
Systems

GY30-3000-0

IBM 3735 Programmable
Buffered Terminal
Form Description
Macro Instructions
and Form Description Utility
Program Logic Manual
(OS and DOS Systems)

Program Numbers OS 360S-CQ596
DOS 360N-CQ490

Preface

The How to Use This Book section of this publication
defines the audience for which this program logic manual
is intended, explains how the book is organized, and sug­
gests how the reader may best familiarize himself with its
contents.

First Edition (March 1972)

Changes are periodically made to the information herein; before using this publi­
cation in connection with the operation of IBM equipment, refer to the latest
SRL Newsletter for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM repre­
sentative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be sent to IBM Systems Development
Division, Publications Center, Department EOI, P.O. Box 12275, Research
Triangle Park, North Carolina 27709. Comments become the property of IBM.

©Copyright International Business Machines Corporation 1972

Contents

How to Use This Book . iv

Part 1. Introduction to the IBM 3735 Programmable
Buffered Terminal 1-1

Part 2. Logic of the Form Description
Macro Instructions 2-1

Part 3. Logic of the Form Description Utility 3-1

Part 4. Appendixes and Glossary 4-1

Index . X-1

iii

How To Use This Book

This Program Logic Manual describes in detail the internal
specifications and logic of the IBM System/370 and Sys­
tem/360 Operating System (OS) and Disk Operating System
(DOS) programming support for the IBM 3735 Program­
mable Buffered Terminal (hereafter referred to as the 3735).
The 3735 programming support includes both Form De­
scription (FD) macro instructions and Form Description
utility programs to provide the operating environment for
applications using preprinted (fixed-format) forms and
batch processing.

This publication is divided into four major parts: Part 1
gives an overall introduction to the 3735; Part 2, the Form
Description macros information; Part 3, the Form Descrip­
tion utility information; and Part 4 contains the rear matter
of the appendixes and glossary. The 3735 FD macros and
FD utility information contained in Parts 2 and 3 is directed
to the IBM program systems representatives and system
engineers who provide program maintenance and who need
information about the internal organization and logic of
the FD macros and FD utility.

Because the OS and DOS programming support for the
3735 are so similar, both are discussed as one. Where sig­
nificant differences exist, they are explained as required.

The second part of this book, dealing with the macros,
is subdivided into three sections containing the following
information.

Section 1 is the Introduction to the FD macros. The
general information presented in the introduction is basic
to an understanding of the macros and includes descrip­
tions of the following: (1) the macros themselves, (2) the
general purpose of the macros, (3) the main functions of
the macros, and (4) the system environment required to
assemble the macros for both OS and DOS.

Section 2, Method of Operation, describes the overall
FD macro structure and the macro functions. It discusses
in detail each function and the method used to accomplish
that function. When appropriate, diagrams depict visually
the concept being described.

Section 3, Form Description Program Organization,
describes the detailed logical organization of the FD pro­
grams that result from the assembly of FD macro instruc­
tions. This section notes specific OS and DOS dependencies
as they are required.

The third part of this book dealing with the FD utility,
is subdivided into six sections containing the following
information.

iv

Section 1, Introduction to the FD utility, contains gen­
eral information that is basic to an understanding of the
utility and includes descriptions of the following: (1) the
utility, (2) the general purpose of the utility, (3) the main
functions of the utility, (4) the system environment re­
quired to execute the utility for both OS and DOS.

Section 2, Method of Operation, describes the overall
logical flow and functions for the utility. It discusses in
detail each function and the method used to accomplish
that function. When appropriate, diagrams depict visually
the concept being described.

Section 3, Program Organization, describes the detailed
logical organization of the FD utility and includes flow­
charts to illustrate the logical flow of the utility. This sec­
tion denotes specific OS and DOS dependencies as they
are required.

Section 4, Directory, defines the CSECT names and
other references used for the FD utility. It also provides
cross-references applicable for the utility program listings.
All this information is presented in charts and tables.

Section 5, Data Area Layouts, refers back to Section 2
and Section 3, which describe graphically and verbally the
format and contents of the various data areas used by the
FD utility.

Section 6, Diagnostic Aids, is not provided because of
the simplicity of the programs.

The fourth major part of this publication contains four
appendixes and a glossary of definitions for the technical
terms used in this book.

To understand the logic of the 3735 programming sup­
port, the reader must have a general understanding of the
System/370 or System/360 Operating System or Disk
Operating System and of the macro language facility of
the assembler. In addition, he should also be familiar
with the following prerequisite publications:
IBM 3735 Programmable Buffered Terminal

Concept and Application, GA27-3043
Programmer's Guide, GC30-3001

IBM System/360 Operating System Assembler Language,
GC28-6514

IBM System/360 DOS, TOS Assembler Language,
GC24-3414

Part 1. Introduction To The IBM 3735 Programmable Buffered Terminal

Introduction To The IBM 3735 Programmable Buffered Terminal 1-1

Contents

IBM 3735 Programmable Buffered Terminal .
Configuration
Program Support
System Considerations

1-2

Forms Design
Form Descriptions

Form
Page
Line
Field
Control

Programming Considerations
Form Description

Assembly of Macro Instructions
Utility.
Transmission .

1-3
1-3
1-3
1-4
1-4
1-4
1-4
1-4
1-5
1-5
1-5
1-5
1-5
1-5
1-6
1-6

The IBM 3735 Programmable Buffered Terminal provides
an effective means of manipulating the data required for
day-to-day business operations. The 3735 brings many of
the capabilities of the central computer to the operator,
thereby allowing the terminal to automatically provide
operator guidance, error detection, formatting, editing,
and other services.

The IBM 3735 Programmable Buffered Terminal is a pro­
grammable terminal consisting of the IBM Selectric® I/O II
Keyboard Printer and a highly sophisticated desk-side con­
trol unit. It is designed primarily for applications that use
preprinted (fixed-format) forms and batch processing.

The 3735 uses two levels of program control. First, the
user generates Form Description (FD) programs, via the FD
macros and the FD utility, to specify the functions desired
for processing a specific type of form. Second, a microcoded
terminal control program, recorded in the terminal control
unit during manufacture, interprets the FD programs and
provides detailed terminal control.

The Form Description (FD) macros assembled by the
host operating system describe the forms to be processed.
The Form Description (FD) utility arranges the forms for
later transmission to the 3735 via the user's application
program and teleprocessing access method. The FD pro­
grams reside in the 3735 terminal until replaced by the
user.

CONFIGURATION

The 3735 is a supported device for the IBM System/370
Model 135 and up and for the IBM System/360 Model 22
and up. The basic 3735 terminal configuration provides
for communication over point-to-point switched (dial-up)
or nonswitched (with multipoint control) common-carrier
facilities at speeds of 1200 or 2000 bits per second. (World
Trade provides for a 600 bits-per-second transmission
speed.) Communication over multipoint nonswitched
(leased) lines at 1200, 2000, or 2400 bits per second can
be provided by the addition of a special feature to the
basic 3735 terminal.

The basic configuration of the 3735 consists of an IBM
Selectric® I/O II Keyboard Printer and desk-side control
unit. The control unit consists of (1) a small processor,
(2) a binary synchronous communication (BSC) line adapt­
er, and (3) a non-removable magnetic-disk storage device.
The magnetic-disk storage device within the control unit
contains (1) the terminal control program, (2) the FD pro­
grams, (3) an inquiry message or response, (4) user-generated

The IBM 3735 Programmable Buffered Terminal

data records, and (5) (optionally) a CPU ID list. The num­
ber of FD programs, each representing a different form
type, that can be stored depends on the length of the pro­
grams. Basic storage capacity for user FD programs and
data storage is about 62K bytes. This basic capacity is
expandable in increments of 42K bytes to a total of about
145K bytes.

This storage capacity is provided in 22K-byte tracks, each
of which is divided into forty seven 480-byte sectors. The
basic 3735 terminal has three tracks for storing the FD pro­
grams and user data. Three sectors of each of these tracks
are reserved for control purposes, and four bytes of each of
the remaining sectors contain chaining information. In the
sectors that store FD programs, 234 bytes contain the pro­
grams and six bytes contain chaining information. The re­
maining 240 bytes of FD program sectors on disk are not
used. When in the buffer, the terminal control program
uses the second half of these bytes as work space.

Three optional features provided for the 3735 are the
IBM 5496 Data Recorder, the IBM 3286 Printer Model 3,
and the IBM Operator Identification Card Reader attach­
ments. The 5496 is a buffered operator-oriented, key-entry
unit used to punch, interpret, and read the 96-column
punched card. The 3286-3 is a printer adapter used as a
secondary printing device. The identification card reader
reads magnetically recorded data from the IBM 16-character
ID card (standard credit card size 2-1/8" x 3-3/8") that has
a magnetic stripe and from the other IBM credit card with
data up to 39 characters.

PROGRAM SUPPORT

The IBM System/370 and System/360 support the 3735
under the Operating System (OS) and the Disk Operating
System (DOS). This support provides (1) for generating
FD programs, (2) for preparing these programs for trans­
mission to the terminal, and (3) for transmitting data
between the computer and the terminal.

The 3735 terminal uses the binary synchronous method
of communications line control (BSC), making the terminal
compatible with most BSC systems and programs. Since
the 3735 is a BSC device, the binary synchronous support
that exists in OS TCAM and BTAM and in DOS BTAM is
sufficient to handle the transmission of data between the
CPU and the terminal.

The FD programs are generated using System/370 and
System/360 OS and DOS Assembler Language macro
instructions. These FD macro instructions provide error
checking for the user.

Introduction To The IBM 3735 Programmable Buffered Terminal 1-3

A Form Description utility is provided to prepare the FD
programs for transmission to the 3735. The FD programs
are placed in an output data set for selection and transmis­
sion by the user's application program. When the terminal
receives these programs, they reside on the 3735 disk and
the operator uses them to control terminal functions. The
FD utility operates under OS and DOS. It operates inde­
pendently of the user's teleprocessing program but is depen­
dent upon the assembly of the FD macro instructions. The
utility is scheduled through the input job stream.

The minimum system that can use the FD macros and
the FD utility is:

OS/DOS - System/370 Model 135
OS - System/360 Model 40, l 28K
DOS - System/360 Model 22, 32K

Note: DOS requires 32K bytes of storage to support tele­
processing.

SYSTEM CONSIDERATIONS

The following paragraphs outline functions that can be
specified for processing a given form and discuss the for­
matting of data transmitted to and received from the CPU.

Forms Design

The 3735 places few restrictions on forms design. The
standard platen accommodates forms up to 15 inches wide
with up to 130 characters per line. Printing is at ten char­
acters per inch; vertical spacing is at six lines per inch. An
original and up to four carbon copies can be printed.

Form Descriptions

Form descriptions should be developed sequentially from
left to right, top to bottom, and page by page, since forms
are usually processed in this manner during preparation.

The 3735 form descriptions are presented in the follow­
ing sequence:

Form: Descriptions that apply to the overall form.
Page: Descriptions that apply to a single page of the

form.
Line: Descriptions that apply to a single line of the

form.
Field: Descriptions that apply to a single field of the

form.
Control: Descriptions that define the status checking

and processing to be done on the form.

Form

The form description (specified by using the FDFORM
macro) must name the form and specify a three-digit iden­
tifier. The terminal operator uses this identifier to call out
the form description program for processing a document.

1-4

The user can specify an operator message for the form.
This message is included within the body of the FD program
and can be requested by the terminal operator before begin­
ning processing under FD program control. The message
may include instructions for document preparation, machine
setup, application name, and so forth.

The form description can indicate the tab settings to be
used during processing of the form. Each tabular stop is
indicated by listing the character position (relative to the
form) at which the stop is to be set. The terminal operator
can perform a tab set routine, under FD program control,
before starting to process forms under this FD program.

The form description can specify the left margin stop
that is to be used when processing the form. The margin
stop is indicated by specifying, relative to the form, the
character position in which the terminal's left mechanical
margin stop is to be set. The position (n) may range from
0 to 129; the default is 0. Actual output operation can
begin in position n+ 1.

The form description can indicate the format of data rec­
ords created by an FD program before being sent to the cen­
tral computer. This format can be described via one of two
packing (condensing) functions: one that deletes consecu­
tive trailing blanks and one that both deletes consecutive
trailing blanks and inserts a separator character between
data fields. If the data record format is to be sent to the
CPU in its entirety, the form description can indicate that
no packing function is to be performed. The packing option
selected remains in effect throughout the processing of the
entire form.

The form description can indicate that a 96-character
read buffer and a 96-character punch buffer are to be
treated as a single 192-character read/punch buffer for tem­
porary data storage for the optional 5496 Data Recorder.
If the read/punch buffer is used for either a read or a punch
operation for the 5496, the form description can indicate
explicitly the location in the buffer to be read or punched.
The form description can also vary the checking of the
3286-3 line printer buffer. The line printer buffer can also
be used to print on the 3286-3 provided the location to be
written from is specified explicitly in the form description.

The form description also can indicate that the user may
specify Katakana instead of ASCII code in processing forms.

Page

The page description (specified by using the FDPAGE
macro) provides identification and size information about
a single page of the form. The size information is used
during generation of the FD program to ensure that the
fields and lines of the form will fit the page size intended.
If the form consists of more than one page, each individ­
ual page must be described. If a single page is used, the
page description can be included with the form description.
Line and field descriptions for the page follow each page
description.

Each page description identifies the page being described
by number and optionally by name. Page numbers are
normally in ascending sequence but need not be consecu­
tive.

The overall height of the page is described by indicating
the total number of usable line positions on the page; for
example, a page 11 inches long has a height of 66 (at six
lines per inch).

Vertical margins indicate the first line and the last line
which may be defined. Vertical margins are indicated by
line number, counting from the top of the page; for exam­
ple, if the first line on a form may be the fourth line from
the top, and the last line may be the 64th line, the vertical
margins are 4 and 64.

Line

Line descriptions (specified by using the FDLINE macro)
describe each line to be processed within a page. A line
description, identified by a line number (represented by a
number from 1 to n for each page on a Selectric or by an
accumulative number for a page on a matrix printer), should
be provided for each line to be processed by the 3735.

The line description defines the line's horizontal space
requirements. Each line description contains a line identi­
fication, width, and horizontal margins. If the width and
horizontal margins of all lines on a page are the same, these
descriptions can be included with the page description.

If FD program control for a series of lines is identical,
the series can be designated for cycling. Repeating line and
field descriptions for each line is then unnecessary. Describe
the first line or group of lines and indicate the number of
repetitions. In addition, indicate the part of the form
description program to be processed following the cycle.
This cycle control is desirable for two reasons: it shortens
the FD program, thus saving storage space on the 3735
disk; and it allows the operator to terminate cyclic opera­
tion if all lines are not required on a specific transaction.

Field

Field descriptions (specified by using the FD FIELD macro)
follow each line description and specify the control desired
for each field of the line. Many commonly used functions
(such as, centering data within a field, comma and decimal
point insertion, and self-check number verification) have
been implemented within the terminal control program.

The field's horizontal position on the line identifies each
field description. This field is expressed as the first (left)
and last (right) character positions of the field or, option­
ally, as the first character and length. Maximum field size
is 127 characters.

Field descriptions tell where the data comes from
(source), what is done with it (operation), and where it is
to go (sink). The operator can specify a variety of checking
functions for the input data. The application program pro­
cesses the source data as required by using arithmetic and

compare functions. Several devices can be specified for the
destination (sink) of data from the specified source:

• the Selectric® I/O II printer

• an inquiry buffer (INQ)

• the IBM 5496 Data Recorder

• the IBM 3286 Printer Model 3

The Selectric® I/O II keyboard and the IBM Operator Iden­
tification Card Reader are also supported devices for the
origination (source) of data.

Control

This description (specified by using the FDCTRL macro)
provides for (1) testing of logical conditions (indicators),
(2) modifying the content of indicators and counters, and
(3) executing commands and nonsequential operations.
Use of these logical and arithmetic functions can imple­
ment such functions as field skipping. The forms designer
should define the function desired and the data available;
this allows the macro encoder to implement an FD pro­
gram that provides exactly the functions desired. The con­
trol description also includes card reading and punching
instructions. A read card instruction signals the 5496 card
reader to read a card and the data enters a card-image buf­
fer where it is available for use by the FD program. Simi­
larly, a punch card instruction signals the 5496 punch to
accept data from a card-image buffer, and punch the data
into a card.

PROGRAMMING CONSIDERATIONS

Form Description

Assembly of Macro Instructions

The System/370 and System/360 OS and DOS Assembler
Language macro instructions provide the user with a means
of describing his forms. The output of the system assembly
is an object module suitable for input to the FD utility.
Also produced is an assembly listing that includes diagnos­
tic and error information concerning the macro instructions.
The assembly provides the following functions:

• Check input statements for completeness and accuracy.

• Provide meaningful comments to aid in debugging the
program.

• Calculate sequences of motion control characters for
proper print-element positioning.

• Sequence-number output records (object module).

• Set flags in the output if the input statements contain
errors that invalidate the output.

The output of the assembly is object modules whose data
portions are unpacked FD programs. These object modules

Introduction To The IBM 3735 Programmable Buffered Terminal 1-5

can be punched in cards or written in a data set as card
images, then used as the input to the FD utility.

Utility

The FD utility prepares the unpacked FD programs for
transmission to the 3735 terminal. The utility operates
basically the same under OS and DOS. It reads the output
of the assembly from a card reader or equivalent sequential
input device, checks for program integrity, and arranges the
unpacked FD programs into blocks of 476 bytes. Then the
utility writes these unpacked FD program blocks into a
user-specified data set that is available to the user's appli­
cation program.

The main storage required by the OS FD utility is no
more than that required for the minimum OS Linkage
Editor available to the system. The main storage required
by the DOS FD utility exclusive of the Linkage Editor step
is no more than 12K bytes. The following three 1/0 devices
are required: a card reader or equivalent device; a printer;
and a direct-access storage device (DASD). The utility uses
no more than 10 tracks of 2311 storage, or the equivalent,
for program residence. The user's secondary storage re­
quirements depend on the number, size, and complexity of
the forms being described.

The FD utility is scheduled through the input job stream,
encompassing three sequential job steps: Control, Linkage
Editor, and Storage. There is one optional feature: in OS,
the JCL PARM feature; in DOS, the RPLACE control card.

In OS, if a form is a duplicate (one with the same form
name) of a member in the user's output data set and the
REPLACE option has not been specified, the form is stored
as a new member under a temporary name: for example,
IDFTEMPO, IDFTEMPl, IDFTEMP2, ... , IDFTEMP9. If
these temporary names have already been exhausted, the
new member is not stored. The form is replaced if the
REPLACE option has specified that all duplicates are to
be replaced, or has specified, by name, the forms to be
replaced. The action taken is noted in the listing.

In DOS, if a form is a duplicate of a member in the user's
output data set and the RPLACE card has not been used,
the form is stored as a new member under a temporary
name: for example, IJLFTMOO, IJLFTMOl, IJLFTM02,
. . . , IJLFTM09. If these temporary names have already
been exhausted, the new member is not stored. The form
is replaced if the RPLACE card has specified that all dupli­
cates are to be replaced, or has specified, by name, that the
form be replaced. The action taken is noted in the listing.

To include the FD utility in his operating system, the
user must copy it from the component library on which it
is distributed. This may require allocating additional space.
Prior to the execution of the FD utility, the system pro­
grammer must ensure that suitable input and output data
sets are designated through correct coding of the job con­
trol statements.

1-6

If an uncorrectable error is encountered, the FD utility
takes the appropriate action, depending on which step of
the three-step sequence is being executed. The control step
terminates the job step; the storage step deletes a partially
created sequence of blocks from the user's data set. Each
of the three steps produces a diagnostic listing. The listing
produced by the last step names each unpacked FD pro­
gram that was added to, deleted from, or not added to the
user's data set.

The response to environmental errors arising from im­
proper input, such as a card missing or out of sequence, is
to write a message in the diagnostic listing, produced in the
control step, and to exit. Input following the erroneous
card is not processed. The response to errors such as insuf­
ficient allocation of space in a data set is to terminate pro­
cessing and to note the condition in the listing. The re­
sponse to implementation errors, such as errors in system
control blocks, is those error recovery and termination
options provided by OS and DOS.

The diagnostic listing produced from the execution of
each of the three utility job steps contains information of
interest to the programmer adding, creating, modifying, or
extending a set of unpacked FD programs and includes a
list of messages.

Following are some examples of the types of diagnostics
noted in the listing:

Successful completion
Last valid record (card) number
Erroneous record (card) number
Invalid sequence number
Invalid deck ID
Premature end-of-file
Invalid card type
Name of FD program stored
Duplicate name, if it was stored and if so, under

what name
Insufficient space

The messages that are listed vary slightly between OS and
DOS. The programmer response to any errors indicated is
to correct the error and re-execute the job. Another alter­
native is for the utility to note the error and continue pro­
cessing the next valid data group .

Transmission

The output of the FD utility consists of 4 76-byte blocks
containing macro-generated bit strings forming the data
portion of FD messages. These FD programs containing
the unpacked code that is interpreted at the 3735 reside
in a user's data set. The user must create a teleprocessing
application program to select and transmit the FD pro­
grams, just as he must create application programs to pro­
cess the data captured and transmitted by the 3735
terminals.

Not all FD programs in the user's library must be trans­
mitted to all 3735 terminals during FD program transmis­
sion to individual terminals. The user can be selective,
sending FD programs from the library to specific termi­
nals. However, during transmission of the FD programs
from the user's data set to the terminal, all the FD pro­
grams that are to reside at a terminal must be transmitted
at the same time. FD programs cannot be added to those
already residing at the terminal. To get the total number
of FD programs desired at the terminal, the FD programs
already there must be retransmitted along with any addi­
tional ones.

The FD programs must be transmitted according to the
following scheme:

1. The 3735 terminal transmits its unpacked data to the
CPU first.

2. The CPU must transmit a user-prepared block which
informs the 3735 that the following transmission blocks
are FD programs.

3. The CPU transmits the FD programs in 476-byte un­
packed blocks.

4. The CPU must transmit a user-prepared block that
informs the 3735 that transmission of FD programs
is complete.

Introduction To The IBM 3735 Programmable Buffered Terminal 1-7

Part 2. Logic Of The Form Description Macro Instructions

Logic Of The Form Description Macro Instructions 2-1

Contents

Part 2. Objectives

Section 1. Introduction .
Form Description Macro Instructions

The Structural Macros
The Procedural Macro
The Delimiting Macro
The Trace Macro
The Display Macro .
Form Description Macro Organization

System Requirements .
Operational Considerations

Input and Output of the Form Description Macro
Assembly

Input .
Output

Section 2. Method of Operation
Form Description Macro Structure
FD Macro Functions

FDFORM Macro Instruction .

Illustrations

Figure Title

2-1 3735 Program Logic Flow
2-2 OS FD Macro Assembly Output
2-3 DOS FD Macro Assembly Output
2-4 OS Control Section Format
2-5 DOS Control Section Format .
2-6 Keyed Form Description Unpacked Program

Block (KUPB)
2-7 Hierarchy of FDFORM Macro Calls
2-8 Hierarchy ofFDPAGE and FDLINE Macro Calls
2-9 Hierarchy of FD FIELD Macro Calls (2 Parts)
2-10 Hierarchy ofFDEND Macro Calls.
2-11 Hierarchy of FDCTRL Macro Calls
2-12 Overview of the IN Inner Macros (2 Parts)
2-13 Summary of Assembled FDFORM Macro

Functions
2-14 Summary of Assembled FDPAGE Macro

Functions
2-15 Summary of Assembled FDLINE Macro

Functions
2-16 Summary of Assembled FDFIELD Macro

Functions
2-17 Summary of Assembled FDCTRL and FDEND

Macro Functions
2-18 The FD Program Structure

2-2

2-3

2-4
2-4
2-4
2-4
2-5
2-5
2-6
2-6
2-6
2-7

2-7
2-7
2-7

2-12
2-12
2-19
2-19

Page

2-5
2-8
2-9
2-10
2-11

2-11
2-13
2-14
2-15
2-17
2-18
2-20

2-22

2-23

2-24

2-25

2-26
2-31

FDPAGE Macro Instruction
FDLINE Macro Instruction
FDFIELD Macro Instruction
FDCTRL Macro Instruction
FDEND Macro Instruction

The Assembly of Form Description Programs
Form Description Program Header Assembly
Address Resolution and Motion Control Assembly
Immediate Byte Assembly .
Field Control Descriptor Assembly

Section 3. Form Description Program Organization
Form Description Programs

FD Program Header
Immediate Bytes and Field Control Descriptors

Immediate Bytes . .
Field Control Descriptors

FD Program Trailer .
FD Program Maintenance

Trouble Shooting

Figure Title

2-19 The FD Program Header
2-20 NOP, GOTO, and Conditional GOTO

Immediate Bytes
2-21 The Begin, Repeat, and End Cycle

Immediate Bytes
2-22 The Index Space and Total Batch

Immediate Bytes
2-23 The Cancel Form, End Form, Clear Counter,

and Set Indicator Immediate Bytes .
2-24 The Selectric Command Immediate Bytes
2-25 The Clear STG and Inquiry Command

Immediate Bytes
2-26 The 5496 Command Immediate Bytes

2-19
2-19
2-19
2-22
2-23
2-24
2-24
2-26
2-27
2-28

2-31
2-31
2-31
2-32
2-32
2-39
2-50
2-50
2-50

Page

2-31

2-33

2-35

2-36

2-36
2-36

2-38
2-38

2-27 The 3286 Line Printer Command Immediate Bytes . 2-39
2-28 The IDR and CCR Command Immediate Bytes . 2-39
2-29 The FCD Structure . 2-40
2-30 The Data Source Group 2-41
2-31 The Data-Type Byte 2-43
2-32 The Validity and Function Bytes 2-45
2-33 The Validity Group . 2-45
2-34 The Function Group (3 Parts) 2-46
2-35 The End Control Byte 2-50
2-36 The FD Program Trailer 2-51

Part 2 is designed to be used to trouble shoot, debug, and
repair problems in the 3735 FD macro programming sup­
port. The program listings of the macro expansions are
much too lengthy for the user to find an error in a single
statement within the internal code. For this reason, the
user should perform the following analytical steps to find
and correct errors.

l. Verify that the user-specified FD macros are correctly
coded.

2. List the records created by the macro assembly using
one of the sample programs described in Appendix G
or Appendix H in the IBM 3735 Programmer's Guide,
GC30-3001.

3. Verify that the records listed are correct. If they are
not valid, alter the FD utility output with a temporary
fix. Refer to Part 2, Section 3 for information about
the FD program maintenance procedures to follow.
Also, consult Part 2, Section 3 for the correct formats
of the FCD bytes and immediate bytes that are needed
for correct FD program execution.

The information in this part of the book is subdivided into
three main sections as follows.

Part 2. Objectives

Section 1 is the introduction to the FD macros and de­
scribes in general terms the macros and their relationship to
one another. The section discusses the system requirements
needed to define and use the macros and the operational
considerations of the macros (input and output of the FD
macro assembly) including a brief explanation of the
MNOTE messages generated by a macro assembly.

Section 2 describes the method of operation that the FD
macros use and includes a detailed explanation of the macro
organization of inner and outer macros. Also discussed is
the step by step procedure that takes place in the assembly
of FD macros to generate an FD program.

Section 3, Form Description Program Organization,
explains in great detail each portion of an FD program and
includes diagrams to aid in visualizing each byte generated
by an assembly. The subjects discussed are the FD program
header, the FCD bytes, the immediate bytes, and the FD
program trailer. Following this information is a description
showing how to diagnose and repair errors that appear in
FD programs after the assembly process is complete. This
discussion is very important to finding and correcting errors
in the FD macro programming support.

Logic Of The Form Description Macro Instructions 2-3

Section 1. Introduction

The Form Description (FD) macros are a unique family of
IBM System/370 and System/360 OS and DOS Assembly
Language macro instructions. They are designed to facili­
tate the description of terminal-oriented data processing
forms in terms of, (1) form structure, (2) data field attri­
butes, and (3) the activities required of a sophisticated
terminal and its operator in the processing of such forms.
The FD macros are an interrelated group of macro state­
ments that provide a symbolic means of describing to the
3735 (1) the structure of a data processing form, (2) the
characteristics of each data field of the form, and (3) the
processing to be done on each data field. Assembly of user­
specified sets of FD macros results in an object module
made up of field control descriptors (FCDs) assembled
in an unpacked (expanded) state. The text part of the
object module is a collection of bytes that comprise one
or more FD programs. The FD program object modules
must be restructured into program blocks by the FD
utility, which stores them on a direct-access storage
device (DASD). Later these program blocks are selec-
tively retrieved and transmitted to specified 3735 termi­
nals. There they are stored on a magnetic-disk storage
unit in packed (normal) form, to be recalled as needed
by the terminal operator or by the terminal control pro­
gram. The terminal control program interprets each
set of program blocks as a set of directions for the pro­
cessing of one type of form. Refer to Figure 2-1 for the
logic flow of the 3735.

FORM DESCRIPTION MACRO INSTRUCTIONS

The FD macros are grouped into three classes: structural,
procedural, and delimiting. The four structural macros are
FDFORM, FDPAGE, FDLINE, and FDFIELD. The pro­
cedural macro is FDCTRL and the delimiting macro is
FD END.

Two optional macros available for diagnostic aids are
FDTRACE and FDDSPLY. These two macros can be
included with the specifications on the FD macros or added
to the internal code.

The Structural Macros

The structural macros are hierarchical in character, which
restricts the order in which they may be coded. The forms
encoder must therefore think of his forms in terms of an
information structure in which forms are made of pages,
pages are made of lines, lines are made of fields, and fields

2-4

are made of characters. The structural macros describe the
structural organization of the form and the processing re­
quired by each field. They are normally coded so as to
maintain forward progression through the entire form; for
example, from top to bottom on a page, and from left to
right on a line.

The structural macros are designed to take advantage of
the promotability of many of their keyword operands.
Promotability is the ability of a keyword operand to be
coded in some particular macro instruction (for example,
FDFIELD, FDLINE, FDPAGE) and also to be coded in
one or more macros of higher authority. The authority of
a macro statement extends through an FD program until
the same type of macro statement (or one of higher author­
ity) appears later in the FD program. This concept allows
a number of the attributes of pages, lines, and fields to be
coded at a structural level higher than their minimum level
of applicability, and, optionally, to be temporarily over­
ridden at a lower level. Thus, the ability to promote an
operand helps to minimize the total amount of encoding
required to describe a form.

The Procedural Macro

The procedural macro instruction FDCTRL enables the
forms encoder to request that the IBM 3735 test the status
of one or more terminal control program indicators, also
called logic switches. In the FDCTRL macro the encoder
may request unconditionally (if no test was coded) or con­
ditionally (based on the result of the test) that any combi­
nation of the following actions be taken:

• Modify the status of one or more program logic indi­
cators.

• Perform clearing and/or arithmetic operations on
terminal counters.

• Perform clearing on terminal storage.

• Read into, punch from, and/or clear unit-record data
buffers.

• Connect and disconnect the communication line for
inquiry/response purposes.

• Alter the sequence in which elements of the form are
processed.

• Position the 3286-3 Printer to a new line for printing.

FDCTRL macros may appear in any location within the FD
macro statements that describe a specific form.

The Delimiting Macro

The delimiting macro FDEND closes the description of each
form and prepares for a form description that may follow
by (1) confirming that no source statements have been lost,
(2) completing code generation, and (3) reinitializing the
global variables used in the internal processing.

Diagnostic
Listings

FD

Utility

Source
Statements
(FD Macros)

+

FD
Program
Blocks
for
Sending
to 3735

Figure 2-1. 3735 Program Logic Flow

OS or DOS

Assembler

FD
Object
Module
(KUPBs)

The Trace Macro

There is in addition to the required FD macros an optional
diagnostic macro named FDTRACE. This macro provides
for the user the ability to trace the activity that occurs
during the processing of each FD macro. For further infor­
mation refer to Part 4, Appendix B of this book.

Macro
Library

User TP

Programs

or
FD
Object
Deck

3735
Disk
Blocks
Packed
by the
3735

Logic Of The Form Description Macro Instructions 2-5

The Display Macro

The optional display outer macro FDDSPLY activates the
IDFDSP inner macro, which displays the information re­
quested in the call of IDFDSP. For further information
refer to Part 4, Appendix B of this book.

Form Description Macro Organization

An ordered set of FD macros collectively define a form
structure with the following characteristics:

• The type (FDFORM, FDPAGE, and so forth) of FD
macro determines the structural level of the macro.

• The structural level of the macro determines, in turn,
the scope of the macro and of its keyword operands.
The scope of a structural macro is that portion of the
form description beginning with the macro statement
itself and continuing to, but not including, the first
equal or higher structural level.

• The form structure allows the FD macros to generate
explicit sequences of output-element position-control
information needed to locate successive fields in the
forms being processed.

Each FD macro consists of three logical divisions, which
may be physically distributed: operand validation, param­
eter establishment, and field control descriptor generation.

The operand validation section of an FD macro tests the
value of each operand coded (or the default value) in the
present occurrence of the macro. If this section identifies
an error, it issues an appropriate MNOTE message. The
MNOTE messages used by the FD macros provide diag­
nostic information regarding coding errors in the user FD
macro statements and provide descriptive information
for verifying the correctness of each macro specification.

The parameter establishment section of an FD macro
statement establishes the form description program param­
eters from either coded or default values and saves them
in global variables for subsequent reference and assembly
by other FD macros.

The field control descriptor generation section of an FD
macro composes the field control descriptor (FCD) that is
the FD program. It performs (1) the generation of control
information for the FD utility, (2) the resolution of sym­
bolic references, and (3) the generation of the FCD data.
The 3735 terminal interprets this data as directions for the
processing of one data field or the performance of one con­
trol operation.

In some cases, the macros reserve space in the assembled
data for unresolved references and save the location at
which the reference occurred. When the FD macro that ·

2-6

resolves the reference is encountered, the macro inserts
the resolved reference in the required position by means
of the backward origin facility of the assembler (ORG
statement) and deletes the saved location. The maximum
number of concurrent unresolved references that the FD
macros are designed to accommodate within any one form
description is 64.

The FD macros manipulate global variables to record the
assembly status (whether in form mode or not), structural
level, and the occurrence of a CYCLE operand. Global
variables are values assigned to SET symbols in one macro
definition used to vary the statements that appear in other
macro definitions. These variables enable decisions to be
made whether each FD macro statement is coded in a per­
missible relation to the others, and whether it is suitable
for use as a CYCLE limit or target, or as a GOTO target.
Additional global binary switches record the occurrence of
a serious error, so that further generation of useless code
may be suppressed.

SYSTEM REQUIREMENTS

In order to use the FD macros, a user must have a host
operating system (IBM System/370 or System/360 OS or
DOS) with an assembler and a macro library to contain
the FD macros. The operating system must contain at
least l 28K bytes of storage space for OS or 32K bytes
for DOS in order to use the FD macros and the FD utility.
DOS requires 32K bytes of storage to support telepro­
cessing.

Any set of FD macro statements can be assembled by
any DOS or OS assembler. The assembler must have access
to a macro library containing the FD macro definitions.
These definitions must be appropriate for the operating
system on which the FD program object modules are to
be processed and used. If the FD macros are not in the
macro library, the assembler generates error messages indi­
cating undefined operation codes. Changing from DOS
to OS or vice versa requires no recoding, merely reassem­
bly, provided that the code does not exceed the capacity
of the assembler.

The assembly of FD macros generates object modules
that support the functions of the 3735 control program
performed under FCD control. An FCD is that part of a
3735 FD program that the 3735 interprets as the directions
for the processing of one data field or the performance of
one control operation. An FD program is a set of control
data bytes that collectively describe to the 3735 terminal
the activity required to process one specific type of form.

OPERATIONAL CONSIDERATIONS

This section describes, in general terms, the input to, and
output from, the FD macro assembly.

Input and Output of the Form Description Macro Assembly

Input

The input for the FD macro assembly consists of one or
more ordered sets of FD macro instructions, each set
describing one form required for a data processing appli­
cation, beginning with an FDFORM statement and ending
with an FDEND. The macros do not generate executable
code. They are first assembled into object modules of FD
programs; these programs are input to the FD utility. The
utility prepares the resulting FD programs for being sent
to the 3735. The 3735 executes the FD programs via the
terminal control program interpretive routines.

The FD macro instructions have no direct connection
with normal system operation characteristics such as, link­
ages, return codes, completion codes, abnormal termination,
or wait states. They use MNOTE severity codes similar to
those of other macro instructions of the host operating sys­
tem. The MNOTE messages provide diagnostic information
regarding coding errors in the user's FD macro statements
and provide descriptive information for verifying that each
macro specification is correct.

Output

MNOTE Messages: The MNOTE severity codes generated
by the FD macros as output on the assembly listings are
indicated below with their meanings and typical uses.

* Information only; not treated as an error by the assem­
bler. Typical use: to print the attributes of the form,
page, line, or field.

0 Mild warning; the condition described is unexpected,
but cannot be confirmed as an error. Typical use: to
indicate that an operand contains excess suboperands
or characters. The FD macros make no assumptions of
operand values and ignore the excess suboperands or
characters.

8 Severe warning: the condition described constitutes a
confirmed error that invalidates the current form (but
not the other forms in the same assembly). Operand
checking may continue for the invalid form. Typical
use: to indicate that the FDEND macro has been pro­
cessed, leaving one or more forward references unre­
solved.

The return code from the assembly step equals the high­
est MNOTE severity code produced in the current assembly.
In an IBM System/370 or System/360 OS system, the job
control COND operand of the EXEC statement may be used
to halt the job on severity code eight. The output of an
assembly that incurred a severity code of eight is not usable

and cannot be processed correctly by the FD utility or the
3735. In an IBM System/370 or System/360 DOS system
the results of the assembly must be inspected for freedom
from error before the results can be further utilized.

Object Module: The output from an assembly of a set of
FD macro statements is a listing of the input (the FD
macros) and the results, together with an object module
comprised of ESD, TXT, and END records. The text part
of the object module contains FD programs (keyed un­
packed FD program blocks and control information) made
up solely of nonrelocatable absolute-valued constants.
Refer to Figure 2-2 for the OS diagram of FD macro assem­
bly output or to Figure 2-3 for the DOS diagram of FD
macro assembly output.

Control Sections: The assembly of a set of FD macro
source statements generates one or more control sections.
Each of the control sections (with the possible exception
of the last, which may be shorter by a multiple of 486
bytes) is 2920 bytes long (for OS) or 1464 bytes long
(for DOS). The control section is subdivided into 486-byte
items called keyed unpacked form description program
blocks (KUPBs), plus a four-byte (for OS) or six-byte (for
DOS) end-of-assembly indicator. The end-of-assembly indi­
cator tells of the presence or absence of additional control
sections. This indicator is set to all zeros for all but the
last control section, for which it is set to all ones. Refer
to Figure 2-4 for the format of the OS control section or
to Figure 2-5 for the format of the DOS control section.

Each KUPB consists of a 10-byte key field and a 476-
byte unpacked program block (UPB). Within the key field
are two subfields: (1) an eight-byte name subfield and
(2) a two-byte count subfield. Within the UPB field are
two more subfields: (3) a 470-byte data subfield and
(4) a six-byte end-of-form subfield. The subfield con­
tents follow:

1. The name subfield contains the form name, left justified
and padded to the right with blanks, as needed. This is
the name by which the FD program will be known in
the user's FD program library.

2. The count subfield commences with a binary zero and is
incremented by one in each KUPB within a single FD
program. However, if there was an error in the assembly
of the program, this subfield contains a binary -1
(X'FFFF'). If the assembled program is incomplete,
this subfield contains a binary -2 (X'FFFE').

3. The data subfield contains the actual instructions that
are sent to the 3735 to control the terminal's actions
during forms creation and data capture. The first 2
bytes of this subfield contain X'4070' used for head­
sector backward chaining on the disk sector.

4. The data in the six-byte end-of-form subfield is also
sent to the 3735. This subfield is set to all zeros in every
KUPB except the last one in an FD program. In the last
KUPB, it is set to all ones to indicate the end of the FD
program.

Logic Of The Form Description Macro Instructions 2-7

Figure 2-6 illustrates the format of the KUPB and the UPB.
The first control section resulting from an FD macro

assembly in OS is named IDFlOOO. Subsequent control
sections are named IDF 1001, IDF 1002, and so forth, by
incrementing the control section counters in the FDFORM
macro. The first DOS control section is named IJLFlOOO,
with subsequent control sections named IJLF 1001,
IJLF1002, and so forth, by incrementing the control sec­
tion counters in the FDFORM macro.

~
Instructions

Input

Processing

Output

FD FORM

FDPAGE

FDLINE

FDFIELD

FDCTRL

FDEND

OS

Assembler

IDF1nnn

IDF1001

As the FD macros generate an FCD, they update a global
count of bytes. When a multiple of 470 is reached, the
macros clear the counter and generate 3X'OOOO'. Next, the
macros generate from globals a form name subfield and a
count subfield. At form's end, the macros pad out the cur­
rent KUPB if incomplete, and generate 3X'FFFF'.

To avoid a nonproductive read operation, the user's
application program can examine the end-of-form subfield
when retrieving the successive unpacked program blocks for

IDF1000

Control
Sections

Figure 2-2. OS FD Macro Assembly Output

2-8

KUPB

KUPB

KUPB

KUPB

KUPB

End-of-Assembly
Indicator

transmission to a 3735 terminal. In DOS, this examination
must be done because the FD utility will have stored the
UPBs in an indexed sequential data set, and the end of a
form will generally not coincide with an end-of-file indi­
cation.

Although only the first 470 bytes (the data subfield) of
each UPB are significant to the 3 735, it is more convenient
to transmit the entire 476 bytes, since this size ofl/O area
is required for each data block received from the 3735.

Segments and Paths: The listing from the assembly of an
FD program divides the program into paths and segments.

FDFORM

FDPAGE

Macro FDLINE
Instructions

FDFIELD

FDCTRL

Input FDEND

DOS

Processing Assembler

Output IJLF1nnn

Control

~
IJLF1001

KUPB

KUPB

Figure 2-3. DOS FD Macro Assembly Output

Information about the paths and segments helps verify the
correctness of the resulting FD program and trace the se­
quence of actions if the FD program produces unexpected
results at the 3735 terminal.

Several actions create a path:

• The start of the FD program

• The encoding of the SA VELOC operand outside of a
cycle

• The joining of two paths

The segments of each path are numbered in ascending order
beginning with one and increasing to 255. Each segment

IJLF1000

End-of-Assembly
Indicator

Logic Of The Form Description Macro Instructions 2-9

transfers control either to another path or to a higher­
numbered segment in the same path. If a path is ever en­
tered, the 3735 always executes unconditionally the first
segment of that path. The remaining segments of that
path are executed conditionally or unconditionally with
respect to the first segment. If the first segment of a path
is not executed, no part of that path is executed. If the
first segment is executed, all provisionally unconditional
segments that follow are executed. Then, if their specified
conditions are met, the following conditional segments are
executed. A path ends when one of the following situations
occurs:

• The start of another path

• The end of the FD program

• The occurrence of an unconditional STOP or CANCEL
command

Several conditions create the segments comprising a path:

• The start of a path

• The issuance of a branch (for example, GOTO)

• The creation of a cycle

• The encoding of SA VELOC within a cycle

0 (0)

486 (1 E6)

972 (3CC)

1458 (582)

1944 (798)

2430 (97E)

2916 (864)

L .. --

1 *End-of-Assembly

LJ Indicator
2919 (867)

*2X'OOOO' - Another block follows.
2X'FFFF' - This is last block.

Figure 2-4. OS Control Section Format

2-10

• The macro following the limit of the cycle (the post-
limit macro)

• The joining of several segments in the path

Segments and the actions occurring within them are condi­
tional or unconditional as explained in the previous para-
graph. ·

At the end of each path, MNOTE messages describe the
indicators, buffers or devices, and the counters used in the
path. The MNOTE messages indicate warnings describing
possible erroneous use of these storage areas at the end of
a path or when the error condition occurs. Two such
errors are as follows:

• Requesting output from a buffer that has no previous
reference to it in the path

• Loading a buffer and not getting the output from it
before the path ends

MNOTE messages indicate the transfer of control between
paths and segments when the branches are resolved at the
end of each path.

Proceed to the next section of Part 2 for an explanation
of the FD macro structure and more detailed information
about the FD macro assembly process.

486 Bytes

KUPB

KUPB

KUPB

KUPB

KUPB

KUPB

l ..._ -
0 (0)

486 (1 E6)

972 (3CC)

1458 (5B2) Li *End-of-Assembly
Indicator

1463 (5B7)

*3X'OOOO' - Another block follows.
3X'FFFF' -This is last block.

Figure 2-5. DOS Control Section Format

0

2

Bytes

Name Subfield
(same within

each unpacked
program)

Key Field

H'OO' - First KUPB
Incremented by 1 to end of
unpacked program; set to
-1 and -2 for errors

3H'OO' -All KUPBs except the last

7 8

3H'-1' (3X'F FFF') - Last KUPB of Form

c
0
u
n
t

9 10

Data

Figure 2-6. Keyed Form Description Unpacked Program Block (KUPB)

486 Bytes

KUPB

KUPB

KUPB

479 480

Subfield

Form Description Unpacked Program Block (UPB)

End­
of­

Form

J

485

2

Logic Of The Form Description Macro Instructions 2-11

Section 2. Method of Operation

FORM DESCRIPTION MACRO STRUCTURE

The FD macro instructions are grouped into three classes;
structural, procedural, and delimiting. The four structural
macros (FDFORM, FDPAGE, FDLINE, and FDFIELD)
describe the structure of a data processing form and the
characteristics of each data field of the form. The proce­
dural macro FDCTRL regulates terminal operations that
are not uniquely associated with the processing of data
within a specific document field. The delimiting macro
FDEND closes the description of each form and prepares
for a form description that may follow.

In addition to these standard FD macros, the optional
diagnostic macros, FDTRACE and FDDSPLY, provide
valuable debugging tools. For further information refer
to Appendix B in Part 4 of this book.

Eleven operands in the four structural macros are
promotable:

PAGE
LINE
FIELD

HEIGHT=,VMRG=;
WI DTH=,HMRG=;
SOURCE=,KIND=,SELFCHK=,SINK=;
JUSTI FV=,FILL=,UL=.

The SOURCE='string' operand specification is the exception
in the promotable SOURCE options and is not promotable.
These operands, of course, can be specified in the FDFORM
macro, thereby minimizing the amount of coding required
by the encoder.

Eleven operands are not promotable:

PAGE
LINE
FIELD

page number,SAVELOC=;
line number,CVCLE=,SAVELOC=;
CVCLE=,PICTURE=,IND=,CTR=;
COUNT=,COMPARE=,SAVELOC=;
BATCH=,field boundaries.

The SA VELOC= operand can be coded for all of the struc­
tural macros except FDFORM, although it is not promot­
able. The CYCLE= operand, also not promotable, can be
coded for the FDLINE, FDFIELD, and FDCTRL macros.

The programming support for the 3735 Form Descrip­
tion macro instructions is composed of an organization of
nested macro statements. The six FD macro statements­
FDFORM, FDPAGE, FDLINE, FDFIEW, FDCTRL, and
FDEND-comprise a group called outer macros, macro
statements specified by the 3735 forms encoder. The func­
tions of the outer macros are augmented by seventeen inner
macros, macro statements called by the outer macros or by
the inner macros. The inner macros consist of the IDFINOI,
IDFIN02, IDFIN03, IDFIN04, IDFIN05, IDFIN06,
IDFIN07, IDFIN08, IDFIN09, ID FIN 10, ID FIN 11, IDFTR,
IDFASM, IDFMSG, IDFMSGl, IDFMSG2, and IDFMSG3

2-12

inner macros for OS and of the IJLFINOl, IJLFIN02,
IJLFIN03, IJLFIN04, IJLFIN05, IJLFIN06, IJLFIN07,
IJLFIN08, IJLFIN09, IJLFINlO, IJLFINl 1, IJLFTR,
IJLF ASM, IJLFMSG, IJLFMSG 1, IJLFMSG 2, and
IJLFMSG3 inner macros for DOS. These macros are here­
after referred to as the INO 1, IN02, IN03, IN04, INOS,
IN06, IN07, IN08, IN09, INlO, INl 1, TR, ASM, MSG,
MSG 1, MSG2, or MSG3 macros. The global variables re­
quired by both the outer macros and the inner macros
for their processing are contained in the IDFGBL copy
book for OS or in the IJLFGBL copy book for DOS (here­
after called the GBL copy book). The first statement of
every macro is COPY IDFGBL for OS or COPY IJLFGBL
for DOS, which action ensures that each macro has access
to all global variables.

The nesting concept is divided into levels as follows:

1. The outer FD macro instructions call the INOl, IN02,
IN03, IN04, IN05, IN06, IN07, IN08, IN09, IN10, and
INl 1 (the IN macros) inner macros.

2. The IN macros call the MSG, the MSG 1, the MSG2, the
MSG3, the TR, and the ASM inner macros as they are
needed.

3. The MSG, MSGl, MSG2, and MSG3 macros issue
MNOTE diagnostic messages and exit.

4. The outer FD macros may also call the ASM, the MSG,
MSGl, MSG2, or MSG3 inner macros. This hierarchy is
further illustrated in Figures 2-7 through 2-11, inclusive.

The outer FD macros contain promotable operands plus
the operands that are unique to each one of the macros.
For example, the FDFORM macro has the FID=,
MRGSTOP=, MESSAGE=, HTAB=, PACKING=,
DEVICES=, and BUFFERS= operands. The operands in
the IN inner macros are positional rather than keyword as
in the outer macros. The outer macro statements perform
their own sequence checking to determine whether the
outer macros are in the correct sequence. Each keyword
operand in the outer macros is mapped onto a positional
operand in one of the IN inner macros. This mapping
begins with the operands that appear most frequently in
the outer macros and progresses to the operand that is
specified the least number of times.

The outer FD macros call one or more of the IN inner
macros to set up the mapping of all the operands that the
forms encoder specified in the outer macros. The IN inner
macros perform the mapping process until all the outer FD
macro operands are placed in global variables (arrays). If
there is an error, the IN macros call the MSG, MSG 1, MSG2,
or MSG3 inner macro to generate MNOTE messages.

