


Preface 

This publication i s  a reference manual that provides 
specific information about the use of the IBM 5100 
Portable Computer, the APL language, and installation 
planning and procedures. It also provides information 
about forms insertion and ribbon replacement for the 
5103 printer. This publication i s  intended for users of 
the 5100 and the APL language. 

Prerequ isite Pub1 icat ion 

IBM 5100 APL Introduction, SA21-9212 

Related Publications 

IBM 5100 APL Reference Card, GX21-9214 

APL Language, GC26-3847 

IBM 5100 Communications Reference Manual, 
SA2 1-92 15 

First Edition (August 1979) 

Changes are continually made to  the specifications herein; any such changes will 
be reported in subsequent revisions or technical newsletters. 

Requests for copies of IBM publications should be made to your IBM represen- 
tative or the IBM branch office serving your locality. 

A form for reader's comments is a t  the back of this publication. If the form 
has been removed, address your comments to IBM Corporation, Publications, 
Dept. 245, Rochester, Minnesota 55901. 

@ Copyright International Business Machines Corporation, 1975 

0 

0 

0 

0 



Contents 

CHAPTER 1 . OPERATION . . . . . . . . .  1 
I8M 5100 Overview . . . . . . . . . . . .  1 
Display Screen . . . . . . . . . . . . .  1 

Power On or Restart Procedures . . . . . . .  4 
Display Screen Control 5 

Keyboard . . . . . . . . . . . . . .  6 
Attention . . . . . . . . . . . . .  6 
Hold . . . . . . . . . . . . . . .  6 
Execute . . . . . . . . . . . . . .  7 
Command . . . . . . . . . . . . .  7 
Positioning the Cursor and Information on the 

Display Screen . . . . . . . . . . . .  7 
Copy Display . . . . . . . . . . . .  9 

Indicator Lights . . . . . . . . . . . . .  9 
Process Check . . . . . . . . . . . .  9 
In Process . . . . . . . . . . . . .  10 

. Switches . . . . . . . . . . . . . . .  4 (-. i . . . . . . . . . .  

CHAPTER 2 . SYSTEM COMMANDS 
System Overview . . . .  
System Command Descriptions 

The )CLEAR Command . 
The )CONTINUE Command 
ThelCOPYCommand . . 
The)DROPCommand . . 
The )ERASE Command . 
The IFNSCommand . . 
The )LIB Command . . 
The )LOAD Command . . 
The )MARK Command . . 
The )MODE Command . . 
The IOUTSEL Command . 
The )PATCH Command . 
The IPCOPY Command . 
The IREWIND Command . 
The)SAVECommand . . 
The IS1 Command . . .  
ThelSIVCommand . . 
The )SYMBOLS Command 
The )VARSCommand . . 
The IWSID Command . . 

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. . . . . .  11 

. . . . . .  11 

. . . . . .  11 

. . . . . .  14 

. . . . . .  14 

. . . . . .  15 

. . . . . .  16 

. . . . . .  16 

. . . . . .  17 

. . . . . .  17 

. . . . . .  19 

. . . . . .  19 

. . . . . .  21 

. . . . . .  21 

. . . . . .  22 

. . . . . .  25 

. . . . . .  26 

. . . . . .  26 

. . . . . .  27 

. . . . . .  27 

. . . . . .  28 

. . . . . .  28 

. . . . . .  29 

CHAPTER 3 . DATA . . . . . . . . . . .  30 , Variables . . . . . . . . . . . . . . .  30 .. Data Representation . . . . . . . . . . .  30 
Numbers . . . . . . . . . . . . . .  30 
Scaled Representation (Scientific Notation) 31 
Character Constants . . . . . . . . . .  31 
Logical Data . . . . . . . . . . . . .  32 

Scalar . . . . . . . . . . . . . . . .  32 

, Generating Arrays . . . . . . . . . . .  33 
Finding the Shape of An Array . . . . . . .  34 
Empty Arrays 36 

Catenation . . . . . . . . . . . . . .  37 
Indexing . . . . . . . . . . . . . . .  39 

c 
(1 . 

. . . .  

. Arrays . . . . . . . . . . . . . . .  32 

. . . . . . . . . . . .  

CHAPTER 4 . PRIMITIVE (BUILT-IN) FUNCTIONS . 
Primitive Scalar Functions . . . . . . . . .  

The + Function: Conjugate. Plus . . . . . .  
The- Function: Negation. Minus . . . . .  
The x Function: Signum. Times . . . . . .  
The + Function: Reciprocal. Divide . . . . .  
The r Function: Ceiling. Maximum . . . . .  
The I Function: Magnitude. Residue . . . .  
The *Function: Exponential. Power . . . .  
The @ Function: Natural Log. Logarithm . . .  
The OFunction: Pi Times. Circular . . . . .  
The ! Function: Factorial. Binomial . . . . .  
The ? Function: Roll . . . . . . . . .  
The A Function: And . . . . . . . . .  
The V Function: Or . . . . . . . . .  
The =Function: Not . . . . . . . . .  
The :Function: Nand . . . . . . . . .  
The VFunction: Nor . . . . . . . . .  
The >Function: Greater Than . . . . . .  
The = Function: Equal To . . . . . . .  
The < Function: Less Than . . . . . . .  
The t Function: Greater Than or Equal To . . .  
The 5 Function: Less Than or Equal To . . .  
The #Function: Not Equal To . . . . . .  

Primitive Mixed Functions . . . . . . . . .  
The p Function: Shape. Reshape (Structure) . . 
The. Function: Ravel. Catenate. Laminate . . .  
The / Function: Compress . . . . . . .  
The \ Function: Expand . . . . . . . .  
The 4 Function: Grade Up . . . . . . .  
The 1. Function: Take . . . . . . . . .  
The J. Function: Drop . . . . . . . . .  
The I. Function: Index Generator. Index of . . 
The 0 Function: Reverse. Rotate . . . . .  
The @ Function: Transpose. Generalized Transpose 
The ? Function: Deal . . . . . . . . .  
The 1 Function: Decode (Base Value) . . . .  
The T Function: Encode(Representati0n) . . .  
The 6 Function: Membership . . . . . . .  
The Function: Matrix Inverse. Matrix Divide . 
The P Function: Execute . . . . . . . .  
The T Function: Format . . . . . . . .  

The L Function: Floor. Minimum . . . . .  

The TFunction: GradeDown . . . . . .  

APL Operators . . . . . . . . . . . .  
Reduction Operator (/I . . . . . . . .  
Inner Product Operator ( . 1 
Outer Product Operator ( 0 . 1 
Scan Operator ( \ I  . . . . . . . . . .  

Special Symbols . . . . . . . . . . . .  
Assignment Arrow f . . . . . . . . .  
Branch Arrow+ . . . . . . . . . .  
Quad 0 . . . . . . . . . . . . .  
QuadQuotem . . . . . . . . . . .  
CommentA . . . . . . . . . . . .  
Parentheses ( 1 . . . . . . . . . . .  

. . . . . . .  

. . . . . . .  

. 4 3  

. 4 3  

. 4 4  

. 4 5  

. 4 6  

. 4 8  

. 5 0  

. 5 1  

. 5 2  

. 5 4  

. 5 5  

. 5 6  

. 5 9  

. 6 1  

. 6 2  

. 6 3  

. 6 4  

. 6 5  

. 6 6  

. 6 7  

. 6 8  

. 6 9  

. 7 0  
* 7 1  
. 7 2  
. 7 3  
. 7 5  
. 7 7  
. 8 1  
. 8 2  
. 8 3  
. 8 4  
. 8 6  
. 8 7  
. 8 8  
. 8 9  
. 9 3  
. 9 5  
. 9 6  
. 9 9  
. 1 0 4  
. 105 
. 1 0 7  
. 1 0 8  
. 1 1 1  
. 1 1 1  
. 1 1 3  
. 1 1 6  
. 1 1 8  
. 1 2 0  
. 1 2 0  
. 1 2 0  
. 1 2 0  
. 1 2 1  
. 1 2 1  
. 1 2 2  

... 
111 

. 



CHAPTER 5 . SYSTEM VARIABLES AND SYSTEM 
FUNCTIONS . . . . . . . . . . . . .  123 

System Variables . . . . . . . . . . . .  123 
Comparison Tolerance: 0 CT . . . . . . . .  124 
Index Origin: 0 10 . . . . . . . . . . .  125 
Printing Precision: 0 PP . . . . . . . . .  125 
Print Width: 0 PW . . . . . . . . . . .  126 
Random Link: O R L  . . . . . . . . . .  126 
Line Counter: 0 LC . . . . . . . . . .  126 
Workspace Available: 0 WA . . . . . . . .  126 
Latent Expression: 0 LX . . . . . . . . .  126 
Atomic Vector: 0 A V  . . . . . . . . . .  126 

System Functions . . . . . . . . . . . .  128 
The OCR Function: CanonicallRepresentation . . 128 
The 0 FX Function: Fix . . . . . . . . .  129 
The 0 EX Function: Expunge . . . . . . .  132 
The ONL Function: Name Lisp . . . . . . .  132 
The 0 NC Function: Name Claisification . . . .  133 

CHAPTER6 . USER-DEFINEDFUNCTIONS . . . .  134 
Mechanics of Function Definition . . . . . . .  134 

Function Header . . . . . . . . . . . .  135 
Branching and Labels . . . . . . . . . .  137 
Local and Global Names . . . . . . . . .  139 

Interactive Functions . . . . . . . . . . .  144 
Requesting Keyboard Input during Function 

Execution . . . . . . . . . . . . .  145 
Arranging the Output f rom a User-befined Function . . 146 

Bare Output . . . . . . . . . . . . .  146 
Locked Functions . . . . . . . . . . . .  147 
Function Editing . . . . . . . . . . . .  148 

Displayinga User-Defined Function . . . . . .  148 

Reopening Function Definition . . . . . . .  150 
151 

Trace and Stop Controls . . . . . . . . . .  152 
Trace Control . . . . . . . . . . . .  152 

Revising a User-Defined Function . . . . . .  148 

An Example of Function Editing . . . . . . .  

StopControl . . . .  . . . . . . .  154 

CHAPTER 7 . SUSPENDED FUNCTION EXECUTION . 155 
Suspension . . . . . . . . . . . . . .  155 
State Indicator . . . . . . . . . . . . .  155 

CHAPTER 8 . TAPE AND PRINTaR INPUT AND 
OUTPUT . . . . . . . . . . . .  

Establishing a Variable to  be Shared . . . . .  
Opening a Data File or Specifying printer Output . 
Transferring Data . . . . . . . . . .  

Transferring Data to  Tape (OUT or ADD 

Transferring Data from Tape (IN Operation) . 
Transferring Data t o  the Printer (PRT Operation) 

Operation) . . . . . . . . . . .  

Closing a Data File or Terminating the Printer Output 

Return Codes . . . . . . . . . . .  
An Example Using Tape and Printer lnput/Output . 

Retracting the Variable Name Being Shared . . .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

. .  

158 
158 
1 59 
163 

163 
163 
164 
164 
164 
165 
1 66 

I 

CHAPTER 9 . MORE THINGS TO KNOW ABOUT 
THE 5100 . . . . . . . . . . . . .  170 ~ 

Data Security . . . . . . . . . . . . .  170 
5100 Storage Capacity . . . . . . . . . . .  171 

Storage Considerations . . . . . . . . . .  172 
Tape Data Cartridge Handling and Care . . . . . .  173 

CHAPTER 10 . THE 5103 PRINTER . . . . . .  174 
How to  Insert Forms . . . . . . . . . . .  175 
How to  Adjust the Copy Control Dial for Forms 
Thickness . . . . . . . . . . . . . .  177 

How to Replace a Ribbon . . . . . . . . . .  177 . 
CHAPTER 11 . ERROR MESSAGES . . . . . .  180 

APPENDIX A . INSTALLATION PROCEDURES AND 
INSTALLATtON PLANNING INFORMATION . . .  188 

Installation Planning 188 
188 

Installation Procedures . . . . . . . . . . .  191 
5100 Installation Procedure . . . . . . . .  191 
Auxiliary Tape Unit Installation Procedure . . . .  196 
Printer lnstallatlon Procedure . . . . . . . .  198 

. . . . . . . . . . .  
. . . .  IBM 5100 Portable Computer 50 Ib (24 kg) 

APPENDIX 6 . APL CHARACTER SET AND OVERSTRUCK 
CHARACTERS . . . . . . . . . . . .  200 

APPENDIX C . ATOMIC VECTOR . . . . . . .  201 

APPENDIX D . 5100 APL COMPATIBILITY WITH 
IBMAPLSV . . . . . . . . . . . . .  205 

GLOSSARY . . . . . . . . . . . . . .  209 

INDEX . . . . . . . . . . . . . . .  214 

iv 



IBM 5100 PORTABLE COMPUTER OVERVIEW 

The 5100 (Figure 1) i s  a portable computer. The 5100 has a display screen, key- 
board, a tape unit, switches, indicator lights, and an adapter for black and white 
TV monitors. The display screen and indicator lights communicate information 
to the user. The keyboard and switches allow the user to control the operations 
the system will perform. Figure 2 shows the 5100 console. 

_-. 

(\.. :j 

Features available for the 5100 are an auxiliary tape unit, a printer, and a com- 
munications adapter. 

DISPLAY SCREEN 

The display screen (Figure 3) can display 16 lines of information a t  a time, with 
up to 64 characters in each line. Input (information supplied by the user) as well 
as output (processed information) is displayed. The bottom two lines (lines 1 and 
0) of the display contain information entered from the keyboard. The cursor 
(flashing horizontal line) indicates where the next input from the keyboard will 
be displayed. If the cursor is  moved to a position that already contains a charac- 
ter, the flashing line i s  replaced by the flashing character. As the 5100 processes 

input, a l l  lines of the display are moved up so that information can be entered on 
the two bottom lines again. The top lines of the display are lost as the lines are 
moved off of the display screen. 

1 



Display 
Scredn 

Switches lndicat 
/ 

r Ligh s Switch s Adapter for Black and 
White TV Monitors I 

Tape 
Unit 

Figure 1. IBM 5100 Portable Computer 

2 



0 
( 1 1 - 1  

2 %  

Page of SA21-92130 I 
Issued 15 September 1975 I 
By TNL: SN21-0247 1 

- 
Figure 2. The 51 00 Console 

3 



Line Numbers 

1 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

3+2 4- Input from the keyboard 

- + Cursor (flashing horizontal line) 
5 - output 

4 64 character positions - * 

Normally, to distinguish input from output, input from the keyboard is indented 
and output is  displayed starting a t  the left edge of the display screen. 

Figure 3. The 6100 Display Screen 

SWITCHES 

The switches on the 5100 console (Figure 2) are used for turning power on, re- 
starting the system, and controlling how information is displayed. 

Power On or Restart Procedures 

The following switches are used when turning power on to the system or re- 
starting the system operation. 

BAS1 C/APL 

Only dual-language machines have this switch. The switch setting determines which 
language will be in operation when power is turned on or after RESTART is 
pressed. If the switch setting is  changed after power is turned on or after RESTART 
is pres$ed, the language in operation will not be changed. 

Power ON/C)FF 

When this switch is in the ON position, power is supplied to the system. The 
system performs internal checks and becomes ready in 15-20 seconds. When the 
switch i s  put in the OFF position, no power is supplied to the system. 7, 

i 
J 



Note: The message CLEAR WS is displayed when the system becomes ready. If 
this message is  not displayed after 20 seconds, restart the system operation (the 
RESTART switch is discussed next). 

RESTART 

This switch restarts the system operation. When it is pressed, the system performs 
internal checks and becomes ready in 15-20 seconds. The message CLEAR WS is 
displayed when the system is ready. I f  the system does not display the message 
after 20 seconds, press RESTART again. I f  the system does not become ready 
after several attempts, call your service representative. 

The primary uses of this switch are to restart the system operation after a system 
malfunction has occurred and to change the language in operation on dual- 
language machines. 

Note: Any information you had stored in the active workspace (see Chapter 2) 
will be lost when RESTART is pressed. 

Display Screen Control 

The following switches are used to control how the information on the display 
screen is  displayed. 

L32 64 R32 

This three-position switch (positions 64, L32, and R32) operates as follows: 

0 64 - Characters are displayed in adjacent positions, and up to 64 characters 
can be shown on each line. 

0 L32 - Characters are displayed in alternate positions (blanks between); only 
the left 32 characters of the 64-character lines are shown. 

R32 - Characters are displayed in alternate positions (blanks between); only 
the right 32 characters of the 64-character lines are shown. 

REVERSE DISPLAY 

This switch determines whether the display screen will display light characters 
on a dark background or dark characters on a light background. The brightness 
control may have to be adjusted when the switch setting is  changed. 

DISPLAY REGISTERS 

This switch is  for the service representative’s use when servicing your 51 00. 

Note: When you use your 5100, this switch must be in the NORMAL position. 

5 

I 
I 

I- I 



KEYBOARD 

6 

The 5100 keyboard (Figure 2) has alphameric and numeric keys. The alphameric 
keys are grouped together and are similar to those on a typewriter keyboard. 
When the keys are pressed, the characters entered appear in the input line (one 
of the bottom two lines) on the display screen. If either shift key is  pressed and 
held, the upper symbol on the key pressed is  entered. The top row of alphameric 
keys ban be used to enter numbers; however, numbers can be conveniently en- 
tered using the numeric keys on the right side of the keyboard. The arithmetic 
symbols (+ - f x) located on the top row of the alphameric keyboard can also 
be entered using keys to the right of the numeric keys. 

The keyboard contains some keys that perform operations in addition to those 
performed by a typewriter. These keys are discussed in the following text. Uses 
of the APL language symbols on the keyboard are discussed in the APL language 
chaptier (Chapter 4) of this manual. 

Pressihg ATTN (attention) when entering information from the keyboard erases 
everything from the cursor to the end of line 0. 

Pressing ATTN during execution of any expression or user-defined function stops 
system operation a t  the end of the statement currently being processed. To re- 
start the execution of a user-defined function, enter -toLC. 

Output that was being generated before the system operation stopped may not be 
displayed because there is  a delay between the execution of the statement that 
causes the output and the actual display of the output. 

When ATTN is  pressed twice during the execution of a statement (either inside 
or outside a user-defined function), the execution of that statement stops im- 
medidtely. Also, the message INTERRUPT, the statement, and a caret (A )  that 
indicates where the statement was interrupted are displayed. 

When pressed once, HOLD causes all processing to stop; when pressed again, it 
allows processing to resume. The primary purpose of HOLD is to permit reading 
the display information during an output operation, when the display is  changing 
rapidlb. When the hold is in effect (HOLD pressed once), only the COPY DISPLAY 
key is active. 

Notes; 
1. Holding down the CMD key and pressing HOLD is  restricted to use by the 

service personnel. 
2. When the hold is  in effect (HOLD pressed once), the use of the arithmetic 

keys (+ - f x) on the right side of the keyboard are restricted to use by 
service personnel. 

Iv 

3 



When this key is  pressed, the input line of information on the display screen is  
processed by the system. This key must be pressed for any input to be processed. 

When this key is  pressed and held, pressing an alphameric key in the top row 
causes the APL command keyword or character above that key to be entered 
in the input line. The command keywords are: )LOAD, )SAVE, ICONT, )LIB,. 
IFNS, IVARS, )COPY, IWSID, )OUTSEL, and )REWIND. 

Note: Holding down the CMD key and pressing HOLD is restricted to use by the 
service personnel. 

Positioning the Cursor and Information on the Display Screen 

The following keys are used to position the cursor and information on the display 
screen: 

n Forward Space 

When this key is pressed once, the cursor moves one position to the right. When 
this key is held down, the cursor continues to move to the right. When the cursor 
reaches the last position on one input line (line 1 or 0), it wraps around to the 
first position on the other input line. 

(1 
7 



When the CMD key is  held down and the forward space key is  pressed once, the 
characters at  and to the right of the cursor position (flashing character) are moved 
to the right one position, and a blank character i s  inserted a t  the cursor position. 
The cursor does not move. For example: 

/-,Flashing character 

Before the insert operation: 

After the insert operation: 

When these keys are both held down, the characters continue to move to the 
right and blank characters continue to be inserted. 

Note: I f  there is  a character in position 64 of line 0, the insert operation will 
not work. 

When this key is pressed once, the cursor moves one position to the left. When 
it is held down, the cursor continues to move to the left. When the cursor reaches 
position 1 on one input line (line 1 or 01, it wraps around to the last position on 
the other input line. 

am Delete 

When the CMD key is  held down and the backspace key is  pressed once, the 
character a t  the cursor position (flashing character) is deleted and all characters 
to the right are moved over one position to the lef t  to close up the space. The 
cursor is not moved. For example: 

Before the delete operation: 1234456 \ 
After the delete operation: 123456 

-Flashing character 

When tlhese keys are both held down, the characters a t  the cursor position con- 
tinue to be deleted and al l  the characters to the right are moved to the left. 



f I 
\ <- 

This key (located above the numeric keys) can be used only in execution mode. 
When this key is  pressed once, each displayed line i s  moved up to the next line. 
As the lines are moved up, the top line i s  lost as it i s  moved off the display screen. 
When this key is  held down, the lines continue to move up. 

This key (located above the numeric keys) can be used only in execution mode. 
When the key is  pressed once, each displayed line i s  moved to the next lower line. 
As the lines are moved down, the bottom line is  lost as it i s  moved off the display 
screen. When this key is  held down, the lines continue to move down. 

1;1 Copy Display \ 

U 

If there is  a 5103 Printer, when the CMD key is  held down and this kev is  pressed 
once, a l l  the information presently on the display screen is  printed. COPY 
DISPLAY i s  operational even when the system is  in the hold state (the HOLD 
key has been pressed once). 

Note: The L32 64 R32 switch has no effect on what will be printed. 

INDICATOR LIGHTS 

The 5100 console (Figure 2) has the following indicator lights: 

Process Check 

When on, this light indicates that a system malfunction has occurred. In this case, 
press the RESTART switch to restart the system operation. If the system opera- 
tion cannot be successfully restarted after several attempts, call your service repre- 
sentative. c; 

9 



In Process 

When the system is processing input, generally the display screen is blank and the 
IN PROCESS light is on. After the input i s  processed, the light goes off, the out- 
put and flashing cursor are displayed, and the system waits for input. 

Notes: 
1. For some expressions or user-defined functions (see Chapter 51, output is 

generated before the expression or function has completed execution. In such 
cases, even though the system is s t i l l  processing data, the IN PROCESS light 
goes off and the output is displayed. The flashing cursor is again displayed 
wheD the system has finished processing the input (the expression or function 
has completed execution). 

brightness control before calling your service representative. 
2. If the display screen is blank and the IN PROCESS light i s  off, check the 

10 

- -. . I I 



Chapter 2. System Commands 

SYSTEM OVERVIEW 

(I, i 

The 5100 contains an active workspace, which is the part of internal storage where 
the user’s data and user-defined functions (programs) are stored. When the power 
is turned off or the RESTART switch is pressed on the 5100, al l  the data in the 
active workspace is lost. However, the contents of the active workspace can be 
saved on tape (stored workspace) and then read back into the active workspace 
for use a t  a later time (see System Command Descriptions in this chapter). The 
contents of the active workspace then exist in both the active workspace and on 
tape. 

The tape is  your library; that is, it i s  a place where you can store data for later 
use. Before a tape can be used, it must be formatted. A formatted tape contains 
one or more files where data can be stored. Each file has a file header, which con- 
tains information about the file. See the )LIB system command in this chapter 
for a description of the file header. 

The system commands, which are used to control and provide information about 
the system, are discussed next. 

SYSTEM COMMAND DESCRIPTIONS 

The following l i s t  shows how system commands are used to control and provide 
information about the various parts of the system. Each system command is  
described in detail later in this chapter. 

Commands that Control the Active Workspace 

Corn mand Meaning 

)CLEAR Clear the active workspace. 

)COPY Copy stored objects (see note 1) into the active workspace. 

)ERASE Erase global objects (see note 1) from the active workspace. 

)LOAD Replace the active workspace with a stored workspace. 

) PCOPY Copy stored objects (see note 1) into the active workspace and pro- 
tect objects in the active workspace from being destroyed. 

)SYMBOLS Change the number of symbols allowed in the active workspace. 

)WSID Change the active workspace ID. 

11 



Commands that Control the Library (Tape) 

Command Meaning 

)CONT I N UE Write the contents of the active workspace on tape. The active 
workspace can contain suspended functions. 

)DROP Drop a file from the tape. 

)MARK Format the tape. 

)SAVE Write the contents of the active workspace on tape. The active 
workspace cannot contain suspended functions. 

Commands that Provide Information About the System 

Commahd Meaning 

)FNS Display the names of the user-defined functions. 

)LIB Display workspace file headers. 

IS1 Display the state indicator. 

)SI v Display the state indicator and local names. 

)SYMBOLS Display the number of symbols allowed in the active workspace. 

)VARS Display the names of the global variables. 

)WSID Display the active workspace ID. 

Other Commands that Control the System 

Command Meaning 

)MODE 

)OUTS6 L Select printer output. 

Place the 5100 in communications mode. 

)PATCH Apply IMFs (internal machine fix) t o  the system or recover 
data after a tape error. 

)REWIND Rewind the tape. 

Notes: 
1. Obiem refers to both user-defined functions and variables. 
2. The System commands )CONTINUE, )COPY, )PCOPY, )DROP, )LOAD, )MARK, 

)REWIND, and )SAVE will blank the top 8 or 9 lines on the display screen when 
they are used. 

12 



All system commands (and only system commands) have as their first character 
a right parenthesis. Each system command must begin on a new line. Para- 
meters (required or optional information) for the system commands must be 
separated by blanks. System commands cannot be used within APL instructions 
and cannot be used as part of a function definition (function definition is dis- 
cussed in Chapter 6). 

System commands can be entered two ways: 

1. 

2. 

The system command can be entered one character at  a time from the 
key board . 
The system commands )LOAD, )SAVE, ICONT, )LIB, IFNS, )VARS, )COPY, 
IWSID, )OUTSEL and )REWIND can be entered in one operation by holding 
the CMD key while pressing the top-row key just below the label of the 
command you want. 

The parameters, if required, must be entered and the EXECUTE key pressed before 
any operation will take place. Following is an explanation of terms and symbols 
used as parameters for system commands: 

0 Device/file number specifies the tape unit and f i le to be used. The built-in tape 
unit i s  tape unit 1 and the auxiliary tape unit is  tape unit 2. If the value speci- 
fied is  less than four digits, tape unit 1 is  assumed and the value specified re- 
presents only the file number. If the value specified is  four digits, the right- 
most three digits specify the file number and the leftmost digit specifies the 
tape unit. For example: 

Device/File Number Meaning 

1 Tape 1, file 1 

02 Tape 1, file 2 

2002 Tape 2, file 2 

0 Workspace ID is  any combination of up to 11 alphabetic or numeric characters 
(with no blanks); however, the first character must be alphabetic. I f  more than 
11 characters are entered, only the first 11 are used. 

0 Password is  any combination of up to eight alphabetic or numeric characters 
(with no blanks). If more than eight characters are entered, only the first 
eight are used. 

O&t i s  a user-defined function or variable name. 

0 Parameters enclosed in brackets can be optional in certain cases. 

13 



The ICLEAIR Command 

14 

The )CLEAR command clears the active workspace and closes al l  open files. A 
cleared 'workspace has no valid name, contains no user-defined variables or functions, 
and no data. The workspace attributes are set to: 

IndeK origin - 1  
Worbspace identification - CLEAR WS 
Comparison tolerance - 1E-13 
Printing width - 64 
Printing precision - 5  
Random number seed - 16807 
Data1 printed - ALL 

When the command is successfully completed, CLEAR WS is displayed. 

Syntax 

There are no parameters. 

The ICONltINUE Command 

The )CONTINUE command writes the contents of the active workspace onto 
tape without changing the contents of the active workspace. This command is 
primarily used when the entire stored workspace is to be loaded back into the 
active workspace. Workspaces are stored and loaded back into the active work- 
space fister using the )CONTINUE command than using the )SAVE command. 
When the command is  successfully completed, CONTiNUED device/file number 
workspace ID is  displayed. 

Notes: 
1. A cl4ar workspace cannot be written on tape. 
2. A wbrkspace with suspended functions can only be written on tape using the 

)COhTINUE command (it cannot be written to tape using the )SAVE com- 
mand). 

3. )CORY and )PCOPY commands cannot specify stored workspaces that were 
written on tape using the )CONTINUE command. 

4. A stQred workspace written to tape using the )CONTINUE command cannot be 
loaded into a 5100 active workspace that i s  smaller than the original active 
worlqspace. 

5. I f  a Stored workspace that was written to tape using the )CONTINUE command 
is loaded into another 5100 with a larger active workspace, the workspace 
available (see the IJWA system variable in Chapter 5) i s  the same as when the 
worKspace was written to tape. 

interrupted and the file i s  set to  unused. 
6. If AfTN is pressed during a )CONTINUE operation, the system operation is  

I _-. __-- I I 



Syntax 

)CONTINUE [device/file number1 [workspace ID1 [:password1 

where: 

device/file number (optional) is the number of the tape unit and file on the 
tape where the contents of the active workspace are to be written. If no de- 
vice/file number is  specified, the device/file number from which the active 
workspace was loaded or specified by a previous IWSID command is  used. 

worksoace ID (optional) is the name of the workspace to be stored. This 
name must match the workspace ID of both the active workspace and the 
file to be used on the tape, unless the file is  marked unused. If the file is 
marked unused, the active workspace ID and tape file workspace ID are changed 
to this workspace ID. If no name is specified in the command, the name of 
the active workspace i s  used. 

:password (optional) i s  any combination of up to eight alphabetic or numeric 
characters (without blanks), preceded by a colon. This sequence of characters 
must be matched when the stored workspace is  to be read back into the active 
workspace. If no workspace ID or password is  entered, the password associa- 
ted with the active workspace (if any) i s  assigned to the workspace being 
stored. If just the workspace ID and no password is  entered, any password associated 
with the active workspace is not used. 

The )COPY Command 

The )COPY command copies all or specified global objects from a stored work- 
space to the active workspace. Only objects in stored workspaces that were 
written on tape with the )SAVE command can be copied. When the command 
is successfully completed, COPIED device/file number worksoace ID is  displayed. 

Notes: 
1. If the active workspace contains suspended functions, objects cannot be copied 

into it. 
2. If the ATTN key is  pressed during a )COPY operation, the system operation is  

interrupted and the amount of information copied into the active workspace 
is  unpredictable. 

Syntax 

)COPY device/file number workmace, ID :nassword [obiect name(s)] 

where: 

device/file number is the number of the tape unit and workspace file the ob- 
jects are copied from. 

workmace ID is  the name of the stored workspace on tape. 

15 



:pagsword i s  the security password assigned by a previous )WSID or )SAVE 
command. If no password was assigned previously, a password cannot be 
specified by this command. 

object name(s) (optional) is the name of the global object(s) to be copied from 
the designated stored workspace. If this parameter is omitted, a l l  global ob- 
jects in the designated stored workspace are copied. 

The )DROP Command 

The )C)ROP command marks a specified file unused. After the file has been 
marked unused, the data in the file can no longer be read from the tape. When 
the command i s  successfully completed, DROPPED device/file number file ID is  
displayed. 

Syntax 

)DeOP device/file number [ f K D ]  

where: 

dev,ice/file number i s  the number of the tape unit and the file on the tape. 

file, ID (optional) is the name of the stored workspace file to be marked unused. 
I f  the file number specified is a data file, any file ID specified is  ignored. 

The )ERASE Command 

The )@RASE command erases the named global objects from the active work- 
space.' There is no message displayed a t  the successful completion of the com- 
mand. 

Motes:, 
1. When a pendent function (see Chapter 7) i s  erased, the response SI DAMAGE 

2. I f  dhe object being erased is  a shared variable (see Chapter 8), the shared vari- 

3. Even after the object i s  erased, the name remains in the symbol table (the 

is  iSsued. 

able will be retracted. 

part of the active workspace that contains a l l  the symbols used). 

Syntax 1 

)ERASE obiect name(s1 

where: 

obilect name(s1 are global names separated by blanks. 

16 



(I 

The )FNS Command 

The )FNS command displays the names of all global user-defined functions in the 
active workspace. The functions are listed alphabetically. If the character para- 
meter i s  specified, the names are displayed beginning with the specified character 
or character sequence. 

Note: You can interrupt the )FNS command by pressing the ATTN key. 

Syntax 

FNS [character(s)] 

where: 

characterk) (optional) is  any sequence of alphabetic and numeric characters 
that starts with an alphabetic character and contains no blanks. This sequence 
of characters determines the starting point for an alphabetic listing. 

The )LIB Command 

The )LIB command displays the file headers of the files on tape (library). The 
file header contains the following information: 

0 File number. The files on tape are numbered sequentially, starting with 1. 

0 File ID. The file ID can be from 1 to 17 characters. I f  the f i le  contains a 
stored workspace, the file ID is  the same as the stored workspace ID. 

