Reference Manual
IBM 7070 Series Programming Systems

Autocaoder

EM Reference Manual

IBM 7070 Series Programming Systems
Avutocoder

© 1961 by International Business Machines Corporation

Contents

Introduction ...
Coding Sheetl

Parametersoooiiiiii
Address Typescovvvinniininn...
Field Definition
Address Adjustment
Index Wordscoovvivnnennnnnnnnn..
Flectronic Switches
Input/Output Unit and Alteration Switch

Designations
Continuation Cards

Reservation of Index Words and Electronic
Switches .- i

Declarative Statements

DIOCS — Define Input/Output Control Sys-
tem ...

DTF — Define Tape File
DUF — Descriptive Entry for Unit Records.
DA —Define Area
CODE ... e
DC — Define Constant
DLINE — Define Line
DRDW — Define Record Definition Word. .
DSW — Define Switch
EQU —Equateccoininnn,

Control Statements
ORIGIN Control and LITORIGIN Control.
BRANCH Controlcoovn.n.
END Controlo ...
XRESERVE Control and SRESERVE Con-

ol .
XRELEASE Control and SRELEASE Con-
trol .o

OPEN ... oo

8
8
12
13
14
16

16
17

18

20

22
26
29
32
50
54
65
77
80

87
88
95
97

99

Appendix B:

Appendix C:

Appendix D:

Appendix E:

PUT 115
PUTX e 118
CLOSE ... 120
END ... 122
ARITH — Arithmetic Operations 123
COMP — Compare and Branch 144
CYCLE — Cycle Branch and RECYC — Re-
set Cycleooiiiii, 154
DECOD — Branch on Code Value 161
LOGIC — Logical Decisions 164
ZSIGN — Branch on Test for Zero and Sign.. 178
SETSW —Set Switch 185
ZERO —Zero Storage 188
FILL —Fill Storage 196
EDMOYV — Edit and Move Data 205
MOVE —Move Data 213
SHIFT — Shift and Store 221
SNAP — Memory Print-Out 225
The Processoroiiia... 229

Appendix A: Relationship of 7070/7074

Avutocoder to Basic Auto-
coder and Four-Tape
Autocoder 239

Differences Among 7070/
7074 Autocoder Systems ... 240

Reserved Index Words 243

7070/7074 Operation Codes
by Autocoder Mnemonics 244

Note on Optional Charac-

ters - 252
Appendix F: Glossary 253
Appendix G: Illustration of Autocoder

Programming -« -----«-... 259
Appendix H: Index of Messages - 268

introduction

1BM 7070/7074 Autocoder is a symbolic programming system designed to simplify
the preparation, correction, and interpretation of programs for the 1M 7070 and
7074 Data Processing Systems. This manual is a reference text and contains
information to enable the programmer to use the Autocoder system.

Autocoder is a component of the 7070/7074 Compiler Systems Tape and forms
an interlocking system with ForTRAN and the Report Program Generator. The
Compiler Systems Tape may be obtained by sending a full reel of magnetic tape
to the BM Program Librarian. The compilers will be written on the tape which
will be returned. It is suggested that a duplicate of the tape be made as soon
as it is received so that one copy of the program can be kept in reserve. The
extra copy should be used only in case the working copy becomes unusable. The
reel of magnetic tape for the 7070/7074 Compiler Systems Tape should be sent to:

IBM 7070/7074 Program Librarian
International Business Machines Corporation
590 Madison Avenue

New York 22, New York

This manual assumes that the programmer is familiar with the methods of data
handling and the functions of instructions in the 7070/7074 Data Processing
System. This information is included in the 1BM Reference Manual “7070 Data
Processing System,” form A22-7003-2.

The 7070/7074 Autocoder system is designed for use in installations which have
a minimum of six 729 Model IV (or Model II) tape units and a machine with
5,000 words of core storage. This minimum configuration permits compilation
of programs whose input is in the form of a card image tape and whose output
is to be written on tapes for printing and/or punching off-line. The following
additional equipment may be added to perform the indicated operations:

1. 1BM 7500 Card Reader is necessary, in addition to the six tape units, if any
input is in the form of punched cards.

2. 1M 7550 Card Punch is necessary if on-line punching of output is desired.
3. 1BM 7400 Printer is necessary if on-line printing of output is desired.

4. As many as four additional tape units may be used if the input is to be on
more than one tape unit and/or if more than one program is to be compiled
during a single machine run.

The specific machine requirements for each type of run which may be made
using the Compiler Systems Tape are included in the 7070/7074 Data Processing
System Bulletin “mByM 7070/7074 Compiler Systems: Operating Procedure,” form
]J28-6105. Detailed operating instructions for each run, as well as the control
cards necessary, are also included in this bulletin.

7070/7074 Autocoder is one of the powerful programming languages of today.
Such languages have steadily evolved from languages requiring highly codified
instructions closely related to the arithmetic capacities of the machine.

The first step in the evolution was the introduction of symbolic programming
systems, such as 7070/7074 Basic Autocoder, in which a symbolic instruction is

Introduction 1

written in place of each machine-language instruction. The programmer is thus
able to code more easily and with greater meaning and the chance of errors is
materially reduced.

The introduction of macro-instructions was a further step towards simplifying
programming and reducing the time required to write a program. A macro-
instruction is a symbolically-coded instruction which will produce a group of
machine-language instructions. Two types of macro-instructions exist, substitu-
tion-type and generator-type.

The macro-instructions handled by 7070/7074 F our-Tape Autocoder are the
substitution-type. The processor completes a “skeleton” routine by inserting
parameters from the macro statement operand into this routine. The macro
statement is then replaced by the completed routine. Four-Tape Autocoder also
accepts symbolic machine instructions.

Autocoder, in addition to accepting symbolic machine instructions, handles
generator-type macro-instructions. The task of compiling the proper sequence
of instructions for the given macro statement is performed by the appropriate
macro generator in the Library portion of the Compiler Systems Tape. In gen-
eral, the operand of each macro-instruction must conform to a basic format.
However, Autocoder also accepts certain macro-instructions with operands
whose formats have not been pre-established “symbol by symbol.” For example,
the operand of aARiTH or of LociC contains an “expression,” the value of which is
to be computed or the truth or falsity of which is to be determined. The macro
generators scan the macro statements and compile the corresponding sequence
of symbolic machine instructions; the operand need only conform to the rules
of format which have been established and must not exceed certain specified
lengths. Numerous illustrations of source program macro-instructions and their
corresponding series of generated machine instructions are included with the
macro-instructions under “Imperative Statements.”

Macro-instructions to handle input/output operations are included in both the
Autocoder and Four-Tape Autocoder systems. With certain restrictions, the
source-program input/output statements are written the same for both Auto-
coders. However, the statements are handled differently by the processors of
the two systems. In Four-Tape Autocoder, the processor substitutes the com-
pleted “skeleton” routine for the macro statement; in Autocoder, the macro-
instruction is processed by means of a macro generator. A description of the
input/output macro-instructions is included in this manual; a full discussion can
be found in the 7070 Data Processing System Bulletin “sm 7070 Input/Output
Control System,” form J28-6033-1. Input/output operations are estimated to
constitute an average of 40% of a program; the ability to handle these operations
by means of macro-instructions represents a substantial gain in programming
simplicity and efficiency.

The Autocoder language may be extended by adding new macro-instructions.
Appropriate macro generators may be added to the system to process the newly-
created macro-instructions. The necessary generator is written in the Autocoder
language according to the instructions presented in the 7070 Data Processing
System Bulletin “Additions to the 1M 7070 Autocoder; Writing Macro Genera-
tors for the 1M 7070 Autocoder,” form J28-6053. The generator is then com-
piled and entered on a new Compiler Systems Tape and the corresponding
macro-instruction may then be included in any program.

While macro-instructions provide the programmer with a set of powerful tools
to solve problems without becoming enmeshed in the tedious details of analysis

and of storage assignment, the programmer may still exercise direct control over
the minor details of his program, should it be necessary. Autocoder accepts and
processes all symbolic machine instructions as well as macro-instructions; in fact,
any program written in Basic Autocoder can be assembled without change by
Autocoder. In addition, storage allocation can be specified by a set of control
statements which have been provided.

In summary, the Autocoder system provides a number of advantages by intro-
ducing a powerful macro language. The programming and processing advan-
tages are as follows:

1.

10.

Macro language eliminates the need for breaking down many frequently
encountered tasks into a number of small steps by turning these tasks over
to macro generators.

Full use is made of the symbolic programming devices of the system. The
need for attention to the details of data flow, actual storage allocation, and
decimal-point positioning is eliminated.

The programmer is allowed to write program steps that are meaningful in
terms of the problem to be solved, rather than in terms of machine
capacities.

The program may be easily broken into meaningful segments, allowing for
greater flexibility and accuracy in reprogramming or recombining of pro-
gram segments.

The program is made much more readable.
Programming speed is materially increased.

Programming is much easier to learn because fewer instructions must be
written by the programmer and because the need for concern with many
machine details is eliminated.

Macro language reduces programming errors by making use of tested macro
generators rather than many individual machine instructions.

Errors in the input statement are detected by macro generators themselves;
a message is issued indicating the location of the error and, generally, the
type of error committed.

Programs are largely independent of individual machine characteristics and
therefore are easier to transfer from one system to another.

Introduction 3

1 F¥noI

FORM X28-6417-2

IBM PRINTED IN U.S.A,
®

Program 7070 AUTOCODER CODING SHEET Identificaﬁonﬁ

Programmed by Page No.LL_| of
Date 12

. OPERAND Basi d
i t asic Autocoder—b’ Autocoder
"SLmeS 6 Labe‘ 1516 pera 'gg 21 25 30 35 40 45 50 85 60! 63 10 7

OAIK U U N S Y S S S [R WA WS UNES TA WA DA WU WS WS TR VU S G G SO 1O W S GNS U S S S S U S S T S G U G S S ¥ U U L U S S G S N S SR Y
02 P S W S NI S S L4 1 IR T TSR U YA RN TSR U WA WA WU N WO T WY U NS U TR W SO VS U U U WS TNAE S A S S VA S SN S T A U WD NS Y S WU N S W S S
OA3 NS S S T G S 'Y P S R GRS W U WA G WU VA WAL S S SN VA U WS WU S SR W VN U S SO S SN SN SR U S SN S S N SN N SH SRRt T G R U S S S U U S SR
014 U W SN GUND W G S S | PRI S St Y WS VAN WS U VU SHN DU NN VN WY VNI S U U U U TN N W U SN S SN SN SN S NN GH (N W SN GH S S U SR G S T S SR W U S U W W T S S e e
0‘5‘ U S N G S T S S B W SRR VST DD WY WSS WY VAU U N SO SO SN U W NS SN WA G WU Y SO SHD SN WA NS W T VAN S S SN O S N SR S N | N S N N N T T W S T G T S
OLSI PR VU VY W S S B bk d VR W WA U W WY VO VAU T U S N S S S IO G GRS UUNY R G G U (NS W S S N SUNS S S S S Y S A G F U S WS W TS T SO S T W S S S
OA7I I W S W T S S B TS S S GO VR W A IS S U W T WA WY TS TS U W WS SN SN I VUMY SN U RS U N S SR SRS W W SHI T S S N S Y TR VA U0 N W S S T G T S S S Y
0.8. IS S WU N S S bk L YOS WU WO W N S TS W N W T S S UODY TS T S SN U VO U SR U SUN TN SN S S RN U S S SR S R S T IR S S S N G SRS S WY S S SR
O‘9l A GRS U S WY SN0 S WY R WY Y SN VRS VNS W WY S VO S U WS TN U S WS U T SIS S U W WO SN S U S S S SR SN S SHN S S S S G YD G U N TS W S G S U S
IAOA PR SN SR N N SR PR TR WSS NN WY GRS WY WS WA U WO TSV WY SN WO T S S S0 WY WY S N N NN SN SN S A S R S SRR SO S SR VIR T G WOV S NN S WO WY S S St
IAII S G TS T U S SR U T ¥ N U S VRS S S D N U U T SO GO N ST G SR S G S S S S S S G YT S S T S S SR SN S T S S S [T R S S W S T U T
|‘2. I T S S S S S U] PR B R e WIS U VSIS WOU W [N WO N SON S S WA S U G A S G G S T G SN G S Y S S ST R N S G Y VRS G T W W S SUE S W S U St
|;3; IS S W N T S S S T s S SR W SN WA WS S N Y Y SN WA S G W00 G TS G VU SO S U S U ST AN WA SNAT OO S TN SR ST UUNY TS S S W T U U S S SN S
‘Ai U WD W N NN N S S |) I S) S Y U W W WS UNUS W SN (N VNN G NN GHNY SN T WS WY W I W SN T N T SN N G U | | R TS W W T T S | D G W SR S | N G TS H S Bt
|,5. S T T S T T T Y A4) ——— e WS VD W VY ' SN WY G VA T N N G W U SN SN GRS VAN SN NS ST WS S S VN SN S S S U F U W GRS U N SN S S S S S N
'Ae. Y Y S S S S S B L s U N VUMD VY WS WA A UUNNS ST U W WO S T A SO W SR U S S SONPRNT S S SN T S S S S Y U VR D S T W S S TUNT T SN S S
l.7. IV WS S TN Y N SR S G) I ' ey VNS LS WIS VY T S U W N VY VU U SN U T T SN NN SN N S A S SN U S SR N G Y R Y TR U U T S T TR WU Y SN S S Y
18 -
4 U S S T U S U S M mantt S S W S SR WY T SO USRS S WSS TS U W S W VU S U S SN S S S S S S SR S SR U T b EES T S W T U S S SN S S SN
! 9‘ U U WU TS S U P S S e e W N GUUN WU S Y S W WA T N WU TN S N TN VA R S Y S N ST ST N WO G S T VR VA WS W W W S U G S G SOt
znon W TONES WS W SO U Y S VI W | s WS S WU WS SIS VI N S IO W N U T Y TS T SN SN WSS WU U N SN NS G N Y TR N O VI W U U N WU WA U S S G S T ¢
2 'J OSSN U G S L1 e EE T T T SR WD WY VHIF WY WIS I S WO S A S R T U S G S S S N T S S Y N W W S W T S W T NG S Y
2121 44 F U S W N S F S W | Y U U W VO S R W S W TN N T TN VU (NN NS S SN N NN NN G SRR 11 1 1 1) Y W W W U S Y y S W N WY N T WA U U UHA G S U ¢
2A3| T S W S T W S | § W S | T D DY N Y Y W S W W N SN S S VA SN VNN NN S S VNN N N N ST Y SN W U U T U T W S ' Y WD D WS N W Y W W WY W U N S Y
214A U WU WS T S TN S S | | S T S WS [N Y WY WA Y WU N NS S U SN NS SO U S N R S SN SR S) S VNN WA W N S N T N WY S W 1 y W W N T WS WA S N S W U SN Y
2.5. PR SRS Y B W SR T Y G SN U S Y S YU T TN U S WO S N NN N S S W N G NS NN NN O Y I N N T N T S IS T T T A T T N Y B S
P S N U S U T S T 't Lot 4) T Y A WS DU N W WA O T S G S N SN SN T G S SN S U Y I | Y S W U SN S N W W U RO T) SN D W TN W T A B U ST S
- U S S S W U B Y S s EL GH W VU W S T S U S S S VU WO S N WY N W SN R N NN O ¥ T T S Y AU D U YO W O T TN W WO S SR W ¥
FUY WS TS W S B S B S Y T T e S A G NS WS W WU S EUNY GRS N N SN G U NEN S U ST 3 W VRS W N TS TN T T S WO TN SR Nt S WD U S Y WY N W VO W W SO S U |
P U S U TS S S PR S R s o NI [SH S S W UNY SN THUY NS TENN S S N S SO SR O N U S Y S WD T T W S SR N G SRS
" PP U R B S S S L PR U SO | I G TR | T NV W T U NSNS ST WU T ST S N VD B S S T S S S W WY S ST U S U

Coding Sheet

Heading Line

A programmer, coding a program for the 7070 or 7074 in Autocoder, writes all
Autocoder statements on the 7070 Autocoder Coding Sheet, form X28-6417-2
(see Figure 1). The coding sheet indicates by column numbers the input card
format for both the Basic Autocoder and the Autocoder Systems. Each line of
the coding sheet is punched into the indicated columns of a corresponding 1BM
7070 Autocoder Input Card, electro A18265 (see Figure 2). An explanation of
the purpose of each heading on the coding sheet is given below.

The heading line consists of the spaces labeled “Program,” “Programmed By,”
and “Date.” The information entered in these spaces is for identification of the
program and is not to be punched into input cards.

Page Number (Columns 1-2)

A two-character page number sequences the coding sheets. Any alphameric
characters may be used, providing they can be read into or can be translated
on output by the input/output equipment of the 7070 or 7074 system used to
process the Autocoder source program. (This applies in general to the usage of
alphameric characters in all Autocoder statements.) The standard collating
sequence should be followed in sequencing the pages. Alphameric characters
which are not acceptable to various input/output equipment and the collating
sequence may be found on page 9 of the M Reference Manual “7070 Data Proc-
essing System,” form A22-7003-2.

1] P i |
eace] LINE | LaBEL | orsration [SORERANS ——————— ey 1010 RTOGIDER ———————— 1
] [! : !
PAGE | LINE [LABEL | operaTiON |2, OPERAND AUTOCODER i 3]
;. OFPERAND BASIC AUTOCODER 4| ASSFRBLED | INSTRUCTION | LOCATION
00;00000000000000000000
1 56783 NNRRUBEIBNANRANSANARNARVUS BT BVONLQHEENEENSILNHBET VRN P BUSETEIRNNRAUBETRIN
1 R R RN R AR R R RN R R AR R R R R R R R AR R R R AR R R R AR R R R AR R R AR R R R AR R AR R R R R AR A RRRRRER]
2 2222222222222222 . 'OPERAND— AUTOCODER 222212
3 3353!333333333333333333
|
4- 4444444444444444 OPERAND-BASIC AUTOCODER I4“444444444444444H
i 555‘555555555555555555
] 65666666666666666666666666666665666666666666666666666666556666666666666666666
IBM7270 AUTOCODER INPUT CARD :
OPERAND —AUTOCODER
PAGE| LINE LABEL |OPERATI
OPERAND= BASIC AUTOCODER | it I mnlnl|:u
| Basic autocooer cutPuT
9999999590999099999990999999999990999999909005030965994953999399999009999900999999908409]
12345678 30IRBUBEIBNANL2RUBZIARVNLIAFBIBRAN QOUSEH BN PIHBLISADORDHSBTRONN RN UERTIBR S
s aIs2es

Ficure 2

Coding Sheet 5

Line (Columns 3-5)

Label (Columns 6-15)

The first twenty-five lines on each sheet are prenumbered 01 through 25. Also
provided are five unnumbered lines at the bottom of the sheet that may be used
for additional lines or for inserts. Since provision is made for a three-character
line number for the sequencing of the coding entries on the sheet, inserts may
be readily made through the use of the optional third character. For example,
inserts between lines 10 and 11 may be made by writing 101, 102 and 103 or
10A, 10B, and 10C, etc. in columns 3-5 of the unnumbered lines and placing the
resulting cards after the card for line 10. Any alphameric characters may be
used for all three characters of the line number so long as the standard collat-
ing sequence is followed in sequencing the lines.

The sequence of the cards entered into the processor will be checked by the
page and line numbers punched in the source program deck. Any variation from
the collating sequence will be noted in the warning and error message area of
the program listing produced during a compilation. However, source-language
input will be compiled in the order encountered.

The label column is used to represent the location of data or instructions in the
machine. Only instructions or data which will be referred to elsewhere in the
program need have a label. In all other cases, the label column is blank. A
label may be a symbolic location or an actual address. Each symbolic label
must be unique, i.e., it may not appear more than once in the label column.

Operation (Columns 16-20)

The operation column contains either a macro statement or the mnemonic rep-
resentation of the machine operation to be performed. In certain cases, the col-
umn may be left blank. Actual machine operation codes are never used. The
Autocoder symbolic machine instructions and macro-instructions are composed
of from one to five alphameric characters, and are written left-justified in the
operation column. Operation codes are categorized as “declarative,” “control,”
and “imperative” statements. A description of these three types of statements
is contained on pages 20, 87 and 103, respectively. If an invalid operation is
used, a Nop will be generated.

Operand (Columns 21-75)

The operand contains the actual or symbolic address of the information which
is to be acted on by a particular command, or other parameters to be utilized
by a macro generator. The operand may contain 55 columns of information as
input to the Autocoder processor as opposed to the 40 columns for the Basic
Autocoder processor. When field definition, address adjustment, or indexing is
used in conjunction with the address, it is included in the operand. The operand
may contain the actual data to be operated on by an instruction, referred to as
a “literal.” It may also be used to specify index words, electronic switches, chan-
nels, units, channel and unit, arm and file, inquiry and unit record synchronizers,
latch numbers, and alteration switches.

Identification (Columns 76-80)

Program identification is punched into columns 76-80 of all cards in the source
program deck. The identification which appears on the first card of the source
program deck will be punched in the identification field of each card of the
object program deck and printed on each page of the output program listing
by the Autocoder processor. A means is thus provided for relating all output to
the proper symbolic source-language input.

Any alphameric characters acceptable to the 7070/7074 input/output equipment
may be used in the identification entry. Alphabetic and special characters will
print as such on the program listing. However, only the second digit of each
double-digit representation of these characters will be punched in the identi-
fication field of the condensed cards of the object program decks since these
cards must be numerical. For example, “A” will be punched as “1,” “*” will be
punched as “6,” etc. If the first card of the source program deck has a blank
identification field, the identification on the program listing will be blank and
zeros will be punched in the cards of the object program deck, the double-digit
representation of a blank being 00.

Remarks and Comments

Remarks and comments may be included for description. They will appear in
the symbolic output but will produce no entry in the object program deck and
consequently will not affect the operation of the program.

Remarks may be included anywhere in the operand, provided they are sepa-
rated by at least two blank spaces from the operand of the instruction. As noted
on page 60, an @ symbol may not appear in remarks which are on the same
line as an alphameric constant. Otherwise, remarks may include any acceptable
characters.

Comments cards allow the programmer to insert complete lines of descriptive
information in the program. A comments cards is identified by placing an aster-
isk in column 6 of the label column. Any part of the label, operation, or operand
columns may be used for the description. Comments cards are useful as descrip-
tive headings for various sections of a program, such as operating instructions,
or where the operand column of an instruction does not allow enough room for
necessary remarks.

Remarks and comments may be used in a program as follows

Line Label [Operation| OPERAND Basi
3 Sl6 1516 20J21 25 30 35 40 45 50
o1, XNET PAY claLcuLlaTiON]
o2 | .., .. lzaa_ |erOSS, . PUT GROSS .PAY, IN ACC 4.\
o3 | Isi . |TAX_ _, DEDUCT INCOME TAX/
o4 |Isa _ [FICA ., DEDUCT. FICA\
05

I T ¥ e ——— D VD WD TD WS W SN SUS ST WA I W0 U R SN U S S S N S S W R S S S RN U S RS T §

b

Coding Sheet 7

Parameters

Address Types

Blank

Actual

Symbolic

The following types of addresses may appear in the label and/or operand fields
of Autocoder statements: blank, actual, symbolic and literal. A description of
these address types and the rules governing their usage follow.

The label column may be blank if the corresponding entry is not referred to
elsewhere in the program. A blank operand is valid for certain machine opera-
tions (see Appendix D) and in the following control and declarative statements:

oriGIN Control
LiToriGiN Control
Exp Control
XRESERVE Control
srReSERVE Control

XRELEASE Control
SRELEASE Control

pc (Header Line)
pLINE (Header Line)

A .
© PR

The effect of a blank operand varies for each of the control and declarative state-
ments in which it may appear. These are explained fully under the discussion
of the respective statements. If a Priority Release command has a blank operand,
the processor will insert 0097. In all other machine operations where a blank
operand is valid, the processor will insert 0000. If a blank operand is invalid,
an error message will be produced.

An actual address may be from one to four digits, written left-justified on the
coding sheet. Leading zeros may be omitted. An actual address is valid only
in the label and operand of symbolic machine instructions and in the operand of
certain macro-instructions and control statements.

In certain instructions, an actual operand may only assume values within a lim-
ited range, e.g., a value of 1 through 4 in an alteration switch instruction and a
value of 1 to 30 in an electronic switch instruction.

An actual address in the label column of a symbolic machine instruction will
cause the instruction to be assigned that actual location. The contents of the
location assignment counter being used will not be changed and the actual loca-
tion, with the exception of index word addresses, will not be reserved. Hence,
the programmer should be extremely cautious when using an actual label.

The following example illustrates the use of actual addresses in symbolic machine
instructions:

Line Label Operation| OPERAND (
3 56 15{16 20421 25 30 35 40 45
o Nop 32 ... o)
o3 0 . .. B‘..03.°l3u‘...........,.,.!
o5 | ..., . WP T N
016£ 1 S PO U S ' A i 1 L l(

A symbolic address is valid in the operand of most statements and in the label
column of all but the control statements. A syvmbolic address may contain from

one to ten characters with the following restrictions: the first, or leftmost, posi-
tion must be a letter; the remaining characters may be letters or numbers (no
special characters); blanks may not appear within the symbolic address. A sym-
bolic address placed in the label column of a declarative or imperative state-
ment is automatically associated with an actual storage location assigned by the
processor’s location counter. Further reference to a certain instruction may be
made or operations on a particular data field may be performed by writing the
symbolic name assigned to the instruction or data field in the operand of an
imperative, declarative, or control statement.

Consider the following example:

Line Label Operation| OPERAND é
3 sle 1slie 20j21 25 \ 30 35 40 45
01, ROUTINE | Z A1, FIELD, L J_S
04 ,,.,.HB,H,_R,OAU_T,I_N,E,,H,H‘,l,,.,,,lAJ_(
05, T RIS R LJ

If FIELD is a one-word field assigned to location 3000, the first entry above will
result in the assembled instruction +1300093000. If the assignment counter had
been at 5000 when the first entry was encountered, the label rouTINE would have
been associated with location 5000. Thus the entry in line 04 above would result
in the assembled instruction —4000095000.

The asterisk, *, is a special symbol which is valid in the operand only. If an
actual address has not been written in the label column, the processor will assign
the location of the instruction being processed, contained in the location assign-
ment counter, to *. For example, if the instruction

Line [abel Operation OPERAND (
3 sle 1516 2021 25 30 35 40 45
oL \ ZAL, | %, A . .

O 2 1 v 1 i 4 1 1 A1 I I e 1 1 1 1 i} 4 1 A 1 .

1 3
10CaGon

4440, then the * in the operand of that instruction
the assembled machine instruction will

has been assigned to
will also be assigned location 4440; i.e.,
be +1300094440.

If an actual label has been entered in the label column and an * in the operand,
the processor will assign the actual address to *. Thus, the instruction

Line Label Operation OPERAND J
s 1516 2021 25 30 35 40 a5)

o', 1324, , . ZAL ¢ . e

02 s i il 1 . 1 1 1 i 1l 1 Il 1 1 1 It 1 1 1 1 1 A e

would result in the assembled machine instruction +1300090324.

Use of the asterisk address will reduce the number of symbols required in the
label column. Unless there is a note to the contrary, the special symbol, *, may
be used as an operand address wherever this manual indicates that a symbolic
address is valid.

Parameters 9

Literal

Avutomatic-Decimal Numbers

10

A literal is the actual data to be operated on by an instruction. The literal is
valid only in the operand of an imperative statement, and its appearance causes
the processor to assign a storage location to the literal. In order to conserve
storage, literals are packed into words. The processor assigns field definers to
the literal and incorporates the storage address and field definers into the instruc-
tion being processed. Once a literal has been stored, it will be re-used each
time it is referenced again, except when the Litorigin Control statement is used
(see page 88). Address adjustment and indexing (both discussed in later sec-
tions) should not be appended to literals. Literals should not be used for tem-
porary storage, i.e., the operands of Store instructions should not be literals.

Certain imperative instructions (e.g., Priority Control, Index Word Load, Tape
Write) operate on full words and do not permit field control. If a literal which
is less than ten digits, or an adcon, is used as the operand of any of these instruc-
tions, it will be converted to ten-digit form by being right-justified in a word.
Thus, if —50 is entered as the address portion of an Index Word Load instruc-
tion (XL), the actual constant stored will be —0000000050. Also, assume that
ATABLE is the label of an instruction or data occupying location 2000. If the
adcon —ATABLE is entered as the address portion of an Index Word Load and
Interchange command (xLiN), the representation will be —0000002000, and,
at object time, the contents of the specified index word will be replaced by
—0020000000. In general, however, a literal should be written in the exact form
in which it is to be used with leading zeros included where necessary.

Four principle classes of literals are permissible: automatic-decimal numbers,
floating-decimal numbers, address constants (adcons), and alphameric constants.

A literal having either of the following sets of characteristics is included in the
automatic decimal class.

1. A signed number, one to twenty digits in length, which is referred to by a
macro-instruction. A decimal point may be included in the literal.

2. A signed number, one to ten digits in length, which is referred to by a sym-
bolic machine instruction. A decimal point may not be included in the literal.

An automatic-decimal number, referred to by a macro-instruction and described
by the first set of characteristics above, will be examined by the Autocoder
processor for decimal-point inclusion. A decimal point indicates the magnitude
of the number according to ordinary usage and the desired decimal-point place-
ment; it is neither stored in the constant nor saved with it Using Autocoder
macro generators, the processor generates instructions for shifting, decimal align-
ment, bridging words, and handling field definers. If the decimal point falls to
the right of the rightmost digit of the number, it may be omitted and the num-
ber will be considered an integer. The following are examples of automatic-
decimal literals which might appear in the operand of a macro-instruction:

1234567890123 . 4567890

—.12345

—1.23

+1

An automatic-decimal number described by the second set of characteristics
above is actually a subset of one described by the first set of characteristics.
Because the number is referred to by a symbolic machine instruction, the literal
is restricted to ten digits in length and all instructions for shifting and decimal
alignment must be written by the programmer.

An automatic-decimal number may also be defined by a pc subsequent entry

(see page 55).

Floating-Decimal Numbers

Address Constants (Adcons)

Alphameric Literal

Floating-decimal numbers are permitted as a literal entry in macro-instructions
only. A number may be expressed in the form

(+n) (10)

where n is an integer or decimal number of not more than eight digits and m is
a one-digit or two-digit exponent. Floating-decimal numbers are related to this
form and are. entered according to the format *nF+m. Thus, the number
—.12345678x10% would be represented by —.12345678F+3. If the sign preced-
ing m is omitted, m is considered to be positive. The exponent m may be omitted
if equal to 0, provided #nF is not followed by another literal entry. The Auto-
coder processor will consider the signs, the value of n, and the value of m, and
generate a standard 7070 floating-decimal word. The following are examples
of floating-decimal numbers which might appear in the operand of a macro-
instruction:

—3.4F

+34.567893F — 2

—31.92F+7

—29567.1F —3

+12546F+15

Additional examples of floating-decimal numbers may be found in the mM
Reference Manual “7070 Data Processing System,” form A22-7003-2.

A floating-decimal number may also be defined by a pc subsequent entry as
described on page 57.

An adcon is a special-purpose numerical literal used to produce a four-digit
constant whose value is the actual address assigned to a symbolic address. The
address constant is treated in the same manner as a numerical literal. An adcon
is entered in the form *svamsor. The following example illustrates the use of
an adcon:

Line Label IOperation OPERAND (
3 56 15{16 20j21 25 30 35 40 45
o1 ANYLABEL _|s FIELD, Y
o3 | . .. B N,
0.4 B ZA1 [+ANYLABEL , . R

If the symbolic address, ANYLABEL, is assigned the actual location, 2000, the
use of the adcon, +aNYLABEL, in the operand of line 04 will cause the proc-
essor to produce a constant of +2000. If the address constant, +2000, is as-
signed to location 4576 with field definers (6, 9), the entry on line 04 would
result in the assembled instruction +1300694576. The execution of this instruc-
tion at object program time would place the number, +0000002000, the actual
address assigned to ANYLABEL, in accumulator 1.

An adcon may also be defined by a pc subsequent entry (see page 58).

An alphameric literal consists of alphameric characters preceded and followed
by the @ character. A literal in the operand of a symbolic machine instruc-

Parameters 11

Field Definition

12

tion may not be more than five characters in length and, in the operand of a
macro-instruction, may not be more than 120 characters in length. All char-
acters between the initial @ character and the second @ will be converted to
double-digit form and assigned to core storage locations. The sign of each word
used to contain the characters will be alpha. If the constant produced by a
literal is more than one word in length, but not a multiple of five alphameric
characters, the double-digit representation of alphameric blanks will be gener-
ated in the unused low-order positions of the last word of the constant, i.e., the
constant will not be packed.

Alphameric literals may not include the @ character. Alphameric literals may,
however, contain any other character (except for the record mark) which may
be read by the input device used.

The following are examples of alphameric literals which might appear in the
operand of macro-instructions or symbolic machine instructions:

@ABCD@
@Al100X@
@12345@

@.O+5°@
@—/%%@

The following literal would be valid in the operand of a macro-instruction only:

@THIS LITERAL IS LONGER THAN 5 CHARACTERS @

Alphameric constants, including those containing the @ character, may be de-
fined by a pc subsequent entry (see page 60).

Field definition may be written immediately following the operand address of
symbolic machine instructions. The field definers are the digit positions of a ten-
digit word numbered 0 to 9. The format for entering field definers is as follows:

Line Label [Operation| OPERAND Basic Aufocodg
3 5|6 1516 20)2! 25 30 35 40 45 50 55
o, |, \ ‘ ADDRESS(STARTPOSITION,ENDPOSITION) S
oz | v oL AN A

The starting and ending positions are the field definers. When operating on a
single digit, the comma and ending digit position may be omitted. Field definers
may be omitted entirely when operating on a whole word or a field defined by
a declarative statement (see pages 22 through 81).

Field definition may not be used in the operand of a macro-instruction. How-
ever, both macro-instructions and symbolic machine instructions may refer to
the label of a Define Area (pa), Define Constant (pc), or Define Line (pLINE)
subsequent entry, each of which may specify field definition.

Autocoder symbolic machine operation codes which permit field definition to
be associated with the address are indicated in Appendix D. Field definition

Address Adjustment

may be used with both actual and symbolic addresses as illustrated in the fol-
lowing examples:

Line | Label peration OPERAND [
3 516 13)i6 20[21 2% 30 35 40 Q\
T P T T
o2 | |aa . IMANNO(O.2), ., ., o
os | stz [1024(2.8) o \.. .|
0.4 o ZAL ALPHA(S), . N
os | . Jca . IMANNO(O.9),)
os | last l1024(0.9), C(
o7 | . lzasr lsymBoOL(2.3), , .,)
oe | e

In lines 05 and 06 above, field definers (0, 9) could have been omitted since the
instructions will be operating on the entire word.

When used with literals, field definition will be relative to the literal itself. Thus,
the adcon —syMBoL(2, 3) refers to the third and fourth digits of the location
assigned to symsor. If location 9876 has been assigned to sYMBOL, —SYMBOL
(2, 3) would be equivalent to —76. (See “Relative Field Definition” on page
41.)

Address adjustment allows the programmer to refer to an entry which is a given
number of locations preceding or following a symbolic address. Address adjust-
ment is permitted with adcons and with all symbolic addresses, except the single-
address operand of a prRow statement (see page 78). It should not be used with
actual addresses or other literals.

With symbolic machine instructions, address adjustment is indicated by writing
a plus or minus sign followed by one to four digits immediately after the sym-
bolic address and following any field definers.

Address adjustment with symbolic machine instructions is written as follows:

Linel Label Epercﬁon OPERAND j
3 sle 1s|i6 20[21 25 30 35 40 as
OV, v L MANNO+S | ., . AJS
02 T B IMA,N,N‘O,"‘Z, T L J
o3 | . . MANNO(O.2)t5\
oo | A)
o5 | ., . x(0,4)t10 , ., ., e

PO U S TSN G S WY M S S S S P Nt 1 1 J{

06

If location 2150 has been assigned to the symbolic address ManNo, then 2155
will be assigned to MaNxo+5, and 2148 will be assigned to maxxo—2. The entry
vaxyo (0, 2)+5 refers to the first three digit positions of location 2155. Simi-
larly, if 2196 is the location of an instruction containing *—1 as an operand,
then location 2195 will be assigned to this operand.

With macro-instructions, address adjustment is indicated by writing a plus or
minus sign followed by one to four digits after the symbolic address. The sign

Parameters 13

Index Words

Indexing

14

and digits must be enclosed by parentheses. The left parenthesis must be in the
column immediately following the last character of the symbolic address being
modified, except when the address adjustment goes to a continuation card (see
“Continuation Cards”).

Address adjustment with macro-instructions is written as follows:

LineJ Label Pperation OPERAND ‘g
3 5(6 1516 20[21 25 30 35 40 45
N T B o T ¢
X2 D T R e o
o3 | . . oo e

If location 1560 has been assigned to the symbolic address wvist, then 1563 will
be assigned to risT (+38), and 1550 will be assigned to List (—10).

Address adjustment of an adcon will cause a special function. The value of the
address will be modified before the constant is created. Address adjustment of
an adcon in a symbolic machine instruction is written as follows:

LineJ Label J?perction OPERAND S
3 sle 1s)is 20[21 25 30 35 40 a5

ot, IANYLABEL, ZA4, |[+ANYLABEL4A

0
02 ‘\

P R S { [S S T T TV S S VA WS SN TN WS WY S SR S T S

If ANYLABEL is assigned to location 2000, the above entry will cause the creation
of a literal (or adcon) value of 2001 to be stored for reference. In a macro-
instruction, the format in the operand would be +ANYLABEL(+1).

The programmer should be careful when using address adjustment since it may
become a source of error when a program is modified. For example, inserts and
deletions of program entries could change addresses in such a way that *+10
should now be *+9. It should also be noted that since it is not known how
many machine instructions will be generated in place of a macro-instruction,
address adjustment must not be used on a symbolic label in amounts that would
carry the address into or across a macro-instruction.

The use of an index word in an instruction for the purpose of indexing will cause
the indexing portion of the index word to be added algebraically to the address
portion of the instruction and this new address is used for the operation. Index-
ing of symbolic and actual addresses may be specified in the operand of all
imperative statements and Branch Control and End Control statements. Literals
should not be indexed.

With the Branch Control and End Control statements and with symbolic ma-
chine instructions, the address of an index word follows the operand address,
after field definers and address adjustment, if any, and is always preceded by a
plus sign. An index word may be written svmbolically or as the actual one- or
two-digit number (1-99). When a symbolic rame is used, the processor will

Uses Other Than
Indexing

automatically assign an actual index word address. When the actual number
is used, the format is Xn. The X indicates that an index word address rather
than address adjustment follows the plus sign. The n is the actual one- or two-
digit number of the word. When used for other than indexing purposes, the
form Xn will be considered a symbol. Indexing with Branch Control and End
Control statements and symbolic machine instructions is written as follows:

Lini Label fperaﬁon OPERAND (
3 5|6 t5)16 20j21 25 30 35 40 45
o 1. L O MANNOAX2,
oz | 1 IMANNO—A5+X2\
os | .. | . IMANNO(O,4)+15+L0OP ., . . .|
oa | T 123484 X2
o5 | ... 1., le3saa+troor ., . .. N\
oe || . 123440,0,5)+LO0OP,

Autocoder will interpret +X2 as index word 2 and +Loop as the symbolic des-
ignation of an index word. Note that blanks are not permitted within the address
modification.

With macro-instructions, the address of an index word follows the operand
address and is enclosed by parentheses. The left parenthesis must be in the
column immediately following the last character of the address being modified,
except when the indexing goes to a continuation card (see “Continuation
Cards”). Actual index word numbers are not preceded by an X and the actual
or symbolic index word is not signed. In macro-instructions, the absence of a
plus or minus sign preceding an index word distinguishes the index word from
a signed, one- or two-digit address adjustment. If both address adjustment and
indexing are used, one set of parentheses must enclose them both and the index-
ing must precede the address adjustment. Indexing with macro-instructions is
written as follows:

Line Label EpercﬁonL OPERAND J
3 5|6 15[16 20i21 25 30 35 40 45
or .. . 1. ITABLE(ROW), . .\ v

oz | . . | lLisTa34), L, e
o3 | ... 1. JtaBLE(ROW-40) ., (
os | ... O lisTezarary L

Autocoder will interpret 34 as index word 34 and row as the symbolic desig-
nation of an index word. Note again that blanks are not permitted within the
address modification and, also, that field definition may not be used with macro-
instructions.

Index words may be specified in symbolic machine instructions as the first entry
in the operand of index word commands such as Index Word Load (xv) and
Index Word Load and Interchange (xrix). They may also be used in com-
mands such as Record Gather (rc) and Record Scatter (rs). The specification
of an index word in a symbolic machine instruction does not prevent the use of
indexing. The index word may be written in actual or symbolic form. When
written in actual form, however, only the one- or two-digit address of the index
word should be written; Xn would be interpreted as the symbolic designation
of an index word.

Parameters 15

The following are examples of the use of index words for other than indexing

PUIPOSCSI

Line-l Label lOperoﬁon OPERAND 7
3 S|6 1516 20J2¢ 25 30 35 40 45
ot b v Xt . |2 CONSTANT,
o2 | . IxL , |x3,+00000104003
o3 [. Ire. . I|BASE,scATAREA .. (C

BasE and X3 will be interpreted as the symbolic designation of an index word
and 2 as index word 2.

Electronic Switches

Electronic switches may be referred to by a symbolic name or by their one- or
two-digit actual number (1-30). Symbolic names may be assigned to an actual
switch number by use of the declarative statement EQU (see page 82). As
explained later, symbolic references to electronic switches will be assigned to
an actual address during compilation.

» Unlike index words (see page 18), electronic switches will not be reserved
if the location assigned to an imperative statement or if any location defined by
a declarative statement falls within the range 0101-0103.

Instructions referring to electronic switches are written as follows:

Line_l_ Label JOperotion OPERAND <
13 5|6 15]16 20j21 25 30 35 40 4
ot !, ... |BES [19,cOMPUTE .)
02 oo .. . lBSF lEND,LOOP .
o3 | ESN 28 .,)

ExD will be interpreted as the symbolic designation of an electronic switch and
19 and 28 as electronic switches 19 and 28.

Input/Output Unit and Alteration Switch Designations

The following items may be specified in actual or symbolic form in the operands
of those instructions which refer to the particular items: channel, unit, com-
bined channel and unit, combined arm and file, unit record synchronizers, in-
quiry synchronizers, and alteration switches. The declarative operation EQU is
used to equate symbolic names to item numbers (see page 85).

16

Continuation Cards

Certain Autocoder statements make provision for more parameters than may
be contained in the operand (columns 21-75) of a single line on the Auto-
coder coding sheet. When this is the case, the appropriate section of this manual
will indicate that “Continuation Cards” may be used. Thus, when specifically
permitted, the operand of a given line on the Autocoder coding sheet may be
continued in the operand of from one to four additional lines which immediately
follow.

The label and operation columns must be blank and the continuation of the
operand must begin in column 21; ie., it must be left-justified in the operand
column of the coding sheet. The operand need not extend across the entire
operand column of either the header card or continuation cards but may end
with the comma following any parameter. Remarks may appear to the right of
the last parameter on each card provided they are separated from the operand
by at least two blank spaces.

Ilustration of the use of continuation cards are included throughout the examples
illustrating the various statements.

If a continuation card follows a statement that does not permit continuation
cards, the compiler will generate a Nop and issue an error message. Additional
restrictions regarding the use of continuation cards with macro-instructions ap- .
pear on page 106.

Parameters 17

Reservation of Index Words and Electronic Switches

18

The assignment of actual addresses to symbolic index word and electronic switch
names occurs in Phase III of the Autocoder processor. The initial availability
of index words and electronic switches is determined by a table which is included
in the Compiler Systems Tape. This table originally indicates that index words
1 through 96 and electronic switches 1 through 30 are available for assignment
to symbolic references; index words 97 through 99 are not available. The initial
setting of this table may be altered, however, as described in the 7070/7074
Data Processing System Bulletin “1Bm 7070/7074 Compiler System: Operating
Procedure,” form J28-6105.

During the first pass of Phase III, references to the actual addresses of index
words and electronic switches are collected and the availability table is updated.
At the end of this pass, the table indicates which index words and electronic
switches are not available for assignment to symbolic references.

Both index words and electronic switches may have been made unavailable
before the start of assignment in one of the following ways:

1. The initial setting of the availability table indicated that the index word or
electronic switch was not available for assignment.

2. The one- two-digit number of the index word or electronic switch was used
in the operand of a symbolic machine instruction to specify indexing or as a
parameter which is always an index word or electronic switch, e.g.,

Line_l Label Eperaﬁont OPERAND (
3 5|6 15]16 20j21 25 30 35 40 45
o1l leLx |s,Location)
°2 | . ., , ., |ESN 126 , ., ...

3. The one- or two-digit number of the index word or electronic switch was used
in the operand of an EQu statement, e.g.,

Line Label peration| OPERAND (
3 Sl6 15/16 20j21 2% 30 35 40 45
ol INAME . EQU [3.X .,]

When the index words or electronic switches are reserved because of actual
usage in the statements described above, the position or order of the statements
within the program is not important; any such reference will make the index
word or electronic switch unavailable at the end of this pass.

During the assignment pass of Phase III, index words and electronic switches
are reserved as they are encountered during assignment. Index words and elec-
tronic switches may be reserved in the following ways. The first two methods
apply to both index words and electronic switches; the third applies only to
index words.

1. During the assignment pass, each instruction is examined for reference to the
symbolic name of an index word or electronic switch. When such a reference
is found, an actual address is assigned and the availability table is changed
so that the assigned index word or switch is no longer available for later
assignment.

o

If the one- or two-digit address of an index word or electronic switch is used
or is included in the operand of an XRESERVE Or SRESERVE statement (see page
99), the corresponding index word or electronic switch is reserved.

3. If a statement has been assigned an address in the index word area
a. by means of an actual label or

b. by means of an oriGIxN statement which refers to an actual address

the corresponding index word will be reserved. These entries should normally
appear at the beginning of the program or immediately following each
LITORIGIN statement. Otherwise, symbolic names may have previously been
assigned to these same index words. (This method does not apply to elec-
tronic switches.)

The preceding methods allow efficient use of index words and electronic switches
during a sectionalized or multi-phase program, particularly when used in con-
junction with the L1TORIGIN statement. Extreme caution should be used, however,
to avoid the conflicting usage of an index word or electronic switch which may
result from the assignment of more than one name or function to the same
address.

If the symbolic name or actual address of an index word or electronic switch
appears or is included in the operand of an XRELEASE Or SRELEASE statement (see
page 101), the specified index word or electronic switch will again be made
available, regardless of the method by which it was reserved. It will not, how-
ever, be used for symbolic assignment until all other index words or electronic

switches have been assigned for the first time.

If, at any time during the assignment pass, the compiler finds that there are no
more index words available for assignment, the warning message “No MORE
INDEX WORDS AVAILABLE will be placed in the object program listing, the table
will be altered to show that index words 1 through 96 are available, and the
assignment will continue as before. If the compiler finds that there are no more
electronic switches available for assignment, the warning message “NO MORE
ELECTRONIC SWITCHES AVAILABLE will be placed in the object program listing,
the table will be altered to show that electronic switches 1 through 30 are
available, and assignment will continue as before. The resultant conflicting
usage of index words or electronic switches may be avoided by reducing the
number of symbolic names used, e.g., through the proper use of the EQU,
XRELEASE, Or SRELEASE statements.

As noted in Appendix C, index words 97 through 99 are never available for
assignment to symbolic names by the compiler; also, index words 93 through 96
may have been made unavailable for assignment.

Index Words & Electronic Switches 19

Declarative Statements

20

Autocoder declarative statements provide the processor with the necessary in-
formation to complete the imperative operations properly. Declarative state-
ments are never executed in the object program and should be separated from
the program instruction area, placed preferably at its beginning or end. Other-
wise, special care must be taken to branch around them so that the program will
not attempt to execute something in a data area as an instruction. If the com-
piler does encounter such statements, a warning message will be issued. 7070/7074
Autocoder includes the following declarative statements: pa (Define Area), nc
(Define Constant), prow (Define Record Definition Word), psw (Define Switch),
pLINE (Define Line), EQu (Equate), copk, orr (Define Tape File), piocs (Define
Input/Output Control System), and pur (Descriptive Entry for Unit Records).
DA, DC, DTF, and DLINE require more than one entry.

The pa statement is used to name and define the positions and length of fields
within an area. The pc statement is used to name and enter constants into the
object program. Since the 7070 and 7074 make use of record definition words
(rRows) to read, write, move, and otherwise examine blocks of storage, the pa and
pc statements provide the option of generating rows automatically. When so
instructed, Autocoder will generate one or more Rows and assign them successive
locations immediately preceding the area(s) with which they are to be associated.
An row will be of the form *00xxxxyyyy, where xxxx is the starting location of
the area and yyyy is its ending location. These addresses are calculated auto-
matically by the processor.

In some cases, it may be more advantageous to assign locations to Rows associated
with pa and pc areas in some other part of storage, i.e., not immediately preceding
the pA or pc areas. The prRow statement may be used for this purpose. The prow
statement may also be used to generate an row defining any area specified by the
programmer.

As many as ten digital switches may be named and provided by the psw state-
ment for consideration by the sersw and Locic macro-instructions. Each switch
occupies one digit position in a word, can be set oN or oFF, and is considered
as logically equivalent to an electronic switch. It cannot, however, be referred
to by electronic switch commands, e.g., EsN, BsN, etc. An individual switch or
the entire set of switches in a word may be tested or altered as desired.

Through use of the pLINE statement, a means is provided for specifying both the
editing of fields to be inserted in a print line area and the layout of the area itself.
The area may include constant information supplied by the programmer. The
area may also be provided with additional data during the running of the object
program by means of EDMOV or MOVE macro-instructions.

The declarative statement EQU permits the programmer to equate symbolic
names to actual index words, electronic switches, arm and file numbers, tape chan-
nel and unit numbers, alteration switches, etc., and to equate a symbol to another
symbol or to an actual address.

The piocs, pTF, and DUF statements are used when required by the Input/Output
Control System. procs is used to select the major methods of processing to be
used, and to name the index words used by 1ocs. Each tape file must be described

by Tape File Specifications, produced by pTFs. In addition to information related
to the file and its records, the File Specifications contain subroutine locations and
the location of tape label information. A DUF entry must be supplied for every
unit record file describing the type of file and the unit record equipment to be
used. The pur also supplies the locations of subroutines written by the user that
are unique to the file.

A full description of the p1ocs, PTF, and DUF statements is contained in the 7070
Data Processing System Bulletin “IBM 7070 Input/Output Control System,” form
J28-6033-1. Brief descriptions of these three declarative statements and detailed
descriptions of the formats and functions of each of the other 7070/7074 Auto-
coder declarative statements follow below.

Declarative Statemenis 21

DIOCS —Define Input/Output Control System

Source Program Format

22

When the Input/Output Control System is to be used in a program, a DIOCS
statement must be used to select the major methods of processing to be used.
This statement also allows the naming of the index words used by 1ocs.

The basic format of the procs statement is as follows:

Line Label bperuﬁm OPERAND Basic Au'o:oder—»’ Autocoder
3 sis 15016 20j21 25 30 35 40 45 50 F1] 60! 6

o1, ANYLABEL DIOCSIOCSIXF,lOCSlXG,,|OCSIXH.C.HANH..OPENn. EORN|,CHPT,, I GEN,n
02 . Ly L PP N

ANYLABEL is any symbolic label; it may be omitted. The entry procs must be
written exactly as shown.

The first item in the operand, 1ocsixr, is used to specify the first 10cs index
word for programs using tape files. This item may be a symbolic name or an
actual one-digit or two-digit index word address in the range 3-94. If the first
item in the operand is omitted, the symbolic name 10csixr will be assigned.
When an actual index word or a symbolic address is specified, Autocoder will
equate the name 10GsIxr to it.

The second item in the operand, 10csixg, is used to specify the second 10cs index
word for programs using tape files. This item may be a symbolic name or an
actual one-digit or two-digit index word address in the range 3-94. If the sec-
ond item in the operand is omitted, the symbolic name 1ocsxe will be assigned.
When an actual index word or a symbolic address is specified, Autocoder will
equate 10CSIXG to it.

The third item in the operand, 1ocsixm, is used to specify an 1ocs index word for
pragrams using unit record files. This item may be a symbolic name or an ac-
tual one-digit or two-digit index word address in the range 3-94. If the third
item in the operand is omitted, the symbolic name 1ocsixe will be assigned. When
an actual index word or a symbolic address is specified, Autocoder will equate
IOCSIXH to it.

The fourth item in the operand, cuaNn, is used to specify the number of the
highest tape channel to be used by the program. Thus, the programmer would
write CHAN], cHAN2, cHANS, or cHAN4 to show that the program was to use
channel 1, channels 1 and 2, channels 1, 2, and 3, or channels 1, 2, 8, and 4,
respectively.

The fifth item in the operand, opExn, is used to specify the method of handling
the oPEN macro-instruction. The value of n may be 1-6. If 1 or 5 is used, the
special procedure discussed under “Use of opex]” in the “BM 7070 Input/Output
Control System” bulletin should be followed.

L. Tf opex1 is entered in the operand, the oPEN subroutine will not be preserved
in storage after it is used; other subroutines will be loaded into the locations

used by the opEN subroutine. Thus, all tape files must be opened at the same
time. The prrs and File Schedulers must have been loaded into storage
before this routine is loaded and executed.

9. If opEN2 is used, the OPEN subroutine will be retained in storage for use
whenever needed.

3. If opENS is entered in the operand, the OPEN subroutine will be written on
the tape provided for checkpoint records and read into storage whenever
needed. The storage locations required for the opEN subroutine will be used
for other subroutines during the time the OPEN subroutine is on tape. When
oPENS is specified, EOrl and cuPT must also be specified.

4. If opEn4 is used, the OPEN subroutine will be retained in storage for use
whenever needed as for opEn2, except that Form 3 and Form 4 records
cannot be processed and three input/output areas cannot be used for one file.
The opEx4 subroutine will occupy fewer storage locations than the oPEN2
subroutine.

5. If the three-area rotating method is used, either OPEN3 or OPENG must be
specified. opENS and OPENG contain provisions for the three-area rotating
system; otherwise they are the same as opEN] and OPENZ, respectively. The
prrs and File Schedulers must have been loaded into storage before OPEND
is loaded and executed.

The sixth item in the operand, EORn, is used to specify whether tape labels are
to be processed in the End-of-Reel subroutines. The value of n in EORn may be
either 1 or 2.

1. The use of Eorl in the operand specifies that the reading or writing of tape
labels is to be determined by the LABELINF entry in the appropriate pTF for
each input and output file. Eorl is required when OPENS3 and/or CHPT is

specified.

9. 1f EoR2 is used in the operand, none of the input tapes may have labels nor
will any labels be written on output tapes.

The seventh item in the operand, caprT, is used to specify whether checkpoint
records are to be written. If cHPT is entered in the operand, checkpoint records
will be written under the control of the pcHPT statement; EORL must also be speci-
fied. If cupr is omitted from the operand, no checkpoint records may be written.

The eighth item in the operand, IGEND, is used to specify the use of spoor pro-
grams and illegal double-digit character checking in the 10cs tape error sub-
routine. The value of the final n in 1GEXn may bel, 2,3, 0r4.

1. Entering 1Gex1 in the operand indicates that a spooL program(s) may operate
with this main program and that the tape error subroutine is to check for
illegal double-digit characters.

o

Entering 16EN2 in the operand indicates that a spooL program(s) may operate
with this main program but that the tape error subroutine will not check for
illegal double-digit characters.

3. Entering 16eN3 in the operand indicates that a spooL program will never be
run with this main program but that the tape error subroutine is to check
for illegal double-digit characters.

4. Entering 1cEx4 in the operand indicates that no spooL program can be run
with this main program nor will the tape error routine check for illegal double-
digit characters.

DIOCS 23

Processing Techniques The procs statement may appear only once in a program. As noted previously,
the first three items in the operand may be used to specify names for certain
index words used by the Input/Output Control System. Each of the remaining
entries is used by Autocoder to determine the version of the corresponding 1ocs
subroutine that will be produced. Since the generated material is located at the
point where the procs statement is encountered, the programmer should not
include the procs statement within a series of imperative statements.

As noted previously, 10csixF, 10cs1xG, 10Gs1xH, and/or cHPT may be omitted from
the operand. In each case, separating commas must be written. Thus, if all four
of the above items are omitted, the operand would appear as follows:

Lini, Label peration OPERAND —g
3 _sle 15\t6 20J21 28 30 3s 40 45
o!, ANYLABFL, . [pl1,0CSl, +2.CHANN, OPENN ., .E ORn,,, I GENn

0 2 il i Il It — L F . T | V. | 1 TR 1 i b W S SR W S

If a procs operand does not contain eight items (including omitted items indi-
cated by a separating comma) the 1ocs subroutines will be generated as though
the following procs statement had been entered:

Line Label peration OPERAND BQTIS
3 sle 1516 2021 2s 30 35 40 45 50
o1, JANYLABEL _[D1.0CS|, ., CHAN2 OPEN2,EOR4 ,CHPT , 1GENA
02

A - L i L, N PR n

If any of the individual items in a procs statement are invalid, the processor will
generate one of the following subroutines corresponding to the invalid item:
CHANZ2, OPEN2, EORI, CHPT, or IGEN]. Thus, an incorrect entry as the fourth item
in the operand would cause the processor to assume cHANZ, etc.

Error and Warning CHAN ENTRY INVALID. TWO CHANNELS ASSUMED

Messages If the caann entry does not specify cHANI or cHANZ, two channel schedulers

will be generated.

CHPT ENTRY INVALID. CHPT INCLUDED
If the curr entry is neither blank, nor “cupr,” this message will be produced.
The checkpoint routine will be generated.

CHPT REQUIRES EORl. EOR] GENERATED
If the curr entry is not blank and if the Eorn entry specifies EOR2, this mes-
sage will be produced. Eorl will be generated.

EOR ENTRY INVALID. EOR] ASSUMED

If the Born entry does not specify Eorl or E0r2, Eorl will be generated.

IGEN ENTRY INVALID. IGEN1 ASSUMED

If the 1GEND entry is not in the range 1GEN1 to 1GEN4, 1GEN] will be generated.

IMPROPER OPERAND. CHANZ2, OPEN2, EOR], CHPT, IGEN] ASSUMED

If the operand of the piocs entry does not contain 8 parameters, this message
will be produced. An 10cs package consisting of the items named in the mes-
sage will be generated.

IOCSIXF (G, H) ENTRY OUT OF RANGE, IGNORED

If any of the index words in the procs entry is specified as actual, and if it does
not lie in the range 3-94, this message will be produced. The specified index
word will be ignored.

OPEN ENTRY INVALID. OPEN2 ASSUMED

If the oPEND entry is not in the range oPEX] to oPENS, OPEN2 will be generated.

OPENS REQUIRES CHPT. OPEN2 GENERATED

If the oPEND entry specifies opEN3 and if the cuPT entry is blank, this message
will be produced. opEx2 will be generated.

DIOCS 25

DTF —Define Tape File

Source Program Format

DTF Header Line

DTF Subsequent Entries

Processing Techniques

26

Each input and output tape file required by a program must be described by a
set of File Specifications in a prF statement. The pTF statement consists of a
header line and 35 subsequent entries which describe the file, subroutine locations
supplied by the user, and the location of tape label information. These lines are
entered on the 7070 File Specifications Coding Sheet shown in Figure 3.

Each p1F statement causes the generation of a nine-word File Specifications
Table and a Tape File Scheduler which are used by the Input/Output Control
System in conjunction with input and output tape file operations. In addition,
the Autocoder compiler used the information furnished by the prF in order to
generate the proper instructions when the name of the file is used in a macro-
instruction.

The basic format for the prr header line is as follows:

Line peration| OPERAND
3 Sl6 16 20J21 25 30 3s 40
DTF.__|FILENAME . L

ol /ANYLABEL,

Label

)
ry

BRPNCIN

02

ANYLABEL may be any symbolic label; if it is omitted, the processor will generate
a label. The entry pTr must be written exactly as shown. The operand must
contain the name of the tape file defined. This name will be used in the operand
of macro-instructions which refer to this tape file.

Although the line numbers for each prF subsequent entry need not be the same
as those which appear in the File Specifications Coding Sheet, a card must
appear for each line, in the order shown. If a prr does not consist of exactly
36 entries, the processor will discontinue compilation. A label for each line i
not necessary unless the entry will be referred to by the program; the labels of
other entries may be blank. The operand for each entry must be as specified
in the bulletin, “1BMm 7070 Input/Output Control System.”

Since the Input/Output Control System requires that all File Specifications
Tables appear in consecutive locations, the programmer must insure that all pTrs
are entered together at the desired point in the program. The processor will
determine the location of the first pTF encountered and make this location avail-
able to the appropriate input/output routines. A nine-word constant will be
assembled at the point where each prF is encountered.

In addition, the processor will generate a corresponding Tape File Scheduler.
This scheduler will be located with literals, adcons and other material generated
out-of-line; placement may be determined by use of a LiTORIGIN statement.

41

28

€ TMAST]

X28-1366
IBM 7070 AUTOCODER CODING SHEET dentification L L 1 L]
Program 7070 INPUT/OUTPUT CONTROL SYSTEM 76
Programmed by TAPE FILE SPECIFICATIONS Page No. |_|4?1 of ____
Date
3Llne5 6 Label |5%perah882| 25 30 35 40 45oper°nd50 55 60 65 70 75
o |TAPEF,ILE | IDTF, | L TR L ! L Ly L Lt L1 [
0,2, |F.CHANNEL, L1 Lo | | Ll L [P L1 11 T
013, BIAISIEITIAIPIEI - [1 I JIRS WO N N | L1 [l 11 L1 L1
04, |ALT 1,TAPE, L] L1 | L I R L | L1 L1 1
Q.15, AILITLZITIAlPlEl L1 l 1 L T S B IR [| | L1 1 11
0,6, AIC\TIIIVIIITIYI Lo [1 { T S| I [" ! 14 1 1
0,7, BILiolCiKJCINlTA [1 L 1 T I T T S [L 11 11 L1
0,8, F,I,L,EFORM L1 L1 ! L I AR L1 I L 1 [
o9, IF\I\LETIYIPE, Lty I L Ll 11 L1 | [] Ly
110, |RIECL NG TH, L1 Ly 1 1 L L | L | P
Ly BILNOICIKIILNJGI | Ly L [N A | T - L 11 1 11
1.2, |OPENP,ROC, L1 L | L1l L 11 1 i1 1 1
113, |CL,SEPROC L1 ! 1 A R L1l L L1 I L
L4, |TPERROPT, L - I ! PN S L L1 1 I Lt
115, JI.ORDOW,L,ST, P Lot | | Ll | L1l] L1 1 Lt
1.6; |I,OME T HOD, Lol [! | S R L1y ! 11 L1 |
._lill,IIIlolAlRlE‘lAJsl 1o Ll ! ! L Lo i1 ! L ! Ly
'IBI‘ leLIJolRlllTlYl N | L1 I | i [1 J I . L i 1 1 [
129, [IND X W,RDA Lor1og [| L L1 L1 L1 : | L 11
2.0, IlNlDIX!WIRlDIBl I - 1.1 1 1 B U S U N T .) 1 1 1 J
2,1, |T,0EN,S,I,TY,; % 1 11 I 1 Lo L ! L1 | 1
2,2, |S|LIRP,R,OCD, IR Ll ! I I | L1 | L4 | L
2l3l LILIRIPIRIO|CLDI I N S T B |- il L1 1 L1 ! I | | 11 1 1 |
,..Z_Lﬂl S]CILIPIRIOIClDl S 1 | L1 L1 I 1 FI . 1l 11 L1 J|
A@J TIPIEIRIRIFILIDI FE S L Y I 1 11 - L1 i L1 ! 11
12,6, |TPSK,P,FLD, %_‘ Ly L L L L L JEE | L1 | Ll
Ei_l_, EIOISIP LRIOICIDI I Y U S | T L1 L1 I I I T) I L1 Ll I 1
12,8, |E.,ORP,R,0CD, S I L1 L L) Ll L1 Pl 11 L L1
29 |EOFP,ROCD ! L1 ! L1 L1 L L 1 L1 P
3,0, RWD,P R,OCD, 4 L1 ! L1 L1 L L1 L1 ! 11
l.i| C!HIE|CIKLPINIT1 % L) 11 [l 11 11 1 J L1 11 | 11
3.2, ILABELIINF, L g L1 1 Ll L L1 [L L
13:3, |SRBF ,0RM4 N | L1 L i1 Ll | L1y L1 L) | |
3.4, |R{L.LF.ORM3 | L1l ! L1 L L1 L P ! Ly
13,5, |SIPARE INF, | | 1 . L L4 il L1 L1 L 11
3.6, |ISCHE.D/INF, L Lt L a2 il Lt TR L4 L4 L 1

28

When the processor finds that all consecutive pTFs have been assembled, it will
generate a NOP to signal the end of the series of Tape File Specifications Tables.
If a separate DTF is encountered at some later point in the program, it will not be
included in the series of File Specifications Tables and a warning message will
be issued. The prF will, in general, be assembled properly, but a corresponding
File Scheduler will not be generated. Therefore, the ninth word of the assembled
prF will not contain the customary address of a File Scheduler. In addition, the
assembled pTF will not be available to the Input/Output Control System during
the object program unless it is moved to a point within the previously mentioned
series of File Specifications Tables and the address of an appropriate File Sched-
uler inserted in the ninth word.

The product of the blocking factor (BLOCKING, line 11) and the tape input/output
areas (TIOAREAS, line 17) in the prF for a particular tape file determines the num-
ber of areas to be specified in the header line of the pa entry which defines the
area for the tape file records. (See “N (Area Number),” page 32.)

When the name of an input or output file is to be used in Autocoder macro-
instructions which are not a part of the Input/Output Control System, the fol-
lowing requirements must be considered:

1. The name of the file used in the operand of the pTF entry must be identical
to the name of the pa entry which defines the areas for the input or output
records.

)

The operand of the pa entry which defines the areas must specify an implicit
index word and that index word must be the same as the operand of the
INDXWRDA entry in the appropriate pTF.

DUF —Descriptive Entry for Unit Records

Source Program Format

When unit record files are to be handled by the Input/Output Control System,
a puF entry for each file must be supplied which describes the type of file and
the unit record equipment to be used. The pur entry also supplies the locations
of subroutines written by the user that are unique to the file.

The basic format of the pur statement is as follows:

LineJ Label Operation OPERAND Basi
3 sle 15)i6 2021 25 30 35 40 a5 5
ol [ANYLABEL , DUF [FILENAME, FILETYPE,CARDSYNC, T
°2 (., ., ., ., ...}, , LISTADDR,INDXWORD,6EOFADDRS,. 7
03 | | - .. |[ERRADDRS, , , ., . o

ANYLABEL is any symbolic label; it may be omitted. The entry pur must be
written exactly as shown.

The first item in the operand, FILEXAME, is the name of the unit record file to
be described by the pur entry. This name will be used in the operand of macro-
instructions which refer to this unit record file.

The second item in the operand, FILETYFE, is a one-digit number from 1 through
4 to specity the type of unit record file and the operating conditions. »

1. A 1 indicates that the unit record file is an input file and that the input unit
used by the file will never be shared with a spooL program.

2. A 2 indicates that the unit record file is an output file and that the output
unit used by the file will never be shared with a spooL program.

3. A 3 indicates that the unit record file is an input file and that the input unit
may be shared with a spooL program. - :

4. A 4 indicates that the unit record file is an output file and that the output unit
may be shared with a spooL program.

The third item in the operand, campsync, is a one-digit number to specify the
synchronizer to be used for the unit record file. A 4 must be used when an input
file is to be read through an 18M 7501 Console Card Reader.

The fourth item in the operand, LisTADDR, is the address, either actual or symbolic,
of the row(s) for the unit record area generated by a pa or prROW statement.

The fifth item in the operand, mpxwor, is either a two-digit number from 03
through 94 or a symbolic name which specifies the index word to be associated
with the unit record file. The indexing portion (positions 2 through 5) of the
index word will contain the location of the first word of the current unit record.

The sixth item in the operand, EoFADDRs, is an optional address that may be either
actual or symbolic. The address specifies the location of a card reader end-of-file

DUF 29

Processing Techniques

Error and Warning
Messages

30

routine or a printer carriage tape channel 9 routine to be entered if either condi-
tion occurs. When this item is omitted and a card reader end-of-file condition
occurs, the program will come to a programmed halt if no spooL program is to be
run in conjunction with it. If a spooL program is to operate in conjunction with the
program, the program will enter a loop to permit the spooL program to continue.
When this item is omitted, a channel 9 condition occurring during the printing
of a unit record file will have no effect and the program will continue normally.

The seventh item in the operand, ERRADDRS, is an optional address that may be
either actual or symbolic. The address specifies the location of an error routine
which will be entered when an error occurs during the execution of a macro-
instruction which refers to the file named in the first item of the pur entry. If
this item is omitted and an error occurs, the error record will first be typed on
the console typewriter. When the file is an output file, the error record will also
be punched or printed and processing then resumes automatically. When the file
is an input file, the operator may correct the error card immediately and read it
in again or he may depress the Start key and resume processing if immediate
correction is not required.

The pur entries are entered with the source program when the program is
assembled. They should be positioned in the same manner as declarative
entries.

As noted earlier, the sixth and seventh items in the operand are optional. When-
ever the sixth item is omitted and the seventh item is included, the omission of
the sixth item must be indicated by a comma; i.e., two commas will appear
between the fifth and seventh items. When both items are omitted, commas
are not required; only the first five items need appear in the operand.

The following error and warning messages will be issued during assembly under
the conditions specified.
ACTUAL ADDRESS NOT ALLOWED

This message is issued if FILENAME is not a symbolic name. The entire pUF
statement is ignored.

AN ELEMENT OF THE OPERAND STARTS ILLEGALLY

This message is issued in connection with the pur if either of the following
conditions occur:

1. The character following a comma is not alphabetic, numerical, blank or
comma.

2. FILENAME begins with a blank.

Processing will occur on all parameters (if any) which appear before the para-
meter in error; the remainder will be ignored.

LABEL SHOULD BE BLANK

This message is issued if any continuation cards for the pur operand have an
entry in their label column. The entry is processed properly but the label is
ignored; if referenced by the program, it will be undefined.

OPERAND OUTSIDE OF ALLOWABLE RANGE
This message is issued if:

1. FoeTYPE is not 1, 2, 3, or 4.
2. campsyncisnot 1, 2, 3, or 4.
3. 1~pxwor, if actual, is greater than 99.

The processor assumes that the value is 1 and normal processing continues.

STMNT SHOULD OR SEEMS TO BE ENDED BUT CARDS REMAIN

This message is issued if there are continuation cards remaining but the cur-
rent card includes the seventh parameter or ends with a blank. The remaining
cards are ignored.

SYMBOLIC ADDRESS NOT ALLOWED

Issued if FILETYPE or cARDSYNC begins with an alphabetic character. Preceding
parameter(s) will be processed; the remaining parameters are ignored.

DUF 31

DA — Define Area

Source Program Format

DA Header Line

32

The declarative statement, pa, may be used to define and reserve any portion of
storage. An area may be reserved for use as an input, output, or work area, or
contiguous areas may be reserved to contain a number of records, all of which
are identical in format. The pa statement instructs the processor concerning the
positions, lengths, and names of fields which make up the record area(s) being
defined, as well as the characteristics of the data which is to occupy each field.
Such characteristics include format, implied decimal-point position, and double-
or single-digit representation. Locations, field definers, and, if specified, implicit
indexing are assigned by the processor to enable the programmer to refer to the
fields by name in imperative statement operands. Thus, the programmer need
not be concerned with the actual locations of the fields within storage. It should
be remembered that the pa statement does not provide the data for the field it
defines, but only reserves the space which the data is to occupy. The data itself
must be brought into the defined area in core storage from some external source
such as cards or magnetic tape, or from other locations in storage.

A pa statement consists of a header line and one or more subsequent entries.
The pa header line is used to initiate the reservation of a portion of storage. The
header line specifies the number of identical record areas to be reserved. An
indication to generate rRows corresponding to the areas may be specified. Rela-
tive addressing and implicit indexing, which facilitate referencing a field within
a record area, may also be specified in the pa header line. The subsequent
entries define the fields within the record area, specify the amount of storage to
be reserved, and describe the data which will appear in each field.

The basic format of the pa header line is as follows:

Line Label peration| OPERAND Basic ﬁ
3 sle 1)1 20j21 25 30 35 40 as 50
o1, [ANYLABEL, DA N,+RDW,ADDRESS+ADDRADJ+1NDEX WO,RE

ANYLABEL is any symbolic label; it may be omitted. The operation code, DA,
must be written exactly as shown. With the exception of the first entry, N, the
items in the operand are optional. An explanation of the entries in the operand
follows.

N (Area Number). N, the first entry in the operand of the pa header line,
may not be omitted. N is replaced by the number of identical record areas to be
reserved by the pa operation, the format of which is defined by the programmer.
For example, suppose that records of identical format are to be read into storage
in blocks of ten. The programmer might enter a pa header line with N equal to
10, followed by subsequent entries which specify the starting and ending posi-

tions, characteristics, and names of the fields composing one record. If all other
items in the operand were omitted, the pa header line would appear as follows:

18 20 25 30 35 40
ANYLABEL . DA _ 140 . .

Line‘; Label peraﬁonl- OPERAND (
3 Sl6 16 21 45

o,
02

P B S | [T ll‘lx]lll‘llllll!llJAinlllLll

N may be any unsigned number from 1 to 9999; it is limited only by the size of
storage. (Frequently, x will equal 1, as in a work area or a unit record input or
output area.) The number of storage words to be reserved for the entire pa
area (excluding rows, if any) will be x times the number of words reserved for
the one record defined by the subsequent entries. The maximum number of
words which may be reserved for an entire pa area is also limited only by the
size of storage.

If the pa is to reserve contiguous areas of storage that are to contain a number
of input or output records having identical format, then x must equal the prod-
uct of the blocking factor and the tape input/output areas indicated in the prF
for the file (see page 28). If the blocking factor for a tape file is 10 and the
programmer only wishes to use one area of storage for input or output, then ~
should equal 10. However, if the programmer wishes to use two consecutive
areas of storage for input or output, then N must equal 20 and if he wishes to
use three consecutive areas, then N must equal 30.

