

Systems

GA22-7000-6
File No. S370-01

IBM System/370
Principles of Operation

--- -
~ : :~~§:

Seventh Edition (March 1980)
Note: The fifth and sixth editions of this publication were inadvertently
identified as the fourth and fifth editions, respectively. This edition carries
the correct edition number.

This major revision obsoletes GA22-7000-4 and -S and Technical Newsletters
GN22-0498 and GN22-0S84. The document has been reorganized and
includes Chapter 3, "Storage," which is new and which contains information
previously in the chapter "Dynamic-Address Translation," as well as other
new information. The chapter "Multiprocessing" has been deleted and the
information has been incorporated into Chapter 4, "Control." Many'chap­
ters have been extensively revised for clarity.

Because of the extensive reorganization and rewording, it is impractical to
identify minor changes. Changes of major technical significance are identi­
fied by a vertical bar in the left margin.

Included in this edition are detailed descriptions of the following new items:
move inverse, the recovery extensions, and the parts of the extended facility
that are independent of the operating system.
• The move-inverse feature includes the instruction MOVE INVERSE.
• The recovery-extension feature includes the CLEAR CHANNEL instruc­

tion, the machine-check external-damage code and the external-damage­
code-validity bit, the channel-not-operational indication, and the logout­
valid and interface-inoperative bits in the limited channel logout.

• The parts of the extended facility that are independent of the operating
system are the instructions INVALIDATE PAGE TABLE ENTRY and
TEST PROTECTION, the common-segment facility, and the low-address­
protection facility. The parts of the extended facility that are dependent
on the operating system are described in the IBM System/3 70 Extended
Facility, GA22-7072.

Changes are periodically made tQ the information herein; before using this
publication in connection with the operation of IBM equipment, refer to the
latest IBM System/3 70 and 4300 Processors Bibliography, GC20-0001, for
the editions that are applicable and current.

It is possible that this material may contain reference to, or information
about, IBM products (machines and programs), programming, or services
that are not announced in your country. Such references or information
must not be construed to mean that IBM intends to announce such IBM
products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM
branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If
the form has been removed, comments may be addressed to IBM Corpora­
tion, Product Publications, Dept. B98, PO Box 390, Poughkeepsie, NY,
U.S.A. 12602. IBM may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1970, 1972, 1973, 1974, 1980

Preface

This publication provides, for reference purposes, a
detailed definition of the machine functions
performed by System/370.

The publication describes each function to the
level of detail that must be understood in order to
prepare an assembler-language program that relies
on that function. It does not, however, describe
the notation and conventions that must be
employed in preparing such a program, for which
the user must instead refer to the appropriate
assembler-language publication, such as the
OS/VS-DOS/VSE-VM/370 Assembler Language,
GC33-4010.

The information in this publication is provided
principally for use by assembler-language
programmers, although anyone concerned with the
functional details of System/370 will find it useful.

Note that this publication is written as a
reference document and should not be considered
an introduction or a textbook for System/370. It
assumes the user has a basic knowledge of data
processing systems and, specifically, the
System/370, such as can be derived from the
Introduction to IBM Data Processing Systems,
GC20-1684, and the IBM System/370 System
Summary: Processors, GA22-7001. All
publications relating to System/ 3 7 0 are listed and
described in the IBM System/3 70 and 4300
Processors Bibliography, GC20-000 1.

All facilities discussed in this publication are not
necessarily available on every model of
System/370. Furthermore, in some instances the
definitions have been structured to allow for some
degree of extensibility, and therefore certain
capabilities may be described or implied that are
not offered on any model. Examples of such
capabilities are the provisions for the number of
channel-mask bits in the control register, for the
size of the CPU address, and for the number of
CPUs sharing main storage. The allowance for this
type of extensibility should not be construed as
implying any intention by IBM to provide such
capabilities. For information about the
characteristics and availability of features on a
specific System/370 model, use the functional
characteristics manual for that model. The
availability of features on System/370 models is
summarized in the IBM System/3 70 System
Summary: Processors, GA22-7001.

Largely because the publication is arranged for
reference purposes, certain words and phrases
appear, of necessity, earlier in the publication than
the principal discussions explaining them. The

reader who encounters a problem of this sort
should refer to the index, which indicates the
location of the key description.

The information presented in this publication is
grouped into 13 chapters and several appendixes:

Introduction highlights some of the major
features of System/370.

Organization describes the major groupings
within the system-the central processing unit
(CPU), storage, and input/output-with some
attention given to the composition and
characteristics of those groupings.

Storage explains the information formats, the
types of addresses used to access storage, and the
facilities for storage protection. It also deals with
dynamic address translation (DAT), which, coupled
with special programming support, makes the use of
a virtual storage possible in System/370. DAT
eliminates the need to assign a program to a fixed
location in real storage and thus reduces the
addressing constraints on system and problem
programs.

Control describes in depth the facilities for the
switching of system status, for special externally
initiated operations, and for debugging and timing
the system. It deals specifically with CPU states,
control modes, the program-status word (PSW),
control registers, program-event recording, timing
facilities, resets, store status, and initial program
loading.

Program Execution explains the role of
instructions in program execution, looks in detail at
instruction formats, and describes briefly the use of
the program status word (PSW), of branching, and
of interruptions. It also details the aspects of
program execution on one CPU as observed by
channels or another CPU.

Interruptions details the System/370 mechanism
that permits the CPU to change its state as a result
of conditions external to the system, within the
system, or within the CPU itself. Six classes of
interruptions are identified and described:
machine-check interruptions, program interruptions,
supervisor-call interruptions, external interruptions,
input/ output interruptions, and restart
interruptions.

General Instructions contains detailed
descriptions of all unprivileged instructions, except
for the decimal and floating-point instructions.

Decimal Instructions describes in detail the
decimal instructions, which, together with the
general instructions, make up the commercial
instruction set.

iii

Floating-Point Instructions contains detailed
descriptions of the instructions provided by the
floating-point feature and by the
extended-precision floating-point feature.

Control Instructions contains detailed
descriptions of all of the instructions, except for the
I/O instructions, that are available only to the
control program.

Machine-Check Handling describes the
System/370 mechanism for detecting, correcting,
and reporting machine malfunctions.

Input/Output Operations explains the
programmed control of I/ 0 devices by the channel
and by the CPU. It includes detailed descriptions
of the I/O instructions, channel-command words,
and other I/O-control formats.

Operator Facilities describes the basic manual
functions and controls available for operating and
controlling the system.

The Appendixes include:
• Information about number representation
• Instruction-use examples
• Lists of the instructions arranged in several

sequences
• Summary of condition-code settings
• A list of the System/370 facilities and an

indication of their availability as features on
models that implement the System/370
architecture

• A table of the powers of 2
• Tabular information helpful in dealing with

hexadecimal numbers

iv

• An EBCDIC chart
• A discussion of changes affecting compatibility

between System/360 and System/370
• A discussion of :;hanges affecting compatibility

within System/370

Size Notation
The letters K and M denote the multipliers 210 and
220, respectively. Although the letters are
borrowed from the decimal system and stand for
kilo (103) and mega (106), they do not have the
decimal meaning but instead represent the power of
2 closest to the corresponding power of 10. Their
meaning in this publication is as follows:

Symbol Value

K (kilo) 1,024 = 210

M (mega) 1,048,576 = 220

The following are some examples of the use of K
and M:

2,048 is expressed as 2K.
4,096 is expressed as 4K.
65,536 is expressed as 64K (not 65K).
224 is expressed as 16M.

When the words "thousand" and "million" are
used, no special power-of-2 meaning is assigned to
them.

L
Contents

Chapter 1. Introduction 1-1
General-Purpose Design 1-2
Compatibility 1-2

Compatibility among System/370 Models 1-2
Compatibility between System/360 and
System/370 1-3

System Program 1-3
Availability 1-3

Chapter 2. Organization 2-1
Main Storage 2-1
Central Processing Unit 2-2

Program-Status Word 2-3
General Registers 2-3
Floating-Point Registers 2-3
Control Registers 2-3

Input and Output 2-3
Channel Sets 2-3
Channels 2-3
Input/Output Devices and Control Units 2-4

Operator Facilities 2-4

Chapter 3. Storage 3-1
Storage Addressing 3-2

Information Formats 3-2
Integral Boundaries 3-2
Byte-Oriented-Operand Feature 3-3

Address Types 3-3
Storage Key 3-4
Protection 3-4

Key-Controlled Protection 3-4
Low-Address Protection 3-5

Reference Recording 3-5
Change Recording 3-6
Prefixing 3-6
Address Spaces 3-8
Dynamic Address Translation 3-8

Translation Control 3-9
PSW 3-9
Control Register 0 3-9
Control Register 1 3-10

Translation Tables 3-10
Segment-Table Entries 3-10
Page-Table Entries 3-11

Summary of Dynamic-Address-Translation
Formats 3-11

Translation Process 3-12
Inspection of Control Register 0 3-14
Segment-Table Lookup 3-14
Page-Table Lookup 3-14
Formation of the Real Address 3-14
Recognition cf Exceptions During Translation 3-14

Translation-Lookaside Buffer 3-15
Use of the Translation-Lookaside Buffer 3-16
Modification of Translation Tables 3-17

Address Summary 3-20
Addresses Translated 3-20
Handling of Addresses 3-20

Assigned Storage Locations 3-22
Assigned Real-Storage Locations 3-22
Assigned Absolute Storage Locations 3-24

Chapter 4. Control 4-1
Stopped, Operating, Load, and Check-Stop States 4-1

Stopped State 4-2

Operating State 4-2
Load State 4-2
Check-Stop State 4-2

Program-Status Word 4-3
EC and BC Modes 4-3
Program-Status-Word Format in EC Mode 4-4
Program-Status-Word Format in BC Mode 4-5

Control Registers 4-6
Program-Event Recording 4-8

Control-Register Allocation 4-8
Operation 4-8

Identification of Cause 4-9
Priority of Indication 4-9

Storage-Area Designation 4-10
PER Events 4-10

Successful Branching 4-10
Instruction Fetching 4-10
Storage Alteration 4-11
General-Register Alteration 4-11

Indication of Events Concurrently with Other
Interruption Conditions 4-12

Direct Control 4-15
Read-Write-Direct Facility 4-15
External-Signal Facility 4-15

Timing 4-15
Time-of-Day Clock 4-16

Format 4-16
States 4-16
Changes in Clock State 4-17
Setting and Inspecting the Clock 4-17

Time-of-Day-Clock Synchronization 4-18
Clock Comparator 4-19
CPU Timer 4-19
Interval Timer 4-20

Externally Initiated Functions 4-21
Resets 4-21

CPU Reset 4-24
Initial CPU Reset 4-24
Subsystem Reset 4-24
Program Reset 4-25
Initial Program Reset 4-25
Clear Reset 4-25
Power-On Reset 4-25

Initial Program Loading 4-26
Store Status 4-27

Multiprocessing 4-27
Shared Main Storage 4-28
CPU-Address Identification 4-28

CPU Signaling and Response 4-28
Signal-Processor Orders 4-28
Conditions Determining Response 4-29

Conditions Precluding Interpretation of the Order
Code 4-29

Status Bits 4-30
Channel-Set Switching 4-32

Chapter 5. Program Execution 5-1
Instructions 5-1

Operands 5-1
Instruction Format 5-2

Register Operands 5-3
Immediate Operands 5-3
Storage Operands 5-3

Address Generation 5-3
Sequential Instruction-Address Generation 5-4

v

Operand-Address Generation 5-4
Branch-Address Generation 5-4

Instruction Execution and Sequencing 5-5
Interruptions 5-5
Types of Instruction Ending 5-5
Interruptible Instructions 5-6

Point of Interruption 5-6
Execution of Interruptible Instructions 5-6

Exceptions to Nullification and Suppression 5-6
Storage Change and Restoration for DAT-Associated
Access Exceptions 5-7

Modification of DAT-Table Entries 5-7
Trial Execution for TRANSLATE and EDIT 5-7
Interlocked Update for Suppression 5-8

Sequence of Storage References 5-8
Interlocks for Virtual-Storage References 5-9
Instruction Fetching 5-10
DAT-Table Fetches 5-11
Storage-Key Accesses 5-11
Storage-Operand References 5-11

Storage-Operand Fetch References
Storage-Operand Store References
Storage-Operand Update References

Storage-Operand Consistency 5-13
Single-Access References 5-13
Multiple-Access Operands 5-13
Block-Concurrent References 5-13
Consistency Specification 5-14

5-11
5-12

5-12

Relation between Operand Accesses 5-14
Other Storage References 5-15

Serialization 5-15
CPU Serialization 5-15
Channel Serialization 5-16

Chapter 6. Interruptions 6-1
Interruption Action 6-1

Source Identification 6-4
Enabling and Disabling 6-4
Instruction-Length Code 6-5

Zero ILC 6-5
ILC on Instruction-Fetching Exceptions 6-5

Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6
Late Exception Recognition 6-7

External Interruption 6-7
Clock Comparator 6-8
CPU Timer 6-8
Emergency Signal 6-9
External Call 6-9
External Signal 6-9
Interrupt Key 6-9
Interval Timer 6-9
Malfunction Alert 6-10
TOD-Clock Sync Check

Input/Output Interruption
Machine-Check Interruption
Program Interruption 6-11

6-10
6-10

6-11

vi

Program-Interruption Conditions 6-12
Addressing Exception 6-12
Data Exception 6-12
Decimal-Divide Exception 6-13
Decimal-Overflow Exception 6-13
Execute Exception 6-13
Exponent-Overflow Exception 6-13
Exponent-Underflow Exception 6-13
Fixed-Point-Divide Exception 6-13
Fixed-Point-Overflow Exception 6-14
Floating-Point-Divide Exception 6-14
Monitor Event 6-14

Operation Exception 6-14
Page-Translation Exception 6-15
PER Event 6-15
Privileged-Operation Exception 6-15
Protection Exception 6-15
Segment-Translation Exception 6-16
Significance Exception 6-16
Special-Operation Exception 6-16
Specification Exception 6-16
Translation-Specification Exception 6-17

Recognition of Access Exceptions 6-17
Multiple Program-Interruption Conditions 6-19

Restart Interruption 6-22
Supervisor-Call Interruption 6-22
Priority of Interruptions 6-22

Chapter 7. General Instructions 7-1
Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3
Signed and Logical Comparison 7-3
Instructions 7-4

ADD 7-4
ADD HALFWORD 7-4
ADD LOGICAL 7-4
AND 7-7
BRANCH AND LINK 7-7
BRANCH ON CONDITION 7-8
BRANCH ON COUNT 7-9
BRANCH ON INDEX HIGH 7-9
BRANCH ON INDEX LOW OR EQUAL 7-9
COMPARE 7-10
COMPARE AND SWAP 7-tO
COMPARE DOUBLE AND SWAP 7-10
COMPARE HALFWORD 7-12
COMPARE LOGICAL 7-12
COMPARE LOGICAL CHARACTERS UNDER
MASK 7-12

COMPARE LOGICAL LONG 7-13
CONVERT TO BINARY 7-14
CONVERT TO DECIMAL 7-14
DIVIDE 7-15
EXCLUSIVE OR 7-15
EXECUTE 7-16
INSERT CHARACTER 7-17
INSERT CHARACTERS UNDER MASK 7-17
LOAD 7-17
LOAD ADDRESS 7-18
LOAD AND TEST 7-18
LOAD COMPLEMENT 7-18
LOAD HALFWORD 7-19
LOAD MULTIPLE 7-19
LOAD NEGATIVE 7-19
LOAD POSITIVE 7-19
MONITOR CALL 7-20
MOVE 7-20
MOVE INVERSE 7-21
MOVE LONG 7-21
MOVE NUMERICS 7-24
MOVE WITH OFFSET 7-24
MOVE ZONES 7-25
MULTIPLY 7-25
MULTIPLY HALFWORD 7-26
OR 7-26
PACK 7-27
SET PROGRAM MASK 7-27
SHIFT LEFT DOUBLE 7-28
SHIFT LEFT DOUBLE LOGICAL 7-28
SHIFT LEFT SINGLE 7-28

SHIFT LEFT SINGLE LOGICAL 7-29
SHIFT RIGHT DOUBLE 7-29
SHIFT RIGHT DOUBLE LOGICAL 7-29
SHIFT RIGHT SINGLE 7-30
SHIFT RIGHT SINGLE LOGICAL 7-30
STORE 7-30
STORE CHARACTER 7-31
STORE CHARACTERS UNDER MASK 7-31
STORE CLOCK 7-31
STORE HALFWORD 7-32
STORE MULTIPLE 7-32
SUBTRACT 7-32
SUBTRACT HALFWORD 7-33
SUBTRACT LOGICAL 7-33
SUPERVISOR CALL 7-34
TEST AND SET 7-34
TEST UNDER MASK 7-34
TRANSLATE 7-35
TRANSLATE AND TEST 7-36
UNPACK 7-36

Chapter 8. Decimal Instructions 8-1
Decimal-Number Formats 8-1

Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-1

Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3

Instructions 8-3
ADD DECIMAL 8-4
COMPARE DECIMAL 8-4
DIVIDE DECIMAL 8-5
EDIT 8-5
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-9
SHIFT AND ROUND DECIMAL 8-10
SUBTRACT DECIMAL 8-10
ZERO AND ADD 8-11

Chapter 9. Floating-Point Instructions 9-1
Floating-Point Number Representation 9-1
Normalization 9-2
Floating-Point-Data Format 9-2
Instructions 9-5

ADD NORMALIZED 9-5
ADD UNNORMALIZED 9-7
COMPARE 9-7
DIVIDE 9-8
HALVE 9-9
LOAD 9-9
LOAD AND TEST 9-10
LOAD COMPLEMENT 9-10
LOAD NEGATIVE 9-11
LOAD POSITIVE 9-11
LOAD ROUNDED 9-11
MULTIPLY 9-12
STORE 9-13
SUBTRACT NORMALIZED 9-13
SUBTRACT UNNORMALIZED 9-14

Chapter 10. Control Instructions 10-1
CONNECT CHANNEL SET 10-3
DIAGNOSE 10-3
DISCONNECT CHANNEL SET 10-4

INSERT PSW KEY 10-4
INSERT STORAGE KEY 10-4
INVALIDATE PAGE TABLE ENTRY 10-5
LOAD CONTROL 10-6
LOAD PSW 10-6
LOAD REAL ADDRESS 10-7
PURGE TLB 10-7
READ DIRECT 10-8
RESET REFERENCE BIT 10-8
SET CLOCK 10-9
SET CLOCK COMPARATOR 10-9
SET CPU TIMER 10-10
SET PREFIX 10-10
SET PSW KEY FROM ADDRESS 10-11
SET STORAGE KEY 10-11
SET SYSTEM MASK 10-12
SIGNAL PROCESSOR 10-12
STORE CLOCK COMPARATOR 10-13
STORE CONTROL 10-13
STORE CPU ADDRESS 10-14
STORE CPU ID 10-14
STORE CPU TIMER 10-15
STORE PREFIX 10-15
STORE THEN AND SYSTEM MASK 10-15
STORE THEN OR SYSTEM MASK 10-16
TEST PROTECTION 10-16
WRITE DIRECT 10-17

Chapter 11. Machine-Check Handling 11-1
Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2

Error Checking and Correction 11-2
CPU Retry 11-2
Unit Deletion 11-2

Handling of Machine Checks 11-2
Validation 11-3
Invalid CBC in Storage 11-4

Programmed Validation of Storage 11-4
Invalid CBC in Storage Keys 11-4
Invalid CBC in Registers 11-6

Check-Stop State 11-7
Machine-Check Interruption 11-8

Exigent Conditions 11-8
Repressible Conditions 11-8
Interruption Action 11-9
Point of Interruption 11-10

Machine-Check-Interruption Code 11-11
Subclass 11-11

System Damage 11-11
Instruction-Processing Damage 11-11
System Recovery 11-12
Interval-Timer Damage 11-12
Timing-Facility Damage 11-12
External Damage 11-12
Degradation 11-12
Warning 11-13

Time of Interruption Occurrence 11-13
Backed Up 11-13
Delayed 11-13

Synchronous Machine-Check Interruption
Conditions 11-13

Processing Backup 11-13
Processing Damage 11-13

Storage-Error Type 11-13
Storage Error Uncorrected 11-14
Storage Error Corrected 11-14
Storage~Key Error Uncorrected 11-14

Machine-Check Interruption-Code Validity Bits 11-14
PSW-EMWP Validity 11-14

vii

PSW Mask and Key Validity 11-14
PSW Program-Mask and Condition-Code
Validity 11-15

PSW-Instruction-Address Validity 11-15
Failing-Storage-Address Validity 11-15
Region-Code Validity 11-15
External-Damage-Code Validity 11-15
Floating-Point-Register Validity 11-15
General-Register Validity 11-15
Control-Register Validity 11-15
Logout Validity 11-15
Storage Logical Validity 11-15
CPU-Timer Validity 11-15
Clock-Comparator Validity 11-15
Machine-Check Extended-Logout Length 11-16

Machine-Check Extended Interruption Information 11-16
Register-Save Areas 11-16
External-Damage Code 11-16
Failing-Storage Address 11-18
Region Code 11-18

Machine-Check Masking 11-18
Check-Stop Control 11-19
Recovery-Report Mask 11-19
Degradation-Report Mask 11-19
External-Damage-Report Mask 11-19
Warning Mask 11-19

Machine-Check Logout 11-19
Logout Controls 11-20

Synchronous M achine-Check Extended-Logout
Control 11-20

Input/Output Extended-Logout Control 11-20
Asynchronous Machine-Check Extended-Logout
Control 11-20

Asynchronous Fixed-Logout Control 11-20
Machine-Check Extended-Logout Address 11-20

Summary of Machine-Check Masking and Logout 11-21

Chapter 12. Input/Output Operations 12-1
Attachment of Input/Output Devices 12-2

Input/Output Devices 12-2
Control Units 12-2
Channels 12-3

Modes of Operation 12-3
Types of Channels 12-4

I/O-System Operation 12-5
Compatibility of Operation 12-7

Control of Input/Output Devices 12-7
Input/Output Device Addressing 12-7
States of the Input/Output System 12-8
Resetting of the Input/Output System 12-10

I/O-System Reset 12-10
I/O Selective Reset 12-10
Effect of Reset on a Working Device 12-10
Reset Upon Malfunction 12-11

Condition Code 12-11
Instruction Formats 12-13
Instructions 12-14
CLEAR CHANNEL 12-15
CLEAR I/O 12-15
HALT DEVICE 12-17
HALT I/O 12-20
START I/O 12-21
START I/O FAST RELEASE 12-21
STORE CHANNEL ID 12-24
TEST CHANNEL 12-25
TEST I/O 12-25
Input/Output-Instruction-Exception Handling 12-27

Execution of Input/Output Operations 12-27
Blocking of Data 12-27

viii

Channel-Address Word
Channel-Command Word
Command Code 12-29

12-27
12-28

Designation of Storage Area 12-29
Chaining 12-30

Data Chaining 12-31
Command Chaining 12-33

Skipping 12-33
Program-Controlled Interruption 12-33
Channel Indirect Data Addressing 12-34
Commands 12-35

Write 12-36
Read 12-36
Read Backward 12-36
Control 12-37
Sense 12-37
Transfer in Channel 12-39

Command Retry 12-39
Conclusion of Input/Output Operations 12-40

Types of Conclusion 12-40
Conclusion at Operation Initiation 12-40
Immediate Operations 12-41
Conclusion of Data Transfer 12-41
Termination by HALT I/O or HALT
DEVICE 12-42

Termination by CLEAR I/O 12-43
Termination Due to Equipment Malfunction

Input/Output Interruptions 12-44
Interruption Conditions 12-44
Channel-Available Interruption 12-45

Priority of Interruptions 12-45
Interruption Action 12-46

Channel-Status Word 12-46
Unit Status 12-48

Attention 12-48
Status Modifier 12-48
Control-Unit End 12-48
Busy 12-49
Channel End 12-49
Device End 12-51
Unit Check 12-51
Unit Exception 12-52

Channel Status 12-52
Program-Controlled Interruption 12-52
Incorrect Length 12-52
Program Check 12-53
Protection Check 12-54
Channel-Data Check 12-54
Channel-Control Check 12-54
Interface-Control Check 12-54
Chaining Check 12-55

Contents Of Channel-Status Word 12-55
Information Provided by Channel-Status
Word 12-55

Subchannel Key 12-56
CCW Address 12-56
Count 12-56
Status 12-57

Channel Logout 12-57
I/O-Communication Area 12-59

Chapter 13. Operator Facilities 13-1
Manual Operation 13-1
Basic Operator Facilities 13-1

Address-Compare Controls 13-1
Alter-and-Display Controls 13-2
Check Control 13-2
Check-Stop Indicator 13-2
IML Controls 13-2

12-44

Interrupt Key 13-3
Interval-Timer Control 13-3
Load Indicator 13-3
Load-Clear Key 13-3
Load-Normal Key 13-3
Load-U nit-Address Controls 13-3
Manual Indicator 13-3
Power Controls 13-3
Rate Control 13-4
Restart Key 1 3-4
Start Key 13-4
Stop Key 13-4
Store-Status Key 13-4
System-Reset-Clear Key 13-4
System-Reset-Normal Key 13-4
Test Indicator 13-5
TOD-Clock Control 13-5
Wait Indicator 13-5

Multiprocessing Configurations 13-5

Appendix A. Number Representation and Instruction-Use
Examples A-I

Number Representation A-2
Binary Integers A-2

Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers A-3
Floating-Point Numbers A-4
Conversion Example A-5

Instruction-Use Examples A-5
Machine Format A-6
Assembler-Language Format A-6

General Instructions A-6
ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6

AND (NI) A-7
BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-8
BRANCH ON INDEX HIGH (BXH) A-8
BRANCH ON INDEX LOW OR EQUAL
(BXLE) A-9

COMPARE HALFWORD (CH) A-9
COMPARE LOGICAL (CL, CLC, CLI, CLR) A-9

Compare Logical (CLC) A-9
Compare Logical (CLI) A-I0
Compare Logical (CLR) A-I0

COMPARE LOGICAL CHARACTERS UNDER MASK
(CLM) A-10

COMPARE LOGICAL LONG (CLCL) A-II
CONVERT TO BINARY (CVB) A-12
CONVERT TO DECIMAL (CVD) A-12
DIVIDE (D, DR) A-13
EXCLUSIVE OR (X, XC, XI, XR) A-13

Exclusive OR (XC) A-13
Exclusive OR (XI) A-14

EXECUTE (EX) A-14
INSERT CHARACTERS UNDER MASK OCM) A-15
LOAD (L, LR) A-16
LOAD ADDRESS (LA) A-16
LOAD HALFWORD (LH) A-17
MOVE (MVC, MVI) A-17

Move (MVC) A-17
Move (MVI) A-18

MOVE LONG (MVCL) A-18
MOVE NUMERICS (MVN) A-18
MOVE WITH OFFSET (MVO) A-19
MOVE ZONES (MVZ) A-19
MULTIPLY (M, MR) A-20

MULTIPLY HALFWORD (MH) A-20
OR (0, OR, 01, OC) A-20

OR (01) A-20
PACK (PACK) A-21
SHIFT LEFT DOUBLE (SLDA) A-21
SHIFT LEFT SINGLE (SLA) A-21
STORE CHARACTERS UNDER MASK
(STCM) A-22

STORE MULTIPLE (STM) A-22
TEST UNDER MASK (TM) A-22
TRANSLATE (TR) A-23
TRANSLATE AND TEST (TRT) A-23
UNP ACK (UNPK) A-25

Decimal Instructions A-25
ADD DECIMAL (AP) A-25
COMPARE DECIMAL (CP) A-25
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-26
EDIT AND MARK (EDMK) A-27
MULTIPLY DECIMAL (MP) A-28
SHIFT AND ROUND DECIMAL (SRP) A-28

Decimal Left Shift A-28
Decimal Right Shift A-28
Decimal Right Shift and Round A-29
Multiplying by a Variable Power of 10 A-29

ZERO AND ADD (ZAP) A-29
Floating-Point Instructions A-30

ADD NORMALIZED (AD, ADR, AE, AER,
AXR) A-30

ADD UNNORMALIZED (AU, AUR, AW,
AWR) A-30

COMPARE (CD, CDR, CE, CER) A-30
Floating-Point-Number Conversion A-31

Fixed Point to Floating Point A-31
Floating Point to Fixed Point A-31

Multiprogramming and Multiprocessing Examples A-32
Example of a Program Failure Using OR
Immediate A-32

COMPARE AND SWAP (CS, CDS) A-33
Setting a Single Bit A-33
Updating Counters A-34

Bypassing POST AND WAIT A-34
BYPASS POST Routine A-34
BYPASS WAIT Routine A-35

LOCK/UNLOCK A-35
LOCK/UNLOCK with LIFO Queuing for
Contentions A-35

LOCK/UNLOCK with FIFO Queuing for
Contentions A-36

Free-Pool Manipulation A-37

Appendix B. Lists of Instructions B-1

Appendix C. Condition-Code Settings C-I

Appendix D. Facilities D-1
Commercial Instruction Set 0-1
Floating-Point Feature 0-1
Universal Instruction Set 0-1
Extended-Precision Floating-Point Feature 0-1
External-Signal Feature D-1
Direct-Control Feature D-1
Translation Feature D-2
CPU-Timer and Clock-Comparator Feature 0-2
Conditional-Swapping Feature D-2
PSW-Key-Handling Feature D-2
Move-Inverse Feature D-2
Multiprocessing Feature 0-2

ix

Extended Facility 0-2
Recovery-Extension Feature 0-2
Channel-Set-Switching Feature 0-2
Fast-Release Feature 0-2
Clear-I/O Feature 0-2
Channel-Indirect-Data-Addressing Feature 0-2
Command-Retry Feature 0-3
Limited-Channel-Logout Feature 0-3
IIO-Extended-Logout Feature 0-3

Availability of Features 0-3
Features Not Described in the Principles of
Operation 0-4

Appendix E. Table of Powers of 2 E-!

Appendix F. Hexadecimal Tables F-I

Appendix G. EBCDIC Chart G-I

x

Appendix H. Changes Affecting Compatibility between
System/360 and System/370 H-l

Removal of USASCII-8 Mode H-I
Operation Code for Halt Device and for Clear
Channel H-I

Logout H-I
Command Retry H-2
Channel Prefetching H-2
Validity of Data H-2

Appendix I. Changes Affecting Compatibility within
System/370 1-1

READ DIRECT and WRITE DIRECT 1-1
Store Accesses I-I
Fetch Access I-I
Operand-Access Consistency 1-2
Change Bit 1-2
Subchannel Interruption State 1-2

Index X-I

L
List of Abbreviations
The abbreviations most often used in this pUblication are
shown in the following list and are accompanied by their
meaning. Instruction mnemonics are listed in Appendix C,
under "Instructions Arranged by Mnemonic."

a
ASCII

C
CAl
CAW
CBC
CCW
CC

CO
CPU
CSW

d
01,02

OAT

e
EBCDIC

EC
ECC

h
hex

ID
IDAW
ILC
IML
I/O
IOCA
IOEL
IPL

k
K byte

American National Standard Code for
Information Interchange

base fields of some instruction formats
basic control (mode)

channel available interruption
channel address word
checking block code
channel command word
condition code, or chain-command code in

CCW
chain-data flag in CCW
central processing unit
channel status word

displacement fields of some instruction
formats

dynamic address translation

extended binary-coded decimal interchange
code

extended control (mode)
error checking and correction

hexadecimal

immediate field of the SI instruction
format

identifier
indirect data address word
instruction-length code
initial microprogram load
input/ output
input/output communications area
input/output extended logout
initial program load

1,024 bytes

P
PCI

PER
PSW

RRE

RS

RX

s
S

SI

SLI
SS

SSE

t
TLB
TOO

U
USASCII

X
X2

length fields of the SS instruction format

mask fields of some instruction formats
1,048,576 bytes
machine-check extended logout

program-controlled interruption (flag in
CCW, or function)

program-event recording
program status word

register fields of some instruction formats
register-and-register operation (instruction

format)
register-and-register operation with

extended op-code field (instruction format)
register-and-storage operation (instruction

format)
register-and-indexed-storage operation

(instruction format)

implied-operand-and-storage operation
(instruction format)

storage-and-immediate-operand operation
(instruction format)

suppress-length-indication flag in CCW
storage-and-storage operation (instruction

format)
storage-and-storage operation with

extended op-code field (instruction format)

translation look aside buffer
time-of-day

deprecated acronym for ASCII (American
National Standard Code for Information
Interchange)

index field of the RX instruction format

xi

Chapter 1. Introduction

Contents

General-Purpose Design 1-2

Compatibility 1-2

Compatibility among System/370 Models 1-2

Compatibility between System/360 and System/370 1-3
System Program 1-3

Availability 1-3

This publication describes the IBM System/370
architecture. The architecture of a machine defines
its attributes as seen by the programmer, that is,
the conceptual structure and functional behavior of
the machine, as distinct from the organization of
the data flow, the logical design, the physical de­
sign, and the performance of any particular imple­
mentation. Several dissimilar machine implementa­
tions may conform to a single architecture. When
programs running on different machine implemen­
tations produce the results that are defined by a
single architecture, the implementations are consid­
ered to be compatible.

IBM System/370 is a product of the experience
gained in developing and using a few generations
of compatible general-purpose systems. Starting
with System/360 as a base, it incorporates a num­
ber of new facilities: dynamic address translation
and its extensions, channel indirect data addressing,
multiprocessing, channel-set switching, timing facil­
ities, extended-precision floating point, program­
event recording, MONITOR CALL, recovery ex­
tensions, protection extensions, and the block­
multiplexer channel. Many of these facilities are
included to enhance the reliability, availability, and
serviceability of the system.
• Dynamic address translation, a facility that elim­

inates the need to assign a program to fixed lo­
cations in real main storage and thus reduces the
addressing constraints on both system and prob­
lem programs, provides greater freedom in pro­
gram design, and permits a more efficient and
effective utilization of main storage. When one
of the operating systems for virtual storage is
employed, dynamic address translation allows the

use of up to 16,777,216 bytes of virtual storage.
Extensions to this facility include the common­
segment bit, the use of which increases the effec­
tive size of the translation-lookaside buffer and
thus improves CPU performance, and the in­
struction INVALIDATE PAGE TABLE EN­
TRY, which improves CPU performance in a
demand-paging environment.