OS DOS

FDFORM 1
IDFIN01 l

FDFORM l
IJLF N01 l

IDFASM IJLFASM

IDFMSG IJLFMSG

IDFMSG1 IJLFMSG1

IDFMSG2 IJLFMSG2

IDFMSG3 IJLFMSG3

IDFTR IDF~SM I I
IJLFTR

IJL! I FASM

IDFIN02 1
I IDFMSG I

IJLF N02 l
I IJLFMSG I

I IDFMSG1 I I IJLFMSG1 I
I IDFMSG2 I I IJLFMSG2 I
I I

IDF N03 l
IDFASM I

IJLFIN03 l
I 1.ILFASM I

IDFMSG I I IJLFMSG I
IDFMSG1 I I IJLFMSG1 I
IDFMSG3 I I IJLFMSG3 I

I
IDF N04 l

IDFASM

IJLFIN04 1
I IJLFASM

IDFMSG I IJLFMSG

IDFMSG1 I IJLFMSG1

IDFMSG2 I IJLFMSG2

IDFMSG3 I IJLFMSG3

I
IDFIN05 l

I IDFMSG1 I
IJLFIN05 J

I IJLFMSG1

I IDFMSG2 I I IJLFMSG2 I
I IDFMSG3 I I IJLFMSG3 I

...I
I I

IDFIN11 1
I IDFASM I

IJLFIN11 l
I IJLFASM I

I IDFMSG I I IJLFMSG I
I IDFMSG3 I I IJLFMSG3 I
I I

IDFMSG IJLFMSG
I I

IDFMSG1 IJLFMSG1
I I

IDFMSG2 IJLFMSG2
I I

IDFASM IJLFASM

I J

Figure 2-7. Hierarchy of FD FORM Macro Calls

Logic Of The Form Description Macro Instructions 2-13

OS DOS

FDPAGE/ l FDLINE

IDF N01 1
FDPAGE/
FDLINE

IJLFIN01 l
IDFASM IJLFASM

IDFMSG IJLFMSG

IDFMSG1 IJLFMSG1

IDFMSG2 IJLFMSG2

IDFMSG3 IJLFMSG3

IDFTR

IDF: I ASM

IJLFTR l
I IJLFASM I

I
IDF N02 l

I IDFMSG I
IJLFIN02 l

I IJLFMSG I
I IDFMSG1 I I IJLFMSG1 I
I IDFMSG2 I I IJLFMSG2 r

I I
IDFIN03 l

I IDFASM I
IJLFIN03]

IJLFASM I
I IDFMSG I IJLFMSG I
I IDFMSG1 I IJLFMSG1 I
I IDFMSG3 I IJLFMSG3 I
I

IDF N04 l IJLF N04 J
IDFASM IJLFASM

IDFMSG IJLFMSG

IDFMSG1 IJLFMSG1

IDFMSG2 IJLFMSG2

IDFMSG3 IJLFMSG3

IDFIN05 l
I IDFMSG1 I

IJLFIN05 l
I IJLFMSG1 I

I IDFMSG2 I I IJLFMSG2 I
I IDFMSG3 I I IJLFMSG3 I
I I

IDFIN11 l
I IDFASM I

IJLFIN11 l
I IJLFASM I

I IDFMSG I I IJLFMSG I
I IDFMSG3 I I IJLFMSG3 I
I I

I IDFMSG I I IJLFMSG I
I I

I IDFMSG1 I I IJLFMSG1 I
I I

I IDFMSG2 I
I

I IJLFMSG2 I
Figure 2-8. Hierarchy of FDPAGE and FDLINE Macro Calls

2-14

OS
FDFIELD l

IDFIN01]
,-- ..,.

l
IDFASM IDF N07 l
IDFMSG IDFASM

IDFMSG1 IDFMSG

IDFMSG2 IDFMSG1

IDFMSG3 IDFMSG2

IDFTR

IDF: I ASM

IDFMSG3

IDFTR

IDF~SM I I
IDFIN02]

I IDFMSG I
I IDFMSG1 I

IDFINOS 1
I IDFASM I

I IDFMSG2 I
~

I
IDFIN03 1

I IDFASM I
I IDFMSG I

I IDFMSG1 I
I IDFMSG3 I
I

IDFIN11 l
I IDFASM I

I IDFMSG1 I I IDFMSG I
I IDFMSG3 I :.:.
I

IDF1N04]
IDFASM

IDFMSG

I IDFMSG3 I
I

I IDFMSG I
I

I IDFMSG1 I
I

IDFMSG1 I IDFMSG2 I
IDFMSG2

1

IDFMSG3

IDFIN05]
I IDFMSG1 I
I IDFMSG2 I
I IDFMSG3 I
I

IDFIN06]
IDFASM

IDFMSG1

IDFMSG2

IDFMSG3

IDFTR

ID~ I ASM

~ v
Figure 2-9. Hierarchy of FDFIELD Macro Calls (Part 1 of 2)

Logic Of The Form Description Macro Instructions 2-1 S

DOS

FDFIELD

IJLF N01 l

.,,.-

1
IJLFASM IJLF N07 l
IJLFMSG IJLFASM

IJLFMSG1 IJLFMSG

1.ILFMSG2 IJLFMSG1

IJLFMSG3 IJLFMSG2

IJLFTR]
I IJLFASM I

I

IJLFIN02 1
I IJLFMSG I

IJLFMSG3

IJLFTR

IJL! I

IJLFINOS l

FASM

I IJLFMSG1 I
I IJLFMSG2 I
I

IJLFIN03 l

I IJLFASM I
I IJLFMSG1 I
I IJLFMSG3 I
I

IJLFASM

IJLFMSG

IJLFIN11 1
I IJLFASM I

IJLFMSG1 I IJLFMSG I
IJLFMSG3 I IJLFMSG3 I

I

IJL IN04 1
1.ILFASM

I IJLFMSG I
I

I IJLFMSG1 I
IJLFMSG I

IJLFMSG1 I IJLFMSG2 I
I

IJLFMSG2

IJLFMSG3

IJLFIN05 l
I IJLFMSG1 I
I IJLFMSG2 I
I IJLFMSG3 I
I

IJLFIN06 l
I IJLFASM I
I IJLFMSG1 I
I IJLFMSG2 I
I IJLFMSG3 I

IJLFTR l
I IJLFASM I

-- v

Figure 2-9. Hierarchy of FD FIELD Macro Calls (Part 2 of 2)

2-16

OS DOS

FDEND l FDEND l
IDFIN01 l

IDFASM

IJLF N01 l
IJLFASM I

IDFMSG IJLFMSG I
IDFMSG1 IJLFMSG1 I
IDFMSG2 IJLFMSG2 I
IDFMSG3 IJLFMSG3 I
IDFTR

IDF~ I I
IJLFTR

IJLf I ASM ASM

I I
IDFIN02 l

I IDFMSG I
IJLFIN02 l

I IJLFMSG I
I IDFMSG1 I I IJLFMSG1 I
I IDFMSG2 I I IJLFMSG2 I
I I

IDFIN03 l
I IDFASM I

IJLFIN03 l
IJLFASM I

I IDFMSG I IJLFMSG I
I IDFMSG1 I IJLFMSG1 I
I IDFMSG3 I IJLFMSG3 I

J_
IDFIN11 l

I IDFASM I
IJLF N11 l

I IJLFASM I
I IDFMSG I I IJLFMSG I
I IDFMSG3 I I IJLFMSG3 I
I

I 1 IDFMSG

I

I IJLFMSG I
I I

I IDFMSG1 I I IJLFMSG1 I
I I

I IDFMSG2 I I IJLFMSG2 I
J J

Figure 2-10. Hierarchy of FDEND Macro Calls

Logic Of The Form Description Macro Instructions 2-17

OS DOS

FDCTRL FDCTRL]
IDFIN01

IDFASM

IJLFIN01]
I IJLFASM I

IDFMSG IJLFMSG I
IDFMSG1 IJLFMSG1 I
IDFMSG2 IJLFMSG2 I
IDFMSG;3 IJLFMSG3 I
IDFTR

IDFfsM

IJLFTR

IJL; I ASM

IDFIN02

IDFMSG

IJLF N02]
I IJLFMSG I

IDFMSG1 I IJLFMSG1 I
IDFMSG2 I IJLFMSG2 I

I I

IDFIN03

I IDFASM

IJLF N03]
IJLFASM I

I IDFMSG IJLFMSG I
I IDFMSG1 IJLFMSG1 I

IDFMSG3 IJLFMSG3 I
I

IDF NOS 1Jt.FIN09 1
IDFASM IJLFASM I
IDFMSG IJLFMSG I
IDFMSG1 IJLFMSG1 I
IDFMSG2 IJLFMSG2 I

IDFIN10 IJLF N10 l
IDFASM IJLFASM

IDFMSG IJLFMSG

IDFMSG1 IJLFMSG1

IDFMSG2 IJLFMSG2

IDFMSG3 IJLFMSG3

IDFIN11 IJLFIN11 l
IDFASM I IJLFASM

IDFMSG I IJLFMSG

IDFMSG3 I IJLFMSG3

I

IDFMSG I IJLFMSG I
I

IDFMSG1 I IJLFMSG1 I
I I

IDFMSG2 I IJLFMSG2 I
J

Figure 2-11. Hierarchy of FDCTRL Macro Calls

2-18

The TR inner macro is invoked to translate to internal
3735 code the character strings that the forms encoder spec­
ified in his outer FD macro statements. If there are errors
during the assembly processing, the MSG, MSG 1, MSG 2, or
MSG3 inner macro issues MNOTE messages.

Figures 2-7 through 2-11 illustrate the hierarchy of the
outer and inner macros according to their macro call struc­
ture. Figure 2-12 shows the logical flow of the inner macro
processing according to the order in which the processing
occurs.

The line transmission code of the 3735 terminal Js either
an EBCDIC subset or an ASCII subset. The FD macro
assembly arranges character data that is part of a form
description into unpacked and padded internal 3735 codes.
The resulting even-numbered bytes have a X'40' high-order
pad, and the odd-numbered bytes have a X'70' high-order
pad. An example of this code transformation is as follows.

EBCDIC Codes _.3735 Internal Codes____. Final Data

C'123' }
or ____.X'313233' ---t .. ~X'437143724373'

X'F1 F2F3'

FD MACRO FUNCTIONS

FDFORM Macro Instruction

The FDFORM macro checks that the previous macro did
not start chaining and that the previous macro, if any, was
an FDEND statement. Refer to Figure 2-13 for a summary
of the FD FORM macro functions.

The FDFORM macro must have a symbolic name, which
is comprised of from 1 to 8 valid alphanumeric characters,
with the first alphabetic. This name is used as the catalog
name by which the operating system and the system pro­
grammer refer to the form being described. The name
should begin with an alphabetic character and may not
contain any blanks or special characters. The assembler
considers$,#, and@ to be alphabetic characters.

Each FDFORM macro initializes global arrays (variables).
These arrays provide for the temporary storage of data that
pertains to unresolved forward references, for the recording
of structural level and assembly mode (form or nonform),
and for the downward transmission of the values of pro­
motable operands specified in the FDFORM and the other
structural macros.

The FDFORM macro arranges the three-digit FID oper­
and as a group of six bytes with high-order padding added.
This format makes possible nontransparent transmission to
the 3735 terminal without regard to the original content of
the data. The macro generates the bytes indicating the
PACKING specification for the form and processes the
MRGSTOP, DEVICES, and BUFFERS operands. The
assembly also arranges the characters in the MESSAGE
operand into a group if the user so specifies in the FDFORM
macro.

If the user specifies horizontal tabular stops, the assem­
bly generates a X'7F' delimiter and the tabular stop inter­
vals. Finally, the assembly of the FD macros generates a
X'OO' delimiter as an end-of-heading indicator. For addi­
tional information about the format of the assembled code,
refer to the discussion of the Form Description Programs
that follows in Part 2, Section 3.

The inner macros called by the FDFORM macro process
the HEIGHT, VMRG, WIDTH, HMRG, SOURCE,
SELFCHK, KIND, SINK, FILL, JUSTIFY, and UL
operands.

FDPAGE Macro Instruction

The structural FDPAGE macro marks the beginning of each
page description within the current form description. Refer
to Figure 2-14 for a summary of the FDPAGE macro func­
tions.

The FDPAGE macro checks that the previous macro did
not start chaining and whether FDPAGE is coded within a
form. The inner macros called by the FDPAGE macro pro­
cess the SAVELOC, HEIGHT, VMRG, page number,
WIDTH, HMRG, SOURCE, SELFCHK, KIND, SINK, FILL,
JUSTIFY, and UL operands.

FDLINE Macro Instruction

The structural FDLINE macro indicates the beginning of
each line description within the current page description.
Refer to Figure 2-15 for a summary of the FDLINE macro
functions.

The FDLINE macro checks that the previous macro did
not start chaining and whether the FDLINE macro is coded
within a page. FDLINE calls the inner macros to process
the SAVELOC, WIDTH, HMRG, and line number operands.

If the CYCLE operand is specified, the FDLINE macro
assembles the bytes to transfer control to the start of the
cycle, a begin-cycle delimiter, and a cycle count. The macro
reserves space for the index count (index to the target line)
and for the address of the target field control descriptor
that gives directions for the processing of a data field or the
performance of a control operation. The CYCLE operand
creates two unresolved forward references.

The FDLINE macro also processes the SOURCE,
SELFCHK, KIND, SINK, FILL, JUSTIFY, and UL oper­
ands by calling inner macros.

FDFIELD Macro Instruction

A structural FDFIELD macro is required for each field
within the current line description. Refer to Figure 2-16
for a summary of the FD FIELD macro functions.

The FDFIELD macro checks that the previous macro did
not start chaining (unless it was an FDFIELD macro) and
whether the FD FIELD is coded within a line. The macro
calls inner macros to process the SA VELOC, CYCLE, and
field boundary operands.

Logic Of The Form Description Macro Instructions 2-19

• • • •

.. T •
I NO I

DO MESSAGE DO HTAB OPERAND GENERATE THE
OPERAND PROCESS I NG BEGIN BYTE OF 8

PROCESS I NG THE FD PROGRAM

.. •

DO
INITIALIZATION

•

D D

.. •

DO QUEUE DO PATH OR DO STATUS
MANAGEMENT SEGMENT LOGIC REPORT! NG E
PROCESS ING

•

YES DO HEIGHT OR
VMRG OPER ANO

PROCESS I NG

.. •

YES DO WIDTH OR
G HMRG OPERAND G

PROCESS I NG

.. •

YES DO PAGE
H CALCULATIONS H

.. •

YES DO LINE
CALCULATIONS

.. •

YES DO FDF IELD
M0110N

CALCULATION

JN03

..
Figure 2-12. Overview of the IN Inner Macros (Part 1 of 2)

2-20

•

B

•

•

D

•

E

•

F

•

G

•

H

•

J

•

•
I MJ :f 2-12(1),KJ, K4

--1.t:l.ll;

INVOKE THE END
CONTROL

IN04

IS
PROCESS I NG YES
IN FDEND OR

FDCTRL

NO

DO FIELD DO THE .JUSTIFY
r-BOUNDARY OPERAND

PROCESS I NG PROCESS I NG

l l
DO BATCH DO THE UL

OPERAND OPERAND
PROCESS I NG PROCESS I NG

l ~o.1
00 SOURCE ASSEMBLE THE

OPERAND DATA TYPE ANO
PROCESS ING AND COUNT INTO THE

ASSEMBLE THE FCO
FCO

l l
00 THE COUNT TRANSLATE THE

OPERAND EMITTED SOURCE
PROCESS I NG AND ASSEMBLE IT

~ l
00 THE COMPARE

DO THE SELFCHK OPERAND
OPERAND PROCESSING AND

PROCESS I NG ASSEMBLE INTO
FCO

I ~I
DO THE COUNTER

DO THE KIND OPERAND
OPERAND PROCESSING AND

PROCESS ING ASSEMBLE INTO
THE FCD

l l
DO THE IND

DO THE SINK OPERAND
OPERAND PROCESSING AND

PROCESS I NG ASSEMBLE INTO
THE FCD

l NOR1
DO THE DATA

DO THE FI LL SINK GROUP
OPERAND PROCESSING AND

PROCESS I NG ASSEMBLE INTO
FCO

l l

•

•

•
Figure 2-12. Overview of the IN Inner Macros (Part 2 of 2)

• 4 •

•

IS NO y L

s

19

B

•

DO PART I OF
THE IF OPERAND

PROCESSING

l •

DO THE IND
OPERAND 0

PROCESS I NG

l •

00 THE COUNTER
OPERAND E

PROCESS I NG

l •

00 THE TOTAL
OPERAND F

PROCESSING

~Llil...L
•

DO THE COMMAND DO THE IMPLICIT
OPERAND GOTO PROCESSING G

PROCESS I NG

l •

DO THE GOTO HAS AN YES DO THE ERROR
OPERAND ERROR FLAGGING H

PROCESSING OCCURRED ROUTINE

l NO J

DO PART 2 OF <$>'" DO THE FDEND
THE IF OPERAND G PROCESS I NG

PROCESS I NG D

l 0 J

•

J

•

c MEND K

• 4 •

Logic Of The Form Description Macro Instructions 2-21

Macro Instruction ._.. Assembly•----••••••••• Function

FD FORM

Name

FID

MRGSTOP

MESSAGE

HTAB

PACKING

BUFFERS

DEVICES

Page keywords (see FDPAGE)

Line keywords (see FDLINE)

Field keywords (see FDFIELD)

Figure 2-13. Summary of Assembled FDFORM Macro Functions

The assembly of control sequences produces mechanical
motion from the previous output-element position to the
position of the first output character. If the current macro
resolves one or more forward references, the macro builds
an inward-branch table to funnel the branches into the
start of the field control descriptor (FCD).

Each branch table entry contains the disk address of the
target field, in sectors and bytes, relative to the end of the
entry. The resolution of each forward reference, at assem­
bly time, alters the location counter (and the control sec­
tion, if necessary) to point to the null code at which the
reference was made. This null code is then modified to an
address pointing to the associated table entry, which in
turn points to the current FCD.

The FDFIELD macro calls inner macros to process and
generate FCDs from the BATCH, SOURCE, COUNT,
SELFCHK, KIND, SINK, FILL, JUSTIFY, UL, COMPARE,

2-22

Required operand that names the
FD program stored in the user's
data set.

I den tifies the FD program for the
3735 operator.

Specifies the mechanical left
margin setting.

Indicates a message for the 3735
operator.

Specifies the horizontal tabular
stop settings.

Indicates the type of condensation
for data sent from the 3735 to the
central computer.

Specifies the use of certain buffers
for additional data storage.

Specifies Katakana character code
for I BM Japan terminals.

CTR, and IND operands. The inner macros set tables (global
variables) to allow assembly of control sequences to the
next FCD.

FDCTRL Macro Instruction

The procedural macro FDCTRL regulates terminal opera­
tions that are not uniquely associated with the processing
of data within a specific document field. Refer to Fig­
ure 2-17 for a summary of the FDCTRL macro functions.

The macro checks whether any chaining originated from
a previous FDCTRL macro and if FDCTRL is coded within
a form.

If the SA VELOC operand is specified, FDCTRL saves
the location of the current macro within the form descrip­
tion for backward reference to it (reference is to the name
coded on the FDCTRL macro).

Macro Instruction ... Assembly •••••••••••••~ Function

FDPAGE

Name

Page Number

HEIGHT

VMRG

SAVELOC

Line keywords (see FDLINEI

Field keywords (see FDFIELDI

Figure 2-14. Summary of Assembled FDPAGE Macro Functions

If the CYCLE operand is specified, FDCTRL assembles
the byte to transfer control to the start of the cycle, a begin­
cycle delimiter, and a cycle count.

The IF operand causes assembly of a conditional execu­
tion sequence consisting of one or more indicator tests and
an unresolved forward reference. The unresolved forward
reference is resolved after FDCTRL assembles the last byte
resulting from the other operands coded in that FDCTRL
statement. The reference serves to bypass the actions of
the other operands if the indicator test fails.

The IND operand assembles code required to set, reset,
or invert one or more program logic indicators.

The CTR operand assembles one FCD for each arith­
metic operation to be performed on one or more counters.
Each of these FCDs has the following properties: CTR
operand of FDFIELD, digit character-string source, and
null sink.

If the TOT AL operand is specified, the FDCTRL macro
sets bits in an FD program to cause the 3735 to add to the
specified counters the values of numeric data fields. Spe­
cified FD programs process these fields (form IDs are coded
in the TOT AL operand) and flag them as belonging to par­
ticular data batches within the FD programs. If both
TOT AL and COMMAND operands are specified on the
same FDCTRL macro, the macro does the processing for
the TOT AL operand before that for the COMMAND
operand.

The COMMAND operand assembles (in the sequence in
which the suboperands are coded) the terminal control com­
mands that affect the reader and the reader buffer, the
punch, the punch buffer, the line adapter, the line printer

I Optionally names the page.

Specifies the number of the page.

Specifies the vertical output space
for the page (number of lines per page).

Indicates the vertical-margin checking
limits.

Provides for backward references to
the macro.

buffer, the line printer, the inquiry (INQ) buffer, the stor­
age (STG) buffer, and the operator identification card
reader. In addition, this operand assembles the command
to stop processing the current form and to advance to the
next copy of the form, if any.

If the GOTO operand is specified in the FDCTRL macro,
the macro enters the specified destination in the list of unre­
solved forward references. The GOTO operand assembles
null code that is to be filled in later when the destination
of the GOTO specification is resolved when SA VELOC is
specified for the destination, in which case the motion is
immediately generated.

Finally, the FDCTRL macro sets up tables (global vari­
ables) to allow the assembly of control sequences to the
next FCD or FDCTRL macro.

FDEND Macro Instruction

The delimiting macro FDEND indicates the end of each
form description. The macro must be specified once as the
last macro of each group of FD macros that collectively
describe a single form. The FDEND macro confirms that
no source statements have been lost, completes code gen­
eration, and reinitializes the global variables of the FD
macros in anticipation of a possible form description to
follow. Refer to Figure 2-17 for the FDEND macro
function.

If any forward references are outstanding, FDEND
either resolves them or issues an MNOTE message with a
severity code of eight if they cannot be resolved.

Logic Of The Form Description Macro Instructions 2-23

Macro Instruction ... Assembly -------------· Function

FDLINE

Name

Line Number

SKIP [(di]

WIDTH

HMRG

CYCLE

SAVELOC

Field keywords (see FDFIELDI

Figure 2-15. Summary of Assembled FDLINE Macro Functions

At the end of each path, the termination process for the
FDEND macro prints out a list of messages describing the
resources used, the resources that are incorrectly used, and
the warning conditions that have occurred in the assembly.
Each of these MNOTE messages has a severity code of zero.

The FDEND statement assembles sufficient control se­
quences to advance the forms to the page I, line 1, column 1
position of the next form. If continuous forms are not
used, FDEND ejects the current form from the printer.

The FDEND macro supplies the end-processing indicator
X'7E' by generating the unpacked sequence X'4 77E'. If
this sequence does not fill out the current KUPB, the macro
generates an additional pad of X'476E' to complete the
block. When the form program records are compressed
on the disk, the 3735 terminal discards the pad characters.

THE ASSEMBLY OF FORM DESCRIPTION PROGRAMS

The assembly of Form Description programs is logically
divided into four main portions: assembly of the FD pro­
gram header, address resolution and motion control assem­
bly, assembly of immediate bytes, and assembly of the
FCD. FD program header assembly takes place during the
processing of the FD FORM macro statement (or statements
if the MESSAGE and/or HTAB operands are chained). Ad­
dress resolution and motion control assembly occurs just
before the immediate bytes are assembled. The immediate

2-24

Optionally names the line.

Specifies the number of the line.

Skips lines in a summary block.

Specifies the horizontal output
space for the line (line width I.

Indicates the horizontal-margin
checking limits.

Provides for repeated execution
of sequences of macros.

Provides for backward references
to the macro.

byte assembly is done before assembling the FCDs. The
assembly of an FCD begins after the testing of the pro­
motable operands in the FDFIELD macro statements and
continues with the testing of the operands that are not
promotable. The exception, when the BATCH operand is
specified, is that BATCH is always assembled first gen­
erating an immediate command. An FCD is also assem­
bled during the processing of an FDCTRL macro state­
ment when the operands require the internal generation
of a data field. Other assemblies performed when needed
are those for cycle controls and for FD program branch
codes.

The FD program assembly proceeds by byte pairs, with
each IDFASM (OS) or IJLFASM (DOS) inner macro creat­
ing a two-byte DC statement of the form X'4x7y', or the
binary or halfword equivalent. The 3735 terminal repacks
this DC statement to the form X'Pxy', where P is the inter­
nally generated parity, x is three bits, and y is four bits.
The IDFASM (OS) or IJLFASM (DOS) inner macro instruc­
tion (called the ASM inner macro) performs the FD pro­
gram assembly process except for character strings that are
normally translated and assembled in the TR inner macro.

Form Description Program Header Assembly

The assembly of each FD program begins with the three
decimal characters of the FID operand on the FDFORM
macro statement. The assembler translates each character

Macro Instruction ... Assembly

FDFIELD

Name

nl, nr

IND

CTR

CYCLE

SAVELOC

SOURCE

KIND

COUNT

COMPARE

SELFCHK

SINK

PICTURE

JUSTIFY

FILL

UL

BATCH

Figure 2-16. Summary of Assembled FDFIELD Macro Functions

Function

Optionally names the field.

Locates a field within a line.

Sets or resets indicators based
on the field data.

Performs arithmetic operations
with numeric field data and one or
more counters.

Provides for repeated execution of
sequences of macros.

Provides for backward references
to the macro.

Indicates the origin of input data.

Validates the character-set
membership of each incoming character.

Validates the number of characters
entered by the 3735 operator.

Compares the entered data with one
or more fixed comparands.

Provides for self-checking of
numeric input data.

Indicates the destination of field
output data.

Specifies the appearance of edited
output data.

Indicates the justification of
output data (editing function).

Specifies fill characters to be
inserted in unused positions of the
field (editing function).

Indicates that data fields are to
be underlined (editing function).

Identifies numeric data as part of a
data batch of a particular FD program.

Logic Of The Form Description Macro Instructions 2-25

Macro Instruction ... Assembly

FDCTRL

IF

IND

CTR

COMMAND

TOTAL

GOTO

CYCLE

SAVELOC

Note: These functions do not specifically relate to form structure,
but should be thought of as occurring at a specific point on the form.

FDEND

_Function

Tests the states of the 3735 program
logic and feature indicators.

Alters the state of 3735 indicators.

Alters the state of 3735 counters.

Causes execution of immediate
commands.

Accumulates batch totals.

Provides methods for nonsequential
form processing.

Provides for the repeated execution
of sequences of macros.

Provides for backward references
to the macro.

Indicates the end of a group of
macro statements that define a
single form.

Figure 2-17. Summary of Assembled FDCTRL and FDEND Macro Functions

to character pairs in internal 3735 code, and then assem­
bles each character pair into the FD program header as
the first three byte pairs in the header. The fourth byte
pair is assembled from the two bits that indicate the
PACKING=DELIMIT and PACKING=YES specifications.
The assembler now places unpacked and filled binary zeros
in the next four byte pairs of the header. Later the FDEND
macro will overlay these zeros with the number of lines in
the forms.

If the MESSAGE operand is specified on the FD FORM
macro statement, the TR inner macro translates the char­
acter string coded in the operand to 3735 code and assem­
bles that code into message byte pairs in the FD program
header.

If the HTAB operand is specified on the FDFORM
macro statement, the ASM inner macro assembles into the
header unpacked and filled X'7F'. This byte is followed

2-26

by pairs of bytes containing the number of positions that
separate adjacent horizontal tabular stops. These tabular
stops are from the horizontal tabulation vector in the
IDFGBL (OS) or IJLFGBL (DOS) copy book.

The ASM inner macro, finally, assembles a one-byte
pair of unpacked and filled binary zero to complete the FD
program header assembly. Figure 2-19 in Part 2, Section 3
illustrates the format of the assembled FD program header.

Address Resolution and Motion Control Assembly

The FD macros assemble sequences of the following bytes
to transfer control sequentially or nonsequentially between
FCDs and immediate bytes and to control the position of
the Selectric print element.

1. The ASM inner macro assembles the end control bytes
of the FCD.

2. ASM assembles the Selectric motion immediate byte:
X'70' plus an end control byte, where the end control
byte indicates the type of Selectric motion to be per­
formed: space, backspace, tab, line feed, or new line.
Refer to the Selectric immediate byte discussion in
Part 2, Section 3 for additional information.

3. ASM assembles the GOTO branching address in the
format 61 AlA2, where
61 indicates a GOTO immediate byte;
Al A2 indicate a two-byte address representing the

relative sector and byte displacements needed
to reach the destination address.

Refer to the GOTO immediate byte discussion in
Part 2, Section 3 for more detailed information.

Immediate Byte Assembly

After the address and motion control assembly, the assem­
bly of the immediate command bytes proceeds according to
the following steps.

1. The ASM inner macro assembles the NOP immediate
byte to fill unused space.

2. ASM assembles the three GOTO immediate bytes, the
first byte of which causes an unconditional branch to
the FD program byte indicated by the AlA2 address
in the following bytes.

3. If the IF operand is specified in the FDCTRL macro,
ASM assembles the conditional GOTO immediate
bytes. These bytes specify a branching address pro­
vided an IF indicator specifies such a branch.

4. If a CYCLE operand is specified, ASM assembles:
a. First, the seven begin cycle immediate bytes in the

form 63LLRRA1A2, where
LL represents the total number of Selectric

form lines in the cycle;
RR represents the total number of cycle

repetitions;
AlA2 represent the branch to the target macro.

b. Second, the repeat cycle immediate byte to signal
the point at which the cycle repeats.

c. Finally, the end cycle immediate byte to cause
the 3735 to index the number of lines remaining
in the LL subfield and to do a carrier return.

5. The ASM inner macro assembles the two index space
immediate bytes to indicate the number of spaces
needed for spacing from the margin stop to the first
column of a new line on a Selectric form entered
using line-feed motion.

6. If the TOTAL operand is specified, ASM assembles
the seven total batch immediate bytes to scan records
created by execution of FD programs.

7. If the CTR operand in the FDCTRL macro is speci­
fied, ASM assembles the three clear counter imme­
diate bytes to clear a specified counter to +O.

8. If the IND operand in the FDCTRL macro is speci­
fied, ASM assembles the three set indicator immediate
bytes to cause the 3735 to set (=1), reset (=O), or
invert the specified indicator.

9. The ASM inner macro assembles next the two Selec­
tric command inunediate bytes.

10. If the COMMAND operand is so specified, ASM
assembles:
a. The two clear STG immediate bytes to clear the

buffer associated with the specified device attached
to the 3735.

b. The two inquiry command immediate bytes to
clear the INQ buffer, to request input to the INQ
buffer, or to send output to the INQ buffer.

c. The two 5496 command immediate bytes to per­
form operations on the 5496 buffer.

d. The two or four 3286-3 line printer command
immediate bytes to perform operations on the line
printer buffer and on the 3286-3, itself.

e. The two operator ID reader command immediate
bytes to perform operations on the IDR and CCR
buffer.

11. If the COMMAND operand is specified, ASM assem­
bles:
a. The cancel form immediate byte to cause the 3735

to cancel forms.
b. The end form immediate byte to cause the 3735 to

end the form, creating a record of its execution in
the CPU data directory.

Field Control Descriptor Assembly

After the address resolution and motion control assembly,
the assembly of the FCD proceeds according to the follow­
ing steps.

1. For FDFIELD macro statements with the BATCH
operand specified, the ASM inner macro assembles
into the FCD the batch group, which consists of
operation code bytes X'6700' that are unpacked and
filled. A byte pair derived from the batch number
completes the batch group bytes.

2. The ASM inner macro assembles the data source
group according to the following conditions:
a. If the data source is not the keyboard, the ASM

macro assembles a source-code byte pair from the
value obtained by concatenating the value B' l 0 l'
and four bits of the data source global variable.

b. If FID, RSN, or 'string' is specified, the ASM
macro does not assemble a second part.

c. If the source is CTR, the ASM inner macro assem­
bles the counter number as a single arithmetic­
value byte pair.

d. If the source is a buffer, ASM assembles the
starting-character location as two arithmetic-value
byte pairs.

Logic Of The Form Description Macro Instructions 2-27

Note: The outer FD macro saves the location of the
first source type code byte to be used for future
reference.

3. The ASM inner macro assembles the data-type byte
pair, which contains:
a. Katakana, alphabetic, or numeric data-type bits

from the data source global variable;
b. Transmit-as-entered and print-as-entered flag bits;
c. Validity flag bit;
d. Function flag bit.
Except for the following conditions, the byte pair
uses the data source global bits as they are:
a. If SOURCE='string' is specified, the assembly

forces KIND=U (no testing) to be indicated.
b. If SOURCE=CTR (d), SINK=CTR (d), PICTURE,

the numeric COMPARE, or IND operands are spe­
cified, the assembly forces KIND=N to be indi­
cated. The late discovery of this condition forces
the reassembly of this byte pair.

The flag bit settings indicate certain conditions as
follows:
a. If SINK=TMT is specified with left justify, blank

fill, and no PICTURE operand, the transmit-as­
entered flag is on.

b. If, in addition to the previous conditions,
SINK=PRT is specified, the print-as-entered flag
is on (unless SINK=(PRT,AFTER) is specified).

c. If SOURCE='string' is specified, the validity flag
is off. Otherwise, if NUMP AD, minimum or exact
count, and COMPARE are specified; OPTIONAL
is not specified; and SELFCHK is specified not
NO, the validity flag is on.

d. The function flag is on to indicate one or more of
the following:
(1) CTR or IND is specified;
(2) COMPARE operand is chained through more

than one statement;
(3) a sink other than PRT or TMT is specified;
(4) editing is specified for PRT or TMT, or

SINK =(PR T ,AFTER).
4. The ASM inner macro assembles the character-count

byte pair, an arithmetic value. The character count
is determined according to the SOURCE operand as
follows: FID and RSN indicate three characters and
CTR (d) indicates ten characters. The string length
(K'-2) is used if the SOURCE operand is not chained;
otherwise, the character count is from the COUNT
operand that specifies an exact value.

2-28

For SOURCE=KBD, the macro chooses the char­
acter count by the following priority: first, if the
exact or maximum COUNT operand is specified, the
ASM inner macro gets the character count from this
operand. Second if field lower and upper bounds
are specified, the inner macro calculates the character
count indicated in the bounds. Finally, if neither of

the above are available, the inner macro selects the
character count from the field lower bound and
explicit LNG (d) specification.

The ASM inner macro also assembles the character
count for buffers from several alternatives according
to a priority. The following list indicates the choices
from first to last:
a. Buffer lower and upper bounds.
b. Buffer explicit LNG(d) operand specification.
c. Exact COUNT operand specification.
d. Field lower and upper bounds.
e. Field explicit LNG (d) operand specification.

If SOURCE='string' is coded, the TR and ASM
inner macros translate, unpack, and fill the entire
string during assembly processing. The string assem­
bly generates a character count. If the actual count
does not agree with the preassembled count, the ASM
macro reassembles the count unless the string is to be
chained.

5. The ASM inner macro assembles the validity byte pair
only when the validity flag is on in the data-type byte
pair (see step 3). The first three bits (0-2) represent
attributes of the SOURCE=KBD operand; the next
two bits (3 and 4) control the testing of the numbers
of characters entered and are mutually exclusive; the
last 2 bits (5 and 6) control the testing of the COM­
PARE and SELFCHK functions. Bits 0, 1, 2, and 6
are derived from the data source global variable in the
IDFGBL (OS) or IJLFGBL (DOS) copy book. The
bits and their indications when the validity flag is on
are as follows:

Bit Indication

0 NUMPAD operand is coded
1 AUTOEOF is not coded
2 OPTIONAL is not coded
3 exact COUNT is coded
4 minimum COUNT is coded
5 COMPARE operand is coded
6 SELFCHK operand is not coded "NO"

6.. The ASM inner macro assembles the function byte
pair only if the function flag is on in the data-type
byte pair (see step 3). Flags in the function byte pair
indicate functions that are to be performed:
a. Performance of arithmetic operations on counters

to include one or more clear-and-add sequences as
needed to provide for the SINK=CTR(d) specifi­
cation.

b. Comparison of entered data for setting program
logic indicators.

c. Control of either a buffer sink or the PRT or TMT
sinks with any data format other than left justified
with blank fill.

If none of these indicated functions is needed, but the
function flag is on in the data bytes because the
COMPARE operand is continued, the ASM inner

macro assembles the function byte pair with no flags
on. The terminal control program treats this func­
tion byte pair as a no-operation.

7. The ASM inner macro assembles the minimum
character-count byte pair from the COUNT operand
only when the minimum count flag is on in the valid­
ity byte pair (see step 5). The byte pair represents
the arithmetic value coded as COUNT=(MIN,n). The
inner macro does not assemble a value of one for this
function.

8. The ASM inner macro assembles the value-check
group when the COMPARE operand is specified. This
group consists of one or more repetitions of the fol­
lowing sequence:
a. The ASM macro assembles the value-check control

byte pair from bits representing a single comparison
operator as a combination of NOT (optional) with
LESS, EQUAL, or GREATER (mutually exclusive)
plus a logical indicator AND or OR if more com­
parisons follow.

b. ASM assembles the comparand character count
byte pair from the value of the number of compa­
rand characters, less two if the comparand is a
string, and retains this value for comparison with
the number of byte pairs actually assembled.

c. The TR and ASM inner macros process the com­
parand characters, and, if the resulting count does
not agree with the assembled count, ASM reassem­
bles the count.

9. The ASM inner macro assembles the self-check byte
pair (SELFCHK operand) from three bits of the data
source global variable.

10. If a sink of CTR (d) or the CTR operand is specified,
the ASM inner macro assembles the arithmetic group.
A sink of CTR (d) causes the assembly of a byte pair
made up of flag bits for clear and add operations,
followed by a byte pair containing the value of the
counter number.

If both SINK=CTR(d) and the CTR operand are
specified, the flag byte pair for sink is produced first
with a chaining flag on.

If only the CTR operand is specified, the operand
causes the assembly of one or more double byte pairs
like those just described, except that the clear indi­
cator is never on. The flags indicate one of the mu­
tually exclusive operations add (ADD), subtract
(SUB), multiply (MPY), divide (DIV), or divide and
round (DVR).

11. The ASM inner macro assembles the compare group
consisting of one or more subgroups, one for each
indicator specified in the IND operand. Each sub­
group comprises the following pieces:
a. The comparison operator byte pair-assembled

from flags for the relational operators LT, EQ, and
GT with (optional) NOT, plus one flag bit for the

mutually exclusive connectives AND or OR if they
are specified. The last comparison operator byte
pair of each subgroup except the last has a chaining
flag on.

b. The comparand character count byte pair-derived
from the number of characters in a comparand,
exclusive of any framing apostrophes. The assem­
bled byte pair contains a tentative value that is to
be checked later for validity.

c. The comparand character byte pairs-processed by
the TR and ASM inner macros from the specified
comparand. If the resulting actual count differs
from the tentative count assembled (see b. above),
ASM reassembles the count.

12. If a buffered sink is specified, or if the PRT or TMT
operands are coded with editing specified other than
left justified with trailing blanks, the ASM macro
assembles the data sink group. If assembled, the
group consists of one to five subgroups, one for each
sir1k specified, with the subgroups for PRT and TMT
being the last one or two assembled if they are re­
quired. The assembly of each subgroup is as follows:
a. The ASM inner macro assembles from bits in the

data sink global variable the sink-type byte pair,
which includes a chaining flag derived from the OR
of a scratch copy of the usability flags of data sink
global. The assembly of each sink subgroup causes
a corresponding scratch bit to be turned off, so
that when the last subgroup is assembled the chain­
ing flag is off.

b. ASM assembles the start-byte-0 byte pair from the
data sink global bits combined to call for centering,
right justification with blank fill or zero fill, or
PICTURE operand editing, which are all mutually
exclusive. In addition, if the adjusted sink starting
position exceeds 127, bit 6 is on. The user­
specified sink starting position must be changed
to 0 origin and then incremented by an offset
of four.

c. ASM assembles a start-byte-1 byte pair to contain
the remainder of the starting position after division
by 128.

d. ASM assembles the number of sink characters into
the next byte pair unless the PICTURE specifica­
tion is used. For PICTURE, the assembled byte
pair contains a tentative count equal to the num­
ber of picture characters exclusive of framing apos­
trophes. The TR and ASM inner macros process
the PICTURE string assembling the picture char­
acters and a delimiting X'7F' character, accumu­
lating a count of the digit and insertion characters
in the picture string. If this accumulated count
does not equal the previously assembled count,
ASM reassembles the count.

Logic Of The Form Description Macro Instructions 2-29

There are some assembly modifications for the PRT and
TMT operands. The start-byte quadruplet is replaced by a
control-byte byte pair that is similar to the start-byte-0
byte pair except that bit 4 is the UL indicator. Bit 5 is the
PRT indicator and bit 6 is the TMT indicator. The UL and
TMT specifications are mutually exclusive, as are the PRT
and TMT operands.

The method for deriving the buffer sink character count
is the same as that for buffer sources. No sink count is re­
quired for the CTR(d), PRT, or TMT specifications. Refer
to step 4 for the explanation of the buffer source character
count.

For detailed descriptions of the internal bytes that com­
prise the FD programs, proceed to the Form Description
Program Organization section that follows.

2-30

FORM DESCRIPTION PROGRAMS

The Form Description macros translate user-encoded
options into FD programs that become input to the FD
utility. A user-written program consists of an FD FORM
macro, other FD macros, and an FDEND macro. Similarly,
the generated FD program consists of an FD program head­
er, immediate bytes and field control descriptors (FCDs),
and an FD program trailer. Refer to Figure 2-18 for an
illustration of the FD program structure.

The IDFASM or IJLFASM (called ASM) inner macro
assembles generated FD programs for input to the FD
utility. The following discussion abstracts the generated
FD programs from their frames of keyed unpacked pro­
gram blocks (KUPBs), which ASM generates, and con­
centrates on the generation of bytes that the 3735 terminal
can interpret.

FD Program Header

An FD program header consists of the following fields:
form ID, data format byte, lines form-printer, lines
form-Selectric, operator message, tabs, and begin byte.

Section 3. Form Description Program Organization

Figure 2-19 illustrates the format of the FD program
header. The following list explains each field in the FD
program header.

1. The FID operand routine of the FDFORM outer macro
generates the form ID field. The first three bytes of an
FD program header must contain a three digit identifier
(FID) used to select the FD program. The ID represents
the number by which the 3735 operator may select an
FD program. The IDs must be in internal 3735 code and
may be between 000 and 989, inclusive. The IDs of990
through 998 are reserved for IBM supplied resident FD
programs, and ID 999 is for the functional test form. If
one of these special IDs is transmitted to the 3735 from
the CPU, it is accepted by the terminal control program.
However, if one of the special IDs is selected by the 3735
operator, the 3735 performs the special function indi­
cated not the user program.

2. The PACKING operand routine of the FD FORM outer
macro generates the data format byte (also called the
packing field). The data format byte specifies the format
of field data (collected under FCD control) transmitted
by the 3735. The bit significant data format is as
follows:

.--~~~~~--~~-1\.~~~~~~~~~~~-1{ 1--~~--~~~~~-

{
Immediate Bytes }

FCDs
FD Program

Header
FD Program

Trailer

,__~~~~~-'-~~-1\~~-""'--~~~~~~~--1\ r--~~"'-~~~~~~

Figure 2-18. The FD Program Structure

,.__ __ v __ ___,1 '-..r ~ '---v--1 µn,
v

'7F'

\

Form ID

(1 I

v
Tabs

(6)

PACKING

(2)

:=i
Figure 2-19. The FD Program Header

Lines
Form·
Printer

(3)

G
~

Begin
Byte

(7)

Lines
Form­
Selectric

(4)

MESSAGE

(5)

Logic Of The Form Description Macro Instructions 2-31

a. Blank fill {bit Q;:Q, bit l;:Q): indicates that variable
length fields are to be padded with blanks to the
right of the last character entered. For example,
the 3735 transmits a seven character field as ABCbbbb
if only three characters are entered, or as ABCDEFG
if all seven characters are entered.

b. Packed with delimiter (bit Q;: 1, bit 1 ;:Q) strip trailing
blanks: indicates that the 3735 transmits all fields
with a delimiter following the last character entered.
For example, the 3735 transmits a seven character
field as ABC* (with* representing the X'lC' file
separator character) if only three characters are en­
tered, or as ABCDEFG* if all seven characters are
entered.

c. Packed with no delimiter (bit Q;:Q, bit l;:J): indicates
that the 3735 transmits all fields without trailing
blanks or a delimiter. For example, the terminal
transmits a seven character field as ABC if only three
characters are entered, or as ABCDEFG if all seven
characters are entered.

3. The FDFORM macro generates the two-byte lines form­
printer field (in binary) with an initial value of zero. The
FDEND macro overlays the zero value with the correct
value of the number of lines in the form. This field is
required, whether the 3286-3 printer is attached or not.

4. The FDFORM macro generates the two-byte lines form­
Selectric field (in binary) with an initial value of zero.
The FDEND macro overlays the zero value with the cor­
rect value when it does its processing. The two lines
form-Selectric bytes specify a count of the total num­
ber of lines from the beginning of a Selectric application
to the beginning of the same application on the next
sequential form. The 3735 terminal control program
decrements this count by one for each new line or line
feed operation it performs. The terminal control pro­
gram uses the resulting count as an index to the start of
the next form whenever it ends or cancels a record. The
terminal control program does not decrement a zero
count, but does a carrier return to the left hand margin
at the beginning of the target form.

Note: The operator message is not included in the lines
form-Selectric byte count.

5. The MESSAGE operand routine of the INOl inner macro
generates the operator message field in character data.
An optional operator message may be included in the FD
program to inform the 3735 operator of form usage, set­
up procedure, and so forth. The terminal operator may
bypass the message printout if he desires.

2-32

The terminal control program requires that type ele­
ment positional control characters be imbedded within
the message if such positioning is needed. Tabs should
not be used because the terminal control program sets
tabs after it prints the message. The terminal control
program issues a carrier return before it begins printing
and a carrier return just after the printout.

The length of the message is not restricted. The ter­
minal control program requires a message delimiter:
a X'7F' if tab information follows, or a X'OO' if there
are not tab definitions. Message characters must be in
internal 3735 code. The 3735 operator can retrieve the
message only on the Selectric® 1/0 II device.

6. The HTAB operand routine of the INOl inner macro
generates the horizontal tabulation intervals (tabs) field
beginning with the delimiter X'7F'. The terminal con­
trol program forces the type element to the left margin
stop and spaces the print ball tO times before stopping
it. The 3735 operator then sets the tab and depresses
the OPER key to continue. The terminal control pro­
gram continues this procedure until it finds a X'OO'
delimiter. The t's represent binary numbers with deci­
mal values between 1 and 127, inclusive.

The 3735 operator can bypass the tab setting pro­
cedure by depressing the ENTER key. The terminal
control program does not restrict the number of tab
stops. However, there cannot be tab stops at character
positions greater than 128 without at least one stop at
a character position less than 129.

The FD program does not use a tab operation to ad­
vance to a field whose first print position is adjacent to
the last printed position of the preceding field. The
Selectric device does not recognize a tab stop at char­
acter position one.

7. The begin byte generator routine of the INOl inner
macro generates the begin byte. The begin byte con­
tains a X'OO' and marks the beginning of the bytes that
exercise control over the data entered on the 3735.
The terminal operator can begin FCD control by per­
forming one of the following sequences.

• The operator selects an FD program by entering an
ID.

• The operator presses one of the following:
a. OPER - The operator receives an operator message

and begins the tab setting procedure. When the tab
stops are set, FCD control begins.

b. TAB - The operator does not receive an operator
message and begins the tab setting procedure.
When the tab stops are set, FCD control begins.

c. ENTER - The operator bypasses both the operator
message and the tab setting procedure. FCD con­
trol begins immediately.

Immediate Bytes and Field Control Descriptors

The second part of an FD program consists of sequences of
immediate bytes or field control descriptors (hereafter
called FCDs), or both. Each FCD consists of a variable
number of bytes, the function of each byte is defined by
its format and its position within the FCD. Defining a
document field requires a minimum of three bytes: a data­
type byte, a character-count byte, and an end control byte.
The data-type byte defines the initial data checking require-

0 0

G
'--v-1 \

NOP

(1)

C Byte (Condition)

'61' A1

v
GOTO

(2)

2

A2

Conditional GOTO

(3)

A1A2 = SSSSS x 234
+ A2 A2 A2 A2 A2 A2 A2

0 2 3

A2 A2 A2 A2

0 2 3

0 s s s

s s s

A1

4

A2

4

s

s

5 6

A2 A2

5 6

s A2 Forward

s A2 Backward

FCD Bytes for
No Branch

Branch
Target

0 1 2 3 4 5 6 I Byte (Indicator Number)

v A 0 0 1 2

a N R
B B B

I D
i i i

t t t
u

e

Figure 2-20. NOP, GOTO, and Conditional GOTO Immediate Bytes

ments. The character-count byte provides a binary number
equal to the maximum number of characters that can be
entered into the field. The end control byte provides for
the movement of the Selectric carrier or platen to position
the type element.

In the absence of an explicit specification, the 3735
terminal control program assumes that input data originates
from the Selectric® I/O II keyboard. The FD macro pro­
gramming support assumes the same default source. If a
different source is used, the FCD must contain a data source
byte to indicate the source.

Immediate command bytes are interspersed with FCDs to
provide functions not directly related to the control of data
being entered into a field. The immediate bytes may indi­
cate an instruction which is to be completed immediately,
or may indicate the location of the next byte to be exam­
ined by the terminal control program.

The FDPAGE, FDLINE, FDFIELD, FDCTRL, and
FDEND macros generate these portions of an FD program.

3

B

y

t

e

4 5 6

B B B

y y y

t t t

e e e

The following describes the structure of the immediate
bytes and of the FCDs.

Immediate Bytes

Immediate bytes cause the 3735 terminal to control devices,
to branch within an FD program, or to change the contents
of internal storage areas. Each immediate byte field is ex­
plained in the following list.

1. The NOP immediate byte contains a 3735 no­
operation code, generated to hold space in the assem­
bled data. This byte has no effect on program execu­
tion. Refer to Figure 2-20 for the NOP byte format.

2. The end control routine (in IN03) or the GOTO oper­
and routine (in INlO) creates the three GOTO imme­
diate bytes. The first byte causes an unconditional
branch to the FD program byte that is indicated by
the displacement in the two bytes that follow, A 1
and A2. The GOTO immediate bytes provide for an

Logic Of The Form Description Macro Instructions 2-33

unconditional logic branch to another part of the FD
program. The Al and A2 address bytes represent the
relative sector and byte displacements needed to reach
the destination address. The byte displacements (rela­
tive to the A2 address byte location plus one) is calcu­
lated by multiplying the binary number SSSSS by 234
and adding the binary number A2A2A2A2A2A2A2
to the result. Refer to Figure 2-20 for an illustration
of the GOTO immediate bytes.

3. The IF operand routine (in IN 10) generates the condi­
tional GOTO immediate bytes. These bytes cause the
3735 to branch to the location indicated in the Al
and A2 bytes if a specified indicator combination
indicates the branch. The GOTO on condition (or
conditional GOTO) immediate bytes provide condi­
tional logic branching to another part of the FD pro­
gram. The conditions for branching are based on the
set/reset state of one or more indicators (IO - In).

2-34

If the specified indicator combination is evaluated
to a logical one, the GOTO branch target is to the
Al A2 address. If the combination is evaluated to
zero, the terminal control program examines the FCDs
following the Al A2 address bytes. The combination
may be expressed in the form IO= 0/1 [AND/OR
I 1=0/1 ... AND/OR In= 0/1]. The result of the logi­
cal expression is as if the AND functions are evaluated
first. For example, F=ll or I2 AND 13 OR I4 is eval­
uated as F=I 1 OR (12 AND 13) OR 14. The AND/OR
functions are specified by setting the corresponding
bit in the condition byte. The last condition byte
cannot have an AND/OR bit set on. The indicator
value to be tested for is specified in the value bit. The
indicator number is specified in the indicator byte; the
low order four bits specify one of the 16 indicator
bytes, and high order three bits specify the bit within
the byte. The byte number can range from X'O' to
X'F', inclusive, and the bit number can range from
X'O' to X'6', inclusive, yielding a total of 112 indi­
cators.

The 3735 indicators fall into three types: general
purpose, special, and feature indicators.
a. General purpose indicators:

Indicators with an I-byte from X'OO' to X'6B',
inclusive, have unrestricted usage. The user may
set, reset, or invert each or all of these 84 indica­
tors. The indicator ALL functions refer to these
84 general purpose indicators. The 3735 terminal
control program resets these indicators to zero at
the beginning of each FD program execution.

b. Special indicators:
The seven indicators of I-byte X'OC' are read­

only indicators. The user may not set, reset, or
invert these indicators. The 3 735 terminal control
program resets these indicators at the beginning of
each FD program and sets them whenever the set-

ting condition occurs. The seven indicators are as
follows:

Bit 0 Indicates playback mode. The terminal
control program resets this indicator
for all modes except playback.

Bit 1 Indicates 5496 end of card file. The
terminal control program sets this bit
when a/* is read from the 5496 card
reader-punch and resets this indicator
for all other device read operations.

Bit 2 Indicates inquiry timeout. The termi­
nal control program sets this bit when
an inquiry send command has not been
completed successfully and resets this
indicator whenever a send command is
initiated.

