111 1110 0110 + T (2's complement} 

if 1111 111111110100 00 Remainder to AB 
1111 111111010000 AB left 2 
0000 0000 0011 0100 + T left 1 

1of 
--uooo 0000 0000 0100 Remainder to AB 

1111 1111 1110 0110 + T (2's complement} 

10J 
1111 1111 1110 1010 11 Remainder to AB 
1111 1111 1010 1011 AB left 2 
0000 0000 0011 0100 + T left 1 

1010[ 
1111 1111 1101 1111 Remainder to AB 
noon 000() 0001 1010 + T 

1010J 
1111 1111 1111 1001 10 Remainder to AB 
1111 1111 1110 0110 AB left 2 
0000 0000 0011 0100 + T left 1 

1010 oof 0000 0000 0001 1010 Remainder to AB 
1111 111111100110 + T (2's complement} 

f ]!_000 0000 0000 0000 Remainder to AB 

To s 1010 0011 S -- 0000 0000 1010 0011 = OOA3 Hex 

Figure 3-8. Fixed-Point Divide, Example No. 1 

Accumulate PQ 
A 

Bits in F, Byte to S 

00 
1111 

0000 ! 1111 
0000 

ooooJ 
1111 
1111 
0000 

oooooJ 1111 
0000 

ooooooJ 1'111 
To s 1111 

0000 

f \lOOO 
1111 

if 1'111 
1111 
0000 

f ·oooo 
101 1111 

101! 
1'111 

1111 
0000 

1010 t 1111 
0000 

1010J 
1111 
1111 
0000 

1010 oof 0000 
1111 

_l ~000 
Ta S 1010 ooiT 

Hex Binary Decimal 

Dividend (in Band s}t 108E 0001 0000 1000 1110 -4238 
Divisor (in T} FFE6 111\ 111111100110 -26 
Quotient (to S via F} OOA3 0000 0000 1010 0011 +163 

t Dividend is always in true form in Band S. 
1. Ml, M2 bits are derived from S per E(12-15}. 
2. Multiple selection per PAL(28} carry, T(32), and 

'DVDLO' and 'DVDLl' micro-orders (Table 3-3). 
3. T = T-register. 

B B(64,65) Remarks 

0000 0000 0001 00 Dividend + M 1, M2 to AB 
0000 0000 0100 AB left 2 
111111001100 + T left 1 
1111 1101 0000 Remainder to AB 
0000 0001 1010 + T (2's complement) 
111111101010 00 Remainder to AB 
111110101000 AB left 2 
0000 0011 0100 + T (2's complement) left 1 
111111011100 Remainder to AB 
0000 0001 1010 + T (2's complement) 
1111 1111 0110 10 Remainder to AB 
1111 1101 1010 AB left 2 
0000 0011 0100 + T (2's complement) left 1 
0000 0000 1110 Remainder to AB 
111111100110 + T 
1111 1111 0100 00 Remainder to AB 
1111 1101 0000 AB left 2 
0000 0011 0100 + T (2's complement) left 1 
0000 0000 0100 Remainder to AB 
1111 1110 0110 +T 
1111 1110 1010 11 Remainder to AB 
1111 1010 1011 AB left 2 
OOOO_QQ_U 0100 + T (2's complement) left 1 
1111 1101 1111 Remainder to AB 
0000 0001 1010 + T (2's complement) 

1111 1111 1001 10 Remainder to AS 
111111100110 AB left 2 
0000 0011 Olo'O + T (2's complement) left I 
0000 0001 1010 Remainder ta AB 
1111 1110 0110 +T 
0000 0000 0000 Remainder to AB 
s--0000 0000 1010 0011 = C::A3 Hex 

Figure 3-9. Fixed-Point Divide, Example No. 2 

3-50 (7/70) 

Ml, M2 
(S Bits} 

00 

00 

10 

00 

11 

10 

Ml, M2 
(S Bits) 

00 

00 

10 

00 

11 

10 

Carry T(32} Micro-order 
A(28} 

0 
0 

- 0 DVDLT 
0 

0 0 DVD LO 
0 
0 

0 0 DVDLT 
0 

0 0 DVD LO 
0 
0 

0 0 DVDLl 
0 

1 0 DVD LO 
0 
0 

0 0 DVD LT 
0 

1 0 DVD LO 
0 
0 

0 0 'DVDLl 
0 

0 0 DVD LO 
0 
0 

0 0 DVDLl 
0 

1 0 DVD LO 
0 

Carry 
T(32) Micro-order A(28) 

1 
1 

- 1 DVDLl 
1 

0 1 DVD LO 
1 
1 

0 1 DVDLl 
1 

0 1 DVD LO 
1 
1 

0 1 DVDLT 
1 

1 1 DVD LO 
1 
1 

0 1 DVDLl 
1 

1 1 DVD LO 
1 
1 

0 1 DVD LT 
1 

0 1 DVDLO 
1 
1 

0 1 DVDLT 
1 

1 1 DVDLO 
1 



store the result into the other operand location. The 
maximum positive number that can be converted is 
+2,I47,483,647; the maximum negative number is 
-2,I47,483,648. 

Convert to Binary, CVB ( 4F) 

• Convert radix of 2nd operand ( doubleword, in storage) 
from decimal to binary and place result into I st operand 
location (in GPR per RI). 

• RX format: 

4F R 1 X2 B2 D2 

7 8 11 12 15 16 19 20 

Fetch doubleword decimal integer 
from main storage. 

Convert decimal digits 
(in BCD form) to binary data. 

Store converted data into 
GPR per Rl. 

• Conditions at start of execution: 
First I 6 bits of instruction are in E. 
I st operand is in S and T (not used). 
2nd operand address is in D. 

31 

Main storage request for 2nd operand has been issued 
per D. 

• Decimal digits are in packed format. 

• High-order half of doubleword operand is converted 
first. 

• For numbers outside maximum range, only 32 low-order 
binary bits are stored after conversion. 

• Conversion is accomplished by multiplying decimal data 
by 10, adding result to next decimal digit, then 
multiplying this total by I 0, and so on. 

The Convert to Binary (CVB) instruction converts the radix 
of the second operand from decimal to binary, placing the 
result into the first operand location. The number is treated 
as a right-aligned signed integer both . before and after 
conversion. 

The decimal operand (second operand) occupies a 
doubleword in main storage and has a packed decimal data 
format. The low-order four bits of the operand represent 
the sign of the operand. The remaining 60 bits contain I 5 
binary-coded decimal (BCD) digits in true notation. The 
decimal data, when being converted, is tested for valid sign 

and digit codes. If improper codes exist, a program data 
interruption occurs. 

The result of the conversion is placed in the GPR 
specified by RI. The maximum positive number that can be 
converted and still be contained in a 32-bit register is 
2, I 4 7,483,647; the maximum negative number is 
-2,147 ,483,648. For any decimal number outside this 
range, the operation is completed by placing the 32 
low-order binary bits into the register, and initiating a 
program fixed-point divide check interruption. In the case 
of a negative second operand, the low-order part is in 2's 
complement notation. 

Converting a decimal number to binary involves taking 
the BCD digits of the number to be converted one at a 
time, from the most significant to the least significant (left 
to right). The leftmost digit is taken from the decimal field 
(in BCD form) and multiplied by 10. The next 
most-significant digit is taken from the decimal field and 
added to this result. The result of this addition is then 
multiplied by I 0. The operation of adding and multiplying 
by 10 is repeated until all digits have been converted; 
however, no multiplication takes place after the 
least-significant decimal digit has been added. 

The following is an example of how the computer 
basically accomplishes the conversion: 

Convert 146 BCD to Binary 

BCD 

1. 1stBCDdigittoPAA (x1) 

2. 1st BCD digit left 2 (times 
4 to PAB (x4) 

3. Add; resu It is 1st BCD 
digit times 5 (x5) 

4. Result of step 3 left 1 
(times 2) to PAA (x10) 

5. 2nd BCD digit to PAB ~ 

6. Add; result is 1st BCD 
digit times 10, plus 2nd 
BCD digit 

7. Resultofstep6toPAA (x1) 

8. Result of step 6 left 2 
(times 4) to PAB (x4) 

9. Add; result is 1st BCD 
digit times 50, plus 2nd 
BCD digit times 5 (x5) 

10. Resultofstep9left1 
(times 2) to PAA (x10) 

11. 3rd BCD digit to PAA (x 1) 

12. Add; result is 1st BCD 
digit times 100, plus 
2nd BCD digit times 
10, plus 3rd BCD digit 

146 = 0001 0100 0110 

T 
0001 

000100 

000101 

00010t 
0100 

0001110 

00011t 
000111000 

001000110 

i 
0010001100 

0110----'-

0010010010 = 146 Binary 

7201-02 FETOM (7 /70) 3-51 



Diagram 5-111, FEMDM, is a flowchart of the CYB 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the first operand is in Sand T (not 
used), the second operand address is in D, and a storage 
request for the second operand has been issued per D. At 
the beginning of the operation, the address of the second 

operand is tested to see whether the proper integral 
boundary has been specified. If the address is located on an 
incorrect (non-doubleword) integral boundary, a program 
specification interruption occurs. The CYB operation is 
suppressed, and the data in LS and in main storage remains 
unchanged. If no program specification interruption occurs, 
the operation continues. 

Recall that, at the start of execution, a storage request 
for the second operand had been issued. At this time, the 
data ( doubleword operand) is present at the SDBO and is 
gated into ST, destroying the first operand. The STC, which 
selects the correct byte to be converted from ST, is set to 
000, thus selecting S(O-7). 

The contents of T (low-order half of the doubleword 
operand) are transferred to the LSWR. (This data is 
converted at a later time.) Because the converted data is to 
be stored into T and D, they are now cleared. The first byte 
(bits 0-7) of S is transferred to the serial adder B bus. Bits 
0-3 are transferred to SAL(0-3) and SAL( 4-7) and on to 
F. F now contains the first decimal digit to be converted. 

As the decimal data from S is passed through the serial 
adder to F, it is tested for invalid digits. If the digits are 
invalid, STAT E is set and later, when tested, causes a· 
program data interruption, which terminates the operation. 
If the digits are valid, the first decimal digit is transferred 
from F( 4-7) to PAB( 60-63). The contents of D and T are 
then transferred and shifted left 1 to PAA(7-30) and 
P AA(31-62), respectively, and added to the decimal digit. 
At this time, D and T contain zero. 

The result of the addition, which is the decimal digit, is 
transferred from P AL(8-63) to DT and from PAL(32-63) 
to B(32-63). The contents of DT are then transferred to 
P AA(8-63). The contents of B are now shifted left 2, 
placed into PAB(4-65), and added to PAA. This action, in 
effect, multiplies the original decimal digit by 5. The result 
of the addition is then transferred from PAL(8-63) to DT. 
A byte from S is transferred to the serial adder B bus per 
the STC. At this time, the byte transferred to the serial 
adder is the first byte in S (STC = 000). This action allows 
the second decimal digit to be placed into the serial adder. 
From the serial adder, the data is sent to F. The STC is 
increased by 1 so that the next byte from S can be 
transferred when selected. 

The second decimal digit, F(4-7), is transferred to 
PAB( 60-63). The contents of DT are then transferred to 
PAA(7-62). This transfer shifts the converted data left 1, 
in effect multiplying the original decimal digit by 10 (x5 
and x2). PAA and P AB are added, and the result in 

3-52 (7/70) 

PAL(8-63) is transferred to DT. The contents of 
PAL(32-63) are transferred to B(32-63). 

The next byte in S (bits 8-15) is now transferred to F 
via SAL. STAT D is then tested. If STAT D is set, it 
indicates the low-order word of the doubleword operand is 
being converted; if reset, the high-order word is being 

converted. At this time, STAT Dis reset. The STC is now 
tested to see which byte of S is being worked on; the value 
presently in the STC is 001. Because STAT Dis reset and 
the STC does not equal 011, operations continue in the 
same manner as previously described; i.e., a decimal digit is 
brought in and added to the sum of the converted digits, 
and the result is multiplied by 10. This procedure continues 
until all digits have been converted. 

While the last two decimal digits of the high-order word 
are being processed, STAT Dis set to indicate the low-order 
word. When the last decimal digit of the high-order word 
has been transferred to F, the STC is set to 000; the 
low-order word is transferred from the LSWR (where it was 
stored at the beginning of the operation) to S and is 
converted in the same manner as the high-order word. 

When the low-order byte of the low-order word is 
transferred from SAL to F, the sign is tested for validity, 
setting STAT E if invalid. The state of STAT Eis then 
tested. If STAT E is set, a data-check condition exists and 
an end-op cycle is taken, leaving the contents of LS 
unaltered. If STAT E is not set, the sign of the number is 
determined by [F( 4-7)], and the last decimal digit is 
converted. If F( 4-7) is a plus sign, the converted data is 
transferred from T to the GPR per E(8-11 ). If F( 4-7) is a 
minus sign, the converted data is first 2's complemented 
and then transferred from T to the GPR per E(8-ll). 
STAT G is then set if T(32) = 1. PAL(32-63) is tested for 
all zero's (T = 0), and a branch is made on the result of this 
test. 

The contents of D (overflow bits) are then transferred to 
PAL( 40-63), and PAL(32-63) is again tested for all zero's 
(D = 0). Note that D is not 2's complemented when Tis 2's 
complemented for a negative sign, and should always equal 
zero unless an overflow occurred. 

If T(32-63) = 0 and D(0-23) = 0, the result is zero and 
a normal end-op cycle is taken. In all cases, if D(0-23) does 
not equal 0, an overflow has occurred, a fixed-point divide 
check condition exists and an end-op cycle is taken. If 
D(0-23) = 0 and T(32-63) does not equal 0, a further test 
is made to determine if the maximum positive or negative 
number has been exceeded. If the decimal sign [F(4-7)] 
was positive and T(32) = 1 (STAT G set), the maximum 
positive number has been exceeded. If the decimal sign 
[F(4-7)] was negative and T(32) = 0 (STAT G reset), the 
maximum negative number has been exceeded. (For a 
negative sign, the contents of T have previously been 
changed to 2's complement form.) In both of the above 
cases, a fixed-point divide check condition exists and an 



end-op cycle is taken. If the maximum number has not 
been exceeded, an end-op cycle is taken, completing the 
operation. 

Note that even if an overflow condition is detected or if 
the maximum positive or negative number has been 
exceeded, the low-order 32 bits of the converted integer are 

stored into the GPR per E(8-I I) and the only indication is 
the fixed-point divide check condition. If any decimal digit 
or the sign is invalid, a data check condition exists and the 
operation is terminated without storing any data. 

Convert to Decimal, CVD (4E) 

• Convert radix of I st operand (in GPR per RI) from 
binary to decimal and place result into 2nd operand 
location (in storage). 

• RX format: 

4E Rl X2 B2 

7 8 11 12 15 16 19 20 

Fetch binary integer from GPR per Rl. 

Convert binary data to decimal 
digits (in BCD form). 

Store converted data (doubleword} 
into main storage per 2nd operand 
address. 

• Conditions at start of execution: 
First I 6 bits of instruction are in E. 
I st operand is in S and T. 
2nd operand address is in D. 

D2 

31 

• Operand to be converted is 32~bit signed binary integer. 

• Converted data is in packed decimal format. 

• Positive sign is encoded as 1100 or IOIO. 

• Minus sign is encoded as llOI or 1011. 

The Convert to Decimal (CVD) instruction converts the 
radix of the finsc operand (from GPR per RI) from binary 
to decimal, storing the result into the second operand 
location (in main storage). The number to be converted is a 
32-bit signed binary integer; the 3I binary bits yield I 5 
decimal digits in the packed format. The sign bit may be 
encoded in two forms for both positive and negative 
numbers. A positive sign may be I 100 or 1010; a minus 
sign may be I 101 or I 0 I I . The choice between the two 
sign representations is determined by PSW(I 2). 

A binary number is converted to decimal by parallel 
decimal correct function, which operates from AB to the 
parallel adder.. The binary number being converted is 

extracted one bit at a time from the most significant bit to 
the least significant bit (left to right) and is added to a 
previous partially converted decimal number. The resultant 
number is first multiplied by 2, by shifting left I, and then 

decimal-corrected. The parallel decimal-correct function 
extracts 6 or 0 from the partially converted number and 
adds the 6 or 0 to twice the partially converted number so 
that the resulting decimal number does not exceed the 
maximum decimal number of 9. This function is performed 
for each half-byte of AB(28-63) for every add cycle. Table 
3-4 lists the AB bits and parallel adder bits used in the 
decimal-correct function. The process of conversion is 
repeated until all bits of the binary number have been 
examined. At the completion of the conversion, the 
converted number is shifted left 4, and the correct sign is 
placed into the low-order bit positions. The example shown 
in Figure 3-10 illustrates the method of converting from 
binary to decimal. 

Table 3-4. Conversion to Decimal (Excess-6) 

AB Bits Set Set PAB Bus Bits (+6) 

A(28) PAB(29,30) 

A(29,30) PAB(29,30) 

A(29) and A(31) PAB(29,30) 

B(32) PAB(33,34) 

B(33,34) PAB(33,34) 

B(33) and B(35) PAB(33,34) 

B(36) PAB(37,38) 

B(37,38) PAB(37,38) 

B(37) and B(39) PAB(37,38) 

B(40) PAB(41,42) 

B(41,42) PAB(41,42) 

B(41) and B(43) PAB(41,42) 

B(44) PAB(45,46) 

B(45,46) PAB(45,46) 

B(45) and B(47) PAB(45,46) 

B(48) PAB(49,50) 

B(49,50) PAB(49,50) 

B(49) and B(51) PA8(49,50) 

B(52) PA8(53,54) 

B(53,54) PAB(53,54) 

B(53) and B(55) PAB(53,54) 

B(56) PAB(57,58) 

8(57,58) PAB(57,58) 

B(57) and B(59) PAB(57,58) 

B(60) PAB(61,62) 

B(61,62) PAB(61,62) 

B(61) and 8(63) PAB(61,62) 

Diagram 5-112, FEMDM, is a flowchart of the CVD 
instruction. At the start of execution, the first I 6 bits of 
the instruction are in E, the first operand is in Sand T, and 
the second operand address is in D. The first portion of the 

7201-02 FETOM (7/70) 3-53 



Convert + 146 Bi nary (92 Hex) to + 146 BCD 

1. SAL= 1001 0010 (shift left 1 after each addition). 
2. Gate 6 or 0 to each half-byte of PAB per AB 

bits (see Table 3-4). 

AB 

52 53 54 55 56 57 58 59 60 61 62 63 

0 0 0 0 0 0 0 0 0 0 0 0 
1 

0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 

1 
0 0 0 0 0 0 0 0 1 0 0 1 
0 0 0 0 0 0 0 1 0 0 1 0 
0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 0 1 1 0 0 0 
0 0 0 0 0 0 1 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 
0 0 0 0 0 0 1 1 0 1 1 0 
0 0 0 0 0 1 1 0 1 1 0 0 
0 0 0 0 0 0 0 0 0 1 1 0 

1 
0 0 0 0 0 1 1 1 0 0 1 1 
0 0 0 0 1 1 1 0 0 1 1 0 
0 0 0 0 0 1 1 0 0 0 0 0 
0 0 0 1 0 1 0 0 0 1 1 0 

0001 0100 0110 1100=+146 in BCD packed format 

Figure 3-10. Convert to Decimal Example 

operation is devoted to testing for specification-check and 
address-store-compare conditions. If a specification check is 
present, a program specification interruption occurs and the 
operation is suppressed. If an address-store-compare 
condition occurs, the 'PSC' trigger is set and the operation 
continues. The value of S(O) (sign of original binary 
number) is set into STAT C. At the end of the operation, 
ST AT C is examined to determine the sign of the converted 
number. 

Because conversion is done on a positive operand basis, 
the sign of the operand is determined by testing T(32). If 
T(32) is a 1, the data to be converted is negative and its 2's 
complement form must be derived; if a 0, the data is 
positive. The contents of D are then shifted left 4 and 
transferred to the LSWR. Because the high-order converted 
data is stored in D, D is cleared. The first byte of data is 
now sent from S to SAL per the STC (STC = 0). 

3-54 (7/70) 

Remarks 

Gate 0 to each half-byte of PAB. 
Hot carry to PAA(63) [SAL(O) = 1]. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 to each ha I f-b1'._f"e of PAB. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 to each half-b_y_te of PAB. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 to each half-byte of PAB. 
Hot carry to PAA{63) [SAL(O) = 1]. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 or 6 to each half-b_y_te of PAB. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 or 6 to each half-b_l!e of PAB. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 or 6 to each half-byte of PAB. 
Hot carry to PAA(63) [SAL(O) = 1]. 
Sum to AB and DT. 
Gate DT left 1 to PAA. 
Gate 0 or 6 to each half-bl'._te of PAB. 
Result [place sign of 1100 into B(64-67) per STAT CJ. 

The first decimal convert value (0 or 6) is obtained by 
examining the contents of AB. Because AB is cleared at this 
time, the first decimal convert value is all O's. (See Table 
34 for conversion values.) The decimal convert value is 
placed into PAB(28-63), and a hot carry is generated if 
SAL(O) = 1. If SAL(O) = 0, a hot carry is not generated and 
the value in P AB is transferred directly to PAL. The 
contents in SAL are shifted left 1, thus placing the next bit 
from the byte into SAL(O). Next, PAL(8-63) is transferred 
to AB(8-63), PAL(8-31) is transferred to D(0-23), and 
PAL(32-63) is transferred to T(32-63). This action pla_ces 
the first converted bit into AB and DT. The value in DT is 
then shifted left 1 to P AA(7-63). A decimal convert value 
is again obtained from B and placed into P AB. SAL(O) is 
now checked. If it is a 1, a hot carry is generated; if a 0, no 
carry is generated. In either case, the numbers are added. 
The result of the addition is then transferred to DT and AB. 



The contents of SAL are shifted left 1, bringing in the next 
bit for conversion. The ABC is increased by 1. 

The contents of SAL (a byte of S per the STC) are 
shifted left one digit position as follows: F is gated to SAA, 
the byte of S (per the STC) is gated to SAB, and SAL is 
gated to F and S (per the STC). This operation is equivalent 
to adding the contents of SAL to itself, which doubles the 
value of SAL and, in effect, shifts the bits one digit position 
to the left. After seven add cycles, every bit in SAL has 
been presented in sequence to PAA(63) via SAL(O), the 
original low-order bit of F (and of the byte of S) has been 
shifted to the high-order bit position of F and of the byte 
of S, and the STC has been incremented by 1 to present the 
next byte of S to SAL and F. To assure that the new byte 
of S presented to SAB will be added to all zeros, F( 4-7) is 
gated to SAA(0-3) and all zeros are gated to SAA( 4-7). 

The ABC indicates the progress of the microprogram in 
converting bits of the byte from S (now located in SAL, F, 
and S). When the ABC = 4, five bits of the byte have been 
converted, the microprogram has branched (per ABC = 3) 
to a routine to convert the last three bits of the byte, the 
ABC is set to 0, and the STC is incremented by 1 to present 
the next byte of S to SAL and F. One conversion cycle is 
taken and the microprogram re-enters the conversion loop, 
converting the next byte of S in the same manner as the 
first. This routine continues until, at the time the 
microprogram branches from the conversion loop, the STC 
= 3. The microprogram then enters a termination routine, 
during which the last three bits of the low-order byte of S 
are converted and the sign is set per STAT C. (Recall that 
STAT C was set to the value of the sign of the binary 
number.) If ST AT C is set, the last decimal convert value 
(converting bit 7 of the last byte) is obtained and the hot 
carry is generated according to the value of SAL(O); the 
result is placed into AB and DT. A minus sign (1101 or 
1011) is then placed into B(64-67). AB is shifted left 4 
and transferred to ST(0-63). Mark triggers 0 through 7 are 
set, and the converted data is transferred to main storage. 
An end-op cycle is taken, completing the operation. If 
STAT C is reset, a positive sign is placed into B(64-67), 
shifted into the low-order bits of the converted operand, 
and stored into main storage. 

The CVD instruction is the only instruction which uses 
the excess-6 gates from B to PAB. (For a discussion of the 
excess-6 gates, refer to "Parallel Adder" in Chapter 2.) Note 
in the example in Figure 3-10 that the result of each 
addition is gated from PAL to AB and to DT; then the 
contents of DT are gated left 1 to PAA (in effect, doubled 
in value). By examining the bit configuration of each 

half-byte of AB, a decision is made whether to add 6 to the 
corresponding half-byte of DT after being shifted left 1 to 
PAA. This decision is a prediction whether or not each 
half-byte of AB, if doubled in value, will exceed 9. Each 
half-byte. of AB which has a value of 5 or greater will, if 
doubled, exceed 9. Therefore, for decimal correction 

purposes, 6 must be added to the corresponding half-bytes 
ofDT. 

For simplicity, the low-order half-byte of B is taken as 
an example in Table 3-5; however, each half-byte of AB 
(28-63) is simultaneously examined. Note in the table that 
if B( 60-63) contains a value of 0 through 4, the value, 
when doubled, will not exceed 9 and a 6 is not added. If 
B(60-63) contains a value of 5 through 15, however, its 
value, when doubled, will exceed 9 and a 6 must be added. 
Note that for values 5 through 15 B(60-63) contains one 
or more of the following bit combinations: B(60) = 1, 
B(61,62) = 11, B(61) and B(63) = 1. 

STORE 

There are three fixed-point store instructions: Store, ST, 
RX format; Store Halfword, STH, RX format; and Store 
Multiple, STM, RS format. The function of the store 
instructions is to store the contents of specified GPR(s) 
into main storage. 

Store, ST (50) 

• Store 1st operand (in GPR per RI) into 2nd operand 
location (in storage). 

• RX format: 

50 R 1 X2 B2 

7 8 II 12 15 16 19 20 

Fetch 1st operand from GPR per Rl. 

Set mark triggers per 
PAL(61) [D(21)]. 

Store word-I ength 1st operand into 
word (selected by mark triggers) 
of doubleword specified by 2nd 
operand address. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 

D2 
31 

• PAL(61) determines into which word of doubleword 1st 
operand is to be stored: if a 1, right word; if a 0, left 
word. 

The Store, ST, instruction stores the first operand (from 
the GPR per Rl) into the main storage address specified by 
the second operand address. Diagram 5-113, FEMDM, is a 

7201-02 FETOM (7/70) 3-55 



Table 3-5. Excess-6 Conversion, B(60-63) 

Decision Making B-bits 
Factors (ALO RB 753) 60 61 62 63 

0 0 0 0 
None of the 0 0 0 1 
below conditions 0 0 1 0 

0 0 1 1 
0 1 0 0 

B(61) and B(63) = 1 0 1 0 1 
8(61,62) = 11 0 1 1 0 

0 1 1 1 
1 0 0 0 
1 0 0 1 
1 0 1 0 

8(60) = 1 1 0 1 1 
1 1 0 0 
1 1 0 1 
1 1 1 0 
1 1 1 1 

Refer to Table 3-4 for remaining half-bytes of AB. 

flowchart of the ST instruction. PAL(61) determines which 
word (right or left) of the doubleword addressed by D will 
receive the first operand; mark triggers 0-3 or 4-7 are set 
accordingly. 

Store Halfword, STH (40) 

• Store halfword 1st operand (in GPR per_ RI) into 2nd 
operand location (in storage). 

• RX format: 

40 R 1 X2 B2 

78 1112 1516 1920 

Fetch word {containing halfword 1st 
operand) from G PR per R 1 . 

Select ha I fword 1st operand 
{low-order 16 bits) per ABC. 

Set mark triggers per 
STC [ D{21-23)]. 

Store halfword 1st operand into 
halfword (selected by mark 
triggers) of doubleword specified 
by 2nd operand address. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
2nd operand address is in D. 

3-56 (7/70) 

D2 

31 

Decimal Decimal Value Add to 
Value if Doubled PAB(60-63) 

0 0 
1 2 ! 
2 4 0 
3 6 
4 8 

5 10 
6 12 
7 14 
8 16 
9 18 6 

10 20 [ 1 to 
11 22 PAB(61,62)] 
12 24 
13 26 
14 28 
15 30 

• ABC selects 16 low-order bits of 1st operand for storage; 
high-order bits are ignored. 

• STC [D(21-23)] positions 16 low-order bytes for 
storage. 

The Store Halfword (STH) instruction stores the 16 
low-order bits of the GPR specified by RI into the main 
storage location specified by the second operand address. 
The high-order bits are not used. 

The selected halfword is stored through the use of mark 
triggers, which reflect the value of D(21-23). This value, 
plus 1 , signifies into which portion of the doubleword the 
halfword is to be stored. Diagram 5-114, FEMDM, is a 
flowchart of the STH instruction. At the start of execution, 
the first 16 bits of the instruction are in E, the first operand 
is in S and T, and the second operand address (into which 
the halfword operand is to be stored) is in D. 

The second operand address is first tested to see that it is 
on an integral boundary; if not, a program specification 
interruption occurs and the operation is suppressed. 
Assuming no specification error, D(21-23) is transferred to 
the STC to select the correct portion of the main storage 
doubleword into which the 16 low-order bits of the first 
operand are to be stored. Next, the first operand (located in 
T) is transferred to B. The ABC is then set to 6 by placing 
all 1 's into the ABC and subtracting 1 from this value. (The 
ABC selects the two low-order bytes of the operand 
presently located in B.) The mark trigger, which transfers 
the selected high-order byte of the halfword from ST to the 
main storage location, is selected per the STC. (See Table 
3-6 for the STC and mark trigger settings and the 
corresponding operand bits transferred.) The eight 
high-order bits of the halfword are now transferred from 
B(48-55) to the correct position via the serial adder and 



Table 3-6. Operand Bits Transferred, STH Instruction 

Operand Bits 
STC Mark Trigger Transferred 

0(21) 0(22) 0(23) 

0 0 0 0 0-7 

0 1 0 2 16-23 

1 0 0 4 32-39 

1 1 0 6 48-55 

STC+1 

0 0 1 1 8-15 i 

0 1 1 3 24-31 

1 0 1 5 40-47 

1 1 1 7 56-63 

the STC. A 3-cycle storage request is given. (Three cycles 
later, the data in ST is stored into main storage.) Also at 
this time, the ABC and STC are increased by I to select the 
next byte of data and to position the byte into ST by the 
time the 3-cycle storage request has elapsed. 

To determine whether this store operation modified the 
instruction to be executed next, an address-store-compare 
test is made by comparing the IC with the main storage 
address used in the store operation. The test is made by 
transferring the 2's complement of D (address of main 
storage doubleword into which the halfword operand is to 
be stored) to PAA(40-63). The contents of the IC are 
transferred to PAB(40-63); PAA and PAB are added, and 
the result is shifted right 4 in PAL. The PAL is tested for O; 
if 0, an address-store-compare condition exists and the 
'PSC' trigger is set. This trigger is tested during the I-Fetch 
sequence of the next instruction and, if set, causes the 
modified instruction to be fetched from main storage and 
reloaded in Q. (Refer to "ASC Test" in Section I of this 
Chapter for an explanation of the address-store-compare 
test during I-Fetch.) 

At this point, the eight low-order bits of the halfword 
operand are transferred from B(56-63) to ST via the SAL 
and STC. The associated mark triggers are also set at this 
time per the STC. An end-op cycle is taken to complete the 
operation. If a protection check condition occurs, the 
operation is suppressed, because no data storage takes 
place. Instead, the next instruction is fetched and executed, 
followed by a program interruption due to the "late" 
protection check. 

Store Multiple, STM (90) 

• Store into 2nd operand location (as many words as 
required, in storage) contents of GPR's, in ascending 

order, starting with I st operand location (per RI) and 
ending with 3rd operand location (per R3). 

• RS format: 

90 R 1 R3 B2 02 

7 8 11 12 15 16 19 20 31 

Fetch 1st word from 
GPR per Rl. 

Fetch 2nd word from 
G PR per R 1 + 1 . 

Fetch last word from 
GPR per R3. 

Store into correct word 
[per 0(21)] of doubleword specified 
by 2nd operand address. 

Store into next main storage 
location selected. 

Store into last main storage 
location selected. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
I st operand is in S and T. 
2nd operand address is in D. 

• Number of words to be stored is determined by E(8- l l) 
and E(I 2-15). 

• Addressed GPR's wrap around from 15 to 0. 

• D(21) determines into which word of doubleword the 
first word is to be stored: if a I, right word; if a 0, left 
word. 

The Store Multiple (STM) instruction stores one or more 
32-bit words from LS, starting with the GPR specified by 
Rl and ending with the GPR specified by R3, into main 
storage. The area in main storage where the contents of the 
GPR's are placed starts at the location designated by the 
second operand address and continues . through as many 
words as needed in an ascending order. 

The number of words to be stored is determined by 
E(8-ll) and E(l 2-15). If the contents of these bit 
locations are equal, only one word is to be stored. If the 
contents of the bit locations are not equal, storage of words 
is continued; E(8-11) is updated by 1 for each word stored 
until the bit locations are equal; then, one more word is 
stored, and the operation is completed. Once it has been 
decided whether one or more words are to be stored, it 
must be determined into which word of the doubleword, in 
main storage, the first word is to be stored; D(21) serves 
this function. If D(21) = 0, the first word is to be placed 
into the left word of the doubleword; if D(21) = 1, into the 
right word. 

7201-02 FETOM (7 /70) 3-57 



See Diagram 5-115, FEMDM, a flowchart of the STM 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the first operand is in ST, and the 
second operand address is in D. The instruction first tests 
for a specification-check condition. If one exists, a program 
specification interruption occurs and the operation is 
suppressed. Assuming there is no specification check, the 
contents of D are transferred to PAA(40-63). A 3-cycle 
storage request is given. To determine whether one or more 
words are to be stored, E(8-11 ), RI, is compared with 
E(l 2-15), R3. If E(8-11) equals E(l 2-15), only one 
word is to be stored; if it does not, more than one word is 
to be stored. 

Assume one word is to be stored [E(8-11) equals 
E(l 2-15)] . D(21) is tested to determine whether the LS 
operand is to be stored into the left or right word of the 
main storage doubleword. If D(21) = 0, the left word is 
selected; if D(21) = 1, the right word is selected. Assume 
D(21) = 1. Mark triggers 4 through 7 are set to gate 
T(32-63) to bits 32-63 of the main storage doubleword 
when data is stored. An address-store-compare test is then 
made. This test involves transferring the 2's complement of 
D to PAA( 40-63) and 7 to PAA( 61-63), and transferring 
the contents of the IC to PAB(40-63); they are added and 
shifted right 4 to PAL. The PAL is then tested for zero. If 
zero, the 'PSC' trigger is set. This trigger is tested during 
end op and, if set, indicates that the next instruction to be 
executed has been modified. The modified instruction must 
then be refetched into Q during I-Fetch. (For information 

. about the address-store-compare test, refer to "ASC Test" 
in Section 1 of this chapter.) 

A protection test is also made by main storage while the 
next instruction is being fetched. The protection key in the 
PSW is compared with the storage key for the location. If 
the keys agree, storage is permitted. If the keys do not 
agree, storage is not permitted, the instruction is 
terminated, and a "late" protection interruption is taken 
after the execution of the next instruction. 

Now assume D(21) = 0 and E(8-11) equals E(12-15). 
Again only one word is to be stored into main storage. In 
this case, however, the word is to be stored in the left word 
of the doubleword location in main storage. Accordingly, 
mark triggers 0 through 3 are set to gate S(0-31) to bits 
0-31 in main storage. 

Now assume E(8-11) is not equal to E(l 2-15). If 
D(21) = 1, the first word is to be stored into the right word 
of the doubleword (mark triggers 4 through 7 are set). 
Because more than one word is to be loaded, the next 
sequentially addressed word from LS is transferred to S. A 
storage request is then given. The contents of D are 
increased by 8. E(8-11) and £(12-15) are again compared. 

3-58 (7/70) 

If equal, mark triggers 0 through 3 are set and the data is 

6ated into main storage. If they are not equal, more than 
two words are to be stored into main storage. Because the 
second operand to be gated from LS is already in S, and 
because D contains the address where both the second and 
third operands are to be stored, the third operand is now 
transferred out of LS and mark triggers 0 through 7 are set. 
The data is stored into main storage. Address-store-compare 
and protection-key tests are made for each new main 
storage address. Only the last storage request issued can 
cause a "late" protection interruption. 

If more than two words are to be stored, the operation 
continues as just described. E(8-11) is incremented, a word 
is loaded into ST, the address in D is increased by 8, and 
storage requests are generated when needed. When E(8-11) 
and E(l 2-15) are equal, the last word is loaded into main 
storage and an end-op cycle is taken. 

If D(21) = 0, and if E(8-1 l) and E(l 2-15) are not 
equal, the first word is to be placed into the left word of 
the doubleword location in main storage and the second 
word into the right word. 

SHIFT 

There are four fixed-point shift instructions: Shift Left 
Single, SLA; Shift Left Double, SLDA; Shift Right Single, 
SRA; and Shift Right Double, SRDA. Their function is to 
shift the first operand (right or left) and to store the result 
into the first operand address. The first operand may be a 
word or a doubleword in length and is shifted the amount 
specified by the low-order six bits of the second operand 
address. The specified amount of shift is accomplished in 
increments of left 1, left 2, left 4, and right 4 shifts. To 
expedite the operation, combinations of these increments 
are used whenever possible, and a maximum number of left 
4 and right 4 shifts are used. 

The CC is set to indicate the status of the result. A 
left-shifted result is tested for an overflow condition to 
determine if significant high-order digits were lost. During a 
right-shift, significant low-order digits may be lost with no 
indication. 

Shift Left Single, SLA (8B) 

• Shift 1st operand (in GPR per Rl) left number of bit 
positions specified by low-order 6 bits of 2nd operand 
address and place result into 1st operand location. 



• RS format: 

0 

88 Rl 82 
7 8 11 12 15 16 19 20 

Fetch 1st operand from GPR per Rl. 

Shift 1st operand left number 
of bit positions specified 
by low-order 6 bits of 
2nd operand address. 

Store result into GPR per 
Rl, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in Sand T. 
Amount of shift is in D and PAL. 

• D(l 8-23) indicates total amount of shift. 

• Methods of shifting: 
Left 1 from T to PAA. 
Left 2 from ~B to P AB. 
Left 4 from PAA or P AB to PAL. 

D2 
31 

• E(l 2-15) indicates number of left 4 shifts to be 
performed. 

• E(l 2-15) is reduced by 1 after each multiple of four 
shifts occurs. 

• O's are supplied to vacated bit positions. 

• Overflow occurs if data is shifted out of bit position 1. 

• CC setting: 
Result in PAL is zero: CC = 0. 
Result in PAL is less than zero: CC = 1 . 
Result in PAL is greater than zero: CC= 2. 
Overflow: CC = 3. 

The Shift Left Single, SLA, instruction shifts the first 
operand left the number of bit positions specified by the 
low-order six bits of the second operand address. (The 
remainder of the second operand address is ignored.) The 
second operand request per D, normally initiated during RS 
I-Fetch, is blocked during I-Fetch of a shift instruction 
because D does not contain a main storage address. Refer to 
"Basic RS and SI I-Fetch" in Section 1 of this chapter. 

The sign of the first operand remains unchanged. All 31 
bits of the operand participate in the left shift. Zeros are 
transferred into the vacated low-order register positions. If 
a bit unlike the sign bit is shifted out of position 1, an 

overflow occurs, causing a program fixed-point overflow 
interruption during end op if the fixed-point overflow mask 
bit is a 1. 

Left-shifting can be accomplished by three methods: (1) 
shifting left 1 bit position from T to the parallel adder, (2) 
shifting left 2 bit positions from AB to the parallel adder, 
and (3) shifting left 4 bit positions from the parallel adder 
to PAL. In the interest of speed, the desired amount of left 
shift is accomplished using a maximum number of left 4 
shifts and a minimum number of left 1 and left 2 shifts (not 
more than one of each). Also, whenever possible, a left 1 or 
a left 2 shift is combined with a left 4 shift because these 
combinations can be accomplished in one pass through the 
parallel adder. Table 3-7 shows how left-shifting is 
accomplished for any amount of shift desired. 

See Diagram 5-116, FEMDM, a flowchart of the SLA 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the first operand is in S and T, and 
the number of bit positions to be shifted is in D and PAL. 

In the SLA instruction, PAL(58-63) is first tested to 
determine the amount of shift. (PAL contains the same 
value as D.) If PAL(58-61) = 0, a shift of less than 4 is 
needed; PAL(62) is then tested. If PAL(62) = l, a shift of 
either 3 or 2 is to be performed; if PAL(62) = 0, either a 
shift of 1 or no shift is to be performed. 

As an example, assume that PAL(58-61) does not equal 
O and that PAL( 62,63) = 11. A shift of left 7, left 11, or 

more is indicated. STAT C is set to S(O), the sign of the 

first operand that will be transferred to LS at the end of the 
operation. D(18-21), which is equal to PAL(S8-61), is 
transferred to E(l 2-15). This value is reduced sequentially 
by 1 after every left 4 shift until it equals 0001, at which 
time no more shifting of data is necessary. The contents of 
T are transferred to PAA(31-62), thus achieving a left 1 
shift. T(32) is propagated into PAL(26-31). Because a left 
4 shift takes place only when transferring data from PAA or 
PAB into PAL, P AA(8-67) is shifted left 4 positions into 
PAL( 4-63). PAL(26-32) is now tested to see that no 
important data has been lost during the shifting. If these 
bits are not all O's or all l's, STAT B is set, indicating 
overflow occured; if found set during end op, a program 
fixed-point overflow interruption occurs if the associated 
overflow mask bit in the PSW is a 1. P AL(24-67) is 
transferred to AB(24-67). E(l 2-15) is tested to see 
whether it contains a value of 0001 . If it does, only a left 7 
shift is to be performed; otherwise, a shift of left 11 or 
more is to be made. 

Assume E(12-15) = 0001. A 1 is subtracted from 
E(12-15). The contents of AB(6-67) are transferred to 
P AB( 4-65). This transfer accomplishes a left 2 shift, 
making a total left shift of 7 positions. PAL(26-32) is 
tested for overflow, and PAL(32-63) is tested for all O's. 
The data is transferred to LS, and an end-op cycle is taken 
to complete the operation. 

Now assume E(l 2-15) does not equal 0001, indicating a 
total left shift of at least 11 positions or more is called for 
by the instruction. Because at this point the data has 

7201-02 FETOM (7 /70) 3-59 



Table 3-7. Left Shift Combinations 

Total Shift 
PAL(58-61) PAL(62,63) Desired 

0000 00 None 

01 Left 1 

10 Left 2 

11 Left 3 

Not 0000 00 Left 4, 8, 12 
and so on 

01 Left 5, 9, 13 
and so on 

10 Left6,10,14 
and so on 

11 Left 7, 11, 1 5 
and so on 

already been shifted left 5 positions, a left 6 shift is 
necessary to achieve the minimum left 11 shift. A 1 is 
subtracted from E(l 2-15). AB( 6-6 7) is transferred to 
PAB( 4-65), yielding a left 2 shift. A left 4 shift is achieved 
by shifting the contents of PAB(4-65) to PAL(0-61). 
PAL(26-32) is tested for overflow, and PAL(32-63) is 
tested for all O's. PAL(32-63) is transferred to T(32-63), 
and T(32-63) is transferred to the GPR per E(8-11 ). The 
value of STAT C is placed into the sign position of the 
GPR. E(l 2-15) is again checked for a value of 0001. If the 
bits now contain this value, the data has been shifted the 
correct number of times. A 1 is subtracted from E(l 2-15), 
and an end-op cycle is taken, completing the operation. If 
E(12-15) does not equal 0001, a left shift of more than 11 
is required for this instruction. 

If E(l 2-15) still does not equal 0001, 1 is again 
subtracted from E(l 2-15). T(32-63) is transferred to 
PAA(32-63), and the data is shifted left 4 positions into 
PAL(28-63). After testing PAL(26-32) and PAL(32-63), 
the contents of PAL(32-63) are transferred to T, and the 
data in T(33-63) is transferred into the GPR per E(8-11). 
The value of ST AT C is placed into the GPR sign position 
per E(8-l 1 ). 

3-60 (7/70) 

Incremental Shifting Sequence 

None 

Left 1 

Left 2 

Left 1 

Left 4 Left 4 until 
E(12-15) = 1 

Left 1 Left 4 until 
and left 4 E(12-15) = 1 

Left 2 Left 4 until 
and left 4 E(12-15) = 1 

Left 1 Left 2 if 
and left 4 E(12-15)=1 

Left 2 and left 4 Left 4 
if E(12-15) -:f= 1 until 

E(12-15) = 1 

Note: The result of the first 11 shifts is transferred to LS 
before E(l 2-15) is tested to see whether a shift of more 

than 11 places is required. If a total shift greater than 11 is 
specified, the data is shifted left an additional four places 
and transferred to LS, where it destroys the 11-place 
shifted operand stored earlier. E(l 2-15) is tested; if a shift 
gre~ter than 15 in specified, the data is again shifted left 4 
and transferred to LS. This procedure of testing E(l 2-15), 
shifting left 4, and transferring the result to LS continues 
until E(l 2-15) equals 0001. 

E(l 2-15) is again checked for 0001. If E(l 2-15) = 
0001 at this time, 1 is subtracted from it and an end-op 
cycle is taken, completing the operation. If E(l 2-15) does 
not equal 0001, the operand continues to be shifted in 
multiples of 4 until E(l 2-15) equals 0001. The CC is then 
set per STAT A, STAT B, and the result sign [T(32)], and 
an end-op cycle is taken. 

Left shifts of other amounts are performed in a similar 
manner. (Refer to Table 3-7 and Diagram 5-116, FEMDM.) 

Shift Left Double, SLDA (8F) 

•·Shift 1st operand (in GPR per Rl and Rl + 1) left 
number of bit positions specified by low-order six bits of 



2nd operand address and place result into 1st operand 
location. 

• RS format: 

BF R1 B2 

7 8 11 12 15 16 19 20 

Fetch high-order word of 1st 
operand from G PR per R 1 . 
Fetch low-order word of 1st 
operand from G PR per R 1 + 1 . 

Shift 64-bit 1st operand 
left number of bit positions 
specified by low-order 6 
bits of 2nd operand address. 

Store high-order word of result into 
G PR per R 1 and low-order word into 
GPR per R1+1, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
Amount of shift is in D and PAL. 

• D(l 8-23) indicates total amount of shift. 

02 

31 

• E(12-I5) indicates number of left 4 shifts to be 
performed. 

• E(I 2- I 5) is reduced by I after each multiple of four 

shifts occurs. 

• High-order bits of low-order word of doubleword 
operand are saved and placed into high-order word 
operand. 

• O's are supplied to vacated bit positions. 

• Overflow occurs if data is shifted out of bit position I of 
high-order word. 

• CC setting: 
Result in PAL is zero: CC= 0. 
Result in PAL is less than zero: CC = I . 
Result in PAL is greater than zero: CC= 2. 
Overflow: CC= 3. 

The Shift Left Double, SLDA, instruction shifts the 
doubleword first operand left the number of bit positions 
specified by the low-order six bits of the second operand 
address. The RI field of the instruction is the address of the 
GPR containing the high-order 32 bits of the doubleword 
operand. The low-order word of the doubleword operand is 
in the GPR per RI + I. The RI field of the instruction 
must specify an even register. When RI is odd, a program 
specification interruption occurs. 

The sign of the doubleword ,operand is the sign of the 
even GPR. The high-order bit (sign) of the odd GPR is 
treated as an integer bit. As the information is shifted, O's 
are supplied to the vacated low-order positions. If a bit 
unlike the sign bit is shifted out of bit position I of the 
high-order word of the doubleword operand, an overflow 
occurs. The overflow causes a program fixed-point overflow 
interruption if the associated mask bit in the PSW is a 1. 

The SLDA instruction is similar to the SLA instruction 
in that a left 1 shift occurs when transferring data from T 
to PAA, a left 2 shift occurs when transferring data from 
AB to PAB, and a left 4 shift occurs when data is 
transferred from the inputs of the parallel adder to PAL. 
Also, the total shift specified is accomplished using a 
maximum number of left 4 shifts and a minimum number 
of left I and left 2 shifts. The differences are a result of 
handling a doubleword, one word at a time, in the SLDA 
instruction. 

B( 64-67), which contains the overflow bits from the 
low-order word, may be thought of as a four-bit register 
inserted between the high-order word and the low-order 
word. It is therefore necessary to shift these bits four bit 
positions to the left to position them correctly into the 
high-order word. This positioning is accomplished in 
different ways according to the shift being performed; the 
result, however, is always that of shifting the overflow bits 
left four bit positions. 

Refer to Diagram 5-117, FEMDM, a flowchart of the 
SLDA instruction. At the start of execution, the first 16 
bits of the instruction are in E, the high-order word of the 
first operand is in S and T, and the number of bit positions 
to be shifted is in D and PAL. 

In the beginning of the operation, the sign of the 
operand (which will be transferred to· LS at the end of the 
operation) is stored into STAT C. Because the low-order 
word of the doubleword operand is treated first, that word 
is now transferred from LS. (Recall that S and T presently 
contain the high-order word of the doubleword.) Once the 
low-order word of the doubleword is obtained, the data is 
shifted as for the SLA instruction. The high-order bits of 
the low-order word of the doubleword are not lost wheri 
shifted out but are transferred to B(64-67). When the 
high-order word of the doubleword is obtained, these bits 
are shifted into the high-order word of the operand. 

The low-order word is shifted the amount specified by 
PAL(62,63), and the low-order 32 bits of the result are 
stored in the GPR specified by RI + I (odd register). A 
zero test is performed, and STAT A is set if the low-order 
word is all zeros. The high-order bits that were shifted out 
of the low-order word are gated from PAL(28-3I) to 
B(64-67) where they are stored, shifted left four positions 
and appended to the high-order word. The high-order word 
is transferred from the even GPR specified by RI, is shifted 
the same amount as the low-order word per PAL(62,63), 
and is added to the overflow bits from the low-order word. 

7201-02 FETOM (7/70) 3-61 



An overflow test is performed to determine if significant 
bits were lost from the high-order word, and ST AT B is set 
if an overflow occurred. A zero test is performed, and 
STAT A is reset if the high-order result is not all zeros. 

If PAL(58-61) was zero. at the end of I-Fetch, the last 
shift has been performed and the low-order 31 bits of the 
high-order word, plus the inserted sign bit (per STAT C), 
are stored into the even GPR specified by Rl. The CC is set 
per hardware conditions, and an end-op cycle is taken. 

If PAL(58-61) was not zero, the low-order word has 
been transferred from the odd GPR to S, and one or more 
left 4 shifts remain to be performed. The low-order word in 
S is shifted left 4 and stored into S. The four overflow bits 
are retained in B(64-67), the high-order word in Tis gated 
to PAA, B( 64-67) is gated to P AB, and the result is shifted 
left 4 to PAL. This sequence shifts the high-order word, 
plus the overflow bits from the low-order word, left 4. The 
low-order 31 bits of the high-order word, plus the inserted 
sign bit (per STAT C), are gated to T and stored into the 
even GPR per Rl. The number of left 4 shifts to be 
performed is determined by E(l 2-15), which was set per 
D(18-21) at the start of execution. E(12-15) is 
decremented after each left 4 shift is performed. The 
microprogram remains in the shift left 4 loop until 
E(l 2-15) is reduced to 000 l, at which time the low-order 
word is stored into the odd GPR specified by Rl + 1. The 
CC is set per STAT A, STAT B, and the result sign [A(O)], 
and an end-op cycle is taken. 

When the low-order word is shifted, a zero test is 
performed and ST AT A is set if the low-order result is all 
zeros. When the high-order word is shifted, a zero test is 
performed and STAT A is reset if the high-order result is 
not all zeros. When the high-order word is shifted, an 
overflow test is performed; ST AT B is set if an overflow 
occurred and a program fixed-point overflow interruption is 
taken if the associated mask bit in the PSW is a 1. 

Shift Right Single, SRA (8A) 

• Shift 1st operand (in GPR per Rl) right number of bit 
positions specified by low-order six bits of 2nd operand 
address and place result into 1st operand location. 

• RS format: (shown in adjacent column) 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
Amount of shift is in D and PAL. 

• D(l 8-23) indicates total amount of shift. 

• Method of shifting: right 4 from PAA or P AB to PAL. 

• Shifts of right 3 or less are obtained by combining left 1, 
left 2, or left 3 shifts with right 4 shift. 

• E(l 2-15) indicates number of shifts to be performed in 
multiples of 4. 

3-62 (7/70) 

8A R1 B2 

7 8 11 12 15 16 19 20 

Fetch 1st operand from GPR per R1. 

Shift 1st operand right 
number of bit positions 
specified by low-order 6 
bits of 2nd operand address. 

Store result into GPR 
per R1, and set CC. 

02 

• E(l 2-15) is reduced by 1 after each shift of 4. 

• CC setting: 
Result in PAL is zero: CC = 0. 
Result in PAL is less than zero: CC = 1. 
Result in PAL is greater than zero: CC= 2. 

31 

The Shift Right Single, SRA, instruction shifts the first 
operand right the number of bit positions specified by the 
low-order six bits of the second operand address. (The 
remainder of the address is ignored.) 

The sign of the first operand remains unchanged. All 31 
bits of the operand participate in the shift. Bits equal to the 
sign are supplied to the vacated high-order bit positions. 
Low-order bits are shifted without inspection and are lost. 

Right-shifting is accomplished only by shifting right 4 
bit positions at a time from the parallel adder to the PAL. 
Right shifts of less than 4 are obtained by combining left 1, 
left 2 or left 3 shifts with the right 4 shift. In the interest 
of sp~ed, the desired amount of right shift is accomplished 
using a maximum number of right 4 shifts and a minimum 
number of left 1 and left 2 shifts (not more than one of 
each). Also, wherever possible, a left 1 or left 2 shift is 
combined with a right 4 shift because these combinations 
can be accomplished in one pass through the parallel adder. 
Table 3-8 shows how right-shifting is ac~omplished for any 
amount of shift desired. 

Diagram 5-118, FEMDM, is a flowchart of the SRA 
operation. At the start of execution, the first 16 bits of the 
instruction are in E, the first operand is in S and T, and the 
number of bit positions to be shifted is in D and PAL. 

In the SRA operation, PAL(58-63) initially determines 
the amount of shift. PAL( 5 8-61) determines whether a 
shift of more than right 3 is to occur. If PAL(58-61) = 0, a 
shift of right 3 or less is to be performed; if PAL(58-61) 
does not equal 0, then shifts of right 4 or more are to 
occur. 



As an example, assume that PAL(58-6I) does not equal 
0 and that PAL(62,63) = 01. A shift of right 5, right 9, or 
more is indicated. D(18-2I) is transferred to E(12-I5) to 
determine the number of right 4 shifts to be used if a shift 
of more than right 5 is to occur. PAL(32-63) is now tested 
for all O's. If this condition is present, STAT A is set. The 
first operand in T(32-63) is transferred to AB, with T(32) 
propagated into A(26-31). 

The first operand in T(32-63) is transferred to 
PAA(3I-62), causing a left 1 shift of the data, and T(32) is 
propagated into PAL(26-31). PAA(31-62) and 
PA L(26-31) are transferred right 4 positions to 
PAL(35-66) and PAL(30-35), respectively, giving, in 
effect, a shift of right 3 positions. The data in PAL is 
transferred to AB(24-67), from where it is transferred to 
PAB( 4-65), causing a left 2 shift. The total effective shift 
at this time is a right 1 shift. PAL(32-63) is now tested for 
all O's, and ST AT A is set if all O's are present. P AL(3 2-63) 
is transferred to T(32-63), from where the data is 
transferred into the GPR per E(8-I 1). E(12-I5) is tested 
for 0001. If this value exists, an end-op cycle is taken to 
complete the operation. If E(I2-15) does not equal 0001, 
then the data continues to be shifted in multiples of 4, and 
E(l 2-15) is reduced by 1 for each right 4 shift until it 
equals OOOI. At this time the CC is set per STAT A and the 
result sign [T(32)], and an end-op cycle is taken. 

Right shifts of other amounts are performed in a similar 

manner. (Refer to Table 3-8 and Diagram 5-118, FEMDM.) 

Table 3-8. Right Shift Combinations 

Total Shift 
PAL(58-61) PAL(62,63) Desired 

0000 00 None 

01 Right 1 

10 Right 2 

11 Right 3 

Not 0000 00 Right 4, 8, 12 
and so on 

01 Right 5, 9, 13 
and so on 

10 Right 6, 10, 14 
and so on 

11 Right 7, 11 , 15 
and so on 

Shift Right Double, SRDA (8E) 

• Shift 1st operand (in GPR per RI and RI + 1) right 
number of bit positions specified by low-order six bits of 
2nd operand address and place result into 1st operand 
location. 

• RS format: 

8E Rl B2 

7 8 11 12 15 16 19 20 

Fetch high-order word of lst 
operand from G PR per R l • Fetch 
low-order word of 1st operand 
from GPR per Rl + 1. 

Shift 64-bit of 1st operand right 
number of bit positions specified 
by low-order 6 bits of 2nd 
operand address. 

Store high-order word of result into 
G PR per R 1 and low-order word 
into GPR per Rl + 1, and set CC. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
1st operand is in S and T. 
Amount of shift is in D and PAL. 

Incremental Shifting Sequence 

None 

Left 1 and 
right 4 

Left 2 and 
right 4 

Left 1 and 
right 4 

Right 4 Right 4 until 
E(12-15) = 1 

Left 1 and Left 2 and 
right 4 right 4 

Left 2 and Right 4 
right 4 

Left 1 and Right 4 
right 4 

D2 
31 

Right 4 until 
E(12-15) = 1 

Right 4 until 
E(12-15) = 1 

Right 4 until 
E(12-15) = 1 

7201-02 FETOM (7/70) 3-63 



• D( 18-23) indicates total amount of shift. 

• E(l 2-15) indicates number of shifts to be performed in 
multiples of 4. 

• E(l 2-15) is reduced by 1 after each shift of 4. 

• Low-order bits of high-order word of doubleword 
operand are saved and placed into low-order word of 
operand. 

• Value of operand sign is supplied to vacated bit 
positions. 

• CC settings: 
Result in PAL equals zero: CC= 0. 
Result in PAL is less than zero: CC = 1. 
Result in PAL is greater than zero: CC= 2 .. 

The Shift Right Double, SRDA, instruction right-shifts the 
doubleword first operand the number of 'bit positions 
specified by the low-order six bits of the second operand 
address. (The remainder of the address is ignored.) The Rl 
field of the instruction addresses the high-order 32 bits of 
the doubleword operand. The low-order word of the 
operand is in the GPR per Rl + 1. The Rl field must 
specify an even GPR; a program specification interruption 
occurs when Rl is odd. 

The sign of the doubleword operand is the sign of the 
even GPR (Rl ). The sign bit (high-order bit) of the odd 
GPR (RI + I) is treated as an integer bit. Bits equal to the 

3-64 (7/70) 

sign of the doubleword operand are supplied to the vacated 
high-order positions as the information is shifted. Bits 
shifted out of the low-order positions are lost. 

Diagram 5-119, FEMDM, is a flowchart of the SRDA 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the first operand is in S and T, and 
the number of bit positions to be shifted is in D and PAL. 

The SRDA instruction execution is similar to that of the 
SRA instruction. The differences are a result of shifting a 
doubleword, one word at a time, in the SRDA instruction. 
Because the high-order word is shifted first, it is necessary 
to retain the underflow bits from the high-order word, to 
shift them right 4, and to append them to the low-order 
word. 

Any specified amount of right shift involves at least one 
shift of right 4 for both the high-order word and the 
low-order word. Therefore, the underflow bits from the 
high-order word are appended to the low-order word [by 
transferring B(64-67) to PAB(28-31)] before the right 4 
shift. This action results in the underflow bits and the 
low-order word being shifted right 4 as a unit. 

Each time the shifted high-order word is stored, a zero 
test is performed and ST AT A is set if the result is 0. When 
the low-order word has been shifted the same amount, 
STAT A is reset if the result is not 0. STAT A and the 
result sign [A(O)] determine the CC. 



SECTION 3. FLOATING-POINT INSTRUCTIONS 

This section discusses the 44 instructions making up the 
floating-point instruction set. Before analyzing the 
instructions, however, the following paragraphs discuss 
exponent overflow and underflow and zero results, and list 
the conditions at the start of execution. (For a discussion 
of data formats, normalization, operand addressing, 
instruction formats, data flow, program interruptions, and 
condition codes, see Chapter 1.) 

EXPONENT OVERFLOW AND UNDERFLOW 

• Exponent overflow occurs if two positive characteristics 
are added, or if positive number is added to positive 
characteristic, and final result is negative characteristic. 

• E:x:ponent underflow occurs if two negative 
characteristics are added, or if quantity is subtracted 
(complement added) from negative characteristic, and 
final result is positive characteristic. 

• Exponent underflow program interruption occurs if 
PSW(38) = 1. 

During floating-point operations, values may be chosen that 
cause the CE to yield invalid results. For example, the 
largest positive exponent that can be expressed as a 
floating-point characteristic is +63, and is represented in 
excess-64 notation as 111 1111 (7F, hex). Assume that +63 
is the characteristic of a floating-point operand and that a 1 
is added to it: 

0 2 3 4 5 6 7 
s 1 1 1 1 1 1 1 +63 (Excess-64 Notation) 

$ 0 0 0 0 0 0 1 +1 
s 0 0 0 0 0 0 0 

t 
Carry 

Note that the sum in bits 1-7, instead of indicating an 
exponent of +64, indicates an exponent of -64, 128 less 
than the true exponent. Thus, exponent overflow occurred. 
The rule for exponent overflow is: if two positive 
characteristics are added, or if a positive number is added to 
a positive characteristic, and the final result is a negative 
characteristic, exponent overflow occurred. This rule does 
not hold for intermediate result characteristics which may 
exceed the highest expressible exponent. 

If exponent overflow occurs, an interruption is forced 
and cannot be masked off (refer to Chapter 1). The 
resulting invalid characteristic is not altered and remains in 

the result register for examination by the 
interruption-handling microprogram. 

The largest negative exponent that can be expressed as a 
floating-point characteristic is -64, and is represented in 
excess-64 notation as a characteristic of all zeros. Assume 
that -64 is the characteristic of a floating-point operand and 
that a 1 is subtracted from it: 

0 2 3 4 5 6 7 
s 0 0 0 0 0 0 0 
s 1 
s 1 1 1 

-64 (Excess-64 Notation) 
2's Complement of 1 

The difference in bits 1-7, instead of indicating an 
exponent of -65, indicates an exponent of +63, 128 more 
than the true exponent. This is known as exponent 
underflow. The rule for exponent underflow is: if two 
negative characteristics are added, or if a quantity is 
subtracted (complement-added) from a negative 
characteristic, and the final result is a positive 
characteristic, exponent underflow occurred. This rule does 
not hold for intermediate characteristics which may exceed 
the most negative expressible exponent. 

If exponent underflow occurs, an interruption takes 
place only if the exponent-underflow mask bit (PSW(38)] 
is a 1 (refer to Chapter 1). If the interruption is taken, the 
resulting invalid characteristic is not altered and remains in 
the result register for examination by the 
interruption-handling microprogram. However, if the 
underflow interruption is masked off, the entire result 
(sign, characteristic, and fraction) is converted to a true 
zero (see "Zero Results"). This value can be a valid result 
for some calculations because exponent underflow indicates 
that the result was very small (less than 16-64) and 
therefore close to zero. 

Referring to the two examples given above, the CE 
determines if exponent overflow or underflow occurred by 
examining bit 1 of the final characteristic and testing for a 
carry out of bit 1. If a carry occurred during a characteristic 
addition and bit 1 is a 0, exponent overflow occurred; if a 
carry did not occur during a characteristic subtraction and 
bit 1 is a 1, exponent underflow occurred. 

ZERO RESULTS 

A zero result is normally stored into the result register as a 
true zero; that is, a zero characteristic, a zero fraction, and 
a plus sign. A true zero may occur because of the 
magnitude of the operands or it may be forced. A true zero 

7201-02 FETOM (7/70) 3-65 



is forced if exponent underflow occurs during add, 
subtract, multiply, or divide instructions and the 
exponent~underflow mask is off [PSW(38) = O]. A true 
zero is also forced when a result fraction is zero and the 
program interruption for significance is masked off during 
add or subtract instructions. "Significance" means that an 
add or subtract instruction resulted in a zero fraction. This 
condition causes a significance program interruption if the 
significance mask is on [PSW(39) = 1]. When a significance 
condition occurs with the mask on, the result characteristic 
and sign remain unchanged and are stored with the zero 
fraction. True zero is never forced when a zero fraction 
occurs during a load, store, or halve instruction. Whenever a 
result has a zero fraction, an exponent overflow or 
exponent underflow condition is ignored. 

CONDITIONS AT START OF EXECUTION 

The conditions at the start of execution for the RR and RX 
instructions, short and long operands, are: 
1. RR, Short Operands: 

a. First operand is in A, B, and D (24-bit fraction only). 
b. Second operand is in Sand T. 
c. Instruction is in E. 

2. RR, Long Operands: 
a. 32 bits of first operand are in A, B, and D (24-bit 

fraction only). 
b. 32 bits of second operand are in Sand T. 
c. Low-order fractions of first and second operands are 

in LS. 
d. Instruction is in E. 

3. RX, Short Operands: 
a. First operand is in Sand T. 
b. Main storage request for second operand has been 

issued per D. 
c. First 16 bits of instruction are in E. 

4. RX, Long Operands: 
a. 32 bits of first operand are in Sand T. 
b. Low-order fraction of first operand is in LS. 
c. Main storage request for 2nd operand has been issued 

per D. 
d. First 16 bits of instruction are in E. 

The subsequent paragraphs describe the execution 
sequences for floating-point instructions. All figures and 
diagrams supporting the text abbreviate the word "char
acteristic" to "charistic." 

LOAD 

The floating-point load instructions provide a means of 
loading operands into the LS FPR's. The load operation 
may be register-to-register (RR format) or 
storage-to-register (RX format) and may use short or long 
operands. In any case, the instruction loads the second 
operand into the first operand location, and the second 
operand location remains unchanged. 

3-66 (7/70) 

In addition, certain floating-point load instructions can 
test or modify the sign of the second operand before 
loading it into LS. The second operand may be also 
complemented before loading. 

Load, LER (38) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into 1st operand 
location (in FPR, per RI). 

• RR format: 

38 Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Load sign, charistic, 
and 24-bit fraction 
into FPR per Rl. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

The Load, LER, instruction (Diagram 5-202, FEMDM) 
loads the 32-bit second operand from the LS FPR specified 
by the R2 field into, the first operand location specified by 
the RI field. During the RR I-Fetch, the second operand is 
gated to S and T. At the beginning of the execution phase, 
a specification test is initiated. If no specification check 
occurred, the contents of T (second operand) are gated to 
the LS FPR specified by RI. If a specification check did 
occur, the operation is suppressed and a specification 
program interruption occurs. 

Load, LE (78) - RX Short Operands 

• Load 2nd operand (in storage) into 1st operand location 
(in FPR, per RI). 

• RX format: 

78 I Rl X2 B2 02 

7 8 11 12 15 16 19 20 31 
\. J 

' Fetch sign, charistic, 
and 24-bit fraction 
from main storage. 

I 
Load sign, charistic, 
and 24-bit fraction 
into FPR per Rl. 



• Conditions at start of execution: 
1st operand is in S and T. 
Main storage request for 2nd operand has been issued 

per D. 
First 16 bits of instruction are in E. 

The Load, LE, instruction (Diagram 5-203, FEMDM) loads 
the 32-bit second operand from the main storage location 
specified by the effective address into the first operand 
location specified by the RI field. The effective address of 
the second operand must be on a word boundary or a 
specification program interruption occurs. During the RX 
I-Fetch, the effective address is computed and placed into 
D. A main storage request for the second operand is then 
initiated per D. 

At the beginning of the execution phase, a specification 
test is initiated. If no specification check occurred, either 
SDB0(0-31) or SDB0(32-63) is gated to T. Because a 
main storage request is always for a doubleword and only a 
word operand is desired, D(2 l) determines which word of 
the main storage doubleword is used; if D(21) = 1, the right 
word is gated to T; if D(21) = 0, the left word. From T, the 
second operand is gated to the LS FPR specified by RI. 

If a specification check occured at the start of the 
execution phase, the operation is suppressed and a 
specification program interruption occurs. 

Load, LDR (28) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + 1) into 1st 
operand location (in FPR, per RI and RI + 1). 

• RR format: 

28 Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Load sign, charistic, 
and 56-bit fraction into 
FPRper Rl and Rl + 1. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit fraction 

only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

The load, LDR, instruction (Diagram 5-202, FEMDM) loads 
the doubleword second operand from the LS FPR specified 
by R2 and R2 + 1 into the first operand location specified 

by RI and Rl + 1. During the RR I-Fetch, the high-order 
32 bits of the second operand are placed into S and T. At 
the beginning of the execution phase, a specification test is 
initiated. If no specification check occurred, the low-order 
32 bits of the second operand are fetched from the odd 
register of the even/odd pair of FPR's specified by the R2 
field. From T, the low-order 32 bits of the second operand 
are loaded into the odd register of the even/odd pair of 
FPR's specified by the RI field. The high-order 32 bits of 
the second operand are then gated from S to T. From T, 
they are loaded into the even register of the even/odd pair 
of FPR's specified by the RI field. 

If a specification check occurred at the start of the 
execution phase, the operation is suppressed and a 
specification program interruption occurs. 

Load, LD ( 68) - RX Long Operands 

• Load 2nd operand (in storage) into 1st operand location 
(in FPR, per Rl and RI + 1 ). 

• RX format: 

68 Rl X2 82 02 
7 8 11 12 15 16 19 20 31 

l J 

' Fetch sign, charistic, 
and 56-bit fraction 
from main storage. 

I 
Load sign, charistic, 
and 56-bit frd'ction into 
F PR per R 1 and R 1 + 1 • 

• Conditions at start of execution: 
3 2 bits of 1st operand are in S and T. 
Low order fraction of 1st operand is in LS. 
Main storage request for 2nd operand has been issued 

per D. 
First 16 bits of instruction are in E. 

The Load, LD, instruction (Diagram 5-203, FEMDM) loads 
the doubleword second operand from the main storage 
location specified by the effective address into the first 
operand location specified by RI and Rl + 1. The effective 
address of the second operand must be on a doubleword 
boundary or a specification program interruption occurs. 
During the RX I-Fetch, the effective address is computed 
and placed into D. A main storage request for the second 
operand is then initiated per D. 

At the beginning of the execution phase, a specification 
test is initiated. If no specification check occurred, the 
doubleword second operand is gated from SDBO to ST. 

7201-02 FETOM (7/70) 3-67 



The low-order 32 bits are then loaded into the odd register 
of an even/odd pair of FPR's specified by the RI field. The 
high-0rder 32-bits of the second operand are then gated 
from S to T. From T, they are loaded into the even register 
of the even/odd pair of FPR's specified by the RI field. 

If a specification check occurred at the start of the 
execution phase, the operation is suppressed, and a 
specification program interruption occurs. 

Load and Test, LTER (32) - RR Short Operands 

• Load 2nd operand (in PPR, per R2) into I st operand 
location (in PPR, per RI). 

• RR format: 

32 Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Load sign, charistic, 
and 24-bit fraction 
into FPR per Rl. 

Set CC per sign 
and magnitude of 
2nd operand. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC = 0. 
2nd operand is less than zero: CC = 1. 
2nd operand is greater than zero: CC= 2. 

The Load and Test, LTER, instruction (Diagram 5-204, 
FEMDM) loads the 32-bit second operand from the PPR 
specified by the R2 field into the first operand location 
specified by the RI field. The sign and magnitude of the 
second operand determine the CC, as follows: 
1. If the fraction of the second operand equals zero, the CC 

is set to 0. 
2. If the second operand (sign, characteristic, and fraction) 

is less than zero, the CC is set to 1. 
3. If the second operand (sign, characteristic, and fraction) 

is greater than zero, the CC is set to 2. 

The LTER execution is similar to LER execution. 
However, the sign of the second operand is saved in ST AT 
C, and STAT A is set if the fraction equals zero. The CC is 

3-68 (7/70) 

determined during the normal end-0p cycle. If STAT A is 
set, indicating that the fraction equals zero, the CC is set to 
0. The sign and characteristic are not considered when the 
fraction equals zero. If the second operand fraction is not 
equal to zero, the sign (STAT C) determines a 
greater-than-zero or less-than-zero condition. If the sign is 
minus (STAT C set), the second operand is less than zero 
and the CC is set to 1. If the sign is plus (STAT C reset), the 
second operand is greater than zero and the CC is set to 2. 
Setting the CC depends upon the 'Set-CR' micro-0rder, the 
instruction op-code, and the hardware conditions specified 
above. 

Load and Test, LTDR (22) - RR Long Operands 

• Load 2nd operand (in PPR, per R2 and R2 + 1) in to I st 
operand location (in PPR, per RI and RI + 1 ). 

• RR format: 

22 

0 

Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per sign 
and magnitude of 
2nd operand. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit fraction 

only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC= 0. 
2nd operand is less than zero: CC= 1. 
2nd operand is greater than zero: CC= 2. 

The Load and Test, LTDR, instruction (Diagram 5-205, 
FEMDM) loads the doubleword second operand from the 
PPR specified by R2 and R2 + 1 into the first operand 
location specified by RI and RI + 1. The sign and 
magnitude of the second operand determine the CC, as 
follows: 
1. If the fraction of the second operand equals zero, the CC 

is set to 0. 



2. If the second operand (sign, characteristic, and fraction) 
is less than zero, the CC is set to 1 . 

3. If the second operand (sign, characteristic, and fraction) 
is greater than zero, the CC is set to 2. 

The LTDR execution is similar to LDR execution. 
However, the sign of the second operand is saved in STAT 
C, and STAT A is set if the fraction equals zero. The CC is 
determined during the normal end-op cycle in the same 
manner as explained for the LTER instruction. 

Load Complement, LCER {33) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into I st operand 
location (in FPR, per RI) with sign complemented. 

• RR format: 

33 Rl R2 
7 8 II 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Complement sign. 

Load result into 
PPR per Rl. 

Set CC per original 
sign and magnitude 
of 2nd operand. 

• Conditions at start of execution: 
1st operand is in A, B, and D {24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: · 
2nd operand fraction equals zero: CC= 0. 
Original sign is plus: CC= 1. 
Original sign is minus: CC= 2. 

The Load Complement, LCER, instruction {Diagram 5-204) 
loads the 32-bit second operand from the FPR specified by 
the R2 field into the first operand location specified by the 
RI field. During the loading, the sign is· changed to the 
opposite value (complemented). The original sign and 
magnitude of the second operand determine the CC, as 
follows: 
1. If the fraction of the second operand equals zero, the CC 

is set to 0. 

2. If the original sign of the second operand is plus, the CC 
is set to 1. 

3. If the original sign of the second operand is minus, the 
CC is set to 2. 

Except for complementing the sign of the . second 
operand, LCER execution is identical to LTER execution. 

Load Complement, LCDR {23) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + 1) into I st 
operand location (in FPR, per RI and RI + I) with sign 
complemented. 

• RR format: 

23 R 1 R2 
7 8 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Complement sign. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per original 
sign and magnitude 
of 2nd operand • 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D {24-bit fraction 

only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of I st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC = 0. 
Original sign is plus: CC= 1. 
Original sign is minus: CC= 2. 

The Load Complement, LCDR, instruction (Diagram 
5-205) loads the doubleword second operand from the FPR 
specified by R2 and R2 + I into the first operand location 
specified by RI and RI + 1. During the loading, the sign is 
complemented. The original sign and magnitude of the 
second operand determine the CC in the same manner as 
explained for the LCER instruction. 

Except for complementing the sign of the second 
operand, LCDR execution is identical to LTDR execution. 

7201-02 FETOM (7 /70) 3-69 



Load Positive, LPER (30) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into 1st operand 
location (in FPR, per RI) with sign made plus. 

• RR format: 

30 
0 7 8 

Rl R2 
11 12 15 

Fetch sign, charistic, 
and 24-bi t fraction 
from FPR per R2. 

Make sign plus. 

Load result into 
FPR per Rl. 

Set CC per magnitude 
of 2nd operand. 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC= 0. 
2nd operand is greater than zero: CC= 2. 

The Load Positive, LPER, instruction (Diagram 5-204) 
loads the 32-bit second operand from the FPR specified by 
the R2 field into the first operand location specified by the 
RI field. During the loading, the sign is made plus. Thus, 
the result stored is always zero or greater. STAT A is set if 
the second operand fraction equals zero. The magnitude of 
the second operand determines the CC, as follows: 
I. If the second operand fraction equals zero, the CC is set 

to 0. 
2. If the second operand is greater than zero, the CC is set 

to 2. 

Except for making the sign of the second operand plus, 
LPER execution is identical to LTER execution. 

3-70 (7/70) 

Load Positive, LPDR (20) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + I) into 1st 
operand location (in FPR, per RI and RI + 1) with sign 
made plus. 

• RR format: 

20 Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
F PR per R2 and R2 + 1 . 

Make sign plus. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per magnitude 
of 2nd operand. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit fraction 
only). 

32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC = 0. 
2nd operand is greater than zero: CC= 2. 

The Load Positive, LPDR, instruction (Diagram 5-205) 
loads the doubleword second operand from the FPR 
specified by R2 and R2 + 1 into the first operand location 
specified by RI and RI + 1. During the loading, the sign is 
made plus. Thus, the result stored is always zero or greater. 
STAT A is set if the second operand fraction equals zero. 
The magnitude of the second operand determines the CC in 
the same manner as explained for the LPER instruction. 

Except for making the sign of the second operand plus, 
LPDR execution is identical to LTDR execution. 

Load Negative, LNER (31) - RR Short Operands 

• Load 2nd operand (in FPR, per R2) into 1st operand 
location (in FPR, per RI) with sign made minus. 



J 

• RR format: 

31 
7 8 

Rl R2 

11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Make sign minus. 

Load result into 
FPR per Rl. 

Set CC per magnitude 
of 2nd operand, 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC= 0. 
2nd operand is less than zero: CC = I . 

The Load Negative, LNER, instruction (Diagram 5-204) 
loads the 32-bit second operand from the FPR specified by 
the R2 field into the first operand location specified by the 
RI field. During the loading, the sign is made minus. Thus, 
the result stored is always zero or less. STAT A is set if the 
second operand fraction equals zero. The magnitude of the 
second operand determines the CC, as follows: 
1. If the second operand fraction equals zero, the CC is set 

to 0. 
2. If the second operand is less than zero, the CC is set to 

I. 

Except for making the sign of the second operand 
minus, LNER execution is identical to LTER execution. 

Load Negative, LNDR (21) - RR Long Operands 

• Load 2nd operand (in FPR, per R2 and R2 + I) into 1st 
operand location {in FPR, per RI and RI + I) with sign 
made minus. 

• RR format: 

21 Rl R2 

7 8 11 12 15 

Fetch sign, charistic, 
and 56-bit fraction from 
FPR per R2 and R2 + 1. 

Make sign minus. 

Load result into FPR 
per Rl and Rl + 1. 

Set CC per magnitude 
of 2nd operand. 

• Conditions at start of execution: 
32 bits of 1st operand are in A, B, and D (24-bit fraction 

only). 
32 bits of 2nd operand are in Sand T. 
Low-order fractions of 1st and 2nd operands are in LS. 
Instruction is in E. 

• CC setting: 
2nd operand fraction equals zero: CC = O. 
2nd operand is less than zero: CC = I. 

The Load Negative, LNDR, instruction (Diagram 5-205) 
loads the doubleword second operand from the FPR 
specified by R2 and R2 + 1 into the first operand location 
specified by RI and RI + 1. During the loading, the sign is 
made minus. Thus, the result stored is always zero or less. 
ST AT A is set if the second operand fraction equals zero. 
The magnitude of the second operand determines the CC in 
the same manner as explained for the LNER instruction. 

Except for making the sign of the second operand 
minus, LNDR execution is identical to LTDR execution. 

ADD, SUBTRACT, AND COMPARE 

• 20 add, subtract, and compare instructions. 

• Short and long operands are available in both formats. 

• Add and subtract instruction results may be normalized 
or unnormalized. 

• Results are in true form with plus or minus values. 

7201-02 FETOM (7 /70) 3-71 



The 20 floating-point add-type instructions are divided into 
three major groups: add, subtract, and compare. RR and 
RX formats using short and long operands are available in 
each group. The results of add and subtract instruction may 
be normalized or unnormalized, depending upon the 
instruction being executed. A CC is set on all add-type 
instructions; the compare instructions cause a CC to be set 
with no result stored. 

The CE computes the sum of floating-point numbers as 
follows (assume that 0.00416 x 165 is to be added to 
0.50216 x 164.): 
1. Equalizes the characteristics. 

a. If the characteristics are unequal, the operand with 
the smallest characteristic is shifted right the number 
of hex digits necessary to equalize the characteristics. 
In the example, 0.50216 x 164 has the smallest 
characteristic ( exfonent ); it is therefore changed to 
0.050216 x 16 , thus making the characteristics 
equal. 

b. If the number of shifts exceeds the number of hex 
digits available, the operand with the largest 
characteristic becomes the intermediate result. 

2. When the characteristics are equal, algebraically adds the 
first and second operand fractions. 
a. If the signs are alike, adds the first operand fraction 

to the second operand fraction. In the example, the 
signs are alike; therefore, the fractions are added 
giving a sum of 0.054216 x 165 

b. If the signs are unlike, subtracts the second operand 
fraction from the first operand fraction (adds the 2's 
complement of the second operand fraction to the 
first operand fraction). 

3. If the intermediate result fraction is in complement 
form, recomplements it (takes 2's complement) to 
obtain the true fraction value. 

4. Normalizes the intermediate result, if normalization is 
called for. Assume a 3-digit machine. If normalization is 
specified, the final result of the example (2a above) 
becomes 0.54216 x 164. If normalization is not 
specified, the low-order digit (guard digit) is truncated, 
and the final result is 0.05416 x 165 

5. Determines the sign and characteristic value. 
6. Stores the sign, characteristic, and fraction into LS as 

specified by the RI field. 
7. Sets the CC per hardware conditions. 

For subtraction of floating-point numbers, the algebraic 
rule applies: to subtract two numbers, change the sign of 
the subtrahend and proceed as in addition. When 
subtracting floating-point numbers, the sign of the second 
operand is complemented. The rules of addition apply as 
outlined in the previous paragraph. To illustrate, assume the 
same numbers as used above and that the signs are unlike. 

3-72 (7/70) 

Thus, a 2's complement add (step 2b above) is performed: 

.050216 

.FFC0
16 

(2's complement of .0040
16

l 

.04C2
16 

The difference, then, is 0.04C16 x 165 if unnormalized; or 
0.4C216 x 164, if normalized. 

The compare instructions are similar to the subtract 
instructions; the results, however, are not stored. The 
compare instructions algebraically compare the first 
operand with the second operand and set the CC 
accordingly. These objectives are accomplished by 
complementing the sign, algebraically adding the fractions, 
determining a high, low, or equal condition, and setting the 
cc. 

The basic objectives of the add-type instructions are 
shown in Sheet 1 of Diagrams 5-206 and 5-207, FEMDM 
(short and long operands, respectively). After the RR or 
RX I-Fetch and the specification test, the remaining 
operand and/or low-order fraction(s) must be fetched or 
the low-order fractions reset to zeros. The signs are saved in 
ST AT's. For short operand instructions (Diagram 5-206), 
zeros are gated to the low-order fractions of the 64-bit 
operands. 

The characteristics are then compared. Preshifting 
occurs, if necessary, followed by the addition or 
subtraction of the fractions. Because the characteristics 
must be equal before algebraically adding the operands, the 
characteristics are. subtracted to determine whether they are 
equal and whether preshifting is meaningful. For short 
operands, the characteristic difference must be 7 or less; for 
long operands, 15 or less. 

If the characteristic difference is greater than 7 (short 
operands) or 15 (long operands) the fraction resulting after 
right-shifting equals zero. Therefore, preshifting is not 
performed, and the operand with the largest characteristic 
becomes the result. If preshifting is meaningless, the value 
in AB or ST is the result. If the characteristics are within 
range, the smallest fraction is right-shifted until the 
characteristics are equal; the fractions are then added 
algebraically to form an intermediate result. If a high-order 
carry occurs as a result of the addition (overflow), the 
intermediate result is right-shifted one hex digit and the 
characteristic is increased by 1. If this increase causes a 
characteristic overflow, an exponent-overflow program 
interruption occurs. 



The intermediate result consists of 7 or 15 hex digits and 
a possible carry. The low-order digit is a guard digit retained 
from the fraction which is shifted right. Only one guard 
digit participates in the fraction addition. The guard digit is 
zero if no shift occurs. 

After the addition or subtraction, a test is made for 
compare instructions, normalized instructions, or unnor
malized instructions. Postnormalization, recomple
m en ta ti on, and/ or fraction overflow correction is 
accomplished during this phase. The final result is stored 
(except on compare instructions), and the CC is set 
according to the computed results. An end op completes 
instruction execution. 

For normalized instructions the intermediate result 
fraction is left-shifted as necessary to form a normalized 
fraction. Vacated low-order digit positions are filled with 
zeros, and the characteristic is reduced by the amount of 
the shift. If normalization causes the characteristic to 
underflow, an exponent-underflow program interruption 
condition exists; the sign, characteristic, and fraction are 
made zero if the underflow mask bit [PSW(38)] is a 0. If 
PSW(38) is a 1, a program interruption occurs, and the 
characteristic is made 128 larger than the true result; the 
sign an,d fraction remain unchanged. If no left shift takes 
place, the guard digit is removed to obtain the proper 
fraction length. 

When the intermediate result fraction is zero and the 
significance mask bit is a 1, a significance program 
interruption takes place. No normalization occurs, and the 
intermediate result characteristic remains unchanged. When 
the intermediate result is zero and the significance mask bit 
is a 0, a significance program interruption does not occur; 
rather, the characteristic and the sign are made zero, 
yielding a true zero result. Exponent underflow does not 
occur for a zero fraction. 

The sign of the result is derived algebraically. However, 
the sign of a zero result fraction is always positive. 

Add Normalized, AER (3A) - RR Short Operands 

• Algebraically add 2nd operand (in FPR, per R2) to 1st 
operand (in FPR, per RI) and place normalized sum into 
1st operand location. 

• RR format: (See adjoining column.) 

• Conditions at start of execution: 
1st operand is in A, B, and D (24-bit fraction only). 
2nd operand is in S and T. 
Instruction is in E. 

• CC setting: 
Result fraction equals zero: CC= 0. 
Result fraction is less than zero: CC= 1. 
Result fraction is greater than zero: CC= 2. 

3A Rl R2 
11 12 15 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R 1. 

Fetch sign, charistic, 
and 24-bit fraction 
from FPR per R2. 

Equalize charistics and save signs. 

Algebraically add fractions 
of 1st and 2nd operands. 

Normalize fraction and 
adjust charistic. 

Determine sign. 

Store sign, charistic, and 
fraction into FPR per Rl. 

Set CC per 
hardware conditions. 

The Add Normalized, AER, instruction (Diagram 5-206) 
algebraically adds the second operand (specified by R2) to 
the first operand (specified by Rl), and places the 
normalized sum into the first operand location. The CC is 
set according to hardware conditions. The AER instruction 
uses 32-bit operands; therefore, the contents of the 
low-order halves of the FPR's in LS remain unchanged. 

At the beginning of the execution phase: 
1. The first operand is in A, B, and D (24-bit fraction 

only). 
2. The second operand is in Sand T. 
3. The STC was set to 4 during I-Fetch. 
4. The AER instruction is in E. 

A specification test is made at the beginning of the 
execution phase. If a specification check exists, instruction 
execution is suppressed, and a specification program 
interruption occurs. Assume that no specification check 
exists. 

Because the AER instruction uses short operands (3 2 
bits) in the RR format, no operand fetch during instruction 
execution is necessary. The sign of the first operand is saved 

7201-02 FETOM (7 /70) 3-73 



in ST AT F and the sign of the second operand is saved in 
STAT C. The first operand characteristic is subtracted from 
the second operand characteristic to determine the 
characteristic difference. Next, the second operand is gated 
to D and S. Because the AER instruction operates on short 
operands, B and T are reset, and the operand is treated as a 
56-bit fraction with the low-order bits set to zero. The 
characteristic difference and the signs determine the next 
operation to be performed by means of a 10-way 'FLR' 
micro-order branch. 

The 10-way 'FLR' branch on characteristic difference 
and signs occurs for all add-type instructions. When this 
branch is encountered, the conditions are as follows: 
1. The first operand is in AB (B equals zero for short 

operands). 
2. The second operand is in DT (T equals zero for short 

operands) and S. 
3. The sign of the first operand is in STAT F. 
4. The sign of the second operand is in STAT C. 
5. The characteristic difference is in SAL and F. 

To subtract the first operand characteristic from the 
second operand characteristic, the 2's complement of the 
first operand characteristic is added to the second operand 
characteristic. Because the serial adder consists of 8 binary 
bit positions, a 1 is forced into bit position 0 on the A-bus 
(first operand side) of the serial adder, and a 0 is forced 
into bit position 0 on the B-bus (second operand side) of 
the serial adder. The characteristic difference is then routed 
to SAL and F. 

The 10-way 'FLR' branch is determined by the result of 
the characteristic subtraction and by the signs in ST AT F 
and STAT C. The 10-way 'FLR' branch affects bits 8-11 
of ROSAR as defined in Sheet 2 of Diagram 5-206. 
ROSAR(8-11) is set as follows: 
1. ROSAR(8) = 1 when a serial adder carry indicates that 

the second operand is greater than or equal to the first 
operand. 

2. ROSAR(9) = 1 when the signs are alike. If the signs are 
alike, the fractions are added; if unlike, the fractions are 
subtracted. 

3. ROSAR(lO) = 1 when the characteristic difference is 
within range. ROSAR(lO) equaling 1 implies that the 
characteristic difference is small enough so that 
equalizing the characteristics is meaningful. (A zero 
fraction may occur as a result of. characteristic 
equalization.) 

4. ROSAR( 11) = 1 when the result in SAL is zero. This 
condition indicates that the characteristics are equal. A 
serial adder carry also occurs; thus ROSAR(8) will also 
equal 1. 

Assume that the following two characteristics are to be 
compared to determine the ROSAR value: 

3-74 (7/70) 

2nd operand characteristic: 64 10 = 10000002 

1st operand characteristic: 7410 = 1001001 2 

The first operand characteristic is subtracted from the 
second operand characteristic shown below: 

2nd operand characteristic: 0 1000000 
Complement of 1st operand characteristic: 1 0110110 l 2's com
Add 1: 0 0000001 f plement 

Characteristic differn~:~::IS-A-L-(0_-_7_) : __ t ~~ 0
1

111 

SAL{ 1-3) _____ l.._lJ ..... 
SAL{4) 

Because no SAL(O) carry occurred, ROSAR(8) = 0. 
ROSAR(9) depends upon the signs assigned to the fractions 
of the two operands. The table in Sheet 2 of Diagram 5-206 
shows the bit positions tested in SAL to determine the 
value of ROSAR(lO) and whether preshifting is meaningful. 
In this example, SAL(0-3) = 1111 (binary). Because a 
short operand instruction is being executed, ROSAR(lO) = 
O; therefore, the value is in AB because no carry from 
SAL(O) indicated that the first operand is greater than the 
second operand. ROSAR(l 1) = 0 because SAL(O-7) is not 
all O's. 

If all positions of SAL are 0, ROSAR(l 1) = 1, indicating 
that the characteristics of the two operands are equal. 
ROSAR(9) then determines the next operation (signs alike, 
add; signs unlike, subtract). In this case [SAL(0-7) = O], 
ROSAR(8) also equals a 1 because a SAL(O) carry 
occurred. 

For the next example, assume that the two 
characteristics in the previous example are interchanged. 
The characteristics are compared as follows: 

2nd operand characteristic: 1001001 
1st operand characteristic: 1000000 

The first operand characteristic is subtracted from the 
second operand characteristic shown below: 

2nd operand characteristic: 0 1001001 
Complement of 1st operand characteristic: 1 0111111 } 2's com
Add 1: 0 0000001 plement 