RDW (Record Definition Words). Record definition words are required by
the 7070 and the 7074 for reading in and writing out data and for moving
blocks of data within storage. If “row” is written in the operand of the pa
header line, the processor will automatically generate ~ rows associated with
the N defined areas. These rows will be assigned N locations immediately pre-
ceding the first word of the first area defined.

If row is not preceded by a sign, all generated rows will be plus except the last,
which will be minus. If a 4 or — sign precedes row, all generated rows will be
given the indicated sign.

If row is not written in the operand, rows will not be generated; the first word
reserved by the pa statement will be the first word of the first record area.

For example, suppose that an area is to contain a group of four 10-word records
and that the following pa header line is entered, the fields within a record being
defined by subsequent entries:

Li negl Label JCiperoﬁorJ_ OPERAND K
s 6 1s)ie 20021 25 30 35 40 45
DA,

o1, RECORD . DA . la,ROW .~~~ 7

02

I S NS B WP RS D T lIlJAlJlll|JAIA‘IA]I‘|IJ{

Assume that Autocoder’s location assignment counter contains 1000 when the
above pa statement is encountered. The processor will generate the following

DA 33

34

rows associated with the four record areas and assign them to locations imme-
diately preceding the first record area:

Symbol Location RDW
RECORD 1000 +0010041013
1001 0010141023
1002 +0010241033
1003 —0010341043

Note that the first row, located at 1000, defines the first 10-word record area
beginning at 1004; the second rpbw, located at 1001, defines the second 10-word
record area beginning at 1014; etc. If row had been omitted from the pa header
line, the first word of the first 10-word record would have been located at 1000;
no rpows would have been generated.

rows may also be defined elsewhere by using the prow statement.

ADDRESS (Relative Addressing). The fields defined in subsequent entries may
be assigned addresses relative to (i.e., beginning with) an Appress specified
in the operand of the pa header line. ADDRESs may be written in actual, *, or
symbolic form. When a relative address is specified, it will usually be 0.

Assume that a relative address of 0 is specified, as in the following example:

Line Label peroﬁor:L OPERAND g
3 sle lslls 20j21 25 30 3s 40 45
o1, ANYLABEL, [|DA 20,RDW,0, .,

02 Al i1 i L) - L i I D T S 1 i1 1 L 1 11 1 1 1 P | 1 1 A lJl

In this case, any field which occupies the first, second, or third word, etc., of the
area beyond the generated rows will be assigned relative addresses of 0000, 0001,
0002, etc., respectively. Thus, if FiELpC is the name of a field occupying the
third word of each record, the instruction

Lineﬁl‘ Label _EperoﬁL OPERAND g
3 (] 15[16 20]21 25 30 35 40 45
LI zAA, |FIELDC(0O,4)+X11 <

L i LA b A Bl P 4K Pl LA S S S B |

FUY T S S S N S T UG SS ST S T TS RN S S SN VA (R N U A N S VUIVEN N S S S U |

would be translated in the object program as +1311040002. Since twenty identi-
cal areas have been reserved and since the third word of each of the twenty
areas is addressed rFieLpc and assigned the relative address 0002, one of the
twenty areas referred to by an instruction must be specified. The desired area
may be indicated by indexing the individual instruction (as illustrated) or by
implicit indexing (as explained in the next section). Referring to the illustra-
tion, the indexing portion of index word 11 must have been programmed to
contain the starting location of the area to be processed. Then, when indexing
takes place, the indexing portion of index word 11 is added algebraically to the
relative address of FreLpc, 0002, resulting in the actual address of ¥iELDC.

The presence of a relative address in the pa header line does not affect the reser-
vation of storage. The generated rows define the actual record areas reserved;
they are also unaffected by the absence or presence of relative addressing. For
example, assume that the location assignment counter is at 1000 when the follow-
ing pa header line is encountered:

LineL Label -}SperafiL OPERAND j
3 sle 15118 20/21 25 30 38 40 45

oi, JANYLABEL ,L DA . |20, ROW,0 ,, ..
02

IR T S WD SR S W W S St

Lol i1 PN R T -111.1w||111.||11.|1111&

Twenty rows associated with the twenty record areas will be assigned locations
1000 through 1019. If the subsequent entries define a record that is ten words in
length, the first Row generated at 1000 would be 40010201029 and the first word
of the first record would be assigned to 1020, the second to 1021, etc.

If relative addressing is specified, but rRows are not to be generated, commas
must appear in two consecutive columns, as in the following example:

Line Label peration| OPERAND g
3 sls 156 20/21 25 30 35 40 45
o1, |/ANYLABEL, , DA . |20, ,ADDRESS+INDEXWORD, , . (
o 2 i1 Aol i A . L | 1 1 1 i 1 1 - Fa— i 1 1 i 1 1 T W N | A - 1 i i 1

ADDRAD] (Address Adjustment). Address adjustment is permitted with a
relative address in symbolic or * form. However, when a relative address is
specified, it will usually be 0 and address adjustment will not appear.

Address adjustment, when used with an * or symbolic address, will appear as in
the following examples:

Linil' Label peraﬁonl- OPERAND j
5 6 15)i6 2021 25 30 35 40 as

oi, AREANAME _|DA _ [3,RDW,ADDRESS-10+|NDEXWORD
02

.
P SR FUREUNUCINNS NS SN VA ST (ST S N SN ST U0 ST S SR N U SR S TN U SR SO SO T SO S S S S |

LA

03 A A 1 o I i 2 ‘l.l‘ L i 1 i i i " 1 1 1 i 4. i 1 L e RN W B | 1 1 1 1
o4 | b e
o5 |RECORD ., DA L6 400, ,%+1+INDEXWORD, , , , .,
06

Y NST SETUY SE SO GRS ST ST U AN SUN NUN S5 S S ST S S S S S S S S S S TS UG SN TS WU TS U SO S S S S

DA 35

36

INDEXWORD (Implicit Indexing'). An index word, either symbolic or actual,
may be specified in a pa header line as in the following examples:

Line Label perati
3 18)i6

OPERAND
sie oj21 28 30 35 40 a5

S

o', AREANAME |[DA |I.5,RDW,ADDRESS+ I NDEXWORD ,

02 M

——d A PRI S S U WA S S VA GO W S S WA S T S S SIS S T G S

03 .

i I ST T R T P S S SO Y VRIS VG S S SR T M S S S

0.4 .

4 T B YR Y IS S D A U GRS S N0 G0 WD S TR SN WU WM SN SN S S WS U S S |

o5 [INPUTFILE DA , [43,,.,ADDRESS—1+ I ,NDEXWORD |

OAGA ro— hd

PO S S S S i VD S S S L T R DU S W VY U0 NN S NS S0 SIS TSNS TN S NS S|

E S NACE A

09 louTPuTFILEDA ., |20, ADDRESSHX1S,\
I,L'L B W Y 'S i n i 1 I-A 4 1 L 1 1 A i A i i A 1 1 i 1 AL A i 1 1 e e 1 i 1

|.2. PO T SR U U T S Y L1t U T S N T T S SN TN S S UU S S T S ST S N ST S U . §
'3 |CHANGEFI LE[DA |8 RDW,ADDRESSHL10+X7)
|A4l 1 A 1 1 i L i 1 1. - 11 14 1 1 1 i1 _1 4 1l 3) 1 1 1 1 1 1 1 1 1 i 1 1 Al\

In these examples, INDEXWORD is the symbolic name of an index word; X15 and
X7 are the actual addresses of index words. Note that a plus sign must always
precede the name of the index word and that actual numbers of index words
must be preceded by “+X.” The specification of indexing follows address ad-
justment, if present, or the relative address itself, if address adjustment is not
used.

The naming of an index word in the header line has no effect upon the storage
reservation and location assignments produced by the pa. It does facilitate writ-
ing instructions which reference fields in one of the records within the defined
area. When the compiler encounters an instruction referencing such fields, the
instruction will be examined for the presence of indexing. If indexing already
appears in the instruction, it will be left unchanged. If indexing does not appear
in the instruction, however, the address of the index word specified in the pa
header line will be inserted in the index word positions of the instruction. Thus,
if it is known when coding a pa that the record defined by it is to be processed
by indexing, the indexing may be caused by making the single notation in the pa
header line, rather than by supplying the indexing in every instruction which
acts upon the record.

Consider an example in which the compiler encounters the following pa header
line:

Line:l Label perctiov:li ~ OPERAND g
3 sle |5||s 20021 25 30 s 40 453

o+ JAREANAME DA , 1100,,,0+X25, . ., .

°2 ..y JL,LR

Each field in a record will be assigned a location relative to 0. If FiELD2 is the
label of a field occupying the second word of each record in the area, th
instruction

Liﬂ Label perotii OPERAND §
3] ISIIG 2021 2 30 35 40 4

(LI ZAL, FIELD2, . ., ..,
02

PR WS ST TN SIS VS N N T N T S N 1 .unj..unnnll.nxnxAALL;‘Ll

will result in an assembled machine instruction of +1325090001. Notice that the
6-9 portion of the instruction is 0001, but that this address is to be indexed by
index word 25. The indexing portion of index word 25 must have been pro-
grammed to contain the starting location of the area to be processed. Then, by
indexing the instruction by index word 25, the indexing portion of the index
word is added algebraically to the relative address of F1eLp2, 0001, resulting in
the actual address of FIELD2.

If, however, the field had been referred to by an instruction which already in-
cluded indexing, such as

Line ’ Label }Sperqﬁr OPERAND ‘5
B 6 15(16 20[21 25 30 35 40 :55

o, |\, ZAY FIELD2+X29, , , , .,

PR D NI § l:'lAlA‘lllllllllAlllllllIIl>l&

02

the assembled instruction would have been -+1329090001, thus ignoring the
specification of index word 25 in the pa header line.

As demonstrated by the previous examples, the use of a pa header line to specify
a relative address and implicit indexing is most valuable in processing blocked
tape records. If the fields of a record are defined as relative to 0 and the rows
associated with the records are successively loaded into the index word specified
in the pa header line, instructions to act upon the fields of the record may be
written as if no indexing was required. Autocoder will insert the address of the
index word into the index word positions of all such instructions.

For another example, assume that an area is to contain a group of four 10-word
records. Assume also that it is desired to perform the following operation on
three fields named FiELDA, FIELDB and FIELDC, which occupy the first, second and
third words, respectively, of each record: subtract the contents of FIELDB from
the contents of FiELpa and store the result in FreLpc. This could be accomplished

by the following coding:

DA 37

DA Subsequent Entries

38

LineJ Label Operation OPERAND
3 sie

15]16 2021 25 30 35 40 45
o1 INAREA DA |4.+RDW,0+X2 . . . e
02 : T L T T L .
03 | . (Subsequent entriek define ,, . ¢
04 the fieldq within afrecord,), ., ,,,,,An
o6 |, .. . Ixt . I3,+0000000003 . .)
or |LDROW __ IxL |2 I NAREA+X3|
o8 | lzAs Fr1ELDA__,]
os | Isa . . IFiELDB ., . . .
ol . o . Ista lFaEwpe

DL IR , . |B1X , |3,LORDW
12

NS W MY FUNE S Tt

PN

1 i USRIV ST S R T ST S T SN S S SR (U SRR SR S ST ST S

b

Assume that Autocoder’s assignment counter contains 1000 when the pa state-
ment is encountered, 2000 when the first instruction of the routine is encountered,
and the literal +-0000000003 has been assigned location 4432. The corresponding
assembled machine-language instructions would be as shown below:

Assembled

Location Instruction
2000 +4500034432
2001 +4503021000
2002 +1302090000
2003 —1402090001
2004 -+1202090002
2005 4900032001

Subsequent entries under a pa header line are used to name fields, to indicate
their starting and ending positions within the record area, and to specify their
format. The subsequent entries, taken collectively, indicate a logical assemblage
of words, the number of which is multiplied by the number ~ in the pa header
line to determine the amount of storage (excluding rows, if any) to be reserved
by the pa.

The label column of a pa subsequent entry may include any symbolic name or
may be left blank (except as noted for the special operation, copbe, which is
explained on page 50). The operation column is left blank, except when used
for the copE entry.

Field Position and Length. The position and length of a field within the
record area is indicated in the operand by writing the starting digit position,
a comma, and the ending digit position. If the area is considered to be a con-
secutive string of digits, the first being 0, the position of any digit is identical to
its placement in the string. Thus, a field occupying the entire first word of a
record area would be defined as follows:

1 1
Line Label iperationl_ OPERAND (
3 6 15}16 2021 25 30 35 40 45
D.A

o! IAREANAME L N O 7
02 JFIELDA . | .0 1008 v i i)
03

P SR 1.‘1..;;;ALAJ_L;A"-lALALlun.nK

In the above example, 0 is the digit position of the first character and 9 is the
digit position of the tenth and final character in FiELDA.

A field occupying the entire second word of a record area would be defined as
follows:

Line Label J?peroriori OPERAND j
3 sls 1516 2021 25 30 35 40 as

ol, AREANAME DA . L R N S Lj
o2 JFIELDB , . . |... . 110,49 00)
03 o e

A field occupying the last two digits of the third word of a record area would
be defined as follows:

Line%k Label peroﬁt OPERAND J
H 6 1s)ie 20j21 28 30 35 40 as

ol |[AREANAME, DA . & ., .\ e
o2 FIELDC . |
03

. .
o leBa2e oS

AlA}lxlAlAOIAAILA‘LLLLAAILLIDAIAAI\

A digit position, therefore, is a combination of a word number (consisting of
one, two, three, or four numerical characters) followed immediately by a digit
number (always one numerical character). The first word of the area is referred
to as word 0, the second as word 1, the third as word 2, etc.; digits within a word
are numbered 0 through 9, left to right, in the normal fashion. Thus, digit posi-
tion 49 would refer to the low-order digit in the fifth word of a record area;
digit position 9990 would refer to the high-order digit in the thousandth word of
a record area.

It is not necessary to enter leading zeros; the following operands would have
exactly the same effect:

12,25

00012,00025

A one-digit field may be entered by writing the single digit position only. Thus,
the following operands would have exactly the same effect:

19,19
19

In either case, the processor would reserve the low-order digit position of the
second word of the record area.

DA 39

40

The following example provides additional illustrations of entries which define
the length and position of fields within an area.

LineJ Label Eraﬁm OPERAND g
3 sle 1518 20[21 25 30 _ 35 40 45
oI, RECORD . [pa . . |t.,ROW, .. . e
o2 |NAMEONE | . loo,ae . . .~ N\
o3 [NAMETWO | fi7.49]
04 INAMETHREE | _ [20.20 . . .~~~ """/
05 INAMEFOUR | Is3.857 . TN
o6, NAMEFIVE,_ | . Is8 . ., o
ot i boiiilre T

An eight-word record is defined (digits 0-79). The first field, NAMEONE, occupies
a total of 17 digit positions beginning with the high-order position of the first
word of the record. NaMETWO and NAMETHREE are fields of lengths 3 and 10
digits, respectively.

A gap of 23 digits then occurs, followed by NamEFOUR, a five-digit field. This
is followed by NAMEFIVE, a one-digit field. (Since the starting and ending digit
positions are identical, the one number, 58, suffices.)

A subsequent entry is always required when a field is to be named for reference
by the object program. Other fields in a record need not be defined by a subse-
quent entry except for an entry to terminate the record. The field must appear
but need not have a label. Thus, in the example above, the one-digit field in
digit position 79 is not named, but it is necessary in order to establish that eight
words are occupied by the record. Any digit in the eighth word (73, for example)
would cause the pa area to be comprised of eight full words, since a record is
never terminated in the middle of a word.

Subsequent entries may be entered in any order. However, fields are normally
entered in ascending storage-position order for convenience and accuracy.

The net effect of the following coding would be identical to that of the preceding
example, despite the order of the subsequent entries:

LineJ Label —JOperotion OPERAND g
3 5|6 15)16 20[21 25 30 35 40 45
01, [RECORD . DA . lA,ROW . . !
o2 | . . oz)
03 INAMEONE . loo,1e .]
04 INAMEF.IVE Clse Y
05 INAMETWO, o lariae ¥ ,
06 INAMEFOUR. . . l53.857 . e

07 INAMETHREE. 0,29 .]
os | L e N\

Subfields are entered in the same pa which defines the fields. Any desired
breakdown of the fields may be indicated by writing the starting and ending
digit positions of subfields which overlap, fall within, or bridge other fields.
Again, the order is irrelevant. The following example illustrates the coding of

subfields:

Linﬂ Label]Operotion OPERAND J
13 516 1516 20021 25 30 35 40 4
oI CALENDAR _|DA . |1.RDW]

o2 DATE , _ o lrenre N
o3 DAY . e,z)
04 |[YEAR, . , o lrsete o N
05 MONTH, Y ¢
06 IDECADE . Clre
or |\ o o

In this example, paTE will reference the entire date field; the subsections of the
date field may be referred to as MONTH, DAY, or YEAR. In addition, DECADE
references a one-digit field within YEAR and also, therefore, within pATE.

Relative Field Definition. The primary function of the pa declarative opera-
tion is to instruct the processor as to the positions and lengths of fields within
an area, thereby allowing the processor to assign storage locations and field
definers automatically when a field is referred to by name in the operand of an
instruction. Sometimes it may be desirable to refer to a portion of a field which
has been defined by a declarative operation. For the convenience of the pro-
grammer, this is done relative to the field itself, so that it is not necessary to
remember the actual digit positions of the field.

To illustrate, assume that the name custno is a field of seven digits, defined under
a paA as follows:

T

Lini#; Label lOperationL OPERAND 7
H 3 1s)is 2021 25 30 35 40 45

ol |INPUTAREA DA [1
02 |[CUSTNO 03,09

L D W S T (UL R el SRS TR SOUNS SHN SN0 SN S S YUY WD SN TG NS S S S |

. S T S S A;A.‘.;.x,..4...4A.AA..|||‘»R

" Lo YU AU S G T S SR

A field might occupy only the low-order digit positions of a word, as does cusTNO
above. However, positions within the field itself are numbered starting with 0.
If the programmer wishes to refer to the three high-order positions of cusTNo,
he would refer to positions 0, 1 and 2 by placing the entry custno (0, 2) in the
operand. During assembly, the processor will convert the field definers relative to
custno to field definers which refer to actual digit positions of a word. Thus, dur-
ing assembly, the processor will convert custyo (0, 2) to the actual digit positions
3, 4 and 5 of the word of which cusTxo0 is a portion. If the storage location of this
word is 1001, symbolic instructions using custNo and their assembled equivalents
might be as follows:

DA 41

42

Symbolic Instruction Assembled Instruction

zal custno(0, 2) +1300351001
zal custNO(4, 5) +1300781001
ZAl cUsTNO +1300391001

cusTNO might instead be defined as a full word, as follows:

Lineél_ Label Pperaﬁoni_ OPERAND 5
3 6 15116 20j21 25 30 35 40 4

o1, INPUTAREA DA o Q
o2 kusTNo | . . loo,09)
03 . e e

In this case, any field definition following custno would be both relative and
actual. If the storage location of this word is 1001, symbolic instructions using
custNo and their assembled equivalents might be as follows:

Symbolic Instruction Assembled Instruction
zal custNoO(0, 2) 41300021001
zAl custNO(4, 5) 41300451001
zAl cusTNO +1300091001

In the example on page 41 illustrating how subfields are entered, the subfield pay
would be equivalent to paTE(2, 3).

Format Indicators. In addition to defining the position and length of a field,
a pa subsequent entry may also specify format and characteristics for that
field. It will be noted that Autocoder macro-instructions are capable of acting
upon fields which bridge words, which exceed ten digits in length, or whose
decimal points are not aligned. The macro generators will consider the formats
for the fields concerned; they will then generate instructions to align decimal
points while performing arithmetic and compare operations, and will convert a
field from one format to another format.

Five different types of fields may be designated by writing the proper format
indicators immediately after the ending digit position of the field. The following
indicators may be used to indicate to the processor the format of the data that
will occupy the field at object program time.

Format Indicator Meaning

A The field is to contain numerical data
to be treated as an automatic-decimal
number. Although automatic-decimal
fields must not exceed 20 digits for
arithmetic operations, longer integer
fields may be defined, and are acceptable
to some macro-instructions.

F The field is to contain numerical data
to be treated as a floating-decimal num-
ber. The field must be exactly 10 digits
in length, beginning in digit position 0
of a word; it may not bridge words.

Format Indicator Meaning

@ The field is to contain the double-digit
representation of alphameric characters.
The data is to be treated as neither an
automatic-decimal nor a floating-decimal
number. The field may be any desired
length; the number of digits in the field
must be evenly divisible by two because
each character is represented by two
digits. The field must start at an even-
numbered digit position.

@A The field is to contain the double-digit
representation of data which is to be
treated as an automatic-decimal num-
ber. The size of the field must not ex-
ceed 40 digits (20 characters). The
number of digits in the field must be
evenly divisible by two because each
character is represented by two digits.
The field must start at an even num-
bered digit position.

@F The field is to contain the double-digit
representation of data which is to be
treated as a floating-decimal number.
The size of the field must be exactly
20 digits, occupying two full words; it
may not be split among three words.

If format indicators are omitted, the processor will assume that the field is to

contain numerical data to be treated as a signed integer:

1. For fields less than or equal to 20 digits in length, this is equivalent to an
automatic-decimal field.

2. For fields longer than 20 digits, see individual macro-instructions for the
treatment of long integer fields.

Users are strongly urged, however, to furnish format indicators in pa subsequent
entries.

Decimal-Point Indicators. In the case of automatic-decimal numbers, indi-
cators may also be used to indicate where the decimal point would fall if it
were included in the field. (It should be noted that the decimal point is thus
implicit, or “understood”; it is not actually to be included in the field nor is a
field position to be reserved for it.) The implicit positioning of the decimal point
is done by placing an indicator of the form

ab

immediately to the right of the A or@A format indicator. The “a” is replaced by
the number of characters to the left of the implicit decimal point in the field
described; the “b” is replaced by the number of characters to the right of the
implicit decimal point. The sum of these indicators must not exceed 20 char-
acters in length and must exactly equal the number of characters defined by the
starting and ending positions for the field. For a numerical field, then, (a + b)
must equal the number of digits defined for the field; for a double-digit repre-
sentation, however, (a + b) must equal one half of the number of digits defined
for the field.

DA 43

44

For example, the operand
20,25A4.2

informs the processor that the field which occupies digit positions 20 through 25
should be operated upon as if it included six digits of numerical data and a
decimal point fell between the four high-order digits and the two low-order
digits.
However, the operand

20,25@A2.1

informs the processor that the field should be operated upon as if a decimal
point fell between the two high-order characters and the low-order character
of a three-character alphameric field. (It will be remembered that one character
occupies two digit positions.)

When an integer is defined, the decimal point and the number of decimal posi-
tions may be omitted. Thus, the following entries would have the same effect:

20,29A10.0
20,29A10

If the A or @A format indicator is not followed by decimal-point indicators, the
processor will assume that the field is to contain an integer. Users are strongly
urged, however, to furnish format indicators and decimal-point indicators for
automatic-decimal numbers in pA subsequent entries. Specification of these
characteristics makes it possible for macro generators to perform diagnostic
analysis of the source-program statements, and thus aid in minimizing problems
in program testing.

Additional examples of the use of format and decimal indicators are given below:

Lini Label lOperoﬁonl OPERAND S
3 5/6 1516 2021 25 30 35 40 45
o INPUT, . IbA |, ROW . ., ., (
02 |[FIELDA .. lto.asm84.2 &
o2 FIELDB _ lpa,20¢]
o4 [F1ELDC . .| .. . lso.39F . . . %
os [F1ELDD . | . . l46.55@A3.2
o6 FIELDE .. | . . 160.,.796F « \ ' .
o7 [Fiewor . | . . lso.8586.0 N
os |FIELDG | . Iss, B89@A2.0 ¢

FIELDA reserves the six high-order positions of the second word of the record
area for an automatic-decimal number which will have, at most, four integer
places and two decimal places.

FIELDB reserves the six low-order positions of the third word of the record area
for a maximum of three alphameric characters.

FIELDC reserves the entire fourth word of the record area for a floating-decimal
number.

FIELDD reserves the last part of the fifth and the first part of the sixth words of
the record area for an automatic-decimal number in double-digit form, having

Processing Techniques

Use of DA With Symbolic
Machine Instructions

at most three integer places and two decimal places. Ten digit positions must
be reserved, however, because of the double-digit representation.

FIELDE reserves the seventh and eighth words of the record area for a floating-
decimal number in double-digit representation.

FIELDF reserves the six high-order positions of the ninth word of the record area
for an automatic-decimal integer.

FIELDG reserves the four low-order positions of the ninth word of the record area
for the double-digit representation of an automatic-decimal integer.

Two or more symbolic names may be assigned to the same field and the same
characteristics by listing both names as subsequent entries under the same pa
and duplicating the operand desired, as in the following example:

Line_l Label Operoﬁont OPERAND ?
3 516 15]16 20]21 25 30 35 40 45
ot.l.. ... loa . lro,RDW,0+INDEXWORD ¢
o2 [FILELDA . . J0.9A& .4 _rZ
o3 A, ., . .l . lo.eA6.4

04 FIELDB . .| .. . 120.29F \ v oL
o5 B . il 20029F)
os F1eLDC, . .| .. .la2.59@ T
ot le ol s8]
LN N D R ¢

In this example, A is made equivalent to FIELDA, B is made equivalent to FIELDB,
and C is made equivalent to FIELDC. Any reference to A, B, or C will give pre-
cisely the same results as those which would result from reference to FIELDA,
FIELDB, Or FIELDC, respectively.

The contents of a given field may be treated as having different characteristics
at various times by defining that field using more than one subsequent entry, as
in the following example:

LiniJ Label J?peroﬁonl- OPERAND §
3 Si6 15{16 20[21 25 30 35 40 45
ot.l....... . |ba |1o,RDW,O0+INDEXWORD .. . ¢
o2 FIELDA .. |, , lo,986.4 ")
o3 | .. | . lo,9A8.2 . . e
0.4) » TR

Each reference to the field must be to the label which is associated with the
characteristics that apply to the contents of the field at that particular time in
the object program.

Although the programmer will usually find it more efficient to use macro-instruc-
tions to refer to pa header lines and subsequent entries, symbolic machine in-
structions may also be used for this purpose. When a symbolic machine instruc-

DA 45

Use of DA with
Macro-instructions

46

tion references a symbolic label, however, it will operate directly on a maximum
of a single full word. Certain additional restrictions must also be considered,;
these are noted below.

DA Header Line. When a symbolic machine instruction references the label
of a pa header line, it will operate on the entire first word reserved by the pa
statement. Thus, if Row generation is specified, the symbolic machine instruction
will act on the entire word containing the first generated row. If rRow generation
is not specified, the symbolic machine instruction will act on the entire first word
of the first record defined. Symbolic machine instruction references to the label
of a pa header line are not affected by the presence or absence of implicit index-

ing.
The above usages are illustrated by the examples on page 47.

DA Subsequent Entry. When a symbolic machine instruction references the
label of a pa subsequent entry, it will act only on that portion of the field
which falls within the word containing the starting digit position defined by the
subsequent entry. The specification of implicit indexing will cause the symbolic
machine instruction to address a word (or portion of a word) in the current rec-
ord, as determined by the contents of the specified index word. If implicit index-
ing is not specified, the word (or portion of a word) addressed will be within the
first record as defined by the subsequent entry.

The above usages are illustrated by the examples on page 47.

The Autocoder language is designed to allow record processing to be accomp-
lished without regard to the number of records that may appear in one block of
input or output. Thus, when a macro-instruction refers to the label of a pa header
line, one complete record will be the maximum that is affected or considered. (It
should be noted that, in some cases, only part of the record will be affected or
considered.) When N is greater than 1, therefore, no single reference by a macro-
instruction to the label of a pa header line will ever affect or consider the entire
area reserved.

Regardless of the absence or presence of specified row generation in the pa
header line, the effect of a macro-instruction reference to the label of a pa header
line or subsequent entry will be as follows:

1. When a pa header line does not contain a relative address and implicit index-
ing,

(2) a macro-instruction reference to the label of the pa header line will cause
the generation of coding which will affect or consider (as a maximum)
the first record, as defined by the subsequent entries under the pa header
line.

(b) a macro-instruction reference to the label of a subsequent entry will
cause the generation of coding which will affect or consider (as a maxi-

mum) the named field within the first record, as defined by the subse-
quent entries under the pa header line.

This technique would normally be used when a work area is defined; ie., x
is 1 and the first record is, therefore, the only record defined.

va

PAGE AA PROGRAM DA 7070 COMPILER SYSTEM VERSION OMYO8s CHANGE LEVEL 0000le PAGE AA

LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF

0l 0002 * EFFECTS OF SYMSOLIC MACHINE INSTRUCTION REFERENCE TO

02 0003 * LABEL OF DA HEADER LIiNEe

03 0004 #*

04 0005 AREAL DA 1 +0003250327

05 0006 124925 29 0326 0326

06 0007 ZAl AREAL 00001 0328 +1300090325

07 0008 *

08 0009 AREA2 DA 2 +0003290334&

09 0010 12425 29 0330 0330

10 0011 ZAl AREA2 00002 0335 +1300090329

11 0012 *

12 0013 AREA3 bA 2RDW +0003360343

13 X 0336 +0003380340 0336

14 X 0337 =0003410343 0337

15 0014 12925 29 0339 0339

16 0015 ZAL AREA3 00003 0344 +1300090336

17 0016 *

18 0017 AREA4, DA 29RDW O+ INDEXWORD +0003450352

19 X 0345 +0003470349 0345

20 X 0346 =0003500352 0346

22 0019 241 Ache S <t o001
1

220018, 00004 0353 +1300090345

24 0021 AREAS DA 29904+X15 +0003540359

25 0022 12425 29 0355 0001

26 0023 ZAl AREAS 00005 0360 +1300090354

27 0024 *

PAGE AA PROGRAM DA 7070 COMPILER SYSTEM VERSION OMY08+ CHANGE LEVEL 00001e PAGE AA

LN CDREF LABEL oP OPERAND CONO FO LOC INSTRUCTION REF

0l 0028 * EFFECTS OF SYMBOLIC MACHINE INSTRUCT|ON REFERENCE TO

02 0029 * LABEL OF DA SUBSEQUENT ENTRY.

03 0030 *

04 Q031 DA 1 +0003250327

05 0032 FI1ELDA 12425 29 0326 0326

06 0033 ZAl FIELDA 00001 0328 +1300290326

07 0034 *

08 0035 DA 2 +0003290334

09 0036 FIELDB 12925 29 0330 0330

10 0037 ZA1 FIELDB 00002 0335 +1300290330

11 0038 *

12 0039 DA 2 yRDW +0003360343

13 0336 +0003380340 0336

14 0337 =0003410343 0337

15 0040 FIELDC 12425 29 0339 0339

16 0041 ZAl FIELDC 00003 0344 +1300290339

17 0042 *

18 0043 DA 29ROW O+ INDEXWORD +0003450352

19 0345 +0003470349 0345

20 0346 =0003500352 0346

21 0044 FIELDD 12425 29 0348 0001

22 0045 ZAl FIELDD 00004 0353 +1301290001

23 0046 *

24 0047 DA 2990+X15 +0003540359

25 0048 FIELDE 12425 - 29 0355 0001

26 0049 ZAl FIELDE 00005 0360 +1315290001

27 0050 *

48

2. When a pa header line contains a relative address and implicit indexing,

(a) a macro-instruction reference to the label of the pa header line will cause
the generation of coding which will affect or consider (as a maximum)
the current record (as determined by the contents of the implicit index
word at the time the instructions are executed).

(b) a macro-instruction reference to the label of a subsequent entry will
cause the generation of a coding which will affect or consider (as a maxi--
mum) the named field within the current record (as determined by the
contents of the implicit index word at the time the instructions are
executed).

The generated instructions will include implicit indexing and references to the
implicit index word wherever necessary.

Input/output macro-instructions may indirectly affect a record by operating on
the rows defining that record; e.g., the putx macro affects records by interchang-
ing rows. When the other macro-instructions (i.e., those not concerned with in-
put/output) refer to the label of a pa header line which specifies Row generation,
however, they will not operate on the rRows themselves. For example, when the
ZERO macro is used in this way, it will not zero the rRows; it will zero out one com-
plete record area.

When input or output files are to be referred to by input/output macro-instruc-
ticns, the following considerations apply:

1. Macro-instructions which are to operate on a record will reference the name
of the file. This name must appear as the label of the pa header line and as
the operand of the prr for that particular file. Depending on the method of
generating rRpws, this name may or may not be the same as the operand of the
subsequent entry 10RDWLIST in that same pTF.

1o

In the header line of the pa referenced, N and row specification will be pre-
pared according to the procedures described in the 7070 Data Processing Sys-
tem Bulletin “1BM 7070 Input/Output Control System,” form J28-6033-1.

3. A relative address of 0 will be specified in the pa header line.

4. Implicit indexing will be specified in the pa header line. The name of the
index word specified must be the same as the operand of the subsequent entry
INDXWRDA in the appropriate DTF.

When input or output files are to be referred to by the other Autocoder macro-
instructions or by both the input/output and other macro-instructions, the fol-
lowing considerations apply:

1. If rows are generated by the pa header line, all macro-instructions can refer-
ence the name of the file. If Rows are generated by a prow, the name of the
file cannot be referenced; however, the area which the prRow references may
be used as an operand of any macro-instruction, where applicable.

2. In the header line of the pa referenced, N and row specification will be pre-
pared according to the procedures described in the 7070 Data Processing
System Bulletin “mBas 7070 Input/Output Control System,” form]28-6033-1.

3. A relative address of 0 will be specified in the pA header line.

4. Implicit indexing will be specified in the pa header line. The name of the
index word specified must be the same as the operand of the subsequent
entry INDXWRDA in the appropriate DTF.

Arrangement of Fields

Additional Examples

When a pa statement is used to define a work area, the following considerations
will normally apply:

1. ~nwill be 1.
2. Row generation will be specified.

3. Neither a relative address nor implicit indexing will be specified.

In general, the arrangement of fields defined by pa subsequent entries is deter-
mined by prior considerations, e.g., the record form and format. Thus, a tape
record is usually arranged to take full advantage of the zero suppression of the
M 7070/7074; ie., numerical fields which most frequently contain leading
zeros are each placed in the high-order positions of a word, but numerical fields
which less frequently (or never) contain leading zeros are each placed in the
low-order positions of a word. In the interests of tape capacity and speed, it is
also desirable to hold the appearance(s) of the delta character to a minimum.
In general, this means that all alphameric fields should appear together.

Since imperative statements frequently alter the sign of a word to reflect the sign
of the last field entered, the programmer should insure that fields which occupy
the same storage word are to be associated with the same sign. If this is not the
case, inconsistent results may occur. For example, if alpha information is entered
into a word in which another field contains numerical data, the sign of the word
may become alpha; the numerical information would then become alpha, pos-
sibly consisting of invalid double-digit codes. :

When the format indicator F is used, the field must occupy one complete word,;
when the format indicator @F is used, the field must occupy two complete words.

Within the considerations listed above, the use of macro-instructions allows the
programmer extreme flexibility in arranging the fields within a record area. In
fact, the use of macro-instructions permits the programmer to refer, with equal
ease, to fields which overlap or bridge words and to fields which occupy all or
part of a word. It should be noted, however, that the most efficient coding will
result when the amount of word-bridging is held to a minimum.

Additional examples of the use of the pa statement in conjunction with other
statements are included throughout the manual.

DA 49

CODE

Source Program Format

CODE Header Line

50

CODE is a special type of declarative statement which may only appear as one of
the subsequent entries under a pa header line. It has the following uses:

1. To name a field in which one or more code values may be present during the
running of the object program.

2. To name and define these code values which are the condensed representa-
tions of various conditions, categories or classifications, etc.

The primary use of CopE is in connection with the Locic and pECOD macro-instruc-
tions. By means of these macro-instructions, a code field may be interrogated for
the presence or absence of a specific code value. Various switches may be set or
branches may be made depending upon the decision. When copE is used, inter-
rogation may be made by referencing the symbolic name of the code value for
the condition to be tested, rather than the code value itself. cope symbolic
names may not be referred to in symbolic machine instructions.

The copk entry is itself a header line, giving the position and format of the code
field. Subsequent entries consist of the symbolic names of the conditions to be
tested during the course of the program, each indented one space, with the ac-
tual code value indicated for each condition.

A copE entry may be followed by subsequent fields of the pa or by another copE
entry. If copE is the last pa entry, any other type of entry may follow.

Code fields may not be more than ten numerical digits or five alphameric
characters in length and must be wholly contained within one word of the record

defined by the pa.

The basic format of the cope header line is as follows:

Spmﬁm OPERAND S
1316 20]21 25 30 35 40 458

o!, ANYLABEL, L |CODE |20,,29A8..2 , ., i \
0 2 Rt Al 1] VR S) T TS W SO S W S S 1) I Y S T S F U S S S . |

LineJ Label
3 sle

A symbolic label must always be supplied for the copE entry and the letters copr
must be written in the operation column. The operand includes field definition as
in any other pa subsequent entry, except that the area defined may not be more
than a single storage word and it may not bridge words.

Two types of format indicators (shown below) are allowed. The desired indi-
cator is written immediately after the terminal digit position of the field definition.

Code Format Indicators Meaning

A The field is to contain numerical data
which is to be treated as an automatic-
decimal number.

CODE Subsequent Entries

Code Format Indicators Meaning

The format indicator may be followed
by a decimal position indicator of the
form “a.b” as described on page 43. In
this case, however, the field size may
not be greater than 10.

@ The field is to contain the double-digit
representation of alphameric characters.
The field size defined must not exceed
10 digits (5 characters); it must be
evenly divisible by 2. The starting digit
position must be an even number.

If a format indicator does not appear immediately after the ending digit position
in the cope header line, the processor will consider the field to contain an auto-
matic-decimal integer.

Consider the following example:

Lineg’ Label bperofion OPERAND g
3 6 15|16 20121 25 30 33 40 4
o L DA , . 4 , ., . ey

o2 |ANYLABEL . |cODE [20.2988.2 . . .,7
o3 | .o R ¢

The cope header line defines a field occupying the entire third word of the rec-
ord area. At object program time, the field is to contain numerical data to be
treated as an automatic-decimal number with 8 integer digits and 2 decimal
digits.
The following example defines a field which is to contain one alphameric char-
acter.

Linﬂ Label fmrcfiqL OPERAND Jé
3 S|é 13]16 20121 25 30 35 40 4

oo l.. ... loa |2, . OHINDEXWORD , . . ., .. .
02 ANXLA£E¢.cppﬁALA“45@4..A...il....r.‘AAL%
03 L U VEND U R S | S It S R Y S W S | RN WIS SR R SRS WHU SV NUNN SRS W S TR NS SUUN PR SR S o

A symbolic label is always required for a cope subsequent entry so that the code
value may be referenced by name. For this entry, Autocoder requires that the
label be indented exactly one space. Thus, the maximum size of this type of la-
bel is nine characters. The operation column must be blank.

The operand is used to define a code value which may appear in the field during
the running of the object program. A code value may not exceed the length
of the field as defined by the cope header line; the maximum length, therefore,
is 10 numerical digits or 5 alphameric characters. Each code value must also be
consistent with the format indicator(s) which appear in the cope header line.

If the copE header line specifies an automatic-decimal field, therefore, the operand
of each copE subsequent entry under that header line must contain a numerical

CODE 51

52

value. This value may be signed or unsigned. (The sign, however, is superfluous;
the digits will be considered absolute in sign. The sign of the word will not be
tested or changed.)

In the example below, the cope header line defines a field which is to contain
data to be treated as a one-digit automatic-decimal integer. Each subsequent
entry, therefore, must define a one-digit numerical code value.

Line Label lOperoﬁon OPERAND s
3 S5l6 1516 20]21 25 30 35 40 45
ol IANYLABEL DA .18 ,,,,,#*<
02 COLOR, . . |coDE l2saa &
03 BLACK | ., o . N J
o4 | GREEN . | . o oo N
os |ReEO . . | s)
06 | WHITE . . RS
o7 | BLUE, e]
o8 |, ... N N S

In this example, coLor is the name of the defined field. In the source-language
program, the field may be tested for the presence of a color such as BLack. The
processor, however, will generate coding which will cause the object program
to test for the presence of a “0.” If the field is to be tested for the presence of
CREEN, the processor generates coding to test for a“l.” Thus, the programmer may
make reference by means of a macro-instruction to the condition or name of a
code value and the processor will translate this into instructions which actually
check for the presence of the code value itself.

In the example below, crass is the name of a field which is to contain a three-
digit, automatic-decimal number. In this case, the number is to include two in-
teger digits and one decimal digit. Each subsequent entry, therefore, must define
a numerical code value containing the number of decimal digits specified
by the cope header line. This is done by inserting a decimal point at the proper
position within the code value. The decimal point does not occupy a storage
location; it merely indicates the treatment of the integer and decimal digits in
the code value.

Line Label fpemﬁmll OPERAND {
3 5(6 13]16 20]21 25 30 35 40 4
o, [AREANAME DA |4 ., o
0z lcLASS . |cODE |104,403A2.4 « v . C
03 | A o M
04 | B N
X T - - .
o6 | D . ..l 08

Although the code value must contain exactly the same number of decimal digits
as defined in the cope header line (in the above example, one decimal digit),

Processing Techniques

Additional Examples

leading zeros may be omitted from the integer digits, as in the code values for
C and D above.

When cope defines an alphameric field, the actual code values pertinent to the
various conditions should be indicated in the operand by writing the @ charac-
ter, followed by the alphameric characters which comprise the code value, fol-
lowed by another @ character. The code value may not include the @ char-
acter itself; the form @ @@ or @A@B@CG@ is thus prohibited. In addition, the
record mark may not be used as a code value. Except for being restricted to one
word, the operand of an alphameric cope subsequent entry may be identical
to that allowed for an alphameric literal.

Consider the following example:

Linel Label Operation| OPERAND ‘S
3 316 15]16 20021 2% 30 35 40 45
o+ DA |3, ,0+INDEXWORD . . (
02 |STATE, . [CODE [14.49@ ., .,}
o3 | ALABAMA_ | . leALA@ ¢
04 | GEORGIA | . |8GA @,Y
05 | FLORIDA .| ... @FLA® 3

If the field, sTatE, is tested during the running of the object program and the
contents at that time are “aLA” the state will be considered to be aLaBaMA; if the
contents are “GA” the state will be considered to be crorcia; etc. If leading
blanks appear, they may be omitted. Thus, if the values within the fields have
been right-justified (rather than left-justified, as in the example above) the value
for cEoRrcIA could have been written @GA@ rather than @ca @.

Since the order is irrelevant, cobe subsequent entries may appear in any sequence,
provided that they follow a cope header line. Only those code values which are
to be tested need to be entered as a cope subsequent entry, even when it is known
that other data will appear in the field during the running of the object program.

The label of a cope header line may be freely referenced in exactly the same ways
that any other pa subsequent entry may be referenced; in each case the assigned
location and the field control of its pa position will be compiled in the address
portion of the referencing instruction. The data that will be operated on will be
the data in the copk field at that particular time in the running of the object pro-
gram; a CODE subsequent entry will not cause a constant to be assigned to that
area of storage. The names of the code values, which must be unique symbols
and follow the usual rules for symbols, may not be referenced by symbolic ma-
chine instructions.

Additional examples of the use of the cope statement in conjunction with the
Locic and DECOD macro-instructions appear on pages 173 and 177.

CODE 53

DC — Define Constant

Source Program Format

DC Header Line

DC Subsequent Entries

The declarative statement, bc, may be used to enter numerical, alphameric and
address constants (adcons) into the object program, and to assign names to
constants for ease of reference. Like the pa statement, the pc statement consists
of a header line and one or more subsequent entries with blank operation col-
umns. Unlike the pa statement, a pc statement actually causes specified data
to be compiled as a part of the object program. The pc header line causes the
processor to assign storage locations to the constants which are defined by sub-
sequent entries.

The formats for a pc header line are as follows:

20J21 25 30 35 40
oi, [ANYLABEL _|DC . |[+RDW , |
oz |ANYLABEL [DC . . |-RDW,
03 |ANYLABEL _|DC RDW,
04 |ANYLABEL
05

LineJ Label Eperation OPERAND 5
B sie 15)i6 45

P

_DC

PO U S U U G G S T SR S S S S S

)
<

A;Ll.““.11‘.LA..‘.,..AS
A

PO U W U S TS S B IS T (UGS T U T T TN VAU WA SN S U G W S S SO S S WU S |

ANYLABEL may be any symbolic label or it may be omitted. It may not be an
actual address. The entries bc and Row must be written exactly as shown.

If plus or minus Row is written in the operand, the processor will generate a
single row with the indicated sign. If no sign is indicated, a minus row will be
generated. This row, which will define the area containing all of the constants
included in the subsequent entries, will be stored in the location immediately
preceding the constant area. If present, the label of the pc header line may also
be used to refer to the row. If the operand is blank, no row will be generated
and the pc label will refer to the first word of the constant area.

Four principal classes of constants may be defined in a pc subsequent entry:
automatic-decimal numbers, floating-decimal numbers, address constants, and
alphameric constants. These constants may be entered in either of two ways.
(1) They may be entered separately, with individual symbolic names assigned
to each, or (2) several constants of the same type may be defined by one subse-
quent entry, with one symbolic name assigned to the first Jocation of the series.

Each constant may be entered in a separate core storage word or, within the
limitations described below, several constants may be “packed” into the same
word by means of field definers. Each subsequent entry may appear with or
without a symbolic label.

In all examples of location assignments, it is assumed that the Autocoder assign-
ment counter was at 1000 when the pc header line was encountered.

Automatic-Decimal Constants. This type of constant, used to enter signed
numbers when the constant is to be referred to by a macro-instruction, may
be from one to twenty digits in length. A decimal point may be included to
indicate the magnitude of the number according to ordinary usage; it is neither
stored in the constant nor saved with it, but merely serves as an indicator to
Autocoder of the desired decimal-point placement. If the decimal point falls
to the right of the right-most digit of the number, it may be omitted; the number
will be considered an integer or an ordinary numerical constant.

If the constant is to be referred to by a symbolic machine instruction, however,
it may neither exceed ten digits in length nor bridge words. The decimal point
will be ignored; a symbolic machine instruction will treat the constant as an
integer.

When used as a pc subsequent entry, automatic-decimal numbers may be individ-
ually named (with or without field definition) or written in a series, with the
first number named.

inpiviUAL NAMES. The following example illustrates how automatic-decimal
constants may be entered with individual symbolic names:

Line Label ‘l(_)perotionl OPERAND g
3 5|6 15(16 20021 25 30 35 40 45
ol |, . DC, .) L /
02 [CONSTANTL | . .. +12345 67890‘1..‘“....)
03 [CONSTANT2 | .. . |-4.23 .. . e C N
04 CONSTANT3 | . . . [-4126793654.4,.. 39217. e
o5 lconsTtaANnTa | o 7

The Autocoder processor would make the following actual location assignments:

Symbol Field Definition Location Contents
CONSTANTL 0,9 1000 +1234567890
CONSTANTZ 0,9 1001 —0000000123
CONSTANT3 0,9 1002 —0000412679

0,9 1003 —3654139217
CONSTANT4 0,9 1004 —0000000002

Note that each constant is right-justified in a separate storage word (two words
in the case of a constant in excess of 10 digits). Reference to coxsTaxt3 by a
symbolic machine instruction, therefore, would result in the consideration of
digit positions 0, 9 of location 1002 only.

The same constants could be packed into fewer words by using field definition
in the subsequent entries, as in the following example:

Line Label peration OPERAND J/
3 sle 15l 20[21 25 30 35 40 4
o+ { .. ,,. .. . bC
02 [CONSTANTAL | | +1234567890(0,9) P .\
03 ICONSTANT2 [= [-1.23(0,.2), o e .1
04 [CONSTANT3 | | _41267936541..39217(3,,18) ,(
05 |CONSTANTSG | . 1—2{(9) . . v v v v iy

06

P T TS S S S S PR R ST AL U S TS T S S SN SO RS DY TR S S SN T NS SN S S S |

DG 55

56

Actual location assignments would then be as follows:

Symbol Field Definition Location Contents
CONSTANTL 0,9 1000 +1234567890
CONSTANTZ 0,2 1001 — 1234126793
CONSTANTS3 3,9

0,8 ’
CONSTANTA 9.9 % 1002 6541392172

When field definition is used with an automatic-decimal constant, it must define
not less than the number of digits in the number and not more than 20 digits.
Since the left field definition may be no greater than 9, the right field definition
may be no greater than 28.

Constants written with field definition will be packed into words according to
the following rules:

1. A change in sign will start a new word.

2. Field definition which would, in effect, result in overlapping in the same
word will force the constant into a new word.

seriEs. The operand of a pc subsequent entry may include a series of signed
automatic-decimal numbers, each without field control. All of the automatic-
decimal numbers must share the same attributes, i.e., if the first number is writ-
ten with a decimal point, they must all be written with a decimal point; if the
first number has two decimal places, all must have two decimal places. (The
number of integer positions, however, need not be the same.)

Since field definition is not allowed, each constant will be right-justified in one
or two locations, depending on the length of the largest constant. Automatic-
decimal constants 11-20 digits in length, therefore, should not be intermingled
with constants 1-10 digits in length in the same subsequent entry since every
constant would be assigned two locations.

The following entry will cause the indicated constants to be right-justified in
separate words. (Note that commas are not used as separators.)

Line Label bperaﬁon OPERAND Bosig
3 5|6 I1S)16 20121 25 30 35 40 45 30
ol |CONAREA . IDC . | o
02 . |*15.2+3.8+9.7-2,.4—30,.4+1654,.1 g
o 3 i A 1 i i i A Fa i i i 1 A i 1 A i i 1 i A A, s i A | 1 T N

Autocoder will make the following assignments:

Symbol Field Definition ~ Location Contents

CONAREA 0,9 1000 -+0000000152
1001 -+0000000038
1002 40000000097
1003 —0000000021
1004 —0000000304
1005 +0000016541

Since the operand of the pc header line is blank, no sow is generated. There-
fore, when a symbolic machine instruction references the label CONARE,, it will
refer to the first constant, +0000000152; coxareat1 will refer to +0000000038;
cONAREA (8, 9)+2 will refer to +97; etc.

The following example illustrates the generation of a plus row to be associated
with the constant area. Note also the use of integer constants.

Line ‘ Label ii)percfionL OPERAND ﬂ
3 516 1516 20j21 25 30 35 40 45
CONAREA _ [DC ~ [+RDW, C

ol N .
X

02 |, ... oy |t152+38+97-21-304116,541 |
03

-

P U RO W VR S T SN S S S SN PEEED S S

Autocoder would make the following assignments:

Symbol Field Definition Location Contents

CONAREA 0,9 1000 40010011006
1001 0000000152
1002 -+0000000038
1003 -+0000000097
1004 —0000000021
1005 —0000000304
1006 10000016541

The label coxarea would now refer to the row defining the constant area;
coNareA(7,9)+1 will refer to the first constant, +152; coNarea+2 will refer to
+0000000038; etc.

Floating-Decimal Numbers. Floating-decimal numbers may be entered in the
operand of a pc subsequent entry with the format

*=nF+m

where *n is a decimal or integer number of not more than eight digits and *m
is a one- or two-digit exponent. If the sign preceding m is omitted, m is con-
sidered to be positive. A decimal point may be used to indicate implied posi-
tioning of the decimal point in the number *n. If no decimal point appears, the
number will be considered an integer. The value of the number is *n multi-
plied by 10==, Thus, —.98765432F +1 would represent the number —.98765432X10'.
The exponent m may be omitted if equal to 0.

The Autocoder processor will consider the signs, the value of n, and the value
of m of the entry in the format, *nF=m. The processor will then generate a
standard 7070 normalized floating-decimal word, which is of the form

+=MMNNNNNNNN

where the sign is the sign of n. The number, =nF=+m, is normalized by plac-
ing n between +1 and —1 and by adjusting the value of m accordingly. The
value of MM equals 50 plus or minus the adjusted value of m and the value of
NNNNNNNX is the normalized value of n. For example, the number —1860.723 X10°
would be represented by —1860.723F+3. Autocoder converts this number to

DC 57

the standard 7070 normalized floating-decimal format by normalizing the num-
ber to —.1860723F+7 and converting it to the form —571860723.

Since a floating-decimal number will always occupy ten digit positions and it
may not bridge words, field definition is not allowed.

INDIVIDUAL NAMES. The following examples illustrate the use of individually
named constants:

Line Label lOperaﬁmL OPERAND
LI 20j21 25

15]16 30 35 40 45
ov, |\, .., . BC e S
o2 |FLTNUMBERA 1-3.4F .. v oo (
03 [FLTNUMBER2| . . |+34.567893F~-2

04 [FLTNUMBER3 = |—31,.92F+7

os |FLTNUMBER4| . |-29567.4F-3, .«
06 |[FLTNUMBERS o t42546F+4S5, .,

b
.
E—

0171

TN G NI WS U S S S U U SR S S RS U S TN A S U S S WA VT S NS S I W S S N S S

Assignment would be made as follows:

Symbol Field Definition Location Contents
FLTNUMBER]L 0,9 1000 —5134000000
FLTNUMBER2 0,9 1001 +5034567893
FLTNUMBERS3 0,9 1002 —5931920000
FLTNUMBER4 0,9 1003 —5229567100
FLTNUMBERD 0,9 1004 +7012546000

serEs. The operands of pc subsequent entries may include a series of floating-
decimal numbers, each written in the =nF+m format described above. Unlike
a series of automatic-decimal constants, the floating-decimal numbers must be
separated by commas and the decimal point need not appear in the same place
in each number.

The floating-decimal numbers used in the previous example could also have
been written as follows:

Line l Label Eper hzi OPERAI\?
3 sle 25 30 38

Aufocoder—g
€5 70

02 FLTCON MR —3a.4F1.+34..567.89.3F‘ =2

L

l+,12546F+15<

ol, | .. RO X lA‘)%(
L

03

t_.__

o

U S S S U S S U SO U NG S S S S SN U TS S WA S S SR

The assigned locations would be the same as for the previous example with the
exception that the single label rLTcon would be used to refer to the first con-
stant at 1000, FLTcoN+1 would refer to the second, ete.

Address Constants (Adcons). An adcon is used to produce an address con-
stant which is the numerical representation (usually 4 digits) of the location

to which a given symbolic label has been assigned. As noted in a previous
section, an adcon may be used as a literal or as a nc subsequent entry. When
used as either, the form is *symsor. When used as a pc subsequent entry,
adcons may be individually named (with or without field definition) or written
in a series in which the first adcon may be named.

INDIVIDUAL NAMES. Adcons may be named individually; they may appear with
or without field definition. Adcons written without field definition will be right-
justified in separate words. Adcons written with field definition will be packed
into words according to the following rules:

1. A change in sign will start a new word.

2. Field definition which would, in effect, result in overlapping in the same word
will force the adcon into a new word.

3. If less than four digit positions are defined, the low-order digit(s) of the
address will appear in the constant.

4. Adcons should not bridge words.

Consider the following example:

LineJ Label EperoﬁarL OPERAND (
5 6 1516 2012t 25 30 35 40 45
AT T o Y,
o2 |aADcoNa . | .. |-aDDRESSA\
o3 |ADCON2 .. .| .. . |+ADDRESS2.(0.4). K
04 IADCON3 . .| HADDRESSZ0(2.5): « o0t ivai.)
05 |ADCON4 . . .| |~ADDRESS4(6.59). .1........¢(
X R D B |

Autocoder would first assign locations to ADDREssl, ADDREss2, AppRess3, and
ApDREss4. Assuming that these locations were 1125, 0025, 3542, and 6453, respec-
tively, Autocoder would then assemble the adcons as follows:

Symbol Field Definition Location Contents
apcoxNl 0,9 1000 —0000001125
ADCOX2 %1 1001 +9535420000
ADCONS 2,5

Apcon4 6,9 1002 —0000006453

sERIES. Several adcons may be written sequentially in a single pc subsequent
entry as shown below. Field definition and address adjustment are not allowed,
commas are not used between adcons.

LineJ- Lubel perqﬁi OPERAND A’K
3 (3 ISIIG 20021 25 30 3% 40 4
D,C

oV, 1. R ...‘.‘..)
o2 |ADCONS .. .| . . |-ADDRA+ADDR2+ADDR,3~ADDRA
03

P

MR R SRR DTSN U ST Y W S TN S RO SO S S SO U S SN NS RN SR S S S TV R S 1

DC 59

60

Assuming that the labels have been assigned locations as in the previous exam-
ample, Autocoder would assemble the adcons as follows:

Symbol Field Definition Locat.on Contents

ADCONS 0,9 1000 —0000001125
1001 ~+0000000025
1002 40000003542
1003 —0000006453

The first adcon could be referred to by the label apcoxs; the second by apcons+1;
etc.

Alphameric Constants. Alphameric information may be included in a constant
area by using a pc subsequent entry similar to those in the following example:

Line Label fperaﬁml_ OPERAND Es
3 S|6 15]16 20j21 25 30 35 40 45

o 1. . .. oe .. 1
o2 ANYLABEL .| ... |@2345@)
o3 | | B CONSTANT, ALPHAMERIC. .INFO @
o4 | .., ...l .. . ler@EB@@ i0iiyl)
os | 1. leaBC@®R . . ., ... 6
06, e oG8R)

ANYLABEL may be any symbolic label, or it may be omitted. Each operand must
begin and end with the @ character. All characters between the initial @ char-
acter and the final @ character will be converted to double-digit form and assem-
bled successively, beginning in the high-order positions of each location assigned.
The sign of each word used to contain the characters will be alpha.

Packing of sequentially listed constants is automatic; it continues from line to
line. If packing is to be avoided, therefore, blanks must be inserted within con-
stants to fill out each storage word. If the processor finds that the total number
of characters assigned through the end of a pc subsequent entry is not a multi-
ple of five and the next entry is not an alphameric constant, blanks (double-digit
00) will be assembled in the low-order positions of the last word assigned.

The constant may contain the digits 0 through 9, the characters of the alphabet,
blanks, and the special characters

0 & 8 * -/ , % # @

Note that the @ character may be included at any point in a constant field. It
should also be noted that the processor will scan the entire operand for the last
@ character. Therefore, this character must not appear in the remarks portion
of the card if the constant field is to be properly defined.

A record mark may be defined by following the terminal @ with the character
R, as explained below.

If symbolic machine instructions refer to the label of a pc header line which
specifies the generation of an row, the assembled instruction will address the
row. If, however, symbolic machine instructions refer to the label of a pc header
line that does not specify rRow generation, or to the label of a pc subsequent
entry defining an alphameric constant, they will act only on the first five charac-
ters of the area or the field, respectively. When defined for use by symbolic
machine instructions, therefore, each subsequent entry should contain a maxi-

mum of five characters. A macro-instruction, however, may properly refer to the
label of the header line or any subsequent entry and act on the entire constant
area (exclusive of the row, if any) or field, regardless of length.

An alphameric constant may be used to define a message, as in the following

example:

Line Label lOperation OPERAND S
3 S5/6 15]16 20[21 25 30 3% 40 45
o1, [EOFMSG .. . pC . |-RrOW ., ..., . . 4
o2 | l@REMOVE TAPE ON UNIT, 00 @l
os | |@AND_MOUNT, NEXT. @/

Autocoder will make the following assignments:

Symbol Field Definition Location Contents

EOFMSG 0,9 1000 -0010011008
1001 REMOYV
1002 E T AP
1003 E O N
1004 UNI T
1005 00 AN
1006 D MOU
1007 NT N E
1008 XT

Note that the label EorMsc refers to the row defining the constant area.

In many instances, it may be desirable to name a portion of a long alphameric
constant so that modification of the constant, such as entering variable tape ad-
dresses, codes, etc., may be readily accomplished. Thus, the constant in the
previous example could have been defined as follows:

Line Label IOperation OPERAND g
3 5|6 1516 20j21 25 30 35 40 45
o1, [EOFMSG. ., Ibc. . FROW ., ... o o)
o2 | | GREMOVE TAPE ON UNIT, @ . §
03 [TAPEND. . “léo.ol@.,,,“““,_,‘L,“,‘_J
04 o , & _AND, MOUNT NEXT. @J)

DC

61

62

Autocoder will make the following assignments:

Symbol Field Definition Location Contents

EOFMSG 0,9 1000 -0010011008
1001 REMOYV
1002 E T AP
1008 E O N
1004 UNI T

TAPENO 0,3 1005 0 0 AN
1006 D M OU
1007 N T N E
1008 XT

Note that Autocoder will assign the proper field definition to each symbolic name
given so that reference to TaPENO will result in appropriate field control. If a
field is to be referred to by symbolic machine instructions, however, the pro-
grammer is responsible for insuring that any named portion of an alphameric
constant does not bridge words.

The following are examples of the use of the @ character within a constant field:

Line Labe! fperaﬁajL OPERAND S
3 sie 1sii6 20/21 25 30 35 40 as
DC . . N I S

o2 |CONSTANTL, | .. ., leA@B@CO. . .\ 0\ (0. .. RN
03 CONSTANT2 | .. . le@@, ., . . . e £

014 AAAAAAA U U N Y S SN R W WU A W SUUS W N S N SHU S SN S S — — — llllll(

Autocoder will make the following assignments:

Symbol Field Definition Location Contents
CONSTANTI 0,9 1000 A @B @C
CONSTANT2 0,1 1001 @ bbbb

RECORD MARK. Since the record mark may not be entered through the 18M 7500
Card Reader, special provision is made for generating it in an alphameric con-
stant by entering the letter R immediately following the terminal @ character.

If the last character generated by the current alphameric constant does not com-
plete a word, the record mark will be assembled in positions 8 and 9 of that
word, and any intervening positions will contain the double-digit representation
of blanks. If the word is complete, the record mark will be assembled in posi-
tions 8 and 9 of the next word and positions 0 through 7 will contain the double-
digit representation of blanks. Consider the following example:

Lini Label perati OPERAND S
3 S5i6 1516 2] 25 30 335 40 435
T R Y T,
02 ICONSTANTL | ... @ABCO®\, . '\ 0''.)
03 [CONSTANT?2 J@DEFGOR i D
04 |CONSTANTS | .. IOHIJKLER, o\ o\ s)
os | N

Autocoder would make the following assignments:

Symbol Field Definition Location Contents
CONSTANTI1 0,5 1000 ABCD E
CONSTANTZ 6,9

1001 FGbb +
CONSTANTS 1002 HIJKL
' 1003 bbbb+

to the word which

%
=]

(Note the packing of the first two characters of coxsTANT.
holds consranTl.)

The following coding shows how a record mark may be entered and named so
that field definers and/or address adjustment are not necessary when operating

on it:

Line Label peration OPERAND Jﬁ
3 5|6 15]16 0j21 25 30 35 40 4
0|DCJ
o2 ICONSTANTA | .. . |@ABCDE@ , ., ., .. .\ ...)
03 |RECMARKA — le@Rr . e
o4 [CONSTANT2 | . . l6F6@ ., . .\ 0.\, N
05 RECMARK2, .| .. 1GGR ., . .00 .00, !
0.61.|.‘.,,x..A.,.........4.,[......;..:;4&

Autocoder will make the following assignments:

Symbol Field Definition Location Contents

CONSTANTL 0,9 1000 ABCDE
RECMARKL 8,9 1001 bbbb +
CONSTANTZ 0,3 1002 FGCbb +
RECMARK2 8,9

The first record mark may now be referred to by the label RecMARK]; the second

by RECMARK2.

Additional Examples The coding on the following page is furnished to illustrate various operands

which may occur in a pc statement. Note that while various types of constants
may be generated in the same DC area, they may not be mixed in the same sub-
sequent entry.

DC 63

64

OPERAND

F,Line A Label &Eper:ﬁzly 2 » 3 0 . :;i: Autoc;ider——-bim —é
ol |ANYLABEL, . lb.c +ROW . .., e -, .
02 |l R e, T
o3 | . ., .. "123.4 e . N4
XA e t2.23400,3), T
os |, L [r56.78904.8) i
o8 | e T
ot |pc, |-ROM R A
os | e F17.2-20004-007 LT J
S T N SO N I
10 L L9 TF-2 L T
N o mA3F48, +49,.765F+3.,~4,2.5F~2 |)
el . MADDRESSA, , iy
N T N R
Al e PADDRESS20,2, 80, L,

15 1, L iu [ADDRESS3(6,9), , . A

4.y, [-ADDPRESSAIADDRESSS-ADDRESSS. . ., 1/
7 |, NP L 123456789.,‘......,..............‘.

18 | X T R S I S .
Ig 14 id i i TEnY ll‘llljlllLl.JllllllllllIAIIA. "
20, . vuiiuf . JBBLANKS, AND, SPECIAL CHARACTERS...) +$%-/ (.ALE

VRN S S TG W T R W S SR S S SR T AU N S

L |@@R, ., ., .,

N O T T N S S S S S N

S S R S S A

DLINE — Define Line

Source Program Format
DLINE Header Line

DLINE Subsequent Entries

The pLNE statement and subsequent entries provide the programmer with a
convenient means of specifying:

1. The layout of a print-line area.
2. The editing of fields to be inserted in that print-line area.

Various formats used in the subsequent entries provide the ability to define
fields in which the following information may appear:

1. Constant data which is always to be included in the print line.
2. Alphameric data which is to be inserted by the object program.

3. Data edited to floating-decimal print format which is to be inserted by the
object program.

4. Data edited to numerical print format which is to be inserted by the object
program.

Several print-line formats are usually required for the preparation of a single
report, e.g., a heading line, a transaction line, a total line, etc. These lines may
be defined by means of separate pLINE header lines, each followed by its own
subsequent entries.

The pLINE header lines set up and name the print areas; the subsequent entries
name the printing positions to be used, define the characteristics of the fields,
and cause the generation of constants which are to appear in the print area. The
use of pLINE, therefore, results in the establishment of an output print image in
core storage in which two core storage digit positions are reserved for each print
position included. This area may initially include constant information specified
by the programmer, e.g., record marks, captions, etc. Fields to be inserted by
the object program will normally be moved into the image by an Epmov state-
ment. This macro-instruction will perform the necessary editing, insert decimal
points and commas, convert data into double-digit form, etc. It is also possible
to insert unedited information by means of the MOvE macro-instruction.

The basic format for the. pLINE header line is as follows:

Line Label Igmﬁj.zlz OPERAND J.é
6 1316 ! 25 30 35 40 4
o, ANYLABEL _|OoLiNgl

ollell]lnltl Lk) I S S S A U R U W T TN S S SN S0 S T NS S S ST U \

ANYLABEL is any symbolic label; it should not be omitted. It may not be specified
as the operand of a prr header line. pLINE must be written exactly as shown.
The operand must be blank except for remarks.

The header line must be followed by one or more subsequent entries, as in the
example on the following page.

DLINE 65

66

Line Label Fperaﬁon OPERAND S
3 5|6 15)i6 20j21 25 30 35 40 45
o, LINENAME lovanel .. oo
oz | .. . 1. hoatoTAL@)
o3 | leese§
04 [GROSSAMT .| . . [|1oX, XXX.ZZ)DR,CR,....C
05 CHECKAMT | .. l60$X,XXZ.2Z).C
o6 | TEMNAME | ., .[so.%4 ¢
o7 [FLVAR . . | .. . lo86F o i S
o8 | |.. ., . l120@@R . ., ..., .

The DLINE entry and the subsequent entries, other than those which define con-
stant fields, must be labeled. The operand of each subsequent entry must begin
with a number which indicates the print position for the left-most character of
the field. Thus, the word “roTaL” in the example above would appear in print
positions 10 through 14, the dollar sign on line 03 would appear in print position
18, etc. Print position 0 may not be specified.

The processor will issue a warning message if a print position beyond 135 is
named or included in a pLINE area; however, the line may be of any desired

length,

Descriptions and formats follow for each of the subsequent entries used to define
the various types of data fields that may appear in a DLINE.

Constant Data. Constant information may be included in a pLINE area by using
subsequent entries similar to those in the following examples:

Line Label peration| OPERAND J
3 5|6 15[i6 20J21 25 30 35 40 45
o1 LINENAME DLINE|l . . o o)
o2 ANYLABEL .| .. |7T@CONSTANT, INFORMATI.ONG . \
03 , |so0@ BLANKS, ARE ,INCLUDED @1
04 |, ..., 1. . hooese(
o5, | oL . l1os@@e. i)
o6 | _ liosesesecepe, . ., ¢
0171.. N L AlAJlll|ll|l||||l|J|||||||K

A subsequent entry of this type may be written with a symbolic label, as in line
02 above. However, unlike the other types of fields which may be defined by
subsequent entries, a constant field may appear without a label.

The operand must begin with the number of the print position for the left-most
character in the field, immediately followed by the @ character. The @ charac-
ter indicates that all following characters, up to (but not including) the final @
character, are to appear in the print area. The constant may contain numbers,
characters of the alphabet, blanks, and any special characters (other than the
record mark) acceptable to the input device used.

Note that the @ character may be included at any point in a constant field. Thus,
line 05 would cause a single @ character to print in position 105 and line 06
would cause the following to print in positions 109-115:

A@B@C@D

A record mark may be entered by following the final @ with an “R” as shown in
the following example:

Line-l Label Operati onl OPERAND 4&
3 56 15]16 20[21 25 30 35 40 45
oI, LINENAME, IDLINE 0 v o €
oz | 1., lreasecer)
o3 | . 1 . l1sea@r. 8
o4 | l147@@R. L

The record mark will be positioned according to the following rules:

1. When constant information appears between the initial and final @ charac-
ter, the record mark will be placed in the next available print position ending
in “0” or “5,” with blanks inserted in the intervening print positions. The entry
in line 02 above would cause a blank to appear in print position 4 and a rec-
ord mark to appear in print position 5. The entry in line 03 above would cause
blanks to appear in print positions 16 through 19 and a record mark to ap-
pear in print position Z0.

2. The appearance of @ @R will cause a single record mark to appear in the
print position named. The entry in line 04 above would cause a record mark
to appear in print position 117.

Constant fields, unlike the other fields which may be specified, will be initially
loaded with the information specified. No provision is made for regenerating this
information during the running of the program; if the object program includes
coding to alter these constants, it must also include any coding necessary to re-
store them. Print positions for constant fields must appear in ascending sequence.

Alphameric Data Field. When data is to be inserted into an alphameric field
in the print line, the field may be indicated by using subsequent entries similar
to those in the following example:

Line l Label percﬁﬂ OPERAND §
3 6 15t 20§21 25 30 35 40 45

o1 LINENAME JOLINEl oo

o2 ANYLABELL | . & .. . o oo o8
o3 ANYLABEL2 | . la.s/
o4 ANYLABEL3 | .., 24,400 . o o0 0 D

Any symbolic label may be used with an entry of this type; it should not be omit-
ted, however. The operand must begin with the number of the print position for

DLINE 67

68

the first or left-most character of the field. If more than one print position is to
be included in the field, the first number must be followed immediately by a
comma and the number of the print position for the last or right-most character
in the field as in lines 03 and 04 above.

The object program will usually insert unedited alphameric data into a pLINE
field of this type by means of a MOVE macro-instruction. If numerical data is to
be edited to alphameric form, however, the EpMOV macro-instruction may be used.
It is also possible to use symbolic machine instructions if the programmer is care-
ful to consider word boundaries.

Data Edited To Floating-Decimal Print Format. When the object program uses
the EpMOV macro-instruction to cause data to appear in the print area, edited
to floating-decimal print format, the field in which the number is to appear
must be defined by means of a subsequent entry under a PLINE statement. An
entry of this type would be written as follows:

LineJ_ Label Pperaﬁon{ OPERAND g
3 516 15116 20J21 25 30 35 40 45
ot LINENAME, DDLINEl R
02 JANYLABELAZ, L L 1A3F N S P .JLAA(
03 (ANYLABEL 2 ., . l1orF . . ‘.Al..,L)
o4 | o Y

Any symbolic label may be used with an entry of this type; the label should not
be omitted, however. The operand consists of the number of the print position
for the left-most character, followed immediately by the symbol F. A field
of this type requires a total of thirteen print positions.

Floating-decimal numbers will be edited to the printing notation,
+MM= NNNNNNNN

where +MM is a two-digit exponent and +.NNNNNNNN is a normal, eight-digit
number (see page 57). The value of the number is *.NNNNNNNN multiplied
by 10°MM, For example, @ 9591999897 @ 9695949372 (which in single-digit form
would be —5198765432) will be printed as +01—.98765432 representing the num-
ber —.98765432 X 10,

Data Edited To Numerical Print Format. The combined use of pLINeE and
the EpMOV macro-instruction will provide a convenient way to do extensive
editing of data to a numerical print format. This editing may include the
insertion of the comma and decimal characters, the retention or elimination
of leading zeros and commas, and the “floating” of a dollar sign. In addition,
explanatory characters may be printed to identify plus or minus numbers.

A field of this type may be indicated by using subsequent entries similar to those
in the following example:

15)16

Liril Label Operation
3 sle

OPERAND
21 25 30 35 40 a5

o1, [LINENAME _|DOLINE

R SR B S S| U S T S S SR

02 IANYLABEL1

L AAX, XXX 22 .,

03 |[ANYLABEL?2

198 XXX, X XX . XX ., .

04 ANYLABEL3,

........

308 XX XXZ”ZL)PLU&“ML&wS

1“21TH Y TR Y W S N {

05 |ANYLABEL 4

45$222.22)PLUS

1S TR PR NS B B

06 [ANYLABELS

568 XXX, XXX, xxx“xxx ZZ) MINUS

07 |[ANYLABELS6

80$ XXX , XXX. XXX, XXX)}PLUS,MINUS

08,

..... TS RTINS WIS TN WS TS S S S TN S S N S |

Any symbolic label may be used with an entry of this type; it should not be omit-
ted, however. The operand must begin with the number of the print position for
the first or leftmost character of the field. The rest of the operand is used to
specify the desired format of the edited field, and (optionally) to specify the ex-
planatory characters which are to identify plus or minus amounts.