Bit 3 Reserved.
Bit 4 Reserved.
Bit 5 Not used.
Bit 6 Not used.

c. Feature indicators:
Each group of seven i dicators with an I-byte

from X'OD' to X'6F', inclusive, are read-only indi­
cators representing the featured attachments that
are supported for the 3735 terminal. The indica­
tors are as follows:

Indicator X'OD' Indicates an attached 5496
Indicator X' ID' Indicates an attached 3286-3
Indicator X'2D' Indicates an attached operator

identification reader
Indicator X'3D' Reserved
Indicator X'4D'-X'6F' Not used

During enter-fom1 mode, the terminal control pro­
gram stores a delimiter on disk to indicate whether
or not a conditional GOTO branch has been taken.
The terminal control program tests indicators X'OO'
to X'6B', inclusive, during playback or error-correct
mode to determine whether a branch was taken in
enter-form mode. If contrary branching occurs,
the terminal control program issues an operator
message (invalid data path) and exits to local mode.
Tests on indicators X'OC' to X'6F', inclusive, result
in the same data path as taken in enter-form mode
whether or not the new test results in a different
branch/no branch condition. Refer to Figure 2-20
for an illustration of the conditional GOTO imme­
diate bytes.

4. The begin cycle (CYCLE operand part 2) routine (in
IN03) generates the seven begin-cycle immediate bytes
initially in the form X'63', 8X'60'. After assembly,
these bytes finally appear in the form
63 LL RR AlA2.
a. The LL bytes represent the total Selectric form

lines encompassed in the cycle. The end summary

5 6

1[~]§[1 1] § I A1 I A2 SUMMARY

0 3

'63' L L I R R

Begin Cycle

(4)

LL - 2 Bytes of Line Count

RR - 2 Bytes of Repeats

Figure 2-21. The Begin, Repeat, and End Cycle Immediate Bytes

routine (CYCLE operand part 5) in the INOl inner
macro updates these two bytes.

b. The RR bytes represent the total number of cycle
repetitions.

c. The A1A2 bytes represent the branch to the next
FCD bytes to be examined. The cycle limit
(CYCLE operand part 3) routine (in IN 11) updates
these bytes. Refer to Figure 2-21 for the formats
of the cycle bytes.

5. The cycle limit (CYCLE operand part 3) routine cre­
ates the repeat cycle immediate byte to signal the
point at which the cycle repeats. Each time a repeat
cycle command is encountered, the terminal control
program decrements the number of repeats by one
and transfers control to the first FCD byte following
the A2 byte. The control program ends the cycle
when the number of repeats is zero.

6. The cycle limit (CYCLE operand part 3) routine cre­
ates the end cycle immediate byte. This byte causes
the 3735 to index the number of lines remaining from
the LL subfield and to do a carrier return. The 3735
decrements the count of the number of lines for each
Selectric printer line passed over. Following the car­
rier return, the terminal control program examines
the immediately following FCD byte.

Note: The begin cycle, repeat cycle, and end cycle
immediate bytes are generated in that order. The FCDs
and immediate bytes between the begin cycle and repeat
cycle immediate bytes correspond to the macros between
the start-of-cycle macro and the limit macro, inclusive.
The FCDs and immediate bytes between the repeat cycle
and the end cycle immediate bytes correspond to the
macros comprising a summary block.
7. The end control routine generates the two index space

immediate bytes. The value of the byte n is a binary
count of the number of spaces from the left margin
stop to the first field of a new line on the Selectric
form that has been entered using line feed motion
(without carrier return). The 3735 terminal control
program uses this immediate command in error cor­
rection. The index space function should follow the
last line feed end control or Selectric command.
Refer to Figure 2-22 for an illustration of the index
space bytes.

Repeat End
Cycle Cycle

(5) (6)

8. The TOT AL operand routine (in IN09) generates the
seven total batch inunediate bytes. The bytes cause
the terminal control program to scan the records cre­
ated by execution of the FD program whose identifier
is given by the subfield FFF. The batch subgroup
identifies the FCDs in the FD program as belonging
to the san1e batch as the B subfield of the total batch
immediate bytes. These FCDs create data that is
accumulated in the counter given by the counter
subfield of the total batch immediate bytes. The
terminal control program does not clear the counter
before the data is accumulated. Refer to Figure 2-22
for the format of the total batch bytes.

9. The COMMAND operand routine (in IN 10) generates
the cancel form immediate byte that causes the ter­
minal control program to cancel the form. Refer to
Figure 2-23 for the cancel form immediate byte
format.

10. The COMMAND operand routine generates the end
form immediate byte. This byte causes the terminal
control program to end the form, creating a record
of its execution in the CPU data directory. Refer to
Figure 2-23 for the format of the end form imme­
diate byte.

11. The FDCTRL CTR operand routine (in IN09) creates
the three clear counter immediate bytes to cause the
terminal control program to clear the specified
counter to +O. Refer to Figure 2-23 for the format
of the clear counter bytes.

12. The FDCTRL IND operand routine (in IN09) gen­
erates the three set indicator immediate bytes to
cause the terminal control program to set (=1),
reset (=O), or invert the specified indicator. Refer
to Figure 2-23 for the format of the set indicator
bytes.

13. The end control routine generates the two Selectric
command immediate bytes. These bytes provide for
the immediate movement of the Selectric carrier and
platen. Refer to Figure 2-24 for the format of these
immediate bytes.

14. The COMMAND operand routine generates the two
clear STG immediate bytes to cause the terminal con­
trol program to clear the buffer. The storage buffer
(STG) is a 236-byte buffer that is resident on the

Logic Of The Form Description Macro Instructions 2-35

0

3735 disk. At the beginning of each FD program,
the terminal control program saves the contents of
this buffer. If a record is canceled, the control pro-

0 2

I ·ss· '67' '01' B F F F

Index Space

(7)

Total Batch

(8)

B - 1 Byte Batch Number (Binary)

6

gram restores the buffer to the state it was at the
beginning of the record. Refer to Figure 2-25 for
the format of the CLEAR STG buffer bytes.

c

FFF - 3 Bytes of Form ID (Internal 3735 Code)

C - 1 Byte of Counter Number (Binary)

Figure 2-22. The Index Space and Total Batch Immediate Bytes

0 0

G G
~ '-v--'

Cancel Form End Form

(9) (10)

0 2

'SA' ·oo· c

'~~~~~- -~~~---' v
Clear Counter

(11)

C - Counter Number

IC - Indicator Control

I - Indicator Number

0 1 2

'6A' IC

~
\ v

Set Indicator

(12)

I Vi
I

Figure 2-23. The Cancel Form, End Form, Clear Counter, and Set Indicator Immediate Bytes

0 End Control Byte

0 1 2 3 4 5 6
'70' EC

0 0 0 n n n n Space

0 0 1 n n n n Backspace

"--y--1 0 1 0 n n n n Horizontal Tab
Selectric Command

(13) 0 1 1 n n n n Line Feed

1 0 0 n n n n New Line

Figure 2-24. The Selectric Command Immediate Bytes

2-36

0 1 2 3 4 5 6

s R I

E E N

T s v

E E

T R

T

15. The COMMAND operand routine generates the two
inquiry command immediate bytes to cause the ter­
minal control program to clear the inquiry buffer,
transmit the inquiry buffer, or discontinue the line.
The inquiry buffer is a 236-byte buffer unit that is
resident on the 3735 disk. The terminal control pro­
gram does not save the contents of this buffer at the
beginning of each record. Neither does the terminal
control program restore the buffer when the operator
enters error-correct mode. Refer to Figure 2-25 for
the format of these bytes.

16. The COMMAND operand routine generates the two
5496 command immediate bytes to cause the terminal
control program to clear the 5496 buffer, request in­
put from the 5496, or send output to the 5496. The
5496 buffer is a 192-byte buffer that resides on the
3735 disk. The terminal control program does not
save the contents of this buffer at the beginning of
each record. Neither does the control program re­
store the contents of this buffer when the operator
enters error-correct mode. Refer to Figure 2-26 for
the formats of the 5496 commands.

17. The COMMAND operand routine generates the two or
four line printer command immediate bytes to cause
the terminal control program to clear the line printer
buffer, skip lines on the line printer, or send output to
the lirte printer. Refer to Figure 2-27 for the formats
of the line printer command immediate bytes.

18. The COMMAND operand routine generates the two
operator ID reader command immediate bytes to
clear the IDR and CCR buffer, to read the IDR buf­
fer, or to read the CCR buffer. Refer to Figure 2-28
for the formats of the IDR and CCR command imme­
diate bytes.

The following summarizes each immediate byte field,
indicating the length of each field and the format.

Type

1. NOP Immediate Byte
2. GOTO Immediate Bytes
3. Conditional GOTO

Immediate
4. Begin Cycle Immediate

Bytes
5. Repeat Cycle Immediate

Byte
6. End Cycle Immediate Byte
7. Index Space Immediate

Bytes
8. Total Batch Immediate

Bytes
9. Cancel Form Immediate

Byte
10. End Form Immediate Byte
11. Clear Counter Immediate

Bytes

Length

3

Variable

7

2

7

3

Format (Hex)

60
61A1A2

62 ...

63LLRRA1A2

64
65

66n

6701 BFFFctr

68
69

6A00ctr

12. Set Indicator Immediate

Bytes 3 6Aindctrl

13. Selectric Command
Immediate Bytes 2 70ec

14. Clear STG
Immediate Bytes 2 7140

15. Inquiry Command
Immediate Bytes 2 72inqctrl

16. 5496 Command
Immediate Bytes 2 73ctrl

17. Line Printer
Command lmmed. 2 or 4 741 pctrlnn

18. IDR and CCR
Command lmmed. 2 75ctrl

Refer to Figures 2-20 through 2-28 for diagrams of each of
these immediate bytes.

Field Control Descriptors

FCDs correspond to FDFIELD or to FDCTRL macros and
cause 3735 operations involving data input, manipulation,
and output. An FCD generated each time an FDFIELD
macro is coded consists of up to ten fields. Each of these
fields is explained in the following list. Refer to Figure 2-29
for an illustration of the FCD structure.

1. The batch group is an optional immediate field gen­
erated by the BATCH operand routine.

2. The data source group is present for all FCDs except
those corresponding to FDFIELD macros with
SOURCE=KBD coded. The data source group gen­
erator routine (in IN04) generates the data source
group from internal tables (global variables).

If a field is numeric (the numeric bit is on in the
data-type byte), the data source field can have a lead­
ing plus or minus sign. Also, for a numeric field, the
low order position of the field can have an overpunch
to represent a negative number. The terminal control
program strips off the overpunch for printing but re­
tains the overpunch for storing rightjustified in buf­
fered sinks or on disk for transmission.

A negative source field can have a leading plus or
minus sign and be right justified with leading blanks
in the source field. As the terminal control program
reads the source field, it strips off the leading blanks.
If the print bit is on in the data-type byte, the termi­
nal control program prints these leading blanks. The
terminal control program makes any further reference
to the field (arithmetic, compare, data sink, and so
forth) with a character count equal to the source char­
acter count minus the leading blanks. Data source
input characters are comprised only of the characters
from X'20' to X'7E' in the internal 3735 code, or a
cent sign, a plus-or-minus sign, or a logical-not sign.
Any violation of requested validity checking (char­
acter type, length, range, self check) results in an
operator error message indicating a data source error.

Logic Of The Form Description Macro Instructions 2-37

Clear STG

(14)

0

'72' lnqCtrl

'--"

~
Inquiry Command

(15)

0 1

EB
~

Clear Inquiry
0 1 rn
'--v--1

Transmit Inquiry

EB
~

Disconnect

Figure 2-25. The Clear STG and Inquiry Command Immediate Bytes

0

':vl~ 1 2 3 4 5 6
'73'

c R p

L E u

~ E E A N

5496 Command A A D c

(16)
R R H

B p

u u
F N

F c
E H

R

Figure 2-26. The 5496 Command Immediate Bytes

2-38

0 1 2 3 4 5 6

c T D

L R I

E A s

A N c

R s 0

M N

I N

T E

c

T

0 1 rn
~
Clear 5496 Buffer

0 1 rn
~

Clear 5496 Punch Buffer

0 1 rn
'---v---1

Read Card
0 1 rn
'--y---1

Punch Card

0 1 [rn] Ip
0 1 2 3 4 5 6

'74' ctr I c s s B p

~ L K K E R

0 2 3

'74' '24'

\ E I I F I
Print and Skip nn Lines

A p p 0 N
Line Printer Command

R R T
(17)

n T E I .,.. !' ·c· I'
3

n

B n 0

u p
'~-------. ~-----' v

Skip to Line nn and Print and Clear

F L L R

F I I I

E N N N

0 1

EB
R E E T

s ~
Print and Clear

0

n

Figure 2-27. The 3286 Line Printer Command Immediate Bytes

0 0

Rdr
0 1 2 3 4 5 6

'75' ctr I
c R R rn

~
L E E '~-~v----"""'

Clear I DR and CCR

IDR and CCR E A A 0 1
Command

(18)
A D D

R B
I c '----v,...--~'

Read IDR
B D c 0 1

u R R

F rn
F '---y----1
E Read CCR

R

Figure 2-28. The IDR and CCR Command Immediate Bytes

Logic Of The Form Description Macro Instructions 2-39

[:J [~]
Batch Group

6
Data Source Character

(1)
Group Count

Byte
(4)

[
Emitted Data

~] [J
Validity

[J
Group Byte

(5) (6)

[
Validity

] [
Function

~]
Group Group

(8) (9)

D
End

Control
Byte

(10)

Figure 2-29. The FCD Structure

2-40

Within the data source group are nine commands
to indicate functions that are to be performed. These
commands indicate the following sources for input
data: FD program ID, record number, emitted data,
counters, storage buffer (STG), inquiry buffer (INQ),
5496 buffer, the 3286-3 buffer, and the IDR/CCR
buffer. Refer to Figure 2-30 for the format of each
of these source data function specifications.
a. The FD program ID command causes the terminal

control program to use the FD program identifica­
tion number (FID) of the active FD program as the
input data source. The ID character count must be
three. The terminal control program pads zeros to

the left of significant digits. The control program
does not store the FD program number on disk
unless the transmit bit is on in the data-type byte.

b. The record number command causes the terminal
control program to use the record number assigned
to the active record as an input data source. The
character count must be three and zeros are padded
to the left of significant digits. The terminal con­
trol program does not store the record number on
disk unless the transmit bit is on in the data-type
byte.

c. The emitted data command causes the terminal
control program to use the FCD bytes immediately

Data Source Byte

Hex Function

50 FD Program ID

51 Record Number

52 Emitted Data

53 Counters

54 Storage Buffer

55 Inquiry Buffer

56 5496 Buffer

57 3286-3 Buffer

SF I DR or CCR Buffer

l

l

Figure 2-30. The Data Source Group

Logic Of The Form Description Macro Instructions 2-41

following the character count as the input data
source. If validity and/ or function bytes are de­
sired, they must follow the emitted data. The ter­
minal control program does not store emitted data
on disk unless the transmit bit is on in the data­
type byte.

d. The counters command causes the terminal control
program to use the counter specified by the count­
er address as the input data source. The character
count must be ten. There are 21 ten-digit signed
counters, the addresses of which are binary num­
bers between X'OO' and X'14', inclusive. At the
beginning of each FD program the terminal control
program saves the contents of the counters. If a
record is canceled, the control program restores the
counters to their state at the beginning of the rec­
ord. If the operator enters error-correct mode, the
terminal control program restores the counters to
their values at the beginning of the line. The con­
trol program does not save the counters on disk
unless the transmit bit is on in the data-type byte.
The counters are always ten digits long. If a count­
er is negative, the units position has an overpunch.
The terminal control program takes source data
from the counters in all operating modes.

e. The storage command causes the terminal control
program to use the number of bytes specified in
the character count, starting at the specified start­
byte location in the storage buffer, as the input
data source. The start-byte location is a two-byte
binary number from four to 239, inclusive. The
terminal control program always stores the source
data in the storage buffer on disk. The control pro­
gram takes the source data from the storage buffer
in enter-form mode and error-correct mode and
from the disk (data stored in enter-form mode or
supplied as CPU data) during playba~k mode.

f. The inquiry command causes the terminal control
program to use the number of bytes specified in
the character count, starting at the specified start­
byte location in the inquiry buffer, as the input
data source. The start-byte location is a two-byte
binary number from four to 239, inclusive. The
terminal control program always stores the source
data in the inquiry buffer on disk. The control
program takes the source data from the inquiry
buffer in enter-form mode and from the disk (data
stored during enter-form mode or supplied as CPU
data) during error-correct or playback mode.

g. The 5496 buffer command causes the terminal con­
trol program to use the number of bytes specified
in the character count, starting at the specified
start-byte location in the 5496 buffer, as the input
data source. The start-byte location is a two-byte

2-42

binary number from four to 195, inclusive. The
terminal control program always stores the source
data from the 5496 buffer on disk. The control
program takes the source data from the 5496 buf­
fer during enter-form mode and from the disk (data
stored during enter-form mode or supplied as CPU
data) during error-correct and playback modes.

h. The 3286-3 buffer command causes the terminal
control program to use the number of bytes speci­
fied in the character count, starting at the specified
start-byte location in the 3286-3 buffer, as the in­
put data source. The start-byte location is a two­
byte binary number from four to 239, inclusive.
The terminal control program always stores the
source data from the 3286-3 buffer on disk. The
control program takes the source data from the
3286-3 buffer during enter-form mode and from
the disk (data stored during enter-form mode or
supplied as CPU data) during error-correct and
playback modes.

i. The IDR or CCR command causes the terminal
control program to use the number of bytes speci­
fied in the character count, starting at the specified
start-byte location in the IDR or CCR buffer, as
the input data source. The start-byte location is a
two-byte binary number from 196 to 239, inclu­
sive. The terminal control program always stores
the source data in the IDR or CCR buffer on disk.
The control program takes the source data from
the IDR or CCR buffer during enter-form mode
and from the disk (data stored during enter-form
mode or supplied as CPU data) during error-correct
and playback modes.

3. The data-type field (one byte) is a required field for all
FCDs. The data-type byte generator routine (in IN06)
creates this byte from internal tables (global variables).
Other routines may update the data-type byte because
the value of this byte is subject to change after its initial
generation.

The data-type byte is present for all input/output
fields and specifies the following:
• the field character type

• whether or not the field is to be printed as entered

• whether or not the raw input data is to be trans­
mitted to the 3735

• whether or not any additional validity and/or func­
tion bytes follow
Within the data-type byte are combinations of bit

settings that indicate the following character checking
functions:
a. No character check (bit O=O, bit 1 =O, bit 2=0):

indicates that any and all characters are accepted
at the 3735.

b. Katakana code (bit O= l ,bitl =O,bit 2=0): indi­
cates that kana characters and space only will be
accepted at the 3735.

c. Alphabetic character check (bit O=O, bit 1 =l,
bit 2=0): indicates that only A through Z (upper
and lower case) or space are accepted at the 3735.

d. Numeric character check (bit O=O, bit l=O, bit
2=1): indicates that only 0 through 9 and an op­
tional leading sign are accepted at the 3735. The
leading sign may be either plus or minus and must
be the first keyed character in the field.

e. Alphameric character check (bit O=O, bitl =1,
bit 2=1): indicates that only A through Z (upper
and lower case), 0 through 9, or space are accepted
at the 3735. The terminal control program rejects
a leading sign.

f. Transmit function: indicates that the terminal con­
trol program flags the input data for the associated
field for unedited transmission to the CPU if this
bit is on.

g. Print Selectric function: indicates that the terminal
control program prints the associated input field
while it is being entered if this bit is on. When the
bit is off and the field is to be printed, look for a
Selectric data sink byte to follow to perform that
function.

h. Validity check: indicates that the terminal control
program performs additional checks on the input
data if this bit is on. A validity byte that imme­
diately follows the character-count byte defines
the additional checks.

Data· Type Byte

0 , 2 3 4 5 6

K A N T p v F

A L u R R A u
T p M A I L N

A H E N N I c
K A R s T D T

A B I M I I

N E c I s T 0

A T T E y N

I L

c E
Min

Validity
Byte

i. Function check: indicates that the terminal con­
trol program specifies the presence of a function
byte to control arithmetic, compare, and data sink
functions if this bit is on. The function byte imme­
diately follows the character-count byte or, if one
is present, the validity byte.

Refer to Figure 2-31 for an illustration of these bit
settings.

4. The character-count byte is a required field for all
FCDs. The character count generator routine (in
IN06) creates this byte from internal tables (global
variables) and other routines may update the byte
since the value of it may not be known at the time
of its initial generation.

The character-count byte contains a binary number
equal to the exact or maximum number of characters
that can be entered into a field. The maximum num­
ber of characters that can define a field is 127.

The character count of a numeric field includes an
optional leading sign. The character count of a self­
check field includes the self-check digit. The char­
acter count of a field that is to have the self-check
digit generated does not include the self-check digit.
Once the digit has been generated, any compare or
data sink function should assume that the field con­
tains the additional digit.

5. The emitted data group is an optional field and is
present for all FCDs corresponding to FDFIELD
macros coded with SOURCE='string'. The emitted
data group generator routine (in IN06) creates this
field.

Data Type

Function
Byte

Value Self Arith Comp Data
c Count Bytes Chk Bytes Bytes Sink

T

R
\ I v

I Validity Function

c
Group Group

Figure 2-31. The Data-Type Byte

Logic Of The Form Description Macro Instructions 2-43

6. The validity byte is an optional field generated by the
validity byte generator routine in the IN06 inner
macro. The validity byte is present if the validity bit
(bit 5) in the data-type byte is on. The validity checks
are not mutually exclusive. These checks control the
number of characters entered into a field and the con­
tent of the data. The validity byte indicates seven
conditions: numeric (key) pad enable, enter required,
mandatory field, fixed length field, minimum char­
acter count in a field, numeric/alphabetic value check,
and checking of a self-check number.

2-44

The numeric-pad-enable bit enables the ten-key
pad. If this bit is off, or if the validity byte is not
present, the terminal control program interprets the
keypad character in the normal way. Enabling the
keypad changes the keypad characters to their nu­
meric values. If a field is to be checked for numeric
characters and the keypad is enabled, the 3735 accepts
the ten-key pad and the regular numeric characters.
Because some alphabetic characters are not usable in
the numeric check, this bit should be turned on when
using numeric pad.

The enter-required bit indicates that the operator
must press the ENTER key or the TAB key to exit
from the field.

The mandatory-field bit indicates that the operator
must enter at least one character into the field. If this
bit is off and no characters are entered at the 3735,
the terminal does not perform the validity checks
specified. If the operator tries to bypass the manda­
tory field, the terminal control program turns on the
error indicator.

The fixed-length bit indicates that if an entry is
made, the operator must enter the exact number of
characters specified in the character-count byte. If
this condition is violated, the terminal control pro­
gram turns on this length indicator.

The minimum-count bit, assuming that no function
byte is present in the FCD, indicates that the imme­
diately following byte contains a binary number. This
number is equal to the minimum number of characters
that can be entered into the field, if an entry is made,
before the operator can advance to the next field.
The minimum-count byte is not present for a mini­
mum of one character.

The value-check bit indicates that a check is to be
made on the numeric and/or alphabetic value of a
field. Refer to paragraph 8 for an explanation of the
value-check byte.

The self-check bit indicates that a check is to be
made of a self-checking number or that a self-check
digit is to be generated. Refer to paragraph 8 for an
explanation of the self-check byte. Refer to Fig­
ures 2-32 and 2-33 for illustrations of the validity
byte and of the validity group.

7. The function byte is an optional field generated by
the function byte generator routine in the IN06 inner
macro. This byte is present if the function bit (bit 6)
in the data-type byte is turned on. The function byte
indicates the presence of these functions: arithmetic,
compare, and data sink functions.

The arithmetic-function bit indicates an operation
to be done on a counter. The field data operates on
counter X and the results are stored in counter X.
Refer to paragraph 9 for an explanation of the arith­
metic byte in the function group.

The compare-function bit indicates compare bytes
are present in the function group. Refer to paragraph
9 for an explanation of the compare bytes.

The data-sink bit indicates that data sinks are pres­
ent in the function group. Refer to paragraph 9 for
an explanation of the data sink bytes.

Refer to Figures 2-32 and 2-34 for illustrations of
the function byte and the function group.

8. The validity group is an optional field and is present
only when bits 4, 5, and 6 in the validity byte (see
paragraph 6) indicate its presence.

Bit 4 on minimum count field is present.
Bit 5 on value bytes are present.
Bit 6 on self-check field is present.
The value-check byte provides the ability to check

the numeric or alphabetic value of a field. Refer to
the conditional GOTO immediate byte explanation
for the use of the AND/OR bits in the value-check
byte. The greater than, equal to, and less than bits in
the value-check byte are mutually exclusive. The
NUMB CHAR byte represents the number of char­
acters in the comparand.

For numeric comparisons the (numeric bit is on in
the data-type byte), the comparand may contain a
leading plus or minus sign. The terminal control pro­
gram compares the field to the comparand as a signed
numeric value and pads the shorter length number
with leading zeros for the comparison.

For alphabetic or alphameric character string com­
parisons (the numeric bit in the data-type byte is off),
the terminal control program pads the shorter string
with trailing blanks for the comparison.

The value-check comparand characters are in inter­
nal machine code. The 3735 does not restrict the
number of AND/OR functions. A 3735 with ASCII
code uses the ASCII collating sequence; a 3735 with
EBCDIC code uses the EBCDIC code collating se­
quence.

The comparand-character-count byte for numeric
comparisons should include a leading sign if one is
present in the comparand. Signed comparands may
have a leading sign. The absence of a leading sign
implies a positive number. The terminal control pro­
gram uses any non-numeric character in a comparand

Validity Byte Function Byte

0 1 2 3 4 5 6 0 1 2 3 4 5 6

K E M F M v s A c D

E N A I I A E R 0 A

y T N x N L L I M T

p E D E I u F T p A

A R A D M E H A

D T u c M R s

R 0 L M c H E E I

E E R E H E T N

N Q y N c E c I K

A u G 0 c K c

B I T u K

L R H N

E E T

D

Figure 2-32. The Validity and Function Bytes

Validity Group Bytes

0

[
2 3

A BJ ~ Value No CO Value No co Self
Check Chars Check Chars Check t

Value Check Byte Self Check Byte

0 1 2 3 4 5 6 0 1 2 3 4 5 6

L E G N A 0 G M M

E Q R 0 N R E 0 0

s u E T D N D D

s A A E u u

L T R L L

E A 0 0

R T

E 1 1

0 1

Figure 2-33. The Validity Group

Logic Of The Form Description Macro Instructions 2-45

Function Group Bytes

Arithmetic Bytes

0

Arith
Cntrl

Cntr
No

[._2_~-~-~-r~__,_3_c_~_~_ -t J----1..__~_~_~_r~__.._c_~_~r--1 J
Arithmetic Control Byte

0 1 2 3 4 5 6

c A s M D D 0

L D u u I I p

E D B L v v E

A T T I I R

R R I D D A

A p E E T

c L I

T y A A 0

N N N

D D

c

T R H

R 0 A

u u I

N N N

c D I

A N

T G

E

Figure 2-34. The Function Group (Part 1 of 3)

2-46

value checked against a numeric field in the compare
operation and assumes a value representative of the
machine collating sequence.

The terminal control program automatically can­
cels any field that the operator enters and that fails to
pass the value check. When the operator presses the
OPER key to turn off the Range Check light, the ter­
minal control program cancels the field.

The self-check byte provides a check of a self­
checking number or the generation of a self-check
digit. If the generate bit (bit O) is off, the 3735
checks the field using the specified modulus routine
(modulo 10 or 11). If the operator enters the field
and the self-check test fails, the 3735 turns on the
Self-Check light and locks the keyboard. The termi­
nal control program automatically cancels the field
when the operator presses the OPER key.

When the generate bit is on, the 3735 generates the
self-check digit and appends it to the input data. Re­
fer to Figure 2-32 for an illustration of the validity
byte and to Figure 2-33 for illustrations of the valid­
ity group.

9. The function group is an optional field and is present
only when the bits in the function byte (see para­
graph 7) indicate its presence. Bits 0, 1, and 2 in the
function byte indicate that the function group con­
tains the following bytes:

Bit 0 on arithmetic bytes are present
Bit 1 on compare bytes are present
Bit 2 on data sink bytes are present

The arithmetic byte indicates that field data operates
on counter X and the results are stored in counter X.
The add, subtract, multiply, divide, and divide-and­
round bits are mutually exclusive. The clear bit may

Function Group Bytes

Compare Bytes

Compare

0 2

Comp Char c0
No

Ind
No [Comp Char

No

Compare Chain

Compare Byte

0 1 2 3 4 5 6

L E G N c A 0

E Q R 0 H N R

s u E T A D

s A A I

L T N

E

R

Figure 2-34. The Function Group (Part 2 of 3)

be on with another arithmetic function. If a counter
is ever set to zero as the result of an arithmetic func­
tion, it is a plus zero. The terminal control program
performs arithmetic functions in all operation modes.
Refer to Figure 2-34 for an explanation of the arith­
metic bytes.

Within this byte reside seven indicators:
Bit 0 indicates a clear operation
Bit 1 indicates an add operation
Bit 2 indicates a subtract operation
Bit 3 indicates a multiply operation
Bit 4 indicates a divide and truncate operation
Bit 5 indicates a divide and round operation
Bit 6 indicates chaining to another arithmetic

operation

r:l
L:J

If bit 0 is on, the 3735 clears the specified counter to
plus zero. The counter number is X'OO' to X'l4'. The
clear bit may be on with one other function; however,
the terminal performs the clear operation first.

If bit 1 is on, the 3735 adds the field to the counter
and stores the result in the counter specified.

If bit 2 is on, the 3735 subtracts the field from the
counter and stores the result in the counter.

If bit 3 is on, the 3735 multiplies the counter by
the field and stores the result in the counter.

If bit 4 is on, the 3735 divides the counter by the
field and stores the result in the counter. The 3735
disregards any remainder. If an attempt is made to
divide by zero, the 3735 clears the counter to plus
zero.

Logic Of The Form Description Macro Instructions 2-4 7

Function Group Bytes

Data Sink Bytes

[Data Start Start Sink C J [Data Selec J
Sink Byte O Byte 1 Count Sink Sink

~ l____..____

__)

Data Start Start Sink
Sink Byte 0 Byte 1 Count

__)

Data Sinks (No Edit)

[
)

Picture Po
1.

Data Start Start Digit
Sink Byte 0 Byte 1 Count

__)

'

'7F'
((]
1 \

[
)

Data Selec Picture
Po

Sink Sink Digit
Count

_)

Data Sinks (Edit)

Data Sink Byte Start Byte 0

0 1 2 3 4 5 6 Data Sink 0 1 2 3 4 5 6

s 0 0 0 0
I
N 0 0 0 1
K

Selectric

Storage

c R R E B,

E I I D

N G G I

c 0 0 1 0 Inquiry T H H T
H
A 0 0 1 1 5496 Buffer E T T
I
N 0 1 0 0 3286-3 Buffer

R
B z
L E

Selectric Data Sink Byte A R

N 0

0 1 2 3 4 5 6 K

c R R E u p T

E I I D N R R Start Byte 1

N G G I D I A

T H H T E N N
0 1 2 3 4 5 6

E T T R T s B2 B2 B2 B2 B2 B2 B2

R L M

B z I s I

L E N E T

A R E L

N 0

K

Figure 2-34. The Function Group (Part 3 of 3)

2-48

If bit 5 is on, the 3735 divides the counter by the
field and stores the result in the counter. The termi­
nal uses any remainder to half-adjust the quotient. If
an attempt is made to divide by zero, the 3735 clears
the counter to plus zero.

If bit 6 is on, the 3735 looks for another arithmetic
control byte and continues performing arithmetic
functions.

The compare bytes provide the ability to check the
numeric or alphabetic value of a field. Refer to the
conditional GOTO immediate explanation for the use
of the AND/OR bits in the compare bytes. The com­
pare bytes use the results of the comparisons to set or
reset an indicator. If the results of the compare logi­
cal function is true, the 3735 sets the specified indi­
cator. If the expression is false, the terminal resets
the indicator. The terminal control program executes
the compare function in all operation modes.

Within a compare byte reside seven indicators:

Bit 0 indicates a less than comparison
Bit 1 indicates an equal comparison
Bit 2 indicates a greater than comparison
Bit 3 indicates a not qualification of bits 0, 1,

or 2
Bit 4 indicates a compare chain
Bit 5 indicates an and logic operation
Bit 6 indicates an or logic operation

If the compare-chain bit is on, the 3735 uses the logi­
cal expression evaluated to this point to set or reset
the indicator specified in the byte following the last
comparand byte for that segment of the chain. Once
the indicator is set or reset, the 3 735 treats the fol­
lowing compare function as if it were the only com­
pare function.

The 3735 uses the data sink bytes to store data in
the buffered sinks and to control printing and/or edit­
ing. The terminal performs the data sink functions in
the order they are encountered and uses the sink chain
bit (bit 0) to indicate additional data sink functions.

If the sink count or picture digit count for numeric
fields (the numeric bit is on in the data-type byte) is
less than the number of digits to be placed in the sink,
the 3735 uses the low-order digits of the source. Re­
fer to Figure 2-34 for detailed illustrations of the data
sink bytes.

For all buffer sinks, the data sink byte has several
fields following it: the starting-byte location in the
buffer in which the resultant data is to be stored, the
size of the sink field (maximum of 127), and optional
picture bytes. The high-order four bits of the starting­
byte location specify left justify, right justify with
leading blanks, right justify with leading zeros, center,
or edit. These functions are mutually exclusive. The
3735 stores no data on disk (as a part of the created

record) for the buffered sink functions. The terminal
stores only into the 5496 buffer during playback
mode.

The 3735 does the left-justify function when all
sink function bits are off in the start-byte-zero byte.
The terminal stores the input field in the buffer left
justified. If the sink count is greater than the source
count (character count), the 3735 pads the buffer
field with trailing blanks. If the input field is numeric
(the numeric bit is on in the data-type byte) and con­
tains a negative sign overpunch in the low-order-digit
position, the 3735 transfers the overpunched digit to
the sink field if the overpunched digit is stored in the
rightmost sink field character position.

For centering, the 3735 centers the input source
field into the sink field. If any odd character is to be
to the right of the raw data, the terminal should see
the right-blank bit in the start-byte-zero byte. The
center function centers the input field into the sink.
The 3735 considers any blanks in the data as charac­
ters in the field to be centered. If the input field is
numeric and contains a negative sign overpunch in the
low-order-digit position, the 3735 transfers the over­
punched digit to the sink field if, and only if, the over­
punch is stored in the rightmost sink field character
position.

For right-justify with leading blank, the 3735 right
justifies the input source field with leading blanks and
stores the field in the sink field. The terminal replaces
any leading zeros in the source field with leading
blanks. If the input field is numeric and contains a
negative sign overpunch in the low-order-digit posi­
tion, the 3735 stores the overpunch in the rightmost
sink field character position.

For right-justify with leading zero, the 3735 right
justifies the input source field with leading zeros and
stores it in the sink field. The terminal replaces any
leading blanks in the source field with leading zeros.
If the input field is numeric and contains a negative
sign overpunch, the 3735 stores the overpunch digit
in the rightmost sink field character position.

For the edit function, the picture digit count re­
places the sink count byte. This count is equal to
the number of picture bytes that have associated digit
positions. This count equals the sum of 9s and zero
suppression characters in the picture stream. All pic­
ture bytes are represented by 3735 internal codes
with the following exceptions:

• The blank insertion byte should be a X'20';

• The radix symbol is used for stopping zero sup­
pression only, and should be an uppercase V if no
suppression characters follow, or a lowercase v if
suppression characters do follow.

Logic Of The Form Desctiption Macro Instructions 2-49

The 3735 must initiate a drifting sequence with two
contiguous drifting characters.

The only way to display the source field sign is to
use the picture bytes S, +,or-. Otherwise, the 3735
drops any overpunched digit and assumes any leading
sign is a leading zero.

The Selectric sink function controls the printing
and or storing for transmission of edited data. For
explanation of the right justify, left justify, center,
and edit functions, refer to the description of the
buffered sinks.

The Selectric data sink functions are as follows:

•Underline: ifthe underline and print bits are on,
the 3735 underlines the field. If the right blank
bit is on, the terminal only underlines significant
(nonblank) characters. If the center bit is on, the
3735 underlines only characters that are centered.
If the left justify bit is on (other bits are off), the
3735 does not underline trailing blanks. If the
edit function is used, the 3735 underlines the re­
sults of the picture stream.

• Print Selectric: The requested function is to send
output to the Selectric device.

• Transmit: The 3735 stores the edited data on disk
for transmission to the CPU.

10. The end control byte, generated by the end control
routine in the IN03 inner macro, is a required field.
The 3735 spaces the Selectric print element to the
end of the field before executing the end control
functions of space, backspace, or line feed. The ter­
minal control program executes horizontal tabbing
and new line functions without spacing to the end of
the field. If tabs are set within a variable length field
that is not mandatory, code an end control byte of

End Control Byte

0 1 2 3 4 5 6 Function

X'OO' followed by an immediate tab command. Even
if the print bit in the data-type byte is turned off, the
3735 always executes the end control function. Refer
to Figure 2-35 for a summary of the end control byte
functions.

Refer to Figure 2-29 for a summary of the FCD structure
and to Figures 2-30 through 2-35 for detailed diagrams of
each FCD field.

FD Program Trailer

An FD program trailer consists of an end form byte, an FD
program delimiter, and, optionally, padding to complete a
sector (KUPB). The FDEND macro generates these bytes
when the user codes an FDEND macro in his source deck.
Refer to Figure 2-36 to see the format of the trailer.

FD Program Maintenance

This section describes some of the problems that may occur
at some time in the generation of a form processing system.

The trouble-shooting information presented in the fol­
lowing paragraphs may be further augmented by referring to
the diagnostic messages and MNOTE messages contained in
Part 4, Appendix C of this book and to the sample program
in Part 4, Appendix D.

Trouble Shooting

Troubles may occur anywhere during the building and gen­
erating of a system for processing forms. Difficulties may
appear at macro assembly time, utility processing time,
during the transmission of data to the 3735, and during the
execution of FD programs. The following discussions ex­
plain some of the conditions that may occur and describe
steps to be taken to correct these situations.

0 0 0 n n n n Space (0000000 indicates space out to end of field before doing next motion­
end control noop)

0 0 1 n n n n Backspace

0 1 0 n n n n Horizontal Tab

0 1 1 n n n n Line Feed (0110000 indicates carrier return)

1 0 0 n n n n New Line

1 0 1 Reserved

1 1 0 Reserved

1 1 1 Reserved

Figure 2-35. The End Control Byte

2-50

Part 3. Logic of the Form Description Utility

Logic Of The Form Description Utility 3-1

Contents

Section 1: Introduction
FD Utility Purpose and Function
System Requirements .
Physical Characteristics of the FD Utility

Characteristics for OS Systems
Characteristics for DOS Systems .

Operational Considerations
Input and Output of the FD Utility
OS Control Information
DOS Control Information .

Section 2: Method of Operation
FD Utility General Operation and Data Descriptions

General Logical Flow
Input and Output Data Descriptions

Input Data
Output Data .

Processing Data Description and Flow
Input Object Module Data .
Object Modules IDFST, IJLFST, IJLFLOAD,

and IJLFUPDT
IDFST
IJLFST, IJLFLOAD, IJLFUPDT

Overlay Segments of the Storage Step
FD Utility Functions

Control Step Functions

Illustrations

Figure Title

3-1 OS FD Utility Logical Flow
3-2 DOS FD Utility Logical Flow
3-3 Card Image Input Format Descriptions
3-4 Input Module Physical Organization
3-5 OS Input CSECT Example .
3-6 DOS Input CSECT Example
3-7 KUPB Format
3-8 Typical Input FD Program .
3-9 OS FD Utility Data Flow
3-10 DOS FD Utility Data Flow
3-11 OS Control Step Method of Operation (3 Parts)
3-12 DOS Control Step Method of Operation (3 Parts)
3-13 SEGTAB Contents
3-14 ENT AB Contents
3-15 OS Storage Step Method of Operation (3 Parts) .
3-16 DOS Storage Step Method of Operation (5 Parts)

3-2

3-3
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3-5

3-7
3-7
3-7
3-7
3-7
3-10
3-10
3-10

3-12
3-12
3-13
3-13
3-14
3-14

Page

3-8
3-9
3-10
3-11
3-11
3-12
3-12
3-13
3-15
3-16
3-18
3-22
3-25
3-25
3-26
3-30

OS Method of Operation
DOS Method of Operation .

Linkage Editor Step Functions
OS Method of Operation
DOS Method of Operation .

Storage Step Functions .
OS Method of Operation
DOS Method of Operation .

Section 3: Program Organization
FD Utility Organization

Control Step Organization .
IDFCT Organization
IJLFCT Organization

Linkage Editor Step Organization .
Storage Step Organization

IDFST Organization
IJLFST Organization
IJLFLOAD Organization
IJLFUPDT Organization

Message Modules IDFMOl and IJLFMOl Organization .
FD Utility Flowcharts

Section 4: Directory.

Section 5: Data Area Layouts .

Section 6: Diagnostic Aids .

Figure Title

3-17 OS FD Utility Auxiliary Storage Residency
3-18 DOS FD Utility Auxiliary Storage Residency
3-19 Module IDFCT Physical Organization
3-20 Module IDFCT Hierarchy of Routines
3-21 Module IJLFCT Physical Organization
3-22 Module IJLFCT Hierarchy of Routines
3-23 Module IDFST Physical Organization
3-24 Module IDFST Hierarchy of Routines
3-25 OS REPLTAB Format .
3-26 Module IJLFST Physical Organization
3-27 Module IJLFST Hierarchy of Routines
3-28 Module IJLFLOAD Physical Organization
3-29 Module IJLFLOAD Hierarchy of Routines
3-30 Module IJLFUPDT Physical Organization
3-31 Module IJLFUPDT Hierarchy of Routines
3-32 Modules IDFMOl and IJLFMOl Organization

3-14
3-17
3-17
3-17
3-21
3-21
3-21
3-21

3-35
3-35
3-35
3-35
3-40
3-43
3-44
3-44
3-47
3-49
3-51
3-54
3-54

3-76

3-77

3-78

Page

3-36
3-36
3-37
3-38
3-41
3-42
3-45
3-46
3-47
3-48
3-48
3-50
3-50
3-52
3-53
3-54

The Form Description (FD) utility is a service program that
prepares unpacked Form Description programs for transmis­
sion to one or more IBM 3735 Programmable Buffered Ter­
minals. The program may be executed under either the
Operating System (OS) or the Disk Operating System (DOS).

FD UTILITY PURPOSE AND FUNCTION

The FD utility is the IBM support program that prepares
the Form Description unpacked programs for transmission
to the 3735 terminals. The utility operates basically the
same under OS and DOS. It reads the output of the Form
Description macro assembly from a card reader or an equiv­
alent sequential input device. It checks the input programs'
integrity and arranges the programs into 476-byte blocks.
The utility then writes the arranged program blocks into a
user-specified data set that is later made available to a user­
written application program.

The aims of the FD utility are accomplished through the
logical organization of the program in three sequential job
steps: Control step, Linkage Editor step, and Storage step.

The Control step verifies the correctness of the object
module input (except that data generated in columns 17-72
of the TXT card images) and generates the necessary Link­
age Editor control statements for the next step.

The Linkage Editor step performs the linkage editing of
the input object module, under control of the control state­
ments generated in the first step. The Linkage Editor step
also includes the object module IDFST (under OS) or
IJLFST (under DOS) in the input. This module then
becomes the root segment of the overlay program executed
in the Storage step.

The third and last step, the Storage step, is the execution
of the linkage edited overlay program. The data originally
generated by the macro assembly is brought into main stor­
age as overlay segments and put out to the user's private
data set in 476-byte blocks. Additionally, an optional JCL
parameter (OS) or control cards (DOS) may be used to
allow the storage of Form Description programs whose
names are the same as those of programs already existing in
the user's data set.

SYSTEM REQUIREMENTS

The main storage required by the FD utility is that required
for the minimum OS or DOS Linkage Editor available to the
system. The main storage required by the utility, exclusive
of the Linkage Editor step, is no more than 1 OK bytes (OS)
or l 2K bytes (DOS). The utility requires the presence of
three 1/0 devices: a card reader or equivalent device, a

Section 1 : Introduction

printer, and a direct access storage device. The utility uses
no more than 10 tracks of 2311 storage, or the equivalent,
for program residence. The user's auxiliary storage require­
ments depend on the number and size of the forms being
described.

To include the FD utility in his operating system, the
user must copy it from the component library on which it
is distributed. This function may require the allocation of
additional space. Before the FD utility is executed, the
system programmer must ensure that suitable input and
output data sets are designated through correct coding of
the job control statements.

PHYSICAL CHARACTERISTICS OF THE FD UTILITY

Characteristics for OS Systems

The FD utility program contains three modules: IDFCT,
IDFST, and IDFMO 1. These modules may reside in either a
private (user) job/step library or the system link library
(SYS l .LINKLIB). The module ID FCT is executed in the
first, or Control, step. The module IDFST is executed in
the third, or Storage, step. However, it must be linkage
edited with the output of the first step before it can be
executed as the GO module. The linkage editing is per­
formed during the second, or Linkage Editor, step of the
utility. The linkage editing is necessary because IDFST is
the root segment of an overlay program whose overlay seg­
ments are available only at the end of the first step. The
message module, IDFMOl, contains the messages that are
written out during the execution of the first and third steps.
These messages may be written to either the system printer
or a system console.

The module that is loaded and executed in the third step,
that is, IDFST and the linkage edited overlay segments, is an
overlay program. Its function is to write the data that is
contained in the overlay segments into the user's partitioned
data set. After the module has been executed, it serves no
further purpose. Therefore, it should be regarded as a
temporary data set and should be deleted at the end of the
third step.

Characteristics for DOS Systems

The FD utility program contains five relocatable modules:
IJLFCT, IJLFST, IJLFLOAD, IJLFUPDT, and IJLFMO 1.
IJLFCT and IJLFMOl reside in a core image library;
IJLFST, IJLFLOAD, and IJLFUPDT may reside in either
a private (user) relocatable library or the system relocatable

Logic Of The Form Description Utility 3-3

library. The module IJLFCT, which is executed in the first,
or Control, step, must be linkage edited during system gen­
eration. The modules IJLFST, IJLFLOAD, and IJLFUPDT
are executed in the third, or Storage, step. However, they
must be linkage edited with the output of the first step be­
fore they can be executed. This linkage editing is performed
during the second, or Lirikage Editor, step of the utility.
The linkage editing is necessary because IJLFST is the root
phase of an overlay program whose overlay phases are avail­
able only at the end of the first step; IJLFST loads either
IJLFWAD or IJLFUPDT to process these overlay phases.
The message module, IJLFMOl, contains the messages that
are written out to the system printer during the execution
of the first and third steps. IJLFMO 1 contains no re­
locatable code; it must be linkage edited during system
generation to allow its subsequent loading by IJLFCT,
IJLFLOAD, and IJLFUPDT.

The modules that are loaded and executed in the third
step, that is, IJLFST, IJLFLOAD, IJLFUPDT, and the link­
age edited overlay segments, comprise an overlay program.
The function of this overlay program is to write the data
that is contained in its overlay phases into the user's indexed
sequential data set. Since there are no external inputs to
this module, it is a temporary data set and is effectively
deleted at the end of the third step. The Linkage Editor
step places this temporary data set in the unused core image
library space, but does not catalog it. The user must ensure
that this library space is adequate.

OPERATIONAL CONSIDERATIONS

The FD utility is scheduled through the job input stream
and encompasses three sequential job steps, as previously
discussed. There is one optional feature: in OS, the
REPLACE parameter; in DOS, RPLACE control statements.
These options are discussed fully in Part 3, Section 2,
"Method of Operation." The FD utility program creates
one or more executable Form Description unpacked pro­
grams (FD programs) from the one or more object modules
that are produced by the assembly of the Form Description
macros (FD macros). The utility also places the FD pro­
grams in a user-defined partitioned data set (under OS) or
indexed sequential data set (under DOS), which serves the
user as a library of FD programs. The use of the FD util-
ity involves the Linkage Editor, since the object modules
produced by the FD macros contain backward references
resulting from ORG statements.

If the utility encounters an uncorrectable error, the
action it takes depends upon which step of the three step
sequence is being executed. The action may be either the
immediate termination of the program or, if the Storage
step is executing, the deletion of a partially created
sequence of FD programs from the user's data set, then
termination. In both cases, however, a message explaining

3-4

the action and its cause is written to either the system
printer or the system console. The utility produces a diag­
nostic listing at the end of each program step. The listing
produced by the last step includes the name of every FD
program that was added to, deleted from, or not added to
the user's data set.

The utility's response to environmental errors arising
from improper input, such as a card missing or out of
sequence, is to write a message to the Control step diagnos­
tic listing, print the listing, then terminate. Any input fol­
lowing the erroneous card is not processed. The response to
job control errors, such as the insufficient allocation of
space in a data set, is to terminate processing and to note
the error condition in the diagnostic listing. The response
to implementation errors, such as errors in system control
blocks, is those error recovery and termination options pro­
vided by OS and DOS.

Input and Output of the FD Utility

The object modules produced by the FD macros are the
principal input to the FD utility program. These modules
were designed to make the input as self-describing as pos­
sible. That is, the records themselves contain all the infor­
mation needed for their processing in the three steps of the
FD utility. The physical organization of these object mod­
ules is 80-byte card images. Two levels of logical organiza­
tion exist within the physical organization of the object
modules. The primary level of logical organization is by
control section (CSECT); the secondary level is by keyed
Form Description unpacked program block (KUPB).
Each CSECT consists of from one to six KUPBs (under OS)
or from one to three KUPBs (under DOS), plus an end-of­
assembly indicator that indicates the presence or absence of
additional CSECTs. Each KUPB is a 486-byte record which
is comprised of four subfields: name, count, data, and end­
of-form. The physical descriptions ofCSECTs and KUPBs
are contained in Part 3, Section 2, "Method of Operation."

The principal output data set of the FD utility is the
user's library of FD programs. This library is a partitioned
data set (under OS) or an indexed sequential data set (under
DOS) whose members are the individual FD programs.
These members are known by either the name used in the
name field of the FD FORM macro or by the temporary
name that the FD Utility assigns if FD program replacement
is not specified in the user's JCL. The output data set is
described in more detail in the section entitled "Method of
Operation."

OS Control Information

Execution of the FD utility program is sequential: the
Control step is executed first; the Linkage Editor step, sec­
ond; and the GO module (Storage step), third and last. The
control is mediated through the OS Job, Task, and Data

Management facilities. In particular, the Job Control facil­
ities allow the passing of intermediate data sets between job
steps. Therefore, correctly coded job control statements are
imperative to the correct functioning of the FD utility
program.

Because the control is mediated by OS Job Management,
the FD utility may be executed one step at a time, or even
as steps following an assembly of the FD macros. Since
each step in the program sets a nonzero return code if it
detects an error condition, cataloged procedures that include
appropriate COND keyword guards may be designed to suit
the user's program integrity requirements.

The data flow among the program units includes a variety
of data types:

• The input object module data

• The object module IDFST

• The overlay segments of the GO module

The physical descriptions of these data types and a discus­
sion of the processing performed upon them by the FD

utility are contained in Part 3, Section 2, "Method of
Operation."

DOS Control Information

Execution of the FD utility program is sequential: the Con­
trol step is executed first; the Linkage Editor step, second;
and the Storage step, third and last. The control is mediated

through the DOS Job Control and Data Management facili­
ties. In particular, the Job Control facilities allow the pass­
ing of intermediate data sets by planned changes of device
assignments. For example, SYSPCH, an output data set of
the Control step, becomes (through Job Control interven­
tion) SYSLNK, an input data set to the Linkage Editor step.
Therefore, correctly coded job control statements are im­
perative to the correct functioning of the FD utility.