• Channel indirect data addressing, a companion
facility to dynamic address translation, provides
assistance in translating data addresses for I/O
operations. It permits a single channel-command
word to control the transmission of data that
spans noncontiguous areas of real main storage.

• Multiprocessing provides for the interconnection
of CPUs to enhance system availability and
share data and resources. It includes facilities
for shared main storage, for programmed and
special machine signaling between CPUs, and for
the programmed reassignment of the first 4,096
bytes of real storage for each CPU. I · Channel-set switching permits the collection of
channels in a channel set to be connected to any
CPU in a multiprocessing configuration.

• Timing facilities include a time-of-day clock, a
clock comparator, and a CPU timer, along with
an interval timer that is also available in
System/360. The time-of-day clock provides a
measure of elapsed time suitable for the indica­
tion of date and time; it has a cycle of approxi­
mately 143 years and a resolution such that the
incrementing rate is comparable to the
instruction-execution rate of the model. The
clock comparator provides for an interruption
when the time-of-day clock reaches a program-

Chapter 1. Introduction 1-1

specified high-resolution timer that initiates an
interruption upon being decremented past zero.

• Extended-precision floating point includes the
facilities for addition, subtraction, and multipli­
cation of floating-point numbers with a fraction
of 28 hexadecimal digits. Included in the feature
are instructions for rounding from extended to
long and from long to short formats.

• Program-event recording provides program inter­
ruptions on a selective basis as an aid in program
debugging.

• The instruction MONITOR CALL provides for
passing control to a monitoring program when
selected indicators are reached in the monitored
program. It can be used, for example, in analyz­
ing which programs get executed, how often, and
in what length of time.

• Recovery extensions include (1) the CLEAR
CHANNEL instruction, for performing an I/O­
system reset on a channel and on the associated
I/O interface, (2) provisions for a detailed indi­
cation of the cause of external damage, and
(3) logout indications of whether the I/O inter­
face is operative and the logout valid.

• Protection extensions include (1) low-address
protection, the use of which increases the protec­
tion of storage locations 0 through 511, which
are vital to the system control program, and
(2) the TEST PROTECTION instruction, which
can be used to perform tests for potential protec­
tion violations without causing program interrup­
tions for protection exceptions.

• The block-multiplexer channel, which permits
concurrent processing of multiple channel pro­
grams, provides an efficient means of handling
I/O devices that transfer data on the I/O inter­
face at a high data rate but have relatively long
periods of channel inactivity between transfers.

General-Purpose Design
System/370 is a general-purpose system that can
readily be tailored for a variety of applications. A
commercial instruction set provides the basic pro­
cessing capabilities of the system. If the floating­
point feature is installed with the commercial in­
struction set, a universal instruction set is obtained.
Adding other features, such as the extended­
precision floating-point feature or the conditional­
swapping feature, extends the processing capabili­
ties of the system still further.

System/370 has the capability of addressing a
main storage of 16,777 ,216 bytes, and the
System/370 translation feature, used with appropri­
ate programming support, can provide a user this
maximum address space even when a lesser amount

1-2 System/370 Principles of Operation

of real storage is attached. This feature and this
support permit a System/370 model with limited
real storage to be used for a much wider set of ap­
plications, and they make many applications with
requirements for extensive storage practical and
convenient. Additionally, for many System/370
models, the speed of accessing storage is improved
by the use of a cache. The cache is a buffer-not
apparent to the user-that often provides infor­
mation requested from storage without the delay
associated with accessing storage itself.

Another major aspect of the general-purpose
design of System/370 is the capability provided to
attach a wide variety of I/O devices through a se­
lector channel and two types of multiplexing chan­
nels. System/370 has a byte-multiplexer channel
for the attachment of unbuffered devices and of a
large number of communications devices. Addition­
ally, it offers a block-multiplexer channel, which is
particularly well-suited for the attachment of buff­
ered devices and high-speed cyclic devices.

An individual System/370 installation is ob­
tained by selecting the system components best
suited to the applications from a wide variety of
alternatives in internal performance, functional
ability, and input/output.

Compatibility

Compatibility among System/370 Models
Although models of System/370 differ in imple­
mentation and physical capabilities, logically they
are upward and downward compatible. Compatibili­
ty provides for simplicity in education, availability
of system backup, and ease in system growth. Spe­
cifically, any program will give identical results on
any model, provided that it:
1. Is not time-dependent.
2. Does not depend on system facilities (such as

storage capacity, I/O equipment, or optional
features) being present when the facilities are
not included in the configuration.

3. Does not depend on system facilities being ab­
sent when the facilities are included in the con­
figuration. For example, the program should
not depend on interruptions caused by the use
of operation codes or command codes that in
some models are not assigned or not installed.
Also, it must not use or depend on fields associ­
ated with uninstalled facilities. For example,
data should not be placed in an area used by
another model for logout. Similarly, the pro­
gram must not use or depend on unassigned
fields in machine formats (control registers,

instruction formats, etc.) that are not explicitly
made available for program use.

4. Does not depend on results or functions that
are defined in this publication to be unpredicta­
ble or model-dependent, or on special-purpose
functions (such as emulators) that are not de­
scribed in this publication. This includes the
requirement that the program should not de­
pend on the assignment of I/O addresses and
CPU addresses.

5. Does not depend on results or functions that
are defined in the functional-characteristics
publication for a particular model to be devia­
tions from this publication.

6. Takes into account those changes made to the
original System/3 70 architectural definition
that affect compatibility among System/370
models. These changes are described in Ap­
pendix I.

Compatibility between System/360 and
System/370
System/370 is forward-compatible from
System/360. A program written for the
System/360 will run on the System/370, provided
that it:
1. Observes the limitations described in the pre­

ceding section.
2. Does not use PSW bit 12 as an ASCII bit (a

special case of the second rule in the preceding
section).

3. Does not use or depend on main-storage loca­
tions assigned specifically for System/370, such
as the interruption-code areas, the machine­
check save areas, and the extended-logout area
(a special case of the third rule in the preceding
section).

4. Takes into account other changes made to the
System/360 architectural definition that affect
compatibility between System/360 and
System/370. These changes are described in
Appendix H.

Programming Note
This publication assigns meanings to various opera­
tion codes, to bit positions in instructions, channel­
command words, registers, and table entries, and to
fixed locations in the low 512 bytes of storage
(addresses 0-511). Other operation codes, bit posi­
tions, and low-storage locations are specifically
noted as being available for programming use. The
remaining ones are unassigned and reserved for
future assignment to new facilities and other exten­
sions of the architecture.

To ensure that existing programs run if and
when such new facilities are installed, programs
should not depend on an indication of an exception
as a result of invalid values that are currently de­
fined as being checked. If a value must be placed
in unassigned positions that are not checked, the
program should enter zeros. When the machine
provides a code or field, the program should take
into account that new codes and bits may be as­
signed in the future. The program should not use
unassigned low-storage locations for keeping in­
formation since these locations may be assigned in
the future in such a way that the machine causes
this location to be changed.

System Program
The system is designed to operate with a superviso­
ry program that coordinates the use of system re­
sources and executes all I/O instructions, handles
exceptional conditions, and supervises scheduling
and execution of multiple programs.

Availability
Availability is the capability of a system to accept
and successfully process an individual job.
System/370 permits substantial availability by
(1) allowing a large number and broad range of
jobs to be processed concurrently, thus making the
system readily accessible to any particular job, and
(2) limiting the effect of an error and identifying
more precisely its cause, with the result that the
number of jobs affected by errors is minimized and
the correction of the errors facilitated.

Several design aspects make this possible.
• A program is checked for the correctness of in­

structions and data as the program is executed,
and program errors are indicated separate from
equipment errors. Such checking and reporting
assists in locating failures and isolating effects.

• The protection facilities, in conjunction with
dynamic address translation, permit the protec­
tion of the contents of storage from destruction
or misuse caused by erroneous or unauthorized
storing or fetching by a program. This provides
increased security for the user, thus permitting
applications with different security requirements
to be processed concurrently with other applica­
tions.

• Dynamic address translation allows isolation of
one application from another, still permitting
them to share common resources. Also, it per­
mits the implementation of virtual machines,
which may be used in the design and testing of
new versions of operating systems along with the
concurrent processing of application programs.

Chapter 1. Introduction 1-3

Additionally, it provides for the concurrent oper­
ation of incompatible operating systems.

• Multiprocessing and channel-set switching permit
better use of storage and processing capabilities,
more direct communication between CPUs, and
duplication of resources, thus aiding in the con­
tinuation of system operation in the event of
machine failures.

• MONITOR CALL, program-event recording,
and the timing facilities permit the testing and
debugging of programs without manual interven­
tion and with little effect on the concurrent
processing of other programs.

• Emulation is performed under supervisory pro­
gram control, thus making it possible to perform
emulation concurrently with other applications.

• On most models, error checking and correction
(ECC) in main storage, instruction retry, and
command retry provide for circumventing inter-

1-4 System/370 Principles of Operation

mittent equipment malfunctions, thus reducing
the number of equipment failures.

• An enhanced machine-check handling mecha­
nism provides model-independent fault isolation,
which reduces the number of programs impacted
by uncorrected errors. Additionally, it provides
model-independent recording of machine-status
information. This leads to greater machine­
check handling compatibility between models
and improves the capability for loading and run­
ning a program on a different model when a sys­
tem failure occurs.

• A small number of manual controls are required
for basic system operation, permitting most
operator-system interaction to take place via a
unit operating as an I/O device and thus reduc­
ing the possibility of accidental operator errors.

Chapter 2. Organization

Contents

Main Storage 2-1
Central Processing Unit 2-2

Program-Status Word 2-3

General Registers 2-3
Floating-Point Registers 2-3

Control Registers 2-3

Input and Output 2-3
Channel Sets 2-3

Channels 2-3

Input/Output Devices and Control Units 2-4
Operator Facilities 2-4

Logically, System/370 consists of main storage,
one or more central processing units (CPUs),
operator facilities, channels, and input/output
devices. Input/output devices are usually attached
to channels through control units. The physical
identity of these functions may vary between
models. The figure "Logical Structure" depicts the
logical structure for a single-CPU system and for a
two-CPU multiprocessing system.

Specific processors may differ in their internal
characteristics, the number and types of channels,
the size of main storage, and the representation of
the operator facilities. The differences in internal
characteristics are apparent to the observer only as
differences in machine performance.

Model-dependent configuration controls may be
provided to change the amount of main storage and
the number of CPUs. In some instances, the con­
figuration controls may be used to partition a single
system into multiple systems. Each of the systems
so configured has the same structure, that is, main
storage, one or more CPUs, and channels. Each
system is isolated from the other in that the main
storage in one system is not directly addressable by
the CPUs and channels in the other. It is,
however, possible for one system to communicate
with another by means of shared I/O devices or a
channel-to-channel adapter. At anyone time, the
storage, CPUs, and channels connected together in
a system are referred to as being in the

configuration. Each CPU and storage location can
be in only one configuration at a time.

Main Storage
Main storage provides the system with directly
addressable fast-access storage. Both data and
programs must be loaded into main storage from
input devices before they can be processed. The
amount of main storage available on the system
depends on the model, and, depending on the
model, the amount in the configuration may be
under control of model-dependent configuration
controls. The storage is available in 2,048-byte
blocks or multiples thereof. At anyone time, each
block of storage in the configuration is addressed
with the same absolute addresses by all CPUs and
channels in the configuration. Each block of
storage is accessible to all CPUs and channels in
the configuration.

Main storage may be either physically integrated
with a CPU or constructed as standalone units.
Additionally, main storage may be composed of
large-volume storage and a faster-access buffer
storage, sometimes called a cache. Each CPU may
have an associated cache. The effects, except on
performance, of the physical construction and the
use of distinct storage media are not observable by
the program.

Chapter 2. Organization 2-1

Main
Storage

CPU

Logical Structure

Channel Channel

Central Processing Unit
The central processing unit (CPU) is the
controlling center of the machine. It contains the
sequencing and processing facilities for instruction
execution, interruption action, timing functions,
initial program loading, and other machine-related
functions.

The physical makeup of the CPU in the various
models of the machine may be different, but the
logical function remains the same. The result of
executing a valid instruction is the same for each
model.

The CPU, in executing instructions, can process
binary integers and floating-point numbers of fixed
length, decimal integers of variable length, and
logical information of either fixed or variable
length. Processing may be in parallel or in series;
the width of the processing elements, the
multiplicity of the shifting paths, and the degree of
simultaneity in performing the different types of
arithmetic differ from one CPU to another without
affecting the logical results.

Instructions which the CPU executes fall into
five classes: general, decimal, floating-point,
control, and input/output instructions. The general
instructions are used in performing fixed-point

2-2 System/370 Principles of Operation

CPU

Channel Channel

Main
Storage

CPU

Channel Channel

arithmetic operations and logical, branching, and
other nonarithmetic operations. The decimal
instructions operate on data in the decimal format,
and the floating-point instructions on data in the
floating-point format. The control instructions and
the input/output instructions are privileged
instructions that can be executed only when the
CPU is in the supervisor state.

To perform its functions, the CPU may use a
certain amount of internal storage. Although this
internal storage may use the same physical storage
medium as main storage, it is not considered part of
main storage and is not addressable by programs.

The CPU provides registers which are available
to programs but do not have addressable
representations in main storage. They include the
current program-status word (PSW), the general
registers, the floating-point registers, the control
registers, the prefix register, and the registers for
the time-of-day (TOD) clock, the clock
comparator, and the CPU timer. The instruction
operation code determines which type of register is
to be used in an operation. See the figure
"General, Floating-Point, and Control Registers"
later in this chapter for the format of those
registers.

Program-Status Word
The program-status word (PSW) includes the
instruction address, condition code, and other
information used to control instruction sequencing
and to determine the state of the CPU. The active
or controlling PSW is called the current PSW. It
governs the program currently being executed.

The CPU has an interruption capability, which
permits the CPU to switch rapidly to another
program in response to exceptional conditions and
external stimuli. When an interruption occurs, the
CPU places the current PSW in an assigned storage
location, called the old-PSW location, for the
particular class of interruption. The CPU fetches a
new PSW from a second assigned storage location.
This new PSW determines the next program to be
executed. When it has finished processing the
interruption, the interrupting program reloads the
old PSW, making it again the current PSW, so that
the interrupted program can continue.

There are six classes of interruption: external,
I/O, machine check, program, restart, and
supervisor call. Each class has a distinct pair of
old-PSW and new-PSW locations permanently
assigned in storage.

General Registers
Instructions may designate information in one or
more of 16 general registers. The general registers
may be used as base-address registers and index
registers in address arithmetic and as accumulators
in general arithmetic and logical operations. Each
register contains 32 bits. The general registers are
identified by the numbers 0-15 and are designated
by a four-bit R field in an instruction. Some
instructions provide for addressing multiple general
registers by having several R fields. For some
instructions, the use of a specific general register is
implied rather than explicitly designated by an R
field of the instruction.

For some operations, two adjacent general
registers are coupled, providing a 64-bit format. In
these operations, the program must designate an
even-numbered register, which contains the
leftmost (high-order) 32 bits. The next
higher-numbered register contains the rightmost
(low-order) 32 bits.

In addition to their use as accumulators in
general arithmetic and logical operations, 15 of the
16 general registers are also used as base-address
and index registers in address generation. In these
cases, the registers are designated by a four-bit B
field or X field in an instruction. A value of zero
in the B or X field specifies that no base or index is

to be applied, and, thus, general register 0 cannot
be designated as containing a base address or
index.

Floating-Point Registers
Four floating-point registers are available for
floating-point operations. They are identified by
the numbers 0, 2, 4, and 6. Each floating-point
register is 64 bits long and can contain either a
short (32-bit) or a long (64-bit) floating-point
operand. A short operand occupies the leftmost bit
positions of a floating-point register. The rightmost
portion of the register is ignored and remains
unchanged in arithmetic operations that call for
short operands. Two pairs of adjacent
floating-point registers can be used for extended
operands: registers 0 and 2, and registers 4 and 6.
Each of these pairs provides for a 128-bit format.

Control Registers
The CPU has provisions for 16 control registers,
each having 32 bit positions. The bit positions in
the registers are assigned to particular facilities in
the system, such as program-event recording, and
are used either to specify that an operation can
take place or to furnish special information
required by the facility.

The control registers are identified by the
numbers 0-15 and are designated by four-bit R
fields in the instructions LOAD CONTROL and
STORE CONTROL. Multiple control registers can
be addressed by these instructions.

Input and Output
Input/output (I/O) operations involve the transfer
of information between main storage and an I/O
device. I/O devices and their control units attach
to channels, which control this data transfer.

Channel Sets
The group of channels which connects to a
particular CPU is called a channel set. When
channel-set switching is installed in a
multiprocessing system, the program can control
which CPU is connected to a particular channel set.
A CPU can be connected to only one channel set
at a time, and a channel set can be connected to
only one CPU at a time.

Channels
A channel relieves the CPU of the burden of
communicating directly with I/O devices and
permits data processing to proceed concurrently
with I/O operations. A channel is connected with
main storage, with control units, and with a CPU.

Chapter 2. Organization 2-3

A channel may be an independent unit, complete
with the necessary logical and internal-storage
capabilities, or it may time-share CPU facilities and
be physically integrated with the CPU. In either
case, the functions performed by a channel are
identical. The maximum data-transfer rate may
differ, however, depending on the implementation.

There are three types of channels: byte­
multiplexer, block-multiplexer, and selector
channels.

Input/Output Devices and Control Units
Input/ output devices include such equipment as
card readers and punches, magnetic-tape units,
direct-access storage, displays, keyboards, printers,
teleprocessing devices, communications controllers,
and sensor-based equipment. Many I/O devices
function with an external medium, such as punched
cards or magnetic tape. Some I/O devices handle
only electrical signals, such as those found in

sensor-based networks. In either case, I/O-device
operation is regulated by a control unit. In all
cases, the control-unit function provides the logical
and buffering capabilities necessary to operate the
associated I/O device. From the programming
point of view, most control-unit functions merge
with I/O-device functions. The control-unit
function may be housed with the I/O device or in
the CPU, or a separate control unit may be used.

Operator Facilities
The operator facilities provide the functions
necessary for operator control of the machine.
Associated with the operator facilities may be an
operator-console device, which may also be used as
an I/O device for communicating with the program.

The main functions provided by the operator
facilities are system reset, clearing, initial program
loading, start, stop, alter, and display.

R Field Reg Number Control Registers

~- 32 Bits ---l
General Registers

f.-- 32 Bits -I
Floating-point Registers

1r-"o(------64 Bits ----~ .. ~I

0000 0

0001

0010 2

0011 3

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

Note: The braces indicate that the two registers may be coupled as a double-ragistar pair, designated by specifying the lower­
numbered register in the R field_ For example, the general-register pair 0 and 1 is designated in the R field by the number O.

General, Floating-Point, and Control Registers

2-4 System/370 Principles of Operation

Chapter 3. Storage

Contents

Storage Addressing 3-2

Information Formats 3-2

Integral Boundaries 3-2

Byte-Oriented-Operand Feature 3-3

Address Types 3-3

Storage Key 3-4

Protection 3-4

Key-Controlled Protection 3-4

Low-Address Protection 3-5

Reference Recording 3-5

Change Recording 3-6

Prefixing 3-6

Address Spaces 3-8

Dynamic Address Translation 3-8

Translation Control 3-9

PSW 3-9

Control Register 0 3-9

Control Register 1 3-10

This chapter discusses the representation of inform­
ation in storage, how information is addressed, ad­
dress transformations, and protection. The chapter
also contains a list of permanently assigned storage
locations.

The aspects of addressing which are covered
include describing the format of addresses, intro­
ducing the concept of address spaces, defining the
various types of addresses, and specifying the man­
ner in which one type of address is translated to
another type of address. Also presented are the
mechanisms for selectively protecting portions of
storage, the operation of change and reference re­
cording, and lists of storage locations having per­
manentlyassigned uses.

The term "main storage" (or "absolute storage")
is used to describe that storage which is addressable
by means of an absolute address. This distin­
guishes fast-access storage from auxiliary storage,
such as direct-access storage devices. Because most
references to main storage apply to virtual storage,
the abbreviated term "storage" is used in place of

Translation Tables 3-10

Segment-Table Entries 3-10

Page-Table Entries 3-11

Summary of Dynamic-Address-Translation

Formats 3-11

Translation Process 3-12

Inspection of Control Register 0 3-14

Segment-Table Lookup 3-14

Page-Table Lookup 3-14

Formation of the Real Address 3-14

Recognition of Exceptions During Translation 3-14

Translation-Lookaside Buffer 3-15

Use of the Translation-Lookaside Buffer 3-16

Modification of Translation Tables 3-17

Address Summary 3-20

Addresses Translated

Handling of Addresses

3-20

Assigned Storage Locations

3-20

3-22

Assigned Real-Storage Locations 3-22

Assigned Absolute Storage Locations 3-24

"virtual storage," and it is also used in place of
"absolute storage" when the meaning is clear.

Main storage provides the system with directly
addressable fast-access storage of data. Both data
and programs must be loaded into main storage
(from input devices) before they can be processed.

Main storage may consist of standalone units or
be integrated with a CPU. Additionally, main stor­
age may be composed of large-volume storage and
a faster access buffer storage, sometimes called a
cache. Each CPU may have an associated cache.
The effects, except on performance, of the physical
construction and the use of distinct storage media
are not observable by the program.

Fetching and storing of data by the CPU are not
affected by any concurrent I/O data transfer or by
concurrent reference to the same storage location
by another CPU. When concurrent requests to a
main-storage location occur, access normally is
granted in a sequence that assigns highest priority
to references by channels and that alternates priori­
ty between CPUs. If a reference changes the con-

Chapter 3. Storage 3-1

tents of the location, any subsequent storage fetch­
es obtain the new contents.

Main storage may be volatile or nonvolatile. If
it is volatile, the contents of main storage are not
preserved when power is turned off. If it is nonvo­
latile, turning power off and then back on does not
affect the contents of main storage, provided the
CPU is in the stopped state and no references are
made to main storage by channels when power is
turned off. In both types of main storage, the con­
tents of the keys in storage are not necessarily pre­
served when the power for main storage is turned
off.

Storage Addressing
Storage is viewed as a long horizontal string of bits.
For most operations, accesses to storage proceed in
a left-to-right sequence. The string of bits is subdi­
vided into units of eight bits. An eight-bit unit is
called a byte, which is the basic building block of
all information formats.

Each byte location in storage is identified by a
unique nonnegative integer, which is the address of
that byte location or, simply, the byte address. Ad­
jacent byte locations have consecutive addresses,
starting with 0 on the left and proceeding in a left­
to-right sequence. Addresses are 24-bit unsigned
binary integers, which provide 16,777,216 (224 or
16M) byte addresses.

The CPU performs address generation when it
forms an operand or instruction address, or when it
generates the address of a table entry from the
appropriate table origin and index. It also performs
address generation when it increments an address
to access successive bytes of a field. Similarly, the
channel generates an address when it increments an
address to fetch a channel-command word (CCW)
from a CCW list, to fetch an indirect-data-address
word (IDA W) from an IDA W list, or to transfer
data.

When, during address generation, an address is
obtained that exceeds 224 - 1, the carry out of the
high-order bit position of the address is ignored.
This handling of an address of excessive size is
called wraparound.

The effect of wraparound is to make the se­
quence of addresses appear circular; that is, address
o appears to follow the maximum byte address,
16,777,215. Address arithmetic and wraparound
occur before transformation, if any, of the address
by DAT or prefixing. In 16M-byte storage, in­
formation may be located partially in the last and
partially in the first locations of storage and is
processed without any special indication of crossing
the maximum-address boundary.

3-2 System/370 Principles of Operation

In/ormation Formats
Information is transmitted between storage and the
CPU or a channel one byte, or a group of bytes, at
a time. Unless otherwise specified, a group of
bytes in storage is addressed by the leftmost byte of
the group. The number of bytes in the group is
either implied or explicitly specified by the opera­
tion to be performed. When used in a CPU opera­
tion, a group of bytes is called a field.

Within each group of bytes, bits are numbered in
a left-to-right sequence. The leftmost bits are
sometimes referred to as the "high-order" bits and
the rightmost bits as the "low-order" bits. Bit
numbers are not storage addresses, however. Only
bytes can be addressed. To operate on individual
bits of a byte in storage, it is necessary to access
the entire byte.

The bits in a byte are numbered 0 through 7,
from left to right.

The bits in an address are numbered 8 through
31. Within any other fixed-length format of multi­
ple bytes, the bits making up the format are consec­
utively numbered starting from O.

For purposes of error detection, and in some
models for correction, one or more check bits may
be transmitted with each byte or with a group of
bytes. Such check bits are generated automatically
by the machine and cannot be directly controlled
by the program. References in this publication to
the length of data fields and registers exclude men­
tion of the associated check bits. All storage ca­
pacities are expressed in number of bytes.

When the length of an operand field is implied
by the operation code of an instruction, the field is
said to have a fixed length, which can be one, two,
four, or eight bytes.

When the length of an operand field is not im­
plied but is stated explicitly, the field is said to
have variable length. Variable-length operands can
vary in length by increments of one byte.

When information is placed in storage, the con­
tents of only those byte locations are replaced that
are included in the designated field, even though
the width of the physical path to storage may be
greater than the length of the field being stored.

Integral Boundaries
Certain units of information must be located in
storage on an integral boundary. A boundary is
called integral for a unit of information when its
storage address is a multiple of the length of the
unit in bytes. Special names are given to fields of
two, four, and eight bytes when they are located on
an integral boundary. A halfword is a group of two

consecutive bytes on a two-byte boundary and is
the basic building block of instructions. A word is
a group of four consecutive bytes on a four-byte
boundary. A doubleword is a group of eight con­
secutive bytes on an eight-byte boundary. (See the
figure "Integral Boundaries with Storage Address­
es. ")

When storage addresses designate halfwords,
words, and doublewords on integral boundaries, the
binary representation of the address contains one,
two, or three rightmost zero bits, respectively.

Instructions must appear on two-byte integral
boundaries, and channel-command words and the
storage operands of certain instructions must ap­
pear on other integral boundaries. The storage
operands of most instructions do not have
boundary-alignment requirements.

---" Storage Addresses

Bytes o 2345678

Half­
words

Words

o

o

Double- 0

2 4 6 8

4 8

8
words ~~_-L_~_L-~L-~_-L_~_L-

Integral Boundaries with Storage Addresses

Byte-Oriented-Operand Feature
The byte-oriented-operand feature is standard on
System/370. This feature permits storage operands
of most unprivileged instructions to appear on any
byte boundary.

The feature does not pertain to instruction ad­
dresses or to the operands for COMPARE AND
SWAP (CS) and COMPARE DOUBLE AND
SWAP (CDS). Instructions must appear on two­
byte integral boundaries. The low-order bit of a
branch address must be zero, and the instruction
EXECUTE must designate the target instruction at
an even byte address. COMPARE AND SWAP
must designate a four-byte integral boundary, and

COMPARE DOUBLE AND SWAP must designate
an eight-byte integral boundary.

Programming Note
For fixed-field-length operations with field lengths
that are a power of 2, significant performance deg­
radation is possible when storage operands are not
positioned at addresses that are integral multiples
of the operand length. To improve performance,
frequently used storage operands should be aligned
on integral boundaries.

Address Types
For purposes of addressing main storage, three
basic types of addresses are recognized: absolute,
real, and virtual. The addresses are distinguished
on the basis of the transformations that are applied
to the address during a storage access. In addition
to the three basic types, a fourth type-logical-is
defined, which is treated as either real or virtual,
depending on whether DAT is on or off.

An absolute address is the address assigned to a
main-storage location. An absolute address is used
for a storage access without any transformations
performed on it.

A real address identifies a location in real stor­
age. When a real address is used for an access to
main storage, it is converted, by means of prefixing,
to an absolute address.

A virtual address identifies a location in virtual
storage. When a virtual address is used for an ac­
cess to main storage, it is translated by means of
dynamic address translation to a real address,
which is then further converted to an absolute ad­
dress.

Some addresses which the program specifies are
real addresses, and some are virtual. However,
most addresses specified by the program are logical
addresses. Logical addresses are treated as real
addresses when DAT is off and as virtual addresses
when DA T is on.

All CPUs and channels refer to a shared main­
storage location by using the same absolute address.
Available main storage is usually assigned contigu­
ous absolute addresses starting at 0, and the ad­
dresses are always assigned in complete 2K-byte
blocks. An exception is recognized when an at­
tempt is made to use an absolute address in a 2K­
byte block which has not been assigned to physical
locations. On some models, storage-configuration
controls may be provided which permit the operator
to change the correspondence between absolute
addresses and physical locations. However, at any
one time, a physical location is not associated with
more than one absolute address.

Chapter 3. Storage 3-3

Main storage consisting of byte locations se­
quenced according to their absolute addresses is
sometimes referred to as absolute storage.

At any instant there is one real-address to
absolute-address mapping for each CPU in the sys­
tem. When a real address is used by a CPU to
access main storage, it is converted to an absolute
address by prefixing. The particular transformation
is defined by the value in the prefix register for the
CPU.

Main storage consisting of byte locations se­
quenced according to their real addresses is refer­
red to as real storage.

Storage Key
A storage key is associated with each 2,048-byte
block of storage that is provided.

o 4 6

The bit positions in the storage key are allocated
as follows:

Access-Control Bits (ACC): The four access­
control bits, bits 0-3, are matched with the four-bit
access key whenever information is stored, or
whenever information is fetched from a location
that is protected against fetching.

Fetch-Protection Bit (F): The fetch-protection
bit, bit 4, controls whether key-controlled protec­
tion applies to fetch-type references: a zero indi­
cates that only store-type references are monitored
and that fetching with any access key is permitted;
a one indicates that protection applies both to
fetching and storing. No distinction is made be­
tween the fetching of instructions and of operands.

Reference Bit (R): The reference bit, bit 5, nor­
mally is set to one each time a location in the cor­
responding storage block is referred to either for
storing or for fetching of information.

Change Bit (C): The change bit, bit 6, is set to
one each time information is stored at a location in
the corresponding storage block.

Storage keys are not part of addressable storage.
The entire storage key is set by SET STORAGE
KEY and inspected by INSERT STORAGE KEY.
Additionally, the instruction RESET REFERENCE
BIT provides a means of inspecting the reference

3-4 System/370 Principles of Operation

and change bits and of setting the reference bit to
zero.

Protection
Two protection facilities are provided to protect the
contents of main storage from destruction or misuse
by erroneous or unauthorized programs: key­
controlled protection and low-address protection.
The protection facilities are applied independently;
access to main storage is only permitted when none
of the facilities prohibit the access.

Key-controlled protection affords protection
against improper storing or against both improper
storing and fetching, but not against improper
fetching alone.

Key-Controlled Protection
When key-controlled protection applies to a storage
access, a store is permitted only when the storage
key matches the access key associated with the
request for storage access; a fetch is permitted
when the keys match or when the fetch-protection
bit of the storage key is zero.

The keys are said to match when the four
access-control bits of the storage key are equal to
the access key, or when the access key is zero.

The protection action is summarized in the figure
"Summary of Protection Action."

Conditions Is Access to
Storage Permitted?

Fetch-Protection
Bit of

Storage Key Key Relation Fetch Store

0 Match Yes Yes
0 Mismatch Yes No
I Match Yes Yes
I Misrnatch No No

EX[2lanation:

Match The four access-control bits of the storage
key are equal to the access key, or the access
key is zero.

Yes Access is perrn i tted.

No Access is not perm i tted. On fetching, the
information is not made available to the
program; on storing, the contents of the
storage location are not changed.

Summary of Protection Action

When the access to storage is initiated by the
CPU, and key-controlled protection applies, the
PSW key is the access key which is used as the
compare value. The PSW key occupies bit positions
8-11 of the current PSW.

When the reference is made by a channel, and
key-controlled protection applies, the subchannel

key associated with the I/O operation is the access
key which is used as the compare value. The sub­
channel key is specified for an I/O operation in bit
positions 0-3 of the channel-address word (CAW);
the subchannel key is later placed in bit positions
0-3 of the channel-status word (CSW) that is
stored as a result of the I/ 0 operation.

When a CPU access is prohibited because of
protection, the operation is suppressed or terminat­
ed, and a program interruption for a protection
exception takes place. When a channel access is
prohibited, protection check is indicated in the
CSW stored as a result of the operation.

When a store access is prohibited because of
key-controlled protection, the contents of the pro­
tected location remain unchanged. When a fetch
access is prohibited, the protected information is
not loaded into a register, moved to another storage
location, or provided to an I/O device. For a pro­
hibited instruction fetch, the instruction is sup­
pressed and an arbitrary instruction-length code is
indicated.

Key-controlled protection is always active, re­
gardless of whether the CPU is in the problem or
supervisor state, and regardless of the type of CPU
instruction or channel-command word being execu­
ted.

All accesses to storage locations that are explicit­
ly designated by the program and that are used by
the CPU to store or fetch information are subject
to key-controlled protection.

All storage accesses by a channel to fetch a
CCW or to access a data area designated during
the execution of a CCW are subject to key­
controlled protection. However, if a CCW or out­
put data is prefetched, a protection check is not
indicated until the CCW is due to be executed or
the data is due to be written.

Key-controlled protection is not applied to ac­
cesses that are implicitly made by the CPU or
channel for such sequences as:
• Interruptions,
• Updating the interval timer,
• Logout,
• Dynamic-address translation,
• Store-status functions,
• Fetching the CAW during the execution of an

I/O instruction,
• Storing the CSW by an I/O instruction or inter­

ruption,
• Storing channel identification during the execu­

tion of STORE CHANNEL ID,
• Limited channel logout, or
• Initial program loading.

Similarly, protection does not apply to accesses
initiated via the operator facilities for altering or
displaying information. However, when the pro­
gram explicitly designates these locations, they are
subject to protection.

Low-Address Protection
The low-address-protection facility provides protec­
tion against the destruction of main-storage inform­
ation used by the CPU during interruption process­
ing, by prohibiting instructions from storing using
addresses in the range 0 through 511. The range
criterion is applied before dynamic translation, if
any, and before prefixing.