Reference to a field of this type by an Epmov macro-instruction will cause the
generation of instructions which edit the data and insert dollar signs, commas,
decimals, and explanatory characters. The decimal point in automatic-decimal
variables will be aligned with the decimal point indicated in the priNe field.
The following characters may be used to indicate the format of the field:

Character

Explanation

X

This character represents a digit that is
to be replaced by a blank if it is a high-
order zero (i.e., a zero not preceded by
a significant digit) to the left of the deci-
mal point (if any). It will also be re-
placed by a blank, regardless of its po-
sition, if all digits are represented by Xs
(as in lines 03 and 07 above) and all
digits are zero.

This character represents a digit that is
always to be printed, even when it is a
high-order zero.

This character represents a fixed dollar
sign when followed by a Z (as in line 05
above) or a floating dollar sign when
followed by one or more Xs (as in line
03 above). The $ need not appear (see
line 02 above), but, when it is used, it
must immediately follow the print po-
sition number.

A floating dollar sign will print imme-
diately to the left of the first printed
digit. However, it will not float any far-
ther to the right than the print posi-
tion immediately to the left of the deci-

DLINE 69

70

Character Explanation

mal point (if one appears). Thus, the
$ in line 03 might print in position 19,
20, 21, 23, 24, 25, or 26, depending
on the placement of the leftmost sig-
nificant digit in each amount printed.
When all digit positions are replaced
by blanks, the $ will also be replaced by
a blank.

A fixed dollar sign will print in the print
position indicated. The $ in line 05 will
always print in position 45, since the
code character X does not appear to its
right. (An illustration of another way
to denote a fixed dollar sign appears on
line 03, page 66, where a dollar sign is
entered in a constant field.)

This character represents a comma when
used within the format of the field. Com-
mas may appear to the left or right of
the decimal point. The comma will print
only when digits are printed to its left.
If the code character X allows the sup-
pression of all high-order zeros to the
left of the comma, the comma will also
be suppressed. When the floating dollar
sign is used, therefore, it will also float
over commas that are to be suppressed.
Since zeros to the right of the decimal
point cannot be suppressed, a comma to
the right of the decimal point will al-
ways appear.

This character represents the decimal
point. Only one decimal point may ap-
pear in any given field. When all digits
are replaced by blanks, the decimal will
also be replaced by a blank.

) A closing parenthesis may follow the
rightmost position of the edited field.
This code character does not occupy a
print position; it is necessary only if
explanatory ‘characters follow, e.g., the
pLus and MINus in lines 04, 05, 06, and
07, above. The use of explanatory char-
acters will be explained below.

When the above characters are used to indicate the format of an edited field, at
least one X or Z must appear, but not more than 20. When all digits are repre-
sented by an X and no significant digit appears in the amount, the entire field
(including the dollar sign, commas, and decimal point positions) will be replaced

by blanks.

When a field of this type is considered by the Epmov macro generator, any ex-
planatory characters which appear beyond the closing parenthesis (if this option

ise
1.
2.

lected) are treated as follows:
Two consecutive blanks will signal the end of the operand.

Any characters which appear between the closing parenthesis and the comma
to the right (or two consecutive blanks) will be inserted in the print line
when the edited amount field is positive or blank.

Any characters to the right of the comma will be inserted if the field is nega-
tive. The comma may be omitted if blanks are to be inserted for a negative

field.

The explanatory characters may include numbers, letters of the alphabet, a
single blank, and special characters (other than comma and record mark)
acceptable to the input device used. A comma would signal the end of a set
of characters; the maximum size for a set is one word.

The number of print positions required for explanatory characters will be
equal to the largest of the two sets which may appear. Blanks will be inserted
to the right of the shorter set when it appears.

Consider the following examples:

Line Label lOperafiorL OPERAND (
13 6 15|16 20j21 25 30 35 40 45
o1, LINENAME, ' IDLINEl ., . 0 o s Aj
o2 |FIELDONE | =~ 478X, XXX.ZZ)+ .= ., .0\, .,

o3 (FIELDTWO ! . . 130¢$X,XXX.ZZ)DR,CR ..., .., \

04 IFi ELDTHREEL . .. 508X XXX Z,Z) P.LUS , #iNUS)
o5 IFIELDFOUR | . ., [70$X,.XXX+ZZ) , CR , ., .\, ., Z

06

U U S S G S U G W .‘A-.:.l.n1.1;;11111;;:.1L1L<

A positive and a negative amount, respectively, would print as follows:

FIELDONE, print positions 17 through 26.

$1,234.56+
$1,234.56—

FIELDTWO, print positions 30 through 40.

$1,234.56DR
$1,234.56CR

FIELDTHREE, print positions 50 through 63.

$1,234.56PL.US
$1,234.56MINUS

FIELDFOUR, print positions 70 through 80.

$1,234.56
$1,234.56CR

A single blank may appear at one or more points within a set of explanatory
characters, as in the following example:

DLINE 71

Processing Techniques

General

72

Line Label perati OPERAND 7
3 sle 5

13016 20§21 25 30 35 40 4
J
2

02 |[FIELDNAME | . L 127$XX2.22 4., — %%

ol, JLINENAME D LINE R R -
03 U I N |

A positive amount and a negative amount, respectively, would print as follows
in print positions 27 through 38:

$123.45+
$123.45— ==

At object program time, DLINE areas are initialized by condensed load cards which
set all print positions within the area to blanks. These cards are followed by
condensed load cards which initialize the constant data fields to the contents
specified.

Since data fields will not necessarily occupy complete words, these cards will also
cause blanks to be loaded into print positions which occupy the remainder (if
any) of a word in which constant data falls. Constant data fields, therefore,
should be entered in ascending order. If the processor encounters a constant data
field which (1) is lower in sequence than the previous print position reserved,
and (2) specifies a print position in a word in which a print position has been
previously specified as constant data, the resultant condensed load card will
overlay the previously specified print positions, thus yielding inconsistent re-
sults.

Although constant data fields are restricted to ascending sequence, the other sub-
sequent entries may appear in any order. Thus, they may be used to specify print
positions which cause different labels (and different characteristics, if desired)
to be assigned to fields which occupy the same or overlapping print positions as
in the following example:

Line‘4> Label perati OPERAND 7
3 516 15/16 20J21 25 30 35 40 45
o1, PRI NT,.LINE IDLINE]

o2 |FIELDONE | .. [20$X,XXX.2Z C
03 [FIELDA . 20,28)
o4 FIELDTWO .| ., |3o$xxx.zz %
05 |FIELDB. ., .| [308$xxX.22 (
o6 FIELDTHREE| .. mth"&xxhzz,,....x,..liiﬁ
o7 IFLELDC le2.80 .., .,
o |

On-line Printing

It should be noted that a unique problem arises if the two fields overlap in the
manner indicated by lines 06 and 07 above. Reference to either field will cause
that field to be inserted as specified. However, if FIELDC is inserted, data may
remain in print positions 40 and 41 from a previous use of FIELDTHREE and, when
FIELDTHREE is inserted, data may remain in print positions 49 and 50 from a pre-
vious use of FiELDC. Thus, the object program must include additional coding
to blank out data remaining from use of the other field.

Since all print positions are initially set to blanks, it is not necessary for the pro-
grammer to provide coding to blank out the print positions between fields. How-
ever, if the object program includes coding which alters these undefined print
positions, it must also include coding to restore them to blanks when this be-
comes desirable.

If, in some instances, certain fields in a line are to be blank, they should be
blanked out by a zErRo macro-instruction which references the label of the ap-
propriate DLINE subsequent entry. If the zEro macro-instruction refers to the
label of a pLINE header line, however, it will permanently blank out constant
data fields (if any) in the line as well as clear the variable fields. It will not,
however, affect the dollar signs, commas, and decimals in the edited fields; these
are inserted by coding which is generated by the EpMov macro-instruction.

During the running of the object program, data will be edited and moved into
the pLINE area which serves as an image of the line to be printed. When all data
is included in the area, the object program will issue an output statement which
will transmit data from the DLINE area to the printer. This would normally be
accomplished by a print command which refers to one or more rows defining the

area(s) to be printed

QLTG5S W oL Pl

If the standard 1M 7400 printer panel wiring is used, line spacing and carriage
spacing may be determined by digits 6, 7 and 9 of a Control Information Word
as described in the 7070 Data Processing System Bulletin “msm 7070 Utility Con-
trol Panels,” form]J28-6095, pages 8 and 9. Thus, the programmer is responsible
for establishing a constant to fit the requirements for the Control Information
Word as described in that bulletin. The print command must then reference one
or more row (s) which causes the Control Information Word to be the first word
sent to the printer, followed by the data in the pLINE area. Note that the Control
Information Word will not be printed.

It should also be noted that the use of the standard M 7400 utility control panel
provides for printing from typewheels 1 through 75 on one print cycle and from
typewheels 76 through 120 on another print cycle. Thus, while a single pLINE
statement may be used to describe a print line which uses both sets of type-
wheels, a single print command may not be used to print this entire line.

DLINE 73

Off-line Printing

74

The following coding, however, would accomplish this purpose:

Lini Label Jf'.)peruﬁmt OPERAND S
3 3|6 1516 2021 25 30 35 40 45
o luw 2 FIRSTHALF|
o3 | .. N)]
o4 | ... luw ., |2, SECONDHALF . ., ¢
07 [FIRSTHALF [DRDW HCIWA COIWL .\ v N
oe | loROW |-A,B ., 7]
09, |SECONDHALFIDRDW [+CI W2, CIW2,
ol . . oROWI|€.D o

The coding on line 07 above defines the first Control Information Word. Words
1-15 of the pLINE area are defined on line 08. The coding on line 09 defines the
second Control Information Word. Words 16-24 of the pLINE area are defined on
line 10.

The first Control Information Word (crwl) would contain a digit “0” in position
5 to cause printing from typewheels 1 through 75. The second Control Informa-
tion Word (crw2) would contain a digit “1” in position 5 to cause printing from
typewheels 76 through 120; a digit “6” in position 6 would cause spacing to be
suppressed before printing.

When a tape is to be prepared for off-line printing, the following characteristics
of the printer must be considered:

1. The first character of each line may be used to control carriage skipping and
spacing.

2. The number of print-line records per tape block and the size of each record
must not exceed that which the printer will accept.

3. A record mark may be required to separate the print lines within a tape block.

Thus, when the pLINE subsequent entries are written, the programmer should first
refer to the appropriate printer manual to determine the allowable tape and
printer formats.

When the first character of the print line is to be used to control carriage skip-
ping and spacing, the other pLiNE fields will print from the type wheel to the
left of the position named. Therefore, if the character “1” on line 02 of the fol-
lowing example is used for carriage control, the characters “nEapER” will print

in type wheels I through 6.

&

Line Label ‘tperctiL OPERAND
3 sle 1sli6 20[21 28 30 35 40
D

ot PRINTLINE DLINE oo S
o2 CARRIAGE | .. 14@1@ . . o vy v ol
o3 | |.. |2GHEADER@, S

Thus, by defining the proper constant as “print position” 1 of each pLINE area
the programmer can predetermine the carriage control for the various lines on
the output listing; e.g., a header line would have a “1” in position 1, detail lines
might have a “0” for double spacing, etc. Another method would be to insert the
proper alphameric control character through programming, e.g., by reference to
the label, cARRIAGE, above.

When the data has been edited and moved to the pLINE area, normal procedure
would be to insert the assembled print line in an output file, where it is blocked
under control of the Input/Output Control System. The following macro-instruc-
tion would accomplish this function:

Line Label Operation OPERAND ‘é
3 sls 15)i6 20|21 25 30 35 40 a5
0.1 . lPur |IPRINTLINE ,IN OUTPUTF,I LE

The following coding might also be used:

Line Label Operation| OPERAND J
3 516 15(16 20]21 25 30 35 40 45
o1 1. lPur loUTPUTFILE, 3
o3 | ool e
oa | | .MON£‘PRJNILJNﬁ,JD,DpJPUIFJ¢£,,%
05 1 U S L Rt S i1 JE I T i i 41 1 1 I L1 1 1t 1 1 i 1 41

In each case, PRINTLINE is the label of the pLINE header and outpuTFILE is defined
as a tape output file. pur and Move are explained in the 7070 Data Processing
System Bulletin, “sm 7070 Input/Output Control System,” form J28-6033-1.

As soon as the pur (or puT and MOVE) macro-instruction(s) have placed the
pLINE area in the output file, the object program may proceed to prepare the next
print line in the DLINE area.

DLINE 75

Additional Examples

Note that the pLINE area itself may not be defined as a file, i.e., the operand of a
pTF header line may not be the label of a pLINE header line.

Particular consideration must be given to the use of the record mark in tapes
prepared for off-line printing on the 1M 720. If more than one print-line record
is to appear in a tape block, each record must end with a record mark, with the
exception of the last record in each block. The object program, therefore, must
include coding to count the lines that have been moved by the pur macro-in-
struction and must cause a record mark to be inserted at the end of each record
except the last one in a block. The end-of-job routine must also include coding
to insure that no record mark appears at the end of the final print line.

Additional examples of the use of the pLINE statement in conjunction with the
EDMOV macro-instruction appear on pages 210 and 212.

DRDW — Define Record Definition Word

Source Program Format
Single RDW

The declarative statement, pRow, may be used to generate an RDW defining any
area of storage specified by the programmer. It may also be used to cause the
generation of one or more ROWS associated with an area defined by a pa or pc
statement in some other part of storage, i.., not immediately preceding the pa
or DC area.

When used to generate a single rRow for a given area, the format of the pRoOW
statement is as follows:

Line Label Operation OPERAND §
3 sle 15]i6 20[21 25 30 35 40 a

o1, ANYLABEL, |DROW |[+ADDRESS 1 ,ADDRESS2 ., .
o2 IANYLABEL . |DRDW |~ADDRESSI1 . ADDRESSZ2 ., ...
o3 |ANYLABEL _|DRDW |ADDRE,SSA.,ADDRESS?2 PR
04

d

-

b k]

N T T P I [N US N S VAT SN ST ST G S SU DU SN S SRS WUV S M G S S W't

ANYLABEL may be any symbolic name or it may be omitted; it may not be an
actual address. prpw must be written exactly as shown. appressl and ADDRESS2
are the limits of the area to be defined by the generated row. Either apprEssl
or apprEss2 (or both) may be an actual, ¥, or symbolic address. The * or sym-
bolic addresses may appear with or without address adjustment. The sign of the
generated row is determined by the sign preceding appressl; if a sign does not
appear, however, the generated rRDW will be signed minus. For example, if
appressl had been assigned to location 4372 and appress2 had been assigned
to location 4408, the processor would have generated the row, —0043774400, at

the point where the following pRDW was encountered:

Line Label peration OPERAND J
3 sle 15)i6 20|21 25 30 35 40 45
or, |[ANYLABEL, |DRDW |ADDRESS1+5,, ADDRESS2-.8 . #_LJ,E
O 2 A1 A i 1 1 i 11 i1 " A it 1 1 1 i | 1 ’t 1 1

The addresses in the operand of a prow statement may be the same, as in the
following examples:

DRDW 77

Multiple RDWs

Additional Examples

78

Line—L Label Operation OPERAND ‘5
3 sle 1516 2021 25 30 35 40 a5
O . JANYLABELA DRDW +%,% | . PR L

02 ANYL ABEL2 |DROW ~324.324 ., , L R
03 JANYLABEL3 [DRDW |ADDRE,SS,., ADORESS, . . ., . ., .
04) .%

When this is the case, the generated row will define a one-word area. Thus, line
02 above would cause the generation of the row, —0003240324.

As explained under “DA-Define Area” and “DC-Define Constant,” writing “kow”
on a pa or oc header line will cause the processor to generate an RoW(s) asso-
ciated with the pa or pc entry and to assign it a storage location immediately
preceding the defined area. Sometimes, however, it may be advantageous to
cause the rRow(s) associated with a DA or pc statement to be generated in some
other portion of storage, i.e., not immediately preceding the pa or pc area. This
may be accomplished by using a prow statement with one of the following
formats:

Line Label peration OPERAND T
3 sls 15)is 20)21 25 30 35 40 a5

ol |ANYLABEL, DRD +HEADRLABEL . . NN,

02 JANYLABEL DRDW |-HEADRLABEL ., .. . L 7
03 ANYLABEL |DRDW HEADRLABEL, . . %
C 4

ANYLABEL may be any symbolic name or it may be omitted; it may not be an
actual address. pRDOW must be written exactly as shown. HEADRLABEL must be
the label of a pa or pc header line which appears as an entry in the program
sequence. When this format is used, address adjustment is not allowed. If
HEADRLABEL is the label of a pa header line, the number of rRows generated will
be the same as the number of areas designated by the pa header line. One row
will be generated if HEADRLABEL is the label of a pc header line. A plus sign
preceding HEADRLABEL will cause all Rows generated to be signed plus; a minus
sign will cause all rows generated to be signed minus. If no sign is shown, as
in the format on line 03 above, all Rows generated will be signed plus except the
last which will be signed minus. When using symbolic machine statements,
the programmer may make reference to the first Row by referring to the label
of the prow; address adjustment may be used to refer to the subsequent rows.

The coding on the following page illustrates some of the operand forms which
might appear in a bRoW statement.

Label Operation OPERAND
S[ie 20j21 25 30 35 40

ANYLABEL, L DRDW HEADRLABEL, ., ., . . i

DRDW +HEADRLABEL, ., . ., . . A

LB

DRDW —HEADRLABEL,

.

, DRDW +1,,99 ., .. oo

.. ., ,|DROW -325,4999, , .,, .,

E—s]

e.,.. |DRDW |0,9989 ., . .., ..., RN

N

DROW, [+3%,% , . ., ., .. 0.0

-
[

DRDW, |—%—2.2€ , , N

-

DROW +%,x+2 ., .., . ..,

e

ov v, . ORDW —%+1 . %+7, ., ... ,. .. .

DROW p¢—-1,%+2 . , . . N

P+

DRDW +ADDRESS1,ADDRESS2, , k6 .

e+ 4 s ., . DRDW ~ADDRESS4L+41 ,ADDRESS2, ,

v 4.4, DRDW H+ADDRESSL,ADDRESS2+S5, , .,

L~ |

..., .., |[DRDW ~-ADDRESSA-10,ADDRESS2-11,

. ..., |[DRDW |JADDRESS1-2,ADDRESS2+5 ., ,

L\

DRDW [+ %X,ADDRESS

L1) B I Al Bl Rl LI A B Sl Tl Sl Sl U AR NS SN U SN WS S TS S S N I

..., .., |DRDW —ADDRESS %,

—]

..+ ..,. |IDRDW HADDRESS+4,%+4 , . . |

SR

‘o4 ., ORDW 0, % , .,

PN SR T DRDW -%,49899. . , .. ., ,. PR

B3

.0y 4.y, DRDW H325,ADDRESS+2 , Ly

b s ., |DRDW —~ADDRESS,9989

L

.., ... DRDW {0, ADDRESS, , .

C_/

... DRDW %,ADDRESS , ., ., . .

S

.+ .., .., |DRDW |JADDRESS,9989 , ., . ., .

C—

R G R N B B St JINE S SIS S S S IVNPUNS WU T NS S SN N NN SRR NS SN S S S N U G

DRDW 79

DSW —Define Switch

The primary function of the psw declarative statement is to provide from one
to ten digital switches which may be considered singly, or as a group, by the
sETsw and LOGIC macro-instructions. seTsw and rocic will treat these switches
as logically equivalent to electronic switches, although processed in a slightly
different fashion. (The switches may not be referred to by electronic switch com-
mands, e.g., ESN, ESF, etc.)

Each switch that is generated by the psw statement occupies one digit position
of a word and is considered oFr if its digit value is zero and on if its digit value
is other than zero, regardless of the sign of the word. Since the switches are gen-
erated at the point where the psw statement is encountered, this statement
should not appear within a series of machine instructions.

Source Program Format The format for a psw entry is as follows:

Linel Label fperoiionL OPERAND Bq
3 3|6 1S|i6 20]2) 25 30 35 40 45 50
ot JANYLABEL IDSW , |SWITCH1,~SWITCH2, +SWITCH3, efc.)
o 2 4 e A A i - i Ao A 1 i d i i i i i i 1 - 1 1 P | A 1 L i 1 i i i A ’ 1 i 1

ANYLABEL may be a symbolic name or it may be omitted. The entry psw must
be written exactly as shown. As many as ten symbolic switch names may ap-
pear, with a comma inserted between names. Continuation cards may be used,
if necessary. The name of each switch must be unique; i.e., it must not be defined
elsewhere as the label of another item. The initial setting of a switch is deter-
mined by the following:

1. If a plus sign, or no sign, precedes the name of a switch, the switch will be
considered on and set to “1.”

2. If a minus sign precedes the name of a switch, the switch will be considered
orFF and set to “0.”

Processing Techniques When the psw statement is encountered, the processor will construct a one-word,
positive, numerical field. The leftmost position will contain either “1” or “0,”
depending on whether the first-named switch in the psw is to be initially o~
or oFf. Succeeding digit positions will indicate the status of the remaining
switches, in the order they are named. If less than ten switches are named, the
remaining digits are set to zero. It should be noted that, while the switches are
initially loaded as descibed, the pidgianuics st provide additional coding
(e.g., a SETsW macro-instruction) to reinitialize the switches if they are to be
utilized in multi-pass programs.

Reference to the label of the psw statement by symbolic machine instructions or

80

Additional Examples

macro-instructions will result in reference to the entire word used to contain
the switch settings. Consequently, if a label is supplied for a psw, the entire
set of switches may be tested or altered by Locic and sETsw statements.

The programmer is warned against trying to initialize electronic switches by
using a psw with an oriGIN to 101, 102, or 103. The switches would be treated
as digit switches, ignoring the fact that they are electronic switches.

The coding on the following page illustrates various operands which might
appear in a psw statement. An additional example appears on page 187, where
the defined switches are referred to by the sersw macro-instruction.

PERAND 1
3Liness Lebel |5|spemﬁzozx 25 30 35 o 40 45 B:;lc Aumc?ger——;’ 65 Auioc.,ooder{
o1 N DSW SWITCHA | N N " s - 4__,)
o2 |ANYLABEL4 |DSW SWITCHB. ., PR :j)
03 . DSW, +SWITCHC, | R N N -
04 JANYLABEL2 |DSW SWI TCHD , SWITCHE . N . " i L e j

05 |ANYLABEL3 |DSW. , +SWITCHF . —~SWITCHG SWITCHH i .
o5 ANYLABEL4 DSW , ~SWITCHI, SWITCH2, SWITCH3 +SWITCH4 .—SWITCH5 +S\M|TCH6
o7 |, o SWITCH7 —SWITCHS8 SWITCHS, , —~SWITCH10 , ., e

08 . e

o~

DSW 81

EQU —Equate

Source Program Format

82

The EQU statement may be used to equate a symbol to:
1. An actual or symbolic address.
2. An index word or electronic switch number.

3. A channel, tape unit, combined channel and tape unit, combined arm and
file, unit record synchronizer, inquiry synchronizer, or alteration switch
number.

Thus, the EQU statement provides a convenient way to cause one or more symbols
to be assigned to an actual location or to machine hardware. In this way, the
same item may be referred to by different names in different parts of a program.
Meaningful and easily remembered symbols may be used throughout the pro-
gram, rather than the actual machine numbers which might be required in the
operand of some Autocoder entries. In addition, when it is necessary to change
the actual location or machine number, it is more convenient to change a single
EQU statement than to alter each Autocoder statement which might otherwise
contain the actual number.

The general formats for an EQU statement are as follows:

Line‘,l Label perafiqnl- OPERAND j
3 6 1516 20j21 25 30 35 40 45

o1 ANYLABEL, . [EQU. . ADDRESS. . . oo o)
02 ANY.LABEL . JEQU. . ADDRESS .Y« v0vvuv o vv
o3 ANYLABEL [EQU . .Y 0o ovovii i g
o4 | ..., B T |

The entry EQU must appear exactly as written. ANYLABEL is the symbolic name
which is to be equated to ADDRESS. ANYLABEL may not be defined elsewhere in
the same source program and may not be omitted.

ADDRESS may be any of the following:
1. An actual address, with or without field definition.

2. An index word or electronic switch number.
address adjustment. This symbolic entry must appear as the label of an
Autocoder entry elsewhere in the source program (not necessarily previously).
It may not appear as the label of another EQu statement.

8. The number of an index word, with or without field definition.
4. The number of an electronic switch.

5. The number of a channel, tape unit, combined channel and tape unit, com-

tnnd awen and Bla it rannrd cvmohrani
Cinlh QMM QR DL, TNIL Iecorl Synlarenl

tion switch.

rar inanirv cvmahranizar ar albars
Zor, InQUTy SynconaremEern, o X 2

6. Omitted, in which case the first character of the operand must be a comma,
followed by an X, S, T, etc., as described on page 86.

Processing Techniques

Actual or Symbolic Address

Y is replaced by a one- or two-character code which identifies AbpRESs as a par-
ticular piece of machine hardware.

Since QU statements do not actually occupy core storage locations in the object
program, they may be inserted at any point in the source program, provided
that they are not intermingled with the subsequent entries under a pa, oc, or
DLINE header line. (This is in contrast to the other declarative statements, which
must be separated from the program instruction area.)

The method of coding each of the general uses of the EQU statement is described
below.

A symbolic name may be made equivalent to an actual or symbolic address. The
symbolic name to be equated is written in the label columns. The operand may
contain an actual or symbolic address, with or without field definers. Address
adjustment may also be used with a symbolic address.

Lirj Label lo;aemﬁon OPERAND S
3 5|6 15]16 20j2! 25 30 35 40 45
N Y R
02 |cCUSTNO . il
o3 [. . . R,
e I T e |
o8 jctAass ... lEQU, Jcus TNO(Oui) T

The above entries will cause the processor to assign the same location to the
symbol cLass as was previously assigned to custNo. In addition, cLass will be
given field definers denoting the two high-order positions of custwo, ie., 2, 3.

EXAMPLE:

LineJ_ Label perofijl OPERAND ﬂ
3 5i6 15)16 20[21 25 30 35 40 45
o+l ..y, . DA ?
o2 |[RATE = i 2,68A203 1
03 A
XA R N {
o8 [cLASS. . |EQu. . [RATE . . . SEFE WARNING BELOW 7
0-9 TR D R T S S St IS S | FRNSEUED S NS SHN TN N S U NS S ||11IJ4LLAJIJA)

EQU 83

Index Word or Electronic
Switch Number

84

The above entries will cause the processor to assign the same location to the
symbolic name, cLass, as was previously assigned to BaTE. In addition, crLass
will be given the same field definers as RaATE, i.e., 2, 6.

If address adjustment had been used in the preceding examples, only the assign-
ment of a location would have been affected; the field definition would have been
derived in the same manner as before. It is important to note, therefore, that
the programmer is responsible for insuring that the field definition will actually
be that desired for the new location.

The additional characteristics defined in the operand of a declarative statement
will not be assigned to the name in the label field of an EQu statement. Thus, in
the preceding example, cLass will not be identified as a numerical field containing
an automatic-decimal number. This creates no difficulty with symbolic machine
instructions, since they do not use these characteristics, but limits the utility of
the equated symbols in macro-instruction operands. When a symbol is equated
to another symbol, a macro generator will treat the symbol in the label of the
EQU statement as if it had the characteristics of a single whole word. Unless
specifically desired, therefore, the use of equated symbols in a macro-instruction
operand may cause program errors and should be avoided.

Two other methods are suggested for assigning two (or more) different symbolic
names to the same field and the same characteristics. One method is to list both
names as subsequent entries under the same pa, repeating the starting and end-
ing digit positions and format indicators of the field, as in the example on page 45.

Another method of assigning two different symbolic names to the same location
is to place the second name (with format indicators as desired) under a separate
pA that is made equivalent to the first through the use of an Origin Control
statement as explained on page 90.

Note that the EQu statement does not allow the following transitive relation:

Line Label ‘Fperation OPERAND ‘g
3 sis 15|16 20j21 25 30 s a0 as
o1 A . ., L lEQU B
02 " Loid " 1 AL Aod 1) O | ST SR Y L ,g\
os | o e e
o4 IB .| Y

Statements of this form are not acceptable; they will result in an incorrect location
assignment. (The desired effect may, however, be obtained by writing: a EQu
C; B EQU C.)

A symbolic name may be made equivalent to an index word or electronic switch.
The symbolic name to be equated is written in the label columns. The operand
contains the one- or two-digit word (1-99) or electronic switch number (1-30),
followed by a comma and the letter X or S, respectively. An index word may be
field-defined as illustrated below. The index word or electronic switch that is
equated to the symbolic name will be reserved during compilation; i.e., it will
be passed over when Autocoder assigns symbolic index words and electronic
switches to actual locations during Phase III.

Input/Output Units and
Alteration Switches

EXAMPLES:

Line Label Operation|
3 s)s 15)t6 20j21 25

35

OPERAND 4(
40 as

07 |SWITCHA . JEQU L 25,8 . ..

08,

NS VU TS T S NI T ST S S T | PSR T T G S '

o1, [LOOPCOUNT JEQY, . 4. X ., N - /
o4 {IXWORD _ EQU, |52(2,5).X ., . U S T .)
06 R e L L4 A . ll‘(
)
A

The first entry will assign the name LOOPCOUNT to index word 1. The second
entry will assign the name 1xworp to index word 52, with field definition (where
applicable) of 2, 5. The third entry will assign the name swiTcHA to electronic

switch 25.

A symbolic name may be made equivalent to a particular piece of machine hard-
ware. The symbolic name to be equated is written in the label columns. The
operand contains the number or value of the item, followed by a comma and an
explanatory code character. The explanatory code characters used in EQU state-

ment operands are as follows:

Item Code

Tape Channel and Unit CU
Tape Channel C
Tape Unit U
Disk Storage Arm and Unit AF
Index Word X
Electronic Switch S
Alteration Switch SN
Unit Record Latch I
Unit Record Synchronizer

Reader R

Printer w

Punch P
Inquiry Synchronizer Q
Typewriter T

To illustrate, the following entry will cause the processor to assign the name

RESTART to alteration switch 1:

Line Label
3 5|6

)

OPERAND }
40 a5

IOperation
16 20<2I 25
EQU. 1 ,SN . . .

o+, RESTART

02

- R, T S S T I S

EQU

85

This entry would make it possible for the programmer to write the more mean-
ingful entry on line 01 below, rather than the entry on line 02:

Line Label J?perction OPERAND
3 SL 15|ie ZOLI 28 30 3s 40 45

oI, L L BAS |R ESTART, RESTORE, e
02 BAS, , |L,RESTORE, |
0 3 1 1

P PRI SRS WST U W S S W T N N S SR W S ST ST S

This particular type of EQu statement may also be used for the specific purpose
of identifying a particular item of hardware for the benefit of a macro generator
(see “snap,” example 1, page 228). When used for this purpose, the first entry
in the operand may be omitted, as in the following examples:

Line Label lOperaﬁon OPERAND S
3 5(6 1516 20)21 25 30 35 40 457

oI, REGNAME__ EQu [, x ., ., . .
o2 iswiTtcH . JeQu. . s, L.\
03 TYPEWRITER EQU, [T .. e

T S S S S S S R T
U H S SR il ‘llAlIllllllllllll]llllll{

04
Additional Examples The coding on the following page illustrates operands which might appear in an
EQU statement.
LLine Label perqﬁon OPERAND ‘g
5l6 15)16 2021 25 30 35 40 45
ol ANYLABEL [EQU_J1000 ,, , .,
02 ANYLABEL1 [EQU,, [325(6,,9), ., .. . ,... .. (

03 |ANYLABEL2 |EQU, |OTHERLABEL, . . .
0% ANYLABEL3 [EQU, |OTHERLABEL(0,4),.......
25 JANYLABEL4 [EQU. . OTHERLABEL42.,
05 ANYLABELS [EQU, , OTHERLABEL(2,.3)+4, [

o7 [XWORDNAME [EQU. . [, X .,]
8. XWORD, .. lFou. . lr7(2.50x\
o9, IswiT CH | EQU, 29,8 , ..., e
1.0 IXWORDA | . JEQU, L X A)
I, ISWITCHA L IEQU. .S ., .. S L

12 ICHANNEL,) EQU, ,]A.,C . .. A .

L3, ACTIONTAPEEQU, , 5,0 ., ,,, ., ., . \
4, MASTERCU, . [EQU, , 20,C0 ,,, , . ., . . .)\
15 o1sk EQU, 18, AF]
'6, ALTSWITCH [EQU , 3. 8N, ., , , , ., 1
L7, JUNI TLATCH [EQU, , l2.0. ... L

8, READERNAME[EQU. |1
s PRINTNAME [EQU, [2. w
o, PUNCHNAME, [EQU. . |3
1

.EA__L]lPI -1 d) I S |) S S T S Y|
2L OPNQUIRY, | [EQU, Jt.Q ., . . L
e TYPEWRITEREQU, , |, T .., ., .. I AN S

23| USRI W WS RN R F U S N S R NS N | “‘rll"]"l&

86

Control Statements

Control statements are, in effect, orders to the processor which give the pro-
grammer control over portions of the assembly process. Thus, oriciN and
LITORIGIN statements give the programmer control over the placement of his
program in core storage. BRANCH statements cause the processor to produce
execute cards containing unconditional Branches to locations specified by the
programmer. An END statement will cause the processor to compile all remaining
generated material and then produce an execute card containing an uncon-
ditional Branch to a location specified by the programmer. Control over the
assignment of locations to symbolic index words and electronic switches is main-
tained through the use of XRESERVE, SRESERVE, XRELEASE and SRELEASE statements.

The formats and detailed descriptions of the use of these control statements are
presented below. In all cases, the operation will be cNTRL. The labels must be
prepared exactly as shown: oricIN, BRaNCH, etc. The operand may vary as
described for each control statement.

Control Statements 87

ORIGIN Control and LITORIGIN Conirol

Source Program Format

88

ORIGIN statements order the processor to override its automatic assignment of
storage locations and to begin the assignment of succeeding entries at the par-
ticular location specified by the programmer. Thus, they enable the programmer
to control storage assignments of source-language input such as area definitions,
constants, and instructions (including those generated “in-line” by macro-instruc-
tions). If an oRIGIN statement does not appear before the first such entry in a
source program, the processor will begin the assignment of storage locations at
an address specified to the Compiler Systems Tape. This address is originally
0325, but it may be altered as described in the M 7070/7074 Data Processing
System Bulletin “1em 7070/7074 Compiler Systems: Operating Procedure,” form
J28-6105.

LITORIGIN statements are used:

1. To partition or “segment” a program in order to enable the correct loading
of a multi-phase program by causing the immediate compilation of all re-
maining material generated “out-of-line” in each segment (i.., since the last
previous LITORIGIN, or since the beginning of the program, if no rrroriciN
appears).

2. To regulate the placement of this material.

Material generated “out-of-line” in each segment includes generated constants,
generated area definitions, generated symbolic subroutines, all literals, and all
adcons. This material will normally be assigned locations immediately following
the highest location assigned to the source program. The use of LITORIGIN, how-
ever, makes it possible to assemble this material at the end of each section or
phase of a program so that it may be loaded with that section or phase. In addi-
tion, LITORIGIN is used to specify the beginning core-storage location at which
the generated material is to be assigned.

The assignment of actual program locations is effected by means of location
counters which may be named symbolically by the programmer and used by the
Autocoder processor. The programmer has complete control over which counter
is to be used while assigning locations to a given section of the program. In
addition, he also controls the setting and resetting of the counters as desired.
When in current use, however, a counter will be advanced automatically by the
processor as locations are assigned; thus, after each assignment, it will always
contain the address of the next location to be assigned. Provision is also made
for “remembering” the minimum and maximum value attained by each counter.
In certain cases, e.g., if the processor finds that addresses are to be assigned
before the programmer has named the first symbolic counter, use is made of an
internal (and, therefore, unnamed) counter.

The omwGIN and LITORIGIN statements have identical basic formats, written as
follows:

LineJ Label OperqfimL . OPERAND
3 5|6 21

15)i6 20 25 30 35 40
01, JORIGIN . . |CNTRLINAMEON.E. , NAMETWO, .
02 ORIGIN | CNTRLNAMEONE . ., , , ., ., .+

03 LITORIGIN CNTRLINAMEONE . NAMETWO, .
04 JLITORIGIN [CNTRLINAMEONE . .,\, ..
OI5l 1 L L 1 '} 1 L 1 J 1 L1 1 L S | 1l 1 1.1 i 1 1 1 1 I 1 I i} 1 L &

The entries oRrGIN, LITORIGIN, and ONTRL must be written exactly as shown.
NAMEONE is an entry which supplies the initial value to the location counter,
NAMETWO.

NAMEONE may be any of the following types:

1. A symbolic label, with or without address adjustment, which has appeared
previously.

2. The character *, with or without address adjustment. It will be considered
to have the value (as adjusted) of the location counter in use at the time
this statement is encountered.

3. An absolute machine address.

4. The symbolic name of a location counter which has been established in some
previous ORIGIN Or LITORIGIN statement, with or without address adjustment.

5. From 1 to 97 entries of the preceding types, separated by commas, enclosed
by parentheses, and preceded by the characters Max, as shown in the example
on page 91. The largest (adjusted) value in this set will be used as the
value to be established. If any of the entries in the set are the names of
location counters, the highest value it has attained (rather than the last value)
will be the value for comparison. Continuation cards, described on page 17,
may be used as necessary.

In each of the five cases above, the value of NameoNE will be placed in the
counter NAMETWO, which will then be used to assign subsequent locations. If
NAMETWO is omitted, an unnamed counter will be used for subsequent location
assignments. NAMETWO may be the symbolic name of a previously defined loca-
tion counter or the symbolic name of a new location counter. In either case, no
address adjustment is allowed.

It is recommended that programs should normally be written with consistent
NAMETWO usage: either (1) always spell out a NAMETWO counter, or (2) always
omit any reference to NamETwo. The latter case will mean that the unnamed
counter is used throughout a program; this will often be suitable when a pro-
gram is simple and straightforward, with little segmentation or overlaying of
program areas. It can be seen that if NAMETWO is used consistently in a program,
omitting a NAMETWO in some statement may cause the counter in use to be
changed unwittingly.

When macro generators create an ORIGIN Or LITORIGIN statement, there is an
exception in its processing; i.e., an omitted NaMETWO will not cause the counter
in use to be changed. The current counter will continue to be the one used for
subsequent assignment because there is no way for a set of generated coding
to refer to the counter that is in current use, but is obvious that this counter
must remain the effective one.

ORIGIN & LITORIGIN 89

Processing Techniques

90

To be compatible with Four-Tape Autocoder, an ORIGIN or LITORIGIN CNTRL with
a blank operand has a special function. Each location counter, other than the
counter named “S,” is examined to determine the highest previous location (not
necessarily the current value) assigned by any location counter. The value ob-
tained is placed in the unnamed counter for subsequent assignment.

If statements are assigned locations in the index word area by means of an
ORIGIN to an actual address, the corresponding index words will be reserved as
they are encountered during the assignment pass. This will normally be done
early in assembly to avoid duplicate assignment of these words.

Not more than 25 LITORIGIN statements may appear in one source-language
program,

In its simplest form, the Autocoder oriciN statement is used to indicate the
initial location which is to be used in assigning locations to a program. Suppose,
therefore, that a program to be processed by Autocoder begins with the entry
below and that no other oRIGIN or LITORIGIN statements are present:

Line Label Pperaﬁ onL OPERAND ‘é
3 sl 1516 20|21 25 30 35 40 a5

o1, JORIGIN_, ., , [CNTRLI500,COUNTA, . N

. R - . . .4_6
02 PR I S S T S BTN DA T U US UT S U SN N S T N S S S Y S N |

In this case, Autocoder will establish a single location counter, counta, with an
initial value of 500. The entire program will be located in sequential locations
beginning with 500, and all of the generated material will be assigned locations
following the other programming entries.

The orIGIN statement may also be used to:
1. Assign the same area of storage to several sections of a program.
2. Partition a program into several sections.

3. Assign program sections relative to the size and/or placement of other sections
of the program.

Consider, therefore, a program that is to begin in location 1000. In this program,
records that are read into a certain area of storage may have three different
formats; therefore, three different sets of symbolic names and field definers may
be desirable. The programmer may use separate pas to define the three record
formats that are to appear. Then, by proper use of oriGIN statements, he may
cause the processor to assign all three pas to the same area of storage.

The oricIx statements for this program might appear as follows:

Line Label peration OPERAND Basic Al}
3 si6 15/16 20121 25 30 35 40 45 50

o1 JORI1GIN CNTRL|1000, COUNTA , . . L |
03 L e, , . L))
0‘4 e L. e T e 11/
05 FORMATL . DA , 110, 0+XWORD, ...,]|
OlBJ L -) L L Ly) s o ‘_I
09 JORIGIN ., KCNTRLFORMATL,COUNTSB, N
0 [FORMAT2 . DA . (10, O4XWORD, . . .\ . ov o in it
N
|I3I L4 Lt T T T N L a1 1::7
14 [ORIGIN ., . CNTRUFORMATA, .COUNTC, , v oo 0l
i5 [FORMATS, . [DA ., 1.0, OFXWORD. o oo oot oot N\
N
|18.‘||“|‘II II'IAJlIIlllllIlIllllA1|lA||||l||||vA
19 [0RIGIN . . QNLRLMAxyqquthhqaumnanqaumtqhpqqumnug
2‘01 NS B N L1 P NS VD W TSNS WY ST TS S S U VO S S0 SN N N N WA S N S S RSN S AN SN WA ¥

The last oriGIN statement insures that succeeding entries (and/or generated
material) will be assigned locations beyond the longest pa. If all three areas
are the same length, or if the longest area is the last one to be defined, the last
ORIGIN statement would not be necessary.

In the preceding examples, all generated material would have been assigned
locations beyond the last program entry. However, if ORIGIN statements are used
to cause subroutines or phases of a program to be assigned to the same or over-
lapping areas of storage, it may be desirable to include, in each section of the
program, the generated material which it has produced. This may be accom-
plished through the proper use of the LiToRIGIN statement as follows:

ORIGIN & LITORIGIN

91

92

Line Label E&Opercfi;onL OPERAND S
3 s _1sjie 20|21 25 30 35 40 45
o1 [ORIGIN CNTRLIL00O,COUNTA . . L
02) N) }
04 . . (MAIN, ROUTINE)
os |
07 JLITORIGIN [CNTRLCOUNTA . . .,\
08 ORIGIN .. |CNTRLICOUNTA COUNTB, . ..)
09 | . , N N /
o | e)
LI RN o .+ (SUBROUTINE .1.). ., e
'ZL 1 'y iy 1% i Lo i1 L1 1 1§ i i1 S [N] I P
I|3|A]lllxllxll‘ll—lllllllllilellLnl L
14 |LITORIGIN ICNTRLICOUNTS, L

15, ORIGIN , . |CNTRLCOUNTA,COUNTC./
'6 LL'll—lllllxlxl‘Lll L 1\
1.8 e e lp. . (SUBROUTINE. .2). |
20, | e S
21 LITORIGIN [CNTRLICOUNTC, . . ., . .. i .\
22 JORIGIN . ICNTRLCOUNTA,COUNTD,[(
24 L .)
25 L . >, . _(SUBROUTINE, 3). ., P,
|2.6, R SR i T S T SIS S SRS

27 | o a -ILJ'X‘l FRTENS W O EET SN SN WY P TR
28 |LITORIGIN [CNTRLICOUNTD ., ., . . =

Each time the processor comes to a LITORIGIN statement, it assigns locations to
all material generated “out-of-line” since the beginning of the program or since
the last previous rLITORIGIN statement. Since all remaining generated material
would automatically be assigned to locations at the end of a program, it might
have been possible to omit the final LrToriGIN statement.

The oriciN preceding subroutine 1 could have been written

047. T U S SN W S S S P SR SN WU T S S S WU T S0 U ST T U S S U R S G S |>
08, [ORIGIN . . ICNTRLPE,COUNTB, .\, .\ . .\))
019. F U W S T S S W St %y U G VU U S R S U YN S VA N T W N SO S S T SO S S .z

since COUNTA was being used when this statement was encountered.

Additional Examples

If subroutines 2 and 3 were to start 25 words after the beginning of subroutine 1,
the oriGIN statements preceding them would have been written:

L

| 4 MR R BT N B R S A A A e

'5, ORIGIN , , |[CNTRLCOUNTA+25,COUNTC . . , . | 7
IR I T
18 ORIGIN |CNTRLICOUNTA+25,COUNTD, ,(
I I S D

If an oricIN statement to an actual address causes succeeding entries to be
assigned locations in the index word area, the corresponding index words will be
reserved and, if the entries are labeled, the index words will be named. The
following example would cause index words 50 through 54 to be reserved and

named and index word 55 to be reserved.

Linil Label Pperotion OPERAND 7
3 5{6 15{16 20J21 25 30 35 40 a3
oi, ORIGIN, ,, |cNTRLSO . ., . ., ., . .~
o2 |,y ooA
03 INAMEONE. . oe
o4 INAMETWO ., | ., 10,49, 7]
05 INAMETHREE | . po.29 . ., "¢
os INAMEFOUR | . . Is0.39 . ., ., . ..~~~ J
A e N T
08 ORIGIN ., CeNTRL)

Since the index words are reserved only from the point at which the oricix
the beginning of the

statement appears, this usage should normally appear at
program or following a LITORIGIN statement.

The coding on the following two pages illustrates some of the ways in which
the assignment of locations may be manipulated through the use of oriGiN and

LITORIGIN control statements.

ORIGIN & LITORIGIN

93

76

PAGE AA PROGRAM CNTRL 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA

LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
01 1002 *# JLLUSTRATION OF ORIGIN AND LITORIGIN CONTROL STATEMENTS.
Q2 1003 NOP ASSIGNED BY UNNAMED COUNTERe 00001 0325 =0100090000
03 1004 ORIGIN CNTRL 700 UNNAMED COUNTER SET TQ 700
04 1005 NOP ASSIGNED BY UNNAMED COUNTERs 00002 0700 =0100090000
05 1006 0400 NOP ACTUAL ADDRESS IN LABELa 00003 0400 =0100090000
06 1007 NOP ASSIGNED BY UNNAMED COUNTERs 00004 0701 =0100090000
07 1008 ORIGIN CNTRL 800+COUNTERL COUNTER1 SET TO 800
08 1009 ZA1l +1 ASSIGNED BY COUNTERLls 00005 0800 +1300000811
09 1010 LITORIGIN CNTRL COUNTER1+109COUNTERZ2 COUNTERZ2 ASSIGNS LITERALS
LI TERALS
10 X +1 00006 00 0811 +1 0811
11 1011 ZA1 +2 ASSIGNED BY COUNTERZs 0812 +1300000923
12 1012 ORIGIN CNTRL *+209COUNTERZ COUNTER2 INCREASED BY 20
13 1013 LABEL ZAl1 +2 ASSIGNED BY COUNTLERZ2e 00007 0833 +1300000923
14 1014 LITORIGIN CNTRL LABEL+90sCOUNTER3 COUNTER3 ASSIGNS LITERALS
LI TERALS
15 X +2 00008 00 0923 +2 0923
16 1015 ZA1l +3 ASSIGNED BY COUNTER3e 0924 +1300001876
17 1016 ORIGIN CNTRL COUNTER3-50QsCOUNTLR4 *SEE NOTE BELOWa
18 1017 ZAl +4 ASSIGNED BY COUNTER4. 00009 0875 +1300111876
19 1018 LITORIGIN CNTRL *+1000sS SPECIAL COUNTER USED TO ASSIGN LIiTERALSs
LITERALS
20 X +3 00010 00 1876 +3 1876
21 X +4 11 1876 + 4 1876
22 1019 2ZA1 +5 ASSIGNED BY SPECIAL COUNTERS 1877 +1300000927
23 1020 ORIGIN CNTRL COUNTER3»COUNTER3 *BACK TO COUNTER3s NOTE BELOWs
24 1021 ZAL 45 ASSIGNED 8Y COUNTtR3s 00011 0925 +1300000927
25 1022 ORIGIN CNTRL MAX(800sLABELs COUNTERL 9sCOUNTER2sCOUNTER& %) 9 COUNTERS
26 1023 ZAl +5 ASSIGNED BY COUNTcRS. 0926 +1300000927
27 1024 LITORIGIN CNTRL SET UNNAMED COUNTER TO MAX ALL BUT $ COUNTERe
LITERALS
28 X +5 00 0927 +5 0927
29 1025 NOP ASSIGNED BY UNNAMED COUNTERS 0928 =0100090000
30 1026 ORIGIN CNTRL #5sCOUNTERS VALUE OF UNNAMED COUNTER IN COUNTERS
31 1027 ZA1 +5 ASSIGNED BY COUNTcRSe 0929 +1300008000
32 1028 ORIGIN CNTRL MAX(COUNTERS5#S) SET COUNTERS TO MAX NAMEDs
33 1029 ZAl +5 ASSIGNED BY COUNTERS 00012 1878 +1300008000
34 1030 LLTORIGIN CNTRL 8000sCOUNTERS COUNTERS5 ASSIGNS L|ITERALs
LITERALS
35 X +5 00013 00 8000 +5 8000
36 1031 * NOTE THAT THE USE OF ADDRESS ADJUSTMENT IN LINE 17 D!D NOT AFFECT
37 1032 * COUNTER3

38 1033 *

ORIGIN COUNTER INITIAL VALUE LAST VALUE HIGHEST VALUE LOWEST VALUE
* UNNAMED* 0325 0928 0928 0325
COUNTER1 0800 0800 0800 0800
COUNTER2 0811 0833 0833 0811
COUNTER3 0923 0924 0924 0923
COUNTER4 0875 0875 0875 0875
COUNTERS 0926 1878 1878 0926

S 1876 1877 1877 1876

BRANCH Control

Source Program Format

Processing Techniques

The BrANCH statement will cause the processor to produce an execute card con-
taining an unconditional Branch instruction. When encountered during the
loading of the object program, this instruction will cause the normal loading
process to stop and a branch to be executed to a specified location.

The BrancH statement should be written as follows:

LineJ Label 2Eermicm OPERAND ‘S
3 S(6 1516 20]21 25 30 35 40 45
o1 BRANCH, , . ICNTRLIADDRESS)

BRANCH and CNTRL must be written exactly as shown. Appress is the actual, *,
or symbolic address to which the branch is to be made after the preceding por-
tion of the program has been loaded into storage. If an * or symbolic address is
used, address adjustment and/or indexing may be specified. If an actual address
is used, indexing only may be specified.

A BRANCH statement may be used in conjunction with an oriGIN statement to
execute portions of a program already loaded into storage and to overlap these
with other instructions, as in the following example:

LineL Label J?peraﬁori OPERAND §
3 Sle 1S[16 20J21 28 30 35 40 43
o, START, , ., |, . [(FIRST INSTRUCTION).
02 4 L, Lt A S , .)
N R B e oL
05‘ o L T |7
o [xyz ., .. .B ., |LospPROG. ., ., |
07, BRANCH, , |CNTRUSTART .,)
08, ORIGIN . [CNTRLISTART,,COUNTER, .,)\
091<

When the resultant object program is being loaded, the loading operation will
be interrupted by a branch to the location assigned to the symbol sTART, fol-
lowed by the execution of the instructions from STAmT through the instruction
located at xvz. The instruction located at xvz will cause a branch back to the
load program, which will then resume the loading of the remainder of the object
program. Since the following entries were assigned locations beginning again
with the location start, they will overlap the instructions which have already
been executed. (In this example, it is assumed that the starting location of the
load program is symbolic location LoaDPROG.)

BRANCH 95

Additional Examples The following coding illustrates various operands which might appear in a
BRANCH statement:

I Line Label %Pperoﬁu%i OPERAND
3 5|6 1S)i6 20121 25 30 35 40
A

ol BRANCH = [CNTRL
02 BRANCH = ICNTRL[¥-2 , ,6 .
03 BRANCH CNTRL¥+4+X1 ,
04 BRANCH ICNTRL+XWORD, ,
05 BRANCH ~ ICNTRLI32S, , , , ., 000 vn v us
06 |[BRANCH | CNTRLO+XL = = . . .
07 BRANCH . = |CNTRLIO+XWORD, , , .., . ., ..
o8 BRANCH ICNTRLILABEL, T S
09 BRANCH , ICNTRLILABEL+10O ., , . . v 00
1o BRANCH . ICNTRLILABEL+X84 , .,
' |BRANCH |CNTRLLABEL+2+XWORD .,

S

PURITTES UE T VU H S G S RSO S T Bt

RS U WIS T WO N S T S B N S

(B

-
-

A

b
9

+

SNFN

T WP S T G PRV N S T A S SN WS WS SN VUM S T S SN W WA G T S U W

96

END Control

Source Program Format

Processing Techniques

The Enp statement, is an indication to the processor that the end of the source-
language program has been reached. When this statement is encountered, the
processor will assign locations to all material generated since the last previous
LITORIGIN statement or since the beginning of the program if LITORIGIN was not
used. In addition, it then produces an execute card containing an unconditional
Branch instruction which, when encountered at the end of the loading of the
object program, will cause a branch to a specified location.

The ExD statement may be written as follows:

ceration OPERAND)
15]16 Of21 25 30 35 40 4%

o1, [END, , , | CNTRLIADDRESS . .\ it o vy u o
02 |[END | JJCNTRLE
0 3 " 1 1 1 i i n A 1 " 1 i’ A i i 1 1 - A 1 i 1 l(

Line‘l Label
3 sle

END and CNTRL must be written exactly as shown. appress is the symbolic, actual,
or * location to which the branch is to be made after the entire object program
has been loaded into storage. It should be noted that a BraNcH statement may
not ordinarily be used for this purpose since it would cause the branch to occur
before the generated material (if any) was loaded. If an * or symbolic address
is used, address adjustment and/or indexing may be specified. If an actual
address is used, indexing only may be specified.

If the END statement is used, it must be the last entry in the program. If it is not
used, or if it is used with a blank operand, the processor will assign locations to
all generated material and then generate an unconditional branch to an address
specified to the Compiler Systems Tape. This address is originally 0325, but it
may be altered as described in the 7070/7074 Data Processing System Bulletin
“BM 7070/7074 Compiler Systems: Operating Procedure,” form J28-6105.

END 97

Additional Examples The coding on the following page illustrates various operands which might
appear in an END statement.

Lini Label Eperatiojls OPERAND (
3 sls 15)16 20(21 25 30 35 40 a3

o1, [END . . ICNTRL .. .
02 [END, ., . , ICNTRLP+1O .,
03 [END, ., . |CNTRL¥-5+XWORD .,
04 [END, . . [cCNTRL%+XA15
05 |[END,
06 [END.

il

-~

S S ' U S S G Y TS S SR

N

”

TR W T WA WA UL T G AN WS W N TS U S S TR S

w o L CNTRLIB2S,
v o, CNTRLIO+XWORD, ,
O7, END, ., , . ,[CNTRLO+X24 . . , ., .
08 [END A CNTRLILABEL,
09 IEND ., , . ., ICNTRLLABEL~-10, ., , .,
10 |END, ., _ICNTRL|LABEL+XWORD,

IV,IEND, ., ., CNTRLLABEL+5+X4,5
12 [END ICNTRL

13

-
—

|

-

-

TSP

k

o

§ S S S N WU W GOV T T U UH SN T U ST SN SETUUS W S S

-
-
C—

U R VRS WS S U W S S S S IS T S 1 TR NS SO0 NN TS N0 U U NS W S S WS I U T G

98

XRESERVE Control and SRESERVE Control

Source Program Format

Processing Techniques

References to the actual address of an index word or electronic switch may be
made at the discretion of the programmer. Normally, however, he will use
symbolic names which the compiler will then assign to actual addresses.
XRESERVE and SRESERVE statements cause the processor to reserve index words and
electronic switches, respectively, so that they will be “unavailable” when this
assignment is made; i.e., symbolic names will not be assigned to the address(es)
reserved.

The XRESERVE and SRESERVE statements may be written as follows:

Line‘! Label peration' OPERAND ;j
13 5|6 isiie 20]21 25 30 3% 40 4
o1 XRESERVE. [CNTRUN No-Naeton oo

02 XRESERVE. JCNTRLL o\ ot o e e)
04 |SRESERVE . ICNTRLN, MNo~N_oeteo oo oyor .l
05 ISRESERVE L ICNTRLl o oot oo ye i)

The entries XRESERVE, SRESERVE and CNTRL must be written exactly as shown.

The operand field contains the one- or two-digit number of the index word(s) or
electronic switch(es) to be reserved, or is blank. Continuation cards, described
on page 17, may be used as necessary. The entry N.-N; reserves all of the
index words or switches between and including N, and N;. When this form is
used, N; must be a number greater than N.. The two forms of operand entries
may be used exclusively or intermixed freely on each card. A blank operand
will cause all of the index words or electronic switches to be reserved.

As described on page 19, the xRESERVE and SRESERVE statements provide one of
several methods of making index words or electronic switches unavailable for
assignment to symbolic names. Unlike some of the other methods described,
xRESERVE and SRESERVE statements affect the availability table only when they
are encountered in the statement-by-statement processing during the Phase III
pass which assigns index word and electronic switch addresses.

xREsERVE and SRESERVE statements are usually placed at the beginning of a
source program. However, they may also appear at a later point(s) in the pro-
gram. When this is the case, it is possible that a previous symbolic index word
or electronic switch name may already have been assigned to the address speci-
fied. The programmer must therefore be cautious in the use and placement of
these statements.

XRESERVE & SRESERVE 99

Additional Examples

100

The following coding illustrates various operands which might appear
XRESERVE statement:

Line% Label perati OPERAND S
I3 6 15]16 25 30 35 40 45
o1, XRESERVE, leNTRL|t, . . ., . .~
o2 XRESERVE, |CNTRtlso . ., "~ 7
03 [XRESERVE |CNTRLU3 . 4.79.2 (
04 [XRESERVE , [CNTRL®-24 , . . """ 7
05, [XRESERVE, [CNTRLI1 -4 7-8.79-80.45-47)
06, [XRESERVE, ICNTRL|1,3-4,.7.9 41 45 43 .17-1.9 .24
ot |, b 23,25,27,.29 31-34,37-39.50, /
o8 IXRESERVE [cNTRL|

The following coding illustrates various operands which might appear in an

SRESERVE statement:

Line Label Pperoﬁon[OPERAND ig

] 15116 20j21 25 30 35 40 4
o1, SRESERVE,_|CNTRL2)
o2 SRESERVE (CNTRL2S , . . . "7
03 |SRESERVE |CNTRL3,4,26,7 . . .\
o4 |SRESERVE |CNTRL9-24 . . """
o5 |SRESERVE |CNTRL1-4,7-8 "1
o6, SRESERVE |CNTRL1,3-5,7,9,11,13,15,)
o7 | ... |2a,25-27 A
o8 |[SRESERVE lecNTRL N
99 | ..., - AA‘,A,,,l,,,‘.,x,ll,<

in an

XRELEASE Control and SRELEASE Control

Source Program Format

Processing Techniques

Through the use of XRELEASE and SRELEASE statements, it is possible to make
index words or electronic switches, respectively, available for later assignment,
even though they may have been reserved through some previous assignment or
listed as unavailable in the initial availability table. Thus, even though a given
section or phase of a program may make extensive use of symbolic index words
and switches, the use of the XRELEASE and SRELEASE statements will cause the
processor to re-establish the availability of these index words and electronic
switches for later assignment.

The xRELEASE and SRELEASE statements may be written as follows:

Line Label perati OPERAND J
3 S|6 15)16 20121 25 30 35 40 45

o1 XRELEASE ICNTRL N,..,,,Nta,-\N,‘,’l.,X,W.O,R,D,A,.AX‘W‘O,R,D,B,.,etq.u_)
02 XRELEASE . ICNTRL j
0.4 (

4 L I U ST U U U T S DU TN U SN N S S T VA S N E S

05 SRELEASE ICNTRLINy No—Nz,SWITCHA,SWITCHB,,etq.
o6 |[SRELEASE [CNTRL
07

[T U T WD VS VT S ST SN NN T TN T SO S S W WS B S S

N

lAlllllJlAnllILIII-\llllllllllltLllllll

The entries XRELEASE, SRELEASE, and CNTRL must be written exactly as shown.
The operand field contains the symbolic name or one- or two-digit number of
the index word(s) or electronic switch(es) to be released. Continuation cards,
described on page 17, may be used as necessary. The entry N,-N; releases all
of the index words or switches between and including N, and N;. When this
form is used, N; must be a number greater than N.. The various operand entries
may be used exclusively or intermixed freely for each statement. A blank operand
will cause all of the index words or electronic switches to be released.

As noted on page 19, the processor uses an availability table to determine the
assignment of symbolic names to actual index words and electronic switches.
This availability table differentiates between the index words and electronic
switches which have not yet been assigned in a given program, and those which
have been assigned but subsequently released. A released index word or electronic
switch is not reassigned until all others have been assigned for the first time.

A given symbol is always assigned to the same index word or electronic switch,
even if that particular index word or switch is subsequently released for possible
later assignment to another symbolic name.

Since the xRELEASE and SRELEASE statements are designed to allow the assignment
of more than one symbolic name to the same location, it is imperative that the
programmer use these entries with great care. Otherwise, conflicting use of the
same index word or the same electronic switch may result in inconsistent program

XRELEASE & SRELEASE 101

results. These statements should be used only where the programmer is certain
that the index word or electronic switch is no longer required in its previous
role, e.g., at the end of a given phase in a multi-phase program, perhaps following
a LITORIGIN statement. It should be noted that where more than one name is
made equivalent to a given index word or electronic switch, an XRELEASE or
SRELEASE statement referring to any one of the names (or to the actual address
itself) has the effect of a statement referring to all of the equivalent names.

Additional Examples The coding on the following page illustrates various operands which might ap-
pear in XRELEASE and SRELEASE statements.

H H OPERAND Basic Autocoder—>| Autocoder ——p
3L|nes s Label L;Epemhi' 28 30 3 a0 a8 50 58 §0! 6% 79 7

oI, XRELEASE, ICNTRLIA ., ., , 0 P
02 IXRELEASE ,CNTRLISO , , , , .\ oy vy A B
03 XRELEASE ,ICNTRLI3.,4,.,79.,2 , ., , oy N
04 XR,E,L‘E_A‘SE,,C,N,T,R.LS:Z,L,,“,_,,,,‘,,,,,,,,,,,,,‘.,,,.‘,,,,, b
05 XLR,E,LAE,A,S‘E,,C.N,T,R,L1,—,4‘,,X,W,0,RJD,A.,,A,,,,,,,l,A,,,“,,,‘,,,,,,l b

L

06 |[XRELEASE [CNTRLIXWORDB ,XWORDC .. N B
07 XRELEASE | CNTRLIXWORDD,10-20,,30-35 ., ' .\ 4ottt T S R S R
08 XRELEASE |[CNTRLIXWORDE K 6—8 XWORD F.79,10-32 ., .,
09 |(XRELEASE L ICNTRL 1,.,1,0‘..X,W,O,R,D.N,AM,EAA..,l.l,—1,3...X,!IJO,R.D.N,A,M,E,B..,X,W.O.R,D,NIAM,E,I,,,X.W,O,R,D,N,A,M,E,D”
1.0 e - X,WJO‘R‘,D,N_A‘MAE,E,,,X,W,O.R,D,N,A,M,E,F_,,X,W,O,R,D,N,A,M,E,H,.,2,5,.X,V(O.R DNAMEG ,29—-31,, .
LN S . X,W,O,R,D,N,AKMLEJL..,,1,‘J,,A,,,,,,,,,,,,.,,H‘“,,,,‘,_‘,lj

'2, XRELEASE, CNTRLXWORDA, . . .\, .,y i R

M T S S S T T Y

13‘ U W S W S T T N |) U T — llAllKl.llIllllA‘Iljllllll‘ll‘ﬂlllltl i Y NS W S S W W S W U T S S
!4 ISRELEASE CNTRL2 ., '\, T S

'5 |SRELEASE |ICNTRU29 , , , , ., . .. T S T S SR T T

i

'6 [SRELEASE CNTRLI3,4,45.7 ., 0\ e T

-y

L7, SRELEASE, \CNTRL®=24 .\, . .\ \.\ '\ W'y oy |
'8 |SRELEASE ICNTRLIS=4 SWITCHA , .\ '\ 0oy
!9 SRELEASE ICNTRLUSWITCHB,SWITCHC, .\ o\,

20, SRELEASE L CNTRLSWITCHD, 10202729, Ly
21 |SRELEASE ICNTRL SWITCHE ,2-7,SWITCHF ,29,11-15 I B
22 |[SRELEASE [CNTRL 1,3, SWITCHI, SWITCHF . 7-14 . SWI TCHC,,SWITCHD[, SWITCHE 20,,
23 e L. SWITCHM,SWITCHG ,SWITCHH,, SWITCHA, SWITCHB ,|SWITCHK,,
24, . SWITCHL,29, . . .

Y S T S W G R T WS S

O S

i i - i . e) I | A T S N § VNI U N R 1 I W A i
25 SRELEASE CNTRL|SWI TCHM L i L ;] Ll g L .
L. 1 PR 1 it L " L i 1 i1 1 13 i ——d . it . L z 1 . i 1 1

102

Imperative Statements

Symbolic Machine
Instructions

Autocoder imperative statements include low-level statements, called “symbolic
machine instructions,” which are very much like the 7070 machine language
operation codes, and high-level statements, called “macro-instructions,” which
bear no resemblance to machine language. While the symbolic machine instruc-
tions offer flexibility and control over each detail of the coding, the macro-instruc-
tions provide a more powerful and convenient way to state a problem. The
macro-instructions usually produce a number of machine language instructions
in the object program.

Each macro-instruction and symbolic machine instruction has a unique mnemonic
operation code consisting of from one to five alphameric characters. For example,
the Autocoder equivalents of the Branch and Make Sign Plus machine commands
are B and Msp, while for the Compare and Set Switch macro-instructions, comp
and SsETsw are used.

When a symbolic machine instruction is encountered in a source program by the
7070 Autocoder processor, it is converted into a 7070 machine language command.
The symbolic machine instructions are sometimes referred to as “one-for-one”
instructions since each unique mnemonic representation will cause one 7070
operation to be inserted in the object program. For example, the Branch, Lookup
Lowest, and Index Word Load and Interchange commands have the correspond-
ing Autocoder mnemonics B, 1L, and XLiN. Each time the 7070 Autocoder
processor encounters these mnemonics in the source program it will insert the
machine language operation code +01, +66 and —48, respectively, into the
object program. An alphabetic list of all the Autocoder symbolic machine
instructions, indicating what is permissible in the operand field and the order
in which the information must be entered on the coding form, is contained in
Appendix D.

The correct order of entry for operand parameters of symbolic machine instruc-
tions is the operand address followed by field definers, address adjustment, and
indexing, as illustrated by the following examples:

Lirtl- Label lOmratim OPERAND j
3 5|6 15(16 20|21 25 30 35 40 45
ol ..., o . IFIELDA(2)+4+IWORD, 6 , . . {
02 L L L N e L 1(
os | ... Ixa . |iwoRD,, F1ELDA+4+ | WORD, , . . %
05 11 i FE 1 Lol Il Il SR D S S | L PR 14 T | . FUY S B S S |)

Assume that FIELDA has been defined as word 2000 and that the indexing portion
of index word tworp contains 0100. In the first example, digit position 2 of
location 2104 will be compared to a “6.” In the second example, 2104, considered
plus, will be algebraically added to the number 0100 in the indexing portion of
IWORD.

Imperative Statements 103

Macro-Instructions

104

The M Reference Manual “7070 Data Processing System,” form A22-7003-2,
contains numerous illustrations of how symbolic machine instructions are written
and gives examples of the machine language instructions which will be assembled
from them.

The following is a section of a payroll routine which further illustrates the use
of symbolic machine instructions. Note that remarks may appear anywhere in the
operand, provided two blank spaces separate the remarks from the operand of the
instruction.

Linﬂ_ Label perofion[OPERAND K
3 sle 15)i6 20[21 25 30 35 40 as }

o1, lcaLcTAax . |zAa3 [rTAXcLASS, .. DETERMINE LIF, .

o2 | . . . M., 1300 PAY Is
o3 | la2 . lsrOSS TAXABLE ...)
oa | . lem2. . INOTAX . . . BRANCH TF NO. TAX|
05 |, lzA3 ,le®92 , /
os | .. M. . leas . CALCULATE Tax |
ot | SRR M
oe |8 . lkte,
o5 [NOTAX, .. . [s2. . [0992 CLEAR Accumz . {
o Iste [WITHHOLD .. STORE TAX .AMO. u,N,T]

The use of macro-instructions described, below, will make possible the coding
of a source program with only limited use of symbolic machine instructions.

A macro-instruction represents a single operation entry on the Autocoder coding
sheet that is converted during assembly into a sequence of machine instructions.
Autocoder macro-instructions, including those used for input/output operations,
free the programmer to a large extent from attention to machine details such as
location assignment and data flow in carrying out the operations required by
frequently encountered problems. The user may extend Autocoder by adding
appropriate macro generators to the system to process newly-created macro-
instructions.

The macro-instructions fall into several categories, as follows:

Category Macro-Instructions

Input/Output: OPEN, GET, PUT, PUTX, CLOSE, END
Arithmetic: ARITH

Decision Making: COMP, CYCLE and RECYC, DECOD, LOGIC, ZSIGN
Initialization: SETSW, ZERO, FILL

Data Movement: EDMOV, MOVE, SHIFT

Reference: SNAP

A full discussion of the input/output macro-instructions can be found in the 7070
Data Processing System Bulletin “mm 7070 Input/Output Control System,” form
]28-6033-1. The programmer should not attempt to use these macro-instructions
without careful study of the material contained in that bulletin, especially the
procs, pTF, and DUF entries. For convenient reference, however, the formats and
brief descriptions of six of the principal input/output macro-instructions are in-
cluded in this manual.

Programming features common to all macro-instructions are outlined immediately
below. A detailed description and the format of each individual macro-instruction
follow. Examples are included showing typical source-program statements and
the coding generated from them by the macro generators.

Label. A macro-instruction which will be referred to elsewhere in the program is
written with a label. In all other cases, the label column is blank. The label may
be any symbolic label acceptable for a symbolic machine instruction, i.e., begin-
ning with a letter, possibly followed by any combination of up to nine letters or
numbers (no special characters). This label will reference the first instruction
generated from the macro-instruction.

Certain labels are forbidden. The following sets of characters have special mean-
ings when used in the operands of the macro-instructions specified. They should
not, therefore, be simultaneously employed as labels in programs using these
macro-instructions:

Characters Macro-Instructions
ABS ARITH, COMP
AND LOGIC, FILL
E LOGIC
G LOGIC
N PUT, PUTX
L LOGIC, SHIFT
1C SHIFT
LS SHIFT
NOT LOGIC
NOZERO ZSIGN
OR LOGIC
R SHIFT
BR SHIFT

SHIFT
TO EDMOV, GET, MOVE
WITH FILL
The name of any
function in the
Macro Table ARITH

Actual Addresses. The operand may not include actual addresses, except where
specifically allowed by individual macro-instructions.

Field Characteristics. 'When a program is assembled, it is not known what the
contents of the various fields will be at object program time. Therefore, all macro
generators must proceed on the assumption that these contents will conform to
the characteristics of the field as defined by some declarative statement. If a field
has been defined by a pa subsequent entry as alphameric, instructions will be
generated to treat the contents as if they were alphameric, and difficulties may
arise if, during the object program, numerical information has been stored instead.
The same is true if alphameric information is put into numerical fields, or if the
numerical modes are not distinguished from each other.

Asterisks(*). When a macro-instruction is written, the programmer does not
know how many machine instructions will be generated in its place; therefore,

Imperative Statements 105

106

addresses using the asterisk symbol are not acceptable. For example, if a macro-
instruction must reference the next following instruction of the source program,
this should be done by means of a label attached to that instruction, not by
the address * + 1. The same considerations make it impossible to do address
arithmetic on a macro-instruction label or on any other label by amounts that
would carry the address across a macro-instruction.

Alphameric Literals. Alphameric literals may appear in macro-instruction oper-
ands, provided they are meaningful to the specific instruction involved. It is not
possible, however, to write an alphameric literal that includes @ as one of its
characters. The scan for macro-instructions, sensing an operand like @Asaaa@
AAAA@, would take the second @ to signal the termination of the literal. If such
a constant is required by the nature of the program, it must be entered as a sub-
sequent entry under a pc header line; it may then be referenced in the operand
of the macro-instruction by its symbolic name.

Address Modification. Although field definition is not permitted within macro-
instruction operands (except through the device of referencing a label of a pa,
DC, or DLINE subsequent entry specifying field definition), indexing and address
adjustment are permitted. The conventions for writing these, however, differ
from those applicable to symbolic machine instructions. In particular, indexing
precedes address adjustment if both are present.

Indexing may be specified by referencing the symbolic name of index words or
their actual one- or two-digit number. When actual indexing is used, the number
of the index word may not be signed, nor should it be preceded by an x. Address
adjustment must be signed plus or minus; it is this which distinguishes one- or
two-digit adjustments from indexing.

Address modifiers, both index words and address adjustment, must be enclosed
by parentheses. The left parenthesis should be in the column immediately follow-
ing the last character of the address being modified. No blanks should occur any-
where within the entire address modification. If both indexing and address ad-
justment are used, indexing precedes address adjustment, and one set of paren-
theses should enclose them both.

The following are acceptable examples of modification for macro-instruction
operands:

Operand Explanation
TABLE (ROW) The symbolic address TaBLE is indexed by the index word
ROW.
List(+34) The symbolic address vist is incremented by 34.
LisT(34) The symbolic address vist is indexed by index word 34.
CHART(LINE—10) The symbolic address crarT is decremented by 10; then

the address is indexed by the index word LINE.

ARRAY(29+17) The symbolic address ArraY is incremented by 17; then
the address is indexed by the index word 29.

Continuation Cards. Since macro-instructions frequently have long operands, it
will often be necessary to use continuation cards to accommodate all the required
parameters. All macro-instructions are limited to five cards, i.e., four continuation
cards in addition to the header card.

On a continuation card the label and operation columns must be blank, and the
continuation of the operand portion must begin in column 21; i.e., it must be left-
justified in the operand column of the coding sheet. The entire operand, columns
21-75, may be used.

In the header card or continuation cards (other than the last), each operand
need not extend across the entire operand column; it may end with the comma
following any parameter and continue on the succeeding card.