Because the control is mediated by the DOS Job Control
facility, the FD utility may be executed one step at a time
(one step per job). However, it may also be executed as
sequential job steps following an assembly of the FD mac­
ros. In this case, since each step in the program would be
executed unconditionally, even if errors were encountered
in previous steps, the user should insert a PAUSE statement
after each step. He should then allow the next step to pro­
ceed only after he validates the correctness of the previous
step. Furthermore, to avoid processing delays, the user
should perform the FD macro assembly separately from the
execution of the FD utility.

The data flow among the program units includes a vari­
ety of data types:

• The input object module data

• The object modules IJLFST, IJLFLOAD, and IJLFUPDT

• The overlay segments of the Storage step

The physical descriptions of these data types and a discus­
sion of the processing performed upon them by the FD
utility are contained in Part 3, Section 2, "Method of
Operation."

Logic Of The Form Description Utility 3-5

FD UTILITY GENERAL OPERATION AND DATA
DESCRIPTIONS

General Logical Flow

The assembly of the FD macros produces one or more card­
image object modules that contain FD programs. By them­
selves, these modules are not executable in a 3735 terminal;
they must be (1) validated, (2) linkage edited, (3) arranged
into a usable format, and (4) placed in a user-defined FD
program library. The purpose of the FD utility is to per­
form these four major tasks. To accomplish this purpose,
the utility is divided into three sequential job steps: Con­
trol, Linkage Editor, and Storage.

The Control step, which is executed first, performs the
following functions:

• Validates the input data

• Creates Linkage Editor control statements

• Writes the validated input data and control statements to
a utility data set

• Writes a diagnostic listing of the Control step results to an
output data set

Next, the Linkage Editor step, which is the second job step
executed, performs four more functions:

• Creates the overlay program that is executed in the
Storage step

• Resolves backward origins and, under OS, resolves a V­
type address constant

• Writes the newly created overlay program to a tempo­
rary library

• Writes a diagnostic listing of the Linkage Editor step
results to an output data set

Finally, the Storage step, the third job step to be executed,
performs the following functions:

• Loads the overlay segments from the temporary library
where the Linkage Editor step placed them

• Creates new or replacement members (FD programs) and
stores them in the user's FD program library

• Writes a diagnostic listing of the Storage step results to an
output data set

Of the four major tasks mentioned previously, the Control
step accomplishes the first one; the Linkage Editor step, the
second; and the Storage step, the last two. Figures 3-1 and

Section 2: Method of Operation

3-2 represent the logical flow of the FD utility operating
under OS and DOS, respectively.

Input and Output Data Descriptions

Input Data

The object modules produced by the FD macros are the
principal input to the FD utility program. These modules
were designed to make the input as self-describing as pos­
sible. That is, the records themselves contain all the
information needed for their processing in the three steps of
the FD Utility. The physical organization of these object
modules is as 80-byte card images. Each module contains
three record types: ESD, TXT, and END. Figure 3-3
describes the format of each type. Figure 3-4 is a graphic
representation of a module's physical organization.

Within the physical organization of the object modules,
there are two levels of logical organization. The primary
level of logical organization is by control section (CSECT);
the secondary level is by keyed Form Description unpacked
program block (KUPB).

Under OS, each CSECT is (6*486) +4=2920 bytes long,
except the last one. The last CSECT is (n*486) +4 bytes
long, where n is an integer with a value of 1, 2, 3, 4, 5, or
6. Under DOS, each CSECT is (3*486) +6=1464 bytes long,
except the last one. The last CSECT is (n*486) +6 bytes
long, where n is an integer with a value of 1, 2, or 3. This
means that a CSECT consists of from one to six or one to
three KUPBs plus a four-byte or six-byte end-of-assembly
indicator under OS and DOS, respectively. The end-of­
assembly indicator is used to indicate the presence or
absence of additional CSECTs. The indicator is set to all
zeros for all but the last CSECT, for which it is set to all
ones. In addition to the length restrictions of CSECTs,
there are also name restrictions. Under OS, the CSECT
names are in the sequence IDFlOOO, IDFlOOl, IDF1002,
etc. Under DOS, the CSECT names are in the sequence
IJLFlOOO, IJLFlOOl, IJLF1002, etc. Figures 3-5 and 3-6
illustrate the composition of OS and DOS CSECTs.

The secondary level of logical organization within the
input object modules is by KUPB. Each KUPB consists of
a 10-byte key field and a 476-byte unpacked program
block. Within the key field are two subfields: (1) an eight­
byte name subfield and (2) a two-byte count subfield.
Within the unpacked program block field are two more sub­
fields: (3) a 470-byte data subfield and (4) a six-byte end­
of-form subfield.

Logic Of The Form Description Utility 3-7

n
Br::=>
(Assembled object
module of FD
macro instructions)

Control Step:

• Checks input data
and creates Linkage
Editor control statements.

SYS DD

~===> LINKAGE EDITOR:

• Creates the overlay
program executed in the
next step.

• Resolves backward

• Writes output to
SYSUT1. .---------> SYSUT1/ ~

SYSLIN ~

origin and V-type address
references .

e Writes the overlay (GO)
program out to SYSLMOD • Writes a diagnostic

listing of the Control
step results to SYSPRINT.

.__ ______ _

Implementation:

c==> Evs:1Nj

• User-selected access
method (BTAM or TCAM)
program executed to
transmit stored programs
to terminals.

• User application programs
process data gathered at
terminals.

• Writes a diagnostic
listing of the linkage 0 Editor step results
out to SYSPRINT.

UT1 ¢::::::> L---..------
~

SYSLIB
(User-defined
FD program library

Member

Member

Storage Step:

• loads the overlay
segments.

• Creates new or
replacement members for
the user's I ibrary.

• Writes a diagnostic
listing of results to
SYSPRINT.

~~ ~ L------------

r

ti (Assembled object
~ modules of FD
'T1 macro instructions)
ti
c::
g
~
t"'
0
'!9.
" e.
'T1
0
ii!

Implementation:

• User-written
application
program executed
to transmit FD
programs to the
terminals.

• User-written
application
programs process
the data that is
gathered at the
terminals.

Control Step: DOS Job Control
program i nterven­
tion:

• Checks input data and
creates Linkage Edi tor
control statements.

• Writes output to SYSPCH. '-------> SYSPCH/ ~
SYSIPT ~

Reads the SYS I PT
file into the
SYSLNK file for
input to the
Linkage Editor.

• Writes a diagnostic
listing of the Control
step results to SYSLST'

SYSOOO
=IJFDLIB

User-defined
FD program library

Member

Member

Storage Step:

• Loads the overlay
segments.

..... _,,

A Job Control
statement is
used to redefine
the SYSPCH file
as SYSIPT.

• Creates new or replacement
members for the user's
library and writes them out
to the library.

• Writes a diagnostic listing
of the Storage step results r::=-i out to SYSLST.

~<~----' L-----------

Core Image Library

r

Overlay
...._Program

\,,... ..,,.,

Relocatable
Library

r

.......
IJLFST _,,,

..!JLFLOA;!.

IJLFUPDT
..... ..,,.,

Linkage Editor Step:

• Creates the overlay
program executed in the
next step.

• Resolves backward
origin instructions.

• Writes the overlay
program out to a
core image library.

• Writes a diagnostic § listing of the Linkage
~ Editor step results

svsoo1 ~ ~~-o_u_t-to~s-v_s_L_s_T_·~~~-

CARD
TYPE COLUMNS

ESD

TXT

END

2-4
5-10
11-12

13-14
15-16

17-64

65-72
73-76
77-80

1

2-4
5
6-8

9-10
11-12

13-14
15-16
17-72
73-76
77-80

1

2-4
5-39
40-62

63-72
73-76
77-80

CONTENTS

12-2-9 punch
Card type, which should be ESD
Blank
Variable field count. The number of
bytes of information in the variable
field (columns 17-64)
Blank
ESDID of the first CSECT definition
in the variable field
Variable field. From one to three
ESD items, each in the following
format:
8 bytes - CSECT name, left justified

and right padded with
blanks, as needed

1 byte - ESD type code, which
should be a hexadecimal
00

3 bytes - CSECT address
1 byte - Blank
3 bytes - CSECT length
Blank
Deck ID
Card sequence number

12-2-9 punch
Card type, which should be TXT
Blank
Relative address of the first instruc­
tion on the card
Blank
Byte count. The number of bytes in
the information field (columns 17-72)
Blank
ESDID
56-byte information field
Deck ID
Card sequence number

12-2-9 punch
Card type, which should be END
Blank

Version of the assembler f
and the date and time optional
of the assembly
Blank
Deck ID
Card sequence number

Figure 3-3. Card Image Input Format Descriptions

The contents of the four subfields are as follows:

1. The name subfield contains the form name, left justified
and padded to the right with blanks, as needed. This is
the name by which the FD program will be known in the
user's FD program library.

2. The count subfield commences with a binary zero and is
incremented by one in each KUPB within a single FD
program. However, if there was an error in the assembly
of the program, the first subfield contains a binary -1. If
the assembled program is incomplete, this subfield con­
tains a biaary -2.

3-10

3. The data subfield contains the actual instructions that are
sent to the 3735 to control the terminal's actions during
forms creation and data capture.

4. The data in the six-byte end-of-form subfield is also sent
to the 3735. This subfield is set to all zeros in every
KUPB except the last one in an FD program. In the last
KUPB, it is set to all ones to indicate the end of the FD
program.

Figure 3-7 illustrates the format of a KUPB. Figure 3-8
shows a complete FD program as it would appear in the
input data set.

Output Data

The principal output data set of the FD utility is the user's
library of FD programs. This library is a partitioned data set
(under OS) or an indexed sequential data set (under DOS)
whose members are the individual FD programs. The mem­
bers of this library may be stored under either of the follow­
ing name types:

• The name used in the name field of the FDFORM macro,
that is, the high-order eight bytes of the key field in all
the KUPBs of a particular program.

• The temporary name assigned by the utility if FD pro­
gram replacement is not specified in the user's JCL or
control cards.

Temporary names are chosen from the lowest available
name in the sequence IDFTEMPO through IDFTEMP9
(under OS) or IJLFTMOO through IJLFTM09 (under DOS).
In any case, the FD program names are listed in the diagnos­
tic listing produced in the Storage step. Any storage of a
program under a temporary name is noted in this listing.
Standard system facilities may be used later to rename or
delete the programs stored under temporary names.

Processing Data Description and Flow

Data flow among the program units includes a variety of
data types:

• The input object module data

• The object module IDFST (OS) or IJLFST, IJLFLOAD,
and IJLFUPDT (DOS)

• The overlay segments of the Storage step

The following paragraphs describe the changes these data
types undergo during the execution of the FD utility.

Input Object Module Data

The input object module data undergoes changes during
processing until its incorporation in the executable module
of the Storage step. Initially, the data consists of 80-byte
card images representing an object module deck. These
card images are in the form of ESD, TXT, and END records.
The Control step reads the individual card images into and
out of main storage during validation, generates Linkage

/
/END

TXTCARDS

~XT

ESD CARDS

~SD

2 4

Figure 3-4. Input Module Physical Organization

l-- 486 BYTES -
KUPB

KUPB

KUPB

KUPB

KUPB

KUPB

END-OF-ASSEMBLY J
INDICATOR

t---- 4 BYTES --..j
NOTE: The last input CSECT may have six or less KUPBs and the

four-byte end-of-assembly indicator is set to all ones.

Figure 3-5. OS Input CSECT Example

DECK SEQ.
ID NO.

I
DECK SEQ.

ID NO.

1----"

I
DECK SEQ.

ID NO.

1-----'

73 76 77 80

~J
-po

Logic Of The Form Description Utility 3-11

l 486 BYTES

KUPB

KUPB

KUPB

END-OF-ASSEMBLY J INDICATOR r--- 6 BYTES~
NOTE: The last input CSECT may have three or less KUPBs and the

six-byte end-of-assembly indicator is set to all ones.

Figure 3-6. DOS Input CSECT Example

Bytes

J

1--0~~~~~~~~~~~-7-+-8~~-9+-1_0~~~~~~~-1)_~~~~~~~4_7_9-+-4_8_0~~~~~~~48_5--1
\.

NAME Subfield
(Sarne within each
unpacked program)

COUNT DATA

Key Field

Figure 3-7. KUPB Format

Editor control statements, and writes the card images and
control statements to a utility file in auxiliary storage. The
Linkage Editor, using the control statements generated in
the Control step, transforms the card images into segments
of an overlay program; each CSECT becomes one overlay
segment. In the process, the card image input data becomes
Linkage Editor output records. The ESD, deck identifica--tion, and sequence information that was validated in the
Control step is removed during linkage editing. The TXT
information, that is, the data in columns 17-72 of the TXT
cards, remains unchanged, except that backward origins are
resolved. The result of this processing is that the KUPBs
retain the structure shown in Figure 3-7, but they become
parts of overlay segments that may be loaded into main
storage. Under OS, the overlay segments possess segment
numbers 2, 3, 4 ... n; the root segment (IDFST) is num­
bered 1. Under DOS, the segments' phase names are the
same as the input CSECTs' names. Besides KUPBs, the
only other data in each overlay segment is the four-byte
or six-byte end-of-assembly indicator.

' \
l

SUBFIELD

Form Description Unpacked
Program Block

End-of­
Form
Subfield
(3H'O')

Object Modules IDFST, /JLFST, /JLFLOAD, and
/JLFUPDT

IDFST: As previously stated, the object module IDFST,
which is used in the OS version of the FD utility, is not
executable until the Linkage Editor step has successfully
finished executing. The Linkage Editor creates two tables
for the module and resolves one V-type address constant
contained in it. This V-type constant is a pointer to the
oad addr of the first CSECT generated by the FD mac­

ros, that is, IDF 1000. The two tables created are the seg­
ment table, SEGTAB, and the entry table, ENTAB. The
Linkage Editor places the segment table at the start of
IDFST and the entry table at its end, thus producing an
executable load module. The load module IDFST and the
linkage-edited CSECTs of the original input data, each
of which is an individual segment of an overlay program,
are written into a temporary load module library as a
single overlay program. This program, which still bears

'-- :.V(\O F 'v.:;(J1
! I I

'I. \,,; - "' " " ., t-1,
\'

.+
f' ,,.,

3-12 ,,, ' I

NAME 0

NAME 1

NAME 2

NAME 3

NAME 4

NAME 5

NAME 6

NAME 7

NAME 8

rV r-V rU
~ ~ ry

NAME n-1

NAME n

Figure 3-8. Typical Input FD Program

the name IDFST, is executed in the Storage step as the
GO module.

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

For more detailed information about the resolution of
the V-type address constant and the creation of the segment
and entry tables, refer to the subsection of this section enti­
tled "Linkage Editor Step Functions."

JJLFST, JJLFLOAD, and JJLFUPDT: As previously stated,
the object modules IJLFST, IJLFLOAD, and IJLFUPDT,
which are used in the DOS version of the FD utility, are not
executable until the Linkage Editor step has successfully
finished executing. The Linkage Editor creates the phases
IJLFST, IJLFLOAD, and IJLFUPDT from the modules.
The phases IJLFST, IJLFLOAD and IJLFUPDT and the
previously linkage edited CSECTs of the input data, each
of which is an individual phase of an overlay program, are
written into auxiliary storage as a single overlay program.
This program is executed in the Storage step.

Overlay Segments of the Storage Step

Each overlay segment of the Storage step consists of KUPBs
and the end-of-assembly indicator. The segments are called
into main storage by the issuing of the SEGWT supervisor

3H'O'

3H'O'

3H'O'

3H'O'

3H'O'

3H'O'

3H'O'

3H'O'

3H'O'

rU rU
""'tJ '""I

3H'O'

3H'1'

call (OS) or the LOAD macro (DOS). Each segment is
brought into main storage when the processing of the pre­
vious segment is complete, provided that the end-of­
assembly indicator shows that another valid segment is
available. The segment loading occurs during the larger pro­
cess of writing the FD programs to the user's library, but is
independent from it.

The KUPBs within each segment are examined serially.
The data portions of the KUPBs, that is, bytes 10-485, are
successively written to the user's library until the end-of­
form subfield indicates that the last KUPB in the program
has been encountered. Under OS, the next Storage step
function is to issue a STOW macro; under DOS, this action
is not necessary. If the return from the STOW indicates
that the FD program is the duplicate of an FD program that
already exists in the user's library, the utility may construct
and consult a replacement table. (Under DOS, this replace­
ment table is always constructed before the program
attempts to process any KUPBs.) The purpose of this con­
sultation is to determine whether the new FD program
should replace the older program in the user's library. If
the program name is not found in the replacement table or
if the user did not employ the replacement parameter, the

Logic Of The Form Description Utility 3-13

utility attempts to store the new FD program under a tem­
porary name. The Storage step resumes processing with
the next KUPB, if one is available. Otherwise, it examines
the end-of-assembly indicator to determine whether there
is another valid segment to be processed.

The flow of data during the execution of the FD utility
is shown in Figure 3-9 for OS and Figure 3-10 for DOS.

FD UTILITY FUNCTIONS

Control Step Functions

The primary tasks of the Control step are (1) the validation
of the input records produced by the FD macros and (2)
the generation of Linkage Editor control statements and the
concatenation of these statements with the input records.
To accomplish these tasks, the Control step performs sev­
eral interrelated functions during its execution. These
functions are described in the following paragraphs.

The first function of the Control step is the opening of
the system input and output files and the utility file that
receives the validated input records. Under OS, the program
then determines whether these three files were opened suc­
cessfully. If the file openings were successful, the program
proceeds to the validation of the input records. Under DOS,
this checking of the file openings is performed by the operat­
ing system.

There are three input record types: ESD, TXT, and
END. Although the functions of these records are different,
as are the fields within each one, two fields are common to
all three types. These fields are (1) deck ID, columns 73-76,
and (2) card sequence number, columns 77-80. The Control
step validates these fields in all three record types; for TXT
and END records, these are the only fields validated. In
addition to validating these fields, the program also ensures
that the record types are in the proper order. That is, an
ESD record must be followed by another ESD record or
TXT record; a TXT record must be followed by another
TXT record or an END record; an END record must be fol­
lowed by an ESD record (indicating that another FD pro­
gram module follows) or an end-of-file indication. Other
than the restrictions imposed by the system assembler, there
are no limitations on the number of ESD and TXT records
allowed in a single FD program module. However, only one
END record per module is allowed.

As previously stated only the deck ID and card sequence
number fields of the TXT and END records are validated.
On the other hand, the Control step validates the ESD
records more rigorously. In any ESD record, there are from
one to three ESD items specified in the 'variable' field, col­
umns 17-64; only the last ESD record within a module may
contain less than three ESD items. The fields that the Con­
trol step validates in each ESD item are as follows:

•Name
The eight-byte name of the external symbol, which is the
name of a CSECT generated by the FD macros. For the

3-14

first ESD item of an input module, this field must con­
tain IDFlOOO (OS) or IJLFlOOO (DOS). The value of
each name field in succeeding ESD items must be one
greater than the value of the name field in the immedi­
ately preceding ESD item. If multiple input modules
are present, the Control step renames the CSECTs of
these modules so that the sequential progression is
maintained in the output data set.

•Type
The one-byte ESD type code, which should be a hexadec­
imal 00.

• Address
The three-byte address of the external symbol (CSECT)
within the input module. For the first ESD item of
an input module, this field must contain 0. The value
of each address field in succeeding ESD items must be
a progressive multiple of 2920 (OS) or 1464 (DOS).

• Length
The three-byte length field of the external symbol (CSECT).
Under OS, this value should be 2920 in all ESD items
except the last one in a module. The value of the length
field in the last ESD item may be 490, 976, 1462, 1948,
2434, or 2920. Under DOS, the value should be 1464 in all
ESD items except the last one in a module. The value of the
length field in the last ESD item may be 492, 978, or
1464.

The Control step validates these fields in each ESD item.
After it validates an ESD item, it uses the 'variable field
count' field to determine the presence or absence of addi­
tional ESD items. If no more items are available, the pro­
gram reads in the next record which may be either another
ESD record or a TXT record.

The OS and DOS versions of the FD utility operate dif­
ferently to create the necessary Linkage Editor control
statements. These different methods of operation are
described in the following paragraphs.

OS Method of Operation

In validating the input, the OS Control step reads a single
card image into main storage, validates that card image, then
writes it out to the utility file. At no time during Control
step processing are there two or more card images in main
storage simultaneously. When all of the records in the
entire input file have been validated and written out, the
Control step creates and writes out Linkage Editor control
statements. The purpose of these control statements is to
provide the Linkage Editor, which is called into execution
in the next job step, with the information necessary to pro­
duce an overlay program. The control statements are writ­
ten to the same utility file as the validated input records.
The first control statement created and written out is an
INCLUDE statement. Its purpose is to define the object
module that will become the root segment of the overlay
program. This module is IDFST. The Control step also

SYS DD

IDFST

SVSIN Q t:J Card image object module data

SVSUT1

Control
Step

1~----1--Validated ESD cards

-----1--Validated TXT cards

1~---~1-- Validated END card

•------1--Linkage Editor control statements

Linkage
Editor
Step

SVSLMOD '.QQ

USER LIB

Storage
Step

Member A

Member B

Member C

etc.

The key fields of the KUPBs have been
removed and the FD programs are ready
to be sent to the terminals.

Figure 3-9. OS FD Utility Data Flow

Overlay Program

IDFST Root
Segment

Logic Of The Form Description Utility 3-15

SYSIPT

SYSPCH/
SYSIPT

SYSLNK

Relocatable Library

IJLFST

IJLFLOAD

IJLFUPDT

SYS001

Utility
Work
Area

Core
Image

Library

IJLFDLIB

QG Card image object module data

1-------~- Linkage Editor control statements

Validated ESD cards

DOS
Job

Control

Linkage
Editor
Step

Member A

Member B

Member C

etc.

Validated TXT cards

Validated END card

Linkage Editor control statements

Validated ESD cards

Validated TXT cards

Validated END card

Overlay Program

IJLFST/
IJLFLOAD/
IJLFUPDT

Root
Segment

The key fields of the KUPBs have been used as the record keys
and the FD programs are ready to be sent to the terminals.

Figure 3-10. DOS FD Utility Data Flow

3-16

creates and writes out one OVERLAY statement and one
INSERT statement for each ESD item (input CSECT) that
was validated. The purpose of these statements is to cause
the Linkage Editor to transform each input CSECT into a
segment of an overlay program. When all the necessary con­
trol statements have been created and written out, the
Control step writes a message to the system printer stating
that the step has been completed successfully, then
terminates.

If a data error is encountered during the execution of the
Control step, the step itself writes an error message out to
the system printer, then continues processing with the next
available module. Figure 3-11 represents the OS Control
step's method of operation.

DOS Method of Operation

In validating the input, the DOS Control step reads a single
ESD card image into main storage and validates that card
image, but it does not write out the card image. Instead, it
continues to read and validate the ESD records until the
first TXT card is encountered. At that point, the program
creates and writes out the necessary Linkage Editor control
statements. Next, it recreates and writes out the ESD rec­
ords, then reads in and writes out the remaining TXT and
END records of the input module. If multiple input mod­
ules are present, the entire process is repe'1ted for each
module.

The purpose of the control statements is to provide the
Linkage Editor, which is called into execution in the next
job step, with the information necessary to produce an over­
lay program. The control statements are written to the
same file as the validated input records. The first control
statements created and written out are PHASE and
INCLUDE statements for the modules IJLFST, IJLFLOAD,
and IJLFUPDT, which are the processing phases of the
overlay program executed in the Storage step. Next, the
program writes out a PHASE and an INCLUDE statement
for each input CSECT. The purpose of these statements is
to cause the Linkage Editor to transform each input CSECT
into an overlay phase. If multiple input modules are pres­
ent, the phase names inserted in the PHASE statements for
the CSECTs of these modules are changed to maintain a
sequential progression in the output file.

When all the necessary control statements have been cre­
ated and written out, the Control step writes a message to
the system printer stating that the step has been completed
successfully, then terminates. If an error is encountered in
the input to the Control step, the step itself writes an error
message out to the system printer, then terminates. Figure
3-12 represents the DOS Control step's method of opera­
tion.

Linkage Editor Step Functions

The primary task of the Linkage Editor step is the creation
of an executable overlay program from the object module

IDFST (OS) or IJLFST (DOS) and the validated input data.
While the methods of operation used to accomplish this task
are similar in the OS and DOS versions of the Linkage
Editor, enough differences exist to merit a separate discus­
sion of each method. These methods are described in the
following paragraphs.

OS Method of Operation

The first function of the Linkage Editor step is to read the
input records from SYS LIN (formerly SYSUTl) and place
them in a work file. When all of the object module records
have been read, the Linkage Editor encounters the first of
the control statements that were generated by the Control
step. The first statement, the INCLUDE statement, causes
the Linkage Editor to fetch the object module IDFST from
either SYS l .LINKLIB or a user's module library and place
it in the work file.

The next set of control statements read in, the OVER­
LAY and INSERT statements, causes the Linkage Editor
to perform the following functions:

• Transform the CSECTs, one by one, into segments of an
overlay program and assign segment numbers

• Resolve backward origins within the CSECTs

• Construct a segment table at the front and an entry table
at the rear of IDFST to produce the root segment of the
overlay program executed in the Storage step

The segment table, SEGTAB, consists of a 28-byte head­
ing plus n four-byte entries, where n is the number of
overlay segments that were created from an equal number
of input CSECTs. The purpose of the segment table is to
contain information about the relationship of the segments
in the overlay program. Also, during the execution of the
overlay program, this table indicates which segment are
either in main storage or waiting to be loaded. Figure 3-13
illustrates the contents of the segment table.

The entry table, ENT AB, consists of two 12-byte entries.
The first entry is created in response to a four-byte V-type
address constant that is contained within IDFST. The
second entry is the standard last ENT AB en try, which is
used for linkage to the Overlay Supervisor. Figure 3-14
illustrates the contents of the entry table. For more infor­
mation about the generation and composition of the seg­
ment and entry tables, refer to the IBM System/360 Opera­
ting System Linkage Editor Program Logic Manual, order
number GY28-6610.

The four-byte V-type address constant mentioned in the
preceeding paragraph is a pointer to the load address of the
first CSECT generated by the FD macros, that is, of
IDF 1000. It is resolved by setting its low-order three bytes
to the address of the entry table. The high-order byte is set
to a hexadecimal 02, which is the segment number of the
segment containing the single CSECT IDFlOOO.

When the Linkage Editor has finished transforming all of
the input CSECTs into overlay segments, it writes out the

Logic Of The Form Description Utility 3-17

I.fl 'T1 INPUT PROCESS OUTPUT o;;·
co c: ..

CD

't' 1 Open files and check opening.
:--'

SYSIN 0
ESD CARD PROCESSING v.i

n
0
::l
:::- ESD 2 Read in ESD card from SYSIN.* £.
v.i Cards ...
CD

"O

=::: 3 Validate ESD card.* CD
SYSUT1 5'

0
p.

0

4 Put out ESD card to SYSUT1. * ESD Card
Images 0

"O
CD ..
~ (Repeat steps 2 through 4 until all c;·
::l ESD cards are validated.) ':ti
~
0
"' TXT Card '-'

TXT CARD PROCESSING Images

TXT 5 Read in TXT card from SYSIN.* Cards

6 Put out TXT card to SYSUT1. *

(Repeat steps 5 and 6 until all TXT
cards are processed.)

Y"' "1'

c END
Card

11
END CARD PROCESSING

7 Read in END card from SYSIN.*

8 Put out END card to SYSUT1. *

9 Read in next record.*

10 Is it an end-of-file indicator?

YES NO-Return to step 3.

CONTROL CARD CREATION

11 Create Linkage Editor Control
Statement.

12 Write the Linkage Editor control
statement out to SYSUT1. *

(Repeat steps 11 and 12 until all of
the necessary control statements are
created and written out.)

13 Write out completion message to
SYSPRINT.*

14 Exit to the operating system.

*If an error is encountered in an input card field, the program writes an
error message out to SYSPRINT. If an unrecoverable 1/0 error is encoun­
tered, the program writes an error message out to SYSPR I NT, if that file
is available, or to the operator console, then terminates.

TXT
Card
Images

END Card
Image

Linkage Editor
Control

Statements

Description Routine Chart

1 Opens and checks the opening of the SY SIN, SY SPRINT, CNTLINIT OAl
and SYS UT 1 files.

2 Reads the ESD card into the input area, OBJCARD, and GETCHECK OA4
validates the deck ID, card sequence number, and
card type fields.

3 Validates the name, type, address, and length fields ESDPROC OAl
of every ESD item on the card.

4 Puts out the card to the sequential file SYSUTI. PUTCARD OA3

5 Reads the TXT card into the input area, OBJCARD, and GETCHECK OA4
validates the deck ID, card sequence number, and card
type fields.

6 Puts out the card to the sequential file SYSUTI. PUT CARD OA3

7 Reads the END card into the input area, OBJCARD, and GETCHECK OA4
validates the deck ID, card sequence number, and
card type fields.

8 Puts out the card to the sequential file SYSUTI. PUTCARD OA3

9 Reads in the next record, which should be an GETCHECK OA4
end-of-file indicator or the first ESD card of the
next input module.

10 • YES - Transfers control to step 11. TXTPROC OA3
• NO - Returns control to ESDPROC for the GETCHECK OA4

processing of the new object module.

11 Creates the necessary INCLUDE control statement for CNTLSTMT OA3
IDFST and the OVERLAY and INSERT statements for the
input CSECTs.

12 Puts out the statement to the sequential file SYSUTI.

13 Informs the user of the successful completion of the
Control step.

14 Closes the SYSIN, SYSPRINT, and SYSUTI files and
returns control to the operating system.

Figure 3-11. OS Control Step Method of Operation (Part 3 of 3)

entire overlay program (GO module) to the output module
library SYSLMOD or to a user-defined output module
library. Next, it writes a message to SYSPRINT stating that
the step has been completed sucessfully, then terminates.

Note: The proper functioning of the GO module
executed in the Storage step depends upon the construc­
tion of the segment and entry tables in accordance with

3-20

PUTCARD OA3

MGSFAN/ OA4
DIAGWTR OA4

CNTLEND OA3

the current Linkage Editor practices. If the format of
either of these tables is altered by a subsequent release of
the Operating System, code changes in the module
IDFST may be necessary. If the table formats are altered
and the code changes are made, the new version of the
FD utility will not execute properly under an older
release of the Operating System.

DOS Method of Operation

The first function of the DOS Linkage Editor is to read the
control statements and validated object module records in
from SYSLNK and place them in the SYSOOl work file.
The Linkage Editor begins processing the control statements
as encountered. The first six control statements are the
PHASE and INCLUDE statements for the object modules
IJLFST, IJLFLOAD, and IJLFUPDT. These statements
cause the Linkage Editor to fetch the object modules from a
relocatable library and place them in the work file. The
next control statements are the PHASE and INCLUDE
statements for the following input CSECTs. These state­
ments cause the Linkage Editor to transform the CSECTs,
one by one, into overlay phases and to resolve backward
origins within the CSECTs. When the Linkage Editor has
finished processing the control statements, it writes out the
entrie overlay program to the core image library. Finally,
it writes out a storage map to SYSLST, stating that the step
has been completed successfully, then terminates.

Storage Step Functions

The primary tasks of the Storage step are to arrange the FD
programs into a usable format and to place them in a user­
defined FD program library. Although the purposes of the
Storage step are similar in the OS and DOS versions of the
utility, the methods used to achieve the purposes differ
widely. These different methods of operation are described
in the following paragraphs.

OS Method of Operation

The first function of the OS Storage step is the opening of
the system output file and the user's FD program library
file. The program then determines whether these two files
were opened successfully. If the file openings were success­
ful, the program proceeds to the validation of the param
eters passed from the user's JCL. If the parameters are
valid, the program will construct a replacement table when
it encounters a duplicate FD program. The purpose of the
table is to specify the action the Storage step should take if
a new FD program bears the same name as an FD program
already present in the user's library. Two alternatives exist:
(1) the program may replace the old program in the user's
library or (2) the new program may be stored under a tem­
porary name.

The user specifies the replacement of old FD programs
through the JCL PARM feature. If the user wishes to
replace all old duplicate programs with the new programs,
he should code PARM='REPLACE' on the EXEC card that
calls for IDFST. In some cases, the user may wish to
replace only some particular old programs. To accomplish
this, he must name those programs specifically by coding
PARM='REPLACE=(namel, name2, ... , namen) '. The
names entered must be the same as the names entered in the

name field of the FDFORM macros and a maximum of
twenty names may be specified. If the user does not name
the programs to be replaced or does not employ the PARM
feature, the duplicate programs are stored as new members
under temporary names. Temporary names are chosen from
the lowest available name in the sequence IDFTEMPO
through IDFTEMP9. If these temporary names have been
exhausted, the program is not stored. In any case, the FD
program names and the actions taken by the Storage step
are listed in the diagnostic listing produced by the Storage
step.

The next function of the Storage step is to load and pro­
cess the overlay segments, one segment at a time. The
program serially examines the KUPBs within each segment.
It checks the name and count subfields of each KUPB, then
writes out the 476-byte unpacked program block field to
the user's library. By writing out only the unpacked pro­
gram block field, the Storage step effectively deletes the 10-
byte key field, thereby arranging the FD programs into a
usable format. The process of reading in and writing out
the overlay segments continues until the end-of-form
indication is detected. The appropriate form of the STOW
macro is then issued. If the return from the STOW indicates
that the FD program is the duplicate of an FD program that
already exists in the user's library, the utility will construct
and consult the replacement table. The purpose of this
consultation is to determine whether the new FD program
should replace the older program in the.user's library. If
the program name is not found in the replacement table or
if the user did not employ the replacement parameter, the
utility attempts to store the new FD program under a tempo­
rary name. The reading and writing of the FD programs
continues until the end-of-assembly indication is encoun­
tered. As a part of the FD program processing, the Storage
step composes and writes out a diagnostic listing to the
system printer. This listing states the names of all FD pro­
grams encountered and the actions taken by the program in
each case (that is, stored under its proper name, stored
under a temporary name, or not stored at all). The pro­
gram then terminates.

If an error condition is encountered at any time during
the execution of the Storage step, the step itself writes an
error message out to the system printer, if available, or to
the operator console. It ceases processing at the point of
the error and terminates. Figure 3-15 represents the OS
Storage step's method of operation.

DOS Method of Operation

The first function of the DOS Storage step is the opening of
the SYSIPT and SYSLST files. The next function is the
validation and processing of the user-coded FD utility con­
trol statements in the SYSIPT file. There are three types of
control statements that the user may code: (1) DEVICE,
(2) OPTION, and (3) RPLACE.

Logic Of The Form Description Utility 3-21

'f 'Tj

N a;;· INPUT
N i:

~
Yo

SYS I PT -!"
ti
0
v.i
("J
0 ::s
g.
v.i
~

/

Jl L
/

ESD
Cards [P

'O

~

" g.
0
c:i.
0,
0
'O

",
e.
0
::s
';:;,
e; -0,
~

Ir Jr r v

PROCESS

1 Open all 1/0 files.

ESD CARD PROCESSING

2 Read in an ESD card from SYSI PT.*

3 Validate the ESD card.*

(Repeat steps 2 and 3 until all of
the ESD cards are validated.)

CONTROL CARD CREATION

4 Create a Linkage Editor control
statement.

5 Write the Linkage Editor control [
statement out to SYSPCH.

(Repeat steps 4 and 5 until all of
the necessary control statements
are created and written out.)

ESD CARD RECREATION

6 Recreate an ESD card.

7 Write the ESD card out to SYSPCH.

(Repeat steps 6 and 7 until all of
the ESD cards are recreated and
written out.)

r ~

OUTPUT

SYSPCH

Linkage Editor
Control

Statements

ESD Card
Images

TXT Card
Images

r
)...,... L

L

(TXT
Cards

/
END
Card

r

~ TXT CARD PROCESSING

8 Read in a TXT card from SYSIPT. *

9 Write out the TXT card to SYSPCH.*

(Repeat steps 8 and 9 until all of
the TXT cards are processed.)

END CARD PROCESSING

10 Read in the END card from SYSIPT.*

11 Write out the END card to SYSPCH.

12 Read in the next record.*

13 Is it an end·of·file indicator?

YES NO-Return to step 3.

14 Write out the completion message to
SYSLST.

15 Exit to the operating system.

*If an error is encountered in an input card field, the program writes an
error message out to SYSLST, then terminates. If an unrecoverable 1/0
error is encountered, the DOS Supervisor terminates the Control step and
returns control to the DOS Job Control program.

TXT Card

Images

END Card
Image

r

Description Routine Chart

1 Opens the SYSIPT, SYSPCH, and SYSLST files. CNTLINIT DAI

2 Reads the ESD card into an I/O buffer and validates GE TC HECK DA3
the deck ID, card sequence number, and card type
fields.

3 Validates the name, type, address, and length fields ESDPROC DAI
of every ESD item on the card.

4 Creates the necessary PHASE and INCLUDE control CNTLSTMT DAI
statements for the object module IJLFST and for
the input CSECTs.

5 Writes out the Linkage Editor control statement to PUTCARD DA3
the sequential file SYSPCH.

6 Recreates an ESD card in an I/O buffer, using CNTLSTMT DAI
predictable values and decrementing the count of
ESD cards to be created.

7 Writes out the newly recreated ESD card to the PUTCARD DA3
sequential file SYSPCH.

8 Reads the TXT card into an I/O buffer and validates GE TC HECK DA3
the deck ID, card sequence number, and card type
fields.

9 Writes out the TXT card to the sequential file PUTCARD DA3
SYSPCH.

10 Reads the END card into an I/O buffer and validates GETCHECK DA3
the deck ID, card sequence number, and card type
fields.

11 Writes out the END card to the sequential file PUTCARD DA3
SYSPCH.

12 Reads in the next record, which should be an GETCHECK DA3
end-of-file indicator or the first ESD card of the
next input module.

13 • YES - Transfers control to step 14. TXTPROC DA2
• NO - Returns control to ESDPROC for the GE TC HECK DA3

processing of the new object module.

14 Informs the user of the successful completion of MSGFAN/ DA2
the Control step. DIAGWTR/ DA2

PUTCARD DA3

15 Closes the SYSIPT, SYSPCH, and SYSLST files and DA2
returns control to the operating system.

Figure 3-12. DOS Control Step Method of Operation (Part 3 of 3)

3-24

TEST l
Indicator Address of Data Control Block (DCB) used to load module *

Address of note list

Last segment Highest segment no. Last segment
number of region 1 in storage-region 1 number of region 2

Last segment Highest segment no. Last segment
number of region 3 in storage-region 3 number of region 4

Zero (Not used in the Fixed-Task Supervisor)

(Not used in the Fixed-Task Supervisor)

Previous segment *
number for segment 1 Zero

Previous segment Address of entry table entry (when caller
number for segment 2 chain exists)

Previous segment
number for segment N

Address of entry table entry (when caller
chain exists)

TEST indicator - specifies that this module is "under test" using
TESTRAN. (Bit 1) Initialized by program fetch.

Highest segment no. in storage - is initially set to 00 except for
region 1 which is initially set to 01 by linkage editor.

Status indicator - indicates the status of this segment with the
two last bits of the entry table address field as follows:

00 - segment is in main storage as a result of a branch to the segment.
10 - segment is in main storage, no caller chain exists.
01 - segment is not in main storage, but is scheduled to be loaded.
11 - segment is not in main storage.

The status indicator for segment 1 is initially
set to 10, al I the rest are initially set to 11 .

* set to zero by linkage editor

Figure 3-13. SEGTAB Contents

Unconditional branch to last l Address of referred
entry-BC 15, DISP (15,0) to symbol

SVC45 l L 15,4(0, 15) Loads GR15 with l BCR 15, 15
the value of the ADCON

"to" seg
number

"from''
seg no

*
Highest segment no.
in storage-region 2

Highest segment no.
in storage-region 4

*

*
Status

*

Indicator

Status
Indicator

Status
Indicator

Previous Caller
(zero initially)

Address of segment
table (SEGTAB)

~ 2 bytes--.. -1 .. •--2 bytes --... -1 .. •-- 2 bytes --.. -1 .. ~1---2 bytes-+ 1 byte -1 .. -.-----3 bytes----11r~1
DISP- is the displacement, in bytes, of this entry from the last entry.
"to" segment number - is the number of the segment containing the symbol being referred to.
"from" segment number - is the number of the segment that contains this entry table.

Figure 3-14. ENT AB Contents

Logic Of The Form Description Utility 3-25

'f "".!
N <IQ'
°' s:::

INPUT PROCESS OUTPUT
~
'f -~ SYSLMOD 1 Open files and check opening.*
0
ti)

ti) ..
0 ...

2 Validate the passed parameters and
IDFST create the replacement table.

~
~ ,.
'O

a: ,.
;.
0
(:>.

e,
0
'O

IDF1000 SEGMENT PROCESS I NG
IDF1001

~3 IDF1-002 Load an overlay segment from
SYSLMOD.*

IDF1003 ,.,
5·
::s
"iii .,

........ ""'-'
Determine the replacement status of 1 T 4

IDFnnnn the new FD program.
SYSLIB

MEMBER A -0 ...,
~ 5 Write out the unpacked program block

field of a KUPB to the SYSLIB file.*

MEMBER B

MEMBER c
...._

(Repeat step 5 until all of the KUPBs
within the segment have been processed
or until the end-of-form indication is

IL. __ M_E_M_B_E_Rn_T_.

encountered. Repeat steps 3 and 5
until all of the KUPBs within a single
FD program have been processed.) ,. v rv

r

6 Issue the appropriate STOW macro.*

1 Are there any more KUPBs to be
processed in this segment?

NO YES-Return to step 4.

~

9

B Are there any more segments to be
processed?

NO YES-Return to step 3.

Compose the completion message.

10 Write the message out to SYSPR I NT.*

11 Exit to the operating system.

*If an unrecoverable 1/0 error is encountered, the program writes an error
message out to SYSPRINT, if that file is available, or to the operator
console. It then terminates.

r

[SYSPRINT J

Description Routine Chart

1 Opens and checks the opening of the SYSLIB (user's
library) and SYSPRINT files.

STGINIT OBI

2 Ensures that the passed parameters are in the PARMPROC OBI
proper format, then builds the replacement table,
REPLTAB.

3 Issues a SEGWT supervisor call to bring the SEGPROC OB4
overlay segment into main storage.

4 Consults REPLT AB to determine the replacement NEWMEM OBI
status of the FD program.

5 Examines the count subfield of the KUPB to ensure NEWMEM OBI
that it is in the proper sequence, then writes out
the 476-byte unpacked program block field to the
user's FD program library.

6 NEWMEM OBI Uses the previously determined replacement status
to determine the form of the STOW macro to be used,
then issues the STOW command.

7 Resumes processing with the next KUPB, if one is NE WM EM OBI
available in the current segment.

8 Resumes processing with the next segment, if one is NEWMEM OBI
available.

9 Composes the completion message, which contains the MSGFANI OB4
names of all FD programs processed, their lengths
(number of KUPBs), and the action taken by the
Storage step.

10 Informs the user of the successful completion of the
Storage step.

11 Closes the SYSLIB and SYSPRINT files and returns
control to the operating system.

Figure 3-15. OS Storage Step Method of Operation (Part 3 of 3)

• The DEVICE control statement is used to specify the
type of DASD on which the user's FD program library
resides. It must be coded in the following format:

II DEVICE=2311
or II DEVICE=2314

• The OPTION control statement is used to specify the
type of operation to be performed by the Storage step.
It must be coded in the following format:

II OPTION=LOAD
or II OPTION=LOADFST
or II OPTION=UPDATE

3-28

DIAGWTR OB4

DIAGWTR OB4

STGEND OB4

• The RPLACE control statement is used to specify which
old FD programs are to be replaced by new (duplicate)
FD programs during an update operation. It must be
coded in the following format:

II RPLACE
or I I RPLACE=name

where "name" is the same as the name of an FD program
specified in the name field of that program's FD FORM
macro.

The user specifies the LOAD option as the first step of a
two-step operation when he is creating a new FD program

library. The selection of this option during the execution
of the phase IJLFST causes IJLFST to fetch and execute
the overlay phase IJLFLOAD. This phase initializes the
new library by loading the first FD program from the core
image library and writing it out to IJFDLIB (the user's
ISAM FD program library). The second step is accom­
plished when the user specifies the LOADFST ("load first")
option during a second execution of IJLFST. The selection
of this option causes IJLFST to fetch and execute the over­
lay phase IJLFUPDT. This phase, when executing under the
LOADFST option, loads and writes out the remaining FD
programs, thus completing the creation of the new FD pro­
gram library. When the user wishes to update an existing
FD program library, that is, to add new FD programs or
replace old ones, he specifies the UPDATE option. The
selection of this option causes IJLFST to load and execute
the overlay phase IJLFUPDT. IJLFUPDT, when executing
under the UPDATE option, performs the necessary addi­
tions and/or replacements and revises the library's index to
reflect these changes. Replacements are performed in accor­
dance with the operand (s) specified in the RPLACE control
statement (s).

As previously stated, the user uses the RPLACE control
statements during an update operation to control the
replacement of old FD programs by new duplicates. The
use of these control statements in the input stream causes
IJLFST to construct a replacement table, which is passed to
IJLFUPDT when that phase is loaded. If the user wishes
to replace all old duplicate FD programs with the new pro­
grams, he should code"// RPLACE". In some cases,
however, the user may wish to replace only some particular
old programs. To accomplish this, he must name those
programs specifically by "// RPLACE=name", as described
previously. In this format, only one FD program name may
be specified on a control statement, and a maximum of
twenty FD programs may be so specified. If the user does
not name the programs to be replaced or does not employ
the RPLACE control statement at all, the duplicate pro­
grams are stored as new members under temporary names.
Temporary names are chosen from the lowest available
name in the sequence IJLFTMOO through IJLFTM09. If
these temporary names have been exhausted, the program
is not stored. In any case, the FD program names and the
actions taken by the Storage step are listed in the diagnos­
tic listing produced by the Storage step.

The processing of the FD programs in the Storage step is
basically the same in each type of operation (LOAD,

LOADFST, or UPDATE). The overlay phases created in the
Linkage Editor step are loaded and processed one by one.
The program processes the KUPBs within each phase
serially. It checks the name and count subfields of a KUPB,
then writes out the 476-byte unpacked program block field
to IJFDLIB with a IO-byte key field, thereby arranging
the FD programs into a usable format. If IJLFLOAD
encounters any type of error during this processing, it issues
a descriptive error message and terminates immediately.
IJLFUPDT, on the other hand, responds to an error within
an FD program by flushing that program, issuing an error
message, and continuing processing with the next available
FD program. However, environmental errors, such as a data
area overflow, cause IJLFUPDT to issue a descriptive error
message and terminate.

The response of the Storage step to the detection of a
duplicate FD program depends upon the type of operation
being performed. If the duplicate is detected during a
LOAD operation, the program issues an error message and
terminates. If a LOADFST operation is in progress, the
program automatically replaces the old FD program with
the new one. If the UPDATE operation is being performed
when the duplicate FD program is encountered, the program
consults the previously constructed replacement table. The
purpose of this consultation is to determine whether the
new FD program should replace the older program in the
user's library. If the user has specified // RPLACE, the
older program is replaced automatically. However, if
// RPLACE was not specified, then the program must search
the replacement table for the name of the duplicate FD pro­
gram. If the program finds the FD program's name in the
replacement table, it replaces the older FD program with
the new one. If the FD program's name is not found or if
the user did not employ any// RPLACE control statements,
the program attempts to store the FD program under a
temporary name, as described previously.

The loading and writing of the FD programs continues
until all of the overlay phases have been processed. As a
part of this processing, the Storage step composes and
writes out a diagnostic listing to the system printer. This
listing states the names of all FD programs encountered and
the action taken by the Storage step in each case (that is,
stored under its proper name, stored under a temporary
name, or not stored at all). When all processing has been
completed, the program writes out a message stating the
fact, then terminates. Figure 3-16 represents the DOS Stor­
age step's method of operation.

Logic Of The Form Description Utility 3-29

w "'1 INPUT PROCESS OUTPUT w a;;·
0 = ;a

1 Open SYSLST and SYSIPT 'f
~

ti II OPTION= LOAD
2 Read and validate the 0

tll

~ control cards
~ .,

SYS I PT "" "' 3 tll Close SYSLST and SYSIPT !>'
'O

a::
"' So 4 Was an UPDATE operation 0
c:>. specified?
0 ..,

"o• 0
'O

"' NO YES r .,
J:!',
0
::;

-;a 5 Was a LOAD operation specified?
~
0 SYS LOG "~ ..,
~ ..r YES NO

6 FETCH and pass control to

~ IJLFLOAD

7 FETCH and pass control to

~ IJLFUPDT

data flow

control flow

r
INPUT

SYSLNK

PROCESS

1

2

3

4

5

Open IJFDLIB and SYSLST

Load an overlay phase into main
storage from SYSLNK

Validate the name and count subfields
of a KUPB within the phase

Write the validated KUPB out to IJFDLIB

(Repeat steps 3 and 4 until all of the
KUPBs within the phase have been
validated and written out. Repeat steps
2 through 4 until all of the phases on
SYSLNK have been processed.)

Write a message out to SYSLST
indicating successful completion

6 Write an EOF indication out to
IJFDLIB

7 Close IJFDLIB and SYSLST

8 Exit to the operating system

OUTPUT

IJFDLIB

Description Routine Chart

2 Each overlay phase is loaded into a 1464-byte area within LOADRTN DCl
IJLFLOAD named LOADAREA. The LOAD macro is
used to accomplish this task.

3 If either of the fields is invalid, control is passed to the RCDCHK DCl
message Fan-in routine, MSGFAN, for the printing of an
explanatory error message, and then to the End-of-Job
routine, EOJRTN.

4 The program first issues a SETFL macro to initialize the ISMPUT DC2
output data area, then writes the KUPB out. If the
record is not written out properly, the program analyzes
the error, then passes control to MSGFAN and
EOJRTN.

Figure 3-16. DOS Storage Step Method of Operation (Part 3 of 5)

3-32

r
"'1

<IQ' INPUT
c::
~
'f -?'
t:::i
0
rJJ
rJJ

0 ..
~
(\)

rJJ
ct .,,
a::
(\)

g.
0

SYSLNK
Q.

0,
0 .,,
(\) .. .,
r:t.
0
::;

~
~
.j:>.

0,
UI .._,

PROCESS

n IJFDLIB and SYSLST 1 Ope

2 Loa
st or

d an overlay phase into main
age from SYSLNK

3 Val idate the name and count subfields
of a KUPB within the phase

4 Wer e the fields valid?

YES NO~

./£ Print out a message defining the e error, flush the erroneous FD
\program, and resume processing

with the next FD program at
step 2.

5 Writ e the validated KUPB out to IJFDLIB

6

7

8

9

peat steps 3 through 5 until all of the (Re
KUP
valid
2th
SYS

Bs within the phase have been
ated and written out. Repeat steps

rough 5 until all of the phases on
LNK have been processed.)

Wri
ind

te a message out to SYSLST
icating successful completion

Write an EOF indication out to
IJFDLIB

Close IJFDLIB and SYSLST

Exit to the operating system

\

r
OUTPUT

:"'I

IJFDLI B

r
"-

=l
I'....
,...._

""-.?' SYSLST
0 0
0 0

;> ~ 0

0

~ 0
~

Description Routine Chart

2 Each overlay phase is loaded into a 1464-byte area within LOADRTN DD2
IJLFUPDT named LOADAREA. The LOAD macro is
used to accomplish this task.

5 The program first determines whether or not the KUPB is ISM PUT DD2&
a duplicate. If it is, and it is supposed to be replaced, the DD3
program replaces it in IJFDLIB. If it is a duplicate, but is
not supposed to be replaced, the program stores it under
a temporary name. If the KUPB is not a duplicate, the
program checks for the following 1/0 errors: (1) DASD
error, (2) wrong length record, (3) EOF written out,
(4) no output record found, and (5) overflow area full.
If any of these errors is found and cannot be corrected, the
program prints out an error message and terminates.