SAL{O) carry ...... 1----0 0001001 

~~~:~~-3) ____.t 11~ 
SAL{4) --------'-

In this example, ROSAR(8) = 1 because a SAL(O) carry
occurred. ROSAR(lO) = 0. Because preshifting in this
example is meaningless, the operand in ST is the result
fraction because the SAL(O) carry indicates that the second
operand is the largest.

The two examples just discussed illustrate the
determination of the ROSAR(8-11) values. Additional
examples are shown in Table 3-9. ROSAR(8-11)
determines the ROS branch that performs the next steps in
executing the AER instruction.

Table 3-9. Examples of Branching on Characteristic Difference

Description Example Example Example Example Example

No. 1 No. 2 No. 3 No. 4 No. 5

2nd operand characteristic 1000000 1000000 1001000 1000111 1000000

1st operand characteristic 1001001 1001000 1000000 1000000 1000000

2nd operand characteristic: 0 1000000 0 1000000 0 1001000 0 1000111 0 1000000

Complement of 1st operand characteristic 1 0110110 1 0110111 1 0111111 1 0111111 1 0111111

Add 1 0 0000001 0 0000001 0 0000001 0 0000001 0 0000001

Difference in SAL{0-7) 1 1110111 1 1111000 +-{) 0001000 +-{) 0000111 *-0 0000000

I SAL(O) carry SAL(O) carry SAL(O) carry

Short No Yes No Yes Yes

Within Range?*
Long Yes Yes Yes Yes Yes

ROSAR(S-11) value Sub 0000 Sub 0010 Sub 1000 Sub 1010 Sub 1011

Add 0100 Add 0110 Add 1100 Add 1110 Add 1111

Comments Result in Equalize Result in Equalize Add or sub.

AB. fraction ST. fraction No shift

in ST. in AB. necessary.

Notes:
1. ROSAR (8) = 1 when there is a serial adder carry. A carry indicates that R2 R 1.

2. ROSAR (9) = 1 when the signs are alike.
*3. ROSAR(10) = 1 when the characteristics are within range. ROSAR(10) = 1 on SAL results as follows:

a. SAL carry and SAL(0-3) = 0 and long operands.
b. SAL carry and SAL(0-4) = 0.
c. No SAL carry and SAL(0-3) = 1 'sand long operands.
d. No SAL carry and SAL(0-4) = 1 's.

4. ROSAR (11) = 1 when the SAL outputs equal 0.

The examples of determining the ROSAR(8-11) values
as shown in Table 3-9 indicate that the fraction of the
operand with the smallest characteristic is shifted right
when the characteristic difference is seven or less.

Four possible ROSAR(8-11) values (0010, 0110, 1010,
and 1110) cause characteristic equalization and then an
algebraic addition or subtraction of fractions. For example,
assume that the AER instruction requires characteristic
equalization, fraction subtraction, recomplementation
(second operand fraction is greater than first operand
fraction), and normalization. Further, assume a
ROSAR(8-11) value of 0010. The 0010 branch causes one
right shift of the second operand to occur, and a 1 is added
to F. Note that one guard digit is retained. SAL(4-7) is
checked for 1111 (binary). When SAL(4-7) = 1111, the
characteristics are equal. Because the test for a branch is
made one machine cycle before the ROS branch occurs, the
SAL value is one machine cycle behind the actual shift
count. For this reason, a test is made for 1111 in SAL(4-7)
instead of for 0000.

Once the characteristics are equal, the second operand is
subtracted from the first operand (signs unlike). To
subtract fractions (signs unlike), the 2's complement of the

second operand fraction in DT is added to the first operand
fraction in AB with the intermediate fraction result placed
into AB and DT. The intermediate fraction result may be in
true form or in complement form, or it may be equal to
zero. If a zero fraction results, STAT A is set.

Because the larger characteristic is used as the
characteristic of the result, it is gated to F(l-7); F(O) is
reset.

If the second operand fraction is greater than the first
operand fraction, the result is in complement form.
Conversely, the result is in true form if the first operand
fraction is greater than the second operand fraction. If A(7)
= 1, the intermediate result is in complement form. If A(7)
= 0, the intermediate result is in true form. When the
intermediate result is in complement form, the result must
be recomplemented; that is, the 2's complement of the
intermediate result is taken after the algebraic addition.

When the result is in true form, and if the fraction is not
equal to zero, the fraction must be normalized and stored
and the CC set. Because the AER instruction is a
normalized instruction, the intermediate result is
normalized, if necessary. After normalization, the sign and
the characteristic are inserted and stored with the fraction

7201-02 FETOM (7/70) 3-75

into the first operand location (specified by Rl). Assuming
no errors or zero fraction, the CC is set. An end-op cycle
completes instruction execution.

When in the normalizing loop after subtraction, the
intermediate fraction result can be left-shifted out of the
high-order hex digit position if the intermediate fraction is

. 0001. This left shift results in a zero fraction. The zero
fraction:, in this case, is not a true zero result or a
significance condition; therefore, the true value rriust be
restored.

Because the test for ROS branches is made one machine
cycle before the ROS branch occurs, a test for
nor~alization is made before the recomplementation is
performed. Therefore, the test for normalization is
determined ·by the following conditions:
1. PAL(7-l l) is O's and PAL(7-67) is not O's.
2. PAL(6,8-11) is l's and PAL(7-67) is not O's.

If one of these two conditions. is met, at least one
normalization cycle is performed after the
recomplementation machine cycle. This action is not
always necessary, however. For example, if the following
fractions are subtracted, the assumed normalization cycle is
not necessary:

AB bit positions 6 7 8 9 10 11 12 13 67

·1st operand fraction
2nd operand fraction

0 0 0 1 1 0 o.--.o
0 0 0 0 0 0 o.-.o

Subtract 2nd operand
from 1st operand

1st operand fraction 0 0 0 1 1 0 o..--.-.o

(2's complement of {

0

1 ·

0

1 O
2nd operand)

0 0 0

Intermediate result
1 1 1

fraction (in PAL & AB)

Indicate recomple~ ----1

mentation necessary

(2's ~omplement of {: 0

11 .111 UO·H())
0

Result before hex 0 0
left shift

3~76 (7/70)

0 0 0

0 0 0

0 0 0

1.-+1

0 .o 0~01

0 0 ...-.-.o

O' 1~1

0 0 0~01

0 o.--. o

The intermediate result fraction above shows that
PAL(6,8-l l) equals l's and PAL(7-67) d.oes not equal O's.
This condition causes a branch to the ROS normalization

. routine. Because A(7) = 1, the intermediate result fraction
is in complement form, and the 2's complement of the
intermediate fraction must be performed to obtain the true
result fraction. As· shown in the example, the true result
fraction is .0001 O+->O. The one hex left shift that occurs
yields a zero fraction result. Therefore, the result fraction
located in DT is the true result fraction. The contents of D
are transferred to T, and the sign, characteristic, and
high-order fraction are stored into the FPR per the R 1
field. An end op completes instruction execution.

If the signs were alike and the characteristic difference
was within range (i.e., seven or less), the fractions are added
[ROSAR(8-l l) = 0110, 1110, or 1111]. First, however,
the characteristics are equalized, if necessary, by
right-shifting the fraction of the operand with the smallest
characteristic one hex digit at a time and subtracting one
from the characteristic difference. When the· characteristic
difference goes to zero, the characteristics are equal. Note
that, if the first operand characteristic is larger, a 1 is added
to the characteristic difference because the charact.eristic
difference is in complement form.

The fractions are then added and the results are gated to
DT and AB. A guard digit is retained in B(64-67). The
characteristic of the larger operand, _which is the
characteristic of the intermediate result, is placed into F.
When adding fractions, the possibility of a fraction
overflow exists. A fraction overflow is indicated by a carry
out of the high-order position, PA(8). After the two
fractions are added, the intermediate result is placed into

. DT and AB. If A(7) = 1, a fraction overflow occurred.
Therefore, the fraction is right-shifted one hex digit, and 1
is added to the intermediate result characteristic. Whether
or not a fraction overflow occurred, the microprogram now
determines whether the intermediate result fraction is
normalized, not normalized, or equal to zero (the guard
digit is included in the test for zero). If the fraction is
normalized, the contents of STAT C are gated to the sign
position of the LS bus, the result characteristic is
transferred from F to T(32-39), and the result fraction is
gated from .D to T(40-63). This result (sign, characteristic,
and fraction) is stored into the FPR specified by the Rl
field. If the intermediate result fraction is not normalized,
it is normalized by shifting left one hex digit at a time and
subtracting one from the characteristic until a significant
hex digit appears in the high-ord~r position. After
normalizing, the operation continues in the same manner as
a normalized . intermediate fraction. If the intermediate
result is zero, a true zero is stored into the FPR specified by
the Rl field, and the significance mask bit [PSW(39)] is
tested. If the mask bit is a 1, the characteristic is stored
with t~e zero fraction, and a program interruption is

initiated. Regardless of the setting of the mask bit, the CC
is set to 0, and the instruction is terminated by an end op.

If the intermediate result fraction is shifted right, the
possibility of an exponent overflow exists. During
normalization of the fraction, the possibility of an
exponent underflow exists. When SAL(O) = 1 after a
fraction shift (right or left), an exponent overflow or
exponent underflow condition exists. The proper sign and
fraction are stored. Because bit 0 of the characteristic
(characteristic carry) is inhibited from entering LS by the
'RSLT-SIGN-+LS' micro-order, the characteristic stored is
128 larger than the true result for underflow and 128
smaller on overflow.

Whenever an exponent overflow or exponent underflow
condition exists, SAL(l) and PSW(38) are examined to
determine whether a program interruption is to be
executed. If SAL(l) = 0, an exponent overflow exists, and
an interruption request is unconditionally generated. A
program interruption occurs on all exponent overflows. If

· SAL{l) = 1, an exponent underflowexists;ifPSW(38)= 1,
an exponent underflow program interruption request is
generated. If PSW{38) = 0, exponent underflow is masked
off, and a true zero is stored with no program interruption
occurring.

Note that an interruption occurs on all exponent
overflows. This overflow indicates that the value of the
absolute result exceeds the limits of the machine; therefore,
further action is necessary. In some scientific computations,
very small numbers may be eliminated from an equation
without serious error. An exponent underflow means that
the computed result approaches zero. Therefore, the
programmer may find that a program interruption is
unnecessary, and a true zero result is desirable.

Significance and specification program interruption
conditions may also exist during execution of an AER
instruction. The action that occurs is shown in Diagram
5-206, and is discussed earlier in this section.

Tests for zero intermediate results are made at several
points during instruction execution. If the result is zero, a
program interruption occurs if PSW{39) = 1. The positive
sign, the result characteristic, and a zero fraction are stored
into LS. A program interruption occurs, and the program
interruption routine determines the action to be taken. If
PSW{39) = 0, a true zero result is stored into LS.

If the characteristics are not within limits when
executing the AER instruction [ROSAR(8-11) = 0000,
0100, 1000, or 1100 on 'FLR' branch], the fraction with
the largest characteristic is normalized and stored along
with the sign into LS per the Rl field.

This discussion of the AER instruction is referred· to in
the discussions of Add-type instructions that follow. If the
AER instruction is understood and the instruction
differences noted, any short operand add-type instruction
execution path can be followed by referring to Diagram
5-206.

Add Normalized, AE (7 A) - RX Short Operands

• Algebraically add 2nd operand (in storage) to 1st
operand (in FPR, per Rl) and place normalized sum into
1st operand location.

• RX format:

7A Rl X2 B2 02
11 12 15 16 19 20

Fetch sign, choristic,
and 24-bit fraction
from F PR per R 1.

Fetch sign, choristic,
and 24-bit fraction
from main storage.

Equalize choristics and save signs.

Algebraically odd fractions
of 1st and 2nd operands.

Normalize fraction
and adjust choristic.

Determine sign.

Store sign, choristic, and fraction
into FPR per R 1.

Set CC per hardware conditions.

• Conditions at start of execution:
1st operand is in S and T.

31

Main storage request for 2nd operand has been issued
per D.

First 16 bits of instruction are in E.

• CC setting:
Result fraction equals zero: CC:::;: 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC= 2.

The Add Normalized, AE, instruction (Diagram 5-206)
algebraically adds the second operand (specified by the
effective address) to the first operand (specified by Rl),
and places the normalized sum into the first operand
location. The CC is set according to hardware conditions.
The AE instruction uses 32-bit operands; therefore the
contents of the low-order halves of the FPR's remain
unchanged.

The conditions at the beginning of the execution phase
are:
1. The first operand is in S and T.

7201-02 FETOM (7/70) 3-77

2. A main storage request for the second operand has been
issued per the effective address in D.

3. The contents of A and Bare unknown.
4. The first 16 bits of the instruction are in E.

A specification test is made at the beginning of the
execution phase. If a specification check exists, instruction
execution is suppressed, and a specification program
interruption occurs. Assume that no specification check
exists.

Because the AE instruction uses short operands (32 bits)
in the RX format, no low-order fractions need to be
fetched. The first operand is moved from T to A. The
second operand arrives from main storage and is placed into
T. D(21) determines which word from the SDBO is gated to
T. (Note that main storage is addressed on doubleword
boundaries.) If D(21) = 0, SDB0(0-31) is gated to T; if
D(21) = 1, SDB0(32-63) is gated to T.

The remainder of the AE instruction execution is
identical to the execution of the AER instruction.

Add Normalized, ADR (2A) - RR Long Operands

• Algebraically add 2nd operand (in FPR, per R2 and R2
+ 1) to 1st operand (in FPR, per R1 and R1 + 1) and
place normalized sum into 1st operand location.

• RR format:

0

2A Rl R2

11 12 15

Fetch sign, charistic,
a.nd 56-bit fraction from
FPR per Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction from
FPR per R2 and R2 + 1.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Normalize fraction
and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per hardware conditions.

3-78 (7/70)

• Conditions at start of execution:
32 bits of 1st operand are in A, B, and D (24-bit fraction

only).
3 2 bits of 2nd operand are in S and T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC= 2.

The Add Normalized, ADR, instruction (Diagram 5-207,
FEMDM) algebraically adds the second operand (specified
by R2 and R2 + 1) to the first operand (specified by R1
and R1 + 1), and places the normalized sum into the first
operand location. The CC is set according to hardware
conditions. The ADR instruction uses 64-bit operands.

The conditions at the beginning of the execution phase
are:
1. 32 bits of the first operand (sign, characteristic, and

high-order fraction) are in A and B, and D contains the
high-order 24 bits of the fraction.

2. 32 bits of the second operand (sign, characteristic, and
high-order fraction) are in Sand T.

3. The STC contains a count of 4.
4. The instruction is in E.

Because the ADR instruction uses long operands (64
bits) in the RR format, the low-order fractions of the first
and second operands must be fetched from LS. The
low-order fraction of the first operand is fetched from LS
per E(8-11) + 1 and is placed into B via T and the parallel
adder. The low-order fraction of the second operand is
fetched from LS per E(12-15) + 1 and placed into T; the
high-order fraction is placed into D.

The sign of the first operand is saved in ST AT F and the
sign of the second operand is saved in STAT C. The first
operand characteristic is subtracted from the second
operand characteristic, and the characteristic difference and
the signs determine the next operation by means of a
10-way 'FLR' branch.

Note that with long operands, the characteristics can be
equalized if the characteristic difference is less than or
equal to 15. Assume that the following two characteristics
are to be compared to determine the ROSAR value:

2nd operand characteristic: 64
10

= 1000000
2

1st operand characteristic: 7310 = 10010012

The first operand characteristic is subtracted from the
second operand characteristic as follows:

2nd operand characteristic: 0 1000000
Complement of 1st operand characteristic: 1 0110110} 2's com-
Add 1: 0 0000001 plement
Characteristic difference in SAL(0-7): 1 1110111

Because no SAL(O) carry occurred, ROSAR(8) = 0.
ROSAR(9) depends upon the signs assigned to the fractions
of the two operands. The table in Sheet 2 of Diagram 5-207
shows . the bit positions tested in SAL to determine the
value of ROSAR(l 0) and whether preshifting is meaningful.
In this example, SAL(0-3) = 1111. Therefore, because
ADR is a long operand instruction, ROSAR(10) is set to 1
and preshifting is meaningful. ROS AR(11) = 0 because
SAL(O-7) is not all O's. For other examples of ROSAR
setting on an 'FLR' branch, refer to the description of the
AER instruction and Table 3-9. The examples shown in
Table 3-9 indicate that the fraction of the operand with the
smallest characteristic is shifted right when the
characteristic difference is 15 or less for long operand
instructions.

Four possible ROSAR(8-11) values (0010, 0110, 1010,
and 1110) cause characteristic equalization and then an
algebraic addition or subtraction of fractions. For example,
ROSAR(8-11) is set to 0110, if an ADR instruction is
being executed with operands having the following
parameters: (1) the characteristic difference is less than 15,
(2) the signs of the operands are alike, and (3) the second
operand characteristic is the smaller of the two. The 0110
branch right-shifts the second operand in DT one hex digit
and adds 1 to the characteristic difference in F until the
characteristics are equal [SAL(4-7) = 11 I I].

After the characteristics are equalized, the fractions of
the operands are added and the sum is placed into AB and
DT. A plus sign is set into F(O) (in case of a zero fraction
result), and the characteristic of the first operand is placed
into F(l-7). STAT A is set if the fraction of the result
equals zero.

Because ADR is a normalized instruction, the
intermediate result is normalized, if necessary. First,
however, a test determines whether the fraction overflowed
due to the addition. (A carry into bit 7, the low-order bit of
the characteristic, is considered a fraction overflow.) If the
fraction did overflow, it is shifted right one hex digit, and a
I is added to the characteristic.

The low-order fraction is then stored into the FPR
specified by RI + I, and normalization proceeds if the
result was not zero and not normalized. The low-order
fraction is stored after each left-shift.

After normalization, the sign and the characteristic are
inserted and stored with the high-order fraction into the
first operand location (specified by RI). Assuming no error
conditions or zero fraction, the CC is set, and an end-op
cycle completes the execution.

If signs are unlike, when in the normalizing loop, the
intermediate result fraction can be left-shifted out of the
high-order hex digit position if the intermediate fraction is
OOOI. Refer to the description of the AER instruction for
an explanation of how this problem is handled.

All other operations that may occur during the
execution of an ADR instruction are handled as described
for an AER instruction, with the exception that the
low-order fraction must be considered in all calculations.
The major differences are:
1. An additional operand fetch is needed.
2. The low-order halves of the FPR's are used.

Add Normalized, AD (6A) - RX Long Operands

• Algebraically add 2nd operand (in storage) to 1st
operand (in FPR, per R 1 and RI + 1) and place
normalized sum into 1st operand location.

• RX format:

6A Rl X2 B2 D2

11 12 15 16 19 20 31

Fetch sign, charistic,
and 56-bit fraction from
FPR per Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction from
main storage.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Normalize fraction
and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per
hardware conditions.

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Low-order fraction of 1st operand is in LS.
Main storage request for 2nd operand has been issued

per D.
First 16 bits of instruction are in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC= 2.

7201-02 FETOM (7/70) 3-79

The Add Normalized, AD, instruction (Diagram 5-207)
algebraically adds the second, operand (specified by the
effective address) to the first operand (specified by RI and
RI + 1), and places the normalized sum into the first
operand location. The CC is set according to hardware
conditions. The AD instruction uses 64-bit operands.

The conditions at the beginning of the execution phase
are:
1. 32 bits of the first operand (sign, characteristic, and

high-order fraction) are in Sand T.
2. A main storage request for the second operand has been

issued per the effective address in D.
3. The contents of A and Bare unknown.
4. The first 16 bits of the instruction are in E.

Because the AD instruction uses long operands (64 bits)
in the RX format, the low-order fraction. of the first
operand must be fetched from LS. Accordingly,' the sign,
characteristic, and high-order fraction of the first operand
are placed into A. The low-order fraction is then fetched
from LS per E(8- I 1) and routed to B via T and the parallel
adder. The 64-bit second operand is fetched from main
storage per D and placed into ST; the high-order fraction is
also placed into D. The sign of the first operand is saved in
ST AT F and the sign of the second operand is saved in
STAT C.

The first operand characteristic is then subtracted from
the second operand characteristic, and the characteristic
difference and the signs determine the next operation by
means of a I 0-way 'FLR' branch. The remainder of the
execution of the AD instruction is identical to that of the
ADR instruction.

Add Unnormalized, AUR (3E) - RR Short Operands

• Algebraically add 2nd operand (in PPR, per R2) to I st
operand (in PPR, per R1) and place unnormalized sum
into 1st operand location.

• RR format: (Shown in adjacent column.)

• Conditions at start of execution:,
1st operand is in A, B, and D (24-bit fraction only).

, 2nd operand is in S and T.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC = 2.

The Add Unnormalized, AUR, instruction (Diagram 5-206)
algebraically adds the second operand (specified by R2) to
the first operand (specified by R1), and places the
unnormalized sum into the first operand location. The CC
is set according to hardware conditions. Note that the guard
digit is not examined to determine the CC setting or
checked for a significance condition. Also, because the

3-80 (7 /70)

3E Rl R2

11 12 15

Fetch sign, charistic,
and 24-bit fraction
from FPR per Rl.

Fetch sign, charistic,
and 24-bit fraction
from FPR per R2.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and
fraction into FPR per Rl.

Set CC per
hardware conditions.

characteristic is not reduced for normalization, exponent
underflow cannot occur.

The execution of the AUR instruction is identical to
that of the AER instruction until the branch on the type of
instruction is performed. After the fraction is tested for
overflow and shifted right (if necessary), the result is
checked to see if it is zero. If the result is not zero, the
result is immediately stored, along with the sign and
characteristic, into the PPR specified by R1.

A test then determines whether equalization had
occurred (STAT D set). If it did, a possibility exists that the
only significant digit may be the guard digit. Therefore, 'if
equalization did occur and no exponent overflow condition
exists, the guard digit is removed from the result and the
fraction is tested to see if it is zero. If the fraction equals
zero, a true zero is stored and a significance program
interruption is initiated. Otherwise, the instruction
terminates normally.

Add Unnormalized, AU (7E) - RX Short Operands

• Algebraically add 2nd operand (in storage) to 1st
operand (in PPR, per Rl) and place unnormalized sum
into 1st operand location.

• RX format: (See left column of next page.)

• Conditions at start of execution:
1st operand is in S and T.
Main storage request for 2nd operand has been issued

per D.
First 16 bits of instruction are in E.

7E Rl X2 B2 02
11 12 15 16 19 20

Fetch sign, charisti c,
and 24-bi t fraction
from FPR per Rl.

Fetch sign, charistic,
and 24-bit fraction
from main storage,

• CC setting:

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and
fraction into FPR per Rl.

Set CC per
hardware conditions.

Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction.is greater than zero: CC= 2.

31

The Add Unnormalized, AU, instruction (Diagram 5-206)
algebraically adds the second operand (specified by the
effective address) to the first operand (specified by R1),
and places the unnormalized sum into the first operand
location. Exponent underflow cannot occur. The CC is set
according to hardware conditions. The execution is
identical to that of the AE instruction until the branch to
determine· an unnormalized, normalized, or compare
instruction. From this point, the execution is identical to
that of the AUR instruction.

Add Unnormalized, A WR (2E) - RR Long Operands

• Algebraically add 2nd operand (in FPR, per R2 and R2
+ 1) to 1st operand (in FPR, per R1 and R1 + 1) and
place unnormalized sum into 1st operand location.

• RR format: (See adjoining column.)

• Conditions at start of execution:
32 bits of 1st operand are in A, B, and D (24-bit fraction

only).
3 2 bits of 2nd operand are in S and T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

2E .. Rl R2

11 12 15

Fetch sign, charistic,
and 56-bit fraction from
FPRper Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction from
FPR per R2 and R2 + 1.

• CC setting:

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per hardware conditions.

Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC= 1.
Result fraction is greater than zero: CC= 2.

The Add Unnormalized, AWR, instruction (Diagram 5-207)
algebraically adds the second operand (specified by R2 and
R2 + 1) to the first operand (specified by Rl and Rl + 1)
and places the unnormalized sum into the first operand
location. Exponent underflow cannot occur.

The execution phase is identical to that of the ADR
instruction until the branch to determine an unnormalized,
normalized, or compare instruction. Assume that the
operand signs are alike and that the characteristic difference
is less than 15. On Sheet 3 of Diagram 5-207, after the
branch, a test determines whether the fraction of the sum
overflowed (indicated by a carry into bit 7). If an overflow
occurred, the fraction is shifted right one digit, and a 1 is
added to the characteristic.

The low-order position of the sum (bits 32-63) is then
stored into the FPR designated by Rl + 1. The result
fraction is then tested to see if it equals zero. If it does not
equal zero, the sign, characteristic, and high-order fraction
are stored into the FPR specified by Rl. If no exponent
overflow occurred, the CC is set and the instruction is
terminated by an end op.

7201-02 FETOM (7/70) 3-81

Add Unnormalized, AW (6E) - RX Long Operands

• Algebraically add 2nd operand (in storage) to 1st
operand (in FPR, per Rl and Rl + 1) and place
unnormalized sum into 1st operand location.

• RX format:

6E Rl X2 B2 02
11 12 15 16 19 20

Fetch sign, charistic,
and 56-bit fraction from
F PR per R 1 and R 1 + 1 •

Fetch sign, charistic,
and 56-bit fraction from
main storage.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per
hardware conditions.

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Low-order fraction of 1st operand is in LS.

31

Main storage request for 2nd operand has been issued
per D.

First 16 bits of instruction are in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC= 2.

The Add Unnormalized, AW, instruction (Diagram 5-207)
algebraically adds the second operand (specified by the
effective address) to the first operand (specified by Rl and
Rl + 1) and places the unnormalized sum into the first
operand location. Exponent underflow cannot occur. The
CC is set according to hardware conditions.

The execution phase is identical to that of the AD
instruction until the branch to determine an unnormalized,
normalized, or compare instruction. From this point,
execution is identical to execution of the AWR instruction.

3-82 (7 /70)

Subtract Normalized, SER (3B) - RR Short Operands

• Algebraically subtract 2nd operand (in FPR per R2)
from 1st operand (in FPR, per Rl) and place normalized
difference into 1st operand location.

• RR format:

3B Rl R2

11 12 15

Fetch sign, charistic,
and 24-bit fraction
from FPR per Rl.

Fetch sign, charistic,
and 24-bit fraction
from FPR per R2.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Normalize fraction
and adjust charistic.

Determine sign.

Store sign, charistic, and
fraction into FPR per Rl.

Set CC per
hardware conditions.

• Conditions at start of execution:
1st operand is in A, B, and D (24-bit fraction only).
2nd operand is in Sand T.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC= 2.

The Subtract Normalized, SER, instruction (Diagram
5-206) algebraically subtracts the second operand (specified
by R2) from the first operand (specified by Rl), and places
the normalized difference into the first operand location.
The second operand location remains unchanged. The CC is
set according to hardware conditions.

For subtract instructions, the sign of the second operand
is complemented, after which the algebraic subtraction is
treated as an algebraic addition. Therefore, execution of the
SER instruction is identical to that of the AER instruction
except that the complement of the second operand sign
rather than the true sign is gated to STAT C.

Subtract Normalized, SE (7B) - RX Short Operands

• Algebraically subtract 2nd operand (in storage) from 1st
operand (in FPR, per Rl) and place normalized
difference into 1st operand location.

• RX format:

7B Rl X2 B2 D2

11 12 15 16 19 20

Fetch sign, charistic,
and 24-bit fraction
from FPR per R 1 •

Fetch sign, charistic,
and 24-bit fraction
from main storage.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Normalize fraction and adjust charistic.

Determine sign.

Store sign, charistic, and
fraction into FPR per R 1.

Set CC per
hardware conditions.

• Conditions at start of execution:
1st operand is in Sand T.

31

Main storage request for 2nd operand has been issued
per D.

First 16 bits of instruction are in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC= 1.
Result fraction is greater than zero: CC= 2.

The Subtract Normalized, SE, instruction (Diagram 5-206)
algebraically subtracts the second operand (specified by the
effective address) from the first operand (specified by Rl)
and places the normalized difference into the first operand
location. The CC is set according to hardware conditions.

Execution of the SE instruction is identical to that of
the AE instruction except that the complement of the
second operand sign instead of the true sign is gated to
STATC.

Subtract Normalized, SDR (2B) - RR Long Operands

• Algebraically subtract 2nd operand (in FPR, per R2 and
R2 + 1) from 1st operand (in FPR, per R 1 and RI + 1)
and place normalized difference into 1st operand
location.

• RR format:

2B Rl R2

11 12 15

Fetch sign, charistic,
and 56-bit fraction from
FPR per Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction from
FPR per R2 and R2 + 1.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Normalize fraction and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per
hardware conditions.

• Conditions at start of execution:
32 bits of 1st operand are in A, B, and D (24-bit fraction

only).
32 bits of 2nd operand are in Sand T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

7201-02 FETOM (7/70) 3-83

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC = 2.

The Subtract Normalized, SDR, instruction (Diagram
5-207) algebraically subtracts the second operand (specified
by R2 and R2 + 1) from the first operand (specified by Rl
and Rl + 1) and places the normalized difference into the
first operand location. The CC is set according to hardware
conditions.

Execution of the SDR instruction is identical to that of
the ADR instruction except that the complement of the
second· operand sign instead of the true sign is gated to
STATC.

Subtract Normalized, SD (6B) - RX Long Operands

• Algebraically subtract 2nd operand (in storage) from 1st
operand (in FPR, per Rl and Rl + 1) and place
normalized difference into 1st operand location.

• RX format:

6B Rl X2 B2 D2

11 12 15 16 19 20

Fetch sign, charistic,
and 56-bit fraction from
FPR per Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction
from main storage.

Invert sign.

Equalize charistics and save signs.

Algebrair.ally add fractions
of 1st and 2nd operands.

Normalize fraction and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per hardware conditions.

• Conditions at start of execution:
32 bits of 1st operand are in S and T.
Low-order fraction of 1st operand is in LS.

31

Main storage request for 2nd operand .has been issued
per D.

First 16 bits of instruction are in E.

3-84 (7/70)

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC= 2.

The Subtract Normalized, SD, instruction (Diagram 5-207)
algebraically subtracts the second operand (specified by the
effective address) from the first operand (specified by Rl
and Rl + 1) and places the normalized difference into the
first operand location. The CC is set according to hardware
conditions.

Execution of the SD instruction is identical to the
execution of the AD instruction except that the
complement of the second operand sign instead of the true
sign is gated to STAT C.

Subtract Unnormalized, SUR (3F) - RR Short Operands

• Algebraically subtract 2nd operand (in FPR, per R2)
from 1st operand (in FPR, per Rl) and place
unnormalized difference into 1st operand location.

• RR format:

3F Rl R2

11 12 15

Fetch sign, charistic,
and 24-bit fraction
from FPR per R 1.

Fetch sign, charistic,
and 24-bit fraction
from FPR per R2.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and
fraction into FPR per Rl.

Set CC per hardware conditions.

• Conditions at start of execution:
1st operand is in A, B, and D (24-bit fraction only).
2nd operand is in S and T.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC= 2.

The Subtract Unnormalized, SUR, instruction (Diagram
S-206) algebraically subtracts the second operand (specified
by R2) from the first operand (specified by RI) and places
the unnormalized difference into the first operand location.
The CC is set according to hardware conditions.

Except that the intermediate results of the Subtract
Unnormalized instructions are not normalized, the
operation is the same as that of the Subtract Normalized
instructions. That is, the second operand sign is inverted
(and saved in STAT C) and the fractions are algebraically
added.

The SUR instruction is executed in the same manner as
the AUR instruction except that the complement of the
second operand sign instead of the true sign is gated to
STAT C. Note that, when executing Subtract Unnormalized
instructions, the guard digit is not examined to determine
the CC setting or checked for a significance condition. Also,
as in Unnormalized Add instructions, exponent underflow
cannot occur.

Subtract Unnormalized, SU (7F) - RX Short Operands

• Algebraically subtract 2nd operand (in storage) from 1st
operand (in FPR, per RI) and place unnormalized
difference into 1st operand location.

•·RX format:

7F Rl X2 B2 oD2

11 12 15 16 19 20

Fetch sign, charistic,
and 24-bit fraction
from FPR per Rl.

Fetch sign, charistic,
and 24-bi t fraction
from main storage.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and
fraction into FPR per Rl.

Set CC per
hardware con9itions.

31

• Conditions at start of execution:
1st operand is in S and T.
Main storage request for 2nd operand has been issued

per D.
First 16 bits of instruction are in E.

• CC setting:
Result fraction equals zero: CC = 0.
Result fraction is less than zero: CC= 1.
Result fraction is greater than zero: CC= 2.

The Subtract Unnormalized, SU, instruction (Diagram
S-206) algebraically subtracts the second operand (specified'
by the effective address) from the· first operand (specified
by Rl) and places the unnormalized difference into the
first operand location. The CC is set according to hardware
conditions.

Execution of the SU instruction is identical to that of
the AU instruction except that the complement. of the
second operand sign instead of the true sign is gated to
STAT C.

Subtract Unnormalized, SWR (2F) - RR Long Operands

• Algebraically subtract 2nd operand (in FPR, per R2 and
R2 + 1) from 1st operand (in FPR, per Rl and Rl + 1)
and place unnormalized difference into 1st operand
location.

• RR format:

0

2F Rl R2

II 12 15

Fetch sign, charistic,
and 56-bi t fraction from
FPR per Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction from
FPR per R2 and R2 + 1.

Invert sign.

Equalize charistics and save signs. .

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per
hardware conditions.

7201-02 FETOM (7/70) 3-85

e Conditions at start of execution:
32 bits of 1st operand are in A, B, and D (24-bit fraction

only).
32 bits of 2nd operand are in Sand T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

• CC setting:
Result fraction equals zero: CC= 0.
Result fraction is less than zero: CC = 1.
Result fraction is greater than zero: CC = 2.

The Subtract Unnormalized, SWR, instruction (Diagram
5-207) algebraically subtracts the second operand (specified
by R2 and R2 + 1) from the first operand (specified by R 1
and Rl + 1) and places the unnormalized difference into
the first operand location. The CC is set according to
hardware conditions.

Execution of the SWR instruction is identical to that of
the AWR instruction except that the complement of the
second operand sign instead of the true sign is gated to
STATC.

Subtract Unnormalized, SW (6F) - RX Long Operands

• Algebraically subtract 2nd operand (in storage) from 1st
operand (in FPR, per Rl and Rl + 1) and place
unnormalized difference into 1st operand location.

• RX format:

6F Rl X2 B2 D2

11 12 15 16 19 20

Fetch sign, charistic,
and 56-bit fraction from
FPR per Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction from
main storag'e •

3-86 (7 /70)

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

Set CC per
hardware conditions.

31

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Low-order fraction of 1st operand is in LS.
Main storage request for 2nd operand has been issued

per D.
First 16 bits of instruction are in E.

• CC setting:
Result fraction equals zero: CC = 0.
Result fraction is less than zero: CC= 1.
Result fraction is greater than zero: CC= 2.

The Subtract Unnormalized, SW, instruction (Diagram
5-207) algebraically subtracts the second operand (specified
by the effective address) from the first operand (specified
by RI and RI + 1) and places the unnormalized difference
into the first operand location. The CC is set according to
hardware conditions.

Execution of the SW instruction is identical to that of
the AW instruction except that the complement of the
second operand sign instead of the true sign is gated to
STATC.

Compare, CER (39) - RR Short Operands

• Algebraically compare 1st operand (in FPR, per RI)
with 2nd operand (in FPR, per R2); CC indicates result.

• RR format:

39 Rl
11 12

Fetch sign, charistic,
and 24-bit fraction
from FPR per Rl.

R2

15

Fetch sign, charistic,
and 24-b.it fraction
from FPR per R2.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd ope rands.

Examine result of fraction addition
and set CC per hardware conditions.

• Conditions at start of execution:
1st operand is in A, B, and D (24-bit fraction only).
2nd operand is in S and T.
Instruction is in E.

• CC setting:
Operands are equal: CC= 0.
1st operand is less than 2nd operand: CC = 1.
1st operand is greater than 2nd operand: CC= 2.

The Compare, CER, instruction (Diagram 5-206)
algebraically compares the first operand (specified by R1)
with the second operand (specified by R2); the CC
indicates that the first operand is equal to, less than, or
greater than the second operand.

Comparison is algebraic, taking into account the sign,
fraction, and characteristic of each operand. An exponent
inequality is not decisive for magnitude determination
because the fractions may have different numbers of
leading zeros. Equality is established by following the rules
for floating-point subtraction. The intermediate result is
not normalized or stored. When the intermediate result,
including a possible guard digit, is zero, the operands are
equal. Numbers with zero fractions compare equal even
when they differ in sign or characteristic. Exponent
overflow, exponent underflow, or significance check cannot
occur. The CC is set per hardware conditions at end-oi:
time.

In the CER instruction, the contents of the low-order
halves of the FPR's are ignored. (Neither operand location
is changed as a result of any compare instructions.)

Execution of the CER instruction is identical to that of
the SER instruction until the branch to determine an
unnormalized, normalized, or compare instruction. At that
point, the CC is set per hardware conditions, and the
instruction is terminated by an end op.

Compare, CE (79) - RX Short Operands

• Algebraically compare 1st operand (in FPR, per R1)
with 2nd operand (in storage); CC indicates result.

• RX format:

0

79 Rl X2 B2 02
11 12 15 16 19 20

Fetch sign, charistic,
and 24-bit fraction
from FPR per Rl.

Fetch sign, charisti c,
and 24-bit fraction
from main storage.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Examine result of fraction addition
and set CC per hardware conditions.

31

• Conditions at start of execution:
1st operand is in S and T.
Main storage request for 2nd operand has been issued

per D.
1st I 6 bits of instruction are in E.

• CC setting:
Operands are equal: CC = 0.
1st operand is less than 2nd operand: CC = I.
1st operand is greater than 2nd operand: CC= 2.

The Compare, CE, instruction (Diagram 5-206)
algebraically compares the first operand (specified by RI)
with the second operand (specified by the effective
address); the CC indicates the result. Exponent underflow,
exponent overflow, or significance check cannot occur.

Execution of the CE instruction is identical to that of
the SE instruction until the branch to determine an
unnormalized, normalized, or compare instruction. At that
point, the CC is set per hardware conditions, and the
instruction is terminated by an end op.

Compare, CDR (29) - RR Long Operands

• Algebraically compare 1st operand (in FPR, per RI and
R1 + 1) with 2nd operand (in FPR, per R2 and R2 + 1);
CC indicates result.

• RR format:

29 Rl

11 12

Fetch sign, charistic,
and 56-bit fraction from
FPRper Rl and Rl + 1.

R2

15

Fetch sign, charistic,
and 56-bit fraction from
FPR per R2 and R2 + 1.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Examine result of fraction addition
and set CC per hardward conditions.

• Conditions at start of execution:
32 bits of 1st operand are in A, B, and D (24-bit fraction

only).
3 2 bits of 2nd operand are in S and T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

• CC setting:
Operands are equal: CC= 0.
I st operand is less than 2nd operand: CC = 1.
1st operand is greater than 2nd operand: CC= 2.

7201-02 FETOM (7/70) 3-87

The Compare, CDR, instruction (Diagram 5-207)
algebraically compares the first operand (specified by R1
and R1 + 1) with the second operand (specified by R2 and
R2 + l); the CC indicates the result. Exponent underflow,
exponent overflow, or significance check cannotoccur.

Execution of the CDR instruction is identical to that of
the SDR instruction until the branch to determine an
unnormalized, normalized, or compare instruction. At that
point, the CC is set per hardware conditions, and the
instruction is terminated by an end op.

Compare, CD (69) - RX Long Operands

• Algebraically compare 1st operand (in FPR, per R1 and
R1 + 1) with 2nd operand (in storage); CC indicates
result.

• RX format:

69 Rl X2 B2 D2
II 12 15 16 19 20

Fetch sign, charistic,
and 56-bit fraction from
FPRper Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction
from main storage.

Invert sign.

Equalize charistics and save signs.

Algebraically add fractions
of 1st and 2nd operands.

Examine result of fraction addition
and set CC per hardware conditions.

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Low-order fraction of 1st operand is in LS.

31

Main storage request for 2nd operand has been issued
per D.

First 16 bits of instruction are in E.

• CC setting:
Operands are ·equal: CC= 0.
1st operand is less than 2nd operand: CC= 1.
1st operand is greater than 2nd operand: CC = 2.

The Compare, CD, instruction (Diagram 5-207)
algebraically compares the .first operand (specified by R1
and R1 + 1) with the secon4 operand (specified by the
effective address); the CC indicates the result. Expo_nent
underflow, exponent overflow, or significance check cannot
occur.

Execution of the CD instruction is identical to that of
the SD instruction until the branch to determine an

3-88 (7/70)

unnormalized, normalized, or compare instruction. At that
point, the CC is set per hardware conditions, and the
instruction is terminated by an end op.

HALVE

The Halve instructions (HER and HDR) divide the second
operand by 2 and place the normalized quotient into the
first operand location. The Halve instructions are in the RR
format with short and long operand options available. In
the HER instruction, the low-order half of the result
register remains unchanged.

After the second operand is in ST, the sign and the
characteristic are saved in F, and the high-order fraction (24
bits) is placed into D (long operands). Shifting the fraction
one bit position to the right divides the operand by 2.
Because the data in PAL cannot be shifted right 1 directly,
two machine cycles are necessary. First the fraction is
shifted left 1 from D to the parallel adder and then shifted
right 4 to PAL, thus yielding an effective right 3 shift.
Next,· the fraction is placed into AB. A left 2 shift occurs
when the fraction is routed to DT via the parallel adder,
thus resulting in a right 1 shift ~md thereby dividing the
fraction by 2. Guard digits are saved and used if
normalization is necessary. After the fraction is normalized,
the sign, characteristic, and fraction are stored into LS per
R1, completing instruction execution.

The halve operation differs from the divide operation in
that 2 is the only divisor.

Halve, HER (34) - RR Short Operands

• Divide 2nd operand (in FPR, per R2) by 2 and place
normalized quotient into 1st operand location (in FPR,
per R1).

• RR format:

34 Rl R2

0 7 8 11 12 15

Fetch sign, charistic,
and 24-bit fraction
from FPR per R2.

Shift fraction right
1 bit position.

Normalize result.

Store sign, charistic,
and fraction 1nto
FPR per Rl.

• Conditions at start of execution:
1st operand is in A, B, and D (24-bit fraction only).
2nd operand is in S and T.
Instruction is in E.

The Halve, HER, instruction (Diagram 5-208, FEMDM)
divides the second operand (specified by R2) by 2 and
places the normalized quotient into the FPR specified by
Rl. To divide by 2, the fraction is shifted right one bit
position.

At the start of execution, the second operand is in S and
T. After a specification test, the fraction is placed into D,
the sign is saved in STAT C, and the characteristic is saved
in F. The fraction in Dis then shifted right one bit position.
A test is initiated to determine whether the fraction is zero
and normalized. If the fraction equals zero, the FPR
specified by Rl is set to a true zero and the operation
terminates with an end op. If the fraction contains leading
zero's, it is normalized by shifting left one hex digit at a
time until a significant hex digit appears in the high-order
position. A 1 is subtracted from the characteristic for each
shift.

After normalization, the characteristic and fraction are
gated to T from F and D, respectively. The result is then
stored into the FPR specified by Rl. The sign position is
set by forcing the contents of STAT C onto the LS bus as
the fraction and characteristic are being stored.

The characteristic is then tested for ·a possible exponent
underflow. If no underflow occurred, the 'instruction is
terminated. If an underflow did occur, the remainder of the
operation is determined by the state of the underflow mask
bit.

Halve, HDR (24) - RR Long Operands

• Divide . 2nd operand (in FPR, per R2 and R2 + 1) by 2
and place normalized quotient into 1st operand location
(in FPR, per Rl and Rl + 1).

• RR format:

24 R 1 R2

7 8 II 12 15

Fetch sign, charistic,
and 56-bit fraction from
FPR per R2 and R2 + 1.

Shift fraction right
1 bit position.

Normalize result.

Store sign, charistic,
and fraction into
FPR per Rl and Rl + 1.

• Conditions at start of execution:
3 2 bits of 1st operand are in A, B, and D (24-bit fraction

only).
3 2 bits of 2nd operand are in S and T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

The Halve, HDR, instruction (Diagram 5-209, FEMDM)
divides the second operand, (specified by R2 and R2 + 1)
by 2 and places the normalized quotient into the FPR
specified by Rl and Rl + 1. To divide by 2, the fraction is
shifted right one bit position.

At the start of the execution phase, the sign,
characteristic, and high-order fraction are in Sand T. After
a specification test, the high-order fraction is placed into D
and the low-order fraction is fetched from LS per Rl + 1
and gated to T. The sign is saved in STAT C, and the
characteristic is saved in F. The fraction in DT is then
shifted right one bit position, and a test determines whether
the fraction is equal to zero and normalized. If the fraction
equals zero, the FPR specified by Rl and Rl + 1 is set to a
true zero and the operation terminates with an end op. If
the fraction contains leading zero's, it is normalized by
shifting left one· hex digit at a time until a significant hex
digit appears in the high-order position. A 1 is subtracted
from the characteristic for each shift.

After normalization, the low-order fraction is stored into
the FPR specified by Rl + 1. The characteristic and
high-order fraction are then gated to T from F and D,
respectively. The result is stored into the FPR specified by
Rl. The sign position is set by forcing the contents of
ST AT C onto the LS bus as the fraction and characteristic
are being stored.

The characteristic is then tested for a possible exponent
underflow. If no underflow occurred, the instruction is
terminated. If an underflow did occur, the remainder of the
operation is determined by the state of the underflow mask
bit.

MULTIPLY

• Multiplies 1st operand and 2nd operand and places
normalized product into 1st operand location.

• Note: In CE floating-point multiply operations, 2nd
'operand is multiplicand and 1st operand is multiplier.

• Product is 64 bits for both short and long operand
instructions.

• Characteristics are added and 64 is subtracted to obtain
intermediate characteristic.

• Operands are prenormalized before multiplytng.

7201-02 FETOM (7 /70) 3-89

• Product is normalized before storing.

• Sign of product is determined algebraically.

Two floating-point numbers are multiplied by adding their
characteristics and multiplying their fractions. For example,
if 1250 is to be multiplied by 5, converting these numbers
to hex notation yields the equation

3 1 (.4E2
16

x16)x(.6x16).

The product is obtained, as follows:

3 .4E2
16

x 16

. 1
x .516 x16

Product of fractions~.186A 16 x 164 Exponents are added

The product (.186A 16 x 164) equals 6250 (decimal), which
is the product of 1250 x 5.

When two floating-point numbers are multiplied, the
characteristics are added to yield the final characteristic
value of the product, as shown above. Because excess-64
notation is used, 64 must be subtracted from the
characteristic sum because the characteristic value is in
excess-128 [(Cl + 64) + (C2 + 64) =Cl+ C2 + 128] after
characteristic addition. When 64 is subtracted, the result is
returned to excess-64 notation (C 1 + C2 + 128 ~ 64 = C 1 +
C2 + 64). For instance, in floating-point format, the
exponents used in the example above yield characteristics
of 67 (3 + 64) and 65 (I + 64). The sum of these
characteristics is 132. Subtracting 64 from 132 leaves 68,
which is equivalent to an exponent of 4 in excess-64
notation.

If one or both operand fractions contain leading zeros,
the unnormalized operand(s) is prenormalized. That is, the
operands are normalized before multiplication begins.
Prenormaliza ti on increases product prec1s10n. By
prenormalizing the operands, a maximum of one
postnormalization cycle is necessary. Postnormalization is
the process of normalizing the product after fraction
multiplication. Prenormalization and postnormalization are
accomplished by shifting the fraction left one hex digit and
subtracting 1 from the characteristic value for each left
shift until a significant hex digit appears in the high-order
position of the fraction.

The product for both short and long operand multiply
instructions is 64 bits long. Note that, if the fraction is not
prenormalized, dropping the low-order bits of the product
in excess of 64 may result in a false zero product without
prenormalization. This result would occur often in long
operand instructions because 56 low-order bits of the
product are lost when executing the multiply algorithm.
Thus, to prevent a false zero, the product for long operand
instructions would have to be 120 bits long. A false zero is
prevented, however, by prenormalizillg the operands and

3-90 (7/70)

postnormalizing the intermediate product. During
postnormalization, the intermediate product characteristic
is reduced by the number of left shifts. For long operands,
the low-order bits of the intermediate product are dropped
before left-shifting. For short operands (six-digit fractions),
the product fraction has the full 14 hex digits of the long
format, and the two low-order hex fraction digits are
accordingly always zeros. The two low-order hex fraction
digits are zeros in short operand instructions because a
maximum of 12 nonzero hex digits is possible when
multiplying two six-digit numbers. In multiplication, the
number of digits in the product cannot exceed the sum of
the available operand digits. Therefore, because 14 product
digits are available, the two low-order hex digits of short
operand products are always zeros.

The sign of the product is determined algebraically; that
is, if the signs of the operands are alike (both plus or both
minus), the product is assigned a plus sign; if the signs are
unlike, the product is made negative.

Exponent overflow occurs if the final product
characteristic exceeds 127. The operation is terminated,
and a program interruption occurs. The overflow
interruption condition does not occur for a partial product
characteristic exceeding 127 when the final characteristic is
brought within range through normalization.

When exponent underflow occurs, the final product
characteristic is less than zero. The sign, characteristic, and
fraction are made zero, and a program interruption occurs
if the corresponding mask bit is a 1. Underflow is not
signalled when the characteristic of an operand becomes
less than zero during prenormalization, and the correct
characteristic and fraction value are used in the
multiplication.

When all 14 result fraction digits are zero, the product
sign and characteristic are made zero, yielding a true zero
result, exponent underflow is not signalled, and no
interruption is taken. The program interruption for
significance is never taken for multiplication.

Data Flow and Algorithm

• See Note under "Multiply".

• Signs are saved in ST A T's C and F.

• Characteristics are added in serial adder; carry is saved in
STAID.

• Fraction multiplication is performed by multiply/divide
logic.

• E(l 2-15) selects two multiplier bits from S.

• S bits determine multiple value to. be added to partial
product.

The data paths of the floating-point operands during
multiplication are shown in Diagram 5-210, FEMDM. The
characteristic is computed in the serial adder (A of the

diagram). The signs are saved in ST AT C and ST AT F. To
add the characteristics, the first operand characteristic is
gated to SAA(l-7) from AB per the ABC, and the second
is gated to SAB(l-7) from ST per the STC. The
characteristic sum is routed to F and the characteristic
carry is saved in ST AT D and F(O). 64 is subtracted from
the characteristic by adding the 2's complement of 64 to
the sum in F.

Note: For an RX instruction with a normalized first
operand, the first operand characteristic and sign are in S or
T and the second operand characteristic and sign are in A.

Fraction multiplication is performed by the
multiply/divide logic (B of Diagram 5-210) and is similar to
fixed-point multiplication (Section 2 of this Chapter)
except that the operands are shorter. After the signs are
saved, the characteristic is determined and the operands are
prenormalized; the multiplicand is in DT, the multiplier is
in S, and a count, representing the number of repetitive
operations necessary to perform the multiplication, is in
E(l 2-15). Multiplication is performed two bits at a time;
that is, the multiplicand in DT is multiplied by two bits of
the multiplier in S using the multiple-selection decoder and
the parallel adder. The count in E(l 2-15), in addition to
keeping track of the number of operations, determines
which multiplier bits are to be used, starting with the
low-order bits and moving two bits to the left for each
multiplication. The result of each two-bit multiplication is a
multiple of the multiplicand which is then added to the
1artial product formed by previous two~bit multiplications.
fhus, a new partial product is obtained. The two-bit
multiplications continue until E(l 2-15) indicates that all
bits of the multiplier have been used. At that time, the
intermediate product is contained in AB(4-67).

The steps of the fraction multiplication are:
1. Place the constant F (hex) into E(l 2-15).
2. Using the value in E(l 2-15), select two multiplier bits

(Ml and M2) from S. E(12,13) selects the byte and
E(14,15) selects the two bits within a byte (see B of
Diagram 5-210). For example, with the original value in
E(12-15), E(12,13) = 11 selecting the third byte in S
(bits 24-31), and E(14,15) = 11 selecting bits 6 and 7
within that byte. Thus, the first M 1, M2 values used are
S(30,31). Table 3-10 shows which S bits are selected for
all values of E(l 2-15).

3 .. The value of the Ml, M2 bits, in conji:nction with the
'TX' trigger, gates the correct multiple of the
multiplicand to the PAA. Considering the Ml, M2 bits as
a two-bit multiplier, the multiplicand in DT can be
multiplied by 0 {Ml, M2 = 00), by 1 {Ml, M2 = 01), by
2 (M 1, M2 = 10), or by 3 (MI, M2 = 11), as follows:
a. M 1, M2 = 00 and 'TX' Trigger Is Reset: Because zero

times the multiplicand is zero, nothing is added to the

Table 3-10. Multiplier Bits Selected, Floating-Point Multiply

E(14,15)

00 01 10 11

E(12,13) M1 M2 M1 M2 M1 M2 M1 M2

00 0 1 2 3 4 5 6 7

01 8 9 10 11 12 13 14 15

10 16 17 18 19 20 21 22 23

11 24 25 26 27 28 29 30 31

partial product. However, the partial product is
shifted right two bit positions.

b. Ml, M2 = 01 and 'TX' Trigger Is Reset: One times the
multiplicand equals the multiplicand. Thus, the
multiplicand is added to the partial product, and the_
partial product is shifted right two bit positions.

c. Ml, M2 = 10 and 'TX' Trigger Is Reset: The
multiplicand is multiplied by 2 by shifting it left one
bit position. The result is then added to the partial
product, and the partial product is shifted right two
bit positions.

d. Ml, M2 = 11 and 'TX' Trigger Is Reset: Because the
facilities for multiplying the multiplicand by 3 are
not directly available, an effective multiplication by 3
is accomplished by multiplying by 4 and subtracting
one times the multiplicand (4X - lX = 3X). The
minus IX occurs first by adding the 2's complement
of the multiplicand to the partial product, and 4X
occurs by adding 1 to the next two multiplier bits.
The 'TX' trigger is set to remember that an additional
1 is required in the next cycle. After adding the 2's
complement of the multiplicand to the partial
product, the partial product is shifted right two bit
positions.

e. Ml, M2 = 00 and 'TX' Trigger Is Set: One times the
multiplicand is added to the partial product, which is
then shifted right two bit positions.

f. Ml, M2 = 01 and 'TX' Trigger Is Set: Two times (left
1 shift) the multiplicand is added to the partial
product, which is then shifted right two bit positions.

g. Ml, M2 = 10 and 'TX' Trigger Is Set: The 2's
complement of the multiplicand is added to the
partial product, and the 'TX' trigger is again set. The
resulting partial product is shifted right two bit
positions.

h. Ml, M2 = 11 and 'TX' Trigger is Set: Zero is added to
the partial product, and the 'TX' trigger is set. The
partial product is shifted right two bit positions.

Note that in each case the new partial product is shifted
right two bit positions. Thus, each higher-order
multiplicand multiple is displaced two positions to the

, 7201-02 FETOM (7/70) 3-91

left when added to the partial product. This right 2 shift
is accomplished by shifting the partial product right 4 as
it enters PAL, and shifting it left 2 when it is gated to
PAB for addition to the next multiplicand multiple. The
two low-order bits [B(66,67)] are shifted out, and
therefore lost on each cycle.

Note: Steps 2 and 3 are performed by the
'SEL-MPL *E3' micro-order and hardware conditions.

4. Reduce E(l 2-15) by 1.
5. Determine, by the count in E(l 2-15), whether all bits

of the multiplier fraction have been used to select a
multiplicand multiple. If not, repeat steps 2-4; if they
have all been used, proceed to step 6.

6. After decoding the ·last S bits, the 'JX' trigger is
checked. If the 'TX' trigger is set, one additional
termination cycle is necessary to obtain the final
intermediate product. If the 'TX' trigger is reset, no
extra cycle is necessary. After the fraction intermediate
product is obtained, the fraction is normalized
(post-normalization), the characteristic is adjusted, the
sign is determined, and the final 64-bit product is stored
into the FPR specified by Rl and RI + 1 [located in
E(8-11)].

To illustrate the multiply operation, assume that the
following fractions are to be multiplied:

· 0.24
10

X 0.15
10

= 0.0360
10

or 0.18
16

X .F
16

= 0.168
16

The operands in machine language become:

0 1 000000. 0001 1 000 0*70 x 0 1 000000 .. 1111 0000 0*70

In hex notation, the example becomes:

+40. 18 X +40. F = +40. 168

Further, assume that a short operand instruetion in the RR
format is to be executed. For this discussion, assume that
0.15 (decimal) is the multiplier (first operand) and 0.24
(decimal) is the multiplicand (second operand). At the start
of execution, the instruction is in E; the first operand is in
A, B, and D (this value is not used and is subsequently
destroyed), and the second operand is in Sand T.

The signs are saved, the characteristics are determined,
and the fractions are prenormalized before beginning the
multiply algorithm: The value in E(l 2-15) is set to 15 and
sequentially reduced by 1 during the operation. Before
fraction multiplication begins, the first operand fraction is
transferred to S, the second operand is transferred to D,
and B and T are reset.

3-92 (7 /70)

The first multiple of the multiplicand is determined by
checking E(l 2-15), which initially contains 1111 (binary).
Using Table 3-10 to determine the M 1 and M2 bits, the first
bits selected are S(30,31). At this time, S(30,3 l) = 00.
Thus, the first partial product placed into AB equals zero.
The sequential reduction of E(l 2--15) continues until the
value equals 0101, at which time the partial product in AB
equals zero.

Referring to Table 3-10, when E(12-15) = 0101,
S(l 0, 11) is selected. These selected bits determine the
multiple (M 1, M2) of the multiplicand to be added to the
partial product in AB. Because S(l0,11) = 11 (binary), the
2's complement of DT is gated to PAA. The contents of AB
are shifted left 2 at this time (AB equals zero) and gated to
PAB. The output of the parallel adder is shifted right 4 to
the P AL's. The contents of the P AL's are gated to AB,
forming a new partial product. AB(4-67) now contains
1111.1111 1110 1000 O~. PA(4) is propagated into
PAL(4-7) by the 'R-+' micro-order. Because S(l0,11) = 11,
the 'TX' trigger is set (Table 3-11). Because E(12-15) is
decremented after each multiple selection, zeros are added
to PAA on the next multiple selection (0 X DT), as shown
in Table 3-11. During this select multiple, the contents of
AB are shifted left 2 to P AB, and the next partial product is
shifted right 4 to the PAL's and AB(4-67), thus yielding an
effective right 2 shift. The new partial product in
AB(4-67) becomes 1111.1111 1111 1010 O<~O.

Table 3-11. Value of Multiple Determined by
Multiple Selection Bits (Floating-Point)

Multiple
Selection DT Register Times

Bits TX Value Indicated (Add

M1 M2 Trigger to Partial Product in AB)

0 0 0 0 X DT

0 1 0 1 X DT

1 1 0 2 X DT

1 1 0 -1 x DT (2's Complement)

0 0 1 1 X DT

0 1 1 2 X DT

1 0 1 -1 x DT (2's Complement)

1 1 1 0 X DT

*Used on last multiple selection if 'TX' trigger is set.

Set
TX

Trigger

No

No

No

Yes

No*

No

Yes

Yes

At this point, all multiples of the multiplicand have been
selected. If the 'TX' trigger is not set, the partial product in
AB becomes the intermediate result. In this example,
however, the 'TX' trigger was set because the multiplier bits
equalled 11 and the 'TX' trigger was previously set (Table
3-I I). Therefore, DT must be added to the partial product
in AB. The contents of AB are shifted left 2 to PAB and
added to DT. No right 4 shift from the parallel adder to the
PAL's occurs at this time. The intermediate product is
transferred from the PAL's to AB(4-67) and DT. The
intermediate product is .000101101000 OB-0 (0.168 16).

In this example, normalization is not necessary. The sign,
characteristic, and fraction are stored into the FPR
specified by RI and RI + I. An end-op cycle completes the
operation.

If the integers were preceded by zeros in this example,
prenormalization of the operands would occur before
executing the multiple algorithm.

Multiply, MER (3C) - RR Short Operands

• Multiply 1st operand (in FPR, per Rl) and 2nd operand
(in FPR, per R2) and place normalized product into 1st
operand location (in FPR, per RI and RI + 1).

• See Note under "Multiply".

• RR format:

3C Rl

11 12

Fetch sign, charistic,
and 24-bit fraction
from FPR per R 1.

R2

15

Fetch sign, charistic,
and 24-bi t fraction
from FPR per R2.

Add charistics and save signs.

Prenormal ize 1st operand
and adjust charistic.

Mui tip I y operands.

Normalize fraction and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

• Conditions at start of execution:
1st operand is in A, B, and D (24-bit fraction only).
2nd operand is in S and T.
Instruction is in E.

The Multiply, MER, instruction (Diagram 5-211, FEMDM)
multiplies the 1second operand (specified by RI) by the first
operand (specified by R2) and places the normalized
product into the first operand location (per Rl and Rl +
1).

The conditions at the beginning of the execution phase
are:
1. The first operand is in A, B, and D (24-bit fraction

only).
2. The second operand is in Sand T.
3. The STC contains a value of 4.
4. The instruction is in E.

The second operand fraction (multiplicand) is
transferred from T to D. The first operand sign is saved in
ST AT F and the second is saved in ST AT C. The
characteristics are added, yielding an excess-128
characteristic, and the sum is placed into F. SA(O) is saved
in ST AT D and placed into F(O). B and T are reset by
transferring zeros from PAL(32-63) to B and T. The first
operand (multiplier) is fetched from LS and placed into S
to be used for the select multiple function. A constant of
15 is placed into E(l 2-15) to be used for selecting the two
multiple bits from S. The operands are now in position so
that multiplying may begin. The ROS microprogram
assumes that both operands are normalized. However, the
operands are tested, via a four-way branch, to determine
whether prenormalization is necessary. The four-way
branch tests for the following conditions:
I. First and second operands are normalized.
2. First operand is normalized and the second is

unnormalized.
3. First operand is unnormalized and the second is

normalized.
4. First and second operands are unnormalized.

Assume that both operands need normalizing. The
second operand is normalized by left-shifting the fraction in
DT one hex digit and subtracting 1 from the characteristic.
Left-shifting continues until the second operand fraction is
normalized.

After the fraction of the second operand is normalized,
the first operand (multiplier) is transferred from S to B.
The contents of T (O's for short operands) are saved in the
LSWR. Normalization is accomplished by left-shifting the
contents of AB one hex digit and subtracting 1 from the
characteristic. (Bis reset during the first shift.) Left-shifting
continues until the fraction of the first operand is
normalized. On each left-shift, the shifted low-order
fraction (O's) is stored into the FPR specified by RI

7201-02 FETOM (7/70) 3-93

[E(8-11)]. S is then loaded with the short operand
multiplier. Tis reset, and DT becomes a 56-bit multiplicand
(second operand).

Because the characteristic is in excess-128 notation, 64 is
subtracted from F so that the excess-64 rule applies. AB is
reset, and the multiply algorithm begins. A 'SEL-MPL*E3'
micro-order is executed, and 1 is subtracted from E(l 2-15)
for each machine cycle. When E(l 2-15) = 0100, all 12
pairs of multiples have been selected. Because the 'TX'
trigger may have been set on the previous multiple
selection, a last multiple selection is necessary to add in the
multiplicand to obtain the correct product ..

Because the operands were normalized before
multiplying, a· maximum of one left-shift is necessary to
normalize the intermediate product fraction. If A(8-11) =

0, one left shift of the intermediate product fraction is
necessary. When the left shift occurs, a l is subtracted from
the characteristic sum. The · characteristic of the final
product is located in SAL(l - 7) and F(l-7). The sign is
determined algebraically, and then the sign, characteristic,
and 56-bit fraction are stored into the FPR specified by Rl
and Rl + 1.

If SAL(O) = 1, an exponent overflow or exponent
underflow condition exists and the product is incorrect.
Zeros are stored into the first operand location if an
exponent underflow has occurred. A program interruption
occurs on all exponent overflows, and on exponent
underflows if masked on. If SAL(O) = 0, the stored product
is correct. An end-op cycle completes instruction
execution.

Multiply, ME (7C) - RX Short Operands

• Multiply 1st operand (in FPR, per Rl) and 2nd operand
(in storage) and place normalized product into 1st
operand location (in FPR, per Rl and Rl + 1).

• See Note under "Multiply".

• RX format: (See adjoining column.)

• Conditions at start of execution:
1st operand is in S and T.
Main storage request for 2nd operand has been issued
per D.
First 16 bits of instruction are in E.

The Multiply, ME, instruction (Diagram 5-211) multiplies
the second operand (specified by the effective address) by
the first operand (specified by Rl) and places the
normalized product into the first operand location (p~r Rl
and Rl + 1).

The conditions at the beginning of the execution phase
are:
1. The first operand is in Sand T.
2. A main storage request for the second operand has been

issued per the effective address in D.
3. The first 16 bits of the instruction are in E.

3-94 (7/70)

7C Rl X2 B2 D2

11 12 15 16 19 20

Fetch sign, charistic,
and 24-bit fraction
from FPR per R 1.

Fetch sign, charistic,
and 24-bit fraction
from main storage.

Add charistics and save signs.

Subtract 64 from charistic.

Prenormalize 1st operand
and adjust charistic.

Multiply operands.

Normalize fraction and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
irito FPR per Rl and Rl + 1.

31

The first operand (multiplier) is placed into A, a
constant of 15 is placed into E(l 2-15), and the STC is set
to 4. Assume that the first operand is not normalized and
that the second is normalized. The second operand is
fetched from main storage (per the effective address in D)
and placed in to ST. If D(21) = 1, the second operand
(multiplicand) is in T; conversely, if D(21) = 0, the second
operand is in S and must be placed into T. The sign of the
first operand is saved in STAT F and the sign of the second
is saved in STAT C. The characteristics are added, and the
sum is placed into F. SAL(O) is saved in STAT D and F(O).
The fraction of the second operand is placed into D. B and
T are reset, the first operand is placed into S, and 15 is
placed into E(12-15). A four-way branch determines the
next operation. From this point, operation is similar to that
of the MER instruction.

If the first operand was normalized, the second operand
(multiplicand) from main storage is placed into AB. T and
the STC are reset. The transfer of the second operand
fraction to D is determined by D(21). If D(21) = 1, the
second operand from B is transferred to A and D. If .D(21)
= 0, the second operand in A is transferred to D. Note that
the sign of the first operand is saved in ST AT C and that of
the second in ST AT F. The characteristics are added, and
the sum is saved in F. The characteristic carry is saved in
ST AT D and F(O).

Because the first operand was initially normalized, the
ROS microprogram assumes that the second operand is also
normalized. Therefore, the first partial product is
computed. If the second operand needs normalizing,
however, the operands and the constant 15 in E(I2-15) are
restored, and the second operand is normalized before
multiplying. Once both operands are normalized, the
operands are multiplied and the results stored.

Multiply, MOR (2C) - RR Long Operands

• Multiply 1st operand (in FPR, per R1 and R1 + 1) and
2nd operand (in FPR, per R2 and R2 + 1) and place
normalized product into 1st operand location (in FPR,
per R1 and R1+1).

• See Note under "Multiply".

• RR format:

2C Rl R2

1112 15

Fetch sign, charistic,
and 56-bit fraction from
FPR er Rl and Rl + 1.

Fetch sign, charistic,
and 56-bit fraction from
FPR er R2 and R2 + 1.

Add charistics and save signs.

Subtract 64 from charistic.

Prenormalize 1st operand
and adjust charistic.

Multiply operands.

Normalize fraction and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

• Conditions at start of execution:
32 bits of 1st operand are in A, B, and 0 (24-bit fraction

only).
32 bits of 2nd operand are in Sand T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

The Multiply, MOR, instruction (Diagram 5-212, FEMOM)
multiplies the second operand (specified by R2 and R2 + 1)
by the first operand (specified by Rl and RI + 1) and
places the normalized product into the first operand
lo ca ti on (per R 1 and R 1 + 1).

The conditions at the beginning of the execution phase
are:
1. 32 bits of the first operand are in A, B, and D (24-bit

fraction only).
2. 32 bits of the second operand are in Sand T.
3. The STC contains a value of 4.
4. The instruction is in E.

The high-order fraction of the second operand
(multiplicand) is transferred from T to 0. The low-order
fraction of the first operand (multiplier) is placed into S,
and that of the second operand is placed into T. OT
contains the multiplicand fraction, and S contains the
low-order fraction of the multiplier. The signs are saved in
STAT C and STAT F. The characteristics are added, and
the sum is placed into F. The characteristic carry is saved in
STAT 0 and also placed into F(O). A constant of I5 is
placed into E(l 2-15) to be used for selecting the two
multiple bits located in S.

The operands are now in position so that multiplying
may begin. The ROS microprogram assumes that both
operands are normalized. However, the operands are tested,
via a four-way branch, to determine whether
prenormalization is necessary. Assume that the first
operand is normalized and that the second needs
normalizing. The second operand is normalized by
left-shifting the contents of OT one hex digit and
subtracting 1 from the characteristic on each shift.
Left-shifting continues until the fraction is normalized.
Because the characteristic sum is in excess-128 notation, 64
is subtracted from the characteristic in F. AB is reset, and
the first multiple is selected. The multiples are selected per
E(I 2-I 5) until E(l 2-15) = 0001, indicating that the
multiples must be selected from the high-order fraction
located in LS. Accordingly, the high-order fraction of the
first operand (multiplier) is fetched from LS per RI
[E(8-I I)], and placed into S. From this point, the
multiply execution is the same as that for the MER
instruction.

Multiply, MD (6C) - RX Long Operands

• Multiply 1st operand (in FPR, per R1 and RI + I) and
2nd operand (in storage) and place normalized product
into 1st operand location (in FPR, per RI and RI+ 1).

• See Note under ''Multiply".

7201-02 FETOM (7 /70) 3-95

• RX format:

6C Rl X2 B2 D2

11 12 15 16 19 20 31

Fetch sign, charistic,
and 56-bit fraction from
FPR er Rl and Rl + 1.

Fetch sign, chari stic,
and 56-bit fraction from
main store e.

Add charistics and save signs.

Subtract 64 from charistic.

Prenormalize 1st operand
and adjust charistic.

Multiply operands.

Normalize fraction and adjust charistic.

Determine sign.

Store sign, charistic, and fraction
into FPR per Rl and Rl + 1.

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Low-order fraction of 1st operand is in LS.
Main storage request for 2nd operand has been issued

per D.
First 16 bits of instruction are in E.

The Multiply, MD, instruction (Diagram 5-212) multiplies
the second operand (in storage) by the first operand
(specified by RI and RI + 1) and places the normalized
product into the first operand location (per RI and RI +
1).

The conditions at the beginning of the execution phase
are:
1. 32 bits of the first operand are in S and T.
2. The low-order fraction of the first operand is in LS.
3. A main storage request for the second operand has been

issued per the effective address in D.
4. The first 16 bits of the instruction are in E.

The first operand (multiplier) sign, characteristic, and
high-order fraction are transferred from T to A. The
low-order fraction of the first operand is fetched from LS
and placed into S. If the first operand is not normalized,
the STC is reset, the low-order fraction is transferred from

3-96 (7/70)

S to B, the second operand (multiplicand) is fetched from
main storage and placed into ST and D (high-order fraction
in D), the characteristics are added, and the signs are saved
(first operand sign in ST AT F and second in ST AT C).

The low-order fraction of the first operand is again
placed into S, and a constant of 15 is placed into
E(l 2--15). The four-way branch determines the next
operation. The remainder of the operation is identical to
that of the MDR instruction.

If the first operand was normalized, the second operand
is fetched from main storage and ·placed into AB. The
second operand fraction (multiplicand) is transferred from
AB to DT. The sign of the first operand is saved in ST AT C
and that of the second in ST AT F. The characteristics of
the first and second operands are added; the result is placed
into F, and the characteristic carry is saved in STAT D.
[The carry is also transferred to F(O).] Because the first
operand is normalized, the ROS microprogram assumes that
the second operand is also normalized; therefore, the first
multiple is selected. If the second operand needs to }?e
normalized, the initial conditions are restored and the ROS
microprogram proceeds with the normalization of the
second operand.

DIVIDE

• Divides 1st operand (dividend) by 2nd operand (divisor)
and places normalized quotient into 1st operand
location.

• Characteristics are subtracted, and 64 is added to the
characteristic difference.

• Operands are prenormalized before dividing.

• Quotient is 32 bits for short operands, 64 bits for long
operands.

• Quotient is normalized.

• Sign of quotient is determined algebraically.

• No remainder is retained.

The Divide instruction divides the first operand (dividend)
by the second operand (divisor) and places the normalized
quotient into the first operand location. In short operand
instructions, the low-order halves of the FPR's are ignored
and remain unchanged.

A floating-point division consists of a characteristic
subtraction and a fraction division. The difference between
the dividend and divisor characteristics, plus 64, is used as
an intermediate quotient characteristic.

The quotient fraction is normalized by prenormalizing
the operands. Postnormalizing the intermediate quotient is
never necessary, but a right-shift of one hex digit may be
necessary if the normalized dividend fraction is larger than
the normalized divisor fraction. The intermediate quotient

characteristic is adjusted for the shifts. Low-order digits of
the quotient fraction are removed to obtain the desired
number of digits.

The sign of the quotient is determined algebraically.
That is, if the signs of the operands are alike, a plus sign is
assigned to the quotient; if the signs are unlike, a minus sign
is set into the quotient.

A program interruption for exponent overflow occurs
when the final quotient characteristic exceeds 127; the
operation is terminated.

A program interruption for exponent underflow occurs
when the final quotient characteristic is less than zero and
the corresponding mask bit is a I. Underflow is not
signalled for the intermediate quotient or for the operand
characteristics during prenormalization.

If division by a divisor with a zero fraction is attempted,
the divide operation is suppressed. The dividend remains
unchanged, and a program interruption for floating-point
divide occurs. When the dividend fraction is zero, the
quotient fraction will be zero. The quotient sign and
characteristic are made zero, yielding a true zero result
without taking the program interruption for exponent
underflow or exponent overflow. The program interruption
for significance is never taken for division. The CC remains
unchanged.

Characteristic Computation

After the first and second operands are fetched and placed
into the proper registers, the characteristics are subtract~d.
Because the complement gates to the serial adder are on the
SAA bus, the first operand characteristic (C 1) is subtracted
from the second operand characteristic (C2). Therefore, the
characteristic computations differ from what might be
expected. (Normally, C 1 - C2 would be expected.)

The CE takes the following steps in computing the
quotient characteristic:
I. Subtracts C 1 from C2 (dividend characteristic from

divisor characteristic).
2. Subtracts 64 from the characteristic difference.
3. Normalizes the first operand and adds a 1 to the

intermediate characteristic for each digit position that
the fraction is shifted.

4. Normalizes the second operand and subtracts a 1 from
the intermediate characteristic for each digit position
that the fraction is shifted.

5. Takes the 2's complement of the intermediate
characteristic.

6. Checks for a divisor fraction greater than a dividend
fraction. If the dividend is the larger number, right-shifts
the dividend one hex digit and adds 1 to the
characteristic.

7. Saves the final characteristic.
8. Checks the final characteristic for exponent overflow or

exponent underflow.

As an example of this computation, assume that two hex
numbers are to be divided, .004 by .02:

1st operand dividend+.004 x 165

.02 x 16
2

2nd operand divisor

±.2 x 163 = ±3.2

J L_Fraction
L_charac

teristic

Convert the above characteristics to excess 64 notation:

.--------C1

69.004
66.02

'--~~~~~~c2

Convert the above characteristics to binary form:

1000101.004 - 69.004 = ± 67.2 or .2 x 163

1000010.02 66.02

after 64 is sub

tracted from the
characteristic.

Step 1. The machine subtracts the characteristics (C2 -
CI):

1000010 C2

011101 ~ }

1111101

2's complement of C2
.004

1111101.02

Step 2. 64 is subtracted from the characteristic to
maintain excess-64 notation:

1111101

011111 ~ }

0111101

2's complement of 64
.004

0111101.02

Step 3. Note that the first operand hex fraction requires
two left-shifts to prenormalize. Shift left 2 and
add 2 to the characteristic:

0111101
0000010 .4
0111111 0111111.02

Step 4. The second operand hex fraction requires one
left-shift. Shift left 1 and subtract 1 from the
characteristic:

0111111

111111~}

0111110

2's complement of 1
.4

0111110.2

Step 5. Take the 2's complement of the characteristic:

100000~ }

1000010

2's complement of 0111110
1000010.4

.2

7201-02 FETOM (7/70) 3-97

Step 6.

1000010
0000001
1000011

Step 7.
Step 8.

~ecause the dividend fraction is greater than the
divisor fraction, the dividend is shifted right 1 and
1 is added to the characteristic before dividing
fractions:

= 67 = final characteristic
1000011.04

.2

Save 6 7, which is the final characteristic.
Divide fractions and store quotient:

1000011.04
.2

= ± 67.2

11 Result fracfon
Result characteristic

Subtracting the first operand characteristic from the
second effectively makes the characteristic difference part
of the divisor (dividend/divisor); to add to the
characteristic, therefore, the value must be subtracted. For
example, excess-64 notion is used in the CE. Subtracting
(C 1 + 64 from C2 + 64) equals C2 - Cl + 0; therefore, 64
must be added to the characteristic difference to maintain
excess-64 notation. Because the C2 minus C 1 difference is
2's-complemented later in the operation, 64 must be
subtracted (2's complement and add) from the
characteristic that is part of the divisor. The characteristic
must be part of the dividend to obtain the final quotient
characteristic.

The intermediate characteristic is 2's-complemented to
obtain the correct characteristic of the quotient because the
initial characteristic subtraction places the intermediate
characteristic in the divisor. The intermediate characteristic
is not considered to be in the 2's complement form.

Normalization

In the divide operation, both fractions must be normalized
before dividing the fractions. Also, the divisor must be
larger than the dividend. If the divisor is less than the
dividend, the dividend is divided by 16 by right-shifting the
dividend four binary bit positions. Prenormalization and
making the divisor larger than the dividend make
postnormalization unnecessary.

Fraction Division

• Is performed as follows:
1. Gate dividend to adder, shifted left 2; gate divisor to

adder, shifted left I.
2. Add; result is partial dividend.
3. Develop quotient bit: if partial dividend is in true

form, place a l into quotient; if partial dividend is in
2's complement form, place a 0 into quotient.

3-98 (7/70)

4. Gate partial dividend and divisor to adder (no shift).
If partial dividend is in true form, gate divisor in 2's
complement form; if partial dividend is in 2's
complement form, gate divisor in true form.

5. Perform steps 2 and 3.
6. Perform steps 1-5.
7. Continue until count signals end of algorithm.

The basic algorithm for the floating-point fraction divide
operation is similar to the algorithm used in fixed-point
divide. The characteristics of the two operands are
subtracted, and 64 is added to maintain excess-64 notation.
The divisor fraction is subtracted from the dividend
fraction. A carry indicates that the dividend is greater than
the divisor. The dividend must be less than the divisor; if
not, a right 4 shift of Hie dividend is required. Division is
accomplished by successive subtractions and storing of
quotient bits as determined by the carry. Successive
subtractions are performed. and the divisor is, in effect,
shifted right one position with respect to the dividend for
each subtraction (actually, the dividend is shifted left as
explained below).

In binary arithmetic, to divide one number (dividend) by
another (divisor), the dividend is repeatedly reduced by
subtracting the divisor. The number of times this reduction
can be done is the solution (quotient). There are two
methods of performing binary division: restore and
nonrestore (Figure 3-11).

In restore division, the result of a reduction of the
dividend by the divisor is retained only if the result is the
true difference (as opposed to a 2's complement
difference); a carry indicates that the result is in true form.
This result, called the partial dividend, is used in the next
reduction. However, if the result is the 2's complement of
the difference (no carry). the result is discarded and the old
partial dividend is doubled in relation to the divisor to
participate in the next reduction. A 1 is inserted into the
quotient when the result is true (carry), and a 0 is inserted
when the result _is in 2's complement form (no carry).

In the nonrestoring method of division. the result of a
reduction is retained as the new partial dividend whether it
is in true or 2's complement form. When a partial dividend
is in true form, the 2's complement of the divisor is added
to it; when the partial dividend is in 2's complement form,
the true divisor is.added to it. In each reduction, the partial
dividend is shifted left one bit in relation to the divisor;
also, a I is inserted into the quotient when the result is true
(carry) and a 0 is inserted into the quotient when the result
is in 2's complement form (no carry).

Shifting the dividend left one position doubles its value.
and is equivalent to halving the divisor. Similarly, shifting
the dividend left two positions quadruples it and is
equivalent to reducing the divisor to ~ of its value. Note

Problem: 45 7 7-= 6 3/7

Dividend: 0 0 1 0 1 1 0 1 = (2 x 16) + (13 x 1) = 45
Divisor: 0 1 1 1 -= (7 x 1) -= 7
Quotient: 0 1 1 0 ~ (6 x 1)" 6
Remainder: 0 0 1 1 = (3 x 1) = 3

A. Restore

2's Complement Divisor:

2's Complement Result (Discarded):

True Partial Dividend:
2's Complement Divisor:
2's Complement Result (Discarded):

lrue Partial Dividend:
2's Complement Divisor:

True l{esult:

True Partial Dividend:
2's Complement Divisor:

True Result:

True Partial Dividend (Remainder):
2's Complement Divisor:
2's Complement Result (Discarded):

B. Non-Restore

2's Complement Divisor:
2's Complement Result:

2's Complement Partial Dividend:
True Divisor:
2's Complement Result:

2's Complement Partial Dividend:

True Divisor:
True Result:

True Partial Dividend:
2's Complement Divisor:
True Result:

True Partial Dividend (Remainder):

2's Complement Divisor:
2's Complement Result:

2's Complement Partial Dividend (Remainder-Divisor):

True Divisor:
True Result (Remainder):

Figure 3-11. Restore and Non-Restore Division

0 0 1 1 0
0111100101101

100 1
n/c 'lOll

0 1 0 1
100 1

n/c TT10

101 1
1001

c {o 1 o o

100 0
100 1

c {°00 l

0 0 1 1
1001

n/c TiOO

0 0 1 1 0
o 1 1 1 lo o 1 o 1 1 o 1

100 l
n/c TOTI

0 1 1 1
0 1 1 1

n/c TTlO

1 1 0 l
0 1 1 1

c{O 100

l 0 0 0
100 1

c (°001

0 0 1 1
100 1

n/c TTOO

1 100
0 1 1 1

c 'OOT1

n/c =no c·arry
c =carry

1st Reduction

2nd Reduction

3rd Reduction

4th Reduction

5th Reduction

1st Reduction

2nd Reduction

3rd Reduction

4th Reduction

5th Reduction

Correction Cycle

the similarity between the restore and nonrestore methods
of division (the first successful reduction of the dividend is
made by one-quarter of the divisor):

divisor right. The development of the quotient and the
left-shifting of the dividend is performed as follows:

(Restore) Dividend minus ~ Divisor, is equivalent to
(Non-Restore) Dividend minus Divisor+~ Divisor+%
Divisor.

In the 7201, the nonrestoring method of division is used,
and the dividend is shifted left rather than shifting the

1. The dividend is gated to the adder shifted left 2. The
divisor is gated to the adder shifted left 1, thus yielding
an equivalent right 1 displacement with respect to the
dividend. (The divisor may be in true or 2's complement
form, depending on the partial dividend.)

2. The two numbers are added, and the result (partial
dividend) is placed back into the dividend register.

7201-02 FETOM (7/70) 3-99

3. A quotient bit is developed from the partial dividend
obtained in step 2. If the partial dividend is in true form,
a high-order carry occurred and the high-order bit is a O;
a 1 is therefore placed into the quotient. Conversely, if
the partial dividend is in 2's complement form, a
high-order carry did not occur and the high-order bit is a
1; a 0 is therefore placed into the quotient.

4. The partial dividend and the divisor are gated to the
adder. Because the partial dividend was shifted left 2 in
step 1, the correct displacement between them exists,
and they are not shifted now. If the partial dividend
obtained in step 2 is in true form, the divisor is gated in
2's complement form; if the partial dividend is in 2's
complement form, the divisor is gated in true form.

5. Steps 2 and 3 are repeated.
6. Steps 1 through 5 are repeated.

The operation continues developing quotient bits,
developing new partial dividends, gating the partial dividend

Problem: .12410-:- .410=> .3110

Dividend= . lFB
Divisor = .666
Quotient= . 4F5

0 1 0 0 11
0 1 1 0 0 1 1 0 o 1 1 o.1 0001 11 11 1 0 1 1

1 0 0 l l 0 0 l l 0 0 1
1

(' 1 0 l l 1 0 0 1 0 1 0 1

l 0 l 1.1 0 0 1 0 1 0 l
True 0 1 1 0 0 1 1 0 0 1 1 0
n/c 1 1 0 1 l 0010 000

101 l 0010 000

T~ue 0 1 1 0 0 l l 0 0 1 1 0
c-0001 1000 0 l l 0

00 0 1 1 0 0001 1 0

_2's Complement l 1 0 0 1 1 0 0 1 1 0 0 1
l

n/c 100 l 0 l 0 0 1 1 0

l 0 0 1 0 1 0 0 l 1 0
0 l 1 0 0 l 1 0 0 1 1 0

l 0 1 l 0 0 l 0

1 l l 0 1 l 0 0 l 0
True l l 0 0 1 1 0 0 1 l 0
c-o 101 l l 0 0 0 1 1 0

0 l 0 l l 1000 l l 0

2's Complement [l 0 0 l l 0 0 1 l 0 0 1
1

c 0 l 0 l 0 0 l 0 0 l l 0

!
And So On

Figure 3-12. Fraction Divide Example

3-100 (7 /70)

to the adder (shifted left 2 every other time), and gating the
divisor to the adder in true or 2's complement form (shifted
left 1 every other time) until a count, which is reduced
every time the partial dividend is shifted, signals the end of
the algorithm.

Figure 3-12 is an example of the divide operation as it is
performed in the 7201-02 CE. Note that the first
subtraction does not result in a quotient bit but is used to
decide whether the divisor is to be true- or 2's
complement-added on the next cycle.

Data Flow and Algorithm

• Signs are saved in ST A T's C and F.

• Characteristic computation is performed in serial adder.

• Characteristic difference is saved iµ F.

• 'DVDLO' and 'DVDLl' micro-orders are unique to
divide algorithm.

J 2's Complement of Divisor

Dividend (L2)
Divisor (L l)
Portia! Dividend

Dividend (LO)
Divisor (LO)
Partial Dividend

Dividend (L2)
Divisor (L 1)

Partial Dividend

Dividend (LO)
Divisor (LO)
Partial Dividend

Dividend (L2)
Divisor (L l)
Partial Dividend

Dividend (LO)
Divisor (LO)

Partial Dividend

• Fraction division uses parallel adder.

• Divisor is in DT; dividend is in AB; quotient is developed
in S.

The first operation that occurs is the computation of the
final characteristic (For an example, see "Characteristic
Computation"). The data paths for the signs and
characteristics are shown in A of Diagram 5-213, FEMDM.
The signs are saved in ST AT C and STAT F. The first and
second operand characteristics are gated to the SAA and
SAB per the ABC and STC, respectively. To subtract the
characteristics, the 2's complement of the first operand
characteristic is added to the second operand characteristic.
The characteristic difference is stored into F(O-7), and the
characteristic carry [SA(O)] is saved in STAT D. Other
inputs to the SAB bus allow subtracting 64, subtracting 1,
gating the 2's complement of F, or adding 1 to the value in
F. After the final characteristic is computed, the result is
stored into S(O-7) per the STC.

The data path for the derivation of the divide multiple is
shown in B of Diagram 5-213. When the divide algorithm
begins, the divisor (first operand) is in DT and the dividend
is in AB.

Two micro-orders ('DVD LO' and 'DVDLl ') are used
specifically during the divide algorithm. These micro-orders
have three functions: (1) to gate the true or 2's
complement of DT (divisor) to the PAA; (2) to determine
the amount of shift (LO = no shift, L1 = left 1 shift) of the
divisor (contents of DT) to the PAA; and (3) to determine
the partial quotient (PQ) bit and the PQ bit location after
the subtraction of the divisor and the partial dividend has
taken place.

Whether the true or 2's complement form of the divisor
is sent to the PAA is determined by the PA(4) carry from
the previous algebraic subtraction of the divisor.and partial
dividend, and the amount of shift (LO or L1) as determined
by the 'DVDLO' or the 'DVDLl' micro-order. If a PA(4)
carry occurred, the 2's complement is gated (LO or Ll) to
the parallel adder. If a PA(4) carry did not occur, DT is
gated (LO or L1) in true form to the parallel adder. The
data in AB is gated to P AB with no shift or a left 2 shift
under micro-order control ('AB' and 'ABL2')

As previously noted, the 'DVD LO' and the 'DVDLl'
micro-orders determine the PQ bit and the location of the
bit. The PQ bit is determined by testing AB(4) for a 0 or a
1. If AB(4) = l , the partial dividend is in 2 's complement
form and a 0 is placed into the selected PQ SAL location. If
AB(4) = 0, the partial dividend is in true form, and a I is
placed into the selected PQ SAL location:

As shown in B of Diagram 5-213, the PQ location in
SAL is determined by E(14,15) and by the 'DVDLO' or
'DVDLl' micro-order. E(14,15) selects the pair of SAL bits
into which the PQ bit is to be placed. The 'DVDLO'
micro-order selects the odd bit of the selected pair; the

'DVDLl' micro-order selects the even bit. At the same time
that the PQ bit is gated into SAL, the contents of F are
added to the PQ bit and saved in F. After a PQ byte (eight
bits) is available, the contents of F(O-7) are gated to S per
the STC. After S is filled with the quotient (or PQ), the
contents of Sare stored into LS per E(8-11).

For a discussion of the divide algorithm, assume that the
final characteristic is in S(O-7) and that the normalized
fractions are in DT (divisor) and AB (dividend). By
definition, the CE requires that floating-point numbers
consist of a sign, a characteristic, and a fraction. Because no
provisions are made in the CE to handle integers in
floating-point instructions, the divisor must be larger than
the dividend to retain a fraction quotient. After both
fractions are normalized, therefore, the contents of DT are
subtracted from the contents of AB. A carry from PA(4)
indicates that the dividend is larger than the divisor.
Whenever the dividend is larger than the divisor, the
contents of AB must be restored and shifted right 4
(divided by 16) before proceeding with the divide
algorithm, and a 1 must be added to the characteristic. If
no carry occurred from PA(4), the dividend is less than the
divisor, and the CE proceeds with the divide algorithm.

When the divisor (d) is subtracted from the dividend (D),
the difference is placed into AB (D - d in AB). If a right 4
shift was necessary, the divisor (d) is restored and divided
by 16 (d in DT). AB now contains the dividend (D). At the
beginning of the divide algorithm, the 2's complement of
DT is shifted left 1 and added to the contents of AB shifted
left 2; the result is placed in to AB, thus yielding an
effective left 1 shift of AB (dividend). The contents of AB
may be expressed by the equation 4D - 2d = contents of
AB. The value 4D - 2d is in AB after the first machine cycle
of the divide algorithm.

If the dividend was less than the divisor, D - d is in AB.
The CE proceeds to add the contents of DT shifted left 1 to
the contents of AB shifted left 2, with the result placed
into AB. This addition results in the equation 4(D - d) + 2d
= contents of AB. Simplifying the equation yields 4D - 4d +
2d = 4D - 2d. At the end of the first cycle of the divide
algorithm, the same result (4D - 2d) is obtained as when the
dividend was larger than the divisor. The CE continues with
the divide algorithm.

During the first machine cycle of the divide algorithm,
the 'DVDLO' micro-order also selects the DT gating to the
parallel adder per the PA(4) carry. The subtraction resulting
from the 'DVDLO' micro-order is accomplished during the
next machine cycle. The PQ bit, however, is determined by
the A(4) value that was computed during the pre~ious
machine cycle. On the first cycle of the divide algorithm,
the contents of AB (dividend) are shifted left 2 by a
micro-order and added to the contents of DT (divisor)
shifted left 1 per a micro-order. Thus the divisor is shifted
right 1 with respect to the dividend, but the resulting

7201-02 FETOM (7/70) 3-101

partial dividend is displaced left 2 in AB. On the next divide
select multiple subtraction, the dividend and the divisor are
subtracted without shifting, yielding the correct right 1
displacement. The following cycle causes AB and DT to
shift again. Note that, as the dividend is shifted left, the
low-order bit positions of AB are filled with O's.

As previously noted, the PQ bit is gated to SAL per
E(l 4, 15) and the 'DVD LO' or 'DVDLl' micro-order. A 1 is
added to the ABC after each pair of PQ bits is gated to F
via SAL. When the ABC equals 3, F contains eight PQ bits
(one per byte). The PQ byte is gated to S per the STC.

After each byte is gated to S, a 1 is added to the STC.
When the STC equals 3, S contains the characteristic and
fraction (or high-order fraction). The contents of S are
stored into the LSWR.

Before initiating the divide algorithm, STAT D was reset
to indicate the first pass at loading PQ bytes into S. After
the sign, characteristic, and high-order fraction are stored
into the LSWR, the instruction and ST AT D determine the
next operation. If a short operand instruction is being
executed, the sign is inserted and stored with the
characteristic and fraction into the FPR per E(8-11). An
end-op cycle completes instruction execution.

If the instruction was a long operand instruction, the
sign, characteristic, and high-order fraction are stored into
the FPR per E(8-11). · ST AT D is set, and the divide
algorithm continues. The contents of the LSWR are
returned to T. The same operations as described above are
performed to obtain the remaining low-order fraction part
of the quotient, and the same three-way branch is
encountered. This time the divide algorithm is completed,
and the low-order fraction is stored into the FPR per
E(8-11) + 1. An end-op cycle completes instruction
execution. The remainder in AB is not stored.

Divide, DER (3D) - RR Short Operands

• Divide 1st operand (in FPR, per RI) by 2nd operand (in
FPR, per R2) and place normalized quotient into 1st
operand location.

• RR format: (See adjoining column.)

• Conditions at start of execution:
1st operand is in A, B, and D (24-bit fraction only).
2nd operand is in Sand T.
Instruction is in E.

The Divide, DER, instruction (Diagram 5-214, FEMDM)
divides the first operand (specified by Rl) by the second
operand (specified by R2) and places the normalized
quotient into the first operand location. No remainder is
retained.

3-102 .(7/70)

3D R 1 R2

7 8 11 12 15

Fetch sign, charistic,
and 24-bit fraction
from FPRper R1.

Fetch sign, charistic,
and 24-bit fraction
from FPR per R2.

Subtract 1st operand charistic
from 2nd operand charistic.

Add 64 to charistic difference.

Pre nor ma Ii ze 2nd operand
and adjust charistic.

Prenor.malize 1st operand
and adjust charistic.

Shift 1st operand fraction right
4 bit positions if greater than 2nd
operand fraction; adjust charistic.

Di vi de fractions.

Determine sign.

Store sign, charistic, and
fraction into FPR per R 1.

The conditions at the beginning of the execution phase
are:
1. The first operand is in A, B, and D (24-bit fraction

only).
2. The second operand is in Sand T.
3. The STC contains a value of 4.
4. The instruction is in E.

If no specification check occurred, the second operand
fraction is transferred from T to D. The characteristics are
subtracted, and 64 is algebraically added to the
characteristic difference to maintain excess 64-notation.
The sign of the first operand is saved in ST AT F and the
sign of the second operand is saved in STAT C. Band Tare
reset, and the contents of AB and ST are treated as 56-bit
fractions.

In the divide instructions, both operands are
prenormalized before the divide algorithm begins. A
four-way branch determines the prenormalization path by
testing A(8-11), the dividend, and PAL(40-43), the
divisor, for the normalized conditions:
1. The first and second operands are normalized.

2. The first operand is normalized, and the second is
unnormalized.

3. The first operand is unnormalized, and the second is
normalized.

4. The first and second operands are unnormalized.

Assume that both operands are unnormalized. The
second operand (divisor in DT) is shifted left 4 until the
operand is normalized. A I is subtracted from the
intermediate quotient characteristic for each shift.

After the second operand is normalized, the first
operand is normalized by left-shifting until the fraction
contains a hex digit [A(8-l 1) not equal to zero]. On each
left-shift, a I is added to the intermediate quotient
characteristic in F.

After the operands are normalized, the second operand
fraction (divisor) is subtracted (take 2's complement of
second operand and add) from the first operand fraction.
Before branching on the PAL(4) carry, the 2's complement
of the intermediate characteristic is computed and placed
into F. Also, the constant 5 is placed into E(l 2-15) for
controlling the divide algorithm. A carry from PAL(4)
indicates that the dividend is larger than the divisor. If the
dividend is larger than the divisor, the dividend is restored
and is divided by 16 by a right-shift of one hex digit. A I is
added to the characteristic value, which is the final
characteristic of the quotient. The final characteristic is
placed into S(O-7).

No carry from PAL(4) indicates that the dividend is less
than the divisor, at which time the first machine cycle of
the divide algorithm is executed. A test is made to
determine an oyerflow or underflow condition. Assume
that no overflow or underflow condition exists.

Fraction division begins as shown in Sheet 4 of Diagram
5-214. Figure 3-13 is an example of the action that occurs
in parallel adder bits 4-11 (bits 12-31 being considered to
equal O's).

During the normalization routine, tests for zero fractions
are made. If the second operand fraction (divisor) equals
zero, the divide operation is suppressed and a floating-point
divide program interruption occurs. If the first operand
fraction (dividend) equals zero, a true zero quotient results.
A true zero is stored into the first operand location, and an
end-op cycle completes instruction execution.

Divide, DE (7D) - RX Short Operands

• Divide 1st operand (in FPR, per Rl) by 2nd operand (in
storage) and place normalized quotient into 1st operand
location.

• RX· format:

7D Rl X2 B2 D2

11 12 15 16 19 20

Fetch sign, charistic,
and 24-bit fraction
from FPR per Rl.

Fetch sign, charistic,
and 24-bit fraction
from main storage.

Subtract lst operand charistic
from 2nd operand charistic.

Add 64 to charistic difference.

Prenormalize 2nd operand
and adjust charistic.

Prenormalize lst operand
and adjust charistic.

Shift lst operand fraction right
4 bit positions if greater than 2nd
operand fraction; adjust charistic.

Divide fractions.

Determine sign.

Store sign, charistic, and
fraction into FPR per R l.

• Conditions at start of execution:
1st operand is in Sand T.

31

Main storage request for 2nd operand has been issued
per D.

First 16 bits of instruction are in E.

The Divide, DE, instruction (Diagram 5-214) divides the
first operand (specified by RI) by the second operand
(from main storage) and places the normalized quotient
into the first operand location. No remainder is retained.

The conditions at the beginning of the execution phase
are:
1. The first operand is in Sand T.

7201-02 FETOM (7/70) 3-103

AB DT
~ ~
.0010-0 + .0100 - 0

. 1100 - 0 = 2's complement of DT

Parallel Adder Bit Positions 4 5 6 7 8

AB 0 0 0 0 0
Add to AB the 2's complement of DT 1

No PA(4) carry

DVDLO; Quotient bit
not saved in SAL (1) Shift AB L2 1 1 1 1

Shift DT L 1 and odd to AB 0 0 0 0

PA(4) corryl 0 0 0 0 0

T

AB 0 0 0 0 0
DVDL.1 Add to AB the 2's complement of DT 1 1 1 1 1

No PA(4) carry

1
1

T

DVD LO Shift AB L2 l 1 1 1 0
Shift DT L 1 and odd to AB 0 0 0 0 1

No PA(4) corryl 1

T

DVDL1 AB 1 1 1 1 1
Add DT to AB 0 0 0 0 0

No PA(4) carry

Shift AB L2 1 1 1 1 0
Shift DT L l and odd to AB 0 0 0 0 l

DVD LO No PA(4) corr1 l

f
DVDLl

0 0 0

To SAL(0-3) SAL(4)

Figure 3-13. Floating-Point Divide Example

2. A main storage request for. the second operand has been
issued per the effective address in D.

3. The first 16 bits of the instruction are in E.

The first operand is transferred from T to A, and the
STC is set to 4. The second operand is fetched from main
storage per D. D(21) determines which 32 bits of the 64-bit
doubleword are gated to T (Sheet 2 of Diagram 5-214).

3-104 (7 /70)

9

0

0
0

0

0
1

0
0

0

0
1

0
0

0

10 11

1

0

0
0

0

0
0

0

0
0

0

0
0

0

0
0

0

0 AB - DT No PA(4) carry indicates

0 AB I ess than DT. Therefore, no
R4 shift is required.

0 C(AB)

0 AB (L2) + DT (L 1) Select 1st
0 divide multiple

0 C(AB)
(DVD LO)

l 0 AB - DT Select 2nd divide

0 DVD LO mulHple (DVDLI) ~

0 C(AB)

l l 0 AB (L2) + DT (L 1) Select 3rd
0 DVDLl divide multiple

0 C(AB) (DVDLO)

0 l AB+ DT Select 4th divide
0 DVD LO multiple (DVDLl)

=i 0 C(AB)

0 !
0 DVDLl AB (L2) + DT (L 1) Select 5th

0 C(AB) divide multiple =1
(DVDLO)

+ + Notes:
Next Cycle

1. C(AB) =Contents of AB.

2. Quotient bit is determined by AB(4).

3. Divide multiple is selected per.

PA(4) carry.

From this point, instruction execution is the same as that
of the DER instruction.

Divide, DDR (2D) - RR Long Operands

• Divide 1st operand (in FPR, per Rl and Rl + 1) by 2nd
operand (in FPR, per R2 and R2 + 1) and place
normalized quotient into 1st operand location.

• RR format:

2D R1 R2

11 12 15

Fetch sign, charistic,
and 56-bit fraction from
FPR per R1 and R1+1.

Fetch sign, charistic,
and 56-bit fraction from
FPR per R2 and R2 + 1.

Subtract l st operand chari sti c
from 2nd operand charistic.

Add 64 to charistic difference.

Pre normalize 2nd operand
and adjust charistic.

Prenormalize 1st operand
and adjust charistic.

Shift 1st operand fraction right
4 bit positions if greater than 2nd
operand fraction; adjust charistic.

Divide fractions.

Determine sign.

Store sign, charistic, and fraction
into FPR per R1 and R1+1.

• Conditions at start of execution:
32 bits of 1st operand are in A, B, and D {24-bit fraction

only).
32 bits of 2nd operand are in Sand T.
Low-order fractions of 1st and 2nd operands are in LS.
Instruction is in E.

The Divide, DDR, instruction (Diagram 5-215, FEMDM)
divides the first operand (specified by Rl and Rl + 1) by
the second ope.rand (specified by R2 and R2 + 1) and
places the normalized quotient into the first operand
location. No remainder is retained.

The conditions at the beginning of the execution phase
are:
1. 32 bits of the first operand are in A, B, and D {24-bit

fraction only).
2. 32 bits of the second operand are in Sand T.
3. The STC contains a value of 4.
4. The instruction is in E.

If no specification check occurred, the high-order
fraction of the divisor is gated from T to D. The low-order
fractions of the first and second operands are placed into B
and T, respectively. As a result, the dividend fraction is in
AB and the divisor fraction is in DT.

The signs are saved in ST AT C and ST AT F. The
characteristics are subtracted, and excess-64 notation is
maintained. The ABC is reset.

The four-way branch (Sheet 3 of Diagram 5-215)
determines the next operation. The normalization routine,
divide algorithm, and end ops are explained in the DER
instruction discussion.

Divide, DD (6D) - RX Long Operands

• Divide 1st operand (in FPR, per R 1 and Rl + 1) by 2nd
operand (in storage) and place normalized quotient into
1st operand location.

• RX format:

6D Rl X2 B2 D2

11 12 15 16 19 20

Fetch sign, charistic,
and 56-bit fraction from
FPR per R1 and R1 + 1.

Fetch sign, charistic,
and 56-bit fraction
from main storage.

Subtract 1st operand charistic
from 2nd operand charisti c.

Add 64 to charistic difference.

Prenormalize 2nd operand
and adjust charistic.

Prenormalize 1st operand
and adjust charistic.

Shift l st operand fraction right
4 bit positions if greater than 2nd
operand fraction; adjust charistic.

Di vi de fractions.

Determine sign.

Store sign, charistic, and f;action
into FPR per R1 and R1+1.

31

7201-02 FETOM (7/70) 3-105

• Conditions at start of execution:
32 bits of 1st operand are in Sand T.
Low-order fraction of 1st operand is in LS.
Main storage request for 2nd operand has been issued

per D. '

First 16 bits of instruction are in E.

The Divide, DD, instruction (Diagram 5-215) divides the
first operand (specified by Rl and Rl + I) by the second
operand (from main storage) and places the normalized
quotient into the first operand location. No remainder is
retained.

The conditions at the beginning of the execution phase
are:
1. 32 bits of the first operand are in Sand T.
2. The low-order fraction of the first operand is in LS.
3. A main storage request for the second operand has been

issued per the effective address in D.
4. The first 16 bits of the instruction are in E.

The sign, characteristic, and high-order fraction of the
first operand are transferred from T to A. The low-order
fraction of the first operand is fetched from LS and placed
into B via T and the parallel adder. The second operand (64
bits) is fetched from main storage and placed into ST. The
high-order fraction is transferred from S to D, and the
contents of DT become the 56-bit fraction divisor. The
signs are saved in STAT C and STAT F. The characteristics
are subtracted, and 64 is added to the characteristic
difference to maintain excess-64 notation.

The first operand (dividend) is in AB, and the second
operand (divisor) is in DT. The next step is to check for the
prenormalization of the dividend and divisor fractions
(Sheet 3 of Diagram 5-215). The remainder of the
operation is identical to that of the DDR instruction.

STORE

The Store instructions (STE and STD) store the first
operand from an FPR in LS into the second operand
location in main storage. The Store instructions are in the
RX format with short and long operand options available.
In the STE instruction, the low-order half of the first
operand register is ignored. The first operand location
remains unchanged.

Storing must be on word boundaries for the STE
instruction and on doubleword boundaries for the STD
instruction.

For all Store instructions, an address store compare test
is made because the instructions that are in Q may be
modified in main storage by the Store instruction. If an
instruction is modified in main storage and is not corrected
in Q, the program may not be properly executed; therefore,

3-106 (7/70)

Q must be reloaded. The address store compare test
compares the main storage address, where data is to be
stored, with the effective address indicated by the Store
instruction. The comparison is made by subtracting the
contents of D (effective address) from the contents of the
IC, shifting the difference right 4, and testing for a zero
result. If the difference equals zero, the difference is less
than 16; therefore, the 'program store compare' trigger is
set to indicate that the instructions in Q must be refetched.
The address store compare test is discussed in Section 1 of
this Chapter.

Store, STE (70) - RX Short Operands

• Store 1st operand (in FPR, per Rl) into 2nd operand
location (in storage).

• RX format:

70 R 1 X2 B2
7 8 11 12 15 16 19 20

Fetch sign, charistic,
and 24-bit fraction
from FPR per R 1.

Store sign, charistic, and
fraction into main storage
per effective address in D.

• Conditions at start of execution:
1st operand is in Sand T.

D2
31

Main storage request has been issued per effective
address in D.

First 16 bits of instruction are in E.

The Store, STE, instruction (Diagram 5-216, FEMDM)
stores the first operand from the FPR specified by Rl into
the main storage location specified by the effective address
(second operand location). During the RX I-Fetch, the
effective address is computed and placed into D, and a main
storage request is initiated. The effective address must be
on a word boundary or a specification program interruption
is taken. Bit 21 of the effective address [PAL(61)] is tested
to determine which mark triggers are set. If PAL(61) = 1,
mark triggers 4-7 are set; if PAL(61) = 0, Mark triggers
0-3 are set. An address store compare test is then
performed, and the instruction is terminated by an end-op
cycle.

Store, STD (60) - RX Long Operands

• Store 1st operand (in FPR, per RI and RI+ 1) into 2nd
operand location (in storage).

• RX format:

60 Rl X2

7 8 II 12 15 16

Fetch sign, charistic,
and 56-bit fraction from
FPR per Rl and Rl + 1.

Store sign I charistic I and
fraction into main storage
per effective address in D.

B2 D2

19 20 31

• ·conditions at start of execution:
32 bits of 1st operand are in Sand T.
Low-order fraction of 1st operand is in LS.
Main storage request has been issued per effective

address in D.
First 16 bits of instruction are in E.

The Store, STD, instruction (Diagram 5-216) stores the first
operand from the even/odd pair of FPR's specified by RI
and RI + 1 into the main storage location specified by the
effective address (second operand location). During the RX
I-Fetch, the effective address is computed and placed into
D and a main storage request is initiated. The effective
address must be on a doubleword boundary or a
specification program interruption is taken. The low-order
half of the first operand is gated to T from the FPR
specified by RI + 1, and mark triggers 0-7 are set. After an
address store compare test is performed, the 64-bit operand
is stored per the effective address, and the instruction is
terminated by an end-op cycle.

7201-02 FETOM (7/70) 3-107

SECTION 4. DECIMAL INSTRUCTIONS

This section discusses the nine instructions that operate on
decimal data. The instructions use the SS format and
assume packed operands and results except for Pack, which
has a zoned operand, and Unpack, which has a zoned result.
For a discussion of the data formats, excess-6 arithmetic,
operand addressing, instruction formats, data flow, program
interruptions, and condition codes, refer to Chapter I.

INSTRUCTION HANDLING

• Depending on instruction, processing of I or 2 operands
may be specified.

• Pack, Unpack, Move with Offset, and Zero and Add
instructions operate on I operand.

• Add, Subtract, Compare, Multiply, and Divide
instructions operate on 2 operands.

• All add-type instructions set CC.

• Major serial adder functions used by decimal instructions
are:
Excess-6 translation.
Decimal correction.
Complement gating.
Cross-gating.
Zone or sign insertion.
Invalid digit and sign detection.
Zero detection.

Decimal instructions may be classified into the general
categories of I- and 2-operand instructions. The I-operand
instructions are Pack, Unpack, Move with Offset, and Zero
and Add. The 2-operand instructions are Add, Subtract,
Compare, Multiply, and Divide.

In the I-operand instructions, the first operand is not
processed but its address is used as the destination address;
the second operand is processed, and the results are placed
into the first operand location. The I-operand instructions
are handled by fetching the second operand to AB.
Successive AB bytes are selected per the ABC and are
processed in the serial adder, and the resultant bytes are
entered into ST per the STC. After all second operand
bytes have been processed, the contents of ST are stored
into main storage at the first operand address.

The 2-operand Add, Subtract, and Compare instructions
are executed by fetching the first operand to ST and the
second operand to AB. A true add or complement add
operation is then performed in the serial adder one byte at

3-108 (7 /70)

a time, with the resultant bytes replacing the first operand
bytes in ST as they are processed. For the Add and
Subtract instructions, the results are stored into main
storage at the first operand address. The Compare
instruction does not store the result, but performs a test to
determine the high, low, or equal relationship of the first
operand to the second operand and sets the CC accordingly.

For the 2-operand Multiply and Divide instructions; the
operands must be properly aligned in the registers prior to
entering execution. This function is performed by the
appropriate right- and left-adjust sequences incorporated in
the individual microprogram of the instruction.

Basically, the multiply operation is performed by
repetitive addition. The product bytes are developed one
byte at a time, starting with the low-order byte. Each time
one byte of product is developed, it is stored into main
storage under control of the corresponding mark trigger.
The instruction then proceeds to develop the next
higher-order product byte. Upon execution of the
instruction, the first operand is completely replaced by the
product.

The Divide instruction is performed by repetitive
subtraction. It is the only decimal instruction that processes
the operands starting with the high-order bytes. The full
divisor and a sufficient number of high-order dividend bytes
are fetched to perform the first successful subtraction.
Then by repeatedly subtracting the divisor from the
dividend and counting the number of successful
subtractions, the high-order quotient byte is developed.
This byte is stored into main storage, and the instruction
proceeds to develop the next lower-order quotient byte.
Upon execution of the instruction, the first operand is
completely replaced by the quotient and the remainder.
The remainder occupies the low-order portion of the
destination field.

The results of the Add, Subtract, and Compare
instructions are used to set the CC. All other decimal
instructions leave the code unchanged. The Add and
Subtract instructions set the CC to 0, I, or 2 to indicate a
zero, less-than-zero, or greater-than-zero result; the CC is set
to 3 if the result of the operation overflows. The Compare
instruction sets the CC to 0, I, or 2 to indicate that the first
operand was equal to, less than, or greater than the second
operand.

The serial adder performs many functions on its input
data. The functions of excess-6 translation, decimal
correction, and complement gating are discussed in "Data

Handling" in Chapter I. Additional serial adder functions
used by the decimal operations are:
1. Cross-gating. The two-digit input to the A-side of the

adder is swapped upon gating to SAL; the digit at adder
A-side (0-3) is gated to SAL(4-)), and A-side (4-7) is
gated to SAL(0-3). This function is used mainly by the
Pack and Unpack instructions to interchange the sign
and digit positions.

2. Zone or sign insertion. The correct zone or sign code
(USASCil-8 or EBCDIC) is applied from the ROSDR to
the adder A-side. The zone or sign may be merged with
the digit in any combination.

3. Invalid digit and sign detection. The inputs to the A and
B sides of the adder are tested for invalid digits or signs.
An appropriate interrupt trigger is set upon detection of
an invalid code.

4. Zero detection. This function is used to sense overflow
conditions and also to detect all-zero results. An all-zero
result placed in to main storage must carry a positive
sign. Consequently, arithmetic instructions such as Add
and Subtract specify testing of each SAL byte for zeros.
If upon execution of the instruction it is found that an
all-zero result has been stored, the instruction forces
storing of a plus sign at the low-order byte address.

WORD OVERLAP CONDITION

• Word overlap condition exists when:
IC(0-20) = D(0-20) and IC(21-23) > D(21-23).

• Test for word overlap is performed by GIS of all
one-operand instructions.

• Execution of one-operand instructions provides separate
microprogram to handle word overlap conditions.

• No special action is taken to detect word overlap in
two-operand instructions.

• Word overlap in two-operand instructions causes data
program interruption.

Data is fetched from and placed into main storage one
doubleword at a time. However, program compatibility of
the CE with smaller models in the System/360 requires that
all results placed into main storage must be considered to
be stored one byte at a time as they are processed. There
are some cases where this compatibility would not be
maintained unless special actions were taken. The condition
that requires special handling is called "word overlap" and
occurs when the fields of the first and second operands
specified by the instruction overlap.

The operand addresses and field lengths may be such
that one or more bytes in main storage are specified as part
of both the first and the second operands. For example,
consider the case in which the IC and D specify the same

doubleword in storage; the IC specifies byte 7 as the
starting second operand byte to be processed in this
doubleword, and D specifies byte 6 as the starting first
operand address. At least two operand bytes are to be
processed.

r
Doublewo'd <pedfied by IC ond D

0

+ *
IC

I I I I I I I I I
Bytes: 0 2 3 4 5 6 7

This doubleword is fetched from main storage and
placed into AB and ST. A one-operand instruction, such as
Move with Offset, will process the first AB byte (byte 7) in
the serial adder and place the result into the designated first
operand byte; i.e., byte 6 in ST. Then, ABC and STC are
reduced one count to designate the next AB byte to be
processed and the ST location into which the results must
be placed.

(ABC-1)

* AB I I I I I I I I I
0 2 3 4 5 6 7

SA

(STC-1)

ST
7

0 ·2 3 4 5 6 7

Note, however, that the preceding move operation has
replaced the original contents of byte 6 in ST with the
contents of byte 7. Thus, the next AB byte to be processed
(original byte 6) is no longer valid and must be update~;
i.e., the equivalent 'of storing ST byte 6 and then refetching
this byte to AB must be performed.

As seen from the preceding example, the word-overlap
condition may require special handling of data. Execution
of all one-operand decimal instructions (Pack, Unpack,
Move with Offset, and Zero and Add) provides for two

7201-02 FETOM (7/70) 3-109

alternate microprograms. One microprogram is for the
normal, or not-word-overlap, case; the other handles the
word-overlap condition. Selection of the appropriate
microprogram is dependent on the outcome of the
word-overlap test, which is performed in the General
Initialization Sequence (GIS) of all one-operand
instructions.

A word-overlap condition exists when both operands
have the same doubleword address. The manner in which
the first and second operand bytes are specified within this
doubleword determines whether special data handling is
required. When the word-overlap condition exists, three
cases of byte specification may be distinguished:
1. The first and second operand bytes are the same; no

special data handling is required.t

ABC

t

AB I I I I I I I I 'Sou~•
STC

t t t t t t t t
ST I I I I I I I I I De•tination

In this case, the destination bytes are placed into the
same locations from which the source bytes are
obtained. Because processing of any source byte does
not affect the contents of the next source byte, no
updating of source bytes is necessary.

2. The first operand bytes are specified "ahead" of the
second operand bytes; special data handling is required.

AB

ST

ABC

Source

Destination

In this case, the destination bytes are placed into the
locations from which the next source bytes will be
processed. The data in AB becomes· "obsolete" after
processing of one or more source bytes. (The crossover
point at which data becomes obsolete depends on the

t Except for Unpack instruction. This instruction generates two
bytes of destination for each byte of source and requires special
data handling in all cases of word overlap.

3-110 (7/70)

amount of skew between ABC and STC.) This word
overlap case requires special data~handling techniques.

3. The first operand bytes are specified "behind" the
second operand bytes; no special data handling is
required.

AB

ST

ABC

Source

Destination

In this case, the destination bytes are placed behind the
source bytes as they ·are processed. Thus processing of
any source byte cannot affect the contents of the next
source byte, and no updating is necessary.

In two-operand arithmetic instructions, no special action
is taken to detect word overlap. Word overlap is ignored
during execution of a Compare instruction, because this
instruction does not store the results. The operand fields
specified for Add, Subtract, Multiply, and Divide
instructions either should not overlap at all or should have
coincident rightmost bytes. The GIS for these instructions
does not perform the word overlap test, because improper
overlap of the operands causes an invalid data condition to
be detected in the execution phase. In two-operand
instructions, the operand fields are correctly specified when
the rightmost byte of each operand contains the operand
sign; all bytes to the left of the sign byte must contain only
digits. This requirement cannot be fulfilled when both
operands in the instruction specify the same doubleword
with different byte addresses. The following example shows
that the sign byte of the first operand is also the "digit"
byte of the second operand.

ABC

AB D S D S 2nd Operand

,__~--~--~.___,----~--~--~----

Same Doubleword
STC

ST 1st Operand
S D S

During execution of the instruction, all operand digits are
checked for validity. Detection of a sign code in the digit
position forces a data program interruption.

GENERAL INITIALIZATION SEQUENCE

At the completion of the SS I-Fetch, the CPU is in the
following status:
1. A main storage request for the doubleword containing

the low-order byte of the first operand has been issued
per D ..

2. D contains the low-order byte address (contents of GPR
addressed by B 1, + D 1, + L1) of the first operand.

3. The IC contains the high-order byte address (contents of
GPR addressed by B2, + D2) of the second operand.

4. The next instruction address has been transferred from
the IC to the LSWR.

5. E(O-7) contains the instruction op code.
6. The 'PSC' trigger has been set, if appropriate.

Following the SS I-Fetch, a branch is made per the
instruction op code to the appropriate General
Initialization Sequence (GIS). The general functions of the
GIS for decimal instructions are described below. Functions
peculiar to a specific instruction are covered in subsequent
paragraphs dealing with the execution of that instruction.

The function of the GIS microprogram is to set up initial
conditions for the execution phase. These include:
1. Gating the first operand from the SDBO to ST. A D

request for the doubleword containing the low-order
byte of the first operand was issued during SS I-Fetch.

2. Adding of L2 field to IC. At the end of SS I-Fetch, the
IC contains the address of the high-order byte of the
second operand. To address the low-order byte of the
second operand, the IC must be incremented by the L2
field during GIS.

3. Initiating a storage request per the IC for the second
operand. GIS initiates a storage request for the
doubleword containing the low-order byte of the second
operand.

4. Setting of STC and ABC. The STC is set to the rightmost
first operand byte in ST, the byte to be processed first.
Because the address of the rightmost byte is sp~ified by
D(21-23), the STC is set per these bits. Similarly, the
rightmost second operand byte is selected in AB by
gating IC(21-23) to the ABC.

5. Gating the second operand from the SDBO to AB. An IC
request for the second operand is issued during GIS.
Subsequently, the GIS gates the second operand from
the SDBO to AB.

6. Performing a sign handling function. For add-type
instructions, the sign of the result is tentatively set to
agree with the sign of the first operand before the
execution phase. The GIS examines the signs in the
rightmost bytes of both operands and establishes
whether to perform a true add or a complement add
operation. For multiply and divide operations, the sign
of the result is determined during the execution phase
by examining the appropriate STA T's, which have been

previously set according to the signs of the two
operands. Both operands are tested for an invalid sign.

7. Performing the word overlap test. A word overlap test is
performed during .the GIS for Pack, Unpack, Move with
Offset, and Zero and Add instructions.

ADD, SUBTRACT, AND COMPARE

During the GIS, separate sign handling is performed for the
Add, Subtract, and Compare instructions; the sign of the
second operand is, in effect, inverted for Subtract and
Compare instructions. After exit from the GIS, the three
instructions share a common true add or complement add
routine, depending on the operand signs and the
instruction. Because the result of a Compare instruction is
not stored into main storage, the . setting of the mark
triggers and overflow detection are inhibited in hardware
during execution of this instruction.

Add, AP (FA) and Subtract, SP (FB)

• Algebraically add (subtract) 2nd operand (in storage) to
(from) 1st operand (in storage) and place result into 1st
operand location.

• SS format: (See following page.)

• CC setting:
Result is zero: CC= 0.
Result is less than zero: CC= 1.
Result is greater than zero: CC= 2.
Overflow: CC = 3.

The Decimal Add and Subtract instructions specify an
algebraic addition with the sign of the second operand
inverted for the subtract instruction. The sign of the result
is tentatively set to agree with the sign of the first operand.
Then if the algebraic signs of the two operands are alike, a
true add sequence is performed; if unlike, a complement
add sequence is performed. The tentative result sign if
correct in all cases except for a complement add operation
where the magnitude of the second operand is equal to or
greater than the magnitude of the first operand. If the
magnitudes of the two operands are equal, the result is zero
and a positive sign is stored into the result field. If the
magnitude of the second operand is greater than that of the
first, a complement result is formed and the sign of the
result is inverted by setting it to the algebraic sign of the
second operand when the result is recomplemented. All
signs and digits are tested for validity. The operand fields
may overlap when their low-order bytes coincide; therefore,
it is possible to add a number to itself.

The result is stored at the first operand address. If the
first operand field is too short to contain all significant
digits of the result, a decimal overflow occurs.

7201-02 FETOM (7/70) 3-111

FA or F B LI L2 B 1 ~ D 1 I B2 I ~ [§]
78 1112 1516 1920 3132 3536 47

Fetch 1st operand,
starting with doubleword
containing low-order
byte, per contents of
G PR addressed by
Bl, +01 +Ll.

Fetch 2nd operand,
starting with doubleword
containing low-order
byte, per contents of
G PR addressed by
B2, + 02 + L2.

No (Subtract) Yes

Store result at 1st
operand address,
starting at low-order
byte.

Fetch next doubleword
af operands as needed.

Invert sign of
2nd operand.

Yes

Set CC.

End op.

GIS for Add and Subtract

Yes

No

Perform complement
add sequence.

Store result at 1st
operand address,
starting at low-order
byte.

Fetch next doubleword
of operands as needed.

The GIS microprogram for the Add and· Subtract
instructions is shown in Diagram 5-301, FEMDM. It
performs the following functions:
1. Loads into ST the doubleword containing the low-order

byte of the first operand.
2. Adds L2 to the IC, after which it requests, per the IC,

the doubleword containing the low-order byte of the
second operand. When this doubleword arrives, loads it
into AB.

3-112 (7 /70)

3. Transfers the LI count to F(0-3).
4. Assigns a result sign that agrees with the sign· of the first

operand.
5. Performs a branch on the algebraic signs of the operands

(contained in STA T's C and F) to enter the true add or
complement add sequence.

At the start of GIS, the IC contains the address of the
high-order byte of the second operand (contents of GPR
addressed by B2, + D2). To obtain the address of the
low-order byte, L2 is added to the IC, and a main storage
request is issued per the result.

The LI count in E(8-11) is destroyed during
subsequent execution and must be preserved in F(0-3).
This action is necessary because, u·pon execution of the
instruction, it may be found that results were placed in
main storage in complement form. Because the final result
must be true, the destination field is refetched and
recomplemented, and the sign is inverted. In such cases, the
LI count in F(0-3) is-used to refetch the correct number
of destination bytes.

The result is arbitrarily assigned the sign of the first
operand by performing a branch of STAT's F and C. STAT
F is set if the first operand is minus. Note, however, that
the sign of the second operand is not known at this time
and STAT C will always be in the reset state. Thus, when
STAT's F and C are alike, it indicates that STAT F is not
set (first operand plus); when the STAT's are not alike, it
indicates that STAT F has been set and the first operand is
negative.

A second branch on ST A T's F and C is performed after
the sign of the second operand has been sensed, and ST AT
C set accordingly. ST AT C is set for a minus sign for an
Add instruction and for a plus sign for a Subtract
instruction. This is the only difference in the execution of
an Add or Subtract instruction. If the STA T's are alike, a
true add sequence is entered. Upon entry into this
sequence, the result always carries the correct sign. If the
STAT's are not alike, a complement add sequence is
entered. In this case, the algebraic sign of the result cannot
be known at the start of the operation because it is
dependent on the relative magnitude of the operands. If the
sign has been assigned incorrectly, the result of the
complement add operation will be in complement form.
This condition will be detected at the completion of the
instruction, in which case the result will be
recomplemented and the sign inverted by setting the result
sign to the algebraic sign of the second operand (per STAT
C).

True Add Sequence

• True +6 add operation exits on one or more of the
following conditions:
LI or STC = 0.
L2=0.
ABC= 0.

• STAT A is set if result is not zero.

• ST AT B is set if overflow occurs.

• ST AT E is set if operand digit or sign is invalid.

• STAT G is set if Compare instruction.

• STAT His set if carry to next byte occurs.

An overall flowchart of the true add sequence and the data
path used for its execution are shown in Sheet 1 of Diagram
5-302, FEMDM. The flowchart outlines the major
functional steps and sequences used in the Add, Subtract,
and Compare microprogram.

Upon entry into the true add sequence, the signs of both
operands have been examined (by the GIS) and the correct
sign has been entered into the low-order destination byte in
ST. The first step in the microprogram is to true-add the
digits contained in the sign bytes of the operands. The
result is then placed into the digit portion of ·the
destination byte. At this point, one complete byte of the
result has been developed. The operand length codes (LI
and L2) and the status of the byte counters (STC and ABC)
are examined for one or more of the following exit
conditions from the true add loop:
1. STC and LI i= 0, L2 = 0.

The second operand field has run out.
2. STC and LI i= 0, L2 i= 0, ABC = 0.

More second operand bytes are needed.
3. STC or LI= 0, L2 i= 0, ABC= 0.

Th~ first operand field has run out, or ST is full and
more first operand bytes are needed. In either case, ST
must be stored into the destination address per D. More
second operand bytes are needed.

4. STC or LI = 0, L2 i= 0, ABC =I= 0.
The same conditions exist as in item 3 except that more
second operand bytes are not needed.

5. STC or LI = 0, L2 = 0.
The first operand field has run out, or ST is full and
more first ·operand bytes are needed. In either case, ST
must be stored into the destination address per D. The
second operand field has run out.

If none of the above exit conditions exist, the
microprogram re-enters the true add loop to generate the
next destination byte. LI, L2, STC, and ABC are
decremented one count, the selected AB and ST bytes are
added in the serial adder, and the result replaces the
selected ST byte. After this, the status of all counters is
again sensed for exit conditions.

Upon establishing one or more exit conditions, the
operations dictated by the conditions are performed, and, if
LI is not zero, the true add loop is re-entered. When LI is
zero, all destination bytes have been processed. The ·
microprogram then performs an overflow test and a test for

all-zero result.t If an all-zero result has been obtained, the
address of the low-order destination byte is restored in D
and a plus is stored at this address. Restoration is necessary,
because D is decremented by 8 for each doubleword of first
operand that is fetched. If, for example, two doublewords
of first operand have been fetched, the address of the
low-order destination byte is obtained by adding 16 to D.

A detailed flowchart of the true add sequence is shown
in Sheet 2 of Diagram 5-302. It is an expanded version of
the overall flowchart, showing the data handling used in the
various subroutines of the true add operation. This data
handling is straightforward for the most part and requires
no explanation. Those areas in need of clarification are
discussed in the following subparagraphs.

True Add Operation. The selected AB byte is gated (true
+6) to the serial adder and added as a binary number to the
selected ST byte. The adder output is decimal-corrected at
the input to SAL and gated back to the selected ST byte.
For the first (or sign) byte, only bits 0-3 of the selected
AB byte are gated to the adder. The decimal correction
involves examining the carry from each digit and logically
subtracting 6 from each result digit that did not have a
carry. As each byte is processed, ABC, STC, LI and L2 are
decremented by 1 and the selected mark trigger is set
(except for a Compare instruction). The carry from each
byte is saved in STAT H and, if set, results in a carry to bit
7 of the next byte processed. ST AT A is set if any nonzero
result digit is detected. STAT E is set if any invalid digit is
detected at the inputs to the serial adder.tt

Exit Conditions. An exit is made when one or more of the
following conditions exist as determined by a functional
branch micro-order ('Decimal' micro-order):
1. LI or STC = 0.
2. L2 = 0.
3. ABC =O.

Five possible exit conditions exist:
1. STC and LI i= 0, L2 = 0.

The second operand field has been completely
processed. AB and ABC are cleared, and the high-order
source extend routine is started to process the remaining
destination field.

t The Add, Subtract, and Compare instructions have the same
microprogram. The Compare instruction does not store the result
into main storage and, upon exit from the true add loop, enters
the end-op sequence.

tt When an invalid digit is detected at the serial adder in-buses, ~e
adder forces l's into its sum and parity output latches. This
action insures that valid parity is always gated to ST from the
serial adder.

7201-02 FETOM (7/70) 3-113

2. STC and LI=l=O, L2=1=0, ABC= 0.
A second operand fetch sequence is started to fetch the
next doubleword of second operand to AB.

3. STC or LI = 0, L2=1=0, ABC= 0.
The first operand has either run out, or ST is full and the
next doubleword of the first operand is needed. In either
case, ST must be stored if an Add or Subtract
instruction is being executed. (If a Compare instruction
is being executed, no mark triggers are set and ST is not
stored.) The next doubleword of the second operand is
needed.

After the destination store cycle, LI is tested for all
l's to determine whether the LI field has run out. If L1
equals all l's, a second operand fetch is initiated before
entering the first operand runout sequence; if L1 does
not equal all l's, the first operand fetch sequence is
performed, followed by the second operand fetch
sequence and resumption of the true add loop.

4. STC or Ll = 0, L2=1=0, ABC=l=O.
The same conditions exist as in item 3 except that a
second operand fetch is not needed and is not
performed.

5. STC or LI = 0, L2 = 0.
A storage request per D is issued to store ST into the
destination field (unless a Compare instruction is being
executed). AB and ABC are cleared to start the
high-order source extend routine. A further test is
required to determine whether LI was zero.

If LI is now all l's, all destination bytes have been
processed. A carry from the last destination byte
indicates an overflow condition, and ST AT B is set.

If LI is not all l's, a first operand fetch sequence is
started, after which the high-order source extend routine
is resumed.

First Operand Fetch. A separate entry is made into this
routine, per STAT G, for a Compare instruction. In a
compare operation, a D request for the next doubleword of
first operand has already been given. D is decremented by
8, and the doubleword arriving at the SDBO is gated to ST.

For Add or Subtract instructions, D is decremented by
8, and a D request is made for the next doubleword of first
operand. F is incremented by 1 to record the number of
fetches made. This information will be required to restore
the low-order address in D in case an all-zero result is
obtained. If ABC equals 111, a second operand fetch
routine is started. If ABC does not equal 111, the
appropriate addition or high-order source extend is started.

Second Operand Fetch. The IC is decremented by 8, and
the next doubleword of second operand is fetched to AB.
After this, the appropriate addition or overflow routine is
started as determined by the LI count.

3-114 (7 /70)

Second Operand Runout. An all-zeros AB byte is gated true
+6 to the serial adder and added to the selected ST byte.
The result is decimal-corrected and gated back to the
selected ST byte. STAT's A, E, and Hand the mark triggers
are set as previously explained.

L1 and STC are decremented by 1 as each byte is
processed; ABC and L2 are not stepped. The sequence is
repeated until L1 is stepped to zero, with an exit to the
destination store and first operand fetch sequences
whenever STC equals 7. A carry from the last destination
byte is an overflow condition and sets STAT B. The end-op
sequence is started when L1 equals zero.

First Operand Runout and Overflow Test. An overflow
condition exists whenever a carry results as the last
destination byte is processed or whenever a nonzero digit is
detected in the source field after the destination field has
been processed. ST AT B is set if STAT H is set when
entering this routine. Next, the remaining second operand
bytes are gated true +6 to the serial adder with STAT B
being set if any nonzero bytes are detected.

ABC and STC are decremented by 1 as each byte is
processed. The next source doubleword is fetched to AB
whenever ABC is stepped to zero unless L2 equals zero.
When L2 is stepped to zero, the end-op sequence is started.

Zero Result. If at the completion of the true add operation
ST AT A is not set, an all-zero result has been obtained. In
this case, the Add and Subtract instructions always force a
positive sign into the low-order byte of the destination
field. (If STAT G is set, an exit is made to the end-op
sequence because no correction of the result is required for
a Compare instruction.)

The low-order destination address is regenerated by
adding 8 to D the number of times indicated in F(4-7).
STC is set per D(21-23), and the selected ST byte is
cleared.

ST AT B is examined to determine an overflow
condition. For a zero result and no overflow, a plus sign is
inserted via the serial adder into the low-order destination
byte with the selected mark trigger being set. A storage
request is given to store the sign into the destination field,
and the end-op sequence is started. For a zero result and
overflow, the destination sign is not corrected. The end-op
sequence is started immediately.

End-Op Sequence. The instruction address (original content
of the IC) is· restored from the LSWR to the IC, and STAT
G is reset. A data program interruption occurs if STATE is
set. A decimal overflow program interruption occurs if
ST AT B is set and ST AT E is not set. The CC is set per
hardware conditions as shown in Table 3-12.

Table 3-12. Condition Code Setting Per Hardware
Conditi.ons, Decimal Instructions

Hardware Conditions

Not STAT B •Not STAT A e (Add, or
Subtract, or Zero and Add)

Not STAT Ao Not STAT Ho Compare

Not STAT A •STAT H eSTAT F o Not
ST AT C o Compare

Not STAT A• STAT He Not STAT Fe
ST AT C • Compare

Not STAT B •STAT A• STAT Fe (Add,
or Subtract, or Zero and Add)

ST AT A • ST AT F e ST AT H e Compare

STAT A• STAT C •Not STAT He Compare

STAT F •STAT C •STAT He Compare

Not STAT Be STAT A• Not STAT Fe
(Add, or Subtract, or Zero and Add)

STAT A• Not STAT F eSTAT He Compare

STAT A• Not STAT C •Not STAT He
Compare

ST AT H • Not ST AT F • Not ST AT C e
Compare

ST AT B • (Add, or Subtract, or Zero and Add)

Note: •Designates logical AND connective.

Complement Add Sequence

Setting

0

0

0

0

1

1

1

1

2

2

2

2

3

• Complement add operation with exits on one or more of
the following conditions:
I. LI or STC = 0.
2. L2 = 0.
3. ABC =O.

• ST AT A is set if result is not zero.

• ST AT B is set if overflow occurs.

• STAT D is set if result must be recomplemented.

• STAT E is set if operand digit or sign is invalid.

• STAT G is set if Compare instruction.

• STAT H is set if carry to next byte occurs.

• Carry out of last destination byte indicates result is in
true form; no carry condition indicates result is in
complement form.

Diagram 5-303, Sheet 1, FEMDM, is an overall flowchart of
the complement add sequence. This flowchart outlines the
major functional steps and sequences used in the Add,
Subtract, and Compare microprogram.

Upon entry into this sequence, the signs of both
operands have been examined (by the GIS) and the sign of
the first operand has been inserted as the sign of the result.
This sign may or may not turn out to be the correct sign: if
the first operand is larger than the second, the result carries
the correct sign; if the reverse is true, the sign of the result
must be inverted.

Basically, the complement add microprogram is similar
to the true add sequence previously described. The first
step in the microprogram is to complement add the digits
contained in the sign bytes of the operands. The result is
then placed into the digit portion of the destination sign
byte. At this point, one complete byte of result has been
developed. The operand length codes (LI and L2) and the
status of the byte counters (STC and ABC) are examined
for one or more of the following conditions:
1. The result byte is contained in the last byte of ST and

must be stored (STC = 0).
2. Additional first operand bytes must be fetched from

main storage (STC = 0 and LI =I= 0).
3. Additional second operand bytes must be fetched from

main storage (ABC= 0 and L2 =I= 0).
4. The second operand has run out; i.e., all second operand

bytes have been processed, and zeros must be added to
the first operand bytes (L2 = 0 but LI =I= O).

5. The first operand has run out; i.e., the destination field
has been completely processed (LI = 0).

If none of the above conditions exist, the microprogram
enters the complement add loop to generate the next
destination byte. LI, L2, STC, and ABC are decremented
one count, the selected AB byte is complement-added to
the selected ST byte, and the result replaces the selected ST
byte. After this, the status of all counters is aga_in sensed for
exit conditions.

Upon establishing one or more exit conditions, the
operations dictated by the conditions are performed and, if
LI is not zero, the complement add loop is re-entered.
When Ll is zero, all destination bytes have been processed.
The microprogram then performs an overflow test, a
zero-result test, and a complement result test.t If an

t The Compare instruction does not store the result into main
storage and, upon exit from the subtract loop, enters the end-op
sequence.

7201-02 FETOM (7 /70) 3-115

all-zero or complement result has been generated, the
address of the low-order destination byte is restored to D.
Then, the result is either recomplemented and the sign
·inverted or a plus is stored into the low-order destination
byte.

Sheet 2 of Diagram 5-303 is a detailed flowchart of the
complement add sequence. It is an expanded version of the
overall flowchart, showing the data handling in the various
subroutines of the complement add operation. The
complement add operation is similar to the true add
sequence described previously. For this reason, only the
differences are discussed below.

Complement Add Operation. The selected AB byte is
converted to 2's complement form at the input to the serial
adder, and is then added to the selected ST byte. For the
first (or sign) byte, bits 0-3 only of the selected AB byte
are. gated in inverted binary form to the adder, with a hot
carry supplied to bit 3 to convert to 2's complement.

Second Operand Runout. An all-zeros AB byte is gated in
complement form to the serial adder and added to the
selected ST byte. Thus the second operand is extended with
high-order binary l's (decimal 9's + 6).

Overflow Test. Generally, an overflow condition exists, if,
upon processing all destination bytes, a non-zero source
byte is detected. One exception occurs when the first
source byte sensed, after the first operand has run out,
equals 1 and a "carry" condition exists. A carry condition
is determined by STAT's A and H being set; i.e., a nonzero
result and a carry from the previous byte.

When L2 has been stepped to zero, a carry from the last
destination byte is examined. A carry condition indicates a
true result, and the end-op sequence is started. No carry
indicates a complement result, and a recomplement
sequence is started for Add and Subtract instructions. For a
Compare instruction (ST AT G set), the end-op sequence is
started immediately.

Zero Result and Recomplement Setup. STAT Dis set when
an entry is made to this routine because of the result's
being in complement form. ST AT D is not set when an
entry is made because of a zero result. If STAT G is set
when entering this routine, an exit is made to the end-op
sequence because no corrections of the result are required
for the Compare instruction.

The low-order destination address is regenerated by
adding 8 to D the number of times indicated in F(4-7).
STC is set per D(2 l -23), and the selected ST byte is
cleared. If an overflow condition exists (ST AT B set), the
results need not be corrected and the end-op sequence is
started immediately.

3-116 (7/70)

Recomplement Sequence. The original L1 count was saved
in F(0-3) by the GIS. This count is now placed into the L2
location in E; i.e., E(12-15). The LI location in E(8-l l) is
set to zero and then decremented one count to provide an
exit from the first operand fetch routine to the
recomplement sequence. The complement result i.s gated
from the SDBO to AB, and the recomplement sequence is
started.

The sign byte is processed by gating bits 0-3 of the
selected AB byte in inverted binary form to the serial
adder, with a hot carry supplied to bit 3. The sign is
inverted by inserting the algebraic sign of the second
operand into serial adder bits 4-7, as determined by ST AT
C. Bits 0-3 are decimal-corrected, and the adder output is
gated to ST.

All bytes following the sign byte are processed by gating
the selected AB byte complement to the serial adder, where
it is added to an all-zero ST byte. The adder output is
decimal-corrected and gated back to the selected ST byte.

As each byte (including the sign byte) is processed, the
ABC, STC, and L2 counts are decremented. The mark
trigger selected by the STC is set. The serial adder carry is
saved in STAT H. STAT A is set on nonzero digits, ·and
STATE is set on invalid digits.

Recomplementation is continued until the L1 in
E(l 2-15) is stepped to zero. If ABC steps to zero and L1 is
not zero, ST is stored and the next doubleword of
destination is fetched to AB. When L1 steps to zero, ST is
stored into the destination field, AB is cleared, and ST AT F
is set or reset per ST AT C. The CC is set per hardware
conditions (see Table 3-12), and the instruction is ended.

Compare, CP (F9)

• Algebraically compare 1st operand (in storage) with 2nd
operand (in storage) and set CC according to result.

• SS format: (See left column of next page.)

• CC setting:
Operands are equal: CC= 0.
1st operand is less than 2nd operand: CC = 1.
1st operand is greater than 2nd operand: CC = 2.

The CP instruction shares the same true add and
complement add routines used by the Add and Subtract
instructions. The GIS microprogram for the Compare
instruction is shown in Diagram 5-301. As in the Subtract
instruction, this microprogram effectively inverts the sign
of the second operand by setting ST AT C on a positive sign.

F9 Ll L2 B 1 ~ DI , B2 m:~
7 8 11 12 15 16 19 20 31 32 35 36 47

Fetch 1st operand,
starting with doubleword
containing low-order
byte, per contents of
G PR addressed by
Bl, +01 +Ll.

Fetch 2nd operand,
starting with doubleword
containing low-order
byte, per contents of
G PR addressed by
B2, + 02 + L2.

Invert sign of
2nd operand.

Yes Yes

Fetch next doubleword
of operands as needed.

Set CC.

End op.

Fetch next doubleword
of operands as needed.

The result of the compare operation is not placed into main
storage. ST AT G is set to provide a means of taking special
action, where required for the Compare instruction, during
execution of the common true add or complement add
sequences.

ZERO AND ADD, ZAP (F8)

• Place 2nd operand (in storage) into 1st operand location
(in storage).

• SS format:

F8 Ll L2 Bl ~ DI I B2 I JG
7 8 11 12 15 16 19 20 31 32 35 36 47

Fetch 1st operand,
starting with doubleword
containing low-order
byte, per contents of
G PR addressed by
Bl , + D 1 + L1 (1st
operand is not used).

• CC setting:

Set CC.

2nd operand is zero: CC = 0.

Fetch 2nd operand,
starting with doubleword
containing low-order
byte, per contents of
G PR addressed by
82, + 02 + L2.

Add O's to 2nd operand.

Yes

Store result into 1st
operand location,
starting at low-order
byte.

Fetch next doubleword
of 2nd operand as
needed.

2nd operand is less than zero: CC = 1.
2nd operand is greater than zero: CC= 2.
2nd operand cannot fit into destination field: CC= 3.

The operation specified by the ZAP instruction is
equivalent to addition to zero. A zero result is always made
positive. When high-order digits are lost because of
overflow, a zero result has the sign of the second operand·.

7201-02 FETOM (7/70) 3-117

Only the second operand is checked for valid sign and
digit codes. Extra high-order zeros are supplied if needed.
When the first operand field is too short to contain all
significant digits of the second operand, a decimal overflow
occurs and results in a decimal overflow program
interruption, provided that the decimal overflow mask bit,
PSW(37), is 1. The first and second operand fields may
overlap when the rightmost byte of the first operand field is
coincident with or to the right of the rightmost byte of the
second operand. A flowchart of the GIS and execution of
the Zero and Add instruction is shown in Diagram 5-304,
FEMDM.

At the start of the GIS, the following actions have been
performed by SS I-Fetch: (1) a D request has been issued
for the doubleword containing the low-order byte of the
first operand; (2) the low-order byte address of the first
operand (contents of GPR addressed by B 1, + D 1 + LI) is
in D; and (3) the high-order byte address of the second
operand (contents of GPR addressed by B2, +D2) is in the
IC. During the GIS, the doubleword containing the
low-order byte of the first operand is gated from the SDBO
to ST, the IC is incremented by the L2 count to address the
low-order byte of the second operand, the STC is set to the
low-order destination byte, an IC request for the second
operand is issued, and a word overlap test is performed. If a
word-overlap condition is predicted by this test, the
instruction address is restored to the IC, the 'invalid data
interrupt' trigger is set, and the instruction is ended. If no
word-overlap condition is detected, the doubleword
containing the low-order byte of the second operand is
gated from the SDBO to AB.

The sign byte is processed by gating bits 0-3 of the
selected AB byte to the serial adder. Bits 4-7 of the AB
byte are decoded for a positive, negative, or invalid sign.
The approved plus or minus sign is inserted into SAL(4-7)
and gated, with the digit, to the selected ST byte.

All bytes following the sign byte are processed by gating
the selected AB byte true +6 to the serial adder. The
selected ST byte is not gated to the adder, and the validity
check at the adder B-side is inhibited in hardware. The
adder output is decimal-corrected and gated to the selected
ST byte.

As each byte is processed, including the first byte, the
ABC, STC, LI, and L2 are decremented, the selected mark
trigger is set, STATE is set for invalid data, and STAT A is
set for a nonzero digit.

The byte-by-byte transfer from AB to ST is continued
until one or more of the following exit conditions are
detected via a ROS branch ('Decimal' micro-order):
1. STC and LI =F 0, L2 = 0.

The second operand field has run out. AB and ABC are
cleared and zeros are gated to ST per the STC until LI
or STC equals zero. If the STC is reduced to zero before

3-118 (7 /70)

LI, ST is stored per the D address, and zeros are gated to
ST per the STC until LI is reduced to zero.

2. STC and LI =F 0, L2 =F 0, ABC= 0.
More second operand bytes are needed. The next
doubleword of the second operand is gated to AB and
the zero and add loop is resumed.

3. STC or LI = 0, L2 =F 0, ABC= 0.
The destination field has run out or ST is full, requiring
a destination store cycle. More second operand bytes are
needed. ST is stored into the destination address per D,
and the next doubleword of the second operand is
fetched per the IC and gated to AB. If LI equals all 1 's
(the destination field has run out), AB is tested for
nonzero digits to determine if a decimal overflow
condition exists. If LI does not equal all 1 's, the zero
and add loop is resumed.

4. STC or LI = 0, L2 =F 0, ABC =F 0.
The same conditions exist as in item 3, except that a
second operand fetch is not needed and is not
performed.

5. STC or LI = 0, L2 = 0.
The destination field has run out or ST is full, requiring
a destination store cycle. The second operand field has
run out. ST is stored in the destination address per D. If
LI equals all l's, both operands have run out. If LI does
not equal all 1 's, the second operand runout sequence is
performed.

MULTIPLY, MP (FC)

• Multiply 1st operand (in storage) by 2nd operand (in
storage) and place result into 1st operand location.

• SS format: (See following page.)

• Maximum multiplicand field (1st operand) is 16 bytes.

• Maximum multiplier field (2nd operand) is 8 bytes.

• Multiplicand field initially contains high-order zero field
equal in length to multiplier field.

• L2 > 7 or L2 ~ LI causes specification program
interruption.

• Multiplication accomplished by repetitive addition or
subtraction:

Multiplicand
Digit

0
1-4
5-9

Sequence
Selected

Addition
Subtraction

The Decimal Multiply instruction replaces the multiplicand
(1st operand) with the product of the multiplicand and the
multiplier (2nd operand). To be able to store the product in

FC LI L2 B 1 ~ DI I B2 I H~
.__ ____ 7.._8__,-1 1 -12---.--15 1-6 --,9 20 31 32 35 36 47

Fetch doubleword containing
low-order byte of 1st operand
(multiplicand) per contents
of GPR addressed by Bl, + Dl
+ LI.

Examine 1st low-order
digit of multiplicand.

Examine next low-order
digit of multiplicand.

Fetch doubleword containing
low-order byte of 2nd operand
(multiplier) per contents of
GPR addressed by B2, + D2
+ L2.

Align low-order multiplier and
fetch doubleword containing
high-order portion of multiplier.

Add full multiplier number
of times specified by
multiplicand digit.

Retain low-order partial
product digit as low-order
digit for final product.

Shift partial product one
digit position to right.

Add full multiplier to partial
product number of times speci
fied by multiplicand digit.

Retain low-order partial prod
uct digit as next low-order
digit of final product.

Store product byte at 1st
operand address, starting
at low-order byte.

Develop next product byte.

the multiplicand field at all times, several restrictions are
imposed on both the multiplicand and the multiplier:
l. In any multiply operation, the maximum number of

product digits that can be obtained is equal to the sum
of the digits in the two operands. Because the product is
stored in· the multiplicand field, this field must initially
contain high-order zero digits for at least a field size
equal to that of the multiplier. Thus the multiplicand
field is initially split into two parts; the high-order zero
field of length equal to the multiplier, and the low-order
field containing the effective multiplicand digits. This
arrangement of the multiplicand ensures that product
overflow will not occur (Figure 3-14).

2. By definition, the multiplier field must be at least one
digit 1 e ss than the multiplicand. Because the
multiplicand must initially contain a zero field equal in

size to the multiplier digits, the multiplier size is limited
to 8 bytes (15 digits and sign). A specification program
interruption occurs if the multiplier length code
designates more than 8 bytes (L2 is greater than 7), or if
L2 is greater than or equal to LI.

3. The maximum product size is 31 digits and sign (16
multiplicand digits plus 15 multiplier digits). The sign is
determined algebraically from the multiplier and the
multiplicand signs, even if one or both operands are
zero. Because during sign resolution two sign positions
are merged into one, at least one high-order digit of the
product field is zero.

The multiply operation is executed in much the same
manner as in manual arithmetic.t The multiplicand is
examined one digit at a time, starting with the low-order
digit, and the entire multiplier is added the number of times
specified by the multiplicand digit. After the first
multiplicand digit has been processed, the low-order digit of
the resulting partial product (PP) is saved as the low-order
product digit. The PP is then shifted one digit position to
the right and brought into computation of the next product
digit (one order higher than before). This time, the
multiplier is added to the PP the number of times specified
by the next digit of the multiplicand, and the low-order
digit of the new PP thus formed becomes the next product
digit. The PP is again shifted to the right, and the sequence
is continued until all digits of the multiplicand have been
processed. The PP resulting after the last multiplicand digit
has been processed becomes the high-order product.

Figure 3-15 illustrates a typical repetitive addition
sequence used for multiplication. As each multiplicand byte
is processed, the multiplicand length code (LI) is reduced
by one count and compared with the multiplier length code
(L2). When LI = L2, all effective multiplicand digits have
been processed and the operation is completed.

To reduce the number of computations in the multiply
operation, either a repetitive add or a repetitive subtract
sequence may be performed. Selection of the sequence is
dependent on the magnitude of the multiplicand digit
under consideration. An add sequence is selected if the
magnitude of the digit is in the range of 1 through 4. For
multiplicand digits of magnitude 5 or greater, a subtract
sequence is selected. This sequence deducts the multiplier

t The major difference is that the roles of the multiplicand and the
multiplier are reversed. Because of its size (up to 16 bytes), the
entire multiplicand cannot be held in the CE at one time. For
this reason, the full multiplier (up to 8 bytes) is fetched to the
CE and multiplied by the individual digits of the multiplicand,
which is fetched from main storage 1 byte at a time.

7201-02 FETOM (7/70) 3-119

from the PP the number of times specified by the 1 O's
complement of the multiplicand digit and then adds 1 to
the next digit of the multiplicand; increasing the next
high-order digit of the multiplicand has the effect of adding
the multiplier 10 times. For example, the equivalent of a
multiplication by 7 is subtracting the operand 3 times to
obtain a negative PP and then effectively adding the
operand to the PP 10 times.

An example of a typical subtract sequence used for
multiplication is shown in Figure 3-16. Note that the PP
resulting from a subtract operation is in 1 O's complement
form. When the lO's complement PP is shifted right, its
high-order digit position must be extended with a 9.

Following are general and detailed descriptions of the
multiply microprogram. The general description outlines
the overall structure of the microprogram, enu~erates its
major functional steps and sequences, and explains their
relationship to the overall operation. The detailed
description analyzes each sequence individually, making
specific references to the register-to-register data transfer in
the CE.

General Description

Upon entering the multiply microprogram, the following
actions have been performed by SS I-Fetch:
1. A D request has been issued for the doubleword

containing the low--0rder multiplicand byte.
2. The low-order multiplicand address has been placed into

D.
3. The IC contents have been transferred to the LSWR, and

the high-order multiplier address has been placed into
the IC.
Ari overall flowchart of the multiply microprogram and

the general data path used for its execution are shown in
Sheet 1, of Diagram 5-305, FEMDM. The major subroutines
and functional steps, shown in the figure, are explained
below. Additional simplified diagrams are provided as an
aid in visualizing the data handling performed. For the most
part, these diagrams do not show the gates and data paths
used in the CE, but are intended solely to convey how the
multiply algorithm is implemented. For purposes of
illustration, a seven-byte multiplicand and a four-byte
multiplier are assumed in these diagrams.

General Initialization Sequence

This sequence gates the multiplicand from the SDBO to ST
and sets the STC to the low-order multiplicand byte. It
increments the address in the IC to the address of the
low-order byte of the multiplier by adding L2 to the IC
contents. An IC request is issued for the multiplier (second
operand), starting at the low-order address. The contents of
Dare transferred to the STC.

The GIS gates the multiplier from the SDBO to AB and
sets the ABC to the low-order multiplier byte. It also
performs several actions relating to the subsequent
left-adjust sequence of the multiplier:
1. The low-order digit of the multiplicand (in ST) is

transferred to F(0-3).
2. ST AT F is set if the sign of the multiplicand is negative

and ST AT E is set if the sign is invalid.
3. The multiplier length code, L2, is transferred to F(4-7).

The functions performed by the GIS are illustrated in
Figure 3-17.

Specification Test

This test verifies that the length codes for both operands in
the instruction are correctly specified; i.e., L2 specifies
eight bytes or less and is smaller than L1 .

Incorrect Specification

Detection of an invalid specification forces a specification
program interruption. The instruction address is restored
from the IC to the LSWR, and the instruction is ended.

Multiplier Left-Adjust Sequence

The multiplier bytes are transferred from AB to ST in such
a manner that the high-order multiplier byte occupies the
leftmost byte in ST. ST AT C is set if the multiplier sign is
negative and ST AT E is set if the multiplier sign is invalid.

Initial contents
of 1st operand

Contents of
2nd operand

Final contents of
1st operand

High-Order Effective
Zero Field Multiplicand Digits

Maximum multiplicand
size is I imited to 16 bytes.

x Effective
Multiplier
Digits

Maximum
multiplier size
is limited to 8
bytes and must
be sma 11 er than
multiplicand.

Figure 3-14. Operand Specifications for Decimal Multiply Instruction

3-120 (7 /70)

Effective Product Digits

Maximum product size
is limited to 16 bytes.

Multiply (+204) by (-32) to obtain a product of (-6,528).

Execution:

Multiplicand Multiplier

Byte Byte Byte Byte (L l = 3)
0 ' 2 3 x Byte Byte (L2 : l)

0000204+

Shift multiplier
right (to drop sign)

Extend high-order
digit with zero--..

Add multiplier 4 times.

Partial product

0 l

0 0
0

0 2
2

~:;f:i:~~t:: ~~~- ~~~ digit)·

Extend high-order
digit with zero. ""l'

Multiplicand digit zero, T
no addition required.

Shift partial prod
uct right (to drop
digit).

Extend high-order
digit with zero.

0 0 l 2

'i
....

_Ad_d_m_u_lt-ip-li_e_r _tw_i_ce-to-----{
000 0

partial product,

Partial product

Shift partial prod
uct right (to drop
digit).

Extend high-order
digit with zero. "i

Multiplicand digit zero, 't
no addition required.

0 0 0 6

(

At this time, LI = L2, indicating {---
that multiplication has been
completed. L 1 is reduced once
for each multiplicand byte
that is processed. When LI = L2,
all effective multiplicand
digits have been processed.

Figure 3-15. Typical Multiply Add Sequence

Compare signs Signs not
-----------1----+-+--lf--' alike

Save low-order
digit.

Save low-order
digit.

Save low-order
digit.

Save partial product
as high-order product

7201-02 FETOM (7 /70) 3-121

Multiply (-1827) by (+25) to obtain a product of (+20,675),

Execution:

Byte
0

0 0

(Ll = 3) x (L2=1) (Ll =3)

Compare signs------+---+--+--+--' Signs alike

(

At this time, L 1 = L2 , indicating
that mu.ltiplication has been
completed. L 1 is reduced once
for each multiplicand byte
that is processed. When L 1 • L2,
all effective multiplicand
digits have been processed,

lO's

r··'"·
Shift multiplier
right (to drop sign).
Extend high-
order digit wi~
zero.

0 0 2

l
Add 1 to next digit
of multiplicand.

Partial product

Subtract:

Convert multiplier to 10' s
complement form and add
3 times.

7

in lO's complement form -------1
-9

h I d H~~ Save low-order
. ;igi~: (t:rt~~:~~g~t)'. ___ d_ig_i_t ·-------+----+--ii--'

Extend high-order ----"]_
digit with 9. T

2 + 1 = 3 __. Add: ~~ ~ : ~
Add multiplier (true) O O 2 5

to partial product 3 times. 0 0 2 5

Partial product in true form 0 0 6 7

~~~plement Shift partial product ~~K 

l 
right (to drop digit). 

Extend high-order T 

2 

~ Subtract~igit with zero. {~ 

Convert multiplier/ __ 9 ___ -i 
to lO's complement form 9 
and add to partial product I 
2 times. 

Partial product in 10' s 
complement form 

Add 1 to next digit 
of multiplicand. 

Shift partial product 
right (to drop digit). 

~ 
0+1 = 1 

Extend high-order ---i_ 
____., Add· digit with 9. f 

Add multiplier (true) { 9 
to partial product 1 time. O _ _,._ ___ ___, 

Save low-order 
digit. 

Save low-order 
digit. 

Save partial product 
as high-order product. 

Figure 3-16. Typical Multiply Subtract Sequence 

3-122 (7/70) 



Address of 
high-order byte 
(GPR per Bl, + Dl) 

l 
Multiplicand 
(7 Bytes) 

Address of 
low-order byte 

(GPR per Bl,+ Dl + Ll) 

1 

Address of 
high-order byte 
(GPR per B2, 

• 02) 1 
Address of 
low-order byte 
(GPR per B2, 
+ D2 + L2) 

l 
Multiplier 
(4 Bytes) 

Doubleword -+- -++- -i boundaries 
in main 8 Bytes ___ _.,.__ ___ 8 Bytes 8 Bytes -----------

1 

a Bytes 

storage 

5 multiplicand 
bytes remain 
in main storage 

Doubleword containing 
2 multiplicand bytes is 
accessed during I-Fetch 
and placed into ST 
duri~g GIS 

S I I 

oo1os 1 

T 

Set STC to 
low-order 
multiplicand 
byte 

Set if invalid 

Setifminus STATF 

T 

Figure 3-17. Data Handling During G IS of Decimal Multiply 

STATE 

1 multiplier 
byte remains 
in main storage 

E I Ll I L2 
FC 

I 0111 10011 

I 
I 
I 

Doubleword containing 
3 multiplier bytes is 
requested during GIS 
and placed into AB 

Set ABC to 
low-order 
multiplier 
byte 

7201-02 FETOM (7/70) 3-123 



The left-adjust transfer is initiated by setting the STC 
per L2 (Figure 3-18). Because the maximum multiplier 
length is limited to eight bytes, only three of the four bit 
positions in L2 are needed to specify the length code; i.e., 
the count in L2 may range from a minimum of 0000 (for 1 
byte) to a maximum of 0111 (for eight bytes). Setting the 
STC per L2 automatically selects, according to the 
multiplier size, the correct ST position for the low-order 
byte of the multiplier; the number of bytes to the left of 
the selected ST position corresponds to the length field of 
the full multiplier. 

The transfer is performed one byte at a time, through 
the serial adder, starting with the low-order multiplier byte. 
ABC, STC, and L2 are decremented by 1 for each byte 
transferred. The multiplier is completely transferred when 
the L2 count is decremented to zero. Because the first IC 
request (during I-Fetch) does not necessarily gate the full 
multiplier to AB, it may be necessary to fetch the balance 
of the m-µltiplier from main storage. (This fetch occurs if 
the ABC steps to zero before L2 steps to zero.) 

After exit· from the left-adjust sequence, the full 
multiplier has been fetched and left-adjusted to ST. Note 

Multiplier 
(4 Bytes) 

that the original ST contents (multiplicand) have been 
destroyed except for the low-order multiplicand byte, 
which is saved during the GIS; i.e., digit placed into F(0-3) 
and sign-recorded by ST AT F. The destroyed multiplicand 
bytes are later refetched from main storage, one byte at a 
time, as required by the multiply operation. 

L2 Restoration 

During transfer of the multiplier bytes from AB to ST, the 
L2 count in E(l 2-15) is decremented by 1 for each byte 
transferred. At the completion of the left-adjust sequence, 
L2 has been decremented to zero. The initial L2 count, 
saved in F( 4-7) during the GIS, is now restored to 
E(l 2-15). The L2 count will be required by the 
subsequent multiply sequence. 

Multiplier Right-4 Shift to Drop Sign 

In the multiply operation to follow, product bytes are 
developed by adding the entire multiplier the number of 
times specified by successive digits of the multiplicand. The 
sign of the multiplier does not enter into the repetitive 

I .. •------- 8 Bytes-------.... .---------8 Bytes-----___,i" 

I 
I 
I 
I 
I 
I 
1. 

Doubleword containing high-order 
byte is fetched by left-adjust sequence 
after initial AB contents have been 
transferred to ST 

3 multiplier bytes 
accessed during GIS 
and place into AB 

+ I ........ ---.-,-- -...,..-... --.--.----ii,...-... --------. 
IA I B I A I 
I I ID sl 
L_ ____ _J_ - - _E .....--.--'...._,,....._...__,~-__..--------

s I 
o o1o 

I I 
o1o o1o s 

I . Multiplier I r---Left-Adjusted~ 

E 

S TC set per L2 
to select correct 
position for low
order byte in ST 

I L1 L2 
I 0111 

m 
Low-Order ~ 
Multiplicand Digit 

Figure 3-18. Data Handling During Multiplier Left-Adjust Sequence 

3-124 (7/70) 

Set if 
Invalid STAT F 

T 

Set if 
Minus STAT C 

T 

Multiplier 
Sign 

STAT F 

D 
Multiplicand 
Sign 



addition sequence and must be discarded. The sign is 
discarded by shifting the multiplier in ST 4 bit positions. 
(one digit) to the right as illustrated below. This action 
places the sign beyond the rightmost multiplier byte 
selected by the STC for subsequent computation. 

s 

s 

Multiplier bytes 
selected for 
processing by STC 

I I I 
I I I 

STC 
0 1 1 

o 1 DD 1DD 1DD s 

Sign Handling 

A test of STAT F and STAT C is made to establish the 
product sign algebraically: 
I. Signs alike (both STATS set or reset) - set sign plus. 
2. Signs not alike (one STAT set and the other reset) - set 

sign minus. 

Upon establishing the correct product sign, it is placed 
into F(4-7). 

Basic Multiply Add or Subtract Sequence for Left Digit 

This sequence processes the digit in the left portion of the 
multiplicand byte. (The low-order byte of the multiplicand 
always contains the digit in the left portion and the sign in 
the right portion.) The entire multiplier (in ST) is added or 
subtracted the number of times specified by the left digit of 
the multiplicand saved in F(0-3). An add sequence is 
performed if the digit in F(0-3) is 4 or less; a subtract 
sequence, if 5 or greater. A data program interruption 
occurs prior to a storage cycle if an invalid multiplicand or 
multiplier digit or sign is detected. The PP resulting from 
the add or subtract sequence replaces the multiplicand in 
ST. 

Product Byte Store 

The product is stored into main storage one byte at a time. 
After exit from the left-digit sequence, one complete byte 
of product has been developed and must be stored. If the 
exit is made for the first time, this byte consists of the 
product sign (in F) and the low-order digit of PP (in ST). 
All product bytes generated thereafter consist of two digits: 
one (in F) has been saved from a previous PP developed in 
the right digit sequence, and the second is the low-order 
digit of a new PP (in ST) obtained in the left-digit sequence. 

Multiplicand Request 

A request from D is issued for the next byte of the 
multiplicand in main storage. 

Partial Product Right-4 Shift to Drop Digit 

The low-order digit of PP has been stored as a product digit 
and must not enter into subsequent computation. The digit 
is discarded by shifting the PP in ST four bit positions to 
the right. This action places the digit beyond the rightmost 
PP byte selected by the STC for computation of the next 
product digit. 

Partial product bytes 
selected for 
processing by STC 

s I I I 

STC 

0 1 1 

I I I 

o 1 DD 1 DD
1

DDD 

LI =L2 

This test establishes whether all digits of the multiplicand 
have been processed. At the start of the multiply operation, 
the total field length specified by LI includes a zero field 
equal in size to the multiplier plus the effective field of the 
multiplicand: 

LI = L2 + number of effective multiplicand bytes. 

Because LI is decremented once after each effective 
multiplicand byte is processed, all the effective 
multiplicand bytes have been processed when LI equals L2. 

Complete Multiplicand Byte Fetch 

If LI is not equal to L2, the multiply sequence is 
continued. The next byte of the multiplicand (requested 
earlier) is selected from the SDBO and placed into F. 
Control is then transferred to the add or subtract sequence 
for the right digit of the multiplicand. 

Basic Multiply Add or Subtract Sequence for 
Right Digit, and Shift Right-4 Sequence 

This sequence processes the digit in the right portion of the 
muHiplicand byte. The entire multiplier is added to (or 

7201-02 FETOM (7/70) 3-125 



subtracted from) the PP in ST. The number of add or 
subtract operations is controlled by the right digit of the 
multiplicand contained in F( 4-7). After a new PP has been 
developed in ST, its low-order digit replaces the right digit 
of the multiplicand in F( 4-7). The PP is then shifted four 
bit positions to the right to drop the low-order digit, and an 
entry is made to the left-digit sequence to process the next 
multiplicand digit contained in F(0-3). 

Multiplicand Zero Test and Partial Product Store 

When L1 equals L2, all the effective digits of the 
multiplicand have been processed. The remaining 
multiplicand bytes are fetched from main storage and 
tested for zero. Detection of a nonzero digit results in an 
interruption. After the zero test is completed, the PP is 
stored as the high-order product into main storage and the 
instruction is ended. 

Detailed Description 

• STATE is set if digit or sign is invalid. 

• STAT A is set if digit is not zero. 

• ST AT G is set if multiplier is zero. 

• ST AT H is set to generate hot carry. 

• ST AT D is set to add 1 to next digit. 

Sheet 2 of Diagram 5-305 is a detailed flowchart of the 
multiply microprogram. This flowchart is an expanded 
version of the overall flowchart, showing the data handling 
used in the various subroutines of the Multiply instruction. 
For the most part, this data handling is straightforward and 
requires no explanation. Those areas in need of clarification 
are discussed in the following subparagraphs. 

General Initialization Sequence 

This sequence shares a common microprogram with the 
Divide instruction. An appropriate branch is taken to enter 
either the divide or the multiply sequence. 

Multiplier Left-Adjust Sequence 

The ABC has been set to select the low-order multiplier 
byte in AB. The STC is now set per L2, E(l 2-15). The 
transfer is performed one byte at a time via the serial adder. 
As each byte is gated to the serial adder, it is tested for 
nonzero value and for invalid digits. ST AT E is set .upon 
detection of an invalid digit or sign, and ST AT A is set 
upon detection of a nonzero digit. If upon completion 0f 
the left-adjust transfer STAT A remains reset, the multiplier 
value is zero. 

3-126 (7 /70) 

Multiplier Right4 Shift and L2 Restoration 

The multiplier is shifted four bit positions to the right and 
transferred from ST to AB. L2 is transferred from F( 4-7) 
to E(l 2-15). Both actions are performed in parallel. As the 
high-order multiplier bytes are gated from S to PAA and 
the right4 shift is initiated, the L2 count is transferred 
from F( 4-7), via the serial adder, to S(28-31 ). After the · 
right4 shift has been performed through the parallel adder, 
the L2 count is gated from S to PAA and the zero count in 
E(l 2-15) is gated to P AB. The net result (original L2 
count) is gated from PAL to E(12-15). 

Sign Handling 

ST AT G is set if STAT A has not been set during the 
preceding sequence. This step is taken to indicate a zero 
multiplier condition which requires special action. 

Basic Multiply Add or Subtract Sequence 

To perform a branch on the value of the multiplicand digit, 
the digit must be in SAL( 4-7). This requirement is dictated 
by the 'W=(I-15)' micro-order which samples SAL( 4-7). 
For this reason, the contents of F are cross-gated through 
the serial adder and placed back into F. SAL( 4-7) is then 
examined for the following values: 
I. SAL(4-7) = 0 

No addition cycles are required. 
2. SAL( 4-7) = 1 through 4 

The multiplier in AB is added to the PP in ST the 
number of times specified by the digit value. 

3. SAL( 4-7) = 5 through 9 
The multiplier in AB is subtracted from the PP in ST the 
number of times specified by the IO's complement of 
the digit value (IO minus the digit value). STAT His set 
to supply a hot carry for the subtract sequence. STAT D 
is set to add a 1 to the next digit of the multiplicand 
(equivalent to adding the multiplicand 10 times). 

4. SAL( 4-7) = invalid digit · 
The definition of an invalid digit is dependent on 
whether the digit to be processed is the first digit of the 
multiplicand; i.e., the digit immediately following the 
sign. If it is the first digit, then any value in the range of 
10 through 15 is considered invalid and sets. the 
interrupt trigger. After the first digit has been processed, 
a value of 10 is permissible in SAL( 4-7), provided that 
it was formed by an original value of 9 to which a 1 has 
been added because STAT· D was set. Under these 
conditions, the value of 10 does not set the interrupt 
trigger, no addition cycles are required, and a carry is 
propagated to the next digit by setting STAT D. 



The multiplier-to-PP addition or subtraction is done one 
byte at a time in the serial adder, with the AB byte gated 
true +6 if adding and complement if subtracting. The ABC 
and STC are both initially set to the L2 value and are 
decremented by 1 each time a byte is processed. When the 
ABC count is stepped to 000, F( 4-7) is examined to 
determine whether further additions or subtractions are 
necessary. If so, the STC and ABC are again set to the L2 
value, F( 4-7) is incremented if subtracting or decremented 
if adding, and the multiplier is again added to or subtracted 
from the PP. The micro-order which steps the digit in 
F( 4-7) is executed after the digit has been examined to 
determine whether further add or subtract cycles are 
required. For this reason, when a branch on F(4-7) is being 
made, a value of 1 when adding or of 9 when subtracting 
indicates that the multiplicand digit is completely 
processed .. The low-order digit of the PP in ST is the 
product digit developed. 

Product Byte Store, PP Right4 Shift to 
Drop Digit, Multiplicand Request 

These three functions are accomplished in parallel fashion. 
After initiating the store operation, control is transferred to 
the shift-right4 sequence. When the ST contents have been 
temporarily transferred, the store operation is resumed; the 
product byte is cross-gated, transferred to ST, and stored 
into main storage per the D-address. Thereafter, the 
microprogram requests the next multiplicand byte from 
main storage and simultaneously completes the right4 
shift. 