0 File type. The file type is a 2-digit code; the following chart gives the mean- 
ing of each code: 

File Type 

00 

01 

02 

03 

04 

05 

06 

07 

Description 

Unused file 

Interchange data file ,(see Chapter 8 )  

General interchange data file (see Chapter 8) 

BASIC source file 

BASIC workspace file 

BASIC keys file 

APL continued file (see )CONTINUE command in this 
chapter) 

APL saved file (see )SAVE command in this chapter) 

17 i 



File Type Description 

0% 

14 

17 Diagnostic file 

19 IMF file 

72 Storage dump file 

APL internal data format file (see Chapter 8) 

Patch and tape recovery file 

Size of the file. The files are formatted in increments of 1024-byte blocks of 
storage. 

0 Number of unused contiguous 1024-byte blocks of storage in the file. 

Nu ber of defective records (512-byte blocks) in the file; an asterisk rl displayed i f  there are more than nine defective records. 

Note: This value can indicate when you should relocate a file to avoid I 
data due to defective areas on the tape. 

Following is an example of a file header: 

11 0 6 F' 1: L..E:rj 0 '7 (I 1. 0 > 0 0 :1 0 

*) i s  

ISS of 

-File ID 

File number 

The )LIB command operation can be interrupted by pressing the ATTN key. 

Syntax 

)LIB [device/file number I 
where: 

devitie/file number (optional) is the number of the tape unit and the starting 
file Aumber. All file headers from that f i le to the end of the tape are displayed. 
If no entry is made, the display begins with the first file following the f i le  you 
are Qurrently positioned a t  on tape unit 1. For tape unit 2, the entry 2000 will 
display the file headers beginning with the first file following the f i le  you are 
currently positioned a t  on tape unit 2. 



Page of SA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

The )LOAD Command 

The )LOAD command loads the contents of a stored workspace from the tape 
into the active workspace, completely replacing the contents that were in the 
active workspace. When the command is successfully completed, LOADED 
device/file number workspace ID is  displayed. 

Note: If the ATTN key is  pressed during a load operation, the system operation 
is  interrupted and the active workspace is  cleared. 

Syntax 

)LOAD device/file number workspace ID :Dassword 

where: 

device/file number is  the number of the tape unit and the number of the file 
on the tape. 

workspace ID is the name of the stored workspace. 

:password is  the security password assigned to the stored workspace by a pre- 
vious )WSID, )CONTINUE, or )SAVE command. I f  no password was pre- 
viously assigned, a password cannot be specified. I f  a password was assigned 
to the stored workspace but i s  not specified, or if it is incorrectly specified 
for this command, the error message WS LOCKED is displayed. 

The )MARK Command 

The )MARK command formats the tape so that the active workspace or data 
can be saved on it. Each )MARK command formats a certain number of files 
to a specified size. Additional files of different sizes can be formatted by using 
additional )MARK commands. 

When the operation is  successfully completed, MARKED 
number of the last file marked size of the last file mar ked is displayed. 

Notes: 
1. The ATTN key is  not operative during the )MARK command operation. 
2. If the message ALREADY MARKED is displayed after a )MARK command 

was issued, the specified file already exists on the tape. To re-mark the 
specified file, enter GO. If the file is not to be re-marked, press EXECUTE 
to continue. 

CAUTION 
If an existing file on tape is  re-marked, the original information in the re-marked 
file and the existing files following the re-marked file cannot be used again. 

19 



Syntax 

)MARIK size number of files to mark starting file number [device] 

where: 

- size i s  an integer specifying the size of each file in 1024-byte (1 K) blocks of 
storage. 

The folbwing formulas can be used to determine what size a file should be 
marked. The formula for a workspace f i l e  (the contents of the active workspace 
written to tape with a )SAVE or )CONTINUE command) is  
MAXSl ZIE= 3+ r (CLEAR-ACTIVE)+1024, where: 

I 

. I  

0 MAX$IZE is the maximum amount of tape storage (number of 1024-byte 
blocks) that would be required to write the contents of the active workspace 
to tape. 

0 CLEAR is  the value of DWA (see Chapter 5) in a clear workspace. 

ACTIVE is the value of C]WA just before the contents of the active workspace 
are written to tape. 

The formula for a data file (data written to tape using an APL shared variable 
-see Ch’apter 8) when al l  of the data i s  contained in the active workspace is 
MAXSIZE= r (WITHOUT-WITH) + 1024, where: 

0 MAXSIZE is  the maximum amount of tape storage (number of 1024-byte 
blocks) required to write the data to tape. 

0 WITH is the value of OWA (see Chapter 5) with the data in the active work- 
space, ‘ 

0 WITHOUT i s  the value of OWA before any data to be written to tape was 
stored in the active workspace. 

There is no formula for determining what size to mark a data file when the data 
is writtdn to tape as it is entered from the keyboard. The amount of tape storage 
required depends upon how much data is entered from the keyboard and what 
type of data is used. For information on how many bytes of storage are required 
by the iarious types of data, see Storage Considerations in Chapter 9. 

q e r  of files to ma rk is an integer specifying the number of files of the 
specified size to format. 

starting file number is  an integer specifying the file number where formatting 
is to start. 

deviqe (optional) specifies the tape unit that contains the tape to be formatted. 
An entry of 1 specifies tape unit 1 and 2 specifies tape unit 2. If no entry is  
made, tape unit 1 is assumed. 

I 20 



To format a tape for four 12K files, two 16K files, and three 10K files, the 
following commands are required: 

)MARK 

)MARK 

)MARK 

12 

16 

10 

The )MODE Command 

5 --Starting fi le number 

7 /  

! I  

The )MODE command is used to load the 5100 communications program from a 
tape mounted in tape drive 1 and to place the system in communications mode 
(see IBM 5100 Communications Reference Wnual, SA21-9215). When the system 
is in communications mode, APL is no longer available. 

Syntax 

)MODE COM 

The )OUTSEL Command 

The )OUTSEL command specifies which data on the display will go to the printer. 

Syntax 

IOUTSEL [o~t ion]  

where: 

option is one of the following: 

0 When ALL is specified, all subsequent information that is displayed will be 
printed. 

8 When OUT is specified, only the output is sent to the printer; input is dis- 
played, but it does not go to the printer. 

0 When OFF is specified, none of the information displayed i s  printed, unless 
it is assigned to an APL shared variable used by the printer (see Chapter 7). 

I f  no parameter is specified, ALL is assumed. After a )LOAD or )CLEAR com- 
mand or when the machine is first turned on, the ALL option is active. 

21 



Page of SA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

The )PATCH Command 

The following is a l is t  of the uses of this command. This command is  used in con- 
junction with specially devised programs on a tape cartridge supplied with the 5100. 
The uses are described in detail, following the l is t :  

Copy IMFs (internal machine fix), the Copy IMF program, and the Load IMF 
program onto another tape cartridge. 

0 Load IWFs for the system program into the active workspace, then make the APL 
language available again. 

Display the EC version of each interpreter module. 

Recover data on tape when tape read errors (ERROR 007 ddd-see Chapter 1 1 ) 
occur during use of one of the following files: 

1. Interchange (file type 01) 

2. 

3. 

4. 

Copy the contents of one tape cartridge to another tape cartridge. 

The supplied tape cartridge contains the following files: 

0 File 1. 

General interchange (file type 02) 

BASIC source (file type 03) 

APL internal data format (file type 08) 

The programs that copy or load IMFs and the program that displays 
interpreter module EC versions. 

File 2. The IMFs for the 5100. 

File 3. The Tape Recovery program. 

0 File 4. The Tape Copy program. 

0 File 5. APL aids. This i s  a saved workspace file (WSID=APLAIDS) that con- 
tains the following four functions: 

1. 

2. 

AATRACE-Traces all the statements in a specified user-defined function. 

AATRACEALL-Traces the first executable statement of each user- 
defined function currently in the active workspace. 

3. AATRACEOFF-Turns off a l l  tracing. 

4. AASHARED-Displays the shared variable names currently in the active 
workspace. 

The AATRACE function requires as i t s  right argument the name of the user- 
defined function to be traced enclosed in single quotes. The other functions 
do not require any arguments. 

‘ i  

22 



Page of SA21-9213-0 
Issued 15 September 1975 
By TN L: SN21-0247 

This workspace file also contains the following five variables that describe the func- 
tions in the workspace: 

1. DESCRIBE 

2. DESCRIBEAATRACE 

3. DESCRIBEADTRACEALL 

4. DESCRIBEAATRACEOFF 

* 5. DESCRIBEAASHARED 

These functions and variables can be copied into the active workspace using the 
)COPY command. For example, t o  copy the AATRACE function into the active 
wor kspace: 

Note: The )PATCH command is not required for using the functions in f i le  5. 

When the )PATCH command is  used with the tape cartridge inserted in tape drive 1, 
the following options are displayed: 

ENTER OPTION NO. 
1. COPY IMF TAPE 
2. LOAD IMF’S 
3. DlSP EC VER. 

5. ENDOFJOB 
6. TAPE RECOVERY 
7. TAPE COPY PGM 

4. KEY-ENTER IMF 

Flashing Cursor - 

22.1 

---I- 1 



22.2 



To select an option, enter an option number (1 through 7). I f  an option number 
other than those displayed is  entered, the options will be displayed again. Once 
the option number has been entered, additional prompting messages might be dis- 
played for the selected option. 

Option 1. Copy IMF Tape 

The Copy IMF Tape option allows the following fi les to be copied from the tape: 

File 1, which contains the Copy IMF program, Load IMF program, and Display 
EC Version program. 

File 2, which contains the IMFs for the 5100. The IMFs can be copied from the 
file as follows: 

1. Copy al l  IMFs that apply to APL. 

2. 

3. 

Copy al l  IMFs for APL that apply to the 5100 being used. 

Copy specific IMFs by problem number. 

4. Copy specified IMFs by problem numbers that apply to the 5100 being 
used. (If a problem number is specified that does not apply to the 5100 
being used, it is not copied.) 

Nore: The tape onto which files 1 and 2 are to be copied must be marked before 
the copy operation is  done. Use the )LIB command to determine what size the 
files should be marked. 

The Copy IMF Tape program will issue prompting messages and wait for the user 
to respond to each message. 

Copying IMFs allows tape cartridges containing only the IMFs that apply to your 
51 00 to be created. 

Option 2. Load IMFs 

The Load IMFs option allows IMFs to be loaded into the system program and then 
makes the APL language available again. IMFs can be loaded as follows: 

Load all IMFs that apply to the 5100 being used. 

Load specified IMFs by problem numbers that apply to the 5100 being used. 
(If a problem number is specified that does not apply to the 5100 being used, it 
is not loaded.) 

The Load IMFs program will issue prompting messages and wait for the user to respond 
to each message. 

1 Nore: The IMFs occupy storage (space) in the active workspace and can also reduce 
the performance of your 5100 significantly; therefore, IMFs should not be applied 
to your 5100 if the problem does not affect your operation or if the problem can be 
circumvented by an APL statement or command. The IMFs will remain in the active 
workspace until the power is turned off or RESTART is pressed. 

i 
i 

23 



Option 3. Oitp EC Ver. 

The Disp EC Ver. option is primarily for your service representative's use. This 
option will display a 4-digit code for each interpreter module. The first two digits 
are the module identification and the next two digits are the EC version. 

The EC Version program will issue prompting messages and wait for the user to 
respond to each message. 

Option 4. Key-Enter IMF 

This option allows the service representative to enter IMFs from the keyboard. The 
IMF is1 then written to file 2 on the tape containing the IMFs. The IMF can then be 
loaded or copied from the tape. 

Option 5. End of Job 

This option causes the APL language to be available again. 

Option 6. Tape Recovery 

The Tape Recovery option allows the user to recover data from a file or files on 
which tape read errors (ERROR 007 ddd) are occurring. The Tape Recovery Pro- 
gram dan be used on the following files: 

0 Interchange (file type 01) 

0 General interchange (file type 02) 

0 BASIC source (file type 03) 

0 APL internal data format (f i le type 08) 

The Tape Recovery program will issue prompting messages and wait for the user to 
respond to each message. 

The Tfpe Recovery program will recover as much data as possible in the file; some of 
the data in the record where the tape read errors occur is  not recoverable; some of 
the data that precedes and follows that record may also not be recoverable. 

24 



Option 7. Tape Copy Program 

The Tape Copy option allows you to copy the contents (up to the end of  marked 
tape) of one cartridge to another cartridge. Tape copy can utilize the auxiliary tape 
drive, if available. Tape copy also marks the tape being copied to. 

Tape copy issues prompts and waits for you to  respond to  each prompt. 

Syntax 

)PATCH 

There are no parameters. 

The )PCOPY Command 

The )PCOPY command copies al l  or specified global objects from a stored work- 
space into the active workspace. It is the same as the )COPY command, except 
that if the object name already exists in the active workspace, it i s  not copied from 
a stored workspace. Therefore, the object in the active workspace is protected 
from being overlaid and destroyed. Only objects in stored workspaces that were 
written on tape with the )SAVE command can be copied. 

When the command is  successfully completed, COP1 ED device/file number 
workspace ID is displayed. 

Notes: 
I f  the active workspace contains suspended functions, objects cannot be copied 
into it. 
If the ATTN key is pressed during a )PCOPY operation, the system operation is  
interrupted and the amount of information copied into the active workspace is 
unpredictable. 
I f  the specified object name already exists in the active workspace, the message 
NOT C0PIED:obiect name is  also displayed. 

25 



Syntax 

)PCOPY device/file number workspace ID :password [object name(s)] 

where: 

device/file number is  the number of the tape unit and the stored workspace file. 

workspace ID is  the name of the stored workspace on the tape. 

:password is the security password assigned by the previous IWSID or )SAVE 
command. I f  no password was assigned, a password cannot be specified by 
this command. 

obiect name(s) (optional) is  the name of the global object(s1 to be copied from 
the designated stored workspace. If omitted, all global objects in the designated 
stored workspace are copied, except those already in the active workspace (if 
any). 

The )REWIND Command 

The IFEWIND command rewinds the specified tape. There is  no message displayed 
a t  the successful completion of this command. 

Syntax 

IREWIND [device number] 

where: 

device number (optional) is the tape (on drive 1 or 2) to be rewound. I f  the para- 
meter i s  omitted, tape 1 is  rewound. 

The )SAVE Command 

The )SAVE command writes the contents of the active workspace onto tape with- 
out changing the contents of the active workspace. This command is used when 
objects will be copied from the stored workspace back into the active workspace. 
When this command is successfully completed, SAVED device/file number 
workspace ID is displayed. 

Notes: 
A clear workspace or a workspace with suspended function cannot be written on 
tape using the )SAVE command; however, a workspace with suspended functions 
can be written to tape using the )CONTINUE command. 
The )COPY and )PCOPY commands can specify stored workspaces that were 
written on tape only if the )SAVE command was used. 
Depending on the amount of data in the stored workspace, a stored workspace 
that was written to tape using the )SAVE command can be loaded into another 
51 00 with a smaller active workspace. 
If ATTN i s  pressed during a )SAVE operation, the system operation i s  interrupted 
and the f i le  is set to unused. 

26 



c. 

Syntax 

)SAVE [device/file number] [workspace ID] [ gassword] 

where: 

device/file number (optional) i s  the number of the tape unit and file on the 
tape where the contents of the active workspace are to be written. If no 
device/file number i s  specified, the device/file number from which the active 
workspace was loaded or which was specified by a previous )WSID command 
is used. 

workspace ID (optional) is the name of the workspace to be stored. This 
name must match the workspace ID of both the active workspace and the file 
to be used on the tape unless the file is  marked unused. If the file i s  marked 
unused, the active workspace and tape file workspace ID will be changed to  
this workspace ID. If no name is specified in the command, the name of the 
active workspace is  used. 

:password (optional) is  any combination of up to eight alphabetic or numeric 
characters (without blanks), preceded by a colon. This sequence of characters 
must be matched when the stored workspace is  to be read back into the active 
workspace. If no workspace ID or password i s  entered, the password associated 
with the active workspace (if any) is  assigned to the workspace being stored. 
If just the workspace ID and no password is  entered, any password associated 
with the active workspace is  not used. 

The )SI Command 

The )SI command displays the names of the suspended and pendent user-defined 
functions (see State lndicator in Chapter 7 ) .  The suspended functions are indicated 
by an *, with the most recently suspended function listed first, followed by the 
next most recently suspended function, and so on. 

Syntax 

There are no parameters. 

The )SIV Command 

The )SIV command displays the names of the suspended and pendent user- 
defined functions (see State lndicator in Chapter 7 )  and the names local to 
each function. The suspended functions are indicated by an *, with the most 
recently suspended function listed first, followed by the next most recently 
suspended function, and so on. 

I 

I 

27 

-_-. 
I 



Page of SA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

Syntax 

There are no parameters. 

The )SYMBOLS Command 

The )SYMBOLS command is  used to change or display the number of symbols 
(variable names, function names, and labels) allowed in the active workspace. The 
number of symbols allowed can only be changed immediately after a )CLEAR com- 
mand has been issued. In a clear workspace, the number of symbols allowed is 
initially set to 125 by the 5100. When the command is  used to display the number 
of symbols allowed, IS the number of symbols allowed is  displayed. When the com- 
mand is  used to  change the number of symbols allowed, WAS the former number of 
symbols a(1owed is  displayed. 

Note: When a stored workspace is loaded into the active workspace, the number 
of symbols allowed in the active workspace will be the same as when the stored 
workspace was written to tape. 

Syntax 

)SYMBOLS [n] 

where: 

n(optiona1) is  an integer equal to  or greater than 26 that specifies the number of 
symbol$ allowed in the active workspace; however, the number of symbols specified 
cannot exceed the active workspace size (see Storage Considerations in Chapter 9.) 

Note: The number of symbols allowed is  assigned in blocks of 21; therefore the 
actual number allowed can be larger than the number specified. 

The WARS Command 

The )VARS command displays the names of al l  global variables in the active work- 
space. The variables are displayed alphabetically. If the character parameter is 
included, the names are displayed beginning with the specified character sequence. 

Syntax 

IVARS [~haracter(s)] 

where: 

character(s) (optional) is any sequence of alphabetic and numeric characters that 
starts with an alphabetic character and contains no blanks. This entry can be 
used to  define the starting point for an alphabetic listing. 



The IWSID Command 

The IWSID (workspace ID) command is used to change or display the tape device/ 
file number and workspace ID for the file where the active workspace contents will 
be written if either a )SAVE or a )CONTINUE command is  used. The )WSID com- 
mand is  also used to change or assign the security password. When the )WSID com- 
mand is  issued without any parameters, device/file number workspace ID is dis- 
played. When the IWSID command is  issued with parameters, WAS device/file number 
workspace ID is displayed. 

Note: The IWSID command only affects the active workspace; it cannot be used 
to change any information on tape. 

Syntax 

IWSID [device/file number] [workspace ID] [:password] 

where: 

device/file number (optional) is  an integer that specifies the device/file number 
where the active workspace will be stored when either the )SAVE or )CONTINUE 
command i s  issued. 

Note: If this parameter is  omitted, the device/file number is  cleared; a )SAVE or 
)CONTINUE command will not work unless a device/file number is specified in 
that )SAVE or )CONTINUE command. 

workmace ID (optional) will be the new name for the active workspace. This 
parameter must be entered if any other parameter is used. 

:oassword(optional) is any combination of up to eight alphabetic or numeric 
characters (without blanks), preceded by a colon. These characters will become 
the security password for the tape file when the active workspace is  written on 
tape. 

29 



Chapter 3. Data 

VARIABLES 

You can store data in the 5100 by assigning it to a variable name. These stored 
items &re called variables. Whenever the variable name is used, APL supplies the 
data associated with that name. A variable name can be up to 77 characters in 
length with no blanks; the first character must be alphabetic and the remaining 
characters can be any combination of alphabetic and numeric characters. Variable 
names longer than 77 characters can be used, but only the first 77 characters are 
significant to APL. The + (assignment arrow) is  used to assign data to a variable: 

To display the value of a variable, enter just the variable name: 

I.., 1, N G 'I' H 

w 1: D 7' ki 

AREA 

b 

8 

1.1.8 

DATA R QPR ESENTATION 

Numbers 

The decimal digits 0 through 9 and the decimal point are used in the usual way. The 
character -, called the negative sign, is  used to denote negative numbers. It appears 
as the leftmost character in the representation of any number whose value is less 
than zero: 

- 
The negative sign, , is distinct from - (the symbol used to denote subtraction) and 
can be used only as part of the numeric constant. 

30 

I i 



Scaled Representation (Scientific Notation) 

You can represent numbers by stating a value in some convenient range, then mul- 
tiplying it by the appropriate power of ten. This type of notation is  called scaled 
representation in APL. The form of a scaled number is a number (multiplier) followed 
by E and then an integer (the scale) representing the appropriate power of 10. For 
example: 

Number 

66700 

.00284 

Scaled Form 

6.67E4 

2.84 E 3 

t- Multiplier - Scale 

The E (E can be read times ten to the) in the middle indicates that this is scaled form; 
the digits to the right of the E indicate the number of places that the decimal point 
must be shifted. There can be no spaces between the E and the numbers on either 
side of it. 

Character Constants 

Zero or more characters enclosed in single quotes, including overstruck characters 
(see Appendix B) and blank characters (spaces), i s  a character constant. The quotes 
indicate that the characters keyed do not represent numbers, variable names, or 
functions, but represent only themselves. When character constants are displayed, 
the enclosing quotes are not shown: 

When a quote is required within the character constant, a pair of quotes must be 
entered to produce the single quote in the character constant. For example: 

' U O N '  "I' G I V E :  Tlili': ANSWEli AWAY ' 
DON'T cxvti: THE ANSWER A W A Y  

31 



Logical Data 

Logical (Boolean) data consists of only ones and zeros. The relational functions 
( >  2 < <+) generate logical data as their result; the result i s  1 if the condition was 
true ahd 0 if the condition was false. The output can then be used as arguments 
to the logical functions ( A Z d - 1  to check for certain conditions being true or false. 

SCALAR 

A single item, whether a single number or single character constant, is  called a scalar. 
It has no coordinates; that is, it can be thought of as a geometric point. The follow- 
ing are examples of scalars: 

Scalars can be used directly in calculations or can be assigned to a variable name. 
The variable name for the scalar can then be used in the calculations: 

ARRAYS 

Array is the general term for a collection of data, and includes scalars (single data 
items), vectors (strings of data), matrices (tables of data), and arrays of higher 
dimensions (multiple tables). All primitive (built-in) functions are designed to handle 
arrays. Some functions are designed specifically to handle arrays rather than scalars. 
Indexing, for example, can select certain elements from an array for processing. 

One of the simplest kinds of arrays, the vector, has only one dimension; it can be 
thought of as a collection of elements arranged along a horizontal line. The num- 
bers that indicate the positions of elements in an array are called indices. An element 
can be selected from a vector by a single index, since a vector has only one dimen- 
sion. The following example shows assigning a numeric and a character vector to two 
variable names, N and C; the names are then entered to display the values they re- 
present: 

10 i 

32 



Generating Arrays 

c: 

The most common way to generate an array is to specify the following: the shape 
the array is  to have-that is, the length of each coordinate; the values of the ele- 
ments of the new array. The APL function that forms an array is  the reshape 
function. The symbol for the reshape function is  p. The format of the function 
used to generate an array is  XpY, where X is the shape of the array and Y represents 
the values for the elements of the array. For the left argument (X), you enter a 
number for each coordinate to be generated; this number indicates the length of 
the coordinate. Each number in the le f t  argument must be separated by a t  least one 
blank. The values of the elements of the new array are whatever you enter as the 
right argument (Y). The instruction 7 p A  means that the array to be generated has 
one dimension ( i s  a vector) seven elements in length, and that seven values are to 
be supplied from whatever values are found stored under the name A. It does not 
matter how many elements A has, as long as it has a t  least one element. If A has 
fewer than seven elements, i t s  elements are repeated as often as needed to provide 
seven entries in the new vector. I f  A has more than seven elements, the first seven 
are used. The following examples show generation of some vectors: 

'7 p 1. 2 3 
:I. 2 3 d 2 3 :I. 

2 p :I. 2 3 
I. 2 3 :I. 2 3 

,.! (" 1. I 3 
1. I ;3 1. , 3 :I. , 3 1. I 3 :I. 1 3 

t:. 

An array with two coordinates (rows and columns) i s  called a matrix. 

Columns - 
" )  1 2 3  

5 6 7 9 > Rows 

9 10 11 12 I 
To generate a matrix, you specify X (left argument) as two numbers, which are the 
lengths of the two coordinates. The first number in X is  the length of the first co- 
ordinate, or number of rows, and the second number is the length of the second 
coordinate, or number of columns. The following example shows how a matrix is 
generated: 

33 



Note that the values in the right argument are arranged in row order in the arrays. I f  
the right argument has more than one row, the elements are taken from the right 
argument in row order. 

The rank of an array is the number of coordinates it has, or the number of indices 
required to  locate any element within that array. Vectors have a rank of 1, mat- 
rices have a rank of 2, and N-rank arrays have a rank from 3 to 63 (where N is  equal 
to the rank). N-rank arrays, like matrices, are generated by providing as the le f t  
argument a number indicating the length for each coordinate (planes, rows, and 
columns). The following examples show how to generate 3-rank arrays. Note that 
the elements taken from the right argument are arranged in row order: 

\ 2-plane, %ow, 4-column array 

MN(I13 
BRST 
ISVWX 

A H 
I:: xs 

I+ 3 2 ( 'A 

4-plane, 3-row, 2-column array 1: F' 

M N 
C) P 
Q R  

Finding the Shape of An Array 

Once you have generated an array, you can find i t s  shape (number of elements in 
each coordinate) by specifying p (shape function) with only a right argument which 
is  the name of the array. If A is a vector with six elements and you enter pA, the re- 
sult i s  one number because A is  a one-dimensional array. The number is  6, the 
length (number of elements) of A's one dimension. The result of the shape function 
is  always a vector: 

34 



The shape of a matrix or N-rank array is  found the same way: 

In some cases, it might be necessary to know just the rank, the number of coordi- 
nates (or indices) of an array. The rank can be found by entering pp (shape of the 
shape) and a right argument, which is  the name of the array: 

35 



The following table shows what the shapes and ranks are for the various types of 
arrays: 

Data 
Type Shape p X  Rank p p X  

Scalar No dimension (indicated by a blank line). 0 

Vector Number of elements. 1 

Matrix Number of rows and the number of columns. 2 

N-rank 
arrays Each number is  the length of a coordinate. N 

Empty Arrays 

Although most arrays have one or more elements, arrays with no elements also 
exist. An array with no elements is called an empty array. Empty arrays are useful 
when creating l is ts  (see Catenation in this chapter) or when branching in a user- 
defined function (see Chapter 6). 

Following are some ways to generate empty arrays: 

Assign I 0 to a variable name to generate an empty vector: 

%: v 14: c: 'r' C) R 4.. \ 0 
I:: \I E: if 'r c1 Ii An empty array is  indicated 

4 
by a blank display. 

6) EZ v E: (1: 'I' IS I? 
0 
\ The shape of the empty vector 

i s  zero (zero elements). 

0 Use a zero length coordinate when generating a multidimensional array: 

This matrix has three rows 
E M  AT R :E X :I. + * 3  0 c) 1 0- and no (0) columns. 
E.. El 4 'I' li 1: x :I. 

4 A blank output display 

3 0 
~ ) m m r u x i .  

0 A function might generate an empty vector as i t s  result; for example, finding the 
shape of a scalar: 

(3 ' A ' 
4 A blank output display. 

36 



CATENATION 

(I 

You can join together two arrays to make a single array by using the catenation 
function. The symbol for this function is  the comma. When catenating vectors, 
or scalars and vectors, the variables are joined in the order in which they are speci- 
fied, as the following examples show: 

When catenating two matrices or N-rank arrays, the function can take the form 
A,[I]B, where I defines the coordinate that will be expanded when A and B are joined. 
I f  the coordinate i s  not specified, the last coordinate is used. When A and B are 
matrices and [I] is [ 11, the first coordinate (number of rows) is expanded; when [ I ]  
is  [2], the last coordinate (number of columns) is expanded. The following examples 
show how to catenate matrices: 

Graphic Representation 

1.0 2 0  30 11. 22 33 A B 
1.) 0 50 4) 0 414. 55 (5h 

A ,  c2:rs - 
10 20 30 
40 50 60 

A I 1: j. 3 B 
1.0 20 3 0  
I+ 0 5 0 6 0 4 

1. :I. 2 2 3 3  B 
1+4 55 66 44 55 66 

31 



:I. 0 2 0 3 0 :I. :I. 2 2 3 3 1.E 4. 4 

1.E 0 5 0 4 I1 9 :.3 6 4) '7 '7 t3 t3 

A , C : L 3  b 
h 

11 22 33 44 
40 50 60 55 66 77 88 
10 20 30 

B1112233411 55 66 77 88 

A scalar can also be catenated to an array. In the following example, a scalar is 
catenated to a matrix. Notice that the scalar is repeated to complete the coordinate: 

A+:? 3 P 1. 0 2 0 3 0 4 . 0  5 0 6 [I 
A 

10 20 30 
'4.0 5 0  6 0  

1 0  20 30 99 
40 50 60 9{? 

10 2 0  30 
1.E 0 5 0 6 0 
YP 9 Y  99 

A ,  C239Y 

A t C l . 3 9 9  

A vector can also be catenated to another array, provided the length of the vector 
matches the length of the coordinate not specified. See the following examples: 

A,99 88 
J.0 20 30 9'? 
'+0 5 0  60 08 

A , c i : l 9 9  88 

A,C:iI 99 88 
L E N G T H  E R R O R  - 

A 



The catenate function is  useful when creating l is ts  of information. Sometimes it is  
necessary to use an empty array to start a list. For example, suppose you want to 
create a matrix named PHONE where each row will represent a 7-digit telephone 
number. First you want to establish the matrix, then add the telephone numbers 
at  a later time. The following instruction will establish an empty array named 
PHONE with no (0) rows and seven columns: 

1' t1(:) N I: 4- 0 "7 6' i I! 
I' li 13 N Ei: Blank display indicates an 

empty array. 
.+ 

p Pt4(3N1, 
0 '7 

Now, the telephone numbers can be added as follows: 

INDEXING 

You may not want to refer to the whole array but just to  certain elements. Referring 
to only certain elements i s  called indexing. Index numbers must be integers; they 
are enclosed in brackets and written after the name of the variable to  which they 
apply. Assume that A is  assigned a vector as follows: A t  1 .I 1.2 1.3 1.4 1.5 1.6 1.7. 
The result of entering A i s  the whole vector, and the result of entering A[21 is  1.2 
(assuming the index origin i s  1; see Chapter 5 for more information on the index 
origin). 

I 

Here are some more examples of indexing: 

At.. 1. J. J.2 :I. 3 1 1.1. 1.5 1. b 17 
A C 3 1  

h I:: 5 3 7 1. :I 

r3t-3 :I. 4 b 
A C B 1  

3. ;3 

1.5 13 1 '7 1 :I. 
A Blank Character 

I 

39 



If you use an index that refers to an element that does not exist in the array, the 
instruction cannot be executed and INDEX ERROR results: 

A 
1.1. 1 2  I:# 1.4 1.5 1. h 17 

A & # ]  

A C 8 3  
INDEX ERROR 

A 

You cannot index or do anything else with an array until after the array has been 
specified. For example, suppose that no value has been assigned to the name 2; 
then an attempt to store values in certain elements within 2 would result in an 
error, since those elements do not exist: 

z 1: 3 '4.3 4-1 El 46 

z 1:: 3 '4.3 f- 1.8 4.6 
VALlJE ERROR 

A 

Indices (whatever is inside the brackets) can be expressions, provided that when 
those expressions are finally evaluated, the results are values that represent valid 
indices for the array: 

I3 
ABC DE F' (3 H I: ,JK I.. M NO PQ R S 7'1.1 V W X Y Z 

xi-1 2 3 4 s 
B C X X 2 3 

X 

BI:: l + X X 3 3  

b D FiH ,J 

1 2 3 4 3  

LSG J M  P 

The array from which elements are selected does not have to be a variable. For 
example, a vector can be indexed as follows: 

2 3 5 7 9 1.1 13 1s 17 1.9c.7 2 4 2 3  

' ABCDEFOHX JI{LMNOPQR!S'TUVWXYZ ' 1122 15 15 11. 2'7 1. b x :I 
1.3 3 7 3 

LAOK PA 

40 



Indexing a matrix or N-rank array requires an index number for each coordinate. 
The index numbers for each coordinate are separated by semicolons. Suppose M is  
a 3 by 4 matrix of consecutive integers: 

I f  you ask to see the values of M, they are displayed in the usual matrix form: 

M 
1 . 2 3 4  
5 b 7 8 
9 1.0 x i  12 

If ypu want to refer to the element in row 2, column 3, you would enter: 

I f  you want to refer to the third and fourth elements in that row, you would enter: 

c M C 2 ; 3  11.1 
‘7 8 

Similarly, to refer to the elements in column 4, rows 1, 2, and 1, you would enter: 

M C 1  2 1;bl 
4 8 Lc 

You can use the same procedure to select a matrix within a matrix. If you want the 
matrix of those elements in rows 2 and 3 and columns 1, 2, and 1 of M, you would 
enter: 

MC2 3;j .  2 13 
5 6 5  
9 1.0 9 

I f  you do not specify the index number for one or more 0.  the coordinates of the 
array that you are indexing, APL assumes that you want the entire coordinate(s). 
For instance, to get a l l  of row 2, you would enter: 

M c: 2 ; :I 
5 6 ‘ 7 8  , (,‘I 

1 
c 

41 



Or to get al l  of columns 4 and 1, you would enter: 

42 

Note: You s t i l l  have to enter the semicolon to make clear which coordinate is  which. 
The number of semicolons required i s  the rank of the array minus one. I f  the correct 
number of semicolons is not specified, RANK ERROR results: 

You can change elements within an array by assigning new values for the indexed 
elements. (The rest of the array remains unchanged.) 