Low-address protection is under control of bit 3
of control register 0, the low-address-protection­
control bit. When the bit is zero, low-address pro­
tection is off; when the bit is one, low-address pro­
tection is on.

If an access is prohibited because of low-address
protection, the contents of the protected location
remain unchanged, a program interruption for a
protection exception takes place, and the operation
is suppressed or terminated.

Any attempt by the program to store using effec­
tive addresses in the range 0 through 511 are sub­
ject to low-address protection. Low-address pro­
tection is applied to the store accesses of instruc­
tions whose operand addresses are logical or real.
Thus it applies to the operands of IPTE and READ
DIRECT, and to the store-type operands of in­
structions with logical addresses.

Low-address protection is not applied to accesses
made by the CPU or channel for such sequences as
interruptions, logout, and the initial-program­
loading and store-status functions, nor is it applied
to data stores during I/O data transfer. However,
explicit stores by a program at any of these loca­
tions are subject to protection.

Programming Note
Low-address protection and key-controlled protec­
tion apply to the same store accesses, except that
low-address protection does not apply to storing
performed by a channel, whereas key-controlled
protection does.

Reference Recording
Reference recording provides information for use in
selecting pages for replacement. Reference record­
ing uses the reference bit, bit 5 of the storage key.
A reference bit is provided in each storage key
when dynamic address translation is installed. The
reference bit is set to one each time a location in
the corresponding storage block is referred to either

Chapter 3. Storage 3-5

for fetching or storing information, regardless of
whether the CPU is in the EC mode or BC mode or
whether DAT is on or off.

Reference recording is always active and takes
place for all storage accesses, including those made
by any CPU, I/O, or operator facility. It takes
place for implicit accesses made by the machine,
such as those which are part of interruptions and
I/ O-instruction execution.

Reference recording does not occur for operand
accesses of the following instructions since they
directly refer to a storage key without accessing a
storage location:

INSERT STORAGE KEY
RESET REFERENCE BIT (reference bit is set to

zero)
SET STORAGE KEY (reference bit is set to a

specified value)

The record provided by the reference bit is sub­
stantially accurate. The reference bit may be set to
one by fetching data or instructions that are neither
designated nor used by the program, and, under
certain conditions, a reference may be made with­
out the reference bit being set to one. Under cer­
tain unusual circumstances, a reference bit may be
set to zero by other than explicit program action.

Change Recording
Change recording provides information as to which
pages have to be saved in auxiliary storage when
they are replaced in main storage. Change record­
ing uses the change bit, bit 6 of the storage key. A
change bit is provided in each storage key when
dynamic address translation is installed.

The change bit is set to one each time a store
access causes the contents in the corresponding
storage block to be changed. A store access that
does not change the contents of storage mayor
may not set the change bit to one.

The change bit is not set to one for an attempt
to store if the access is prohibited. In particular:
1. For the CPU, a store access is prohibited when­

ever an access exception exists for that access,
or whenever an exception exists which is of
higher priority than the priority of an access
exception for that access.

2. For I/O, a store access is prohibited whenever
a key-controlled-protection condition exists for
that access.

Change recording is always active and takes
place for all store accesses to storage, including
those made by any CPU, I/O, or operator facility.
It takes place for implicit references made by the

3-6 System/370 Principles of Operation

machine, such as those which are part of interrup­
tions.

Change recording does not take place for the
operands of the following instructions since they
directly modify a storage key without modifying a
storage location:

RESET REFERENCE BIT
SET STORAGE KEY (change bit is set to a speci­

fied value)

Change bits are not necessarily restored on CPU
retry (see the section "CPU Retry" in Chapter 11,
"Machine-Check Handling"). See the section
"Exceptions to Nullification and Suppression" in
Chapter 5, "Program Execution," for a description
of the handling of the change bit in certain unusual
situations.

Prefixing
Prefixing provides the ability to assign the range of
real addresses 0-4095 (the prefix area) to a differ­
ent block in absolute main storage for each CPU,
thus permitting more than one CPU sharing main
storage to operate concurrently with a minimum of
interference, especially in the processing of inter­
ruptions.

Prefixing causes real addresses in the range 0-
4095 to correspond to the block of 4K absolute
addresses identified by the prefix register for the
CPU, and the block of real addresses starting with
the prefix value to correspond to absolute addresses
0-4095. The remaining real addresses are the same
as the corresponding absolute addresses. This
transformation allows each CPU to access all of
absolute main storage, including the first 4K bytes
and the locations designated by the prefix registers
of the other CPUs.

The relationship between real and absolute ad­
dresses is graphically depicted in the figure
"Relationship between Real and Absolute Address-

" es.
The prefix is a 12-bit quantity located in the

prefix register. The register has the following for­
mat:

Prefix 11/11111111111

o 8 20 31

The contents of the register can be set and in­
spected by the privileged instructions SET PREFIX
and STORE PREFIX, respectively. On setting, bits
corresponding to bit positions 0-7 and 20-31 of the
prefix register are ignored. On storing, zeros are

provided for these bit positions. When the contents
of the prefix register are changed, the change is
effective for the next sequential instruction.

When prefixing is applied, the real address is
transformed into an absolute address using one of
the following rules:
1. Bits 8-19 of the real address, if all zeros, are

replaced with bits 8-19 of the prefix.
2. Bits 8-19 of the real address, if equal to bits

8-19 of the prefix, are replaced with zeros.
3. Bits 8-19 of the real address, if not all zeros

and not equal to bits 8-19 of the prefix, remain
unchanged.

Prefixing

1----,-:------,~ :'-,: ---; ~ 1
I)@ I /~I~

In all cases, bits 20-31 of the address remain
unchanged.

Only the address presented to storage is translat­
ed by prefixing. The contents of the source of the
address remain unchanged.

The distinction between real and absolute ad­
dresses is made even when the prefix register con­
tains all zeros, in which case a real address and its
corresponding absolute address are identical.

Prefixing

I I
,-- -- - - ----I 1
1 I

No change------'-!--I
I

f I ~~~~B __ ~~
.: I)' \
f?:
" I

I @{

Real Addresses

for CPU A

1

I
-'-I---1[)-

1 K1----!-No Change-)(-----+----

I 1

I I
1 cr

~ I ~ I ~ I ~'"

I \ i "'"" : /
I ~{ ~~40-96-~I~.
L __________ 1 _Add~ess L ________ --l

Absolute
Addresses

CD Real addresses in which the high-order 12 bits are equal to the prefix for this CPU (A or B).

(3) Absolute addresses of the block that contains, for this CPU (A or B), the assigned locations
in real storage.

Relationship between Real and Absolute Addresses

...-Address
4096

_Address
o

Real Addresses
for CPU B

Chapter 3. Storage 3-7

Address Spaces
An address space is a consecutive sequence of in­
teger numbers (or virtual addresses), together with
the specific transformation parameters which allow
each number to be associated with a byte location
in storage. The sequence starts at zero and pro­
ceeds left to right.

When a virtual address is used by a CPU to ac­
cess main storage, it is first converted, by means of
the dynamic address translation (DAT), into a real
address, and then into an absolute address. DA T
uses two levels of tables (a segment table and page
tables) as transformation parameters. The address
of the segment table is found in a control register.

Virtual storage comprising byte locations ordered
according to their virtual addresses in an address
space is usually referred to as storage.

Dynamic Address Translation
Dynamic address translation (DA T) provides the
ability to interrupt the execution of a program at an
arbitrary moment, record it and its data in auxiliary
storage, such as a direct-access storage device, and
at a later time return the program and the data to
different main-storage locations for resumption of
execution. The transfer of the program and its
data between main and auxiliary storage may be
performed piecemeal, and the return of the inform­
ation to main storage may take place in response to
an attempt by the CPU to access it at the time it is
needed for execution. These functions may be
performed without change or inspection of the pro­
gram and its data, do not require any explicit pro­
gramming convention for the relocated program,
and do not disturb the execution of the program
except for the time delay involved.

With appropriate support by an operating system,
the dynamic-address-translation facility may be
used to provide to a user a system wherein main
storage appears to be larger than the installed main
storage. This apparent main storage is referred to
as virtual storage, and the addresses used to desig­
nate locations in the virtual storage are referred to
as virtual addresses. The virtual storage of a user
may far exceed the size of the physical main stor­
age of the installation and normally is maintained
in auxiliary storage. The translation occurs in
blocks of addresses, called pages. Only the most
recently referred-to pages of the virtual storage are
assigned to occupy blocks of physical main storage.
As the user refers to pages of virtual storage that
do not appear in main storage, they are brought in
to replace pages in main storage that are less likely
to be needed. The swapping of pages of storage

3-8 System/370 Principles of Operation

may be performed by the operating system without
the user's knowledge.

In the process of replacing blocks of main stor­
age by new information from an external medium
it must be determined which block to replace and'
whether the block being replaced should be record­
ed and preserved in auxiliary storage. To aid in
this decision process, a reference bit and a change
bit are associated with the storage key.

Dynamic address translation may be specified for
instruction and data addresses generated by the
CPU but is not available for the addressing of data
and of control words in I/O operations. The
channel-indirect-data-addressing feature is provid­
ed to aid I/O operations in a virtual-storage envi­
ronment.

The dynamic-address-translation facility includes
the instructions LOAD REAL ADDRESS, RESET
REFERENCE BIT, and PURGE TLB. It makes
use of control register 1 and bits 8-12 in control
register o.

Dynamic address translation is enhanced by that
part of the extended facility that includes the in­
struction INVALIDATE PAGE TABLE ENTRY
and the common-segment facility. On some mod­
els, the common-segment facility permits improve­
ment of TLB utilization by means of a common­
segment bit in the segment-table entry. On other
models, this bit is ignored, with no performance
improvement.

Address translation is achieved by treating the
addresses supplied by the program as virtual ad­
dresses. When DA T is on, a logical address is
treated as a virtual address and is translated during
a storage reference into the corresponding real ad­
dress. When DAT is off, the logical address is
treated as a real address.

In the process of translation, two types of units
of information are recognized-segments and pages.
A segment is a block of sequential addresses span­
ning 65,536 (64K) or 1,048,576 (lM) bytes and
beginning at an address that is a multiple of its
size. A page is a block of sequential addresses
spanning 2,048 (2K) or 4,096 (4K) bytes and be­
ginning at an address that is a multiple of its size.
The size of the segment and page is controlled by
bits 8-12 in control register o.

The virtual address, accordingly, is divided into a
segment-index (SX) field, a page-index (PX) field,
and a byte-index field. The size of these fields
depends on the segment and page size.

The segment index starts with bit 8 of the virtual
address and extends through bit 15 for a 64K-byte
segment size and through bit 11 for a 1M-byte
segment size. The page index starts with the bit

following the segment index and extends through
bit 19 for a 4K-byte page size and through bit 20
for a 2K-byte page size. The byte index comprises
the remaining 11 or 12 low-order bits of the virtual
address. The formats of the virtual address are as
follows:

For 64K-byte segments and 4K-byte pages:

I PX I Byte Index I
o 8 16 20 31

For 64K-byte segments and 2K-byte pages:

SX I PX Byte Indexl

o 8 16 21 31

For 1M-byte segments and 4K-byte pages:

11/1111111 SX I PX Byte Index I
o 8 12 20 31

For 1M-byte segments and 2K-byte pages:

PX I Byte Indexl

o 8 12 21 31

Virtual addresses are translated into real ad­
dresses by means of two translation tables, a seg­
ment table and a page table, which reflect the cur­
rent assignment of real storage. The assignment of
real storage occurs in units of pages, the realloca­
tions being assigned contiguously within a page.
The pages need not be adjacent in real storage
even though assigned to a set of sequential virtual
addresses.

Translation Control
Address translation is controlled by the DAT -mode
bit in the PSW and by a set of bits, referred to as
the translation parameters, in control registers 0
and 1. Additional controls are located in the trans­
lation tables.

PSW
When the dynamic-address-translation facility is
installed, the CPU can operate with DA T either on
or off. The mode of operation is controlled by bit
5 of the EC-mode PSW, the DAT-mode bit. When
this bit is one, DAT is on, and logical addresses are
treated as virtual addresses; when this bit is zero or
the BC mode is specified, DAT is off, and logical
addresses are used as real addresses.

Control Register 0
Bits 8-12 of control register 0 are called the trans­
lation format, which controls the page size and
segment size. Only four combinations of the five
control bits are valid; all other combinations are
invalid. The encoding of the control bits is defined
in the following table:

Bits of
Control

Register 0 Page Segment

8J 9110111112
Size Size

(Bytes) (Bytes)

0 1 0 0 0 2,048 (2K) 65,536 (64K)
0 1 0 1 0 2,048 (2K) 1,048,576 (1 M)
1 0 0 0 0 4,096 (4K) 65,536 (64K)
1 0 0 1 0 4,096 (4K) 1,048,576 (1 M)
A II others I nval i d I nval id

When an invalid bit combination is detected in
bit positions 8-12, a translation-specification excep­
tion is recognized as part of the execution of an
instruction using address translation, and the opera­
tion is suppressed.

Chapter 3. Storage 3-9

Control Register 1
Bits 0-25 of control register 1 designate the origin
and length of the segment table:

STL Seg-Table Origin

o 8 26 31

The fields in the register are allocated as follows:

Segment-Table Length (STL): Bits 0-7 of control
register 1 designate the length of the segment table
in units of 64 bytes, thus making the length of the
segment table variable in multiples of 16 entries.
The length of the segment table, in units of 64
bytes, is equal to one more than the value in bit
positions 0-7. The contents of the length field are
used to establish whether the entry designated by
the segment-index portion of the virtual address
falls within the segment table.

Segment-Table Origin: Bits 8-25 of control regis­
ter 1, with six zeros appended on the right, form a
24-bit real address that designates the beginning of
the segment table.

Programming Notes
1. The validity of the information loaded into a

control register, including that pertaining to
dynamic address translation, is not checked at
the time the register is loaded. This informa­
tion is checked and the program exception, if
any, is indicated at the time the information is
used.

2. The information pertaining to dynamic address
translation is considered to be used when an
instruction is executed with DAT on or when
LOAD REAL ADDRESS is executed. The
information is not considered to be used when
the PSW specifies translation, but an I/O, ex­
ternal, restart, or machine-check interruption
occurs before an instruction is executed, includ­
ing the case when the PSW specifies the wait
state.

Translation Tables
The translation process consists in a two-level
lookup using two tables: a segment table and a
page table. These tables reside in main storage.

Segment-Table Entries
The entry fetched from the segment table desig­
nates the length, availability, and origin of the cor­
responding page table.

3-10 System/370 Principles of Operation

An entry in the segment table has the following
format:

IpTL 1 0000 1 Page-Table Origin lolclll
o 4 8 29 31

The fields in the segment-table entry are allocat­
ed as follows:

Page-Table Length (PTL): Bits 0-3 designate the
length of the page table in increments that are
equal to 1/16 of the maximum size of the table,
the maximum size depending on the size of seg­
ments and pages. The length of the page table, in
units 1/16 of the maximum size, is equal to one
more than the value in bit positions 0-3. The
length field is compared against the high-order four
bits of the page-index portion of the logical address
to determine whether the page index designates an
entry within the page table.

Page-Table Origin: Bits 8-28, with three low­
order zeros appended, form a 24-bit real address
that designates the beginning of the page table.

Common-Segment Bit (C): Bit 30, with the
common-segment facility installed, controls the use
of translation-Iookaside-buffer copies of the
segment-table entry and of the page table which it
designates. A zero identifies a private segment; in
this case, the segment-table entry and the page
table that the entry designates may be used only in
association with the segment-table origin which
designates the segment table in which the segment­
table entry resides. A one identifies a common
segment; in this case, the segment-table entry and
the page table that the entry designates may con­
tinue to be used for translating addresses corre­
sponding to the segment index, even though a dif­
ferent segment table is selected by changing the
segment-table origin in control register 1. In some
models, bit 30 in the segment-table entry is ig­
nored, and all segments are treated as private.

The common-segment bit is used only for con­
trolling the loading and use of translation­
lookaside-buffer copies. When the common­
segment facility is installed, the common-segment
bit is ignored for explicit translation and for implic­
it translation not using the translation look aside
buffer.

Segment-Invalid Bit (I): Bit 31 controls whether
the segment associated with the segment-table en­
try is available. When bit position 31 contains a
zero, address translation proceeds using the desig­
nated page table. When the bit is a one, a
segment-translation exception is recognized, and
the unit of operation is nullified.

The handling of bit positions 4-7 and 29-30 of
the segment-table entry depends on the model.
Normally a translation-specification exception is
recognized and the unit of operation is suppressed
when these bits are not zeros; however, on some
models the contents of these bit positions may be
ignored. On machines with the common-segment
facility installed, bit 30 is interpreted as defined or
ignored.

Page-Table Entries
The entry fetched from the page table indicates the
availability of the page and contains the high-order
bits of the real address. The format of the page­
table entry depends on page size, as follows:

Page-table entry with 4K-byte pages:

PFRA I I 10 10 1/ 1

o 12 15

Page-table entry with 2K-byte pages:

o 13 15

The fields in the page-table entry are allocated
as follows:

Page-Frame Real Address (PFRA): Bits 0-11 or
bits 0-12, depending on the page size, provide the
leftmost 12 or 13 bits of a 24-bit real storage ad­
dress. When these bits are concatenated with the
contents of the byte-index field of the virtual ad­
dress on the right, the real storage address is ob­
tained.

Page-Invalid Bit (I): Bit 12 or 13, depending on
the page size, controls whether the page associated
with the page-table entry is available. When the
bit is zero, address translation proceeds using the
table entry. When the bit is one, a page-translation
exception is recognized, and the unit of operation is
nullified.

Except for the rightmost bit position of the en­
try, the bit positions to the right of the page-invalid

bit must contain zeros; otherwise, a translation­
specification exception is recognized as part of the
execution of an instruction using that entry for
address translation, and the unit of operation is
suppressed.

Summary 0/ Dynamic-Address-Translation
Formats
The first table summarizes the possible combina­
tions of the page-address and byte-index fields in
the formation of a real storage address.

The eight-bit length field in control register 1
provides for a maximum length code of 255 and
permits designating a segment table of 16,384
bytes, or 4,096 entries, which is more than can be
referred to for translation purposes by the virtual
address. With 1M-byte segments, only 16 segments
can be addressed, requiring a segment table of 64
bytes. A table of 64 bytes is specified by a length
code of 0 and is the smallest table that can be spec­
ified. With 64K-byte segments, up to 256 seg­
ments can be addressed, requiring at the most a
segment table of 1,024 bytes and a length code of
15. These relations are summarized in the second
table.

The third table lists the maximum sizes of the
page table and the increments in which the size of
the page table can be controlled.

Real Storage Address

Page Address Byte Index

Size Bit Bit
of Positions No. Positions No.

Page in Page- of in Virtual of
(Bytes) Table Entry Bits Address Bits

2K 0-12 13 21-31 11
4K 0-11 12 20-31 12

Segment Number Max Seg Tbl
Size Index of Segment-
of Field Address- Usable Table

Segment Size able Size Length Increment
(Bytes) (Bits) Segments (Bytes) Code (Bytes)

64K 8 256 1,024 15 64
1M 4 16 64 0 64

Chapter 3. Storage 3-11

Page Max Page Tbl
Size of Index Number Page-

Field of Pages Usable Table
Segment Page Size in Size Length Increment
(Bytes) (Bytes) (Bits) Segment (Bytes) Code (Bytes)

64K 2K 5 32 64 15 4
64K 4K 4 16 32 15 2

1M 2K 9 512 1,024 15 64
1M 4K 8 256 512 15 32

Programming Note
The low-order bit position of a page-table entry is
unassigned and is not checked for zero; thus, it is
available for programming use.

Translation Process
This section describes the translation process as it is
performed implicitly before a virtual address is used
to access main storage. The process of translating
the operand address of LOAD REAL ADDRESS
and TEST PROTECTION is the same, except that
segment-translation and page-translation exceptions
do not cause a program interruption but instead are
indicated in the condition code. Translation of the
operand address of LOAD REAL ADDRESS also
differs in that the translation-Iookaside buffer is
not used.

Translation of an address is performed by means
of a segment table and a page table, both of which
reside in main storage. It is controlled by the
DAT -mode bit in the PSW and by the translation
parameters in control registers 0 and 1.

The segment-index portion of the virtual address
is used to select an entry from the segment table,

3-12 System/370 Principles of Operation

the starting address and length of which are speci­
fied by the contents of control register 1. This
entry designates the page table to be used.

The page-index portion of the virtual address is
used to select an entry from the page table. This
entry contains the high-order bits of the real ad­
dress that represents the translation of the virtual
address.

The byte-index field of the virtual address is
used unchanged for the rightmost bit positions of
the real address.

If the I bit is one in either the segment-table
entry or the page-table entry, the entry is invalid,
and the translation process cannot be completed for
this virtual address. A segment-translation or a
page-translation exception is recognized, and the
unit of operation is nullified.

In order to avoid the delay associated with refer­
ences to translation tables in main storage, the in­
formation fetched from the tables normally is
placed also in a special buffer, the translation­
lookaside buffer (TLB), and subsequent transla­
tions involving the same table entries may be per­
formed using the information recorded in the TLB.
The operation of the TLB is described in the sec­
tion "Translation-Lookaside Buffer" in this chap­
ter.

Whenever access to main storage is made during
the address-translation process for the purpose of
fetching an entry from a segment table or page
table, key-controlled protection does not apply.

The translation process, including the effect of
the TLB, is shown graphically in the figure
"Translation Process."

Control Register 1 Virtual Address

I I

(

•

[i]

+

t 0
• I

I

Segment Table
(in main storage)

)

0
~! ~-

I •

Translation-Lookaside
Buffer (TLB)

~

Segment Page Byte Index
Index • Index • •

I

0
• J

I

Page Table
(in main storage)

0

0
I

li 0 IL-·-I
Real Address

Information, which may include portions of the virtual address and the segment-table
origin, is used to search the TLB.

If match exists, address from TLB is used in forming the real address.

If no match exists, table entries in main storage are fetched to translate the address.
Resulting value, in conjunction with search information, is used to form an
entry in the TLB.

Translation Process

Chapter 3. Storage 3-13

Inspection of Control Register 0
The interpretation of the virtual address for trans­
lation purposes is controlled by the translation for­
mat, bits 8-12 of control register O. If bits 8-12
contain an invalid code, a translation-specification
exception is recognized, and the operation is sup­
pressed.

Segment-Table Lookup
The segment-index portion of the virtual address is
used to select a segment-table entry that designates
the page table to be used in arriving at the real
address. The address of the segment-table entry is
obtained by appending six zeros to the right of bits
8-25 of control register 1 and adding the segment
index to this value, with the rightmost bit position
of the segment index aligned with bit position 29 of
the address.

As part of the segment-table-lookup process, the
segment index is compared against the segment­
table length, bits 0-7 of control register 1, to estab­
lish whether the addressed entry is within the table.
With 1M-byte segments, entries for all addressable
segments are contained in a table of minimum
length (length code of 0). With 64K-byte seg­
ments, four zeros are appended to the left of bits
8-11 of the virtual address, and this extended value
is compared against the eight-bit segment-table
length. If the value in the segment-table-length
field is less than the value in the corresponding bit
positions of the virtual address, a segment­
translation exception is recognized, and the unit of
operation is nullified.

All four bytes of the segment-table entry are
fetched concurrently. The fetch access is not sub­
ject to protection. When the storage address gen­
erated for fetching the segment-table entry refers
to a location which is not provided, an addressing
exception is recognized, and the unit of operation is
suppressed.

Bit 31 of the entry fetched from the segment
table specifies whether the corresponding segment
is available. This bit is inspected, and, if it is one,
a segment-translation exception is recognized, with
the unit of operation nullified. Handling of bit
positions 4-7 and 29-30 of the segment-table entry
depends on the model: normally a translation­
specification exception is indicated and the unit of
operation suppressed when they do not contain
zeros; however, on some models they may be ig­
nored.

On machines with the common-segment facility,
a one in bit position 30 does not cause an excep­
tion. Bit 30 may be retained with the entry in the
TLB, or it may be ignored.

3-14 System/370 Principles of Operation

When no exceptions are recognized in the
process of segment-table lookup, the entry fetched
from the segment table designates the length and
beginning of the corresponding page table.

Page-Table Lookup
The page-index portion of the virtual address, in
conjunction with the page-table address derived
from the segment-table entry, is used to select an
entry from the page table. The address of the
page-table entry is obtained by appending three
zeros to the right of bits 8-28 of the segment-table
entry and adding the page index to this value. The
addition is performed with the rightmost bit of the
page index aligned with bit 30 of the address.

As part of the page-table-lookup process, the
four leftmost bits of the page index are compared
against the page-table length, bits 0-3 of the
segment-table entry, to establish whether the ad­
dressed entry is within the table. If the value in
the page-table-length field is less than the value in
the four leftmost bit positions of the page-index
field, a page-translation exception is recognized,
and the unit of operation is nullified.

The two bytes of the page-table entry are
fetched concurrently. The fetch access is not sub­
ject to protection. When the storage address gen­
erated for fetching the page-table entry refers to a
location which is not provided, an addressing ex­
ception is recognized, and the unit of operation is
suppressed.

The entry fetched from the page table indicates
the availability of the page and contains the left­
most bits of the page-frame real address. The
page-invalid bit is inspected to establish whether
the corresponding page is available. If this bit is
one, a page-translation exception is recognized, and
the unit of operation is nullified. If bit positions
13-14 for 4K-byte pages or bit position 14 for 2K­
byte pages contains a one, a translation­
specification exception is recognized, and the unit
of operation is suppressed.

Formation of the Real Address
When no exceptions in the translation process are
encountered, the page-frame real address obtained
from the page-table entry and the byte-index por­
tion of the virtual address are concatenated, with
the page-frame real address forming the leftmost
part. The result is the real storage address.

Recognition of Exceptions During Translation
Invalid addresses and invalid formats can cause
exceptions to be recognized during the translation
process. Exceptions are recognized when informa-

tion contained in control registers or table entries is
used for translation and is found to be incorrect.

The information pertaining to DAT is considered
to be used when an instruction is executed with
DAT on or when LOAD REAL ADDRESS is exec­
uted. The information is not considered to be used
when the PSW specifies DAT on but an I/O, exter­
nal, restart, or machine-check interruption occurs
before an instruction is executed, including the case
when the PSW specifies the wait state. Only that
information required to translate a virtual address
is considered to be in use during the translation of
that address.

A list of translation exceptions, with the action
taken for each exception and the priority in which
the exceptions are recognized when more than one
is applicable, is provided in the section
"Recognition of Access Exceptions" in Chapter 6,
"Interruptions. "

Translation-Lookaside Buffer
To enhance performance, the dynamic-address­
translation mechanism normally is implemented
such that some of the information specified in the
segment and page tables is maintained in a special
buffer, referred to as the translation-Iookaside
buffer (TLB). The CPU necessarily refers to a
DAT -table entry in main storage only for the initial
access to that entry. This information subsequently
may be maintained in the TLB, and subsequent
translations may be performed using the informa­
tion recorded in the TLB. The presence of the
TLB affects the translation process to the extent
that a modification of the contents of a table entry
in main storage does not necessarily have an imme­
diate, if any, effect on the translation.

The size and the structure of the TLB depend on
the model. For instance, the TLB may be imple­
mented such as to contain only a few entries per­
taining to the currently designated segment table,
each entry consisting of the high-order portions of
a virtual address and its corresponding real address;
or it may contain arrays of values where the real
page address is selected on the basis of the current
segment-table origin, the translation format, and
the high-order bits of the virtual address. Entries
within the TLB are not explicitly addressable by
the program.

The description of the logical structure of the
TLB covers all implementations by System/370
models. The TLB entries are considered as being
of two types: TLB segment-table entries and TLB
page-table entries. A TLB entry is considered as
containing within it both the information obtained
from the table entry in storage and the attributes

used to fetch the entry from storage. Thus, a TLB
segment-table entry would contain the following
fields:

I TF ISTO I SX IPTO IPTL I C

TF The translation format in effect when the
entry was formed

STO The segment-table origin in effect when
the entry was formed

SX The segment index used to select the entry
PTO The page-table origin fetched from the

segment-table entry in storage
PTL The page-table length fetched from the

segment-table entry in storage
C The common bit fetched from the

segment-table entry in storage; when the
common-segment facility is not installed,
this field is not included in the TLB

A TLB page-table entry would contain the fol­
lowing fields:

TF

PTO

PX
PFRA

The translation format in effect when the
entry was formed
The page-table origin in effect when the
entry was formed
The page index used to select the entry
The page-frame real address fetched from
the entry in storage

Depending on the implementation, not all of the
above items are required in the TLB. For example,
if the implementation combines into a single TLB
entry (1) the information obtained from a page­
table entry and (2) the attributes of both the page­
table entry and the segment-table entry, then the
page-table-origin and page-table-length fields are
not required. If the implementation purges the
TLB when the translation parameters are changed,
then the segment-table origin and translation for­
mat are not required.

Note: The following sections describe the conditions
under which information may be placed in the
TLB and information from the TLB may be used
for address translation, and they describe how
changes to the translation tables affect the transla­
tion process. Information is not necessarily re­
tained in the TLB under all conditions for which
such retention is permissible. Furthermore, inform-

Chapter 3. Storage 3-15

ation in the TLB may be purged under conditions
additional to those for which purging is mandatory.

Use of the Translation-Lookaside Buffer
The formation of TLB entries and the effect of any
manipulation of the contents of a table entry by the
program depend on whether the entry is valid, on
whether the entry is attached, on whether a copy of
the entry can be placed in the TLB, and on wheth­
er a copy in the TLB of the entry is usable.

The valid state of a table entry denotes that the
segment or page associated with the table entry is
available. An entry is valid when the segment­
invalid bit or page-invalid bit in the entry is zero.
The attached state of a table entry denotes that the
CPU can attempt to use the table entry for implicit
address translation. The usable state of a TLB
entry denotes that the CPU can attempt to use the
TLB entry for implicit address translation.

A segment-table entry or a page-table entry may
be placed in the TLB only when the entry is atta­
cheu and valid and would not cause a translation­
specification exception if used for translation. Ex­
cept for these restrictions, the entry may be placed
in the TLB at any time.

A segment-table entry is attached to a CPU
when all of the following conditions are met:
1. The current PSW specifies DAT on.
2. The entry is within the segment table designat­

ed by the translation parameters currently spec­
ified in control registers 0 and 1.

3. The entry can be selected by the segment-index
portion of a virtual address.

The PSW is considered to specify DAT on when
bit 5 is one and the EC mode is specified, regard­
less of whether the contents of any other PSW
fields are due to cause an exception to be recogniz­
ed.

A page-table entry is attached to a CPU when it
is within the page table designated by either a usa­
ble TLB segment-table entry or by an attached and
valid segment-table entry which would not cause a
translation-specification exception if used for trans­
lation.

A TLB segment-table entry is in the usable state
when all of the following conditions are met:
1. The current PSW specifies DAT on.
2. The translation-format field in the TLB

segment-table entry is the same as the current
translation format.

3. The segment-table-origin field in the segment­
table entry is the same as the current
segment-table origin, or the common bit is one
in the TLB entry.

3-16 System/370 Principles of Operation

A TLB segment-table entry may be used for
implicit address translation only when the entry is
in the usable state and the segment index of the
entry matches the segment index of the virtual
address to be translated.

A TLB page-table entry is in the usable state
when all of the following conditions are met:
1. The TLB page-table entry is selected by a

usable TLB segment-table entry or by an
attached and valid segment-table entry which
would not cause a translation-specification
exception if used for translation.

2. The page-table-origin field in the TLB page­
table entry matches the page-table-origin field
in the segment-table entry which selects it.

3. The page-index field in the TLB page-table
entry is within the range permitted by the
segment-table-length field in the TLB segment­
table entry which selects it.

4. The translation-format field in the TLB page­
table entry is the same as the current transla­
tion format.

A TLB page-table entry may be used for implicit
address translation only when the TLB entry is in
the usable state as selected by the TLB segment­
table entry being used and only when the page in­
dex of the TLB page-table entry matches the page
index of the virtual address being translated.

The operand address of LOAD REAL AD­
DRESS is translated without the use of the TLB
contents. Translation in this case is performed by
the use of the designated tables in main storage.

Selected page-table entries are purged from the
TLB by means of the INVALIDATE PAGE TA­
BLE ENTRY instruction. All information in the
TLB is necessarily cleared only by execution of
PURGE TLB, SET PREFIX, or CPU reset.

Programming Notes
1. Although a copy of a table entry may be placed

in the TLB only when the entry is both valid
and attached, the copy may remain in the TLB
even when the entry itself is no longer valid or
attached.

2. No entries can be placed in the TLB when
DAT is off because the table entries at this
time are not attached. In particular, translation
of the operand address of LOAD REAL AD­
DRESS, with DAT off, does not cause entries
to be placed in the TLB.

Conversely, when DAT is on, information
may be loaded into the TLB from all
translation-table entries that could be used for
address translation, given the current transla-

tion parameters. The loading of the TLB does
not depend on whether the entry is used for
translation as part of the execution of the
current instruction, and such loading can occur
when the wait state is specified. Similarly,
information from a segment-table or page-table
entry having a format error may be recorded in
the TLB.

3. More than one copy of a table entry may exist
in the TLB. For example, some
implementations may cause a copy of a valid
table entry to be placed in the TLB for each
segment-table origin by which the entry
becomes attached.

4. The segment size controls how many
segment-table entries can be referred to for
translation. Both the page size and segment
size control the selection of page-table entries
and hence may affect whether or not an entry
is attached.

5. The states and use of the DAT entries in both
storage and in the TLB are summarized in the
figure "Summary of DAT Entries."

Modification of Translation Tables
When an attached and invalid table entry is made
valid and no usable entry for the associated virtual
address is in the TLB, the change takes effect no
later than the end of the current unit of operation.
Similarly, when an unattached and valid table entry
is made attached and no usable entry for the
associated virtual address is in the TLB, the change
takes effect no later than the end of the current
unit of operation.

