IBM System/370
Principles of Operation

GA22-7000-6
File No. S370-01

IBM System/370
Systems Principles of Operation

Seventh Edition (March 1980)

Note: The fifth and sixth editions of this publication were inadvertently
identified as the fourth and fifth editions, respectively. This edition carries
the correct edition number.

This major revision obsoletes GA22-7000-4 and -5 and Technical Newsletters
GN22-0498 and GN22-0584. The document has been reorganized and
includes Chapter 3, "Storage," which is new and which contains information
previously in the chapter "Dynamic-Address Translation," as well as other
new information. The chapter "Multiprocessing" has been deleted and the
information has been incorporated into Chapter 4, "Control." Many chap-
ters have been extensively revised for clarity.

Because of the extensive reorganization and rewording, it is impractical to
identify minor changes. Changes of major technical significance are identi-
fied by a vertical bar in the left margin.

Included in this edition are detailed descriptions of the following new items:
move inverse, the recovery extensions, and the parts of the extended facility
that are independent of the operating system.

« The move-inverse feature includes the instruction MOVE INVERSE.

« The recovery-extension feature includes the CLEAR CHANNEL instruc-
tion, the machine-check external-damage code and the external-damage-
code-validity bit, the channel-not-operational indication, and the logout-
valid and interface-inoperative bits in the limited channel logout.

« The parts of the extended facility that are independent of the operating
system are the instructions INVALIDATE PAGE TABLE ENTRY and
TEST PROTECTION, the common-segment facility, and the low-address-
protection facility. The parts of the extended facility that are dependent
on the operating system are described in the IBM System/370 Extended
Facility, GA22-7072.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM equipment, refer to the
latest IBM System/370 and 4300 Processors Bibliography, GC20-0001, for
the editions that are applicable and current.

It is possible that this material may contain reference to, or information
about, IBM products (machines and programs), programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader’s comments is provided at the back of this publication. If
the form has been removed, comments may be addressed to IBM Corpora-
tion, Product Publications, Dept. B98, PO Box 390, Poughkeepsie, NY,
U.S.A. 12602. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1970, 1972, 1973, 1974, 1980

Preface

This publication provides, for reference purposes, a
detailed definition of the machine functions
performed by System/370.

The publication describes each function to the
level of detail that must be understood in order to
prepare an assembler-language program that relies
on that function. It does not, however, describe
the notation and conventions that must be
employed in preparing such a program, for which
the user must instead refer to the appropriate
assembler-language publication, such as the
OS/VS-DOS/VSE-VM/370 Assembler Language,
GC33-4010.

The information in this publication is provided
principally for use by assembler-language
programmers, although anyone concerned with the
functional details of System/370 will find it useful.

Note that this publication is written as a
reference document and should not be considered
an introduction or a textbook for System/370. It
assumes the user has a basic knowledge of data
processing systems and, specifically, the
System/370, such as can be derived from the
Introduction to IBM Data Processing Systems,
GC20-1684, and the IBM System/370 System
Summary: Processors, GA22-7001. All
publications relating to System/370 are listed and
described in the IBM System/370 and 4300
Processors Bibliography, GC20-0001.

All facilities discussed in this publication are not
necessarily available on every model of
System/370. Furthermore, in some instances the
definitions have been structured to allow for some
degree of extensibility, and therefore certain
capabilities may be described or implied that are
not offered on any model. Examples of such
capabilities are the provisions for the number of
channel-mask bits in-the control register, for the
size of the CPU address, and for the number of
CPUs sharing main storage. The allowance for this
type of extensibility should not be construed as
implying any intention by IBM to provide such
capabilities. For information about the
characteristics and availability of features on a
specific System/370 model, use the functional
characteristics manual for that model. The
availability of features on System/370 models is
summarized in the IBM System/370 System
Summary: Processors, GA22-7001.

Largely because the publication is arranged for
reference purposes, certain words and phrases
appear, of necessity, earlier in the publication than
the principal discussions explaining them. The

reader who encounters a problem of this sort
should refer to the index, which indicates the
location of the key description.

The information presented in this publication is
grouped into 13 chapters and several appendixes:

Introduction highlights some of the major
features of System/370.

Organization describes the major groupings
within the system—the central processing unit
(CPU), storage, and input/output—with some
attention given to the composition and
characteristics of those groupings.

Storage explains the information formats, the
types of addresses used to access storage, and the
facilities for storage protection. It also deals with
dynamic address translation (DAT), which, coupled
with special programming support, makes the use of
a virtual storage possible in System/370. DAT
eliminates the need to assign a program to a fixed
location in real storage and thus reduces the
addressing constraints on system and problem
programs.

Control describes in depth the facilities for the
switching of system status, for special externally
initiated operations, and for debugging and timing
the system. It deals specifically with CPU states,
control modes, the program-status word (PSW),
control registers, program-event recording, timing
facilities, resets, store status, and initial program
loading.

Program Execution explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use of
the program status word (PSW), of branching, and
of interruptions. It also details the aspects of
program execution on one CPU as observed by
channels or another CPU.

Interruptions details the System/370 mechanism
that permits the CPU to change its state as a result
of conditions external to the system, within the
system, or within the CPU itself. Six classes of
interruptions are identified and described:
machine-check interruptions, program interruptions,
supervisor-call interruptions, external interruptions,
input/output interruptions, and restart
interruptions.

General Instructions contains detailed
descriptions of all unprivileged instructions, except
for the decimal and floating-point instructions.

Decimal Instructions describes in detail the
decimal instructions, which, together with the
general instructions, make up the commercial
instruction set.

Floating-Point Instructions contains detailed
descriptions of the instructions provided by the
floating-point feature and by the
extended-precision floating-point feature.

Control Instructions contains detailed
descriptions of all of the instructions, except for the
1/0 instructions, that are available only to the
control program.

Machine-Check Handling describes the
System/370 mechanism for detecting, correcting,
and reporting machine malfunctions.

Input/Output Operations explains the
programmed control of 1/O devices by the channel
and by the CPU. It includes detailed descriptions
of the I/0 instructions, channel-command words,
and other I/O-control formats.

Operator Facilities describes the basic manual
functions and controls available for operating and
controlling the system.

The Appendixes include:

« Information about number representation

« Instruction-use examples

o Lists of the instructions arranged in several
sequences

« Summary of condition-code settings

o A list of the System/370 facilities and an
indication of their availability as features on
models that implement the System/370
architecture

« A table of the powers of 2

o Tabular information helpful in dealing with
hexadecimal numbers

« An EBCDIC chart

o A discussion of changes affecting compatibility
between System/360 and System/370

« A discussion of changes affecting compatibility
within System/370

Size Notation

The letters K and M denote the multipliers 210 and
220 respectively. Although the letters are
borrowed from the decimal system and stand for
kilo (103) and mega (10°), they do not have the
decimal meaning but instead represent the power of
2 closest to the corresponding power of 10. Their
meaning in this publication is as follows:

Symbol Value
K (kilo) 1,024 = 210
M (mega) 1,048,576 = 220

The following are some examples of the use of K
and M:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.

When the words '"'thousand" and "million" are
used, no special power-of-2 meaning is assigned to
them.

Contents

Chapter 1. Introduction 1-1
General-Purpose Design 1-2
Compatibility 1-2
Compatibility among System/370 Models
Compatibility between System/360 and
System/370 1-3
System Program 1-3
Availability 1-3

T
N}

Chapter 2. Organization 2-1
Main Storage 2-1
Central Processing Unit 2-2
Program-Status Word 2-3
General Registers 2-3
Floating-Point Registers 2-3
Control Registers 2-3
Input and Output 2-3
Channel Sets 2-3
Channels 2-3
Input/Output Devices and Control Units 2-4
Operator Facilities 2-4

Chapter 3. Storage 3-1
Storage Addressing 3-2
Information Formats 3-2
Integral Boundaries 3-2
Byte-Oriented-Operand Feature 3-3
Address Types 3-3
Storage Key 3-4
Protection 3-4
Key-Controlled Protection 3-4
Low-Address Protection 3-5
Reference Recording 3-5
Change Recording 3-6
Prefixing 3-6
Address Spaces 3-8
Dynamic Address Translation 3-8
Translation Control 3-9
PSW 39
Control Register 0 3-9
Control Register 1 3-10
Translation Tables 3-10
Segment-Table Entries 3-10
Page-Table Entries 3-11
Summary of Dynamic-Address-Translation
Formats 3-11
Translation Process 3-12
Inspection of Control Register 0 3-14
Segment-Table Lookup 3-14
Page-Table Lookup 3-14
Formation of the Real Address 3-14
Recognition cf Exceptions During Translation 3-14
Translation-Lookaside Buffer 3-15
Use of the Translation-Lookaside Buffer 3-16
Modification of Translation Tables 3-17
Address Summary 3-20
Addresses Translated 3-20
Handling of Addresses 3-20
Assigned Storage Locations 3-22
Assigned Real-Storage Locations 3-22
Assigned Absolute Storage Locations 3-24

Chapter 4. Control 4-1
Stopped, Operating, Load, and Check-Stop States 4-1
Stopped State 4-2

Operating State 4-2
Load State 4-2
Check-Stop State 4-2
Program-Status Word 4-3
EC and BC Modes 4-3
Program-Status-Word Format in EC Mode 4-4
Program-Status-Word Format in BC Mode 4-5
Control Registers 4-6
Program-Event Recording 4-8
Control-Register Allocation 4-8
Operation 4-8
Identification of Cause 4-9
Priority of Indication 4-9
Storage-Area Designation 4-10
PER Events 4-10
Successful Branching 4-10
Instruction Fetching 4-10
Storage Alteration 4-11
General-Register Alteration 4-11
Indication of Events Concurrently with Other
Interruption Conditions 4-12
Direct Control 4-15
Read-Write-Direct Facility 4-15
External-Signal Facility 4-15
Timing 4-15
Time-of-Day Clock 4-16
Format 4-16
States 4-16
Changes in Clock State 4-17
Setting and Inspecting the Clock 4-17
Time-of-Day-Clock Synchronization 4-18
Clock Comparator 4-19
CPU Timer 4-19
Interval Timer 4-20
Externally Initiated Functions 4-21
Resets 4-21
CPU Reset 4-24
Initial CPU Reset 4-24
Subsystem Reset 4-24
Program Reset 4-25
Initial Program Reset 4-25
Clear Reset 4-25
Power-On Reset 4-25
Initial Program Loading 4-26
Store Status 4-27
Multiprocessing 4-27
Shared Main Storage 4-28
CPU-Address Identification 4-28
CPU Signaling and Response 4-28
Signal-Processor Orders 4-28
Conditions Determining Response 4-29
Conditions Precluding Interpretation of the Order
Code 4-29
Status Bits 4-30
Channel-Set Switching 4-32

Chapter 5. Program Execution 5-1
Instructions 5-1
Operands 5-1
Instruction Format 5-2
Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3
Address Generation 5-3
Sequential Instruction-Address Generation 5-4

Operand-Address Generation 5-4
Branch-Address Generation 5-4
Instruction Execution and Sequencing 5-5
Interruptions 5-5
Types of Instruction Ending 5-5
Interruptible Instructions 5-6
Point of Interruption 5-6
Execution of Interruptible Instructions 5-6
Exceptions to Nullification and Suppression 5-6
Storage Change and Restoration for DAT-Associated
Access Exceptions 5-7
Modification of DAT-Table Entries 5-7
Trial Execution for TRANSLATE and EDIT 5-7
Interlocked Update for Suppression 5-8
Sequence of Storage References 5-8
Interlocks for Virtual-Storage References 5-9
Instruction Fetching 5-10
DAT-Table Fetches 5-11
Storage-Key Accesses 5-11
Storage-Operand References 5-11
Storage-Operand Fetch References 5-11
Storage-Operand Store References 5-12
Storage-Operand Update References 5-12
Storage-Operand Consistency 5-13
Single-Access References 5-13
Multiple-Access Operands 5-13
Block-Concurrent References 5-13
Consistency Specification 5-14
Relation between Operand Accesses 5-14
Other Storage References 5-15
Serialization 5-15
CPU Serialization 5-15
Channel Serialization 5-16

Chapter 6. Interruptions 6-1
Interruption Action 6-1
Source Identification 6-4
Enabling and Disabling 6-4
Instruction-Length Code 6-5
Zero ILC 6-5
ILC on Instruction-Fetching Exceptions 6-5
Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6
Late Exception Recognition 6-7
External Interruption 6-7
Clock Comparator 6-8
CPU Timer 6-8
Emergency Signal 6-9
External Call 6-9
External Signal 6-9
Interrupt Key 6-9
Interval Timer 6-9
Malfunction Alert 6-10
TOD-Clock Sync Check 6-10
Input/Output Interruption 6-10
Machine-Check Interruption 6-11
Program Interruption 6-11
Program-Interruption Conditions 6-12
Addressing Exception 6-12
Data Exception 6-12
Decimal-Divide Exception 6-13
Decimal-Overflow Exception 6-13
Execute Exception 6-13
Exponent-Overflow Exception 6-13
Exponent-Underflow Exception 6-13
Fixed-Point-Divide Exception 6-13
Fixed-Point-Overflow Exception 6-14
Floating-Point-Divide Exception 6-14
Monitor Event 6-14

vi

Operation Exception 6-14
Page-Translation Exception 6-15
PER Event 6-15
Privileged-Operation Exception 6-15
Protection Exception 6-15
Segment-Translation Exception 6-16
Significance Exception 6-16
Special-Operation Exception 6-16
Specification Exception 6-16
Translation-Specification Exception 6-17
Recognition of Access Exceptions 6-17
Multiple Program-Interruption Conditions 6-19
Restart Interruption 6-22
Supervisor-Call Interruption 6-22
Priority of Interruptions 6-22

Chapter 7. General Instructions 7-1
Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3
Instructions 7-4
ADD 74
ADD HALFWORD 7-4
ADD LOGICAL 7-4
AND 7-7
BRANCH AND LINK 7-7
BRANCH ON CONDITION 7-8
BRANCH ON COUNT 79
BRANCH ON INDEX HIGH 799
BRANCH ON INDEX LOW OR EQUAL 79
COMPARE 7-10
COMPARE AND SWAP 7-10
COMPARE DOUBLE AND SWAP 7-10
COMPARE HALFWORD 7-12
COMPARE LOGICAL 7-12
COMPARE LOGICAL CHARACTERS UNDER
MASK 7-12
COMPARE LOGICAL LONG 7-13
CONVERT TO BINARY 7-14
CONVERT TO DECIMAL 7-14
DIVIDE 7-15
EXCLUSIVE OR 7-15
EXECUTE 7-16
INSERT CHARACTER 7-17
INSERT CHARACTERS UNDER MASK 7-17
LOAD 7-17
LOAD ADDRESS 7-18
LOAD AND TEST 7-18
LOAD COMPLEMENT 7-18
LOAD HALFWORD 7-19
LOAD MULTIPLE 7-19
LOAD NEGATIVE 7-19
LOAD POSITIVE 7-19
MONITOR CALL 7-20
MOVE 7-20
MOVE INVERSE 7-21
MOVE LONG 7-21
MOVE NUMERICS 7-24
MOVE WITH OFFSET 7-24
MOVE ZONES 7-25
MULTIPLY 7-25
MULTIPLY HALFWORD 7-26
OR 7-26
PACK 7-27
SET PROGRAM MASK 7-27
SHIFT LEFT DOUBLE 7-28
SHIFT LEFT DOUBLE LOGICAL 7-28
SHIFT LEFT SINGLE 7-28

SHIFT LEFT SINGLE LOGICAL 7-29
SHIFT RIGHT DOUBLE 7-29

‘ SHIFT RIGHT DOUBLE LOGICAL 7-29
SHIFT RIGHT SINGLE 7-30
SHIFT RIGHT SINGLE LOGICAL 7-30
STORE 7-30
STORE CHARACTER 7-31
STORE CHARACTERS UNDER MASK 7-31
STORE CLOCK 7-31
STORE HALFWORD 7-32
STORE MULTIPLE 7-32
SUBTRACT 7-32
SUBTRACT HALFWORD 7-33
SUBTRACT LOGICAL 7-33
SUPERVISOR CALL 7-34
TEST AND SET 7-34
TEST UNDER MASK 7-34
TRANSLATE 7-35
TRANSLATE AND TEST 7-36
UNPACK 7-36

Chapter 8. Decimal Instructions 8-1
Decimal-Number Formats 8-1
Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-1
Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3
Instructions 8-3
ADD DECIMAL 8-4
COMPARE DECIMAL 84
DIVIDE DECIMAL 8-5
- EDIT 8-5
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-9
SHIFT AND ROUND DECIMAL 8-10
SUBTRACT DECIMAL 8-10
ZERO AND ADD 8-11

Chapter 9. Floating-Point Instructions 9-1
Floating-Point Number Representation 9-1
Normalization 9-2

Floating-Point-Data Format 9-2
Instructions 9-5

ADD NORMALIZED 9-5

ADD UNNORMALIZED 9-7
COMPARE 9-7

DIVIDE 9-8
HALVE 99
LOAD 99

LOAD AND TEST 9-10

LOAD COMPLEMENT 9-10

LOAD NEGATIVE 9-11

LOAD POSITIVE 9-11

LOAD ROUNDED 9-11

MULTIPLY 9-12

STORE 9-13

SUBTRACT NORMALIZED 9-13
SUBTRACT UNNORMALIZED 9-14

Chapter 10. Control Instructions 10-1
CONNECT CHANNEL SET 10-3

‘ DIAGNOSE 103
DISCONNECT CHANNEL SET 10-4

INSERT PSW KEY 10-4

INSERT STORAGE KEY 104
INVALIDATE PAGE TABLE ENTRY 10-5
LOAD CONTROL 10-6

LOAD PSW 10-6

LOAD REAL ADDRESS 10-7

PURGE TLB 10-7

READ DIRECT 10-8

RESET REFERENCE BIT 10-8

SET CLOCK 109

SET CLOCK COMPARATOR 109

SET CPU TIMER 10-10

SET PREFIX 10-10

SET PSW KEY FROM ADDRESS 10-11
SET STORAGE KEY 10-11

SET SYSTEM MASK 10-12

SIGNAL PROCESSOR 10-12

STORE CLOCK COMPARATOR 10-13
STORE CONTROL 10-13

STORE CPU ADDRESS 10-14

STORE CPUID 10-14

STORE CPU TIMER 10-15

STORE PREFIX 10-15

STORE THEN AND SYSTEM MASK 10-15
STORE THEN OR SYSTEM MASK 10-16
TEST PROTECTION 10-16

WRITE DIRECT 10-17

Chapter 11. Machine-Check Handling 11-1
Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2

Error Checking and Correction 11-2
CPU Retry 11-2
Unit Deletion 11-2

Handling of Machine Checks 11-2

Validation 11-3
Invalid CBC in Storage 11-4
Programmed Validation of Storage 11-4
Invalid CBC in Storage Keys 11-4
Invalid CBC in Registers 11-6

Check-Stop State 11-7
Machine-Check Interruption 11-8

Exigent Conditions 11-8
Repressible Conditions 11-8
Interruption Action 11-9
Point of Interruption 11-10

Machine-Check-Interruption Code 11-11

Subclass 11-11
System Damage 11-11
Instruction-Processing Damage 11-11
System Recovery 11-12
Interval-Timer Damage 11-12
Timing-Facility Damage 11-12
External Damage 11-12
Degradation 11-12
Warning 11-13
Time of Interruption Occurrence 11-13
Backed Up 11-13
Delayed 11-13
Synchronous Machine-Check Interruption
Conditions 11-13
Processing Backup 11-13
Processing Damage 11-13
Storage-Error Type 11-13
Storage Error Uncorrected 11-14
Storage Error Corrected 11-14
Storage-Key Error Uncorrected 11-14
Machine-Check Interruption-Code Validity Bits
PSW-EMWP Validity 11-14

11-14

vii

PSW Mask and Key Validity 11-14
PSW Program-Mask and Condition-Code
Validity 11-15

PSW-Instruction-Address Validity 11-15
Failing-Storage-Address Validity 11-15
Region-Code Validity 11-15
External-Damage-Code Validity 11-15
Floating-Point-Register Validity 11-15

General-Register Validity 11-15
Control-Register Validity 11-15
Logout Validity 11-15

Storage Logical Validity 11-15
CPU-Timer Validity 11-15
Clock-Comparator Validity 11-15

11-16
11-16

Machine-Check Extended-Logout Length
Machine-Check Extended Interruption Information
Register-Save Areas 11-16
External-Damage Code 11-16
Failing-Storage Address 11-18
Region Code 11-18
Machine-Check Masking
Check-Stop Control
Recovery-Report Mask 11-19
Degradation-Report Mask 11-19
External-Damage-Report Mask
Warning Mask 11-19
Machine-Check Logout 11-19
Logout Controls 11-20
Synchronous Machine-Check Extended-Logout
Control 11-20
Input/Output Extended-Logout Control 11-20
Asynchronous Machine-Check Extended-Logout
Control 11-20
Asynchronous Fixed-Logout Control 11-20
Machine-Check Extended-Logout Address 11-20
Summary of Machine-Check Masking and Logout 11-21

11-18
11-19

11-19

Chapter 12. Input/Output Operations 12-1
Attachment of Input/Output Devices 12-2
Input/Qutput Devices 12-2
Control Units 12-2
Channels 12-3
Modes of Operation 12-3
Types of Channels 12-4
I/0O-System Operation 12-5
Compatibility of Operation 12-7
Control of Input/Output Devices 12-7
Input/Output Device Addressing 12-7
States of the Input/Output System 12-8
Resetting of the Input/Output System 12-10
I/0-System Reset 12-10
I/0 Selective Reset 12-10
Effect of Reset on a Working Device
Reset Upon Malfunction 12-11
Condition Code 12-11
Instruction Formats 12-13

12-10

Instructions 12-14
CLEAR CHANNEL 12-15
CLEAR I/O 12-15

HALT DEVICE 12-17
HALTI/O0 12-20

START I/0 1221

START I/0 FAST RELEASE 12-21

STORE CHANNEL ID 12-24

TEST CHANNEL 12-25

TEST1/0 12-25

Input/Output-Instruction-Exception Handling 12-27
Execution of Input/Output Operations 12-27

Blocking of Data 12-27

viii

Channel-Address Word 12-27
Channel-Command Word 12-28
Command Code 12-29
Designation of Storage Area 12-29
Chaining 12-30
Data Chaining 12-31
Command Chaining 12-33
Skipping 12-33
Program-Controlled Interruption 12-33
Channel Indirect Data Addressing 12-34
Commands 12-35
Write 12-36
Read 12-36
Read Backward
Control 12-37
Sense 12-37
Transfer in Channel
Command Retry 12-39

12-36

12-39

Conclusion of Input/Output Operations 12-40
Types of Conclusion 12-40
Conclusion at Operation Initiation 12-40

Immediate Operations 12-41

Conclusion of Data Transfer 12-41

Termination by HALT I/0 or HALT

DEVICE 12-42

Termination by CLEAR I/0 12-43

Termination Due to Equipment Malfunction
Input/Output Interruptions 12-44

Interruption Conditions 12-44

Channel-Available Interruption 12-45

Priority of Interruptions 12-45
Interruption Action 12-46
Channel-Status Word 12-46
Unit Status 12-48
Attention 12-48
Status Modifier 12-48
Control-Unit End 12-48

Busy 12-49
Channel End 12-49
Device End 12-51
Unit Check 12-51
Unit Exception 12-52

Channel Status 12-52
Program-Controlled Interruption
Incorrect Length 12-52
Program Check 12-53
Protection Check 12-54

12-52

Channel-Data Check 12-54
Channel-Control Check 12-54
Interface-Control Check 12-54

Chaining Check 12-55
Contents Of Channel-Status Word 12-55
Information Provided by Channel-Status
Word 12-55
Subchannel Key 12-56
CCW Address 12-56
Count 12-56
Status 12-57
Channel Logout 12-57
I/O-Communication Area 12-59
Chapter 13. Operator Facilities 13-1
Manual Operation 13-1
Basic Operator Facilities 13-1
Address-Compare Controls 13-1
Alter-and-Display Controls 13-2
Check Control 13-2
Check-Stop Indicator 13-2
IML Controls 13-2

12-44

Interrupt Key 13-3

Interval-Timer Control 13-3

Load Indicator 13-3

Load-Clear Key 13-3

Load-Normal Key 13-3

Load-Unit-Address Controls 13-3

Manual Indicator 13-3

Power Controls 13-3

Rate Control 13-4

Restart Key 13-4

Start Key 13-4

Stop Key 13-4

Store-Status Key 13-4

System-Reset-Clear Key 13-4

System-Reset-Normal Key 13-4

Test Indicator 13-5

TOD-Clock Control 13-5

Wait Indicator 13-5
Multiprocessing Configurations 13-5

Appendix A. Number Representation and Instruction-Use
Examples A-1
Number Representation A-2
Binary Integers A-2
Signed Binary Integers A-2
Unsigned Binary Integers A-3
Decimal Integers A-3
Floating-Point Numbers A-4
Conversion Example A-5
Instruction-Use Examples A-5
Machine Format A-6
Assembler-Language Format A-6
General Instructions A-6
ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6
AND (NI) A-7
BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-8
BRANCH ON INDEX HIGH (BXH) A-8
BRANCH ON INDEX LOW OR EQUAL
(BXLE) A9
COMPARE HALFWORD (CH) A-9
COMPARE LOGICAL (CL, CLC, CLI, CLR) A-9
Compare Logical (CLC) A-9
Compare Logical (CLI) A-10
Compare Logical (CLR) A-10
COMPARE LOGICAL CHARACTERS UNDER MASK
(CLM) A-10
COMPARE LOGICAL LONG (CLCL) A-11
CONVERT TO BINARY (CVB) A-12
CONVERT TO DECIMAL (CVD) A-12
DIVIDE (D, DR) A-13
EXCLUSIVE OR (X, XC, XI, XR) A-13
Exclusive OR (XC) A-13
Exclusive OR (XI) A-14
EXECUTE (EX) A-14
INSERT CHARACTERS UNDER MASK (ICM) A-15
LOAD (L, LR) A-16
LOAD ADDRESS (LA) A-16
LOAD HALFWORD (LH) A-17
MOVE (MVC, MVI) A-17
Move (MVC) A-17
Move (MVI) A-18
MOVE LONG (MVCL) A-18
MOVE NUMERICS (MVN) A-18
MOVE WITH OFFSET (MVO) A-19
MOVE ZONES (MVZ) A-19
MULTIPLY (M, MR) A-20

MULTIPLY HALFWORD (MH)
OR (O, OR, OI, OC) A-20

OR (OI) A-20
PACK (PACK) A-21

SHIFT LEFT DOUBLE (SLDA)

SHIFT LEFT SINGLE (SLA)

A-20

A-21

A-21

STORE CHARACTERS UNDER MASK

(STCM) A-22
STORE MULTIPLE (STM)

TEST UNDER MASK (TM)

TRANSLATE (TR) A-23

A-22

TRANSLATE AND TEST (TRT)

UNPACK (UNPK) A-25
Decimal Instructions A-25

ADD DECIMAL (AP) A-
COMPARE DECIMAL (CP)

DIVIDE DECIMAL (DP)
EDIT (ED) A-26

EDIT AND MARK (EDMK) A

MULTIPLY DECIMAL (MP)
SHIFT AND ROUND DECIMAL (SRP)

Decimal Left Shift A-28

Decimal Right Shift A-28
Decimal Right Shift and Round A-29
Multiplying by a Variable Power of 10

ZERO AND ADD (ZAP)

A-22

A-23
25
A-25
A-26
-27
A-28
A-28
A-29

A-29

Floating-Point Instructions A-30
ADD NORMALIZED (AD, ADR, AE, AER,

AXR) A-30

ADD UNNORMALIZED (AU, AUR, AW,

AWR) A-30

COMPARE (CD, CDR, CE, CER) A-30
Floating-Point-Number Conversion A-31
Fixed Point to Floating Point
Floating Point to Fixed Point
Multiprogramming and Multiprocessing Examples A-32
Example of a Program Failure Using OR

Immediate A-32

A-31
A-31

COMPARE AND SWAP (CS, CDS) A-33

Setting a Single Bit A-

33

Updating Counters A-34
Bypassing POST AND WAIT A-34
A-34
A-35

BYPASS POST Routine
BYPASS WAIT Routine
LOCK/UNLOCK A-35

LOCK/UNLOCK with LIFO Queuing for

Contentions A-35

LOCK/UNLOCK with FIFO Queuing for

Contentions A-36

Free-Pool Manipulation A-37

Appendix B. Lists of Instructions

B-1

Appendix C. Condition-Code Settings C-1

Appendix D. Facilities D-1

Commercial Instruction Set

Floating-Point Feature

D-1

Universal Instruction Set D-
Extended-Precision Floating-Point Feature D-1

External-Signal Feature
Direct-Control Feature

D-1
D-1

Translation Feature D-2
CPU-Timer and Clock-Comparator Feature D-2
Conditional-Swapping Feature
PSW-Key-Handling Feature

Move-Inverse Feature
Multiprocessing Feature

D-2
D-2

D-1

1

D-2
D-2

ix

Extended Facility D-2
Recovery-Extension Feature D-2
Channel-Set-Switching Feature D-2
Fast-Release Feature D-2
Clear-I/O Feature D-2
Channel-Indirect-Data-Addressing Feature D-2
Command-Retry Feature D-3
Limited-Channel-Logout Feature D-3
I/0-Extended-Logout Feature D-3
Availability of Features D-3
Features Not Described in the Principles of
Operation D-4

Appendix E. Table of Powers of 2 E-1
Appendix F. Hexadecimal Tables F-1

Appendix G. EBCDIC Chart G-1

Appendix H. Changes Affecting Compatibility between
System/360 and System/370 H-1

Removal of USASCII-8 Mode H-1
Operation Code for Halt Device and for Clear
Channel H-1

Logout H-1

Command Retry H-2

Channel Prefetching H-2

Validity of Data H-2

Appendix I. Changes Affecting Compatibility within
System/370 I-1

READ DIRECT and WRITE DIRECT I-1
Store Accesses I-1

Fetch Access I-1

Operand-Access Consistency [-2

Change Bit 1-2

Subchannel Interruption State I-2

Index X-1

List of Abbreviations

The abbreviations most often used in this publication are
shown in the following list and are accompanied by their

meaning. Instruction mnemonics are listed in Appendix C,

under "Instructions Arranged by Mnemonic."

a
ASCII

By, By
BC

CAI
CAW
CBC
CCW
CC

CD

CPU
CSW

Dy, Dy
DAT

e
EBCDIC

EC
ECC

h

hex

ID
IDAW
ILC
IML
I/0
IOCA
IOEL
IPL

K byte

American National Standard Code for
Information Interchange

base fields of some instruction formats
basic control (mode)

channel available interruption

channel address word

checking block code

channel command word

condition code, or chain-command code in
CCW

chain-data flag in CCW

central processing unit

channel status word

displacement fields of some instruction
formats
dynamic address translation

extended binary-coded decimal interchange
code

extended control (mode)

error checking and correction

hexadecimal

immediate field of the SI instruction
format

identifier

indirect data address word

instruction-length code

initial microprogram load

input/output

input/output communications area

input/output extended logout

initial program load

1,024 bytes

L, L, L,

M, M3
M byte
MCEL

PCI

PER
PSW

Ry, Ry, Ry
RR

RRE
RS

RX

«” v

SI

SLI
SS

SSE

TLB
TOD

u
USASCII

length fields of the SS instruction format

mask fields of some instruction formats
1,048,576 bytes
machine-check extended logout

program-controlled interruption (flag in
CCW, or function)

program-event recording

program status word

register fields of some instruction formats

register-and-register operation (instruction
format)

register-and-register operation with
extended op-code field (instruction format)

register-and-storage operation (instruction
format)

register-and-indexed-storage operation
(instruction format)

implied-operand-and-storage operation
(instruction format)
storage-and-immediate-operand operation
(instruction format)
suppress-length-indication flag in CCW
storage-and-storage operation (instruction
format)
storage-and-storage operation with
extended op-code field (instruction format)

translation lookaside buffer
time-of-day

deprecated acronym for ASCII (American
National Standard Code for Information
Interchange)

index field of the RX instruction format

Xi

Chapter 1. Introduction

Contents

General-Purpose Design 1-2
Compatibility 1-2
Compatibility among System/370 Models 1-2
Compatibility between System/360 and System/370 1-3
System Program 1-3
Availability 1-3

This publication describes the IBM System/370
architecture. The architecture of a machine defines
its attributes as seen by the programmer, that is,
the conceptual structure and functional behavior of
the machine, as distinct from the organization of
the data flow, the logical design, the physical de-
sign, and the performance of any particular imple-
mentation. Several dissimilar machine implementa-
tions may conform to a single architecture. When
programs running on different machine implemen-
tations produce the results that are defined by a
single architecture, the implementations are consid-
ered to be compatible.

IBM System/370 is a product of the experience
gained in developing and using a few generations
of compatible general-purpose systems. Starting
with System/360 as a base, it incorporates a num-
ber of new facilities: dynamic address translation
and its extensions, channel indirect data addressing,
multiprocessing, channel-set switching, timing facil-
ities, extended-precision floating point, program-
event recording, MONITOR CALL, recovery ex-
tensions, protection extensions, and the block-
multiplexer channel. Many of these facilities are
included to enhance the reliability, availability, and
serviceability of the system.

o Dynamic address translation, a facility that elim-
inates the need to assign a program to fixed lo-
cations in real main storage and thus reduces the
addressing constraints on both system and prob-
lem programs, provides greater freedom in pro-
gram design, and permits a more efficient and
effective utilization of main storage. When one
of the operating systems for virtual storage is
employed, dynamic address translation allows the

use of up to 16,777,216 bytes of virtual storage.
Extensions to this facility include the common-
segment bit, the use of which increases the effec-
tive size of the translation-lookaside buffer and
thus improves CPU performance, and the in-
struction INVALIDATE PAGE TABLE EN-
TRY, which improves CPU performance in a
demand-paging environment.

Channel indirect data addressing, a companion
facility to dynamic address translation, provides
assistance in translating data addresses for I/0O
operations. It permits a single channel-command
word to control the transmission of data that
spans noncontiguous areas of real main storage.
Multiprocessing provides for the interconnection
of CPUs to enhance system availability and
share data and resources. It includes facilities
for shared main storage, for programmed and
special machine signaling between CPUs, and for
the programmed reassignment of the first 4,096
bytes of real storage for each CPU.

Channel-set switching permits the collection of
channels in a channel set to be connected to any
CPU in a multiprocessing configuration.

Timing facilities include a time-of-day clock, a
clock comparator, and a CPU timer, along with
an interval timer that is also available in
System/360. The time-of-day clock provides a
measure of elapsed time suitable for the indica-
tion of date and time; it has a cycle of approxi-
mately 143 years and a resolution such that the
incrementing rate is comparable to the
instruction-execution rate of the model. The
clock comparator provides for an interruption
when the time-of-day clock reaches a program-

Chapter 1. Introduction 1-1

specified high-resolution timer that initiates an
interruption upon being decremented past zero.

o Extended-precision floating point includes the
facilities for addition, subtraction, and multipli-
cation of floating-point numbers with a fraction
of 28 hexadecimal digits. Included in the feature
are instructions for rounding from extended to
long and from long to short formats.

o Program-event recording provides program inter-
ruptions on a selective basis as an aid in program
debugging.

e The instruction MONITOR CALL provides for
passing control to a monitoring program when
selected indicators are reached in the monitored
program. It can be used, for example, in analyz-
ing which programs get executed, how often, and
in what length of time.

e Recovery extensions include (1) the CLEAR
CHANNEL instruction, for performing an I/0O-
system reset on a channel and on the associated
I/0 interface, (2) provisions for a detailed indi-
cation of the cause of external damage, and
(3) logout indications of whether the I/0 inter-
face is operative and the logout valid.

o Protection extensions include (1) low-address
protection, the use of which increases the protec-
tion of storage locations O through 511, which
are vital to the system control program, and
(2) the TEST PROTECTION instruction, which
can be used to perform tests for potential protec-
tion violations without causing program interrup-
tions for protection exceptions.

o The block-multiplexer channel, which permits
concurrent processing of multiple channel pro-
grams, provides an efficient means of handling
1/0 devices that transfer data on the I/0O inter-
face at a high data rate but have relatively long
periods of channel inactivity between transfers.

General-Purpose Design

System/370 is a general-purpose system that can
readily be tailored for a variety of applications. A
commercial instruction set provides the basic pro-
cessing capabilities of the system. If the floating-
point feature is installed with the commercial in-
struction set, a universal instruction set is obtained.
Adding other features, such as the extended-
precision floating-point feature or the conditional-
swapping feature, extends the processing capabili-
ties of the system still further.

System/370 has the capability of addressing a
main storage of 16,777,216 bytes, and the
System/370 translation feature, used with appropri-
ate programming support, can provide a user this
maximum address space even when a lesser amount

1-2 System/370 Principles of Operation

of real storage is attached. This feature and this
support permit a System/370 model with limited
real storage to be used for a much wider set of ap-
plications, and they make many applications with
requirements for extensive storage practical and
convenient. Additionally, for many System/370
models, the speed of accessing storage is improved
by the use of a cache. The cache is a buffer—not
apparent to the user—that often provides infor-
mation requested from storage without the delay
associated with accessing storage itself.

Another major aspect of the general-purpose
design of System/370 is the capability provided to
attach a wide variety of I/O devices through a se-
lector channel and two types of multiplexing chan-
nels. System/370 has a byte-multiplexer channel
for the attachment of unbuffered devices and of a
large number of communications devices. Addition-
ally, it offers a block-multiplexer channel, which is
particularly well-suited for the attachment of buff-
ered devices and high-speed cyclic devices.

An individual System/370 installation is ob-
tained by selecting the system components best
suited to the applications from a wide variety of
alternatives in internal performance, functional
ability, and input/output.

Compatibility

Compatibility among System/370 Models
Although models of System/370 differ in imple-
mentation and physical capabilities, logically they
are upward and downward compatible. Compatibili-
ty provides for simplicity in education, availability
of system backup, and ease in system growth. Spe-
cifically, any program will give identical results on
any model, provided that it:

1. Is not time-dependent.

2. Does not depend on system facilities (such as
storage capacity, I/O equipment, or optional
features) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being ab-
sent when the facilities are included in the con-
figuration. For example, the program should
not depend on interruptions caused by the use
of operation codes or command codes that in
some models are not assigned or not installed.
Also, it must not use or depend on fields associ-
ated with uninstalled facilities. For example,
data should not be placed in an area used by
another model for logout. Similarly, the pro-
gram must not use or depend on unassigned
fields in machine formats (control registers,

<

instruction formats, etc.) that are not explicitly
made available for program use.

4. Does not depend on results or functions that
are defined in this publication to be unpredicta-
ble or model-dependent, or on special-purpose
functions (such as emulators) that are not de-
scribed in this publication. This includes the
requirement that the program should not de-
pend on the assignment of I/O addresses and
CPU addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be devia-
tions from this publication.

6. Takes into account those changes made to the
original System/370 architectural definition
that affect compatibility among System/370
models. These changes are described in Ap-
pendix I.

Compatibility between System/360 and

System/370

System/370 is forward-compatible from

System/360. A program written for the

System/360 will run on the System/370, provided

that it:

1. Observes the limitations described in the pre-
ceding section.

2. Does not use PSW bit 12 as an ASCII bit (a
special case of the second rule in the preceding
section).

3. Does not use or depend on main-storage loca-
tions assigned specifically for System/370, such
as the interruption-code areas, the machine-
check save areas, and the extended-logout area
(a special case of the third rule in the preceding
section).

4. Takes into account other changes made to the
System/360 architectural definition that affect
compatibility between System/360 and
System/370. These changes are described in
Appendix H.

Programming Note

This publication assigns meanings to various opera-
tion codes, to bit positions in instructions, channel-
command words, registers, and table entries, and to
fixed locations in the low 512 bytes of storage
(addresses 0-511). Other operation codes, bit posi-
tions, and low-storage locations are specifically
noted as being available for programming use. The
remaining ones are unassigned and reserved for
future assignment to new facilities and other exten-
sions of the architecture.

To ensure that existing programs run if and
when such new facilities are installed, programs
should not depend on an indication of an exception
as a result of invalid values that are currently de-
fined as being checked. If a value must be placed
in unassigned positions that are not checked, the
program should enter zeros. When the machine
provides a code or field, the program should take
into account that new codes and bits may be as-
signed in the future. The program should not use
unassigned low-storage locations for keeping in-
formation since these locations may be assigned in
the future in such a way that the machine causes
this location to be changed.

System Program

The system is designed to operate with a superviso-
ry program that coordinates the use of system re-
sources and executes all I/O instructions, handles
exceptional conditions, and supervises scheduling
and execution of multiple programs.

Availability

Availability is the capability of a system to accept

and successfully process an individual job.

System/370 permits substantial availability by

(1) allowing a large number and broad range of

jobs to be processed concurrently, thus making the

system readily accessible to any particular job, and

(2) limiting the effect of an error and identifying

more precisely its cause, with the result that the

number of jobs affected by errors is minimized and
the correction of the errors facilitated.
Several design aspects make this possible.

e A program is checked for the correctness of in-
structions and data as the program is executed,
and program errors are indicated separate from
equipment errors. Such checking and reporting
assists in locating failures and isolating effects.

o The protection facilities, in conjunction with
dynamic address translation, permit the protec-
tion of the contents of storage from destruction
or misuse caused by erroneous or unauthorized
storing or fetching by a program. This provides
increased security for the user, thus permitting
applications with different security requirements
to be processed concurrently with other applica-
tions.

e Dynamic address translation allows isolation of
one application from another, still permitting
them to share common resources. Also, it per-
mits the implementation of virtual machines,
which may be used in the design and testing of
new versions of operating systems along with the
concurrent processing of application programs.

Chapter 1. Introduction 1-3

Additionally, it provides for the concurrent oper-
ation of incompatible operating systems.
Multiprocessing and channel-set switching permit
better use of storage and processing capabilities,
more direct communication between CPUs, and
duplication of resources, thus aiding in the con-
tinuation of system operation in the event of
machine failures.

MONITOR CALL, program-event recording,
and the timing facilities permit the testing and
debugging of programs without manual interven-
tion and with little effect on the concurrent
processing of other programs.

Emulation is performed under supervisory pro-
gram control, thus making it possible to perform
emulation concurrently with other applications.
On most models, error checking and correction
(ECC) in main storage, instruction retry, and
command retry provide for circumventing inter-

1-4 System/370 Principles of Operation

mittent equipment malfunctions, thus reducing
the number of equipment failures.

An enhanced machine-check handling mecha-
nism provides model-independent fault isolation,
which reduces the number of programs impacted
by uncorrected errors. Additionally, it provides
model-independent recording of machine-status
information. This leads to greater machine-
check handling compatibility between models
and improves the capability for loading and run-
ning a program on a different model when a sys-
tem failure occurs.

A small number of manual controls are required
for basic system operation, permitting most
operator-system interaction to take place via a
unit operating as an I/O device and thus reduc-
ing the possibility of accidental operator errors.

Chapter 2. Organization

Contents

Main Storage 2-1

Central Processing Unit 2-2
Program-Status Word 2-3
General Registers 2-3
Floating-Point Registers 2-3
Control Registers 2-3

Input and Output 2-3
Channel Sets 2-3
Channels 2-3
Input/Output Devices and Control Units 2-4

Operator Facilities 2-4

Logically, System/370 consists of main storage,
one or more central processing units (CPUs),
operator facilities, channels, and input/output
devices. Input/output devices are usually attached
to channels through control units. The physical
identity of these functions may vary between
models. The figure "Logical Structure" depicts the
logical structure for a single-CPU system and for a
two-CPU multiprocessing system.

Specific processors may differ in their internal
characteristics, the number and types of channels,
the size of main storage, and the representation of
the operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

Model-dependent configuration controls may be
provided to change the amount of main storage and
the number of CPUs. In some instances, the con-
figuration controls may be used to partition a single
system into multiple systems. Each of the systems
so configured has the same structure, that is, main
storage, one or more CPUs, and channels. Each
system is isolated from the other in that the main
storage in one system is not directly addressable by
the CPUs and channels in the other. It is,
however, possible for one system to communicate
with another by means of shared I/0O devices or a
channel-to-channel adapter. At any one time, the
storage, CPUs, and channels connected together in
a system are referred to as being in the

configuration. Each CPU and storage location can
be in only one configuration at a time.

Main Storage

Main storage provides the system with directly
addressable fast-access storage. Both data and
programs must be loaded into main storage from
input devices before they can be processed. The
amount of main storage available on the system
depends on the model, and, depending on the
model, the amount in the configuration may be
under control of model-dependent configuration
controls. The storage is available in 2,048-byte
blocks or multiples thereof. At any one time, each
block of storage in the configuration is addressed
with the same absolute addresses by all CPUs and
channels in the configuration. Each block of
storage is accessible to all CPUs and channels in
the configuration.

Main storage may be either physically integrated
with a CPU or constructed as standalone units.
Additionally, main storage may be composed of
large-volume storage and a faster-access buffer
storage, sometimes called a cache. Each CPU may
have an associated cache. The effects, except on
performance, of the physical construction and the
use of distinct storage media are not observable by
the program.

Chapter 2. Organization 2-1

Main (C Main (

Storage) J Storage)

{ (P [cPU (

CPU —) Y CPU)
Channel Channel Channel Channel Channel Channel

733
TIT5IIT

Central Processing Unit

The central processing unit (CPU) is the
controlling center of the machine. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical makeup of the CPU in the various
models of the machine may be different, but the
logical function remains the same. The result of
executing a valid instruction is the same for each
model.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed
length, decimal integers of variable length, and
logical information of either fixed or variable
length. Processing may be in parallel or in series;
the width of the processing elements, the
multiplicity of the shifting paths, and the degree of
simultaneity in performing the different types of
arithmetic differ from one CPU to another without
affecting the logical results.

Instructions which the CPU executes fall into
five classes: general, decimal, floating-point,
control, and input/output instructions. The general
instructions are used in performing fixed-point

Logical Structure

2-2 System/370 Principles of Operation

Ty 1]

TITT

15T

arithmetic operations and logical, branching, and
other nonarithmetic operations. The decimal
instructions operate on data in the decimal format,
and the floating-point instructions on data in the
floating-point format. The control instructions and
the input/output instructions are privileged
instructions that can be executed only when the
CPU is in the supervisor state.

To perform its functions, the CPU may use a
certain amount of internal storage. Although this
internal storage may use the same physical storage
medium as main storage, it is not considered part of
main storage and is not addressable by programs.

The CPU provides registers which are available
to programs but do not have addressable
representations in main storage. They include the
current program-status word (PSW), the general
registers, the floating-point registers, the control
registers, the prefix register, and the registers for
the time-of-day (TOD) clock, the clock
comparator, and the CPU timer. The instruction
operation code determines which type of register is
to be used in an operation. See the figure
"General, Floating-Point, and Control Registers"
later in this chapter for the format of those
registers.

9

Program-Status Word

The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned storage
location, called the old-PSW location, for the
particular class of interruption. The CPU fetches a
new PSW from a second assigned storage location.
This new PSW determines the next program to be
executed. When it has finished processing the
interruption, the interrupting program reloads the
old PSW, making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption: external,
1/0, machine check, program, restart, and
supervisor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in storage.

General Registers

Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators
in general arithmetic and logical operations. Each
register contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated
by a four-bit R field in an instruction. Some
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R
field of the instruction.

For some operations, two adjacent general
registers are coupled, providing a 64-bit format. In
these operations, the program must designate an
even-numbered register, which contains the
leftmost (high-order) 32 bits. The next
higher-numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators in
general arithmetic and logical operations, 15 of the
16 general registers are also used as base-address
and index registers in address generation. In these
cases, the registers are designated by a four-bit B
field or X field in an instruction. A value of zero
in the B or X field specifies that no base or index is

to be applied, and, thus, general register 0 cannot
be designated as containing a base address or
index.

Floating-Point Registers

Four floating-point registers are available for
floating-point operations. They are identified by
the numbers 0, 2, 4, and 6. Each floating-point
register is 64 bits long and can contain either a
short (32-bit) or a long (64-bit) floating-point
operand. A short operand occupies the leftmost bit
positions of a floating-point register. The rightmost
portion of the register is ignored and remains
unchanged in arithmetic operations that call for
short operands. Two pairs of adjacent
floating-point registers can be used for extended
operands: registers 0 and 2, and registers 4 and 6.
Each of these pairs provides for a 128-bit format.

Control Registers

The CPU has provisions for 16 control registers,
each having 32 bit positions. The bit positions in
the registers are assigned to particular facilities in
the system, such as program-event recording, and
are used either to specify that an operation can
take place or to furnish special information
required by the facility.

The control registers are identified by the
numbers 0-15 and are designated by four-bit R
fields in the instructions LOAD CONTROL and
STORE CONTROL. Multiple control registers can
be addressed by these instructions.

Input and Output

Input/output (I/0O) operations involve the transfer
of information between main storage and an I/0
device. I/0 devices and their control units attach
to channels, which control this data transfer.

Channel Sets

The group of channels which connects to a
particular CPU is called a channel set. When
channel-set switching is installed in a
multiprocessing system, the program can control
which CPU is connected to a particular channel set.
A CPU can be connected to only one channel set
at a time, and a channel set can be connected to
only one CPU at a time.

Channels

A channel relieves the CPU of the burden of
communicating directly with I/O devices and
permits data processing to proceed concurrently
with I/O operations. A channel is connected with
main storage, with control units, and with a CPU.

Chapter 2. Organization 2-3

A channel may be an independent unit, complete
with the necessary logical and internal-storage
capabilities, or it may time-share CPU facilities and
be physically integrated with the CPU. In either
case, the functions performed by a channel are
identical. The maximum data-transfer rate may
differ, however, depending on the implementation.

There are three types of channels: byte-
multiplexer, block-multiplexer, and selector
channels.

Input/Output Devices and Control Units
Input/output devices include such equipment as
card readers and punches, magnetic-tape units,
direct-access storage, displays, keyboards, printers,
teleprocessing devices, communications controllers,
and sensor-based equipment. Many 1/0O devices
function with an external medium, such as punched
cards or magnetic tape. Some I/0O devices handle
only electrical signals, such as those found in

R Field Reg Number Control Registers

}4— 32 Bits —»{

General Registers

le— 32 Bits —»]

sensor-based networks. In either case, I/O-device
operation is regulated by a control unit. In all
cases, the control-unit function provides the logical
and buffering capabilities necessary to operate the
associated I/O device. From the programming
point of view, most control-unit functions merge
with I/O-device functions. The control-unit
function may be housed with the I/0O device or in
the CPU, or a separate control unit may be used.

Operator Facilities
The operator facilities provide the functions
necessary for operator control of the machine.
Associated with the operator facilities may be an
operator-console device, which may also be used as
an I/0 device for communicating with the program.
The main functions provided by the operator
facilities are system reset, clearing, initial program
loading, start, stop, alter, and display.

Floating-point Registers

Y

|l< 64 Bits

I [|

oo o o ||
oo e |
oo T ||
o e o

1111 15

Note: The braces indicate that the two ragisters may be coupled as a double-register pair, designated by specifying the lower-
numbered register in the R field. For example, the general-register pair O and 1 is designated in the R field by the number 0.

General, Floating-Point, and Control Registers

2-4 System/370 Principles of Operation

Chapter 3. Storage

Contents

Storage Addressing 3-2
Information Formats 3-2
Integral Boundaries 3-2
Byte-Oriented-Operand Feature 3-3

Address Types 3-3

Storage Key 3-4

Protection 3-4
Key-Controlled Protection 3-4
Low-Address Protection 3-5

Reference Recording 3-5

Change Recording 3-6

Prefixing 3-6

Address Spaces 3-8

Dynamic Address Translation 3-8
Translation Control 3-9

PSW 39
Control Register 0 3-9
Control Register 1 3-10

This chapter discusses the representation of inform-
ation in storage, how information is addressed, ad-

dress transformations, and protection. The chapter
also contains a list of permanently assigned storage
locations.

The aspects of addressing which are covered
include describing the format of addresses, intro-
ducing the concept of address spaces, defining the
various types of addresses, and specifying the man-
ner in which one type of address is translated to
another type of address. Also presented are the
mechanisms for selectively protecting portions of
storage, the operation of change and reference re-
cording, and lists of storage locations having per-
manently assigned uses.

The term "main storage" (or "absolute storage")
is used to describe that storage which is addressable
by means of an absolute address. This distin-
guishes fast-access storage from auxiliary storage,
such as direct-access storage devices. Because most
references to main storage apply to virtual storage,
the abbreviated term '"storage" is used in place of

Translation Tables 3-10
Segment-Table Entries 3-10
Page-Table Entries 3-11
Summary of Dynamic-Address-Translation
Formats 3-11
Translation Process 3-12
Inspection of Control Register 0 3-14
Segment-Table Lookup 3-14
Page-Table Lookup 3-14
Formation of the Real Address 3-14
Recognition of Exceptions During Translation 3-14
Translation-Lookaside Buffer 3-15
Use of the Translation-Lookaside Buffer 3-16
Modification of Translation Tables 3-17
Address Summary 3-20
Addresses Translated 3-20
Handling of Addresses 3-20
Assigned Storage Locations 3-22
Assigned Real-Storage Locations 3-22
Assigned Absolute Storage Locations 3-24

"virtual storage," and it is also used in place of
"absolute storage' when the meaning is clear.

Main storage provides the system with directly
addressable fast-access storage of data. Both data
and programs must be loaded into main storage
(from input devices) before they can be processed.

Main storage may consist of standalone units or
be integrated with a CPU. Additionally, main stor-
age may be composed of large-volume storage and
a faster access buffer storage, sometimes called a
cache. Each CPU may have an associated cache.
The effects, except on performance, of the physical
construction and the use of distinct storage media
are not observable by the program.

Fetching and storing of data by the CPU are not
affected by any concurrent I/O data transfer or by
concurrent reference to the same storage location
by another CPU. When concurrent requests to a
main-storage location occur, access normally is
granted in a sequence that assigns highest priority
to references by channels and that alternates priori-
ty between CPUs. If a reference changes the con-

Chapter 3. Storage 3-1

tents of the location, any subsequent storage fetch-
es obtain the new contents.

Main storage may be volatile or nonvolatile. If
it is volatile, the contents of main storage are not
preserved when power is turned off. If it is nonvo-
latile, turning power off and then back on does not
affect the contents of main storage, provided the
CPU is in the stopped state and no references are
made to main storage by channels when power is
turned off. In both types of main storage, the con-
tents of the keys in storage are not necessarily pre-
served when the power for main storage is turned
off.

Storage Addressing

Storage is viewed as a long horizontal string of bits.
For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is subdi-
vided into units of eight bits. An eight-bit unit is
called a byte, which is the basic building block of
all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address of
that byte location or, simply, the byte address. Ad-
jacent byte locations have consecutive addresses,
starting with O on the left and proceeding in a left-
to-right sequence. Addresses are 24-bit unsigned
binary integers, which provide 16,777,216 (224 or
16M) byte addresses.

The CPU performs address generation when it
forms an operand or instruction address, or when it
generates the address of a table entry from the
appropriate table origin and index. It also performs
address generation when it increments an address
to access successive bytes of a field. Similarly, the
channel generates an address when it increments an
address to fetch a channel-command word (CCW)
from a CCW list, to fetch an indirect-data-address
word (IDAW) from an IDAW list, or to transfer
data.

When, during address generation, an address is
obtained that exceeds 224 — 1, the carry out of the
high-order bit position of the address is ignored.
This handling of an address of excessive size is
called wraparound.

The effect of wraparound is to make the se-
quence of addresses appear circular; that is, address
0 appears to follow the maximum byte address,
16,777,215. Address arithmetic and wraparound
occur before transformation, if any, of the address
by DAT or prefixing. In 16M-byte storage, in-
formation may be located partially in the last and
partially in the first locations of storage and is
processed without any special indication of crossing
the maximum-address boundary.

3-2 System/370 Principles of Operation

Information Formats

Information is transmitted between storage and the
CPU or a channel one byte, or a group of bytes, at
a time. Unless otherwise specified, a group of
bytes in storage is addressed by the leftmost byte of
the group. The number of bytes in the group is
either implied or explicitly specified by the opera-
tion to be performed. When used in a CPU opera-
tion, a group of bytes is called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the "high-order" bits and
the rightmost bits as the "'low-order" bits. Bit
numbers are not storage addresses, however. Only
bytes can be addressed. To operate on individual
bits of a byte in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered O through 7,
from left to right.

The bits in an address are numbered 8 through
31. Within any other fixed-length format of multi-
ple bytes, the bits making up the format are consec-
utively numbered starting from 0.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automatically
by the machine and cannot be directly controlled
by the program. References in this publication to
the length of data fields and registers exclude men-
tion of the associated check bits. All storage ca-
pacities are expressed in number of bytes.

When the length of an operand field is implied
by the operation code of an instruction, the field is
said to have a fixed length, which can be one, two,
four, or eight bytes.

When the length of an operand field is not im-
plied but is stated explicitly, the field is said to
have variable length. Variable-length operands can
vary in length by increments of one byte.

When information is placed in storage, the con-
tents of only those byte locations are replaced that
are included in the designated field, even though
the width of the physical path to storage may be
greater than the length of the field being stored.

Integral Boundaries

Certain units of information must be located in
storage on an integral boundary. A boundary is
called integral for a unit of information when its
storage address is a multiple of the length of the
unit in bytes. Special names are given to fields of
two, four, and eight bytes when they are located on
an integral boundary. A halfword is a group of two

<

<

consecutive bytes on a two-byte boundary and is
the basic building block of instructions. A word is
a group of four consecutive bytes on a four-byte
boundary. A doubleword is a group of eight con-
secutive bytes on an eight-byte boundary. (See the
figure "'Integral Boundaries with Storage Address-
es.")

When storage addresses designate halfwords,
words, and doublewords on integral boundaries, the
binary representation of the address contains one,
two, or three rightmost zero bits, respectively.

Instructions must appear on two-byte integral
boundaries, and channel-command words and the
storage operands of certain instructions must ap-
pear on other integral boundaries. The storage
operands of most instructions do not have
boundary-alignment requirements.

S — Storage Addresses

Bytes 0 1 2 3 4 5 3 7 8

T T T T T
Half- 0 2 4 6 8
words L L L ' .

T T T T T T T
Words 0 4 8

| l | | 1 l L

T T T T T T T T
Double- 0 8
Words 1 l 1 l 1 1 1 1

Integral Boundaries with Storage Addresses

Byte-Oriented-Operand Feature

The byte-oriented-operand feature is standard on
System/370. This feature permits storage operands
of most unprivileged instructions to appear on any
byte boundary.

The feature does not pertain to instruction ad-
dresses or to the operands for COMPARE AND
SWAP (CS) and COMPARE DOUBLE AND
SWAP (CDS). Instructions must appear on two-
byte integral boundaries. The low-order bit of a
branch address must be zero, and the instruction
EXECUTE must designate the target instruction at
an even byte address. COMPARE AND SWAP
must designate a four-byte integral boundary, and

COMPARE DOUBLE AND SWAP must designate
an eight-byte integral boundary.

Programming Note

For fixed-field-length operations with field lengths
that are a power of 2, significant performance deg-
radation is possible when storage operands are not
positioned at addresses that are integral multiples
of the operand length. To improve performance,
frequently used storage operands should be aligned
on integral boundaries.

Address Types

For purposes of addressing main storage, three
basic types of addresses are recognized: absolute,
real, and virtual. The addresses are distinguished
on the basis of the transformations that are applied
to the address during a storage access. In addition
to the three basic types, a fourth type—logical—is
defined, which is treated as either real or virtual,
depending on whether DAT is on or off.

An absolute address is the address assigned to a
main-storage location. An absolute address is used
for a storage access without any transformations
performed on it.

A real address identifies a location in real stor-
age. When a real address is used for an access to
main storage, it is converted, by means of prefixing,
to an absolute address.

A virtual address identifies a location in virtual
storage. When a virtual address is used for an ac-
cess to main storage, it is translated by means of
dynamic address translation to a real address,
which is then further converted to an absolute ad-
dress.