Chapter 4. Primitive (Built-In) Functions 

Argument A 

Scalar 

APL functions are of two types: user-defined and those that are built into the APL 
language. User-defined functions are discussed in Chapter 6. Built-in functions, 
called primitive functions, are denoted by a symbol and operate on the data you 
supply to them. 

Argument B 

Scalar 

The value or values you supply are called arguments. Primitive functions that use 
two arguments, such as A f B, are said to be dyadic; functions that use one argument 
are said to be monadic, such as + 6, which yields the reciprocal of 6. Arguments can 
be single data items (scalars), strings of data (vectors), tables of data (matrices), or 
multiple tables of data (N-rank arrays). Arguments can also be expressions or user- 
defined functions that result in a scalar, vector, matrix, or N-rank array. 

Array of 
any shape 

One-element 
array 

There are two types of primitive functions: scalar functions and mixed functions. 
There are also operators that operate on the primitive functions. Examples of the 
functions and operators are provided throughout this chapter for easy reference and 
are set up as they would appear on the display. 

Scalar or one- 
element array 

One-element array 
with the rank 
different from the 
rank of A 

PRIMITIVE SCALAR FUNCTIONS 

Scalar functions operate on scalar arguments and arrays. They are extended to 
arrays element by element. The shape and rank (see Chapter 3) of the result de- 
pend on the shape and rank of the arguments. For dyadic scalar functions, the re- 
lation between the types of arguments and the shape of the result i s  shown in the 
following table. Each scalar function is described following the table: 

Array I Array with the same 
shape as A 

Scalar or one- 
element array shape 

Array of any 

Result 

Scalar 

Array with the same 
shape as the 
arguments 

Array with the 
same shape as 
argument B 

Array with the same 
shape as argument A 

One-element array 
with the shape of 
the array with the 
greater rank 

43 



44 

Ll The + Function: Conjugate, Plus 

Monadic (One-Argument) Form: Conjugate +B 

The conjugate function does not change the argument. The argument can be a 
numeric scalar, vector, or other array, and the shape of the result is the same as that 
of the argument: 

I f  6 is an array, the function is extended to each of the elements of €3. The shape of 
the resullt i s  the shape of 6: 

Bt.. 2 3 p " ' 3  "'2 ... 1. 0 1. 2 
H 

I.. ..., 3 2 .- 3. 
0 1. 2 

.I - 2  *- 1 
0 :I. 2 

+ B - .. 

Dyadic (Two-Argument) Form: Plus A+B 

The plus function results in the sum of the two arguments. The arguments can be 
numeric scalars, vectors, or other arrays. Arguments must be the same shape, unless 
one of the arguments is  a scalar or single-element array. If the arguments have the 
same shape, the result has the same shape as the arguments: 

3 +. 3 

3 + 2 I '7 3 

2 4 6.t " 3  * 13 

3 , 1. :I. ." :I. -3+5 , j, 2 0 4 

& 

rs , ' 7 3  

*.' 1. # 2 

1 a , 2 3 .- :I. 1. 



I f  one argument is a scalar or single-element array, the shape of the result is the same 
as that of the other input argument. The single element is applied to every element 
of the mulrielement array: 

I 

0 The - Function: Negation, Minus 

Monadic (One-Argument) Form: Negation -B 

The negation function changes the sign of the argument. The argument can be a 
numeric scalar, vector, or other array. The shape of the result is the same as that of 
the argument: 

AC"1. -3 
A 

... :I. .'I 3 

:I. 3 
.... 

If the argument is  an array, the function is extended to each element of the array: 

45 



Dyadic (Two-Argument) Form: Minus A-8 

The minus function subtracts argument B from argument A. The arguments can be 
numeric scalars, vectors, or other arrays. The arguments must be the same shape un- 
less one of the arguments is a scalar or any single-element array. I f  the arguments 
are the same shape, the result has the same shape as the arguments: 

I f  one argument i s  a scalar or a single-element array, the shape of the result is the 
same as that of the other input argument. The single element i s  applied to every 
element of the multielement array: 

a The x Function: Signum, Times 

Monadic (One-Argument) Form: Signum' XB 

The signum function indicates the sjgn of the argument: if the argument i s  negative, 
1 is the result; if the argument is  zero, then 0 is  the result; if the argument i s  posi- 

tive, 1 is  the result. The argument can be a numeric scalar, vector, or other array. 
The shape of the result is the same as that of the argument: 

- 

46 



i l  i 

If the argument is  an array, the function is  extended to each of the elements: 

Dyadic (Two-Argument) Form: Times AxB 

The times function result i s  the product of argument A times argument 6. The 
arguments can be numeric scalars, vectors, or other arrays. The arguments must be 
the same shape, unless one of the arguments is  a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

2 x 2 I :I. 

3 x "'b 
4. I 2 

-18 

I f  one argument i s  a scalar or a single-element array, the shape of the result is the 
same as that of the other input argument. The single element is applied to every 
element of the multielement array: 

47 



The + Function: Reciprocal, Divide n 
Monadic (One+Argument) Form: Reciprocal +B 

The reciprocal function result is the reciprocal of the argument. The argument can be 
a numeric scalar, vector, or other array. The shape of the result is the same as that of 
the argument: 

If the argument i s  an array, the function is extended to each of the elements: 

i 

Dyadic (Two-Argument) Form: Divide A+B 

The divide function result is the quotient when argument A is  divided by argument B. 
The arguments can be numeric scalars, vectors, or other arrays. The arguments must 
be the same shape unless one of the arguments is  a scalar or a single-element array. 
Arguments of the same shape have the same shape result: 



If one argument is  a scalar or a single-element array, the shape of the result is the 
same as that of the other input argument. The single element is applied to every 
element of the multielement array: 

Note: There are two additional rules that apply to the divide function: 

1. When zero is divided by zero, the result i s  1 : 

() .+ (I 
:I. 

2. Any value other than zero cannot be divided by zero: 

49 



, [rl The rfunction: Ceiling, Maximum 

Monadic (One-Argument) Form: Ceiling r B 
The ceiling function result is the next integer larger than the argument (the argument 
is rounded up), unless the argument already is  an integer. In this case, the result is 
the same as the argument. The argument can be a numeric scalar, vector, or other 
array. The shape of the result is the same as that of the argument: 

If the argument is an array, the function is  extended to each of the elements: 

1-1-2 1 , J  1. , s  2 
B 

1. 1. I 3 
1.5 d" '1 

I"B 
1. 2 
2 2 

Note: The result of the ceiling function depends on the OCTsystem variable (see 
Chapter 5 for information on the OCT system variable). 

Dyadic (Two-Argument) Form: Maximum A r  B 

The maximum function result is the larger of the arguments. The arguments can be 
numeric scalars, vectors, or other arrays. The arguments must be the same shape un- 
less one of the arguments is a scalar or any single-element array. Arguments of the 
same shape have the same shape result: 

". , 

60 



If one argument is a scalar or a single-element array, the shape of the result is  the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

The L Function: Floor, Minimum 

Monadic (One-Argument) Form: Floor LB 

The floor function result i s  the next integer smaller than the argument (the argument 
is rounded down) unless the argument is  already an integer. In this case, the result 
i s  the same as the argument. The argument can be a numeric scalar, vector, or other 
array. The shape of the result is  the same as that of the argument: 

If the argument is an array, the function is  extended to each of the elements: 

Bc 2 2 6’ :I. 1. , 5 :I. I b 2 
B 

j. 3. * 5 
1. I 6 2 

1. B 
s. I 
:I. 2 

Note: The result of the floor function depends on the OCT system variable (see 
Chapter 5 for information on the OCT system variable). 

51 



Dyadic (Two-Argument) Form: Minimum A LB 

The minimum function result i s  the smaller of the arguments. The arguments can be 
numeric scalars, vectors, or other arrays. The arguments must be the same shape un- 
less one of the arguments is a scalar or any single-element array. Arguments of the 
same shape have the same shape result: 

If one argument i s  a scalar or a single-element array, the shape of the result i s  the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

a The I Function: Magnitude, Residue 

Monadic (One-Argument) Form: Magnitude I B 

The magnifude function result is the absolute value of the argument. The argument 
can be a numeric scalar, vector, or other array. The shape of the result is the same 
as that of the argument: 

If the argument is an array, the function is extended to each of the elements: 

52 



Dyadic (Two-Argument) Form: Residue A I B 

The residue function result (when both argument A and argument 6 are positive) is 
the remainder when argument 6 is  divided by argument A. The following rules 
apply when using the residue function: 

1. If argument A is  equal to zero, then the result i s  equal to argument 6: 

0 I 6 
h 

2. If argument A is not equal to zero, then the result is a value between 
argument A and zero (the result can be equal to zero, but not equal to 
argument A). The result is obtained as follows: 

a. When argument 6 is positive, the absolute value of argument A is subtracted 
from argument 6 until a value between argument A and zero is  reached: 

3 I 5 
2 

b. When argument 6 is  negative, the absolute value of argument A is added to 
argument 6 until a value between argument A and zero is reached: 

The arguments can be numeric scalar, vectors, or other arrays. The arguments must 
be the same shape, unless one of the arguments is a scalar or any single-element 
array. Arguments of the same shape have the same shape result: 

3 I 7 

3 I 6 

h I 3 

0 I '7 

7 I 0 

:I. 

0 

3 

7 

0 

*.. 1 '1 

- 0 I J 

1,7 

0 I 385 

0,61.!3 

". ,. L I 1 2  I J 

L I .'. x 2 , 3 .- ,. 

2 I "* 1.2 3 

j. I 2  I385 

1. I "'2 I 385 
53 



I f  one argument i s  a scalar or a single-element array, the shape of the result is the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

B t - 2  3 6' :I. a 3 14. 5 0 
B 

I. 2 3 
4 5 6 

I. 2 0 
:I. 2 0 

3 I H 

El The * Function: Exponential, Power 

Monadic (One-Argument) Form: Exponential *B 

The exponential function result is the Naperian base e (2.718281 828459045) raised 
to the power indicated by the argument. The argument can be a numeric scalar, 
vector, or other array. The shape of the result i s  the same as that of the argument: 

I f  the argument is an array, the function is extended to each element of the array: 

B+*2  2 p 0 1. 2 3 
B 

0 :I. 
2 3 * B 

1. 2 I71.83 
7 I 3t3Y :I. 20 ,086  

Dyadic (Two-Argument) Form: Power A* B 

Thepower function result is argument A raised to the power indicated by 
argument B. The arguments can be numeric scalars, vectors, or other arrays. The 
arguments must be the same shape unless one of the arguments i s  a scalar,or any 
single-element array. Arguments of the same shape have the same shape result: 

2w3 

"* ,5*2 

3x0 

7 * * 5  

2* -3 

43 

Or25 

1 

3 

0 I I.:?::... 2*3= = 1/8= .I25 

i 



I f  one argument is  a scalar or a single-element array, the shape of the result is the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

Be2 2 6' 1. 2 3 M. 
H 

1 2 
3 '+ 

B *N 2 
1. 4 
Y 1.6 

mm The @ Function: Natural Log, Logarithm 

The @symbol i s  formed by overstriking the o symbol and the *symbol. 

Monadic (One-Argument) Form: Natural Log @B 

The natural log function result is  the log of the argument B to the Naperian base e 
(2.718281828459045). The argument can be a non-negative numeric scalar, vector, 
or other array. The shape of the result is the same as that of the argument: 

m i ? ,  '7183 

020 ,086 
1. 

3 

If the argument is  an array, the function is  extended to each element of the array: 

Dyadic (Two-Argument) Form: Logarithm AeB 

The logarirhm function result is the log of argument B to the base of argument A. 
The arguments can be numeric scalars, vectors, or other arrays. The arguments must 
be the same shape, unless one of the arguments is a scalar or any single-element array. 
Arguments of the same shape have the same shape result: 

2Qm 

3,1.s.l,2 I 8  

2 3 4@8 9 l.6 

3 

2,2534 

3 2 2  



I f  one argument is a scalar or a single-element array, the shape of the result is the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

Bc.2 2 p l  2 3 4. 
B 

1 2  
3 4 

I. 0 8 B 
Q 0 t 3 0 :I. 0 3 
0 I4'77l.2 Q I 4 0 2 0 4  

The o Function: Pi Times, Circular 

Monadic (One-Argument) Form: Pi Times o B 

Thepi times function result is the value of pi (3.141592653589793) times B. The 
argument can be a numeric scalar, vector, or other array. The shape of the result is 
the same as that of the argument: 

If the argument is an array, the function i s  extended to each element of the array: 

Dyadic (Two-Argument) Form: Circular Ao  B 

The circular function result is the value of the specified trigonometric function 
(argument A) for the specified radians (argument B). The arguments can be 
numeric scalars, vectors, or other arrays. Arguments must be the same shape, un- 
less one is a scalar or single-element array. Arguments of the same shape have the 
same shape result. The following is a l ist of the values for the A argument and the 
related functions performed. A negative argument A is the mathematical inverse 
of a positive argument A; any values for argument A other than the following 
will result in DOMAIN ERROR: 

I 



Value of A Operation Performed 

(1, 

c, 

OoB (1 -B*2 )*.5 

1 OB Sine B 

20B Cosine B 

30B Tangent B 

( 1 +B *2) *,5 408 

50B Hyperbolic sine of B (sinh B) 

60B Hyperbolic cosine of B (cosh B) 

Hyperbolic tangent of B (tanh B) 708 

-1 oB Arcsin B 

-2oB Arccos B 

Arctan B 

( - 1 +B *2) *.5 

3 o B  Arcsinh B 

-60 B Arccosh B 

Arctanh B T o B  

I f  B is  45', here i s  how to solve for the sine, cosine, and tangent of B (45' is equiva- 
lent to pi radians divided by 4): 

I{ 1.. c) r. I+ 

B The le f t  argument specifies 
0 I ''?8!.?Ll. {--the trigonometric function. 

:I. (3 B 

2 (3 B 

3 (3 B 

Sine of B 0 I '7 0 '7 :I. 1.4 

OI7071i Cosine of B 

1. - Tangent of B 

c. 
57 



If B is the sine of an angle, then OOB yields the cosine of the same angle, and con- 
versely, if B is  the cosine, OOB yields the sine. Suppose you wanted the sine of 
30°, which is equivalent to pi divided by 6: 

c. 1 (3 ( C) .:- b 1 
B 

0 C) B 
0,:: Sine of 30' 

0 I I36651334 Cosine of 30' 
19 4- 2 C) ( C) + 6 1 
IEC 

I) I:] B 
0 8 t 3 6 c ' , 0 3 ~  

0 #!54 Sine of 30' 

Cosine of 30' 

If one argument is  a scalar or a single-element array, the shape of the result is the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 



m(-J The ! Function: Factorial, Binomial 

The ! symbol i s  formed by overstriking the quotation mark( land the period ( . I .  

Monadic (One-Argument) Form: Factorial !B 

The factorial function result i s  the product of al l  the positive integers from one to 
the number value of the argument. The argument can be a positive numeric scalar, 
vector, or other array. The shape of the result is the same as that of the argument: 

! 1.c 

:I. x 2 x 3 x li. 

! I, 2 3 4. 5 

2 4 

2 1.E 

I. 2 B 2 '-1. 1 2 0 

The factorial function also works with decimal numbers and zero. When used in this 
way, factorial can be defined by use of the mathematical gamma function: 

! 3 ,  J.4 

! 0 
'7 I I. '7 33 

:I. 

I f  the argument is  an array, the function is extended to each of the elements: 

I. 
b 

c 

59 I 



Dyadic (TweArgument) Form: Binomial AIB 

The binomid function result is the number of different combinations of argument B 
that can be taken A a t  a time. The result of A!B is also the (A+l)th coefficient of 
the binomial expansion of the Bth power. The arguments can be numeric scalars, 
vectors, or other arrays. The argument must be the same shape, unless one of the 
arguments is a scalar or any single-element array. Arguments of the same shape 
have the same shape result: 

2 ! 4  
6 

W X Y Z -Argument B 2 ! 6 
is 
a 

1 

3 

3 ! (1 

0 ! 3 

2 ! 3 

The combinations of 
argument B taken 

./ 

- 
argument A(2) a t  a time 

If one argument is a scalar or a single-element array, the shape of the result i s  the 
same as that of the other argument. The single element is  applied to every element 
of the multielement array: 

60 



i /  
.__ 

(bl The ? Function: Roll 

Monadic (One-Argument) Form: Roll 7B 

The roll function result is a randomly selected integer from 0 through 6-1 or 1 
through B (depending on the index origin). Each integer in the range has an equal 
chance of being selected. The argument can be a positive integral scalar, vector, or 
other array. The shape of the result is  the same as that of the argument: 

I f  the argument is  an array, the function is  extended to each element of the array: 

Dyadic (Two-Argument) Form 

See the Deal function later in this chapter under Primitive Mixed Functions. 

61 



I E l  The A Function: And 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: And AA B 

The and function result i s  1 when A and 6 are both 1; otherwise, the result is  0. The 
value of the arguments must be either 0 or 1. The arguments can be scalars, vectors, 
or other arrays. The arguments must be the same shape unless one of the arguments 
is  a scalar or any single-element array. Arguments of the same shape have the same 
shape result: 

And Table 0 A 1. 

Operator \ 
0 

Argument A 

f- Argument B 

If one argument is a scalar or a single-element array, the shape of the result i s  the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

i 

62 



Ll The v Function: Or 

Monadic (One-Argument) Form 

There is  no monadic form. 

Dyadic (Two-Argument) Form: Or AV B 

The or function result is  a 1 when either or both arguments are 1; otherwise, the 
result i s  0. The values of the arguments must be 1 or 0. The arguments can be 
scalars, vectors, or other arrays. The arguments must be the same shape, unless 
one of the arguments is a scalar or any single-element array. Arguments of the 
same shape have the same shape result: 

Or Table 

Operator 
\ 

-Argument A 

I f  one argument is a scalar or a single-element array, the shape of the result i s  the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

63 



64 

I;] The - Function: Not 

Monadic (One-Argument) Form: Not - B 
The not function result is 1 when B is 0 and 0 when B is  1. The values of the argu- 
ment must be 1 or 0. The argument can be a scalar, vector, or other array. The shape 
of the result is the same as that of the argument: 

If the argument is  an array, the function is  extended to each element of the array: 

Dyadic (Two-Argument) Form 

There is no dyadic form. 



The XFunction: Nand 

The xsymbol is  formed by overstriking the and ( A )  and the not (-1 symbols. 

Monadic (One-Argument) Form 

There is  no monadic form. 

Dyadic (Two-Argument) Form: Nand AKB 

The nand function result i s  0 when both A and B are 1; otherwise, the result i s  1. 
The values of the arguments must 1 or 0. The arguments can be scalars, vectors, or 
other arrays. The arguments must be the same shape, unless one of the arguments 
is  a scalar or any single-element array. Arguments of the same shape have the same 
shape result: 

1. 

0 

Nand Table 

1. :I. 2 0 :I. 

Operator 

0 1. 

Argument B 
1. 1. :I. 0 \ 

Argument A 

If one argument i s  a scalar or a single-element array, the shape of the result is  the 
same as that of the other argument. The single element is applied to every element 
of the muldielement array: 

0 'J. 
[I 1. 

:I. 0 
:I. 0 

1.2 B 

65 



The T Function: Nor 

The Tsymbol is formed by overstriking the or (v) and the not (-) symbols. 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Nor AvB 

The nor function result i s  1 when A and B are both 0; otherwise, the result is 0. The 
values of the arguments must be 1 or 0. The arguments can be scalars, vectors, or 
other arrays. The arguments must be the same shape, unless one of the arguments 
is  a scalar or any single-element array. Arguments of the same shape have the same 
shape result: 

Nor Table 

1GO 

0 c 0 
0 0 :I. I $ 0  1. 0 I. 

0 

i 

1 . 0 0 0  

- Argument A 

If  one argument is  a scalar or a single-element array, the shape of the result i s  the 
same as that of the other argument. The single element i s  applied to every element 
of the multielement array: 



El The >Function: Greater Than 

Monadic (One-Argument) Form 

Note: The result of the > function depends on the UCT system variable (see 
Chapter 5 for information on the OCT system variable). 

There is  no monadic form. 

Dyadic (Two-Argument) Form: Greater Than A>B 

The greater than function result i s  1 when argument A is  greater than argument B; 
otherwise the result i s  0. The arguments can be numeric scalars, vectors, or other 
arrays. The arguments must be the same shape, unless one of the arguments is a 
scalar or any single-element array. Arguments of the same shape have the same 
shape result: 

0 

If one argument i s  a scalar or a single-element array, the shape of the result i s  the 
same as that of the other argument. The single element i s  applied to every element 
of the multielement array: 

67 



68 

The = Function: Equal To 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Equal To A=B 

The equal to function result i s  1 when the value of argument A equals the value 
of argument B; otherwise, the result i s  0. The arguments (numeric or character) 
can be scalars, vectors, or other arrays. The arguments must be the same shape, 
unless one of the arguments i s  a scalar or any single-element array. Arguments 
of the same shape have the same shape result: 

If one argument i s  a scalar or a single-element array, the shape of the result is  the 
same as that of the other argument. The single element is applied to every element 
of the multielement array. 

Nore: If the arguments are numeric, the result of the = function depends on the 
OCT system variable (see Chapter 5 for information on the OCT system variable). 



I f  
\- 

(.,,.I 

The < Function: Less Than 

Monadic (One-Argument) Form 

There is  no monadic form. 

Dyadic (Two-Argument) Form: Less Than A< B 

The less then function result is 1 when argument A is  less than argument B; other- 
wise the result i s  0. The arguments can be numeric scalars, vectors, or other arrays. 
The arguments must be the same shape, unless one of the arguments is  a scalar or 
any single-element array. Arguments of the same shape have the same shape result: 

If one argument is a scalar or a single-element array, the shape of the result is  the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

c 
Note: The result of the <function depends on the IJCT system variable (see 
Chapter 5 for information on the IJCT system variable). 

i 
69 



The 2 Function: Greater Than or Equal To 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Greater Than or Equal To A> B 

The greater than or equal to function result is 1 when argument A i s  greater than 
or equal to argument B; otherwise, the result is  0. The arguments can be numeric 
scalars, vectors, or other arrays. The arguments must be the same shape, unless one 
of the arguments is a scalar or any single-element array. Arguments of the same 
shape have the same shape result: 

I f  one argument i s  a scalar or a single-element array, the shape of the result i s  the 
same as that of the other argument. The single element i s  applied to every element 
of the multielement array: 

R C . 2  3 p Y. 2 3 4. 5 ci 
B 

1 2 3 
'4 5 6 

:I. I. I 
0 0 0 

3 2: B 

Note: The result of the 2 function depends on the OCT system variable (see Chapter 
5 for information on the OCT system variable). 

70 

I 
I__- I I 



The 5 Function: Less Than or Equal To 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Less Than or Equal To A< B 

The /ess than or equal to function result is 1 when argument A is  less than or equal 
to argument B; otherwise, the result i s  0. The arguments can be numeric scalars, 
vectors, or other arrays. The arguments must be the same shape, unless one of the 
arguments i s  a scalar or any single-element array. Arguments of the same shape 
have the same shape result: 

.4 

I f  one argument is  a scalar or a single-element array, the shape of the result is the 
same as that of the other argument. The single element is applied to every element 
of the multielement array: 

Note: The result of the 2 function depends on the OCT system variable (see Chapter 
5 for information on the OCT system variable). 

71 



72 

I:1 The + Function: Not Equal To 

Monadic (One-Argument) Form 

There is  no monadic form. 

Dyadic (Two-Argument) Form: Not Equal To ACB 

Thenot q u a /  to function result i s  1 when argument A is not equal to argument 8; 
otherwise, the result i s  0. The arguments (numeric or character) can be scalars, 
vectors, or other arrays. The arguments must be the same shape unless one of the 
arguments is a scalar or any single-element array. Arguments of the same shape 
have the same shape result: 

If one argument is  a scalar or a single element array, the shape of the result i s  the 
same as that of the other argument. The single element i s  applied to every element 
of the multielement array: 

Nore: If the arguments are numeric, the result of the +function depends on the 
UCT system variable (see Chapter 5 for information on the OCT system variable). 

-- I '  I 



PRIMITIVE MIXED FUNCTIONS 

(.- The mixed functions differ from scalar functions because the shape of their results 
depends on the particular mixed function rather than exclusively on the shape of 
the arguments. The following l ist  gives a brief description of each of the mixed 
functions. Following the list,  each function is discussed in detail: 

Monadic 
Mixed 
Functions Name Result 

P B  Shape The length of each coordinate of the 
argument. 

.B Ravel A vector containing the elements of B 
in the order they exist in the rows of B. 

4 B  Grade up The index values that vvould select the 
elements of B in ascending order. 

Grade down The index values that would select the 
elements of B in descending order. 

Index 
generator the index origin. 

B consecutive integers !;tarting from t B  

Reverse The elements of the argument are 
reversed. 

Transpose The coordinates of the argument are 
reversed. 

O B  Matrix 
inverse 

The inverse of a square matrix or the 
pseudoinverse of a rectangular matrix. 

4!B 

T B  

Execute Argument B executed as an expression. 

Format Argument B converted to a character 
array. 

Dyadic 
Mixed 
Functions Name Result 

Reshape 
(structure) using elements from B. 

An array of a shape specified by A, 

Catenate The two arguments joined along an 
existing coordinate ( [ I ]  i s  a positive 
integer 1. 

A,[Il B Laminate The two arguments joined along a new 
coordinate ( [ I ]  i s  a fraction). 



Dyadic 
Mixed 
Functions Name 

Compress 

Result 

AIB or 
A/[I l  B or 
A/B 

The elements from B that correspond 
to the 1’s in A. 

A\B or 
A \ [ I l  B or 
A t B  

Expand B is  expanded to the format specified 
by A; 1 in A inserts an element from 
B; a 0 in A inserts a 0 or blank element. 

A+ B Take 

Drop 

The number of elements specified by A 
are taken from B. 

ASB The number of elements specified by A 
are dropped from B. 

Index of The first occurrence in A of the elements 
in B. 

A@B or 
A@[I l  B 
or AeB 

Rotate The elements of B are rotated as specified 
by A. I f  A is positive, the elements of B 
are rotated to the left. I f  A is  negative, 
the elements of B are rotated to the right. 

Generalized 
transpose 

Deal 

The coordinates of B interchanged as 
specified by A. ‘3 1 A IB The number of elements specified by A 
are randomly selected from B, without 
selecting the same number twice. 

A i B  Decode 
(base value) 

The value of argument B expressed in 
the number system specified by 
argument A. 

AT B 

AEB 

Encode 
(representation) 

The representation of argument B in 
the number system specified by 
argument A. 

Membership A 1 for each element of A that can be 
found in B and a 0 for each element 
not found. 

ASB Matrix 
divide 

Solution to one or more sets of linear 
equations with coefficient matrix 
(matrices) B and right-hand sides A or 
the least squares solution to one or 
more sets of linear equations. 

AvB Format Argument B converted to a character 
array in the format specified by 
argument A. 

74 



c 

Note: The mixed functions reverse, rotate, compress, and expand, and the operators 
(see Operators later in this chapter) reducrion and scan can be applied to a specific 
coordinate of an array. This is done by using an index entry [I] which indicates the 
coordinate to which the mixed function or operator is  applied. The value of the 
index entry can be from 1 to the number of coordinates in the array; the leftmost 
coordinate (first coordinate) has an index value of 1, the next coordinate has an 
index value of 2, and so on. A matrix, for example, has an index value of 1 for the 
row coordinate and an index value of 2 for the column coordinate. I f  an index entry 
is not specified, the last coordinate (columns) is  assumed. I f  a - (minus) symbol i s  
overstruck with the function symbol or operator symbol, the first coordinate is  
assumed (unless an index value was also used). When a function or operator is ap- 
plied to a specific coordinate, the operation takes place between corresponding ele- 
ments in the specified coordinate. For example; assume you have a 3-rank array: 

0 When the first coordinate (planes) is specified, the operation takes place between 
corresponding elements in each plane. 

0 When the second coordinate (rows) is specified, the operation takes place between 
the corresponding elements in each row per plane. 

When the third coordinate (columns) is specified, the operation takes place be- 
tween the corresponding elements in each column per plane. 

The p Function: Shape, Reshape (Structure) 

Monadic (One-Argument) Form: Shape p B  

The shape function result is the shape of the argument; it has one element for each 
coordinate of the argument, which indicates the length of that coordinate. The 
argument can be any variable or constant: 

A Vector with Four Elements p ' ABCO 'i 

The shape function applied to a scalar yields an empty vector, since a scalar has no 
coordinates. An empty vector is indicated by a blank result line: 

4 L Blank Result Lines . P I T ' / .  

75 



The instruction p pB yields the rank (shape of the shape, or, number of coordinates) 
of B: 

i:: A W 
B A R 

Dyadic (Two-Argument) Form: Reshape (Structure) AD B 

The reshape function forms an array of the shape specified by argument A using 
element(s1 from argument B. The elements of argument B are placed into the 
array in row order. If there are not enough elements in argument B to fill the 
array, the elements are repeated. If there are more elements in argument B than 
are required to fill the array, only the required number of elements are used. 
Argument A must be a positive integer or vector of positive integers. The number 
of elements in argument A is  equal to the number of coordinates, or the rank, of 
the result. Argument B can be any variable or constant. If al l  of the elements of 
argument A are nonzero, then B cannot be an empty array: 

76 

___- I I 



i:. 
The , Function: Ravel, Catenate, Laminate 

Monadic (One-Argument) Form: Ravel ,B 

The ravel function results in a vector containing the elements of argument 6. I f  
argument 6 is an array, the elements in the vector are taken from argument 6 
in row order. Argument B can be a scalar, vector, or other array. The resulting 
vector contains the same number of elements as argument 6: 

Dyadic (Two-Argument) Form: Catenate or Laminate A,[Il B 

The function is catenafe when the [I] entry (index entry) i s  an integer and laminate 
when the [I] entry i s  a fraction. 

77 



78 

Catenate (The Index [I1 Entry I s  an Integer): The catenate function joins two items along 
an existing coordinate. (See the laminate function following for a description of how 
to join two items along a new coordinate). The index [ I ] ,  i f  given, specifies which 
coordinate is expanded. The index entry must be a positive scalar or one-element 
array. I f  no index [I ]  is specified, the last coordinate is used. Matrices of unequal 
sizes can be joined, providing the lengths of the coordinate not specified are the 
same (see Catenation in Chapter 3 ) :  



Laminate (The Index [I] Entry is a Fraction): The laminate function joins two items by 
creating a new coordinate, specified by the index entry [I1 which must be a posi- 
t ive fraction. If the index entry i s  between 0 and 1, the new Coordinate becomes 
the first coordinate; if the index entry is between 1 and 2, the new coordinate i s  
placed between existing coordinates 1 and 2 (the new coordinate that is  added al- 
ways has a value (or length) of 2). The following chart shows the positions of a 
new coordinate in the shape vector (see the following examples) when two 3 by 
3 matrices are laminated: 

Index Value 

Positions of New 
Coordinate in the Shape 
Vector 

1.1 - 1.9 

2.1 - 2.9 

3 3 

3 3  

Lamination requires either that arguments A and B are the same shape or that one 
of the arguments is  a scalar: 

1. :I. 22 33 
3 ,J 6 6 

{ I' $:3 (j '9 (.? 
$1 [:: 

14, I"' I:? 

... ( ... ( 

2 3 3 Shape Vector 

79 



..., I 

I.) 13 t3 
c.7 5i 

c’ c: 
3 3 2- Shape Vector 

The following examples show the result when the two matrices in the preceding example 
are catenated instead of laminated: 

80 



c 

The / Function: Compress 

Monadic (One-Argument) Form 

See Reduction later in this chapter under APL Operators. 

Dyadic (Two-Argument) Form: Compress A/[I l B or A/B or A j B  

The compress function selects elements from argument B corresponding in sequence 
to 1's in argument A. Argument A must be a logical scalar or vector having the 
values 0 or 1. Argument B can be any scalar, vector, or other array. Both arguments 
must have the same number of elements unless: 

0 One of the arguments is  a scalar or single-element array. 

0 Argument B is  an array; then the number of elements in argument A must be 
the same as the length of the argument B coordinate being acted on. 