As illustrated in Figure 3-19, the PP is shifted right4 via 
the parallel adder. This shifting is done in several steps, with 
the LSWR being used as temporary storage for the operand. 
Upon completion of the right4 shift, B(64-67) is normally 
inserted as the high-order S digit. B(64-67) was previously 
set to 0 if the value in F( 4-7) was less than 5, or to 9 if 
F( 4-7) was S or greater, for then the PP was in 1 O's 
complement form. An exception is made when STAT G is 
set, indicating an all-zero multiplier. In this case, B(64-67) 
is not inserted into high-order PP because it should always 
be zero. 

Complete Multiplicand Byte Fetch 

If there are more multiplicand digits to be processed (LI i= 
L2), the contents of T are temporarily transferred to the 
LSWR and either the left or the right half of the operand is 
gated from the SDBO to T. The next byte of the 
multiplicand is then selected per the STC and transferred to 
F. (Note that if the left half word has been gated to T, the 

high-order STC bit is forced to l, because, otherwise, the 
STC would select a byte from S.) 

Basic Multiply Add or Subtract Sequence 
for Right Digit, and Shift Right4 Sequence. 

The next digit of the multiplicand in F( 4-7) is examined, 
ST A T's D and H are set or reset as required, a 0 or 9 is 
placed into B(64-67), and the appropriate add or subtract 
loop is entered. After exit from the add or subtract loop, 
the low-order digit of the resulting PP is saved in F( 4-7). A 
right4 shift is then performed on the PP in ST so that the 
low-order digit is dropped. At the completion of the right4 
shift, the left-digit sequence is resumed. As explained 
previously, the contents of F are cross-gated and the next 
digit of the multiplicand is sampled from SAL( 4-7). 

Multiplicand Zero Test and Partial Product Store 

An entry to this routine is made from the left-digit 
sequence. By operand definition, the remaining high-order 
multiplicand bytes should all be zeros. The PP in ST is the 
high-order product and must be stored into the high-order 
portion of the initial multiplicand field. However, if STAT 
D is set at this time, the multiplier must be added to the PP 
once more. After this has been done, the contents of ST are 
transferred to AB and the high-order multiplicand bytes are 
fetched to ST (per the D-address ). The STC is set per 
D(21-23) to designate the first high-order multiplicand 
byte to be tested for zero. The ABC is set per L2 to 
designate the first high-order PP byte in AB. 

The selected multiplicand byte in ST is tested for zero; 
then the selected PP byte in AB is transferred via the serial 
adder to ST, and the corresponding mark trigger is set. 
ABC, STC, and LI are decremented by 1 for each byte 
transferred. If a nonzero byte is detected in the high-order 
field of the multiplicand, the interrupt trigger is set and the 
instruction is ended. 

The AB-to-ST byte transfer is continued until LI or STC 
is stepped to zero, at which time the ST contents are stored 
into main storage. If the STC has been stepped to zero (LI 
i= 1111), the next high-order bytes of the multiplicand are 
fetched to ST and the sequence is resumed. If LI has been 
stepped to zero (LI = 1111 ), the instruction is ended. 

DIVIDE, DP (FD) 

• Divide 1st operand (in storage) by 2nd operand (in 
storage) and place result into 1st operand location 
(quotient is leftmost in 1st operand location; remainder, 
rightmost). 

7201-02 FETOM (7/70) 3-127 



0 31 

32 

PAA 

4 

0 

63 

'-- 63 

PAL 

Shift right-4 
to PAL(36-67) 
and hold 

31 

PAB // 

/ 
/ 

/ 
/ 

/ 

/ 

63 / ,,,,,,..,,, 

64 67 

32 -63 64 67 
--~~~~~~~~-

Low-Order "S" Digit 

A. Step l 

32 63 

~ 1~~1iilil''~;:,'1~,,,1iili:'[,!l.~ ""' ·• ·• 

1
' •·. ~j I : ;j;;r;;f f~;4:2~i~lL:7iJ~, ·. '· .. 11:','i:l:::·:.::i1~::l1ii'~:ll:1·:,'1111i~l .• ~.~j64 671 

32 63 

32 63 

~63 

PAL 

4 

32 

B. Step 2 

28 31 

I 
Shift right-4 
to PAL(32-35} 

63 

64 67 

PAB 

Figure 3-19. Data Flow for Right-4 Shift of ST to AB, Decimal Multiply 

3-128 (7 /70) 



• SS format: 

'"'.-.._FD _ __..---rLl--'---rL2___.__B_l.......J..J~ Dl I 82 I H~ 
7 8 II 12 IS 16 19 20 31 32 35 36 47 

Fetch doubleword containing 
low-order byte of 1st operand 
(dividend) per contents of 
GPR addressed by Bl, + Dl + 
L1 . Test sign. 

Fetch doubleword containing 
high-order byte of dividend 
per contents of GPR addressed 
by Bl, + Dl. 

Fetch doubleword containing 
low-order byte of 2nd 
operand (divisor) per contents 
of GPR addressed by 82, + D2 
+ L2. 

Align low-order divisor and 
fetch doubleword containing 
high-order portion of divisor 
per contents of GPR addressed 
by B2, + D2. 

Subtract full divisor from 
correct number of dividend 
digits until overdraw occurs. 

Store quotient byte at 1st 
operand address, starting 
at high-order byte. 

Record number of 
subtractions (less 1) 
as quotient digit. 

Restore partial remainder 
and shift one digit 
position to left. 

Subtract full divisor from 
partial remainder until 
overdraw occurs .. 

Record number of 
subtractions (less 1) 
as quotient digit .. 

Develop next 
quotient byte. 

• Maximum dividend field (1st operand) is 16 bytes. 

• Maximum divisor field (2nd operand) is 8 bytes. 

• L2 specifies byte length for divisor and remainder. 

• L2 > 7 or L2 > LI causes specification program 
interruption. 

• Division accomplished by repetitive subtraction. 

• Divi.dend field must initially contain sufficient number 
of high-order zeros to make possible storing of quotient 
and remainder. 

The Decimal Divide instruction replaces the dividend (I st 
operand) with the quotient and the remainder. To be able 
to store the quotient and the remainder into the dividend 
field at all times, several restrictions are imposed on the 
initial size of the dividend and the divisor (Figure 3-20). 

The maximum dividend field is 16 bytes long. It is 
eventually replaced by the quotient, which is stored 
leftmost in the field, and by the remainder, which is stored 
rightmost. The size of the remainder is equal to the initial 
divisor size and is therefore predefined by length code L2. 
Because the minimum remainder size is 1 byte (L2 = 0), the 
maximum quotient size is limited to 15 bytes. By 
definition, the size of the divisor (and remainder) cannot 
exceed 8 bytes. A divisor greater than 8 bytes, or in excess 
of the dividend, is recognized as a specification error; the 
instruction is suppressed and a specification program 
interruption occurs. -

The operand signs are tested for validity before 
instruction execution, and, if either sign is invalid, a data 
program interruption is taken before the contents of main 
storage are altered. 

To make. sure that the quotient and remainder will fit 
into the destination field, the magnitudes of the dividend 
and the divisor are compared before entering the divide 
sequence. This comparison, called "divide check" or "trial 
subtraction," yields the number of quotient digits that will 
result if division is carried out. If the predicted quotient is 
larger than that allowed, the instruction is suppressed and a 
decimal divide program interruption occurs. For this 
reason, an overflow condition cannot exist upon execution 
of a Divide instruction. 

The dividend, divisor, quotient, and remainder are all 
signed integers, right-aligned in their fields. The sign of the 
quotient is determined algebraically from the dividend and 
divisor signs. The sign of the remainder is the same as the 
sign of the dividend. These rules hold true even when the 
quotient or the remainder is zero. 

The divide operation is executed in much the same 
manner as in manual arithmetic. First, the divisor is 
properly aligned with the high-order dividend; then, by 
repeatedly subtracting the divisor from the dividend and 
counting the number of successful subtractions, the 
high-order quotient · digit is determined. The partial 
remainder resulting from the last successful subtraction is 
shifted one digit position to the left, and the next 
lower-order dividend digit is inserted at the low-order end 
of the partial remainder. To obtain the next quotient digit, 
the divisor is again subtracted from the partial remainder. 

7201-02 FETOM (7/70) 3-129 



Initial contents 
of 1st operand 

Dividend 

Maximum dividend size 
is limited to 16 bytes 

• -.-
Contents of 
2nd operand 

B 
Maximum divisor 
size is I imited to 
8 bytes and must 
be less than the 
dividend 

Figure 3-20. Operand Specifications for Decimal Divide 

This sequence is repeated until all dividend digits have been 
processed. The remainder resulting from the final successful 
subtraction is given the sign of the dividend and stored into 
the low-order end of the dividend field. 

Figure 3-21 illustrates a typical repetitive subtract 
sequence used to accomplish division. Initially, a sufficient 
number of high-order dividend digits must be selected to 
perform the first successful subtraction. Successful 
subtractions of the divisor from the dividend occur until 
the partial remainder is overdrawn. The divisor is then 
added back once to restore the correct partial remainder. 
At the same time, the quotient digit is decremented by 1 to 
compensate for the overdraw. As each dividend byte is 
processed, the length code of the dividend (LI) is reduced 
by 1 and compared with the length code of the divisor 
(L2). Because the size of the remainder is also defined by 
length code L2, the condition of L1 equal to L2 indicates 
that all the effective bytes of the dividend have been 
processed, and the remainder is to be stored into the rest of 
the destination field. Note that, to be able to fit the 
quotient and the remainder into the destination field, this 
field must initially contain high-order zeros. A data 
program interruption occurs if the dividend does not have 
at least one leading zero. 

Following are general and detailed descriptions of the 
divide microprogram. The general description outlines the 
overall structure of the microprogram, enumerates its major 
functional steps and subroutines, and explains their 
relationship to the overall operation. The detailed 
description analyzes each sequence individually, making 
specific references to the register-to-register data transfer in 
the CE. 

General Description 

Upon entering the divide microprogram, the following 
actions have been performed by SS I-Fetch: 
1. A D-request has been issued for the doubleword 

containing the low-order dividend byte. 

3-130 (7/70) 

Final contents 
of 1st operand 

Quotient Remainder 

Maximum quotient and 
remainder size is 
limited to 16 bytes: 

I 
Maximum I Maximum 
quotient= 15 bytes I remainder = 8 bytes 

: (Minimum remainder is 
I 1 byte) 
I (Remainder is always 
I equal in size to the 
I divisor) 

I 

2. The low-order dividend address has been placed into D. 
3. The contents of the IC have been transferred to the 

LSWR, and the high-order divisor address has been 
placed into the IC. 
An overall flowchart of the divide microprogram and the 

general data path used for its execution are shown in Sheet 
1 of Diagram 5-306, FEMDM. The major subroutines and 
functional steps, shown in the figure, are explained in the 
following subparagraphs. Additional simplified diagrams are 
provided as an aid in visualizing the data handling 
performed. For the most part, these diagrams do not show 
the gates and data paths used in the CE, but are intended 
solely to convey how the divide algorithm is implemented. 
For purposes of illustration, a nine-byte dividend and a 
three-byte divisor are assumed in these diagrams. 

General Initialization Sequence 

This sequence shares a common microprogram with the 
Multiply instruction. An appropriate branch is taken to 
enter either the divide or the multiply sequence. GIS gates 
the low-order dividend from the SDBO to ST, increments 
the IC by L2 to address the low-order byte of the divisor, 
issues an IC request for the divisor, and gates the divisor to 
AB. The ABC is set to the low-order divisor byte jn AB 
(Figure 3-22), and the STC is set per L2. STATE is set if 
the dividend sign is invalid, and D is decremented by L1 to 
the address of the high-order byte of the dividend. 

Specification Test 

This test verifies that the length codes for both operands in 
the instruction are correctly specified; i.e., L2 specifies 
eight bytes or less and is smaller than L1. 

Incorrect Specification 

Detection of an invalid specification forces a specification 
program interruption. The instruction address is restored to 
the LSWR, and the instruction is ended. 



Divide (+1315) by (-57) to obtoin o quotient 
of (-23) ond o remainder of (+4). 

Execution: 
Low-order byte is addressed to check 
for vol id sign, then D is decremented 
by LI to oddress high-order byte. 

(L 1 : 3) 

T 
Select correct number 
of high-order dividend 
digits to perform sue-
cessful subtraction. 

,--1-, 
1 3 1 

Subtract 
5 7 

0 7 4 
Remainder + 

0 5 7 
Subtract 

1 7 
Remainder + 

0 5 7 
Subtract 

c 4 
Remainder -

Record 1st 
Subtraction 

r Restore 
remainder (+) 0 5 7 

(+) I 7 

JI/ 
0 

0 5 7 

1 I 8 

5 7 

0 6 1 

0 5 7 

0 0 4 

0 5 7 

0 5 3 

Restore 0 5 7 
remainder 

0 0 

Add 

Subtract 

Remainder + 
Record 2nd 

Subtract Subtraction 

Remainder + 
Record 3rd 

Subtract Subtraction 

Remainder + 
Record 4th 

Subtract Subtraction 

Remainder -

Add Deduct i 

At this time, LI = L2,indicating that 
ol I dividend bytes hove been processed. 
Rest of destination field is reserved 
for remainder. 

Store Remainder 

Figure 3-21. Example of a Typical Divide Sequence 

(L 1 : 3) 

' Save Sign 

Develop 1st 
quotient digit 

Store 

Compare signs:-

They are not a Ii ke 

7201-02 FETOM (7/70) 3-131 



Address of 
high-order byte 

(GPRpI Bl" DI I 

Dividend 
(9 Bytes) 

Address of 
low-order byte 

(G PR pee Bl j ' DI ' LI ) 

Address of Address of 
high-order byte low-order byte 
(GPR per B2, + D2) (GPR per B2, + D2 + L2) 

1 j 
Divisor 
(3 Bytes) 

~ound.aries 8 B tes --,-----t-----8 Bytes 8 Bytes 
Doubleword += --++-
1n main storage Y -----r------ 8 Byte' -------1 

6 dividend bytes remain 
in main storage. 

Doubleword containing 3 
dividend bytes is 

l divisor byte remains 
in main storage. 

accessed during I-Fetch and 
placed into ST during G IS .. 

Set if invalid 

Set 

STC set to where the 
low-order divisor byte 
will be placed.· 

STATE 

if minus, 
then 
reset. 

STAT F 

Figure 3-22. Data Handling During GIS of Decimal Divide 

3-132 (7 /70) 

Doubleword containing 2 
divisor bytes requested 
during G IS and placed 
into AB. 

Set ABC to low
order divisor byte 



Divisor Left-Adjust Sequence 

The divisor bytes are transferred from AB to ST in such a 
manner that the high-order divisor byte occupies the 
leftmost byte in ST. STAT C is set if the divisor sign is 
negative. 

The left-adjust transfer is initiated by setting the STC 
per L2 (a function performed during the GIS). Because the 
maximum divisor length is limited to eight bytes, only three 
of the four bit positions in L2 are needed to effectively 
specify the length code; i.e., the count in L2 may range 
from a minimum of 0000 (for one byte) to a maximum of 
0111 (for eight bytes). Setting the STC per L2 
automatically selects, according to the divisor size, the 
correct ST position for the low-order byte of the divisor; 
the number of bytes to the left of the selected ST position 
corresponds to the length field of the full divisor (Figure 
3-23). The actual transfer is performed one byte at a time, 
through the serial adder, starting with the low-order divisor 

Divisor 
(3 Bytes) 

byte. ABC, STC, and L2 are decremented by 1 for each 
byte transferred. The divisor is completely transferred when 
L2 is decremented to zero. Because the first IC request 
(during I-Fetch) does not necessarily access the full divisor 
to AB, it may be necessary to fetch the balance of the, 
divisor from main storage. (This fetch occurs if the ABC 
steps to zero before L2 steps to zero.) 

After exit from the Divisor Left-Adjust sequence, the 
full divisor has been fetched _and left-adjusted to ST. 

Dividend Fetch and Left-Adjust Sequence 

This sequence fetches a sufficient number of high-order 
dividend bytes to perform a trial subtraction of the divisor 
from the dividend. The full divisor is subtracted once from 
the high-order dividend. Because the maximum divisor size 
is eigh,t bytes, eight high-order dividend bytes are required 
for trial subtraction. If the dividend is eight bytes or less, it 
is completely fetched during this sequence; if greater than 

, ... ._' _____ 8 Bytes _______ .._ ______ 8 Bytes ---------1 .... 1 

I 
I 
I 
I 
I 
I 
I 
+ 

I 

Doubleword containing the high-order b~te I 
is fetched by the left-adjust sequence after I 
the initial AB contents have been transferred 
to ST. 

: I 
: I 

i ! 

Doubleword containing 
2 divisor Bytes was 
placed into AB during GIS. 

Selects low-order 
divisor byte. 

........ .... .... .... .... .... ,... ..---i~ .................................. .. 
IA I B I A I I B 

L - - - - - - _I_ - - - - JE.I~ .Q E_._D___,s,...._ ___ .__ _____ ___, 
Set if minus 

T 

I 
I 

/ 
/ 

Figure 3-23. Data Handling During Divisor Left-Adjust Sequence 

FL 1 I L2 

1000 I 0010 

STAT C 
Divisor Sign 

7201-02 FETOM (7/70) 3-133 



eight bytes, only the first eight high-order bytes are 
fetched. The dividend is fetched to AB and then transferred 
to ST in such a manner that the high-order byte occupies 
the leftmost byte in ST. 

Upon entry into this sequence, ST is assumed to be 
completely occupied by the divisor. (If the divisor is four 
bytes or less, it is confined solely to S; if greater than four 
bytes, the divisor extends into T.) Because left-adjustment 
of the dividend requires the use of ST, the divisor must be 
transferred from ST; S is gated to the parallel adder and 
held in PAL, and T is stored into the LSWR (Figure 
3-24).t 

A request per the high-order dividend address is issued 
from D. Upon arrival of the dividend from main storage, 
the SDBO is gated to AB. The ABC is set per D(21-23) to 
select the high-order dividend byte. The left-adjust transfer 
is initiated by setting STC to 000, thus selecting the 
leftmost byte in ST. The dividend bytes are then 
transferred to ST, starting with the high-order byte. (The 
actual transfer is performed one byte at a time through the 
serial adder.) The ABC and STC are incremented, and L1 is 
decremented by 1 for each byte transferred. If L1 steps to 
zero before the ABC or STC steps to 7, the full dividend 
has been fetched and left-adjusted to ST. Because the first 
request does not necessarily access eight bytes of dividend 
to AB, it may be necessary to fetch additional dividend 
bytes from main storage. This fetch occurs if the ABC steps 
to 7 before the STC steps to 7 or L1 steps to zero. 

Restore L1 and L2 to E 

Left-adjustment of the divisor and dividend has 
decremented L2 and L1 to zero. The initial L2 and L1 
counts, saved in F during GIS, are now restored to 
E(8-15). These counts are required by the subsequent 
divide sequence. 

Assemble Divisor in AB and Dividend in ST 

The divisor in PAL and LSWR is restored to AB. Upon 
completion of this function, both operands are left-aligned: 
the dividend is in ST, and the divisor is in AB. 

IAD : ; . o: D o:o 

t The ·-~ HOLD' micro-order is issued on each cyde of the 
left-adjust sequence to hold the S contents in PAL. 

3-134 (7/70) 

Trial Subtraction 

The divisor bytes in AB are subtracted from an equivalent 
number of high-order dividend bytes in ST. The remainder 
is then examined to establish whether the divide operation 
to follow will generate a result (quotient plus remainder) 
that will fit into the destination field. A negative remainder 
indicates that the destination field specified in the 
instruction is sufficiently large to accommodate the result. 
A positive remainder, however, indicates that the result 
cannot fit into the destination field, and a decimal divide 
program interruption occurs. 

How prediction by trial subtraction is possible may be 
understood from the following considerations: 
1. By definition, the dividend is at least one order higher 

than the divisor. The high-order digit position in the 
dividend is always zero. 

2. The length code of the divisor (L2) is also the length 
code for the remainder. Consequently, the maximum 
number of quotient. bytes that will fit into the 
destination field is equal to L1 minus L2. By operand 
definition, the difference of L1 minus L2 may range 
from a minimum of one byte to a maximum of eight 
bytes. 

I .,.,,____D_iv~~e-nd--.-i•I : P'~"'d = .___L_1-_L2_...&.-_L2 __ 

3. To perform the trial subtraction, the high-order divisor 
digit is aligned with the high-order digit of the dividend. 
This is performed in two steps: (1) the high-order divisor 
byte is aligned with the high-order byte of the dividend, 
and (2) because by definition the high-order digit 
position in the dividend is always zero, the divisor is 
shifted right one digit position to align the significant 
digits in both operands. 

Step 1 

Step 2 

Dividend 
in ST 

STC {Set at high-order dividend byte) 

Byte Byte Byte By
4
te By

5
te 

1 2 3 

ABC {Set at high-order divisor byte) 

* 
STC 

* 

Byte 
6 

Byte 
7 

I I I I I \ High-order dividend 
9 D D D D D D D { bytes in ST 

ABC 

Shift.,,,,.,, 1 digit I * I I I i 
position to right I Divisor in AB 

..... ODD ODDO 



Dividend (9 Bytes) 

I••------- 8 Bytes ------...,.f------- 8 Bytes _____ ., .. , 

A 

Doubleword containing 
6 dividend bytes 
is accessed and 
placed into AB. 

Set to high-order 
dividend byte. 

Doubleword containing low-order dividend I 
bytes is fetched by left-adjust sequence 
after initial AB contents h.ave been 

1 
transferred to ST. 

I 

i i 
I 
I 
I 
I 
I 
I 

:-r- I B 
I I I 

....._ _____ ..;...;;;..,~~;...i..,;;_,...;;;;...i.;;;.,,~""'-~ 9, QI Q.
1

..£> 1..Q JI __ I _________ J 

Parallel 
Adder 

PAL 

I I 

) ) 
I I 

I / 

I 
I 
I 

I 

I 
I 

I 

At the start of left-adjust 
sequence,divisor is transferred 
to PAL and LSWR. 

Local 
Storage 

LSWR 

Figure 3-24. Data Handling During Dividend Fetch and Left-Adjust Sequence 

7201-02 FETOM (7 /70) 3-135 



4. Because the dividend is at least one order higher than the 
divisor, alignment of the high-order divisor digit with 
that of the dividend is equivalent to multiplying the 
divisor at least 10 times; if the dividend is one order 
higher, the divisor is multiplied 10 times; if two orders 
higher, 100 times; if three orders higher, 1000 times; and 
so on. Thus, during the trial subtraction, a quantity at 
least 10 times that of the divisor is subtracted from the 
dividend. 

5. Because the maximum number of quotient digits 
allowed (Ll minus L2) corresponds to the difference 
between the orders of magnitude in the two operands, 
the result of the trial subtraction must always yield a 
negative remainder; otherwise, the number of quotient 
digits that would be generated would not fit into the 
destination field. 

Shift Dividend One Digit to Left 

The dividend is shifted one digit to the left to allow a 
successful subtraction of the divisor from the dividend. (To 
develop the quotient digit, the divisor must be repeatedly 
subtracted from the dividend until a negative remainder 
occurs.) Upon initiating the left4 shift, a test is made to 
establish whether an additional low-order dividend digit is 
required for generation of the first quotient digit. If 
required, the next low-order dividend byte is fetched from 
main storage and placed into F. The digit is selected from 
F(0-3) and inserted at the low-order end of the dividend in 
ST. 

ST 

If ne.cessary, fetch next 
low-order dividend byte 
from main storage 

Insert digit at low
order dividend 
end in ST 

Generate Quotient and Left-Digit Sequence 

The divisor is repeatedly subtracted from the dividend until 
an overdraw occurs; i.e., a negative remainder is obtained. 
The number of successful subtractions is recorded and, 
after the last successful subtraction, becomes the high-order 
quotient digit. This digit is tested for validity and then 
inserted into F(0-3) by the left-digit sequence. This 

3-136 (7/70) 

sequence also shifts the· partial remainder (in ST) one digit 
to the left and inserts the next low-order dividend digit into 
the low-order end of ST. 

Next low-order 
dividend digit 

Remainder 
will contain 
at least one 
high-order 
zero 

High-order quotient 

Correct Low-Order Remainder Byte 

\ 

In certain cases, the low-order remainder byte in ST must 
be corrected. The need for correction will become apparent 
when the Divide instruction is analyzed in detail. (See 
"Detailed Description" below.) 

Generate Next Quotient Digit and Right Digit Sequence 

After exit from the left-digit sequence, the operand length 
codes (Ll and L2) are compared to establish whether the 
last byte of the quotient is being processed. If L1 equals 
L2, the correct quotient sign is inserted into F( 4-7). The 
last quotient byte (in F) is stored; then, the partial 
remainder (in ST) is stored into the low-order destination 
field as the final remainder. 

If L1 does not equal L2, the next quotient digit is 
generated and placed into F( 4-7) by the right-digit 
sequence. At the completion of this sequence, one 
complete byte of quotient is contained in F. This byte is 
stored into main storage, and the sequence for the left digit 
of the next quotient byte is started. 

Detailed Description 

• ST AT A is set to indicate nonzero divisor. 

• STAT Cis set if divisor is negative. 

• ST AT D is set if dividend is less than eight bytes. 

• ST AT E is set if digit or sign is invalid. 

• ST AT F is set if dividend is negative. 

• ST AT G is first set if divisor is five bytes or greater. 
STAT G is then set again to enter left-digit sequence. 

• ST AT H is set to generate hot carry for subtract 
sequence. 



Sheet 2 of Diagram 5-306 is a detailed flowchart of the 
divide microprogram. This figure is an expanded version of 
the overall flowchart, showing the data handling used in the 
various ·subroutines of the Divide instruction. The major 
subroutines and those areas in need of clarification are 
explained in the following subparagraphs. 

General Initialization Sequence 

This sequence shares a common microprogram with the 
Multiply instruction. An appropriate branch is taken to 
enter either the divide or the multiply sequence. 

To test for an invalid dividend sign before the dividend is 
altered in main storage, the low-order dividend is accessed 
by a D request during SS I-Fetch. At the start of GIS, the 
doubleword containing the low-order byte of the dividend 
is gated to ST. The IC is incremented by L2 to address the 
low-order divisor byte, and the low-order divisor is accessed 
by an IC request. The contents of D are transferred to the 
STC, length codes LI and L2 are transferred to F, the ABC 
is set to 7, and the IC is decremented by 8 to address the 
next doubleword of the divisor. 

The dividend sign is tested, and STATE is set if the sign 
is invalid. STAT Fis set if the dividend sign is negative, but 
is immediately reset. D contains the address of the 
low-order byte of the dividend (contents of GPR addressed 
by Bl,+ DI + LI). Because the divide operation begins at 
the high-order byte of the dividend, Dis decremented by 
Ll. to address the high-order byte of the dividend (contents 
of GPR addressed by Bl,+ DI). The STC is set per L2. 

A test of L2 (contained in the STC) is performed to 
establish the byte size of the divisor. ST AT G is set if the 
divisor is equal to or greater than five bytes. This function 
increases the execution speed when assembling the divisor 
in AB (see "Assemble Divisor in AB and Dividend in ST"); 
i.e., if the divisor is four bytes or smaller, the LSWR need 
not be restored to B. 

Divisor Left-Adjust Sequence 

1. The initial STC setting selects the rightmost ST byte that 
contains the low-order divisor byte. 

2. STAT C is set if the divisor sign is negative. 
3. If the ABC steps to zero before L2 steps to zero, the 

remailling low-order divisor bytes are fetched from main 
storage. 

4. The divisor digits are checked for validity, and STAT E 
is set if an invalid digit is detected. STAT A is set to 
indicate a nonzero divisor. Division by zero results in a 
decimal divide program interruption during trial 
subtraction. · 

5. Upon fetching the full divisor, the divisor address is no 
longer needed, and the instruction address is restored to 

·the IC. 

Dividend Fetch and Left Adjust Sequence 

1. The divisor is shifted one digit position to the right so 
that its high-order digit will be aligned with that of the 
dividend. (The dividend is not yet available.) 

2. The low-order divisor word is transferred from T to the 
LSWR. The high-order divisor word is gated to the 
parallel adder and held in PAL by the '- -+ HOLD' 
micro-order. 

3. The STC is set to zero to select the high-order ST byte 
(where the high-order dividend byte will be placed). 

4. A test of the high-order LI bit is performed to establish 
the byte size of the dividend. STAT D is set if the 
dividend is less than eight bytes. This function increased 
the execution speed upon exit from the trial subtraction. 
A branch per ST AT D is made to determine whether the 
complete dividend has been fetched. (If STAT D is set, 
the full dividend has been fetched, because at least eight 
dividend bytes are fetched to perform the trial 
subtraction.) 

5. If the ABC steps to zero before LI or STC steps to zero, 
the D-address is incremented by 8 and a fetch of the 
next doubleword of the dividend is made. The 
destination address for the subsequent quotient bytes is 
then restored by subtracting 8 from D. 

Assemble Divisor in AB and Dividend in ST 

This function is performed in parallel with the LI and L2 
restoration sequence. The high-order divisor word is 
transferred from PAL to A, after which restoration of the 
LI and L2 counts is started. During the restoration 
sequence, ST AT G is tested to establish whether the full 
divisor has been assembled in AB. If STAT G is not set, the 
divisor is four bytes or less. Therefore, the full divisor was 
contained in PAL and has been placed into AB. In this case, 
the restoration sequence is completed and an exit is made 
to the trial subtraction routine. 

If STAT G is set, the low-order portion of the divisor is 
contained in the LSWR and must be transferred to B before 
entering the trial subtraction. The LSWR contents must be 
transferred to B via ST, which ~ontains the left-aligned 
dividend. Several execution cycles are used to transfer the 
LSWR contents to B without destroying the ST contents. 

Trial Subtraction 

The divisor is subtracted from the dividend one byte at a 
time. After the last subtract cycle, a branch is made on a 
carry condition from SAL(O). Presence of a carry indicates 
that the remainder is positive, and the instruction is ended. 
Absence of a carry indicates a negative remainder, and that 
the result of the divide operation will fit into the 
destination field. 

7201-02 FETOM (7 /70) 3-137 



Dividend (or Partial Remainder) Left4 Shift 

The dividend is shifted left one digit position to perform 
the first successful subtraction of the divisor from the 
dividend. Upon initiating the left4 shift, a test (per STAT 
D) is made to establish whether an additional dividend digit 
must be inserted into the low-order end of ST. If ST AT D is 
set (see "Dividend Fetch and Left-Adjust Sequence," step 
4), all dividend bytes have been fetched from main storage 
and the left4 shift is coll!pleted. If STAT Dis not set, the 
following actions take place: 
1. The D-address is incremented by 8, and the next 

doubleword of the dividend is requested from main 
storage. 

2. The contents of T are temporarily transferred to the 
LSWR. (Upon arrival of the dividend doubleword from 
main storage, T is loaded with the dividend word 
containing the next digit to be inserted.) 

3. The STC is set per D(21-23) to select the correct 
dividend byte in the requested doubleword. 

4. The left4 shift of the dividend is completed. The 
high-order dividend word is in S, and the low-order word 
is in the LSWR. · 

5. A branch per D(21) is made to establish which word in 
the SDBO contains the next dividend byte. The correct 
word is then gated from SDBO to T. [Note that, if the 
left SDBO word is gated to T, STC(O) is forced to 1 to 
select the correct byte in T.] 

6. The selected dividend byte is transferred from T to F. 
The shifted low-order dividend word is then restored 
from the LSWR to T. 

7. The destination address is restored by subtracting 8 from 
D. 

8. The high-order L1 bit is tested to establish the byte size 
of the dividend, and STAT Dis set if the dividend is less 
than eight bytes. This function increases the execution 
speed upon exit from the right-digit sequence. 

Generate Quotient Sequence 

1. The ABC and STC are set per L2 to select the low-order 
operand bytes. ST AT H is set to provide a hot carry to 
the serial adder. 

2. The selected AB byte is subtracted from the selected ST 
byte via the serial adder. The result is gated back to the 
selected ST byte, with the carry being saved in STAT H. 
Any invalid digit detected in the serial adder sets ST AT 
E. 

3. The ABC and STC are decremented as each byte is 
processed. When the ABC is stepped to zero, a 1 is added 
to F( 4-7) and the ABC and STC are again set per L2. 

4. If a serial adder carry results upon processing the 
high-order byte, the partial remainder in ST is positive 
and the divisor is again subtracted from ·the dividend. 
F( 4-7) is incremented by 1 each time a complete 
subtraction is made. 

3-138 (7 /70) 

5. If there is no carry upon processing the high-order byte, 
an exit is made to the appropriate left- or right-digit 
sequence, as determined per STAT G. 

6. Note that, before starting each subtract sequence, the 
partial remainder resulting from the previous subtraction 
is saved in the LSWR and PAL. The saving is done 
because, upon exit on a no-carry condition, an overdraw 
has occurred and the remainder in ST cannot be used for 
computation of the next quotient digit. Instead, the 
partial remainder resulting from the last successful 
subtraction is used for subsequent computation. 

Left-Digit Sequence 

1. The quotient digit in F( 4-7) is the left digit of a 
quotient byte. This digit is reduced one count, to 
compensate for the overdraw, and then cross-gated via 
the serial adder to F(0-3). 

2. The partial remainder resulting from the last successful 
subtraction and saved in the LSWR and PAL is shifted 
one digit to the left and restored to ST. The next 
low-order dividend digit, in B(64-67), is inserted into 
the low-order end of ST. 

3. A test on STC equal to or greater than 4 is made to 
establish whether the low-order byte of the partial 
remainder in the LSWR has been overdrawn. In the 
generate quotient sequence, the contents of Tare stored 
into the LSWR at the same time that the first subtract 
cycle is performed. Thus, if the partial remainder 
extends into T (which occurs if the STC is 4 or greater), 
the low-order divisor byte is subtracted from the · 
low-order partial remainder byte once too often. In such 
cases, the low-order byte of the partial remainder is 
corrected by adding it to the low-order divisor byte. 
After performing the correction, the left-digit ·sequence 
is re-entered. 

4. If L1 equals L2, the quotient sign byte is processed.· 
Otherwise, the quotient digit generation routine is 
resumed to develop the next digit. 

Correct Low-Order Remainder Byte 

This routine is entered from the left- or right-digit sequence 
if the low-order divisor byte has been subtracted once too 
often from the low-order byte of the partial remainder. 
Correction is performed as follows: 
1. STAT His reset to initiate a true add cycle. 
2. The low-order partial remainder word is placed into T. 

The STC is set per L2 to select the low-order byte in'T. 
3. The low-order divisor byte (per the ABC) is added once 

to the low-order partial remainder byte (per the STC), 
and the result is gated to T per the STC. 

4. The left- or right-digit sequence is re-entered, as 
applicable. 



Right-Digit Sequence 

This sequence is entered when two quotient digits have 
been generated and placed into F. The following actions are 
performed: 
1. The STC is set per D(21-23), and Fis transferred to the 

selected ST byte. The corresponding mark trigger is set 
per the STC. 

2. A storage request is issued to store the quotient byte per 
the D address. 

3. A left4 shift of the partial remainder (in PAL and 
LSWR) is initiated. 

4. If STAT Dis set, indicating that a dividend byte fetch is 
not required, the left4 shift is completed and the partial 
remainder is restored to ST. 

5. If STAT Dis not s~t, the dividend byte fetch sequence is 
entered. 

6. D is decremented by 1 to obtain the destination address 
for the next quotient byte. 

7. F is cleared and STAT G is set to enter the left-digit 
sequence, after the first quotient digit is generated. 

8. If STAT E is set, the 'invalid data interrupt' trigger is set 
and the instruction is ended. 

9. If STAT Eis not set, the generate-quotient sequence is 
entered. 

Process Quotient Sign Byte 

This routine is entered from the left-digit sequence when 
LI equals L2. At this time, all dividend digits have been 
processed: the low-order quotient digit is in F(0-3), the 
byte selected by the STC is the dividend sign byte, and the 
remaining high-order contents of ST are the final 
remainder. The following actions take place: 
1. The STC and ABC are set per the L2 count. ST AT F is 

set if bits 4-7 of the selected ST byte indicate a negative 
sign. STATE is set if the sign is invalid; however, if an 
invalid sign existed, STAT E would have been set and a 
data program interruption would have occurred earlier. 

2. The correct negative or positive sign is put into F( 4-7) 
as determined by a comparison of ST AT's C and F. 

3. The ST contents are transferred to AB via the parallel 
adder. 

4. The STC is set per D(21-23), and F is gated to the 
selected ST byte. The corresponding mark trigger is set, 
and the selected ST byte is stored into main storage. 

Store Remainder Routine 

1. The byte selected by the ABC, which is the low-order 
remainder byte, is saved in F. If necessary, the remainder 
sign is corrected in the serial adder before gating to F. 

2. The remainder is transferred from AB to ST one byte at 
a time. As each byte is transferred, the corresponding 
mark trigger is set, the ABC and STC are incremented by 
1, and L2 is decremented by 1. 

3. When the STC steps to 7, ST contents are stored per the 
D-address. D is then incremented by 8, and the byte 
transfer is resumed. 

4. When L2 steps to 0, the STC is decremented by 1, and 
the remainder sign byte is gated from F to ST. The 
contents of ST are then stored into the low-order 
destination field, and the instruction is ended. 

5. If ST AT E is set, an exit is made to the program 
interruption microprpgram. 

PACK, PACK (F2) 

• Convert format of 2nd operand (in storage) from zoned 
to packed and place result into 1st operand location (in 
storage). 

• SS format: 

F2 LI L2 B 1 ~ D 1 I B2 I ~ G 
7 8 11 12 15 16 19 20 31 32 35 36 47 

Store result at 1st 
operand address, starting 
at low-order byte. 

Unpacked 

Unpacked 

~ 
d0 

Packed 

Yes 

Fetch doubleword contoining 
low-order byte of 2nd 
operand per contents of GPR 
addressed by B2, + 02 + L2. 

Process 
next 
byte 

Generate right 
destination digit. 

Generate left 
destination digit. 

• Separate microprogram is used during word· overlap. 

The Pack instruction assumes source data in the unpacked 
format. The low-order source byte consists of a sign (bits 
0-3) and a digit (bits 4-7). These two characters are 

· swapped as they are gated to the low-order destination 
byte. All other source bytes consist of a zone (bits 0-3) 
and a digit (bits 4-7). Only the digits are gated to the 
destination field, with two bytes of source being processed 
for each byte of destination. 

7201-02 FETOM (7/70) 3-139 



The sign and digits of the second operand are moved 
unchanged to the first operand field and are not checked 
for valid codes. A separate microprogram is provided for 
byte processing when a word-overlap condition exists. A 
test for word overlap is performed in the GIS of the 
instruction and also each time that a new doubleword of 
source is fetched from main storage. 

The GIS microprogram for the Pack instruction is shown 
in Diagram 5-307, FEMDM. This microprogram gates the 
low-order first operand from the SDBO to ST, increments 
the IC by L2 to address the low-order byte of the second 

. operand, gates the low-order second operand from the 
SDBO to AB, and performs the word-overlap test. 

The word-overlap test is performed in two steps. First, 
the doubleword addresses for the destination and source are 
compared by subtracting D from the IC. The difference is 
then shifted four bit positions to the right and gated to 
PAL, and PAL( 40-64) is sensed for an all-zero result to 
detect a possible word overlap. [The right4 shift is made to 
avoid comparison of byte addresses within the doubleword; 
i.e., the difference for the byte addresses is shifted. tc 
PAL(65-67), which is not sensed by the branch.] If the 
addresses for the doublewords of source and destination are 
different, no word-overlap condition exists. Thus, if 
PAL(40-64) is not zero, a branch is made to the 
appropriate not-word-overlap execution sequence of the 
instruction. 

If PAL(40-63) equals zero, indicating that the same 
doubleword address has been specified for the source and 
destination, a second test must be made to verify whether 
special data handling is required. The contents of D are 
again subtracted from the IC, but this time a right4 shift 
on the difference is not performed and the byte addresses 
within the same doubleword are compared. If PAL( 40-63) 
equals zero, an identical address has been specified for both 
source and destination. Because this case of word overlap 
does not require special data handling, a branch is made to 
the not-word-overlap microprogram. If, however, 
PAL(40-63) is not zero, the source and destination bytes 
are skewed; special data handling is requi.red in the 
execution phase and, accordingly, a branch is made to the 
appropriate program. 

Instruction Execution, Not Word Overlap 

• Basic execution is as follows: 
1. Process sign byte and test for exit conditions. 
2. If no exit conditions, process right destination digit. 
3. Process left destination digit and test for exit 

conditions. 

A flowchart of the execution of the Pack instruction 
without word overlap is shown in Diagram 5-308, FEMDM. 
The major functional steps in the microprogram are 
described in the following subparagraphs. 

3-140 (7 /70) 

Process Sign Byte 

1. The selected AB byte is gated via the serial adder 
cross-gates to the selected ST byte. The mark trigger 
selected by the STC is set. 

2. ABC, STC, L1, and L2 are decremented by 1. 
3. An exit is made to the appropriate routine if one or 

more of the counters (ABC, STC, L1, L2) was equal to 
zero before being stepped. 

4. If no exit is made, the next source byte is processed to 
obtain the right destination digit. 

Generate Right Destination Digit 

1. Bits 4-7 of the selected AB byte are gated to 
SAA( 4-7); no data is gated to SAA(0-3). The serial 
adder output is gated from SAL(0-7) to the selected ST 
byte. 

2. The ABC and L2 are decremented by one count. 
3. If L2 equals zero before stepping, the remaining source 

bytes are. extended with high-order zeros. (See 
"Extension of Source Bytes with High-Order Zeros.") 

4. If the ABC equals zero before stepping, an exit is made 
to the source fetch routine. STAT G is set to cause a 
return to the Generate Left Destination Digit routine 
after the source fetch. 

Generate Left Destination Di,git 

1. Bits 4-7 of the selected AB byte are gated to 
SAA(0-3). Bits 4-7 of the selected ST byte are gated to 
SAB( 4-7). The serial adder output is gated back to the 
selected ST byte, and the mark trigger selected by the 
STC is set. 

2. ABC, STC, LI, and L2 are decremented by 1. If none of 
these counters equalled zero before stepping, the right 
digit for the next destination byte is generated. 
(Generate Right Destination Digit sequence is entered.) 

Exit Conditions 

An exit is made from the sign byte routine or from the 
left-digit routine when one or more of the following 
conditions are detected by the 'DECIMAL' (functional 
branch) micro-order: 
1. LI or STC = 0. 
2. L2 = 0. 
3. ABC= 0. 

When the exit is on L1 or STC equals zero, a second test 
on Ll-equal-all-1 's is required to determine whether an 
end-op condition exists. 

Extension of Source Bytes with High-Order Zeros 

This routine is entered when L2 has stepped to zero before 
L1 has stepped to zero. 

The serial adder output (zeros) is gated to the selected 
ST byte with the selected mark trigger being set. L1 and 
STC are decremented as each byte is processed. When L1 
equals zero, the contents of ST are stored per the D-address 



and the common end-0p routine is started. When the STC 
equals zero, the contents of ST are stored, and D is 
decremented by 8. STAT His set to cause a return to this 
routine after storing the contents of ST. 

Source Fetch Routine 

This routine is shared with the Move with Offset 
instruction. STAT D is set to cause a return to the pack 
microprogram. 

The secorid operand is requested from main storage, and 
the IC is decremented by 8. A word-0verlap test is 
performed. If no word-0verlap condition exists, the next 
doubleword of the second operand is gated from the SDBO 
to AB. Processing of the left or right destination digit is 
resumed as determined by ST AT G. 

Instruction Execution, Word Overlap 

• Basic execution is as follows: 
I. Process sign byte. Update AB and test for exit 

conditions. 
2. If no exit conditions, process right destination digit. 
3. Process left destination digit, update AB, and test for 

exit conditions. 

A flowchart of the Pack instruction execution under 
word-0verlap conditions is shown in Diagram 5-309, 
FEMDM. This microprogram is entered when a 
word-0verlap condition is detected in the GIS or during a 
source fetch. The "major functional steps in the 
microprogram are described in the following subparagraphs: 

Process Sign Byte 

The sign byte of the second operand in AB is processed in 
the same manner as in the not-word-0verlap microprogram. 

Update AB from ST 

The data in AB is updated by transferring the contents of S 
to A or the contents of T to B, depending on the STC 
setting. ABC, STC, LI, and L2 are decremented by 1, and 
the mark trigger selected by the STC is set. 

If any counter equalled zero before decrementing, an 
exit is made to the proper store, fetch, or extend-with-zeros 
routine as explained for the not-word-0verlap sequence. If 
no exit conditions exist, processing of the right destination 
digit is started. 

Generate Right Destination Digit 

This routine is the same as in the not-word-0verlap 
sequence. 

Generate Left Destination Digit 

This routine is the same as .in the not-word-0verlap 
sequence and is always followed by the update routine. 

Source Fetch Routine 

The next doubleword of source is requested from main 
storage, after which the IC is decremented by 8. Upon 

detection of a word-0verlap c;;ondition, however, this 
doubleword is not used, because AB must be updated from 
ST. If, upon entering the source fetch routine, only the 
right destination digit has been placed into the selected ST 
byte, this byte is not transferred to AB. Instead, the 
following action takes place: 
I. The portion of ST that has been processed (as 

determined by the mark triggers) is stored into the 
destination field, re fetched from storage, and gated to 
both AB and ST. 

2. If STAT G is set, indicating that only the right digit of 
the selected ST byte has been processed, the selected ST 
byte is transferred to F before the SDBO is gated to ST. 
After the SDBO is gated to ST, F is reinserted into the 
selected ST byte, and processing of the left digit is 
started. 

3. If STAT G is not set, indicating that a complete ST byte 
has been processed, it is not necessary to save the 
selected ST byte. Processing of the right digit is started 
immediately. 

UNPACK, UNPK (F3) 

• Convert format of 2nd operand (in storage) from packed 
to zoned and place result into 1st operand location (in 
storage). 

• SS format: 

F3 L1 L2 Bl ~ D 1 I B2 I ~ B 
7 8 11 12 15 16 19 20 31 32 35 36 47 

Store result at lst 
operand address, starting 
at low-order byte. 

Packed 

Packed 

9 
dTIJ 
Unpacked 

Yes 

Fetch doubleword containing 
low-order byte of 2nd operand 
per contents of GPR per 
B2, + 02 + L2. 

Process sign 
byte of 2nd 
operand. 

Process 
next 
byte 

Process right 
source digit •. 

Process I eft 
source digit, 

7201-02 FETOM (7 /70) 3-141 



• Separate microprogram is used during word overlap. 

• Word-overlap test is performed during GIS and in 
destination store and source fetch routines. 

The Unpack instruction assumes data in the packed format. 
The low-order source byte consists of a sign (bits 4-7) and 
a digit (bits 0-3). These two characters are swapped as they 
are gated to the low-order destination byte. All other 
source bytes contain a pair of binary-coded-decimal digits. 
Each digit is transferred to the low-order portion (bits 4-7) 
of the corresponding destination byte, and a zone character 
is inserted into the high-order portion byte (bits 0-3). 
During this transfer, the digits are not tested for validity. 

A separate microprogram is provided for byte processing 
when a word-overlap condition exists. A test for a 
word-overlap condition is performed in the GIS of the 
instruction and also each time that a doubleword of data is 
fetched from or stored into main storage. 

The Unpack instruction generates two bytes of 
destination for each byte <;>f source. Therefore, the 
condition when the destination bytes are processed 
"ahead" of the source always exists if the operand fields 
overlap. When the same doubleword address is specified, 
special data ·handling is required regardless of how the 
operand bytes are arranged in this doubleword. Special 
handling is necessary each time that source data is fetched 
from main storage; also, upon storing unpacked data into 
the destination field, a word-overlap test must be made to 
determine whether the source data in the CE must be 
updated from storage. 

The GIS microprogram for the Unpack instruction is 
shown in Diagram 5-307. When the first overlap indication 
occurs, the byte addresses are not checked. Instead, a 
branch is forced into the word-overlap sequence by 
supplying a hot carry to PAA(60), so that a test of 
PAL( 40-63) always yields a nonzero result. 

Instruction Execution, Not Word Overlap 

• Basic execution is as follows: 
I. Process sign byte and test for exit conditions. 
2. If no exit conditions, process right source digit. 
3. Process left source digit, and test exit conditions. 

A flowchart of Unpack instruction execution without word 
overlap is shown in Diagram 5-310, FEMDM. The major 
functional steps in the microprogram are described in the 
following paragraphs. 

Process Sign Byte 

The sign byte, selected by the ABC, is gated via the serial 
adder cross-gates to the selected ST byte, and the 
corresponding mark trigger is set. ABC, STC, LI, and L2 
are decremented by I, and an exit is made if any counter 
equalled zero before stepping. 

3-142 (7 /70) 

Process Right Source Digit 

I. Bits 4-7 of the selected AB byte are .gated to 
SAA( 4-7). The approved zone character is inserted into 
SAA(0-3). The serial adder output is gated to the 
selected ST byte, and the selected mark trigger is set. 

2. LI and STC are decremented by I. 
3. If LI equalled zero before stepping, the contents of ST 

are stored and the common end-op sequence is started. 
4. If STC equalled zero before stepping (and LI was not 

zero), the destination store routine is started. STAT G is 
set to record an exit from the right digit routine. 

Process Left Source Digit 

I. Bits 0-3 of the selected AB byte are gated to 
SAA( 4-7), and the zone character is inserted into 
SAA(0-3). 

2. The adder output is gated to the selected ST byte, and 
the selected mark trigger is set. 

3. ABC, STC, LI, and L2 are decremented by I. An exit is 
made to the appropriate routine if any of the above 
counters equalled zero before stepping. If no exit 
condition exists, the right source digit in the next source 
byte is processed. 

Exit Conditions 

An exit is made from the byte processing routine whenever 
it is detected that LI, L2, ABC, or STC is equal to zero. 
Although a separate exit is provided for each possible 
combination of these conditions, they may be considered 
to be examined in the following order of priority: 
l.LI=O 

The contents of ST are stored per the D-address, arid the 
common end-op routine is started. 

2. L2 = 0 
AB is cleared, the ABC is set per L2 (which is 7), and 
STAT H is set to record the end of the source field .. lf 
the STC was also zero, the destination store routine is 
started. If the STC was not zero, the high-order zeros 
routine is entered per STAT H. 

3. STC = 0 
The destination store routine is started. If the ABC was 
also zero, STAT Dis set to cause a source fetch after the 
destination store. 

4. ABC= 0. 
The source fetch routine is started. 

Extension of Source Bytes with High-Order Zeros 

AB is cleared, and bits 4-7 of the selected AB byte (zeros) 
are gated to SAA( 4-7); the approved zone character is 
inserted. into SAA(0-3). The adder output is gated to the 
selected ST byte, and the corresponding mark trigger is set. 
LI and STC are decremented by I for each byte that is 



processed. An exit is made to the destination store routine 
when the STC steps to zero, and to end-op when L1 steps 
to zero. 

Source Fetch Routine 

A request is made· per the IC address, after which the IC is 
decremented by 8. A word-overlap test is made. If there is 
no word-overlap condition, the next source word is gated to 
AB, and the right digit of the next source byte is processed. 

Destination Store Routine 

I. The contents of ST are stored into the destination field 
per the D-address, and Dis decremented by 8. 

2. An exit is made to the source fetch routine if ST AT D is 
set. 

3. An exit is made to the high-order zeros routine if ST AT 
His set. 

4. If neither STAT D nor STAT H is' set, a word-overlap 
test is made by comparing the IC and D addresses. If no 
word overlap exists, the left or right digit is processed as 
determined by ST AT G. 

Instruction Execution, Word Overlap 

• Basic execution is as follows: 
I. Process sign byte. Update AB and test for exit 

conditions. 
2. If no exit conditions, process right source digit. 
3. Process left source digit, and test for exit conditions. 

• Word-overlap test is performed during source fetch and 
destination store routines. 

A flowchart of Unpack instruction execution under 
word-overlap conditions is shown in Diagram 5-311, 
FEMDM. The steps in which this microprogram differs 
from that for not-word-overlap are explained in the 
following paragraphs. 

Process Sign Byte 

This step is the same as in the not-word-overlap sequence 
except that it is always followed by the update routine. 

Update AB from ST 

If the STC is less than 4, the contents of S are transferred 
to A; the contents of T are always transferred to B. The 
mark trigger selected by the STC is set. ABC, STC, Ll, and 
L2 are decremented by I . An exit is made to the 
appropriate routine if any of the above counters equalled 
zero before their befog stepped. If no exit conditions exist, 
the right digit in the next source byte is processed. 

Process Right Source Digit 

The right source digit is processed in the same manner as 
for not-word-overlap. If upon processing the right digit an 
exit is made on STC equal zero, and ABC is not zero, the 

contents of S are transferred to A. In this manner, the 
source is correctly updated before storing the contents of 
ST. 

Process Left Source Digit 

This step is the same as in the not-word-overlap sequence 
except that it is always followed by the update routine. 

Source Fetch Routine 

I. The source is requested per the IC address, after which 
the IC is decremented by 8. 

2. The contents of D are subtracted from the IC to prepare 
for the word-overlap test; also, a test on STC equals 7 is 
made to establish how the source is to be updated in 
case of an overlap condition. 

3. The condition when STC equals 7 indicates that the STC 
was zero before entering the source fetch routine.In this 
case, the destination has been stored into main storage. 
Thus, to update the source, the doubleword at the 
SDBO is gated to AB and ST, and processing of the left 
source digit is started. 

4. If the STC is not 7, AB must be updated from ST. After 
transfer of the contents of ST to AB, processing of the 
right source digit is started. 

MOVE WITH OFFSET, MVO (FI) 

• Store 2nd operand (in storage) to left of and adjacent to 
low-order 4 bits of I st operand (in storage). 

• SS format: 

Fl L 1 L2 B 1 ~ D 1 I B2 I ~ G 
7 8 11 12 15 16 19 20 31 32 35 36 47 

Fetch doubleword 
containing low-order 
byte of 2nd operand 
per contents of GPR 
addressed by B2, 
+ D2 + L2. 

Perform left-4 shift 
on 2nd operand. 

Store result at 1st 
operand address, 
starting at low-order 
byte. 

End op. 

7201-02 FETOM (7/70) 3-143 



• Separate microprogram is used during word overlap. 

The MVO instruction performs a left-4 shift on the second 
operand and transfers the result to the first operand 
location. Thus, the four low-order bits of the first operand 
are preserved as the lowest-order character of the second 
operand. During execution of the instruction, the operand 
signs and digits are not tested for valid codes. 

No decimal shift instruction is provided, because the 
equivalent of a shift can be obtained by programming. 
Programs for right or left shift, and for an even or an odd 
shift amount, are written with Move with Offset instruction 
and the logical move instructions described in Section 5 of 
this Chapter. 

A separate microprogram is provided for byte processing 
when a word-overlap condition exists. A test for word 
overlap is performed in the GIS of the instruct~on, and also 
each time that a new doubleword of source is fetched from 
main storage. 

The GIS for the Move with Offset instruction is shown 
in Diagram 5-307. This microprogram is identical with the 
GIS microprogram of the Pack instruction. 

Instruction Execution, Not Word Overlap 

• Basic execution is as follows: 
1. Transfer bits 4-7 of selected AB byte to bits 0-3 of 

selected ST byte. Decrement counters. 
2. Transfer bits 0-3 of selected AB byte to bits 4-7 of 

selected ST byte. Repeat first step. 
3. Exit on L1 or STC = 0, L2 = 0, or ABC= 0. 

A flowchart of the execution of the Move with Off set 
instruction when no word-overlap condition exists is shown 
in Diagram 5-312, FEMDM. Basically, this microprogram 
specifies a 2-cycle loop with appropriate exits to source 
fetch, destination store, high-order-zero extend, and end-op 
routines. 

Cycle 1 

1. Bits 4-7 of the selected AB byte are gated to 
SAA(0-3). 

2. Bits 4-7 of the selected ST byte are gated to SAB( 4-7). 
3. The serial adder output is gated back to the selected ST 

byte, and the corresponding mark trigger is set. 
4. L1 and STC are decremented by 1. An exit is made to 

the destination store routine if L1 or STC equalled zero 
before stepping. 

Cycle 2 

1. Bits 0-3 of the selected AB byte are gated to 
SAA(4-7). No data is gated to serial adder bits 0-3. 

2. The serial adder output is gated to the selected ST byte. 

3-144 (7/70) 

3. L2 and ABC are decremented by 1. If L2 was zero 
before stepping, an exit is made to the high-order zero 
extend routine. If L2 was not zero but ABC equalled 
zero an exit is made to the source fetch routine. 

' 
4. If L2 or ABC is not equal to zero, cycle 1 is repeated. 

High-Order Zero Extend Routine 

An entry is made into this routine when the last source 
byte has been processed. The selected ST byte contains the 
high-order source digit in bits 4-7; bits 0-3 are zeros. 

The following actions are performed upon entry into the 
routine: 
1. STAT His set. 
2. The selected mark trigger is set. 
3. L1 and STC are decremented by 1. 
4. If L1 or STC equals zero before stepping, an exit is made 

to the destination store routine. 

If L1 or STC is not zero, a 1-cycle loop is started, which: 
1. Gates the serial adder output (:z;eros) to the selected ST 

byte. 
2. Sets the mark trigger selected by the STC. 
3. Decrements L1 and STC by 1. 
4. Exits to the destination store routine when Ll or STC 

equals zero. (STAT H is set to cause re-entry into the 
high-order zeros routine after the destination is stored.) 

Destination Store Routine 

1. The contents of ST are stored into the destination field 
per the D-address. 

2. A test is made for the end of the destination field. If the 
L1 count now equals all l's, an exit is made to the 
common end-op sequence. 

3. If L1 is not all l's, Dis decremented by 8. 
4. If STAT H is set, the high-order zeros routine is 

resumed. If STAT His not set, the byte processing loop 
is started at cycle 2. 

Source Fetch Routinet 

I. The source is requested from storage, and the IC is 
decremented by 8. 

2. A word-overlap test is made by comparing the IC and D 
addresses. 

3. If no word-overlap condition exists, the doubleword 
arriving from storage is gated to AB, and byte processing 
is resumed. 

Instruction Execution, Word Overlap 

• Basic execution is as follows: 
1. Transfer bits 4-7 of selected AB byte to bits 0-3 of 

selected ST byte. 

t This routine is shared with the Pack instruction. Return to the 
appropriate microprogram is effected per ST AT D. 



2. Transfer bits 0-3 of selected AB byte to bits 4-7 of 
selected ST byte. 

3. Update AB from ST, and repeat first step. 
4. Exit on LI or STC = 0, L2 = 0, or ABC= 0. 

A flowchart of the execution of the Move with Offset 
instruction when a word-overlap condition exists is shown 
in Diagram 5-313, FEMDM. Basically, this microprogram 
specifies a 3-cycle loop with appropriate exits to source 
fetch, destination store, high-order-zero extend, and end-op 
routines. 

Cycle 1 

This cycle is identical with cycle 1 in the not-word-overlap 
microprogram. 

Cycle 2 

1. Bits 0-3 of the selected AB byte are gated to 
SAA(4-7). 

2. The serial adder output is gated to the selected ST byte. 

Cycle 3 

1. If the STC is less than 4, the contents of S are 
transferred to A. 

2. The contents of T are transferred to B via the parallel 
adder. 

3. L2 and ABC are decremented by 1. 
4. An exit is made to the high-order zeros routine if L2 was 

equal to zero before stepping. An exit is made to the 
source fetch routine if the ABC was equal to zero and 
L2 was not zero. 

5. If no exit conditions exist, cycle 1 is repeated for the 
next byte. 

High-Order Zero, Destination Store, and 
Source Fetch Routines 

The high-order zero and destination store routines are the 
same as in the not-word-overlap sequence. The source fetch 
routine, however, is different. 

Upon detecting a word-overlap condition, the source 
from main storage is not used. Instead, AB is updated from 
ST: if the STC is equal to 7, the contents of T are 
transferred to B; if the STC is not 7, the contents of S are 
transferred to A and the contents of T to B. 

7201-02 FETOM (7 /70) 3-145 



SECTION 5. LOGICAL INSTRUCTIONS 

This. section discusses the 32 logical instructions. The 
instructions use all five formats and operate on fixed- and 
variable-field length data. For a discussion .of data formats, 
operand addressing, instruction formats, data flow, program 
interruptions, and condition codes, see Chapter 1. 

GENERAL INITIALIZATION SEQUENCE 

Before execution of SS logical instructions, a General 
Initialization Sequence (GIS) is performed (Diagram 5-40 l, 
FEMDM). The general function of the GIS is to set up 
initial conditions for the execution phase. These include: 
1. Setting of STC and ABC. The STC is set to the rightmost 

first operand byte in ST, the byte to be processed first. 
Because the address of the rightmost byte is specified by 
D(21-23), the STC is set per these bits. Similarly, the 
rightmost second operand byte is selected in AB by 
transferring IC(21-23) to the ABC. 

2. Transferring the first operand to ST during the first 
cycle of GIS. 

3. Transferring the second operand to AB. An IC request 
for the second operand is issued on the first cycle of 
GIS; subsequently, GIS transfers the operand from the 
SDBO to AB. 

4. Performing a word overlap test. For the purpose of this 
test, refer to "Word Overlap Condition", Section 4 of 
this Chapter. 

At the completion of SS I-Fetch, a branch is made per 
the instruc!ion op-code to the appropriate GIS 
microprogram. Note that, because of similarities in the GIS 
microprograms, the SS logical instructions are divided into 
two groups. One group consists of the Translate and 
Translate and Test instructions; the remaining SS 
instructions form the second group. 

MOVE 

Four logical move instructions are available: 
1. Move, MVI, SI format. Places an immediate operand into 

the first operand location. 
2. Move, MVC, SS format. Places the second operand into 

the first operand location. 
3. Move Numerics, MVN, SS format. Places the numerics of 

the second operand bytes into the corresponding 
positions of the first operand bytes. 

3-146 (7 /70) 

4. Move Zones, MVZ, SS format. Places the zones of the 
second operand bytes into the corresponding positions 
of the first operand bytes. 

Move, MVI (92) 

• Place immediate operand (I2 of instruction) into 1st 
operand location (in storage). 

• SI format: 

92 12 Bl 

78 15 16 19 20 

Store imm'ediate operand 
(in E) into destination 
per 1st operand address. 

• Conditions at start of execution: 

Dl 

31 

First 16 bits of instruction, containing immediate 
operand, are in E. 

Main storage request for 1st operand has been issued per 
D. 

The Move, MVI, instruction places the immediate operand 
into the first operand location. The immediate operand (I2 
of instruction) is in E. 

Move, MVC (D2) 

• Place 2nd operand (in storage) into 1st operand location 
(in storage). 

• SS format: 

02 LL B 1 ~ D 1 I B2 I ~ 0 
'------7..._8 _____ 1 .... 5 -16--1-91...120 3132 35 36 J.7 

Fetch LL number of bytes from 
source per 2nd operand address. 

Store into destination 
per 1st operand address. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC is set to select byte to be routed through serial 

adder. 
First 16 bits of instruction are in E. 



• Move operation can be high or low speed. 

• Three separate microprograms are provided: 
High-speed move. 
Word overlap. 
Low-speed move. 

Three separate sequences are provided for the MVC 
instruction. The high-speed move sequence is used when it 
is possible to transfer a doubleword of data at a time. This 
condition exists when the high-order bytes of the source 
and destination are specified on doubleword boundaries 
and a full doubleword of data remains to be processed; i.e., 
both the ABC and STC are equal to zero, and the LL count 
is greater than 6. The word-overlap sequence is used when a 
word-overlap condition exists. The second operand in AB is 
updated after each AB byte is processed. The low-speed 
move sequence is used when the high-speed or word-overlap 
condition does not exist. (The high-speed and word-overlap 
conditions are detected in the GIS of the instruction.) 
1: Low-Speed Move Sequence 

This sequence is basically a 1-cycle operation in which 
the AB byte selected by the ABC is transferred through 
the serial adder to the ST byte selected by the STC, and 
the mark trigger selected by the STC is set. 

The STC and ABC are incremented, the LL count in 
E(8-15) is decremented, and the cycle is repeated for 
the next byte, unless an exit condition exists. 

2. Word-Overlap Move Sequence 
This sequence is a 2-:cJv · 1equence in which the first 
cycle transfers the ft-:;, selected by the ABC, to the 
ST byte selected by the STC. The second cycle updates 
the source operand in AB by transferring S to A, or T to 
B, as determined by the value of the STC. The mark 
trigger selected by the STC is set. The STC and ABC are 
incremented, the LL count is decremented, and the 
sequence is repeated for the next byte, unless an exit 
condition exists. 

3. High-Speed Move Sequence 
This routine is entered from the GIS or from the 
low-speed move routine. 
a. When the entrance is made from the GIS, the source 

operand has been transferred to ST. The contents of 
ST are stored by setting mark triggers 0-7 and issuing 
a storage request per D. 

b. The LL count in E(8-15) is decremented by 8 via the 
parallel adder and is then tested for all 1 's. If this 
condition exists, an end-op sequence is started. If no 
end-op condition exists, the IC is incremented by 8 
via the parallel adder and a source fetch request is 
given. 

c. When the entrance is made from the low-speed 
routine, D is incremented by 8 and the source 
doubleword from main storage is gated to both AB 
and ST. If at least 8 bytes remain to be processed, as 

determined by a ROS branch on LL count being 
greater than 6, the high-speed move sequence is 
repeated (starting at step a). If fewer than 8 bytes 
remain to be processed, the low-speed move sequence 
is started to process the remaining data. 

Exit is made from the low-speed or word-overlap move 
routines is one of the following conditions exists: (l}LL = 
0, or STC = 7 and ABC =I= 7; (2) LL = 0, or STC = 7 and 
ABC = 7; (3) only ABC= 7. A separate sequence is entered 
for each of these conditions, as explained below: 
1. LL = 0, or STC = 7 and ABC =I= 7 

A destination store is initiated, and a test for an end-op 
condition is made. If the LL count now equals all 1 's, an 
entry is made into a common end-op sequence. If an 
end-op condition does not exist, D is incremented by 8 
via the parallel adder and the low-speed move sequence 
is continued. 

2. LL=, 0, or STC = 7 and ABC = 7 
A destination store is initiated, and a test for end-op is 
made (LL= all l's). A further test for a high-speed move 
condition is made. If at this time the LL count is 7 or 
greater, the IC and D are incremented by 8, a source 
fetch is initiated, and an entry is made into the 
high-speed move sequence. If neither an end-op nor a 
high-speed move condition exists, D is incremented by 8 
and a common source fetch routine is entered which 
increments the IC by 8, fetches the next doubleword of 
source to AB, and tests for a word-overlap condition. 
Because there is no word-overlap at this time (ABC = 
STC), the low-speed move sequence is continued. 

3. ABC= 7 
The IC is incremented by 8 through the parallel adder, 
and . a fetch request is given to fetch the next 
doubleword '"'£ source operand. The common source 
fetch sequence is entered, which tests for word overlap. 
In this case, word overlap may exist: if it is detected, the 
source operand from main storage is not gated to AB, 
but instead ST is gated to AB and a branch is made to 
the move-word-overlap sequence. If no word overlap 
exists, the low-speed move sequence is continued after 
the source operand from main storage is gated to AB. 

The common end-op routine is entered when the LL 
field has been decremented to zero. This routine restores 
the instruction address from the LSWR to the IC and resets 
ST AT G (because it may have been used during the GIS). 

Move Numerics, MVN (DI) 

· • Place numeric portion (low-order 4 bits) of each byte of 
2nd operand (in storage) into low-order 4 bits of 
corresponding byte of 1st operand (in storage). 

7201-02 FETOM (7/70) 3-147 



• SS format: 

Fetch LL number of bytes from 
source per 2nd operand address. 

Extract numerics. 

Store numerics into destination 
per l st operand address. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• Separate microprogram is used for word overlap. 

The MVN instruction is executed as follows: 
I. Bits 4-7 of the selected AB byte are gated to 

SAA(4-7). 
2. Bits 0-3 of the selected ST byte are gated to SAB(0-3). 
3. Adder output is gated back to the selected ST byte. 

Data is processed one byte at a time, and the fields may 
overlap in any way. Separate sequences are used for the 
not-word-overlap and the word-overlap conditions: 
1. Not-Word-Overlap Sequence 

This sequence consists of a I-cycle loop with an exit 
when LL = 0, STC = 7, or ABC = 7. As each byte is 
processed, the corresponding mark trigger -is set per the 
STC; ABC and STC are incremented by 1 and LL is 
decremented by 1. 

2. Word-Overlap Sequence 
This sequence consists of a 2-cycle loop with an exit 
when ABC or STC = 7, or when LL = 0. 
a. Cycle 1 

Numeric (bits 4-7) is moved from AB to ST. 
b. Cycle 2 

The contents of S are transferred to A, or the 
contents of T are transferred to B as determined by 
the STC value. The mark trigger selected by the STC 
is set; STC anq ABC are incremented by I, and LL is 
decremented by I. 

3-148 (7/70) 

An exit from the byte processing sequence is made when 
LL = 0, STC = 7, or ABC = 7. A separate sequence is 
entered for each of these conditions, as explained below: 
I. LL= 0 

The contents of ST are stored per D into the destination 
field. The common end-op sequence is started. 

2. STC = 7 
The common destination store-fetch routine is started. If 
the ABC also equals 7, ST AT D is set to cause a source 
fetch before resuming the byte processing loop. 

3. ABC= 7 
The common source fetch routine is started, which 
includes a word-overlap test, which causes the 
appropriate instruction word-overlap or 
not-word-overlap loop to be continued. 

Move Zones, MVZ (D3). 

• Place zone portion (high-order 4 bits) of each byte of 
2nd operand (in storage) into high-order 4 bits of 
corresponding byte of 1st operand (in storage). 

• SS format: 

03 LL Bl ~ Dl 1 B2 u~ 
'------7-'--8 --....---15"""1-6 --19_2_0 31 32 35 36 J,7 

Fetch LL number of bytes from 
source per 2nd operand address. 

Extract zones. 

Store zones into destination 
per l st operand address. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
STC and ABC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• Separate microprogram is used for word overlap. 

The MVZ instruction specifies the following actions: 
I. Bits 0-3 of the selected AB byte are gated to 

SAA(0-3). 
2. Bits 4-7 of the selected ST byte are gated to SAB( 4-7). 
3. The adder output is gated back to the selected ST byte. 

Except for t~e above actions, the byte processing 
sequence is the same as that for the MVN instruction. 



COMPARE 

Four Compare Logical instructions are provided, in the RR, 
RX, SI, and SS formats. Comparison is binary, and all codes 
are valid. Operation is terminated when an inequality is 
found. 

Compare Logical, CLR (I 5) 

• Binarily compare 1st operand (in GPR, per RI) with 2nd 
operand (in GPR, per R2) and set CC according to 
result. 

• RR format: 

15 Rl R2 

11 12 15 

Fetch 1st operand 
from GPR per Rl. 

Fetch 2nd operand 
from GPR per R2. 

Compare 1st operand with 2nd operand. 

Equal 

Set CC to 0. Set CC to 1. 

• Conditions at start of execution: 
1st operand is in Sand T. 
2nd operand is in A and B. 
Instruction is in E. 

• CC setting: 
Operands are equal: CC= 0. 

1st is High 

Set CC to 2. 

1st operand is less than 2nd operand: CC= 1. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare Logical, CLR, instruction, which is in the RR 
format, compares the first operand with the second 
operand. Comparison in binary, and is performed left to 
right, byte by byte. The CC is set according to the result. 

Compare Logical, CL (55) 

• Binarily compare 1st operand (in GPR, per RI) with 2nd 
operand (in storage) and set CC according to result. 

• RX format: 

55 Rl 

11 12 

Fetch 1st operand 
from GPR per Rl. 

X2 B2 
15 16 

D2 
19 20 

Fetch 2nd operand 
from main storage. 

Compare 1st operand with 2nd operand. 

Equal 

Set CC to 0. Set CC to 1. 

• Conditions at start of execution: 
1st operand is in S and T. 

1st is High 

Set CC to 2. 

31 

Main storage request for 2nd operand has been issued 
per D. 

First 16 bits of instruction are in E. 

• CC setting: 
Operands are equal: CC= 0. 
1st operand is less than 2nd operand: CC= 1. 
1st operand is greater than 2nd operand: CC= 2. 

The Compare Logical, CL, instruction, which is in the RX 
format, compares the first operand with the second 
operand. Comparison is binary, and is performed left to 
right, byte by byte. The CC is set according to the result. 

Compare Logical, CLI (95) 

• Binarily compare 1st operand (in storage) with 
immediate operand (12 of instruction) and set CC 
according to result. 

• SI format: 

95 12 

Obtain immediate 
operand from E. 

15 16 

Bl Dl 

19 20 

Fetch 1st operand 
from main storage. 

31 

Compare 1st operand with 2nd operand. 

Equal 1st is High 

Set CC to 0. Set CC to 1. Set CC to 2. 

7201-02 FETOM (7/70) 3-149 



• Conditions at start of execution: 
Main storage request for 1st operand has been issued per 

D. 
1st 16 bits of instruction, containing immediate 
operand, are in E. 

• CC setting: 
Operands are equal: CC= 0. 
1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC = 2. 

The Compare Logical, CLI, instruction, which is in the SI 
format, compares the first operand with the immediate 
second operand. Comparison is binary, and is performed 
left to right. The CC is set according to the result. 

Compare Logical, CLC (D5) 

• Binarily compare 1st operand (in storage) with 2nd 
operand (in storage) and set CC according to result. 

• SS format: 

__ o_5 ___ LL ______ B1~I {(01 I B2 l)EJ 
7 8 11 12 15 16 19 20 31 32 35 36 

Fetch 1st operand 
from main storage. 

Fetch 2nd operand 
from main storage. 

Compare 1st operand with 2nd operand. 

Equal 

Set CC to 0. Set CC to 1. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 

1st is High 

Set CC to 2. 

47 

ABC and STC are set to select byte(s) to be routed 
through serial adder. 

First 16 bits of instruction are in E. 

• CC setting: 
Operands are equal: CC= 0. 
1st operand is less than 2nd operand: CC = 1. 
1st operand is greater than 2nd operand: CC= 2. 

• Because results of operation are not stored into main 
storage, no special action is required during word 
overlap. 

The CLC instruction is sequenced as follows: 
1. The selected AB byte is gated complement to the serial 

adder with a hot carry to bit 7. 

3-150 (7/70) 

2. The selected ST byte is gated true to the serial adder. 
3. The serial adder carry is saved in STAT H. 
4. ST AT A is set if a nonzero result byte is detected. 
5. As each byte is processed, the LL count is decremented 

and the ABC and STC are incremented. 
6. The above routine is continued until a nonzero result is 

detected in the serial adder, or until the LL count is 
stepped to zero, with exits for operand fetches when the 
STC or ABC is stepped to 7. 

7. If an exit is made because a nonzero byte is detected, 
one additional byte will have been gated to the serial 
adder before the exit is made via the ROS branch. 
Therefore, STAT H will reflect the carry of the nonzero 
result byte plus 1. Because STAT His used to determine 
the setting of the CC, it is set or reset per the carry of 
the first nonzero byte encountered. 

8. The common end-op routine is used, which sets the CC 
per the following hardware conditions: 

Hardware Conditions CC Setting 

STAT A is reset and equal compare 0 

STAT A is set and STAT His reset 

STAT A and STAT Hare set 2 

AND 

The AND instruction mixes two operands on a logical AND 
basis. An AND operation is defined as follows: if both 
operand bits are 1 's, the resulting bit is 1; otherwise, the 
result is a 0. The following example illustrates the AND'ing 
of two bytes: 

Bit positions 01234567 

1st operand 1. 0 1 0 0 0 

2nd operand 1 0 0 1 0 0 

Result 10001000 

Note that only in bit positions 0 and 4 are both operand 
bits set to 1. Therefore, only bits 0 and 4 of the result are 
set to 1. 

A simplified data flow path for AND, OR, and 
Exclusive-OR instructions is shown in Figure 3-25. All 
logical AND's, OR's, and Exclusive-OR's are performed in 
the serial adder, a byte at a time. The first operand is placed 
into ST and the second operand is placed into AB. Upon 
completion of the instruction, the result is placed into ST. 

The sequencing of individual bytes from ST and AB 
through the serial adder is controlled by the STC <\nd the 
ABC. In the fixed-format RR and RX instructions, the STC 
and ABC are preset to 4 and incremented to 7 as the four 
data bytes from ST and AB are routed through the serial 
adder. For SS instructions, the STC and ABC are preset to 
values that point to the bytes where the data starts in their 



Contains lst operand address 
and destination address ~I 

63 

- ,~~n;:~n~nd (:JJ 
RTand final STC CS 

'-----------''--------__;.6.;....i3 .result 0 2 

8 I 5 24 3 I 40 47 56 63 

o 7T 16 23T32 39T48 55--r-

-i==c=r~_J_ 

SAB 

SAL 

.... I 0_1_c _____ ...:;~':;.:_i3 I Contains 2nd opera~d address 

lo 
A RA I B RB IContai.ns I ABC c: I 

..... ------'---31_......;.;32 ______ .::.;63:....i. 2nd operand O 2 

0 7 16 23 32 39 48 55 

Ts 15T24: T40 47T56 63 

~l~T 

AND's, OR's, and Exclusive-OR's operand 
bytes selected by STC and ABC. 

Figure 3-25. Simplified Data Flow for AND, OR, and Exclusive-OR Instructions 

respective registers. For SI instructions, in which the second 
operand is one byte long {12 field), the ABC points to the 
second operand location in AB, and the STC points to the 
first operand in ST. 

AND, NR(14) 

• AND 1st operand (in GPR, per R1) with 2nd operand 
(in GPR, per R2) and place result into 1st operand 
location. 

• RR format: 

14 Rl R2 

7 8 11 12 15 

Fetch 1st operand 
from GPR per Rl. 

AND. 

Fetch 2nd operand 
from GPR per R2. 

Store result into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 
2nd operand is in A and B. 
Instruction is in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC= 1. 

The AND, NR, instruction, which 1s m the RR format, 
AND's the first operand with the second operand. The 
AND function is applied left to right, byte by byte. 

AND, N (54) 

• AND 1st operand (in GPR, per R1) with 2nd operand 
(in storage) and place result into 1st operand location. 

• RX format: 

54 R 1 X2 B2 D2 

7 8 11 12 15 16 19 20 

Fetch 1st operand 
from GPR per Rl. 

Fetch 2nd operand 
from main storage. 

AND. 

Store result into GPR 
p~r Rl and set CC. 

• Conditions at start of execution: 
1st operand is in Sand T. 

31 

Main storage request for 2nd operand has been issued 
per D. 

First 16 bits of instruction are in E . 

. 7201-02 FETOM (7 /70) 3-151 



• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC= 1. 

The AND, N, instruction, which is in the RX format, 
AND's the first operand with the second operand from 
main storage. The AND function is applied left to right, 
byte by byte. 

AND, NI (94) 

• AND immediate operand (12 of instruction) with 1st 
operand (in storage) and place result into 1st operand 
location. 

• SI format: 

94 !2 Bl 

7 8 15 16 19 20 

Obtain immediate 
operand from E. 

AND. 

Dl 

31 

Fetch 1st operand 
from main storage. 

Store result into main storage per 
1st operand address and set CC. 

• Conditions at start of execution: 
Main storage request for 1st operand has been issued per 

D. 
First 16 bits of instruction, containing immediate 

operand, are in E. 

• CC setting: 
Resu1t is zero: CC= 0. 
Result is not zero: CC = 1. 

The AND, NI, instruction, which is in the SI format, AND's 
the first operand with the immediate second operand. The 
AND function is applied left to right. 

AND, NC (D4) 

• AND 1st operand (in storage) with 2nd operand (in 
storage) and place result into 1st operand location. 

3-152 (7/70) 

• SS format: 

L...-_D_4 -"'-----L_L _ _.__I _B_l ~' ~ ~ D 1 I B2 I H~J 
7 8 IS 16 19 20 31 32 35 36 47 

Fetch 1st operand 
from main storage . 

AND. 

Fetch 2nd operand 

from main storage . 

Store result into main storage per 
1st operand address and set CC. 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC= 1. 

• Maximum number of bytes is 256. 

The NC instruction specifies the following actions: 
1. The selected AB byte is gated to SAA(O-7). 
2. The selected ST byte is gated to SAB(O-7). 
3. Each AB and ST bit is combined using the serial adder 

AND function. 
4. The adder output is gated back to ST. (STAT A is set if 

the result byte is not zero.) 

Except for the above actions, the byte processing 
sequence is the same as for the Move Numerics instruction. 

OR 

The OR instruction mixes two operands on a logical OR 
basis. An OR operation is defined as follows: if either 
operand bit is a 1, the resulting bit is a 1 : otherwise, the 



result is a 0. The following example illustrates the OR'ing 
of two bytes. 

Bit positions 0 1 2 3 4 5 6 7 

1st operand 0 0 0 0 

2nd operand 0 0 0 0 

Result 0 0 

Note that only in bit positions 1 and 7 is neither bit a 1. 
Thus, only bits 1 and 7 of the result are set to 0, and the 
remaining bits are set to 1. 

The sequencing of operands through the serial adder is 
similar to the sequencing of the AND instructions. The 
major difference is that the serial adder applies the OR 
function. 

The OR operation may be executed by an instruction in 
the RR, RX, SI, or SS format. 

OR, OR(16) 

• OR 1st operand (in GPR, per R1) with 2nd operand (in 
GPR, per R2) and place result into 1st operand location. 

• RR format: 

16 Rl R2 

Fetch 1st operand 
from GPR per Rl. 

11 12 15 

OR. 

Fetch 2nd operand 
from GPR per R2. 

Store result into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in Sand T. 
2nd operand is in A and B. 
Instruction is in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1. 

The OR, OR, instruction, which is in the RR format, OR's 
the first operand with the second operand. The OR 
function is applied left to right, byte by byte. 

OR, 0 (56) 

• OR 1st operand (in GPR, per Rl) with 2nd operand (in 
storage) and place result into 1st operand location. 

• RX format: 

56 Rl X2 B2 D2 
11 12 15 16 19 20 

Fetch 1st operand 
from GPR per R 1 . 

Fetch 2nd operand 
from main storage. 

OR. 

Store result into GPR 
per R l and set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 

31 

Main storage request for 2nd operand has been issued 
per D. 

First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1. 

The OR, 0, instruction, which is in the RX format, OR's 
the first operand with the second operand from main 
storage. The OR function is applied left to right, byte by 
byte. 

OR, OI (96) 

• OR immediate operand {12 of instruction) with 1st 
operand (in storage) and place result into 1st operand 
location. 

• SI format: 

96 12 

Obtain immediate 
operand from E. 

Bl Dl 

15 16 19 20 

Fetch 1st operand 
from main storage. 

Store result into main storage per 
1st operand address and set CC. 

31 

7201-02 FETOM (7 /70) 3-153 



• Conditions at start of execution: 
Main storage request for 1st operand has been issued per 

D. 
First 16 bits of instruction, containing immediate 
operand, are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC= 1. 

The OR, 01, instruction, which is in the SI format, OR's 
the first operand with the immediate second operand. The 
OR function is applied left to right. 

OR, OC (D6) 

• OR 1st operand (in storage) with 2nd operand (in 
storage) and place result into 1st operand location. 

• SS format: 

I B 1 I ~ ~ D 1 I B2 I ~ ~ 
L------71-8 ____ 1_5 ..... 16--1--9 ~20 31 32 35 36 47 

06 LL 

Fetch 1st operand 
from main storage. 

Fetch 2nd operand 
from main storage. 

OR. 

Store result into main storage per 
1st operand address and set CC . 

• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte( s) to 

through serial adder. 
First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1. 

• Maximum number of bytes is 256. 

be routed 

The OC instruction specifies the following actions: 
1. The selected AB byte and the selected ST byte are gated 

to the serial adder, where they are combined per the 
serial adder OR function. 

2. The adder output is gated back to the selected ST byte, 
and the selected mark trigger is set per the STC. 

3. STAT A is set if the result is not zero. 

Except for the above actions, the byte processing 
sequence is the same as that for the Move Numerics 
instruction. 

3-154 (7/70) 

EXCLUSIVE-OR 

The Exclusive-OR instruction mixes two operands on a 
logical Exclusive-OR basis. An Exclusive-OR operation is 
defined as follows: if one and only one of the operand bits 
is a 1, the resulting bit is a 1; otherwise, the result is a 0. 
The following example illustrates the Exclusive-OR'ing of 
two bytes. 

Bit position 0 2 3 4 5 6 7 

1st operand 0 0 0 0 

2nd operand 1 0 0 1 1 1 0 0 

Result 0 0 1 1 0 1 0 

Note that in bit positions 2, 3, 5, and 6 one and only one of 
the operand bits is a 1, and that the corresponding bit 
positions of the result are set to 1. In bit position 0, both 
operand bits are 1 and the corresponding result bit is 0. In 
bit position 1, both bits are 0 and the result is 0. 

The sequencing of operands through the serial adder is 
similar to the sequencing of the AND instructions. The 
major difference is that the serial adder applies the 
Exclusive-OR function. 

The Exclusive-OR operation may be executed by an 
insfruction in the RR, RX, SI, or SS format. 

Exclusive-OR, XR (17) 

• Exclusive-OR 1st operand (in GPR, per R1) with 2nd 
operand (in GPR, per R2) and place result into 1st 
operand location. 

• RR format: 

17 Rl 

Fetch l st operand 
from GPR per Rl. 

R2 

11 12 15 

Exclusive OR. 

Fetch 2nd operand 
from G PR per R2. 

Store result into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in S and T. 
2nd operand is in A and B. 
Instruction is in E. 



• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1. 

The Exclusive-OR, XR, instruction, which is in the RR 
format, exclusive-OR's the first operand with the second 
operand. The exclusive-OR function is applied left to right, 
byte by byte. 

Exclusive-OR, X (57) 

• Exclusive-OR 1st operand (in GPR, per R1) with 2nd 
operand (in storage) and place result in to 1st operand 
location. 

• RX format: 

57 Rl X2 82 02 

0 11 12 15 16 19 20 

Fetch lst operand 
from GPR per Rl. 

Fetch 2nd operand 
from main storage • 

Exclusive OR. 

Store result into GPR 
per Rl and set CC. 

• Conditions at start of execution: 
1st operand is in Sand T. 

31 

Main storage request for 2nd operand has been issued 
per D. 

First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1 . 

The Exclusive-OR, X, instruction, which is in the RX 
format, exclusive-OR's the first operand with the second 
operand from main storage. The exclusive-OR function is 
applied left to right, byte by byte. 

Exclusive-OR, XI (97) 

• Exclusive-OR immediate operand (12 of instruction) 
with 1st operand (in storage) and place result into 1st 
operand location. 

• SI format: 

97 12 

Obtain immediate 
operand from E. 

Bl Dl 

15 16 19 20 31 

· Fetch 1st operand 
from main storage. 

Exclusive OR. 

Store result into main storage per 
lst operand address and set CC. 

• Conditions at start of execution: 
Main storage request for 1st operand has been issued per 

D. 
First 16 bits of instruction, containing immediate 

operand, are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1. 

The Exclusive-OR, XI, instruction, which is in the SI 
format, exclusive-OR's the first operand with the 
immediate second operand. The exclusive-OR function is 
applied left to right. 

Exclusive-OR, XC (D7) 

• Exclusive-OR 1st operand (in storage) with 2nd operand 
(in storage) and place result into 1st operand location. 

• SS format: 

,____o_7 _....___L_L _..1.--s_1 -'-'I ~~ 01 I s2 I~~ 
7 8 

Fetch l st operand 
from main storage. 

15 16 19 20 31 32 35 36 •7 

Fetch 2nd operand 
from main storage. 

Exclusive OR. 

Store result into main storage per 
1st operand address and set CC . 

7201-02 FETOM (7/70) 3-155 



• Conditions at end of GIS: 
1st operand is in ST. 
2nd operand is in AB. 
ABC and STC are set to select byte(s) to be routed 

through serial adder. 
First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC= 0. 
Result is not zero: CC = 1. 

• Maximum number of bytes is 256. 

The XC instruction specifies the following actions: 
1. The selected AB byte and the selected ST byte are gated 

to the serial adder, where they are combined per the· 
serial adder Exclusive-OR function. 

2. The adder output is gated back to the selected ST byte, 
and the selected mark trigger is set per the STC. 

3. STAT A is set if the result is not zero. 

Except for the above actions, the byte processing 
sequence is the same as that for the Move Numerics 
instruction. 

TEST UNDER MASK, TM (91) 

• Set CC according to state of 1st operand bits (in storage) 
selected by mask bits (12 of instruction). 

• SI format: 

91 12 Bl Dl 

7 8 15 16 19 20 

Obtain immediate operand 
from E and use as mask. 

Fetch 1st operand 
from main storage. 

Select bits of 1st operand 
only when mask bits are 1 's. 

Set CC. 

• Conditions at start of execution: 

31 

Main storage request for 1st operand has been issued per 
D. 

First 16 bits of instruction, containing immediate 
operand, are in E. 

3-156 (7/70) 

• CC setting: 
Selected bits all zero; mask is all zero: CC = 0. 
Selected bits mixed zero and 1: CC = 1. 
Selected bits all 1: CC= 3. 

• Storage contents are not changed. 

The byte of immediate data, I2, is used as an eight-bit 
mask. The bits of the mask are made to correspond one for 
one with the bits of the character in main storage specified 
by the first operand address. 

A mask bit of 1 indicates that the storage bit is selected. 
When the mask bit is 0, the storage bit is ignored. When all 
storage bits thus selected are zero, the CC is made 0. The 
CC is also made 0 when the mask is all-zero. When the 
selected bits are all-1, the CC is made 3; otherwise, the CC 
is made 1. The character in storage is not changed. 

INSERT CHARACTER, IC (43) 

• Insert 2nd operand (byte; in storage) into bits 24-31 of 
1st operand location (in GPR, per Rl). 

• RX format: 

43 Rl X2 B2 D2 
7 8 11 12 15 16 19 20 

Fetch doubleword (containing 
8-bit character) from main storage. 

Insert character into bits 
24-31 of GPR per Rl. 

• Conditions at start of execution: 
1st operand is in S and T. 

31 

Main storage request for 2nd operand has been issued 
per D. 

First 16 bits of instruction are in E. 

The Insert Character instruction, which 1s m the RX 
format, inserts the byte of second operand into bits 24-31 
of the GPR specified by RI. The remaining bits in the GPR 
are unchanged. 

STORE CHARACTER, STC (42) 

• Store bits 24-31 of 1st operand (in GPR, per Rl) into 
2nd operand location (in storage). 



• RX format: 

42 Rl X2 

7 8 II 12 15 16 

Fetch character from bits 
24-31 of GPR per Rl. 

B2 

Store character into main 
storage per 2nd operand address. 

19 20 

• Conditions at start of execution: 
1st operand is in Sand T. 

D2 

31 

Main storage request for 2nd operand has been issued 
per D. 

First 16 bits of instruction are in E. 

The Store Character instruction, which is in the RX format, 
stores the byte (bits 24-31) of first operand into main 
storage per the second operand address. 

LOAD ADDRESS, LA ( 41) 

• Insert 2nd operand address into bits 8-31 of GPR 
specified by RI. 

• RX format: 

41 Rl 

7 8 II 12 

X2 B2 D2 

15 16 19 20 

Insert 2nd operand address into 
bits 8-31 of GPR per Rl. 

• Conditions at start of execution: 
1st operand is in Sand T. 

31 

Main storage request for 2nd operand has been issued 
per D. · 

First 16 bits of instruction are in E. 

The address specifled by the X2, B2 and D2 fields is 
inserted into bits 8-31 of the GPR specified by RI; bits 
0-7 are made O's. The address is not inspected for 
availability, protection,,or resolution. 

The address computation follows the rules for address 
arithmetic. Any carries beyond the 24th bit are ignored. 
The same GPR may be specified by the R1, X2, and B2 
instruction field, except that GPRO can be specified only 
by the Rl field. In this manner, it is possible to increment 
the low-order 24 bits of a GPR, other than 0, by the 

contents of the D2 field of the instruction. The GPR to be 
incremented should be specified by RI and by either X2 
(with B2 set to zero) or B2 (with X2 set to zero). 

TRANSLATE TR (DC) 

• Add 1st operand byte (argument; in storage) to effective 
2nd operand address, use result as storage address, and 
place function byte from resulting storage address into 
corresponding 1st operand byte location. 

• SS format: 

._____o_c _...___L_L _ _._I _s_1 ......... I \ ~ o 1 I B2 I ~ G 
7 8 15 16 19 20 31 32 35 36 47 

Fetch doubleword {containing 1st 
argument byte) from main storage 
per I st operand storage. 

Select argument byte. 

Add argument byte to base 
address of function byte 
(2nd operand address). 

Fetch function byte per result address. 

Store function byte into 
argument byte location. 

Translate next 
argument byte. 

No 

• Conditions at end of GIS: 
1st operand (destination) is in ST. 
Destination address is in D. 

Yes 

End op. 

Source address (contents of GPR per B2, + D2) is in IC. 

The Translate instruction selects the first operand bytes for 
translation one byte at a time, proceeding from left to 
right. Each argument byte is added to the entire initial 
address, the second operand address in the low-order bit 
positions. The sum is used as the address of the function 
byte, which then replaces the original argument byte. All 

7201-02 FETOM (7/70) 3-157 



data is valid. The operation proceeds until the first operand 
field is exhausted. The table is not altered unless an overlap 
occurs. 

At the start of the execution sequence, the first operand 
has been fetched to ST. A request per the IC has been made 
for the second operand, but this doubleword from main 
storage is not used. 

The execution sequence is as follows: 
1. The selected ST byte is saved in F. The contents of T 

are saved in B. (The contents of the IC are saved in A.) 
2. T is cleared, the STC is set to 111, and the contents of 

F (selected destination byte) are placed into T(56-63) 
via the serial adder. 

3. The contents of T are added to the contents of the IC 
in the parallel adder, and the result is gated back to the 
IC. 

4. A reques~ for the second operand is issued per the IC. 
5. The ABC is set per IC(21-23), and the STC is set per 

D(21-23). 
6. The original source address is restored to the IC from 

A. The destination word is restored to T from B. 
7. A word-overlap test was made before the source 

address was restored to the IC. If no word overlap 
exists, the table doubleword fetched from main storage 
is gated to AB. If word overlap is detected, the 
contents of S are transferred to A (B is already 
identical with T) and the doubleword from main 
storage is not used. 

8. The selected AB byte is gated via the serial adder to the 
selected ST byte, and the selected mark trigger is set. 
The STC and D are incremented by 1. The LL count is 
decremented by 1. 

9. Unless the STC was 7 or LL was zero before stepping, 
the sequence is repeated for the next destination byte. 

10. If LL was zero, the contents of ST are stored and the 
common end-op sequence is started. 

11. If the STC was 7 and LL not equal to zero, the 
contents of ST are stored and the next destination 
word is fetched by the common destination fetch 
sequence, after which the translate sequence is 
resumed. 

TRANSLATE AND TEST, TRT (DD) 

• Add 1st operand byte (argument; in storage) to effective 
2nd operand address, use result as storage address, and 
test function byte from resulting storage address. If 0, 
translate and test next argument byte; if non-0, 
complete operation by inserting related argument 
address into,GPR1 and function byte into GPR2. 

3--158 (7/70) 

• SS format: 

.____oo ___ L_L ___ I _s1_..._l ~~ 01 l B2 l ~G 
7 8 IS 16 19 20 31 32 35 36 47 

Fetch doubleword {containing 
lst argument byte) from main 
storage per l st operand address. 

Select argument byte. 

Add argument byte to base address of 
function byte (2nd operand address). 

Fetch function byte per result address. 

Yes 

Translate next 
argument byte. 

Store function byte 
into GPR2. 

Store address of argument 
byte into GPRl . 

End-op; set CC. 

• Conditions at end of GIS: 
1st operand (destination) is in ST. 
Destination address is in D. 
Source address (contents of GPR per B2, + D2) is in IC. 

• CC setting: 
All function bytes are zero: CC= 0. 
Nonzero function byte encountered before operand is 

exhausted: CC= 1. 
Last function byte is nonzero: CC= 2. 

The Translate and Test instruction fetches the function 
bytes in the same manner as the Translate instruction. Each 
function byte· retrieved from the table is inspected for an 
all-zero combination. 



When the function byte is zero, the operation proceeds 
with the next operand byte. When the first operand field is 
exhausted before a nonzero function byte is encountered, 
the operation is completed by setting the CC to 0. The 
contents of GPR's 1 and 2 remain unchanged. 

When the function byte is nonzero, the related argument 
address is inserted into the low-order 24 bits of GPRl. This 
address indicates the argument last translated. The 
high-order eight bits of GPRI remain unchanged. The 
function byte is inserted into the low-order eight bits of 
GPR2. Bits 0-23 of GPR2 remain unchanged. The CC is set 
to 1 when one or more argument bytes· have not been 
translated. The CC is set to 2 if the last function byte is 
nonzero. 

The following abbreviations are used in this discussion of 
the Translate and Test execution sequence: 

DX: first byte in series of destination bytes. 
T(DX): table byte specified by DX. 
DX+ 1: second byte in series of destination bytes. 
T(DX + 1): table byte specified by DX + 1. 
DX+ 2: third byte in series of destination bytes. 
The Translate and Test instruction uses the following 

execution sequence: 
1. First Byte Sequence 

a. The selected ST byte is saved in F. 
b. The contents of ST are transferred to AB. 
c. The STC is set to 3, and the contents of F (DX) are 

gated, via the serial adder, to byte 3 in S. 
d. Bytes 0, 1, and 2 in S are cleared by gating the 

contents of SAL to ST and successively decrementing 
the STC by 1. 

e. The ABC is set per D(21-23), and the STC is set to 
3. 

f. The DX in S is added to the contents of the IC, and 
an IC request is made for T(DX). 

g. A branch per STAT G is made to the T(DX + 1) 
address generation routine. (STAT G is used to 
indicate that a table byte has been fetched and is 
ready for test.) 

2. T(DX + 1) Address Generation 
a. The ABC is incremented by 1. 
b. DX is transferred from S to T. 
c. STAT G is set. 
d. The selected AB byte (DX + 1) is gated via the serial 

adder to byte 3 in S. 
e. The STC is set per IC(21-23). 
f. The T(DX) ingate and T(DX + 1) fetch sequence is 

started. 
3. T(DX) Ingate and T(DX + 1) Fetch Sequence 

a. The table word which contains byte T(DX) is 
available from main storage, and either the left- or 
right-half word is gated to T as determined by IC(21). 
STC(O) is set to 1 to select the correct byte in T. 
Simultaneously, the contents of T(DX) are subtracted 

from the contents of IC to restore the table base 
address. 

b. If LL equals zero, an exit is made to the T(DX) test 
sequence. 

c. If LL is not zero, DX + 1 (in S) is added to the 
contents of IC and a fetch request is made for T(DX 
+ 1). 

d. A branch per ST AT G starts the T(DX) test sequence. 

4. T(DX) Test Sequence and T(DX + 2) Address 
Generation 
a. The selected byte in T, T(DX), is gated to the serial 

adder for zero detection and is saved in F. 
b. STAT His set if the ABC equals zero. 
c. DX+ 1 is transferred from S to T. 
d. The STC is set to 3, and the ABC is incremented by 1 

(selecting byte to DX+ 2). 
e. An exit is made to the LS mark sequence (step 6) if a 

nonzero result is detected in the serial adder. 
f. An exit is made to the common end-op sequence if 

the serial adder result is zero and the LL count is 
zero. 

g. The LL count is decremented and the address in Dis 
incremented by 1. 

h. If ST AT H is set, an exit is made to the destination 
fetch routine. -

i. If no exit conditions are detected, the selected AB 
byte (DX + 2) is gated via the serial adder to S, and 
the STC is set per IC(21-23). 

j. The T(DX) ingating and T(DX + 1) fetch sequence is 
started. The table byte previously referred to as 
T(DX) has been tested. The table byte previously 
referred to as T(DX + 1) is now considered T(DX), 
and the processing loop is resumed. 

5. Destination Fetch Routine 
a. Before entering this routine, the ABC has been 

stepped from 7 to 0 and a fetch request was made for 
a table byte using byte 0 of the present destination 
word to generate the table byte address. Because this 
was an erroneous address, the resulting word from 
main storage is not used. 

b. STAT's G and H are reset, and the IC is restored to 
the table base address by subtracting DX + 1. 

c. A fetch request is made per the D-address. The 
requested doubleword is gated to AB. 

d. The ABC was previously stepped from 0 to I. It is 
now decremented to select byte 0 of the new 
destination doubleword (considered byte DX). 

e. The selected AB byte (DX) is gated via the serial 
adder to byte 3 in S. 

f. The DX (in S) is added to the contents of IC, and a 
fetch request is made for T(DX). 

g. Because ST AT G is reset, the T(DX + 1) address 
generation routine is started. 

7201-02 FETOM (7/70) 3-159 



6. LS Mark Sequence 
a. This routine is entered when a nonzero table byte is 

detected in the serial adder or when the LL count 
equals zero. (The last table byte tested is in F.) 

b. If the table byte was nonzero, STAT G is reset. 
c. E(8-15) is cleared and used for LAR addressing. 
d. GPRl is accessed per E(8-15) + 1 and its contents 

transferred to T. 
e. The STC is incremented to 4, and byte 4 of ST is 

gated via the serial adder back to ST. Simultaneously, 
the contents of D are gated to T via the parallel 
adder. 

f. The contents of T are stored into GPRl; E(8-11) is 
incremented twice, and the STC is set to 7. 

g. The contents of GPR2 are transferred to T. The 
contents of F are gated via the serial adder to 
T(56-63), and the contents of T are stored into 
GPR2. 

h. ST AT A is set if the byte in F was not zero. 
i. The common end-op sequence is started, which sets 

the CC per STAT's A and G. 

EDIT AND EDIT AND MARK, ED AND EDMK 
(DE AND DF) 

• Edit: change format of source (2nd operand; in storage) 
from packed to zoned, edit source under control of 
pattern (1st operand; in storage), and place result into 
1st operand location. 

• Edit and Mark: sam~ as Edit, but in addition place 
location of each 1st significant digit into GPRl. 

• SS format: 

I Op Codet I 
0 7 8 

t DE for Edit 
DF for Edit and Mark 

3-160 (7 /70) 

LL 1 Bl m Dl 1 B2 1 ~ G 
1516 1920 3132 3536 47 

Fetch pottern from 
moin storage per 
1st operand oddress. 

Select pattern byte. 

Fetch source from 
main storage per 
2nd operand address. 

Se I ec t source byte . 

Edit source byte under control of pattern 
\>yte (result is in zoned format). 

Store result byte into pottern byte location. 

EDMK Only 

Store address of each 
1st significant result 
digit into GPRl. 

• Conditions at end of GIS: 
Pattern (destination operand) is in ST. 
Pattern address is in D. 
Source address (contents of GPR per B2, + D2) is in IC. 
First 16 bits of instruction are in E. 

• CC setting: 
Result is zero: CC = 0. 
Result is less than zero: CC = 1. 
Result is greater than zero: CC= 2. 

The Edit instruction changes the format of the source 
(second operand) from packed to zoned, edits the source 
under control of a pattern (first operand), and places the 
result into the first operand location. The Edit and Mark 
instruction performs the same functions and, in addition, 
places the location of each first significant digit into GPRI. 
Both instructions are in the SS format, and share a common 
ROS microprogram with an exit to a separate mark routine 
for the Edit and Mark instruction. Because the results of a 
word-overlap condition are unpredictable, no special action 
is taken when this condition occurs. 

Introduction to Edit Operation 

• Edit instruction is used to: 
Eliminate high-order zeros. 
Provide asterisk protection. 
Handle sign control (CR). 
Provide punctuation. 
Blank out an all-zero field. 
Protect decimal point by use of significance start 

character. (This character can also be used to retain 
high-order zeros when desired.) 

Edit multiple adjacent fields via field separator 
character. 

The edit operation is used to produce easy-to-read 
documents by inserting proper punctuation into a data 
record. The data to be edited (second operand) is called the 
"source" and must be in the packed BCD format. Consider 
the following source field: 

00 12 49 07 10 7+ 

For the above field to be printed in a document, it must 
first be converted into the zoned format (USASCII-8 or 
EBCDIC). One. function of the edit operation is to change 
the source field from packed to zoned format.t If changing 

t Each time the digit from the source field replaces a digit select 
character, the four-bit digit has the proper EBCDIC or 
USASCII-8 zone b~ts inserted. PSW(12) determines whether the 
EBCDIC or USASCII-8 zone is inserted. For this discussion, it is 
assumed that the system is in EBCDIC.mode. 



from packed to zoned format were all that was necessary to 
produce a legible report, the Edit instruction would not be 
necessary, because the Unpack instruction· would be 
suffiCient. For instance, if the above packed BCD operand 
were changed to the EBCDIC zoned format, it would look 
like this: 

Packed 00 1-2 49 07 10 7+ 

Zoned FO FO Fl F2 F4 F9 FO F7 Fl FO C7 

If the above zoned BCD field were printed, it would 
look like this: 

0 0 1 2 4 9 0 7 1 0 7 + 

By examining the printed document, one could tell that 
it was a positive number with a low-order digit of 7. 
However, the printed document is still not legible. If, for 
instance, the number represents money, it would be 
desirable to obtain the following printed result: 

$1,249 ,071.07 

This result would require insertion of the commas and 
decimal points in the right place, as well as other editing. 
This is the main function of the edit operation. 

The edit operation involves moving the source field 
(second operand) into the pattern field (first operand). The 
pattern field is initially made up of EBCDIC characters that 
control the editing. The final edited result replaces the 
pattern field: 

2nd Operand 

Source Field 
in Packed 
Decimal 

1st Operand 

Pattern Field 
(EBCDIC Char
acters) 

As a rule, the second operand is shorter than the first 
because one source byte yields two result bytes. 

The characters in the pattern field determine the editing 
that takes place. The high-order (leftmost) character in the 
pattern field is known as the "fill" character. Any of the 
256 possible EBCDIC combinations can be used as the fill 
character. In many edit operations, however, the fill 
character consists of an EBCDIC blank (0100 0000). The 
blank character (represented by "b" in the discussion that 
follows) is not printed out and facilitates programmed 
blanking of high-order zero fields. 

Besides the fill character, three more control characters 
in the pattern field have special meaning: the digit select 
character, the significant start character, and the field 
separator character. These characters can appear anywhere 
in the pattern field. 

For purposes of discussion, the digit select character is 
represented by "d." (The binary code for the digit select 
character is 0010 0000, or a hex 20.) When a digit select 
character is encountered in a pattern field, it is usually 
replaced with a digit from the source field. If the digit in 
the source field is a high-order zero, however, the digit 
select character is replaced by the fill character. By using a 
blank as the fill character, high-order zeros can be blanked 
out. If an asterisk is used as the fill character, asterisk 
protection for paychecks can be achieved. 

Because the digit select character may be replaced by 
either a source digit or the fill character, the system needs 
some way of knowing which of the two to choose. This 
function is provided by a special control trigger, known as 
the 'S' trigger. When the 'S' trigger is set, it indicates that 
significant source digits are being processed. Consequently, 
the digit select characters in the pattern field are replaced 
with the digits from the source field. At the beginning of 
the edit operation, the 'S' trigger is always reset. As long as 
the 'S' trigger is reset, the digit select characters in the 
pattern field are replaced with the fill character. 

As stated previously, the 'S' trigger is set when a nonzero 
digit is detected in the source field. The 'S' trigger is also set 
if a significant start character is detected in the pattern 
field. The significant start character has a bit code of 0010 
0001 ·(hex 21). In this discussion, the symbol for the left 
parenthesis is used to represent the significant start 
character. When a significant start character is detected in 
the pattern field, it is replaced by either a digit from the 
source field or the fill character. A typical edit operation 
using the b, d, and ( characters is illustrated and explained 
below. 

Source Field 00 12 49 07 10 

Pattern Field' b I d I d d I d ( 

Result b I b I 0 I I I 2 I 4 I b =Blank. 

d =Select 

I o/l~Oiill ) Character. 
'S'TriggeLr VOi~ {(=Signifi-

. cant Start 
Character. 

Beginning End of Set by Significant-
of Cycle Cycle Start Chorocter 

The edit operation begins by examining the fill character 
(which is b in the above case). If it is not a digit select or a 

7201-02 FETOM (7/70) 3-161 



significant start character, it is left in place in the pattern 
field. Then, the next pattern character is examined. Because 
this is a significant start character, the next high-order 
source digit is examined. Because this source digit is zero 
and the 'S' trigger is reset (at this time), the significant start 
character is replaced with the fill character. However, the 
significant start character sets the 'S' trigger so that all 
subsequent source digits are significant. The remaining 
pattern characters in the above example are digit select 
characters, which are replaced with source digits. 

Once significance is started, the 'S' trigger remains set 
until the sign of the source operand is examined. If a plus 
sign is detected, the 'S' trigger is reset; if the source has a 
negative sign, the 'S' trigger remains set because the usual 
method of indicating a negative quantity in a printed report 
is with the letters "CR". The following example illustrates 
how the state of the 'S' trigger identifies the number as a 
positive or negative quantity: 

Source Field I ool 12 I 4910711017+1 
(6 Bytes) 

Pattern Field I b I d I d I d I d I d I d I d I d I d I d I d I CI R I (14 Bytes) 

Resu It I b I b I b I 1 I 2141 91 0 I 711 I 0 I 71 b I b I 
When a pattern character is not one of the three special 
control characters and the 'S' trigger is set, the character is 
not changed. If the 'S' trigger is reset, the character is 
replaced by the fill character. Because detection of a 
positive sign resets the 'S' trigger, the remaining pattern 
characters {CR) are replaced by the fill character. If the sign 
of the source field had been minus, the 'S' trigger would 
have remained set and characters CR would have been left 
in the pattern field. 

As stated previously, the 'S' trigger is reset when a plus 
sign is detected in the source field. The 'S' trigger is also 
reset if a field separator character is detected in the pattern 
field. The field separator character has a bit code of 0010 
0010 (hex 22). In this discussion, the symbol for the right 
parenthesis represents the field separator character. 

The field separator character is used when two or more 
packed BCD source fields are to be edited with one 
instruction into a single pattern field. The following edit 
example illustrates the use of the field separator character. 

Source Field H77Hoolool o+I 
(6 Bytes) 

Pattern Field I b Id Id I ( I · I d Id I b IC I R I ) I d I d I d I · Id I d I b IC I R I 
(20 Bytes) 

Result I b I b I 1 I 7 I · 17 16 1 b I b I b I b I b I b I b I b I b I b I b I b I b I 

Prints Out 17.76 

3-162 (7 /70) 

Note that after the field separator character resets the 'S' 
trigger, the source field does not contain any significant 
digits. As a result, the pattern characters are replaced by the 
fill character (blank). 

Introduction to Edit and Mark Operation 

The Edit and Mark operation is identical with that of the 
Edit instruction, except for the additional function of 
inserting a byte address into bits 8-31 of GPRl. The byte 
address is inserted each time the 'S' trigger is reset and a 
nonzero digit is inserted in the result field. The address is 
not inserted when significance is forced by the significant 
start character of the pattern. Bits 0-7 of GPRl are not 
changed. The Edit and Mark instruction facilitates the 
programming of floating currency-symbol insertion. The 
character address inserted into GPRl is 1 more than the 
address where a floating currency-sign would be inserted. 
(The Branch on Count instruction, with zero in the R2 
field, may be used to reduce the inserted address by 1.) 

The character address is not stored when significance is 
forced. Therefore, the address of the character following 
the significant start character should be placed into GPRl 
before the Edit and Mark instruction is executed. 

When a single instruction is used to edit several numbers, 
the address of the first significant digit of each number is 
inserted into GPRl. Only the last address will be available 
after the instruction is completed. 

General Data Handling 

Special circuits are packaged in the serial adder for use in 
the Edit and Edit. and Mark instructions. These circuits 
consist of: 
1. A decoder of serial adder bus B (SBB) to detect a digit 

select, significant start, or field separator character in the 
selected ST byte. 

2. 'Right digit' trigger for AB digit selection. 
3. Controls for stepping the ABC. 
4. Controls for determining which data (i.e., ST byte, F, or 

AB digit with zone) is to be used as the result byte, and 
controls for gating this data to the serial adder. 

5. Zero detection of the selected AB digit. 
6. Sign detection of the low-order digit of the selected AB 

byte. 
7. Detection of a mark condition. 
8. The 'S' trigger with associated set-reset controls. 
9. Controls for setting or resetting STAT's. 

The destination field is considered a pattern field and is 
processed one byte at a time, from left to right, under 
control of the STC. Each ST byte is gated to SBB for 
decoding and is replaced by a byte of data which, 
depending on decoded conditions, may be: 
1. Original data of ST byte. 
2. A selected digit of AB with a zone inserted into the 

high-order four bits. 
3. A fill character, which is contained in F. 



The source field is processed, one digit at a time, from left 
to right, under control of the ABC and 'S' trigger, which 
selects which digit of a byte is to be used. The selected AB 
digit is examined only if a digit select or significant start 
character appears in the selected ST byte. The selected AB 
digit is not necessarily used as part of the result byte, but 
the next digit to be processed is selected after the digit has 
been examined. 

Microprogram Description 

The flowchart for the Edit and Edit and Mark 
microprogram is shown in Diagram 5-411, FEMDM. At the 
start of the execution sequence, the fill character is gated 
from ST (per the STC) through the serial adder to 'f. A 
2-cycle data-processing sequence is then started and is 
repeated until all destination operand bytes have been 
processed. Exits from this sequence are made when 
required for operand fetching or marking, after which this 
sequence is continued. The microprogram may be divided 
into three parts: (1) first cycle, (2) second cycle, and (3) 
exit conditions. 

First Cycle 

The first cycle is a decode cycle; no data is transferred. The 
selected ST byte is gated to SBB, and the selected AB byte 
is gated to serial adder bus A (SBA) with the digit to be 
examined determined by the 'right digit' trigger. The 
decode circuits are activated by ROS. Decoding of SBB, 
SBA, and the 'S' trigger governs the selection of appropriate 
inputs to the serial adder, and also whether the 'S' trigger is 
set or reset. ST AT A is set if the selected source digit (in 

. AB) is a nonzero digit. However, if a field separator 
character is decoded at SBB, STAT A is reset. 

STAT Eis set if an invalid digit is decoded in SBA(0-3). 
A 1 is added to D (except for the first entry from another 
sequence) to keep the byte address in D at the same value 
as the STC for use in the marking sequence. A mark 
condition is detected and latched for a branch condition of 
the Edit and Mark instruction. 

Second Cycle 

At the start of this cycle,·data is gated to the serial adder by 
hardware controls as explained in the first cycle. The 
second cycle performs the following control functions: 
1. The serial adder output is gated back to the selected ST 

byte, and the appropriate mark trigger is set. 
2. The STC is incremented, and the LL count in E(8-15) is 

decremented by ROS control. 
3. The ABC is incremented by hardware controls. 
4. If required, the 'digit select' trigger is complemented. 

This action is conditional on the following: 
a. The digit selection of AB is changed only if a 

significant start or digit select character was decoded 
during the first cycle. 

b. When a sign code is decoded in SBA( 4-7) at the time 
bhs 0-3 are selected for examination, the low-order 
digit (sign) is skipped by stepping the ABC and 
leaving the 'right digit' trigger reset. 

5. If required, exit to a separate routine is made via an 
eight-way ROS branch, for end-op, operand fetching, or 
marking. If no exit conditions exist,- the execution 
sequence is repeated. 

Exit Conditions 

Exits from the data processing sequence are made when one 
or more of the following conditions exist: 
1. Edit and Mark instruction is being executed and a mark 

condition is detected. 
2. LL=OorSTC=7. 
3. ABC= 7. 

Where more than one of the above conditions exists, a 
branch is made to the proper sequence in the order they are 
listed above. An explanation of each sequence is given 
below: 
l. Exit on Detection of Mark Condition 

Exit to the mark sequence is made regardless of other 
branch conditions. Special action is taken to return 
counter values to what they were before entering the 
mark sequence, so they can be retested. ST AT H is set if 
the ABC has just stepped from 7 to 0, to record this 
condition. The contents of AB are destroyed by gating 
E(8-15) + 1 via the parallel adder to A, and the 
contents of T via the parallel adder to B. E(8-15) is 
cleared, and GPRI is transferred to T using E(l 2-15) + 
1 as the LAR address. The contents of D, the byte 
address of the last byte processed, are placed into 
T(40-63). T(32-39) is retained by gating it through the 
serial adder and back to Tat the same time the D-PAL-T 
transfer occurs. The contents of T are now transferred 
back to GPRl. Registers and counters are restored to 
their original contents. The source operand is replaced in 
AB by refetching it from main storage, and a test is 
made, via a ROS branch, for any other exit condition 
which may have been present at the time the mark 
sequence was started. If no other exit condition exists, 
the data-processing sequence is resumed. 

2. Exit on LL = 0 or STC = 7 (End-Op or Destination 
Fetch) 
STAT D is set if the ABC also equals 7, and a destination 
store is started and a test is made for invalid data. If 
STATE has been set, an interruption code trigger is set 
and an end-op sequence is started. If STAT E is not set, 
a test is made for an end-op condition via a ROS branch. 
If the LL count has been stepped to all 1 's, an end-op 
sequence is started which sets the CC, restores the 
instruction address to the IC, and resets STAT G. If an 
end-op condition does not exist, D is incremented and a 
fetch request is initiated for the next doubleword of 

7201-02 FETOM (7/70) 3-163 



destination operand. A test is made to see whether a 
source fetch is also required (ABC= 0 and STAT D set). 
If not, the data-processing sequence is resumed. 

3. Exit on ABC= 7 (Possible Source Fetch) 
A further test must be made to determine whether the 
last byte of AB has been processed. This is determined 
by testing the ABC for an all-zero count (i.e., the ABC 
was stepped from 7 to 0 in the previous cycle). If the 
ABC is not zero, the data-processing routine is restarted; 
otherwise, the IC is incremented by 8, and a fetch is 
initiated for the next doubleword of source operand. 
This source fetch sequence is common to all VFL logical 
instructions and incorporates the word-overlap test. 
However, this test does not affect the edit operation. 
The source doubleword from main storage is gated from 
the SDBO to AB, and the data-processing sequence is 
resumed. 

SHIFT 

Four logical shift instructions are available: 
1. Shift Left Single. Shifts a 3 2-bit operand left. 
2. Shift Left Double. Shifts a 64-bit operand left. 
3. Shift Right Single. Shifts a 32-bit operand right. 
4. Shift Right Double. Shifts a 64-bit operand right. 

The second operand address is not used to address data. 
Rather, its low-order six bits indicate the number of bit 
positions to be,shifted; the rest of the address is ignored. 

Shifting is accomplished as follows: 
1. Left 1 from T to P4A. 
2. Left 2 from AB to P AB. 
3. Left 4 from PAA or P AB to PAL. 
4. Right 4 from PAA orPAB to PAL. 

Shifts of right 3 or less are obtained by combining left 1, 
left 2, or left 3 shifts with a right 4 shift. 

Shift Left Single, SLL (89) 

• Shift 1st operand (in GPR, per Rl) left number of bit 
positions specified by low-order 6 bits of 2nd operand 
address. 

• RS format: 

89 Rl B2 

7 8 11 12 15 16 19 20 

Fetch 1st operand from GPR per R 1 • 

Shift 1st operand left number of bit 
positions specified by low-order 
6 bits of 2nd operand address. 

Store result into GPR per Rl. 

3-164 (7/70) 

D2 
31 

• Conditions at start of execution: 
1st operand is in S and T. 
D(18-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

The Shift Left Single, SLL, instruction shifts the 32-bit first 
operand left the number of bit positions specified by the 
low-order six bits of the second operand address. All 32 bits 
of the GPR participate in the shift. High-order bits are 
shifted out without inspection and are lost. Zeros are 
supplied to vacated low-order GPR positions. This 
instruction shares the same microprogram as the fixed-point 
Shift Left Single, SLA, instruction (Section 2 of this 
chapter). 

Shift Left Double, SLDL (8D) 

• Shift 1st operand (in GPR, per Rl and RI + 1) left 
number of bit positions specified by low-order 6 bits of 
2nd operand address. 

• RS format: 

8D Rl B2 

7 8 11 12 IS 16 19 20 

Fetch 1st operand from 
G PR per R 1 and R 1 + 1 . 

Shift 64-bit 1st operand left number 
of bit positions specified by low
order 6 bits of 2nd operand address. 

Store result into GPR 
per R 1 and R 1 + 1 . 

• Conditions at start of execution: 
1st operand is in ST. 
D(18-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

D2 
31 

The Shift Left Double, SLDL, instruction shifts the 64-bit 
first operand left the number of bit positions specified by 
the low-order six bits of the second operand address. The 
Rl field of the instruction specifies an even/ odd pair of 
GPR's and must contain an even GPR address. An odd 
value for Rl is a specification exception and causes a 
specification program interruption. All 64 bits of the 
even/odd GPR pair participate in the shift. High-order bits 
are shifted out of the even-numbered GPR without 
inspection and are lost. Zeros are supplied to vacated 

1

low-order positions of the odd-numbered GPR. This 
instruction shares the same microprogram as the fixed-point 
Shift Left Do:uble, SLDA, instruction (Section 2 of this 
chapter). 



Shift Right Single, SRL (88) 

• Shift 1st operand (in GPR, per Rl) right number of bit 
positions specified by low-order 6 bits of 2nd operand 
address. 

• RS format: 

88 R1 B2 

7 8 11 12 15 16 

Fetch 1st operand from GPR per R1. 

Shift 1st operand right number of 
bit positions specified by low-order 
6 bits of 2nd operand address. 

Store result into GPR per R1. 

19 20 

• Conditions at start of execution: 
1st operand is in Sand T. 
D(18-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

D2 
31 

The Shift Right Single, SRL, instruction shifts the 32-bit 
first operand right the number of bit positions specified by 
the low-order six bits of the second operand address. All 3 2 
bits of the GPR participate in the shift. Low-order bits are 
shifted out without inspection and are lost. Zeros are 
supplied to vacated high-order GPR positions. This 
instruction shares the same microprogram as the fixed-point 
Shift Right Single, SRA, instruction (Section 2 of this 
chapter). 

Shift Right Double, SRDL (8C) 

• Shift 1st operand (in GPR, per Rl and Rl + 1) right 
number of bit positions specified by low-order 6 bits of 
2nd operand address. 

• RS format: 

SC R1 B2 

7 8 11 12 15 16 19 20 

Fetch 1st operand from 
GPR per R1 and R1 + 1. 

Shift 64-bit 1st operand right 
number of bit positions specified 
by low-order 6 bits of 2nd 
operand address. 

Store result into GPR 
per R1 and R1+1. 

• Conditions at start of execution: 
1st operand is in ST. 
D(18-23) specifies amount of shift. 
First 16 bits of instruction are in E. 

D2 
31 

The Shift Right Double, SRDL, instruction shifts the 64-bit 
first operand right the number of bit positions specified by 
the low-order six bits of the second operand address. The 
Rl field of the instruction specifies an even/ odd pair of 
GPR's and m.ust contain an even GPR address. An odd 
value for Rl is a specification exception and causes a 
specification program interruption. All 64 bits of the 
even/odd GPR pair participate in the shift. Low-order bits 
are shifted out of the odd-numbered GPR without 
inspection and are lost. Zeros are supplied to vacated 
high-order positions of the even-numbered GPR. This 
instruction shares the same microprogram as the fixed-point 
Shift Right Double, SRDA, instruction (Section 2 of this 
chapter). 

7201-02 FETOM (7/70) 3-165 



SECTION 6. BRANCHING INSTRUCTIONS 

This section discusses the nine branching instructions. The 
instructions use the RR, RX, and RS formats. For a 
discussion of branching, operand addressing, instruction 
formats, data flow, and program interruptions, see Chapter 
1. 

BRANCH ON CONDITION, BCR (07) 

• Branch. to location specified by GPR (addressed by R2) 
if state of CC is as specified by M 1. 

• RR format: 

0 

07 Ml R2 

7 8 11 12 15 

Obtain CC mask bits from E. 

Compare CC with mask bits. 

Branch to location specified by 
GPR (per R2) if condition is met. 

• Conditions at start of execution: 
Branch address is in D. 
3-cycle storage request for branch-to instruction has 

been issued per D if branch is successful. 
Instruction is in E. 

• If branch is unsuccessful, 3-cycle storage request to refill 
Q will be issued per IC, if required. 

• Branch is unsuccessful if R2 = 0 or if condition is not 
met. 

The Branch on Condition, BCR, instruction, which has an 
RR format with an op code of 07, replaces the next 
sequential instruction address with the branch address 
located in the GPR specified by R2 if the CC agrees with 
the corresponding mask bit(s) in the Ml field. The Ml field 
is used as a four-bit mask. The four bits of the mask 
correspond, left to right, ·with the four CC's (0, 1, 2, and 3) 
as follows: 

M1 Mask Position 
Field Value cc 

8 8 0 
9 4 

10 2 2 
11 3 

3-166 (7/70) 

The branch is successful whenever the CC has a 
corresponding mask bit(s) of 1. 

When a branch is to be made on more than one CC, the 
pertinent CC's are specified in the mask as the sum of their 
mask position values. A mask of 12, for example, specifies 
that a branch is to be made on CC's 0 and 1. 

When all four mask bits are l's, that is, the mask 
position value is 15, the branch is unconditional. When all 
four mask bits are 0 or when R2 = 0, the branch instruction 
is equivalent to a No-Operation. 

At the start of execution, the instruction is in E and the 
branch address is in D. For a BCR instruction, the storage 
request can be generated from two possible places, 
depending upon whether the branch is successful (Diagram 
5-501, FEMDM). If the branch is successful, the storage 
request is generated per D. If the branch is unsuccessful, the 
storage request is generated per the IC if Q needs to be 
refilled. Because the CC's, which have to be compared with 
the mask bits, are set during the execution phase of a 
previous instruction and are tested during I-Fetch of the 
branch instruction, success of the branch can be determined 
beforehand. Therefore, the BCR instruction knows whether 
it is successful or unsuccessful before instruction execution. 

The branch-to address is always placed in D by the 
I-Fetch sequence. If the branch is successful, a request is 
made per D by means of the 'I-Fetch reset' micro-order. 
The correct halfword within the doubleword from main 
storage is then gated into Q, and from Q to R per D(21,22). 
The contents of D are updated by 8 and placed into the IC 
to address the next sequential doubleword from main 
storage. If the branch is unsuccessful, the storage request is 
issued per the IC, if Q needs to be refilled, during I-Fetch 
(by means of the 'I-Fetch reset' micro-order), and the data 
from main storage is gated to Q during the execution of the 
unsuccessful branch. 

Successful Branch 

The 'execute' and 'PSC' triggers are reset if the branch is 
successful. The triggers are set if the branch instruction is 
the subject instruction of an Execute instruction. 

The contents of D are transferred to PAA( 40-63). Then 
8 is added to PAA, and the result (address of next 
doubleword to be operated on) is transferred to the IC. 
D(21,22) is now tested. If D(21,22) = 11, it signifies that 
the next instruction to be executed, when the data is gated 
into Q from the SDBO, occupies the last halfword of Q, 
and a request must be made to obtain additional 
instructions for Q. If D(2 l ,22) equals a value other than 11, 



then the next instruction to be executed is in some 
halfword other than the last halfword of Q. 

Assume that D(2 l ,22) = 11. In this case, a storage 
request per the updated instruction address in the IC is 
given to refill Q. At this time, the data (branch-to 
instruction) that was requested during I-Fetch of the 
branch instruction is present at the SDBO and is gated into 
Q. From Q, the data is gated to R per D(21,22), thus 
placing the last halfword of Q into R. 

The contents of the IC are transferred to the parallel 
adder, where they are updated by 8 and replaced into the 
IC to address the next doubleword from main storage. 
After the IC has been updated, the next sequential 
doubleword (requested during execution of the branch 
instruction) is gated from the SDBO into Q. A normal 
end-op cycle completes the operation. 

Now assume that D(21,22) equals a value other than 11 
on a successful branch. This condition means that the next 
instruction to be executed is contained in either the first, 
second, or third halfword of Q when the data from storage 
is gated into Q. The data which was requested during 
I-Fetch of the branch instruction is now present at the 
SDBO and is gated into Q. The hal~;-vord that contains the 
next instruction to be executed is then gated into R per 
D(21,22). Format decoding is normally accomplished from 
R and instruction address decoding from the IC. Because 
the data to be decoded has just been placed into Rand the 
IC, it is not yet stable and therefore cannot be decoded 
during th.is cycle. Rather than delaying a cycle until the 
information is stable, a brand]- end-op cycle is taken. This 
cycle allows decoding of the halfword (containing the next 
instruction) from the SDBO as the data is transferred from 
the SDBO to Q and decoding of the instruction address 
from D. 

Unsuccessful Branch 

Assume, now, that the branch had been found to be 
unsuccessful (point B, Diagram 5-501, Sheet 2). Because 
the storage request was generated per the IC, IC(21,22) is 
now tested. Assume that IC(21,22) = 11. This value means 
that the next instruction to be executed is located in the 
last halfword of the doubleword from main storage that 
contains the branch instruction. This instruction is in R. 
Because a request to refill Q per the IC was made during 
I-Fetch, the IC must be updated. Accordingly, the contents 
of the IC are now transferred to PAB( 40-63). Then 8 is 
added to P AB, and ihe result is transferred to the IC and D. 
At this time, the data that was requested during I-Fetch of 
the branch instruction is present at the SDBO and is gated 
into Q. The 'execute' trigger is now tested. If the trigger is 
set, the IC is reduced by 8 (because 8 had been added to it 
and the I-Fetch request was blocked by STAT G being set 
by the Execute instruction), a normal end-op cycle is taken, 
and an address-store-compare refill of Q' will be performed. 

If the 'execute' trigger is reset, a branch end-op cycle is 
taken. 

Now assume that IC(2 l ,22) = 00, 01, or IO and that the 
branch instruction was unsuccessful (point C, Diagram 
5-501, Sheet 2). In this case, the next instruction to be 
executed is in either the first, second, or third halfword of 
Q, and Q does not need to be refilled. Therefore, a normal 
end-op cycle is taken, the next instruction format is 
decoded from R, and the instruction a.ddress is decoded 
from the IC. 

A unique situation occurs for the BCR instruction when 
the 'PSC' trigger is set by an Execute instruction. This 
situation causes a Q-register refill following the ·Execute 
instruction. A branch is taken to the address-store-compare 
ROS microprogram, 8 or 16 is subtracted from the IC to 
select the doubleword that contains the instruction 
following the Execute instruction, and a storage request per 
the IC is made for that doubleword. 

BRANCH ON CONDITION, BC ( 4 7) 

• Branch to location specified by 2nd operand address if 
state of CC is as specified by M 1. 

• RX format: 

0 

47 Ml X2 B2 
78 11 12 15 16 19 20 

Obtain CC mask bits from E. 

Compare CC with mask bits. 

Branch to location specified by 2nd 
operand address if condition is met. 

02 
31 

• Conditions at start of execution: 
Branch address is in D. 
3-cycle storage request for branch-to instruction has 

been issued per D, if branch is successful. 
First 16 bits of instruction are in E. 

• If branch is unsuccessful, 3-cycle storage request to refill 
Q will be issued per IC, if required. 

The BC instruction is similar to the BCR instruction, 
differing only when IC(21,22) = 00 when the branch is 
unsuccessful (point B, Diagram 5-501, Sheet 2). This value 
means that the next instruction to be executed is to come 
from the first halfword of the doubleword which has been 
requested during I-Fetch. The contents of the IC are 
updated by 8 and placed into the IC and D. The 
doubleword from main storage requested during I-Fetch is 

7201-02 FETOM (7 /70) 3-167 



now gated from the SDBO to Q. The first halfword from Q 
is then transferred to R. 