Some addresses which the program specifies are
real addresses, and some are virtual. However,
most addresses specified by the program are logical
addresses. Logical addresses are treated as real
addresses when DAT is off and as virtual addresses
when DAT is on.

All CPUs and channels refer to a shared main-
storage location by using the same absolute address.
Available main storage is usually assigned contigu-
ous absolute addresses starting at 0, and the ad-
dresses are always assigned in complete 2K-byte
blocks. An exception is recognized when an at-
tempt is made to use an absolute address in a 2K-
byte block which has not been assigned to physical
locations. On some models, storage-configuration
controls may be provided which permit the operator
to change the correspondence between absolute
addresses and physical locations. However, at any
one time, a physical location is not associated with
more than one absolute address.

Chapter 3. Storage 3-3

Main storage consisting of byte locations se-
quenced according to their absolute addresses is
sometimes referred to as absolute storage.

At any instant there is one real-address to
absolute-address mapping for each CPU in the sys-
tem. When a real address is used by a CPU to
access main storage, it is converted to an absolute
address by prefixing. The particular transformation
is defined by the value in the prefix register for the
CPU.

Main storage consisting of byte locations se-
quenced according to their real addresses is refer-
red to as real storage.

Storage Key
A storage key is associated with each 2,048-byte
block of storage that is provided.

ACC (F[R|C

0 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): The four access-
control bits, bits 0-3, are matched with the four-bit
access key whenever information is stored, or
whenever information is fetched from a location
that is protected against fetching.

Fetch-Protection Bit (F): The fetch-protection
bit, bit 4, controls whether key-controlled protec-
tion applies to fetch-type references: a zero indi-
cates that only store-type references are monitored
and that fetching with any access key is permitted;
a one indicates that protection applies both to
fetching and storing. No distinction is made be-
tween the fetching of instructions and of operands.

Reference Bit (R): The reference bit, bit 5, nor-
mally is set to one each time a location in the cor-
responding storage block is referred to either for
storing or for fetching of information.

Change Bit (C);: The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE
KEY and inspected by INSERT STORAGE KEY.
Additionally, the instruction RESET REFERENCE
BIT provides a means of inspecting the reference

3-4 System/370 Principles of Operation

and change bits and of setting the reference bit to
Zero.

Protection

Two protection facilities are provided to protect the
contents of main storage from destruction or misuse
by erroneous or unauthorized programs: key-
controlled protection and low-address protection.
The protection facilities are applied independently;
access to main storage is only permitted when none
of the facilities prohibit the access.

Key-controlled protection affords protection
against improper storing or against both improper
storing and fetching, but not against improper
fetching alone.

Key-Controlled Protection

When key-controlled protection applies to a storage
access, a store is permitted only when the storage
key matches the access key associated with the
request for storage access; a fetch is permitted
when the keys match or when the fetch-protection
bit of the storage key is zero.

The keys are said to match when the four
access-control bits of the storage key are equal to
the access key, or when the access key is zero.

The protection action is summarized in the figure
"Summary of Protection Action."

Conditions s Access to

Storage Permitted?

Fetch-Protection
Bit of
Storage Key Key Relation Fetch Store
0 Match Yes Yes
Mismatch Yes No
1 Match Yes Yes
1 Mismatch No No

Explanation:

Match The four access-control bits of the storage
key are equal to the access key, or the access
key is zero.

Yes Access is permitted.

No Access is not permitted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

When the access to storage is initiated by the
CPU, and key-controlled protection applies, the
PSW Kkey is the access key which is used as the
compare value. The PSW key occupies bit positions
8-11 of the current PSW.

When the reference is made by a channel, and
key-controlled protection applies, the subchannel

<

<

key associated with the I/O operation is the access
key which is used as the compare value. The sub-
channel key is specified for an I/O operation in bit
positions 0-3 of the channel-address word (CAW);
the subchannel key is later placed in bit positions
0-3 of the channel-status word (CSW) that is
stored as a result of the I/O operation.

When a CPU access is prohibited because of
protection, the operation is suppressed or terminat-
ed, and a program interruption for a protection
exception takes place. When a channel access is
prohibited, protection check is indicated in the
CSW stored as a result of the operation.

When a store access is prohibited because of
key-controlled protection, the contents of the pro-
tected location remain unchanged. When a fetch
access is prohibited, the protected information is
not loaded into a register, moved to another storage
location, or provided to an I/0O device. For a pro-
hibited instruction fetch, the instruction is sup-
pressed and an arbitrary instruction-length code is
indicated.

Key-controlled protection is always active, re-
gardless of whether the CPU is in the problem or
supervisor state, and regardless of the type of CPU
instruction or channel-command word being execu-
ted.

| All accesses to storage locations that are explicit-
ly designated by the program and that are used by
the CPU to store or fetch information are subject
to key-controlled protection.

All storage accesses by a channel to fetch a
CCW or to access a data area designated during
the execution of a CCW are subject to key-
controlled protection. However, if a CCW or out-
put data is prefetched, a protection check is not
indicated until the CCW is due to be executed or
the data is due to be written.

Key-controlled protection is not applied to ac-
cesses that are implicitly made by the CPU or
channel for such sequences as:

e Interruptions,

« Updating the interval timer,

« Logout,

e Dynamic-address translation,

« Store-status functions,

« Fetching the CAW during the execution of an

I/0 instruction,

« Storing the CSW by an I/0 instruction or inter-
ruption,
» Storing channel identification during the execu-

tion of STORE CHANNEL ID,

« Limited channel logout, or
« Initial program loading.

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the pro-
gram explicitly designates these locations, they are
subject to protection.

Low-Address Protection

The low-address-protection facility provides protec-
tion against the destruction of main-storage inform-
ation used by the CPU during interruption process-
ing, by prohibiting instructions from storing using
addresses in the range 0 through 511. The range
criterion is applied before dynamic translation, if
any, and before prefixing.

Low-address protection is under control of bit 3
of control register 0, the low-address-protection-
control bit. When the bit is zero, low-address pro-
tection is off; when the bit is one, low-address pro-
tection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, a program interruption for a
protection exception takes place, and the operation
is suppressed or terminated.

Any attempt by the program to store using effec-
tive addresses in the range O through 511 are sub-
ject to low-address protection. Low-address pro-
tection is applied to the store accesses of instruc-
tions whose operand addresses are logical or real.
Thus it applies to the operands of IPTE and READ
DIRECT, and to the store-type operands of in-
structions with logical addresses.

Low-address protection is not applied to accesses
made by the CPU or channel for such sequences as
interruptions, logout, and the initial-program-
loading and store-status functions, nor is it applied
to data stores during I/O data transfer. However,
explicit stores by a program at any of these loca-
tions are subject to protection.

Programming Note

Low-address protection and key-controlled protec-
tion apply to the same store accesses, except that
low-address protection does not apply to storing
performed by a channel, whereas key-controlled
protection does.

Reference Recording

Reference recording provides information for use in
selecting pages for replacement. Reference record-
ing uses the reference bit, bit 5 of the storage key.
A reference bit is provided in each storage key
when dynamic address translation is installed. The
reference bit is set to one each time a location in
the corresponding storage block is referred to either

Chapter 3. Storage 3-5

for fetching or storing information, regardless of
whether the CPU is in the EC mode or BC mode or
whether DAT is on or off.

Reference recording is always active and takes
place for all storage accesses, including those made
by any CPU, I/0, or operator facility. It takes
place for implicit accesses made by the machine,
such as those which are part of interruptions and
I/O-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

INSERT STORAGE KEY

RESET REFERENCE BIT (reference bit is set to
Zero)

SET STORAGE KEY (reference bit is set to a
specified value)

The record provided by the reference bit is sub-
stantially accurate. The reference bit may be set to
one by fetching data or instructions that are neither
designated nor used by the program, and, under
certain conditions, a reference may be made with-
out the reference bit being set to one. Under cer-
tain unusual circumstances, a reference bit may be
set to zero by other than explicit program action.

Change Recording

Change recording provides information as to which

pages have to be saved in auxiliary storage when

they are replaced in main storage. Change record-

ing uses the change bit, bit 6 of the storage key. A

change bit is provided in each storage key when

dynamic address translation is installed.

The change bit is set to one each time a store
access causes the contents in the corresponding
storage block to be changed. A store access that
does not change the contents of storage may or
may not set the change bit to one.

The change bit is not set to one for an attempt
to store if the access is prohibited. In particular:

1. For the CPU, a store access is prohibited when-
ever an access exception exists for that access,
or whenever an exception exists which is of
higher priority than the priority of an access
exception for that access.

2. For I/0, a store access is prohibited whenever
a key-controlled-protection condition exists for
that access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, 1/0, or operator facility.
It takes place for implicit references made by the

3-6 System/370 Principles of Operation

machine, such as those which are part of interrup-
tions.

Change recording does not take place for the
operands of the following instructions since they
directly modify a storage key without modifying a
storage location:

RESET REFERENCE BIT
SET STORAGE KEY (change bit is set to a speci-
fied value)

Change bits are not necessarily restored on CPU
retry (see the section "CPU Retry" in Chapter 11,
"Machine-Check Handling"). See the section
"Exceptions to Nullification and Suppression" in
Chapter 5, "Program Execution," for a description
of the handling of the change bit in certain unusual
situations.

Prefixing

Prefixing provides the ability to assign the range of
real addresses 0-4095 (the prefix area) to a differ-
ent block in absolute main storage for each CPU,
thus permitting more than one CPU sharing main
storage to operate concurrently with a minimum of
interference, especially in the processing of inter-
ruptions.

Prefixing causes real addresses in the range 0-
4095 to correspond to the block of 4K absolute
addresses identified by the prefix register for the
CPU, and the block of real addresses starting with
the prefix value to correspond to absolute addresses
0-4095. The remaining real addresses are the same
as the corresponding absolute addresses. This
transformation allows each CPU to access all of
absolute main storage, including the first 4K bytes
and the locations designated by the prefix registers
of the other CPUs.

The relationship between real and absolute ad-
dresses is graphically depicted in the figure
"Relationship between Real and Absolute Address-
es."

The prefix is a 12-bit quantity located in the
prefix register. The register has the following for-
mat:

11111111 Prefix 111111111117
0 8 20 31

The contents of the register can be set and in-
spected by the privileged instructions SET PREFIX
and STORE PREFIX, respectively. On setting, bits
corresponding to bit positions 0-7 and 20-31 of the
prefix register are ignored. On storing, zeros are

<

provided for these bit positions. When the contents
of the prefix register are changed, the change is

effective for

the next sequential instruction.

When prefixing is applied, the real address is
transformed into an absolute address using one of
the following rules:
1. Bits 8-19 of the real address, if all zeros, are

replaced with bits 8-19 of the prefix.
2. Bits 8-19 of the real address, if equal to bits
8-19 of the prefix, are replaced with zeros.
3. Bits 8-19 of the real address, if not all zeros
and not equal to bits 8-19 of the prefix, remain

In all cases, bits 20-31 of the address remain
unchanged.

Only the address presented to storage is translat-
ed by prefixing. The contents of the source of the
address remain unchanged.

The distinction between real and absolute ad-
dresses is made even when the prefix register con-
tains all zeros, in which case a real address and its
corresponding absolute address are identical.

unchanged.
Prefixing _ _ _Prefl(irE —_————
r—- -7 1 |'— I
: No Change ‘ D> L ; |
| ‘ T |
No Chan
| l < I a |
} | |
n | | 0= | l =
T | | [l |
2
| s | {
I 2 I - | -
| & | b |
| | % | .
L | A | 2 | L
~ | | ™ | ,’; -
i No Change T >+ l |
|
r | l L < ! No Change || B
I
AN A
| % ; I |
) | N
Q
Address | i Address | hl | Address
1 %" 4096 I | L 4096 ' /) o 4096"‘
>
{ L/Add(;ess L __________ | [J (Addoress l_ _______ _J [«—Address
Real Addresses Absolute Real Addresses
for CPU A Addresses for CPU B
@ Real addresses in which the high-order 12 bits are equal to the prefix for this CPU (A or B).

@ Absolute addresses of the block that contains, for this CPU (A or B), the assigned locations

in real storage.

Relationship between Real and Absolute Addresses

Chapter 3. Storage

3-7

Address Spaces

An address space is a consecutive sequence of in-
teger numbers (or virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro-
ceeds left to right.

When a virtual address is used by a CPU to ac-
cess main storage, it is first converted, by means of
the dynamic address translation (DAT), into a real
address, and then into an absolute address. DAT
uses two levels of tables (a segment table and page
tables) as transformation parameters. The address
of the segment table is found in a control register.

Virtual storage comprising byte locations ordered
according to their virtual addresses in an address
space is usually referred to as storage.

Dynamic Address Translation

Dynamic address translation (DAT) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device, and
at a later time return the program and the data to
different main-storage locations for resumption of
execution. The transfer of the program and its
data between main and auxiliary storage may be
performed piecemeal, and the return of the inform-
ation to main storage may take place in response to
an attempt by the CPU to access it at the time it is
needed for execution. These functions may be
performed without change or inspection of the pro-
gram and its data, do not require any explicit pro-
gramming convention for the relocated program,
and do not disturb the execution of the program
except for the time delay involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein main
storage appears to be larger than the installed main
storage. This apparent main storage is referred to
as virtual storage, and the addresses used to desig-
nate locations in the virtual storage are referred to
as virtual addresses. The virtual storage of a user
may far exceed the size of the physical main stor-
age of the installation and normally is maintained
in auxiliary storage. The translation occurs in
blocks of addresses, called pages. Only the most
recently referred-to pages of the virtual storage are
assigned to occupy blocks of physical main storage.
As the user refers to pages of virtual storage that
do not appear in main storage, they are brought in
to replace pages in main storage that are less likely
to be needed. The swapping of pages of storage

3-8 System/370 Principles of Operation

may be performed by the operating system without
the user’s knowledge.

In the process of replacing blocks of main stor-
age by new information from an external medium,
it must be determined which block to replace and
whether the block being replaced should be record-
ed and preserved in auxiliary storage. To aid in
this decision process, a reference bit and a change
bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of control words in I/O operations. The
channel-indirect-data-addressing feature is provid-
ed to aid I/O operations in a virtual-storage envi-
ronment.

The dynamic-address-translation facility includes
the instructions LOAD REAL ADDRESS, RESET
REFERENCE BIT, and PURGE TLB. It makes
use of control register 1 and bits 8-12 in control
register 0.

Dynamic address translation is enhanced by that
part of the extended facility that includes the in-
struction INVALIDATE PAGE TABLE ENTRY
and the common-segment facility. On some mod-
els, the common-segment facility permits improve-
ment of TLB utilization by means of a common-
segment bit in the segment-table entry. On other
models, this bit is ignored, with no performance
improvement.

Address translation is achieved by treating the
addresses supplied by the program as virtual ad-
dresses. When DAT is on, a logical address is
treated as a virtual address and is translated during
a storage reference into the corresponding real ad-
dress. When DAT is off, the logical address is
treated as a real address.

In the process of translation, two types of units
of information are recognized—segments and pages.
A segment is a block of sequential addresses span-
ning 65,536 (64K) or 1,048,576 (1M) bytes and
beginning at an address that is a multiple of its
size. A page is a block of sequential addresses
spanning 2,048 (2K) or 4,096 (4K) bytes and be-
ginning at an address that is a multiple of its size.
The size of the segment and page is controlled by
bits 8-12 in control register 0.

The virtual address, accordingly, is divided into a
segment-index (SX) field, a page-index (PX) field,
and a byte-index field. The size of these fields
depends on the segment and page size.

The segment index starts with bit 8 of the virtual
address and extends through bit 15 for a 64K-byte
segment size and through bit 11 for a 1M-byte
segment size. The page index starts with the bit

<

following the segment index and extends through
bit 19 for a 4K-byte page size and through bit 20
for a 2K-byte page size. The byte index comprises
the remaining 11 or 12 low-order bits of the virtual
address. The formats of the virtual address are as
follows:

For 64K-byte segments and 4K-byte pages:

11111111 SX PX
0 8 16 20 31

Byte Index

For 64K-byte segments and 2K-byte pages:

11171111 SX PX
0 8 16 21 31

Byte Index

For 1M-byte segments and 4K-byte pages:

/11111177 SX PX
0 8 12 20 31

Byte Index

For 1M-byte segments and 2K-byte pages:

111111717 SX PX
0 8 12 21 31

Byte Index

Virtual addresses are translated into real ad-
dresses by means of two translation tables, a seg-
ment table and a page table, which reflect the cur-
rent assignment of real storage. The assignment of
real storage occurs in units of pages, the real loca-
tions being assigned contiguously within a page.
The pages need not be adjacent in real storage
even though assigned to a set of sequential virtual
addresses.

Translation Control

Address translation is controlled by the DAT-mode
bit in the PSW and by a set of bits, referred to as
the translation parameters, in control registers 0
and 1. Additional controls are located in the trans-
lation tables.

PSW

When the dynamic-address-translation facility is
installed, the CPU can operate with DAT either on
or off. The mode of operation is controlled by bit
5 of the EC-mode PSW, the DAT-mode bit. When
this bit is one, DAT is on, and logical addresses are
treated as virtual addresses; when this bit is zero or
the BC mode is specified, DAT is off, and logical
addresses are used as real addresses.

Control Register 0

Bits 8-12 of control register 0 are called the trans-
lation format, which controls the page size and
segment size. Only four combinations of the five
control bits are valid; all other combinations are
invalid. The encoding of the control bits is defined
in the following table:

Bits of

Control

Register 0 Page Segment

Size Size

8| 9|10(11]12| (Bytes) (Bytes)
0 1 0 0 0|2,048 (2K) 65,536 (6u4K)
0 1 0 1 02,048 (2K)|1,048,576 (1M)
1 0 0 0 04,096 (4K) 65,536 (6u4K)
1 0 0 1 0[|4,096 (u4K)|[1,048,576 (1M)
All others Invalid Invalid

When an invalid bit combination is detected in
bit positions 8-12, a translation-specification excep-
tion is recognized as part of the execution of an
instruction using address translation, and the opera-
tion is suppressed.

Chapter 3. Storage 3-9

Control Register 1
Bits 0-25 of control register 1 designate the origin
and length of the segment table:

STL Seg-Table Origin

0 8 26 31
The fields in the register are allocated as follows:

Segment-Table Length (STL): Bits 0-7 of control
register 1 designate the length of the segment table
in units of 64 bytes, thus making the length of the
segment table variable in multiples of 16 entries.
The length of the segment table, in units of 64
bytes, is equal to one more than the value in bit
positions 0-7. The contents of the length field are
used to establish whether the entry designated by
the segment-index portion of the virtual address
falls within the segment table.

Segment-Table Origin: Bits 8-25 of control regis-
ter 1, with six zeros appended on the right, form a
24-bit real address that designates the beginning of
the segment table.

Programming Notes

1. The validity of the information loaded into a
control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa-
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
LOAD REAL ADDRESS is executed. The
information is not considered to be used when
the PSW specifies translation, but an I/0, ex-
ternal, restart, or machine-check interruption
occurs before an instruction is executed, includ-
ing the case when the PSW specifies the wait
state.

Translation Tables

The translation process consists in a two-level
lookup using two tables: a segment table and a
page table. These tables reside in main storage.

Segment-Table Entries

The entry fetched from the segment table desig-
nates the length, availability, and origin of the cor-
responding page table.

3-10 System/370 Principles of Operation

An entry in the segment table has the following
format:

PTL [0000| Page-Table Origin [O|C|I

0 L} 8 29 31

The fields in the segment-table entry are allocat-
ed as follows:

Page-Table Length (PTL): Bits 0-3 designate the
length of the page table in increments that are
equal to 1/16 of the maximum size of the table,
the maximum size depending on the size of seg-
ments and pages. The length of the page table, in
units 1/16 of the maximum size, is equal to one
more than the value in bit positions 0-3. The
length field is compared against the high-order four
bits of the page-index portion of the logical address
to determine whether the page index designates an
entry within the page table.

Page-Table Origin: Bits 8-28, with three low-
order zeros appended, form a 24-bit real address
that designates the beginning of the page table.

Common-Segment Bit (C): Bit 30, with the
common-segment facility installed, controls the use
of translation-lookaside-buffer copies of the
segment-table entry and of the page table which it
designates. A zero identifies a private segment; in
this case, the segment-table entry and the page
table that the entry designates may be used only in
association with the segment-table origin which
designates the segment table in which the segment-
table entry resides. A one identifies a common
segment; in this case, the segment-table entry and
the page table that the entry designates may con-
tinue to be used for translating addresses corre-
sponding to the segment index, even though a dif-
ferent segment table is selected by changing the
segment-table origin in control register 1. In some
models, bit 30 in the segment-table entry is ig-
nored, and all segments are treated as private.

The common-segment bit is used only for con-
trolling the loading and use of translation-
lookaside-buffer copies. When the common-
segment facility is installed, the common-segment
bit is ignored for explicit translation and for implic-
it translation not using the translation lookaside
buffer.

Segment-Invalid Bit (I): Bit 31 controls whether
the segment associated with the segment-table en-
try is available. When bit position 31 contains a
zero, address translation proceeds using the desig-
nated page table. When the bit is a one, a
segment-translation exception is recognized, and
the unit of operation is nullified.

The handling of bit positions 4-7 and 29-30 of
the segment-table entry depends on the model.
Normally a translation-specification exception is
recognized and the unit of operation is suppressed
when these bits are not zeros; however, on some
models the contents of these bit positions may be
ignored. On machines with the common-segment
facility installed, bit 30 is interpreted as defined or
ignored.

Page-Table Entries

The entry fetched from the page table indicates the
availability of the page and contains the high-order
bits of the real address. The format of the page-
table entry depends on page size, as follows:

Page-table entry with 4K-byte pages:

PFRA ljojof/
0 12 15

Page-table entry with 2K-byte pages:

PFRA 1o/

0 13 15

The fields in the page-table entry are allocated
as follows:

Page-Frame Real Address (PFRA): Bits 0-11 or
bits 0-12, depending on the page size, provide the
leftmost 12 or 13 bits of a 24-bit real storage ad-
dress. When these bits are concatenated with the
contents of the byte-index field of the virtual ad-
dress on the right, the real storage address is ob-
tained.

Page-Invalid Bit (I): Bit 12 or 13, depending on
the page size, controls whether the page associated
with the page-table entry is available. When the
bit is zero, address translation proceeds using the
table entry. When the bit is one, a page-translation
exception is recognized, and the unit of operation is
nullified.

Except for the rightmost bit position of the en-
try, the bit positions to the right of the page-invalid

bit must contain zeros; otherwise, a translation-
specification exception is recognized as part of the
execution of an instruction using that entry for
address translation, and the unit of operation is
suppressed.

Summary of Dynamic-Address-Translation
Formats

The first table summarizes the possible combina-
tions of the page-address and byte-index fields in
the formation of a real storage address.

The eight-bit length field in control register 1
provides for a maximum length code of 255 and
permits designating a segment table of 16,384
bytes, or 4,096 entries, which is more than can be
referred to for translation purposes by the virtual
address. With 1M-byte segments, only 16 segments
can be addressed, requiring a segment table of 64
bytes. A table of 64 bytes is specified by a length
code of 0 and is the smallest table that can be spec-
ified. With 64K-byte segments, up to 256 seg-
ments can be addressed, requiring at the most a
segment table of 1,024 bytes and a length code of
15. These relations are summarized in the second
table.

The third table lists the maximum sizes of the
page table and the increments in which the size of
the page table can be controlled.

Real Storage Address

Page Address Byte Index
Size Bit Bit
of Positions No.| Positions| No.
Page in Page- of [in Virtual| of
(Bytes)|Table Entry|Bits| Address |Bits
2K 0-12 13 21-31 11
4K 0-11 12 20-31 12
Segment | Number Max Seg Tbl
Size Index of Segment-
of Field |Address- Usable| Table
Segment| Size able Size |Length|Increment
(Bytes) |(Bits) |Segments|(Bytes)| Code | (Bytes)
64K 8 256 1,024 15 64
™ 4 16 64 0 64

Chapter 3. Storage 3-11

Page Max Page Tbl
Size of Index | Number Page-
Field |of Pages Usable| Table
Segment | Page Size in Size |Length|Increment
(Bytes)|(Bytes)|(Bits) |Segment |(Bytes)| Code | (Bytes)
64K 2K 5 32 64 15 4
64K 4K 4 16 32 15 2
M 2K 9 512 1,024 15 64
™ 4K 8 256 512 15 32

Programming Note

The low-order bit position of a page-table entry is
unassigned and is not checked for zero; thus, it is
available for programming use.

Translation Process

This section describes the translation process as it is
performed implicitly before a virtual address is used
to access main storage. The process of translating
the operand address of LOAD REAL ADDRESS
and TEST PROTECTION is the same, except that
segment-translation and page-translation exceptions
do not cause a program interruption but instead are
indicated in the condition code. Translation of the
operand address of LOAD REAL ADDRESS also
differs in that the translation-lookaside buffer is
not used.

Translation of an address is performed by means
of a segment table and a page table, both of which
reside in main storage. It is controlled by the
DAT-mode bit in the PSW and by the translation
parameters in control registers 0 and 1.

The segment-index portion of the virtual address
is used to select an entry from the segment table,

3-12 System/370 Principles of Operation

the starting address and length of which are speci-
fied by the contents of control register 1. This
entry designates the page table to be used.

The page-index portion of the virtual address is
used to select an entry from the page table. This
entry contains the high-order bits of the real ad-
dress that represents the translation of the virtual
address.

The byte-index field of the virtual address is
used unchanged for the rightmost bit positions of
the real address.

If the I bit is one in either the segment-table
entry or the page-table entry, the entry is invalid,
and the translation process cannot be completed for
this virtual address. A segment-translation or a
page-translation exception is recognized, and the
unit of operation is nullified.

In order to avoid the delay associated with refer-
ences to translation tables in main storage, the in-
formation fetched from the tables normally is
placed also in a special buffer, the translation-
lookaside buffer (TLB), and subsequent transla-
tions involving the same table entries may be per-
formed using the information recorded in the TLB.
The operation of the TLB is described in the sec-
tion '"Translation-Lookaside Buffer" in this chap-
ter.

Whenever access to main storage is made during
the address-translation process for the purpose of
fetching an entry from a segment table or page
table, key-controlled protection does not apply.

The translation process, including the effect of
the TLB, is shown graphically in the figure
"Translation Process."

Control Register 1

C

Virtual Address

Segment
Index e

Page
Index e

Byte Index
L[]

Segment Table
(in main storage)

Page Table

(in main storage)

[

Translation-Lookaside

Buffer (TLB)

entry in the TLB.

Translation Process

g

Real Address

[i Information, which may include portions of the virtual address and the segment-table
origin, is used to search the TLB.

E{ If match exists, address from TLB is used in forming the real address.

Chapter 3. Storage

[{ If no match exists, table entries in main storage are fetched to translate the address.
Resulting value, in conjunction with search information, is used to form an

3-13

Inspection of Control Register 0

The interpretation of the virtual address for trans-
lation purposes is controlled by the translation for-
mat, bits 8-12 of control register 0. If bits 8-12
contain an invalid code, a translation-specification
exception is recognized, and the operation is sup-
pressed.

Segment-Table Lookup

The segment-index portion of the virtual address is
used to select a segment-table entry that designates
the page table to be used in arriving at the real
address. The address of the segment-table entry is
obtained by appending six zeros to the right of bits
8-25 of control register 1 and adding the segment
index to this value, with the rightmost bit position
of the segment index aligned with bit position 29 of
the address.

As part of the segment-table-lookup process, the
segment index is compared against the segment-
table length, bits 0-7 of control register 1, to estab-
lish whether the addressed entry is within the table.
With 1M-byte segments, entries for all addressable
segments are contained in a table of minimum
length (length code of 0). With 64K-byte seg-
ments, four zeros are appended to the left of bits
8-11 of the virtual address, and this extended value
is compared against the eight-bit segment-table
length. If the value in the segment-table-length
field is less than the value in the corresponding bit
positions of the virtual address, a segment-
translation exception is recognized, and the unit of
operation is nullified.

All four bytes of the segment-table entry are
fetched concurrently. The fetch access is not sub-
ject to protection. When the storage address gen-
erated for fetching the segment-table entry refers
to a location which is not provided, an addressing
exception is recognized, and the unit of operation is
suppressed.

Bit 31 of the entry fetched from the segment
table specifies whether the corresponding segment
is available. This bit is inspected, and, if it is one,
a segment-translation exception is recognized, with
the unit of operation nullified. Handling of bit
positions 4-7 and 29-30 of the segment-table entry
depends on the model: normally a translation-
specification exception is indicated and the unit of
operation suppressed when they do not contain
zeros, however, on some models they may be ig-
nored.

On machines with the common-segment facility,
a one in bit position 30 does not cause an excep-
tion. Bit 30 may be retained with the entry in the
TLB, or it may be ignored.

3-14 System/370 Principles of Operation

When no exceptions are recognized in the
process of segment-table lookup, the entry fetched
from the segment table designates the length and
beginning of the corresponding page table.

Page-Table Lookup

The page-index portion of the virtual address, in
conjunction with the page-table address derived
from the segment-table entry, is used to select an
entry from the page table. The address of the
page-table entry is obtained by appending three
zeros to the right of bits 8-28 of the segment-table
entry and adding the page index to this value. The
addition is performed with the rightmost bit of the
page index aligned with bit 30 of the address.

As part of the page-table-lookup process, the
four leftmost bits of the page index are compared
against the page-table length, bits 0-3 of the
segment-table entry, to establish whether the ad-
dressed entry is within the table. If the value in
the page-table-length field is less than the value in
the four leftmost bit positions of the page-index
field, a page-translation exception is recognized,
and the unit of operation is nullified.

The two bytes of the page-table entry are
fetched concurrently. The fetch access is not sub-
ject to protection. When the storage address gen-
erated for fetching the page-table entry refers to a
location which is not provided, an addressing ex-
ception is recognized, and the unit of operation is
suppressed.

The entry fetched from the page table indicates
the availability of the page and contains the left-
most bits of the page-frame real address. The
page-invalid bit is inspected to establish whether
the corresponding page is available. If this bit is
one, a page-translation exception is recognized, and
the unit of operation is nullified. If bit positions
13-14 for 4K-byte pages or bit position 14 for 2K-
byte pages contains a one, a translation-
specification exception is recognized, and the unit
of operation is suppressed.

Formation of the Real Address

When no exceptions in the translation process are
encountered, the page-frame real address obtained
from the page-table entry and the byte-index por-
tion of the virtual address are concatenated, with
the page-frame real address forming the leftmost
part. The result is the real storage address.

Recognition of Exceptions During Translation
Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when informa-

<

tion contained in control registers or table entries is
used for translation and is found to be incorrect.

The information pertaining to DAT is considered
to be used when an instruction is executed with
DAT on or when LOAD REAL ADDRESS is exec-
uted. The information is not considered to be used
when the PSW specifies DAT on but an I/0, exter-
nal, restart, or machine-check interruption occurs
before an instruction is executed, including the case
when the PSW specifies the wait state. Only that
information required to translate a virtual address
is considered to be in use during the translation of
that address.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than one
is applicable, is provided in the section
"Recognition of Access Exceptions' in Chapter 6,
"Interruptions."

Translation-Lookaside Buffer

To enhance performance, the dynamic-address-
translation mechanism normally is implemented
such that some of the information specified in the
segment and page tables is maintained in a special
buffer, referred to as the translation-lookaside
buffer (TLB). The CPU necessarily refers to a
DAT-table entry in main storage only for the initial
access to that entry. This information subsequently
may be maintained in the TLB, and subsequent
translations may be performed using the informa-
tion recorded in the TLB. The presence of the
TLB affects the translation process to the extent
that a modification of the contents of a table entry
in main storage does not necessarily have an imme-
diate, if any, effect on the translation.

The size and the structure of the TLB depend on
the model. For instance, the TLB may be imple-
mented such as to contain only a few entries per-
taining to the currently designated segment table,
each entry consisting of the high-order portions of
a virtual address and its corresponding real address;
or it may contain arrays of values where the real
page address is selected on the basis of the current
segment-table origin, the translation format, and
the high-order bits of the virtual address. Entries
within the TLB are not explicitly addressable by
the program.

The description of the logical structure of the
TLB covers all implementations by System/370
models. The TLB entries are considered as being
of two types: TLB segment-table entries and TLB
page-table entries. A TLB entry is considered as
containing within it both the information obtained
from the table entry in storage and the attributes

used to fetch the entry from storage. Thus, a TLB
segment-table entry would contain the following
fields:

TF [STO | SX [PTO |PTL | C

TF The translation format in effect when the
entry was formed

STO The segment-table origin in effect when
the entry was formed

SX The segment index used to select the entry

PTO The page-table origin fetched from the
segment-table entry in storage

PTL The page-table length fetched from the
segment-table entry in storage

C The common bit fetched from the
segment-table entry in storage; when the
common-segment facility is not installed,
this field is not included in the TLB

A TLB page-table entry would contain the fol-
lowing fields:

TF |PTO | PX [PFRA

TF The translation format in effect when the
entry was formed

PTO The page-table origin in effect when the
entry was formed

PX The page index used to select the entry

PFRA The page-frame real address fetched from
the entry in storage

Depending on the implementation, not all of the
above items are required in the TLB. For example,
if the implementation combines into a single TLB
entry (1) the information obtained from a page-
table entry and (2) the attributes of both the page-
table entry and the segment-table entry, then the
page-table-origin and page-table-length fields are
not required. If the implementation purges the
TLB when the translation parameters are changed,
then the segment-table origin and translation for-
mat are not required.

Note: The following sections describe the conditions
under which information may be placed in the
TLB and information from the TLB may be used
for address translation, and they describe how
changes to the translation tables affect the transla-
tion process. Information is not necessarily re-
tained in the TLB under all conditions for which
such retention is permissible. Furthermore, inform-

Chapter 3. Storage 3-15

ation in the TLB may be purged under conditions
additional to those for which purging is mandatory.

Use of the Translation-Lookaside Buffer

The formation of TLB entries and the effect of any

manipulation of the contents of a table entry by the

program depend on whether the entry is valid, on
whether the entry is attached, on whether a copy of
the entry can be placed in the TLB, and on wheth-
er a copy in the TLB of the entry is usable.

The valid state of a table entry denotes that the
segment or page associated with the table entry is
available. An entry is valid when the segment-
invalid bit or page-invalid bit in the entry is zero.
The attached state of a table entry denotes that the
CPU can attempt to use the table entry for implicit
address translation. The usable state of a TLB
entry denotes that the CPU can attempt to use the
TLB entry for implicit address translation.

A segment-table entry or a page-table entry may
be placed in the TLB only when the entry is atta-
ched and valid and would not cause a translation-
specification exception if used for translation. Ex-
cept for these restrictions, the entry may be placed
in the TLB at any time.

A segment-table entry is attached to a CPU
when all of the following conditions are met:

1. The current PSW specifies DAT on.

2. The entry is within the segment table designat-
ed by the translation parameters currently spec-
ified in control registers 0 and 1.

3. The entry can be selected by the segment-index
portion of a virtual address.

The PSW is considered to specify DAT on when
bit 5 is one and the EC mode is specified, regard-
less of whether the contents of any other PSW
fields are due to cause an exception to be recogniz-
ed.

A page-table entry is attached to a CPU when it
is within the page table designated by either a usa-
ble TLB segment-table entry or by an attached and
valid segment-table entry which would not cause a
translation-specification exception if used for trans-
lation.

A TLB segment-table entry is in the usable state
when all of the following conditions are met:

1. The current PSW specifies DAT on.

2. The translation-format field in the TLB
segment-table entry is the same as the current
translation format.

3. The segment-table-origin field in the segment-
table entry is the same as the current
segment-table origin, or the common bit is one
in the TLB entry.

3-16 System/370 Principles of Operation

A TLB segment-table entry may be used for
implicit address translation only when the entry is
in the usable state and the segment index of the
entry matches the segment index of the virtual
address to be translated.

A TLB page-table entry is in the usable state
when all of the following conditions are met:

1. The TLB page-table entry is selected by a
usable TLB segment-table entry or by an
attached and valid segment-table entry which
would not cause a translation-specification
exception if used for translation.

2. The page-table-origin field in the TLB page-
table entry matches the page-table-origin field
in the segment-table entry which selects it.

3. The page-index field in the TLB page-table
entry is within the range permitted by the
segment-table-length field in the TLB segment-
table entry which selects it.

4. The translation-format field in the TLB page-
table entry is the same as the current transla-
tion format.

A TLB page-table entry may be used for implicit
address translation only when the TLB entry is in
the usable state as selected by the TLB segment-
table entry being used and only when the page in-
dex of the TLB page-table entry matches the page
index of the virtual address being translated.

The operand address of LOAD REAL AD-
DRESS is translated without the use of the TLB
contents. Translation in this case is performed by
the use of the designated tables in main storage.

Selected page-table entries are purged from the
TLB by means of the INVALIDATE PAGE TA-
BLE ENTRY instruction. All information in the
TLB is necessarily cleared only by execution of
PURGE TLB, SET PREFIX, or CPU reset.

Programming Notes

1. Although a copy of a table entry may be placed
in the TLB only when the entry is both valid
and attached, the copy may remain in the TLB
even when the entry itself is no longer valid or
attached.

2. No entries can be placed in the TLB when
DAT is off because the table entries at this
time are not attached. In particular, translation
of the operand address of LOAD REAL AD-
DRESS, with DAT off, does not cause entries
to be placed in the TLB.

Conversely, when DAT is on, information
may be loaded into the TLB from all
translation-table entries that could be used for
address translation, given the current transla-

<

tion parameters. The loading of the TLB does
not depend on whether the entry is used for
translation as part of the execution of the
current instruction, and such loading can occur
when the wait state is specified. Similarly,
information from a segment-table or page-table
entry having a format error may be recorded in
the TLB.

3. More than one copy of a table entry may exist
in the TLB. For example, some
implementations may cause a copy of a valid
table entry to be placed in the TLB for each
segment-table origin by which the entry
becomes attached.

4. The segment size controls how many
segment-table entries can be referred to for
translation. Both the page size and segment
size control the selection of page-table entries
and hence may affect whether or not an entry
is attached.

5. The states and use of the DAT entries in both
storage and in the TLB are summarized in the
figure ''Summary of DAT Entries."

Modification of Translation Tables

When an attached and invalid table entry is made
valid and no usable entry for the associated virtual
address is in the TLB, the change takes effect no
later than the end of the current unit of operation.
Similarly, when an unattached and valid table entry
is made attached and no usable entry for the
associated virtual address is in the TLB, the change
takes effect no later than the end of the current
unit of operation.

When a valid and attached table entry is
changed, and when, before the TLB is purged, an
attempt is made to refer to storage using a virtual
address requiring that entry for translation,
unpredictable results may occur, to the following
extent. The use of the new value may begin
between instructions or during the execution of an
instruction, including the instruction that caused
the change. Moreover, until the TLB is purged, the
TLB may contain both the old and the new values,
and it is unpredictable whether the old or new
value is selected for a particular access. If both old
and new values of a segment-table entry are
present in the TLB, a page-table entry may be
fetched using one value and placed in the TLB
associated with the other value. If the new value
of the entry is a value which would cause an
exception, the exception may or may not cause an
interruption to occur. If an interruption does
occur, the result fields of the instruction may be

changed even though the exception would normally

cause suppression or nullification.

When LOAD CONTROL changes the
translation format, segment-table origin, or
segment-table length, the values of these fields at
the start of the operation are in effect for the
duration of the operation.

Entries are deleted from the TLB in accordance
with the following rules:

1. All entries are deleted from the TLB by
PURGE TLB, SET PREFIX, and CPU reset.

2. Selected entries are deleted from the TLB by
the execution of INVALIDATE PAGE TABLE
ENTRY or by receipt of an INVALIDATE
PAGE TABLE ENTRY broadcast from another
CPU.

3. Some or all TLB entries may be purged at times
other than those required by PURGE TLB and
INVALIDATE PAGE TABLE ENTRY.

Programming Notes

1. Entries in the TLB may continue to be used for
translation after the table entries from which
they have been formed have become
unattached or invalid. These TLB entries are
not necessarily removed unless explicitly purged
from the TLB.

A change made to an attached and valid
entry or a change made to a table entry that
causes the entry to become attached and valid
is reflected in the translation process for the
next instruction, or earlier than the next
instruction, unless a TLB entry qualifies for
substitution of that table entry. However, a
change made to a table entry that causes the
entry to become unattached or invalid is not
necessarily reflected in the translation process
until the TLB is purged of entries which qualify
for substitution for that table entry.

2. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of the execution of the
instruction. Consequently, a
segment-translation or page-translation
exception may be indicated when a table entry
is invalid at the start of execution even if the
instruction would have validated the table entry
it uses and the table entry would have appeared
valid if the instruction was considered to
process the operands one byte at a time.

Chapter 3. Storage 3-17

State or Function

Conditions to Be Met

STE is attached (applies
only to STE in storage)

STE in storage is usable
for a particular instance
of implicit translation

STE can be placed in TLB

STE in TLB is usable

STE in TLB is usable for
a particular instance of
implicit translation

PTE is attached (applies
only to PTE in storage)

PTE in storage is usable
for a particular instance
of implicit translation

PTE can be placed in TLB

PTE in TLB is usable

PTE in TLB is usable for

a particular instance of
implicit translation

DAT on
STE in ST defined by CRO and CR1

e STE selectable by a 24-bit

address

STE attached
STE selected by SX

e STE attached
e STE | bit zero

No TS

e DAT on

TF matches
STO matches or C bit one

DAT on

TF matches

STO matches or C bit one
SX matches

PTE in PT defined by usable STE
in the TLB or defined by an STE
that can be placed in the TLB

PTE in PT defined by STE being
used for the translation
PTE selected by PX

PTE attached
PTE | bit zero
No TS

PTE selected by a usable STE in
the TLB or by an STE that can
be placed in the TLB

— PTO matches, and

— PX within PTL, and

— TF matches

PTE selected by STE being used
for the translation

— PTO matches, and

— PX within PTL, and

— TF matches

¢ PX matches
Explanation:
ST Segment table
STE Segment-table entry
STO Segment-table origin
SX Segment index
PT Page table
PTE Page-table entry
PTO Page-table origin
PX Page index
TF Translation format (control register 0, bits 8-12)
TS Translation-specification exception
C bit Common-segment bit in STE
| bit Invalid bit in table entry
PTL Page-table length

Summary of DAT Entries

3-18

System/370 Principles of Operation

A change made ta an attached table entry, ex-
cept to set the I bit to one or zero, may prod-
uce unpredictable results if that entry is used
for translation before the TLB is purged. The
use of the new value may begin between in-
structions or during the execution of an instruc-
tion, including the instruction that caused the
change. When an instruction, such as MOVE
(MVC), makes a change to an attached table
entry, including a change that makes the entry
invalid, and subsequently uses the entry for
translation, a changed entry is being used with-
out a prior purging of the TLB, and the associ-
ated unpredictability of result values and of
exception recognition applies.

Manipulation of attached table entries may
cause spurious table-entry values to be recorded
in a TLB. For example, if changes are made
piecemeal, modification of a valid attached en-
try may cause a partially updated entry to be
recorded, or, if an intermediate value is intro-
duced in the process of the change, a supposed-
ly invalid entry may temporarily appear valid
and may be recorded in the TLB. Such an in-
termediate value may be introduced if the
change is made by an I/O operation that is re-
tried, or if an intermediate value is introduced
during the execution of a single instruction.

As another example, if a segment-table entry
is changed to designate a different page table
and used without purging the TLB, then the
new page-table entries may be fetched and as-
sociated with the old page-table origin. In such
a case, the instruction INVALIDATE PAGE
TABLE ENTRY (IPTE) designating the page-
table origin will not necessarily purge the page-
table entries fetched from the new page table.
To facilitate the manipulation of translation
tables, IPTE is provided, which sets the I bit in
a page-table entry to one and purges all system
TLBs of entries formed from that table entry.

IPTE is useful for setting the I bit to one in a
page-table entry and causing TLB copies of the
entry to be purged from the TLB of each CPU
in the configuration. The following aspects of
the TLB operation should be considered when
using IPTE. (See also the programming notes
following IPTE.)

a. IPTE should be issued before making any
change to a page-table entry other than
changing the low-order bit; otherwise, the
selective purging portion of IPTE may not
purge the TLB copies of the entry.

b. Invalidation of all the page-table entries
within a page table by means of IPTE does

not necessarily purge the TLB of the copies,
if any, of the segment-table entry designat-
ing the page table. When it is desired to
invalidate and purge a segment-table entry,
the rules in note 5 below must be followed.

c. When a large number of page-table entries
are to be invalidated at a single time, the
overhead involved in using PTLB and in
following the rules in note 5 below may be
less than in issuing an IPTE for each page-
table entry.

For cases other than the use of IPTE for invali-

dating a page-table entry, manipulation of table

entries should be in accordance with the fol-
lowing rules. If these rules are observed, trans-
lation is performed as if the table entries from
main storage were always used in the transla-
tion process.

a. An entry must not be changed while it is
being used by a CPU except either to inva-
lidate the entry, using PURGE TLB
(PTLB) or IPTE, or to alter bit 15 of a
page-table entry.

b. When any change is made to a table entry
other than a change to the low-order bit of
a page-table entry, each CPU which may
have a TLB entry formed from that entry
must issue PTLB after the change occurs
and prior to the use of that entry for trans-
lation by that CPU, except that the purge is
unnecessary if the change was made using
IPTE or was made to bit 15 of a page-table
entry.

c. When any change is made to an invalid
entry in such a way as to cause intermedi-
ate valid values to appear in the entry, each
CPU to which the entry is attached must
issue PTLB after the change occurs and pri-
or to the use of the entry for implicit ad-
dress translation by that CPU.

d. When any change is made to a segment-
table or page-table length, each CPU to
which that table has been attached must
issue PTLB after the length has been
changed but before that table becomes atta-
ched again to the CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be purged in a
CPU which does not have any usable TLB cop-
ies for that entry. Similarly, when an invalid
segment-table entry is made valid without in-
troducing intermediate valid values, the TLB
need not be purged in a CPU which does not
have any usable TLB copies for that segment-

Chapter 3. Storage 3-19

table entry and which does not have any usable
TLB copies for the page-table entries attached by
it.

Execution of PTLB may have an adverse effect
on the performance of some models. Use of this
instruction should, therefore, be minimized in con-
formity with the above rules.

Address Summary

Addresses Translated
Most addresses that are explicitly specified by the
program and are used by the CPU to refer to stor-
age for an instruction or an operand are logical
addresses and are subject to translation when DAT
is on. Analogously, the corresponding addresses
indicated to the program on an interruption or as
the result of executing an instruction are logical.

Translation is not applied to quantities that are
formed as storage addresses from the values desig-
nated in the B and D fields of an instruction but
that are not used to address storage. This includes
operand addresses in LOAD ADDRESS, MONI-
TOR CALL, and the shifting and I/O instruction.
This also includes the addresses in control registers
10 and 11 designating the starting and ending loca-
tions for program-event recording (PER).

The addresses explicitly designating storage keys
(operand addresses in SET STORAGE KEY, IN-

3-20 System/370 Principles of Operation

SERT STORAGE KEY, and RESET REFERENCE
BIT) are real addresses. Similarly, the addresses
implicitly used by the CPU or channel for such
sequences as interruptions, updating the interval
timer at location 80, DAT-table references, and
logout, including the machine-check-extended-
logout address in control register 15, are real ad-
dresses.

The addresses used by channels to transfer data,
channel-command words, or indirect-data-address
words are absolute addresses. Similarly, the 1/O-
extended-logout address at location 172 is an abso-
lute address.

The handling of storage addresses associated
with DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in the
section "'Address Types' in this chapter. Prefixing,
when provided, is applied after the address has
been translated by means of the dynamic-address-
translation facility. For a description of prefixing,
see the section "Prefixing" in this chapter.

Handling of Addresses

The handling of addresses is summarized in the
figure '"Handling of Addresses.'" This figure lists
all addresses that are encountered by the program
and specifies the address type.

Virtual Addresses

e Operand address in LOAD REAL ADDRESS

* Address stored in the word at real location 144 on a program
interruption for page-translation or segment-translation ex-
ception

Logical Addresses

Instruction address in PSW

Branch addresses

Target of EXECUTE

Addresses of storage operands for all instructions not

otherwise specified

* Address stored in instruction-address field of old PSW on
interruption

* Address stored at real location 152 on a program interrup-
tion for PER

¢ Address placed in a general register by BRANCH AND LINK

¢ Address placed in general register 1 by TRANSLATE AND TEST
and EDIT AND MARK

* Addresses in general registers updated by MOVE LONG and

COMPARE LOGICAL LONG

Real Addresses

* Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,
and RESET REFERENCE BIT

e Operand addresses in READ DIRECT and WRITE DIRECT when

INVAL IDATE PAGE TABLE ENTRY is installed

Page-table origin in INVALIDATE PAGE TABLE ENTRY

Segment-table origin in control register 1

Page-table origin in segment-table entry

Page-frame real address in page-table entry

MCEL address in control register 15

The translated address generated by LOAD REAL ADDRESS

Address of segment-table entry or page-table entry provided

by LOAD REAL ADDRESS

Permanently Assigned Real Addresses

* Addresses of PSWs, interruption codes, and associated in-
formation used during interruption

* Address used by CPU to update interval timer at real loca-
tion 80

* Address of CAW, CSW, and other locations used during an 1/0
interruption or during execution of an 1/0 instruction, in-
cluding STORE CHANNEL 1D

Handling of Addresses (Part 1 of 2)

Chapter 3. Storage 3-21

Absolute Addresses

* Prefix value

* CCW address in CAW

* Data address in CCW

® Address of the indirect-data-address list in a CCW speci-
fying indirect-data addressing

e CCW address in a CCW specifying transfer in channel

* Data address in indirect-data-address words

* |OEL address at real location 172

®* Failing-storage address stored in the word at real location

248
e CCW address in CSW

Permanently Assigned Absolute Addresses

® Addresses of PSW and first two CCWs used for initial pro-
gram loading
¢ Addresses used for the store-status function

Addresses Not Used to Reference Storage

* PER starting address in control register 10
* PER ending address in control register 11

monitoring event

e The address stored in the word at real location 156 for a

® Address in shift instructions and other instructions speci-
fied not to use the address to reference storage

Handling of Addresses (Part 2 of 2)

Assigned Storage Locations

locations 48-55 during a machine-check
interruption.

Assigned Real-Storage Locations 56-63 Input/Output Old PSW: The current
The figure "Assigned Locations in Real Storage" P.SW is stored as the old P SW at 1093'
shows the format and extent of the assigned loca- tions 56-63 during an 1/0O interruption.
tions in real storage. In a multiprocessing system, 64-71 CSW: The channel-status word
real storage addresses are transformed to absolute (CSW) is stored at locations 64-71 dur-
addresses by means of prefixing. The locations are Ing an 1/0 interruption. Part or 3}1 of
used as follows. Unless specifically noted, the us- it may be stored during the execution of
age applies to both the BC and EC modes. START I/0, START I/O FAST RE-
0-7 Restart New PSW: The new PSW is LEASE, TEST 1/0, CLEAR /0,
fetched from locations 0-7 during a re- HALT 1/0, or HALT DEVICE, in
start interruption. which case condition code 1 is set.
8-15 Restart Old PSW: The current PSW 72-75 CAW: The channel-address word
is stored as the old PSW at locations (CAW) is fetched from locations 72-75
8-15 during a restart interruption. during the execution of START 1/0O
24-31 External Old PSW: The current PSW and START 1/O FAST RELEASE.
is stored as the old PSW at locations 80-83 Interval Timer: Locations 80-83 con-
24-31 during an external interruption. tain tl}e interval timer. The 1nterva1'
32-39 Supervisor-Call Old PSW: The cur- timer is updated whenever the CPU is
rent PSW is stored as the old PSW at in the operating state and the manual
locations 32-39 during a supervisor-call interval-timer control is set to enable.
interruption. 84-87 Address of Trace-Table Header: The
40-47 Program Old PSW: The current PSW address of the control block which de-
is stored as the old PSW at locations fines the trace table used by the .
40-47 during a program interruption. Sys‘tem/. 370 ex:tended facility is provid-
48-55 Machine-Check Old PSW: The cur- ed in this location.
88-95 External New PSW: The new PSW is

rent PSW is stored as the old PSW at

3-22 System/370 Principles of Operation

fetched from locations 88-95 during an

96-103

104-111

112-119

120-127

132-133

134-135

136-139

140-143

144-147

external interruption.

Supervisor-Call New PSW: The new
PSW is fetched from locations 96-103
during a supervisor-call interruption.
Program New PSW: The new PSW is
fetched from locations 104-111 during
a program interruption.

Machine-Check New PSW: The new
PSW is fetched from locations 112-119
during a machine-check interruption.
Input/Output New PSW: The new
PSW is fetched from locations 120-127
during an I/O interruption.

CPU Address: During an external
interruption due to malfunction alert,
emergency signal, or external call, the
CPU address associated with the source
of the interruption is stored at locations
132-133. For all other external-
interruption conditions, zeros are stored
at locations 132-133 when the old PSW
specified the EC mode, and the field
remains unchanged when the old PSW
specified the BC mode.
External-Interruption Code: During an
external interruption in the EC mode,
the interruption code is stored at loca-
tions 134-135.
Supervisor-Call-Interruption
Identification: During a supervisor-call
interruption in the EC mode, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at loca-
tions 138-139. Zeros are stored at lo-
cation 136 and in the remaining bit pos-
itions of 137.

Program-Interruption Identification:
During a program interruption in the
EC mode, the instruction-length code is
stored in bit positions 5 and 6 of loca-
tion 141, and the interruption code is
stored at locations 142-143. Zeros are
stored at location 140 and in the re-
maining bit positions of 141.
Translation-Exception Address:
a program interruption due to a
segment—trapsiation exception or a
page-translation exception, the
translation-exception address is stored
at locations 145-147, and zeros are
stored at location 144. This field can
be stored only when the old program
PSW specifies the EC mode.

During

148-149

150-151

152-155

156-159

161-163

168-171

172-175

176-179

185-187

216-223

Monitor-Class Number: During a pro-
gram interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at 148.

PER Code: During a program inter-
ruption due to a program event, the
program-event-recording (PER) code is
stored in bit positions 0-3 of location
150, and zeros are stored in bit posi-
tions 4-7 and at location 151. This
field can be stored only when the in-
struction causing the PER condition was
executed under the control of a PSW
specifying the EC mode.

PER Address: During a program in-
terruption due to a program event, the
program-event-recording (PER) address
is stored at locations 153-155, and ze-
ros are stored at location 152. This
field can be stored only when the in-
struction causing the PER condition was
executed under the control of a PSW
specifying the EC mode.

Monitor Code: During a program in-
terruption due to a monitor event, the
monitor code is stored at locations 157-
159, and zeros are stored at location
156.

MAPL: This is the location of a con-
trol block used by the extended facility.
Channel ID: The four-byte channel-
identification information is stored at
locations 168-171 during the execution
of STORE CHANNEL ID.

IOEL Address: The 1/0-extended-
logout address is fetched from locations
172-175 during the I/O-extended-
logout operation.

Limited Channel Logout: The limited-
channel-logout information is stored at
locations 176-179. This field may be
stored only when the CSW or a portion
of the CSW is stored.

I1/0 Address: During an 1/0 inter-
ruption in the EC mode, the two-byte
I/0 address is stored at locations 186-
187, and zeros are stored at location
185.

Machine-Check CPU-Timer Save
Area: During a machine-check inter-
ruption, the contents of the CPU timer,
if installed, are stored at locations 216-
223,

Chapter 3. Storage 3-23

224-231

232-239

244-247

248-251

252-255

256-351

352-383

384-447

Machine-Check Clock-Comparator
Save Area: During a machine-check
interruption, the contents of the clock
comparator, if installed, are stored at
location 224-231.
Machine-Check-Interruption Code:
During a machine-check interruption,
the machine-check-interruption code is
stored at locations 232-239.
External-Damage Code: During a
machine-check interruption due to cer-
tain external-damage conditions, de-
pending on the model, an external-
damage code may be stored in these lo-
cations.

Failing-Storage Address: During a
machine-check interruption, a failing-
storage address, if any, is stored at loca-
tions 249-251, and zeros are stored at
location 248.

Region Code: During a machine-
check interruption, model-dependent
information may be stored at locations
252-255.

Fixed-Logout Area: Depending on the
model, logout information may be
placed in this area during a machine-
check interruption. Additionally, the
contents of locations 256-351 may be
changed at any time, subject to the
asynchronous-fixed-logout-control bit in
control register 14.

Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the
floating-point registers are stored at lo-
cations 352-383.

Machine-Check General-Register Save
Area: During a machine-check inter-

3-24 System/370 Principles of Operation

448-511

ruption, the contents of the general reg-
isters are stored at locations 384-447.
Machine-Check Control-Register Save
Area: During a machine-check inter-
ruption, the contents of the control reg-
isters are stored at locations 448-511.

Assigned Absolute Storage Locations

The figure

" Assigned Locations in Absolute Stor-

age'' shows the format and extent of the assigned
locations in absolute storage. The locations are as
follows, and the usage applies to both the BC and

EC modes.
0-7

8-15

16-23

216-511

IPL PSW: The first eight bytes read
during the IPL initial read operation are
stored at locations 0-7. The contents of
these locations are used as the new
PSW at the completion of the IPL oper-
ation. These locations may also be used
for temporary storage at the initiation
of the IPL operation.

IPL CCWI1: Bytes 8-15 read during
the IPL initial read operation are stored
at locations 8-15. The contents of
these locations are ordinarily used as
the next CCW in an IPL. CCW chain
after completion of the IPL initial-read
operation.

IPL CCW2: Bytes 16-23 read during
the IPL initial read operation are stored
at locations 16-23. The contents of
these locations may be used as another
CCW in the IPL. CCW chain to follow
IPL CCW1.

Store-Status Save Area: Information
is stored at locations 216-231, 256-271,
and 352-511 during the execution of
the store-status operation.