When argument B is  an array, the [I1 index entry is  used to specify the coordinate 
that i s  acted on. I f  the index entry is  omitted, the last coordinate (columns) is  
assumed. I f  the A M  form is used, the first coordinate is  assumed. The rank of the 
result i s  the same as the rank of argument 8: 

,. ... 1 3 3 

:I. 2 3 
:I. :I. :I. / :I. L ,:I 

II 0 I) / 1. 2 3 
Blank Display Line (empty array) / 

0 1. :I. 0 /' i:: 2 ::I B 
2 (<, 3 "i' z 

:I. i) :I. 1. 
:I. 0 3. /B 

:I. 2 3 4. 
P 1 I1 :I. :I. :I. 2 

2 3 
6 '7 

:I. 0 1 1. 

0 1 :I. O / E 

1. / B 
:I. 2 3 4. 
9 b '7 13 
9 1. 0 1. :I. 3. 2 

O / B  

I. 0 :I. 1. I. 2 

The first coordinate (rows) is  specified; 
the first and third rows, as specified by 
argument A, are selected. 

The second coordinate (columns) is specified; 
the second and third columns, as specified by 
argument A, are selected. 

Blank Display Line (empty array) 

81 



a2 

The \ Function: Expand 

Monadic (One-Argument) Form 

See Scan later in this chapter under APL Operators. 

Dyadic (Two-Argument) Form: Expand A\[I1 B or A\B or A+B 

The result of the expand function is argument B expanded as indicated by 
argument A. Each 1 in argument A selects an element from argument B and each 
0 in argument A inserts a 0 (or blank for character data) in the result. Argument A 
must be a logical scalar or vector having the values 0 or 1. Argument B can be any 
scalar, vector, or other array. I f  argument B i s  a scalar or vector, argument A must 
have the same number of 1's as the number of elements in argument B. If 
argument B is  an array, argument A must have the same number of 1's as the length 
of the argument B coordinate being acted on. 

When argument B i s  an array, the [I] index entry is used to specify the coordinate 
that is acted on. If the index entry is omitted, the last coordinate (columns) is 
assumed. If the A+B is used, then the first coordinate is assumed. 

The rank of the result i s  the same as the rank of the B argument: 

1. (I :I. 1 0 \ 1 2 3 

B4-2 3p1 a 3 4 5 b 
B 

1 0 2 3 0  

1. 2 3 
1.t s (5 

1 2 3 
0 0 0  
4- 5 ci 

I. 0 1\C1JB 
The first coordinate (rows) is 
expanded; a row is inserted be- 
tween the first and second row. 

1. 1 0  l\c2:JB 
1 2 0 3  2 The second coordinate (columns) i s  
1.c 5 0 cs - expanded; a column is inserted 

1 0 I \I3 between the second and third columns. 
1. 2 3 
0 0 0  
4 s 6 



The 4 Function: Grade Up 

The $symbol is formed by overstriking the A symbol and the I symbol. 

Monadic (One-Argument) Form: Grade Up 4B 

The grade up function result i s  the index values that would select the elements of 
argument B in ascending order. That is, the first element of the result i s  the index 
of the smallest element in argument B, the next element is the index of the next 
smallest element in argument B, and so on. Argument B must be a numeric vector. 
When two or more elements in the vector have the same numeric value, their posi- 
tion in the vector determines their order in the result (the index value of the first 
occurrence appears first in the output). The number of elements in the result is the 
same as the number of elements in the argument: 

The following example shows how the grade up function can be used to sort a vec- 
tor into ascending order: 

The grade up function is not the inverse of the grade down function because of the 
way equal elements are handled; see The Function: Grade Down for an example 
using the grade up and grade down functions with equal elements. 

Note: The result of the 4 function depends on the 010 system variable (see Chap- 
ter 5 for information on the 010 system variable). 

Dyadic (Two-Argument) Form 

There is no dyadic form. 

83 



The following example shows how the grade down function can be used to sort a 
vector in descending order: 

The Q Function: Grade Down 

The Q symbol is formed by overstriking the Vsymbol and the I symbol. 

Monadic (One-Argument) Form: Grade Down Q 

Thegrade down function result is the index values that would select the elements 
of argument B in descending order. That is, the first element of the result is the 
index of the largest element in argument B, the next element is the index of the 
next largest element in argument B, and so on. Argument B must be a numeric 
vector. When two or more elements in the vector have the same numeric value, 
their position in the vector determines their order in the result (the index value 
of the first occurrence appears first in the output). The number of elements in 
the result i s  the same as the number of elements in the argument: 

h 4- :I. 4 :I. 2 1. 6 :I. 13 :I. 5 1. :I. 
A I:: 9 A 3 

1. El 1.0 1.5 1. 4 I. 2 1. :I, 

The following example shows how equal elements are handled when using the grade 
up and grade down functions: 

a4 



c-; 

Because the indices for the equal elements are 61 the same order (first occurrence 
first) for both the grade down and grade up function, the grade down function is 
not the inverse of the grade up function: 

Note: The result of the Q function depends on the 010 system variable (see Chap- 
ter 5 for information on the 010 system variable). 

Dyadic (Two-Argument) Form 

There is no dyadic form. 

8B 



I:1 The + Function: Take 

Monadic (One-Argument) Form 

There is  no monadic form. 

Dyadic (Two-Argument) Form: lake A+ B 

The take function result i s  the number of elements specified by argument A, taken 
from argument 6. Argument B can be a scalar, vector, or other array. Argument A 
must be a scalar or vector of integers. I f  argument B is a vector, argument A must 
be a scalar. If argument B is  a multidimensional array, argument A must be a vector 
with an element for each coordinate of argument 6. When argument A is  positive, 
the first elements of argument B are taken; when argument A is  negative, the last 
elements are taken. I f  argument A specifies more elements than the number of 
elements in argument 6, the result is padded with 0's (or blanks for character data): 

1. 2 3 I+ 5 0 0 

a a 1 2  3 4.5 
-7 t 1. 2 3 4 5 

W"3 4pJ. 2 3 4 5 h 7 13 9 :i. 0 :L :I. 1.2 
B 

:I. 2 3 4 
5 6 7 8  
Y 1 I1 1 1. 12 

2 3 t E{ 
:I. 2 3 
5 6 '7 

Ete2 2 301. 2 3 4 5 h 7 8 9 10 1:I. 12 
R 

1. 2 3 
I., 5 b 

7 t3 9 
1. 0 1 1. :I. 2 

J 

1 

l 1 :L t E{ 

2 1 1 f B  

'7 

I, 2 3 
4 5 6 

1. 2 3 t B  

"1 2 3tB 
7 8 9  

10 11. 1.2 

86 



I:1 The + Function: Drop 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Drop A+B 

The drop function result i s  the remaining elements of argument B after the number 
of elements specified by argument A is dropped. Argument B can be a vector or 
other array. Argument A must be a scalar if argument B is  a vector. 

When argument B is  an array, argument A must have one element for each coordi- 
nate of argument B. When argument A is  positive, the first elements of argument B 
are dropped from the result; when argument A is negative, the last elements are 
dropped: 

87 



(3 The I Function: Index Generator, Index of 

Monadic (One-Argument) Form: Index Generator I B 

Dyadic (Two-Argument) Form: Index of A I B 

The index offunction result is the index of the first occurrence in argument A of 
the element(s1 in argument B. Argument A must be a vector. Argument B can be 
a scalar, vector, or array. The result is the same shape as argument B. I f  the element 
in argument B cannot be found in argument A, the value of the index for that ele- 
ment i s  one greater than the largest index of A (nl0 + PA): 

The index generator function result is a vector containing the first B integers, start- 
ing with the index origin (see Dl0 system variable in Chapter 5). The argument can 
be a nonnegative integer that i s  either a scalar or a single-element array. 

5.t i 5 -Each of the generated integers is added to 5. 
6 ‘7 8 9 1 0  

Note: The result of the I function depends on the 010 system variable (see Chapter 
5 for information on the 010 system variable). 

88 



The r$ Function: Reverse, Rotate I".] Ic] 
The r$ symbol is formed by overstriking the o symbol and the I symbol. A special 
form of the function symbol ise, formed by overstriking the o symbol and the - 
symbol. 

Monadic (One-Argument) Form: Reverse $[I1 B or r$B or eB 

The reverse function reverses the elements of argument B. Argument B can be any 
expression. 

89 



When argument B is a multidimensional array, the index entry [ I ]  can be used to 
specify the coordinate that is  acted on. I f  the index entry is omitted, the last co- 
ordinate (columns) i s  acted on. If the eB form is used, then the first coordinate 
is acted on: 

EZ v 1: I., 
3 2 
6 s 

SAVE: 
MUCI-I 

MI:) I? ti: 
'r' 1: M E 

M O R E  
I .[ME 

S A V Ei: 
M 1.1 c: I-I 

M1JC:I-1 
!5AVE 

. .. . 

m M E :  
M 0 R 1,: 

E: V A !ii 
ti c 1.J M 

EI: ROM 
I, t1:i: 'I' 

EVA$; 
I*KUM 

EROM 
E:Mrr 
MORE: 
T I M E :  

s A V Ei: 
MUCH 

4) c: :I. :n A 

\The first coordinate (plane) is  specified; 
the planes are reversed. 

rt, I:: 2 ::I n 
LThe second coordinate (rows) is specified; 

the rows in each plane are reversed. 

tD c 3 ::I n 

--The third coordinate (columns) is  
specified; the columns in each plane are 
reversed. 

(D A 

L The last coordinate is acted on. 

@ A  

--The first coordinate is acted on. 

90 



Dyadic (Two-Argument) Form: Rotate A$[I l  B or A$B or AeB 

(I ,/' 'i 

The rotate function rotates the elements of argument B the number of positions 
specified by argument A. If argument A is positive, then the elements of 
argument B are rotated to the le f t  (rows), or upward (columns). If A is negative, 
the elements are rotated to the right (rows), or downward (columns). Argument B 
can be any expression. The shape of the result is the same as that of argument B. 

When argument B is  a multidimensional array, the index entry [ I ]  can be used to 
specify the coordinate that is  acted on. If the index entry is omitted, the last co- 
ordinate (column) is  acted on. I f  the AeB form is used, then the first coordinate 
is acted on. 

I f  argument B is a vector, then argument A must be a scalar or single-element array. 
I f  argument B is a matrix, then argument A must be a scalar or vector. When 
argument A is a vector, the number of elements in argument A must be the same as 
the number of elements in the coordinate being rotated. For example, if B is a 3 
by 4 matrix (each row has four elements) and the row coordinate is  specified, A 
must have four elements: 

4 5 1 2 3 
-?(I) 1 

3 14. 5 1. 2 
B 4.. 3 
IEC 

:I. 2 3 
3 6 7 
'7 1 0 1. :I. 

:1 0 
5 2 7 
9 6 1. 1. 
1. 1 I) 3 

0 I 
I 2 3 
6 '7 13 

I 1. :I. 2 7 
0 1. 

1. a 3 
6 '7 13 

:I. I. 12 9 
I. 0 

3 2 7 
9 h 1. 1. 
1. 1. I) 3 

I+ f' :I. 2 3 11. s 6 '7 13 '2 :I. 0 :I. 1. :I. 2 
The first coordinate (rows) is specified; 
therefore, the rotation is between rows. I+ 

€1 
:J. 2 

12 
Lk 
8 

1.1 
5 -The second coordinate (columns) is specified; 

I. 0 
20B 

I ; ~ U C ~ I B  

2 Q, c 2 :I p 

therefore, the rotation is between columns. 

,.! -The last coordinate is acted on. 

1. 0 
I ,?@B 
1 ;: 

Lb -The first coordinate is acted on. 

8 
Ac--- l  0 1 2 
n 

Arb c 1. 3 B 
9 2 1. :I. CI 
1. 4 3 1.2 
5 :I. 0 '7 11. 

- 1. 0 '" :I. .̂ 2 

91 



If argument B i s  an N-rank array, argument A must be a scalar or an array with a 
rank that is one less than the rank of argument 6. The shape of argument A must 
be the same as argument B less the coordinate being acted on: 

1 0 

B4-3 3 3p127 
B 

:I. 2 3 
1.1. s 6 
7 8 5, 

0 Rotation between rows of 
the first plane 
Rotation between rows of 
thesecond plane 
Rotation between rows of 
the third plane 

J 0 :I. 1. 1.2 
:I. 3 1. 4 J 5 
:I. 6 1.7 18 

JV 20 2s. 
22 23 24 
25 26 2-1 

PB 

A4-3 3p1. 0 11 0 2 If 0 0 0 
A 

3 3 3 

The shape of argument A must be the same 
as argument B less the coordinate being 
acted on. 

J 11 0 / 
[1 2 0 
0 0 0 

P A  

A @  c J :1 B 
3 3  

The first coordinate (planes) is  specified; 
4 2 3 b therefore, the rotation is between planes. 
'7 13 9 

The first element 
in each plane is  1. Y 1. 1. 1.2 

1 J rz; 15 
rotated one position 
between planes. 

:1. 6 1.7 I8 
The middle 

plane is rotated two 
posit ions between 
planes. 

:I. 2 0 2 :I. element in each 
22 :I. 4 :!4 
29 26 27 

R(l, I:: 2 1 B 
4 2 3 + 
'7 !5 
1 8  

:t 0 :I. 7 
1. 3 :I. 1. 
1.6 14 

6 
9 

1.2 
1 5 
:I. t3 

21 
2 4 
2 7 

92 



m(TJ The 4 Function: Transpose, Generalized Transpose 

The 4 symbol is formed by overstriking the o symbol and the \ symbol. 

Monadic (One-Argument) Form: Transpose 4 B 

The transpose function reverses the coordinates of argument B. Argument B can be 
any expression. If argument B is a scalar or vector, the argument is unchanged by 
the function: 

The coordinates are reversed. 

6 1 8  
1 0 22  

3 I. 5 

93 

I 
-____ li  



Dyadic (Two-Argument) Form: Generalized Transpose AQB 

94 

The generalized transpose function interchanges the coordinates of argument B as 
specified by argument A. Argument B can be any expression. Argument A must 
be a vector or a scalar, and must have an element for each coordinate of argument B; 
also, argument A must contain al l  the integers between 1 and the largest integer 
specified. For example, to  transpose the rows and columns of a matrix, argument A 
would be 2 1: 

To transpose the rows and columns of a 3-rank (three-coordinate) array, argument A 
would be 1 3 2: 

1.3 
:I. 7 
2 1. 

E 4.. 2 3 14. p 1 2 14. 
B 

An array with two planes, three rows, and four columns. 

The second and third coordinates have been interchanged,. 

I 
2 3 14. 
6 ‘7 I3 

1. 0 1. :I. 1.2 

:I. 1.1 :I. f :I. 0 
1 f3 1. 9 2 0 
22 23 ;y.1. 

:I. ;3 :?&I{ 
5 9 
ci 1 0 
7 1. 1. 
13 1.2 

forming an array with two planes, four rows, and three 
1.3 1 ‘7 2 :I. columns. 
:I. 4. :LEI 2 2 



El The ? Function: Deal 

Monadic (One-Argument) Form 

See the Roll function earlier in this chapter under Primitive Scalar Functions. 

Dyadic (Two-Argument) Form: Deal A?B 

The deal function randomly selects numbers from 0 through B- I  or 1 through B 
(depending on the index origin), without selecting the same number twice. Both 
arguments must be single positive integers. Argument A must be less than or equal 
to argument B; argument A determines how many numbers are selected. 



El The I Function: Decode (Base Value ) 

Monadic (One-Argument) Form 

There is no monadic form. 

Dyadic (Two-Argument) Form: Decode AIB 

The decode function result i s  the value of argument B expressed in the number 
system specified by argument A. For example, to convert 1776 to i t s  value in the 
decimal number system (base 10): 

1. 0 1. 0 :I. 0 :I. I1 .I. :I. ‘7 ‘7 6 
Y.7’76 

The following illustration shows how it was done: 

Argument A (number system) specifies the following: 

I 
10 10 10 10 

-Ten units in each of these positions 
equals one unit of the next position 
to the left. 

Argument B i s  a vector with these values: 

1 7 7 6  

The result i s  the same as doing the following: 

6 =  6 The units position always represents itself. 

700 \The value in the next position is  multiplied 
7 x10 = 70 

7 xlOxl0 = 
I x10x10x10= 1000 by the rightmost value in argument A. 

1776 
The value in the next position is  multiplied 
by the two rightmost values in argument A, 
and so on. 

-\ 
The arguments must be numeric. I f  one argument is a scalar or single-element array, 
the other argument can be a scalar, vector, or other array. The result will have the 
rank of the larger argument minus one. 

96 



If either argument A or B is not a scalar, they both must have the same length, or 
an error results. 

Mote: The value of the leftmost position of argument A can be zero, because even 
though there must be a value in that position, it is not used when calculating the 
result. For example: 

0 J. il I. (1 :I. [I .I. 1. '7 '7 6 
s. 7 7 d> 

If either argument i s  a scalar, the value of that argument i s  repeated to match the 
length of the other: 

'7 "7 '7 

If argument A is a vector and argument B is  a matrix, argument A must have an 
element for each row of 6: 

If argument A is a matrix and argument B i s  a vector, each row of argument A i s  a 
separate conversion factor; argument B must be the same length as a row of 
argument A. The result will be a vector with one element for each row of 
argument A: 

97 



If both arguments are matrices, each row of A (conversion factor) is applied to each 
column of B. The result is a matrix containing the converted values for each column 
of B: 

. 44-2 3p:I.O 1.0 1 0  20 10 5 
B+3 2pl 2 2 4 3 3 
A 

1.0 10 I0 
a0 1.0 5 

1 2  
a 4 
3 3  

123 243 
63 123 

I3 

A L B  

The following examples convert hours, minutes, and second to al l  seconds: 

The following illustration shows how it was done: 

Argument A (number system) 

60 units (seconds) equals one unit of 
the next position to the left. 

60 units (minutes) equals one unit of the 
next position to the left. 

1 2 4  units (hours) equals one unit of the 
next position. 

Argument B 

1 (hour) 30 (minutes) 15 (seconds) 

The result was obtained as follows: 

15 = 15seconds 
30x 60 = 1800seconds 

1 x 60 x 60 = 3600 seconds 
541 5 seconds 

7 
J 

l.I> 

3 

98 



I:I The T Function: Encode (Representation) 

Monadic Form 

There is  no monadic form. 

Dyadic Form: Encode AT  B 

This function is the reverse of the decode function. Theencode function result is 
the representation of argument B in the number system specified by argument A. 

Note: Be sure argument A is  long enough to completely represent argument B or 
an incorrect answer results. 

For example, the representation of 1776 in the decimal number system (base 10): 

3. 0 :I. 0 I. 0 :I. 0 T :1'"176 
:I. '7 '7 6 

The following illustration shows how it was done: 

Argument A (number system) specifies the following: 

10 10 10 10 

t t t 1 Ten units in each of these positions 
equals one unit of the next position to the 
left. 

Argument B has this value: 

1776 

c: 

99 



100 

The result i s  the same as doing the following: 

1 

1000 
776 

1ox1ox10 = 1000 11776 
- 

\ 
7) 1ox10= 100 1776 

700 - 

10 176 7\ I 

70 
6 
- 

More: The value of the leftmost position of argument A can be zero. For example: 

0 :I. 0 I. 0 I. 0 'r I. '7 76 
1. 7 7 6 

I f  both arguments are vectors, the result i s  a matrix. Each column in the result con- 
tains the representation for each element of argument B expressed in the number 
system specified by argument A: 

15 
2 



I f  argument A is a matrix and argument B is  a scalar, then the result is a matrix. 
Each column of the result contains the values of argument B expressed in the 
number system specified by the corresponding column of argument A: 

44-3 2p10 2 0  1.0 1 0  10 5 
A 

2 0  
:I. 0 
5 

A T  
2 
4 
3 

The result can be transposed so that 
1 2 3  each row represents the values of 
z 4 3 argument B expressed in the number 

systems specified by argument A. 

QAsB 4 

I f  argument A is a scalar or vector and argument B is  a matrix, the result is  a matrix 
or N-rank array, with one plane for each element of argument A: 

A + l O  1 0  1 0  
EcZ 2c,:l23 456 789 0 0 0  
R 

1 0  1 0  1 9  
B 
4.56 

789 0 
A T B  

‘3 6 
P O  

101 



102 

If both arguments are matrices, the result i s  an N-rank array, with one plane for 
each element of argument A. Each column of argument A represents a number 
system: 

ArlEc 

Result of the number system in 
column 1 of argument A 

Result of the number system in 
column 2 of argument A 

3 

'7 6 

8 }/ 
17 6 

The following example converts seconds to seconds, minutes, and hours: 

24 6 0 40 T 5411. 5 
1. 30 1.5 



The following illustration shows how it was done: 

Argument A (number system) 

24 60 60 

-60 units (seconds) equals one unit of the 
next position to the left. 

60 units (minutes) equals one unit of the 
next position to the left. 

24 units (hours) equals one unit of the 
next position to the left. 

Argument B 

541 5 (seconds) 

The result was obtained as follows: 

1 
60 x 60 = 3600 (5415 

3600 

103 



I:] The Function: Membership 

104 

Monadic (One-Argument) Form 

There is  no monadic form. 

Dyadic (Two-Argument) Form: Membership AEB 

The membership function result is a 1 for each element of argument A that can be 
found among the elements of argument B and a 0 for every element that cannot be 
found. The shape of the result is the same as the shape of argument A. 
Arguments A and B can be any scalar, vector, or array: 



The .Function: Matrix Inverse, Matrix Divide a 
The symbol is formed by overstriking the 0 and the i symbols. 

Monadic (One-Argument) Form: Matrix Inverse B 

The matrix inverse function inverts a nonsingular matrix or computes the pseudo- 
inverse of a rectangular matrix. The result i s  a matrix. Argument B must be a 
numeric matrix, and the number of columns must not exceed the number of rows. 
The number of columns in the argument is the number of rows in the result, and 
vice versa. 

If argument B is  a nonsingular matrix, OB i s  the inverse of B. I f  the matrix does 
not have an inverse, then DOMAIN ERROR results: 

I f  argument B is  a rectangular matrix, HB i s  the pseudoinverse of the matrix (least 
squares solution): 

". :I. 
0 , b  

A t - 3  2p3 5 :I. 2 z 4. 
A 

3 5 
:I. 2 
2 1.1. 

13 A 
'7 
n:. 

- 1. 

C' 

." , 2 
:1 I 2 

Dyadic (Two-Argument) Form: Matrix Divide ABB 

The matrix divide function solves one or more sets of linear equations with co- 
efficient matrices. Argument B must be a numeric matrix. The number of columns 
in B must not exceed the number of rows. Argument A must be a numeric vector or 
a matrix. The length of the first coordinate of argument A must equal the length 
of the first coordinate of argument B. 

105 



The rank of the result is the same as the rank of argument B. The length of the 
first coordinate of the result i s  the same as the number of columns in argument B. 
If argument A is a matrix, then the second coordinate of the result is the same 
length as the second coordinate of argument A. 

I f  argument B i s  a square matrix and argument A i s  a vector, then the result is 
the solution to the set of linear equations with coefficient matrix B and right-hand 
sides A: 

If argument B is  a square matrix and argument A is a matrix, then the columns of the 
result are the solution to the sets of linear equations with coefficient matrix B and 
right-hand sides equal to the columns of A: 

At”:? 2026 l b  v 6 
B+2 2p3 5 1. 2 
A 

26 1 6  
9 6  

B 
3 5  
:L 2 

ARB 
7 2 
1 2 

If argument B is rectangular, then the result is the least squares solution to one or 
more sets of linear equations: 

Y. - 1. 



a m  The z Function: Execute 

CJ 

,,,- -_ c. j 

The z symbol is formed by overstriking the I and the o symbols. 

Monadic (One-Argument) Form: Execute mB 

The execute function evaluates and executes argument B as an APL expression. 
Argument B can be any character scalar or vector. 

Ac '1 . *2 '  
A 

bh 
1+2 

3 
The character vector in the variable A is executed. 

Dyadic (Two-Argument) Form 

There is no dyadic form. 

107 



r:ln The T Function: Format 

The T symbol is formed by overstriking the T and the o symbols.. 

Monadic (One-Argument) Forms: Format vB 

The monadic format function result i s  a character array that is identical in appear- 
ance to the one displayed when the value of argument B is requested: 

Dyadic (Two-Argument) Form: Format AT  B 

The dyadic format function result, like the monadic format function result, i s  a 
character array. However, argument A is used to control the format (the spacing and 
precision) of the result. Argument A is a pair of numbers: the first number deter- 
mines the total width of the format for each element and the second number deter- 
mines the precision used. 

1 08 



I f  the precision number is  positive, the result i s  in the decimal form, with the number 
of decimal places specified by the precision number. If the precision number is 
negative, the result i s  in scaled form, with the number of digits to the left of the E 
specified by the precision number: 

c.: 
, (left margin) 

"'2 I hE: ... 0 1.1 ". :I. I :?Pi I1 2 I 
Width of nine positions 

-(left margin) 

I f  the width entry in argument A is zero, the 5100 uses a field width such that a t  
least one space will be left between adjacent numbers. I f  only a single number i s  used, 
a width entry of zero i s  assumed. 

109 

I 



Each column of an array can be formatted differently by using a control pair in 
argument A for each column of the array. 

1'4 c; 2 6 1. T 
1; 

... .. 
j. 2 I 3 1.1. 

* I) 0 
4 1.c I 6 
3 . 2  I 0 

I ... 8 2 <$ ..( :I. 2 3 I 4 yL Width of six positions 

(left margin) 

:.,,I I 
i 

Notes: 
1. I f  the OPW system variable is set to an invalid value, OPW IMPLICIT ERROR will 

2. Even if the specified format causes all of the significant digits to be truncated, 
result when the format function is used. 

the sign of the original number is retained. For example: 

Lc 2 T '" , 0 I) 0 4. 
... , o i) 

The sign i s  retained. 

110 



APL OPERATORS 

C/" 

c: 

An APL operator applies one or more dyadic primitive scalar functions to arrays. 
The operators are reduction, inner product, outer product, and scan. 

Reduction Operator (/) 

The symbol for the reduction operator i s  /. The forms of reduction are: ~ / I I l B  or 
@/B or@+B, whereacan be any primitive dyadic scalar function that is applied 
between each of the elements of a single vector. 

The rank of the result is one less than the rank of argument B, unless argument B 
is  a scalar or a single-element vector; then the result i s  the value of the single element 
of argument B. When argument B is a vector, the reduction of that vector is the same 
as putting the primitive dyadic function between each of the elements: 

I f  argument B is  an empty vector (see Chapter 31, then the result i s  the identity 
element, if one exists, for the specified function. The identity elements are listed 
in the following table: 

Identity Element Table 

Dyadic 
Function 

Times 
Plus 
Divide 
Minus 
Power 
Logarithm 
Maximum 
Minimum 
Residue 
Circular 
Binominal 
Or 
And 
Nor 
Nand 
Equal to 
Not equal to 
Greater than 
Not less than 
Less than 
Not greater than 

X 

t 
- 
- 
* 
e 
r 
L 
I 
0 
! 
V 

A 

V 

A 

N 

N 

- - 
# 
> 
2 
< 
5 

Identity 
Element 

7 .237. .  . E75 
7.237.. . E75 

0 

1 
0 
1 

111 



When argument B is  a multidimensional array, the [I] index entry i s  used to specify 
the coordinate acted on. If the index entry is omitted, the last coordinate (columns) 
is acted on. If t h m  f B  lform i s  used, the first coordinate i s  acted on. Indexing along a 
nonexistent coordinate will result in INDEX ERROR. 

When argument B i s  a multidimensional array, the coordinate of argument B that i s  
acted on is eliminated: 

x.:i 4.. 2 3 p :I. 2 3 1.1. 5 4) 
B 

:I. 2 3 
1.1 5 6 

.4 ,/ E 

4. / I:: 2 ::I b 

4. / M 

+ ,' I:: 1. ::I I4 

B 4- 2 9 14. (3 1. 2 I) 
E{ 

2 3 4 
5 0 '7 €1 
9 1. I) :I. 1. 1.2 1 2 3  

6 :I. 5 -The last coordinate (columns) is assumed; 

l) :I. 5 

5 '7 9 

5 '7 '9 

therefore, the reduction i s  between columns: 

1+2+3=6 

The second coordinate (in this case, columns) 
i s  specified. 

The first coordinate (rows) i s  specified; 
therefore, the reduction is between rows: 

L 
1 

13 1.14 1. 5 :L 6 
1. 7 :L 8 :I. 9 2 (1 
2 1. 2 2  2 3  24 

4 5 6  
5 7 9  

2 2  24. 26 2 t i 3  (planes) i s  specified; 
therefore, the reduction 
is between planes. 

If argument B is an array that has a coordinate whose dimension is  zero, then reduc- 
tion along that coordinate yields an array whose elements are equal to  .the identity 
element for the function. The identity element for each function is  given in the 
preceding table. 

112 



<.I 
Inner Product Operator ( .) 0 

The symbol for the innerproducr operator i s  . (period). The inner product opera- 
tor i s  used to combine any two primitive scalar dyadic functions and cause them to 
operate on an array. An example of i t s  use would be in matrix algebra, in finding 
the matrix product of two matrices. The form for inner product is: A@ .@, 

first and then 8 f reduction is applied between the results of function@. 
are any primitive scalar dyadic functions. Functionais performed 

The result is  an array; the shape of the array is  all but the last coordinate of 
argument A catenated to all but the first coordinate of argument B (-1 G pA),(I  G pB) .  
I f  argument A and argument B are matrices, the elements in each row of argument A 
are acted on by the elements in each column of argument B: 

Ai-2 2p1. 2 3 4 
Bi-2 2 p S  6 7 8 
A 

3 4  
H 

= 19 

c. The above example is the same as doing the following for each element in the result: 

113 



The shapes of arguments A and B must conform to one of the following conditions: 

1. Either A or B is a scalar. 

144-2 2 p i  2 3 4 
Be5 

2. The last coordinate of argument A is the same length as the first coordinate 
of argument B. (If both are matrices, the column coordinate of argument A 
is the same length as the row coordinate of argument B.) 

A+J 2 p i  2 3 4 5 b 
B4-2 3 p - 7  8 9 1.0 1:I. 12 
A 

B 

6 i 75 
95 1.Oh 1.1.7 

114 

I - ___--- I I 



If  argument A and argument B are N-rank arrays, the elements in each row of 
argument A are acted on by the elements in each plane of argument 6: 

79 86 
93 :I. I) 0 

1.23 134 
1. '4.5 1.56 

1.6'7 1.82 
:I. Y 7 2 I. 2 

115 



Outer Product Operator ( o .) r ; 70  
The symbols for the outerproduct operator are 0 .  . The outer product operator 
causes a specified primitive scalar dyadic function to be applied between argument A 
and argument B so that every element of argument A is  evaluated against every ele- 
ment of argument B. The form of the function is: Ao .@B, whereais a dyadic 
primitive scalar function. Arguments A and B can be any expressions. Unless 
argument A is a scalar, the shape of the result is the shape of argument A catenated 
to the shape of argument B. If argument A is a scalar, the shape of the result is the 
same as the shape of argument B: 

The above example is the same as doing the following for each element in the result: 

I. x J 

1. x 4 

1. x 5  

2 x 3 

2x4 

2x5 

3 x 3 

3x4 

3x5 

3 

4 

F 
J 

6 

0 

10 

9 

1.2 

I. s 

116 



L l l  

O T  6 8 

9= 1 +t ZT ' C "  0 7  
6 8 1.. 

P= 1 +& 

0 T 6 El E=l+z- 

L Y E  

9 E 1.1 

8 

V 

:saldluaxa aioyy 



El Scan Operator ( \ )  

The symbol for the scan operator is \. The forms of scan are:@\[Il B,@\B or 
@+B, where@can be any scalar dyadic primitive function and argument B is a 
numeric vector or other array. The scan operator, like the reduction operator, 
operates on the elements of a single vector, and is  the same as putting the primitive 
dyadic function between each of the elements. But the scan operator accumulates 
the results as the operation is repeated along the vector. The shape of the result i s  
the same as that of the input argument: 

+\ 1. 2 J I+ 5 

+ 1. 

+ 1. +* 2 

4. 1. .t 24.3 

.e 1. +2+3+4 

. t . 3 . + . ~ . t . 3 + l . ~ . t . ~ ~ ;  

1. 3 rs 1.0 3.54 This result i s  the same 

I. 

3 

6 

1. 0 

15 

as doing the following for 
each element in the result. 

When argument B is  a multidimensional array, the [ I ]  index entry is  used to specify 
the coordinate the scan is to proceed along. I f  the index entry is  omitted, the last 
coordinate (columns) i s  acted on. I f  the@ +B form is'used, the first coordinate 
is  acted on. 

B t - 3  4 p  I 1 2  
B 

1. 2 3 I+ 
5 b '7 8 
9 1 0  11. 12 

2 3 b  
8 1.0 3.2 

1.8 21. 24. 

.+\I: 1 . JH-  The first coordinate (rows) is specified; therefore, 
the scan i s  between rows. 