Figure 3-16. DOS Storage Step Method of Operation (Part 5 of 5)

3-34

FD UTILITY ORGANIZATION

The aims of the FD utility, which were stated in the
previous section, are accomplished through the logical
organization of the program in three sequential job steps:
Control step, Linkage Editor step, and Storage step. The
Control step verifies the correctness of the object module
input (except that data generated in columns 17-72 of the
TXT card images) and generates the necessary Linkage
Editor control statements for the next step. The Linkage
Editor step performs the linkage editing of the input object
modules, under control of the control statements generated
in the first step. The Linkage Editor step also includes the
object module IDFST (under OS) or IJLFST, IJLFLOAD,
and IJLFUPDT (under DOS) in the input. The third and
last step, the Storage step, is the execution of the linkage­
edited overlay program. The data originally generated by
the FD macro assembly is brought into main storage as
overlay segments and put out to the user's private data set
in 476-byte blocks. Additionally, an optional JCL param­
eter (OS) or control statement (DOS) may be used to allow
the storage of FD programs whose names are the same as
existing members of the user's data set.

Under OS, the program is comprised of three modules:

IDFCT
IDFM01

IDFST

The Control step load module;
The message module that contains the messages
put out to SYSPRI NT or the operator console;
The object module that becomes the root seg-
ment of the overlay program executed in the
Storage step.

Under DOS, the program is comprised of five modules:

IJLFCT
IJLFM01

IJLFST

IJLFLOAD

The Control step phase;
The message module that contains the messages
put out to SYSLST;
The object module that becomes the root phase
of the overlay program executed in the Storage
step;
The object modules that become Storage step
overlay IJLFUPDT phases for the processing of
the FD programs.

Figures 3-17 and 3-18 illustrate the residency of these mod­
ules in auxiliary storage for OS and DOS, respectively.

Control Step Organization

Although the organization of the modules IDFCT and
IJLFCT is similar, enough differences exist to merit a
separate discussion of each. These modules are described
in the following paragraphs.

Section 3: Program Organization

IDFCT Organization

The load module IDFCT is logically organized in 10 rou­
tines, an 80-byte card storage area, and three data control
blocks (DCBs). Figure 3-19 represents the physical organi­
zation of IDFCT. The logical flow of the 10 routines is
graphically represented in Charts OAl through OAS at the
rear of this section. Figure 3-20 illustrates the hierarchy of
the routines within IDFCT.

CNTLINIT- Control Initial: The control initial routine
opens and tests the opening of the SYSIN, SYSUTI, and
SYSPRINT files. Control passes automatically to the ESD
processor routine unless one of the files fails to open prop­
erly. If the opening of either SYSIN or SYSUTI fails,
CNTLINIT gives control to the message fan-in routine so
that a message may be written to the system printer. If the
opening of SYSPRINT fails, CNTLINIT writes a message
out to the operator console, then terminates.
ESDPROC - ESD Processor: The ESD processor routine
receives control from CNTLINIT at the start of processing.
It may also receive control from the TXT processor routine
(TXTPROC) if multiple input modules are present.
ESDPROC first invokes the get and check an input record
routine (GETCHECK) to read in a card from SYSIN. If the
card that is read in is a TXT card, the ESD processor trans­
fers control to TXTPROC. Otherwise, it validates the name
field, type code, address field, and length field of each ESD
item on the card. Next, the routine invokes the put out a
card routine (PUTCARD) to put the validated card out to
SYSUTI, then again invokes GETCHECK to read in another
card. Finally, when all of the ESD cards have been vali­
dated and the first TXT card has been read in, it gives
control to TXTPROC. If ESDPROC encounters an error
during processing, it ceases processing immediately and gives
control to the appropriate point in the message fan-in
routine so that a descriptive error message may be written
out to the SYSPRINT file.

TXTPROC - TXT Processor: The TXT processor routine
receives control from the ESD processor routine after the
first TXT card has been read into main storage. It invokes
PUTCARD to put out that first TXT card, then alternately
invokes GETCHECK and PUTCARD to read in and put
out the remaining TXT cards. TXTPROC performs this
reading and writing function until it encounters an END
card. At that point, it puts out the END card and reads
the next record. If the next record read is the end-of-file

Logic Of The Form Description Utility 3-35

SYS1 .LI NKLI B
or Job/Step

Library

IDFCT

IDFM01

IDFST

Private
Load Module

Library

IDFST

* I DFST may reside in either of these libraries.

Figure 3-17. OS FD Utility Auxiliary Storage Residency

Core Image Library

System
Residence

Volume

IJLFCT

IJLFM01

**

**

Scratch
Load Module

Library

GO

Private
Library
Volume*

Step 2
Output

Core Image Library

{ --
____

IJLFST ***

----_ _,,

IJLFST
} R•l~"bl• Ub"'V

IJLFUPDT

IJLFLOAD

*If the Private Library Volume is not used, all of the modules are
written on the System Residence Volume.

**These modules are linkage edited during system generation. IJLFST
may reside on either volume.

***This module is linkage edited during the FD Utility Linkage Editor
step.

Figure 3-18. DOS FD Utility Auxiliary Storage Residency

indication, the routine passes control to the create control
statements routine (CNTLSTMT). However, if the next
record is an ESD card, then multiple input object decks are
present and the routine sets the multiple object deck indi­
cator (NEWJOB) to one and the address counter
(ADDRCTR) to zero, then returns control to ESDPROC.
On the other hand, if the next record read is neither an end­
of-file indication nor an ESD card, then an error condition
exists. This error is detectable by GETCHECK. If it occurs,

3-36

TXTPROC does not regain control from GETCHECK.
Rather, GETCHECK passes control to the appropriate point
in the message fan-in routine so that a descriptive error mes­
sage may be written out to SYSPRINT.

CNTLSTMT - Create Control Statements: The create con­
trol statements routine receives control from the end-of­
file subroutine that is contained within TXTPROC. By
the time it gains control, all ESD, TXT, and END cards have

Control Initial (CNTLINIT)

ESD Processor (ESDPROC)

TXT Processor (TXTPROC)

Create Control Statements (CNTLSTMT)

Control End (CNTLEND)

Message Fan-in (MSGFAN)

Diagnostic Writer (DIAGWTR)

Get and Check an Input Record (GETCHECK)

Put Out a Card (PUTCARD)

Write Operator (WTORTN)

Control Synchronous 1/0 Error (CTLSYNER)

Card Storage (OBJCARD)

SYSIN DCB (INPUT)

SYSUT1 DCB (OUTPUT)

SYSPRINT DCB (PRINT)

Figure 3-19. Module IDFCT Physical Organization

been written out to SYSUTl. The purpose of CNTLSTMT
is to create and write out the Linkage Editor control state­
ments necessary to produce the overlay program (GO mod­
ule) that is executed in the Storage step. As soon as
CNTLSTMT creates a new control statement, it invokes
PUTCARD to write it out to the SYSUTl file. The first
statement created is the INCLUDE control statement,
which requests the Linkage Editor to use an additional data
set as input. The INCLUDE statement specifies the ddname
of the DD statement that describes the object module
IDFST. The format of this statement is as follows:

~INCLUDE SYSDD(IDFST)

When this statement has been created and written out,
CNTLSTMT creates and writes out a series of OVERLAY

and INSERT statements. The format of these statements
is as follows:

V>QVERLAY A
~INSERT IDFnnnn
where IDFnnnn is the name of an input CSECT that will

become an overlay segment.

CNTLSTMT creates only one INCLUDE statement, but it
creates one OVERLAY statement and one INSERT state­
ment for each input CSECT. When all of the necessary
Linkage Editor control str.tements have been created and
written out, CNTLSTMT passes control to the message fan­
in routine.

GETCHECK - Get and Check an Input Record: The get and
check an input record routine is invoked by ESDPROC and

Logic Of The Form Description Utility 3-3 7

L ESDPROC

GETCHECK

I ESDPROC

MSG FAN

DIAGWTR

IPUTCARD I
Lj DIAGWTR

CNTLEND

~UTCARD I
I ESDPROC I

I

TXTPROC
GETCHECK

I TXTPROC

MGGFAN

DIAGWTR

IPuTcARD I
LI DIAGWTR

I CNTLEND

IPuTCARD I
Lj TXTPROC I

I

ESDPROC I
I

CNTLSTMT

~TCARD I
I CNTLSTMT I

I
MSG FAN

'

DIAGWTR

IPuTCARD I
LI DIAGWTR

I
I CNTLEND I

MSG FAN

MSG FAN

DIAGWTR
liuTCARD I
LI DIAGWTR

I

I CNTLEND I

DIAGWTR

IPuTCARD I
LI DIAGWTR

I

I CNTLEND I
Figure 3-20. Module IDFCT Hierarchy of Routines

3-38

MS_G_F_A_N _-_-.... ---------1 WTORTN l_J
DIAGWTR L1 CNTLEND I

I PUTCARD I
LI DIAGWTR

I

CNTLEND

OS
Supervisor

CTLSYNER

MSG FAN

DIAGWTR

IP\JTCARD I
LI DIAGWTR I
I CNTLEND
I

I WTORTN I
LI CNTLEND I

TXTPROC to read in the next sequential record from
SYSIN and to check three fields of the record. The three
fields checked are the deck ID, columns 73-76; card
sequence number, columns 77-80; and card type, columns
24. GETCHECK validates the deck ID field to ensure that
the four-character deck identifier is the same on every card
of the input object deck. It validates the card sequence
number field to ensure that no input records are out of
place or missing. Finally, GETCHECK checks the card type
field to ensure that the card types themselves are in the
correct sequence. That is, an ESD card must be followed by
another ESD card or a TXT card; a TXT card must be fol­
lowed by another TXT card or an END card; an END card
must be followed by an ESD card (indicating that another
FD program module follows) or an end-of-file indication. If
no errors are detected in the three fields, GETCHECK
returns control to the routine that called it. However, if
GETCHECK does detect an error, it ceases processing
immediately and passes control to the appropriate point in
the message fan-in routine so that a descriptive error mes­
sage may be written out to SYSPRINT. If an end-of-file
indicator or an irrecoverable 1/0 error is encountered during
the reading of SYSIN, GETCHECK does not retain control.
These conditions are handled by the end-of-file subroutine
of TXTPROC and the control synchronous 1/0 error rou­
tine (CTLSYNER), respectively. GETCHECK uses the
Queued Sequential Access Method (QSAM); the GET macro
that is used to read in the records operates in the move
mode.

PUTCARD - Put Out A Card: The put out a card routine is
invoked by ESDPROC, TXTPROC, and CNTLSTMT to
write out a record to the SYSUTl file. After the record has
been put out successfully, PUTCARD returns control to the
routine that called it. If an irrecoverable 1/0 error is
encountered during the writing of a record, PUTCARD does
not retain control. This error condition is handled by
CTLSYNER. The PUTCARD access method is QSAM; the
PUT macro that is used to write out the records operates in
the move mode.

CFLSYNER - Control Synchronous I/O Error: The control
synchronous 1/0 error routine is invoked when an irrecover­
able error is encountered during an input or output opera­
tion. There are three entry points to the routine:
SYNADl, SYNAD2, and SYNAD3. These entry points are
actually symbolic addresses that correspond to the three
1/0 files used by the Control step. SYNADl corresponds to
SYSIN; SYNAD2, to SYSUTl; and SYNAD3, to
SYSPRINT. The purpose of CTLSYNER is to determine
the cause and type of error that occurred and to create an
error message that explains the problem. The routine uses
the SYNADAF macro to define the error and construct the
error message. This macro examines the following data
areas and records the pertinent information.

• The contents of the general registers

• The data event control block (DECB)

• The exceptional condition code

• The status and sense indications

After examining this data, the macro creates a descriptive
error message that may be written out by either the diag­
nostic writer routine or by CTLSYNER itself. When the
error message has been created, CTLSYNER modifies the
return address so that control will not be given to the
instruction that immediately follows the GET or PUT
macro instruction that encountered the 1/0 error. Rather,
CTLSYNER gives control to the appropriate point in
MSGFAN, if the SYSPRINT file is available, or to the con­
trol end routine, if the SYSPRINT file has sustained an
irrecoverable error.

MSGFAN -Message Fan-In: The message fan-in routine
may be invoked by any of the following routines:
CNTLINIT, ESDPROC, TXTPROC, GETCHECK,
CTLSYNER, and CNTLEND. MSG FAN consists of a series
of branch and link (BAL) instructions, each of which corre­
sponds to a message contained in the message module,
IDFMO 1. The routine may be entered at any one of these
BAL instructions. The purpose of MSGFAN is to establish
a binary number and place it in register 3. This binary num­
ber equals the displacement between the start ofMSGFAN
and the point at which the entry to the routine was made.
The number is used later by DIAGWTR for scanning a
second-level index in IDFMOl to retrieve the variable detail
line (s) of the message. When the binary number has been
established in register 3, the routine transfers control to
DIAGWTR.

DIAGWTR - Diagnostic Writer: The diagnostic writer rou­
tine is invoked by the message fan-in routine when all of
the input record processing has been completed success­
fully or when an error condition has been detected and the
SYSPRINT file can be used. First, DIAGWTR issues a
LOAD macro to bring the message module, IDFMOl, into
main storage. Next, the routine moves the three variable
characters of the message ID into the output area,
OBJCARD. DIAGWTR then uses the binary number
located in register 3, which is the number placed there by
MSGFAN, to recover the detail line (s) of the message.
Finally, the routine composes the rest of the header line,
including the remainder of the message ID, then writes the
header and detail lines out to the SYSPRINT file. At this
point, DIAGWTR passes control to the control end routine,
CNTLEND.

CNTLEND - Control End: The control end routine is
invoked by either DIAGWTR or WTORTN. It may be
called when all of the input record processing has been
completed successfully or when any type of error condition

Logic Of The Form Description Utility 3-39

has been encountered. The purpose of CNTLEND is to
close the SYSIN, SYSUTl, and SYSPRINT files. When
these files have been closed, the routine gives control to the
operating system.

OBJCARD - Card Image Storage Area: The format of the
80-byte card image storage area is the same as the format of
the ESD card described in Figure 3 in Part 3, Section 2,
"Method of Operation." This storage area is used to con­
tain ESD, TXT, and END cards during validation, as well as
Linkage Editor control statements and the messages pro­
duced by the diagnostic writer routine.

Input DCB: The INPUT data control block describes the
characteristics of the SYS IN file as follows:

DDNAME=SYSIN
LRECL=80
MAC RF=(GM)
DSORG=PS
EODAD=EOFRTN
SYNAD=SYNADl
RECFM=FB

Print DCB: The PRINT data control block describes the
characteristics of the SYSPRINT file as follows:

DDNAME=SYSPRINT
MACRF=(PM)
DSORG=PS
SYNAD=SYNAD3

Output DCB: The OUTPUT data control block describes
the characteristics of the SYSUTl file as follows:

DDNAME=SYSUT 1
LRECL=80
MACRF=(PM)
RECFM=F
DSORG=PS
SYNAD=SYNAD2
BLKSIZE=80

/JLFCT Organization

The phase IJLFCT is logically organized in nine routines,
three DTFDI macros, and one device independent module
(DIM OD), plus five 81-byte I/O and work areas. Figure
3-21 represents the physical organization of IJLFCT. The
logical flow of the nine routines is graphically represented in
Charts DAI through DA4 at the rear of this section. Figure
3-22 illustrates the hierarchy of the routines within
IJLFCT. The routine, macros, and the DIMOD are de­
scribed in the following paragraphs.

CNTLINIT- Control Initial: The control initial routine
opens the SYSIPT, SYSPCH, and SYSLST files. Control
passes automatically to the ESD processor routine unless
one of the files fails to open. If one or more of the files

3-40

fails to open, the DOS Supervisor terminates the Control
step and returns control to the DOS Job Control program.

ESDPROC - ESD Processor: The ESD processor receives
control from the control initial routine at the start of
processing. It may also receive control from the TXT
processor routine if multiple input modules are present.
ESDPROC first invokes the get and check an input record
routine (GETCHECK) to read in a card from SYSIPT and
place it in one of two input/output buffers. The routine
then validates the name field, type code, address field, and
length field of each ESD item on the card. Next, it invokes
GETCHECK to read in another card and place it in the
other I/O buffer. Again, ESDPROC validates the ESD
items, then transfers control to GETCHECK. This reading
and validating process continues until the first TXT card is
encountered. Each card that is read in is placed in the I/O
buffer opposite from the most recently validated card.
Also, ESDPROC maintains a count of the ESD items that it
validates. When the first TXT card is encountered, one I/O
buffer contains that TXT card and the other I/O buffer con­
tains the last ESD card. At this point, ESDPROC gives con­
trol to the create control statements routine (CNTLSTMT).
If ESDPROC encounters an error during processing, it
gives control to the appropriate point in the message fan-in
routine (MSGF AN) so that a descriptive error message may
be written out to the SYSLST file.

CNTLSTMT - Create Control Statements: The create con­
trol statements routine receives control from the ESD pro­
cessor routine. By the time it gains control, all of the ESD
items have been read in and validated, the count of ESD
items has been completed, and the first TXT card has been
encountered. Additionally, the last ESD card is contained
in one IiO buffer and the first TXT card is contained in the
other. The purpose of CNTLSTMT is to create and write
out to SYSPCH the Linkage Editor control statements nec­
essary to produce the overlay program that is executed in
the Storage step. Also, since every ESD card (except the
last one) is destroyed during the ESDPROC processing,
CNTLSTMT must reconstruct these records and write them
out to the SYSPCH file. CNTLSTMT creates the control
statements and reconstructs the ESD card images in the I/O
buffer that contains the last ESD card. Thus, the last ESD
card is destroyed (but later reconstructed), whereas the first
TXT card remains unaffected in the other I/O buffer.
CNTLSTMT employs the put out a card routine
(PUTCARD) for all of its writing operations.

The first six statements created by CNTLSTMT are
PHASE and INCLUDE statements for the object modules
IJLFST, IJLFLOAD, and IJLFUPDT. The PHASE state­
ments provide the Linkage Editor with phase names and
origin points for the phases. The INCLUDE statements
indicate to the Linkage Editor which object modules are to

Control Initial (CNTLINIT)

ESD Processor (ESDPROC)

Create Control Statements (CNTLSTMT)

TXT Processor (TXTPROC)

Get and Check an Input Record (GETCHECK)

Put Out a Card (PUTCARD)

Message Fan-in (MSGFAN)

Diagnostic Writer (DIAGWTR)

Control End (CNTLEND)

1/0 Buffer 1 (OBJCARD1)

1/0 Buffer 2 (OBJCARD2)

SYSIPT DTFDI Macro (IJSYSIN)

SYSPCH DTFDI Macro (IJSYSPH)

SYSLST DTFDI Macro (IJSYSLS)

DIMOD (IJJFCBIC)

Figure 3-21. Module IJLFCT Physical Organization

be included for editing. The formats of the statements are
as follows:

V>PHASE IJLFST,S
~INCLUDE IJLFST
'PPHASE IJLFLOAD, S+144
~INCLUDE IJLFLOAD
'PPHASE IJLFUPDT, S+ 144
~INCLUDE IJLFUPDT

Next, CNTLSTMT creates and writes out a series of PHASE
and INCLUDE statements for the input FD program
CSECTs. One PHASE statement and one INCLUDE state­
ment is generated for each input CSECT. The format of
these statements is as follows:

'¢PHASE IJLFnnnn, +0
Y,INCLUDE , (IJLFnnnn)
where nnnn is the number of an input CSECT that will
become an overlay segment.

When all the necessary Linkage Editor control statements
have been created and written out, CNTLSTMT begins re­
constructing the previously destroyed ESD card images
and writing them out to SYSPCH. Since all of the ESD
items were verified by ESDPROC, all of the data within
those items (except the length field of the last ESD item) is
predictable and can be reconstructed. Also, since
ESDPROC maintained a count of the ESD items,
CNTLSTMT can reconstruct the exact number of ESD
items required. As soon as CNTLSTMT constructs an ESD
card in the 1/0 buffer, it writes it out to SYSPCH, placing
it behind the control statements, then reconstructs the next
ESD card in the same I/O buffer. When the last ESD card
has been reconstructed and written out, CNTLSTMT passes
control to the TXT processor routine.

TXTPROC - TXT Processor: The TXT processor routine
receives control from the create control statements routine.

Logic Of The Form Description Utility 3-41

CNTLINIT

ESDPROC

GETCHECK

I ESDPROC

I
MSG FAN

DIAGWTR

iPUTCARD I
LI DIAGWTR

I
CNTLEND

CNTLSTMT

I PUTCARD I
LI CNTLSTMT I

I
TXTPROC

GETCHECK

I TXTPROC

I
MSG FAN

DIAGWTR

IPUTCARD I
L. I DIAGWTR

I
I CNTLEND

IPUTCARD I
LI TXTPROC

MSG FAN

I
ESDPROC

I
MSG FAN

DIAGWTR

IPUTCARD I
L._I DIAGWTR

I
CNTLEND

DIAGWTR

iPUTCARD I
L_I DIAGWTR

I
CNTLEND

Figure 3-22. Module IJLFCT Hierarchy of Routines

By the time it receives control, the first TXT card has
already been placed in an 1/0 buffer. As previously ex­
plained, this card is unaffected by the operation of
CNTLSTMT.
TXTPROC invokes PUTCARD to put out that first card,
then alternately invokes GETCHECK and PUTCARD to
read in and put out the remaining TXT cards. TXTPROC
performs this reading and writing function until it encoun-

3-42

ters an END card. At that point, it puts out the END card
and reads the next record. If the next record read is the
end-of-file indication, the routine passes control to the mes­
sage fan-in routine for the construction of a message indi­
cating successful completion. However, if the next record is
an ESD card, then multiple input object decks are present.
In this case, TXTPROC sets the multiple object deck indi­
cator (NEWJOB) to one and the address counter
(ADDRCTR) to zero, then passes control to the ESD
processor. On the other hand, if the next record read is
neither an end-of-file indication nor an ESD card, then an
error condition exists. This error is detectable by
GETCHECK. If it occurs, TXTPROC does not regain con­
trol from GETCHECK. Rather, GETCHECK passes control
to the appropriate point in the message fan-in routine so
that a descriptive error message may be written out to
SYSLST.

GETCHECK - Get and Check an Input Record: The get and
check an input record routine is invoked by ESDPROC and
TXTPROC to read in the next sequential record from
SYSIPT and to check three fields of the record. The three
fields checked are deck ID, columns 73-76; card sequence
number, columns 77-80; and card type, columns 24.
GETCHECK validates the deck ID field to ensure that the
four-character deck identifier is the same on every card of
the input object deck. It validates the card sequence num­
ber field to ensure that no input records are out of place or
missing. Finally, GETCHECK checks the card type field to
ensure that the card types themselves are in the correct
sequence. That is, an ESD card must be followed by
another ESD card or a TXT card; a TXT card must be fol­
lowed by another TXT card of an END card; an END card
must be followed by an ESD card (indicating that another
FD program module follows) or an end-of-file indication.
If no errors are detected in the three fields, GETCHECK
returns control to the routine that called it. However, if
GETCHECK does detect an error, it ceases processing
immediately and passes control to the appropriate point
in the message fan-in routine so that a descriptive error
message may be written out to SYSLST. If an end-of-ftle
indication is encountered during the reading of SYSIPT,
GETCHECK does not retain control; this condition is
handled by the end-of-file subroutine ofTXTPROC.
GETCHECK uses the Device Independent (DI) access
method for all data retrieval.

Note: GETCHECK can process both 80- and 81- character
input records. When it discovers that an 81-character record
has been read, it deletes the control character and processes
the record as a standard 80-character record. Through this
capability, the Control step of the FD utility can receive
inputs from tape and disk, as well as from a card reader.

PUTCARD - Put Out a Card: The put out a card routine is
invoked by CNTLSTMT and TXTPROC to write out a card

image to the SYSPCH file. It may also be invoked by the
diagnostic writer routine (DIAGWTR) to write out a record
to the SYSLST file. After the card image or record has
been put out successfully, PUTCARD returns control to the
routine that called it. PUTCARD uses the DI access method
for all data writing.

MSGFAN -Message Fan-In: The message fan-in routine
may be invoked by ESDPROC, GETCHECK, and
CNTLEND. MSGF AN consists of a series of branch and link
(BAL) instructions, each of which corresponds to a mes­
sage contained in the message module, IJLFMOl. The rou­
tine may be entered at any one of these BAL instructions.
The purpose of MSGFAN is to establish a binary number
and place it in register 3. This binary number equals the
displacement between the start of MSGF AN and the point
at which the entry to the routine is made. The number is
used later by the diagnostic writer routine for scanning an
index in IJLFMOl to retrieve the variable detail line(s) of
the message. When the binary number has been established
in register 3, the routine transfers control to the diagnos-
tic writer routine.

DIAGWTR -Diagnostic Writer: The diagnostic writer rou­
tine is invoked by the message fan-in routine when all of the
input record processing has been completed successfully or
when an error has been detected in an input record. First,
DIAGWTR issues a LOAD macro to bring the message mod­
ule, IJLFMOl, into main storage. Next, the routine moves
the three variable characters of the message ID into the out­
put area. DIAGWTR then uses the binary number located
in register 3, which is the number placed there by
MSGFAN, to recover the detail line (s) of the message.
Finally, the routine composes the rest of the header line,
including the remainder of the message ID, then writes the
header and detail lines out to the SYSLST file. At this
point, DIAGWTR passes control to the control end routine.

CNTLEND - Control End: The control end routine is
invoked by the diagnostic writer routine. It may be called
when all of the input record processing has been completed
successfully or when an error has been discovered in an
input record. The purpose of CNTLEND is to close the
SYSIPT, SYSPCH, and SYSLST files. When these files have
been closed, the routine gives control to the operating
system.

SYS/PT DTFDI Macro: The DTFDI macro for the system
input file, SYSIPT, specifies the following operands:

DEVADDR=SYSIPT
EOFADDR=EOFRTN
IOAREAl =IN AREA 1
IOAREA2=INAREA2
IOREG=(9)

MODNAME=IJJFCBIC
RECSIZE=80
WLRERR=WLREC
SEPASMB=NO
ERROPT=IGNORE

SYSPCH DTFDI Macro: The DTFDI macro for the system
output file, SYSPCH, specifies the following operands:

DEV ADDR=SYSPCH
IOAREAl =WKAREA
MODNAME=IJJFCBIC
ERROPT=IGNORE
RECSIZE=81
SEPASMB=NO

SYSLST DTFDI Macro: The DTFDI macro for the system
print file, SYSLST, specifies the following operands:

DEV ADDR=SYSLST
IOAREAl =PRNTAREA
MODNAME=IJJFCBIC
RECSIZE=81
SEPASMB=NO
ERROPT=IGNORE

DIMOD: The characteristics of the device independent
module (DIMOD) are specified through the use of the
DIMOD macro. The name of this module within IJLFCT is
IJJFCBIC. Its characteristics are defined as follows:

IOAREA2=YES
SEPASMB=NO
TYPEFILE=OUTPUT

Additional information about the DTFDI and DIMOD mac­
ros is contained in the manual IBM System/360 Disk Oper­
ating System Supervisor and Input/Output Macros, Order
Number GC24-5037.

Linkage Editor Step Organization

The OS and DOS versions of the FD utility employ the
OS and DOS Linkage Editor programs in their respective
Linkage Editor steps. The inputs and outputs from the
Linkage Editor are described in Part 3, Section 2.
"Method of Operation." A description of the OS and
DOS Linkage Editors' organization is beyond the scope of
this manual. However, complete Linkage Editor informa­
tion may be found in the following publications:

• OS Version: IBM System/360 Operating System Linkage
Editor and Loader, Order Number GC28-6538;
IBM System/360 Operating System Linkage Editor [E]
Program Logic Manual, Order Number GY28-6610

• DOS Version: IBM System/360 Disk Operating System:
System Control and System Service Programs, Order
Number GC24-5036;
IBM System/360 Disk Operating System Linkage Editor
Program Logic Manual, Order Number GY24-5080

Logic Of The Form Description Utility 3-43

Storage Step Organization

The overlay program that is executed in the Storage step is
created by the Linkage Editor in the previous step. This
program consists of the linkage edited object module
IDFST (OS) or IJLFST, IJLFLOAD, and IJLFUPDT
(DOS) and the overlay segments containing the FD pro­
grams. The organization of the modules is dissimilar
enough to merit a separate discussion of each. These mod­
ules are described in the following paragraphs.

IDFST Organization

The load module IDFST is logically organized in nine rou­
tines, two DCBs, and two Linkage-Editor-created tables.
Furthermore, if the PARM facility of JCL is employed,
IDFST may construct a replacement table. Since the
generation and composition of the two Linkage-Editor­
created tables were discussed in Part 3, Section 2, "Method
of Operation," no more discussion of these tables is con­
tained in this section. Figure 3-23 represents the physical
organization of IDFST. The logical flow of the nine rou­
tines is graphically represented in Charts OBl through OB4
at the rear of this section. Figure 3-24 illustrates the hierar­
chy of the routines within IDFST.

STGINIT - Storage Initial: The storage initial routine opens
and tests the opening of the SYSLIB (user's library) and
SYSPRINT files. Control passes automatically to the
PARM processor routine unless one of the files fails to open
properly. If the opening of SYS LIB fails, STGINIT gives
control to the appropriate point in the message fan-in rou­
tine (MSGFAN) so that a descriptive error message may be
written out to SYSPRINT. If the opening of SYSPRINT
fails, STGINIT writes a message out to the operator console,
then transfers control to the storage end routine.

PARMPROC - PARM Processor: The PARM processor rou­
tine receives control from STGINIT at the start of proces­
sing. The purpose of P ARMPROC is to validate the param­
eters that were passed from the JCL and to set an indicator
(PARMSW) to tell the new member routine (NEWMEM)
whether a replacement table should be constructed. If any
of the parameters are invalid, PARMPROC ceases processing
immediately and gives control to the appropriate point in
MSGFAN so that a descriptive error message may be writ­
ten out to SYSPRINT. If the user has elected not to use the
parameter feature, PARMPROC leaves PARMSW set to zero
(the value at which it was initialized) and passes control to
NEWMEM. If the user has specified REPLACE= ALL,
PARMPROC sets P ARMSW to one, then passes control to
NEWMEM. If the user has specified a partial replacement,
PARMPROC sets PARMSW to two, then passes control to
NEWMEM. Only this value of PARMSW (two) causes
NEWMEM to create a replacement table if it encounters any
duplicate FD programs. A duplicate FD program is one that
bears the name of an FD program that is already present in
the user's library.

3-44

NEWMEM - New Member: The new member routine
receives control from the PARM processor routine. The
purpose of NEWMEM is to create the new library members
and place them in the user's FD program library. NEWMEM
first invokes the segment processor routine (SEGPROC)
to load the first overlay segment, IDFlOOO, into main stor­
age. It then examines the count subfield of the KUPBs
within the segment and writes the 476-byte unpacked pro­
gram block field out to the user's library. When all of the
KUPBs in the segment have been examined and selectively
written out, NEWMEM again invokes SEGPROC to load
the next sequential overlay segment. The routine con­
tinues this loading, examining, and writing process until
it encounters the end-of-form indication. At that point,
NEWMEM stores the last unpacked program block of the
FD program, then issues the appropriate form of the STOW
macro to assign the new member's name.

NEWMEM's next action depends upon the return code
from the STOW operation. If the STOW was successful,
NEWMEM begins processing the next FD program. How­
ever, if the STOW was not successful because the FD pro­
gram was a duplicate, NEWMEM may perform one of the
following functions:

• If the user has specified REPLACE, NEWMEM replaces
the old member with the new member.

• If the user has specified a partial replacement, NEWMEM
creates a replacement table from the input parameter
list, searches the table for the name of the new member,
and replaces the old member with the new member if the
name is found in the replacement table. If the name is
not found in the replacement table, NEWMEM stores the
new member under a temporary name, if one is available,
or does not store it at all.

• If the user has not specified any replacement parameters,
NEWMEM stores the new member under a temporary
name, if one is available, or does not store it at all.

If the STOW was unsuccessful because of a stow error or a
DASD space error, NEWMEM passes control to the appro­
priate point in the message fan-in routine so that a descrip­
tive error message may be written out to SYSPRINT.

NEWMEM resumes processing with the next KUPB in the
segment, if one is available, or it invokes SEGPROC to load
the next segment. The next KUPB encountered is the first
KUPB of the next FD program. The routine processes the
new FD program and all other new FD programs in this
manner until it encounters the end-of-assembly indicator.
It then passes control to the diagnostic writer routine
(DIAGWTR). If NEWMEM discovers an error in the count
subfield of a KUPB, it ceases processing immediately and
gives control to the appropriate point in MSGFAN so that
a descriptive error message may be written out to
SYSPRINT.

SEGPROC - Segment Processor: The segment pro.;essor
routine is invoked by the new member routine to load an

Segment Table* (SEGTAB)

Storage Initial (STGINIT)

PARM Processor (PARMPROC)

New Member (NEWMEM)

Message Fan-in (MSGFAN)

Segment Processor (SEGPROC)

Diagnostic Writer (DIAGWTR)

Storage End (STGEND)

Control Synchronous 1/0 Error (CTLSYNER)

Write Operator (WTORTN)

SYSUB DCB (SYSLIB)

SYSPRINT DCB (PRINT)

Entry Table* (ENT AB)

Replacement Table*• (REPL TAB)

*Only present after the execution of the Linkage Editor step.

**Built during the execution of the Storage Step.

Figure 3-23. Module IDFST Physical Organization

overlay segment into main storage. SEGPROC first
sets the status indicator in the SECT AB entry of the
previously called segment to 11, increments the "to" seg­
ment number in ENT AB by one, and sets the "previous cal­
ler" field in ENT AB to zero. It then issues a SEGWI'
supervisor call (SVC 37) to read in the segment. When the
input operation is complete, SEGPROC returns control to
NEWMEM. If a request is made for a segment that exceeds
the range of the available segments, SEGPROC passes con­
trol to the appropriate point in MSGFAN so that a descrip­
tive error message may be written out to SYSPRlNT.

SYNADJ and SYNAD2 - Control Synchronous 1/0 E"or:
One of the control synchronous 1/0 error routines is
invoked when an irrecoverable error is encountered during
an input or output operation. These routines actually cor­
respond to the two 1/0 files used by the Storage step.
SYNADl corresponds to SYSPRINT; SYNAD2 corresponds
to SYSLIB. The purpose of these routines is to determine
the cause and type of error that occurred and to create an
error message that explains the problem. The routines use
the SYNADAF macro to define the error and construct the
error message. This macro examines the following data

Logic Of The Form Description Utility 3-45

STGINIT

PARMPROC

NEWMEM

SEGPROC

I NEWMEM

I
L:MSGFAN I

~IAGWTR I
I I STGEND

lr\J-M-SG_F_A_N_I

L1 DlAGWTR I
Lj STGEND

I
I MSGFAN I

L1 DlAGWTR I
LI STGEND

I
I MSGFAN I
L1 DIAGWTR I

LI STGEND

I

OS
Supervisor

CTLSYNER

~SGFAN I
1 mAGWTR 1

LI STGEND

I
I WTORTN I
LI STGEND I

Figure 3-24. Module IDFST Hierarchy of Routines

areas and records the pertinent information.

• The contents of the general registers

• The data event control block (DECB)

• The exceptional condition code

• The status and sense indications

After examining this data, the macro creates a descriptive
error message that may be written out by either the diag­
nostic writer routine for a SYSLIB error or by SYNADl
itself for a SYSPRINT error. After the message has been
issued, control is passed to the storage end routine.

3-46

MSGFAN -Message Fan-In: The message fan-in routine
may be invoked by any of the following routines:
STGINIT, PARMPROC, NEWMEM, SEGPROC, SYNAD2,
and STGEND. MSGFAN consists of a series of branch and
link (BAL) instructions, each of which corresponds to a
message contained in the message module, IDFMOl. The
routine may be entered at any one of these BAL instruc­
tions. The purpose of MSG FAN is to establish a binary
number and place it in register 3. This binary number
equals the displacement between the start of MSG FAN and
the point at which the entry to the routine was made. The
number is used later by DIAGWTR for scanning a second­
level index in IDFMOl to retrieve the variable detail line(s)
of the message. When the binary number has been estab­
lished in register 3, the routine transfers control to
DIAGWTR.

DIAGWTR -Diagnostic Writer: The diagnostic writer rou­
tine is invoked by the message fan-in routine when all of the
overlay segment processing is complete or when an error
condition is detected and the SYSPRINT file can be used.
First, DIAGWTR issues a LOAD macro to bring the message
module, IDFMOl, into main storage. Next, the routine
moves the three variable characters of the message ID into
the output area, OUTPUT. DIAGWTR then uses the
binary number located in register 3, which is the number
placed there by MSGFAN, to recover the detail line(s) of
the message. Finally, the routine composes the rest of the
header line, including the remainder of the message ID, then
writes the header and detail lines out to the SYSPRINT file.
At this point, DIAGWTR checks to see if processing should
continue. If so, it passes control to the proper routine for
continued processing; if not, DIAGWTR passes control to
the storage end routine.

STGEND - Storage End: The storage end routine is invoked
by either DIAGWTR or WTORTN. It may be called when
all of the overlay segment processing has been completed
successfully or when any type of error condition has been
encountered. The purpose of STGEND is to close the
SYSLIB and SYSPRINT files. When these files have been
closed, the routine gives control to the operating system.

Output DCB: The OUTPUT data control block describes
the characteristics of the SYSLIB file as follows:

DDNAME=SYSLIB
LRECL=476
BLKSIZE=476
MACRF=(W)
DSORG=PO
SYNAD=SYNAD2
RECFM=F

PRINT DCB: The PRINT data control block describes the
characteristics of the SYSPRINT file as follows:

DDNAME=SYSPRINT
MACRF=(PM)

DSORG=PS
SYNAD=SYNADl

REPLT AB - Replacement Table: The replacement table is
constructed by the PARM processor routine if the user has
employed the JCLPARM feature. The format of
REPLTAB is illustrated in Figure 3-25.

Eight
Bytes

~--A'----. I \

NAME1bbb

NAME2bbb

NAME3bbb

NAME4bbb
,..i "" ...J..,

T NAMEnbbb T
Figure 3-25. OS REPLTAB Format

IJLFST Organization

The phase IJLFST is logically organized in seven routines,
two DTFDI macros, and one device independent module
(DIMOD). Figure 3-26 represents the physical organiza­
tion of IJLFST. The logical flow of the seven routines is
graphically represented in Charts DBI and DB2 at the rear
of this section. Figure 3-27 illustrates the hierarchy of the
routines within IJLFST. The routines, macros, and the
DIMOD are described in the following paragraphs.

OPEN - Open Files: The open files routine opens the
SYSIPT and SYSLST files. Control passes automatically to
the get and process control cards routine unless one of the
files fails to open. If one or both of the files fails to open,
the DOS Supervisor terminates the Storage step and returns
control to the DOS Job Control program.

GET - Get and Process Control Cards: The get and process
control cards routine receives control from OPEN at the
start of processing. First, it invokes GETCARD to read in
and validate a control card. It then determines which oper­
and the user has specified (DEVICE=, OPTION=,
RPLACE=, or RPLACE). After determining the operand,
GET validates the operand type to ensure that the control
card has been coded correctly.

If the operand is DEVICE=, the operand type must be
either 2311 or 2314; if neither of these is specified, GET
passes control to the error exit routine, ERREXT. If either
2311 or 2314 is specified, GET sets the indicator in the first
half-word of the replacement table, RPLTAB, to the appro­
priate value, then reads in another card for processing.

If the operand is OPTION=, the operand type must be
UPDATE, LOAD, or LOADFST; if none of these is speci­
fied, GET passes control to ERREXT. If a valid operand

type is specified, GET sets the indicator in the second half­
word of RPLTAB to the appropriate value, then reads in
another card for processing.

IF the operand is RPLACE=, GET increments the replace
card counter by one and checks to see whether the total of
replace cards has exceeded 20. If the total has exceeded 20,
GET passes control to ERREXT; if not, it saves the speci­
fied name in the next available eight-byte location in
RPLTAB, then reads in another card for processing.

If the operand is RPLACE, GET inserts a X'FF' in the
location RPLTAB+4 to indicate that the REPLACE ALL
function was specified. It then reads in another card for
processing. GET continues reading and processing the con­
trol cards until it encounters an end-of-file indication, at
which time control is passed to the end-of-file routine,
EOFRTN .

GETCARD - Get and Validate a Control Card: The get and
validate a control card routine is invoked by GET to read in
a card from SYSIPT and validate it. The validation consists
of checking the first three columns for "//~" and ensuring
that a valid operand is present. If the card is improperly
coded, GETCARD passes control to ERREXT. Otherwise,
it returns control to GET.

ERREXT - Common Error Exit: The common error exit
routine may be invoked by either GET or GETCARD. It is
invoked if any field of a control card is invalid. ERREXT
first sets the error flag and prints out the message
"INCORRECT - JOB TERMINATED," then closes the
SYSLST file and passes control to the flush cards routine,
FLSHCARD.

ERREXTJ - Special Error Exit: The special error exit rou­
tine is invoked by GET if GET detects more than 20 con­
trol cards with the operand "RPLACE=". ERREXTl first
sets the error flag and prints out the message "NUMBER OF
REPLACE CARDS EXCEEDS TWENTY - JOB TERMI­
NATED," then closes the SYSLST file and passes control to
FLSHCARD.

FLSHCARD - Flush Cards: The flush cards routine receives
control from ERREXT or ERREXT 1 when an error has
been encountered. Its function is to read in cards from the
SYSIPT file until the end-of-file indication is encountered.
At that point, the DOS Supervisor passes control to
EOFRTN.

EOFRTN - End-of-File: The end-of-file routine is invoked
by the DOS Supervisor when the end-of-file indication is
encountered on the SYSIPT file. When EOFRTN first
gains control, it checks the error flag to see if an error has
occurred. If so, it closes the SYSIPT file and exits to the
operating system. If not, EOFRTN saves RPLTAB at the
end of the user's partition and closes the SYSIPT and
SYSLST files. It then checks to see which option the user
has specified. If the user has specified LOADFST or
UPDATE, EOFRTN fetches and passes control to

Logic Of The Form Description Utility 3-4 7

Open Files

Get and Process Control Cards

End-of-File

Common Error Exit

Flush Cards

Special Error Exit

Get and Validate a Control Card

SYSIPT DTFDI Macro

SYSLST DTFDI Macro

DIMOD

Replacement Table*

*Built during the execution of IJLFST

Figure 3-26. Module IJLFST Physical Organization

OPEN

GET

GETCARD

GET

~RREXT I
I FLSHCARD I j--1 EOFRTN

.-~-E-R_R_E_X_T_1,I

I FLSHCARD I
Lt EOFRTN

Figure 3-27. Module IJLFST Hierarchy of Routines

3-48

(OPEN)

(GET)

(EOFRTN)

(ERR EXT)

(FLSHCARD)

(ERREXT1)

(GETCARD)

(CARDTF)

(PRNTDTF)

(INMOD)

(RPLTAB)

IJLFUPDT. If the user has specified LOAD, EOFRTN
fetches and passes control to IJLFLOAD.

SYSIPT DTFDI Macro: The DTFDI macro for the system
input file, SYSIPT, specifies the following operands:

DEV ADDR=SYSIPT
EOFADDR=EOFRTN
IOAREAl =RDAREA
MODNAME=INMOD
RECSIZE=80
ERROPT=IGNORE
SEPASMB=NO

SYSLST DTFDI Macro: The DTFDI macro for the system
print file, SYSLST, specifies the following operands:

DEV ADDR=SYSLST
IOAREAl =ERRMSG
MODNAME=INMOD
RECSIZE=l21
SEPASMB=NO
ERROPT=IGNORE

DIMOD: The characteristics of the device independent
module (DIMOD) are specified through the use of the
DIMOD macro. The name of this module within IJLFST
is INMOD. Its characteristics are defined as follows:

SEPASMB=NO
TYPEFLE=OUTPUT

Additional information about the DTFDI and DIMOD mac­
ros is contained in the manual IBM System/360 Disk Opera­
ting System Supervisor and Input/Output Macros, Order
Number GC24-5037.

/JLFLOAD Organization

The phase IJLFLOAD is logically organized in seven rou­
tines, one DTFDI macro, one DTFIS macro, one device
independent module (DIMOD), and one ISAM module
(ISMOD). Figure 3-28 represents the physical organization
of IJLFLOAD. The logical flow of the seven routines is
graphically represented in charts DCl and DC2 at the rear
of this section. Figure 3-29 represents the hierarchy of the
routines within IJLFLOAD. The routines, macros, and
modules are described in the following paragraphs.

CALLOAD - Load Initial: The load initial routine opens
the IJFDLIB (user's library) and SYSLST files. If one or
both of the files fails to open properly, the DOS Supervisor
terminates IJLFLOAD and returns control to the DOS Job
Control program. However, if the files do open properly,
CALLO AD invokes the load overlay phases routine,
LOADRTN, to load the first overlay phase. It saves the
name and count subfields of the first KUPB in the phase,
then transfers control to the validate records routine,
RCDCHK.

RCDCHK - Validate Records: The validate records routine
receives control from CALLO AD after the first overlay
phase has been loaded. RCDCHK validates the name and
count subfields of the first KUPB in the overlay phase, then
invokes the ISAM put routine, ISMPUT, to write out the
476-byte unpacked program block field to the user's
library, together with the 10-byte key. It processes the sec­
ond and third KUPBs in the same manner. When the three
KUPBs in an overlay phase have been processed, RCDCHK
invokes LOADRTN to load the next sequential phase.
RCDCHK continues this reading, validating, and writing
process until it encounters an end-of-assembly indication.
At that point, it transfers control to the message fan-in
routine, MSGFAN, to write out a message indicating the
successful completion of IJLFLOAD. If RCDCHK dis­
covers an error in the name or count subfield of any KUPB,
it transfers control to the appropriate point in MSGFAN so
that a descriptive error message may be written out.

LOADRTN - Load Overlay Phases: The load overlay phases
routine is invoked by CALLOAD and RCDCHK to load an
overlay phase into main storage from the core image library.
LOADRTN uses the LOAD macro to read in the phase.
When the input operation is complete, LOADRTN returns
control to the calling routine.

ISMPUT - ISAM Put: The ISAM put routine is invoked by
RCDCHK to put out a 476-byte unpacked program block
and a 10-byte key to the user's library, IJFDLIB. Before
ISMPUT writes out any records, it initializes the data set
index areas by issuing a SETFL macro. It then attempts to
write out the record. If the attempt is successful, ISMPUT
returns control to RCDCHK. If the attempt is unsuccess­
ful because of a DASD error, wrong length record error, or
undetermined error, ISMPUT again attempts to write out·
the record. If this attempt is successful, the routine returns
control to RCDCHK; if it is unsuccessful, ISMPUT passes
control to the appropriate point in MSGF AN so that a
descriptive error message may be written out. Similarly, if
the original attempt to write out the record is unsuccess­
ful for any reason other than those stated above ISMPUT
passes control to MSGFAN.

MSGFAN -Message Fan-In: The message fan-in routine
may be invoked by RCDCHK or ISMPUT. MSGFAN con­
sists of a series of branch and link (BAL) instructions, each
of which corresponds to a message contained in the message
module, IJLFMOl. The routine may be entered at any one
of these BAL instructions. The purpose of MSGF AN is to
establish a binary number and place it in register 3. This
binary number equals the displacement between the start of
MSGF AN and the point at which the entry to the routine is
made. The number is used later by the diagnostic writer
routine for scanning an index in IJLFMOl to retrieve the
required message. When the binary number has been es­
tablished in register 3, the routine transfers control to the
diagnostic writer routine.

Logic Of The Form Description Utility 3-49

Load Initial (CALLOAD)

Validate Records (RCDCHK)

End-of-Job (EOJRTN)

Message Fan-in (MSGFAN)

Diagnostic Writer (DIAGWTR)

Load Overlay Phases (LOADRTNl

ISAM Put (ISM PUT)

IJFDLIB DTFIS Macro (IJFDLI Bl

SYSLST DTFDI Macro (PRNTDTF)

ISMOD (LOADMOD)

DIMOD (OUTMOD)

Figure 3-28. Module IJLFLOAD Physical Organization

CAL LOAD

ICoADRTN I
LI CALLOAD

I
RCDCHK

ISM PUT

RCDCHK

IMsGFAN I
L~IAGWTR

I I EOJRTN

,_ILC_L_O_A_D_R_T_N__,,

LI RCDCHK

I
I MSGFAN I
L1 DiAGWTR I

LI EOJRTN

Figure 3-29. Module IJLFLOAD Hierarchy of Routines

3-50

DIAGWTR - Diagnostic Writer: The diagnostic writer rou­
tine is invoked by the message fan-in routine when all of
the overlay phase processing has been completed success­
fully or when an error has been detected by RCDCHK or
ISMPUT. First, DIAGWfR uses the value in register 3 to
compute the proper offset in IJLFMOl. Next, it issues a
load macro to bring IJLFMOl into main storage, then moves
the appropriate message into the output area. Finally, it
writes the message out to the SYSLST file. When the out­
put operation is complete, DIAGWfR passes control to the
end-of-job routine, EOJRTN.

EOJRTN - End-of-Job: The end-of-job routine receives con­
trol from DIAGWfR. Its purpose is to close the IJFDLIB
and SYSLST files. First, EOJRTN issues an ENDFL macro
to write out an EOF indication to IJFDLIB. If this action
causes the prime data area to overflow, EOJRTN transfers
control to MSGF AN. If not, EOJRTN closes the two files
and exits to the operating system.

/JFDLIB DTFIS Macro: The DTFIS macro for the user's
library file, IJFDLIB, specifies the following operands:

DSKXTNT=3 DEVICE=231 l
IO RO UT= LOAD ERREXT=YES
KEYLEN=lO HINDEX=2311
NRECDS=l IOAREAL=ISAMAREA
RECFORM=FIXUNB MODNAME=LOADMOD
RECSIZE=476 WORKL=WKAREA
CYLOFL=8

SYSLST DTFDI Macro: The DTFDI macro for the system
print file, SYSLST, specifies the following operands:

DEVADDR=SYSLST
IOAREAl =ERRMSG
MODNAME=OUTMOD
RECSIZE= 121
SEPASMB=NO
ERROPT=IGNORE

ISMOD: The characteristics of the ISAM module (ISMOD)
are specified through the use of the ISMOD macro. The
name of this module within IJLFLOAD is LOADMOD. Its
characteristics are defined as follows:

ERREXT=YES
IOROUT=LOAD
SEPASMB=NO

DIMOD: The characteristics of the device independent
module (DIM OD) are specified through the use of the
DIMOD macro. The name of this module within
IJLFLOAD is OUTMOD. Its characteristics are defined as
follows:

SEPASMB=NO
TYPEFLE=OUTPUT

IJLFUPDT Organization

The phase IJLFUPDT is logically organized in nine routines,
one DTFIS macro, one DTFDI macro, one ISAM module
(ISMOD), and one device independent module (DIMOD).
Figure 3-30 represents the physical organization of
IJLFUPDT. The logical flow of the nine routines is graph­
ically represented in charts DDl through DD4 at the rear of
this section. Figure 3-31 represents the hierarchy of the
routines within IJLFUPDT. The routines, macros, and
modules are described in the following paragraphs. How­
ever, before the routines are entered, IJLFUPDT examines
RPLT AB to determine which device type was specified. If
the device type is 2311, control is passed immediately to
the update initial routine, CALLOAD. However, if the
device type is 2314, IJLFUPDT modifies the IJFDLIB
DTFIS macro to indicate 2314. Control is then passed to
CALLO AD.