In two cases, however, the operand can not be broken off in the middle to be

distributed over two cards. These exceptions are:

1. Alphameric Literals. Alphameric literals may be up to 120 characters in length
and may, in consequence, have to be distributed over two or more cards. This
is permitted, provided that the operand columns of all cards but the last are
filled to the very end, i.e., through column 75, and that the continuation begins
in column 21 of the next card. Blanks which are to be included in the alpha-
meric literal are regarded as part of the literal and may appear in any column,
including column 75 and column 21. Any extraneous blanks or remarks which
appear at the right end of any card before the terminal @ character will be
regarded as part of the literal and these characters will be incorporated into
the literal.

9. Address Modification. When a parameter is modified by indexing and/or
address adjustment, separation at the end of a card may be made as follows:
The name of the parameter is placed on the first card. The address modifica-
tion which follows may be on the same card or it may be broken off at any
point following the left parenthesis (except within the actual or symbolic
addresses involved) and continued on the next card beginning in column 21.
If the last character of a parameter falls in column 75, then the left parenthesis
may be placed in column 21 of the next card.

The examples on the following page illustrate the method of separating alpha-
meric literals and address-modified parameters on continuation cards. Examples
1 and 2 illustrate alphameric literals; examples 3-7 illustrate address modification.

Punctuation and Spacing. In general, each macro statement has its own conven-
tions of punctuation, which are stated in detail in the descriptions of the indi-
vidual instructions. Illegal characters or other faulty punctuation will be regarded
as an error condition. For all macro-instructions, any entry in an operand portion
of the coding sheets that is preceded by two blanks will not be processed, unless
the blanks are inside an alphameric literal. As a general rule, it is recommended
that no blanks be written, especially following commas, equal signs, or other
punctuation marks, unless a specific demand is made under “Source Program
Format” in the description of the individual macro-instruction (e.g., in the MovE
statement on either side of the operator To) or when blanks appear in address
modification as a result of the use of continuation cards.

Remarks. Remark entries may be made at the end of the operand portion of the
coding sheet just as with symbolic machine instructions. At least two blanks must
precede the first character of a remark entry. These entries, which may include
the @ character, will be listed but not processed. If a macro-instruction requires
continuation cards, remarks are not necessarily confined to the last card; param-
eter entires, except for alphameric literals, may be terminated wherever the pro-
grammer desires, subject to the rules stated under “Continuation Cards,” and
continued on the next card, leaving room for remarks at the right end. Attention
is called to the fact that macro-instructions are limited to a total of five cards for
each instruction; if an operand is very long, remark entries on the header or con-

Imperative Statements 107

108

tinuation cards may waste needed space. In such a case, remarks may be entered
on separate comments cards immediately preceding or following those containing
the macro-instruction proper.

Error Conditions. If the macro generator detects an error condition in analyzing
the source statement, an error or warning message will be issued. Warning mes-
sages inform the programmer that the machine instructions being generated may
have certain unintended effects in the object program, such as accumulator over-
flow in ARrTH, branching to the same location regardless of the outcome of the
test in zsIGN, etc. The programmer should recheck his use of the macro-instruc-
tion to make sure that he has employed it correctly and that the special condition
will either not arise in his program or that it is intentional. Error messages are
issued if a programming error has made it impossible for the macro generator to
generate meaningful instructions on the basis of the source statement; in such a
case, a NoP will be generated to aid in patching. Assembly will not be interrupted.

Frequently a macro generator will pass a portion of its work on to another gen-
erator by putting out what is called a “lower-level” macro-instruction. This will
be automatically assembled by the processor, with all generated instructions
properly sequenced. The possibility exists, however, that a parameter passed to
a lower-level macro generator for processing could bring about an error con-
dition in that generator. In that case, the error message issued would be one from
the lower-level generator. The following list shows some cases in which macro
generators may call others; it may aid the programmer in interpreting such error
messages:

Source Statement Lower-Level Macro-Instruction
ARITH Any function in the Macro Table
coMP ARITH
EDMOV MOVE
LOGIC COMP, ZSIGN

Thus, if writing a LocIC statement has resulted in an error message that is not
listed or explained in the LoGic macro-instruction description, the programmer
should consult the descriptions of comp and zsiGN, and thereafter, since comp
in turn may have called aritH, that of arrTH, etc.

Hardware Usage. Instructions generated from a macro-instruction may affect
the following: (1) the contents of the three accumulators, (2) index words 93
and 94, in addition to such other index words as may be required (these will be
assigned in the same fashion as are other symbolic index words), (3) latches as
implied by the intent of the macro-instruction (Low, Equal, High for comp, Ac-
cumulator Overflow, Field Overflow, and Sign Change for aritH, etc.), (4) cer-
tain temporary storage areas reserved for working space, and (5) those fields or
switches on which the macro-instruction is to operate, i.e., that are specifically
named in the operand of the instruction in question. Wherever possible, these
fields and switches will be treated non-destructively; thus logical variables in
rocic, input fields in ArrrH, the “from” fields in MovE, ete. will preserve their
contents during the execution of the generated instructions unless the contrary
is indicated (e.g., the “to” field and the “from” field in suiFr are identical). Such
fields or switches as are intended to be affected (the result field in arrrs, switches
in sETsw, etc.) will, of course, generally lose their previous contents, sxap will
leave the priority mask set to “allow,” regardless of its former condition.

Since macro-instructions will often produce field overflows and sign changes, it
is necessary to precede all programs employing macro-instructions with smsc
(Sense Mode Sign Change) and smFv (Sense Mode Field Overflow) commands.
If any segment of a program must be run in the halt mode, the latches should
first be turned off with Brv (Branch Field Overflow) and Bsc (Branch if Sign
Change) commands, and the machine then placed in' the halt mode. The sense
mode must then be restored before macro-instructions are executed.

If the ARITH macro-instruction is used in a program, consideration must be given
to the setting of the three Accumulator Overflow keys and the Exponent Over-
flow key (see page 132).

OPERAND

Line Label #percﬁon Basic Au?ocoder———->1 Autocoder ——p»

3 sle 15)16 20|21 25 30 35 40 45 50 55, 60 65 70 78
l.do1 |ANYLABEL MACRO@.s, .0 o\u v v 0 00 o,aio oy0 oo oioyeeio ooy ----A VERY LONJG ALPHAMERIC LI

02 \ .. . |TERAL@® ., ., ., ., - ey . N .

03) N L , e ,) A

04 " IS | L AN S S S S S 1 1] 1) N S 1 11 11 1 1 I N R T R S T |
2|05 IANY LABEL . MACRO| . oo o v o e miryeieivineye oieieoieineininyeins oioyere o syeyeieee oloieeere ~@NEW, YORK|

06,))) . lerrye , L L L

07, L . N L L L L 4 . L L L A X

08, T Y I e
309 ANY LABEL MACRO| it e e e eie it eiere v e ey e eie aie e e s e oo ye o] ee e e ‘PIA_RAMETER(

IO,,,,A,,,,,l,,,X,W,O,R,D,-i-,Z,T,),,‘,,,,,,,..,....,..,.,.,,.,,, L T

I;Il L P | L 1 ol § I T T S SR SN S S S N PR S S U W W SN W S WS SR T S S R S | L1 1 L PR

2, PRI T S O S PR O I S W S S N | SN N0 U0 T YOS NS S SRS TN WU WU TN WU S TS S S A W 0 W WU . T S TGN S S N S G
4. ||3‘ A*NAIYLJA‘BlEJ:‘ N M‘A.CIR,O Lt IAL'J'J.I.A.I.I.J.].A'I“LLl A L L L LTS L ,','.P,A,RAM,E‘TXE.R

1.4, TP RS (O ¢ Bt 0 N S S S S R R B S S e T

'.5, L1 n L L U ST ST SN S VN WS T S T 1 RSN SO TS T | I | L T R T i 1

I|6| N L 11 B N Y W S N W Y WA T WY I S S § § USSR NN NOURN N SO TS WS TR S N | L L R R B i 1 n
5|17, JANYLABEL A_fMAC.RD'.'.-.-.-.-.-nn-.n-x~"-""l-."'-‘-.-nn--.-".--'-'-'PARAM METER(,63+,

'8 1. . o 28) ey . . .

149 L n " L PR R L SO T | PR Y L n L . N o N s N L
621 |ANYLABEL MACRO|s o o e o oo o o s o a0 v o o s o s 0 o o o o oo o0 oo ----'-~--n-;-.'PARAMETER(

2.2, P 1 1 L L 219l)l T 1 L ' I L1 I ! 1 1 1 I

2.3| P P L 1 [) 1 Il PN | 1 1 : 1 L . N R s

24, s MRS T TR PR 1 ' L 1 1 1 L 1 1 o L s
725 IANYLABEL MACROI® -« o = v o oo o v o oo oo o o s ain oo oo os os -'~-A-‘--,-P.ARAME ER(XV(ORD)

P FE— 1)) L +‘1x2‘)‘ I i1 " 1L FEY 11 1 Lo ol SNUU (U U SN T SO SN

S L Lo et] PR L L L L L)

Imperative Statements 109

OPEN

Source Program Format

Processing Techniques

OPEN generates instructions to initialize input or output tape files for processing.

The basic format for the opPEN statement is as follows:

Line Label Jf)peroﬁon OPERAND %
3 sle 15)ie zolzn 25 30 35 40 "

ol |ANYLABEL OPEN [FILEL,FILE2 FILE3, etc., ,

T AT o T bl Gl ol e el

02 PRI NS TS A T S N S T T Gt P T U W S N (S0 U NS T NN Y VS U TS S AU WS W SR |

ANYLABEL is any symbolic label; it may be omitted. The entry oPEN must be
written exactly as shown. The operand must contain the name(s) of one or more
tape files to be processed. Each name must be the same as the name which
appears in the operand of the p1F entry which defines the file. As many tape
files as desired may be named in the operand of an opEN statement, provided the
operand does not extend over more than four continuation cards. The names
of the tape files must be separated by commas.

The first instruction generated by the processor as a result of an opEN statement
is as follows:

LineJ Label peration OPERAND j
3 sls 15)i6 20021 25 30 35 40 4s

o!, ANYLABEL BLX 6 [lOCSIXG,IOC.IOPEN . ., . .

0 2 1l 1 1 i 1 4 S 1 1 1 1 1 L L 1 " S 1 11 1 1 1 1 1 e i L . 1

Following this, the processor will generate a branch constant containing the ad-
dress of the first word of the File Specifications Table for each file named in the
operand. A ~Nop will be generated after the last branch constant.

This calling sequence and the subroutine 10c.10PEN (normally included as a
result of a procs statement) will perform the following operations:

1. Furnish details about the file to the File Scheduler routine.
Check on the availability of the file to the program.
Rewind the tape, if necessary.

Process the tape label, if any.

Mark the file as “active.”

gU WD

These operations will be performed automatically for subsequent reels of multi-
reel files, In addition, end-of-reel operations (rewinding, writing of tape marks,
and writing of trailer labels (if any)) will be instituted.

Error Messages The following error messages will be produced during assembly under the con-
ditions specified:

OPERAND BLANK

If the operand is blank, a Nop will be generated instead of the calling sequence.

PARAMNN NOT A FILE

If an operand parameter (the number is indicated by nn, above) is not defined
by a prF entry, a Nop will be generated at the point in the calling sequence
where a branch constant would normally be included. Since the 1oc.10PEN
subroutine would consider this Nop to be the end of the list of files to be
initialized by oPEN, a manual correction must be made before the object pro-
gram is run. If corrections are not made and the file is not the last one named
in the operand of the opEN statement, the object program will execute the next
branch constant as a true Branch instruction, thus transferring control (in error)
to the first word of the corresponding pr¥.

OPEN 111

GET

Source Program Format

Processing Techniques

112

GET generates instructions to obtain a record for processing.

The basic formats for the et statement are as follows:

Linil_ Label lOperarim OPERAND J
3 5(6 15(16 2021 25 30 35 40 45
ot IANYLABEL, [GET |[TAPEFILE)
o2 |ANYLABEL |GET, . [TAPEFILE, TO WORKAREA .. .)
03 ANYLABEL |GET, |CARDFILE)
04 |ANYLABEL . |GET, |CARDF,I.LE, T0 WORKAREA, ., . <
05 1 T P 13 4 PR D T S S Y 1 i 11) FES S R S S | 1

ANYLABEL is any symbolic label; it may be omitted. The entries et and To must
be written exactly as shown. The first item in the operand must be the name of
a tape file or unit record file. This name must be the same as the name which
appears in the operand of the pTF or pur entry which defines the file.

If the second or fourth format is used, the second operand item must be the word
1O, preceded and followed by a single blank character. The third operand item
must then be a name which appears as the label of a prRow statement, the label
of a pa header line, or the label of a pa subsequent entry.

The calling sequence generated by each Ger statement, in conjunction with the
File Schedulers and other subroutines of the Input/Output Control System, make
it possible for the object program to obtain each input record one at a time, re-
gardless of the form for the input. The record will be made available in the input
area and, if specified, moved to a work area. When the third item in the operand
is the label of a prow, the record will be moved to the area defined by the gen-
erated Row. When the third item in the operand is the label of a pa header line,
the record will be moved into the area defined by the pa. If the pa header line
does not specify the generation of an row, the processor will generate (else-
where) an Row to be used by the cEr statement. When the third item in the
operand is the label of a pa subsequent entry, the input record will be moved into
the area defined by that entry. In this case, the processor will always generate
an RpW to be used by the GET statement.

For the second and fourth formate, the amount of the input record moved i com
pletely dependent on the size of the area defined by the third item in the oper-
and. No warning message will be issued if the size of the work area is not equal
to the size of the input record. The programmer must define the work area to
equal the amount of the input record that is to be moved.

Card Files

Tape Files

Error and Warning
Messages

For card files, the GET statement using the third format causes the generation of
the following instructions:

ANYLABEL GET CARDFILE
ANYLABEL BLX IOCSIXH, I0C.Dn

The cEt statement using the fourth format causes the generation of the following
instructions:

ANYLABEL GET CARDFILE TO WORKAREA
ANYLABEL BLX IOCSIXH, 10C.Cn
B WORKAREA

1oc.cn and 1oc.pn are the labels of the two entry points to the unit record routine
which is generated by the pur entry that defines the file.

For tape files, the use of the first or second format will cause the address of the
first word of the next record to be placed into the indexing portion of an index
word specified in the File Specifications Table of the input file. Processing may
then be done by using instructions referring to fields within the record as defined
by a pa subsequent entry relative to 0000 plus this index word. This indexing
will be assigned automatically by writing the name of the index word in the pa
header line operand as described on page 35. If processing is to be done by
using non-indexed instructions, the record may be moved to a work area by means
of the MovE macro-instruction. However, the second format above will initialize
the index word and move the record to the work area. With either the first or
second format, reading in of the next block of records from tape when all records
in the input area have been processed is automatic.

The following error and warning messages will be produced during assembly
under the conditions specified:
OPERAND BLANK

If the operand is blank, a Nop will be generated instead of the calling sequence.

OPERAND HAS TWO PARAMETERS
If there are two parameters in the operand, the calling sequence for the Ger
INPUTFILE form will be generated, followed by a xop.

PARAM 0l NOT A FILE
If the first item in the operand is not the name of a tape or card file, a xop will
be generated instead of the calling sequence.

PARAM (1 NOT INPUT FILE

If a unit record file is named in the operand and if it is not an input file, this
message will be produced. A ~op will be generated instead of the calling se-
quence.

PARAM 03 15 A FILE. PARAM 03 IGNORED

If the third item in the operand is the name of a tape or unit record file, the
calling sequence for the Ger xpuTFILE form will be generated, followed by a
NOP.

GET 113

114

PARAM 03 NOT DEFINED

If the third item in the operand is not defined by a pa header line, pa subse-
quent entry, or a DRDW statement, the calling sequence for the GET INPUTFILE
form will be generated, followed by a ~oe.

SRBFORM4 BLANK, ASSUMED 10

If the file named in the operand specifies Form 4 records, and if the subrecord
blocking factor is not specified, a subrecord blocking factor of 10 will be as-
sumed. The calling sequence, however, will be generated in the normal man-
ner.

WARNING—PARAM 01 NOT INPUT FILE

If a tape file is named in the operand and if it is not an input file, this message
will be produced. However, the calling sequence will be generated in the
normal manner.

WARNING—PARAM (2 18 NOT -TO-

If there are three parameters in the operand, and if the second parameter is not
the word “ro,” this message will be produced. The calling sequence will be
generated as if the second parameter had been “10.”

WARNING — RLIFORM3 BLANK

If the file named in the operand specifies Form 3 records, and if the record
length indicator is not specified, this message will be produced. It will be
assumed that the record length indicator is located in position 0 of word 0 of
the record. In all other respects, the calling sequence will be generated in the
normal manner.

PUT

PUT causes the generation of instructions that will provide the address of the next
available word in the output area and, if desired, include a processed record in
an output file by moving the record to the output area.

Source Program Format The basic formats for the puT statement are as follows:

LineL Label perati on|- OPERAND
3 sle 15)i6 20j21 25 30 35 40

o1, ANYLABEL, . |PUT, lOUTAPEF.ILE,
02 A&YLAjEL,,PyI,‘TAngILE,JN.DUTAPEFILE
03 JANYLABEL _|PUT, |WORKAREA IN OUTAPEFILE,
04 ANYLABEL ,Pyﬁl,FJﬁLDNAMﬁ,JN,DUTAPEFILE,
05 |ANYLABEL . |PUT, |CARDFILE .IN OUTAPEFILE, .
06 |ANYLABEL . |PUT, |OUTCARDFLE . .,,
o7 |[ANYLABEL . |PUT , [TAPEFILE IN OUTCARDFLE,
o8 |ANYLABEL, . |PUT ., IWORKAREA I N OUTCARDFLE, .
o9 [ANYLABEL |PUT . |CARDFILE IN OUTCARDFLE .

1.0

T T S S I

NN

L,v

e

PR WY SO VR NS TS T U G (NS TR N N N GO SO S A WY SN S S S T S SN S NN WU ST SN SO0 SN0 N SO0 N

ANYLABEL is any symbolic label; it may be omitted. The entries puT and N must
be written exactly as shown. The operand may contain either one or three param-
eters, as follows:

1. If the operand contains one parameter it must be the name of an output tape

or unit record file; it must appear as the operand of the pr¥ or pur entry which
defines the file.

2. If the operand contains three parameters, the third parameter must be the
name of an output tape or unit record file; it must appear as the operand of
the pTF or puF entry which defines the file. The second parameter must be the
word 1v, preceded and followed by a single blank character. The first param-
eter may be defined by appearing as a name in any of the following:

Operand of a p1F (the first format above).

Operand of a pur (the sixth format above).

Label of a pa header line.

Label of a pa subsequent entry.

Label of a oc header line.

Label of a pc subsequent entry.

Label of a pLINE header line.

Label of a pLINE subsequent entry.

Label of a prow. (The area defined will be included in the output file.)

F R e e T

Processing Techniques The calling sequences generated by each pur statement, in conjunction with the
File Schedulers and other subroutines of the Input/Output Control System,
make it possible for the object program to cause the inclusion of each processed

PUT 115

Error and Warning
Messages

116

record or field in the output file one at a time, regardless of the output blocking
factor. If the name of the item to be included is defined by a declarative state-
ment, and, if an Row(s) is not specified for that item, the processor will generate

(elsewhere) an rRow to be used by the puT statement.
.

The use of the first or sixth format will cause the address of the next available
word in the output area to be placed in the indexing portion of an index word
specified in the File Specifications Table of the output file. Data may then be in-
cluded in the output area by means of a later MmovE statement. (It may also be
processed there until the next putr occurs.) The other formats, however, not only
cause the address of the next available word to be placed in the index word
specified, but also cause automatic inclusion of the record in the output file and
updating of the proper index words.

Writing of the output area will occur automatically when the area is full.

The following error and warning messages will be produced during compilation
under the conditions specified:

OPERAND BLANK

If the operand is blank, a Nop will be generated instead of the calling sequence.

OPERAND HAS TWO PARAMETERS

If there are two parameters in the operand, a Nop will be generated instead of
the calling sequence.

OUTPUT SRBFORM4 BLANK, ASSUMED 10

If the output tape file named in the operand specifices Form 4 records, and if
the subrecord blocking factor is not specified, a subrecord blocking factor of
10 will be assumed. The calling sequence, however, will be generated in the
normal manner.

PARAM 01 (03) NOT A FILE

If the parameter named as the output file is not a tape or unit record file, a Nop
will be generated instead of the calling sequence.

PARAM 01 (03) NOT OUTPUT FILE

If the parameter named as the output file is a unit record file, and if it is not
defined by its puF as an output file, this message will be produced. A Nop will
be generated instead of the calling sequence.

PARAM (1l UNDEFINED

If there are three parameters in the operand, and if the first parameter is not
defined by one of the nine entries named under “Source Program Formats,”
this message will be produced. The calling sequence for the PUT OUTPUTFILE
form will be generated, followed by a Noe.

WARNING — OUTPUT RLIFORM3 BLANK

If the output tape file named in the operand specifies Form 3 records, and if
the record length indicator is not specified, this message will be produced. It
will be assumed that the record length indicator is Jocated in position 0 of
word 0 of the record, and the calling sequence will otherwise be generated in
the normal manner.

WARNING — PARAM 01 (03) NOT OUTPUT FILE

If the parameter named as the output file is a tape file, and if it is not defined
by its DTF as an output file, this message will be produced. However, the call-
ing sequence will be generated in the normal manner.

WARNING — PARAM 02 1S NOT -IN-

If there are three parameters in the operand, and if the second parameter is
not the word “Iv,” this message will be produced. The calling sequence will be

“« »»

generated as if the second parameter had been “Iv.

PUT 117

PUTX

Source Program Format

Processing Techniques

118

PUTX causes the generation of instructions that will include a processed record
in an output file by exchanging rows rather than by moving the record.

The basic format for the putx statement is as follows:

LLineJ_ Label peration OPERAND S
sle 15|16 20[21 28 30 35 40 45
ol, ANYLABEL, , [PUTX [INPUTFILE ,IN OUTPUTF,ILE . 5
OIZA L4 i 1 L 1 T Al I S T 1 il 1 | A i 1 I - 1 1 ' 1 i i i1

ANYLABEL is any symbolic label; it may be omitted. The entries PuTx and v must
be written exactly as shown.

The first item in the operand must be the name of an input tape file. This name
must appear in the operand of the pTF entry which defines the file.

The second item in the operand must be the word m, preceded and followed by
a single blank character.

The third item in the operand must be the name of an output tape file.
This name must appear in the operand of the pTF entry which defines the file.

The calling sequences generated by each putx statement, in conjunction with the
File Schedulers and other subroutines of the Input/Output Control System, make
it possible for the object program to cause the inclusion of each processed record
in the output file, one at a time, regardless of the output blocking factor. Unlike
the PUT statement, however, the PuTx statement causes this inclusion by the in-
terchange of rRows; the record itself is not moved. Thus, an rRow describing the
record to be written is placed in the list of output rows and the row which was
previously at that point in the list is placed back in the input list, replacing the
original rRow.

The form of the records in the files places the following restrictions on the use
of the PuTx macro-instructions:
1. Form 3 records can not be processed with a putx macro-instruction.

2. The combination of input record form and output record form must be one

of the following:

Input File Record Form Output File Record Form
i 1
1 2
2 1
2 2
4 4

Error and Warning
Messages

3. The length of fixed length records or the maximum length of variable length
records must be identical for both the input and output files.

4. For Form 4 records, the number of sections in input and output records must
be the same and the maximum number of words in the corresponding sections
of each input and output record must be identical.

There is no restriction on the blocking factor of the input and output files. The
blocking factor, i.e., the number of records in one block, may be different for
each of the files provided that the other restrictions listed above are observed.

After rRows have been exchanged by a puTx macro-instruction, the input record
is no longer available for processing; the programmer must be certain that all
processing requiring the input data is completed before issuing the command.

When puTx is to be used, processing should be done in the input area using
indexed instructions which refer to fields within the record as defined by a pa
entry relative to 0000. If input data is moved to a work area for processing, do
not use putx. If PUTX is used, the original input data rather than the results of
processing will appear in the output file.

The automatic function of writing blocks of records on tape is the same for the
PUTX macro-instruction as for the puT macro-instruction.

The following error and warning messages will be produced during compilation
under the conditions specified:

IMPROPER OPERAND

If the operand does not contain three parameters, a Nop will be generated
instead of the calling sequence.

paRaM 01 (03) FILE FORM INVALID

If the files named in the operand do not conform to the restrictions regarding
record form which are listed under “Processing Techniques,” a Nop will be
generated instead of the calling sequence.

paRAM 01 (03) NOT A FILE

If either the first or third item in the operand is not defined by a prF, a NOP
will be generated instead of the calling sequence.

PaRAM 03 — SRBFORM4 BLANK, ASSUMED 10

If the output tape file named in the operand specifies Form 4 records, and if
the subrecord blocking factor is not specified, a subrecord blocking factor of
10 will be generated. The calling sequence, however, will be generated in the
normal manner.

RECLENGTHS UNEQUAL

If the record lengths specified for the tape files named in the operand are not
equal, this message will be produced. The calling sequence will be generated
in the normal manner, however.

SRBFORM4 UNEQUAL. OUTPUT SRB USED

If the tape files named in the operand specify Form 4 records, and if the sub-
record blocking factors of the files are not equal, this message will be produced.
The subrecord blocking factor of the output file will be used in the calling
sequence.

PUTX 119

CLOSE

Source Program Format

Processing Techniques

120

CLOSE generates instructions to remove tape files from use.

The basic format of the cLosE statement is as follows:

LineJ Label peration| OPERAND S
B sle 15|16 20J21 25 30 35 40 45
o!, |JANYLABEL, L |CLOSE|FILEA,FILEB,FILEC, etc. . .. S
o 2 1 1 i i i i 1 s 1 A 1 i 1 i 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 i 1 1

ANYLABEL is any symbolic label; it may be omitted. The entry cLose must be
written exactly as shown. The operand must contain the name(s) of one or more
tape files to be removed from processing use. Each name must be the same as
the name which appears in the operand of the prr entry which defines the file.
As many tape files as desired may be named in the operand of a cLosE statement,
subject only to the restriction that the operand may not be extended over more
than four continuation cards. The names of the tape files must be separated by
commas.

The first instruction generated by the processor as a result of a cLoSE statement
is as follows:

LineJ Label JOperoﬁon OPERAND)
3 sle 15)ie 20J21 25 30 3s 40 a5
o1, |ANY LABEL BLX [lOCSIXG,!0C.ICLOSE kB . \
042 A 1 i ' i 1 iod 1 1 1 U N 1 d 11 1 11 14 1 L i I 1 J I 1 L

Following this, the processor will generate a branch constant containing the ad-
dress of the first word of the File Specifications Table for each file named in the
operand. A Nop will be generated after the last branch.

This calling sequence and the subroutine 10C.ICLOSE (normally included as a
result of a piocs entry) will perform the following for each output file:

1. Write out remaining records in the output area(s).
2. Write a tape mark.

3. Write end-of-file trailer labels (if desired).

In addition, the following will be performed for all files:
1. Rewind it necessary.

2. Mark the file as “inactive.”

The crose statement will normally be used to cause these operations to be per-
formed for the last reel of each file.

Error Messages The following error messages will be produced during assembly under the con-
ditions specified:

OPERAND BLANK
If the operand is blank, a Nop will be generated instead of the calling sequence.
PARAMNA NOT A FILE

If an operand parameter (the number is indicated by nn, above) is not defined
by a pTF entry, a Nop will be generated at the point in the calling sequence
where a branch constant would normally be included. Since the 10c.1CLOSE sub-
routine would consider this Nop to be the end of the list of files to be removed
by cLOSE, a manual correction must be made before the object program is run.
If corrections are not made and the file is not the last one named in the operand
of the cLosE statement, the object program will execute the next branch con-
stant as a true Branch instruction, thus transferring control (in error) to the
first word of the corresponding prF.

CLOSE 121

END

Source Program Format

Processing Techniques

122

END generates instructions to remove tapes from use, type an end-of-job message,
and then branch, halt, or permit spooL operations.

The basic format for the END statement is as follows:

Line Label peration[OPERAND >
5 sle 15|16 20j21 25 30 35 40 a5
o1, IANYLABEL |[END A |[BRANCHADPDR, , , . ., ,E
°x2 n 1 1) ' 1 1 1 11 1 1 1 1 11 Ll) S W 1 1 i1 il 1 1 T 1 1 1 i1

ANYLABEL is any symbolic label; it may be omitted. The entry END must be
written exactly as shown. The operand may be blank, or it may contain an
actual or symbolic address.

The Enp statement will cause the generation of one of the following calling
sequences:

ANYLABFL END
ANYLABEL BLX IOCSIXG, IOC.IEND
Nop O

or

ANYLABEL END
ANYLABEL BLX IOCSIXG, IOC.IEND
B BRANCHADDR

These instructions and the 10c.1END subroutine (normally included as a result of
a procs statement) will initiate the operations generally performed by the cLose
macro-instruction for all files for which this has not yet been done, type an end-
of-job message, and cause a branch to BRANCHADDR (if one is named).

If the branch address is omitted, the generated instructions will perform the
necessary CLOSE operations; thereafter, the instructions will cause one of the
following:

1. A halt if no spooL program is run in conjunction with the main program.

2. A program loop to be entered to permit spoor programs to continue if any are
being run. Loading of another main program can then be initiated on signal
from the spoooL routine.

ARITH — Arithmetic Operations

Source Program Format

Arithmetic Expressions

Numerical Quantities

Arithmetic Operators

ARITH generates instructions to compute the value of an arithmetic expression
and to store the result in any desired field.

The basic formats for the arrta statement in the source program are as follows:

Line Label peraﬁool_ OPERAND)
Sl6 15[16 20§21 25 30 35 40 45
ol |[ANYLABEL |ARI THRESULT=EXPRESSION , 6 . ,W

02 |JANYLABEL ARI| THRESULT=EXPRESSION,O V.E,R.FL.O.W.B.R)
03

Y S S S S WA TS SHNT N ST | RSN WU N ST S

ANYLABEL is any symbolic label; it may be omitted. The entry arrra and the
equal sign must be written exactly as shown. The equal sign indicates that the
RESULT field is to be set equal to the value of the arithmetic EXPRESSION. RESULT
may be any symbolic name; the various allowable forms of the ExprEsstON are de-
scribed under “Arithmetic Expressions,” below. OVERFLOWBR is the symbolic
label of the first instruction of a routine to which the program is to branch in the
event of an overflow.

Arithmetic expressions are formed from numerical quantities which may be in
one of several modes. In addition, arithmetic operators or functions may oper-
ate on the quantities and arithmetic punctuation may establish an execution
sequence.

The numerical quantities that enter the computation may be of several kinds,
namely symbolic fields (representing variables), literals, or defined constants.
Fields referenced by symbolic names will generally be defined under a pa or
pc header line, with their mode and (where applicable) format specified. Literals
may be signed or unsigned; if unsigned, they will be interpreted as positive.
Adcons will be treated as four-place integers in the automatic-decimal mode.

The artH statement interprets two types of arithmetic operators, unary and
binary. A unary operator identifies or changes the sign of one numerical quan-
tity; a binary operator indicates an operation to be performed upon two quan-
tities to form another.

The following two wunary operators are written preceding the quantity upon
which they are to operate:

Operator Operation

& or + The ampersand or plus sign preceding a literal identifies it as
positive. When either precedes another quantity, it does not
affect its value.

- A minus sign preceding a positive quantity changes its sign to
minus; a minus sign preceding a negative quantity changes its
sign to plus

The following five binary operators are written between the two quantities upon
which they are to operate:

END & ARITH 123

Modes

Functions

124

Operator Operation

& or + The ampersand or plus sign indicates that the two numbers are
to be added.

— The minus sign indicates that the second number is to be sub-
tracted from the first number.

® The asterisk indicates that the two numbers are to be multiplied.

/ The slash indicates that the first number is to be divided by the
second number.

an Double asterisks indicate exponentiation; i.e., the first number is
to be raised to the power indicated by the second number.

The use of arithmetic operators preserves the mode of the operands.

Computation can be carried out in either automatic-decimal or floating-decimal
mode. All numerical quantities appearing in ExprEssioN should be in the same
mode. Two exceptions (4 and 5, below) are included in the following rules which
apply to modes within EXPRESSION:

1. If A is a numerical quantity, then +A, —A, and ABS(A) are quantities of
the same mode as A.

2. Enclosing a quantity(ies) in parentheses does not change the mode of the
quantity (ies)

3. Adding, subtracting, multiplying, or dividing two quantities of the same mode
will give a result in the same mode.

4. If A and B are numerical quantities, then A®*B will be a permissible expres-
sion of the same mode as A, regardless of the mode of B. The permissible
combinations of A and B and the resultant mode of A®**B are indicated in
the following table:

Mode of A Mode of B Mode of A**B
automatic-decimal automatic-decimal automatic-decimal
automatic-decimal floating-decimal automatic-decimal
floating-decimal automatic-decimal floating-decimal
floating-decimal floating-decimal floating-decimal

5. Arguments of functions may be in a different mode from that of the rest of
exPRESSION. (For details, see “Functions,” below.)

The resuLt field may be in a different mode from that of Expression. In such
a case, coding will be generated to edit the answer to the mode and format of the
ResuULT field.

The ArtTH macro generator will not accept fields in the alphameric mode as oper-
ands. When an alphameric field, either literal or symbolic, is encountered, an
error message will be issued and a NoP instruction generated.

During the computation of an arithmetic ExpREssION, functions may be evaluated
provided that appropriate enbroutines are availahle Such brontines mnct bhe
in the Program Library, even when they are specially provided by the program-
mer. (The function names used in the various examples of the arTH macro-
instruction are intended for illustration only. Their use should not imply that
subroutines evaluating these functions are being furnished.)

The maximum number of arguments (independent variables) allowed for a
function is equal to 69 minus the total number of parameters in the source state-
ment. If a function is included in the source statement and this function with its
arguments are the only parameters in the statement, then a maximum of 34 argu-
ments would be allowed for the function. This is deduced since 34 arguments
plus 1 function name equals 35 parameters and 69 minus 35 equals 34 arguments
that will be accommodated. Under the same circumstances, if the function had
35 arguments, then 35 plus the 1 function name equals 36 parameters and 69
minus 36 equals only 33 arguments which can be accommodated. The last 2
arguments would be ignored and a message would be issued. If the source state-
ment contains the maximum number of parameters permitted, i.e., 50, then a
function included in the statement would be allowed only 19 arguments. Argu-
ments may be considered to be either single variables (A, b, X, y) or expressions
(a+b, 2%c/d—e, X**Y).

The arguments to be used by a function are enclosed by a set of parentheses and
written following the function name. A comma is written following each argu-
ment but the last. An example of a function followed by a series of five arguments
is as follows:

FUNcTION (A, b—2, X*Y, C**d, z)

ArrTH will generate a call for the subroutine specified by the symbolic name
FUNCTION, furnish the arguments to this subroutine and generate instructions for
the computation to be continued, if necessary, after the function has been
evaluated.

Function arguments constitute one of the exceptions to the rule that all fields
within EXPREsSION must be in the same mode. For functions, this rule is modified
as follows:

1. The argument(s) of any function must be in the proper mode in order for
the specific subroutine called in to be able to operate upon it.

2. The function value must be in the proper mode so that the next computa-
tional step can be carried out.

The second condition states specifically that function values need not be in the
mode of the EXPRESSION as a whole, since it is possible that the value obtained
from one function will serve as an argument for another. When functions are
nested in this manner, only the value of the outermost function must be in the
mode of the ExprEssion; the inner functions must produce values in a mode
acceptable to the next function towards the outside. For example, if the expres-
sion A — ARCTAN (LOGE (X)) is to be evaluated, an Arctan function routine
must be available whose output is in the same mode as a. A Log, function must
be available whose output is in a mode that the Arctan function can accept as
an argument, and x must be in a mode that Log. can accept as an argument.
The result will be in the mode of a.

If a function has an expression as an argument, coding will be generated to com-
pute this expression and to furnish the result to the function subroutine. Such
computation, as well as arithmetic operations on function values prior to their
being used as arguments of other functions, will preserve the original mode.
For example, if 3 — six(8.1415 + arcran(1l — x)) is to be computed, x must
be in the automatic-decimal mode because 1 is in the automatic-decimal mode.
The Arctan function must take arguments and yield function values in the
same mode, and the same must be true of the Sine function. The result will then
be automatic-decimal.

ARITH 125

Arithmetic Punctuation and
Execution Sequence

126

The absolute value function is a special function which is provided on the Com-
piler Systems Tape. This function is the only one whose instructions are
generated in-line. The aBs function preceding a quantity indicates that the sign
of the quantity is to be plus. Thus, a negative quantity is changed to a positive
quantity; a positive quantity is unaffected. The quantity in question must be
enclosed by parentheses.

Arithmetic expressions using more than one operator may be ambiguous unless
the order in which the operations are to be carried out is indicated. For example,
12-2--3 yields 7 if the expression is interpreted to be (12—2)—3 and yields 13 if
interpreted to be 12—(2—3). It is therefore necessary to establish an execution
sequence of arithmetic operations by means of certain punctuation rules.

The ariTa statement will use parentheses in the customary way: expressions
enclosed by parentheses are to be computed before they can be used as a com-
ponent in the next operation. For nested parentheses (parentheses within paren-
theses) the same rule holds; the expression(s) enclosed by a greater number of
parentheses will be computed before those enclosed by fewer parentheses.

To reduce the great number of parentheses which might be introduced by the
explicit punctuation of all EXPRESSIONS, certain conventions are introduced. The
following order of preference for operations is established:

1. Exponentiation

1o

Unary Operators
3. Multiplication and Division
4. Addition and Subtraction

A sequence of operations will be carried out in this order unless parenthesization
intervenes or directs otherwise.

If several operators of the same order are present, they will be executed from left
to right. For example, A—~B—C—D is treated as ((A—B) —C)—D; similarly, for
multiplication and division, A/B/C*D is treated as ((A/B)/C)"D.

Repeated exponentiation is also executed from left to right unless punctuated
otherwise. For example,

o

29 is interpreted to mean (2°) or 8%, not2"’

or 2.
In other words, A**B**C is treated as (A"*B)**C by the AmiTH macro
generator.

The only exception to this “left-to-right” rule applies to the addition and/or
subtraction of automatic-decimal fields. The fields are taken in order of increas-
ing number of decimal places rather than from left to right. This eliminates
shifting the accumulator to the right which avoids loss of digits in this direction.
Consequently, shifting will be only to the left; possible error is standardized to
leftward overflow, which can be dealt with according to the procedures described
under “Overflow Branch.”

This execution order for operations is followed for expressions enclosed by the
most parentheses, in order of decreasing parentheses, until the value of the entire
EXPRESSION has been computed.

If these conventions are taken into account, a large number of parentheses may
be omitted.

Processing Techniques

Limitations on Length

Spacing and Punctuation

The generator will also accept statements in which unnecessary but correctly
placed parentheses exist, but it is in the interest of storage economy to leave out
parentheses wherever possible without introducing ambiguity. In no case may
the number of parentheses (other than those used in address modification to
enclose any one numerical field) exceed fifty. Since this limitation is identical to
the number of permitted parameters, enough parentheses are allowed to punc-
tuate any admissible expression. If the maximum parenthesis level is exceeded
and the generator is unable to process the macro-instruction, an error message
will be issued.

The following examples illustrate the use of the punctuation rules and the re-
sultant sequence of execution:

EXPRESSION: A—B*C

Interpretation: A+((—B)*C)

Execution Sequence: =~ —B and C are multiplied; the result is added to A.
EXPRESSION': (A—B)*C

Interpretation: Same as EXPRESSION.

Execution Sequence:

EXPRESSION':
Interpretation:

Execution Sequence:

EXPRESSION ;
Interpretation:

Execution Sequence:

EXPRESSION:
Interpretation:

Execution Sequence:

B is subtracted from A; the result is multiplied by C.

ABS(A)—B**C

(ABS(A))—(B**C)

B is raised to the power C; the absolute value of A
is taken. Finally, the first result is subtracted from the
second.

A+B*C—D/3

A+(B*C)—(D/3)

B and C are multiplied; D is divided by 3; the neces-
sary addition and subtraction operations are per-
formed.

A*1.2—SIN(X+3)/3+Y**4
(A®1.2)—((SIN(X+3))/3)+(Y*"4)
X and 8 are added and the sine of the sum taken. Y

is raised to the 4th power; A is multiplied by 1.2;
the sine is divided by 3. Finally, the necessary addi-
tion and subtraction of the intermediate results are
performed.

The number of permissible parameters is fifty. Parameters are considered to be
the following:

1. Numerical fields (including function arguments).
2. Names of functions, including ass.

3. Overflow branch, if specified.
Arithmetic operators and punctuation are not counted as parameters. An attempt
to write more than the permited number of parameters in the operand of an

ARITH statement will be intercepted by the processor and no coding will be
generated.

No blanks should appear in the operand of an arrra macro-instruction. Only
one equal sign may appear, positioned as shown under “Source Program Format.”

ARITH 127

Address Modification

Overflow Branch

Mode Size for Automatic-
Decimal Computations

128

Commas must separate function arguments; one additional comma is requirea to
separate EXPRESSION from ovERFLOWBR if the second format is chosen. The appear-
ance of illegal characters in the operand will cause an error message to be issued.

Symbolic addresses may be modified by indexing and address adjustment.

Since the conditions under which accumulator overflow could take place during

a computation are extremely varied, no general routine for dealing with overflow

has been provided. Instead, opportunity is given to the programmer to supply

his own correction routine, which can be suited to his particular AriTH statement.

If an overflow branch is specified, the generated instructions will contain a BLX

instruction to cause a transfer to the overflow routine under the following con-

ditions:

1. Automatic-Decimal Computations: Overflow resulting from addition, sub-
traction, exponentiation, store, and add-to-storage operations. (Transfer will
not be caused by multiplication and division overflow. However, warning
messages will be issued.)

2. Floating-Decimal Computations: Exceeding the maximum value for floating-
decimal numbers as a result of any operation. This transfer will be made
whether the object program machine has floating-decimal hardware or not.
In the first case, the floating-decimal overflow indicator is tested; in the
second, this test is simulated along with the floating-decimal arithmetic pro-
cedures.

Following the overflow routine, the program will return to the instruction in
the object program following the BLX, provided that the last instruction in the
overflow routine is an unconditional Branch to location 0000 + X94.

If no overflow branch is indicated, warning messages will be issued during
automatic-decimal arithmetic assemblies pointing out the possibility of overflow.

Since the possibility of overflow in floating-decimal computations cannot be
detected on the basis of format alone, warning messages will never be issued
during floating-decimal arithmetic assemblies.

If overrLOWBR is indicated in the operand of the arrrm statement but, because
of the input formats involved, overflow cannot possibly occur, then no overow
branch will be generated. This is illustrated in example 4 under “Examples.”

In handling automatic-decimal numbers, the processor establishes a mode size
which is either ten or twenty digits in length and is based on the input formats
of all the fields in the ARITH source statement, Then, based on the mode size which
has already been determined and on the input formats, a “computation mask”
or standard format is established. The mask indicates the decimal point place-
ment and the maximum number of digits which may appear to the left and to
the right of the decimal point. No intermediate results will be permitted to
exceed this format.

Symbols have been established for this discussion and are defined as follows:

Symbol Definition
MS The mode size for automatic-decimal computations.
MDL The maximum number of digits to the left of the decimal point

(i.e.. integer digits) as specified by the input formats in the arrra
source statement (both ExpPREssION and ResuLT fields).

MDR The maximum number of digits to the right of the decimal point
(ie., decimal digits) as specified by the input formats in the ariTa
source statement (both Expressiox and resuLt fields).

Symbol Definition

DL The number of digits to the left of the decimal point (integer digits)
in a mask.
DR The number of digits to the right of the decimal point (decimal

digits) in a mask.

The mode size for automatic-decimal computation is established as follows. It
ML exceeds 20, i.e., if any of the input fields has more than twenty integer digits,
an error condition results; error message N 19 is issued and no coding other than
a ~op will be generated.

If MoL is less than or equal to 20, the mode size depends on the sum of MpL
and MDR, as follows:

MDL+MDR MS
=10 10
>10 20

Once mode size has been established, the mask is defined. The procedure fol-
lowed again depends on the value of MpL~+MDR:

1. If mMpL+MpR is less than or equal to 20, pr will be set equal to MpR, and pL
will be set equal to Ms—br.

2. If mpL+MDR exceeds 20, pL will be set equal to MpL; pr will be set equal to
Ms—pL. Enough decimal digits will be truncated (without rounding) to re-
duce the overall length to twenty digits. A warning message (W 18) will
include the computation mask in four-digit form, the first two representing
the number of integers, the last two the number of decimals.

In short, if the total number of digits in all the input fields, with their decimal
points aligned, is less than the computed mode size, the extra capacity is applied
to the integer side. If the total exceeds 20, high-order digits are protected and
decimal places truncated.

The following examples illustrate the methods of establishing computation masks:

1. Ten-digit mask with extra integer capacity.

Input Formats MpL — 6 DR—MDR—3
5.2 MDR = 3 DL=MS—DR=10—3=7
6.1 Sum = 9
3.3 Ms = 10 Mask: 7.3

2. Ten-digit mask without extra capacity.

Input Formats MpL = 8 DR—MDR—2
7.1 MDR — 2 DPL—Ms—DR—=10—2—8
8.1 Sum = 10
3.2 Ms = 10 Mask: 8.2

3. Twenty-digit mask with extra integer capacity; input fields do not exceed
ten digits.

Input Formats MDL — 8 DR—MDR—"7
2.3 MDR = 7 DPL—=MS—DR=—20—7=183
8.2 Sum = 15
1.7 Ms = 20 Mask: 13.7

ARITH 129

130

4. Twenty-digit mask with extra integer capacity; mput fields exceed ten digits.

Input Formats MpL = 9 DR—=MDR=S8
9.2 MDR = 8§ DL=MS—DR—20—8=12
7.8 Sum =— 17
3.1 Ms = 20 Mask: 12.8

5. Twenty-digit mask without extra capacity; input fields exceed ten digits.
(This case could also occur with input fields not exceeding ten digits if two of
them had formats of 10.0 and 0.10, respectively; the mask would then be
10.10.)

Input Formats MpL — 4 DR=MDR=16
3.16 MDR — 16 DL—=MS—DR=—20—16—4
49 Sum = 20
14 Ms = 20 Mask: 4.16

6. Twenty-digit mask with decimal digits truncated.

Input Formats MpL — 13 DL=MbBL=13
13.2 MDR — 9 DR—MS—DL=—20—13=7
11.8 Sum = 22
4.9 Ms =—= 20 Mask: 13.7

Two decimal places will be lost. Warning message W 18 will give the com-
putation mask in the form 1307.

During computation, all intermediate results will be confined to the mask. Ex-
cess decimal digits developed will be truncated without rounding or warning.
Excess integer digits may also be lost; if this becomes possible, the consequences
will depend on the type of operation that caused the difficulty.

Addition or Subtraction. If an overflow branch has been specified, coding will
be generated to transfer the object program to this branch if necessary. If no
overflow branch is indicated, warning message W 21 or W 22 will be issued dur-
ing assembly. Warning messages are issued if overflow or digit loss is possible,
as determined on the basis of field format alone; the transfer to the overflow
branch takes place only when these conditions become actual due to the specific
object-time contents of the fields.

Multiplication or Division. If integer digits may possibly be lost during multi-
plication and division operations, warning message W 20 will be issued during
assembly. Overflow resulting from multiplication or division will not cause a
transfer to the overflow branch.

If the divisor field in a division operation is defined as having integer digits, the
high-order digit is significant. In other words, if the automatic-decimal format
of a divisor is 2.4, the generator will proceed on the assumption that the contents
of the field at object program time will be at least 10.0000. If this condition is
not satisfied, intermediate results may exceed the computation mask without a
warning at assembly time.

If the divisor has an automatic-decimal format of the type O.n, it will merely be
assumed that the nth decimal digit contains at least a 1; this assumption is, of
course, non-restrictive, since zero divisors lead to special procedures as described
under “Zero Divisors.”

When a warning message is issued, the programmer should check whether his
intermediate results can exceed the mask on the left; this will depend on his

Zero Divisors

Final Storage

actual data as well as the defined field formats and the specified arithmetic op-
erations. If overflow can occur, an input field can be redefined so as to (1) change
a ten-digit computation to twenty-digit mode size, or (2) increase the number of
integer digits at the expense of decimal digits. To avoid recurrence of the same
problem after redefinition, it is generally advisable to modify the defined format
of the result field where the program objectives permit.

Exponentiation. The exponentiation of all numbers (automatic-decimal or float-
ing-decimal bases having either automatic-decimal or floating-decimal expon-
ents) is carried out by means of floating-decimal routines. Automatic-decimal
bases and exponents are converted to floating-decimal numbers and exponentia-
tion is carried out by means of a subroutine. The result will be converted to an
automatic-decimal number, if required. Three exceptions to this process are as
follows:

1. If the base is an automatic-decimal integer and the exponent is an automatic-
decimal integer less than ten digits in length, exponentiation is carried out by
means of a subroutine which generates the required multiplication instruc-
tions.

2. If the base is an automatic-decimal integer and the exponent is a literal 2 or
3, Multiply instructions are generated in-line.

3. If the base is a floating-decimal number and the exponent is a literal 2 or 3,
Floating Multiply instructions are generated in-line.

If the result of the exponentiation should exceed the computation mask format on
the left, transfer will be made to an overflow branch when one is specified. Other-
wise, the overflow latch for Accumulator 1 will be set on. No warning message
will be issued at assembly time (except for cases 1 and 2, above), since the size
of the result cannot be predicted on the basis of floating-decimal field formats.

Before a division is executed, the divisor is tested for zero. If the divisor is zero,
the overflow latch for Accumulator 3 is set oN. Subsequent procedures depend
upon the mode of computation, as follows:

1. Automatic-Decimal Computations: The accumulator(s) containing the quo-
tient will be filled with 9s and given the proper sign determined by the signs
of the dividend and divisor. Computation will then continue as usual.

2. Floating-Decimal Computations: The division is ignored; ie., the dividend
is used as quotient. Computation will then continue as usual.

No other operation initiated by the arrTH macro-instruction alters the overflow
latch for Accumulator 3, with the possible exception of function subroutines,
whose individual specifications may be consulted. This latch, therefore, pro-
vides a certain test as to whether division by zero has been attempted. If such
a test is desired, the latch must be set oFr before the ArrTH macro-instruction is
executed, since no automatic provision is made for this by the generator.

If the resuLT field is in a mode different from that of the computation, editing
will be necessary before final storage. The following rules apply:

1. In editing from automatic-decimal to floating-decimal mode, the result will
appear in normalized form. Only the first eight significant digits will be con-
verted; further digits to the right will be truncated without rounding.

2. In editing from floating-decimal to automatic-decimal mode, the following
three cases are distinguished:

ARITH 131

Setting Overflow Lights

a. If, after conversion, the first significant digit falls to the left of of the
high-order digit of the resurt field, an overflow condition exists. No
warning message can be issued at assembly time since this condition can-
not be predicted on the basis of floating-decimal field format alone. At
object time, a message “SHIFT OUT OF RANGE, FLT T0 DECI” will be typed
out. Transfer will be made to the overflow branch if one is specified; such
digits as can be accommodated in their proper places will be stored. If
no overflow branch is specified, the overflow latch of Accumulator 1 will
be set on.

b. The “normal” case exists if, after conversion, the first significant digit falls
into one of the digits of the resuLT field. Excess decimal digits developed
beyond the capacity of the resuLT field will be truncated after rounding.

c. If, after conversion, the first significant digit falls to the right of the low-
order digit of the RresuLt field, then the decimal value of the answer is
too small to register in the established format. At object time, a message
“SHIFT OUT OF RANGE, FLT TO DECI” will be typed out. The mesuLt field
will be set to zero.

If the result of an automatic-decimal computation is to be stored in an automatic-
decimal Rresurt field of smaller format, the following procedures are followed:

1. Excess decimal digits are truncated after rounding; in other words, if the digit
immediately to the right of the point of truncation contains a value of 5 or
more, the next digit to the left is increased by 1.

1o

Excess integer digits are lost and an overflow condition results. If an over-
flow branch is specified, transfer will be made to the overflow routine at ob-
ject program time. If no overflow branch is indicated, warning message W 23
is issued during assembly.

The overflow lights for Accumulators 1, 2, and 3 should be set as follows for
both automatic-decimal and floating-decimal computations. The exponent over-
flow light should be set as indicated for floating-decimal computations if floating
hardware is used.

Accumulator 1. If the accumulator 1 overflow light is not on and Accumulator 1
overflows, the machine will stop.

If the accumulator 1 overflow light is on, one of the following provisions should
be made:
1. An overflow branch in the operand of the ariTH macro-instruction.

2. A Bvl (Branch if Overflow in Accumulator 1) instruction following each
ARITH without an overflow branch.

If neither of the above provisions is made and the accumulator overflows, the
condition will be carried and an error will be introduced.

Accumulator 2. The accumulator 2 overflow light must be ox during object
program time.

Accumulator 3. The accumulator 8 overflow light must be ox if the detection nf
an attempt to divide by zero is desired.

Exponent. If the exponent overflow light is not ox and the exponent overflows,
the machine will stop.

Error and Warning
Messages

If the exponent overflow light is on, one of the following provisions should be
made:

1. An overflow branch in the operand of the arrTe macro-instruction.

2. A rBv (Floating Branch Overflow) instruction following each arrra without
an overflow branch.

If neither of the above provisions is made and the exponent overflows, the con-
dition will be carried and an error will be introduced.

Under the conditions specified, the arrTH macro generator will issue the follow-
ing error and warning messages during assembly. Unlike the other macro gen-
erators, ARITH does not give the text of the message. Only the message code
letter and number, possibly supplemented by a parameter number or computa-
tion-mask format, are given. The programmer must refer to the list below for
text and interpretation. The code letters are to be interpreted as follows:

Code Interpretation

N An error condition exists that makes further coding impossible;
a Nop has been generated.

w A warning that either an unusual condition or the possibility of
error exists; generation continues.

X An error condition exists; generation will continue on the special
assumptions stated in the message.

N0l NO OPERAND

No numerical field has been specified upon which an operation is to be per-
formed.

x 02 NO EQUAL SIGN — WILL NOT STORE RESULT

The resurr field and the equal sign have both been omitted. The generator
has produced instructions to compute the value of the arithmetic EXPRESSION,
but not to store the result.

x 03 NO RESULT FIELD — CANNOT STORE RESULT

The operand portion of the macro-instruction begins with the equal sign. The
generator has produced instructions to compute the value of the arithmetic
EXPRESSION, but not to store the result.

N 04 ALPHA FIELD UNACCEPTABLE. PARAMETER XX

The parameter number of the alphameric field has been included in the mes-
sage.

x 07 INCOMPLETE — WILL PROCESS TO PARAMETER XX

The text of the input statement appears to be broken off; e.g., it ends with a
left parenthesis. This condition may also occur if one blank precedes an entry
that should be processed on the same card. The number of the last parameter
processed has been included in the message.

x 08 TEXT ENDS WITH OPERATOR — WILL IGNORE
The last operator does not have an operand on its right and has been ignored.
x 09 CONSECUTIVE OPERATORS — WILL ACCEPT FIRST ONLY BEFORE PARAMETER XX

Two successive arithmetic operators have been detected by the scan, pre-

ARITH 133

4

ceding the parameter whose number has been included in the message. The
second of these operators has been ignored.

x 10 NO PUNCTUATION — WILL IGNORE PARAMETER XX

Two consecutive numerical fields have been detected, without an intervening
operator. The second field, whose parameter number has been included in
the message, has been ignored.

x 11 ILLEGAL CHARACTER — WILL BE IGNORED. BEFORE PARAMETER XX

The scan has detected a character that is not one of the allowable punctua-
tion marks or arithmetic operators. The number of the next following parameter
has been included in the message to aid in locating the faulty entry.

x12 EXCESS RIGHT PARENTHESES — WILL IGNQRE

An attempt has been made to close more parentheses than had been opened.
All right parentheses unmatched by left parentheses have been ignored.

X 13 END OF SCAN — PARENTHESES DO NOT MATCH — WILL SUPPLY

Some parentheses have been left open. Generation of instructions have pro-
ceeded on the assumption that they are all to be closed at the right end of
the EXPRESSION.

X 16 FUNCTION WITHOUT ARGUMENT — PROCESSING STOPS BEFORE PARAMETER XX

A function symbol, whose parameter number has been included in the mes-
sage, has not been followed by any argument. Neither the function nor any
subsequent entries have been processed.

X 17 FUNCTION HAS TOO MANY ARGUMENTS — WILL IGNORE EXCESS. PARAMETER XX

An attempt has been made to write a function, whose parameter number has
been included in the message, with more than the maximum number of argu-
ments which can be handled by the statement. Only the arguments which can
be accommodated have been passed on to the function subroutine.

w 18 DECIMAL DIGITS TRUNCATED. COMPUTATION MASK IS IIDD

In order to accommodate sufficient integer digits in computing intermediate re-
sults, some of the decimal places of the input fields must be truncated. The
message includes the four-digit computation mask; the first two digits indicate
the maximum number of integers, the last two digits the maximum number
of decimal digits. If an input field has any decimal digits in excess of this maxi-
mum, the digits will be truncated without rounding.

N 19 AUTO-DECIMAL FIELD HAS MORE THAN 20 INTEGERS

Since the maximum mode size for automatic-decimal computation is twenty
digits, input fields having more than twenty integers would lead to meaning-
less results. A Nop has been generated.

w20 INTEGER DIGITS MAY EXCEED COMPUTATION MASK IIDD

An automatic-decimal computation may develop more integer digits than are
provided for in the maximum format for intermediate results. This format has
been included in the message in four-digit form, the first two digits represent-
ing the maximum number of integer digits that can be accommodated. (For
details, remedies, etc., see “Mode Size for Automatic-Decimal Computations.”)

w21 SHIFT LEFT MAY LOSE HIGH-ORDER DIGIT(S)

Shifting left in the accumulator(s) to accommodate automatic-decimal num-

Examples

bers with more decimal places for addition or subtraction may have caused
digit loss on the left. This message has been issued because no overflow branch
has been specified.

w 22 ACCUMULATOR OVERFLOW POSSIBLE

An operation of addition or subtraction has been performed in the automatic-
decimal mode that may have led to accumulator overflow. This message has
been issued because no overflow branch has been specified.

w23 OVERFLOW POSSIBLE IN RESULT FIELD

The number of integer digits that may have been developed in evaluating the
arithmetic EXPRESSION exceeds the number available in the resurLT field. This
message has been issued because no overflow branch has been specified. (Ex-
cess decimal digits will have been rounded off without warning.)

N 24 FIELD SIZE EQUAL TO O

The parameter record has been incorrectly constructed by a higher level macro-
instruction. A Nop has been generated.

x 925 MISSING OPERATOR AFTER FLOATING POINT LITERAL
Operand following that literal has been ignored.
X 26 UNUSUAL PARAMETER

The parameter was not usable to ARITH in its original form. The generator has
produced instructions to treat the parameter as a 10-digit integer.

N 27 EQUAL SIGN IN MIDDLE OF EXPRESSION
Only one equal sign is allowed in a statement. A Nop has been generated.
w 28 INVALID REFERENCE TO A CODE SUBSEQUENT ENTRY

The resuLT field is a symbolic label of a copk subsequent entry. Coding has
been generated to store the result in the indicated literal.

The following are examples of acceptable coding for the AriTH macro-instruction.
For each, the associated source-program entries are given, followed by the arita
statement, coding generated in-line and (where applicable) coding generated
out-of-line.

ARITH 135

ger

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY(089 CHANGE LEVEL 0000l1e PAGE AA
LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
0l 0054 * ARITH EXAMPLE 1
02 0055 DA 1 +0003250327
03 0056 INPUT 12919A543 29 0326 0326
04 0057 DELTA 22929A4 et 29 0327 0327
05 0058 *
06 0059 ANYLABEL ARITH INPUT=DELTA
o7 X ANYLABEL ZA2 DELTA(O»7) 00001 0328 +2300290327
08 M SRR2 1 0329 +5000002101
0y " 5T2 INPUT(O»7) 0330 +2200290326
10 0060 *
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
04 0064 * ARITH EXAMPLE 2
0¢ 0065 DA 1 +0003250325
03 0066 X 1+3A340 13 0325 0325
04 0067 *
05 0068 ANYLABEL ARITH X=X+1 M
0o > ANYLAobclL ZA2 X(0s2) 00001 0326 +2300130325
o7 ¥ A2 +1 0327 +2400000329
08 b ST2 X(092) 0328 +2200130325
0y 0069 #*
i0 0070 * THE FOLLOWING IS GENERATED OUT OF LINE
11 0071 *
LITERALS
le X +1 00 0329 +1 0329

ERROR MESSAGE LIST

PG/LN

MESSAGE

AA 05 ARITH W 20 0300

ARITH Exaraple 2

Warning message W 20 has been produced because an automatic-decimal

computation might develop more integer digits than can be accommodated

by the mask 3.0, which has been included in the message in the form 0300.

\\R/—ﬁ—'—\v_»/\

HLIMV

28T

PAGE AA

LN

o1l
Q2
Q03
04
05
Q6
Q7
08
09
10
1i
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
217
28
29

CDREF

1469
1471
1472
1473
1474
1475
1476
14761
1477
1478

1479
1480
1481

I XXX XKRKX XXX ¥XXXX

PROGRAM
LABEL oP

*
DA

XONT >

OVERFLOWBR NOP
*

7070 COMPILER SYSTEM VERSION OMYO08»

OPERAND

ARITH EXAMPLE 3
1

11918A4e4
23929A443
30939A446
40948A346
50959A446

REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

ANYLADEL ARITH X=A=B+ABS((~D) sOVERFLOWBR
ANYLAZEL 252 D(093)
sL2 6
A2 Cl099)
MSP 9992
ST2 COMAREASA(Q99)+1
252 B(0s3)
SL2 &4
A2 A0 7)
Sk2 2
A2 COMAREACA(0»9)+1
Bva Mel
Bv3 Mel
B *42
Mel BLX 93»OVERFLOWBR
ST2 X(099)
#*
* THE FOLLOWING 1S GENERATED QUT OF LINE

#*
COMAREACA DA

CDNO

00001

00002

00003

00004

FD

18
39
09
08
09

Lo¢C

0326
0327
0328
0329
0330
0331

0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346

CHANGE LEVEL 00001l

INSTRUCT ION

+0003250330

=0100090000

=2300030329
+5000002206
+2400090328
=0300919992
+2200090348
=2300360327
+5000002204
+2400180326
+5000002202
+2400090348
+2100090345
+3100090345
+0100090346
+0200930331
+2200090330

+0003470348

PAGE AA

REF

0326
0327
0328
0329
0330

ser

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY2Z, CHANGE LEVEL 00001. PAGE AA

LN CCREF LABEL opP OPERAND CONO FD LOC INSTRUCTION REF
01 007% * ARITH EXAMPLE U4.

02 0070 OVERFLCUWBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH RQUTINE 00c01 0325 -0100090000

03 oo7v DA 1 +0003260330

ou 0078 A 11,19A5.4 19 0327 0327
05 o079 8 23,29A4.3 39 0328 0328
06 0080 c 30,39A4.6 09 0329 0329
07 0081 X H2,49A6.2 29 6330 0330

08 0082 *
09 0083 ANYLABEL ARIITH X=A+B-C,OVERFLOWBR

10 X ANYLABEL A1 +0 00002 0331 +1300000366
1 X LA2 B(0,6) 0332 +2300390328
12 X BLX Uy LINK.A 0333 +0200940343
13 X SL 1 0334 -5000000201
14 X A2 A(O,8) 0335 +2400190327
15 X BLX Qu,LINK.A 00003 0336 +0200940343
16 X SL 2 0337 -5000000202
17 X S2 C{0,9) 0338 -2400090329
18 X BLX QU LINK.A 0339 +0200940343
19 X SRR N 0340 -5000000104
20 X ST2 X(0,7) 00004 0341 +2200290330
21 0084 *

22 0085 L) THE FOLLOWING IS GENERATEC OUT OF LINE

23 0086 -

24 X B LINKB.A+] 0342 +0100090365
25 X LINK.A Bv2 LINK1.A IS THERE A CARRY 0343 +2100090351
26 X LINK3,A BZ2 LINKL,A 03u4 +20000903u8
E— BZ1 LINKS.A 0345 +100009G349

~_’_ﬂ,/"’”F—#“h___\\\‘_‘\\‘_N__—‘////”/‘~> 0346 -1000090356

e e

—_— 0362 +2400090365

45 X A2 +1 CHANGE 9992 0363 +2400110366
Lo X LINKB.A B 0+X9u 0364 +0194090000
LITERALS
w7 X +9999999999 09 0365 +9999999999 0365
48 X +0 00009 00 0366 +0 0366

-'////’*“"\\\\\“‘“_/’/,//’

01 X +1 11 0366 + 1 0366

ARITH Example 4

Since MDL+MDR is greater than 10 in the fields defined in this example,

the computation will be in twenty-digit mode, with a mask of 14. 6.

6e1

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYOBs CHANGE LEVEL 0000le PAGE AA

LN CDREF LABEL OoP OPERAND CDNO FD LOC INSTRUCTION REF
01 1496 * ARITH EXAMPLE 5

02 1497 DA 1 . +0003250328

03 1498 FA 00+09F 09 0325 0325
04 1499 FB 10919F 09 0326 0326
05 1500 FC 20929F 09 0327 0327
06 1501 FRESULT 30939F 09 0328 0328
07 1502 *

08 1503 ANYLABEL ARITH FRESULT=SQRTIFA+FB)+FCx%2 M
09 X ANYLABEL ZAl FA(O99) 00001 0329 +1300090325

10 X A2 Fu(093) 0330 +2400030326

il X STl COMAREA«A{Q99)41 0331 +1200090397

12 X ZAl COMAREA«A(Q»9) +] 0332 +1300090397

13 X BLX 949SQRTeA 0333 +0200940354

14 N STl COMAREAA(O099)+1 00002 0334 +1200090397

15 X ZA2 FCtQ93) 0335 +2300030327

16 X ZA3 9992 0336 +3300099992

17 X M 9993 0337 +5300099993

18 X SLC MACREGe1l 0338 =5000010300

19 X ZA3 MACREGel(415) 00003 0339 +3300450001

20 X C3 +0000000016 0340 +3500090399

21 X BL *+4 0341 +4000090345

22 X XS MACREGe 190 0342 =4700010000

23 X SRR 0+MACREGe1 0343 =5001000100

24 X B *+5 00004 0344 +0100090349

25 X ZAl +9999999999 0345 +1300090401

26 X ZA2 +9999999999 0346 +2300090401

27 X Al +5000000000 0347 +1400090400

28 X Al +5000000000 0348 +1400090400

29 X ST2 COMAREAeA(099)+2 00005 0349 +2200090398

30 X ZAl COMAREA«A(049)+1 0350 +1300090397

31 X A2 COMAREASA(019)+2 0351 42400090398

32 X STi FRESULT(099) 0352 +1200090328

33 1504 *

34 15041 * THE FOLLOWING IS GENERATED OUT OF LINE

35 15042 *

36 X B MelO0+1 0353 +0100090396

37 X SURTeA BZ1 O+X94 00006 0354 +1094090000

38 X BM1 Me & 0355 =1000090383

/_,,/’_\,/’/_\-/W\/

25 X Me7 _____,_—:;gg;;;;;;;"‘—‘*""——"”/”’_—k\\\\\“"r/’ﬁ\\\\“‘““’/‘——:;:‘;;;;‘-‘~\\‘__‘____§\—_’////—‘

26 X M8 +6250000001 09 0388 +6250000001 0388
27 X Me9 +0101501025 09 0389 +0101501025 0389
28 X 40201930800 09 0390 +0201930800 0390
29 X +0702750550 00013 09 0391 +0702750550 0391
30 X +1704350350 09 0392 +1704350350 0392
31 X +2906180250 09 0393 +2906180250 0393
32 X +5907600200 09 0394 +5907600200 0394
33 X MelO +9911230138 09 0395 +9911230138 0395
34 X COMAREA+A DA +0003960398
LITERALS

35 X +0000000016 00014 09 0399 +0000000016 0399
36 X +5000000000 09 0400 +5000000000 0400

+9999999999 09 0401 +9999999999 0401

\WW [N
ERROR MESSAGE LIST

PG/LN MESSAGE

AA 08 ARITH W 20 0400

orI

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l1e PAGE AA

LN CDREF LABEL OoP OPLRAND CDNO FD LOC INSTRUCTION REF
Gl 0088 * ARITH EXAMPLE 6

02 0089 DA 1 +0003250325

03 0090 PRESSURE Q0207A4 4 07 0325 0325
04 0091 VOLUME 10915A2e4 05 0326 0326
05 0092 CENT I GRADE 20925A244 05 0327 0327
06 0093 CONSTANT 30039A604 09 0328 032¢

07 0094 *
08 0095 ANYLABEL ARITH CUNSTANT=PRESSURE#VOLUNME/CENT I GRADE

0% X ANYLABEL 2ZA3 PRESSURE(0s7) 00001 0329 +3300070325
10 X M VOLUME (0s5) 0330 +5300050326
11 X SR 4 0331 ~5000000004
12 X ZA3 CENTIGRADE(015) 0332 43300050327
13 X BLX 93sDIV1eA 0333 +0200930338
14 X XA MACREGe130+5 00002 0334 +4700010005
15 X 8 DIV2eA 0335 +0100090346
16 X ST2 CONSTANT(0+9) 0336 +2200090328
17 00%6 *

18 0097 * THE FOLLOWING 1S GENERATED QUT OF LINE

19 0098 *

20 X 8 DiV3eA+e TEMP BRANCH FUR GENOS 0337 +0100090370
21 X DiVleA BZ3 DiV3eA 0338 +3000090364
22 X ZAl 40 00003 0339 +1300000372
23 X SLC MACREGa1l 0340 =5000010300
24 X SR 1 0341 =5000000001
25 % SLC3 MACREGe2 0342 +5000023300
26 X XS MACREGe1+10+MACREGs2 0343 =4702010010
27 X b 9593 00004 0344 =5300099993
28 X B 0+x93 0345 +0193090000
2y X DIV2eA BXM MACREGslsiIVé4sA 0346 =4400010355
30 X ZAl MACREGel(415) 0347 +1300450001
31 X Ci +11 0348 +1500120372
3¢ X 3L *43 00005 0349 +4000090352
33 X SR2 10 0350 +5000002010
34 X B 2+4X93 0351 +0193050002
35 X STD1 *#(899)+1 0352 =1200890353
36 X SRR2 10 0353 +5000002110
37 X 8 2+x93 00006 0354 +0193090002
38 X DiVéaA SLC2 MACREGe2 0355 +5000022300
39 X MSP MACREGal 0356 =0300910001
SN ~______‘\\:Si_‘_MACREG.2oO+MACRﬁG.l 0357 =4701020000

- T —— T~ T —

T /‘_J_/——\W\ e T —— \—’/\

01 X SL 0 0366 =5000000200

02 X ZA2 +9999999999 0367 +2300090371

03 X SR o] 0368 =5000000000

04 X B 2+X93 00009 0369 +0193090002

LITERALS

05 X +5000000000 09 0370 +5000000000 0370
Q6 X +9999999999 09 0371 +999999999¢% 0371
07 X +0 00 0372 +0 03~
0y X +11 12 0372 + 11 0.

HLIYV

vl

PAGE AA PROGRAM

LN COREF LABEL

0l 1520 *
02 1521
03 1522
04 1523
0> 1524
06 1525
07 1526
Ou
oy
10
11
12
13
14
15
16
17
l8
19
20
21
22
23
24
25
26
21
28
29
30 1527 *
31 15281 =*
3¢ 15282 =+
33
34
35

* X m@ B

ANYLABEL
ANYLADCL

A XK XRKXKNAK XN XXX XKXNKNXXXXXXX

DiVien

X X X X

—/’—/ﬂ__ﬁh“-—————/”s\\~—_,,//’\\.—_____*\\\&__'/////—h*—‘\\"___/—~—‘—_‘____—/’/—_"____,”ﬂ‘\‘—_hil//

oP

DA

ARITA
252
SL2
S2
SL2
A2
ST2
ZA2
ZA3
BLX
XA
B
ST2
52
Sk2
S2
SL2
Al
A2
ZAl
ZA3
oLX
ST1L

=]

323
i1
SLC

7070 COMPILER SYSTEM VERSION OMY089 CHANGE LEVEL 0000l

OPLRAND

ARITH EXAMPLE 7
1

00907A4e 4
08915A4e4
20929F

X=A=B+15/(A=B)
8(0e1)

2

B(293)

4

Al{Qs7)
COMAREASA(Q»9)+1
+15
CCOMAREASA(Qs9)+1
93sD1V1eA
MACREGel90+1
DIV2eA
COMAREASA(D9)+1
B(Os1)

2

8(293)

4

ALO97)
COMAREACA(D»9)+1
+0

+0000000079
949FLOT2eA
X{019)

TrE FOLLOWING IS GENERATEWL OuUT OF LINE

LIV3eA+6e TEMP oRAMCH FOR GENOS
DIV3eA

+0

MACREGe 1

CDNO

00001

00002

00003

00004

00005

00006

FD

07
89
09

LOC

0325
0325
0327

0328
0329
0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349

0350
0351
0352
0353

INSTRUCT I ON

+0003250327

=2300890325
+5000002202
=2400010326
+5000002204
+2400070325
+2200090392
+2300340398
+33000903592
+0200930351
+4700010001
+0100090359
+2200090392
=2300890325
+5000002202
=2400010326
+5000002204
+2400070325
+2400090392
+1300000396
+3300090393
+0200940385
+1200090327

+0100090383
+3000090377
+1300000396
=5000010300

PAGE AA
REF

0325
0325
0327

— T~ aaTmewmwa

387 =3400450001

24 X
25 X FLOT3.A
26 X COMARCA«A

27 X
2% X
2y X
ElY X
31 X
3z X

,—/"’—_—\“""_"-——\\\‘__ﬁ’/,,/—"’—\”“"_______~—‘___4_\\’//””—_‘_

ERROR MESSAGE LIST
PG/LN MESSAGE

AA 07 ARITH W 20 0404

STD3
D
VA

9991(0s1)
0+X94

LITERALS

+0000000070
+5000000000
+9999999999
+0

+11

+15

ARITH Example 7

Warning message W 20 has been produced because the division operation

00013

00014

09
09
09
00
12
34

0388
0389
0390

0393
0394
0395
0396
0396

+5000001002
~3200019991
+0194090000
+0003910392

+0000000070
+5000000000
+9999999999
+0

+ 11

0393
0394
0395
0396
0396

0396 + 15 0396

might develop more integer digits than can be accommodated by the mask

4.4, which has been included in the message in the form 0404.