10
14
18
1C
20
24
28
2C
30

38
3c
40
44
48
ac
50
54
58
5C
60
64
68
6C
70
74
78
7C
80
84
88
8C
90
94
98
9C
AO
A4
A8
AC
BO
B4
B8

12
16
20
24
28
32
36
40
a4
48
52
56
60
64
68
72
76
80
84
88
92
96

100

104

108

112

116

120

124

128

132

136

140

144

148

152

156

160

164

168

172

176

180

184

Restart New PSW

Restart Old PSW

External Old PSW

Supervisor Call Old PSW

Program Old PSW

Machine-Check Old PSW

Input/Output Old PSW

Channel Status Word

Channel Address Word

Interval Timer

Address of Trace Table Header

External New PSW

Supervisor Call New PSW

Program New PSW

Machine-Check New PSW

Input/Output New PSW

CPU Address External-Interruption Code

000C000000000}ILC|O| Superv -Call-Irptn Code

0000000000000|LC|o|Program-Interruption Code

00000000| Translation-Exception Address

00000000|Monitor CI #|PER € [000000000000

00000000 PER Address

00000000, Monitor Code

MAPL Address

Channel ID

| IOEL Address

Limited Channel Logout

[o0000000] 1/0 Address

Assigned Locations in Real Storage

BC
co
ca
cs
cc
DO
D4
D8
DC
EO
E4
E8
EC
FO
Fa4
F8
FC
100
104
108
10C

154
158
15C
160
164
168
16C
170
174
178
17C
180
184
188
18C

1B4
1B8
1BC
1Co
1C4
1C8
1CcC

1F4
1F8
1FC

Dec
188

192
196
200
204
208
212
216
220
224
228
232
236
240
244
248
252
256
260
264
268

340
344
348
352
356
360
364
368
372
376
380
384
388
392
396

436
440
444
448
452
456
460

500
504
508

Machine-Check CPU-Timer Save Area

Machine-Check Clock-Comparator Save Area

Machine-Check Interruption Code

External-Damage Code

00000000

Failing-Storage Address

Region Code

Q¢

Fixed Logout Area

))
((

Machine-Check Floating-Point Register Save Area

LS

Machine-Check General-Register Save Area

))

L

[

Machine-Check Control-Register Save Area

))
T(

Chapter 3. Storage

3-25

Hex Dec Hex Dec

Store-Status CPU Timer Save Area

Store-Status Clock-Comparator Save Area

Store-Status PSW Save Area

Store-Status Prefix Save Area

Store-Status Model-Dependent Save Area

b)Y
({8

Store-Status Floating-Point Register Save Area

Store-Status General-Register Save Area

h)

148

0 0 Initial Program Loading PSW Cco 192
4 4 C4 196
8 8 Initial Program Loading CCW1 Cc8 200
c 12 CC 204
10 16 Initial Program Loading CCW2 DO 208
14 20 D4 212
18 24 D8 216
1C 28 DC 220
20 32 EO 224
24 36 E4 228
28 40 E8 232
2C 44 EC 236
30 48 FO 240
34 52 F4 244
38 56 F8 248
3C 60 FC 252
40 64 100 256
44 68 104 260
48 72 108 264
4C 76 10C 268
50 80 110 272
54 84 ~
58 88 158 344
5C 92 15C 348
60 96 160 352
64 100 164 356
68 104 168 360
6C 108 16C 364
70 112 170 368
74 116 174 372
78 120 178 376
7C 124 17C 380
80 128 180 384
84 132 184 388
88 136 188 392
8C 140 18C 396
90 144 ~
94 148 1B4 436
98 152 1B8 440
9C 156 1BC 444
A0 160 1C0 448
A4 164 1C4 452
A8 168 1C8 456
AC 172 1CC 460
BO 176 ~
B4 180 1F4 500
B8 184 1F8 504
BC 188 1FC 508

Store-Status Control-Register Save Area

N
W

Assigned Locations in Absolute Storage

3-26 System/370 Principles of Operation

Chapter 4. Control

Contents
Stopped, Operating, Load, and Check-Stop States 4-1 States 4-16
Stopped State 4-2 Changes in Clock State 4-17
Operating State 4-2 Setting and Inspecting the Clock 4-17
Load State 4-2 Time-of-Day-Clock Synchronization 4-18
Check-Stop State 4-2 Clock Comparator 4-19
Program-Status Word 4-3 CPU Timer 4-19
EC and BC Modes 4-3 Interval Timer 4-20
Program-Status-Word Format in EC Mode 4-4 Externally Initiated Functions 4-21
Program-Status-Word Format in BC Mode 4-5 Resets 4-21
Control Registers 4-6 CPU Reset 4-24
Program-Event Recording 4-8 Initial CPU Reset 4-24
Control-Register Allocation 4-8 Subsystem Reset 4-24
Operation 4-8 Program Reset 4-25
Identification of Cause 4-9 Initial Program Reset 4-25
Priority of Indication 4-9 Clear Reset 4-25
Storage-Area Designation 4-10 Power-On Reset 4-25
PER Events 4-10 Initial Program Loading 4-26
Successful Branching 4-10 Store Status 4-27
Instruction Fetching 4-10 Multiprocessing 4-27
ol Storage Alteration 4-11 Shared Main Storage 4-28
General-Register Alteration 4-11 CPU-Address Identification 4-28
Indication of Events Concurrently with Other CPU Signaling and Response 4-28
Interruption Conditions 4-12 Signal-Processor Orders 4-28
Direct Control 4-15 Conditions Determining Response 4-29
Read-Write-Direct Facility 4-15 Conditions Precluding Interpretation of the Order
External-Signal Facility 4-15 Code 4-29
Timing 4-15 Status Bits 4-30
Time-of-Day Clock 4-16 Channel-Set Switching 4-32
Format 4-16
This chapter describes in detail the facilities for (PSW) and control registers, and in the manner
controlling, measuring, and recording the operation specified by the setting of the operator-facility rate
of one or more CPUs. control. The CPU is in the load state during the

initial-program-loading operation. The CPU enters
the check-stop state only as the result of machine

Stopped, Operating, Load, and

malfunctions.

Check-Stop States A change between these four CPU states can be
The stopped, operating, load, and check-stop states effected by use of the operator facilities or by ac-
are four mutually exclusive states of the CPU. ceptance of certain SIGNAL PROCESSOR orders
When the CPU is in the stopped state, instructions addressed to that CPU. The states are not con-
and interruptions, other than the restart interrup- trolled or identified by bits in the PSW. The stop-

_ tion, are not executed. In the operating state, the ped, load, and check-stop states are indicated to

‘ CPU executes instructions and takes interruptions, the operator by means of the manual indicator, load

subject to the control of the program-status word indicator, and check-stop indicator respectively.

Chapter 4. Control 4-1

These three indicators are off when the CPU is in
the operating state.

The CPU timer is updated when the CPU is in
the operating state or the load state. The time-of-
day clock is updated whenever power is on. The
interval timer is updated only when the CPU is in
the operating state.

Stopped State

The state of the CPU is changed from operating to

stopped by the stop function. The stop function is

performed when:

« The stop key is activated while the CPU is in the
operating state.

« The CPU accepts a stop or stop-and-store-status
order specified by a SIGNAL PROCESSOR in-
struction addressed to this CPU while it is in the
operating state.

¢ The CPU has finished the execution of a unit of
operation initiated by performing the start func-
tion with the rate control set to instruction step.

When the stop function is performed, the trans-
ition from the operating to the stopped state occurs
at the end of the current unit of operation. When
the wait-state bit of the PSW is one, the transition
takes place immediately, provided no interruptions
are pending for which the CPU is enabled. In the
case of interruptible instructions, the amount of
data processed in a unit of operation depends on
the particular instruction and may depend on the
model.

Before entering the stopped state, all pending
allowed interruptions are taken while the CPU is
still in the operating state. They cause the old
PSW to be stored and the new PSW to be fetched
before the stopped state is entered. When the CPU
is in the stopped state, interruption conditions re-
main pending.

The CPU is also placed in the stopped state:

« When a reset is completed, except when the reset
operation is performed as part of initial program
loading, and

« When an address comparison indicates equality
and stopping on the match is specified

The execution of resets is described in the sec-
tion "Resets" in this chapter, and address compari-
son is described in the section "Address-Compare
Controls" in Chapter 13, ""Operator Facilities."

If the CPU is in the stopped state when an IN-
VALIDATE PAGE TABLE ENTRY instruction is
executed on another CPU in the configuration, the
invalidation may be performed immediately or may
be delayed until the time at which the CPU leaves
the stopped state.

4-2 System/370 Principles of Operation

Operating State

The state of the CPU is changed from stopped to
operating when the start function is performed or
when a restart interruption occurs. However, the
effect of performing the start function is unpredict-
able when the stopped state was entered by means
of a reset.

The start function is performed on the CPU in
the stopped state when the start key associated
with that CPU is activated or when that CPU ac-
cepts the start order specified by a SIGNAL
PROCESSOR instruction addressed to that CPU.

When the wait-state bit is one and the rate con-
trol is set to instruction step, the start function
causes no instruction to be executed, but all pend-
ing allowed interruptions are taken before the CPU
returns to the stopped state.

Load State

The CPU enters the load state when the load-
normal or load-clear key is activated (see the sec-
tion "Initial Program Loading" in this chapter).
When the initial-program-loading operation is com-
pleted successfully, the CPU state changes from
load to operating, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU state changes from load to stopped.

Check-Stop State

The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in Chapter 11, "Machine-Check Handling."

Programming Notes

1. Except for the relationship between execution
time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an in-
struction, the stop function is ineffective, and a
reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW-format error of the type that is recog-
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Input/output operations continue to completion
after the CPU enters the stopped state. The
interruption conditions due to completion of
1/0 operations remain pending when the CPU
is in the stopped state.

Program-Status Word

The current program-status word (PSW) contains
information required for the execution of the cur-
rently active program. The PSW is 64 bits in
length and includes the instruction address, condi-
tion code, and other control fields. In general, the
PSW is used to control instruction sequencing and
to hold and indicate much of the status of the CPU
in relation to the program currently being executed.
Additional control and status information is con-
tained in control registers and permanently as-
signed storage locations.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to preserve
the status of the CPU, and then loading a new
PSW.

The status of the CPU can be changed by load-
ing a new PSW or part of a PSW.

The instruction LOAD PSW introduces a new
PSW. The instruction address is updated by se-
quential instruction execution and replaced by suc-
cessful branches. Other instructions are provided
which operate on a portion of the PSW. The figure
"Operations on System Mask, PSW Key, and Pro-
gram Mask" summarizes these instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the interrup-
tion or the execution of an instruction that changes
the PSW is completed. The interruption for
program-event recording associated with an instruc-
tion that changes the PSW occurs under control of
the PER mask that is effective at the beginning of
the operation.

Bits 0-7 of the PSW are collectively referred to
as the system mask.

Condition

System Mask| PSW Key Code and

(PSW bits | (PSW bits Program
0-7) 8-11) Mask*

Instruction Saved| Set |Saved| Set |Saved| Set

BRANCH AND LINK No No No No Yes No
INSERT PSW KEY No No Yes No No No

SET PROGRAM MASK No No No No No Yes
SET PSW KEY FROM ADDRESS No No No Yes No No
SET SYSTEM MASK No Yes No No No No
STORE THEN AND SYSTEM MASK| Yes ANDs | No No No No
STORE THEN OR SYSTEM MASK | Yes | ORs | No No No No

Explanation:
* PSW bits 18-23 in EC mode; PSW bits 34-40 in BC mode.
ANDs The logical AND of the immediate field in the instruc-

tion and the current system mask replaces the current
system mask.

ORs The logical OR of the immediate field in the instruc-
tion and the current system mask replaces the current
system mask.

Operations on System Mask, PSW Key, and Program Mask

EC and BC Modes

Two control modes are provided for the formatting
and use of control and status information: the
extended-control (EC) mode and the basic-control
(BC) mode. Certain functions available in the EC
mode are not available, or are available in a re-
stricted form, in the BC mode. The mode currently
in effect is specified by PSW bit 12. Bit 12 is one
for the EC mode and zero for the BC mode.

Program-event recording can be specified only in
the EC mode, because the PSW bit to turn this
function on is not available in the BC mode.

In the EC mode, I/0 interruptions can be con-
trolled individually for up to 32 channels using the
correspondingly numbered 32 mask bits in control
register 2; there is also a summary-mask bit for I/O
interruptions, bit 6 of the PSW. The BC mode
operates in this manner only for channels 6 and up:
these channels are individually controlled by the
corresponding bits of control register 2, as well as
the summary-mask bit, bit 6 of the PSW; channels
0-5 are controlled separately by bits 0-5 of the
PSW and are not subject to the summary mask or
to mask bits in control register 2.

When interruptions occur while in the EC mode,
the interruption code and instruction-length code
are stored at various permanently assigned storage
locations according to the class of interruptions. In
the BC mode, the interruption code and
instruction-length code for all except machine-
check interruptions are placed in the PSW.

The program-mask and condition-code fields in
the PSW are allocated to different bit positions in
the two control modes. The instruction INSERT
STORAGE KEY provides the reference and change
bits when in the EC mode but produces zeros in
the corresponding bit positions when in the BC
mode.

Programming Notes

1. The BC mode provides a PSW format that is
compatible with the PSW of System/360.

2. The choice between EC and BC modes affects
only those aspects of operation that are specifi-
cally defined to be different for the two modes.
It does not affect the operation of any func-
tions that are not associated with the control
bits in the PSW provided only in the EC mode,
and it does not affect the validity of any in-
structions. The instructions SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK per-
form the specified function on the leftmost byte
of the PSW regardless of the mode specified by

Chapter 4. Control 4-3

the current PSW. On the other hand, the in-
struction SET PROGRAM MASK introduces a
new program mask regardless of the PSW bit
positions occupied by the mask.

Program-Status-Word Format in EC Mode
The following is a summary of the functions of the
PSW fields in the EC mode. (See the figure ''"PSW
Format in EC Mode.")

PER Mask (R): Bit 1 controls whether the CPU
is enabled for interruptions associated with
program-event recording (PER). When the bit is
zero, no PER event can cause an interruption.
When the bit is one, interruptions are permitted
subject to the PER-event-mask bits in control regis-
ter 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of storage addresses by
the use of segment and page tables takes place.
When the bit is zero, DAT is off, and storage ad-
dresses are not translated. When the bit is one,
DAT is on, and the dynamic-address-translation
mechanism is invoked.

I/0 Mask (I0): Bit 6 controls whether the CPU
is enabled for I/O interruptions. When the bit is
zero, an I/O interruption cannot occur. When the
bit is one, I/O interruptions are subject to the
channel-mask bits in control register 2; when a
channel-mask bit is zero, the associated channel
cannot cause an I/O interruption; when the
channel-mask bit is one, an interruption condition
at the channel can cause an interruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions in-
cluded in the external class. When the bit is zero,
an external interruption cannot occur. When the
bit is one, an external interruption is subject to the
corresponding external subclass-mask bits in con-
trol register 0; when the subclass-mask bit is zero,
conditions associated with the subclass cannot
cause an interruption; when the subclass-mask bit
is one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. This PSW key is
matched with a storage key whenever information
is stored, or whenever information is fetched from
a location that is protected against fetching.

4-4 System/370 Principles of Operation

EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
is one when the CPU is in the extended-control
(EC) mode.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing damage
are permitted, but interruptions due to other
machine-check-subclass conditions are subject to
the subclass-mask bits in control register 14.

E Prog
0|R/0 0 O|T|O|X| Key [E/MW/P|OOCC| Mask 00000000

(; 5 8 12 16 18 20 24 31

00000000 Instruction Address

32 40 63

PSW Format in EC Mode

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that cannot
be used to affect the system integrity. The instruc-
tions that are not valid in the problem state are
called privileged instructions. When a CPU in the
problem state attempts to execute a privileged in-
struction, a privileged-operation exception is recog-
nized, and a program interruption takes place.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is
set to a value of 0, 1, 2, or 3, depending on the
result obtained in executing certain instructions.
Most arithmetic and logical operations, as well as
some other operations, set the condition code. The
instruction BRANCH ON CONDITION can speci-
fy any selection of the condition-code values as a
criterion for branching. A table in Appendix C
summarizes the condition-code values that may be

J

set for all instructions which set the condition code
of the PSW.

Program Mask: Bits 20-23 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program

Mask Bit Program Exception
20 Fixed-point overflow
21 Decimal overflow
22 Exponent underf low
23 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent-
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the instruc-
tion address. This address designates the location
of the leftmost byte of the next instruction.

Bit positions 0, 2-4, 16, 17, and 24-39 are unas-
signed and must contain zeros. A specification
exception is recognized when these bit positions do
not contain zeros.

Program-Status-Word Format in BC Mode
The following is a summary of the functions of the
PSW fields in the BC mode. (See the figure '"PSW
Format in BC Mode.")

Channel Masks 0-5: Bits 0-5 control whether the
CPU is enabled for I/0 interruptions from chan-
nels 0-5, respectively. When a bit is zero, the asso-
ciated channel cannot cause an I/O interruption.
When the bit is one, an interruption condition at
the channel can cause an I/O interruption.

I/0 Mask (I0): Bit 6 controls whether the CPU
is enabled for I/O interruptions from channels 6
and higher. When the bit is zero, these channels
cannot cause I/0 interruptions. When the bit is
one, I/0 interruptions are subject to the channel-
mask bits of the corresponding channels in control
register 2: when a channel-mask bit is zero, the
associated channel cannot cause an I/O interrup-
tion; when the channel-mask bit is one, an inter-
ruption condition at the channel can cause an inter-
ruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions in-
cluded in the external class. When the bit is zero,
an external interruption cannot occur. The mean-
ing is the same as in the EC mode.

Chan Masks [I[E
0-5 O(X| Key |E|M|W[P Interruption Code
0 6 8 12 16 31
Prog
ILcjcc Mask Instruction Address
32 34 36 40 63

PSW Format in BC Mode

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. The meaning is the
same as in the EC mode.

EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
is zero when the CPU is in the basic-control (BC)
mode.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. The meaning is the
same as in the EC mode.

Wait State (W): When bit 14 is one, the CPU is
waiting. The meaning is the same as in the EC
mode.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. The meaning is the
same as in the EC mode.

Interruption Code: Bits 16-31 in the old PSW,
which is stored during a program, supervisor-call,
external, or I/0O interruption, identify the cause of
the interruption. This field is not used or checked
in the current PSW. When a new PSW is intro-
duced, the contents of this field are ignored.

Instruction-Length Code (ILC): The code in bit
positions 32 and 33 of the old PSW indicates the
length of the last-interpreted instruction when a
program or supervisor-call interruption occurs. See
the section "'Instruction-Length Code" in Chapter
6, "Interruptions." When a new PSW is introduced,
the contents of this field are ignored.

Chapter 4. Control 4-5

Condition Code (CC): Bits 34 and 35 are the two
bits of the condition code. The meaning is the
same as in the EC mode.

Program Mask: Bits 36-39 are the four program-
mask bits. Each bit is associated with a program
exception, as follows:

Program

Mask Bit Program Exception
36 Fixed-point overflow
37 Decimal overflow
38 Exponent underflow
39 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent-
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the instruc-
tion address. This address designates the location
of the leftmost byte of the next instruction.

Control Registers

The control registers provide a means for maintain-
ing and manipulating control information that re-
sides outside the PSW. There may be up to sixteen
32-bit control registers.

One or more specific bit positions in control reg-
isters are assigned to each facility requiring such
register space. When the facility is installed, the
bits perform the defined control function.

The LOAD CONTROL instruction loads control
information from storage into control registers,
whereas the STORE CONTROL instruction trans-

4-6 System/370 Principles of Operation

fers information from control registers to storage.

The instruction LOAD CONTROL causes all
register positions, within those registers designated
by the instruction, to be loaded. Information load-
ed into the control registers becomes active (that is,
assumes control over the system) at the completion
of the instruction causing the information to be
loaded.

At the time the registers are loaded, the informa-
tion is not checked for exceptions, such as invalid
translation-format code or an address designating
an unavailable or a protected location. The validity
of the information is checked and the exceptions, if
any, are indicated at the time the information is
used.

When STORE CONTROL is executed, it returns
the current value in each register position. Values
corresponding to unassigned or uninstalled register
positions are unpredictable.

Only the general structure of control registers is
described here; a definition of the register positions
appears with the description of the facility with
which the register position is associated. The figure
" Assignment of Control-Register Fields'" shows the
control-register positions which are assigned and
the initial value of the field upon execution of re-
set.

Programming Note

To ensure that existing programs run if and when
new facilities using additional control-register posi-
tions are installed, the program should load zeros in
unassigned control-register positions. Although
STORE CONTROL may provide zeros in the bit
positions corresponding to unassigned register posi-
tions, the program should not depend on such ze-
ros. It is permissible, however, for the program to
load into the control registers, by LOAD CON-
TROL, any information previously stored by means
of STORE CONTROL.

Ctrl

b
o
(e}

Name of Field

Associated With

Initial
Value

[ejooNolofolooolofola}eNo)
oo

Block-multiplexing control
SSM-suppression control
TOD-clock-sync control
Low-address-protection control
Translation format
Malfunction-alert mask
Emergency-signal mask
External-call mask
TOD-clock-sync-check mask
Clock-comparator mask
CPU-timer mask
Interval-timer mask
Interrupt-key mask
External-signal mask

Block-multiplexing channels
SET SYSTEM MASK
Multiprocessing

Low-address protection
Dynamic address translation
Multiprocessing
Multiprocessing
Multiprocessing
Multiprocessing

Clock comparator

CPU timer

Interval timer

Interrupt key

External signal

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1 | 0-7 |Segment-table length Dynamic address translation 0
1 | 8-25|Segment-table origin Dynamic address translation 0
2 | 0-31|Channel masks Channels 1
8 [16-31(Monitor Masks MONITOR CALL 0
9 0 |[Successful-branching-event mask|Program-event recording 0
9 1 Instruction-fetching-event mask|Program-event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR—?Iteration—event mask Program-event recording 0
9 [16-31|PER' general-register masks Program-event recording 0
10 | 8-31|PER starting address Program-event recording 0
1 8-31|PER ending address Program-event recording 0
14 0 |Check-stop control Machine-check handling 1
14 1 Synchronous-MCEL control Machine-check handling 1
14 2 | /0-extended-logout control 1/0 extended logout 0
14 4 Recovery-report mask Machine-check handling 0
14 5 |Degradation-report mask Machine-check handling 0
14 6 |External-damage-report mask Machine-check handling 1
14 7 |Warning mask Machine-check handling 0
14 8 |[Asynchronous-MCEL control Machine-check handling 0
14 9 |Asynchronous-fixed-log control |Machine-check handling 0
15 8-28|MCEL address Machine-check handling 5122

Explanation:

The fields not listed are unassigned.
PER means program-event recording.
2 Bit 22 is set to one, with all other bits set to zeros, thus yielding a
decimal byte address of 512.

Assignment of Control-Register Fields

Chapter 4. Control

47

Program-Event Recording

The purpose of the program-event-recording (PER)

facility is to assist in debugging programs. It per-

mits the program to be alerted to the following

types of PER events:

o Execution of a successful branch instruction.

« Fetching of an instruction from the designated
storage area.

o Alteration of the contents of the designated stor-
age area.

« Alteration of the contents of designated general
registers.

The program can selectively specify one or more
of the above types of events to be monitored. The
information concerning a PER event is provided to
the program by means of a program interruption,
with the cause of the interruption being identified
in the interruption code. Program-event recording
is only available in the EC mode.

Control-Register Allocation

The information for controlling program-event re-
cording resides in control registers 9, 10, and 11
and consists of the following fields:

Control Register 9:

EM Gen-Reg Masks

0 4 16 31

Control Register 10:

Starting Address

Control Register 11:

Ending Address

0 8 31

PER-Event Masks (EM): Bits 0-3 of control reg-
ister 9 specify which types of events are monitored.
The bits are assigned as follows:

Bit 0: Successful-branching event

Bit 1: Instruction-fetching event

Bit 2: Storage-alteration event

Bit 3: General-register-alteration event

4-8 System/370 Principles of Operation

Bits 0-3, when ones, specify that the correspond-
ing types of events are monitored. When a bit is
zero, the corresponding type of event is not moni-
tored.

PER General-Register Masks: Bits 16-31 of con-
trol register 9 specify which general registers are
monitored for replacement of their contents. The
16 bits, in the order of ascending bit numbers, cor-
respond one for one with the 16 registers, in the
order of ascending register numbers. When a bit is
one, the associated register is monitored for re-
placement; if zero, the register is not monitored.

PER Starting Address: Bits 8-31 of control regis-
ter 10 are the address of the beginning of the mon-
itored storage area.

PER Ending Address: Bits 8-31 of control regis-
ter 11 are the address of the end of the monitored
storage area.

Programming Note

Models may operate at reduced performance while
the CPU is enabled for PER events. To ensure
that CPU performance is not degraded because of
the operation of the program-event-recording facili-
ty, programs that do not use it should disable the
facility by setting the PER mask in the EC-mode
PSW to zero. No degradation due to program-
event recording occurs in the BC mode or when the
PER mask in the EC-mode PSW is zero. Disabling
of program-event recording in the EC mode by
means of the masks in control register 9 does not
necessarily prevent performance degradation due to
the facility.

Operation

Program-event recording (PER) is under control of
bit 1 of the EC-mode PSW, the PER mask. When
the mask is zero, no PER event can cause an inter-
ruption. When the mask is one, a monitored event,
as specified by the contents of control registers 9,
10, and 11, causes a program interruption. In BC
mode, program-event recording is disabled.

An interruption due to a PER event is taken
after the execution of the instruction responsible
for the event. The occurrence of the event does
not affect the execution of the instruction, which
may be either completed, terminated, suppressed, or
nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the mask in
the PSW or by the masks in control register 9, the
event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and 11
affects program-event recording starting with the
execution of the immediately following instruction.
If the CPU is enabled for some PER event but an
instruction causes the CPU to be disabled for that
particular event, the event causes a PER condition
to be recognized if it occurs during the execution of
the instruction.

When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
changes CPU operation from the EC mode to the
BC mode, the PER interruption is taken with the
old PSW specifying the BC mode and with the in-
terruption code stored in the old PSW. The addi-
tional information identifying the PER condition is
stored in its regular format at locations 150-155.

Program-event recording applies to emulation
instructions in the following way. Emulation in-
structions indicate all events that have occurred
and may additionally indicate events that did not
occur and were not called for in the instruction,
provided monitoring was enabled for the type of
event by the PER mask in the PSW and the PER-
event masks, bits 0-3 in control register 9. In such
cases, the contents of the remaining positions in
control registers 9, 10, and 11 may be ignored.
Thus, for example, an emulation instruction may
cause general-register alteration to be indicated
even though no general registers are altered and
even though bits 16-31 of control register 9 are all
Zeros.

Identification of Cause

A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in storage locations 150-155. The
format of the information stored at locations 150-
155 is as follows:

Locations 150-151:

PC 000000000000

0 4 15

Locations 152-155:

00000000 PER Address

0 8 31

The event causing a PER interruption is identi-
fied by a one in bit positions 0-3 of location 150,

the PER code (PC), with the rest of the bits in the

code set to zeros. The bit position in the PER code
for a particular event is the same as the bit position
for that event in the PER event-mask field in con-

trol register 9.

The PER address at locations 153-155 is the
address of the instruction causing the event. When
the instruction is executed by means of EXECUTE,
the address of the location containing the EXECU-
TE instruction is placed in the PER-address field.
In either case, the address of the instruction to be
executed next is placed in the PSW. Zeros are
stored in bit positions 4-7 of location 150 and at
locations 151 and 152.

Priority of Indication

When a PER interruption occurs and more than

one designated PER event has been recognized, all

recognized PER events are concurrently indicated
in the PER code. Additionally, if another program
interruption condition concurrently exists, the in-
terruption code for a program interruption indicates
both the PER condition and the other condition.

Except as listed below, a PER event does not
cause premature interruption of the interruptible
instruction, and the PER condition is held pending
until the completion of the instruction.

« When the execution of an interruptible instruc-
tion is due to be interrupted by an I/0, external,
or repressible machine-check condition, an inter-
ruption for a pending PER condition occurs first,
and the I/0O, external, or machine-check inter-
ruption is subsequently subject to the control of
mask bits in the new PSW.

« Similarly, when the CPU is placed in the stopped
state during the execution of an interruptible
instruction, an interruption for a pending PER
condition occurs before the stopped state is en-
tered.

« When any program exception is encountered, the
pending PER condition is indicated concurrently.

« Depending on the model, in certain situations, a
PER condition may cause the execution of an
interruptible instruction to be interrupted with-
out an associated asynchronous condition or pro-
gram exception.

In the case of an instruction-fetching event for

SUPERVISOR CALL, the PER interruption occurs
immediately after the supervisor-call interruption.

Programming Notes

1. In the following cases an instruction can both
cause a program interruption for a PER event
and change the value of masks controlling an

Chapter 4. Control 4-9

interruption for PER events. The original mask

values determine whether a program interrup-

tion takes place for the PER event.

a. The instructions LOAD PSW, SET SYS-
TEM MASK, STORE THEN AND SYS-
TEM MASK, and SUPERVISOR CALL
can cause an instruction-fetching event and
disable the CPU for PER interruptions. Ad-
ditionally, STORE THEN AND SYSTEM
MASK can cause a storage-alteration event
to be indicated. In all these cases, the pro-
gram old PSW associated with the program
interruption for the PER event may indicate
that the CPU was disabled for that type of
PER event.

b. An instruction-fetching event may be rec-
ognized during execution of a LOAD CON-
TROL instruction which also changed the
value of the PER-event masks in control
register 9 or the addresses in control regis-
ters 10 and 11 controlling indication of
instruction-fetching events.

2. No instructions can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be recogniz-
ed.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER inter-
ruption occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates the
length of these instructions or EXECUTE, as
appropriate, unless a concurrent specification
exception on LOAD PSW calls for an ILC of 0.

4. When a PER interruption is caused by branch-
ing, the PER address identifies the branch in-
struction (or EXECUTE, as appropriate),
whereas the old PSW points to the next instruc-
tion to be executed. When the interruption
occurs during the execution of an interruptible
instruction, the PER address and the instruction
address in the old PSW are the same.

Storage-Area Designation

Two of the PER events—instruction fetching and
storage alteration—involve the designation of an
area in storage. The storage area monitored for the
references starts at the location designated by the
starting address in control register 10 and extends
up to and including the location designated by the
ending address in control register 11. The area
extends to the right of the starting address.

4-10 System/370 Principles of Operation

When DAT is on, the storage area is designated
by logical addresses; when DAT is off, control reg-
isters 10 and 11 contain real addresses.

The set of addresses monitored for instruction-
fetching and storage-alteration events wraps around
at address 16,777,215; that is, address O is consid-
ered to follow address 16,777,215. When the
starting address is less than the ending address, the
area is contiguous. When the starting address is
greater than the ending address, the set of locations
monitored includes the area from the starting ad-
dress to address 16,777,215 and the area from ad-
dress O to, and including, the ending address.
When the starting address is equal to the ending
address, only the location designated by that ad-
dress is monitored.

The monitoring of storage alteration and instruc-
tion fetching is performed by comparing all 24 bits
of the monitored address with the starting and end-
ing addresses.

PER Events

Successful Branching

Execution of a successful branch operation causes a
program-event interruption if bit O of the PER-
event-mask field is one and the PER mask in the
PSW is one.

BRANCH ON CONDITION

BRANCH AND LINK

BRANCH ON COUNT

BRANCH ON INDEX HIGH

BRANCH ON INDEX LOW OR EQUAL

The branch event is also indicated by an emula-
tion instruction when the emulation instruction
itself causes a branch. That is, the branch event is
indicated when the location of the next instruction
executed by the CPU after leaving emulation mode
does not immediately follow the location of the
emulation instruction.

The event is indicated by setting bit 0 of the
PER code to one.

Instruction Fetching

Fetching the first byte of an instruction from the
storage area designated by the contents of control
registers 10 and 11 causes a program-event inter-
ruption if bit 1 of the PER-event-mask field is one
and the PER mask in the PSW is one.

A PER event for instruction fetching is recogniz-
ed whenever the CPU executes an instruction
whose initial byte is located within the monitored
area. When the instruction is executed by means
of EXECUTE, a PER event is recognized when the

>

<

first byte of the EXECUTE instruction or the
target instruction or both is located in the
monitored area.

The event is indicated by setting bit 1 of the
PER code to one.

Storage Alteration

Storing of data by the CPU in the storage area
designated by the contents of control registers 10
and 11 causes a program-event interruption if bit 2
of the PER-event-mask field is one and the PER
mask in the PSW is one.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the monitored area of storage.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions. (See the section
"Recognition of Access Exceptions'' in Chapter 6,
"Interruptions.") Storing constitutes alteration for
program-event-recording purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the
CPU in the process of interval-timer updating,
interruptions, and execution of I/0 instructions,
including the interval-timer, PSW, and CSW
locations, are not monitored. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly,
monitoring does not apply to storing of data by a
channel.

Storage alteration does not apply to instructions
whose operands are specified to be real addresses.
Thus, storage alteration does not apply to SET
STORAGE KEY, RESET REFERENCE BIT, and
INVALIDATE PAGE TABLE ENTRY. When
INVALIDATE PAGE TABLE ENTRY is installed,
the operand address of READ DIRECT is a real
address and storage alteration does not apply.
When INVALIDATE PAGE TABLE ENTRY is
not installed, the operand address of READ
DIRECT is a logical address, and storage alteration
does apply.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the second-operand location only when
storing actually occurs.

The instruction STORE CHARACTERS
UNDER MASK is not considered to alter the
storage location when the mask is zero.

The event is indicated by setting bit 2 of the
PER code to one.

General-Register Alteration

Alteration of the contents of a general register
causes a program-event interruption if bit 3 of the
PER-event-mask field is one, the alteration mask
corresponding to that general register is one, and
the PER mask in the PSW is one.

The contents of a general register are considered
to have been altered whenever a new value is
placed in the register. Recognition of the event is
not contingent on the new value being different
from the previous one. The execution of an
RR-format arithmetic or movement instruction is
considered to fetch the contents of the register,
perform the indicated operation, if any, and then
replace the value in the register. The register can
be designated implicitly, such as in TRANSLATE
AND TEST and EDIT AND MARK, or explicitly
by an RR, RX, or RS instruction, including
BRANCH AND LINK, BRANCH ON COUNT,
BRANCH ON INDEX HIGH, and BRANCH ON
INDEX LOW OR EQUAL.

The instructions EDIT AND MARK and
TRANSLATE AND TEST are considered to have
altered the contents of general register 1 only when
these instructions have caused information to be
placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter
the contents of the four registers specifying the two
operands, including the cases where the padding
byte is used, when both operands have zero length,
or when condition code 3 is set for MOVE LONG.

The instruction INSERT CHARACTERS
UNDER MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or general-register pair,
designated by R, only when the contents are
actually replaced, that is, when the first and second
operands are not equal.

The event is indicated by setting bit 3 of the
PER code to one.

Programming Note

The following are some examples of

general-register alteration:

1. Register-to-register load instructions are
considered to alter the register contents even
when both operand addresses designate the
same register.

2. Addition or subtraction of zero and
multiplication or division by one are considered
to constitute alteration.

Chapter 4. Control 4-11

Logical and fixed-point shift operations are
considered to alter the register contents even
for shift amounts of zero.

The branching instructions BRANCH ON IN-
DEX HIGH and BRANCH ON INDEX LOW
OR EQUAL are considered to alter the first
operand even when zero is added to its value.

Indication of Events Concurrently with
Other Interruption Conditions

The following rules govern the indication of PER
events caused by an instruction that has also caused
a program exception or the monitor event to be
indicated, or that causes a supervisor-call interrup-
tion.

1.

The indication of an instruction-fetching event
does not depend on whether the execution of
the instruction was completed, terminated, sup-
pressed, or nullified. The event, however, is
not indicated when an access exception prohib-
its access to the first byte of the instruction.
When the first halfword of the instruction is
accessible but an access exception applies to the
second or third halfword of the instruction, it is
unpredictable whether the instruction-fetching
event is indicated.

When the operation is completed, the event is
indicated regardless of whether any program
exception or the monitoring event is recogniz-
ed.

4-12 System/370 Principles of Operation

Successful branching, storage alteration, and
general-register alteration are not indicated for
an operation or, in case the instruction is inter-
ruptible, for a unit of operation that is sup-
pressed or nullified.

When the execution of the instruction is termi-
nated, general-register or storage alteration is
indicated whenever the event has occurred, and
a model may indicate the event if the event
would have occurred had the execution of the
instruction been completed, even if altering the
contents of the result field is contingent on
operand values.

When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of PSW-
format error that is recognized immediately
after the PSW becomes active, the interruption
code identifies both the PER condition and the
specification exception. When these instruc-
tions introduce a PSW-format error of the type
that is recognized as part of the execution of
the following instruction, the PSW is stored as
the old PSW without the specification exception
being recognized.

The indication of PER events concurrently with
other program interruption conditions is summa-
rized in the figure "Indication of PER Events."

Exception

Event

Branch

Storage
Alter-
ation

GR
Alter-
ation

Operation
Privileged operation
Execute
Protection
Instruction
Operand
Addressing
DAT entry for instruction
address
Instruction
DAT entry for operand ad-
dress
- Operand
Specification
0dd instruction address
Invalid PSW format
Other
Data
Invalid sign
Other
Fixed-point overflow
Fixed-point divide
Division
Conversion
Decimal overflow
Decimal divide
Exponent overflow
Exponent underflow
Significance
Floating-point divide
Segment translation
Instruction-address trans-
lation
Operand-address translation
Page translation
Instruction-address trans-
lation
Operand-address translation
Translation specification
Instruction-address trans-
lation
Operand-address translation
Special operation
Monitor event

Sor T

oOounwnm w =z =z =z =z wooOooOooOoumoOoOowm oOo—-w wowm

>

KO DK D XX XX X X > XX X > |

> XX X

> 1

>xXXx 1
+

o >

Indication of PER Events (Part 1 of 2)

Chapter 4. Control

4-13

Explanation:

C The operation or, in the case of the interruptible
instructions, the unit of operation is completed.

N The operation or, in the case of the interruptible
instructions, the wunit of operation is nullified. The
instruction address in the old PSW has not been updated.

S The operation or, in the case of the interruptible
instructions, the unit of operation is suppressed.

T The execution of the instruction is terminated.

X The event is indicated with the exception if the event
has occurred; that is, the contents of the monitored
storage location or general register were altered, or an
attempt was made to execute an instruction whose first
byte is located in the monitored area.

+ A model is permitted, but not required, to indicate the
event if the event would have occurred had the operation
been completed but did not take place because the execu-
tion of the instruction was terminated.

- The event is not indicated.

When an access exception applies to the second or third
halfword of the instruction but the first halfword is
accessible, it is unpredictable whether the instruction-
fetching event is indicated.

2 This condition may occur in the case of the interrupt-
ible instructions when the event is recognized 1in the
unit of operation that is completed and the exception
causes the next unit of operation to be suppressed or
nullified.

3 This condition may occur in the case of the interrupt-
ible instructions when the event is recognized in the
unit of operation that is completed and when the excep-
tion causes the next unit of operation to be suppressed
or nullified.

Indication of PER Events (Part 2 of 2)

4-14 System/370 Principles of Operation

C

Programming Notes

1. The execution of the interruptible instructions
MOVE LONG (MVCL) and COMPARE
LOGICAL LONG (CLCL) can cause events
for general-register alteration and instruction
fetching. Additionally, MVCL can cause the
storage-alteration event.

Since the execution of MVCL and CLCL
can be interrupted, a program event may be
indicated more than once. It may be necessary,
therefore, for a program to remove the
redundant event indications from the PER data.
The following rules govern the indication of the
applicable events during execution of these two
instructions:

a. The instruction-fetching event is indicated
whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption.

b. The general-register-alteration event is
indicated on the initial execution and on
each resumption and does not depend on
whether or not the register actually is
changed.

c. The storage-alteration event is indicated
only when data has been stored in the
monitored area by the portion of the
operation starting with the last initiation
and ending with the last byte transferred
before the interruption. No special
indication is provided on premature
interruptions as to whether the event will
occur again upon the resumption of the
operation. When the storage area
designates a single byte location, a
storage-alteration event can be recognized
only once in the execution of MOVE
LONG.

2. The following is an outline of the general
action a program must take to delete the
redundant entries in the PER data for MOVE
LONG and COMPARE LOGICAL LONG so
that only one entry for each complete execution
of the instruction is obtained:

a. Check to see if the PER address is equal to
the instruction address in the old PSW and
if the last instruction executed was MVCL
or CLCL.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if some
part of the remaining destination operand is
within the monitored area.

Direct Control

The direct-control feature provides (1) a
read-write-direct facility, consisting of the two
instructions READ DIRECT and WRITE DIRECT
and an associated 27-line interface, and (2) an
external-signal facility with six signal-in lines.
These facilities operate independent of the facilities
that perform 1/O operations.

Read-Write-Direct Facility

The READ DIRECT and WRITE DIRECT
instructions use the 27-line interface to provide
timing signals and to transfer a single byte of
information, normally for controlling and
synchronizing purposes, between CPUs or between
a CPU and an external device. The 27 lines are:

Number
Name of Lines Direction
Write out 1 Output
Read out 1 Output
Hold 1 Input
Signal out 8 Qutput
Direct out 8 Qutput
Direct in 8 Input

External-Signal Facility

The external-signal facility consists of six signal-in
lines and an external-signal mask, which is bit 26
of control register 0. Each of the six signal-in
lines, when pulsed, sets up the condition for one of
six distinct interruptions (see the section "External
Signal" in Chapter 6, ''Interruptions'’).

Note: Some models provide the external-signal
facility as a separate feature (without the READ
DIRECT and WRITE DIRECT instructions).

For a detailed description, see the System/360
and System/370 Direct Control and External
Interruption Features—Original Equipment
Manufacturers’ Information, GA22-6845.

Timing
The timing facilities include four facilities for mea-
suring time: the time-of-day clock, the clock
comparator, the CPU timer, and the interval timer.
In a multiprocessing system, a single time-of-day
clock may be shared by more than one CPU, or
each CPU may have a separate time-of-day clock.
However, each CPU has a separate clock
comparator, CPU timer, and interval timer.

Chapter 4. Control 4-15

Time-of-Day Clock

The time-of-day (TOD) clock provides a high-
resolution measure of real time suitable for the in-
dication of date and time of day. The cycle of the
clock is approximately 143 years.

In a configuration with more than one CPU,
each CPU may have a separate time-of-day clock,
or more than one CPU may share a clock, depend-
ing on the model. In all cases, each CPU has ac-
cess to a single clock.

Format

The time-of-day clock is a binary counter with the
format shown in the following illustration. The bit
positions of the clock are numbered 0 to 63, corre-
sponding to the bit positions of a 64-bit unsigned
binary integer.

rl microsecond

0 51 63

In the basic form, the time-of-day clock is incre-
mented by adding a one in bit position 51 every
microsecond. In models having a higher or lower
resolution, a different bit position is incremented at
such a frequency that the rate of advancing the
clock is the same as if a one were added in bit posi-
tion 51 every microsecond. The resolution of the
time-of-day clock is such that the incrementing rate
is comparable to the instruction-execution rate of
the model.

When more than one time-of-day clock exists in
a configured system, the stepping rates are syn-
chronized such that all time-of-day clocks in the
configuration are incremented at exactly the same
rate.

When incrementing of the clock causes a carry
to be propagated out of bit position 0, the carry is
ignored, and counting continues from zero on. The
program is not alerted, and no interruption condi-
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Increment-
ing of the clock does not depend on whether the
wait-state bit of the PSW is one or whether the
CPU is in the stopped, operating, or load state. Its
operation is not affected by CPU, initial-CPU, pro-
gram, initial-program, or clear resets or by initial
program loading. Operation of the clock is also not
affected by the setting of the rate control or by an
initial-microprogram-loading operation. Depending

4-16 System/370 Principles of Operation

on the model and the configuration, a time-of-day
clock may or may not be powered independent of a
CPU that accesses it.

States

The following states are distinguished for the time-
of-day clock: set, not set, stopped, error, and not
operational. The state determines the condition
code set by execution of STORE CLOCK. The
clock is incremented, and is said to be running,
when it is in either the set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state. Incrementing begins at
Zero.

When the clock is in the not-set state, execution
of STORE CLOCK causes condition code 1 to be
set and the current value of the running clock to be
stored.

Stopped State: The clock enters the stopped
state when SET CLOCK is executed on a CPU
accessing that clock and the clock is set. This oc-
curs when SET CLOCK is executed without en-
countering any exceptions and any manual TOD-
clock control in the configuration is set to the
enable-set position. The clock can be placed in the
stopped state from the set, not-set, and error states.
The clock is not incremented while in the stopped
state.

When the clock is in the stopped state, execution
of STORE CLOCK on a CPU accessing that clock
causes condition code 3 to be set and the value of
the stopped clock to be stored.

Set State: The clock enters the set state only
from the stopped state. The change of state is un-
der control of the TOD-clock-sync-control bit, bit
2 of control register 0, in the CPU which caused
that clock to enter the stopped state. When the bit
is zero, or the TOD-clock-synchronization facility
is not installed, that clock enters the set state at the
completion of execution of SET CLOCK. When
the bit is one, it remains in the stopped state until
either the bit is set to zero on the CPU that placed
that clock in the stopped state, or until any other
clock in the configured system is incremented to a
value of all zeros in bit positions 32-63. If any
clock is set to a value of all zeros in bit positions
32-63 and enters the set state as the result of a
signal from another clock, the updating of bits 32-
63 of the two clocks is in synchronism.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK causes condition code O to be set
and the current value of the running clock to be
stored.

Error State: The clock enters the error state
when a malfunction is detected that is likely to
have affected the validity of the clock value. A
timing-facility-damage machine-check-interruption
condition is generated on each CPU which has ac-
cess to that clock whenever it enters the error state.

When STORE CLOCK is executed and the clock
accessed is in the error state, condition code 2 is
set, and the value stored is unpredictable.

Not-Operational State: The clock is in the not-
operational state when its power is off or when it is
disabled for maintenance. It depends on the model
if the clock can be placed in this state. Whenever
the clock enters the not-operational state, a timing-
facility-damage machine check is generated on each
CPU that has access to that clock.

When the clock is in the not-operational state,
execution of STORE CLOCK causes condition
code 3 to be set, and zero is stored.

Changes in Clock State

When the time-of-day clock accessed by a CPU
changes value or changes state, interruption condi-
tions pending for the TOD-clock sync check, clock
comparator, and CPU timer may or may not be
recognized for a period of time up to 1.048576
seconds (220 microseconds) after the change.

Setting and Inspecting the Clock

The clock can be set to a specific value by execu-
tion of SET CLOCK if the manual TOD-clock con-
trol of any configured CPU is set to the enable-set
position. Setting the clock replaces the values in all
bit positions from bit position 0 through the right-
most position that is incremented when the clock is
running. However, on some models, the low-order
bits starting at or to the right of bit 52 of the speci-
fied value are ignored, and zeros are placed in the
corresponding positions of the clock.

The time-of-day clock can be inspected by exe-
cuting STORE CLOCK, which causes a 64-bit val-
ue to be stored. Two executions of STORE
CLOCK, possibly on different CPUs in the same
configuration, always store different values if the
clock is running, or, if separate clocks are accessed,
both clocks are running and synchronized.

The values stored for a running clock always
correctly imply the order of execution of STORE
CLOCK on one or more CPUs for all cases where
the order can be established by means of the pro-
gram. Zeros are stored in positions to the right of
the bit position that is incremented. In a configu-
ration with more than one CPU, however, when the
value of a running clock is stored, nonzero values
may be stored in positions to the right of the right-
most position that is incremented. This ensures
that a unique value is stored.

In a system where more than one CPU accesses
the same clock, SET CLOCK is interlocked such
that the entire contents appear to be updated at
once; that is, if SET CLOCK instructions are is-
sued simultaneously by two CPUs, the final result is
either one or the other value. If SET CLOCK is
issued on one CPU and STORE CLOCK on the
other, the result obtained by STORE CLOCK is
either the entire old value or the entire new value.
When SET CLOCK is issued by one CPU, a
STORE CLOCK issued on another CPU may find
the clock in the stopped state even when the
TOD-clock-sync-control bit is zero. The TOD-
clock-sync-control bit is bit 2 of control register 0.
Since the clock enters the set state before incre-
menting, the first STORE CLOCK issued after the
clock enters the set state may still find the original
value introduced by SET CLOCK.

Programming Notes

1. Bit position 31 of the clock is incremented ev-
ery 1.048576 seconds; for some applications,
reference to the high-order 32 bits of the clock
may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time origin, or stan-
dard epoch, which is the calendar date and time
to which a clock value of zero corresponds.
January 1, 1900, 0 AM Greenwich Mean Time
(GMT) is recommended as the standard epoch
for the clock.

3. A program using the clock value as a time-of-
day and calendar indication must be consistent
with the programming support under which the
program is to run. If the programming support
uses the standard epoch, bit O of the clock re-
mains one through the years 1972-2041. .Ordi-
narily, testing the high-order bit for a one is
sufficient to determine if the clock value is in
the standard epoch.

In converting to or from the current date or
time, the programming support assumes each
day to be 86,400 seconds. It does not take into

Chapter 4. Control 4-17

account 'leap seconds" inserted or deleted be-
cause of time-correction standards.

4. Because of the limited accuracy of manually
setting the clock value, the low-order bit posi-
tions of the clock, expressing fractions of a sec-
ond, are normally not valid as indications of the
time of day. However, they permit elapsed-
time measurements of high resolution.

5. The following chart shows the time interval
between instants at which various bit positions
of the time-of-day clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

TOD- Stepping Interval
Clock
Bit Days|Hours|Minutes| Seconds
51 0.000 001
47 0.000 016
43 0.000 256
39 0.004 096
35 0.065 536
31 1.048 576
27 16.777 216
23 4 28.435 456
19 1 11 34.967 296
15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 3257 19 29 36.710 656

6. The following chart shows the clock setting at
the start of various years. The clock settings,
expressed in hexadecimal notation, correspond
to 0 AM Greenwich Mean Time on January 1
of each year.

Year | Clock Setting (Hex)

1900 [0000 0000 0000 0000
1976 | 8853 BAFO B400 0000
1980 | 8F80 9FD3 2200 0000
1984 | 96AD 84B5 9000 0000
1988 | 9DDA 6997 FEOO0 0000
1992 | A507 4E7A 6C00 0000
1996 | AC34 335C DAOO 0000
2000 | B361 183F 4800 0000

7. The stepping value of time-of-day-clock bit
position 63, if implemented, is 2~12 micro-
seconds, or approximately 244 picoseconds.
This value is called a clock unit.

4-18 System/370 Principles of Operation

The following chart shows various time intervals
in clock units expressed in hexadecimal notation.

Interval Clock Units (Hex)

1 microsecond 1000
1 millisecond 3E 8000
1 second F424 0000
1 minute 39 3870 0000
1 hour D69 3A40 0000
1 day 1 41DD 7600 0000
365 days 1CA E8C1 3E00 0000
366 days 1 1CC 2ASE B400 0000
1,461 days 72C E4E2 6E00 0000

! Number of days in four years,

including a leap year.

8. On a multiprocessing system, after the time-of-
day clock is set and begins running, the pro-
gram should delay activity for 220 microseconds
(1.048576 seconds) to ensure that the CPU-
timer, clock-comparator, and TOD-clock-sync-
check interruption conditions are recognized by
the CPU.

Time-of-Day-Clock Synchronization

In a configuration with more than one CPU, each

CPU may have a separate time-of-day clock, or

more than one CPU may share a time-of-day clock,

depending on the model. In all cases, each CPU
has access to a single clock.

The time-of-day-clock-synchronization facility
provides the functions that make it possible to pro-
vide, in conjunction with a supervisor clock-
synchronization program, only one time-of-day
clock, in effect, in a multiprocessing system. The
result is such that, to all programs storing the clock
value, it appears that all CPUs read the same clock.
The TOD-clock-synchronization facility provides
these functions in such a way that even though the
number of clocks in a multiprocessing system is
model-dependent, a single model-independent
clock-synchronization routine can be written. The
following functions are provided:

« Synchronized stepping rates for all time-of-day
clocks in the configuration. Thus, if all clocks
are set to the same value, they will stay in
synchronism.

« The low-order 32 bits of each clock in the con-
figuration are compared. An unequal condition
is signaled by an external interruption indicating
the TOD-clock-sync-check condition.

« Setting a time-of-day clock in the stopped state.

<

« Causing a stopped clock to start incrementing in
response to a signal from a running clock.

« Causing a stopped clock, with the TOD-clock-
sync-control bit set to one, to start incrementing
when bits 32-63 of any running clock in the con-
figuration are incremented to zero. This permits
the program to synchronize all clocks to any par-
ticular clock without requiring special operator
action to select a "'master clock" as the source of
the clock-synchronization pulses.

Programming Notes

1. Time-of-day-clock synchronization provides for
checking and synchronizing only the low-order
bits of the time-of-day clock. The program
must check for synchronization of the leftmost
bits and must communicate the leftmost-bit
values from one CPU to another in order to
correctly set the time-of-day-clock contents.

2. The TOD-clock-sync-check external interrup-
tion can be used to determine the number of
time-of-day clocks in the configuration.

Clock Comparator
The clock comparator provides a means of causing
an interruption when the time-of-day-clock value
exceeds a value specified by the program.
In a multiprocessing system, each CPU has a
separate clock comparator.
The clock comparator has the same format as the
time-of-day clock. In the basic form, the clock
comparator consists of bits 0-47, which are com-
pared with the corresponding bits of the time-of-
day clock. In some models, higher resolution is
obtained by providing more than 48 bits. The bits
in positions provided in the clock comparator are
compared with the corresponding bits of the clock.
When the resolution of the clock is less than that of
the clock comparator, the contents of the clock
comparator are compared with the clock value as
this value would be stored by executing STORE
CLOCK.
The clock comparator causes an external inter-
ruption with the interruption code 1004 (hex). A
request for a clock-comparator interruption exists
whenever either of the following conditions exists:
1. The time-of-day clock is running and the value
of the clock comparator is less than the value in
the compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned bina-
ry arithmetic.

2. The time-of-day clock is in the error state or
the not-operational state.

A request for a clock-comparator interruption
does not remain pending when the value of the
clock comparator is made equal to or greater than
that of the time-of-day clock or when the value of
the time-of-day clock is made less than the clock-
comparator value. The latter may occur as a result
of the time-of-day clock either being set or wrap-
ping to zero.

The clock comparator can be inspected by exec-
uting the instruction STORE CLOCK COMPARA-
TOR and can be set to a specific value by execut-
ing the SET CLOCK COMPARATOR instruction.

The contents of the clock comparator are initial-
ized to zero by initial CPU reset.

Programming Notes

1. An interruption request for the clock compara-
tor persists as long as the clock-comparator val-
ue is less than that of the time-of-day clock or
as long as the time-of-day clock is in the error
or not-operational state. Therefore, one of the
following actions must be taken after an exter-
nal interruption for the clock comparator has
occurred and before the CPU is again enabled
for external interruptions: the value of the
clock comparator has to be replaced, the time-
of-day clock has to be set, or the clock-
comparator submask has to be set to zero. Oth-
erwise, loops of external interruptions are
formed.

2. The instruction STORE CLOCK may store a
value which is greater than that in the clock
comparator, even though the CPU is enabled
for the clock-comparator interruption. This is
because the time-of-day clock may be incre-
mented one or more times between when in-
struction execution is begun and when the clock
value is accessed. In this situation, the inter-
ruption occurs when the execution of STORE
CLOCK is completed.

CPU Timer

The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a prespecified amount of time has elapsed.

In a multiprocessing system, each CPU has a
separate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of the time-of-day clock,
except that bit O is considered a sign. In the basic
form, the CPU timer is decremented by subtracting
a one in bit position 51 every microsecond. In
models having a higher or lower resolution, a dif-
ferent bit position is decremented at such a fre-
quency that the rate of decrementing the CPU tim-

Chapter 4. Control 4-19

er is the same as if a one were subtracted in bit
position 51 every microsecond. The resolution of
the CPU timer is such that the stepping rate is
comparable to the instruction-execution rate of the
model.

The CPU timer requests an external interruption
with the interruption code 1005 (hex) whenever
the CPU-timer value is negative (bit 0 of the CPU
timer is one). The request does not remain pending
when the CPU-timer value is changed to a
nonnegative value.

When both the CPU timer and the time-of-day
clock are running, the stepping rates are synchro-
nized such that both are stepped at the same rate.
Normally, decrementing the CPU timer is not af-
fected by concurrent 1/O activity. However, in
some models the CPU timer may stop during ex-
treme I/0 activity and other similar interference
situations. In these cases, the time recorded by the
CPU timer provides a more accurate measure of the
CPU time used by the program than that which
would have been recorded had the CPU timer con-
tinued to step.

The CPU timer is decremented when the CPU is
in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer may or may not be decremented when
the time-of-day clock is in the error, stopped, or
not-operational state.

Depending on the model, the CPU timer may or
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing
the instruction STORE CPU TIMER and can be set
to a specific value by executing the SET CPU TIM-
ER instruction.

The CPU timer is set to zero by initial CPU re-
set.

Programming Notes

1. The CPU timer in association with a program
may be used both to measure CPU-execution
time and to signal the end of a time interval on
the CPU.

2. The time measured for the execution of a se-
quence of instructions may depend on the ef-
fects of such things as I/O interference, page
faults, and instruction retry. Hence, repeated
measurements of the same sequence on the
same installation may differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set

4-20 System/370 Principles of Operation

to a positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled for
CPU-timer interruptions and the CPU timer
value goes from positive to negative.

4. The fact that CPU-timer interruptions are re-
quested whenever the CPU timer is negative
rather than just when the CPU timer goes from
positive to negative eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, a program being timed by
the CPU timer is interrupted for a cause other
than the CPU timer, external interruptions are
disallowed by the new PSW, and the CPU-
timer value is then saved by STORE CPU TIM-
ER. This value could be negative if the CPU
timer went from positive to negative since the
interruption. Subsequently, when the program
being timed is to continue, the CPU timer may
be set to the saved value by SET CPU TIMER.
A CPU-timer interruption will occur immedi-
ately after external interruptions are again en-
abled if the saved value was negative.

The persistence of the CPU-timer-
interruption request means, however, that after
an external interruption for the CPU timer has
occurred, either the value of the CPU timer has
to be replaced or the CPU-timer submask has
to be set to zero before the CPU is again en-
abled for external interruptions. Otherwise,
loops of external interruptions are formed.

5. The instruction STORE CPU TIMER may store
a negative value even though the CPU is en-
abled for the interruption. This is because the
CPU-timer value may be decremented one or
more times between the instants when instruc-
tion execution is begun and when the CPU tim-
er is accessed. In this situation, the interrup-
tion occurs when the execution of STORE CPU
TIMER is completed.

Interval Timer

The interval timer is a binary counter that occupies
a word at real storage location 80 and has the fol-
lowing format:

0 24 31

The interval timer is treated as a 32-bit signed
binary integer. In the basic form, the contents of

<

the interval timer are reduced by one in bit position
23 every 1/300 of a second. Higher resolution of
timing may be obtained in some models by counting
with higher frequency in one of the positions 24
through 31. In each case, the frequency is adjusted
to cause decrementing in bit position 23 at the rate
of 300 times per second. The cycle of the interval
timer is approximately 15.5 hours.

The interval timer causes an external interrup-
tion, with bit 8 of the interruption code set to one
and bits 0-7 set to zeros. Bits 9-15 of the interrup-
tion code are zeros unless set to ones for another
condition that is concurrently indicated.

A request for an interval-timer interruption is
generated whenever the interval-timer value is
decremented from a positive or zero number to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared by
an interval-timer interruption or a CPU reset. The
overflow occurring as the interval-timer value is
decremented from a large negative number to a
large positive number is ignored.

The interval timer is not necessarily synchro-
nized with the time-of-day clock.

The interval-timer contents are updated at the
appropriate frequency whenever other machine
activity permits. The updating occurs only between
instruction executions, except that the interval tim-
er may be updated between units of operation of an
interruptible instruction, such as MOVE LONG.
An updated interval-timer value is normally availa-
ble at the end of each instruction execution. When
the execution of an instruction or other machine
activity causes updating to be delayed by more than
one period, the contents of the interval timer may
be reduced by more than one unit in a single updat-
ing cycle. Interval-timer updating may be omitted
when I/O data transmission approaches the limit of
storage capability, or when a channel sharing CPU
equipment and operating in burst mode causes CPU
activity to be locked out. The program is not alert-
ed when omission of updating causes the real-time
count to be lost.

When the contents of the interval timer are
fetched by a channel or by another CPU, or when
they are used as the source of an instruction, the
result is unpredictable. Similarly, storing by the
channel, or by another CPU, at location 80 causes
the contents of the interval timer to be unpredicta-
ble.

The interval timer is not decremented when the
manual interval-timer control is set to disable. The
interval timer is also not decremented when the
CPU is not in the operating state or when the man-
ual rate control is set to instruction step.

Depending on the model, the interval timer may
or may not be decremented when the time-of-day
clock is in the error, stopped, or not-operational
State.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions
pending for the interval timer may or may not be
recognized for a period of time up to 1.048576
seconds after the change.

Programming Notes

1. The value of the interval timer is accessible by
fetching the word at location 80 as an operand,
provided the location is not protected against
fetching. It may be changed at any time by
storing a word at location 80. When location
80 is protected, any attempt by the program to
change the value of the interval timer causes a
program interruption for protection exception.

2. The value of the interval timer may be changed
without losing the real-time count by storing
the new value at locations 84-87 and then
shifting bytes 80-87 to locations 76-83 by
means of the instruction MOVE (MVC). Thus,
in a single operation, the new interval-timer
value is placed at location 80, and the old value
is made available at location 76.