CALLOAD - Update Initial: The update initial routine
opens the IJFDLIB (user's library) and SYSLST files. If
one or both of the files fails to open properly, the DOS
Supervisor terminates IJLFUPDT and returns control to the
DOS Job Control program. However, if the files do open
properly, CALLO AD invokes the load overlay phases rou­
tine. LOADRTN, to load the first available overlay phase.
It saves the name and count subfields of the first KUPB in
the phase, then transfers control to the validate records rou­
tine, RCDCHK.

RCDCHK - Validate Records: The validate records routine
receives control from CALLOAD after the first available
overlay phase has been loaded. The purpose of RCDCHK
is to create new library members and to place them in the
user's FD program library. RCDCHK validates the name
and count subfields of the first KUPB in the overlay phase,
then invokes the ISAM put routine, ISMPUT, to write out
the 476-byte unpacked program block and 10-byte key to
the user's library. If the routine discovers an error in either
of the subfields, it invokes MSG FAN to print out a descrip­
tive error message, then passes control to the flush FD pro­
gram routine, FLUSH. RCDCHK processes the second and
third KUPBs in the same manner as the first. When the
three KUPBs of an overlay phase have been processed,
RCDCHK invokes LOADRTN to load the next available
phase. It then processes the KUPBs within that phase.
RCDCHK continues processing overlay phases in this man­
ner until it reaches the end of the FD program. At that
point, it prints out a message stating that the program has
been stored, then resumes processing with the next FD pro­
gram. When all of the FD programs have been processed,
RCDCHK invokes MSGFAN to write out a message indi­
cating the successful completion of the Storage step, then
transfers control to the end-of-job routine, EOJRTN.

Logic Of The Form Description Utility 3-51

Update Initial (CALLOAD)

Validate Records (RCDCHK)

Flush FD Program (FLUSH)

Load Overlay Phases (LOADRTN)

ISAM Put (ISMPUT)

End-of-Job (EOJRTN)

Update Name (UPDTNM)

Message Fan-in (MSGFAN)

Diagnostic Writer (DIAGWTR)

IJFDLIB DTFIS Macro (IJFDLIB)

ISMOD (UPDTMOD)

SYSLST DTFDI Macro (PRNTDTF)

DIMOD (OUTMOD)

Figure 3-30. Module IJLFUPDT Physical Organization

LOADRTN - Load Overlay Phases: The load overlay phases
routine may be invoked by CALLOAD, RCDCHK, and
FLUSH. The purpose of LOADRTN is to load an overlay
phase into main storage. It issues a LOAD macro to bring
in the phase, then increments the phase name operand that
will be used to retrieve the next sequential overlay phase in
the next pass through LOADRTN. Finally, it returns con­
trol to the calling program.

/SMPUT - ISAM Put: The ISAM put routine is invoked by
RCDCHK to write out a keyed record on IJFDLIB. In addi­
tion to the initial output operation, ISMPUT contains four
subroutines that are used to ensure that the record is writ­
ten out properly. ISMPUT first moves the record to be
stored into the output area. It writes out the record, waits
for the output operation to end, then checks to see if the
record was a duplicate. If the record was a duplicate, it
transfers control to the DUPRTN subroutine; if not, it
transfers control to the ERRRTN subroutine.

• ERRRTN - The purpose of ERRRTN is to ensure that
the record was written out without error. First, it checks

3-52

to see if there was a DASD error or a wrong length rec­
ord error. If there was an error, ERRRTN attempts the
output operation again and checks the results. If the
operation is successful this time, ERRRTN transfers con­
trol to the DATAOK subroutine; if not, it invokes
MSGFAN to print out an error message, then transfers
control to EOJRTN. If neither of the above mentioned
errors has occurred, ERRRTN checks to see if an EOF
was written out, if no output record was found, or if
the overflow area was full. If one of these errors has
occurred, ERRRTN invokes MSGFAN to write out an
error message, then transfers control to EOJRTN. Other­
wise, if ERRRTN does not detect any of these errors, it
transfers control to the DATAOK subroutine.

• DAT AOK - The DATAOK subroutine receives control
from either ERRRTN or RPLCDUP. It checks to see if
a temporary name was assigned to the FD program cur­
rently being processed and, if so, whether the user has
been notified. If a temporary name has been assigned
and the user has not been notified, DATAOK invokes

CAL LOAD

I LOADRTN I
LI CALLOAD

I
RCDCHK

ISM PUT

MSG FAN/
DIAGWTR

RCDCHK

IUPDTNM I
L.1 ISMPUT

I
MSG FAN/
DIAGWTR

EOJRTN

MSG FAN/
DIAGWTR

ILOADRTN I
LI RCDCHK

I
IUPDTNM I
LI RCDCHK

I

MSG FAN/
DIAGWTR

RCDCHK

MSG FAN/
DIAGWTR

I CALLOAD

I
MSG FAN/
DIAGWTR

FLUSH

I FLUSH
I

ICoADRTN I
Lj FLUSH

I
I LOADRTN I
LI RCDCHK

I
EOJRTN

MSG FAN/
DIAGWTR

EOJRTN

MSG FAN/
DIAGWTR

MSG FAN/
DIAGWTR

Figure 3-31. Module IJLFUPDT Hierarchy of Routines

MSGFAN to write out the information message, then
returns control to RCDCHK. If no temporary name was
assigned, DATAOK simply returns control to RCDCHK.

• DUPRTN - The DUPRTN subroutine receives control if
the record that ISMPUT is trying to write out is part of a
duplicate FD program. If the user has specified a
LOADFST operation, or if he has specified RPLACE, or
if the FD program's name is in the replacement table,
DUPRTN transfers control to the RPLCDUP subroutine.
If none of these conditions apply, DUPRTN prepares the
record for storage under a temporary name, then trans­
fers control to the start of ISMPUT so that the record
may be stored. However, if no temporary names are
available, DUPRTN prints out a message stating that fact
and transfers control to FLUSH.

• RPLCDUP - The RPLCDUP subroutine receives control
from DUPRTN when a duplicate record is to be replaced
in IJFDLIB. It reads in the record to be replaced and
writes out the new record in its place. It then checks to
see if the record was written out properly. If it was not,
RPLCDUP transfers control to ERRRTN. If the record
was written out properly, RPLCDUP transfers control to
DATAOK.

UPDTNM - Update Name: The update name routine may
be invoked by RCDCHK and ISMPUT. The purpose of
UPDTNM is to increment the temporary name number field
by one. After it has accomplished this task, it returns con­
trol to the calling routine.

FLUSH - Flush FD Program: The flush FD program rou­
tine receives control from RCDCHK when that routine dis­
covers an error in a KUPB. FLUSH simply reads in the
erroneous FD program's KUPBs until it encounters the next
FD program or the end-of-assembly indication. If it en­
counters the end-of-assembly indication, it transfers con­
trol to EOJRTN; otherwise, it transfers control to the label
SAVENMl inCALLOAD.

MSGFAN -Message Fan-In: The message fan-in routine
may be invoked by RCDCHK, ISMPUT, and EOJRTN.
MSG FAN consists of a series of branch and link (BAL)
instructions, each of which corresponds to a message con­
tained in the message module, IJLFMOl. The routine may
be entered at any one of these BAL instructions. The pur­
pose of MSG FAN is to establish a binary number and to
place it in register 3. This binary number equals the dis­
placement between the start of MSG FAN and the point at
which the entry to the routine is made. The number is used
later by the diagnostic writer routine for scanning an index
in IJLFMOl to retrieve the required message. When the
binary number has been established in register 3, MSGFAN
transfers control to the diagnostic writer routine.

Logic Of The Form Description Utility 3-53

DIAGWTR - Diagnostic Writer: The diagnostic writer rou­
tine is invoked by the message fan-in routine when all of
the overlay phase processing has been completed success­
fully or when an error has been detected by RCDCHK or
ISMPUT. First, DIAGWTR issues a LOAD macro to bring
IJLFMOl into main storage. Next, it uses the value in
register 3 to compute the proper offset in IJLFMOl, then
moves the message into the output area. If the message
needs the FD program name or temporary name inserted
into its text, DIAGWTR inserts it. It then writes out the
message to the SYSLST file and returns control to the rou­
tine that invoked MSGFAN.

EOJRTN - End-of-Job: The end-of-job routine may be
invoked by RCDCHK when all of the overlay phases have
been processed correctly, or by ISMPUT if that routine
encounters an error. EOJRTN prints out a message stating
that the Storage step has been completed, then closes the
IJFDLIB and SYSLST files. Finally, it exits to the opera­
ting system.

JJFDLIB DTFIS Macro: The DTFIS macro for the user's
library file, IJFDLIB, specifies the following operands:

DSKXTNT=3 HINDEX=231 l
IOROUT=ADDRTR IOAREAL=RWKAREA
KEYLEN=lO IOAREAR=RWKAREA
NRECDS=l IOSIZE=560
RECFORM=FIXUNB KEY ARG=KEYFLD
RECSIZE=4 7 6 MODNAME=UPDTMOD
CYLOFL=8 TYPEFLE=RANDOM
DEVICE=2311 WORKL=WKAREA
ERREXT=YES WORKR=WKAREA

SYSLST DTFDI Macro: The DTFDI macro for the system
print file, SYSLST, specifies the following operands:

DEV ADDR=SYSLST
IOAREAI =ERRMSG
MODNAME=OUTMOD
RECSIZE=l21
ERROPT=IGNORE

ISMOD: The characteristics of the ISAM module (ISMOD)
are specified through the use of the ISMOD macro. The
name of this module within IJLFUPDT is UPDTMOD. Its
characteristics are defined as follows:

ERREXT=YES
IOROUT=ADDRTR
RECFORM=FIXUNB
TYPEFLE=RANDOM

3-54

DIMOD: The characteristics of the device independent
module (DIMOD) are specified through the use of the
DIMOD macro. The name of this module within IJLFUPDT
is OUTMOD. Its characteristics are defined as follows:

TYPEFLE=OUTPUT

Message Modules IDFM01 and IJLFM01 Organization

The message modules IDFMOl and IJLFMOl are organized
alike. Figure 3-32 illustrates this organization. The mes­
sage modules contain all of the text messages that are writ­
ten out to a printer or print queue or to the operator con­
sole during the execution of the Control and Storage steps.
(DOS messages are written out to the printer exclusively.)
The messages are grouped this way to ease their translation
and alteration. IDFMOl must reside in either the system
link library or in a user-defined job/step library; IJLFMOl
must reside in a core-image library.

When the need arises to write out a message during the
execution of the Control or Storage step, the message mod­
ule is loaded into main storage. The index is examined to
determine the address of the appropriate detail message.
The message is composed by the diagnostic writer routine
of the step requiring the message. Certain fields within the
message are added by the diagnostic writer, such as the
number of CSECTs processed, the temporary name used to
store an FD program or its real member (FD program)
name, the deck ID, the card sequence number, etc. The
message is then written out to the appropriate file.

Indexes to Control Messages

Indexes to Storage Messages

Control and Storage
Message Text

Figure 3-32. Modules IDFMOl and IJLFMOl Organization

FD UTILITY FLOWCHARTS

Chart OAl OS FD UTILITY CONTROL STEP: IDFCT CHART l OF 5

• z • • 4 •

GET CHECK
ENTER

READ IN A
RECORD FROM

SYSIN

.. •
OPEN THE

8
SYSIN 1

S~~~~~fN~ND 8

FILES

.. •

c

.. •

D D

.. •

E E

.. •

F F

.. •
ESDERR4

G G

CNTLEND

.. •

INCREMENT THE
H ESD ITEM H

COUNTER BY ONE

.. •
INCREMENT THE

ESD NAME
COMPARAND BY

ONE

•
INCREMENT THE

ADDRESS
COMPARAND BY

2920

ITEM2

• 4

Logic Of The Form Description Utility 3-55

Chart OA2 OS FD UTILITY CONTROL STEP: IDFCT CHART 2 OF 5

'

f ,.

I

B

,.

c

,.

0

,.

E

,.

F

,.

G

,.

H

,.

J

,.

a

3-56

CHECKLI

'

SET THE ESD
NAME COMPARAND

~--~ TO THE NEXT

a

AVAILABLE
SEQUENCE NUMBER

' 4 '

..

B

..

..

0

..

E

..

F

..

G

..

H

CHECKLI UPDATE

..

J

..

K

4

Chan OA3 OS FD UTILITY CONTROL STEP: IDFCT CHART 3 OF 5

•

B

•

•

0

•

E

•

F

•

•

H

•

•

PUT OUT A
RECORD TO

SYSUTI

GE TC HECK

READ IN A
RECORD FROM

SYSIN

SAVE THE END
RECORD'S

SEQUENCE NUMBER

RE I NIT I AL I lE
THE INPUT

RECORD SEQUENCE
NUMBER ANO TYPE

COMP AR ANOS

'

•

SET THE ADDRESS
COMPARANO TO

ZERO

ESOITEMI

'

•

CLEAR THE
OUTPUT AREA

i OB JC ARD)

MOVE THE
INCLUDE

STATEMENT TEXT
INTO THE OUTPUT

AREA

PUTCARO

PUT OUT THE
INCLUDE CONTROL

STATEMENT

MOVE THE
OVERLAY

STATEMENT TEXT
INTO THE OUTPUT

AREA

PUT CARO

PUT OUT THE
OVERLAY CONTROL

STATEMENT

MOVE THE INSERT
STATEMENT TEXT
INTO THE OUTPUT

AREA

PUTCARO

PUT OUT THE
INSERT CONTROL

STATEMENT

'

•

'

NOTE: THE ENTRY TO THE END-OF-FILE

ROUTINE IS SPECIFIED JN THE

SYSIN FILE DCB MACRO AS FOLLOWS;

EOOAD=EOFRTN

DECREMENT THE
ESO ITEM

COUNTER BY ONE

1 5

CLOSE THE
y SYSIN,

SYSUTI I AND
SY SPRINT

FILES

ESTABLISH A
INCREMENT THE RETURN CODE OF

INSERT COUNTER 0 !SUCCESSFUL
BY ONE COMPLETION I

PLACE THE NEW EXIT TO THE
INSERT COUNTER OPERATING

VALUE IN THE SYSTEM
l NSERT

STATEMENT TEXT

PUTCARD

DA2 C4

OA3 81 ,D3,
F3,H3

PUT THE
RECORD IN

08-.JCARD OUT TO
THE SYSUTI

FILE

RETURN TO
CALLER

4

..

B

..

..

0

..

E

..

F

..

G

..

H

..

..

Logic Of The Form Description Utility 3-S 7

Chart OA4 OS FD UTILITY CONTROL STEP: IDFCT CHART 4 OF 5

• • • •

GET CHECK

NOTE: THE ENTRY POINTS TO MSGFAN
DAI A3 ARE AS FOLLOWS:

OA3 Cl • ..
II OPENERR1 bl ESDERR4

21 OPENERR2 7' ESDERR5
ESTABLISH THE

READ IN A BINARY OFFSET 31 ESDERRI 81 CAR DERR
8 RECORD FROM THE FOR THE 8

SYSIN FILE REQUIRED 41 ESDERR2 91 DECK ERR
MESSAGE

51 ESDERR3 I 0 I CTEND

111 ENDERR • ..
TURN OFF THE PLACE THE

c "FIRST ENTRY" 8 INARY OFFSET c
SWITCH IN REG I STER 3

• ..
LOAD THE

SAVE THE DECK MESSAGE
D I DENT IF I CAT I ON MODULE D

l I OFMO 1 J

..
USE THE 8 I NARY
OFFSET TO FI ND

E THE PROPER E
MESSAGE IN

IDFMO I

..
SAVE THE MOVE THE

CURRENT MOVE THE YES DYNAMIC
F RECORD'S MESSAGE INTO INFORMATION

SEQUENCE NUMBER THE OUTPUT AREA INTO THE OUTPUT
AREA

• ..
INCREMENT THE

SEQUENCE NUMBER
G COMPARAND BY G

ONE

• ..

H H

CNTLEND

YES • ..
SET THE TYPE SET THE TYPE
COMPARAND TO COMPARAND TO J

"TXT" "END"

• ..

K

• •

3-58

Chart OAS OS FD UTILITY CONTROL STEP: IDFCT CHART 5 OF 5

'

•

•

D

•

E

F

G

H

•

•

ISSUE A
SYNADAF MACRO

TO DIAGNOSE
THE I I 0 ERROR

MOYE THE
RETURNED ERROR

INFORMATION
INTO THE OUTPUT

AREA

ISSUE A
SYNAORLS

MACRO

PLACE THE
SYSPR I NT

MESSAGE HEADER
IN THE OUTPUT

AREA

(o;i
"\)'

CNTLEND

'

OA5
C2

PLACE THE
SYSIN

>----1 MESSAGE HEADER
YES

IN THE OUTPUT
AREA

'

...-~~~~~~--. PUTMSG

PLACE THE
YES S YSUT I

>----! MESSAGE HEADER

·•

IN THE OUTPUT
AREA

PUTMSG

•

'

NOTE: THE ENTRIES TO THE CONTROL

SYNCHRONOUS I /0 ERROR ROUT I NE

ARE SPECIFIED IN THE INDIVIDUAL

FILE DCB MACROS AS FOLLOWS:

SYSIN
SYSUT1
SYSPRINT

•

SYNAD:SYNADt
SYNAD:SYNAD2
SYNAD:SYNA03

..

B

..

c

..

D

..

E

..

F

..

G

..

H

..

..

Logic Of The Form Description Utility 3-59

Chart OBI OS FD UTILITY STORAGE STEP: IDFST CHART I OF 4

• • • •

GET THE ADDRESS
ENTER OF THE SAVE THE NAME

PARAMETER DATA FIELD
AREA

• •

OPEN THE
8 SYSPRINT FILE

• •
LOAD THE

ADORES S OF THE
c NEWMEM ROUTINE c

1081 12) INTO
REGISTER 8

• •

OPEN THE
D SYSLIB FILE D

• •

~
LOAD THE

ADDRESS OF THE
DELETE ROUTINE

(083 10l INTO

2

REG I STER 8

• •
COUNTERR

INCREMENT THE
FORM COUNT

F COMPARAND BY
ONE

OPENERR2

• •
WRITEREC

G WR I TE OUT THE G
LAST 476 BYTES

OF THE KUPB

• •

~ SET THE SECTOR
H

4
COUNT IKUPB H

COUNT I TO ZERO
ST GENO

• •
SET REGISTER
THREE TO THE

ADDRESS OF THE
LOADED SEGMENT

• •
R3 = R3 + 486 INCREMENT THE LOAD THE

SET THE POINTER SECTOR COUNT ADDRESS OF THE
TO THE NEXT ~ KUP8 COUNT! BY DELETE ROUTINE

KUPB ONE (083) 0) INTO
REGISTER 8

BAD SECT

3-60

Chart OB2 OS FD UTILITY STORAGE STEP: IDFST CHART 2 OF 4

..

..

~
'V
l

STOW THE
COMPLETE FD

PROGRAM

• •

SAVE REGISTER 3

•

[a;J
'\}'

•

..

..

c

STOWOK1

..

0

..

E

..

F

..

G

..

..
SET THE PO INTER

TO THE NEXT
TABLE ENTRY

•

STOW THE FD
PROGRAM UNDER

A TEMPORARY
NAME

SAVE REGISTER 3

LOAD THE
ADDRESS OF THE
DELETE ROUT I NE

1083 10! INTO
REGISTER B

NOTE MP 1

..

..

E

..

..

G

..

H

..

..

K

Logic Of The Form Description Utility 3-61

Chart OBJ OS FD UTILITY STORAGE STEP: IDFST CHART 3 OF 4

..

B

..

..

D

..

E

F

G

..

H

..

3-62

•

~- - - - - -

1
ISSUE A
SYNAOAF

MACRO TO
DIAGNOSE
THE ERROR

MOVE THE
RETURNED ERROR

I NFORMAT l ON
INTO THE OUTPUT

AREA

ISSUE A
SYNADRLS

MACRO

PLACE THE
SYSPR INT

MESSAGE HEADER
IN THE OUTPUT

AREA

~
'\;:)'
STGEND

~
'\/
1

ISSUE A
SYNAOAF

MACRO TO
DIAGNOSE
THE ERROR

MOVE THE
RETURNED ERROR

INFORMATION
l NTO THE OUTPUT

AREA

ISSUE A
SYNADRLS

MACRO

PLACE THE
SYSLIB MESSAGE

HEADER IN THE
OUTPUT AREA

~
"-::/
PUT MSG

•

•

• 4 •

NOTE: THE ENTRIES TO THE CONTROL

SYNCHRONOUS 1/0 ERROR ROUTINES

ARE SPECIFIED IN THE INDIVIDUAL

FILE DCB MACROS AS FOLLOWS

STOW THE FD
PROGRAM AS

IDFTEMPX

SYSPRINT - SYNAD=SYNA01
SYSLIB - SYNAD:SYNA02

RESTORE
REG I STER 3

R4 : R3 + 486
SET THE POINTER

TO THE NEXT
KUPB

R3 : R3 + 486
SET THE PO INTER DELETE

IDFTEMPX ~--~ TO THE NEXT

NEWMEM

•

KUPB

SET THE FORM
COUNT COMPARAND

TO ZERO

SAVE THE NAME
FIELD OF THE

NEXT KUPB

NEXTCHK

A

..

B

..

..

D

..

E

..

F

..

G

..

H

..

..

K

Chart 084 OS FD UTILITY STORAGE STEP: IDFST CHART 4 OF 4

..

B

..

c

..

D

..

E

..

F

..

..

H

..

J

..

SEGPROC

081 F2

RESTORE THE
FIRST 8 BYTES
OF THE ENTRY
TABLE 1ENTA8!

INCREMENT THE
~TO" SEGMENT
NUMBER BY ONE

IN ENT AB

SET THE
PREVIOUS CALLER

FIELD TO ZERO
IN ENTAB

ISSUE THE
SEGWT MACRO
TO LOAD AN

OVERLAY
SEGMENT

SET STATUS
INDICATOR TO 3

IN SEGTAB

R7 : R7 4
UPDATE THE

PO J NTER TO THE
NEXT ENTRY l N

SEGTAB

'

INITIALIZE BASE
REGISTERS 5, 6,

ANO 7

SAVE THE NAME
OF THE HIGHEST
OVERLAY SEGMENT

IN SYSLMOO

~LAST

SWITCH

RETURN TO
NEWMEMR

'

ESTABLISH THE
BI NARY OFFSET

FOR THE
REQUIRED

MESSAGE

PLACE THE
BINARY OFFSET
IN REGISTER 3

LOAD THE
MESSAGE
MODULE

(IDFMO 11

USE THE BI NARY
OFFSET TO FIND

THE PROPER
MESSAGE IN

IOFMOI

MOVE THE
MESSAGE INTO

THE OUTPUT AREA

' 4 '

NOTE: THE ENTRY POINTS TO MSGFAN

ARE AS FOLLOWS:

MOVE THE
DYNAMIC

INFORMATION
INTO THE OUTPUT

AREA

4

I I OPENERR2

21 PARMERRI

3 J NAME ERR

4J INCSECT

51 BADSECT

6 l SPACERR

7 I STOWERR !

8) STOWOKI

9) NO TEMP I

IOJ TEMPMSG

I 1 I COUNTERR

121 ENOJDB

WR I TEREC

081 F4

POINT TO THE
LAST 476 BYTES
OF THE CURRENT

KUPB

WR I TE THE
476 BYTES

OUT TO
SYSL 18

ISSUE A
CHECK MACRO
TO VALIDATE

THE WR I TE
OPERATION

RETURN TO
CALLER

•

B

•

c

•

D

•

E

•

•

G

•

H

•

•

Logic Of The Form Description Utility 3-63

Chart DAI

A

..

8

..

c

..

D

E

..

..

G

..

H

..

~

..

3-64

DOS FD UTILITY CONTROL STEP: IJLFCT CHART 1OF4

READ IN A
RECORD FROM

SYSlPT

TXTPROC

•

ESDERRI

SAVE THE
ADDRESS FIELD

UPDATE THE

L~~gr~DD~~~~'
COMP AR ANDS

•

YES

•

•

•

4

PUT CARD

PUT OUT THE
PHASE STATEMENT

TO SYSPCH

CREATE AN
INCLUDE

STATEMENT FOR
AN INPUT CSECT

PUT CARD

PUT OUT THE
INCLUDE STATE­
MENT TO SY SPCH

RECREATE AN ESD
RECORD

PUT CARO

PUT OUT THE
RECORD TO

SYSPCH

---1~

8
4

•

•

POINT TO THE
I /O AREA THAT
CONT A I NS THE

TXT RECORD

r;;;i
'V

TXTPROC

..

..

c

..

D

..

E

..

F

..

G

..

H

..

..

K

Chart DA2 DOS FD UTILITY CONTROL STEP: IJLFCT CHART 2 OF 4

•

D

E

F

G

H

J

PUTCARD

PUT OUT A
RECORD TO

SYSPCH

GETCHECK

READ IN A
RECORD FROM

SYS I PT

RESET THE
GETCHECK

COMPARANOS TO
THEIR INITIAL

VALUES

GETCHECK

READ IN A
RECORD FROM

SYS I PT

SET THE l TMSAVE
INDICATOR TO 3

•

RESET THE ITEM

c~g~ms
COUNTER, ANO

ESQ NAME FIELD

ENDPCH

•

•

•

~ 3 NOTE:

- - - - - - - - - - -

ESTABLISH THE
BINARY OFFSET

FOR THE
REQUIRED

MESSAGE

PLACE THE
BINARY OFFSET
IN REGISTER 3

LOAD THE
MESSAGE
MODULE

(I JLFMO I I

USE THE BINARY
OFFSET TO FIND

THE PROPER
MESSAGE IN

IJLFMOI

MOVE THE
MESSAGE INTO

THE OUTPUT AREA

CLOSE THE
SYSLST FILE

EXIT TO THE
OPERATING

SYSTEM

MOVE THE
DYNAMIC

INFORMATION
INTO THE OUTPUT

AREA

4

•

THE ENTRY POINTS TO MSGFAN

ARE AS FOLLOWS:

•
11 OPENERR I 71 ESDERR5

21 OPENERR2 81 CAROERR

31 ESDERR I 91 DECKERR

41 ESDERR2 I 0 ! SY NAO I

51 ESDERR3 111 5YNA02

61 ESDERR4 121 CTEND •

•

D

•

E

•

•

G

•

H

•

J

•

Logic Of The Form Description Utility 3-65

Chart DA3 DOS FD UTILITY CONTROL STEP: IJLFCT CHART 3 OF 4

..

B

..

..

D

..

E

..

F

..

G

..

H

..

..

3-66

GET CHECK

DA2 Cl
DAZ 81,Ht

READ IN A
RECORD FROM

SYS I PT

SHIFT THE DATA
LEFT ONE
POSITION

SAVE THE DECK
IDENT IF I CAT I ON

CARDERR

YES

• •

SAVE THE
SEQUENCE NUMBER

FOR POSSIBLE
USE IN A

MESSAGE

NAMUPD

INCREMENT THE
SEQUENCE NUMBER
COMPARAND BY I

•

DA2
83

r----'----""""IC.ARDERR

CHANGE THE TYPE
COMPARANO TO

END

RETURN TO
CALLER

RETURN TO
CALLER

•

PUT CARD

DA1 C4,E4,H4
DA2 A 1
DA4 F 1 ,03

SELECT CARO
HOPPER 2

RETURN TO
CALLER

YES CHANGE THE TYPE >----I COMPARAND TO
TXT

RETURN TO
CALLER

..

8

..

c

..

D

..

E

..

F

..

G

..

H

..

J

..

K

Chart DA4 DOS FD UTILITY CONTROL STEP: IJLFCT CHART 4 OF 4

• • • •

.. •

GENERATE A NEW NAMUPD
B END RECORD B

DA3 03
DA4 E 1 ,C3 .. •

GENERATE A TXT NAMUPD
RECORD WITH INCREMENT THE

c BLANKS IN THE INCREMENT THE SEQUENCE NUMBER c
TXT FIELD SEQUENCE NUMBER COMPARAND BY I

COMPARAND BY I

•
GENERATE AND PUT CARD RETURN TO

INSERT AN CALLER
END-OF-DECK PUT OUT THE END D

I ND I CA TOR RECORD TO
IX' FFFE' l SYSPCH

.. •
NAMUPD

E INCREMENT THE E
SEQUENCE NUMBER
COMPARAND BY I

.. •
PUTCARD

CLOSE THE
F PUT OUT THE TXT SYSIPT AND F

RECORD TO SYSPCH FILES
SYSPCH

.. •

G G

CT END

.. •

H H

.. •

.. •

•

Logic Of The Form Description Utility 3-67

Chart DB 1 DOS FD UTILITY STORAGE STEP: IJLFST CHART 1 OF 2

.. T
OPEN THE

B SYSIPT AND
SYSLST FILES

SAVE THE
LOCATION OF THE

c FIRST NAME
FIELD IN RPLTAB

..
GETCARD

D READ IN A CARD
FROM SYSIPT

..

F

G

H

3-68

•

•

SET THE
"REPLACE ALL"
INDICATOR IN

RPLTAB

POINT TO THE
NEXT NAME FIELD

IN RPLTAB

INCREMENT THE
PART I AL REPLACE
CARD COUNTER BY

ONE

•

SET DEVTYPE IN
RPLTAB TO I

SET RUNTYPE IN
RPLTAB TO I

YES
INCREMENT THE

PART I AL REPLACE
~---• CARD COUNTER BY

•

ONE

PUT THE NAME IN
THE NEXT

AVAILABLE FIELD
IN RPLTAB

PO INT TO THE
NEXT NAME FIELD

IN RPLTAB

•

•

4

SET DEVTYPE IN
RPLTAB TO 2

SET RUNTYPE IN
RPLTAB TO 2

CLOSE THE
SYSLST FILE

FLSHCARD

•

..

B

..

8 ..

D

..
SET RUNTYPE IN

RPL TAB TO 3 E

..

F

..

G

..

..

..

•

Chart DB2

•

8

•

c

•

D

•

E

•

•

G

•

H

•

J

•

K

DOS FD UTILITY STORAGE STEP: IJLFST CHART 2 OF 2

GETCARD

DBI DI

READ IN A
CARD F~Ot.1

SYS I PT

RETURN TO
CALLER

•

•

CLOSE THE
SYSLST FILE

READ CONTROL
CARDS FROM

SYSIPT UNTIL
EDF IS

ENCOUNTERED

•

•

• •

NOTE: IF NO ERRORS ARE ENCOUNTERED DURING THE

PROCESS J NG OF THE CONTROL CARDS, THE ENTRY TO

TO EOFRTN IS ACCOMPLISHED BY THE DOS SUPERVISOR,

AS SPECIFIED IN THE SYSIPT DTFDJ MACRO

SAVE RPLTAS IN
A

COMMUNICATIONS
AREA

CLOSE THE
SYS IPT AND

SYSLST FILES

FETCH
I JLF'.\JPDT

YES

YES

YES

•

EOFADDR=EOFRTN

Cl-OSE THE
SYSIPT FILE

EXIT TO THE
OPERATING

SYSTEM

FETCH
l.JLFUPOT

FETCH
l.JLFLOAD

•

.,

8

.,

c

.,

D

.,

E

.,

F

.,

G

.,

H

.,

.,

Logic Of The Form Description Utility 3-69

Chart DC! DOS FD UTILITY STORAGE STEP: IJLFLOAD CHART 1 OF 2

3-70

•

B

•

OPEN THE
I JFDL 18 AND

SYSLST FILES

LOA DR TN

LOAD THE F lRST
SECTOR

SAVE THE SECTOR
NAME AND COUNT

D SUBFIELDS OF
THE FIRST KUPB

•

E

•

H

•

•

•

•

INCREMENT THE
COUNT SUBFIELD

CQMPARAND BY
ONE

RESET THE
RECORD COUNTER

LOA DR TN

LOAD THE NEXT
SECTOR

•

CNTERR

YES INCREMENT THE
>----1 RECORD COUNTER

•

BY ONE

POINT TO THE
NEXT RECORD IN
THE INPUT AREA

•

•

•

•

LDADRTN

DC I c 1 I H2

LOAD A
SECTOR

INCREMENT
I JLNAME TO THE

NEXT SECTOR

RETURN TO
CALLER

..

..

..

D

..

E

..

F

..

G

..

..

..

Chart DC2 DOS FD UTILITY STORAGE STEP: IJLFLOAD CHART 2 OF 2

' ' ' '

ISMPUT

NOTE: THE ENTRY POINTS TO MSGFAN

DC I C2 ARE AS FOLLOWS:

.. • 11 NAMERR 61 CYLERR

21 ERRERR 71 DI SERR
ESTABLISH THE

ISSUE THE BINARY OFFSET 31 I NC ERR 81 SEQERR
B SETFL MACRO FOR THE B

REQUIRED 41 CNTERR 91 ~R
MESSAGE

51 PRMERR I 0 I CALLUPD

.. •

~ACE THE
c BINARY OFFSET c

IN RE~ISTER 3

•
USE 'THE 8 I NARY

RETURN TO OF~~T~~gp~~NO D CALLER D
ME:S!>AGE IN

I JLFMO I

.. •
LOAD THE

ATTEMPT TO MESSAGE
E WRITE OUT THE MODULE

RECORD AGAIN I I JLFMO I l

.. •

MOVE THE
F MESSAGE INTO F

THE OUTPUT AREA

.. •
RETURN TO

CALLER WRITE THE
G MESSAGE OUT TO G

SYSLST

.. •

H

.. •

I S~6C'f B T~~D
SYSLST

FILES

.. •

8 EXIT TO THE
OPERATIN(;

SYSTEM
SEQERR

a a

Logic Of The Form Description Utility 3-71

Chart DD!

3-72

DOS FD UTILITY STORAGE STEP: IJLFUPDT CHART l OF 4

• •

YES

LOAD A PHASE

NO

•

INCREMENT THE
SAVED COUNT

FIELD BY ONE

R4 = R4 +- 486
POINT TO THE
NEXT KUPB IN

THE CURRENT
PHASE

4

R4 = R4 +- 486
POINT TO THE
NEXT KUPB IN

THE CURRENT
PHASE

PRINT OUT THE
PROPER ERROR

MESSAGE

FLUSH

•

MSGFAN

PRINT OUT THE
PROPER I NFOR­

MAT I ON MES SAGE

UPDTNM

UPDATE THE
TEMPO~ARY NAM€

NUMBER Ft ELD

PRINT OUT THE
PROPER INFOR­

MATION MESSAGE

PR I NT OUT THE
PROPER INFOR­

MATION MESSAGE

" ED.JR TN

B

"

"

D

"

E

"

F

"

G

"

"

"

Chart DD2 DOS FD UTILITY STORAGE STEP: IJLFUPDT CHART 2 OF 4

..

B

c

0

F

..

G

..

H

..

..

LOADRTN

DD I EI, 02
004 G! ,E2

GET THE NAME OF
THE PHASE TO BE

LOADED

LOAD THE
PHASE

INCREMENT THE
PHASE NAME

OPER ANO 8 Y ONE

RETURN TO
CALLER

'

I SMPUT

DD I JI

MOVE THE RECORD
TO BE STORED
INTO THE WORK

AREA

002
c2----1

WAIT FOR THE
OUTPUT

OPERATION TO
ENO

~ I
OUPRTN

• 2

'

•

PRINT OUT THE
"AL TERNA TE

NAME" MESSAGE

'

RETRY THE
OUTPUT

OPERATION

RETURN TO
RCDCHK

'

PR I NT OUT THE
PROPER ERROR

MESSAGE

MSGFAN

PR INT OUT THE
EQJ MESSAGE

CLOSE THE
IJFDLIB AND

SYSLST FILES

EXIT TO THE
OPERATING

SYSTEM

..

B

..

..

0

..

E

..

F

..

G

..

..

..

Logic Of The Form Description Utility 3-73

Chart DD3 DOS FD UTILITY STORAGE STEP: IJLFUPDT CHART 3 OF 4

3-74

~
1'

YES

•

•

SAVE THE
ORIGINAL FD

PROGRAM NAME
FOR A LATER

MESSAGE

CHANGE THE KEY
FIELD TO

INDICATE A
TEMPORARY NAME

•

•

WA IT FOR THE
INPUT

OPERATION TO
END

MOVE THE RECORD
TO BE STORED
INTO THE WORK

AREA

WAIT FOR THE
OUTPUT

OPERATION TO
END

•

•

•

4 •

UPDTNM

DOI C5
003 HI

INCREMENT THE
TEMPORARY NAME
NUMBER FI ELD BY

ONE

RETURN TO
CALLER

..

8

..

c

..
D

..

..

F

..

G

..

..

..

Chart DD4 DOS FD UTILITY STORAGE STEP: IJLFUPDT CHART 4 OF 4

•

•

LOAD THE NEXT
PHASE

R4 ;:: R4 + 486
POINT TO THE
NEXT KUPB IN

THE CURRENT
PHASE

R4 :: R4 + 48b
POINT TO THE
NEXT KUPB IN

THE CURRENT
PHASE

•

•

•

MSGFAN

DOI H4,A5,E5,G5
002 K3,05,F5

BRANCH ON
REGISTER 3 TO

THE PROPER
MSGFAN INTERNAL

ENTRY

BRANCH ANO LINK
FROM THAT ENTRY

TO DI AGWTR

LOAO
l.JLFMOI

USE THE BINARY
OFFSET IN

REG I STER 3 TO
LOCATE THE

PROPER MESSAGE

•

4

MOVE THE
MESSAGE INTO

THE OUTPUT AREA

REMOVE THE
EJECT CHARACTER
FROM THE OUTPUT

AREA

MOVE THE FD
PROGRAM NAME

INTO THE OUTPUT
AREA

4

•

•

MOVE THE FD
PROGRAM ANO

TEMPORARY NAMES
INTO THE OUTPUT

AREA

RETURN TO
CALLER

•

8

•

c

•

0

•

E

•

F

•

G

•

H

•

J

•

Logic Of The Form Description Utility 3-75

Section 4: Directory

Entry Entry
Point Name of Routine Module PLM Point Name of Routine Module PLM
Name or Table Name References Name or Table Name References

Chart Chart
Section ID Section ID

CAL LOAD Load Initial l.ILFLOAD 3 DC1 IJLFM01 DOS FD Utility
CAL LOAD Update Initial IJLFUPDT 3 DD1 Message Module IJLFM01 3
CNTLEND Control End IDFCT 3 OA3 INMOD IJLFST DIMOD IJLFST 3
CNTLINIT Control Initial IDFCT 3 OA1 IS MP UT ISAM Put IJLFLOAD 3 DC2
CNTLINIT Control Initial IJLFCT 3 DA1 ISM PUT ISAM Put IJLFUPDT 3 DD2
CNTLSTMT Create Control LOADMOD IJLFLOAD ISMOD IJLFLOAD 3

Statements IDFCT 3 OA3 LOADRTN Load Owrlay Phases IJ LF LOAD 3 DC1
CNTLSTMT Create Control LOADRTN Load Overlay Phases IJLFUPDT 3 DD2

Statements IJLFCT 3 DA1 MSG FAN Message Fan-in IDFCT 3 0A4
CTLSYNER Control MSG FAN Message Fan-in IDFST 3 OB4

Synchronous 1/0 MSG FAN Message Fan-in IJLFCT 3 DA2
Error IDFCT 3 OAS MSG FAN Message Fan-in IJLFLOAD 3 DC2

DIAGWTR Diagnostic Writer IDFCT 3 0A4 MSG FAN Message Fan-in IJLFUPDT 3 DD4
DIAGWTR Diagnostic Writer IDFST 3 084 NEWMEM New Member IDFST 3 081
DIAGWTR Diagnostic Writer IJLFCT 3 DA2 08'JCARD Card Image
DIAGWTR Diagnostic Writer IJLFLOAD 3 DC2 Storage Area IDFCT 3

DIAGWTR Diagnostic Writer IJLFUPDT 3 DD4 OPEN Open Files IJLFST 3 D81
ENTA8 Entry Table IDFST 2 OUTMOD IJLFLOAD DIMOD IJLFLOAD 3
EOFRTN End-of-File IJLFST 3 D82 OUTMOD IJLFUPDT DIMOD IJLFUPDT 3
EO.IRTN End-of-Job IJLFLOAD 3 DC2 PARMPROC PARM Processor IDFST 3 081
EOJRTN End-of-Job IJLFUPDT 3 DD2 PUTCARD Put Out a Card IDFCT 3 OA3
ERR EXT Common Error PUTCARD Put Out a Card IJLFCT 3 DA3

Exit IJLFST 3 D82 RC DC HK Validate Records IJLFLOAD 3 DC1
ERREXT1 Special Error RCDCHK Validate Records IJLFUPDT 3 DD1

Exit IJLFST 3 D81 REPLTA8 Replacement Table IDFST 2,3
ESDPROC ESD Processor IDFCT 3 0A1 RPLTA8 Replacement Table IJLFST 2,3
ESDPROC ESD Processor IJLFCT 3 DA1 SEGPROC Segment Processor IDFST 3 084
FLSHCARD Flush Cards IJLFST 3 D82 SEGTA8 Segment Table IDFST 2
FLUSH Flush FD Program IJLFUPDT 3 DD4 STGEND Storage End IDFST 3 084
GET Get and Process STGINIT Storage In it.ial IDFST 3 081

Control Cards IJLFST 3 D81 SYNAD1 Control
GETCARD Get and Validate Synchronous 1/0

a Control Card IJLFST 3 D82 Error IDFST 3 083
GETCHECK Get and Check an SYNAD2 Control

Input Record IDFCT 3 OA4 Synchronous 1/0
GETCHECK Get and Check an Error IDFST 3 083

Input Record IJLFCT 3 DA3 TXTPROC TXT Processor IDFCT 3 OA3
IDFM01 OS FD Utility TXTPROC TXT Processor IJLFCT 3 DA2

Message Module IDFM01 3 UPDTMOD IJLFUPDT ISMOD IJLFUPDT 3
IJJFC81C IJLFCT DIMOD IJLFCT 3 UPDTNM Update Name IJLFUPDT 3 DD3

3-76

Section 5: Data Area Layouts

The information that would ordinarily be contained in this
section has been placed in the text of Sections 2 and 3 to aid
the discussion there. Refer to Section 2 for the layout of
SEGT AB and ENT AB and to Section 3 for the layout of
REPLTAB and RPLTAB.

Logic Of The Form Description Utility 3-77

Section 6: Diagnostic Aids

No information is provided for this section because of the
simplicity of the FD utility programs.

3-78

Part 4. Appendixes and Glossary

Appendixes and Glossary 4-1

Contents

Appendix A: Format of the Form Description Macro
Instructions 4-3

Appendix B: The Form Description Diagnostic Macros 4-5
FDDSPL Y Macro 4-5
FDTRACE Macro 4-5

Appendix C: Diagnostic Messages 4-6
MNOTE Messa2es 4-6

Informational MNOTE Messages 4-6
Warninl!: MNOTE Messages . 4-8
Termination MNOTE Messages 4-10

FD Program Error Message 4-14
Data Source Error Messa2e 4-14

Appendix D: Sample FD Program 4-15

Glossary . 4-27

4-2

Name Operation

symbol FDFORM

[symbol] FDPAGE

[symbol] FDLINE

[symbol] FDFIELD

Appendix A. Format of the Form Description Macro Instructions

Operands

Fl D='ddd'

[.PACKING= j .liQ f]
YES
DELIMIT

[.DEVICES=(3735,K[D])]
[.BUFFERS=([RPB] [.(LPB [. { 132)])])]

126 \

.~20 J
[.M RGSTOP= { ~}]

[.MESSAGE=(\ cc[({ ;t})] t
/ 'string' ~

[.HTAB=(d[.d] ...)]

[.{cc[(1

'string' d

[pagenum] [.HEIGHT= { ~6}]

[.VMRG=([{.!..}] [. f height}])]
dt \ db

[,SAVELOC={ NO }]
YES
d

[~ linen um l] [.WIDTH= { 85}]
I SKIP(d)) d

[,HMRG=([{ mrgstop+1 I] [. {width}])]
di f dr

[.CYCLE=([d] [,limit] [.target])]

[.SAVE LOC={ .D!.Q }]
YES
d

[{ hmrgdl) } [.{comping}}
) prevdr+1 \ LNG(d)
) d-1- (dr
~DUMMY)

[.CTR=((d,op[.FIELD]) [,(d,op[.FIELD])} ...) }
[,I ND=((d,logexp) [.(d,logexp)] ...) }
[.CYCLE=([d} [,limit} [.target}) }

[.SAVE LOC= {NO}]
YES
d

1~~~~;l~:r·1.,".i;i;." ... , .
[.SELFCHK~ {NO }]

'{~~} [.GENONLY})

[.COUNT={([MIN.] {~,},[MAX,] {com~~ax})} }

d ,
[.COMPARE=([FIELD,} comparopr,comparand

[. {~~D} ,[FIELD,}comparopr,comparand} ...) }

[.SINK=([(destination [.qualifier} ...) }
[, [(destination [.qualifier} ...) } } ...) }

[,JUSTIFY=([justcode] [.} justcode}} ...)]
[.Fl LL=(['char'} [.['char'}} ...) }
[.UL=([{NO}}[.[{NO}}} ...)}

YES YES
[.PICTURE=(['picturespec']

[.['picturespec']] ...) }
[,BATCH=d]

Appendix A 4-3

Name Operation Operands

[symbol] FDCTRL [IF=(logtermL {~~D} ,logterm] ...)]

[.CTR=((d [.CLR] (,op,opnd] ...)
[,(d [.CLR] [.op,opnd] ...)] ...)]

[,IND=((d, {ON })[.(d,{ON})] ...)]
OFF OFF
INV INV

[.TOTAL=((d,'fid',CTR(d))
[.(d,'fid',CTR(d))] ...)]

[.COMMAND=((cmndgrp) [. (cmndgrp)] ...)]

[.GOTO=target]
[.CYCLE=([d] (,limit] [.target])]

[.SAVELOC= {~ l]
;Esf

[symbol] FDEND ,(This macro has no operands.)

4-4

FDDSPL Y MACRO

The FDDSPLY macro provides the ability to display the
global variables (arrays) used in the FD macro processing.
FDDSPLY should be specified simply:

FDDSPLY

The macro, the first time it is coded, turns on the &PIB (47)
global bit which activates the IDFDSP inner macro. To turn
off the global bit, code another FDDSPLY macro after you
have displayed all the information you want. If you do not
code another FDDSPLY macro, the &PIB (47) bit is turned
off automatically at the end of the assembly.

IDFDSP inner macros are already scattered within the
internal code waiting to be invoked by FDDSPL Y. To add
more IDFDSP inner macros, use either the IEBUPDTE util­
ity program for OS or the MAINT library maintenance pro­
gram for DOS. Refer to the IBM System/360 OS Utility
publication, GC28-6586 for the way to specify the
IEBUPDTE utility. To discover how to use the MAINT pro­
gram, refer to the IBM System/360 DOS System Control
and System Service Program, GC24-5036, publication.

The format for the IDFDSP inner macro is as follows:

IDFDSP {'string' } {'string' }
vname , vname , ...
QUEUE QUEUE

where

'string' specifies a character string that is emitted
during the display. This string may be used
to indicate the position where the IDFDSP
inner macro is inserted.

vname is the name without the ampersand of a
global variable to be displayed. If the vari­
able has only one character (i.e. A, B, etc.),
all of the one-character variables are displayed.
If the variable requested has a companion vari­
able (i.e., &PIA and &PIB), the companion
variable is also displayed.

QUEUE specifies that all queue variables are to be
displayed.

There is no limit to the number of suboperands that can be
coded on the IDFDSP inner macro for the H assembler.
However, the D assembler can handle only 100 suboperands
and the F assembler can handle only 200 suboperands.

The IDFDSP inner macro generates MNOTE messages
displaying the information requested for each macro.

Examples:

1. IDFDSP 'AFTER GOTO', QUEUE, PRTA
This example specifies that the display is to begin where
ever an IDFDSP inner macro is found, no matter what is

Appendix B: The Diagnostic Form Description
Macros

coded in the 'string' operand. All of the queue variables
are to be displayed, along with the &PRTA global
variable.

2. IDFDSP 'AFTER PAGE CALCULATIONS',DFA,PRTA,A
This format requests a display of the &DFA, &PRTA,
and &A global variables and needs to be inserted into the
inner macro code after the page calculations. All of the
one-character variables are displayed because a display of
the one-character &A variable was specified.

FDTRACE MACRO

The FDTRACE macro requests a trace of the entry to and
exit from each outer and inner macro that is called during
FD macro execution after an FDTRACE macro in the
source deck. FDTRACE should be specified:

FDTRACE

The FDTRACE macro, the first time it is coded, turns on
the &PIB (48) global bit, which activates the tracing func­
tions. To turn off the bit, code another FDTRACE macro
at the end of the area you want to trace. If you do not
code another FDTRACE macro, the &PIB (48) bit is
turned off automatically at the end of the assembly.

FDTRACE generates an MNOTE message to display the
trace information:

IDF100 IN TRACE MODE JENTERINGt macro
?LEAVING ~

Example: If you wish to display some variables and trace
the macro processing of an FDCTRL outer macro, code
the following statements.

FDDSPLY
FDTRACE
FDCTRLGOTO
FDDSPLY
FDTRACE

The first FDDSPLY turns on the &PIB (47) global bit and
activates the IDFDSP inner macros in the FDCTRL macro.
The following FDTRACE macro turns on the &PIB (48)
bit to begin the tracing activity. The FDCTRL outer macro
processing is traced and all appropriate global variables spec­
ified on IDFDSP inner macros are displayed. When the
FDCTRL GOTO processing is finished, the second
FDDSPLY and FDTRACE macros turn off the &PIB (47)
and &PIB (48) bits, respectively, to stop the display and the
trace. If the second pair of diagnostic macros are not spec­
ified, the display and trace continue until the end of the
assembly.

Appendix B 4-5

Appendix C: Diagnostic Messages

MNOTE MESSAGES

The descriptive and diagnostic MNOTE messages that can
be generated by the Form Description macro instructions
are described in this section. The general format of the mes­
sage presentation is as follows:

severity code (*for descriptive messages), 'message text'

Refer to the publication IBM 3735 Programmer's Guide,
GC30-300 I, for a detailed explanation of each message.

A severity code of"*" indicates an informational mes­
sage. Other severity codes indicate more severe errors.

The internal error message IDF999 appears when the
program detects an unusual or invalid internal error. Other

Message

*, IDF100 IN TRACE MODE ~ENTERING l MACRO

f LEAVING ~
*, IDF101 FORM NAME IS name

*, IDF102 FORM ID IS ddd

*, IDF103 TABS SET AT COLUMNS t1, t2, t3, t4, t5

*, IDF104 PAGE pp INCLUDES LINE n1
THROUGH n2 WITHIN THE FORM

*, IDF105 FDEND NOT NEEDED

*, IDF106 CTR(d) USED AS ACCUMULATOR

*, IDF107 CTR(d) USED AS GENERATOR

*, IDF108 STARTING PATH p

*, IDF109 STARTING SEGMENT s

*, IDF110 END OF SEGMENTs

*, IDF111 END OF PATH p

*, IDF112 INDICATORS USED IN PATH p

*, IDF113 IND(d)

*, IDF114 COUNTERS USED IN PATH p

*, IDF115CTR(d)

*, IDF116 BUFFERS USED IN PATH p

*, IDF117 STANDARD DEFAULTS NOT OVERRIDDEN BY FDFORM

*, IDF118 THIS SEGMENT ENTERED FROM SEGMENTs

*, IDF119 THIS PATH ENTERED FROM
SEGMENT s OF PATH p

lines foilow this error message to give a more detailed ex­
planation of the error.

Refer to Figure 4-1 for a list of the relationship of the
&M global variable with each of the message operands.

Informational MNOTE Messages

The informational MNOTE messages have a severity code of
asterisk and relate information about system parameters.
These messages include also the FD program logic MNOTE
messages that relate the starting and ending of paths and
segments.

Issued By Call No.