(48

PAGE AA

Liv CDREF

Ci
(2}
03
04
05
06
o7
08
09
10
1l
1z
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
3
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
45

101
102
103
104
105
106
107
108
109

110
111

DRI K XK IR} XK K KX XK XKNK KKK NNNKXRKNKMMXXRINKNXXXXNXXX

b

PROGRAM
LnBEL
*

A
B
<
D
RESULT
*

ANYLAGEL
ANYLABEL

oP

DA

ARITH
ZAl
ZA2
MSP
MSP
ST1
§T2
ZAl
ZA2
SL
A2
BLX

BLX
XA
B
ST1
s12

OPERAND

ARITH EXAMPLE 8
1

03319A948
37949A9e4
53169A948
72979A543
80999A1248

RESULT= (A+B-ABS(C)) *D/A
C(096)

Cl7916)

9991

9992
COMAREACA(Q99)+2
COMAREAsA(099)+3
+0

B(0s2)

1

B(3s3)

94sLINKsA

8

AlQs6)

AlTe1l6)
S49LINKsA
COMAREA«A(D99)+2
COMAREASA(1Q919)+2
94 9L INKeA
COMAREASA(DQs9)
COMAREA«A(10019)
+0

D(0s7)

F4srLINKeA
939DUBLMPY.A
MACREGe190+17
DUBLCKeA
COMAREAGA(019)
COMAREASA{10919)
AlQre)

AlT7s16)
949sLINKeA
934sDUBLDIVeA
MACREGe110+11
DuUcLCKeA
RESULT(0s7)
RESULT(10919)

TaE FOLLOWING 1o GENERATES OUT

B

LinNKEeA+L

7070 COMPILER SYSTEM VERSION OMYO89s

OF LINc

CDNO

00001

00002

00003

00004

00005

00006

00007

00008

FD

39

39
29
09

LoC

0325
0328
0330
0332
0333

0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370

0371

CHANGE LEVEL 00001

INSTRUCT ION

+0003250334

+1300390330
+2300090331
-0300919991
-0300919992
+1200090511
+2200090512
+1300000516
+2300790328
~5000000201
+2400000329
40200940372
-5000000208
+1400390325
+2400090326
+0200940372
-1400090511
-2400090512
+0200940372
+1200090509
+2200090510
+1300000516
+2300290332
+0200940372
+0200930395
-4700010017
+0100090431
+1200090509
+2200090510
+1300390325
+2300090326
+0200940372
+0200930453
+4700010011
+0100090431
+1200090333
+2200050534

+0100090394

PAGE AA

REF

0325
0328
0330
0332
0333

HLEV

1341

PAGE AB PROGRAM PAGE AB

LN CDREF LABEL oP OP.RAND CDNO FD LOC INSTRUCTION REF
C. X LINKeA Bv2 LINK1eA IS THERE A CARRY 0372 +2100050380
Q2 X LINK3.A Bz2 LINK4sA 0373 +2000090377
03 X BZ1 LINK5eA 0374 +1000090378
04 X BM1 LINK6eA 00009 0375 =1000090385
0> X BM2 LINK7eA 0376 =2000090390
06 X LINK&4esA SR O USE SIGN OF 9991 0377 =5000000000
07 X LINK54A SL 0 USE SIGN OF 9992 0378 «5000000200
08 X B 0+X94 0379 +0194050000
oy X LINKLeA BM2 LINK2eA 00010 0380 =2000090383
10 X Al +1 POSITIVE CARRY 0381 +1400110516
li X 8 LINK3eA 0382 +0100090373
12 X LINK2e.A S1 +1 NEGATIVE CARRY 0383 =1400110516
13 X B LINK3 A 0384 +0100090373
14 X LiINK6sA BM2 0+X94 ARL BOTH ACC MINUS 00011 0385 =2094090000
15 X Al +1 REVERSE CARRY (NEG) 0386 +1400110516
16 X S2 +999999999% COMPLEMENT 4+ SIGNG) 0387 =2400090515
17 X S2 +1 CHANGL 9992 NG) 0388 =2400110516
18 X 8 0+X94 0389 +0194090000
19 X LINK7eA Sl +1 REVERSE CARRY (POS) 00012 0390 =1400110516
20 X A2 +37999999999 COMPLEMENT + SIGNS) 0391 +2400090515
21 X A2 +1 CHANG: 9992 0392 +2400110516
22 X LINK8WA 8 0+X94 0393 +0194090000
23 X B HOLDeA+3 TEMP BRANCH 0394 +0100090430
24 X DUBLMPYW.A SLC MACREGWL 00013 0395 =5000010300
25 X ZS5T1 MULTGA 0396 =1100090425
26 X 25T2 MULTeA+1 0397 =2100090426
27 X ZAl COMAREA. A 0398 +1300090509
28 X ZA2 COMAREA+A+1 0399 +2300090510
29 X SLC MACREGe 2 00014 0400 =5000020300
30 X XA MACREGe 19 0+MACREGs2 0401 +4702010000
31 X ZST1 HOLDeA 0402 =1100090427
X ZA3 9992 0403 +3300099992

___,_,—/———————_____’,.f”_“~__§____,/——f"'—_"‘_—*~\‘___4/"'_—"‘——-—~____’,,//’———*\\"_‘_____’—_____,’—’__‘\\\/
— TN~

35 X A3 +5000000000 —_‘_5\\“‘\\\,/
36 X 8 DUSLOVFL e A+2 ’”"_—__—\\\\"‘-‘___J,s_*__‘#_,,_/’””'_“‘*““*—-—-—————'//’——5\
37 X DA 1 +0005060508
38 X DSOReA 00519 09 0506 0506
39 X QUOT A 2029 09 0508 0508
40 X COMAREAsA DA +0005090512

LITERALS
41 X +0000010009 00035 09 0513 +0000010009 0513
42 X +5000000000 09 0514 *5000000000 0514
43 X +9999999999 09 0515 +9999999999 0515
44 X +0 00 0516 +0 0516
45 X +1 11 0516 + 1 0516
46 X +20 23 0516 + 20 0516

T~ T

ARITH Example 8
ERROR MESSAGE LIST

PG/LN MESSAGE
Warning message W 20 has been produced because a multiplication or

AA 09 ARITH W 20 1208
division operation might develop more integer digits than can be ac-

commodated by the mask 12.8, which has been included in the message

in the form 1208.

COMP —Compare and Branch

Source Program Format

Processing Techniques

Limitations on Length

144

coMp generates instructions to compare two fields and to branch according to the
results of the comparison.

The basic format for the comp statement in the source program is as follows:

Label peration OPERAND Basic AL&
sl6 15|16 20|21 25 30 35 40 45 50

_JANY LABEL, . [COMP IFIELDA,FIELD2,LOWBR,EQUBR, ,HIGHBR

W't Loy PENES SRS S SR UOT S S ST DU SR SO [1 R

ANYLABEL may be any symbolic label; it may be omitted. The entry comp must
be written exactly as shown. riELpl and FiELD2 are either the symbolic names
of the fields to be compared, or alphameric or numerical literals. Adcons are not
permitted. LOWBR, EQUBR, and HIGHBR are the symbolic labels of instructions to
which the program will branch if FieLpl has the following relation to FIELD2, de-
pending on the mode:

MODE LOWBR EQUBR HIGHBR
Numerical is less than equals is greater than
Alphameric precedes is identical to follows

These results are determined by comparison techniques described under “Process-
ing Techniques,” below.

The basic format may be varied in two ways:

1. If the comparison is between numerical fields, either one or both may be
replaced by the expression aBs(FIELDX), in which case the absolute value of
the field will be used for the comparison. The parentheses must be written
as shown. An attempt to take the absolute value of an alphameric field will
result in an error message during assembly.

2. One or two of the branch addresses may be omitted. Instead of the missing
branch, the object program would then take the next instruction. If another
branch is specified after an omitted branch, separating commas must be
punched; e.g., FIELD], FIELD2, LOWBR, , HIGHBR.

All comparisons are made on the basis of the standard BM 7070 collating se-
quence. The fields to be compared may be numerical (either automatic-decimal
or floating-decimal) or alphameric.

The number of parameters is limited by the format. Automatic-decimal fields to
be compared may bridge words but may not exceed twenty digits in length.
Floating-decimal numbers must be contained within one location. Numerical

Address Modification

The Effect of COMP

Error and Warning
Messages

literals may not exceed twenty digits in length and must be signed. There is no
limit on the length of alphameric fields, except that alphameric literals may not
exceed 120 characters.

Modification by indexing and address adjustment is permitted on all symbolic
addresses.

Comparison of numerical fields is accomplished by subtraction, the correct
branch address being determined by a negative, zero, or positive difference.

When an automatic-decimal number is to be compared to a floating-decimal num-
ber, the automatic-decimal number is first converted to floating-decimal format.

For the comparison of two automatic-decimal fields, the alignment of decimal
points is automatic. If, after alignment of decimal points, the total number of
integer and decimal digits in both fields is larger than 20, the excess number of
digits will be truncated on the right without rounding; no warning message will
be issued. A difference between the numbers in the truncated digits would not
register in the comparison. Thus, if the following fields were to be compared
using the comp macro-instruction, the transfer would be to EQUBR:

Fields Format Specifications Object Program Contents
FIELD] Al2.38 000000000001.23456789
FIELD2 A2.18 01.234567891000000000

1 an automatic-decimal field of more than twenty digits in length is compared
o a Hoating-decimal field, an automatie-decimal field, or an alphameric field, a
warmng message will be issued. Instructions will be generated to compare the
absolute values of the fields.

1r a numerical field (either automatic-decimal or floating-decimal), which is of
proper length, is compared to an alphameric field, a warning message will be
tssued. Instructions will be generated to compare the absolute values of the
fields.

Fields containing numbers that are in double-digit representation must be con-
verted to single-digit form before the comp statement is employed (e.g., by use
of the EpMov macro-instruction). But numerical fields of different modes may
be compared to each other, as may fields of the various alphameric types.

It should be noted that the comp macro-instruction treats all fields according to
their defined characteristics (or the absence of them), and not according to their
object-program contents. Thus, difficulties may arise if numerical data is stored in
fields defined as alphameric, or vice versa.

The following error and warning messages will be issued during assembly under
the conditions specified:

ALL BRANCHES BLANK

All branches have been omitted from a comparison in which one or both of
the fields are absolute. The comparison is made; three branches will be gen-
erated to the next in-line instructions (*, *+1, and *+2) for patching pur-
poses.

ALL BRANCHES EQUAL

All three branches are identical; coding will be generated.

coMp 145

Examples

146

FIELD 1 BLANK

Field 1 has been omitted. A nop will be generated.
FIELD 2 BLANK

Field 2 has been omitted. A ~op will be generated.
FIELD 1 NOT ACCEPTABLE

Field 1 is an adcon. A ~op will be generated.
FIELD 2 NOT ACCEPTABLE

Field 2 is an adcon. A ~op will be generated.
LESS THAN 3 INPUT PARAMETERS

The minimum input in the comp statement is FIELDI, FiELD2, and a branch
address. The above message is issued if this minimum requirement is not met.
A ~op will be generated.

NUMERIC FIELD GREATER THAN 20 picrrs

A numerical field is greater than 20 digits in length. Instructions will be gen-
erated to compare the absolute values of the fields.

W-BOTH FIELDS NOT ALPHA-NOFORM

Either one field is alphameric and the other is not or one field is unspecified
(“noform”) and the other is not. Instructions will be generated to compare
the absolute values of the fields.

W-UNUSUAL BRANCH CONDITION

A branch address in the operand of the comp statement has not been left blank
or is an address other than the label of an imperative statement (symbolic
machine instruction or macro-instruction), or an actual storage address.

The following are examples of acceptable coding for the comp macro-instruction.
For each, the associated source-program entries are given, followed by the comp
statement, coding generated in-line, and (where applicable) coding generated
out-of-line.

400

/43

PAGE AA

LN CDREF
01 115
0« 116
0o 117
04 118
05 119
06 120
07 121
08 122
0y 123
10
11
le¢
1z
14
15
16
17
18
19
20
21
24 124
25 125
24 126
29
26
27

M

47

4%

PROGRAM
LASEL

*

FleLul
FIELDZ
LOWBR
EGUALSR
HIGHBR
*

ANYLABEL
ANYLABEL

XXX X XK XK K XXX XX

¥*
*
#*

> >

LiINKeA
LINK3eA

>

X LiNK8WA

X

oP

DA

NOP
NOP
NOP

COMP
251
82
BLX
St
Al
AZ
BLX
BZ2
o
8Z1
BM1
B

B
Bv2
Bl2

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l

OPLRAND

COMP cXAMPLE 1

1

Qc919A8410

23939A849
REPRESENTS FIRST
REPRESENTS FIRST
REPRESENTS FIRST

INSTRUCTION OF BRANCH ROUTINE
INSTRUCTION OF BRANCH ROUTINE

FlelDIsFIELD29LOWBRICQUALBRYHIGHBR
FIELD2{0so)
FIELD2(Tr16)
94sL I NKeA

1
FIelDli0s7)
FIELDLI(BLT)
a9l INKeA
It 2

*p2

EQUALBR
LOWBR

HIGHBR

THE FOLLOWING 1S GENERATED OUT OF LINE

LiNK8eA+1
LINKleA 15 THERE A CARRY
LINK4sA

—

+1 CHANGL 9992

B 0+X94
LITERALS
+9999999999

INSTRUCTION OF BRANCH ROUTINE

PAGE AA

CONO FO LOC INSTRUCTION REF

+0003250328
29 0325
39 0327
0329 ~0100090000
0330 =0100090000
0331 =0100090000

0325
0327
00001

0332 ~1300390327
0333 =2300090328
0334 +0200940345
0335 =5000000201
0336 +1400290325
0337 +2400090326
0338 +0200940345
0339 +2000090341
0340 +0100090342
0341 +1000090330
0342 =1000090329
0343 +0100090331

00002

00003

00004 0344 +0100090367

0345 +2100090353

0346 +2000090350
-
N/

0365 +2400000368

0366 +0194090000

09 0367 49999999999 0367

- ~—*“‘_’/Mw—/—“‘\

—
OPERAND

ol

X

COMP Example 1

+1

The program will branch to LOWBR if FIELD1 is less than FIELD2,

to EQUALBR if they are equal, and to HIGHBR if FIELD1 is greater

than FIELD2.

00 0368 +1 0368

744

PAGE AA

LN CDREF

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19

130
131
132
133
134
135
136

137
138
139

KM XXMM XXX X

KX X KX KAIXXXKNXAKXXXKXXNXKNXXNXNXXNX

> >

PROGRAM
LABEL

*

FIELDL
FLELDZ
EQUALER
*

ANYLABEL
ANYLABEL

*
*
*

LINKeA
LINK3 A

LiNK&4sA
LINKS.A
LINKLlsA

LINKZeA

LINK6.A

LINK7.A

LINK8eA

COMP Example 2

oP

DA

NOP

coMP
Zs1
252
BLX
SL
Al
A2
BLX
BZ2
B

BZ1

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 00001

OPERAND

COMP EXAMPLE 2
1

02+19A8410
23939A849

REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

FIELDL19F IELD2y sEQUALBR
FIELD2(06)
FIELD2(T7116)
94 9L INKeA

1
FIELD1(0O»7)
FILELD1(8»17)
949LINKeA
*42

*4 2

EQUALBR

THE FOLLOWING 1S GENERATEL OUT OF LINE

B LINK8eA+1
Bv2 LINKlsA IS THERE A CARRY
BZ2 LINK&4sA
BZ1 LINKSeA
BM1 LINK6sA
BM2 LINK7eA
SR 0 USE SIGN OF 9991
SL 0 USE SIGN OF 9992
8 0+X94
BMZ LINKZ2sA
Al +1 POSITIVE CARRY
B LINK3eA
Si +1 NEGATIVE CARRY
B LINK3eA
BM2 0+X94 ARE 30TH ACC MINUS
Al +1 REVERSE CARRY (NEG)
§2 +9999999999 COMPLEMENT + S|GNG)
S2 +1 CHANGE 9992 NG)
8 0+X94
S1 +1 REVERSE CARRY (POS)
A2 +9999999999 COMPLEMENT + SIGNS)
A2 +1 CHANGE 9992
B 0+X%4
LITERALS
+9999999999
+1

This example is the same as Example 1 except that both LOWBR and

HIGHBR have been omitted. The program will continue sequentially

if FIELDI1 is either greater than or less than FIELD2.

CONO FD

29

00001

00002

00003

00004

00005

00006

00007

09
00008 00

LOC

0325
0327
0329

0330
0331
0332
0333
0334
0335
0336
0337
0338
0339

0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362

0363
0364

INSTRUCTION

+0003250328

=0100090000

-1300390327
=2300090328
+0200940341
=5000000201
+1400290325
+2400090326
+0200940341
+2000090339
+0100090340
+1000090329

+0100090363
+2100090349
+2000090346
+1000090347
«1000090354
=2000090359
=5000000000
=5000000200
+0194090000
=2000090352
+1400000364
+0100090342
=1400000364
+0100090342
=2094090000
+1400000364
=-2400090363
=2400000364
+0194090000
=1400000364
+2400090363
+2400000364
+0194090000

+9999999999
+1

PAGE AA
REF

0325
0327

0363
0364

dIWO0D

671

PAGE AA PROGRAM

LN CDREF LABEL oP OPERAND

01 142 * CUMP EXAMPLE 3.
02 143 DA 1

03 144 FIELDL 02919A8el0

04 145 DA 2yROW O+ INDEXWORD
05 X

06 X

07 146 FIlELD2 23939A849

08 147 LOWBR NOP

09 148 HIGHBR NOP

10 149 #*
11 150 ANYLABEL COMP AbS(FIELDL)sFIELD2yLOWBR #HIGHBR

12 X ANYLABEL ZAl FIELD1(0s7)

13 X ZA2 FIELD1(8917)

14 X MSP 9991

15 X MSP 9992

16 X STl COMAREAWA(019)+2

17 X $T2 CUMAREAGA(099)+3

18 X ZS1 FIELD2(0v&)+INDEXWORD
19 X 252 FIELD2(7+i6)+INDEXWORD
20 X BLX 94sLiNKeA

21 X SL 1

22 X Al COMAREALA(Q19)+2

23 X A2 COMAREACA([10019)+2

24 X BLX 94sLINKeA

25 X BZ2 *+2

26 X 8 *+2

27 X BZ1 *+3

28 X BMl LOWBR

29 X B HIGHBR

30 151 =

31 152 THE FOLLOWING IS GENERATED OUT OF LINE
32 153 =

33 X B LINKBeA+1

34 X LINKeA BV2 LINKleA IS THERE A CARRY
35 X LINK3+A 8Z2 LINK&4sA

36 X —

T —

\

03 X B 0+X94
04 X LINK7eA S1 +1 REVERSE CARRY (POS)
05 X A2 +9999999999 COMPLEMENT + SIGNS)
06 X A2 +1 CHANGE 9992
07 X LINK8eA B 0+X94
08 X COMAREA«A DA

LITERALS
09 X +9999999999
10 X +1

COMP Example 3

The program will branch to LOWBR if the absolute value of FIELD1
is less than FIELD2 and to HIGHBR if it is greater. If the absolute

value of FIELD1 equals FIELD2, the program will ¢ontinue sequenr’ ,d)}.

REPRESENTS FIRST INSTRUCTION OF BRANGH ROUTINE
REPRESENTS FIRST INSTRUCTION OF BRANCH ROUT |NE

CDNO FD

29
00001

39
00002

00003

00004

00005

00006

00010

00011 09
00

Loc

0325

0327
0328
0331
0337
0338

0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356

0357
0358
0359
0360

0375
0376
0377
0378
0379

0384
0385

7070 COMPILER SYSTEM VERSION OMY089 CHANGE LEVEL 0000l

INSTRUCTION

+0003250326

+0003270336
+0003290332
=0003330336

~0100090000
=0100090000

+1300290325
+2300090326
=0300919991
=03009199%92
+1200090382
+2200090383
=1301390002
=2301090003
+0200940358
=5000000201
+1400090382
+2400090383
+0200940358
+2000090354
+0100090355
+1000090357
=1000050337
+0100090338

+0100090380
+2100090366
+2000090363
+1000090364
=1000090371

+0194090000
=1400000385
+2400090384
+2400000385
+0194090000
+0003800383

+9999999999
+1

PAGE AA
REF

0325

0327
0328
0002

0384
0385

PAGE AA
LN CDREF
01 157
02 158
03 159
04 160
05 161
06 162
07 163
08 164
09 165
10 166
i1
12
13
14
15
16
17
18
19
20 167

M XK AKX X XXX X

PROGRAM
LABEL

*

FIELDL

FIELDZ
LOWBR
EQUALBR
HIGHBR

*
ANYLABEL
ANYLABEL

COMP Example 4

oP

DA
DA

NOP
NOP
NOP

comp
ZAA
CA
BL
BH
ZAA
CA
BL
BLt

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l

OPERAND

COMP EXAMPLE 4o
2990+ I NDEXWORD
00s19"

i

20939"
REPRESENTS FIRST INSTRUCTION QF BRANCH ROUTINE
REPRESENTS FIRST INSTRUCTION OF BRANCH RQUTINE
REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

FIELD1oFIELD2sLOWBRYEQUALBR#HIGHER
FIELD2{0»9)

FIELD1(0O99)+!NDEXWORD

HIGHBR

LOWBR

FIELD2(10+19)
FIELDL(10919)+INDEXWORD

HIGHBR

EQUALBR

LOWBR

If FIELD1 precedes, is identical to, or follows FIELD2 in the standard

collating sequence, the program will branch to LOWBR, EQUALBR or

HIGHBR, respectively.

D¢ 3 MK DI N K XK K XK XK

PAGE AA
LN CDREF
01 171
0z 172
03 173
Q4 174
05 175
06 176
07 177
o8 178
Q9 179
10

11

12

13

14

15

16

17

18

19

20

21 180

PROGRAM
LABEL

*

FILELDI

FIELD2
DIFFBR
EQUBR

*
ANYLABEL
ANYLASEL

COMP Example 5

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVSIL 00001

OPERAND

COMP EXAMPLE 5e

2990+X15

00919

2990+ INDEXWORD

20945
REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE
REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

FIELD1oFIELD2sDIFFBRIEQUBRIDIFFBR
FIELDL(0#9)+X15
FIELD2{099)+ INDEXWORD
DIFFBR

DIFFBR
FIELDLI(10919)+X15
FIELD2(10919)+ INDEXWORD
DIFFBR

DiFFBR

FIELD2(099)+2+ INDEXWORD
EQUBR

DIFFBR

Fields which are identical will cause a branch to EQUBR,; fields which

differ to DIFFBR.

CDNO

00001

00002

00003

CDNO

00001

00002

00003

FD

09
09

FD

09

09

Loc

0325

0331
0333
0334
0335

0336
0337
0338
0339
0340
0341
0342
0343
0344

INSTRUCTION

+0003250328
+0003290332

=0100090000
=0100090000
=0100090000

+1600090331
=1501090000
+4000090335
=4000090333
+1600090332
~1501090001
+4000090335
=4100090334
+0100090333

PAGE AA
REF

0000
0331

Loc

0325

0331
0339
0340

0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351

INSTRUCT | ON

+0003250328
+0003290338

=0100090000
=0100090000

+1615090000
=1501090002
+4000090339
=4000090339
+1615090001
=1501090003
+4000090339
«4000090339
+1301090004
+1000090340
+0100090339

PAGE AA
REF

0000
0002

dWO0D

1T

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY0O8s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL op OPERAND CDNO FD LOC INSTRUCTION ' REF
Ol 184 * COMP EXAMPLE 6
02 185 DA i +0003250326
03 186 FIELDL 00+ 09F 09 0325 0325
04 187 FIELDZ2 10919F 0326 0326
05 188 EQUALBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0327 =0100090000
06 189 HIGHBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0328 =0100090000
07 190 *
08 191 ANYLABEL COMP FIELDL1sFIELD299EQUALBRYHIGHBR
09 X ANYLABEL ZAl FIELD1(Q»9) 0329 +1300090325
10 X S1 FIELD2(099) 0330 =1400090326
11 X BVl *42 0331 +1100090333
12 X BZ1 EQUALBR 00002 0332 +1000090327
13 X BM1 *#42 0333 ~1000090335
14 X B HIGHBR 0334 +0100090328
15 192 *
COMP Example 6
The program will go to the next sequential instruction if FIELD1 is
less than FIELD2, to EQUALBR if FIELD1 is equal to FIELD2, and
to HIGHBR if FIELD1 is greater than FIELD2.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08» CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
ol 201 * COMP EXAMPLE 7+
02 202 DA 1 +0003250332
03 203 FIELD1 00439 09 0325 0325
04 204 FIELD2 404279 0329 0329
05 205 DIFFBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0333 =0100090000
06 206 *
07 207 ANYLAGEL COMP FIELDLSFIELD29DIFFBRe#DIFFBR
[°X:} X ANYLABEL XL MACREGeQ19+0000000003 0334 +4500010340
09 X Med ZAA FIELDZ2(099)+MACREG.O1 0335 +1601090329
10 X CA FIELD1(099)+MACREG.O1 0336 =1501090325
il X BL DIFFBR 0337 +4000090333
12 X BH DIFFBR 00002 0338 ~4000090333
13 X BiIX MACREGeO1l sMo ks 0339 +4900010335
14 208 »
LITERALS
15 X +0000000003 09 0340 +0000000003 0340

COMP Example 7

I FIELD] = FIELD2, the program will continue with the next sequential

instruction.

If not, it will branch to DIFFBR.

eI

PAGE AA

LN

01

02
03
04
05
06
o7
o8
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

CDREF

214
215
216
217
218
219
220
221

222
223
224

XX XK XXX XXX

XXX ;XK K XX

PROGRAM

LABEL

*

FIELDL
FIELD2
LOWBR
EQUALBR
*
ANYLABEL
ANYLABEL

*
*
*

FLOT1.A

FLOT24A

FLOT3.A

COMP Example 8

oP
DA

NOP
NOP

COoMP
ZAl
ZA2
ZA3
BLX
S1
8vl
BZ1
BM1
8

7070 COMPILER SYSTEM VERSION OMYO8)»

OPELRAND

COMP EXAMPLE 8
1

00+09F
10929A1347

REPRESENTS FIRST INSTRUCTION OF BRANGH ROUTINE
REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

FIELD19FIELD29LOWBRIEQUALBR
FIELD2(099)

FIELD2(10919)

+0000000063

949FLOT2.A

FIELDL1(099)

w2

EQUALBR

*42

LOWBR

THE FOLLOWING 15 GENERATED QUT OF LINE

SLC1 MACREGe1l

B *+2

SLC MACREGs1

BZ1 O0+X94

$3 MACREGe1(495)

SR1 2

STD3 9991(0s1)

B 0+X94&

LITERALS
+0000000063

The program will continue with the next instruction if FIELD1 is greater

than FIELD2. It will branch to EQUALBR if FIELD1 equals FIELD2 and

to LOWBR if FIELD]1 is less than FIELD2.

CDNO FD LOC

00001

00002

00003

00004

09 0325
09 0326
0328
032¢%

0330
0331
0332
0333
0334
0335
0336
0337
0338

0339
0340
0341
0342
0343
0344
0345
0346

09 0347

CHANGE LEVEL 00001,

INSTRUCTION

+0003250327

=0100090000
=0100090000

+1300090326
+2300090327
+3300090347
+0200940341
=1400090325
+1100090337
+1000090329
=100009033¢9
+0100090328

+5000011300
+0100090342
=5000010300
+1094090000
=3400450001
+5000001002
=3200019991
+0194090000

+0000000063

PAGE AA
REF

0325
0326

0347

0

dNO:

€81

PAGE AA

LN CDREF

01
04
03
o4
05
06
07
08
09
10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
25
26
217
28
29
30
31
32
33
34
35

227
228
229
230
231
232
233
234
235
236

237
238
239

DX XK XK XK XXX XXX X

KK XK XK XXX X

PROGRAM
LABEL

*

AREANAME
FIELDL
FIELDZ
LOWBR
EQUALBR
HIGHBR

*

ANYLABEL

ANYLADEL

*
*
¥*

LiNKeA
LiINK3+A

LiINK4eA
LINKS«A

LINKleA

oP

DA

NOP
NOP
NOP

CompP

Z51
252
BLX
SL
Al
A2
BLX
BZ2
B
BZ1
BM1
8

THE FOLLOWING

B
Bvz2
BZ2
BZ1
BM1
BM2
SR
SL
B
BM2

7070 COMPILER SYSTEM VERSION OMY08+4 CHANGE LEVEL 00001l

OPERAND

COMP EXAMPLE 9
3990+ I NDEXWORD
02919A8610
23939A849

REPRESENTS FIRST

REPRESENTS F.IRST

REPRESENTS FIRST

INSTRUCTION OF BRANCH ROUTINE
INSTRUCTION OF BRANCH ROUTINE
INSTRUCT ION OF BRANCH ROUTINE

FIELD1sFIELD2sLOWBRY
EQUALBRHIGHBR
FIELD2(0s6)+ INDEXWORD
FIELD2(T7916)+INDEXWORD
949l INKeA

1
FIELD1I(O#7)+INDEXWORD
FIELDL1(8217)+INDEXWORD
94 9L | NKeA

*+2

*+2

EQUALBR

LOWBR

HIGHBR

REMARKS MAY
BE USEDe

1S GENERATED OUT OF LINE

LINKBeA+1

LINKleA 1S THERE A CARRY
LINK&4eA

LINKS eA

LINK6eA

LINKTeA

0 USE SIGN OF 9991

0 USE SIGN OF 9992

0+X94

LINK2eA

?

45
46
47
48

0l
Q2

\/\//\/_\W
L ITERALS

S S

X
X
X
X

X
X

LINK7«A

LiNKB8eA

Sl
A2
A2
B

+1 REVERSE CARRY (POS)
+9999999999 COMPLEMENT + SiGNS)
+1 CHANGE 9992

0+X94

+9999999999
+1

CDNO

00001

00002

00003

00004

00005

00008

FD

29
39

09
00

LOC INSTRUCTION
+0003250336

0325

0327

2
0337 =0100090000
0338 =0100090000
0339 =0100090000

0340 =1301390002
0341 =2301090003
0342 +0200940353
0343 =5000000201
0344 +1401290000
0345 +2401090001
0346 +0200940353
0347 +2000090349
0348 +0100090350
0349 +1000090338
0350 =1000090337
0351 +010009033%

0352 +0100090375
0353 +2100090361
0354 42000090358
0355 +1000090359
0356 =1000090366
0357 =2000090371
0358 =5000000000
0359 =5000000200
0360 +0194090000
0361 =2000090364

0370 +0194090000
0371 =-1400000376
0372 +2400090375
0373 +2400000376

PAGE AA

REF

0000
0002

\f

0374 +0194090000 ,///,’ﬁ\\/

0375 +9999999999
0376 +1

0375
0376

CYCLE —Cycle Branch
RECYC —Reset Cycle

Source Program Format

154

CYCLE generates instructions to branch a specified number of times to each of a
series of locations. Recyc generates instructions to reinitialize one or more CYCLE
macro-instructions.

The basic formats for the cvcLe and recyc statements in the source program are
as follows:

Line Label peration| OPERAND Basic Aufocoder%
5[6 15016 20§21 25 30 35 40 45 50 55

or |ANYLABEL, ICYCLEBRANCHA, COUNTERA, BRANCHZ ,COUNTERZ ofc.
02 ANYLABEL |RECYCICYCLEL CYCLER ote. . e
03

In these examples, ANYLABEL is any symbolic label; it may be omitted. The en-
tries cYcLE and Recyc must be written exactly as shown. In the cycLe statement,
the various BRANCHX entries are the symbolic labels of instructions to which the
program will transfer, taking each Branc from left-to-right and going to each
as many times as is specified by the associated counTERx. The branching will
oceur every time the program reaches the position originally occupied by the
CYCLE statement. After each BrancH is taken, it is assumed that the program will
return to a location preceding the location of the cycLe statement or to that loca-
tion itself. The countERs may be symbolic or they may be unsigned actual in-
tegers (representing literal count numbers) up to a maximum of ten digits. If the
reference is symbolic, the count number must be stored in a single location;
Le., it may not bridge words. Symbolic and literal counters may be freely mixed
within the operand of a single cYCLE macro-instruction,

After all BRancHEs have been executed the number of times indicated, the next
pass through the cvcLe statement will resume the entire process from the begin-
ning. However, if there is only one BraNcH and one COUNTER, the macro-instruc-
tion becomes inactive (in effect, a NoP) after the branch has been made the
requisite number of times, and the program continues sequentially.

The cycLex entries in the operand portion of the rRECYC statement are the Jabels
of cYCLE macro-instructions. The recYc macro-instruction will restore the set-
tings of the various counters in these cycre statements to their original values.
Thus, after a cycLe statement has been named in a RECYC macro-instruction, the
next program pass through that cycre instruction will result in a “first-time” trans-
fer to the BrancHl address.

Processing Techniques

Limitations on Length

The format of the cycLE instruction may be modified in two ways:
1. A BRraNCHX may be omitted, with separating commas entered as in the fol-

lowing example:

Line Label peration OPERAND é
3 5|6 IS|I6 20J21 25 30 35 40 45
ot |/ANYLABEL |CYCLEBRL,CTR1,,CTR2 , .. ., Lg
O 2 1 : R] SR I S L 1 i 1 1 1 A Lo 1 1 A 1 L] . 1

If this is done, the program will go to the next instruction of the source pro-
gram for the specified number of times, instead of to the missing BRANCEHX
address. Thereafter, the next indicated Brancu will be taken as usual. In
particular, it is possible to omit the Brancul, beginning the operand portion
of the cycLE statement with a comma. In that case, the cYcLE statement will,
in effect, result in a Nop on the first n program passes, where n is the num-
ber specified by the counTERl.

2. The last couNTER may be omitted as follows:

Line Label Operation OPERAND j
3 sle 1516 20j21 25 30 35 40 as

o1, ANY LABEL, I CYCLEBR1,CTR1 ,BR2,CTR2,BR3. , . .)
O 2 L 1 -1 11 § W W S N Y § I W T § IS T S S T { i D R L 3

This will cause the program to branch permanently to the last BRANCH after
the other BRaANCHES have been executed the required number of times. These
two devices may be combined in a single cycLE statement; for an example,
see “Limitations on Length,” below.

If the counters are symbolic, the number of times the program is to branch to
each location must have been entered into the proper field before the set of in-
structions generated by cycLE is entered for the first time. When the program
reaches the cycLE instruction, all counTeRs in the operand are locked; they can-
not be altered until all BRaANCHEs have been executed as required, except through
a RECYC macro-instruction. Since the BRANCHES are taken from left-to-right, it is
possible to alter the countER for a prior BrRaNCH while a given BRANCH is being
taken. This change will take effect when the entire cycLE is restarted.

A maximum of five BRANCH and COUNTER pairs, including omitted parameters,
may be entered. If more than five pairs are required, two successive cycLE
macro-instructions may be written as follows:

Line
3 5|6

Label

ceration OPERAND
15116 20121 25 30 35 40

45 50

55

Basic AutocoderAS

o1,

ANYLABELA

CYCLE

BRL,CTR1,BR2 CTR2,BR3,CTR3,BR4,CTR4,)

02

ANYLABEL2

CYCLE

BRS,CTR5,BR6,CTRE , et¢.

a1 n

N S RSN |

P

03

PR

1

A

CYCLE & RECYC

155

Address Modification

Error and Warning
Messages

Examples

156

The first cycLE statement will become inactive after the fourth Branch has been
taken the required number of times; the program will then permanently “fall
through” to the second statement.

RECYC allows for 94 entries in the operand portion.
All symbolic addresses may be modified by indexing and address adjustment.

The cycLE macro generator will issue the following error and warning messages
during assembly under the conditions specified:

ASSUME COMMAS AFTER PAR. 2 — PERMANENT NOP

This warning message is issued if the operand contains only one Branca and
one COUNTER, After the BRaANCcH has been taken the specified number of times,
the macro-instruction will not be reinitialized (which would make it the
equivalent of an unconditional Branch) but will become permanently inactive
(vor). This is what would happen if the counter were followed by two
commas.

BRIDGE CTR USING FIRST LOC ONLY PAR XX

A symbol counTer has been used that bridges two storage locations. The mes-
sage will give the parameter number of the faulty entry in place of the xx.
Only the digits from the portion in the first location will be used as the
COUNTER.

ERROR — IMPROPER OPERAND

This message is issued if there are less than two or more than ten parameters
in the operand, or if an omitted counTter is followed by another BrAaNCH,
which would never become effective.

WARNING — SUCCESSIVE NOPS

This message will be issued if two successive BRANCHEs have been omitted from
the operand. Nevertheless, the appropriate coding will be generated as if the
double omission were intentional.

The recYC macro generator will issue the following error message under the con-
dition specified:
PARAM NOT LABEL OF CYCLE MACRO XX

The xx will be replaced by the number of the parameter which is not the label
of a cycLE statement.

The following are examples of acceptable coding for the cvcrLE and recyc macro-
instructions. For each, the associated source-program entries are given, followed
by the cvcLe or recyc statement, coding generated in-line, and (where appli-
cable) coding generated out-of-line.

OXOTd ® TIDXD

28T

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYOB» CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL oP OPcRAND CONO FD LOC INSTRUCTION REF
0l 243 * CYCLE EXAMPLE 1

02 244 BRANCHA NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0325 =0100090000

03 245 BRANCHB NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0326 ~0100090000

04 246 *

05 247 ANYLABEL CYCLE BRANCHA$1 9bLRANCHD 1

06 X ANYLABEL NOP Mel 0327 =0100090330

07 X MSP ANYLABEL 0328 ~0300910327

08 X B BRANCHA 0329 +010009C325

09 X Mel MSM ANYLABEL 00002 0330 =0300610327

10 X 8 BRANCHB 0331 +0100090326

11 X Me6 NOP 0 0332 =0100090000

1¢ X ORIGIN CNTRL #*-1

13 248 *

CYCLE Example 1

CYCLE is used in this example to create a strictly alternating condition.

The first time the program arrives at this instruction, it will branch to

BRANCHA, the next time to BRANCHB, then to BRANCHA, then to

BRANCHB again, and so on for the duration of the program.

PAGE AA PROGRAM 7070 COMP|LER SYSTEM VERSION OMY08s CHANGE LEVEL 00001e PAGE AA
LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
0l 252 * CYCLE EXAMPLE 2

02 253 POINTX NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0325 ~01000%0000

03 254 POINTY NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0326 ~0100090000

04 255 *

05 256 ANYFIELD CYCLE POINTX91sPOINTY

06 X ANYFLELD NOP Mol 0327 =0100090330

07 X MSP ANYFIELD 0328 =0300910327

o8 X 8 POINTX 0329 +0100090325

09 X Mol B POINTY 00002 0330 +0100090326

10 X Meb NOP O 0331 =0100090000

11 X ORIGIN CNTRL %*-1

12 257 *

CYCLE Example 2

When the program arrives at CYCLE the first time, it will branch to

POINTX. Each subsequent time it will branch to POINTY.

8ST

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYO8s CHANGE LEVEL 0000le PAGE AA

LN CDREF LABEL opP OPERAND CDNO FDO LOC INSTRUCTION REF
01 261 » CYCLE EXAMPLE 3.
02 262 TOTALLINE NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0325 =0100090000
03 263 REPORTL INE NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0326 ~0100090000
04 264 *
05 265 ANYLABEL CYCLE REPORTLINE#»359TOTALLINEL
06 X ANYLABEL NOP Mel 0327 =0100090331
07 X Z5A +35 0328 =1600010338
08 X 8T1 Me9(295) 0329 +1200250337
Q9 X MSP ANYLABEL 00002 0330 =0300910327
10 X Mel XL MACREGs19Me9 0331 +4500010337
11 X XA MACREGe111 0332 +4700010001
12 X XU MACREGal9Me9 0333 =4500010337
13 X BXM MACREGe 1 yREPORTL INE 0334 =4400010326
14 X MSM ANYLABEL 00003 0335 =0300610327
15 X B TOTALLINE 0336 +0100090325
16 266 *
17 267 * THE FOLLOWING 1S GENERATED OUT OF LINE
18 268 *
19 X M9 DA 1 +0003370337
20 X 00509 09 0337 0337
LITERALS
21 X +35 00004 01 0338 +35 0338
CYCLE Example 3
In this example, the program will branch to the REPORT LINE routine
35 times, to the TOTALLINE routine once, then to the REPORTLINE
routine 35 times, to the TOTALLINE routine once, and so on.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 00001e PAGE AA
LN CDREF LABEL op OPcRAND CDNO FD LOC INSTRUCTION REF
0l 272 * CYCLE EXAMPLE 44
02 273 BRANCHONE NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0325 =0100050000
82 %;g BRANCHTWO NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUT INE 0326 =01000590000
*
05 276 ANYLABEL CYCLE BRANCHONEs1s9l 9BRANCHTWO
06 X ANYLABEL NOP Mel 0327 =0100090331
07 X MSP ANYLABEL 0328 =0300910327
s X MSM - Mel 0329 =0300610331
09 X B BRANCHONE 00002 0330 +0100090325
*0 X Mel NOP Me2 0331 =0100090334%
x; X MSP Mel 0332 =~0300910331
iz X B8 Meb 0333 +0100090335
i3 X Mol B BRANCHTWO 0334 +0100090326
i4 X Meb NOP Q 00003 0335 =0100090000
i5 X ORIGIN CNTRL *-]1

16 277 *

CYCLE Example 4

The first time the program reaches CYCLE, a branch is made to
BRANCHONE. On the second pass the next instruction following
those generated by CYCLE is executed, since a branch address was
omitted. Each subsequent time, a branch is made to BRANCHTWO

since. the final counter was omitted.

OXDT ® TIDXD

65T

PAGE AA

LN CDREF

01

301
302
303
304
305
306
307
308

309

310
311

IR XK NN} K XK X KM I N XK I HK I AKX XK XKXK XKRKNXKXKXX XXX

PROGRAM
LABEL oP

*

BRANCH1 NOP
BRANCH3 NOP
COUNTERL NOP
COUNTERZ2 NOP

COUNTER3 NOP
*

ANYLABEL CYCLE

ANYLABEL NOP
ZSA
ST1
Z5A
§T1
ZAA
STl
MSP

Mel

Me2 ZAl
Al
25T1
BM1
XL
XA
XU
BCX
MSM
B

Me9 DA

Me5 B
B
M6 NOP

ORIGIN CNTRL
CYCLE

Mel9 NOP
Z5A
ST1
MSP

Mel0 XL
XA
XV
BXM
MSM

Mel5 NOP

ORIGIN CNTRL
SOMELABEL RECYC

SOMELABEL MSM
B

OPERAND

CYCLE EXAMPLE 5.
REPRESENTS
REPRESENTS
REPRESENTS
REPRESENTS
REPRESENTS

BRANCH1 s COUNTER1
Mol

COUNTER1
Me9+1
COUNTER2
Me942

Me8

Me?9

ANYLABEL
MACREGe1tMe9
Me9+MACREGe 1
+1
Me9+MACREGS 1
Me5=1+MACREGe1
MACREGe1Me9
MACREGe191
MACREGe19Me9
MACREGe19Me2
ANYLABEL
ANYLABEL

1

00929
BRANCH1

Meb

4]

*=-1

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l

FIRST INSTRUCTION OF BRANCH ROUTINE
FIRST INSTRUCTION OF BRANCH ROUTINE

COUNTER LABEL
COUNTER LABEL
COUNTER LABEL

» s COUNTER2

BRANCH39COUNTER3 991 "Wk

Mel0

COUNTER3

Mel181(295)
Mel9

MACREGe19Masl8

MACREGel?1

MACREGe19Mel8

MACREGe 1 9BRANCH3

Mel9
0
*-1
ANYLABEL
ANYLABEL
ANYLABEL

3%

HRN

CDNO

00001

00002

00003

00004

00005

00006

00007

00008

FD

09

Loc

0325
0326
0327
0328
032¢%

0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348

0349
0352
0353
0354

0354
0355
0356
0357
0358
0359
0360
0361
0362
0363

0363
0364

INSTRUCTION

=0100090000
=0100090000
=0100090000
=0100090000
=0100090000

=0100090338
=1600090327
+1200090350
=1600090328
+1200090351
+1600090365
+1200090349
=0300910330
+4500010349
+1301090349
+1400000367
=1101090349
=1001090351
+4500010349
+4700010001
=4500010349
=4300010339
~0300610330
+0100090330
+0003490351

+0100090325
+0100090354
=0100090000

=0100090358
=1600090329
+1200250366
=0300910354
+4500010366
+4700010001
=4500010366
=4400010326
=0300610354
~0100090000

=0300610330
+0100090330

PAGE AA
REF

0349

778

PAGE AB PROGRAM PAGE AB

LN CDREF LABEL op OPERAND CDNO FD LOC INSTRUCTION REF

01 312 =»

02 313 =* THE FOLLOWING 1S GENERATED OUT OF LINE

03 314 *

04 X M.8 DC +0003650365

05 X +0000010002 09 0365 +0000010002 0365

06 X Mel8 DA 1 +0003660366

o7 X 00409 09 0366 0366
LITERALS

08 X +1 00009 00 0367 +1 0367

CYCLE Example 5

This example illustrates a technique that will allow the modification of

the contents of a counter associated with a branch when one of the pre-
ceding branches has already been entered. In this case, COUNTER3

may be freely changed while BRANCHI is being taken by the program.
(This would not be the case if COUNTER3 were written into the operand

of the same CYCLE statement as BRANCH1.) COUNTER2 must be set

to a value greater than the maximum possible content of COUNTER3. This
must be done before the first CYCLE statement is entered. The program
will BRANCH to BRANCH1 as many times as specified in COUNTERI.

1t will then "fall through" to the second CYCLE statement, taking BRANCH3
as many times as COUNTERS indicates, and finally "fall through" to the
RECYC statement. This will reinitialize the first CYCLE macro-instruc-
tion (the second one will have reinitialized itself, having completed all
branches the required number of times), to which a transfer is then made
by means of the unconditional Branch instruction.

NOTE: Lines marked thus *** in the example listing are original source
statements; the intervening instructions are generated.

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL opP OPERAND CDNO FD LOC INSTRUCTION REF

0l 318 * RECYC EXAMPLE 1

02 319 SOMELABEL. RECYC ANYLABELsLABELZIANYSYMBOLSPOINTX

Q3 X SOMELABEL MSM ANYLABEL 00001 0325 =0300610329

04 X MSM LABELZ 0326 =0300610353

05 X MSM ANYSYMBOL 0327 =0300610377

Qo X MSM POINTX 0328 =0300610401

Q7 320 *
08 321 ANYLABEL CYCLE BRANCH1»COUNTERL » s COUNTER2

09 X ANYLABEL NOP Mel 0329 =0100090337
10 X 25A COUNTER1 00002 0330 ~1600090426
11 X STl Me9+1 0331 +1200090349
12 X 2S5A COUNTER2 0332 =1600090427
13 X STl Me9+2 0333 +1200090350
14 X ZAA Me 8 0334 +1600090428

J/’("‘\\‘\\\\//ﬂ\,,,//'\'ﬂyl"/\\‘“_‘\\\/~//,,/"’“""""_JF\\\\.\\‘V\J/f’/\'/‘_____\k\’A’,,/f_ﬁ——‘\“\~\\\\\~’_—_////,/*"‘“\s_

RECYC Example 1

The CYCLE macro-instructions whose labels are listed in the operand

are reinitialized by this instruction.

DECOD —Branch on Code Value

Source Program Format

Processing Techniques

Limitations on Length

Address Modification

Processing Sequence

Error and Warning
Messages

DECOD generates instructions to analyze a code field and to branch according to
the value it contains. The code field must have been previously established
through a copEe declarative statement.

The basic format for the pEcop statement in the source program is as follows:

T
Line Label peration|
B 5|6 15)16

OPERAND Basic Autocoder———p- Autococ?
20/21 25 30 35 a0 45 50 55 5ol) 70
ol |[ANYLABEL IDECODICODENAME , CODEVALUEL ,BRANCHL,, CODEVALUE?2 B]RANCH.Z,BN:-,E

Ozln 1 I TR UK WU S S W ER—Y 1 L L1 A1 § SR S WO \

ANYLABEL is any symbolic label; it may be omitted. The entry pecop must be
written exactly as shown. copENAME must be the symbolic label of a cope header
line that appears elsewhere in the program. The cODEVALUEX entries are the sym-
bolic names of the conditions for which tests are to be made; they must be subse-
quent entries under the cope header line, CODENAME. The BraNCHX entries are
the symbolic addresses of instructions to which the program is to transfer if the
associated CODEVALUE is present in the copk field to be analyzed.

Omission of BrancH addresses is not permitted in writing the pEcop statement. It
it is desired to have the program continue sequentially in case a given CODEVALUE
is present in the copENaME field, the particular copEvALUE should be omitted from
the operand altogether.

A maximum of 45 CODEVALUE and BRANCH pairs may be entered.

The copENaME and BRANCH entries may be modified by indexing and address
adjustment.

The copeENaME field is analyzed by the generated instructions for the presence of
the various CODEVALUEs as they appear in the operand portion of the source state-
ment from left to right. Thus, if two different labels of cope subsequent entries
refer to the same actual value in the copk field, and if both are listed, with differ-
ent BRANCHES, in the operand of a single pEcop statement, the presence of that
value in the copENaME field will cause a transfer to the first of these BRANCHEs.

The following error and warning messages will be issued during assembly under
the conditions specified:

CODENAME NOT DEFINED BY A CODE

This error message is issued if the first parameter is not the label of a cope
statement.

DECOD 161

Examples

162

CODEVALUE NOT DEFINED UNDER A CODE

This error message is issued if one of the CODEVALUE entries is not a subsequent
entry under any cope header line.

CODEVALUES AND BRANCHES NOT PAIRED

This message will be issued if the number of parameters following CODENAME
is odd.

WARNING — CODEVALUE NOT DEFINED UNDER CODENAME

This warning message is issued if one of the CODEVALUE entries has, as its first
parameter record, a header label which is different from the copENAME written
in the source statement. Coding will be generated nevertheless.

The following are examples of acceptable coding for the pEcop statement. For
each, the associated source-program entries are given, followed by the pECOD
statement, coding generated in-line, and coding generated out-of-line.

aodaa

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY0B89 CHANGE LEVEL 0000l1e PAGE AA
LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
01 332 * DECOD EXAMPLE 1
02 333 AREANAME DA 5510+X30 +0003250329
03 334 CODENAME CODE 616 66 0325 0000
04 335 CODEVALUE 1
05 33(; BRANCH1 NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0330 =0100090000
06 33 *
07 338 ANYLABEL DECOD CODENAME » CODEVALUE ¢+ BRANCH1
08 X ANYLABEL ZAl CODENAME+X30 0331 +1330660000
09 X CA +1 0332 =1500000335
lu X 8t BRANCH1 0333 =4100090330
11 339 *
12 340 * THE FOLLOWING IS GENERATED OUT OF LINE
13 34l *
LITERALS
14 X 1 00 0334 +1 0334
15 X +1 00002 00 0335 +1 0335
DECOD Example 1
The program will branch to BRANCH]1 if the CODENAME field contains
the condition specified for CODEVALUE, or will go to the next sequential
instruction if it does not.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l1e PAGE AA
LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
01 345 » DECOD EXAMPLE 2
02 346 DA i +0003250325
03 347 CODENAME CODE 099! 09 0325 0325
04 348 CODE1 'RED !
05 349 CCDE2 *GREEN!
06 350 CODE3 *8LVE ¢
07 351 BR1 NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0326 =0100090000
038 2352 BR2 NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0327 =0100090000
0y 353 BR3 NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0328 =0100090000
10 354 *
11 355 ANYLABEL DECOD CODENAME »CODEL19BR19CODE29BR2Y
12 356 CODE39BR3
13 X ANYLABEL ZAl CODENAME 0329 +1300090325
14 X CA RED 0330 =1500090341
15 X 8E BR1 00002 0331 ~=4100090326
16 X CA GREEN 0332 ~1500090340
17 X Bt BR2 0333 =4100090327
18 X CA BLUE 0334 ~1500090339
i9 X BE BR3 0335 =4100090328
20 357 *
21 358 * THE FOLLOWING IS GENERATED OUT OF LINE
22 359 *
LITERALS
23 X 'RED ¢ 00003 09 0336 *'7965640000 0336
24 X 'GREEN! 09 0337 16779656575 0337
25 X 'BLVE ¢ 09 0338 *6273846500 0338

~ T~ T~

DECOD Example 2

If the CODENAME field contains the value specified for CODE1, CODE2,

or CODE3, the program will branch to BR1, BR2, or BR3, respectively.

Otherwise the program will go to the next sequential instruction.

LOGIC —Logical Decisions

Source Program Format

Logical Expressions

164

LOGIC generates instructions to test whether a given expression is true or false and,
according to the result, to set a switch or to branch to a designated location, or

both.

The basic formats for the Locic statement in the source program are as follows:

Line Label peration PERAND Basic A
3 sle 15)i6 20/21 25 30 35 40 a5 50

o1, JANYLABEL LOGICISWITCH=EXPRESSION.- R R
02 [ANYLABEL LOGICIEXPRESS| ON , TRUEBR, FALSEBR, , , ., .
03 JANYLABEL, |LOGICISWITCH=EXPRESSION, TRUEBR ,FALSEBR
04

L~

I~ ~__J

PN ST " O S S S VR TS A Lo) 1 i]

In these examples, ANYLABEL is any symbolic label; it may be omitted. The entry
LocIC must be written exactly as shown. swiTcH represents any electronic, pro-
gram, or digit switch to be turned on if the expression in question is true, oFr if
false. If the label of an index word or a pa, pc, or psw header line or subsequent
entry is written, the digits in the first location of the current area referenced will
be treated as a bank of digit switches; i.e., they will all be turned o~ or oFr.
TRUEBR and FALSEBR represent the symbolic labels of instructions to which the
program will branch if the expression is, respectively, true or false.

The first format causes the object program to set the switch as indicated and to
continue with the next instruction of the source program after the Locic state-
ment. The second format causes the object program to branch only, not to set a
switch. The third format does both.

In the second and third formats listed above, one of the branches may be omitted.
The object program will then proceed sequentially instead of taking the missing
branch. For example, if the operand reads SWITCH=EXPRESSION, TRUEBR and the
expression is false, the designated switch will be turned orr and the next instruc-
tion of the source program will be executed. Care must be taken to enter the
separating commas if TRUEBR is omitted since the generator always interprets the
branch following the first comma as TRUEBR. The operand should read swirca=
EXPRESSION, ,FALSEBR.

The table on the following page is a list of the parameters which are valid in the
LocIC statement as well as the way they are treated by Locic when they are used as
a SWITCH Or as an EXPRESSION.

Logical expressions, in their simplest form, may consist of a single logical variable.
Logical operators are used to connect two or more logical variables in order to
form more complex logical expressions. Logical punctuation is used when neces-
sary to clarify an ambiguous logical expression.

Parameter Switch Expression
Index Word Bank of Switches Operand Field
Alteration Switch INVALID Alteration Switch

Electronic Switch
Undefined Term

Electronic Switch

Electronic Switch

pLINE Header Line

pLINE Subsequent Entry INVALID Operand Field

copk Header Line

copE Subsequent Entry INVALID Code Field

ptF Header Line Bank of Switches Operand Field

pa Header Line .. .

pc Header Line Digit SWlth or Operand Field
. Bank of Switches

psw Header Line

DnssibsequeltltEE?try Digit Switch or Digit Switch or

DA subsequent Lhtry Bank of Switches Operand Field

pc Subsequent Entry

psw Subsequent Entry Digit Switch Digit Switch

Program Switch

Program Switch

Program Switch

Also, literals are allowed in relational expressions. Any parameters not listed
above are invalid.

Logical variables may be of seven types; they can assume either one of two
values, which are interpreted as true and false, respectively.

Type Address True Condition False Condition
Electronic Switch Symbolic oN OFF
Alteration Switch “ oN OFF
Program Switch “ Plus Minus
Digit Switch “ >0 =0
Code Value “ Code value present Code value not present
Operand Field “ Not all zeros All zeros
Relational (See below) True False

Electronic Switch, Alteration Switch, Program Switch, Digit Switch. These four
switches require no explanation. Examples of the use of these switches with the
LOGIC macro-instruction are included under “Examples.” The use of an electronic

LOGIC 165

166

switch is illustrated in examples 6, 9, and 10; of an alteration switch in examples
7 and 10; of a program switch in examples 7, 9, and 10; of a digit switch in ex-
amples 1, 8, and 10.

Code Values. If a copk field has been defined in accordance with the instructions
outlined on page 50, it can be interrogated for the presence of a specific code
value by referencing the symbolic name of that code value. If the 50 states of
the Union are assigned the integers 1 through 50 in alphabetical order as code
values under a cope header line labeled staTe, the integer 1 will be assigned to
ALaBaMA. The word araBama then functions as a logical variable, and in any
given expression it will be regarded as true if the cope field sTaTE contains a 1,
false otherwise. The use of a code value is illustrated in examples 5 and 10 under
“Examples.”

Operand Fields. An operand field is a contiguous field of any length, not neces-
sarily confined to a single word. If an operand field is used as a swrtch to be set,
it is treated as a bank of switches. However, if the field is greater than one word,
only the first word of the field will be turned on and a warning message will be
issued.

If an operand field is used as an ExpressioN in the LocIC statement, it may be any
length. The field will be regarded as false if it contains all zeros, and true if one
digit contains a value other than zero. The sign of the zeros does not matter.
Alphameric zeros (@9090909090) will register as digits different from zero, but
alphameric blanks (@0000000000) will be treated as zeros in this context. The
use of an operand field as an ExpRessioN is illustrated in example 3 under “Ex-
amples.”

Relationals. Relational expressions are comparisons between two numerical or
two alphameric fields; the two types should not be mixed in a single comparison.

The six comparison operators available and their respective numerical and al-
phameric meanings are as follows:

Operator Numerical Meaning Alphameric Meaning
G is greater than follows
NOT G is not greater than does not follow
E is equal to is identical to
NOT E is not equal to is not identical to
L is less than precedes
NOTL is not less than does not precede

A relational expression is formed by placing one of these operators between two
fields and enclosing the resulting expression in parentheses. Care must be taken
that exactly one blank separates fields and the operator.

When comparing two numerical fields, either field may be symbolic or literal.
Numerical literals may be signed or unsigned; if unsigned, they will be in-
terpreted as positive. Both automatic-decimal and floating-decimal fields are
acceptable, and the modes may be freely mixed within a single relational expres-
sion.

The conditions and restrictions which apply to the use of the Locic macro-instruc-
tion are identical to those which apply to the comp macro-instruction. These are
as follows:

Logical Operators

Logical Punctuation
(Parentheses)

1. No automatic-decimal field may have more than twenty digits.

2. If an automatic-decimal number is compared to a floating-decimal number,
only its first eight significant digits will affect the comparison.

3. If two automatic-decimal numbers are compared, their combined length after
alignment of the decimal point may not exceed twenty digits. Any excess
decimals beyond this length are disregarded in the comparison.

Comparison of numerical fields is strictly algebraic. Of two positive fields, the
one with the greater absolute value will be regarded as larger of two negative
numbers, the one with the smaller absolute value will be regarded as larger; any
negative number is treated as smaller than any positive; zeros, whether positive
or negative, will be treated as smaller than any other positive and greater than
any other negative number.

For example, (aGE ¢ 17) will be true if the number in the field referenced by
AGE is larger than +17, false otherwise. The expression (TEMP Nor L — 13) is
true if TEMP is 2, 0, —5, or —13, false if it is —13.5. Examples 2, 8, and 10 under
“Examples” illustrate additional uses of relationals for comparing numerical fields.

When comparing two alphameric fields, either field may be symbolic or literal.
Literals must be enclosed in @ signs (e.g., @~Nvc@). There is no limitation on
the length of alphameric fields to be compared, except that literals may not ex-
ceed 120 characters. The relational expression tests for dictionary ordering, and
the comparison operators must be reinterpreted to the alphameric meaning indi-
cated in the chart above. Special characters will be included in this dictionary
ordering according to the standard collating sequence given in the 18M Reference
Manual “7070 Data Processing System.”

For example, (INiTIAL L @K@) will be regarded as true whenever the field
referenced by the word INITIAL contains a letter that precedes x in the alphabet,
or a special character whose two-digit numerical representation is less than 72.
(crapE Not ¢ @x@) will be false if the GrapE field contains ¥ or z, true if it
contains v, w, or X. (@12@ ¢ @aB@) is true. @ @ will be regarded as less
than any other alpha field.

Logical operators permit the construction of more complex expressions from logi-
cal variables. The Locic macro generator interprets three operators: NoT, AND,
and oOR.

Not. If not precedes an expression, it has the effect of changing its value to the
opposite; if it precedes a true expression, the resulting expression is false, and vice
versa. The use of nor is illustrated in examples 6, 9, and 10 under “Examples.”

And. If anp is placed between two expressions, a new and more complex ex-
pression results. This expression is true if, and only if, both of the component
expressions are true; otherwise it is false. The use of axp is illustrated in examples
7,9, and 10 under “Examples.”

Or. If or is placed between two expressions, a new and more complex expression
results. This expression is true if at least one of the component expressions is true,
possibly both. The compound expression, therefore, is false only if both of the
components are false. The use of or is illustrated in example 8 and 10 under
“Examples.”

Expressions resulting from logical operations upon variables may in turn serve
as components for larger expressions. Let capital letters represent electronic

LOGIC 167

Processing Techniques

Limitations on Length

Spacing and Punctuation

Address Modification

168

switches; then the expression A or NoT B will be true if a is on, or if NoT B is
true, ie., if B is off, or both. It will be false if and only if 4 is off and B is on.

The expression NoT 4 AND B, however, is ambiguous as it stands. It might have
been constructed from a and B by first operating upon them with anp, and then
prefacing the result with Not; in that case the expression will be true if B is off,
regardless of the status of o. On the other hand, it might have been built by
placing NoT before 4, and then operating upon the resulting expression and B
with the operator axp; in that case, if B is off the expression is false. To provide
the necessary distinction between these meanings, any compound logical expres-
sion must be enclosed in parentheses before it is operated upon again. This
would yield NoT (A anp B) and (NoT A) AND B, respectively, for the two
cases above. The use of parentheses is illustrated in examples 9 and 10 under
“Examples.”

To avoid excessive parenthesization, three conventions are adopted:

1. The operator Nor applies only to the shortest complete logical expression
immeditaely to its right. Thus NOoT A OR B is taken to mean (NOT A) OR B,
since A is a complete logical expression. If NoT (A OR B) was intended, the
parentheses would have to be explicitly written; then, since the operator NoT
is followed by a left parenthesis, the shortest complete expression to its right
is the entire parenthesized expression.

2. If the operators anp and OR occur in the same expression without intervening
parentheses, the terms connected by anp will be understood to be parenthe-
sized. Thus o AND B oR ¢ will be taken to mean (A aND B) OR c. If & AND
(B oR C) is intended, the parentheses must be written.

3. Repeated use of either aND or oR in the same logical expression is not am-
biguous and need not be parenthesized. The expression A or B oR c always
yields the same result, whether treated as (A or B) OB C or as A OR (B OR c).
However, because of a saving in object program time, Locic will deal with it
as though it had the latter form. See “Left-Orientation,” below.

The Locic macro generator will automatically interpret punctuated logical expres-
sions in the sense of these conventions. It will not, however, reject clear, correct
expressions in which parentheses are explicit that might have been suppressed.

Not more than 24 parameters may occur in any one LOGIC operand, counting the
switch to be set, each branch, each logical variable, and each logical operator; in
the case of repetitions, each occurrence is counted separately. A relational ex-
pression without Nor has three parameters; with ~or, four. Punctuation and ad-
dress modifiers are not counted as parameters.

A blank must both precede and follow each anp and or. If NoT precedes a paren-
thesized expression, no blank need intervene, but if it precedes some other oper-
and, a space should be left blank. In relational expressions, no blanks should oc-
cur between the enclosing parentheses and the fields to be compared. The oper-
ator should be separated by one blank from each of the fields, and, where Not
appears, from each other. No blanks should occur on either side of the equal sign
or on either side of the separating commas preceding branches.

Addresses occurring in the operand portion of a Locic statement may be freely
modified by indexing and address adjustment. The same is true of symbolic

Left-Orientation

Error and Warning
Messages

fields in relational expressions though not of literal fields in the same expressions;
this will, of course, require parentheses within parentheses. Address modification
is illustrated in example 10 under “Examples.”

In programming complex logical expressions, placing the simpler terms or condi-
tions on the left side of AND and oR operators will often result in a substantial sav-
ing of object program time. Thus, the logical expression

AORNOT B AND (AGEG26) (1)

will yield coding which may allow faster resolution than the logically equivalent

version (AGEG 26) AND NOTBORA (2)

In the object program, the truth of the individual logical variables is evaluated
from left to right in the order in which they appeared in the source statement.
Thus, if A is true in a given run of the object program, the above expression as a
whole is true, and if it was originally coded as in version (1), the determination
of the truth of B and of (ace ¢ 26) is bypassed. In version (2), no such quick
resolution can be obtained. (ace ¢ 26) will be the first logical variable to be
interrogated. The outcome of this test would not constitute suflicient information
for an evaluation of the truth of the expression as a whole. If the relational ex-
pression is true, 8 would have to be tested next, and if false, a.

The following error and warning messages will be issued during assembly under
the conditions specified:

EQUAL SIGN BEGINS INPUT — WILL IGNORE

This warning will be issued if the operand portion of the source statement be-
gins with an equal sign. The sign will be disregarded, and no instructions
will be generated to set a switch unless a second equal sign occurs in the state-
ment following the first operand entry.

ILLEGAL PUNCTUATION MARK USED

The only punctuation that may validly appear in a rocic statement consists
of an equal sign and a maximum of two commas as indicated under “Source

Program Format,” as well as parentheses, and plus, minus, and alpha signs.
Other special characters may occur only inside alphameric literals. In case of
violation, a Nop will be generated.

ILLEGAL TERM ENDS LOGICAL EXPRESSION

Some term that is neither a logical variable nor a right parenthesis ends the
source statement, or immediately precedes the first separating comma before
the branch entries. This condition may be caused if an unintended double
blank is interpreted by the generator to mean that the operand portion is com-
plete. A xop will be generated.

ILLEGAL TERM PRECEDES A BINARY OPERATOR

A term that is neither a right parenthesis nor a logical variable precedes an
AND or oR. A Nop will be generated.

ILLEGAL TERM PRECEDES A LEFT PAREN

Some term that is neither another left parenthesis, nor a logical operator, nor
an equal sign, precedes a left parenthesis. A xop will be generated.

ILLEGAL TERM PRECEDES A NOT

A term that is neither a logical operator, nor a left parenthesis, nor an equal
sign, precedes a NoT. A Nop will be generated.

LOGIC 169

Examples

170

ILLEGAL TERM PRECEDES A RIGHT PAREN

Some term that is neither another right parenthesis, nor a logical variable, nor
an address modifier, precedes a right parenthesis. A Nop will be generated.

ILLEGAL TERM PRECEDES PARAMETER XX

xx will be replaced by the number of a parameter which has been preceded
by a term that is neither a logical operator, nor a left parenthesis, nor an equal
sign. A ~Nop will be generated.

INVALID PARAMETER XX

This message will be issued if a parameter is not one specifically listed as valid
under “Source Program Format.” xx will be replaced by the number of the
parameter at fault. A Nop will be generated.

NO BRANCH OR SWITCH TO BE SET IN INPUT

The coding fails to indicate what implementation the generated instructions are
to initiate. A ~op will be generated.

NOTHING TO TEST IN LOGIC STATEMENT

The source statement does not contain an expression whose truth or falsity is
to be determined. A NoP is generated.

PAREN. MISSING AROUND ARITH-REL

Either the left or the right parenthesis has been omitted around a relational
expression. This message will also be issued if an attempt is made to run
together more than one comparison since the generator expects to find a right
parenthesis after the second field. For example, this message will be issued if
(MIN L AVERAGE L MAX) is encountered since the generator expects to find a
right parenthesis after AVERAGE.

PARENTHESIS NOT CLOSED

There is an excess of left parentheses, leaving at least one left parenthesis un-
paired. A nop will be generated.

TOO MANY RIGHT PARENTHESES

There is an excess of right parentheses, leaving at least one right parenthesis
unpaired. A Nop will be generated.

WILL SET SWITCHES IN FIRST LOCATION ONLY

This warning is issued if the switcH to be set is the label of a pa or pc header
line or subsequent entry, and if the referenced area bridges words. Only those
digits that lie in the first location will be affected by the generated instructions.

The following are examples of acceptable coding for the Locic macro-instruction.
For each, the associated source-program entries are given, followed by the rocic
statement, coding generated in-line, and (where applicable) coding generated
out-of-line.

JI19071

I.

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 00001e PAGE AA
LN CDREF LABEL OoP OPERAND CONO FD LOC INSTRUCTION REF
01 363 * LOGIC EXAMPLE 1
02 364 DSW DIGITSW 00001 00 0325 +1000000000 0325
03 365 FALSEBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0326 -0100090000
04 366 *
05 367 ANYLABEL LOGIC DIGITSWe 9FALSEBR
06 X ANYLABEL cb DIGITSWyO 0327 +0300000325
o7 X BE FALSEBR 0328 =4100090326
08 368 *
LOGIC Example 1
If the digit switch is ON, the program will continue with the next instruction.
If it is OFF, it will branch to FALSEBR.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
0l 2372 * LOGIC EXAMPLE 2.
02 373 DA 1 +0003250325
03 374 INCOME Os4A 04 0325 0325
Q4 375 TRVEBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0326 =0100090000
05 376 *
Q6 377 ANYLABEL LOGIC SWITCHa(INCOME G 4800) s TRUEBR
07 X ANYLABEL ZA2 INCOME(Q 94) 0327 +2300040325
08 X S2 +4800 0328 =2400030334
09 X BZ2 Me2 0329 +2000090333
10 X BM2 Me2 0330 =2000090333
11 X Mel ESN SWITCH 00002 0331 +6100100000
12 X B TRUEBR 0332 +0100090326
13 X Me2 ESF SWITCH 0333 +6100200000
l4 378 *
15 379 * THE FOLLOWING IS GENERATED OUT OF LINE
l6 380 *
LITERALS
17 X +4800 03 0334 +4800 0334

LOGIC Example 2

If the numerical field referenced by INCOME is greater than+4800, SWITCH

will be turned ON and the program will branch to TRUEBR.

If INCOME is

equal to or less than +4800, SWITCH will be turned OFF and the program

will continue sequentially. In this example, since the type of switch is

not specifically designated, SWITCH is assumed to be electronic switch 1.

Bl

PAGE AA
LN CDREF
0l 384

02 385

03 386

04 387

05 388

06 389

07

08

09

10

11

12 390

KX X X X

PROGRAM

LABEL oP
*
DA
OPFIELD
TRUEBR NOP
*
ANYLABEL LOGIC
ANYLABEL ZAl
Bz1
B
Mol NOP
ORIGIN CNTRL
*

LOGIC Example 3

OPERAND
LOGIC EXAMPLE 3.
1
0s9A
REPRESENTS FIRST
OPFI1ELD» TRUEBR
OPFIELD(O+9)
Mel
TRUEBR

*-1

7070 COMPILER SYSTEM VERSION OMY089 CHANGE LEVEL 00001

INSTRUCTION OF BRANCH ROUTINE

If OPFIELD contains any digits other than zeros, the program will

continue with the instruction labeled TRUEBR. If every digit is zero,

the program continues sequentially. Alphameric blanks (@0000000000)

register as zeros; alphameric zeros (@9090909090) register as digits

other than zero.

PAGE AA
LN CDREF
0l 401
02 402
03 403
04 404
05 405
06 406
07
08
09
10
11
1z
13
14 407
15 408
16 409
17
18

MM XXM XK X

> x

PROGRAM
LABEL oP
*
DA
SUBSCRIPT
FALSEBR NOP
*
ANYLABEL LOGIC
ANYLABEL ZAA
CA
BL
8H
Me2 ESF
8
Mel ESN
*
*
*
oC
Me5

LOGIC Example 4

OPERAND

LOGIC EXAMPLE 4.
1
5961
REPRESENTS FIRST

SWiTCH=(SUBSCRIPT NOT E

Me5(091)
SUBSCRIPT(0s1)
Mel

Mel

SWITCH
FALSEBR
SWITCH

(L)

7070 COMPILER SYSTEM VERSION OMYQ8s CHANGE LEVEL 0000le PAGE AA

INSTRUCTION OF BRANCH ROUTINE

1JY)9 9sFALSEBR

THE FOLLOWING IS GENERATED QUT OF LINE

If the field referenced by SUBSCRIPT, which must be alphameric,

contains a J, SWITCH will be turned OFF and the program will branch

to FALSEBR. If SUBSCRIPT contains a character different from J,

SWITCH will be turned ON and the program will continue sequentially.