If any means other than the instruction
MOVE (MVC) are used to interrogate and
then replace the value of the interval timer,
including MOVE LONG or two separate in-
structions, the program may lose a time incre-
ment when an updating cycle occurs between
fetching and storing.

3. When the value of the interval timer is to be
recorded on an I/0O device, the program should
first store the interval-timer value in a tempo-
rary storage location to which the I/O opera-
tion subsequently refers. When the channel
fetches the interval-timer value directly from
location 80, the value obtained is unpredictable.

Externally Initiated Functions

Resets

Seven reset functions are provided:
e CPU reset

e Initial CPU reset

|+ Subsystem reset

e Program reset

 Initial program reset

« Clear reset

« Power-on reset

Chapter 4. Control 4-21

CPU reset provides a means of clearing
equipment-check indications and any resultant un-
predictability in the CPU state with the least
amount of information destroyed. In particular, it
is used to clear check conditions when the CPU
state is to be preserved for analysis or resumption
of the operation.

Initial CPU reset provides the functions of CPU
reset together with initialization of the current
PSW, CPU timer, clock comparator, prefix, and
control registers.

Subsystem reset provides a means for clearing
floating interruption conditions and for resetting
channel-set connections as well as for invoking
1/0-system reset.

Program reset and initial program reset cause
CPU reset and initial CPU reset, respectively, to be
performed and cause I/O-system reset to be per-
formed (see the section ''I/O-System Reset' in
Chapter 12, "Input/Output Operations'').

Clear reset causes initial CPU reset and subsys-
tem :eset to be performed and, additionally, clears
or initializes all storage locations and registers in all
CPUs in the configuration, with the exception of
the time-of-day clock. Such clearing is useful in
debugging programs and in ensuring user privacy.
Clearing does not affect external storage, such as
direct-access storage devices used by the control
program to hold the contents of unaddressable
pages.

The power-on-reset sequences for the time-of-
day clock, main storage, and channels may be in-
cluded as part of the CPU power-on sequence, or
the power-on sequence for these units may be initi-
ated separately.

4-22 System/370 Principles of Operation

CPU reset, subsystem reset, and clear reset are
initiated manually using the operator facilities (see
Chapter 13, "Operator Facilities'). Initial CPU
reset is part of the initial-program-loading function.
The figure "Manual Initiation of Resets" summa-
rizes how these four resets are manually initiated.
Power-on reset is performed as part of turning
power on. The reset actions are tabulated in the
figure '""Summary of Reset Actions." For informa-
tion concerning what resets can be performed by
the SIGNAL PROCESSOR instruction, see the
section "Signal-Processor Orders' in this chapter.

Function Performed On'

CPU on Which Key Other CPUs | Remainder of

Key Activated Was Activated in Config Configuration
System-reset-normal
key
* without store- Initial CPU reset * Subsystem reset
status facility
* with store- CPU reset CPU reset Subsystem reset

status facility

3

System-reset-clear |Clear reset? Clear reset?|Clear reset

key

Initial-CPU reset, |CPU reset
followed by IPL

Load-normal key Subsystem reset

Clear resetz, fol- |Clear reset2 Clear reset3
lowed by IPL

Load-clear key

Explanation:

*

* This situation cannot occur, since the store-status facility is
provided in a CPU equipped for multiprocessing.

Activation of a system-reset or load key may change the config-
uration, including the connection with |/0, storage units, and
other CPUs.

~

Only the CPU elements of this reset apply.

Only the non-CPU elements of this reset apply.

Manual Initiation of Resets

Reset Function
Sub- Initial|lnitial Power -
system CPU |Program| CPU Program| Clear On
Area Affected Reset | Reset | Reset | Reset | Reset | Reset | Reset

CPU u s s s, S s s
PSW U u/v usv c* c* c* c*
Prefix U usv usv o o o o
CPU timer U u/v u/v C c o C
Clock comparator u u/v usv (o (o (o (o
Control registers U u/sv u/s/v I I I I
General registers U u/v us/v u/sv us/v c/v C/X
Floating-point registers u us/v u/v u/sv usv c/v C/X3
Storage keys u u u u u o C/X3
Volatile main storage u u U u u o c/X
Nonvolatile main storage U U U U U C U
Time-of-day clock u? u2 u? u? u2 u2 Tz
Channel-set connection | U U U U | | 3
Configured channels RA u RC U RC RA RA

Explanation:

S The CPU is reset; current operations, if any, are terminated; interruption
conditions in the CPU are cleared; and the CPU is placed in the stopped state.

RA 1/0-system reset is performed in all the channels in the configuration and pending
I/0-interruption conditions are cleared. As part of this reset, system reset is
signaled to the |/0 control units and devices configured to the channels being
reset.

RC 1/0-system reset is performed in those channels connected to the CPU performing the
program reset or initial-program reset. As part of this reset, system reset is
signaled to the |/0 control units and devices configured to the channels being
reset.

U The state, condition, or contents of the field remain unchanged. However, the
resulting value is unpredictable if an operation is in progress that changes the
state, condition, or contents of the field at the time of reset.

U/V The contents remain unchanged, provided the field is not being accessed at the time
the reset function is performed. However, on some models the checking-block code
of the contents may be made valid. The subsequent contents of a field are unpre-
dictable if it is accessed at the time of the reset.

C The condition or contents are cleared. |f the area affected is a field, the con-
tents are cleared to zero with valid checking-block code.

C/V The checking-block code of the contents is made valid. The contents normally are
cleared to zeros but in some models may be left unchanged.

C/X The checking-block code of the contents is made valid. The contents normally are
cleared to zeros but in some models may be left unpredictable.

| The state or contents are initialized. |If the area affected is a field, the con-
tents are set to their initial values with valid checking-block code.

T The time-of-day clock is initialized to zero and validated; it enters the not-set
state.

| Summary of Reset Actions (Part 1 of 2)

Chapter 4. Control 4-23

Explanation (Continued):

* Clearing the contents of the PSW to zero causes the CPU to assume the BC-mode for-
mat. The contents of the instruction-length-code and interruption-code fields re-
main unpredictable, as these values are not retained when a new PSW is introduced.

1 When the IPL sequence follows the reset function on that CPU, the CPU does not
enter the stopped state, and the PSW is not necessarily cleared to zeros.

2 Access to the TOD clock by means of STORE CLOCK at the time a reset function is
performed does not cause the value of the TOD clock to be affected.

3 When these units are separately powered, the action is performed only when the
power for the unit is turned on.

4 When these units are separately powered, the action is model-dependent.

Summary of Reset Actions (Part 2 of 2)

CPU Reset

CPU reset causes the following actions:

1. The execution of the current instruction or oth-
er processing sequence, such as an interruption,
is terminated, and all program-interruption and
supervisor-call-interruption conditions are
cleared.

2. Any pending external-interruption conditions
which are local to the CPU are cleared. Float-
ing external-interruption conditions are not
cleared.

3. Any pending machine-check-interruption condi-
tions and error indications which are local to
the CPU and any check-stop states are cleared.
Floating machine-check-interruption conditions
are not cleared. A broadcast machine check
which has been made pending to a CPU is said
to be local to the CPU.

4. All copies of prefetched instructions or oper-
ands are cleared. Additionally, any results to
be stored because of the execution of instruc-
tions in the current checkpoint interval are
cleared.

5. The translation-lookaside buffer is cleared of
entries.

6. The CPU is placed in the stopped state after
actions 1-5 have been completed.

Registers, storage contents, and the state of con-
ditions external to the CPU remain unchanged by
CPU reset. However, the subsequent contents of
the register, location, or state are unpredictable if
an operation is in progress that changes the con-
tents at the time of the reset.

When the reset function in the CPU is initiated
at the time the CPU is executing an I/O instruction
or is in the process of taking an I/O interruption,
the current operation between the CPU and the

4-24 System/370 Principles of Operation

channel may or may not be completed, and the
resultant state of the associated channel may be
unpredictable.

Programming Note

Most operations which would change a state, a con-
dition, or the contents of a field cannot occur when
the CPU is in the stopped state. However, some
signal-processor functions and some operator func-
tions may change these fields. To eliminate the
possibility of losing a field when CPU reset is is-
sued, the CPU should be stopped, and no operator
functions should be in progress.

Initial CPU Reset

Initial CPU reset combines the CPU reset functions

with the following clearing and initializing func-

tions:

1. The contents of the current PSW, prefix, CPU
timer, and clock comparator are set to zero.

2. All assigned control-register positions are set to
their initial values.

These clearing and initializing functions include
validation.

Setting the current PSW to zero causes the PSW
to assume the BC-mode format. The instruction-
length code and interruption code are unpredicta-
ble, because these values are not retained when a
new PSW is introduced.

Subsystem Reset

Subsystem reset operates only on those elements of

the configuration which are not CPUs. It performs

the following actions for the remainder of the con-

figuration.

1. I/O-system reset is performed in each channel
in the configuration.

<

2. All floating interruption conditions in the con-
figuration are cleared.

3. Channel-set connections are initialized to con-
nect each channel set to its home CPU if one
exists, or to make the channel set disconnected
if no home CPU exists.

As part of the I/O-system reset performed in
each channel, pending I/O-interruption conditions
are cleared, and system reset is signaled to all con-
trol units and devices configured to the channel
(see the section "I/O-System Reset" in Chapter
12, "Input/Output Operations'). The effect of
system reset on I/O control units and devices and
the resultant control-unit and device state are de-
scribed in the appropriate publication on the con-
trol unit or device. A system reset, in general, re-
sets only those functions in a shared control unit or
device that are associated with the particular chan-
nel signaling the reset.

Program Reset

For program reset, CPU reset is performed, and
I/0O-system reset is performed in each channel con-
nected to this CPU.

As part of the I/0O-system reset performed in
each channel, pending I/O-interruption conditions
are cleared, and system reset is signaled to all con-
trol units and devices configured to the channel
(see the section ''I/O-System Reset" in Chapter
12, "Input/Output Operations''). The effect of
system reset on I/O control units and devices and
the resultant control-unit and device state are de-
scribed in the appropriate publication on the con-
trol unit or device. A system reset, in general, re-
sets only those functions in a shared control unit or
device that are associated with the particular chan-
nel signaling the reset.

Initial Program Reset

Initial program reset combines the program-reset
functions with the clearing and initializing func-
tions of initial CPU reset.

Clear Reset

Clear reset combines the initial-CPU-reset function

with an initializing function which causes the fol-

lowing actions:

1. In most models the contents of the general and
floating-point registers are set to zero, but in
some models the contents may be left un-
changed except that the checking-block code is
made valid.

2. The contents of the main storage and the stor-
age keys in the configuration are set to zero
with valid checking-block code.

| 3. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage.

Programming Notes

1. For the CPU-reset or program-reset operation
not to affect the contents of fields that are to
be left unchanged, the CPU must not be execu-
ting instructions and must be disabled for all
interruptions at the time of the reset. Except
for the operation of the time-of-day clock, in-
terval timer, and CPU timer and for the possi-
bility of taking a machine-check interruption,
all CPU activity can be quiesced by placing the
CPU in the wait state and by disabling it for
I/0 and external interruptions. To avoid the
possibility of causing a reset at the time the
timing facilities are being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

2. CPU reset, initial CPU reset, program reset,
initial program reset, and clear reset do not af-
fect the value and state of the time-of-day
clock.

3. The conditions under which the CPU enters the
check-stop state are model-dependent and in-
clude malfunctions that preclude the completion
of the current operation. Hence, if CPU reset,
initial CPU reset, program reset, or initial pro-
gram reset is executed while the CPU is in the
check-stop state, the contents of the PSW, reg-
isters, and storage locations, including the stor-
age keys and the storage location accessed at
the time of the error may have unpredictable
values, and, in some cases, the contents may
still be in error after the check-stop state is
cleared by these resets. In such a case, a clear
reset is required to clear the error.

4. Clear reset causes all bit positions of the inter-
val timer to be cleared to zeros.

Power-On Reset

The power-on-reset function for a component of
the system is performed as part of the power-on
sequence for that component.

The power-on sequences for the time-of-day
clock, main storage, and channels may be included
as part of the CPU power-on sequence, or the
power-on sequence for these units may be initiated
separately. The following sections describe the
power-on resets for the CPU, time-of-day clock,

Chapter 4. Control 4-25

main storage, and I/0O. See also Chapter 12, "I/O
Operations,' and the appropriate System Library
(SL) publication for channels, control units, and
1/0 devices.

CPU Power-On Reset: The power-on reset caus-
es initial CPU reset to be performed and may or
may not cause I/O-system reset to be performed in
the channel. The contents of general registers and
floating-point registers normally are cleared to
zeros, but in some models may be left unpredicta-
ble, with valid checking-block code.

TOD-Clock Power-On Reset: The power-on
reset causes the value of the time-of-day clock to
be set to zero and causes the clock to enter the
not-set state.

Main-Storage Power-On Reset: For volatile
main storage (one that does not preserve its con-
tents when power is down) and for storage keys,
power-on reset causes valid checking-block code to
be placed in these fields. In most models, the con-
tents are cleared to zeros, but, in some models, the
contents may be laft unpredictable except for the
checking-block code. The contents of nonvolatile
main storage, including the checking-block code,
remain unchanged.

I/0 Power-On Reset: The I/O power-on reset
causes I/O-system reset to be performed (see the
section ''I/O-System Reset" in Chapter 12,
"Input/Output Operations'').

Initial Program Loading

Initial program loading (IPL) is provided to initiate
processing when the contents of storage or of the
PSW are not suitable for processing.

Initial program loading is initiated manually by
designating an input device with the load-unit-
address controls and subsequently activating the
load-normal or load-clear key. The load-normal
key causes an initial-program-reset operation to be
performed, and the load-clear key causes a clear-
reset operation to be performed. The CPU enters
the load state. Subsequently, a read operation is
initiated from the selected input device. The CPU
does not necessarily enter the stopped state during
the execution of the reset operation. The load indi-
cator is on while the CPU is in the load state.

The read operation is performed as if a START
I/0 instruction were executed that specified the
channel, subchannel, and I/O device designated by
the load-unit-address controls. The operation uses
an implied channel-address word (CAW) contain-

4-26 System/370 Principles of Operation

ing a subchannel key of zero, and a channel-
command-word (CCW) address of 0, but the CAW
location in storage, location 72, is not accessed.
The load-unit-address controls provide the 12
rightmost bits of the I/O address; zeros are implied
for the leftmost bits.

Although the location of the first CCW to be
executed is specified by the CCW address as 0, the
first CCW actually executed is an implied CCW,
containing, in effect, a read command with the
modifier bits set to zeros, a data address of 0, a
byte count of 24, the chain-command flag set to
one, the SLI flag set to one, the chain-data flag set
to zero, the skip flag set to zero, and the PCI flag
set to zero. The CCW fetched, as a result of com-
mand chaining, from storage location 8 or 16, as
well as any subsequent CCW in the IPL sequence,
is interpreted the same as a CCW in any I/O oper-
ation, except that any PCI flags that are specified
in CCWs used for the IPL sequence are ignored.

When the I/0 device provides channel-end sta-
tus for the last operation of the IPL chain and no
exceptional conditions are detected in the opera-
tion, a new PSW is obtained from storage locations
0-7. When this PSW specifies the EC mode, the
I/0 address that was used for the IPL operation is
stored at locations 186-187, and zeros are stored at
location 185; when the BC mode is specified, the
I/0 address is stored at locations 2-3. The CPU
leaves the load state and enters the operating state,
with CPU operation proceeding under the control
of the new PSW, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU enters the stopped state after the new
PSW has been obtained.

When channel-end status for the IPL operation
is presented, either separate from or along with
device-end status, no I/O-interruption condition is
generated. Similarly, any PCI flags specified by the
program in the CCWs used for the IPL sequence
are ignored. If the device-end status for the IPL
operation is provided separately after channel-end
status, it causes an I/O interruption condition to be
generated.

If the IPL I/O operation or the PSW loading is
not completed satisfactorily, the CPU remains in
the load state, and the load indicator remains on.
This occurs when the device designated by the
load-unit-address controls is not operational, when
the device or channel signals any condition other
than channel end, device end, or status modifier
during or at the completion of the IPL I/O opera-
tion, or when the PSW loaded from location O has
a PSW-format error that is recognized during the
loading procedure. The address of the I/O device

used in the IPL operation is not stored. The con-
tents of storage locations 0-7 are unpredictable.
The contents of other storage locations remain un-
changed, except possibly for those locations due to
be changed by the read operations.

When fewer than eight bytes are read into loca-
tions 0-7, the PSW fetched from location O at the
conclusion of the IPL operation is unpredictable.

Programming Notes

1. The information read and placed at locations
8-15 and 16-23 may be used as CCWs for
reading additional information during the IPL
sequence: the CCW at location 8 may specify
reading additional CCWs elsewhere in storage,
and the CCW at location 16 may specify the
transfer-in-channel command, causing transfer
to these CCWs.

The status-modifier bit has its normal effect
during the IPL operation, causing the channel
to fetch and chain to the CCW whose address
is 16 higher than that of the current CCW.
This applies also to the initial chaining that oc-
curs after completion of the read operation
specified by the implicit CCW.

The PSW that is loaded at the completion of
the IPL procedure may be provided by the first
eight bytes of the IPL I/0O operation or may be
placed at locations 0-7 by a subsequent CCW.

2. When the PSW in location 0 has bit 14 set to
one, the CPU is placed in the wait state after
the IPL procedure is completed; at that point,
the load and manual indicators are off, and the
wait indicator is on.

3. Activating the load-normal key permits an IPL
program to be loaded with a minimum distur-
bance of storage contents. This function may
be useful in debugging. When the power is
turned on or the load-clear key is activated, the
IPL program starts with a cleared machine in a
known state, except that information on
external storage remains unchanged.

Store Status

The store-status facility includes:

1. A change to the operation of the system-reset-
normal key. With the store-status facility in-
stalled, activating the system-reset-normal key
causes a CPU-reset operation and a subsystem-
reset operation to be performed; without this
facility, an initial-CPU-reset operation and
subsystem-reset operation are performed.

2. An operator-initiated store-status function.

The store-status operation places the contents of
the CPU registers, except for the time-of-day clock,
in assigned storage locations. The information pro-
vided for control-register positions which are not
assigned is unpredictable.

The figure "Assigned Storage Locations for
Store Status' lists the fields that are stored, their
length, and their location in main storage.

Length in|Absolute
Field Bytes Address
CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Model-dependent feat 4 268
Fl-pt registers 0-6 32 352
General registers 0-15 64 384
Control registers 0-15 64 448

Assigned Storage Locations for Store Status

The word beginning at absolute location 268 is
reserved for storing additional status as required by
certain model-dependent features. If no feature
requiring this location is installed, the contents of
the field remain unchanged upon execution of the
store-status function.

The contents of the registers are not changed. If
an error is encountered during the operation, the
CPU enters the check-stop state.

The store-status operation can be initiated man-
ually by use of the store-status key (see Chapter
13, "Operator Facilities"). The store-status opera-
tion can also be initiated at the addressed CPU by
executing SIGNAL PROCESSOR, specifying the
stop-and-store-status order.

Multiprocessing

The multiprocessing feature provides for the inter-
connection of CPUs, via a common main storage,
in order to enhance system availability and to share
data and resources. The multiprocessing feature
includes the following facilities:

¢ Shared main storage

« Time-of-day-clock synchronization

o Prefixing

¢ CPU-address identification

« CPU signaling and response

Time-of-day-clock synchronization is described
earlier in this chapter. Prefixing is described in
Chapter 3, "Storage." Shared main storage, CPU-
address identification, and CPU signaling and re-
sponse are described in the sections which follow.

Chapter 4. Control 4-27

Associated with these facilities are four exten-
sions to the external interruption (external call,
emergency signal, TOD-clock-sync check, and mal-
function alert), which are described in Chapter 6,
"Interruptions''; control-register positions for the
TOD-clock-sync-control bit and for the masks for
the external-interruption conditions, which are list-
ed in the section "Control Registers' in this chap-
ter; and the instructions SET PREFIX, SIGNAL
PROCESSOR, STORE CPU ADDRESS, and
STORE PREFIX, which are described in Chapter
10, ""Control Instructions."

Channels in a multiprocessing system are con-
nected to a particular CPU. Only that CPU which
is connected to a channel can initiate I/O opera-
tions at that channel, and all interruption condi-
tions are directed to that CPU. When channel-set
switching is installed, the channel-CPU connection
can be changed by means of the program.

Shared Main Storage

The shared-main-storage facility permits more than
one CPU to have access to common main-storage
locations. All CPUs having access to a common
main-storage location have access to the entire
2,048-byte block containing that location and to
the associated storage key. All CPUs and all chan-
nels refer to a shared main-storage location using
the same absolute address.

CPU-Address Identification

Each CPU in a multiprocessing configuration has a
number assigned, called its CPU address. A CPU
address uniquely identifies one CPU within a con-
figuration. The CPU is designated by specifying
this address in the CPU-address field of a SIGNAL
PROCESSOR instruction. The CPU signaling a
malfunction alert, emergency signal, or external call
is identified by storing this address in the CPU-
address field with the interruption. The CPU ad-
dress is assigned during system installation and is
not changed as a result of configuration changes.
The program can determine the address of the CPU
by means of the instruction STORE CPU AD-
DRESS.

CPU Signaling and Response

The CPU-signaling-and-response facility consists of
the instruction SIGNAL PROCESSOR and a mech-
anism to interpret and act on several order codes.
The facility provides for communications among
CPUs, including transmitting, receiving, and decod-
ing a set of assigned order codes; initiating the
specified operation; and responding to the signaling
CPU. If a CPU has the CPU-signaling-and-

4-28 System/370 Principles of Operation

response facility installed, it can address the SIG-
NAL PROCESSOR instruction to itself. The SIG-
NAL PROCESSOR instruction is described in
Chapter 10, "Control Instructions."

Signal-Processor Orders

The signal-processor orders are specified in bit pos-
itions 24-31 of the second-operand address of SIG-
NAL PROCESSOR and are encoded as shown in
the figure "Encoding of Orders."

Code Order

00 Unassigned

01 Sense

02 External call

03 Emergency signal

04 Start

05 Stop

06 Restart

07 Initial program reset
08 Program reset

09 Stop and store status
0A Initial microprogram load
0B Initial CPU reset

ocC CPU reset

0D-FF | Unassigned

Encoding of Orders
The orders are defined as follows:

Sense: The addressed CPU presents its status to
the issuing CPU (see the section '"Status Bits'" in
this chapter for a definition of the bits). No other
action is caused at the addressed CPU. The status,
if not all zeros, is stored in the general register des-
ignated by the R, field, and condition code 1 is set;
if all status bits are zeros, condition code 0 is set.

External Call: An external-call external-
interruption condition is generated at the addressed
CPU. The interruption condition becomes pending
during the execution of the SIGNAL PROCESSOR
instruction. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
the SIGNAL PROCESSOR instruction. The ad-
dress of the CPU sending the signal is provided
with the interruption code when the interruption
occurs. Only one external-call condition can be
kept pending in a CPU at a time.

Emergency Signal: An emergency-signal
external-interruption condition is generated at the
addressed CPU. The interruption condition be-
comes pending during the execution of the SIG-

<

NAL PROCESSOR instruction. The associated
interruption occurs when the CPU is enabled for
that condition and does not necessarily occur dur-
ing the execution of the SIGNAL PROCESSOR
instruction. The address of the CPU sending the
signal is provided with the interruption code when
the interruption occurs. At any one time the re-
ceiving CPU can keep pending one emergency-
signal condition for each CPU of the multiprocess-
ing system, including the receiving CPU itself.

Start: The addressed CPU performs the start
function (see the section "Stopped, Operating,
Load, and Check-Stop States" in this chapter).

The order is effective only when the addressed
CPU is in the stopped state, and the effect is un-
predictable when the stopped state has been en-
tered by reset. The CPU does not necessarily enter
the operating state during the execution of the SIG-
NAL PROCESSOR instruction.

Stop: The addressed CPU performs the stop
function (see the section "Stopped, Operating,
Load, and Check-Stop States' in this chapter).
The CPU does not necessarily enter the stopped
state during the execution of the SIGNAL PRO-
CESSOR instruction. No action is caused at the
addressed CPU if that CPU is in the stopped state
when the order code is accepted.

Restart: The addressed CPU performs the restart
operation (see the section "Restart Interruption' in
Chapter 6, "Interruptions'). The CPU does not
necessarily perform the operation during the execu-
tion of the SIGNAL PROCESSOR instruction.

Initial Program Reset: The addressed CPU per-
forms initial program reset (see the section
"Resets'" in this chapter). The execution of the
reset does not affect other CPUs. The reset opera-
tion is not necessarily completed during the execu-
tion of the SIGNAL PROCESSOR instruction.

Program Reset: The addressed CPU performs
program reset (see the section "Resets' in this
chapter). The execution of the reset does not af-
fect other CPUs. The reset operation is not neces-
sarily completed during the execution of the SIG-
NAL PROCESSOR instruction.

Stop and Store Status: The addressed CPU per-
forms the stop function, followed by the store-
status function (see the section "Store Status' in
this chapter). The CPU does not necessarily com-

plete the operation, or even enter the stopped state,
during the execution of the SIGNAL PROCESSOR
instruction.

Initial Microprogram Load (IML): The addressed
CPU performs initial program reset and then initi-
ates the IML function. The latter function is the
same as that which is performed as part of manual
initial microprogram loading. If the IML function
is not provided on the addressed CPU, the order
code is treated as unassigned and invalid. The op-
eration is not necessarily completed during the ex-
ecution of the SIGNAL PROCESSOR instruction.

Initial CPU Reset: The addressed CPU performs
initial CPU reset (see the section ''Resets' in this
chapter). The execution of the reset does not af-
fect other CPUs and does not cause I/0 to be re-
set. If the initial-CPU-reset order is not provided
on the addressed CPU, the order is treated as unas-
signed and invalid. The reset operation is not nec-
essarily completed during the execution of the SIG-
NAL PROCESSOR instruction.

CPU Reset: The addressed CPU performs CPU
reset (see the section "Resets" in this chapter).
The execution of the reset does not affect other
CPUs and does not cause I/0 to be reset. If the
CPU-reset order is not provided on the addressed
CPU, the order is treated as unassigned and inval-
id. The reset operation is not necessarily complet-
ed during the execution of the SIGNAL PROC-
ESSOR instruction.

Conditions Determining Response

Conditions Precluding Interpretation of the Order

Code

The following situations preclude the initiation of

the order. The sequence in which the situations are

listed is the order of priority for indicating concur-
rently existing situations.

1. The access path to the addressed CPU is busy
because a concurrently issued SIGNAL PRO-
CESSOR instruction is using the CPU-
signaling-and-response facility. The concur-
rently issued instruction may or may not have
been issued by or to the addressed CPU and
may or may not have been issued to this CPU.
The order is rejected. Condition code 2 is set.

2. The addressed CPU is not operational, that is,
the addressed CPU is not installed, is not con-
figured to the issuing CPU, is in certain
customer-engineer test modes, or does not have
power on. The order is rejected. Condition

Chapter 4. Control 4-29

code 3 is set. This condition cannot arise as a
result of a SIGP by a CPU addressing itself.

3. One of the following conditions exists at the
addressed CPU:

a. A previously issued start, stop, restart, or
stop-and-store-status order has been ac-
cepted by the addressed CPU, and execu-
tion of the function requested by the order
has not yet been completed.

b. A manual start, stop, restart, or store-status
function has been initiated at the addressed
CPU, and the function has not yet been
completed. This condition cannot arise as a
result of a SIGP by a CPU addressing itself.

c. A manual initial-program-load function has
been initiated at the addressed CPU, and
the reset portion, but not the program-load
portion, of the function has been complet-
ed. This condition cannot arise as a result
of a SIGP by a CPU addressing itself.

If the currently specified order is sense, ex-
ternal call, emergency signal, start, stop, restart,
or stop-and-store-status, the order is rejected,
and condition code 2 is set. If the currently
specified order is an IML, one of the reset or-
ders, or an unassigned or not-implemented or-
der, the order code is interpreted as described
in the section '"Status Bits," in this chapter.

4, One of the following conditions exists at the
addressed CPU:

a. A previously issued initial-program-reset,
program-reset, IML, initial-CPU-reset, or
CPU-reset order has been accepted by the
addressed CPU, and execution of the func-
tion requested by the order has not yet
been completed.

b. A manual-reset or IML function has been
initiated at the addressed CPU, and the
function has not yet been completed. The
term ''manual-reset function' includes the
reset portion of IPL. This condition cannot
arise as a result of a SIGP by a CPU ad-
dressing itself.

If the currently specified order is sense, ex-
ternal call, emergency signal, start, stop, restart,
or stop-and-store-status, the order is rejected,
and condition code 2 is set. If the currently
specified order is an IML, one of the reset or-
ders, or an unassigned or not-implemented or-
der, either the order is rejected and condition
code 2 is set or the order code is interpreted as
described in the section "'Status Bits," in this
chapter.

4-30 System/370 Principles of Operation

When any of the conditions described in items 3
and 4 exists, the addressed CPU is referred to as
"busy." Busy is not indicated if the addressed
CPU is in the check-stop state or when the
operator-intervening condition exists. A CPU-busy
condition is normally of short duration; however,
the conditions described in item 3 may last indefi-
nitely because of a string of interruptions or be-
cause of an invalid address in the prefix register.

In this situation, however, the CPU does not appear
busy to any of the reset orders or to IML.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and
receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted re-
gardless of whether the addressed CPU has com-
pleted a previously accepted order. This may cause
the previous order to be lost when it is only partial-
ly completed, making unpredictable whether the
results defined for the lost order are obtained.
However, some reset operations cannot themselves
be overridden, as described in the section "Resets'
in this chapter.

Status Bits

Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
response to the designated order. The status
conditions and their bit positions in the general
register designated by the R, field of the SIGNAL
PROCESSOR instruction are shown in the figure
"Status Conditions."

Bit Position Status Condition
0 Equipment check
1-23 Unassigned; zeros stored
24 External-call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Not ready
29 Urnassigned; zero stored
30 Invalid order
31 Receiver check

Status Conditions

The status condition assigned to bit position 0 is
generated by the CPU executing the SIGNAL
PROCESSOR instruction. The remaining status
conditions are generated by the addressed CPU.

When the equipment-check condition exists, bit
0 of the general register designated by the R, field
of the SIGNAL PROCESSOR instruction is set to
one, unassigned bits of the status register are set to

<

zeros, and the contents of other status bits are un-

predictable. In this case, condition code 1 is set

independent of whether the access path to the ad-
dressed CPU is busy and independent of whether
the addressed CPU is not operational, is busy, or

has presented zero status.

When the access path to the addressed CPU is
not busy and the addressed CPU is operational and
does not indicate busy to the currently specified
order, the addressed CPU presents its status to the
issuing CPU. These status bits are of two types:

1. Status bits 24-28 indicate the presence of the
corresponding conditions in the addressed CPU
at the time the order code is received. Except
in response to the sense order, each condition is
indicated only when the condition precludes the
successful execution of the designated order.

In the case of sense, all existing status condi-
tions are indicated; the operator-intervening
and not-ready conditions each are indicated if
these conditions preclude the execution of any
installed order.

2. Status bits 30 and 31 indicate that the corre-
sponding conditions were detected by the ad-
dressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code 0
is set at the issuing CPU; if the presented status is
not all zeros, the order has been rejected, the status
is stored at the issuing CPU in the general register
designated by the R, field of the SIGNAL PRO-
CESSOR instruction, zeros are stored in the
unassigned bit positions of the register, and
condition code 1 is set.

The status conditions are defined as follows:

Equipment Check: This condition exists when the
CPU executing the instruction detects equipment
malfunctioning that has affected only the execution
of this instruction and the associated order. The
order code may or may not have been transmitted
and may or may not have been accepted, and the
status bits provided by the addressed CPU may be
in error.

External Call Pending: This condition exists
when an external-call interruption condition is
pending in the addressed CPU because of a previ-
ously issued SIGNAL PROCESSOR instruction.
The condition exists from the time an external-call
order is accepted until the resultant external inter-
ruption has been completed. The condition may be
due to the issuing CPU or another CPU. The con-

dition, when present, is indicated only in response
to sense and to external call.

Stopped: This condition exists when the ad-
dressed CPU is in the stopped state. The condi-
tion, when present, is indicated only in response to
sense. This condition cannot be reported as a re-
sult of a SIGP by a CPU addressing itself.

Operator Intervening: This condition exists when
the addressed CPU is executing certain operations
initiated from local or remote operator facilities.
The particular manually initiated operations that
cause this condition to be present depend on the
model and on the order specified. On machines
which do not implement the IML order, the condi-
tions described under '"Not Ready" may be indicat-
ed as an operator-intervening condition. The
operator-intervening condition, when present, can
be indicated in response to all orders. Operator
intervening is indicated in response to sense if the
condition is present and precludes the acceptance
of any of the installed orders. The condition may
also be indicated in response to unassigned or unin-
stalled orders. This condition cannot arise as a
result of a SIGP by a CPU addressing itself.

Check Stop: This condition exists when the ad-
dressed CPU is in the check-stop state. The condi-
tion, when present, is indicated only in response to
sense, external call, emergency signal, start, stop,
restart, and stop and store status. The condition
may also be indicated in response to unassigned or
uninstalled orders. This condition cannot be re-
ported as a result of a SIGP by a CPU addressing
itself.

Not Ready: This condition exists when the ad-
dressed CPU uses reloadable control storage to
perform an order and the required microprogram is
not loaded. The not-ready condition may be indi-
cated in response to all orders except IML. This
condition cannot arise as a result of a SIGP by a
CPU addressing itself.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equip-
ment during the communications associated with
the execution of SIGNAL PROCESSOR. When

Chapter 4. Control 4-31

this condition is indicated, the order has not been
initiated, and, since the malfunction may have af-
fected the generation of the remaining receiver
status bits, these bits are not necessarily valid. A
machine-check condition may or may not have
been generated at the addressed CPU.

The following chart summarizes which status
conditions are presented to the issuing CPU in re-
sponse to each order code.

Receiver check#
Invalid order

Not ready

Check stop

Operator intervening#

Stopped

External call pending—]

Sense XX X X X L X
External call X0 X X X 0X
Emergency signal 00 X X X 0X
Start 00 X X X 0X
Stop 00 X X X 0X
Restart 00 X X X O0X
Initial program reset 0 0 X 0 X O0X
Program reset 00 X 0 X 0X
Stop and store status 0 0 X X X 0 X
IML* 00 X 0 0 O0OX
Initial CPU reset® 00 X 0 X O0X
CPU reset” 00 X 0 X O0X
Unassigned order 00 X O0/X X 1X

Explanation:

0 A zero is presented in this bit posi-
tion regardless of the current state
of this condition.

1 A one is presented in this bit
position.
X A zero or a one is presented in this

bit position, reflecting the current
state of the corresponding condition.

0/X Either a zero or the current state of
the corresponding condition is
indicated.

The current state of the operator-
intervening condition may depend on
the order code that is being
interpreted.

z If a one is presented in the receiver-

check bit position, the values

presented in the other bit positions
are not necessarily valid.

If the order code is implemented, use

the line entry for the order code; if

the order code is not implemented, use
the line entry labeled ''Unassigned

Order."

If the presented status bits are all zeros, the or-
der has been accepted, and the issuing CPU sets
condition code 0. If one or more ones are present-

4-32 System/370 Principles of Operation

ed, the order has been rejected, and the issuing
CPU stores the status in the general register speci-
fied by the R, field of the SIGP instruction and
sets condition code 1.

Programming Notes

1. A CPU can obtain the following functions by
addressing SIGNAL PROCESSOR to itself:

a. Sense indicates whether an external-call
condition is pending.

b. External call and emergency signal cause
the corresponding interruption conditions to
be generated. External call can be rejected
because of a previously generated external-
call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the CPU to set condition code
0, take pending interruptions for which it is
enabled, and enter the stopped state.

e. Restart provides a means to store the cur-
rent PSW.

f. Stop and store status causes the machine
to stop and store all current status.

2. Two CPUs can simultaneously execute SIG-
NAL PROCESSOR instructions, with each
CPU addressing the other. When this occurs,
one CPU, but not both, can find the access
path busy because of the transmission of the
order code or status bits associated with the
SIGNAL PROCESSOR instruction that is being
executed by the other CPU. Alternatively,
both CPUs can find the access path available
and transmit the order codes to each other. In
particular, two CPUs can simultaneously stop,
restart, or reset each other.

Channel-Set Switching
The channel-set-switching feature permits a collec-
tion of channels to be switched from one CPU to
another. The collection of channels which are
switched as a group is called a channel set. The
switching operation controls only the execution of
1/0 instructions and I/0 interruptions. Other
channel activity, such as chaining and data-transfer
operations, is not controlled by the switching.
When a channel set is switched to a particular
CPU, it is said to be connected to that CPU.
Channel-set switching permits any channel set in
the configuration to be connected to any CPU in
the configuration. However, a channel set can be
connected to no more than one CPU at a time, and
vice versa. When a channel set is not connected to
a CPU, it is said to be disconnected. On a particu-
lar CPU, all I/O instructions executed address only

the channels within the channel set which is cur-
rently connected to that CPU. Initial program re-
set and program reset issued to a CPU result in the
resetting of the CPU and of only those channels
which are currently connected to that CPU. Simi-
larly, I/O interruptions caused by a channel which
is part of a particular channel set occur on the CPU
to which the channel set is currently connected.
Chaining and data-transfer operations by the chan-
nel continue, independent of whether the channel
set is connected to a CPU.

Channel sets can be connected and disconnected
by means of two instructions, CONNECT CHAN-
NEL SET (CONCS) and DISCONNECT CHAN-
NEL SET (DISCS), which are defined in Chapter
10, "Control Instructions." These instructions se-
lect a particular channel set by means of a 16-bit
channel-set address. When the addressed channel
set is not operational, execution of these instruc-
tions results in a setting of condition code 3. A
channel set is not operational when it is not provid-
ed in the system, is not in the configuration, or is in
certain customer-engineer test modes. Depending
on the model, a channel set may be not operational
when all of the channels in the channel set are not
operational.

When a channel set is connected to a CPU and
the CPU becomes not operational, the channel set
may also become not operational, or it may become
disconnected and remain in the configuration. A
CPU can become not operational because of certain
customer-engineer test modes being set, because it
is configured out of the configuration, or because
its power is off.

The number of CPUs and channel sets in a par-
ticular configuration is not necessarily the same.

When system reset normal, system reset clear,
load normal, or load clear is activated on any CPU
in the configuration, in the absence of any override
by model-dependent configuration controls, then:
¢ All channels within all channel sets in the

configuration perform system reset,

« Each channel set which has a home CPU is
connected to its home CPU, and
« Each channel set which does not have a home

CPU is disconnected.

By definition, the CPU to which a channel set is
connected after system reset is called the home
CPU for that channel set. The address of the
channel set may or may not be the same as the
address of its home CPU.

When no channel set is connected to a particular
CPU, the execution of any I/0 instruction results
in a setting of condition code 3. When a channel
set is connected to a particular CPU, condition
code 3 to an I/0 instruction normally indicates
that the addressed channel or device is not opera-
tional. The I/O instructions are described in
Chapter 12, "Input/Output Operations."" The con-
nection or disconnection of a channel set is not
considered to be a change in the channel state for
purposes of setting to one the machine-check
external-damage-code bit 3, channel not operation-
al. The setting of this bit, even when a channel set
is disconnected, indicates only those changes from
the operational state to the not-operational state
which would be seen if the channel set were con-
nected to a CPU.

Chapter 4. Control 4-33

Chapter 5. Program Execution

Contents

Instructions 5-1
Operands 5-1
Instruction Format 5-2
Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3
Address Generation 5-3
Sequential Instruction-Address Generation 5-4
Operand-Address Generation 5-4
Branch-Address Generation 5-4
Instruction Execution and Sequencing 5-5
Interruptions 5-§
Types of Instruction Ending 5-5
Interruptible Instructions 5-6
Point of Interruption 5-6
Execution of Interruptible Instructions 5-6
Exceptions to Nullification and Suppression 5-6
Storage Change and Restoration for DAT-Associated
Access Exceptions 5-7
Modification of DAT-Table Entries 5-7
Trial Execution for TRANSLATE and EDIT 5-7

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequential-
ly, one at a time, left to right in an ascending se-
quence of storage addresses. A change in the se-
quential operation may be caused by branching,
LOAD PSW, interruptions, or manual intervention.

Instructions

Each instruction consists of two major parts:

« An operation code (op code), which specifies the
operation to be performed

¢ The designation of the operands that participate

Operands
Operands can be grouped in three classes: operands
located in registers, immediate operands, and
operands in storage. Operands may be either ex-
plicitly or implicitly designated.

Register operands can be located in general,
floating-point, or control registers, with the type of

Interlocked Update for Suppression 5-8
Sequence of Storage References 5-8

Interlocks for Virtual-Storage References 5-9

Instruction Fetching 5-10

DAT-Table Fetches 5-11

Storage-Key Accesses 5-11

Storage-Operand References 5-11
Storage-Operand Fetch References 5-11
Storage-Operand Store References 5-12
Storage-Operand Update References 5-12

Storage-Operand Consistency 5-13
Single-Access References 5-13
Multiple-Access Operands 5-13
Block-Concurrent References 5-13
Consistency Specification 5-14

Relation between Operand Accesses 5-14

Other Storage References 5-15

Serialization 5-15
CPU Serialization 5-15
Channel Serialization 5-16

register identified by the op code. The register
containing the operand is specified by identifying
the register in a four-bit field, called the R field, in
the instruction. For some instructions, an operand
is located in an implicitly designated register, the
register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in storage may either have an implied
length, be specified by a bit mask, or, in other cas-
es, be specified by a four-bit or eight-bit length
specification, called the L field, in the instruction.
The addresses of operands in storage are specified
by means of a format that uses the contents of a
general register as part of the address. This makes
it possible to:

Chapter 5. Program Execution 5-1

1. Specify a complete address by using an abbrevi-
ated notation

2. Perform address manipulation using instructions
which employ general registers for operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independently of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is
contained in a register designated by the R field in
the instruction or is calculated from a base address,
index, and displacement, designated by the B, X,
and D fields, respectively, in the instruction.

For purposes of describing the execution of in-
structions, operands are designated as first and
second operands and, in some cases, third
operands.

In general, two operands participate in an in-
struction execution, and the result replaces the first
operand. An exception is instructions with "store"
in the instruction name, other than STORE THEN
AND SYSTEM MASK and STORE THEN OR
SYSTEM MASK, where the result replaces the sec-
ond operand. Except when otherwise stated, the
contents of all registers and storage locations par-
ticipating in the addressing or execution part of an
operation remain unchanged.

Instruction Format

An instruction is one, two, or three halfwords in
length and must be located in storage on a half-
word boundary. Each instruction is in one of eight
basic formats: RR, RRE, RX, RS, SI, S, SSE, and
SS, with two variations of SS. (See the figure
"Basic Instruction Formats.")

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the opera-
tion:

« RR denotes a register-and-register operation.

« RRE denotes a register-and-register operation
having an extended op-code field.

« RX denotes a register-and-indexed-storage oper-
ation.

« RS denotes a register-and-storage operation.

« SI denotes a storage-and-immediate operation.

« S denotes an operation using an implied operand
and storage.

5-2 System/370 Principles of Operation

« SS denotes a storage-and-storage operation.
» SSE denotes a storage-and-storage operation
having an extended op-code field.

RR Format
Op Code| Ry | Ry
0 8 12 15
RRE Format
Op Code /11111717] Ry | Ry
0 16 24 28 31
RX Format
Up Code R] Xz Bz DZ
0 8 12 16 20 31
RS Format
Op Code| Ry R3 By Do
0 8 12 16 20 31
SI Format
Op Code I Bq Dy
0 8 16 20 31
S Format
Op Code Bo Dy
0 16 20 31
SS Format
/ /
Op Code L B] 9] Bz D;]
0 8 16 20 32 36 47
/ /
Op Code| Lj Lo Bq B] Bo D;:I
0 8 12 16 20 32 36 47

Basic Instruction Formats (Part 1 of 2)

SSE Format

/ /
Up Code B] D] BZ D j
/ 7
0 16 20 32 36 47

Basic Instruction Formats (Part 2 of 2)

The first byte or, in the RRE, S, and SSE for-
mats, the first two bytes of an instruction contain
the op code. For some instructions in the S format,
all or a portion of the second byte is ignored.

The first two bits of the first or only byte of the
op code specify the length and format of the in-
struction, as follows:

Bit

Positions Instruction Instruction
(0-1) Length Format
00 One halfword RR
01 Two halfwords RX
10 Two halfwords RRE/RS/RX/S/SI
11 Three halfwords SS/SSE

In the format illustration for each individual
instruction description, the op-code field shows the
op code as hexadecimal digits within single quotes.
The hexadecimal representation uses 0-9 for the
codes 0000-1001 and A-F for the codes 1010-
1111.

The remaining fields in the format illustration
for each instruction are designated by code names,
consisting of a letter and possibly a subscript num-
ber. The subscript number denotes the operand to
which the field applies.

Register Operands

In the RR, RRE, RX, and RS formats, the contents
of the register designated by the R, field are called
the first operand. The register containing the first
operand is sometimes referred to as the "first-
operand location." In the RR and RRE formats, the
R, field designates the register containing the sec-
ond operand, and the same register may be desig-
nated for the first and second operand. In the RS
format, the use of the R, field depends on the in-
struction.

The R field designates a general register in the
general instructions and a floating-point register in
the floating-point instructions. In the instructions
LOAD CONTROL and STORE CONTROL the R
field designates a control register.

Unless otherwise indicated in the individual in-
struction description, the register operand is one
register in length (32 bits for a general register or a

control register and 64 bits for a floating-point
register), and the second operand is the same
length as the first.

Immediate Operands

In the SI format, the contents of the eight-bit
immediate-data field, the I, field of the instruction,
are used directly as the second operand. The B,
and D, fields designate the first operand, which is
one byte in length.

Storage Operands

In the SI, SSE, and SS formats, the contents of the
general register designated by the B, field are add-
ed to the contents of the D, field to form the first-
operand address. In the S, RS, SSE, and SS for-
mats, the contents of the general register designat-
ed by the B, field are added to the contents of the
D, field to form the second-operand address. In
the RX format, the contents of the general registers
designated by the X, and B, fields are added to the
contents of the D, field to form the second-
operand address.

In the SS format, with two length fields given,
L, specifies the number of additional operand bytes
to the right of the byte designated by the first-
operand address. Therefore, the length in bytes of
the first operand is 1-16, corresponding to a length
code in L; of 0-15. Similarly, L, specifies the
number of additional operand bytes to the right of
the location designated by the second-operand ad-
dress. Results replace the first operand, and are
never stored outside the field specified by the ad-
dress and length. If the first operand is longer than
the second, the second operand is extended on the
left with zeros up to the length of the first operand.
This extension does not modify the second operand
in storage.

In the SS format with a single, eight-bit length
field, L specifies the number of additional operand
bytes to the right of the byte designated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-256, corresponding
to a length code in L of 0-255. Storage results
replace the first operand and are never stored out-
side the field specified by the address and length.
In this format, the second operand has the same
length as the first operand, except for the following
instructions: EDIT, EDIT AND MARK, TRANS-
LATE, and TRANSLATE AND TEST.

Address Generation

Execution of instructions by the CPU involves gen-
eration of the addresses of instructions and
operands.

Chapter 5. Program Execution 5-3

Sequential Instruction-Address Generation
When an instruction is fetched from the location
designated by the current PSW, the instruction ad-
dress is increased by the number of bytes in the
instruction, and the instruction is executed. The
same steps are then repeated using the new value
of the instruction address to fetch the next instruc-
tion in the sequence.

Instruction addresses wrap around, with the half-
word at location 224 — 2 being followed by the
halfword at location 0. Thus, any carry out of
PSW bit position 40, as a result of updating the
instruction address, is lost.

Operand-Address Generation

An operand address that refers to storage either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 24-bit number con-
tained in a general register specified by the pro-
gram in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a means
of independently addressing each program and data
area. In array-type calculations, it can specify the
location of an array, and, in record-type processing,
it can identify the record. The base address pro-
vides for addressing the entire storage. The base
address may also be used for indexing.

The index (X) is a 24-bit number contained in a
general register designated by the program in a
four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
RX instruction format. The RX format instructions
permit double indexing; that is, the index can be
used to provide the address of an element within an
array.

The displacement (D) is a 12-bit number con-
tained in a field, called the D field, in the instruc-
tion. The displacement provides for relative ad-
dressing of up to 4,095 bytes beyond the location
designated by the base address. In array-type cal-
culations, the displacement can be used to specify
one of many items associated with an element. In
the processing of records, the displacement can be
used to identify items within a record.

In forming the address, the base address and
index are treated as 24-bit unsigned binary inte-
gers. The displacement is similarly treated as a
12-bit unsigned binary integer, and 12 zeros are
appended on the left. The three are added as 24-
bit binary numbers, ignoring overflow. The sum is
always 24 bits long. The bits of the generated ad-

5-4 System/370 Principles of Operation

dress are numbered 8-31, corresponding to the
numbering of the base-address and index bits in the
general register.

A zero in any of the By, B,, or X, fields indi-
cates the absence of the corresponding address
component. For the absent component, a zero is
used in forming the address, regardless of the con-
tents of general register 0. A displacement of zero
has no special significance.

When an instruction description specifies that
the contents of a general register designated by an
R field are used to address an operand in storage,
bit positions 8-31 of the register provide the
operand address.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed prior to the execution of the operation.

Unless otherwise indicated in an individual in-
struction definition, the generated operand address
designates the leftmost byte of an operand in stor-
age.

Programming Note

Negative values may be used in index and base-
address registers. Bits 0-7 of these values are al-
ways ignored.

Branch-Address Generation

For branch instructions, the address of the next
instruction to be executed when the branch is taken
is called the branch address. Depending on the
branch instruction, the instruction format may be
RR, RS, or RX.

In the RS and RX formats, the branch address is
designated by a base address, a displacement, and,
for RX, an index. In the RS and RX formats, the
branch address generation follows the normal rules
for operand-address generation.

In the RR format, the contents of bit positions
8-31 of the general register designated by the R,
field are used as the branch address. General reg-
ister 0 cannot be designated as containing a branch
address. A value of zero in the R, field causes the
instruction to be executed without branching.

For several branch instructions, branching de-
pends on satisfying a specified condition. When
the condition is not satisfied, the branch is not tak-
en, normal sequential instruction execution contin-
ues, and the branch address is not used. When a
branch is taken, bits 8-31 of the generated branch
address replace bits 40-63 of the current PSW.

The branch address is not used to address storage
as part of the branch operation.

~4

<

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not recog-
nized as part of the branch operation but instead
are recognized as exceptions associated with the
execution of the instruction at the branch location.

A branch instruction, such as BRANCH AND
LINK, can designate the same general register for
branch-address computation and as the location of
an operand. Branch-address computation is com-
pleted before the remainder of the operation is ex-
ecuted.

Instruction Execution and Sequencing
The program-status word (PSW), described in
Chapter 4, "Control," contains information re-
quired for proper program execution. The PSW is
used to control instruction sequencing and to hold
and indicate the status of the machine in relation to
the program currently being executed. The active
or controlling PSW is called the current PSW.

Branch instructions perform the functions of
decision-making, loop control, and subroutine link-
age. A branch instruction affects instruction se-
quencing by introducing a new instruction address
into the current PSW,

Facilities for decision making are provided by
the BRANCH ON CONDITION instruction. This
instruction inspects a condition code that reflects
the result of a majority of the arithmetic, logical,
and I/0 operations. The condition code, which
consists of two bits, provides for four possible
condition-code settings: 0, 1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
example, the condition code reflects such condi-
tions as zero, nonzero, first operand high, equal,
overflow, and channel busy. Once set, the condi-
tion code remains unchanged until modified by an
instruction that causes a different condition code to
be set. See Appendix C, ""Condition-Code Set-
tings," for a summary of the instructions which set
the condition code.

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arithme-
tic and tests, the instructions BRANCH ON
COUNT, BRANCH ON INDEX HIGH, and
BRANCH ON INDEX LOW are provided. These
branches, being specialized, provide increased per-
formance for these tasks.

Subroutine linkage is provided by the BRANCH
AND LINK instructions, which permit not only the
introduction of a new instruction address but also

the preservation of the return address and associat-
ed information. Subroutine linkage between a pro-
gram and the supervisor program is provided by
means of the SUPERVISOR CALL instruction.

Interruptions

Interruptions permit the CPU to change state as a
result of conditions external to the system, in
input/output (I/0) devices, or in the CPU itself.
Details are to be found in Chapter 6,
"Interruptions."

Six classes of interruption conditions are possi-
ble: external, I/O, machine check, program,
restart, and supervisor call. Each class has two
related PSWs, called old and new, in permanently
assigned storage locations. In all classes, an inter-
ruption involves storing information identifying the
cause of the interruption, storing the current PSW
at the old-PSW position, and fetching the PSW at
the new-PSW position, which becomes the current
PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted pro-
gram. At the conclusion of the program invoked by
the interruption, the instruction LOAD PSW may
be used to restore the current PSW to the value of
the old PSW.

Types of Instruction Ending

Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Completion of instruction execution provides
results as called for in the definition of the instruc-
tion. When an interruption occurs after the com-
pletion of the execution of an instruction, the in-
struction address in the old PSW designates the
next instruction to be executed.

Suppression of instruction execution causes the
instruction to be executed as if it specified ''no
operation.' The contents of any result fields, in-
cluding the condition code, are not changed. The
instruction address in the old PSW on an interrup-
tion after suppression designates the next sequen-
tial instruction.

Nullification of instruction execution has the
same effect as suppression, except that when an
interruption occurs after the execution of an in-
struction has been nullified, the instruction address
in the old PSW designates the instruction whose
execution was nullified instead of the next sequen-
tial instruction.

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation may

Chapter 5. Program Execution 5-5

have replaced all, part, or none of the contents of
the designated result fields and may have changed
the condition code if such change was called for by
the instruction. Unless the interruption is caused
by a machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state
or the operation of the machine has not been af-
fected in any other way. The instruction address in
the old PSW on an interruption after termination
designates the next sequential instruction.

Partial completion of instruction execution oc-
curs only for interruptible instructions; it is de-
scribed in the next section.

Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an
instruction is one operation. An interruption is
permitted between operations; that is, an interrup-
tion can occur after the performance of one opera-
tion and before the start of a subsequent operation.
For the following instructions, referred to as
interruptible instructions, an interruption is permit-
ted after partial completion of the instruction:

COMPARE LOGICAL LONG
MOVE LONG

The execution of an interruptible instruction is
considered to consist of a number of units of opera-
tion, and an interruption is permitted between units
of operation. The amount of data processed in a
unit of operation depends on the particular instruc-
tion and may depend on the model and on the par-
ticular condition that causes the execution of the
instruction to be interrupted.

Whenever points of interruption that include
those occurring within the execution of an interrup-
tible instruction are discussed, the term ''unit of
operation' is used. For a noninterruptible instruc-
tion, the entire execution consists, in effect, of one
unit of operation.

Execution of Interruptible Instructions

The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an in-
terruption occurs after completion, nullification, or
suppression of a unit of operation, all prior units of
operation have been completed.

On completion of a unit of operation other than
the last one (and on nullification of any unit of
operation), the instruction address in the old PSW
designates the interrupted instruction, and the

5-6 System/370 Principles of Operation

operand parameters are adjusted such that the ex-
ecution of the interrupted instruction is resumed
from the point of interruption when the old PSW
stored on the interruption is made the current PSW.
It depends on the instruction how the operand par-
ameters are adjusted.

When a unit of operation is suppressed, the in-
struction address in the old PSW designates the
next sequential instruction. The operand parame-
ters, however, are adjusted so as to indicate the
extent to which instruction execution has been
completed. If the instruction is reexecuted after
the conditions causing the suppression have been
removed, the execution is resumed from the point
of interruption. As in the case of completion and
nullification, it depends on the instruction how the
operand parameters are adjusted.

When an exception which causes termination
occurs as part of a unit of operation of an interrup-
tible instruction, the entire operation is terminated,
and the contents, in general, of any fields due to be
changed by the instruction are unpredictable. On
such an interruption, the instruction address in the
old PSW designates the next sequential instruction.

Programming Notes

1. Any interruption, other than supervisor call and
some program interruptions, can occur after a
partial execution of an interruptible instruction.
In particular, interruptions for external, I/0,
machine-check, restart, and program interrup-
tions for access exceptions and PER events can
occur between units of operation.

2. The amount of data processed in a unit of oper-
ation of an interruptible instruction depends on
the model and may depend on the type of con-
dition which causes the execution of the in-
struction to be interrupted or stopped. Thus,
when an interruption occurs at the end of the
current unit of operation, the length of the unit
of operation may be different for different
types of interruptions. Also, when the stop
function is requested during the execution of an
interruptible instruction, the CPU enters the
stopped state at the completion of the execution
of the current unit of operation. Similarly, in
the instruction-step mode, only a single unit of
operation is performed, but the unit of opera-
tion for the various cases of stopping may be
different.

Exceptions to Nullification and Suppression
In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception

which would normally result in nullification or sup-
pression. These situations are exceptions to the
general rule that the operation is treated as a no-
operation when an exception requiring nullification
or suppression is recognized. Each of these situa-
tions may result in the turning on of the change bit
associated with the store-type operand, even
though the final result in storage may appear un-
changed. Depending on the particular situation,
additional effects may be observable, the extent of
which is described for each of the situations.

All of these situations are limited to the extent
that a store access does not occur and the change
bit is not set when the store access is prohibited.
For the CPU, a store access is prohibited whenever
an access exception exists for that access, or when-
ever an exception exists which is of higher priority
than the priority of an access exception for that
access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the instruc-
tion address in the old PSW designates the next
sequential instruction. When an interruption for an
exception requiring nullification occurs, the instruc-
tion address in the old PSW designates the instruc-
tion causing the exception even though partial re-
sults may have been stored.

Storage Change and Restoration for DAT-
Associated Access Exceptions

In this section, the term "DAT-associated access
exceptions' is used to refer to those exceptions
which may occur as part of the dynamic-address-
translation process. These exceptions are page
translation, segment translation, translation specifi-
cation, and addressing due to a DAT-table entry
being specified that is outside the main storage of
the installation. The first two of these exceptions
normally cause nullification, and the last two nor-
mally cause suppression.

For DAT-associated access exceptions, on some
systems, a channel may observe the effects on stor-
age described in the following case.

When, for an instruction having a store-type
operand, a DAT-associated access exception is
recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may change to an
intermediate value and then back to the original
value.

The accesses associated with storage change and
restoration for DAT-associated access exceptions
are only observable by a channel and are not ob-
servable by another CPU in a multiprocessing con-
figuration. Except for multiple-access operands,

the intermediate value, if any, is always equal to
what would have been the final value if the DAT-
associated access exception had not occurred.

Programming Notes

1. Storage change and restoration for DAT-
associated access exceptions occur in two main
situations:

a. The exception is recognized for a portion of
a store-type operand which crosses a page
boundary, and the other portion has no ac-
cess exception.

b. The exception is recognized for one ope-
rand of an instruction having two storage
operands (for example, an SS-format in-
struction or MOVE LONG), and the other
operand, which is a store-type operand, has
no access exception.

2. To avoid letting the channel observe intermedi-
ate operand values due to storage change and
restoration for DAT-associated access excep-
tions (especially when a CCW chain is modi-
fied), the program should do one of the follow-
ing:

a. Operate on one storage page at a time, or

b. Perform preliminary testing to ensure that
no exceptions will occur for any of the re-
quired pages, or

c. Operate with DAT off.

Modification of DAT-Table Entries

When a valid and attached DAT-table entry is
changed to a value which would cause an excep-
tion, and when, before the TLB is purged, an at-
tempt is made to refer to storage using a virtual
address requiring that entry for translation, the
contents of any fields due to be changed by the
instruction are unpredictable. Results, if any, asso-
ciated with the virtual address whose DAT-table
entry was changed are placed in those real loca-
tions originally associated with the address. Fur-
thermore, it is unpredictable whether or not an
interruption occurs for an access exception that was
not initially applicable.