Each Macro

MSG 001

MSG 002

MSG 003

MSG 004

MSG 007

MSG 019

MSG 020

MSG 027

MSG 028

MSG 029

MSG 030

MSG 031

MSG 032

MSG 033

MSG 034

MSG 035

MSG 036

MSG 039

MSG 040

*, IDF120{ FORM} LEVEL ATTRIBUTES CHANGED FROM{'STANDARD}
PAGE FORM
LINE PAGE
FIELD. LINE

MSG1

4-6

Note: This message appears automatically as heading information
for messages ID F122 through I DF128, inclusive.

Message

*, IDF121 NO ATTRIBUTES CHANGED AT{FORM} LEVEL
PAGE
LINE
FIELD

*, IDF122{WIDTH '}IS dd
HEIGHT
MRGSTOP

*, IDF123{LEFT }MARGIN IS dd
RIGHT
TOP
BOTTOM

*, IDF124 KIND IS {UNDEFINED}
ALPHABETIC
NUMERIC
KATAKANA

*, IDF125 SINK d IS UNUSED
TMT
CTR (n)
RPB,n
PRT,n
LPB,n
PCH, n
INQ,n

*, IDF126{FILL }FOR SINK d IS
JUSTIFY
UNDERLINE

LEFT
CENTER
RIGHT
BLANK
ZERO
SPECIFIED
NOT SPECIFIED

*, IDF127 SELF-CHECK OPTION IS {NOT USED } 5CHECK t
MODUL010 /GENERATE\
MODULO 11

*, IDF128 SOURCE IS 5KEYBOARDt 5REQUIRED{ 5 AUTOEOF {
INUMPAD 5 /OPTIONAL 5 I NO AUTOEOF I
FID
RSN
EMITTED
CTR (n)
STG,n
INQ,n
RDR,n
RPB, n
LPB,n

*, IDF129 IND d {~~;TED }

INVERTED

*, IDF130 STG
INQ
RDR/PCH
RPB
LPB
IDR
CCR

*, IDF132 AT END OF CYCLE PRINT ELEMENT WAS
POSITIONED ON LINE dd OF FORM

*, IDF133 NO TERMINATING ERRORS FOUND IN THIS FDP

*, IDF134 SINK d OUTPUT COUNT IS digits

*, IDF135 PICTURE WAS USED FOR FORMATTING
OUTPUT OF SINK d

Issued By Call No.

MSG1 111

MSG1 120

MSG1 121

MSG1 122

MSG1 123

MSG1

MSG1

MSG1

MSG1

MSG1

MSG3

MSG3

MSG3

MSG3

124

125

126

127

130

504

512

573

577

Appendix C 4-7

Message

*, IDF136 THIS SEGMENT BRANCHES TO SEGMENTss OF PATH pp

*, IDF137 type FEATURE INDICATOR TESTED

*, I DF138 PACK I NG OPTION IS option

*, IDF139 LINE NUMBER ISdd

*, IDF140 ind SPECIAL INDICATOR SET OR TESTED

*, IDF141 POSITION LIMITS FOR LPB ARE 1 AND n

*, IDF142 SOURCE/SINK OPTION FOR 5496 IS RPB

*, IDF143SELECTRIC II PRINT REGION BEGINS AT
COLUMN a, ENDS AT COLUMN b

*, IDF144 TMT DATA FORMAT IS [ZERO OR] [a TO] b CHARACTERS
[*, DELIMITED BY SEPARATOR]

*, IDF145 SOURCE CHARACTER COUNT IS n

*, IDF146 FORM DESCRIPTION PROGRAM SPECIFIED
SELECTRIC II FORM HAVING nnn LINES

[*, AND 3286 FORM HAVING nnn LINES]

*, IDF147 SUMMARY OF FOP-GENERATED DATA

UNPACKED FOP OUTPUT= nnn BLOCKS
3735 DISK STORAGE= s1 . s2 SECTORS

Warning MNOTE Messages

The warning MNOTE messages have a severity code of zero
and relate a warning that some unusual condition or param­
eter has been found. Check each MNOTE message to be
sure that the condition or parameter is actually what was
desired. These messages, used along with the path and seg­
ment messages, can assist in finding oversights and possible
logic errors in the FD program.

Message

O, IDF400 FDFORM MUST START FORM

O, IDF401 ELEMENT n OF HTAB OPERAND INVALID

0, IDF402 CTR(d) MAY NOT HAVE BEEN USED AS
0, OUTPUT SINCE PRIOR INPUT

0, IDF403 CTR(d) MAY NOT HAVE BEEN PROPERLY LOADED
0, BEFORE CURRENT OUTPUT

0, IDF404 IND d MAY NOT HAVE BEEN TESTED SINCE SET

0, IDF405 IND d MAY NOT HAVE BEEN SET BEFORE TEST

0, IDF406 CTR(d) MAY NOT HAVE BEEN CLEARED
0, BEFORE FIRST INPUT

0, IDF407 MESSAGE USED VERTICAL SPACING

O, IDF408 MESSAGE USED HORIZONTAL TABS

0, IDF409 CHAINING IN EFFECT, keyword OPERAND IGNORED
keyword - From Figure 4-1.

O, IDF410 keyword IGNORED FOR DUMMY FIELD
keyword - From Figure 4-1.

O, IDF411 SUBOPERANDS AFTER SUBOPERAND n OF
0, keyword OPERAND IGNORED

keyword - From Figure 4-1.

0, I DF412 EXCESS CHARACTERS OF keyword
0, SUBOPERAND n IGNORED

keyword - From Figure 4-1.

4-8

Issued By Call No.

MSG. 017

MSG1 142

MSG1 129

MSG 026

MSG1 143

MSG 048

MSG 049

MSG 050

MSG1 144

MSG3 578

MSG3 579

MSG3 580

Issued By Call No.

MSG 008

MSG 011

MSG 021

MSG 022

MSG 023

MSG 024

MSG 025

MSG 037

MSG 038

MSG1 100

MSG1 101

MSG1 104

MSG1 105

Message

O, IDF413 POSSIBLE DUPLICATION OF EARLIER

0,
IN THIS {FORM}

PAGE
LINE
FIELD

{
FORMS}
PAGES
LINES
FIELDS

O, IDF414 ~INDt dMAY NOT HAVE BEEN UNCONDITIONALLY
1CTR~

0, SET IN FIRSTOPERATION

0, IDF415 UNPRINTABLE CHARACTER IN CHARACTER STRING

O, IDF416 CHARACTER NOT PRINTABLE ON ASCII 3735
0, FOUND IN CHARACTER STRING

O, IDF417 CHARACTER NOT PRINTABLE ON EBCDIC 3735
0, FOUND IN CHARACTER STRING

O, IDF418 DEAD CODE, CYCLE IGNORED

0, IDF419 CYCLE WITHIN A CYCLE OR SUMMARY BLOCK IGNORED

0, IDF420 EXCESS CHARACTERS OF FIELD LNG(d) IGNORED

O, IDF421 STG {BUFFER MAY NOT HAVE BEEN USED AS
INQ
RDR/PCH

~:= I IDR
CCR

0, OUTPUT SINCE PRIOR INPUT

0, IDF423 COUNT PREDETERMINED, COUNT OPERAND IGNORED

0, IDF424 SELFCHK OPERAND IGNORED FOR EMITTED "STRING" SOURCE

O, IDF425 ZERO FILL OPTION FORCES JUSTIFY RIGHT

0, IDF426 COMPARE IGNORED FOR SOURCE FID OR EMITTED "STRING"

0, IDF427 KIND SET TO NUMERIC BY COMPARAND

0, IDF428 CTR IGNORED FOR EMITTED "STRING" SOURCE

O, IDF429 KIND SET TO NUMERIC BY COUNTER OPERAND

0, IDF430 IND OPERAND IGNORED WITH SOURCE FID OR "STRING"

0, IDF431 COMMAND GROUP n, APPARENT RETROGRADE SKI PTO

0, IDF432 BRANCH WITHIN SUMMARY BLOCK IGNORED

O, IDF433 BRANCH INTO CYCLE OR SUMMARY BLOCK IGNORED

0, IDF434 MAX COUNT CONSIDERED EXACT FOR
0, NON-KEYBOARD SOURCES

0, IDF435 MIN COUNT IGNORED FOR NON-KEYBOARD SOURCE

0, IDF436 KIND OPERAND IGNORED WITH BATCH OR SELFCHK

0, IDF437 KIND OPERAND IGNORED FOR NUMERIC SOURCE

0, IDF438 KIND OPERAND IGNORED WITH EMITTED SOURCE

0, IDF439 KIND IGNORED WITH CTR SINK

0, IDF440 FILL OPERAND IGNORED WITH EMITTED SOURCE

0, IDF441 FILL OPERAND IGNORED FOR SINK d

0, IDF442 NON-NUMERIC KIND OPTION IGNORED WITH ZERO Fl LL

O, IDF443 JUSTIFY OPTION IGNORED FOR SINK d

O, IDF444 UNDERLINE OPTION IGNORED FOR SINK d

Issued By Call No.

MSG1

MSG1

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG1

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

113

128

501

502

503

506

507

515

131

524

528

535

537

539

540

541

543

044

547

548

549

550

551

552

553

554

555

556

557

558

559

Appendix C 4-9

Message

O, IDF445 KIND SET TO NUMERIC BY IND OPERAND

0, IDF446 PICTURE OPERAND IGNORED, SINK d NULL OR CTR

0, IDF447 POSSIBLE OVERLAY OF SINK d

0, IDF448 FIRST OPERATION ON\ STG '/BUFFER MAY NOT HAVE
INQ
RDR/PCH

'I~== 1· IDR
CCR .

0, BEEN UNCONDITIONAL CLEAR OR INPUT

O, IDF449\STG \BUFFER MAY HAVE BEEN CLEARED
INQ
RDR/PCH

) ~== r IDR
\CCR ,

0, OR INPUT WITHOUT PRIOR OUTPUT

0. I D F450 1·STG
INQ
RDR/PCH

BUFFER MAY HAVE BEEN OUTPUT

'1~== IDR
,CCR

0, WITHOUT PRIOR. INPUT

O, IDF451 FIRST OPERATION AFFECTING ind INDICATOR
0, WAS NOT UNCONDITIONAL CLEAR OR SEND

0, IDF452 ind INDICATOR MAY HAVE BEEN
0, CLEARED WITHOUT PRIOR TEST

O, IDF453SAVELOC IN SUMMARY BLOCK IGNORED

O, IDF454 NAME OMITTED, SAVELOC IGNORED

0, IDF455 SAVELOC COUNT NOT BETWEEN d1 AND d2
0, ASSUME SAVELOC=YES

0, IDF456

o.

0, I DF457

0,

SREADl COMMAND MAY NOT HAVE BEEN ISSUED
/SENDf

WITHOUT PRIOR TEST OF foOF(RDRll INDICATOR
lTIMEOUT \

jEOF(RDRll INDICATOR MAY HAVE BEEN TESTED
/TIMEOUT\

WITHOUT PRIOR ~ READl COMMAND
(SEND\

0, IDF458 KIND SET TO NUMERIC BY PICTURE OPERAND

0, IDF459 SAVELOC'D MACRO macro name
0, nn UNUSED REFERENCES

Termination MNOTE Messages

The termination MNOTE messages have a severity code of
eight and indicate that a severe error that suppresses the
generation of the FD program has been found. The actual
assembly process terminates. Although the assembly ends,
the checking of operands continues as though no error had
been found. An MNOTE message with a severity code of
eight, if issued during the assembly of an FD program, flags
the FD program as invalid. If this invalid FD program is
used as input to the FD utility, the utility automatically

4-10

Issued By Call No.

MSG3 563

MSG3 567

MSG3 574

MSG1 132

MSG1 133

MSG1 134

MSG1 140

MSG1 141

MSG 005

MSG 006

MSG 009

MSG1

MSG1

MSG3

MSG3

140

141

525

581

rejects the program. All errors associated with termination
MNOTE messages must be corrected and the FD program
assembled again before a valid FD program is generated.

Meslillge Issued By Call No.

8, IDF700 MANDATORY FID OPERAND OMITTED MSG 010

8, IDF701 FORM NAME INVALID; subname SUBSTITUTED MSG 012

8, IDF702 INVALID BRANCH MSG 013

8, IDF703 PREVIOUS FORM NOT PROPERLY TERMINATED MSG 014

8, IDF704 PAGE WITHIN CYCLE IGNORED MSG 015

8, IDF705 FORM ENDED BEFORE CYCLE LIMIT ENCOUNTERED MSG 016

8, IDF706 EXPECTED CHAINING OF PRECEDING MACRO MSG 018
0, NOT FOUND, CHAINING TERMINATED

8, IDF707 COMMAND GROUP n, ILLEGAL USE OF CLEAR MSG 041

8, IDF708 SKI PTO COMMAND ILLEGAL IN CYCLE OR SUMMARY MSG 042

8, IDF709 COMMAND GROUP n, SKIP OR SKI PTO NONDECIMAL MSG 043

8, IDF711 COMMAND GROUP n, PRINT ILLEGAL AFTER CLEAR MSG 045

8, IDF712 COMMAND GROUP n, ILLEGAL CLEAR OR READ MSG 046

8, IDF713 COMMAND GROUP n, ILLEGAL DUE TO MSG 047
0, SPECIFICATION OF m DEVICE TYPES

8, IDF714 EXPECTED CHAINING OF keyword OPERAND MSG1 102
0, NOT FOUND, CHAINING TERMINATED

keyword - From Figure 4-1.

8, IDF715 CHARACTER NEAR POSITION p OF keyword MSG1 103
0, OPERAND IS ILLEGAL

keyword - From Figure 4-1.

8, IDF716 f FDFORM l MUST FOLLOW rDFORM} MSG1 112
FDPAGE FDPAGE 1 FDLINE I FDLINE
FDFIELD. FDFIELD.

8, IDF717 keyword OPERAND INVALID MSG2 200
keyword - From Figure 4-1.

8, IDF718 keyword OPERAND OMITTED MSG2 202
keyword - From Figure 4-1.

8, IDF719 keyword OPERAND MSG2 201
0, NOT BETWEEN a AND b

keyword - From Figure 4-1.

8, IDF720 BATCH FOR keyword SUBOPERAND n INVALID MSG2 212
keyword - From Figure 4-1.

8. IDF721 FID FOR keyword SUBOPERAND n INVALID MSG2 213
keyword - From Figure 4-1.

8, IDF722 CTR FOR keyword SUBOPERAND n INVALID MSG2 214
keyword - From Figure 4-1.

8, IDF723 IND FOR keyword SUBOPERAND n INVALID MSG2 215
keyword - From Figure 4-1.

8, IDF724 EOF FOR keyword SUBOPERAND n INVALID MSG2 216
keyword - From Figure 4-1.

8, IDF725 OPERATOR FOR keyword SUBOPERAND n INVALID MSG2 217
keyword - From Figure 4-1.

8, IDF726 EMIT FOR keyword SUBOPERAND n INVALID MSG2 218
keyword - From Figure 4-1.

8, IDF727 BATCH FOR keyword SUBOPERAND n NOT MSG2 252
0, BETWEEN a AND b

keyword - From Figure 4-1.

Appendix C 4-11

Message Issued By Call No.

8, IDF728 FID FOR keyword SUBOPERAND n NOT MSG2 253
o. BETWEEN a AND b

keyword - From Figure 4-1.

8, IDF729 CTR FOR keyword SUBOPERAND n NOT MSG2 254
0, BETWEEN a AND b

keyword - From Figure 4-1.

8, IDF730 IND FOR keyword SUBOPERAND n NOT MSG2 255
0, BETWEEN a AND b

keyword - From Figure 4-1.

8, IDF732 SKIP FOR keyword SUBOPERAND n NOT MSG2 257
0, BETWEEN a AND b

keyword - From Figure 4-1.

8, IDF733 INVALID CHARACTER IN MESSAGE SUBOPERAND n MSG3 500

8, IDF734 ATTEMPTED MOVEMENT TO A PREVIOUSLY MSG3 505
0, DEFINED LINE INVALID

8, IDF735 CYCLE COUNT INVALID, COUNT OF 1 ASSUMED MSG3 508

8, IDF736 CYCLE COUNT NOT BETWEEN a AND b MSG3 509
0, COUNT OF 1 ASSUMED

8, IDF737 TOO MANY UNRESOLVED BRANCHES MSG3 510

8, IDF738 INVALID FORM DESCRIPTION PROGRAM MSG3 513

8, IDF739 DOCUMENT FIELD LNG(d) IS NONDECIMAL MSG3 514

8, IDF740 DEAD CODE, MACRO IGNORED MSG3 516

8, IDF741 SOURCE KEYBOARD OPTIONS INVALID MSG3 519

8, IDF742 SOURCE START OR END POSITION INVALID MSG3 520

8, IDF743 SOURCE START OR END POSITION NOT MSG3 521
0, WITHIN THE RANGE a TO b

8, IDF744 SOURCE LENGTH SPECIFICATION INVALID MSG3 522

8, IDF745 SOURCE LENGTH NOT BETWEEN a AND b MSG3 523

8, IDF746 MAX/EXACT COUNT NOT BETWEEN a AND b MSG3 526

8, IDF747 MINIMUM COUNT NOT BETWEEN a AND b MSG3 527

8, IDF748 START POSITION FOR SINK d INVALID MSG3 529

8, IDF749 START POSITION FOR SINK d MSG3 530
0, NOT BETWEEN a AND b

8, IDF750 LNG(d) FOR SINK d INVALID MSG3 531

8, IDF751 LNG(d) FOR SINK d NOT BETWEEN a AND b MSG3 532

8, IDF752 END POSITION FOR SINK d INVALID MSG3 533

8, IDF753 END POSITION FOR SINK d MSG3 534
0, NOT BETWEEN a AND b

8, IDF754 NUMBER OF EMITTED "STRING" CHARACTERS MSG3 536
0, NOT BETWEEN a AND b

8, IDF755 NUMBER OF CHARACTERS IN COMPARAND OF COMPARE MSG3 538
o. SUBOPERAND n NOT BETWEEN a AND b

8, IDF756 INVALID ARITHMETIC OPERATOR IN CTR MSG3 542
0, SUBOPERAND n

8, IDF757 INVALID COMPARAND LENGTH IN IND OPERAND MSG3 544

8, IDF758 UNRESOLVED BRANCH TO name MSG3 546
0, FROMPATHpSEGMENTs

8, IDF759 LOGICAL OPERATOR NEAR POSITION p OF MSG3 560
0, IND SUBOPERAND n INVALID

8, IDF760 COMPARISON OPERATOR NEAR POSITION p OF MSG3 561
0, IND SUBOPERAND n INVALID

4-12

Message

8, IDF761 COMPARAND CHARACTER NEAR POSITION p OF
0, IND SUBOPERAND n INVALID

8, IDF762 IND COMPARAND LENGTH NOT BETWEEN 1 AND 127

8, IDF763 PICTURE ILLEGAL WITH EMITTED SOURCE

8, IDF764 PICTURE ILLEGAL WITH NON-NUMERIC COMPARISONS

8, IDF765 LENGTH SPECIFICATION FOR SINK d IS INADEQUATE

8, IDF766 PICTURE SUBOPERAND n IMPROPERLY FRAMED

8, IDF767 CHARACTER c OF PICTURE SUBOPERAND n IS
0, INVALID, MUST BE ONE OF THE FOLLOWING
0, characters

8, IDF768 PICTURE SUBOPERAND n NOT PROPERLY TERMINATED

8, IDF769 SINK COUNT NOT BETWEEN a AND b

8, IDF770 PRINT ELEMENT POSITION CANNOT BE DETERMINED
0, COUNT MUST BE CODED

8, IDF771 PRINTING SINK EXCEEDS FIELD MARGINS

8, IDF772 keyword OPERAND, SUBOPERAND n, FORMAT INVALID
keyword - From Figure 4-1.

Issued By

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

MSG3

8, IDF773 keyword OPERAND, SUBOPERAND n, NOT AN ALLOWED EXACT VALUE MSG3
0, OR NOT BETWEEN a AND b

keyword - From Figure 4-1.

8, IDF774 COMMAND GROUP n, INVALID FORMAT

8, IDF775 COMMAND GROUP n, SKIP OR SKIPTO VALUE
0, NOT BETWEEN a AND b

8, IDF999 FDM SYSTEM ERROR

Note: The four message inner macros MSG, MSG1, MSG2, and
MSG3 also issue this message in-line.

Structural Control1
&M Operand Name Operand Name

1 SOURCE IF
2 KIND IND
3 SELFCHK CTR
4 SINK COMMAND
5 FILL TOTAL
6 JUSTIFY GOTO
7 UL (underline)
8 WIDTH
9 HMRG

10 SAVELOC SAVELOC
11 NAME (macro name) NAME
12 Page or line number2

Field left margin3
13 CYCLE CYCLE
14 HEIGHT
15 VMRG
16 COUNT

Figure 4-1. &M Operand Relationship for Keywords

MSG1

MSG1

MSG

Structural
&M Operand Name

17 COMPARE
18 CTR
19 IND
20 PICTURE
21 BATCH
22 Field right margin3
23 MESSAGE
24 HTAB
25 FID
26 PACKING
27 MRGSTOP
28-59 Reserved

1&PIB (3)=1
2&PIA (1)=2 or 3 required
3&PIA (1)=4 required

Call No.

562

564

565

566

568

569

570

571

572

575

576

517

518

150

151

000

Contro/1
Operand Name

Appendix C 4-13

FD PROGRAM ERROR MESSAGE

When the terminal control program in the 3735 detects an
invalid FCD byte, it issues an FD program error message.
The message format is as follows:

FDP ERROR TT BB AA AA

where
TT

BB

AAAA

is the type of byte in error:
00 - immediate byte;
01 - data source byte;
02 - data type byte;
03 - function byte;
04 - data sink byte;
05 - end control byte;

is the actual byte in error;

are the two bytes that contain the address of
the error byte relative to the beginning of the
FD program sector.

To correct this error, the following steps must be per­
formed:

I. Determine if the byte represented by BB is in error. If
the byte is incorrect, check whether missing or extra
bytes in the FD program are causing the terminal con­
trol program to interpret BB incorrectly. (For example,
a missing end control byte would cause the first byte of
the next FCD to be interpreted as an end control byte
and not as the first byte in the FCD.)

2. Note the point in the form description where the error
occurs (taking into account any possible branches to
that point) by examining a PRINT GEN assembly listing
of the FD program. Then modify the source level
encoding to bypass the problem. Refer to the discussion
of FD program maintenance in Part 2, Section 3 for fur­
ther correction suggestions.

DATA SOURCE ERROR MESSAGE

When the terminal control program in the 3735 detects an
error in a data field that has a source specified other than

4-14

the keyboard, it issues the data source error message. The
message format is as follows:

DATA SOURCE ERROR SS EE DT BB

where
SS specifies the data source type that is in error:

50 - FD program ID (FID);
51 - Record number;
52 - Emitted data;
53 - Counters;
54 - Storage (STG) buffer;
55 - Inquiry (INQ) buffer;
56 - 5496 buffer;
57 - 3286-3 buffer;
SF - Operator Identification Card Reader (IDR or

CCR) buffer;
7F - CPU data;

EE specifies the type of error:
00 - Character type;
05 - Value (range) check;
I 0 - Self check;
20 - Length error.
When EE is 00 specifying a character byte, the DT
and BB bytes are displayed:

DT indicates the character type
for the field:
00 - data is undefined;
IO - data is numeric only;
20 - data is alphabetic only;
30 - data is alphameric;
40 - data is Katakana;

BB indicates the character that caused the error.

To correct this error, the user must check the coding of
his outer FD macro statements to determine whether he has
an invalid encoding. This error occurs as a result of speci­
fying SOURCE;:storage buffer when the data in the buffer
is not character data or as a result of the source counter not
meeting the COMPARE test specified.

Appendix D: Sample FD Program

This appendix contains three sections: excerpts from three
code sources to illustrate the correlation between {l) a
PRINT GEN macro assembly listing, (2) a hexadecimal
dump of the data created by the assembly, and (3) the
internal 3735 code created. This information may aid in
finding and solving problems in the assembly of FD pro­
grams.

The first section contains portions of a PRINT GEN
macro assembly listing composed of excerpts from the
sample FD macro program listed in Appendix C in the
IBM 3735 Programmer's Guide, GC30-3001. This sample
program describes the sample form presented in Appendix
A in the IBM 37 35 Programmable Buffered Terminal
Cbncept and Application publication, GA27-3043. The
assembly listing contains alphabetic identification char­
acters to relate specific parts of the listing to corresponding
parts of the hexadecimal dump and the 3735 code that
follow. Each alphabetic character and the portion of the
FD program that it identifies is as follows:

II the form ID specified in the FID operand on the

II

II m
II
II

FDFORM macro.
the data condensation specified in the PACKING
operand on the FDFORM macro.
the form length specified in the HEIGHT operand.
the begin tab definition delimiter.
the begin the FCD indicator.
the specifications resulting from the coding of the
FDFIELD macro named ADDRESS!. m the specifications resulting from the coding of an
FDFIELD macro for control-character input.

m the specifications resulting from the coding of the
FDFIELD macro named DATEFLD. This
FDFIELD macro illustrates a PICTURE specifi­
cation. The macro also shows how the assembly
uses ORG statements to go back and overlay parts
of the object code with later form specifications.
In this case, the data-type byte and the function

a

a

II
II

•

byte are initially assembled as X'4175' and X'4070'
and then replaced by X'417 l' and X'4170' via two
ORG statements.
the specifications resulting from an FDCTRL macro
with a GOTO branch that is dependent on the
setting of an indicator in IND(2). If IND=OFF,
this FDCTRL macro branches to the next FDCTRL
macro. If IND=ON, the branch is to the FD FIELD
macro named DELIVER.
the specifications resulting from the FDLINE
macro named BODY illustrating an example of a
cycle.
the repeat cycle indicator.
the end cycle indicator specified in the FDLINE
macro named GROSS.
the end form indicator in the CSECT named
IJLFlOOl.

The hexadecimal dump in the second section of this
appendix results from using one of the BT AM (OS or DOS)
sample programs described in Appendix G or Appendix H
in the IBM 3735 Programmer's Guide, GC30-3001. Each
of these programs reads data from the 3735, dumps it on
the system printer if requested to do so, and then sends
FD programs (if any) to the 3735. When through, the
program sends the terminate communicate mode message
to the 3735, issues a Write Disconnect macro, and con­
cludes processing. This dump contains alphabetic identi­
fication characters that match those in the PRINT GEN
assembly listing to point to the fields generated by that
macro assembly.

The internal 3735 code in the third section of this
appendix also contains alphabetic identification characters
corresponding to those in the assembly listing and the
hexadecimal dump. These characters further illustrate the
individual specifications defined in the excerpts from the
sample FD program in Appendix C in the IBM 3735
Programmer's Guide, GC30-3001.

Appendix D 4-15

J035 JOB035 SALES INVOICE

LOC OBJECT CODE ADDR1 ADDR2 ST"T SOURCE STATiftERT

000000
000000 C6C4C6D6D9D44040
000008 0000
OOOOOA 4070
0001 EC
oooooc
oooooc 4070
oooooc
oooooc
OOOOOE
000010

000008
000008 FPPE
OOOOOA
000012
000012144701

000014 4070
000016 4070
000018,40701
OOOOH 4070

00001C 4575
00001E 4573
000020 4475
000022 4270
000024 4476
000026 447P
000028 4572
00002A 447D
0000 2C 4270
00002E 4377
0000 30 4378
0000 32 4376
000034 4374
000036 4372
000038 4375
OOOOJA 427E
00003C 4270
00003E 4270
0000 40 4476
000042 4474
000044 4570
000046 4270
000048 4370
00004" 4371
00004C 4371
00004E 4270
000050 44 7D
000052 4575
000054 4573
000056 4574
0000 58 4270
00005A 4472
00005C 4475
00005E 4270
000060 4570
000062 4475
000064 4572
000066 4476
000068 447P
00006A 4572
00006C 447D
00006E 4475
000070 4474
000072 4270
000074 4472
000076 4475
000078 4476
00007A 447P
00007C 4572
00007E 4475
000080 4270
000082 4574

4-16

PDPOR" PDPOR" PID= 1 026•,
ftRGSTOP=11,
"ESSAGE= 1 USE FORft
ORE THIS PDP.•,
HTAB= (33 ,64),
PACKING=DELiftIT

PDP RO IS 026 X
ftECHARICAL LEFT ftARGIN STOP X

786425. FDP 011 ftUST BE PERPORftED BEFI
OPERATOR INSTRUCTION I
HORIZONTAL TAB STOP POSITIONS X
DELETE TRAILING BLANKS, ADD I

4+•
5

••••••••••
FS CHARACTER TO EACH FIELD

PD ftACROS CHARGE LEVEL 02/04/72, 1100 **********

6
7+IJLF1000
8+
9+

10+
11+
12+
13+
14+
15+
16+
17+
18
19+
20+
21+PDPOR"
22+
23+
24
25+
26+
27+
28+
29
30+
31+
32+
33+
34+
35+
36+
37+
38+
39+
40+
41+
42+
43+
44+
45+
46+
47+
48+
49+
50+
51+
52+
53+
54+
55+
56+
57+
58+
59+
60+
61+
62 +
63+
64+
65+
66+
67+
68+
69+
70+
71+
72+
73+
74+
75+
76+
77+
78+
79+
80+
1!1+

START
DC
DC
DC
ORG
ORG
DC
ORG
DC
DC
DC

ORG
DC
EQU
ORG
DC

DC
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

••
•,IJLP101 PORft RA"E IS PDPORft
0
CL8'PDPORft 1 SECTOR HEADER - PORftRAftE
H'O' SECTOR RUBBER
I'4070' RESERVED SECTOR CHAIR
•+480 SET VALID
•-480 LEIGTH ATTRIBUTE
I 1 4070• GENERATED CONSTANT
IJLP1000+12 ORG TO DESIRED LOCATION TO AS" REIT BYTE
H'17264• GENERATED ARITHftETICJ A
H' 17266' GEIERATED ARITHftETIC
H1 17270 1 GEIERATED ARITHftETIC
•,IJLP102 PORft ID IS 026
IJLP1000+8 ORG TO DESIRED LOCATION TO ASft REIT BYTE
X1 PPPE' GENERATED CORSTART
* ***TEST FOR DUPLICATE PORft RARES IR THIS ASSEftBLY
IJLP1000+18 ORG TO ASft NEXT BYTE APTER HIGHEST
H' 11520· GERERATED ARITHftETir - 8 •,IJLP138 PACKING OFTIOR IS 'DELiftIT-,
I 1 4070 1 GENERATED CORSTART
I 1 4070 1 GENERATED CONSTANT
I'4070' GENERATED CORSTAITJ ~
I 1 4070 1 GERERATED CONSTANT ...
•,IJLP122 ftRGSTOP IS 11
1 1 4575 1 TRAISLATED CHARACTER
I'4573• TRANSLATED CHA.RACTER
1 1 4475 1 TRARSLATED CHARACTER
1 1 4270 1 TRANSLATED CHARACTER
I 1 4476• TRANSLATED CHARACTER
X1 447P 1 TRANSLATED CHARACTER
I'4572' TRANSLATED CHARACTER
X'447D' TRANSLATED CHARACTER
1 1 4270' TRANSLATED CHARACTER
I'4377' TRARSLATED CHARACTER
I 1 4378' TRANSLATED CHARACTER
I 1 4376 1 TRANSLATED CHARACTER
I 1 4374 1 TRARSLATED CHARACTER
I'4372 1 TRARSLATED CHARACTER
1 1 4375 1 TRAISLATED CHARACTER
I'427E 1 TRANSLATED CHARACTER
I'4270 1 TRANSLATED CHARACTER
I 1 4270' TRANSLATED CHARACTER
1 1 4476' TRANSLATED CHARACTER
I 1 4474' TRANSLATED CHARACTER
I 1 4570' TRANSLATED CHARACTER
I'4270 1 TRANSLATED CHARACTER
I 1 4370 1 TRANSLATED CHARACTER
I'4371 1 TRANSLATED CHARACTER
I 1 4371 1 TRANSLATED CHARACTER
1 1 4270 1 TRANSLATED CHARACTER
I 1 447D' TRANSLATED CHARACTER
I 1 4575 1 TRANSLATED CHARACTER
I' 4573' TR AN SLATED CHARACTER
1 1 4574 1 TRANSLATED CHARACTER
X'4270' TRANSLATED CHARACTER
I'4472' TRANSLATED CHARACTER
1 1 4475' TRANSLATED CHARACTER
1'4270• TRANSLATED CHARACTER
I'4570• TRANSLATED CHARACTER
1'4475' TRARSLATED CHARACTER
1'4572' TRANSLATED CHARACTER
1'4476 1 TRANSLATED CHARACTER
X1 447P• TRAISLATED CHARACTER
1 1 4572' TRANSLATED CHARACTER
X1 447D 1 TRANSLATED CHARACTER
1'4475 1 TRANSLATED CHARACTER
1 1 4474' TRANSLATED CHARACTER
I'4270• TRANSLATED CHARACTER
1 1 4472 1 TRANSLATED CHARACTER
X'4475• TRANSLATED CHARACTER
1 1 4476 1 TRANSLATED CHARACTER
X1 447P 1 TRANSLATED CHARACTER
1 1 4572 1 TRANSLATED CHARACTER
I'4475' TRANSLATED CHARACTER
1 1 4270 1 TRANSLATED CHARACTER
1'4574• TRAISLATED CHARACTER

•••

J035 JOB035 SALES INVOICE

LOC OBJECT CODE ADDR1 ADDR2 STllT SOURCE STATMENT

0000811 111178
000086 111179
000088 11573
00008A 11270
00008C 111176
00008E 1111711
000090 11570
000092 1127E
0000911 l!mJ
000096 11175
000098 1117F

00009A @]:1fil

OOOOB6
000086 11576
000088 11070
OOOOBA 110711
OOOOBC 110711
OOOOBE 111711

ooooco
ooooco 111171
0000C2 11576
OOOOCll 11070
OOOOC6 11178
ooooc0 110111
OOOOCA

82+
83+
811+
85+
86+
87+
88+
89+
90+
91+
92+
93
911+
95
96
97
98

11111
1115
1116

1118 NUIE1

1119+*FDFIELD
150+NAllE1
151+
152+
153+
1511+
155+
156
157
158
159
160
161
162
163

165
166+•FDLINE
167
168
169
170
1 71

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC

1 1 111178 1 TRANSLATED CHARACTER
1 1 111179 1 TRANSLATED CHARACTER
1 1 11573 1 TRANSLATED CHARACTER
1 1 11270 1 TRANSLATED CHARACTER
1 1 111176 1 !'BANSLATED CHARACTER
1 1 1111711 1 TRANSLATED CHARACTER
1 1 11570 1 TRANSLATED CHARACTER
1• 1127E' TRANSLATED CHARACTER D
1 1 1177F 1 START TAB DEFINITION BYTEij
H1 16757 1 GENERATED ARITHllETIC
8 1 16767 1 GENERATED ARITHllETIC
•,IJLF103 TABS SET AT COLUllNS 33, 611
I I 11070 I GENERATED CONST AMI] E
••
•,IJLF108 STARTING PATH 1
••
•,IJLF109 STARTING SEGllENT

•,IJLF122 WIDTH IS 85
•,IJLF123 LEFT llARGIN IS COLUllN 12
•,IJLF123 RIGHT llARGIN IS COLUllN 80

FDFIELD 12,31,
SOURCE=(RDR,1,20),
SINK=PRT

NAii! POSITION
GET FROll CARD IllAGE
PUT TO SELECTRIC II

-360N-CQ-1190 - CHANGE LEVEL 3-A
EQU • ••• TEST FOR DUPLICATE NAllES •••
DC H' 17782 1 GENERATED ARITHllETIC
DC H1 161196 1 GENERATED ARITHllETIC
DC H' 16500' GENERATED ARITHllETIC
DC H1 16500 1 GENERATED ARITHllETIC
DC H'16756 1 GENERATED ARITHllETIC

••
•,IJLF125 SINK 1 IS PRT
•,IJLF1113 SELECTRIC II PRINT REGION BEGINS AT
•, COLUllN 12, ENDS AT COLUllN 31
••
•,IJLF128 SOURCE IS RDR, 1
•,IJLF1115 SOURCE CHARACTER COUNT IS 20
•,IJLF1211 KIND IS UNRESTRICT!D

FDLINE 13 SOLD-TO STREET ADDRESS LINE
-360N-CQ-1190 - CHANGE LEVEL 3-A

••
•,IJLF139 LINE NUllBER IS 13
•,IJLF122 WIDTH IS 85
•,IJLF123 LEFT llARGIN IS COLUllN 12
•,IJLF123 RIGHT llARGIN IS COLUllN 80

x
x

173 ADDRESS1 FDFIELD 12,31, STREET ADDRESS POSITION X
SOURCE= (RDR,21 ,110), GET FRO!! CARD IllAGE X
SINK=PRT PUT TO SELE.CTRIC II

1711+•FDFIELD -360N-CQ-1190 - CHANGE LEVEL 3-A
175+ADDRESS1 EQU • ••• TEST FOR DUPLICATE NAllES •••
176+ DC H1 17521 1 GENERATED ARITBllETIC
177+ DC H' 17782 1 GENERATED ARITHllETIC F
178+ DC H1 161196 1 GENERATED ARITHllETIC
179+ DC H1 16760 1 GENERATED ARITHllETIC
180+ DC H1 16500 1 GENERATED ARITHllETIC
181+ DC H1 16756 1 GENERATED ARITHllETIC
182 ••
183 •,IJLF125 SINK 1 IS PRT
1811 •,IJLF1113 SELECTRIC II PRINT REGION BEGINS AT
185 • 1 COLUllN 12, ENDS AT COLUllN 31
1 86 ••
187 •,IJLF128 SOURCE IS RDR, 21
188 •,IJLF1115 SOURCE CHARACTER COUNT IS 20
189 •,IJLF1211 KIND IS UNRESTRICT!D
191 FDLINE 1 II SOLD-TO CITY/STATE/ZIP LINE
192+•FDLINE -360N-CQ-1190 - CHANGE LEVEL 3-A
193 ••
1911 •,IJLF139 LINE NUllBER IS 111
195 •,IJLF122 WIDTH IS 85
196 •,IJLF123 LEFT llARGIN IS COLUllN 12
1 97 •, IJLF12 3 RIGHT llARGIN IS COLUllN 80

Appendix D 4-17

J035 JOB035 SALES INVOICE

LOC OBJECT CODE ADDI' 1 ADDR2 STl!T SOURCE STATEl!ENT

OOOOE8 4070
OOOOEA 4073
OOOOEC 4071
OOOOEE 427A
OOOOFO 4070
OOOOF2 4270
0000 F4 4071
OOOOF6 44 7B
OOOOFB 4270
00001'1 4071

OOOO!'C 447B

OOOOFO
OOOOFO 4270
OOOOFE
OOOOFE 4070

00019A

00019A
00015E
00015E 4770
000160 4475
00019A
00019A 4475

000162
000162 4671
000164 4070
000166 417A
000168 4670
00016A 4670
00016C 4670
00016E 4670
000170 4670
000172 4670
000174 4670
000176 4670

4-18

237

238+*FDPIELD
239+
240+
2 41 +
242+
243+
244+
245+
246+
247+
248+
249+•
250+
251+•
252
253+
254+
255+
256+
257
258
259
260

262
26 3+• FDCTRL

5 21 HEAD LI NE
522+*FDLINE
523+HEADLINE
524
525
526
527
528
529
530
531
532

FDFIELD , CONTROL-CHARACTER INPUT
SOURCE=(KBD,OPTIONAL) , GET FRO!! KEYBOARD
COUNT=1, SINGLE CHARACTER
COl!PARE=(FIELD,EQ,'K'), IF ENTRY !!ADE, !!UST BE 'K'
IND= (1, FIELD, EQ, 'K') , FLAG ENTRY OF 'K'
SINK=NULL NO OUTPUT

-360N-CQ-490 - CHANGE LEVEL 3-A
DC X'4070' GENERATED CONSTANT
DC H'16499• GENERATED ARITHl!ETIC
DC H1 16497' GENERATED ARITHl!ETIC
DC H' 17018' GENERATED ARITHl!ETIC
DC H' 16496' GENERATED ARITHl!ETIC
DC H'17008' GENERATED ARITHl!ETIC
DC H1 16497' GENERATED ARITHl!ETIC
DC X1 447B' TRANSLATED CHARACTER
DC H' 17008 1 GENERATED ARITHl!ETIC
DC H1 16497• GENERATED ARITHl!ETIC

TRANSLATE
DC X1 447B' TRANSLATED CHARACTER

END TRANSLATE
•,IJLF129 IND 1 SET

ORG IJLF1000+240 ORG TO DESIRED LOCATION TO AS!! NEXT BYTE
DC H1 17008 1 GENERATED ARITH!IETIC
ORG IJLF1000+254 ORG TO AS!! NEXT BYTE AFTER HIGHEST
DC H 1 16496' GENERATED ARITH!IETIC

•,
•,IJLF128 SOURCE IS KEYBOARD, OPTIONAL, NO AUTOEOF
•,IJLF145 SOURCE CHARACTER COUNT IS ZERO OR 1
•,IJLF124 KIND IS UNRESTRICTED

FDCTRL IF=IND(1) ,GOTO=KSHIPTO ON !!EANS OPR. WILL KEY SHIP-TO
-360N~CQ-490 - CHANGE LEVEL 3-A

FDLINE 23 HEADING LINE
-360N-CQ-490 - CHANGE LEVEL 3-A
EQU • ••• TEST FOR DUPLICATE NA!IES •••

•,
•,IJLF110 END OF SEG!IENT 3
•,IJLF109 STARTING SEG!IENT 4
•, •,
•,IJLF139 LINE NUl!BER IS 23
•,IJLF122 WIDTH IS 85
•,IJLF123 LEFT !IARGIN IS COLU!IN 12
•,IJLF123 RIGHT !IARGIN IS COLU!IN 80

x
x
x
x
x

534 DATEFLD FDFIELD 12,19, DATE POSITION X

535+•FDFIELD
536 +DATEFLD
537+
538+
539+
540+
541+
542
543
544+
545+
546+
547+
548+
549+
550+
551+
552+
553+
554 +
555+
556
557

SOURCE=(STG, 1, 6), GET FRO!! STORAGE (PRESET) X
SINK=PRT, PUT TO SELECTRIC II X
PICTURE=' Y9/99/99', !l!l/DD/YY FOR!IAT C
KIND=N

-360N-CQ-490 - CHANGE LEVEL 3-A
EQU • ••• TEST FOR DUPLICATE NA!IES •••
ORG IJLF1000+350 ORG TO DESIRED LOCATION TO AS!! NEXT BYTE
DC X'4770' GENERATED CONSTANT H
DC H' 17525' GENERATED ARITH!IETIC
ORG IJLF1000+410 ORG TO AS!! NEXT BYTE AFTER HIGHEST
DC H' 17525' GENERATED ARITH!IETIC •,

•,IJLF118 THIS SEGl!ENT ENTERED FRO!! SEG!IENT 3
ORG IJLF1000+354 ORG TO DESIRED LOCATION TO AS!! NEXT BYTE
DC X' 4671' GENERATED CONSTANT
DC H'16496 1 GENERATED ARITHl!ETIC
DC H1 16762 1 GENERATED ARITH!IETIC
DC X'4670 1 GENERATED CONSTANT
DC X'4670 1 GENERATED CONSTANT
DC X1 4670• GENERATED CONSTANT
DC X'4670 1 GENERATED CONSTANT
DC X'4670 1 GENERATED CONSTANT
DC X0 4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT

•,
•,IJLF118 THIS SEG!IENT ENTERED FRO!! SEG!IENT 2

J035 JOB035 SALES INVOICE

LOC OBJECT CODE

00019C

ADDR1 ADDR2 ST!T

558+
559+
560+
561+
562
563
564+
565+
566+
567+
568+
569+
570+
571+
572+
573+
574+
575+
576+
577+
578+
579+
580+
581
582
583
584
585+
586+
587+
588+
589
590
591
592
593
594

SOURCE STATE!EHT

00019C 4574
00019E 4070
0001AO 40711

0001A2 4175
0001A4 4076
0001A6 4070
0001AB 4070
0001 AA 407A
0001AC 4075
0001AE 4579
000180 4379
0001B2 427F
0001B4 4379
0001B6 4379
000 1 BB 427F
0001BA 4379
0001BC 4379
0001 BE 477F
0001AC
0001AC 4076

0002AC 4070
0002AE 4672

000280 4070
000282 4170
000284 4070
0002B6 7
0002B8 4670
0002BA 4670
0002BC 4670
0002BE 4670
0002CO 4670
0002C2 4670
0002C4 11670
0002C6 4670
0002C8 4670
0002CA 4670
0002CC 4670
0002CE 4670
0002DO 4670

596 INVNO

844 •

846

847+•FDCTRL
848+
849+
850
851+
852+
853+
854+
855+
856+
857+
858+
859+
860+
861+
862+
863+
864+
1365+
866 +
867+

ORG
DC
DC
DC

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
ORG
DC

ORG
DC
ORG
DC

IJLF1000+412 ORG TO AS! NEXT BYTE AFTER HIGHEST
H1 17780 1 GENERATED ARITH!ETIC
H1 16496 1 GENERATED ARITH!ETIC
H1 16500 1 GENERATED ARITH!ETIC
O,IJLF448 FIRST OPERATION OH STG BUFFER MAY HOT HAVE
O, BEEN UNCONDITIONAL CLEAR OR INPUT
H'16757 1 GENERATED ARITH!ETIC
H 1 16502 1 GENERATED ARITH!ETIC
H1 16496 1 GENERATED ARITHMETIC
H1 16496' GENERATED ARITHMETIC
H1 16506 1 GENERATED ARITHMETIC
H' 16501' GENERATED ARITHMETIC
X1 4579' GENERATED CHARACTFR
X 1 4379 1 GENERATED CHARACTER
X1 427F 1 GENERATED CHARACTER
X1 4379 1 GENERATED CHARACTER
X1 4379 1 GENERATED CHARACTER
X1 427F' GENERATED CHARACTER
X'4379 1 GENERATED CHARACTER
X1 4379 1 GENERATED CHARACTER
X1 477F 1 GENERATED CONSTANT
IJLF1000+428 ORG TO DESIRED LOCATION TO AS! NEXT BYTE
H' 16502 1 GENERATED ARITHMETIC •,
•,IJLF125 SINK 1 IS PRT
•,IJLF143 SELECTRIC II PRINT REGION BEGINS AT
•, COLU!N 12, ENDS AT COLUMN 19
IJLF1000+418 ORG TO DESIRED LOCATION TO AS! NEXT BYTE
H1 16753 1 GENERATED ARITHMETIC
IJLF1000+422 ORG TO DESIRED LOCATION TO AS! NEXT BYTE
H1 16752 1 GENERATED ARITH!ETIC-
•,IJLF135 PICTURE 1 WAS USED FOR FORMATTING
•, OUTPUT OF SINK 1
•,
•,IJLF128 SOURCE IS STG, 1
•,IJLF145 SOURCE CHARACTER COUNT IS 6
•,IJLF124 KIND IS NUMERIC

ID

FDFIELD 21,28, INVOICE NUMBER POSITION X
SOURCE=(STG,7,13), GET FRO! STORAGE (PRESET) X
CTR= (1,ADD,FIELD), PREVIOUSLY CLEARED X
SINK= (PRT,Tl'IT), PUT TO SEL. II AND T!T X
PICTURE=(1 99B99999 1 , 1 99B99999 1) PICtURES SHOULD AGREE

BRANCH TABLE TO CONTROL PRINTING OF SHIP-VIA FIELD

FDCTRL IF= (IllD (2)) , ON IF ID' KEYED x
GOTO=DELIVER If IND= ON, -36011-CQ-490 - CHAllGE LEVEL 3-A

D DC X1 4070 1 GEllERATED COllSTANT go to FDFIELD
DC X1 4672' GEllERATED CONSTANT named DELIVER

•,IJLF129 IND 2 TESTED
DC H 1 16496 1 GENERATED ARITHl'IETIC
DC H' 16752 1 GENERATED ARITHMETIC
DC X1 4070 1 GENERATED CONSTANT

If IND= OFF, DC X1 407D 1 GENERATED CONSTAN::!)
DC X'4670 1 GENERATED CONSTANT go to next FDCTRL
DC X'4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X' 4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X'4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X1 4670 1 GENERATED CONSTANT
DC X1 4670' GENERATED CONSTANT
DC X1 4670 1 GERERATED CONST ANT

Appendix D 4-19

J035 JOB035 SALES INVOICE

LOC OBJECT CODE ADDR1 ADDR2

0002D2 4672

0002D4 4070
0002D6 4270
0002D8 4070
0002DA 407D
0002DC 4670
0002DE 4670
0002EO 4670
0002E2 4670
0002E4 4670
0002!6 4670
0002E8 4670
0002EA 4670
0002EC 4670
0002EE 4670
0002PO 4670
00021'2 4670
0002F4

00045A
00045A 4070

00045C

00042E
00042E 4770
000430 4475
0003E8
0003E8 4770
0003EA 4475
0003AO
0003110 4770
0003 A2 4475
00036A
000 36A 4770
00036C 4475
00045E
000451' 4475

00036E
00036E 4671

4-20

STllT SOURCE STATEllENT

86'! FDCTRL IF'= (IND (3)) I ON IF 'P' KEYED x
GOTO'=PICKOP

870+•FDCTRL -360N-CQ-490 - CHANGE LEVEL 3-A
871 •,
872 •,IJLF110 END OF SEGllENT 4
873 •,IJLF109 STARTING SEGllENT 5
874 •,
875 •,
876 •,IJLF118 THIS SEGllENT ENTERED FRO!! SEGllENT 4
877+ DC X'4672' GENERATED CONSTANT
878 •,IJLF129 IND 3 TESTED a 879+ DC H' 16496' GENERATED ARITHllETIC
880+ DC H'17008' GENERATED ARITHllETIC
881 + DC X'4070' GENERATED CONSTANT
882+ DC X'407D' GENERATED CONSTANT
883+ DC X'4670' GENERATED CONSTANT
884+ DC 1'4670' GENERATED CONSTANT
885+ DC 1'4670• GENERATED CONSTANT Use this
886+ DC 1 1 4670' GENERATED CONSTANT if IND= OFF
887+ DC I' 48'10• GENERATED CONSTANT
888+ DC 1'4670' GENERATED CONSTANT
889+ DC 1 1 4"670• GENERATED CONSTANT
890+ DC 1'4670' GENERATED CONSTANT
891+ DC I' 4670' GENERATED CONSTANT
892+ DC 1'4670• GENERATED CONSTANT
BB+ DC 1 1 4670' GENERATED CONSTANT
894+ DC 1 1 4670' GENERATED CONSTANT
895+ DC 1'4670• GENERATED CONSTANT

897 l'DCTRL IF'=(IND(4)), ON IF 'R' KEYED I
GOTO'=RREIP

1005 DELIVER FDFIELD 61,80,
SOURCE'='DELIVER',
SINK'=PRT,
JUSTIFY'=C

SHIP-VIA POSITION~ X
GET LITERAL STRING Branch to I II
PUT TO SELECTRIC II here from
CENTERED

1290 •,IJLF143 SELECTRIC II PRINT REGION BEGINS AT
1291 •, COLUllN 68 1 ENDS AT COLUftN 72
1292 •,IJLF126 JUSTIFY OPTION FOR SINK 1 IS CENTER
1293+ ORG IJLF1000+1114 ORG TO DESIRED LOCATION TO ASll NEXT BYTE
12 94+ DC H1 16496' GENERATED ARITHftETIC
1295 •,
1296 •,IJLF128 SOURCE IS Ell ITT ED
1297 •,IJLF145 SOURCE CHARACTER COUNT IS 5
1298 •,IJLF124 KIND IS UNRESTRICTED

1300 BODY FDLINE 28,CYCLE'=(28,AllOONT,GROSS) PROVIDES FOR LINES 28-55
1301 +•FDLillE -360N-CQ-490 - CHANGE LEVEL 3-A
1302+BODY EQO * *** TEST FOR DUPLICATE NAllIS •••
1303 •,
1304 •,I JLF110 END OF SEGftENT 12