4 The second coordinate (columns) is  specified; 
therefore, the scan is  between columns. 

3 3. 1. 3. 8 20 
9 19 30 b2 

*+a \ B 
1. 3 6 1 0  
!3 1 :I. 1.8 26 
9 19 30 42 

4tB 
1 2 3 4  
6 8 3 . 0 3 . 2  
15 1.8 21 24. 

118 



1.3 1.4 1.5 :I. 6 
I. "7 1.8 1. P 2 0 
2 I. 22 23 2 4 .  

a+.\ c: 1. 1 A - The first coordinate (planes) is specified; 
1. 2 3 4 therefore, the scan operation is between planes. 
3 6 7 8 
B 1. 0 1. :I. 1.2 

1.4. 1. b 1. 8 2 0 
22 24 26 2 t 3  
J0 32 34. 36 

+ \ I:: 2 ::1 R - The second coordinate (rows) is specified; 
1. 2 J 4. therefore, the scan operation is between rows 
h I3 1. 0 I. 2 for each plane. 

1.2; 1.8 2 1. 211. 

1. 3 :I. 14. :I. 5 1. b 
3 0 32 34. 36 
51. 54. 5'7 60 

+\ I:: 3 7 A - The third coordinate (columns) is specified; 
1. 3 b I. 0 therefore, the scan operation is between columns 
5 1. 1. 1. 8 2 h for each plane. 
9 1.P 3 0  1.1.2 

1.3 27 '4.2 50 
:I. 7 35 54 74 
21. 43 66 YO 

119 



SPECIAL SYMBOLS 

cl Assignment Arrow + 

The assignment arrow causes APL to evaluate everything to the right of the arrow 
and associate that value with the name to the left of the arrow. For example, 
A+2+3 means that 2+3, or 5, is assigned to  the name A. When A i s  used in a later 
APL statement, it has a value of 5. 

[:I Branch Arrow -f 

The branch arrow is used for the following: 

To change the order in which the statements are executed in a user-defined 
function. See Branching in Chapter 6 for more information on branching. 

To resume execution of a suspended function (see Suspension in Chapter 7). 

To clear the state indicator (see Stare lndicaror in Chapter 7 ) .  

The quad is  used to  ask for input and to display output. To display output, the quad 
must appear immediately to the left of the assignment arrow. The value of the APL 
expression to the right of the arrow is  assigned to the quad and will be displayed. 
For example: 

'7 
1.2 

The 7 displayed is  the value assigned to the quad. The 12 is the final evaluation of 
the APL expression. 

When used to  ask for input, the quad can appear anywhere except to the immediate 
left of the assignment arrow. Execution of the expression stops a t  the quad and re- 
sumes when an expression is entered to replace the quad. When a quad i s  encountered, 
the quad and colon symbols (0 : ) are displayed to indicate that input i s  requested. 
For example: 

See Chapter 6 for more information on quad input or output within a user-defined 
function. 

120 



Quad Quote pJ (TJJ 
The quad quote symbol is formed by overstriking the quote symbol 1 and the quad 
symbol 0. The quad quote operates the same way as the quad when requesting 
input, except that the data entered i s  treated as character data. For example: 

Note: If a system command i s  entered for a quad quote input request, the system 
command is  treated as a character string and will not be executed. 

See Chapter 6 for more information on quad quote input or output within a user- 
defined function. 

Comment A I:] r;7 
The comment symbol i s  formed by overstriking the n symbol and the 0 symbol. 
The comment symbol must be the first nonblank character in a line and indicates 
that the line should not be executed. For example: 

(I; 

121 



Parentheses ( ) 

Parentheses are used to specify the order of execution. The order of execution i s  
from right to le f t  with the expressions in parentheses resolved (right to left) as they 
are encountered. For example: 

Note: When a value is  assigned to a variable within parentheses and i s  used as the 
argument for a function, the value assigned to the variable is  used by the function, 
regardless of any previous value assigned to the variable. For example: 

122 

-- - I I 



Chapter 5. System Variables and System Functions 

SYSTEM VARIABLES 

System variables provide controls for the system and information about the sys- 
tem to the user. These variables can be used by a function as arguments the same 
as any variable. 

The following is a l i s t  of the system variables and their meanings. A complete des- 
cription of each follows the list: 

Variable Name Meaning 

Comparison tolerance 
Index origin 
Printing precision 
Printing width 
Random link 
Line counter 
Workspace available 
Latent expression 
Atomic vector 

Notes: 
1. To find the value assigned to a system variable, enter the variable name. The 

value assigned to the OCT, 010, OPP, OW, ORL, and OLX system variables 
can be changed by using the assignment arrow (+I. For example, entering 
OlocO assigns the value 0 to the 010 system variable. 

for that symbol. Therefore, if the symbol table is  full, a SYMBOL TABLE FULL 
error i s  generated. 

2. The use of any system variable causes an entry to be made in the symbol table 

123 



Comparison Tolerance: OCT 

124 

0 

The value of this variable determines the maximum tolerance (how different the two 
numbers must be to be considered unequal) when using any relational function and 
a t  least one argument is a noninteger. For example, two numbers are considered un- 
equal if the relative difference between the two numbers exceeds the comparison 
tolerance value. The following illustration shows how the comparison tolerance 
works with the relational functions: 

Value of argument A 

Real number line 

The relationship of 
any value (argument 6) 
to argument A - A r B  - A>B 

Note: The OCT function considers any number in decimal form a noninteger. For 
example, 1000 i s  an integer and 1000. is a noninteger. 

The value of the comparison tolerance variable also affects the floor and ceiling 
functions. If an integer i s  in the range of the right argument plus or minus the 
comparison tolerance, the integer i s  the result. For example: 

[IC1’+. , 0 3  
1-2 , 98 

I.. 2 , 9 6 

I‘ 3 1 0 3 

2.98 + .03 = 3.01 (The integer 3 i s  in the range of 

2.96 + .03 = 2.99 

3.03 - -03 = 3 (The integer 3 i s  in the range of 

3 2.98 ! .03.) 

3 

3 3.03 ? .03.) 

3 
r z .  04. 3.04 - .03 3.01 

In a clear workspace, the comparison tolerance value i s  set to  1 E-13 (see 
Chaptey 3 for an explanation of scaled representation). 



Index Origin: 010 

1 

The value of this variable determines the index origin. The value can be either 0 
or 1, which means that the first component of a vector or array i s  indexed with 
a 0 or 1, depending on what the value is set to. In a clear workspace, the value 
is set to 1. 

The functions affected by index origin are indexing ([:I), index generator (I), 
index of (I), roll (?I,  deal (?I, grade up (41, and grade down ( 9 ) .  

1 2 3 1.1. t :I. 2 ;3 1.1. 

,$& 3 1.1. 5 
The index values represented by the 
result start from 0 rather than 1. 

0 :I. 2 3 

Note: All other examples in this manual are shown with the index origin set to 1. 

Printing Precision: 0 PP 

The value of this variable determines the number of significant digits displayed for 
decimal numbers and for integers with more than 10 digits. The value of this var- 
iable does not affect the internal precision of the system. The value can be from 
1 to 16. In a clear workspace, the value is  set to 5. This means that the number 
of significant digits displayed for decimal numbers or for integers with more than 
10 digits i s  limited to 5 and scaled representation (see Chapter 3) i s  used (if re- 
quired). For example: 

t-Decimal Number Examples 
I. 2 3 14.5 , 4) 

11.2 3 4.5 6 7 
1.2 3 4 6' Five digits are displayed and the 

least significant digit i s  rounded off. 

:I. 2346 

j. ~ 2 3 4.6 1.:: 5 
123456 ,'7 

125 



Print Width: OPW 

The value of this variable determines the length of the output line for both the 
display and printer. The value can be from 30 to 390. In a clear workspace, 
the value is 64. I f  this variable i s  set to a value greater than the length of one 
line across the display or printer, the output will overflow onto the next line. 

Random Link: ORL 

The value of this variable i s  used in generating random numbers. The value can 
be from 1 to Z3 ‘-2. In a clear workspace, the value i s  7*5 (16807). This value 
is  changed by the system each time a random number i s  generated. 

Line Counter: OLC 

This variable i s  a vector. The first element is  the function statement number 
currently being executed. The next element i s  the number of the statement 
(in another function) that invoked the function being executed. The remaining 
elements follow the same pattern. The user cannot set this variable but can dis- 
play it. Attempts to modify ULC are ignored by the system. For more informa- 
tion on OLC, see Chapter 7. 

Workspace Available: 0 WA 

The value in this variable indicates the amount of unused space (the number of 
unused bytes) in the active workspace. The user cannot set the value for this 
variable but can display it. Attempts to modify OWA are ignored by the system. 

Latent Expression: 0 LX 

A character vector assigned to the latent expression variable is automatically 
executed as an expression by the execute (2) function when a stored workspace 
containing the latent expression is  loaded into the active workspace. 

Uses of the latent expression variable include the form ULXC’G’, where a func- 
tion named G is executed when the stored workspace is made active. The form 
OLX+’”MESSAGE WHEN WORKSPACE IS MADE ACTIVE”’ displays the mes- 
sage MESSAGE WHEN WORKSPACE IS MADE ACTIVE when the stored work- 
space is loaded into the active workspace. 

Atomic Vector: OAV 

The atomic vector is a 256-element vector that includes all possible APL charac- 
ters. The following example shows it can be used to determine the indices of any 
known characters in the vector (assuming 010 i s  1): 

I 

U A V !  ‘ A B C ’  
87 88 89 

126 



Appendix D contains a l i s t  of the characters in the atomic vector. The most com- 
mon use of the atomic vector i s  for generating line feed and cursor return charac- 
ters to arrange output. The following example shows how the atomic vector can 
be used to  generate these characters. 

The function called NAMES will display your first and last name. Each name will 
start a t  the left margin and each character in the name will be one line lower than 
the previous character: 

1 



SYSTEM FUNCTIONS 

System functions are used like the primitive (built-in) functions; they are monadic 
(one argument) or dyadic (two arguments) and have explicit results. 

Following i s  a l i s t  of the system functions and their meanings. A complete des- 
cription of each follows the l is t :  

System Function Meaning 

OCR name Canonical representation 

OFX name Fix 

OEX name Expunge 

ONL class Name l i s t  

character ONL class Name l i s t  beginning with the specified character 

ONC name Name classification 

The 0 CR Function: Canonical Representation 

The UCR function formats a user-defined function into a character matrix. This 
function is monadic (takes one argument); the argument for the OCR function 
must be a scalar or vector of characters representing the name of an unlocked 
user-defined function. For example, you have the following user-defined function: 

The function INTG is used to create a vector whose length and contents are spe- 
cified by the input argument: 

128 



To format the function INTG into a character matrix and assign the matrix to  a 
variable named VAR, the following instruction would be entered: 

VAR is displayed as follows: 

P 

V A R  
R+.IN'I'G A- First row i s  line 0 of the function. 
R + A p O  
I 4- 1. 
!3 T A R 'I' : R I:: :I: ::I 4.. A 
:I: 6.. I 4.1. 
-) I :il A 1 /$ T A R T 

6 I. 2 
p V A R -  Indicates VAR is a 6-row, 12-column matrix. 

Notice that the line numbers are removed along with the opening and closing V. 
Also, labels within the function are aligned at  the left margin. 

Now matrix VAR can be changed by simply indexing the elements: 

To format a matrix created by the OCR function into a user-defined function, use 
the O F X  function. The OFX function is discussed next. 

The OFX Function: Fix 

The OFX function forms (fixes) a user-defined function from a character matrix 
(that was most likely formed using the OCR function). This function is  monadic 
(takes one argument); the argument for the OFX function is the name of a matrix 
to be formed into a user-defined function. I f  an error i s  encountered (invalid char- 
acter, missing single quote, etc) as the matrix i s  being formed into a user-defined 
function, the operation is  interrupted, the number of the row in error minus one 
is displayed, and no change takes place in the active workspace (the user-defined 
function is  not formed). 

129 



To show how the UFX function works, we will use the matrix created in the pre- 
vious example (see the UCR function). To form matrix VAR into a user-defined 
function, the following instruction would be entered: 

1::t F' x v A R APL responds with the name of 
:I: NTG-the user-defined function. 

The OFX function produces an explicit result (the array of characters that repre- 
sents the name of the user-defined function), and the original definition of the 
user-defined function (if there was one) is replaced. 

Now the function INTG can be displayed and executed: 

TNTG 5 

INTG 8 
1 2 3 4 5  

1. 2 3 4 5 6 7 8 

Following i s  an example that shows how the UCR and UFX functions can be 
used to modify the definition of a function within another function. This 
example will use the following userdefined function: 

130 



Format the function into a matrix: 

Now, define a function called CHANGE, which, when performed, will execute a 
modified version of INTG. 

INTG is  made a local function so that the 
/global version will not be change (the local v (:b.IA"jE ; xN'r'(3 ; y version will not exist after the execution of 

I:: :I. 3 M I:: 1.1. ; :I. 2 3 4.. ' :I: ' CHANGE is complete). 

Assign the explicit result of the UFX function 
to Y so that it will not be displayed. 

Execute the modified version of INTG. 

c: I: 2 ;:ni ::I ::I Ye. I: N w  [:IF x w q  M . 

v 

INTG. 

CHANGE. 

INTG again. 

131 



The UEX Function: Expunge 

The OEX function erases global objects or active local objects specified by the 
argument from the active workspace (unless the object is a pendent or suspended 
function). This function is monadic (takes one argument); the argument must be 
a scalar, vector, or matrix of characters. 

Thus, if object AB is to be erased, the following instruction would be entered: 

Note: Even after the object i s  erased, the name remains in the symbol table (the 
part of the active workspace that contains all of the symbols used). 

The OEX function returns an explicit result of 1 if the object i s  erased and a 0 
if it i s  not erased or if the argument does not represent a valid name. When the 
UEX function is  applied to a matrix of names (each row represents a name), the 
result i s  a logical vector (zeros and/or ones) with an element for each name. The 
UEX function is  like the )ERASE command, except that it applies to the active 
referent (see Chapter 6, Local and Global Names) of a name. 

Note: If the object being expunged is  a shared variable (see Chapter 81, it will 
be retracted. 

The UNL Function: Name List 

The UNL function yields a character matrix; each row of the matrix represents 
the name of a local (active referent) or global object in the active workspace. 
The ordering of the rows has no special significance. The ONL function can be 
either monadic (takes one argument) or dyadic (takes two arguments); in both the 
monadic and dyadic forms, the right argument i s  an integer, scalar, or vector that 
determines the class(es) of names that will be included in the result. The values 
for the input argument and associated classes of names are: 

Argument Name Class 

1 Names of labels 
2 Names of variables 
3 Names of user-defined functions 

It does not make any difference in what order the class of names appears in the 
argument. For example, ONL 2 3 or ONL 3 2 results in a matrix of al l  the vari- 
able and user-defined function names. 

In the dyadic form, the left argument is a scalar or vector of alphabetic charac- 
ters that restricts the names produced to  those with the same initial character 
as that of the argument. For example, 'AD' UNL 2 results in a matrix of a l l  
the variable names starting with the character A or D. 

3 '  

132 

I 
I 

I I -- 
I I 



Uses of the ONL function include: 

I 

0 Erasing objects of a certain class (and also beginning with a certain character). 
For example: 

[]EX ' H ' CINI.., 2 

erases al l  the variables whose names start with B. 

0 Avoiding the choice of a name that already exists. 

The 0 NC Function: Name Classification 

The ONC function is  monadic (takes one argument); the argument is a scalar or 
array of characters. The result of the function is a vector of numbers represent- 
ing the class of the name given in each row of the argument. The classes of names 
are as follows: 

Result Meaning 

0 

1 Name of a label 

2 Name of a variable 

3 Name of a function 

4 

Name is  available for use 

Name is  nonstandard (not available for use) 

133 



Chapter 6. User-Defined Functions 

APL provides an extensive set of primitive functions; nevertheless, you may want 
a function to solve a special problem. APL provides a way to create a new func- 
tion, called function definition. During function definition, you use existing APL 
functions to  create new functions called user-defined functions. 

Normally, the 5100 i s  in execution mode; that is, after a line has been entered 
and the EXECUTE key pressed, the 5100 executes that line. To define a func- 
tion, the mode must be changed to function definition mode; after the function 
is defined, the mode must be changed back to execution mode before the func- 
tion can be executed. The mode i s  changed by entering the V (dell symbol. The 
first V changes the mode to function definition mode; the second V indicates the 
end of function definition and changes the mode back to execution mode. 

MECHANICS OF FUNCTION DEFINITION 

The following steps are required to  define a new function: 

1. Enter a V followed by the function header (see Function Header in this 
chapter). After the function header i s  entered, APL responds with a 
[I] and waits for the first statement of the function to be entered: 

2. Enter the statements that define the operations to be performed by the 
function. As each line i s  entered, APL automatically responds with the 
next line number: 

Mote: During function definition mode, the print width (see 0 PW system vari- 
able in Chapter 5) i s  automatically set to 390. The print width returns to i t s  
original value when the function i s  closed. This prevents problems that occur 
when editing statements that exceed the print width. Editing statements are 
discussed later in this chapter. If a user-defined function contains a statement 
that i s  greater than 1 1  5 characters in length, that statement cannot be edited and 
the function cannot be written on tape. (See OCR and OFX in Chapter 5 for 
information on changing a user-defined function to a matrix.) 

I 

1 34 



3. Enter another V when the function definition is complete. The closing V 
may be entered alone or at  the end of a statement. For example: 

Note: If the closing V i s  entered a t  the end of a comment statement, which 
begins with a R symbol, the V will be treated as part of the comment and 
the function will not be closed. 

Function Header 

The function header names the function and specifies whether a function has no 
arguments (niladic), one argument (monadic), or two arguments (dyadic). 

Note: Function names should not begin with SA or TA, because SA and TA are 
used for stop and trace control (Stop Control and Trace Control are discussed 
later in this chapter). 

The function header also determines whether or not a function has an explicit 
result. If a function has an explicit result, the result of the function is  tempor- 
arily stored in a result variable (names in the function header) for use in calcula- 
tions outside the function. The result variable must be included in the result 
statement (the statement that determines the final result of the function) as well 
as the function header. For example: 

Result Variable 
- 

P I? I::: ::i i.1 I.., 'r 4.. x 13 I., 11 ::i Y 

'7 

J '7 

The result of the function is  
1, i l + 3  l:)l..,I..l$i I././ temporarily stored in the re- 

sult variable so that it can 
be used by another function. 

User-defined functions that do not have an explicit result cannot be used as part 
of another expression. For example: 



The following table shows the possible forms of the function header: 

Arguments Type I Number Of I Format of Header 
No Explicit Result 1 Explicit Result 

b 

0 Niladac V NAME V R+NAME 
1 Monadic VNAME B VRtNAME B 
2 Dyadic VA NAME B VR+A NAME B 

P 

There must be a blank between the function name and the arguments. Also, the 
same symbol cannot appear more than once in the function header; thus, 
Z+FUNCTlON Z is invalid. 

For user-defined functions, the order in which the arguments are entered is  
important. For example, assume that Z+X DIVIDE Y represents a function in 
which Z is  the result of X+Y. Now if 20 DIVIDE 10 i s  entered, the result i s  2. 
However, if 10 DIVIDE 20 i s  entered, the result i s  0.5. 

3 

1 

1 

136 



Branching and Labels 

Statements in a function definition are normally executed in the order indicated 
by the statement numbers, and execution terminates a t  the end of the last state- 
ment in the sequence. This normal order can be modified by branching. 

Branching is  specified by a right arrow (-+I followed by a label (name) that speci- 
fies the statement that i s  to be branched to. For example, the expression 
+START means branch to a statement labeled START. When assigning a label 
to a statement, the label must be followed by a colon (:) and must precede the 
statement. The colon separates the label from the statement: 

c: a ,I 

I: 9 :I ..) 'I' 14 1' 

In the previous example, the label START is  assigned to the second statement in 
the function. In other words, START has a value of 2; however, if the function 
is edited and the statement is  no longer the second statement in the function, 
START will automatically be given the value (or statement number) of the new 
statement. (See Function Editing later in this chapter.) 

137 



138 

Labels are local to a function-which means they can only be used within that 
function. Following are some additional rules that apply to the use of labels: 

0 They must not appear in the function header. 

You cannot assign values to them. 

0 They can be up to 77 characters in length. 

They cannot be used on comments. 

0 When duplicate labels or labels that duplicate a local name are used, the first 
use of the label or name is  the accepted use. 

If the branch is to zero (-to) or any statement number not in the function, the 
function is  exited when the branch statement is  executed. If the value to the right 
of the + is a vector (for example, +LI,L2,L3), the branch is  determined by the 
vector's first element. If the vector i s  an empty vector (there are no elements), the 
branch is not executed, and the normal sequence of statement execution continues. 
For example, the conditional branch +(I ?N)/START is evaluated as follows: 

1. First, the condition (I?N) is  evaluated; the result i s  1 if the condition i s  
true and 0 if the condition i s  false. 

2. The result of step 1 is  then used as the left argument for the compress 
(A/B) function: 
a. If the result of step 1 was 1, START is selected from the right argument 

and a branch to the statement labeled START is  taken. 
b. If the result of step 1 was 0, nothing is  selected from the right argument 

(an empty vector i s  the result) and the sequence of execution falls through 
to the next statement. 

Following are three examples of defining and using a function to determine the 
sum of the first N integers. Each function uses a different method of branching. 
Remember, the expression to the right of the + is evaluated and the result deter. 
mines to what statement the branch is  taken: 

SlJM :I. 5 
1.5 



Several forms of the branch instruction are shown in the following table: 

Branch Instruction Result 

Branches to a statement labeled LABEL 
Exits function 
Branches to LABEL or exit function 

} Branches to LABEL or falls through 

c 
c 
c.: 

Note: Branching will also work if a specific statement number is specified to the 
right of the +. For example, +3 means branch to statement 3; or +l+-3xA means 
I is  assigned the value of 3 times the value of A, and the value of I is then used as 
the branch to statement number. However, these forms of branching (using 
statement numbers instead of labels) can cause problems if the function is  edited 
and the statements are renumbered. 

Local and Global Names 

A local name i s  the name of a variable or user-defined function that is  used only 
within a particular user-defined function. A global name is the name of a variable 
or user-defined function that can be used within a user-defined function and can 
also be used outside of it. An example of the use of a local variable name would 
be the name of a counter used in a user-defined function (which i s  not required 
for any use outside the function). 

139 



To make a name local to a user-defined function, it must be contained in the 
function header. For example, the function header VZtEXAMPLE X;J;I estab- 
lishes the result variable 2, the argument X, and variables J and I as local variables, 
Notice that the local names, other than the result variable and arguments, follow 
the right argument (if any) and are preceded by semicolons. 

A local name can be the same as a global name (variable or user-defined function) 
or a local name in another function. However, any reference to  the name local 
t o  the function will not change the values of any other global or local objects 
(variables or user-defined functions) or cause them to  be used. 

After a user-defined function has executed, the following rules apply to the local 
and global variables used by the function: 

Any value assigned to a local variable i s  lost. 

If a local variable had the same name as a global variable, the value of the glo- 
bal variable remains unchanged. 

If the value of a global variable was changed by the function, it retains the 
new value. 

140 



For example: 

I., (3 (:: f- :I. 0 0 
(3 I., 0 B +* 1 0 0 
V 14 I:: $1.1 I.., '1 t- E X AM F1 I.., E! ; I.., Cl (2 ; X 

I:: 1. :I I., (2 I:: 4.. F.5 0 
I" *.) 1 x +. q 1::- 

I: 3 ::I GI.., I3 B 6. :I. 0 
I:: 1.1. ::I I? I,: $3 1.1 I... 'r' (- I.., (1 c: .+ (3 I", I:) E .+* x v 

E x A M 1:' I.., E 
I3 5 

x 4  
V A I.., IJ I, EI: R I? C) R 

X 

Lo(: - 

.. L. .. &.\.I 

X has no value after the function 
has executed. 

A 
The global value associated with this 
name was unchanged by the function. 1 0 0 

G L Q B  -The global value was changed by the 
function, since GLOB was not made 
local name to the function. 

:I. 0 

141 



I: 3. :I 
E: 2 :I 
I:: 3 7 
C: 4 .  ::I 
I:: $5 :I 
r 4) ::I 
1: '7 ::I 
r: t:) ::I 

Since the value of a local name disappears as soon as execution of the function 
finishes, the only time you can use or display the value of a local name is while 
the function to which it belongs is st i l l  executing, is  suspended, or i s  pendent. 

Note: If a name i s  local to a function that calls another function, the value of 
that local name can also be used by the called function. 

A name local to a function that has not completed execution or that i s  suspended 
(see Chapter 7) will be inaccessible if the name is also local to a more recently 
called function. Putting it another way, the value of a name that you can use or 
display i s  always the most recent local value of the name. Of course, as execu- 
tion of the more recently called functions i s  completed, the next earlier value of 
each local variable will again be accessible. A name can therefore be said to have 
one active referent or value, and possibly several latent referents or values. For 
example: 

c I4.3 
C: 5 :J 
c 4) :I 
c '7 ::I 
c 13 3 

3 

I 

142 

r- 



The )SIV command causes the SIV l i s t  (state indicator with local variables and 
local user-defined functions listing) to  be displayed. The SIV l i s t  contains a com- 
plete set of referents of a name. 

Note: See System Functions in Chapter 5 for an example of a local user-defined 
function using the OFX system function. 

If the SIV l i s t  is scanned downward, the first occurrence of a variable name is  i t s  
active referent. I f  the name appears again, it i s  a latent referent. Global names 
are not found in this l is t ;  they can be displayed with the )VARS command and 
)FNS command. 

In the following SIV display, variable P has referents as follows: 

1 !j :I: v 
G I:: '7 :I .)(. z x I 
F'C 1.k 3 P ,I - Active referent of P i s  local to function F. 
Q I- 3 :I 3(*C x 'I' 

G I:: J :I z x :I: 
 RE-?::^ p First latent referent of P 

i s  local t o  function R. 

As the state indicator i s  cleared (see Chapter 71, latent referents become active. 

143 



INTERACTIVE FUNCTIONS 

User-defined functions can display messages and/or request input from the key- 
board. The messages (character data) in the user-defined function are enclosed in 
quotes. The 0 (quad) and c] (quad quote) symbols are used to request input from 
the keyboard during function execution. The following function i s  an example of 
an interactive function that computes the amount of interest on a capital amount 
for a given number of years: 

I44  



Requesting Keyboard Input during Function Execution 

The 0 (quad) appearing anywhere other than immediately to the le f t  of the assign- 
ment arrow indicates that keyboard input is  required. When the 0 is  encountered 
in the function, the two symbols 0: (a quad symbol followed by a colon) are dis- 
played, the display is  moved up one line, and the cursor appears. The quad and 
colon symbols are displayed to alert the user that input i s  required. Any valid 
expression entered a t  this point i s  evaluated and the result is substituted for the 
quad. You can escape from a quad input request by entering the right arrow +. 
An invalid entry in response to request for input results in an appropriate error 
message and the request for input is made again. Any system commands entered 
will be executed, after which the request for input will again be made. An empty 
input (no keying) is rejected and the 5100 again displays the symbols 0: and 
awaits input. 

When the quad quote (3 (a quad overstruck with a quote) is used, input from the 
keyboard is  treated as character data. The input begins a t  the left margin of the 
display; quotes do not need to be entered to define the data as character data. 
When [I] input is requested, the symbols 0: do not appear as they did with a 0 
input request. The input is entered after the flashing cursor appears on the screen. 
For example: 

x 4.. IJ 

X 

x 4- I3 

x 

C A N  ' 'I' 

CAN ' 7' 

'CAN' "I" 

' CAN ' "I' ' 

Anything you enter in response to a quad quote request for input is  considered 
character input. Therefore, if you enter a system command or a branch arrow 
(-+I to terminate the function, the entry is treated as character data for the 
function and the system command or branch will not be executed. This can be 
a problem if you are trying to escape from a quad quote input request. There- 
fore, APL provides an escape for this situation. To escape from a quad quote 
input request, enter the Osymbol by holding the CMD key and pressing the 

key. The function is  interrupted and the function name and the line num- 0 
ber being executed are displayed. You can then modify the function or termi- 
nate it by entering the right arrow +. 

745 



ARRANGING THE OUTPUT FROM A USER-DEFINED FUNCTION 

The output from user-defined functions can be arranged by using the format func- 
tion (see the v function in Chapter 4) or bare output. Bare output is  discussed 
next. 

Bare Output 

After normal output, the cursor i s  moved to the next line so that the next entry 
(either input or output) will begin a t  a standard position. However, bare output, 
denoted by the form m+X (X can be any expression), does not move the cursor 
to the next line. Therefore, more than one variable or expression can be displayed 
on the same line. For example: 

Since the cursor does not return to the next line after bare output, when quad 
quote (1) input i s  entered following the bare output, the input starts after the 
last character of the bare output. Then when the input i s  processed, it i s  pre- 
fixed by any bare output on the input line. For example: 

146 



Therefore, if quad quote input follows bare output (but only the input i s  to be 
processed), the bare output must be removed from the input line. Following is 
an example of a function that will remove the bare output: 

This i s  how the function works: 

v (:I 1.1 '1 n :I: N <-The Bare Output 
I_ :I. :I B R 19 if:: A (:I 1.) T I) 1.1 'r 'I' 1-1 :I: !: :I: !; A Ii E:: is I T' I )  1.1 'I' ! ! ! 

-This function will remove the bare output. 1.. '. L. .") .. "I v 
'rtwti :[% RARlii: CJIJ'Tl:)IJ'I' ! ! !-The cursor appears here. Now 

'I' i-l :I: S :I: !is B A li I: (1) 1.1 'I' I) !,J 'T' ! ! ! 'I' 1.1 I: !3 :I: 8 111 I: N I) 1.1 I' 
'I' li 1: !ij :I: s El :c M F' 1.1 'I' 

LThis is  the final result. 

c 3  !.I 'I' d :I: N 

enter THIS IS (I] INPUT. 

LOCKED FUNCTIONS 

A locked function can only be executed, copied or erased; it cannot be revised or 
displayed in any way, nor can trace control and stop control (see Trace Control 
and Stop Control later in this chapter) be changed. A functionzan be locked, or 
protected, by opening or closing the function definition with a V (Voverstruck 
with -), instead of a V .  

When an error i s  encountered in a locked function, execution of that function i s  
abandoned (not suspended). If this function was invoked by another locked 
function, execution of the second function i s  abandoned also, and so on, until 
either (1) a statement in an unlocked function or (2) an input statement i s  
reached. Then DOMAIN ERROR is  displayed. In the first case, the execution of 
the unlocked function is suspended at  the statement; in the second case, the 5100 
waits for input. 

Note: A locked function cannot be unlocked; therefore, if the function contains 
an error, the function cannot be edited and the error corrected. 

i' 
147 



FUNCTION EDITING 

148 

Several methods are used when in function definition mode to display and revise 
a user-defined function. Also, after a function definition has been closed, the 
definition can be reopened and the same methods used for further revisions or 
displays. (See Reopening Function Definition in this chapter.) 

Displaying a User-Defined Function 

Once in function definition mode, part or al l  of a user-defined function can be 
displayed as follows: 

To display the entire function, including the function header and the opening 
and closing V , enter [o]. APL responds by displaying the function, then wait- 
ing for the entry of additional statements. 

To display from a specified statement to the end of the function, enter [On], 
where n is  the specified statement number. APL responds by displaying the 
function from statement n to the end of the function, then waiting for the 
last  statement displayed to be edited (see Editing Sraremenrs in this chapter). 

To display only one statement of the function, enter [no], where n is the 
statement number to be displayed. APL responds by displaying statement n 
and waiting for the statement to be edited (see Ediring Statements in this 
chapter). 

The following table summarizes function display when in function definition mode: 

Entry Result 

[no1 Displays statement n 

[On1 
[ni Displays al l  statements 

Displays al l  statements from n onward 

Revising a User-Defined Function 

Statements in a user-defined function can be replaced, added, inserted, deleted, or 
edited as follows: 

To replace statement number n, enter [n] and the replacement statement. If 
just [n] is  entered, APL responds with [n], then waits for the replacement 
statement to be entered. If the function header is  to be replaced, enter [O] 
and the new function header. 

To add a statement, enter [n] (n can be any statement number beyond the 
last existing statement number) and the new statement. APL will respond 
with the next statement number, and additional statements can be entered if 
required. 



(I- 

To insert a statement between existing statements, enter [n] and the new state- 
ment. n can be any decimal number with up to 4 decimal digits. For example, 
to insert a statement between statements 8 and 9, any decimal number be- 
tween 8.0000 and 9.0000 can be used. APL will respond with another deci- 
mal statement number and additional statements can be inserted between 
statements 8 and 9 if required. (These and the following statements are auto- 
matically renumbered when the function definition is  closed.) 

Note: The statement number 9999.9999 is  the last valid statement number. 

To delete statement n, enter [An]. 

Note: The [An] and closing 0 cannot be entered on the same line. If the func- 
tion definition is to be closed immediately after a statement has been deleted, 
the closing V must be entered on the next line. 