When a valid and attached table entry is
changed, and when, before the TLB is purged, an
attempt is made to refer to storage using a virtual
address requiring that entry for translation,
unpredictable results may occur, to the following
extent. The use of the new value may begin
between instructions or during the execution of an
instruction, including the instruction that caused
the change. Moreover, until the TLB is purged, the
TLB may contain both the old and the new values,
and it is unpredictable whether the old or new
value is selected for a particular access. If both old
and new values of a segment-table entry are
present in the TLB, a page-table entry may be
fetched using one value and placed in the TLB
associated with the other value. If the new value
of the entry is a value which would cause an
exception, the exception mayor may not cause an
interruption to occur. If an interruption does
occur, the result fields of the instruction may be

changed even though the exception would normally
cause suppression or nullification.

When LOAD CONTROL changes the
translation format, segment-table origin, or
segment-table length, the values of these fields at
the start of the operation are in effect for the
duration of the operation.

Entries are deleted from the TLB in accordance
with the following rules:
1. All entries are deleted from the TLB by

PURGE TLB, SET PREFIX, and CPU reset.
2. Selected entries are deleted from the TLB by

the execution of INVALIDATE PAGE TABLE
ENTRY or by receipt of an INVALIDATE
PAGE TABLE ENTRY broadcast from another
CPU.

3. Some or all TLB entries may be purged at times
other than those required by PURGE TLB and
INVALIDATE PAGE TABLE ENTRY.

Programming Notes
1. Entries in the TLB may continue to be used for

translation after the table entries from which
they have been formed have become
unattached or invalid. These TLB entries are
not necessarily removed unless explicitly purged
from the TLB.

A change made to an attached and valid
entry or a change made to a table entry that
causes the entry to become attached and valid
is reflected in the translation process for the
next instruction, or earlier than the next
instruction, unless a TLB entry qualifies for
substitution of that table entry. However, a
change made to a table entry that causes the
entry to become unattached or invalid is not
necessarily reflected in the translation process
until the TLB is purged of entries which qualify
for substitution for that table entry.

2. Exceptions associated with dynamic address
translation may be established by a pretest for
operand accessibility that is performed as part
of the initiation of the execution of the
instruction. Consequently, a
segment-translation or page-translation
exception may be indicated when a table entry
is invalid at the start of execution even if the
instruction would have validated the table entry
it uses and the table entry would have appeared
valid if the instruction was considered to
process the operands one byte at a time.

Chapter 3. Storage 3-17

State or Function

STE is attached (applies
only to STE in storage)

STE in storage is usable
for a particular instance
of implicit translation

STE can be placed in TLB

STE in TLB is usable

STE in TLB is usable for
a particular instance of
implicit translation

PTE is attached (applies
only to PTE in storage)

PTE in storage is usable
for a particular instance
of implicit translation

PTE can be placed in TLB

PTE in TLB is usable

PTE in TLB is usable for
a particular instance of
implicit translation

Explanation:

Segment table
Segment-table entry
Segment-table origin
Segment index

Conditions to Be Met

• DAT on
• STE in ST defined by CRO and CRI
• STE selectable by a 24-bit

address

• STE attached
• STE selected by SX

• STE attached
• STE I bit zero
• No TS

• DAT on
• TF matches
• STO matches or C bit one

• DAT on
• TF matches
• STO matches or C bit one
• SX matches

• PTE in PT defined by usable STE
in the TLB or defined by an STE
that can be placed in the TLB

• PTE in PT defined by STE being
used for the translation

• PTE selected by PX

• PTE attached
• PTE I bit zero
• No TS

• PTE selected by a usable STE in
the TLB or by an STE that can
be placed in the TLB
- PTO matches, and
- PX within PTL, and
- TF matches

• PTE selected by STE being used
for the translation
- PTO matches, and
- PX within PTL, and
- TF matches

• PX matches

ST
STE
STO
SX
PT
PTE
PTO
PX
TF
TS

Page table
Page-table entry
Page-table origin
Page index
Translation format (control register 0, bits 8-12)
Translation-specification exception

C bit
I bit
PTL

Common-segment bit in STE
Invalid bit in table entry
Page-table length

Summary of DA T Entries

3-18 System/370 Principles of Operation

3. A change made tQ an attached table entry, ex­
cept to set the I bit to one or zero, may prod­
uce unpredictable results if that entry is used
for translation before the TLB is purged. The
use of the new value may begin between in­
structions or during the execution of an instruc­
tion, including the instruction that caused the
change. When an instruction, such as MOVE
(MVC), makes a change to an attached table
entry, including a change that makes the entry
invalid, and subsequently uses the entry for
translation, a changed entry is being used with­
out a prior purging of the TLB, and the associ­
ated unpredictability of result values and of
exception recognition applies.

Manipulation of attached table entries may
cause spurious table-entry values to be recorded
in a TLB. For example, if changes are made
piecemeal, modification of a valid attached en­
try may cause a partially updated entry to be
recorded, or, if an intermediate value is intro­
duced in the process of the change, a supposed­
ly invalid entry may temporarily appear valid
and may be recorded in the TLB. Such an in­
termediate value may be introduced if the
change is made by an 110 operation that is re­
tried, or if an intermediate value is introduced
during the execution of a single instruction.

As another example, if a segment-table entry
is changed to designate a different page table
and used without purging the TLB, then the
new page-table entries may be fetched and as­
sociated with the old page-table origin. In such
a case, the instruction INVALIDATE PAGE
TABLE ENTRY (IPTE) designating the page­
table origin will not necessarily purge the page­
table entries fetched from the new page table.

4. To facilitate the manipulation of translation
tables, IPTE is provided, which sets the I bit in
a page-table entry to one and purges all system
TLBs of entries formed from that table entry.

IPTE is useful for setting the I bit to one in a
page-table entry and causing TLB copies of the
entry to be purged from the TLB of each CPU
in the configuration. The following aspects of
the TLB operation should be considered when
using IPTE. (See also the programming notes
following IPTE.)
a. IPTE should be issued before making any

change to a page-table entry other than
changing the low-order bit; otherwise, the
selective purging portion of IPTE may not
purge the TLB copies of the entry.

b. Invalidation of all the page-table entries
within a page table by means of IPTE does

not necessarily purge the TLB of the copies,
if any, of the segment-table entry designat­
ing the page table. When it is desired to
invalidate and purge a segment-table entry,
the rules in note 5 below must be followed.

c. When a large number of page-table entries
are to be invalidated at a single time, the
overhead involved in using PTLB and in
following the rules in note 5 below may be
less than in issuing an IPTE for each page­
table entry.

5. For cases other than the use of IPTE for invali­
dating a page-table entry, manipulation of table
entries should be in accordance with the fol­
lowing rules. If these rules are observed, trans­
lation is performed as if the table entries from
main storage were always used in the transla­
tion process.
a. An entry must not be changed while it is

being used by a CPU except either to inva­
lidate the entry, using PURGE TLB
(PTLB) or IPTE, or to alter bit 15 of a
page-table entry.

b. When any change is made to a table entry
other than a change to the low-order bit of
a page-table entry, each CPU which may
have a TLB entry formed from that entry
must issue PTLB after the change occurs
and prior to the use of that entry for trans­
lation by that CPU, except that the purge is
unnecessary if the change was made using
IPTE or was made to bit 15 of a page-table
entry.

c. When any change is made to an invalid
entry in such a way as to cause intermedi­
ate valid values to appear in the entry, each
CPU to which the entry is attached must
issue PTLB after the change occurs and pri­
or to the use of the entry for implicit ad­
dress translation by that CPU.

d. When any change is made to a segment­
table or page-table length, each CPU to
which that table has been attached must
issue PTLB after the length has been
changed but before that table becomes atta­
ched again to the CPU.

Note that when an invalid page-table entry is
made valid without introducing intermediate
valid values, the TLB need not be purged in a
CPU which does not have any usable TLB cop­
ies for that entry. Similarly, when an invalid
segment-table entry is made valid without in­
troducing intermediate valid values, the TLB
need not be purged in a CPU which does not
have any usable TLB copies for that segment-

Chapter 3. Storage 3-19

table entry and which does not have any usable
TLB copies for the page-table entries attached by
it.

Execution of PTLB may have an adverse effect
on the performance of some models. Use of this
instruction should, therefore, be minimized in con­
formity with the above rules.

Address Summary

Addresses Translated
Most addresses that are explicitly specified by the
program and are used by the CPU to refer to stor­
age for an instruction or an operand are logical
addresses and are subject to translation when DAT
is on. Analogously, the corresponding addresses
indicated to the program on an interruption or as
the result of executing an instruction are logical.

Translation is not applied to quantities that are
formed as storage addresses from the values desig­
nated in the Band D fields of an instruction but
that are not used to address storage. This includes
operand addresses in LOAD ADDRESS, MONI­
TOR CALL, and the shifting and I/O instruction.
This also includes the addresses in control registers
10 and 11 designating the starting and ending loca­
tions for program-event recording (PER).

The addresses explicitly designating storage keys
(operand addresses in SET STORAGE KEY, IN-

3-20 System/370 Principles of Operation

SERT STORAGE KEY, and RESET REFERENCE
BIT) are real addresses. Similarly, the addresses
implicitly used by the CPU or channel for such
sequences as interruptions, updating the interval
timer at location 80, DAT -table references, and
logout, including the machine-check-extended­
logout address in control register 15, are real ad­
dresses.

The addresses used by channels to transfer data,
channel-command words, or indirect-data-address
words are absolute addresses. Similarly, the 1/0-
extended-logout address at location 172 is an abso­
lute address.

The handling of storage addresses associated
with DIAGNOSE is model-dependent.

The processing of addresses, including dynamic
address translation and prefixing, is discussed in the
section "Address Types" in this chapter. Prefixing,
when provided, is applied after the address has
been translated by means of the dynamic-address­
translation facility. For a description of prefixing,
see the section "Prefixing" in this chapter.

Handling of Addresses
The handling of addresses is summarized in the
figure "Handling of Addresses." This figure lists
all addresses that are encountered by the program
and specifies the address type. .'\;,

Virtual Addresses

• Operand address in LOAD REAL ADDRESS
• Address stored in the word at real location 144 on a program

interruption for page-translation or segment-translation ex­
ception

Logical Addresses

• Instruction address in PSW
• Branch addresses
• Target of EXECUTE
• Addresses of storage operands for all instructions not

otherwise specified
• Address stored in instruction-address field of old PSW on

interruption
• Address stored at real location 152 on a program interrup­

tion for PER
• Address placed in a general register by BRANCH AND LINK
• Address placed in general register 1 by TRANSLATE AND TEST

and EDIT AND MARK
• Addresses in general registers updated by MOVE LONG and

COMPARE LOGICAL LONG

Real Addresses

• Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,
and RESn REFERENCE BIT

• Operand addresses in READ DIRECT and WRITE DIRECT when
INVALIDATE PAGE TABLE ENTRY is installed

• Page-table origin in INVALIDATE PAGE TABLE ENTRY
• Segment-table origin in control register 1
• Page-table origin in segment-table entry
• Page-frame real address in page-table entry
• MCEL address in control register 15
• The translated address generated by LOAD REAL ADDRESS
• Address of segment-table entry or page-table entry provided

by LOAD REAL ADDRESS

Permanently Assigned Real Addresses

• Addresses of PSWs, interruption codes, and associated in­
formation used during interruption

• Address used by CPU to update interval timer at real loca­
tion 80

• Address of CAW, CSW, and other locations used during an I/O
interruption or during execution of an I/O instruction, in­
cluding STORE CHANNEL ID

Handling of Addresses (Part 1 of 2)

Chapter 3. Storage 3-21

Absolute Addresses

• Prefix value
• CCW address in CAW
• Data address in CCW
• Address of the indirect-data-address list in a CCW speci-

fying indirect-data addressing
• CCW address in a CCW specifying transfer in channel
• Data address in indirect-data-address words
• IDEL address at real location 172
• Failing-storage address stored in the word at real location

248
• CCW address in CSW

Permanently Assigned Absolute Addresses

• Addresses of PSW and first two CCWs used for initial pro­
gram loading

• Addresses used for the store-status function

Addresses Not Used to Reference Storage

• PER starting address in control register 10
• PER ending address in control register 11
• The address stored in the word at real location 156 for a

monitoring event
• Address in shift instructions and other instructions speci­

fied not to use the address to reference storage

Handling of Addresses (Part 2 of 2)

Assigned Storage Locations

Assigned Real-Storage Locations
The figure "Assigned Locations in Real Storage"
shows the format and extent of the assigned loca­
tions in real storage. In a multiprocessing system,
real storage addresses are transformed to absolute
addresses by means of prefixing. The locations are
used as follows. Unless specifically noted, the us­
age applies to both the BC and EC modes.
0-7 Restart New PSW: The new PSW is

fetched from locations 0-7 during a re­
start interruption.

8-15 Restart Old PSW: The current PSW
is stored as the old PSW at locations
8-15 during a restart interruption.

24-31 External Old PSW: The current PSW
is stored as the old PSW at locations
24-31 during an external interruption.

32-39 Supervisor-Call Old PSW: The cur­
rent PSW is stored as the old PSW at
locations 32-39 during a supervisor-call
interruption.

40-47 Program Old PSW: The current PSW
is stored as the old PSW at locations
40-47 during a program interruption.

48-55 Machine-Check Old PSW: The cur­
rent PSW is stored as the old PSW at

3-22 System/370 Principles of Operation

56-63

64-71

72-75

80-83

84-87

88-95

locations 48-55 during a machine-check
interruption.
Input/Output Old PSW: The current
PSW is stored as the old PSW at loca­
tions 56-63 during an I/O interruption.
CSW: The channel-status word
(CSW) is stored at locations 64-71 dur­
ing an 1/ 0 interruption. Part or all of
it may be stored during the execution of
START I/O, START I/O FAST RE­
LEASE, TEST I/O, CLEAR I/O,
HALT I/O, or HALT DEVICE, in
which case condition code 1 is set.
CAW: The channel-address word
(CAW) is fetched from locations 72-75
during the execution of START I/O
and START I/O FAST RELEASE.
Interval Timer: Locations 80-83 con­
tain the interval timer. The interval
timer is updated whenever the CPU is
in the operating state and the manual
interval-timer control is set to enable.
Address of Trace-Table Header: The
address of the control block which de­
fines the trace table used by the
System/370 extended facility is provid­
ed in this location.
External New PSW: The new PSW is
fetched from locations 88-95 during an

external interruption.
96-103 Supervisor-Call New PSW: The new

PSW is fetched from locations 96-103
during a supervisor-call interruption.

104-111 Program New PSW: The new PSW is
fetched from locations 104-111 during
a program interruption.

112-119 Machine-Check New PSW: The new
PSW is fetched from locations 112-119
during a machine-check interruption.

120-127 Input/Output New PSW: The new
PSW is fetched from locations 120-127
during an I/O interruption.

132-133 CPU Address: During an external
interruption due to malfunction alert,
emergency signal, or external call, the
CPU address associated with the source
of the interruption is stored at locations
132-133. For all other external­
interruption conditions, zeros are stored
at locations 132-133 when the old PSW
specified the EC mode, and the field
remains unchanged when the old PSW
specified the BC mode.

134-135 External-Interruption Code: During an
external interruption in the EC mode,
the interruption code is stored at loca­
tions 134-135.

136-139 Supervisor-Call-Interruption
Identification: During a supervisor-call
interruption in the EC mode, the
instruction-length code is stored in bit
positions 5 and 6 of location 137, and
the interruption code is stored at loca­
tions 138-139. Zeros are stored at lo­
cation 136 and in the remaining bit pos­
itions of 137.

140-143 Program-Interruption Identification:
During a program interruption in the
EC mode, the instruction-length code is
stored in bit positions 5 and 6 of loca­
tion 141, and the interruption code is
stored at locations 142-143. Zeros are
stored at location 140 and in the re­
maining bit positions of 141.

144-147 Translation-Exception Address: During
a program interruption due to a
segment-tra)lSlation exception or a
page-translation exception, the
translation-exception address is stored
at locations 145-147, and zeros are
stored at location 144. This field can
be stored only when the old program
PSW specifies the EC mode.

148-149 Monitor-Class Number: During a pro­
gram interruption due to a monitor
event, the monitor-class number is
stored at location 149, and zeros are
stored at 148.

150-151 PER Code: During a program inter­
ruption due to a program event, the
program-event-recording (PER) code is
stored in bit positions 0-3 of location
150, and zeros are stored in bit posi­
tions 4-7 and at location 151. This
field can be stored only when the in­
struction causing the PER condition was
executed under the control of a PSW
specifying the EC mode.

152-155 PER Address: During a program in­
terruption due to a program event, the
program-eve nt-recording (PER) address
is stored at locations 153-155, and ze­
ros are stored at location 152. This
field can be stored only when the in­
struction causing the PER condition was
executed under the control of a PSW
specifying the EC mode.

156-159 Monitor Code: During a program in­
terruption due to a monitor event, the
monitor code is stored at locations 157-
159, and zeros are stored at location
156.

161-163 MAPL: This is the location of a con­
trol block used by the extended facility.

168-171 ChannelID: The four-byte channel­
identification information is stored at
locations 168-171 during the execution
of STORE CHANNEL ID.

172-175 IOEL Address: The I/O-extended­
logout address is fetched from locations
172-175 during the 1/ O-extended­
logout operation.

176-179 Limited Channel Logout: The limited­
channel-logout information is stored at
locations 176-179. This field may be
stored only when the CSW or a portion
of the CSW is stored.

185-187 I/O Address: During an I/O inter­
ruption in the EC mode, the two-byte
I/O address is stored at locations 186-
187, and zeros are stored at location
185.

216-223 Machine-Check CPU-Timer Save
Area: During a machine-check inter­
ruption, the contents of the CPU timer,
if installed, are stored at locations 216-
223.

Chapter 3. Storage 3-23

224-231 Machine-Check Clock-Comparator
Save Area: During a machine-check
interruption, the contents of the clock
comparator, if installed, are stored at
location 224-231.

232-239 Machine-Cheek-Interruption Code:
During a machine-check interruption,
the machine-cheek-interruption code is
stored at locations 232-239.

244-247 External-Damage Code: During a
machine-check interruption due to cer­
tain external-damage conditions, de­
pending on the model, an external­
damage code may be stored in these lo­
cations.

248-251 Failing-Storage Address: During a
machine-check interruption, a failing­
storage address, if any, is stored at loca­
tions 249-251, and zeros are stored at
location 248.

252-255 Region Code: During a machine­
check interruption, model-dependent
information may be stored at locations
252-255.

256-351 Fixed-Logout Area: Depending on the
model, logout information may be
placed in this area during a machine­
check interruption. Additionally, the
contents of locations 256-351 may be
changed at any time, subject to the
asynchronous-fixed-logout-control bit in
control register 14.

352-383 Machine-Check Floating-Point-Register
Save Area: During a machine-check
interruption, the contents of the
floating-point registers are stored at lo­
cations 352-383.

384-447 Machine-Check General-Register Save
Area: During a machine-check inter-

3-24 System/370 Principles of Operation

ruption, the contents of the general reg­
isters are stored at locations 384-447.

448-511 Machine-Check Control-Register Save
Area: During a machine-check inter­
ruption, the contents of the control reg­
isters are stored at locations 448-511.

Assigned Absolute Storage Locations
The figure "Assigned Locations in Absolute Stor­
age" shows the format and extent of the assigned
locations in absolute storage. The locations are as
follows, and the usage applies to both the Be and
Be modes.
0-7 IPL PSW: The first eight bytes read

during the IPL initial read operation are
stored at locations 0-7. The contents of
these locations are used as the new
PSW at the completion of the IPL oper­
ation. These locations may also be used
for temporary storage at the initiation
of the IPL operation.

8-15 IPL CCW1: Bytes 8-15 read during
the IPL initial read operation are stored
at locations 8-15. The contents of
these locations are ordinarily used as
the next eew in an IPL eew chain
after completion of the IPL initial-read
operation.

16-23 IPL CCW2: Bytes 16-23 read during
the IPL initial read operation are stored
at locations 16-23. The contents of
these locations may be used as another
eew in the IPL eew chain to follow
IPL eeW1.

216-511 Store-Status Save Area: Information
is stored at locations 216-231, 256-271,
and 352-511 during the execution of
the store-status operation.

Hex Dec

0 0 Restart New PSW

L 4 4

8 8 Restart Old PSW

C 12

10 16

14 20

18 24 External Old PSW

lC 28

20 32 Supervisor Call Old PSW

24 36

28 40 Program Old PSW

2C 44

30 48 Machine-Check Old PSW

34 52

38 56 Input/Output Old PSW

3C 60

40 64 Channel Status Word

44 68
f--

48 72 Channel Address Word

4C 76

50 80 I nterval Timer

54 84 Address of Trace Table Header

58 88 External New PSW

5C 92

L
60 96

64 100

68 104

Supervisor Call New PSW

Program New PSW

6C 108

70 112 Machine-Check New PSW

74 116

78 120 Input/Output New PSW

7C 124

80 128

84 132 CPU Address External-I nterruption Code

88 136 ooooooooooooollLclo Superv -Call-Irptn Code

8C 140 ooooooooooooollLclo Program-I nterruption Code

90 144 00000000 Translation-Exception Address

94 148 00000000 MonitorCI # PERC 1000000000000

98 152 00000000 PER Address
9C 156 00000000 Monitor Code
AO 160 MAPL Address
A4 164

A8 168 ChannellD

AC 172 10EL Address

BO 176 Limited Channel Logout

B4 180

B8 184 00000000 I/O Address

Assigned Locations in Real Storage

Hex De c

BC 188

CO 19 2

C4 19 6

C8 20 0

CC 20 4

DO 20 8

D4 21 2

08 21 6 Machine-Check CPU-Timer Save Area

DC 22 0

EO 22 4 Machine-Check Clock-Comparator Save Area

E4 22 8

E8 23 2 Machine-Check I nterruption Code

EC 23 6

FO 24 0

F4 24 4 ~xternal-Oamage Code

F8 24 8 000000001 Failing-Storage Address

FC 25 2

100 25

104 26

108 26

10C 26

6

0

4

8

-L..,..
-r---

154 340

158 344

15C 348

160 352

164 356

168 360

16C 364

170 368

174 372

178 376

HC 380

180 384

184 388

188 392

18C 396

lB4 436

lB8 440

lBC 444

lCO 448

lC4 452

lC8 456

lCC 460

lF4

~T lF8

lFC 508

Region Code

Fixed Logout Area

Machine-Check Floating-Point Register Save Area

Machine-Check General-Register Save Area

Machine-Check Control-Register Save Area

~L..,..
~,.....

~L..,..

--"-

J
Chapter 3. Storage 3-25

Hex Dec

0 0 Initial Program Loading PSW

4 4

8 8 Initial Program Loading CCWl

C 12

10 16 Initial Program Loading CCW2

14 20

18 24

lC 28

20 32

24 36

28 40

2C 44

30 48

34 52

38 56

3C 60

40 64

44 68

48 72

4C 76

50 80

54 84

58 88

5C 92

60 96

64 100

68 104

6C 108

70 112

74 116

78 120

7C 124

80 128

84 132

88 136

8C 140

90 144

94 148

98 152

9C 156

AO 160

A4 164

A8 168

AC 172

BO 176

B4 180

B8 184

BC 188

Assigned Locations In Absolute Storage

3-26 System/370 Principles of Operation

Hex

CO

C4

C8

CC

DO

04

08

DC

EO

E4

E8

EC

FO

F4

F8

FC

100

104

108

10C

110

158

15C

160

164

168

16C

170

174

178

17C

180

184

188

18C

lB4

lB8

lBC

lCO

lC4

1C8

lCC

lF4

1F8

1FC

Dec

192

196

200

204

208

212

216 Store-Status CPU Timer Save Area

220

224 Store-Status Clock-Comparator Save Area

228

232

236

240

244

248

252

256 Store-Status PSW Save Area

260

264 Store-Status Prefix Save Area

268 Store-Status MOdel-Dependent Save Area

272

~ :~

344

348

352 Store-Status Floating-Point Register Save Area

356

360

364

368

372

376

380

384 Store-Status General-Register Save Area

388

392

396

~:: ~::

436

440

444

448 Store-Status Control-Register Save Area

452

456

460
l.. ~

:I'---__ J

Chapter 4. Control

Contents

Stopped, Operating, Load, and Check-Stop States 4-1
Stopped State 4-2
Operating State 4-2
Load State 4-2
Check-Stop State 4-2

Program-Status Word 4-3
EC and BC Modes 4-3
Program-Status-Word Format in EC Mode 4-4
Program-Status-Word Format in BC Mode 4-5

Control Registers 4-6
Program-Event Recording 4-8

Control-Register Allocation 4-8
Operation 4-8

Identification of Cause 4-9
Priority of Indication 4-9

Storage-Area Designation 4-10
PER Events 4-10

Successful Branching 4-10
Instruction Fetching 4-10
Storage Alteration 4-11
General-Register Alteration 4-11

Indication of Events Concurrently with Other
Interruption Conditions 4-12

Direct Control 4-15
Read-Write-Direct Facility 4-15
External-Signal Facility 4-15

Timing 4-15
Time-of-Day Clock 4-16

Format 4-16

This chapter describes in detail the facilities for
controlling, measuring, and recording the operation
of one or more CPUs.

Stopped, Operating, Load, and
Check-Stop States
The stopped, operating, load, and check-stop states
are four mutually exclusive states of the CPU.
When the CPU is in the stopped state, instructions
and interruptions, other than the restart interrup­
tion, are not executed. In the operating state, the
CPU executes instructions and takes interruptions,
subject to the control of the program-status word

States 4-16
Changes in Clock State 4-17
Setting and Inspecting the Clock 4-17

Time-of-Day-Clock Synchronization 4-18
Clock Comparator 4-19
CPU Timer 4-19
Interval Timer 4-20

Externally Initiated Functions 4-21
Resets 4-21

CPU Reset 4-24
Initial CPU Reset 4-24
Subsystem Reset 4-24
Program Reset 4-25
Initial Program Reset 4-25
Clear Reset 4-25
Power-On Reset 4-25

Initial Program Loading 4-26
Store Status 4-27

Multiprocessing 4-27
Shared Main Storage 4-28
CPU-Address Identification 4-28

CPU Signaling and Response 4-28
Signal-Processor Orders 4-28
Conditions Determining Response 4-29

Conditions Precluding Interpretation of the Order
Code 4-29

Status Bits 4-30
Channel-Set Switching 4-32

(PSW) and control registers, and in the manner
specified by the setting of the operator-facility rate
control. The CPU is in the load state during the
initial-program-Ioading operation. The CPU enters
the check-stop state only as the result of machine
malfunctions.

A change between these four CPU states can be
effected by use of the operator facilities or by ac­
ceptance of certain SIGNAL PROCESSOR orders
addressed to that CPU. The states are not con­
trolled or identified by bits in the PSW. The stop­
ped, load, and check-stop states are indicated to
the operator by means of the manual indicator, load
indicator, and check-stop indicator respectively.

Chapter 4. Control 4-1

These three indicators are off when the CPU is in
the operating state.

The CPU timer is updated when the CPU is in
the operating state or the load state. The time-of­
day clock is updated whenever power is on. The
interval timer is updated only when the CPU is in
the operating state.

Stopped State
The state of the CPU is changed from operating to
stopped by the stop function. The stop function is
performed when:
• The stop key is activated while the CPU is in the

operating state.
• The CPU accepts a stop or stop-and-store-status

order specified by a SIGNAL PROCESSOR in­
struction addressed to this CPU while it is in the
operating state.

• The CPU has finished the execution of a unit of
operation initiated by performing the start func­
tion with the rate control set to instruction step.

When the stop function is performed, the trans-
ition from the operating to the stopped state occurs
at the end of the current unit of operation. When
the wait-state bit of the PSW is one, the transition
takes place immediately, provided no interruptions
are pending for which the CPU is enabled. In the
case of interruptible instructions, the amount of
data processed in a unit of operation depends on
the particular instruction and may depend on the
model.

Before entering the stopped state, all pending
allowed interruptions are taken while the CPU is
still in the operating state. They cause the old
PSW to be stored and the new PSW to be fetched
before the stopped state is entered. When the CPU
is in the stopped state, interruption conditions re­
main pending.

The CPU is also placed in the stopped state:
• When a reset is completed, except when the reset

operation is performed as part of initial program
loading, and

• When an address comparison indicates equality
and stopping on the match is specified

The execution of resets is described in the sec­
tion "Resets" in this chapter, and address compari­
son is described in the section "Address-Compare
Controls" in Chapter 13, "Operator Facilities."

If the CPU is in the stopped state when an IN­
VALIDATE PAGE TABLE ENTRY instruction is
executed on another CPU in the configuration, the
invalidation may be performed immediately or may
be delayed until the time at which the CPU leaves
the stopped state.

4-2 System/370 Principles of Operation

Operating State
The state of the CPU is changed from stopped to
operating when the start function is performed or
when a restart interruption occurs. However, the
effect of performing the start function is unpredict­
able when the stopped state was entered by means
of a reset.

The start function is performed on the CPU in
the stopped state when the start key associated
with that CPU is activated or when that CPU ac­
cepts the start order specified by a SIGNAL
PROCESSOR instruction addressed to that CPU.

When the wait-state bit is one and the rate con­
trol is set to instruction step, the start function
causes no instruction to be executed, but all pend­
ing allowed interruptions are taken before the CPU
returns to the stopped state.

Load State
The CPU enters the load state when the load­
normal or load-clear key is activated (see the sec­
tion "Initial Program Loading" in this chapter).
When the initial-program-Ioading operation is com­
pleted successfully, the CPU state changes from
load to operating, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU state changes from load to stopped.

Check-Stop State
The check-stop state, which the CPU enters on
certain types of machine malfunction, is described
in Chapter 11, "Machine-Check Handling."

Programming Notes
1. Except for the relationship between execution

time and real time, the execution of a program
is not affected by stopping the CPU.

2. When, because of a machine malfunction, the
CPU is unable to end the execution of an in­
struction, the stop function is ineffective, and a
reset function has to be invoked instead. A
similar situation occurs when an unending
string of interruptions results from a PSW with
a PSW -format error of the type that is recog­
nized early, or from a persistent interruption
condition, such as one due to the CPU timer.

3. Input/output operations continue to completion
after the CPU enters the stopped state. The
interruption conditions due to completion of
I/O operations remain pending when the CPU
is in the stopped state.

Program-Status Word
The current program-status word (PSW) contains
information required for the execution of the cur­
rently active program. The PSW is 64 bits in
length and includes the instruction address, condi­
tion code, and other control fields. In general, the
PSW is used to control instruction sequencing and
to hold and indicate much of the status of the CPU
in relation to the program currently being executed.
Additional control and status information is con­
tained in control registers and permanently as­
signed storage locations.

Control is switched during an interruption of the
CPU by storing the current PSW, so as to preserve
the status of the CPU, and then loading a new
PSW.

The status of the CPU can be changed by load­
ing a new PSW or part of a PSW.

The instruction LOAD PSW introduces a new
PSW. The instruction address is updated by se­
quential instruction execution and replaced by suc­
cessful branches. Other instructions are provided
which operate on a portion of the PSW. The figure
"Operations on System Mask, PSW Key, and Pro­
gram Mask" summarizes these instructions.

A new or modified PSW becomes active (that is,
the information introduced into the current PSW
assumes control over the CPU) when the interrup­
tion or the execution of an instruction that changes
the PSW is completed. The interruption for
program-event recording associated with an instruc­
tion that changes the PSW occurs under control of
the PER mask that is effective at the beginning of
the operation.

Bits 0-7 of the PSW are collectively referred to
as the system mask.

Condition
System Mask PSW Key Code and

(PSW bits (PSW bits Program
0-7) 8-11) Mask*

Instruction Saved Set Saved Set Saved Set

BRANCH AND LINK No No No No Yes No
INSERT PSW KEY No No Yes No No No
SET PROGRAM MASK No No No No No Yes
SET PSW KEY FROM ADDRESS No No No Yes No No
SET SYSTEM MASK No Yes No No No No
STORE THEN AND SYSTEM MASK Yes ANDs No No No No
STORE THEN OR SYSTEM MASK Yes ORs No No No No

Ex~lanation:

.. PSW bits 18-23 in ,EC mode; PSW bits 34-40 in BC mode.

ANDs The logical AND of the immediate field in the instruc-
t ion and the current system mask replaces the current
system mask.

ORs The logical OR of the immediate field in the instruc-
t ion and the current system mask replaces the current
system mask.

Operations on System Mask, PSW Key, and Program Mask

EC and BC Modes
Two control modes are provided for the formatting
and use of control and status information: the
extended-control (EC) mode and the basic-control
(BC) mode. Certain functions available in the EC
mode are not available, or are available in a re­
stricted form, in the BC mode. The mode currently
in effect is specified by PSW bit 12. Bit 12 is one
for the EC mode and zero for the BC mode.

Program-event recording can be specified only in
the EC mode, because the PSW bit to turn this
function on is not available in the BC mode.

In the EC mode, I/O interruptions can be con­
trolled individually for up to 32 channels using the
correspondingly numbered 32 mask bits in control
register 2; there is also a summary-mask bit for I/O
interruptions, bit 6 of the PSW. The BC mode
operates in this manner only for channels 6 and up:
these channels are individually controlled by the
corresponding bits of control register 2, as well as
the summary-mask bit, bit 6 of the PSW; channels
0-5 are controlled separately by bits 0-5 of the
PSW and are not subject to the summary mask or
to mask bits in control register 2.

When interruptions occur while in the EC mode,
the interruption code and instruction-length code
are stored at various permanently assigned storage
locations according to the class of interruptions. In
the BC mode, the interruption code and
instruction-length code for all except machine­
check interruptions are placed in the PSW.

The program-mask and condition-code fields in
the PSW are allocated to different bit positions in
the two control modes. The instruction INSERT
STORAGE KEY provides the reference and change
bits when in the EC mode but produces zeros in
the corresponding bit positions when in the BC
mode.

Programming Notes
1. The BC mode provides a PSW format that is

compatible with the PSW of System/360.
2. The choice between EC and BC modes affects

only those aspects of operation that are specifi­
cally defined to be different for the two modes.
It does not affect the operation of any func­
tions that are not associated with the control
bits in the PSW provided only in the EC mode,
and it does not affect the validity of any in­
structions. The instructions SET SYSTEM
MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK per­
form the specified function on the leftmost byte
of the PSW regardless of the mode specified by

Chapter 4. Control 4-3

the current PSW. On the other hand, the in­
struction SET PROGRAM MASK introduces a
new program mask regardless of the PSW bit
positions occupied by the mask.