D 1305 •,IJLF109 STARTING SEGllEMT 13
1306 •,
1307 •,
1308 •,IJLF139 LIME MOllBER IS 28
1309 •,IJLF122 WIDTH IS 85
1310 •,IJLF123 LEFT llARGIM IS COLOllM 12
1311 •,IJLF123 RIGHT llARGIN IS COLOllN 80
1312+ ORG IJLF1000+1070 ORG TO DESIRED LOCATION TO AS!! HEIT BYTE
1313+ DC 1'4770• GENERATED CONSTANT
1314+ DC ff' 17525• GENERATED ARITHllETIC
1315+ ORG IJLF1000+1000 ORG TO DESIRED LOCATION TO AS!! NEXT BYTE
1316+ DC 1'4770' GENERATED CONSTANT
1317+ DC H1 17525' GENERATED ARITHftETIC
1318+ ORG IJLF1000+928 ORG TO DESIRED LOCATION TO AS!! NEXT BYTE
1319+ DC 1'4770• GENERATED CONSTANT
1320+ DC H'17525' GENERATED ARITHllETIC
1321+ ORG IJLF1000+874 ORG TO DESIRED LOCATION TO AS!! llEXT BYTE
1322+ DC 1'4770' GENERATED CONSTANT
1321+ DC H' 17525' GENERATED ARITHllETIC
1324+ ORG IJLF1000+1118 ORG TO AS!! NEXi BYTE AFTER HIGHEST
1325+ DC H' 17525' GENERATED ARITHft!TIC
1326 •,
1327 •,IJLF118 THIS SEGllENT ENTERED FRO!! SEGllEllT 12
1328+ ORG IJLF1000+878 ORG TO DESIRED LOCATION TO ASll NEXT BYTE
1329+ DC 1'4671' GENERATED CONSTANT

J035 JOB035

LOC OBJECT

000370 4070
000372 467D
000374 4670
000376 4670
000378 4670
00037A 4670
00037C 4670
00037E 4670
000380 4670
000302 4670

0003A4
0003A4 4671
0003A6 4070
0003A8 4572
0003AA 4670
0003AC 4670
0003AE 4670
000380 4670
000382 4670
000384 4670
000386 4670
0003B8 4670

000 3EC
0003EC 4671
0003EE 4070
000 31'0 4377
0003f2 4670
00031'4 4670
0003F 6 4670
000 3F8 4670
0003FA 4670
0003l'C 4670
000 3l'E 4670
000400 4670

000432
000432 4671
000434 4070
000436 4174
0004 38 4670
00043A 4670
00043C 4670
00043E 4670
000440 4670
000442 4670
000444 4670
000446 4670

000460
000460 4673
000462 4070
000464 417C
000466 4070
000468 417C
00046A 4670
00046C 4670

000540
000540 4471
000542 j4674!
00046A
00046A 4070
00046C 467B

SALES INVOICE

CODE ADDR1 ADDR2 STllT

1330+
1331 +
1332+
1333+
1334+
1335+
1336+
1337+
133 8+
1339+
1340
1341
1342+
1343+
1344+
1345+
1346+
1347+
1348+
1349+
1350+
1351+
1352+
1353+
1354
1355
1356+
13 57.+
1358+
1359+
1360 +
1361+
1362+
1363+
1364+
1365+
1366+
1367+
1368
1369
1370+
1371 +
1372+
1373+
1374+
1375+
1376+
1377+
1378+
1379+
1380+
1361+
1382
138 3
1364+
1385+
13 86+
1387+
1388+
1389+
1390+
1391+

1662+
1663+
1664+
1665+
1666+
1667+

SOURCE STATEllENT

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

ORG
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

ORG
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

ORG
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

ORG
DC
DC
DC
DC
DC
DC
DC

ORG
DC
DC
ORG
DC
DC

H' 16496 1 GENERATED ARITHllETIC
H1 18045 1 GENERATED ARITHllETIC
X14670 1 GENERATED CONST ANT
X1 4670 1 GENERATED CONSTANT
X'4670 1 GENERATED CONST ANT
X1 4670 1 GENERATED CONSTANT
X14670 1 GENERATED CONST ANT
x• 4670• GENERATED CONSTANT
X'4670 1 GENERATED CONSTANT
x•467o• GENERATED CONSTANT
•,
•,IJLF118 THIS SEGllENT ENTERED FROll SEGllENT 8
IJLF1000+932 ORG TO DESIRED LOCATION TO ASll NEXT BYTE
X1 4671 1 GENERATED CONSTANT
H'16496 1 GENERATED ARITHllETIC
H' 17778• GENERATED ARITHllETIC
X14670 1 GENERATED CONSTANT
X'4670 1 GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
x• 4670• GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
X1 4670 1 GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
X1 4670 1 GENERATED CONSTANT
•,
•,IJLF118 THIS SEGllENT ENTERED FROll SEGllENT 9
IJLF1000+1004 ORG TO DESIRED LOCATION TO ASll NEXT BYTE
X14671 1 GENERATED CONSTANT
H1 1649 6 1 GENERA TED AR ITH llETIC
H117271 1 GENERATED ARITHllETIC
x•4670• GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
x• 4670• GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
X1 4670 1 GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
XI 4670 I GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
•,
•,IJL1'116 THIS SEGllENT ENTERED FROll SEGllEMT 10
IJLF1000+1074 ORG TO DESIRED LOCATION TO ASll NEXT BYTE
X14671 1 GENERATED CONSTANT
H116496 1 GENERATED ARITHllETIC
H1 16756 1 GENERATED ARITHllETIC
X14670 1 GENERATED CONSTANT
X1 4670 1 GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
XI 4670 I GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
X14670 1 GENERATED CONSTANT
x•467o• GENERATED CONST AMT
X1 4670 1 GENERATED CONSTANT •,
•,IJLF118 THIS SEGllEMT ENTERED FROll SEGllEMT 11
IJLF1000+1120 ORG TO ASll NEXT BYTE AFTER HIGHEST

''''''' ''''''''" oo•••••' ~ H116496 1 GENERATED ARITHllETIC
H1 16764 1 GENERATED ARITHllETIC
H116496 1 GENERATED ARITHllETIC J
H' 167641 GENERATED ARITHllETIC Cycle
X14670 1 GENERATED CONSTANT
X1 4670 1 GENERATED CONSTANT

IJLF1000+1344 ORG TO ASll NEXT BYTE AFTER HIGHEST K
H1 17521 1 GENERATED ARITHllE.l,IC----------­
X146741 GENERATED CONSTANT..J•
IJLF1000+1130 ORG TO DESIRED LOCATION TO ASll NEXT BYTE
H116496 1 GENERATED ARITHllETIC
H118043 1 GENERATED AF.ITHllETIC

II

Appendix D 4-21

J035 JOB035 SALES INVOICE

LOC OBJECT COD? ADDR1 ADDR2 STMT SOURCE STATEMENT

00046E
000544
000544 f4675 t

0 0 06 86
000686 4070

000000
000008
000008 0000
000014
0 0 00 1 4 4070
000016 4070
000018 4070
00001A 4472

0005B8
000688
000688 film
00068A 401E
00068C 4070407040704070
000798 FFFFFFFfFFFF
00079E FFFFFFFFFFFF
00079E

4-22

16 69 GROSS
1670+*FDLTNE
1671 +GROSS
1672+
1673+
1674
1675
1676
1677
1678
1679
1680
1681
1682
16 BJ
1684
2146
2147
2148
2149
2150
2151
2152
2153+
2154+
2155
21 56
2157+TJLF1000
2158+
2159+
2160+
2161+
2162 +
2163+
2164+
2165
2166
2167
2168+IJLf1001
2169+
2170+
2171+
2172+
2173+
2174+
2175+
2176
2177
2178
2179
2180
2181
2182
2183 END

FDLINE 58 FOOTING LINE
-360N-CQ-490 - CHANGE LEVEL 3-A
l!QU * *** TEST FOR DUPLICATE NAMES ***
ORG IJLF1000+1348 ORG TO ASM NEXT BYTE AFTER HIGHEST

ilAS --11 DC X1 4675 1 GENERATED CONSTANf}-=
•,IJLF132 AT END OF CYCLE PRINT ELEMENT
*• POSITIONED ON LINE 56 OF FORM •,
•,IJLF110 END OF SEGMENT 13
*,IJLF109 STARTING SEGMENT 14 •, •,
•,IJLF139 LINE NUMBER IS 58
•,IJLF122 WIDTH IS 85
•,IJLF123 LEFT MARGIN IS COLUMN 12
*,IJLF123 RIGHT MARGIN IS COLUMN 80
•,
*,IJLF116 BUFFERS USED IN PATH 1 .. ------------------------
•, IJLF 1 30 STG

Branch for
J

O,IJLF421 STG BUFFER MAY NOT HAVE BEEN USED AS
O, OUTPUT SINCE PRIOR INPUT
*,IJLF130 RDR/PCH

ORG IJLF1001+206 ORG TO ASM NEX~ BYTE AFTER HIGHEST
DC I' 4070' GENERATED CONSTANT

CSECT
ORG
DC
ORG
DC
DC
DC
DC

CSECT
ORG
DC
DC
DC
DC
DC
ORG

•,
•,IJLF118 THIS SEGMENT ENTERED FROM SEGMENT 14

IJLF1000+8 ORG TO DESIRED LOCATION TO ASM NEXT BYTE
x•oooo• GENERATED CONSTANT
IJLF1000+20 ORG TO DESIRED LOCATION TO ASM NEXT BYTE
H1 16496 1 GENERATED ARITHMETIC
H'16496' GENERATED ARITHMETIC
H' 16496 1 GENERATED ARITHMETIC
H1 17522 1 GENERATED ARITHMETIC
•,
*,IJLF146 FORM DESCRIPTION PROGRAM SPECIFIED
*• SELECTRIC II FORM HAVING 66 LINES

IJLF1001+208 ORG TO ASM NEXT BYTE AFTER HIGHEST M
1 1 4679 1 GENERATED CONSTAN'[J~~~~~~~~~~_,.
X'401E 1 GENERATED CONSTANT
(134)X 1 4070 1

3H 1 -1 1 LAST SECTOR FLAG
(2+1)H 1 -1 1 LAST CSECT FLAG
•-4-2•1
•,
•,IJLF147 SUMMARY OF FOP-GENERATED DATA
•, --
•, UNPACKED FOP OUTPUT = 4 BLOCKS
*• 3735 DISK STORAGE = 3.4 SECTORS •,
•,IJLF133 NO TERMINATING ERRORS FOUND IN THIS FOP

NO NAME 03/15/72 PAGE 1

GR 0-1 00006EFO 00006EO 0 0000600E 000066 92 0000667E 00006078 9000612C 00005F98
GR 8-F 00007BOA 0A0407F1 8000617A 40006092 00006F08 ---i6648 ----64A4 0000----
FP llEG - - A -) 0 00 00000000 00000000 00000000 00A80600 m 10500 mo 100 0000 ll m 006880 OOOOC6C4 C6060904 40400002 4070@370 43724376]~4070 4070~
0068A0 ~4575 45734475 42704476 447F4572 44704270 43774378 4376"~~" 43724375
0068CO .. ---4210 42704476 44 74457 0 42704370 43714371 42704470 4575 m 45744270
0068EO 114475 42704570 44754572 447('' ··-7 45724470 44754474 4270 44754476
006900 4572 44754270 45744478 447·111 42704476 447445.27~ 4175417F
006920 ~46.,. "072477F 467A4070 4 77 J 41704672 407041 0704071 45764070
006940 407440m1744471 45764070 41784074 41744471' 457640 27C4074 41744271
006960 477040 5764070 44704174 40754070 40734071 427A4270 42704071 447B4270
006980 !4Q11447B ~Q7Q4Q7Qj46724070 40704070 40704770 44724671 40704371 46704670
0069AO 46704670 46704670 46704670 47704472 45764070 40744074 41744471 45764070
0069CO 41784074 41744471 45764070 427C4074 4174" --· 47704071 45764070 44704074
0069EO 4075 111 1'7704475 46714070 417A4670 4670m 46704670 46704670 46704076
006A00 4174 44714076 41744370 44714076 4174 42714770 40714176 40754078:
006A20 4475 40704074141714076 41704070 407A4076 45794379 427F4379 4379427F
006A 40 :43794379 477ft4071 45744070 407A4171 40774570 42704070 4070407B 40774379
006A60 43794270 43790000 00000000 03107000

NO N AKE 0 3/15/72 PAGE 2

GR 0-1 00006EFO 00006EOO 0000600E 00006692 0 00 066 7E 00006078 9000612C 00005F98
GR 8-F 00007BOA 0A0407F1 8000617A 40006092 00006FD8 60006648 800064A4 00000000
FP REG 00000000 00000000 00000000 00000000 00A80600 00A80500 00A90100 00000004

006880 0000C6C4 C6D6D9D4 40400002 40704379 43794379 4379477F 40704572
0068AO 41714071 43714470 42704070 40704 57 3 40704171 407A4170 40714070 407A4077
0068C0 40714576 40704475 417C4075 40714576 4070447A 41744073 40714576 40704470
0068EO 4274407A 40754576 40704577 41714074 41704070 4r-- ··:"174 43794379 427F4379
006900 4379477F 4r.--":>73 4C71417A 42704271 40714471 420 71 44744271 40714570
006920 42714071 4!0270 40714574 42744071 44744170 42 71 45704270 42744071
006940 45724370 4:)71 45744470 40704672 40704170 40704070 41704271 47704073

4 1 4 4 4 46704672 40704270 40704070 41704271
006980 47704073 46714070 46784670 46704670 4670467 0 46704672 40704370 40704070
0069AO 47704271 47704171 46 7140 70 47714670 4670467 0 46704670 46704672 40704470
0069CO 40704070 47704271 4170407 4 46714071 40724670 46704670 46704670 46704770
0069E0 42714 770 40714572 4071407B 44714479 45724270 44764572 44754479 44 77LJ4 78
006A00 45744170 407CLJ672 4 C704770 44754671 IJ070467D 4670LJ670 46704670 46704670
006A20 46704670 45724071 IJ0774474 4475447C 44794576 44751J572 41704070 46724070
006A40 47704475 46714070 45724670 46704670 46704670 46704670 46704572 40714077
00 6A 60 45704479 44730000 00000000 03107000

Appendix D 4-23

NO NAME 0 3/15/72 PAGE 3

GR 0-7 00006EFO 00006EDO 00006DOE 00006692 0000667E c 0006 078 9000612C 00005F98
GR 8-F 00007BOA OA0407F1 8000617! 40006092 00006FD8 60006648 800064!4 00000000
FP REG 00000000 00000000 00000000 00000000 00-180600 00180 500 00A90100 000000 04

006880 OOOOC6C 4 C6D6D9D4 40400002 4070447B 42704575 45704170 40704672
0068A0 40704770 44754671 40704377 46704670 4670~670 46704670 46704670 .. - --4.011
0068CO 407F457~'714479 447C4577 44714579 42704475 45784570 457244 75 114573
0068EO 4170401 724070 47704475 46714070 41744670 46704670 4670461Q 467Q
006900 4670451 1714075 45744572 45754473 447B4170 40704672 447~673 4070417C~
006920 ~4070417c 4070467BI 417B4073 43704 570 46714071 46704072 40704272 4071417B
006940 1 40734270 457C4170 40724070 42724071 457 34072 4179407 A 41704070 40714073
006960 457A457A 457A477F 40714077 4072417! 40704271 40724475 44714271 40724474
006980 457A4271 407~4477 45724270 4072447C 44724071 417E4075 41794270

'" __ ,,,

0069A0 417E4374 40724271 417B4075 43744 570 40724078 40714070 407A4075 1111 0069CO 427A427A 4576427E 43794379 477F4071 4573407, 4179407! 45704270
0069EO 407A4076 4274427! 427C427A 427A427A 4576427E 43794379 477F4471 1467414675\
006A00 47704472 45704179 4C734170 4070407A 40734379 43794 379 427F477F 40704571
006A20 41794073 41704070 407A4073 43794379 4379477F 4 2714573 40734171 407A4170
006A40 4070407B 40784274 4271427! 427A427C 427 A427 A 427A.4576 427E4379 4379477F
006A60 40714576 4C7COOOO OCOOOOOO 03107000

NO NA!!E 03/15/72 PAGE 4

GR 0-7 00006EFO 00006EDO 00006DOE 000066 92 0000667E 0 0006D78 9000612C 00005F98
GR 8-F 00007BOA OA0407F1 8000617! 40006092 00006 FD8 60006648 800064!4 00000000
FP REG 00000000 00000000 00000000 00000000 00180600 OOA80500 00A90100 00000004

006880 0000C6C 4 C 6D6D9D4 40400002 4070457B 41794073 417040 70 407A4073
0068AO 4379427E 43794379 477F4070 45734073 4171407! 44704078 40744070 4572417,
0068CO 40734371 43704370 44704072 40744070 47704071 4'5734074 4179407! 45704270
0068EO 40734070 407A4076 4274427! 427C427A 427 A427A 4576 '"'"'"' 43794379 4 77p1rn11
006900 4·17B4076 42704570 42704073 4070407! 40764274 427A II 427A427A 427A4576
0069 20 427E4379 4379477F 40714573 40734179 407A4170 4070 40784274 427A427A
006940 427A427C 427A427A 427A4576 427E4379 4379477F 4070146791 401E4070 40704070
OC6960 40704070 --SAME--
006A60 40704070 4070FFFF FFFFFFFF 03107000

4-24

m 303236 ~ FID=026

m 40 ~ PACKING=DELIMIT

m 0042
___.

Form Length is 66 Lines

m 7F ~ Begin Tab Definition

II 00 ~ Begin The FCD

II 560018041441 _.. FDFIELD (ADDRESS 1) Specification

56 0018 04 14 41 - - -
Source Buffer Data Char End
= 5496 Start Type Count Control
Buffer Position Byte = 20 Indicator

Relative for =New Line 1
to 4, Zero PRT
Origin

m 03012A2020014B20014BOOOO --- FDFIELD Control Character Input Specification

03 01 2A 20 20 01 - - - - - -
Data Type Char Validity Function Value Char
Byte for Count Byte, Byte for Byte Count
Validity = 1 Value COMPARE for = 1
& Function Check EQUAL
Bytes to Follows*
Follow

4B 20 01 4B 00 00 - - - - - -
Char Compare Char Char IND=1 End
Count Byte= Count Count Control
=K EQ = 1 =K Indicator

=Space
Zero

* Specifies enter mode required, fixed length records.

Appendix D 4-25

4-26

ID 110610000A0659392F39392F39397F _. FDFIELD (DATEFLD) Specification

11 06 10 00 OA - -- - - --
Data Type Char Function Data Sink Selectric
Byte for Count Byte for Byte for Sink Byte
Numeric =6 Data Sink PRT Selectric for EDIT
Function Group Bytes and PRT
Byte to to Follow
Follow

06 59392F39392F3939 7F -- --
PICTURE PICTURE = Y9/99/99 PICTURE
Digit Delimiter
Count=
6

D 620010000D7021700361005F60606060606062 ...

········-~ FDCTRL IF= (IND (2)), GOTO=DELIVER Specification

62 00 10 - -- --
GOTO On Condition IND=
Condition Byte= NOT 01

7021700361005F606060606060

If IND= ON, Branch to the FDFIELD
Macro Named DELIVER

OOOD ---
Branch (IND= OFF) If IND= OFF,
Displacement Branch to the
= +13 Next FDCTRL Macro

62 ...

Next FDCTRL
Macro

II 63001C001C006B CYCLE Beginning at FD LI NE (BODY) Specification

63 001C 001C 006B
- -- -- ---
Begin Number Number of Displacement
Cycle of Lines Repetitions to FDLINE Macro
Byte in Cycle in Cycle Named GROSS

= 28 = 28

m 64 - Repeat Cycle Byte

II 65 - End Cycle Byte (in FDLINE Named GROSS)

II 69 - End Form Byte (in CSECT Named lJLF1001)

Glossary

The following terms are defined as they are used in this manual. If
you do not find the term you are looking for, refer to the index or
to the IBM Data Processing Glossary, GC20-1699.

IBM is grateful to the American National Standard Institute
(ANSI) for permission to reprint its definitions from the American
National Standard Vocabulary for Information Processing (copy­
right© 1970 by American National Standards Institute, Incorpo­
rated), which was prepared by Subcommittee X3.5 on Terminology
and Glossary of American National Standards Committee X3.

Access lines. The communication Jines that join the central com­
puter and the remote terminal to common-carrier exchange
equipment.

Access method. A combination of an access technique (either
queued or basic) and a given data set organization (for instance,
sequential, partitioned, indexed sequential, or direct) that allows the
transfer of data between main storage and I/O devices.

Array. An arrangement of elements in one or more dimensions.* In
this publication, an array is an arrangement of all the bits of a partic­
ular global variable. For example, the &PIB array contains 48 sepa­
rate bits: &PIB(l), &PIB(2) and so forth.

ASCII. American Standard Code for Information Interchange. The
standard code, using a coded character set consisting of 7-bit coded
characters (8 bits including parity check), used for information inter­
change among data processing systems, communication systems, and
associated equipment. The ASCII set consists of control characters
and graphic characters.*

Assemble. To prepare a machine language program from a symbolic
language program by substituting absolute operation codes for sym­
bolic operation codes and absolute or relocatable addresses for sym­
bolic addresses.*

Assembler. A computer program that assembles.*

Authority. The extent of a macro statement through an FD pro­
gram until the same type of macro statement (or one of higher
authority) appears later in the FD program.

Binary synchronous communications (BSC). Data transmission in
which character synchronization is controlled by timing signals gen­
erated by the device that originates a message (and the device that
obtains the message recognizes the sync pattern at the beginning of
the transmission - the devices are Jocked in step with one another).

BSC. See binary synchronous communications.

Common carrier. A company that furnishes communication services
to the general public and is regulated by appropriate local, state, or
federal agencies.

Communication line. The medium over which data signals are trans­
mitted.

Control character. A character whose occurrence in a particular con­
text initiates, modifies, or stops a control operation - for example, a
character to control carriage return.*

Control section. The smallest separately relocatable unit of a pro­
gram. That portion of text specified by the programmer to be an
entity, all elements of which are to be loaded into contiguous main
storage locations.

*American National Standard Definition

Copy book. Source language coding that is copied, via a COPY
instruction, from a library and is included in the program currently
being assembled. A member of a partitioned data set can be copied
from either the system macro library or a user library concatenated
to it.

Delimiting macro. The FDEND Form Description macro statement
that closes the description of each form and prepares for a form
description that may follow.

Diagnostic macros. The optional FDTRACE and FDDSPL Y Form
Description macro statements that provide a trace facility and a dis­
play facility for aid in diagnosing error conditions.

Encoder. Person who designs and defines forms by coding Form
Description macro statements.

FCD. See Field control descriptor.

FD macro. See Form Description macro.

FD program. See Form Description program.

FD utility. See Form Description utility.

Field control descriptor. In the 3735 terminal, the part of a Form
Description program that the 3 7 35 interprets as the directions for
the processing of one data field or the performance of one logical or
device-control operation.

Form Description macro. One of a set of specialized macro instruc­
tions with which a forms encoder can describe symbolically the
structure of a data processing form, the characteristics of each field
on the form, and the processing to be done on each field by the
3735 terminal and its operator.

Form Description program. A set of control information interpreted
or executed by the 37 35 terminal or other processor as the complete
set of instructions for the processing of one type of form.

Form Description utility. A computer program that restructures one
or more object modules obtained from the assembly of FD macro
statements into unpacked program blocks (UPBs) and writes the
blocks into a user's data set.

Forms encoder. See encoder.

Global variable. SET symbols defined in one macro definition used
to vary the statements that appear in other macro definitions.

Identification (ID) characters. Characters sent by a BSC terminal on
a switched line to identify the terminal.

Inner macro. Macro statement called by an outer (external) macro
or by another inner (internal) macro.

Keyed unpacked program block (KUPB). A physical 486-byte block
of auxiliary storage containing a subset of an FD program that
results from the assembly of a set of FD macro statements describing
one type of form to be processed.

Macro definition. A set of statements that provides the assembler
with: (1) the mnemonic operation code and the format of the
macro instruction, and (2) the sequence of statements the assembler
generates when the macro instruction appears in the source program.

MNOTE message. A message appearing on the diagnostic listings
that result from the assembly of macro statements. The message
provides diagnostic information regarding coding errors in the macro
statements and provides descriptive information for verifying the
correctness of each macro specification.

Glossary 4-27

Modulo. The remainder after any division has been performed.

Multipoint line. A communication line that connects more than one
terminal; also known as multidrop line.

Nonswitched line. A communication line that connects a terminal
and the computer for a continuous period or for regularly recurring
periods of time at stated hours for the exclusive use of one installa­
tion; also known as a private, leased, or dedicated line.

Object module. A module that is the output of an assembler or
compiler and is input to a linkage editor.*

Outer macro. Macro statement specified externally by the 3735
forms encoder.

Path. One portion of an FD program created by one of the follow­
ing actions: (1) the start of the FD program; (2) the encoding of
the SAVELOC operand outside of a cycle; (3) the joining of two
paths.

Point-to-point line. A communication line that connects a single
remote terminal to the computer. It may be either switched or non­
switched.

Procedural macro. The FDCTRL Form Description macro that
enables the checking of terminal control program status.

Promotability. The ability of a keyword operand to be coded in
some particular macro instruction and also to be coded in one or
more macros of higher authority.

Resource. Any system facility that is required by a job or task; for
example, main storage, 1/0 devices, data sets.

Scope. The extent of a structural FD macro instruction through the
form description until the same type of macro statement (or a macro
statement of a higher level) appears later in the description. Also
called authority.

*American National Standard Definition

4-28

Segment. A part of a computer program which has structure such
that the program can be executed without the entire program being
in internal storage at one time. Several conditions create the seg­
ments comprising a path of an FD program: (1) the start of a path;
(2) the issuance of a branch; (3) the creation of a cycle; (4) the
encoding of a SAVELOC operand within a cycle; (5) the appearance
of the post-limit macro; (6) the joining of several segments in the
path.

Structural macro. One of four Form Description macro statements
(FDFORM, FDPAGE, FD LINE, or FDFIELD) that define the struc­
tural organization of a form and the processing required by each
field in the form.

Switched line. A communication line on which the connection
between the computer and a remote terminal is established by dial­
ing; also known as a dial or dial-up line.

Target. The name specified on the subsequent outer FD macro that
is to be processed when cyclic or GOTO processing is either com­
plete or stopped by the 3735 operator.

Telecommunications. Any transmission or reception of signals, writ­
ing, sounds, or intelligence of any nature, by wire, radio, or other
electromagnetic media.
Teleprocessing. The processing by a computer of data entered at a
remote terminal.

Terminal. A point in a system at which data can enter, leave, or
enter and leave;* also a control unit to which one or more 1/0
devices can be attached.

Terminal control program. The microcoded control program
recorded in the terminal control unit during manufacture of the
3735 that interprets FD programs as a set of directions for pro­
cessing one type of form and provides detailed terminal control.

Transmission. The transfer of coded data by an electromagnetic
medium between two points in a telecommunications network.

Unpacked program block (UPB). A physical 476-byte block of secon­
dary storage containing a subset of an FD program suitable for trans­
mission to the 3735 terminal.

Variable. See global variable.

A
access Ii nes 4-27
access method 4-27
access methods, 3735 supported 1-3
actions, error, in FD utility 3-4
address resolution and motion control assembly 2-26
arithmetic bytes

function byte 2-44
function group 2-46

array, definition 4-27
ASCII 4-27
assemble, definition 4-27
assembler, definition 4-27
assembly

address resolution 2-26
arithmetic group 2-29
BATCH operand 2-27
cancel form byte 2-27
character-count byte 2-28
clear counter bytes 2-27
clear STG bytes 2-27
compare group 2-29
conditional GOTO bytes 2-27
cycle bytes 2-27
data source group 2-27
data-sink group 2-29
data-type byte 2-28
end form byte 2-27
FD program 2-24
FD program header 2-24
field control descriptor 2-27
function byte 2-28
GOTO bytes 2-27
hexadecimal dump 4-15
IDR/CCR command bytes 2-27
immediate bytes 2-27
index space bytes 2-27
INQ command bytes 2-27
internal 3735 code 4-15
minimum character count 2-29
motion control 2-26
NOP byte 2-27
PRINT GEN listing 4-15
Selectric command bytes 2-27
self-check byte 2-29
set indicator bytes 2-27
total batch bytes 2-27
validity byte 2-28
value-check group 2-29
3286-3 command bytes 2-27
5496 command bytes 2-27

assembly input 2-7
assembly of FD programs, general 2-24
assembly of macro instructions, introduction 1-5
assembly output 2-7
authority

definition 4-27
introduction 2-4

auxiliary storage requirements, FD utility 3-3

B
basic configuration 1-3
basic storage capacity 1-3
begin byte 2-32
Binary Synchronous Communication, definition 4-27
Binary Synchronous Communications (BSC), general 1-3
book use iv
BSC (see Binary Synchronous Communications)
BSC line adapter 1-3

c
CALLOAD routine

in IJLFLOAD module 3-49
in IJLFUPDT module 3-S 1

CNTLEND routine
in IDFCT module 3-39

in IJLFCT module
CNTLINIT routine

in IDFCT module
in IJLFCT module

CNTLSTMT routine

3-43

3-35
3-40

in IDFCT module 3-36
in IJLFCT module 3-40

codes, 3735 transmission 2-19
common carrier 4-27
communication line 4-27
conditional GOTO bytes

feature indicators 2-34
general purpose indicators 2-34
special indicators 2-34

configuration
basic 3735
System/360
System/370

considerations

1-3
1-3
1-3

FD macro operation
operational, FD utility
programming 1-5
storage 1-3
system 1-4

control character
control information

DOS 3-5
OS 3-4

4-27

2-7
3-4

control section (see CSECT)
DOS 2-7
OS 2-7

control statements
for DOS Linkage Editor step
for DOS Storage step 3-21

DEVICE 3-28
OPTION 3-28
RPLACE 3-28

3-17

for OS Linkage Editor step 3-14
Control step

DOS method of operation
functions 3-14
OS method of operation
program organization

IDFCT 3-35
IJLFCT 3-40

control storage 1-3
copy book

definition 4-27
IDFGBL 2-12
IJLFGBL 2-12

3-17

3-14

cross references, FD utility modules
CSECT (control section)

description of 3-7
names 3-7

CTLSYNER routine 3-39

D
data descriptions, FD utility 3-6
data flow

among FD utility modules 3-10
in DOS FD utility 3-5
in OS FD utility 3-5

data format byte 2-31
data sets

for FD utility execution 3-3

3-76

intermediate, for DOS FD utility 3-5
output from FD utility 3-10
used by FD utility

DOS 3-4
OS 3-4

data source error message 4-14
data source group

counters 2-42
emitted data 2-40
FD program ID 2-40
IDR/CCR buffer 2-42
inquiry (INQ) buffer 2-42

Index

Index X-1

record number 2-40
storage (STG) buffer 2-42
3286-3 buffer 2-42
5496 buffer 2-42

data transmission 1-6
default source 2-33
delimiting macro (see FDEND)

definition 4-27
introduction 2-5

descriptions of data, FD utility 3-6
desk-side control unit 1-3
DEVICE control statement, DOS FD utility

Storage step 3-28
diagnostic macros (see FDTRACE or FDDSPL Y)

definition 4-27
display 4-5
introduction 2-5
trace 4-5

diagnostic messages 4-6
DIAGWTR routine

in IDFCT module 3-39
in IDFST module 3-46
in IJLFCT module 3-43
in IJLFLOAD module 3-51
in IJLFUPDT module 3-54

DIMOD routine
in IJLFCT module 3-43
in IJLFLOAD module 3-51
in IJLFST module 3-49
in IJLFUPDT module 3-54

directory references, FD utility 3-76
display macro <FDDSPL Y) 4-5
DOS

control section 2-7
duplicate form handling 1-6
minimum storage 1-4
program support 1-3

DOS FD utility
control information 3-5
method of operation

Control step 3-17
Linkage Editor step 3-21
Storage step 3-21

DOS teleprocessing restriction 2-6
duplicate form handling

DOS 1-6
OS 1-6

E
encoder 4-27
end control byte 2-50
END record. FD utility 3-14
ENT AB (Linkage Editor entry table) 3-17
entry table (see ENT AB)
environmental errors 1-6
EOFRTN routine 3-47
EOJRTN routine

in IJLFLOAD module 3-51
in IJLFUPDT module 3-54

ERREXT routine 3-47
ERREXTI routine 3-47
error actions

DOS FD utility
Control step 3-17
Storage step 3-29

FD utility 1-6
OS FD utility

Control step 3-17
Storage step 3-21

error checking 1-3
error messages

data source 4-14
FD program 4-14
MNOTE 4-6

errors
environmental 1-6
FD utility handling 1-6
implementation 1-6
severity codes 2-7
space allocation 1-6
system control block 1-6

ESD records
FD utility 3-14

X-2

validation of 3-14
ESDPROC routine

in IDFCT module 3-35
in IJLFCT module 3-40

examination, of KUPBs 3-13
execution

DOS FD utility 3-5
OS FD utility 3-4

F
FCD

assembly 2-27
batch group 2-3 7
character-count byte 2-43
data source group 2-3 7
data-type byte 2-42
emitted data group 2-43
end control byte 2-50
function byte 2-44
function group 2-46
validity byte 2-44
validity group 2-44

FCD bytes, structure 2-37
FD macro, definition 4-27
FD macros

assembly input 2-7
assembly output 2-7
format 4-3
functions

introduction 1-5
summary 2-19

introduction 2-4
method of operation 2-12
nesting concept 2-12
operational considerations 2-7
organization 2-6
structure 2-12
system requirements 2-6

FD program
appendix A 4-15
assembly 2-24
definition 4-27
introduction 1-3
maintenance 2-50
orga~iz_ation 2-31
restriction 1-3
sample 4-15
storage 1-3
transmission 1-6
trouble shooting 2-50

FD program header
assembly 2-24
begin byte 2-32
data format byte 2-31
form ID 2-31
lines form-printer 2-32
lines form-Selectric 2-32
operator message 2-32
structure 2-31
tab intervals 2-32

FD program message 4-14
FD program trailer 2-50
FD utility

Control step 3-3
definition 4-27
DOS modules 3-3
error actions 3-4

DOS Control step 3-17
DOS Storage step 3-29
OS Control step 3-17
OS Storage step 3-21

execution 3-3
DOS 3-5
OS 3-4

function 3-3
functions, introduction 1-6
general operation 3-6
input 3-4
introduction 1-6
Linkage Editor step 3-3
operation 3-3
OS modules 3-3
output 3-4

overlay segments of storage step 3-13
physical characteristics 3-3

DOS 3-3
OS 3-3

program organization 3-35
purpose 3-3
scheduling 3-4
storage 1-6
Storage step 3-3
system requirements 3-3

FDCTRL outer macro
function 2-22
general 2-4
method of operation 2-22

FDDSPL Y macro
function 4-5
introduction 2-6

FDEND outer macro
function 2-23
general 2-5
method of operation 2-23

FD FIELD outer macro
function 2-19
general 2-4
method of operation 2-19

FD FORM outer macro
function 2-19
general 2-4
method of operation 2-19

FDLINE outer macro
function 2-19
general 2-4
method of operation 2-19

FDPAGE outer macro
function 2-19
general 2-4
method of operation 2-19

FDTRACE macro
function 4-5
introduction 2-5

features
optional 1-3
required 1-6

field control descriptor
assembly 2-27
definition 4-27

flow
data

in DOS FD utility 3-5
in OS FD utility 3-5

logical, in FD utility 3-6
FLSHCARD routine 3-47
FLUSH routine 3-53
Form Description (see FD)
Form Description utility (see FD utility)
form descriptions

control 1-5
field 1-5
form 1-4
introduction
line 1-5
page 1-4

form ID 2-31
format, FD macro
forms design

1-4

4-3

introduction
restrictions

forms encoder
function byte

arithmetic

1-4
1-4

compare
data sink

(see encoder)

2-44
2-44
2-44

function group
arithmetic bytes
compare bytes
data sink bytes

2-46
2-49
2-49

functions
Control step 3-14
FD utility, introduction 1-4
Linkage Editor step 3-17
program support 1-3
Storage step 3-21

G
GET routine 3-47
GETCARD routine 3-47
GETCHECK routine

in IDFCT module 3-37
in IJLFCT module 3-42

global variable
definition 4-27
general 2-6
symbols 2-12

glossary 4-27

H
header, FD program 2-31
hexadecimal dump, assembly code 4-15
horizontal tab intervals 2-32
how to use this book 1v

I
IBM Selectric® 1/0 II Keyboard Printer
IBM System/360, configuration 1-3
IBM System/370, configuration 1-3
IBM 3735, configuration 1-3
identification (ID) characters 4-27
IDFASM inner macro 2-24
IDFCT module organization 3-35

CNTLEND 3-39
CNTLINIT 3-35
CNTLSTMT 3-36
CTLSYNER 3-39
DIAGWTR 3-39
ESDPROC 3-35
GETCHECK 3-37
INPUT DCB 3-40
MSGFAN 3-39
OBJCARD 3-40
OUTPUT DCB 3-40
PRINT DCB 3-40
PUTCARD 3-39
TXTPROC 3-35

IDFDSP inner macro 4-5
IDFMOl (message module) organization
JDFST module, processing 3-12
IDFST module organization 3-44

DIAGWTR 3-46
MSGFAN 3-46
NEWMEM 3-44
OUTPUT DCB 3-46
PARMPROC 3-44
PRINT DCB 3-46
REPL TAB 3-47
SEGPROC 3-44
STGEND 3-46
STGINIT 3-44
SYNADI 3-45
SYNAD2 3-45

IDFTEMP temporary names. FD utility
IJLFASM inner macro 2-24
IJLFCT module organization 3-40

CNTLEND 3-43
CNTLINIT 3-40
CNTLSTMT 3-40
DIAGWTR 3-43
DIMOD 3-43
ESDPROC 3-40
GETCHECK 3-42
MSGFAN 3-43
PUTCARD 3-42
SYSIPT DTFDI macro
SYSLST DTFDI macro
SYSPCH DTFDI macro
TXTPROC 3-41

JJFDLIB DTFIS macro

3-43
3-43
3-43

in IJLFLOAD module 3-51
in IJLFUPDT module 3-54

IJLFLOAD module, processing
IJLFLOAD module organization

CALLOAD 3-49
DIAGWTR 3-51
DIMOD 3-51

3-13
3-49

1-3

3-54

3-10

Index X-3

EOJRTN 3-51
IJFDLIB DTFIS MACRO 3-51
ISMOD 3-51
ISMPUT 3-49
LOADRTN 3-49
MSGFAN 3-49
RCDCHK 3-49
SYSLST DTFDI MACRO 3-51

IJLFMOl (message module) organization 3-54
IJLFST module, processing 3-13
IJLFST module organization 3-47

DIMOD 3-49
EOFRTN 3-47
ERREXT 3-47
ERR EXT 1 3-47
FLSHCARD 3-47
GET 3-47
GETCARD 3-47
OPEN 3-47
SYSIPT DTFDI MACRO 3-49
SYSLST DTFDI MACRO 3-49

IJLFTM temporary names, FD utility 3-10
IJLFUPDT module, processing 3-13
IJLFUPDT module organization 3-51

CALLOAD 3-51
DIAGWTR 3-54
DIMOD 3-54
EOJRTN 3-54
FLUSH 3-53
IJFDLIB DTFIS MACRO 3-54
ISMOD 3-54
ISMPUT 3-52
LOADRTN 3-52
MSGFAN 3-53
RCDCHK 3-51
SYSLST DTFDI MACRO 3-54
UPDTNM 3-53

immediate bytes
assembly 2-27
begin cycle bytes 2-34
cancel form byte 2-35
clear counter bytes 2-35
clear storage (STG) bytes
conditional GOTO bytes

2-35

feature indicators 2-34
general 2-34
general purpose indicators
special indicators 2-34

end cycle byte 2-35
end form byte 2-35
GOTO bytes 2-34
IDR and CCR command bytes
index space bytes 2-35
inquiry ONQ) command bytes
line printer command bytes
NOP byte 2-33
repeat cycle bytes 2-35

2-34

2-37

2-37
2-37

Selectric command bytes 2-35
set indicator bytes 2-35
structure 2-33
total batch bytes 2-35
5496 command bytes 2-37

mplementation errors 1-6
nner macro, definition 4-27
nner macros

hierarchy 2-19
IDFASM 2-24
IDFDSP 4-5
IDFTR 2-24
IJLFASM 2-24
IJLFTR 2-24
introduction 2-12
structure 2-19

input
FD macro assembly 2-7
object module, for FD utility 3-10
to FD utility 3-4
validation, FD utility 3-14

INPUT DCB, in IDFCT module 3-40
intermediate data sets, for DOS FD utility
introduction

assembly of macro instructions 1-5
authority 2-4
control 1-5

X-4

3-5

delimiting macro 2-5
diagnostic macros 2-5
FD macros

functions 1-5
general 1-3

FD program 1-3
FD utility

functions 1-6
general 1-3

field 1-5
form 1-4
form descriptions 1-4
forms design 1-4
IBM 3735 1-3
inner macros 2-12
line 1-5
MNOTE messages 2-7
outer macros 2-12
page 1-4
procedural macro 2-4
promotability 2-4
structural macros 2-4
transm1ss1on 1-6

1/0 device requirements 1-6
1/0 devices, required for FD utility 3-3
ISMOD macro

in IJLFLOAD module 3-51
in IJLFUPDT module 3-54

ISM PUT routine
in IJLFLOAD module 3-49
in IJLFUPDT module 3-52

K
keyed unpacked program block (see KUPB)
KUPB

definition 4-27
description of 3-7
format of 3-10
general 2-7
subfields 3-10

used by FD utility 3-4

L
line adapter, BSC 1-3
lines form-printer field 2-32
lines form-Selectric 2-32
Linkage Editor step

DOS method of operation 3-21
FD utility 3-3
functions 3-1 7
OS method of operation 3-17
program organization 3-43
segment table 3-17

LOAD option, DOS Storage step 3-28
LOADFST option, DOS Storage step 3-29
loading, of FD utility overlay segments 3-13
LOADRTN routine

in IJLFLOAD module 3-49
in IJLFUPDT module 3-52

logical flow, in FD utility 3-6
logical organization, FD utility object modules

M
macro, definition 4-27
macro method of operation

FDCTRL 2-22
FDEND 2-23
FDFIELD 2-19
FDFORM 2-19
FDLINE 2-19
FDPAGE 2-19
general 2-12

magnetic disk storage device 1-3
main storage

basic capacity 1-3
chaining information 1-3
control 1-3
DOS teleprocessing 1-4
DOS teleprocessing requirements 2-6
FD program 1-3
FD utility 1-6

3-4

program residence 1-6
required for FD utility 3-3
teleprocessing 1-1

maintenance, FD program 2-50
message module

for DOS FD utility 3-4
for OS FD utility 3-3
program organization 3-54

messages
data source 4- 14
FD program 4-14
MNOTE 4-6

method of operation
DOS Control step 3-17
DOS Linkage Editor step 3-21
DOS Storage step 3-21
FD macros 2-12
FD utility 3-6
OS Control step 3-14
OS Linkage Editor step 3-17
OS Storage step 3-21

minimum storage
DOS teleprocessing 1-4
linkage editor 1-6
System/360 1-4
System/370 1-4

MNOTE message, definition 4-27
MNOTE messages

introduction 2-7
listing 4-6

MNOTE severity codes 2-7
module references, FD utility 3-76
modulo 4-28
motion control assembly 2-26
MSGFAN routine

in IDFCT module 3-39
in IDFST module 3-46
in IJLFCT module 3-43
in IJLFLOAD module 3-49
in IJLFUPDT module 3-53

multipoint line. definition 4-28

N
nesting concept of outer & inner macros 2-12
NEWMEM routine 3-44
nonswitched line, definition 4-28

0
OBJCARD routine 3-40
object module

definition 4-28
general 2-7

object modules
FD utility

IDFST 3-12
IJLFLOAD 3-13
IJLFST 3-13
IJLFUPDT 3-13
logical organization 3-4
physical organization 3-4

objectives. part 2 2-3
open files. in FD utility 3-14
OPEN routine 3-47
operation. FD utility 3-3
operational considerations

FD macros 2-7
FD utility 3-4

operator message 2-32
OPTION control statement. DOS FD utility

Storage Step 3-28
optional features

FD utility
DOS 3-4
OS 3-4

3735 1-3
organization

Control step 3-35
FD program 2-31
FD utility 3-35
Linkage Editor step 3-43

Storage step 3-44
OS

control section 2-7
duplicate form handling 1-6
minimum storage 1-4
program support 1-3

OS FD utility
control information 3-4
method of operation

Control step 3-14
Linkage Editor step 3-17
Storage step 3-21

outer macro, definition 4-28
outer macros

delimiting (see FDEND)
diagnostic (see FDTRACE or FDDSPL Yl
introduction 2-12
organization 2-6
procedural (see FDCTRL)
structural (see FDFORM, FDPAGE.

FDLINE, or FDFIELD)
output

FD macro assembly 2-7
from FD utility 3-4

output data, FD utility 3-10
OUTPUT DCB

in IDFCT module 3-40
in IDFST module 3-46

overlay programs
DOS FD utility 3-4
OS FD utility 3-3

overlay segments
examination 3-13
loading 3-13
of FD utility Storage step 3-13

p
page number restriction 1-5
PARMPROC routine 3-44
part 2 objectives 2-3
path, definition 4-28
paths, general 2-9
PAUSE statement, use of in DOS FD utility 3-5
physical characteristics

FD utility 3-3
DOS systems 3-3
OS systems 3-3

physical organization, FD utility object modules
point-to-point line. definition 4-28
PRINT DCB

in IDFCT module 3-40
in IDFST module 3-46

PRINT GEN assembly listing 4-15
procedural macro (see FDCTRLJ

definition 4-28
introduction 2-4

processing data description and flow 3-10
program organization, FD utility message modules
program support

default source 2-33
DOS 1-3
OS 1-3
System/360 1-3
System/370 1-3

programming considerations 1-5
promotability

definition 4-28
introduction 2-4

promotable operands 2-12
purpose, FD utility 3-3
PUTCARD routine

in IDFCT module 3-39
in IJLFCT module 3-42

R
RCDCHK routine

in IJLFLOAD module 3-49
in IJLFUPDT module 3-51

record types, FD utility input 3-14
references, directory, FD utility 3-76

3-4

3-54

Index X-5

REPLACE function
OS 1-6
OS FD utility Storage step 3-21

replacement, of programs by FD utility 3-13
replacement table (REPL TAB) 3-47
REPL TAB routine 3-47
requirements

1/0 devices 1-6
system, FD utility 3-3

resource 4-28
restrictions

DOS teleprocessing storage 1-4
FD program 1-3
forms design 1-4
page number 1-5
transmission 1-6
World Trade transmission 1-3

return codes, OS FD utility 3-5
root phase, of DOS FD utility overlay program
RPLACE control statement. DOS FD utility

Storage step 3-28
RPLACE function, DOS 1-6

s
sample FD program 4-15
scheduling, FD utility 3-4
scope 4-28
segment table (see SEGT AB)
segments

definition 4-28
general 2-9

SEGPROC routine 3-44
SEGT AB (Linkage Editor segment table) 3-17
severity codes 2-7
space allocation errors 1-6
special features 1-3
STGEND routine 3-46
STGINIT routine 3-44
storage

basic capacity 1-3
chaining information 1-3
control 1-3
DOS teleprocessing 1-4
DOS teleprocessing requirement 2-6
FD program 1-3
FD utility 1-6
program residence 1-6
teleprocessing 1-1

storage considerations 1-3
Storage step

DOS method of operation 3-21
FD utility 3-3

overlay segments 3-13
functions 3-21
OS method of operation 3-21
OS REPLACE function 3-21
program organization

IDFST 3-44
IJLFLOAD 3-49
IJLFST 3-47
JJLFUPDT 3-51

STOW macro, issued by FD utility 3-13
structural macros (see FDFORM, FDPAGE.

FDLINE, or FDFIELD)
definition 4-28
introduction 2-4

structure
FCD 2-37
FD macro 2-12
FD program 2-31
immediate bytes 2-33
inner macros 2-19
outer macros 2-6
output 2-7

subfields, KUPB 3-10
summary of FD macro functions 2-19
switched line, definition 4-28
SYNADl routine 3-45
SYNAD2 routine 3-45
SYSIPT DTFDI macro

in IJLFCT module 3-43
in IJLFST module 3-49

SYSLST DTFDJ macro

X-6

3-4

in IJLFCT module 3-43
in IJLFLOAD module 3-51
in IJLFST module 3-49
in IJLFUPDT module 3-54

SYSPCH DTFDI macro, in IJLFCT module
system considerations 1-4
system requirements

FD macros 2-6
FD utility 3-3

System/360, program support 1-3
System/370, program support 1-3

T
tab intervals 2-32
target, definition 4-28
telecommunications, definition 4-28
teleprocessing 4-28
temporary name, from FD utility 3-4
temporary names

assigned by FD utility 3-10
in DOS FD utility Storage step 3-29
in OS FD utility Storage step 3-21

terminal 4-28
terminal control program

definition 4-28
introduction 1-3

trace macro (FDTRACE) 4-5
trailer, FD program 2-50
transformation, of FD utility input data 3-12
transmission

definition 4-28
introduction 1-6

transmission codes 2-19
transmission restrictions 1-6
transmission speed

domestic 1-3
World Trade 1-3

trouble shooting
assembly time 2-51
execution time 2-52
FD program 2-50
transmission time 2-52
utility processing time 2-52

TXT records, FD utility 3-14
TXTPROC routine

in IDFCT module 3-35
in IJLFCT module 3-41

u
unpacked program block (see UPB)
UPB

definition 4-28
general 2-7

UPDATE option, DOS Storage step 3-29
UPDTNM routine 3-53
use of this book 1v
utility

FD (see FD utility)
introduction 1-6

v
validation, of FD utility input 3-10
validity group

alphabetic 2-44
alphameric 2-44
numeric comparison 2-44
self-check 2-46
value-check 2-44

variable (see global variable)

w
World Trade transmission speed 1-3

3
3735 capabilities 1-3
3735 internal code, sample 4-15

3-43

READER'S COMMENT FORM

IBM 3735 Programmable Buffered Terminal
Form Description Macro Instructions
and Form Description Utility
Program Logic Manual
(OS and DOS System)

• How did you use this publication?

As a reference source
As a classroom text
As

D
D
D

• Based on your own experience, rate this publication ...

As a reference source:
Very Good Fair
Good

As a text:
Very Good Fair
Good

Poor

Poor

Very
Poor

Very
Poor

Order No. GY30-3000-0

• What is your occupation? .. .

• We would appreciate your other comments; please give specific page and line references
where appropriate. If you wish a reply, be sure to include your name and address.

•Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GY30-3000-0

YOUR COMMENTS, PLEASE ...

Your answers to the questions on the back of this form, together with your comments,
help us produce better publications for your use. Each reply is carefully reviewed by the
persons responsible for writing and publishing this material. All comments and sugges­
tions become the property of IBM.

Please note: Requests for copies of publications and for assistance in using your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE Will BE PAID BY •••

I BM Corporation
P. 0. Box 12275
Research Triangle Park
North Carolina 27709

Attention: Publications Center, Dept. E01

I

I
I
I

Fold I
-- _ _J

FIRST CLASS
PERMIT NO. 569
RESEARCH TRIANGLE PARK
NORTH CAROLINA

------------7------~
Fold

International Buslnesa Machines Corporation
Data Procesalng Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

Fold I

I

I
I
I
I
l
I

l

c.
~

c.
t

ii
c
~
c
c

n
c

.,

n
c