The 'execute' trigger is now tested. If reset, the branch 
instruction ends in a branch end op, and format decoding 
of the next instruction takes place off the SDBO because R 
is not stable. If the 'execute' trigger is set, the branch 
instruction was the subject instruction of an Execute 
instruction, and the present contents of the IC are incorrect 
because the IC was' increased by 8 during this instruction. 
The contents of the IC are thus reduced by 8 and· replaced 
in the IC. A normal end op completes the operation. 
Because the BC instruction was the subject of an Execute 
instruction, the return to the proper next instruction occurs 
during I-Fetch, as discussed in the BCR instruction. 

BRANCH AND LINK, BALR (05) 

• Store PSW (32-63), link information, into GPR 
(addressed by Rl) and branch to location specified by 
GPR (addressed by R2). 

• RR format: 

05 Rl R2 
7 8 11 12 15 

Obtain link information 
[PSW(32-63)]. 

Store link information 
into GPR per Rl. 

Branch to location specified 
by GPR addressed by R2. 

• Conditions at start of execution: 
2nd operand is in A, B, and D. 
3-cycle storage request has been issued per D for 

branch-to instruction. 
Instruction is in E. 

• Link information consists of: 
Instruction length code. 
cc. 
Program mask bits. 
Address of next sequential instruction (link address). 

• Link information is stored whether branch is successful 
or unsuccessful. 

• If 'execute' trigger is set, link address is address of 
instruction following Execute instruction. 

• Branch is unsuccessful if R2 = 0. 

3-168 (7/70) 

The Branch and Link, BALR, instruction, which has an RR 
format with an op code of 05, stores the address of the 
next sequential instruction. Stored with the address is link 
information containing the instruction length code, the CC, 
and the program mask bits. The instruction length code 
stored will be either 1 or 2. If the instruction length code 
stored is 2, the BALR instruction is the subject of an 
Execute instruction. If during a BALR operation the R2 
field is equal to zero, the branch is considered unsuccessful. 

The purpose of the BALR instruction is to branch to a 
subroutine and provide a means of returning from the 
subroutine to the main flow of instructions in a program. 
How this is accomplished is shown in Figure 3-26. When 
processing the main instruction flow and a BALR 
instruction is encountered, the address of the instruction 
which sequentially follows the BALR in the main 
instruction flow is stored in LS. For the example illustrated 
in Figure 3-26, the address of the next sequential 
instruction is 14 and is stored in GPR9. (If the BALR 
instruction was in address 14 of the main program, then the 
address stored would be 16.) Once the instruction address is 
stored, the branch to the subroutine occurs. The subroutine 
is performed and, when completed, a branch instruction 
could be issued using the address that was stored during the 
BALR instruction as the branch address to return to the 
main flow of instructions. After returning to the main flow 
of instructions, the program will continue in its normal 
manner, processing the remaining instructions. 

In determining the address which is to be stored as the 
link address, IC(21,22) and the 'execute' trigger must be 
tested (Diagram 5-502, Sheet 2, FEMDM). If IC(21,22) = 
11 and the 'execute' trigger is set (indicating the BALR is 
the subject of the Execute instruction and the Execute 
instruction is located in the second and third halfwords of 
its doubleword), 16 is subtracted from the IC an,d placed 
into T. Thus, if it is necessary to return to the main flow of 
instructions, the instruction which will be performed next 
is that instruction sequentially following the Execute 
instruction. If IC(2 l ,22) does not equal 11 or the 'execute' 
trigger is reset, 8 is subtracted from the IC and the value is 
placed into T. 

Unsuccessful Branch 

E(12-15), which contains the address of the GPR which 
has the branch address, is examined. If E(12-15) = 0, 
branching is not to take place and a No-Operation occurs. If 
E(l 2-15) equals anything other than zero, branching 
occurs unconditionally. First assume that the branch is 
unsuccessful [E(l 2-15) equals zero] . IC(21,22) is tested. 
If IC(21,22) = 11, it indicates that the next instruction to 
be executed is in R (this instruction is the last halfword of 
the doubleword in Q) and a new doubleword must be 
placed into Q. ff IC(2 l ,22) equals any other value, the next 



Doubleword 
Address 0 

0 

2 

Main 
Instruction 

Flow 

Add 

Multiply 

LOCAL STORAGE 

GPR Contents 

7 Branch-to Address (98) 

.... 9 Link Address (14) .. 

4 Divide Store main storage address 
of instruction that 

6 Add sequentially follows BALR 
in main instruction flow. 

Doubleword 
Address 8 

8 

10 

12 

14 

Load 

Add 

BALR (0597) 

Add 

.. ~ 

I+- j_ 
Branch to address 

16 Load specified by GPR7. 

Doubleword 
Address 16 

18 

20 

22 

Add 

Compare 

Divide L-+-

Subroutine 
Program 

96 Add 

98 Subtract 

100 Add 

102 Branch to BCR (07F9) 1---

104 

Obtain address which --was stored during BALR ~ .....__ 
and use this address to 

"""-
re-enter main program. -

_Figure 3-26. Example of Use of Branch and Link Instruction 

sequential instruction is also located in R but Q contains 
data which is still correct and may be operated on. In either 

. case, the remainder ;of the link data [PSW(32-39)] is 
placed into T(32-39) and from there transferred to the 
GPR per E(8-11 ). If IC(21,22) equals a value other than 
11, a normal end op is taken after storing the data and the 
next instruction is decoded from R. If IC(2 l ,22) = 11, after 
storing the link information, a 3-cycle storage request is 
issued per the IC to obtain the next sequential doubleword 
to refill Q. The 'execute' trigger is again tested. If set, a 
normal end op is immediately taken and the next 
instruction to be executed is the instruction which 
sequentially follows the Execute instruction (of which the 
BALR instruction was the subject instruction). (This action 
is accomplished during the next I-Fetch by means of the 
ASC micro-program branch which · will refetch the 
instruction following the Execute instruction.) If the 
'execute' trigger is reset, the next instruction to be. 
executed is in R. The IC is updated by 8 to select the next 
sequential doubleword after the one just requested. 

IC(21,22) is again tested; if it equals 11, the data on the 
SDBO is gated to Q and a branch end-op cycle is taken. 

Successful Branch 

·Now assume that E(l 2-15) does not equal zero (indicating 
a successful branch). The 'PSC' and 'execute' triggers are 
reset by a combination of the 'T6' and 'M4' micro-orders. 
PSW(32-39) is transforred to T(32-39). The doubleword 
containing the branch-to instruction (requested during 
I-Fetch of the branch instruction) is now present at the 
SDBO and is gated to Q. 

From Q, the correct halfword is transferred to R per 
D(2 l ,22). Then 8 is added to D, and the result is placed 
into the IC to address the next sequential doubleword from 
main storage. The data in T is now transferred to the GPR 
per E(8-11 ). 

D(21,22) is tested for a value of 11. If it does not equal 
11, the data in R and the IC is not yet stable, thus 
preventing decoding of the next instruction from R or 

7201-02 FETOM (7/70) 3-169 



decoding of the instruction address from the IC. A branch 
end-op cycle is taken, and the next instruction is decoded 
off the SDBO which, at this time, is stable. If D(21,22) = 
11, the next instruction is located in the last halfword of 
the doubleword requested during I-Fetch. From Q, the last 
halfword is transferred to R per D(2 l ,22). Because the 
halfword that contains the next instruction to be executed 
is the last halfword of the doubleword, Q must be filled 
with a new doubleword to allow continuous operation. 
Then 8 is added to D, and the result is transferred to the IC. 
A 3-cycle storage request is issued per the IC to obtain the 
next doubleword. The address of the doubleword is tested 
for validity; if the address is invalid, the 'I-Fetch invalid 
address' trigger is set. The IC is ~pdated by 8. By this time, 
the requested doubl~word is present at the SDBO and is 
gated to Q. A normal end-op cycle is taken, and the next 
instruction to be executed is decoded off R. 

BRANCH AND LINK, BAL ( 45) 

• Store PSW(32-63), link information, into GPR 
(addressed by RI) and branch to location specified by 
2nd operand address. 

• RX format: 

45 Rl X2 82 
0 71 11 12 15 16 19 20 

Obtain link information 
[PSW(32-63)]. 

Store link information 
into GPR per Rl. 

Branch to location specified 
by 2nd operand address. 

• Conditions at start of execution: 
Branch address is in D. 

02 
31 

3-cycle storage request has been issued per D for 
branch-to instruction. 

First 16 bits of instruction are in E. 

• Link information consists of: 
Instruction length code. 
cc. 
Program mask bits. 
Address of next sequential instruction (link address). 

• Link information is stored whether branch is successful 
or unsuccessful. 

• BAL is unconditional branch. 

3-170 (7/70) 

• If 'execute' trigger is reset and ABC = 0, IC reflects 
correct address and is stored as link address. 

• If 'execute' trigger is reset and ABC does not equal 0, IC 
is reduced by 8 and then stored as link address. 

• If 'execute' trigger is set, link address is address of 
instruction following Execute instruction. 

The Branch and Link, BAL, instruction stores the address 
of the instruction which, if the branch were unsuccessful, 
would be the next sequential instruction address. Stored 
with the address is link information consisting of the 
instruction length code, the CC, and the program mask bits. 
The instruction length code stored is 2. The BAL 
instruction is an unconditional branch with an RX format 
and an op code of 45. 

At the start of execution, the first 16 bits of the 
instruction are in E, the branch address is in D, and a 
3-cycle storage request has been generated per D for the 
branch-to instruction (Diagram 5-503, FEMDM). At the 
beginning of the operation, the last three bits of the IC are 
transferred to the ABC. This value will be used to 
determine the correct value of the IC before it is stored into 
LS as link address information. The contents of the IC are 
transferred to the parallel adder and reduced by 8. This 
value is then transferred to T, from where it and the 
remainder of the link data (PSW(32-39)] will be 
transferred to LS. The 'execute' trigger is then tested; if it is 
set, the branch operation is the subject instruction of an 
Execute instruction. 

First assume the 'execute' trigger is reset. The ABC is 
now checked for all zeros. If equal to zero, it indicates that 
the branch instruction now being executed was located in 
the third and fourth halfwords of Q. Normally, when an 
instruction with an RX format occupies the last two 
halfwords of Q, a storage request is generated during 
I-Fetch per the IC and the IC is updated by 8. Because this 
is a branch instruction, however, the storage request from 
the IC is prevented and the IC is not increased by 8. 
Therefore, the address presently in T (after being reduced 
by 8) is incorrect and 8 must be added to it before it is 
stored into LS. 

Assume that the ABC did not equal zero. PSW(32-39) is 
transferred to T(32-39). Because the ABC was not equal to 
zero, the link address is correct and can be stored into the 
GPR per E(8-11). The contents of Dare then transferred 
to the parallel adder, increased by 8, and transferred to the 
IC. The IC now contains the address of the doubleword in 
main storage which follows the doubleword containing the 
branch-to instruction. At thi_s time, a storage request for the 
next doubleword is issued if D(2 l ,22) = 11. The data 
requested per D during I-Fetch is at the SDBO and is gated 
to Q. From Q, the correct palfword is transferred to R per 
D(21,22). 

D(21,22) is now checked for a value of 11. If it is equal 
to 11, the next instruction to be executed is in the last 



halfword of Q. The IC is then updated by 8 to address the 
next doubleword in main storage. By this time, the 
doubleword that was requested during the branch 
instruction is present at the SDBO and can be gated into Q. 
A normal end-op cycle is then taken to complete the 
operation. If D(2 l ,22) did not equal 11, a branch end-op 
cycle is taken and the next instruction is decoded off the 
SDBO. 

Now assume that the 'execute' trigger is set, indicating 
that the branch instruction is the subject instruction of an 
Execute instruction. IC(2 l ,22) is tested for a value of 11. If 
it equals 11, the Execute instruction was located in the 
second and third halfword of its doubleword and, when in 
Q, I-Fetch issued a storage request and increased the IC by 
8. This increase results in an address in the IC that is 16 
bytes higher than the doubleword address containing the 
Execute instruction. Because the address that is stored as 
link information is the address of the doubleword 
containing the instruction immediately following the 
Execute instruction, the address has to be reduced by 16. 
The address in T, however, has already been reduced by 8; 
therefore, only 8 must be subtracted from it. The 
remainder of the link information is now transferred from 
PSW(32-39) to T(32-39). 

The contents of D are transferred to the parallel adder, 
updated by 8, and then transferred to the IC to address the 
next doubleword. The 'execute' trigger is now reset. A 
storage request for that doubleword whose address was just 
placed into the IC is issued if D(21,22) = 11. At this time, 
the data requested during I-Fetch of the branch instruction 
is present on the SDBO and is gated to Q. The correct 
halfword in Q is then transferred to R per D(21,22). The 
link address located in T is transferred to the parallel adder, 
where it is decreased by 8. This value is now equal to the 
address of the doubleword that contains the Execute 
instruction and is transferred to T. From T, the link 
information is transferred to the GPR per E(8-11 ). 

D(21,22) is now checked for a value of 11. If it equals 
11, the next instruction to be e~ecuted is in the last 
halfword of Q. The IC is then updated by 8 to address the 
next doubleword in main storage. By this time, the 
doubleword that was requested during the branch 
instruction is present at the SDBO and can be gated into Q. 
A normal end-op cycle is then taken to complete the 
operation. If D(2 l ,22) did not equal 11, a branch end-op 
cycle is taken and the next instruction is decoded off the 
SDBO. 

Now assume that IC(2 l ,22) did not equal 11. This 
condition indicates that the Execute instruction was not in 
the second halfword and a storage request was not 
automatically generated. The link information presently in 
T is therefore correct and can be stored in to the GPR per 
E(8-11 ). The contents of D are increased by 8 and placed 
into the IC. Again a storage request is generated if D(21,22) 

= 11.· At this time, the doubleword containing the 
branch-to instruction is located in the SDBO and is gated to 
Q. The correct half word in Q is then transferred to R per 
D(21,22). D(21,22) is tested for a value of 11, and 
operations continue as previously described, ending with a 
branch end op or a normal end op. 

BRANCH ON COUNT, BCTR (06) 

• Subtract 1 from 1st operand (in GPR, per Rl) and, if 
result is not 0, branch to address specified by GPR 
(addressed by R2). 

• RR format: 

0 

06 Rl R2 
7 8 II 12 15 

Fetch 1st operand from GPR per Rl. 

Subtract · 1 from 1st operand and 
store result into GPR per Rl. 

Branch to location specified by 
GPR addressed by R2 if result 
of subtraction is not zero. 

• Conditions at start of execution: 
Branch address is in D. 
3-cycle storage request has been issued per D for 

branch-to instruction. 
First operand is in Sand T. 
Instruction is in E. 

The Branch on Count, BCTR, instruction subtracts 1 from 
the first operand (contents of the GPR specified by RI) 
and, if the result does not equal zero or R2 does not equal 
zero, branches to the address specified· by the contents of 
the GPR designated by R2. The result of the subtraction is 
stored into the first operand location. If the result of the 
subtraction equals zero, the next sequential instruction is 
executed. If E(12-15) = 0, the branch is automatically 
unsuccessful. The BCTR instruction has an RR format with 
an op code of 06. 

At the start of execution, the instruction is in E, the first 
operand is in S and T, the branch address is in D, and a 
3-cycle storage request has been issued per D for the 
branch-to instruction (Diagram 5-504, FEMDM). The first 
operand is transferred from T to B and from B to the 
parallel adder, where 1 is subtracted from the operand to 
determine whether the branch is successful. Before 
subtracting 1, E(l 2-15) is tested for zeros. As previously 
stated, if E(l 2-15) = 0, the branch is unsuccessful. Assume 
that E(l 2-15) does not equal zero. The contents of B are 

7201-02 FETOM (7 /70) 3-171 



transferred to the parallel adder, where 1 is subtracted from 
the operand; the result is transferred via T into LS. The 
result of the subtraction is tested for all zeros; if zero, the 
branch is unsuccessfui; if not zero, the branch is successful. 

Successful Branch 

First assume that the branch is successful. The 'PSC' and 
'execute' triggers are reset. Because 0(21,22) indicates in 
which halfword the branch-to instruction is located, it is 
examined. If 0(21,22) = 11, the instruction is located in 
the last halfword of the doubleword requested during 
I-Fetch of the branch instruction. The contents of D, 
therefore, are updated by 8 and transferred to the IC. By 
this time, the data requested during I-Fetch is present at the 
SDBO and can be gated into Q. The last halfword of Q is 
then transferred to R per 0(21,22). A 3-cycle storage 
request for the next doubleword is now issued per the IC. 
The contents of the IC are then transferred to the parallel 
adder, updated by 8, and transferred back to the IC to 
select the next doubleword from main storage. At this time, 
the doubleword which sequentially follows the doubleword 
containing the branch-to instruction is present at the SDBO 
and is gated into Q. A normal end-op cycle is taken, and the 
next instruction to be executed is decoded from R. 

If 0(21,22) did not equal 11, the branch-to instruction 
is located in some halfword other than the last. In this case, 
the contents of D are transferred to the parallel adder, 
updated by 8, and then transferred to the IC. At this time, 
the doubleword containing the branch-to instruction is ..., 
present at the SDBO and can be gated into Q. From Q, the 
correct halfword is transferred to R per 0(21,22). A branch 
end-op cycle is taken, and the next instruction is decoded 
off the SDBO. 

Unsuccessful Branch 

Now assume that the branch is unsuccessful. If IC(2 l ,22) = 
11 or 00, a storage request per the IC must be given during 
the branch execution phase to obtain the next sequential 
doubleword from main storage (because this action was 
inhibited during the end-op cycle by the branch decoder). 
Once the storage request is issued, the 'execute' trigger is 
tested. If set, it indicates that the branch instruction is the 
subject instruction of an Execute instruction. Therefore, a 
normal end-op cycle is taken to complete the operation. 
The data requested in this case is not gated into Q. If the 
'execute' trigger is reset, IC(21,22) is tested to see whether 
it contains 11. If the value is 11, the IC is updated by 8 (to 
select another doubleword) and placed into the IC and D. 
By this time, the data requested by the storage request 
given during the execution phase of the branch instruction 
is present at the SDBO and can be gated into Q. A normal 
end-op cycle is then taken, and the next instruction to be 

3-172 (7/70) 

executed is decoded off R. If IC(2 l ,22) does not equal 11, 
then it equals 00, and the next instruction is located in the 
first halfword of the doubleword requested during the 
execution phase of the branch instruction. The IC is 
updated by 8, and the result is placed into D and the IC. At 
this time, the data requested during the execution phase is 
present at the SDBO. This doubleword is gated to Q; the 
correct halfword from Q(0-15) is transferred to R. Because 
the format is normally decoded off R and the data just 
placed in R is not yet stable, a branch end-op cycle is taken. 
This cycle allows the next instruction to be decoded off the 
SDBO, which at this time is stable. 

BRANCH ON COUNT, BCT ( 46) 

• Subtract 1 from 1st operand (in GPR, per Rl) and, if 
result is not 0, branch to location specified by 2nd 
operand address. 

• RX format: 

46 Rl X2 82 
7 8 II 12 15 16 19 20 

Fetch 1st operand from GPR per Rl. 

Subtract 1 from 1st operand and 
store result into GPR per Rl. 

Branch to location specified by 
2nd operand address if result 
of subtraction is not zero. 

• Conditions at start of execution: 
Branch address is in D. 

02 
31 

3-cycle storage request has been issued per D for 
branch-to instruction. 

1st operand is in Sand T. 
First 16 bi ts of instruction are in E. 

The Branch On Count, BCT, instruction is similar to the 
BCTR instruction except that E(l 2-15) is not tested for 
zero. Refer to Diagram 5-504 for a flowchart of the BCT 
instruction. 

BRANCH ON INDEX HIGH, BXH (86) 

• Add increment (3rd operand; in GPR, per R3) to 1st 
operand (in GPR, per Rl ), algebraically compare result 
(index) with comparand (in odd-address GPR specified 
by R3 or R3 + 1 ), and, if index is greater· than 
comparand, branch to location specified by 2nd operand 
address. 



• RS format: 

86 Rl R3 82 D2 
7 8 11 12 15 16 19 20 

Fetch 1st operand 
from GPR per R 1. 

Fetch 3rd operand 
(increment) from 
GPR per R3. 

Add 1st and 3rd operands and store 
result (index) into GPR per Rl. 

Algebraically compare index with 
comparand located in odd-address 
GPR per R3 or R3 + 1. 

Branch to location specified by 
2nd operand address if index 
is greater than comparand. 

• Conditions at start of execution: 
Branch address is in D. 

31 

3-cycle storage request has been issued per D for 
branch-to instruction. 

1st operand is in S and T. 
First 16 bits of instruction are in E. 

• Sum of 1st and 3rd operands is always stored whether 
branch is successful or not. 

• Comparand address (R3 or R3 + 1) must be odd. 

The Branch on Index High, BXH, instruction, which has an 
RS format with an op code of 86: 
1. Adds the third operand to the first operand. 
2. Stores the result (index) into the GPR addressed by Rl. 
3. Compares the index with a comparand obtained from a 

GPR addressed by R3 or R3 + 1. 
4 .. Branches if the sum is greater than the comparand. 

At the start of execution, the first 16 bits of the 
instruction are in E, the first operand is in S and T, the 
branch address is in D, and a 3-cycle storage request has 
been issued per D for the branch-to instruction (Diagram 
5-505, FEMDM). To allow the third.operand to be placed 
into T without destroying the first operand, the first 
operand is transferred to B. The third operand is then 
transferred from the GPR per E(l 2-15) and placed into T 

The two operands are added, and the result is transferred to 
B. The comparand, the value that the sum of the two 
operands (index) is compared with, is now transferred from 
LS and placed into T. The contents of B and the 
2's-complement of T are transferred to the parallel adder 
and added to determine whether the branch is successful. 
IC(21,22) is fested for either 11 or 00. ·If the branch is 
unsuccessful, this test sets up conditions to issue a storage 
request per the IC to obtain the next sequential 
doubleword after the doubleword containing the branch 
instruction. 

Assume that IC(21,22) = 11or00. D(21,22)isnow 
tested to determine where in the doubleword the next 
instruction is located. If D(21,22) = 11, the next 
instruction to be executed is contained in the last halfword 
of the doubleword requested during I-Fetch of the branch 
instruction. The P AL's and E(7) are now tested (by means 
of the 'J47 i:= O' micro-order) to determine whether the 
branch is successful. First assume the branch is successful; 
that is, the P AL's are positive (index greater than the 
comparand) and E(7) = 0. The contents of B (index) are 
transferred to T, and from there to the GPR per E(8-11 ). 
The 'PSC' and 'execute' triggers are reset by means of the 
'TIF' micro-order. At this time, the doubleword requested 
during I-Fetch is present at the SDBO and is gated into Q. 
The halfword containing the next instruction to be 
executed is then transferred to R per D(21,22). A test is 
made to re-establish that D(21,22) = 11. Assuming the 
original conditions still exist, the contents of D are now 
updated by 8 and placed into the IC. This action allows the 
selection of the next doubleword in main storage. A 3-cycle 
storage request is then issued per the new value in the IC. 
The IC is then updated by 8 to allow selection of the next 
doubleword from main storage when needed. By this time, 
the data requested during the execution phase of the 
branch instruction is available at the SDBO and can be 
gated into Q. A normal end-op cycle is then taken to 
complete the operation. During the end-op cycle; the next 
instruction executed is decoded off R. 

Now assume the branch is unsuccessful. That is, the 
PAL's are not positive and E(7) = 0. The contents of B 
(index) are transferred to T, and from there to the GPR per 
E(8-11 ). Because the branch is unsuccessful and the 
contents of R have not been changed, R still contains the 
instruction that is located in the halfword following the last 
halfword of the branch instruction. A normal end-op cycle, 
therefore, can be taken and the instruction decoded off R. 
If IC(2 l ,22) = 11 or 00, a 3-cycle storage request is issued 
per the IC, which at this time contains the address of the 
doubleword that sequentially follows the doubleword 
containing the branch instruction. The 'execute' trigger is 
now tested. If set, it indicates that the branch instruction 

7201-02 FETOM (7 /70) 3-173 



was the subject instruction of an Execute instruction and a· 
normal end-op cycle is taken, completing the operation. If 
the 'execute' trigger is reset, IC(21,22) is tested for a value 
of 11. Recall that, when IC(2 l ,22) was previously tested, it 
was checked for a value of either 11 or 00. To proceed 
sequentially in the program without any delay, it is now 
necessary to determine which value the IC contains. First, 
assume that IC(21,22) = 11. This value indicates that the 
next instruction occupies the last halfword of the 
doubleword in which the branch instruction is located and 
is presently in R. Recall that R is where format decoding of 
an instruction occurs. This situation being the case, the IC 
is updated by 8 to address the doubleword that is 16 bytes 
from the doubleword address containing the branch 
instruction. The data that was requested when it was found 
that the branch was unsuccessful is now present at the 
SDBO (Diagram 5-505, Sheet 3), and can be gated into Q. 
A branch end-op cycle is taken, completing the operation. 
The next instruction is decoded off the SDBO when the 
. data is transferred to Q. 

Now assume that IC(21,22) = 00. In this case, the data 
to be executed is located in the first halfword of the 
doubleword requested during the execution of the branch 
when the branch instruction was found to be unsuccessful. 
The IC is updated by 8. At this time, the data is present at 
the SDBO and can be gated into Q. The first halfword in Q 
is transferred to R. Recall that the format for the next 
instruction is normally decoded off R. Because the next 
instruction to be executed has just been transferred into R, 
this data is not yet stable and cannot be decoded. A branch 
end-op cycle is therefore taken. This cycle allows the next 
instruction format to be decoded off the SDBO. The SDBO 
is stable at this time and therefore can be used. 

Now assume that when D(il,22) was tested for 11 some 
other value was found. Again, conditions are tested to see 
whether the branch is successful (Diagram 5-505, Sheet 2). 
If successful, the data in B is transferred to T and from 
there to the GPR per E(8-11 ). Also, the data that was 
requested during I-Fetch of the branch instruction is 
present at the SDBO and can now be gated into Q. From Q, 
the halfword containing the next instruction is transferred 
to R per D(21,22). If D(21,22) = 11, the contents of Dare 
now updated by 8 and placed into the IC. This action 
allows selection of the next doubleword in main storage. A 
3-cycle storage request is then issued per the new value in 
the IC. The IC is then updated by 8 to allow selection of 
the next doubleword from main storage when needed. By 
this time, the data requested during the execution phase of 
the branch instruction is available at the SDBO and can be 
gated into Q. A normal end-op cycle is then taken to 
complete the operation. During the end-op cycle, the next 
instruction executed is decoded off R. 

3-174 (7 /70) 

If D(21,22) = 11 and the branch is unsuccessful, the 
contents of B are transferred to T, from where they are 
transferred to the GPR per E(8:_ 11 ). If IC(21,22) = 11 or 
00, a 3-cycle storage request is issued per the IC. [If 
IC(2 l ,22) equals a value other than 11 or 00, a normal end 
cycle is taken.] This request is for the doubleword that 
sequentially follows the doubleword in main storage 
containing the branch instruction. The 'execute' trigger is 
tested next. From this point on, the operation 1s the same 
as that previously discussed for an unsuccessful branch. 

Assume, now, that when IC(21,22) was initially tested 
for either 11 or 00, neither of these values was present 
(Diagram 5-505, Sheet 2). Again D(2 l ,22), the P AL's, and 
E(7) are tested to determine whether the operation is a 
successful branch and where the next instruction is located 
in the doubleword address being branched to. Assume that 
D(2 l ,22) = 11 and the branch is successful (Diagram 5-505, 
Sheet 3). Operation from this point on is identical with a 
successful branch, as previously described, when D(21,22) = 
11. 

Now assume that D(21,22) = 11 and that the branch is 
unsuccessful. The contents of B are transferred to T, from 
where they are transferred to the GPR per E(8-11 ). 
Because the branch is unsuccessful and the contents of R 
have not been changed, R still contains the instruction that 
is located in the halfword following the last halfword of the 
branch instruction. A normal end-op cycle, therefore, can 
be taken and the instruction decoded off R. 

Now assume that D(2 l ,22) did not equal 11 and the 
branch is successful (Diagram 5-505, Sheet 3). The contents 
of B are transferred to T, from where they are transferred 
to the GPR per E(8-11 ). At this time, the data requested 
during I-Fetch of the branch instruction is present at the 
SDBO and is gated to Q. From Q, the correct halfword 
containing the branch-to instruction is gated into R per 
D(2 l ,22). The contents of D are then updated by 8 and 
transferred to the IC to select the next doubleword from 
main storage. Because the instruction to be executed has 
just been placed into R and is not yet stable, a branch 
end-op cycle is taken and the instruction format is decoded 
.off the SDBO. 

If the branch is unsuccessful and D(2 l ,22) does not 
equal 11, the operation is identical with the case where 
D(2 l ,22) = 11 and the branch is unsuccessful. A normal 
end-op cycle is taken. 

BRANCH ON INDEX LOW OR EQUAL, BXLE (87) 

• Add increment (3rd operand; in GPR, per R3) to 1st 
. operand (in GPR, per RI), algebraically compare result 

(index) with comparand (in odd-address GPR specified 
by R3 or R3 + 1 ), and, if index is equal to or is less than 
comparand, branch to location specified by 2nd operand 
address. 



• RS format: 

87 Rl R3 B2 D2 
7 8 11 12 15 16 19 20 31 

Fetch lst operand 
from GPR per Rl. 

Fetch 3rd operand 
(increment) from 
GPR per R3. 

Add l st and 3rd operands and store 
result (index) into GPR per Rl. 

Algebraically compare index with 
comparand located in odd-address 
GPR per R3 or R3 + l. 

Branch to location specified by 
2nd operand address if index 
is equal to or less than comparand. 

• Conditions at start of execution: 
Branch address is in D. 
3-cycle storage request has been issued per D for 

branch-to instruction. 
1st operand is in S and T. 
First 16 bits of instruction are in E. 

• Sum of 1st and 3rd operands is always stored whether 
branch is successful or not. 

• Comparand address (R3 or R3 + 1) must be odd. 

The Branch on Index Low or Equal, BXLE, instruction is 
similar to the BXH instruction except that branching occurs 
on a low or equal result (Diagram 5-505). 

EXECUTE, EX ( 44) 

• Execute subject instruction at location specified by 2nd 
operand address. Subject instruction may be modified 
by 1st operand (in GPR, per Rl) if E(8-11) is not equal 
to zero. 

• RX format: (See adjoining column.) 

• Conditions at start of execution: 
Address of subject instruction is in D. 
3-cycle storage request for subject instruction has been 

issued per D. 
1st operand is in S and T. 
First 16 bits of instruction are in E. 

I Rl I X2 I B2 D2 

7 8 11 12 15 16 19 20, 

Fetch doubleword containing 
subject instruction from main 
storage per 2nd operand address. 

No 

Modify subject instruction by 
OR 1ing bits 8-15 of subject 
instruction with bits 24-31 
of GPR specified by Rl. 

Yes 

31 

Execute subject instruction. 

• Modification of subject instruction is accomplished by 
OR'ing bits 8-15 of subject instruction with bits 24-31 
of 1st operand. 

• If subject instruction is an Execute instruction, a 
program execute interruption occurs. 

• If effective address of Execute instruction is odd, a 
program specification interruption occurs. 

• 'Execute' trigger is set to indicate next instruction is 
subject of Execute instruction. 

• 'PSC' trigger is set to indicate that Q data is not valid 
and needs to be refilled. 

• If program interruptions are pending, normal end-op 
cycle is taken; if not, branch end-op cycle is taken. 

The Execute, EX, instruction, which has an RX format 
with an op code of 44, executes a designated instruction 
whose address in main storage is the second operand 
address. This designated instruction is referred to as a 
subject instruction and can be modified by the contents of 
the first operand located in the GPR register specified by 
Rl. Modification of the subject instruction is accomplished 
by OR'ing bits 8-15 of the subject instruction with bits 
24-31 of the first operand. If Rl = 0, no modification 
takes place. The subject instruction may be 16, 32, or 48 
bits long. If the subject instruction is another Execute 
instruction, a program execute interruption occurs and 
operation is suppressed. If the effective address of the EX is 
odd, a program specification interruption occurs. 

At the start of execution, the first 16 bits of the 
instruction are in E, the first operand is in S and T, the 
address of the subject instruction is in D, and a 3-cycle 
storage request for the subject instruction has been issued 
per D (Diagram 5-506, FEMDM). At the beginning of 
execution, a test for program specification and execute 

7201-02 FETOM (7/70) 3-175 



interruptions is made. If the program specification 
interruption is present (effective address of Execute 
instruction is odd), a program interruption occurs and the 
operation is suppressed. If a program execute interruption 
is present (the Execute instruction is the subject instruction 
of an Execute instruction), a program execute interruption 
occurs and the operation is suppressed. If no interruptions 
are present, the operation continues. The STC is loaded to 
111, allowing the transfer of T(56-63) to the serial adder 
for modification of the subject instruction if modification 
is to be accomplished. The contents of D are now 
transferred to the parallel adder and updated by 8 to 
address the doubleword that follows the doubleword 
containing the subject instruction of the Execute 
instruction. This value is then transferred to D. 
PAL{ 61-63) is now transferred to the ABC to select the 
correct byte for modification of the subject instruction. 

D{21,22) is tested to determine whether the subject 
instruction is contained in the last halfword of the 
doubleword that was requested during I-Fetch, or in some 
halfword other than the last. If D{21,22) = 11, the subject 
instruction is in the last halfword; if any other value, the 
subject instruction is iri some other halfword. First assume 
that D{21,22) = 11. Because the subject instruction is 
located in the last halfword of the doubleword addressed 
during I-Fetch, there is a possibility that part of the 
instruction is contained in the next doubleword to be 
addressed. This possibility exists if the subject instruction 
has a format other than RR. Therefore, the next few 
operations determine the format of the subject instruction. 
By doing these tests, an extra request can be prevented, one 
that can cause an invalid address or protection check if the 
instruction has an RR format. 

At this time, the data requested during I-Fetch is present 
at the SDBO and can be gated into Q and AB. From Q, the 
last halfword is transferred to R. The sixth byte in AB is 
then transferred to the serial adder per the ABC. Minus 64 
{1100 0000) is sent to the serial adder, where it is logically 
AND'ed with the op code of the subject instruction. If the 
op code denotes an RR format, SAL should now equal 
zero. 1 is then added to the ABC to transfer the last 
halfword of AB to the serial adder if the instruction is to be 
modified. 

E(8-11) is now tested to see whether the subject 
instruction is to be modified. If E{8-11) = 0000, the 
subject instruction is not to be modified; if any other value, 
the instruction is to be modified. First assume that 
E{8-11) = 0000. SAL{O-7)'is now tested. Recall that the 
value in SAL indicates whether the subject instruction has 
an RR format, and recall that it has already been 
determined that the subject instruction is contained in the 
last halfword of Q. Therefore, assume that SAL{O-7) = 0. 
Because this value indicates that the subject instruction is 
an RR instruction, there is no need to issue a storage 

3-176 (7 /70) 

request for the next instruction because there is no 

information in that doubleword that will affect the 
operation of the RR instruction. The request for the next 
doubleword occurs during I-Fetch of the RR instruction. 

The last byte in AB is then transferred to T via the serial 
adder per the ABC and STC. From T, the data is transferred 
to R. The 'PSC' and 'execute' triggers are set. A test is made 
for a pending program interruption. If one exists, a program 
interruption cycle is taken; if there is no interruption, the 
contents of R are transferred to E and ST AT G is set. The 
setting of STAT G prevents the occurrence of interruptions 
and the premature pre-fetching of the next instruction from 
interfering with the execution of the subject instruction. A 
branch end-op cycle completes the operation. 

Now assume that SAL{0-7) does not equal zero, 
indicating that the subject instruction has some format 
other than RR. So that the complete word may be decoded 
before instruction execution, the doubleword that 
sequentially follows the subject instruction must be 
requested. The last byte in AB is transferred to T via the 
serial adder per the ABC and STC. The 'PSC' trigger is set 
{insuring return to the main instruction flow upon 
execution of the subject instruction). This action causes an 
ASC exceptional condition branch to occur during the 
I-Fetch following execution of the subject instruction. The 
ROS microprogram subtracts the correct amount from the 
IC to select the doubleword containing the instruction 
following the Execute instruction, and issues a request for 
that doubleword. A 3-cycle storage request is issued for the 
next sequential doubleword. The microprogram waits (two 
storage cycles) until the data requested is present at the 
SDBO, at which time the data is gated to Q. The 'execute~ 
trigger is set, and a test is made for a pending interruption. 
If an interruption is present, a program interruption cycle is 
taken; if not, the data in R is transferred to E and STAT G 
is set. A branch end-op cycle completes the operation. 

If when E(8-11) is tested some value other than 0000 is 
found, the subject instruction is to be modified. SAL{O-7) 
is tested to determine whether the subject instruction has 
an RR format. Assume an RR format. The last byte in AB 
is then transferred to the serial adder per the ABC. This 
byte is then OR'ed with the last byte of ST which was 
transferred to the serial adder per the STC. The results of 
this OR'ing are then transferred to ST per the STC. The 
data in T is transferred to R. The 'execute' trigger is set, 
and the operation continues in the same manner described 
previously. 

Now assume that SAL{0-7) contains some value other 
than zero. In this case, after the subject instruction is 
modified, a storage request for the next doubleword must 
be made. The microprogram wails (two storage cycles) until 
the data is present at the SDBO, after which the data is 
transferred to Q. From this point on, the operation is 
identical with that described for an RR instruction. 



Now return to the point where D(21,22) is tested to see 
whether the subject instruction occupies the last halfword 
of the doubleword requested during I-Fetch. If D(21,22) 
equals some value other than 11, a storage request is not 
issued during execution of the Execute instruction. 
E(8-J 1) is now tested to determine whether the subject 
instruction is to be modified. If E(8-11) does not equal 
0000, the instruction must be modified. After the data is 
placed into Q and AB, and the correct data is placed into 

the serial adder per the ABC, operation is identical with 
that of an RR instruction that is to be modified. 

If E(8-11) = 0000, however, the subject instruction is 
not to be modified. Therefore, the correct halfword in Q 
need only be transferred to R per D(2 l ,22). The 'PSC' and 
'execute' triggers are set, and the test . for a pending 
interruption is made. The operation continues in the same 
manner described previously. 

7201-02 FETOM (7/70) 3-177 



SECTION 7. INPUT /OUTPUT INSTRUCTIONS 

• Five 1/0 instructions: Start I/O, Test 1/0, Halt 1/0, Test 
Channel, and Set Program Controlled Interrupt. 

• All 1/0 instructions have SI format and share a common 
ROS microprogram in CE. 

• SI format: 

Combine 
phys i co I ond 
logical PSBAR 
to form the 
IOCEs PSBAR 
in T. 

Gate channel 
and unit 
address to T 
from 0. 

Set op code 
(E5-7) into 

Select IOCE. 
(Ex terno I 
register is hot 
on the external 
bus], 

End Op 

3-178 (7/70) 

OpCode ~Bl I 01 

78 1516 2021 

Set 
condition 
code to 
value re
ceived from 
IOCE. 

SI I-Fetch 
odds 01 field 
to contents of 
Bl and gates 
result to 0. 

31 

• Conditions at start of execution: 
First 15 bits of instruction in E. 
First operand is not applicable. 
Operand address {address of channel and I/O unit) in D. 

• Condition codes specify status of IOCE and 1/0 unit. 

• All instructions use SI format. 

• For a detailed discussion read the following text and 
refer to Diagram 5-701 FEMDM. 

The CE issues I/O instructions to initiate I/O operations, 
which are under control of the IOCE. Since the I/O 
initialization sequence is the same, the CE uses the same 
ROS microprogram for all I/O instructions. This 
microprogram assembles all information that an IOCE 
needs and gates it to the proper IOCE. Table 3-13 lists the . 
I/O instructions and the resulting condition codes. 

An I/O instruction may be executed only when the CE is 
in the Supervisor state. Thus, the first step in the 
microprogram, is to determine the state of the CE. If the 
CE is not in the Supervisor state, a privileged-operation 
check occurs and causes a program interruption. 

If the CE is in the supervisor state, execution of an I/O 
instruction begins by gating the channel and unit address 
from D to B. 

32 47 48 

Channel 
Address 

55 56 

Unit 
Address 

63 

The logical and physical PSBARs are gated to S and T. 

This data must next be combined into a one word 
format so that it can be gated over the external bus to the 
proper IOCE. 



The IOCE must be sent the issuing CE's preferential 
storage base address (PSBA). This address is developed from 
the logical and physical PSBAR's by substituting the 
con ten ts of physical PS BAR for the con tents of bits 9-12 of 
logical PSBAR. The subst.itution is accomplished by shifting 
the data in T one position left to align logical PSBAR to a 
byte boundary, gating physical PSBAR, through F(0-3), 
into T(9-12), and then shifting T back one position to the 
right. The 1/0 unit address is gated from B(56-63) through 
the serial adder to S(O-7) and the channel address 
(B52-55), by the same route, is gated into S(20-23). 

The data in S is now moved to T by gating S through the 
parallel adder to T. Before this is done, however, T( 40-4 7) 
is gated to F to preserve bits 9-12 of the PSBA. After S has 
been gated to T, F is gated back to T byte 5, and the PSBA 
is correct again. 

The microprogram now gates T to the external register, 
and a line called '1/0 operations' sets E(S-7) into external 
register positions 29-31 respectively. All data necessary for 
the IOCE to execute the 1/0 instruction is now contained 
in the external register. 

Table 3-13. Condition Code Settings, 1/0 Instructions 

Op 
Name Mnemonic Code Zero 

Start 1/0 SIO 9C Operation 
initiated 

Test 1/0 TIO 90 Available 

Halt 1/0 HIO 9E Interrupt 
pending 

Test Channel TCH 9F Available 

Set Program SPCI 9B Not 
Controlled Working 
Interrupt 

Unit 
PSBA 

Chan OP 
Address Addr Code 

7 8 9 19 20 23 24 28 29 31 

A select, decoded from the D register, is sent to the 
proper IOCE, when the timing gate trigger is turned on 
along with ST AT B. The CE must now wait for the IOCE to 
send back 'response' signal and a condition code. This wait 
period is established by loading a timeout constant in B and 
entering a loop which decrements B by 1 on each machine 
cycle. When response is received, the CE sets its condition 
code to the value received from the IOCE. If the timeout 
constant in B reaches 0 before the IOCE response is 
received, the CE assumes the IOCE to be inoperative and 
sets the condition code to 3. If a 'restart ROS' timer' signal 
is received during the timeout, the constant is reloaded into 
B and the timeout is re-initiated. After the CE has set its 
condition code, it turns off the 'timing gate' trigger and 
terminates the instruction execution. 

Condition Code 
One Two Three 

CSW Stored Channel or sub- Not operational 
channel busy or invalid 1/0 

format 

CSW Stored Channel or sub- Not operational 
channel busy or invalid 1/0 

format 

CSW Stored Burst operation Not operational 
terminated or invalid I /0 

format 

Interrupt Channel operating Not operational 
pending in Burst Mode or invalid I /0 

format 

csw PCI flag set Invalid 1/0 
stored address 

format 

7201-02 FETOM (7 /70) 3-179 



SECTION 8. STATUS SWITCHING INSTRUCTIONS 

The nine status switching instructions can change the status 
of the CE's, the IOCE's, and the data in main storage: 
1. The Load PSW, Set Program Mask, Set System Mask, 

and Supervisor Call instructions control the status of the 
CE. 

2. The Set Storage Key and Insert Storage Key instructions 
control the status of the data in main storage. 

3. The Write Direct and Read Direct instructions control 
the status of the CE's and IOCE's (and also transfer data 
byU0. . 

4. The Diagnose instruction controls the status of the CE's, 
the SE's, and (on 9020E systems) the DE's. 

LOAD PSW, LPSW (82) 

• Load doubleword storage operand (designated by 
storage operand address) into CE, thus replacing current 
PSW, and branch to new instruction sequence. 

• SI format: 

82 -s1I 
7 8 15 16 19 20 

Fetch storage operand 
from main storage. 

Load bits 0-15 and 34-39 of storage 
operand into PSW register. 

01 

Load bits 40-63 of storage operand into 
IC and branch to new instruction address. 

31 

• Use same microprogram as IPL, PSW RESTART, and 
interruption operations. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

The Load PSW, LPSW, instruction loads in to the CE the 
doubleword from main storage designated by the storage 
operand address. The doubleword (a new PSW) becomes 
the current PSW for the next instruction. Bits 40-63 of the 
doubleword become the address of the next instruction. 

3-180 (7/70) 

The new PSW will not allow interruptions until after the 
LPSW instruction is executed. When the doubleword being 
loaded has a 1 in position 14 or 15, the CE enters the Wait 
state or the Problem state, respectively; this is the only 
instruction available for entering these states. 

Diagram 5-601, FEMDM, is a flowchart of the LPSW 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the storage operand address is in D, 
and a storage request for the storage operand has been 
issued per D. 

Tests for a privileged operation check and a specification 
check are made at the beginning of the execution. The CE 
must be in the Supervisor state, and the address of the 
LPSW instruction ·must have three low-order O's; otherwise, 
a program interruption results. 

When the data (new PSW) requested during I-Fetch is 
available on the SDBO, it is gated to ST. The new PSW is 
then assembled by transferring S(0-19) and T(34-39) to 
the PSW register, transferring T( 40-63) to the IC, and 
resetting the interruption request triggers. The ILC remains 
unchanged until an interruption occurs. 

The instruction next makes a 3-cycle storage request per 
the IC to fill Q with the next instruction. Although the 
I-Fetch checking circuits have been activated previously, 
interruptions are inhibited by the setting of the 'I-Fetch 
request' trigger. The contents of T are now transferred to D 
so that, when the data is available, D will be able to select 
the correct halfword in Q to transfer to R. The IC is 
incremented by 8 to select the next doubleword to be 
fetched to refill Q. The 'PSC' and 'execute' triggers are 
reset. These triggers are set if the LPSW instruction is the 
subject instruction of an Execute instruction. Because the 
next instruction to be performed is determined by the new 
PSW being loaded, the triggers must be reset to prevent the 
instruction following the Execute instruction from being 
performed after the LPSW instruction. 

From this point on, the LPSW instruction execution is 
the same as for the Branch on Count instruction following a 
successful branch. When the requested data is available, it is 
gated to Q, and then transferred to R per D. A decision is 
now made to refill Q under control of this instruction if 
D(21,22) = 11. If Q does not need refilling, the instruction 
terminates with a branch end op. If, however, Q is refilled, 
a branch end op is not necessary and the instruction 
terminates with a normal end op. 

The LPSW microprogram used by the LPSW instruction 
is also entered by the interruption, PSW RESTART, and 
IPL microprograms. The storage operand address is forced 
to zero by the IPL microprogram and by the depression of 



the PSW RESTART pushbutton .. One of the five new PSW 
addresses in permanent storage is generated by the 
interruption microprogram. 

SET PROGRAM MASK, SPM (04) 

• Replace CC and program mask (bits 34-39) of current 
PSW with bits 2-7 of 1st operand (in GPR per Rl). 

• RR format: 

04 Rl 
0 7 8 11 12 15 

Fetch. 1st operand from GPR per Rl. 

Transfer bits 2-7 of 1st operand to PSW(34-39). 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is not used. 

The Set Program Mask, SPM, instruction replaces the CC 
and the program mask of the current PSW with the 
contents of the GPR addressed by RI (Diagram 5-602, 
FEMDM). Bits 2 and 3 of the GPR become the new CC in 
the current PSW, and bits 4-7 become the new program 
mask. Bits 2-7 of the first operand may have been loaded 
from the PSW register by a previous Branch and Link 
instruction. 

SET SYSTEM MASK, SSM (80) 

• Replace system mask (bits 0-7 and 16-19) of current 
PSW with byte from location designated by storage 
operand address. 

• SI format: 

80 -Bl Dl 
7 8 15 16 19 20 

Fetch storage operand 
from main storage. 

Transfer byte of storage operand 
to PSW(0-7 and 16-19). 

31 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

The Set System Mask, SSM, instruction replaces the system 
mask of the current PSW with the addressed storage 
operand byte (Diagram 5-603, FEMDM). The addressed 
storage operand byte is fetched from main storage and 
placed into PSW (O-7) via AB, the serial adder, and 
S(O-7). Bits 0-3 of the byte following the addressed byte 
are placed into PSW (16-19) via the same path. The ABC is 
set per D(21-23) to select the correct byte in AB to gate to 
the serial adder. 

SUPERVISOR CALL, SVC (OA) 

• Cause supervisor call interruption; replace old PSW 
(24-31) with I-field (bits 8-15) of instruction, 
providing interruption code. 

• RR format: 

OA 
0 7 8 

I 
15 

Transfer E(S-15) to PSVj'(24-31). 

Clear PSW(16-23) and store complete PSW 
into main storage location 32 (20, hex). 

Fetch new PSW from main 
storage location 96 (60, hex). 

• Conditions at start of execution: 
Instruction is in E. 
E(8-15) is interruption code. 

The Supervisor Call, SVC, instruction causes a supervisor 
call interruption at end-op (Diagram 5-604, FEMDM). The 
'supervisor call' trigger is set and, if a timer exceptional 
condition, a machine check interruption, or a program 
protection interruption is not pending, the CE takes a 
supervisor call interruption. During that operation, bits 
8-15 of the instruction, still in E(8-l 5), are stored as the 
interruption code into the supervisor call old PSW. The new 
PSW usually switches the CE to the Supervisor state. Refer 
to Section 1 of this Chapter for a discussion of the 
supervisor call interruption. 

7201-02 FETOM (7 /70) 3-181 



SET STORAGE KEY, SSK (08) 

• Set storage key (bits 24-28 of 1st operand; in GPR per 
RI) for 2048-byte storage block (addressed by bits 
8-20 of 2nd operand; in GPR per R2) into storage 
protection logic in main storage. 

• RR format: 

08 Rl R2 

7 8 II 12 15 

Fetch I st operand from G PR per R 1 . 

Select storage key trom 1st operand. 

Store into storage protection block 
designated by 2nd operand address 
(in GPR per R2). 

• Conditions at start of execution: 
Instruction ~s in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• Format of LS word addressed by Rt: 

- New 
Key 

• Format of LS word addressed by R2: 

0 7 8 

Storage Data-Block 
Address 

23 24 28 29 

0000 

• New key is set twice because of two-way interleaving. 

The Set Storage Key, SSK, instruction sets the key of the 
storage block addressed by the second operand according to 
the key in the GPR designated by RI . Bits 8-20 of the 
second operand address a block of 2048 storage bytes. (It is 
not necessary for the second operand to address the first 
byte in the block.) During the SSK instruction, bits 21-27 
of the second operand, which address doublewords in the 
storage block, are ignored. Bits 28-31 of the second 
operand, however, must be O's, or a program specification 
interruption occurs. The new storage key is obtained from 
bits 24-28 of the first operand; the rest of the operand is 
ignored. 

Diagram 5-605, FEMDM, is a flowchart of the SSK 
instruction. At the start of execution, the instruction is in 
E, the first operand is in A, B, and D, and the second 
operand is in S and T. The ABC is set to 7 (111) to allow 
selection of the new storage key byte from B. The STC is 
set to 3 (011) to select the low-order byte of the second 
operand in S, the byte to be tested for a specification 
check. Dis set to the address of the storage block minus 8; 
this step allows construction of a loop later in the 
microprogram. If the system is in the Problem state, a 
program privileged operation interruption occurs. If the 
system is in the Supervisor state and the address of the 
storage block does not specify an even doubleword 
boundary [S(28-3 l) = 0 j , a program specification 
interruption occurs. Otherwise, the execution of the 
instruction continues by transferring the new key from B to 
F, via the serial adder. 

The new key is now in position to be set into the storage 
unit. D is incremented by 8, and a 4-cycle storage request is 
issued per the block address in D. The 'set key' trigger is 
set, causing a 'set key' signal to be sent to main storage with 
the 'storage select' signal, and all of the mark triggers are 
set. As a result, the selected storage unit recognizes its 
selection as being a request to change one of the keys 
stored in its storage protection area. The new key is gated 
from F to the 'key in' bus for the use of the selected 
storage unit. 

Execution of this instruction may change the protection 
status of unprocessed instructions already in the CE. 
Therefore, the 'PSC' trigger is set to force a program store 
compare exceptional condition during the next I-Fetch to 
refill Q. 

At this point, the setting of one key into main storage 
has taken place. When operating normally with an SE one 
setting of a new key for 2048 contiguous bytes of data is 
sufficient, as shown in Figure 3-27 (A). However, the SSK 
instruction in the 7201-2 always sets the key twice, first for 
an even doubleword address and then again for the 
succeeding odd doubleword address. This duplicated setting 
of the key is done because the CE has two-way interleaving 
of 'storage select' signals based on even and odd storage 
addresses. There is one case when contiguous even and odd 
storage addresses are not in the same storage-protection 
block in main storage: 
1. When the defeat interleave maintenance aid is used, 

contiguous even and odd storage addresses in the 7251-9 
are in two different protected blocks within the same 
unit, as shown in Figure 3-27 (B). 

Therefore, after setting the first key, the SSK instruction 
again increments D by 8 and another 'set key' signal is 
issued to storage. For the case shown in Figure 3-27 (A), 
the same key location is set again; otherwise, a different 
key location is set. 



DATA KEYS 

Even-High Odd-High 

I 

__ l __ 
Even-low Odd-Low 

A. SE Normol Operotion. 
One Key per 2048-Byte Block. 

r:igurc 3-27. Storage Protection Key Assignments 

INSERT STORAGE KEY, ISK {09) 

• Insert storage protection key for 2048-byte storage 
block, addressed by bits 8--20 of 2nd operand (in GPR 
per R2), into bits 24-28 of 1st operand (in GPR per 
RI). 

• RR format: 

09 
0 

Rl R2 

7 8 11 12 15 

Fetch 2nd operand from GPR per R2. 

Fetch storage key from main storage 
per bits 8-20 of 2nd operand. 

Place storage key into bits 24-28 
of 1st operand (in GPR per R 1). 

• Conditions at start of execution: 
Instruction is in E. 
1st operand is in A, B, and D. 
2nd operand is in S and T. 

• Format of LS word addressed by R2: 

-0 7 8 

Storage Data-Block 
Address 

20 21 27 28 31 

• Storage key is inserted into bits 24-28 of 1st operand. 

• Bits 0-23 of 1st operand remain unchanged; bits 29-31 
are cleared. 

• Key is fetched twice because of two-way interleaving. 

DATA KEYS 

B. SE Defeat Interleave Operation. 
Two Keys per 2048-Byte Block. 

The Insert Storage Key, ISK, instruction inserts the storage 
key addressed by the second operand into bits 24-28 of 
the first operand (in GPR, per Rl). Bits 8-20 of the second 
operand address a block of 2048 bytes in main storage. Bits 
0-7 and 21-27 of the second operand are ignored, whereas 
bits 28-31 must be O's or a program specification 
interruption occurs. The five-bit storage key is set into bits 
24-28 of the first operand; bits 29-31 are cleared. 

Diagram 5-606, FEMDM, is a flowchart of the ISK 
instruction. At the start of execution, the instruction is in 
E, the first operand is in A, B, and D, and the second 
operand is in S and T. The STC is set to 3 (011) in 
preparation of setting D to the address of the storage block 
minus 8, thus allowing the construction of a loop later in 
the microprogram. The first operand is transferred from B 
to T via the parallel adder, and the STC is set to 7 (111 ). 
The contents of T, with the fetched key inserted into byte 
7, will later be transferred back into the GPR designated by 
RI. Before fetching the key, however, program tests are 
made. If the system is in the Problem state, a program 
privileged-operation interruption occurs. If the system is in 
the Supervisor state and the address of the storage block 
does not specify an even doubleword boundary [S(28-31) 
= OJ, a program specification interruption occurs. 
Otherwise, the execution continues. F and the last byte of 
Tare set to O's. The fetching of the key can now begin. 

The contents of F are logically OR'ed into the last byte 
of T via the serial adder, again setting O's. D is incremented 
by 8 and a 3~ycle storage request is issued per the block 
address in D. The 'insert key' trigger is set, causing an 
'insert key' signal to be sent with the 'storage select' signal. 
As a result, the selected storage unit recognizes its selection 
as being a fetch request for one of the keys stored in its 
storage protection area. The CE waits until a 'key advance' 
signal from storage is received and then gates the key from 
the 'key out' bus into F. 

Because the key can be in two different locations, as 
explained for the Set Storage Key instruction, it is always 

7201-02 FETOM (7/70) 3-183 



fetched twice. This scheme ensures that odd addresses can 
be successfully accessed. After the fetched key is logically 
OR'ed into T from F, the key for the next doubleword is 
fetched exactly as before. 

When the ·key is again available, this time from an odd 
doubleword address, it is logically OR'ed with the key first 
fetched. The thus modified first operand is then returned to 
the GPR from which it came. A normal end op completes 
the execution of the instruction. 

WRITE DIRECT, WRD (84) 

• Issuing CE causes specified action in selected CE or 
IOCE. 

• Issuing CE gates a data byte onto direct control bus or 
activates control lines to selected element. 

• SI format: 

84 12 Bl 

78 1516 1920 

Decode 12 
field to select 
proper element 
end to initiate 
specified 
operation. 

Select. 
specified 
IOCE end 
gate control 
line to it. 

Set 
condition 
code to value 
received from 
selected IOCE. 

• Condition Code: 

Dl 

Fetch data 
byte from 

31 

main storage 
for CE-to-CE 
dote transfer -
if specified. 

CE 

Gate control 
Ii ne (decoded 
from 12 field} 
to selected 
CE. 

End Op 

0 IOCE processor start or stop completed. 

Make data byte 
avoi I able and 

. gate WRD 
INTRPT control 
line to 
selected CE. 

1 IOCE processor start or stop completed; to/from wait 
state. 

2 No action taken; redundant operation. 
3 Timeout occurred; IOCE operation not completed. 

3-184 (7/70) 

• Program Interruptions: 
Privileged operation interruption if executing CE is in 

problem state. 
Addressing (data byte addressed is outside available 

storage). 
Protection (fetch protect violation). 
Specification interruption occurs if: 
1. An IOCE operation is specified and bit 15 is not 0. 
2. An IOCE operation is specified and none of, or more 

than one of, bits 12-14 is set to 1. 
3. A CE operation is specified and none of, or more 

than one of, bits 12-15 is set to 1. 
4. Bit 8 is a 1. 

• For a detailed description of WRD, read the following 
text and refer to Diagram 5-607, FEMDM. 

At the start of WRD execution, the microprogram sets 
ABC to the byte address contained in D(21-23). ABC is 
issued to select the proper byte from AB if the operation 
specified is a CE-to-CE data transfer. After gating the 
doubleword from SDBO to AB, the microprogram 
determines whether the operation is a CE or an IOCE 
operation. 

In the case where an IOCE operation is decoded, the I2 
field contains the control information for the WRD 
instruction. This field is decoded by hardware to select the 
designated IOCE and to cause the specified control line to 
be gated to the IOCE. No data can be transferred to an 
IOCE by WRD. One of four simplex lines (WRD INTRPT, 
WRD LOGOUT, EXTNL START, or EXTNL STOP) to the 
IOCE is activated and causes the IOCE to perform the 
desired action and return a condition code. The 
microprogram branches into a common timing routine (also 
used by the I/O instructions), and, as soon as a response 
and condition code are received from the selected IOCE, 
the microprogram branches to a normal end op. 

Decoding bits 9, 10, and 11 of the I2 field when a CE 
operation is specified causes hardware to generate a select 
to the proper CE and to gate one of four simplex lines 
(WRD INTRPT, WRD LOGOUT, EXTNL START, or 
EXTNL STOP) to the selected CE. The microprogram in 
this case checks the I2 field (bits 9, 10, and 11) to see if a 
data byte is to be transferred. If these bits are equal to 0, 
the data byte is gated per ABC to the G-register. The 
G-register positions make up the direct control bus, and the 
data is active on the bus until the next WRD is issued. If I2 
field bits 9, 10, and 11 are not all O's, the operation does 
not involve a data transfer, and the last routine is bypassed. 
One of the three other simplex lines (WRD LOGOUT, 
EXTNL START, or EXTNL STOP) is gated to the selected 
CE, causing a bit to be set in that CE's external interrupt 
code (New PSW bits 20-31 ). The microprogram then 
branches to normal end op. · 



During execution of WRD, a specification error can 
occur if: 
1. An IOCE operation is specified and more than one bit of 

the I2 field bits 12-14 is set to 1. 
2. Bit IS of the I2 field is a 1. 
3. A CE operation is specified and more than one bit of the 

I2 field bits 12-14 is set to 1. 
4. Bit 8 of the I2 field a 1 always causes a specification 

error. 

I

. Note: If an operator wishes to manually restart a CE after 
it has been externally stopped (Write Direct Stop), he 

. should use the PSW RESTART pushbutton. Use of the 
START pushbutton may cause unpredictable results. ·· 

READ DIRECT, RDD (85) 

• Gates a data byte from the direct control bus into 
storage at operand location. 

• Causes external interrupt in issuing CE. 

85 
7 8 

Decode bits 
12-15 to 
determine 
which CE is 
specified. 

12 Bl 

15 16 19 20 

I 
I 
I 
I 
I 
I 
I 
I 
I 

..---~--........ 1----- - _ _J 
Gate data byte 
from direct control 
bus to operand 
byte location 
in main storage. 

• Program Interruptions: 

01 

31 

Privileged operation interruption if executing CE is in 
problem state. 

Addressing (data byte address is outside available 
storage). 

Protection (store protect violation). 
Specification (more than one of bits 12-15 of the I2 

field are set to 1 ). 

• For detailed description of RDD, read the following text 
and refer to Diagram 5-608 FEMDM. 

Page of SFN-0201-1 
Revised by TNL: SN31-0020 

At the start of RDD execution, the 'hold-in' line is 
checked; if active, it causes the microprogram to delay for 
approximately 1.4 usec. Hold-in active condition indicates 
that data on the direct control bus could be unstable (due 
to another CE executing a WRD). The delay allows the CE 
issuing the WRD to complete its operation. If the 'hold-in' 
is still active after the delay, it is interpreted as an error and 
causes a machine check interruption. 

When the 'hold-in' line is not active, the direct control 
bus (the read direct data byte) is gated to F. F is then gated 
through the serial adder into the proper ST byte per the 
STC. (STC was set at the start of execution to the value of 
D(21-23). This is the byte address (within ST) of the read 
direct data byte.) The mark is set per STC to store the RDD 
data byte in main storage. Storing is accomplished by 
issuing a three-cycle main storage request per D. RDD 
execution is then terminated by branching to a normal end 
op. 

DIAGNOSE (83) 

• Load doubleword designated by storage operand address 
into MCW, set or reset certain control triggers, and 
branch to ROS address specified by MCW. 

. • SI format: 

.. 
83 

0 

12 
78 

Bl 01 

15 16 19 20 

fetch MCW per storage 
operand address. 

Set or reset MCW, counters, test control 
triggers, and·next ROS address. 

Continue instruction per 
branched-to microprogram. 

• Conditions at start of execution: 
First · 16 bits of instruction are in E. 
Storage operand address is in D. 
Storage request has been issued per D. 

• Enable and disable various system maintenance aids. 

31 

The Diagnose instruction has two purposes: it is available to 
the diagnostic programmer as a maintenance aid and is 
available to the system programmer for 9020 mode 
operations. In both applications, the beginning of its 
execution is basically the same. The immediate operand is 
used to set or reset control triggers. The storage operand, a 
doubleword termed the maintenance control word (MCW), 
is used to set the MCW register, the counters, and the 
address of the next ROS word. The remainder of the 

7201-02 FETOM (5/72) 3-185 



execution is determined {l) by the ROS microprogram 
branched to and (2) by the control triggers. 

Diagram 5-609, FEMDM, is a flowchart of the Diagnose· 
instruction. At the start of execution, the first 16 bits of 
the instruction are in E, the address of the storage operand 
is in D, and a storage request for the .storage operand has 
been issued per D. If the address of the storage operand 
does not specify a doubleword boundary, a · program 
specification interruption occurs. At this point, the address 
of the storage operand is no longer needed and is 
incremented by 8. 

If the CE is in state 0, it is placed into the Scan mode, 
and the MCW is gated from the SDB0{0-31) to T (and also 
SDBO 0-63 to AB). The control triggers are not set or 
reset: T{32-39, 52) and B{32-51) are transferred to the 
MCW register, T{S3-57) to the address sequencer, 
T{58-61) to the FLT counter, T{62, 63) to the FLT clock, 
E(8, 9) to the two interleave control triggers, and E{lO) to 

3-186 (7/70) 

the 'diagnose FLT' trigger; The 'scan counter control' and 
'diagnose' triggers are set. They remain set depending on 
the application. If the CE is in state 3, 2, or 1, it is placed 
into Scan mode, and the ROS branch address {bits 8-15) 
of the MCW is checked for FD {hex). If any other value is 
found, Scan mode is reset and a specification error is set, 
forcing a program interruption. If the address bits 8-1 S are 
found to contain FD {hex), the 12 field and all MCW bits 
are <legated except bits 32-35 and so, and address bits 
8-19. The CE is now taken out of Scan mode, and a ROS 
branch is taken. 

The ROS branch address is transferred from T{ 40-51) 
to ROSAR{0-:-11 ). If the instruction is being used to reset a 
previously set trigger, the address of a normal end op, 010 
(hex), is usually specified, and the execution is completed. 
However, any ROS address may be specified, depending on 
the application. 



SECTION 9. MULTIPLE COMPUTING 
ELEMENT INSTRUCTIONS 

This section discusses the ten instructions that make up the 
multiple computing element instruction set. The need for 
this instruction set develops when multiple computing 
elements must operate simultaneously, without conflict, in 
a multiple element shared storage environment such as the 
9020D/E system. These instructions provide for system 
configuration, storage assignment, and preferential storage 
area assignment in the 9020D/E system. 

LOAD IDENTITY, LI {OC) 

• Loads the_ identity of the CE executing the instruction 
into bits 28-3 I of the GPR specified by the RI field. 

• RR Format: 

OC Rl -
7 8 11 12 15 

Gate CE identity into F(6-7). 
Zeros to F(0-5). 

Gate F to T (24 - 31). 

Store CE identity into 
Register specified in Rl. 

End Op 

• Enables programmer to identify the CE executing the 
program. 

• Condition code: unchanged 

• Program interruptions: none 

• Refer to Diagram 5-80 I, FEMDM. 

A two-bit fixed point integer code is assigned to each CE. 
The CE with the highest priority for accessing storage 
(CEI) is assigned identity O; that with the lowest priority 
(CE4) is assigned identity 3. 

The assignment is made by wiring a jumper card in the 
CE. In the execution of the LI instruction, the output of 
this card is gated into F( 4-7). F is then gated through the 
parallel adder into T{60-63), and from T into the GPR 
specified by the RI field. 

INSERT ATR, IATR (OE) 

• Places the contents of ATRI and ATR2 into two GPRs 
specified by the RI and R2 fields. 

• RR Format: 

OE 

Gate ATR2 to T (32 - 39). 

Store A TR2 into G PR 
specified by R2. 

Gate ATRl to T (32 - 63). 

Store ATRJ into GPR 
specified by Rl. 

End Op 

• Condition code: unchanged 

• Program interruptions: none' 

• Refer to Diagram 5-802, FEMDM. 

ATR2 is gated via the 9020 out bus and the LS output bus 
into S(0-7). At the same time, O's are set into S(8-31) 
since there is no information on the LS output bus for 
these positions. 

S is then moved to T via the parallel adder, and the T 
contents are written into bits 0-7 of the GPR specified by 
the R2 field. 

7201-02 FETOM (7/70) 3-187 



Next, ATRl is gated directly to T(32-63) via the 9020 
out bus and the LS output bus. This information is written 
into bits 0-31 of the GPR specified by the Rl field, and 
the instruction execution is terminated. 

DELAY, DL Y (OB) 

• Provides a variable delay dependent on value (N) 
specified by bits 8-15 of the instruction. 

• RR Format: 

I OB I N I 

Reset F to zeros 

Add 1 to F. 

Decrement N by 1 . 

Yes 

Yes 

Execute timer updote 
microprogr~m. 

End Op 

• Terminated by the count (N) reaching zero or by any 
interrupt except a timer update. 

• Condition code: unchanged 

• Program interruptions: none 

• Refer to Diagram 5-803, FEMDM. 

The F register is used as a counter during the execution of 
the instruction. F is incremented by 1 every microsecond 
until its count equals 256. If E(8- l 5) is not 0 when the 
count reaches 256, 1 is subtracted from the value N, in 

3-188 (7 /70) 

E(8-l 5). If this subtraction does not reduce N to 0, F is 
reset, and the operation is repeated. As soon as N equals 0 
the instruction operation is terminated. 

A check for pending interrupts is made after every 
addition to F. All interrupts except a timer update cause 
the termination of the instruction at that time. 

Timer update interruptions are executed, and control is 
then returned to the Delay instruction. Thus, requests for 
service by the interval timer may affect the actual delay -
obtained. 

STORE PREFERENTIAL-STORAGE BASE 
ADDRESS REGISTER, SPSB (AO) 

• Store contents of Logical PSBAR in bit positions 9-19 
at the word location in main storage (specified by Bl + 
Dl). 

• Store contents of Physical PSBAR in bit positions 
28-31 at the word location in main storage (specified 
by Bl+ Dl). 

• Bit positions 0-8 and 20-27 at the word location in 
main storage (specified by Bl + Dl) are set to O's. 

• SI Format: 

I AO ~s1i 
7 8 15 16 19 20 

Gote the contents of logicol 
and physical PSBAR to S (9 - 19), 
T (4 1 - 51) and S (28 - 31), 
T (60 - 63). Zeros to other bits 
in ST. 

Yes 

Store PSBA's at main 

storoge (word) location. 

End Op 

• Program interruptions: 

Dl 

31 

Specificotion error. Force 
ROS oddress - 01 0 

1. Specification interruption (occurs if operand not 
specifying a word boundary). 

2. Priviledged operation interruption. 

• Condition code: unchanged 

e Refer to Diagram 5-804 FEMDM. 



The contents of Logical and Physical PSBAR are stored, in 
bit positions 9-19 and 28-31, respectively, at the operand 
location in main storage. The unused bit positions at this 
location (0-8 and 20-27) will contain O's. A specification 
exception occurs if the operand location is not on a word 
boundary. 

At the beginning of execution, Logical and Physical 
PSBAR are gated, via the 9020 out bus and the LS output 
bus, to S(9-19 and 28-31) and T(41-51 and 60-63). 
Since nothing .is gated to the output bus bits 0-8 or 20-27 
these positions in ST become O's. 

The correct marks are set per D (bit 29), and the word is 
stored if nc;> errors were detected. The instruction execution 
is terminated after an address store compare test is made. 

LOAD PREFERENTIAL-STORAGE BASE 
ADDRESS, LPSB (Al) 

• Loads the logical preferential storage base address 
register (PSBAR) from a storage location pointed to by 
the operand. 

• Loads the physical preferential storage base address 
register (PSBAR) from the ATR slot selected by bits 
9-12 of the newly fetched Logical PSBA. 

• SI Format: 

Al ~Bil 
78 1516 1920 

Make a main storage request 
for new PSBA. 

Gate new PSBA to T. 

Yes 

No 

Load logical PSBAR from T and 
physical PSBAR from A TR slot 
selected by bits 9 - 12 of new PSBA. 

End Op 

Dl 

JI 

Specification error. 

• Program foterruptions: 
1. Specification Interruption occurs if: 

a. Main storage address is not specified on a word 
boundary. 

b. New PSBA designates a location that is not in a 
properly configured SE. 

2. Privileged operation interruption occurs if executing 
CE in problem state. 

• Condition code: unchanged 

• Refer to Diagram 5-805, FEMDM. 

At the start of execution, the microprogram checks for 
errors that can cause the instruction to be terminated. A 
specification error is set if the main storage address is not 
specified on a word boundary. A privileged operation error 
occurs if the executing CE is in the problem state. 

Thy new preferential storage base address (PSBA) is 
fetched into S(8-19) by making a storage request per D. 
The. possible problem created by extraneous bits in the 
unused 4 bits of T(48-55) is overcome by setting 
T(52-55) to O's. T(48-51) are gated through the serial 
adder along with O's for the remaining bits, parity is 
corrected, and the result is set back into T(48-55). 

The new PSBA must be a valid address. This is checked 
by gating T(40-63) to D and making a main storage 
request per D. If this request causes an invalid address, a 
specification error is set. If there is no invalid address 
indication, the Logical PSBAR is loaded from T(41-51). 
Logical PSBAR (9-12) are used to select an ATR slot. The 
contents of this slot are set into the Physical PSBAR. 

MOVE WORD, MVW (D8) 

• Moves up to 256 words from one storage location (B2 + 
D2) to another storage location (Bl +DI). 

• Number of words to be moved indicated in the L field. 

• Program interruptions 
1. Protection (store or fetch protect violation). 
2. Addressing (data or part of data is outside of available 

storage). 
3. Specification (either operand specifies other than a 

word or doublewor~ boundary). 

• Condition code: unchanged 

• Refer to Diagram 5-806 FEMDM. 

7201-02 FETOM (7/70) 3-189 



• SS Format: 

1 D8 1 1 Bl rn Dl 1 B2 1 ~G 
0 7 8 11 12 15 16 19 20 3132 35 36 47 

Fetch 1st source word or 
doubleword into the CPU. 

No 

No 

Store the already-fetched word 
or doubleword repetitively into 
the destination field. No source 
fetches required. 

No Yes 

Specification error. 

Move the source field to the 
destination field doing fetches 
and stores as required. 

No 

End Op 

This instruction moves up to 256 words from one storage 
location (the source field-B2 + D2) to another storage 
location (the destination field-Bl + Dl). Movement through 
the fields is from left to right, and the number of words 
moved is one greater than the value specified in the L field. 

Fetches and stores from SEs and DEs are always on 
doubleword boundaries. To align the data when both fields 
are not on doubleword boundaries, the instruction must 
manipulate the source data so that it is stored correctly in 
the destination field. 

There are four possible combinations of the source and 
destination address alignment (each case requires a separate 
move word routine): Case A: Source field on a doubleword 
boundary and destination field on a doubleword boundary. 
Case B: Source field on a word boundary and destination 
field on a word boundary. Case C: Source field on a 
doubleword boundary and the destination field on a word 
boundary. Case D: Source field on a word boundary and 
destination field on a doubleword boundary. 

If a word overlap condition exists, the routines are 
modified to save execution time. The word overlap condi
tion occurs when the starting address of the destination 
field is one word or one doubleword higher than the 
starting address of the source field. This condition pro
pagates the first source word (or doubleword) through 
storage for the number of words specified in the length 

3-190 (7/70) 

field. Once the word or doubleword of source data has been 
fetched by the CE, further fetches are not necessary, and 
repeated stores can be made per the destination address. If 
a word overlap condition is detected, ST AT A is set for 
subsequent modifications to the inove-word routines. 

The first doubleword of source data is fetched into S 
and T at the beginning of execution. Then, the AB and ST 
counters are used to check that both operands are on word 
or doubleword boundaries. The check is made by gating the 
three low-order bits of the source address into ABC and the 
three low-order bits of the destination address into STC. If 
the operand address is on a doubleword boundary, the 
three low-order bits of the address will equal O; if on a word 
boundary, these address bits will be equal to 4. The values 
in ABC and STC are decremented by 1 to obtain values of: 
7 (if doubleword boundary), or 3 (if word boundary). This 
subtraction is done to utilize the existing micro-orders 
which branch when the value of ABC/STC is equal to 3 or 7 
(i.e., a direct branch on ABC/STC equal to 4 or 0 is not 
possible). A specification error is set if the counters do not 
equal 3 or 7 after subtraction. In addition to the checks for 
a specification error, the AB and ST counters determine 
which of the four move word routines is required. 

Case A: Source and Destination 
on Doubleword Boundary 

The first source operand was fetched into S and T at the 
beginning of execution. If the word count is 0, only the 
first word of the source doubleword is stored, and the 
instruction execution is terminated. However, if the word 
count is not 0 the previously fetched source doubleword is 
stored in the destination field, and, if word overlap is 
present (STAT A set), the high-speed move routine is 
entered. This routine makes no source fetches. It simply 
stores the doubleword in S and T per the destination 
address (in D), updates the destination address, and 
decrements the word count. This sequence is repeated, and, 
when the count equals 0, the specified number of words 
have been moved and the instruction execution is term
inated. 

Case B: Source and Destination 
on Word Boundary 

The first word of the source field was previously fetchea, 
and is in T at the beginning of this routine. This word is 
stored at the starting address of the destination field. If 
there is word overlap (STAT A set), the next doubleword 
of source data is fetched (per IC), and the high-speed move 
routine is entered. As in case A, the source data in Sand T 
is stored per the destination address, the destination address 



is updated, and the word count is decremented. When the 
word count reaches 0 the instruction is terminated. 

If word overlap does not exist, new source data must be 
fetched after each store into the destination field. The 
source field is moved to the destination field by repetitive 
fetches and stores, during which both source and desti
nation field addresses are updated, and the word count is 
decremented. The instruction execution is terminated when 
the word count reaches 0. 

Case C: Source on Doubleword Boundary, 
Destination on Word Boundary 

If word overlap exists, T is stored in the destination field, 
and the destination field address is updated. S and T are 
then stored repetitively per the destination address. When 
the word count, decremented 2 for each store cycle, 
reaches 0, the instruction execution is terminated. 

In the case of no word overlap, the first source word (in 
S) is to be stored on a word boundary, and must be moved 
to T. Thus, the second source word (in T) must be moved 
to the LSWR so that S can be gated to T and stored (on a 
word boundary) at the destination field starting address. 
The next source doubleword (source words 3 and 4) is then 
fetched into S and T. Source words 2, 3, and 4 are now in 
the CE (2 in LSWR, 3 in S, and 4 in T). Words 2 and 3 must 
be in S and T, respectively, before they can be stored in the 
destination field. This rearrangement is accomplished by 
gating S (word 3) to PAL and holding it there for an extra 
cycle. The LSWR (word 2) is gated to S, and T (word 4) is 
gated to the LSWR. PAL (word 3) is gated to T, and now 
source, words 2 and 3 are in the correct position to be 
stored into the destination field. Word 4 is saved in the 
LSWR until the next two source words are fetched into the 
CE. Then, the same rearrangement takes place, and the next 
two sequential words are stored in the destination field. 
This sequence continues, and the word count is decre
mented accordingly. When the word count equals 0 the 
instruction execution is terminated. 

Case D: Source on Word Boundary, 
Destination on Doubleword Boundary 

Source wprd one is in T (and in LSWR) at the beginning of 
this routine. If word overlap exists, the LSWR is gated to S, 
and the high-speed move routine is entered. No source 
fetches are required, and source word one is propagated 
through the destination fo:~ld by storing doublewords. The 
word count decrementing to 0 terminates the instruction 
execution. 

Where word overlap does not exist, this routine is very 
similar to the one for Case C. Source word 1 is in the 
LSWR, and, after words 2 and 3 have been fetched, the 

same rearranging must be done. Source words are fetched, 
rearranged, and stored in the destination field. The word 
count is decremented until the specified number of words 
have been moved. 

START I/O PROCESSOR, SIOP (9A) 

• Transfers storage key and PSW address to the selected 
IOCE. 

• SI Format: 

I 9A I Key 1~Sel Bits! Bl I 
7 8 11 12 15 16 19 20 

Gate key and PSW address 
to external register. 

Gate IOCE select 
bits to select register.-

DJ 

31 

....-___ _.... _______ - - - - - .., 
Select designated IOCE. 

Receive respanse from IOCE 
and set appropriate condition code. 

End Op 

• Program interruptions: 

l 
I 
I 
I 

IOCE ingates information from 
externa I bus, checks it, and sends 
a response and condition code to 
issuing CE. 

L _____ _J 

1. Privileged operation interruption, if executing CE is 
in problem state. 

2. Specification interruption if: 
a. E register bit 15 is a 1. 
b. More than one bit is on in E {12-14). 
c. A key of F (hex) is specified. 
d. PSW address is not on a doubleword boundary. 

• CC Setting: 
PSW has been loaded successfully, and the IOCE

processor is proceeding with its execution: CC= 0 
PSW is invalid: CC= 1 (CC= 2 is not used) 
Selected IOCE not operational (no response received.): 

CC= 3 

• Refer to Diagram 5-807 FEMDM. 

The SIOP sends (to the designated IOCE) the address of a 
PSW and the storage protect key for that location. The 
IOCE responds to the CE and sends a condition code after 
checking the key and address for validity. The IOCE then 
performs a load PSW and begins the designated operation. 

7201-02 FETOM (7/70) 3-191 



The I2 field in the instruction format is divided into two 
parts: the key (bits 8-11), and the IOCE select mask (bits 
12-15). The MS address, specified by the Bl and DI fields, 
is the PSW address, which is sent to the IOCE along with 
the key. 

The PSW address is calculated and placed in D during 
I-fetch. This address is now gated through the parallel adder 
into T(36-59). The key is gated from E(8-11) into 
B(60-63). The key is then aligned in front of the PSW 
address in T by cross-gating B(60-63) and T(36-39) 
through the serial adder. The key is now in T(32-35), 
adjacent to the PSW address in bits 36-59. This informa
tion is gated from T to the external register, and from there 
it goes onto the external bus; then the specified IOCE is 
selected. 

The IOCE select mask is transferred to the select register 
by gating E(l 2-15) through the parallel adder into 
T(60-63) and, then, gating T to the select register. 

The select is sent to the proper IOCE by turning on 
STAT B and the timing gate trigger. The CE must now wait 
for the IOCE to send back 'response' signal and a condition 
code. This wait period is established by loading a timeout 
constant in B and entering a loop routine which decrements 
B by 1 on each machine cycle. When response is received, 
the CE sets its condition code to the value received from 
the IOCE. If the timeout constant in B reaches 0 before 
IOCE response is received, the CE assumes the IOCE to be 
inoperative and sets the condition code to 3. After the CE 
has set its condition code, it turns off the 'timing gate' 
trigger and terminates the instruction operation. 

SET ADDRESS TRANSLATOR, SATR (OD) 

• Discussion of SATR instruction is presented in three 
parts: 
1. Introduction to address translation. 
2. Instruction execution in the issuing CE. 
3. Action initiated by SATR select in a receiving CE. 

Introduction to Address Translation 

• Allows any SE in the system to be assigned to any 
512,000 block of the available storage addresses. 

• Replaces bits 9-12 of the programmer's logical address 
with the four bits of an ATR slot to obtain the physical 
address. 

• Address translation is active for all addressing in the 
9020 system. 

Address translation is defined as the conversion of a 
programmer's logical address into the machine's physical 

3-192 (7/70) 

address. Using the Set Configuration (SCON) and the Set 
Address Translator (SATR) instructions, the 9020 system 
can alter its configuration to replace failing elements or to 
respond to additional system loads. 

The SCON instruction defines the system and sets up the 
communication paths by setting the configuration register · 
in each element. (For additional details, refer to the 
discussion of SCON .) The SATR instruction allows the 
programmer to arrange the storage elements within the 
defined system in any physical order that he chooses. For 
example, a system having SE 2 and SE 5 configured has a 
total address range of 1,024,000 bytes. Addresses 0 to 
511,999 can be assigned to SE 2 (by loading ATR slot 1 
with a 2), and addresses 512,000 to 1,023,999 can be 
assigned to SE 5 (by loading a 5 in ATR slot 2). The reverse 
can also be done by assigning addresses 0 to 511,999 to SE 
5 (loading 5 into ATR slot 1) and 512,000 to 1,023,999 to 
SE 2 (loading 2 into ATR slot 2). 

Bits 9-12 of the address specify, in 0.5 M-byte 
increments, a logical address range from 0 to 8 M-bytes. 
Without address translation, the logical and physical ad
dresses would be the same, and address bits 9-12 would be 
used to select the 0.5 M-byte storage elements. Address 
translation in the 9020 system uses logical address bits 
9-12 to select a slot of the address translation register 
(ATR). This slot (loaded by the SATR instruction) contains 
the physical storage element identifier for the storage fram~ 
addressed by the logical address. Logical address bit 8, the 
four bits of the ATR slot, and logical address bits 13-31 
are combined to form the machine's physical address. 

Logicol Address 

8 9 12 13 14 31 T----.----
1 1 

Binary - 0 7 8 

Count I I I I I I I I I I 
ATRSlot-1 2 3 4 5 6 7 8 9 10 

Selected t t * * 
I ATR I 

t t * * * 
t 
I 

TTTTTITTTT 
Jj 14 .----' ---3-1 _____ ____. 

Physicol Address 

The purpose of the SATR instruction is to reassign 
storage frames by loading the ATRs of the designated CEs 
(and IOCEs) with new physical addresses. The CE executing 
the SATR instruction places the contents of two GPRs 



(specified by the RI and R2 fields) onto the external bus 
and issues selects to the designated CEs and IOCEs, causing 
them to gate the bus into their address translation registers. 
The two GPRs are loaded by the programmer with the new 
ATR information. The first GPR (specified by Rl) holds 
ATR slots 1-8. The second GPR (specified by R2) holds 
slots ATR 9 and 10 and the selection mask (24-31); bits 
16-23 of this GPR are reserved for the response byte. At 
the completion of the SATR instruction, the response byte 
is set to indicate those elements that failed to respond. 

Instruction Execution in the Issuing CE 

• Loads ATR of each CE and IOCE specified by the 
selection mask. ATR slots 1-8 are loaded from GPR 
specified by Rl. ATR slots 9 and 10 are loaded from 
bits 0-7 of GPR specified by R2. Selection mask is in 
bits 24-31 of GPR specified by R2. {9020D and 9020E 
systems have different ATR slot assignment format.) 

• During execution, the 'SATR select' signal to the 
receiving elements is activated at three different times: 
1. 1st 'SATR r ·~ct' initiates responses from selected 

CEs/IOCEr. 
2. 2nd 'SA,.. . select' ingates ATR slots 1-8 from the 

external uus into the ATRs of selected CEs/IOCEs. 
3. 3rd 'SATR select' ingates ATR slots 9 and 10 from 

the external bus into the ATRs of selected CEs/ 
IOCEs. 

• RR Format: {See Adjacent Column) 

• Program interruptions: A specification interruption oc
curs if: 
1. The CE executing the instruction does not have its 

own SCON bit set in its CCR. 
2. The CE executing the instruction is not in state 0 or 

3. 
3. The ATR assignment mask specifies an invalid frame 

(one that is not available to the particular instal
lation). 

4. On a 9020E, the ATR assignment mask assigns an SE 
to a position reserved for a DE, or a DE to any 
position other than 6, 7, 8, 9, 10. 

A privileged operation interruption occurs if the CE 
executing the instruction is in problem state. 

• ~ondition code: 
All selected elements have accepted new ATR informa

tion: CC= 0. 
One or more selected elements failed to respond to the 

1st SATR select. {This occurs if the issuing CE's SCON 
bit was not on in the selected element's CCR.): CC= 1 .. 

I 

Page of SFN-0201-1 
Revised by TNL: SN31-0020 

I OD I RI I R2 I 
71 II II IJ 

ATR 

GPR slot slot 1~ GPR slot slot L.flJ 9 10 I 2 ,___._ ___ I I 

I I 
~-----....J 
I 
I 
I 
I 

Specification error 

End Op 

Issue 1,st SATR select 

Set condition code I 

Gate ATR slots 9 and 10 

No 

Gate response bits from 
select register and store 
them in response byte 
in GPR specified by 
R2 field. 

Set condition code 0. 

End Op 

No 

Yes 

Selection 
Mask 

Set condition code 3. 

End Op 

Gate ATR slots I • 8 
onto external bus. 

31 

Issue 2nd SATR select. 

Gate Sand T to ATR. 

One or more selected elements failed to respond to the 
3rd SATR select. (This occurs if the selected elements 
detect bad parity in the new ATR information.): CC= 
2. 

Selection mask in the GPR specified by R2 is equal to 0: 
CC=3. 

• Refer to Diagram 5-808 FEMDM. 

7201-02 FETOM (5/72) 3-193 



At the start of execution, the selection mask is checked for 
all-O's. If this condition exists, no elements have been 
selected; the condition code is set to 3, and the instruction 
is terminated. 

The instruction then proceeds to check the ATR slot 
assignment for incorrect specification. If an ATR slot is 
specified incorrectly, a specification error is detected, and 
the instruction is terminated. 

In the 9020D system, all ATR slots are assigned to SEs. 
For this system, the ATR slot is invalid if: 
1. A frame is decoded which is not in the system. 
2. Frame identifiers B through F (hex) are specified. (These 

identifiers are illegal because there can be a maximum of 
10 frames (A-hex) in the system.) 

The 9020E system ATR slots 1-5 must specify SEs, and 
ATR slots 6-10 can only specify DEs. For this system, the 
ATR slot is invalid if: 
1. A frame is decoded which is not in the system. 
2. A DE is specified in ATR slots 1-5. 
3. An SE is specified in ATR slots 6-10. 
4. Frame identifiers B-F (hex) are specified. 

The microprogram, first, checks the validity of ATR 
slots l-5 and, then, 6-10. The ATR slots are selectively 
transferred from AB to F for validity checking. Note that 
each time a pair of ATR slots is gated from AB (per ABC) 
to the serial adder bus, STC is used to select the correct 
ATR slot within the pair. This slot is gated by micro-orders 
to F{0-3). STAT C is set to indicate the validity of the 
ATR mask. If STAT C remains set after all the ATR slots 
have been checked for validity, the ATR mask is valid, and 
execution continues. If STAT C is off, a specification error 
is set, and the instruction is terminated. 

After checking the validity of the ATR slots, the 
instruction transfers the selection mask from B to the select 
register. Note that the select register bit position assign
ments for CEs and IOCEs are different from the original 
SATR select mask bit positions in the GPR. Therefore, the 
select mask (in B) must be split and gated to the proper bit 
positions in the select register. 

00 

lo Select 

3-194 (7/70) 

Select Mask 

CE IOCE I 
Mask I Mask 

24 27 28 31 

~~ 

On its way to the select register, the select mask, in the 
proper select register format, is set into S and saved for 
later use. 

After the select register is loaded, the first SATR select 
is activated by turning on the 'timing gate' trigger and 
ANDing it with: (1) STAT A and (2) the select register bit 
for each element. This select is held active for approx
imately 25.6 usec by a delay loop, which uses the F register 
as a counter. The 25 .6-usec delay allows any operations in 
progress to complete. 

After 25 .6 usec, the 'timing gate' trigger is turned off to 
allow the response lines from the selected elements to reset 
the corresponding select register bits. A 2-cycle delay allows 
responses from the elements to reset the select register bits. 
The select register is then gated {via T) to the parallel adder 
for an all-O's check. The condition when all units respond 
and are waiting to ingate the new ATR information from 
the external bus is indicated by the PAL = 0. 

The select mask (in S) is gated back into the select 
register, and ATR slots 1-8 {in A) are placed in the 
external register. The 'timing gate' trigger is turned back on, 
to issue the second SATR select. Upon receipt of the 
second SATR select, the selected element ingates informa
tion from the external bus into its ATR. A delay loop using 
the AB counter holds the second SATR select up for 
approximately 4.4 usec. No response is expected from the 
elements. 

If the CE executing the SATR instruction has to set its 
own A TR, the A TR is set after the drop of the second 
SATR select. This is accomplished by gating slots 1-8 to S 
and slots 9 and 10 to T{32-39). ST is then gated to the 
ATR. 

The third SATR select signal is activated by turning on 
the 'timing gate'. trigger after slots 9 and 10 (in T) have 
been placed in the external register. A delay loop, using A 
as a counter, holds this select up for approximately 9.6 
usec. A 2-cycle delay allows responses from the elements to 
reset the select register bits. The select register is then gated 
to the parallel adder (via T) for an all-0 check. The 'timing 
gate' trigger is turned off, and the instruction execution is 
terminated if PAL is 0. The micro-program sets the 
condition code to 0 to indicate that all elements responded 
and the ATRs were set with no errors. 

The response mask is saved and stored in the response 
byte location of the GPR specified by the R2 field. The CE 
and IOCE bits, located in different bytes in the select 
register, are gated to T via the 9020 out bus and the LS out 
bus. The CE and IOCE response bits are combined and 
written into the GPR specified by the R2 field: select bits 
20-23 to GPR bits 16-19, and select bits 29-31 to GPR 
bits 21-23. 



Action Initiated by SATR Select in a Receiving CE 

• A CE receiving a SATR select signal from another CE 
executes a microprogram to ingate the new ATR 
information. The receiving CE must keep itself syn
chronized with the issuing CE. This is done by moni
toring the rise and fall of the SATR select line sent by 
the issuing CE. 

Gate Sand T into ATR. 

CE Receives SATR select. 

Send response. 

Drop response. 

Gate ATR slots 1-8 into S. 

No 

No 

Gate ATR slots 9 
and 10 into T. 

Yes 

Send response. Gate Sand Tinto ATR. 

No 

Drop response. 

End Op 

Error End. 

Page of SFN-0201-1 
Revised by TNL: SN31-0020 

• Refer to Diagram 5-809, FEMDM. 

When the CE receives SATR select, the 'time clock step'. 
trigger is turned on to force an interrupt to the operation in 
progress. Also turned on are an input latch for the issuing 
CE (CE 1, 2, 3, or 4 'input' latch) and the 'external SATR 
select' latch. The SATR response line, for the first select 
received, is sent back to the issuing CE by turning on the 
'interrupt gate' trigger. The receiving CE must wait now for 
the first select to drop. For this purpose, a timeout loop 
using the F register as a counter is set up. The drop of 
SATR select ends the timeout, and the microprogram turns 
off the 'interrupt gate' trigger. A new timeout loop is 
started to wait for the second SATR select to become 
active. 

With the arrival of the second SATR select, the receiving 
CE gates the external bus (ATR slots 1-8) into S via the 
9020 and local store out buses. This information is 
parity-checked while it is on local store out bus. An error at 
this time forces the receiving CE into the machine check 
microprogram. Therefore, a response to the third SATR 
select cannot be sent. This informs the issuing CE of the 
parity error. 

Another timeout loop is set up to wait for the second 
SATR select to drop. As soon as select drops, another 
timeout loop is set up since all that must be accomplished is 
to wait for the third SATR select to be issued. 

When the third SATR select is received, the external bus 
(ATR slots 9 and 10) is gated to T, again via the 9020 and 
local store out buses. Data is checked on the local store out 
bus. The new ATR information must be set into the 
receiving CE's address translation register. This is accom· 
plished by gating S(00-31) to ATR (00-31) and T 
(32--39) to ATR (32-39). The receiving CE has now set its 
own ATR. To inform the issuing CE of this, if there are no 
parity errors, the receiving CE raises SATR response (by 
turning on the 'interrupt gate' trigger). 

If there is a parity error on transfer of slots 9 and 10 
ATR information to the T register, 'response' is not issued, 
but the 9 and 10 portion of the CE's new ATR contents 
will be destroyed during error logout. However, the error 
ATR word will be available in the T register logout word. 
Only the original ATR information as it existed prior to the 
SATR instruction is lost. With no error, a new timeout loop 
is entered to wait for the drop of the third SATR select. As 
soon as select drops, the 'interrupt gate' trigger is turned 
off. 

At this point, the microprogram enters previously used 
timeout loops. The microprogram will now branch on the 
timeout condition (SAL= 2F hex) because the SATR select 
line from the issuing CE will neither rise nor fall. When 
timeout occurs, the CE resets the 'external SATR select' 
latch, the proper 'CE input' latch, and the 'time clock step' 
trigger, and goes to end op. 

7201-02 FETOM (5/72) 3-195 



Page ofSFN-0201-1 
Revised by TNL: SN31-0020 

SET CONFIGURATION, SCON (01) 

• Allows a CE to select one or more elements and to place 
configuration mask bits into their CCRs. 

~ ' ' 

• RR Format: 

I 01 I LI I L2 I 
O 7 8 11 IZ 15 

Load configuration mask in external 
reg (and ST far gating to SEs and DEs). 

Drop 'reconfigure select' and delay 
to allow elements to respond. 

Store select reg (resp~nses) 
in GPR specified by RI. 

Set CC to 0 and end op. 

No 

, 
I 
I 
I 
I 
I 

Load selection mask in select reg. 

Element receives select and gates 
external bus (or SDBI) to CCR. 

Element sends response if CCR is set 
with no error. (Response from 
element resets bit in issuing CE.) 

L_ - __ _J 

Set CC ta 2 and end op. 

• Select mask specifies which elements are to be con
figured. 

• Configuration mask specifies to the selected elements: 
1. The state they are to assume. 
2. The CE(s) from which they can accept future SCON 

instructions. 
3. The elements with which they can communicate. 

• Configuration mask is sent to SEs and DEs, via the 
SDBI, and to all other elements, via the external bus. 

• A privileged operation interruption occurs if the CE 
attempts to execute the SCON instruction while in 
problem state. 

3-196 (5/72) 

• A specification interruption occurs if: 
1. Executing CE is in state 1 or 2. 
2. Executing CE's SCON bit (in its own CCR) is off. 
3. RI specifies an odd GPR. 

4. Configuration mask specifies more than one CE, and 
an IOCE is selected. 

• Condition code is set to: 
0 if all elements responded. 
2 if one or more elements failed to respond. 

• Refer to Diagram 5-810 FEMDM. 

The SCON instruction (Diagram 5-810, FEMDM) provides 
programmed control over the configuration of the 9020 
system by setting up communication paths between its 
major elements. Basically, this instruction accesses general· 
purpose registers (GPRs) in the CE to obtain the selection 
and configuration masks previously set up by the program. 
The selection mask specifies which system elements are to 
be configured. The configuration mask specifies to each 
selected element: the state iUs to assume, the computing 
element(s) from which it may accept future configuration 
changes, and the elements with which it may communicate. 
(Note the differences in the selection and configuration 
masks used by the 9020D · and 9020E systems. The 
selection mask is one word long, and the configuration 
mask is a doubleword long. However, the second word of 
the configuration mask is used only by the 9020E system. 
The microprogram for the SCON instruction is not affected 
by the differences in the mask formats.) 

At the start of execution, the selection mask is trans
ferred to the select register, and the first word of the 
configuration mask is transferred to the external register. 
The instruction then checks for privileged operation and 
specification-type errors. A privileged operation error oc
curs if the CE attempts to execute the SCO:N instruction 
while in the problem state. A specification error occurs if: 

1. The Rl field o( the SCON instruction specifies an odd 
GPR (i.e., the configuration mask is not on a double
word boundary). 

2. The CE executing the SCON instruction is in state 1 or 
2. 

3. The CE executing the SCON instruction does not have 
its own SCON bit set in its configuration register. 

4. The scon field of the configuration mask is equal to 0 
(i.e., no valid CEs are specified by the SCON instruc
tion). 

If the selection mask specifies one or more IOCEs, the 
SCON instruction checks that not more than one CE 
communication bit is set in the configuration mask. Failure 
to meet this requirement results in a specification error and 
end-op. 



The SCON instruction must activate a 5-usec 'recon
figure select' signal to the elements specified . in the 
selection mask. Upon receipt of this signal, each selected 
element checks its own CCR to establish that the SCON bit 
for the issuing CE has been set. If so, the selected elell1ept 
inga tes the. configuration mask information from_ the iss~ii;ig 
CE into its CCR. If the SCON bit is not set,. the el~rnent 
will not accept the . configuration mask. In addition, w.it4in 
a· 9020E system, the DEs will accept the .. configuration 
mask only if (1) no more than four display gen~rator 
communication bits are set, (2) no display generator. has 
more than one bit set, and (3) no more than on.e display 
generator is configured to any one of the data registers (i.e., 
A, B, C, D). Also, within a 9020E system,. the recon
figuration control unit will accept the configuration mask 
only if one or no IOCE communication bit is set. 

To obtain a 5-usec select timeout for the 'recon
figuration select' signal, the SCON instruction sets up a 
constant of 19 (hex) into the B register and decrements B 
by 1 on every machine cycle. After the drop of the 
'reconfigure select' signal, the issuing CE waits for 5 usec 
for the selected elements to respond. To obtain the 5-usec 
timout, the SCON instruction sets up a constant of 19 
(hex) in B, and then decrements B by I on every machine 
cycle. (To obtain a constant of 19 in B, the microprogram 
first sets a constant of OC in B and D. D is then added to B, 
and the result, incremented by 1, is transferred to B.) 

The CE gates the configuration mask to the SEs and DEs 
via the SDBI. Consequently, the configuration mask is 
transferred to S and T. The second word of the config
uration mask is used by the DEs only. This word is 
transferred from the odd GPR (specified by Rl +I) to the T 
register. Because the CE communication field for SEs and 
DEs is ingated from SDBI(56-59), this field must be 
moved to the same bit positions of the T register. 

The drop of the 'reconfigure select' signal causes the 
selected elements to respond. However, the selected ele
ments respond only if they received correct parity for the 
configuration mask; if the element detects incorrect parity, 
it does not respond to the issuing CE. 

The response signal from each element is used by the 
issuing CE to reset a corresponding bit in the select register. 
Thus, at completion of the response timeout, the select 
register will contain all-O's, provided that all selected 
elements responded. If an element fails to respond, its 
corresponding bit in the select register is not reset. 

The contents of the select register are stored into the 
GPR specified by the RI field. At this time, the micro
program also examines the contents of the select register to 
establish if all elements responded. If all the elements did 
respond~' the condition code is set to O; if one or more 
elements failed to respond, the condition code is set to 2. 

Page of SFN-0201-1 
Revised by TNL: SN31-0020 

TEST AND SET, TS (9_3) 

• '.fest high-order bit (bit o) of storage operand byte (in 
. storage), set .CC according to state of tested bit, and set 
. addressed byte back into storage as all l's. 

• SI Format: 

·~l--~9--3~~~~~~·~Bl~~~·o_1 ____ ~ 
7 8 15 16 19 20 31 0 

Fetch doubleword (containing byte 
to be.tested) from main storage per 
storage operand address. I ndi cote 
selected byte by means of mark 
trigger [per D(2 l-23)]. 

Select byte to be tested per STC. 

Storage replaces marked byte with 
a 11 l 's when regenerating storage 
operand back into cores. 

0 

Set CC to 0. Set CC to 1. 

• Conditions at start of execution: 
First 16 bits of instruction are in E. 
Storage operand address is in D. 

• CC setting: 
High-order bit= 0: CC= 0. 
High-order bit= I: CC= 1. 

The Test and Set (TS) instruction tests the high-order bit of 
a single byte in main storage and then sets the byte tested 
to all-1 's. The byte to be tested and set to l's is specified in 
the storage operand address. The result of the test of the 
high-order bit is recorded in the CC: if the high-order bit is 
a 0, the CC is set to 0, if a 1 , the CC is set to 1. 

Diagram 5-811, FEMDM, is a flowchart of the execution 
of the Test and Set instruction. The first 16 bits of the 
instruction are in E, and the storage operand address is in 

7201-02 FF.TOM (5/72) 3-197 



D. The immediate operand and the storage operand 
requested during I-Fetch are not used. Instead, a storage 
request per D is made during execution accompanied by a 
'test and set' signal. This action allows no other access to 
this storage location between the fetching and regeneration 
of the byte. Before issuing the storage request, a mark 
trigger is set per D(21-23), via the STC, for use later by the 
storage unit. 

The storage unit performs a unique regeneration opera
tion for the Test and Set instruction. The addressed storage 
doubleword is fetched and set, unaltered, onto the SDBO, 
exactly as during a fetch operation. Unlike a normal fetch 
operation, however, the storage unit uses the mark bit 
supplied by the CE to designate the byte to be changed. 
When regenerating the 72-bit word, the storage unit sets the 

3-198 (7/70) 

designated byte in· core storage to all-1 's. Thus, the storage 
unit does a combination store and fetch operation. The 
storage protection facility operates as normal for a store 
operation. 

While generating the request for the storage operand, an 
address store compare test is started, similar to the test 
performed during the SS I-Fetch operation. Its purpose is 
to detect if the storage operand is buffered in Q. If it is, the 
'PSC' trigger is set, forcing an exceptional condition during 
the next I-Fetch, thus refilling Q. 

The bit to be tested must be placed into T(32). 
Therefore, the seco_nd operand is gated from the SDBO to 
AB, where the proper byte is selected and transferred to 
T(32-29) via the serial adder and F. An early end op is 
taken, overlapping the setting of the CC. 



SECTION 10. DISPLAY INSTRUCTIONS 

This section discusses the three instructions (RPSB, CSS, 
and CYWL) designed to perform the tasks of filtering and 
reformatting input -radar, single-symbol, and weather-line 
data, and of assembling and updating images for the PVDs 
connected to the 9020E system. A fourth instruction, Load 
Chain (which provides for accessing chained or linked 
blocks of data), is also described. Before the instructions 
are discussed, however, the following paragraphs are pre
sented as an introduction to the jobs to be performed and 
the methods used to accomplish them. 

INTRODUCTION TO DISPLAY INSTRUCTIONS 

The main purpose of these instructions is to provide an 
up-to-date display image for each of the PVDs attached to 
the 9020E system. One PVD's display image is an area 
located within the boundaries of its DE's core storage, 
which is variable in length and is designated 'refresh 
memory'. The display image is updated by assembling, 
under control of the Repack Symbols instruction (RPSB), a 
new image in another location in the DE's core storage and, 
when this image is complete, causing the display data for 
the PVD to be fetched from there. At the time updating of 
the display image begins, the area then being used to supply 
the PVD with display data is referred to as 'old refresh 
memory', and the updated display image to be constructed 
is referred to as 'new refresh memory'. 

Software supplies the information that controls the 
execution of Convert and Sort Symbols (CSS), Convert 
Weather Lines (CVWL), and Repack Symbols (RPSB). This 
control information is communicated to the instructions by 
placing it in specified general-purpose and floating-point , 
registers. The contents of the GPRs and FPRs are shown in 
the detailed write-ups of the respective instructions, along 
with an explanation of the use of the information con
tained in each register. Software also assembles and formats 
two groups of input data called input data streams, which 
reside in an SE and which CSS and CVWL use as input. 

CSS selects from its input data stream all of the data 
pertaining to the PVD being updated converts it to the 
scale of the PVD, and sorts it into 16 storage areas (in an 
SE) assigned to the PVD, called sort bins. In subsequent 
execution, RPSB updates one-sixteenth of a PVD's viewing 
area (i.e., one sort bin) by incorporating this new data into 
the PVD's new refresh memory along with older data 
retained from the PVD's old refresh memory. 

CVWL selects from its input- stream all of the weather 
lines pertaining to the PVD being updated. The instruction 
converts the selected weather lines to the scale of the PVD 
and stores thein directly into the PVD's new refresh 
memory. 

One execution of CSS or CVWL processes data for a 
complete PVD. One RPSB execution processes only one
sixteenth of the data (one sort bin) for one PVD and must 
be issued 16 times to update a complete PVD. 

Because RPSB differs greatly from CSS and CVWL, 
which are similar in operation, the discussion is now divided 
into two sections. 

Introduction to RPSB 

RPSB is a complex instruction, and a knowledge of many 
unique names and terms is needed for an understanding of 
the operations performed during its execution. There are 
two classes of data on which RPSB operates: radar data and 
single-symbol data. Radar data consists of both history and 
current symbols, which are displayed on the PVD. Single
symbol data consists of current symbols only. RPSB 
execution is identical for both classes, except that all 
operations dealing with history data are deleted when 
operating on single-symbol data. For this reason, the 
processing of radar class data is discussed here; the terms 
are defined as they are encountered. 

Information displayed on the face of the PVD is of two 
basic types: current information and history information. 
An example of current data, as seen on the face of the 
PVD, is a symbol depicting the present position of an 
aircraft passing through the PVD's area. An example of 
history data is the symbol representing the position of the 
aircraft some seconds before it reached its present position. 
History data is displayed at half brightness, as compared 
with cur~ent data, and several history targets are displayed 
with each current target. They form a trailing line showing 
the path of the aircraft. 

A PVD fetches the information it will display from its 
refresh memory area in the· DE's core storage. This area is 
described by a table called a descriptor table. It is made up 
of halfword descriptors, each containing a batch number 
and a symbol count. 

Batch 
Number 

7 8 

Symbol 
Count 

15 

7201-02 FETOM (7/70) 3-199 



The batch number, determined and assigned by soft
ware, identifies the time period and radar sector from 
which that particular group of symbols originated. The 
symbol count indicates the number of symbols contained in 
the batch. 

Batch # Symbol Count Batch # Symbol Count 

100 20 101 45 

15 16 31 

The two descriptors shown indicate that the first 20 
.symbols in refresh memory are from batch number 100 and 
that the following 45 symbols are from batch 101. The 
descriptors are taken in sequence as illustrated; i.e., the first 
descriptor in the table describes the first group ·of symbols 
in refresh memory, the second descriptor describes the 
second group, etc. At the beginning of execution the 
refresh memory area is designated old refresh memory 
(ORM), and the table describing it is called the old 
descriptor table (ODT). RPSB execution generates a new 
descriptor table (NDT) from the ODT and, then, by using 
the symbol count accumulated when building the NDT, 
c .m:::tructs a new ref '.Sh memory area (NRM). 

A work control table (WCI), furnished by software, 
provides the necessary control for the updating of refresh 
memory. WCI orders determine the sequence and the 
functions to be performed. Seven WCI orders are provided: 

Delete Nl 
Delete N2 
Delete 
Modify 
Insert 
EOCT 
EOB 

A typical WCI is shown in the detailed write-up of 
RPSB, along with a discussion of each of the WCI orders. 
These orders may appear in various combinations in the 
WCI. The sequence used later in this text, using most of 
the orders, is intended only as an example. The following 
sequence of orders is also possible, as are many others: 

Bin displacement table 
Modify 
Insert 
Bin displacement table 
Modify 
Insert 
Bin displacement table 
Insert 
Bin displacement table 
EOCT 

3-200 (7 /70) 

Typical WCI 
order sequence 
to insert a 
radar class/type. 

Note that a delete order is not necessarily the first order. 
In addition to the WCI orders, the RPSB microprogram 

provides for moving, first, history descripto;s from the 
ODT to the NDT and, later, current descriptors from the 
ODT to the NDT. If no delete orders are in the WCT, RPSB 
immediately moves history descriptors to the NDT. Delete 
orders (could be one or more) present in the WCI, 
however, indicate that one or more of the history 
descriptors in the ODT are to be deleted (those descriptors 
that describe symbols that no longer need to be displayed). 
One (or mor~) of the three delete orders deletes the proper 
descriptors from the ODT and, then, updates the ORM 
starting address ta bypass those symbols so that they will 
not be moved to NRM. After this has been accomplished 
(indicated by no further delete orders), the move history 
descriptors routine is entered. Its function is to accumulate 
a history count and to move the history descriptors (which 
were not deleted) to another location in storage, the NDT. 
Once in the NDT, they eventually cause RPSB to move the 
history symbols that are still to be displayed from ORM to 
NRM. Descriptors are moved until a null descriptor (all O's) 
is encountered. This descriptor separates history descriptors 
from current descriptors in the ODT. 

RPSB then examines the next order in the WCI. If the 
order is a Modify, it indicates two things: (1) some of the 
current symbols now in ORM, and described by some of 
the current descriptors in the ODT, are no longer current 
and must be modified; (2) since the WCI contains no 
Modify orders when the input class type is single-symbol 
data, it indicates that the input class type being processed is 
radar data. The primary function of this order (Modify) is 
to move current ODT descriptors (describing those symbols 
to be modified) to NDT positions adjacent to the last 
history descriptor. Later (in the execution), this will cause 
the symbols to be modified (reset the brightness bit) as 
they are moved from ORM to NRM. One current descriptor 
per Modify order is moved (if the batch number in the 
Modify order matches the batch number in the descriptor) 
from the ODT to the NDT, and the symbol count for each 
descriptor moved is added to the accumulated history 
count. After the last Modify order has been executed, a null 
descriptor is inserted in the NDT to separate the history 
and current descriptors. 

RPSB then enters a routine whose objective is to move 
the remaining current descriptors from the ODT to the 
NDT. Descriptors are moved and a current count is 
accumulated until a second null descriptor is encountered 
in the ODT. This all-O's descriptor indicates the end of the 
ODT and causes RPSB to check the next WCI order. 

Finding an Insert order in the WCI indicates to RPSB 
that new symbols are to be entered into new refresh 



memory. For these symbols to be moved, a descriptor must 
be constructed and inserted into the NDT following the last 
current descriptor stored there. The insert order itself 
provides the batch number, and, because the new symbols 
are located in a sort bin (as the result of a CSS execution), 
RPSB calculates the symbol count for the descriptor by 
subtracting the starting address of the sort bin from the sort 
bin stop address. (These addresses are furnished by software 
as part of the control information.) The newly assembled 
descriptor is then stored in the NDT. More than one Insert 
order can be present in the WCT; if there are more, RPSB 
repeats the previous operation and uses the symbol counts 
calculated for the descriptors to accumulate a total insert 
count. 

After all insert descriptor orders have been executed, a 
null is inserted in the NDT, and the new descriptor table 
(NDT) is completely built, containing two kinds of descrip
tors (history and current), as did ODT. 

A. Beginning 
ODT 

History 

Current 

3 

4 

5 

B. Modification C. Resulting 

of ODT NDT 

Delete { 

1-----t-~ 

History 
Move { 
History 

History 

Modify ( 
t----- I-~ 

Move ( 
Current 

Current 
Current 

Insert (1 I 
L ___ J 

As the descriptors are moved into the NDT, their symbol 
counts are used to accumulate a total history count, a total 
current count, and a total insert count. In the following 
routines, which move the actual display words (referred to 
as symbols), these counts control the movement of the 
three different types of symbols. The counts are decre
mented as the symbols are moved. When both the history 
and current counts have been decremented to 0, all the 
pertinent symbols have been moved from ORM to NRM. 
The new symbols, located in a sort bin (rather than ORM), 
are now moved to NRM under control of the insert count. 
When this count reaches 0, one complete class type has 
been processed, and the next WCT order must be an End of 
Class Type (EOCT) order. An End of Block (EOB) order 
following the EOCT in the WCT indicates that RPSB has 
completed processing data for one bin of one PVD. Any 
other WCT order following the EOCT order indicates that 
there is another class type of data to process, and the 
microprogram branches back to the beginning routines. 

Introduction to CSS and CVWL 

CSS and CVWL are similar in that each selects its input 
from a similar stream of data containing coordinates that 
will eventually be displayed on many different PVDs. The 
PVD on which each target or weather line will be displayed 
is determined by each coordinate's respective geographic 
location. One execution of either instruction selects (from 
its input data stream) all of the input data for one PVD. 
Both instructions must be reissued to process their input 
data streams for another PVD. 

The CSS instruction processes an input stream of 
primary radar/single-symbol data or beacon data. Note that 
beacon data is also radar data. Formats for these two basic 
types of data are as follows: 

Input Fonnat for Primary Radar/Single Symbols. 

]***********~~****************** 
0 1 11121314 31 

lolsl Symbol I****** * * * * * * * * * * * * * * ****I 
0 1 2 7 8 31 

1°1 YS 1°1 XS 
0 1 151617 31 

1°1 YS 1°1 XS 

0 1 151617 31 

Altitude Key 0 S Symbol 

0 1 7 8 9 10 11 12 13141516 23242526 31 

1°1 Index Bits 1-31 
0 1 31 

loJ Index Bits 33-63 

0 1 31 

1°1 Index Bits 65-95 
0 1 31 

1°1 YS JoJ XS 

0 1 151617 31 

I* * * * * * * ·* * * * * * * * * * * * * * * * * * * * * * * * *I 
0 

Legend: 

BL 
BR 

Blink 

31 

* Ignored by CSS 

Note: 

(Header) 
Word l 

Word 2 

Word 3 

l 
T 

Word (M+2) 

(Header) 
Word l 

Word 2 

Word 3 

Word 4 

Word 5 

Header 
Alignment 

Word 

Brightness 

~~} TypeS:~:ol Size 

Multiple data blocks 
accepted for input. 

T3 

SB Selected Beacon 
M Number of X, Y position words in primary radar/ 

single-symbol data block (if necessary, a dummy position 
word of all zeros must be included to make the count even) 

7201-02 FETOM (7/70) 3-201 



CSS selects (from the input data stream) all the data that 
is valid for one PVD and stores it, according to the targets 
location on the face of the PVD, in the appropriate sort bin 
(there are 16). The data, stored in the sort bins, is in word 
format and contains all the information required to display 
the target. 

The CVWL instruction processes an input data stream of 
weather-line coordinates destined for many different PVDs. 
Format of this input data stream is as follows: 

lr"put Format 

0 l 9!1Cli121314 

0 : 2 '8 

lo; YS 1°1 
151617 

lo[ YS !o[ 
c r J>lbl7 

legend: 

DA Da>h 
DL Dash length 
BL Blin,k 
BR Br ightncS> 
S Symhol Size 

N Number or weather lines 
l9no'r"d by C \Nil 

JI 

XS 
31 

XS 

I Header I 
\No,rd 1 

Wmd 2 

Word 3 

l 
T 

Word r2N·2) 

It selects all of the weather lines (pairs of coordinates) 
·that are valid for that PVD and stores them in the PVDs 
refresh memory as a doubleword containing all information 
required to display the weather line. 

All control information for CSS and CVWL is located in 
GPRs and FPRs. These registers must be set up properly by 
software prior to issue of each CSS or CVWL instruction. 
The detailed discussion of each instruction presents the 
format of the GPRs and FPRs and explains the use of their 
contents. 

Control information needed for execution of the CSS 
instruction consists of the geographical boundaries of the 
PVD, the geographical boundaries of each of three sterile 
areas located within a PVD's geographical boundary, the 
sort-bin base address and the displacement values for the 16 
sort bins, the PVD index (for beacon input), the altitude 
mask (for beacon input), the type bits (for beacon input), 
the address in prime storage from which to read the next 

3-202 (7 /70) 

input doubleword, the input data count (indicating the 
number of words or beacon data blocks in the input 
stream), and the PVD's conversion constant. 

Control information needed for execution of the CVWL 
instruction consists of the geographical boundaries of the 
PVD, the nine-tenths border region coordinates of the PVD, 
the geographical boundaries of each of three sterile areas 
located within a PVD's geographical boundary, the address 
in prime storage from which to read the next input 
doublcword, the address in display storage for storing the 
next output doubleword, the input count indicating the· 
number of doublewords in the input stream, and the PVD's 
conversion constant. 

CSS and CVWL perform geographic and sterile area 
filtering. The geographic filter determines whether the 
input target (in the case of CSS) or either end of the 
weather line (in the case of CVWL) is within the geographic 
area of this PVD. Two sets of coordinates, which describe 
the geographic area of the PVD, are supplied by software 
and are in FPR 0. One set defines a point called the 
geographic origin of the PVD~ the other set defines a point 
called the geographic limit of the PVD. The origin is the 
lowest-left point of the area and the limit is the uppermost 
right point. Using these two points and following the 
coordinates, a square can be drawn which is the geograph
ical area. 

y 
Co-ordinate 

t 
X 1 Limit 

Co-ordinate --1-----------, 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I x 
1----------1--Co-ordinate 

Origin ~ 

y 

Co-ordinate 

The coordinates of the origin are subtracted from the 
coordinates of the input point. A point within the PVD's 
area will have coordinates of a higher value than those of 
the origin. If both X and Y subtraction results are positive, 



the input point could be within the area. Either result 
negative means that the point cannot be in the PVD's area. 

CIJ 

16 

15 

14 

13 

12 

11 

10 

0 9 
c 

:-0 B 
? 
3 7 
>< 6 

5 

4 

3 

p 

0 0 

' p ~ ~ ~ ~ ~ -
...... 

-
j .... 
j 

~ 

j 

~ 

I 
~ 

~ .....,..- .... 
Origin -

~ 

-
-

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Y Co-ordinates 

Example One 

This point is within the PVD areo
both results ore positive. 

Input Co-ordinates 
Origin Co-ordinates 

Result 

Example Two 

Y6 X9 
- Y4 X5 

-lY2 +X4 

This point is not within the PVD orea
the Y result is negative. 

Input Co-ordinates Y3 Xl 1 
Origin Co-ordinates - Y4 XS 

Result -Yl +X6 

A latch testable by the microprogram (the 'limit' latch) 
is used to indicate the results of all of the filters. According 
to the nature of the filter being performed, this latch is set 
or reset per the results of the subtractions. If both X and Y 
results are not positive, the 'limit' latch is set now to 
indicate that the input point failed the geographic filter. 

I 
In CSS and CVWL, the origin is allowed to be negative. 

When the quantity involved in the subtraction is negative, 
no test is made on that subtraction (X or Y or both). In this 
case the maximum negative origin cannot be allowed to 
exceed the PVD scale. 

The second part of the geographic filter is performed 
exactly as the first, but, this time, the coordinates of the 

Page of SFN-0201-1 
Revised by TNL: SN 31-0020 

geographic limit are subtracted from the input coordinates. 
Negative X and Y subtraction results indicate that the input 

• 16 

15 

14 

13 

12 

11 

10 
.! 

9 0 c:: 
:-0 a (5 

I 
0 7 u 
x 6 

5 

4 

3 

2 

0 0 

t ' ~ ~ ~ ~ 

-
-

Limit 

-
...... 

...... 

-

-
-
~ 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Y Co-ordinates 

Example One 

This point is within the PVD oreo
both results ore negative. 

Input Co-ordinates Y9 XlO 
Limit Ca-ordinates - Y13 Xl2 

Result -Y4 -X2 

Example Two 

This paint is not within the PVD oreo
the Y result is positive. 

Input Co-ordinates Yl4 XS 
Limit Co-ordinates - Y13 X12 

Result +Yl -X4 

point could be within the PVD's area. This time, the 'limit' 
latch is set if both results are not negative. 

The geographic filter is now complete, and the micro
program tests the 'limit' latch. The 'limit' latch on indicates 
that the input target (CSS) or one end of the weather line 
(CVWL) has failed the filter. If the 'limit' latch is off after 
the geographic filter, the input point is within the PVD's 
geographic area. 

The purpose of the sterile area filters is to determine 
whether the input target {CSS) or one end of the weather 
line (CVWL) is within the boundary of any of the three 
sterile areas. Each of the sterile areas is also defined by two 

7201-02 FETOM (5/72) 3~203 



sets of coordinates. The sterile-area filtering can be thought 
of as performing geographic filtering in reverse; i.e., the 
filter will be passed if the target does not fall within the 
geographic area defined by the origin and limit coordinates. 
The actual operations performed are duplicates of those 
within the geographic filters, the only differences being the 
coordinates describing the sterile areas and the interpreta
tion of the setting of the 'limit' latch. The sterile area 
coordinates, furnished by software, are obtained by CSS 
and CVWL from FPRs (sterile area 1 from FPR-2, sterile 
area 2 from FPR-4; and sterile area 3 from FPR-6). A target 
point or a line with either end point in any one of the 
sterile areas will be rejected, and the instruction will start 
processing the next input target (CSS) or weather line 
(CVWL). 

Each PVD could have a different scale, depending on the 
size of the area it displays. For this reason, a separate 
conversion constant for each PVD must be furnished by 
software. The purpose of the conversion routine is to 
convert the input coordinates from system scale to PVD 
scale, using the conversion constant. This routine is 
common to both CSS and CVWL. Another routine 
common to CSS and CVWL is the time clock update 
routine. The coordinates to be converted are in B, and the 
conversion constant is in S, no matter where entry is from. 
Bis multiplied by S, using the 'SEL-MPL * E3' micro-order, 
and the result is a 10-bit Y coordinate and a 10-bit X 
coordinate. Upon completion of the routine, STAT Don 
returns control to CVWL. 

REP ACK SYMBOLS, RPSB (OF) 

• Assembles an updated display image (refresh memory) 
for one-sixteenth of a PVD's area. 

• Logically divided into two sections: (1) the assembling 
of a new descriptor table by moving descriptors, and (2) 
the assembling of a new display image by moving 
symbols (display words). 

• Control information contained in GPRs, FPRs, WCT, 
and ODT. 

• Program Interruptions: 
1. Protection (store or fetch protect violation) 
2. Addressing (input or output addresses outside avail

able storage) 
3. Specification: 

a. New page address, contained in bytes 5-7 of 
doubleword following a 512-byte page, is not on a 
doubleword boundary. 

b. The Next Old Refresh Memory Addr (ORMA) in 
GPR 4 or the Next New Refresh Memory Addr 
(NRMA) in GPR 5 is not initially on a doubleword 
boundary. 

3-204 (7 /70) 

• Condition Code 
0-Processing complete 
I-Not used 
2-Page boundary encountered in the NDT 
3-Indicates an illegal sequence in the WCT orders 

• RR Format 

Entry determination - if initial entry 
start here; if entry ofter an interrupt 
go to routine fhot exit was from. 

Delete 
descriptors. 

Move history 
descriptors. 

No (Single Symbol Class/Type) 

(Rodai 
Class ·lype) 

Modify current 
descriptors. 

Move current 
descriptors. 

Insert new 
descriptors. 

Move history 
S)'mbols. 

Move current 
symbols. 

Insert new 
symbols 

Prepare to 
process next 
class type. 

No 

Gate history count to current count. 

Set history 
count to zero. 

lnvo I id sequence 
set condition code 3. 

End OP 



For a detailed discussion, read the following text and 
refer to Diagram 5-902, FEMDM. 

RPSB is divided into two sections. The first section 
operates only with descriptors. It deletes some descriptors 
from the ODT, moves descriptors from the ODT to the 
NDT, and constructs new descriptors for the input data 
being processed. The second section processes only display 
words (symbols). It moves symbols from ORM to NRM 
and, then, from a sort bin to NRM. The control informa
tion required by RPSB to perform these tasks is furnished 
by software in the form of data stored in the GPRs and a 
work control table (WCT). Specific register contents are 
shown below, followed by a description of the use of each. 

GPR 

~lo_o_o_o~o_o_o_o_o_o~o_o_o_o_o_o__._l~~~-H-ist_ar_y_ca_un_t~~~_,I o 

0 15 16 31 

~lo_o_o~o_o_o_o_o_o_o_o~o_o_o_o_o__._l~~~-cu_rr_en_t_ca_un_t~~~_.I 1 
0 15 16 31 

1000000001 Next ODT Addr (ODTA) I 2 

0 7 8 31 

1000000001 Next NDA Addr (NDTA) I 3 

0 7 8 31 

00000000 Next Old Refresh Memory Addr (ORMA) 

0 7 8 31 

0000000 0 Next New Refresh Memory Addr (NRMA) 

7 8 31 

100000000! Next Sort Bin Addr (BINAD) 
I 

6 

0 7 8 31 

1000000001 Next WCT Addr (WCTA) I 7 

7 8 31 

I INTRP I ID I I 2x Bin No. I 8 

4 7 8 26 27 31 

1000000001 Sort Bin Start Displ Addr I 9 

0 7 8 31 

looooo ooo I Sort Bin Bose Addr (SBBA) I 10 

7 8 31 

I DP lo o o o o o I New NDT Page Addr I 11 

7 8 31 

The function of each of the general registers 0-11 and 
floating-point registers 0-6 is as follows: 

History Count-(GPR 0): Bits 16-31 are reserved for 
use by RPSB in accumulating a symbol count of history 
data. RPSB will not restore the original contents of GPR 0 
at the end of its execution. 

Current Count-(GPR 1): Bits 16-31 are reserved for 
use by RPSB in accumulating a symbol count of current 
data. RPSB will not restore the original contents of GPR 1 
at the end of its execution. 

Next ODT Addr (ODTA)-(GPR 2): Bits 8-31 maintain 

the address of the next halfword descriptor in the old 
descriptor table. It is updated on a two-byte basis. When 
the last descriptor has been processed from the previous 
doubleword, a new doubleword is fetched from the 
location indicated ·by this address (on a doubleword 
boundary). 

Next NDT Addr (NDTA)-(GPR 3): Bits 8-31 maintain 
the address of the next halfword descriptor in the new 
descriptor table. It is updated on a two-byte basis. 

Next Old Refresh Memory Addr (ORMA)-(GPR 4): 
Bits 8-31 maintain the current word address of the next 
symbol in old refresh and are updated on a doubleword 
basis (two symbols per doubleword). A specification 
exception occurs if this address is not initially on a 
doubleword boundary. 

Next New Refresh Memory Addr (NRMA)-(GPR 5): 
Bits 8-31 maintain the current word address of the next 
symbol in new refresh and are updated on a doubleword 
basis (two symbols per doubleword). A specification 
exception occurs if this address is not initially on a 
doubleword boundary. 

Next Sort Bin Addr-(GPR 6): Bits 8-31 are reserved 
for use by RPPSB for holding the sort bin address from 
which the next symbol for the current class/type may be 
fetched. RPSB calculates the initial address from the sum of 
Sort Bin Base Addr (GPR 10) and the appropriate Bin N 
Disp Addr value from the bin displacement value table at 
the begi_nning of the work control table. This address is not 
used or' modified until RPSB begins to fetch symbols from 
the sort bin, reformat them, and insert them into _new 
refresh. At this time, it is updated on a doubleword basis 
(two symbols per doubleword). The referenced sort bin 
data is a result of a previous CSS operation. This address 
points to the proper location for the next class type at the 
end of insertion of all new symbols. The original contents 
of GPR 6 will not be preserved during RPSB execution. 

Next WCT Addr (WCTA)-(GPR 7): Bits 8-31 contain 
the next address in the work control table. The address is 
always on a halfword boundary. 

INTRP ID-(GPR 8): The INTRP ID (interrupt identifi
cation code) is reserved for use by RPSB and is normally set 
to 0 to indicate that instruction execution is to start from 
the beginning. When· RPSB detects a pending interrupt 
condition (1/0 or External) at one of the several break 
points in the instruction, it sets the associated INTRP ID 
code and adjusts the instruction address field of the current 
PSW so that it points to the RPSB instruction itself. Then it 
terminates to allow the interruption to take place. 

The' INTRP ID code is also set whenever a time clock 
step request is detected. However, in this case, the time 
clock stepping is accomplished within RPSB itself. Upon 
stepping of the time clock, RPSB tests for an interrupt 
condition. If an interrupt is pending, the action described 
above is performed and the instruction is terminated; if no 

7201-02 FETOM (7/70) 3-205 



interrupt request was made, RPSB re-initializes and re
enters the instruction at the point from which the time 
clock step was acknowledged (without terminati6n). 

Bits 0-3 specify whether the interrupt code pertains to 
descriptor table updating or to display image updating. 
These codes are as follows: 

Bits 0-3 

0000 

0001 

1001 

Descriptor table updating - no odd delete adjust
ment is required on the first valid descriptor to be 
moved after the delete operations. 

Descriptor table update - the symbol count of the 
first valid descriptor to be moved (for the current 
class/type) after descriptor deletions will be 
increased by one. 

Display image updating - all codes with 1001 for 
bits 0-3 pertain to symbol moving from the old 
refresh area to the new refresh area (DE to DE) or 
to the insertion of new symbols into the new 
refresh area (SE .to DE). 

Bits 4-7 identify specific interrupt subcategories of 
descriptor table or display image updating and are defined 
below: 

For descriptor table updating (bits 0-3 = 0000 or 
0001), bits 4-7 are defined as follows: 

0001 

0010 

0100 

0110 

Exit at end of delete routines. Re-entry at 
beginning of move history descriptors routine. 

Exit at end of move history descriptors routine. 
Re-entry at beginning of move and modify current 
radar descriptors routine. 

Exit at end of move and modify current radar 
descriptors routine. Re-entry at beginning of move 
current descriptors routine. 

Exit at end of move current descriptors routine. 
Re-entry at beginning of insert new descriptors 
routine. 

All of the following codes will cause re-entry into the 
instruction at the same point, i.e., at the beginning of the 
move history current symbols routine. Program interrupts 
will be caused by either an invalid DE address or a DE 
storage protection exceptional condition. 

For display image updating {bits 0-3 = 1001), bits 4-7 
are defined as follows: 

0001 

0010 

3-206 (7 /70) 

Nonprogram interrupt exit from end of insert 
descriptors routine or from within the move 
history symbols loop. 

Program interrupt exit from within the move 
history symbols loop. 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

Nonprogram interrupt exit from within the move 

current symbols loop. 

Program interrupt exit from within the move 

current symbols loop. 