To edit specific statement, use the following procedure: 

1. Enter [nu] (where n i s  a statement number). Statement n is displayed. 

2. Choose one of the following options: 
a. To change a character, position the cursor (flashing character) a t  the 

b. To delete a character, position the cursor a t  the character to  be 
character to be changed. Enter the correct character. 

deleted. Then press the backspace ( 8) key while holding the 

command (CMD) key. The character a t  the cursor i s  deleted from 
the line and the characters that were to the right of the deleted char- 
acter are moved one position to the left. 

c. To insert a character, position the cursor to the position where the 

PI’ character is  to be inserted. Then press the forward space ( 

key while holding the command (CMD) key. The characters from the 
cursor position to the end of the line are moved one position to the 
right. For example: [I] At1245 should be [I] Ae12345. Position 
the cursor at  the 4 and press the forward space and command (CMD) 
keys simultaneously. The display will look like this: [ I ]  A+l2-45. 
Now enter the 3. 

d. To delete all or part of a line, press ATTN to delete everything from 
the cursor position to the end of the line. 

3. Press EXECUTE. The next statement number i s  displayed. 

Note: If more than one statement number i s  entered on the same line, only the 
last statement number is  used. For example, if a line contained 
[3] [8] [4] ‘NEW LINE’, only statement 4 is  replaced when EXECUTE is pressed. 

149 



Reopening Function Definition 

1 60 

If you want to edit a function that has previously been closed, the function defini- 
tion must be reopened. For example, if function R is  already defined, the function 
definition for function R is reopened by entering V R. The rest of the function 
header must not be entered or the error message DEFN ERROR is displayed 
and the function definition is  not reopened. The 5100 responds by displaying 
[n+l], where n i s  the number of statements in R. Function editing then pro- 
ceeds in the normal manner. 

Function definition can also be reopened and the editing or display requested on 
the same line. For example, VR[3]S+S+1 edits the function by entering the new 
line 3 (S+S+1) immediately. Then the 5100 responds by displaying [4] and 
awaiting continuation. The entire process can be accomplished on a single line: 
VR[3]S+S+1 Vopens the definition of function R, enters a new line 3, and termin- 
ates function definition. VR[O]V causes the entire definition of R to be displayed, 
after which the 5100 returns to execution mode. 

Mote: You cannot reopen the definition of a function, delete a statement, and 
close the function (for example, VR[A4]V) on the same line, since the closing V 
cannot be on the same line as the [An]. 



An Example of Function Editing 

In this example, the user-defined function AVERAGE is  used to show how the 
methods used to revise and display functions work: 

151 



TRACE AND STOP CONTROLS 

APL provides the ability to trace or stop execution of user-defined functions, pro- 
viding the functions are not locked (see Locked Functions in this chapter). 

Trace Control 

Trace control i s  used to display the results of selected statements as a function 
executes. The display consists of the function name followed by the number and 
results of the selected statement. For example: 

,STEVE[l I Z-ResuIt 

Function ' Statement 
Name Name 

Statements to be traced are specified by a trace vector. The format of the trace 
control function i s  TA STEVE'I, where STEVE is the name of the function and 
I is the vector specifying the statement numbers to be traced. For example, if 
TA STEVEc2 3 5 is  entered, the statements 2, 3, and 5 are traced each time 
function STEVE is  executed. TA STEVEtiO must be entered to discontinlie 
the tracing of function STEVE. To trace each statement of the function, enter 
TA STEVEciN, where N is  the number of statements in the function: 

1 52 



I 

Trace control can also be set by statements within a function. These statements 
initiate tracing when a variable contains a certain value. For example: 

Note: The following instruction will establish trace control for the first statement 
of each user-defined function in the active workspace: 

I 

This instruction can be used to find out what functions are called by another 
function. 

The following user-defined function named TRACE will establish a trace vector 
for each statement in a specified user-defined function: 

153 

I 



When executing the function TRACE, the argument must be entered in single 
quotes. For example: 

:; 'r' 1:: v E: f: 2 3 14. 4 

::; 'I' E f  v E c 3 ::I 6 
s 'r' I, v E: E: '4. ::I 8 
:; 'i' 1:: v li. I:: 5 :3 2 0 

'r'hs."E:VE:.. , () 
?3 7' E v 1:: 2 

Each statement of function 
STEVE has been traced. 

2 0 

Stop Control 

Stop control i s  used to stop the execution of a function just before specified 
statements. At each stop, the function name and statement number of the state- 
ment to be executed next is  displayed. The statements are specified by a stop 
vector. The format of the stop control function is  SA STEVEW, where STEVE 
is the name of the function and I is  the vector specifying the statements. After 
the stop, the system i s  in the suspended state (see Chapter 7); execution is 
resumed by entering +nLC (see Chapter 5). SASTEVE+tO (STEVE is  the 
function name) must be entered to discontinue the stop control function. 

Stop control can be set by statements within a function. These statements 
initiate halts when a variable contains a certain value. For example, 
SA STEVE+4xN>8 means stop before statement 4 in function STEVE when 
N is greater than 8. 

Trace control and stop control can both be used in the same user-defined 
function. 



Chapter 7. Suspended Function Execution 

SUSPENSION 

The execution of a user-defined function can be interrupted (suspended) in a var- 
iety of ways: by an error message (see Chapter 11 ), by pressing ATTN (see 
Chapter 11, or by using the stop control vector (see Chapter 6). In any case, the 
suspended function i s  s t i l l  considered active, since i t s  execution can be resumed. 
Whatever the reason for the suspension, when it occurs, the statement number of 
the next statement to be executed is displayed. A branch to the statement num- 
ber that was displayed or a branch to OLC (+OLC, see Chapter 5) causes normal 
continuation of the function, and a branch out (+O) exits the function. 

When a function is  suspended, the 5100 will: 

Continue to execute system commands except )SAVE, )COPY, and )PCOPY. 

0 Resume execution of the function a t  statement n when +n is  entered. 

Reopen the definition of any function that i s  not pendent. A pendent func- 
tion is  a function that called the suspended function. If a function called a 
function that called a suspended function (and so on), it i s  also pendent 
(see State lndicator in this chapter). 

Execute other functions or expressions. 

Note: The display of output generated by previous statements might have been 
interrupted when the suspension occurred. This would be caused by the delay 
between execution of the statement and the display of the output. 

STATE INDICATOR 

The state indicator identifies which functions are suspended (*) and a t  what point 
normal execution can be resumed. Entering )SI causes a display of the state indi- 
cator. Such a display might have the following form: 

s :I: 
HC'7 n % 

G I, 2 1 
F:' I: 3 ::I 

This display indicates that execution was halted just before statement 7 of func- 
tion H, that the current use of function H was invoked in statement 2 of function 
G, and that the use of function G was invoked in statement 3 of F. The * 
appearing to  the right of H[7] indicates that function H is  suspended; the func- 
tions G and F are said to be pendent. 

165 



During the suspension of one function, another function can be executed. Thus, 
if a further suspension occurred in statement 5 of function 0, which was invoked 
in statement 8 of G, a display of the state indicator would be as follows: 

)SI 
Q c 5 ,I j( .  

G I:: 8 1 
1.1 c '7 :I 36 
I; I:: :! 1 
FCJI 

An SI DAMAGE error (see Chapter 11) indicates that a suspended function or 
pendent function has been edited and the normal execution of the suspended 
function can no longer be resumed. Therefore, when an SI DAMAGE error 
occurs, the state indicator display will not include the suspended function name 
(however, the asterisk is s t i l l  displayed). For example, if function 0 is edited 
and the modification causes an SI DAMAGE error, the display of the state 
indicator would be as follows: 

J(. 

No suspended function name i s  displayed. (3 c El : , I  

3 

1 

-> 

3 



I A suspension can be cleared by entering a branch with no argument (that is, +). 
One suspended function i s  cleared a t  a time, along with any pendent functions 
for that suspended function. The first branch clears the most recently suspended 
function, as the following example shows: 

"b 
1 !3 1: 

I.i c 7 3 
G I: 2 :I 
F:' c 3 3 

It is  a good practice to clear suspended functions, because suspended functions 
use available storage in the active workspace. Repeated use of +. clears all the 
suspended functions; as the functions are cleared, they are removed (cleared) from 
the state indicator. When the state indicator is completely cleared, the state indi- 
cator display i s  a blank line. 

Note: To display the state indicator with local names, enter the )SIV command 
(see Local and Global Names in Chapter 6 for more information on the SIV l ist). 

i 
157 



I Chapter 8. Tape and Printer Input and Output 

Input and output involving the tape or printer can be done with an APL shared 
variable, which i s  a specific variable shared between the active workspace and the 
tape or printer. During output operations, the data assigned to the shared variable 
is printed, or is  written on tape. During input operations, data i s  read from tape 
and assigned to the shared variable; the shared variable can then be used in an ex- 
pression in the active workspace. To do tape or printer input or output, the 
following steps must be performed: 

1. Establish a variable to be shared. 

2. Open a data file on tape or specify printer output. 

3. Transfer the data. 

4. Close the data file or terminate the printer output. 

5. Retract the variable being shared. 

ESTABLISHING A VARIABLE TO BE SHARED 

The OSVO function i s  used to establish the variable name(s) to be shared. The 
OSVO function is  dyadic (requires two arguments) and is entered as follows: 

The left argument must be a 1. 

The right argument NAME(S) can be up to eight variables to be shared. If more 
than one name is required, the names must be entered as a character matrix with 
each row representing a name. For example: 

61iRli1..:~-3 J p  ' WNlf:TbJ(3'1'I*~II? ' 
I.? PI n R E: 

-Each row represents a separate variable name. 
ONE 

158 



c, i 

Following are three examples of how the USVO function can be entered: . :I. I::/ :i; v c1 ' w:r A 'I' A ' 

0 Sl-lhRE4-3 :I. fS ' ARI:: ' Establishes three names (A, B, 
1 /::I !j v Q !:; 1-1 A I? iii: and C )  to be shared. 

The 5100 will respond with a 2 for each shared variable that i s  successfully estab- 
lished and a 0 or 1 for each variable that i s  not. If a 1 i s  displayed, a value other 
than 1 was specified as the left argument for the OSVO function. In this case, the 
variable name must be retracted (see Retracting the Variable Name being Shared 
later in this chapter) and reestablished as a shared variable before it can be used 
for input/output. If a 0 is displayed, an error message (see Chapter 11) will also 
be displayed. 

Note: The instruction +/OtOSVO ONL 2 will display the existing number of 
shared variables in the system, and the instruction (0t:OSVO ONL 21411 ONL 2 
will display the existing shared variable names. 

OPENING A DATA FILE OR SPECIFYING PRINTER OUTPUT 

The first value assigned to the shared variable must be information required to  
open a data file on tape or to specify printer output. When opening a data file, 
this information specifies the following: 

Data to be transferred to tape or from tape 

Device/file number 

File ID 

Data format to be used 

Note: If this information has already been assigned to  a variable name that i s  
being used as the right argument for the USVO function, the 5100 will establish 
the variable name to be shared, then open the data file or specify printer output. 
In this case, there i s  no return code assigned to the shared variable to indicate if the 
operation was successful or not. The return codes are described later in this chapter. 

159 



This information must be character data (enclosed in single quotes) and must be 
entered with a blank between each parameter, as follows: 

IN 
or 
OUT 

- name + or device/file number 
ADD 
or 
PRT 

where: 

- name is the name of the variable being shared. 

- IN specifies that the data i s  to be transferred from tape into the active 
workspace. 

- OUT specifies that the data is  to be transferred to a tape file. 

- ADD specifies that the data i s  t o  be transferred to an existing tape file, 
following the last record in that data file. 

- PRT specifies that the data i s  t o  be printed. 

Note: When PRT is  specified, the only other information that can be speci- 
fied i s  MSG=OFF (which is  defined later). 

device/file number specifies the tape unit and file number. For example: 

1003 

-Tape Unit 1 

Note: I f  fewer than four digits are used, tape unit 1 is  assumed, and the 
value entered represents only the file number. 

ID=(file ID) (optional) specifies from 1 to 17 characters enclosed in 
parentheses: 

For an IN or ADD operation, the entry (file ID) i s  compared to  the file ID in 
the file header; the open fails if they do not match. 

0 For an OUT file, the entry (file ID) i s  put in the file ID field of the file header 
(see the )LIB command in Chapter 2). If the ID=(file ID) parameter is  not 
specified, the characters DATA are put in the file ID field. 

It i s  a good practice to give the data files meaningful names; for example, a 
f i l e  that contains sales data could be named SALES. Also, any blanks within 
the 17 characters become part of the file ID. 

Note: To do an OUT operation to an existing data file (write new data 
over the existing data), the file ID specified must match 1:he existing file 
ID for the data file. 

160 



MSG=OFF (optional) specifies that no error message i s  to be displayed for 
nonzero return codes (see Rerurn Codes in this chapter). 

A 
or 
I 

TYPE=or (optional) can only be specified for OUT operations. It specifies the 

- i  
data format to be used when writing data to tape: 

0 When TYPE=A is  specified, the APL internal data format i s  used; that is, 
the data is  written on tape in the same format that it i s  stored in, in the 
active workspace. 

0 When TYPE=I or TYPE=Il i s  specified, the interchange data format is  used. 
When the interchange data format i s  used, only character scalars or vectors 
can be assigned to the variable being shared. Therefore, when storing nu- 
meric data or arrays on tape using the interchange data format, the data 
must first be changed to a character scalar or vector (see the ip function 
in Chapter 4). 

The following items apply to an interchange data file that i s  used by both 
the 5100 APL and BASIC languages: 

All data items must be separated by commas. For example, the numeric 
vector 1 3 5 6 must be changed to character data, then commas placed in 
the blank positions. 

Negative signs must be replaced by minus signs. 

Enclosing single quotes must be part of any data that represents character 
constants. Also, any embedded quotes in the character constant must be 
represented by double quotes. 

Note: The 5100 BASIC language accepts only the first 18 characters in 
each character constant. 

The 5100 BASIC language creates a logical record for each PUT statement 
or each row of an array with a MAT PUT statement. 

0 When TYPE=12 is  specified, the general interchange data format i s  used; it 
i s  the same as TYPE=) (and TYPE 11) except that the data file can also be 
used as a BASIC language source file. 

Note: The data format can be specified only for an OUT operation. For IN 
or ADD operations, the data format i s  specified by the data file type (see 
)LIB command in Chapter 2). If the data format is not specified for an OUT 
operation, the APL internal data format (TYPE=A) is used. 

CAUTION 
If the tape cartridge i s  removed from the 5100 when an OUT or ADD file i s  
open, the file will be unusable. See Closing a Data File or Terminating the 
Printer Output in this chapter for information on how to close a data file. 

161 



The following four examples, using an APL shared variable named EXAMPLE, 
show how the information required to open a data file or specify printer output 
can be entered: 

is to be used. 

The value TEST2 will be placed 

t t  

File 3 on tape unit 1 (assumed) is to be opened. 

t The value TEST will be compared 

I to the file header field. 

File 1 on tape unit 1 i s  to be opened. 

-Data is  to be transferred from tape 
into the active workspace. 

tFile 3 on tape unit 1 (assumed) i s  to  be opened. 

I D a t a  is to be transferred into an existing file on tape. 

Note: Since the file ID was not specified, no value is compared to the file 
header field. 

EXAMPI..,E+. ‘ PR‘r MSG::-C)I”’t: ’ 

tNo error messages will be displayed 
for nonzero return codes. L Data is  to be printed. 

After the information has been entered, a code (2-element vector) that indicates 
whether the operation was successful or not i s  assigned to  the shared variable. A 
return code of 0 0 indicates the operation was successful, and a nonzero return 
code indicates that the operation failed. See Return Codes in this chapter for a 
description of each return code. 

1 62 



TRANSFERRING DATA 

c ': 

After the data file has been opened or printer output specified, data can be trans- 
ferred using the shared variable. (An example using tape and printer input/output 
is  shown later in this chapter.) 

Transferring Data to Tape (OUT or ADD Operation) 

When data is assigned to the shared variable, the data is  written on tape and a 
return code i s  assigned to the shared variable. A 0 0 return code means the data 
was transferred successfully and a nonzero return code means the transfer of 
data failed. See Return Codes in this chapter for a description of each return code. 

Transferring Data from Tape (IN Operation) 

When data is  transferred from tape, the data i s  read from tape and i s  assigned to 
the shared variable in the same sequence as it was written to tape. New data is  
read from the tape file and assigned to the shared variable each time the shared 
variable is  used. (There i s  no return code assigned to the shared variable after an 
IN operation.) 

When doing an IN operation with an interchange data file, the following condi- 
tions occur if a cursor return character (X'9C') or end-of-block character (X'FF') 
was embedded in a character vector that was written to tape: 

0 If a cursor return character was embedded in the character vector, the data 
will be read from tape in a different sequence than it was written to tape. 
This condition occurs because as the interchange data is  written to tape, the 
system writes an end-of-record character (X'9C') after each character vector 
(record) that was written to tape. The end-of-record character and the cursor 
return character are the same. When used on tape, this character separates the 
data (records) so that it can be read from tape in the same sequence as it was 
written to tape. However, if a cursor return character i s  embedded in the data 
that was written to tape, the system will recognize it as an end-of-record char- 
acter when the data is  read from tape. 

If an end-of-block character was embedded in the character vector, any data 
from the embedded end-of-block character to the next physical record i s  not 
read from tape. This condition occurs because the system looks a t  the tape in 
512-byte segments (one physical record). A physical record can be terminated 
by an end-of-block character (X'FF'). When the system i s  reading data from 
the tape and an end-of-block character is  encountered, the system skips to the 
next physical record and continues reading data. Therefore, if an X'FF' char- 
acter is embedded in the data that was written to tape, the system recognizes 
it as an end-of-block character when the data i s  read from tape and skips 
ahead to the next physical record. 

163 



Transferring Data to the Printer (PRT Operation) 

When data (character data only) is  assigned to the shared variable, it i s  printed 
and a return code is  assigned to the shared variable. A 0 0 return code indicates 
the data was printed successfully and a nonzero return code indicates the opera- 
tion failed. See Return Codes in this chapter for a description of each return code. 

Note: The )OUTSEL OFF command i s  automatically issued by the system when 
doing PRT operations. The )OUTSEL option will return to i t s  previous setting 
after the PRT operation has been terminated (PRT termination is  discussed next). 

CLOSING A DATA FILE OR TERMINATING THE PRINTER OUTPUT 

Transferring an empty vector will close the data files or terminate the printer out- 
put and a final return code will be issued. A 0 0 return code indicates the file 
was closed or printer output was terminated successfully. See Return Codes in 
this chapter for a description of each return code. Also, for an IN operation, the 
file i s  closed and a return code i s  issued if an error occurs due to the device or i f  
an end-of-file empty vector is  returned. 

CAUTION 
For OUT and ADD operations, if the tape cartridge is removed from the 5100 
before a data file i s  closed, the data in the file will be unusable. 

After a data file has been closed, another data file can be opened by assigning 
the information required to open a file to the shared variable. Once the tape and 
printer input and output operations are done and the data files are closed or print- 
ing i s  terminated, the variable name being shared should be retracted. How to re- 
tract the variable name i s  discussed next. 

RETRACTING THE VARIABLE NAME BEING SHARED 

The OSVR function i s  used to retract a variable name being shared. That is, once 
the USVR function has been used successfully, the variable name s t i l l  exists as 
an APL variable, but it cannot be used to transfer data to tape or printer, unless 
it i s  reestablished as a shared variable, The OSVR function i s  monadic (takes one 
argument) and i s  entered as follows: 

where NAME(S) can be the names of up to  eight variables. If more than one name 
is  required, the names must be in a character matrix with each row representing a 
name (see Esrablishing a Shared Variable earlier in this chapter). 

The 5100 will respond with a 2 (or a 1 if the left argument for the USVO func- 
tion was not a 1 -see Establishing a Variable to be Shared in this chapter) for each 
variable name that i s  successfully retracted and a 0 for each variable name that i s  
not successfully retracted. Normally, if a variable name cannot be successfully 
retracted, it was never properly established as a shared variable. 

Note: If the OSVR function is  used before a file i s  closed, the system will auto- 
matically close the file. 

164 



RETURN CODES 

c, 

Return codes assigned to the shared variable when doing input/output operations 
indicate whether or not the operation was successful. If the return code is  non- 
zero and MSG=OFF was not specified, an error message is  also displayed. 

Operation of the system does not stop when a nonzero return code i s  assigned. 
Therefore, if you have a user-defined function that i s  doing input/output opera- 
tions, the user-defined function should check the return code that was assigned 
to the shared variable to make sure each operation i s  successful. 

Following is a description and/or user's response for each return code and error 
message: 

Code 

0 0  

1 0  

2 0  

3 0  

4 0  

5 0  

6 0  

Error Message 

INVALID FILE 

INVALID DEVICE 
or 

INVALID DEVICE NUMBER 

INVALID FILE NUMBER 

NOT WITH OPEN DEVICE 

INVALID PARAMETER 

7 0  WSFULL 

8 0 DEVICE NOT OPEN 

Description and/or User's Response 

Operati on successful. 

Device error; the second element 
i s  the error code (see 
ERROR eee ddd in Chapter 11 1. 

The specified file cannot be used 
for input/output operations. 

Enter tht? information required to 
open the file again, using device 
number 1 or 2. 

Enter the information required to 
open the file again, using a valid 
file number. 

The specified device i s  already being 
used for input/output operations; 
the existing open file must be closed 
before another file can be opened. 

The information required to open 
the file was entered incorrectly; 
enter it again, correcting any key- 
ing errors. 

Use the )ERASE command to erase 
any unwanted objects; then enter 
the information required to open 
the file again. 

Open the file. 

165 



Code Error Message 

9 0  

10 0 EXCEEDED MAXIMUM 
RECORD LENGTH 

11 0 INVALID DATA TYPE 

Description and/or User's Response 

This return code is only a warning; 
an empty vector was read from tape, 
but the empty vector i s  not the 
end-of-file empty vector. 

This error was probably caused by 
the tape being removed before the 
file was closed. The remaining data 
in the file cannot be read. 

The wrong type of data was used; 
for example, noncharacter data was 
sent to an interchange file, non- 
character data was used as the in- 
formation required to open a file, 
or noncharacter data was sent to 
the printer. 

AN EXAMPLE USING TAPE AND PRINTER INPUT/OUTPUT 

In this example, file number 11 on tape unit 1 will be used as a data file. First, 
a variable name must be established to be shared and the data file opened so that 
data can be written to the file (OUT operation): 

File 11 is  an unused file. I--- 
0 :1 s. 
2 

O (I O ') Establish a variable name 
1. I::lsUu ' SI-IARE: 'Wt0 be shared. 

N- Open the data file. 

Check the return code 
that was assigned to  
the shared variable. 

!;HAl?Ec' C1I.J.T' I.(l: lS.  :lXl:::( l:NV%3!'T'C)ilY 3 ' 
s 1-1 A I? E: -- 

0 0 'The file was opened 
successfully . 

166 



, 

i. 

Now, as data is  assigned to the shared variable, it is transferred (written) to  the 
data file: 

If more data i s  to be added to an existing data file but the file i s  closed, a vari- 
able name must be established to be shared and the data file opened again: 

Mote: In this example, the variable name SHARE has not been retracted and can 
s t i l l  be shared. 

These records are added 
following the existing 
records in the file. '' ' 

Since no more data is  to be written on tape, the shared variable should now be 
retracted: 

I] s v I? ' s 1.i A R E  ' 
2 

167 



168 

The variable names to be shared must be established again and the data file 
opened. Also, printer output must be specified: 



Now, when the function PRINT is executed, the data file is  read, displayed, and 
printed : 

I:' R 1: N '1' 

After the operation is complete, the shared variable names should be retracted: 

169 



Chapter 9. More Things to Know About the 5100 

170 

DATA SECURITY 

You are primarily responsible for the security of any sensitive data. After you 
are through using the 5100, the data in the active workspace can be removed by 
one of the following: 

0 Using the )CLEAR command to clear the active workspace 

0 Pressing the RESTART switch 

0 Turning the POWER ON/OFF switch to off 

There are several methods available for protecting or removing sensitive data on a 
tape. These methods are: 

0 Assigning a password to the workspace when writ'ing the active workspace on 
tape. 

Rewriting a tape file, which makes the old data inaccessible. 

0 Filling a data file with meaningless data. For example, the following user- 
defined function fills file 4, a data file named DATA on tape 1, with zeros: 

Mote: ERROR 010 ddd will be displayed after the data file has been filled with 
zeros. 



5100 STORAGE CAPACITY 

The base 5100 (Model A l l  has a storage capacity of 16K (K = 1024 bytes). 
Figure 4 shows how this storage is allocated for various requirements. Notice 
that the workspace available to the user (active workspace) is 10,600 bytes, 
while the remaining bytes are used for internal purposes. The storage capacity 
is  increased in the following models of the 5100: 

Model A2 is  32K 
Model A3 i s  48K 
Model A4 is  64K 

In these models, all additional storage i s  allocated to  the active workspace. 
For example, on the Model A4, the active workspace is approximately 60,000 
bytes. 

T- 
i 
\.- 

10,600 
Bytes t 5784 Bytes 

L 

I Active Workspace 

51 00 Internal Storage Requirements for Pointers, 
Counters, etc 

I 

Note: The symbol table requires eight bytes of storage for 
each symbol allowed in the active workspace (see )SYMBOLS 
in Chapter 2). 

Figure 4. Storage Allocation for a Model A1 5100 

171 



Page of SA21-9213-0 
issued 15 September 1975 
By TN L: SN21-0247 

Storage Considerations 

The following l i s t  shows how many bytes of storage are required for each data 
type that can be in the active workspace: 

Data Type Number of Bytes Required 

Character constant or variable name 1 byte per character 

Whole numbers that are equal to or 
less than 231-1 

4 bytes 

Whole numbers that are greater than 8 bytes 
231-1 

Decimal numbers 8 bytes 

Logical data 1/8 byte (1  byte can contain 8 
ones or zeros) 

Because the 5100 active workspace contains a fixed amount of storage, it i s  good 
practice to  conserve as much storage as possible. Following are some considera- 
tions that can be used to conserve storage: 

Make a l l  objects (variables and user-defined functions) not required for use out- 
side of a user-defined function local to the function. 

0 Store data in data files on the tape, and use an APL shared variable (see 
Chapter 8) to transfer the data into the active workspace when required. 

Clear suspended functions (see Chapter 7) from the active workspace. 

Group user-defined functions by related operations and store each group into 
a workspace file on tape. Then when a certain group of related functions is  
required to  process data in the active workspace, the stored workspace contain- 
ing these functions can be copied into the active workspace. When the pro- 
cessing is  done, the functions can be expunged (see Chapter 5) and another 
group of functions (one workspace) can be copied into the active workspace. 

0 I f  a value consists of al l  ones and zeros, store the value as logical data. For 
example, you have the following vector: 

v E: C r'C1 I4 f- 1. 0 I!> 2 ...' :I. > 
v E: (:: 'r' I3 17 

I. :I. I 3. :I. :I. 3. :I. 3. 

The result i s  a vector of 10 ones, and each 1 requires four bytes of storage. 
However, the vector can be changed to  a logical vector as follows: 

v E: c 'I' (:I 14 4- 1 A v I:.:: C: *i' (:I r4 
v E: I:: T (3 li 

:I. 1. :I. 1. 1. I. I. :I. :I. :I. 

The result looks just like the previous result; however, only 2 bytes of  storage 
was required. 

' I  

172 



Page of SA21-92134 
Issued 15 September 1975 
By TNL: SN21-0247 

0 Names of 3 characters or less require 8 bytes of storage in the symbol table 
(the symbol table i s  part of the active workspace where the names of all the 
symbols, including variables, user-defined functions, and labels, are stored). 
Names of 4 characters or more require an additional 8 bytes plus 1 byte for 
each character in the name. 

Note: Even if an object is erased from the active workspace, the storage used 
for i t s  name will not be available for use unless the contents of the active 
workspace are written to tape with a )SAVE command and then loaded or 
copied back into the active workspace. 

0 Identical names that are local to more than one user-defined function do not 
require additional symbol-table space for each function. 

When the contents of the active workspace are written to tape using the 
)CONTINUE command, then the stored workspace is loaded into a 5100 
with a larger active workspace, the amount of available workspace (see OWA 
system variable in Chapter 5) remains the same as it was when the contents of 
the active workspace were originally written to tape. To take advantage of the 
additional storage in the larger active workspace, write the contents of the active 
workspace to tape using the )SAVE command, then load the stored workspace 
back into the 5100. 

TAPE DATA CARTRIDGE HANDLING AND CARE 

0 Protect the tape data cartridge from dust and dirt. Cartridges that are not 
needed for immediate use should be stored in their protective plastic envelopes. 

0 Keep data cartridges away from magnetic fields and from ferromagnetic mater- 
ials that might be magnetized. Information on any cartridge exposed to a 
magnetic field could be lost. 

0 Do not expose data cartridges to excessive heat (more than 130' F) or sunlight. 

0 Do not touch or clean the tape surface. 

0 If a data cartridge has been exposed to a temperature drop exceeding 30' F since 
the last usage, move the tape to i ts  limits before using the tape. The procedure 
for moving the tape to i ts  limits is: 

1. 

2, 

Use the )LIB command to move the tape to the last marked file. 

Use the )MARK command to mark from the last marked file to the end of 
the tape. For example: 

)MARK 200 1 n 

where n is the number of the last marked file, plus one. 

When ERROR 012 (end of tape) is displayed, use the IREWIND command 
to rewind the tape. 

3. 

173 



Page of SA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

Chapter 10. The 5103 Printer 

POWER ON/OFF Switch 

174 

The IBM 5103 Printer i s  available as a feature attachment and has these 
characteristics: 

Bidirectional printing (left to right, then right to lef t ) .  The 5103 bidirectional 
printing operates as follows: 

The print head moves from the left margin and prints a line. Succeeding lines 
will be printed in either direction depending on which end of the new line i s  
closest to the current position of the print head. The print head will be 
returned to the left margin periodically when printing i s  not imminent. 

0 132 characters across the print line. 

More: I f  the width of the forms is less than 132 characters and the IJPW 
system variable (see Chapter 5) i s  greater than the width of the forms, 
loss of data will occur as the print head leaves the form. 

0 Capability of using individual or continuous forms. Maximum number of 
copies is  six, but for optimum feeding and stacking, IBM recommends a 
maximum of four parts per form. 

0 Adjustable forms tractor that allows the use of various width forms. The 
forms can be from 3 to 14.5 inches (76.2 to 368.3 mm) wide for individual 
forms and from 3 to 15 inches (76.2 to 381 mm) wide for continuous forms. 

0 Print position spacing of 10 characters per inch and line spacing of six lines 
per inch. 

Stapled forms or continuous card stock cannot be used. 

0 The character printing rate is 80 characters per second. The throughput in 
lines per minute i s  function-dependent. 

0 A vernier knob (located on the right side of the printer) that allows for fine adjust- 
ment of the printing position, This knob should only be used when the print head 
is in i t s  leftmost position. 



Page of SA21-92134 
Issued 15 September 1975 
BY TNL: SN21-0247 

The following sections describe how to insert forms and replace ribbons in the 
51 03 Printer. 

HOW TO INSERT FORMS 

Forms Guide Rack 
(in lower position) 

Forms Path for Singlepart Forms 

orms Guide Rack 

Pla 

\ / Forms Path for Multipart Forms 

Friction' Feed Rolls 

Form Guide Rack 

I 

I Plastic'Shield I 
Print Head Paper Release Lever 

The diagrams at the left show the proper forms path 
for singlepart and multipart forms. The steps to 
insert forms begin below. 

4. 

Pivot the plastic shield forward. 

Push the print head to  the extreme left position. 

For singlepart forms, pivot the form guide rack 
up and forward to a vertical position. For multi- 
part forms, leave the form guide rack in the 
horizontal position. 

Push the paper release lever to the rear to acti- 
vate the friction feed rolls. 

175 

I 



Page of SA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

Tractors 

A 
5. 

6. 

7. 

8. 

9. 

10. 

Platen 

Tractor Cover and Pins 
I 

Roliers 

11. 

12. 

13. 

14. 
Paper-Advance Knob 

I 15. 

Right Tractor Knobs I Paper- Adiance Knob 

Tractor Cover and Pins 

16. 

17. 

Place the forms in position behind the printer. 

Note: The forms must be positioned behind the 
printer so that the forms feed squarely into the printer. 

Thread the paper down, over the rollers, behind the 
tractors, and behind the platen. 

Turn the paper-advance knob to move the paper around 
the platen until you can grasp it with your fingers. 

Open both tractor covers. 

Pull the paper release lever forward to disengage the 
friction feed rolls. 

Pull the paper up and place the left margin holes over 
the tractor pins. Be sure the left tractor is  in i t s  left-  
most position. 

Close the le f t  tractor cover. 

Squeeze the two knobs on the right tractor and slide 
the tractor to align the pins with the right margin holes. 

Place the right margin holes over the tractor pins. 

Close the right tractor cover. 

For singlepart forms, pivot the form guide rack to a 
horizontal position. 

Turn either paper-advance knob to position the form 
for the first line to be printed. The paper should 
exit over the form guide rack. 

Note: To move the form backward, turn either 
paper-advance knob backward and pull the form 
from behind the printer to keep the form from buck- 
ling a t  the print head. 