Program-Status- Word Format in Ee Mode
The following is a summary of the functions of the
PSW fields in the BC mode. (See the figure "PSW
Format in EC Mode.")

PER Mask (R): Bit 1 controls whether the CPU
is enabled for interruptions associated with
program-event recording (PER). When the bit is
zero, no PER event can cause an interruption.
When the bit is one, interruptions are permitted
subject to the PER-event-mask bits in control regis­
ter 9.

DAT Mode (T): Bit 5 controls whether implicit
dynamic address translation of storage addresses by
the use of segment and page tables takes place.
When the bit is zero, DAT is off, and storage ad­
dresses are not translated. When the bit is one,
DA T is on, and the dynamic-address-translation
mechanism is invoked.

I/O Mask (10): Bit 6 controls whether the CPU
is enabled for I/O interruptions. When the bit is
zero, an I/O interruption cannot occur. When the
bit is one, I/O interruptions are subject to the
channel-mask bits in control register 2; when a
channel-mask bit is zero, the associated channel
cannot cause an I/O interruption; when the
channel-mask bit is one, an interruption condition
at the channel can cause an interruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions in­
cluded in the external class. When the bit is zero,
an external interruption cannot occur. When the
bit is one, an external interruption is subject to the
corresponding external subclass-mask bits in con­
trol register 0; when the subclass-mask bit is zero,
conditions associated with the subclass cannot
cause an interruption; when the subclass-mask bit
is one, an interruption in that subclass can occur.

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. This PSW key is
matched with a storage key whenever information
is stored, or whenever information is fetched from
a location that is protected against fetching.

4-4 System/370 Principles of Operation

EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
is one when the CPU is in the extended-control
(EC) mode.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. When the bit is zero, a
machine-check interruption cannot occur. When
the bit is one, machine-check interruptions due to
system damage and instruction-processing damage
are permitted, but interruptions due to other
machine-check-subclass conditions are subject to
the subclass-mask bits in control register 14.

00000000

8 12 16 18 20 24 31

~ 0 0 0 0 0 01 Instruction Address

32 40 63

PSW Format in EC Mode

Wait State (W): When bit 14 is one, the CPU is
waiting; that is, no instructions are processed by
the CPU, but interruptions may take place. When
bit 14 is zero, instruction fetching and execution
occur in the normal manner. The wait indicator is
on when the bit is one.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. In the supervisor
state, all instructions are valid. In the problem
state, only those instructions are valid that cannot
be used to affect the system integrity. The instruc­
tions that are not valid in the problem state are
called privileged instructions. When a CPU in the
problem state attempts to execute a privileged in­
struction, a privileged-operation exception is recog­
nized, and a program interruption takes place.

Condition Code (CC): Bits 18 and 19 are the two
bits of the condition code. The condition code is
set to a value of 0, 1, 2, or 3, depending on the
result obtained in executing certain instructions.
Most arithmetic and logical operations, as well as
some other operations, set the condition code. The
instruction BRANCH ON CONDITION can speci­
fy any selection of the condition-code values as a
criterion for branching. A table in Appendix C
summarizes the condition-code values that may be

set for all instructions which set the condition code
of the PSW.

Program Mask: Bits 20-23 are the four program­
mask bits. Each bit is associated with a program
exception, as follows:

Program
Mask Bit Program Exception

20 Fixed-point overflow
21 Decimal overflow
22 Exponent underflow
23 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent­
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the instruc­
tion address. This address designates the location
of the leftmost byte of the next instruction.

Bit positions 0, 2-4, 16, 17, and 24-39 are unas­
signed and must contain zeros. A specification
exception is recognized when these bit positions do
not contain zeros.

Program-Status- Word Format in Be Mode
The following is a summary of the functions of the
PSW fields in the BC mode. (See the figure "PSW
Format in BC Mode.")

Channel Masks 0-5: Bits 0-5 control whether the
CPU is enabled for I/O interruptions from chan­
nels 0-5, respectively. When a bit is zero, the asso­
ciated channel cannot cause an I/O interruption.
When the bit is one, an interruption condition at
the channel can cause an I/O interruption.

I/O Mask (10): Bit 6 controls whether the CPU
is enabled for I/O interruptions from channels 6
and higher. When the bit is zero, these channels
cannot cause I/O interruptions. When the bit is
one, I/O interruptions are subject to the channel­
mask bits of the corresponding channels in control
register 2: when a channel-mask bit is zero, the
associated channel cannot cause an 1/ 0 interrup­
tion; when the channel-mask bit is one, an inter­
ruption condition at the channel can cause an inter­
ruption.

External Mask (EX): Bit 7 controls whether the
CPU is enabled for interruption by conditions in­
cluded in the external class. When the bit is zero,
an external interruption cannot occur. The mean­
ing is the same as in the EC mode.

Interruption Code

0 6 8 12 16

II LC I cc
I Prog

Mask Instruction Address

32 34 36 40

PSW Format in BC Mode

31

63

PSW Key: Bits 8-11 form the access key for
storage references by the CPU. The meaning is the
same as in the EC mode.

EC Mode (E): Bit 12, which controls the format
of the PSW and the mode of operation of the CPU,
is zero when the CPU is in the basic-control (BC)
mode.

Machine-Check Mask (M): Bit 13 controls
whether the CPU is enabled for interruption by
machine-check conditions. The meaning is the
same as in the EC mode.

Wait State (W): When bit 14 is one, the CPU is
waiting. The meaning is the same as in the EC
mode.

Problem State (P): When bit 15 is one, the CPU
is in the problem state. When bit 15 is zero, the
CPU is in the supervisor state. The meaning is the
same as in the EC mode.

Interruption Code: Bits 16-31 in the old PSW,
which is stored during a program, supervisor-call,
external, or 1/ 0 interruption, identify the cause of
the interruption. This field is not used or checked
in the current PSW. When a new PSW is intro­
duced, the contents of this field are ignored.

Instruction-Length Code (lLC): The code in bit
positions 32 and 33 of the old PSW indicates the
length of the last-interpreted instruction when a
program or supervisor-call interruption occurs. See
the section "Instruction-Length Code" in Chapter
6, "Interruptions." When a new PSW is introduced,
the contents of this field are ignored.

Chapter 4. Control 4-5

Condition Code (CC): Bits 34 and 35 are the two
bits of the condition code. The meaning is the
same as in the EC mode.

Program Mask: Bits 36-39 are the four program­
mask bits. Each bit is associated with a program
exception, as follows:

Program
Mask Bit Program Exception

36 Fixed-point overflow
37 Decimal overflow
38 Exponent underflow
39 Significance

When the mask bit is one, the exception results
in an interruption. When the mask bit is zero, no
interruption occurs. The setting of the exponent­
underflow-mask bit or the significance-mask bit
also determines the manner in which the operation
is completed when the corresponding exception
occurs.

Instruction Address: Bits 40-63 form the instruc­
tion address. This address designates the location
of the leftmost byte of the next instruction.

Control Registers
The control registers provide a means for maintain­
ing and manipulating control information that re­
sides outside the PSW. There may be up to sixteen
32-bit control registers.

One or more specific bit positions in control reg­
isters are assigned to each facility requiring such
register space. When the facility is installed, the
bits perform the defined control function.

The LOAD CONTROL instruction loads control
information from storage into control registers,
whereas the STORE CONTROL instruction trans-

4-6 System/370 Principles of Operation

fers information from control registers to storage.
The instruction LOAD CONTROL causes all

register positions, within those registers designated
by the instruction, to be loaded. Information load­
ed into the control registers becomes active (that is,
assumes control over the system) at the completion
of the instruction causing the information to be
loaded.

At the time the registers are loaded, the informa­
tion is not checked for exceptions, such as invalid
translation-format code or an address designating
an unavailable or a protected location. The validity
of the information is checked and the exceptions, if
any, are indicated at the time the information is
used.

When STORE CONTROL is executed, it returns
the current value in each register position. Values
corresponding to unassigned or uninstalled register
positions are unpredictable.

Only the general structure of control registers is
described here; a definition of the register positions
appears with the description of the facility with
which the register position is associated. The figure
"Assignment of Control-Register Fields" shows the
control-register positions which are assigned and
the initial value of the field upon execution of re­
set.

Programming Note
To ensure that existing programs run if and when
new facilities using additional control-register posi­
tions are installed, the program should load zeros in
unassigned control-register positions. Although
STORE CONTROL may provide zeros in the bit
positions corresponding to unassigned register posi­
tions, the program should not depend on such ze­
ros. It is permissible, however, for the program to
load into the control registers, by LOAD CON­
TROL, any information previously stored by means
of STORE CONTROL.

Ctrl Initial
Reg Bits Name of Field Associated With Value

0 0 Block-multiplexing control Block-multiplexing channels 0
0 1 SSM-suppression control SET SYSTEM MASK 0
0 2 TOO-clock-sync control Multiprocessing 0
0 3 low-address-protection control low-address protection 0
0 8-12 Translation format Dynamic address translation 0
0 16 Malfunction-alert mask Multiprocessing 0
0 17 Emergency-signal mask Multiprocessing 0
0 18 External-call mask Multiprocessing 0
0 19 TOD-clock-sync-check mask Multiprocessing 0
0 20 Clock-comparator mask Clock comparator 0
0 21 CPU-timer mask CPU timer 0
0 24 Interval-timer mask Interval timer 1
0 25 Interrupt-key mask Interrupt key 1
0 26 External-signal mask External signal 1

1 0-7 Segment-table length Dynamic address translation 0
1 8-25 Segment-table origin Dynamic address translation 0

2 0-31 Channel masks Channels 1

8 16-31 Monitor Masks MONITOR CAll 0

9 0 Successful-branching-event mask Program-event recording 0
9 1 Instruction-fetching-event mask Program-event recording 0
9 2 Storage-alteration-event mask Program-event recording 0
9 3 GR-,lteration-event mask Program-event recording 0
9 16-31 PER general-register masks Program-event recording 0

10 8-31 PER starting address Program-event recording 0

11 8-31 PER ending address Program-event recording 0

14 0 Check-stop control Machine-check handling 1
14 1 Synchronous-MCEl control Machine-check handling 1
14 2 I/O-extended-logout control I/O extended logout 0
14 4 Recovery-report mask Machine-check handling 0
14 5 Degradation-report mask Machine-check handling 0
14 6 External-damage-report mask Machine-check handling 1
14 7 Warning mask Machine-check handling 0
14 8 Asynchronous-MCEl control Machine-check handling 0
14 9 Asynchronous-fixed-log control Machine-check handling 0

15 8-28 MCEl address Machine-check handling 5122

EX2lanation:

The fields not listed are unassigned.
2 PER means program-event recording.

bits set to zeros, thus yielding a Bit 22 is set to one, with all other
decimal byte address of 512.

Assignment of Control-Register Fields

Chapter 4. Control 4-7

Program-Event Recording
The purpose of the program-event-recording (PER)
facility is to assist in debugging programs. It per­
mits the program to be alerted to the following
types of PER events:
• Execution of a successful branch instruction.
• Fetching of an instruction from the designated

storage area.
• Alteration of the contents of the designated stor­

age area.
• Alteration of the contents of designated general

registers.

The program can selectively specify one or more
of the above types of events to be monitored. The
information concerning a PER event is provided to
the program by means of a program interruption,
with the cause of the interruption being identified
in the interruption code. Program-event recording
is only available in the EC mode.

Control-Register A.llocation
The information for controlling program-event re­
cording resides in control registers 9, 10, and 11
and consists of the following fields:

Control Register 9:

EM Gen-Reg Masks

o 4 16 31

Control Register 10:

Starting Address

o 8 31

Control Register 11:

Ending Address

o 8 31

PER-Event Masks (EM): Bits 0-3 of control reg­
ister 9 specify which types of events are monitored.
The bits are assigned as follows:

Bit 0: Successful-branching event
Bit 1: Instruction-fetching event
Bit 2: Storage-alteration event
Bit 3: General-register-alteration event

4-8 System/370 Principles of Operation

Bits 0-3, when ones, specify that the correspond­
ing types of events are monitored. When a bit is
zero, the corresponding type of event is not moni­
tored.

PER General-Register Masks: Bits 16-31 of con­
trol register 9 specify which general registers are
monitored for replacement of their contents. The
16 bits, in the order of ascending bit numbers, cor­
respond one for one with the 16 registers, in the
order of ascending register numbers. When a bit is
one, the associated register is monitored for re­
placement; if zero, the register is not monitored.

PER Starting Address: Bits 8-31 of control regis­
ter 10 are the address of the beginning of the mon­
itored storage area.

PER Ending Address: Bits 8-31 of control regis­
ter 11 are the address of the end of the monitored
storage area.

Programming Note
Models may operate at reduced performance while
the CPU is enabled for PER events. To ensure
that CPU performance is not degraded because of
the operation of the program-event-recording facili­
ty, programs that do not use it should disable the
facility by setting the PER mask in the EC-mode
PSW to zero. No degradation due to program­
event recording occurs in the BC mode or when the
PER mask in the EC-mode PSW is zero. Disabling
of program-event recording in the EC mode by
means of the masks in control register 9 does not
necessarily prevent performance degradation due to
the facility.

Operation
Program-event recording (PER) is under control of
bit 1 of the EC-mode PSW, the PER mask. When
the mask is zero, no PER event can cause an inter­
ruption. When the mask is one, a monitored event,
as specified by the contents of control registers 9,
10, and 11, causes a program interruption. In BC
mode, program-event recording is disabled.

An interruption due to a PER event is taken
after the execution of the instruction responsible
for the event. The occurrence of the event does
not affect the execution of the instruction, which
may be either completed, terminated, suppressed, or
nullified.

When the CPU is disabled for a particular PER
event at the time it occurs, either by the mask in
the PSW or by the masks in control register 9, the
event is not recognized.

A change to the PER mask in the PSW or to the
PER control fields in control registers 9, 10, and 11
affects program-event recording starting with the
execution of the immediately following instruction.
If the CPU is enabled for some PER event but an
instruction causes the CPU to be disabled for that
particular event, the event causes a PER condition
to be recognized if it occurs during the execution of
the instruction.

When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
changes CPU operation from the EC mode to the
BC mode, the PER interruption is taken with the
old PSW specifying the BC mode and with the in­
terruption code stored in the old PSW. The addi­
tional information identifying the PER condition is
stored in its regular format at locations 150-155.

Program-event recording applies to emulation
instructions in the following way. Emulation in­
structions indicate all events that have occurred
and may additionally indicate events that did not
occur and were not called for in the instruction,
provided monitoring was enabled for the type of
event by the PER mask in the PSW and the PER­
event masks, bits 0-3 in control register 9. In such
cases, the contents of the remaining positions in
control registers 9, 10, and 11 may be ignored.
Thus, for example, an emulation instruction may
cause general-register alteration to be indicated
even though no general registers are altered and
even though bits 16-31 of control register 9 are all
zeros.

Identification of Cause
A program interruption for PER sets bit 8 of the
interruption code to one and places identifying
information in storage locations 150-155. The
format of the information stored at locations 150-
155 is as follows:

Locations 150-151:

PC 10000000000001

o 4 15

Locations 152-155:

1000000001 PER Address

o 8 31

The event causing a PER interruption is identi­
fied by a one in bit positions 0-3 of location 150,

the PER code (PC), with the rest of the bits in the
code set to zeros. The bit position in the PER code
for a particular event is the same as the bit position
for that event in the PER event-mask field in con­
trol register 9.

The PER address at locations 153-155 is the
address of the instruction causing the event. When
the instruction is executed by means of EXECUTE,
the address of the location containing the EXECU­
TE instruction is placed in the PER-address field.
In either case, the address of the instruction to be
executed next is placed in the PSW. Zeros are
stored in bit positions 4-7 of location 150 and at
locations 151 and 152.

Priority of Indication
When a PER interruption occurs and more than
one designated PER event has been recognized, all
recognized PER events are concurrently indicated
in the PER code. Additionally, if another program
interruption condition concurrently exists, the in­
terruption code for a program interruption indicates
both the PER condition and the other condition.

Except as listed below , a PER event does not
cause premature interruption of the interruptible
instruction, and the PER condition is held pending
until the completion of the instruction.
• When the execution of an interruptible instruc­

tion is due to be interrupted by an I/O, external,
or repressible machine-check condition, an inter­
ruption for a pending PER condition occurs first,
and the I/O, external, or machine-check inter­
ruption is subsequently subject to the control of
mask bits in the new PSW.

• Similarly, when the CPU is placed in the stopped
state during the execution of an interruptible
instruction, an interruption for a pending PER
condition occurs before the stopped state is en­
tered.

• When any program exception is encountered, the
pending PER condition is indicated concurrently.

• Depending on the model, in certain situations, a
PER condition may cause the execution of an
interruptible instruction to be interrupted with­
out an associated asynchronous condition or pro­
gram exception.

In the case of an instruction-fetching event for
SUPERVISOR CALL, the PER interruption occurs
immediately after the supervisor-call interruption.

Programming Notes
1. In the following cases an instruction can both

cause a program interruption for a PER event
and change the value of masks controlling an

Chapter 4. Control 4-9

interruption for PER events. The original mask
values determine whether a program interrup­
tion takes place for the PER event.
a. The instructions LOAD PSW, SET SYS­

TEM MASK, STORE THEN AND SYS­
TEM MASK, and SUPERVISOR CALL
can cause an instruction-fetching event and
disable the CPU for PER interruptions. Ad­
ditionally, STORE THEN AND SYSTEM
MASK can cause a storage-alteration event
to be indicated. In all these cases, the pro­
gram old PSW associated with the program
interruption for the PER event may indicate
that the CPU was disabled for that type of
PER event.

b. An instruction-fetching event may be rec­
ognized during execution of a LOAD CON­
TROL instruction which also changed the
value of the PER-event masks in control
register 9 or the addresses in control regis­
ters 10 and 11 controlling indication of
instruction-fetching events.

2. No instructions can both change the values of
general-register-alteration masks and cause a
general-register-alteration event to be recogniz­
ed.

3. When a PER interruption occurs during the
execution of an interruptible instruction, the
ILC indicates the length of that instruction or
EXECUTE, as appropriate. When a PER inter­
ruption occurs as a result of LOAD PSW or
SUPERVISOR CALL, the ILC indicates the
length of these instructions or EXECUTE, as
appropriate, unless a concurrent specification
exception on LOAD PSW calls for an ILC of O.

4. When a PER interruption is caused by branch­
ing, the PER address identifies the branch in­
struction (or EXECUTE, as appropriate),
whereas the old PSW points to the next instruc­
tion to be executed. When the interruption
occurs during the execution of an interruptible
instruction, the PER address and the instruction
address in the old PSW are the same.

Storage-Area Designation
Two of the PER events-instruction fetching and
storage alteration-involve the designation of an
area in storage. The storage area monitored for the
references starts at the location designated by the
starting address in control register 10 and extends
up to and including the location designated by the
ending address in control register 11. The area
extends to the right of the starting address.

4-10 System/370 Principles of Operation

When DAT is on, the storage area is designated
by logical addresses; when DAT is off, control reg­
isters 10 and 11 contain real addresses.

The set of addresses monitored for instruction­
fetching and storage-alteration events wraps around
at address 16,777,215; that is, address 0 is consid­
ered to follow address 16,777,215. When the
starting address is less than the ending address, the
area is contiguous. When the starting address is
greater than the ending address, the set of locations
monitored includes the area from the starting ad­
dress to address 16,777,215 and the area from ad­
dress 0 to, and including, the ending address.
When the starting address is equal to the endiIlg
address, only the location designated by that ad­
dress is monitored.

The monitoring of storage alteration and instruc­
tion fetching is performed by comparing all 24 bits
of the monitored address with the starting and end­
ing addresses.

PER Events

Successful Branching
Execution of a successful branch operation causes a
program-event interruption if bit 0 of the PER­
event-mask field is one and the PER mask in the
PSW is one.

BRANCH ON CONDITION
BRANCH AND LINK
BRANCH ON COUNT
BRANCH ON INDEX HIGH
BRANCH ON INDEX LOW OR EQUAL

The branch event is also indicated by an emula­
tion instruction when the emulation instruction
itself causes a branch. That is, the branch event is
indicated when the location of the next instruction
executed by the CPU after leaving emulation mode
does not immediately follow the location of the
emulation instruction.

The event is indicated by setting bit 0 of the
PER code to one.

Instruction Fetching
Fetching the first byte of an instruction from the
storage area designated by the contents of control
registers 10 and 11 causes a program-event inter­
ruption if bit 1 of the PER-eve nt-mask field is one
and the PER mask in the PSW is one.

A PER event for instruction fetching is recogniz­
ed whenever the CPU executes an instruction
whose initial byte is located within the monitored
area. When the instruction is executed by means
of EXECUTE, a PER event is recognized when the

first byte of the EXECUTE instruction or the
target instruction or both is located in the
monitored area.

The event is indicated by setting bit 1 of the
PER code to one.

Storage Alteration
Storing of data by the CPU in the storage area
designated by the contents of control registers 10
and 11 causes a program-event interruption if bit 2
of the PER-event-mask field is one and the PER
mask in the PSW is one.

The contents of storage are considered to have
been altered whenever the CPU executes an
instruction that causes all or part of an operand to
be stored within the monitored area of storage.
Alteration is considered to take place whenever
storing is considered to take place for purposes of
indicating protection exceptions. (See the section
"Recognition of Access Exceptions" in Chapter 6,
"Interruptions.") Storing constitutes alteration for
program-event-recording purposes even if the value
stored is the same as the original value.

Implied locations that are referred to by the
CPU in the process of interval-timer updating,
interruptions, and execution of I/O instructions,
including the interval-timer, PSW, and CSW
locations, are not monitored. These locations,
however, are monitored when information is stored
there explicitly by an instruction. Similarly,
monitoring does not apply to storing of data by a
channel.

Storage alteration does not apply to instructions
whose operands are specified to be real addresses.
Thus, storage alteration does not apply to SET
STORAGE KEY, RESET REFERENCE BIT, and
INVALIDATE PAGE TABLE ENTRY. When
INVALIDATE PAGE TABLE ENTRY is installed,
the operand address of READ DIRECT is a real
address and storage alteration does not apply.
When INVALIDATE PAGE TABLE ENTRY is
not installed, the operand address of READ
DIRECT is a logical address, and storage alteration
does apply.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the second-operand location only when
storing actually occurs.

The instruction STORE CHARACTERS
UNDER MASK is not considered to alter the
storage location when the mask is zero.

The event is indicated by setting bit 2 of the
PER code to one.

General-Register Alteration
Alteration of the contents of a general register
causes a program-event interruption if bit 3 of the
PER-event-mask field is one, the alteration mask
corresponding to that general register is one, and
the PER mask in the PSW is one.

The contents of a general register are considered
to have been altered whenever a new value is
placed in the register. Recognition of the event is
not contingent on the new value being different
from the previous one. The execution of an
RR-format arithmetic or movement instruction is
considered to fetch the contents of the register,
perform the indicated operation, if any, and then
replace the value in the register. The register can
be designated implicitly, such as in TRANSLATE
AND TEST and EDIT AND MARK, or explicitly
by an RR, RX, or RS instruction, including
BRANCH AND LINK, BRANCH ON COUNT,
BRANCH ON INDEX HIGH, and BRANCH ON
INDEX LOW OR EQUAL.

The instructions EDIT AND MARK and
TRANSLA TE AND TEST are considered to have
altered the contents of general register 1 only when
these instructions have caused information to be
placed in the register.

The instructions MOVE LONG and COMPARE
LOGICAL LONG are always considered to alter
the contents of the four registers specifying the two
operands, including the cases where the padding
byte is used, when both operands have zero length,
or when condition code 3 is set for MOVE LONG.

The instruction INSERT CHARACTERS
UNDER MASK is not considered to alter the
general register when the mask is zero.

The instructions COMPARE AND SWAP and
COMPARE DOUBLE AND SWAP are considered
to alter the general register, or general-register pair,
designated by R1, only when the contents are
actually replaced, that is, when the first and second
operands are not equal.

The event is indicated by setting bit 3 of the
PER code to one.

Programming Note
The following are some examples of
general-register alteration:
1. Register-to-register load instructions are

considered to alter the register contents even
when both operand addresses designate the
same register.

2. Addition or subtraction of zero and
multiplication or division by one are considered
to constitute alteration.

Chapter 4. Control 4-11

3. Logical and fixed-point shift operations are
considered to alter the register contents even
for shift amounts of zero.

4. The branching instructions BRANCH ON IN­
DEX HIGH and BRANCH ON INDEX LOW
OR EQUAL are considered to alter the first
operand even when zero is added to its value.

Indication of Events Concurrently with
Other Interruption Conditions
The following rules govern the indication of PER
events caused by an instruction that has also caused
a program exception or the monitor event to be
indicated, or that causes a supervisor-call interrup­
tion.
1. The indication of an instruction-fetching event

does not depend on whether the execution of
the instruction was completed, terminated, sup­
pressed, or nullified. The event, however, is
not indicated when an access exception prohib­
its access to the first byte of the instruction.
When the first halfword of the instruction is
accessible but an access exception applies to the
second or third halfword of the instruction, it is
unpredictable whether the instruction-fetching
event is indicated.

2. When the operation is completed, the event is
indicated regardless of whether any program
exception or the monitoring event is recogniz­
ed.

4-12 System/370 Principles of Operation

3. Successful branching, storage alteration, and
general-register alteration are not indicated for
an operation or, in case the instruction is inter­
ruptible, for a unit of operation that is sup­
pressed or nullified.

4. When the execution of the instruction is termi­
nated, general-register or storage alteration is
indicated whenever the event has occurred, and
a model may indicate the event if the event
would have occurred had the execution of the
instruction been completed, even if altering the
contents of the result field is contingent on
operand values.

5. When LOAD PSW or SUPERVISOR CALL
causes a PER condition and at the same time
introduces a new PSW with the type of PSW­
format error that is recognized immediately
after the PSW becomes active, the interruption
code identifies both the PER condition and the
specification exception. When these instruc­
tions introduce a PSW-format error of the type
that is recognized as part of the execution of
the following instruction, the PSW is stored as
the old PSW without the specification exception
being recognized.

The indication of PER events concurrently with
other program interruption conditions is summa­
rized in the figure "Indication of PER Events."

.,~

..J

PER Event

Type Storage GR
of Instr Alter- Alter-

Exception Ending Branch Fetch ation ation

Operation S - Xl - -
Pr ivi leged operation S - Xl - -
Execute S - Xl - -
Protection

1 Instruction S - - - -
Operand S or T - X X+ X+

Addressing
I OAT entry for instruction S - - - -

address
1 Instruction S - -

j(3 j(3 OAT entry for operand ad- S - 2 X
dress

Operand S or T - X X+ X+
Specification

Odd instruction address S - - - -
Invalid PSW format C - X - -
Other S - X - -

Data
Invalid sign S - X - -
Other T - X X+ X+

Fixed-point overflow C - X - X
Fixed-point divide
Division S - X - -
Conversion C - X - X

Decimal overflow C - X X -
Decimal divide S - X - -
Exponent overflow C - X - -
Exponent underflow C - X - -
Significance C - X - -
Floating-point divide S - X - -
Segment translation

1 Instruction-address trans- N - - - -
lation

2 X3 X3 Operand-address translation N - X
Page translation

1 Instruction-address trans- N - - - -
lation

2 X3 X3 Operand-address translation N - X
Translation specification

1 Instruction-address trans- S - - - -
lation

X3 X3 Operand-address translation S - X
Special operation S - X - -
Monitor event C - X - -

Indication of PER Events (Part 1 of 2)

Chapter 4. Control 4-13

Explanation:

C The operation or, in the case of the interruptible
instructions, the unit of operation is completed.

N The operation or, in the case of the interruptible
instructions, the unit of operation is nullified. The
instruction address in the old PSW has not been updated.

S The operation or, in the case of the interruptible
instructions, the unit of operation is suppressed.

T The execution of the instruction is terminated.

X The event is indicated with the exception if the event
has occurred; that is, the contents of the monitored
storage location or general register ~ altered, or an
attempt was made to execute an instruction whose first
byte is located in the monitored area.

+ A model is permitted, but not required, to indicate the
event if the event would have occurred had the operation
been completed but did not take place because the execu­
tion of the instruction was terminated.

2

3

The event is not indicated.

When an access exception applies to the second or third
halfword of the instruction but the first halfword is
accessible, it is unpredictable whether the instruction­
fetching event is indicated.

This condition may occur in the case of the interrupt­
ible instructions when the event is recognized in the
unit of operation that is completed and the exception
causes the next unit of operation to be suppressed or
null ified.

This condition may occur in the case of the interrupt­
ible instructions when the event is recognized in the
unit of operation that is completed and when the excep­
tion causes the next unit of operation to be suppressed
or null ified.

Indication of PER Events (Part 2 of 2)

4-14 System/370 Principles of Operation

Programming Notes
1. The execution of the interruptible instructions

MOVE LONG (MVCL) and COMPARE
LOGICAL LONG (CLCL) can cause events
for general-register alteration and instruction
fetching. Additionally, MVCL can cause the
storage-alteration event.

Since the execution of MVCL and CLCL
can be interrupted, a program event may be
indicated more than once. It may be necessary,
therefore, for a program to remove the
redundant event indications from the PER data.
The following rules govern the indication of the
applicable events during execution of these two
instructions:
a. The instruction-fetching event is indicated

whenever the instruction is fetched for
execution, regardless of whether it is the
initial execution or a resumption.

b. The general-register-alteration event is
indicated on the initial execution and on
each resumption and does not depend on
whether or not the register actually is
changed.

c. The storage-alteration event is indicated
only when data has been stored in the
monitored area by the portion of the
operation starting with the last initiation
and ending with the last byte transferred
before the interruption. No special
indication is provided on premature
interruptions as to whether the event will
occur again upon the resumption of the
operation. When the storage area
designates a single byte location, a
storage-alteration event can be recognized
only once in the execution of MOVE
LONG.

2. The following is an outline of the general
action a program must take to delete the
redundant entries in the PER data for MOVE
LONG and COMPARE LOGICAL LONG so
that only one entry for each complete execution
of the instruction is obtained:
a. Check to see if the PER address is equal to

the instruction address in the old PSW and
if the last instruction executed was MVCL
or CLCL.

b. If both conditions are met, delete
instruction-fetching and register-alteration
events.

c. If both conditions are met and the event is
storage alteration, delete the event if some
part of the remaining destination operand is
within the monitored area.

Direct Control
The direct-control feature provides (1) a
read-write-direct facility, consisting of the two
instructions READ DIRECT and WRITE DIRECT
and an associated 27-line interface, and (2) an
external-signal facility with six signal-in lines.
These facilities operate independent of the facilities
that perform II 0 operations.

Read- Write-Direct Facility
The READ DIRECT and WRITE DIRECT
instructions use the 27-line interface to provide
timing signals and to transfer a single byte of
information, normally for controlling and
synchronizing purposes, between CPUs or between
a CPU and an external device. The 27 lines are:

Number
Name of Lines Direction
Write out 1 Output
Read out 1 Output
Hold 1 Input
Signal out 8 Output
Direct out 8 Output
Direct in 8 Input

External-Signal Facility
The external-signal facility consists of six signal-in
lines and an external-signal mask, which is bit 26
of control register O. Each of the six signal-in
lines, when pulsed, sets up the condition for one of
six distinct interruptions (see the section "External
Signal" in Chapter 6, "Interruptions").

Note: Some models provide the external-signal
facility as a separate feature (without the READ
DIRECT and WRITE DIRECT instructions).

For a detailed description, see the System/3 60
and System/3 70 Direct Control and External
Interruption Features-Original Equipment
Manufacturers' Information, GA22-6845.

Timing
The timing facilities include four facilities for mea­
suring time: the time-of-day clock, the clock
comparator, the CPU timer, and the interval timer.

In a multiprocessing system, a single time-of-day
clock may be shared by more than one CPU, or
each CPU may have a separate time-of-day clock.
However, each CPU has a separate clock
comparator, CPU timer, and interval timer.

Chapter 4. Control 4-15

Time-of-Day Clock
The time-of-day (TOD) clock provides a high­
resolution measure of real time suitable for the in­
dication of date and time of day. The cycle of the
clock is approximately 143 years.

In a configuration with more than one CPU,
each CPU may have a separate time-of-day clock,
or more than one CPU may share a clock, depend­
ing on the model. In all cases, each CPU has ac­
cess to a single clock.

Format
The time-of-day clock is a binary counter with the
format shown in the following illustration. The bit
positions of the clock are numbered ° to 63, corre­
sponding to the bit positions of a 64-bit unsigned
binary integer.

r 1
microsecond

I I
0 51 63

In the basic form, the time-of-day clock is incre­
mented by adding a one in bit position 51 every
microsecond. In models having a higher or lower
resolution, a different bit position is incremented at
such a frequency that the rate of advancing the
clock is the same as if a one were added in bit posi­
tion 51 every microsecond. The resolution of the
time-of-day clock is such that the incrementing rate
is comparable to the instruction-execution rate of
the model.

When more than one time-of-day clock exists in
a configured system, the stepping rates are syn­
chronized such that all time-of-day clocks in the
configuration are incremented at exactly the same
rate.

When incrementing of the clock causes a carry
to be propagated out of bit position 0, the carry is
ignored, and counting continues from zero on. The
program is not alerted, and no interruption condi­
tion is generated as a result of the overflow.

The operation of the clock is not affected by any
normal activity or event in the system. Increment­
ing of the clock does not depend on whether the
wait-state bit of the PSW is one or whether the
CPU is in the stopped, operating, or load state. Its
operation is not affected by CPU, initial-CPU, pro­
gram, initial-program, or clear resets or by initial
program loading. Operation of the clock is also not
affected by the setting of the rate control or by an
initial-microprogram-Ioading operation. Depending

4-16 System/370 Principles of Operation

on the model and the configuration, a time-of-day
clock mayor may not be powered independent of a
CPU that accesses it.