Nonprogram interrupt exit from end of move 
history and current symbols routine. 

Program interrupt exit from end of move history 
and current symbols routine. 

Nonprogram interrupt exit from within the insert 
new symbols loop when N RMA (GPR 5) and 
BINAD (GPR 6) are on alternate word boundaries. 

Program interrupt exit from within the insert new 
symbols loop when NRMA (GPR 5) and BINAD 
(GPR 6) are on alternate word boundaries. 

Nonprogram interrupt exit from within the insert 
new symbols· loop when NRMA (GPR 5) and 
BINAD (GPR 6) are on the same word boundaries. 

Program interrupt exit from within the insert new 
symbols loop .when NRMA (GPR 5) and BINAD 
(GPR 6) are on the same word boundaries. 

Nonprogram interrupt exit after last new refresh 

memory store. 

Program interrupt exit after last new refresh 

memory store. 

Nonprogram interrupt exit before last new refresh 
memory store. 

Program interrupt exit before last new refresh 

memory store. 

In the event of a nonprogram interrupt, all addresses and 
symbol counts are adjusted to reflect the symbols actually 
moved to the new refresh area. For a program interrupt, 
however, residual symbol counts and data addresses vary 
depending upon the particular interrupt condition. 

Bin No.-(GPR 8): Bits 27-31 contain a number which 
is twice the sort bin number (0-15) for the sort bin 
currently being processed. It is used for two main func
tions: (1) to enable RPSB to access the proper bin 
displacement value in any bin displacement value table in 
the WCT, and (2) to indicate the l_lumber of the sort bin 
processed by RPSB to the operational program in the event 
of any termination of the instruction. 

Sort Bin Start Displ Addr-(GPR 9): This register is 
reserved for use by RPSB. For any particular Insert order in 
process during the insert operation, bits 8-31 of GPR 9 
hold a start displacement value for sort bin data. It is used 
for calculating a symbol count for the given Insert. For the 
first Insert order 1n the first class/type processed, this 
displacement value is taken from the initial bin dis
placement value table in the WCT. For each succeeding 



Insert order (for every Insert order in all class/types 
processed in any RPSB execution), this displacement is the 
stop displacement value for the previous Insert order. (The 
stop displacement value for any Insert order is taken from 
the associated bin displacement value table.) The original 
contents of this register will not be preserved during 
instruction execution. 

Sort Bin Base Addr (SBBA)-(GPR 10): Bits 8-31 
contain the sort bin base address used in calculating the 
BINAD (GPR 6) from the sort bin displacement values in 
the WCT. It must always be on an NS 12-8 page boundary 
(i.e., the low-order 9 bits must contain the hex value 8). 

DP-(GPR 11): The DP (descriptor paging code) bits 0 
and 1 are reserved for use by RPSB and are normally set to 
0 tb indicate that instruction execution is to start from the 
beginning. Whenever RPSB encounters an NDT page over
flow ( 63 doublewords of new descriptors have been stored 
in an NDT page), it sets the DP bits to 1, inserts the New 
NDT Page Addr (GPR 11) in the page link field of the old 
page, and replaces the Next NDT Addr in GPR 3 with a 
new page address from GPR 11. Later, when RPSB reaches 
a convenient break point in its_ execution (end of given 
class/type), the DP bits,· being on, will cause RPSB to 
terminate the instruction with CC2. 

New NDT Page Addr (NDPA)-(GPR 11): Bits 8-31 
contain an address of a new page in the new descriptor 
table, to be used for replacement of Next NDT Addr in 
GPR 3 in the event of an NDT page overflow. 

GPR's 12-15: These registers may be used by the 
programmer. 

FPR 0, 2, 4, 6: These registers are reserved for use by 
RPSB as working registers. The original contents of these 
registers will not be preserved during instruction execution. 

The work control table contains information on bin 
displacement values and various control orders. It is 
applicable to all 16 sort bins, although RPSB operates on 
only one sort bin per execution. A typical WCT is shown 
below, followed by a description of each entry (bin 
displacements and orders). 

Bin 0 Displ Bin 1 Displ 

Bin 2 Displ Bin 3 Displ 

Bin 4 Displ Bin.5 Displ 

Bin 6 Displ Bin 7 Displ Initial Bin 
Displacement 

Bin 8 Displ Bin 9 Displ Table 

Bin 10 Displ Bin 11 Displ 

Bin 12 Displ Bin 13 Displ 

Bin 14 Displ Bin 15 Displ 

DELETE Batch No. 

DELETE Batch No. 

MODIFY Batch No. 

MODIFY Batch No. 

Bin 4 Displ 

Bin 6 Displ 

Bin 8 Displ 

Bin 10 Displ 

Bin 12 Displ 

Bin 14 Displ 

DELETE I Botch No, 

DELETE I Batch No, 

Bin 0 Displ 

Bin 2 Displ 

Bin 4 Displ 

Bin 6 Displ 

Bin 8 Displ 

Bin 10 Displ 

Bin 12 Displ 

Bin 14 Displ 

Bin 0 Displ 

Bin 2 Displ 

Bin 4 Displ 

Bin 6 Displ 

Bin 8 Displ 

Bin 10 Displ 

Bin 12 Displ 

Bin 14 Displ 

EOB 

DELETE Botch No, 

MODIFY Batch No. 

MODIFY Batch Na, 

INSERT Batch No. 

Bin 1 Displ 

Bin 3 Displ 

Bin 9 Displ 

Bin 11 Displ 

Bin 13 Displ 

Bin 15 Displ 

EOCT 

DE LE TE I Botch No. 

INSERT I Botch No. 

Bin 1 Displ 

Bin 3 Displ 

Bin 5 Displ 

Bin 7 Displ 

Bin 9 Displ 

Bin 11 Displ 

Bin 13 Displ 

Bin 15 Displ 

INSERT I Batch No. 

Bin 1 Displ 

Bin 3 Displ 

Bin 5 Displ 

Bin 7 Displ 

Bin 9 Displ 

Bin 11 Displ 

Bin 13 Displ 

Bin 15 Displ 

EOCT 

Rodar Class 
Type A 

Single Symbol 
Closs Type B 

Orders: 
DELETENl 
DELETE N2 
DELETE 
MODIFY 
INSERT 
END OF C/T (EOCT) 
END OF BIN (EOB) 

Hex Code: 
10 
20 
30 
40 
50 
60 
70 

At the beginning of the WCT, and immediately following 
each Insert order, is a table of 16 bin displacement values. 
The table must always start on a word boundary. The bin 
displacement values are defined as follows: 

Bin N DISPL: These are halfword operands, each of 
which is a displacement value. They are used in two ways: 
(1) to calculate BINAD (GPR 6) upon initial entry into the 
instruction (using the initial bin displacement value table), 
and (2) as stop and start displacements for determining a 
symbol count for each Insert order. When generating the 
symbol count for a new descriptor for a given Insert order~ 
the stop displacement is taken from the bin displacement 

7201-02 FETOM (7/70) 3-207 



value table associated with the given Insert order, and the 
start displacement is taken from SORT BIN START DISPL 
ADDR in GPR 9 (see same). 

Since these displacement values are assigned the same 
values used in CSS, they are subject to the same restrictions 
(see CSS instruction). Each initial displacement value will 
have been assigned any value lying on any word boundary, 
except for the following: 
1. 0 to 27 (hex) 
2. FEOl to FFFF 
3. 1 FC or 1 F8 (hex) in the low-order 9 bits 
4. Only one sort bin to each displacement value 

Each WCT order consists of a halfword: the first byte 
contains the order code; the second byte contains a batch 
number to be compared against the batch number con
tained in ODT halfword descriptors. (Batch numbers of 0 
are illegal.) WCT orders are as follows: 

Delete N2: This order deletes all ODT descriptors up to, 
and including, the first null (all -O's) descriptor. Only one 
Delete N2 order may be issued for a class type. 

Delete Nl: This order deletes all ODT descriptors up to, 
but not including, the first null descriptor. Only one Delete 
Nl order may be issued for a class type. 

Delete: If the batch number of the current descriptor 
matches the batch number of this order, this order instructs 
RPSB to delete the number of symbols specified by the 
descriptor from old refresh and to delete the given 
descriptor. Otherwise, RPSB proceeds to the next order in 
the WCT. If the batch number of this order is 255, it is a 
dummy Delete order. (The batch number comparison will 
always be unsuccessful since no batch of data will receive a 
number as high as 255). It _will be used only to align, if 
necessary, the first Insert order on an odd halfword 
boundary. 

Modify: If the batch number of the current descriptor 
matches the batch number of this order, RPSB moves the 
current descriptor from the ODT to the NDT. In.addition, 
if there is a match, RPSB will modify (teset the brightness 
bit) the old refresh data associated with that batch and 
move the data to new refresh memory. If the batch 
numbers do not match, RPSB proceeds to the next order in 
the WCT. If the batch number of this order is 255, it is a 
Modify order (like the dummy DELETE). This order 
signifies to RPSB only that radar data is being inputted 
(Modify orders are never used with single-symbol data). In 
addition, for any radar class/type sequence of WCT orders, 
it will be used to align, if required, the first Insert order on 
an odd halfword boundary. A third use of a dummy 
MODIFY occurs when it is placed after an Insert order. 
Encountered in this position it instructs RPSB to insert a 

3-208 (7 /70) 

null descriptor in the next available location in the NDT. 
RPSB always steps the WCT address four bytes to the next 
WCT order after encountering this dummy Modify. 

Insert: This order instructs RPSB to extract symbol data 
(previously processed by CSS) from the sort bin, to 
construct a new descriptor with the batch number (given in 
this order) and the count of symbols inserted, and to add 
the new descriptor to the NDT. The next order in the WCT 
to be accessed by RPSB will be taken from the eighteenth 
halfword position from the given Insert order. Every Insert 
order will lie on an odd halfword boundary (i.e., not a word 
boundary) and is immediately followed by its own table of 
16 bin displacement values (always on a word boundary). 

EOCT: This order (End of Class/Type) reinitializes 
RPSB for the next class/type pass. Then RPSB proceeds to 
the next WCT order. 

EOB: This order (End of Bin) signifies the end of 
processing of the given sort bin and terminates the 
instruction. When used, it must always follow an EOCT 
order. 

Control of refresh storage management via the Work 
Control Table and descriptor tables is illustrated, as follows, 
for single-symbol data and radar data: 

Single Symbols: For each class/type of single-symbol 
data, the ODT contains some number of descriptors, each 
describing some number of symbols stored in old refresh. A 
null descriptor (all-0) in the ODT separates this class/type 
from the descriptors of the next class/type. 

The WCT may contain orders for a single-symbol 
class/type as shown on the following examples: 
1. Normal update cycle: 

0-n DELETE orders 
0-n INSERT orders 
1 EOCT order 

2. Delete all data from 
a class/type: 

1 DELETE Nl 
1 EOCT order 

3. Insert data for a class/type: 
0 or 1 DELETE #2.55 order 
0-n INSERT orders 
1 EOCT order 

The number of DELETE orders (0-n) must always be such 
that the first Insert order, if any, lies on an odd halfword 
boundary. One dummy Delete (batch 255) order may be 
required to ensure the proper alignment. 

Radar: For each class/type of radar data, the ODT 
contains some number of history descriptors, a null 
descriptor (all-0), some number of current descriptors, and 
a final null descriptor (all-0). The first null descriptor 



separates history from current while the second null 
descriptor separates this class/type from the next. Each of 
the non-zero descriptors defines some number of symbols 
in old refresh. 

The WCT may contain orders for a radar class/type as 
shown in the following examples: 
1. Normal update cycle: 

0-n DELETE orders 
I-n MODIFY orders 
0-n INSERT orders 
I EOCT order 

2. Delete data from a class/type: 
I DELETE N2 
I DELETE NI 
I EOCT order 

3. Insert data into a class/type: 
0-n INSERT orders 
I MODIFY (255) order 
0-n INSERT orders 
I EOCT order 

A dummy MODIFY order may be required to align the 
Insert order on an odd halfword boundary. (Another 
dummy modify may precede this order to establish the 
class/type as a radar class/type.) 

RPSB processing is terminated upon recognition of an 
EOB order following an EOCT order in the last class/type 
sequence. 

Radar data is distinguished from single-symbol data by 
the presence of at least one Modify order. If no data is to to 
be modified, a dummy Modify (batch number 255) order 
must be used. 

Radar data can also be treated as single-symbol data if 
no history data exists. In this case, the null descriptor 
separating history from current should be eliminated. 

A description of the operational flow of the execution 
of the WCT orders is presented in 9020D and E System 
Principles of Operation. 

Descriptors Section 

At many points during RPSR execution, termination will 
occur if interrupts are pending. After a nonprogram 
interrupt, the instruction is reissued and is restarted at the 
point of interruption. For this reason, RPSB exe-cution 
begins by determining whether entry to the instruction is 
initial entry or whether it is a re-entry after an interrupt. 
The INTRP ID code (GPR 8, 0-7) is tested, and, if bits 
4-7 are equal to 0, this is an initial entry; if other than 0, 
this is a re-entry. 

When re-entering RPSB after an interrupt, execution 
begins at the point of interruption. This is accomplished by 
testing the INTRP ID further. Bits 0-3 are checked first; if 

they are not equal to 9, the instruction was interrupted 
while operating in the descriptor section of the micro
program. In that case, the microprogram tests bits 4-7 to 
determine which routine in the descriptors section to 
re-enter (move history descriptors modify current descrip
tors, move current descriptors, or insert descriptors). 
Re-entry is to the beginning of the appropriate routine, 
provided that all control information in the GPRs and FPRs 
had been preserved throughout the interruption. 

In the case where bits 0-3 of the INTRP ID are equal to 
9, the instruction was interrupted while operating in the 
section that moves symbols to new refresh memory. This 
type of re-entry always starts with the routine that 
initializes for the move from ORM to NRM. This can be 
done because (before allowing the interrupt) the history, 
current, and insert-symbol counts are updated by RPSB 
according to the number of symbols that have been moved. 
For example, if 25 symbols have been moved and the 
beginning history and current counts were 10 and 20, 
respectively, the history count would be set to 0 and the 
current count to 5. The routine can now be entered as 
through it were initial entry and still can begin moving at 
the point of interruption. 

Upon entry, if bits 4-7 of the INTRP ID are 0, this is 
not a re-entry after an interrupt. The descriptor paging (DP) 
bits are interrogated next. Set to 1 's, they indicate that 
re-entry is after termination because of an NDT page 
overflow. This type of termination occurs only at the end 
of a class type; upon re-entry, RPSB determines whether 
there is another class type to process. 

If bits 4-7 of INTRP ID are 0, and the DP bits are 0, 
this is an initial entry; the microprogram, using the address 
in GPR 7, fetches the first order from the work control 
table (WCT). The first order in the WCT may be one of the 
three types of delete descriptor orders. The first type of 
delete order checked for is the Delete N2, which deletes all 
ODT descriptors up to, and including, the first null (all O's) 
descriptor. The second type of delete order, the Delete NI, 
deletes all ODT descriptors up to, but not including, the 
first null descriptor. These two delete orders share part of 

the same routine since the only difference between them is 
the point at which they stop deleting. To accomplish the 
deletes, the descriptors are read from the old descriptor 
table (ODT) and examined one at a time. If the descriptor 
is not a null, its symbol count is added to K, which, at the 
end of the routine, will contain the total number of 
symbols to be deleted. The next ODT Address (GPR 2) is 
updated by two; this effectively deletes the descriptor. 
(When the moving of descriptors begins, the first descriptor 
to be moved is the one addressed by the next ODT 
address.) The microprogram now branches back to examine 
the next ODT descriptor. This process continues until a null 
descriptor is· .encountered. For a Delete N2, the null 
descriptor is deleted by updating the ODT as before. This 
step is bypassed for a Delete NI order. The WCT is updated 

7201-02 FETOM (7/70) 3-209 



by two, to point to the next order; the identity of that 
order determines which routine will be entered next. 

If the order encountered is the third type of delete it 
will only cause deletion of a descriptor whose batch 
number matches the batch number contained in the order 
itself. The WCT orders are read into AB from the WCT; the 
descriptors are in LM, with the one being checked gated to 
N and E. From those registers (AB and N), the batch 
numbers are gated to SAL for comparison. An equal 
compare causes the descriptor to be deleted as before; its 
symbol count is added to K, and the ODT address is 
stepped plus two. As in the previous delete routine, the 
next WCT order determines the routine to be entered next. 

Prior to entering the next routine, however, the micro
program converts the accumulated symbol count from a 
word count to a byte count and adds it to the old refresh 
memory (ORM) address in GPR 4. This deletes the symbols 
from old refresh memory, by stepping the ORM starting 
address ahead to a point past the last deleted symbol. When 
the symbols are moved from ORM to NRM, the first 
symbol moved is fetched from the address in GPR 4. 

If no interrupt is pending, the move history descriptors 
routine will be entered next. A STAT trigger is turned on 
and indicates that the microprogram is moving history 
descriptors. (This routine is also used to move current 
descriptors.) The first descriptor to be moved from the 
ODT is in N and E from the previous routine. If it is not a 
null, the descriptor is gated to ST for storing at the first 
NDT address (obtained from GPR 3). ·Movement to ST is 
accomplished in two steps for each descriptor. The path is 
from N, through the serial adder, and into ST per the STC. 
Two steps are required to move one descriptor because the 
adder is only one byte wide. N(0-7) is gated first; then, 
after STC is stepped plus one, N(8-15) is gated into ST. 
After the descriptor has been gated to ST, the symbol 
count E(8-15) is added to K to accumulate the history 
symbol count. If the descriptor was gated into the last 
halfword position of ST (bits 48-63), the doubleword in 
ST is stored in the NDT at this time. If ST is not full, 
however, the next descriptor from the ODT is gated from 
LM into N and E, and the process of gating the descriptor 
from N to ST is repeated. After each descriptor is gated 
from LM to N and E, LM is checked to see if the descriptor 
was gated from the last halfword position (bits 48-63). If 
it was, LM is empty, and a new doubleword containing four 
descriptors is read from the ODT into LM. This process of 
moving descriptors from LM to ST, refilling LM from the 
ODT when all the descriptors have been gated from it, 
accumulating the history count, and storing ST at· the 
current NDT position when it is full of descriptors 
continues until a null descriptor from the ODT is en
countered. 

With no interrupt pending, the next WCT order is 
checked; if it is not a Modify order, the null descriptor is 
stored following the last history descriptor, and the modify 

3-210 (7 /70) 

current descriptors and move current descriptors routines 
are bypassed. The null indicates the end of history 
descriptors in the NDT, and the accumulated history count 
is stored as a current count in GPR 1. Note that, if there 
was no Modify order; the "history" descriptors that have 
been moved are really current descriptors since single
symbol data is all "current". 

If the next WCT order is a Modify order, the current 
descriptor following the null in the ODT is examined. If its 
batch number is the same as that of the Modify order, the 
descriptor (now history) is stored in the NDT, and its 
symbol count is added to the accumulated history count in 
K. The descriptor gating is the same as it was in the move 
history routine, from N through the serial adder (in two 
steps), into ST, and to the NDT. After the descriptor has 
been stored in the NDT, the next WCT order is checked. 
There can be more than one Modify order in the WCT; as 
long as the current order is a Modify, the last routine is 
repeated. 

When the microprogram finds that the WCT order is not 
a Modify, it branches to a routine which saves the 
accumulated history (and modified current) count in GPR 
0 and generates and stores a null descriptor following the 
last descriptor stored in the NDT. The NDT now contains 
all of the history descriptors and the null separator. RPSB 
then branches to the same routine that moved the history 
descriptors, to begin moving all the current descriptors that 
remain in the ODT after the Modify orders have been 
completed. The routine is executed exactly as before, but 
the STAT trigger being off, this time, is the indication that 
current descriptors are being processed. After all current 
descriptors have been moved (up to the class type null 
descriptor), the STAT trigger off causes a branch to a test 
that checks the next WCT position. 

The next order can be an end of class type (EOCT) order 
(there may be no new input data to insert on some 
executions of RPSB). If it is an EOCT, a null descriptor is 
stored following the last current descriptor in the NDT. 
This acts as an end of class type separator and completes 
the assembly of the NDT for this class type of input data. 
All the descriptors have been moved, and the section of the 
instruction that moves the display words (referred to as 
symbols) from ORM to NRM is entered. 

If the WCT order is not an EOCT, it must be an Insert 
Descriptor order. If it is not, condition code 3 is set to 
indicate an illegal sequence in the WCT, and the execution 
is terminated. 

An Insert order indicates that new input data has been 
processed by CSS, and it must be added to new refresh 
memory (NRM) as additional current data. The Insert 
Descriptor order causes RPSB to construct a descriptor for 
the new data and store it in NDT following the last current 
descriptor. The batch number assigned to the new descrip
tor is taken from bits ~-15 of the insert Descriptor WCT 
order. The other half of the descriptor, the symbol count, 



must be calculated by using two sort bin addresses 
furnished by software. The sort bin start displacement in 
GPR 9 addresses the first new display word in the sort bin. 
The displacement from the bin displacement table associ
ated with the given Insert order in the WCT is the stop 
.displacement of the sort bin data (i.e., the displacement of 
the last display word in the sort bin for the given batch). 
Essentially, the insert routine subtracts the start displace
ment (GPR 9) from the stop displacement to obtain the 
symbol count. The batch number is gated to ST from 
N(8-15) to become the first half of the new descriptor. 
The count is gated into ST to form the second half of the 
new descriptor and is also added to K to begin the 
accumulated insert count. 

After storing the new descriptor in the NDT, following 
the last current descriptor, the next WCT order is read into 
LM. After each insert order, the WCT address is updated by 
adding 36 to it to locate the next order. This must be done 
because of the way the WCT is formatted. A bin displace
ment table follows each insert order (which must always be 
aligned on an odd-word boundary). 

If the next WCT order is an EOCT order, the routine 
mentioned previously is entered to store a null descriptor 
after the last descriptor in the NDT and to prepare to move 
symbols from ORM to NRM. The next order can be 
another Insert Descriptor order, however. In this case, the 
microprogram repeats the insert routine just discussed. The 
next order could also be a Modify. A Modify order here 
would provide for insertion of a history/current null 
separator. This is needed in cases where the initial descrip
tor table is being built and there is no ODT. The previous 
Insert orders in this case were used. to insert history 
descriptors. As soon as an EOCT order is encountered at 
this point in the microprogram, a complete class type has 
been processed. This means that the NDT is completed for 
that class type, and the microprogram branches to the 
routine that begins initialization for the moving of symbols 
from ORM to NRM. 

Symbols Section 

This section begins by moving those symbols still to be 
displayed from ORM to NRM. The ORM address, updated 
in the last section, is the address of the first symbol to be 
moved; the NRM address (GPR 5) is the location at which 
it will be stored. The microprogram u.ses IC to hold the 
source address (ORM) and D to hold the destination 
address (NRM). To keep track of which symbols are being 

·moved, the history, current, and insert counts accumulated 

in the previous section are decremented, in turn, as the 
corresponding symbols are moved. 

The data from ORM is read into LM (per IC), gated 
through the mixer into XY, and stored from there into 
NRM (per D). The type of data being gated through the 
mixer determines the effect the mixer has on the data. Two 
micro-orders, FMTO*E13-15 and FMTN*E13-15, are 
issued at the proper times to gate data thru the mixer. 
FMTO*E13-15 is used when data from ORM is being 
stored into NRM. When the new input data from a sort bin 
is being gated from LM, the FMTN*El 3-15 is issued. 
El3-l 5 is set to the value that will cause the desired result 
when the micro-order is issued. A list of the ten possible 
FMTO and FMTN micro-orders and their purposes is 
presented here. 

FMT0-0: Gates LM to XY with no changes. Used when 
gating current data from ORM to NRM. 

L M 

I Mixer I 

,, ,, 
x y 

FMT0-1: Gates LM to XY and turns off the BR 1 bit 
(bit 5). Used when the doubleword of data in LM contains 
the last history or modified current symbol in the left word 
and the first current symbol in the right word. 

L M 

I Mixer I 

,, ,, ,, 
x y 

0 

7201-02 FETOM (7 /70) 3-211 



FMT0-2: Gates LM to XY and turns off both BR bits 
(bits 5 and 7). Used when gating history data from ORM to 
NRM or when modifying current data. 

L M 

I Mixer I 

• ,, 
,~ 

x y 

0 0 

FMT0-4: Gates M to X and resets the P2 bit (P2 bit off 
indicates that target 2 is not to be displayed). Used for the 
first current symbol if on an odd-word boundary and there 
is no history. 

L M 

J 
T 
I Mixer 

1 ,, 
x y 

0 

FMT0-5, 6: Gates M to X, resets the P2 bit, and resets 
BR 1 bit (bit 5) in X. Used for the first history symb~l if on 
an odd-word boundary (following an odd delete operation). 

L M 

J 

1 Mixer 

i ,, 
x y 

0 0 
5 6 

3-212 (7 /70) 

FMTN-0: Gates sort bin data word from M to Y and 
turns on P2 bit to cause the righthand symbol to be 
displayed. This format order should follow FMTN-2 or 
FMTN-7. It may be used alone initially if the first sort bin 
word is taken from an odd word boundary and has to be 
packed. · 

L M 

Mixer I 

• 
x y 

l 

FMTN-1: Gates both sort bin datawords from LM to 
XY and turns on the P2 bit. It is used when both the sort 
bin address and the NRM address are on even word 
boundaries. 

L M 

I Mixer I 

,, ,, ,, 
x y 

l 

FMTN-2: Gates L to X and resets P2 bit. Used to store 
the last insert symbol when both the sort bin address and 
the NRM address are on even word boundaries. 

L M 

I Mixer 

,, 
x y 

0 



FMTN-5: Forces the .P2 bit (bit 6) to 0 and corrects 
bad parity (erroneously generated when an FMTN-0 order 
follows either an FMTN-7 or an FMTN-2 order). 

FMTN-6: Gates L to Y and turns on P2 bit. Used when 
the sort bin data address is on an even word boundary and 
the NRM address is on an odd word boundary. This format 
order should follow FMTN-7. 

L M 

1 
I 

Mixer I 

,, ,, 
x y 

1 

FMTN-7: Gates M to X and resets the P2 bit. Used 
when sort bin data address is on an odd word boundary and 
NRM address is on an even word boundary. 

L M 

J 
l 
T 
I Mixer 
I 

_f 
x y 

0 

The first routine reads ORM data into LM (per IC) and 
gates the history count from GPR 0 to T and B. If the 
history count is greater than two, El3-15 is set to 2 and 
FMTO*El3-15 gates the doubleword to XY. After the 
doubleword is stored in NRM, the count is decremented, 
and both ORM and NRM addresses are updated. This 
routine .is repeated until the history count decrements to 1 
or 2. When that occurs, it is determined where the last 
history word is: the word in L (count= I), or the word in M 
( count=2). In each case, the first current symbol will be in a 
different location, and the microprogram must make sure 
these symbols directly follow the history symbols in NRM. 

The count and the boundary of the ORM address 
( doubleword or word) indicates which FMTO micro-order 

must be issued to gate the data properly to XY. After this is 
done, STAT D is turned on to indicate that current data is 
now being moved from ORM to NRM. This same routine is 
used to process the current data. The operation is very 
similar to moving history data, with the main difference 
being the values set in E13-15. Different FMTO*E13-15 
micro-orders are used because, in this case, the BR 
(brightness) bits must not be reset. The current count was 
gated into B, and, when it decrements to 1 or 2, a routine 
similar to the one used at the end of history symbols is 
entered to store the last current word in the correct 
position in NRM. The symbols to be inserted from the sort 
bin must be contiguous to the current symbols because 
they are additional current symbols. 

All of the data to be retained has now been moved from 
ORM. The remaining portion of the microprogram moves 
the symbols from the sort bin into NRM. The 
FMTN*E13-15 micro-orders are used to gate the sort bin 
data, read into LM, through the mixer into XY for storage 
in NRM. If the sort bin address and the NRM address are on 
the same boundaries, the transfer of symbols is very easy. 
The new symbols are gated straight through the mixer (L to 
X and M to Y) by the FMTN*E13-15 micro-order. 
However, when the sort bin data is on an odd boundary and 
the NRM address is on an even boundary, the data in LM 
must be aligned to an even-word boundary before it can be 
stored in NRM. This is accomplished by gating the first sort 
bin word from M to X, reading the next doubleword (per 
IC) from the sort bin into LM, and gating the second sort 
bin word from L to Y. The data is now correctly aligned in 
XY and is stored in NRM. The third sort bin word, now in 
M, is gated through the mixer into X (as was the first one), 
and another doubleword is read into LM from the sort bin. 
This process continues until the insert count reaches 0. If 
the last sort bin symbol is in X, a blank symbol is gated into 
Y, and the P2 bit is reset. Thus, NRM will always end on an 
even boundary. 

NRM is now completely built for one class type, and the 
microprogram branches back to check the next WCT order. 
An EOB order encountered here indicates that there are no 
more class types to process, and the instruction is termi
nated. If the WCT order is not an EOB, the instruction 
recycles to process another class type, and the micropro
gram branches to the routine that checks for Delete 
Descriptors orders. 

To honor a pending interrupt during execution of RPSB, 
a branch is taken to a routine which sets codes (INTRP ID) 
to allow the instruction to be re-entered at the point of 
interruption. 

If RPSB was operating in the descriptors section of the 
microprogram when the interruption occurred, INTRP ID 
bits 4-7 are set to a value which, when interrogated upon 
re-entry, cause the re-entry to be at the beginning of the 
routine about to be entered before the interruption 
occurred. 

7201-02 FETOM (7 /70) 3-213 



The following are the settings of bits 4-7 when 
interruption is allowed in the descriptors section. 
1. Set to 1 , at the end of the delete descriptors routines. 

Re-entry will be at the beginning of the move history 
descriptors routine. 

2. Set to 2, at the end of the move history descriptors 
routine. Re-entry will be at the beginning of the modify 
descriptors routine. 

3. Set to 4, at the end of the modify descriptors routine. 
Re-entry will be at the beginning of the move current 
descriptors routine. 

4. Set to 6, at the end of the move current descriptors 
routine. Re-entry will be at the beginning of the insert 
new descriptors routine. 

Note: When an interrupt is allowed at the end of the insert 
new descriptors routine, INTRPT ID bits 0-3 are set to 9. 
Re-entry will be at the beginning of the move symbols 
section of the microprogram. 

When RPSB is operating in the symbols section of the 
microprogram, re-entry is always to the same point, i.e., the 
routine that initializes for the move from ORM to NRM. 
For nonprogram interrupts, the symbol counts and data 
addresses are corrected before the interrupt is allowed. The 
total number of symbols that have been moved from the 
sort bin to NRM is calculated by subtracting the starting 
NRM address (saved in FPR 3) from the current NRM 
address (D). The value of the counts (history in GPR 0, 
current in GPR 1, and insert in FPR 2) is the original 
number of those symbols to be moved to NRM; they are 
used to determine the point of interruption. First, the 
history count (T) is subtracted from the number of symbols 
that have been moved (B), and the result is saved in A and 
D. From this result it is determined if still more history 
symbols are to be moved. The result of the subtraction will 
be the number left to be moved. This number is stored in 
GPR 0 in place of the original history count, and the 
starting ORM address (GPR 4) is updated by the number of 
symbols moved. RPSB can be terminated now because 
re-entry to the ORM-to-NRM initialization routine will now 
begin moving the proper symbols. 

When the number of symbols moved is larger than the 
history count, all history symbols have been moved and 
GPR 0 is set to 0. The current count (GPR 1) is then 
subtracted from the result obtained when the history count 
was subtracted from the number of symbols moved, and 
the result is again gated to A and D. This result indicates 
whether all current symbols have been moved or not. The 
same procedure used for the history count is used here, and 
the current count (GPR 1) is set to 0 or to the count that' 
remains to be moved. If all current symbols have been 
moved, the result of the last subtraction (the number of 
insert symbols that have been moved) is subtracted from 

3-214 (7 /70) 

the total number of symbols moved. The result is added to 
the starting ORM address to update it to the last current 
symbol moved from ORM. Inserted symbols do not come 
from ORM. To update the insert count, the insert count 
moved is subtracted from the original insert count, and the . 
result is stored in FPR 2. The sort bin address (GPR 6) is 
already pointing to the correct location since it is kept 
current as the symbols are inserted into NRM. 

After the counts have been corrected, bits 0-3 of the 
INTRP ID (GPR 8) are set to 9. This indicates, when RPSB 
is reissued, that entry is to be to the routine that begins 
initializing for the move of symbols from ORM to NRM. 

RPSB checks for two specific types of interrupts: 
nonprogram interrupt (I/O or external), and program 
(addressing storage protection, and specification). For any 
nonprogram interrupt, the data counts and addresses are 
corrected, the instruction address (360 IC) is adjusted by -2 
to point back at this RPSB instruction, and Q, R, and E 
refilled before instruction termination. Thus, interrupt 
recovery is automatic for nonprogram interrupts. 

For program interrupts, however, interrupt recovery, if 
possible at all, is not automatic. The instruction address 
(360 IC) is not adjusted to point back at the instruction, 
nor are the data counts and/or addresses always corrected. 
For those program interrupts that are recoverable (certain 
invalid DE addressing and storage protection exceptions), 
the interrupt routine must provide the necessary adjust
ments for recovery. 

Time clock update interrupts are detected at the same 
interrupt points as other interrupts, but they normally do 
not cause instruction termination and instruction 
interruption (swapping of PSWs). A time clock update 
request is handled by an internal RPSB routine which 
updates the clock; then, if there are no pending interrupts 
(including an external interrupt generated when the clock is 
stepped from + to -), RPSB returns control to the proper 
routine via the INTRP ID code. 

CONVERT AND SORT SYMBOLS, CSS (02) 

• Submits an input stream of primary radar or beacon data 
to one PVD's geographic and sterile area filters. 

• Converts the input coordinates that pass all filters from 
system scale to PVD scale. 

• Sorts input coordinates into 16 sort bins, according to 
each coordinate's location on the PVD face. 

• Assembles and stores an output word for each input 
target that passes all filters. 

• Control information is furnished by software and is 
contained in GPRs and FPRs. 



• RR Format 

Read in doubleward 

Save header 
information 
and read in 
input 
ca-ordinates. 

Beacon 

Na 

Retreive 
header in
formation 
saved 
previously. 

Read in word 
5 of input 
data block (Y, 
X co-ordinate) 

Perform 
interrupt 
housekeeping 

Yes 

Na 

End Op 

Yes 

Perform 
interrupt 
housekeeping. 

Yes 

7201-02 FETOM (7 /70) 3-215 



Page of SFN-0201-1 
Revised by TNL: SN31-0020 

• Program Interrupts 
1. Protection (store or fetch protect violation). 
2. Addressing (input or output addresses outside avail

able storage). 
3. Specification (new page address, contained in bytes 

5-7 of doubleword following a 512-byte page, is not 
on a doubleword boundary). 

• Condition Code 
0 Processing complete, no data stored in any sort bin. 
1 Processing complete, data stored in one or more sort 
bins. 

2 Sort bin page overflow. A new page is needed for the 
bin whose number is in GPR 9 bits ( 4-7). 

3 Invalid beacon format; the first word of a data block 
was not a header. 

• Detailed discussion is divided into two sections: (1) 
"Primary Radar/Single Symbol Input" and (2) "Beacon 
Input". 

• Refer to Diagram 5-903, FEMDM. 

The CSS instruction processes either a primary radar/single 
symbol input data stream or an input data stream of beacon 
data blocks. 

Input Format far Primary Radar/Single Symbols. 

l * * * * * * * * * * * ~ ~ ** * * * * * * * * * * * * * * * * 
0 1 11121314 JI 

0 S 
1 

Symbol * * * * * * * * * * * * * * * * * * * * * * * * 
0 1 2 7 8 31 

1°1 YS loJ XS 
0 1 151617 31 

loJ YS lo! XS 
0 I 151617 31 

T3 

Altitude Key 0 S Symbol 
0 I 7 8 910111213141516 23 24 25 26 31 

1°1 Index Bits 1-31 
0 I 31 

lo! Index Bits 33-63 
0 1 31 

lo! Index Bits 65-95 
0 I 31 

lo! YS lo! XS 
0 1 151617 31 

(Header\ 
Word 1 

Word 2 

Word 3 

1 
T 

Word (M+2) 

(Header) 
Word 1 

Word 2 

Word 3 

Word 4 

Word 5 

I I Header 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * Alignment 
o 1 31 Word 

Legend: * Ignored by CSS 

BL Bl ink 
BR Brightness 
S Symbol Size 

~ ~} Type bits 
T3 

SB Selected Beacon 

Note: 
Multiple data blocks 
accepted far input. 

M Number of X, Y position words in primary radar/ 
single-symbol data block !if necessary, a dummy position 
word of all zeros must be included to make the count even) 

3-216 (5/72) 

The instruction is used to prepare display data for use by 
the Repack Symbols instruction and must be issued once 
for each PVD. It selects the input coordinates that pertain 
to the PVD being serviced from the input data stream by 
means of geographic, sterile area, and comer filters. Beacon 
data can be subjected to additional filtering (altitude, type, 
and index). The coordinates that pass all these· filters are 
converted to the scale of the PVD and stored, according to 
their positions on the face of the PVD, in one of 16 storage 
areas designated as sort bins. The control information 
required by CSS to perform these tasks is furnished by 
software (in the form of data stored in the GPRs and 
FPRs). Specific register contents for the two different input 
types are listed befow, followed by a description of the use 
of each. 

1. Primary Radar/Single Symbol Input: 

GPR 

Next Addr Bin No. 0 Next Addr Bin No. 1 0 

Next Addr Bin No. 2 Next Addr Bin No. 3 

Next Addr Bin No. 4 Next Addr Bin No. 5 

Next Addr Bin No. 6 Next Addr Bi.n No. 7 

Next Addr Bin No. 8 Next Acklr Bin No. 9 4 

Next Addr Bin No. 10 Next Acklr Bin No. 11 

Next Addr Bin No. 12 Next Addr Bin No, 13 6 

Next Addr Bin No, 14 Next Addr Bin No, 15 7 

RW Io 0 I OS Io o I Sort Bin Bose Address 

0 1 4 5 8 31 

Io 0 0 ol Bin No. I Next Doubleword Addr in Priine I 
0 3 4 7 8 31 

Io o o o o o o o o o o o o o o ol Word Count I 10 

0 15 16 31 
Convenlon 

ROO 00 0 0 00 00 000 0 0 0 0 000000 Comtant 11 

0 1 (Geographic Area) 23 24 31 

l~I YOG (Origin) 1;1 XOG• (Origin) 
FPR 

0 

lol YlG I ol XlG 

(Sterile Area No. 1) 

lol YOS 1 (Origin) lol XOS 1 •(Origin) 

lol Y1S1 lol XlSl 

(Sterile Area No. 2) 

lol YOS21 (Origin) lol XOS2 ·(Origin) 
4 

lol Y1S2 1°1 X1S2 

(Sterile Area No, 3) 

lol YOS3 (Origin) lol XOS3 (Origin) 
6 

lol Y1S3 1°1 X1S3 

0 1 15 16 17 31 



2. Beacon Input: 

Next Addr Bin No, 0 Next Addr Bin No, l 

Next Addr Bin No, 2 Next Addr Bin No, 3 

Next Addr Bin No, 4 Next Addr Bin No, 5 

Next Addr Bin No, 6 Next Addr Bin No, 7 

Next Addr Bin No, 8 Next Addr Bin No, 9 

Next Addr Bin No, 10 Next Addr Bin No, 11 

Next Addr Bin No, 12 Next Addr Bin No, 13 

Next Addr Bin No, 14 Next Addr Bin No, 15 

0 0 0 0 I OS I 0 0 I Sort Bin Bose Address 

0 4 5 31 

0 0 0 0 Bin No, Next Doubleword Addr in Prime 

0 3 4 7 8 31 

GPR 
0 

6 

7 

9 

~lo_o __ o_o_o_o __ o_o_o_o_o_o __ o_o_o_o_l~-----oo_ta_B_lo_ck_c_ou_n_t ____ _,I 10 

0 15 16 31 
Conversion 

R PVD Index Altitude Mask Tl T2 T3 1 0 0 0 0 Constant 11 

0 1 7 8 15 16 19 24 31 

I 1~ I 
(Geographic Area) 

YOG (Origin) '~' XOG (Origin) I FPR 
0 

I 
0 I YlG I ol XlG I 

(Steri.le Area No, 1) 

Io I VOS 1 ·(Origin) I ol XOSl (Origin) I 
I 0 I YlSl I ol XlSl I 

(Sterile Area No, 2) 

Io I YOS2 (Origin) lol XOS2 (Origin) 

lo I Y1S2 I ol X1S2 

(Sterile Area No, 3) 

lo I YOS3 (Origin) lo I XOS3 (Origin) 
6 

lo I Y1S3 lo I X1S3 

0 1 15 16 17 31 

Next Addr Bin #N-(GPRs 0-7): These are halfword 
operands, each of which is a displacement value (which 
must be greater than hex 27, less than, or· equal to hex 
FEOO, and may not have the values hex 1 F8 or 1 FC in the 
low-order nine bits). When the operand is added to the sort 
bin base address (GPR 8), the sum defines the next word 
address in the n'th sort bin, into which the output data 
word may be stored. After each output data word is stored, 
the halfword operand displacement is incremented by four 
bytes. 

RW-(GPR 8-Primary Radar/Single Symbol Data Only): 
The RW bits 0 and 1 (a right-word indicator) are normally 
set to 0 · by the programmer. Whenever (in processing 
primary radar/single symbol data) a sort bin page overflow 
condition. occurs after processing of the left word (X, Y 
position) of a data doubleword, the RW bits are set. The 
instruction then terminates. Upon reissuance of the given 
instruction, the RW bits cause CSS to refetch the original 

Page of SFN-0201-1 
Revised by TNL: SN31-0020 

data doubleword (containing the left-hand word already 
processed) and to begin by processing the right-hand data 
word. 

DS-(GPR 8): The data stored (DS) bits 4 and 5 are 
reserved for use by CSS and are normally set to 0 by the 
programmer. Prior to any termination due to 1/0 or 
external interrupt or bin page overflow (word count not 0), 
the DS bits are set if any output words were stored in any 
sort bin in CSS execution up to this point. They indicate to 
CSS (upon re-entry from interrupt or bin page overflow 
handling) that output data was stored in a previous CSS 

· execution and . that CC 1 must be set to 1 upon normal 
termination of CSS (word count 0), whether or not such 
termination occurs in the current CSS execution or 
subsequent CSS executions (after a series of interrupts or 
bin page overflow conditions). These bits are reset by 
normal termination (word count 0) or by any program 
interrupt. 

Sort Bih Base Addr--(GPR 8): This address must always 
lie on a NS 12 + 8 page boundary (i.e., the low-order nine 
bits must contain the hex value 8). It is used as the base 
address for referencing the 16 sort bins. 

Bin No.-(GPR 9): When CSS encounters a sort bin page 
overflow (126 output words have been stored in a sort bin 
page); it stores the affected sort bin number in bits 4-7 of 
GPR 9 (Bin No.). CSS then terminates with CC 2. 

Next DW Addr In Prime-(GPR 9): Bits 8-31 maintain 
the address of the next input doubleword to . be accessed 
from storage and are updated on a doubleword basis as each 
doubleword is fetched. 

Input Data Count-(GPR 10): GPR 10 initially must 
contain the input data count for the data to be processed 
by CSS. This count is subsequently maintained in GPR 10 
by CSS during the instruction processing. The significance 
of the input data count depends on the type of data to be 
processed, as shown below: 
1. Primary radar/single symbol: The input data count must 

be even and must reflect the number of words to be 
processed, i.e., the number of data words (Y, X 
coordinates) plus two for each header doubleword. This 
count is decremented by one for each data word 
processed and by two for each header processed. 

2. Beacon: The input data count must reflect the number 
of beacon data blocks to be processed. CSS will 
decrement this count by one upon completion of 
processing for a data block (i.e., each six words). 

R-(GPR 11): Bit 0 in GPR 11 is a control bit affecting 
the brightness bit (BR) in every output word generated by 
CSS. If R is 0, the BR bit in every output word is taken 
from bit 13 (BR bit) of the header last encountered in the 
input data stream; if R is 1, the output BR bit is made 0. 

PVD Index-(GPR 11-Beacon Data Only): The PVD 
Index field is contained in bits 1-7. It addresses the index 
bits in words 2-4 of the beacon data block. 

7201-02 FETOM (5/72) 3-217 



The PVD INDEX value (bit displacement from bit 0, 
word 2) is as follows: 

PVD Index 
Bits Code 

1, 2 00 Word 2 
01 Word 3 
10 Word 4 
11 Invalid 

3,4 00 Byte 0 of selected word 
01 Byte 1 of selected word 
10 Byte 2 of selected word 
11 Byte 3 of selected word 

5-7 000 BitO of selected byte 
001 Bit 1 of selected byte 
010 Bit 2 of selected byte 
011 Bit 3 of selected byte 
100 Bit4 of selected byte 
101 Bit 5 of selected byte 
110 Bit6 of selected byte 
111 Bit 7 of selected byte 

Altitude Mask-(GPR 11-Beacon Data Only): Bits 8-15 
specify altitude filtering ranges. Each bit corresponds to a 
different altitude range. 

Type Filtering Bits-(GPR 11-Beacon Data Only): Bits 
16, 17, 18 of GPR 11 are a type mask (Tl, .T2, T3). 

Conversion Constant-(GPR 11 ): The conversion con
stant (bits 24-31) comprise a scaling control constant (bits 
24-'-25) and a conversion multiplier (bits 26-31). The 
conversion constant is used to convert coordinates, relative 
to the PVD origin, from system scale to PVD scale. (The 
translation of system coordinates from system origin to 
PVD origin is performed during geographic filtering.) 

Conversion constants may be derived from the following 
formulae: 

M=4096 

8'x4N 
(a) 

(b) 

where 8' is the nominal scale (PVD diameter in nautical 
miles). 

8 is the actual exact scale truncated to the 
nearest sixteenth of a mile. 

M is the conversion multiplier and must be an 
integer in the range 1~ M S42. 

N is the scaling control constant and must be an 
integer in the range O~ N :S 2. 

3-218 (7/70) 

Given any nominal scale 8', formula (a) may first be 
used to solve for any acceptable combination of M and N 
with M rounded to the nearest integer. For example in 
solving for 8'=28, N=O would indicate M=146, which is 
invalid; for 8'=28, N=l would indicate M=37, which is 
acceptable; for 8'=28, N=2 would indicate M=9, which is 
also acceptable but a poorer approximation. 

The actual exact scale 8 should then be determined, 
using the M and N values from formula (b). (Here, 8 must 
be truncated to the nearest sixteenth of a nautical mile, less 
than the actual quotient.) Continuing our example, in 
solving for M=9, N=2 (or M=36, N=l) would indicate 
S=28.44 (28 7/16<28.444); for M=37, N=l would indicate 
8=27.63 (27 10/16<27.6~). Note that in solving for M=l6, 
N=O wouid indicate 8=255.94 (255 15/16 <256.00). 

The following table lists the standard set of conversion 
constants used in the 9020E system. These are truncated to 
the nearest sixteenth of a mile. 

SCALE CONVERSION CONSTANT 
Nominal Exact Binary . Hex 

12 . 12.19 10010101 95 
18 18.25 10001110 BE 
28 27.63 01100101 65 
43 42.63 01011000 58 
64 63.94 01010000 50 

102 102.38 00101000 28 
128 127.94 00100000 20 
158 157.50 00011010 1A 
205 204.75 .00010100 14 
256 255.94 00010000 10 
315 315.06 00001101 OD 
410 409.56 00001010 OA 
512 511.94 00001000 08 
819 819.19 00000101 05 

GPRs 12-15: These registers may be used by the 
programmer. 

FPRs 0, 2, 4, 6: The doubleword floating-point registers 
define the PVD geographic area and the three sterile areas 
(areas in which radar and single symbol data cannot be 
displayed) ih terms of 15-bit system coordinates given 
relative to the system origin. Each area is a rectangular area 
(square for PVD) defined by two sets of X,Y coordinates; 
one represents the lower-left corner, the other the upper
right corner. 

Each coordinate is specified to the nearest sixteenth of a 
nautical mile over the range 0-2047 .9375; i.e., the binary 
decimal point is always assumed to be between bits 11 and 
12 or bits· 27 and 28 (for the Y and X coordinates, 
respectively). 

When the input to the instruction is beacon data, 
additional checks are made to see whether the input 
coordinates are for the PVD being processed. these checks 
are performed on bits 8-23 of the first input word 
(header); 



PVDs often must display only the targets that are within 
a given altitude range. The altitude key in the header word 
(bits I6-23) gives the target's altitude; this is compared 
with the PVD's altitude mask (in GPR I I). An altitude 
match causes CSS to enter the geographic filter, directly 
bypassing both type and index filtering; if all remaining 
filters are passed (geographic, sterile area, and corner), this 
data is to be displayed. If there is no altitude match, the 
type filter is entered. 

Type-filtering is a comparison between type bits 8-I 0 
(Tl, T2, T3) of the header word and the mask provided in 
GPR I I, bits 16-18. A match on any bit position causes 
CSS to enter the geographic, sterile area, and corner filters, 
bypassing index filtering. A no-match condition causes CSS 
to enter the index filter and to check the selected beacon 
bit (SB) in the header word. The selected beacon bit being 
on indicates that this input data block contains beacon data 
for selected PVDs. Every beacon data block contains three 
index words, which are used to indicate the selected PVDs. 
Each index bit in input words 2, 3, and 4 is assigned to one 
particular PVD. A particular PVD is addressed by means of 
the PVD index located in GPR 1 I. If the addressed index 
bit is on, the selected beacon data is valid for a test by the 
remaining filters. 

CSS execution begins by reading the first input double
word from the input stream. The address of the first input 
doubleword is read from GPR 9 per the R2 field. (Since the 
input address is located in GPR 9, the R2 field in the 
instruction format must always contain the value 9.) After 
the input doubleword is gated into AB, the RI field is 
checked. The value of the RI field indicates the type of 
input contained in the input stream: 0 denotes primary 
radar/single symbol input, 2 denotes beacon input. 

Primary Radar/Single Symbol Input 

As soon as it is determined that radar/single symbol input is 
being processed, the header information at the sort bin base 
address plus 8 is fetched. This is done in case this is a 
re-entry to execution after an interrupt has been honored 
and the first doubleword read from the input stream is not 
a header doubleword. (When an interrupt occurs before 
CSS execution is complete, the instruction saves the current 
header information in a CSS work area (sort bin base 
address plus 8) before the interrupt is allowed.) On initial 
entry (which includes interrupt or bin paging re-entry), the 
constant 9 is set in to F( 4-7) to indicate to the micro
program, in the next routine, that entry to that routine is a 
result of the instruction being issued (rather than an 
internal recycling back into it after the processing of an 
input doubleword). 

If the right word indicator (RW) is off after gating in a 
new input doubleword, the left word must be processed. 
Bit 0 of A is gated to SAL in preparation for a four-way 

branch to determine whether the input is a header or a data 
word. On initial entry (when F4-7 = 9), the header 
information fetched from storage is gated from SDBO to 
the LSWR (via T), where it is kept until it is needed for 
assembly of an output word. If the doubleword from the 
input stream in AB is a header, the new header replaces the 
old one in LSWR. The conditions that determine the 
routine to be entered next are the type of entry (initial or 
recycling) and whether the input word is a header or a data 
word. If the input is a header, the symbol, S, BL, and BR 
bits are assembled into one word and stored in LSWR to 
replace the old header information. After updating the 
input count, if there are no pending interrupts, the next 
doubleword is read from the input stream. The micropro
gram then branches back to the routine which examines the 
next input doubleword. 

If the right word (RW) indicator is on after a new input 
doubleword is gated in, the right word must be processed. 
The header information fetched from memory is gated 
from SDBO to the LSWR. It is known that this is a re-entry 
since the RW indicator normally should never be on upon 
initial entry to the instruction. RW on also indicates that 
the input is data. 

When the input is a dataword, whether upon initial entry 
or re-entry, the brightness control bit (R) (in GPR 11) is 
checked. This bit indicates to the microprogram, if it is a I,. 
that the BR bits in all output words assembled for this PVD 
must be O's. STAT His now set if the brightness control bit 
is off, and it becomes a branching condition to the 
microprogram during assembly of the output word. The 
geographic and sterile area filters routine is entered next, 
with the coordinates to be checked in the A register. 

This routine consists of four filters: the geographic filter, 
the sterile area I filter, the sterile area 2 filter, and the 
sterile area 3 filter. Failure to pass any of the four filters 
causes the data word being processed to be rejected. If the 
left word is rejected, the right input word is gated into A, 
the input count is updated, and the microprogram branches 
to the beginning of the filter routine. However, when a 
right word is being processed and is rejected, a new input 
doubleword is read from the input stream. If no interrupts 
are pending and the data count has not been decremented 
to 0, the microprogram reads in the new input doubleword 
and branches back to the routine which determines whether 
or not the new data is header information. 

If the input coordinates pass all four filters, the 
microprogram branches directly to the routine which 
converts the coordinates from system scale to PVD scale. 

For a discussion of the geographic and three sterile area 
filters and of the conversion routine, refer to "Introduction 
to Display Instructions". 

The corner filter routine is entered after conversion of 
the coordinates is completed. The 16 sort bins form a 
square area which represents the display face of a PVD. The 
actual PVD display face is round, however, so portions of 

7201-02 FETOM (7/70) 3-219 



the four corner sort bins are not actually displayable. The 
corner filter rejects input words whose coordinates desig
nate a point in one of these areas. 

1001 1010 1011 

511--...i---9-l-__ 1_0+-__ 11~ __ 1'-!2 
0101 0110 0111 

255 -- .....i. ___ 5._ ___ 6f--__ 7-+------,,t 

o-

0 

0001 0010 

I I 
2551 

256 

511 767 1023 

The Y- and X-coordinates are each ten bits long. The 
two high-order bits of each coordinate are combined to 
form the address of the sort bin in which the point is 
located. 

Y Co-ordinate X Co-ordinate 

yyyyyyyyyy xxxxxxxxxx 

~--T 
YYXX 

Sort Bin 
Address 

These two bits of the X-coordinate are checked first. If 
they are 00 or 11, it is possible that the point they 
designate will be in a corner bin. If the high-orde.r X-bits are 
11, the point can only be in corner bins 4 or 16. For these 
two corners, the eight low-order X-bits are complemented 
(1 's complement) so that the routine used to check the 
other two corners can also be used to check these two. If 
the high-order X-bits are not equal to 00 or 11, the data 
word is accepted for display since the designated point 
cannot be in a corner. 

The two high-order Y-bits must be checked if it is 
determined that the target could be in a corner bin. The 
two high-order Y-bits· are checked in the same manner as 
the X-bits. If they are 00 or 11, the designated point is 
definitely in a corner sort bin. The eight low-order bits of 
the X-(complement ofX if target is in sort bin 4 or 16)and 
Y-coordinates must now be added to find the location 
within the sort bin. A carry out of the high-order bit of 
SAL indicates that the sum of the coordinates is 256 or 

3-220 (7 /70) 

greater. The target is displayable if the carry does not leave 
all of the SAL bits 0 (e.g., when sum= 256) and the routine 
that assembles and stores the output word can be entered 
next. However, if the sum of this addition is less than or 
equal to 256, the target is located in a corner, and the data 
word is rejected. If there are no pending interrupts, 
rejection causes the microprogram to branch back to a prior 
routine and either start to process the right word or read 
another doubleword from the input stream. 

If the target is not in a corner the output word is 
assembled in T: 

l+I Symbol 
y x 

0 1 2 7 8 9 12 21 22 31 

ST AT H off causes the BR bit to be reset to 0 as the BL 
and BR bits are gated to F in preparation for gating to T. 
The bin address (two high-order Y-bits and two high-order 
X-bits) was saved in F during the corner filter routine; it is 
now gated to E(l 2-15), and it addresses the correct GPR 
to obtain the sort bin displacement. The sort bin base 
address is read from GPR 8 after the output word is 
completely assembled in T. The sort bin base is added to 
the sort bin displacement, and the result is gated to D to 
provide the address at which to store the output word (in 
the next available location in the sort bin). The displace
ment is updated +4 and stored back in the proper GPR (per 
E12-15). 

Four is added to the address in D after storing the 
output word, and a check is made for a 512 carry on the 
addition. A 512 carry indicates a bin page overflow and 
causes the microprogram to enter the bin page overflow! 
routine (discussed later in this section). 

Processing of the input word is now completed. If there 
i~ no bin page overflow or pending interrupt, the micropro
gram fetches the next doubleword from the input data 
stream. 

Beacon Input 

The first word of each beacon data block must be header 
information. This word is saved in the LSWR for use in 
building the output word. Bit 0 of this word (A register) is 
checked; if it is not a 1, condition code 3 is set, and 

. execution is terminated. 
The altitude is checked next by comparing the altitude 

key (A16-23) with the PVD's altitude mask (GPR 11, 
8-15). An altitude match (indicated by SAL = 0) causes 
the input coordinates to be submitted to the geographic, 
sterile area, and corner filters. This is accomplished by 
reading input data block word 5 (Y and X coordinates) into 
A and branching to the geographic filter routine. This 
routine is discussed under "Introduction to Display Instruc
tions". 



If there is no altitude match, type bits Tl, T2, and T3 in 
bits 8-10 of the heade~ are ANDed with the type mask in 
bits 16-18 of GPR 11 to determine if there is any type 
match (i.e., a type bit is left on after the AND operation). 
If all bits (including the SB bit) are 0, the data block is 
rejected. If the data block count does not equal 0 and no 
interrupt is pending, a new header doubleword is read into 
AB, and the microprogram branches to the beginning 
routine 'to process it. 

If there is a type match (regardless of the SB bit), the 
input coordinates are gated into AB, and the microprogram 
branches to the geographic filter. If there is no type match 
but the SB bit is 1, the microprogram enters the routine to 
check the index bit in the input data block (as selected by 
the PVD index in GPRl 1 ). If its index bit is a 1, the PVD 
has been selected to receive the data. To accomplish this 
check, the next two words (3 and 4) of the input data 
block are read into S,T (word 2 is already in B). Bits 1 and 
2 of the PVD index (in GPR 11 1-7) select the word in 
which the index bit is located and cause that word to be 
gated to A (1st or 3rd index word) or to B (2nd index 
word). 

PVD Index 

2 3 4 5 6 7 

Byte 

Word 

Bits 2, 3, and 4 of the PVD index are set into the ABC 
counter and gate the byte containing the index bit from A 
or B to the serial adder bus. The micro-order DECAB 
decodes bits 5, 6, and 7 of the PVD index (in FS-7) to gate 
one bit (0-7) from the serial adder bus into the adder. 
Zeros are gated into the adder for the other six bit 
positions. SAL is then checked, and, if all-O's, the selected 
beacon data is not addre~sed to this PVD. The input data 
block is rejected, and a new header doubleword is read in to 
begin processing the next input data block. A non-0 SAL 
indicates that the index bit is on and that the PVD is 
selected to receive the input data. The coordinates must 
still pass all of the filters, however, and the microprogram 
now reads the input coordinates into A and branches to the 
geographic filter. 

Termination of execution is initiated for one of three 
reasons: 
1. The input count has decremented to 0, indicating the 

end of the input stream. 

2. There is an interrupt pending which must be honored. 
3. A bin page overflow has occurred, indicating that 

software must furnish a new page for the sort bin that 
overflowed. 

When the input stream is completely processed (input 
count equals 0), a routine is entered to end op. In this 
routine, the DS (data stored) bits are checked; if they are 
on, STAT B is turned on, causing condition code 1 to be 
set. The DS and RW bits are reset in GPR 8 when the sort 
bin base address (T) is stored back in GPR 8 (8-31 ). The 
input stream address was previously updated twice and now 
must be adjusted -8 (to point at the next doubleword not 
yet processed) and stored back in GPR 9 (8-31 ). The 
contents of GPR 12 and 13, stored in sort bin base address 
+8 at the beginning of execution, are fetched, and the GPRs 
are restored. The execution of CSS is terminated by a 
normal end op after the current header information 
(LSWR) and any data in K (used by the diagnostic 
programs) are stored in the CSS work area (sort bin base 
+8). 

A check for pending interrupts is made after processing 
is complete on each input doubleword, whether the 
coordinates are rejected or accepted. When termination is 
due to a pending interrupt, the data count and the type of 
interrupt pending affect the action taken. A data count of 0 
or a program interrupt cause the microprogram to branch 
to the normal end op routine. If a nonprogram interrupt 
(1/0 or external) exists, the input stream address is adjusted 
minus 8, and IC is adjusted minus 2 fo point back to the 
CSS instruction before branching to the normal end op 
routine. 

The bin page overflow routine issues a request for the 
next doubleword from the input stream (to allow paging), 
stores the bin number of the bin that overflowed in GPR 9 
( 4-7), and sets condition code 2 before branching to the 
normal end op routine. 

CONVERT WEATHER LINES, CVWL (03) 

• Submits an input stream of weather line coordinates to a 
particular PVD's geographic and sterile area filters. 

• Assembles and formats an output doubleword for each 
input weather line that passes all the filters and stores it 
in the PVD's refresh memory. 

• Control information contained in GPRs and FPRs. 

• Converts input coordinates (system scale) to PVD scale. 

• Number of doublewords in input stream is specified in 
GPRlO. 

7201-02 FETOM (7/70) 3-221 



Page of SFN-0201-1 
Revised by TNL: SN31-0020 

• RR Format 

03 

Save header 
information. 

Rl 

7 8 

Yes 

R2 

II 12 15 

Read in input 
doubleword 

Perform 
geographic 
filter. 

Perform 
sterile area 
filters. 

Convert 
co-ordinates 
from system 
to PVD scale. 

Assemble 
output 
doubleword 
in XY 

Store output 
doubleword 
in refresh 
memory. 

End Op 

• Program Interruptions 

No 
(Reject 
Line) 

1. Protection (store or fetch protect violation) 
2. Addressing (input or output addresses outside of 

available storage) 

3-222 (5/72) 

3. Specification (new page address, contained in bytes 
5-7 of doubleword following a 512-byte page) is not 
on a doubleword boundary. 

• Condition code: unchanged 

• Refer to Diagram 5-905, FEMDM. 

The CVWL instruction processes an input stream of 
weather line coordinates destined for many different PVDs. 
The instruction must be issued once for each PVD. It 
selects (from the input stream) all the weather lines valid 
for that PVD and stores them in refresh memory as 
doublewords containing all information required to display 
the weather lines. 

All control information for CVWL is located in GPRs 
and FPRs. These GPRs must be set up properly (by 
software) before each CVWL instruction is issued. Control 
information needed for execution of the CVWL instruction 
consists of: the geographical boundaries of the PVD, the 
nine-tenths border-region coordinates of the PVD, the 
geographical boundaries of each of three sterile areas 
located within a PVD's geographical boundary, the address 
from which to read the next input doubleword, the address 
that indicates where to store the next output doubleword, 
the input count indicating the number of words in the 
input stream, and the PVD's conversion constant. Specific 
register contents are shown below, followed by a descrip
tion of the use of each. 

GPR 

~lo~o_o_o_o~o_o_o_._l~~~~~N_e_x_tA_d_dr-in_R_e_fre_sh~~~~~~I 5 

0 7 8 31 
(0, 90 Border Region) 

l~o~l~~~¥-OB_(~O-rig~in_)~~~---'l_o~l~~~x_oB~(Or_i~gi_n)~~~-'I 6 

l~o~l ______ v_ia ________ ~l~o~I _______ x1_a ______ _.I 7 

0 I 15 16 17 

00000000 Next Doubleword Addr in Prime 

0 7 8 31 

loo ooo ooo oo o 0000 o I Doubleword Count 10 

0 15 16 31 

I I 
Conversion I 

~o~o_o_o~o_o_o~o_o_o_o_o~o_o_o~o_o_o~o_o_o~o_o_o_._~_c_on_st_on_t~_, 11 

0 23 24 31 
(Geographic Area) 

YOG (Origin) l~I l~I XOG (Origin) I FPR 
'-'-''--~~~~~~~~---'-.&..~~~~~;;;......~~~~ 0 

Io I YlG I ol XIG 

(Sterile Area No. I) 

Io I YOSl (Origin) I ol XOSl (Origin) 

I ol YlSI I ol XISl 

(Sterile Area No. 2) 

Io I YOS2 (Origin) I ol XOS2 (Origin) 
4 

I 0 I YIS2 lo I XIS2 

(Sterile Area No, 3) 

Io I YOS3 (Origin) lo I XOS3 (Origin) 
6 

Io I YIS3 lo I XlS3 

0 15 16 17 31 



GPRs 0-2, 4: These general registers are reserved for use 
as working registers for CVWL. 

Last Prime Storage Addr-(GPR 3): GPR 3 is used by 
CVWL to retain the last prime storage data address 
processed (per GPR 9) if there is a program interrupt. This 
address is required by the program to restart CVWL after 
certain program interrupt conditions. The format of this 
information is as follows: 

lo o o o, o o o ol Last Prime Storage Address 

0 7 B 31 

Next Addr in Refresh-(GPR 5): Bits 8-31 define the 
next storage location in refresh memory for storing the 
doubleword weather line result. 

0.9 Diameter Border Coordinates-(GPRs 6, 7): XOB, 
YOB and XlB, YlB define the origin (lower-left corner) 

I 
and the upper-right corner of a usually square area 
nominally. 0.9 times as large as, and centered within, the 
PVD area defined by positive coordinates in FPR 0. 

GPR 8: This general register is used by CVWL to store 
heade,r information in the event of an interrupt. The format · 
of the header information in this register is shown below: 

* · * ~ ~ BL ~ * * O s Symbol 0000000000000000 

7 B 910 15 16 31 

The contents of this register must be maintained during an 
interrupt. 

Next DW Addr in Prime-(GPR 9): Bits 8-31 maintain 
the address of the next input doubleword to be accessed 
from storage and are updated on a doubleword basis as.each 
doubleword is fetched. 

DBL-Word Count-(GPR 10): GPR 10 (bits 16-31) 
must initially contain the input doubleword count for the 
data· to be processed by CVWL. This count includes both 
headers and data. CVWL decrements this count by one for 
each doubleword processed (either header or data). 

Conversion Constant-(GPR 11): The conversion con
stant (bits 24-31) comprise a scaling control constant (bits 
24-25) and a conversion multiplier (bits 26-31 ). The 
conversion constant is used to convert coordinates, relative 
to the PVD origin, from system scale to PVD scale. (The 
translation of system coordinates from system origin to 
PVD origin is performed during geographic filtering.) 

Page of SFN-0201-1 
Revised by TNL: SN31-0020 

Conversion constants may be derived from the following 
formufae: 

(a) 

(b) 

where S' is the nominal scale (PVD diameter in nautical 
miles). 

S is the actual exact scale truncated to the 
nearest sixteenth of a mile. 

M is the conversion multiplier and must be an 
integer in the range 1~ MS42. 

N is the scaling control constant and must be an 
integer in the range 0 ~ N ~ 2. 

Given any nominal scale S', formula (a) may first be 
used to solve for any acceptable combination of M and N 
with M rounded to the nearest integer. For example, in 
solving for S'=28, N=O would indicate M=146, which is 
invalid; for S'=28, N=l would indicate M=37, which is 
acceptable; for S'=28, N=2 would indicate M=9, which is 
also acceptable but a poorer approximation. 

The actual exact scale S should then be determined using 
the M and N values from formula (b ). (Here, S must be 
truncated to the nearest sixteenth of a nautical mile, less 
than the actual quotient.) Continuing our example, in 
solving for M=9, N=2 (or M=36, N=l) would indicate 
S=28.44 (28 7/16<28.444); for M=37, N=l would indicate 
S=27.63 (27 10/16<27.67). Note that in solving for M=16, 
N=O would indicate S=255.94(255 15/16<256.00). 

GPRs 12-15: These registers may be used by the 
programmer. 

FPRs 0, 2, 4, 6: The floating point registers define the 
PVD geographic area and the three sterile areas in terms of 
15-bit system coordinates given relative to the system 
origin. 

The input data stream, shown below, consists of a 
header doubleword (symbol and display information), some 
number of data doublewords (X- and Y-coordinates defin
ing both ends of a weather line), another header double
word, more data doublewords, etc. The information in the 

7201-02 FETOM (5/72) 3-223 



header pertains to all of the weather lines (data double
words) that follow it; the number of doublewords is 
variable, depending on the weather input to the system. 

I 1 J· • · • · • · · · l~l~l~l~I · 
0 1 91011 12 13 14 

' · · · ' ' ., ' ' *I Word 1 !Header) 

31 

I olsl Symbol I ' . . .. * .• ' . . . . . .. k k • * ' *I Word 2 

0 1 2 7 8 

lo I YS 

0 1 

Jo I YS 

0 1 

Legend: 

DA Dash 
DL Dash length 
BL Blink 
BR Brightness 
5 Symbol Size 
N Number of weather lines 

Ignored by CVWL 

31 

:oJ XS I Word 3 

) 6 17 31 

loJ XS I Word (2N +2} 

15 16 17 31 

The symbol and display information {from the header) 
appears in each output doubleword, along with two sets of 
coordinates converted to the PVD's scale. One of these sets 
of coordinates {Yl, Xl) defines one end of the line and is 
referred to as the major position. The other set of 
coordinates· (l:N2, ~X2) defines a secondary point relative 
to the major position, rather than another unique point on 
the face of the PVD. If one end of the weather line is 
within the PVD's boundaries and the other end is outside, 
truncation is required, and the end that gets truncated 
becomes the second point. 

After a weather litie passes the filters (is within the PVD 
geographical area and outside the sterile areas) it must be 
formatted for the output doubleword. Since the system 
coordinates represent nautical miles, they must be con
verted to display units (relative to the PVD origin) 
according to the PVD scale selected. If the selected scale is 
-128 nautical miles per display diameter, each display unit is 
128/1024=1/8th nautical mile. The conversion is accom
plished by multiplying the coordinates by the proper 
conversion constant. 

Next, ·the delta values (~ Y2, ~2) are calculated. 
Subtraction of the major position from the secondary 
position provides these values and a sign for each. The sign 
indicates the direction from the major position to the 
secondary position. 

Three format words, named for their relationship to the 
three format micro-orders {FMTW-0, FMTW-1, FMTW-2), 
are assembled from the processed information and put into 
M to be gated, through the mixer, into XY in output 
doubleword format. After this doubleword is stored in the 
PVD's refresh memory, and if there · are no pending 
interrupts, the next input doubleword is read· from the 
input stream. 

3-224 (7 /70) 

Interrupts can be honored only after each input double
word has been completely processed. Since the control 
information is updated as it is used, processing after 
re-entry to the CVWL instruction begins at the point where 
it was interrupted. 

Because CVWL execution begins by reading local storage 
per the R2 field, to get the beginning address of the input 
stream from GPR 9, the R2 field must always contain 9. 
The input stream address is gated to D, and a memory 
request is made (per D). The address of the next instruction 
(IC) is saved by gating it into the LSWR. This allows IC to 
be used for holding and decrementing the word count. 

The first doubleword read from the input stream into 
AB should contain header information. A header double
word is identified by the value of bit 0 {1 indicates a 
header, 0 indica.tes a data doubleword). 

0 I 9 10 11 12 13 14 31 32 33 34 39 40 63 

When the input doubleword is read from memory, bit 0 
is tested. The outcome of this test determines which 
routine is to be entered. 

If the input doubleword is a header, its information 
must be saved for later use in building the output 
doublewords. To accomplish this, the control bits (in A 
8-15) and the symbol (in B 32-39) are combined into one. 
word and stored in GPR 8. Then, the next input double
word is read from the input stream into AB, and its bit 0 is 
subjected to the same test. This doubleword should contain 
data; if so, bit zero being 0 will cause the previous routine 
to be bypassed and the routine that processes the data to be 
entered. If the input stream should contain another header, 
the old header information in GPR 8 is replaced by the new 
header information. 

The data count {furnished by software and in GPR 10 
bits 16-31) is gated into IC and is decremented for each 
doubleword processed. When the count decrements to 0, all 
of the· input stream has been processed, and CVWL 
terminates its execution. If the count does not equal 0 after 
it is decremented, it is stored back in GPR 10. 

The data doubleword contains· two sets of system 
coordinates, which define both end points of a weather 
line. 

vs la! XS I 
0 1 15 16 17 31 32 33 47 48 49 63 

One set of coordinates is processed at a time, and the 
first set to be processed (word 1) is in A. The second set 
(word 2 in B) is gated to K. STAT D is turned on to 
indicate to the microprogram that word 2 has been placed 
in K and still needs to be processed. 



The first check performed on word. I is the geographic 
filter. First, it is determined whether the end of the weather 
line defined by word I is within the geographic area of this 
PVD. Two sets of coordinates, which describe the geograph
ic area of the PVD, are supplied by software and are in FPR 
0. For the discussion of the geographic filter, refer to the 
introduction to the 9020 display instructions under the 
heading "Introduction to CSS and CVWL". 

If word I fails the filter, it is saved irt GPR 0 and CVWL 
proceeds to test word 2. (If the other end of the weather 
line passes all of the filters (geographic and sterile areas), 
word I coordinates will be truncated.) Word 2 is gated from 
K to A, STAT D is reset, and the geographic filter is 
re-entered to begin processing word 2. 

If the limit latch is still off after the geographic filter, 
the input point is within the PVD's geographical area. A 
check is now made to see if the point is in any of the three 
sterile areas. Each of the sterile areas is also defined by two 
sets of coordinates. These were furnished by software and 
are obtained by CVWL from FPRs (sterile area I from FPR 
2, sterile area 2 from FPR 4, and sterile area 3 from FPR 
6). Failure of any of the sterile area filters always causes the 
line to be rejected (i.e., the microprogram branches back to 
the beginning, a new input doubleword is read in, and 
CVWL begins processing it). See "Introduction to CSS and 
CVWL" for a discussion of the geographic and sterile area 
filters. 

If the first word processed passes the geographic filter 
and the sterile area filters, it is saved in GPR 0. The result 
obtained from the first subtraction in the geographic filter 
(input coordinates minus origin coordinates) is also saved 
(in GPR I). This value is known as the major position and, 
after being converted to the PVD's scale, appears in the 
output doubleword. If the second set of coordinates passes 
all of the filters, the result of the subtraction for word 2 is 
also saved. This result is known as the secondary position 
and is used to compute the delta values (which are the 
required input to a PVD and appear in the output 
doubleword). 

After both words of an input doubleword have been 
through the filters and the line has not been rejected (at 
least one word has passed all filters), two possible condi
tions exist. These conditions determine which routine must 
be entered next. 

If both sets of coordinates for the weather line pass all 
of the filters, truncation is not required. Both ends of the 
weather line are already within the PVD's geographical area. 
The truncation routine is bypassed, and the routine that 
converts the coordinates to the scale of the PVD is entered 
directly. 

The truncation routine is entered if one set of the input 
coordinates failed the geographic filter and the other set 
passed all filters (and was designated as the major position). 
One end of this input weather line is in the PVD's 

geographical area, but the other is not. The line is shortened 
so that the secondary position lies within the 0.9D border 
region of the PVD's area. This can be seen in the illustration 
below. 

The truncation routine is entered, with the major 
position in T and the secondary position in A. T and A are 
added together, and the result is divided by two and gated 
to B. The truncated point obtained (B) is now subjected to 
the geographic filter again, using the limit latch on (as 
before) as an indication of failure. Failure causes B (the 
truncated point) to be gated to A and the major position 
(in GPR 0) to be gated back into T. The microprogram then 
branches back to the beginning of the routine; another 
truncation is performed, and its result is checked for 
geographic filter failure. 

When the truncated point passes the geographic filter, 
the 0.9D border region coordinates (origin in FPR 6 and 
limit in FPR 7) are gated into T, one at a time, and the 
border filter is performed. These coordinates define the 
inner boundary of the 0.9D border region; if the point fails 
this filter (limit latch on), it is in the desired area, i.e., 
inside the PVD geographic area but outside the inner 
boundary of the 0.9D border region. 

Major 
Position 

Input Weather Line 

t Limit 4--t-"-----., 
I I 
I I 
I 
I I 

I ._ _____ -t~ 
Origin ~ 

After Truncation 

1 
Limit 

Origin ~ 

--.,..:;<
.-

• 9 Border Region (Outer 
One-Tenth of Geographic Area) 

Secondary 
Position 
(Outsic!e 
PVD Area) 

7201-02 FETOM (7/70) 3-225 



When that occurs, truncation is complete, and the 
conversion routine is entered. Should the point pass the 
0.9D border filter (limit latch off), this indicates that the 
last truncation shortened the line too much. Since the 
secondary position must fall within the 0.9D border region, 
the truncated point must now be moved outward. The 
truncated point (B) is gated to T in place of the major 
position; since the secondary position, which was the last 
point to fail the geographic filter, is still in A, the same 
truncation routine can be entered again, and outward 
truncation takes place. A maximum of nine truncations are 
performed, with F being used as a counter (set to OA, 
decremented, and checked after each truncation). If F 
reaches 0 before the end of the weather line has been 
moved into the 0.9D border region, the line is rejected, and 
the microprogram branches back to the beginning to read in 
a new input doubleword. 

After truncation is complete and the truncated point lies 
in the 0.9D border area of the PVD, the secondary position 
must be calculated. This is done as it would have been if 
truncation had not been required and if entry to this 
routine had been directly from the filter routines. The 
PVD's geographic origin coordinates are gated into T (from 
FPR 0) and subtracted from the truncated point (moved to 
A). The result (secondary position) is stored in GPR 1, and 
the routine to convert the coordinates to the PVD's scale is 
entered. 

ST AT D is turned on before entry into the conversion 
routine, causing control to be given back to CVWL after 
each conversion (CSS also uses this routine). The routine 
converts one set of coordinates at a time; therefore, it must 
be entered twice to process a complete doubleword, with 
the major position being converted first. 

The coordinates to be converted are in B, and the 
conversion constant is in S, no matter where entry is from. 
Bis multiplied by S, using the 'SEL-MPL * E3' micro-order; 
the result is a 10-bit Y-coordinate and a 10-bit X-coordin
ate. STAT D on returns control to CVWL, where the 
converted major position coordinates are stored in GPR 2 
(X-coordinate) and GPR 3 (Y-coordinate). Before branch
ing back to the conversion routine, CVWL gates the 
secondary position coordinates from GPR 1 into Band the 
conversion constant (GPR 11) back into S. STAT H is 
turned on to indicate to CVWL, when it regains control, 
that both the major and the secondary position coordinates 
have been converted. 

Re-entry to CVWL after the second conversion is 
directly into the routine that calculates the delta position. 
The delta position is the difference between the major 
position and the secondary position (the length of the line). 
Since only one position and a length are provided to the 
PVD, a direction must also be given. This is obtained during 
the calculation of the delta value, which subtracts T (major 
position) from B (secondary position). The result of the 

3-226 (7 /70) 

subtraction is the delta value. F (bit one for delta X, bit 0 
for delta Y) is set to the sign of the result (1 if the result is 
negative). These bits will become the 6XS and 6 YS bits in 
the output doubleword. (The 6XS, 6YS bits being l's 
indicates that the PVD must subtract the delta coordinates 
from the major position coordinates. The PVD adds the 
delta coordinates to the major position coordinates if the 
6XS, 6 YS bits are 0.) 

The delta X-coordinate and 6XS bit are computed first; 
delta Y-coordinate and 6YS bit are computed next. If 
either delta coordinate is negative, it is given in two's 
complement form. 

The delta X-coordinates are gated to B, and delta Y to 
A; they are saved there until format word 2 is assembled in 
T. The 6XS and 6YS bits are gated through the mixer into 
XY as part of format word 0. 

The header information, saved previously in GPR 8, is 
now read into T to begin the assembly of format word 0. 
At this time, the 6XS, 6 YS bits (F 0-1) are gated into 
T(56-57). 

Two more bits required for format word 0 are the CO 
and Cl bits. CO equal to 1 indicates (to the PVD) that the 
symbol is to be displayed at the major position of the 
weather line. C 1 equal to 1 indicates the same thing 
concerning the secondary position of the weather line. The 
symbol is normally displayed at the major position (except 
for an all-O's character). No symbol is displayed at the 
secondary position if the line was truncated or the symbol 
is all-O's. When a failure of the geographic filter occurs, the 
constant 2 is set into GPR 4. GPR 4 is now read into S and 
gated to PAL. PAL equal to 0 indicates that no truncation 
was performed, and the symbol can be displayed at both 
ends of the weather line. F (0 and 1) are both set to 1 (bit 0 
is CO, and bit 1 is C 1 ). If PAL does not equal 0, only F bit 
0 is set to 1. The symbol is checked for a non-0 character 
by gating T(40-47) to the serial adder. An all-0 SAL now 
causes F to be reset and no symbol to be displayed at either 
end of the line. If SAL is not all O's, the CO and Cl bits are 
placed in T(48-49) by gating F(0-7) to T(48-55). 
Assembly of format word 0 is now complete, and Tis gated 
to M. 

Format word 2 is assembled next in T. Assembly is 
started by gating B (6X) to T( 48-63). 

D.Y2 D.X2 

32 37 38 47 48 53 54 63 



6 Y is in A(0-15) and is moved to T by gating A(O-7) 
through the serial adder into T(32-39) and then A(8-15) 
through the adder in to T( 40-4 7). 

M (format word 0) must now be set into XY. This is 
done by issuing the 'FMTW* E 14-15' micro-order. 
El4-15 being equal to 0 gates format word 0 (M) through 
the mixer and into the correct XY bit positions for the 
output doubleword. 

"FMTW*E 14-15" (E14-15"' 0) 

32 34 37 41 47 48 49 56 57 ----

Mixer 

a 9 1s 39 

This micro-order also causes XY bits 0, 1, 36, 37, and 62 
to be set to O's and XY bits 2, 3, 4, and 38 to be set to 1 's. 

Format word 2 (in T) is now gated to M, and format 
word 1 is assembled in T. 

The major position coordinates are the contents of 
format word 1. 

32 37 38 

Yl 
(Major Y) 

47 48 

Xl 
(Major X) 

53 54 63 

The major X-coordinate (in GPR 2 16-31) is read into 
T(48-63). The major Y-coordinates is in GPR 3 (16-31) 
and must be gated to T(32-4 7). This is accomplished by 
gating GPR 3 to A (via S and then B). A(16-23) is then 
gated through the serial adder to T(32-39); then, 
A(24-31) is gated through the serial adder to T(40-47). 

Format word 2 (M) must be gated through the mixer 
and into XY. E(14-15) has been incremented to 2 since 
the last 'FMTW *E14-15' micro-order was issued. 'FMTW 
* E14-15' is issued now, and it gates the delta values, 

through the mixer, into the proper XY positions for the 
output doubleword. 

"FMTW * E14-15" 

{El4-l5 = 2) 

D. XS 

Mixer 

...;.40___..___49 ...-.so__.__59 

1: 

Format word 1 (T) is gated mto M, and the refresh 
memory address (GPR 5) is gated into D (via S). Then, the 
address is updated (+8) and stored back into GPR 5. Gating 
format word 1 (M) through the mixer completes the 
assembly of the output doubleword in XY. E(14-15) has 
been decremented to equal 1, and the 'FMTW * E14-15' 
micro-order is issued again. 

"FMTW * E 14-15" 

(E 14-15 = l) 

16 25 26 35 

Xl 

{Major X) 

63 

Mixer 

7201-02 FETOM (7/70) 3-227 



The output doubleword is stored in refresh memory (per 
D) to complete the processing of one input doubleword. 

I 00111 l:~*H Symbol I Yl 

0 4 5 6 7 8 9 10 15 16 25 26 31 

t:::.Y2 t:::.X2 

32 35 36 37 38 39 40 49 50 59 60 61 62 63 

Any pending interrupts are now honored, so the address 
of the next instruction (LSWR) is gated back into IC (via 
S). If a nonprogram interrupt is pending, IC is decremented 
to point to the CVWL instruction; if a prog;am interrupt, 
IC is left pointing to the address of the next instruction. 
After a nonprogram interrupt, control is given back to 
CVWL to continue processing the input stream from where 
it was interrupted. 

If no interrupts are pending, the next input doubleword 
is read into AB, and the microprogram branches back to the 
beginning routine to check for header information. 

LOAD CHAIN, LC (52) 

• Moves first operand to third operand location and 
second operand to first operand location. 

• Rl field specifies an even/odd pair of GPRs. Even GPR 
contains operand 1; odd GPR is the third location. 

• RX Format: 

D2 

7 8 1112 15 16 19 20 

1st Operand 3rd Operand 

Even GPR 

3-228 (7 /70) 

31 

2nd Operand 

Main 
Storage 

• Condition Code: 
0-lf bit 31 of second operand is 0. 
1-Not used 
2-Not used 
3-lf bit 31 of second operand is 1. 

• Program Interruptions 

Protection (fetch protect violation). 
Addressing (second operand is not a valid address). 
Specification (second operand address is not on a 

doubleword boundary). 

• LC is useful in situations that require management of 
core storage (i.e., in accessing chained or linked blocks 
of data). 

• Refer to Diagram 5-906, FEMDM. 

At the beginning of execution, the contents of the GPR 
specified by the RI field are in T, and a main storage 
request has been made for the second operand. rhe first 
operand (T) is stored in the odd register of the even/ odd 
pair by setting the local storage address register to the value 
in RI plus one. 

After a delay to allow. the data to arrive from memory, 
the second operand is set into ST. D(bit 2I) (the second 
operand address) is checked; if it is a 0, the second ,operand 
is in S and must be moved to T so that it can be stored in 
the GPR. This is done by gating S through the parallel 
adder and into T. If the second operand is in T tb begin 
with (D bit 2 I = I), this step is bypassed. T is then written 
into the GPR specified by E(8- I 1) (the RI field). 

The instruction's objectives have been accomplished, 
except for the setting of the condition code. T(bit 63) is 
checked, and, if it is a 1, the condition code is set to 3. It is 
set to 0 if T(63) is a 0. The instruction execution 1.s then 
terminated. 



CHAPTER 4. MANUAL CONTROLS AND MAINTENANCE FACILITIES 

Maintenance aids available to maintenance personnel for 
the CE fall into two categories: (1) those used for error 
detection during normal operation, such as error-detection 
logic and interruptions, and (2) those used for diagnosing 
the cause of failures and for preventive maintenance. The 
second category includes: 
1. CE control panel: Contains the controls necessary for 

initiating any operation, for manual testing, and for 
performing various maintenance tasks. In addition, 
indicators allow monitoring of the CE operation by 
displaying the status of important registers and control 
triggers. 

2. Maintenance panel: Contains the controls necessary for 
initiating power on and off sequences. In addition, 
indicators show the power status'. 

3. Diagnose instruction: Allows certain diagnostic 
functions to be performed on the CE.· It is used in 
conjunction with the maintenance control word (MCW) 
to allow such diagnostic functions as reversing parity and 
suppressing data checks. In addition, it can be used to 
initiate the logout and FLT functions. 

4. MCW: Used in conjunction with the Diagnose instruc
tion, FLTs, and ROS tests. 

5. Logout, ROS tests, and FLTs: Logout stores the status 
of the console indicators into fixed positions for main 
storage when a trouble occurs; the data logged out may 
be subsequently recalled for analysis. ROS tests check 

SECTION 1. MANUAL CONTROLS 

CE CONTROL PANEL SWITCHES AND 
FUNCTIONS 

The CE control panel, in addition to its main function as 
the operating and monitoring center of a 9020 subsystem, 
is one of the prime maintenance aids available to mainte
nance personnel. Using this panel, maintenance personnel 
can duplicate many program operations or portions of 
operations manually and can repeatedly exercise portions 

each bit position of every ROS word. FLTs check the 
CE at the logic-block level. 

6. Ripple tests: Provide the capability of (1) storing data 
from the DATA switches into all addresses in.LS or main 
storage and inserting 1 's with correct parity into the 
storage-protect keys and (2) reading ou~ all locations of 
LS or main storage and displaying the data. . . 

7. Diagnostic programs: Check the CE on a functional basis 
by programming it to perform one or more instructions 
or sets of instructions. 

8. Marginal checking: Allows operation of critical circuits 
with nonstandard voltages to detect whether any are 
approaching failure. . 
The maintenance aids have interrelated functions, de

pendent upon the troubleshooting technique used. For 
example, scan logic, which provides the controls necessary 
to perform ROS tests and FLTs, is also usedin logout, a CE 
control panel function. On the other hand, switches on the 
CE control panel are used to initiate all CE maintenance 
programs (i.e., FLTs; ROS tests). CE diagnostics may be 
initiated at either the SC/CC or CE.control panels. 

This chapter is divided into two sections: Section 1, 
Manual Controls, discusses the manual controls and indi
cators on the CE control panel and their application. 
Section 2, Maintenance Facilities, discusses the Diagnose 
instruction, MCWs, logout, ROS tests, FL Ts,. ripple tests, 
diagnostic programs, and marginal checking. 

of the machine . logic at a normal or an increased rate of 
operation. 

In the following discussion, coordinates are given [e.g., 
SYSTEM. INTERLOCK switch (N4 7)] to assist in locating 
switches and indicators in Diagrams 6-1 and 6-2, 7201-02 
CE FEMDM. Another useful reference for this section is 
Diagram 6-3, FEMDM, which, together with Table 4-1, will 
aid in understanding the environment in which the various 
functions of the switches and pushbuttons are active. 

7201-02 FETOM (7/70) 4-1 



· Page of SFN-0201-1 
Revised by TNL: GN31-0001 

Table 4-1. CE Switches and Their Operational Environment 

CE 
Program 
State Controls at CE 

Switch Cl 

I 
c "C Key Off Key On** '+:i Q) 

a.· 

I 

I 

I 

Address Compare 
Address* 
eackspace FLT 
Check Control 
Check Reset 
Data* 

Defeat Interleaving 

Disable Interval Timer 
Display 

Element MPO 
Frequency Alteration 

Indicate On Roller 1, Pos 6 
Inhibit CE Hard Stop 
Interrupt 
Key (System Interlock) 
Lamp Test/Allow Indicate 
Load*** 
Load Unit* 

·Logout 
Main Storage Select 
Marginal Check and Voltage Controls 
Power Off 
PSW Restart *** 
Pulse Mode 
Rate 
Register Select * 
Register Set 
Repeat Instruction 
Reset 
ROS Address 
ROS Transfer 
Scan Mode 
Set IC 
Start 
Store 
Stop 
Storage Select * 
Test Switch 
1052 Enable-Disable 

360 Mode 

Legend: 

x Control is functional. 

e 
Q) 
a. 
0 

x 

x 
x 
x 

x 
x 

x 
x 
x 
x 
x 
x 
x 
x 

x 

x 
x 
x 
x 

x 
x 
x 
x 

x 

x 
x 
x 

Static; requires use of other control. 

State a. 
0 

fl .... 3 2 1 0 3 VJ 

x x x x 
x x x x x x 

x x x 
x x x 
x x x 

x x x x x x 
x x 
x x 

x x x x x 
x x x x x x x 
x x 
x x x x x x x 
x x x 

x x x x 
x x x x x x x 
x x x x x x x 
x x x x x 

x x x x 
x x x x x 

x x x x x x 
x x x x x x x 
x x 
x x x x x 
x x 
x x x x x 
x x 
x x 
x x x x 
x x x x 
x x x x 
x x x x 
x x x 
x x x x x 
x x x x x 
x x x x x 

x x x x 
x x x x 

x x x 
x x x x x x x 
x x x x 

** If both CE and SC or CC keys are on, the SC or CC key takes precedence. 

State 
2 1 

x x 
x x 

x x 

x x 
x x 

x x 

x x 
x x 
x x 
x x 
x x 
x x 
x x 
x x 

x x 

x x 

x 
x 
x 
x 

x x 
x x 
x x 
x x 
x x 

x x 
x 

*** System function with SYSTEM INTERLOCK key on, TEST switch off. 
Subsystem function if SYSTEM INTERLOCK key off, regardless of TEST switch. 
State 0 and Test mode. 

4-2 (6/71) 

0 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

x 

x 

x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 

r/ 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 
x 



Some of the maintenance routines that can be per
formed from the CE control panel include storage ripple, 
marginal checking, and frequency bias. Other controls allow 
maint~nance personnel to stop the CE at the end of the 
current instruction, to display main storage or LS, to store 
into main storage or LS, or to log out indicator status to 
fixed positions in main storage. (The latter is a function of 
the scan logic and is described in Section 2 of this chapter.) 

SYSTEM INTERLOCK SWITCH 

The SYSTEM INTERLOCK switch (N47) is a key-operated, 
lockable switch. With the key inserted and twisted 
clockwise, the SYSTEM INTERLOCK switch is turned on 
and enables manual controls as indicated in Table 4-1. Note 
that the CE SYSTEM INTERLOCK switch is overridden by 
the SC/CC SYSTEM INTERLOCK switch if the CE is 
selected by the SC/CC CE SELECT switch. The LOAD and 
PSW REST ART functions are changed from sµbsystem to 
system functions when the CE SYSTEM INTERLOCK 
switch is turned on. These are further discussed in the 
applicable portions of this chapter. 

TEST SWITCH 

The CE TEST switch (H7) is enabled only when the CE is 
in state zero. It is indicated both on the TEST indicator, 
and on roller 6 position 5 bit 5. The Test switch enables 
four manual CE Control Panel switches which are not 
otherwise enabled by state zero: REGISTER SELECT, 
REGISTER SET, PULSE MODE (time or count), ·and 
FREQUENCY ALTERATION. It prevents the CE from 
issuing SCON or SATR and prevents the following external 
signals from entering the CE: ELC interrupt, RDD, WDD, 
SATR, SCON, SC/CC START or STOP, and SYSTEM 
(EXT) reset. 

SYSTEM RESET PUSHBUTTON 

The SYSTEM RESET pushbutton is enabled in any state if 
the CE System Interlock key is on and the CE is not 
selected by the SC/CC with its key on. It performs 
Subsystem Reset. A Subsystem Reset will also be per
formed if the CE is in state one, zero, or test with the CE 
System Interlock Key off (System Reset which is in effect, 
External Reset, is a function of System IPL or System PSW 
Restart only). Refer to Chapter 9 of the 9020D or E 
System Introduction Manual for definition of system and 
subsystem resets as they affect other system elements. 

A CE Machine Reset (reset within the CE) will result 
from any of the following: system or subsystem reset, 

.system or subsystem IPL, system or subsystem PSW restart 
or an externalstart, external stop, or external reset. 

A machine reset resulting from any of these functions 
forces ROSAR.to 003 which is the stop loop. When the CE 
is powered on, the same machine reset occurs except that 
ROSAR is forced to OOB (POWER ON RESET). A 
microprogram which clears local storage is then executed 
before the stop loop is entered. Refer to FEMDM Diagrams 
6-4 and 6-7. 

STOP LOOP 

• The stop loop is entered via three hardware-forced ROS 
words: 003, OOB, and 026. 

• The MANUAL indicator is on when the CE is in the stop 
loop. 

• The stop loop is exited by branching into one of eight 
pushbutton function micruprograms or into one of four 
external condition microprograms. 

When the CE is in the Stopped state, a ROS microprogram 
called the "stop loop" is continuously executed. The stop 
loop is shown in Diagram 64, FEMDM. 

When the CE is in the stop loop, the MANUAL indicator 
is lit, no program instructions are executed, the interval 
timer (location 50, hex of the PSA) is not stepped, and the 
starting location of the next instruction to be executed is 
transferred to D (contents of IC minus 8 or 16). D is 
displayed in roller 1, position 2; IC is displayed in roller 6, 
position 3. 

Stop Loop Entries (Diagram 64; FEMDM): The stop 
loop is entered via any of three ROS words the addresses of 
which are hardware-forced: (1) 003, (2) OOB, and (3) 026. 
Each of these ROS words issues the 'set stop loop trigger' 
micro-order, which turns on the MANUAL trigger. This 
trigger [plus state and test switch considerations (Table 
4-1 )] enables manual operations except SYSTEM RESET, 
CHECK RESET, and LOAD pushbutton functions. These 
are active regardless of the stop loop. (1) ROS word 003 is 
forced by system or subsystem: PSW restart, IPL, Reset, or 
by EXTERNAL: Start, Stop, or Reset. The stop loop is 
entered directly. (2) The STOP trigger is not turned on, 
except for External stop, and ROS word OOB is forced by a 
power-on reset. Local storage is cleared before the stop 
loop is entered. The STOP trigger is not turned on. (3) ROS 
word 026 is forced when the STOP trigger is on at end op. 
When all pending interruptions and 1/0 operations are 
completed, the STOP trigger forces address 026 into 
ROSAR to enter the count delay microprogram which 
allows time to recognize that a pushbutton has been 
depressed before the stop loop is entered. The STOP trigger 

7201-02 FETOM (7/70) 4-3 



Page of SFN-0201-1 
Revised by TNL: SN31-0020 

is turned on by the STOP pushbutton, an address compare 
with ADDRESS COMPARE STOP on, RATE switch in 
instruction step position, External stop, or the 'logout PB 
latch being on after logout (scan-out) is completed. 

Stop. Loop Exits: The stop loop continuously samples 
eight CE control panel pushbuttons and four external 
conditions. Each of these will cause a branch from the stop 
loop into a new microprogram to perform the indicated 
function (Diagrams 64 and 6-5, FEMDM). CE control 
panel pushbuttons sampled are STORE, DISPLAY, SET IC, 
START, ROS TRANSFER, REG SET, IPL (system or 
subsystem), and PSW RESTART (system or subsystem). 
The external conditions tested are External Start and ATR 
Select. 

STOP PUSHBUTTON 

The STOP pushbutton causes entry to the stop loop (see 
"stop loop") while retaining machine environment (Di
agram 6-6, FEMDM). It is enabled in state one, zero, or test 
or in any state with the System Interlock key on unless the 
CE is selected by the SC or CC with its System Interlock 
key on. The operator may perform manual operations 
(store, display, etc.), acknowledging state and test switch 
considerations (Table 4-1) or continue normal program 
operation by depressing START. 

CHECK RESET PUSHBUTTON 

The CHECK RESET pushbutton or FLT check reset (an 
FLT test function) performs the error reset portion of 
machine reset. The CHECK RESET pushbutton is enabled 
in state zero or test. It does not change the mode of 
operation which continues as if no error had occ:urred. 
Results are unpredictable. Scan machine reset (a scan-mode 
microprogram function) also performs a partial machine 
reset. None of these resets forces the CE into the stop loop. 
Refer to Diagram 6-7, FEMDM. 

To reset a hard-stop error, actuate the INHIBIT CE 
HARD STOP switch (then, if it is a PSBAR parity check, 
set the correct parity in PSBAR), and depress CHECK 
RESET. 

START PUSHBUTTON 

The. ST ART pushbutton starts the CE in any Rate mode 
(RATE switch setting: Process, Single Cycle, Instruction 
Step). Diagram 6-4, FEMDM, assumes the rate switch to be 
selecting PROCESS or INSTRUCTION STEP. The START 
pushbutton is active only in state one, zero, or test unless 
the CE System Interlock key is on. It resets the STOP and 
MANUAL triggers and sets the (block) 'interrupts' latch 
(Diagram 6-6), FEMDM). When the START pushbutton is 
depressed, an end-op occurs and processing begins with 

4-4 (5/72) 

I-fetch of the next instruction. The 'interrupts' latch blocks 
interrupts until the end-op of the first instruction. If 
START is depressed after a normal halt, instruction 
processing continues as though no halt had occurred, and 
pending interruptions are taken after execution of the first 

I instruction. If ST ART is depressed after a system reset or a 
write direct stop, the results are unpredictable. 

MAIN STORAGE SELECT AND LOAD UNIT SWITCHES 

The MAIN STORAGE SELECT and LOAD UNIT switches 
(R45-55) are used exclusively by the IPL and PSW Restart 
functions (Diagram 6-8, FEMDM). They are the operator's 
means of specifying which SE contains the Restart PSW at 
PSW location 0 (for PSW Restart) or the SE into which the 
initial program is to be loaded and by what channel and I/O 
unit (for IPL). 

LOAD PUSHBUTTON 

The LOAD pushbutton (S-52) is used to initiate an Initial 
Program Load. It is enabled at the CE control panel only in 
state one, zero, or test if the CE System Interlock key is 
off. It is enabled in any state with the CE key on unless the 
CC/SC with System Interlock key on has the CE selected. 

IPL 

• There are three types of IPL from the CE: System, 
Subsystem, and ROS test or FLT. 

• IPL from the CE causes the IOCE to load a program 
from an 1/0 unit. The program is then executed by the 
CE. 

There are three types of initial Program Load: system IPL, 
subsystem IPL, and FLT or ROS IPL. All three are alike in 
that the CE raises the line IPL IOCE (X) to initiate the I/O 
operation. The major differences are that the CE sends 

. SCON and SA TR in a system IPL, only SATR in a 
subsystem IPL, and neither in an FLT or a ROS IPL. The 
system and subsystem IPL are discussed below. For a 
discussion of FLT and ROS test IPL, refer to Section 2 of 
this chapter. 

System IPL 

A system IPL can be initiated from the SC/CC or a CE with 
the CE, SE, unit,. and channel select switches and the 
System Interlock key set (Diagram 6-8A, FEMDM). The 
selected CE issues a system reset to all elements turning on 
all sco:N bits and then takes the information from the 



SC/CC or its own load unit select switches to configure a 
subsystem: the CE places the selected SE number in its own 
ATR position I and physical PSBAR, issues a special IPL 
SCON to each of the selected elements, issues a SATR to 
the selected IOCE, and raises 'IPL IOCE (X)' to the IOCE. 

The IOCE reads 24 bytes into the PSA in the selected 
SE, starting at location 0 as follows: 

Location 0. IPL PSW 0 is read in. This is the first data that 
will be fetched by the CE. It includes the starting address of 
the program being read in by the IOCE for the CE. 

Location 8. CCW I is read in. This is the first CCW to be 
fetched by the IOCE. It specifies the location and the 
number of bytes that the IOCE will read in. It may or may 
not specify chaining to CCW 2. 

Location 10 (hex). IPL CCW 2 is read in. This CCW may be 
a transfer in channel (TIC) to another CCW or a data 
address and byte count with or without chaining specified. 

Having read these three doublewords into the PSA, the 
IOCE fetches from location 8 and executes IPL CCW I. 

A bootstrap-type operation may then be performed in 
which IPL CCW I may cause further CCWs to be read into 
storage from the input device and chain to IPL CCW 2. 
CCW 2 would then specify a TIC to one of the CCWs just 
read in. The IOCE continues fetching and executing CCWs 
until one which specifies neither TIC nor chaining is 
fetched. It executes this CCW, then raises 'response' to the 
CE. This releases the CE to fetch IPL PSW 0 and start 
executing the program read in by the IOCE. 

Subsystem IPL 

A subsystem IPL can be initiated from either the SC/CC or 
a CE with the subsystem manually configured and the CE, 
SE, unit, and channel select switches and the System 
Interlock key set (Diagram 6-8B, FEMDM). The selected 
CE issues a subsystem reset to the elements configured and 
issues a SATR and an IPL to the selected IOCE. All 
subsequent actions are. the same as in a system IPL 
(Diagram 6-9, FEMDM). 

DAT A SWITCHES 

The 64 DATA switches (K, L, 14-49) (Diagram 6-1, 
FEMDM) allow the operator to enter data manually into 
the system. They are alternately colored black and white in 
groups of four to facilitate entering hex data into the CE. 
Each switch is a two-position toggle switch, with the up 
position equalling a 0 and the down position equalling a 1. 
When the DATA switches are used, the selected micro-

program first places 1 's into ST. Then, if a DATA switch 
equals a 1, the corresponding bit in ST is unchanged 
(remains set); if a DATA switch equals a 0, however, the 
corresponding bit is reset to 0. 

The DAT A switches are used during the following 
manual operations (DATA switch gating is shown in Figure 
4-1 ): 
1. Store. 
2. Storage ripple store. 
3. Repeat instruction. 
4. Pulse mode count function (switches 53-63). 
5. Register set. 
6. Loop on address compare (switches 40-63). 

The DAT A switches are used during the following 
programmed operations: 
1. Diagnose, withMCW(8-19) = 5B7. 
2. FLT test number search after a stop. 

When data, is entered, correct parity is automatically 
generated by the switches. If the switches are altered during 
an operation, such as Repeat instruction or storage ripple, 
an error will probably occur. 

ADDRESS SWITCHES 

The 24 ADDRESS switches (M, 14-49) allow the operator 
to manually select any address in ROS, LS, or main storage. 
They are alternately colored black and white in groups of 
four to facilitate entering hex addresses into the CE. Each is 
a two-position toggle switch, with the up position equalling 
a 0 and the down position equalling a I. During manual 
operations, the selected micro-program places ls into D. If 
an ADDRESS switch equals a 1, the corresponding bit in D 
is unchanged. If an ADDRESS switch equals a 0, however, 
the corresponding bit in D is reset. 

The ADDRESS switches are used during the following 
manual operations (ADDRESS switch gating to D, ROSAR, 
and comparison circuits is shown in Figure 4-2): 
I. Store. 
2. Display. 
3. Set IC. 
4. ROS transfer. 
5. ROS repeat address. 
6. Main storage address-compare stop, sync, or loop. 
7. ROS address-compare sync or stop. 

To address main storage or LS, the ADDRESS switches 
are used with the STORAGE SELECT switch {N13). 
Address switches 8-28 select a doubleword in main storage 
(Figure 2-28). Bit 8 fs always 0. Bit 9-12 select the ATR 
slot (which SE/DE). If bits 9-19 are all 0 (PSA access), the 
SE is determined by physical PSBAR and the PSA block: 

7201-02 FETOM (7/70) 4-5 



Munuc.11 
Operu ~1i:cm 

lltCS 
rn1vt,ft' 

~----' 
i~[PIEA 7 ,, t· .. :·,N1 

"'-'''LIE 

PIJL.,t MC•uf. 
111,ML 

~ ..... 0 P~OC 
c:o,,:r.J 

~ ......... - _______ .........., 
~fCl',H~ 
',fLIECi 

figur(! 4-1. Data Switch Gating 

4-6 (7/70) 

(ll1me·re11111e·n·t 
inp11t1by 11 I<> 
sellieddl"tl 

l2' 

___ 6_;1 

-ht .. rna,11 H 
31 

31 

I 
I 31 

CCIR 

63 

61 

4 I [J 0 I 

ll ~ 0 3 01 i 
(y~ll~ 

C::o:un~e1r 

IM(W' 

L-t!qtntd: 

Cloc·k ll1rii1ggen 
RT c;.,.,,,,1er 
At.ld1ress. Se<que·nceli 

,l:J. A~~·;·t:"5:5'- 'it'G•.rf"iA~l"" 

0 f'~T ce:uri1t.(":1 

6· Cllf.)c.k t11i1g~~11s, 



ADD,R:Ess 
Switches 
8-31 

1 

PK031 

A.DR-KEYS __...D f (Cl 1) 

24 ____ s-.',.1 ·~ 

0 

Dio9r0m 4-602, FEMDM 

Address 
De,code and 
Ootins Log,ic 

23 

~I 
23 

23 

32 63 
1R:OS Controlled 

STORAGE SELECT 

(0-23) iLOCAL 

l!i 

r7":rl 
~ 

II l!i 

SAl.l(0-20) 

SA8(2-20) 

2:0•-.._ .......................................... .,..,..,. ......... -. .. .,.!!!!!!!!!!!!!!!! .. ._._;A~D~O:RE~S~S~Sw~it~c~he~s~(9~-~2!8)~ ........... .,. .... ...I"-... 

REPEAT 
ADD1R'ESS 

1---->"..,....--, . . 
(DQwn) 

Moch ine Reset 
No,t ila~k:cd 

Repeat 
ROS 
Address 

ltepeot 
ROS 

RX90J 

18-19) 
12 ______________ ............ -.;..j 

..i::. 

t This ndcro-qrder is Issued when 
depression o.f STORE, IOISPLA Y, 
SET IC, or ROS TRANSFER is 
sensed by lhe SIO'P loop mkroprog,rom. 

.!.J Figure 4·2. Address Switch Gating 

32 

-40 51 

0 
GT 

0 

RO SAR 
0 

0 

ADDRESS Swi tclhes 0- ll 

~I 

11 

11 

• RX 
11 

II 

lnl"~t Addresses ~quol 

STOP ON '~OS:;' 
ADDRESS 

<Down) 

ROS Addre,ss 
Compare Syric 
(les.t Point on 
1Frome) 

A 

Poss 
Pulse 

A 

MA3111 

ADDRESS Switches 27-3 l 

Main 
Storage Address 

Cemli'O''" Syri'c rTes,I 

Point o'r F•om'e) 

0 

Dia9n::m 6-6, FEMOM 

Stop, MorH,ml 
and Addre.s 
Com,pme Trii;mers. 

LOCAL 
STORAGE 

MAIN 
STORAGE 



location by bits 13 --· 19 from logical PS BAR. ADDRESS 
switches 9--28 may be used in conjunction with the 
ADDRESS COMPARE STOP switch (NI7) when selecting 
an address for an address-compare stop or sync. ADDRESS 
switches ~ 7 - -31 select an LS address. 

ADDRESS switches 8-19 select a ROS address to be 
used to obtain a ROS address sync (a sync pulse is 
generated when the ROS address and the ADDRESS 
switches agree) or to contain a ROS address for use with 
the ROS TRANSFER pushbutton (Q35). 

When an address is entered. correct parity is auto
matically generated by the switches when gated to the CE. 

ADDRESS COMPARE STOP/PROC/LOOP SWITCH 

The ADDRESS COMPARE switch (N 15) is enabled at the 
CE control panel in state one or zero or in test with the CE 
System Interlock key off. It is also enabled in any state 
with the CE System Interlock key on unless the CE is 
selected by the SC/CC with the Interlock key on. The 
ADDRESS COMPARE STOP/LOOP switch is duplicated at 
the SC/CC. Its function at either machine is the same. 

STOP Position 

In the STOP position, this switch enables the operator to 
stop the CE at a predetermined address by setting 
ADDRESS switches 9-28. When these switches match the 
address sent to the SCI, the 'address compare' trigger 
(Diagram 6-6) is set. (Address ·comparison is performed on 
doubleword boundaries.) The CE will stop at the end of the 
instruction in progress. The 'address compare' trigger causes 
the 'stop' trigger to be !set, and the count delay micro
program and the stop loop are entered. This entry to the 
stop loop is identical with the entry that results from 
depressing the STOP pushbutton (Diagram 6-4, FEMDM). 

PROC (Process) Position 

In the PROC position, this switch allows normal CE 
operation. 

LOOP Position 

The ADDRESS COMPARE switch (LOOP position), in 
conjunction with ADDRESS switches and DAT A switches, 
provides a means of manually forcing the CE to loop an 
entire instruction stream. The address of the last instruction 
of the stream to be executed is placed in ADDRESS 

4-8 (7/70) 

switches 8 31: the address of the first, in DJ\ T J\ switches 
40---63. The CE will proceed through the instruction stream 
until it gets an address compare (al the address in 
ADDRESS switches 8-- 3 I). The 'address compare' trigger is 
set. and it sets the 'stop' trigger. The execution of the 
instruction at the compare address is completed, and the 
CE enters the stop loop just as in an address compare/stop 
operation. However, the 'loop' trigger is also set. which 
causes the following (Diagram 6-6, fEMDM): The SET IC 
branch from the stop loop is taken. and that microprogram 
routine is executed (DAT A switches 40-63. bits arc set 
into IC); the CE returns to the stop loop. Then the ST ART 
branch from the stop loop is taken. which puts the CE back 
into the instruction stream per IC' (Diagram 6-4, FEMDM). 

A synchronizing pulse which occurs with every address 
match (SAB 1 --20 with ADDRESS switches 9-28) is 
available for maintenance scoping. A jackbox for this 
purpose is located on the machine frame, behind the CE 
control panel. This pulse is active regardless of the 
ADDRESS COMPARE switch setting (Diagram 6·6, 
FEMDM). 

STORAGE SELECT SWITCH 

The STORAGE SELECT switch (N13) is a three-position 
toggle switch that selects LS or main storage. It is used in 
conjunction with the ADDRESS switches and the STORE 
(R32) or DISPLAY (R35) pushbutton. The positions and 
corresponding functions arc: 
l. MAIN position -- Selects the doubleword main storage 

location specified by ADDRESS switches 9-28 for 
storing or displaying data. 

2. MAIN BYTE position - For storing a byte, selects the 
doubleword location (per ADDRESS switches 9--28) 
and byte (per ADDRESS switches 29-31) within the 
doubleword. For displaying, selects the doublewbrd in 
main storage to be displayed (same as MAIN). 

3. LOCAL position -- Selects an LS location (per 
ADDRESS switches 2 7-31) for storing or displaying 
data. 

The STORAGE SELECT switch conditions hardware, so 
that a ROS branch may occur, by setting or inhibiting 
ROSAR( 11 ). The 'SB-PB' and 'LS-PB' micro-orders allow 
the stop loop microprogram to perform the storage 
selection specified by the STORAGE SELECT switch. 
STORAGE SELECT switch gating is shown in Diagram 
6-10, FEMDM. 

The use of the STORAGE SELECT switch is discussed 
in the following paragraphs whenever it is involved in a 
specific manual operation. 



DEFEAT INTERLEAVING SWITCH 

The DEFEAT INTERLEAVING switch (N7) permits 
maintenance personnel to choose which halves of main 
storage are the high-order and low-order portions for 
maintenance use. It is a three-position switch that performs 
the following functions (Diagram 6-11, FEMDM) in state 
zero or in test only, regardless of the System Interlock key: 
I. NO REV (up) position -- Interleaving of main storage 

addresses is disabled, and locations in each BSM are 
addressed consecutively. 

2. REV (down) position - Interleaving of main storage 
addresses is disabled, and locations in each BSM are 
addressed consecutively; the high and low BSMs are 
reversed. 

3. PROC (center) position - Normal position of the 
switch. Addresses are interleaved in the normal manner 
with no reversal of storage addresses, unless changed by 
the Diagnose instruction. 

By using this switch, main tcnance personnel may address 
the first l 6~384 doublewords consecutively rather than in 
an interleaved manner. When used for this purpose, and 
with the switch in NO REV, the first 16,384 doubleword 
addresses to be selected will be in the even BSM and the 
next 16,384 doubleword addresses will be in the odd BSM. 
In REV, the first 16,384 doubleword addresses will be in 
the odd BSM and the next 16,384 doubleword addresses 
will be in the even BSM. 

The signals generated by this switch are sent to the SCI 
and to main storage. When the switch is in NO REV or 
REV, the TEST indicator (S48) is lit. 

SET IC PUSHBUTTON 

The SET IC pushbutton (R30) provides a means of entering 
an address into the current PSW. The pushbutton is active 
only in state one or zero or in test unless the CE System 
Interlock key is on. It sets the instruction-address portion 
(bits 40-63) of the PSW [D(0-23)] to the value specified 
by the ADDRESS switches. The CE is reset to the start of 
an I-fetch at that address. Four instruction halfwords are 
loaded into Q per the address in D (contents of the 
ADDRESS switches); 8 is then added to D, and the sum is 
placed in the IC. 

The first addressed instruction halfword is loaded into R 
per D(2 l ,22). If D(2 l ,22) = 11, Q is loaded with the next 
group of four instruction halfwords per the IC, and 8 is 
added to the IC (Diagram 64, FEMDM). If D(21,22) * 11, 
Q is loaded only once. 

After the instruction halfwords are fetched and loaded 
into Q and R, the count delay microprogram is entered. 
After the count delay, the stop loop is re-entered. Further 

manual intervention is required to start program execution. 
[START (S25) is depressed.] Note that the CE must be in 
the Stopped state (stop loop) for this pushbutton to 
function. Note, too, that when the CE is in the Stopped 
state, the instruction address is contained in D. After the 
SET IC pushbutton is depressed, the new address contained 
in the IC is one or two doublcwords more than the address 
contained in the ADDRESS switches. 

RATE SWITCH 

• Controls rate of instruction execution. 

• CE must be in stop loop before switch is activated. 

The RATE switch (Q25) selects the rate at which instruc
tions are to be executed. It is active only in state one or 
zero in test unless the CE System Interlock key is on. This 
rotary switch has four positions: PROCESS, INSN (instruc
tion) STEP, SINGLE CYCLE, and SINGLE CYCLE 
STORAGE INHIBIT: 
1. INSN STEP (instruction step): CE executes one machine 

instruction for each time ST ART is depressed. 
2. PROCESS: Does not affect CE operation; CE operates at 

normal clock speed. 
3. SINGLE CYCLE: CE advances by its minimum clock 

amount for each depression of START; all CE opera
tions are the same as for the PROCESS position. 

4. SINGLE CYCLE STORAGE INHIBIT: Same as SINGLE 
CYCLE without storage references. 

Two latches and two triggers control the RATE switch 
operation: 'instruction step' and 'single cycle' latches and 
'pass pulse' and 'block' triggers (Diagram 6-12, FEMDM). 

The 'instruction step' latch performs two functions: (I) 
it allows setting the 'stop' trigger so that only one 
instruction is executed with each depression of START 
(S25); (2) it disables the stepping of the interval timer. 

The 'single cycle' latch allows single-cycle operation. 
One machine cycle is allowed with each depression of 
ST ART, unless the CE requests additional machine cycles. 
The interval timer is disabled by the 'single cycle' latch. 

When the 'pass pulse' trigger is set, CE machine cycles 
are allowed. This trigger blocks the CE machine cycles 
when in the single-cycle mode (RATE switch in SINGLE 
CYCLE or SINGLE CYCLE STORAGE INHIBIT position). 

The 'block' trigger is used in single-cycle operation to 
allow one clock signal to be gated to the CE each time 
ST ART is depressed. The clock signal is blocked by 
resetting the 'pass pulse' trigger. 

The TEST indicator is lit when the RA TE switch is in 
any position other than PROCESS. 

7201-02 FETOM (7/70) 4-9 



PROCESS Position 

When the RATE switch is in PROCESS, the CE operates at 
the normal clock speed of 200 ns; this is the position for 
normal program execution. 

INSN STEP Position 

The INSN STEP position allows the execution of one 
machine instruction for each depression of START; any 
instruction may be executed. All I/O operations and 
interruptions (not masked off) are executed after the 
instruction is completed. The CE then re-enters the stop 
loop as though the STOP pushbutton had been depressed. 
The TEST indicator (S48) is lit when the RATE switch is in 
INSN STEP. 

Instruction-step operation is shown in Diagram 6-13, 
FEMDM. The CE must be in the stop loop before entering 
or leaving the instruction-step mode; the interval timer is 
disabled in this mode. 

When the RATE switch is moved to INSN STEP, the 
'instruction step' latch is set if the CE is in the stop loop or 
if the 'pass pulse' trigger is reset (Diagram 6-12, FEMDM). 
The interval timer is disabled after the 'instruction step' 
latch is set. No further action occurs until START (S25) is 
depressed, at which time one instruction is executed. At 
end-op, the 'stop' trigger is set by an 'I-Fetch reset' 
micro-order or a 'reset interrupt triggers' micro-order, thus 
foFcing the CE to enter the stop loop. The CE remains in 
the stop loop until further action is taken by the operator. 

SINGLE CYCLE Position 

The SINGLE CYCLE position allows the CE to advance 
one machine cycle (200 ns) each time START (S25) is 
depressed (Diagram 6-14, FEMDM). The CE must be in the 
stop loop or have the 'pass pulse' trigger off before entering 
the singl_e-cycle mode; if in the stop loop, it remains there 
until START is depressed. The CE begins executing 
instructions one machine cycle at a time for each 
depression of START. In Diagram 6-14, it is assumed that 
no CE requests are generated; if an asynchronous device is 
used or if a storage request is given, however, more than 
one machine cycle is required. The single-cycle mode 
continues through all CE functions of the instruction to the 
point of initiation of the asynchronous operation. This 
operation begins on the next depression of START and 
runs to the completion point in a normal manner. 

If the asynchronous device initiates an interruption 
request during single-cycle. operation, the interruption is 
broken into single machine cycles. More than one 
depression of START is therefore required. The CE runs at 
normal machine speed in the stop loop. 

4-10 (7 /70) 

When the RATE switch is in SINGLE CYCLE, the 
'single cycle' latch is set (Diagram 6-12, FEMDM). If in the 
stop loop, the CE remains there until ST ART is depressed, 
at which time it advances one machine cycle. The 'block' 
trigger is set as shown in Diagram 6-12. If there is no 'BCU 
hold on clock' signal, the 'pass pulse' trigger is reset after 

the 'block' trigger is set, thus inhibiting CE clock signal 
distribution. START must be depressed for each CE 
machine cycle advance. The TEST indicator (S48) is lit 
when the RATE switch is in SINGLE CYCLE. 

SINGLE CYCLE STORAGE INHIBIT Position 

The SINGLE CYCLE STORAGE INHIBIT position allows 
the CE to advance one machine cycle (200 ns) each time 
START is depressed. All CE requests are ignored, and 
asynchronous operations are suppressed. 

Except for the inhibit signals sent to the SCI and 
inhibiting the 'stop 1' and 'stop 2' triggers from affecting 
the CE clock, the single-cycle-storage-inhibit function is the 
same as the single-cycle function, Diagrams 6-12 and 6-14. 

REPEAT INSN SWITCH 

• REPEAT INSN switch allows repetitive execution of one 
or up to four instructions. 

The REPEAT INSN (instruction) switch (N23) provides a 
means of repeating a single instruction or of repeating up to 
four instruction halfwords. It is active in state one or zero 
or in test only, regardless of the CE System Interlock key. 
The REPEAT INSN switch has three positions (Diagram 
6-15, FEMDM): PROC, normal CE operation; SINGLE; and 
MPLE (multiple). 

A trigger-latch combination controls the repeat
instruction functions: 'repeat instruction adjust' trigger and 
'repeat instruction initialization' latch. 

The 'repeat instruction adjust' trigger forces a branch to 
the manual control repeat exceptional condition micro
program (ROS address 028, hex) at end-op of the start 
microprogram and sets the 'repeat instruction initialization' 
latch. STAT G is set to block re-entering the repeat
instruction microprogram at microprogram end-op. The 
trigger is set when the CE is in the Stopped state and the 
REPEAT INSN switch is in SINGLE or MPLE; it is reset 
when the CE is in the Stopped state and the REPEAT INSN· 
switch is placed in PROC. 

The 'repeat instruction initialization' latch blocks 
transfer to Q and stepping of the interval timer when in 
repeat-single-instruction mode. The latch is reset when in 
the stop loop, and the RA TE switch (Q25) is placed in 
PROCESS. The CE must be in the Stopped state before 



entering' or leaving the repeat-instruction mode. See 
Diagram 6-16, FEMDM, for the repeat-instruction opera
tions. 

The TEST indicator (S48) is lit when the REPEAT INSN 
switch is in any position other then PROC. 

Repeat Single Instruction. When the REPEAT INSN switch 
is in SINGLE, one instruction is continuously executed. 
The instruction to be repeated is entered into the DATA 
switches, beginning with byte 0. If the CE is in the stop 
loop, the 'repeat instruction adjust' trigger is set when the 
REPEAT INSN . switch is placed in either MPLE or 
SINGLE. To begin the instruction, depress ST ART (S25). 

In the repeat-single~instruction mode, the repeat
instruction microprogram is executed to set up initial 
conditions before entering I-Fetch of the instruction to be 
executed (Diagram 6-16, FEMDM). The objectives of the 
microprogram are to load the cont~nts of the DATA 
switches into Q, set IC(2 l ,22) to 00, inhibit updating of 
IC(20) or above, gate the first instruction halfword from Q 
to R, set STAT G, and set the 'repeat instruction 
initialization' latch. 

When the CE is in the stop loop and the REPEAT INSN 
switch is in SINGLE, the 'repeat instruction adjust' trigger 
is set. The START· pushbutton initiates the repeat
instruction function. A ROS address of 028 (hex) is forced 
into ROSAR to enter the repeat-instruction microprogram 
(Diagram 6-1 S). During this microprogram, ST AT G is set 
which; in turn, sets the 'repeat instruction initialization' 
latch. This action prevents the loading of new instructions 
into Q. Note that STAT G is reset by the 'reset' micro-order 
that performs all the resets necessary before the next 
I-Fetch. The instruction that was loaded into Q from the 
DATA switches is executed. 

Because the . 'repeat instruction adjust' trigger was not 
reset during the initial setup routine, ROS address 028 
(hex) is forced at end-op of the instruction to enter the 
repeat-instruction microp1ogram. Re-entering the repeat
instruction microprogram on each instruction resets 
IC(2 l ,22) to 00, thus causing the first instruction to be 
repeated. Because the 'repeat instruction initialization' 
latch is set,· Q is not loaded after. the initial loading. The 
instruction is continuously executed until the CE is 
manually stopped. The TEST indicator (S48) is lit while the 
REPEAT INSN switch is in SINGLE. 

Repeat Multiple Instructions. When the REPEAT INSN 
switch is placed in MPLE, the four instruction halfwords 
loaded into Q are continuously executed per IC(21,22). 
The 'repeat instruction initialization' latch inhibits data 
from being transferred from the SDBO to Q. Once 
instruction execution begins, the repeat-instruction micro
program is not entered because the 'repeat instruction 
adjust' trigger is· reset (Diagram 6-16). 

The repeat-multiple-instructions function is similar in 
operation to the repeat-single-instruction function except 
for the following: 
1. The interval timer is allowed to step. 
2. The 'repeat 'instruction adjust' trigger is reset. 

I 

3. Interruptions are executed. 

Resetting the 'repeat instruction adjust' trigger prevents 
re-entry to the repeat-instruction microprogram. Four 
instruction halfwords are continuously executed per 
IC(21,22), until the CE is manually stopped. The TEST 
indicator (S48) is lit when the REPEAT INSN switch is in 
MPLE. 

STORE PUSHBUTTON 

• Allows storing data into main storage or LS from DATA 
switches per STORAGE SELECT switch and ADDRESS 
switches~ 

The STORE pushbutton (R32) provides a means of storing 
information in any address of LS or main storage. The CE 
must be in the stopped state (stop loop) and in state one or 
zero or in test, unless the CE System Interlock key is on, in 
order for this pushbutton to function. 

The contents of the DATA switches 'are placed in the 
location specified by the ADDRESS switches and the 
STORAGE SELECT switch (NlS) (Diagrams 6-4 and 6-10). 
If the STORAGE SELECT switch is in LOCAL, the five 
low-order ADDRESS switches (27-31) specify the LS 
location into which the contents (32 bits plus 4 parity bits) 
of the right-half of the DATA switches (32-63) are to be 
stored. ADDRESS switch 27, in the 0 position, permits 
storing into the general-purpose registers and, in the 1 
(down) position, permits storing into the floating-point 
registers. ADDRESS switches 27 and 28, when set to 1 's, 
address the working register. 

If the STORAGE SELECT switch is in MAIN, the 
contents (64 data bits plus 8 parity bits) of the DATA 
switches are stored into main storage on a doubleword 
boundary per ADDRESS switches 9-31. 

If the STORAGE SELECT switch is in MAIN BYTE, 
one byte is stored into main storage per ADDRESS 
switches 29-31. ADDRESS switches 9-28 specify the 
doubleword boundary in main storage. The value contained 
in the ADDRESS switches is placed into D for storing in 
main storage. The contents of the ADDRESS switches are 
placed into E (via D) for storing in LS. 

For all store operations, the original contents of D, S, 
and T are destroyed. Correct" parity is automatically 
generated before storing into either main storage or LS. 
After the data is stored, the microprogram enters the count 
delay routine and the CE re-enters the stop loop (Diagram 
6-4). 

7201-02 FETOM (7 /70) 4-11 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

When STORE is depressed, the pushbutton signal is 
ANDed with the 'STO-OB' micro-order. When the stop loop 
microprogram senses that STORE has been depressed, 
ROSAR(l 1) is set, causing entry into the store micro
program routine. The stop loop is re-entered after the store 
operation is executed. 

DISPLAY PUSHBUTTON 

• Allows displaying of data from main storage into ST and 
AB or from LS into T per STORAGE SELECT switch 
and ADDRESS switches. 

. The DISPLAY pushbutton {R35) displays the contents of 
any location in LS or main storage. The CE must be in stop 
loop and state one or zero or in test, unless the CE System 
Interlock · key is on, in order for this pushbutton to 
function. The address and the storage to be used are 
determined by the position of the ADDRESS switches and 
the position of the STORAGE SELECT switch {N15), 
respectively {Diagrams 64 and 6-10). Data from mairt 
storage (64 data bits plus 8 parity bits) is displayed in ST 
and AB. (Set roller switches 1 and 2 tu position 3 to display 
contents of ST, and set roller switches 3 and 4 to position 3 
to display the contents of AB.) Data from LS {32 data bits 
plus 4 parity bits) is displayed in T. (Set roller switch 2 to 
position 3 to display contents of T.) 

When DISPLAY is depressed, the pushbutton signal is 
ANDed with the 'DIS-PB' micro-order. When the stop loop 
microprogram senses that DISPLAY has been depressed, 
ROSAR{l 1) is set, causing entry into the display micro
program. The original contents of S, T, and D are 
destroyed. After the selected data has been displayed, the 
count delay microprogram is executed and the stop loop is 
re-entered. 

REGISTER SELECT SWITCH 

The REGISTER SELECT switch {Sll) is enabled only in 
state zero with the TEST switch on. It is used to select the 
register {ATR, PSBAR, or CCR) into which data in the 
DAT A switches will be gated by the register set micro
program (Diagram 64 and Figure 4-1). 

REGISTER SET SWITCH 

The REGISTER SET switch {Q32) provides a means by 
which maintenance personnel may manually store data into 
the ATR, PSBAR or CCR registers. It is enabled in state 

·zero with the test switch on only. The CE must be in the 
Stop Loop (Manual· indicator on). Depressing the 

REGISTER SET switch causes a branch from the Stop 
Loop microprogram (Diagram 64, FEMDM) into the 
Register Set microprogram. This microprogram gates the 

4-12 (6/71) 

Data Switches 0-63 to the S and T registers. Data is then 
gated according to the REGISTER SELECT switch (Figure 
4-1): 

ATR: S register bits 0-31 are gated to ATR, 1, T register 
32-39 bits are gated to ATR 2. 

CCR: T register bits 32-63 are gated via the External 
register and External Bus to the CCR. 

PSBAR: T register bits 41-51 are gated to Logical PSBAR 
bits 9-19. Logical PSBAR bits 9-12 are decoded to select 
art ATR slot which is then gated to Physical PSBAR. The 
Register Set microprogram then returns the CE to the Stop 
Loop. 

I N?te: Wh.en manualiy loading PSBAR, data switches 32-:---40 
arid 52-63 should be .set to zero. If they are not, a PSBAR 
parity check may resuit. 

ROSTRANSFERPUSHBUTTON 

• ROS TRANSFER pushbutton allows ROS micro
program branch to any ROS location. 

The ROS TRANSFER pushbutton {Q35) allows entry into 
a ROS word if the CE is in state one, zero, or test, 
regardless of the CE System Interlock key position. 
Depressing ROS TRANSFER places the contents of the 12 
high-order ADDRESS switches into ROSAR (Diagram 6-4 
and 6-1 7, FEMDM). The next microinstruction is taken 
from ROS and placed in the ROS sense latches. Further 
action now depends upon the position of the RATE switch. 

If the RA TE switch {Q25) is in PROCESS, the CE 
continues executing ROS words from the entry point. If 
the RATE switc~ is in INSN STEP, the CE continues until 
an end-op is reached. 

If the RATE switch is in SINGLE CYCLE or SINGLE 
CYCLE STORAGE INHIBIT, the CE stops with the ROS 
word specified by the ADDRESS switches contained in the 
sense latches. {This ROS word may be displayed by means 
of the appropriate indicators.) Depressing START (S25) 
advances ROS orie cycle, and the contents of the ROS data 
register may then be displayed. If ST ART is depressed 
again, ROS advances as in the single-cycle mode. 

Regardless of the position of the RA TE switch, checks 
may occur as a result of storage data bus transfer to 
registers and from the registers through the parallel adder. 
To prevent the CE from stopping on these checks, place the 
CHECK CONTROL switch {Nl 7) in DSBL. (See "CE 
CHECK CONTROL SWITCH".) 