Trial Execution for TRANSLATE and EDIT

For the instructions TRANSLATE (TR), EDIT
(ED), and EDIT AND MARK (EDMK), the por-
tions of the operands that are actually used in the
operation may be established in a trial execution
for operand accessibility that is performed before
the execution of the instruction is started. This
trial execution consists in an execution of the in-
struction in which results are not stored. If the
first operand of TR or either operand of ED or

Chapter 5. Program Execution 5-7

EDMK is changed by an I/O operation, or by an-
other CPU, after the initial trial execution but be-
fore completion of execution, the contents of any
fields due to be changed by the instruction are un-
predictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an access
exception that was not initially applicable.

Interlocked Update for Suppression

When, for an instruction with a store-type operand,
an exception is recognized whose priority is equal
to or lower than an access exception for some por-
tion of the store-type operand, an interlocked up-
date which does not change the contents of the
location may occur for that portion of the store-
type operand.

When the exception is a specification exception
for a store-type operand which requires alignment
on integral boundaries, the interlocked update
which may occur is limited to the single byte at the
location specified by the operand address.

Programming Note

Examples of when an interlocked update may occur

to the destination-operand location in storage are:

« Decimal-divide exception for DIVIDE DECI-
MAL

« Specification exception for an odd register num-
ber for COMPARE DOUBLE AND SWAP

« Data exception for an invalid decimal sign for
ADD DECIMAL

Sequence of Storage References
Conceptually, the CPU processes instructions one
at a time, with the execution of one instruction
preceding the execution of the following instruc-
tion. The execution of the instruction specified by
a successful branch follows the execution of the
branch. Similarly, an interruption takes place be-
tween instructions or, for interruptible instructions,
between units of operation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation appears to the program to be
performed sequentially, with the current instruction
being fetched after the preceding operation is com-
pleted and before the execution of the current op-
eration is begun. This appearance is maintained,
even though the storage-implementation character-
istics and overlap of instruction execution with
storage accessing may cause actual processing to be
different. The results generated are those that
would have been obtained had the operations been
performed in the conceptual sequence. Thus, it is

5-8 System/370 Principles of Operation

possible for an instruction to modify the next suc-
ceeding instruction in storage.

In simple models in which operations are not
overlapped, the conceptual and actual sequences
are essentially the same. However, in more com-
plex machines, overlapped operation, buffering of
operands and results, and execution times which
are comparable to the propagation delays between
units can cause the actual sequence to differ con-
siderably from the conceptual sequence. In these
machines, special circuitry is employed to detect
dependencies between operations and ensure that
the results obtained are those that would have been
obtained if the operations had been performed in
the conceptual sequence. However, other CPUs
and channels may, unless otherwise constrained,
observe a sequence that differs from the conceptual
sequence. Also, in certain situations involving dy-
namic address translation were different virtual
addresses map to the same real address, the effect
of overlapped operation may be observable.

It can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists of a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands
and storing results. As a consequence, a channel or
another CPU may be able to observe intermediate
or partially completed results.

When the program on the CPU interacts with a
program on a channel or on another CPU, the pro-
grams may have to take into consideration that a
single operation may consist of a series of storage
references, that a storage reference may in turn
consist of a series of accesses, and that the concep-
tual and actual sequences of these accesses may
differ. Storage references associated with instruc-
tion execution are of the following types: instruc-
tion fetches, DAT-table fetches, storage-key ac-
cesses, and storage-operand references.

Programming Note

The sequence of execution may differ from the

simple conceptual definition in the following ways:

« As viewed by a program in the CPU, instructions
may appear to be prefetched when different ef-
fective addresses are used. (See the section
"Interlocks for Virtual-Storage References' in
this chapter.)

« As viewed by a program in a channel or another
CPU, the execution of an instruction may appear
to be performed as a sequence of piecemeal

steps. This is described for each type of storage
reference in one of the following sections.

o As viewed by a program in a channel or another
CPU, the storage-operand accesses associated
with one instruction are not necessarily per-
formed in the conceptual sequence. (See the
section '""Relation between Operand Accesses'' in
this chapter.)

e As viewed by a program in a channel, in certain
unusual situations, the contents of storage may
appear to change and then be restored to the
original value. (See the section "Storage Change
and Restoration for DAT-Associated Access Ex-
ceptions' earlier in this chapter.)

Interlocks for Virtual-Storage References
As described in the previous section, CPU opera-
tion appears to that CPU to be performed sequen-
tially; the results stored by one instruction appear
to the CPU to be completed before the next in-
struction is fetched. This appearance is maintained
in overlapped machines by means of special circui-
try to detect accesses to a common location by
comparing effective addresses.

For purposes of this definition, the term
"effective address' is used to denote the address
before translation, if any, regardless of whether the
address is virtual, real, or absolute. If two effective
addresses have the same value and map to the same
location, the addresses are said to be the same even
though one may be real or in a different address
space.

When all accesses to a location are made using
the same effective address, then the above rule is
strictly maintained, as observed by the CPU itself.
When different effective addresses are used to ac-
cess the common location, the above rule does not
hold in two cases:

1. For some instructions, the definition specifies
the results which must be obtained for overlap-
ping operands. This definition is specified in
terms of the sequence of the storage accesses;
that is, the results of some or all of the stores
of one operand must be placed in storage be-
fore some parts or all parts of the other
operand are fetched. When the store and the
fetch are performed by means of different ef-
fective addresses, then the operand may appear
to be fetched before the store.

2. When an instruction changes the contents of a
storage location from which a conceptually sub-
sequent instruction is to be executed, either
directly or by means of EXECUTE, and when
different effective addresses are used to desig-
nate that location for storing the result and

fetching the instruction, the instruction may
appear to be fetched before the store occurs.
This does not occur if an intervening operation
causes the prefetched instructions to be dis-
carded. A definition of when prefetched in-
structions must be discarded is included in the
section "Instruction Fetching' later in this
chapter.

Any change to the storage key appears to be
completed before the following reference to the
associated storage block is made, regardless of
whether the reference to the storage location is
made by a virtual or real address. Analogously,
any prior references to the storage block appear
completed when the key for that block is changed
or inspected.

Programming Note

A single location can be accessed in several ways

by more than one address.

1. The DAT tables may be set up in such a way
that more than one virtual address maps to a
single real address in a single address space.

2. The translation of logical and virtual addresses
may be changed by loading the DAT parame-
ters in the control registers or, for logical ad-
dresses, by turning DAT on or off.

3. Certain instructions use real addresses.

4. Accesses to storage for the purpose of storing
and fetching information for interruptions is
performed by means of real addresses, whereas
accesses by the program may be by means of
virtual addresses.

5. The real-to-absolute mapping may be changed
by means of the instruction SET PREFIX.

6. A location may be accessed by I/O by means
of an absolute address and by the CPU by
means of a real or a virtual address.

7. A location may be accessed by another CPU by
means of one type of address and by this CPU
by means of a different type of address.

8. The CPU updates the interval timer by means
of a real address, and the program may access
the location by means of a virtual address.

The primary purpose of this section is to describe
the effects caused by case 1 above.

For case 2, the effect is not observable, since
prefetched instructions are discarded and the effect
of delayed stores is not observable to the CPU it-
self.

For case 3, those instructions which fetch using
real addresses (for example, LOAD REAL AD-
DRESS), no effect is observable. This is because
the only effect across instructions is the prefetching

Chapter 5. Program Execution 5-9

of instructions, and instructions which fetch using
real addresses thus have no special effect. All in-
structions which store using a real address cause
prefetched instructions to be discarded, and no
effect is observable.

Cases 4 and 5 are situations which are defined
to cause serialization, with the result that pre-
fetched instructions are discarded. In these cases,
no effect is observable.

The handling of cases 6 and 7 involves accesses
as observed by channels and other CPUs and is
covered in the following sections in this chapter.

For case 8, the effect of updating the interval
timer is observable only if an instruction is fetched
from location 80 using a virtual address which is
not 80 but maps'to 80.

Instruction Fetching

Instruction fetching consists in fetching the one,
two, or three halfwords specified by the instruction
address in the current PSW. The immediate field
of an instruction is accessed as part of an instruc-
tion fetch. If, however, an instruction specifies a
storage operand at the location occupied by the
instruction itself, the location is accessed both as an
instruction and as a storage operand. The fetch of
the target instruction of EXECUTE is considered
to be an instruction fetch.

The bytes of an instruction may be fetched
piecemeal and are not necessarily accessed in a
left-to-right direction. The instruction may be
fetched multiple times for a single execution; for
example, it may be fetched for testing the addressa-
bility of operands or for inspection of PER events,
and it may be refetched for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched for each time they
are executed. In particular, the fetching of an in-
struction may precede the storage-operand refer-
ences for an instruction that is conceptually earlier.
The instruction fetch occurs prior to all storage-
operand references for all instructions that are con-
ceptually later.

An instruction may be prefetched using a virtual
address only when the associated DAT table entries
are attached and valid. Instructions which are pre-
fetched may be interpreted for execution only for

5-10 System/370 Principles of Operation

the same virtual address for which the instruction
was prefetched.

There is no limit established as to the number of
instructions which may be prefetched, and multiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction execu-
ted is not necessarily the most recently fetched
copy. Storing caused by channels or by other
CPUs does not necessarily change the copy of pre-
fetched instructions. However, if a store that is
conceptually earlier occurs on the same CPU using
the same logical address as that by which the in-
struction is subsequently fetched, the updated in-
formation is obtained.

All copies of prefetched instructions are discard-
ed when:

o A serializing function is performed

« The CPU enters the operating state

« The CPU changes from DAT on to DAT off or
from DAT off to DAT on

« A change is made to the translation parameters
in control registers 0 and 1 when DAT is on

Programming Notes

1. As observed by a CPU itself, instruction pre-
fetching is not normally apparent; the only ex-
ception occurs when more than one virtual ad-
dress is translated to a single real address. This
is described in the section "Interlocks for
Virtual-Storage References' in this chapter.

2. The following are some effects of instruction
prefetching on the execution of a program as
viewed by another CPU.

If a program 1n one CPU changes the contents
of a storage location and then sets a flag to indi-
cate that the change has been made, a program in
another CPU can test and find the flag set but sub-
sequently can branch to the modified location and
execute the original contents. Additionally, when a
channel or another CPU modifies an instruction, it
is possible for a CPU to recognize the changes to
some but not all bit positions of the instruction.

It is possible for a CPU to prefetch an instruc-
tion and subsequently, before the instruction is
executed, for another CPU to change the storage
key. As a result, a CPU may appear to execute
instructions from a protected storage location.

DAT-Table Fetches

Fetching of dynamic-address-translation (DAT)

table entries may occur as follows:

1. DAT-table entries may be prefetched into the
translation-lookaside buffer (TLB) and used
from the TLB without refetching from storage,
until the entry is purged by an INVALIDATE
PAGE TABLE ENTRY, PURGE TLB, or SET
PREFIX instruction. DAT-table entries are not
necessarily fetched in the sequence conceptual-
ly called for; they may be fetched at any time
they are attached and valid, including during
the execution of conceptually previous instruc-
tions.

2. All bytes of a DAT table entry are fetched con-
currently, as viewed by all CPUs in the con-
figuration. However, the reference to the entry
may appear to access a single byte at a time, as
viewed by 1/0.

3. A DAT-table entry may be fetched even after
some operand references for the instruction
have already occurred. The fetch may occur as
late as just prior to the actual byte access re-
quiring the DAT entry.

4. A DAT-table entry may be fetched for each use
of the address, including any trial execution,
and for each reference to each byte of each
operand.

5. The DAT page-table-entry fetch precedes the
reference to the page. When no copy of the
page-table entry is in the TLB, the fetch of the
associated segment-table entry precedes the
fetch of the page-table entry.

Storage-Key Accesses

References to the storage key are handled as fol-

lows:

1. Whenever a reference to storage is made and
key-controlled protection applies to the refer-
ence, the four access-control bits and the fetch-
protection bit associated with the storage loca-
tion are inspected concurrently with the refer-
ence to the storage location.

2. When storing is performed, the change bit is set
in the associated storage key concurrently with
the store operation.

3. The instruction SET STORAGE KEY causes all
seven bits to be set concurrently in the storage
key. The access to the storage key for SET
STORAGE KEY follows the sequence rules for
storage-operand store references and is a
single-access reference.

4. The instruction INSERT STORAGE KEY pro-
vides a consistent image of the field, which

consists of all seven bits of the storage key.
The access to the storage key for INSERT
STORAGE KEY follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

5. The instruction RESET REFERENCE BIT
modifies only the reference bit. All other bits
of the storage key remain unchanged. The ref-
erence bit and change bit are examined concur-
rently to set the condition code. The access to
the storage key for RESET REFERENCE BIT
follows the sequence rules for storage-operand
update references. The reference bit is the
only bit which is updated.

The record of references provided by the refer-
ence bit is not necessarily accurate, and the han-
dling of the reference bit is not subject to the con-
currency rules. However, in the majority of situa-
tions, reference recording approximately coincides
with the storage reference.

The change bit may be set in cases when no
storing has occurred. See the section '"Change
Recording" in Chapter 3, "Storage."

Storage-Operand References

A storage-operand reference is the fetching or stor-
ing of the explicit operand or operands in the stor-
age locations specified by the instruction.

During the execution of an instruction, all or
some of the storage operands for that instruction
may be fetched, intermediate results may be main-
tained for subsequent modification, and final re-
sults may be temporarily held prior to placing them
in storage. Stores caused by channels do not nec-
essarily affect these intermediate results. Storage-
operand references are of three types: fetches,
stores, and updates.

Storage-Operand Fetch References

When the bytes of a storage operand participate in
the instruction execution only as a source, the
operand is called a fetch-type operand, and the
reference to the location is called a storage-operand
fetch reference. A fetch-type operand is identified
in individual instruction definitions by indicating
that the access exception is for fetch.

All bits within a single byte of a fetch reference
are accessed concurrently. When an operand con-
sists of more than one byte, the bytes may be
fetched from storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not neces-
sarily fetched in any particular sequence.

Chapter 5. Program Execution 5-11

Storage-Operand Store References

When the bytes of a storage operand participate in
the instruction execution only as a destination, to
the extent of being replaced by the result, the
operand is called a store-type operand, and the
reference to the location is called a storage-operand
store reference. A store-type operand is identified
in individual instruction definitions by indicating
that the access exception is for store.

All bits within a single byte of a store reference
are accessed concurrently. When an operand con-
sists of more than one byte, the bytes may be
placed in storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not neces-
sarily stored in any particular sequence.

The CPU may delay storing results into storage.
There is no defined limit on the length of time that
results may remain pending before they are stored.

This delay does not affect the sequence in which
results are placed in storage. The results of one
instruction are placed in storage after the results of
all preceding instructions have been placed in stor-
age and before any results of the succeeding in-
structions are stored as observed by channels. The
results of any one instruction are stored in the se-
quence specified for that instruction.

The CPU does not fetch operands or DAT-table
entries from a storage location until all information
destined for that location by the CPU has been
stored. Prefetched instructions may appear to be
updated before the information appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the CPU
enters the stopped state. ‘

Storage-Operand Update References

In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location consists
first of a fetch and subsequently of a store. Such
an operand is called an update-type operand, and
the combination of the two accesses is referred to
as an update reference. Instructions such as
MOVE ZONES, TRANSLATE, OR (OC, OI), and
ADD DECIMAL cause an update to the first-
operand location. In most cases, no special inter-
lock is provided between the fetch and store, and
accesses by another CPU or channel are permitted.
An update-type operand is identified in the individ-
ual instruction definition by indicating that the
access exception is for both fetch and store. The
fetch and store accesses associated with an update
reference do not necessarily occur one immediately
after the other, and it is possible for another CPU
or a channel to make one or more interleaved ac-

5-12 System/370 Principles of Operation

cesses to the same location. The interleaved ac-
cesses can be either fetches or stores.

The following instructions perform an update N
which is interlocked against accesses by another J
CPU to the same location during the execution of
the instruction. The instructions TEST AND SET,
COMPARE AND SWAP, and COMPARE DOU-
BLE AND SWAP cause an interlocked update. On
models in which the STORE CHARACTERS UN-
DER MASK instruction with a mask of zero fetch-
es and stores the byte designated by the second-
operand address, the fetch and store accesses are
an interlocked update.

The fetch and store accesses associated with an
interlocked-update reference do not necessarily
occur one immediately after the other, but all ac-
cesses by another CPU are prevented from occur-
ring between the fetch and the store accesses of an
interlocked update. I/0O accesses may occur during
the interlock period.

Within the limitations of the above requirements,
the fetch and store accesses associated with an up-
date follow the same rules as the fetches and stores
described in the previous sections.

Programming Notes
1. When two CPUs attempt to update information
at a common main-storage location by an in- .
struction that causes fetching and subsequently ‘
storing of the updated information, it is possible
for both CPUs to fetch the information and
subsequently make the store access. The
change made by the first CPU to store the re-
sult in such a case is lost. Similarly, if one
CPU updates the contents of a field but anoth-
er CPU makes a store operation to that field
between the fetch and store parts of the update
reference, the effect of the store is lost. If,
instead of a store access, a CPU makes an
interlocked-update reference to the common
storage field between the fetch and store por-
tions of an update due to another CPU, any
change in the contents produced by the inter-
locked update is lost.
2. Only those bytes which are included in the re-
sult field of both operations are considered to
be part of the common main-storage location.
However, all bits within a common byte are
considered to be common even if the bits modi-
fied by the two operations do not overlap. As
an example, if (1) one CPU executes the in-
struction OR (OC) with a length of 1 and the
value ‘80’ in the second-operand location and
(2) the other CPU executes AND (NC) with a Y
length of 1 and the value ‘FE’ in the second- J

operand location, and (3) the first operand of

both instructions is the same byte, then one of

the updates can be lost.

3. When the store access is part of an update ref-
erence by the CPU, the execution of the storing
is not necessarily contingent on whether the
information to be stored is different from the
original contents of the location. In particular,
the contents of all designated byte locations are
replaced, and, for each byte in the field, the
entire contents of the byte are replaced.

Depending on the model, an access to store
information may be performed, for example, in
the following cases:

a. Execution of the OR instruction (OI or
OC) with a second operand of all zeros.

b. Execution of OR (OC) with the first- and
second-operand fields coinciding.

c. For those locations of the first operand of
TRANSLATE where the argument and
function values are the same.

4. The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP facilitate updating of a common storage
field by two CPUs. In order for the change by
either CPU not to be lost, both CPUs must use
an instruction providing an interlocked update.
It is possible, however, for a channel to make
an access to the same storage location between
the fetch and store portions of an interlocked
update.

Storage-Operand Consistency

Single-Access References

A fetch reference is said to be a single-access refer-
ence if the value is fetched in a single access to
each byte of the data field. In the case of overlap-
ping operands, the location may be accessed once
for each operand. A store-type reference is said to
be a single-access reference if a single store access
occurs to each byte location within the data field.
An update reference is said to be single-access if
both the fetch and store accesses are each single-
access.

Except for the accesses associated with multiple-
access operands and the stores associated with stor-
age change and restoration for DAT-associated
access exceptions, storage-operand references are
single-access references.

Multiple-Access Operands

For some instructions, multiple accesses may be
made to all or some of the bytes of a storage
operand. The following cases are those storage-

operand references which may be multiple-access

ones.

1. The storage references associated with the deci-
mal operands of the following instructions are
not necessarily single-access references: the
decimal instructions and the instructions CON-
VERT TO BINARY, CONVERT TO DECI-
MAL, MOVE WITH OFFSET, PACK, and
UNPACK.

2. The operands of MOVE INVERSE.

3. The stores into that portion of the first operand
of MOVE LONG which is filled with padding
bytes.

When a storage-operand store reference to a
location is not a single-access reference, the con-
tents placed at a byte location are not necessarily
the same for each store access; thus, intermediate
results in a single-byte location may be observed by
channels.

Programming Notes

1. When multiple fetch accesses are made to a
single byte that is being changed by a channel
or another CPU, the result is not necessarily
limited to that which could be obtained by
fetching the bits individually. For example, the
execution of MULTIPLY DECIMAL may con-
sist of repetitive additions and subtractions
each of which causes the second operand to be
fetched from storage.

2. When CPU instructions are used to modify
storage locations being accessed by a channel
simultaneously, multiple store accesses to a sin-
gle byte by the CPU may result in intermediate
values being observed by a channel. To avoid
these intermediate values (especially when
modifying a CCW chain), only instructions
making single-access references should be used.

Block-Concurrent References

For some references, the accesses to all bytes with-
in a halfword, word, or doubleword are specified to
be concurrent as observed by other CPUs. These
accesses do not necessarily appear to a channel to
include more than a byte at a time. The halfword,
word, or doubleword is referred to in this section as
a block. When a fetch-type reference is specified
to be concurrent within a block, no store access to
the block by another CPU is permitted during the
time that bytes contained in the block are being
fetched. I/0 accesses to the bytes within the block
may occur between the fetches. When a store-type
reference is specified to be concurrent within a
block, no access to the block, either fetch or store,

Chapter 5. Program Execution 5-13

is permitted during the time that the bytes within
the block are being stored. I/0 accesses to the
bytes in the block may occur between the stores.

Consistency Specification

The storage-operand references associated with all

S-format instructions and all RX-format instruc-

tions with the exception of EXECUTE, CONVERT

TO DECIMAL, and CONVERT TO BINARY, are

block-concurrent, as observed by all CPUs, if the

operand is addressed on a boundary which is inte-
gral to the size of the operand.

For the instructions COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP all access-
es to the storage operand appear to be concurrent
as observed by all CPUs.

The instructions LOAD MULTIPLE and STORE
MULTIPLE, when the operand starts on a word
boundary, and the under-mask instructions COM-
PARE LOGICAL CHARACTERS UNDER
MASK, INSERT CHARACTERS UNDER MASK,
and STORE CHARACTERS UNDER MASK, ac-
cess the storage operand in a left-to-right direction,
and all bytes accessed within each doubleword ap-
pear to all CPUs to be accessed concurrently.

When destructive overlap does not exist, the
operands of MOVE (MVC) are accessed as fol-
lows:

1. The first operand is accessed in a left-to-right
direction, and all bytes accessed within a dou-
bleword appear to all CPUs to be accessed con-
currently.

2. The second operand is accessed left to right,
and all bytes within a doubleword in the second
operand that are moved into a single double-
word in the first operand appear to all CPUs to
be fetched concurrently. Thus, if the first and
second operands begin on the same byte offset
within a doubleword, the second operand ap-
pears to be fetched doubleword-concurrent. If
the offsets within a doubleword differ by 4, the
second operand appears to be fetched word-
concurrent.

Destructive overlap is said to exist when the
result location is used as a source after the result
has been stored, assuming processing to be per-
formed one byte at a time.

The operands for MOVE LONG and COM-
PARE LOGICAL LONG appear to all CPUs to be
accessed doubleword-concurrent when both
operands start on doubleword boundaries and are
an integral number of doublewords in length, and,
for MOVE LONG, execution is in the nonpadding
portion and the operands do not overlap.

5-14 System/370 Principles of Operation

For EXCLUSIVE OR (XC), when the first and
second operands coincide, the operands appear to
all CPUs to be accessed doubleword-concurrent.

Programming Note

In the case of EXCLUSIVE OR (XC) designating
operands which coincide exactly, the bytes within
the field may appear to be accessed three times, by
two fetches and one store: once as the fetch por-
tion of the first operand update, once as the
second-operand fetch, and then once as the store
portion of the first-operand update. Each of the
three accesses appears to all CPUs to be
doubleword-concurrent, but the three accesses do
not necessarily appear to occur one immediately
after the other.

Relation between Operand Accesses
Storage-operand fetches associated with one in-
struction execution must appear to precede all
storage-operand references for conceptually subse-
quent instructions. A storage-operand store speci-
fied by one instruction must appear to precede all
storage-operand stores specified by conceptually
subsequent instructions, but it does not necessarily
precede storage-operand fetches specified by con-
ceptually subsequent instructions. However, a
storage-operand store must precede a conceptually
subsequent storage-operand fetch from the same
main-storage location.

When an instruction has two storage operands
both of which cause fetch references, it is unpre-
dictable which operand is fetched first, or how
much of one operand is fetched before the other
operand is fetched. When the two operands over-
lap, the common locations may be fetched inde-
pendently for each operand.

When an instruction has two storage operands,
the first of which causes a store and the second a
fetch reference, it is unpredictable how much of the
second operand is fetched before the results are
stored. In the case of destructively overlapping
operands, the portion of the second operand which
is common to the first is not necessarily fetched
from storage.

When an instruction has two storage operands,
the first of which causes an update reference and
the second a fetch reference, it is unpredictable
which operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to stor-
age. In the case of destructively overlapping ope-
rands, the portion of the second operand which is

common to the first is not necessarily fetched from
storage.

Programming Note

The independent fetching of a single location for
each of two operands may affect the program exec-
ution in the following situation.

When the same storage location is designated by
two operand addresses of an instruction, and a
channel or another CPU causes the contents of the
location to change during execution of the instruc-
tion, the old and new values of the location may be
used simultaneously. For example, comparison of a
field to itself may yield a result other than equal, or
EXCLUSIVE-ORIing of a field to itself may yield a
result other than zero.

Other Storage References

The restart, program, SVC, external, I/0, and
machine-check PSWs are accessed doubleword-
concurrent as observed by other CPUs. These ref-
erences occur after the conceptually previous unit
of operation and before the conceptually subse-
quent unit of operation. The relationship between
the new-PSW fetch, the old-PSW store, and the
interruption-code store is unpredictable.

Store accesses for interruption codes not stored
within the old PSW are not necessarily single-
access stores. The external and SVC interruption-
code stores occur between the conceptually previ-
ous and conceptually subsequent operations. The
program interruption-code store accesses may pre-
cede the storage-operand references associated with
the instruction which results in the program inter-
ruption.

The CSW and I/O-communications-area stores
occur within the conceptual limits of the interrup-
tion or I/0 instruction with which they are associ-
ated.

Updating of the interval timer occurs after
storage-operand references for the conceptually
previous instruction and before storage-operand
references for the conceptually subsequent instruc-
tion. Interval-timer updates can also occur within
an interruptible instruction between units of opera-
tion.

Serialization

The sequence of functions performed by a CPU is
normally independent of the functions performed
by channels. Similarly, the sequence of functions
performed by a channel is normally independent of
the functions performed by other channels and by
the CPU. However, at certain points in its execu-

tion, serialization of the CPU occurs. Serialization
also occurs at certain points for channels.

CPU Serialization

All interruptions and the execution of certain in-

structions cause serialization of CPU operation. A

serialization operation consists in completing all

conceptually previous storage accesses by the CPU,
as observed by channels and other CPUs, before
the conceptually subsequent storage accesses occur.

Serialization affects the sequence of all CPU ac-

cesses to storage and to the storage keys, except for

those associated with DAT-table-entry fetching.
Serialization is performed by all interruptions
and by the execution of the following instructions:

1. The general instructions BRANCH ON CON-
DITION (BCR) with the M; and R, field con-
taining all ones and all zeros, respectively, and
COMPARE AND SWAP, COMPARE DOU-
BLE AND SWAP, STORE CLOCK, SUPER-
VISOR CALL, and TEST AND SET.

2. LOAD PSW and SET STORAGE KEY.

All I/0 instructions.

4. PURGE TLB and SET PREFIX, which also
cause the translation-lookaside buffer to be
purged.

5. SIGNAL PROCESSOR, READ DIRECT, and
WRITE DIRECT.

6. INVALIDATE PAGE TABLE ENTRY.

The sequence of events associated with a serial-
izing operation is as follows:

« All conceptually previous storage accesses by the
CPU are completed, as observed by channels and
other CPUs. This includes all conceptually pre-
vious stores and changes to the storage keys.

« The normal function associated with the serializ-
ing operation is performed. In the case of in-
struction execution, operands are fetched, and
the storing of results is completed. The excep-
tions are LOAD PSW and SET PREFIX, in
which the operand may be fetched before previ-
ous stores have been completed, and interrup-
tions, in which the interruption code and associ-
ated fields may be stored prior to the serializa-
tion. The fetching of the serializing instruction
occurs before the execution of the instruction
and may precede the execution of previous in-
structions, but may not precede the completion
of the previous serializing operation. In the case
of an interruption, the old PSW, the interruption
code, and other information, if any, are stored,
and the new PSW is fetched, but not necessarily
in that sequence.

w

Chapter 5. Program Execution 5-15

« Finally, instruction fetch and operand accesses
for conceptually subsequent operations may
begin.

A serializing function affects the sequence of
storage accesses that are under the control of the
CPU in which the serializing function takes place.
It does not affect the sequence of storage accesses
under the control of a channel or another CPU.

Programming Notes

1. The following are some effects of a serializing
operation:

a. When an instruction changes the contents
of a storage location that is used as a
source of a following instruction and when
different addresses are used to designate
the same absolute location for storing the
result and fetching the instruction, a serial-
izing operation following the change
ensures that the modified instruction is ex-
ecuted.

b. When a serializing operation takes place,
the channel and any other CPUs observe
instruction and operand fetching and result
storing to take place in the sequence estab-
lished by the serializing operation.

2. Storing into a location from which a serializing
instruction is fetched does not necessarily
affect the execution of the serializing instruc-
tion unless a serializing function has been per-

5-16 System/370 Principles of Operation

formed after the storing and before the execu-
tion of the serializing instruction.

Channel Serialization

Serialization of a channel occurs as follows:

1. For a single channel program, all storage ac-
cesses and storage-key accesses by the channel
follow the execution of START I/0 or START
1/0 FAST RELEASE, as observed by the CPU
and other channels. This includes all accesses
for the CAW, CCWs, and data.

2. For the last CCW of a chain, all storage access-
es and storage-key accesses are completed, as
observed by the CPU and other channels, be-
fore the interruption condition indicating chan-
nel end is presented to the CPU.

3. If a CCW in the chain contains a PCI bit which
is one, all storage accesses and storage-key ac-
cesses due to CCWs preceding it in the chain
are completed, as observed by the CPU and
other channels, before the PCI condition is
presented to the CPU.

The serialization of a channel does not affect the
sequence of storage accesses or storage-key
accesses caused by a program in the CPU or anoth-
er channel. It also does not affect the sequence of
storage accesses or storage-key accesses caused by
other channel programs on the same channel.

Chapter 6. Interruptions

Contents

Interruption Action 6-1
Source Identification 6-4
Enabling and Disabling 6-4
Instruction-Length Code 6-5
Zero ILC 6-5
ILC on Instruction-Fetching Exceptions 6-5
Exceptions Associated with the PSW 6-6
Early Exception Recogunition 6-6
Late Exception Recognition 6-7
External Interruption 6-7
Clock Comparator 6-8
CPU Timer 6-8
Emergency Signal 6-9
External Call 6-9
External Signal 6-9
Interrupt Key 6-9
Interval Timer 6-9
Malfunction Alert 6-10
TOD-Clock Sync Check 6-10
Input/Output Interruption 6-10
Machine-Check Interruption 6-11
Program Interruption 6-11
Program-Interruption Conditions 6-12
Addressing Exception 6-12
Data Exception 6-12

The interruption facility permits the CPU to change
its state as a result of conditions external to the
system, within the system, or within the CPU itself.
To permit fast response to conditions of high
priority and immediate recognition of the type of
condition, interruption conditions are grouped into
six classes: external, input/output, machine check,
program, restart, and supervisor call.

Interruption Action
An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new PSW.
Processing resumes as specified by the new PSW.
The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the

Decimal-Divide Exception 6-13
Decimal-Overflow Exception 6-13
Execute Exception 6-13
Exponent-Overflow Exception 6-13
Exponent-Underflow Exception 6-13
Fixed-Point-Divide Exception 6-13
Fixed-Point-Overflow Exception 6-14
Floating-Point-Divide Exception 6-14
Monitor Event 6-14
Operation Exception 6-14
Page-Translation Exception 6-15
PER Event 6-15
Privileged-Operation Exception 6-15
Protection Exception 6-15
Segment-Translation Exception 6-16
Significance Exception 6-16
Special-Operation Exception 6-16
Specification Exception 6-16
Translation-Specification Exception 6-17
Recognition of Access Exceptions 6-17
Multiple Program-Interruption Conditions 6-19

Restart Interruption 6-22

Supervisor-Call Interruption 6-22

Priority of Interruptions 6-22

interrupted program. For program and
supervisor-call interruptions, the information stored
also contains a code that identifies the length of
the last-executed instruction, thus permitting the
program to respond to the cause of the
interruption. In the case of some program
conditions for which the normal response is
reexecution of the instruction causing the
interruption, the instruction address directly
identifies the instruction last executed.

Except for restart, an interruption can take place
only when the CPU is in the operating state. The
restart interruption can occur with the CPU in
either the stopped or operating state.

The details of source identification, location
determination, and instruction execution are
explained in later sections and are summarized in
the figure "Interruption Action."

Chapter 6. Interruptions 6-1

PSW |Mask Bits
Mask |in Ctrl Execution of
Bits [Registers Instruction
Source Interruption ILC Identified
Identification Code EC|BC|Reg, Bit Set by 01d PSW
MACHINE CHECK Locations 232-239!
(old PSW 48,
new PSW 112)
Exigent condition 13(13 X terminatedzor nullified?
Repressible cond 13(13(14, 4-7 X unaffected
SUPERVISOR CALL Locations 138-139
(o1d PSW 32 in EC mode and
new PSW 96) [34-35 in BC mode
Instruction bits |[00000000 ssssssss 1,2 completed
PROGRAM Locations 142-143
(o1d PSW 40, in EC mode and
new PSW 104) |42-43 in BC mode
Operation 00000000 p0000001 1,2,3|suppressed
Privileged oper 00000000 p0000010 1,2 suppressed
Execute 00000000 p0000011 2 |suppressed
Protection 00000000 p0000100 0,1,2,3|suppressed or terminated
Addressing 00000000 p0000101 0,1,2,3|suppressed or terminated
Specification 00000000 p0000110 0,1,2,3|suppressed or completed
Data 00000000 p0000111 2,3|suppressed or terminated
Fixed-pt overflow (00000000 p0001000 (20|36 1,2 |completed
Fixed-point divide|00000000 p0001001 1,2 suppressed or completed
Decimal overflow |00000000 p0001010 (21(37 2,3|completed
Decimal divide 00000000 p0001011 2,3|suppressed
Exponent overflow [00000000 p0001100 1,2 |completed
Exponent underflow|00000000 p0001101 (22|38 1,2 |completed
Significance 00000000 p0001110 [23(39 1,2 |completed
Floating-pt divide|[00000000 p0001111 1,2 |[suppressed
Segment transl 00000000 p0010000 1,2,3|nullified
Page translation (00000000 p0010001 1,2,3|nullified
Translation spec |00000000 p0010010 1,2,3|suppressed
Special operation |00000000 p0010011 0, 1 2 suppressed
Monitor event 00000000 p10000003 8, lé+ 2 completedu
PER event 00000000 1nOnnnnn 1| *| 9, 0-3 |0,1,2,3|completed

Interruption Action (Part 1 of 2)

6-2 System/370 Principles of Operation

C

PSW |[Mask Bits
Mask |in Ctrl Execution of
Bits |[Registers Instruction
Source Interruption ILC Identified
ldentification Code EC|BC|Reg, Bit Set by 01d PSW
EXTERNAL Locations 134-135
(o1d PSW 24 in EC mode and
new PSW 88) |26-27 in BC mode
Interval timer 00000000 leeeeeee 71 71 0, 24 X unaffected
Interrupt key 00000000 eleeeeee | 7| 7| 0, 25 X unaffected
External signal 2 |00000000 eeleecee | 7| 7| O, 26 x unaffected
External signal 3 |00000000 eeeleeee | 7| 7] 0, 26 X unaffected
External signal 4 |00000000 eeceeleee | 7| 7| O, 26 x unaffected
External signal 5 |00000000 eeeeelee 71 7| 0, 26 X unaffected
External signal 6 |00000000 eeeeeele | 7| 7| 0, 26 X unaffected
External signal 7 |00000000 eeeeeceel 71 7| 0, 26 x unaffected
Malfunction alert (00010010 00000000 | 7| 7| O, 16 X unaffected
Emergency signal 00010010 00000001 71 7| 0, 17 X unaffected
External call 00010010 00000010 71 7| 0, 18 X unaffected
TOD-clock sync chk|[00010000 00000011 7171 0, 19 X unaffected
Clock comparator |00010000 00000100 | 7| 7| O, 20 X unaffected
CPU timer 00010000 00000101 71 7|1 0, 21 X unaffected
INPUT/QUTPUT Locations 186-187
(old PSW 56, in EC mode and
new PSW 120) |58-59 in BC mode
Channel 0 00000000 dddddddd | 6| O 2, 02 x unaffected
Channel 1 00000001 dddddddd | 6| 1| 2, 15 x unaffected
Channel 2 00000010 dddddddd | 6| 2| 2, 25 x unaffected
Channel 3 00000011 dddddddd | 6| 3| 2, 35 x unaffected
Channel 4 00000100 dddddddd | 6| 4| 2, 45 x unaffected
Channel 5 00000101 dddddddd | 6| 5| 2, 5 x unaffected
Channel 6 & up cccccccec dddddddd 6| 6| 2, 6+ X unaffected
RESTART Locations 2-3 in
(old PSW 8 BC mode
new PSW 05
Restart key 00000000 000000008 X unaffected

Explanation:

1

2 tions 232-239.

terminated.

the machine-check interruption code.
only if all the associated validity bits are ones.

When the interruption code indicates a PER event, an ILC of 0 may be stored
only when bits 12-15 of the interruption code are not all zeros.
The unit of operation is completed, unless a program exception concurrently
indicated causes the unit of operation to be nullified, suppressed, or

A model-independent machine-check interruption code of 64 bits .is stored at loca-

The effect of the machine-check condition is identified by the validity bits in
The instruction is nullified or unaffected

> For channels 0-5, channel masks in control register 2 have no effect in the
BC mode.

6 Bits 16-31 in the old PSW in the BC mode are set to zeros. No interruption code
is provided in the EC mode.

+ Plus the following bits in the control register.

* In the BC mode, program-event recording is disabled.

c Channel-address bits.

d Device-address bits.

e |If one, the bit indicates another concurrent external-interruption condition.

n A possible nonzero code, indicating another concurrent program-interruption
condition.

p |If one, the bit indicates a concurrent PER-event interruption condition.

s Bits of the | field of SUPERVISOR CALL.

x Unpredictable in the BC mode; not stored in the EC mode.

Interruption Action (Part 2 of 2)

Chapter 6. Interruptions

6-3

Source Identification

The six classes of interruptions (external, I/O, ma-
chine check, program, restart, and supervisor call)
are distinguished by the storage locations at which
the old PSW is stored and from which the new
PSW is fetched. For most classes, the causes are
further identified by an interruption code and, for
some classes, by additional information placed in
permanently assigned storage locations during the
interruption. (See also the section "Assigned Stor-
age Locations" in Chapter 3, "Storage.") For ex-
ternal, I/0, program, and supervisor-call interrup-
tions, the interruption code consists of 16 bits.

For external interruptions in the EC mode, the
interruption code is stored at locations 134-135. In
the BC mode, the interruption code is placed in the
old PSW.

For I/0 interruptions in the EC mode, the inter-
ruption code, which contains the I/O address, is
stored at locations 186-187. In the BC mode, the
interruption code is placed in the old PSW. Addi-
tional information is provided by the contents of
the channel-status word (CSW) stored at location
64. Further information may be provided by the
limited channel logout stored at location 176 and
by the I/0 extended logout.

For machine-check interruptions, the interrup-
tion code consists of 64 bits and is stored at loca-
tions 232-239. Additional information for identify-
ing the cause of the interruption and for recovering
the state of the machine may be provided by the
contents of the machine-check logout and save
areas. (See Chapter 11, "Machine-Check Han-
dling.")

For program interruptions in the EC mode, the
interruption code is stored at locations 142-143,
and the instruction-length code is stored in bit posi-
tions 5 and 6 of location 141. In the BC mode, the
interruption code and instruction-length code are
placed in the old PSW. Further information may
be provided in the form of the translation-
exception address, monitor-class number, monitor
code, PER code, and PER address, which are
stored at locations 144-159.

For restart interruptions in the EC mode, no
interruption code is stored. In the BC mode, an
interruption code of zero is placed in the old PSW.

For supervisor-call interruptions in the EC mode,
the interruption code is stored at locations 138-
139, and the instruction-length code is stored in bit
positions 5 and 6 of location 137. In the BC mode,
the interruption code and instruction-length code
are placed in the old PSW.

6-4 System/370 Principles of Operation

Enabling and Disabling

By means of mask bits in the current PSW and in
control registers, the CPU may be enabled or disa-
bled for all external, I/O, and machine-check inter-
ruptions and for some program interruptions.

When a mask bit is one, the CPU is enabled for the
corresponding class of interruptions, and these in-
terruptions can take place.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause I/O or external interruptions remain
pending. Machine-check-interruption conditions,
depending on the type, are ignored, remain pend-
ing, or cause the CPU to enter the check-stop state.
The disallowed program-interruption conditions are
ignored, except that some causes are indicated also
by the setting of the condition code.

Program interruptions for which mask bits are
not provided, as well as the supervisor-call and
restart interruptions, are always taken.

The mask bits may allow or disallow all interrup-
tions within the class, or they may selectively allow
or disallow interruptions for particular causes. This
control may be provided by mask bits in the PSW
that are assigned to particular causes, such as the
bits assigned to the four maskable program-
interruption conditions. Alternatively, there may
be a hierarchy of masks, where a mask bit in the
PSW controls all interruptions within a type, and
mask bits in a control register provide more de-
tailed control over the sources.

When the mask bit is one, the CPU is enabled
for the corresponding interruptions. When the
mask bit is zero, these interruptions are disallowed.
Interruptions that are controlled by a hierarchy of
masks are allowed only when all controlling mask
bits are ones.

Programming Notes

1. Mask bits in the PSW provide a means of disal-
lowing all maskable interruptions; thus, subse-
quent interruptions can be disallowed by the
new PSW introduced by an interruption. Fur-
thermore, the mask bits can be used to establish
a hierarchy of interruption priorities, where a
condition in one class can interrupt the program
handling a condition in another class but not
vice versa. To prevent an interruption-handling
routine from being interrupted before the nec-
essary housekeeping steps are performed, the
new PSW must disable the CPU for further
interruptions within the same class or within a
class of lower priority.

2. Since the mask bits in control registers are not
changed as part of the interruption procedure,
these masks cannot be used to prevent an inter-
ruption immediately after a previous interrup-
tion in the same class. The mask bits in control
registers provide a means for selectively ena-
bling the CPU for some sources and disabling it
for others within the same class.

Instruction-Length Code

The instruction-length code (ILC) occupies two bit
positions and provides the length of the last in-
struction executed. It permits identifying the in-
struction causing the interruption when the instruc-
tion address in the old PSW designates the next
sequential instruction. The ILC is provided also by
the BRANCH AND LINK instructions.

When the old PSW specifies the EC mode, the
ILC for program and supervisor-call interruptions is
stored in bit positions 5 and 6 of the bytes at loca-
tions 137 and 141, respectively. For external, 1/0,
machine-check, and restart interruptions, the ILC is
not stored since it cannot be related to the length
of the last-executed instruction.

When the old PSW specifies the BC mode, the
ILC is stored in bit positions 32 and 33 of that
PSW. The ILC is meaningful, however, only after
a supervisor-call or program interruption. For
machine-check, external, I/0, and restart interrup-
tions, the ILC does not indicate the length of the
last-executed instruction and is unpredictable. Sim-
ilarly, the ILC is unpredictable in the PSW stored
during execution of the store-status function and
when the PSW is displayed.

For supervisor-call and program interruptions, a
nonzero ILC identifies in halfwords the length of
the instruction that was last executed. Whenever
an instruction is executed by means of EXECUTE,
instruction-length code 2 is set to indicate the
length of EXECUTE and not that of the target
instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value is not contingent on whether the opera-
tion code is assigned or on whether the instruction
is installed. The following table summarizes the
meaning of the instruction-length code:

ILc Instr
Bits Instruction

Decimal|Binary| 0-1 Length

0 00 Not available

1 01 00 One halfword

2 10 01 Two halfwords

2 10 10 Two halfwords

3 11 11 Three halfwords
Zero ILC

Instruction-length code 0, after a program interrup-
tion, indicates that the location of the instruction
causing the interruption is not made available to
the program.

An ILC of 0 occurs when a specification excep-
tion is recognized that is due to a PSW-format er-
ror, other than one due to an odd instruction ad-
dress, and the invalid PSW has been introduced by
LOAD PSW or an interruption. (See the section
"Exceptions Associated with the PSW'' later in this
chapter.) In the case of LOAD PSW, the address
of the instruction has been replaced by the instruc-
tion address of the new PSW. When the invalid
PSW is introduced by an interruption, the PSW-
format error cannot be attributed to an instruction.

On some models without the translation feature,
an ILC of zero occurs also when an addressing
exception or a protection exception is recognized
during a store-type reference. In these cases, the
interruption due to the exception is delayed, the
length of time or number of instructions of the de-
lay being unpredictable. Neither the location of
the instruction causing the exception nor the length
of the last-executed instruction is made available to
the program. This type of interruption is sometimes
referred to as an imprecise program interruption.

In the case of LOAD PSW and the supervisor-
call interruption, a PER event may be indicated
concurrently with a specification exception having
an ILC of 0.

ILC on Instruction-Fetching Exceptions

When a program interruption occurs because of an

exception that prohibits access to the instruction,

the instruction-length code cannot be set on the
basis of the first two bits of the instruction. As far
as the significance of the ILC for this case is con-
cerned, the following two situations are distin-
guished:

1. When an odd instruction address causes a spec-
ification exception to be recognized or when an
addressing, protection, or translation-
specification exception is encountered on fetch-
ing an instruction, the ILC is set to 1, 2, or 3,
indicating the multiple of 2 by which the in-
struction address has been incremented. It is

Chapter 6. Interruptions 6-5

unpredictable whether the instruction address is
incremented by 2, 4, or 6. By reducing the
instruction address in the old PSW by the num-
ber of halfword locations indicated in the ILC,
the address originally appearing in the PSW
may be obtained.

2.. When a segment-translation or page-translation
exception is recognized while fetching an in-
struction, including the target instruction of
EXECUTE, the ILC is arbitrarily set to 1, 2, or
3. In this case, the operation is nullified, and
the instruction address is not incremented.

The ILC is not necessarily related to the first
two bits of the instruction when the first halfword
of an instruction can be fetched but an access ex-
ception is recognized on fetching the second or
third halfword. The ILC may be arbitrarily set to
1, 2, or 3 in these cases. The instruction address is
or is not updated, as described in situations 1 and 2
above.

When any exceptions other than segment
translation or page translation are encountered on
fetching the target instruction of EXECUTE, the
ILCis 2.

Programming Notes

1. A nonzero instruction-length code for a pro-
gram interruption indicates the number of half-
word locations by which the instruction address
in the old PSW must be reduced to obtain the
address of the last instruction executed, unless
one of the following situations exists:

a. The interruption is caused by a segment-
translation or page-translation exception.

b. An interruption for a PER event occurs
before the execution of an interruptible in-
struction is ended.

c. The interruption is caused by a PER event
due to LOAD PSW or a branch or linkage
instruction, including SUPERVISOR
CALL.

d. The interruption is caused by an access ex-
ception encountered in fetching an instruc-
tion, and the instruction address has been
introduced into the PSW by a means other
than sequential operation (by a branch in-
struction, LOAD PSW, or an interruption).

e. The interruption is caused by a specification
exception because of an odd instruction ad-
dress.

f. The interruption is caused by an early spec-
ification exception or by an access excep-
tion encountered in fetching an instruction,
and changes have been made to the param-

6-6 System/370 Principles of Operation

eters that control the relation between the
logical and real instruction address. The
relation between logical and real addresses
can be changed by turning the translation
mode on or off without introducing an en-
tire new PSW, or changing the translation-
control parameters in control registers 0
and 1. The early specification exception
can be caused by executing STORE THEN
OR SYSTEM MASK or SET SYSTEM
MASK, which turns DAT on while intro-
ducing invalid values in bit positions 0-7 of
an EC-mode PSW.

For situations a and b above, the instruction
address in the PSW is not incremented, and the
instruction designated by the instruction ad-
dress is the same as the last one executed.
These two are the only cases in which the in-
struction address in the old PSW identifies the
instruction causing the exception.

For situations c, d, and e, the instruction
address has been replaced as part of the opera-
tion, and the address of the last instruction ex-
ecuted cannot be calculated using the one ap-
pearing in the old PSW.

For situation f, the instruction address in the
PSW has not been replaced, but the corre-
sponding real address after the change is differ-
ent.

2. When a PER event is indicated, bit 8 in the
interruption code is one, the PER address in the
word at location 152 identifies the location of
the instruction causing the interruption, and the
instruction-length code (ILC) is redundant.
Similarly, the ILC is redundant when the oper-
ation is nullified, since in this case the instruc-
tion address in the PSW is not incremented. If
the ILC value is required in this case, it can be
derived from the operation code of the instruc-
tion identified by the old PSW.

Exceptions Associated with the PSW
Exceptions associated with erroneous information
in the current PSW may be recognized when the
information is introduced into the PSW or may be
recognized as part of the execution of the next
instruction. Errors in the PSW which are
specification-exception conditions are called PSW-
format errors.

Early Exception Recognition
For the following error conditions, a program inter-
ruption for a specification exception occurs immedi-

C

ately after the PSW becomes active:

« A one is introduced into an unassigned bit posi-
tion of an EC-mode PSW (that is, bit positions
0, 2-4, 16, 17, or 24-39).

o The EC mode is specified (PSW bit 12 is one) in
a CPU that does not have that mode.

The interruption takes place regardless of wheth-
er the wait state is specified. If the invalid PSW
causes the CPU to become enabled for a pending
I/0, external, or machine-check interruption, the
program interruption is taken instead, and the
pending interruption is subject to the mask bits of
the new PSW introduced by the program interrup-
tion. If the EC mode is not present, bits 0-15 and
34-63 of the invalid PSW are stored unchanged at
the corresponding bit positions of the program old
PSW, and the interruption code and instruction-
length code are stored at bit position 16-33 of the
program old PSW.

When the execution of LOAD PSW or an inter-
ruption introduces a PSW with one of the above
error conditions, the instruction-length code is set
to 0, and the newly introduced PSW, except for the
interruption code and the instruction-length code in
the BC mode, is stored unmodified as the old PSW.
When one of the above error conditions is intro-
duced by execution of SET SYSTEM MASK or
STORE THEN OR SYSTEM MASK, the
instruction-length code is set to 2, and the instruc-
tion address is updated by two halfword locations.
The PSW containing the invalid value introduced
into the system-mask field is stored as the old PSW.

When a PSW with one of the above error condi-
tions is introduced during initial program loading,
the loading sequence is not completed, and the load
indicator remains on.

Late Exception Recognition

For the following conditions, the exception is rec-

ognized as part of the execution of the next in-

struction:

« A specification exception is recognized due to an
odd instruction address in the PSW (PSW bit 63
is one).

« An access exception (addressing, page-
translation, protection, segment-translation, or
translation-specification) is associated with the
location designated by the instruction address or
with the location of the second or third halfword
of the instruction starting at the designated ad-
dress.

The instruction-length code and instruction ad-
dress stored in the program old PSW under these

conditions are discussed in the section "ILC on
Instruction-Fetching Exceptions' in this chapter.

If the invalid PSW causes the CPU to be enabled
for a pending I/0, external, or machine-check in-
terruption, the corresponding interruption occurs,
and the PSW invalidity is not recognized. Similar-
ly, the specification or access exception is not rec-
ognized in a PSW specifying the wait state.

Programming Notes

1. The execution of LOAD PSW, SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK is
suppressed on an addressing or protection ex-
ception, and hence the program old PSW pro-
vides information concerning the program caus-
ing the exception.

2. When the first halfword of an instruction can
be fetched but an access exception is recogniz-
ed on fetching the second or third halfword,
the ILC is not necessarily related to the opera-
tion code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of inter-
ruptions occurs. (See the section 'Priority of
Interruptions' in this chapter.)

External Interruption

The external interruption provides a means by
which the CPU responds to various signals originat-
ing either from within or from without the system.

An external interruption causes the old PSW to
be stored at location 24 and a new PSW to be
fetched from location 88.

The source of the interruption is identified in the
interruption code. When the old PSW specifies the
EC mode, the interruption code is stored at loca-
tions 134-135. When the old PSW specifies the
BC mode, the interruption code is placed in bit
positions 16-31 of the old PSW, and the
instruction-length code is unpredictable.

Additionally, for the malfunction-alert,
emergency-signal, and external-call conditions, a
16-bit CPU address is associated with the source of
the interruption and is stored at locations 132-133
in both the EC and BC modes. When the CPU
address is stored, bit 6 of the interruption code is
set to one. For all other conditions, no CPU ad-
dress is stored, and bit 6 of the interruption code is
set to zero. When bit 6 is zero and the old PSW
specifies the EC mode, zeros are stored at locations
132-133. When bit 6 is zero and the old PSW
specifies the BC mode, the contents of locations
132-133 remain unchanged.

Chapter 6. Interruptions 6-7

External-interruption conditions are of two
types: those for which an interruption request con-
dition is held pending, and those for which the con-
dition directly requests the interruption. Clock
comparator, CPU timer, and TOD-clock sync check
are conditions which directly request external inter-
ruptions. If a condition which directly requests an
external interruption is removed before the request
is honored, the request does not remain pending,
and no interruption occurs. Conversely, the re-
quest is not cleared by the interruption, and if the
condition persists, more than one interruption may
result from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption is tak-
en, and the interruption condition is of the type
which is held pending, only one request for that
source is preserved and remains pending.

An external interruption for a particular source
can occur only when the CPU is enabled for inter-
ruption by that source. The external interruption
occurs at the completion of a unit of operation.
Whether the CPU is enabled for external interrup-
tion is controlled by the external mask, PSW bit 7,
and external subclass mask bits in control register
0. Each source for an external interruption has a
subclass mask bit assigned to it, and the source can
cause an interruption only when the external-mask
bit is one and the corresponding subclass-mask bit
is one. The use of the subclass-mask bits does not
depend on whether the CPU is in the EC or BC
mode.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction execu-
tion or interruption that causes the enabling.

More than one source may present a request for
an external interruption at the same time. When
the CPU becomes enabled for more than one con-
currently pending request, the interruption occurs
for the pending condition or conditions having the
highest priority.

The priorities for external-interruption requests
in descending order are as follows:

Interval timer, interrupt key, external signals 2-7
Malfunction alert

Emergency signal

External call

TOD-clock sync check

Clock comparator

CPU timer

The interval timer, interrupt key, and external
signals 2-7 are of equal priority; if more than one
of these conditions is pending and allowed, the

6-8 System/370 Principles of Operation

conditions are indicated concurrently. All other
requests are honored one at a time. When more
than one emergency-signal request exists at a time
or when more than one malfunction-alert request
exists at a time, the request associated with the
smallest CPU address is honored first.

Clock Comparator

An interruption request for the clock comparator

exists whenever either of the following conditions is

met:

1. The time-of-day clock is in the set or not-set
state, and the value of the clock comparator is
less than the value in the compared portion of
the time-of-day clock, both compare values be-
ing considered unsigned binary integers.

2. The clock comparator is installed, and the time-
of-day clock is in the error or not-operational
state.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption oc-
curs. Conversely, the request is not cleared by the
interruption, and, if the condition persists, more
than one interruption may result from a single oc-
currence of the condition.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions, if
any, that are due to the clock comparator may or
may not be recognized for up to 1.048576 seconds
after the change.

The clock-comparator condition is indicated by
an external-interruption code of 1004 (hex).

The subclass-mask bit is in bit position 20 of
control register 0. This bit is initialized to zero.

CPU Timer

An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made posi-
tive before the request is honored, the request does
not remain pending, and no interruption occurs.
Conversely, the request is not cleared by the inter-
ruption, and, if the condition persists, more than
one interruption may occur from a single occur-
rence of the condition.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions, if
any, that are due to the CPU timer may or may not
be recognized for a period of time up to 1.048576
seconds after the change.

The CPU-timer condition is indicated by an
external-interruption code of 1005 (hex).

The subclass-mask bit is in bit position 21 of
control register 0. This bit is initialized to zero.

Emergency Signal

An interruption request for an emergency signal is
generated when the CPU accepts the emergency-
signal order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. The instruction
may have been executed by this CPU or by another
CPU configured to this CPU. The request is pre-
served and remains pending in the receiving CPU
until it is cleared. The pending request is cleared
when it causes an interruption and by CPU reset.

Facilities are provided for holding a separate
emergency-signal request pending in the receiving
CPU for each configured CPU, including the re-
ceiving CPU itself.

The emergency-signal condition is indicated by
an external-interruption code of 1201 (hex). The
address of the CPU that issued the SIGNAL
PROCESSOR instruction is stored at locations 132~
133.

The subclass-mask bit is in bit position 17 of
control register 0. This bit is initialized to zero.

External Call

An interruption request for an external call is gen-
erated when the CPU accepts the external-call or-
der specified by a SIGNAL PROCESSOR instruc-
tion addressing this CPU. The instruction may
have been executed by this CPU or by another
CPU configured to this CPU. The request is pre-
served and remains pending in the receiving CPU
until it is cleared. The pending request is cleared
when it causes an interruption and by CPU reset.

Only one external-call request, along with the
processor address, may be held pending in a CPU
at a time.

The external-call condition is indicated by an
external-interruption code of 1202 (hex). The
address of the CPU that issued the SIGNAL
PROCESSOR instruction is stored at locations 132-
133.

The subclass-mask bit is in bit position 18 of
control register 0. This bit is initialized to zero.

External Signal

An interruption request for an external signal is
generated when a signal is received on one or more
of the signal-in lines. Up to six signal-in lines may
be connected, providing for external signal 2
through external signal 7.The request is preserved
and remains pending in the CPU until it is cleared.
The pending request is cleared when it causes an
interruption and by CPU reset.

Facilities are provided for holding a separate
external-signal request pending for each of the six
lines.

External signals 2-7 are indicated by setting to
one interruption-code bits 10-15, respectively. Bits
0-7 are set to zeros, and any other bits in the right-
most byte are set to zeros unless set to ones for
other conditions that are concurrently indicated.

All external signals are subject to control by the
subclass-mask bit in bit position 26 of control regis-
ter 0. This bit is initialized to one.

External signaling is independent of I/O opera-
tions and interruptions.

Programming Note

The pattern presented in bit positions 10-15 of the
interruption code depends on the pattern received
before the interruption is taken. Because of circuit
skew, all simultaneously generated external signals
do not necessarily arrive at the same time, and
some may not be included in the external interrup-
tion resulting from the earliest signals. These late
signals may cause another interruption to be taken.

Interrupt Key

An interruption request for the interrupt key is
generated when the operator activates that key.
The request is preserved and remains pending in
the CPU until it is cleared. The pending request is
cleared when it causes an interruption and by CPU
reset.

When the interrupt key is activated while the
CPU is in the load state, it depends on the model
whether an interruption request is generated or the
condition is lost.

The interrupt-key condition is indicated by set-
ting bit 9 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 8 and 10-15 are ze-
ros unless set to ones for other conditions that are
concurrently indicated.

The subclass-mask bit is in bit position 25 of
control register 0. This bit is initialized to one.

Interval Timer
An interruption request for the interval timer is
generated when the value of the interval timer is
decremented from a positive number or zero to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an inter-
ruption and by CPU reset.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions, if
any, that are due to the interval timer may or may

Chapter 6. Interruptions 6-9

not be recognized for up to 1.048576 seconds after
the change.

The interval-timer condition is indicated by set-
ting bit 8 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 9-15 are zeros unless
set to ones for other conditions that are concur-
rently indicated.

The subclass-mask bit is in bit position 24 of
control register 0. This bit is initialized to one.