Close the plastic shield. If you are installing the 
printer, return to step 7 of Printer Installation 
Procedures. 

CAUTlO N 
The switch that senses end of forms is deactivated 
friction feed rolls are engaged. Thus, the print wir 
hit the base platen if no forms are in the printer. 

when the 
'es could 

176 



HOW TO ADJUST THE COPY CONTROL DIAL FOR FORMS THICKNESS 

Copy Control Dial 

I 

HOW TO REPLACE 

Forms Tractor 

A RIBBON 

Power On Switch Printer Cover 

If you are using singlepart forms, set the copy 
control dial on 0. 

If you are using multipart forms and the last sheet 
is  not legible, rotate the copy control dial toward 0 
one click a t  a time to obtain the legibility you desire. 

If you are using multipart forms and the ribbon is  
smudging the first sheet, rotate the copy control 
dial toward 8 one click a t  a time until smudging 
stops. 

Turn off power to the printer. 

Tilt the forms tractor back by 
front. 

Raise the printer cover. 

lifting both sides at  the 

177 



Print Head 
Feed Roll 
Release Knob 

4. 

5. 

6. 

7. 

8. 

9. 

Ribbon Loop Ribbon 'Box Cover 

Print Head Coil 

10. 

11. 

I 
Loop 

I 
Ribbon Box 

12. 

13. 

Be sure that the print head i s  to the extreme left. 

Turn the feed roll release knob counterclockwise until 
it points to the right. 

Open the ribbon box cover 

Put on the gloves supplied.with the new ribbon. 

Remove the old ribbon from the guides being careful to 
disengage it from the clip on the print head. 3 \ 

Lay the ribbon loop on the top of the ribbon in the rib- 
bon box. Pick up the entire ribbon and discard it. 

Disk 
I 

Ribbon Holder 

Eject the new ribbon from i t s  holder into the ribbon 
box by pressing on the disk. 

Remove the disk from the ribbon and discard the disk 
and the holder. 

Hold the coil lightly with one hand and pull about 10 
inches (254 mm) of ribbon from the coil. 

Form a loop from the ribbon across the print head. 

178 



Upper 
Guide Post Platen Feed Rolls 

Release Knob 

Guide Post Guide Shoe Slot Ribbon BOX 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

22. 

23. 

Thread the part of the loop nearest the platen between 
the feed rolls and on the inside of the upper guide post. 

Turn the feed roll release knob clockwise to close the 
feed rolls. 

Thread the ribbon between the print head and the platen. 
Be sure the ribbon is under the clip on the print head. 

Thread the other part of the loop through the slot in the 
bottom of the ribbon box. 

Thread the ribbon through the guide shoe and around 
the left guide post. 

Insert the horizontal part of the ribbon twist (bottom 
edge first) between the two horizontal guides. 

Move the print head back and forth across the 
platen to remove the slack from the ribbon. Con- 
tinue moving the print head until you are sure 
that the ribbon feeds properly. 

Close the ribbon box cover. 

Close the printer cover and turn the power on. 

Reposition the form tractor. 

179 I 



Error messages can result when using APL primitive (built-in) functions, user- 
defined functions, system commands, system variables, or input/output opera- 
tions. The following l i s t  contains the APL error messages along with some pos- 
sible causes for the error condition and a suggested user's response: 

Error Message Cause User's Response 

ALREADY MARKED The specified file was previously marked. If the file is  to be remarked, enter GO. 

Note: Any existing data in the files 
following the last re-marked file will no 
longer be available. 

CHARACTER E R R O R  

DEFN ERROR 

DEVICE NOT OPEN 

DEVICE TABLE FULL 

180 

An invalid character was entered. 

An invalid request to use the function 
definition mode was made: 

A V symbol was erroneously used in 
a statement. 

0 An attempt was made to reopen a 
locked function. 

An attempt was made to reopen a 
function using more than just the 
function name. 

An attempt was made to open a new 
function definition using the name of 
a previously defined global variable name. 

An invalid edit request was made in 
function definition mode. 

0 An attempt was made to edit a pen- 
dent function. 

An attempt was made to read a data file 
and the file is  not open. 

An attempt was made to establish more 
than eight variable names to be shared 
for tape or printer input/output. 

Enter a corrected statement. 

If the statement was intended to open or 
close a function, the V is valid only in the 
beginning and ending positions. 

Enter a corrected statement. 

Enter a different function name or erase 
the global variable. 

Enter a valid edit request. 

If the suspended function execution can be 
terminated, clear the state indicator (see 
Chapter 71, then edit the function. 

Assign the information required to open the 
file to the shared variable. 

Retract any unused shared variable names. 



Page of SA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

Error Message Cause User's Response 

ERROR eee ddd eee i s  the error code for an input/output device operation and ddd is  the device number. 
The device numbers are: 500-printer; 001 -built-in tape unit; 002-auxiliary tape unit. 
Following is  a l is t ,  cause, and user's response for the input/output device error messages: 

ERROR 002 ddd Command error. \ (l) 1 ERROR 003ddd 

1 ERROR 004 ddd 

Tape error. 

Tape error. i 
ERROR 005 ddd 

' (-) ERROR 006 ddd 

The tape cartridge is  not inserted in 
the indicated tape unit. 

An attempt was made to write on a tape 
that is  file-protected. (The SAFE switch 
on the tape cartridge is  in the SAFE 
position.) 

ERROR 007 ddd 

ERROR 008 ddd 

ERROR 010 ddd 

ERROR 011 ddd 

ERROR 012 ddd 

ERROR 013 ddd 

ERROR 014 ddd 

Tape read error. 

The tape cartridge was probably removed 
from the tape unit when data or a work- 
space was being written to tape. The 
data in the file cannot be used. 

Data is  to be written to a data file, but 
a l l  the space in the file has been used. 

An attempt was made to write the active 
workspace on tape with a )SAVE 
command, but the specified file could 
not contain al l  the information from the 
active workspace. 

A file number was specified that has 
not been marked. 

The end of the tape has been reached. 

The specified device is  not attached. 

Device error. 

Performing tape operations with an un- 
MARKed cartridge will cause error 004. 
Otherwise, try the operation again. If the 
error occurs a second time, call your ser- 
vice representative. 

Insert a tape cartridge and try the 
operation again. 

If you want to write on the tape, turn the 
SAFE switch on the tape cartridge off of 
the SAFE position. 

Use the )PATCH command and Tape 
Recovery program (see Chapter 2) to 
recover as much data as possible. 

Try the operation again. If the error 
occurs again, copy the files following the 
file that caused the errors onto another 
tape. Then use the )MARK command and 
re-mark the tape from the file that caused 
the error. 

Use the )MARK command to format a 
larger file and do the operation again. 

Use a larger file to save the active 
workspace. 

Specify the correct file number or use the 
)MARK command to mark the tape. 

Use another tape cartridge. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

ERROR 050 ddd The printer has run out of forms. Insert forms in the printer (see Chapter 10). 

181 



Page of SA21-9213-0 
Issued 15 September 1975 
6 v  TNL: SN21-0247 

ERROR 052-059 ddd 

DOMAIN ERROR 

EXCEEDED MAXIMUM 
RECORD LENGTH 

IMPLICIT ERROR 

INCORRECT COMMAND 

Cause User‘s Resp 

The printer POWER ON/OFF switch i s  
turned off. 

Printer errors. 

The function indicated by the caret ( A )  

cannot operate on the arguments given: 

0 The result exceeds the capacity of 
the 5100 (<5.3976E-79 or 
>7.237E75). 

A character argument cannot be used 
in an arithmetic operation. 

The argument is  not mathematically 
defined for the function (12+0). 

0 Numeric and character data cannot 
be joined together. 

An error occurred in a locked function. 

The tape was removed before the data 
file was closed during a tape input/ 
output operation. 

The system variable that precedes the 
error message was previously assigned 
an invalid value or was undefined in a 
function due to the system variable 
being made local to the function. 

Note: This error message i s  not displayed 
until the system variable in error is used 
by the APL system. 

A system command was entered 
incorrectly: 

0 The command keyword was not a 
valid keyword. 

0 One of the parameters was entered 
incorrectly. 

0 Too many parameters were entered 
for the command. 

182 

$3 Turn the POWER ON/OFF switch on. 

Try the operation again. If the error 
occurs a second time, call your service 
representative. 

Determine the correct arguments for the 
function in error. Then correct the state- 
ment in error. 

‘I/ 

The data in the f i le  cannot be used. 

Assign a valid value to the system variable 
(see Chapter 2). 

Enter the command in i t s  correct form. 



Cause Error Message 

INDEX ERROR 

\ INTERFACE QUOTA 
EXHAUSTED 

INTERRUPT 

The index values given are outside the 
boundaries of the array or a primitive 
function or APL operator being sub- 
scripted by index [I] has been given 
an argument that does not have an I 
dimension. 

th 

An attempt was made to establish more 
than eight variable names to be shared 
for tape or printer input/output. 

Attention was pressed twice when the 
5100 was processing data or an invalid 
tape input/output operation was 
attempted. 

INVALID DATA TYPE Only interchange data can be used, but 
there was an attempt made to use data 
that is  not a character scalar or vector. 

c- I 
INVALID DEVICE 

INVALID DEVICE 
NUMBER 

INVALID FILE 

An attempt was made to open a data 
file with other than character data. 

A device was specified that does not 
exist or is  incorrect for the operation 
to be performed. 

A device number that does not exist 
was specified. 

The file type is  not valid for the 
attempted operation. For example, 
an attempt was made to load a data 
file or read a workspace file. 

An attempt was made to load or copy 
a damaged file. The file was probably 
damaged by the tape being removed 
from the tape unit before a save 
operation was complete. 

The wrong file ID was specified. 

indexed, determine the rank(s) ( p  p A) of 
i t s  argument(s1; then check the index to  
see if it is equal to or less than the re- 
quired rank. 

Check the index origin (010) to  ensure 
that it i s  consistent with the statement 
being executed. 

Retract any unused shared variable names. I 

I f  an invalid tape input/output operation 
was attempted, check the file open infor- 
mation to make sure the file was opened 
correctly. 

Change the data to a character scalar or 
vector. 

Enclose the information required to open 
the data in single quotes. 

Specify the correct device number. 

Specify the correct device number. 

Use the )LIB command to determine the 
file type. 

The data in the file is unusable. The file 
can be dropped (use the )DROP command) 
and reused. 

Use the )LIB command to  find the correct 
file ID and reenter the statement. 

183 



Error Message Cause 

INVALID FILE NUMBER The file number 0 was specified for a 
)LOAD, )SAVE, )CONT, )DROP, 
)COPY or )PCOPY command. 

An attempt was made to open a data 
file, but the file number was not valid. 

INVALID OPERATION An invalid tape inputloutput operation 
was attempted. This message i s  followed 
by an INTERRUPT error message. 

INVALID PARAMETER A keying error was made or an incorrect 
parameter was specified when entering 
the information required to open a data 
file or specifying printer output. 

A keying error was made when entering 
the parameters for a system command. 

LENGTH ERROR 

LINE TOO LONG 

NONCE 

NOT COPIED: names 

The shapes of the two arguments are 
not valid for the function indicated by 
the caret ( A  1. 

An attempt was made to edit a statement 
(in a user-defined function) that i s  greater 
than 1 15 characters. 

An attempt was made to save a work- 
space that contained a user-defined func- 
tion with a statement having more than 
11 5 characters. In this case, the error 
message is  preceded by the function name 
and the statement number that caused 
the error. 

An I-beam function was used. These 
functions are not used in the 5100 APL 
system. 

A )PCOPY was issued, but each object 
named in the message was not copied. 
The active workspace already contained 
a global object with the same name. 

User’s Response 

Reenter the command specifying the 
correct file number . 

Use the )LIB command to find the correct 
file number. Then reenter the information 
required to  open the data file. 

Check the file open information to make 
sure the data file was opened correctly 
or make sure you are using the shared 
variable correctly. 

Enter the file open information or system 
command again, correcting the keying 
errors. 

Make sure the arguments are valid for the 
function. Then reshape (restructure) the 
arguments. 

Break the statement up into two state- 
ments or use the OCR and OFX functions 
to edit the statement. 

Use the OCR function to make the user- 
defined function a matrix; then save the 
workspace on tape. 

Do not use the I-beam functions. 

Issue a )COPY command i f  the named 
objects should be copied. 

184 



Error Message Cause User’s Response 

NOT FOUND: names A )ERASE command was issued, but 
the global objects named in the message 
were not found in the active workspace. 

A )COPY or )PCOPY command was 
issued, but the specified global object 
does not exist in the specified workspace. 

NOT SAVED, THIS WS A )SAVE command was issued but the 
stored workspace ID is not the same as 
the active workspace ID. 

IS workspace ID 

NOT WITH OPEN DEVICE An attempt was made to issue a system 
command or open a file on a tape unit 
that i s  already being used for input/out- 
put operations. 

A )OUTSEL command was issued, but 
printer output has been specified for a 
shared variable. 

NOT WITH SYSTEM An attempt was made to do an opera- 
tion other than )CLEAR after a 
SYSTEM ERROR occurred. 

ERROR 

NOT WITH SUSPENDED An attempt was made to do a )SAVE, 
)COPY, or )PCOPY operation and the 
active workspace contains a suspended 
function. 

FUNCTION 

RANK ERROR An attempt was made to use a function 
that requires the rank of the arguments 
to conform, but they do not. For 
example, a function requires the rank 
of the arguments to be the same, but 
they are not. 

Reissue the command using the correct 
object names. 

Reissue the command using the correct 
object name or stored workspace. 

Use the correct ID or change identifica- 
tion of the active workspace, using the 
)WSID command; then reissue the )SAVE 
command. 

Close the data file or wait until the input/ 
output operation is  complete before 
issuing the command or the file open 
information again. 

Retract the printer shared variable. 

(see SYSTEM ERROR) 

Clear the suspended function by using 
+ (right arrow). 

An attempt was made to use an argument 
whose rank is too large for the operation. 

Make sure the arguments are valid. Then 
reshape (restructure) the arguments so that i they have the correct rank (ppA). 

The number of semicolons in the index 
does not equal the rank minus 1. 

Use the correct number of semicolons. 

185 



Cause 

The state indicator was made invalid 
because one of the following occurred: 

0 A function exists in the state indica- 
tor l is t ,  but the function was erased. 

0 A suspended function's header was 
changed. 

A label was removed or changed 
on the suspended statement. 

0 Statements were added to or erased 
from a suspended function. 

SYMBOL TABLE FULL More symbols were used than the number 
of symbols allowed. 

The symbol table in the stored work- 
space is full and a load operation was 
attempted. This error i s  caused by the 
latent expression variable even i f  it 
has not been assigned. 

SYNTAX ERROR 

SYSTEM ERROR 

VALUE ERROR 

The part of the statement indicated by 
the caret ( A )  i s  syntactically invalid. 

A malfunction occurred in the APL sys- 
tem program and the data in the active 
workspace is lost. 

The object indicated by the caret ( A )  

has not been given a value: 

0 If the object is  a variable name, the 
variable was not previously assigned 
a value. 

0 If the object i s  a function name, the 
function header did not specify a 
result, or the function did not assign 
a value to the result variable. 

User's Response 

Use the )SI or )SIV command to  display 
the state indicator. Clear out the state 
indicator by entering + repeatedly. 

)SAVE the workspace, )CLEAR the active 
workspace, increase the number of sym- 
bols allowed by using the )SYMBOLS 
command, then )COPY the stored work- 
space into the active workspace. 

Note: Erasing a symbol from the active 
workspace does not remove it from the 
symbol table; however, saving the active 
workspace and loading it again will remove 
any unused symbols from the symbol table. 

Enter a corrected statement. 

Enter the )CLEAR command; if the error 
continues to occur, call your service 
representative. 

Note: If SYSTEM ERROR occurred on a 
load or copy operation, the error may be 
caused by a bad stored workspace file. 
Try loading or copying another stored 
workspace file to see i f  the error occurs 
again. 

Assign a value for the indicated variable or 
correct the function so that it has an ex- 
plicit result. The value must be assigned 
before the object i s  used. 

3 

(3 \ 

3 

3 

186 



Error Message 

WS FULL 0 

WS LOCKED 

WSNOTFOUND 

WS TOO BIG 

Cause 

One of the following conditions occurred: 

A )COPY or )PCOPY command was 
issued, but the active workspace could 
not contain a l l  the objects requested. 

The active workspace could not con- 
tain a l l  the information required to 
build a defined function. 

0 The active workspace could not con. 
tain the intermediate results of an 
APL expression. 

0 The active workspace could not con- 
tain the final results of an APL 
expression. 

0 The active workspace could not con- 
tain the information required to  do 
input/output operations. 

0 A workspace was written to tape 
with a )SAVE command, but the 
extra storage required when loading 
the stored workspace back into the 
active workspace exceeds the avail- 
able storage. 

The workspace is password-protected, 
but no password or the wrong pass- 
word was specified in the command. 

A )LOAD, )DROP, )COPY, or 
)PCOPY command was issued, but 
there i s  no stored workspace with the 
identification specified in the command. 

One of the following conditions occurred: 

0 An attempt was made to load a work- 
space stored with the )CONTINUE 
command into a 5100 with less in- 
ternal storage. 

0 An attempt was made to load a work- 
space stored with the )CONTINUE 
command into the active workspace, 
but IMFs have been applied reducing 
the available internal storage. 

0 An attempt was made to write the 
active workspace (using the )CONTINUE 
command) into a f i l e  that is  too small. 

User’s Response 

Erase unnecessary objects. If there i s  s t i l l  
not enough space, do a )SAVE and 
)LOAD of the active workspace. 

Use the )COPY command to  make the 
stored workspace into two workspaces. 

Reenter the command with the correct 
password specified. 

Reenter the command with the correct 
workspace identification. 

Use a 5100 with enough internal storage. 

Clear the active workspace, load the stored 
workspace into the active workspace, 
)SAVE the active workspace, apply the 
IMFs, then load the stored workspace again 
or copy only the required objects. 

Use a file that i s  large enough. 

187 



Appendix A, Installation Procedures and Installation Planning Information 

INSTALLATION PLANNING 

IBM 5100 Portable Computer 50 Ib (24 kg) 

The 5100 Portable Computer and associated units are designed for these 
environments: 

Operating Environment 

Dry bulb temperature 60°-900 F (15'-32" C) 

Relative humidity 89/0-8O% 

Maximum wet bulb 
temperature 73' F (23' C) 

Nonoperating Environment 

Dry bulb temperature 50°-1050 F (10°-43" c) 

Relative humidity 8%-80% 

Maximum wet bulb 
temperature 80" F (27' C) 

IBM 5103 Printer 
56 Ib (26 kg) IBM 5100 Portable Computer 

50 Ib (24 kg) 

IBM 5106 Auxiliary Tape Drive 
18 Ib (8 kg) 

(26 cm) 
10 inch n 

\J 

188 

___-- I 



c 

PagaofSAZ18213-0 
Issued 15 September 1975 
By TNL: SN21O247 

Electrical 

A 1 15-volt, 15-ampere, single-phase, 60-cycle grounded receptacle is required for 
each unit. Allowable tolerance is *lo% on the voltage and &1/2 cycle on the 
frequency. 

A duplex receptacle is  recommended so that the 5100 Portable Computer and an 
auxiliary tape unit or a printer can be powered from the same outlet. 

The auxiliary tape unit power plug has a tap so that a printer, TV monitor, or 
communication modem can be attached for electrical power. 

I All attachment power cords are 6 feet (1.8 meters) long. 

Current Requirements are: 

5100 Portable Computer 3.0 amps 
5103 Printer 1 .O amp 
5106 Auxiliary Tape Unit 0.5 amp 

The heat output is: 

5100 Portable Computer 
5103 Printer 
5106Auxiliary Tape Unit 

780 BTU per hour 
300 BTU per hour 
130 BTU per hour 

Cabling 

The 5100 Portable Computer is  connected to the printer by a 4-foot (1.2-meter) 
signal cable and to the auxiliary tape unit by a 2-foot (0.6-meter) signal cable. 
The cables are supplied with the features. 

When both the printer and auxiliary tape unit are installed, the printer must be 
attached to the auxiliary tape unit instead of the 5100 Portable Computer. 

When only the auxiliary tape unit is  installed without a printer, the terminator 
assembly must be moved from i t s  storage position to the signal cable receptacle 
immediately below it, on the back of the auxiliary tape unit. 

189 



Communications 

Contact your I BM marketing representative to obtain modem specifications. 

Contact your local communications company representative immediately to allow 
adequate time for equipment hookup. 

The required 6-foot (1 .&meter) cable is supplied. 

The modem connector must be compatible with Amp Corporation receptacle 
#205207 (25 position) or equivalent. 

BNC Connector for External Monitors 
(40 mA of current is available to drive 
external monitors, the last monitor in 
a parallel string must be terminated 

Terminator (storage position) / with 75 ohms) 

\ 

190 



Page of SA21-9213.0 
Issued 15 September 1975 
By TNL: SN21-0247 

INSTALLATION PROCEDURES 

5100 Installation Procedure 

After you have placed the 5100 where you intend to use it, make sure the red POWER 
ON/OFF switch (located on the front panel) is in the OFF position. Plug the power 
line into a grounded electrical outlet. 

Note: For proper operation, the 5100 must be plugged into a grounded outlet. 

Set the POWER switch to ON, and be sure that the fan is operating: 

0 If your machine location is not too noisy, you should hear the fan motor 
operating. 

0 I f  you are not sure, hold a light piece of paper near the air intake on the back of 
the machine. The loose end of the paper should be pulled toward the machine. 

I f  the fan does not appear to be operating, check your power outlet. If it is OK, set 
the POWER switch to OFF and call for service. Do not continue with these 
instructions. 

I f  the fan i s  operating, wait for about 20 seconds and your 5100 will be ready for 
operation. 

APL Checkout Procedure 

0 1. After power has been on 20 seconds, the display screen should show: 

C'*4EA'1 Wb>e underline (cursor) flashes on and off. .... 

If the display screen does not show the above information, check the 
following top panel switches: 
a. Turn the BRIGHTNESS control to get the best character definition. 
b. Set the DISPLAY REGISTERS switch to the NORMAL position. 
c. Set the L32 64 R32 switch to the center (64) position. 
d. Set the BASWAPL switch (combined machines only) to the APL 

e. If information displayed is not as shown above, press the RESTART 
position. 

switch. This recycles a portion of the power-on sequence. I f  the infor- 
mation displayed is s t i l l  not as shown above (after the 20-second delay), 
call for service. 

191 



Page of SA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

0 2. If the display screen does not show the correct results in the remaining steps 
of this procedure, press RESTART once, go back to step 1 and try again. If 
the correct result is  s t i l l  not shown, call for service. 

Enter the data shown by the key drawings below. The data will be displayed 
as the keys are pressed. 

192 

If you make a keying error, you can press the backspace key 

EXECUTE) to backspace the cursor, then press the correct key. 

(above 

Where the bottom portion of the key is  shown shaded, hold the shift key 

I down while you press the character key. (Enter the unshaded character.) 

Press the following keys in sequence line by line: I 
The display now shows: 

CI.,E:AR WE3 

C I 3  - 
Q'YEST 

Besure to  use the multiply 
key and not the alphabetic 
X. 

3. Below the lines of the test  program that you just entered, the answer of 27 
will be displayed (the program multiplies 3 times 9): 



I .  

I F  

Page of SA21-9213.0 
Issued 15 September 1975 
By TNL: SN21-0247 I 0 4. If you checked out the tape operation under the BASIC checkout procedures, 

insert the tape cartridge into the 5100 and go to step 6. Remove an unused or 
scratch tape cartridge from i t s  package. Check that the arrow is pointing away 
from the word SAFE as shown in the illustration. Insert a coin or screwdriver 
into the slot if you must turn the triangular arrow away from the word SAFE. 

Nore: Do nor use any prerecorded tape cartridges that were shipped with your 
machine. 

This edge goes into machine first. 

0 5A. Insert the tape cartridge into the 5100 (metal bottom down), and press it in 
until it seats firmly. Then press the following keys (you must leave a space 
before each number): 

space space space 

58. The previous step initialized the tape to hold information. If a message of 
MARKED is displayed, go to step 6. If a message of ALREADY MARKED is 
displayed, the tape i s  already marked. To remark the tape, press: 

0 6. Press the following keys: 

space space 

193 



194 

0 7. The last step wrote the program onto tape, but it is s t i l l  recorded in the 
storage workspace. To prove the program can be read from tape, the program 
must be erased from the workspace. To do this, press the following keys: 

0 8. To read the program from tape into the 5100, press the following keys: 

space space 

0 9. When LOADED 1002 WS is displayed, press these keys: 

The display screen should again show: 

'I'EST I 27 

L k y  Position 1 

Position 7 

This completes the APL checkout procedure. 

0 

3' 

--- -- I 

I 



0 10. 

0 11. 

0 12. 

0 13. 

0 14. 

Page of SA21-92130 
Issued 15 September 1975 
By TNL: SN21-0247 

Check to see that you received the following documentation: 
a. IBM 5100 APL Introduction, SA21-9212 
b. IBM 5100 APL Reference Card, GX21-9214, located in the back of this 

c. Maintenance Library Binder 
binder 

If the words above the top row of numeric keys are labeled on the le f t  with: 

BAS I C 
AP L 

, you have a combined machine. 1 
BASIC 
APL CoMM I , you have a combined machine with the communications feature. 

, you have an APL machine with the communications feature. 
AP L 

, you have a BASIC machine with the communications feature. 
BASIC 

If you have not checked out BASIC on a combined machine, set the 
BASIC/APL switch to the BASIC position, press RESTART, and go to the 
BASIC Checkout Procedures in Appendix C of the IBM 5100 BASIC 
Reference Manual, SA21-9217. If you already did the BASIC checkout 
procedures, continue with step 11. 

If the auxiliary tape unit is  to be installed, unpack the tape unit and pro- 
ceed to the Auxiliary Tape Unit Installation Procedure which follows. 
After installing the auxiliary tape unit, proceed to step 12. 

If the printer is to be installed, unpack the printer and proceed to Printer 
Installation Procedure, which comes later in this appendix. After install- 
ing the printer, return to step 13. 

If your 5100 is equipped with the communications feature, follow the 
Installation Instructions in the IBM 5100 Communications Reference 
Manual, SA21-9215; then go to step 14. 

When the preceding devices or features are installed, or if none are, begin 
reading the IBM 5100 APL Introduction to learn how to operate your 5100. 

195 



Auxiliary Tape Unit Installation Procedure 

0 1. Set the 5100 and auxiliary tape unit power switches to OFF. 

17 2. Remove the shipping tape from the signal cable (flat cable) and connect the 
signal cable into the back of the 5100. Make sure the connector fits squarely. 
Turn the knob in a clockwise direction until the connectors fit together firmly: 

0 3. 

0 4. 

0 5. 

0 6. 

I 196 

Power Line Plugs 

Check that the terminator plug is in place on the rear panel as shown in the 
preceding diagram. 

Remove the shipping tape from the power line and plug the power line into 
a grounded electrical outlet. 

Set the auxiliary tape unit POWER switch to ON, and be sure that the fan 
is operating. 
a. If your location is not too noisy, you should hear the fan motor operating. 
b. I f  you are not sure, hold a light piece of paper near the air intake on the 

left side of the tape unit. The loose end of the paper should be pulled 
toward the tape unit. 

I f  the fan does not appear to be operating, check your power outlet. I f  it is 
OK, set the POWER switch to OFF and call for service, Do not continue with 
these instructions. 

Set the 5100 POWER switch to ON and continue to the checkout procedure. 

3 

(>  

i J ) '  '\ 

I 



Page of SA2 1-921 3-0 
Issued 15 September 1975 
By TNL: SN21-0247 

Tape Unit Checkout Procedure 

Note: The following steps assume you are using the same cartridge that you used 
to check the 5100. If you are not, write any program onto the cartridge in the 
auxiliary tape unit and read it back. 

0 1. Insert a tape cartridge into the auxiliary tape unit after checking that the 
arrow is pointing away from the word SAFE. 

0 2. Press the following keys to read in the program that was stored on tape during 
the 5100 checkout procedure: 

I '  

space space 

0 3. After the message LOADED 2002 WS appears on the display screen, press 
the following keys: 

space space 

I 0 4. The message CONTINUED 2002 WS appears on the display to verify that 
the program was written back to tape and was checked by the 5100. 

This completes the checkout procedure for the auxiliary tape unit. 

Return to step 12 of the 5100 checkout procedure. 

197 



Page of SA2 1-921 3-0 
Issued 15 September 1975 
By TNL: SN21-0247 

Printer Installation Procedure 

0 1. 

0 2. 

0 3. 

Storage Position for 
Terminator Plug 

Set al l  POWER switches to OFF. 

If you have an auxiliary tape unit, remove the terminator plug from the 
bottom position and insert it into the top position (storage position). 

Remove the shipping tape from the printer signal cable (flat cable) and 
connect the signal cable to the back of the auxiliary tape unit, if it i s  
attached, or to the back of the 5100. Make sure the connector fits 
squarely. Turn the knob in a clockwise direction until the connectors 
f i t  together firmly: 

' )  Forms Tractor 
L - 4  \ Printer (rear) 

5100 Portable 
Computer (rear) 

0 4. Remove the shipping tape from the printer power line and plug the power 
line into the back of the auxiliary tape power plug or into a grounded elec- 
trical outlet. 

3 

198 

l i  



PageofSA21-9213-0 
Issued 15 September 1975 
By TNL: SN21-0247 

I '  

I ,  

I 

I 0 5. Unpack the forms tractor and set it in place on top of the printer as shown 
in the drawing. Install the forms guide rack on the forms tractor. 

Hole for Forms Guide Ra 

\ 1 4 L  Forms Guide Rack 

(inside frame) Position this part of the 
forms tractor first. Press 
down firmly to snap into 
place. 

Then rock the forms 
tractor forward and 
snap this part into place. 

Must be in this position. 
I 

\ 

0 6. Insert paper in the printer. Use the printer information in this manual if you 
need help in inserting the paper (see Chapter 10). 

0 7. Set both the printer and 5100 POWER switches to ON and continue on to 
the checkout procedure. 

Printer Checkout Procedure 

Press several alphameric keys to display some information. Then, hold down the 
CMD key and press the key below Copy Display on the 

command word strip. The printer will provide a copy of the information on the 
display screen. 

Return to step 13 of the 51 00 checkout procedure. 

199 



Appendix B. APL Character Set and Overstruck Characters 

Overstruck characters are formed by entering one character, backspacing, and enter- 
ing the other character. The 5100 APL character set consists of al l  the characters 
represented on the 5100 keyboard plus the following overstruck characters: 

200 

Function 

Comment 

Execute 

Factorial, combination 

Format 

Grade down 

Grade up 

Logarithm 

Matrix division 

Nand 

Nor 

Protected function 

Quad quote 

Rotate, reverse 

Transpose 

Compress 

Expand 

Rotate, reverse 

Character Keys Used 

Note: These are variations of the symbols for these functions; they are used when 
the function is acting on the first coordinate of an array. 

' I  



Appendix C. Atomic Vector 

The following chart shows the character, the character name, and the index of 
that character in the atomic vector: 

Character Character Name 

.4. 

.... 
)r: 

.... 

.x. 
I" 
I.. 
I 
A 

v 

.... .... 
::. 

p 

Index 
(0 lO+l) 



Character 

l::I 
111 
t4i 
N 
A 

202 



Character 

A 
B 

K:I 

1:: 
[; 
1-1 
:I: 
,.I 
I< 
I.., 
M 
i;;j 
(:I 
1:' 
;jj; 

.... 

.... 
!;.; 
1:; 
.... 

.... 

.... 

.... 

.... 

.... 

.... 

.... 

.... 

.... 

.... 

:I. 
2 
3 

Character Name 

,., 
.... 

Index 
(OlO+l) 

9 1.1. 
t? 5 

6 
'7 

9 $3 
y 9 
:I. 0 (I 
:I. I! s. 
:I. i! 2 
:I. (! 3 
:I. I )  1.1. 
:I. 0 5 
:I. 0 6 
:I. 0 '7 
:I. il (13 
:I. 0 9 
:I. :I. 0 
:I. 1. :I. 
:I. 1. 2 
:I. :I. 3 
:I. :I. 1.1. 
:I. 1. s 
:I. :I. 6 
:I. 3. '7 
:I. :I. t3 
:I. 1. 9 
:I. 2 0 
:I. 2 :I. 
'1 '? '7 

:t 2 3 
:I. 2 '4. 
I .  L. ,.! 
:I. 2 6 
11, 2 "7 
:I. 2 13 
:I. 2 '? 
:I. 3 0 
:I. 3 1. 
:I. 3 2 
:I. 3 3 
:I. 3 1.1. 
'1 "3 t.5 
:I. 3 b 
:I. 3 '7 
:I. 3 8 
:I. 3 9 
:I. 1.1. 0 
:I. 1.1. :I. 
:I. 4.2 
:I. 4 3 
'1 I+ 1.1. 

. . n' * 1. 