CONO FO LOC

00001

09

CDNO FD

00001

00002

56

00003 01

0325
0326

0327
0328
0329
0330

LOC

0325
0326

0327
0328
0329
0330
0331
0332
0333

0334

INSTRUCT ION

+0003250325

=0100090000

+1300090325
+1000090330
+0100090326
=0100000000

INSTRUCTION

+0003250325

=0100090000

+1600010334
=1500560325
+40000903323
=4000090333
+6100200000
+0100090326
+6100100000

+0003340334
‘71

PAGE AA

REF

0325

REF

0325

0334

oI19071

LT

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYO8s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL opP OPERAND CDNO FD LOC INSTRUCTION REF
0l 413 * LOGIC EXAMPLE 5
Q2 414 DA 1 +0003250325
03 415 STATE CO0E 0 00 0325 0325
04 416 OHIO 5
05 417 TRVEBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0326 ~0100050000
06 418 FALSEBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0327 =0100090000
07 419 *
08 420 ANYLABEL LOGIC SWITCH=OHIOs TRUEBRIFALSEBR
09 X ANYLABEL co STATEsS 0328 +0300500325
10 X BE Mel 0329 =4100090332
11 X Me2 ESF SWITCH 0330 +6100200000
12 X B FALSEBR 00002 0331 +0100090327
13 X Mel ESN SWiTCH 0332 +6100100000
14 X 8 TRUEBR 0333 +0100090326
15 421 *
16 422 * THE FOLLOWING 1S GENERATED OUT OF LINE
17 423 *
LITERALS
18 X 5 00 0334 +5 0334
LOGIC Example 5
Assume that a CODE declarative statement has established a one~digit
CODE field labeled STATE, and that the code value corresponding to
OHIO is 5. If the STATE field contains a 5, SWITCH will be turned ON
and the program will branch to TRUEBR; otherwise, SWITCH will be
turned OFF and the program will branch to FAILSEBR.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 00001e PAGE AA
LN COREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
01 427 * LOGIC EXAMPLE 6
02 428 PROGSW NOP REPRESENTS PROGRAM SWITCH 00001 0325 =0100090000
03 429 *
04 430 ANYLABEL LOGIC PROGSWaNOT REGISTERED
05 X ANYLABEL BES REGISTERED IMe2 0326 +6100000329
06 X Mel MSP PROGSW 0327 =0300910325
07 X B Me3 0328 +0100090330
o8 X Me2 MSM PROGSW 0329 =0300610325
09 X Me3 NoOP 00002 0330 =0100000000
10 X ORIGIN CNTRL #-1
11 431 *

LOGIC Example 6

If the electronic switch REGISTERED is ON, the program switch PROGSW

will be turned OFF (i.e., its sign will be made minus); if REGISTERED

is OFF, PROGSW will be turned ON (plus). The program will continue

sequentially in either case.

Pl

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYQ8s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL opP OPERAND CDNO FD LOC INSTRUCTION REF
01 435 * LOGIC EXAMPLE 74
02 436 ALTSW EQU 1SN
03 437 PROGSW NOP REPRESENTS PROGRAM SWITCH 00001 0325 =0100090000
04 438 TRUEBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH 0326 =0100090000
05 439 FALSEBR NOP REPRESENTS FIRST INSTRUCTION OF BRANGCH 0327 =0100090000
06 440 *
07 441 ANYLABEL LOGIC PROGSW AND ALTSWsTRUEBRPFALSEBR
08 X ANYLABEL CSM PROGSW 0328 ~0300600325
09 X 8t FALSEBR 0329 =4100090327
10 X Me5 BAS ALTSW» TRUEBR 00002 0330 +5100100326
11 X 8 FALSEBR 0331 +0100090327
12 442 *
LOGIC Example 7
If both the program switch PROGSW and the alteration switch ALTSW
are ON, the program will branch to TRUEBR. If either one or both of
these switches are OFF, the program will continue with FALSEBR.
PAGE AA PROGRAM 7070 COMP{LER SYSTEM VERSION OMY08+ CHANGE LEVEL 00001e PAGE AA
LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
QL 446 * LOGIC EXAMPLE 8o
02 447 DSW ~DIGITSW 00001 00 0325 +0000000000 0325
03 448 DA 1 +0003260326
04 449 NET 099 09 0326 0326
05 450 TRUEBR NOP REPRESENTS FIRST INSTRUCTION QF BRANCH 00002 0327 =0100090000
06 451 *
07 452 ANYLABEL LOGIC DIGITSW OR (NET G 1200) » TRUEBR
08 X ANYLABEL cD DIGITSWs0 0328 +0300000325
0y X 8H TRUEBR 0329 -4000090327
10 X Me5 ZA2 NET{0s9) 0330 +2300090326
11 X 52 +1200 0331 ~2400030336
12 X Bva2 *+2 00003 0332 +2100090334
13 X BZ2 *+3 0333 +2000090336
14 X BM2 *42 0334 =2000090336
15 X B TRUEBR 0335 +0100050327
16 453 »
17 454 » THE FOLLOWING IS GENERATED OUT QF LINE
18 455 *
LITERALS
19 X +1200 03 0336 +1200 Q336

LOGIC Example 8

If the digit switch DIGITSW is ON, or if the numerical field NET contains

a number greater than +1200, or both, the program will continue with the

instruction labeled TRUEBR. Only if DIGITSW is OFF and the NET field

contains a number equal to or less than +1200 will the program continue

sequentially.

JI90T

LI

PAGE AA PROGRAM

LN CDREF LABEL oP OPERAND

Ol 459 * LOGIC EXAMPLE 9.

02 460 DSW -DIGITSW

03 461 PROGSW NOP REPRESENTS PROGRAM SWiTCH

04 462 *
05 463 ANYLAGEL LOGIC DIGITSWaNCT (ELECSW AND PROGSW)

06 X ANYLABEL BES ELECSWo*+2
o7 X B Mel
08 X Me5 CSM PROGSW
QY X BH Me2
10 X Mol ZAl +1111111111
11 X B Me &
12 X Me2 ZA1l +0
13 X Med STl DIGITSW
14 464 %
15 465 * THE FOLLOWING 1S GENERATED OUT OF LINE
16 466 *

LITERALS
17 X +1111111111
18 X +0

LOGIC Example 9

If both the electronic switch ELECSW and the program switch PROGSW
are ON, digit switch DIGITSW will be turned OFF. If either ELECSW
or PROGSW is OFF, or both, DIGITSW will be turned ON. In either case,

the program will continue sequentially.

CONC FD

00001 00

00002

00003 09
00

LOC

0325
0326

0327
0328
0329
0330
0331
0332
0333
0334

0335
0336

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l

INSTRUCTION

+0000000000
=0100050000

+6100000329
+0100090331
~0300600326
=4000090333
+1300090335
+0100090334
+130000033¢
+1200000325

+1111111111
+0

PAGE AA
REF

0325

0335
0336

9.1

PAGE AA

LN

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18

19

CDREF

470
471
472
473
474
475
476

477
478
479

K XXX X XXX

X e kI

PROGRAM
LABEL

*

MATRIX
FALSEBR
*

ANYLABEL

ANYLABEL

K4

2

LOGIC Example 10

oP

DA
NOP
LQGIC

ZA2
S2
Bv2
BZ2
B
ESF
8
ESN

7070 COMPILER SYSTEM VERSION OMY089
OPERAND CDNO FD

LOGIC EXAMPLE 10

1

099 09
REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001

SWITCH{XWORD+125)=(MATRIX(ROW=1) NOT E 1)ss REMARKS
FALSEBR(7=3) MAY BE USED.
MATRIX{099)=1+ROW

+1

*42

#p 2

Mel 00002
SWITCH+125+XWORD

FALSEBR=3+X7

SWITCH+125+XWORD

THE FOLLOWING 1S GENERATED OUT OF LINE

LITERALS

‘1 00

If the field defined as MATRIX, indexed by the index word ROW and address-

adjusted by -1, is not equal to +1, the electronic switch addressed by SWITCH,

indexed by XWORD and address-adjusted by +125, will be turned ON. Other-

wise the switch will be turned OFF and the program will continue with the

instruction located at FALSEBR incremented by the contents of index word

7 and decremented by 3.

CHANGE LEVEL 00001

LOoC

0325
0326

0327
0328
0329
0330
0331
0332
0333
0334

0335

INSTRUCT ION

+0003250325

=0100090000

+2301090324
=2400000335
+2100090331
+2000090332
+0100090334
+6102200125
+0107090323
+6102100125

+1

PAGE AA
REF

0325

0335

21901

LI

PAGE AA

LN

01
02
03
04
05
06
07
o8
09
10
11
12
13
14
15
16
17
18
19

20
21
22

COREF

483
484
485
486
487
488
489
490
491
492

493
494
495

XX XX XX

x X x

PROGRAM
LABEL

*

STATE
OHIOQ
NEWYORK
MA INE

TRUEBR

FALSEBR

*

ANYLABEL
ANYLABEL

M. 2

Mel

*

*
*

LOGIC Example 11

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l

oP OPERAND
LOGIC EXAMPLE 11

DA 8990+X87
CODE 0
5
6
7
NOP REPRESENTS FIRST INSTRUCTION
NOP REPRESENTS FIRST INSTRUCT|ON

LOGIC SWITCH=OHIOsTRUEBRYFALSEBR
(v} STATEs5

BE Mel

ESF SWITCH

8 FALSEBR

ESN SWITCH

8 TRUEBR

THE FOLLOWING IS GENERATED OUT OF LINE

LITERALS
5
6
7

This example is 8imilar to Example 5. Additional CODE values have been

established corresponding to NEWYORK and OHIO under a DA in which both

relative addressing and implicft indexing are used.

CONO FD

00

OF BRANCH ROUTINE 00001
OF BRANCH ROUTINE

00002

00
22

LOC INSTRUCTION

+0003250332
0325

0333 =0100090000
0334 =0100090000

0335 +0387500000
0336 =4100090339
0337 +6100200000
0338 40100090334
0339 +6100100000
0340 +0100090333

0341 +5
0341 + 6
0341 + 7

PAGE AA
REF

0000

0341
0341
0341

ZSIGN — Branch on Test for Zero and Sign

Source Program Format

178

ZSIGN generates instructions that will analyze a field or area for the presence ot
zeros and, if it is not zero, for its sign, and then branch accordingly.

The two basic formats for the zsion statement in the source program are as
follows:

ﬁ

Line Label ﬁperoﬁonl OPERAND Basic Autocode
] Si6 15|16 2021 25 30 35 40 45 50 55
o 4

. JANYLABEL, S1 GNF) ELD,,ZEROBR,PLUSBR, ,MI NUSBR,,ALPHABR

02 JANYLABEL ZS1 GNIF1ELD,NOZERO ,PLUSBR, MI NUSBR,ALPHABR
03

PR SR S 1 L

In these examples, ANYLABEL represents any symbolic label; it may ‘be omitted.
The entries zsicN and Nozero must be written exactly as shown. FIELD is the
symbolic name of the subsequent entry defining the field to be tested. It may also
be the header label of a declarative statement in which case the record area defined
will be tested. ZEROBR, PLUSBR, MINUSBR, and ALPHABR are the symbolic labels of
instructions to which the program will branch if the contents of the field or area
are found to be, respectively, zero, plus, minus, or alpha. In the second format,
the entry Nozero instead of zerosr will prevent testing for a zero condition;
branching then is purely according to sign.

The source program formats may be modified by the omission of one, two, or in
the case of the first format, even three branches. In that case, the object program
would take the next instruction following the zsiGN statement instead of the miss-
ing branch. Separating commas must be entered if any branch except the last is
omitted.

In the first format, if the field contains zeros, transfer will be to ZEROBR whether
the zeros are plus or minus. Alpha blanks (of the form @0000000000) will also
cause a branch to zerosr. Alpha zeros (@9090909090), on the other hand, will
cause the program to transfer to ALPHABR (except for the marginal case in which
the field has only one digit and that contains the zero digit of an alpha zero, in
which case transfer is to zerosr.) In this format, if the field does not contain
zeros, transfer will be according to the sign of the word in which the left-most
digit of the field is contained.

In the second format, branching will be determined by the sign of the word in
which the left-most digit of the field is contained.

In the following examples, assume that the field consists of the underlined digits:

Branch Taken Branch Taken
Contents of Storage Using the Using the
First Format Second Format
40001234567 PLUSBR PLUSBR
—1234567890 MINUSBR MINUSBR
@ 8361776979 ALPHABR ALPHABR

Processing Techniques

Limitations on Length

Address Modification

Error and Warning
Messages

Branch Taken Branch Taken

Contents of Storage Using the Using the
First Format Second Format

40000000000 ZEROBR PLUSBR
—0000000000 +0000000005 ZEROBR MINUSBR

@ 0000000000 ZEROBR ALPHABR
@9090909090 ALPHABR ALPHABR
@9090909090 ZEROBR ALPHABR
+0001234567 —1234567890 PLUSBR PLUSBR

@ 8272656274 +0000000000 ALPHABR ALPHABR

When a zsicN statement references the label of a pa header line, coding will be
generated to cause the following:

1. If the pa header line does not specify a relative address and implicit indexing,
the first record area defined will be tested as specified.

1o

If the pa header line specifies a relative address and implicit indexing, the
current record area (as determined by the contents of the implicit index
word) will be tested as specified.

When a zsiGN statement references any other declarative statement header line,
the entire area will be tested as specified.

The number of parameters is fixed by the format, subject only to the omission of
one or more branches. There is no limit to the size of the field to be tested.

Indexing and address adjustment are permitted on all symbolic addresses.

The following error and warning messages are issued during assembly under the
conditions indicated:

BRANCH TC NON-IMPERATIVE INSTRUCTION

One of the branch addresses to which the object program may transfer is not
the label of an imperative instruction, but, for example, that of a pa subse-
quent entry.

FIELD MISSING

This message will be issued if FIELD is omitted from the operand, e.g., if the
operand portion of the source statement begins with a comma.

FIELD UNACCEPTABLE

The FIELD entry contains a symbolic address of an entity that cannot meaning-
fully be tested for zero contents or sign, e.g., an alteration switch.

NO BRANCHES GIVEN

All four branches in the first format, or all three branches in the second format,
have been omitted. A xop will be generated to aid in patching if this condition
was unintended. It should be noted, however, that this instruction will accomp-
lish exactly what a literal interpretation of the source statement requires, i.e.,
the program will take the next instruction in any case.

ZSIGN 179

UNLIKELY — ALL BRANCHES IDENTICAL

All four branches in the first format, or all three branches in the second format,
are identical. In case the source statement is of the first format, coding for the
zero test will have been generated. Then the procedure is the same as for the
second format, i.e., a Nop will be generated, followed by an unconditional
Branch instruction to the required branch This again allows for patching while
implementing a strict interpretation of the source statement.

Exqmp|es The following are examples of acceptable coding for the zsicx macro-instruction.
For each, the associated source-program entries are given, followed by the zsiox
statement, and coding generated in-line.

180

NOISZ

18T

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
0l 501 * ZSIGN EXAMPLE 1

02 502 DA i +0003250325

03 503 ANYFIELD 399A443 39 0325 0325
04 504 ZEROBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0326 =0100090000

05 505 PLUSBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0327 =0100090000

06 506 M1INUSUR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0328 =0100090000

Q7 507 ALPHABR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0329 =~0100090000

08 508 *

09 509 ANYLABEL 2SIGN ANYFIELD?ZLEROBR#PLUSBRIMINUSBR9ALPHABR

10 X ANYLABEL ZAY ANYFIELD{(O6) 0330 +1300390325

il X 8Z1 ZEROBR 00002 0331 +1000090326

i2 X CSM ANYFIELD 0332 =0300600325

i3 X BL ALPHABR 0333 +4000090329

14 X Br MINUSBR 0334 =4100090328

1o X B PLUSBR 0335 +0100090327

16 510 *

ZSIGN Example 1

A field, less than one word in length, will be examined first for the

presence of zeros and, if it does not contain all zeros, for a plus,

minus, or alpha sign. A branch to the appropriate instruction will

be made based on what is found.

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN COREF LABEL oP OPERAND CDONO FD LOC INSTRUCTION REF
0l 514 * ZSIGN EXAMPLE 2

02 515 DA 1 +0003250325

03 516 FI1ELDX 099A 09 0325 0325
04 517 PLUSBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001 0326 =0100090000

05 518 MINUSBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 0327 =0100090000

Q6 519 *

07 520 ANYLABEL ZSI1GN FIELDXs9PLUSBRIMINUSBR

08 X ANYLAGSEL ZAl FIELDX{0»9} 0328 +1300090325

09 X BZi Mel 0329 41000090333

10 X CSM FI1ELDX 0330 =0300600325

11 X B PLUSBR 00002 0331 =4000090326

12 X B8t MiNUSBR 0332 =4100090327

13 X Mol NOP 0333 =0100000000

14 X ORIGIN CNTRL #*-1

15 521 »

ZSIGN Example 2

The program will examine the one-word field, FIELDX, for a plus or

minus sign and branch accordingly. If FIELDX only contains zeros or

has an alpha sign, the program will continue with the next sequential

instruction.

z8r

PAGE AA
LN COREF
QL 525
02 526
03 527
04 528
05 529
Q6 530
07 531
o8

09

10

il

le

13

14

15

16

17 532
18 533
19 534
20

XK XK XK XXX X

PROGRAM
LABEL

*

AFIELD
BRANCHX
BRANCHZ
*

ANYLABEL
ANYLAZEL

Me2

*

ZSIGN Example 3

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l

39

opP OPzRAND CONO FO
Z51GN EXAMPLE 3
DA 1
03469
NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001
NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE
ZSIGN AFIELD9BRANCHX » SRANCHZ s SRANCHZ 9 BRANCHX
XL MACREGSQ1++0000000005
ZAA AFiELD
AA AFIELD(7916)+MACREGS01
biX MACREGs01#Me2 00002
BVl *+2

BZ1 BRANCHX
CSM AFIELD
8L B8RANCHX
] BRANCHZ 00003

THE FOLLOWING 1S GENERATED QUT OF LINE

LITERALS
+0000000005

The program will examine a field greater than one word. If AFIELD

contains zeros or if the sign of the word in which the left-most digit

of AFIELD is contained is alpha, a branch to BRANCHX will be made.

If the sign is plus or minus, the branch will be to BRANCHZ.

09

LocC

0325
0332
0333

0334
0335
0336
0337
0338
0339
0340
0341
0342

0343

INSTRUCTION

+0003250331

=0100090000
=0100090000

+4500010343
+1600390325
+1701090326
+4900010336
+1100090340
+1000090332
=0300600325
+4000090332
+0100090333

+0000000005

REF

0325

0343

PAGE AA

PAGE AA
LN CDREF
01 536
02 537
03 538
04 539
05 540
06 541
07 542
08 543
0y

10

11

12 544

X
X
X

PROGRAM
LABEL

*

AFIELD
NOZEROQ
BRANCHZ
BRANCHX
*
ANYLABEL
ANYLADEL

*

ZSIGN Example 4

7070 COMPILER SYSTEM VERSION OMYO08s CHANGE LEVEL 0000le PAGE AA

39

opP OPLRAND CDNO FD
Z51GN EXAMPLE 4
DA 1
03469
NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001
NOP REPRESENTS FIRST INSTRUCTION OF BRANGH ROUTINE
NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

ZSIGN AFIELDINOZEROYBRANCHZ 9BRANCHZ s BRANCHX

<SM AFIELD

8L BRANCHX

8 BRANCHZ 00002

A field greater than one word will be examined for sign only. The pro-

gram will continue with the instruction located at BRANCHZ if the sign

of the word which contains the left-most digit of AFIELD is plus or minus,

or BRANCHX if the sign is alpha.

LoC

0325
0332
0333
0334

0335
0336
0337

INSTRUCTION

+0003250331

=0100090000
~0100090000
=0100090000

=0300600325
+4000090334
+0100090333

REF

0325

NOISZ

€81

PAGE AA
LN CDREF
0l 548
Gz 549
03
04
05
06
07 550
Q8 551
09 552
10 553
11 554
12 555
13 556
14
15
i€
17
lé
19
20 557

XX X X

X X X X X X

PROGRAM
LABEL

*

ANYFIELD
ZEROBR
PLUSBR
MINUSHER
ALPHABR
*
ANYLABEL
ANYLABEL

ZSIGN Example 5

oP

DA

NOP
NOP

NOP
NOP

ZSIGN
ZAl
321
csSM

Bt

OPERAND

ZSIGN EXAMPLE 5

49RDWO0+X13

319A4e3

REPRESENTS
REPRESENTS
REPRESENTS
REPRESENTS

FIRST
FIRST
FIRST
FIRST

7070 COMPILER SYSTEM VERSION OMY0O8s CHANGE LEVEL 0000l

ANYFIELDsZEROBRIPLUSBRIMINUSBRIALPHABR
ANYFIELD(096)+X13

ZLROBR
ANYFIELD+X13
ALPHABR
MINUSBR
PLUSBR

The actual ZSIGN test is the same as in Example 1.

ever, four blocked records are in the defined area.

CDNO FD
00001
39
INSTRUCTICN OF BRANCH ROUTINE 00002
INSTRUCTION OF BRANCH ROUTINE
INSTRUCTION OF BRANCH ROUTINE
INSTRUCT ION OF BRANCH ROUTINE
00003

In this case, how-

The test will be made

only on the field ANYFIELD in the current record area, as determined by

the contents of the implicit index word.

LOC

0325
0326
0327
0328
0329
0333
0334
0335
0336

0337
0338
0339
0340
0341
0342

INSTRUCT i ON

+0003250332
+0003290329
40003300330
+0003310331
~0003320332

=0100090000
=0100090000
~0100090000
=0100090000

+1313390000
+1000090333
-0313600000
+4000090336
=4100090335
+0100090334

PAGE AA

REF

0325
0326
0327
0328
0000

F8I

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYO8s CHANGE LEVEL 00001le

LN CDREF LABEL oP OPLRAND CDNO FOD
0l 56l * ZS1GN EXAMPLE 6

02 562 ANYLABEL DA 3990+ INDEXWORD

0> 563 FI1ELDA 015A6 04 09
04 564 FiELDb 109150 05
0> 565 FIELDC 16128 69
Qe 566 ZtROBR NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE 00001

07 567 PLUSER NOP REPRESENTS FIRST INSTRUCTION OF BRANCH RQUTINE

Qo 568 MINUSGER NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

0y 569 ALPHAER NOP REPRESENTS FIRST INSTRUCTION OF BRANCH ROUTINE

10 570 *

11 571 SOMELABEL ZSIGN ANYLABEL$ZEROBRIPLUSBRY REMARKS MAY

l2 572 MINUSSR2ALPHABR BE USED.

13 X SOMELABEL ZAA Q(099)+INDEXWORD

14 X AA 0(10919)+INDEXWORD 00002

15 X AA 0(20929)+INDEXWORD

16 X BVi *+2

17 X BZ1 ZEROBR

lé X CSM O+ INDEXWORD

19 X 8L ALPHABR 00003

20 X B8t MINUSBR

21 X B PLUSBR

22 573 »*

ZSIGN Example 6

Since the label of the DA header line is addressed in the ZSIGN statement,
the entire area through digit position 29 will be tested for zeros. Since
implicit indexing has been used, the current record will be tested. If

the record does not contain all zeros, the sign of the word which contains
the left-most digit of ANYLABEL (FIELDA) will be checked, and appro-

priate branches will be made.

LoC

0325
0326
0326
0334
0335
0336
0337

0338
0339
0340
0341
0342
0343
0344
0345
0346

INSTRUCT ION

+0003250333

~0100090000
=~0100090000
=0100090000
=0100090000

+1601050000
+1701090001
+1701090002
+1100090343
+1000090334
=0301600000
+4000090337
=4100090336
+0100090335

PAGE AA
REF

0000
0001
0001

SETSW —Set Switch

Source Program Format

Processing Techniques

Limitations on Length

Address Modification

Error and Warning
Messages

SETSw generates instructions to set one or more digit, electronic, or program
switches to an on or off condition.

The basic format for the seTsw statement in the source program is as follows:

Label J?pemf OPERAND J
15[16 20J21 30 35 40 45
. JANYLABEL ISETS, -LLSJ_N.A.L SWB. LSWC.etc.. ., \(

In this example, ANYLABEL is any symbolic label; it may be omitted. The entry
sersw must be written exactly as shown. The entries swa, sws, etc., represent
names of switches that are to be turned on or orr. If the switch is a program or a
digit switch, the name must be symbolic; the label of a series of digit switches
established by a psw (Define Switch) statement may be used. If the switch is
electronic, either its symbolic or its actual one- or two-digit name may be used.
The various types may be freely intermingled within the operand portion of a
single sersw statement.

Switches preceded by a plus sign will be turned ox; those preceded by a minus
sign will be turned oFr. The sign may be omitted, in which case it will be as-
sumed to be plus. If a series of switches established by a psw instruction is in-
cluded, all of the component switches will be turned o~ or orF according to the
sign (or its absence) preceding the label.

Commas must be entered between successive entries in the operand portion of
the seTsw statement.

The operand portion may include 94 parameters. Any excess will be ignored.

All symbolic addresses may be modified by indexing and address adjustment.

The following error and warning messages will be issued during assembly under
the conditions specified:

INSTRUCTION NOT PROGRAM SWITCH PAR. XX

An attempt has been made to turn a program switch ox or oFF (to make plus
or minus an instruction with operation code 01) and the instruction addressed
fails to have this operation code. xx will be replaced by the number of the
parameter at fault. Coding will be generated to implement the sign adjustment
nevertheless.

SETSW 185

Example

186

INVALID SWITCH. PARAMETER XX

An attempt has been made to set hardware switches, such as alteration
switches, by use of the seTsw statement, or other unacceptable operand entries
have been made. xx will be replaced by the number of the parameter at fault.

The following is an example of acceptable coding for the sErsw macro-instruc-
tion. The associated source-program entries are given, followed by the sETsw
statement, the coding generated in-line, and the coding out-of-line.

MSLAS

28T

PAGE AA

LN

0l
Qc
02
04
0>
oo
07
Cu
0v
10
ii
12
13
14
15
16
17
Lo

19
20

CDREF

577
578
579
580
581
582
583

584
585
586

KX XX XXX X

PROGRAM
LABEL

#*

PROGSWA
PROGSWB

*
ANYLAbEL

ANYLAGEL

SETSW Example 1

oP

DSW
NOP
NOP

SLTSW

ESN
ESF
MSP
ZAl
ST1
MSM
ZA2
ST2

TriE FOLLOWING

7070 COMPILER SYSTEM VERSION OMYO08»s

OPERAND

S.TSW EXAMPLE 1

=0 I GSWBe+D I GSWA
REPRESENTS PRUGRANM SWITCH
REPRESENTS PROGRAM SwWiTCH

ELECSWAI=21 9PROGOWAY+D IGESWAY
-PROGSWB s~L | GSWB

ELECSWA

21

PROGSWA

+1111111111

DIGSWA

PROGSWB

+Q

DIGSWB

1S GENERATED QUT OF LINE

LITERALS

+1111111111
+0

Electronic switch A, program switch A, and digit switch(es) A will be

turned ON, Electronic switch 21, program switch B, and digit switch(es)

B will be turned OF¥,

REMARKS MAY
BE USEDe

CDONO FD

00001 01

00002

00003

09
00

CHANGE LEVEL 0000l

LOC

0325
0326
0327

0328
0329
0330
0331
0332
0333
0334
0335

0336
0337

INSTRUCT ION

+0100000000
=0100090000
=0100090000

+6100100000
+6300200000
=0300910326
+1300090336
+1200110325
=0300610327
+2300000337
+2200000325

+1111111111
+0

PAGE AA
REF

0325

0336
0337

ZERO —Zero Storage

Source Program Format

Processing Techniques

Limitations on Length

Address Modification

The Effect of ZERO

188

ZERO generates instructions to replace the contents of fields or areas with zeros
or blanks.

The basic format for the zero statement in the source program is as follows:

Label perationlr OPERAND i
l5ll6 2021 25 30 35 40 as
_JANYLABEL. [ZERO |FIELDA,AREAB FIELDC,, etc.. __

ANYLABEL is any symbolic label; it may be omitted. The entry zero must be
written exactly as shown. FIELDA, AREAB, etc., may be the symbolic names of
any defined fields or areas. Areas, numerical fields and alphameric fields may be
freely intermingled.

The operand portion of the zEro macro-instruction may contain up to 94 entries.
There is no limit on the size of the fields named.

All symbolic addresses may be modified by indexing and address adjustment.

Fields and Areas. pLINE areas and all fields defined as alphameric will be re-
placed by the double-digit representation of blanks. Whole words will be made
alpha; the sign of partial words will not be altered.

In all other fields or areas, whole words will be replaced by plus zeros; partial
words will be replaced by zeros but the sign will not be altered.

The following examples illustrate the effect of zErRo on various fields. The field
addressed is underlined.

Field
No. Definition Before ZERO After ZERO

1. 0,9A10.0 —8342168900 +0000000000

2. 0,9@ @9192616263 @ 0000000000

3. 0,13A —9342168900 —1869123456 +0000000000 —0000123456
4. 0,13A —8342168900 +1869123456 +0000000000 +0000123456
5. 0,15@ @9192616262 @6162636465 @ 0000000000 @ 0000006465
6. 0,15@ —90192616263 —6162636465 @ 0000000000 —0000006465
7. 4,8A50 —1234012345 —1234000005

8. 4,8A50 @8283909195 @8283000005

Error and Warning
Messages

Examples

In example 8, machine difficulties may arise when an attempt is made to print
out the zeroed word, since the combination 05 has no meaning in double-digit,
alphameric code.

Declarative Statement Header Lines. When zero references the label of a pa
header line, coding will be generated to cause the following:

L. If the pa header line does not specify a relative address and implicit indexing,
the first record area defined will be set to plus zeros.

2. If the pa header line specifies a relative address and implicit indexing, the
current record area (as determined by the contents of the implicit index word)
will be set to plus zeros.

If zero references the label of a pLINE header line, coding will be generated to
cause the entire area, including constants (if any), to be set to blanks.

If zero references the label of a prow, a warning message will be issued, but
coding will be generated to cause the first row generated (not the area it de-
fines) to be set to plus zeros.

When zEro references the label of any other declarative statement header line,
coding will be generated to cause the entire area to be set to plus zeros.

Instructions. If zero references the label of an instruction, a warning message
will be issued, but coding will be generated to cause the instruction to be set to
plus zeros.

The following error and warning messages will be issued during assembly under
the conditions specified:

ALPHA BLANKS INTO UNDEFINED PAR. XX

The xx will be replaced by the parameter number of the operand without
defined characteristics. This field will be filled with alphameric blanks.

ATTEMPTING TO ZERO HARDWARE. PAR. XX

The field to be zeroed has been defined by means of an EQU line as a hard-
ware device. A Nop will be generated.

NO FIELD SIZE. PAR. XX

The parameter record of the operand entry whose number replaces the xx of
the message does not indicate the size of the field to be zeroed out. A Nop will
be generated.

ZEROING DC. PAR. XX

The label of a pc header line has been used as an operand. The parameter
number will replace the xx of the warning message. Coding will be generated
nevertheless.

ZEROING INSTRUCTION. PAR. XX

This warning message, with the parameter number of the faulty entry in place
of the xx, will be issued whenever an attempt is made to zero out an instruc-
tion, whether symbolic machine or macro. Coding will be generated, however.

The following are examples of acceptable coding for the zEro macro-instruction.
For each, the associated source-program entries are given, followed by the zero
statement, coding generated in-line, and coding generated out-of-line.

ZERO 189

06T

PAGE AA PROGRAM

LN CDREF LABEL oP OPERAND

01 601 = ZERO EXAMPLE 1

02 602 DA 1

03 603 FIELDA 00499

04 604 FIELDB 1001103A

05 605 FIELDC 1109129A

06 606 FIELDD 13251131A

07 607 *

08 608 ANYLABEL ZERO FIELDAFIELDBFIELDCs REMARKS MAY

09 609 FIELDD BE USED.
[

10 X ANYLABEL ZAl

11 X ST1 FIELDA(O99)

12 X XZA MACREGe1sFIELDA
13 X RS MACREGel9Me2

14 X STD1 FIELDBI(O9#3)

12 X ZA2 +0

16 X ST2 FIELDC(O99)

17 X ST2 FIELDC(10919)
18 X STD1 FIELDD(Os7)

19 X sT2 FIELDD(817)

20 X XZA MACREGelsF IELDD+1
21 X RS MACREGel9Me3

22 X STD1 FIELDD(99819999)

23 610 *
24 611 *
25 612 »

THE FOLLOWING |S GENERATED OUT OF LINE

26 X Me2 DRDW ~FIELDA+1sFIELDA+9

27 X Me3 DRDW ~FIELDD+22FIELDD+99
LITERALS

28 X +0

29 X L

ZERO Example 1

FIELDA will be filled with alphameric blanks. FIELDB will be filled
with zeros; the sign of the word will not be changed. FIELDC will be
filled with plus zeros. The first and last words in which digits of
FIELDD occur will have the portion occupied by FIELDD replaced by
zeros; the sign of these words will not be changed. The rest of FIELDD

will be filled with plus zeros.

CDNO FD

00001

00002

00003

00004
00005

09
03
09
29

00
0l

LOC

0325
0335
0336
0338

0439
0440
0441
0442
0443
Ohhi
0445
0446
0447
0448
0449
0450
0451

0452
0453

0454
0455

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le

INSTRUCT ION

+0003250438

+1300010455
+1200090325
+4600010325
+6500010452
=1200030335
+2300000454
+2200090336
+2200090337
=1200290338
+2200090339
+4600010339
+6500010453
=1200010438

=0003260334
=0003400437

+0
100

PAGE AA
REF

0325
0335
0336
0338

0454
0455

OYdZ

I61

PAGE AA

LN CDREF

0i
0z
03
04
05
06
Q7
08
0%
10
11
12
13
14
15
16
17
18
ly
20
21
22
23
24

25
26

616
617

618
619
620
621
622

623
624
625

KX XXX XXX XXXXNX

PROGRAM

LABEL

*

FI1ELDA
FIELDB
FIELDC

»*
ANYLABEL
ANYLABEL

*

ZERO Example 2

oP OPERAND
ZERO EXAMPLE 2
DA 2 9RDW s 0+ INDEXWORD
00495
969103A
1109129A
ZERQO FIELDAYFIELDBsFIELDC
ZAl L
STl FIELDALO»9)+ INDEXWORD
X1S MACREGe29F | ELDA+1+INDEXWORD
XSN MACREGe2¢F | ELDA+8+ INDEXWORD
XZA MACREGe1sF | ELDA+INDEXWORD
RS MACREGe1 sMACREGe2
STD1 FIELDA(90995)+INDEXWORD
STD1 FIELDB(O93)+INDEXWORD
STD1 FIELDB(497)+INDEXWORD
ZA2 +0
sT2 FIELDC(0»9)+INDEXWORD
ST2 FIELDC(10919)+INDEXWORD
THE FOLLOWING IS GENERATED OUT OF LI
LITERALS
+0

In the current record area, as determined by the contents of the implicit

index word, FIELDA will be filled with alphameric blanks and FIELDB

will be filled with zeros. Note that the last word that contains digits

of FIELDA also contains digits of FIELDB. The sign of this word,

therefore, will not be changed. The sign of the last word which contains

digits of FIELDB will also remain unchanged since it is only a partial

word. The contents of FIELDC will be replaced with plus zeros.

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 00001l

CONO FD

00001

09
69
09

00002

00003

00004

NE

00
00005 01

LOC

0325
0326
0327
0336
0338

0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364

0365
0366

INSTRUCT ION

+0003250352
+000327033%
=0003400352

+1300010366
+1201090000
-4601020001
+4801020008
+4601030000
+6500030002
=1201050009
=1201690009
=1201030010
+2300000365
+2201090011
+2201090012

+0
‘00

PAGE AA

REF

0325
0326
0000
0009
0011

0365
0366

36T

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l1e PAGE AA
LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
0l 629 * ZERO EXAMPLE 3
02 630 AREANAME DA 1 +0003250349
03 631 FIELDA 00s99! 09 0325 0325
04 632 FIELDB 10001034 03 0335 0335
05 633 FIELDC 1049129A 49 0335 0335
06 634 FIELDD 1309249A 09 0338 0338
Q7 635 *
08 636 ANYLABEL ZERQ AREANAME
09 X ANYLABEL 2ZA2 +0 00001 0350 +23200000355
10 X ST AREANAME (099) 0351 +2200090325
11 X XZA MACREGe 1 s AREANAME 0352 +4600010325
12 X RS MACREGe19Me2 0353 +6500010354
13 637 *
14 638 * THE FOLLOWING 1S GENERATED OUT OF LINE
15 639 *
16 X Me2 DRDW —=AREANAME+1sAREANAME+24 0354 =0003260349

LITERALS
17 X +0 00002 00 0355 +0 0355
ZERO Example 3
Since the ZERO statement references the label of the DA header line,
the entire record area defined will be filled with plus zeros.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL oP OPERAND CDONO FD LOC INSTRUCTION REF
01 643 * ZERO EXAMPLE 4
02 644 AREANAME DA 29RDW O+ i NDEXWORD +0003250348
03 X 00001 0325 +0003270337 0325
04 X 0326 =0003380348 0326
05 645 FIELDA 00999 09 0327 0000
06 646 FIELDB 1009103A 03 0337 0010
07 647 *
08 648 ANYLABEL ZERQO AREANAME
09 X ANYLABEL 2A2 +0 00002 0349 +2300000355
10 X ST2 0(0+9)+INDEXWORD 0350 +2201090000
11 X X2s MACREGe290+1+ | NDEXWORD 0351 =4601020001
12 X XSN MACREGe290+10+INDEXWORD 0352 +4801020010
13 X XZA MACREGe 190+ INDEXWORD 0353 +4601030000
14 X RS MACREGe 1 MACREGe2 00003 0354 +6500030002
15 649 »
16 650 * THE FOLLOWING IS GENERATED OUT OF LINE
17 651 *

LITERALS
18 X +0 00 0355 +0 0355

ZERO Example 4

The ZERO statement in this example references the label of a DA header

line which specifies a relative address and implicit indexing. The con-

tents of the current record area will be filled with plus zeros.

OYHZ

£6T

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL Q000le PAGE AA

LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
0i 655 ¥* ZERQ EXAMPLE 5
02 656 DRDWNAME DRDW AREANAME
03 X DRDWNAME DRDW +AREANAML s AREANAME+24 00001 0325 40003270351
84 ; X DRDW =AREANAME+25sAREANAME+49 0326 =0003520376

5 65 *
06 658 AREANAME DA 2990+ INDEXWORD +0003270376
07 659 FIELDA 00999! 09 0327 0000
08 660 FIELDB 1009103A 03 0337 0010
09 661 FIELDC 1049129A 49 0337 0010
10 662 FIELDD 1309249A 09 0340 0013
11 663 *

lz 664 ANYLABEL ZERO DRDWNAME M
13 X ANYLABEL ZA2 +0 00002 0377 +2300000379

14 X STD2 DRDWNAME(099) 0378 =2200090325

15 665 *

16 666 * THE FOLLOWING 15 GENERATED OUT OF LINE

17 667 »*

LITERALY
18 X +0 00 0379 +0 0379

—~— T~ T N T T L I

ZERO Example 5
ERROR MESSAGE LIST

PG/LN MESSAGE The warning message shown will be issued since the ZERO statement

P
AA 12 ZEROING INSTRUCTIONe PAR4000002000A references the label of a DRDW. Coding has been generated, however,

to cause the first RDW generated to be filled with plus zeros.

P61

PAGE AA

LN

CDREF

671
672
673
674

675
676
877
678
679
680
681
682

683
684
685

X X XX X

PROGRAM
LABEL

*
L INENAME

GROSSAMT
CHECKAMT
| TEMNAME
FLVAR

»
ANYLABEL
ANYLABEL

*

ZERO Example 6

The contents of the DLINE field CHECKAMT is replaced with afphameric

blanks.

oP

DLINE

ZERO
ZA2
STD2
ZAl
STl
STO1

THE FOLLOWING

OPERAND

ZtRO EXAMPLE 6

101
10'TOTAL!

18131
19X9sXXXeZZ)DRCR
605X 9XXZeZZ)C
80494

95F

1201 *R

CHECKAMT
+0

CHECKAMT (091)
(]

CHECKAMT (2911)
CHECKAMT(12919)

LITERALS

of partial words are not altered.

+0
[

The sign of whole words in the field are set to alpha; the sign

7070 COMPILER SYSTEM VERSION OMY08s» CHANGE LEVEL 0000ls

CDNO FD

00005
00006

00007
00008

00009

1S GENERATED OUT OF LINE

00010
00011

(03}

07
45
69
89
89
89
89

00
01

LoC

0325
0326
0327
0328
0328
0336
0340
0343
0348

0349
0350
0351
0352
0353

0354
0355

INSTRUCT I ON

+0003250348
191

' 83
176836173

' 25

! 80

+2300000354
=2200890336
+1300010355
+1200090337
=1200070338

+0
100

PAGE AA
REF

0325
0326
0327
0328
0328
0336
0340
0343
0348

0354
0355

oudZ

S61

PAGE AA PROUGRAM 7070 COMP|LER SYSTEM VERSION OMY089 CHANGE LEVEL 0000ls PAGE AA
LN COREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
0l 689 * ZeRO EXAMPLE 7
02 690 LI NENAME DLINE 00002 +0003250333
03 691 AMOUNTONE 193X 9XXXe2Z 69 0328 . 0328
04 692 AMOUNTTWO BO0BX P XXX 9 XXX e XX 89 0330 0330
05 693 *
06 694 ANYLABEL ZLRO LINENAME
o7 X ANYLABEL ZAl L 00003 0334 +13200010339
08 X ST1 LINENAME(0+9) 0335 41200090325
09 X XZA MACREGelsLINENAME 0336 +4600010325
i0 X RS MACREGel9Me2 0337 +6500010338
11 695 *
le 696 * THE FOLLOWING 1S GENERATED QUT OF LINE
13 697 *
14 X Me2 DROW ~LINENAME+19LINENAME+8 0338 =0003260333
LITERALS
15 X vt 00004 01 0339 100 0339
ZERO Example 7
The entire area, including constants, will be filled with alphameric
blanks since the label of the DLINE header line is referenced in the
ZERO statement.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 00001s PAGE AA
LN CDREF LASEL oP OPERAND CONQ FD LOC INSTRUCTION REF
01 69Q1 * ZERO EXAMPLL &
'0¢ 6902 AREANAME DA 1 +0003250331
03 6903 FIELDA 00923 09 0325 0325
04 6904 FI1ELDD 30935A 05 0328 0328
05 6905 FI1ELDC 45955 59 0329 0329
06 6906 65 55 0331 0331
07 6907 ANYLABEL ZERQO AREANAME
08 X ANYLABEL ZA2 +0 00001 0332 42300000337
0y X Si12 AREANAME(Q99) 0333 +2200090325
10 X XZA MACREGe 1 yAREANAME 0334 +4600010325
il X RS MACREGel9Me2 0335 +6500010336
12 6908 *
13 6909 #* THE FOLLOWING 1S GENERATED OUT OF LINE
14 6910 *
i> X Me2 DROW =~AREANAME+19»AREANAME+6 0336 =0003260331
LITERALS
16 X +0 00002 00 0337 +0 0337

ZERO Example 8

Since the label of the DA header line is referenced by the ZERO state-

ment, the entire area through digit position 69 will be filled with plus

Zeros.

FILL—Fill Storage

Source Program Format

Processing Techniques

Limitations on Length

Address Modification

The Effect of FILL

196

FILL generates instructions to replace the contents of fields or areas with a speci-
fied constant.

The basic format for the FILL statement in the source program is as follows:

E . . OPERAND :
i t Basic Aulocoder—»ol j
'3Lmess Label 15| |5Pem IZ“OJZI 25 30 35 40 45 50 55 [

o1, [ANYLABEL . FILL [FIELDA,AREAS, WITH ih AND FIELDB WITH @z@|ug.i
02 . S .

ANYLABEL is any symbolic label; it may be omitted. The entry FiLL and the anp
and wiITH separators must be written exactly as shown. FIELDA, AREA], etc., may
be the symbolic names of any defined fields or areas. Areas, numerical fields, and
alphameric fields may be freely intermingled.

The operand portion of the FILL macro-instruction may contain up to 94 entries,
including areas and fields to be filled, the wiTe and AND separators, and the char-
acters to be inserted. There is no limit on the size of the fields named.

All symbolic addresses may be modified by indexing and address adjustment.
ym y y g]

Fields and Areas. The sign of the words in the field or area to be filled will not
affect the generated instructions. Each word in the entire field or area, and any
word in which a segment of the field may appear, will be set to the sign of the
filling constant. It is thus possible to introduce invalid alpha combinations in the
following two cases:

1. The field specified is numerical and occupies part of a word(s) and is being
filled with an alphameric character.

2. A field with an odd number of digits, or a field that begins in an odd-num-
bered position, is being filled with an alphameric character.

In case 2, a warning message will be issued.

If two fields are specified in the same word, and each field is to be filled with a

different constant, the sign of the word is determined by the sign of the constant
which £ills a field last.

The following examples illustrate the effect of FiLL on various fields. The field
addressed is underlined.

Error and Warning
Messages

Field Filling

No. Definition Before FILL Constant After FILL
1. 00,09A10.0 —1234567890 +9 49999999999
2. 00,06A4.2 —1234560000 +1 +1111110000
3. 0514 +6789523721 +4376411111 @y@ @6789588888@ 8888811111
4. 08,08 +1234567890 —1 —1234567190
5. 00,15@ @0061626364 @6564630000 +9 49999999999 +9999990000
6. 00,03 +1234567890 -1 —1111567890
04,09 —1111567890 +2 +1111222222

In example 3, invalid, double-digit combinations (58, 81, and 11) are introduced.
These may cause machine difficulties when an attempt is made to print out these
words.

Declarative Statement Header Lines. When riLL references the label of a pa
header line, coding will be generated to cause the following:

1. If the pa header line does not specify a relative address and implicit index-
ing, the first record area defined will be filled with the specified value.

2. If the pa header line specifies a relative address and implicit indexing, the
current record area (as determined by the contents of the implicit index word)
will be filled with the specified value.

If FiL references the label of a pLINE header line, coding will be generated to
cause the entire area, including constants (if any), to be filled.

If FiLL references the label of a prRoW, a warning message will be issued, but cod-
ing will be generated to cause the first row generated (not the area it defines)
to be filled.

When FiiL references the label of any other declarative statement header line,
coding will be generated to cause the entire area to be filled.

Instructions. If Fiir references the label of an instruction, a warning message
will be issued, but coding will be generated to cause the instruction to be filled.

The following error and warning messages will be issued during assembly under
the conditions specified:

ATTEMPTING TO FILL HARDWARE. PAR. XX

The field to be filled has been defined by means of an EQu line as a hardware
device. A ~op will be generated.

FILLING INSTRUCTION. PAR. XX

This warning message, with the parameter number of the faulty entry in place
of the xx, will be issued whenever an attempt is made to fill an instruction,
whether symbolic machine or macro. Coding will be generated, however.

NO FIELD SIZE. PAR. XX

The parameter record of the operand entry, whose number replaces the xx of
the message, does not indicate the size of the field to be filled. A ~op will be
generated.

FILL 197

WARNING. INVALID ALPHA MAY BE INTRODUCED.
An alphameric character is filling a field with an odd number of digits, or a
field that begins in an odd-numbered position.

Examples The following are examples of acceptable coding for the FILL macrc-instruction.
For each, the associated source-program entries are given, followed by the Frrz
statement, coding generated in-line, and coding generated out-of-line.

198

T

661

PAGE AA
LN CDREF
0l 902
02 903
03 904
Q4 905
05 906
06 907
07 908
08
09
10
11
12
13
14
15 909
le 910
17 91l
18
19
20

KX X X XXX

X
X
X

PROGRAM
LABEL

#*

FIELDA
FIELDDB
FIELDC

*
ANYLABEL
ANYLABEL

L

oP

DA

FiLL
ZAl
ST1
ZAl
ST1
ZAl
STl
STL

THE FOLLOWING

OPERAND

FILL EXAMPLE 1

1

06+09A
10919A
28931A

7070 COMPILER SYSTEM VERSION OMYO08»

FIELDA WITH +1 AND FIELDB WITH =1 AND FIELDC WiTH '¥!

+1111113111
FIELDA(O3)
-1111111111
FIELDB(O9)
rYYYYY!

FIELDC(O1)
FIELDC(293)

LITERALS

+1111111111
-1111111111
TYYYYY!

1S GENERATED QUT OF LINE

CDNO FD

69
09
89

00001

00002

09
09
00003 09

CHANGE LEVEL 00COle

LocC

0325
0326
0327

0329
0330
0331
0332
0333
0334
0335

0336
0337
0338

INSTRUCT ION

+0003250328

+1300090336
+1200690325
+1300090337
+1200090326
+1300090338
+1200890327
+1200010328

+1111111111
-1111111111
18888888888

PAGE AA
REF

0325
0326
0327

0336
0337
0338

v\/\f\/f\/\,w//—\

CRROR MESSKGE LIST

PG/LN

AA 07 WARNING-INVALID ALPHA MAY BE INTRODUCED

MESSAGE

FILL Example 1

FIELDA and FIELDB will be filled with 1s and the sign of the words in
which each appears will be set to plus and minus respectively. FIELDC

will be filled with Ys and, since it bridges words, the signs of the two

words in which it appears will be set to alpha.

008

PAGE AA
LN CDREF
0L 914
0c¢ 915
03 916
04 917
05 918
06 919
07 920
08 921
0y 922
10
i1
12
i3
14
15
16
17 923
18 924
1y 925
20
21
22

MM XK XX XX

x X x

PROGRAM
LABEL

*

AF IELD
BFIELD
CFIELD
DFIELD
#*

ANYLABEL

ANYLASEL

*

FILL Example 2

oP OPERAND
FlLL EXAMPLE 2
DA 2
0009
109151
20023
30933
FiLL AFIELD WITH
WITH =1
ZAl ' '
ST1 AFIELD(0»9)
ZAl +i111111111
ST1 BFIELD(0Q95)
ST1 CFIELD(O93)
ZAl =-1111111111
ST1 DFIELD(093)

THE FOLLOWING

LITERALS

+1111111111
=-1111111111
1 [

IS GENERATED OUT

7070

't ' AND BFIELDsCFIELD WITH +1 AND DFIELD

OF LINE

In the first record area defined, AFIELD will be filled with alphameric

blanks. BFIELD and CFIELD will be filled with 1s and the sign of the

word in which each appears will be set to plus. DFIELD will also be

filled with 1s, but the sign of the word will be set to minus.

CDNO

00001

00002

00003

COMP ILER SYSTEM VERSION OMYO08»

FD

09
05
03
03

09
09
09

CHANGE LEVEL 0000l

LoC

0325
0326
0327
0328

0333
0334
0335
0336
0337
0338
0339

0340
0341
0342

INSTRUCT ION

+0003250332

+1300090342
+1200090325
+1300090340
+1200050326
+1200030327
+1300090341
+1200030328

+1111111111
=-1111111111
10000000000

PAGE AA

REF

0325
0326
0327
0328

0340
0341
0342

TIIL

108

PAGE AA
LN CDREF
01 928
0¢ 929
03

04

05 930
06 931
Q7 932
08 933
09 934
10

11

12

13

14

15

16 935
17 936
18 937
19

20

21

XK XXX XX

X X X

PROGRAM
LABEL

*

* N D>

ANYLABEL
ANYLABEL

3

FILL Example 3

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le

oP OPERAND

FiLL EXAMPLE 3
DA 29RDW O+ INDEXWORD

00401
10911
20921

FILL A WITH +9 AND 8 WITH =9 AND C WITH 2!
ZAl +9999999999

ST1 A{Qs1)+INDEXWORD

ZAl -9999999999

STl B(Os»1)+INDEXWCRD

ZAl V222272

ST1 C(Os1)+INDEXWORD
THE FOLLOWING 1S GENERATED OUT OF LINE

LITERALS
+9999999999
=9999999999
122222

In the current record area, as determined by the contents of the implicit

index word, fields A and B will be filled with 9s and the sign of the word

in which each appears will be set to plus and minus respectively. Field

C will be filled with Zs and the sign of the word will be set to alpha.

CDNO FD LOC

00001 0325
0326

0L 0327

0l 0328

01 0329

00002 0333
0334
0335
0336
0337
00003 0338

09 0339
09 0340
00004 09 0341

INSTRUCT I ON

+0003250332
+0003270329
=-0003300332

+1300090339
+1201010000
+1300090340
+1201010001
+1300090341
+1201010002

+9999999999
=~9999999999
18989898989

PAGE AA

REF

0325
0326
0000
0001
0002

0339
0340
034l

308

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL opP QPERAND CDNO FD LOC INSTRUCTION REF
01 940 * FILL EXAMPLE 4
02 941 AREANAME DA 1 +0003250327
03 942 FIELDA 00903A 03 0325 0325
04 943 FIELDB 10913 03 0326 0326
05 944 FIELDC 204923 03 0327 0327
06 945 *
07 946 ANYLABEL FILL AREANAME WITH +0
08 X ANYLABEL ZAl +000000000C 00001 0328 +1300090332
09 X STl AREANAME (099) 0329 +1200090325
10 X ST1 AREANAME (10919) 0330 +1200090326
1i X ST1 AREANAME (20429) 0331 +1200090327
12 947 *
13 948 * THE FOLLOWING 1S GENERATED OUT OF LINE
14 949 *

LITERALS
15 X +0000000000 09 0332 +0000000000 0332
FILL Example 4
Since the FILL statement references the label of the DA header line, the
entire record area through digit position 29 will be filled with 0s and the
signs of the three words affected will be set to plus.
PAGE AA PROGRAM 7070 COMP|LER SYSTEM VERSION OMY08+s CHANGE LEVEL 0000ie PAGE AA
LN CDREF LABEL oP OPcRAND CONO FD LOC INSTRUCT ION REF
0l 952 * FILL EXAMPLE 5
O0c¢ 953 AREANAME DA 23RDW 0+ INDEXWORL +0003250332
03 X 00001 0325 +0003270329 0325
04 X 0326 =0003300332 0326
05 954 FIELDA 00903A 03 0327 0000
06 955 FIELDD 10s13¢* 03 0328 0001
07 956 FIELDC 20923 03 0329 0002
08 957 *
0y 958 ANYLAoEL FILL AREANAME WiITH =0
10 X ANYLABEL ZAl -0000000000 00002 0333 41300090337
11 X ST1 0(099)+INDEXWORD 0334 +1201050000
12 X ST1 0(10919)+INDEXWORD 0335 41201090001
13 X ST1 0(20929)+ INDEXWORD 0336 +1201090002
l4 959 *
1> 960 * THE FOLLOWING 1S GENERATED OQUT OF LINE
16 961 *

LITERALS
17 X =0000000000 09 0337 =0000000000 0337

FILL Example 5

Since the label of the DA header line is addressed in the FILL statement,

the entire area through digit position 29 will be affected. Since implicit

indexing has been used, the current record area will be filled with zeros

and the signs of the three words affected will be set to minus.

T

£05

PAGE AA

LN

0l
02
03
O4
05
06
07
os
09
10
11
12
13
14
15
16

17

COREF

964
965
966
967
968
969
970

971
972

973
974
975

X

PROGRAM
LABEL

*
AREANAME
AFIELD
BF LELD
CFIELD

*
DROWNAME
DRDWNAME

*
ANYLABEL
ANYLABEL

*
*
*

oP

OPERAND

FiLL EXAMPLE 6

DA

DROW
DRDW
DROW

FiLL
ZAl
ST1

THE FOLLOWING

2990+ INDEXWORD
00919A
20149
50499

AREANAME
+AREANAME y AREANAME+9
~AREANAME+109AREANAME+19

DROWNAME WITH +0
+0000000000
DRDWNAME(0Q19)

LITERALS

+0000000000

7070 COMPILER SYSTEM VERSION OMYO08»
CDNO FO

09
09
09

00001

IS GENERATED OUT OF LINE

09

CHANGE LEVEL 00001

LocC

0325
0327
0330

0345
0346

0347
0348

0349

INSTRUCTION

+0003250344

+0002250334
=0003350344

+1300090349
+1200090345

+0000000000

PAGE AA
REF

0000
0002
0005

0349

WW

ERROR MESSAGE LIST

PG/LN

MESSAGE

AA 11 FILLING INSTRUCTION

FILL Example 6

The warning message shown will be issued since the FILL statement
references the label of a DRDW. Coding has been generated, however,

to cause the first RDW generated to be filled with 0s and the sign set to

plus.

AGE AA
LN CDREF
ol 978
0z 979
03 980
04 981
Q5 982
05 983
07 984
o8
09
10
11
12 985
13 986
14 987
15

XXX X

PROGRAM 7070 COMPILER SYSTEM VERSION OMYO081s
LABEL opP OPERAND CDNO FD
* FILL EXAMPLE 7
L INENAME DLINE 00002
GROSSAMT 10SXXeZ2Z242Z 89
TOTEXPENSE 255 XX9XXXellZ 89
NETAMT “08XX92Z2e22 89
*

ANYLABEL FILL TOTEXPENSE WITH +0
ANYLABEL ZAl +0000000000 00003
ST1 TOTEXPENSE(O091)
ST1 TOTEXPENSE(2911)
STl TOTEXPENSE(12919)
*
* THE FOLLOWING 1S GENERATED QUT OF LINE
*
LITERALS
+0000000000 09

FILL Example 7

The DLINE field TOTEXPENSE will be filled with 0s and the signs of

the words affected will be set to plus.

CHANGE LEVEL 0000l

LOC

0326
0329
0332

0335
0336
0337
0338

0339

INSTRUCTION

+0003250334

+1300090339
+1200890329
+1200090330
+1200070331

+0000000000

PAGE AA

REF

0326
0329
0332

0339

¥0%

PAGE AA
LN CDREF
0l 990
0z 991
03 992
04 993
09 994
10 9695
11 996
12
13
14
15
16 997
17 998
18 999
19
20

XX X X

PROGRAM
LABEL

*
L I NENAME

CUSTOMER
AMOUNT

*
ANYLAocEL
ANYLABEL

Mel

FILL Example 8

7070 COMPILER SYSTEM VERSION OMYQ8s CHANGE LEVEL 0000l

opP OPERAND

FlLL EXAMPLE 8

DLINE
1 [
10429
303XXX9ZZZeZZ)DRICR

FiLL LINENAME WiTH +0
ZAl +0000000000

ST1 LINENAME(099)

XZA MACREGe Ol sL INENAME
RS MACREGeOLl9Mal

THE FOLLOWING IS GENERATED OUT OF LINE
DRDW ~LINENAME+1sLINENAME+8

LITERALS
+0000000000

The entire area, including constants, will be filled with Os and the signs

of the words affected will be made plus since the label of the DLINE

header line is referenced in the FILL statement.

CDNO FD

00002

00003 09
89
89

00004

00005 09

LOC

0325
0326
0330

0334
0335
0336
0337

0338

0339

INSTRUCTION

+0003250333
0000000000

+1300090339
+1200090325
+4600010325
+6500010338

=0003260333

+0000000000

PAGE AA

REF

0325
0326
0330

0339

EDMOV —Edit and Move Data

Source Program Format

Processing Techniques

Limitations on Length

Other Limitations

EDMOV generates instructions to transfer data between specified fields in storage
and to edit them to conform to the format of the field to which they are moved.

The basic format of the EpmMov statement in the source program is the following:

Line Label ‘tperoﬁon OPERAND Basic Autocoder—bl Autozj
B :16 1s)i6 2021 25 30 35 40 as 50 55 0l 65
ol |JANYLABEL E‘DMOVIFRO.MFIAE,LDL, TO TOFIELDAL, FROMFIELD2 TO TOFII,ELDZ..G!C.T\

02

P N Tt . S

ANYLABEL is any symbolic label; it may be omitted. The entry Epmov must be writ-
ten exactly as shown.

FROMFIELD entries may be literals or symbolic addresses of areas from which data
is to be moved. The data of FrROMFIELD may be alphameric, automatic-decimal,
floating-decimal, mixed, or of unspecified characteristics. Automatic-decimal and
floating-decimal data may be in single- or double-digit representation; data which
is mixed or of unspecified characteristics is treated in the same way as alphameric
data.

TOFIELD entries are symbolic addresses of areas to which the edited data is to
be moved. A TOFIELD area may be any field defined as alphameric, automatic-
decimal, or floating-decimal, or may be a print format defined in a pLINE subse-
quent entry. Automatic-decimal and floating-decimal data may be in a single-
or double-digit representation.

The operator To must be written exactly as shown, preceded and followed by a
blank. Each entry must have both a FrRoMFIELD and a ToFIELD. If more than one
entry is made in the operand of a statement, commas must be used to separate
them.

A maximum of four entries may be written in the operand. Field size is restricted
as follows:

Field Size
Automatic-decimal, single-digit not more than 20 digits
Automatic-decimal, double-digit not more than 20 characters (40 digits)
Floating-decimal, single-digit exactly one word
Floating-decimal, double-digit exactly two words
Alphameric, mixed, unspecified unrestricted

DA, pC, and DLINE header lines cannot be used as parameters in an EpMoV state-
ment.

EDMOV 205

Address Modification

The Effect of EDMOV

206

All symbolic addresses may be modified by indexing and address adjustment.

All alphameric, mixed, and unspecified fields will be passed on to the MovVE macro
generator for processing. No editing is done.

Each of the twenty-two possible types of numerical editing is accomplished by
a sequence of steps selected from the following nine basic types of conversion:

© 0o~ Utk M-

. Automatic-decimal, single-digit to Automatic-decimal, double-digit
. Floating-decimal, single-digit to Floating-decimal, double-digit
. Automatic-decimal, double-digit to Automatic-decimal, single-digit
. Floating-decimal, double-digit to Floating-decimal, single-digit

. Automatic-decimal, old format to Automatic-decimal, new format
. Automatic-decimal to Floating-decimal

. Floating-decimal to Automatic-decimal

. Automatic-decimal, double-digit to Print format

. Floating-decimal, double-digit to Print format

The chart on page 207 shows the sequence for each of the twenty-two types of
editing.

The rules governing each of the nine types of conversion are as follows:

L

Automatic-Decimal, Single-Digit to Automatic-Decimal, Double-Digit. Con-
version is accompanied by sign conrol; positive numbers will show a 6 in
the next-to-last digit, negative numbers a 7. The sign position of the con-
verted number will have an @. If the result is stored in part of a word, the
sign of the entire word will be set to @. The following examples illustrate
this conversion:

Before Conversion After Conversion

+7627 @bb97969267
—4502 @bb94959072

Floating-Decimal, Single-Digit to Floating-Decimal, Double-Digit. ¥FrOM-
FIELD must occupy exactly one word; ToFiELp will occupy exactly two words,
both of which will have an @ sign. Sign control will be indicated in digit 8
of the second word; a 8 indicates a positive number, 7 a negative number.
The following examples illustrate this conversion:

Before Conversion After Conversion

+5212345678 @9592919293 @ 9495969768
—4587654321 @9495989796 @ 9594939271

Automatic-Decimal, Double-Digit to Automatic-Decimal, Single-Digit. Con-
version is accompanied by sign sensing. The sign of ToFELD will be set to
plus if the next-to-last digit of FromFIELD is different from 7, minus if it is 7. If
the result is stored in part of a word, the sign of the entire word will be set to
the sign of the result. The converse of the examples included under 1, above,
illustrates this conversion.

Floating-Decimal, Double-Digit to Floating-Decimal, Single-Digit. ¥rom-
FIELD must occupy exactly two words; ToFIELD will occupy one word. Conver-
sion is accompanied by sign sensing. The sign of ToFiELDp will be set to plus
if digit 8 of the second word of FrRoMFIELD is different from 7, minus if it is 7.
The converse of the examples included under 2, above, illustrates this con-
version.

Automatic-Decimal, Old Format to Automatic-Decimal, New Format. Four
cases are distinguished:

AOWTH

208

SEQUENCE

OF EDITING

FROMFIELD

TOFIELD

TYPE OF CONVERSION

Automatic-decimal, Floating-decimal, Automatic-decimal

single-digit
to

Automatic-decimal
double-digit

single-digit

to
Floating-decimal,
double-digit

double-digit

to
Automatic-decimal,

single-digit

Floating-d

1, Automatic-decimal,
double-digit [
to

old format
to Automatic-decimal Floating-decimal

Floating-decimal, Automatic-decimal,

single-digit new format

Automatic-decimal. Floating-decimal,
double-digit double-digit

to to
Print format Print format

to to
Floating-decimal Automatic-decimal

Automatic-dccimal,
single-digit

Automatic-decimal,
single-digit
Automatic-decimal,
double-digit
Floating-decimal,
single-digit
Tloating-decimal,
double-digit
Automatic-decimal,
print format
Floating-decimal,
print format

Automatic-decimal,
double-digit

Automatic-decimal,
single-digit
Automatic-decimal,
double-digit
Floating-decimal,
single-digit
Tloating-decimal,
double-digit
Automatic-decimal,
print format
Floating-decimal,
print format

Floating-decimal,
single-digit

Automatic-decimal,
single-digit
Automatic-decimal,
double-digit
Floating-decimal,
double-digit
Automatic-decimal,
print format
Floating-dccimal,
print format

F loating:dccimal,
double-digit

Automatic-decimal,
single-digit
Automatic-decimal,
double-digit
Floating-decimal,
single-digit
Automatic-decimal,
print format
Floating-decimal,
print format

208

a. TOFIELD has more decimal places than FromriELD. These new decimal
places will be filled with zeros. For example, a field whose automatic-
decimal format is 3.2 is converted to a field whose format is 3.4. If the field
contains 123.45 before conversion, it will contain 123.4500 after conversion.

b. ToFiELD has fewer decimal places than FromrIELD. Extraneous decimals
will be truncated after rounding. For example, a field whose automatic-
demical, format is 2.3 is converted to a field whose format is 2.2. If the
field contains 55.467 before conversion, it will contain 55.47 after conver-
sion; if it contains 55.464 before, it will contain 55.46 after.

c. TorIELD has more integer places than FrRoMFIELD. These new integer places
will be filled with high-order zeros. For example, a field whose automatic-
decimal format is 2.3 is converted to a field whose format is 4.3. If the
field contains 56.125 before conversion, it will contain 0056.125 after con-
version.

d. TorFiELD has fewer integer places than FROMFIELD. A warning message will
be issued during assembly that high-order digits may be lost. For example,
a field whose automatic-decimal format is 4.1 is converted to a field whose
format is 2.1. If the field contains 1545.7 before conversion, it will con-
tain 45.7 after conversion.

Combinations of these conditions will cause all of the indicated actions to
be taken.

6. Automatic-Decimal to Floating-Decimal. The first eight significant digits will
be converted; others will be truncated without rounding. An automatic-deci-
mal number is converted to a standard 7070 normalized, floating-decimal
word. For example, —123.456789 is converted to —5312345678.

7. Floating-Decimal to Automatic-Decimal. Four cases are distinguished:

a. TOFIELD can accommodate the entire converted field. Any excess decimal
places or integer places are filled with zeros. For example, if a field which
contains +5287654321 is converted to a field whose automatic-decimal
format is 4.7, the result will be +0087.6543210.

b. An integer of the converted number falls to the left of the high-order place
of TorieLp. This is an overflow condition, and the overflow latch on Ac-
cumulator 1 will be set on. No warning message can be issued during as-
sembly since this condition cannot be predicted on the basis of Hoating-
decimal format alone. All digits that can be accommodated in their proper
places will be stored. For example, if a field which contains —5412345678
is converted to a field whose automatic-decimal format is 3.5, the result
will be —234.56780 and the overflow latch of Accumulator 1 will be turned
ON.

c. The first digit of the converted number falls into one of the places of To-
FIELD, but the decimals cannot be accommodated. Excess decimals will
be truncated after rounding. For example, if a field which contains
44823456789 is converted to a field whose automatic-decimal format is
1.7, the result will be +0.0023457; if a field which contains —5398765432
is converted to a field whose format is 3.3, the result will be —987.654.

d. The first digit of the converted number falls to the right of the low-order
place of the result field. Since the decimal value of the number is too
small to register in the format of the result field, the field will be set equal
to zero. For example, if a field which contains +3575757575 is converted
to a field whose automatic-decimal format is 2.3, the result will be -+00.000.

Error and Warning
Messages

Examples

8. Automatic-Decimal, Double-Digit to Print Format. Editing is performed to
fit data to a pLINE print image. (See page 65.) The necessary commas, deci-
mal points, and other characters will be inserted.

9. Floating-Decimal, Double-Digit to Print Format. Editing is performed to con-
vert a floating-decimal number to DLINE print format which is *nn =+,
xxxxxxxx, where * nn is a two-digit exponent *.xxxxxxxx is an eight-digit
number. The value of the number is *+.xxxxxxxx multiplied by 102, For ex-
ample, @9591999897@9695949372 (Which is —5198765432 in single-digit
form) will be printed as +01—.98765432, representing the number —.98765432
X 10

The following error and warning messages will be issued during assembly under
the conditions specified.

BLANK PARAMETER XX

A parameter has been omitted. Its number will replace the xx of the message.
A ~op will be generated.

HIGH-ORDER DIGITS LOST OF PARAMETER XX

The field in which the edited data is to be stored has a format that will cause
loss of integer digits on the left. Such digits as can be accommodated in their
proper places will be stored.

PRINT SUPPRESSED IF ALL ZERO

A print-line format has been written in such a way that all numerical positions
are marked by Xs. A zero value for this field will result in no print at all.

TO-FIELD NOT ALPHA. PARAMETER XX

An attempt has been made to move an alphameric, mixed, or unspecified field
to a field that is not alpha. The parameter number of the TorELD will replace
the xx of the message. The field will be moved but not edited.

UNACCEPTABLE PARAMETER XX

The xx will be replaced by the number of a parameter that is not one of the
types listed as acceptable under “Source Program Format.” A Nop will be
generated.

The following are examples of acceptable coding for the EpMov macro-instruc-
tion. For each, the associated source-program entries are given, followed by the
EDMOV statement coding generated in-line and coding generated out-of-line.

EDMOV 209

013

PAGE AA

LN CDREF

ol
02
03
04
05
Q6
o7
03
09
10

701
702
703
704
705
706
707

708
709
710

DX X NI XK XN XK XXMM NKXXXXX

x x

X X X

PROGRAM
LABEL

*

SOMELABEL
FIELDB

FIELDA

*
ANYLABEL
ANYLABEL

#*
*
*

EOMOVO2 4A
COMAREA A

EDMOV Example 1

oP

PLINE

DA

EDMOV
ZA2
5T2
XZA
ENB
ZA3
§T3
BZ3
ZA3
ST3
ZA3
5T3
BZ3
ZA3
ST3
ZA3
ST3
ZA3
§T3
ST3

THE FOLLOWING

DROW ~COMAREAeA9s COMAREAsA+]
DA
LITERALS

OPERAND

EDMOV EXAMPLE 1

LOX9sXXXeZ2)
1
00+05A442

FIELDA TO FIELDB
FIELDA(O#5)
COMAREASA+2
MACREGeO1l s COMAREASA+2
MACREGe01 9EDMOVO24A
COMAREALA(81+9)
FIELDB(O1)

*4+2

14510

FIELDB(293)
COMAREA«A(10915)
FIELDB(499)

*+2

et

FIELDB(10911)
COMAREASA(16919)
FIELDB(12915)

191

FIELDB{12912)
FIELDB(14v14)

(Y]

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l

CDNO FD

00001

00002

00003

00004

00005

1S GENERATED OUT OF LINE

00006

The automatic-decimal field FIELDA is edited to the print format specified

in the DLINE entry.

8¢
05

ol
23
45

LOC

0326
0329

0330
0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348

0349

0353
0353
0353

INSTRUCTION

+0003250328

+0003290329

+2300050329
+2200090352
+4600010352
+5700010349
+3300890350
+3200890326
+3000090338
+3300230353
+3200010327
+3300050351
+3200270327
+3000090343
+3300010353
+3200890327
+3300690351
+3200030328
+3300450353
+3200000328
+3200220328

=0003500351
+0003500352

15
v 35
' 99

PAGE AA
REF

0326
0329

0353
0353
0353

AOWaH

I1g

PAGE AA

LN

CDREF

714
715
716
717
718
719
720

721
722
723

X X X X X

KX X XXX XX

*x X

PROGRAM
LABEL
*
AUTODECNO
FLTPTNO
*

ANYLASEL
ANYLASEL

*®
*
*
FLOTL.A

FLOTZWA

FLOT3eA

EDMOV Example 2

oP

DA

DA

EoMov
ZAl
LA2
ZA3
BLX
2571

7070 COMPILER SYSTEM VERSION OMYOQ89
OPERAND CONO FD

EDMOV EXAMPLE 2

1

00909A8e2 09
1

00»09F 09

AUTODECNO TO FLTPTNO

+0 00001
AUTODECNO(0s93)

+0000000068

949FLOT26A

FLTPTNO

THE FOLLOWING S GENERATED OUT OF LINE

SLC1 MACREGel 00002

B *+2

SLC MACREGs1

BZ1 0+X94

S3 MACREGe1(4195)

SR1 2 00003

STD3 9991(091)

B 0+X94

LITERALS
+0000000068 09
+0 00

The automatic~decimal number is edited to the floating-decimal format.

CHANGE LEVEL 0000l

LOC INSTRUCTION

+0003250325
0325

+0003260326
0326

0327 +1300000341
0328 +2300090325
0329 +3300090340
0330 +0200940334
0331 ~-1100090326

0332 +5000011300
0333 +0100090335
0334 =5000010300
0335 +1094090000
0336 =3400450001
0337 +5000001002
0338 =3200019991
0339 +0194090000

0340 40000000068
0341 +0

PAGE AA

REF

0325

032¢

0340
0341

3Ig

PAGE AA PROGRAM

LN CDREF LABEL
QL 727 *

02 728
03 729
04 730
05 731 AMTFIELD
06 732 ®

Q7 733 ANYLABEL
ANYLABEL

AMT

Me3

~
w
DD X N D DI K XK XK KK XK MK XK MK N KKK KK X

39 734 *
40 735 *
41 736 ol

Ma6

Me&

+£
w
5O D XN X X

PAGE A8 PROGRAM

LN CODREF LABEL

0l
02
03
04

XK X X

05
Q6
o7
o8
09
10

M X X XX

EDMOV Example 3

tic—-deci 1

An aut

SOMELABEL

EDMOVO2.+A

COMAREAsA

oP

DLINE
DA

EDOMOV
ZA2
SRR2
BM2
ZA3
873
5T2
XZA
ENA
ZA3
ST3
$T3
SLC2
ZA3
8
ST3
ZA3
$T3
ZA3
5T3
LA3
ST3
ZA3
ST3
ZA3
ST3
LA3
ST3
ZA3
§7T3
ZA3
$T3

OPLRAND
EUMOV EXAMPLE 3

108X 9 XXXeZZ)DRPCR
2990+ INDEXWORD
39%A4e3

AMTFIELD TO AMT
AMTFIELD(Os6)+ INDEXWORD
1

Meb

' DR?
AMT(18921)
COMAREAsA+2
MACREGe01 9 COMAREAA+2
MACREGe01 EDMOVOZsA
' '

AMT(0Qs1)
AMT(2199)
MACREGe02

rY)

Mo 4=4+MACREGS02
AMT(O91)
COMAREAWA(899)
AMT(2+3)

Y]

AMT (495)
COMAREACA(10911)
AMT (697}
COMAREAsA(12913)
AMT(81+9)
COMAREASA(14915)
AMT(10911)

1ot

AMT(12913)
COMAREACA(16917)
AMT(14915)
COMAREA.A(18919)
AMT(16917)

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le

CDNO

00001

00002

00003

00004

00005

00006

00007

00008

THE FOLLOWING |S GENERATED QUT OF LINE

ZA3 ' CRt
B Me3
ORDW ~COMAREA+A»COMAREA+A+]
B Me5
8 Me5+4
B Me5+6
-] Ms5+8
orP OPERAND
8 Me5+10
B Me5+10
8 Me5+10
DA
LITERALS
) 1
v CRY
' DR!
)
tg1
)

00009

CONO

00010

00011

ber is edited to the print format with a floating

dollar sign and debit and credit indication.