Malfunction Alert

An interruption request for a malfunction alert is
generated when another CPU that is configured to
the CPU enters the check-stop state or loses power.
The request is preserved and remains pending in
the receiving CPU until it is cleared. The pending
request is cleared when it causes an interruption
and by CPU reset.

Facilities are provided for holding a separate
malfunction-alert request pending in the receiving
CPU for each of the other configured CPUs. Con-
figuring a CPU out of the system does not generate
a malfunction-alert condition.

The malfunction-alert condition is indicated by
an external-interruption code of 1200 (hex). The
address of the CPU that generated the condition is
stored at locations 132-133.

The subclass-mask bit is in bit position 16 of
control register 0. This bit is initialized to zero.

TOD-Clock Sync Check

The TOD-clock-sync-check condition indicates that
more than one time-of-day clock exists in the con-
figuration, and that the rightmost 32 bits of the
clocks are not running in synchronism.

An interruption request for a TOD-clock sync
check exists when the time-of-day clock accessed
by this CPU is running (that is, the clock is in the
set or not-set state), the clock accessed by any oth-
er CPU configured to this CPU is running, and bits
32-63 of the two clocks do not match. When a
clock is set or changes state, or when a running
clock is added to the configuration, a delay of up to
1.048576 seconds (220 microseconds) may occur
before the mismatch condition is recognized.

When only two time-of-day clocks are in the
configuration and either or both of the clocks are
in the error, stopped, or not-operational state, it is
unpredictable whether a TOD-clock-sync-check
condition is recognized; if the condition is recog-
nized, it may continue to persist up to 1.048576
seconds after both clocks have been running with
the rightmost 32 bits matching. However, in this
case, the condition does not persist if the two CPUs
are configured apart.

6-10 System/370 Principles of Operation

When more than one CPU shares a time-of-day
clock, only the CPU with the smallest CPU address
among those sharing the clock indicates a TOD-
clock-sync-check condition associated with that
clock.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption oc-
curs. Conversely, the request is not cleared by the
interruption, and, if the condition persists, more
than one interruption may result from a single oc-
currence of the condition.

The TOD-clock-sync-check condition is indicat-
ed by an external-interruption code of 1003 (hex).
The subclass-mask bit is in bit position 19 of

control register 0. This bit is initialized to zero.

Input/Output Interruption

The input/output (I/O) interruption provides a
means by which the CPU responds to conditions in
I/0 devices and channels.

A request for an I/0 interruption may occur at
any time, and more than one request may occur at
the same time. The requests are preserved and
remain pending in channels or devices until accept-
ed by the CPU. The I/O interruption occurs at the
completion of a unit of operation. Priority is estab-
lished among requests so that only one interruption
request is processed at a time. For more details,
see the section "Input/Output Interruptions" in
Chapter 12, "Input/Output Operations."

When the CPU becomes enabled for I/0 inter-
ruptions and a channel has established priority for
a pending I/O-interruption condition, the interrup-
tion occurs at the completion of the instruction
execution or interruption that causes the enabling.

An I/0 interruption causes the old PSW to be
stored at location 56, a channel status word to be
stored at location 64, and a new PSW to be fetched
from location 120. Upon detection of equipment
errors, additional information may be stored in the
form of a limited channel logout at location 176
and in the form of an I/O extended logout starting
at the location designated by the contents of loca-
tions 173-175.

When the old PSW specifies the EC mode, the
I/0 address identifying the channel and device
causing the interruption is stored at locations 186-
187, and zeros are stored at location 185. When
the old PSW specifies the BC mode, the interrup-
tion code in PSW bit positions 16-31 contains the
1/0 address, and the instruction-length code in the
PSW is unpredictable.

An 1/0 interruption can occur only while the
CPU is enabled for interruption by the channel

presenting the request. Mask bits in the PSW and
channel masks in control register 2 determine
whether the CPU is enabled for interruption by a
channel; the method of control depends on whether
the current PSW specifies the EC or BC mode.

The channel-mask bits in control register 2 start
at bit position 0 and extend for as many contiguous
bit positions as the number of channels provided.
The assignment is such that a bit is assigned to the
channel whose address is equal to the position of
the bit in control register 2. Channel-mask bits for
installed channels are initialized to one. The state
of the channel-mask bits for unavailable channels is
unpredictable.

When the current PSW specifies the EC mode,
each channel is controlled by the I/O-mask bit,
PSW bit 6, and by the corresponding channel-mask
bit in control register 2; the channel can cause an
interruption only when the I/O-mask bit is one and
the corresponding channel-mask bit is one.

When the current PSW specifies the BC mode,
interruptions from channels 6 and up are controlled
by the I/O-mask bit, PSW bit 6, in conjunction
with the corresponding channel-mask bit: the
channel can cause an interruption only when the
I/O-mask bit is one and the corresponding
channel-mask bit is one. Interruptions from chan-
nels 0-5 are controlled by channel-mask bits 0-5 in
the PSW: an interruption can occur only when the
mask bit corresponding to the channel is one. In
the BC mode, bits 0-5 in control register 2 do not
participate in controlling I/O interruptions; they
are, however, preserved in the control register if
the corresponding channels are installed.

Machine-Check Interruption

The machine-check interruption is a means for re-
porting to the program the occurrence of equipment
malfunctions. Information is provided to assist the
program in determining the location of the fault
and extent of the damage.

A machine-check interruption causes the old
PSW to be stored at location 48 and a new PSW to
be fetched from location 112. When the old PSW
specifies the BC mode, the contents of the
interruption-code and ILC fields in the old PSW
are unpredictable.

The cause and severity of the malfunction are
identified by a 64-bit machine-check-interruption
code stored at locations 232-239. Further informa-
tion identifying the cause of the interruption and
the location of the fault may be stored at locations
216-511 and in the area starting with the location
designated by the contents of control register 15.

The interruption action and the storing of the
associated information are under the control of
PSW bit 13 and bits in control register 14. See
Chapter 11, "Machine-Check Handling," for more
detailed information.

Program Interruption

Program interruptions are used to report exceptions
and events which occur during execution of the
program. Exceptions include the improper specifi-
cation or use of instructions and data. Events are
detected during monitoring (monitor events) and
program-event recording (PER events).

A program interruption causes the old PSW to be
stored at location 40 and a new PSW to be fetched
from location 104.

The cause of the interruption is identified by the
interruption code. When the old PSW specifies the
EC mode, the interruption code is placed at loca-
tions 142-143, the instruction-length code is placed
in bit positions 5 and 6 of the byte at location 141
with the rest of the bits set to zeros, and zeros are
stored at location 140. When the old PSW speci-
fies the BC mode, the interruption code and the
ILC are placed in the old PSW. For some causes,
additional information identifying the reason for
the interruption is stored at locations 144-159 in
both the EC and BC modes.

Except for the PER-event condition, the condi-
tion causing the interruption is indicated by a cod-
ed value placed in the rightmost seven bit positions
of the interruption code. Only one condition at a
time can be indicated. Bits 0-7 of the interruption
code are set to zeros.

The PER-event condition is indicated by setting
bit 8 of the interruption code to one, with bits 0-7
set to zeros. When this is the only condition, bits
9-15 are also set to zeros. When a PER-event con-
dition is indicated concurrently with another pro-
gram interruption condition, bit 8 is one, and the
coded value for the other condition appears in bit
positions 9-15.

A program interruption can occur only when the
corresponding mask bit, if any, is one. The pro-
gram mask in the PSW permits masking four of the
exceptions, bit 1 in control register 0 controls
whether SET SYSTEM MASK causes a special-
operation exception, bits 16-31 in control register 8
control interruptions due to monitor events, and, in
the EC mode, masks are provided for controlling
interruptions due to PER events. When the mask
bit is zero, the condition is ignored; the condition
does not remain pending.

Chapter 6. Interruptions 6-11

Programming Notes

1. When the new PSW for a program interruption
has a PSW-format error or causes an exception
to be recognized in the process of instruction
fetching, a string of program interruptions takes
place. See the section "Priority of Interrup-
tions'" in this chapter for a description of how
such strings are terminated.

2. Some of the conditions indicated as program
exceptions may be recognized also by an I/0
operation, in which case the exception is indi-
cated in the channel-status word.

Program-Interruption Conditions
The following is a detailed description of each
program-interruption condition.

Addressing Exception

An addressing exception is recognized when the
CPU causes a reference to a main-storage location
that is not available to the CPU. A main-storage
location is not available to the CPU when the loca-
tion is not provided, when the storage unit is not
configured to the CPU, or when power is off in the
storage unit. An address designating an unavaila-
ble storage location is referred to as invalid.

The operation is suppressed when the address of
the instruction, including the location of the target
instruction of EXECUTE, is invalid. Similarly, the
unit of operation is suppressed when the exception
is encountered during an implicit reference to a
dynamic-address-translation (DAT) table entry.
Except for some specific instructions whose execu-
tion is suppressed, the operation is terminated for
an operand address that can be translated but des-
ignates an unavailable location. See the figure
"Summary of Action for Addressing and Protection
Exceptions. "

Data in storage remains unchanged unless the
location is available to the CPU. When part of an
operand location is available to the CPU and part is
not, storing may be performed in the available part.

When the address of any halfword of an instruc-
tion is invalid, or the address of a DAT table entry
associated with an instruction fetch is invalid, the
instruction-length code (ILC) is 1, 2, or 3, indicat-
ing the multiple of 2 by which the instruction ad-
dress has been incremented. It is unpredictable
whether the ILC is 1, 2, or 3.

In all cases of addressing exceptions not associ-
ated with instruction fetching, the ILC is 1, 2, or 3,
designating the length of the instruction that
caused the reference. However, when the excep-
tion is due to an attempt to store and the address
can be translated but designates an unavailable

6-12 System/370 Principles of Operation

operand location, the ILC on some models may be
0. When an addressing exception is associated with
fetching the target of EXECUTE, the ILC is 2.

Action On
DAT-Table- |Instruction
Exception |Entry Fetch Fetch Operand Reference

Addressing|Suppress Suppress Suppress for LPSW, SCKC,

exception SPT, SPX, SSM, STNSM,
STOSM, and TPROT.
Terminate for all others]
Protection - Suppress Suppress for LPSW, SCKC,
exception SPT, SPX, SSM, STNSM, and
for key- STOSM.

controlled

protection L

Terminate for all others

Protection - - Suppress for STNSM and
exception STOSM.

for low-
address

protection 1

Terminate for all others

Explanation:

— Not applicable
v For termination, changes may occur only to result
fields. In this context, 'result field" includes
condition code, registers, and storage locations, if
any, which are designated to be changed by the
instruction. However, no change is made to a
storage location or a key in storage when the refer-
ence causes an access exception. Therefore, if an
instruction is due to change only the contents of a
field in main storage, and every byte of that field
would cause an access exception, the operation is
suppressed.

Summary of Action for Addressing and Protection Exceptions

Data Exception

A data exception is recognized when:

1. The sign or digit codes of operands in the deci-
mal instructions (described in Chapter 8,
"Decimal Instructions") or in CONVERT TO
BINARY are invalid.

2. The operand fields in ADD DECIMAL, COM-
PARE DECIMAL, DIVIDE DECIMAL, MUL-
TIPLY DECIMAL, and SUBTRACT DECI-
MAL overlap in a way other than with coinci-
dent rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of
the rightmost byte of the first operand.

3. The multiplicand in MULTIPLY DECIMAL
has an insufficient number of high-order zeros.

For all instructions other than EDIT and EDIT
AND MARK, the action taken for a data exception
depends on whether a sign code is invalid. The
operation is suppressed when a sign code is invalid,
regardless of whether any other condition causing
the exception exists; when no sign code is invalid,
the operation is terminated. When the operation is
terminated, the contents of the sign position in the
rightmost byte of the result field either remain un-

C

changed or are set to the preferred sign code; the
contents of the remainder of the result field are
unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code is not recognized; the operation is
terminated on a data exception for an invalid digit
code.

The instruction-length code is 2 or 3.

Programming Notes

1. The definition for data exception permits termi-
nation when digit codes are invalid but no sign
code is invalid. On some models, valid digit
codes may be placed in the result location even
if the original contents were invalid. Thus it is
possible, after getting a data exception, for all
fields to appear valid.

2. When, on a program interruption for data ex-
ception, the program finds that a sign code is
invzalid, the operation has been suppressed if
the following two conditions are met:

a. The invalid sign of the source field is not
located in the numeric portion of the result
field.

b. The sign code appears in a position speci-
fied by the instruction to be checked for
valid sign. (This condition excludes the
first operand of ZERO AND ADD and
both operands of EDIT and EDIT AND
MARK.)

An invalid sign code for the rightmost byte of
the result field is not generated when the operation
is terminated. However, an invalid second-operand
sign code is not necessarily preserved when it ap-
pears in the numeric portion of the result field.

Decimal-Divide Exception

A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception is indicated only if
the sign codes of both the divisor and dividend are
valid and only if the digit or digits used in estab-
lishing the exception are valid.

The operation is suppressed.

The instruction-length code is 2 or 3.

Decimal-Overflow Exception

A decimal-overflow exception is recognized when
one or more significant high-order digits are lost
because the destination field in a decimal operation
is too short to contain the result.

The interruption may be disallowed by PSW bit
21 in the EC mode and by PSW bit 37 in the BC
mode.

The operation is completed. The result is ob-
tained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 2 or 3.

Execute Exception
The execute exception is recognized when the tar-
get instruction of EXECUTE is another EXECU-
TE.

The operation is suppressed.

The instruction-length code is 2.

Exponent-Overflow Exception

An exponent-overflow exception is recognized
when the result characteristic in floating-point ad-
dition, subtraction, multiplication, or division ex-
ceeds 127 and the result fraction is not zero.

The operation is completed. The fraction is nor-
malized, and the sign and fraction of the result
remain correct. The result characteristic is made
128 smaller than the correct characteristic.

The instruction-length code is 1 or 2.

Exponent-Underflow Exception

An exponent-underflow exception is recognized
when the result characteristic in floating-point ad-
dition, subtraction, multiplication, halving, or divi-
sion is less than zero and the result fraction is not
Zero.

The interruption may be disallowed by PSW bit
22 in the EC mode and by PSW bit 38 in the BC
mode.

The operation is completed. The exponent-
underflow mask also affects the result of the opera-
tion. When the mask bit is zero, the sign, charac-
teristic, and fraction are set to zero, making the
result a true zero. When the mask bit is one, the
fraction is normalized, the characteristic is made
128 larger than the correct characteristic, and the
sign and fraction remain correct.

The instruction-length code is 1 or 2.

Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
in fixed-point division the divisor is zero or the
quotient exceeds the register size, or when the re-
sult of CONVERT TO BINARY exceeds 31 bits.
In the case of division, the operation is sup-
pressed. The execution of CONVERT TO BINA-
RY is completed by ignoring the high-order bits
that cannot be placed in the register.
The instruction-length code is 1 or 2.

Chapter 6. Interruptions 6-13

Fixed-Point-Overflow Exception

A fixed-point-overflow exception is recognized
when an overflow occurs during signed binary
arithmetic or left-shift operations.

The interruption may be disallowed by PSW bit
20 in the EC mode and by PSW bit 36 in the BC
mode.

The operation is completed. The result is ob-
tained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception
A floating-point-divide exception is recognized
when a floating-point division by a number with a
zero fraction is attempted.

The operation is suppressed.

The instruction-length code is 1 or 2.

Monitor Event
A monitor event is recognized when MONITOR
CALL is executed and the monitor-mask bit in
control register 8 corresponding to the class speci-
fied by instruction bits 12-15 is one.

The monitor event can occur in both the EC and
BC modes.

Control Register 8:

///1/1//////////| Monitor Masks
0 16 31

The monitor-mask bits, bits 16-31 of control
register 8, correspond to monitor classes 0-15, re-
spectively. Any number of monitor-mask bits may
be on at a time; together they specify the classes of
monitor events that are monitored at that time.
The mask bits are initialized to zero.

When a MONITOR CALL instruction is inter-
preted for execution and the corresponding
monitor-mask bit is one, a program interruption for
monitoring occurs. The cause of the interruption is
identified by setting bit 9 of the interruption code
to one, and by the information stored at locations
148-149 and 156-159. The format of the informa-
tion stored at these locations is the same in the EC
and BC modes and is as follows:

Locations 148-149:

Monitor
00000000| Class No.

0 8 15

6-14 System/370 Principles of Operation

Locations 156-159:

00000000 Monitor Code

0 8 31

The contents of bit positions 8-15 of MONITOR
CALL are stored at location 149 and constitute the
monitor-class number. The address specified by
the B, and D, fields of the instruction forms the
monitor code, which is stored at locations 157-159.
Zeros are stored at locations 148 and 156.

The operation is completed, and the instruction-
length code is 2.

Operation Exception
An operation exception is recognized when the
CPU encounters an instruction with an invalid op-
eration code. The operation code may not be as-
signed, or the instruction with that operation code
may not be available on the CPU.
For the purpose of checking the operation code
of an instruction, the operation code is defined as
follows:
When the first eight bits of an instruction have
the value B2 or E5 (hex), the first 16 bits form
the operation code.

2. In all other cases, the first eight bits alone form
the operation code.

The operation is suppressed.
The instruction-length code is 1, 2, or 3.

Programming Notes

1. Some models may offer instructions not de-
scribed in this publication, such as those pro-
vided for emulation or as part of special or cus-
tom features. Consequently, operation codes
not described in this publication do not neces-
sarily cause an operation exception to be recog-
nized. Furthermore, these instructions may
cause modes of operation to be set up or may
otherwise alter the machine so as to affect the
execution of subsequent instructions. To avoid
causing such an operation, an instruction with
an operation code not described in this publica-
tion should be issued only when the specific
function associated with the operation code is
desired.

2. The operation code 00, with a two-byte instruc-
tion format, currently is not assigned. It is im-
probable that this operation code will ever be
assigned.

3. In the case of I/O instructions with the values
9C, 9D, 9E, and 9F in bit positions 0-7, the
value of bit 15 is used to distinguish between

C

two instructions. Bits 8-14, however, are not
checked for zeros, and these operation codes
never cause an operation exception to be recog-
nized.

To ensure that presently written programs
run if and when the I/0 operation codes (9C,
9D, 9E, and 9F) are extended further to pro-
vide for new functions, only zeros should be
placed in the unused bit positions in the second
op-code byte. In accordance with these recom-
mendations, the operation codes for the I/O
instructions are shown as 9C00, 9C01, 9D00,
etc.

Page-Translation Exception

A page-translation exception is recognized when:

1. The page-table entry indicated by the page-
index portion of a virtual address is outside the
page table.

2. The page-invalid bit is one.

The exception is recognized as part of the execu-
tion of the instruction that needs the page-table
entry in the translation of either the instruction or
operand address, except for the operand address in
LOAD REAL ADDRESS and TEST PROTEC-
TION, in which case the condition is indicated by
the setting of the condition code.

The unit of operation is nullified.

The segment-and-page portion of the virtual
address causing the exception is stored at locations
145-147, and zeros are stored at location 144.
When 2K-byte pages are used, the low-order 11
bits of the address are unpredictable; when 4K-
byte pages are used, the low-order 12 bits of the
address are unpredictable.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the excep-
tion occurs during fetching of an instruction, the
ILC is 1, 2, or 3, the value being unpredictable.

PER Event
A PER event is recognized when program-event
recording is specified by the contents of control
registers 9-11 and one or more of these events oc-
cur.

The interruption may be disallowed by PSW bit
1 in the EC mode. Program-event recording is
disallowed in the BC mode.

The unit of operation is completed, unless anoth-
er condition has caused the unit of operation to be
nullified, suppressed, or terminated.

As part of the interruption, information identify-
ing the event is stored at locations 150-155. See
the section "Program-Event Recording," in Chap-
ter 4, '"Control," for a detailed description of the
interruption condition.

The instruction-length code is 0, 1, 2, or 3.
Code 0 is set only if a specification exception is
indicated concurrently.

Privileged-Operation Exception
A privileged-operation exception is recognized
when the CPU encounters a privileged instruction
in the problem state.

The operation is suppressed.

The instruction-length code is 1 or 2.

Protection Exception

A protection exception is recognized in the follow-

ing situations:

1. Key-Controlled Protection: The CPU attempts
to access a storage location that is protected
against the type of reference, and the access
key does not match the storage key.

2. Low-Address Protection: The CPU attempts a
store that is subject to low-address protection,
the address is in the range 0-511, and bit 3 of
control register 0O is one.

The execution of an instruction is suppressed
when the location of the instruction, including the
location of the target instruction of EXECUTE, is
protected against fetching. =

Except for some specific instructions whose ex-
ecution is suppressed, the operation is terminated
when a protection exception is encountered during
a reference to an operand location. See the figure
"Summary of Action for Protection and Addressing
Exceptions," which is included in the section
" Addressing Exception' in this chapter.

On fetching, the protected information is not
loaded into an addressable register or moved to
another storage location. When a part of an
operand is protected against storing and a part is
not, storing may be performed in the unprotected
part. However, the contents of a protected loca-
tion remain unchanged.

For a protected operand location, the
instruction-length code (ILC) is 1, 2, or 3, desig-
nating the length of the instruction that caused the
reference. However, for a store-protected operand
location, the ILC on some models may be 0.

When the location of any part of an instruction
is protected against fetching, the ILC is 1, 2, or 3,
indicating the multiple of 2 by which the instruc-

Chapter 6. Interruptions 6-15

See the section "Exceptions Associated with the
PSW'" in this chapter for a discussion of when the
exceptions associated with the PSW are recognized.

Translation-Specification Exception

A translation-specification exception is recognized

when:

1. Bit positions 8-12 of control register 0 do not
contain one of the codes 01000, 01010, 10000,
or 10010.

2. Bit positions 4-7 and 29-30 in a valid segment-
table entry do not contain zeros (on some mod-
els, these bit positions are ignored and not
checked for zeros).

3. In a valid page-table entry, bit position 14,
when 2K-byte pages are used, or bit positions
13-14, when 4K-byte pages are used, do not
contain zeros.

The exception is recognized only as part of the
execution of an instruction using address transla-
tion; that is, when DAT is on and an instruction
encounters a logical address, instruction address, or
virtual address, or when LOAD REAL ADDRESS
is executed. Cause 1 is recognized on any transla-
tion attempt; causes 2 and 3 are recognized only
for table entries that are actually used.

The unit of operation is suppressed.

When the exception occurs during a reference to
an operand location, the instruction-length code

(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the excep-
tion occurs during fetching of an instruction, the
ILC is 1, 2, or 3, indicating the multiple of 2 by
which the instruction address has been updated. It
is unpredictable whether the ILC is 1, 2, or 3.

Programming Note

When a translation-specification exception is recog-
nized in the process of translating an instruction
address, the operation is suppressed. In this case,
the instruction-length code (ILC) is needed to de-
rive the address of the instruction, as the instruc-
tion address in the old PSW has been incremented
by the amount specified by the ILC. In the case of
segment-translation and page-translation excep-
tions, the operation is nullified, the instruction ad-
dress in the old PSW identifies the instruction, and
the ILC is redundant.

Recognition of Access Exceptions

The addressing, page-translation, protection,
segment-translation and translation-specification
exceptions are collectively referred to as access
exceptions. The figure ''Handling of Access Excep-
tions" summarizes the conditions that can cause
access exceptions and the action taken when they
are encountered.

Chapter 6. Interruptions 6-17

Translation of |Translation of
Translation of |Virtual Address |Logical Address
Logical Address|for LRA for TPROT

Condition Indic | Action [Indic Action |Indic Action
Control-register-0 contents1
Invalid encoding of bits 8-12 TS |Suppress| TS Suppress TS |Suppress
Segment-table entry
Segment-table-length violation ST |Nullify | cc3 Complete| cc3 |Complete
Entry protected against fetching or - - - - - -

storing

Invalid address of entry A ([Suppress A Suppress A |Suppress
| bit on 2 ST |Nullify | ccl Complete| cc3 |Complete
One in an unassigned bit position TS Suppress| TS Suppress TS |Suppress
Page-table entry
Page-table-Tength violation PT |Nullify | cc3 Complete| cc3 |Complete
Entry protected for fetching or storing - - - . - -
Invalid address of entry A [Suppress A Suppress; A [Suppress
I bit on 2 PT |Nullify | cc2 Complete| cc3 |[Complete
One in an unassigned bit position TS |Suppress| TS Suppress TS |[Suppress
Access for instruction fetch
Location protected P |Suppress - - - -
Invalid address A |Suppress - - - -
Access for operands 3
Location protected P Term* - - cc set”|Complete
Invalid address A Term* - - A |Suppress

Explanation:

TS Translation-specification exception.
ST Segment-translation exception.

PT Page-translation exception.

A Addressing exception.

P Protection exception.

ccl Condition code 1 set.

cc2 Condition code 2 set.

cc3 Condition code 3 set.

- The condition does not apply.

* Action is to terminate except where otherwise specified.

1A translation-specification exception for an invalid code in control register 0, bit
positions 8-12, is recognized as part of the execution of the instruction using address
translation; when DAT is on, it is recognized during translation of the instruction
address, and, when DAT is off, it is only recognized during translation of the operand
address of LRA.

2) translation-specification exception for a format error in a table entry is recognized
only when the execution of an instruction requires the entry for the translation of an
address.

3

The condition code is set as follows:
0 Operand location not protected
1 Fetches permitted, but stores not permitted
2 Neither fetches or stores permitted

Handling of Access Exceptions

Any access exception is recognized as part of the some other access-exception condition, but a
execution of the instruction with which the excep- branch instruction or an interruption changes the
tion is associated. An access exception is not rec-
ognized when the CPU has made an attempt to
fetch from an inaccessible location or has detected

6-18 System/370 Principles of Operation

instruction sequence such that the instruction is not
executed.

Every instruction can cause an access exception
to be recognized because of instruction fetch. Ad-
ditionally, access exceptions associated with in-
struction execution may occur because of an access
to an operand in storage.

An access exception due to fetching an instruc-
tion is indicated when the first instruction halfword
cannot be fetched without encountering the excep-
tion. When the first halfword of the instruction
has no access exceptions, access exceptions may be
indicated for additional halfwords according to the
instruction length specified by the first two bits of
the instruction; however, when the operation can
be performed without accessing the second or third
halfwords of the instruction, it is unpredictable
whether the access exception is indicated for the
unused part. Since the indication of access excep-
tions for instruction fetch is common to all instruc-
tions, it is not covered in the individual instruction
definitions.

Except where otherwise indicated in the individ-
ual instruction description, the following rules apply
for exceptions associated with an access to an
operand location. For a fetch-type operand, access
exceptions are necessarily indicated only for that
portion of the operand which is required for com-
pleting the operation. It is unpredictable whether
access exceptions are indicated for those portions
of a fetch-type operand which are not required for
completing the operation. For a store-type
operand, access exceptions are recognized for the
entire operand even if the operation could be com-
pleted without the use of the inaccessible part of
the operand. In situations where the value of a
store-type operand is defined to be unpredictable, it
is unpredictable whether an access exception is
indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word "access'' is included in the list of program
exceptions in the description of the instruction.
This entry also indicates which operand can cause
the exception to be recognized and whether the
exception is recognized on a fetch or store access
to that operand location. Access exceptions are
recognized only for the portion of the operand as
defined by each particular instruction.

Multiple Program-Interruption Conditions
Except for PER events, only one program-
interruption condition is indicated with a program
interruption. The existence of one condition, how-
ever, does not preclude the existence of other con-
ditions. When more than one program-interruption
condition exists, only the condition having the
highest priority is identified in the interruption
code.

With two conditions of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the
two parts of an operand that crosses a page or pro-
tection boundary is unpredictable and is not neces-
sarily related to the sequence specified for the ac-
cess of bytes within the operand.

The type of ending which occurs (nullification,
suppression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is indi-
cated which permits termination, and another con-
dition also exists which would cause either nullifi-
cation or suppression, then the unit of operation is
suppressed.

The figure "Priority of Program-Interruption
Conditions" lists the priorities of all program-
interruption conditions other than PER events. All
exceptions associated with references to storage for
a particular instruction halfword or a particular
operand byte are grouped as a single entry called
"access." The figure "Priority of Access Excep-
tions'' lists the priority of access exceptions for a
single access. Thus, the second figure specifies
which of several exceptions encountered either in
the access of a particular portion of an instruction
or in any particular access associated with an
operand, has highest priority, and the first figure
specifies the priority of this condition in relation to
other conditions detected in the operation.

The relative priorities of any two conditions can
be found by comparing the priority numbers within
a table from left to right until a mismatch is found.
If the first inequality is between numeric charac-
ters, either the two conditions are mutually exclu-
sive or, if both can occur, the condition with the
smaller number is indicated. If the first inequality
is between alphabetic characters, then the two con-
ditions are not exclusive, and it is unpredictable
which is indicated when both occur.

Chapter 6. Interruptions 6-19

AU B

N N NN N NN

O 0 o o o

[T - - B

o o 0O

E N VE I

Delayed addressing exception due to an attempted store by a previous
instruction (zero ILC).

Delayed protection exception due to an attempted store by a previous
instruction (zero ILC).

Specification exception.due to any PSW error of the type that causes an

immediate interruption.]

Specification exception due to an odd instruction address in the PSW.
Access exceptions for first halfword of EXECUTE. 2

Access exceptions for second halfword of EXECUTE .2

Specification exception dus to target instruction of EXECUTE not being speci-
fied on halfword boundary.

Access exceptions for first instruction halfword.
Access exceptions for second instruction halfword.>
Access exceptions for third instruction halfword.3
Operation exception.

Privileged-operation exception.

Execute exception.

Special-operation exception.

Specification exception caused by an uninstalled instruction that has an
assigned operation code (for example, an uninstalled floating-point instruc-
tion specifying an odd floating-point register).

Specification exception due to conditions other than those included in 2, 5,
and 7.D above.

Access exceptions for an access to an operand in storage.5

Access exceptions for any other access to an operand in main storage.5

Data exception.6

Decimal-divide exception.’

Fixed-point divide, floating-point divide, and conditions, other than PER
events, which result in completion. Either these conditions are mutually ex-
clusive or their priority is specified in the corresponding definitions.

Priority of Program-Interruption Conditions (Part 1 of 2)

6-20 System/370 Principles of Operation

®

Explanation:

Numbers indicate priority, with priority decreasing in ascending order of numbers;
letters indicate no priority.

1 PSW errors which cause an immediate interruption may be introduced by a new PSW
loaded as a result of an interruption or by the instructions LPSW, SSM, and STOSM.
The priority shown in the chart is for a PSW error introduced by an interruption
and may also be considered as the priority for a PSW error introduced by the pre-
vious instruction. The error is introduced only if the instruction encounters no
other exceptions. The resulting interruption has a higher priority than any in-
terruption caused by the instruction which would have been executed next; it has a
lower priority, however, than any interruption caused by the instruction which
introduced the erroneous PSW.

Priorities 3, 4, and 5 are for the EXECUTE instruction, and priorities starting
with 6 are for the target instruction. When no EXECUTE is encountered, priorities
3, 4, and 5 do not apply.

Separate accesses may occur for each halfword of an instruction. The second in-
struction halfword is accessed only if bits 0-1 of the instruction are not both
zeros. The third instruction halfword is accessed only if bits 0-1 of the in-
struction are both ones. Access exceptions for one of these halfwords are not nec-
essarily recognized if the instruction can be completed without use of the con-
tents of the halfword or if an exception of priority 8 or 9 can be determined
without the use of the halfword.

As in instruction fetching, separate accesses may occur for each portion of an
operand. Each of these accesses is of equal priority, and the two entries 8.B
and 8.C are listed to represent the relative priorities of exceptions associated
with any two of these accesses. Access exceptions for INSERT STORAGE KEY, SET
STORAGE KEY, RESET REFERENCE BIT, and LOAD REAL ADDRESS are also included in 8.B.

For MOVE LONG and COMPARE LOGICAL LONG, an access exception for a particular
operand can be indicated only if the R field for that operand designates an
even-numbered register.

& The exception can be indicated only if the sign, digit, or digits responsible for
the exception were fetched without encountering an acces$ exception.

7 The exception can be indicated only if the digits used in establishing the excep-
tion, and also the signs, were fetched without encountering an access exception,
and only if the digits used in establishing the exception are valid.

Priority of Program-Interruption Conditions (Part 2 of 2)

Chapter 6. Interruptions

6-21

Chapter 7. General Instructions

Contents

Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3
Instructions 7-4
ADD 74
ADD HALFWORD 7-4
ADD LOGICAL 7-4
AND 7-7
BRANCH AND LINK 7-7
BRANCH ON CONDITION 7-8
BRANCH ON COUNT 7-9
BRANCH ON INDEX HIGH 7-9
BRANCH ON INDEX LOW OR EQUAL 7-9
COMPARE 7-10
COMPARE AND SWAP 7-10
COMPARE DOUBLE AND SWAP 7-10
COMPARE HALFWORD 7-12
COMPARE LOGICAL 7-12
COMPARE LOGICAL CHARACTERS UNDER
MASK 7-12
COMPARE LOGICAL LONG 7-13
CONVERT TO BINARY 7-14
CONVERT TO DECIMAL 7-14
DIVIDE 7-15
EXCLUSIVE OR 7-15
EXECUTE 7-16
INSERT CHARACTER 7-17
INSERT CHARACTERS UNDER MASK 7-17
LOAD 7-17
LOAD ADDRESS 7-18
LOAD AND TEST 7-18
LOAD COMPLEMENT 7-18
LOAD HALFWORD 7-19
LOAD MULTIPLE 7-19
LOAD NEGATIVE 7-19
LOAD POSITIVE 7-19

This chapter includes all the unprivileged instruc-
tions described in this publication, other than the

decimal and floating-point instructions.

MONITOR CALL 7-20

MOVE 7-20

MOVE INVERSE 7-21

MOVE LONG 7-21

MOVE NUMERICS 7-24

MOVE WITH OFFSET 7-24

MOVE ZONES 7-25

MULTIPLY 7-25

MULTIPLY HALFWORD 7-26

OR 7-26

PACK 7-27

SET PROGRAM MASK 7-27

SHIFT LEFT DOUBLE 7-28

SHIFT LEFT DOUBLE LOGICAL 7-28
SHIFT LEFT SINGLE 7-28

SHIFT LEFT SINGLE LOGICAL 7-29
SHIFT RIGHT DOUBLE 7-29

SHIFT RIGHT DOUBLE LOGICAL 7-29
SHIFT RIGHT SINGLE 7-30

SHIFT RIGHT SINGLE LOGICAL 7-30
STORE 7-30

STORE CHARACTER 7-31

STORE CHARACTERS UNDER MASK 7-31
STORE CLOCK 7-31

STORE HALFWORD 7-32

STORE MULTIPLE 7-32

SUBTRACT 7-32

SUBTRACT HALFWORD 7-33
SUBTRACT LOGICAL 7-33
SUPERVISOR CALL 7-34

TEST AND SET 7-34

TEST UNDER MASK 7-34
TRANSLATE 7-35

TRANSLATE AND TEST 7-36
UNPACK 7-36

Data Format

The general instructions treat data as being of four
types: signed binary integers, unsigned binary in-
tegers, unstructured logical data, and decimal data.

Chapter 7. General Instructions

7-1

Data is treated as decimal by the conversion, pack-
ing, and unpacking instructions. Decimal data is
described in Chapter 8, ''Decimal Instructions."

Data resides in general registers or in storage or
is introduced from the instruction stream.

In a storage-to-storage operation the operand
fields may be defined in such a way that they over-
lap. The effect of this overlap depends upon the
operation. When the operands remain unchanged,
as in COMPARE or TRANSLATE AND TEST,
overlapping does not affect the execution of the
operation. For instructions such as MOVE and
TRANSLATE, one operand is replaced by new
data, and the execution of the operation may be
affected by the amount of overlap and the manner
in which data is fetched or stored. For purposes of
evaluating the effect of overlapped operands, data
is considered to be handled one eight-bit byte at a
time. All overlapping fields are considered valid.

Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When
two unsigned binary integers of different lengths
are added, the shorter number is considered to be
extended on the left with zeros.

For signed binary integers, the leftmost bit rep-
resents the sign, which is followed by the numeric
field. Positive numbers are represented in true
binary notation with the sign bit set to zero. Nega-
tive numbers are represented in two’s-complement
binary notation with a one in the sign-bit position.

Specifically, a negative number is represented by
the two’s complement of the positive number of the
same absolute value. The two’s complement of a
number is obtained by inverting each bit of the
number, including the sign, and adding a one in the
low-order bit position.

This type of number representation can be con-
sidered the low-order portion of an infinitely long
representation of the number. When the number is
positive, all bits to the left of the most significant
bit of the number are zeros. When the number is
negative, all these bits are ones. Therefore, when a
signed operand must be extended with high-order
bits, the extension is achieved by setting these bits
equal to the sign bit of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which the set of negative numbers is one larger
than the set of positive numbers. The maximum
positive number consists of a sign bit of zero fol-
lowed by all ones, whereas the maximum negative
number (the negative number with the greatest

7-2 System/370 Principles of Operation

absolute value) consists of a sign bit of one fol-
lowed by all zeros. The number zero consists of
all-zero bits.

A signed binary integer of either sign, except for
zero and for the maximum negative number, is
changed to the number with opposite sign by form-
ing its two’s complement. This operation of com-
plementing a number is equivalent to subtracting
the number from zero. The complement of zero is
Zero.

The complement of the maximum negative num-
ber cannot be represented in the same number of
bits. When an operation, such as a subtraction of
the maximum negative number from zero, attempts
to produce the complement of the maximum nega-
tive number, the result is the maximum negative
number, and a fixed-point-overflow exception is
recognized. An overflow does not result, however,
when the maximum negative number is comple-
mented as an intermediate result but the final result
is within the representable range. An example of
this case is a subtraction of the maximum negative
number from minus one. The product of two maxi-
mum negative numbers is representable as a
double-length positive number.

In discussions of signed binary integers in this
publication, a signed binary integer includes the
sign bit. Thus, the expression ''32-bit signed binary
integer' denotes an integer with 31 numeric bits
and a sign bit, and the expression ''64-bit signed
binary integer' denotes an integer with 63 numeric
bits and a sign bit.

In some operations, the result is achieved by the
use of the one’s complement of the number. The
one’s complement of a number is obtained by in-
verting each bit of the number.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer changes the
sign. However, in algebraic left-shifting the sign
bit does not change even if significant high-order
bits are shifted out.

Programming Notes

1. An alternate way of forming the two’s comple-
ment of a signed binary integer is to invert all
bits to the left of the rightmost one bit, leaving
the rightmost one bit and all zero bits to the
right of it unchanged.

2. The numeric bits of a signed binary integer may
be considered to represent a positive value,
with the sign representing a value of either zero
or the maximum negative number.

‘

Signed and Unsigned Binary
Arithmetic

Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is extended on the left to the
length of the longer operand by propagating the
sign-bit value. If the carry out of the sign-bit posi-
tion and the carry out of the high-order numeric bit
position disagree, an overflow occurs. The sign bit
is not changed after the overflow.

Subtraction is performed by adding the one’s
complement of the second operand and a low-order
one to the first operand.

Signed addition and subtraction produce an
overflow when the result is outside the range of
representation for signed binary integers. Specifi-
cally, for ADD and SUBTRACT, which operate on
32-bit signed binary integers, there is an overflow
when the proper result would be greater than or
equal to +23! or less than —231. The actual result
placed in the general register after an overflow
differs from the proper result by 232, An overflow
causes a program interruption for fixed-point over-
flow if it is allowed.

Addition of unsigned binary integers is per-
formed by adding all bits of each operand. When
one of the operands is shorter, the shorter operand
is extended on the left with zeros. Unsigned binary
arithmetic is used in address arithmetic for adding
the X, B, and D fields. It is also used to obtain the
addresses of the function bytes in the instructions
TRANSLATE and TRANSLATE AND TEST.
Furthermore, unsigned binary arithmetic is used on
32-bit unsigned binary integers by the instructions
ADD LOGICAL and SUBTRACT LOGICAL.
Given the same two operands, ADD and ADD
LOGICAL produce the same 32-bit result. The
instructions differ only in the interpretation of this
result. ADD interprets the result as a signed binary
integer and inspects it for sign, magnitude, and
overflow to set the condition code accordingly.
ADD LOGICAL interprets the result as an un-
signed binary integer and sets the condition code
according to whether the result is zero and whether
there was a carry out of the high-order bit position.
Such a carry is not necessarily considered an over-
flow, and no program interruption can occur for
ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one’s complement of the
second operand and a low-order one are added to
the first operand.

Programming Notes

1. Logical addition and subtraction may be used
to program multiple-precision arithmetic. Thus,
for multiple-precision binary-integer addition,
ADD LOGICAL is used to add the correspond-
ing lower-order parts of the operands. If the
condition code indicates a carry, a one is added
to the first operand of the next higher pair of
integers before adding the second operand. If
the integers are signed, the ADD instruction is
used on the highest-order parts after propagat-
ing any carry. The condition code then indi-
cates any overflow or the proper sign and mag-
nitude of the entire result; an overflow is also
indicated by a fixed-point-overflow interruption
if it is allowed. If the integers are unsigned,
ADD LOGICAL is used throughout.

2. Another use for ADD LOGICAL is to incre-
ment values representing binary counters,
which are allowed to wrap around from all ones
to all zeros without necessarily indicating over-
flow.

Signed and Logical Comparison
Comparison operations determine whether two
operands are equal or not and, for most operations,
which of two unequal operands is the greater
(high). Signed-binary comparison operations are
provided which treat the operands as signed binary
integers, and logical comparison operations are pro-
vided which treat the operands as unsigned binary
integers or as unstructured data.

The instructions COMPARE and COMPARE
HALFWORD are signed-binary comparison opera-
tions. These instructions are equivalent to SUB-
TRACT and SUBTRACT HALFWORD without
replacing either operand, the resulting difference
being used only to set the condition code. The
operations permit comparison of numbers of oppo-
site sign which differ by 232 or more. Thus, unlike
SUBTRACT, COMPARE can cause no overflow.

Logical comparison of two operands is per-
formed byte by byte, in a left-to-right sequence.
The operands are equal when all their bytes are
equal. When the operands are unequal, the com-
parison result is determined by a left-to-right com-
parison of corresponding bit positions in the first
unequal pair of bytes: the zero bit in the first une-
qual pair of bits indicates the low operand, and the
one bit the high operand. Since the remaining bit
and byte positions do not change the comparison, it
is not necessary to continue comparing unequal
operands beyond the first unequal bit pair.

Chapter 7. General Instructions 7-3

Instructions
The general instructions and their mnemonics, for-
mats, and operation codes are listed in the figure
"Summary of General Instructions." The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.
A detailed definition of instruction formats,
operand designation and length, and address gener-
ation is contained in the section "Instructions" in
Chapter 5, "Program Execution.'" Exceptions to
the general rules stated in that section are explicitly
identified in the individual instruction descriptions.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designations for the assembler language
are shown with each instruction. For LOAD AND
TEST, for example, LTR is the mnemonic and R,
R, the operand designation.

ADD
AR R1,R2 [RR]
"1A' R1 Ry
0 8 12 15
A R]’DZ(XZ’BZ) [RX]
'GA’ R1 X9 Bo Do
0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The operands and the sum are treated as 32-bit
signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of A only)
Fixed-Point Overflow

7-4 System/370 Principles of Operation

ADD HALFWORD

AH R1,D2(Xy,B5) [RX]

'yA'! R1 XZ Bz Dz

0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer. The first
operand and the sum are treated as 32-bit signed
binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

Programming Note
An example of the use of ADD HALFWORD is
given in Appendix A.

ADD LOGICAL

ALR Ry,Rp [RR]
"1E! R1 | Ry
0 8 12 15
AL R1,D2(X2,B5) [RX]
'5E! Ry | X2 | By D,
0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The operands and the sum are treated as 32-bit
unsigned binary integers.

Resulting Condition Code:

0 Sum is zero, with no carry

1 Sum is not zero, with no carry
2 Sum is zero, with carry

3 Sum is not zero, with carry

By

Mne- Op
Name monic Characteristics Code

ADD AR RR C IF R 1A
ADD A RX C A IF R 5A
ADD HALFWORD AH RX C A IF R 4A
ADD LOGICAL ALR RR C R 1E
ADD LOGICAL AL RX C A R 5E
AND NR RR C R 14
AND N RX C A R 54
AND (character) NC SS C A ST|D4
AND (immediate) NI SI C A ST |94
BRANCH AND LINK BALR |RR B R 05
BRANCH AND LINK BAL RX B R 45
BRANCH ON CONDITION BCR RR Sl B 07
BRANCH ON CONDITION BC RX B 47
BRANCH ON COUNT BCTR |RR B R 06
BRANCH ON COUNT BCT RX B R 46
BRANCH ON INDEX HIGH BXH RS B R 86
BRANCH ON INDEX LOW OR EQUAL BXLE |RS B R 87
COMPARE CR RR C 19
COMPARE C RX C A 59
COMPARE AND SWAP CS RS C SW A SP S R ST|BA
COMPARE DOUBLE AND SWAP cDS RS C SwW A SP S R ST|BB
COMPARE HALFWORD CH RX C A 49
COMPARE LOGICAL CLR RR C 15
COMPARE LODGICAL CL RX C A 55
COMPARE LOGICAL (character) cLC SS ¢ A D5
COMPARE LOGICAL (immediate) CLI SI ¢C A 95
COMPARE LOGICAL CHARACTERS UNDER MASK |CLM RS C A BD
COMPARE LOGICAL LONG CLCL |RR C A SP I R OF
CONVERT TO BINARY CvB RX A D 1K R 4F
CONVERT TO DECIMAL CvD RX A ST|4E
DIVIDE DR RR SP 1K R 1D
DIVIDE D RX A SP 1K R 5D
EXCLUSIVE OR XR RR C R 17
EXCLUSIVE OR X RX C A R 57
EXCLUSIVE OR (character) XC SS € A ST (D7
EXCLUSIVE OR (immediate) X1 SI ¢ A ST|97
EXECUTE EX RX A SP EX 44
INSERT CHARACTER IC RX A R 43
INSERT CHARACTERS UNDER MASK ICM RS C A R BF
LOAD LR RR R 18
LOAD L RX A R 58
LOAD ADDRESS LA RX R 41
LOAD AND TEST LTR RR C R 12
LOAD COMPLEMENT LCR RR C IF R 13
LOAD HALFWORD LH RX A R 48
LOAD MULTIPLE LM RS A R 98
LOAD NEGATIVE LNR RR C R 11
LOAD POSITIVE LPR RR C |F R 10
MONITOR CALL MC S| SP MO AF
MOVE (character) MVC |SS A ST|D2
MOVE (immediate) MVI |SI A ST|92
MOVE |INVERSE MVCIN|SS MI A ST|E8
MOVE LONG MVCL (RR C A SP 11 R ST|OE
MOVE NUMERICS MVN SS A ST(D1
MOVE WITH OFFSET MVO SS A ST(F1
MOVE ZNONES MVZ SS A ST|D3
MULTIPLY MR RR SP R 1C
MULTIPLY M RX A SP R 5C
MULTIPLY HALFWORD MH RX A R 4C
OR OR RR C R 16

Summary of General Instructions (Part 1 of 2)

Chapter 7. General Instructions 7-5

Mne- Op
Name monic Characteristics Code

OR 0 RX C A R 56
OR (character) oc SS ¢ A ST|Dé
OR (immediate) ol SI C A ST|96
PACK PACK |SS A ST|F2
SET PROGRAM MASK SPM |RR L 04
SHIFT LEFT DOUBLE SLDA |RS C SP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL |RS SP R 8D
SHIFT LEFT SINGLE SLA |RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL RS R 89
SHIFT RIGHT DOUBLE SRDA |RS C SP R 8E
SHIFT RIGHT DOUBLE LOGICAL SRDL |RS SP R 8C
SHIFT RIGHT SINGLE SRA |RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL |RS R 88
STORE ST RX A ST |50
STORE CHARACTER STC |RX A ST |42
STORE CHARACTERS UNDER MASK STCM |RS A ST|BE
STORE CLOCK STCK |S C A $ ST|B205
STORE HALFWORD STH |RX A ST |40
STORE MULTIPLE STM |RS A ST|90
SUBTRACT SR RR C IF R 1B
SUBTRACT S RX C A IF R 5B
SUBTRACT HALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR |RR C R 1F
SUBTRACT LOGICAL SL RX C A R SF
SUPERVISOR CALL Svce RR $ 0A
TEST AND SET TS S c A $ ST|93
TEST UNDER MASK ™ SI C A 91
TRANSLATE TR SS A ST|DC
TRANSLATE AND TEST TRT |SS C A R DD
UNPACK UNPK 1SS A ST|F3

Explanation:

A Access exceptions for logical addresses

B PER branch event

C Condition code is set

D Data exception

EX Execute exception

IF Fixed-point-overflow exception

Il Interruptible instruction

IK Fixed-point-divide exception

L New condition code loaded

Ml Move-inverse feature

MO Monitor event

R PER general-register-alteration event

RR RR instruction format

RS RS instruction format

RX RX instruction format

S S instruction format

SI S| instruction format

SP Specification exception

SS SS instruction format

ST PER storage-alteration event

SW Conditional-swapping feature

$1 Causes serialization

S Causes serialization when the M4 and Rz fields contain all ones and all zeros,

respectively.

Summary of General Instructions (Part 2 of 2)

7-6 System/370 Principles of Operation

Program Exceptions:
Access (fetch, operand 2 of AL only)

AND
NR RysRy [RR]

1 1

14 Ry | Ry
0 8 12 15

1 1

54 Ry | Xy | By D,
0 8 12 16 20 31
NI D1(By).1, [SI]

1 1

94 I, B, D,
0 8 16 20 31
NC D1(L,B4),D,(B,) [SS]

Dy L B A B 6

D
1 /l 2 /2

0 8 16 20 32 36 47

The AND of the first and second operands is
placed in the first-operand location.

The connective AND is applied to the operands
bit by bit. A bit position in the result is set to one
if the corresponding bit positions in both operands

contain ones; otherwise, the result bit is set to zero.

For NC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For NI, the first operand is one byte in length,
and only one byte is stored.

Resulting Condition Code:
0 Result is zero

1 Result is not zero
2 -

3 -

Program Exceptions:

Access (fetch, operand 2, N and NC; fetch and
store, operand 1, NI and NC)

Programming Notes

1. An example of the use of the AND instruction
is given in Appendix A.

2. The instruction AND may be used to set a bit
to zero.

3. Accesses to the first operand of NI and NC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a par-
ticular byte do not necessarily occur one imme-
diately after the other. Thus, the instruction
AND cannot be safely used to update a loca-
tion in storage if the possibility exists that an-
other CPU or a channel may also be updating
the location. An example of this effect is
shown for the instruction OR (OI) in the sec-
tion "Multiprogramming and Multiprocessing
Examples" in Appendix A.

BRANCH AND LINK

BALR R1sRy [RR]
1 1
05 Ry | Ry
0 8 12 15
BAL R1sDy(X5,B5) [RX]
1 1
45 Ry | X | By D,
0 8 12 16 20 31

Information from the current PSW, including the
updated instruction address, is loaded as link in-
formation in the general register designated by R,.
Subsequently, the instruction address is replaced by
the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register designated by R, are
used as the branch address; however, when the R,
field contains zeros, the operation is performed
without branching. The branch address is comput-
ed before the link information is loaded.

The link information consists of the instruction-
length code (ILC), the condition code (CC), the
program mask bits, and the updated instruction
address, arranged in the following format:

Chapter 7. General Instructions 7-7

Prog
ILC|CC|Mask Instruction Address
0 2 4 8 31

The instruction-length code is 1 or 2.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH AND
LINK is given in Appendix A.

2. When the R, field in the RR format contains
all zeros, the link information is loaded without
branching.

3. When BRANCH AND LINK is the target in-
struction of EXECUTE, the instruction-length
code is 2.

4. The format and the contents of the link infor-
mation do not depend on whether the PSW
specifies the EC or BC mode. In both modes,
the link information is in the format of the
rightmost 32 bit positions of the BC-mode
PSW.

BRANCH ON CONDITION

BCR My,Ry [RR]
‘07! M1 | Ry
0 8 12 15
BC M1,D2(X2,B7) [RX]
‘47! M1 | X9 | By Dy
0 8 12 16 20 31

The instruction address in the current PSW is re-
placed by the branch address if the condition code
has one of the values specified by M;; otherwise,
normal instruction sequencing proceeds with the
updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register specified by R, are
used as the branch address; however, when the R,
field contains zeros, the operation is performed
without branching.

The M, field is used as a four-bit mask. The
four condition codes (0, 1, 2, and 3) correspond,

7-8 System/370 Principles of Operation

left to right, with the four bits of the mask, as fol-
lows:

Mask
Condition Instruction Position
Code Bit Value
0 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to select the
corresponding mask bit. If the mask bit selected by
the condition code is one, the branch is successful.
If the mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential in-
struction.

When the M; and R, fields of BCR are all ones
and all zeros, respectively, a serialization function
is performed. CPU operation is delayed until all
previous accesses by this CPU to storage have been
completed, as observed by channels and other
CPUs. No subsequent instructions or their oper-
ands are accessed by this CPU until the execution
of this instruction is completed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH ON CON-
DITION is given in Appendix A.

2. When a branch is to depend on more than one
condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example,
specifies that a branch is to be made when the
condition code is 0 or 1.

3. When all four mask bits are zero or when the
R, field in the RR format contains zero, the
branch instruction is equivalent to a no-
operation. When all four mask bits are ones,
that is, the mask value is 15, the branch is un-
conditional unless the R, field in the RR format
is zero.

Execution of BCR 15,0 (that is, an instruction
with a value of 07F0 hex) may result in signifi-
cant performance degradation. To ensure opti-
mum performance, the program should avoid
use of BCR 15,0 except in cases when the seri-
alization or the checkpoint-synchronization
function is actually required.

5. Note that the relation between the RR and RX
formats in branch-address specification is not
the same as in operand-address specification.
For branch instructions in the RX format, the
branch address is the address specified by X,,
B,, and D,; in the RR format, the branch ad-
dress is contained in the register specified by
R,. For operands, the address specified by X,,
B,, and D, is the operand address, but the reg-

ister specified by R, contains the operand itself.

BRANCH ON COUNT

BCTR R1sR, [RR]
! 1
06 Ry | Ry
0 8 12 15
BCT R15D2(X5,B5) [RX]
) [}
0 8 12 16 20 31

A one is subtracted from the first operand, and the
result is placed in the first-operand location. The
first operand and result are treated as 32-bit binary
integers, with overflow ignored. When the result is
zero, normal instruction sequencing proceeds with
the updated instruction address. When the result is
not zero, the instruction address in the current
PSW is replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of bit positions 8-31 of the general regis-
ter specified by R2 are used as the branch address;
however, when the R, field contains zeros, the
operation is performed without branching.

The branch address is computed before the
counting operation.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH ON
COUNT is given in Appendix A.

2. The first operand and result can be considered
as either signed or unsigned binary integers
since the result of a binary subtraction is the
same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in —1 and causes branching to be execu-
ted; an initial count of —1 results in -2 and
causes branching to be executed; and so on. In
a loop, branching takes place each time the in-
struction is executed until the result is again
zero. Note that, because of the number range,
an initial count of —23! results in a positive val-
ue of 231 — 1.

4. Counting is performed without branching when
the R, field in the RR format contains zero.

BRANCH ON INDEX HIGH

BXH RysR3,D,(By) [RS]

86 R4 R3 B,y Dy

0 8 12 16 20 31

BRANCH ON INDEX LOW OR EQUAL

BXLE R1sR3,0,(B,) [RS]

1 1
87 Ry | Ry | By D,

0 8 12 16 20 31

An increment is added to the first operand, and the
sum is compared with a compare value. The result
of the comparison determines whether branching
occurs. Subsequently, the sum is placed in the
first-operand location. The second-operand ad-
dress is used as a branch address. The R; field
designates registers containing the increment and
the compare value.

For BXH, when the sum is high, the instruction
address in the current PSW is replaced by the
branch address. When the sum is low or equal,
normal instruction sequencing proceeds with the
updated instruction address.

For BXLE, when the sum is low or equal, the
instruction address in the current PSW is replaced
by the branch address. When the sum is high, nor-
mal instruction sequencing proceeds with the up-
dated instruction address.

When the Rj field is even, it designates a pair of
registers; the contents of the even and odd registers
of the pair are used as the increment and the com-
pare value, respectively. When the R, field is odd,
it designates a single register, the contents of which
are used as both the increment and the compare
value.

Chapter 7. General Instructions 7-9

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition is
ignored.

The original contents of the compare-value regis-
ter are used as the compare value even when that
register is also specified to be the first-operand
location. The branch address is computed before
the addition and comparison.

The sum is placed in the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of BRANCH ON IN-
DEX HIGH is given in Appendix A.

2. The word "index" in the names of these in-
structions indicates that one of the major pur-
poses is the incrementing and testing of an in-
dex value. The increment, being a signed bina-
ry integer, may be used to increase or decrease
the value in register R; by an arbitrary amount.

COMPARE
CR R1sR, [RR]
] 1
19 Ry | Ry
0 8 12 15
c R15D(X5,B5) [RX]
! 1
59 Ry | X5 | By D,y
0 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are treated as 32-bit signed
binary integers.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2 of C only)

7-10 System/370 Principles of Operation

COMPARE AND SWAP

cs R1sR3,0,(By) (RS]

BA Ry Ry | By D,y

0 8 12 16 20 31

COMPARE DOUBLE AND SWAP

CDS Ry,R5,Dy(B,) [RS]

BB Ry R3 | By Dy

0 8 12 16 20 31

The first and second operands are compared. If
they are equal, the third operand is stored at the
second-operand location. If they are unequal, the
second operand is loaded into the first-operand
location. The result of the comparison is indicated
in the condition code.

For CS, the first and third operands are 32 bits
in length, with each operand occupying a general
register. The second operand is a word in storage.

For CDS, the first and third operands are 64 bits
in length, with each operand occupying an even-
odd pair of general registers. The second operand
is a doubleword in storage.

When the result of the comparison is unequal,
the second-operand location remains unchanged.
However, on some models, the value may be
fetched and subsequently stored back into the
second-operand location. No access by another
CPU to the second-operand location is permitted
between the moment that the second operand is
fetched for comparison and it is stored.

When an equal comparison occurs, no access by
another CPU to the second-operand location is
permitted between the moment that the second
operand is fetched for comparison and the moment
that the third operand is stored at the second-
operand location.

Serialization is performed before the operand is
fetched, and again after the operation is completed.
CPU operation is delayed until all previous accesses
by this CPU to storage have been completed, as
observed by channels and other CPUs, and then
the second operand is fetched. No subsequent in-
structions or their operands are accessed by this
CPU until the execution of this instruction is com-
pleted, including placing the result value, if any, in
storage, as observed by channels and other CPUs.

The second operand of CS must be designated

on a word boundary. The R; and R; fields for
CDS must each designate an even register, and the
second operand for CDS must be designated on a
doubleword boundary. Otherwise, a specification
exception is recognized.

Resulting Condition Code:

0 First and second operands equal, second
operand replaced by third operand

1 First and second operands unequal, first
operand replaced by second operand

2 -

3 -

Program Exceptions:

Access (fetch and store, operand 2)

Operation (if the conditional-swapping feature is
not installed)

Specification

Programming Notes

1. Several examples of the use of the COMPARE
AND SWAP and COMPARE DOUBLE AND
SWAP instructions are given in Appendix A.

2. The instruction CS can be used by programs
sharing common storage areas in either a multi-
programming or multiprocessing environment.
Two examples are:

a. By performing the following procedure, a
program can modify the contents of a stor-
age location even though the possibility ex-
ists that the program may be interrupted by
another program that will update the loca-
tion or even though the possibility exists
that another CPU may simultaneously up-
date the location. First, the entire word
containing the byte or bytes to be updated
is loaded into a general register. Next, the
updated value is computed and placed in
another general register. Then the instruc-
tion CS is executed with the R, field desig-
nating the register that contains the original
value and the R; field designating the regis-
ter that contains the updated value. If con-
dition code 0 is set, the update has been
successful. If condition code 1 is set, the
storage location no longer contains the
original value, the update has not been suc-
cessful, and the general register designated
by the R, field of the CS instruction con-
tains the new current value of the storage
location. When condition code 1 is set, the
program can repeat the procedure using the
new current value.