When ROS TRANSFER is depressed, the pushbutton 
signal is ANDed with the 'ROS-PB' micro-order. When the 
stop loop microprogram senses that ROS TRANSFER has 



been depressed, ROSAR(l 1). is set, causing entry into the 
ROS transfer microprogram. Instruction execution con
tinues from the ROS address entered into the 12 high-order 
ADDRESS switches. 

STORAGE-RIPPLE MICROPROGRAM 

• The storage-ripple microprogram allows continuous 
storing of data into, or displaying of data from, all 
locations of either main or local storage. 

The storage-ripple microprogram (Diagram 6-18, FEMDM) 
is capable of (I) storing data from the DATA switches in all 
addresses in LS or main storage and placing correct parity 
in the storage-protect. keys or (2) reading all locations of LS 
or main storage and displaying the data. Main storage or LS 
is chosen by means of the STORAGE SELECT switch 
(N13). 

If main storage is selected, the storage-ripple micro
program begins at address 0 and continues ,until an invalid 
address is detected, at which point a restart beginning at 
address 0 occurs. Diagram 6-18 shows the restart of an 
interruption request that resulted from detecting an invalid 
address. If LS is selected, the storage-ripple microprogram 
begins at address 0 and loops through all addresses in LS. 
Manual intervention (e.g., system reset or IPL) is required 
to exit from the storage-ripple microprogram. 

The storage-ripple microprogram may also be used in 
troubleshooting by loading all storage locations with a 
predetermined value and then reading back the data. 

· Storage-Ripple-Store Function 

This function allows storing data in all locations of LS or 
main storage. To accomplish this, the CE must be in the 
stop loop. Enter the data to be stored into the DATA 
switches, and position the STORAGE SELECT switch 
(N15) to select LS or main storage. Enter 800006 (hex) 
into ADDRESS switches 0--23, and depress ROS 
TRANSFER. The data previously entered into the DATA 
switches is continually stored in all locations in main or 
local storage. Also, correct parity is placed in the storage 
protect keys on main storage ripple. Incorrect data may be 
stored if the DAT A switches are changed when ROS is in 
the storage-ripple-store routine. To terminate the routine 
without causing bad data in storage, momentarily place the 
STORAGE SELECT switch in LOCAL; then depress 
SYSTEM RESET (P30). The ROS microprogram for the 
storage-ripple-store function is shown in Diagram 6-18. 

Because there is no automatic means of clearing main 
storage or LS, the storage-rippk-store microprogram may 
be used for this purpose. 

Storage-Ripple-Display Function 

This function allows reading and displaying of data from all 
locations in LS or main storage. The storage-ripple-display 
microprogram continuously reads all locations in LS or 
main storage as determined by the setting of the STORAGE 
SELECT switch (N13). The CE must be in the stop loop 
before ROS TRANSFER is depressed. To execute the 
storage-ripple-display routine, enter 800000 (hex) into the 
ADDRESS switches, select main storage or LS, and depress 
ROS TRANSFER (Diagram 6-18). If LS is selected by 
means of the STORAGE SELECT ~witch, the data is 
contained in S and PAL (32-63). If main storage is 
selected, the data is contained in AB and ST. The data may 
then be displayed, using roller switches. Data is checked in 
PAL for correct parity. 

To terminate the routine, depress SYSTEM RESET 
(P30). 

STOP ON ROS ADDRESS/REPEAT ROS ADDRESS 
SWITCH 

The STOP ON ROS ADDRESS/REPEAT ROS ADDRESS 
switch (Diagram 6-17) is active only in state one or zero or 
in test mode. The test indicator is lit when this switch is in 
either active position. 

The STOP ON ROS ADDRESS position causes the CE 
to stop when it gets a successful compare between the ROS 
Address register and Address keys 8-19. The selected ROS 
address is displayed in the previous ROSAR register, roller 
1 position 4. The ROS word bits are displayed in the ROS 
Data register, position 4 of rollers 2, 3, and 4. When a ROS 
address compare stop has stopped the CE, single-cycle 
mode may be entered. Maintenance personnel should be 
aware that stopping the CE in a storage cycle may cause 
loss of data. 

The REPEAT ROS ADDRESS position causes the 
continuous reading out of a ROS word (Diagrams 6-17 and 
6-4). The ROS word address is specified by Address keys 
8-19. When the desired ROS address is entered in the 
Address keys and ROS TRANSFER is depressed, con
tinuous machine cycles are taken, fetching the specified 
ROS word on each cycle. All storage requests are blocked. 
Changing the selected ROS address (Address keys 8-19) 
while the CE is cycling in the REPEAT ROS ADDRESS 
function may cause ROS parity checks. 

SYSTEM AND SUBSYSTEM PSW REST ART AND WAIT 
STATE 

The performance of system or subsystem PSW restart 
functions result from depression of the PSW RESTART 

7201-02 FETOM (7/70) 4-13 



pushbutton on the CE control panel. They occur with the 
System Interlock key on or off, respectively, and perform a 
system or subsystem reset accordingly. The PSW REST ART 
pushbutton is active only in state one or zero or in test, 
unless the CE System lnte.rlock key is on. Each forces the 
CE into the stop loop and causes the IPL - PSW 
microprogram branch from the stop loop (Diagrams 64 and 
6-8, FEMDM). In addition, a system PSW restart causes the 
CE io configure elements of a subsystem (per MAIN 
STORE and LOAD UNIT SELECT switches) to itself and 
to each other in state three. Any other elements not in test 
are configured to the selected subsystem in state three. The 
PSW from PSA location 0 is then loaded (Diagram 5-601, 
FEMDM). 

After the new PSW is fetched, the CE continues 
processing if the RA TE switch (Q25) is in PROCESS. 

The 'stop' and 'manual' triggers are reset at the 
beginning of the PSW-restart microprogram (Diagrams 64 
and 6-8). The PSW REST ART pushbutton causes entry to 
the normal load PSW routine, which refills Q, R, and E. 

At every end-op, PSW(14) is tested (Diagram 6-19, 
FEMDM). If PSW(14) = 1, the Wait state is entered [If 
PSW(14) = 0, the CE is placed in the Running state]. The 
wait-state routine is depicted in Diagram 6-20, FEMDM. If 
the interval timer is to be stepped, the wait microprogram 
loop is re-entered after stepping the timer. If STOP (S30) is 
depressed, the stop loop is entered. When a restart from the 
stop loop is executed, the Wait state is re-entered if 
PSW(14) = 1. 

If an interruption causes a new PSW to be loaded into 
the CE, PSW(14) is again tested, and the Wait state is 
re-entered if PSW{14) = 1; otherwise,_ the CE is placed in 
the Running state. 

When PSW RESTART is depressed, the pushbutton 
signal is ANDed with the 'IPL-PSW' micro-order. When the 
stop loop microprogram senses that PSW REST ART has 
been depressed, ROSAR{l 1) is set, causing entry to the 
PSW restart microprogram. A new PSW is loaded, and 
program execution continues. 

DISABLE INTERVAL TIMER SWITCH 

The DISABLE iNTERVAL TIMER switch (N11), when 
placed in the down position, prevents the interval timer 
[main storage PSA location 80, decimal (50 hex)] from 
being advanced (Diagram 6-21, FEMDM) only if the CE is 
in state zero or in test, regardless of the CE System 
Interlock key position. In the center position, the timer is 
stepped at regular predetermined intervals. 

In addition to the switch, the timer is disabled when the 
Diagnose instruction sets MCW(20) (disable timer bit) or 
when operating in the: 
1. Stop-loop routine. 

4-14 (7/70) 

2. Single-cycle mode. 
3. Instruction-step mode. 
4. Repeat single-instruction mode. 
5. Scan mode. 

The· DISABLE INTERVAL TIMER switch is inactive 
when the PULSE MODE switch (N21) is in the TIME 
position and the 'pulse mode initialization' trigger is set. 
When this switch is in the down position, the TEST 
indicator (S48) is lit. 

Note: Do not disable the interval timer when operating in 
multiprogramming or multiprocessing mode. 

INTERRUPT PUSHBUTTON 

The INTERRUPT pushbutton initiates dn external inter
ruption by setting the _'console signal' trigger. If PSW(7) = 
1, an interruption is taken after the current instruction, and 
interruptions of higher priority are completed. If PSW(7) = 
0, the interruption request remains pending. 

During the interruption, PSW(25) is made a 1, indicating 
that the INTERRUPT pushbutton is the source of the 
interruption; This pushbutton is effective only if the CE is 
in state one or zero or in test, unless the CE System 
Interlock key is on. 

CE CHECK CONTROL SWITCH 

The CE CHECK CONTROL switch (Nl 7), a three-position 
toggle switch, controls the system when a machine check is 
encountered. The machine checks that set the error trigger 
and the logic controlled by the CE CHECK CONTROL 
switch are shown in Diagram 6-22, FEMDM. The TEST 
indicator (S48) is lit when this switch is in any position 
other than PROC. 

When the CE CHECK CONTROL switch is in PROC and 
a machine check is detected, and PSW(13) = 1 (machine 
check mask bit), the CE is stopped and the machine status 
is logged out to main storage. A machine check interruption 
is then executed. If PSW(13) = 0, the check is ig.nored and 
no logout or interruption occurs. 

When CE CHECK CONTROL is in STOP and a machine 
check is detected, the CE clock is stopped and no logout 
occurs. The error trigger is set; the type of error may be 
determined by examining the roller switches. If CHECK 
RESET (P35) is depressed, operation is resumed, but the 
results may be unpredictable. 

When CE CHECK CONTROL is in DSBL and a machine 
check is detected, logout and interruptions do not occur, 
and the operation is not terminated. Program execution 
continues, ignoring machine checks. 



INHIBIT CE HARDSTOP SWITCH 

The INHIBIT CE HARDSTOP switch is active only in state 
zero or in test. This switch prevents a CE hardstop which 
would otherwise result from errors which cause the CE to 
send. ELC to other CEs in the system. Operation of this 
switch does not interfere with the normal handling of most 
CK REG 1 or 2 monitored errors per the CE CHECK 
CONTROL switch. 

PULSE MODE SWITCH 

The PULSE MODE switch (N20) provides a means of 
looping through a number of machine cycles, starting at a 
selected address, or of l~oping each time the interval timer 
is advanced. This switch has three positions: PROC 
(process), normal CE operation; TIME; and COUNT. 

The CE must be in the stop loop before entering or 
leaving pulse mode operation. The PULSE MODE switch is 
inoperative during repeat-instruction mode. 

Two triggers control pulse mode operation: 'pulse mode 
adjust' trigger and 'pulse mode initialization' trigger 
(Diagram 6-23, FEMDM). The 'pulse mode adjust' trigger 
determines when to force an overriding branch to the 
pulse-mode-initialization microprogram and when to reset 
the CE. The 'pulse mode initialization' trigger is set by 
depressing START (S25) with the 'pulse mode adjust' 
trigger set. As a result, pulse mode operation begins. 

The TEST indicator (S48) is lit when the PULSE MODE 
switch is in any position other than PROC. 

PROC Position 

The PROC position is used during normal program execu
tion. 

TIME Position 

• Load program into main storage. 

• Place starting address of program into main storage bytes 
5-7 of PSA location 0 by means of ADDRESS switches. 

• Enter stop loop. 

• Place PULSE MODE in TIME position. 

• Depress ST ART. 

When the PULSE MODE switch is in the TIME position, 
instruction execution begins at the address specified in the 

address portion of the doubleword located in PSA location 
0 of main storage. Therefore, the starting address must be 
loaded (by means of the ADDRESS switches) into bits 
40-63 of the doubleword located at PSA location 0 before 
depressing START (S25). Entering data manually into main 
storage (from the DATA switches) must be done with the 
CE in the stop loop and with STORE (R32) depressed. The 
RATE switch (Q25) must be in the PROCESS position. 

The initial setup conditions are: 
1. The program is .in main storage. 
2. The starting address is in main storage bytes 5-7 of PSA 

location 0. 
3. The CE is in the stop loop. 
4. The PULSE MODE switch is in the TIME position. 

A flowchart of the pulse mode operation is shown in 
Diagram 6-24, FEMDM. When the CE is in the stop loop 
and the PULSE MODE switch is set to TIME, the 'pulse 
mode adjust' trigger is set (Diagram 6-23). Depressing 
START sets the 'pulse mode setup~ latch. This action fires a 
350-ns singleshot that initiates the pulse-mode function. 
The 'pulse mode initialization' and the 'force address' 
triggers are set. This action, coupled with the set 'pulse 
mode adjust' trigger, sets ROSAR(9 ,11) to force an address 
of 005 into ROSAR. A Machine reset is generated. Note 
that the 'reset manual control' signal is inhibited (Diagram 
6-23). The CE then enters the pulse-mode microprogram. 
The 'pulse mode adjust' trigger is reset by the pulse-mode 
microprogram. The loading of the count into the MCW is 
meaningless. Instructions are then executed until the 
interval timer is stepped, at which time the 'pulse mode 
adjust' trigger is set. Because the 'pulse mode initialization' 
trigger is set, a system reset occurs, an address of 005 is 
forced into ROSAR, and the pulse-mode microprogram is 
re-entered. This action results in executing the program 
from clock step to clock step. Looping through the 
pulse-mode microprogram and the main storage program 
continues until manually stopped. 

COUNT Position 

• Load program into main storage. 

• Place starting address of program into main storage PSA 
0 bytes 5-7 by means of ADDRESS switches. 

• Enter stop loop. 

• Place PULSE MODE in COUNT position. 

• Enter number of machine cycles [up to 7FF (hex)] to 
be executed into DATA switches 53-63. 

• Depress START. 

7201-02 FETOM (7 /70) 4-15 



When the PULSE MODE switch is in the COUNT position, 
instruction execution begins at the address specified in the 
address portion of the doubleword located in PSA location 
0 of main storage, and proceeds through the number of 
machine cycles entered into DATA switches 53-63. Each 
time the cycle counter is reduced to 0, a machine reset 
occurs and the program is re-entered. 

Except for PULSE MODE being in the COUNT position 
and the count entered into DATA switches 53-63, the 
initial setup conditions are similar to the time-mode 
routine. As shown in Diagram 6-24, the same microprogram 
is executed for both COUNT and TIME positions. The 
program in main storage is entered at end-op of the 
microprogram. The cycle counter is reduced by 1 on each 
machine cycle. When the counter equals 0, a machine reset 
occurs, and the pulse-mode microprogram is again 
executed. The looping through the microprogram and the 
storage program continues until manually stopped. 

360 MODE SWITCH 

• 360 mode allows operation of System 360 programs on 
a 9020D or E subsystem. 

• 360 mode operation can use only IOCE 1 for 1/0 
operations. 

When running System/360 programs on a 9020D/E sub
system (comprising a CE, one or more SEs, and IOCE 1), it 
is necessary to inhibit certain actions which are not 
compatible with System/360 operating programs. 

The 360 mode indicating switch on the CE operator's 
panel turns the '360 mode' latch on if the CE is in state 
one, zero, or in test. It accomplishes the following when 
on: 
I. Causes the subsystem to operate as through bit 6 of the 

CCR (Inhibit Logout Stop) is set on. The system cannot 
perform split logout or issue logout stop to an SE. 
PSBARs are set to zero and cannot be stepped. (PSA is 
not relocatable.) · 

2. Inhibits manipulation of PSW bits 16-19 (extended 
system mask) on Load PSW and Set System Mask. 

3. Causes a PSA lockout to create a machine-stop con
dition. 

4. Causes an SE-stopped condition to create a machine-stop 
condition. 

5. Causes all unique 9020D/E System instructions to be 
invalid. 

6. Causes 1/0 processor operations to cease. 

Only IOCE I will operate in 360 mode and only if the 
CE and IOCE I are configured to each other. If IOCE I is 

4~16 (7/70) 

not configured to the CE in 360 mode, the CE is unable to 
execute 1/0 operations. 

When in 360 mode, depressing the 360 Mode switch 
returns the subsystem to 9020 mode. 360 mode is also 
released by the following: 
1. An External Start issued to the CE. 
2. A CE Power-On reset. 
3. A reconfiguration which places the CE in state two or 

three. 
4. FLT Load. 

LOG OUT PUSHBUTTON 

The LOG OUT pushbutton (S35) logs the machine status 
into fixed locations of the PSA. This pushbutton is active 
only in state one, zero, or in test unless the CE System 
Interlock key is on. It is enabled by the 'manual' trigger 
(stop loop) or 'not pass' pulse (clock stopped). The logic 
associated with the LOG OUT pushbutton is shown in 
Diagram 6-25, FEMDM. Refer to Section 2 of this chapter 
for a complete discussion of logout. 

SCAN MODE, ROS/PROC/FLT SWITCH 

The SCAN MODE, ROS/PROC/FLT switch (NS) takes the 
CE out of program control for FLTs or ROS tests. It has 
three positions: 
1. ROS: When in this position and LOAD (S51) is 

depressed, ROS tests are read into the selected SE by the 
IOCE selected by the LOAD UNIT switches. Signals 
from the IOCE cause the tests to be executed in the CE. 

2. PROC - normal position: Normal CE processing takes 
place. 

3. FLT: When in this position and LOAD is depressed, 
FLTs are read into the selected SE from the IOCE 
selected by the LOAD UNIT switches. Signals from the 
IOCE cause the tests to be executed in the CE. 

Logic associated with this switch is shown in Diagram 
6-26, FEMDM. The interval timer is disabled and the TEST 
indicator (S48) is lit when this switch is in the ROS or FLT 
position. Refer to Section 2 of this chapter for a complete 
discussion of FLT/ROS tests. 

SCAN MODE, REPEAT SWITCH 

The SCAN MODE, REPEAT switch (N 1) is used to 
continuously repeat the ROS test or FLT in main storage or 
the new test being sought. When this switch is in the 
REPEAT (down) position, depressing START (S25) causes 
the ROS test or FLT in main storage to be executed 
repeatedly by forcing the ROS test sequencer to 3. 



BACKSPACE FLT PUSHBUTTON 

The BACKSPACE FLT pushbutton (S33) is gated by ROS 
or FLT Test mode. It allows backspacing of the test tape by 
one record with each depression. The pushbutton sets the 
'FLT backspace' trigger which resets the CE and sends 
subsystem reset to the IOCE and the line FLT BACK
SPACE IOCE. See Diagram 6-27, FEMDM. Testing may be 
restarted by performing a ROS test or FLT IPL. 

FREQUENCY ALTERATION SWITCH 

The FREQUENCY ALTERATION switch (SS) is used to 
increase the CE clock frequency. When this switch is in the 
DISABLE position, each machine cycle is 200 ns (normal 
speed). With the CE in state zero and test and the 
FREQUENCY ALTERATION switch in the ENABLE 
'position, the CE clock cycle is decreased to 195 ns ±1/2 ns 
(Diagram 4-3, FEMDM). 

LAMP TEST/ ALLOW INDICATE PUSHBUTTON 

The lamp test function of the LAMP TEST/ ALLOW 
INDICATE pushbutton is enabled any time the CE is 
powered on. This function provides a lamp test for those 
indicators on the CE control panel which are not associated 
with the roller switches or power. These include the four 
state indicators, 360 MODE, CK REG 1 SUMMARY, CK 
REG 2 SUMMARY, SYSTEM, MANUAL, WAIT, TEST, 
and LOAD indicators. Duplicate lamps on the SC or CC are 
also tested by the LAMP TEST function: state indicators, 
MANUAL, WAIT, LOAD, and LOGIC CHECK (CK REG 1 
or 2). 

The allow-indicate function of the LAMP TEST/ALLOW 
INDICATE pushbutton is enabled only in state one or zero 
or in test mode. When the CE hardstops during a logout . 
(i.e., because of a storage error), all the roller indicators are 
on. The allow-indicate function allows the roller indicators 
to display the state of the machine instead of having all 
indicators on. This function is also useful when single
cycling through scan-in or logout. 

Allow-indicate prevents the CE logic from using the 
roller indicator buses as a data path; therefore, use of this 
function while scan-in or logout data is being gated from 
the indicator buses will invalidate the data. It should not be 
used unless the CE is either hardstopped or in single-cycle 
mode. 

INDICATE RLR 1 POSITION 6 

This switch (N27) selects either the L-register or the 
M-register for display if position 6 of roller 1 is selected. 

7201-02 CE CONTROL PANEL INDICATORS 

·On panel E of the system control panel, there are six rows 
of indicators, with 36 indicators (implicitly numbered 
0-35) in each row (Diagram 6-1). Associated with each row 
of indicators is a six-position roller switch. The operator 
may display the contents of a register or the status of a 
trigger or latch by placing the proper roller switch in the 
correct position. A roll chart above each row of indicators 
shows the information being displayed for each indicator. 
As the roller position is changed, the roll chart rotates to 
correspond with the roller position. The roller switch, the 
positions and the information displayed for each row of 
indicators are shown in Diagram 6-2. 

A lamp test for the roller switches is provided by 
positioning these switches between detent positions. 

Other indicators on the CE control panel indicate . 
machine status, check conditions, and power status, as 
follows: 

1. SYSTEM (S45) - Lights when the CE is neither in the 
wait state, stop loop, nor has the 'pass pulse' trigger 
reset. 

2. MANUAL (S46) - Lights when the CE is in the stopped 
state. The CE is executing the stop loop microprogram. 

3. WAIT (S4 7) - Lights when the CE is in the wait state. 
The CE is stopped in the wait microprogram if the 
MANUAL indicator is not lit. If this indicator is lit, the 
'stop' trigger has been set and the CE is in the stop loop. 

4. TEST (S48) - Lights when a manual control is not in a 
position for normal processing or a maintenance 
function is being applied, as follows: 
a. The RA TE switch (Q25) is in a position other than 

PROCESS. 
b. The CHECK CONTROL switch (N19) is in STOP or 

DSBL. 
c. The DISABLE INTERVAL TIMER switch (N13) is 

down. 
d. The ADDRESS COMPARE switch (NIS) is down. 

e. The PULSE MODE switch (N21) is in TIME or 
COUNT. 

f. The SCAN MODE, ROS/PROC/FLT switch (N3) is in 
ROS or FLT. 

g. The REPEAT INSN switch (N23) is in MPLE or 
SINGLE. 

h. The DEFEAT INTERLEA YING switch (N9) is in NO 
REV or REV. 

i. ROS ADDRESS switch (N25) is set to any position 
other than PROC. 

j. The Diagnose instruction is active. 
k. The LAMP TEST pushbutton is depressed. 

5. LOAD (S49) - Lights when the CE is in a load state 
(IPL microprogram). The LOAD indicator is turned off 
after a successful load. 

7201-02 FETOM (7/70) 4-17 



6. CHECK REG 1 (K52) - Lights on any CHECK REG 1 
error. The roller switches must be examined to deter
mine the specific error. 

7. CHECK REG 2 (M52) - Lights on any CHECK REG 2 
or HARD STOP error. The roller switches must be 
examined to determine the specific error. 

8. STATE THREE, TWO, ONE, ZERO (H2-6) - Indicate 
the CE state as decoded from the CE CCR bits 0 and 1. 

4-18 (7/70) 

State is set by a SCON instruction, System IPL (state 3) 
or System PSW Restart (state 3). 

POWER CONTROLS AND INDICATORS 

For CE power indicator and control information, refer to 
the 9020 D/E Power Controls and Distribution FETOM. 



SECTION 2. MAINTENANCE FACILITIES 

The 7201-02 maintenance facilities available to mainte
nance personnel are: (1) Diagnose instruction and asso
ciated MCWs; (2) Resident micro-diagnostic; (3) Logout, 
ROS tests, and Fl Ts; ( 4) ripple tests; (5) diagnostic 
programs; and (6) marginal checking. For a discussion of 
the CE control panel, refer to Section 1 of this chapter. 

DIAGNOSE INSTRUCTION AND MCWS 

The Diagnose instruction (Section 8 of Chapter 3) has two 
purposes: (1) It is available to the diagnostic programmer as 
a maintenance aid when the CE is in state zero. (2) It is 
available to the system programmer for 9020 operations 
when the CE is in state three, two, or one. 

The Diagnose instruction has an SI format with an op 
code of 83: 

83 12 B 1 Dl 
7 8 15 16 19 20 31 

The operations that the Diagnose instruction can per
form (when used by the diagnostic programmer with the 
CE in state zero) are selected by the 12 field of the 
instruction and by the bit configuration of the doubleword 
addressed by the storage operand address (contents of GPR 
addressed by Bl,+ Dl). This doubleword is the MCW and 
bears the same relation to the Diagnose instruction as the 
CCW does to an 1/0 instruction. That is, the Diagnose 
instruction addresses the location of the MCW, and the 
MCW specifies the machine function. Note that an 
exception to this analogy is the 12 field, which can also 
designate certain diagnostic functions. 

The bits of the 12 field have the following meaning: 

Defeat 
lntlv 

No Rev Rev 
Diag-
FLT_ 

10 11 15 

1. Bit 8, Defeat Interleaving and No Reversal of Storage 
Addresses. Interleaving is disabled, and no even/odd 
storage area reversal occurs. 

2. Bit 9, Defeat Interleaving and Reverse Storage 
Addresses. Interleaving· is disabled, and the even and odd 
storage areas are reversed. 

3. Bit 10, Diagnose FLT. Allows portions of FLTs to be 
executed under control of the Diagnose instruction. 
While the FLTs are being executed, special CE functions 

are generated, and storage requests and clock are 
inhibited. This bit, which is used in conjunction with the 
setting of address 6BO in ROSAR, simulates the FLT 
position of the SCAN MODE, ROS/PROC/FLT switch 
on the CE control panel. 

· 4. Bits 1 I -15. Spares. 

THEMCW 

When the Diagnose instruction is executed, the MCW used 
is a 64-bit word in the main storage location specified by 
the storage operand address. It designates the diagnostic 
function(s) to be performed. The MCW is a 32-bit word 
when used to control scan operations. For ROS tests and 
FLTs (Scan operations), the MCW is contained in word 1 of 
each test on the ROS or FLT test tape and specifies the 
control conditions necessary for the test, such as the 
expected result and the ROS word to be used for gating 
control. A different format is used for each MCW. 

Diagnose Instruction MCW for CE in State 0 

If executing the Diagnos~ instruction when the CE is in 
state zero, the MCW applies as follows: 

ROS Address 
a.. u Reverse I-

I-I- u I--' 

(X) I (X) I (X) 

Count 
V) V) Parity UVl Q er: 

UJ 

0 1 2 5 6 7 8 19 20 21 31 

~~·11=· -LDisable Timer 
Expected Result 

Conditional Terminate 

{ 

2 Force SADDER FS Check 
3 Reverse Mark Parity 
4, 5: Reverse Storage Address Reg Parity 

~-------Start Count on Storage Address Compare 

~-------Reverse SAB Tag Parity 

32 

Storage 
Encode 

35 36 

DG 
Select 

39 40 

CVG 
Select 

45 46 47 48 49 50 51 63 

~
Wrap DE 
Reset Check Regs 
Invert Ext Reg Peri ty 
Set Diagnose SE 1 
Force DG Request 
Diagnose Reverse 
Normal OP 

7201-02 FETOM (7/70) 4-19 



1. Bit 0, Reverse SAB Tag Parity. 
2. Bit 1, Start Count on Storage Address Compare. When 

used with bit 6, the FLT counter does not begin 
decrementing until the SCI addresses the same location 
as set into the MAIN STORE ADDRESS COMPARE 
(ADDRESS switches 9-28) switches. 

3. Bit 2, Reverse Serial Adder Full-Sum Parity. Reverses 
the parity bit in the full-sum latch of the serial adder, 
thus allowing a test of the parity-checking circuits. 

4. Bit 3, Reverse Mark Parity. Reverses the parity of the 
mark bits being sent from the SCI to main storage, thus 
allowing a test of the mark parity-checking circuits in 
main storage. 

5. Bits 4 and 5, Reverse SAR Parity. Cause the parity bits 
which are sent to the storage address register to be 
reversed as follows: 
00 - No parity reversal. 

· 01 - Reverse low-order parity bit. 
10 - Reverse next-higher parity bit. 
11 - Reverse high-order parity bit. 

6. Bit 6, Conditional terminate (Log on count). Causes a 
logout to main storage when the FLT counter reaches 
0. At the conclusion of the logging operation, the CE 
performs a machine check interruption. 

7. Bit 7, Expected result (ERSLT). 
8. Bits 8-19, ROS Address. When the Diagnose instruc

tion has completed its execution phase, these address 
bits are placed in ROSAR, and the operation branches 
to this location. The address placed in ROSAR can 
specify any _location in ROS. Refer to Diagram 5-609, 
Sheet 3, FEMDM, for the most frequently used ROS 
address. 

9. Bit 20. Disable interval timer. 
10. Bits 21-31, Count. Specify the number of cycles that 

are to occur before the CE enters a logout routine. The 
count field is as follows: MCW(21-25) is loaded into 
the address sequencer; MCW(26-29) is loaded into the 
FLT counter; MCW(30, 31) is loaded into the FLT 
clock. By combining the address sequencer, the FLT 
counter, and the FLT clock, a maximum count of 204 7 
(11 bits) can be obtained. (These three counters are 
combined only when the MCW is used with the 
Diagnose instruction.) The FLT clock controls the 
decrementing of the FLT counter and address 
sequencer by 1; when the three counters combined 
equal 0, the logout routine is started. 

11. Bits 32-35. Used to select a DE during 'Force DG 
Request' and 'Wrap DE'. 

12. Bits 36-39. Used to select a DG during 'Force DG 
Request' and 'Wrap DE'. 

13. Bits 40-45. Used to select a CVG during 'Force DG 
Request' and 'Wrap DE'. 

14. Bit 46. Reverse normal op. 
15. Bit 47. Used to 'Force DG Request' (with bits 32-45). 

4-20 (7/70) 

16. Bit 48, Set diagnose SE 1. Blocks generating 'invalid 
address' decoded, when SAB bit 0=1. 

17. Bit 49, Invert parity. Used to reverse external register 
parity for byte 0 and SDBI parity for byte 4, to allow 
gating bad parity into the receiving element's CCR 
using a SCON instruction to check the receiving 
element's ability to recognize bad CCR parity. 

18. Bit 50, Used to reset any bits on in the Check registers. 
19. Bit 51, Used with bits 32-45 to initiate 'Wrap DE'. 

Diagnose Instruction MCW for CE in State Three, Two, 
or One 

When the Diagnose instruction is executed with the CE in 
state three, two, or one, the MCW applies as follows: 

Operationol MCW Format 

ROS Address -(X) D 

7 8 19 20 31 

J~:::~:--]-
~36 49 50 51 63 

L Define Storage Frame LReset Check Regs 

1. Bits 0-7. Not used. 
2. Bits 8-19, ROS address. (Must contain FD in bits 8-15 

or a program specification error ensues.) Refer to 
Diagram 5-609, FEMDM. 

3. Bits 20-31. Not used. 
4. Bits 32-35. Used to select a storage frame when 

executing the logout storage operational kernel. 
5. Bits 36-49. Not used. 
6. Bit 50. Used to reset any bits on in the Check registers. 
7. Bits 51-63. Not used. 

Note: The I2 field on the Diagnose instruction is also 
<legated and has no effect when the CE is in state three, 
two, or one. 

ROS Test MCW 

The MCW for ROS tests, the right half of word 1 of each 
test, contains the following control information about the 
test: 

ROS Address 

345678 

Disoble Timer 

Scan Out 
Address 

192021 2526 

Cycle 
Count 

31 



1. Bits 0-3, Bit Plane. Contain .the number of the ROS bit 
plane tested. These bits are for display only; the ROS 
word is selected by the ROS address in bi ts 8-19, and 
the bit to be tested is selected by the mask. 

2. Bit 4, always off, since the right word always contains 
the trigger status for ROS tests. 

3. Bit 5, Unconditional Terminate (UT). If this bit equals 
1, the test always causes a stop. 

4. Bit 6, Conditional Terminate (CT). If this bit equals 1 
and an ·error is encountered, testing is terminated. 
However, if it equals 1 and the test does not detect an 
error, the CE continues with the next ROS test. If this 
bit equals 0, termination is dependent upon the status of 
MCW(5). 

5. Bit 7, Expected Result (ERSLT). Defines what the 
status of the ROS bit being tested should be. Comparing 
the ROS bit with the 1 or 0 in this bit determines 
whether the test passed or failed. 

6. Bits 8-19, ROS Address. Contain the ROS .address of 
the micro-instruction that contains the bit to be tested. 

7. Bit 20, Inhibit Timer. Used for display only; indicates a 
successful stop in hardcore. 

8. Bits 21-25, Scan Out Address. Specify the scan-out 
address (roller switch position) of the portion of the 
ROSDR that contains the bit to be tested. This address 

·will be either 15, 16, 17, or 19. 
9. Bits 26-31, Cycle Count. Determine the number of CE 

clock cycles ROS must cycle after scan-in and before 
scan-out. 

FLTMCW 

The MCW in the right half of word 1 of every FLT contains 
control data about the test being performed. Pertinent bits 
of the MCW are retained in the MCW register during the 
running of an FLT. Other bits set the address sequencer, 
determine the ROS starting address, and fix the number of 
clock cycles the CE will take following scan-in. 

Following is the format of an MCW during an FLT: 

ROS Address 

1. Bits 0-3. Not used. 

Disable Timer 

Scan Out 
Address 

19 20 21 25 26 

Cycle 
Count 

31 

2. Bit 4, LW. Defines whether the left half or right half of 
the doubleword to be scanned out contains the 'exit' 
trigger status. If bit 4 equals 1, the left half is the desired 
word. If bit 4 equals 0, the right half.contains the trigger 
status. 

3. Bit 5, UT. Always causes a stop when it equals 1. 
4. Bit 6, CT. May cause a stop, depending on the outcome 

of the test. If this bit equals 1 and an error is 
encountered, testing is terminated. This bit is always set 
in zero-cycle and one-cycle FLTs currently in use. ' 

5. Bit 7, ERSLT. Defines what the status of the 'exit' 
trigger should be. Comparing the 'exit' trigger state with 
the I or 0 in this bit determines whether the test passed 
or failed. 

6. Bits 8-19, ROS Address. Contain the ROS address of 
the ROS word to be used for gating control. 

7. Bit 20, Inhibit Timer. Used for display only; indicates a 
successful stop in hardcore. 

8. Bits 21-25, Scan Out Address. Specify the scan-out 
address of the scan-out word containing the status of the 
'exit' trigger. 

9. Bits 26-31, Cycle Count. Fix the number of times the 
CE is to cycle following scan-in. 

RESIDENT MICRO-DIAGNOSTIC 

The resident micro-diagnostic is a ROS-controlled sequence 
for checking CE registers and data paths. The program may 
be started (providing the CE is in state zero or one and in 
manual mode) by doing a ROS transfer to address FAA. 
The program will loop on itself, alternately using an all O's 
and an all l's pattern to transfer from one register to 
another. Set Address key 29 on to cause the program to 
load data from Data keys (0-63) instead of using all O's, all 
l's patterns. 

Set CHECK CONTROL switch to STOP position to stop 
on an error (active only in state zero). Failures show up as 
adder checks, local store bus checks, SDBI checks, E
register parity errors, ROS parity errors, or multiply decode 
parity errors. The following registers and functions are 
tested: S, T, A, B, Local Store, K, D, IC, F, G, Select, 
External, DAR Mask, M, N, Q, R, E, and multiple decode. 

If parity errors occur in Q, R, N, or E registers, set 
Address key 30 on to cause . the program to load good 
parity. MAIN STORAGE SELECT switch must address a 
configured SE. Refer to LADS AAOO 1. 

INTRODUCTION TO LOGOUT, ROS TESTS, and FLTS 

Logout stores the status of the CE control panel indicators 
in fixed positions of main storage when a trouble symptom 
occurs; the data logged out may be subsequently recalled 
for analysis, although the status of the indicated logic is 
changed from what it was when the symptom appeared. 
ROS tests check each bit position of every ROS word. 
FLTs check the CE at the logic block level. 

7201-02 FETOM (7/70) 4-21 



Logout, ROS tests, and FLTs are implemented by 
special hardware called scan logic. Therefore, when 
employing these maintenance aids, the CE is said to be in 
the scan mode. 

The scan logic performs the following: 
1. Controls the operation of FLTs. 
2. Records the state of the CE when a machine malfunc

tion is detected (logou.t). 
3. Executes the Diagnose instruction. 
4. Controls the operation of the ROS tests. 

In the discussion that follows, certain terms are used 
which refer only to scan operations. These terms are 
defined as follows: 
1. Scan mode. The CE is said to be in "scan mode" during 

those operations that use the scan logic; i.e., FLT, ROS 
tests, and logout. 

2. Scan in. The process of loading CE register positions and 
control triggers with a predetermined bit pattern from 
storage. 

3. Scan out. The sampling of the status of certain triggers 
via a special data path from the indicator logic to PAL. 

4. Logout. The function that transfers status indicators and 
register contents to storage when signaled by the CE. 

SCAN LOGIC FUNCTIONAL UNITS 

The scan logic functional units (Diagram 6-101, FEMDM), 
in conjunction with the CE operational hardware and the 
ROS microprogram, control the CE during FLT, ROS tests, 
logout, and Diagnose instruction· execution. During these 
operations, the ·scan logic supplements ·and sometimes 
overrides the operational CE logic. In addition, the scan 
logic provides direct data flow paths (scan in) into triggers 
not ordinarily having direct entry paths and from indictable 
storage devices to PAL (scan out). 

During scan operations, CE timing is controlled by two 
clocks (scan clock and FLT clock), and sequential opera
tion is determined by three counters: address sequencer, 
FLT counter, and ROS test sequencer. These counters 
time-share the scan counter latches and decrementer. That 
is, although each counter is used for a specific function at a 
specific time, its contents are all decremented by the scan 
counter decrementer. For certain operations, the address 
sequencer and the FLT counter can be logically joined to 
triggers in the FLT clock to form an 11-bit cycle counter. 

The five-bit address sequencer contains the low-order 
bits of storage word addresses, and its decoded value 
controls the gating signals to the scan-in or scan-out logic. 
The address sequencer also forms the high-order five bits of 
an 11-bit counter (as mentioned previously) for the 
Diagnose instruction and pulse-mode functions. The six-bit 
FLT counter counts CE clock signals when required; the 

4-22 (7/70) 

low-order two bits of the FLT counter, which are contained 
in the FLT clock, count oscillator signals reaching FLT 
controls. The three-bit ROS test sequencer sequences the 
scan hardware during ROS tests. 

Each ROS test or FLT has an associated MCW which 
allows the test to be controlled by a test pattern on tape. 
MCWs, including the Diagnose instruction MCW, are stored 
in the scan functional units and decoded by scan hardware. 

Scan Timing 

Scan timing is controlled by two clocks, the scan clock and 
the FLT clock. The scan clock is synchronized with the CE 
clock and produces clock and not-clock signals similar to 
the CE clock. Normally, the scan clock runs continuously, 
whether the CE is in scan mode or functional operation, 
and can be made to run with the CE clock off. The output 
of the scan clock steps the FLT clock. 

The FLT clock is used in conjunction with the scan 
clock to provide scan control timing. It is synchronized 
with the scan and CE clocks and provides four output 
signals, FLT-time 0-3. The two FLT clock triggers can be 
logically combined with the address sequencer and the FLT 
counter to form an 11-bit cycle counter. 

Scan Clock Highlights 

• Consists of inverters which delay 'gated oscillator D' 
signal from CE clock, and therefore is a symmetrical 
clock. 

• Distributes clock and not-clock signals with delay levels 
of P0-3 to P2. 

• Runs continuously unless blocked by SCI. 

• During scan operations, CE clock is turned off, leaving 
scan clock in control. 

The scan clock (Diagram 6-102, FEMDM) consists of a 
number of inverters, each of which delays a 'gated oscillator 
D' signal from the CE clock approximately 10 ns. The 
output of each delaying inverter is distributed as a clock or 
not-clock signal with a delay level of from P0-3 to P2. (See 
Chapter 2, Section 1, for an explanation of clock, not~ 
clock, and delay levels.) The scan clock runs continuously 
unless stepped by one of the following actions: 
1. 'The 'pass pulse' trigger is reset (which also stops the CE 

clock). This trigger is set when any operation is initiated 
from the CE control panel and normally remains set 
throughout most CE operations. However, it can be reset 



by one of the following conditions if the SCI is not 
holding the CE clock on: 
a. The UT bit is set. 
b. The CT bit was on and the 'fail' trigger was set during 

a test. 

Note: The above two conditions reset the 'pass pulse' 
trigger at FLT-clock-2 time if the ROS test sequencer is 
at 0. 

c. The 'block' trigger is set. This trigger is set if one of 
the pushbuttons listed in Diagram 6-102 is depressed 
in single-cycle mode. 

2. The 'stop clock' trigger is set with the RATE switch !!Q! 
in the SINGLE CYCLE STORAGE INHIBIT position 
and with the TEST MODE, REPEAT switch not set. The 
'stop clock' trigger is set by the 'CPU 2' latch or the 
'insert key' trigger. 

3. The 'STOP 1' or 'STOP 2' micro-orders are executed. 

Because the scan clock is driven by a 'gated oscillator D' 
signal (basic clock signal delayed; Diagram 4-1, FEMDM), it 
is always in synchronization with the CE clock. The scan 
clock signals, P0-3, P0-2, P0-1, Pl, and P2 (Diagram 
6-102), are developed by passing the 'gated oscillator D' 
signal through inverters. Each inverter delays the signal 
approximately 10 ns. The P0-3 signal is the first scan c~ock 
output and is developed after being delayed by an 
adjustable time delay. (The time delay should be adjusted 
so that PO from the scan clock coincides with PO from the 
CE clock; see LADS A8002.) The P0-3 signal is then 
inverted and delayed 10 ns to produce the P0-2 signal. The 
P0-2 signal, in tum, is inverted and delayed to generate 
PO-I. The remaining scan clock signals are generated in the 
same manner as P0-2 and P0-1. These clock signals are 
distributed throughout the scan logic to time scan opera
tions. Clock and not-clock signals have the same relation to 
scan triggers and latches as CE clock and not-clock signals 
have to functional logic(see Chapter 2, Section 1). 

The advantage of having a separate scan clock for scan 
logic is that during scan operations the CE clock can be 
turned off, leaving the scan clock in control. This function 
is under control of the 'maintenance mode stop clock' 
(MMSC) trigger. (The operation of the MMSC trigger is 
discussed in "Scan Stop-CE-Clock Logic".) 

With both the scan and CE clocks running, scan 
hardware is controlled by the scan clock, and normal CE 
functions are controlled by the CE clock. 

FLT Clock Highlights 

• Provides scan control timing and counts machine cycles. 

• Consists of 'FLT clock-0' and '-1' triggers and 'FLT 
time-0' to '-3' latches. 

• Stepped by scan clock. 

• Changes at the fall of PO ( 100 time). 

The FLT clock (Diagram 6-103, FEMDM) is the prime scan 
operation sequencer which, in conjunction with the scan 
clock, provides scan control timing and counts machine 
cycles. It consists of two triggers, 'FLT clock-0' and '-1 ', 
and four latches, 'FLT time-0' to '-3'; Clock and not-clock 
signals from the scan clock step the FLT clock to provide 
the outputs shown in the timing chart. Six ~ignals are 
generated, 'clock-0' and '-1' and 'FLT time-0' to '-3'. The 
clock steps once for each machine cycle. Thus, in four 
machine cycles, the FLT clock steps from 'FLT time-0' to 
'-3' and then recycles. 

Two triggers, 'FLT clock O' and 'FLT clock 1 ', are 
stepped by scan clock signals and by the conditions of the 
four latches: 'FLT time-0', '-1 ', '-2', and '-3'. The FLT 
clock triggers function as a reverse binary counter of scan_ 
clock cycles. The FLT time latches record the count 
indicated in the FLT clock triggers. 

Assume that the 'FLT time-0' latch is set and both FLT 
clock triggers are reset (00). Because 'FLT time-I' to '-3' 
latches are reset, the rise of scan clock PO sets both FLT 
clock triggers (11). At not-clock PO time, the 'FLT time O' 
latch is reset, and at not-clock Pl time, the 'FLT time-I' 
latch is set. Then, at clock P0-1 time, both FLT clock 
triggers are reset. 

Because the 'FLT time 1' latch is set, only the 'FLT 
clock O' trigger is set at clock PO time, at which time the 
triggers equal 10. This operation continues with the triggers 
counting down binarily from 11 to 00 during clock time 
and the latches stepping up to 11 during not-clock time. 
When the trigger count is 00, the next not-clock Pl signal 
sets the 'FLT time O' latch, and the cycle is repeated. 

The FLT clock triggers are also used as the low-order 
two bits of the FLT counter and the cycle counter. As 
shown in Diagram 6-103, T(62, 63), containing MCW(30, 
31), can be transferred to these triggers during cycle 
counter operation. Operation of the triggers as part of the 
FLT counter and the cycle counter is discussed in "FLT 
Counter" and "Cycle Counter", respectively. 

Scan Counter Latches and Decrementer 

Two counters and two sequencers (Figure 4-3) control the 
sequential operation of scan-associated functions: the 
address sequencer, the FLT counter, the ROS test 
sequencer, and the cycle counter. (The latter is an 11-bit 

7201-02 FETOM (7/70) 4-23 



(Subtract 1 from address 
sequencer or subtract 1 
from cycle counter) and 
(FLT counter = 0) 

Notes: 

Address 
Sequencer 

-KU 
4 

Subtract 1 from 
Cycle Caunterf and 
FLT Clack Time 0 

f The FLT counter control signals are shown an ALD's as scan-counter signals. Also, when the FLT 
counter is being used in conjunction with the address sequencer and the FLT clock triggers as an 
11-bit counter, the control signals are shown as cycle-counter signals. 

Sequencers and counters are reset before entry of new do ta. 

Figure 4-3. Scan Counter Latches and Decrementer Data Flow 

counter composed of the address sequencer, the FLT 
counter, and the two FLT clock triggers.) Each sequencer 
or counter is decremented by routing the contents of the 
sequencer or counter through the scan counter latches and 
back to the source via the scan counter decrementer. The 
latter subtracts 1 from the value gated through it. However, 
although all counters are decremented by the scan counter 
decrementer, only one counter may be stepped during any 
one clock cycle. 

Input and Output 

Inputs to the scan counter latches are from the address 
sequencer, the FLT counter, and the ROS test sequencer. 

4-24 (7/70) 

FLT 
Counter f 

-KU 
3 

Subtract 1 from ROS 
Test Sequencer 

Scan Counter 
Latches 

Scan Counter 
Decrementer 

-KU 
4 

4 

KU 

ROS Test 
Sequencer 

. 
KU 

2 

Input is accomplished at not-clock time. The scan counter 
latch output automatically conditions the scan counter 
decrementer and, at the following clock time, the decre
menter output is transferred into the source counter or 
sequencer. Inputs to the scan counter latches and to the 
source counter or sequencer are under control of the same 
'not-clock Pl' signal as shown in Figure 4-3. This signal 
resets the counter or sequencer before the decremented 
value is entered. 

Scan Counter Decrementer 

The scan counter decrementer (Diagram 6-104, FEMDM) is 
a logic network that subtracts 1 from any value routed 



through it. For example, assume that the address sequencer 
contains 21 (decimal) or 10101. When the address 
sequencer contents are to be decremented, they are 
transferred to the scan counter latches. The value is then 
routed through the decrementer, where it is reduced to 20 
(10100) and sent back to the address sequencer. 

Address Sequencer 

• Provides data used to generate main storage addresses; 
generates signals to select scannable triggers and latches 
on scan operations; functions as five high-order positions 
of cycle counter. 

• Inputs are from T (53-57), hardware (set to 23), ROS 
micro-orders (set to 7, 13, 15, 16, 23). 

The address sequencer, a five-position trigger register, has 
two main functions: to sequence through a predetermined 
number of main storage addresses and to select the scan 
address of the scannable triggers and latches to be scanned 
out to PAL. When the address sequencer is performing the 
first function, either a fixed address or a portion of the 
MCW is placed in it, and its output is transferred to a 
storage address generator which adds the necessary bits to 
make up the PSA address. The address sequencer contents 
are then decremented and transferred to the storage address 
generator to select the next address, etc. For the second 
function, the sequence is generally the same, except that 
the contents are transferred to the address sequencer 
decoder, which brings up I of 24 gating signals to scan out 
the proper scannable triggers and latches. Decrementing is 
accomplished by transferring the address sequencer con
tents to the scan counter latches and back again via the scan 
counter decrementer. 

The address sequencer is also used as the five high-order 
positions of the 11-bit cycle counter during log-on-count or 
pulse-mode operation. This function of the address 
sequencer is discussed under "Cycle Counter". 

The address sequencer (Figure 4-4) can be loaded with 
preassigned values by micro-orders or hardware, or 
T(53-57) can be transferred to it depending upon the 
operation. Its contents can be transferred to the address 
sequencer decoder for selection of scannable triggers and 
latches, to the storage address generator for addressing 
storage, or to the scan counter latches and decrementer. 

During the scan-in portion of FLTs, the address 
sequencer is set to a count of 16 and then decremented by 
1 for each test word fetched from main storage. The 16th 
word fetched (address sequencer = 1) is the MCW part of 
the FLT test pattern and contains a new setting for the 
address sequencer. This new setting selects the scannable 
triggers and latches to be scanned out for the test 

comparison. The scan-out word is selected by decoding the 
address sequencer contents and the LW bit of the MCW. 
This action selects the roller switch indicating the 'exit' 
trigger. 

The action taking place while the address sequencer 
steps from 16 to 0 is under control of the micro-program. 
When the count in the address sequencer is 0, the scan-in is 
complete for FL Ts. 

During a logout operation, the address sequencer is 
initially set to a count of 23 (decimal) and then decre
mented by 1 for each doubleword logged out. Again, the 
count in the address sequencer is decoded by the address 
sequencer decoder, and the logout word is selected using 
the indicator drivers as the source point. The address 
sequencer count is also decoded by the storage address 
generator to yield a main storage address for the logout 
word. This address is then put on the SAB before storing 
the logout word in main storage. While the sequencer steps 
from 23 to 14, the CE clock is turned off to prevent 
register operation. At a count of 13 (decimal), the CE clock 
is again allowed to run, and the logout operation continues 
under ROS control. At count 0, logout is complete. 

During logout, the address sequencer goes to 0 twice. 
The first time the count goes to 0, the sequencer is forced 
to a count of 23. This action recalls the first word logged 
out (word 23, ST contents) to correct possible incorrect 
parity. The word is then restored, and the sequencer is set 
to a count of 7 and again allowed to count down to 0, at 
which time the original parity bits are stored and the 
operation is completed. (Because no micro-order exists to 
set the address sequencer to 0, it is set to 7 and allowed to 
decrement to 0.) 

Address Sequencer Decoder 

The address sequencer decoder (Figure 4-5) interprets the 
output of the address sequencer during scan operations. 
The decoder consists of a high-order and a low-order bit 
section. The high-order bit section decodes the two 
high-order bits to yield, for example, IOXXX. The three 
low-order bits are then decoded to give, for example, 
xx] 11. The combinations of the two, in this instance, show 
the address sequencer count to be 23 (10111). Thus, the 
word logged out or scanned out would be word 23, the 
contents of Sand T. 

The scan logic uses the indicator drivers, normally used 
for CE control panel display, as scan-out source points. 
Therefore, the address sequencer selects the roller switch 
that contains the desired information. In the case where the 
count of the address sequencer is 23, the desired infor
mation is found in rollers 1 and 2, position 3 (Sand T) (see 
"Scan-Out Bus"). 

7201-02 FETOM (7/70) 4-25 



13---+ADR - SQNCRf ~1.-------
4 

53 57 
15-ADR - SQNCRf .,_~-------. 

4 

7 __.ADR-SQNCR f Set Address Seq = 7 

2 4 

16--.ADR-SQNCRf 
Set Address Seq = 16 

£L 
0 4 

MCW(21-25) 

23 -+-ADR-SQNCRf 0 4 
Not ROS Test or FLT 

Sync Trigger 

Not Sync 'Latch 

Address 
Sequences 

KU4ll 

Address 
Sequencer 
Decoder 

Scan Control 
Logic 

fROS micro-order 

KU 

KU 

Figure 4-4. Address Sequencer Data Flow 

0 

Address 
Sequencer 

-KU 
4 

0 1 2 4 

r-------1------, 
I ADDRESS . 

SEQUENCER I DECODER 

I 
I 

Low-Order 
Decoder 

xxOOO I 
xxOOl __l 

xxOlO -i 

xxOll l 
xxlOO _l_ 

xxlOl ] 
xxl 10 

I I I KU16l 

I 
xxl 11 I 

I OOxxx l 
I High-Order Olxxx I 

Decoder lOxxx "l 

l __ ~·~------J 
Figure 4-5. Address Sequencer Decoder 

4-26 (7 /70) 

To 
scon-out 

Set Address Sequencer = 23 

Storage 
Address 
Generator 

To SAB (14-20) 

KU 

Storage Address Generator 

0 

0 

0 

0 

0 

0 

0 

0 

Address 
Sequencer 

Scan 
Counter 
Latches 

Scan Counter 
Decrementer 

4 -KU 
4 

4 

4 

4 

4 

KU 

4 

• Scan operations use three areas of the PSA: logout area 
(80-138, hex), buffer 1 (100-180, hex), buffer 2 
(200-280, hex). 

• SAB values to address location within the three areas are 
derived from address sequencer contents. 

bus gating signals 
and Three areas of the PSA are used for scan operations: 

locations 80 through 138 (hex) are the logout area, which 
contains the logwords after a log operation; locations 100 
through 180 (hex) and 200 through 280 (hex) are the two 
areas that contain the FLTs or ROS tests. The SAB values 
necessary to address any location within these three areas 
are basically derived from the contents of the address 
sequencer. Forming a 24-bit address from the five bits of 

scan controls 



the address sequencer is accomplished by the storage 
address generator (Diagram 6-105, FEMDM). 

The chart in Diagram 6-105 shows how the storage 
address is encoded. For all scan operations, bits 0-13 and 
21-23 of the storage address are set to O's (bits 21-23 are 
O's because logout words, FLT words, and ROS-test words 
are doublewords which are always on doubleword 
boundaries). Address sequencer bits 0 and 1-4 are trans
ferred to SAB (16-20) to select the location within a scan 
area of storage. 

In logout operations, bit 16 of the address is set to the 
complement of bit 0 of the address sequencer. Thus, for 
logout area addresses 80 through F8 (hex), SAB(l 5) is set 
to 0 and SAB(16) to 1; for addresses 100 through 138 
(hex), SAB(l 5) is set to 1 and SAB(l 6) to 0. 

FLTs or ROS tests are always contained in two areas of 
storage called buffers. Buff er 1 is from 1 00 through 180 
(hex); buffer 2, from 200 through 280 (hex). When ROS 
tests or FL Ts are being performed, each test, as it is read in, 
goes to the opposite buffer. For example, if the first test 
read from tape is placed in buffer 1, the next test is placed 
in buffer 2, the third in buffer 1, and the fourth in buffer 2, 
etc. This scheme allows one test to be performed while the 
next test is being read into storage. 

'Buffer 1' trigger controls which buffer is addressed. 
When 'buffer 1' trigger = 1, buffer 1 is addressed; when 
'buff er 1' trigger is off, buff er 2 is addressed. During FL Ts 
and ROS· tests, SAB 14 and 15 are under control of the 
'buffer 1' trigger. When this trigger is set, indicating that 
buffer 1 is to be addressed, SAB(l 5) is forced to 1. When 
the 'buffer 1' trigger is reset, indicating that buffer 2 is to 
be addressed, SAB(l 4) is set to 1. 

During ROS tests, the 'buffer 1' trigger is complemented 
every time the ROS test sequencer equals 7. During FLTs, 
the 'buffer 1' trigger is under control of the INV-BFR-TGR 
micro-order. If this micro-order is decoded, the 'buffer 1' 
trigger is complemented. 

SAB gating signals during scan operations are controlled 
by the 'scan sync' trigger. When this trigger is set, the 
contents of the address sequencer are transferred onto SAB. 
During FLTs and logout operations, the trigger is set by the 
'ROS MS-REG*SCAN4' micro-order. During ROS tests, it 
is set when the ROS test sequencer equals 1, 3, or 6. 

FLT Counter 

The FLT counter is a four-latch register/counter which is 
coupled with the two triggers of the FLT clock to make a 
six-position counter. Its main purpose is to count the 
number of cycles that the CE is allowed to advance after 
scan-in and before scan-out. During FLTs and ROS tests, 
the FLT counter is set to the desired count by the cycle 
count field [MCW(26-31)]. During log-on-count and 

pulse-mode operations, the FLT counter (four bits) is 
combined with the address sequencer (five bits) and the 
two triggers of the FLT clock to make up an 11-bit cycle 
counter. 

The two parts of the FLT counter are decremented 
differently. The low-order bits, FLT-clock times 1 and 2, 
are a reverse binary counter that counts down from 3 to 0. 
Decrementing is accomplished by signals from the scan 
clock. Each time the low-order bits reach 0, the high-order 
bits, FLT-counter 0-3, are decremented via the scan 
counter decrementer in the same manner as the address 
sequencer and the check counter. The next scan clock 
signal resets FLT-clock times 1 and 2 to 3. 

Input 

The FLT counter (Figure 4-6) is loaded from T(58-61) or 
forced to the maximum count. Except during certain 
portions of the ROS tests, the MCW cycle count field is 
gated from T(58-63) to the FLT counter and FLT clock 
by the 'ROS TB-+MCW' micro-order. During ROS tests, the 
cycle count field is gated from T to the FLT counter when 
the ROS test sequencer equals 2. 

FLT Counter Decrementing 

The FLT counte.r (Diagram 6-106, FEMDM) is decremented 
under control of two latches: the 'scan counter control' 
latch and the 'FLT counter equal O' latch. Initially, the 
'FLT counter equal O' latch is reset, conditioning one leg of · 
AND 1, the 'FLT clock-0' and '-1' triggers are set to some · 
value (normally 3; see "FLT Clock"), and the 'FLT 
counter-0' to '-3' triggers are set to some value (either to 
maximum or to the value contained in the MCW cycle 
count field). When the FLT counter is to be decremented, 
the 'scan counter control' trigger is set which, in turn, sets 
the 'scan counter control' latch to bring up a second leg of 
AND 1. 

For FLT operations, the 'scan counter control' trigger is 
set by the 'ROS 1-+CTR CTL TGR' micro-order. For ROS 
tests, the trigger is set when the ROS test sequencer equals 
2. A log-on-count-with-address-compare operation 
[Diagnose instruction with MCW (1, 6) set] also sets the 
trigger if the storage address agrees with the ROS address 
field of the MCW. 

With three conditions on 'AND 1' met (i.e., 'scan 
counter control' latch set, not SOROS and sync latch, and 
FLT counter not equal to 0), as soon as the FLT clock is 
decremented to 0 (decremented once per cycle), the FLT 
counter contents are decremented by transferring them to 
the scan counter decrementer and back again. At the same 
time, the FLT clock is reset to 3. When the FLT clock is 

7201-02 FETOM (7/70) 4-27 



JtJ 63 

58 61 62 63 

T 
0 

MCW(26-29) 

0 

0 

0 

0 

FLTCtr=O 

Not Clock P0-1 L 
Not FLT Clock 0 A 
Not FLT Clock l 
Not Clock P0-2 

KU231 

FLT 
Counter 

-KU 
3 

MCW (30-31) 

FLT 
Clock 

) 
To FLT 
Ctr= 0 
Lotch 

Scan Counter Control L Set scan (FLT) counter to maxi mum. 

Not ROS or FLT 

FLT Time 3 A 

KU4ll 
0 

0 

Figure 4-6. FLT Counter Data Flow 

again decremented to 0, the FLT counter is again decre
mented. This operation continues until the FLT counter, 
including the 'FLT clock-0' and '-1' triggers, is at 0 (reset). 
At that time, the 'FLT counter equal O' latch is set, which 
inhibits further decrementing of the FLT counter. 

Cycle Counter 

During pulse-mode and log-on-count operations, the address 
sequencer is joined with the FLT counter and the two 
triggers of the FLT clock to form an 11-bit cycle counter 
(Figure 4-7). The low-order positions of the cycle counter 
are decremented as described under "FLT Counter Decre
menting". When the FLT counter is decremented to 0 
('FLT counter equal O' latch set), the address sequencer 
contents are decremented (gated to scan counter decre
menter and returned to address sequencer). At the same 
time, the 'FLT clock-0' and '-1' triggers are set, and the 

4-28 (7/70) 

Scan Counter 
Latches 

Scan Counter 
Decrementer 

4 

-KU 
4 

4 

FLT counter is set to the maximum (all 1 's). These 
counters are decremented as before until they reach 0 
again; the address sequencer is then decremented, and the 
operation is repeated. 

When all three counters equal 0, the 'cycle counter 
equals zero' signal is generated to stop the clock (pulse~ 
mode) or to perform a logout operation. 

ROS Test Sequencer 

The ROS test sequencer (Figure 4-8), three polarity-hold 
circuits, controls the scan logic during a ROS test. At the 
start of the ROS test routine, the ROS test sequencer is set 
to a count of 7; it is decremented at FLT-time 3 by having 
its contents transferred to the scan counter latches and 
decrementer. The output is decoded by the ROS test 
decoder, which generates one of seven signals, depending 
upon the present value of the sequencer. These signals 
control the sequential operation of a ROS test. 



Address 
Sequencer 

-KU 
4 0 

Address 
Sequencer 
=o 

Not Clack Pl 

Not Clack PO 

Cycle· Counter 

FLT 
Counter 

A 

Address 
Sequencer 
=O 

KU181 

-KU 
3 0 

Figure 4-7. Cycle Counter Data Flow 

0 

0 

0 

0 

0 

0 

0 

2 

Set ROS test sequencer to maximum (7) 

I 2 

ROS Test 
Sequencer 

5 
Scan Counter 
Latches 

-KU 
2 

2 

2 

4 

-KU 
4 

4 

Scan Counter KU 
Decrementer 

ROS 
Test 
Decoder 

2 3 4 5 

Figure 4-8. ROS Test Sequencer Data Flow 

6 7 

Clock 
Triggers -

A 

Clock PO 

FLT Time 
0 

Not SOROS and Sync latch Decrement FLT Counter (0-3) 

Not Clock PO 

ROS 
Test 

Nat Clock Pl 

Nat Clack P0-2 

FLT Counter 
=O 

KU231 

r-----, 
I Scan Counter I 
I Control 

I 
I 
I I 
I I 
L-~~1 _ _J 

Scan-Out Bus 

KU411 

Not ROS.Test or FLT 

KU411 

Clock P0-2 

KU231 

Decrement Address Counter 

KU411 

Set FLT 
counter to 
maximum. 

Cycle Counter= 0 

• Scan-out bus is data path from indicator logic to PAL. 

• Status of 64 indicatable storage devices (scan-out word) 
is scanned out to PAL by one scan-out address. 

• One-half of scan-out word is transferred to PAL during 
one cycle. 

Sequence 

The scan-out bus (Diagram 6-107, FEMDM) is a special data 
path used in scan operations that allows direct transfer into 
PAL from storage devices (triggers, latches, polarity-holds) 
which ordinarily have no direct input into PAL. The 
operation that performs this function is referred to as "scan 
out". Scan out makes use of the indicator roller switch 
position logic to perform this transfer. Thus, the first 
requirement necessary to scan out a storage device (except 
for the LSWR) is that the device be indicatable; that is, that 
it has an indicator on the CE control panel roller switches. 

During a scan-out, the status of 64 indicatable storage 
devices is scanned out using one scan address (address 
sequencer contents); the 64 bits transferred to PAL are 

7201-02 FETOM (7 /70) 4-29 



referred to as a scan-out word. The 24 scan-out words are 
listed on LADS A65 21-A6561 as logout words because, in a 
logout operation, the scan-out words are logged out (placed 
in the logout locations of the PSA). Note that there is no 
direct correlation between the scan-out address and the 
roller switch position of the indicator. For example, in 
Diagram 6-107, scan-out address 23 is shown as selecting 
the same storage device as the 'roller 1 position 3' signal 
from the CE control panel. 

The indicatable storage devices to be scanned out at any 
one time are selected by the output of the address 
sequencer decoder and by a signal from the scan controls. 
Only one-half of the scan word is transferred to PAL during 
one cycle; therefore, the signal from the scan controls will 
be either 'scan out left' (selects bits 0-31 of a scan word) 
or 'scan out right' (selects bits 32-63). The output of the 
address sequencer decoder and the 'scan out left' or 'scan 
out right' signal places a signal on the same line as does the 
CE control panel roller switch (Diagram 6-107). This signal 
allows the storage device output signal to light an indicator 
on the system control panel or to be transferred to PAL via 
the scan logic. 

At the same time, to prevent the roller switch setting 
from affecting the scan-out, the 'not block indicator 
switches' signal is activated. Thus, the only indicatable 
storage devices whose outputs are sent to the indicator 
drivers are those selected by the address sequencer decoder 
output and the scan-out signal. 

Gating signals route the indicator signals from the 
storage devices to two places: to indicators on the CE 
control panel and to the scan-out bus. From the scan-out 
bus, they are transferred by the 'enable bus' signal to 
P AL(32-63). 

Logout Controls 

The controls for a logout operation are shown in Diagram 
6-108, FEMDM. A logout is started by an 'error log 
required' signal, by depressing the LOG OUT pushbutton 
(in manual mode only), or by executing the Diagnose 
instruction. The 'SOROS' trigger sets the address sequencer 
to 23. The 'SOROS' trigger and the 'sync' latch request a 
storage cycle to store the logged-out word. The FLT clock 
provides timing signals to control the logout operation.until 
the address sequencer reaches 14; the CE clock is then 
started and ROSAR is forced to 019 (hex) to control the 
reset of the logout operation. 

Diagram 6-109, FEMDM, illustrates the scan-out path to 
PAL(54) on a logout operation. Assume that the address 
sequencer equals 10 (decimal). A scan-out is initiated to 
transfer the contents of D(22) to PAL(54) if the 'scan out 
right' signal is generated. Normally, the ',scan out right' 
signal is generated by the 'SCAN OUT-RTWD' micro-order. 

4-30 (7 /70) 

However, on a scan-out ROS operation, it is generated by 
the scan. controls. At the same time that the 'scan out right' 
signal is generated, the 'enable scan bypass' signal is 
produced. This signal is generated by the 'SCAN BYPASS' 
micro-order or, in the case of a scan-out ROS operation, by 
the scan controls. In addition to allowing transfer into PAL, 
the 'enable scan bypass' signal inhibits transfer to the CE 
control panel indicators by the switchable indicator logic. 

With the 'scan out right' signal active and the address 
sequencer equal to 10 (decimal), D(14) is transferred to 
indicator 25 of the row of indicators normally selected by 
roller 1 and to the scan-out bus. Because the 'scan out S 
arid T' signal is not up at this time, D(14) is transferred to 
PAL(54) by the 'enable scan bypass' signal. At the same 
time, the remainder of the right half of scan word 10 is 
transferred to the appropriate bits of PAL. 

Scan Out Sand T 

This operation gates both the S-register and the T-register 
into the PAL. One bits from either register result in 0 bits 
at the output of the PAL because of inversion. This 
function is used to examine the state of a trigger to be 
tested in ROS or FL Ts. It also performs the comparison 
required in an alternate-test-number search. To test a 
trigger, the address sequencer selects a 64-bit logout word. 
The 'Left Half' bit in the MCW, bit 4, selects which 32-bit 
half contains the trigger to be tested. These 32 bits are 
placed in the T-register and the Mask is placed in the 
S-register. After scan-out S and T, the PAL output is 0 if 
the trigger was set and non-0 if it was reset. 

The 'scan out S and T' signal is a result of the 'SCAN 
OUT S-REG' and 'SCAN OUT T-REG' micro-orders or the 
ROS test sequencer equalling 1 or 4. 

Scan Stop-CE-Clock Logic . 

During certain scan operations, the CE clock must be 
stopped while the scan clock is allowed to run. This 
operation is controlled by the 'MMSC' trigger (Diagram 
6-110, FEMDM). When this trigger is set, the unsym
metrical clock signal that controls CE trigger and latch 
setting and resetting is inhibited; thus, all CE functions 
controlled by CE clock signals are stopped, except as 
allowed by scan clock signals. 

The 'MMSC' trigger is set by the following conditions: 
1. Console LOGOUT pushbutton. 
2. External CE logout request. 
3. Pulsed split log (invalid address or SE timeout during CE 

logout). 
4. During FLT or ROS tests. 



Control Triggers 

The scan logic contains many triggers which are used for 
status and control. The most important of these, with their 
functions, are: 
1. 'FLT Backspace' (Diagram 6-27). Set whenever BACK

SPACE FLT is depressed during FLT or ROS testing. 
This. trigger conditions Subsystem Reset and raises 'FLT 
BACKSPACE IOCE (x)' and 'FLT LOAD'. The test tape 
is backspaced one record after which the trigger is reset. 

2. 'Scan mode'. Set when the scan controls are under 
microprogram control. The ROS fields used by the scan 
microprogram are shared by the non-scan functions of 
the CE. They are interpreted as scan micro-orders if the 
'scan mode' trigger is set. 

3. 'Sync' (Diagram 6-111). Starts a ROS test or an FLT 
after an IPL operation by synchronizing these operations 
with the scan controls. 

4. 'Repeat'. Scan mode REPEAT TEST switch. When set, 
the ROS test or FLT currently running is repeated 
continuously. 

5. 'FLT test'. Set by the SCAN MODE, ROS/PROC/FLT 
switch being in the FLT position. It places the CE in 
FLT mode. 

6. 'Scan out ROS' (SOROS) (Diagram 6-108). Set by a 
machine error when in log-on-error mode, by the LOG 
OUT pushbutton, or by the 'cycle counter = O' signal 
when performing a log-on-count operation. External CE 
logout required or Pulsed Split log (SE error during CE 
logout). Initiates the scan-out portion of a logout 
operation. 

7. 'Pass', 'fail' (Diagram 6-111). Store the results of a ROS 
test or FLT. MCW(7) is the ERSLT bit, and PAL equals 
0 if the bit to be tested in the scan word is a I . Thus, if 
MCW(7) equals 1 and PAL equals 0 or if MCW(7) equals 
0 and PAL is not equal to 0, the 'pass' trigger is set. If 
MCW(7) equals 1 and PAL is not equal to 0 or if 
MCW(7) equals 0 and PAL is equal to 0, the 'fail' trigger 
is set. For FLTs, the test is performed under micro
program control. For ROS tests, the test is performed 
when the ROS test sequencer equals 1. In either case, if 
both the 'pass' and 'fail' triggers are set, an intermittent 
error occurred. 

Scan Mode Control of ROS 

Scan mode operations affect three fields of ROSDR: field 
D (bits· 17-19), field F {bits 25-30), and field G (bits 
31-35). These fields serve dual functions. In the normal 
mode, they are decoded from the ROSDR latches as 
standard CE control lines. In scan mode, they are decoded 
as special scan control lines and are referred to as field S 
(LADS A6261 ). 

The scan mode is controlled by the 'scan mode' trigger. 
When this trigger is reset, the standard decode path is used. 
When this trigger is set, however, the standard control lines 
are blocked and scan control lines (using common CE 
control line codes) are activated. 

The scan control logic generates blocking signals to 
inhibit register gating signals at the ROSDR decode logic 
and to allow scan control use of ROS in sequencing through 
its test operations. Scan logic also affects ROS micro
b ranching (Diagram 6-112, FEMDM). The J-field 
micro-orders shown in the diagram are listed on LADS 
A6231. 

CE Scan/IOCE Interface 

The CE's actions in an FLT or ROS IPL are different from 
a normal subsystem WL in that hardware rather than ROS 
determines when the unit select switches and 'WL IOCE 
(X)' are gated. Also, the CE uses 'TIC' and 'GAP' rather 
than 'Response' from the IOCE to determine the IOCE's 
progress in reading data into storage (Diagram 6-113, 
FEMDM). The following CE-IOCE interface lines are of 
particular interest in an FLT or ROS IPL: 
1. 'TIC' (IOCE to CE). This signal is sent to the CE when 

the IOCE decodes a CCW specifying transfer in channel. 
SEL CH REQ TIC RTNE-KK631 in the IOCE brings up 
'TIC'. It informs the CE that a buffer is loaded and free 
to be fetched. 

2. 'GAP' (IOCE to CE). This signal is sent to the CE when 
the IOCE encounters an IRG, unless the channel is 
executing a CCW specifying command chaining. 'GAP' is 
called EOR in the IOCE. It is brought up by SET PCI 
REQUEST. 

3. 'FLT Backspace' (CE to IOCE). This signal is sent to the 
IOCE in parallel with 'FLT load' for an FLT backspace 
operation. In this case, the IOCE's hardware WL CCW 
specifies backspace. 

4. 'FLT Load' (CE to IOCE). This signal is not used in the 
9020D or E for an FLT or ROS IPL. The normal signal, 
'IPL IOCE (X)', is used instead. See 'FLT backspace'. 

5. 'Response' (IOCE to CE). In a normal WL, this signal 
informs the CE that an WL operation has been com
pleted; a CCW specifying neither 'TIC' nor 'chain' was 
encountered. In an FLT or a ROS IPL, the IOCE is in a 
CCW loop. When it reads an IRG, it gets reset to the halt 
loop. No 'response' signal is sent because no 'non-TIC' or 
'chain CCW' is encountered. 

6. 'FLT Load Complete' (IOCE to CE). This line is not 
used in the 9020D or E when loading. It is the response 
to a backspace signal to notify the CE that the 
backspace is complete. 

7201-02 FETOM (7/70) 4-31 



Page of SFN-0201-1 
Revised by TNL: SN31-0020 

LOGOUT 

Introduction 

The logout function of the scan logic stores the status of 
various triggers and registers, reflecting the state of the CE, 
into predesignated locations of the PSA area. The 24 
doublewords logged out are stored in PSA locations 80 
through 138 (hex). (For a detailed list of the 24 double
words, refer to LADS A6521-A6561 or Diagram 6-117, 
FEMDM.) 

The status of each trigger logged out is represented by a 
1 if it is set or by a 0 if it is reset. Thus, a record of the 
machine state, at the time that a CE or storage error occurs, 
is stored unchanged in predetermined locations of the PSA 
area with a fixed format. This record can then be accessed 
by a program or by manual controls for analysis, printout, 
or display. 

A logout operation can be initiated by: 
1. Manually depressing the LOG OUT pushbutton on the 

CE control panel. The system must be in CE Control 
(mode) (Diagram 4-210, FEMDM). 

2. Executing the Diagnose instruction when a log-on-count 
function is specified. Logout occurs after a predeter
mined number of CE clock cycles (preset by the 
diagnostic programmer). 

3. Detecting a machine check during normal CE operation 
if the CHECK CONTROL switch is in the PROC 
position and the PSW machine check mask bit is on. 

Operational Analysis 

• Logout stores 24 doublewords, which reflect CE status, 
in PSA locations 80-138 (hex). 

• Operation is controlled by scan logic and ROS micro
program. 

• Address sequencer is set to 23 and decremented by 1 for 
each logword stored. 

The logout function, whether initiated by depressing the 
LOG OUT. pushbutton, by executing the Diagnose instruc
tion, or by detecting a machine check, stores 24 double
words (log words), which reflect the CE status, in PSA 
locations 80-138 (hex). The information presented in 
these logwords is determined by the scan logic and is 
therefore fixed. A list of the logword locations and their 
contents is presented in Diagram 6-117 and LADS 
;\6S21--A662l. 

The words are logged out in a fixed sequence, as defined 
by the scan logic, with logword 23 being stored in location 
238 (hex), logword 20 in location 120, etc., in reverse 
order, until logword 0 is stored in location 80 (hex). 

4-32 (5/72) 

The logout operation is both hardware- and ROS
controlled. When a logout operation is initiated, for 
example, by depressing the LOG OUT pushbutton, the 
address sequencer is set to 23 and is decremented by 1 for 
each logword stored. From the instant that LOG OUT is 
depressed until the address sequencer is reduced to 14, the 
scan hardware controls the operation. When the address 
sequencer equals 13, control is switched to a ROS 
microprogram which completes the logout. 

Although the CE is under ROS control for the last 14 
words logged out, the address sequencer is still decremented 
for each logword. This decrementing occurs because the 
address sequencer, in addition to controlling the logout 
sequence, defines the storage address for each logword and 
the indicatable storage devices to be logged out (Diagram 
6-105). 

The logwords compose the status of most. indicatable 
storage devices (i.e., triggers, latches, and registers that have 
an indicator on the roller switches). For this reason, the 
scan-out bus, which is a data path from the indicator drivers 
to PAL, is used to transfer the status of these devices to 
PAL (the path used is identical with that used in an FLT or 
ROS test during a scan-out; see "Scan-Out Bus"). From 
PAL, the logwords are gated to ST and then to main storage 
via the SDBI. Correct parity is assigned in PAL. 

Because cycling of the CE clock could change the 
contents of some of the storage devices logged out, the CE 
clock is turned off (blocked) while logwords 23 through 14 
are being logged out, and timing is controlled by the scan 
and FLT clocks. Scan/FLT clock signals are distributed 
throughout the scan logic to control the logout function 
during the period that the CE clock is turned off. For 
example, the address sequencer is decremented at FLT-time 
3, a latched output of 190-ns duration .. 

At the end of a logout, the CE performs an end op, and 
the 'machine check interrupt' trigger is set. 

(A Storage or Display Element logout is initiated only 
by programming, using the Diagnose. instruction and 
Diagnose Kernel FDO. Six (logout) doublewords are stored 
in the locations immediately following the MCW specifying 
the FDO kernel. The formats of these logwords are shown 
in Diagrams 6-118 and 119, FEMDM.) 

Hardware-Controlled Sequence 

• !,ogout is initiated by Diagnose instruction, LOG OUT 
pushbutton, machine error, or External CE Logout 
request. 

• 'SOROS' trigger initiates hardware-controlled portion of 
logout sequence. 

• For each word logged out: (1) address sequencer is 
decremented, (2) scan-out logic places right half of 



logword into T, and (3)' logword is stored in main 
storage location addressed by storage address generator. 

• Only right half of logwords 23-14 are logged by the 
hardware sequence. The left halves of 23-18 are logged 
by the ROS sequence. 

As stated above, a logout (Diagram 6-114, FEMDM) may be 
initiated by executing the· Diagnose instruction, by 

·depressing LOG OUT, by detecting a machine error when in 
log-on-error mode, or by External CE Logout request. The 
operational differences between the methods occur before 
the actual logout sequence and are as follows: 
1. The Diagnose instruction initiates a logout operation if 

MCW(6) = 1, thus specifying a log-on-count operation. 
In this case, MCW(21-31) is sent to the cycle counter, 
which is decremented by 1 each machine cycle. When 
the cycle counter equals 0, the 'SOROS' trigger is set, 
initiating a logout sequence. 

2. If the logout operation is initiated by depressing LOG 
OUT with the CE in manual mode, the 'console logout' 
latch and the 'pass pulse' trigger are set. Normally, the 
'pass pulse' trigger will already be set. However, if the 
RATE switch is in the SINGLE CYCLE position, the 
'pass pulse' trigger remains set only for the duration of 
one CE clock signal (Diagram 4-1, FEMDM). This action 
allows the logout operation to be stepped through one 
cycle at a time by depressing START for each cycle. 
With the 'pass pulse' trigger and 'console logout' latch 
both set, the 'SOROS' trigger is set. 

3. When the CE CHECK switch is in the PROC position 
and the PSW machine check mask bit is a 1, a machine 
check ('error' trigger set) initiates a logout. Any of the 
Check Reg 1 or 2 (except hardstop) errors (Diagram 
6-22) sets the 'error' trigger which, in turn, sets the 
'SOROS' trigger. 

4. A WDD (External CE) logout request initiates a logout 
by setting the 'SOROS' trigger directly. 

Note that, in each case, the 'SOROS' trigger is set 
(Diagram 6-108), thus starting the hardware portion of the 
logout sequence (Diagram 6-114). After the 'SOROS' 
trigger is set, the 'sync' trigger is set at FLT-time 3 to 
synchronize the logout operation to the FLT clock. The 
output of the 'sync' trigger sets the address sequencer to 23 
(first logword) and sets the 'sync' latch at not-clock time. 
(The 'sync' latch being set causes the address sequencer to 
be decremented every FLT-time 3.) 

With the 'sync' latch set, a storage request to the SCI is 
initiated at FLT-time 0. This request gates the address 
generated by the storage address generator to SCI. Because 
the first word to be logged out reflects the contents of ST 
(logword 23), these contents are now stored (gated to 
SDBI). 

Since ST may contain bad parity, a 'suppress log check' 
signal is sent to the SE when storing logword 23 and, also, 
when later fetching it to assign good parity. The signal tells 
the SE to inhibit its data parity check. 

When the 'sync' trigger was set, the 'MMSC' trigger was 
also set. This action keeps the CE clock off (the 'error' 
trigger inhibited CE clock signals) but allows the scan clock 
to run. Therefore, the status of all operational registers, 
except those used for the logout (S, T, and PAL), is 
preserved during the logout sequence. 

Because the contents of ST have been stored, the address 
sequencer is decremented to 22 at FLT-time 3. A scan-out 
operation is performed~ which gates the right half of 
logword 22 (selected by the address sequencer decoder) to 
PAL(32-63) from the indicatable storage devices via the 
scan-out bus. From PAL, logword 22 is gated to T for 
transfer to main storage. At FLT-time 0, another storage 
request is issued to store the contents of ST~ This operation 
continues for logwords 19 through 14; that is, for each 
word logged out: (1) the address sequencer is decremented, 
(2) a scan-out places the right half of the logword in PAL, 
which is subsequently gated to T, and (3) the logword is 
stored in the main storage location addressed by the storage 
address generator. Note that only the right half of logwords 
23 through 14 is stored; the left halves of 17-14 in storage 
remain unchanged and could contain anything. The left 
halves of 23-18 are scanned and stored by the ROS
controlled sequence. 

When the address sequencer has been decremented to 14 
and the logword has been stored, the 'MMSC' trigger is reset 
to start the CE clock, address 19 is forced into ROSAR, 
and the address sequencer is reduced to 13. (Note that the 
ROSAR contents have been already logged out.) At this 
point, control is transferred to a ROS microprogram. 

ROS-Controlled Sequence 

• ROS microprogram directs logout from time address 
sequenc'erequals 13 until end of logout sequence. 

• Logword 13 is formed by: (1) transferring LSWR to S, 
(2) scanning out to T, (3) transferring T to LSWR, ( 4) 
transferring S to T, (5) transferring LSWR to S, (6) 
storing logword 13. 

• Remaining words are formed by: (1) decrementing 
address sequencer by 1, (2) scanning left word out to T, 
( 3) transferring T to LS WR, ( 4) scanning right word out 
to T, (5) transferring LSWR to S, (6) storing logword in 
storage. 

• When address sequencer equals 0, it is again set to 23, 
parity is corrected on logword 23 (ST), and left halves of 
logwords 23-18 are scanned and stored. 

7201-02 FETOM (7/70) 4-33 



The ROS microprogram directs the logout operation from 
the time the address sequencer equals 13 until the end of 
the logout sequence (Diagram 6-114 ). The first micro-order 
in the logout microprogram transfers the conten!s of the 
LSWR to S, thus preserving these contents in a logword 
because the LSWR is used during the remainder of the 
operation. S now contains half of logword 13. The 
complete logword is formed by: (1) scanning to T (scan-out 
to PAL whose contents are transferred to T), (2) trans
ferring the data in T to the LSWR, (3) transferring the 
contents of S to T, and ( 4) transferring the contents of the 
LSWR to S. As a result, ST contains the 13th logword. The 
operation continues in the following cycle: 
1. Decrement address sequencer by 1. 
2. Scan out to T (left half). 
3. Transfer contents of T to LSWR. 
4. Scan out to T (right half). 
5. Transfer contents of LSWR to S. 
6. Store word in to main storage. 

This cycle is repeated until the address sequencer equals 
0, at which time 24 logwords have been stored in main 
storage locations 80-138 (hex). 

When the logout operation was started, the first word 
stored in main storage (logword 23) was composed of the 
contents of ST. The parity associated with this data is not 
always correct. Therefore, to ensure that correct parity is 
stored with logword 23, the address sequencer is set to 23, 
and a 'scan storage request' is initiated to fetch the original 
contents of ST in logword 23. When available on the SDBO, 
the word is gated to AB. The address sequencer is then set 
to 7, and AB (scan address 7) is scanned out. When AB is 
scanned out, correct parity is inserted for the data (original 
ST contents). The address sequencer is again set to 23, and 
a 'scan storage request' is initiated to return logword 23 fo 
main storage with correct parity. Then the sequencer is 
stepped through 22-18 as the left halves of those logwords 
are stored. Next, the address sequencer is reset to 7 and 
repeatedly decremented by 1 until it equals 0, at which 
time the original ST parity bits are stored. The scan system 
is then reset, the 'machine check interrupt' trigger is set, 
and the operation concludes by entering the machine check 
interrupt routine. 

ROS TESTS 

Introduction 

• Test each bit of each ROS word. 

• Tests are on tapes. 

4-34 (7 /70) 

ROS tests are the principal means of testing the validity of 
the ROS bit planes. These tests, generated by a computer 
program from the tapes used in the manufacture of the 
ROS bit planes, are stored on magnetic tape. When testing 
ROS, the tests are read into two PSA buffer areas, starting 
at locations 100 and 200 (hex). Under scan logic control, 
the ROS tests compare the value of a particular bit in a 
selected ROS word with its expected value as specified on 
the ROS test tape. Each ROS test is read into the CE and 
checks one bit of a ROS word. At the same time that the 
test from one buffer area is being executed in the CE, the 
other buffer area is being filled from the test tape via the 
IOCE. 

The ROS test format consists of two doublewords: word 
0 and word 1. Word 1 contains the mask and MCW. The 
mask, a 32-bit field, in conjunction with the scan-out 
address field of the MCW, selects the ROS bit to be tested 
from the word read out of ROS. A particular bit is tested 
by making all mask bits 1 's except the bit that corresponds 
to the test bit. Word 0 contains the test number (TN) and 
alternate test number (ATN). The TN, a four-byte field, 
contains two two-byte numbers that identify the test 
pattern. The lower-order two bytes are the complement of 
the TN, and the high-order two bytes are the TN. The ATN, 
which refers to another ROS test, is also represented in true 
and complement form, with the complement and true 
numbers reversed from that of the TN format. The TN 
refers to the test being executed. The ATN refers to the test 
that will be executed if the tests are restarted after a failure 
stop (generally, it refers to the next test). 

The first part of each ROS test tape contains hardcore 
tests to establish that the CE is able to· run ROS tests. 
Testing should not proceed beyond the hardcore tests if 
failures are encountered. 

Following the hardcore tests are the actual ROS tests. 
During these tests, the ROS word to be tested is selected by 
the ROS address in the MCW. The CE clock is allowed to 
generate clock signals to cycle ROS so that the bit under 
test is placed in the ROSDR. The word containing this bit is 
defined by the scan-out address in the MCW and is 
transferred (scanned out) via the indicator driver logic and 
PAL to the T-register. · 

The mask is transferred from main storage to the 
S-register, and then the status of the bit under test is 
determined by comparing S with T. The result of this 
comparison is compared with the ERSLT bit to determine 
whether the test passed or failed. Pass, fail, and inter
mittent-fail are the three possible results of the comparison. 
The CT and UT bits in the MCW then determine whether to 
proceed with testing or to terminate. 

If testing is terminated on a failure, the bit plane is 
displayed as the CE TEST ADDRESS on roller 5, position 
2, bits 0-3. The S-register, S(0-7), indicates the failing 



word in hex and S(8-15) indicates the failing bit in decimal 
(Roller 1, pos 3). A nonfailing test is repeated until a 
'transfer in channel' {TIC) pulse notifies the CE that the 

· alternate buffer is filled and new test data is available. 
Because FL Ts cannot be run if malfunctions exist in 

ROS, the ROS tests should be run first, followed by the 
FL Ts. 

Operational Analysis 

• ROS tests consist of two doublewords: word 0 has TN 
and ATN; word 1 has mask and MCW. 

• All bits of ROS bit planes are checked for 1 or 0. 

• Each ROS test is repeated until receipt of 'TIC' pulse. 

ROS tests are scan-controlled tests of the ROS micro
program. Each ROS test consists of two doublewords, 
designated words 0 and 1, which are read into the CE from 
the ROS test tape. Word 0 contains the TN and ATN, and 
word 1 contains a mask and the MCW. A single ROS test 
checks one bit position of one ROS word and the cycling of 
data from ROS to the ROSDR. 

Each ROS test tape begins with hardcore tests to check 
out the hardware that controls subsequent ROS tests. Upon 
successful completion of these hardcore tests, the true ROS 
tests are begun and continue until all bits of the ROS bit 
planes have been checked for a 1 or 0 or until an error is 
encountered. If an error occurs, the CE stops and the failing 
bit number is displayed in S. Thus, no documentation is 
required. 

The tests are loaded into buffer areas 1 and 2, and 'TIC' 
pulses are generated as the buffers are filled. Each ROS test 
is continuously repeated until the CE receives the 'TIC' 
pulse. Testing then continues if 'pass' is set and 'fail' has 
not been set. 

A single test consists of fetching the MCW from storage, 
permitting the CE clock to advance a given number of 
cycles, and comparing one of the ROSDR triggers with an 
expected result. If the state of the trigger matches its 
predicted value, the 'pass' trigger is set. If the actual and 
predicted values disagree, the 'fail' trigger is set. 

The ROS tests are controlled by the ROS test sequencer 
which is stepped by the scan clock. At the start of the ROS 
test, the ROS test sequencer is set to 7 and is decremented 
to 0 as the test progresses to conclusion. For each count of 
the test sequencer, a certain part of the ROS test is 
performed. 
.. ,, The number of clock signals required to move the 
selected ROS word into the ROSDR is specified in the 
cycle count field of the MCW. This count is set into the 

FLT counter; when the counter equals 0, the CE clock is 
stopped and the bit comparison begins. 

ROS Test Tape 

The ROS test tape contains the following records: 

Initial 
IPL 

Inter-record Gaps 

Hardcore 
Tests 

Restart I PLs 

1. Record 1, Initial IPL. Contains the 24-byte 'bootstrap' 
program necessary for any IPL operation. When LOAD 
is depressed, the three doublewords of this record are 
read into storage locations, as follows: 

Storage Location 
(Hex) 

0 

8 

10 

Word Contents 

Loader ID 

CCW 1 Read command to read 8 bytes 
to location 0 and chain 
command to location 10. 

CCW 2 Read command, 28 (hex) bytes 
into 18 (hex). Chain to 18. 

2. Record 2, Loader. Contains the "loader" program that 
reads in the ROS tests. The IPL program in record 1 
reads this record into storage locations as follows: 

Storage Location 
(Hex) Word Contents 

18 ccw 1 Read 8 bytes into location 0 and 
chain data. 

20 CCW2 Read command to read 10 (hex) 
bytes to buffer 1 (location 100, 
hex) and a chain data tag to 
location 28. 

28 CCW3 TIC command to location 30. 

30 CCW4 Read command to read 10 bytes 
to buffer 2 (location 200) and a 
chain data tag to location 38. 

38 CCW5 TIC command to location 20. 

7201-02 FETOM (7/70) 4-35 



3. Record 3, Hardcore Test 1 and 2. Contains the first ROS 
hardcore test, two doublewords. Hardcore tests check 
the scan and CE hardware required to do the actual ROS 
testing. Any failure encountered during the hardcore 
tests must be corrected before the actual tests have 
validity. 

4. Record 4, (Restart IPL). The first hardcore causes stop. 
When LOAD is depressed, the following IPL program 
replaces the IPL 1 program: 

Storage Location 
(Hex) Word Contents 

0 Loader ID. 

8 ccw 1 No-op. Chain command. 

10 CCW2 No-op. Chain command. 

Restart IPLs preceed every test record except the first. 
5. Records 5-8, Hardcore Tests. Contain the remaining 

hardcore tests. 
6. ROS Bit Tests. The remaining records on the tape 

contain the true ROS tests. Each test pattern (two 
doublewords) tests one bit of one ROS word. 

ROS Test Setup 

Several controls on the system control panel must be 
operated to initiate the ROS tests. The procedure to run a 
ROS test appears in LADS A6503. However, a short 
discussion of the setup is included here because it affects 
the operation. 

Diagram 6-115, FEMDM, shows the start of a ROS test. 
The ROS test tape is mounted first. A subsystem must be 
configured, the CE must be in state zero, with test switch 
on and an SE selected. The LOAD UNIT switches are set to 
the address of the tape unit holding the test tape, the SCAN 
MODE, ROS/PROC/FLT switch is set to the ROS position, 
and the CE CHECK CONTROL switch is s_et to DSBL. 
Going into ROS test mode causes the 'ROS test' latch to be 
set and a subsystem reset signal to be sent to the IOCE to 
prepare for a read operation. The manual control opera
tions necessary to get started are concluded by depressing 
SYSTEM RESET, setting all DAT A switches to 1 's, 
depressing STORE to transfer the DAT A switches to ST, 
and depressing LOAD. 

Initial IPL Highlights 

• IPL is under hardware control. 

• IOCE operations are same as normal IPL. 

4-36 (7 /70) 

• CE clock is stopped until release is received from 
channel. 

Depressing LOAD with the TEST MODE, ROS/PROC/FLT 
switch set to ROS initiates an IPL operation that is 
different from the normal program load in that the 
operation is under hardware control (Diagram 6-115, 
FEMDM). IOCE operations are identical with a normal IPL 
operation; 24 bytes are read from the selected device into 
the first three doubleword locations of the PSA area. 
However, when the 'IPL status' trigger is set, the 'MMSC' 
trigger is also set, which stops the CE clock. Because the CE 
clock is stopped, the IPL microprogram is not initiated and 
the remainder of the IPL is under scan and IOCE control. 

At this point, the CE is idle, waiting for the first 'TIC' 
signal from the IOCE; only the scan clock is running. 
Meanwhile, the IOCE IPL operation reads in record 1 of the 
ROS test tape and executes the channel program specified 
by record 1. As a result, 40 bytes (record 2) are read into 
storage starting at location 18 (hex). Record 2 contains the 
loader program that reads each ROS test into the proper 
buffer area in storage. 

After record 2 has been read in, command chaining 
causes CCW 2 in record 1 to be executed. CCW 2 is a TIC 
command to location 20, which now contains a read CCW. 
When the IOCE executes the TIC command, it sends a 'TIC' 
signal to the CE, which is the release signal the CE is 
waiting for. 

Loader 

While the scan controls are being set up to run the first 
hardcore test, the TIC command in CCW 2 of the Initial 
IPL program causes the channel program in record 2 of the 
ROS test tape [now in the 40-byte locations of storage 
beginning at 18 (hex)] to be executed. The read CCWs in 
locations 20 and 30 cause the channel to read the hardcore 
tests in record 3 into buffers 1 and 2 (100 and 200, 
respectively). 

Meanwhile, scan control operations in the CE begin 
when the ROS test sequencer is set to maximum, thus 
placing the CE in ROS test state 7. In this state, the 'buffer 
1' trigger is inverted, the 'Start ROS test' trigger is set, and 
a scan system reset clears the scan IPL controls. The ROS 
test sequencer is decremented by 1. During ROS test state 
6, an address is forced to storage controls, and a scan 
storage request for the ROS test word containing the TN 
and the ATN word is initiated. The operation then waits for 
a 'TIC' pulse before progressing, but the 'TIC' latch has not 
been reset since the first 'release' TIC. This 'TIC' pulse 
results when the first hardcore test in record 3 has been 
read into storage from the channel (execution of TIC CCW 
in location 28). After the 'TIC' pulse, the ROS test 
sequencer is decremented by 1. 



At this time, an ATN search is made. The test number, 
all l's, from the test buffer is transferred to the S-register, 
and an equal comparison should result. 

Hardcore Test 

• Hardcore tests at beginning of FLT and ROS test tapes 
determine that CE hardware used to. run tests is 
functioning. 

• Failing tests stop, with a number in MCW 0-3. 

• If hardcore tests run successfully, testing teqninates on 
correct stops when testing is resumed, CE enters true 
ROS tests or FLT zero-cycle tests. 

Every FLT and ROS test tape begins with hardcore tests 
(LADS A6503) to determine that the CE hardware used in 
r.unning these tests is functioning properly. These tests are 
almost identical for ROS tests and FLTs; differences will be 
signified. Because the CE hardware most involved in 
running FLTs or ROS tests is S, T, PAL, and the 
connnecting paths between these points, these are the logic 
areas checked by the hardcore tests. 

These tests include sensing for l's or O's in S and T, 
verifying the CE's ability to stop when the stop conditions 
are met, and verifying the ability of the CE to conduct an 
ATN search and sequential testing. A failing test stops 
testing, with the failing test bit identification pattern 
displayed in MCW 0-3. If all hardcore tests are run 
successfully, testing terminates on three hardcore stops 
(correct stops); when testing is restarted, the CE enters the 
true ROS tests or, in the case of FLTs, the zero-cycle tests. 

Because the ROS hardcore tests are sequenced by the 
same controls that sequence the ROS tests and because the 
FLT hardcore tests are executed in the same manner as the 
regular FLTs, the hardcore tests have a different format for 
ROS tests and FLTs. ROS hardcore tests have the following 
format: · 

Buffer 1 Buffer 2 

TN ATN 100 200 

Mask MCW 108 208 

Each FLT hardcore test contains the 17 words used in 
an FLT; however, only two of the words are significant for 
the test. These are words 16 and I, the TN/ ATN and the 
MCW, respectively. The TN/ ATN causes the CE to progress 
through the tape records. The MCW causes the CE to make 
decisions. The other 15 words read in during a hardcore test 
contain O's and contribute nothing to the test. 

Hardcore tests check S, T, and PAL by performing the 
TN/ ATN comparison. The TN is in S, and the ATN from 
the previously executed test is in T. The corresponding bits 
in each register are compared at the scan-out-bus OR. If 
either bit is a 1, the inverted output of the OR is sensed as a 
0. 

For the result comparison, the mask is brought to Sand 
compared with the value scanned into T during execution 
of the test. In hardcore tests, the mask is all l's. This 
condition forces a pass or fail condition regardless of the 
value scanned into T during execution. A 0 output is sensed 
since the mask is all l's. The expected result bit sets the 
'pass' trigger and resets the 'fail' trigger. Using the mask in 
this manner, in conjunction with the MCW, causes the CE 
to decide whether to take the next test, an alternate test, or 
to terminate testing. 

The significant bits of the MCW used during hardcore 
testing are 5, 6, and 7. MCW(5) is the UT bit, and, if set, 
causes the CE to stop after the test, regardless of the 
outcome of the test. MCW(6) is the CT bit, and, if set, 
causes the CE to stop if the test fails or to take the next 
test if the test passes. MCW(7) is the ERSLT bit which 
specifies whether a 0 or a 1 should be sensed at PAL 
following the result-comparison portion of the test. The 
combinations of the ERSLT and the output at PAL that 
determine the setting of the 'pass' or 'fail' trigger are: 

ERSLT Bit PAL= 0 Set 'Pass' Tgr Set 'Fail' Tgr 

0 Yes Yes 
0 No Yes 

Yes Yes 
No Yes 

The setting of the 'pass' or 'fail' trigger is then compared 
with the setting of MCW( 5, 6) to determine the next 
operation, as follows: 

Trigger Output 

MCW(5) MCW(6) 'Pass' 'Fail' 

(UT) (CT) Tgr Tgr Action 

0 0 0 Continue - alternate test. 

0 0 Continue - next test. 

0 0 0 Continue - next test. 

0 0 Stop - gate alternate test 

on restart. 

o· 0 Stop - gate alternate test 

on restart. 

0 0 Stop - gate alternate test 

on restart. 

7201-02 FETOM (7/70) 4-37 



Whenever the CE stops during hardcore tests (whether 
an error stop or an unconditional stop), the ATN is left in 
T. To restart the test, the tape must be backspaced the 
required number of times, after which depressing LOAD 
will IPL the tape from that point. As each test is brought 
in, the CE brings the TN of each sequential test into S. S 
and T are then compared, and, when PAL equals 0, the CE 
performs the test that is in the buffer at that time. 

One of the preliminary steps in preparing the CE to 
perform ROS tests or FLTs is to set S and T to all l's by 
setting the DATA switches to the DOWN position and 
depressing STORE (LADS A6503). This step is required 
because it is not known initially that these registers are 
functioning. By forcing l's into all positions, the CE is 
forced to take the first test, which is test 1 on record 3. The 
rationale is that a failing bit in one register is compensated 
for by the bit in the other register, so that when S and T are 
compared, the result is 0 and the test is taken. Shown 

1 

below is a single position of the scan-out bus; a similar 
position exists for. each bit in S and T. 

S-Register 
(Mask or TN) 

T-Register 
(Scan Out Data or ATN) 

OR PAL (Latches Are 0 
if OR Is Satisfied) 

Note that a 1 input to either side of the OR satisfies the 
OR condition, and the inverted output is sensed as a 0. If 
neither input is a 1, the OR is not satisfied, and the inverted 
output is sensed as a 1. 

Theory of Hardcore Tests 

The hardcore tests were written for the 7201-02 to meet 
two objectives. The first is to test as much FLT (or ROS 
test) control hardware as possible to ensure that the results 
of the tests are meaningful. The second objective is to 
provide as much assistance as possible during repair of 
hardcore failures. 

Repair procedures are contained in the 7201-02 CE 
maintenance manual and on LADS page A651 l. Back
ground information and basic hardcore theory follow. 

An attempt is made to use only as much hardware as has 
been proven to work by previous hardcore tests. The first 
test determines whether it is possible to stop. The UT bit 
should make testing stop, but CT and Fail are also included 
to be redundant. (All error stops in hardcore stop in this 
manner.) This first test also proves that tests can be run. If 
they can't, no MCW 0-7 bits will come on; the tape may or 
may not run away. 

4-38 (7 /70) 

In order to test the S- and I-registers, which are vital to 
FLT and ROS testing, searching is used. Remember that a 
TN "equals" an ATN when all 3 2 bit positions have 1 bits 
from either or both registers. To test for bits stuck on in S, 
the I-register (ATN) is set to 0 and a search is started. 
Searching should not stop until a TN with all l's is found. 
Meanwhile, 32 tests are presented, each lacking only a 
single bit in the TN. If bit 6 is stuck on, the TN lacking bit 
6 will seem to have all l's, searching will stop, and this error 
stop test will be run. 

Unfortunately, if the S-register is not failing, but bit 6 
(or bit 38) is stuck on in the I-register, the same symptom 
will result. If comparisons cannot be made on bit 6 (PAL 6 
stuck off), this same symptom results. Maintenance 
personnel must determine which failure occurred. The 
alternate method of testing for this failure is to let every 
error-stop TN be 0 while the I-register has been loaded 
with all bits except one by dummy tests which appear 
before each error stop. The data patterns are the same as 
before but are exchanged between S and T. Every other test 
is run, loading the I-register with its ATN and then 
searching across the following test. 

Depressing LOAD should initiate an ATN search; passing 
from one test record to the next involves a restart IPL 
which should also initiate an A TN search. To test for this, 
the last test that is run in a record sets the I-register to 
search across the first test in the next record, which would 
be an error stop. 

'Conditional terminate' should force the next test to run 
and inhibit searching. To test for this, the ATN of a test 
that passes (with the CT bit on) is set to search for an error 
stop. Without CT, 'fail' should force the next test to run, 
with testing proceeding as described above. 

This covers most of the hardcore tests. These tests are 
designed to provide maximum isolation for all the basic 
failures which are latches and triggers stuck on or off. 

Summary of Hardcore Tests 

The hardcore tests have checked the CE for the following: 
1. Ability to sense l's in Sand T as O's at PAL. 
2. Ability to sense O's in S and T as l's at PAL. 
3. Ability to take next test. 
4. Ability to perform a TN search. 
5. Ability to stop on a failing test. 
6. Ability to stop on a UT signal. 
7. Ability to make a result-comparison and decide on next 

step. 
8. That all data paths connected with the above functions 

are operating properly. 



ROS Bit Tests 

• ROS tests, two doublewords, are read from tape one at a 
time, alternately, into buffers 1 and 2. 

• Test sequencing is controlled by ROS test sequencer. 

• A test consists of: (I) fetching MCW from storage, (2) 
advancing CE clock, (3) comparing state of one ROSDR 
trigger with predetermined result. 

• If 'pass' trigger is set, operation proceeds to next test; if 
'fail' trigger is set, testing is terminated. 

The remaining records on the ROS test tape contain the 
test patterns used to check the ROS bit planes. Each ROS 
test pattern consists of two doublewords in the same 
configuration as the hardcore tests. (See "Hardcore Test 
Highlights".) These tests are read from the tape one at a 
time, alternately, into buffers 1 and 2. At the completion 
of each read-in cycle, a 'TIC' pulse is generated (by the 
IOCE) which initiates the ROS test sequence. 

Test sequencing is controlled by the ROS test sequencer. 
At the start of a test, the ROS test sequencer is set to 
maximum (7). Then, as each portion of the test is executed, 
it is decremented by I. For each count of the sequencer, 
the CE is said to be in a certain "ROS state"; for example, 
if the ROS test sequencer equals 5, the CE is in ROS test 
state 5. When the count reaches 1 , the test is complete and 
the CE waits until another 'TIC' pulse is received. 

A test consists of fetching the MCW from storage, 
permitting the CE clock to advance a given number of 
cycles, and comparing the state of one of the ROSDR 
triggers with a predetermined result. If the state of the 
trigger matches its predicted value, the 'pass' trigger is set 
and the operation proceeds to the next test. If the actual 
and predicted values disagree, the 'fail' trigger is set and 
testing is terminated. 

When· the 'TIC' pulse is received, a TN comparison takes 
place. If the comparison is successful, the operation 
proceeds to scan in the MCW; otherwise, the operation 
waits. CE clock signals are distributed as long as the FLT 
counter does not equal 0. When the FLT counter equals 0, 
the CE clock is stopped and the expected result comparison 
is started. The address sequencer governs the loading of a 
portion of the ROSDR word (32 bits) into T. The mask is 
in S (the other. half of the word that was loaded into the 
MCW), and the result comparison takes place. Until a 'TIC' 
or 'gap' pulse is not received, the operation returns to 
scan-in and repeats the test. 

For the following discussion of the ROS test, refer to 
Diagram 6-115, FEMDM. 

.ROS Test State 7. A ROS test is started when the ROS test 
sequencer is set to maximum and 'Start ROS test' is set. 
This action occurs because one of the following conditions 
is present: 
1. A 'gap' pulse is received from the. channel, indicating an 

end of record. This condition is tested for during ROS 
test state 6. 

2. The TN comparison failed during ROS test state 4; 
therefore, the next test is brought in. 

3. Load was depressed. During ROS test state 7, the only 
operation is the decrementing of ROS test sequencer and 
inverting of buff er trigger. 

ROS Test State 6. During ROS test state 6, the TN/ATN 
address is forced to storage controls, and a scan storage 
request for the TN/ ATN word is initiated. The operation 
then waits for a 'TIC' pulse before progressing. When this 
pulse is received, ensuring that a test is in storage, the ROS 
test sequencer is decremented by 1. 

ROS Test State 5. During ROS test state 5, the TN of the 
incoming word is gated to S, and the 'TIC' and 'gap' triggers 
are reset. The ROS test sequencer is then decremented by 
I. 

ROS Test State 4. During ROS test state 4, a 'scan out S 
and T' signal determines whether this is the test to be 
executed. This determination is accomplished by comparing 
the contents of S and T, via the negative-OR inputs to PAL 
(scan-out bus). S contains the TN of the current test 
obtained from the ROS test just read into storage during 
ROS test state 5. For the first test (hardcore test in record 
3), T contains all 1 's loaded from the DATA switches. For 
all subsequent tests, T contains the ATN of the previous 
test. This number should be the complement of the current 
TN'. Thus, a successful comparison results in all O's being 
sent to PAL. 

PAL is then checked for an all 0 result. If PAL does not 
contain all O's, indicating that the test currently in storage 
is not the one searched for, the ROS test sequencer is again 
set to maximum and decremented by 1. This action causes 
the CE to be again in ROS test state 6 and to wait for the 
next sequential test on the tape. This operation continues 
until either the entire tape has been searched or the correct 
TN has been found. If a valid TN cannot be found, this 
condition is known as a tape runaway. 

If PAL does contain all O's, indicating a successful 
comparison, the 'pass' and 'fail' triggers are reset and the 
ROS test sequencer is decremented by 1. 

7201-02 FETOM (7/70) 4-39 



ROS Test State 3. During ROS test state 3, a storage 
request is made for the mask/MCW word, and the ROS test 
sequencer is decremented by 1. 

ROS Test State 2. Highlights: 
1. MCW fetched from storage is transferred to ST and 

subsequently distributed to address sequencer (bits 
21-25), MCW register (bits 0-7, 20), ROSAR (bits 
8-19), FLT counter (bits 26-31). 

2. CE clock signals cycle ROS until FLT counter is reduced 
to 0 (one cycle for ROS tests). 

3. When FLT counter equals 0, CE clock is stopped and 
result in ROSDR is scanned out to T. 

4. ROS test sequencer is decremented by 1. 

During ROS test state 2, the doubleword fetched from 
storage is transferred to ST, and the address sequencer, the 
FLT counter, and the FLT clock are reset. T now contains 
the MCW which is subsequently distributed as follows: 
1. T(32-39, 52), which contains the ROS plane number 

[MCW(0-3)], the UT bit (MCW(5)], the CT bit 
(MCW(6)], the ERSLT bit [MCW(7)] is transferred to 
the MCW register. (MCW(20)] is used to indicate 
intentional. stops. MCW(4) is not used and therefore 
contains 0. The ROS plane number is not used for the 
test but is displayed, in case of a failure, as a guide for 
maintenance personnel. For most ROS tests, except the 
hardcore tests, the UT bit is 0 and the CT bit is 1. The 
ERSLT bit is a 1 or a 0, depending upon the design of 
the ROS plane being tested. 

2. T(40-51), which contains the ROS address of the plane 
to be tested, is set into ROSAR. 

3. T(53-57), which contains the scan word address of the 
ROSDR bit to be tested, is transferred to the address 
sequencer. 

4. T(58-63), which contains a count of the number of 
clock cycles needed to read out one ROS word, is 
transferred to the FLT counter and FLT clock. 

At the same time, the 'scan counter control' trigger is 
set. The trigger output deactivates the ROS sense latch reset 
(until this time, the ROS sense latches have been held reset; 
therefore, no microprogram operations have been taking 
place) and sets the 'scan counter control' latch. This latch 
causes the ROS test sequencer output to be blocked, thus 
taking the operation out of ROS test sequencer control, 
and inhibits stepping the ROS test sequencer. 

At this time, the bit test begins ROS functions using the 
address in ROSAR. The CE clock cycles ROS until the FLT 
counter (loaded from the MCW word and decremented by 1 
in synchronism with the CE clock cycles) is reduced to 0. 

4-40 (7/70) 

When the FLT counter equals 0, the 'cycle counter equals 
zero' latch is set and the 'MMSC' trigger is set to stop the 
CE clock and the test. The scan-out bus is now used to scan 
out the results. The 'SOROS' and 'sync' triggers are set, and 
the 'sync' latch is set to complete synchronization of the 
controls with the FLT clock. The ROS sense latches are 
reset, and register ingating is inhibited. The 'MMSC' trigger 
is then reset. The output of the scan-out bus is transferred 
to PAL and subsequently to T. The 'scan counter control' 
latch is reset, thus activating the 'reset ROS sense latch' 
signal and restoring control to ROS test state 2. A scan 
machine reset resets the latches and triggers used to control 
scan-out. The ROS test sequencer is decremented by 1. 

ROS Test State 1. During ROS test state 1, the results in T 
and the mask in S are negative-ORed into PAL by the 'scan 
out S and T' signal. A scan storage request for the TN/ ATN 
word is initiated and, depending on the ERSLT bit value 
and the PAL zero-result check, the 'pass' or 'fail' trigger is 
set as follows: 

PAL ERSLT Bit 'Pass' Tgr 'Fail' Tgr 

= 0 Set 

=Fo 0 Set 

= 0 0 Set 

=Fo Set 

If a 'TIC' signal has not arrived to indicate that the 
alternate buffer is full, the operation returns to ROS test 
state 3 to repeat the test. If an error or a' 'TIC' or 'gap' 
signal occurred, the ROS test sequencer is decremented by 
1, thereby going to ROS test state 0. 

ROS Test State 0. During ROS test state 0, the word 
fetched in ROS test state 1 is loaded into ST, and a stop or 
continue decision is made. If testing is to be continued an 
ATN is specified and the ROS test sequencer is set to 7 and 
decremented by 1. If the test is to be stopped, the 'pass 
pulse' trigger is reset to stop the FLT and scan clocks and a 
'reset FLT IPL' signal stops the tape at the end of the 
current record. The ROS test sequencer is set to 7, and the 
scan controls stop. To continue testing ROS, depress 
BACKSPACE FLT twice and LOAD. 

When the ROS test stops because of a failure, the 
following information is displayed in the CE control panel 
indicators: 
1. Failing plane (first digit of ROS address), in hex (roller 

5, position 2, bits 0-3 (CE TEST ADDRESS)]. 
2. Failing ROS address (last two digits of ROS address), in 

hex [roller 1, position 3, S(O-7)] . 
3. Failing bit in decimal (roller 1, position 3, S(8-15)]. 



FLT TESTS 

Introduction 

• FLTs check CE logic at block level. 

• 'Exit' trigger determines whether test passed or failed. 

• FLTs have three basic phases: scan in, clock advance, 
scan out. 

• Three categories of FLTs are hardcore tests, zero-cycle 
tests, and one-cycle tests. 

FLTs are a unique maintenance concept in that CE logic is 
checked without executing CE instructions (i.e., without 
executing a program in the ordinary sense). In an FLT, 
fault detection is performed at the logic level. That is, FLTs 
are concerned with the logical function (OR, AND, 
INVERT) of a block rather than with its operational 
function (e.g., as an adder, counter, control) in the CE. 

The FLT generator program treats the CE as a set of 
triggers which can take on a new state (S) every time a 
clock signal is generated: 

s 
n 

Combinational 
Qi 

Combinational 
Qi 

Combinational Qi Combinational Cl Cl Cl 

Logic .~ Logic .g> Logic .~ Logic ..= I- ..= 

Clock Clock Clock ____ n ____ n ____ n ___ _ 

Thus, FLTs are generated for groups of logic blocks. A 
group consists of an 'exit' trigger (a temporary storage 
element taking on new data at clock time and holding the 
information during not-clock time) and associated logic 
that can affect the trigger during an advance of a 
predetermined number of cycles. 

The FLT generating programs analyze the group of logic 
blocks and determine, from a set of input values, an 
expected response at the output of the 'exit' trigger. (Note 
that although the 'exit' trigger determines whether the test 
passed or failed it is not being tested per se; the FLT tests 
the logic that precedes it.) Using the information gained by 
the analysis, the program generates a test pattern which it 
places on tape. Each test pattern is an FLT. At the same 
time, the program generates the documentation necessary 
to troubleshoot a failure detected by the FLT. 

The application of an FLT can be broken into three 
phases: 
1. Scan-in. Triggers are set to the desired state by a scan-in 

microprogram. Triggers that cannot be set are assumed 
to be at a predetermined value. 

2. Clock advance. The number of clock signals specified by 
the FLT MCW are allowed to be generated. These signals 
advance the CE from one trigger level to the next. The 
'exit' trigger assumes a value that is a function of the 
state of the CE during the previous cycle. 

3. Scan-out. The new value of the 'exit' trigger is compared 
with the expected result.. If the machine is operating 
properly, the two values should agree. If the new value. 
and the· expected result differ, a fault has been located 
and testing terminatest with reference to the FLT 
documentation. 

FLTs can be divided into three categories: 
I. Hardcore tests. Check the scan and normal CE logic 

necessary to run FLTs. 
2. Zero-cycle tests. Determine whether a trigger value can 

be changed by scan in and also whether the new value 
can be sensed. Zero-cycle tests establish the machine 
capability to scan-in and scan-out before running one
cycle FLTs. 

3. One-cycle tests. During these FLTs, data is scanned into 
the CE, the clock is allowed to run, and the 'exit' trigger 
is scanned out and compared with a known value. 
One-cycle tests check combinationaltt logic within the 
CE. 

Note that the terms "zero-cycle" and "one-cycle" do 
not refer to the number of clock cycles allowed after 
scan-in. For example, if, during a zero-cycle test, the 'exit' 
trigger requires a clock signal to set it, thedock must run 
for one cycle. These terms refer to test techniques rather 
than to any time element. 

FLT Tapes 

FLTs are stored on magnetic tape in the following order: 
hardcore tests, zero-cycle tests, one-cycle tests. Each FLT 
tape consists of thousands of tests, each concerned with a 
single sensitive path. Also contained on the tapes are tests 
preliminary to FLTs; i.e., designed to ensure that the CE is 
capable of performing FLTs and that the triggers to be 
tested can be set or reset and the change sensed. 

tTermination is conditional upon the contents of the MCW. 

ttCombinational logic is all the logic required to pass the state of 
one trigger to the next by executing a specified number of clock 
cycles. 

7201-02 FETOM (7/70) 4-41 



Each tape is divided into three sections: hardcore tests, 
zero-cycle tests, and one-cycle tests. The one-cycle tests are 
considered the true FLTs because these test combinational 
logic. A brief description of the three kinds of tests on the 
FLT tape follows:· 
1. Hardcore tests. The test tape begins with hardcore tests 

to check out the CE hardware necessary for operating 
the FLTs. Hardcore tests determine that the S- and 
T-registers are functioning properly, that their bit 
content can be correctly sensed at PAL, and that the CE 
can make decisions based on the outcome of a test and 
then act on that decision. 

2. Zero-cycle tests. Next in the testing sequence are the 
zero-cycle tests. These tests verify that the 'exit' trigger 
status can be changed and that the change can then be 
observed or sensed. Zero-cycle tests set the trigger, using 
either a special scan input or a normal machine path, and 
then verify the change in status of the trigger being 
tested. Because clock signals are needed to set most 
triggers, the CE clock is allowed to cycle just enough to 
set the trigger. Upon completion of the zero-cycle tests 
the CE's ability to run FLTs has been verified. 

3. One-cycle tests. These tests make up the bulk of the 
FLT tape. They vary in the amount of logic checked and 
run in sequence until a failing test is encountered, 
whereupon testing is terminated and the failing test 
number is displayed in the S-register. One-cycle tests 
require two or three clock cycles to set a trigger. 

Tape Generation 

• FLT tape is computer-generated from ALD data. 

• Program develops sensitive tree with entry points and 
terminating in an 'exit' trigger. 

• Tests are printed out in two formats: test, including 
entry pattern, and listing of sensitive points (SCOPEX) 
which is used in troubleshooting. 

• New tests ar~ added to existing tape, using FLOT. 

The FLT tape is computer-generated from ALD data. Using 
this data, a special program develops tests that, when 
executed, affect triggers indicatable on the CE control 
panel (designated 'exit' triggers). The program works back 
from all entries into each of these triggers, searching the 
logic path for "sensitive" points; i.e., points at which an 
error or a failure would propagate to the 'exit"'higger. Only 
one fault is assumed for each sensitive point. 

The logic that feeds these sensitive points makes up a 
sensitive net, and, as the number of nets grows, the 

4-42 (7 /70) 

combinational logic involved resembles a tree; the 'exit' 
trigger forms the tip of the tree, and the sensitive nets make 
up the body of the tree. The search continues until the 
program encounters another trigger that can be used as an 
entry point into the sensitive tree. Usually, several entry 
points into a particular tree are available. However, entry 
points are selected on the basis that data injected at the 
entry points will propagate through to the 'exit' trigger. 

The program also selects micro-orders that will move 
data from the entry points to the 'exit' trigger. Upon 
completion of the search, the program has developed a 
sensitive tree with entry points and terminating in an 'exit' 
trigger. The program also has developed an entry pattern 
that results in a predictable status of the sensitive nets and a 
predictable change at the 'exit' trigger. Once this pattern 
has been developed, an evaluator program verifies its 
correctness. 

Upon verification, the test is printed out in two formats: 
the test itself, including the entry pattern, and a listing of 
the sensitive points within the tree. The first of these 
becomes the taped FLT; the latter is the scoping docu
mentation (scoping index, or SCOPEX), used in trouble
shooting a failing test. 

The entry pattern is scanned into the CE, micro
instructions are selected to move the data through the 
sensitive tree during a given number of clock cycles, and the 
'exit' trigger is then observed (scanned out) to determine 
whether it is at the predicted value for the test. If it is not 
at the predicted value, the test has failed, and maintenance 
personnel may then repeat the failing test continuously and 
scope the sensitive points on the tree to find the net with 
the failure in it. Certain sensitive points appear in more 
than one test, and the same 'exit' trigger may be the 
observation point for more than a single sensitive path. 
Thus, newly tested points are indicated as being newly 
tested on SCOPEX to indicate to maintenance personnel 
that this is the first time these sensitive nets have been 
encountered and tested. 

By verifying that ANDs, ORs, and INVERTs are 
functioning as designed, FLTs verify the operating capa
bility of the CE, although specific computer functions are 
not performed. FLTs ascertain that the CE is operating 
according to design specifications and therefore should be 
capable of functioning as a CE. 

After the .FLT has been evaluated as a valid test, it 
becomes part of the FLT tape and is distributed for field 
use. New FLTs are continually being generated, some to 
test new logic that results from engineering changes and 
others to test areas of the CE that are not now being 
checked. New tests are incorporated into existing tapes 
with the Fault Locating Utility (FLOT) program. Normally, 
however, a complete tape is sent to the field incorporating 
both old and new tests. 



FLT Hardcore Tests 

The first few records on the FLT tape contain tests that 
ensure that the hardcore logic necessary to run zero-cycle 
and one-cycle tests is operational. Hardcore logic is defined 
as all the logic, scan and normal, necessary to load the FLTs 
into storage, to scan-in, to scan-out, to make decisions 
based on the outcome of a test, and to act on those 
decisions. 

. ·CE hardcore hardware testing is subject to the following 
limitations: 
I. Scan hardware is not tested directly; however, it is 

exercised in the hardcore portion with tests designed to 
isolate the trouble. 

2. The SCI is not tested in the FLTs, but it must be 
functioning properly for FLTs to be run. Also, main 
storage and storage buses must be operating. Main 
storage may be checked by means of ripple tests. 

3. The channel and tape drive (or disk) used to read in the 
FLTs are not tested. These units must be tested by 
means of manual controls on the IOCE. 

4. Local storage is not needed to run FLTs and, therefore, 
is not tested. Local storage is checked by means of ripple 
tests. 

5. The ROS microprogram and ROS must be fault-free to 
run FLTs. Therefore, because hardcore tests do not 
check ROS, ROS tests should be run before FLTs. 

Zero-Cycle Tests 

To further check the operation of the scan hardware, 
zero-cycle tests determine whether the scan-in and/or 
scan-out paths are operative. Zero-cycle tests check only 
those triggers displayed on the CE control panel. In these 
tests, a pattern is scanned into the machine, the clock is not 
advanced, and the 'exit' trigger is observed. If the trigger 
has a scan-in path, three tests are performed: one for the 
reset state, one for the set state, and one for the reset state 
again. If the trigger has no scan-in path, only one test is 
performed for the reset state. While one trigger is being 
tested, other triggers can assume various states. Whenever 
possible, random states are used to simulate the combina
tions that may be used in a normal test and to reveal 
interaction between triggers. 

The functions checked with zero-cycle tests include: 
1. Reset to triggers (this is, in effect, a scan-in-zero 

operation). · 
2. Scan-in path to triggers~ 
3. Ability of a trigger to hold its value in the absence of a 

clock signal. 
4. That scan-out bus gating signals can be generated~ 

Page of SFN-0201-1 
Revised by TNL: SN31-0020 

One-Cycle Tests 

One-cycle tests are the true FLTs. The input, produced by 
the FLT generating system, is a test that detects and locates 
at least one fault. The input pattern is scanned into selected 
triggers, and the CE is allowed to advance a given number 
of cycles. The result, which is in the 'exit' trigger, is 
compared with the value expected for a correctly operating 
machine. 

If the value in the trigger does not agree with the 
expected result, testing is terminated and the failing TN is 
displayed in S(0-15) for reference to the SCOPEX. 

The SCOPEX is a series of lists, one for each test. Each 
list is headed by the test number in hex, followed by a row 
of asterisks, and consists of several lines each line referring 
to a pin in the machine. If a pin in the machine is contained 
in a list, the net which feeds that pin is sensitive for the test 
pattern applied; a failure on the card, which can be 
observed with an oscilloscope at that pin, would cause the 
test to fail. 

Each FLT on the test tape consists of 17 doublewords, 
numbered 0 through 16. This is. one complete test. Each 
test occupies one of two areas in storage. Buffer 1 begins at 
PSA location 100 (hex) and contains 17 doublewords. 
Buffer 2 begins at 17 PSA location 200 (hex) and also 
contains 17 doublewords. 

While one test is being executed from one buffer, the 
other buffer is being filled from the IOCE. Filling the 
buffers is a sequential process, and the processing of the 
FLTs is in the same sequence, without further addressing. 

The contents of the 17 doublewords are as follows: 
1. Doublewords 0 and 2 through 15 contain bit patterns 

that are scanned into the CE. · 
2. Doubleword 1 contains a mask and the FLT MCW. The 

mask defines the 'exit' trigger; the MCW, in the right 
half, contains control information abo.ut the test. 

3. Doubleword 16 contains the TN in both true and 
complement form and the ATN in the same format. 
Doubleword 16 is not read into the CE during test 
sequencing unless a fault is encountered or an ATN 
search is performed. 

At the satisfactory completion of a test, the 'pass' trigger 
is set, the address sequencer is set to 15, and word 15 of the 
test is the first word scanned in again. When a test fails, the 
'fail' trigger is set. After a 'TIC' pulse is received from the 

I IOCE, the last thing the CE does is to fetch word 16 from 
storage and leave it in the S- and T -registers. If the 
maintenance personnel desires to skip this test and continue 
with the remainder of the tests on the tape, he may depress 
the BACKSPACE FLT pushbutton twice, then LOAD. The 

7201-02 FETOM (5/72) 4-43 



Page of SFN-0201-1 
Revised by TNL: SN31-0020 

I signals generated by depressing these pushbuttons causes 
the 1/0 device to backspace to the beginning of the record 
and to start reading the tests into storage again. As each 
buffer is filled, the TN in the left half of word 16 is placed 
in the S-register, and a comparison is made between the 
new TN in the S-register and the ATN in the T-register by 
using the scan-out S and T facility. The result is 0 for the 
test immediately following that test in which a failure 
occurred. Upon detection of this 0 result in PAL, the CE 
again begins testing and continues until the next failure. 
This procedure is the only way of getting past a failing test 
and continuing the test tape sequence. 

Operational Analysis 

FLT Tests 

• Each FLT checks small portion of logic by setting up 
conditions that affect 'exit' trigger which can then be 
sensed for proper output. 

• If error occurs, test is terminated and SCOPEX is used 
with failing TN identification to determine test points to 
scope. 

• FLT tapes consist of hardcore, zero-cycle, and one-cycle 
tests. 

• FLT test consists of 1 7 doublewords. 

As discussed earlier, each FLT checks a small portion of the 
logic by setting up certain conditions that affect a. specific 
trigger (known as an 'exit' trigger) which can then be sensed 
for the proper output. Therefore, each test on the tape sets 
up the CE to the proper status (certain triggers set) that 
results in a particular output of the logic under test. After 
the CE has been set up for a test (scan-in), the CE clock is 
advanced a sufficient number of cycles to change the status 
of the 'exit' trigger. The indicator associated with this 
trigger is then selected (scan-out) and compared with an 
ERSLT bit in the FLT MCW, set as part of the scan-in 
routine. If the values are equal, the test passes; if unequal, 
the test fails. Because each test is repeated a number of 
times, both the PASS and FAIL indicators may be on, 
which is interpreted as an intermittent failure. 

A summary of an FLT includes: 
1. Load test into storage. 
2. Scan into CE triggers. 
3. Advance CE clock. 
4. Stop CE clock. 
5. Scan-out to T (scans desired indicator to T). 
6. Load mask into S. 

4-44 (5/72) 

7. Scan-out S and T (compares 'exit' trigger with expected 
result and sets 'pass' or 'fail' accordingly). 

8. Repeat steps 2-7 until a 'TIC' or 'gap' is sensed. 
9. Go to next· test or terminate and display failing TN. 

The action following this sequence (assuming an error or 
fault) requires locating the SCOPEX page with the failing 
TN identification, scoping the test points listed, and 
replacing the failing card(s). 

FLTs are rarely run singly. So little time is involved that 
it is easier to run the entire series on a tape or until a failing 
test is encountered. The failing test may then be repeated 
until the fault is isolated. 

FLT Tape 

The makeup of the FLT tape is similar to that of the ROS 
testtape and contains the following records: 

Initial 
IPL 

Inter-record Gaps 

Hardcore 
Tests 

Hardcore 
Tests 

1. Record 1, Initial IPL - Contains the 24-byte "boot
strap" program necessary for an IPL operation. When 
LOAD is depressed, the three doublewords of this record 
are read into storage locations, as follows: 

Storage Location 
(Hex) 

0 

8 

10 

Word Contents 

Loader ID 

CCW 1 Read command to· read 8 bytes 
to location 0, and chain com
mand to location 10. 

CCW 2 Read command, 28 (hex) bytes 
into 18 (hex). Chain command 
to location 18. 

2. Record 2, Loader - Contains the loader program that 
reads in the FLTs. The IPL program in record 1 reads 
this record into storage locations, as follows: 

Storage Location 
(Hex) 

18 

20 

Word Contents 

CCW 1 Read command. Read 8 bytes 
into location 0 and chain data. 

CCW 2 Read command to read 88 (hex) 
bytes to buffer 1(location100), 
and a chain data tag to location 
28. 



28 

30 

38 

CCW 3 TIC command to location 30. 

CCW 4 Read command to read 88 (hex) 
bytes to buffer 2 (location 200), 
and a chain data tag to location 
38. 

CCW 5 TIC command to location 20. 

3. Record 3, Hardcore Tests I and 2 - Contains the first 
FLT hardcore test. The hardcore tests for FLTs are 
identical with the ROS test hardcore tests except for 
their format. The FLT hardcore tests have the following 
format: 

Storage Location 
(Hex) FLT Word Left Word Right Word 

100 0 0 0 
108 Mask MCW 
110 2 0 0 
118 3 0 0 
120 4 0 0 
128 5 0 0 
130 6 0 0 
138 7 0 0 
140 8 0 0 
148 9 0 0 
150 10 0 0 
158 11 0 0 
160 12 0 0 
168 13 0 0 
170 14 0 0 
178 15 0 0 
180 16 TN ATN 

Note that all locations except those containing FLT. 
words I and 16 are blank. The blank locations are not 
used in hardcore tests. 

4. Record 4, IPL 2 - The first hardcore test causes a stop. 
When LOAD is depressed, the following IPL program 
replaces the IPL I program: 

Storage Location 
(Hex) Word Contents 

0 Loader ID 

8 ccw 1 No-op chain command. 

10 CCW2 No-op chain command. 

5. Records 5-8, Hardcore Tests - Contain the remaining 
hardcore tests. 

6. Zero-Cycle Tests - The next series of records on the 
FLT tape are the zero-cycle tests. These tests further 
check the scan logic necessary to run the main FLTs 
(one-cycle tests). They determine whether the scan-in 
and scan-out paths are operative. Scan-in and scan-out 
tests can exist only for triggers which have a scan-out 
path. In these tests, a pattern is scanned into the 
machine, the CE clock is allowed to advance, and the 

output· trigger is observed. If the trigger has a scan-in 
path, three tests are performed: for a reset state, for a 
set state, and again for a reset state. If the trigger has no 
scan-in path, only one test is performed, and this test 
ascertains that the trigger is at its reset state. While one 
trigger is being tested, other triggers can take on various 
states. Whenever possible, random states simulate the 
combinations which may be used in a one-cycle test and 
reveal interaction between triggers. 