. ,.) ,:y 

.. c 

203 



Character Character Name 
index 
(0 Iocl) 

204 

g 

>V 
P 

m 
..., 

Note: The remaining elements (187-256) are unused. 

-- __-- I I 



Appendix D. 5100 APL Compatibility with IBM APLSV 

The 5100 APL system differs from the IBM APLSV system primarily because the 
5100 is a single user system with different input/output devices and it has display 
screen output rather than typewriter output. The differences are as follows: 

0 Turning power on signs the user on; therefore, no sign-on or ID number i s  
required. 

The 5100 active workspace i s  generally smaller than APLSV active workspace. 
It is further limited by the shared variable processor which uses it for input/ 
output buffers and work areas. 

The default number of symbols i s  125 instead of 256, which increases the avail- 
able workspace for most users. 

The library number that appears in system commands has been redefined to  a 
device/file number. It i s  a 1- t o  5-digit number that specifies the device and 
file number where a workspace is  t o  be )SAVE'd or )LOAD'ed. If the number 
is less than 4 digits, it is only the file number; device 1 i s  assumed; otherwise, 
the high-order 1 or 2 digits i s  the device number. 

The )LOAD, )COPY, )PCOPY commands require the library (device/file) num- 
ber and workspace ID parameters. The )DROP command requires the library 
(device/file) number and if the specified file i s  a stored workspace file, the 
workspace ID parameters. These requirements protect the user from inadver- 
tently destroying his or her saved workspaces. 

0 The following commands are not supported because they apply only to multi- 
terminal systems and remote systems: 

)OFF; )OFF HOLD; )CONTINUE HOLD; )PORT'S; )MSGN; )MSG; )OPRN; 
IOPR; a l l  special system operator commands 

0 The following commands are not supported because the function is  not 
supported: 

)GROUP; )GRPS; )GRP 

0 The following commands are not supported: 

)ORIGIN; )WIDTH; )DIGITS 

They are available with the system variables 010, UPW, and OPP, respectively. 

205 



The following commands have been added to support the 5100 processor and 
i t s  input/output devices: 

)MARK - To format tape files 

)OUTSEL - To specify which transactions are to  be printed 

IREWIND - To rewind the tape unit 

)MODE - To select communications mode 

)PATCH - To load an IMF or Tape Recovery program into storage 
from an IBM-supplied tape 

The )CONTINUE command has been changed to save workspaces with sus- 
pended functions. The parameters are the same as )SAVE but the stored work- 
space cannot be )COPY‘ed, or )LOAD’ed into a 5100 with a smaller active 
wor kspace. 

Since the 5100 system i s  not in a communications environment, the RESEND 
message will not occur. 

)SAVE and )LOAD have to  be implemented with only one workspace area 
(no spare); therefore, the following error messages have been added: 

1. Function name [statement number] LINE TOO LONG - Cannot save 
functions with statements greater than 11 5 characters. 

2. WS TOO BIG - Workspace i s  too big to  fit in the active workspace. 

3. NOT WITH SUSPENDED FUNCTION - Only the )CONTINUE command 
will work to write the workspace to  tape. 

For diagnostic reasons, occurrence of SYSTEM ERROR does not clear the 
workspace. The following message occurs when attempting anything other than 
)CLEAR after a system error: 

NOT WITH SYSTEM ERROR 

Saved workspaces are not time-stamped and dated because that information i s  
not available in this system; therefore, the following messages now occur after 
library operations: 

COP1 ED device/file wsid 
LOADED device/file wsid 
SAVED device/file wsid 
CONTINUED device/file wsid 
DROPPED device/file wsid 

206 



CI 

0 The )LIB command does more than l i s t  the saved workspaces. It l ists a l l  the 
files on the specified device. The response, therefore, contains more informa- 
tion (see )LIB command in Chapter 2). 

The following system messages have been added for the new system commands 
and inputloutput operations: 

ALREADY MARKED 
DEVICE NOT OPEN 
DEVICE TABLE FULL 
ERROR eee d 
EXCEEDED MAXIMUM RECORD LENGTH 
INVALID DATA TYPE 
INVALID DEVICE 
INVALID DEVICE NUMBER 
INVALID FILE 
INVALID FILE NUMBER 
INVALID OPERATION 
INVALID PARAMETER 
MARKED b n 
NOT WITH OPEN DEVICE 

The shared variable processor on the 5100 is  designed to provide an interface 
between only one APL user and one 1/0 processor. Thus, only one processor 
number is  supported (1 1. 

The response to USVO is  2, since, if it i s  a valid share, it is always accepted 
before the APL user regains control. (If an unsupported processor is specified, 
the response i s  1.) 

The response to OSVR is  the same as the response to OSVO. 

Being strictly a sequential machine, the only mode of interaction is  reversing 
half-duplex; that is, the 1/0 processor always responds to each action by the 
APL user. Therefore, the access control vector (RSVC) is always 1 1 1 1. 

Since there are never any outstanding offers, USVQ always returns an empty 
vector. 

This i s  a single user system without an internal clock; therefore, the following 
system variables and functions are not supported: 

OTS - Time stamp 
OAl - Accounting information 
OTT - Terminal type 
UUL - User l i s t  
ODL - Delay 

0 The I-beam functions have been replaced with system variables or system func- 
tions and are not supported. 

Catenation using semicolons has been replaced by format, but it is s t i l l  supported 
on the 5100. 

207 



0 Data can be exchanged between APL and BASIC or other systems via commun- 
ications; therefore, the following characters have been added to the APL char- 
acter set: 

$, #, @, &, r, %, ” 

The display screen is 64 characters wide; therefore, the initial values for OPW 
and UPP system variables are 64 and 5 instead of 120 and 10. 

If the print width is altered to something greater than 64, any output that ex- 
ceeds 64 characters is  wrapped to another line on the display screen. 

0 Bare (1) output followed by bare (PJ) input yields a different reply. For 
APLSV, the [II input i s  prefixed by the same number of blanks as the previous 
[I1 output. For 5100 APL, the (II input is prefixed by the previous (II output. 
(See Chapter 6 for more information on bare output followed by bare input.) 

9 

0 The display screen provides the ability to edit lines of data directly; therefore, 
the following changes were made to function definition: 

“01 - Now displays line N in the display screen lines 1 and 0 for 
editing. 

[NOMI - Has the same result as [NO]; the M is erased when execute is  
pressed. 

[AN] - Allows line N to be deleted. N must be a single line number. 

The use of the ATTN key to delete a line works, but only in function de- 
finition mode, not while entering function definition mode. 

To prevent problems when displaying or editing statements in a user-defined 
function, the print width (OPW) is automatically set to 390 when the 5100 
is in fuhction definition mode. The print width automatically returns to i t s  
previous setting when the function definition is closed. 

There is  only limited editing space; therefore, function statements that are 
greater than 115 characters cannot be edited, and the message 
LINE TOO LONG i s  displayed. 

0 The 5100 will insert a quote if an uneven number of quotes is  entered. 

3 



Glossary 

IBM is grateful to the American National Standards 
Institute (ANSI) for permission to reprint i t s  definitions 
from the American National Standard Vocabulary for 
Information Processing (Copyright 0 1970 by American 
National Standards Institute, Incorporated), which was 
prepared by Subcommittee X3K5 on Terminology and 
Glossary of the American National Standards Committee 
x3. 

ANSI definitions are identified by an asterisk. An asterisk 
to the right of the term indicates that the entire entry is 
reprinted from the American National Standard Vocabuby 
for Information Processing; where definitions from other 
sources are included in the entry, ANSI definitions are iden- 
tified by an asterisk to the right of the item number. 

active referent: The usage of a name that was most recently 
localized, or the global usage if the name is  not localized. 

active workspace: A part of internal storage where data and 
user-defined functions are stored and calculations are 
performed . 

ADD operation: Using a shared variable to add informa- 
tion to an existing data file. 

alphameric keys: The keys on the left side of the keyboard 
that are arranged similar to a typewriter keyboard. 

APL internal data format: See internal data format. 

arguments: Data supplied to APL functions. 

array: A collection of data that can range from a single 
item to a multidimensional data configuration. Each ele- 
ment of an array must be the same type as the other ele- 
ments (all characters, a l l  numeric, or a l l  logical). 

assign: To use the + (assignment arrow) to associate a 
name with a value. 

available storage: The number of unused 1024-byte blocks 
of storage in a file on tape. 

bare output: To display output without the cursor return- 
ing to the next line. 

branch instruction: An instruction that modifies the nor- 
mal order of execution indicated by the statement mem- 
bers. Branch instructions always begin with a -t (branch 
arrow). 

branching: Modifying the normal order of execution indi- 
cated by the statement numbers. 

built-in function: See primitive function. 

byte: A unit of storage. For example, a character takes 
one byte of storage. 

character constant: Characters that do not represent num- 
bers, variables, or functions. Character constants are en- 
closed in single quotes when they are entered (except for 
Oinput); however, the single quotes do not appear when 
the character constants are displayed. 

command keyword: The name of a system command in- 
cluding the right parenthesis. For example, the command 
keyword for the )MARK command is )MARK. 

comment: An instruction or statement that i s  not to be 
executed. A comment i s  indicated by a A as the first 
character. 

conditional branch: A branch that is taken only when a 
certain condition is  true. 

coordinate: A subset of data elements in an array. For 
example, a matrix has a row coordinate and a column 
coordinate. 

wsar: The flashing character on the display that indicates 
where the next input from the keyboard will be displayed. 

209 



data file: A file on tape (file type 01, 02, or 08) where 
data was stored using a shared variable. 

defective record: A 51 2-byte block of storage on tape that 
cannot be read. 

devicdfile number: Specifies the tape unit and file to be 
used when doing tape input or output operations. 

dual-language machine: A 5100 that can execute either 
APL or BASIC statements. 

dyadic functions: Functions that require two arguments 
(a right and a left argument). 

editing: Modifying an instruction or statement that already 
exists. 

element: The single item of data in an array. 

empty array: A variable that has a zero in i t s  shape vector. 
The array has no (zero) elements. 

execute: To press the EXECUTE key to process data on 
the input line. 

execution: The processing of data. 

execution mode: The mode that i s  operative when state- 
ments or functions are executed. Contrast with function 
definition mode. 

explicit result: The result of a function that can be used in 
further calculations. The function must contain a result 
variable if it i s  to have an explicit result. 

file: A specified amount of storage on tape. The tape i s  
formatted into files by using the )MARK command. 

f i le ID: The name of a file on tape. If the file contains a 
stored workspace, the file ID is the same as the stored 
workspace ID. 

f i le number: The files on tape are sequentially numbered 
starting from one. 

f i le  type: Identifies the type of data stored in a file. 

function body: Consists of the statements within a user- 
defined function. These statements determine the opera- 
tion(s) performed by the function. 

function definition: Defining a new function (a user- 
defined function) to solve a problem. 

function definition mode: The mode that i s  used when 
defining or editing user-defined functions. The V symbol 
is  used to change the mode of operation. Contrast with 
execution mode. 

function header: Defines the function name, number of 
arguments, local names, and whether or not the function 
will have an explicit result. 

general interchange data file: The data in the file i s  in the 
general interchange format. 

general interchange data format: The data consists of al l  
character scalars or vectors. 

global names: The value associated with these names can 
be used within or outside of a user-defined function unless 
the name has been made local to a user-defined function 
that i s  executing, suspended, or pendent. Contrast with 
local names. 

identity element: The value that generates a result equal 
to the other argument. 

IN operation: Using a shared variable to write information 
into a data file. 

index entry [I] : (1 ) A value or values enclosed in brackets 
that select(s1 certain elements from an array. (2) A value 
enclosed in brackets that determines the coordinate of an 
array to be acted on by a primitive mixed function. 

21 0 



index origin: Either 0 or 1 and is  the lowest vdue of an index. 
The index origin i s  set to 1 in a clear workspace and can be 
changed by using the 0 10 system variable. 

input: Information entered from the keyboard or read 
from tape using a shared variable. 

input line: Consists of the 128 positions on lines 0 and 1 
of the display screen. Any information on the input line 
will be processed when the EXECUTE key is  pressed. 

instruction: A function or series of functions to be 
performed. 

integer: A whole number. 

interactive function: A user-defined function that requests 
input from the keyboard as it executes. 

interchange data file: The data in the file i s  in the inter- 
change data format. 

interchange data format: The data consists of a l l  character 
scalars or vectors. 

internal data file: The data in the file is  in the internal 
data format. 

library: A tape cartridge where data is  stored for future 
use. 

local name: A name that i s  contained in the function 
header and has a value only during the execution of that 
user-defined function. 

locked function: A function that cannot be revised or dis- 
played in any way. The opening or closing V was over- 
struck with a - . 
logical data: (Boolean data) Data that consists of all ones 
and zeros. 

matrix: A collection of data arranged in rows and columns. 

mixed function: The results of mixed functions may 
differ from the arguments in both rank and shape. 

monadic functions: Functions that require one argument. 
The argument must be to the right of the function symbol. 

multidimensional array: An array that has two or more 
coordinates. 

internal data format: The format in which the data is  stored 
in the 5100. 

n-rank array: An array that has more than two coordin- 
ates (a rank of more than 2). 

keyword: See command keyword. niladic function: A user-defined function that does not 
require any arguments. 

numeric keys: The keys on the right side of the keyboard 
that are arranged similar to a calculator keyboard. 

labels: Names that are placed on statements in a user- 
defined function for use in branching. 

latent referent: The usage of a name that has been made 
local to  a more recently called function. The value for that 
usage cannot be used or set. 

length: (1) The length of a vector i s  the number of ele- 
ments in the vector. (2) The length of a coordinate of 
other arrays i s  the number of items specified by that coor- 
dinate. For example, a matrix has a row coordinate with 
the length of 2, therefore, the matrix has two rows. 

object: A user-defined function or variable name. 

operators: Apply one or more dyadic primitive scalar func- 
tions to arrays. 

OUT operation: Using a shared variable to read informa- 
tion from a data file. 

, 

21 1 



output: The results of statements processed by the 51 00. 

overstruck character: A character formed by entering one 
character, backspacing, and entering another character. 
Only certain combinations of characters can form over- 
struck characters. 

parameter: (1 1 Information needed by a system command 
(such as device/file number). (2) Information required to 
open a data file or specify printer output. 

password: A sequence of characters that must be matched 
before the contents of a stored workspace can be loaded or 
copied into the active workspace. 

pendent function: Any function in the state indicator l is t  
that is not a suspended function. 

physical record: A 512-byte block of storage on tape. 

plane: The coordinates of an n-rank array other than the 
rows and columns. 

primitive function: The functions that are part of the APL 
language (such as ,  + - f XI. 

PRT operation: Using a shared variable to output data on 
the printer. 

rank: The number of coordinates of an array ( p  p). 

record: Data assigned to a shared variable. 

result variable: A variable to the left of the assignment 
arrow in the function header where the results of the func- 
tion are temporarily stored for use in further calculations. 

return code: Assigned to a shared variable after a PRT, 
OUT, or ADD operation. This code indicates whether or 
not the operation was successful. 

scalar: A single data item that does not have a dimension 
( p p  = 0) .  

scalar function: The results of the scalar functions are the 
same shape as the arguments. 

scale: An integer representing the power of ten when 
scaled representation is  used. 

scaled representation: Stating a value in a convenient 
range and multiplying it by the appropriate power of ten. 

scroll: Moving the information on the display screen up or 
down. 

shape: The length of each coordinate of an array. 

shared variables: A variable shared by the active workspace 
and the tape or printer. Used to transfer data during IN, 
OUT, ADD, or PRT operations. 

significant digit: * A digit that i s  needed for a certain pur- 
pose, particularly one that must be kept to preserve a spe- 
cific accuracy or precision. 

singleelement array: A single data item that has a t  least 
one coordinate. For example, a matrix with one row and 
one column. 

state indicator: Contains information on the progress 
(statement number of the statement being executed) of 
user-defined function execution. Can be displayed to show 
al l  suspended and pendent user-defined functions. 

statement: A numbered instruction within a user-defined 
function. 

statement number: The number of a statement within a 
user-defined function. 

stop control (SA): Stopping execution of a user-defined 
function before the execution of a specified statement. 

stop vector: Specifies the statements when using stop 
control. 

.> 
stored workspace: The contents of the active workspace 
stored on tape. 

21 2 



suspended: See suspended function. 

suspended execution: See suspended function. 

suspended function: Execution has stopped because of an 
error condition, ATTN being pressed, or stop control being 
used. 

system commands: Are used to manage the active workspace 
and tape or printer operations. 

system functions: Are used to change or provide informa- 
tion about the system. 

system operation: Processing input data. 

system variable: Provides controls for the system and infor- 
mation about the system to the user. 

trace control (TA): Displaying the results of specified 
statements during the execution of a user-defined function. 

trace vector: Specifies the statements when using trace 
control. 

transferring data: Using a shared variable to write data to 
tape, read data from tape, or output data to the printer. 

user-defined functions: New functions defined using the 
primitive functions. See function definition mode. 

variable name: A name associated with the value of a 
variable. 

variables: Data stored in the 5100. 

vector: An array with one dimension (p  p = 1). 

workspace: See active workspace. 

workspace available: The amount of unused storage 
(number of unused bytes) in the active workspace. 

workspace ID: A name given to the contents of the active 
workspace. A stored workspace has the same name as the 
active workspace when the contents of the active work- 
space were written to tape. 

21 3 



Index 

)CLEAR command 11,14 
)CONTINUE command 12,14,19,26,173 
)COPY command 11,14,25 
)DROP command 12,16 
)ERASE command 11, 16 
)FNS command 12,17 
)LIB command 12,17 
)LOAD command 11,19 
)MARK command 12,19 
)MODE command 12,21 
IOUTSE L command 12,21,164 
)PATCH command 12,22 
)PCOPY command 1 1,14,25 
IREWIND command 12,26 
)SAVE command 12,14,19,25,173 
)sI command 12,27,155 
)SIV command 12,27,143 
)SYMBOLS command 11,28 
)VARS command 12,28 
)WSI D command 11,15,19,27,29 
[I] index entry 75 
[01 148 
[On] 148 
[no1 148 
[An] 149 
0: 145 
Oinput 145 
O A V  system variable 126 
OCT system variable 124 
OCR function 128 
OEX function 132 
O F X  function 129 
0 10 system variable 125 
0 LC system variable 126 
0 LX system variable 126 
ONC function 133 
O N L  function 132 
UPP system variable 125 
OPW system variable 126 
0 RL system variable 126 
OSVO function 158 
OSVR function 164 
OWA system variable 126 
Binput 145 
Boutput 146 
Ofunction 105 
'e' raised to a power 
Vsymbol 134 
+O 138 
@ character 145 
* 155 
+function 44 
-function 45 
xfunction 46 
ifunction 48 
[function 50 
Lfunction 51 

54 

21 4 

I function 52 
*function 54 
@function 55 
Ofunction 56 
I function 59 
7 function 61,95 
Afunction 62 
Vfunction 63 
-function 64 
A function 65 
V function 66 
>function 67 
=function 68 
<function 69 
>function 70 
Sfunction 71 
#function 72 
pfunction 75 
,function 77 
/function 81 
\function 82 
4 function 83 
vfunction 84 
1. function 86 
J. function 87 
1 function 88 

C$ function 89 
4function 93 
I function 96 
Tfunction 99 
E function 104 
p function 107 
Tfunction 108 
/operator 1 1  1 
\ operator 1 18 
, operator 1 1  3 
0 . operator 1 16 

N 

N 

abandoned execution 147 
absolute value 52 
active referent 132, 142 
active workspace 1 1  
adapter for TV monitors 1 
ADD operation 160, 163 
add statements 148 
alphameric keys 6 
amount of unused space 126 
and function A 62 
APL character set 200 
APL characters 126 
APL command keyword 7 
APL internal data format 161 
APL language symbols 6 
APL operators 1 1  1 



APL shared variable 21, 158 
arguments 43 
arranging output 146 
arrays 32 
assignment arrow +- 120 
atomic vector U A V  126,201 
attention key 6, 155 
automatically execute expression 126 
auxiliary tape unit 1 
available storage 18 
available workspace 126 

backspace key 8 
bare output 146 
bare output prefix 146 
basevalue 96 
BASWAPL switch 4 
binomial function I 60 
branch armw + 120,137 
branch instructions 139 
branch to a specific statement number 
branch to zero 138 
branching 137 
brightness control 10 
built-in functions 43 
bytes of storage 172 

139 

canonical representation OCR 128 
catenate function, 37, 77 
catenation 37 
ceiling function r 50 
change an array to a character array 
change the device/file number and workspace ID 
change the number of symbols allowed 
change the sign 45 
character constant 31, 172 
character set 200 
checkout procedure 

APL 191 
printer 199 
tape unit 197 

108 
29 

28 

circular function 0 56 
clear suspended functions 157,172 
clear workspace attributes 14 
clearing suspended functions 157 
close data files 164 
coefficient matrices 105 
combinations of B 60 
command key 7 
command keyword 7 
commands that control the active workspace 
commands that control the library (tape) 
commands that provide information about the system 
commands, system 11 

11 
12 

12 

comment A 121,135 
communications adapter 1 
communications mode 21 
communications program 21 
comparison tolerance OCT 124 
compress function / 81 
conditional bianch 138 
conjugate function + 44 
consecutive integers 88 
conserve storage 172 
coordinate 33, 75 
copy display 9 
copy display key 6 
copy objects into the active workspace 
creating a new coordinate 79 
creating lists 39 
cursor 1,7 
cursor return character (X'9C') 163 

15,25 

dark characters 5 
data file 159, 172 
data representation 30 
data security 170 
data to be printed 21 
deal function 7 95 
decode function 1 96 
defective records 18 
defining a function 134 
del Vsymbol 134 
delete characters 8 
delete statements 148 
device/file number 13, 160 
display characters in alternate positions 
display device/file number and workspace ID 
display file headers 17 
display local names 142 
display messages 144 
display names of suspended functions 27 
DISPLAY REGISTERS switch 5 
display screen 1 
display screen control 5 
display the existing shared variable names 
display the number of symbols allowed 
display the variable names 28 
display userdefined function names 17 
display value of a variable 30 
displaying a userdefined function 148 
displaying more than one value on the same line 
divide function i 48 
drop elements from an argument 
dropfunction G 87 
dual-language machines 4 
dyadic 43 
dyadic functions 135 
dyadic mixed functions 73 

5 
29 

159 
28 

146 

87 

21 5 



I 
edit statements 148 
editing statements 134 
empty array 36, 39 
empty vector 138 
encode function T 99 
end of block character (X'FF') 
entering system commands 13 
equal to function = 68 
erase information 6 
erase objects from the active workspace 
error message 155, 180 
error message displayed 165 
escape from ninput 145 
escape from input 145 
establish a variable to be shared 
examples of function editing 151 
execute function & 107 
execute key 7 
executes the argument 107 
execution mode 134 
expand arguments 82 
expand function \ 82 
explicit result 135 
exponential function * 54 
expunge 132 

163 

16, 132 

158 

factorial function I 59 
fall through 138 
file header 11, 17 
fileID 17 
file number 17 
file size formula 20 
file type 17 
files 11 
fix function OFX 129 
flashing character 1 
floor function 51 
form a matrix into a function 
format 108 
format a function into a matrix 
format function V 108, 146 
formats the tape 19 
formatted tape 11 
forms an array 76 
forms thickness 177 
formula for file size 20 
forward space key 7 
function definition 134 
function definition mode 134 
function definition, reopen 148 
function editing 147 
function header 135, 139 
functions, primitive 32 

129 

128 

gamma function 59 
general interchange data format 161 
generalized transpose function tq 94 
generate empty arrays 36 
generating arrays 33 
global names 139 
global variable 140 
grade down function 84 
grade up function 4 83 
greater than function > 67 
greater than or equal to function 2 70 

hold key 6,9 

ID = (file ID) 160 
identity elements 11 I 
IMF 22 
IN operation 160, 163 
index entry 

decimal 79 
integer 78 

index entry [I] 75 
index entry assumed 75 
index generator function t 88 
index of function 1 88 
index of specified elements 88 
index origin 010 125 
index values 

in ascending order 83 
in descending order 84 

indexing 32,39 
indicate the sign 46 
indicator lights 

process check 9 
in process 9 

indices 34 
information printed 9 
inner product operator 113 
input 1 
input line 6 
input, processed 7 
insert characters 8 
insert forms, printer 175 
insert statements 148 
installation procedure 

auxiliary tape unit 196 
printer 198 
5100 191 

integers 172 
interactive functions 144 
interchange data format 161,163 
interchanges the coordinates of the argument 94 

21 6 



internal checks 4 
internal data format 161 
internal machine fix (IMF) 22 
interrupted function 155 

(--I invert a nonsingular matrix 105 

join two arrays 37,78 
join two items 37, 78 

keyboard 6 
keys 6 
keyword 7 

f \ \  

labels 137 
laminate function , 77, 79 
language in operation 4 
larger of two arguments 50 
last valid statement number 149 
latent expression 0 LX 126 
latent referent 142 
least squares solution 106 
length of the output line 126 
less than function < 69 
less than or equal to function 5 71 
library 11 

line counter ULC 126 
load a stored workspace into the active workspace 
local function 131 
local names 27, 139 
local names, display 142 
local objects 132, 172 
local userdefined functions 143 
local variable 139 
locked functions 147 
log of B to base 'e' 55 
log of B to base A 55 
logarithm function 89 55 
logical data 32, 172 
L32 64 R32 switch 5 

I light characters 5 

19 
c 

magnitude function I 52 
mark a file unused 16 
matrices 32 
matrix divide function 8 105 
matrix inverse function 105 
maximumfunction r 50 
membership function E 104 
minimum function L 52 
minus function - 46 
mixed functions 43 

models 171 
monadic 43 
monadic functions 135 
monadic mixed functions 73 
MSG = OFF 161,165 
multiplier 31 

N-rank array 34 
name classification 0 NC 133 
name l is t  C]NL 132 
names of the obiects in the active workspace 
nand function A 65 
natural log function @ 55 
negation function - 45 
negative sign 30 
new coordinate, creating 79 
next larger integer 50 
next smaller integer 51 
niladicfunctions 135 
nonsingular 105 
norfunction 66 
not equal to function f 72 
not function 64 
numbers 30 

decimal 172 
whole 172 

132 

numeric keys 6 

objects 12 
opening a file 159 
operators 43, 11 1 
orfunction V 63 
order of execution 122 
other commands that control the system 
OUT operation 160, 163 
outer product operator o . 
output 1 
output line, length 126 
overstruck characters 200 
overview, system 11 

12 

11 6 

parameters for system commands 13 
parentheses ( ) 122 
pendent functions 156 
physical record 163 
pi times B 56 
pi times function 0 56 
plane 75 
planning information 188 
plus function + 44 
portable computer 1 
positioning information 7 
positioning the cursor 7 
power function * 54 

21 7 



power on procedure 4 
power ON/OFF switch 4 
power on/off, printer 174 
precision 108 
primitive functions 32, 43 
primitive mixed functions 73 
primitive scalar functions 43 
print data 160 
print information 9 
print input and output 21 
print output 21 
print width OPW 126 
printer 21, 174 
printer characteristics 174 
printer output 158 
printer power on/off switch 174 
printing precision OPP 125 
process input 7 
processing 6 
processing input 10 
product of A times B 
product of all positive integers 
protect objects 25 
protecting sensitive data 170 
PRT operation 160, 164 
pseudoinverse of a rectangular matrix 

47 
59 

105 

quad 0 120 
quad input 145 
quad quote [1 121 
quad quote input 145 
quotient of A divided by B 48 

radians 56 
raise A to  the B power 
random integer 61 
random link O R L  126 
random numbers 61,95,126 
rank 34'42 
ravel function, 77 
reciprocal function f 48 
reduction operator / 1 1  1 
remainder 53 
remove bare output 147 
removing sensitive data 170 
reopening function definition 148, 150 
replace ribbon 177 
replace statements 148 
representation of an argument in a specified number system 
representation of the class of names 
request input 144 
reshape function p 33, 76 
residue function 1 53 
restart procedure 4 
RESTART switch 5,9 
restart system operation 4 

54 

99 
133 

result variable 135 
resume execution 155 
retract shared variable 16, 164 
retract the variable name being shared 
return codes 162 
REVERSE DISPLAY switch 5 
reverse function @ 89 
reverses the coordinates of the argument 
reverses the elements of the argument 
revising a user-defined function 148 
rewind the tape 26 
ribbon, printer 177 
roll function ? 61 
rotate function @ 91 
rotates the elements of the argument 

164 

93 
89 

91 

scalar 32 
scalar functions 43 
scale 31 
scaled representation 31 
scan operator \ 118 
scroll 9 
scroll down 9 
scroll up 9 
select elements from arguments 81 
sensitive data 170 
shape function p 75 
shape of an array 34 
shape of the argument 75 
shared variable 158 
shift key 6 
significant digits displayed 125 
signum function x 46 
SIV display 143 
size of files 18 
smaller of two arguments 52 
solution to one or more sets of linear equations 
sort vector 

105 

in ascending order 83 
in descending order 84 

special symbols 120 
specify order of execution 122 
specifying printer output 12,21,1H 
state indicator 27,143, 155 
state indicator with local names 
stop control 147, 154 
stop control vector 155 
stop processing 6 
stop system operation 6 
stop vector 154 
storage capacity 171 
storage considerations 1 72 
store data 11,30 
structure 76 
subtract 46 
sum of two arguments 44 
suspended function execution 155 
suspended functions 155 
suspended functions, cleared 157 
suspension 155 

143 

218 



switches 
BASIC/APL 4 
DISPLAY REGISTERS 5 
L3264R32 5 
POWER ONlOF F 4 
RESTART 5 
REVERSE DISPLAY 5 

symbols 6 
system command description 

commands that control the active workspace 
commands that  control the library 
commands that provide information about the system 
other commands that control the system 

system command parameters 
brackets 13 
device/file number 13 
object 13 
password 13 
workspace ID 13 

system commands 
control the active workspace 11 
control the library 12 
provide information about the system 
other commands 12 

11 
12 

12 
12 

12 

system commands, entering 13 
system commands, parameters 13 
system functions 128 
system malfunction 9 
system operation 4,9 
system overview 11 
system ready 4 
system variables 123 

c 
take elements from an argument 
take function + 86 
tape 11 

86 

tape cartridge 
care 173 
handling 173 

tape error recovery program 22,25 
tape input and output 158 
tape unit, auxiliary 1, 13 
terminate printer output 164 
times function x 47 
trace control function 147, 152 
TRACE user-defined function 152 
trace vector 152 
transfer data from tape 
transfer data to tape 
transferring data 163 
transpose function 4 93 
trigonometric functions 56 
TV monitor adapter 1 
TYPE = 161 

160, 163 
160, 163 

unused space 126 
unused storage 18 
userdefined function, revising 148 
userdefined functions 134 

value expressed in a specified number system 
variable name 30,172 
variables 30 
vectors 32 

96 

workspace available 0 WA 126 
wraparound 7 
write the active workspace to  tape 14, 26 
write the contents of the active workspace to tape 14,26 

i 

i 



'\ 220 



READER'S COMMENT FORM 

IBM 5100 
APL Reference Manual 

SA21-92134 

0 Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 

YOUR COMMENTS, PLEASE.. . 
Your comments assist us in improving the usefulness of our publications; they are an important 
part of the input used in preparing updates to the publications. All comments and suggestions 
become the property of I BM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM branch office serving your locality. 

Corrections or clarifications needed: 

pese Comment 

Due to the current paper shortage, we will not send a reply to your comments unless you 
check the box below. 

I would like a reply. 

Name 
Address 

j 
I I 



SA21-92 13-0 

Fold I Fold 

FIRST CLASS 

PERMIT NO. 387 

ROCHESTER, MINN. 

B U S I N E S S  R E P L Y  M A I L  
NO POSTAGE STAMP NECESSARY IF MAILED I N  THE UNITEDSTATES 

POSTAGE WILL BE PAID BY . . . 

I BM Corporation 
General Systems Division 
Development Laboratory 
Publications, Dept. 245 
Rochester, Minnesota 55901 

International Business Machines Corporation 
General Systems Division 
5775D Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

I.” 

I %  

1 %  

2 

I gJ 
I 
I 
I 

I 
I 
I 
i 

I -j 
-_I’ 



~ EBM Technical Newsletter / This Newsletter No. SN21-0247 

Date 15 September 1975 

Base Pubiication No. SA21-9213-0 

File No. None 

Previous Newsletters None 

IBM 5100 
APL Reference Manual 

@ I BM Corp. 1975 

This technical newsletter provides replacement pages for the subject publication. Pages to be inserted 
and/or removed are: 

3.4 
19 through 22 
22.1,22.2 (added) 
27,28 

171 through 174 
175, 176 
181, 182 
189 through 200 

Changes to text and illustrations are indicated by a vertical line a t  the left  of the change. 

Summary of Amendments 

Miscellaneous changes 

Note: Please file this cover letter a t  the back of the manual to provide a record of changes. 

IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901 

@ IBM Corp. 1975 Printed in U S A .  







~ SA2 1-92 1 3-0 

International Business Machines Corporation 
General Systems Division 
5775D Glenridge Drive N.E. 
Atlanta, Georgia 30301 
(USA Only) 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 