5.

b. The instruction CS can be used for con-
trolled sharing of a common storage area in
a manner similar to that described in the
programming note under TEST AND SET,
but it provides the added capability of leav-
ing a message when the common area is in
use. To accomplish this, a word in storage
can be used as a control word, with a zero
value in the word indicating that the com-
mon area is not in use, a negative value in-
dicating that the area is in use, and a
nonzero positive value indicating that the
common area is in use and that the value is
the address of the most recent message
added to the list. Thus, any number of pro-
grams desiring to seize the area can use CS
to update the control word to indicate that
the area is in use or to add messages to the
list. The single program which has seized
the area can also safely use CS to remove
messages from the list.
The instruction CDS can be used in a manner
similar to that described for CS. In addition, it
has another use. Consider a chained list, with
a control word used to address the first message
in the list, as described in programming note 2b
above. If multiple programs are permitted to
add and delete messages by using CS, there is a
possibility the list will be incorrectly updated.
This would occur if, after one program has
fetched the address of the most recent message
in order to remove the message, another pro-
gram removes the first two messages and then
adds the first message back into the chain. The
first program, on continuing, cannot easily de-
tect that the list is changed. By increasing the
size of the control word to a doubleword con-
taining both the first message address and a
word with a change number that is incremented
for each modification of the list, and by using
CDS to update both fields together, the possi-
bility of the list being incorrectly updated is
reduced to a negligible level. That is, an incor-
rect update can occur only if the first program
is delayed while changes exactly equal in num-
ber to a multiple of 232 take place and only if
the last change places the original message ad-
dress in the control word.
The instructions CS and CDS do not interlock
against storage accesses by channels. There-
fore, the instructions should not be used to up-
date a location which is in an I/O input area,
since the input data may be lost.
For the case of a condition-code setting of 1,
the instructions CS and CDS may or may not,

Chapter 7. General Instructions 7-11

depending on the model, cause any of the fol-
lowing to occur for the second-operand loca-
tion: a PER storage-alteration event may be
recognized; a protection exception for storing
may be recognized; and, provided no access
exception exists, the change bit may be turned
on.

COMPARE HALFWORD

CH R1,D2(X2,Bz) [RX]

'49' R1 X9 Bo Dy

0 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The second operand is two bytes in length
and is treated as a 16-bit signed binary integer.
The first operand is treated as a 32-bit signed bina-
ry irteger.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of COMPARE HALF-
WORD is given in Appendix A.

COMPARE LOGICAL

CLR R1,Ry [RR]
"15' | Ry | Ry
0 8 12 15
cL R1,D2(X2,B2) [RX]
‘55’ Ry | X2 | B2 Dy
0 8 12 16 20 31

7-12 System/370 Principles of Operation

'95! I B] D1
0 8 16 20 31
CLC D1(L,B1),D2(Bz) [SS]
P : / /
5 L 1 D] 82 Do
/ /
0 8 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached. For CL and CLC,
access exceptions may or may not be recognized for
the portion of a storage operand to the right of the
first unequal byte.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2, CL and CLC; fetch,
operand 1, CLI and CLC)

Programming Notes

1. Examples of the use of the COMPARE LOGI-
CAL instructions are given in Appendix A.

2. The COMPARE LOGICAL instructions treat
all bits of each operand alike as part of a field
of unstructured logical data. For CLC, the
comparison may extend to field lengths of 256
bytes.

COMPARE LOGICAL CHARACTERS
UNDER MASK

CLM R1,M3,D2(Bj) [RS]

'BD' R1 M3 By Do
0 8 12 16 20 31

The first operand is compared with the second ope-
rand under control of a mask, and the result is indi-
cated in the condition code.

The contents of the M; field are used as a mask.
These four bits, left to right, correspond one for

one with the four bytes, left to right, of the general
register designated by the R, field. The byte posi-
tions corresponding to ones in the mask are consid-
ered as a contiguous field and are compared with
the second operand. The second operand is a con-
tiguous field in storage, starting at the second-
operand address and equal in length to the number
of ones in the mask. The bytes in the general reg-
ister corresponding to zeros in the mask do not
participate in the operation.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for no
more than the number of bytes specified by the
mask. Access exceptions may or may not be recog-
nized for the portion of a storage operand to the
right of the first unequal byte. When the mask is
zero, access exceptions are recognized for one byte.

Resulting Condition Code:

0 Selected bytes are equal, or mask is zero
1 Selected field of first operand is low

2 Selected field of first operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note

An example of the use of COMPARE LOGICAL
CHARACTERS UNDER MASK is given in Ap-
pendix A.

COMPARE LOGICAL LONG

CLCL Ry.R, [RR]

OF' | Ry | Ry

0 8 12 15

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The shorter operand is considered to be ex-
tended on the right with padding bytes.

The R, and R, fields each specify an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R,
and R, fields, respectively. The number of bytes in

the first-operand and second-operand locations is
specified by bits 8-31 of general registers R, +1
and R,+1, respectively. Bit positions 0-7 of regis-
ter R,+1 contain the padding byte. The contents
of bit positions 0-7 of registers R, R,, and R, +1
are ignored.

Graphically, the contents of the registers just
described are as follows:

Ry ////////| First-Operand Address

0 8 31

Rq+1 [////////| First-Operand Length

0 8 31

Ry ////////| Second-Operand Address

0 8 31

Ry+1 Pad Second-Operand Length

0 8 31

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the longer operand is reached. If the
operands are not of the same length, the shorter
operand is considered to be extended on the right
with the appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that
causes termination, the contents of registers R, +1
and R,+1 are decremented by the number of bytes
compared, and the contents of registers R, and R,
are incremented by the same number, so that the
instruction, when reexecuted, resumes at the point
of interruption. The high-order bits which are not
part of the address in registers R, and R, are set to
zeros; the contents of the high-order byte of regis-
ters R;+1 and R,+1 remain unchanged; and the
condition code is unpredictable. If the operation is
interrupted after the shorter operand has been ex-
hausted, the length field pertaining to the shorter
operand is zero, and its address is updated accord-
ingly.

If the operation ends because of an inequality,
the address fields in registers R, and R, at comple-
tion identify the first unequal byte in each operand.
The lengths in bit positions 8-31 of registers R, +1
and R,+1 are decremented by the number of bytes
that were equal, unless the inequality occurred with
the padding byte, in which case the length field for

Chapter 7. General Instructions 7-13

the shorter operand is set to zero. The addresses in
registers R, and R, are incremented by the
amounts by which the corresponding length fields
were reduced.

If the two operands, including the padding byte,
if necessary, are equal, both length fields are made
zero at completion, and the addresses are incre-
mented by the corresponding operand-length val-
ues. The bits which are not part of the address in
registers R and R, are set to zeros, including the
case when one or both of the initial length values
are zero. The contents of bit positions 0-7 of reg-
isters R;+1 and R,+1 remain unchanged.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
than 2,048 bytes, access exceptions are not recog-
nized more than 2,048 bytes beyond the byte being
processed. Access exceptions are not indicated for
locations more than 2,048 bytes beyond the first
unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the
R field associated with that operand is odd.

Resulting Condition Code:
0 Operands are equal, or both have zero length
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Specification

Programming Notes

1. An example of the use of COMPARE LOGI-
CAL LONG is given in Appendix A.

2. When the R and R, fields are the same, the
operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or a channel, condition code 0 is
set. However, it is unpredictable whether ac-
cess exceptions are recognized for the operand
since the operation can be completed without
storage being accessed.

3. Other programming notes concerning interrupt-
ible instructions are included in the section
"Interruptible Instructions" in Chapter 5,
"Program Execution."

4. Special precautions should be taken when
COMPARE LOGICAL LONG is made the

7-14 System/370 Principles of Operation

target of EXECUTE. See the programming
note concerning interruptible instructions under
EXECUTE.

CONVERT TO BINARY

CVB Ry,Dy(Xy,B,) [RX]

"yf ! Rq Xy | By Dy

0 8 12 16 20 31

The radix of the second operand is changed from
decimal to binary, and the result is placed in the
first-operand location.

The second operand occupies eight bytes in stor-
age and is treated as packed decimal data, as de-
scribed in Chapter 8, ''Decimal Instructions." It is
checked for valid sign and digit codes, and a data
exception is recognized when an invalid code is
detected.

The result of the conversion is a 32-bit signed
binary integer, which is placed in the general regis-
ter specified by R;. The maximum positive number
that can be converted and still be contained in a
32-bit register is 2,147,483,647; the maximum neg-
ative number (the negative number with the great-
est absolute value) that can be converted is
-2,147,483,648. For any decimal number outside
this range, the operation is completed by placing
the 32 low-order bits of the binary result in the
register, and a fixed-point-divide exception is rec-
ognized.
Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2)
Data
Fixed-Point Divide

Programming Notes

1. An example of the use of CONVERT TO BI-
NARY is given in Appendix A.

2. When the second operand is negative, the result
is in two’s-complement notation.

CONVERT TO DECIMAL

cvD RqysDy(X,,B5) [RX]

1 1
4E Ry Xy | By Dy

0 8 12 16 20 31

The radix of the first operand is changed from bi-
nary to decimal, and the result is stored at the
second-operand location. The first operand is
treated as a 32-bit signed binary integer.

The result occupies eight bytes in storage and is
in the format for packed decimal data, as described
in Chapter 8, "Decimal Instructions." The low-
order four bits of the result represent the sign. A
positive sign is encoded as 1100; a negative sign is
encoded as 1101.
Condition Code: The code remains unchanged.
Program Exceptions:

Access (store, operand 2)

Programming Notes

1. An example of the use of CONVERT TO
DECIMAL is given in Appendix A.

2. The number to be converted is a 32-bit signed
binary integer obtained from a general register.
Since 15 decimal digits are available for the
result, and the decimal equivalent of 31 bits
requires at most 10 decimal digits, an overflow
cannot occur.

DIVIDE
DR Ry,Ry [RR]
"' | Ry | Ry
0 8 12 15
D Ry.Dy(Xy,B,) [RX]
'sD' | Ry | X, | By D,
0 8 12 16 20 31

The doubleword first operand (the dividend) is
divided by the second operand (the divisor), and
the remainder and the quotient are placed in the
first-operand location.

The R, field of the instruction specifies an even-
odd pair of general registers and must designate an
even-numbered register. When R, is odd, a specifi-
cation exception is recognized.

The dividend is treated as a 64-bit signed binary
integer. The divisor, the remainder, and the quo-
tient are treated as 32-bit signed binary integers.
The remainder and quotient replace the dividend in
the pair of registers specified by the R, field. The
remainder is placed in the even-numbered register,

and the quotient is placed in the odd-numbered
register.

The sign of the quotient is determined by the
rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a
zero remainder is always positive. When the mag-
nitudes of the dividend and divisor are such that
the quotient cannot be expressed by a 32-bit signed
binary integer, a fixed-point-divide exception is
recognized, and the operation is suppressed.
Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2 of D only)
Fixed-Point Divide
Specification

EXCLUSIVE OR

XR RisRy [RR]
! !
17 Ry | Ry
0 8 12 15
X R1sDa(X5,By) [RX]
[} !
57 Ry | X, | By D,y
0 8 12 16 20 31
X1 D1(Bq)s1, [S1]
‘97" Pt By D,
0 8 16 20 31
{ Dy(L,B¢),Dy(By) [SS]
— / /
D7 L By 31 B, 32
0 8 16 20 32 36 W7

The EXCLUSIVE OR of the first and second ope-
rands is placed in the first-operand location.

The connective EXCLUSIVE OR is applied to
the operands bit by bit. A bit position in the result
is set to one if the corresponding bit positions in
the two operands are unlike; otherwise, the result
bit is set to zero.

For XC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a

Chapter 7. General Instructions 7-15

time and each result byte were stored immediately
after the necessary operand byte is fetched.

For XI, the first operand is one byte in length,
and only one byte is stored.

Resulting Condition Code:
0 Result is zero

1 Result is not zero
2 -

3 -

Program Exceptions:

Access (fetch, operand 2, X and XC; fetch and
store, operand 1, XI and XC)

Programming Notes

1. An example of the use of EXCLUSIVE OR is
given in Appendix A.

2. The instruction EXCLUSIVE OR may be used
to invert a bit, an operation particularly useful
in testing and setting programmed binary bit
switches.

3. A field EXCLUSIVE-ORed with itself becomes
all zeros.

4. For XR, the sequence A EXCLUSIVE-OR B, B
EXCLUSIVE-OR A, A EXCLUSIVE-OR B
results in the exchange of the contents of A
and B without the use of an additional general
register.

5. Accesses to the first operand of XI and XC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a par-
ticular byte do not necessarily occur one imme-
diately after the other. Thus, the instruction
EXCLUSIVE OR cannot be safely used to up-
date a location in storage if the possibility ex-
ists that another CPU or a channel may also be
updating the location. An example of this ef-
fect is shown for the instruction OR (OI) in the
section "Multiprogramming and Multiprocessing
Examples" in Appendix A.

EXECUTE
EX R15D5(X5,B5) [RX]
‘au' | Ry | Xy | By D,
0 8 12 16 20 31

The single instruction at the second-operand ad-
dress is modified by the contents of the general

register specified by R, and the resulting target
instruction is executed.

7-16 System/370 Principles of Operation

When the R, field is not zero, bits 8-15 of the
instruction designated by the second-operand ad-
dress are ORed with bits 24-31 of the register spec-
ified by R;. The ORing does not change either the
contents of the register specified by R, or the in-
struction in storage, and it is effective only for the
interpretation of the instruction to be executed.
When the R, field is zero, no ORing takes place.

The target instruction may be two, four, or six
bytes in length. The execution and exception han-
dling of the target instruction are exactly as if the
target instruction were obtained in normal sequen-
tial operation, except for the instruction address
and the instruction-length code.

The instruction address of the current PSW is
increased by the length of EXECUTE. This updat-
ed address and the instruction-length code of EX-
ECUTE are used, for example, as part of the link
information when the target instruction is
BRANCH AND LINK. When the target instruc-
tion is a successful branching instruction, the in-
struction address of the current PSW is replaced by
the branch address specified by the target instruc-
tion.

When the target instruction is in turn an EXEC-
UTE, an execute exception is recognized.

The effective address of EXECUTE must be
even; otherwise, a specification exception is recog-
nized. When the target instruction is two or three
halfwords in length but can be executed without
fetching its second or third halfword, it is unpre-
dictable whether access exceptions are recognized
for the unused halfwords. Access exceptions are
not recognized for the second-operand address
when the address is odd.

Condition Code:
target instruction.

The code may be set by the

Program Exceptions:

Access (fetch, target instruction)
Execute

Specification

Programming Notes

1. An example of the use of EXECUTE is given
in Appendix A.

2. The ORing of eight bits from the general regis-
ter with the designated instruction permits indi-
rect length, index, mask, immediate-data, and
register specification. ,‘/

3. The fetching of the target instruction is consid-
ered to be an instruction fetch for purposes of
program-event recording and for purposes of
reporting access exceptions.

4. An access or specification exception may be
caused by EXECUTE or by the target instruc-
tion.

5. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by
the interruptible instruction as the R, X,, or
B, register for EXECUTE, since on resumption
of execution after an interruption, or if the in-
struction is refetched without an interruption,
the updated values of these registers will be
used in the execution of EXECUTE. Similarly,
the program should normally not let the desti-
nation field of an interruptible instruction in-
clude the location of the EXECUTE, since the

new contents of the location may be interpreted

when resuming execution.

INSERT CHARACTER

Ic Ry,Dy(X5,B5) [RX]

[l 1
43 Ry | X2 | By D,y

0 8 12 16 20 31

The byte at the second-operand location is inserted
into bit positions 24-31 of the general register des-
ignated by the R, field. The remaining bits in the
register remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

INSERT CHARACTERS UNDER MASK

ICM RysM3,D,(By) [RS]

] 1
BF Ry | M3 | By Dy

0 8 12 16 20 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into the first-
operand location under control of a mask.

The contents of the M, field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R, field. The byte posi-
tions corresponding to ones in the mask are filled,
left to right, with bytes from successive storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the sec-
ond operand is equal to the number of ones in the

mask. The bytes in the general register corre-
sponding to zeros in the mask remain unchanged.

The resulting condition code is based on the
mask and on the value of the bits inserted. When
the mask is zero or when all inserted bits are zeros,
the condition code is set to 0. When the inserted
bits are not all zeros, the code is set according to
the leftmost bit of the storage operand: if this bit
is one, the code is set to 1; if this bit is zero, the
code is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, access exceptions are recognized
for one byte.

Resulting Condition Code:

0 All inserted bits are zeros, or mask is zero

1 Leftmost bit of the inserted field is one

2 Leftmost bit of the inserted field is zero, and
not all inserted bits are zeros

3 -

Program Exceptions:
Access (fetch, operand 2)

Programming Notes
Examples of the use of INSERT CHARAC-
TERS UNDER MASK are given in Appendix
A.

2. The condition code for INSERT CHARAC-
TERS UNDER MASK (ICM) is defined such
that, when the mask is 1111, the instruction
causes the same condition code to be set as for
LOAD AND TEST. Thus, the instruction may
be used as a storage-to-register load-and-test
operation.

3. An ICM instruction with a mask of 1111 or
0001 performs a function similar to that of a
LOAD (L) or INSERT CHARACTER (IC),
respectively, with the exception of the
condition-code setting. However, the perform-
ance of ICM may be slower.

LOAD

LR RysRy [RR]
I]
18" | Ry | Ry

0 8 12 15

Chapter 7. General Instructions 7-17

L RysDp(Xy,B,) [RX]

] 1
58' | Ry | Xy | By D,

0 8 12 16 20 31

The second operand is placed unchanged in the
first-operand location.
Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of L only)

Programming Note
An example of the use of LOAD is given in
Appendix A.

LOAD ADDRESS

LA R1sDp(X9,B5) [RX]

1 1
41 Ry Xy | Bg Dy

0 8 12 16 20 31

The address specified by the X,, B,, and D, fields
is placed in bit positions 8-31 of the general regis-
ter specified by the R, field. Bits 0-7 of the regis-
ter are set to zeros. The address computation fol-
lows the rules for address arithmetic.

No storage references for operands take place,
and the address is not inspected for access excep-
tions.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes

1. An example of the use of the LOAD AD-
DRESS instruction is given in Appendix A.

2. The same general register may be specified by
the R,, X,, and B, fields, except that general
register 0 can be specified only by the R, field.
In this manner, it is possible to increment the
low-order 24 bits of a general register, other
than register 0, by the contents of the D, field
of the instruction. The register to be incre-
mented should be specified by R, and by either
X, (with B, set to Zero) or B, (with X, set to
Zero).

7-18 System/370 Principles of Operation

LOAD AND TEST

LTR Ry.R, [RR]

1 1
12 Ry Ry

0 8 12 15

The second operand is placed unchanged in the
first-operand location, and the sign and magnitude
of the second operand, treated as a 32-bit signed
binary integer, are indicated in the condition code.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions: None.

Programming Note

When the R, and R, fields designate the same reg-
ister, the operation is equivalent to a test without
data movement.

LOAD COMPLEMENT

LCR Ry,R, [RR]

] 1
13 Ri | Ry

0 8 12 15

The two’s complement of the second operand is
placed in the first-operand location. The second
operand and result are treated as 32-bit signed bi-
nary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note

The operation complements all numbers. Zero and
the maximum negative number remain unchanged.
An overflow condition occurs when the maximum

negative number is complemented.

LOAD HALFWORD

LK RysDy(X,,B,) [RX]

' '
48' | Ry | X, | By D,

0 8 12 16 20 31

The second operand is extended to a 32-bit signed
binary integer and placed in the first-operand loca-
tion. The second operand is two bytes in length
and is considered to be a 16-bit signed binary in-
teger. The second operand is extended by propa-
gating the sign-bit value through the 16 high-order
bit positions.
Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note

An example of the use of LOAD HALFWORD is
given in Appendix A.

LOAD MULTIPLE

LM R1sR3,05(B,) [RS]

]]
98' | Ry | Ry | By D,

0 8 12 16 20 31

The set of general registers starting with the regis-
ter specified by R, and ending with the register
specified by R, is loaded from storage beginning at
the location designated by the second-operand ad-
dress and continuing through as many locations as
needed.

The general registers are loaded in the ascending
order of their register numbers, starting with the
register specified by R, and continuing up to and
including the register specified by R,, with register
0 following register 15.

Condition Code: The code remains unchanged.
Program Exceptions:
Access (fetch, operand 2)

Programming Note

All combinations of register numbers specified by
R, and R; are valid. When the register numbers
are equal, only four bytes are transmitted. When

the number specified by R, is less than the number
specified by R,, the register numbers wrap around
from 15 to O.

LOAD NEGATIVE

LNR RqsRy [RR]

]]
1 Ry | Ry

0 8 12 15

The two’s complement of the absolute value of the
second operand is placed in the first-operand loca-
tion. The second operand and result are treated as
32-bit signed binary integers.

Resulting Condition Code:
0 Result is zero

1 Result is less than zero
2 -
3

Program Exceptions: None.

Programming Note

The operation complements positive numbers; neg-
ative numbers remain unchanged. The number
zero remains unchanged.

LOAD POSITIVE

LPR RisRg [RR]

]]
10 Ry | Ry

0 8 12 15

The absolute value of the second operand is placed
in the first-operand location. The second operand
and the result are treated as 32-bit signed binary
integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
0 Result is zero

1
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Chapter 7. General Instructions 7-19

Programming Note

The operation complements negative numbers; pos-
itive numbers and zero remain unchanged. An
overflow condition occurs when the maximum neg-
ative number is complemented; the number remains
unchanged.

MONITOR CALL

M D4(By),1y [St]

] 1
AF I, B, D,

0 8 16 20 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 16-31
of control register 8, which correspond to monitor
classes 0-15, respectively.

Bit positions 12-15 in the I, field contain a bina-
ry number specifying one of 16 monitoring classes.
When the monitor-mask bit corresponding to the
class specified by the I, field is one, a monitor-
event program interruption occurs. The contents of
the I2 field are stored at location 149, with zeros
stored at location 148. Bit 9 of the program-
interruption code is set to one.

The first-operand address is not used to address
data; instead, the address specified by the B, and
D, fields forms the monitor code, which is placed
in the word at location 156. Address computation
follows the rules of address arithmetic; bits 0-7 are
set to zeros.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must con-
tain zeros; otherwise, a specification exception is
recognized.
Condition Code: The code remains unchanged.
Program Exceptions:

Monitor Event
Specification

Programming Notes

1. The MONITOR CALL instruction provides the
capability for passing control to a monitoring
program when selected points are reached in
the monitored program. This is accomplished
by implanting MONITOR CALL instructions at
the desired points in the monitored program.

7-20 System/370 Principles of Operation

This function may be useful in performing vari-
ous measurement functions; specifically, tracing
information can be generated indicating which
programs were executed, counting information
can be generated indicating how often particu-
lar programs were used, and timing information
can be generated indicating how long a particu-
lar program required for execution.

2. The monitor masks provide a means of disal-
lowing all interruptions due to MONITOR
CALL or allowing monitoring for all or selected
classes.

3. The monitor code provides a means of associat-
ing descriptive information, in addition to the
class number, with each MONITOR CALL in-
struction. Without the use of a base register,
up to 4,096 distinct monitor codes can be asso-
ciated with a monitoring interruption. With the
base register designated by a nonzero value in
the B, field, each monitoring interruption can
be identified by a 24-bit code.

MOVE
MV D4(B1),1, [S1]
! !
92 Iy B, D,
0 8 16 20 31
MVC D,(L,B),Dy(B,) [SS]
! ! / /
D2 L B, 3, B, 32
0 8 16 20 32 36 47

The second operand is placed in the first-operand
location.

For MVC, each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte is
fetched.

For MVI, the first operand is one byte in length,
and only one byte is stored.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of MVC; store, operand
1, MVI and MVC)

Programming Notes

1. Examples of the use of the MOVE instructions
are given in Appendix A.

2. It is possible to propagate one byte through an
entire field by having the first operand start
one byte to the right of the second operand.

MOVE INVERSE

MVCIN D,(L,B¢),Dy(By) [SS] ,
'E8' L B D B D
1] 0 2| 2

0 8 16 20 32 36 47

The second operand is placed in the first-operand
location with the left-to-right sequence of the bytes
inverted.

The first-operand address designates the leftmost
byte of the first operand. The second-operand
address designates the rightmost byte of the second

operand. Both operands have the same length.

The result is obtained as if the second operand
were processed from right to left and the first
operand from left to right. The second operand
may wrap around from location 0 to location
16,777,215. The first operand may wrap around
from location 16,777,215 to location 0.

When the operands overlap by more than one
byte, the contents of the overlapped portion of the
result field are unpredictable.

Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2; store, operand 1)
Operation (if move-inverse feature is not installed)

Programming Notes

1. The contents of each byte moved remain un-
changed.

2. MOVE INVERSE is the only SS-format in-
struction for which the second-operand address
designates the rightmost, instead of the left-
most, byte of the second operand.

MOVE LONG

MVCL R1sRy [RR]
'0E' | Ry | Ry

0 8 12 15

The second operand is placed in the first-operand
location, provided overlapping of operand locations

does not affect the final contents of the first-
operand location. The remaining rightmost byte
positions, if any, of the first-operand location are
filled with padding bytes.

The R, and R, fields each specify an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R,
and R, fields, respectively. The number of bytes in
the first-operand and second-operand locations is
specified by bits 8-31 of general registers R, +1
and R,+1, respectively. Bit positions 0-7 of regis-
ter R,+1 contain the padding byte. The contents
of bit positions 0-7 of registers R, R,, and R;+1
are ignored.

Graphically, the contents of the registers just
described are as follows:

Ry ////////| First-Operand Address

0 8 31

11111117
0 8 31

First-Operand Length

Ry |/1111111
0 8 31

Second-0Operand Address

Rot1 Pad Second-0Operand Length

0 8 31

The movement starts at the left end of both
fields and proceeds to the right. The operation is
ended when the number of bytes specified by bit
positions 8-31 of register R;+1 have been moved
into the first-operand location. If the second op-
erand is shorter than the first operand, the remain-
ing rightmost bytes of the first-operand location are
filled with the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for the
setting of the condition code, and a check is made
for destructive overlap of the operands. Operands
are said to overlap destructively when the first-
operand location is used as a source after data has
been moved into it, assuming the inspection for
overlap is performed by the use of logical operand
addresses. When the operands overlap destructive-
ly, no movement takes place, and condition code 3
is set.

Chapter 7. General Instructions 7-21

Operands do not overlap destructively, and
movement is performed, if the leftmost byte of the
first operand does not coincide with any of the
second-operand bytes participating in the operation
other than the leftmost byte of the second operand.
When an operand wraps around from location
16,777,215 to location 0, operand bytes in loca-
tions up to and including 16,777,215 are consid-
ered to be to the left of bytes in locations from 0
up.
When the length specified by bit positions 8-31
of register R;+1 is zero, no movement takes place,
and condition code O or 1 is set to indicate the
relative values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs other than one that
causes termination, the contents of registers R;+1
and R,+1 are decremented by the number of bytes
moved, and the contents of register R; and R, are
incremented by the same number, so that the in-
struction, when reexecuted, resumes at the point of
interruption. The high-order bits which are not
part of the address in registers R; and R, are set to
zeros; the contents of the high-order byte of regis-
ters R;+1 and R,+1 remain unchanged; and the
condition code is unpredictable. If the operation is
interrupted during padding, the length field in reg-
ister R,+1 is 0, the address in register R, is incre-
mented by the original contents of register R,+1 ,
and registers R; and R;+1 reflect the extent of the
padding operation.

When the first-operand location includes the
location of the instruction, the instruction may be
refetched from storage and reinterpreted even in
the absence of an interruption during execution.
The exact point in the execution at which such a
refetch occurs is unpredictable.

As viewed by channels and other CPUs, that
portion of the first operand which is filled with the
padding byte is not necessarily stored into in a left-
to-right direction and may appear to be stored more
than once.

At the completion of the operation, the length in
register R;+1 is decremented by the number of
bytes stored at the first-operand location, and the
address in register R; is incremented by the same
amount. The length in register R,+1 is decrement-
ed by the number of bytes moved out of the
second-operand location, and the address in regis-
ter R, is incremented by the same amount. The
bits which are not part of the address in registers
R; and R, are set to zeros, including the case when
one or both of the original length values are zeros
or when condition code 3 is set. The contents of

7-22 System/370 Principles of Operation

bit positions 0-7 of registers R;+1 and Ry+1 re-
main unchanged.

When condition code 3 is set, no exceptions as-
sociated with operand access are recognized. When
the length of an operand is zero, no access excep-
tions for that operand are recognized. Similarly,
when the second operand is longer than the first
operand, access exceptions are not recognized for
the part of the second-operand field that is in ex-
cess of the first-operand field. For operands longer
than 2,048 bytes, access exceptions are not recog-
nized for locations more than 2,048 bytes beyond
the current location being processed. Access ex-
ceptions are not recognized for an operand if the R
field associated with that operand is odd. Also,
when the R, field is odd, PER storage alteration is
not recognized, and no change bits are set.

Resulting Condition Code:

0 First-operand and second-operand lengths are
equal

1 First-operand length is low

2 First-operand length is high

3 No movement performed because of destruc-
tive overlap

Program Exceptions:
Access (fetch, operand 2; store, operand 1)
Specification

Programming Notes

1. The instruction MOVE LONG may be used for
clearing storage by setting the padding byte to
zero and the second-operand length to zero.
On most models, this is the fastest instruction
for clearing storage areas in excess of 256
bytes. However, the stores associated with this
clearing may be multiple-access stores and
should not be used to clear an area if the possi-
bility exists that a channel or another CPU will
attempt to access and use the area as soon as it
appears to be zero.

2. The program should avoid specification of a
length for either operand which would result in
an addressing exception. Addressing (and also
protection) exceptions may result in termination
of the entire operation, not just the current unit
of operation. The termination may be such
that the contents of all result fields are unpre-
dictable; in the case of MVCL, this includes the
condition code and the two even-odd general-
register pairs, as well as the first-operand loca-
tion in main storage. The following are situa-
tions that have actually occurred on one or
more models.

a. When a protection exception occurs on a
2,048-byte block of a first operand which is
several blocks in length, stores to the pro-
tected block are suppressed. However, the
move continues into the subsequent blocks
of the first operand, which are not protect-
ed. Similarly, in the case of reconfigurable
storage, an addressing exception on a block
does not necessarily suppress processing of
subsequent blocks which are addressable.

b. The model may update the general registers
only when an I/O interruption occurs or
when a program interruption occurs which
is required to nullify or suppress. Thus, if
after a move into several blocks of the first
operand, an addressing or protection excep-
tion occurs, the registers remain unchanged.

When the first-operand length is zero, the oper-

ation consists in setting the condition code and

setting the high-order bytes of registers R; and

R, to zero.

When the contents of the R; and R, fields are

the same, the operation proceeds the same way

as when two distinct pairs of registers having
the same contents are specified. Condition
code O is set.

The following is a detailed description of those

cases in which movement takes place, that is,

where destructive overlap does not exist. De-
pending on whether the second operand wraps

around from location 16,777,215 to location O,

movement takes place in the following cases:

a. When the second operand does not wrap
around, movement is performed if the left-
most byte of the first operand coincides
with or is to the left of the leftmost byte of
the second operand, or if the leftmost byte

of the first operand is to the right of the
rightmost second-operand byte participating
in the operation.

b. When the second operand wraps around,
movement is performed if the leftmost byte
of the first operand coincides with or is to
the left of the leftmost byte of the second
operand, and if the leftmost byte of the
first operand is to the right of the rightmost
second-operand byte participating in the
operation.

The rightmost second-operand byte is deter-
mined by using the smaller of the first-operand
and second-operand lengths.

When the second-operand length is one or
zero, destructive overlap cannot exist.

Special precautions must be taken if MOVE

LONG is made the target of EXECUTE. See

the programming note concerning interruptible

instructions under EXECUTE.

Since the execution of MOVE LONG is inter-

ruptible, the instruction cannot be used for situ-

ations where the program must rely on uninter-
rupted execution of the instruction or on the
interval timer not being updated during the ex-
ecution of the instruction. Similarly, the pro-
gram should normally not let the first operand
of MOVE LONG include the location of the
instruction since the new contents of the loca-
tion may be interpreted for a resumption after
an interruption, or the instruction may be re-
fetched without an interruption.

Further programming notes concerning inter-

ruptible instructions are included in the section

"Interruptible Instructions' in Chapter 5,

"Program Execution."

Chapter 7. General Instructions 7-23

MOVE NUMERICS

MVN Dy(L,Bq),Dy(By) [SS]

— / /
D1 L B] D1 [B | D

0 8 16 20 32 36 47

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions of
the corresponding bytes in the first operand. The
leftmost four bits of each byte in the first operand
remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and. store,
operand 1)

Programming Notes

1. An example of the use of MOVE NUMERICS
is given in Appendix A.

2. MVN moves the numeric portion of a decimal-
data field that is in the zoned format. The
zoned-decimal format is described in Chapter
8, ""Decimal Instructions.”" The operands are
not checked for valid sign and digit codes.

3. Accesses to the first operand of MVN consist in
fetching the rightmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not nec-
essarily occur one immediately after the other.
Thus, this instruction cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel may also
be updating the location. An example of this
effect is shown for the instruction OR (OI) in
the section ""Multiprogramming and
Multiprocessing Examples' in Appendix A.

MOVE WITH OFFSET

MVO Dy(LqsB1)sDp(Ly,sB5) [$S]

F1YIL Ly | By

/
B2 92
0 8 12 16 20 32 36 47

NON
—_

7-24 System/370 Principles of Operation

The second operand is placed to the left of and
adjacent to the rightmost four bits of the first
operand.

The rightmost four bits of the first operand are
attached as the rightmost bits to the second
operand, the second operand bits are offset by four
bit positions, and the result is placed in the first-
operand location.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all of the second operand, the remaining
leftmost portion of the second operand is ignored.
Access exceptions for the unused portion of the
second operand may or may not be indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand bytes are
fetched. The left digit of each second-operand
byte remains available for the next result byte and
is not refetched.
Condition Code: The code remains unchanged.
Program Exceptions: -

Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes

1. An example of the use of MOVE WITH
OFFSET is given in Appendix A.

2. Access to the rightmost byte of the first
operand of MVO consists in fetching the
rightmost four bits and subsequently storing the
updated value of this byte. These fetch and
store accesses to the rightmost byte of the first
operand do not necessarily occur one
immediately after the other. Thus, this
instruction cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown for the instruction OR (OI) in
the section ""Multiprogramming and
Multiprocessing Examples' in Appendix A.

3. MVO may be used to shift packed decimal data
by an odd number of digit positions. The
packed-decimal format is described in Chapter
8, "Decimal Instructions." The operands are
not checked for valid sign and digit codes. In
many cases however, the instruction SHIFT

AND ROUND DECIMAL may be more
convenient to use.

MOVE ZONES
MVZ Dy(L,By),Dy(By) [sS]
/ /
'p3' L By 91 By 92
0 8 16 20 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit positions
of the corresponding bytes in the first operand.

The rightmost four bits of each byte in the first
operand remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes

1. An example of the use of MOVE ZONES is
given in Appendix A.

2. MVZ moves the zoned portion of a decimal
field in the zoned format. The zoned format is
described in Chapter 8, ''Decimal Instructions."
The operands are not checked for valid sign
and digit codes.

3. Accesses to the first operand of MVZ consist in
fetching the leftmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(OI) in the section "Multiprogramming and
Multiprocessing Examples'' in Appendix A.

MULTIPLY
MR RysRy [RR]
“1c' | Ry | Ry
0 8 12 15
M R1,D2(X5,B5) [RX]
'sc' | Ry | Xg | By D,
0 8 12 16 20 31

The second word of the first operand
(multiplicand) is multiplied by the second operand
(multiplier), and the doubleword product is placed
at the first-operand location.

The R, field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R, is
odd, a specification exception is recognized.

Both the multiplicand and multiplier are treated
as 32-bit signed binary integers. The multiplicand
is taken from the odd-numbered register of the pair
specified by the R, field. The contents of the
even-numbered register are ignored. The product is
a 64-bit signed binary integer, which replaces the
contents of the even-odd pair of general registers
specified by the R, field. An overflow cannot
occur.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.
Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2 of M only)
Specification

Programming Notes

1. An example of the use of MULTIPLY is given
in Appendix A.

2. The significant part of the product usually
occupies 62 bits or fewer. Only when two
maximum negative numbers are multiplied are
63 significant product bits formed.

Chapter 7. General Instructions 7-25

MULTIPLY HALFWORD
MH R1,D9(X3,B7) [RX]
"uc' Ry | X2 | By Dy
0 8 12 16 20 31

The first operand (multiplicand) is multiplied by
the second operand (multiplier), and the product is
placed at the first-operand location. The second
operand is two bytes in length and is considered to
be a 16-bit signed binary integer.

The multiplicand is treated as a 32-bit signed
binary integer and is replaced by the low-order 32
bits of the signed-binary-integer product. The bits
to the left of the 32 low-order bits are not tested
for significance; no overflow indication is given.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.
Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2)

Programming Notes

1. An example of the use of MULTIPLY
HALFWORD is given in Appendix A.

2. The significant part of the product usually
occupies 46 bits or fewer. Only when two
maximum negative numbers are multiplied are
47 significant product bits formed. Since the
low-order 32 bits of the product are stored
unchanged, ignoring all bits to the left, the sign
bit of the result may differ from the true sign of
the product in the case of overflow. For a
negative product, the 32 bits placed in register
R, are the low-order part of the product in
two’s-complement notation.

OR

OR RysRy [RR]
‘16" | Ry | Ry

0 8 12 15

7-26 System/370 Principles of Operation

0 Ry,Dp(X2,B5) [RX]

'56' Ry | X9 | By Dy
0 8 12 16 20 31
ol D1(By), 1, [S1]

'96' P By D4
0 8 16 20 31
oc Dy(L,Bq),Dy(By) [sS]

‘D6’ L B 6 B é

1
/] 2| 2

0 8 16 20 32 36 47

The OR of the first and second operands is placed
in the first-operand location.

The connective OR is applied to the operands bit
by bit. A bit position in the result is set to one if
the corresponding bit position in one or both
operands contains a one; otherwise, the result bit is
set to zero.

For OC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For OI, the first operand is only one byte in
length, and only one byte is stored.

Resulting Condition Code:
0 Result is zero

1 Result is not zero
2 -

3 -

Program Exceptions:

Access (fetch, operand 2, O and OC; fetch and
store, operand 1, OI and OC)

Programming Notes

1. Examples of the use of the OR instructions are
given in Appendix A.

2. The instruction OR may be used to set a bit to
one.

3. Accesses to the first operand of OI and OC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a

particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction OR cannot be safely used to update
a location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown in the section
"Multiprogramming and Multiprocessing
Examples" in Appendix A.

PACK
PACK Dy(Lq,B1),Dy(Ly,B5) (SS]
— / /
F2 i) t2 [B] BifB2] D2
0 8 12 16 20 32 36 47

The format of the second operand is changed from
zoned to packed, and the result is placed in the
first-operand location. The zoned and packed
formats are described in Chapter 8, "Decimal
Instructions."

The second operand is treated as having the
zoned format. The numerics are treated as digits.
All zones are ignored, except the zone in the
rightmost byte, which is treated as a sign.

The sign and digits are moved unchanged to the
first operand and are not checked for valid codes.
The sign is placed in the rightmost four bit
positions of the rightmost byte of the result field,
and the digits are placed adjacent to the sign and
to each other in the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand may or may not be
indicated.

When the operands overlap, the result is
obtained as if each result byte were stored
immediately after the necessary operand bytes are
fetched. Two second-operand bytes are needed for
each result byte, except for the rightmost byte of
the result field, which requires only the rightmost
second-operand byte.

Condition Code: The code remains unchanged.
Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes

1. An example of the use of PACK is given in
Appendix A.

2. The PACK instruction may be used to
interchange the two hexadecimal digits in one
byte by specifying a zero in the L; and L,
fields and the same address for both operands.

3. To remove the zones of all bytes of a field,
including the rightmost byte, both operands
must be extended on the right with a dummy
byte, which subsequently is ignored in the
result field.

SET PROGRAM MASK

SPM Ry [RR]

‘o4 Ry (/777
0 8 12 15

The contents of the general register specified by
the R, field are used to set the condition code and
the program mask of the current PSW. Bits 12-15
of the instruction are ignored.

Bits 2 and 3 of the register specified by the R
field replace the condition code, and bits 4-7
replace the program mask. Bits 0, 1, and 8-31 of
the register specified by the R, field are ignored.

Resulting Condition Code:

0 Bit 2 is zero, and bit 3 is zero

1 Bit 2 is zero, and bit 3 is one

2 Bit 2 is one, and bit 3 is zero

3 Bit 2 is one, and bit 3 is one

Program Exceptions: None.

Programming Notes

1. Bits 2-7 of the general register may have been
loaded from the PSW by BRANCH AND
LINK.

2. The instruction permits setting of the condition
code and the mask bits in either the problem or
supervisor state.

3. The program should take into consideration
that the setting of the program mask can have a
significant effect on subsequent execution of
the program. Not only do the four mask bits
control whether the corresponding interruptions
occur, but the exponent-underflow and
significance masks also determine the result
which is obtained.

Chapter 7. General Instructions 7-27

SHIFT LEFT DOUBLE
SLDA Ry,Dy(By) [RS]
‘8sF' | Ry [///7] By D,
0 8 12 16 20 31

The double-length numeric part of the first operand
is shifted left the number of bits specified by the
second-operand address. Bits 12-15 of the
instruction are ignored.

The R, field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Zeros are supplied to the
vacated register positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1 of the even register, an
overflow occurs. The overflow causes a program
interruption when the fixed-point-overflow mask
bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow
Specification

Programming Notes

1. An example of the use of SHIFT LEFT
DOUBLE is given in Appendix A.

2. The eight shift instructions provide the
following three pairs of alternatives: left or
right, single or double, and signed or logical.
The signed shifts differ from the logical shifts
in that, in the signed shifts, overflow is
recognized, the condition code is set, and the
leftmost bit participates as a sign.

7-28 System/370 Principles of Operation

3. A zero shift amount in the two signed double-
shift operations provides a double-length sign
and magnitude test.

4. The base register participating in the generation
of the second-operand address permits indirect
specification of the shift amount. A zero in the
B, field indicates the absence of indirect shift
specification.

SHIFT LEFT DOUBLE LOGICAL

SLDL Ry,D2(By) [RS]
‘8D’ Ry [/7/7] By Dy
0 8 12 16 20 31

The double-length first operand is shifted left the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The R, field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R, is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 of the
even-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions:
Specification

SHIFT LEFT SINGLE

SLA Ry,Dp(By) [RS]
'88' | Ry |////] B, D,
0 8 12 16 20 31

The numeric part of the first operand is shifted left
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

4

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the left shift. Zeros are
supplied to the vacated register positions on the
right.

If one or more bits unlike the sign bit are shifted
out of bit position 1, an overflow occurs. The
overflow causes a program interruption when the
fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixéd-Point Overflow

Programming Notes

1. An example of the use of SHIFT LEFT
SINGLE is given in Appendix A.

2. For numbers with an absolute value of less than
230 a left shift of one bit position is equivalent
to multiplying the number by two.

3. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative
number or zero, depending on whether or not
the initial contents were negative.

SHIFT LEFT SINGLE LOGICAL

SLL Ry,D9(By) [RS]
'89' | Ry |////] By Dy
0 8 12 16 20 31

The first operand is shifted left the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position O are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions: None.

SHIFT RIGHT DOUBLE

SRDA Ry,D5(By) (RS]

'se' | Ry |////] B, D,

0 8 12 16 20 31

The double-length numeric part of the first operand
is shifted right the number of places specified by
the second-operand address. Bits 12-15 of the
instruction are ignored.

The R, field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Bits shifted out of bit position
31 of the odd-numbered register are not inspected
and are lost. Bits equal to the sign are supplied to
the vacated register positions on the left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:
Specification

SHIFT RIGHT DOUBLE LOGICAL

SROL Ry,Dp(By) [RS]
‘sc’ Ry (/777 By D,y
0 8 12 16 20 31

The double-length first operand is shifted right the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.
The R, field of the instruction specifies an
even-odd pair of general registers and must

Chapter 7. General Instructions 7-29

designate an even-numbered register. When R, is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 of the
odd-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the left.

Condition Code: The code remains unchanged.
Program Exceptions:
Specification

SHIFT RIGHT SINGLE

SRA Ry,Dy(By) [RS]

'8A' | Ry [/71/] B, D,
0 8 12 16 20 31

The numeric part of the first operand is shifted
right the number of bits specified by the second-
operand address. Bits 12-15 of the instruction are
ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the right shift. Bits shifted
out of bit position 31 are not inspected and are
lost. Bits equal to the sign are supplied to the
vacated register positions on the left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions: None.

Programming Notes

1. A right shift of one bit position is equivalent to
division by 2 with rounding downward. When
an even number is shifted right one position,

7-30 System/370 Principles of Operation

the result is equivalent to dividing the number
by 2. When an odd number is shifted right one
position, the result is equivalent to dividing the
next lower number by 2. For example, +5
shifted right by one bit position yields +2,
whereas -5 yields -3.

2. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of -1 or zero, depending on
whether or not the initial contents were
negative.

SHIFT RIGHT SINGLE LOGICAL

SRL Rq,D9(B3) [RS]
‘88’ [Ry |////] By D,
0 8 12 16 20 31

The first operand is shifted right the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions: None.

STORE
ST R],Dz(XZ,Bz) [RX]
'50' R4 Xo B, Dy
0 8 12 16 20 31

The first operand is stored at the second-operand
location.

The 32 bits in the general register are placed
unchanged at the second-operand location.
Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE CHARACTER

STC RqsDp(Xp,B5) [RX]

'w2' | Ry | Xy | By D,

0 8 12 16 20 31

Bits 24-31 of the general register designated by the
R, field are placed unchanged at the second-
operand location. The second operand is one byte
in length.
Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE CHARACTERS UNDER MASK

STCM Ry,M3,05(By) [RS]

'BE' | Ry | M3 | B, D,

0 8 12 16 20 31

Bytes selected from the first operand under control
of a mask are placed in contiguous byte locations
beginning at the second-operand address.

The contents of the M; field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R, field. The bytes
corresponding to ones in the mask are placed in the
same order in successive and contiguous storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the
second operand is equal to the number of ones in
the mask. The contents of the general register
remain unchanged.

When the mask is not zero, exceptions associated
with storage-operand accesses are recognized only
for the number of bytes specified by the mask.

When the mask is zero, the single byte
designated by the second-operand address remains
unchanged; however, on some models, the value
may be fetched and subsequently stored back at the
same storage location. No access by another CPU
is permitted to the location designated by the
second-operand address between the moment that
the value is fetched and the value is stored.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Notes

1. An example of the use of STORE
CHARACTERS UNDER MASK is given in
Appendix A.

2. STCM with a mask of 0111 may be used to
store a three-byte address, for example, in
modifying the address in a CCW.

3. STCM with a mask of 1111, 0011, or 0001
performs the same function as STORE (ST),
STORE HALFWORD (STH), or STORE
CHARACTER (STC), respectively. However,
on most models, the performance of STCM will
be slower.

4. Using STCM with a zero mask should be
avoided since this instruction, depending on the
model, may perform a fetch and store of the
single byte specified by the second-operand
address. This access is not interlocked against
accesses by channels. In addition, it may cause
any of the following to occur for the byte
specified by the second-operand address: a
PER storage-alteration event may be
recognized; access exceptions may be
recognized; and, provided no access exceptions
exist, the change bit may be turned on.

STORE CLOCK

STCK Do (By) [S]

1 1
B205 B, D,

0 16 20 31

The current value of the time-of-day clock is stored
at the eight-byte field designated by the second-
operand address, provided the clock is in the set,
stopped, or not-set state.

Zeros are stored for the rightmost bit positions
that are not provided by the clock.

When the clock is in the error state, the value
stored is unpredictable. When the clock is in the
not-operational state, zeros are stored at the
operand location.

The quality of the clock value stored by the
instruction is indicated by the resultant
condition-code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage. CPU operation is
delayed until all previous accesses by this CPU to

Chapter 7. General Instructions 7-31

storage have been completed, as observed by
channels and other CPUs, and then the value of
the clock is fetched. No subsequent instructions or
their operands are fetched by this CPU until the
clock value has been placed in storage, as observed
by channels and CPUs.

Resulting Condition Code:

0 Clock in set state

1 Clock in not-set state

2 Clock in error state

3 Clock in stopped state or not-operational
state

Program Exceptions:
Access (store, operand 2)

Programming Notes

1. Bit position 31 of the clock is incremented
every 1.048576 seconds; hence, for timing
applications involving human responses, the
high-order clock word may provide sufficient
resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in
elapsed-time measurements and as a valid
time-of-day and calendar indication. Condition
code 1 indicates that the clock value is the
elapsed time since the power for the clock was
turned on. In this case the value may be used
in elapsed-time measurements but is not a valid
time-of-day indication. Condition codes 2 and
3 mean that the value provided by STORE
CLOCK cannot be used for time measurement
or indication.

3. Condition code 3 indicates that the clock is
either in the stopped state or not-operational
state. These two states can normally be
distinguished since an all-zero value is stored
when in the not-operational state.

STORE HALFWORD

STH Rq.Dp(X2,B5) [RX]

‘40" Ry | X2 | By Dy

0 8 12 16 20 31

Bits 16-31 of the general register designated by the
R, field are placed unchanged at the second-
operand location. The second operand is two bytes
in length.

7-32 System/370 Principles of Operation

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE MULTIPLE

STM Ry,R3,D,(By) [RS]

'90' | Ry | R3 | By D,

0 8 12 16 20 31

The ,contents of the set of general registers starting
with the register specified by R, and ending with
the register specified by R; are placed in the
storage area beginning at the location designated
by the second-operand address and continuing
through as many locations as needed.

The general registers are stored in the ascending
order of register numbers, starting with the register
specified by R; and continuing up to and including
the register specified by R4, with register 0
following register 15.

Condition Code: The code remains unchanged.
Program Exceptions:
Access (store, operand 2)

Programming Note
An example of the use of STORE MULTIPLE is
given in Appendix A.

SUBTRACT
SR R1sRy [RR]
"18" Ry | Ry
0 8 12 15
S R1,D2(X9,B2) [RX]
'sB’ Ry | X2 | By Dy
0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first-
operand location. The operands and the difference
are treated as 32-bit signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of S only)
Fixed-Point Overflow

Programming Notes

1. When, in the RR format, the R; and R, fields
designate the same register, subtracting is
equivalent to clearing the register.

2. Subtracting a maximum negative number from
another maximum negative number gives a zero
result and no overflow.

SUBTRACT HALFWORD

SH Ry,D2(X5,Bp) [RX]

‘4" Ry | X2 | By D,

0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first-
operand location. The second operand is two bytes
in length and is treated as a 16-bit signed binary
integer. The first operand and the difference are
treated as 32-bit signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

SUBTRACT LOGICAL
SLR RysRy (RR]
"1F! Ry | Ry
0 8 12 15
SL Rq,D2(X5,Bp) [RX]
'5F Ry | X2 | By Dy
0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first-
operand location. The operands and the difference
are treated as 32-bit unsigned binary integers.

Resulting Condition Code:

0 -

1 Difference is not zero, with no carry
2 Difference is zero, with carry

3 Difference is not zero, with carry

Program Exceptions:
Access (fetch, operand 2 of SL only)

Programming Notes

1. Logical subtraction is performed by adding the
one’s complement of the second operand and a
low-order one to the first operand. The use of
the one’s complement and the low-order one
instead of the two’s complement of the second
operand results in a carry when subtracting
Zero.

2. SUBTRACT LOGICAL differs from
SUBTRACT only in the meaning of the
condition code and in the absence of the
interruption for overflow.

3. A zero difference is always accompanied by a
carry out of the high-order bit position.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating
the presence and absence of a borrow, as
follows:

1 Difference is not zero, with borrow
2 Difference is zero, with no borrow
3 Difference is not zero, with no borrow

Chapter 7. General Instructions 7-33

SUPERVISOR CALL

SvC | [RR]

0 8 15

The instruction causes a supervisor-call
interruption, with the I field of the instruction
providing the interruption code.

Bits 8-15 of the instruction, with eight
high-order zeros appended, are placed in the
supervisor-call interruption code that is stored in
the course of the interruption. See
"Supervisor-Call Interruption" in Chapter 6,
"Interruptions."

A serialization function is performed. CPU
operation is delayed until all previous storage
accesses by this CPU to storage have been
completed, as observed by channels and other
CPUs. No subsequent instructions or their
operands are accessed by this CPU until the
execution of this instruction is completed.

Condition Code: The code remains unchanged
and is saved as part of the old PSW. A new
condition code is loaded as part of the
supervisor-call interruption.

Program Exceptions: None.

TEST AND SET

TS D,(By) [S]

‘93" |//111111] B, D,
0 8 16 20 31

The leftmost bit (bit position 0) of the byte located
at the second-operand address is used to set the
condition code, and then the byte is set to all ones.
Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is
fetched for the testing of bit position 0. No access
by another CPU to this location is permitted
between the moment of fetching and the moment
of stdring all ones.

A serialization function is performed before the
byte is fetched and again after the storing of all
ones. CPU operation is delayed until all previous
accesses by this CPU to storage have been
completed, as observed by channels and other

7-34 System/370 Principles of Operation

CPUs, and then the byte is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the all-ones value has been placed in
storage, as observed by channels and other CPUs.

Resulting Condition Code:

0 Leftmost bit of byte specified was zero
1 Leftmost bit of byte specified was one
2 -

3 -

Program Exceptions:
Access (fetch and store, operand 2)

Programming Notes

1. TEST AND SET may be used for controlled
sharing of a common storage area by more than
one program. To accomplish this, bit position O
of a byte must be designated as the control bit.
The desired interlock can be achieved by
establishing a program convention in which a
zero in the bit position indicates that the
common area is available but a one means that
the area is being used. Each using program
then must examine this byte by means of TEST
AND SET before making access to the common
area. If the test sets condition code 0, the area
is available for use; if it sets condition code 1,
the area cannot be used. Because TEST AND
SET permits no other CPU access to the test
byte between the moment of fetching (for
westing) and the moment of storing all ones
(setting), the possibility is eliminated of a
second program testing the byte before the first
program is able to set it.

2. It should be noted that TEST AND SET does
not interlock against storage accesses by
channels.

TEST UNDER MASK

™ D1(B1),1, (sl

‘91" Iy B4 D4
0 8 16 20 31

A mask is used to select bits of the first operand,
and the result is indicated in the condition code.
The byte of immediate data, I,, is used as an
eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte in
storage designated by the first-operand address.

A mask bit of one indicates that the storage bit
is to be tested. When the mask bit is zero, the
storage bit is ignored. When all storage bits thus
selected are zero, condition code O is set.
Condition code O is also set when the mask is all
zeros. When the selected bits are all ones,
condition code 3 is set; otherwise, the code is set
to 1.

Access exceptions associated with the storage
operand are recognized for one byte even when the
mask is all zeros.

Resulting Condition Code:

0 Selected bits all zeros; or the mask is all zeros
1 Selected bits mixed zeros and ones
2 -

3 Selected bits all ones

Program Exceptions:
Access (fetch, operand 1)

Programming Note
An example of the use of TEST UNDER MASK is
given in Appendix A.

TRANSLATE
TR Dy(L,By),Dy(By) [sS]
‘e B 6 B :
' L D
L 2 | 2
0 8 16 20 32 36 47

The bytes of the first operand are used as eight-bit
arguments to reference a list designated by the
second-operand address. Each function byte
selected from the list replaces the corresponding
argument in the first operand.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected one
by one for translation, proceeding left to right.
Each argument byte is added to the initial second-
operand address. The addition is performed
following the rules for address arithmetic, with the
argument byte treated as an eight-bit unsigned
binary integer and extended with high-order zeros.
The sum is used as the address of the function byte,
which then replaces the original argument byte.

The operation proceeds until the first-operand
field is exhausted. The list is not altered unless an
overlap occurs.

When the operands overlap, the result is
obtained as if each result byte were stored

immediately after the corresponding function byte
is fetched.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.
Condition Code: The code remains unchanged.
Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Programming Notes

1. An example of the use of TRANSLATE is
given in Appendix A.

2. The instruction TRANSLATE may be used to
convert data from one code to another code.

3. The instruction may also be used to rearrange
data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of
TRANSLATE, and by designating the data that
is to be rearranged as the second operand.
Each byte of the pattern contains an eight-bit
number specifying the byte destined for this
position. Thus, when the instruction is
executed, the pattern selects the bytes of the
second operand in the desired order.

4. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(OI) in the section '""Multiprogramming and
Multiprocessing Examples' in Appendix A.

5. Because each eight-bit argument byte is added
to the initial second-operand address to obtain
the address of a function byte, the list may
contain 256 bytes. In cases where it is known
that not all eight-bit argument values will
occur, it is possible to reduce the size of the
list.

6. Significant performance degradation is possible
when, with DAT on, the second-operand
address of TRANSLATE designates a location
that is less than 256 bytes to the left of a
2,048-byte boundary. This is because the
machine may perform a trial execution of the
instruction to determine if the second operand
actually crosses the boundary.

Chapter 7. General Instructions 7-35

TRANSLATE AND TEST

TRT D](L,B]),Dz(Bz) [SS]

DD’ L B

B2
0 8 16 20 32 36 47

NO~
—_
NON

The bytes of the first operand are used as eight-bit
arguments to select function bytes from a list
designated by the second-operand address. The
first nonzero function byte is inserted in general
register 2, and the related argument address in
general register 1.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected one
by one for translation, proceeding from left to
right. The first operand remains unchanged in
storage. Fetching of the function byte from the list
is performed as in TRANSLATE. The function
byte retrieved from the list is inspected for a value
of zero.

When the function byte is zero, the operation
proceeds with the next byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the operation
is completed by setting condition code 0. The
contents of general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the
operation is completed by inserting the function
byte in general register 2 and the related argument
address in general register 1. This address points
to the argument byte last translated. The function
byte replaces bits 24-31 of general register 2. The
address replaces bits 8-31 of general register 1.
Bits 0-7 of general register 1 and bits 0-23 of
general register 2 remain unchanged.

When the function byte is nonzero, either
condition code 1 or 2 is set, depending on whether
the argument byte is the rightmost byte of the first
operand. Condition code 1 is set if one or more
argument bytes remain to be translated. Condition
code 2 is set if no more argument bytes remain.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized for
those bytes in the first operand which are to the
right of the first byte for which a nonzero function
byte is obtained.

7-36 System/370 Principles of Operation

Resulting Condition Code:
0 All function bytes zero

1 Nonzero function byte; first-operand field
not exhausted

2 Nonzero function byte; first-operand field
exhausted

3 -

Program Exceptions:
Access (fetch, operands 1 and 2)

Programming Notes

1. An example of the use of TRANSLATE AND
TEST is given in Appendix A.

2. The instruction TRANSLATE AND TEST may
be used to scan the first operand for characters
with special meaning. The second operand, or
list, is set up with all-zero function bytes for
those characters to be skipped over and with
nonzero function bytes for the characters to be
detected.

UNPACK
UNPK Dy(Lq,B¢),D(Ly,Bp) [sS]
‘F3t L B 6 B :
L D
L e 20 I B A 2| 72
0 8 12 16 20 32 36 47

The format of the second operand is changed from
packed to zoned, and the result is placed in the
first-operand location. The packed and zoned
formats are described in Chapter 8, "'Decimal
Instructions."

The second operand is treated as having the
packed format. Its digits and sign are placed
unchanged in the first-operand location, using the
zoned format. Zones with coding of 1111 are
supplied for all bytes except the low-order byte,
which receives the sign of the second operand. The
sign and digits are not checked for valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first-operand field is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand may or may not be
indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored

immediately after the necessary operand byte is
fetched. The entire rightmost second-operand byte
is used in forming the first result byte. For the
remainder of the field, information for two result
bytes is obtained from a single second-operand
byte, and the leftmost four bits of the byte remain
available and are not refetched. Thus, two result
bytes are stored immediately after fetching a single
operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes

1.