7. One-Cycle Tests - The remainder of the tape contains 
the one-cycle tests which are the true FLTs. The input 
has been generated by the FLT generating system and 
found to be a test that will detect and locate at least a 
single fault. An input pattern is scanned into the 
predetermined triggers, and the CE clock is allowed to 
advance; the result, which is in the 'exit' trigger, is 
compared with the value expected for a machine 
operating correctly. 

The iast test in each record is a dummy test, which keeps 
the IOCE from reading across the interrecord gap before 
the result of the last one-cycle test is known. Thus, if the 
last one-cycle test fails, a stop-scan sequence can be 
executed before the interrecord gap is reached. 

FLT Format: Zero-cycle and one-cycle FLTs have the same 
format (Table 4-2), consisting of 17 doublewords. The 
doublewords (scan-in words) are used as follows: 

Table 4-2. FLT Format 

Storage Location Scan-In 
(Hex) Word* Left Word Right Word 

100 and 200 0 s T 
108 and 208 1 Mask MCW 
110 and 210 2 Q Q 

118 and 218 3 A Misc Triggers 
120 and 220 4 B Misc Triggers 
128 and 228 5 D Misc Triggers 
130 and 230 6 PSW IC 
138 and 238 7 E,R Misc Triggers 
140 and 240 8 K PIR 
148 and 248 9 Select IOCE MCK INT 
150 and 250 10 External (Spare) 
158 and 258 11 Dar Mask Dar Mask Parity 
160 and 260 12 (Spare) DAR 
168 and 268 13 L M 
170 and 270 14 x y 

178 and 278 15 N (Spare) 
180 and 280 16 TN ATN 

*Refer to LADS A6611 and A6641 for bit assignments. 

I. Scan-In Words 0 and 2-15. Contain the scan-in test 
pattern, which is distributed to registers and triggers as 
shown in Table 4-2. The data establishes a CE state 
before performing the FLT. 

7201-02 FETOM (7 /70) 4-45 



2. Scan-In Word 1, Left Half (Mask). Specifies the 'exit' 
trigger to be sensed. This is accomplished in the scan-out 
bus by ORing the scan-out word containing the 'exit' 
trigger status with the mask bits. The mask contains all 
1 's except for a 0 in the position corresponding to the 
trigger being sensed. The output of the OR is inverted so 
that if the 'exit' trigger is set, the value sent to PAL is 0. 

3. Scan-In Word 1, Right Half (MCW). Contains the control 
information necessary to run the test: 

Scan-In Word 1 
MCW Bits · Position Contents 

0-3 32-35 {Used for display only) 

4 36 LW bit 

5 37 UT bit 

6 38 CT bit 

7 39 ERSLT bit 

8-19 40-51 ROS address {bits 73-84 of 
input pattern) 

20 52 {Used for display only) 

21-25 53-57 Scan-out address 

26-31 58-63 Cycle count 

4. Scan-In Word 16. Contains the TN and ATN as follows: 
bits 0-15, TN; bits 16-31, l's complement of TN; bits 
32-47, is complement of ATN; bits 48-63, ATN. 

FLT Test Setup 

Several controls on the system control panel must be 
operated to initiate FL Ts. The procedure for running FL Ts 
appears in LADS A6503. However, a short description of 
the setup is included here because it affects the operation. 

Diagram 6-116, Sheet 2, FEMDM, shows the start of an 
FLT. The FLT tape is mounted first. SYSTEM RESET is 
now depressed to place the CE in stop loop with the 
'manual' trigger set. The LOAD UNIT switches are set to 
the address of the tape unit holding the test tape, the TEST 
MODE, ROS/PROC/FLT switch is set to FLT, and the CE 
CHECK switch is set to DSBL. Going into FLT test mode 
causes the 'FLT test' trigger to be set. The DATA switches 
are set to all l's, and STORE is depressed. This action 
places all l's into ST so that T now contains an ATN for 
the first hardcore test. Lastly, LOAD is depressed, initiating 
a normal IPL operation which reads in IPL 1. 
IPL 1. Depressing LOAD with the CE in FLT test mode 
initiates operations that are identical with a normal IPL; 
i.e., 24 (dee) bytes are read from the selected device into 
the first three doubleword locations of main storage under 
ROS microprogram and IOCE control. At this point, the 

4-46 (7/70) 

CE is idle, waiting for a 'TIC' signal from the IOCE. 
Meanwhile, the IOCE IPL operation reads in record 1 of the 
FLT tape and executes the program specified by record 1. 
(See "FLT Tape".) As a result, 40 bytes (record 2) are read 
into storage, starting at location 18 (hex). Record 2 
contains the loader program that will read each FLT into 
the proper buffer area in storage. 

After record 2 has been read in, command chaining 
causes CCW2 in record 2 to be executed. This CCW is a 
Read command to read test record ID into location 0 which 
contains a read CCW, reads test into 100. When the IOCE 
has finished executing the TIC command, in 28, it sends a 
'TIC' signal to the CE. As soon as this signal is received, the 
IPL microprogram is continued, and the CE proceeds as 
though performing a normal IPL. Then the FLT micro
program is initiated. ROS control now places the CE in scan 
mode. The CE is now ready to run the first hardcore tests. 

Loader 

• FLTs are read into two buffer areas (100 and 200, hex) 
in the PSA area. 

• Each time a buffer is filled, 'TIC' pulse informs CE that 
test can be performed. 

• Read-in operation continuously checks for errors. 

• Test is repeated until 'TIC' pulse is received. 

The loader IOCE program read in by IPL 1 is used to 
transfer all FLTs, whether hardcore, zero-cycle, or one
cycle tests, to main storage. The test data is read into two 
buffer areas in main storage [starting at locations 100 
(hex), designated buffer 1, and 200 (hex), designated buffer 
2]. Each time a buffer is filled with a single test, a 'TIC' 
pulse informs the CE of this fact and the test can be used 
by the CE. 

The tests are read into the buffer areas on a sequential 
basis. For example, test 1 is read into buffer 1. As test 1 is 
being run, buffer 2 is being filled with test 2. As test 2 is 
being performed, buffer 1 is being refilled with test 3, etc. 

Parity and tape errors are not retried automatically and 
manual intervention is required following a stop under 
these conditions. Channel-control checks may also occur, 
which immediately halt the test procedure. 

Once a test is begun, it is repeated until a 'TIC' pulse is 
received, indicating the next test is ready for processing. No 
count is made of the number of times a test is run, as this is 
a function of the data rate of the I/O device involved. 

During normal sequential processing of FLTs (no faults 
encountered), the address sequencer is set to 15 and the 16 
doublewords composing a single FLT are scanned into the 



CE. The following is a summary of the read-in and test 
sequence: 
I. While the FLT is being scanned into the CE, a 

continuing check for storage and/or input errors is made. 
Storage errors might occur between storage and the CE. 
Input errors might occur between IOCE and storage 
while the next FLT is being read into the alternate 
buffer. , 

2. When scan-in is complete, the 'scan mode' trigger is 
reset, and an unconditional branch to the ROS word 
addressed by MCW(8-I 9) is performed. 

3. The 'scan counter control' trigger is set, and the FLT 
counter keeps track of the number of CE cycles 
specified by MCW(26-31). The CE clock is stopped 
when the FLT counter equals 0. 

4. Following a successful scan-in and clock advance, a 
scan-out operation places the test result in T. The 
combination of MCW( 4) and MCW(21-25) determines 
the scan-out word that is transferred to T. 

5. At this point, the mask is fetched from storage and 
transferred to S. A result comparison between the mask 
and the scanned-out word is made, and the 'pass' or 'fail' 
trigger is set, depending on zero reset and MCW(7}. The 
next operation to be performed is determined by pass, 
fail, unconditional-, or conditional-terminate conditions. 

6. Execution of this FLT is repeated until a 'TIC' or 'end 
of record' ('gap') signal is received. When either is 
received, the decision to stop or continue is made, and 
appropriate controls are set. 

Hardcore Tests 

Functionally, the hardcore tests at the beginning of the 
FLT tape are identical with the ROS hardcore tests. The 
differences are in the format and control of the tests. FLT 
hardcore tests have the same format as zero-cycle and 
one-cycle tests except that all scan-in words other than 
words 1 and 16 are O's. Word 1 contains the mask and 
MCW, and word 16 contains the TN/ATN. These words ate 
used in the same manner as in the ROS hardcore tests. 

FLT hardcore tests are controlled by the FLT ROS 
microprogram instead of by hardware, as in the ROS 
hardcore tests. Successful testing terminates on three 
hardcore stops (correct stops), and, upon restar,t, the CE 
enters zero-cycle tests. Maintenance personnel may attempt 
isolation and repair on an error stop encountered during 
hardcore tests according to the procedure in LADS A6511. 

Zero-Cycle and One-Cycle Tests 

• Scan-in loads CE with test data. 

• Test cycle allows CE to act on scan-in data. 

• Scan-out collects data after clock advance. 

• Mask is compared with scan-out data. 

• Testing ends or continues, depending on result com
parison, with expected result [MCW(7)]. 

Each FLT follows a similar five-step routine under ROS 
control (with the exception of scan-in and scan-out, which 
may be either under ROS or hardware control). The FLT 
sequence may be summarized as follows: 
1. Scan-In. When a storage buffer has been filled with an 

FLT and the CE receives a 'TIC' pulse, scan-in begins. 
The address sequencer is set to 15 by a micro-order, and 
words 0 through 15 are read into the CE. These words 
enter the CE via Q or ST and are scanned into various 
registers and triggers throughout the CE, using normal 
data paths, to set . up the machine environment for a 
particular test. During scan-in, certain micro-orders are 
interpreted for scan control rather than for functional 
operations. From T, the MCW is transferred to the 
address sequencer, the FLT counter, and the MCW 
register when the address sequencer equals 1. When the 
address sequencer equals 0, scan-in is completed except 
for ST, and the test-cycle phase is entered. A micro
order transfers T to ROSAR, and, on the next cycle, ST 
is scanned in. 

2. Test Cycles. The count in the FLT counter, set by the 
MCW, determines the number of cycles taken by the CE. 
A micro-order, specified by MCW(8-19), controls this 
portion of the test. When the FLT counter equals 0, the 
CE clock is stopped and scan-out begins. 

3. Scan-Out.The status of the 'exit' trigger is placed in T. 
The scan-out word containing the status of the 'exit' 
trigger is specified by the count in the address sequencer. 
MCW(4) determines whether the right or left word 
contains the 'exit' trigger status. If the count in the 
address sequencer is 14 or greater, scan-out is controlled 
by hardware. If the count is 13 or less, scan-out is 
controlled by ROS. 

4. Result Comparison. The 'exit' trigger is compared with a 
known value, one that is predicted on the basis of the 
information scanned in. This comparison is accom
plished by fetching the mask from storage, placing it in 
S, then ORing the scan-out word and the mask in the 
scan-out bus. The mask contains all l's except for the 
position corresponding to the 'exit' trigger, which is a 0. 
Assuming the 'exit' trigger is set when it is ORed with 
the 0 in the mask, the output is transferred to PAL as a 
0. Next, the CE compares the output of the OR with 
MCW(7), the ERSLT bit. With all O's in PAL and 
MCW(7) = 1, the CE determines that the test has passed 
and sets the 'pass' trigger. If the comparison is unfavor
able, the 'fail' trigger is set. Because the test is 

7201-02 FETOM (7 /70) 4-47 



continually repeated until the next 'TIC' pulse is 
received, both the 'pass' and 'fail' triggers can be set. 
After the result comparison, the CE must decide 
whether to terminate testing or continue. 

5. Terminate or Continue. This decision is a major point in 
the FLT sequence. Four triggers determine what the CE 
will do next: 'pass', 'fail', 'UT' [MCW(5)], and 'CT' 
[MCW(6)]. The CT bit is always set in current FLTs 
(except for certain hardcore tests). Depending upon the 
setting of these triggers, the decision that will be made is 
as follows: 

Trigger Output 
'UT' 'CT' 'Pass' 'Fail' Action 

0 
0 
0 
0 

0 0 Continue - alternate test. 
1 0 Continue - next test. 
0 0 Continue - next test. 
1 0 1 Stop - gate alternate test on restart. 
0 1 0 Stop - gate alternate test on restart. 
0 0 Stop - gate alternate test on restart. 

The CE repeats the current test until the 'TIC' pulse is 
received from the channel. At that time, the decision to 
stop or continue is made. If the CE is to continue, the 
test in the opposite buffer is scanned in. No count _is 
made of the number of times the test is repeated. 

6. TN/ ATN Comparison. This comparison is accomplished 
in hardcore and whenever the LOAD pushbutton is 
depressed. The TN located in word 16 is compared with 
the ATN left in T by the last test to be executed. Also, a 
specific TN may be entered into the T-register via the 
DATA switches and STORE pushbutton and the CE 
searches for this number to the exclusion of all other 
tests. As FLTs are now set up, the ATN in each test is 
the number of the next FLT on the tape (with the 
exception of hardcore tests). 

Scan-In Highlights 

• Test pattern establishes trigger status before test. 

• Test words are read into S, T, or Q, then distributed 
throughout CE under microprogram control. 

The scan-in portion of an FLT consists of fetching a test 
pattern to establish a trigger status before a test. Scan-in 
test words are read into S, T, or Q from the FLT buffers. 
From these registers, the data is transferred throughout the 
CE, under microprogram control, via special scan circuits 
and normal CE paths. Transfer paths are determined by the 
microprogram, which is repeated without variation for each 
FLT. At the end of scan-in, the CE clock is allowed to cycle 
the number of times required to condition the 'exit' trigger. 
Scan-in fetches 16 words from storage into the CE. 

4-48 (7/70) 

A scan-in is started with the address sequencer set to 15 
(Diagram 6-116, Sheet 2, FEMDM). A scan storage request 
fetches scan-in word 15 of the record. This word is 
transferred to ST, and the address sequencer is reduced by 
1. 

Another scan storage request is made for word 14. 
Scan-in continues to operate for words 13-2 exactly as it 
did for word 14. Word 1 (mask and MCW) is loaded into 
ST, and a check is made for a 'TIC' or 'gap' pulse. Before 
word 0 is transferred into the CE, the mask and MCW 
(word 1) are transferred out of ST. Diagram 6-116, Sheet 4, 
shows that T(32-39) is transferred to the MCW, T(53-57) 
is transferred to the address sequencer, T(58-61) is 
transferred to the FLT counter and FLT clock, and the 
'scan counter control' trigger is set. Word 0 is loaded into 
ST after T( 40-51) is loaded into ROSAR. The 'scan 
counter control' latch is then set to allow the test to be 
performed. 

Test Cycles. The CE clock is allowed to advance a number 
of cycles as specified by MCW(26-31). A portion of the 
microprogram, starting at the address specified by 
MCW(8-19), is performed. Note that at this point the CE 
seems to be running a program. However, this is not the 
case. The micro-orders being performed merely allow the 
scan-in test pattern to be transferred through the logic 
being tested to change the state of the 'exit' trigger. If 
setting these triggers at scattered points causes three legs of 
an AND to be tested, then 1 's are directed to those triggers 
when testing the AND. If the three triggers happen to be 
those normally set during I-Fetch, for example, this fact is 
incidental to FLT testing. 

As soon as the CE clock cycles begin, the FLT counter is 
stepped in synchronism with the clock. When the proper 
number of cycles have been taken, the FLT counter steps 
to 0, which causes the 'cycle counter equals zero' latch to 
be set. The 'SOROS' and 'MMSC' triggers and the 'sync' 
latch are then set. The 'MMSC' trigger stops the CE clock. 
As soon as the 'sync' latch is set and the operation is 
synchronized with the scan and FLT clocks, the 'MMSC' 
trigger is reset. The operation proceeds under ROS or scan 
logic control, depending on the value in the address 
sequencer. 

Scan-Out. During scan-out (Diagram 6-116, Sheet 3), the 
'exit' trigger status is transferred from the indicator driver 
circuits, through PAL, to T. This path is the same path used 
for logout operations. 

The word scanned out is determined by the scan-out 
address in the address sequencer. The setting of the address 
sequencer determines which roller switch on the system 
control panel contains the desired information, and 
MCW( 4) determines whether the right or left half of the 
word should be scanned out. Scan-out is first controlled by 



scan hardware and then by the microprogram. The hard
ware-controlled portion of scan-out is always performed 
first regardless of the value in the address sequencer, 
although only those fields addressed by a value of 14 or 
greater are scanned out. If the 'exit' trigger is in a scan-out 
word whose address is 13 or less, the field is scanned out 
under microprogram control. 

ROS control is resumed by forcing one address, if the 
address sequencer is greater than 13, and another address if 
it is less than 14. The microprogram started by the former 
is ready to perform a result comparison because the 'exit' 
trigger value is in T. The latter program first branches on 
MCW(4) to determine whether the left or the right half of 
the doubleword addressed by the address sequencer should 
be scanned out. The LSWR is gated to T by a normal CE 
gating signal; therefore, a branch must be made on address 
sequencer equal 13. Because the LSWR is contained in the 
right half of word 13, a branch on address sequencer equal 
13 is unnecessary if MCW(4) equals I. By means of these 
branches, the microprogram transfers the field to be tested 
to T and thus begins the result comparison. 

Result Comparison. FLTs check logic by moving data 
through a group of logic to an 'exit' trigger and by causing a 
change in the state of this trigger. To determine the success 
or failure of a test, the change in the 'exit' trigger must be 
sensed on the basis of the data entered into the logic. This 
change is predictable, and the data on the test tape 
designates whether the trigger is to be a I or a 0 at the 
conclusion of each test. The expected state of the trigger is 
contained in the MCW as the ERSLT bit. 

The scan-out S-and-T function {Diagram 6-116, Sheet 5) 
determines the setting of the 'exit' trigger by comparing a 
mask with the scan-out word containing the status of the 
trigger. Scan-out places the selected scan-out word in T. 
The mask word, fetched from storage, is placed in S. The 
mask contains all 1 's except for the bit position corre
sponding to the 'exit' trigger in T. This bit position is a 0, 
and therefore the 'exit' trigger determines the setting of 
PAL. 

If the 'exit' trigger is set, a 0 is transferred to the 
corresponding PAL bit; if reset, a I is transferred to PAL. 
Thus, PAL equals 0 only if the 'exit' trigger equals I. If the 
ERSLT bit [MCW(7)] also equals I or if PAL does not 
equal 0 {indicating that the 'exit' trigger is reset) and the 
ERSLT bit equals 0, the 'pass' trigger is set. If MCW{7) 
equals I and PAL does not equal 0 or if MCW(7) equals 0 
and PAL equals 0, the 'fail' trigger is set. In any case, if 
both the 'pass' and 'fail' triggers are set, the 'intermittent' 
trigger is also set. 

Terminate or Continue. When the mask was loaded into S, 
the address sequencer was set to 16 and a scan storage 
request was initiated to fetch scan-in word 16 {TN/ATN). 

At the same time that the mask is compared with the 
scan-out word, scan-in word 16 arrives from storage and is 
gated to ST. The result in PAL and the ERSLT bit are used 
to set the 'pass' or 'fail' trigger and thus record the result. 
The address sequencer is then decremented, resulting in a 
repeat of the same test just executed. 

Assuming the test was successful and no errors were 
found, the operation described is repeated until the buffer 
is filled with the next test or until an end-of-record gap is 
signalled. These conditions are repeatedly sampled for 
during scan-in. If a 'TIC' or 'gap' pulse is received, scan-in 
execution is abandoned. The address sequencer is set to 16, 
and the TN/ ATN of the test in progress is fetched and 
loaded into ST. After a system reset which clears the CE 
registers, a stop or continue check is made {Diagram 6-116, 
Sheet 5). If a continue condition results, the operation 
proceeds to the setting of scan mode to start the next or 
alternate test as determined by the stop or continue 
controls. In case of a stop conclusion, the 'stop scan' signal 
causes the CE to drop 'IPL' to the IOCE and reset it to the 
halt loop with 'subsystem reset'. The UT bit [MCW(5)] is 
set, and the CE enters a microprogram loop. 

After a stop condition, manual intervention is necessary. 
The operation then depends upon the pushbutton 
depressed, as follows: 
I. START (with SCAN MODE, REPEAT switch off). Runs 

the test that causes the stop one time and causes another 
stop. 

2. START [with SCAN MODE, REPEAT switch in the 
Repeat (down) position] . Continues to run the test that 
caused the stop until SCAN MODE, REPEAT is turned 
off. 

3. STORE. May be used to set a different ATN into T. 
{BACKSPACE FLT and then LOAD are used.) 

4. BACKSPACE FLT. Sends 'backspace' and 'IPL IOCE 
(X)' to the IOCE, which causes it to backspace one 
record. To restart after a failing test, BACKSPACE is 
depressed twice {backspace to the front of the test 
record, then to _the front of the restart IPL record which 
precedes each test record), then LOAD. 

5. LOAD. Initiates a subsystem reset and an IPL. Resets 
the MCW and 'buffer I' and 'fail' triggers. Sets the 'pass' 
trigger. This combination causes an ATN search. 

TN/ATN Comparison. Every FLT contains the TN and the 
ATN of the test which the CE is to execute upon 
completion of the current test. This information is con
tained in word 16 and consists of the TN and ATN in both 
true and complement form. 

The hardcore tests verify the ability of the CE to 
conduct a TN search by comparing the TN (in S) with the 
ATN (in T), using the 'scan out Sand T' signal. A 0 output 
indicates a favorable comparison, and the CE then executes 
the test. If the inverted-OR output is not sensed as all O's, 

7201-02 FETOM (7 /70) 4-49 



the CE rejects the test and continues searching. The bit 
configuration in hardcore tests cannot strictly be called a 
TN, but the functions of comparison, acceptance, or 
rejection of the test are valid. 

During zero-cycle and one-cycle tests, the TN search is 
rarely used. If the CE does not encounter a failing test once 
it has entered the FLT sequence, word 16 is not even used. 
The address sequencer is set to 15, and scan-in begins 
immediately. 

However, if a failing test is encountered, the last action 
the CE takes is to place the ATN in T. The test immediately 
following the failing test has a TN that is the complement 
of the ATN. After manually restarting, when this TN is 
brought into S and compared with the ATN, a 0 output 
results, and the CE begins testing again with this test. This 
action allows the maintenance person to get past a failing 
test when he wishes to do so. This situation could happen, 
for example, when an FLT is failing because of an 
engineering change and the maintenance person is aware 
that failure is not due to a malfunction. Each FLT has the 
TN of the next sequential FLT as its ATN. 

For example, assume the computer has just run TN 01 
09 and the test has failed. The next test is TN 01 OA. 
BACKSPACE FLT is depressed twice, followed by LOAD, 
to get past the failing test. The TN of each test is the record 
is brought into S for comparison with the ATN left in T by 
the failing test. The comparison is favorable when the test 
immediately following the failing test is encountered, and 
the CE resumes testing at that point. TN 01 09 leaves the 
following configuration in T (right half of word 8): 

ATN Complement ATN 

FE F5 01 OA 

TN 01 OA, the next test, has the following configuration 
in the left half of word 8 which was brought into S: 

TN TN Complement 

01 OA FE F5 

The following binary bit configuration is scanned out: 

T: 1111 1110 1111 0101 0000 0001 0000 101 0 

s: 0000 0001 0000 1010 1111 1110 1111 0101 

PAL: all O's 

The CE resumes testing with TN 01 OA and continues 
until another failure is encountered or to the end of the 
testing sequence. 

4-50 (7/70) 

RIPPLE TESTS 

The ripple tests may be used to exercise either main storage 
or local storage and several functional units within the CE. 
The tests use only the internal hardware of the CE, 
including several ROS words, and storage. The procedure 
stores the contents of the DATA switches in all locations of 
storage or displays the contents of all storage locations. 
(See "Storage Ripple Store and Display Functions" in 
Section 1 of this chapter.) 

The ripple tests may be used as a quick confidence test 
of CE and storage operation or as a means of identifying, 
with the parity-check indicators, a failing major functional 
unit within the CE. The overall ripple test routine is 
contained in 7201-02 FEMM, Form SFN-0203, and is also 
discussed under "Storage Ripple Store Function" in 
Section 1 of this chapter. 

DIAGNOSTIC PROGRAMS 

For a list and discussion of the diagnostic programs 
available for the 9020D and E, refer to the 7201-02 FEMM, 
Form SFN·0203. 

MARGINAL CHECKING 

The marginal checking facility enables several units in the 
system to be operated with nonstandard voltage conditions, 
thus providing a means of detecting critical circuits that are 
deteriorating to a critical voltage-sensitive operating point. 
In addition, the CE may have its clock period decreased 
from 200 ns to 195 ns, thus providing a means of detecting 
circuits that have developed a slower switching speed. 

Several of the power supplies in the CE may be varied 
from the nominal output voltage by controls at the CE. The 
CE power supplies are varied directly from the system 
control panel. (The adjustment procedure for these controls 
is contained in 7201-02 FEMM.) 

The marginal checks are performed by running the ROS 
tests and FLTs with all 6V marginable power supplies in the 
CE reduced to 5.5V de and the ROS power supply reduced 
to 80% of nominal. If the tests passed, rerun them with 
normal voltages but with the FREQUENCY ALTER
ATION switch set. After a successful run of the ROS tests 
and FLTs, run selected diagnostic programs with ·the 
marginable power supplies in the CE, storage units, and 
channels set from nominal to higher or lower output. 



SECTION 3. DE FORCE REQUEST AND DE WRAP OPERATIONS 

This section discusses the operation of the DE Force 
Request and DE Wrap functions of the Diagnose instruction 
and their use in the on-line testing of DEs. 

GENERAL DESCRIPTION 

• Permits on-line testing of DEs. 

• Initiated by CE, using Diagnose instructions. 

• Force Request simulates CVG requests. 

• Wrap returns CVG data to CE for verification. 

DE Force Request and DE Wrap operations allow the 
diagnostic programmer or maintenance personnel to check 
DE operation in an on-line environment. Both are initiated 
at a CE by issuing the Diagnose instruction with the CE in 
state zero and the proper MCW bits set to 1. The DE must 
be in state zero, and the CE, DE, and display equipment 
interfaces must be properly configured for these operations 
to be successful. 

The Force Request operation is used to test the priority 
logic and display equipment controls in the DE by 
simulating display equipment requests for data. The Wrap 
operation permits the verification of display data and 
display equipment addresses by .. wrapping" them back to 
the CE from the DE. In both operations, the display 
equipment action is simulated and the display equipment is 
therefore undisturbed. 

Figure 4-9 shows a simplified overall view of the 
relationship between the CE, DE, and display equipment 
and of the manner in which Force Request and Wrap 
operations are implemented. The display equipment con
sists of up to eight attached display generators (DGs), each 
of which is associated with up to six character vector 
generators (CVGs). Only four DGs are shown for simplifi
cation since only four may be configured and operating at 
any one time. Each CVG is associated with a plan view 
display (PVD) and requests display data from the DE for 
that display. 

In normal operation, up to four DGs, each with up to six 
CVGs, are configured to four data buffers, A through D. 
Display data is placed in the DE via the normal display data 
interface (SDBI). A control area of storage is associated 
with each data buffer and contains one octword (eight 
words) for each of six CVGs configured to that data buffer. 

This control area is initialized by the program and directs 
each requesting CVG to the correct area of display storage. 
The octword CVG control areas provide other information 
as well, including a test byte which the DE automatically 
sets to all 1 's to service a request from the associated CVG. 
This byte may be tested by the program to determine 
whether the DE has handled a request from a particular 
CVG. 

Figure 4-9 shows 24 CVG Request lines entering the 
priority circuitry of the DE through OR circuits ( 48 lines 
exist, but only 24 at a time originate from configured 
CVGs). Also entering the OR circuits are the Force Request 
latch outputs and the Wrap Request lines. The Force 
Request latches may be turned on through execution of a 
Diagnose instruction in the CE; the latches permit testing of 
the priority circuits in the DE. The diagnostic program may 
check that these simulated requests have been handled by 
examining the CVG control areas to determine whether the 
test byte has been set to all I's. The Force Request latches 
may be turned off through execution of another Diagnose 
instruction at the CE. 

Wrap Requests may be generated at the CE via the 
Diagnose instruction also. Note that these requests do not 
latch up in the DE. Note, too, that the Wrap Requests also 
gate the Wrap Bus so that data intended for CVGs as a 
result of honoring the Wrap Requests is diverted to the CE 
where it is set into the K-register. 

The display equipment is not disturbed during Force 
Request or Wrap operations because these operations can 
be executed only with the DE in state zero, which disables 
the display equipment interfaces. 

Details of Force Request and Wrap operations are given 
in the following text. 

DE FORCE REQUEST OPERATION 

• Up to 48 CVG requests can be simulated, but only 24 
are effective due to configuration limitations. 

• Requests are continually presented to DE priority 
circuits until reset. 

• No data is transferred from the DE. 

7201-02 FETOM (7/70) 4-51 



Wrap Bus 
ToAll 
Other CEs 
and DEs. 

NOTE: Four DGs are shown for simplification. Eight DGs 
/ may be connected to this interface but only four 

,----------------------------- --.., may be configured and operating at a time. 

.. .. 

..... -------...; .,. ________ .., 
' ~ -

Data 
Buffer 

A 

Data 
Buffer i [ K-~. I ! r B ---- x ----111~ ,.1-----+---------~pt 

' ~ Normal Display ' 
- , Data Interface ~ - ·~~~~-~--~~~· 
I ~ 1 
I I I 

.. Display 
Storage 

Data 
Buffer r l MCW-Reg J J r\ f c I ---- x __ _,,.1-----+--+---------.. pt 

I 
1 ~ 

! ' ; 
' CE I _1 L----~ ... ------" ____ ...., Other< ~~---~-----"-·;>""-l 

CEs ; .. l : -.J==!.---__,-: ...... 1 .. 
Data 
Buffer 

D t-----X -----'-----+---+---+---------i __.. 
~ 

Wrap Requests 

Storage Selects 

Wrap Bus 
Gating 

I 
+ 

1--

Force Requests I ~ .. __________________ .. _ _...i Latches -- ORs L..........li.. Priority i----

i ...- --.,, r-'l""'I Circuits -

' r-+ ' ' ' ~ DE I 
l----------·~---------------------4 

24 CVG Request Lines 

Figure 4-9. DE Force Request and DE Wrap, Simplified 

Ql 
c 

:.:::; 

Ql 
::> 
CT 
CV 

0::: 

0 
> u 
'° 

.---

"' Ql Ql CV 
c c c 

:.:::; :.:::; :.:::; 

CV Ql Ql 
::> ::> ::> 
CT CT CT 
CV CV CV 

0::: 0::: 0::: 

0 0 0 
> > > u u u 
'° '° '° 

t--

}~VG• t--

DG t--

t--

t--

t---

r--

}~VG• t--

DG 
t--

i---

i---

i---

t--

} ~VG• i---

t--
DG 

t--

r--
r--

t--

} ~VG• I--

DG t--

r--

t---

r--



The Force Request operation is initiated at the CE by 
execution of a Diagnose instruction with MCW bit 4 7 set to 
1. Three fields in the MCW select the CVG or CVGs for 
which simulated requests are to be generated: 

DE Selected, MCW(32-35): This field is coded with one of 
the hexadecimal DE identifiers from 6 to A to select a 
particular DE. 

DG Selected, MCW(36-39): This field is coded with one of 
the hexadecimal digits 0 through 8. The digits from 1 to 8 
specify DGs 1 to 8; 0 specifies all eight DGs. 

CVG Selected, MCW(40-45): This six-bit field corresponds 
to the six CVGs attached to the selected DG with the 
leftmost bit corresponding to CVG 1. Any combination of 
the six CVGs may be selected by setting the bits for the 
desired CVGs to 1. 

It is possible to generate 48 requests by setting the DG 
Select field to all O's (select all eight DGs) and the six CVG 
Select bits to all 1 's. Only 24 of these requests can be 
effective, however, because only four of the eight DGs can 
be configured at any one time. 

As stated previously, the forced requests are latched in 
the DE and are continually serviced in priority order until 
reset. Resetting is accomplished by issuing another 
Diagnose instruction in which the same DE is selected, all 
DGs are selected (DG Selected field = 0), and no CVGs are 
selected (all CVG Select bits set to 0). Note that the Force 
Request latches in the DE are not reset by System Reset. 

The forced requests are handled by the DE as if they 
were normal CVG requests except that the display data is 
ignored once it is read out; i.e., the data is neither 
transferred across the DE-DG interface nor to the wrap bus. 

Two applications of Force Request are: 
I. A DE logout can be forced by (I) placing bad parity 

data in the DE display storage via Diagnose and (2) 
specifying a Force Request operation with another 
Diagnose. 

2. A check can be made to determine whether all CVG 
requests are handled by the DE. First, all O's are stored 
in the test bytes of each CVGs control octword. A Force 
Request is then specified, using the Diagnose instruction. 
The program then delays, allowing the DE sufficient 
time to _service all the requests. If DE operation is 
correct, the test bytes for all CVGs serviced will contain 
all 1 's. 

DE WRAP OPERATION 

• Any combination of six CVGs attached to any one DG 
may be selected for Wrap operation. 

• Data transferred to K-register in CE via Wrap bus and 
subsequently placed in storage by microprogram. 

• Count field in MCW specifies number of quadwords 
transferred. 

• Hardware in CE controls CE clock, checks CVG address, 
and controls Wrap data gating per timing signals received 
from DE. 

The Wrap operation allows the verification of (1) the data 
normally sent to a DG by a DE and (2) the address of the 
selected CVG. The display data takes the normal path 
through the DE circuitry but is diverted to the DE Wrap 
bus instead of being gated to the DG. From this bus, the CE 
stores the data in an SE via K- and ST-registers. The data 
can then be refetched from the SE and compared with data 
intended for the selected CVG. If the data received is 
identical with the data sent, the data, data path, and 
addressing circuitry for the selected CVG(s) in the DE are 
functioning correctly. 

A DE Wrap operation is initiated at the CE via the 
Diagnose instruction. To perform a Wrap operation, bit 51 
of the MCW must be set to I. The same three MCW fields 
are used to select CVGs as are used in the Force Request 
operation. However, only one DG may be selected at a 
time. Thus, wrap requests can be generated for up to six 
CVGs, using one Diagnose instruction. 

A count field, MCW(21-31 ), is used to specify the total 
number of quadwords to be transferred to the wrap bus as a 
result of all of the requests called for in the CVG Selected 
field. Because the count field actually counts halfwords, the 
low-order bits (29-31) must be made 0 to specify 
quadwords. For example, if two CVGs were selected and 
two quadwords were to be transferred as a result of each 
request, a quadword count of four would have to be 
specified in the count field. Thus: 

MCW Bit: 21 22 23 24 25 26 27 28 29 30 31 

Count: 0 0 0 0 0 1 0 0 0 0 0 

This is a count of 32 halfwords or, ignoring bits 29-31, 4 
quadwords. 

The Wrap operation terminates when the counter has 
been decremented to zero. If no data is received from the 
DE as a result of a malfunction, a 50-ms timeout occurs 
(KU 631-KU635) and the counter is decremented. If data is 
never received, the counter is decremented every 50 ms 
until it goes to zero, at which time the Diagnose is 
terminated. If the Diagnose is terminated as a result of wrap 
timeout, condition code 1 is set to alert the program. 

7201-02 FETOM (7 /70) 4-53 



To understand the CE's action during a wrap operation, 
one must be familiar with the format and timing of the data 
appearing on the DE wrap bus. The transfer of one 
quadword (four words) of data and the CVG address to the 
CE via the DE wrap bus is accomplished in 3.6usec. This 
time is divided into four 900-ns cycles: a setup cycle, an 
address cycle, and two data cycles. The sequence chart in 
Diagram 6-201, FEMDM, shows these cycles and the data 
on the bus at the different times. 

Two lines, 'sample' and 'sync', are timing pulses from 
the DE. Another line, 'address', is used to serially send the 
three CVG address bits plus parity from the DE to the CE 
via the DE wrap bus. The DE follows a set sequence when 
addressing the CVGs. Thus, there may be cycles when no 
data will appear on the wrap bus, depending on which 
CVGs are selected by the wrap operation. Diagram 6-201 
shows the circuitry that gates the CVG address line (serial 
address) into the CE, compares it with the address specified 
in MCW( 40-45), and, if a good address is received, gates a 
quadword of data (one halfword at a time) from the DE 
wrap bus into the K-register. 

The 'wrap inhibit osc.' latch stops the CE clock until the 
'data' latch is turned on. This synchronizes the wrap 
microprogram (Figure 4-10) with the data received from 
the DE; i.e., the microprogram does not begin until the 
'data' latch is turned on. After this latch is on, the CE clock 
is stopped at the beginning of each DE sample pulse to 
compensate for the difference in timing between the clock 
and these pulses. One CE clock cycle is 200 ns; one sample 
pulse cycle is 225 ns. 

The CE uses the pulses received from the DE over the 
'sample' and 'sync' lines to develop CE sample pulses 'zero' 
through 'three' which gate a CVG address from the 
'address' line into three address latches and a parity latch. 
The address (1 through 6), binarily decoded from these 
latches, is compared with MCW bits 40-45 (bit 40 is CVG 
address 1; bit 41, CVG address 2, etc). The three address 
latches also feed a parity-predict circuit which determines 
whether the address parity bit should be a 1 or 0. The result 
of the prediction is used to check the state of the 'address 
parity' latch. If the compare circuits indicate that a good 
address and good parity have been received (the MCW bit 
corresponding to the decoded address is a 1 and the 
'address parity' latch equals the predicted parity), the 'data' 
latch is turned on to begin gating data from the wrap bus 
into the K-register. Figure 4-10 shows the operation of the 
wrap microprogram. The microprogram accepts the data 
from K and stores it, a doubleword at a time, until the 
specified number of quadwords have been stored. 

The CE 'sample' pulses gate the data into K. The 'data' 
latch, ANDed with DE 'sample' pulses, keeps the CE clock 
synchronized with the data on the bus by turning on the 
'wrap inhibit osc.' latch. This allows the microprogram to 

4-54 (7/70) 

gate the wrap data one word at a time (as K is filled), into 
ST. The data is then stored in an SE (a doubleword at a 
time) at the storage location specified by D. This location is 
immediately after the MCW of the Diagnose instruction 
which initiated the wrap operation. The address sequencer, 
set to the value of the quadword count in the MCW during 
the Diagnose instruction, is checked for a value of zero 
after a complete quadword is stored. When the sequencer 
reaches zero, the microprogram terminates the instruction 
and the wrap operation is ended. 

QQ171 AD3 

Set Cond Code to 0 

B32 

·Gate K to T, 
then to LSWR 

B37 

Update D +8 

-
! Gate LSWR to S 1st Wrap Word to S 

B38 --
I Gate K to T 2nd Wrap Word to T 

No 

Store 1st Doubleword 
B36 of Wrap Quadword . 

.....-~~---'--~~---. 

Store 2nd Doubleword 
of Wrap Quadword. 

Turn Off STAT D. 

End Op 

No 

Turn On STAT D. 

Figure 4-1 O. Wrap Operation Microprogram 

B34 



The only special circuits in the CE are in ROS, for the 
differential (sense) amplifiers, sense latches, and array 
drivers. These circuits are described in Chapter 2, Section 2 
of this manual. For a discussion of the standard SLT 
circuits, refer to SLT Component Circuits, FETOM. 

APPENDIX A. SPECIAL CIRCUITS 

7201-02 FETOM (7 /70) A-1 



The CE executes the EXC control program and is therefore 
the controlling element in the overall system. Because of 
this overall system control, the CE is in direct communi
cation with each of the major system elements. The 
communication takes many forms, including data, controls, 
and indications. 

All of the signal lines or buses that enter or leave the CE 
are listed on the following pages. Along with each line or 
bus is a short explanation of its basic purpose or.function. 
Additional information on interfacing may be found in the 
System Introduction manuals. 

CE-CE INTERFACING 

The CE is the only element that directly communicates 
with other elements of its kind. One set of distributed 
simplex lines originates in a given CE, and three identical 
sets are received from the other CEs. Also, three sets of 
simplex lines originate in a given CE, and three identical 
sets are received. 

The interface intercommunication is concerned 
primarily with direct control operations, which include data 
communication (one byte) and external CE starts and 
logouts. In addition to the direct control function, there are 
controls for reconfiguration and element check monitoring. 

Control Bus: This 36-bit bus is used for both configu
ration control and ATR assignment. 

Configuration control (established by the configuration 
mask) is used to define which elements constitute a 
subsystem and to avoid interference between subsystems. 
The configuration control registers in the various elements 
contain positions to define the other elements with which 
any given. element may communicate at a given time, The 
CCR positions, or bits, enable or inhibit data and control 
paths between elements. Refer to the chapter on Configu
ration Control. 

ATR assignment establishes a correlation between logical 
addresses referred to by the program and actual storage 
elements within the system. 

System Reset (1, 2): A double-railed signal (two lines) 
which performs hardware resets. The reset is not gated by 
the CCR. All bits in the CCRs of major elements not in test 
are reset to O's except the SCON bits, which are set to 1 's. 

Element Check (ELC): The 'element .check' signal is sent 
to all other CEs within the system. This signal may result 
from a CCR or ATR parity error, certain PSBAR stepping 
situations, and certain hard stops or CE error conditions. 

APPENDIX B. INTERFACING LINES 

Direct Out Lines: During execution of a write direct 
CE-to-CE data communication, this bus represents eight 
data bits and one parity bit fetched from a storage element. 
This byte of data remains as static signals until the next 
Write Direct instruction is executed. 

Signal Out Lines: This set of five lines is used in 
conjunction with the 'direct out' lines. The five commands 
that follow are sent on these lines: 

CE External Start command: This command is issued by 
a Write Direct instruction and causes the receiving CE 
to start execution after it obtains a new PSW from 
location 00000 of its PSA. The receiving CE must be 
properly SCONed to the sending CE to perform the 
external start operation. 

CE External Stop command: This command is issued by 
a Write Direct instruction and causes the receiving CE 
to perform an element reset and go to the stopped state 
with the MANUAL light on. The receiving CE must be 
properly SCONed to the sending CE to execute the 
external stop operation. 

CE Logout command: This command is issued by a 
Write Direct instruction to cause the receiving CE to 
initiate logout procedures. To perform the logout, the 
receiving CE must be properly SCONed to the sending 
CE and must now have machine checks masked off in 
the current PSW. 

CE Write Direct command: This command is issued by a 
Write Direct instruction and indicates a data-communi
cation-type operation between the sending and 
receiving CEs. The command causes an external inter
rupt at the receiving CE by setting a unique bit in its 
external interrupt register, provided the receiving CE is 
properly configured (CCR 20-23) to listen to the 
originating CE. 

CE Read Direct command: This command is issued by 
the Read Direct instruction and indicates that a byte of 
data has been taken from the direct data bus. The 
command causes an external interrupt at the addressed 
CE by setting a unique bit in its external interrupt 
register. The receiving CE must be properly configured 
(CCR 20-23) to the originating CE. 

Reconfigure Select: This line, carrying a 5 .0-usec pulse 
from the CE to another CE, causes the CE to set into its 
configuration register the mask on the output bus. The CE 
will honor the select if the selector's SCON bit is on in the 
receiving CE's CCR. 

SATR Select: This select line signals and conditions the 
selected CE to receive the address translation assignment 

7201-02 FETOM (7/70) B-1 



mask on the 36-bit control bus. Three select pulses are 
required, one for initial selection and two for transmission 
of ATR 1 and ATR 2. 

SCON/SATR Response: This line is sent to the CEs in 
response to configuration select, provided the select was 
honored and the CCR parity is correct. This response signal 
is also used as a SATR response to acknowledge that the 
receiving CE was properly SCONed and that the ATR 1 and 
2 assignment masks were properly received. 

CE - SE INTERFACING 

All main storage is located in storage elements (self
contained units, electrically remote from the computing 
element). Because these SEs are self-contained units, a 
complete set of buses and interlocking control signals must 
be provided to ensure proper synchronization and data 
transfer. 

CE to SE Interface 

The interface from the CE to an SE involves the following 
distributed simplex buses: storage data bus in (SDBI), 
storage address bus (SAB), mark bus, inkey bus, three 
logword number lines, and the two-line system reset. In 
addition, two groups of control lines are involved: one 
group is distributed simplex; the other is simplex. A 
description of the individual buses and lines follows. 

Storage Data Bus In: This group of 72 lines carries data 
and configuration information from one CE to up to five 
SEs., The accessed SE gates its receivers to accept the signals 
from the bus. During a SCON operation, the CE transmits 
the SCON mask over the SDBI. 

Storage Address Bus: This bus consists of 19 lines 
labeled 1-19 and a parity bit for bits 1-5. Bits 1-4 specify 
the particular SE and are called the 'box tag'. Thus, the 
P(l-5) bit is sometimes referred to as Pr, for tag parity, 

even though bit 5 actually specifies high or low storage. 
Parity for the address lines (bits 6-19) is sent separately on 
simplex lines labeled PA and PB. 

Mark Bus: This bus consists of eight bits (0-7) plus a 
parity bit and represents the store or regeneration control 
lines for each of the eight bytes of the doubleword accessed 
by the CE. 

In Key Bus: This bus consists of five bits (0-4) plus a 
parity bit. The high-order four bits are compared with the 
key bits stored in the storage protection area of the SE. The 
low-order bit (bit 4) indicates that fetch protection is 
active. 

Logword Number: Three lines carry the logword number 
from the CE to an SE. The lines gate the logwords onto the 
storage data bus out. 

B-2 (7/70) 

System Reset (1, 2): These signals cause a storage reset 
when a system reset occurs. In addition to resetting the SE 
itself, the storage reset causes the SE's CCR to be reset to 
all O's (except for parity and SCON bits, which are set to 
l's). These reset lines are not gated by the CCR. 

Set Key: This signal from the CE causes an SE to 
perform a set-key cycle, i.e., to set the protection key from 
the CE into the storage protect array. 

Insert Key: This signal causes the SE to place the key 
from the storage protect array on the out key bus. 

Store: This is a control line which permits the SE to 
perform a data store. 

Test and Set: This signal causes the SE to perform a 
test-and-set storage cycle in which a doubleword is fetched 
and regenerated into storage (except for the addressed byte, 
which is set to all-1 's before being returned to storage). 

Cancel: This signal causes the SE to regenerate the data 
fetched from storage without transferring it to the user 
element. 

Defeat Interleave: This signal indicates to the SE that 
the DEFEAT INTERLEAVE switch on the CE is active or 
the CE has been placed in Defeat Interleave mode via a 
Diagnose instruction. While the CE reverses SAB bits 6 and 
20 to defeat interleaving, the IOCE does not. Therefore, the 
'defeat interleave' signal is sent to enable the SE to reverse 
the roles of IOCE address bits 6 and 20. This is accom
plished by (1) substituting bit 20 for bit 6 when gating the 
IOCE storage address buff er to SESAR and (2) sampling bit 
6 (bus bit 14) to determine whether the .access request is 
for the odd or even half of storage. 

Defeat Interleave and Storage Reverse: This signal has 
the same significance as 'defeat interleave' except that 
IOCE address bit 6 (bus bit 14) is inverted before it is used 
for selecting odd or even storage. 

Address Compare Sync: This signal provides a negative 
significant sync pulse for scoping when the address switches 
on the CE control panel match the SAB and the ADDRESS 
COMP ARE switch is in the normal position. 

CE Power On: This signal is raised during CE power on 
reset and falls to ground level before power goes off. It 
inhibits the output of the associated communication bits in 
the CCR of the SE. 

Double Cycle: This signal guarantees two sequential even 
or odd storage cycles by inhibiting priority scanning in the 
SSU until the second select from the issuing CE. The CE 
must issue the second select within the SE timeout period 
or the SE will issue a pulse ELC, reset the priority circuitry, 
and become available for new requests. The SE does not 
wait for 'logout stop' and does not reset outstanding 
selects. 

Normal Op: This signal ensures that control bus driver or 
receiver failures do not cause multiple operation execution, 
resulting in lost data. The 'normal op' signal is valid with 
fetch and store operations only. If it is not sensed with 



fetch or store; or if it is sensed with 'test and set', 'set key', 
'double cycle', 'suppress log check', or 'insert key'; an 
address check is issued to the using CE, the entire SE stops, 
ELC is issued to all CEs, and the SE waits for 'logout stop'. 

Select Even: This signal is sent to an SE to request an 
even storage cycle. 

Select Odd: This signal is sent to an SE to request an 
odd storage cycle. 

Logout Stop: This signal sets the 'SE stopped' latch in 
the SE, causing the SE to halt all activity at the end of the 
cycle in progress (if not already stopped). The SE issues 'SE 
stopped' to the using elements and a level ELC to all CEs. It 
then remains stopped until logged out, reset, or reconfig
ured. 

Logout· Select: This signal is sent to the SE to request a 
doubleword of logout data. The signal is used in con
junction with the three 'logword number' lines, which 
specify the doubleword to be transferred. · 

Logout Complete (Check Reset): The CE sends 'logout 
complete' to the SE at the completion of a logout and 
during a subsystem reset. The SE senses this signal as a 
check reset, and storage control logic is reset. At the 
completion of the reset sequence, the 'SE stopped' latch is 
reset. 

Reconfigure Select: This signal causes the SE to gate 
portions of the SDBI into its CCR, provided the SE is 
properly SCONed to the issuing CE. If a CCR parity error 
exists in the SE when 'reconfigure select' is received or 
when no SCON bits are on and the SE is not in state 0, 
CCR gating is ignored, and the SE accepts the SCON data. 

Suppress Log Check: This signal suppresses 'data check' 
and its associated ELC signal. 

PA and PB; Parity conversion circuitry in the CE 

develops the PA and PB parity bits for 14 of the SAB bits 

(bits 6-19) in two groups of seven bits each: PA for bits 

6-12 and PB for bits 13-19. This parity generation takes 

into account the bit-20 and bit-6 reversal involved in 'defeat 
interleave' and the bit-6 inversion for 'storage reverse'. 

Because generation of the parity introduces several 
nanoseconds of delay, the PA and PB are sent separately to 

each SE via simplex lines rather than with the rest of SAB 
(which uses a distributed simplex bus). 

SE to CE Interface 

The SE to CE interface comprises the storage data bus out 
(SDBO), the out key bus, and two groups of control lines. 
The buses and one group of control lines are multiple-driver 
simplex lines. The remaining control lines are simplex. A 
description of the SE to CE interface buses and lines 
follows. 

Storage Data Bus· Out: This is a 72-bit bus that carries 
eight 8-bit bytes and the associated eight parity bits. The 

I 

Page of SFN-0201-1 
Revised by TNL: GN31-0001 

eight bytes consist of data from a riormal fetch operation or 
logout information during a storage logout operation. 

Out Key Bus: This bus consists of five key bits and a 
parity bit. The high-order four bits represent the storage 
key; the low-order bit is the fetch-protect bit. The bus 
carries the key to the CE during an insert key operation. 

Advance SDBO: This is a single multiple-driver simplex 
line sent in advance of data on a fetch operation and 
together with data on all other storage cycles. It is used by 
the CE as a signal to sample for errors. 

Advance Keys: This is a single multiple-driver simplex 
line activated by the storage-protect feature in the SE 
during an 'insert key' cycle to allow the CE to ingate the 
key from the 'out key bus'. 

Protect Check: This is a single multiple-driver simplex 
line activated by.the storage-protect feature of the SE when 
the protection key and the storage key do not agree during 
a normal store or fetch operation. 

The following control lines are simplex lines: 
Accept:. This signal indicates that the SE has received a 

'select' from the CE 8:nd has started the storage cycle. 
Logout Advance: 'Logout advance' is sent to alert the 

CE that logout data is available on the SDBO. 
Element Check (ELC): ELC may be a pulse or a level. It 

is sent to all CEs, regardless of configuration, when an error 
or other abnormal condition occurs at the SE. 

Pulse ELC is coincident with CCR parity error, temper
ature out of tolerance check (OTC), 'on battery' signal 
OBS, and 'storage check', 'address check', or 'data check'. 

Level ELC is coincident with overvoltage or overcurrent 
condition, power off or power check, and 'SE stopped'. 

Reconfigure Accept: This signal indicates to the CE that 
the SE has loaded the reconfiguration data from the SDBI 
into the CCR and that good parity exists. 

SE Stopped: This signal is issued to all configured CEs to 
indicate that the SE has stopped in response to a 'logout 
stop'· (LOS) signal from a CE or IOCE. This· signal inhibits 
all operations except logout, reconfiguration, and reset. 

Logout SE Stopped: This simplex line has the same 
timing as 'SE stopped' except that it is not <legated in 
Diagnose Logout mode. It enables the CE to store the final 
word of the SE logout and allows correct operation of CE 
SCI logout controls after the rise of 'logout complete'. 

SE Ready: This signal indicates to the using element that 
the SE is available; i.e., the SE has power up, is not in test, 
is properly configured, and is not being reset. 

SBO Gate: This signal is used by the CE to identify the 
SE. 

Address Check: This signal is activated by the SE when 
any of the following addressing errors occur: mark parity, 
address parity, tag parity, tag mismatch, multi-accept 
condition, storage-protect parity, in-key or out-key parity 
or an invalid op error. This signal is always accompanied by 
a pulse ELC. 

7201-02 FETOM (6/71) B-3 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

I · Data Check: This signal is activated by the SE when it 
detects a storage data parity error unless inhibited ·by 
'suppress log check'. 

CE-DE INTERFACING 

The CE-DE interface has three major purposes: 
1. Allows data transfers for store and fetch operations and 

for reconfiguration. 
2. Simulates the request capability of 24 CVGs so that the 

priority circuitry in the DE can be tested. 
3. Allows data normally transferred to the CVGs to be 

returned to the CE via _the wrap bus for validity 
checking. 

Most of the interface lines are the same as the storage 
element interface and are used in the same way to allow the 
DE to perform as a storage device. Additional interface 
lines implement the priority and CVG data-checking 
facility. The additional lines consist of 12 lines from the CE 
to the DE and a 19-line bus from the DE to the CE, as 
follows: 

CE to DE: 
CVG REQUEST 
DG Selected 
Wrap 
Set Force Request 

DE to CE: 
Wrap Bus 

CE to DE Interface 

(6 lines) · 
(4 lines) 
(I line) 
(I line) 

(19 lines) 

The CE to DE interface involves a number of distributed 
simplex buses and control ·lines as well as a group of 
simplex buses and control lines. All distributed simplex 
lines are. positive at the active level except for 'system 
reset'. The simplex lines are negative at the active level 
except for ELC. A description of each bus and control line 
follows. 

Storage Data Bus In: A group of 72 lines carrying data 
and configuration information from one CE to one of four 
DEs. The accessed DE gates its ·receivers to accept the 
signals from the bus. During a SCON instruction, the DE 
gates 27 bits of data plus 4 parity bits from the SDBI into 
its.CCR. 

Storage Address Bus (SAB): The SAB consists of 19 
lines labeled 1-19 and a parity bit for bits 1-5. Bits 1-4 
specify the particular DE and are called the "box tag". For 
this reason, the P(l-5) bit is sometimes referred to as Pr, 

for tag parity, even though bit 5 is not included in the tag. 
Parity for the address lines (bits 6-19) is sent separately on 
simplex lines labeled PA and PB. 

B-4 (6/71) 

Mark Bus: This bus consists of eight bits (0-7), plus a 
parity bit, and represents the store or regeneration control 
lines for each of the eight bytes of the doubleword accessed 
by the CE. 

In Key Bus: This bus consists of five bits (0-4) plus a 
parity bit. The five bits are compared with the key bits 
stored in the storage-protection area of the DE. 

Logword Number: Three lines carry the logword number 
from the CE to a DE. The lines gate the logwords onto the 
'storage data bus out' under CE control. They are always at 
the zero state when not in use. 

System Reset (1, 2): These signals cause a storage reset 
when a system reset occurs. Ih addition to resetting the DE 
itself, the storage reset causes the DE's CCR to be reset to 
all-O's (except for parity and SCON bits, which are set to 
l's). These reset lines are not gated by the CCR. 

CVG Request (Six lines): These lines are used by the CE 
to simulate CVG requests. They are made active by the CE 
executing a Diagnose instruction and remain active until 
reset by the CE. 

DG Selected (Four lines): These lines are used by the 
CE, executing a Diagnose instruction, to select any com
bination of four of the eight DG interfaces in the DE. The 
'DG selected' lines are used in conjunction with 'wrap' and 
'set force request', all under control of the Diagnose 
instruction. 

Set Key: This is a signal from the CE, causing a DE to 
perform a 'set key' cycle; i.e., to set the protection key 
from the CE into the storage protect array. 

Insert Key: This signal causes the DE to place the key 
from the storage protect array on the 'outkey bus'. 

Store: This is a control line that permits the DE to 
perform a data store. 

Test and Set: This signal causes the DE to perform a test 
and set storage cycle in which a doubleword is fetched and 
regenerated into storage (except for the byte specified by 
the Rl field, which is set to all-1 's before being returned to 
storage). 

Address Compare Sync: This signal provides a negative 
significant sync pulse for scoping when the address switches 
on the CE control panel match the SAB and the ADR 
COMP ARE switch is in the normal position. 

CE Power On: This signal is raised during CE power-on 
reset and falls to ground level before power goes off. It 
inhibits the output of the associated communication bits.in 
the CCR of the DE. 

Double Cycle: This line is not used at the DE except to 
check 'normal op'. 

Normal Op: This signal ensures that control bus driver or 
receiver failures do not cause multiple operation execution, 
resulting in lost data. The 'normal op' signal is valid with 
fetch and store operations only. If it is not sensed with 
fetch or store; or if it is sensed with 'test and set', 'set key', 



or 'insert key'; an 'address check' is issued to the using CE, 
the entire DE stops, ELC is issued to all CEs, and the DE 
waits for 'logout stop'. 

Wrap: By executing a Diagnose instruction, the CE uses 
the 'wrap' signal in conjunction with the 'DG selected' 
signals to gate one of the four DG/DE interfaces to the 
'wrap bus' and to initiate 'wrap' requests. 

Set Force Request: This signal is used by the CE, 
executing a Diagnose instruction, to initiate simulated CVG 
requests. 

Select Even: This signal is sent to. a DE to request an 
even storage cycle. 

Select Odd: This signal is sent to a DE to request an odd 
storage cycle. 

Logout Stop (LOS): This _signal sets the 'DE stopped' 
latch in the DE, causing the DE to halt all activity at the 
end of the cycle in progress (if not already stopped). The 
LOS signal must be issued by a CE in conjunction with the 
first 'logout select' to establish logout priority; it must 
remain active throughout the logout procedure to retain 
priority; Upon receipt of LOS, the DE issues 'DE stopped' 
to the using elements and a level ELC to all CEs. It then 
remains stopped until logged out, reset, or reconfigured. 

Logout Select: This signal is sent to the DE to request a 
doubleword of logout data. The signal is used in conjunc
tion with the three 'logword number' lines, which specify 
the doubleword to be transferred. 

Logout Complete (Check Reset): The CE sends 'logout 
complete' to the DE at the completion of a logout and 
during· a subsystem reset. The DE senses this signal as a 
check reset, and storage is reset. At the completion of the 
reset sequence, the 'DE stopped' latch is reset. 

Reconfigure Select: This signal causes the DE to gate 
portions of the SDBI into its CCR, provided the DE is 
properly SCONed to the issuing CE. If a CCR parity error 
exists in the DE when the 'reconfigure select' is received or 
no SCON bits are on and the DE is not in state 0, CCR 
gating is ignored and the DE accepts the SCON data. 

PA and PB: Parity conversion circuitry in the CE 

develops the PA and PB parity bits for 14 of the SAB bits 

(bits 6-19) in two groups of seven bits each. PA is the 

· parity bit for bits 6-12; PB is the parity bit for bits 13-19. 

Because the generation of the parity introduces several 
nanoseconds of delay, PA and PB are sent separately to 

each DE via simplex lines rather than with the rest of SAB 
. (which uses a distributed simplex bus). 

DE to CE Interface 

The DE to CE interface consists of a number of buses and 
control lines which are multiple-driver simplex; i.e., drivers 
in up to four DEs share the bus to a given CE. In addition, a 

I 

Page of SFN~o201-1 
Revised.by TNL: GN31-0001 

group of control signals are sent via simplex lines. 
Individual buses and lines are described below: 

Storage Data Bus Out {SDBO): The SDBO consists of 72 
lines (64 data bits and 8 parity bits) which are used to 
transfer data from the DE to the CE du.ring a fetch or 
logout operation. 

Out Key Bus: This bus consists of five data bits and a 
parity bit. The bus is used to transfer the key bits from the 
storage protect array in the DE to the CE during an insert 
key operation. It is· multiple-driver simplex. 

Wrap Bus: This bus is a 19-bit-wide, multiple-driver/ 
multiple-receiver simplex bus used to return or wrap data, 
which normally goes to CVGs, to the CE for checking 
purposes. This path is also used to check the DE/DG 
interfaces and DE controlfogic without the use of the DG. 
The first two bits are for timing; these are the 'data sample 
timing' line and the ·'word sync timing' line. The third bit is 
the· 'CVG address' lirie. The remaining 16 lines (labeled 
0-15) constitute the data bus itself. 

Advance SDBO: Advance SDBO is a single multiple
driver simplex line that is activated by the DE in advance of 
data out on the SDBO for all storage cycles.· 

Protect Address Check: This is a multiple-driver simplex 
line that is activated by the storage-protect portion of the 
DE to indicate to the CE that the keys do not match during 
an attempted store or an attempted fetch from a fetch
protected location. 

The following control lines are simplex: 
SBO Gate: This signal is used by the CE to identify the 

source of data on the SDBO during a fetch cycle. 
Accept: This signal indicates that storage has been 

started in response to the CE's request (select). 
Logout Advance: This signal is sent to the CE to indicate 

that logout data is valid on the SDBO. 
Element Check (ELC): This signal is sent to all CEs 

(regardless of configuration) to alert them that an abnormal 
condition has occurred. Unlike other simplex lines from the 
DE, the ELC signal, which may be a pulse or a level, is 
positive when active. 

Pulsed ELCs are coincident with: 
1. CCR parity error 
2. Temperature out of tolerance (OTC) condition 
3. On-battery supply (OBS) 
4. Logic check: 

Data parity check 
Address, mark, key, or box-tag parity check 
Box-tag mismatch 
Normal-op check 
Multi-accept check 
Refresh parity check 
DG data register _parity check 
Local store parity check 

7201-02 FETOM (6/71) B-5 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

Level, or static, ELCs are coincident with: 
1. Power check or power down 
2. D.E stopped 

Reconfigure Accept: This signal indicates to the CE that 
the DE has loaded the CCR with reconfiguration data from 
the SDBI and that correct parity and no redundancy check 
exists. A redundancy check results when an attempt is 
made to configure more than one data register to a DG 
register, or vice versa. A redundancy check inhibits 'recon
figure accept' but does not cause an ELC. 

DE Stopped: This signal indicates to all configured CEs 
that the DE is stopped for logout. It results from the setting 
of the 'DE stopped' latch, which. inhibits all operations 
except logout and reconfiguration. 

DE Ready: This signal indicates to the CE that the DE is 
available for use. Specifically, it indicates the DE has power 
on, is not in test, is not configured away from the particular 
CE, and is not being reset. 

Storage Data Check: This simplex line indicates a storage 
data parity error to the CE. It is accompanied by a pulse 
ELC to all CEs. 

Storage Address Check: This is a simplex line which 
indicates to the CE. that one of the following errors has 
occurred: mark parity, address parity, key parity, box-tag 
parity, box-tag mismatch, or multi-accept. All of these are 
associated with storage addressing. A storage address check 
is accompanied by a pulse ELC to all CEs. 

CE-IOCE INTERFACING 

The 9020D and 9020E systems include a maximum of 
three IOCEs, each of which controls one multiplexer 
channel and up to three selector channels. All system 
communication (except configuration) with I/O units is 
accomplished through the IOCEs by means of the following 
I/O instructions: 

Start I/O 
Test I/O 
Halt I/O 
Test Channel 
Set PCI 

Because all I/O operations are initiated by I/O instruc
tions, the CE must have control over the IOCEs. Any CE 
can control any IOCE. One CE may have several IOCEs 
on-line (configured) at one time. However, communication 
between a CE and the IOCEs is in an interleaved manner, 
allowing an operation between the CE and only one IOCE 
at a given instant. On the other hand, any IOCE may be 
under control of only one CE at a time. 

During I/O operations, certain control signals pass 
directly between the CE and IOCE via the CE-IOCE 
interface; control information is passed between the CE and 

B-6 (6/71) 

IOCE via main storage. During execution of an 1/0 
instruction, the CE signals the selected IOCE which channel 
and unit are to be selected and which of the 1/0 
in$tructions is to be executed. The CE also transmits a 
quantity called the preferential storage base address (PSBA) 
which indicates to the IOCE which preferential area 
contains the CAW, CSW, PSWs, and other critical control 
information. the CAW and .CSW locations are used for 
CE-IOCE communication. Upon completion of the 1/0 
instruction, the IOCE transmits a value to be placed in the 
CE's condition code register. Subsequent CE instructions 
may be used to test the condition code to determine the 
result of the I/O instruction. 

I/O interruptions are also controlled over the CE-IOCE 
interface. The CE transmits the system mask portion of its 
current PSW to the IOCE. The IOCE uses the system mask 
to gate the channel interruption conditions when signaling 
its controlling CE of an outstanding interruption. At the 
end of its current instruction, the CE supplies the PSBA 
and signals the IOCE to proceed with the interruption. At 
this time, the IOCE performs the highest-priority pending 
interruption that is not masked off. After the CSW has been 
stored, the IOCE stores the associated channel and unit 
address and a portion of the system mask in the proper 
location in main storage to partially form the old PSW for 
the 1/0 interruption. Upon completion of the channel 
portion of the interruption, the IOCE signals the CE to 
complete the interruption. 

The CE-IOCE interface is also used to perform other 
specific functions such as IPL, FLT load, logout, start I/O 
processor, and direct control. 

CE to IOCE Interface 

Interfacing for the CE to IOCE includes a control bus and 
associated signal lines. The control bus transfers infor
mation such as configuration masks, ATR assignment 
masks, PSBAR indications, IPL and FLT operations, 1/0 
instructions (including Start I/O Processor), and direct 
control commands such as Write Direct Processor Start, 
Stop, or Interrupt. The control bus is never used to transfer 
data. Control signals define the information on the control 
bus and synchronize the operations. The various lines and 
buses are described below. 

Control Bus: This bus contains 36 multiplexed lines: 32 
bit positions plus 4 parity bits. It services the configuration 
control register, address translation register, I/O processor, 
I/O instructions, IPL, logout, interrupt signals, and FLTs. 
1. 'Reconfigure select' and 'SATR select' use the bus to set 

the configuration control register or the address trans
lation register. 

2. I/O instructions use the bus to transmit the channel and 
unit address, preferential storage base address (PSBA), 
and the I/O instruction identification. 



3. IPL.and FLT load use the bus for the channel and unit 
address and PSBA. 

4. Logout uses the bus for PSBA only. 
S. 'Permit interruption' uses the bus for PSBA only. 
6. 'Start 1/0 processor' uses the bus to transmit a storage 

key and an address. 

System Reset (1, 2): This is a I-ms signal whiGh precedes 
a system IPL. The 'system reset' is sent on two Jines. Line I 
must go negative and line 2 must go positive simultaneously 
to cause the reset. These lines are not gated by the CCR. 

When active, the 'system reset' performs hardware and 
microprogram resets in the IOCE, provided the . TEST 
switch is not on. 'System reset' causes the CCR to be reset 
to O's, (except for the SCON bits, which are set to all l's). 

Subsystem Reset (I line): This line is activated by the 
CE to cause the IOCE to do an element reset. To be 
effective, the IOCE must be properly configured to. the 
sending CE. The IOCE does not reset its CCR as a result of 
'subsystem reset'. 

System Mask Bits 16-19: These lines .are sent to all 
IOCEs and are used to form the first portion of PSW byte 2 
on channel interrupts. (See also system mask bits, under 
simplex lines.) 

360 Mocle Operation: This signal causes the IOCE to 
operate in the 360 mode. IOCE I must be configured to CE 
I. 

The following lines are all simplex: 

1/0 instruction: This line is sent to a selected IOCE. The 
preferential storage base address, unit address, channel 
address, and th~ decoded 1/0 instruction are placed on the 
control bus. The 1/0 instruction line is then brought up to 
tell the IOCE to take the information from the control bus. 
The line remains static until a response is received from the 
IOCE. 

FLT Load: This line is not used by the CE in the 9020E 
system. The 'initial program load' line is used during the 
performance of an FLT from a CE. 

Initial Program Load: This line, generated ih the same 
manner as an 1/0 instruction, indicates to the selected 
IOCE that it is to perform an IPL. The control bus contains 
the preferential storage base address and the unit and 
channel address when this line is brought up .. 

Permit 1/0 interrupt:. This line is sent to the IOCE in 
response to an IOCE 1/0 interrupt request. This signal 
allows the IOCE to store its CSW and interrupt code field 
of the PSW. 

Logout: This line is issued from a Write Direct instruc
tion and causes the IOCE to begin a logout operation. The 
IOCE must be SCONed to the sending CE. 

Reconfigure Select: 'Reconfigure select' consists of three 
lines, one to each IOCE. Each line is generated from the 
select mask·. and gates the configuration bits from the 

control bus into the IOCE. The IOCE must have the issuing 
CE's SCON bit on. 

System Mask: The system mask lines are static lines 
from the CE's PSW register bits 0-6 and 16-19. These 
lines mask the channels in the IOCEs and are distributed as 
follows: 

PSW bits 0-3 to IOCE I 
PSW bits 4-6, 16 to IOCE 2 
PSW bits I 7 -19 to IOCE 3 
PSW bits 16-19 to all IOCEs 

Bits 16-19 are sent to all IOCEs and are used in forming 
the first portion of PSW byte 2 on channel interrupts. 
However, these . bits (I 6-19) are sent via distributed 
simplex lines. 

Permit Machine-Check Interrupt Request: A line sent to 
configured IOCE in response to a machine-check interrupt 
request. This signal allows the IOCE to continue with the 
logout. 

FLT Backspace:. This signal causes the IOCE to branch 
from its wait loop and backspace the FLT tape over one 
record. When the operation is completed, an 'FLT com
plete' signal is returned to the CE. 

SATR Select: This line signals and conditions the 
selected IOCE to receive the· new address translation 
assignment mask on the 36-bit control bus. Three select 
pulses are required, one for initial selection· and two for 
transmission of ATR I and A TR 2. 

Write Direct Start: This line causes an IOCE processor to 
leave the stopped state and go to either the running or wait 
state; This signal is sent to the IOCE when the CE executes 
an SIOP instruction. When SIOP is sent, the control bus has 
data in the format labeled "Start 1/0 Processor", 

Write Direct Stop: This line causes an IOCE processor to 
go to the stopped state at the end of the current processor 
instruction. 

Write Direct Interrupt: This signal causes an external 
interrupt of an IOCE processor. 

IOCE to CE Interface 

Interfacing from the IOCE to the CE is concerned primarily 
with control-type signals. The control bus, which transfers 
information from the CE to the IOCE, is strictly a one-way 
bus and perform no functions in this section. Programming 
restrictions allow an IOCE to be configured to only one CE 
at a time. IOCE to CE interface lines are described below. 

Condition Code: Two lines sent to the CEs as the result 
of an 1/0 operation, indicating a ·value to be set into the 
PSW. 

SCON/SATR Response: A response sent to the CE after 
the SCON instruction has been accepted and the IOCE has 
set its CCR without detecting a parity error in the CCR. 

7201-02 FETOM (7/70) B-7 



Page of SFN-0201-1 
Revised by TNL: GN31-0001 

This response signal is also used as a set address translation 
response to acknowledge that the receiving CE was properly 
SCONed and that the ATR 1 and ATR 2 assignment masks 
were properly received. 

Response: A line sent to the CE to indicate that the 
condition code for an 1/0 operation is present, IPL is 
complete, 1/0 interruption is complete (CSW and the 
interrupt code field of the old PSW are stored), or machine 
check interrupt is complete (CLU logout). 

Check Response: A signal line to the CE, indicating that 
a parity check.has been detected in the IOCE on data from 
the CE via the control bus. 

Reset ROS Timeout: A signai sent to the CE, indicating 
that the IOCE will process the 1/0 instruction but is 
presently processing data. The signal resets the CE's 
countdown loop to its maximum value, preventing it from 
timing out. 

PSA Lockout: A line indicating that the IOCE tried to 
access the PSA but did not receive a reply from the storage 

. element accessed or that the PSA access was issued to a 
logout-stopped SE. This signal causes a program inter
ruption in the CE. 

FLT Complete: A response to the CE indicating that the 
FLT backspace request has been completed. 

Write Direct Interrupt: This line is used by the 1/0 
processor to signal the CE to take an external interrupt. 

TIC: This signal is sent to the CE to indicate that <l; 

Transfer In Channel (TIC) command has been encountered 
in the channel. It is used by the CE when running FLTs. 

Gap: This line is sent to the CE to indicate that the 
channel has encountered an inter-record gap, i.e., the end of 
a tape record. The CE uses this signal when· running FLTs. 

Element Check: This signal is issued by an IOCE as a 
pulse whenever a parity error is detected in the ATR or an 
error condition is detected that requires a CLU or selector 
channel logout. 

The 'element check' signal is issued as a level if, during a 
CLU logout, the IOCE detects a condition that will not 
permit logout to be performed. An 'element check' signal 
causes an external interrupt in the CE. 

On Battery Signal (OBS): This signal, when issued as a 
static condition to the CE, indicates that the IOCE is 
operating on its battery supply. The 'OBS' is issued as a 
pulse whenever CCR parity is detected during execution of 
the SCON operation in the IOCE. This signal causes an 
external interru_pt in the CE. 

Out of Tolerance Check (OTC): A signal to the CE, 
indicating that the IOCE temperature-sensing thermals have 
detected an out-of-bounds temperature. This signal causes 
an external interrupt in the CE. 

1/0 Interrupt Request: A signal from the IOCE, 
informing the CE of status changes in the channels or 1/0 
devices. When a status change is detected by the IOCE and 
the channel is masked on, an 1/0 interrupt request is sent to 

B-8 (6/71) 

the CE. The channel that requested the interrupt waits for a 
"permit 1/0 interrupt" from the CE before storing a 
channel status word which indicates the reason for the 
interrupt request. 

Also stored are the channel and unit address, IOCE 
address, mask bits 16-19, and the interruption code in the 
old PSW. If the channel control check or the interface 
control check bit is on in the CSW, a selector channel 
logout has been performed. 

Machine Check Interrupt Request: The detection of a 
CLU error by an IOCE causes the IOCE to stop and request 
a PSBA for logout via the 'machine check interrupt 
request'. 

A CE in an 1/0 instruction or interrupt process with the 
IOCE issuing the machine check interrupt request, 
terminates the process and proceeds to the next I-fetch. 
That I-fetch, or any I-fetch, has an exception branch to a 
special microprogram routine. This routine issues a 'permit 
machine check interrupt' and enters a timing loop while the 
IOCE performs a logout. The IOCE holds up 'reset time 
out' while logging out. The CE waits for a response line or, 
in the event of further IOCE error, a timeout. In either 
case, the CE completes a 'machine check interrupt' by 
storing and fetching the correct PSWs. No logout occurs in 
the CE. The old PSW contains the IOCE identity in the 
interrupt qode as follows: 

IOCE 

1 
2 
3 

0 

Bit 

1 
0 

A timeout condition should always be accompanied by 
an IOCE element check. Simultaneous 1/0 interrupt 
requests for MC interrupt from multiple IOCEs are serviced 
in priority of IOCE 3, 2, and 1. 

CE-P AM/TCU /SCU INTERFACING 

"Interface lines between the .CE and PAM, between the CE 
I arid TCU, and between the CE and SCU, for the most part, 

represent reconfiguration, system reset, and element 
checks. Other than these lines, there is no control or data 
fl.ow directly to or from the CE. 

I CE-to~PAM/TCU/SCU Interface 

Configuration Mask: Only the required 11 positions of the 
overall configuration mask are sent to the P AMs and TCUs. 
The items sent include the two state bits, the four-bit 
SCON field for reconfiguration, and the three-bit field to 



define the controlling IOCEs. Two parity bits are used in 
the transfer. 

System Reset (1, 2): The 'system reset' signal results 
from a system IPL. It causes a hardware reset to the PAM, 

I TCU, or SCU. The reset is not gated by the CCR. All bits in 
the CCR are reset to O's (except the SCON bits, which are 
set to all-1 's). 

Configuration Select: This line, carrying a 5.0-usec pulse, 
causes the PAM, TCU, or SCU to set the configuration 
mask into its CCR. The PAM, TCU, or SCU will honor the 
select if the selector's SCON bit is on in the receiving PAM, 
TCU, or SCU's CCR. 

I PAM/TCU/SCU-to-CE Interface 

Element Check: A level simplex signal is sent from each 
I PAM/TCU/SCU to all CEs when one of the following 

conditions occur: 
1. Parity check in the CCR 
2. Power failure 

Configuration Response: This line is sent to the CE in 
response to configuration select if the select was honored 
and the CCR parity was correct. 

CE-SYSTEM CONSOLE (SC) INTERFACING 

The greater portion of the interface is concerned with 
sending indication (status) signals from the CE to the SC 
and control signals from the SC to the CE. The CE cannot 
initiate any data transfer directly to the SC via the 
interface. Subsystem configuration indications, for 
example, which are under program control, are initiated by 
the CE and handled as a normal I/O operation via the 
IOCE. 

CE-to-SC Interface 

Many of the indications from the CE to the SC represent 
the current status of the CE. The most important dynamic 
indications include the state of the CE, logic checks, 
current instruction address, and manual or wait status. The 
CE to SC lines and buses are described i.n the following 
paragraphs. 

Data Indicator Lines: These 36 multiple-driver simplex 
lines prov.ide for the display of four bytes of data from a 
main or local store location. They originate in the CEs at 
the T-register. 

Load Indicator: This multiple-driver simplex line 
originates in one or more CEs and turns on a common 
indicator. The indicator is lit by the respective CE from the 

Page of SFN-0201-1 
Revised by TNL: GN31-0001 

time an· IPL operation starts until the operation is com
plete. 

Invalid Selection: This multiple-driver simplex line 
originates in one or more CEs and turns on a common 
indicator. The selected CE lights the indicator whenever an 
invalid or illegal storage address is specified by the operator 
during a manual operation. 

Instruction Counter (IC) Indicators: These 27 simplex 
lines provide data to the SC for the display of the current 
instruction ·address at the CE. One set of these lines is 
indicated at the SC for each CE. 

Manual Indicator: These simplex lines originate in each 
CE and terminate in a unique indicator at the SC to 
indicate when the associated CE is in the stopped state. 

Wait Indicator: These simplex lines originate in each CE 
and terminate in a unique indicator at the SC to indicate 
when the wait bit in the associated CE's PSW is set to 1. 

State Indicators: These four simplex lines originate in 
each CE and terminate in unique indicators at the SC. Only 
one of these four signals will always be active to reflect the 
present status of the originating CE. 

Logic Check Indicator: These simplex lines originate in 
each CE and terminate in a unique indicator at the SC to 
indicate that the CE has detected one of its own iogic check 
conditions. 

Power Check: This signal line indicates that the temper
ature in the CE has drifted to within about 10 percent of 
the shutdown tolerance. The signal also indicates the loss of 
voltage or a normal power-off (but not an element master 
power-off) condition. 

Battery: This signal indicates that the CE has switched 
to battery power. 

SC-to-CE Interface 

All SC controls to the CEs are gated by the system 
interlock switch, which requires a key operation to activate 
the logic. SC operations require that the CE TEST switch 
be off. In addition, all functions going to the CE (except 
for 'all stop') are further gated in the appropriate CE by a 
'select CE' signal originating from the select CE rotary 
switch on the SC. The interface lines are described in the 
following paragraphs. 

Address Keys: These 24 signal lines ( + 3 parity) result 
from the 24 instruction address keys on the SC and provide 
addressing of any addressable local store or main storage 
location. 

Data Keys: These 32 signal lines {+4 parity) result from 
the 32 storage data keys on the SC and provide manual data 
for storing in to any addressable local store or main storage 
location. 

CE Select: These four select lines result from the 
four-position rotary switch at the SC. Proper CE selection is 

7201-02 FETOM (6/71) B-9 



under switch card control in the receiving CEs. This signal 
provides the necessary gating in the CEs for all manual 
operations (except All Stop) issued from the SC. The 
SYSTEM INTERLOCK switch must be turned on f ¢r this 
select switch to be enabled. 

1 

Stop: This signal places the selected CE in the stopped 
state without destroying its en·vironmental status. The 
selected CE proceeds to the end of the instruction being 
executed at the time the stop is initiated. If the current 
instruction causes a program interrupt, program status 
words (PSW) will be changed before stopping. An I/O 
device will be allowed to cornplete its operation, although 
I/O or external interrupts will not be recognized. 

Start: This signal starts the selected CE. If start is issued 
after a manual stop, the CE continues as though no stop 
occurred. 

Store Select Main: This signal results from the 
STORAGE switch being in the MAIN position and causes 
main storage addressing at the selected CE during either 
fetch or store manual operations. This signal line is not 
active with the STORAGE switch in the LOCAL position, 
causing local storage addressing at the selected CE. 

Display: This signal causes the selected CE to place the 
contents of a storage location, specified by the address keys 
and STORAGE SELECT switch, onto the data indicator 
lines to the SC. 

Store: This signal causes the selected CE to store the 
contents of the SC storage data keys in the storage location 
specified by the 24 address keys and the STORAGE switch. 

Set Instruction Counter (IC): This signal transfers the 
contents of the SC address keys to the instruction counter 
of the selected CE. 

Interrupt: This signal results from depression of the 
interrupt key and causes a console interrupt signal, which 
sets bit 25 in the PSW of the selected CE. 

Address Compare Stop: This line conditions the selected 
CE so that any storage access to the address specified in the 
SC address keys causes the CE to enter the stopped state at 
the end of the instruction that made the memory reference. 

Address Compare Loop: This line causes the selected CE 
to loop between the address set in the SC address keys and 
the address set in the storage data keys. When the selected 
CE makes a storage access to the address specified in the 
address keys, an unconditional branch is made to the 
address specified in the storage data keys. Programming can 
establish a loop condition between the two sets of keys. 

Rate: This signal operates with the selected CE and the 
START and STOP keys on the SC. With this signal, each 
depression of the START key results in one complete 
instruction being executed. Any machine instruction can be 
executed in this mode. 

Load: This signal line initiates an IPL in the selected CE. 

B-10 (7/70) 

Load Unit Address Bits: These eight signal lines (+ 
parity) result from two of the three rotary-type LOAD 
UNIT switches on the SC. These two hexadecimal charac
ters provide an I/O unit fiddress for use c;luring IPL 
operations. ' 

Load Channel Address Bits: These four signal lines ( + 
parity) result from one of the three rotary-type LOAD 
UNIT switches on the SC. This hexadecimal character 
selects one of the 11 possible channels on the 9020 system. 

Load Storage Select Bit: These four signal lines ( + 
parity) result from a rotary MAIN STORAGE SELECT 
switch on the SC. This hexadecimal character represents a 
main SE_to be selected during IPL or manual operations. 

Activate: This signal causes the SCON bits at the 
selected CE to be set according to the setting of the control 
CE switches on the SC. 

Control CE: These four signal lines ( + parity) result from 
individual switches on the SC and allow manual setting of 
the SCON bits in the configuration register. Actual setting 
of the SCON field occurs with depression of the ACTIVE 
key on the SC. 

All Stopped: This signal causes all CEs to enter the 
stopped state. The SYSTEM INTERLOCK switch must be 
turned on to activate the all-stop key, but the setting of the 
select CE switch does not affect this operation. 

CE-CC INTERFACING 

The CE-CC interface may be considered as divided into two 
sections: 
1. CE control and indication. 
2. RCU configuration and monitoring. 

The greater portion of the interface is concerned with the 
first of these; that is, with sending indication (status) signals 
from the CE to the CC and control signals from the CC to 
the CE. The CE cannot initiate data transfer directly to the 
CC via this portion of the interface. Subsystem configu
ration indications, for example, which are under program 
control, are initiated by the CE and handled as a normal 
I/O operation via the IOCE. 

Except for the line, 'subsystem load', this first portion 
of the interface is like the interface between a CE and the 
system console in a CCC system. The remaining portion is 
concerned with configuration, control, and monitoring of 
the two Reconfiguration Control Units (RCUs) in the CC. 
Specifically, this portion of the interface consists of the 
'configuration data bus', 'reconfigure select/response' lines, 
and the 'system reset' lines from the CE to the RCUs, 
together with the 'element check' lines from the RCUs to 
the CE. 



CE to CC Interface 

Many of the indications from the CE to the CC represent 
the current status of the CE. The most important dynamic 
indications include the state of the CE, logic checks, 
current instruction address, and manual and wait status. In 
addition to lines indicating the status of the CE, there are 
lines concerned with configuration control for the RCUs. 
These include the 'configuration data bus\ the 'reconfigu
ration select/response' lines, and the 'system reset' lines. 
The 'system res.et' lines from CE to CC are strictly for 
resetting the RCUs. The CE to CC lines and buses are 
described below. 

Data Indicator Lines: These 36 multiple-driver simplex 
lines provide for the display of four bytes of data from a 
main or local store location. They originate in the CEs at 
the T-Register. 

Load Indicator: This multiple-driver simplex line 
originates in one or more CEs and turns on a common 
indicator. The indicator is lit by the respective CE from the 
time an IPL operation starts until it is complete. 

Invalid Selection: This multiple-driver simplex line 
originates in one or more CEs and turns on a common 
indicator. The selected CE lights the indicator whenever an 
invalid or illegal storage address is specified by the operator 
during a manual operation. 

Configuration Data Bus: This bus is an 11-bit distributed 
simplex bus which conveys the 'configuration mask' for the 
RCUs to the CC during execution of the SCON instruction 
by the CE. 

System Reset (1, 2): These two distributed simplex lines 
provide a reset to the RCUs when activated by the CE. 

Instruction Counter (IC) Indicators: These 27 simplex 
lines provide the CC with data for the display of the current 
instruction address at the CE. One set of these lines is 
indicated at the CC for each CE. 

Manual Indicator: These simplex lines originate in each 
CE and terminate in a unique indicator at the CC to 
indicate when the associated CE is in the stopped state. 

Wait Indicator: These simplex lines originate in each CE 
and terminate in a unique indicator at the CC to indicate 
when the wait bit in the associated CE's PSW is set to 1. 

State Indicators: These four simplex lines originate in 
each CE and terminate in unique indicators at the CC. Only 
one of these four signals will always be active to reflect the 
present status of the originating CE. 

Logic Check Indicator: These simplex lines originate in 
each CE and terminate in a unique indicator at the CC to 
indicate that the CE has detected one of its own logic check 
conditions. 

Power Check: This signal line indicates that the temper
ature in the CE has drifted to within approximately 10 
percent of the shutdown tolerance. The signal also indicates 

the loss of voltage or a normal power-off (but not an 
element master power~off) condition. 

Battery: This signal indicates that the CE has switched 
to battery power. 

Reconfiguration Select/Response: These two multiplex 
lines are used by the CE to signal the two RCUs to gate 
data from the configuration data bus into the CCRs. 

Note: This same line is used by the RCU to,respond to the 
SCON and may also be considered part of the CC to CE 
interface. Note also that there are physically three 'recon
Bguration select/response' lines because the same circuitry 
is used for the RCU SCON bus in the CE as would be used 
for the three P AMs in a CCC system. Only two of the three 
are used by the RCUs. 

CC to CE Interface 

All CC controls to the CEs are gated by the system 
interlock switch, which requires a key operation to activate 
the logic. CC operations require that the CE TEST switch 
be off. In addition, all functions going to the CE (except 
for 'all stop') are further gated in the appropriate CE by a 
'select . CE' signal that originates from the select CE rotary 
switch on the system console. 

One simplex ELC line originates from each RCU. The 
interface lines are described below. 

Address Keys: These 24 signal lines ( + 3 parity) result 
from the 24 instruction address keys on the CC and provide 
addressing of any addressable local store or main storage 
location. 

Data Keys: These 32 signal lines (+4 parity) result from 
the 3 2 storage data keys on the CC and provide manual 
data for storing into any addressable local store or main 
storage location. 

CE Select: These four select lines result from the 
four-position rotary switch at the CC. Proper CE selection 
is under switch card control in the receiving CEs. This signal 
provides the necessary gating in the CEs for all manual 
operations (except 'all stop') issued from the configuration 
co~sole. The SYSTEM INTERLOCK (key) switch must be 
turned on for this select switch to be enabled. 

Stop: This signal places the selected CE in the stopped 
state without destroying its environmental status. The 
selected CE proceeds to the end of the instruction being 
executed at the time the 'stop' is initiated. If the current 
instruction causes a program interrupt, the change ·of 
program status words (PSW) will be accomplished before 
the stop. An 1/0 device will be allowed to complete its 
operation, although 1/0 or external interrupts will not be 
recognized. 

7201-02 FETOM (7/70) B-11 



Start: This signal starts the selected CE. If 'start' is 
issued after a manual stop, the CE continues as though no 
stop occurred. 

Store Select Main: This signal results from the 
STORAGE switch being in the MAIN position and causes 
main storage addressing at the selected CE during either 
fetch or store manual operations. This signal line is not 
active with the storage select switch in the local store 
position and causes local storage addressing at the selected 
CE. 

Display: This signal causes the selected CE to place the 
contents of a storage location, specified by the address keys 
and STORAGE switch, onto the data indicator lines to the 
CC. 

Store: This signal causes the selected CE to store the 
·contents of the CC storage data keys in the storage location 
specified by the 24 address keys and the STORAGE switch. 

Set Instruction Counter (IC): This signal transfers the 
contents of the CC address keys to the instruction counter 
of the selected CE. 

Interrupt: This signal results from depression of the 
interrupt key and causes a 'console interrupt' signal, which 
sets bit 25 in the PSW of the selected CE. 

Address Compare Stop: This line conditions the selected 
CE so that any storage access to the address specified in the 
CC address keys causes the CE to enter the stopped state at 
the end of the instruction that made the memory reference. 

Address Compare Loop: This line causes the selected CE 
to loop between the address set in the CC address keys and 
the address set in the storage data keys. When the selected 
CE makes a storage access to the address specified in the 
address keys, an unconditional branch is made at the end of 
the instruction to the address specified in the storage data 
keys. Programming can establish a loop condition between 
the two sets of keys. 

Rate: This signal operates with the selected CE and the 
START and STOP keys on the CC. With this signal, each 
depression of the START key causes one complete 
instruction to be executed. Any machine instruction can be 
executed in this mode. 

B-12 (7/70) 

Load: This signal line initiates an IPL in the selected CE. 
Subsystem Load: This line allows a subsystem IPL to be 

initiated from the CC. 
Load Unit Address Bits: These eight signal lines ( + 

parity) result from two of the three rotary-type load unit 
switches on the CC. These two hexadecimal characters 
provide an I/O unit address for use during IPL operations. 

Load Channel Address Bits: These four signal lines (+ 
parity) result from one of the three rotary-type load unit 
switches on the CC. This hexadecimal character selects one 
of the 11 possible channels on the 9020 system. 

Load Storage Select Bit: These four signal lines ( + 
parity) result from a rotary main storage select switch on 
the CC. This hexadecimal character represents a main 
storage element to be selected during IPL or manual 
operations. 

Activate: This signal causes the SCON bits at the 
selected CE to be set according to the setting of the control 
CE switches on the CC. 

Control CE: These four signal lines(+ parity) result from 
individual switches on the configuration console and allow 
manual setting of the SCON bits in the configuration 
register. Actual setting of the SCON field occurs with 
depression of the ACTIVE pushbutton on the CC. 

All Stopped: This signal causes all CEs to enter the 
stopped state. The SYSTEM INTERLOCK switch must be 
turned on to activate the all-stop key, but the setting of the 
select CE switch does not affect this operation. 

Element Check: This simplex line is used to set a bit in 
the diagnose accessible register (DAR) in the CE when one 
or more of the following conditions exist at the RCU: 
1. Power failure. 
2. Parity check in the CCR. 
3. Out of tolerance check (OTC). 

An interruption is taken by the CE if the associated 
RCU bit is not masked off in the DAR mask and bit 7 of 
the PSW is not masked off. One ELC line originates in each 
RCU. 



SECTION 1. INTRODUCTION 

The appendix describes the operation of the 1052 adapter 
contained in the computing elements of the 9020E system. 
This adapter is not provided for computing elements of the 
9020D system. 

The 1052 adapter connects an 1/0 printer keyboard to a 
multiplexer channel in an IOCE. The printer and keyboard 
are mechanically and electrically independent, although 
they are both housed under the same cover. 

The 1/0 printer keyboard provides two basic functions: 
facilities for manually entering data and facilities for 

CHANNEL INTERFACE SIGNAL SEQUENCE 

One of the most important assumptions of this appendix is 
the reader's prior knowledge of the signal sequence of the 
channels to which the 1052 adapter can be attached. For 
review, the following material is presented at this time. 

Initial Selection 

Figure C-1 illustrates the sequence of interface signals for a 
complete write operation on a multiplexer channel. The 
channel itself begins the initial selection sequence. The 
channel raises the 'address out' and 'hold out' lines to all 
control units connected to the interface. The 'select out' 
line is raised to the control unit with the highest priority. 
The address byte designating a particular control unit is 
placed on the 'bus out' lines at the same time. The first 
control unit compares the address byte against its own 
address. If the two do not match, the control unit 
propagates 'select out' to the control unit with the 
next-lower priority. This attempt at address matching 
continues at each control unit in turn until the control unit 
whose address is on the 'bus out' lines is reached. 

APPENDIX C. 1052 ADAPTER 

printing data; both are under control of a monitor program. 
When attached to a multiplexer channel operating in 

Multiplex mode, the adapter receives one eight-bit byte of 
data from, or transmits one to, the channel. The adapter 
then releases the channel to service other 1/0 devices. This 
byte ,mode of operation continues until the end of data 
transmission. With this mode of operation, 'the adapter 
releases the channel within the microsecond range for each 
byte of data. 

When the designated control unit makes the address 
match, the control unit raises the 'operational in' line to the 
channel. The channel recognizes the 'operational in' and 
drops the 'address out' line. When the control unit 
recognizes that the 'address out' line has been dropped, it 
raises the 'address in' line to the channel, and places its own 
address on the 'bus in' lines. 

The channel accepts the address byte and the 'address in' 
tag line, and in response raises the 'command out' line and 
drops the 'select out' and 'hold out' lines. The channel also 
places a command byte on the 'bus out' lines at this time. 
For the sake of illustration, we are considering the 
command byte to indicate a Write-Inhibit Carrier Return 
(ICR) command. 

The control unit reacts to the 'command out' line from 
the channel by dropping the 'address in' line, and the 
channel then drops 'command out' in response to the 
dropped 'address in' line. Now, the control unit raises the 
'status in' line to the channel, indicating to the channel that 
the control unit has a status byte to send. The channel 
responds to the 'status in' line with 'service out', indicating 
the acceptance of the status byte. When the 'service out' 
line comes up, the control unit drops the 'operational in' 
line and the 'status in' line, and the channel in turn drops 
the 'service out' line. The initial selection sequence is 
complete. 

7201-02 FETOM (7/70) C-1 



Data Service 

The sequence of signals during the data transfer is begun by 
the control unit raising the 'request in' line to the channel. 
The control unit raises 'request in' automatically for the 
first data byte following the initial selection sequence. The 
channel replies to the 'request in' with the 'hold out' and 
'select out' lines. The 'address out' line is not raised by the 
channel at this time, because this is not the initial selection 
sequence. Channel has already established the fact (during 
initial selection) that it is in communication with this 
particular control unit. Therefore, as soon as the control 
unit recognizes the 'hold out' and 'select out' lines, it raises 
the 'operational in' line to the channel and, then, raises the 
'address in' line to the channel and places its own address 
on the 'bus in' lines. 

The channel responds with 'command out' at this time. 
During the initial selection sequence, the channel placed a 
command byte on the 'bus out' lines at the same time that 
it raised the 'command out' line. During the data transfer 
sequence, however, the bits on the 'bus out' lines are all O's 
(with the exception of the parity bit). The 'command out' 
line rising at this time during the data transfer sequence, 
with the command byte bits set to O's, indicates "proceed" 
to the control unit. 

The control unit, in response to the 'command ouf line 
from the channel, drops the 'address in' line, and the 
channel in turn drops the 'command out' line. The control 
unit reacts to the dropping of the 'command out' line-by 
raising the 'service in' line. This indicates to the channel 
that the control unit is now ready for a data byte. The 
channel places the data byte on the 'bus out' lines and 
raises the 'service out' line to the control unit. The control 
unit receives both the data byte and the 'service out' line 
and, in turn, drops the 'service in' and 'operational in' lines. 
At this point, the data transfer sequence is complete. When 
the 1052 has finished printing the character, the control 
unit raises the 'request in' line to begin the next data 
transfer sequence to get the next character from the 
channel. 

End Sequence 

The data transfer sequences continue until all characters to 
be sent by the channel have been received by the control 
unit. When the control unit raises the 'request in' line, 
requesting another character, and when all of the characters 
have been sent, the channel begins the ending sequence. 
The sequences of the 'request in', 'select out', and 'hold 
out' lines are as previously described. The control unit again 
brings up 'operational in' in response to the 'hold out' and 
'select out' lines and sends the 'address in' line and the 
address byte in to the channel. Channel again responds with 
'command out', indicating proceed, and the control unit 

C-2 (7/70) 

replies with \service in', indicating that the control unit is 
ready for the data byte. The channel, however, replies with 
'command out' instead of 'service out'. 'Command out' 
coming up in response to the 'service in' line indicates 
"stop" to the control unit. 

When the control unit recognizes the stop indication, it 
drops the 'service in' line and indicates to the channel that 
it is going to send status to the channel by raising the 
'status in' line. If the channel is able to accept the status 
byte at this time, it indicates this by raising the 'service out' 
line to the control unit. When the control unit receives the 
'service out' reply from the channel in response to the 
'status in' line, the operation is complete, and the 'oper
ational in' line is dropped. The 1/0 control unit is finished 
with the full write operation and is free to be used for 
another operation by the channel. 

The Write ICR command was considered here because it 
is a typical sequence. All other signal sequences may be 
treated as variations of these basic initial selection, data 
transfer, and ending sequences. 

INTERFACE LINES 

• Channel interface 

• 1052 interface 

The 1052 adapter has two sets of interface lines: those 
connecting to the channel and those connecting to the 
1052. The interface lines between the channel-and the 1052 
adapter are: 

From Channel 
to Adapter 

Bus Out Bit P 
Bus Out Bit 0 
Bus Out Bit 1 
Bus Out Bit 2 
Bus Out Bit 3 
Bus Out Bit 4 
Bus Out Bit 5 
Bus Out Bit 6 
Bus Out Bit 7 

Address Out 
Command Out 
Service Out 

Select Out 
Hold Out 
Suppress Out 

Operational Out 
Clock Out 

Bus Lines 

Tag Lines 

Scan Control Lines 

Interlock Lines 

From Adapter 
to Channel 

Bus In Bit P 
Bus In Bit 0 
Bus In Bit 1 
Bus In Bit 2 
Bus In Bit 3 
Bus In Bit 4 
Bus In Bit 5 
Bus In Bit 6 
Bus In Bit7 

Address In 
Status In 
Service In 

Select In 
Request In 

Operational In 



Operational Out --f 

Request In --J 

Hold Out ---:f. 

Select Out 

Select In 

Address Out --f. 

Operational In --J 

Address In 

Command Out ---{ 

Status In 

Service In 

Service Out 

Bus In (9 lines) 
(Valid) 

---J,___. _ _, 

(Valid) 
Bus Out (9 Lines) --J. 

Suppress Out --:f. 

Address Status Address 

, n 
Zero 

.. 
30 

Command Command First Byte 

Write Proceed Data 

Operational Out 

Request In 

Hold Out 

Select Out 

Select In 

Address Out 

Operati ona I In 

Address In 

Command Out 

Status In 

Service In 

Service Out 

Address Address Status 

,, ' n Jf n n .... 
30 30 Byte 

Bus In (9 lines) ...__ ____ _ 
Command last Byte Command Command 

n__Jl Bus Out (9 lines) ---------
Proceed Data Proceed Stop 

,__ ___________________ __.f'------------------11'---------------~~---------------------SuppressOut 

-----------------------------Multiplex Operation-----------------------------

Figure C-1. Channel Interface Signal Sequence 

7201-02 FETOM (7/70) C-3/C-4 



The bus lines carry the data, sense, status, and address 
bytes between the channel and the 1052 adapter. The tag 
lines identify the bytes on the bus lines. The scan control 
lines control the sequence of priority of the various control 
units on the channel. The interlock lines provide the 
controls for connecting to, and disconnecting from, the 
channel. 

The interface lines between the adapter and the 1052 
are: 

From Adapter to 1052 

T1 
T2 
R1 

R2 
R2A 
R5 
Aux (Check) 
Space 
Backspace 
Tab 
Line Feed 
Carrier Return-Line Feed 
Upper Case Shift 
Lower Case Shift 
Lock Keyboard 
CE (Test) Panel Indicators (20 lines) 

From 1052 to Adapter 

Keyboard BCD 1 
Keyboard BCD 2 
Keyboard BCD 4 
Keyboard BCD 8 
Keyboard BCD A 
Keyboard BCD B 
Keyboard BCD C 
Keyboard Strobe 
End of Forms Contact 
RH Margin 
1052 Busy 
1052 Not Busy 
Request PB N/0, N/C 
Ready PB 
Not Ready PB 
Cancel PB 
Enter PB 
CE (Test) Mode 
CE (Test) Read 
CE (Test) Continuous 

Write 
Power On (+48V) 

The first six lines to the 1052 energize the tilt/rotate 
magnets. Each of-these magnets energizes the cycle clutch · 
magnet. The seventh line picks the check magnet to 
energize the cycle clutch magnet for the rotate +5, tilt 3 
character (none of the tilt or rotate magnets are picked for 
this 'character). The next seven lines energize the function 
magnets, and the last line operates the keyboard restore 
magnets to lock the keys. The 20 CE (test) panel indicators 
are shown in Figure C-13. 

The first seven lines from the 1052 to the control unit 
are from the keyboard bail contacts, providing the BCD 
coding for each key. The eighth line provides an indication 
to the control unit that a BCD bit configuration has been 
set up in the bail contacts and that these contacts are to be 
sampled. The 'end of forms contact' line signals the control 
unit when the 1052 has run out of paper. 

The tenth line from the 1052 to the adapter signals the 
adapter when the 1052 carrier has reached the end of the 
writing line. The adapter then causes the carrier to return to 
the left-hand margin. The 'carrier in motion' line indicates 
to the adapter that the carrier is in motion as the result of a 
carrier return or horizontal tab function. 

The 'carrier in motion' line is deactivated when the 
carrier stops moving. The 'not cam cycle' line indicates to 
the adapter the failure of the printer to take a mechanical 
cycle (should it fail) when the p'rinter is directed to print a· 
character or to perform one of the following functions: up 
shift, down shift, space, backspace, or tabulate. 

The next five lines are activated by the READY, NOT 
READY, and REQUEST pushbuttons (mounted on the 
cover, to the right of the carrier RETURN key) and by the 
CANCEL and ENTER pushbuttons (located at the left side 
of the keyboard). The CE (Test) panel switches (Figure 
C-13) provide the CE 'test', 'mode', 'read', and 'continuous 
write' signals. The 'power on' (+48V) signal is active if the 
keyboard-printer has +48V available from the supplying 
element (the CE). 

COMMANDS 

• Seven valid commands: Test I/O, Sense, Control No-Op, 
Control Alarm (No-Op), Write-ACR, Write-I CR, Read. 

The 1052 adapter decodes commands from the channel and 
indicates the acceptance or rejection of the command to 
the channel. If the command is accepted by the adapter and 
requires a printer output (write), the adapter requests data 
from the channel. The data is received as a byte consisting 
of eight bits plus a parity bit. This eight-bit byte is 
translated into a tilt/rotate code, to pick the proper 
tilt/rotate magnets in the printer for a printable character, · 
or into a function code to pick the proper function magnet 
in the printer. 

If the command is accepted by the adapter and requires 
the operator to enter data (read), the operator keys in the 
desired character or printer function. The adapter receives 
the data from the keyboard one byte at a time, each byte 
consisting of six bits plus a parity bit. This data is translated 
into an eight-bit-plus-parity byte for subsequent transfer to 
the channel. The adapter requests service from the channel 
and places the character on the bus-in lines. When the 
channel accepts the data byte, the character is printed on 
the printer, or the printer function is performed. No 
co~mands (other than Read and Write) accepted by the 
adapter require the direct participation of the I/O device. 

On the multiplexer channel, Read, Write, and Sense 
require an initial selection sequence; then the adapter 
disconnects from the channel. Each byte of data trans
mitted or received by the adapter requires the adapteI to 
first transmit its address and then request service from the 
channel. Upon acknowledgement of the request by the 
channel, the adapter again disconnects from the channel. 
This procedure continues until data transmission is ended. 

7201-02 FETOM (7/70) C-5 



Read 

Upon acceptance of the Read command, the keyboard is 
unlocked, and the proceed light is lit. The proceed light 
indicates that the operator may key in a character. When 
the operator keys in a character, it is parity checked (six 
bits plus parity) from the keyboard, translated to an 
eight-bit byte, and set into the data register. The adapter 
then requests service from the channel. When the channel 
accepts the data byte, the proceed light is extinguished, the 
keyboard is locked, the character is translated to a tilt/ 
rotate or function code, and the printer either prints the 
character or performs the function. The keyboard is 
unlocked, and the proceed light is again turned on. This 
procedure continues until a termination is indicated. 

A Read command may be terminated in one of three 
ways: byte count equals 0 at the channel, an 'enter' signal 
given by the keyboard operator, or a 'cancel' signal given by 
the keyboard operator. The enter 'signal' is issued as a 
result of the operator's depressing the ENTER pushbutton. 
The 'enter' signal is used to indicate the end of a block of 
data. The 'cancel' signal is issued by the operator's 
depressing the CANCEL pushbutton. The 'cancel' signal is 
used to indicate an operator error in the message; in this 
case, the entire message must be re-entered. 

When the adapter detects any of the above terminating 
signals, it locks the keyboard (which stays locked until a 
new Read command is issued), turns off the proceed light, 
initiates a carrier-return operation, and sends a Channel-End 
status to the channel. The unit exception status bit is sent 
with the Channel End if the termination was accomplished 
by the 'cancel' signal. When the carrier is returned to the 
left-hand margin, the adapter requests service from the 
channel to present a status byte consisting of Device End. 
The unit check status bit sent with Channel End or Device 
End indicates one or more of the following conditions: 
BCD parity error from the keyboard, no mechanical cycle 
of the printer, or an error between the BCD keyboard 
output and the output of the printer translator. 

Two Write commands are available: Write-Auto Carrier 
Return, and Write-Inhibit Carrier Return. Write-Auto 
Carrier Return automatically returns the carrier to the left 
margin at the end of the write operation. Write-Inhibit 
Carrier Return does not cause the carrier to return at the 
end of the write operation. 

Write-ACR 

Upon acceptance of the Write command, the adapter 
disconnects from the channel. It then requests service from 

C-6 (7/70) 

the channel for each data byte and disconnects after each 
data byte. When the 'stop' signal is presented by the 
channel, the adapter sends Channel-End status and discon
nects from the channel. When the carrier is returned to the 
left margin, the adapter signals for a device-end interrupt. 
Device-End status is sent when the channel responds. 

Write-I CR 

This command proceeds the same as Write-ACR, except 
that upon receipt of the 'stop' signal the adapter transmits 
both Channel-End and Device-End in one status byte. 

Test 1/0 

If the Test 1/0 command reaches the adapter and no 
outstanding status bits are present, a zero status byte is 
returned to the channel. 

If status information is pending, all status bits present 
(except busy, when caused by Channel End, Device End, 
Attention, or status stacked) are transmitted to the . 
channel. 

Control No-Op 

The Control No-Op command is a control immediate. 
Channel-End and Device-End status are transmitted 
together in the initial selection sequence. 

Control Alarm (No-Op) 

The Control Alarm command is a control immediate. This 
command resets the sense byte and causes a general 
selective initial reset. Channel End and Device End are 
transmitted during the initial selection status. 

The Sense command transmits one eight-bit byte plus 
parity to the channel. This byte consists of the contents of 
the 'sense' triggers. After this data transfer, a final status 
byte consisting of Channel End and Device End is sent to 
the channel. The adapter does not disconnect from a 
multiplexer channel between transmi~sion of the sense byte 
and final status (forced Burst mode operation). 

1052 ADAPTER PRIORITY 

• Determined at time of installation 

• Pluggable 

The priority of the 1052 adapter is not necessarily dictated 
by the physical placement of the control unit on the 1/0 



interface. The adapter can be plugged to receive either 
'select out' or 'select in' as the scanning line. The priority of 
the scanning line is set at the time of installation. The 
adapter provides the option of connecting its selection logic 
in series on either the 'select out' or the 'select in' line. 
Ascending-order priority from the channel can be estab
lished on the 'select out' line, and the remaining control 
units can maintain a descending-order priority from the 
channel on the 'select in' line. Plugging location for the 
select-out bypass card is 02ED1-B6 (refer to ALD ZP080). 
See Figure C-2. 

DATA FLOW 

• Diagram 6-28, FEMDM illustrates both data flow and 
control. 

• Data flow path from data register to printer is the same 
for both read and write. 

Controls 

The interface controls govern the sequence of signals the 
1052 adapter sends to the channel on the inbound 'tag' and 
'selection control' lines. The interface controls are acted 

IOCE 
Mpx Channel 

Out Lines 

D 

In Lines 

0-- Terminator 0 -- Receiver 

Figure C-2. 1/0 Interface Interconnections 

Control 
Unit l 

R 

D 

Highest 
Priority 

[§:]--Driver 

upon by both the active and inactive states of the outbound 
'tag' and 'selection control' lines. They are also acted upon 
by the command decoder, the command register, and the 
address compare circuits. 

The address and command bytes are received from the 
channel on the 'bus out' lines. The address byte is 
compared with a fixed address plugged within the 1052 
adapter. The command decoder decodes the command byte 
to determine whether the command is one of the seven 
acceptable to the adapter and, if so, to determine which of 
the seven commands it is. 

Write Data Path 

Data bytes are received on the 'bus out' lines during a write 
operation. Each data byte is checked for parity when it is 
taken from the 'bus out' lines, and the parity bit is then 
dropped. The eight-bit byte is stored in the data register by 
the data register controls. The contents of the data register 
are then analyzed by the function decoder to determine 
whether the character in the data register is a function 
character or a printable character. 

If the data register contains a printable character, that 
character is translated [by the eight-bit to tilt/rotate 
(printer) translator] from the eight-bit code to the tilt/ 
rotate code. 

Control 
Unit 2 

Lowest 
Priority 

Out Lines 

In Lines 

Select Out 

Select In 

Control 
Unit 3 

Second 
Highest 
Priority 

Terminator 
Block 

7201-02 FETOM (7/70) C-7 



Read Data Path 

The keyboard generates dab11 and fmu:tion bytes in a 
sb.~blt·p,~us-p,artty code during a read operation .. The ,output 
uf the keylboard is p,owered, parity checked,, and fed to the 
BC'D·to·8'·bit (keybo,ard) transb11t,or. The keybcurd trans· 
~ait,ur uansmates the BC'D code to the ,eight-bit code .. and the 
data register controh s,tore the elght--b~t character in the 
data re.gj.ster. (Figure C-3 Htustrates, the trans~adon ,of the 
k,eyboard code and the ,corresp,(mding printer outrmt.) At 
this po~nt, the interface ,controls. request service f1om the 
,ch~min1.d. 

When tbe channel responds, the data byt,e is ga.ied tu tb1e 
'bus i111' Hnes through tbe purity generator. The parity 
generator inserts P-bits as required to make the byt,e on the 
~bus in' lines odd parity. The byte ~s sent to the printer at 
the saime Ume it is sent to the •bus in' lines,. The character 
p:ath to the p1rinier fr,om tlle data register is the same for 
both read and wfit,o. 

The address generator is gated to the ~bus in' lines, dunn.1 
those l/0 irttierface sig~al sequences requiring the adapter t,u 
send its own address into the channet Be,cause the p~dty 
bit is p,Jug~d along with the rest cf the bhs in the address 
generator. the output of the address geaeraitor is n,o,f pa.ss:ed 
through the parity g~neruor. 

The output uf the sense·bit ~inches is gated to the 'bus 
in'' line~ during the ,execution or ai Sense command. thtis 
byte is passed duough the parity generator because the bit 
structure ,of the byte v.ades. and thtl p:tuUy bit must be 
inserted as D,eeded. The output of the 'status· triggcm is 
gated tu the 'bus in' lines during an in.itlal se~ecUon 

se,quence and dudrig an ending sequence. Correct p1uity 
must also be generated for the st11tus byte bec11use the 
:structure ,uf the status byte is ;also variable. 



Lower Cose Upper Case Lower Case Upper Case 

6-Bit Code Keyboard 8-Blt Code Keyboard 8-Bit Code 
(PT and T) Print (EBCDIC) Print (EBCDIC) 

6-Bit Code Keyboard 8-Bit Code Keyboard 8-Bit Code 
(PT and T) Print (EBCDIC) Print (EBCDIC) 

BA8421 Function 01234567 Function 01234567 BAB421 Function 012345,67 Function 01234567 

000001 1 11110001 = 01111110 100011 I 10010011 L 11010011 

000010 2 11110010 < 01001100 100100 m l 0010100 M I 1010100 

000011 3 11110011 ; 01111111 100101 n 10010101 N 11010101 

000100 4 11110100 : 01110100 100110 0 10010110 0 11010110 

000101 5 11110101 O/o 01101100 100111 p 10010111 p II 0101 l I 

000110 6 11110110 I 01111101 101000 q 10011000 Q 11011000 

000111 7 11110111 > 01101111 101001 r 10011001 R 11OJ1001 

001000 8 11111000 " 01011100 101011 s 01011011 ! 01011010 

001001 9 11111001 ( 01001101 I 10000 & 01010000 + OlOOl l 10 

001010 0 11110000 ) 01011101 110001 a 10000001 A 11 000001 

001011 fl 01111011 " OIOOIJ II l IOOIO b 10000010 B I 1000010 

010000 @ 01111100 ¢ 011011!0 110011 c 10000011 c 11000011 

010001 I 01100001 ? 01100011 110100 d 10000100 D 11000100 

010010 s 10100010 s 11100010 110101 e 10000101 E 11000101 

010011 t 10100011 T 11100011 1101!0 f 10000110 F l 1000110 

010100 u 10100100 u 11100100 110111 9 10000111 G 11000111 

010101 v 10100101 v 11100101 111000 h 10001000 H 11001000 

010110 w 10100110 w 11100110 ll1001 i 10001001 I 11001001 

010111 x 101OOJl1 x 11100111 1 11011 01001011 -, 01011111 

011000 '1 10101000 y lllOIOOO 000000 Space 01000000 

011001 z 10101001 z 11101001 001110 Up-Shift --
011011 , Oil 01011 I 01001111 011101 LF 00100101 (Line Feed) 

100000 - 01100000 - 01110010 101101 CRLF 00010101 (Carrage Return Line Feed) 

100001 j 10010001 J 11010001 101110 BS 00010110 (Backspace) 

100010 k 10010010 K 11010010 111101 TAB 00000101 (Horil'.:ontol Tab) 

111110 Downshift 

Figure C-3. 1052 Keyboard Code Translation and Printer Output 

7201-02 FETOM (7/70) C-9 



SECTION 2. FUNCTIONAL UNITS 

• Data register 

• Read/write clock 

• Printer translator 

• Keyboard translator 

• Shift controls 

• Function decoder 

• 1052 Printer-Keyboard 

DATA REGISTER 

• Used for Read command 

• Used for both Write commands 

Read 

SS 6 

Not Bus Or Sto 
CE Write 
SS 1 

Read 
-':"ss==-s~~~~~~--''"'A'QR 

~N_o_t_Sn_if_t_C_ho_n~ge_·~~~~~ 
Write 

:Ss 4 
Gen Seil lnit Reset 

Set Dato Reg 
to Keyboord 

Set Dato Reg 
to CE Bus -

Doto Regis,ter Reset 

Figure C-4. Data Register, Input and Output Controls 

C-10 (7/70) 

The data register comprises eight latches, one for each of 
the bit lines 0 through 7. Each latch has three possible set 
and reset lines .. Figure C-4 illustrates the input and output 
controls for the data register. 

Write Operation 

One group of set lines for the eight latches comes from the 
'bus out' lines from the channel. These lines are ANDed 
with SS l, not CE (test) mode, and not busy or stop to set 
the data byte on the 'bus out' lines into the data register. 
The function decode circuits activate the 'function' line at 
SS 2 time if the character in the data register is a function 
character. SS 2, Write command,. and not busy, sets cycle 

time. 
Cycle time gates either the function decoder output 

(function character in the data register) to energize a 
function magnet in the printer, or the 8-bit-to-tilt/rotate 
(printer) translator output (printable character in the data 

Read Cmd 

Function 
Decade 

PG421 
SS 3 
Functiion 

Trans I ato,r 
8-Bit to 

Tilt/Rotate 

PG4ll 

A t--__;;G::...:·a:..;..te::....::...Da::..:.t.=.o ..:..:R.::.oe L.._ ____ ___J 

Bus In 



register) to energize the tilt/rotate and cycle clutch magnets 
in the printer. Cycle time also sets the 'printer busy' latch 
when SS 2 times out. 

SS 4 ANDs with 'write' and 'not shift change' to reset 
the data register. The 'not shift change' line indicates that 
the character in the data register did not require case
shifting the printer. If the data register had contained an 
uppercase character and the printer had been in lowercase, 
or vice versa, the character would have been held in the 
data register while the printer was shifted. The clock would 
have run through SS 4 during the shifting, but the data 
register would not have been reset, the reset having been 
blocked by the 'not shift change' line being inactive. When 
the shift is complete, the clock is again started at SS 1. The 
data register cannot be set again because the 'p_rinter busy' 
latch is on when the clock starts again at SS 1. When the 
clock runs through SS 4 the second time, the data register is 
reset. 

Read Operation 

A second group of set lines for the data register latches 
comes from the BCD-to-8-bit (keyboard) translator. The 
read/write clock is started at SS 5 for a read operation, and 
SS 5 ANDs with read to reset the data register. SS 6 ANDs 
with read to gate the translated keyboard output into the 
data register. SS 7 requests service from the channel by 
raising the 'request in' line to the channel, indicating that 
the 1052 adapter has a data byte ready for transfer to the 
channel. 

When the channel responds and connections are 
established between the channel and the adapter, the 
'service in' line (ANDed with Read command) gates the 
output of the data register to the 'bus in' lines. The channel 
responds to 'service in' with 'service out', and the adapter 
ANDs 'service in' with 'service out' to start the read/write 
clock at SS 3. From this point, the data byte proceeds to 
the printer exactly as described for the write operation. The 
data byte has now been placed on the 'bus in' lines and has 
also been printed. 

READ/WRITE CLOCK 

• Used for Read and Write commands. 

• Used to return carrier, space, and shift. 

• Start and stop points vary with operation. 

The read/write clock is used for three of the seven valid 
commands accepted by the control unit: Read, Write-Auto 

Carrier Return, and Write-Inhibit Carrier Return. The clock 
is stepped sequentially from SS 1 through SS 7 for both of 
the Write commands. 

During the data transfer sequence of a Write command, 
the adapter activates the 'service response' line (Figure C-5) 
by ANDing the 'service in' and 'service out' tag lines. 
Service response then starts the clock by firing SS 1. SS 1 
gates the data byte on the 'bus out' lines into the data 
register (Figure C-3). 

SS 2 fires when SS l times out. SS 2 controls the 
'lowercase/uppercase' latch and the 'shift change' latch 
(Figure C-8). The outputs of SS 2 and SS 3 are overlapped, 
but the duration of SS 2 is only 200 ns while the duration 
of SS 3 is 40 ms. The effective duration of SS 3 then is 39 .8 
ms. When SS 2 has finished timing out, the 'printer busy' 
latch is set by SS 3 ANDed with not SS 2. 

SS 3 is ANDed with the outputs of the function decoder 
and the printer translator to pick the function or the 
tilt/rotate magnets in the 1052 (Figures C-6 and C-9). 

SS 4 fires when SS 3 times out. For a Read command 
the SS 4 output resets the 'shift change' latch if it has been 
set. It also sets the 'printer busy' latch for the Read 
command. For the Write command, if the 'shift change' 
latch has not been set, SS 4 resets the data register and fires 
SS 5. 

For the Read command, SS 5 is fired by the 'read' line 
ANDed with the keyboard strobe. The read/write clock is 
started at SS 5 for the Read command. When SS 5 times 
out, it fires SS 6 if the carrier is not being returned to the 
left-hand margin. If the carrier is in the process of being 
returned, the 'carrier in motion' latch is on, and SS 6 
cannot be fired until it is turned off. 

Note the 'carrier in motion' latch (Figure C-5). The latch 
is turned on when the normally open carrier return 
interlock contacts make. The latch is turned off when these 
contacts open. When the latch turns off, the 30-ms SS is 
fired; this blocks the AND function that sets the 'carrier in 
motion' latch. This means that the latch cannot be turned 
on again for 30 ms after it has been turned off. This is a 
bounce-protection device. If the carrier return interlock 
contacts bounce closed after opening, the 'carrier in 
motion' latch will not be set again. 

SS 6 is used to gate the output of the BCD-to-8-bit 
(keyboard) translator to the data register for the Read 
command. SS 6 also turns on the 'service request' latch, to 
indicate to the channel that the adapter is ready for another 
data byte (Write command) or ready to send another data 
byte to the channel (Read command). 

SS 7 fires when SS 6 times out. SS 7 resets the 'shift 
change' latch for the Write command. It also fires SS 3 
during the Read command if the 'shift change' latch has 
been set. The clock outputs are related in detail to the 
various operations in Section 3 of this appendix. 

7201-02 FETOM (7/70) C-11 



Service In (and) Service Out 

Turn On Service In 

CE Made 

CE Write 

Write Command 

CE Write 

Read Command 

CE Read 

From Keyboard Strobe 

1052 

N/O Carri er Return 

30 ms 

From or Tab Interlock Contacts 

1052 

Figure C-5. Read/Write Clock 

C-12 (7/70) 

Service Response 

Not Busy or Stop 

Not End of Line Contact 

SS 6 

Shi ft Change 

Read 

Shift Change 

SS 7 
Stop 

Not Inhibit 

Carrier Return 
Not Printer Busy 

Write 

A 

A 

A 

End of Line Contact A 

Carrier In Motion 

Read 

CIM Latch Carrier. In Motion 
FF 

200 ns 

200 ns 

28 ms 

OR _r_u_rn_O_n_SS_5--i 

500 ns 

200 ns 



Function N 
Cycle Time A 

401-411 
Not Bit 0 .-.--
Not Bit 4 A 

Not Bit 5 
Bit 7 
Bit 0 t--

Not Bit 3 A 

Not Oit 0 t--

~ Bit 2 A Pick Tl Magnet 
Bit 3 OR Not Tl N 

Not Bit 6 
Not Bit 7 
Not Bit 3 t--1 

Bit 6 A 

Not Bit 0 t--
Not Bit 2 A 

Not Bit 4 
...__.____ 

tf0 T2 
Pick T2 Magnet 

Bit 4 

~u 
Bit 5 

Not Bit 6 
Bit 2 

8- °" 
Bit 0 
Bit 5 
Bit 6 

tf0 Bit 7 Pi ck Rl Magnet ,___,__ Not Rl N 

Bit 0 ,--,---, 

~ 1 Not Bit 4 A 

Data 201 Not Bit 5 
Register 211 Not Bit 7 

[qffi~3~~~ Not Bit 4 ~ Bit 6 
Not Bit 0 t--

tf:l Bit 4 A 
Pick R2 Magnet 

Not Bit 5 OR t-- Not R2 N 
Not Bit 0 I--

Bit 3 A 
Bit 7 

Not Bit 0 I--
Not Bit 2 A 
Not Bit 3 
Not Bit 6 
Not Bit 7 

ITT .___._ 
Not R2A 

Pick R2A Magnet 
N 

Not Bit 4 r-"T"'""""""1 

Bit 5 A 

Bit 4 t;-
Bit 7 

Nat Bit 2 t;-
Bit 3 
Bit 4 
Bit 0 t;- OR t-----' 

ITT Not Bit 5 Pick R5 Magnet 
Not Bit 6 Not R5 

N 
Not Bit 7 

Bit 2 t;-
Not Bit 3 

Bit 4 
.....__.__ 

Not Bit 2 ~ 

Bit 3 A 

Bit 4 
Bit 4 I--

Not Bit 5 A 
Pick Cycle Clutch Magnet 

Bit 0 t;:""1 A 

Not Bit 5 OR 
Not Bit 6 
Not Bit 7 
Not Bit 2 ~ Bit 4 

Bit 7 
...__. 

Not Bit 0 r--r-

Bit 2 A 
Bit 3 

Not Bit 6 
Bit 4 I--

Not Bit 5 A 
Bit 7 

Not Bit 0 t-;:"" 
Not Bit 2 
Not Bit 3 
Not Bit 4 t-- OR 

Bit 5 A 

Not Bit 7 
Not Bit 0 ~ Not Bit 5 
Not Bit 6 
Not Bit 7 
Not Bit 4 ~ Bit 6 
Not Bit 7 

...._ ...._ 

Figure C-6. Printer Translator (Translate 8-Bit to Tilt/Rotate) 

7201-02 FETOM (7/70) C-13 



PRINTER TRANSLATOR 

• Translates eight-bit code to tilt/rotate code. 

Figure C-6 illustrates the 8-bit-to-tilt/rotate translator. The 
series of ANDs and ORs connected to the data register 
output decode the eight-bit byte stored in the data register 
into the corresponding tilt/rotate code. Note that all 
translating AND/OR functions except T2 use negative logic; 
that is, making the OR prevents the energizing of the 
corresponding tilt/rotate magnet. T2, the exception, is 
picked when the OR is made. 

The "even" function at the bottom of Figure C-6 
energizes the aux (auxiliary, or check) magnet if an even 
number of tilt/rotate magnets is energized. Since one is an 
odd number of magnets, none is an even number; therefore, 
if no magnets are energized, the even function picks the aux 
magnet. The result of picking the aux magnet alone is a tilt 
motion of +3 and a rotate motion of +5. If two, four, or six 
tilt/rotate magnets are picked, picking the aux magnet has 
no effect. 

The output of this translator is gated with SS 3 and 'not 
function'. If the byte in the data register is a function 
character, the function decoder (Figure C-9) activates the 
function line at SS 1 time, when the data byte is set into 
the data register. Conversely, if the data byte in the data 
register is not a function character, the function line is 
inactive and allows SS 3 to gate the lines picking the 
tilt/rotate and aux magnets. 

KEYBOARD TRANSLATOR 

• Translates six-bit code to eight-bit code. 

Figure C-7 illustrates the translation of the BCD output of 
the 1052 keyboard to the eight-bit code. Not all of the 
AND/OR logic is illustrated because all functions are 
similar. Note that four of the eight output lines are negative 
logic in that activating the output line prevents the 
corresponding bit from being set into the data register. The 
other four output lines are positive logic; activating these 
lines results in setting the corresponding bit into the data 
register. 

Also note the 'lower/upper case' latch. The output of 
this latch is ANDed into the translator to control the 
translation of the BCD output of the keyboard. Each key 
results in the same BCD coding for both the upper and 
lower case. The translation to either uppercase or lowercase 
eight-bit code is controlled by the 'lower/upper case' latch. 
For example, the output of the letter key "B" is 
B A 8 4 2 I in the BCD code. This code is the same for 
both upper and lower case. When the 'lower/upper case' 
latch is on (lower case), the B A 8 4 2 T is translated to 

C-14 (7/70) 

0 T 2 3 4 S 6 7. When the 'lower/upper case' latch is off 
(upper case) BA 8 4 2 T is translated to 0 123 4 S 6 7. 
The control of the 'lower/upper case' latch is described in 
the following paragraphs under "Shift Controls". 

SHIFT CONTROLS 

• Controls case hemisphere of typing element. 

Figure C-8 illustrates the 'shift change' latch, the 'lower 
case/upper case' latch, and the circuits that decide whether 
the character in the data register is an uppercase character 
or a lowercase character. The only circuit that produces no 
interaction between the 'lower case/upper case' latch and 
the 'shift change' latch is the function that ANDs the 
'carrier return' and 'stop' latches. This AND function 
activates the 'turn on lower case' line at the end of a read 
operation and at the end of a write-auto carrier-return 
operation, to insure that the typing element in the printer is 
returned to the lowercase hemisphere. 

During a write operation, the 'lower case/upper case' 
latch and the 'shift change' latch are controlled by the 
output of the decision circuits at the top of Figure C-8. If 
the 'lower case/upper case' latch is on, indicating that the 
printer is in lowercase and the character in the data register 
is an uppercase character, the printer must be shifted to 
upper case before the character can be printed. The 'upper 
case character' line is activated by the uppercase character 
in the data register. 'Upper case character' is ANDed with 
'lower case' latch on and SS 2 to turn the 'lower case/upper 
case' latch off and, also, to turn on the 'shift change' latch. 
The 'shift change' latch coming on causes the character to 
be held in the data register while the clock is run to shift 
the printer to the upper case. After the shift cycle is 
complete, the clock is again run to print the character. 

Had the printer been in upper case, and had the 
character in the data register been a lowercase character, 
the printer would have been shifted to lower case before 
gating the output of the data register to the printer 
translator. If the printer had been in upper case, the 'lower 
case/upper case' latch would have been off, and SS 2 would 
have been ANDed with not upper case character and lower 
case latch off to turn both the 'shift change' latch and the 
'lower case/upper case' latch on. Again, the 'shift change' 
latch would have caused the character in the data register to 
be held there while the clock was run to shift the printer to 
the lower case. After the shift cycle was completed, the 
clock would have been run to print the lowercase character. 

The read operation is similar to the write operation. The 
major difference lies in the control of the two latches. 
When the shift key on the keyboard is operated, the 
keyboard sends the BCD bits C B A 8 4 2 T to the adapter. 
The keyboard strobe is also sent to the adapter. The 



From 
1052~ BCD 4-Bit 

r-.---
A OR 

Keyboard BCD 8-Bit 
BCD 1-Bit IT BCD 2-Bit 
BCD 8-Bit 

Not BCD 1-Bit 
Not BCD 2-Bit 

~ 

Not BCD 4-Bit 
Not BCD 8-Bit 
Not BCD A-Bit T Not BCD B-Bit 

3JE.e_er Case 
BCD A-Bit T Not BCD B-Bit 

Not BCD 2-Bit 
Not BCD 4-Bit 
Not BCD 8-Bit 

L--..1---...J 

Not BCD 8-Bit A"""'OR' 
U_E.e_er Case 

Not BCD 4-Bit 'A' Upper Case 
BCD 2-Bit T Not BCD 4-Bit 
BCD 8-Bit 

Not BCD A-Bit A-1 Not BCD B-Bit 

Lower/Upper 
Not BCD 4-Bit EH I--' 
Not BCD 8-Bit 

Case Not BCD B-Bit ~ ~ Not BCD 2-Bit 
Not BCD 4-Bit 
Not BCD 8-Bit 
Not BCD 1-Bit ~ ~ f--' Not BCD 2-Bit 

611 Not BCD 4-Bit 
Not BCD 8-Bit 

'----J.-

BCD A-Bit 
.----.----, 

Not BCD B-Bit A OR 

Not BCD B-Bit T BCD 4-Bit 
Not BCD B-Bit T BCD 8-Bit 

Lower Case 
Not BCD B-Bit T BCD 2-Bit 

Lower Case· 
i-

Not BCD B-Bit ~ BCD 1-Bit 
Not BCD 8-Bit 
Not BCD A-Bit ~ BCD B-Bit 
Not BCD 1-Bit 
Not BCD 2-Bit 
Not BCD 4-Bit 
Not BCD 8-Bit 

'""" '---L-....J 

521-551 

Figure C-7. Keyboard Translator 

Not Xlat 0 

Xlat l 

Xlat 2 

c Xlat 3 
T 
c Xlat 4 
T 
~Not Xlat 5 

c Not Xlat 6 
T Not Xlat 7 
s 

.....-
To 
Data 
Register 

7201-02 FETOM (7/70) C-15 



Not Bit 2 -PG201 
Not Bit 3 

Bit 0 

Bit 1 A 

Bit 4 OR 
Uppercase Character 

Bit 5 
A 

Bit 0 

Not Bit 2 

Not Bit 3 

Bit 6 

Bit 7 

Not UC Chan Carrier Return Latch 

SS 2 
A Stop 

Lowercase Latch Off 
Turn On Lowercase 

BCD B-Bit OR 

BCD A-Bit 
A 

Not BCD 1-Bit 
BCD 2-Bit 

BCD 4-Bit 

BCD 8-Bit 
A 

SS 6 

Not BCD A-Bit 

Not BCD B-Bit 
A 

UC Char OR 
Lowercase Latch On 

A 
SS 2 

Read 
SS 4 A 
Write 

OR 
SS 7 A 

Gen Sel !nit Reset 

Figure C-8. Shift Controls 

keyboard strobe starts the clock at SS 5, and the upshift 
BCD bit configuration is ANDed with SS 6 to turn off the 
'lower case/upper case' latch and turn on the 'shift change' 
latch. The 'shift change' latch causes the read/write clock to 
run to shift the printer from lower case to upper case. The 
'shift change' latch also blocks SS 7 from setting the 
'service request' latch to raise request-in to the channel. No 
byte is sent to the channel for shifting. 