FD

89
39

LocC

0326
0329

0331
0332
0333
0334
0335
0336
0337
0338
0239
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361

0362
0363
0364
0365
0366
0367
0368

LOC

0369
0370
0371

0375
0376
0377
0378
0378
0378

INSTRUCTION

+0003250328

+0003290330

+2301390000
+5000002101
=2000090362
+3300090377
+3200690328
+2200090374
+4600020374
+5600020364
+3300090375
+3200890326
+3200070327
+5000032300
+3300230378
+0103090361
+3200890326
+3300890372
+3200010327
+3300450378
+3200230327
+3300010373
+3200450327
+3300230373
+3200670327
+3300450373
+3200890327
+3300010378
+3200010328
+3300670373
+3200230328
+3300890373
+3200450328

+3300090376
+0100090335
=0003720373
+0100090345
+0100090349
+0100090351
+0100090353

INSTRUCTION

+0100090355
+0100090355
+0100090355
+0003720374

* 0000000000
10000006379
10000006479
115

+ 25

t 35

PAGE AA
REF

0326
0000

PAGE AB
REF

Q375
Q376
0377
0378
0378
0378

MOVE — Move Data

MOVE generates instructions that will transmit data from one specified field or
area in storage to another.

Source Program Format The basic formats for the MovE statement in the source program are as follows:

Line Label peration| OPERAND Basic Autocoder—g
3 5i6 15|86 2021 25 30 35 40 45 50 55

ol IANYLABEL |MOVE |THISFI ELD TO THATFIELD (
02 |JANYLABEL MOVE [FIELDA,FIELDB,efc. TO THATFIELD | o)
03 ANYLABEL IMO,V‘E THISFIELD YO FIELDD FIELDE,etc., . 2
04 |ANYLABEL | sM_OV.E S TO T AND Y,V ,etc. TO, W AND X TO Y,Z, Q'Co%
os | L L P P L L , ,

In these examples, ANYLABEL is any symbolic label; it may be omitted. The entry
MOVE must appear exactly as written. THISFIELD, FIELDA, FIELDB, S, U, v, and X
are either the symbolic names of the fields or areas to be moved or alphameric
or numerical literals. Numerical literals must be signed. To and anD are oper-
ators that must be written exactly as shown, preceded and followed by a blank.
THATFIELD, FIELDD, FIELDE, T, W, Y, and z are storage locations to which the data
is to be moved; the addresses must be symbolic names of fields or areas.

If there are several “from” fields (as in the second format) or several “to” fields
(as in the third format), they must be separated by commas. It is not possible
to move multiple “from” fields to multiple “to” fields; an attempt to do so will
result in an error condition.

Data may bridge words and start at any position in a word, both in the “from”
fields and in the “to” fields. Symbolically referenced fields may be any length;
literals are restricted as indicated under “Limitations on Length.” Data charac-
teristics do not affect the transmission. Data will always be left-justified in the
field(s) to which they are moved. The sign of the last item stored in any location
determines the sign of the entire word.

In the first format, if THISFIELD is larger than THATFIELD, movement of data will
be terminated when THATFIELD is filled. If THISFIELD is smaller than THATFIELD,
the data from TrisFieLp will be left-justified in THATFIELD and the remaining por-
tion of THATFIELD filled with zeros. The sigh of these zero words will be the same
as that of the last word moved.

In the second format, the data in riELDA will be moved to THATFIELD and left-
justified. Data 1rom FieLps will be entered beginning with the digit position fol-
lowing the one in which data from FiELDA terminated. The movement of data
continues in the same fashion until the contents of all the specified “from” fields
have been moved or until THATFIELD is filled. If all the “from” fields have been
moved before THATFIELD is filled, the remainder will be filled with zeros. The
sign of the zero words will be the same as that of the last word moved.

In the third format, the data in TaisFiELD will be moved to FieLDD and to each
subsequent field until all such fields are filled or TeIsFIELD has been completely

MOVE 213

transferred. If the data in THISFIELD is accommodated in the “to” fields without
filling them, the remainder of the field(s) will be zeroed out; the sign of the
zero words will be the same as that of the last word moved.

In the fourth format, several MovE operations are performed. The move opera-
tions are linked by the operator axp, as indicated. Any of the above three formats
for the MOVE statement may be used.

Processing Techniques

Limitations on Length The operand portion of the MovE macro-instruction may contain 75 parameters.
The operators To and AND are counted as parameters. No limitation is placed on
the size of the field if it is referenced symbolically. Literals are restricted as fol-
lows: alphameric literals, 120 characters; automatic-decimal literals, 20 digits.

Address Modification All symbolic addresses may be modified by indexing and address adjustment.

The Effect of MOVE The MoveE macro-instruction is non-destructive in that it does not alter the con-
tents of the “from” field(s). A possible exception might be the case in which the
“to” field(s) begin to overlay the “from” field(s), in which case a strict left-to-
right procedure of data movement would be maintained.

The following examples illustrate the effect of MovE on various fields.
No. “From” field(s) “To” field(s) before MOVE “To” field(s) after MOVE

1 +1234567890+12345 —6857463590 —7948375403 +1234567890-+1234500000
2 +1111111111+22-3333 —9999999999-+9999999999 +1111111111 2233330000
3 +1111111111 —99999—-9999—9999 +11111+1111+1000

4 —9876543210 +55555 —98765

5 +8888888888+-8888 +0000000000—00 +8888888888+-88

6 @6162636465 +123456789 @616263646

7 @T17273 +1234567 @7172730

8 @818283 +123+123 @818@283

Examples 1, 4, 6, and 7 illustrate a single “from” field and a single “to” field.
Examples 2 and 5 illustrate multiple “from” fields. Examples 8 and 8 illustrate
multiple “to” fields. In examples 6, 7, and 8, machine difficulty may arise when an
attempt is made to print out the “to” fields since invalid double-digit combina-
tions were created at the end of each field by the move.

Although the MOVE macro-instruction may refer to the label(s) of any field or
area, it is most frequently used in conjunction with input/output macro-instruc-
tions. For example, records (other than Form 3 or Form 4 records as described
in the bulletin “Bm 7070 Input/Output Control System”) that have undergone
preliminary processing in the input area may be moved to a work area by means
of a MOVE macro-instruction that references the labels of the pa header lines of
the input area and the work area. As another example, a print line might be in-
cluded in a tape output file by following a pur macro-instruction by a mMove
macro-instruction that references the label of the pLiNg header line and the label
of the pa header line of the output area.

When movE references the label of a declarative statement other than pa or
prowW, coding will be generated to cause, as a maximum, the entire area or con-
stant defined to be moved or filled.

When MovE references the label of a pa header line which does not specify a
relative address and implicit indexing, coding will be generated to cause, as a
maximum, the first record area defined to be moved or filled.

214

Error and Warning
Messages

Examples

When Move references the label of a pa header line which specifies a relative
address and implicit indexing, coding will be generated to cause, as a maximum,
the current record area (as determined by the contents of the implicit index
word) to be moved or filled.

If MovE references the label of a prow, coding will be generated to move the
rpW only, not the area it defines.

The following error and warning messages will be issued during assembly under
the conditions specified:

MULTIPLE FROM- AND TO-FIELDS

An attempt has been made to move data from several fields to several others,
which is a format violation. A Nop will be generated.

NO FIELD SIZE. PARAMETER XX

The xx of the message is replaced by the number of a parameter for which the
record does not indicate its size. Thus no coding can be generated to move its
contents or to store data in it. A NOP is generated.

NO FROM-FIELD IN MOVE MACRO LINE

The first parameter in the operand portion is the operator To. A Nop is gen-
erated.

NO TO-FIELD IN MOVE MACRO LINE
No parameter follows the operator To. A NoP is generated.
TO-FIELD(S) SMALLER THAN FROM-FIELD(S)

The field(s) to which data is to be moved cannot accommodate all of the data
of the “from” field(s). Transmission terminates when the “to” area is filled.

UNACCEPTABLE PARAMETER XX

The xx of the message will be replaced by the number of a parameter that is
not of the types listed under “Source Program Format™ as valid. A ~op is gen-
erated.

The following are examples of acceptable coding for the MovE macro-instruction.
For each, the associated source-program entries are given, followed by the MovE
statement, coding generated in-line, and (where applicable) coding generated
out-of-line.

MOVE 215

91¢

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
0l 740 * MOVE EXAMPLE 1

02 741 DA 1 +0003250325

03 742 HERE 009+09A 09 0325 0325
04 743 DA 1 +0003260326

05 744 THERE 00s09A 09 0326 0326
06 745 *

07 746 ANYLABEL MOVE HERE TO THERE

08 X ANYLABEL ZA2 HERE(099) 00001 0327 +2300090325

09 X ST2 THERE(0»9) 0328 +2200090326

10 747 *

MOVE Example 1

A ten-digit, automatic-decimal number is moved from one location to

another location of the same size.

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CODREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
01 751 * MOVE EXAMPLE 2

Q2 752 DA 1 +0003250339 _

03 753 HERE 009149 09 0325 0325
04 754 DA 1 +0003400366

05 755 AA Q01491 09 0340 0340
06 756 Bb 809139 09 0348 0348
07 757 ccC 23092691 09 0363 0363
O 758 *

09 759 ANYLABEL MOVE HERE TO AAsBBsCC

10 X ANYLABEL XZA MACREGe 1 9HERE 00001 0367 +4600010325

11 X RS MACREGelsMel 0368 +6500010369

1l 760 #*

13 76l * THE FOLLOWING 1S GENERATED OUT OF LINE

14 762 #

15 X Mol DRDW +AAsAA+4 0369 +0003400344

16 X Me3 DRDw +3BsBB+5 0370 +0003480353

17 X Me5 DRDW =CCsCC+3 0371 =-0003630366

MOVE Example 2

A 75-character (150-digit) alphameric field is moved to three fields,
defined under a single DA, whose total storage area is also equal to

150 digits.

TAOW

LI

PAGE AA PROGRAM 7070 COMPiLER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l PAGE AA
LN CDREF LABEL op OPERAND CDNO FD LOC INSTRUCTION REF
0l 766 # MOVE EXAMPLE 3
02 767 FIELDS DA 1 +0003250326
ga 768 EE 00+07A 07 0325 0325
4 769 FF 08s15A
05 770 . 89 0325 0325
06 771 ANYLABEL MOVE FF TO EE
o7 X ANYLABEL ZA2 FF(Osl) 00001 0327 42300890325
88 X SL 6 0328 =5000000206
13 i 2?2 Efigo;: 0329 +2400050226
=4 9
11 772 x 0330 42200070325
MOVE Example 3
An eight-digit field that bridges two locations is moved to a field that
does not bridge locations.
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000le PAGE AA
LN CDREF LABEL opP OPERAND CONO FD LOC INSTRUCTION REF
0l 776 * MOVE EXAMPLE 4
02 777 FIELDS DA 1 +0003250347
03 778 AA 00119A 09 0325 0325
04 779 B8 20199A 09 0327 0327
05 780 cC 1009229A 09 0335 0335
06 781 DA 1 +0003480371
07 782 THERE 00+9239A 09 0348 0348
08 783 »*
09 784 ANYLABEL MOVE AA#BBs»CC TO THERE
10 X ANYLABEL XZA MACREGe1» THERE 00001 0372 +4600010348
11 X RG MACREGe19Msl 0373 =6500010377
12 X ZA2 THERE(2299229) 0374 42300990370
13 X SL 20 0375 =5000000220
14 X ST2 THERE(2309239) 0376 +2200090371
15 785 *
16 786 * THE FOLLOWING S GENERATED OUT OF LINE
17 787 *
18 X Mol DRDW +AA)AA+] 00002 0377 +0003250326
19 X Me3 DRDW +BB»BB+7 0378 +0003270334
20 X Me5 DROW =CCyCC+12 0379 =0003350347

MOVE Example 4

Three automatic-decimal fields are moved to a single, larger field.

The unoccupied portion of the "to" field is filled with zeros.

813

PAGE AA PROGRAM

LN CDREF LABEL oP OPERAND

01 801 * MOVE EXAMPLE 5
s 802 HERE DA 1

03 803 004149!

04 804 DA 1

05 805 THEREA 00949

06 806 DA 1

07 807 THEREB 00s75¢

o8 808 DA 1

09 809 THEREC 00+23!

10 810 *
11 811 ANYLABEL MOVE HERE TO THEREAs THEREBsTHEREC

12 X ANYLABEL XZA MACREGs1sHERE

13 X RS MACREGe1l9Mel

14 X ZA2 HERE(1209125)

15 X ST2 THEREB(70475)

16 X ZAl HERE(1269129)

17 X ZA2 HERE(1309139)

18 X SL (]

19 X A2 HERE(1409145)

20 X 5T2 THEREC({10s19)

21 X ST1 THEREC(099)

22 X ZA2 HERE(1469149)

23 X ST2 THEREC(20923)

24 812 *

25 813 * THE FOLLOWING IS GENERATED OUT OF LINE
26 814 *

27 X Mol DROW +THEREAs THEREA+4
28 X Me3 DROW =THEREB»THEREB+6

MOVE Example 5

A 75-character (150-digit) alphameric field is moved into three fields.
The fields are each defined by subsequent entries of separate DAs and
their total storage area is equal to 150 digits. However, the RDWs
generated reserve an area of 160 digits. The possibility of invalid
alpha combinations exists in digit positions 76, 79 of THEREB and in
digit positions 24, 29 of THEREC since these segments are not affected

by MOVE.

7070 COMPILER SYSTEM VERSION OMYO08»

CDNO FD

00001

00002

00003

09
09
09

09

CHANGE LEVEL 00001l

LOC

0325
0340
0345
0353

0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367

0368
0369

INSTRUCT ION

+0003250339
+0003400344
+0003450352
+0003530355

+4600010325
+6500010368
+2300050337
+2200050352
+1300690337
+2300090338
=5000000206
+2400050339
+2200090354
+1200090353
+2300690339
+2200030355

+0003400344
=0003450351

PAGE AA
REF

0325
0340
0345

0353

TAONW

61I¢

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY0B8s CHANGE LEVEL 00001s PAGE AA
LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
01 818 * MOVE EXAMPLE 6

02 819 DA 1 +0003250326

03 820 HEREA 00919A 09 0325 0325
04 821 DA 1 +0003270329

Q05 822 HEREB 00929A 09 0327 0327
06 823 DA 1 +0003300332

07 824 HEREC 00924A 09 0330 0330
08 825 THERE DA 1 +0003330340

09 826 74 44 0340 0340
10 827 *

il @828 ANYLABEL MOVE HEREASHERELBIHEREC TO THERE

12 X ANYLABEL XZA MACREGe 1 THERE 00001 0341 +4600010333

13 X RG MACREGel9Mel 0342 =6500010345

14 X ZA2 HEREC(20924) 0343 +2300040332

15 X 2572 THERE(T70974) 0344 =2100040340

16 829 *

17 830 * THE FOLLOWING 1S GENERATED OUT OF LINE

18 831 *

19 X Mel DRDOW +HEREA(PHEREA+1 0345 40003250326

20 X Me3 DRDW +HEREBYHEREB+2 00002 0346 +0003270329

21 X Me5 DROW =HERECSHEREC+1 0347 =0003300331

MOVE Example 6

Three automatic-decimal fields, each defined by a separate DA and with

a total storage area of 75 digits, are moved to an area of equal size but

with unspecified characteristics.

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYO8s CHANGE LEVEL 0000ls PAGE AA
LN CDREF LABEL op QPERAND CONO FD LOC INSTRUCTION REF
0l 835 * MOVE EXAMPLE 7

02 836 DA 5990+ | NDEXWORD +0003250329

03 837 HERE 00»09A 09 0325 0000
04 838 DA 1 40003300330

05 839 THERE 00+09A 09 0330 0330
06 840

07 841 ANYLABEL MOVE HERE TO THERE

[*X:] X ANYLABEL ZA2 HERE (099)+INDEXWORD 00001 0331 +2301090000

09 X §T2 THERE(O#9) 0332 42200090330

10 842 *

MOVE Example 7

The MOVE statement references the label of a subsequent entry under a

DA that contains a relative address and implicit indexing. The contents

of the HERE field of the current record (as determined by the contents

of the implicit index word) will be moved to the THERE field.

(1149

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION MASTRy CHANGE LEVEL 00284
LN LABEL oP OPERAND LOC INSTRUCTION REF<ADR PGLIN CD NO
01 * MOVE EXAMPLE 8 846

02 DA 24990+ INDEXWORD +0003250326 847

03 HERE 00+09A 0325 09 0000 848

04 DA 2,90+X15 +0003270330 849

05 THERE 00912A 0327 09 0000 850

06 » 851

07 ANYLABEL MOVE HERE TO THERE 852

o8 ANYLABEL ZA2 HERE(Qs9)+ INDEXWORD 0331 +2301090000 GENRD 00001
09 572 THERE(0s9)4+X15 0322 42215090000 GENRD

10 sL 20 0333 =5000000220 GENRD

11 5T2 THERE(10912)+X15 0334 42215020001 GENRD

MOVE Example 8

The ten-digit HERE field of the current record is moved to the larger

THERE field of the current record. The unoccupied portion of the

THERE field will be filled with zeros and the sign will be made the same

as the sign of the last word moved.

PAGE AA

LN

o1
02
03
04
Q>
06
o7
o8
Q9
10
11
12
i3
14
i5
16
17
18

COREF

8501
8502
8503
8504
8505
8506
8507
8508
8509

8510
8511
8512

XK XX

PROGRAM

LABEL

ANYLABEL
ANYLABEL

Mol

MOVE Example 9

oP

oA

DA

MOVE
XZA
RS
ZA2
SL
sT2

THE FOL

ORDW

7070 COMPILER SYSTEM VERSION OMYO8s CHANGE LEVEL 0000ls

OPERAND CDNC FD LOC
MOVE EXAMPLE §

1

00s15A 09 0325

20925 05 0327

26432 69 0327

1

42 22 0333

HERE TO THERE

MACREGe 1 sHERE 00001 0334

MACREGalsMel 0335

THERE(39+39) 0336

20 0337

THERE(40449) 0338

LOWING 1S GENERATED OUT OF LINE

~THERE » THERE+3 00002 0339

The entire HERE field through digit position 39 is moved to the larger

‘THERE field. The unoccupied portion of the THERE field (40, 49) will

be filled with zeros and the sign will be made the same as the sign of

the last word moved. In this example, the possibility of creating invalid

alpha combinations does not exist since the sign of the word to which field

BB and part of field CC are to be moved is determined by the sign of CC.

Since the format of field CC is unspecified, the processor assumes the

field contains numerical data to be treated as a signed integer.

INSTRUCTION

+0003250328

+0003290333

+4600010325
+6500010339
+2300990332
=5000000220
+2200090333

=0003290332

PAGE AA
REF

0325
0327
0327

0333

SHIFT — Shift and Store

Source Program Format

Processing Techniques

Limitations on Length

SHIFT generates instructions to place the contents of a field into one or more ac-
cumulators, to shift the data in a specified way, and to store the result.

The basic format for the sHiFT statement in the source program is as follows:

2021 25 30 35 40 45 50
oi, ANYLABEL, |SHIFTOPTION,START,COUNT, FIELDA,FI .E‘L.D.B‘

Line Label |fperotion OPERAND Basic AL§
3 sle 15)i6

02

TR T TS TN S W N S S ' TS S U TR S S N S Y S DU SN U TN S NN TN Y S SN SNS H SN H SE S T

ANYLABEL is any symbolic label; it may be omitted. The entry seiFT must be writ-
ten exactly as shown. oprioN is one of the following one- or two-letter codes,
specifying the type of shift to be executed:

OPTION Type of Shift
L Left
R Right
1C Left and Count
RR Right and Round
LS Left Split
RS Right Split

START is an integer indicating where to begin shifting in case of a split-shift op-
tion; it is determined by counting from the left-most digit of the field, beginning
with 1. (With other options, starr will be blank, but the separating commas
must be entered.) With one exception, counT is the actual number of positions to
be shifted, restricted only by the size of the field. In the case of a shift-left-and-
count option, however, count must be an index word, referenced either by its
actual, two-digit number, without a preceding x, or by its symbolic name, which
will contain in digit positions 4-5 the number of high-order zeros found in the
shifted field. FiELDA is the symbolic address of the field to be shifted; it must be
less than twenty-one digits in length. FieLDB is the field in which the result is to
be stored; it may also be referenced by its symbolic address. The sign of the field
to be shifted is transmitted with the field and stored with the result in rieLDB.
The basic format may be modified by the omission of FiELDB. In that case, the
data will be restored in its original field after shifting.

No warning is issued either in case of possible digit loss when the result of a
shift is larger than FIELDB or when invalid alpha combinations have been created.

The number of parameters is fixed by the format. The field to be shifted is limited
to twenty-digit length.

SHIFT 221

Address Modification

Error and Warning
Messages

Examples

222

All symbolic addresses may be modified by indexing and address adjustment.

The following error and warning messages will be issued during assembly under
the conditions specified:

COUNT GREATER THAN FIELD-SIZE

The counT field contains an integer larger than the number of digits in the field
to be shifted.

COUNT IS ZERO
No shift will be carried out. The field will be stored without shifting.
COUNT NOT AN INDEXWORD

In a shift-left-and-count option, a label has been entered for counr that is de-
fined elsewhere as other than an index word. A Nop will be generated.

FIELD GREATER THAN 20 DIGITS

An error condition, since fields to be shifted may not exceed this size. A Nop
will be generated.

FIELD UNACCEPTABLE

An attempt has been made to shift an alteration switch or some other entity
that is not a part of storage. A Nop will be generated.

INCORRECT NUMBER OF PARAMETERS

An attempt has been made to write more than five pa.ameters into the operand
portion of a sHIFT statement. Parameters in excess of the first five will be
ignored.

INCORRECT OPTION

The option code is blank or is not one of those listed under “Source Program
Format.”

SHIFTING INSTRUCTION

The field to be shifted is an imperative instruction. Coding to accomplish this
will be generated nevertheless.

START GREATER THAN FIELD-SIZE

The sTaRT counter in a split-shift option contains an integer larger than the
number of digits in the field to be shifted.

The following are examples of acceptable coding for the seFr macro-instruction.
For each, the associated source-program entries are given, followed by the smrFr
statement, coding generated in-line, and (where applicable) coding generated
out-of-line,

LAIHS

£Tg

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0C00ls PAGE AA

LN CDREF LABEL opP OPERAND CDNO FD LOC INSTRUCTION RCF
01 856 * SHIFT EXAMPLE 1

02 857 DA 1 +0003250325

03 858 FIELDA 00909 09 0325 0325

04 859 *
05 860 ANYLASEL SHIFT Lsse39FIELDA

06 X ANYLABEL ZA2 FIELDA(099) 00001 0326 +2300090325
Q7 X SL2 3 0327 +5000002203
Oy X ST2 FIELDA(O99) 0328 +2200090325

0y 861 *

SHIFT Example 1

The contents of FIELDA are shifted left three positions and the result

is stored again in FIELDA,

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000l1e PAGE AA
LN COREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF

01 865 * SHIFT EXAMPLE 2

0Z 866 COUNT EQU 909X

03 867 DA 1 +0003250325

04 868 FIELDA 00+09 09 0325 0325
0> 869 DA 1 +0003260326

06 870 FIELDB 0009 09 0326 0326

07 871 *
Ob 872 ANYLABEL SHIFT LCy»sCOUNTOF IELDAYFIELDB

Qg X ANYLABEL ZA2 FIELDA(OY9) 00001 0327 +2300090325
10 X SLC2 COUNT 0328 +5000902300
11 X STz FIELDB(099) 0329 +2200090326

iz 873 *

SHIFT Example 2

The digits in FIELDA are shifted to the left until a digit other than a
zero is in the high-order position. If the high-order digit is non-zero
to start with, no shift takes place. The number of positions shifted is

recorded in the index word labeled COUNT.

244

PAGE AA PROGRAM

7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 00001l

PAGE AA

LN CODREF LABEL opP OPERAND CDNO FD LOC INSTRUCTION REF
0L 874 * SHIFT EXAMPLE 3
02 875 DA 1 +0003250328
03 876 F1ELDA 00914 09 0325 0325
04 877 FIELDB 20934 09 0327 0327
05 878 *
06 879 ANYLABEL SHIFT RRe#59FIELDASFIELDE
o7 X ANYLABEL ZAl +0 00001 0329 41300000337
08 X ZA2 FIELDA(O»9) 0330 42300090325
09 X St 5 0331 =5000000205
10 X A2 FIELDA(10114) 0332 42400040326
11 X SRR 5 0333 =5000000105
12 X ST2 FIELDB(10914) 00002 0334 +2200040328
13 X SR 5 0335 =5000000005
14 X ST2 FIELDB(099) 0336 +2200090327
15 880 *
16 881 * THE FOLLOWING IS GENERATED OUT OF LINE
17 882 *
LITERALS
18 X +0 00 0337 +0 0337
SHIFT Example 3
The contents of FIELDA are shifted right 5 positions and the amount
shifted is rounded off. rhe result is stored in FIELDB,
PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMYO8s CHANGE LEVEL 00001e PAGE AA
LN CDREF LABEL oP OPERAND CONO FD LOC INSTRUCTION REF
0l 885 * SHIFT EXAMPLE 4
02 886 DA 1 +0003250328
03 887 FIELDA Q00919 09 0325 0325
04 888 FIELDB 20439 9
05 88y 09 0327 0327
06 890 ANYLABEL SHIFT RS912989F IELDASFIELDB
07 X ANYLABEL ZA1l FIELDA(0s9) 00001 0329 +1300090325
08 X ZA2 FIELDA(10919) 0330 +2300090326
09 X SRS 8(11) 0331 ~5000001608
10 X sT2 FIELDB(10+19) 0332 +2200090328
11 X STl FIELDB(0+9) 0333 +1200090327

12 891 *

SHIFT Example 4

Starting with the 12th digit, the contents of FIELDA are shifted 8 positions

to the right. The result is stored in FIELDB,

SNAP — Memory Print-Out

Source Program Format

Processing Techniques

Limitations on Length

Address Modification

The Effect of SNAP

SNAP generates instructions to provide a listing of a specified portion of storage.

The basic format for the sNAP statement in the source program is:

Li Label ti OPERAND Basic Autocoder ——f
smes ° l.'olspem Izoz: 25 30 35 40 45 :solc uocgser 60! 65
o1, ANYLABEL, [SNAP IFROMLDDRL,TOADDR.O_UTPU.TvU,NI.T,,SKILPSPR.I,OR,SNAPS,,S,KI PSAFTER

02

Autocoder —— |
70 2

ANYLABEL is any symbolic label; it may be omitted. The entry sNap must be writ-
ten exactly as shown. FrRoMADDR and TOADDR represent the limits of storage to be
listed and may be symbolic or actual addresses. outpuTUNTT is the symbolic ad-
dress of any tape channel and unit, punch, printer, or typewriter that has been
defined by an EQu statement elsewhere in the program. skiPSPRIOR, sNAPs, and
SKIPSAFTER are unsigned, one- or two-digit integer counters. SKIPSPRIOR controls
the number of times the program will pass through the location of the sNap state-
ment without taking a print-out. sNaps controls the number of times following this
that print-outs will be taken. skIPSAFTER controls the number of times that print-
outs will again be omitted. Thereafter, control alternates between sNnaps and
SKIPSAFTER for the duration of the program.

The basic format may be modified by the omission of one or more of the three
counters. If omitted, skrpsprIOR will automatically be set equal to 0, sNaps to 1,
and skIPSAFTER will cause permanent skipping once the specified number of sNaps
has been taken. If either skPsPRIOR or sNAPs is omitted, or both, separating com-
mas must be punched.

The number of parameters is fixed by the basic format, subject only to the omis-
sion of one or more counters. There is no limit to the amount of storage to be
printed out, although approximately 150 locations of storage will be required by
the calling sequence and the subroutine that constitute snap. Conceivably these
may be positioned so as to fall between FrRoMADDR and TOADDR, in which case
this area of storage will be shown as required by the sNap instruction. The pro-
grammer has control over the placement of the subroutine, however, by means of
the LrToRIGIN statement.

All addresses may be modified by indexing; symbolic addresses may be modified
by address adjustment.

The print-out provided by snaPp is non-destructive and will consist of the elec-
tronic switches, the accumulators, index words 10 and 11, and storage between the
limits specified. (In the case of a type-out, only storage will be given.) The stor-

SNAP 225

Error and Warning
Messages

226

age area specified must be contiguous. Index words 10 and 11 are used by snap; if
they fall between FRoMADDR and TOADDR, their representation in that section of
the print-out will be that required by snxap, not that given by the source program.
For this reason, the source-program contents of these words are printed out ahead
of the storage area. Before the exit from the sNap subroutine, both index words
are restored to their original contents.

The output will be in the following format:

First line: snap Electronic Switches, Instruction Counter at time of
sNap branch.

Second line: Accumulators, Index Words 10 and 11.

Each succeeding Five words of storage each, with the location of the first

line: word printed on each line shown for identification purposes.
Numerical words carry the proper sign. Alpha words are
printed with an A in the sign position and contents in
double-digit representation; this is done to avoid printer
difficulty which might arise if an alpha location contained a
double-digit combination that was not the code for any
character.

When tape output is specified, tape density must have been set previously by the
program or the operator. No provision for tape labels, end-of-file conditions, or
tape mark and rewind routines has been made in order to conserve space, and
because it will often be desirable to use the same output tape for sNap print-outs
as that used for utility program output.

When the snap routine is entered, the priority mask is set to “prohibit.” On
leaving the subroutine, the mask is set to “allow,” regardless of its prior condition.
If the programmer does not want the mask at “allow,” he must restore it after
each use of snap.

The following error and warning messages will be issued during assembly under
the conditions specified:

BLANK PARAMETER XX

The xx of the message will be replaced by 01, 02, or 03, depending upon
whether FROMADDR, TOADDR, or ouTPUTUNIT has been left blank. A ~op will be
generated.

INVALID PARAMETER XX

The xx will be replaced by 01 or 02 if FROMADDR or TOADDR, respectively, is not
the label of a location of storage; by 03 if ouTPuTUNTIT is not the label of one
of the acceptable units listed under “Source Program Format.” A ~op will be
generated.

SNAPS COUNTER ZERO

The snaps counter is zero, rendering the snap statement ineffective. A nop
will be generated; this will at once be an aid to patching and a literal imple-
mentation of the source statement as written.

TOO MANY PARAMETERS. WILL IGNORE

More than six entries have been written into the operand portion of a snap
statement. The first six will be accepted and coding generated accordingly.

Examples

If an error is encountered when attempting to write a record on tape, the tape is
backspaced and the entire output area of 16 words is typed. Erroneous records
will appear on the typewriter only and will not be duplicated on tape. If an error
is encountered during a Unit Record Write, the erroneous record is typed as well
as printed.

Each use of sNAP causes the generation of a calling sequence of four words. Any
of its components may be addressed through reference to aNvyLABEL with ap-
propriate address adjustment and field definition. A closed subroutine is gen-
erated out-of-line once per segment. This routine, which is not shown here,
occupies about 140 locations and performs the editing to create output records,
issues the write commands, and controls the number of records written. On com-
pletion of the print-out, the routine returns to the source program through an
unconditional Branch to 0003 plus Index Word 94. The format of the calling
sequence is as follows:

Linil Label peration| OPERAND 5
3 5|6 N 15|16 20J21 25 30 35 40 45

o1 ANYLABEL .|BLX. |94..SNAPOOA.A)
oz |DRDW |+ FROMADDR.TOADDR.1
o3 | . luw . louTPUTUNIT.SNAPOLS.A)
o4 | ... e
o5 | XXX XX XXX L)
0.6...‘..,A\| ..J,A1-n¢.nAnA|...‘JH.-.,;;.,&

The operand of the third instruction, vw, could also be pTw. The constant on line
05 is composed of the following:

Digit Positions Contents
0,1 The counter, SKIPSPRIOR
4,5 The counter, SNAPS
8,9 The counter, SKIPSAFTER
7 1, if skrpsaFTER is blank

The following is an example of acceptable coding for the sNAP macro-instruction.
The associated source-program entries are given, followed by the sNap statement,
coding generated in-line, and coding generated out-of-line.

SNAP 227

PAGE AA PROGRAM 7070 COMPILER SYSTEM VERSION OMY08s CHANGE LEVEL 0000ls PAGE AA

LN CDREF LABEL oP OPERAND CONCG FD LOC INSTRUCTION REF
ol 891 * SNAP EXAMPLE 1
02 892 SNAPOUTP EQU 19,QU
03 893 *
04 894 ANYLABEL SNAP 0999 9SNAPOUTP 19293
05 X ANYLABEL 8Lx 943 SNAPQOL <A 00001 0325 +0200940357
06 X DROW +0999 0326 +0000000099
07 X PTW SNAPOUTP s SNAPO18sA 0327 +8100930356
08 X D¢ +0003280328
09 X +0100020003 09 0328 +0100020003 0328
10 895 *
11 896 * THE FOLLOWING IS GENERATED OUT OF LINE
12 897 *
13 X SNAPQO2sA DA i +0003290333
14 X 49149 99 0333 0333
15 X DA 1 +0003340349
16 X SNAPO15.A 009159 09 0334 0334
17 X SNAPOl6eA DRDW +SNAPOL15eA+29SNAPO15eA+3 00002 0350 +0003360337
18 X DROW +SNAPQOLl5e¢A+59SNAPO15eA+6 0351 +0003390340
19 X ORDW +SNAPQO15+A+89SNAPQL5eA+9 0352 +0003420343
20 X DRDW +SNAPO15+A+119SNAPO15sA+12 0353 +0003450346
21 X DRDW ~SNAPO15¢A+14+SNAPOL154A+15 0354 =0003480349
22 X SNAPO17eA DRDW =SNAPO15e¢A+29SNAPO15+A+13 00003 0355 =0003360347
23 X SNAPC18sA DROW =SNAPO15e4A»SNAPOL54A+15 0356 =0003340349
24 X SNAPOQOlsA PC +1111111111 0357 +5500000470
25 X STP1 2(091)+X94 0454 =1294010002
26 X ZAl 2(495)+X94 LOAD SNAP CTR 00023 0455 +1394450002
27 X BZ1 SNAPO21sA+2 MAKE NOP IF SNAPCTR ZERO 0456 +1000090460
28 X B SNAPQOLleA+4 0457 +0100090361
29 X SNAPQ2l.A ZAl 21T97)+X94 SW7 TEST FOR SKIP 0458 +1394770002
30 X 8Z1 SNAPO20eA SETUP SKIPSAFTER CTR 0459 +1000090453
31 X ZAl1 ~0100000000 SETUP SKIPSAFTER FOREVER 00024 0460 +1300090671
32 X xS ELIDY 0461 ~4700940001
33 X IST1 0+X94 0462 =1194090000
34 X 2ST1 1+X94 0463 ~1194090001
35 X LST1 2+X94 0464 -1194090002
36 X IST1 3+X94 00025 0465 =1194090003
37 X SNAPO22.A B SNAPOO94A 0466 +0100090440
LITERALS
38 X +000000000C0 09 0467 +0000000000 0467
39 X +0000000006 09 0468 +0000000006 0468
«0 X +0000000012 09 0469 +0000000012 0469
4l X +1111111111 00026 09 0470 +1111111111 0470
42 X =0100000000 09 0471 =0100000000 0471
43 X YSNAP ¢ 00027 09 0472 '8275617700 0472
w4 X 40 0l 0473 '20 0473
45 X Y=t 23 0473 ' 39 0473
46 X YAt 45 0473 ! 61 0473

SNAP Example 1

A listing of the index word area of storage is desired on tape for two
consecutive passes of the program through this area following the first
pass through. Tape listings are then omitted for the next three passes.
Control then alternates between producing the. two tape listings and

causing the three skips for the duration of the program.

228

The Processor

The Organization of
the Processor

The Autocoder processor performs functions such as assembly, compilation, and
generation for the Autocoder portion of the mm 7070/7074 Compiler Systems
Tape. In addition to Autocoder, the Compiler Systems Tape contains the com-
pilers for FortrAN, the Report Program Generator, and Commercial Translator.
The runs which perform these various functions for all of these compilers fall
into two general categories: Compile Runs and Generator Runs. These runs are
described in the 7070/7074 Data Processing System Bulletin “mm 7070/7074
Compiler Systems: Operating Procedure,” form J28-6105.

Compilation of a source-language program is performed by a Compile Run. The
program is converted to machine language and shown on the output listing along
with the original symbolic instructions, and then punched into a condensed pro-
gram deck. A Generator Run compiles input statements which create a new
macro generator and, if desired, enters the resultant program on a new systems
tape. In addition, changes to the Compiler Systems Tape are processed during a
Systems Run and an updated systems tape is produced.

The operation which is used most frequently in Autocoder processing is that of
compilation; this operation is performed by a Compile Run, as well as the com-
pilation portion of a Generator Run. The function of the processor during com-
pilation is discussed on the following pages.

The Autocoder processor consists of the following major sections:

Systems Control: This section of the processor exercises overall control over the
compilation process and is principally charged with “housekeeping” functions.

Phase I: This is the first phase in the conversion of the source program to an
object program. Phase I scans the input statements of the source program and
creates records which will constitute input to Phases II and IIL.

Phase II: This is the second phase in the conversion of the source program to an
object program; Phase II will not become active until Phase I has completed its
role in processing. Phase II, in conjunction with the macro generators, compiles
the macro-instructions of a program.

Phase III: This is the third and last phase in the conversion of the source program
to an object program; Phase III will not become active until Phase II has com-
pleted its role in processing. Phase IIT assembles the final program on the basis
of records received from Phases I and II. The output from Phase III consists
of a machine-language program and a program listing.

Autosort: Autosort is the portion of the processor which contains appropriate sort
routines which are called when it is necessary for the processor to reorder its
records for a pass.

Macro Generators: The macro generators and function subroutines are contained
on the Compiler Systems Tape and are made available when required to com-
pile macro-instructions in Phase II.

The functions of Systems Control and Phases I, II, and III during compilation
and assembly will now be described in more detail.

The Processor 229

Systems Control

Communication Record

Systems Control 1 (SYCL1)

Systems Control 2 (SYCL2)

Systems Control 3 (SYCL3)

Systems Control 4-8
{SYCL4-SYCL8)

Update

230

The chief responsibilities of Systems Control during compilation are as follows:
1. To determine the type of run to be made.

2. To check the validity of the operating options.

2
3. To supervise the assignment and readiness of the various tape units.
4. To locate and load the various coding blocks on the systems tape.

5

. To turn control over to the coding blocks at appropriate times to effect actual
processing,.

In addition to these functions, Systems Control incorporates the desired modifi-
cations, additions, or deletions to the system on a new Compiler Systems Tape
when required by a Systems Run or a Generator Run.

The Systems Control program consists of ten sections, called Communication
Record, Systems Control 1-8 (sycLl, svcL?, etc.), and Update.

The Communication Record consists entirely of data; it contains no instructions
to be executed. The data includes the characteristics of the processor machine,
the object machine, and the object program, as specified by the programmer
through the use of Operating Option Control Cards. The Communication Record
also includes various codes generated within the processor for communication be-

tween coding blocks.

svcLl loads the Communication Record and turns control over to svcL3. This
section of Systems Control also contains the input/output routines and the Sys-
tems Tape Control; both of these remain in storage throughout the compilation
process. The Systems Tape Control locates, loads, and transfers control to the
various coding blocks.

sycL2 is generally called only at the end of a Compile Run to identify halts and
output tapes by messages on the console typewriter. In Multifile Runs, it tests
for the presence of another program to be compiled and turns control over to
sycL3 again if indicated. sycL2 may also be used to discontinue a run when the
processor determines that this is necessary.

sycL3, the largest and most complex portion of Systems Control, initiates the
desired run. It reads the various options into the Communication Record, does
some validity checking of options, and may type error messages and even cause a
halt. It opens the required input and work tapes and does whatever else is neces-
sary in the way of “housekeeping” functions to prepare the type of run specified
by the run Control Card. If this is an Autocoder Compile Run, Phase I is called.

These sections, which provide for the mounting and dismounting of tapes, are
always called by, and in turn will call, a routine other than a Systems Control
routine. No two of these routines are identical, but they are quite similar and are
included on the systems tape as one program section at five different points. Of
these programs, only sycr6 is loaded during Compile Runs.

Update is a program controlling changes to the systems tape; this program is not
loaded during a Compile Run.

Phase |

Phase I reads the source program from cards or tape. Each input statement is
assigned a serial number, for internal use by the processor, to govern program
order during assembly. Source program page and line numbers are retained and
will reappear in the program listing, but they are not utilized during the assembly
process. A program identification record is created from columns 76-80 of the
first program card. This identification applies to the entire program to be com-
piled, and columns 76-80 of all subsequent cards are ignored.

As the input statements are scanned by Phase I, a certain amount of error check-
ing is done, and, where necessary, error messages are issued which will ultimately
appear in the program listing. In general, Phase I confines its validity checking
to such major format violations as omission of operation codes or operands, mal-
formation of the operand portions of macro-instructions, use of illegal characters,
errors in field definition, use of unallowable address types, exceeding machine
capacity, or exceeding the maximum permissible number of LrTORIGIN statements.
If Phase I encounters an input statement which cannot be processed, it will
usually retain as much of the statement that was scanned, or it will generate a
NoP. An error message will be issued.

The chief function of Phase I is to furnish records to Phases II and III that will
enable them to compile the finished program; this is done by analyzing the source
program statements and by writing records for the label and operand entries.
These “element” records contain pertinent information about the source program
entry, such as its serial number, its operation code, and other attributes relevant
to the processor. Output from Phase I consists of two files, File A and File B.
File A, which contains all of the element records, goes directly to Phase III. File
B, which contains all records that may be required for the compilation of macro-
instructions, becomes input to Phase II. (Phase II will receive not only records
derived from macro-instructions themselves, but also label records from all other
instructions having symbolic labels, since these may be referenced by macro-
instruction operands.)

Input statements are scanned one at a time. When comments cards are en-
countered, appropriate records are written onto File A for inclusion in the final
program listing. Other source statements are classified according to their-opera-
tion code, which will be that of a declarative statement, a control statement, an
imperative statement (either a symbolic machine instruction or a macro-instruc-
tion), or blank. If the operation code does not fall into any of these categories,
or if a blank operation code occurs on a card following one that does not permit
continuations or subsequent entries, the code is converted to a NoOP, and an error
message will appear for that line of the program listing.

Phase I processes its input statements in three successive passes, each of which
is processed by a separate coding block. These coding blocks contain the pro-
grams that will process statements with the following operation codes, respec-
tively:

Pass 1 Pass 2 Pass 3

First Coding Block Second Coding Block Third Coding Block
Symbolic machine DA xRESERVE Control

instructions CODE sReseRVE Control
DRDW DC xRELEASE Control
EQU DLINE sReLEASE Control
BranNcH Control DSW DTF
exp Control oriciN Control DUF

LrroriGIN Control Macro-instructions

The Processor 231

Phase Il

232

The first coding block is loaded into storage and the entire source program is
scanned for the statements whose programs are contained on this block. These
statements are processed at once; the others are written onto a temporary work
tape. The second coding block is then loaded into storage. The work tape con-
taining the statements which have not been processed is scanned. The statements
whose programs are contained on the second coding block are processed; the
remaining statements are again written onto a work tape. Finally, the third cod-
ing block is loaded into storage and the remaining statements are processed.
Thus, each of the three coding blocks needs to be loaded into storage but once.

This procedure, of course, temporarily destroys source program (i.e., page and
line) order, but this order will ultimately be restored by means of the internal
serial number assigned to each statement. In addition, input statements are gen-
erally taken apart, with separate records being written for the label and the one
or more operand entries. These individual components of a given source state-
ment are also numbered and provided with indicators that will permit eventual
recomposition of the source statements.

Phase II processes the records on File B in order to perform the compilation of
macro-instructions. Its output, a series of records corresponding to symbolic
machine instructions and declarative statements, is written on File A.

The first step of Phase II is a sort of File B, which contains all label records of
the declarative or imperative statements having symbolic labels; the records are

grouped by symbolic name.

The sort is followed by an Information Transfer pass. This pass provides addi-
tional necessary information concerning the characteristics of fields occurring in
the operands of macro-instructions; this is performed by transferring the char-
acteristics shown in the label records into the macro-instruction operand records.

At the conclusion of the Information Transfer pass, all records other than macro-
instruction labels and operands are dropped from File B. The remaining records
are sorted and grouped by macro-instruction operation code. Within this group-
ing, the records are arranged according to their order of appearance in the pro-
gram. This sorting avoids frequent reloading of the same macro generator since
the processor will be able to operate successively on all appearances of each
macro-instruction.

The generating portion of Phase II is governed by a program called Phase II
Control. This program determines which macro generator is required and calls
the appropriate coding block from the library. While one generator is being
executed, Systems Tape Control (see “Systems Control 1 (sycLl)”) positions the
tape in anticipation of the next required generator. Phase II Control sets up cer-
tain counters required by the generators, such as parameter counters and count-
ers to record the number of previously generated labels. In addition, it causes the
macro generator required to be loaded into storage, furnishes appropriate “par-
ameter” records to it as a basis for analysis, and then turns control over to the
generator itself.

The parameter records are not quite identical to the element records written
by Phase I and completed in the Information Transfer pass, but they are based
on them. The parameter records need not contain the operation code or the
serial number; this information is stripped from the element record and tempo-
rarily stored elsewhere, to be attached again to output records. In general, the
rest of the element record goes into the parameter record area unchanged, but
some items that cannot be conveniently accommodated there, such as long alpha-

Phase il

meric literals, the input texts of ARITH and Locic statements, etc., are stored in a
separate area. Rows defining their location are made available to the generator in
the parameter record area. Records of address adjustment and indexing are
not preserved as independent entities; the pertinent information is entered into
the records of the parameters they modify. Since one macro-instruction is com-
piled at a time, the parameter record area will, at any one time, contain only those
records derived from a single macro-instruction.

Generated output is not, strictly speaking, produced by the macro generators
themselves, but by the GENER subroutine, which is in storage during the entire
generating portion of Phase II. The macro generators contain “model statements”
which, together with the parameter records and certain indicators set by the gen-
erator, serve as a guide for the construction of appropriate records by GENER.
These records, which are written onto File D, correspond to a sequence of sym-
bolic machine instructions or macro-instructions that will accomplish the opera-
tions indicated by the original macro statement.

Certain Autocoder macro generators pass on portions of their work to other
“Jower-level” macro-instructions. For example, the LoGIC macro-instruction often
passes work on to the comp macro-instruction. In such cases, the generated output
on File D will include both macro-instructions which require further compila-
tion and symbolic machine instructions which do not. Therefore, after the gen-
erating portion of Phase II, the temporary output file, File D, is edited into two
further files. Symbolic machine instructions, declarative statements, and control
statements are written onto File A as eventual input to Phase III; an editing
program changes the format of these records into a format identical to that pro-
duced by Phase I. The generated macro-instructions which require further com-
pilation are edited to a format identical to that produced by Information Transfer.
Since these records have already been augmented to include data characteristics,
the records are re-entered at a point following the Information Transfer pass and
beginning with the sort by macro-instruction operation code.

When no further macro-instructions remain to be compiled, all Phase II output
will have been edited and written onto File A; this file then goes to Phase III for
assembly.

At the start of Phase III all macro input statements have been reduced to sets of
elementary Autocoder statements consisting of machine instructions, declaratives,
and several types of comments records. The input to Phase III was written on
File A by Phases I and IL. After sorting these statements back into the order of
the source program, the statements are assigned machine locations, the operands
are replaced by their equivalent machine location values, and the individual
machine instructions are built. These are shown on the output listing, along with
the original symbolic instructions, and then packed into a condensed program
deck.

Phase III is organized into six passes and four sorts, as follows:
1. Record Construction
Sort Serial-Request File

Serial Transfer

2
3
4. Sort Statement File
5. Assignment

6

Sort Symbol File

The Processor 233

Record Construction

Sort Szrial-Request File

Serial Transfer

234

7. Information Transfer

8. Sort Operand File
9. Output
10. Message

The Assignment pass is the central processing section of Phase IIL. Its primary
function is to assign a machine location to each statement as it is encountered.
The passes and sorts preceding the Assignment pass prepare the input for this
pass. The succeeding passes and sorts handle the final preparation and editing
of the output.

The first pass, the Record Construction pass, writes two types of records. On
one file, statement records are constructed from the element records written by
Phases I and II. A statement record is written for each statement; it contains the
label, operation code, one or two operands, field control, address adjustment,
indexing, and remarks. On a second file, Record Construction creates the follow-
ing request records:

1. A Serial Record for each labeled statement (including EQu statements).
2. An Equate Request Record for each symbolic operand of each EQu statement.

3. An Index Assignment Request Record for each symbolic index word appear-
ing either in the operand of an index word operation such as xL. or xza, or as
indexing.

4. A Switch Assignment Request Record for each symbolic electronic switch
appearing in the operand of an electronic switch operation such as BEs or EsN.

5. An Implicit Indexing Request Record for each labeled pa subsequent entry
included under a pa header line showing implicit indexing.

6. An Origin Request Record for each symbolic NAMEONE operand of an oricIN
or LITORIGIN statement.

7. A Literal Request Record for each literal or adcon appearing in the operand
of an instruction.

The Serial Record and request records created by the Record Construction pass
are sorted by symbolic name and, further, by the type code of each request
record. This sort places the file in order so that all request records for each
symbolic name are grouped together following the Serial Record, if one has been
created. The literals and adcons will be sorted into two groups following the
request records. These records will be in order by adcon name or by literal value.

The Serial Transfer pass selects the request records to be added to the statement
file created during the Record Construction pass; this statement file will be
processed during the Assignment pass.

Each Index Assignment Request Record and each Switch Assignment Request
Record is read; the request record for each index word and electronic switch
with the lowest card serial number (i.e., the record of the first occurrence of the
symbolic name in the program) is passed on to the statement file.

Serial Transfer retains a record of the card serial number of each Index Assign-
ment Request Record it passes to the statement file. This number is transferred
to the Implicit Indexing Request Record for each labeled pa subsequent entry.
These records are passed on to the statement file.

Sort Statement File

Assignment

Equate Request Records have been created in the Record Construction pass for
the symbolic operands of EQu statements. In addition, Serial Records have been
created for the label of each EQu statement. The Serial Transfer pass matches
the Serial Records with their corresponding Equate Request Records. The card
serial number from the Serial Record is added to the Equate Request Record;
the Equate Request Records are then passed on to the statement file.

Finally, the Serial Transfer pass processes the Literal Request Records. This
pass essentially creates a pc for the complete set of literals and adcons. A pc
subsequent entry, with either the literal value or the adcon as its operand, is
created for each unique literal or adcon; duplicate references are read

and dropped.

The complete statement file is now sorted by card serial number to give the
Assignment pass a file in source program order. The request records have all
been given card serial numbers and will be merged with their respective state-
ments. Literals will have been numbered so that they fall last in each litorigin
segment of the program.

The Assignment pass assigns a machine location to each statement as it is en-
countered. A statement might be a symbolic machine instruction which occupies
one word of storage or it might be a declarative which occupies any amount of
storage from part of one word to many words. The Assignment pass assigns a
reference address to each statement regardless of the type; the reference address
is composed of the address and field control of the part of the statement that
occupies the first word of storage assigned to this statement.

In addition to its function of assigning a reference address to each statement,
the Assignment pass creates two types of records, Definition Records and Oper-
and Records, which are placed in the Information Transfer file. Definition
Records are created for each symbolic label encountered; the record contains
the reference address which has been assigned to the labeled statement. Operand
Records are created for each symbolic operand encountered.

Symbolic index words and electronic switches create special cases; these symbols
must be assigned machine addresses. The statement file sort has placed an Index
Assignment Request Record following the instruction containing the first refer-
ence to the symbolic index word; likewise, it has placed a Switch Assignment
Request Record following the instruction containing the first reference to the
symbolic electronic switch. These request records initiate the assignment of a
machine location and the creation of a Definition Record to be placed in the
Information Transfer file.

Labels of pa subsequent entries whose pa header lines show implicit indexing
also create special cases. Implicit Indexing Request Records, which were created
by the Record Construction pass, have been placed following the appropriate
Index Assignment Request Records. These request records initiate the creation
of Definition Records which contain the implicit index value; the Definition
Records are placed in the Information Transfer file.

Another special case is equating one symbol to another symbol. An Equate
Request Record has been placed following the statement with the same label
as the EQu statement operand. The request record initiates the creation of a
Definition Record to be placed in the Information Transfer file.

When omiciN and LITORIGIN statements are encountered, the Assignment pass
must be able to change the address assignment to continue from some previously

The Processor 235

Sort Symbol Fiie

Information Transfer

Sort Operand File

Output

Message

Output Listings

Program Llisting

236

defined address. An Origin Request Record for the operand NaMEeONE will follow
the statement with the same label as the NaMEONE. It will cause an entry in a
table containing values of addresses for reference by oricIN and LITORIGIN
statements.

The Information Transfer file is sorted by symbolic name. Within each set of
records for one symbol, Definition Records precede Operand Records.

The Information Transfer pass will transfer the assigned value in each Defini-
tion Record to each operand that refers to the defined symbol. Simultaneously,
the pass will produce the Cross Reference Listing which will be written on the
end of the statement file.

The Operand Records, with assigned values, will be sorted on the page and
line number of the statement which contained the symbolic operand; the Oper-
and Records will then be used as input to the Output pass.

The Output pass will read each statement record and reconstruct the card image
of the statement, i.e., label, operation code, and operand. The Operand Records
that pertain to a statement will be read and the values substituted for symbols
in the statement. The pass will construct the machine instructions which will
be shown with the original symbolic instructions on the output listing; the
machine instructions will be condensed into the output program deck. Any halt
instructions that occur will be copied onto the Message file, which will also
receive any Message Records that have been added to the statement file during
the entire process. After the last statement has been processed, the Message pass
will be called.

This pass will first write the memory map, the index word and electronic switch
availability tables, and the Cross Reference Listing from the end of the statement
file onto the output listing. Next, a component listing from the end of the Oper-
and Record file will be added to the output listing. The list of halt statements
are then written, followed by the list of error messages.

The Program Listing is prepared during the Output pass of Phase III. This
listing contains the original symbolic instructions with the assembled machine
instructions. A sample Program Listing is shown on the opposite page. The
heading (1) of the Program Listing is “7070 COMPILER SYSTEM VERSION XXXXX,
CHANGE LEVEL YYYYY.” Appropriate substitutions for the version number and
change level number are determined by the identification on the Compiler
Systems Tape. A page number (2) appears twice on each page. The page
numbers are assigned to each page of the listing by Phase III; the pages are
numbered sequentially by a two-letter symbol (aa, as, through zz). The
PROGRAM zzzzZ (3) entry is the program identification record; if no identifica-
tion is used, this entry will be blank.

The listing on the left-hand portion of the page contains the original source-
program entries as well as the symbolic machine instructions, prows, literals,
etc., that have been generated. The line number (4) is assigned by Phase III
to each entry. The card reference number (5) is the page and line number

10888004 Y[

&8

; Q
PAGE AA PROGRAM 22222 7070 COMPILER SYSTEM VERSION XXXXX, CHANGE LEVEL YYYYY. PAGE AA

@LN}REF LABEL op OPERAND CONO FD LOC INSTRUCTION RI REF

-

655 o« \@> @zeno EXAMPLE 5 \QD @
02 656 DRUWNABE DRDW AREANAME ©

03 X CRCWNAYE URDw +AREANAME , AREANAME +24 00001 0325 +0003270351 11

ou x DROW ~AREANAME+25, ARE ANAME 449 0326 -0003520376 11

05 657 =

06/658 AREANAMT DA 2490+ INDEXWORD + 0003270376

07" 659 FlCLLA 00,99° 09 0327 0000
s 660 FIELDS 100, m 03 0337 0010

09 661 FlELLC 10U, 129A 49 0337 0010

10 662 FIELDD 130,249A 09 0340 0013

11 663 *

12 66u ANYLABEL LERY DRDWNAME M

13 X ANYLABEL 2A2 +0 00002 0377+ 2300000379 01

14 X STD2 DROWNAME[0,9) 0378 =-2200090325 01

15 665

16 666 * THE FULLOWING 1S GENERATEC OUT OF LINE

17 ¢é67 *

. LITERALS
18 X +0 00 037940 00 0379

Origin Counter Listing

Avadilability Table

Cross Reference Listing

Component Assignment
Listing

Halt Listing

Message Listing

238

assigned by the programmer to each source-program entry. The label (6),
operation (7), and operand (8) columns contain the source-program entries
and the generated statements. Any remarks originally contained in the operand
of the input statements are printed on the listing. An x (9) preceding the label
column of an entry indicates that the instruction has been generated. An
apostrophe (10) appears in the listings throughout this manual and indicates
the use of an @ character; the * is equivalent to the @ character on the u type
wheel configuration.

The listing on the right-hand portion of the page contains the assembled machine
instructions. The card number (11) is assigned by the Output pass of Phase III
to each condensed card punched out. When the source statement specifies field
definers for less than the full word, the field definition (12) is indicated. The
location (13) is the machine location assigned to the instruction. The instruc-
tion (14) is the actual assembled machine instruction. The relocation indi-
cators (15) are two-digit numbers assigned each assembled instruction to
indicate which part(s) of the instruction must be adjusted if relocation of all or
part of the program is desired. The reference address (16) is either (a) the
actual address assigned to literals or to pa, pc, or pLINE subsequent entries, or
(b) the relative address of pa subsequent entries when a relative address is
specified in the pa header line. An M (17) following the reference address
column indicates that an error or warning message is associated with that line.

An Origin Counter Listing follows the Program Listing. Each counter is listed
in alphameric order; the initial value, last value, highest value, and lowest value
for each counter follow. An example of an Origin Counter Listing appears on

page 94.

An Availability Table follows the Origin Counter Listing. This table first lists
the electronic switches which remain available for assignment; the index words
which are available for assignment follow. If no index words or if no electronic
switches remain, the word “NONE” appears in place of the list of switches or
index words.

The Cross Reference Listing is prepared by the Information Transfer pass of
Phase III. All symbolic labels, symbolic index words, symbolic switches, cope
fields, literals, and adcons are listed in alphameric order. Each of these entries
is followed first by page, line, and actual location of all operand usages of
that label.

The Component Assignment Listing presents all of the electronic switch and
index words used in the compiled program. The symbolic name(s), if any,
assigned to each of these components is included in this listing.

A Halt Listing follows the Component Assignment Listing. Each halt instruction
occurring in the compiled program will be listed in the order in which it occurs
in the program. The halt instructions in the listing will appear in the same
format as they appear in the Program Listing.

The Message Listing is provided by the Message pass of Phase III; this listing
immediately follows the Halt Listing. The actual message is printed, as well
as the page and line number (referred to by (2) and (4) on the Program
Listing) of the entry concerned.

Appendix A:

Relationship of 7070/7074 Avutocoder to Basic
Avutocoder and Four-Tape Autocoder

The advanced programming capabilities of the 7070/7074 Autocoder system, as
compared to the 7070/7074 Four-Tape Autocoder, are due to more powerful
macro-instructions, extensive control operations over processing, and increased
input/output options. To effect these improvements, distinct statement types
and language specifications peculiar to Autocoder have been developed. How-
ever, as in Four-Tape Autocoder, the new language characteristics are additions
rather than changes to the 7070/7074 Basic Autocoder language. It is therefore
possible for either of the more powerful systems to process any program that can
be assembled with Basic Autocoder without modification. The converse is untrue
since Basic Autocoder is not designed to process the advanced programming
features provided in the larger systems. Similarly, since Autocoder and Four-
Tape Autocoder each use a unique type of macro-instructions and other program-
ming functions, neither is designed to process all programs which can be
assembled by the other.

If desired, the user may advance from Four-Tape Autocoder to the Autocoder
system by using macro generators to duplicate the substitution-type macros used
in a program, or by recoding the program so that macro-instructions provided
with or added to the Autocoder system may be utilized. In order for a program
coded in Four-Tape Autocoder to be fully compatible with the programming
requirements of the Autocoder processor, certain additional changes in the
coding and treatment of some programming functions must be made. These
differences are outlined in Appendix B.

Relationship of Autocoders 239

Appendix B:

Coding Sheet, Operand

Address Types

Index Words

Electronic Switches

DA — Define Area

240

Differences Among 7070/7074 Autocoder
Systems

The areas in which 7070/7074 Autocoder differs from 7070/7074 Basic Autocoder
or 7070/7074 Four-Tape Autocoder are outlined below.

Basic Autocoder. Columns 21-60.
Four-Tape Autocoder and Autocoder. Columns 21-75.

A blank address in a LITORIGIN statement has the following significance:
Basic Autocoder. Not to be used.

Four-Tape Autocoder and Autocoder. Assignment continues at one beyond the
highest location previously assigned, except for the locations assigned by the
special “s” counter.

The number of symbolic labels that can be used in a source program is as follows:

Basic Autocoder. The number is limited by size of storage area available for
the symbol table.

Four-Tape Autocoder. The symbol table is written as a block on tape when the
area in storage is filled. The number is limited only by the number of blocks
that can be written on the symbol tape.

Autocoder. There is no practical limit to the number of symbolic labels that
can be used in a source program.

Basic Autocoder and Four-Tape Autocoder. Once reserved, index words cannot
be made available for reassignment later in the same program.

Autocoder. Index words may be reserved by means of an XRESERVE statement.
Index words which have been previously assigned by any method may be made
available for later assignment by means of an XRELEASE statement.

Basic Autocoder and Four-Tape Autocoder. Once reserved, electronic switches
cannot be made available for reassignment later in the same program.

Autocoder. Electronic switches may be reserved by means of an SRESERVE state-
ment. Electronic switches which have been previously assigned by any method
may be made available for later assignment by means of an sRELEASE statement.

A pa header line has the following differences:

Basic Autocoder and Four-Tape Autocoder. N may be from 1 to 999. The
number of storage words that may be reserved for an area is a maximum of 999.

Autocoder. N may be from 1 to 9999. The number of words that may be re-
served is limited only by the size of the object machine. In addition, a symbolic
or actual index word may be appended to the relative address to facilitate the
writing of indexed instructions which reference fields in the defined area.

The subsequent entries have the following differences:

Basic Autocoder and Four-Tape Autocoder. These entries indicate the names of
fields and the position of the field within the area only. A coDE entry is not
permitted.

DC —Define Constant

EQU — Equate

Origin Control

Litorigin Control

Autocoder. The format or characteristics of a field, i.e., numerical and an auto-
matic-decimal number, numerical and a floating-decimal number, etc., may also
be included following the indication of the position of the field within the area.
A copE entry may be used.

Basic Autocoder and Four-Tape Autocoder. Numerical constants may contain
a maximum of ten digits. In alphameric constants, the @ symbol may appear
only if it immediately precedes the terminal @ symbol. The @ symbol may
appear in remarks which are on the same line as an alphameric constant. An
adcon cannot be modified by address adjustment.

Autocoder. Numerical constants may be in standard floating-decimal format or
in the form of automatic-decimal numbers of up to twenty digits in length. The
@ symbol may appear anywhere within an alphameric constant. The @ symbol
cannot be used in remarks which are on the same line as an alphameric constant.

Basic Autocoder and Four-Tape Autocoder. The symbolic address to which a
symbolic name is being equated must have appeared as a label earlier in the
sequence of program entries. A symbolic name cannot be equated to a digit value.

Autocoder. A symbolic name may be made equivalent to a symbolic address
which appears as the label for an entry anywhere in the source program. A
symbolic name can be equated to a digit value.

Basic Autocoder and Four-Tape Autocoder. The location assignment counter
used by the processor may be set to the starting location specified in the operand
of the ORIGIN statement. A blank operand signifies that the contents of the high
assignment counter plus 1 is to be used by the processor. The letter “s” following
an address in the operand orders the processor not to alter the high assignment
counter during the processing of succeeding entries. If an oriGIN statement does
not appear before a location is assigned to the first source-language input entry,
the processor will begin the assignment of storage locations at 0325.

Autocoder. In addition to the automatic location assignment counter, over 250
separate symbolic-location counters may be named by the programmer and used
by the processor to control the placement of a program in storage. A blank
operand in an ORIGIN statement indicates that the maximum value attained by any
location counter, other than counter “s”, is to be used for the assignment of sub-
sequent locations. The assignment of storage locations will begin at an address
specified in the Compiler Systems Tape if an oriGIN entry does not appear before

a location is assigned to the first source-language input entry in a program.

Basic Autocoder. Normally, literals will be stored in locations immediately fol-
lowing the highest location assigned to the source program. One LITORIGIN state-
ment, placed at the end of the source program deck or immediately preceding
the Exp Control Card (if used) may be utilized to start the assignment of literals
at the location specified in the operand rather than following the highest location
used in the program.

Four-Tape Autocoder. Library subroutines, as well as literals, may be stored
in locations immediately following the highest location assigned to the source
program. However, the LITORIGIN statement may be used to insert these gen-
erated subroutines into the program at the point where the LiToRIGIN entry
appears. More than one such entry may be used in a program but each must be

Differences Among Autocoders 241

End Control

Macro-Instructions

242

followed by an omicIN statement unless the LITORIGIN statement is either the last
entry or is followed by an Exp Control operation.

Autocoder. Same format as Autocoder ORIGIN statement. May be used to regulate
the placement of materials generated out-of-line, i.e., implicit adcons, area
definitions, etc., as well as literals. Up to 25 LITORIGIN statements may be used
in a program to cause the assignment of locations to all material generated up
to the point at which another LitorIGIN entry is encountered. Each phase of a
multi-phase program may thus be loaded with its own literals, generated con-
stants, etc. ORIGIN statements are not required following a LITORIGIN entry.

Basic Autocoder and Four-Tape Autocoder. If an END statement is not used, the
processor will generate an unconditional branch to location 0325.

Autocoder. If an END statement is not used, or if used with a blank operand, the
processor will generate an unconditional branch to the address specified in the
Compiler Systems Tape.

Basic Autocoder. Cannot process macro-instructions or DTFs per se.

Four-Tape Autocoder. The 7070 Input/Output Control System macro-instructions
may be used with the following restrictions:

1. When using Pur macro-instructions with Four-Tape Autocoder, the name
preceding 1N must be the name of either an row which defines one area or a
tape input file. The use of a field name is not allowed unless the field name
is the label of an row that defines the field.

2. The name of a card input file may not be used in the PuT macro-instruction
if the output file is a tape file.

3. A record from a card input file may be included in a tape output file if the
unit record area is defined by one row; the pur would then be written using
the name of the row; i.e., the name preceding the word v would be the
same as the fourth item in the pUF entry of the card input file.

4. Only nine tape files may be named in the operand of an oPEN or cLOSE macro.

5. The symbolic names 10CSIXF, 10CsIXG, and 10CSIXH may not appear in the
operand of the piocs statement.

6. Any index words to be used in the procs statement must be actual. These may
later be equated to a symbolic name.

7. Comments cards cannot be inserted between pTFs or among pTF subsequent
entries.

Other macro-instructions that can be used are substitution type—values in the
operand of the macro in the source program are used to complete the labels,
operation codes, etc. of a sequence of instructions contained in the Library
portion of the Systems Tape.

Autocoder. The 7070 Input/Output Control System macro-instructions can be
used without the restrictions noted above. The additional macros that can be
used with Autocoder are processed by macro generators and therefore differ
from the substitution type of macro-instructions that can be used with Four-Tape
Autocoder.

Appendix C:

Reserved Index Words

The Compiler Systems Tape will not allow assignment of symbolic names to
certain index words. The address and special function of each of these index
words are listed below.

Address Function
0093 Used by Autocoder and rorTran floating-decimal subroutines.
0094 Used by Autocoder and FORTRAN normal subroutines.
0095 Used by spooL operations on Channel 2.
0096 Used by spooL operations on Channel 1.
0097 Priority address word.
0098 Table lookup indexing value and found address.
0099 Address of priority final status word.

Reserved Index Words 243

Appendix D:

7070/7074 Operation Codes by
Avutocoder Mnemonics

In the following list, the symbols in the operand column indicate what is per-
missible in the operand and the order in which this information must be written
on the coding form for each symbolic machine instruction.

In all cases where an “A” has been indicated, a literal may also be used. The list,
however, indicates a literal, “L,” and also field definition, “F,” only where it would

seem to be of practical value. Caution is advised when using literals with opera-

tion codes which do not specifically indicate them.

Operand Symbol Key

Symbol Meaning Type of Coding Range of Actual
A Address Symbolic or actual ~ Any storage location
AF Arm and file Symbolic or actual ~ 00-03, 10-13, 20-23
B Blank
C Channel number Symbolic or actual 14
CU Channel and unit Symbolic or actual 10-49
D Digit Actual 0-9
F Field Definition Actual (Enclosed in 09
parentheses)
I Unit record latch Aorl, Bor2 1-2
L Literal
N Number Actual 0-10 (for normal shifts)
0-20 (for coupled or split
shifts)
0-9999 (for index word
codes)
P Digit position Actual (Enclosedin 0-9 (for CD)
parentheses) 0-19 (for split shifts)
Q Inquiry synchronizer Symbolic or actual 1-2
S Unitrecord Symbolic or actual 14
synchronizer
SN Alteration switch Symbolic or actual 14
SW Electronic switch Symbolic or actual 1-30
X Index Word Symbolic or actual 1-99
, Used as a separator and must be written on the coding sheet (unless
the address which follows is blank).
/ Used to indicate the word “or” (e.g., A/L means either an address or
a literal).
Used to indicate an accumulator number (1,2, or 3, which must appear

244

in place of the # symbol).