2.

An example of the use of UNPACK is given in
Appendix A.

A field that is to be unpacked can be destroyed
by improper overlapping. To save storage
space for unpacking by overlapping the
operands, the rightmost position of the first
operand must be to the right of the rightmost
position of the second operand by the number
of bytes in the second operand minus 2. If
only one or two bytes are to be unpacked, the
low-order positions of the two operands may
coincide.

Chapter 7. General Instructions 7-37

Chapter 8. Decimal Instructions

Contents

Decimal-Number Formats 8-1
Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-1
Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3
Instructions 8-3

The decimal instructions of this chapter perform
arithmetic and editing operations on decimal data.
Additional operations on decimal data are provided
by several of the instructions in Chapter 7,
"General Instructions.' Decimal operands always
reside in storage, and all instructions operating on
decimal data use the SS instruction format.

Decimal-Number Formats

Decimal numbers may be in either the zoned or
packed format. Both decimal-number formats have
from one to 16 bytes, each byte consisting of a pair
of four-bit codes. The four-bit codes include
decimal-digit codes, sign codes, and a zone code.
Decimal operands occupy storage fields that start
on a byte boundary.

Zoned Format

Z | N| Z | N Z | N |Z/S| N

In the zoned format, the rightmost four bits of a
byte are called the numeric bits (N) and normally
comprise a code representing a decimal digit. The
leftmost four bits of a byte are called the zone bits
(Z), except for the rightmost byte of a decimal
operand, where these bits may be treated either as
a zone or as a sign (S).

ADD DECIMAL 8-4

COMPARE DECIMAL 8-4

DIVIDE DECIMAL 8-5

EDIT 8-5

EDIT AND MARK 8-9

MULTIPLY DECIMAL 8-9

SHIFT AND ROUND DECIMAL 8-10
SUBTRACT DECIMAL 8-10

ZERO AND ADD 8-11

Decimal digits in the zoned format may be part
of a larger character set, which includes also
alphabetic and special characters. The zoned
format is, therefore, suitable for input, editing, and
output of numeric data in human-readable form.
There are no decimal-arithmetic instructions which
operate directly on decimal numbers in the zoned
format; such numbers must first be converted to
the packed format.

Packed Format

In the packed format, each byte contains two
decimal digits (D), except for the rightmost byte,
which contains a sign to the right of a decimal
digit. Decimal arithmetic is performed with
operands in the packed format and generates
results in the packed format.

For all decimal instructions in this chapter other
than EDIT and EDIT AND MARK, both operands.
are in the packed format.

Decimal Codes

The decimal digits 0-9 have the binary encoding
0000-1001.
The preferred sign codes are 1100 for plus and

Chapter 8. Decimal Instructions 8-1

1101 for minus. These are the sign codes
generated for the results of the decimal-arithmetic
instructions and the CONVERT TO DECIMAL
instruction.

Alternate sign codes are also recognized as valid
when appearing in the sign position: 1010, 1110,
and 1111 are alternate codes for plus, and 1011 is
an alternate code for minus. Alternate sign codes
are accepted for any decimal operand but are never
generated or propagated in the signed result of a
decimal-arithmetic instruction or CONVERT TO
DECIMAL, even when an operand remains
otherwise unchanged, such as when adding zero to
a number. An alternate sign code is, however, left
unchanged by the instructions MOVE NUMERICS,
MOVE WITH OFFSET, MOVE ZONES, PACK,
and UNPACK.

When an invalid code is detected, a data
exception is recognized. For the decimal-arithmetic
instructions, the action taken for a data exception
depends on whether a sign code is invalid. When a
sign code is invalid, the operation is suppressed
regardless of whether any other condition causing
an exception exists. When no sign code is invalid,
the operation is terminated.

For the editing instructions EDIT and EDIT
AND MARK, an invalid sign code is not recog-
nized. The operation is terminated for a data
exception due to an invalid digit code. No validity
checking is performed by the instructions MOVE
NUMERICS, MOVE WITH OFFSET, MOVE
ZONES, PACK, and UNPACK.

The zone code 1111 appears in the left four bit
positions of each byte representing a decimal digit
in zoned-format results. Zoned-format results are
produced by the instructions EDIT, EDIT AND
MARK, and UNPACK, except that the left four bit
positions of the rightmost byte produced by
UNPACK contain whatever code exists in the sign
position of the packed operand. The right four bit
positions of each byte in the zoned format contain
a decimal-digit code.

The meaning of the decimal codes is summarized
in the figure "Summary of Digit and Sign Codes."

Programming Notes

1. Since 1111 is both the zone code and an
alternate code for plus, unsigned (positive)
decimal numbers may be represented in the
zoned format with 1111 codes in all byte
positions. The result of the PACK instruction
converting such a number to the packed format
may be used directly as an operand for decimal
instructions.

8-2 System/370 Principles of Operation

2. The use of the alternate minus code 1011 is not

recommended.

Recognized As
Code Digit Sign
0000 0 Invalid
0001 1 Invalid
0010 2 Invalid
0011 3 Invalid
0100 4 Invalid
0101 5 Invalid
0110 [Invalid
0111 7 Invalid
1000 8 Invalid
1001 9 Invalid
1010 Invalid Plus
1011 Invalid Minus
1100 | Invalid | Plus (preferred)
1101 | Invalid | Minus (preferred)
1110 Invalid Plus
1111 | Invalid Plus (zone)

Summary of Digit and Sign Codes

Decimal Operations

The decimal instructions in this chapter consist of
two classes, the decimal-arithmetic instructions and
the editing instructions.

Decimal-Arithmetic Instructions

The decimal-arithmetic instructions, which comprise
all of the instructions in this chapter except the two
editing instructions, perform addition, subtraction,
multiplication, division, comparison, and shifting.

Operands of the decimal-arithmetic instructions
are in the packed format and are treated as signed
decimal integers. A decimal integer is represented
in true form as an absolute value with a separate
plus or minus sign. It contains an odd number of
decimal digits, from one to 31, and the sign; this
corresponds to an operand length of one to 16
bytes.

A decimal zero normally has a plus sign, but
multiplication, division, and overflow may produce
a zero value with a minus sign. Such a negative
zero is a valid operand and is treated as equal to a
positive zero by the COMPARE DECIMAL
instruction.

The lengths of the two operands specified in the
instruction need not be the same. If necessary, the
shorter operand is considered to be extended with
zeros to the left of the high-order digit. Results,
however, cannot exceed the first-operand length as
specified in the instruction.

When a carry or some high-order nonzero digits
of the result are lost because the first-operand field
is too short, the result is obtained by ignoring the
overflow information, condition code 3 is set, and,
if the decimal-overflow mask bit is one, a program
interruption for decimal overflow occurs. The
operand lengths alone are not an indication of
overflow; significant digits must have been lost
during the operation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the
operands may also overlap in such a manner that
the rightmost byte of the first operand (which
becomes the result) is to the right of the rightmost
byte of the second operand. For these cases of
proper overlap, the result is obtained as if operands
were processed right to left. Because the codes for
digits and signs are verified during the performance
of the arithmetic, improperly overlapping operands
are recognized as data exceptions.

Programming Note

The same decimal field in storage may be specified
for both operands of the instructions ADD
DECIMAL, COMPARE DECIMAL, DIVIDE
DECIMAL, MULTIPLY DECIMAL, and
SUBTRACT DECIMAL. Thus, a decimal number
may be added to itself, compared to itself, etc.
SUBTRACT DECIMAL may be used to set a
decimal field in storage to zero.

Editing Instructions
The editing instructions are EDIT and EDIT AND
MARK. For these instructions, only one operand
(the pattern) has an explicitly specified length.
The other operand (the source) is considered to
have as many digits as necessary for the completion
of the operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions

During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a
single location do not necessarily occur one
immediately after the other. Furthermore, for
decimal instructions, intermediate values may be
placed in the result field that may differ from the
original operand and final result values. Thus, in a
multiprocessing system, an instruction such as ADD
DECIMAL cannot be safely used to update a
shared storage location when the possibility exists

that another CPU may also be updating that
location.

Other Instructions for Decimal Operands
In addition to the decimal instructions in this
chapter, the instructions MOVE NUMERICS and
MOVE ZONES are provided for operating on data
in the zoned format. Two instructions are provided
for converting data between the zoned and packed
formats: the PACK instruction transforms zoned
data into packed data, and UNPACK performs the
reverse transformation. The MOVE WITH
OFFSET instruction operates on packed data. Two
instructions are provided for conversion between
the packed-decimal and binary formats. The
CONVERT TO BINARY instruction converts
packed decimal to binary, and CONVERT TO
DECIMAL converts binary to packed decimal.
These seven instructions are not considered to be
decimal instructions and are described in Chapter
7, "General Instructions." The editing instructions
in this chapter may also be used to change data
from the packed to the zoned format.

Instructions

The decimal instructions and their mnemonics,
formats, and operation codes are listed in the figure
"Summary of Decimal Instructions." The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For ADD
DECIMAL, for example, AP is the mnemonic and
DL ,B,), D,L,B,) the operand designation.

Chapter 8. Decimal Instructions 8-3

Mne- Op
Name monic Characteristics Code

ADD DEC IMAL AP SS C A D DF ST|FA
COMPARE DECIMAL CP SS ¢C A D F9
DIVIDE DECIMAL DP SS A SP|D DK ST|FD
EDIT ED SS C A D ST|DE
EDIT AND MARK EDMK |SS C A D R ST|DF
MULTIPLY DECIMAL MP SS A SP|D ST|FC
SHIFT AND ROUND DECIMAL SRP SS C A D DF ST|FO
SUBTRACT DECIMAL SP SS ¢C A D DF ST|FB
ZERO AND ADD ZAP SS ¢ A D DF ST|F8

Explanation:

A Access exceptions

C Condition code is set

D Data exception

DF Decimal-overflow exception
DK Decimal-divide exception

SP
SS
ST

Specification exception
SS instruction format
PER storage-alteration event

R PER general-register-alteration event

Summary of Decimal Instructions

ADD DECIMAL

AP Dq(Lq,B¢),Dp(Ly,B5) [sS] ,

D
/2

'FA' | Ly | Ly | By B,

NO N
—_

0 8 12 16 20 32 36 47

The second operand is added to the first operand,
and the resulting sum is placed in the first-operand
location. The operands and result are in the
packed format.

Addition is algebraic, taking into account the
signs and all digits of both operands. All sign and
digit codes are checked for validity.

If the first operand is too short to contain all
significant digits of the sum, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set. If the decimal-overflow
mask is one, a program interruption for decimal
overflow takes place.

The sign of the sum is determined by the rules of
algebra. When the operation is completed without
an overflow, a zero sum has a positive sign. When
high-order digits are lost because of an overflow, a
zero result may be either positive or negative, as
determined by what the sign of the correct sum
would have been.

8-4 System/370 Principles of Operation

Resulting Condition Code:

0 Sum is zero

1 Sum is less than zero

2 Sum is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Decimal Overflow

Programming Note
An example of the use of ADD DECIMAL is given
in Appendix A.

COMPARE DECIMAL

CP Dy(Ly,By),Dp(Ly,B5) [sS]

IF9I

NON
—_

52 | ©
2/2

Ly

By

Ly

0 8 12 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are in the packed format.

Comparison is algebraic and follows the
procedure for decimal subtraction, except that both
operands remain unchanged. When the difference
is zero, the operands are equal. When a nonzero

-

difference is positive or negative, the first operand
is high or low, respectively.

Overflow cannot occur because the difference is
discarded.

All sign and digit codes are checked for validity.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Data

Programming Notes

1. An example of the use of COMPARE
DECIMAL is given in Appendix A.

2. The comparison operation does not distinguish
between valid sign codes. A valid plus or
minus sign is equivalent to any other valid plus
or minus sign, respectively.

DIVIDE DECIMAL

DP Dq(Lq,By),Dp(Ly,By) [SSI

‘FD' | Ly | Ly | By

NO N

/

B D
2 /2
0 8 12 16 20 32 36 47

The first operand (the dividend) is divided by the
second operand (the divisor). The resulting
quotient and remainder are placed in the first-
operand location. The operands and result are in
the packed format.

The quotient is placed leftmost in the first-
operand location. The number of bytes in the
quotient is equal to the difference between the
dividend and divisor lengths (L; — L,). The
remainder is placed rightmost in the first-operand
location and has a length equal to the divisor
length. Together, the quotient and remainder
occupy the entire first operand; therefore, the
address of the quotient is the address of the first
operand.

The divisor length cannot exceed 15 digits and
sign (L, not greater than seven) and must be less
than the dividend length (L, less than L,);
otherwise, a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The dividend, divisor, quotient, and remainder

| are all signed decimal integers, right-aligned in

their fields. All sign and digit codes of the
dividend and divisor are checked for validity.

The sign of the quotient is determined by the
rules of algebra from the dividend and divisor
signs. The sign of the remainder has the same
value as the dividend sign. These rules hold even
when the quotient or remainder is zero.

Overflow cannot occur. If the divisor is zero or
the quotient is too large to be represented by the
number of digits allowed, a decimal-divide
exception is recognized. The operation is
suppressed, and a program interruption occurs. The
operands remain unchanged in storage. The
decimal-divide exception is indicated only if the
sign codes of both the dividend and divisor are
valid, and only if the digit or digits used in

establishing the exception are valid.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Decimal Divide

Specification

Programming Notes

1. An example of the use of DIVIDE DECIMAL
is given in Appendix A.

2. The dividend cannot exceed 31 digits and sign.
Since the remainder cannot be shorter than one
digit and sign, the quotient cannot exceed 29
digits and sign.

3. The condition for a decimal-divide exception
can be determined by a trial subtraction. The
leftmost digit of the divisor is aligned one digit
to the right of the leftmost dividend digit.
When the divisor, so aligned, is less than or
equal to the dividend, a divide exception is
indicated.

4. A decimal-divide exception always occurs when
the leftmost dividend digit is not zero.

EDIT
ED D](L,B]),Dz(Bz) [SS]
'DE' L B [/) B 6
1 /l 2 /2
0 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and

Chapter 8. Decimal Instructions 8-5

modified under the control of the first operand (the
pattern). The edited result replaces the first
operand.

The length field specifies the length of the first
operand, which may contain bytes of any value.

The length of the source is determined by the
operation according to the contents of the pattern.
The source has the packed format. The leftmost
four bits of each source byte must specify a decimal
digit code (0000-1001); a sign code (1010-1111)
is recognized as a data exception. The rightmost
four bits may specify either a sign or a decimal
digit. Access and data exceptions are recognized
only for those bytes in the second operand which
are actually required.

The result is obtained as if both operands were
processed left to right one byte at a time.
Overlapping pattern and source fields give
unpredictable results.

During the editing process, each byte of the
pattern is affected in one of three ways:

1. It is left unchanged.

2. It is replaced by a source digit expanded to the
zoned format.

3. It is replaced by the first byte in the pattern,
called the fill byte.

Which of the three actions takes place is
determined by one or more of the following: the
type of the pattern byte, the state of the
significance indicator, and whether the source digit
examined is zero.

Pattern Bytes: There are four types of pattern
bytes: digit selector, significance starter, field
separator, and message byte. Their coding is as
follows:

Name Code

Digit selector 10010 0000
Significance starter | 0010 0001
Field separator 0010 0010
Message byte Any other

The detection of either a digit selector or a
significance starter in the pattern causes an
examination to be made of the significance
indicator and of a source digit. As a result, either
the expanded source digit or the fill byte, as
appropriate, is selected to replace the pattern byte.
Additionally, encountering a digit selector or a
significance starter may cause the significance
indicator to be changed.

8-6 System/370 Principles of Operation

The field separator identifies individual fields in
a multiple-field editing operation. It is always
replaced in the result by the fill byte, and the
significance indicator is always off after the field
separator is encountered.

Message bytes in the pattern are either replaced
by the fill byte or remain unchanged in the result,
depending on the state of the significance indicator.
They may thus be used for padding, punctuation, or
text in the significant portion of a field or for the
insertion of sign-dependent symbols.

Fill Byte: The first byte of the pattern is used as
the fill byte. The fill byte can have any code and
may concurrently specify a control function. If this
byte is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill byte.

Source Digits: Each time a digit selector or
significance starter is encountered in the pattern, a
new source digit is examined for placement in the
pattern field. Either the source digit is disregarded,
or it is expanded to the zoned format, by
appending the zone code 1111 on the left, and
stored in place of the pattern byte.

The source digits are selected one byte at a time,
and a source byte is fetched for inspection only
once during au editing operation. Each source digit
is examined only once for a zero value. The
leftmost four bits of each byte are examined first,
and the rightmost four bits, when they represent a
decimal-digit code, remain available for the next
pattern byte that calls for a digit examination.
When the leftmost four bits contain an invalid digit
code, the operation is terminated.

At the time the left digit of a source byte is
examined, the rightmost four bits are checked for
the existence of a sign code. When a sign code is
encountered in the rightmost four bit positions,
these bits are not treated as a decimal-digit code,
and a new source byte is fetched from storage
when the next pattern byte calls for a source-digit
examination.

When the pattern contains no digit selector or
significance starter, no source bytes are fetched and
examined.

Significance Indicator: The significance indicator
is turned on or off to indicate the significance or
nonsignificance, respectively, of subsequent source
digits or message bytes. Significant source digits
replace their corresponding digit selectors or
significance starters in the result. Significant
message bytes remain unchanged in the result.

The significance indicator, by its on or off state,
indicates also the negative or positive value,
respectively, of a completed source field and is used
as one factor in the setting of the condition code.

The indicator is set to off at the start of the
editing operation, after a field separator is
encountered, or after a source byte is examined
that has a plus code in the rightmost four bit
positions.

The indicator is set to on when a significance
starter is encountered whose source digit is a valid
decimal digit, or when a digit selector is
encountered whose source digit is a nonzero
decimal digit, provided that in both instances the
source byte does not have a plus code in the
rightmost four bit positions.

In all other situations, the indicator is not
changed. A minus sign code has no effect on the
significance indicator.

Result Bytes: The result of an editing operation
replaces and is equal in length to the pattern. It is
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the
significance indicator is on, the message byte
remains unchanged in the result. If the pattern
byte is a field separator or if the significance
indicator is off when a message byte is encountered
in the pattern, the fill byte replaces the pattern
byte in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance
indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill byte
replaces the pattern byte. If the digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimal
source digit, the source digit is considered
significant, is changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code: The sign and magnitude of the
last field edited are used to set the condition code.
The term '"last field" refers to those source bytes in
the second operand selected by digit selectors or
significance starters after the last field separator.
When the pattern contains no field separator, there
is only one field, which is considered to be the last
field. The last field is considered to be of zero
length if no digit selectors or significance starters
appear in the pattern, if none appear after the last
field separator, or if the last byte in the pattern is a
field separator.

Condition code 0 is set when the last field is
zero or of zero length.

Condition code 1 is set when the last field edited
is nonzero and the significance indicator is on,
indicating a result less than zero.

Condition code 2 is set when the last field edited
is nonzero and the significance indicator is off,
indicating a result greater than zero.

The figure ""Summary of EDIT Functions"
summarizes the functions of the editing operation.
The leftmost four columns list all the significant
combinations of the four conditions that can be
encountered in the execution of an editing
operation. The rightmost two columns list the
action taken for each case—the type of byte placed
in the result field and the new setting of the
significance indicator.

Resulting Condition Code:

0 Last field is zero or of zero length
1 Last field is less than zero

2 Last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Programming Notes

1. Examples of the use of EDIT are given in
Appendix A.

2. Editing includes sign and punctuation control,
and the suppression and protection of leading
zeros by replacing them with blanks or
asterisks. It also facilitates programmed
blanking of all-zero fields. Several fields may
be edited in one operation, and numeric
information may be combined with text.

3. As arule, the source is shorter than the pattern,
because each 4-bit source digit is generally
replaced by an 8-bit byte in the result.

4. The total number of digit selectors and
significance starters in the pattern must equal
the number of source digits to be edited.

5. If the fill byte is a blank, if no significance
starter appears in the pattern, and if the source
is all zeros, the editing operation blanks the
result field.

6. The resulting condition code indicates whether
or not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of
the source field only if the last source byte
examined contains a sign code in the low-order

Chapter 8. Decimal Instructions 8-7

digit position. For multiple-field editing
operations, the condition code reflects the sign
and value only of the field following the last
field separator.

Significant performance degradation is possible
when, with DAT on, the second-operand
address of EDIT designates a location that is
less than the length of the first operand to the
left of a 2,048-byte boundary. This is because

the machine may perform a trial execution of
the instruction to determine if the second
operand actually crosses the boundary. It
should be noted that the second operand of
EDIT, while normally shorter than the first
operand, can in the extreme case have the same
length as the first.

Results
Conditions State of
Significance
Previous State Right Four Indicator at
of Significance|Source|Source Bits End of Digit
Pattern Byte Indicator Digit |Are Plus Code Result Byte Examination
Digit selector Off 0 * Fill byte Off
1-9 No Source digit On
1-9 Yes Source digit Off
On 0-9 No Source digit On
0-9 Yes Source digit off
Significance starter Ooff 0 No Fill byte On
0 Yes Fill byte aff
1-9 No Source digit On
1-9 Yes Source digit off
On 0-9 No Source digit On
0-9 Yes Source digit off
Field separator * *k *k Fill byte Off
Message byte Off *k *k Fill byte Off
On ok ok Message byte On
Explanation:
* No effect on result byte or on new state of significance indicator
** Not applicable because source is not examined

Summary of EDIT Functions

8-8

System/370 Principles of Operation

EDIT AND MARK

EDMK Dq(L,B1),D2(Bp) [sS]
'DF L B A B)
1 1 2 2
/ /
0 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the first operand (the
pattern). The address of each first significant
result byte is inserted in general register 1. The
edited result replaces the pattern.

The instruction EDIT AND MARK is identical
to EDIT, except for the additional function of
inserting the address of the result byte in bit
positions 8-31 of general register 1 whenever the
result byte is a zoned source digit and the
significance indicator was off before the
examination. Bits 0-7 of the register are not
changed.

Resulting Condition Code:

0 Last field is zero or of zero length
1 Last field is less than zero

2 Last field is greater than zero
3

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Programming Notes

1. Examples of the use of EDIT AND MARK are
given in Appendix A.

2. The instruction EDIT AND MARK facilitates
the programming of floating currency-symbol
insertion. The address inserted in general
register 1 is one greater than the address where
a floating currency-sign would be inserted. The
instruction BRANCH ON COUNT (BCTR),
with zero in the R, field, may be used to
reduce the inserted address by one.

3. No address is inserted in general register 1
when the significance indicator is turned on as
a result of encountering a significance starter
with the corresponding source digit zero. To
ensure that general register 1 contains a valid
address when this occurs, the address of the
pattern byte that immediately follows the
significance starter should be placed in the
register beforehand.

4. When multiple fields are edited with one EDIT
AND MARK instruction, the address inserted
in general register 1 applies only to the last
field edited.

5. See also the programming note under EDIT
regarding performance degradation due to a
possible trial execution.

MULTIPLY DECIMAL
MP D](L1,B|),02(L2,32) [SS]
/ /
'FC' Ly Lo B4 91 B, 92
0 8 12 16 20 32 36 47

The product of the first operand (the multiplicand)
and the second operand (the multiplier) is placed in
the first-operand location. The operands and result
are in the packed format.

The multiplier length cannot exceed 15 digits
and sign (L, not greater than seven) and must be
less than the multiplicand length (L, less than L,;);
otherwise a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The multiplicand must have at least as many
bytes of high-order zeros as the number of bytes in
the multiplier; otherwise, a data exception is
recognized, the operation is terminated, and a
program interruption occurs. This restriction
ensures that no product overflow occurs.

The multiplicand, multiplier, and product are all
signed decimal integers, right-aligned in their fields.
All sign and digit codes of the multiplicand and
multiplier are checked for validity.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand signs, even if one or both operands are
Zeros.
Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2; fetch and store,
- operand 1)

Data

Specification

Programming Notes

1. An example of the use of MULTIPLY
DECIMAL is given in Appendix A.

2. The product cannot exceed 31 digits and sign.
The leftmost digit of the product is always zero.

Chapter 8. Decimal Instructions 8-9

SHIFT AND ROUND DECIMAL

SRP D](L],B]),Dz(Bz),lg [SS]

/ /
'Fo' L1 I3 B1 Dy B, Dy
/ /
0 8 12 16 20 32 36 47

The first operand is shifted in the direction and for
the number of decimal-digit positions specified by
the second-operand address, and, when shifting to
the right is specified, the absolute value of the first
operand is rounded by the rounding digit, I;. The
first operand and the result are in the packed
format.

The first operand is considered to be in the
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit
positions. The result replaces the first operand.
Nothing is stored outside of the specified first-
operand location.

The second-operand address, specified by the B,
and D, fields, is not used to address data; bits
26-31 are the shift value, and the high-order bits of
the address are ignored.

The shift value is a six-bit signed binary integer,
indicating the direction and the number of
decimal-digit positions to be shifted. Positive shift
values specify shifting to the left. Negative shift
values, which are represented in two’s complement
notation, specify shifting to the right. The
following are examples of the interpretation of shift
values.

Shift Value
011111

Amount and Direction
31 digits to the left

000001 One digit to the left
000000 No shift

1" One digit to the right
100000 32 digits to the right

For a right shift, the I5 field, bits 12-15 of the
instruction, are used as a decimal rounding digit.
The first operand, which is treated as positive by
ignoring the sign, is rounded by decimally adding

the rounding digit to the leftmost of the digits to be

shifted out and by propagating the carry, if any, to
the left. The result of this addition is then shifted
right. Except for validity checking and the
participation in rounding, the digits shifted out of
the low-order decimal-digit position are ignored
and are lost.

If one or more significant digits are shifted out
of the high-order digit positions during a left shift,
decimal overflow occurs. The operation is

8-10 System/370 Principles of Operation

completed. The result is obtained by ignoring the
overflow information, and condition code 3 is set.
If the decimal-overflow mask is one, a program
interruption for decimal overflow takes place.
Overflow cannot occur for a right shift, with or
without rounding, or when no shifting is specified.

In the absence of overflow, the sign of a zero
result is made positive. Otherwise, the sign of the
result is the same as the original sign, but the code
is the preferred sign code.

A data exception is recognized when the first
operand does not have valid sign and digit codes or
when the rounding digit is not a valid digit code.
The validity of the first-operand codes is checked
even when no shift is specified, and the validity of
the rounding digit is checked even when no
addition for rounding takes place.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Access (fetch and store, operand 1)
Data

Decimal Overflow

Programming Notes

1. Examples of the use of SHIFT AND ROUND
are given in Appendix A.

2. SHIFT AND ROUND can be used for shifting
up to 31 digit positions left and up to 32 digit
positions right. This is sufficient to clear all
digits of any decimal number even with
rounding.

3. For right shifts, the rounding digit 5 provides
conventional rounding of the result. The
rounding digit O specifies truncation without
rounding.

4. When the B, field is zero, the six-bit shift value
is obtained directly from bits 42-47 of the

instruction.

SUBTRACT DECIMAL

SP Dy(Lq,Bq),Da(L2,By) [SS]

FB Ly | Lp | By §1 B2 éz
0 8 12 16 20 32 36 47

The second operand is subtracted from the first
operand, and the resulting difference is placed in

the first-operand location. The operands and result
are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second operand is
considered to have a sign opposite to the sign in
storage. The second operand in storage remains
unchanged.

Resulting Condition Code:

0 Difference is zero

1 Difference is less than zero

2 Difference is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; fetch and store,
operand 1)

Data

Decimal Overflow

ZERO AND ADD

ZAP Dy(Ly,By),Dy(Ly,By) [SSI

/

B2 32
0 8 12 16 20 32 36 47

'F8' | Ly | Ly | By

NO

The second operand is placed in the first-operand
location. The operation is equivalent to an
addition to zero. The operand and result are in the
packed format.

Only the second operand is checked for valid
sign and digit codes. Extra high-order zeros are

supplied for the shorter operand if needed.

If the first operand is too short to contain all
significant digits of the second operand, decimal
overflow occurs. The operation is completed. The
result is obtained by ignoring the overflow
information, and condition code 3 is set. If the
decimal-overflow mask is one, a program
interruption for decimal overflow takes place.

A zero result is positive. However, when
significant high-order digits are lost because of
overflow, a zero result has the sign of the second
operand.

The two operands may overlap, provided the
rightmost byte of the first operand is coincident
with or to the right of the rightmost byte of the
second operand. In this case the result is obtained
as if the operands were processed right to left.

Resulting Condition Code:

0 Result is zero

1 Result is less than zero

2 Result is greater than zero
3 Overflow

Program Exceptions:

Access (fetch, operand 2; store, operand 1)
Data

Decimal Overflow

Programming Note

An example of the use of ZERO AND ADD is
given in Appendix A.

Chapter 8. Decimal Instructions 8-11

Chapter 9. Floating-Point Instructions

Contents

Floating-Point Number Representation 9-1
Normalization 9-2

Floating-Point-Data Format 9-2
Instructions 9-5

ADD NORMALIZED 9-5

ADD UNNORMALIZED 9-7
COMPARE 9-7

DIVIDE 9-8
HALVE 99
LOAD 99

Floating-point instructions are used to perform
calculations on operands with a wide range of
magnitude and to yield results scaled to preserve
precision.

The floating-point instructions provide for
loading, rounding, adding, subtracting, comparing,
multiplying, dividing, and storing, as well as
controlling the sign of short, long, and extended
operands. Short operands generally permit faster
processing and require less storage than long or
extended operands. On the other hand, long and
extended operands permit greater precision in
computation. Four floating-point registers are
provided. Instructions may perform either
register-to-register or storage-and-register
operations.

Most of the instructions generate normalized
results, which preserve the highest precision in the
operation. For addition and subtraction,
instructions are also provided that generate
unnormalized results. Either normalized or
unnormalized numbers may be used as operands for
any floating-point operation.

The rounding and extended-operand instructions
are part of the extended-precision floating-point
feature. The other floating-point instructions and
the floating-point registers are part of the floating-
point feature.

LOAD AND TEST 9-10

LOAD COMPLEMENT 9-10

LOAD NEGATIVE 9-11

LOAD POSITIVE 9-11

LOAD ROUNDED 9-11

MULTIPLY 9-12

STORE 9-13

SUBTRACT NORMALIZED 9-13
SUBTRACT UNNORMALIZED 9-14

Floating-Point Number
Representation

A floating-point number consists of a signed
hexadecimal fraction and an unsigned seven-bit
binary integer called the characteristic. The
characteristic represents a signed exponent and is
obtained by adding 64 to the exponent value
(excess-64 notation). The range of the
characteristic is 0 to 127, which corresponds to an
exponent range of —64 to +63. The value of a
floating-point number is the product of its fraction
and the number 16 raised to the power of the
exponent which is represented by its characteristic.

The fraction of a floating-point number is
treated as a hexadecimal number because it is
considered to be multiplied by a number which is a
power of 16. The name, fraction, indicates that the
radix point is assumed to be immediately to the left
of the leftmost fraction digit. The fraction is
represented by its absolute value and a separate
sign bit. The entire number is positive or negative,
depending on whether the sign bit of the fraction is
zero or one, respectively.

When a floating-point operation would cause the
result exponent to exceed 63, the characteristic
wraps around from 127 to 0, and an exponent-
overflow condition exists. The result characteristic
is then too small by 128. When an operation
would cause the exponent to be less than —64, the
characteristic wraps around from O to 127, and an
exponent-underflow condition exists. The result

Chapter 9. Floating-Point Instructions 9-1

characteristic is then too large by 128, except that

a zero characteristic is produced when a true zero

is forced.

A true zero is a floating-point number with a
zero characteristic, zero fraction, and plus sign. A
true zero may arise as the normal result of an
arithmetic operation because of the particular
magnitude of the operands. The result is forced to
be a true zero when:

1. An exponent underflow occurs and the
exponent-underflow mask bit in the PSW is
Zero,

2. The result fraction of an addition or subtraction
operation is zero and the significance mask bit
in the PSW is zero, or

3. The operand of HALVE, one or both operands
of MULTIPLY, or the dividend in DIVIDE has
a zero fraction.

When a program interruption for exponent
underflow occurs, a true zero is not forced; instead,
the fraction and sign remain correct, and the
characteristic is too large by 128. When a program
interruption for significance occurs, the fraction
remains zero, the sign is positive, and the
characteristic remains correct.

The sign of a sum, difference, product, or
quotient with a zero fraction is positive. The sign
of a zero fraction resulting from other operations is
established from the operand sign, the same as for
nonzero fractions.

Normalization

A quantity can be represented with the greatest
precision by a floating-point number of a given
fraction length when that number is normalized. A
normalized floating-point number has a nonzero
leftmost hexadecimal fraction digit. If one or more
leftmost fraction digits are zeros, the number is said
to be unnormalized.

Unnormalized numbers are normalized by
shifting the fraction left, one digit at a time, until
the leftmost hexadecimal digit is nonzero and
reducing the characteristic by the number of
hexadecimal digits shifted. A number with a zero
fraction cannot be normalized; its characteristic
either remains unchanged, or it is made zero when
the result is forced to be a true zero.

Floating-point operations may be performed with
or without normalization. Most operations are
performed only with normalization. Addition and
subtraction with short or long operands may be
specified as either normalized or unnormalized.

With unnormalized operations, leftmost zeros in
the result fraction are not eliminated. The result

9-2 System/370 Principles of Operation

may or may not be normalized, depending upon the
original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized
form. The operands for multiplication and division
are normalized before the arithmetic process. For
other normalized operations, normalization takes
place when the intermediate arithmetic result is
changed to the final result.

When the intermediate result of addition,
subtraction, or rounding causes the fraction to
overflow, the fraction is shifted right by one
hexadecimal-digit position and the value one is
placed in the vacated leftmost digit position. The
fraction is then truncated to the final result length,
while the characteristic is increased by one. This
adjustment is made for both normalized and
unnormalized operations.

Programming Note

Up to three leftmost bits of the fraction of a
normalized number may be zeros, since the
nonzero test applies to the entire leftmost
hexadecimal digit.

Floating-Point-Data Format
Floating-point numbers have a 32-bit (short)
format, a 64-bit (long) format, or a 128-bit
(extended) format. Numbers in the short and long
formats may be designated as operands both in
storage and in the floating-point registers, whereas
operands having the extended format can be
designated only in the floating-point registers.

The floating-point registers contain 64 bits each
and are numbered 0, 2, 4, and 6. A short or long
floating-point number requires a single floating-
point register. An extended floating-point number
requires a pair of these registers: either registers 0
and 2 or register 4 and 6; the two register pairs are
designated as O or 4, respectively. When the R, or
R, field of a floating-point instruction designates
any register number other than 0, 2, 4, or 6 for the
short or long format, or any register number other
than O or 4 for the extended format, the operation
is suppressed, and a program interruption for
specification exception occurs.

Short Floating-Point Number

/
6-Digit Fraction
/

S|Characteristic

0 1 8 31

Long Floating-Point Number

/

S|Characteristic 14-Digit Fraction
/

0 1 8 63

Extended Floating-Point Number
High-Order Part

/
Leftmost 14 Digits
of 28-Digit Fraction
/

High-Order
Characteristic

w

0 1 8 63

Low-0Order Part

/
Rightmost 14 Digits
of 28-Digit Fraction
/

Low-0Order
Characteristic

w

64 72 127

In all formats, the first bit (bit 0) is the sign bit
(S). The next seven bits are the characteristic. In
the short and long formats, the remaining bits
constitute the fraction, which consists of six or 14
hexadecimal digits, respectively.

A short floating-point number occupies only the
leftmost 32 bit positions of a floating-point register.
The rightmost 32 bit positions of the register are
ignored when used as an operand in the short
format and remain unchanged when a short result
is placed in the register.

An extended floating-point number has a
28-digit fraction and consists of two long floating-
point numbers which are called the high-order and
low-order parts. The high-order part may be any
long floating-point number. The fraction of the
high-order part contains the leftmost 14
hexadecimal digits of the 28-digit fraction. The
characteristic and sign of the high-order part are
the characteristic and sign of the extended
floating-point number. If the high-order part is
normalized, the extended number is considered
normalized. The fraction of the low-order part
contains the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic of the low-
order part of an extended operand are ignored.

When a result in the extended format is placed
in a register pair, the sign of the low-order part is
made the same as that of the high-order part, and,
unless the result is a true zero, the low-order
characteristic is made 14 less than the high-order
characteristic. When the subtraction of 14 would
cause the low-order characteristic to become less

than zero, the characteristic is made 128 greater
than its correct value. Exponent underflow is
indicated only when the high-order characteristic
underflows.

When an extended result is made a true zero,
both the high-order and low-order parts ‘are made a
true zero.

The range covered by the magnitude (M) of a
normalized floating-point number depends on the
format.

In the short format:

16765 < M < (1 -1679) x 1663
In the leng format:

16765 < M < (1 -16-14) x 1693
In the extended format:

16765 < M < (1 - 16728) x 1663
In all formats, approximately:

54x10779 <M < 7.2 x 1075

Although the final result of a floating-point
operation has six hexadecimal fraction digits in the
short format, 14 fraction digits in the long format,
and 28 fraction digits in the extended format,
intermediate results have one additional
hexadecimal digit on the right. This digit is called
the guard digit. The guard digit may increase the
precision of the final result because it participates
in addition, subtraction, and comparison operations
and in the left shift that occurs during
normalization.

The entire set of floating-point operations is
available for both short and long operands. These
instructions generate a result that has the same
format as the operands, except that for
MULTIPLY, a long product is produced from a
short multiplier and multiplicand. Extended
floating-point instructions are provided only for
normalized addition, subtraction, and
multiplication. Two additional multiplication
instructions generate an extended product from a
long multiplier and multiplicand. The rounding
instructions provide for rounding from extended to
long format and from long to short format.

Programming Notes

1. A long floating-point number can be converted
to the extended format by appending any long
floating-point number having a zero fraction,

Chapter 9. Floating-Point Instructions 9-3

Mne- Op
Name monic Characteristics Code

ADD NORMALIZED (extended) AXR |RR C XP SP|EU EO LS 36
ADD NORMALIZED (long) ADR |RR C FP SP|EU EO LS 2A
ADD NORMALIZED (long) AD RX C FP A SP|EU EOD LS 6A
ADD NORMALIZED (short) AER |RR C FP SP|EU EO LS 3A
ADD NORMAL IZED (short) AE RX C FP A SP|EU EO LS 7A
ADD UNNORMALIZED (long) AWR |RR C FP SP EO LS 2E
ADD UNNORMALIZED (long) AW RX C FP A SP EO LS 6E
ADD UNNORMALIZED (short) AUR [RR C FP SP EO LS 3E
ADD UNNORMAL IZED (short) AU RX C FP A SP EO LS 7E
COMPARE (long) COR |RR C FP SP 29
COMPARE (long) cD RX C FP A SP 69
COMPARE (short) CER |RR C FP SP 39
COMPARE (short) CE RX C FP A SP 79
DIVIDE (long) DDR [RR FP SP[EU EO FK 2D
DIVIDE (long) DD RX FP A SP|EU EO FK 6D
DIVIDE (short) DER |RR FP SP(EU EO FK 3D
DIVIDE (short) DE RX FP A SP|EU EO FK 70
HALVE (long) HOR |RR FP SP|EU 24
HALVE (short) HER [RR FP SP|EU 34
LOAD (long) LDR [RR FP SP 28
LOAD (long) LD RX FP A SP 68
LOAD (short) LER |RR FP SP 38
LOAD (short) LE RX FP A SP 78
LOAD AND TEST (long) LTDR |RR C FP SP 22
LOAD AND TEST (short) LTER (RR C FP SP 32
LOAD COMPLEMENT (1long) LCDR |RR C FP SP 23
LOAD COMPLEMENT (short) LCER |RR C FP SP 33
LDAD NEGATIVE (long) LNDR |RR C FP SP 21
LOAD NEGATIVE (short) LNER [RR C FP SP 31
LOAD POSITIVE (long) LPDR |RR C FP SP 20
LOAD POSITIVE (short) LPER |RR C FP SP 30
LOAD ROUNDED (extended to long) LRDR |RR XP SP EO 25
LOAD ROUNDED (long to short) ’ LRER [RR XP SP EO 35
MULTIPLY (extended) . MXR [RR XP SP|EU EO 26
MULTIPLY (long) MDR [RR FP SP|EU EO 2C
MULTIPLY (long) MD RX FP A SP|EU EO 6C
MULTIPLY (long to extended) MXDR |RR XP SP(EU EO 27
MULTIPLY (long to extended) MXD [RX XP A SP|EU EO 67
MULTIPLY (short to long) MER |RR FP SP|EU EO 3C
MULTIPLY (short to long) ME RX FP A SP(EU EO 7C
STORE (1long) STD |RX FP A SP ST |60
STORE (short) STE |RX FP A SP ST(70
SUBTRACT NORMAL iZED (extended) SXR |RR C XP SP(EU EO LS 37
SUBTRACT NORMALIZED (long) SDR |RR C FP SP(EU EO LS 2B
SUBTRACT NORMALIZED (long) SD RX C FP A SP|EU EO LS 6B
SUBTRACT NORMAL IZED (short) SER |RR C FP SP(EU EO LS 3B
SUBTRACT NORMALIZED (short) SE RX C FP A SP|EU EO LS 78
SUBTRACT UNNORMALIZED (long) SWR |RR C FP SP EO LS 2F
SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 6F
SUBTRACT UNNORMAL IZED (short) SUR |RR C FP SP EO LS 3F
SUBTRACT UNNORMAL IZED (short) SU RX C FP A SP EO LS 7F

Explanation:

A Access exceptions

c Condition code is set

EQ Exponent-overflow exception

EU Exponent-underflow exception

FK Floating-point-divide exception

FP Floating-point feature

LS Significance exception

RR RR instruction format

RX RX instruction format

SP Specification exception

ST PER storage alteration event

XP Extended-precision floating-point feature

| Summary of Floating-Point Instructions

9-4 System/370 Principles of Operation

including a true zero. Conversion from the
extended to the long format can be
accomplished by truncation or by means of
LOAD ROUNDED.

2. In the absence of an exponent overflow or
exponent underflow, the long floating-point
number constituting the low-order part of an
extended result correctly expresses the value of
the low-order part of the extended result when
the characteristic of the high-order part is 14 or
higher. This applies also when the result is a
true zero. When the high-order characteristic
is less than 14 but the number is not a true
zero, the low-order part, when addressed as a
long floating-point number, does not have the
correct characteristic value.

3. The entire fraction of an extended result
participates in normalization. The low-order
part alone may or may not appear to be a
normalized long floating-point number,
depending on whether the 15th digit of the
normalized 28-digit fraction is nonzero or zero.

Instructions

The floating-point instructions and their
mnemonics, formats, and operation codes are listed
in the figure ""Summary of Floating-Point
Instructions." The figure also indicates when the
condition code is set and the exceptional conditions
in operand designations, data, or results that cause
a program interruption.

Mnemonics for the floating-point instructions
have an R as the last letter when the instruction is
in the RR format. For instructions where all
operands are the same length, certain letters are
used to represent operand-format length and
normalization, as follows:

short normalized
short unnormalized
long normalized
long unnormalized
extended normalized

X €U Cm

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For a register-to-
register operation using LOAD (short), for
example, LER is the mnemonic and R R, the
operand designation.

ADD NORMALIZED

AER R1,R2 [RR, Short Operands]
‘37' R1 Ry

0 8 12 15

AE Rq,Da(X2,B2) [RX, Short Operands]
'7A' Rt X2 | B2 Dy

0 8 12 16 20 31

ADR R1,R2 [RR, Long Operands]
‘27’ Ry | Ra

0 8 12 15

AD Ry,D2(X2,B2) [RX, Long Operands]
'6A' Ri | X2 | B D2

0 8 12 16 20 31

AXR R1,R2 [RR, Extended Operands]
‘36" R1 | Rg

0 8 12 15

Chapter 9. Floating-Point Instructions

9-5

The second operand is added to the first operand,
and the normalized sum is placed in the first-
operand location.

Addition of two floating-point numbers consists
in characteristic comparison, fraction alignment,
and fraction addition. The characteristics of the
two operands are compared, and the fraction
accompanying the smaller characteristic is aligned
with the other fraction by a right shift, with its
characteristic increased by one for each
hexadecimal digit of shift until the two
characteristics agree.

When a fraction is shifted right during
alignment, the leftmost hexadecimal digit shifted
out is retained as a guard digit. The fraction that is
not shifted is considered to be extended with a zero
in the guard-digit position. When no alignment
shift occurs, both operands are considered to be
extended with zeros in the guard-digit position.
The fractions are then added algebraically to form
an intermediate sum.

The intermediate-sum fraction consists of seven
(short format), 15 (long format), or 29 (extended
format) hexadecimal digits, including the guard
digit, and a possible carry. If a carry is present, the
sum is shifted right one digit position so that the
carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted left as
necessary to eliminate any leading hexadecimal
zero digits resulting from the addition, provided the
fraction is not zero. Vacated rightmost digit
positions are filled with zeros, and the
characteristic is reduced by the number of
hexadecimal digits of shift. The fraction thus
normalized is then truncated on the right to six
(short format), 14 (long format), or 28 (extended
format) hexadecimal digits. In the extended
format, a characteristic is generated for the low-
order part, which is 14 less than the high-order
characteristic.

The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the sign is made
plus.

An exponent-overflow exception is recognized
when a carry from the leftmost position of the
intermediate-sum fraction would cause the
characteristic of the normalized sum to exceed 127.
The operation is completed by making the result
characteristic 128 less than the correct value, and a
program interruption for exponent overflow takes
place. The result sign and fraction remain correct,
and, for AXR, the characteristic of the low-order

9-6 System/370 Principles of Operation

part remains correct.

An exponent-underflow exception is recognized
when the characteristic of the normalized sum
would be less than zero and the fraction is not
zero. If the exponent-underflow mask bit is one,
the operation is completed by making the result
characteristic 128 greater than the correct value.
The result sign and fraction remain correct, and a
program interruption for exponent underflow takes
place. When exponent underflow occurs and the
exponent-underflow mask bit is zero, a program
interruption does not take place; instead, the
operation is completed by making the result a true
zero. For AXR, no exponent underflow is
recognized when the characteristic of the low-order
part would be less than zero but the characteristic
of the high-order part is zero or greater.

The result fraction is zero when the
intermediate-sum fraction, including the guard
digit, is zero. With a zero result fraction, the
action taken depends on the setting of the
significance mask bit. If the significance mask bit
is one, no normalization occurs, the intermediate
and final result characteristics are the same, and a
program interruption for significance takes place.
If the significance mask bit is zero, the program
interruption does not occur; instead, the result is
made a true zero.

The R, field for AER, AE, ADR, and AD, and
the R, field for AER and ADR must designate
register 0, 2, 4, or 6. The Ry and R, fields for
AXR must designate register 0 or 4. Otherwise, a
specification exception is recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Access (fetch, operand 2 of AE and AD only)

Exponent Overflow

Exponent Underflow

Operation (if the floating-point feature is not
installed, or, for AXR, if the extended-
precision floating-point feature is not
installed)

Significance

Specification

Programming Notes

1. Interchanging the two operands in a floating-
point addition does not affect the value of the
sum.

2. The ADD NORMALIZED instructions
normalize the sum but not the operands. Thus,
if one or both operands are unnormalized,
precision may be lost during fraction alignment.

ADD UNNORMALIZED

AUR R{,R, [RR, Short Operands]

‘35" | Ry | Ry

0 8 12 15

AU R1,D9(X5,B5) [RX, Short Operands]

‘7€’ Ry | Xo | By Dy
0 8 12 16 20 31
AWR Ry,R, [RR, Long Operands]
‘2E' | Ry | Ry
0 8 12 15

AW R1,D9(X5,B5) [RX, Long Operands]

'6E' Ry | X2 | By Dy

0 8 12 16 20 31

The second operand is added to the first operand,
and the unnormalized sum is placed in the first-
operand location.

The execution of ADD UNNORMALIZED is
identical to that of ADD NORMALIZED, except
that:

1. When no carry is present after the addition, the
intermediate-sum fraction is truncated to the
proper result-fraction length without a left shift
to eliminate leading hexadecimal zeros and
without the corresponding reduction of the
characteristic.

2. Exponent underflow cannot occur.

3. The guard digit does not participa.e in the
recognition of a zero result fraction. A zero
result fraction is recognized when the
intermediate-sum fraction, excluding the guard
digit, is zero.

The R, and R, fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3 -

Program Exceptions:

Access (fetch, operand 2 of AU and AW only)

Exponent Overflow

Operation (if the floating-point feature is not
installed)

Significance

Specification

Programming Note

Except when the result is made a true zero, the
characteristic of the result of ADD
UNNORMALIZED is equal to the greater of the
two operand characteristics, increased by one if the
fraction addition produced a carry.

COMPARE

CER R{,Ry [RR, Short Operands]

'39' | Ry | Ry

0 8 12 15

CE R],DZ(XZ,BZ) [RX, Short Operands]

‘79" Ry | X2 | By D,y

0 8 12 16 20 31

[RR, Long Operands]

o
©
N
—_
A%,

CD R1,D9(X5,B5) [RX, Long Operands]

'69' Ry | X5 | By Dy

0 8 12 16 20 31

The first operand is compared with the second
operand, and the condition code is set to indicate
the result.

The comparison is algebraic and follows the
procedure for normalized floating-point
subtraction, except that the difference is discarded
after setting the condition code and both operands

Chapter 9. Floating-ﬁoint Instructions. 9-7

remain unchanged. When the difference, including
the guard digit, is zero, the operands are equal.
When a nonzero difference is positive or negative,
the first operand is high or low, respectively.

An exponent-overflow, exponent-underflow, or
significance exception cannot occur.

The R; and R, fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
0 Operands are equal

1 First operand is low
2 First operand is high
3

Program Exceptions:

Access (fetch, operand 2 of CE and CD only)

Operation (if the floating-point feature is not
installed)

Specification

Programming Notes

1. An exponent inequality alone is not sufficient
to determine the inequality of two operands
with the same sign, because the fractions may
have different numbers of leading hexadecimal
Zeros.

2. Numbers with zero fractions compare equal
even when they differ in sign or characteristic.

DIVIDE

DER RI’RZ [RR, Short Operands]
30" | Ry | Ry

0 8 12 15

DE Ry,Da(X5,B2) [RX, Short Operands]

70" | Ry | Xp | By D,
0 8 12 16 20 31
DDR Ry,Ry [RR, Long Operands]
‘20" | Ry | Ry
0 8 12 15

9-8 System/370 Principles of Operation

DD Ry,Dp(X5,B5) [RX, Long Operands]

‘6D’ Ry | X2 | By Dy

0 8 12 16 20 31

The first operand (the dividend) is divided by the
second operand (the divisor), and the normalized
quotient is placed in the first-operand location. No
remainder is preserved.

Floating-point division consists in characteristic
subtraction and fraction division. The operands are
first normalized to eliminate leading hexadecimal
zeros. The difference between the dividend and
divisor characteristics of the normalized operands,
plus 64, is used as the characteristic of an
intermediate quotient.

All dividend and divisor fraction digits
participate in forming the fraction of the
intermediate quotient. The intermediate-quotient
fraction can have no leading hexadecimal zeros, but
a right-shift of one digit position may be necessary
with an increase of the characteristic by one. The
fraction is then truncated to the proper result-
fraction length.

An exponent-overflow exception is recognized
when the characteristic of the final quotient would
exceed 127 and the fraction is not zero. The
operation is completed by making the characteristic
128 less than the correct value. The result is
normalized, and the sign and fraction remain
correct. A program interruption for exponent
overflow occurs.

An exponent-underflow exception exists when
the characteristic of the final quotient would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program
interruption for exponent underflow occurs. The
result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask bit
is zero, a program interruption does not take place;
instead, the operation is completed by making the
quotient a true zero.

Exponent underflow does not occur when an
operand characteristic becomes less than zero
during normalization of the operands or when the
intermediate-quotient characteristic is less than
zero, as long as the final quotient can be
represented with the correct characteristic.

When the divisor fraction is zero, the operation
is suppressed, and a program interruption for
floating-point divide occurs. This includes the
division of zero by zero.

When the dividend fraction is zero, but the
divisor fraction is nonzero, the quotient is made a
true zero. No exponent overflow or exponent
underflow occurs.

The sign of the quotient is determined by the
rules of algebra, except that the sign is always plus
when the quotient is made a true zero.

The R, field for DER, DE, DDR, and DD, and:
the R, field for DER and DDR, must designate
register 0, 2, 4, or 6. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:

Access (fetch, operand 2 of DD and DE only)

Exponent Overflow

Exponent Underflow

Floating-Point Divide

Operation (if the floating-point feature is not
installed)

Specification

HALVE

HER Ry,Ry [RR, Short Operands]

‘33" | Ry | Ry

[RR, Long Operands]

The second operand is divided by 2, and the
normalized quotient is placed in the first-operand
location.

The fraction of the second operand is shifted
right one bit position, placing the contents of the
rightmost bit position into the leftmost bit position
of the guard digit and introducing a zero into the
leftmost bit position of the fraction. The
intermediate result, including the guard digit, is
then normalized, and the final result is truncated to
the proper length.

An exponent-underflow exception exists when
the characteristic of the final result would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program
interruption for exponent underflow occurs. The

result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask
bit is zero, a program interruption does not take
place; instead, the operation is completed by
making the result a true zero.

When the fraction of the second operand is zero,
the result is made a true zero, and no exponent
underflow occurs.

The sign of the result is the same as that of the
second operand, except that the sign is always plus
when the quotient is made a true zero.

The R, and R, fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.
Condition Code: The code remains unchanged.
Program Exceptions:

Exponent Underflow

Operation (if the floating-point feature is not
installed)

Specification

Programming Notes

1. With short and long operands, the halve
operation is identical to a divide operation with
the number 2 as divisor. Similarly, the result of
HDR is identical to that of MD or MDR with
one-half as a multiplier. No multiply operation
corresponds to HER, since no multiply
operation produces short results.

2. The result of HALVE is zero only when the
second-operand fraction is zero, or when
exponent underflow occurs with the exponent-
underflow mask set to zero. A fraction with
zeros in every bit position, except for a one in
the rightmost bit position, does not become
zero after the right shift. This is because the
one bit is preserved in the guard-digit position
and becomes the leftmost bit after
normalization of the result.

LOAD

LER Ry,R, [RR, Short Operands]
'38' | Ry | Ry

0 8 12 15

Chapter 9. Floating-Point Instructions. 9-9

LE Rq,Dp(X5,B) [RX, Short Operands]

1 1
78 Ry | Xp | By D,
0 8 12 16 20 31
LDR Ry,Ry [RR, Long Operands]
'28' | Ry | Ry
0 8 12 15

LD R1,D2(X5,B5) [RX, Long Operands]

'68' Ry | X2 | By Dy

0 8 12 16 20 31

The second operand is placed unchanged in the
first-operand location.

The R, and R, fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.
Condition Code: The code remains unchanged.
Program Exceptions:
Access (fetch, operand 2 of LE and LD only)
Operation (if the floating-point feature is not

installed)

Specification

LOAD AND TEST

LTER Ry,Ry [RR, Short Operands]
'32' | Ry | Ry

0 8 12 15

LTDR R1,Ry [RR, Long Operands]
‘22" | Ry | Ry

0 8 12 15

The second operand is placed unchanged in the
first-operand location, and its sign and magnitude
are tested to determine the setting of the condition
code.

The R, and R, fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

9-10 System/370 Principles of Operation

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Specification

Programming Note

When the same register is specified as the first-
operand and second-operand location, the
operation is equivalent to a test without data
movement.

LOAD COMPLEMENT

LCER Ry,Ry [RR, Short Operands]
'33' Ry | Ry

0 8 12 15

LCDR R¢,Ry [RR, Long Operands]
'23' | Ry | Ry

0 8 12 15

The second operand is placed in the first-operand
location with the sign bit inverted.

The sign bit is inverted, even if the fraction is
zero. The characteristic and fraction are not
changed.

The R, and R, fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:

0 Result fraction is zero

1 Result is less than zero

2 Result is greater than zero
3

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Specification

LOAD NEGATIVE

LNER Ry,R, [RR, Short Operands]
'31' | Ry | Ry

0 8 12 15

LNDR Ry,Rp [RR, Long Operands]
‘21" | Ry | Ry

0 8 12 15

The second operand is placed in the first-operand
location with the sign made minus.

The sign bit is made one, even if the fraction is
zero. The characteristic and fraction are not
changed.

The R; and R, fields must designate register O,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
0 Result fraction is zero
1 Result is less than zero

2 -

3 -

Program Exceptions:

Operation (if the floating-point feature is not

installed)
Specification

LOAD POSITIVE

LPER Ry,Ry [RR, Short Operands]
30" | Ry | Ry

0 8 12 15

LPDR Ry,Ry [RR, Long Operands]
‘20" | Ry | Ry

0 8 12 15

The second operand is placed in the first-operand
location with the sign made plus.

The sign bit is made zero. The characteristic
and fraction are not changed.

The R, and R, fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
0 Result fraction is zero

Result is greater than zero

W N =

Program Exceptions:

Operation (if the floating-point feature is not
installed)

Specification

LOAD ROUNDED

LRER R{,R
[RR, Long Operand 2, Short Operand 1]
'35' | Ry | Ry
0 8 12 15
LRDR Ry,Ry
[RR, éxtended Operand 2, Long Operand 1]
‘25" | Ry | Ry
0 8 12 15

The second operand is rounded to the next shorter
format, and the result is placed in the first-operand
location.

Rounding consists in adding a one in bit position
32 or 72 of the long or extended second operand,
respectively, and propagating any carry to the left.
The sign of the fraction is ignored, and addition is
performed as if the fractions were positive.

If rounding causes a carry out of the leftmost
hexadecimal digit position of the fraction, the
fraction is shifted right one digit position so that
the carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

The sign of the result is the same as the sign of
the second operand. There is no normalization to
eliminate leading zeros.

An exponent-overflow exception exists when
shifting the fraction right would cause the
characteristic to exceed 127. The operation is
completed by loading a number whose
characteristic is 128 less than the correct value, and
a program interruption for exponent overflow
occurs. The result is normalized, and the sign and
fraction remain correct.

Exponent-underflow and significance exceptions
cannot occur.

The R, field must designate register 0, 2, 4, or 6;
the R, field of LRER must designate register 0, 2,

Chapter 9. Floating-Point Instructions 9-11

4, or 6; and the R, field of LRDR must designate
register 0 or 4. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.
Program Exceptions:

Exponent Overflow

Operation (if the extended-precision floating-point

feature is not installed)
Specification

MULTIPLY

MER R
éhort Multiplier and Multiplicand,
Long Product]

‘3¢’ Ry | Ry

0 8 12 15

ME Rq,Dp(X5,B
[RX, Short Mu%tlpller and Multiplicand,
Long Product]

¢ [Ry | Xp | By D,
0 8 12 16 20 31
MDR R{,Ry [RR, Long Operands]
‘ac¢' Ry | R
0 8 12 15

MD R1,D2(X2,B2) [RX, Long Operands]

'‘6C' | Ry | Xo | By Dy

0 8 12 16 20 31

MXDR Ry,R
[RR, Long Multiplier and Multiplicand,
Extended Product]

27" | Ry | Ry

0 8 12 15

9-12 System/370 Principles of Operation

MXD Rq,Dp(Xy,B9)
[RX, Long Multiplier and Multiplicand,
Extended Product]

'67' R1 X9 By Dy
0 8 12 16 20 31
MXR R1,R, [RR, Extended Operands]
‘26" | Ry | Ry
0 8 12 15

The normalized product of the second operand (the
multiplier) and the first operand (the multiplicand)
is placed in the first-operand location.

Multiplication of two floating-point numbers
consists in exponent addition and fracti<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>