When the shift key is released at the keyboard, a 
sequence similar to that described in the above paragraph 
occurs. The BCD bits differ in that instead of C B A 8 4 2 I 
(upshift) the keyboard sends CB A 8 4 2 T to the adapter 
along with the keyboard strobe. The 'lower case/upper case' 
latch is turned on along with the 'shift change' latch. The 
clock is started by read ANDed with keyboard strobe; the 

C-16 (7/70) 

Uppercase 
Lowercase Lowercase 

FF 

Uppercase 

PG6ll 

Shift 

Shift Change 

PG611 

printer is shifted to the lower case, and the request-in line is 
blocked. 

FUNCTION DECODER 

• Determines whether the data register contains function 
of printable character. 

• Operates printer function magnets. 

Figure C-9 illustrates the function decode circuits. These 
circuits analyze the character in the data register to decide 
whether that character is to perform a function at the 
printer. Just as the tilt/rotate magnets are energized by 



-Data PG201 

Register PG21 l 

Not Bit 0 

Bit l 

Not Bit 2 

Not Bit 3 

Not Bit 4 

Not Bit 5 

Not Bit 6 

Not Bit 7 

Not Bit 0 

Not Bit l 

Not Bit 4 

Bit 5 

Not Bit 2 

Not Bit 3 

Not Bit 6 

Bit 7 

Not Bit 2 

Bit 3 
Bit 6 

Not Bit 7 

Bit 2 

Not Bit 3 

Not Bit 6 

Bit 7 

Not Bit 2 

Bit 3 

Not Bit 6 

Bit 7 

A 

A 

A 

A 

Carrier Return Latch 

Figure C-9. Function Decoder 

Space 

Carrier Return Latch 

Shift Chan e 

Tab 

Back Space 

Line Feed 

Carrier Return (and) Line Feed A ORi--~~~~~~~...;._~~~~~~~~~-+-~~ 

Lowercase 
Uppercase 

PG6ll 

Pick Space Magnet 

Pick Tab Magnet 

Pi ck Backspace Magnet 

Pick Line Feed Magnet 

Pick Carrier Return -
Line Feed Magnet 

Pick Lowercase Shift Magnet 

Pick Uppercase Shift Magnet 

7201-02FETOM (7/70) C-17 



cycle time, so are the function magnets. The eight-bit bytes 
for the space and carrier return-line feed characters activate 
the 'function' line. This line is activated at SS 1 during a 
write operation when the data register is set with the 
character on the 'bus out' lines, or at SS 6 when the data 
register is set with the output of the keyboard translator for 
the read operation. 

Note that the carrier return-line feed magnet may be 
operated by either a carrier return-line feed character in the 
data register or the 'carrier return' latch. Note also that the 
'function' line is activated by either the 'shift change' latch, 
the 'carrier return' latch, or any function character in the 
data register. 

The lowercase shift magnet and the uppercase shift 
magnet are operated from the 'lower/upper case' latch. Any 
time the case of the printer is to be changed, the 'shift 
change' latch is turned on, and the output of the 'shift 
change' latch activates the 'function' line. Cycle time then 
may be ANDed with the on or off output of the 
'lower/upper case' latch to perform the shifting in the 
printer. 

1052 PRINTER-KEYBOARD 

• Selectric printer 

• Keypunch keyboard 

The IBM 1052 Printer-Keyboard is a page printer with 
printing mechanism similar to the IBM Selectric* type
writer. Th€ 1052 keyboard is a modified IBM 024/026 
keyboard housed in the same cover as the printing 
mechanism of the IBM Selectric typewriter. The printer and 
keyboard are electrically (not mechanically) connected by 
means of the 1052 adapter, which allows these two units to 
operate independently. 

Printer 

The 1052 printer is a self-contained package including the 
drive motor. It is designed for placement on a flat surface 
convenient to the operator. The printer is cable-connected 
to the 1052 adapter, which contains the 8-bit-to-tilt/rotate 
(printer) translator. The printer can accept data at a 
maximum rate of 15 .5 characters per second from the 
channel. The printer has a removable print head, allowing 
the selection of different print arrangements. The 
arrangement of the characters on the print head is 
illustrated in Figure c~ 10. 

*Trademark of IBM, Inc. 

C-18 (7/70) 

The printer recognizes 44 printable characters in the 
Upshift mode, and 44 in the Downshift mode. The printer 
performs four functions: space, carrier return and line feed, 
upshift, and downshift. 

A paper presence control constitutes part of the inter
lock circuitry that places the printer in a Ready status. As 
the trailing edge of the last form reaches a point about 2 
inches from the printing line, the printer signals this 
condition to the adapter and reverts to a Not Ready status. 
Printing is not interrupted by this action. 

The horizontal tab and carrier return-line feed interlocks 
interrupt the printing operation to allow enough time for 
the printer to complete these functions. More than one 
character time will normally be required. When the printer 
begins either a tab or a carrier return-line feed function, the 
'carrier in motion' latch is set in the adapter. The 'carrier in 
motion' latch interlocks the adapter until the printer has 
completed the function. When the function is completed, 
the printer resets the 'carrier in motion' latch, and the 
adapter resumes its operation. 

The basic printing operation is as follows: The tilt and 
rotate selector latches in the printer are controlled by the 
tilt and rotate (tilt/rotate) magnets in the printer. If the 
character in the data register in the adapter is a printable 
character, the corresponding 'tilt/rotate' lines in the adapter 
are activated to energize the tilt/rotate magnets in the 
printer. If the character in the data register is a function 
character, the corresponding printer 'function' line is 
activated to energize the function magnet in the printer. 

Keyboard 

The 1052 keyboard is an adaptation of the IBM 024/026 
keyboard, with the numeric keys located in a fourth bank 
similar to a typewriter keyboard. The keyboard is mech
anically independent of all other units and is connected 
electrically only to the 1052 adapter. Data may be sent 
from the keyboard to the channel and/or the printer bnly 
through the. adapter. 

The basic arrangement of the four-bank keyboard is 
shown in Figure C-11. There is a total of 53 function and 
character keys. Each key, except the ALTN CODING key, 
generates a BCD code for the character or function 
associated with that key. The two SHIFT keys and the shift 
LOCK generate the up shift code when depressed. The 
down shift code is generated when either SHIFT key is 
released. Output from the keyboard is the IBM paper tape 
and transmission code and is in odd parity. Figure C-12 
illustrates the arrangement of the bail, latch, and keystem 
contacts in the keyboard. 



Typehead Characters 

= ; % > * ) < : ... ( II 

l 3 5 7 8 0 2 4 6 9 # 

? T v x y ¢ s u w z I 
I t v x y @ s u w z I 

J L N p Q - K M 0 R ! 
i I n p q - k m 0 r $ 

A c E G H + B D F I --, 
a c e g h & b d f i 

~~ 
-5 -4 -2 +3 +4 +5 -3 -1 0 +l +2 

----- Clockwise--------------- Counter Clockwise---------

R2A l l l l 0 

R2 l l 0 0 0 

Rl l 0 l 0 I 

R5 l l l l l 

R2A 0 0 

R2 l l 

Rl 1 0 

R5 1 1 

Figure C-10. 1052 Internal Tilt/Rotate Code 

D 
D 

Not Used 

Figure C-11. 105 2 Keyboard 

0 l 

0 l 

0 l 

l 0 

Rotate Magnets 

Alternate 
Rotate Magnets 

l 

l 

0 

0 

l l 0 0 

0 0 0 0 

l 0 l 0 

0 0 0 0 

0 0 

1 1 

1 0 

0 0 

Tilt 
Position 

0 

+l 

+2 

+3 

Note: 

Tilt Magnets 
Tl T2 

l 1 

0 l 

l 0 

0 0 

1 =Magnet Energized 
0 = Magnet Not Energized 

~ 
~ 

7201-02 FETOM (7 /70) C-19 



Bail 
Strobe C-Bit 

Contact Ii 14 

B-Bit 

Ii 12 
A-Bit 

'JO 

8-Bit 
Hg 

4-Bit 
116 

2-Bit 

#4 
l-Bit 

*2 
Latch 
Contact 

Downshift 
I 

~-~----------.~-~--~---<--~~-----~---<-.•!--·~-----~~-----r--- - -- ·-

Space 
Q 
A 
2 
z 
w 
s 
3 
x 
E 
D 
4 
c 
R 
F 

~-~---1------41~--J-----1----------1-------~-+------+--+----+---+--~--+----+----~ 

EOB - 5 
v 
T 
G 
6 
B 
y 
H 
7 
N 
u 
J 
a 
M 
I 
K 
9 
I 

0 
L 

Cancel - 0 

p 

$ 

I 
@ 
Ii 

& 
Upshift 
Return 

Tab L. F. 

'--..,---1 
113 
C-Bit 

# 11 

B-Bit 

#9 

A-Bit 

#7 

8-Bit 

#5 

4-Bit 

#3 

2-Bit 

.. • 

# 1 

1-Bit 

Key Stem 
Contact 

Right Bai I Contacts 

Keyboard Common Contact Numbers l and 2, These contacts open when the 
keyboard-restore magnets are energized. Number l common contact discon
nects the supply voltage from the bit lines and prevents sending any bits 
during a keyboard-restore operation, 

Number 2 common contact opens the direct circuit to the restore magnets 
and puts a current;,.limiting resistor in series with the restore magnets. This 
permits locking the keyboard by continually energizing the restore magnets. 

Left-Hand Latch Contact (Tab and Z). This latch contact closes whenever the 
Z or tab key is pressed. When the tab·key is pressed, the tab keystem contact 
is closed and the B-and 4-bit keyboard I ines are pulsed to complete the tab code. 

Figure C-12. 1052 Latch, Bail, and Keystem Contact Arrangements 

C-20 (7/70) 

Strobe Bail Contact. When any permutation bar drops, the strobe bail con
tact makes and starts the read/write clock in the adapter. 

Right-Hand Latch Contact (Carrier Return and Line Feed, and Line Feed
CR/l F and LF). The contact closes whenever the return or line-feed key is 
pressed. When the return key is pressed, the right-hand latch contact closes 
and pulses the B-bit keyboard line to complete the CR/LF code. When the 
line-feed key is pressed, the right-hand latch contact closes and the line
feed keystem contact also transfers, and the A-bit keyboard line is pulsed to 
complete the I ine-feed code. 



KEYBOARD CONTROLS 

• REQUEST pushbutton 

• READY pushbutton 

• NOT READY pushbutton 

• ENTER pushbutton 

• CANCEL pushbutton 

REQUEST Pushbutton 

The REQUEST pushbutton is mounted on the 1052 cover, 
to the right of the keyboard. When operated, it sets the 
'store request' and the 'attention status' latches. (See 
Diagram 6-33, FEMDM.) The 'attention status' latch, in 
turn, activates the 'attention interrupt' line, and the 
'attention interrupt' line activates the 'status conditions' 
line. (See Diagram 6-31, FEMDM.) The 'request in' line is 
raised to begin a status transfer sequence with the channel 
in which the status byte with 0-bit transferred to the 
channel. The 0-bit then indicates that the REQUEST 
pushbutton has been operated. 

Note the store request latch in Diagram 6-33, FEMDM. 
The 'store request' latch and the unnamed latch to the left 
form a single reset-dominant-latch configuration. The 'store 
request' latch is reset by the 'reset attention stored' line, 
and the unnamed latch is reset by the 'inverted request 
pushbutton' line. 

The 'store request' latch may be reset within 
nanoseconds after the REQUEST pushbutton is operated, 
and the operator may still be holding the pushbutton after 
the reset drops. When this condition occurs, the unnamed 
latch prevents the pushbutton from setting the latch again. 
The pushbutton must be released and depressed once more 
to set the 'store request' latch again. 

READY and NOT READY Pushbuttons 

The READY and NOT READY pushbuttons are mounted 
on the 1052 cover, to the right of the keyboard. The 
READY pushbutton sets the 'ready' latch. (See Diagram 
6-33, FEMDM.) The NOT READY pushbutton resets the 
'ready' latch. The 'ready' latch may also be reset by the 
end-of-forms contacts when the printer runs out of paper. 

A 6-bit is set into the status byte by the 'unit check' 
latch when the 'ready' latch is reset. When the 'ready' latch 
is first set, it fires a singleshot to set the 'store device end' 
latch. (See Diagram 6-31, FEMDM .) The 'device end 
interrupt' line then requests a status transfer sequence from 

the channel to signal the channel that the 1052 is ready; no 
status bits are set. 

ENTER Pushbutton 

The ENTER pushbutton signals the adapter to terminate a 
read operation in the normal manner. When the operator is 
through keying data to the channel, he depresses the 
ENTER pushbutton. The 'enter' signal to the adapter sets 
the 'stop' and 'device end' triggers, initiating the ending 
sequence. (See Diagram 6-31, FEMDM.) 

CANCEL Pushbutton 

The CANCEL pushbutton notifies the system that a keying 
error has been made during a read operation. When the 
operator is keying data to the channel and makes an error, 
he may depress the CANCEL pushbutton to terminate the 
read operation. The 'cancel' signal sets the 'cancel' latch in 
the adapter. The 'cancel' latch sets the 'stop', 'channel end', 
and 'unit exception' latches. 'Channel end' initiates the 
ending sequence. Presenting 'unit exception' status to the 
CE causes the program to ignore the erroneous data and 
allows the operator to enter correct data. 

POWER Indicator 

The POWER indicator indicates that the printer-keyboard 
has +48V de available from the supplying element (the CE). 

CE(TEST)PANEL 

A CE (test) panel is mounted in the vertical portion of the 
1052 cover, just above the keyboard. This panel is 
illustrated in Figure C-13. There are two switches on the 
panel: CE MODE/ON LINE, and CONTIN WRITE/READ. 
The CONTIN WRITE/READ switch is inoperative when the 
CE MODE/ON LINE switch is set to the ON LINE position. 
When on-line, the 1052 is operated in conjunction with the 
channel and the 1052 adapter. 

Switches 

For diagnostic purposes, the 1052 and the adapter can both 
be taken off-line by setting the CE MODE/ON LINE switch 
to the CE MODE (Test) position. The adapter and the 1052 
are then under control of the CONTIN WRITE/READ 
switch. When the CE MODE/ON LINE switch is set to the 
CE MODE and the CONTIN WRITE/READ switch is set to 

7201-02 FETOM (7/70) C-21 



lii1hiilb 
IR~ci,d W1rrUe ,CR 

Uppa1r 
Ca1&e 

1Pu1r 
l8111.11y 

I I ' 

looooool 

P1rhr 
1C:ycll,e 

C111Tfl11111dl 

lle1i1 

10112 34 561 

1000000001 

ll1111fvf1R 
l 1eqd 

I I CIE Madie Cont~n' W1rite I 

looool oo ~ ~ ) tu .. ~ 
lf1110,cdl Att 11 



CONTIN WRITE, the output of a character emitter in the 
adapter is gated to the data register. From the data register, 
the characters follow the normal data path for a write 
operation. The character emitter must be plugged by the 
maintenance personnel to emit two characters in the 
eight-bit code. Figure C-14 illustrates the operation of the 
emitter. Note, in the figure, that when the switches are set 
to CE MODE and CONTIN WRITE, the 'CE write' line is 
activated. The 'CE write' line starts the read/write clock 
with SS 1 (Figure C-5), gates the CE bus to the data register 
(Figure C-3), and also operates the binary trigger at SS 4 of 
each clock cycle. 

The Continuous Write mode provides a semifixed means 
to check up to 90 percent of the printer controls within the 
adapter, check decoding of the EBCDIC code to appropri
ate printer functions and characters, and mechanically 
check the printer portion of the 1052. The Continuous 
Write mode allows the maintenance personnel to set up any 
two EBCDIC codes and perform the desired operations 
alternately by the printer. The plugging is performed on the 
pin side of SLT board X 1. The board is factory-wired 
(yellow) for zero alternating with uppercase A. 

SLT board XI location for the 7201-02 CE is 02E DI. 
See Figure C-15 for plugging instructions and Figure 

C-16 for the EBCDIC code set. 
CE test read permits keying in of all characters on the 

keyboard and performing the desired operation, i.e., 
printing or printer/function. All read controls can be 
checked, including PTTC/8 to EBCDIC translation and 
EBCDIC to tilt/rotate or printer function. The data register 
indicators contain the PTTC/8 to EBCDIC translation and 
remain set until a subsequent character is keyed. 

The six CONTROL lights on the test panel indicate the 
controlled state of the 1052. The READ lamp is lit 
whenever the 'read command' latch in the adapter is on or 
when the switches on the panel are set to the CE MODE 
(test) and READ. The WRITE lamp is lit whenever the 
'write command' latch in the adapter is on or when the 
switches on the panel are set to CE MODE (test) and 
CONTIN WRITE. The INHIB CR lamp is lit whenever the 
'inhibit carrier return' latch is on in the adapter. The 
UPPER CASE lamp is lit whenever the 'lower/upper case' 
latch in the adapter is off, indicating that the printer and 
keyboard are in upper case. The PRTR BUSY lamp is lit 
whenever the 'printer busy' latch in the adapter is on, (the 
printer is taking a cycle). The PRTR CYCLE lamp is lit 
when the 'printer cycle' latch in the adapter is on. It 
indicates that the printer failed to take a mechanical cycle 
when signalled to print a character or perform a function 
(space, backspace, tab or case shift). 

The DATA REGISTER lamps indicate the contents of 
the data register. Each lamp indicates the on-state of its 
associated 'data bit' latch. The SENSE lamps indicate the 
on-state of the 'sense bit ' latches. The PROCD (proceed) 
lamp is lit whenever the keyboard is unlocked to allow the 
keying of data or functions from the I 052 keyboard. The 
ATTN (attention) lamp is lit when the REQUEST push
button on the I 052 keyboard cover is operated. The lamp 
remains lit until the 'gate status in' line comes up. The lamp 
indicates the on-state of the 'store request' latch. 

CE Read/ -fe 
CE Mode/On Line Contin Write •y-oe>----- 1 Contin Write (CE Write) 
----o---------------4D---

CE Mode 

CE Mode/On Line 

CE Reset (Not Used) 

CE Write 

Write Cmd 

SS 4 A 

Not Shift Change 

Figure C-14. CE Write 

....__-a--- Read 

Binary 
Trigger Cycle A 

FF 
Pluggable 
Emitter 

PG701 Cycle B 

Note: 'CE' equals 'test'. 

CE Bus Out To Dato 
Reg 

7201-02 FETOM (7/70) C-23 



Cd 
~ Col H 

Ground 

0 

A 
0 

Bits __. 7 6 5 4 3 2 0 

I I I I I I I I 

If Desired 
CE bus bit 
output 
is: 

lnstructi ons 

G 

0 0 

0 0 

Jumper bus out 
position to: 

Ground 

B Cycle 

A Cycle 

Leave open 

0 

0 

Panel 

7 6 5 4 3 2 l 0 

I I I I I I I I 
CE (Test) Bus Out 

Figure C-15. CE (Test) Continuous Write Mode-Wiring Chart 

C-24 (7 /70) 

01-Xl 

D 

0 0 

0 0 

c B A 

0 0 0 9 

Card Row 01 

0 0 0 11 

7 6 5 4 3 2 0 

II I I I II I To Dato Reg 

Example (see sample wiring above) 
Print lowercase Won A cycle 
Print uppercase M on B cycle 

Cycle 

A B 

Bit (W) (M) 

0 Leave open 

l 1 to B 

2 2 to A 

3 3 to B 

4 4 to ground 

5 Leave open 

6 6 to A 

7 7 to ground 

EBCDIC Code (see Figure C-16) 

.. 



0123~ 

4567 -----, 

SP - Space 
NL - New Line 
NOTE: Graphic 
representations are un
defined for the bit pat
terns outside the 
heavily out Ii ned por
tions of the chart. 

0000 

0001 

OQ.10 

0011 

0100 

0101 

0110 

0111 

1000 

1001 

1010 

1011 

1100 

1101 

1110 

1111 

Figure C-16. EBCDIC Code Set 

0000 0001 0010 0011 0100 

l SP 

r NL 
J 

¢ 

< 

( 

+ 

! 

0101 0110 0111 

& -
r 

I L 

! : 

$ # , 

* % @ 

) - I 

; > = 

--, ? II 

1000 1001 1010 1011 1100 1101 1110 1111 

0 

a i A J 1 

b k s B K s 2 

c I t c L T 3 

d m u D M u 4 

e n v E N v 5 

f 0 w F 0 w 6 

g p x G p x 7 

h q y H Q y 8 

i r z I R z 9 



SECTION 3. OPERATION 

• 1052 Adapter operational diagrams are FEMDM 
Diagrams 6-28 through 6-33. 

• All commands are described within the framework of 
initial selection, data transfer, ending sequence. 

This section presents the detailed circuit descriptions of the 
1052 Adapter (by command). FEMDM Diagrams 6-28 
through 6-33 present the information in positive logic form, 
with the sequence of the circuits in those diagrams 
corresponding to the 1/0 interface signal sequence for the 
command being described. The seven valid commands, and 
the command byte bit configuration of each, are as listed 
below: 

Command 

Test 1/0 
Sense 
Control No-Op· 
Control Alarm (No-Op) 
Write-Auto Carrier Return 
Write-Inhibit Carrier Return 
Read 

Bit Configuration 

p 0 2 3 4 

1 0 0 0 0 0 
0 0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 1 
1 0 0 0 0 1 
0 0 0 0 0 0 

0 0 0 0 

5 6 7 

0 0 0 
1 0 0 
0 
0 1 
0 0 
0 0 1 
0 0 

All other command byte bit configurations with correct 
parity are considered to be invalid commands. 

WRITE 

• Initial selection sequence 

• Data transfer sequence 

• Ending sequence 

Initial Selection Sequence 

The initial selection sequence for the write operation 
(write-ICR or write-ACR), begun by the channel, is 
illustrated in Diagram 6-29, FEMDM. The channel raises the 
'select out', 'hold out', and 'address out' lines and places 
the address byte of the 1052 adapter on the 'bus out' lines. 
The adapter matches the address byte against the internally 
plugged address, and, if the two match, the 'address match' 
line is activated and ANDed with 'address out' to turn on 

C-26 (7/70) 

both the 'initial select' trigger and the 'address in' trigger. 
The on-output of the 'address in' trigger turns on the 
'operatidnal in' trigger to raise the 'operational in' line to 
the channel. 

The channel drops the 'address out' line when it receives 
the 'operational in' line from the adapter. When 'address 
out' drops, the adapter raises the 'address in' line to the 
channel and gates the output of the address bit generator to 
the 'bus-in' lines, thereby generating the address-in byte. 

The channel receives the address byte and the 'address 
in' line and responds by placing a command byte on the 
'bus out' lines and raising the 'command out' line. The 
'command out' line from the interface (command-out cable 
out) ANDs with the on-output of the 'operational in' 
trigger to raise the 'command out' line with the adapter. A 
few nanoseconds after 'command out' is raised, 'the 
command out delay' line becomes active. The delay is the 
result of passing 'command out' through two inverters, each 
of which introduces a few nanoseconds delay into the 
signal. 

'Command out' sets the operational-in interlock and 
activates the 'command gate'. 'Command gate' raises 'sense 
gate', and 'sense gate', in turn, raises 'write gate'. 'Write 
gate' then sets the 'write command' latch (the bit configu
ration of the command byte having activated valid 
command and write command bits) and the 'service 
request' latch. 

'Command out delay' resets the address-in trigger, 
dropping address-in to the channel. When the channel 
recognizes the dropped 'address in' line, it drops 'command 
out'. The inactive 'command out' line now turns on the 
'status in' trigger in the adapter. The 'status in' trigger raises 
'status in' to the channel and gates the status byte to the 
'bus in' lines. 

The channel receives the 'status in' line and the status 
byte and replies with 'service out', indicating its acceptance 
of the status byte. The initial selection sequence is 
complete at this point. 

Data Transfer Sequence 

The 'service request' latch is set during the initial selection 
sequence (Diagram 6-29), but its on-output is not used until 
the end of the initial selection sequence. The 'service 
request' line in Diagram 6-29 activates the 'status con
ditions' line. 'Status conditions' activates the 'request in' 
line to the channel as soon as the 'operational in' trigger is 



reset. The 'request in' line causes the channel to raise the 
'hold out' and 'select out' lines as during the initial 
selection sequence. The channel, however, does not raise 
'address out', nor does it place an address byte on the 'bus 
out' lines. This allows the 'address in' trigger to be set, but 
not the 'initial select' trigger. The adapter responds with 
'address in' and its address byte as before, and channel, in 
turn, activates 'command out' to the adapter. 

The channel does not place a command byte on the 'bus 
out' lines during the data transfer sequence; therefore, the 
'write gate' (Diagram 6-29) is not activated in the adapter, 
and the 'service request' latch is not set by 'command out' 
during the data transfer sequence. The 'write command' 
latch is set during the initial selection and remains set 
through the data transfer sequence. 

The 'busy condition' latch (Diagram 6-30) is set when 
the 'initial selection' trigger is reset by ANDing 'not initial 
select' trigger with 'write command'. The 'busy condition' 
latch is set· at the end of the initial selection sequence. The 
on-output of the 'busy condition' latch is then ANDed with 
'service request', 'operational in' trigger, 'not address in' 
trigger, and 'not command or service out' to set the 'service 
in' trigger when 'command out' falls during the data 
transfer sequence. The 'service in' trigger raises 'service in' 
to the channel, indicating the adapter is ready for a data 
byte. 

The channel replies to 'service in' with 'service out' and 
places a data byte on the 'bus out' lines. The adapter ANDs 
'service in' and 'service out' to activate 'service response' 
(Diagram 6-30) and start the read/write clock at SS 1. SS 1 
gates the data byte from the 'bus out' lines to the data 
register. The clock runs through SS 7 to complete the 
operation by gating the output of the data register to and 
through the printer translator and/or function decoder. 

SS 2 is ANDed with not 'printer busy', 'write', and 'not 
stop' to activate 'turn off service in' to reset the 'service in' 
trigger and drop the 'service in' line to the channel 
(Diagram 6-30). Channel then drops 'service out', and the 
data transfer sequence is complete. SS 6 is ANDed with 
'not end of line', 'write', 'not busy or stop', and 'not service 
in and service out' to activate 'turn on service in' (Diagram 
6-29). The active 'turn on service in' line sets the 'service 
re.quest' latch, and 'service request' activates status con
ditions (Diagram 6-30) to begin another data transfer 
sequence by raising 'request in' to the channel. The data 
transfer sequences are continued until an ending sequence 
occurs in place of a data transfer sequence. 

Ending Sequence 

The Write-ICR and Write-ACR commands are distinguished 
by the ending sequences. The 'inhibit carrier return' latch is 
set during the initial selection for the Write-ICR command, 

allowing the adapter to present both the channel-end and 
the device-end status bits to the channel during the same 
ending sequence. 

The Write-ACR command does not set the 'inhibit 
carrier return' latch during the initial selection. Therefore 
only the channel-end status bit is presented to the channel 
during the first ending sequence. The carrier is started 
moving to the left margin at about the same time the 
channel-end status is presented to the channel. A second 
ending sequence is required to present the device-end status 
bit to the channel when the carrier reaches the left margin 
and stops moving. 

WRITE-ICR 

The 'inhibit carrier return' latch is set during the initial 
selection sequence. 'Write gate' (activated by 'command 
out') ANDs with 'not bus out 4' to set the 'inhibit carrier 
return' latch during the time the command byte is on the 
'bus out' lines (Diagram 6-31 ). The 'request in' line is 
activated to the channel at the end of the previous data 
transfer sequence (Diagram 6-30). The channel, however, 
has no more data to send to the adapter (channel byte 
count has gone to zero). The following signal sequence 
occurs: channel raises 'hold out' and 'select out'; adapter 
raises 'operational in' and 'address in' and places its address 
byte on the 'bus in' lines; channel raises 'command out'; 
adapter raises 'service in'. Thus far, the sequence is the same 
as for a data transfer sequence. Now, however, channel 
raises 'command out' a second time as a reply to 'service 
in', instead of 'service out'. A 'command out' reply to 
'service in' indicates stop. 

Diagram 6-31 illustrates the ending sequence for both 
Write-ICR and Write-ACR. 'Service in' and 'command out' 
are ANDed together to activate 'write/read turn on channel 
end'. 'Write/read turn on channel end' sets both the 
'channel end' and the 'stop' latches. The on-output of the 
'stop' latch sets the 'busy condition' latch and the 'store 
device end' latch. The on-output of the 'store device end' 
latch activates 'device end interrupt', which sets the 'device 
end' latch. 

In Diagram 6-30, the 'service in' trigger is reset when the 
channel replies to 'service in' with 'command out'. Channel 
then drops 'command out' when 'service in' drops. In 
Diagram 6-31, the 'channel end' latch activates the 'status 
conditions' line, and 'status conditions' ANDs (in Diagram 
6-29) with 'operational in' trigger, 'not address in' trigger, 
'not service in' trigger, and 'not command or service out' to 
set the 'status in' trigger and raise the 'status in' line to the 
channel. The on-outputs of the 'status bit' latches are gated 
to the 'bus in' lines at the same time. 

The channel replies with 'service out' to 'status in' from 
the adapter, indicating the acceptance of the status byte. 

7201-02 FETOM (7/70) C-27 



'Device end' ANDs with 'status in' (Diagram 6-30) to 
activate 'command reset'. The 'write command' latch and 
the 'inhibit carrier return' latch are reset by 'command 
reset' .. 

WRITE-ACR 

The ending sequence for the Write-ACR operation begins 
the same as the ending sequence for Write-ICR. The major 
difference lies in the effect of not setting the 'inhibit carrier 
return' latch during the initial selection. When the ending 
sequence proceeds to where the channel replies to 'service 
in' with the second 'command out', indicating 'stop', the 

'write/read turn on channel end' (Diagram 6-31) sets both 
the 'channel end' and 'stop' latches. The 'channel end' latch 
again activates the 'status conditions' line, and the 'status 
conditions' line again sets the 'status in' trigger (raising 
'status in' to the channel) when 'command out' falls the 
second time. 

Because the 'inhibit carrier return' latch is off, the 
'carrier return' latch is set ('stop' ANDed with. 'not printer 
busy' and 'not inhibit carrier return' (Diagram 6-30), and 
the read/write clock is started ·at cycle time. Cycle time 
then sets the 'printer busy' latch, picks the carrier return
line feed magnet in the printer, and picks the lowercase 
shift magnet in the printer if the printer was in upper case. 
The 'printer busy' latch now ANDs with 'stop' and 'carrier 
return' to set the 'inhibit carrier return' latch (Diagram 
6-31 ). 

Up to this p9int, the channel end status bit has been sent 
to the channel and the carrier has started returning to the 
left margin, but the device-end status bit has not been sent 
to the channel.. The 'turn on device end' line becomes active 
(to set the 'store device end' latch Diagram 6-31) when the 
carrier has finished returning to the left and the 'busy' latch 
is reset. The on-output of the 'store device end' latch then 
activates 'device end interrupt', and 'device, end interrupt' 
in turn activates the 'status conditions' line to raise 'request 
in' to the channel (Diagram 6-31 ). 

The following sequence occurs: adapter raises 'request 
in' to the channel, channel raises 'hold out' and 'select out'; 
adapter raises 'operational in' and 'address in' and places its 
address byte on the 'bus in' lines; channel raises 'command 
out'; adapter drops 'address in'; channel drops 'command 
out'; adapter raises 'service· in'; channel again raises 
'command out'; adapter drops 'service in'; channel drops 
'command out'. Up to this point, the sequence is the same 
as when the channel-end status bit was sent to the line. The 
difference is thaf this sequence was begun by the 'device 
end interrupt' line raising 'request in' to the channel. 

The 'device end interrupt' line has been active during the 
above sequence, and 'device end interrupt' has kept the 
'status conditions' line active. When channel drops 

C-28 (7/70) 

'command out' the second time, the 'status in' trigger 
(Diagram 6·29) is set by the 'status conditions' line. 'Status 
in' is raised to the channel, and the on-output of the 'device 
end' latch is gated to the 'bus in' lines as the 'device end' 
status bit. Channel rejects the status by replying to 'status 
in' with 'command out', and the status is stacked. 

READ 

• Initial selection sequence 

• Data transfer sequence 

• Ending sequence 

Initial Selection 

Initial selection for the Read command is almost identical 
with the initial selection for the Write command. The 
'inhibit carrier return' latch is not set during the initial 
selection sequence because the read command byte 
contains the 4-bit. The 'read command' latch (Diagram 
6-29) is set while 'command out' is up and the read 
command byte is on the 'bus out' lines. Note that the 
'service request' trigger is not set at command-out time 
during the initial selection sequence. Recall that for the 
Write command the 'service request' latch was set by 
'command out' and the write command byte. This led to 
the first data transfer sequence. 

Data Transfer 

The 1052 keyboard is unlocked when the 'read command' 
latch is set. Diagram 6-32 illustrates the circuits used for the 
data transfer sequence of the Read command. When a key 
is operated at the keyboard, the 'keyboard strobe' line 
becomes active and is ANDed with 'read' and 'not 1052 
busy' to start the read/write clock at SS 5. SS 5 resets the 
data register, and SS 6 sets the output of the keyboard 
translator into the data register (Figure C-3). SS 7 ANDs 
with 'not shift change', 'keyboard strobe', and 'not stop' to 
activate 'turn on service in' to set the 'service request' latch 
(Diagram 6-32). 'Service request' in turn activates 'status 
conditions', and 'status conditions' raises the 'request in' 
line to the channel. 

The channel replies to the 'request in' with 'select out' 
and 'hold out', and the data transfer sequence proceeds the 
same as the data transfer sequence for the Write command, 
with one exception. For the Write command, data is placed 
on the 'bus out' lines by the channel when the channel 
raises 'service out'. For the Read command, the adapter 
places data on the 'bus in' lines when the adapter raises 



'service in'. The last character remains stored in the data 
register since the register is not cleared until a general reset 
occurs or until SS 5 time occurs during the following 
keyboard strobe. 

With respect to Diagram 6-31, 'select out' ANDs with 
'request in' to set the 'address in' trigger; the 'address in' 
trigger, in turn, sets the 'operational in' trigger, raising 
'operational in' to the channel. Because 'address uut' is not 
active when 'operational in' comes up, the adapter raises 
'address in' and gates its own address to the 'bus in' lines. 
Channel replies to 'address in' with 'command out', and 
'command out delay' drops the 'address in' line by resetting 
the 'address in' trigger. Channel drops 'command out' 
because the adapter drops 'address in'. The 'service in' 
trigger is set when 'command out' falls, raising the 'service 
in' line to the channel and gating the output of the data 
register to the channel. 

Channel responds to 'service in' with 'service out', and 
the adapter ANDs 'service in' with 'service out' to activate 
'service response' to start the read/write clock at cycle time. 
Cycle time causes the printer either to print the character in 
the data register or to perform the function called for by 
the character in the data register. The output of the 
keyboard has now been transferred to the channel and the 
printer, and the sequence is complete. 

Ending Sequence 

The ending sequence is similar to that for the Write-ACR 
command but can be started three different ways. First, the 
adapter can try to send one more data byte to the channel 
after the channel byte count has gone to 0. In this event, 
the sequence described under data transfer proceeds to the 
point where the character is stored in the data register and 
the adapter raises 'request in'. Channel makes a reply to 
'service in' from the adapter. Instead of replying with 
'service out' as during the data transfer sequence, channel 
replies with 'command out' for the second time, indicating 
stop. From this point on, the ending sequence is identical 
to the ending sequence for the Write-ACR command. 
Service response is not generated (Diagram 6-31) to start 
the read/write clock because 'service out' is not given as a 
reply to 'service in'. The last character stored in the data 
register is not printed because the clock is not started, nor 
is it accepted by the channel. 

The second means of obtaining the end sequence for the 
Read command is through the use of. the 'enter' signal. 
When the operator has finished keying in data, if the byte 
count in the channel has not previously gone to zero, he 
may end the read operation by depressing the ENTER 
pushbutton. This causes the 'enter' line in Diagram 6-31 to 
activate the 'write/read turn on channel end' line. From this 
point on, this ending sequence proceeds exactly the same as 

the ending sequence described in the preceding paragraph. 
The third means of obtaining the ending sequence for 

the Read command is through the use of the 'cancel' signal. 
If the operator has made a keying error, he may cause the 
channel to ignore the block of data in which the error was 
made. The operator depresses the CANCEL pushbutton. 
This activates the 'cancel' line in Diagram 6-31 and causes 
the ending sequence to proceed as described in the first 
paragraph of this section. 

Status Byte Composition 

The status byte transferred to the channel may be 
composed of any six bits. Diagram 6-33 illustrates the 
composition of the status byte. Bit position 0 indicates the 
REQUEST pushbutton on the 1052 has been operated. Bit 
position 3 indicates that the channel has attempted to 
execute an initial selection sequence with the adapter while 
the adapter was busy executing another command. Bit 
position 4 indicates the adapter has finished executfog a 
command and the channel has not yet been made aware of 
this condition. Bit position 5 indicates the 1052 has 
finished executing a command and the channel has not yet 
been made aware of this condition. Bit position 6 indicates 
an error condition has occurred. Bit position 7 indicates the 
CANCEL key has been operated (Read command only). Bit 
positions 1 and 2 are not used in the status byte. 

The individual error conditions indicated by bit position 
6 are not defined in the status byte. The channel must issue 
a Sense command to determine the particular cause of the 
error indication. 

SENSE COMMAND 

• Initial selection sequence 

• Sense byte transfer sequence 

• Ending sequence (a continuation of the sense byte 
transfer) 

The Sense command is normally issued following an error 
indication in the status byte of an ending sequence for 
either a Read or Write command. If the status byte contains 
the unit check (6) status bit, the channel usually issues a 
Sense command to determine the cause of the error 
indication. 

Initial Selection Sequence 

The initial selection sequence for the sense command is 
almost identical with the initial selection sequence for the 

7201-02 FETOM (7 /70) C-29 



Write command. When the sequence proceeds to the point 
where the channel raises 'command out' and places the 
Sense command on the 'bus out' lines, the adapter sets the 
operational-in interlock, the 'sense command' latch, and the 
'service request' latch (Diagram 6-29). The 'operational in' 
trigger is reset at the end of the initial selection sequence, 
and the adapter disconnects from the channel. 

Sense Byte Transfer Sequence 

The adapter raises the 'request in' line to the channel when 
the 'operational in' trigger is reset because the 'service 
request' latch is on. The channel and adapter then proceed 
through a signal sequence identical with a read data transfer 
sequence to the point where the adapter raises 'service in' 
to the channel. Diagram 6-33 shows that when the adapter 
raises 'service in' with the 'sense command' latch on, the 
'gate sense in' line is activated, gating the on-output of the 
'command reject', 'bus out check', and 'equipment channel 
check' latches to the 'bus in' lines. The off-output 
(on-output inverted) of the 'ready' latch is also gated to the 
'bus in' lines at this time. The configuration of the sense 
byte then indicates just what condition caused the 6-bit to 
be set in the status byte. 

Ending Sequence 

For the Read and Write commands, the adapter disconne~ts 
from the multiplexer channel after a byte is transferred to 
or from the channel. This disconnect does not occur 
between the sense byte and the final status byte for the 
Sense command. The 'operational in' trigger is reset when 
the operational-in interlock turns off (not operational-in 
interlock) (Diagram 6-29) but the 'command' latch is not 
reset by 'service in' ANDed with 'service out' while the 
'sense command' latch is on (Diagram 6-29). 

In Diagram 6-31 'sense command' is ANDed with 
'service in' and 'service out' to set both the 'channel end' 
and 'device end' latches. The 'channel end' latch activates 
the 'status conditions' line, and (in Diagram 6-29) the 
'status conditions' line sets the 'status in' trigger when the 
'service in' trigger is reset. 

Therefore, as soon as the channel accepts the sense byte 
by replying to 'service in' with 'service ouf, the adapter sets 
the 'channel end' and 'device end' latches (Diagram 6-31), 
resets the 'service in' trigger (Diagram 6-30), and sets the 
'status in' trigger (Diagram 6-29) to present the channel end 
and device end status bits to the channel. When the channel 
replies to the 'service in' with 'service out', the operation is 
complete. 

C-30 (7/70) 

CONTROL COMMANDS 

There are two Control commands: Control Alarm' and 
Control No-Op. Both cause only an initial selection 
sequence to take place. The channel end and device end 
status bits are included in the initial selection status byte. 
Initial selection for these two commands proceeds the same 
as the initial selection for the write commands to the point 
where the channel raises 'command out' and places the 
command byte on the 'bus out' lines. 

When the adapter raises the sense gate (Diagram 6-29), 
the control command byte bit configuration activates the 
'control' line (Diagram 6-31) to set both the 'channel end' 
and the 'device end' latches. These two latches being on 
when the 'status in' trigger (Diagram 6-29) is set allows the 
status byte to contain both the channel end and device end 
status bits. 

The only difference between the two commands is the 
4-bit. The Control Alarm command contains the 4-bit, 
while the Control No-Op command does not. Control 
No-Op is a programming aid producing no useful function 
within the adapter or 1052. Control Alarm activates the 
general selective initial reset and resets the sense byte. 
Diagram 6-31 illustrates the 'control alarm' line that 
initiates the resets. 

TEST I/O 

The Test I/O command is issued to interrogate the status of 
the adapter. An initial selection sequence will complete the 
operation. The channel raises 'service out' in reply to 'status 
in' to end the operation. 

The 'test I/O' latch (Diagram 6-29) is set during the time 
that 'command out' is up. 'Not initial select' trigger resets 
the 'test I/O' latch as soon as the initial selection sequence 
is completed. If the Test I/O command is issued while the 
adapter is executing a Read, Write, or Sense command the 
channel control examines the unit control word and 
recognizes that a previous operation is in progress. Initial 
selection does not take place; the channel itself sets the 
busy bit. 

Test I/O clears any of the following pending interrupt 
conditions: attention status device end status, channel end 
status, and status stacked. The busy bit is not included in 
the status byte when any of these four conditions are 
cleared. 

HALT I/O 

Halt I/O is not a command in the same sense as Read, 
Write, Sense, Test I/O, and Control. These five commands 



result in at least an initial selection sequence, with the 
channel placing a command byte on the 'bus out' lines 
while raising the 'command out' line. Halt 1/0 is, instead, a 
condition of the interface lines where 'address out' and 
'operational in' are up while 'select out' is down. 

This condition is generated by the channel to stop a read 
or write operation currently in progress. The halt 1/0 
function (Diagram 6-31) is activated by 'operational in' 
trigger ANDed with 'address out' and 'not select out'. These 
three conditions result in activating the 'turn on stop, busy, 
channel end' line. This line sets the 'stop', 'busy condition', 
and 'channel end' latches. The halt 1/0 function activates 
the 'general', 'selective', or 'l/O disconnect reset' line 
(Diagram 6-31 ), resetting the 'operational in' and 'initial 
select' triggers (Diagram 6-29), the 'service request' latch 
(Diagram 6-29), and the 'service in' trigger (Diagram 6-30). 

The 'channel end' latch (Diagram 6-31) raises 'request in' 
to present channel end status to the channel. This channel 
end interrupt is cleared by the channel accepting the 
channel end status byte by replying to 'status in' with 
'service out'. 

GENERAL OR SELECTIVE RESET 

The general or selective reset lines are illustrated in Diagram 
6-31. Selective reset affects only the control unit whose 
'operational in' trigger is on. This reset then affects only the 
one control unit connected to the channel when 'opera
tional out' is dropped. General reset affects all control units 
on the channel, since the 'operational in' trigger is not one 
of the limiting conditions. 

7201-02 FETOM (7/70) C-31 



~PENDIX D. NUMBERING SYSTEMS, INSTRUCTION CODING, AND DATA FORMATS· 

This appendix discusses: (1) the hexadecimal (hex) number 
system, (2) the eight-bit zoned character codes, (3) the 
instruction formats and operand designations, and (4) the 
various data formats. 

HEXADECIMAL NUMBER SYSTEM 

• System uses 16 symbols: 0-9, A-F. 

• Base of system is 16. 

• System is shorthand notation for binary numbers. 

• Four binary bits are represented by one hex symbol. 

• Byte is represented by two hex symbols. 

Binary numbers have approximately 3.3 times as many 
terms as their decimal counterparts. This increased length 
presents a problem when talking or writing about binary 
numbers. A long string of 1 's and O's cannot be effectively 
spoken or read. A shorthand system is necessary, one that 
has a simple relationship to the binary system and that is 
compatible with the basic eight-bit byte used in the CPU. 
The hexadecimal (hex) number system meets these 
requirements. 

The hex system has 16 symbols: 0-9, A-F. Counting is 
performed as in the decimal and binary systems. When the 
last unique symbol (F) is reached, a 1 is placed in the next 
position to the left and counting resumes with a 0 in the 
original position, as follows: 

0 10 20 AO 
1 11 21 A1 
2 12 22 A2 
3 13 23 ! 4 14 

l 5 15 
6 16 and so on 
7 17 
8 18 
9 19 
A 1A 9A 
8 18 98 
c 1C 9C 
D 1D 90 
E 1E 9E 
F 1F 9F 

One hex symbol can represent four binary bits. Thus the 
8-bit binary byte, in turn, can be represented by two hex 

symbols. The relationship between the hex, binary, and 
decimal systems is as follows: 

Hex Binary Decimal 

0 0000 0 
1 0001 1 
2 0010 2 
3 0011 3 
4 0100 4 
5 0101 5 
6 0110 6 
7 0111 7 
8 1000 8 
9 1001 9 
A 1010 10 
8 1011 11 
c 1100 12 
D 1101 13 
E 1110 14 
F 1111 15 

The important relationship to remember is that four 
binary positions are equivalent to one hex position. 

Hex numbers are represented in the same manner as 
decimal and binary numbers, except that the base is 16. 
The terms of the number represent the coefficients of the 
ascending powers of 16. For example, consider the hex 
number 257 (decimal equivalent equals 599): 

257 = (2 x 162) + (5 x 16 1) + (7 x 16°) 

= (2 x 256) + (5 x 16) + (7 x 1) 

= 512 + 80 + 7 

EIGHT-BIT ZONED CHARACTER CODES 

All I/O devices requiring a zoned character code use either 
the Extended Binary-Coded-Decimal Interchange Code 
(EBCDIC) or the USA Standard Code for Information 
Interchange extended to eight bits (USASCU-8). The 
EBCDIC and USASCII-8 codes for the hex characters 0-F 
are listed below. For charts showing the complete EBCDIC 
and USASCII-8 codes with associated graphic characters, 
refer to 9020D/E Principles of Operation. The codes do not 
have a symbol defined for all 256 eight-bit codes. To 
represent codes that do not have a defined symbol, two hex 

7201-02 FETOM (7/70) D-1 



terms (representing four bits each) may be used instead of 
the eight-bit code. 

Hex Printed EBCDIC USASCll·8 
Code Graphic Code Code 

0000 0 1111 0000 0101 0000 
0001 1 1111 0001 0101 0001 
0010 2 1111 0010 0101 0010 
0011 3 1111 0011 0101 0011 
0100 4 1111 0100 0101 0100 
0101 5 11110101 0101 0101 
0110 6 1111 0110 0101 0110 
0111 7 1111 0111 01010111 
1000 8 1111 1000 0101 1000 
1001 9 1111 1001 0101 1001 
1010 A 1100 0001 1010 0001 
1011 B 1100 0010 1010 0010 
1100 c 1100 0011 1010 0011 
1101 D 1100 0100 1010 0100 
1110 E 1100 0101 10100101 
1111 F 1100 0110 10100110 

INSTRUCTION CODING 

The 7201-02 CE uses the Universal instruction set, which 
enables it to execute fixed-poin_t, floating-point, decimal, 
logical, branching, status switching, and I/O instructions. In 
addition, special 9020D/E multiprocessing instructions and 
9020E display instructions have been designed into the CE. 

The total instruction set uses five instruction formats: 
RR, RX, RS, SI, and SS. Operands are designated as first, 
second, or third operands. For addressing purposes, the 
operands are grouped into three classes: 
1. Effectively addressed operands in main storage. 
2. Immediate operands in the instruction format. 
3. Operands in local storage (LS). 

Instruction Formats 

• Five instruction formats are available: RR, RX, RS, SI, 
and SS. 

• Halfword is basic building block for instruction. 

• Instructions are made up of 1, 2, or 3 halfwords. 

• First halfword contains 8-bit op code and, depending on 
format: 
4-bit LS address for operand, or operand address 

component. 
4-bit mask. 
8-bit immediate operand. 
4-bit or 8-bit length fields. 

• Second and third halfwords contain: 
4-bit LS address for operand address component. 
12-bit displacement. 

D-2 (7/70) 

Five instruction formats are available, denoted by the 
format codes RR, RX, RS, SI, and SS. The format codes 
express, in general terms, the operation to be performed. 
RR denotes a register-to-register operation; RX, a 
register-to-indexed-storage operation; RS, a 
register-to-storage operation; SI, a storage and 
immediate-operand operation; SS, a storage-to-storage 
operation. The overall instruction set for the CE may be 
divided into nine classes; the breakdown by format is as 
follows: 

Instruction Class Format 

Fixed-Point RR, RX, RS 

Floating-Point RR,RX 

Decimal SS 

Logical RR, RX, RS, SI, SS 

Branching RR, RX, RS 

Status Switching RR,SI 

1/0 SI 

Multiple Computing 
Element RR, SI, SS 

Display RR,RX 

The basic unit of length for instructions is the halfword, 
consisting of two bytes. The length of an instruction format 
can be 1, 2, or 3 halfwords. It is related to the number of 
initial main storage references necessary for the operation. 
An instruction making no reference to main storage (RR) 
consists of one halfword; an instruction making one 
reference (RX, RS, or SI) consists of two halfwords; an 
instruction making two references (SS) consists of three 
halfwords. All instructions must be located in main storage 
on an integral boundary for halfwords. The five formats are 
shown in Figure D-1. 

For purposes of describing the execution of instructions, 
operands are designated as first, second, or third operands, 
referring to the manner in which the operands participate in 
the operation. The operand to which a field in an 
instruction format pertains is denoted by the number 
following the letter designation of the field; for example, 
the RI field is the address of an LS register containing the 
first operand; R2, the second operand. 

As shown in Figure D-1, the first halfword of each 
format consists of two parts. The first byte contains the 
operation code (op code), which identifies the operation to 
be performed. Bits 0 and 1 specify the format, bits 2 and 3 
specify the class of instruction, and bits 4 through 7 
identify the instruction within the class. The second byte of 



First Halfword Second Halfword 
I 

RR Op Code I~ R2 ti 
lo 7 8 II 12 IS 

I 
I I 

RX I Op Code I~ X2 I B2 02 

10 7 8 II 12 15116 19 20 

I I 

RS Op Code Rl I R3 ti B2 I 02 

lo 7 8 11 12 15 16 19 20 

I 
I I 

SI Op Code 12 ti Bl I 01 

,o 7 8 15 16 19 20 

I 
I LL I I 
I ~ 

SS Op Code L1 I L2 I Bl 01 
7 8 II 12 15 16 19 20 

f Not used in some instructions. 

Figure D-1. Instruction Formats 

the first halfword is used as either two four-bit fields or a 
single eight-bit field. The fields and the information 
contained within the fields are as follows: 
1. Rl, R2, and R3: four-bit address of an LS register 

containing the first, second, and third operands, 
respectively. 

2. M 1: four-bit mask used in some branching instructions. 
3. X2: four-bit address of an LS register containing the 

index value used in generating the effective second 
operand address. 

4. 12: eight-bit byte of immediate data (second operand). 
5. LI and L2: four-bit length (up to 16 bytes) of first and 

second decimal VFL operands, respectively. 
6. LL: eight-bit length field (up to 256 bytes) for logical 

VFL operands. 

The second and third halfwords always contain the same 
information: a four-bit address of an LS register containing 
the base value to be added to the following 12-bit 
displacement field. 

Operand Addressing 

For addressing purposes, operands are grouped into three 
classes: (I) effectively addressed operands in main storage, 
(2) immediate operands in the instruction format, and (3) 
operands in LS. 

Effectively Addressed Operands 

• Operands are either fixed-length or VFL. 

• Fixed-length operands are located on integral boundary. 

Thi rd Ha I fword 

311 

311 

I 

I 
311 

I 
I 
I 

I B2 02 

31 32 35 36 -47 

• Length of VFL operand is specified by L or LL field. 

• L and LL fields denote number of bytes to right of 
addressed byte. 

• Effective operand address is sum of 24-bit base address, 
12-bit displacement, and 24-bit index value. 

• Base address and index value are located in LS. 

• Displacement is located in instruction format. 

An effectively addressed operand is selected from a main 
storage location not related to the location of the 
instruction referring to it. It is specified by means of a main 
storage address. When the operand consists of more than 
one byte, the address gives the location of the first byte; 
subsequent bytes are located in the next-higher addressed 
byte locations. Both the first and second operands of an 
instruction can be effectively addressed. 

Effectively addressed operands can be of either fixed 
length or variable field length. The length of VFL operands, 
in terms of the number of bytes to the right of the 
addressed byte, is specified by the L or LL field of the 
instruction. The LL field can be eight bits long and thus can 
specify a maximum operand field length of 256 bytes. 

In the instruction format, an effectively addressed 
operand is specified by a base address, a displacement, and, 
in some cases, an index value. The base address and the 
index value are contained in LS general-purpose registers 
addressed by the B and X fields, respectively, of the 
instruction. The registers contain 32 bits, the low-order 24 
of which constitute an unsigned address component (base 
address or index value). The high-order eight bits of the 

7201-02 FETOM (7 /70) b-3 



register are ignored. The 24-bit base address is included in 
every address computation. The 24-bit index value is 
included in the address computation as specified by the RX 
instruction format. 

The displacement value is a 12-bit number contained in 
the D-field of the instruction. It is included in every address 
computation. The displacement provides for relative 
addressing up to 4095 bytes beyond the base address. 

In computing the effective operand address, the base 
address and the index value are treated as 24-bit positive 
binary integers having no sign position. The displacement is 
similarly treated as a 12-bit positive binary integer. The 
three numbers are added. Because every operand address 
includes a base address, the sum is always 24 bits long. Any 
overflow above the 24 low-order bits of the sum is ignored, 
causing a lower address to be generated. If thfs lower 
address is above the maximum available storage, an 
addressing program interruption occurs. If the lower 
address is available the CE accesses that location. 

An instruction may contain zeros in the B, X, or D field. 
In the case of the B and X fields, a zero does not denote the 
address of LS general-purpose register 0, but indicates that 
base and index values of zero are to be used in generating 
the effective operand address. Similarly, a D field of zero 
indicates a displacement of zero. 

Fixed-length fields, halfwords, words, and doublewords, 
must be located in main storage on an integral boundary for 
that length field. A boundary is called "integral" for a field 
when its storage address is a multiple of the length of the 
field in bytes (Figure D-2). For example, words (four bytes) 
must be located in main storage so that their address is a 
multiple of the number 4. A halfword (two bytes) must 
have an address that is a multiple of 2, and doublewords 
(eight bytes) must have an address that is a multiple of 8. 

Main storage addresses are expressed in binary form. 
Therefore, integral boundaries for halfwords, words, and 
doublewords can be specified only by binary addresses in 
which 1, 2, or 3 of the low-order bits, respectively, .are zero 

Doubleword 
0 

Word Word 
0 1 

Holfword Holfword Holfword Holfword 
0 1 2 3 

Byte Byte Byte Byte Byte Byte Byte Byte 
0 1 2 3 4 5 6 7 

, • .. + • * .. ' * 

(Figure D-2). Thus, integral boundaries for words are binary 
addresses in which the two low-order bit positions are zero; 
for example, 00000, 00100, 01000, and 01100. 

VFL fields are not limited to integral boundaries, but 
may start on any byte location. 

Immediate Operands 

Immediate operands are contained in SI instructions for 
logical operations. They are one byte (bits 8-15) long, 
serve as the second operand, and are designated I2. 

Operands in Local Storage 

• LS registers are addressed by four-bit R-field in 
instruction format. 

• LS GPR's are addressed 0-15. 

• LS FPR's are addressed 0, 2, 4, and 6. 

• For fixed-point doubleword operands, the register 
address implies use of a pair of adjacent registers. 

Fixed-point and floating-point operands may be located in 
the 16 general-purpose registers (GPR's) and the 4 
floating-point registers (FPR's), respectively, of LS. The 
registers are addressed by a four-bit field in the instruction, 
designated the R-field. The GPR's are designated by 
addresses 0-15, whereas the FPR's are identified by 
addresses 0, 2, 4, and 6. (When an PPR is designated by any 
other address, a specification program interruption occurs.) 
The op code of the instruction implies whether the GPR's 
or the FPR's are to be used. 

The GPR's are 32 bits (one word) in length. Fixed-point 
operands normally have an implied length of one word. In 
some operations, one register address implies the use of a 
pair of adjacent GPR's, thus providing a doubleword. For 
these instructions, the addressed register (say Rl) contains 
the high-order operand bits and must have an even address, 
and the implied register (Rl + I) contains the low-order 
operand bits and has the next higher address. 

Doubleword 
1 

Word Word 
2 3 

Halfword Halfword Halfword Halfword 
4 5 6 7 

Byte Byte Byte Byte Byte Byte Byte Byte 
8 9 10 11 12 13 14 15 

• • ' • • • .. + 
~;;;:SS I 00000 I 00001 I 00010 I 00011 I 00100 I 00101 I 00110 I 00111 I 01000 I 01001 I 01010 I 01011 I 01100 I 01101 I 01110 I 01111 I 

Figure D-2. Main Storage Integral Boundaries 

D-4 (7/70) 



The FPR's are 64 bits or a doubleword in length, and 
can contain either a short (one word) or a long 
(doubleword) floating-point operand. A short operand 
occupies the high-order bits of an FPR; the low-order bits 
are ignored. 

DATA FORMATS 

Data can be numeric, alphabetic, or logical, and fixed or 
variable in length. Numeric data is distinguished as 
fixed-point, floating-point, or decimal. The data may be 
divided into four classifications: 
1. Fixed-point numbers, having a binary radix and a fixed 

length, usually a word or a halfword. 
2. Floating-point numbers, represented by a 7-bit 

characteristic and a signed hex fraction, occupying either 
a word or a doubleword. 

3. Decimal numbers, represented by four-bit 
binary-coded-decimal (BCD) digits, usually packed two 
digits to a byte, and variable in length. 

4. Logical information, represented by eight-bit zoned 
character codes, and fixed or variable in length. 

Fixed-Point Data 

Fixed-point instructions are available for loading, adding, 
subtracting, comparing, multiplying, and dividing. A pair of 
conversion instructions, Convert to Binary and Convert to 
Decimal, provides transition between decimal and binary 
radix without the use of tables. 

The basic fixed-point operand is the 32-bit binary word. 
To improve performance and storage utilization, 16-bit 
halfword operands may be specified in most operations. In 
both lengths, bit position 0 holds the sign of the number, 
with the remaining bit positions designating the magnitude 
of the number. To preserve precision, some products and all 
dividends are 64 bits long. 

Because a 24-bit' address can be accommodated in the 
32-bit word, fixed-point instructions can be used both for 
integer operand arithmetic and for address computation. 
This combined usage provides economy and permits the 
entire fixed-point instruction set to be used for address 
computation. Thus, multiplication, shifting, and logical 
manipulation of address components are possible. 

Number Representation 

• Positive numbers are represented in true binary form 
with sign ofO. 

• Negative numbers are represented in 2's complement 
notation with sign of 1. 

All fixed-point operands are treated as signed integers. 
Positive numbers are represented in true binary form with a 
sign bit of 0. Negative numbers are represented in 2's 

complement notation with a sign bit of I. In all cases, the 
bits between the sign bit and the leftmost significant bit of 
the integer are the same as the sign bit; i.e., all O's for 
positive numbers, all l's for negative numbers. Therefore, 
when an operand must be extended with high-order bits, 
each nonsignifican t bit is made equal to the sign bit. 

Negative fixed-point numbers are formed in 2's 
complement notation by complementing the true binary 
representation of the number and adding 1. For example, 
to convert the decimal number +26 to 2's complement 
form ( -26 ), proceed as follows: 

S 1...._lnteger~31 
Decimal +26 to true binary form: 0 0000000))00011010 

Complement the binary number: 1 1111111))11100101 
Add 1: 1 
Result is-26 (2'scomplementform): 11111111~)11100110 

The result is equivalent to subtracting the number 
00000000 QOO 110 I 0 from 1 00000000 00000000. 

The largest positive number consists of a sign bit of 0 
with all l's in the integer field, whereas the largest negative 
number consists of a sign bit of I with all O's in the integer 
field: 

S 1 ....-1nteger---.31 Decimal Number 
Largest positive 
number: 

Smallest positive 
number: 

Smallest negative 
number: 

Largest negative 
number: 

Formats 

0 1111' 111)) 1111111 = +2, 147,483,647 

0 0000000)) 0000000 0 

11111111))1111111 -1 

1 0000000))0000000 = -2,147,483,648 

Fixed-point numbers occur in 16-bit halfword, 32-bit word, 
or 64-bit doubleword operands. Bit·o is the sign bit, and the 
remaining bits make up the integer: 

Halfword operand 

(sj Integer 

0 1 15 

Word operand 

Integer 

0 1 31 

7201-02 FETOM (7 /70) D-5 



Doubleword operand 

wlsl ___ 1n_teg_er __ _,1// I 
0 63 

In LS, fixed-point operands are a word long. In some 
operations, such as multiply. divide, and shift, the operand 
may be a doubleword. The doubleword operands are 
located in a pair of adjacent 32-bit GPR's and are addressed 
by an even address that refers to the leftmost 
(lower-addressed) register of the pair. In this case, the 
sign-bit position of the rightmost register may contain an 
operand bit instead of a sign bit. The sign-bit position of 
the leftmost register must always contain a sign bit. 

In main storage, fixed-point data may be a halfword, a 
word, or a doubleword. This data must be located on 
integral storage boundaries for these units of information. 
When a halfword operand is fetched from main storage, it is 
extended to a full word. The original signed integer 
occupies bits 16 through 31, and is operated on as a full 
word. When the operand is extended to a full word, bits 0 
through 15 assume the state of the original sign bit, now in 
bit 16. 

Floating-Point Data 

• Scientific and engineering calculations require that very 
small and very large numbers be represented. 

• Scientific notation uses powers of 10 to simplify 
calculations with high and low magnitude numbers. 

• Floating-point instructions operate upon data that uses 
powers of 16 to represent numerical quantities. 

• Quantity expressed by floating-point number is product 
of signed hex fraction and 16 raised to power designated 
by exponent. 

When performing calculations for scientific and engineering 
work, very small or very large numbers must sometimes be 
represented. Consider the problem of a nuclear physicist 
who wants to write an equation that contains the value for 
the mass of a subatomic particle. If he wrote the number as 
a decimal fraction, he would have to put down a decimal 
point followed by more than 20 zeros and a few numerals. 
At the opposite extreme, an astronomer may be calculating 
distances between objects that may be millions of millions 
of miles apart. 

To overcome the pointless effort of having to write 
many zeros when working with such numbers, a 
mathematical method using powers of 10 is used. This 
method is called scientific notation. For example, in 

scientific notation, the mass of an electron can be written 
as 9 107 x 10-28 grams· and the astronomical distance of . . , 12 . 
one light year can be wntten as 5.878 x 10 mtles. 

D-6 (7/70) 

Consider the parts of a number represented in scientific 
notation. The example of the mass of an electron, for 
instance, can be divided into three distinct parts: (1) a 
signed mixed number ( +9 .107) multiplied by, (2) 10 raised 
to the power designated by, (3) a signed exponent (--28). 
By changing the position of the decimal point and adjusting 
the exponent to compensate for the change, the number 
can also be written as a fraction times a power of 10 
(+.9107 x 10-27), or an integer times a power of IO 
(+9107 x 10---31 ). 

For scientific and engineering applications where 
quantities may be of the magnitudes mentioned above, the 
CE has instructions for handling them. These instructions, 
called floating-point instructions, manipulate data in a 
manner similar to scientific notation. However, because the 
CE is primarily a binary machine in which numbers can be 
easily worked upon in hex (four-bit) units, a quantity is 
represented as a hex number times a power of 16 rather 
than as a decimal number times a power of l 0. Except for 
this difference in base, floating-point notation is similar to 
scientific notation; the same rules of algebra apply to 
powers of 16 as to powers of 10. 

Number Representation 

• Fraction represents number expressed in hex digits. 

• Characteristic specifies exponent to which 16 is raised. 

• Characteristic is expressed in excess 64 notation; range is 
-64 to +63. 

• Radix point is to left of high-order hex digit. 

• True zero result yields positive sign. 

A floating-point number contains the same components as a 
number written in scientific notation. However, due to the 
nature of the computer, the format is different and certain 
rules are imposed upon the way a floating-point number 
may be represented. The number to be multiplied by a 
power of 16 is a hex fraction with a fixed length, and the 
16 is understood rather than shown. Therefore, as 
represented in the CE, a floating-point number consists of a 
sign, which is the sign of the fraction, a signed exponent, 
called a characteristic, and a hex fraction. The quantity 
expressed by this number is the product of the fraction and 
16 raised to the power designated by the characteristic 
(exponent). 

The fraction of a floating-point number is expressed in 
hex digits. The radix point (representing the base 16) of the 
fraction is assumed to be immediately to the left of the 
high-order fraction digit. To provide the proper magnitude 
for a floating-point number, the fraction is considered to be 
multiplied by a power of 16 (fraction x 16n power). The 
characteristic (bits 1-7) indicates the power (exponent). 



Bit 0 designates the sign of the fraction; it is a 0 if the 
fraction is a positive number and a l if the fraction is 
negative. Both positive and negative quantities are in true 
form, with the difference indicated by the sign. 

The exponent may also be either a positive or negative 
number. For example, --.A8 x 16-- 2 is an example of a 
floating-point number with a negative fraction and a 
negative exponent. Therefore, to represent both positive 
and negative exponents, excess 64 notation is used. Excess 
64 notation simply means that +64 (+40 hex) is added to 
the true exponent and the value obtained is used as the 
characteristic. Therefore, the characteristic varies around a 
base of 64; i.e., an exponent of 0 is represented by a 
characteristic of 64, a positive exponent is represented by a 
characteristic greater than 64, and a negative exponent is 
represented by a characteristic less than 64. In the example 
just given, for instance, -2 is the exponent. Adding +64 to 
-2 yields +62, which is the value of the characteristic in 
excess 64 notation. 

Performing the same calculation in binary gives the 
following results: 

Bits 0 2 3 4 5 6 7 

s 1 1 1 1 1 0 2's complement of 2 (-2) 

s 1 0 0 0 0 0 0 +64 (+40 hex) 

s 0 0 "" +62 (+3E hex) 

J 
Carry 

If the exponent were +2 (positive exponent), adding +64 
yields +66, the characteristic value placed into bits 1-7. In 
binary, the addition is as follows: 

Bits 0 2 3 4 5 6 7 

s 0 0 0 0 0 1 0 
s 0 0 0 0 0 0 
s 1 0 0 0 0 0 

+2 exponent 
+64 (40 hex) 

= +66 (42 hex) 

Note in these examples that a negative exponent in 
excess 64 notation caused bit I (high-order bit of the 
characteristic) to be a 0, and a positive exponent caused bit 
1 to be a I . This rule holds true for the range of positive 
and negative exponents, as can be seen in Table D-1. The 
table also shows that because only seven binary bits (1-7) 
are available to represent the characteristic in floating-point 
format, the most negative exponent that can be expressed is 
-64 and is represented by an all-zero characteristic. The 
most positive exponent is +63, and is represented by all l's 
(7F hex). Midpoint between these two extremes is a 0 
exponent, which is represented by a +64 (+40 hex) 
characteristic. 

Table D-1. Characteristic Notation 

Excess 64 Notation 

Binary Decimal Hex Exponent 

0000000 0 0 -64 

0000001 1 1 ·63 

l i i l 
0111111 63 3F 1 

1000000 64 40 0 

1000001 65 41 +1 

i i i l 
1111110 126 7E 62 

1111111 127 7F 63 

For another example of converting an exponent to an 
excess 64 characteristic, assume the value of ±M x 1648 

must be stated in excess 64 notation. The characteristic of 
the fraction then becomes 48 + 64 = 112 (O 110000 + 
1000000 = 1110000). The floating-point number thus takes 
the following form: 

_lsl~1_1_1o_o_o_o~J~~~~-M~~~~>D 
± 1 7 i 8 31 or 63 

Radix Point 

To illustrate how numbers are represented in 
floating-point format, assume that the decimal number 
149.25 is to be converted to a floating-point short operand. 
This conversion is accomplished as follows: 
1. The number is separated into a decimal integer and a 

decimal fraction: 

149 .. 25 = 149 plus 0.25 

2. The decimal integer is converted to its hex 
representation: 

3. The decimal fraction is converted to its hex 
representation: 

7201-02 FETOM (7/70) D-7 



4. The integral and fractional parts are combined and 
expressed as a fraction times a power of 16 (exponent): 

2 
95.416 = (0.954 x 16 l 16 

5. The characteristic is developed from the exponent and 
converted to binary: 

Excess 64 +exponent = characteristic 
64 + 2 = 66 = 1000010 

6. The fraction is converted to binary and grouped 
hexadecimally: 

.95416 = 1001 0101 0100 

7. The characteristic and the fraction are placed in the 
short precision format; the sign position contains the 
sign of the fraction: 

s C haracte ri st i c Fraction 

0 1000010 1001 0101 0100 0000 0000 0000 

Other examples follow: 

~ Powers of 16 s Charistic Fraction 

1.0 = +1/16 x 161 =O 1 000001 0001 0000 ll 0000 

0.5 = +8/16 x 16° =O 1000000 1000 0000 2l 0000 

1/64 = +4/ 16 x 1s·1 =O 011111 0100 0000 ll 0000 

0.0 =+Ox 16-64 =O 0000000 0000 0000 l2 0000 

-15.0 = -15/16 x 161 = 1 1000001 1111 0000 22 0000 

2 x 10-18 = +1/16 x 16-64 =O 0000000 0001 0000 ll 0000 

7 x 1075 = (1-16-6 ) x 1663 =O 1111111 11111111 221111 

Formats 

• Data format consists of I-bit sign, 7-bit characteristic, 
and 24- or 56-bit fraction. 

• Results are 32 bits (short operand) or 64 bits (long 
operand) long. 

• Multiply product is always 64 bits. 

• Guard digit is retained. 

Floating-point data is represented in the CPU in one of two 
fixed-length formats, depending upon whether a full-word 
short operand or a doubleword long operand is desired. 
Both formats may be used in main storage and in the eight 
LS FPR's used exclusively by floating-point instructions. 
The data formats for short and long operands are: 

D-8 (7/70) 

Short Operand 

r------- Even FPR of an even/odd FPR pair 

Fraction 

0 1 7 8 31 

Radix Point 

Long Operand 

i.j.-i---- Even FPR ___ ..,_..,.;_.i-- Odd FPR-----tol 

Radix Point 

For both formats, the first bit position is the sign bit and 
the subsequent seven bit positions constitute the 
characteristic. The following 24 or 56 bits represent the 
fraction; short operand fractions are 24 bits or 6 hex digits; 
long operand fractions are 56 bits or 14 hex digits. 

When short operands are specified, the results are usually 
32-bit floating-point words; the odd FPR of the even/odd 
pair of FPR's does not participate in the operation and 
remains unchanged. However, in multiply instructions, the 
product occupies two FPR's (64 bits). 

When long operands are specified, all operands and 
results are 64-bit floating-point doublewords. 

Although final results have 6 or 14 hex fraction digits, 
intermediate results in addition, subtraction, and compare 
operations may extend to 7 or 15 fraction digits. This extra 
digit, called the guard digit, occurs when one of the 
fractions is shifted right (as part of the characteristic 
equalization process that occurs during execution of 
add-type floating-point instructions; see Chapter 3, Section 
3, Add, Subtract, and Compare). The guard digit increases 
the accuracy of the final result if normalization occurs. In 
normalization, the fraction is shifted left until a significant 
digit appears in the high-order digit position of the fraction; 
thus the guard digit becomes part of the 6 or 14 hex digits 
of the final result. This saving of the guard digit becomes 
especially significant where the high-order 6 or 14 digits of 
the intermediate result are all zeros. 

Normalization 

• Normalized fraction has nonzero, high-order hex digit; 
unnormalized fraction has one or more leading hex 
zeros. 

• Characteristic is adjusted on normalization cycles. 

• Postnormalization is normalization of final result. 

• Pren ormalization is normalization before result 
computation. 



• Results are shifted right if fraction overflow occurs. 

A quantity can be represented with the greatest precision 
by a floating·point number of a given fraction length when 
that number is normalized. A normalized floating·point 
number has a nonzero high-order hex fraction digit. If one 
or more high-order fraction digits are zero, the number is 
said to be unnormalized. Normalization consists of shifting 
the fraction left until the high-order hex digit is nonzero 
and reducing the characteristic by the number of hex digits 
shifted. A zero fraction cannot be normalized, and its 
associated characteristic therefore remains unchanged when 
normalization is called for. 

An example C'f an unnormalized floating·point number 

in numerical terms is .OOOOOA 16 x 162. To convert this 

number to its normalized form, the number must be shifted 
five hex digits to the left and, because five shifts are 
necessary, five is subtracted from the exponent. The result 

is .AOOOOo 16 x 16-3 . In the CPU, the original number 

would have the following format: 

Charistic Fraction 
s (Binary) (Hex) 

lol 1 o o o o l o I 0 0 0 0 0 A 

0 l 7 8 31 

After normalization, the format would be: 

s 
0 0 0 0 0 

0 1 7 8 31 

Because normalization applies to hex digits, the three 
high·order bits of a normalized number may be zero. For 
example, if the high·order digit of a fraction is a hex 1, 
normalization will not occur although normalization is 
specified and bits 8-10 = 000: 

Isl Charistic Io o o 1 [ o o o o lo o o of 
0 l 7 8 11 12 15 16 19 

Floating·point operations are performed with or without 
normalization. Addition and subtraction may be specified 
either way depending upon the instruction op code. The 
multiply, divide, and halve instructions always specify 
normalization. The load, compare, and store instructions 
specify unnormalized results. Normalization usually occurs 
when the intermediate arithmetic result is changed to the 
final result. This function is called postnormalization. In 
multiplication and division, the operands are normalized 
before the arithmetic process. This function is called 
prenormalization. 

When an operation is performed without normalization, 
high·order zeros in the result fraction are not eliminated. In 

both normalized and unnormalized operations, the initial 
operands need not be in normalized form. 

Decimal Data 

• Operands and results are located in main storage. 

• VFL is 1-16 bytes. 

• Four-bit BCD digits are packed two to a byte for 
arithmetic. 

• Unpacked (zoned) format is used for transmitting data 
to 1/0 devices. 

• Pack and Unpack instructions are provided. 

Decimal instructions are designed for operations requiring 
few computational steps between the source input and the 
documented output. Processing of this type is frequently 
found in commercial applications. Because of the limited 
number of arithmetic operations performed on each item of 
data, radix conversion from decimal to binary and back to 
decimal is not justified, and the use of registers for 
intermediate results yields no advantage over 
storage·to·storage processing. Hence, in the CE, decimal 
instructions are provided and both operands and results are 
located in main storage. Decimal instructions include 
addition, subtraction, multiplication, division, and 
comparison. 

Decimal arithmetic operates on data in the packed 
format, in which two four·bit BCD digits are packed two to 
a byte. They appear in fields of variable length (from 1 to 
16 bytes) and are accompanied by a sign in the rightmost 
four bits of the low·order byte. The use of packed digits 
within a byte and of variable·length fields within storage 
results in efficient use of storage and in increased arithmetic 
performance. 

Decimal numbers may also appear in a zoned format for 
use with 1/0 devices operating in that format. The zoned 
format is not used in decimal arithmetic operations, but 
only for transmitting data to the 1/0 device. Instructions 
are provided for packing and unpacking decimal numbers so 
that they may be changed from the zoned (unpacked) to 
the packed format and vice versa. 

Processing takes place right to left between main storage 
locations, except in the divide operation which is processed 
left to right. All decimal instructions use the two-address SS 
format. Each address specifies the leftmost byte of an 
operand. Associated with this address is a length field, 
indicating the number of additional bytes that the operand 
extends beyond the first byte. 

Number Representation 

Numbers are represented as right·aligned true integers with 
a plus or minus sign. Decimal digits 0-9 are represented in 
the four·bit BCD form by 0000 through 1001, respectively. 

7201-02 FETOM (7/70) D·9 



Codes 1010-11 l l (10-15) are not valid as digits and are 
reserved for sign codes: 1010, 1100, 1110 and 1111 
represent a plus; 1011 and 1101 represent a minus. 

Digit Code Sign Code 

0 0000 + 1010 
1 0001 1011 
2 0010 + 1100 
3 0011 1101 
4 0100 + 1110 
5 0101 + 1111 
6 0110 
7 0111 
8 1000 
9 1001 

All valid sign codes are recognized in decimal operations; 
however, the appropriate sign codes (and zone codes for the 
Unpack instruction) generated during the operation depend 
on the character set specified by PSW(l 2). If PSW(l 2) = 0, 
EBCDIC is selected, and code 1100 is generated for a plus 
sign, code 1101 is generated for a minus sign, and code 
1111 is generated for a zone. If PSW(l 2) = l, USASCII-8 is 
selected, and code 1010 is generated for a plus sign, code 
1011 is generated for a minus sign, and code 0101 is 
generated for a zone. 

Formats 

Decimal operands reside in main storage only. The operand 
field length may range from a minimum of one byte to a 
maximum of 16 bytes. The operands need not occupy the 
entire field length but are always right-aligned in the field; 
i.e., the sign of the operand is always in the rightmost byte 
.of the specified field. This rightmost byte contains the 
lowest-order operand digit and the operand sign. All 
decimal instructions (except Divide) process the operands 
from low order to high order, or from right to left between 
main storage locations. 

Data may be in the packed or unpacked (zoned) format. 
In the packed format, two four-bit BCD digits are placed 
adjacently in an eight-bit byte, except for the rightmost 
(low-order) byte of the field. In the low-order byte, a 
four-bit sign (sign of the decimal number) is placed to the 
right of the decimal digit. 

14----------Packed VFL Data---------
(Up ta 16 Bytes) . h 

R,g tmost 

-----9"14---Byte ---..j- - - - -I--- Byte 

'----.L...-.----111--D-i-gi_t__.__D_ig_i_t - - -- -, D;gH [ s;gn I 
In the unpacked or zoned format, a decimal digit 

normally occupies the four low-order bits of a byte, the 
numeric. The four high-order bits of a byte are called the 
zone. An exception is the rightmost byte in the field, where 
the sign of the decimal number occupies the zone position. 

D-10 (7/70) 

i..-------- Unpacked VFL Data--------
(Up to 16 Bytes) . 

Leftmost R r ghtmost 

Byte •I• Byte-------1- - - - -r-- Byte 

[ Zo~ [ D;g;, I z~. I D;g;t r---I Sign I D;gH 

Logical Data 

• Data is fixed-length or VFL. 

• One byte of immediate data is held in some instruction 
formats. 

The logical instructions provide for moving, comparing, bit 
testing, bit connecting, translating, editing, and shifting 
operations. Except for the editing instructions, data is not 
treated as numbers. Editing converts packed decimal digits 
into alphanumeric characters; the digits, signs, and zones 
are recognized and generated as for decimal instructions. 

Data resides in main storage or in LS, or is contained in 
the instruction format. The data may be a single byte, a 
word, a doubleword, or variable in length. When two 
operands participate in the operation, they have equal 
length, except in the editing instructions. The data format 
depends on the type of operation performed: 
1. In storage-to-storage operations, data has a VFL format, 

starting at any byte address and continuing for a 
maximum of 256 bytes; it is processed left to right. 

r------- Up to 256 Bytes _______ , 
'411 in Main Storage ... 

....------------. - - - - - ----.... 
Character Character Character 

.__ ___ __,_ ___ ____, - - - - - .....__ ___ _. 
0 16 

2. In storage-to-register operations, the main storage data 
may be either a word or a byte. The word must be 
located on a word boundary; that is, the low-order two 
bits of its address must be O's. Data in GPR's normally 
occupies all 32 bits. Bits are treated uniformly, and no 
distinction is made between sign and numeric bits. In a 
few operations, only the low-order eight bits of the 
register participate, leaving the remaining 24 bits 
unchanged. In some shift operations, 64 bits of an 
even/odd pair of GPR's participate. 

"""1~1---------- 8, 32, or64 Bits--------

Fixed-Length Logical Doto 

3. In operations which introduce data directly from the SI 
format instruction as an immediate operand, data is 
restricted to an eight-bit byte. Only one byte may be 
introduced per instruction, and only one byte from main 
storage takes part in the operation. 



AB and ST Byte Counters: 
AB Byte Counter 2-33 
ST Byte Counter 2-33 

AB Register: 
Input 2-29 
Output 2-29 

Add, A (SA); Fix Pt, RX 3-33 
Add, AP (FA); Dec, SS: 

Complement Add Sequence 3-llS 
Discussion 3-111 
GIS 3-112 
True Add Sequence 3-112 

Add, AR (lA); Fix Pt, RR 3-33 
Add Halfword, AH (4A); Fix Pt, RX 3-33 
Add Logical, AL (SE); Fix Pt, RX . 3-3S 
Add Normalized, AD (6A); Fl Pt, RX (Long) 3-79 
Add Normalized, ADR (2A); Fl Pt, RR (Long) 3-78 
Add Normalized, AE (7 A); Fl Pt, RX (Short). 3-77 
Add Normalized, AER (3A); Fl Pt, RR (Short) 3-73 
Add-Type Instructions, Floating Point 3-71 
Add Unnormalized, AU (7E); Fl Pt, RX (Short) 3-80 
Add Unnormalized, AUR (3E); Fl Pt, RR (Short) 3-80 
Add Unnormalized, AW ( 6E); Fl Pt, RX (Long) 3-8 2 
Add Unnormalized, A WR (2E); Fl Pt, RR (Long) 3-81 
Address Compare Stop/Proc/Loop Switch 4-8 
Address Generator, Scan Storage 4-26 
Address Sequencer Decoder, Scan Logic 4-2S 
Address Sequencer, Scan Logic 4-2S 
Address Switches 4-S 
Address Translation Register (ATR) 1-31, 2-41 
Address Translation: 

Definition 3-192 
Introduction to 3-192 
Physical Address Derivation (Diagram) 3-192 

Addressing, Instruction: 
Invalid Address Detection 3-20 
Invalid Instruction Address Microprogram 3-23 
Specification Detection 3-20 

Addressing, Local Storage; Manually 4-5 
Addressing, Main Storage: 

Manually 4-5 
SET IC Pushbutton 4-9 

Addressing, ROS: 
Introduction 1-20 
Manually 4-5 
ROSAR 2-9 
ROSAR(0-10): 

Decoding 2-12 
Description 2-11 

ROSAR(ll) Function 2-13 
STOP ON ROS ADDRESS/REPEAT ROS ADDRESS 

Switch 4-13 
Addressing, Storage 1-31 
AND Function: 

ASC Test 3-9 
Logical Instructions 3-150 

AND, N (S4); Lgic, RX 3-lSl 
AND, NC (D4); Lgic, SS 3-1S2 
AND, NI (94); Lgic, SI 3-1S2 
AND, NR (14); Lgic, RR 3-lSl 
ATN, ROS Tests 4-34 

Page of SFN-0201-1 
Revised by TNL: GN31-0020 

ATR, Address Translation Register 1-31 

BACKSPACE FLT Pushbutton 4-17 
Balance Lines, CROS 2-S 
Base Address D-3 
Branch and Link, BAL (4S); Br, RX 3-170 
Branch and Link, BALR (OS); BR, RR 3-168 
Branch on Condition, BC ( 4 7); Br, RX 3-16 7 
Branch on Condition, BCR (07) Br, RR 3-166 
Branch on Count, BCT (46); Br, RX· 3-172 
Branch on Count, BCTR (06); Br, RR 3-171 
Branch on Index High, BXH (86); Br, RS 3-172 
Branch on Index Low or Equal, BXLE (87); Br, RS 3-174 
Branching Instructions: 

Condition Codes 1-82 
Data Flow 1-81 
Instruction Formats 1-81 
Program Interruptions 1-82 

Bus, Scan-but 4-29 

Capacitive Read Only Storage (see CROS) 
Carry (see Par.allel Adder) 
CAW (Channel Adder Word) (see Control of 1/0 Operations) 
CC (Condition Code) (see Instructions) 
CC-to-CE Interface B-11 
CCR (Configuration Control Register) 1-30 
CCW (Channel Control Word) (see Control of 1/0 Operations) 
CE CHECK CONTROL Switch 4-14 
CE Control: 

Configuration Control 1-29 
Data Transfer 1-17 
PSW Register 1-27 
Read-Only Storage (ROS): 

ROS Addressing and Branching 1-20 
ROS Control of CE 1-24 
ROS Data Flow 1-23 
ROS Word 1-19 

Timing 1-17 
CE Identity Code 3-187 
CE Interfacing 1-2, 1-3 (Fig. 1-1) 
CE Response to Exceptional Conditions 1-46 (Table 1-6) 
CE Scan/IOCE Interface 4-31 
CE Storage Requests 1-3S 
CE Switches, Operational Environment 4-2 (Table 4-1) 
CE-to-CC Interface B-11 
CE-to-CE Interface B-1 
CE-to-DE Interface B-4 
CE-to-IOCE Interface B-6 
CE-to-PAM/TCU/SCU Interface B-8 
CE-to-SC Interface B-9 
CE-to-SE Interface B-2 
Central Computer Complex, 9020D (CCC) 1-1 
CHECK REG 1 Indicator 4-18 
CHECK REG 2 Indicator 4-18 
Check Registers 2-44 
CHECK RESET Pushbutton 4-4 
Circuits, Special A-1 
Clock: 

Control and Signal Distribution 2-2 
FLT 4-23 
Scan 4-22 

7201-02 FETOM (S/72) X-1 



Page of SFN-0201-1 
Revised by TNL: SN31-0020 

Signal Development and Distribution 2-4 (Fig. 2-3) 
Signal Generators 2-1 
Signals 2-3 (Fig. 2-2) 
Timing 2-1 
Trigger and Latch Data Relationship 2-2 (Fig. 2-1) 

Compare, C (59); Fix Pt, RX 3-38 
Compare, CD (69); Fl Pt, RX (Long) 3-88 
Compare, CDR (29); Fl Pt, RR (Long) 3-87 
Compare, CE (79); Fl Pt, RX (Short) 3-87 
Compare, CER (39); Fl Pt, RR (Short) 3-86 
Compare, CP (F9); Dec, SS 3-116 
Compare, CR (19); Fix Pt, RR 3-38 
Compare Halfword, CH (49); Fix Pt, RX 3-39 
Compare Logical, CLC (D5);Lgic, SS 3-150 
Compare Logical, CLI (95); Lgic, SI 3-149 
Compare Logical, CL (55); Lgic, RX 3~149 

Compare Logical, CLR (15); Lgic, RR 3-149 
Condition Codes: 

Branching Instructions 1-82 
Decimal Instructions 1-73 
Display Instructions 1-91 
Fixed-Point Instructions !-59 
Floating-Point Instructions 1-67 
Input-Output Instructions 1-87 
Logical Instructions 1-7 8 
Multiple CE Instructions 1-89 
Status Switching Instructions 1-86 

Configuration Control: 
Configuration Control Register (CCR) 1-30 
External Register 1-30 
Select Register 1-30 

Configuration Control Register (CCR): 
CommunicationFields 2-43 
ILOS Field 2-43 
Input 2-43 
Output 2-43 
SCON Field 2-43 
State Field 2-42 

Control, Direct 1-5 
Control of 1/0 Operations: 

1/0 Control Words: 
Channel Address Word (CAW) 1-15 
Channel Command Word (CCW) 1-15 
Channel Status Word (CSW) 1-15 

1/0 System Operation 1-16 
Control Program: 

Address Translation 1-4 
Configuration Control 1-4 
Direct Control 1-5 
Interruptions: 

External: 
Abnormal Condition Signals 1-7 
Direct Control 1-7 
Interrupt Pushbuttons 1-7 
Interval Timer at Limit 1-7 

Input/Output Interruptions 1-7 
Machine Check Interruptions 1-6 
Program Interruptions 1~6 

Supervisor Call Interruptions 1-7 
Preferential Storage Areas (PSA) 1-5 
Privileged Instructions (E&C) 1-4 
Responsibilities 1-7 

Control Triggers, Functions 2-83 (Table 2-3) 
Control Triggers, Scan Logic 4-31 
Control Words, 1/0 1-15 

X-2 (5/72) 

Convert and Sort Symbols, CSS(02): 
Introduction 3-214 
Altitude Mask 3-219 
Beacon Input: 

GPR's 3-217 
Interrupt Handling 3-221 
Introduction 3-220 
PVD Index 3-221 

Comer Filter 3-219, 3-220 
GPRs, FPRs, Contents of Explained 3-217, 3-218 
GPRs, FPRs, Contents of, for Beacon Data Blocks 3-217 
GPRs, FPRs, Contents of, for Primary Radar/Single 

Symbol Data 3-216 
Input Data Stream 3-216 
"Introduction 3-214 
Output Word, Assembly 3-220 
Primary Radar/Single Symbol Input 3-219 
Simplified Diagram 3-215 
Sort Bin Address 3-220 
Type Filtering 3-219 

Convert to Binary, CVB (4F); Fx Pt, RX 3-51 
Convert to Decimal, CVD (4E); Fx Pt, RX 3-53 
Convert Weather Lines, CVWL, (03): 

Coordinate Conversion 3-226 
Data Doubleword 3-224 
Geographic Filter 3-225 
GPRs, FPRs, Contents of 3-222, 3-223 
Header Doubleword 3-224 
Input Data Stream 3-223, 3-224 
Interrupt Handling 3-228 
Introduction 3-221 
Mixer Gating 3-227 
Output Doubleword, Assembly: 

Format Word One 3-227 
Format Word Two 3-226, 3-227 
Format Word Zero 3-226 

Output Doubleword, Format of 3-228 
Simplified Diagram 3-222 
Sterile Area Filters 3-225 
Truncation 3-225, 3-226 

Counter: 
FLT 4-27 
Scan Logic Cycle 4-28 

CPU Store in Progress Exceptional Condition: 
Discussion 3-15 
Effect on I-Fetch 3-15 

CROS: 
Bit Capacitors 2-7 
Electrical Theory 2-5 
Physical Package 2-8 
Plane Pressure Mounting Assembly 2-11 (Fig. 2-9) 
Planes 2-5 
Sense Lines 2-6 

CSS Input Data, Example 3-201 
CSW, Channel Status Word (see Control of 1/0 Operations) 
CVWL Input Data, Example 3-202 

D-Register: 
Input 2-26 
Operational Functions: 

Branch and Execute Operations 2-28 
Fixed-Point Operations 2-28 
Floating-Point Operations 2-28 
Interruption Operations 2-28 
Manual-Control Operations 2-28 



Shift Operations 2-28 

VFL Operations 2-28 
Output 2-26 

Data and Control Registers 2-19 
Data Flow: 

Branching Instructions 1-81 
Decimal Instructions 1-72 
Display Instructions 1-90 
Fixed-Point Instructions 1-58 
Floating-Point Instructions 1-66 
Input/Output Instructions 1-87 
Logical Instructions 1-77 
Multiple CE Instructions 1-87 
Status Switching Instructions 1-83 

Data Formats: 
Decimal D-10 
Fixed-Point . D.;,5 
Floating-Pomt D-8 
Logical D-10 

DATA Switches 4-5 
DE-CE Intei-face B-5 
DE Testing: 

DE Force Request 4-51 
DE Wrap 4-53 

DE Wrap Bus 2-48 
Decimal Data: 

Discussion D9, DlO 
Number Representation D-9 

Decimal Instructions: 
Condition Codes 1-7 3 
Data Flow 1-72 
Data Handling 1-68 
Instruction Format 1-72 
Program Interruptions 1-73 

Decrementer, Scan Counter 4-24 
DEFEAT INTERLEA YING Switch 4-9 
Delay, DLY (OB) 3-188 
Diagnose Accessible Register (DAR) 2-41 
Diagnose Accessible Register Mask (DAR MASK) 2-41 
Diagnose Instruction MCW for CE in State 0 4-19 
Diagnose Instruction MCW for CE in State 3, 2 or 1 4-20 
Diagnose (83); Stat Sw, SI; Operation 3-185 
Diagnostic Programs 4-50 
DISABLE INTERVAL TIMER Switch 4-14 
Displacement D-3 
Display Channel Processor, 9020E (DCP) 1-2 
Display Instructions: 

Condition Codes 1-91 
Convert and Sort Symbols, CSS (02) 3-214 
Convert Weather Lines, CVWL (03) 3-221 
Data Flow 1-90 
Instruction Formats 1-89 
Introduction to 3-199 
Introduction to CSS arid CVWL 3-201 
Introduction to RPSB 3-199 
Load Chain, LC (52) 3-228 
Program Interruptions 1-91 
Repack Symbols, RPSB (OF) 3-204 

DISPLAY Pushbutton 4-12 
Display Registers 2-44 
Divide, D (SD); Fix Pt, RX 3-49 
Divide, DD (6D); Fl Pt, RX (Long) 3-105 
Divide, DDR (2D); Fl Pt, RR (Long) 3-104 
Divide, DE (70); Fl Pt, RX (Short) 3-103 
Divide, DER (3D); Fl Pt, RR (Short) 3-102 

Divide, DP (FD); Dec, SS 3-127 
Divide, DR (lD); Fix Pt, RR 3-45 
Divide, Fixed-Point: 

Page of SFN-0201-1 
Revi8ed by TNL: GN31-0020 

Divisor Multiple Selection 3-46 
DVDLO Micro-Order Function 3•46 
DVDLl Micro-Order Function 3-46 
Examples 3-50 (Figs. 3-8, 3-9) 
Partial Quotient Bits, Determination of 3-46 

Divide, Floating-Point: 
Characteristic Computation 3-97 
Data Flow and Algorithm 3-100 
DVDLO Micro-Order Function 3-100 
DVDLl Micro-Order Function 3-101 
Example 3-104 
Fraction Division 3-98 
Normalization 3-98 

Division, Nonrestoring 3-98 
Division, Restore 3-98 

E-Register: 
Incrementers 2-24 
Input 2-21 
Output 2-21 

Early End Op: 
Discussion 3-3 
Instruction Fetching 3-4 

EBCDIC D-1 
Edit, ED (DE); Lgic, SS 3-160 
Edit and Mark, EDMK (DF); Lgic, SS 3-160 
Element States 1-8 
End-Op: 

Branch 3-2 
Discussion 3-1 
Function 3-1 
Instruction Fetching 3-3 
Normal 3-1 
Normal, Deviations from 3-12 
Operand Prefetching 3-2 

End-Operation (see End-Op) 
Exceptional Conditions: 

CE Response 1-46 (Table 1-6) 
Discussion 1-46 
Effect on I-Fetch: 

CPU Store in Progress 3-15 
Invalid Instruction Address Test 3-19 
Manual Control Repeat 3-18 
Manual Control Stop 3-18 
Manual Control Wait 3-18 
Program Store Compare 3-19 
Q-Register Refill 3-24 
Timer 3-14 

Exclusive-OR, X (57);Lgic, RX 3-155 
Exclusive-OR, XC (D7); Lgic, SS 3-155 
Exclusive-OR, XI (97); Lgic, SI 3-155 
Exclusive-OR, XR (17); Lgic, RR 3-154 
Execute, EX (44);Br, RX 3-175 
Exponent Overflow 3-65 · 
Exponent Underflow 3-65 
External Register: 

Input 2-44 
Output 2-44 

F-Register: 
Input 2-34 
Output 2-36 

7201-02 FETOM (5/72) X-3 



Page of SFN-0201-1 
Revised by TNL: SN31-0020 

Fetch Protection, Detection of 3-22 
Fixed-Point Data: 

Discussion D-5 
Formats D-5 
Number Representation D-5 

Fixed-Point Instructions: 
Condition Codes 1-59 
Data Flow 1-58 
Instruction Formats 1-58 
Program Interruptions 1-59 

Floating-Point Data: 
Discussion D-6 
Formats D-8 
Normalization D-8 
Number Representation D-6 

Floating-Point Instructions: 
Condition Codes 1-67 
Data Flow 1-66 
Instruction Formats 1-66 
Program Interruptions 1-67 

FLT MCW 4-21 
FLT Tests: 

Introduction: 
FLT Hardcore Tests 4-43 
FLT Tapes 4-41 
One-Cycle Tests 4-43 
Tape Generation 4-42 
Zero-Cycle Tests 4-43 

Operational Analysis: 
FLT Tests 4-44 
Scan-In Highlights 4-48 
Zero-Cycle and One.Cycle Tests 4-47 

FMTN 2-49 (Table 2-1) 
FMTO 2-49 (Table 2-1) 
FMTW 2-49 (Table 2-1) 
Format Micro-Orders 2-49 (Table 2-1) 
Formats: 

Data D-5 
Instruction D-2, D-3 (Fig. D-1) 

FREQUENCY ALTERATION Switch 4-17 

G-Register 2-36 
General Initialization Sequence (see GIS) 
Geographic Filter 3-202 
GIS: 

Decimal Instructions 3-111, 3-112 
Logical Instructions 3-146 

Halt 1/0, HIO (9E); 1/0 SI 3-178 
Hexadecimal Number System D-1 

I-Fetch: 
ASC Test 3-9 
Basic, Deviations from 3-12 
Block I-Fetch Trigger 3-13 
Branching Instructions 1-79 
CPU Store in Progress Exceptional Condition 3-15 
Early End-Op 3-3 
End-Op, Branch 3-2 
End-Op, Early 3-3 
End-Op, Normal 3-1 
Exceptional Conditions, Recovery from 1-46 
External Interruption 3-17 
Fetch Protection, Detection of 3-22 
Functional Units: 

X-4 (5/72) 

D-Register 1-39 
E-Register 1-37 
Instruction Counter (IC) 1-37 
Instruction Path 1-39 
R-Register 1-36 

General 3-1 
Instruction Address Specification, Detection of 3-20 
Instruction Path 1-39 
Interruption Routine, Common 3-18 
Interruptions, Recovery from 1-46 
Invalid Address Detection 3-20 
Invalid Instruction Address: 

Microprogram 3-23 
Test Exceptional Condition 3-19 

1/0 Interruption 3-17 
Machine Check Interruption 3-15 
Manual Control Repeat Exceptional Condition 3-18 
Manual Control Stop Exceptional Condition 3-18 
Manual Control Wait Exceptional Condition 3-18 
Microprogram Selection 3-4 
Obtaining New Instructions from Main Storage 1-44 
Prefetching of Operands 1-41 
Program Interruption 3-16 
Program Store Compare Exceptional Condition 3-19 
Q-Register Refill Exceptional Condition 3-24 
RR, Basic 3-5 
RR, 2-Cycle 3-24 
RS, Basic 3-6 
RS, 2-Cycle 3-25 
RX, Basic 3-6 
RX, Forced Cycle 3-25 
Sequencers 3-12 
SI, Basic 3-6 
SI, 2-Cycle 3-25 
SS: 

ASC Test 3-9 
Detailed Description 3-9 
General 3-7 

Supervisor Call Interruption 3-16 
Timer Exceptional Condition 3-14 

IATR, Insert ATR (OE) 3-187 
Identity Code, CE 3-187 
Index Value D-3 
Indicate Roller 1 Position 6 4-17 
Indicators, (see Specific Indicator) 
INHIBIT CE HARDSTOP Switch 4-15 
Input/Output Instructions: 

Condition Codes 1-87 
Data Flow 1-87 
Instruction Format 1-86 
Program Interruption 1-87 

Insert ATR, IATR (OE) 3-187 
Insert Character, IC (43); Lgic, RX 3-156 
Insert Storage Key, ISK (09); Stat Sw, RR 3-183 
Instruction Counter: 

Incrementing IC(0-20) 2-26 
Incrementing IC(21-23) 2-26 
Input 2-24 
Output 2-24 

Instruction Execution: 
Execution Sequences (see Specific Instruction) 
Functional Units: 

AB and ST Byte Counters 1-4 7 
AB Register 1-47 

Arithmetic Function 1-48 



F-Register 147 
G-Register ,148 
K-Register 148 
LM-Register 148 
Local Storage 1-51 
Local Storage Add Registers (LAL and LAR) 1-52 
Logical Functions 149 
Mark Triggers 1-47 
Mixer 148 · 
N-Register 1-48 
Parallel Adder 149 
Serial Adder 148 
ST~Register 1-47 
Status Triggers 1-52 
XY Register 148 

Instruction Fetching (See I-Fetch) 
lnstrl!ction Formats: . 

Branching Instructions 1-81 
Decimal Instructions 1-72 
Display Instructions 1-89 
Fixed-Point Instructions 1-58 
Floating-Point Instructions 1-66 
Input/Output Instructions 1-86 
Logical Instructions 1-7 7 
Multiple CE Instructions 1-87 
Status Switching Instructions 1-83 

Instruction Path 1-39 

Instructions: 
Branching 1-79 
Decimal 1-68 
Display 1-89 
Fixed-Point 1-52 
Floating-Point 1-59· 
Input-Output 1-86 
Logical 1-7 3 
Multiple Computing Element 1-87 
Status Switching 1-82 

Integral Boundaries, Main Storage D-2 
Interfacing, CE 1-2 
Interfacing Lines: 

CE-CC Interfacing: 
CC-to-CE Interface B-11 
CE-to-CC Interface B-11 

CE-CE lnterf acing B-1 
CE-DE Interfacing: 

CE-DE Interface B-4 
DE-CE Interface B-5 

CE-IOCE Interfacing: 
CE-to-IOCE Interface B-6 
IOCE-to-CE Interface B-7 

CE-PAM/TCl.YSCU Interfacing: 
CE-to-PAM/TCU/SCUinterface B-8 
PAM/TCU/SCU~to-CE Interface B-9 

CE-SE Interfacing: 
CE-SE Interface B-2 
SE-CE Interface B-3 

CE-System Console Interfacing: 
CE-to-SC Interface B-9 
SC-to-CE Interface B-9 

INTERRUPT Pushbutton 4-14 
Interruptions: 

Common Routine 3-18 
External: 

Discussion 1-7 

Effect on I-Fetch 3-17 
1/0: 

Discussion 1-7 
Effect on I-Fetch 3-17 

Machine Check: 
Discussion 1-6 
Effect on I-Fetch 3-15, 3-16 

Program: 
Discussion 1-6 
Effect on I-Fetch 3-16 

Supervisor Call: 
Discussion 1-7 
Effect on I-Fetch 3-16 

Page of SFN-0201-1 
Revised by TNL: GN31-0020 

Supervisor Call Instruction, SVC 3-181 
Introduction to CSS and CVWL: 

Common Routines 3-204 
Control Information (CSS) 3-202 
Control Information (CVWL) 3-202 
Geographic Filter 3-202 
Input Data (CSS), Example 3-201 
Input Data (CVWL), Example 3-202 

Introduction to Display Instructions: 
Input Data Streams, Explanation 3-199 
Purpose of Instructions 3-199 
Refresh Memory, Definition 3-199 

Introduction to Logout, ROS Tests and FLTs 4-21 
Introduction to RPSB: 

Current Data, Example 3-199 
Descriptor Table, Definition 3-199, 3-200 
History Data, Example 3-199 
Input Data, Radar Class Type 3-199 
Input Data, Single SymbolClass Type 3-199 
New Descriptor Table, Building of 3-200, 3-201 
New Descriptor Table (NOT), Definition 3-200 
Old Descriptor Table (ODT), Definition 3-200 
Work Control Table, Explanation 3-200 

·Work Control Table Orders, Listing 3-200 
IOCE-to-CE Interface B-7 
IPL: 

Subsystem 4-5 
System 44 

K-Register: 
Input 248 
Output 2-48 

LAL (see Local Storage Address Registers) 
LAMP TEST/ALLOW INDICATE Pushbutton 4-17 
LAR (see Local Storage Address Registers) 
LM Register: 

Input 244 
Output 244 

Load Address, LA (41); Lgic, RX 3-157 
Load and Test, LTDR (22); Fl Pt, RR (Long) 3-68 
Load and Test, LTER (32); Fl Pt, RR (Short) 3-68 
Load and Test, LTR (12); Fix Pt, RR 3-29 
Load Chain, LC (52) 3-228 
Load Complement, LCDR (23); Fl Pt, RR (Long) 3-69 
Load Complement, LCER (33); Fl Pt, RR (Short) 3-69 
Load Complement, LCR (13); Fix Pt, RR 3-29 
Load Halfword, LH ( 48); Fix Pt, RX 3-28 
Load Identity, Ll (OC) 3-187 
LOAD Indicator 4-17 
Load, L (58); Fix Pt, RX 3-27 
Load, LD (68); Fl Pt, RX (Long) 3-67 

7201-02 FETOM (5/72) X-5 



Page of SFN-0201-1 
Revised by TNL: GN31-0020 

Load, LDR (28); Fl Pt, RR (Long) 3-67 
Load, LE (78); Fl Pt, RX (Short) 3-66 
Load, LER (38); Fl Pt, RR (Short) 3-66 
Load, LR (18)iFix Pt, RR 3-27 
Load Multiple, LM (98); Fix Pt, RS 3-31 
Load Negative, LNDR (21); Fl Pt, RR (Long) 3-71 
Load Negative, LNER (31); Fl Pt, RR (Short) 3-70 
Load Negative, LNR (11); Fix Pt, RR 3-30 
Load Positive, LPDR (20); Fl Pt, RR (Long) 3-70 
Load Positive, LPER (30); Fl Pt, RR (Short) 3-70 
Load Positive, LPR (10); Fix Pt, RR 3-30 
Load Preferential-Storage Base Address, LPSB (Al) 3-189 
Load PSW, LPSW (82) 3-180 
LOAD Pushbutton 4-4 
Local Storage: 

Addressing and Data Flow 2-52 
Data Transfer Controls 2-5 2 
LS Timing 2-55 
Read LS Operation 2-55 
Write LS Operation 2-55 

Logical Data D-10 
Logical Instructions: 

Condition Codes 1-7 8 
Data Flow 1-77 
Instruction Formats 1-77 
Program Interruptions 1-78 

Logout: 
Introduction 4-3 2 
Operational Analysis: 

Hardware-Controlled Sequence 4-32 
ROS Controlled Sequence 4-33 

Logout Controls, Scan Logic 4•30 
LOGOUT Pushbutton 4-16 

Machine Check Interruption: 
Discussion 1-6 
Effect on I-Fetch 3-15 

MAIN STORAGE SELECT and LOAD UNIT Switches 4-4 
Maintenance Facilities: 

Diagnose Instruction 1-91 
Diagnostic Programs 1-92 
Logout 1-91 
Marginal Checking 1-92 
Microprogram Diagnostic 1-92 
Ripple Tests 1-92 
ROS Tests and FLTs 1-91 

MANUAL Indicator 4-17 
Marginal Checking 4-5 0 
Mark Triggers 2-34 
Masking, Interruption 1-12 
MCW: 

Diagnose (83) 3-185 
Diagnose Instruction MCW for CE in State 0 4-19 
Diagnose Instruction MCW for CE in State 3, 2 or 1 
FLT MCW 4-21 
ROS Test MCW 4-20 

MCW Register 2-38 
Mixer 2-44 
Move, MVC (D2); Lgic, SS 3-146 
Move, MVI (92); Lgic, SI 3-146 
Move Numerics, MVN (Dl); Lgic, SS 3-147 
Move with Offset, MVO (Fl); Dec, SS 3-143 
Move Word, MVW (D8): 

Source and Destination on Doubleword Boundary 
Source and Destination on Word Boundary 3-190 

X~6 (5/72) 

4-20 

3-190 

Source on Doubleword Boundary, Destination on 
Word Boundary 3-191 

Source on Word Boundary, Destination on Doubleword 
Boundary 3-191 

Move Zones, MVZ (D3); Lgic, SS 3-148 
Multiple Computing Element (CE) Instructions: 

Condition Codes 1-89 
Data Flow 1-87 
Delay, DLY (OB): Simplified Diagram 3-188 
Insert ATR, IATR (OE): Simplified Diagram 3-187 
Instruction Formats 1-87 
Introduction 1-87 
Load Identity, Ll (OC): Simplified Diagram 3-187 
Load Preferential-Storage Base Address, LPSB (Al): Simplified 

Diagram 3-189 
Move Word, MVW (D8): Simplified Diagram 3-190 
Program Interruptions 1-89 
Set Address Translator, SATR (OD): Simplified Diagram 3-193 
Set Configuration, SCON (01): Simplified Diagram 3-196 
Test and Set, TS (93): Simplified Diagram 3-197 

Multiple Selection Fixed-Point 3-40 
Multiply, Fixed-Point: 

Multiple Selection 3-40 
Partial Product, Formation of 3-41 
Partial Product Bits, Extraction of 3-41 
RR Format Examples 3-42 (Fig. 3-6), 3-43 (Fig. 3-7) 
Termination 3-41 

Multiply, Floating-Point: 
Data Flow and Algorithm 3-90 
Example 3-92 

Multiply Halfword, MH (4C); Fix Pt, RX 3-44 
Multiply, M (SC); Fix Pt, RX 3-44 
Multiply, MD (6C); Fl Pt, RX (Long) 3-95 
Multiply, MDR (2C); Fl Pt, RR (Long) 3-95 
Multiply, ME (7C); Fl Pt, RX (Short) 3-94 
Multiply, MER (3C); Fl Pt, RR (Short) 3-93 
Multiply, MP (FC); Dec, SS 3-118 
Multiply, MR (IC); Fix Pt, RR 3-40 

N-Register: 
Input 2-49 
Output 2-49 

NDT (see New Descriptor Table) 
New Descriptor Table (NDT), Definition 3-200 
9020D Central Computer Complex (CCC) 1-1 
9020E Display Channel Processor (DCP) 1-2 
Number Representation: 

Decimal D-9 
Fixed-Point D-5 
Floating-Point D-6 

Obtaining New Instructions from Main Storage 
ODT (see Old Descriptor Table) 
Old Descriptor Table (ODT), Definition 3-200 
Operands: 

Effectively Addressed D-3 
Immediate D-4 
In Local Storage D-4 

OR Function, Discussion 3-152 
OR, 0 (56);Lgic, RX 3-153 
OR, OC (D6); Lgic, SS 3-154 
OR, 01 (96); Lgic, SI 3-153 
OR, OR (16); Lgic, RR 3-153 
Orders, Work Control Table, Listing 3-200 

1-44 



Pack, PACK (F2); Dec, SS 3-139 
Page Controls 1-35 
P AM/TCU /SCU to CE Interface B-9 
Parallel Adder: 

Arithmetic Function Sequence 2-74 
Carry Lookahead: 

Bit-Level Carry-Into Logic 2-73 
Group-Level Carry-Into Logic 2-73 
Group-Level Carry Logic 2-70 
Section-Level Carry-Into Logic 2-70 
Section-Level Carry Logic 2-70 

Convert-to-Decimal Operation 2-77 
Data Input 2-65 

Error Checking: 
Full-Sum Checking 2-77 
Half-Sum Checking 2-77 

Full-Sum Development 2-74 
Individual Bit-Pos Logic: 

Carry-into-Bit Logic 2-68 
Full-Sum Logic 2-69 
Half Adder 2-68 
Latch-Shifter Logic 2-69 

Parity-Predict Logic 2-76 
Set Condition Code 2-7 8 

Partial Product Bit Extraction, Fixed-Point 3-41 
Partial Product Formation, Fixed-Point 3-41 
Partial Quotient Bit Determination, Fixed-Point 3-48 
Postnormalization D-9 
Power 1-92 
Preferential Storage Area: 

Introduction 1-13 
Load Preferential-Storage Base Address, LPSB (Al) 3-189 
Store Preferential-Storage Base Address Register, 

SPSB (AO) 3-188 
Preferential Storage Area Assignment (see Load Preferential
Storage Base Address, LPSB (A 1) 

PreferentialStorage Base Address Register (PSBAR): 
Discussion 1-31 
Loading of 3-189 
Storing of 3-188 

Prefetching of Operands 1-41 
Prenormalization D-9 
Processor Interrupt Register (PIR) 2-44 

Program Interruptions: 
Brancing Instructions 1-82 
Decimal Instructions 1-73 
Display Instructions 1-91 
Fixed-Point Instructions 1-59 
Floating-Point Instructions 1-67 
Input/Output Instructions 1-87 
Logical Instructions 1-7 8 
Multiple CE Instructions 1-89 
Status Switching Instructions 1-85 

Program Status Word, (PSW): 
General 1-8 
Program States: 

Discussion 1-10 (Table 1-2) 
Interruptable/Masked 1-11 
Interruption Masking 1-12 
Operating/Stepped 1-11 
Problem/Supervisor 1-11 
Running/Wait 1-11 

PSBAR: 
Counter 2-39 
Discussion 2-38 

Logical 2-39 
Physical 2-39 

Page Of SFN-0201-1 
Revised by TNL: GN31-0020 

PSBAR, Preferential Storage Base Address Register 1-31 
PSW (see Program Status Worci) 
PSW Register 2-36 
PSW Register, CE Control 1-27 
PULSE MODE Switch: 

COUNT Position 4-15 
PROC Position 4-15 
TIME Position 4-15 

Pushbutton Switch (.see Specific Switch) 

Q-Register: 
B-Field and D-Field Transfer: 

B-Field Transfer 2-20 
D-Field Transfer 2-21 
General 2-20 

Data Flow 2-19 (Fig. 2-14) 
General 2-19 
Input 2-17 
Op-Code Transfer 2-20 

R-Register: 
General 2-21 
Input 2-21 
Output 2-21 
Predecoding 2-21 

Radar Instructions (see Display Instructions) 
RATE Switch: 

Description 4-9 
Instruction Step 4-10 
Process 4-10 
Single Cycle 4-10 
Single Cycle Storage Inhibit Position 4-10 

Read Direct, RDD (85) 3-185 
Read Only Storage (see ROS) 
Refresh Memory, Definition 3-199 
REGISTER SELECT Switch 4-12 
REGISTER SET Switch 4-12 
Repack Symbols, RPSB (OF): 

Delete Orders, Explanation 3-209 
Descriptors Section 3-209 
Entry to Execution 3-209 
General 3-204 
GPRs, FPRs, Contents of 3-205 
Insert Order, Explanation 3-210, 3-211 
Interrupt Handling and Recovery 3-213, 3-214 
INTRP ID 3-205, 3-209 
Mixer Micro-orders 3-211, 3-213 
Modify Order, Explanation 3-210 
Move History Descriptors, Explanation 3-210 
Output Doubleword, Assembly 3-213 
Radar Class/Type 3-208, 3-209 
Simplified Diagram 3-204 
Single Symbol Class/Type 3-208 
Symbols Section 3-211 
Time Clock Updating 3-214 
Work Control Table (WCT) 3-207, 3-208 

Repeat Instruction Switch: 
Repeat Multiple Instruction 4-11 
Repeat Single Instruction 4-11 

Resident Micro-diagnostic 4-21 
Ripple Tests 4-50 
ROS: 

Addressing 2-8 
Bit Capacitors 2-10 (Fig. 2-8) 

7201-02 FETOM (5/72) X-7 



Page of SFN-0201-1 
Revised by TNL: SN31-00iO 

Read-Only Storage Address Register 2-9 
Sense Line Layout 2-9 (Fig. 2-7) 

ROS Addressing: 
Read-Only Storage Address Register (ROSAR): 

Introduction 2-9 
ROSAR (0-5) 2-11 
ROSAR (10) 2-12 
ROSAR (6-9) 2-12 
ROSAR (11) 2-12 
RO SAR (0-10): 

Array Drivers 2-13 
Decoding 2-12 
Select Lines 2-12 
Strobed Drive Lines 2-12 

ROSAR (11) Function 2-13 
Sense Amplifiers 2-13 

ROS Control of CE 1-24, 1-25 (Fig. 1-6) 
ROS Data Flow: 

General 2-13 
Maintenance Aids: 

Discussion 2-14 
Previous ROS Address Registers 2-15 
PROSAR A & PROSAR B Alternator 2-15 
ROS Back-up Register 2-15 
ROS Error Checking 2-17 
ROSAR Latches 2-14 
Scan Mode Operations 2-17 

ROS Data Register and ROSDR Latches 2-13 
ROS Decoders 2-13 · 
ROS Sense Latches 2-13 
ROS Timing 2-14 

ROS Data Flow, ROS Control Field Decoder 2-14 (Fig. 2-10) 
ROS Test MCW 4-20 
ROS Tests: 

Hardcore Test 4~37 
Initial IPL Highlights 4-36 
Introduction 4-34 
Operational Analysis 4-35 
ROS Bit Tests 4-39 
Summary of Hardcore Tests 4-38 
Theory of Hardcore Tests 4-38 

ROS TRANSFER Pushbutton 4-12 
RR I-Fetch: 

Basic 3-5 
2-Cycle 3-24 

RS I-Fetch: 
Basic 3-6 
2-Cycle 3-25 

RX I-Fetch: 
Basic 3-6 
Forced-Cycle 3-25 

SC-to-CE Interface B-9 · 
Scan Logic Functional Units: 

Address Sequencer 4-25 
Address Sequencer Decoder · 4-25 
CE Scan/IOCE Interface 4-31 
Control Triggers 4-31 
FLT Clock Highlights 4-23 
FLT Counter: 

Cycle Counter 4-28 
FLT Counter Decrementing 4-27 
Input 4-27 

Input and Output 4-24 
ROS Test Sequencer 4-28 
Scan Clock Highlights 4-22 

X-8 (5/72) 

Scan Counter Decrementer 4-24 
Scan Counter Latches and Decrementer 4-23 
Scan Mode Control of ROS 4-31 
Scan-Out Bus: 

Data Path 4-29 
Logout Controls 4-30 
Scan Out S and T 4-30 

Scan Timing 4-22 
Scan Stop-CE-Clock Logic 4-30 
Storage Address Generator 4-26 

Scan Mode, Control of ROS 4~31 
SCAN MODE REPEAT Switch 4-16 
SCAN MODE ROS/PROC/FLT Switch 4-16 
SCI, (Storage Control Interface) .1-33 
SE-CE Interface B-3 

' Select Register: 
General 2-43 
Input 2-43 
Output 2-43 

Sequencer Decoder, Scan Logic Address 4-25 
Sequencer, ROS Test 4-28 
Sequencer, Scan Logic Address 4-25 
Sequencers, I-Fetch 3-12 

Serial Adder: 
Adder Operation 2-56 
Controls 2-56 
Functional Description: 

Binary Add 2-59 
Decimal Operation 2-59 
Error Detection 2-65 
General 2-59 
Logical Functions 2-60 
Parity Correction 2-60 

General 2-56 
Input and Output 2-56 

Set Address Translator, SATR (OD): 
Address Translation, Introduction to 3-192 
General 3-192 

Issuing CE: 
ATR Slot Assignments 3-194 
Response Bits 3-194 
Setting Issuing CEs ATR 3-194 
Simplified Diagram 3~193 

Receiving CE 3-195 
Set Configuration, SCON (01) 3-196 
SET IC Pushbutton 4-9 
Set Program Mask, SPM (04) 3-181 
Set Storage Key, SSK (08) 3-182 
Set System Mask, SSM (80) 3-181 
Shift Left Double, SLDA (8F); Fix Pt, RS 3-60 
Shift Left Double, SLDL (8D); Lgic, RS 3-164 
Shift Left Single, SLA ( 8B) ; Fix Pt, RS 3-5 8 
Shift Left Single, SLL (89); Lgic, RS 3-164 
Shift, Logical Instructions; Discussion 3-164 
Shift Right Double, SRDA (8E); Fix Pt, RS 3-63 
Shift Right Double, SRDL (8C);Lgic, RS 3-165 
, Shift Right Single, SRA (8A); Fix Pt, RS 3-62 
Shift Right Single, SRL (88); Lgic, RS 3-165 
SI I-Fetch: 

Basic 3-6 
2-Cycle 3-25 

SS I-Fetch: 
ASC Test 3-9 
Detailed Description 3-9 
General 3-7 



IC(21,22) = 00 at End Op 3-11 
IC(21,22) = 01 at End Op 3-12 
IC(21,22) = 10 at End Op 3-12 
IC(21,22) = 11 at End Op 3-12 

ST Register: 
Input 2-29 
Output 2-33 

Start 1/0 Processor, SIOP (9A) 3-191 
START Pushbutton 4-4 
STATE THREE, TWO, ONE, ZERO Indicators 4-18 
States, Element 1-8 
States, Program 1-10 
Status and Control Triggers: 

STAT A 2-79 
STATB 2-79 
STAT C 2-81 
STAT D 2-81 
STATE i-82 
STATF 2-82 
STATG 2-82 
STATH 2-82 

Status Switching Instructions: 
Condition Codes 1-86 
Data Flow 1-83 
Diagnose (83) 3-18S 
Insert Storage Key, ISK (09) 3-183 
Instruction Formats 1-83 
Load PSW, LPSW (82) 3-180 
Program Interruptions 1-8S 
Read Direct, RDD (8S) 3-18S 
Set Program Mask, SPM (04) 3-181 
Set Storage Key, SSK (08) 3-182 
Set System Mask, SSM (80) 3-181 
Supervisor Call, SVC (OA) 3-181 
Write Direct, WRD (84) 3-184 

Sterile Area Filters 3-203, 3•204 
Stop Loop 4-3 
STOP Pushbutton 4-4 
Storage Addressing: 

Address Translation Register (ATR) 1-31 
Preferential Storage Base Address Register (PSBAR) 1-31 

Storage Area, Preferential 1-S 
Storage Assignment (see Set ATR, SATR (OD) 
Storage Control Interface: 

Address Decode and Gating 2-9S 
Basic Control and Timing Considerations 2-91 
Basic Interface Considerations 2-8S 
Basic Operating Considerations 2-89 
Basic Operational Sequence 2-93 
CE Storage Request 1-3S 
Converting SAB Parity 2-100 
Detection and Handling of Invalid Address 2-97 
Distributed Simplex Lines 2-87 
Initial Handling of Requests 2-93 
Insert-Key Operation 2-101 
Major Interface Lines 1-33 
Multiple Driver Simplex Lines 2-89 
Page Controls 1-3S, 2-99 
PSBAR Operations 2-99 
Resetting of SCI Logic 2-100 
SCI Error Handling 2-98 
Select to Storage 2-96 
Simplex Control Lines 2-86 
Single-Cycle Operation 2-102 
Stopping the CE Clock 2-96 

Page of SFN-0201-1 

Storage Timeout 2-98 
Store Operation 2-101 
Test-and-Set Operation 2-102 

Revised by TNL: SN31-0020 

Three- and Four-Cycle Fetch Operation 2-101 
Storage Control Set-Key Operation 2-102 
Storage Protection Key Assignments 3-183 (Fig. 3-27) 
Storage Protection Key, Setting of 3-182 
Storage Requests, CE 1-3S 
Storage-Ripple Microprogram: 

Storage-Ripple Display Function 4-13 
Storage-Ripple Store Function 4-13 

STORAGE SELECT Switch 4-8 
Store Character, STC (42); Lgic, RX 3-1S6 
Store Halfword, STH (40); Fix Pt, RX 3-S6 
Store Multiple, STM (90); Fix Pt, RX 3-S7 
Store Preferential-Storage Base Address Register, SPSB 

(AO) 3-188 
STORE Pushbutton 4-11 
Store, ST (SO); Fix Pt, RX 3-SS 
Store, STD (60); Fl Pt, RX (Long) 3-107 
Store, STE (70); Fl Pt, RX (Short) 3-106 
Subsystem IPL 4-S 
Subsystem PSW Restart 4-13 
Subtract Halfword, SH ( 4B); Fix Pt, RX 3-36 
Subtract Logical, SL (SF); Fix Pt, RX 3-37 
Subtract Logical, SLR (lF); Fix Pt, RR 3-37 
Subtract Normalized, SD (6B); Fl Pt, RX (Long) 3-84 
Subtract Normalized, SDR (2B); Fl Pt, RR (Long) 3-83 
Subtract Normalized, SE (7B); Fl Pt; RX (Short) 3-83 
Subtract Normalized, SER (3B); Fl Pt, RR (Short) 3-82 
Subtract, S (SB); Fix Pt, RX 3-36 
Subtract, SP (FB); Dec, SS: 

Complement Add Sequence 3-llS 
Discussion 3-111 
GIS 3-112 
True Add Sequence 3-113 

Subtract, SR (lB); Fix Pt, RR 3-3S 
Subtract Unnormalized, SU (7F); Fl Pt, RX{Short) 3-8S 
Subtract Unnormalized, SUR (3F); Fl Pt, RR (Short) 3-84 
Subtract Unnormalized, SW (6F); Fl Pt, RX (Long) 3-86 
Subtract Unnormalized, SWR (2F); Fl Pt, RR (Long) 3-8S 
Supervisor Call Interruption: 

Discussion 1-7 
Effect on I-Fetch 3-16 

Supervisor Call, SVC (OA); Stat Sw, RR 3-181 
SVC, Supervisor Call (OA) 3-181 
Switches, ADDRESS 4-S 
Switches, DATA 4-S 
System Coding D-1 
System Configuration (see Multiple Computing Element 

Instructions) 
SYSTEM Indicator 4-17 
SYSTEM INTERLOCK Switch 4-3 
System IPL 4-4 
System PSW Restart 4-13 
SYSTEM RESET Pushbutton 4-3 

lOS 2 Adapter: 
CANCEL Pushbutton C-21 
CE Panel: 

Lights C-23 
Switches C-21 

Channel Interface C-1 
Channel Interface Signal Sequence: 

Data Service C-2 

7201-02 FETOM (S/72) X-9 



Page of SFN-0201-1 
Revised by TNL: GN31-0020 

End Sequence C-2 
Initial Selection C-1 

Commands: 
Control Alarm (No-Op) C-6 
Control No-Op C-6 
Read C-6 
Sense C-6 
Test 1/0 C-6 
Write C-6 
Write-ACR C-6 
Write-ICR C-6 

Control No-Op C-6 
Data Flow: 

Address-in, Sense, and Status Bytes C-8 
Controls C-7 
Read Data Path C-8 
Write Data Path C-7 

Data Register C-10 
ENTER Pushbutton C-21 
Function Decoder C-16 
Functional Units: 

Data Register C-10 
Function Decoder C-16 
Keyboard Translator C-14 
Printer Translator C-14 
Read/Write Clock C-11 
Shift Controls C-14 
1052 Printer-Keyboard C-18 

General or Selective Reset C-31 
Halt 1/0 C-30 
Interface: 

Channel C-2 
1052 C-2 

Keyboard Translator C-14 
NOT READY Pushbutton C-21 
Power Indicator C-21 
Printer C-18 
Printer-Keyboard C-18 
Printer Translator C-14 
Priority C-6 
Read: 

Data Transfer Sequence C-28 
Ending Sequence C-29 
Initial Selection Sequence C-28 

Read Operation C-11 
Read/Write Clock C-11 
READY Pushbutton C-21 
REQUEST Pushbutton C-21 
Sense Command: 

Ending Sequence C-30 
Initial Selection Sequence C-29 

X-10 (5/72) 

Sense Byte Transfer Sequence C-30 

Shift Controls C-14 
Status Byte Composition C-29 
1052 Interface C-2 
1052 Printer/Keyboard: 

Keyboard C-18 
Printer C-18 

Testl/O C-30 
Write: 

Data Transfer Sequence C-26 
Ending Sequence C-27 
Initial Selection Sequence C-26 

Write-ACR C-28 
Write-ICR C-27 
Write Operation C-10 

Test and Set, TS (93) 3-197 
TEST Indicator 4-17 
Test 1/0, TIO (9D); 1/0, SI 3-179 
TEST Switch 4-3 
Test Under Mask, TM (91); Lgic, SI 3-156 
360 MODE Switch 4-16 
Timing, Scan 4-22 
Translate and Test, TRT (DD); Lgic, SS 3-158 
Translate, TR (DC); Lgic, SS 3-157 
Translation, Address 1-4 
Truncation, Weather Line 3-225~ 3-226 

Universal Instruction Set D-2 
Unpack, UNPK (F3); Dec, SS 3-141 
USASCII-8 D-1 

WAIT Indicator 4-17 
WCT (see Work Control Table) 
Weather Line Truncation 3-225, 3-226 
Word Overlap: 

Decimal Instructions, General 3-109 
Move With Offset, MVO (Fl); Dec, SS 3-143 
Pack, PACK (F2); Dec, SS 3-139 
Unpack, UNPK (F3); Dec, SS 3-141 

Work Control Table (WCT): 
Explanation 3-200 
Listing 3-200 
Typical Sequence 3-200 

Write Direct, WRD (84); Stat Sw, SI 3-184 

XY Parity Prediction (see Mixer) · 
XY Register: 

Input 2-46 
Output 2-46 

Zero and Add, ZAP (F8); Dec, SS 3-117 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	016
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	1-54
	1-55
	1-56
	1-57
	1-58
	1-59
	1-60
	1-61
	1-62
	1-63
	1-64
	1-65
	1-66
	1-67
	1-68
	1-69
	1-70
	1-71
	1-72
	1-73
	1-74
	1-75
	1-76
	1-77
	1-78
	1-79
	1-80
	1-81
	1-82
	1-83
	1-84
	1-85
	1-86
	1-87
	1-88
	1-89
	1-90
	1-91
	1-92
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	3-128
	3-129
	3-130
	3-131
	3-132
	3-133
	3-134
	3-135
	3-136
	3-137
	3-138
	3-139
	3-140
	3-141
	3-142
	3-143
	3-144
	3-145
	3-146
	3-147
	3-148
	3-149
	3-150
	3-151
	3-152
	3-153
	3-154
	3-155
	3-156
	3-157
	3-158
	3-159
	3-160
	3-161
	3-162
	3-163
	3-164
	3-165
	3-166
	3-167
	3-168
	3-169
	3-170
	3-171
	3-172
	3-173
	3-174
	3-175
	3-176
	3-177
	3-178
	3-179
	3-180
	3-181
	3-182
	3-183
	3-184
	3-185
	3-186
	3-187
	3-188
	3-189
	3-190
	3-191
	3-192
	3-193
	3-194
	3-195
	3-196
	3-197
	3-198
	3-199
	3-200
	3-201
	3-202
	3-203
	3-204
	3-205
	3-206
	3-207
	3-208
	3-209
	3-210
	3-211
	3-212
	3-213
	3-214
	3-215
	3-216
	3-217
	3-218
	3-219
	3-220
	3-221
	3-222
	3-223
	3-224
	3-225
	3-226
	3-227
	3-228
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	D-09
	D-10
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	X-09
	X-10