States
The following states are distinguished for the time­
of-day clock: set, not set, stopped, error, and not
operational. The state determines the condition
code set by execution of STORE CLOCK. The
clock is incremented, and is said to be running,
when it is in either the set state or the not-set state.

Not-Set State: When the power for the clock is
turned on, the clock is set to zero, and the clock
enters the not-set state. The clock is incremented
when in the not-set state. Incrementing begins at
zero.

When the clock is in the not-set state, execution
of STORE CLOCK causes condition code 1 to be
set and the current value of the running clock to be
stored.

Stopped State: The clock enters the stopped
state when SET CLOCK is executed on a CPU
accessing that clock and the clock is set. This oc­
curs when SET CLOCK is executed without en­
countering any exceptions and any manual TOD­
clock control in the configuration is set to the
enable-set position. The clock can be placed in the
stopped state from the set, not-set, and error states.
The clock is not incremented while in the stopped
state.

When the clock is in the stopped state, execution
of STORE CLOCK on a CPU accessing that clock
causes condition code 3 to be set and the value of
the stopped clock to be stored.

Set State: The clock enters the set state only
from the stopped state. The change of state is un­
der control of the TOD-clock-sync-control bit, bit
2 of control register 0, in the CPU which caused
that clock to enter the stopped state. When the bit
is zero, or the TOD-clock-synchronization facility
is not installed, that clock enters the set state at the
completion of execution of SET CLOCK. When
the bit is one, it remains in the stopped state until
either the bit is set to zero on the CPU that placed
that clock in the stopped state, or until any other
clock in the configured system is incremented to a
value of all zeros in bit positions 32-63. If any
clock is set to a value of all zeros in bit positions
32-63 and enters the set state as the result of a
signal from another clock, the updating of bits 32-
63 of the two clocks is in synchronism.

Incrementing of the clock begins with the first
stepping pulse after the clock enters the set state.

When the clock is in the set state, execution of
STORE CLOCK causes condition code 0 to be set
and the current value of the running clock to be
stored.

Error State: The clock enters the error state
when a malfunction is detected that is likely to
have affected the validity of the clock value. A
timing-facility-damage machine-check-interruption
condition is generated on each CPU which has ac­
cess to that clock whenever it enters the error state.

When STORE CLOCK is executed and the clock
accessed is in the error state, condition code 2 is
set, and the value stored is unpredictable.

Not-Operational State: The clock is in the not­
operational state when its power is off or when it is
disabled for maintenance. It depends on the model
if the clock can be placed in this state. Whenever
the clock enters the not-operational state, a timing­
facility-damage machine check is generated on each
CPU that has access to that clock.

When the clock is in the not-operational state,
execution of STORE CLOCK causes condition
code 3 to be set, and zero is stored.

Changes in Clock State
When the time-of-day clock accessed by a CPU
changes value or changes state, interruption condi­
tions pending for the TOD-clock sync check, clock
comparator, and CPU timer mayor may not be
recognized for a period of time up to 1.048576
seconds (220 microseconds) after the change.

Setting and Inspecting the Clock
The clock can be set to a specific value by execu­
tion of SET CLOCK if the manual TOD-clock con­
trol of any configured CPU is set to the enable-set
position. Setting the clock replaces the values in all
bit positions from bit position 0 through the right­
most position that is incremented when the clock is
running. However, on some models, the low-order
bits starting at or to the right of bit 52 of the speci­
fied value are ignored, and zeros are placed in the
corresponding positions of the clock.

The time-of-day clock can be inspected by exe­
cuting STORE CLOCK, which causes a 64-bit val­
ue to be stored. Two executions of STORE
CLOCK, possibly on different CPUs in the same
configuration, always store different values if the
clock is running, or, if separate clocks are accessed,
both clocks are running and synchronized.

The values stored for a running clock always
correctly imply the order of execution of STORE
CLOCK on one or more CPUs for all cases where
the order can be established by means of the pro­
gram. Zeros are stored in positions to the right of
the bit position that is incremented. In a configu­
ration with more than one CPU, however, when the
value of a running clock is stored, nonzero values
may be stored in positions to the right of the right­
most position that is incremented. This ensures
that a unique value is stored.

In a system where more than one CPU accesses
the same clock, SET CLOCK is interlocked such
that the entire contents appear to be updated at
once; that is, if SET CLOCK instructions are is­
sued simultaneously by two CPUs, the final result is
either one or the other value. If SET CLOCK is
issued on one CPU and STORE CLOCK on the
other, the result obtained by STORE CLOCK is
either the entire old value or the entire new value.
When SET CLOCK is issued by one CPU, a
STORE CLOCK issued on another CPU may find
the clock in the stopped state even when the
TOD-clock-sync-control bit is zero. The TOD­
clock-sync-control bit is bit 2 of control register O.
Since the clock enters the set state before incre­
menting, the first STORE CLOCK issued after the
clock enters the set state may still find the original
value introduced by SET CLOCK.

Programming Notes
1. Bit position 31 of the clock is incremented ev­

ery 1.048576 seconds; for some applications,
reference to the high-order 32 bits of the clock
may provide sufficient resolution.

2. Communication between systems is facilitated
by establishing a standard time origin, or stan­
dard epoch, which is the calendar date and time
to which a clock value of zero corresponds.
January 1, 1900,0 AM Greenwich Mean Time
(GMT) is recommended as the standard epoch
for the clock.

3. A program using the clock value as a time-of­
day and calendar indication must be consistent
with the programming support under which the
program is to run. If the programming support
uses the standard epoch, bit 0 of the clock re­
mains one through the years 1972-2041. Ordi­
narily, testing the high-order bit for a one is
sufficient to determine if the clock value is in
the standard epoch.

In converting to or from the current date or
time, the programming support assumes each
day to be 86,400 seconds. It does not take into

Chapter 4. Control 4-17

account "leap seconds" inserted or deleted be­
cause of time-correction standards.

4. Because of the limited accuracy of manually
setting the clock value, the low-order bit posi­
tions of the clock, expressing fractions of a sec­
ond, are normally not valid as indications of the
time of day. However, they permit elapsed­
time measurements of high resolution.

5. The following chart shows the time interval
between instants at which various bit positions
of the time-of-day clock are stepped. This time
value may also be considered as the weighted
time value that the bit, when one, represents.

TOO- Stepping Interval
Clock

OaYSIHoUrslMinutesl Bit Seconds

51 0.000 001
47 0.000 016
43 0.000 256

39 0.004 096
35 0.065 536
31 1.048 576

27 16.777 216
23 4 28.435 456
19 1 11 34.967 296

15 19 5 19.476 736
11 12 17 25 11.627 776
7 203 14 43 6.044 416
3 3257 19 29 36.710 656

6. The following chart shows the clock setting at
the start of various years. The clock settings,
expressed in hexadecimal notation, correspond
to 0 AM Greenwich Mean Time on January 1
of each year.

Year Clock Setting (Hex)

1900 0000 0000 0000 0000
1976 8853 BAFO B400 0000
1980 8F80 9F03 2200 0000
1984 96AO 84B5 9000 0000
1988 900A 6997 FEOO 0000
1992 A507 4E7A 6COO 0000
1996 AC34 335C OAOO 0000
2000 B361 183F 4800 0000

7. The stepping value of time-of-day-clock bit
position 63, if implemented, is 2-12 micro­
seconds, or approximately 244 picoseconds.
This value is called a clock unit.

4-18 System/370 Principles of Operation

The following chart shows various time intervals
in clock units expressed in hexadecimal notation.

Interval Clock Units (Hex)

1 microsecond 1000
1 mill i second 3E 8000
1 second F424 0000
1 minute 39 3870 0000
1 hour 069 3A40 0000
1 day 1 4100 7600 0000
365 days lCA E8Cl 3EOO 0000
366 days lCC 2A9E B400 0000
1,461 daysl 72C E4E2 6EOO 0000

1 Number of days in four years,
including a leap year.

8. On a multiprocessing system, after the time-of­
day clock is set and begins running, the pro­
gram should delay activity for 220 microseconds
(1.048576 seconds) to ensure that the CPU­
timer, clock-comparator, and TOD-clock-sync­
check interruption conditions are recognized by
the CPU.

Time-of-Day-Clock Synchronization
In a configuration with more than one CPU, each
CPU may have a separate time-of-day clock, or
more than one CPU may share a time-of-day clock,
depending on the model. In all cases, each CPU
has access to a single clock.

The time-of-day-clock-synchronization facility
provides the functions that make it possible to pro­
vide, in conjunction with a supervisor clock­
synchronization program, only one time-of-day
clock, in effect, in a multiprocessing system. The
result is such that, to all programs storing the clock
value, it appears that all CPUs read the same clock.
The TOD-clock-synchronization facility provides
these functions in such a way that even though the
number of clocks in a multiprocessing system is
model-dependent, a single model-independent
clock-synchronization routine can be written. The
following functions are provided:
• Synchronized stepping rates for all time-of-day

clocks in the configuration. Thus, if all clocks
are set to the same value, they will stay in
synchronism.

• The low-order 32 bits of each clock in the con­
figuration are compared. An unequal condition
is signaled by an external interruption indicating
the TOD-clock-sync-check condition.

• Setting a time-of-day clock in the stopped state.

• Causing a stopped clock to start incrementing in
response to a signal from a running clock.

• Causing a stopped clock, with the TOD-clock­
sync-control bit set to one, to start incrementing
when bits 32-63 of any running clock in the con­
figuration are incremented to zero. This permits
the program to synchronize all clocks to any par­
ticular clock without requiring special operator
action to select a "master clock" as the source of
the clock-synchronization pulses.

Programming Notes
1. Time-of-day-clock synchronization provides for

checking and synchronizing only the low-order
bits of the time-of-day clock. The program
must check for synchronization of the leftmost
bits and must communicate the leftmost-bit
values from one CPU to another in order to
correctly set the time-of-day-clock contents.

2. The TOD-clock-sync-check external interrup­
tion can be used to determine the number of
time-of-day clocks in the configuration.

Clock Comparator
The clock comparator provides a means of causing
an interruption when the time-of-day-clock value
exceeds a value specified by the program.

In a multiprocessing system, each CPU has a
separate clock comparator.

The clock comparator has the same format as the
time-of-day clock. In the basic form, the clock
comparator consists of bits 0-47, which are com­
pared with the corresponding bits of the time-of­
day clock. In some models, higher resolution is
obtained by providing more than 48 bits. The bits
in positions provided in the clock comparator are
compared with the corresponding bits of the clock.
When the resolution of the clock is less than that of
the clock comparator, the contents of the clock
comparator are compared with the clock value as
this value would be stored by executing STORE
CLOCK.

The clock comparator causes an external inter­
ruption with the interruption code 1004 (hex). A
request for a clock-comparator interruption exists
whenever either of the following conditions exists:
1. The time-of-day clock is running and the value

of the clock comparator is less than the value in
the compared portion of the clock, both values
being considered unsigned binary integers.
Comparison follows the rules of unsigned bina­
ry arithmetic.

2. The time-of-day clock is in the error state or
the not-operational state.

A request for a clock-comparator interruption
does not remain pending when the value of the
clock comparator is made equal to or greater than
that of the time-of-day clock or when the value of
the time-of-day clock is made less than the clock­
comparator value. The latter may occur as a result
of the time-of-day clock either being set or wrap­
ping to zero.

The clock comparator can be inspected by exec­
uting the instruction STORE CLOCK COMPARA­
TOR and can be set to a specific value by execut­
ing the SET CLOCK COMPARATOR instruction.

The contents of the clock comparator are initial­
ized to zero by initial CPU reset.

Programming Notes
1. An interruption request for the clock compara­

tor persists as long as the clock-comparator val­
ue is less than that of the time-of-day clock or
as long as the time-of-day clock is in the error
or not-operational state. Therefore, one of the
following actions must be taken after an exter­
nal interruption for the clock comparator has
occurred and before the CPU is again enabled
for external interruptions: the value of the
clock comparator has to be replaced, the time­
of-day clock has to be set, or the clock­
comparator submask has to be set to zero. Oth­
erwise, loops of external interruptions are
formed.

2. The instruction STORE CLOCK may store a
value which is greater than that in the clock
comparator, even though the CPU is enabled
for the clock-comparator interruption. This is
because the time-of-day clock may be incre­
mented one or more times between when in­
struction execution is begun and when the clock
value is accessed. In this situation, the inter­
ruption occurs when the execution of STORE
CLOCK is completed.

CPU Timer
The CPU timer provides a means for measuring
elapsed CPU time and for causing an interruption
when a prespecified amount of time has elapsed.

In a multiprocessing system, each CPU has a
separate CPU timer.

The CPU timer is a binary counter with a format
which is the same as that of the time-of-day clock,
except that bit 0 is considered a sign. In the basic
form, the CPU timer is decremented by subtracting
a one in bit position 51 every microsecond. In
models having a higher or lower resolution, a dif­
ferent bit position is decremented at such a fre­
quency that the rate of decrementing the CPU tim-

Chapter 4. Control 4-19

er is the same as if a one were subtracted in bit
position 51 every microsecond. The resolution of
the CPU timer is such that the stepping rate is
comparable to the instruction-execution rate of the
model.

The CPU timer requests an external interruption
with the interruption code 1005 (hex) whenever
the CPU-timer value is negative (bit 0 of the CPU
timer is one). The request does not remain pending
when the CPU-timer value is changed to a
nonnegative value.

When both the CPU timer and the time-of-day
clock are running, the stepping rates are synchro­
nized such that both are stepped at the same rate.
Normally, decrementing the CPU timer is not af­
fected by concurrent I/O activity. However, in
some models the CPU timer may stop during ex­
treme I/O activity and other similar interference
situations. In these cases, the time recorded by the
CPU timer provides a more accurate measure of the
CPU time used by the program than that which
would have been recorded had the CPU timer con­
tinued to step.

The CPU timer is decremented when the CPU is
in the operating state or the load state. When the
manual rate control is set to instruction step, the
CPU timer is decremented only during the time in
which the CPU is actually performing a unit of
operation. However, depending on the model, the
CPU timer mayor may not be decremented when
the time-of-day clock is in the error, stopped, or
not-operational state.

Depending on the model, the CPU timer mayor
may not be decremented when the CPU is in the
check-stop state.

The CPU timer can be inspected by executing
the instruction STORE CPU TIMER and can be set
to a specific value by executing the SET CPU TIM­
ER instruction.

The CPU timer is set to zero by initial CPU re­
set.

Programming Notes
1. The CPU timer in association with a program

may be used both to measure CPU-execution
time and to signal the end of a time interval on
the CPU.

2. The time measured for the execution of a se­
quence of instructions may depend on the ef­
fects of such things as I/O interference, page
faults, and instruction retry. Hence, repeated
measurements of the same sequence on the
same installation may differ.

3. The fact that a CPU-timer interruption does
not remain pending when the CPU timer is set

4-20 System/370 Principles of Operation

to a positive value eliminates the problem of an
undesired interruption. This would occur if,
between the time when the old value is stored
and a new value is set, the CPU is disabled for
CPU-timer interruptions and the CPU timer
value goes from positive to negative. .

4. The fact that CPU-timer interruptions are re­
quested whenever the CPU timer is negative
rather than just when the CPU timer goes from
positive to negative eliminates the requirement
for testing a value to ensure that it is positive
before setting the CPU timer to that value.

As an example, a program being timed by
the CPU timer is interrupted for a cause other
than the CPU timer, external interruptions are
disallowed by the new PSW, and the CPU­
timer value is then saved by STORE CPU TIM­
ER. This value could be negative if the CPU
timer went from positive to negative since the
interruption. Subsequently, when the program
being timed is to continue, the CPU timer may
be set to the saved value by SET CPU TIMER.
A CPU-timer interruption will occur immedi­
ately after external interruptions are again en­
abled if the saved value was negative.

The persistence of the CPU-timer­
interruption request means, however, that after
an external interruption for the CPU timer has
occurred, either the value of the CPU timer has
to be replaced or the CPU-timer submask has
to be set to zero before the CPU is again en­
abled for external interruptions. Otherwise,
loops of external interruptions are formed.

5. The instruction STORE CPU TIMER may store
a negative value even though the CPU is en­
abled for the interruption. This is because the
CPU-timer value may be decremented one or
more times between the instants when instruc­
tion execution is begun and when the CPU tim­
er is accessed. In this situation, the interrup­
tion occurs when the execution of STORE CPU
TIMER is completed.

Interval Timer
The interval timer is a binary counter that occupies
a word at real storage location 80 and has the fol­
lowing format:

o 24 31

The interval timer is treated as a 32-bit signed
binary integer. In the basic form, the contents of

the interval timer are reduced by one in bit position
23 every 1/300 of a second. Higher resolution of
timing may be obtained in some models by counting
with higher frequency in one of the positions 24
through 31. In each case, the frequency is adjusted
to cause decrementing in bit position 23 at the rate
of 300 times per second. The cycle of the interval
timer is approximately 15.5 hours.

The interval timer causes an external interrup­
tion, with bit 8 of the interruption code set to one
and bits 0-7 set to zeros. Bits 9-15 of the interrup­
tion code are zeros unless set to ones for another
condition that is concurrently indicated.

A request for an interval-timer interruption is
generated whenever the interval-timer value is
decremented from a positive or zero number to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared by
an interval-timer interruption or a CPU reset. The
overflow occurring as the interval-timer value is
decremented from a large negative number to a
large positive number is ignored.

The interval timer is not necessarily synchro­
nized with the time-of-day clock.

The interval-timer contents are updated at the
appropriate frequency whenever other machine
activity permits. The updating occurs only between
instruction executions, except that the interval tim­
er may be updated between units of operation of an
interruptible instruction, such as MOVE LONG.
An updated interval-timer value is normally availa­
ble at the end of each instruction execution. When
the execution of an instruction or other machine
activity causes updating to be delayed by more than
one period, the contents of the interval timer may
be reduced by more than one unit in a single updat­
ing cycle. Interval-timer updating may be omitted
when I/O data transmission approaches the limit of
storage capability, or when a channel sharing CPU
equipment and operating in burst mode causes CPU
activity to be locked out. The program is not alert­
ed when omission of updating causes the real-time
count to be lost.

When the contents of the interval timer are
fetched by a channel or by another CPU, or when
they are used as the source of an instruction, the
result is unpredictable. Similarly, storing by the
channel, or by another CPU, at location 80 causes
the contents of the interval timer to be unpredicta­
ble.

The interval timer is not decremented when the
manual interval-timer control is set to disable. The
interval timer is also not decremented when the
CPU is not in the operating state or when the man­
ual rate control is set to instruction step.

Depending on the model, the interval timer may
or may not be decremented when the time-of-day
clock is in the error, stopped, or not-operational
state.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions
pending for the interval timer mayor may not be
recognized for a period of time up to 1.048576
seconds after the change.

Programming Notes
1. The value of the interval timer is accessible by

fetching the word at location 80 as an operand,
provided the location is not protected against
fetching. It may be changed at any time by
storing a word at location 80. When location
80 is protected, any attempt by the program to
change the value of the interval timer causes a
program interruption for protection exception.

2. The value of the interval timer may be changed
without losing the real-time count by storing
the new value at locations 84-87 and then
shifting bytes 80-87 to locations 76-83 by
means of the instruction MOVE (MVC). Thus,
in a single operation, the new interval-timer
value is placed at location 80, and the old value
is made available at location 76.

If any means other than the instruction
MOVE (MVC) are used to interrogate and
then replace the value of the interval timer,
including MOVE LONG or two separate in­
structions, the program may lose a time incre­
ment when an updating cycle occurs between
fetching and storing.

3. When the value of the interval timer is to be
recorded on an I/O device, the program should
first store the interval-timer value in a tempo­
rary storage location to which the I/O opera­
tion subsequently refers. When the channel
fetches the interval-timer value directly from
location 80, the value obtained is unpredictable.

Externally Initiated Functions

Resets
Seven reset functions are provided:
• CPU reset
• Initial CPU reset

I. Subsystem reset
• Program reset
• Initial program reset
• Clear reset
• Power-on reset

Chapter 4. Control 4-21

CPU reset provides a means of clearing
equipment-check indications and any resultant un­
predictability in the CPU state with the least
amount of information destroyed. In particular, it
is used to clear check conditions when the CPU
state is to be preserved for analysis or resumption
of the operation.

Initial CPU reset provides the functions of CPU
reset together with initialization of the current
PSW, CPU timer, clock comparator, prefix, and
control registers.

Subsystem reset provides a means for clearing
floating interruption conditions and for resetting
channel-set connections as well as for invoking
I/O-system reset.

Program reset and initial program reset cause
CPU reset and initial CPU reset, respectively, to be
performed and cause I/ O-system reset to' be per­
formed (see the section "I/O-System Reset" in
Chapter 12, "Input/Output Operations").

Clear reset causes initial CPU reset and subsys­
tem leset to be performed and, additionally, clears
or initializes all storage locations and registers in all
CPUs in the configuration, with the exception of
the time-of-day clock. Such clearing is useful in
debugging programs and in ensuring user privacy.
Clearing does not affect external storage, such as
direct-access storage devices used by the control
program to hold the contents of un addressable
pages.

The power-on-reset sequences for the time-of­
day clock, main storage, and channels may be in­
cluded as part of the CPU power-on sequence, or
the power-on sequence for these units may be initi­
ated separately.

4-22 System/370 Principles of Operation

CPU reset, subsystem reset, and clear reset are
initiated manually using the operator facilities (see
Chapter 13, "Operator Facilities"). Initial CPU
reset is part of the initial-program-Ioading function.
The figure "Manual Initiation of Resets" summa­
rizes how these four resets are manually initiated.
Power-on reset is performed as part of turning
power on. The reset actions are tabulated in the
figure "Summary of Reset Actions." For informa­
tion concerning what resets can be performed by
the SIGNAL PROCESSOR instruction, see the
section "Signal-Processor Orders" in this chapter.

Function Performed On 1

CPU on Which Key Other CPUs Rema i nder of
Key Activated Was Act ivated in Conf i 9 Configuration

Sys tem- reset -norma 1
key

* . without store- In i t i a 1 CPU reset Subsystem reset
status facility . wi th store- CPU reset CPU reset Subsystem reset
status facility

Sys tem- reset-c 1 ear Clear reset 2 Clear reset 2 Clear reset 3
key

Load-norma 1 key In i t i a I-CPU reset, CPU reset Subsystem reset
followed by I PL

Load-c 1 ear key Clear reset 2 , fo 1- Clear reset 2 Clear reset 3
lowed by IPL

EX(21anat ion:

* Th i s situation cannot occur, since the 5 tore-5 tat us facility is
provided in a CPU equ i pped for mu 1 t i process i ng.

I Act ivation of a system-reset or load key may change the config-
uration, including the connect i on wi th 110. s tor age units, and
other CPUs.

2 On Iy the CPU elements of th i 5 reset app I y.

3 On Iy the non-CPU elements "f th i s reset app Iy.

Manual Initiation of Resets

CPU
PSW
Prefix
CPU timer

Area Affected

Clock comparator
Control registers
General registers
Floating-point registers
Storage keys
Volatile main storage
Nonvolatile main storage
Time-of-day clock
Channel-set connection
Configured channels

Explanation:

Sub­
system

Reset

U
U
U
U
U
U
U
U
U
U
U2
U
I
RA

CPU
Reset

S
U/V
U/V
U/V
U/V
U/V
U/V
U/V
U
U
U2
U
U
U

Reset Function

Program
Reset

S
U/V
U/V
U/V
U/V
U/V
U/V
U/V
U
U
U2
U
U
RC

Initial Initial
CPU Program

Reset Reset

SI
C*1
C
C
C
I
U/V
U/V
U
U
U2
U
U
U

S
C*
C
C
C
I
U/V
U/V
U
U
U2
U
U
RC

Clear
Reset

SI
C1,1
C
C
C
I
C/V
C/V
C
C
C2
U
I
RA

Power­
On

Reset

S The CPU is reset; current operations, if any, are terminated; interruption
conditions in the CPU are cleared; and the CPU is placed in the stopped state.

RA I/O-system reset is performed in all the channels in the configuration and pending
I/O-interruption conditions are cleared. As part of this reset, system reset is
signaled to the I/O control units and devices configured to the channels being
reset.

RC I/O-system reset is performed in those channels connected to the CPU performing the
program reset or initial-program reset. As part of this reset, system reset is
signaled to the I/O control units and devices configured to the channels being
reset.

U The state, condition, or contents of the field remain unchanged. However, the
resulting value is unpredictable if an operation is in progress that changes the
state, condition, or contents of the field at the time of reset.

U/V The contents remain unchanged, provided the field is not being accessed at the time
the reset function is performed. However, on some models the checking-block code
of the contents may be made valid. The subsequent contents of a field are unpre­
dictable if it is accessed at the time of the reset.

C The condition or contents are cleared. If the area affected is a field, the con­
tents are cleared to zero with val id checking-block code.

C/V The checking-block code of the contents is made valid. The contents normally are
cleared to zeros but in some models may be left unchanged.

C/X The checking-block code of the contents is made val id. The contents normally are
cleared to zeros but in some models may be left unpredictable.

I The state or contents are initialized. If the area affected is a field, the con­
tents are set to their initial values with val id checking-block code.

T The time-of-day clock is initialized to zero and validated; it enters the not-set
state.

I Summary of Reset Actions (Part 1 of 2)

Chapter 4. Control 4-23

Explanation (Continued):

* Clearing the contents of the PSW to zero causes the CPU to assume the BC-mode for­
mat. The contents of the instruction-length-code and interruption-code fields re­
main unpredictable, as these values are not retained when a new PSW is introduced.

When the IPL sequence follows the reset function on that CPU, the CPU does not
enter the stopped state, and the PSW is not necessarily cleared to zeros.

2 Access to the TOD clock by means of STORE CLOCK at the time a reset function is
performed does not cause the value of the TOD clock to be affected.

3 When these units are separately powered, the action is performed only when the
power for the unit is turned on.

4 When these units are separately powered, the action is model-dependent.

Summary of Reset Actions (Part 2 of 2)

CPU Reset
CPU reset causes the following actions:
1. The execution of the current instruction or oth­

er processing sequence, such as an interruption,
is terminated, and all program-interruption and
supervisor-calI-interruption conditions are
cleared.

2. Any pending external-interruption conditions
which are local to the CPU are cleared. Float­
ing external-interruption conditions are not
cleared.

3. Any pending machine-cheek-interruption condi­
tions and error indications which are local to
the CPU and any check-stop states are cleared.
Floating machine-check-interruption conditions
are not cleared. A broadcast machine check
which has been made pending to a CPU is said
to be local to the CPU.

4. All copies of prefetched instructions or oper­
ands are cleared. Additionally, any results to
be stored because of the execution of instruc­
tions in the current checkpoint interval are
cleared.

5. The translation-look aside buffer is cleared of
entries.

6. The CPU is placed in the stopped state after
actions 1-5 have been completed.

Registers, storage contents, and the state of con­
ditions external to the CPU remain unchanged by
CPU reset. However, the subsequent contents of
the register, location, or state are unpredictable if
an operation is in progress that changes the con­
tents at the time of the reset.

When the reset function in the CPU is initiated
at the time the CPU is executing an I/O instruction
or is in the process of taking an 110 interruption,
the current operation between the CPU and the

4-24 System/370 Principles of Operation

channel mayor may not be completed, and the
resultant state of the associated channel may be
unpredictable.

Programming Note
Most operations which would change a state, a con­
dition, or the contents of a field cannot occur when
the CPU is in the stopped state. However, some
signal-processor functions and some operator func­
tions may change these fields. To eliminate the
possibility of losing a field when CPU reset is is­
sued, the CPU should be stopped, and no operator
functions should be in progress.

Initial CPU Reset
Initial CPU reset combines the CPU reset functions
with the following clearing and initializing func­
tions:
1. The contents of the current PSW, prefix, CPU

timer, and clock comparator are set to zero.
2. All assigned control-register positions are set to

their initial values.

These clearing and initializing functions include
validation.

Setting the current PSW to zero causes the PSW
to assume the BC-mode format. The instruction­
length code and interruption code are unpredicta­
ble, because these values are not retained when a
new PSW is introduced.

Subsystem Reset
Subsystem reset operates only on those elements of
the configuration which are not CPUs. It performs
the following actions for the remainder of the con­
figuration.
1. I/O-system reset is performed in each channel

in the configuration.

2. All floating interruption conditions in the con­
figuration are cleared.

3. Channel-set connections are initialized to con­
nect each channel set to its home CPU if one
exists, or to make the channel set disconnected
if no home CPU exists.

As part of the I/O-system reset performed in
each channel, pending I/O-interruption conditions
are cleared, and system reset is signaled to all con­
trol units and devices configured to the channel
(see the section "I/O-System Reset" in Chapter
12, "Input/Output Operations"). The effect of
system reset on 1/ 0 control units and devices and
the resultant control-unit and device state are de­
scribed in the appropriate publication on the con­
trol unit or device. A system reset, in general, re­
sets only those functions in a shared control unit or
device that are associated with the particular chan­
nel signaling the reset.

Program Reset
For program reset, CPU reset is performed, and
I/O-system reset is performed in each channel con­
nected to this CPU.

As part of the I/O-system reset performed in
each channel, pending I/O-interruption conditions
are cleared, and system reset is signaled to all con­
trol units and devices configured to the channel
(see the section "I/O-System Reset" in Chapter
12, "Input/Output Operations"). The effect of
system reset on 1/ 0 control units and devices and
the resultant control-unit and device state are de­
scribed in the appropriate publication on the con­
trol unit or device. A system reset, in general, re­
sets only those functions in a shared control unit or
device that are associated with the particular chan­
nel signaling the reset.

Initial Program Reset
Initial program reset combines the program-reset
functions with the clearing and initializing func­
tions of initial CPU reset.

Clear Reset
Clear reset combines the initial-CPU-reset function
with an initializing function which causes the fol­
lowing actions:
1. In most models the contents of the general and

floating-point registers are set to zero, but in
some models the contents may be left un­
changed except that the checking-block code is
made valid.

2. The contents of the main storage and the stor­
age keys in the configuration are set to zero
with valid checking-block code.

I 3. A subsystem reset is performed.

Validation is included in setting registers and in
clearing storage.

Programming Notes
1. For the CPU-reset or program-reset operation

not to affect the contents of fields that are to
be left unchanged, the CPU must not be execu­
ting instructions and must be disabled for all
interruptions at the time of the reset. Except
for the operation of the time-of-day clock, in­
terval timer, and CPU timer and for the possi­
bility of taking a machine-check interruption,
all CPU activity can be quiesced by placing the
CPU in the wait state and by disabling it for
I/O and external interruptions. To avoid the
possibility of causing a reset at the time the
timing facilities are being updated or a
machine-check interruption occurs, the CPU
must be in the stopped state.

2. CPU reset, initial CPU reset, program reset,
initial program reset, and clear reset do not af­
fect the value and state of the time-of-day
clock.

3. The conditions under which the CPU enters the
check-stop state are model-dependent and in­
clude malfunctions that preclude the completion
of the current operation. Hence, if CPU reset,
initial CPU reset, program reset, or initial pro­
gram reset is executed while the CPU is in the
check-stop state, the contents of the PSW, reg­
isters, and storage locations, including the stor­
age keys and the storage location accessed at
the time of the error may have unpredictable
values, and, in some cases, the contents may
still be in error after the check-stop state is
cleared by these resets. In such a case, a clear
reset is required to clear the error.

4. Clear reset causes all bit positions of the inter­
val timer to be cleared to zeros.

Power-On Reset
The power-an-reset function for a component of
the system is performed as part of the power-on
sequence for that component.

The power-on sequences for the time-of-day
clock, main storage, and channels may be included
as part of the CPU power-on sequence, or the
power-on sequence for these units may be initiated
separately. The following sections describe the
power-on resets for the CPU, time-of-day clock,

Chapter 4. Control 4-25

main storage, and I/O. See also Chapter 12, "I/O
Operations," and the appropriate System Library
(SL) publication for channels, control units, and
I/O devices.

CPU Power-On Reset: The power-on reset caus­
es initial CPU reset to be performed and mayor
may not cause 1/ O-system reset to be performed in
the channel. The contents of general registers and
floating-point registers normally are cleared to
zeros, but in some models may be left unpredicta­
ble, with valid checking-block code.

TOO-Clock Power-On Reset: The power-on
reset causes the value of the time-of-day clock to
be set to zero and causes the clock to enter the
not-set state.

Main-Storage Power-On Reset: For volatile
main storage (one that does not preserve its con­
tents when power is down) and for storage keys,
power-on reset causes valid checking-block code to
be placed in these fields. In most models, the con­
tents are cleared to zeros, but, in some models, the
contents may be liUt unpredictable except for the
checking-block code. The contents of nonvolatile
main storage, including the checking-block code,
remain unchanged.

I/O Power-On Reset: The I/O power-on reset
causes I/O-system reset to be performed (see the
section "I/O-System Reset" in Chapter 12,
"Input/Output Operations").

Initial Program Loading
Initial program loading (IPL) is provided to initiate
processing when the contents of storage or of the
PSW are not suitable for processing.

Initial program loading is initiated manually by
designating an input device with the load-unit­
address controls and subsequently activating the
load-normal or load-clear key. The load-normal
key causes an initial-program-reset operation to be
performed, and the load-clear key causes a clear­
reset operation to be performed. The CPU enters
the load state. Subsequently, a read operation is
initiated from the selected input device. The CPU
does not necessarily enter the stopped state during
the execution of the reset operation. The load indi­
cator is on while the CPU is in the load state.

The read operation is performed as if a START
1/ 0 instruction were executed that specified the
channel, subchannel, and I/O device designated by
the load-unit-address controls. The operation uses
an implied channel-address word (CAW) contain-

4-26 System/370 Principles of Operation

ing a subchannel key of zero, and a channel­
command-word (CCW) address of 0, but the CAW
location in storage, location 72, is not accessed.
The load-unit-address controls provide the 12
rightmost bits of the I/O address; zeros are implied
for the leftmost bits.

Although the location of the first CCW to be
executed is specified by the CCW address as 0, the
first CCW actually executed is an implied CCW,
containing, in effect, a read command with the
modifier bits set to zeros, a data address of 0, a
byte count of 24, the chain-command flag set to
one, the SLI flag set to one, the chain-data flag set
to zero, the skip flag set to zero, and the PCI flag
set to zero. The CCW fetched, as a result of com­
mand chaining, from storage location 8 or 16, as
well as any subsequent CCW in the IPL sequence,
is interpreted the same as a CCW in any I/O oper­
ation, except that any PCI flags that are specified
in CCWs used for the IPL sequence are ignored.