Alphabetic List of 7070/7074 Operation Codes by Autocoder Mnemonics

Mnemonic Operation Operand
A# Add to accumulator # A/L F
AA Add absolute to accumulator 1 A/L F
AAS# Add to absolute storage from accumulator # A F
AS# Add to storage from accumulator # A F
B Branch A
BAL Branch if any stacking latch is ON A
BAS Branch if alteration switch is ON SN,A
BCB Branch if channel is busy CA
BCX Branch compared index word XA
BDL Branch if disk storage latch is ON AF,A
BDX Branch decremented index word XA
BE Branch if equal A
BES Branch if electronic switch is ON SW,A
BFV Branch if field overflow A
BH Branch if high A
BIX Branch incremented index word XA
BL Branch if low A
BLX Branch and load location in index word XA
BM# Branch if minus in accumulator # A
BQL Branch if inquiry latch is ON QA
BSC Branch if sign change A
BSF Branch if electronic switch is ON and set OFF if ON SW,A
BSN Branch if electronic switch is ON and set ON if OFF SW,A
BTL Branch if tape latch is ON CUA
BUL Branch if unit record latch is ON LA
BV# Branch if overflow in accumulator # A
BXM Branch if index word is minus XA
BXN Branch if indexing portion in index word is nonzero X,A
BZ# Branch if zero in accumulator # A
C# Compare accumulator # to storage A/L F
CA Compare absolute in accumulator 1 to absolute

in storage A/L F
CD Compare storage to digit A(P),D
CSA Compare sign to alpha A
CSM Compare sign to minus A
CSp Compare sign to plus A
D Divide A/L F
DAR Disk storage arm release AF
DLF Disk storage latch set OFF AF,A/B
DLN Disk storage latch set ON AF,A/B
DR Disk storage read C,A/L
DW Disk storage write C,A/L
EAN Edit alphameric to numerical X,A/L
ENA Edit numerical to alphameric XA/L
ENB Edit numerical to alphameric with blank insertion =~ X,A/L
ENS Edit numerical to alphameric with sign control X,A/L
ESF Electronic switch set OFF SW.A/B
ESN Electronic switch set ON SW.,A/B
FA Floating add A/L
FAA Floating add absolute A/L
FAD Floating add double precision A/L

Operation Codes by Mnemonics

245

246

Mnemonic Operation Operand

FADS Floating add double precision and suppress

normalization A/L
FBU Floating branch underflow A
FBV Floating branch overflow A
FD Floating divide A/L
FDD Floating divide double precision A/L
M Floating multiply A/L
FR Floating round A/B
FS Floating subtract A/L
FSA Floating subtract absolute A/L
FZA Floating zero and add A/L
HB Halt and branch A
HMFV Halt mode for field overflow A/B
HMSC Halt mode for sign change A/B
HP Halt and proceed A/B
LE Lookup equal only A/L F
LEH Lookup equal or high A/L F
LL Lookup lowest A/L F
M Multiply A/L F
MSA Make sign alpha A
MSM Make sign minus A
MSP Make sign plus A
NOP No operation A/B
PC Priority control A/L
PDR Priority disk storage read CA/L
PDS Priority disk storage seek A
PDW Priority disk storage write CA/L
PR Priority release A/B
PTM Priority tape mark write CU
PTR Priority tape read CUA/L
PTRR Priority tape read per record mark control CUA/L
PTSB Priority tape segment backspace CUA/L
PTSF Priority tape segment forward space CUA/L
PTSM Priority tape segment mark write CU
PTW Priority tape write CU,A/L
PTWC Priority tape write with zero elimination and

per record mark control combined CU,A/L
PTWR Priority tape write per record mark control CUA/L
PTWZ Priority tape write with zero elimination CUA/L
QLF Inquiry latch set OFF Q.,A/B
QLN Inquiry latch set ON Q.A/B
QR Inquiry read QA/L
QW Inquiry write Q,A/L
RG Record gather X,A/L
RS Record scatter XA/L
S# Subtract from accumulator # A/L F
SA Subtract absolute from accumulator 1 A/L F
SL Shift left coupled N
SL# Shift left accumulator # N
SLC Shift left and count coupled X
SLC# Shift left and count accumulator # X
SLS Shift left split N(P)
SMFV Sense mode for field overflow A/B

Mnemonic Operation Operand

SMSC Sense mode for sign change A/B
SR Shift right coupled N
SR# Shift right accumulator # N
SRR Shift right and round coupled N
SRR# Shift right and round accumulator # N
SRS Shift right split N(P)
SS# Subtract accumulator # from storage A F
ST# Store accumulator # A F
STD# Store digits from accumulator # and ignore sign A F
TEF Tape end of file turn OFF CU
TLF Tape latch set OFF CU,A/B
TLN Tape latch set ON CU,A/B
™ Tape mark write CU
TR Tape read CUA/L
TRB Tape record backspace CU
TRR Tape read per record mark control CUA/L
TRU Tape rewind and unload CU
TRW Tape rewind CU
TSB Tape segment backspace CUA/L
TSEL Tape select CU
TSF Tape segment forward space CUA/L
TSHD Tape set high density CU
TSK Tape skip CU
TSLD Tape set low density CU
TSM Tape segment mark write CU
™ Tape write CUA/L
TWC Tape write with zero elimination and per record

mark control combined CU,A/L
TWR Tape write per record mark control CU,A/L
TWZ Tape write with zero elimination CUA/L
TYP Type A/L
ULF Unit record latch set OFF I1,A/B
ULN Unit record latch set ON LLA/B
UP Unit record punch S,A/L
UPIV Unit record punch invalid S,A/L
UR Unit record read S,A/L
US Unit record signal S,A/B
UwW Unit record write S,A/L
UWIV Unit record write invalid S,A/L
XA Index word add to indexing portion X,A/N
XL Index word load X,A/L
XLIN Index word load and interchange X,A/L
XS Index word subtract from indexing portion X,A/N
XSN Index word set nonindexing portion X,A/N
XU Index word unload XA
XZA Index word zero and add to indexing portion X,A/N
XZS Index word zero and subtract from indexing portion X,A/N
ZA# Zero accumulator # and add A/L F
ZAA Zero accumulator 1 and add absolute A/L F
ZS# Zero accumulator # and subtract A/L F
ZSA. Zero accumulator 1 and subtract absolute A/L F
ZST# Zero storage and store accumulator # A F

Operation Codes by Mnemonics

247

List of 7070/7074 Operation Codes by Function

Mmnemonic Operation Operand

TAPE OPERATIONS
TR Tape read CU,A/L
PTR Priority tape read CUA/L
TRR Tape read per record mark control CU,A/L
PTRR Priority tape read per record mark control CUA/L
™ Tape write CUA/L
PTW Priority tape write CUA/L
TWR Tape write per record mark control CUA/L
PTWR Priority tape write per record mark control CUA/L
TWZ Tape write with zero elimination CUA/L
PTWZ Priority tape write with zero elimination CUA/L
TWC Tape write with zero elimination and per record CU,A/L

mark control combined
PTWC Priority tape write with zero elimination and per
record mark control combined CUA/L

TSB Tape segment backspace CUA/L
PTSB Priority tape segment backspace CUA/L
TSF Tape segment forward space CUA/L
PTSF Priority tape segment forward space CU,A/L
TSEL Tape select CcuU
TRB Tape record backspace CU
TRW Tape rewind Cu
TRU Tape rewind and unload CU
PTM Priority tape mark write CU
™ Tape mark write CU
PTSM Priority tape segment mark write CU
TSM Tape segment mark write CuU
TEF Tape end of file turn OFF Cu
TSHD Tape set high density CU
TSLD Tape set low density CU
TSK Tape skip CU
TLN Tape latch set ON CU,A/B
TLF Tape latch set OFF CU,A/B
BTL Branch if tape latch is ON CUA

DISK STORAGE OPERATIONS
PDS Priority disk storage seek A
DR Disk storage read C,A/L
PDR Priority disk storage read CA/L
DW Disk storage write CA/L
PDW Priority disk storage write CA/L
DAR Disk storage arm release AF
DLN Disk storage latch set ON AF.A/B
DLF Disk storage latch set OFF AF.A/B
BDL Branch if disk storage latch is ON AF A

UNIT RECORD OPERATIONS
UR Unit record read S,A/L
up Unit record punch S, A/L
Uw Unit record write S, A/L
UPIV Unit record punch invalid S,A/L
UWLvV Unit record write invalid S,A/L

Mnemonic Operation Operand
UsS Unit record signal S,A/B
ULN Unit record latch set ON LA/B
ULF Unit record latch set OFF IA/B
BUL Branch if unit record latch is ON LA

INQUIRY OPERATIONS
QR Inquiry read Q,A/L
QW Inquiry write QA/L
QLN Inquiry latch set ON Q.A/B
QLF Inquiry latch set OFF Q.A/B
BQL Branch if inquiry latch is ON QA
CONSOLE TYPEWRITER OPERATIONS
TYP Type A/L
ARITHMETIC OPERATIONS
A# Add to accumulator # A/L F
ZA# Zero accumulator # and add A/L F
AA Add absolute to accumulator 1 A/L F
ZAA Zero accumulator 1 and add absolute A/L F
AS# Add to storage from accumulator # A F
AAS# Add to absolute storage from accumulator # A F
S# Subtract from accumulator # A/L F
ZS# Zero accumulator # and subtract A/L F
SA Subtract absolute from accumulator 1 A/L F
ZSA Zero accumulator 1 and subtract absolute A/L F
SS# Subtract accumulator # from storage A F
M Multiply A/L F
D Divide A/L F
SHIFTING OPERATIONS
SR# Shift right accumulator # N
SRR# Shift right and round accumulator # N
SL# Shift left accumulator # N
SLC# Shift left and count accumulator # X
SR Shift right coupled N
SRR Shift right and round coupled N
SL Shift left coupled N
SLC Shift left and count coupled X
SRS Shift right split N(P)
SLS Shift left split N(P)
INDEX WORD OPERATIONS
XL Index word load X,A/L
XLIN Index word load and interchange X,A/L
XU Index word unload XA
XA Index word add to indexing portion X,A/N
XZA Index word zero and add to indexing portion X,A/N
XS Index word subtract from indexing portion X,A/N
X7ZS Index word zero and subtract from indexing portion X,A/N
XSN Index word set nonindexing portion X,A/N
BLX Branch and load location in index word XA

Operation Codes by Function

249

250

Mnemonic Operation Operand

BXM Branch if index word is minus XA

BXN Branch if indexing portion in index word is nonzero X,A

BCX Branch compared index word XA

BIX Branch incremented index word XA

BDX Branch decremented index word XA
SWITCH OPERATIONS

BAS Branch if alteration switch is ON SN,A

BES Branch if electronic switch is ON SW.A

BSF Branch if electronic switch is ON and set OFF if ON SW,A

BSN Branch if electronic switch is ON and set ON if OFF SW,A

HMFV Halt mode for field overflow A/B

HMSC Halt mode for sign change A/B

SMFV Sense mode for field overflow A/B

SMSC Sense mode for sign change A/B

ESN Electronic switch set ON SW.,A/B

ESF Electronic switch set OFF SW,A/B
DATA MOVEMENT OPERATIONS

RG Record gather X,A/L

RS Record scatter X,A/L

EAN Edit alphameric to numerical X,A/L

ENA Edit numerical to alphameric X,A/L

ENB Edit numerical to alphameric with blank insertion XA/L

ENS Edit numerical to alphameric with sign control X,A/L
LOGIC OPERATIONS

BM# Branch if minus in accumulator # A

BZ# Branch if zero in accumulator # A

BV# Branch if overflow in accumulator # A

BFV Branch if field overflow A

BSC Branch if sign change A

BH Branch if high A

BE Branch if equal A

BL Branch if low A

BCB Branch if channel is busy CA

BAL Branch if any stacking latch is ON A

C# Compare accumulator # to storage A/L F

CA Compare absolute in accumulator 1 to absolute

in storage A/L F

CD Compare storage to digit AP D

CSA Compare sign to alpha A

CSp Compare sign to plus A

CSM Compare sign to minus A
MISCELLANEOUS OPERATIONS

B Branch A

HB Halt and branch A

Hp Halt and proceed A/B

LE Lookup equal only A/L F

LL Lookup lowest A/L F

LEH Lookup equal or high A/L F

MSA Make sign alpha A

Mnemonic Operation Operand
MSP Make sign plus A
MSM Make sign minus A
NOP No operation A/B
PC Priority control A/L
PR Priority release A/B
ST# Store accumulator # A F
STD# Store digits from accumulator # and ignore sign A F
ZST# Zero storage and store accumulator # A F
FLOATING POINT OPERATIONS
FA Floating add A/L
FZA Floating zero and add A/L
FAA Floating add absolute A/L
FAD Floating add double precision A/L
FADS Floating add double precision and suppress
normalization A/L
FS Floating subtract A/L
FSA Floating subtract absolute A/L
M Floating multiply A/
FD Floating divide A/L
FDD Floating divide double precision A/L
FR Floating round A/B
FBV Floating branch overflow A
FBU Floating branch underflow A

Operation Codes by Function

251

Appendix E:

252

Note on Optional Characters

In certain cases, special characters used on 1M printers and other equipment
have optional equivalents. In each case the character must be punched accord-
ing to the card code, regardless of which option has been chosen for printing on

the printer in a given installation.

The special characters which have been used in this manual and their optional
equivalents for each type wheel configuration available are given in the following

table.
Charact IBM .
U:;:ci:r Card Type Wheel Configuration
ThisManual | Code | A [B [C|D|E|FlG|[H]|K
(084 | % % % % % (% (]
Jandm | 1284 ' m @ B [®H [<) ®))
@ 84 |l@ (@ | @ | @ | > |- |- " |@
+ 12 & |/ | & | - | = |+ |+ |+ |+
= 83 | # | # | # | # | # | =]+ |=|=
/ -1 | 1 [& 0| /& |/ |/ /|7

Appendix F:

Glossary

ACTUAL ADDRESS

The word “actual” usually refers to machine language. An actual address is
the same as an absolute or machine address.

ADDRESS ADJUSTMENT

Address adjustment refers to the procedure of changing an address at process
time by means of an increment or decrement placed after the named address,
ie., NAME + 26.

ADDRESS CONSTANT (ADCON)

An adcon is a numerical literal created by entering = ANYLABEL (a symbolic
address written elsewhere in the program) in the operand of an instruction.
The actual address assigned to anvLABEL and the sign of the adcon entry be-
come the address constant.

ALPHAMERIC

A term which refers to symbols that are numerical digits, alphabetic charac-
ters, or special characters.

ASSEMBLY PROGRAM

A translation program which substitutes machine-language instructions for
symbolic instructions, assigns storage locations, and performs other activities
necessary to produce the final object program.

7070/7074 AUTOCODER

Autocoder is a symbolic programming system consisting of a symbolic language
and a processor; this system is designed for use in installations which have a
minimum of six 729 Model IV (or Model II) tape units and a machine with
5,000 words of core storage. The language consists of symbolic machine in-
structions and generator-type macro-instructions; the processor converts a
program written in this language to machine language.

7070/7074 BASIC AUTOCODER

Basic Autocoder is a symbolic programming system consisting of a symbolic
language and a processor; this system is designed for use in installations which
have a minimum of one BMm 7500 Card Reader, one mm 7550 Card Punch, and
a machine with 5,000 words of core storage. The language consists of symbolic
machine instructions; the processor converts a program written in this language

to machine language.

BRANCH CONSTANT

A branch constant is an instruction which is used to provide the address of a
field to a subroutine; it is interrogated by the subroutine but it is never exe-
cuted.

Optional Characters & Glossary 253

254

COLLATING SEQUENCE

The relative order of precedence which a computer assigns to the numbers,
letters, and special characters for compare operations.

COMPILE

To produce a machine-language routine from a routine written in non-machine
language. See also: coMPILER.

COMPILER

A compiler is a complex program in which several different functions are per-
formed. It typically includes the following:

1. Extensive program analysis during which information is collected or tabu-
lated for later recombination.

2. Generation of instructions by synthesis of tabulated information and use
of skeleton or model routines.

3. Translation of symbolic instructions into machine language.

A compiler is itself a routine, not a machine—although a machine could be
built to do compiling.

7070/7074 COMPILER SYSTEMS TAPE

This tape combines and links 7070/7074 Autocoder, 7070 FORTRAN, and the
7070/7074 Report Program Generator, permitting the use of these compilers
with a minimum of effort and a maximum of efficiency.

CONDENSED CARD FORMAT

This is a format for placing several machine language instructions on a single
card along with information sufficient to load the instructions into their proper
storage locations.

CONTROL CARD

A card which contains the parameters required to set up a generalized pro-
gram for one particular application.

DEBUGGING

The process of locating errors in a computer routine and correcting them.

EXPRESSION

An element of the source language where a combination of several names and
operators may be used, as well as a single name or address.

FIELD DEFINER(S)

A number placed after an address to indicate the particular digit(s) in a word
which are occupied by a field.

FIELD DEFINITION

Indication of the starting and ending positions of a field within a word, or
the starting and ending positions of a part of a field relative to the field itself;
for example, symBoL(6,9).

7070 FORTRAN

FORTRAN is a symbolic programming system consisting of a symbolic language
and a processor. The language, which closely resembles the language of mathe-
matics, is essentially problem-oriented rather than machine-oriented. The
processor converts a program written in this language to 7070/7074 Auto-
coder language. The Autocoder program is converted to a machine-language
object program for a 7070 or a 7074 by the Autocoder processor. Other 1M
Data Processing Systems are equipped with processors which convert programs
coded in the ForRTRAN language to their respective machine-oriented languages.

7070/7074 FOUR-TAPE AUTOCODER

Four-Tape Autocoder is a symbolic programming system consisting of a sym-
bolic language and a processor; this system is designed for use in installations
which have a minimum of four 729 Model IV (or Model II) tape units and a
machine with 5,000 words of core storage. The language consists of symbolic
machine instructions and substitution-type macro-instructions; the processor
converts a program written in this language to machine language.

GENERATOR

A program which accepts input parameters and uses them to modify skeleton
instructions or skeleton routines to produce the desired output routine. A
small number of parameters are capable of producing a large number of out-
put instructions.

INDEXING

Refers to the procedure of changing an address, at object time, according to
the contents of the indexing portion of a specified index word.

INSTRUCTION

An instruction is generally a ‘single entry in symbolic machine language or in
machine language, as opposed to a statement, or macro-instruction, which
usually means a language entry that can produce many machine-language en-
tries.

LITERAL

A literal is the actual data to be operated on by an instruction, as distinguished
from the location or address of the data.

MACHINE LANGUAGE

A language in which the instructions are in a form which may be executed by
the computer without translation.

Glossary

255

256

MACRO GENERATOR

A macro generator, an abbreviation of macro-instruction generator, is that part
of Autocoder which processes macro statement entries. It generates a sequence
of symbolic machine instructions which, collectively, perform the operation
specified by the macro-instruction entry. Each macro generator is associated
with a given macro statement and processes all occurrences of that macro state-
ment in a program.
MACRO-INSTRUCTION

A symbolically coded instruction resulting in a group of machine-language in-
structions which will perform a desired operation.

MNEMONIC

“Mnemonic” means “aiding memory.” The term is used to describe operation
codes which are written in a symbolic notation to make them easier to remem-
ber than the actual operation codes.

NUMERICAL

In the 7070 or the 7074, numerical refers to either a field with a plus or minus
sign rather than an alpha sign or to data which is to be treated as numbers,
whether in single-digit or double-digit form.

OBJECT MACHINE

The machine on which an object program is to be run. See: PROCESSOR MACHINE.

OBJECT PROGRAM

The output from a processor. In this case, a 7070/7074 machine-language
program assembled from a source program coded in symbolic language.

OBJECT TIME

The time at which the object program is being run. This is opposed to process
time, the time at which a compiler, such as Autocoder, is being run.

OFF-LINE

Operation of input/output and other devices not under direct computer con-
trol. Most commonly used to designate the transfer of information between
magnetic tapes and other input/output media.

ON-LINE

Operation of an input/output device as a component of the computer, under
programmed control.

OPERAND

The operand is the factor or data acted upon during an operation; it may be
a result, a parameter, or an indication of the location of the next instruction.
Also, the entire field beginning in column 21 of the Autocoder source card and
coding sheet is considered to be the operand.

OPERATION CODE

The operation code designates the machine function to be performed. Dis-
tinction is sometimes made between a “mnemonic operation code,” such as
zal, and its equivalent “machine operation code,” +13.

OPERATOR

The term operator usually refers to such characters as +, —, =, which are
said to “operate” on quantities.

PARAMETER

A factor which is left unspecified and to which the user may assign a value.

PROCESS TIME

The time at which the source program is being changed into an object pro-
gram by a compiler, such as Autocoder. This is opposed to object time, the
time at which the object program is being run.

PROCESSOR

A program which performs the functions of assembly, compilation, generation,
or any similar functions to convert a source program into the desired object
program.

PROCESSOR MACHINE

The machine on which a processor is to be run.

PROGRAMMING SYSTEM

A programming system is any method of programming problems other than
machine language, such as Autocoder. A system consists of a language and
its associated processor(s).

REPORT

A printed document which presents data arranged in an orderly manner for
ease of reference.

REPORT GENERATION

A technique for producing complete reports given the content and format of
the input file and the desired content and format of the output reports.

7070/7074 REPORT PROGRAM GENERATOR

The 7070/7074 Report Program Generator consists of coding forms and a
compiler. The format of the input file and the specifications for the output
report are placed on the coding sheets which are then punched into cards and
used as input for the compiler. The system produces a program in 7070/7074
Autocoder language which is converted to a machine-language object program
for a 7070 or a 7074 by the Autocoder processor.

Glossary

257

258

SORT

To place a file of records in order according to a specified sequence.

SOURCE LANGUAGE
The language in which a program is coded, e.g., the 7070/7074 Autocoder
language.
SOURCE PROGRAM
The original coding of a program, usually coding in a language other than
machine language.
SPECIAL CHARACTER
One of a set of special symbols. Some common special characters are:
#8 + - () /7, . O =
STATEMENT

Usually a source-language entry on the coding sheet, especially a line which
might eventually produce several machine-language instructions, such as the
ARITH statement or the GET statement.

STORAGE

Any medium into which data may be transferred and where it may be re-
tained for later use.

SUBROUTINE

A subroutine is usually a series of instructions to perform some specific mathe-
matical or logical operation. Subroutines are entered by a Branch instruction,
as opposed to macro-instructions which are normally entered sequentially.

SYMBOL

In Autocoder, symbol is used to refer to a name used instead of a machine
address. Thus “symbolic address,” “symbolic name,” or “symbolic label,”
conveys that one is not specifying machine addresses.

SYMBOLIC ADDRESS

An alphameric name used in place of an actual machine address.

SYMBOLIC LANGUAGE

A symbolic language is a collection of mnemonic symbols with rules of usage,
such as Autocoder; the symbols are used in programming to represent opera-
tion codes, functions, and/or addresses. Symbolic-language coding must be
translated into machine language to be used by the computer.

SYMBOLIC MACHINE LANGUAGE

Symbolic machine language is a language which is similar to machine language
except for symbolic addresses and mnemonic operation codes. Symbolic ma-
chine instructions are sometimes referred to as “one-for-one” instructions since
each instruction encountered in a source program will cause the corresponding
machine language instruction to be inserted in the object program.

Appendix G

Input Statements

Generated Coding

Hlustration of Autocoder Programming

The listing on the following page contains the input statements of a sample pay-
roll problem. The purpose of this problem is to illustrate coding with 7070/7074
Autocoder, including the use of input/output statements and macro-instructions.

pA statements define the formats of the input, output, and detail files, the file
from which checks will be printed, and temporary storage fields. A pLINE state-
ment describes the check format. An error message and a space for the insertion
of an identification number are provided under a pc statement, for use if the
desired record fails to appear in the master file. The processing routine follows
the declarative statements in the listing.

The listings which follow contain coding generated from the previously described
input statements. This listing is incomplete; the DTF entries, procs entries, and
the major portion of the generated input/output instructions have been omitted.

Sample Program 259

AFO1 ® AN ILLUSTRATION OF AUTOCODER PROGRAMMING

AFQ2 *
AFO03 * DESCRIPTION OF THE INPUT MASTER FILE
AFO4 IMASTER LA 10sRDW»O+IMASTERX
AFO05 [MANNUMBER 00509A10
AFQ6 INAME 10,39
AFO7 IDEPENDNTS 40941A2
AFO7A IPAYRATE 42946A243
AFO8 ICOMISRATE 4T7949A¢3
AFOQ9 IYTDPAY 50556A542
AF10 IYTDFICA 65969A342
AF1l1 *
AF12 * DESCRIPTION OF THE OUTPUT MASTER FILE
AF13 MASTEROQUT DA 10sRDWsO+OMASTERX
AF14 00569
AF15 *
AF16 * DESCRIPTION OF THE DETAIL FILE
AF17 DETAIL DA 209RDWsO+DETAILX
AF18 DMANNUMBER 00509A10
AF19 DHOURS 17919A241
AF20 DSALES 22929A642
AF21 *
AF22 * DESCRIPTION OF THE CHECK FORMAT
AF23 CHECKLINE DLINE
AF24 CMANNUMBER 2Z9Z2724+22Z4242
AF25 CNAME 18932
AF26 CNETPAY 40BXXyXXZeZZ
AGO1 * DESCRIPTION OF THE FILE FROM WHICH CHECKS Willk BE PRINTED
AGO2 CHECKTAPE DA 109 RDW» O+CHECKX
AGO3 00y99
AGO4 *
AGO5 * DESCRIPTION OF TEMPORARY STORAGE FIELLS
AGO6 WORKAREA DA 1
AGO7 GROSSPAY 03909A542
AGO8 TAX 13919A5.2
AGO9 FICA 25929A342
AG10 TFICA 35939A342
AG11 NETPAY 43949A5e2
AGl2 *
AG13 ERMESSAGE DC =RDW
AGl4 'MASTER 1S MISSING FOR MANNUMBER?'
AGl5 ERRORNO ! '
AGl6 *
AGL7 * PROGRAM
AGl8 TOPEN OPEN IMASTER»DETAIL yMASTEROUT » CHECKTAPE
AG19 START GET DETAIL
AG20 NEXTMASTER GET IMASTER
AG21 COmMP DMANNUMBER » IMANNUMBER s NOMASTER » s NODETAIL
AG22 ARITH GROSSPAY=IPAYRATE*DHOQURS+USALES*ICOMISRATE
AG23 ARITH TAX=e¢1B8%(GROSSPAY=IDEPENDNTS*13,00)
AG24 ZSIGN TAXy»9ZERQOTAX
AG25 FICATEST ARITH FICA=GROSSPAY#*,03
AHO1 ARITH TFICA=IYTDFICA+F[CA=144400
AHOZ2 ZSIGN TFICASFICALCesFICALC
AHO3 ARITH FICA=FICA=[FICA
AHO4 FICALC ARITH IYTDFICA=IYTUFICA+FICA
AHOS ARITH IYTDPAY=IYTOPAY+GROSSPAY
AHO6 ARITH NETPAY=GROSSPAY~TAX=FICA
AHO7 EDMOV IMANNUMBER TO CMANNUMBERINAME TO CNAMESNETPAY TO
AHO8 CNETPAY
AHO8A * PREPARE TAPE RECORD FOR PRINTING CHECKS OFFLINE
AHO9 PUT CHECKLINE IN CHECKTAPE
AH10 PUTX IMASTER IN MASTEROUT
AH11 B START
AH12 ZEROTAX ZERO TAX
AH13 B FICATEST
AHL4 NOMASTER MOVE DMANNUMBER TO ERRORNO
AHL5 TYP ERMESSAGE
AH16 NOP
AH17 B START
AH18 NODETAIL PUTX IMASTER IN MASTEROUT
AH19 B NEXTMASTER
AH20 EOFDETAIL BSN 191END
AH21 RNOUTMASTR PUTX IMASTER IN MASTEROUT
AH22 GET IMASTER
AH23 B RNOUTMASTR
AH24 EOFMASTER BSN 191END
AH25 RNOUTDTAIL MOVE DMANNUMBER TO ERRORNO
AIO1 TYP ERMESSAGE
AlO2 NOP
AIO3 GET DETAIL
Al104 B RNOUTDTAIL
ALI05 IEND END
Al06 END CNTRL IOPEN
00084

260

wosFosg ajdwung

198

PAGE AY PROGRAM PAGE AY
LN COREF LABEL opP OPERAND CONO FD LOC INSTRUCTION REF
34 AFO1 * AN ILLUSTRATION OF AUTOCODER PROGRAMMING

35 AF02 *

36 AFO03 * VESCRIPTION OF THE INPUT MASTER FILE

37 AFO4 IMASTER DA 1O0sRDW O+ IMASTERX +0013641443

38 X 00219 1364 +0013741380 1364
39 X 1365 +0013811387 1365
40 X 1366 +0013881394 1366
41 X 1367 +0013951401 1367
42 X 1368 +0014021408 1368
43 X 00220 1369 +0014091415 1369
b4 X 1370 +0014161422 1370
45 X 1371 +0014231429 1371
46 X 1372 +0014301436 1372
47 X 1373 =0014371443 1373
48 AFO05 I MANNUMBER 00+09A10 09 1374 0000
PAGE AZ PROGRAM PAGE AZ
LN CDREF LABEL opP OPERAND CDNO FD LOC INSTRUCTION REF
01 AF06 INAME 10939 09 1375 0001
02 AFO7 IDEPENDNTS 40941A2 01 1378 0004
03 AFO7A IPAYRATE 42946A243 26 1378 0004
04 AFO08 1COMISRATE 4T949Ae3 79 1378 0004
05 AF09 I YTDPAY 50956A542 06 1379 0005
06 AF10 IYTOFICA 65169A342 59 1380 0006
07 AF1l *

08 AF12 * DESCRIPTION OF THE QUTPUT MASTER FILE

09 AF13 MASTERQUT DA 1LO09RDWeO+OMASTERX +0014441523

10 X 00221 1444 +0014541460 1444
11 X 1445 +0014611467 1445
12 X 1446 +0014681474 1446
13 X 1447 +0014751481 1447
14 X 1448 +0014821488 1448
15 X 00222 1449 40014891495 1449
16 X 1450 +0014961502 1450
17 X 1451 +0015031509 1451
18 X 1452 +0015101516 1452
19 X 1453 =0015171523 1453
20 AF14 00169 09 1454 0000
21 AF15 *

22 AFlé * DESCRIPTION OF THE DETAIL FILE

23 AF17 DETAIL PA 20sROWSO+DETAILX +0015241603

24 3 00223 1524 +0015441546 1524
25 X 1525 +0015471549 1525
26 X 1526 +0015501552 1526
27 X 1527 +0015531555 1527
28 X 1528 +0015561558 1528
29 X 00224 1529 +0015591561 1529
30 X 1530 +0015621564 1530
31 X 1531 +0015651567 1531
32 X 1532 +0015681570 1532
33 X 1533 40015711573 1533
34 X 00225 1534 +0015741576 1534
35 X 1535 +0015771579 1535
36 X 1536 +0015801582 1536
37 X 1537 +0015831585 1537
38 X 1538 +0015861548 1538
39 X 00226 1539 40015891591 1539
40 X 1540 40015921594 1540
41 X 1541 +0015951597 1541
42 X 1542 +0015981600 1542
43 X 1543 =0016011603 1543
44 AF18 DMANNUMBER 00509A10 09 1544 0000
45 AF19 DHOURS 17919A261 79 1545 0001
h6 AF20 DSALES 22929A6e2 29 1546 0002
47 AF21 *

48 AF22 * DESCRIPTION OF THE CHECK FORMAT

7

PAGE BA PROGRAM PAGE BA

LN CDREF LABEL oP OPERAND CDNO FD LOC INSTRUCTION REF
01 AF23 CHECKLINE DOLINE 00228 +0016041613

02 AF24 CMANNUMBER 22922292229222 29 1604 1604
03 AF25 CNAME 18932 00229 49 1607 1607
07 AF26 CNETPAY 40SXX9XX2e22 89 1611 1611
08 AGO1 % DESCRIPTION OF THE FILE FROM WHICH CHECKS WILL BE PRINTED

09 AGO2 CHECKTAPE DA 10sRDW9O+CHECK X +0016141723

10 X 00230 1614 +0016241633 1614
11 X 1615 +0016341643 1615
12 X 1616 +0016441653 1616
i3 X 1617 +0016541663 1617
14 X 1618 40016641673 1618
15 X 00231 1619 +0016741683 1619
16 X 1620 +0016841693 1620
17 X 1621 +0016941703 1621
18 X 1622 +0017041713 1622
19 X 1623 =0017141723 1623
20 AGO2 00199 09 1624 0000
21 AGO4

22 AGOS % DESCRIPTION OF TEMPORARY STORAGE FIELDS

23 AGO6 WORKAREA DA 1 +0017241728

24 AGOT GROSSPAY 03909A5¢2 39 1724 1724
25 AGO8 TAX 13919A542 39 1725 1725
26 AGO9 FICA 25929A342 59 1726 1726
27 AG10 TFICA 35939A342 59 1727 1727
28 AGll NETPAY 43949A542 39 1728 1728
29 AGl2 *

30 AG1l3 ERMESSAGE DC =RDW +0017291738

31 X 00232 1729 =0017301738 1729
32 AGlé4 *MASTER IS MISSING FOR MANNUMBER! 00233 09 1730 '7461828365 1730
33 X 09 1731 '7900698200 1731
34 X 09 1732 '7469828269 1732
35 X 09 1733 '7567006676 1733
36 X 09 1734 '7900746175 1734
37 X 00234 09 1735 '7584746265 1735
38 X 01 1736 %79 1736
39 AG15 ERRORNO 29 1736 ' 00000000 1736
40 X 09 1737 *0000000000 1737
41 X 01 1738 '00 1738
42 AGle *

43 AGLl7 % PROGRAM

44 AG18 1 OPEN OPEN IMASTERSDETAILIMASTEROUT sCHECKTAPE

45 X 1OPEN BLX 10CS 1 XGs | 0OCe |OPEN 00235 1739 +0200040578

46 X B8 TAPEFILEIM 1740 40100091327

&7 X B TAPEFILEDI 1741 +0100091345

48 X B TAPEF | LEMO 1742 40100091336

woiFoLy ajpdwng

€98

PAGE 8B

LN

0l
02
03
04
05
Q6
07
08
09
10
11
12
13
14
15
i6
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

CDREF

AG19

AG20

AG21

AG22

AG23

AG24

AG25

AHO1

x x

HKX X XXX XX X XXX

HKXX X XXX XX

KX XK XXX X

R XX X R XX X XX

PROGRAM

LABEL

START
START

NeXTMASTER
NEXTMASTER

Me.24
ORIGIN
FiICATEST
FiCATEST

NOP
GET
B1IX
BLX
XL
GET
BIX
BLX
XL
COMP
ZA2
S$2
Bva2
BZ2
BM2

ARITH
ZA3

SR
ST2
ZA3

A2
SRR2
ST2
ARITH
283

A2
ZA3

SRR
ST2
ZSIGN
ZAl
BZ1
CSM

NOP
CNTRL
ARITH
ZA3

SRR
ST2
ARITH

OPcRAND
TAPEFILECO

DETAIL

DETAILBy#+2
DETAILX9sIOC4eNSEOQ3A
DETAILX»O+DETAILB
IMASTER

IMASTERB s %*+2
IMASTERX 9 IOCeNSEQLA
IMASTERX’O*UMASTERB
DMANNUMBER » IMANNUMBERYNOMASTER » s NODETAIL
DMANNUMBLER1I099)+DETAILX
IMANNUMBER (099) +IMASTERX
*t2

*#+3

NOMASTER

NODETAIL
GROSSPAY=IPAYRATE#DHOURS+DSALES* I COMISRATE
|PAYRATE(O¢4)+IMASTERX
DHOURS (092)+DETAILX

1

COMAREACA(Q99)+1
DSALES(093)+DETAILX
ICOM|ISRATE(QO92) +IMASTERX
COMAREAWA(099)+1

1

GROSSPAY(0s6)
TAX=418%(GROSSPAY~|DEPENDNTS#13600)
IDEPENDNTS(Q93)+IMASTERX
+1300

GROSSPAY(06)

+18

9992

2

TAX(0+6)

TAX999ZEROTAX

TAX{(Os6)

Me24

TAX

ZEROTAX

*=1

FICA=GROSSPAY*,403

GROSSPAY (046)

+03

2

FICA(Qv4)

TFICA= | YTDF ICA+F I CA~144,00

CDONO FD

00236

00237

00238

00239

00240

00241

00242

00243

LOC

1743
1744

1745
1746
1747

1748
1749
1750

1751
1752
1753
1754
1755
1756

1757
1758
1759
1760
1761
1762
1763
1764
1765

1766
1767
1768
1769
1770
1771
1772

1773
1774
1775
1776
17717

1777
1778
1779
1780

INSTRUCTION

+0100091354
=0100000000

+4900051747
+0200062039
+4505060000

+4900071750
+0200081945
+4507080000

+2306090000
=2408090000
+2100091755
+2000091757
=2000091881
+0100091891

+3308260004
+5306790001
=5000000001
+2200092122
+3306250002
+5308790004
+2400092122
+5000002101
+2200391724

=3308030004
+5300142124
+2400391724
+3300232125
+5300099992

=5000000102
+2200391725

41300391725
+1000091777

=0300601725
=4100091878
=0100000000

+3300391724
+5300012125
=5000000102
+2200591726

PAGE BB

REF

¥9%

PAGE BC

LN CDREF

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

AHQ2

AHO3

AHO4

AHOS5

AHOQé

AHO7
AHOB8

XX XX XXXXX

HKHX X X XXX

XX XX

N X XXX

XK K HKIM XK KX X XXNXXX

PROGRAM

LABEL

Fi1CALC
FICALC

oP

ZA2
SL2

OPERAND
FICA(Os3)

2

IYTDF iICA(O94)+IMASTERX
+14400

TFICA(Qe4)
TFICAYFICALCe»FICALC
TFICA(Q94)

FICALC

TFICA

FICALC
FICA=FICA-TFICA
TFICA(O93)

2

FICA(Qv4)

FICA(O94)

IYTDF ICA= I YTDF I CA+FICA
FICA(Q93)

2

IYTDF 1CA(O94)+ I MASTERX
IYTOF 1 CA(O94)+ I MASTERX
IYTOPAY= | YTDPAY+GROSSPAY
GROSSPAY(0143)

2

I YTDPAY(Q96)+ IMASTERX
IYTDPAY(Q96)+IMASTERX
NETPAY=RGROSSPAY-TAX~F | CA
TAX(093)

FICA(Q93)

2

GROSSPAY(096)
NETPAY(0Q96)

IMANNUMBER TO CMANNUMBERs INAME TO CNAME#NETPAY TO

CNETPAY
IMANNUMBER (099) +IMASTERX
COMAREAsA+2

MACREG«01 sCOMAREA+A+2
MACREGe 01 »EDMOVO24A
COMAREASA(Q91)
CMANNUMBER (091

1yt

CMANNUMBER(293)
COMAREASA(295)
CMANNUMBER (497}
COMAREA«A(697)
CMANNUMBER(899)

1yt

CMANNUMBER(10+11)
COMAREASA(8+9)

CDNO FD

00244

00245

00246

00247

00248

00249

00250

00251

LocC

1781
1782
1783
1784
1785

1786
1787
1788
1789

1790
1791
1792
1793

1794
1795
1796
1797

1798
1799
1800
1801

1802
1803
1804
1805
1806

1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

INSTRUCT ION

+2300581726
+5000002202
+2408590006
=-2400592124
+2200591727

+1300591727
+1000091794
=0300601727
=4100091794

=2300581727
+5000002202
+2400591726
+2200591726

+2300581726
+5000002202
+2408590006
+2208590006

+2300361724
+5000002202
+2408060005
+2208060005

=-2300361725
=2400581726
+5000002202
+2400391724
+2200391728

+2308090000
+2200092123
+4600092123
+5600092111
+3300012121
+3200231604
+3300452127
+3200451604
+3300252121
+3200691604
+3300672121
+3200011605
+3300452127
+3200231605
+3300892121

PAGE BC
REF

woi5org a)duing

<98

PAGE BD

LN CDREF

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
49
41
42
43
44
45
46
47 AHOBA
48 AHO9

I MARI R EWIUIMAM MMM AHK KM AN AHKAHKIXHKIKMXAHXRKRK XXX RXRKRXIKXXXXXX KKK XXX XX

PROGRAM

LABEL

Me23

*

oP

ST3
ZA3
ST3
ZA3
§T3
ZA3
ST3
ZAl
ZA2
S5T2
SR
ST2
ST1
ZA2
sT2
SR2
5T2
ZA2
ST2
XZA
ENA
ZA3
ST3
ST3
SLC2
ZA3
B
ST3
ZA3
ST3
ZA3
ST3
ZA3
ST3
ZA3
ST3
ZA3
5T3
ZA3
ST3
ZA3
ST3
ZA3
ST3
ZA3
ST3

PREPARE TAPE RECORD FOR PRINTING CHECKS OFFLINE

PUT

OPERAND

CMANNUMBER(12913)
COMAREAGA{10913)
CMANNUMBER(14917)
1y
CMANNUMBER(18919)
COMAREA+A(14919)
CMANNUMBER (20925}
INAME (099)+ IMASTERX
INAME(10919)+IMASTERX
CNAME(16+19)

4

CNAME(6915)
CNAME(0195)

INAME (20929)4+ IMASTERX
CNAME (261929)

4

CNAME (201925)
NETPAY(096)
COMAREA+A+2
MACREGe01 s COMAREA«A+2
MACREGe01 9 EDMOVO2sA
) L}
CNETPAY(091)
CNETPAY(299)
MACREGe02

150
Me22=3+MACREGe02
CNETPAY(O»s1)
COMAREACA({6T)
CNETPAY(293)
COMAREA.A(8199)
CNETPAY (445)

1y

CNETPAY(697)
COMAREACA(10911)
CNETPAY(899)
COMAREALA(12913)
CNETPAY(10911)
COMAREAsA(14915)
CNETPAY(12913)

()

CNETPAY(14915)
COMAREASA(16917)
CNETPAY(16917)
COMAREAA(L18919)
CNETPAY(18919)

CHECKLINE IN CHECKTAPE

CDNO FD

00252

00253

00254

00255

00256

00257

00258

00259

00260

LOC

1822

1823

1824
1825

1826

1827

1828

1829

1830

1831

1832

1833
1834
1835
1836
1837
1838

1839

1840
1841

1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867

INSTRUCTION

+3200451605
+3300032122
+3200691605
+3300452127
+3200011606
+3300492122
+3200271606
+1308090001
+2308090002
+2200031609
=5000000004
+2200091608
+1200491607
+2308090003
+2200031610
+5000002004
+2200491609
+2300391728
+2200092123
+4600092123
+5600092111
+3300092126
+3200891611
+3200071612
+5000102300
+3300232127
+0110092109
+3200891611
+3300672121
+3200011612
+3300892121
+3200231612
+3300452127
+3200451612
+3300012122
+3200671612
+3300232122
+3200891612
+3300452122
+3200011613
+3300012127
+3200231613
+3300672122
+3200451613
+3300892122
+3200671613

PAGE BI
REF

993

PAGE BE

LN

0l
02
03
04
05
06
07
03
0y
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

CDREF

AH10

AH11
AH12

AH13
AHl4

AH15
AH16
AH17
AH18

AH19
AH20
AH21

AHZ22

AHZ23
AH24
AH25

*x X HK XX XX HK X XX

HK XXX XX X

X XX XX

HKX XXX

>x x x

PROGRAM
LABEL

ZEROTAX
ZEROTAX

NOMASTER
NOMASTER

NODETAIL
NODETAIL

EOFDETAIL
RNOUTMASTR
RNOUTMASTR

EOFMASTER
RNOUTUTAIL
RNOUTOTAIL

NOP

PUTX
BIX
BLX
XL
XU
XU

B
BSN
PUTX
BIX
BLX
XL
Xy
XV
GET
BIX
BLX
XL

B
BSN
MOVE
ZA2

OPERAND

CHECKB s ¥+2

CHECKX» 10CeNSEQ4A
CHECKX »0+CHECKB
CHECKX# |OCsPUTOO01
HAASTER IN MASTEROUT
OMASTERBs*+2
OMASTERX ¢ IOCeNSEQ2A
OMASTERX » 0+OMASTERB
IMASTERX s 0O+OMASTERB
OMASTERX 90+ IMASTERB
START

TAX

+0

TAX(096)

FICATEST

DMANNUMBER TO ERRORNO

DMANNUMBER(Qs9) +DETAILX

ERRORNO(8149)
2

ERRORNO(0 7)
20
ERRORNO(109.7)
ERRORNO(18+19)
ERMESSAGE

START

IMASTER IN MASTEROUT
OMASTERB s #+2
OMASTERX 9 IOCeNSEOQ2A
OMASTERX s 0+OMASTERB
IMASTERX » O+OMASTERB
OMASTERX s 0+ IMASTERB
NeXTMASTER

19 1END

IMASTER IN MASTEROUT
OMASTERB s *+2
OMASTERX» | OCeNSEO2A
OMASTERX » 0+OMASTERB
IMASTERX s O+OMASTERB
OMASTERX 90+ |MASTZRB
IMASTER

IMASTERB Y *+2
IMASTERX» I0OCeNSEQLA
IMASTERX s O+ |MASTERB
RNOUTMASTR

19 IEND

DMANNUMEER TO ERRORNO

DMANNUMBLR (099) +DETAILX

CDONO FD

00261

00262

00263

00264

00265

00266

00267

00268

LOC

1868
1869
1870
1871

1872
1873
1874
1875
1876
1877

1878
1879
1880

1881
1882
1883
1884
1885
1886
1887
1888
1889
1890

1891
1892
1893
1894
1895
1896
1897

1898
1899
1900
1901
1902

1903
1904
1905
1906
1907

1908

INSTRUCT ION

+4900111870
+0200122086
+4511120000
=6500122120

+4900131874
+0200141992
+4513140000
=4513080000
=4507140000
+0100091745

+2300002124
=2200391725
+0100091777

+2306090000
+2200011737
+5000002002
+2200291736
=5000000220
+2200291737
+2200011738
+6500041729
=0100090000
+0100091745

+4900131893
+0200141992
+4513140000
=4513080000
=4507140000
+0100091748
+61003019%921

+4900131900
+0200141992
+4513140000
-4513080000
=4507140000

+4900071905
+0200081945
+4507080000
+0100091898
+6100301921

+2306090000

PAGE BE
REF

woifosg opdwng

198

PAGE BF PROGRAM

LN CDREF LABEL oP OPERAND CONO FD
ol X ST2 ERRORNO(899) 00269
02 X SR2 2

03 X ST2 ERRORNO(07)

04 X SL 20

05 X ST2 ERRORNO(10917)

06 X ST2 ERRORNO(18919) 00270
07 AiI01 TYP ERMESSAGE

08 AlQ2 NOP

09 AlO3 GeT DETAIL

10 X BiX DETAILBy ¥*+2

11 X BLX DETAILXs 10CeNSEO3A

12 X AL DETAILXsO+DETAILDE 00271
13 AlO4 B RNOUTDLTAIL

14 A0S FEND END

15 X 1END BLX 10CS I XGy I0Ce |END

LoC

1909
1910
1911
1912
1913
1914
1915
1916

1917
1918

1919
1920

1921

INSTRUCTION

+2200011737
+5000002002
+2200291736
=5000000220
+2200291737
+2200011738
+6900041729
=0100090000

+490005191°9
+0200062039
+4505060000
+0100091908

+0200041227

PAGE BF
REF

if__’/—‘i»«\/fd_b\,Jg31,f2\—\f“\fdf——"\’\/—N___‘//‘\—fj—\ﬂ_f//’“"a—\\‘__ 4//___‘_J/,_/,\\\\—///——“\

Appendix H: Index of Messages

Message
ACTUAL ADDRESS NOT ALLOWED. ..+ ¢t et v evess
ALL BRANCHES BLANK.....
ALL BRANCHES EQUAL.0itvtenncacnnn
ALPHA BLANKS INTO UNDEFINED PAR. XX.......
AN ELEMENT OF THE OPERAND STARTS ILLEGALLY
ASSUME COMMAS AFTER PAR.2 — PERMANENT NOP
ATTEMPTING TO FILL HARDWARE. PAR. XX.
ATTEMPTING TO ZERO HARDWARE, PAR. XX.......

P R I S

BLANK PARAMETER XX. .. ccoeeenennennsannens

BRANCH TO NON-IMPERATIVE INSTRUCTION......
BRIDGE CTR USING FIRST LOC ONLY PAR. XX......

CHAN ENTRY INVALID. TWO CHANNELS ASSUMED. .
CHPT ENTRY INVALID. CHPT INCLUDED.
CHPT REQUIRES EORl. EOR] GENERATED........
CODENAME NOT DEFINED BY A CODE.
CODEVALUE NOT DEFINED UNDER A CODE........
CODEVALUES AND BRANCHES NOT PAIRED.
COUNT GREATER THAN FIELD-SIZE.
COUNT IS ZERO.o ... e, .
COUNT NOT AN INDEXWORD. ..« vvvvreenenoennn
EOR ENTRY INVALID, EOR] ASSUMED...........
EQUAL SIGN BEGINS INPUT — WILL IGNORE.
ERROR — IMPROPER OPERAND. . .t ceuvevunerrnns

FIELD 1 BLANK.....
FIELD 2 BLANK. ... v vvvnenenns
FIELD GREATER THAN 20 DIGITS. . ..
FIELD MISSING .
FIELD 1 NOT ACCEPTABLE.v0vervnnnnnn
FIELD 2 NOT ACCEPTABLE. ... vvuvvrcncnneanns
FIELD UNACCEPTABLE0tvenvrernnnancens

FILLING INSTRUCTION. PAR, XX. . :ccse et annaaa

HIGH-ORDER DIGITS LOST OF PARAMETER XX......

IGEN ENTRY INVALID. IGEN1 ASSUMED..........
ILLEGAL PUNCTUATION MARK USED............
ILLEGAL TERM ENDS LOGICAL EXPRESSION.......

ILLEGAL. TERM PRECEDES A BINARY OPERATOR...
ILLEGAL TERM PRECEDES A LEFT PAREN........
ILLEGAL TERM PRECEDES A NOT.........c00u..
ILLEGAL TERM PRECEDES A RIGHT PAREN.......
ILLEGAL TERM PRECEDES PARAMETER XX........
IMPROPER OPERAND

IMPROPER OPERAND. CHAN2, OPEN2, EORl, CHPT,
IGEN]L ASSUMED . .vvvvnvntiannrnannnoss

2o e

268

Macro Page
DUF 30
comp 145
comp 145
ZERO 189
DUF 30
cycLe 156
FILL 197
ZERO 189
EbMmov 209
SNAP 226
zsicN 179
cycLE 156
DIOCS 24
DIOCS 24
DIOCS 24
pEcop 161
pECOD 162
DECcOD 162
sHIFT 222
sHIFT 222
SHIFT 222
DIOCS 24
rocic 169
cYcLE 156
comp 146
comMp 146
SHIFT 222
zZsicN 179
comMp 146
comp 146
zsiIGN 179
COUNT 222
FILL 197
EDMOV 209
DIOCS 25
LoGgic 169
Locic 169
rocic 169
Locic 169
LoGic 169
rocic 170
rocic 170
PUTX 119
DIOCS 25

Message
INCORRECT NUMBER OF PARAMETERS.
INCORRECT OPTION
INSTRUCTION NOT PROGRAM SWITCH. PAR. XX....
INVALID PARAMETER XX. .ot venetncennnacnenns

INVALID SWITCH. PARAMETER XX....c00eeuenn.
IO0CSIXF(G, H) ENTRY OUT OF RANGE, IGNORED. . .
LABEL SHOULD BE BLANK.00veueenennnns
LESS THAN 3 INPUT PARAMETERS. v
MULTIPLE FROM- AND TO-FIELDS. ... cocevonas.s
N # # (SEE NOTE)
NO BRANCHES GIVEN. e
NO BRANCH OR SWITCH TO BE SET IN INPUT.....
NO FIELD SIZE. PAR. %X. e

NO FIELD SIZE. PARAMETER XX. .. .eveveusacnn.
NO FROM-FIELD IN MOVE MACRO LINE.
NO TO-FIELD IN MOVE MACRO LINE.00v0.0u.
NOTHING TO TEST IN LOGIC STATEMENT.
NUMERIC FIELD GREATER THAN 20 DIGITS.......

OPEN ENTRY INVALID. OPEN2 ASSUMED.........
OPEN3 REQUIRES CHPT. OPEN2 GENERATED......
OPERAND BLANK

OPERAND HAS TWO PARAMETERS. eresa s

OPERAND OUTSIDE OF ALLOWABLE RANGE.......
OUTPUT SRBFORM4 BLANK, ASSUMED 10........
PARAM Ol (03) FILE FORM INVALDD...........
PARAM 03 15 A FILE. PARAM 03 IGNORED.......
PARAMNN NOT A FILE. .o v0uivernnnnennannannn

PARAM 0l NOT A FILE.....
PARAM 01(03) NOT A FILE.cvvevnnnnnnnn

PARAM 03 NOT DEFINED.
PARAM Ol NOT INPUT FILE.cvvvuvnnnnnnns
PARAM 01(03) NOT OUTPUT FILE. .. .vvvvevnnn.
PARAM NOT LABEL OF CYCLE MACRO XX.........
PARAM (3 — SRBFORM4 BLANK, AssUMED 10.....
PARAM Ol UNDEFINEDcovivuvninnnnn.
PAREN. MISSING AROUND ARITH-REL.
PARENTHESIS NOT CLOSED. ... ccvuuenenennnn..
PRINT SUPPRESSED IF ALL ZERO..... e
RECLENGTHS UNEQUAL

Macro Page
SHIFT 222
SHIFT 222
sersw 185
rocic 170
SNAP 226
sETsw 186
DIOCS 25
DUF 30
comp 146
MovE 215
ZSIGN 179
Locic 170
ZERO 189
FILL 197
MOvE 215
MovE 215
MoveE 215
rocic 170
comp 146
DIOCS 25
DIOCS 25
OPEN 111
GET 113
PUT 116
cLose 121
GET 113
PUT 116
DUF 31
PUT 116
PUTX 119
GET 113
OPEN 111
cLose 121
GET 113
PUT 116
PUTX 119
GET 114
GET 113
PUT 116
RECYC 156
PUTX 119
PUT 116
rocic 170
rocic 170
EpMov 209
PUTX 119

Message

SHIFTING INSTRUCTION
SNAPS COUNTER ZERO. eeees
SRBFORM4 BLANK, ASSUMED 10...............
SRBFORM4 UNEQUAL. OUTPUT SRB USED
START GREATER THAN FIELD-SIZE..... e

STMNT SHOULD OR SEEMS TO BE ENDED BUT CARDS
REMAIN

IR

SYMBOLIC ADDRESS NOT ALLOWED. R
TO-FIELD(S) SMALLER THAN FROM-FIELD(S)....
TO-FIELD NOT ALPHA. PARAMETER XX..........
TOO MANY PARAMETERS. WILL IGNORE.
TOO MANY RIGHT PARENTHESES. .. vvcuoennnnn.
UNACCEPTABLE PARAMETER XX. . .vvceennn.n.n.

UNLIKELY — ALL BRANCHES IDENTICAL........ .
w # # (SEE NOTE)

W — BOTH FIELDS NOT ALPHA — NOFORM.
W — UNUSUAL BRANCH CONDITION.

Macro
SHIFT
SNAP
GET
PUTX
SHIFT

DUF
DUF
MOVE
EDMOV
SNAP
LOGIC

EDMOV
MOVE

ZSIGN

COMP
coMPpP

Page

114
119
222

31
31
215
209
226
170

209
215

180

146
146

Message
WARNING — CODEVALUE NOT DEFINED UNDER CODE-
WARNING. INVALID ALPHA MAY BE INTRODUCED. .
WARNING — OUTPUT RLIFORM3 BLANK..........
WARNING — PARAM 02 IS NOT—IN—...... e
WARNING — PARAM 02 1S NOT—TO—,
WARNING — PARAM (1 NOT INPUT FILE.........
WARNING — PARAM 01 (03) NOT OUTPUT FILE. ..
WARNING — RLIFORM3 BLANK....... e
WARNING — SUCCESSIVE NOPS. ...
WILL SET SWITCHES IN FIRST LOCATION ONLY. ...

X # # (SEE NOTE)

ZEROING DC. PAR. XX. . o0 cvevnnnn P I
ZEROING INSTRUCTION. PAR. XX..

ceseessensas e

NOTE. For ARITH messages, which begin with an
N, w or X followed by a two-digit number,
see page 133.

Macro

DECOD
FILL
PUT
PUT
GET
GET
PUT
GET
CYCLE
LOGIC

ZERO
ZERO

Index of Messages

Page

162
198
116
117
114
114
117
114
156
170

189
189

269

Index

‘When more than one page reference for a particular subject is
listed, the page number in italics indicates the major reference.

Page
B it iiierecie et see: Dollar Sign
@ +vicenennnniieneens crieece edeesaes see: Alpha Symbol
K ittt eienraesar e cevens .see: Asterisk
Actual AAAress «vvvveevrenerenensennecsuenserennens 8
e 1.+ W 11
Address
7 7 e 8
Adjustmentcociiiiiiii i 13, 35
Blank . .ovivieertnrinacncanatcntiiattennaaneenns 8
CONStANES « v v venevrnnennesseoansnonsensannes 11, 58
Modification «..viveeerenneeenerooanerannennenns 106
Relative . ..vvvineinenneneennsanenncesannsnnennns 34
Symbolicccciiiiiiii e 8
5 8
Alpha Symbol
Alphameric Literalcoovveiiiiiiiiiininin., 11
) § 0T 5 oo 60, 62
Alphameric
Constants (DC) ..vvuvieernreeerarenrrsertansoass 60
Data Field (DLINE) . .vvvvveenrrierinnnnnnnnnesss 67
Literal . .ooviiirii i et i e it 11
Literal (Macro)vvuuiieirrerrencansonensns 106
Alteration Switchescoviiieiiiieii i, 16, &5
Logical Variablecooivviiii i, 165
Area Number (DA) «.vvvirinerinienrnrennraanseeanes 32
ARITH .. oveveqenencnasessoenssnsasnnsonnsasssnans 123
Arithmetic
EXDressionsoovveeuennnnnennrsresersaoeannnns 123
OPETatOrS <. eccvvnennnnnsnesrearsnssssaosaannns 123
Punctuationvevevieeneeesinssennancaasonans 126
Arrangement of Fieldscoovvneeeiiniininnn, 49
Assignment (Phase ITI)o 235
Component Listingcevevivenrincienannne 238
Asterisk
AQAIess «ovvneneiiernnrirenseeneiaearanenannns 9
Comments Cardcoeveivirinnenarnereiaaanns 7
DRDW .+ e eeetensnnneereensssnsasnsssnsasssossnns ki
Macro-inStruction «.....eveeererearnronsraaraanns 105
Automatic-Decimal
CONSEANES & o vt ve v inneeronesenssssursesennnennns 55
NUMDBEIS & vvveeitiircieraseartnnsoneennennennss 10
Series (DC) wvviirneeernnereenereireennannnennns 56
AULOSOIE + vt v vvvevrneentosonsononanennsasnaeasannans 229
Availability Table . .vovvviinnie i iiiiviiiieeinns, 238
Basic AULOCOET «.vvenunrreenennonesnanrooennnesnns 1
Binary Operatorcoeevauesensssscescrsencnns 123
Blank Addressoveveieiiiiiiiiiii i 8
Branch Controlcciveiiiiiinriniariaennenns 95
Branch, Overflowccoviiiiiiiniiiiiinnnan. 128
Carriage Control (DLINE)vvieentiontenennnnnes 74
Characters, Optionalcoiiiiiiiiiia s 252
Characters, Print Formatcc oo, 69
CLOSE + v veeennsensoserenosssonessnasssansnssanses 120
CODE « v e v v seennneasesennsossesensanaensenananeanns 50
COdES « oot iiiiean et see: Operation Codes
Code Values . ..vvviriririeanrncrnsenornasanssnnenes 166
Coding Sheetvvviueerinnir s iiinaans 5
Comments Cardcoveverivsnnroanss Cieaesrarenes 7

270

Page
Communication Recordccciiiiiiiiiveiennnn, 230
COMP vt vevnneneeennsnsasosssonssnassnsnsannenns 144
Component Assignment Listing 238
Computation Maskoiiiiiiiiiiinnnienannn 128
Constants
Address ...ivviiiii e e it e 11, 58
Alphameric (DC)ttt 60
Automatic-Decimalc. vttt 55
Data (DLINE) «..cuviuiicntnnirnoennennneassacnans 66
Packingvvvviiieriinit ittt e 60
Continuation €Cardscceevresnsecncsecananranes 17
Macro-Instructioncciiiiiiieniirasaaas 106
Control
Branch . ..ottt it i i ettt e 95
CaITIage « vt vnrtinen it ieianeionnonenancenas 74
End ..ottt e i e e it i e e e, 97
5103 5T+ 88
SBELEASE . .. cvcusrussannsasossnssssnsscssensnsns 101
SRESERVE .« .ccvvsncecsacaosnsasosonsosnsanssaonns 101
SHAtEIMENtS & . v v vereeenennnnerransesannsasnneeens 87
SYSEINS .+ vvre et n it tit ittt 230
XBELEASE « « v oo ovseseoasaesoensoarsonsasnssnsnnns 101
XRESERVE .« vvvevnvensonnsnsnnsnrasnsonsnnessnnnss 99
Counter Listing, Origincoviriivninnrnnens 238
Cross Reference Listingcoovevieininne.. 238
CYCLE vt vveeeennnnnsoroecaseasoecessnsssconnesnsns 154
DA 4t tveenrnrnroneaaaaearanasstssnsoannanrsrannas 32
Area Numberciiiiiiiniiienenennnnnen.n 32
Header Linecvuiiviiiiinienrennnannnns 32, 46
Subsequent Entrycvvviviienrnninennnen 38, 46
o 54
Alpha Symbolcoviiiiiiiiiiiii 60, 62
Header LiNe . .ovvvininnrernreeeniaanonaernnnens 54
Subsequent Entryccovviiiniinineiniinenns 54
Declarative Statementsoiviiitiinenennans 20
CODE &+ vt vvv vt vnacasnasoanansansnenssnsneaneennens 50
DA t vt tnteneeeneoneeeenenesnaseatansnssosannnans 32
5o P 54
150 (o o O 22
10) 5. 3 65
DRDW . ovveeseenernnennsossonnsnnsnesnnesuennnss 77
DSW 4vvevnneearasoasonanencssonsansasassnanansn 80
23 o 26
DUF t v ttvnannrosaneesnesoansansosensacansnannans 29
EQU 4 vt eteneeennrennnssasrossanonasssasnassnasns 82
Decimal Point, Implicitcocoviiiiiiinnn., 43
Decimal Point Indicatorsccvevieniiiiann.. 43
DECOD - et ovnusnceraosoasacossesaossnnsnansansansns 161
Differences Among Systemscciiiiiiniann. 240
Digit Switchesccovviiiiiiiii i 80
Logical Variableo, 165
) (o o JN 22
DLINE . « ot et e veesnnnsosnensenesasennsoneasnennarens 65
Alphameric Field, 67
Constant Datacoiveiiereeninnrinnnnnnnns 66
Editingvvvrviini ittt i 68
DT L 7 69

32103 77
27 80
5 PN 26
DUF + ettt et teeaeteeatas e etananneneseesensonnnnn 29
Editing to Print Formatc.viiinnunnennnn.. 68
EDMOV & ittt ittt tee et teteaetnetaaaneennnnenennns 205
Electronic Switches ...ooviv vttt 16
200 A 84
Logical Variableccovuiiiiiiiininnnn... 165
Reservation ofcciiviiiineiiiinnnnnn. 18
Element Recordccuviiiimnnnnnininnnnnnnnnnn. 231
END & ittt iiteiee ittt teresesenasaeassnesesanaannnn 122
End Controliiiiiiiiiiiiiiiiiiiiiineen, 97
EQU 4ttt itiieieaenroneesonsoesaeasasnaasasenannnns 82
Execution Sequence (ARITH)vvvvuvinenrnnnnnn. 126
Expression
ArithmetiC «.vetiit it ittt 123
Logicalcuitniiii it e 164
Relationaloiiiiiii it 166
Field
Alphameric Datacioviiiiin e, 67
Arrangement of 49
Definitionciiiiiniiiiiiiiiiiianans 12
Definition (DA)..eie ittt iineeannn 41
Length ..ot i i i it 38
Operandovitniii i e e 166
Positioniiiiiii i i i i 38
FILL o it entennsuneenosonsreaaanannsenssneannoanneas 196
Final Storage (ARITH)ccoiiiiiiiinveninnnennns 131
Functions (ARITH)viviiiiinnineienaneennennnnn 124
Floating-Decimal
Editing (DLINE)niiieeeinn i, 68
Names (DC) vvvvivineiiieriiiieeiiieeeennnnnn. 58
NUmbers .ottt et 11, 57
Print Formatcoivtiiiieiiniiiinnnnnn... 68
Series (DC) v ivenn ittt ittt ie ittt iiianennanns 58
Forbidden Labelsccooviiiiiiiieinnnnnnn. 105
Format Indicatorscvvveiinniennnerennnennnnn 42
Format, Printttt 68
Four-Tape Autocoderccvirvinvneennnnann. 2
Function, Operation Codesccvvvvnveennnnn.. 248
Functions (ARITH)vivennieineinneennnnnnnnnnn, 124
&3 112
GlOSSAIY . .t ottt iiiitiie et et e, 253
Halt Listingccvtiiiieeennennnnnnnncnannns 238
Header Line
CODE « evvveninninensaseasnsesunanenenesnenennnns 50
DA i it ete et e e, 32, 46
5o 54
DLINE .+ ttvetnnsnnsaneneeenennnennennneseennenas 65
Heading Line . ..oovvtiiniiiriinieiiiianninanannn 5
Identification (Coding Sheet) 7
lustration of Programmingccvvunun... 259
Imperative Statementsc.eviiiirnennnnnnnn. 103
ABRITH . otvttnieansesennnsansosesaeeasesennsenns 123
CLOSE e ttevesnnoesesnasasesnasoeneeneneenensnnes 120
COMP .+ttt titennnsosenenoesannesecnnaennnnnenn 144
(031 3 154
DECOD ot vveveneensnennensenensossooasnsenanoanas 161
EDMOV & it tteensaeseceeaansanscenanesaesanesnnns 205
END oo ovtvneecnunerosenssaensaseeassosonnanennns 122
21 9 196
GET oot veeansonsesonesasnensaesosesnanennannnnns 112
LOGIC + e et vteneaeeaeennasnonseneneeanaesannnas 164
MOVE + ettt seeeannseesaanaenaeenneeanansananan 213
OPEN & ttiteteeseeeseasssonensssnsaosnenannenas 110
PUT 4t e tvee et ensesaneaseuenenaesascnanenenanns 115
PUTX ceveevvcnsoonsnsnnensonsseesusonencasasnnns 118
RECYC 4 icecnemmeaaccncansaeacaneanacessnananans 154
SETSW & v e v vesonenoeenesoaaneeeneensenassnennnsns 185
SHIFT « v vc vt ennnenennsnensasnenaeneeesnenenaennas 221

Page
037 225
ZERO e voeomecusansnnsenssaeesnnanesnesneennens 188
2 (G 178
Implicit Decimal Pointvvvvrivininiinninn... 43
Implicit Indexingccieeiiiiiniininenennnnnn.. 35
Independent Variablesccovviviiinnnn... 125
Index of MesSSages «.vvvivinnnnnennnreeenrnnnnnnnn. 268
Index Wordscovtiiiieiie e iiinnnnnans 14, 84
Reservedvvvniiie i, 18, 243
Indexing . ..oviiiiii i e 14
Implicit ..ot e 35
Macro-Instructionsceiiiviiinrnennnennnnn. 106
Indicators
Decimal-Pointc.ovviiiiiiiiiiieiineinnnnn. 43
Format Ceeerentee e 42
Individual Names (DC)vvvvviiiiiiiiiiiinennnnn. 58
Information Transferc.c.iveiiiiinneennnnn. 236
Input/Output
Control Systemc.uviiirinaninieeeireienn. 2
EQU & ittt ietn s ineeaseanennsnssasnennsensnnans 85
Macro-Instructionsc.ceeeeinnernnnennnnns 48
UniS ittt ittt ittt ittt 16
Instructions, Symbolic Machine 103
1 7= 6
Forbiddenc.viuiiieriineieiiiennnneeennnnns 105
Macro-Instructioncvviiiiiiinnnninnnennn.. 105
Length, Fieldciiiiiiiiiiiiiiiiiiiiannnnnn, 38
Line (Coding Sheet)cviiiiiniiineiiiiinnann. (¢}
Line, Headerovviviiniennneeeennnn, see: Header Line
Listings ...vvriiiniiiii i i ittt 236
Literal . .oviviiii i e i e e 10
Alphamericc.uiiiiii i i i e i 11
Macro-Instruction ittt 107
Litorigin Controlviiiiiiinniiiineeennennnnns 88
LOGIC & ttvtentteenscnenensonnssnceoaenuanneoaeenns 164
Logical
(0575 ¢ 170> PP 167
Punctuationottt i 167
Variablesvviiiiiiininiiiiiiiininieenaaaanns 165
Machine Instructions, Symbolic 103
Machine Requirementseevemeeneenenannn 1
Macro Generatorsuiveeenennneennaaneaannnn 2
Macro-Instructionscccieiiiiniareenienenenae 104
Input/Outputcitiiiiiiieiieiieenenennnan 48
Mask, Computationoeeveeieenereneenonnaannn 128
Message
Index ovveinr ittt i e 268
Listing . .ovviiiiiiiiiiii it et ittt 238
Phase IIToottiiiiie ettt e i iieiieananns 236
Mnemonic, Operation Codescovvveninnnnnn.. 244
Mode Size (ARITH)ouiinieieiiieeenneennennnn 128
Modes (ARITH) . vvvvnnneneeiteeinieennenennns 124
% (0 oS 213
Multiple ROWS (DRDW) .+ .vvuiiniiinnienneiieninnnnnn, 78
Numerical Print Formatcoiveiiiiviinnnnnn. 68
Number
Areas i DA .. vivii it ieniiieiieranenreannana, 32
Automatic-Decimalciiiiiiiiiiiinnn.. 10
Floating-Decimalcociviiiieieinennnnn.. 11, 57
Off-Line Printingoevvereneneenennnnnnnnnnnnnenn 74
On-Line Printingcouierinnineiieeininnnnnnnn. 73
OPEN & ittt iteitiosasenencasosssanansonnsanenenans 110
Operand ...t e i e e, 6
File .o i i i e et et 236
Logical Variablesccoviiiiiiniiinnnnnnnn. 166
Macro-Instructionc.viiiiiiiii i, 107
Operation (Coding Sheet)cciiiinnnnnn.. 6
Operation Codes
By Function et eet ettt ae et 248
By Mnemonicscviiiiiiiiininnnenannnnnns 244

Operator
Arithmetic ... vviin ittt it it iarnstaase e 123
Binary ...cviiverrniiriiii ittt 123
Logical ... e 167
UDAIY & vt teteentnens s eenanmsonnrancnnneenennss 123
Optional Charactersccoiiiiiiinernenennnn, 252
Origin Controlcciviiiiiiiiiiiiniinannieniens 88
Origin Counter Listingooiiiiiiiiiiiinnann. 238
Output (Phase III)oiitiiininrannrrennannnns 236
Overflow
Branch (ARITH)ccvsvunnrecnnnonnnnanannanes 128
T S 132
Packingovovniiiieninreniniaininsnsonanns 54, 56
Alphameric Constantsooeeeveervreannennns 60
Page Number Coding Sheetccoiiieit 5
Coding Sheetovvviiiiiiiiiniienneeneeeennns 5
Output Listing ...coviiviierrniininiiinnaeseeenns 236
Parametersoeeeeevetassssrareasaeaanianssos 8
Parenthesis
ARITH « o oenevnennenesenesnessesasonosansenssas 125
DA o oeeevensoneneeasnesssseensesacnnaaansanens 39, 41
DO e seeeesaseaeaceeanscsassesssnsnannaanasses 55
DLINE e veroneennasososssnssnonsnnsasnessasans 71
Field Definitionccvvieiiiiniiiiirnrenensoes 39
o V3 (oSN 167
Relative Field Definitionccivvivviiennenns 41
Phase I ..vueie e ieiennnnsanncnenionenennansonanns 231
Phase I . ooiiiieiiiiiiie e iannannnnrnneesaraens 232
Phase IIL .. oiintiinnennenronesrennanaeansssnnes 233
Position, Fieldcocvviiiieiiiniiiiiinieanns 38
Print Format
Characterscoveeeenernernnrannnncenreencanss 69
Editingcoviiiiieniniiinneinentniannnnnns 68
Printing (DLINE)
OfF-LNE v v vvevtevnernenasonnseneassetanesesnnnss 74
ON-LiNe oo viiiiiiiienarsenrneeaenenenasnnnnnnnn 73
Priority Releaseccviiiiiiiiiiiaann, 8
PrOCESSOT « v v v eeenearsnssssasenenennseansonsnnans 229
L0 Y103 « s 229
Macro Generatorsuocoeeevneneconnrnneennnn 229
Organization ofcooeeiiiieeininenennnn.n, 229
Output Listingsoovviiiniiiniiiien e, 236
Phase] ..o iiitt ittt iiae ittt 231
Phase II . .ovviitiiiieieneeerneronetnninneenennns 232
Phase II] ..ottt ienanrneraserannsennsanss 233
Systems Controlc..cciiiiiiiiiiiiiian 230
Program
Listing ..ovvevirinnennnnrennnronnaensecanonnnnns 236
SWItCh ottt ittt i i 165
Programming, Ilustrationoiiiiniinaenn 259
Punctuation
Arithmetic . ..oviviieiieiiennr it ierreneeraaennns 126
Logicalovviniiiniiiiiiiiii ittt 167
PUT v vt eme s snenenenesessoneenenecseanneanans 115
PUTX + e noenveenonannsaseeesesonsnsnsacsncannanns 118
Quantities, Numerical (ARITH)co0voin.... 123
RDW
27 33
Multiple (DRDW)viuiirriiienvinninnennnens 78
Single (DRDW)vtvtiiiierneninannennnenenns 77
Record
Communicationoveieiiiienriiiiiiiiinnaan 230
(0763 17:15 g1 o3& o + WA 234
Element . vuveerrneeenrenioenasnnrcnnsnseaansnsos 231
Record Mark
5 o J 60, 62

272

Page

5319 ¢ 0SS 67
IBM 720 (DLINE) +.iviurnurvrrnnennronnsnnennransns 76
RECYC + ot eeensoasoonasonsonseesoneaeennssnesennen 154
Relational Expressioncovviiinniinnnninenns 166
Relative

Addressingovvriin it i 34

Field Definitionvevevevreinneeraiesennesenns 41
Remarks

Coding Sheetc.cvvvvriiiiiiiiineireinninnns 7

Macro-Instructionscviiiiiiiiiiiiaenan 107
Reservation of

Electronic Switchesc.coveenreneniienennnn., 18

Index WOrds «.ovvvvvenrneereennnsennnenanennnns 18
Reserved Index Wordscovvnirenrinncnnnneen 243
Sequence, Executioncoiiiiiiiiiiiiiia, 126
Serial Transferccovvriieiiiniiinennanrens 234
Series (DC) vuvvvrennenns e inen e ieenannnnannens 56
SETSW v vvoevvensnenensossesnssaenssncnensnsnannns 185
Setting Overflow Lightsc.coviiiiiiaiinnat 132
SHIFT «vevoevecnenaoncceasossesnesanssnsneacnsennnsons 221
Single BDW . ..viiininii ittt iiene i 77
7 - N 225
Sort

Operand Filecciiviiiiiiniiniennneeneinnn, 236

Serial-Request Filecoiiiiiiiniiannntn 234

Statement Filecoivviiiirinierniiernneneenns 235

Symbol Filecoviiniiii it 236
SRELEASE Controlcoviiiiiininiirnnrnnnnaenns 101
SRESERVE Controlcoiiiiiiiiiiiniinnennns 99
Statements

{0733 115 «) 87

Declarativecveeeinesensrnnsonecnnsonsns 20

IMperativeovvvvrenneererenneseansseeseennns 103
Subfields (DA) «vvivrirr ot 41
Subsequent Entry

CODE - ot et eeeersannneeassaassossasesansnssoons 51

DA vevtennsinrtnnasannssessnennnsarrasssanes 38, 46

o PR 54

DLINE «.vvvresvnnennennsnnsrsunesasseesassnssnns 65
Switches

ARerationvevieviveenrnnneeennsnans 16, 85, 165

DGt oo et ee e s 80, 165

Electroniccoviiiiiriineinrenannnnenn 16, 84, 165

Reservation ofttt iinnninennnn 18
Symbolic

Address ...ttt i i i e e 8

Address (EQU) . .. uvur it iiinrennenrannn 83

Machine Instruction i i, 103
Systems Controlccciiiiriineniinneinennnas 230
Table, Availabilityc.eviiviinaa.. 238
Types, Addressvvuevrnver s riieerennunnnnnnn 8
Unary Operatorc.veiiiitinnnrnensnrnannesnsas 123
Units, Input/Outputccoiiiiiiinininnnnnna. 16
UPdate «vvvvieiieiien ittt riera e 230
Use of pa with

Macro-Instructionscitiiiriiiiiiniriana, 46

Symbolic Machine Instructions 45
Values, Code v vvvernerereneerenseenneanonnenenanns 166
Variables

Independentcoiiiiiiiiiiii i 125

Logical ...t e e 165
XRELEASE Control oiiiiiiiiiinnnennn, 101
XRESERVE Controlovuniiiieiinrinnnnenanan, 99
2 5 o YA 188
Zero DIVISOTS . oo vt iienn e i innieenenenenensnnns 131
2 e G 178

C28-6121-0

BV

International Business Machines Caorporation
Data Processing Division
112 East Post Road. White Plains, New York

0-1Z19=82D "V'S'N ul pasuly

	0000
	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	xBack