When the I/O device provides channel-end sta­
tus for the last operation of the IPL chain and no
exceptional conditions are detected in the opera­
tion, a new PSW is obtained from storage locations
0-7. When this PSW specifies the EC mode, the
I/O address that was used for the IPL operation is
stored at locations 186-187, and zeros are stored at
location 185; when the BC mode is specified, the
I/O address is stored at locations 2-3. The CPU
leaves the load state and enters the operating state,
with CPU operation proceeding under the control
of the new PSW, provided the rate control is set to
process; if the rate control is set to instruction step,
the CPU enters the stopped state after the new
PSW has been obtained.

When channel-end status for the IPL operation
is presented, either separate from or along with
device-end status, no I/O-interruption condition is
generated. Similarly, any PCI flags specified by the
program in the CCWs used for the IPL sequence
are ignored. If the device-end status for the IPL
operation is provided separately after channel-end
status, it causes an I/O interruption condition to be
generated.

If the IPL I/O operation or the PSW loading is
not completed satisfactorily, the CPU remains in
the load state, and the load indicator remains on.
This occurs when the device designated by the
load-unit-address controls is not operational, when
the device or channel signals any condition other
than channel end, device end, or status modifier
during or at the completion of the IPL I/O opera­
tion, or when the PSW loaded from location ° has
a PSW-format error that is recognized during the
loading procedure. The address of the 1/ 0 device

used in the IPL operation is not stored. The con­
tents of storage locations 0-7 are unpredictable.
The contents of other storage locations remain un­
changed, except possibly for those locations due to
be changed by the read operations.

When fewer than eight bytes are read into loca­
tions 0-7, the PSW fetched from location 0 at the
conclusion of the IPL operation is unpredictable.

Programming Notes
1. The information read and placed at locations

8-15 and 16-23 may be used as CCWs for
reading additional information during the IPL
sequence: the CCW at location 8 may specify
reading additional CCWs elsewhere in storage,
and the CCW at location 16 may specify the
transfer-in-channel command, causing transfer
to these CCWs.

The status-modifier bit has its normal effect
during the IPL operation, causing the channel
to fetch and chain to the CCW whose address
is 16 higher than that of the current CCW.
This applies also to the initial chaining that oc­
curs after completion of the read operation
specified by the implicit CCW.

The PSW that is loaded at the completion of
the IPL procedure may be provided by the first
eight bytes of the IPL I/O operation or may be
placed at locations 0-7 by a subsequent CCW.

2. When the PSW in location 0 has bit 14 set to
one, the CPU is placed in the wait state after
the IPL procedure is completed; at that point,
the load and manual indicators are off, and the
wait indicator is on.

3. Activating the load-normal key permits an IPL
program to be loaded with a minimum distur­
bance of storage contents. This function may
be useful in debugging. When the power is
turned on or the load-clear key is activated, the
IPL program starts with a cleared machine in a
known state, except that information on
external storage remains unchanged.

Store Status
The store-status facility includes:
1. A change to the operation of the system-reset­

normal key. With the store-status facility in­
stalled, activating the system-reset-normal key
causes a CPU-reset operation and a subsystem­
reset operation to be performed; without this
facility, an initial-CPU-reset operation and
subsystem-reset operation are performed.

2. An operator-initiated store-status function.

The store-status operation places the contents of
the CPU registers, except for the time-of-day clock,
in assigned storage locations. The information pro­
vided for control-register positions which are not
assigned is unpredictable.

The figure" Assigned Storage Locations for
Store Status" lists the fields that are stored, their
length, and their location in main storage.

Length in Absolute
Field Bytes Address

CPU timer 8 216
Clock comparator 8 224
Current PSW 8 256
Prefix 4 264
Model-dependent feat 4 268
Fl-pt registers 0-6 32 352
General registers 0-15 64 384
Control registers 0-15 64 448

Assigned Storage Locations for Store Status

The word beginning at absolute location 268 is
reserved for storing additional status as required by
certain model-dependent features. If no feature
requiring this location is installed, the contents of
the field remain unchanged upon execution of the
store-status function.

The contents of the registers are not changed. If
an error is encountered during the operation, the
CPU enters the check-stop state.

The store-status operation can be initiated man­
ually by use of the store-status key (see Chapter
13, "Operator Facilities"). The store-status opera­
tion can also be initiated at the addressed CPU by
executing SIGNAL PROCESSOR, specifying the
stop-and-store-status order.

Multiprocessing
The multiprocessing feature provides for the inter­
connection of CPUs, via a common main storage,
in order to enhance system availability and to share
data and resources. The multiprocessing feature
includes the following facilities:
• Shared main storage
• Time-of-day-clock synchronization
• Prefixing
• CPU-address identification
• CPU signaling and response

Time-of-day-clock synchronization is described
earlier in this chapter. Prefixing is described in
Chapter 3, "Storage." Shared main storage, CPU­
address identification, and CPU signaling and re­
sponse are described in the sections which follow.

Chapter 4. Control 4-27

Associated with these facilities are four exten­
sions to the external interruption (external call,
emergency signal, TOD-clock-sync check, and mal­
function alert), which are described in Chapter 6,
"Interruptions"; control-register positions for the
TOD-clock-sync-control bit and for the masks for
the external-interruption conditions, which are list­
ed in the section "Control Registers" in this chap­
ter; and the instructions SET PREFIX, SIGNAL
PROCESSOR, STORE CPU ADDRESS, and
STORE PREFIX, which are described in Chapter
10, "Control Instructions."

Channels in a multiprocessing system are con­
nected to a particular CPU. Only that CPU which
is connected to a channel can initiate I/O opera­
tions at that channel, and all interruption condi­
tions are directed to that CPU. When channel-set
switching is installed, the channel-CPU connection
can be changed by means of the program.

Shared Main Storage
The shared-main-storage facility permits more than
one CPU to have access to common main-storage
locations. All CPUs having access to a common
main-storage location have access to the entire
2,048-byte block containing that location and to
the associated storage key. All CPUs and all chan­
nels refer to a shared main-storage location using
the same absolute address.

CPU-Address Identification
Each CPU in a multiprocessing configuration has a
number assigned, called its CPU address. A CPU
address uniquely identifies one CPU within a con­
figuration. The CPU is designated by specifying
this address in the CPU-address field of a SIGNAL
PROCESSOR instruction. The CPU signaling a
malfunction alert, emergency signal, or external call
is identified by storing this address in the CPU­
address field with the interruption. The CPU ad­
dress is assigned during system installation and is
not changed as a result of configuration changes.
The program can determine the address of the CPU
by means of the instruction STORE CPU AD­
DRESS.

CPU Signaling and Response
The CPU-signaling-and-response facility consists of
the instruction SIGNAL PROCESSOR and a mech­
anism to interpret and act on several order codes.
The facility provides for communications among
CPUs, including transmitting, receiving, and decod­
ing a set of assigned order codes; initiating the
specified operation; and responding to the signaling
CPU. If a CPU has the CPU-signaling-and-

4-28 System/370 Principles of Operation

response facility installed, it can address the SIG­
NAL PROCESSOR instruction to itself. The SIG­
NAL PROCESSOR instruction is described in
Chapter 10, "Control Instructions."

Signal-Processor Orders
The signal-processor orders are specified in bit pos­
itions 24-31 of the second-operand address of SIG­
NAL PROCESSOR and are encoded as shown in
the figure "Encoding of Orders."

Code Order

00 Unassigned
01 Sense
02 Exter na I ca II
03 Emergency signal
04 Start
05 Stop
06 Restart
07 Initial program reset
08 Program reset
09 Stop and store status
OA Initial microprogram load
08 Initial CPU reset
OC CPU reset

OO-FF Unassigned

Encoding of Orders

The orders are defined as follows:

Sense: The addressed CPU presents its status to
the issuing CPU (see the section "Status Bits" in
this chapter for a definition of the bits). No other
action is caused at the addressed CPU. The status
if not all zeros, is stored in the general register des~
ignated by the Rl field, and condition code 1 is set;
if all status bits are zeros, condition code 0 is set.

External Call: An external-call external­
interruption condition is generated at the addressed
CPU. The interruption condition becomes pending
during the execution of the SIGNAL PROCESSOR
instruction. The associated interruption occurs
when the CPU is enabled for that condition and
does not necessarily occur during the execution of
the SIGNAL PROCESSOR instruction. The ad­
dress of the CPU sending the signal is provided
with the interruption code when the interruption
occurs. Only one external-call condition can be
kept pending in a CPU at a time.

Emergency Signal: An emergency-signal
external-interruption condition is generated at the
addressed CPU. The interruption condition be­
comes pending during the execution of the SIG-

NAL PROCESSOR instruction. The associated
interruption occurs when the CPU is enabled for
that condition and does not necessarily occur dur­
ing the execution of the SIGNAL PROCESSOR
instruction. The address of the CPU sending the
signal is provided with the interruption code when
the interruption occurs. At anyone time the re­
ceiving CPU can keep pending one emergency­
signal condition for each CPU of the multiprocess­
ing system, including the receiving CPU itself.

Start: The addressed CPU performs the start
function (see the section "Stopped, Operating,
Load, and Check-Stop States" in this chapter).
The order is effective only when the addressed
CPU is in the stopped state, and the effect is un­
predictable when the stopped state has been en­
tered by reset. The CPU does not necessarily enter
the operating state during the execution of the SIG­
NAL PROCESSOR instruction.

Stop: The addressed CPU performs the stop
function (see the section "Stopped, Operating,
Load, and Check-Stop States" in this chapter).
The CPU does not necessarily enter the stopped
state during the execution of the SIGNAL PRO­
CESSOR instruction. No action is caused at the
addressed CPU if that CPU is in the stopped state
when the order code is accepted.

Restart: The addressed CPU performs the restart
operation (see the section "Restart Interruption" in
Chapter 6, "Interruptions"). The CPU does not
necessarily perform the operation during the execu­
tion of the SIGNAL PROCESSOR instruction.

Initial Program Reset: The addressed CPU per­
forms initial program reset (see the section
"Resets" in this chapter). The execution of the
reset does not affect other CPUs. The reset opera­
tion is not necessarily completed during the execu­
tion of the SIGNAL PROCESSOR instruction.

Program Reset: The addressed CPU performs
program reset (see the section "Resets" in this
chapter). The execution of the reset does not af­
fect other CPUs. The reset operation is not neces­
sarily completed during the execution of the SIG­
NAL PROCESSOR instruction.

Stop and Store Status: The addressed CPU per­
forms the stop function, followed by the store­
status function (see the section "Store Status" in
this chapter). The CPU does not necessarily com-

plete the operation, or even enter the stopped state,
during the execution of the SIGNAL PROCESSOR
instruction.

Initial Microprogram Load (IML): The addressed
CPU performs initial program reset and then initi­
ates the IML function. The latter function is the
same as that which is performed as part of manual
initial microprogram loading. If the IML function
is not provided on the addressed CPU, the order
code is treated as unassigned and invalid. The op­
eration is not necessarily completed during the ex­
ecution of the SIGNAL PROCESSOR instruction.

Initial CPU Reset: The addressed CPU performs
initial CPU reset (see the section "Resets" in this
chapter). The execution of the reset does not af­
fect other CPUs and does not cause I/O to be re­
set. If the initial-CPU-reset order is not provided
on the addressed CPU, the order is treated as unas­
signed and invalid. The reset operation is not nec­
essarily completed during the execution of the SIG­
NAL PROCESSOR instruction.

CPU Reset: The addressed CPU performs CPU
reset (see the section "Resets" in this chapter).
The execution of the reset does not affect other
CPUs and does not cause I/O to be reset. If the
CPU -reset order is not provided on the addressed
CPU, the order is treated as unassigned and inval­
id. The reset operation is not necessarily complet­
ed during the execution of the SIGNAL PROC­
ESSOR instruction.

Conditions Determining Response

Conditions Precluding Interpretation of the Order
Code
The following situations preclude the initiation of
the order. The sequence in which the situations are
listed is the order of priority for indicating concur­
rently existing situations.
1. The access path to the addressed CPU is busy

because a concurrently issued SIGNAL PRO­
CESSOR instruction is using the CPU­
signaling-and-response facility. The concur­
rently issued instruction mayor may not have
been issued by or to the addressed CPU and
mayor may not have been issued to this CPU.
The order is rejected. Condition code 2 is set.

2. The addressed CPU is not operational, that is,
the addressed CPU is not installed, is not con­
figured to the issuing CPU, is in certain
customer-engineer test modes, or does not have
power on. The order is rejected. Condition

Chapter 4. Control 4-29

code 3 is set. This condition cannot arise as a
result of a SIGP by a CPU addressing itself.

3. One of the following conditions exists at the
addressed CPU:
a. A previously issued start, stop, restart, or

stop-and-store-status order has been ac­
cepted by the addressed CPU, and execu­
tion of the function requested by the order
has not yet been completed.

b. A manual start, stop, restart, or store-status
function has been initiated at the addressed
CPU, and the function has not yet been
completed. This condition cannot arise as a
result of a SIGP by a CPU addressing itself.

c. A manual initial-program-Ioad function has
been initiated at the addressed CPU, and
the reset portion, but not the program-load
portion, of the function has been complet­
ed. This condition cannot arise as a result
of a SIGP by a CPU addressing itself.

If the currently specified order is sense, ex­
ternal call, emergency signal, start, stop, restart,
or stop-and-store-status, the order is rejected,
and condition code 2 is set. If the currently
specified order is an IML, one of the reset or­
ders, or an unassigned or not-implemented or­
der, the order code is interpreted as described
in the section "Status Bits," in this chapter.

4. One of the following conditions exists at the
addressed CPU:
a. A previously issued initial-program-reset,

program-reset, IML, initial-CPU-reset, or
CPU-reset order has been accepted by the
addressed CPU, and execution of the func­
tion requested by the order has not yet
been completed.

b. A manual-reset or IML function has been
initiated at the addressed CPU, and the
function has not yet been completed. The
term "manual-reset function" includes the
reset portion of IPL. This condition cannot
arise as a result of a SIGP by a CPU ad­
dressing itself.

If the currently specified order is sense, ex­
ternal call, emergency signal, start, stop, restart,
or stop-and-store-status, the order is rejected,
and condition code 2 is set. If the currently
specified order is an IML, one of the reset or­
ders, or an unassigned or not-implemented or­
der, either the order is rejected and condition
code 2 is set or the order code is interpreted as
described in the section "Status Bits," in this
chapter.

4-30 System/370 Principles of Operation

When any of the conditions described in items 3
and 4 exists, the addressed CPU is referred to as
"busy." Busy is not indicated if the addressed
CPU is in the check-stop state or when the
operator-intervening condition exists. A CPU-busy
condition is normally of short duration; however,
the conditions described in item 3 may last indefi­
nitely because of a string of interruptions or be­
cause of an invalid address in the prefix register.
In this situation, however, the CPU does not appear
busy to any of the reset orders or to IML.

When the conditions described in items 1 and 2
above do not apply and operator-intervening and
receiver-check status conditions do not exist at the
addressed CPU, reset orders may be accepted re­
gardless of whether the addressed CPU has com­
pleted a previously accepted order. This may cause
the previous order to be lost when it is only partial­
ly completed, making unpredictable whether the
results defined for the lost order are obtained.
However, some reset operations cannot themselves
be overridden, as described in the section "Resets"
in this chapter.

Status Bits
Various status conditions are defined whereby the
issuing and addressed CPUs can indicate their
response to the designated order. The status
conditions and their bit positions in the general
register designated by the Rl field of the SIGNAL
PROCESSOR instruction are shown in the figure
"Status Conditions."

Bit Position Status Condition

0 Equipment check
1-23 Unassigned; zeros stored
24 External-call pending
25 Stopped
26 Operator intervening
27 Check stop
28 Not ready
29 Unassigned; zero stored
30 Inval id order
31 Receiver check

Status Conditions

The status condition assigned to bit position 0 is
generated by the CPU executing the SIGNAL
PROCESSOR instruction. The remaining status
conditions are generated by the addressed CPU.

When the equipment-check condition exists, bit
o of the general register designated by the Rl field
of the SIGNAL PROCESSOR instruction is set to
one, unassigned bits of the status register are set to

zeros, and the contents of other status bits are un­
predictable. In this case, condition code 1 is set
independent of whether the access path to the ad­
dressed CPU is busy and independent of whether
the addressed CPU is not operational, is busy, or
has presented zero status.

When the access path to the addressed CPU is
not busy and the addressed CPU is operational and
does not indicate busy to the currently specified
order, the addressed CPU presents its status to the
issuing CPU. These status bits are of two types:
1. Status bits 24-28 indicate the presence of the

corresponding conditions in the addressed CPU
at the time the order code is received. Except
in response to the sense order, each condition is
indicated only when the condition precludes the
successful execution of the designated order.
In the case of sense, all existing status condi­
tions are indicated; the operator-intervening
and not-ready conditions each are indicated if
these conditions preclude the execution of any
installed order.

2. Status bits 30 and 31 indicate that the corre­
sponding conditions were detected by the ad­
dressed CPU during reception of the order.

If the presented status is all zeros, the addressed
CPU has accepted the order, and condition code 0
is set at the issuing CPU; if the presented status is
not all zeros, the order has been rejected, the status
is stored at the issuing CPU in the general register
designated by the R} field of the SIGNAL PRO­
CESSOR instruction, zeros are stored in the
unassigned bit positions of the register, and
condition code 1 is set.

The status conditions are defined as follows:

Equipment Check: This condition exists when the
CPU executing the instruction detects equipment
malfunctioning that has affected only the execution
of this instruction and the associated order. The
order code mayor may not have been transmitted
and mayor may not have been accepted, and the
status bits provided by the addressed CPU may be
in error.

External Call Pending: This condition exists
when an external-call interruption condition is
pending in the addressed CPU because of a previ­
ously issued SIGNAL PROCESSOR instruction.
The condition exists from the time an external-call
order is accepted until the resultant external inter­
ruption has been completed. The condition may be
due to the issuing CPU or another CPU. The con-

dition, when present, is indicated only in response
to sense and to external call.

Stopped: This condition exists when the ad­
dressed CPU is in the stopped state. The condi­
tion, when present, is indicated only in response to
sense. This condition cannot be reported as a re­
sult of a SIGP by a CPU addressing itself.

Operator Intervening: This condition exists when
the addressed CPU is executing certain operations
initiated from local or remote operator facilities.
The particular manually initiated operations that
cause this condition to be present depend on the
model and on the order specified. On machines
which do not implement the IML order, the condi­
tions described under "Not Ready" may be indicat­
ed as an operator-intervening condition. The
operator-intervening condition, when present, can
be indicated in response to all orders. Operator
intervening is indicated in response to sense if the
condition is present and precludes the acceptance
of any of the installed orders. The condition may
also be indicated in response to unassigned or unin­
stalled orders. This condition cannot arise as a
result of a SIGP by a CPU addressing itself.

Check Stop: This condition exists when the ad­
dressed CPU is in the check-stop state. The condi­
tion, when present, is indicated only in response to
sense, external call, emergency signal, start, stop,
restart, and stop and store status. The condition
may also be indicated in response to unassigned or
uninstalled orders. This condition cannot be re­
ported as a result of a SIGP by a CPU addressing
itself.

Not Ready: This condition exists when the ad­
dressed CPU uses reload able control storage to
perform an order and the required microprogram is
not loaded. The not-ready condition may be indi­
cated in response to all orders except IML. This
condition cannot arise as a result of a SIGP by a
CPU addressing itself.

Invalid Order: This condition exists during the
communications associated with the execution of
SIGNAL PROCESSOR when an unassigned or
uninstalled order code is decoded.

Receiver Check: This condition exists when the
addressed CPU detects malfunctioning of equip­
ment during the communications associated with
the execution of SIGNAL PROCESSOR. When

Chapter 4. Control 4-31

this condition is indicated, the order has not been
initiated, and, since the malfunction may have af­
fected the generation of the remaining receiver
status bits, these bits are not necessarily valid. A
machine-check condition mayor may not have
been generated at the addressed CPU.

The following chart summarizes which status
conditions are presented to the issuing CPU in re­
sponse to each order code.

Receiver check~ -----------------------,
Invalid order
Not ready -----------------------,
Check stop
Operator intervening# ITl
Stopped
External call pending~

Sense X X X X X X
External call X a X X X a X
Emergency signal a a X X X a X
Start a a X X X a X
Stop a a X X X a X
Restart a a X X X a X
Initial program reset a a X a X a X
Program reset a a X a X a X
StoP. and store status a a X X X a X
I ML ;0. a a X a a a X
Initial CPU reset* a a X a X a X
CPU reset* a a X a X a X
Unassigned order a a X a/x X 1 X

Explanation:
a A zero is presented in this bit posi­

tion regardless of the current state
of this condition.

X

a/x

*

A one is presented in this bit
position.
A zero or a one is presented in this
bit position, reflecting the current
state of the corresponding condition.
Either a zero or the current state of
the corresponding condition is
indicated.
The current state of the operator­
intervening condition may depend on
the order code that is being
interpreted.
If a one is presented in the receiver­
check bit position, the values
presented in the other bit positions
are not necessarily valid.
If the order code is implemented, use
the line entry for the order code; if
the order code is not implemented, use
the line entry labeled "Unassigned
Order .11

If the presented status bits are all zeros, the or­
der has been accepted, and the issuing CPU sets
condition code O. If one or more ones are present-

4-32 System/370 Principles of Operation

ed, the order has been rejected, and the issuing
CPU stores the status in the general register speci­
fied by the Rl field of the SIGP instruction and
sets condition code 1.

Programming Notes
1. A CPU can obtain the following functions by

addressing SIGNAL PROCESSOR to itself:
a. Sense indicates whether an external-call

condition is pending.
b. External call and emergency signal cause

the corresponding interruption conditions to
be generated. External call can be rejected
because of a previously generated external­
call condition.

c. Start sets condition code 0 and has no
other effect.

d. Stop causes the CPU to set condition code
0, take pending interruptions for which it is
enabled, and enter the stopped state.

e. Restart provides a means to store the cur­
rent PSW.

f. Stop and store status causes the machine
to stop and store all current status.

2. Two CPUs can simultaneously execute SIG­
NAL PROCESSOR instructions, with each
CPU addressing the other. When this occurs,
one CPU, but not both, can find the access
path busy because of the transmission of the
order code or status bits associated with the
SIGNAL PROCESSOR instruction that is being
executed by the other CPU. Alternatively,
both CPUs can find the access path available
and transmit the order codes to each other. In
particular, two CPUs can simultaneously stop,
restart, or reset each other.

Channel-Set Switching
The channel-set-switching feature permits a collec­
tion of channels to be switched from one CPU to
another. The collection of channels which are
switched as a group is called a channel set. The
switching operation controls only the execution of
I/O instructions and I/O interruptions. Other
channel activity, such as chaining and data-transfer
operations, is not controlled by the switching.

When a channel set is switched to a particular
CPU, it is said to be connected to that CPU.
Channel-set switching permits any channel set in
the configuration to be connected to any CPU in
the configuration. However, a channel set can be
connected to no more than one CPU at a time, and
vice versa. When a channel set is not connected to
a CPU, it is said to be disconnected. On a particu­
lar CPU, all I/O instructions executed address only

the channels within the channel set which is cur­
rently connected to that CPU. Initial program re­
set and program reset issued to a CPU result in the
resetting of the CPU and of only those channels
which are currently connected to that CPU. Simi­
larly, I/O interruptions caused by a channel which
is part of a particular channel set occur on the CPU
to which the channel set is currently connected.
Chaining and data-transfer operations by the chan­
nel continue, independent of whether the channel
set is connected to a CPU.

Channel sets can be connected and disconnected
by means of two instructions, CONNECT CHAN­
NEL SET (CONCS) and DISCONNECT CHAN­
NEL SET (DISCS), which are defined in Chapter
10 "Control Instructions." These instructions se­
lec~ a particular channel set by means of a 16-bit
channel-set address. When the addressed channel
set is not operational, execution of these instruc­
tions results in a setting of condition code 3. A
channel set is not operational when it is not provid­
ed in the system, is not in the configuration, or is in
certain customer-engineer test modes. Depending
on the model, a channel set may be not operational
when all of the channels in the channel set are not
operational.

When a channel set is connected to a CPU and
the CPU becomes not operational, the channel set
may also become not operational, or it may become
disconnected and remain in the configuration. A
CPU can become not operational because of certain
customer-engineer test modes being set, because it
is configured out of the configuration, or because
its power is off.

The number of CPUs and channel sets in a par­
ticular configuration is not necessarily the same.

I When system reset normal, system reset clear,
load normal, or load clear is activated on any CPU
in the configuration, in the absence of any override
by model-dependent configuration controls, then:
• All channels within all channel sets in the

configuration perform system reset,
• Each channel set which has a home CPU is

connected to its home CPU, and
• Each channel set which does not have a home

CPU is disconnected.
By definition, the CPU to which a channel set is

connected after system reset is called the home
CPU for that channel set. The address of the
channel set mayor may not be the same as the
address of its home CPU.

When no channel set is connected to a particular
CPU, the execution of any I/ 0 instruction results
in a setting of condition code 3. When a channel
set is connected to a particular CPU, condition
code 3 to an I/O instruction normally indicates
that the addressed channel or device is not opera­
tional. The I/ 0 instructions are described in
Chapter 12, "Input/Output Operations." The con­
nection or disconnection of a channel set is not
considered to be a change in the channel state for
purposes of setting to one the machine-check
external-damage-code bit 3, channel not operation­
al. The setting of this bit, even when a channel set
is disconnected, indicates only those changes from
the operational state to the not-operational state
which would be seen if the channel set were con­
nected to a CPU.

Chapter 4. Control 4-33

Chapter 5. Program Execution

Contents

Instructions 5-1

Operands 5-1

Instruction Format 5-2

Register Operands 5-3
Immediate Operands 5-3

Storage Operands 5-3

Address Generation 5-3

Sequential Instruction-Address Generation 5-4

Operand-Address Generation 5-4

Branch-Address Generation 5-4

Instruction Execution and Sequencing 5-5

Interruptions 5-5

Types of Instruction Ending 5-5

Interruptible Instructions 5-6

Point of Interruption 5-6

Execution of Interruptible Instructions 5-6

Exceptions to Nullification and Suppression 5-6

Storage Change and Restoration for DAT-Associated

Access Exceptions 5-7

Modification of DA T -Table Entries 5-7

Trial Execution for TRANSLATE and EDIT 5-7

Normally, operation of the CPU is controlled by
instructions in storage that are executed sequential­
ly, one at a time, left to right in an ascending se­
quence of storage addresses. A change in the se­
quential operation may be caused by branching,
LOAD PSW, interruptions, or manual intervention.

Instructions
Each instruction consists of two major parts:
• An operation code (op code), which specifies the

operation to be performed
• The designation of the operands that participate

Operands
Operands can be grouped in three classes: operands
located in registers, immediate operands, and
operands in storage. Operands may be either ex­
plicitly or implicitly designated.

Register operands can be located in general,
floating-point, or control registers, with the type of

Interlocked Update for Suppression 5-8

Sequence of Storage References 5-8

Interlocks for Virtual-Storage References 5-9

Instruction Fetching 5-10
DAT-Table Fetches 5-11

Storage-Key Accesses 5-11

Storage-Operand References 5-11

Storage-Operand Fetch References 5-11

Storage-Operand Store References 5-12

Storage-Operand Update References 5-12
Storage-Operand Consistency 5-13

Single-Access References 5-13

Multiple-Access Operands 5-13

Block-Concurrent References 5-13

Consistency Specification 5-14

Relation between Operand Accesses 5-14

Other Storage References 5-15

Serialization 5-15

CPU Serialization 5-15

Channel Serialization 5-16

register identified by the op code. The register
containing the operand is specified by identifying
the register in a four-bit field, called the R field, in
the instruction. For some instructions, an operand
is located in an implicitly designated register, the
register being implied by the op code.

Immediate operands are contained within the
instruction, and the eight-bit field containing the
immediate operand is called the I field.

Operands in storage may either have an implied
length, be specified by a bit mask, or, in other cas­
es, be specified by a four-bit or eight-bit length
specification, called the L field, in the instruction.
The addresses of operands in storage are specified
by means of a format that uses the contents of a
general register as part of the address. This makes
it possible to:

Chapter 5. Program Execution 5-1

1. Specify a complete address by using an abbrevi­
ated notation

2. Perform address manipulation using instructions
which employ general registers for operands

3. Modify addresses by program means without
alteration of the instruction stream

4. Operate independently of the location of data
areas by directly using addresses received from
other programs

The address used to refer to storage either is
contained in a register designated by the R field in
the instruction or is calculated from a base address,
index, and displacement, designated by the B, X,
and D fields, respectively, in the instruction.

For purposes of describing the execution of in­
structions, operands are designated as first and
second operands and, in some cases, third
operands.

In general, two operands participate in an in­
struction execution, and the result replaces the first
operand. An exception is instructions with "store"
in the instruction name, other than STORE THEN
AND SYSTEM MASK and STORE THEN OR
SYSTEM MASK, where the result replaces the sec­
ond operand. Except when otherwise stated, the
contents of all registers and storage locations par­
ticipating in the addressing or execution part of an
operation remain unchanged.

Instruction Format
An instruction is one, two, or three halfwords in
length and must be located in storage on a half­
word boundary. Each instruction is in one of eight
basic formats: RR, RRE, RX, RS, SI, S, SSE, and
SS, with two variations of SS. (See the figure
"Basic Instruction Formats. ")

Some instructions contain fields that vary slightly
from the basic format, and in some instructions the
operation performed does not follow the general
rules stated in this section. All of these exceptions
are explicitly identified in the individual instruction
descriptions.

The format names indicate, in general terms, the
classes of operands which participate in the opera­
tion:
• RR denotes a register-and-register operation.

I . RRE denotes a register-and-register operation
having an extended op-code field.

• RX denotes a register-and-indexed-storage oper-
ation.

• RS denotes a register-and-storage operation.
• SI denotes a storage-and-immediate operation.
• S denotes an operation using an implied operand

and storage.

5-2 System/370 Principles of Operation

• SS denotes a storage-and-storage operation.

I · SSE denotes a storage-and-storage operation
having an extended op-code field ..

RR Format

Op COdel Rl R2

o 8 12 15

RRE Format

Op Code

o 16 24 28 31

RX Format

o 8 12 16 20 31

RS Format

o 8 12 16 20 31

SI Format

Op COdel

o 8 16 20 31

S Format

Op Code

o 16 20 31

SS Format

L--__ l ___ L..----'-_/~-1 -.----,--D~J _ Op Code L B 1 B2 /

o 8 16 20 32 36 47

L--0P_C_o_de...J..I_L_l -I....-L_2 -1.1_B_l -1.1_~-1 ~1-B-2 -'-I-D~]
o 8 12 16 20 32 36 47

Basic Instruction Formats (Part 1 of 2)

SSE Format

~--------------~--'--/--~--~-/J
Op Code B1 01 B2 02 L-____________ ~ __ ~/ 7

o 16 20 32 36 47
Basic Instruction Formats (Part 2 of 2)

The first byte or, in the RRE, S, and SSE for­
mats, the first two bytes of an instruction contain
the op code. For some instructions in the S format,
all or a portion of the second byte is ignored.

The first two bits of the first or only byte of the
op code specify the length and format of the in­
struction, as follows:

Bit
Positions Instruction Instruction

(0-1) Length Format

00 One ha lfword RR
01 Two halfwords RX
10 Two halfwords RRE/RS/RX/S/SI
11 Three halfwords SS/SSE

In the format illustration for each individual
instruction description, the op-code field shows the
op code as hexadecimal digits within single quotes.
The hexadecimal representation uses 0-9 for the
codes 0000-1001 and A-F for the codes 1010-
1111.

The remaining fields in the format illustration
for each instruction are designated by code names,
consisting of a letter and possibly a subscript num­
ber. The subscript number denotes the operand to
which the field applies.

Register Operands
In the RR, RRE, RX, and RS formats, the contents
of the register designated by the R 1 field are called
the first operand. The register containing the first

. operand is sometimes referred to as the "first­
operand location." In the RR and RRE formats, the
R2 field designates the register containing the sec­
ond operand, and the same register may be desig­
nated for the first and second operand. In the RS
format, the use of the R3 field depends on the in­
struction.

The R field designates a general register in the
general instructions and a floating-point register in
the floating-point instructions. In the instructions
LOAD CONTROL and STORE CONTROL the R
field designates a control register.

Unless otherwise indicated in the individual in­
struction description, the register operand is one
register in length (32 bits for a general register or a

control register and 64 bits for a floating-point
register), and the second operand is the same
length as the first.

Immediate Operands
In the SI format, the contents of the eight-bit
immediate-data field, the 12 field of the instruction,
are used directly as the second operand. The Bl
and D 1 fields designate the first operand, which is
one byte in length.

Storage Operands
In the SI, SSE, and SS formats, the contents of the
general register designated by the Bl field are add­
ed to the contents of the Dl field to form the first­
operand address. In the S, RS, SSE, and SS for­
mats, the contents of the general register designat­
ed by the B2 field are added to the contents of the
D2 field to form the second-operand address. In
the RX format, the contents of the general registers
designated by the X2 and B2 fields are added to the
contents of the D2 field to form the second­
operand address.

In the SS format, with two length fields given,
Ll specifies the number of additional operand bytes
to the right of the byte designated by the first­
operand address. Therefore, the length in bytes of
the first operand is 1-16, corresponding to a length
code in L 1 of 0-15. Similarly, L2 specifies the
number of additional operand bytes to the right of
the location designated by the second-operand ad­
dress. Results replace the first operand, and are
never stored outside the field specified by the ad­
dress and length. If the first operand is longer than
the second, the second operand is extended on the
left with zeros up to the length of the first operand.
This extension does not modify the second operand
in storage.

In the SS format with a single, eight-bit length
field, L specifies the number of additional operand
bytes to the right of the byte designated by the
first-operand address. Therefore, the length in
bytes of the first operand is 1-256, corresponding
to a length code in L of 0-255. Storage results
replace the first operand and are never stored out­
side the field specified by the address and length.
In this format, the second operand has the same
length as the first operand, except for the following
instructions: EDIT, EDIT AND MARK, TRANS­
LATE, and TRANSLATE AND TEST.

Address Generation
Execution of instructions by the CPU involves gen­
eration of the addresses of instructions and
operands.

Chapter 5. Program Execution 5-3

Sequential Instruction-Address Generation
When an instruction is fetched from the location
designated by the current PSW, the instruction ad­
dress is increased by the number of bytes in the
instruction, and the instruction is executed. The
same steps are then repeated using the new value
of the instruction address to fetch the next instruc­
tion in the sequence.

Instruction addresses wrap around, with the half­
word at location 224 - 2 being followed by the
halfword at location o. Thus, any carry out of
PSW bit position 40, as a result of updating the
instruction address, is lost.

Operand-Address Generation
An operand address that refers to storage either is
contained in a register designated by an R field in
the instruction or is calculated from the sum of
three binary numbers: base address, index, and
displacement.

The base address (B) is a 24-bit number con­
tained in a general register specified by the pro­
gram in a four-bit field, called the B field, in the
instruction. Base addresses can be used as a means
of independently addressing each program and data
area. In array-type calculations, it can specify the
location of an array, and, in record-type processing,
it can identify the record. The base address pro­
vides for addressing the entire storage. The base
address may also be used for indexing.

The index (X) is a 24-bit number contained in a
general register designated by the program in a
four-bit field, called the X field, in the instruction.
It is included only in the address specified by the
RX instruction format. The RX format instructions
permit double indexing; that is, the index can be
used to provide the address of an element within an
array.

The displacement (D) is a 12-bit number con­
tained in a field, called the D field, in the instruc­
tion. The displacement provides for relative ad­
dressing of up to 4,095 bytes beyond the location
designated by the base address. In array-type cal­
culations, the displacement can be used to specify
one of many items associated with an element. In
the processing of records, the displacement can be
used to identify items within a record.

In forming the address, the base address and
index are treated as 24-bit unsigned binary inte­
gers. The displacement is similarly treated as a
12-bit unsigned binary integer, and 12 zeros are
appended on the left. The three are added as 24-
bit binary numbers, ignoring overflow. The sum is
always 24 bits long. The bits of the generated ad-

5-4 System/370 Principles of Operation

dress are numbered 8-31, corresponding to the
numbering of the base-address and index bits in the
general register.

A zero in any of the B 1, B2, or X2 fields indi­
cates the absence of the corresponding address
component. For the absent component, a zero is
used in forming the address, regardless of the con­
tents of general register O. A displacement of zero
has no special significance.

When an instruction description specifies that
the contents of a general register designated by an
R field are used to address an operand in storage,
bit positions 8-31 of the register provide the
operand address.

An instruction can designate the same general
register both for address computation and as the
location of an operand. Address computation is
completed prior to the execution of the operation.

Unless otherwise indicated in an individual in­
struction definition, the generated operand address
designates the leftmost byte of an operand in stor­
age.

Programming Note
Negative values may be used in index and base­
address registers. Bits 0-7 of these values are al­
ways ignored.

Branch-Address Generation
For branch instructions, the address of the next
instruction to be executed when the branch is taken
is called the branch address. Depending on the
branch instruction, the instruction format may be
RR, RS, or RX.

In the RS and RX formats, the branch address is
designated by a base address, a displacement, and,
for RX, an index. In the RS and RX formats, the
branch address generation follows the normal rules
for operand-address generation.

In the RR format, the contents of bit positions
8-31 of the general register designated by the R2
field are used as the branch address. General reg­
ister 0 cannot be designated as containing a branch
address. A value of zero in the R2 field causes the
instruction to be executed without branching.

For several branch instructions, branching de­
pends on satisfying a specified condition. When
the condition is not satisfied, the branch is not tak­
en, normal sequential instruction execution contin­
ues, and the branch address is not used. When a
branch is taken, bits 8-31 of the generated branch
address replace bits 40-63 of the current PSW.
The branch address is not used to address storage
as part of the branch operation.

A specification exception due to an odd branch
address and access exceptions due to fetching of
the instruction at the branch location are not recog­
nized as part of the branch operation but instead
are recognized as exceptions associated with the
execution of the instruction at the branch location.

A branch instruction, such as BRANCH AND
LINK, can designate the same general register for·
branch-address computation and as the location of
an operand. Branch-address computation is com­
pleted before the remainder of the operation is ex­
ecuted.

Instruction Execution and Sequencing
The program-status word (PSW), described in
Chapter 4, "Control," contains information re­
quired for proper program execution. The PSW is
used to control instruction sequencing and to hold
and indicate the status of the machine in relation to
the program currently being executed. The active
or controlling PSW is called the current PSW.

Branch instructions perform the functions of
decision-making, loop control, and subroutine link­
age. A branch instruction affects instruction se­
quencing by introducing a new instruction address
into the current PSW.

Facilities for decision making are provided by
the BRANCH ON CONDITION instruction. This
instruction inspects a condition code that reflects
the result of a majority of the arithmetic, logical,
and I/ 0 operations. The condition code, which
consists of two bits, provides for four possible
condition-code settings: 0, 1, 2, and 3.

The specific meaning of any setting depends on
the operation that sets the condition code. For
example, the condition code reflects such condi­
tions as zero, nonzero, first operand high, equal,
overflow, and channel busy. Once set, the condi­
tion code remains unchanged until modified by an
instruction that causes a different condition code to
be set. See Appendix C, "Condition-Code Set­
tings," for a summary of the instructions which set
the condition code.

Loop control can be performed by the use of
BRANCH ON CONDITION to test the outcome of
address arithmetic and counting operations. For
some particularly frequent combinations of arithme­
tic and tests, the instructions BRANCH ON
COUNT, BRANCH ON INDEX HIGH, and
BRANCH ON INDEX LOW are provided. These
branches, being specialized, provide increased per­
formance for these tasks.

Subroutine linkage is provided by the BRANCH
AND LINK instructions, which permit not only the
introduction of a new instruction address but also

the preservation of the return address and associat­
ed information. Subroutine linkage between a pro­
gram and the supervisor program is provided by
means of the SUPERVISOR CALL instruction.

Interruptions
Interruptions permit the CPU to change state as a
result of conditions external to the system, in
input/output 0/0) devices, or in the CPU itself.
Details are to be found in Chapter 6,
"Interruptions. "

Six classes of interruption conditions are possi­
ble: external, I/O, machine check, program,
restart, and supervisor call. Each class has two
related PSWs, called old and new, in permanently
assigned storage locations. In all classes, an inter­
ruption involves storing information identifying the
cause of the interruption, storing the current PSW
at the old-PSW position, and fetching the PSW at
the new-PSW position, which becomes the current
PSW.

The old PSW contains CPU-status information
necessary for resumption of the interrupted pro­
gram. At the conclusion of the program invoked by
the interruption, the instruction LOAD PSW may
be used to restore the current PSW to the value of
the old PSW.

Types 0/ Instruction Ending
Instruction execution ends in one of five ways:
completion, nullification, suppression, termination,
and partial completion.

Completion of instruction execution provides
results as called for in the definition of the instruc­
tion. When an interruption occurs after the com­
pletion of the execution of an instruction, the in­
struction address in the old PSW designates the
next instruction to be executed.

Suppression of instruction execution causes the
instruction to be executed as if it specified "no
operation." The contents of any result fields, in­
cluding the condition code, are not changed. The
instruction address in the old PSW on an interrup­
tion after suppression designates the next sequen­
tial instruction.

Nullification of instruction execution has the
same effect as suppression, except that when an
interruption occurs after the execution of an in­
struction has been nullified, the instruction address
in the old PSW designates the instruction whose
execution was nullified instead of the next sequen­
tial instruction.

Termination of instruction execution causes the
contents of any fields due to be changed by the
instruction to be unpredictable. The operation may

Chapter 5. Program Execution 5-5

have replaced all, part, or none of the contents of
the designated result fields and may have changed
the condition code if such change was called for by
the instruction. Unless the interruption is caused
by a machine-check condition, the validity of the
instruction address in the PSW, the interruption
code, and the ILC are not affected, and the state
or the operation of the machine has not been af­
fected in any other way. The instruction address in
the old PSW on an interruption after termination
designates the next sequential instruction.

Partial completion of instruction execution oc­
curs only for interruptible instructions; it is de­
scribed in the next section.

Interruptible Instructions

Point of Interruption
For most instructions, the entire execution of an
instruction is one operation. An interruption is
permitted between operations; that is, an interrup­
tion can occur after the performance of one opera­
tion and before the start of a subsequent operation.

For the following instructions, referred to as
interruptible instructions, an interruption is permit­
ted after partial completion of the instruction:

COMPARE LOGICAL LONG
MOVE LONG

The execution of an interruptible instruction is
considered to consist of a number of units of opera­
tion, and an interruption is permitted between units
of operation. The amount of data processed in a
unit of operation depends on the particular instruc­
tion and may depend on the model and on the par­
ticular condition that causes the execution of the
instruction to be interrupted.

Whenever points of interruption that include
those occurring within the execution of an interrup­
tible instruction are discussed, the term "unit of
operation" is used. For a noninterruptible instruc­
tion, the entire execution consists, in effect, of one
unit of operation.

Execution of Interruptible Instructions
The execution of an interruptible instruction is
completed when all units of operation associated
with that instruction are completed. When an in­
terruption occurs after completion, nullification, or
suppression of a unit of operation, all prior units of
operation have been completed.

On completion of a unit of operation other than
the last one (and on nullification of any unit of
operation), the instruction address in the old PSW
designates the interrupted instruction, and the

5-6 System/370 Principles of Operation

operand parameters are adjusted such that the ex­
ecution of the interrupted instruction is resumed
from the point of interruption when the old PSW
stored on the interruption is made the current PSW.
It depends on the instruction how the operand par­
ameters are adjusted.

When a unit of operation is suppressed, the in­
struction address in the old PSW designates the
next sequential instruction. The operand parame­
ters, however, are adjusted so as to indicate the
extent to which instruction execution has been
completed. If the instruction is reexecuted after
the conditions causing the suppression have been
removed, the execution is resumed from the point
of interruption. As in the case of completion and
nullification, it depends on the instruction how the
operand parameters are adjusted.

When an exception which causes termination
occurs as part of a unit of operation of an interrup­
tible instruction, the entire operation is terminated,
and the contents, in general, of any fields due to be
changed by the instruction are unpredictable. On
such an interruption, the instruction address in the
old PSW designates the next sequential instruction.

Programming Notes
1. Any interruption, other than supervisor call and

some program interruptions, can occur after a
partial execution of an interruptible instruction.
In particular, interruptions for external, I/O,
machine-check, restart, and program interrup­
tions for access exceptions and PER events can
occur between units of operation.

2. The amount of data processed in a unit of oper­
ation of an interruptible instruction depends on
the model and may depend on the type of con­
dition which causes the execution of the in­
struction to be interrupted or stopped. Thus,
when an interruption occurs at the end of the
current unit of operation, the length of the unit
of operation may be different for different
types of interruptions. Also, when the stop
function is requested during the execution of an
interruptible instruction, the CPU enters the
stopped state at the completion of the execution
of the current unit of operation. Similarly, in
the instruction-step mode, only a single unit of
operation is performed, but the unit of opera­
tion for the various cases of stopping may be
different.

Exceptions to Nullification and Suppression
In certain unusual situations, the result fields of an
instruction having a store-type operand are
changed in spite of the occurrence of an exception

which would normally result in nullification or sup­
pression. These situations are exceptions to the
general rule that the operation is treated as a no­
operation when an exception requiring nullification
or suppression is recognized. Each of these situa­
tions may result in the turning on of the change bit
associated with the store-type operand, even
though the final result in storage may appear un­
changed. Depending on the particular situation,
additional effects may be observable, the extent of
which is described for each of the situations.

All of these situations are limited to the extent
that a store access does not occur and the change
bit is not set when the store access is prohibited.
For the CPU, a store access is prohibited whenever
an access exception exists for that access, or when­
ever an exception exists which is of higher priority
than the priority of an access exception for that
access.

When, in these situations, an interruption for an
exception requiring suppression occurs, the instruc­
tion address in the old PSW deSignates the next
sequential instruction. When an interruption for an
exception requiring nullification occurs, the instruc­
tion address in the old PSW designates the instruc­
tion causing the exception even though partial re­
sults may have been stored.

Storage Change and Restoration for DAT­
Associated Access Exceptions
In this section, the term "DAT -associated access
exceptions" is used to refer to those exceptions
which may occur as part of the dynamic-ad dress­
translation process. These exceptions are page
translation, segment translation, translation specifi­
cation, and addressing due to a DA T -table entry
being specified that is outside the main storage of
the installation. The first two of these exceptions
normally cause nullification, and the last two nor­
mally cause suppression.

For DA T -associated access exceptions, on some
systems, a channel may observe the effects on stor­
age described in the following case.

When, for an instruction having a store-type
operand, a DAT -associated access exception is
recognized for any operand of the instruction, that
portion, if any, of the store-type operand which
would not cause an exception may change to an
intermediate value and then back to the original
value.

The accesses associated with storage change and
restoration for DAT -associated access exceptions
are only observable by a channel and are not ob­
servable by another CPU in a multiprocessing con­
figuration. Except for mUltiple-access operands,

the intermediate value, if any, is always equal to
what would have been the final value if the DAT­
associated access exception had not occurred.

Programming Notes
1. Storage change and restoration for DA T­

associated access exceptions occur in two main
situations:
a. The exception is recognized for a portion of

a store-type operand which crosses a page
boundary, and the other portion has no ac­
cess exception.

b. The exception is recognized for one ope­
rand of an instruction having two storage
operands (for example, an SS-format in­
struction or MOVE LONG), and the other
operand, which is a store-type operand, has
no access exceptron.

2. To avoid letting the channel observe intermedi­
ate operand values due to storage change and
restoration for DAT -associated access excep­
tions (especial~y when a CCW chain is modi­
fied), the program should do one of the follow­
ing:
a. Operate on one storage page at a time, or
b. Perform preliminary testing to ensure that

no exceptions will occur for any of the re­
quired pages, or

c. Operate with DAT off.

Modification of DA T - Table Entries
When a valid and attached DA T -table entry is
changed to a value which would cause an excep­
tion, and when, before the TLB is purged, an at­
tempt is made to refer to storage using a virtual
address requiring that entry for translation, the
contents of any fields due to be changed by the
instruction are unpredictable. Results, if any, asso­
ciated with the virtual address whose DAT -table
entry was changed are placed in those real loca­
tions originally associated with the address. Fur­
thermore, it is unpredictable whether or not an
interruption occurs for an access exception that was
not initially applicable.

Trial Execution for TRANSLATE and EDIT
For the instructions TRANSLATE (TR), EDIT
(ED), and EDIT AND MARK (EDMK), the por­
tions of the operands that are actually used in the
operation may be established in a trial execution
for operand accessibility that is performed before
the execution of the instruction is started. This
trial execution consists in an execution of the in­
struction in which results are not stored. If the
first operand of TR or either operand of ED or

Chapter 5. Program Execution 5-7

EDMK is changed by an I/O operation, or by an­
other CPU, after the initial trial execution but be­
fore completion of execution, the contents of any
fields due to be changed by the instruction are un­
predictable. Furthermore, it is unpredictable
whether or not an interruption occurs for an access
exception that was not initially applicable.

Interlocked Update for Suppression
When, for an instruction with a store-type operand,
an exception is recognized whose priority is equal
to or lower than an access exception for some por­
tion of the store-type operand, an interlocked up­
date which does not change the contents of the
location may occur for that portion of the store­
type operand.

When the exception is a specification exception
for a store-type operand which requires alignment
on integral boundaries, the interlocked update
which may occur is limited to the single byte at the
location specified by the operand address.

Programming Note
Examples of when an interlocked update may occur
to the destination-operand location in storage are:
• Decimal-divide exception for DIVIDE DECI­

MAL
• Specification exception for an odd register num­

ber for COMPARE DOUBLE AND SWAP
• Data exception for an invalid decimal sign for

ADD DECIMAL

Sequence of Storage References
Conceptually, the CPU processes instructions one
at a time, with the execution of one instruction
preceding the execution of the following instruc­
tion. The execution of the instruction specified by
a successful branch follows the execution of the
branch. Similarly, an interruption takes place be­
tween instructions or, for interruptible instructions,
between units of operation of such instructions.

The sequence of events implied by the processing
just described is sometimes called the conceptual
sequence.

Each operation appears to the program to be
performed sequentially, with the current instruction
being fetched after the preceding operation is com­
pleted and before the execution of the current op­
eration is begun. This appearance is maintained,
even though the storage-implementation character­
istics and overlap of instruction execution with
storage accessing may cause actual processing to be
different. The results generated are those that
would have been obtained had the operations been
performed in the conceptual sequence. Thus, it is

5-8 System/370 Principles of Operation

possible for an instruction to modify the next suc­
ceeding instruction in storage.

In simple models in which operations are not
overlapped, the conceptual and actual sequences
are essentially the same. However, in more com­
plex machines, overlapped operation, buffering of
operands and results, and execution times which
are comparable to the propagation delays between
units can cause the actual sequence to differ con­
siderably from the conceptual sequence. In these
machines, special circuitry is employed to detect
dependencies between operations and ensure that
the results obtained are those that would have been
obtained if the operations had been performed in
the conceptual sequence. However, other CPUs
and channels may, unless otherwise constrained,
observe a sequence that differs from the conceptual
sequence. Also, in certain situations involving dy­
namic address translation were different virtual
addresses map to the same real address, the effect
of overlapped operation may be observable.

It can normally be assumed that the execution of
each instruction occurs as an indivisible event.
However, in actual operation, the execution of an
instruction consists of a series of discrete steps.
Depending on the instruction, operands may be
fetched and stored in a piecemeal fashion, and
some delay may occur between fetching operands
and storing results. As a consequence, a channel or
another CPU may be able to observe intermediate
or partially completed results.

When the program on the CPU interacts with a
program on a channel or on another CPU, the pro­
grams may have to take into consideration that a
single operation may consist of a series of storage
references, that a storage reference may in turn
consist of a series of accesses, and that the concep­
tual and actual sequences of these accesses may
differ. Storage references associated with instruc­
tion execution are of the following types: instruc­
tion fetches, DAT -table fetches, storage-key ac­
cesses, and storage-operand references.

Programming Note
The sequence of execution may differ from the
simple conceptual definition in the following ways:
• As viewed by a program in the CPU, instructions

may appear to be prefetched when different ef­
fective addresses are used. (See the section
"Interlocks for Virtual-Storage References" in
this chapter.)

• As viewed by a program in a channel or another
CPU, the execution of an instruction may appear
to be performed as a sequence of piecemeal

steps. This is described for each type of storage
reference in one of the following sections.

• As viewed by a program in a channel or another
CPU, the storage-operand accesses associated
with one instruction are not necessarily per­
formed in the conceptual sequence. (See the
section "Relation between Operand Accesses" in
this chapter.)

• As viewed by a program in a channel, in certain
unusual situations, the contents of storage may
appear to change and then be restored to the
original value. (See the section "Storage Change
and Restoration for DAT-Associated Access Ex­
ceptions" earlier in this chapter.)

Interlocks for Virtual-Storage References
As described in the previous section, CPU opera­
tion appears to that CPU to be performed sequen­
tially; the results stored by one instruction appear
to the CPU to be completed before the next in­
struction is fetched. This appearance is maintained
in overlapped machines by means of special circui­
try to detect accesses to a common location by
comparing effective addresses.

For purposes of this definition, the term
"effective address" is used to denote the address
before translation, if any, regardless of whether the
address is virtual, real, or absolute. If two effective
addresses have the same value and map to the same
location, the addresses are said to be the same even
though one may be real or in a different address
space.

When all accesses to a location are made using
the same effective address, then the above rule is
strictly maintained, as observed by the CPU itself.
When different effective addresses are used to ac­
cess the common location, the above rule does not
hold in two cases:
1. For some instructions, the definition specifies

the results which must be obtained for overlap­
ping operands. This definition is specified in
terms of the sequence of the storage accesses;
that is, the results of some or all of the stores
of one operand must be placed in storage be­
fore some parts or all parts of the other
operand are fetched. When the store and the
fetch are performed by means of different ef­
fective addresses, then the operand may appear
to be fetched before the store.

2. When an instruction changes the contents of a
storage location from which a conceptually sub­
sequent instruction is to be executed, either
directly or by means of EXECUTE, and when
different effective addresses are used to desig­
nate that location for storing the result and

fetching the instruction, the instruction may
appear to be fetched before the store occurs.
This does not occur if an intervening operation
causes the prefetched instructions to be dis­
carded. A definition of when prefetched in­
structions must be discarded is included in the
section "Instruction Fetching" later in this
chapter.

Any change to the storage key appears to be
completed before the following reference to the
associated storage block is made, regardless of
whether the reference to the storage location is
made by a virtual or real address. Analogously,
any prior references to the storage block appear
completed when the key for that block is changed
or inspected.

Programming Note
A single location can be accessed in several ways
by more than one address.
1. The DAT tables may be set up in such a way

that more than one virtual address maps to a
single real address in a single address space.

2. The translation of logical and virtual addresses
may be changed by loading the DA T parame­
ters in the control registers or, for logical ad­
dresses, by turning DA T on or off.

3. Certain instructions use real addresses.
4. Accesses to storage for the purpose of storing

and fetching information for interruptions is
performed by means of real addresses, whereas
accesses by the program may be by means of
virtual addresses.

5. The real-to-absolute mapping may be changed
by means of the instruction SET PREFIX.

6. A location may be accessed by I/O by means
of an absolute address and by the CPU by
means of a real or a virtual address.

7. A location may be accessed by another CPU by
means of one type of address and by this CPU
by means of a different type of address.

8. The CPU updates the interval timer by means
of a real address, and the program may access
the location by means of a virtual address.

The primary purpose of this section is to describe
the effects caused by case 1 above.

For case 2, the effect is not observable, since
prefetched instructions are discarded and the effect
of delayed stores is not observable to the CPU it­
self.

For case 3, those instructions which fetch using
real addresses (for example, LOAD REAL AD­
DRESS), no effect is observable. This is because
the only effect across instructions is the prefetching

Chapter 5. Program Execution 5-9

of instructions, and instructions which fetch using
real addresses thus have no special effect. All in­
structions which store using a real address cause
prefetched instructions to be discarded, and no
effect is observable.

Cases 4 and 5 are situations which are defined
to cause serialization, with the result that pre­
fetched instructions are discarded. In these cases,
no effect is observable.

The handling of cases 6 and 7 involves accesses
as observed by channels and other CPUs and is
covered in the following sections in this chapter.

For case 8, the effect of updating the interval
timer is observable only if an instruction is fetched
from location 80 using a virtual address which is
not 80 but maps'to 80.

Instruction Fetching
Instruction fetching consists in fetching the one,
two, or three halfwords specified by the instruction
address in the current PSW. The immediate field
of an instruction is accessed as part of an instruc­
tion fetch. If, however, an instruction specifies a
storage operand at the location occupied by the
instruction itself, the location is accessed both as an
instruction and as a storage operand. The fetch of
the target instruction of EXECUTE is considered
to be an instruction fetch.

The bytes of an instruction may be fetched
piecemeal and are not necessarily accessed in a
left-to-right direction. The instruction may be
fetched mUltiple times for a single execution; for
example, it may be fetched for testing the addressa­
bility of operands or for inspection of PER events,
and it may be refetched for actual execution.

Instructions are not necessarily fetched in the
sequence in which they are conceptually executed
and are not necessarily fetched for each time they
are executed. In particular, the fetching of an in­
struction may precede the storage-operand refer­
ences for an instruction that is conceptually earlier.
The instruction fetch occurs prior to all storage­
operand references for all instructions that are con­
ceptually later.

An instruction may be pre fetched using a virtual
address only when the associated DAT table entries
are attached and valid. Instructions which are pre­
fetched may be interpreted for execution only for

5-10 System/370 Principles of Operation

the same virtual address for which the instruction
was prefetched.

There is no limit established as to the number of
instructions which may be prefetched, and mUltiple
copies of the contents of a single storage location
may be fetched. As a result, the instruction execu­
ted is not necessarily the most recently fetched
copy. Storing caused by channels or by other
CPUs does not necessarily change the copy of pre­
fetched instructions. However, if a store that is
conceptually earlier occurs on the same CPU using
the same logical address as that by which the in­
struction is subsequently fetched, the updated in­
formation is obtained.

All copies of pre fetched instructions are discard­
ed when:
• A serializing function is performed
• The CPU enters the operating state
• The CPU changes from DAT on to DAT off or

from DAT off to DAT on
• A change is made to the translation parameters

in control registers 0 and 1 when DA T is on

Programming Notes
1. As observed by a CPU itself, instruction pre­

fetching is not normally apparent; the only ex­
ception occurs when more than one virtual ad­
dress is translated to a single real address. This
is described in the section "Interlocks for
Virtual-Storage References" in this chapter.

2. The following are some effects of instruction
prefetching on the execution of a program as
viewed by another CPU.

If a progranl III one CPU changes the contents
of a storage location and then sets a flag to indi­
cate that the change has been made, a program in
another CPU can test and find the flag set but sub­
sequently can branch to the modified location and
execute the original contents. Additionally, when a
channel or another CPU modifies an instruction, it
is possible for a CPU to recognize the changes to
some but not all bit positions of the instruction.

It is possible for a CPU to prefetch an instruc­
tion and subsequently, before the instruction is
executed, for another CPU to change the storage
key. As a result, a CPU may appear to execute
instructions from a protected storage location.

DAT-Table Fetches
Fetching of dynamic-address-translation (DA T)
table entries may occur as follows:
1. DAT -table entries may be pre fetched into the

translation-Iookaside buffer (TLB) and used
from the TLB without ref etching from storage,
until the entry is purged by an INVALIDATE
PAGE TABLE ENTRY, PURGE TLB, or SET
PREFIX instruction. DAT -table entries are not
necessarily fetched in the sequence conceptual­
ly called for; they may be fetched at any time
they are attached and valid, including during
the execution of conceptually previous instruc­
tions.

2. All bytes of a DAT table entry are fetched con­
currently, as viewed by all CPUs in the con­
figuration. However, the reference to the entry
may appear to access a single byte at a time, as
viewed by I/O.

3. A DAT-table entry may be fetched even after
some operand references for the instruction
have already occurred. The fetch may occur as
late as just prior to the actual byte access re­
quiring the DAT entry.

4. A DAT -table entry may be fetched for each use
of the address, including any trial execution,
and for each reference to each byte of each
operand.

s. The DAT page-table-entry fetch precedes the
reference to the page. When no copy of the
page-table entry is in the TLB, the fetch of the
associated segment-table entry precedes the
fetch of the page-table entry.

Storage-Key Accesses
References to the storage key are handled as fol­
lows:
1. Whenever a reference to storage is made and

key-controlled protection applies to the refer­
ence, the four access-control bits and the fetch­
protection bit associated with the storage loca­
tion are inspected concurrently with the refer­
ence to the storage location.

2. When storing is performed, the change bit is set
in the associated storage key concurrently with
the store operation.

3. The instruction SET STORAGE KEY causes all
seven bits to be set concurrently in the storage
key. The access to the storage key for SET
STORAGE KEY follows the sequence rules for
storage-operand store references and is a
single-access reference.

4. The instruction INSERT STORAGE KEY pro­
vides a consistent image of the field, which

consists of all seven bits of the storage key.
The access to the storage key for INSERT
STORAGE KEY follows the sequence rules for
storage-operand fetch references and is a
single-access reference.

S. The instruction RESET REFERENCE BIT
modifies only the reference bit. All other bits
of the storage key remain unchanged. The ref­
erence bit and change bit are examined concur­
rently to set the condition code. The access to
the storage key for RESET REFERENCE BIT
follows the sequence rules for storage-operand
update references. The reference bit is the
only bit which is updated.

The record of references provided by the refer­
ence bit is not necessarily accurate, and the han­
dling of the reference bit is not subject to the con­
currency rules. However, in the majority of situa­
tions, reference recording approximately coincides
with the storage reference.

The change bit may be set in cases when no
storing has occurred. See the section "Change
Recording" in Chapter 3, "Storage."

Storage-Operand References
A storage-operand reference is the fetching or stor­
ing of the explicit operand or operands in the stor­
age locations specified by the instruction.

During the execution of an instruction, all or
some of the storage operands for that instruction
may be fetched, intermediate results may be main­
tained for subsequent modification, and final re­
sults may be temporarily held prior to placing them
in storage. Stores caused by channels do not nec­
essarily affect these intermediate results. Storage­
operand references are of three types: fetches,
stores, and updates.

Storage-Operand Fetch References
When the bytes of a storage operand participate in
the instruction execution only as a source, the
operand is called a fetch-type operand, and the
reference to the location is called a storage-operand
fetch reference. A fetch-type operand is identified
in individual instruction definitions by indicating
that the access exception is for fetch.

All bits within a single byte of a fetch reference
are accessed concurrently. When an operand con­
sists of more than one byte, the bytes may be
fetched from storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not neces­
sarily fetched in any particular sequence.

Chapter 5. Program Execution 5-11

Storage-Operand Store References
When the bytes of a storage operand participate in
the instruction execution only as a destination, to
the extent of being replaced by the result, the
operand is called a store-type operand, and the
reference to the location is called a storage-operand
store reference. A store-type operand is identified
in individual instruction definitions by indicating
that the access exception is for store.

All bits within a single byte of a store reference
are accessed concurrently. When an operand con­
sists of more than one byte, the bytes may be
placed in storage piecemeal, one byte at a time.
Unless otherwise specified, the bytes are not neces­
sarily stored in any particular sequence.

The CPU may delay storing results into storage.
There is no defined limit on the length of time that
results may remain pending before they are stored.

This delay does not affect the sequence in which
results are placed in storage. The results of one
instruction are placed in storage after the results of
all preceding instructions have been placed in stor­
age and before any results of the succeeding in­
structions are stored as observed by channels. The
results of anyone instruction are stored in the se­
quence specified for that instruction.

The CPU does not fetch operands or DA T -table
entries from a storage location until all information
destined for that location by the CPU has been
stored. Prefetched instructions may appear to be
updated before the information appears in storage.

The stores are necessarily completed only as a
result of a serializing operation and before the CPU
enters the stopped state.

Storage-Operand Update References
In some instructions, the storage-operand location
participates both as a source and as a destination.
In these cases, the reference to the location consists
first of a fetch and subsequently of a store. Such
an operand is called an update-type operand, and
the combination of the two accesses is referred to
as an update reference. Instructions such as
MOVE ZONES, TRANSLATE, OR (OC, 01), and
ADD DECIMAL cause an update to the first­
operand location. In most cases, no special inter­
lock is provided between the fetch and store, and
accesses by another CPU or channel are permitted.
An update-type operand is identified in the individ­
ual instruction definition by indicating that the
access exception is for both fetch and store. The
fetch and store accesses associated with an update
reference do not necessarily occur one immediately
after the other, and it is possible for another CPU
or a channel to make one or more interleaved ac-

5-12 System/370 Principles of Operation

cesses to the same location. The interleaved ac­
cesses can be either fetches or stores.

The following instructions perform an update
which is interlocked against accesses by another
CPU to the same location during the execution of
the instruction. The instructions TEST AND SET,
COMPARE AND SWAP, and COMPARE DOU­
BLE AND SWAP cause an interlocked update. On
models in which the STORE CHARACTERS UN­
DER MASK instruction with a mask of zero fetch­
es and stores the byte designated by the second­
operand address, the fetch and store accesses are
an interlocked update.

The fetch and store accesses associated with an
interlocked-update reference do not necessarily
occur one immediately after the other, but all ac­
cesses by another CPU are prevented from occur­
ring between the fetch and the store accesses of an
interlocked update. I/O accesses may occur during
the interlock period.

Within the limitations of the above requirements,
the fetch and store accesses associated with an up­
date follow the same rules as the fetches and stores
described in the previous sections.

Programming Notes
1. When two CPUs attempt to update information

at a common main-storage location by an in­
struction that causes fetching and subsequently
storing of the updated information, it is possible
for both CPUs to fetch the information and
subsequently make the store access. The
change made by the first CPU to store the re­
sult in such a case is lost. Similarly, if one
CPU updates the contents of a field but anoth­
er CPU makes a store operation to that field
between the fetch and store parts of the update
reference, the effect of the store is lost. If,
instead of a store access, a CPU makes an
interlocked-update reference to the common
storage field between the fetch and store por­
tions of an update due to another CPU, any
change in the contents produced by the inter­
locked update is lost.

2. Only those bytes which are included in the re­
sult field of both operations are considered to
be part of the common main-storage location.
However, all bits within a common byte are
considered to be common even if the bits modi­
fied by the two operations do not overlap. As
an example, if (1) one CPU executes the in­
struction OR (OC) with a length of 1 and the
value '80' in the second-operand location and
(2) the other CPU executes AND (NC) with a
length of 1 and the value 'FE' in the second-

operand location, and (3) the first operand of
both instructions is the same byte, then one of
the updates can be lost.

3. When the store access is part of an update ref­
erence by the CPU, the execution of the storing
is not necessarily contingent on whether the
information to be stored is different from the
original contents of the location. In particular,
the contents of all designated byte locations are
replaced, and, for each byte in the field, the
entire contents of the byte are replaced.

Depending on the model, an access to store
information may be performed, for example, in
the following cases:
a. Execution of the OR instruction (01 or

OC) with a second operand of all zeros.
b. Execution of OR (OC) with the first- and

second-operand fields coinciding.
c. For those locations of the first operand of

TRANSLATE where the argument and
function values are the same.

4. The instructions TEST AND SET, COMPARE
AND SWAP, and COMPARE DOUBLE AND
SWAP facilitate updating of a common storage
field by two CPUs. In order for the change by
either CPU not to be lost, both CPUs must use
an instruction providing an interlocked update.
It is possible, however, for a channel to make
an access to the same storage location between
the fetch and store portions of an interlocked
update.

Storage-Operand Consistency

Single-Access References
A fetch reference is said to be a single-access refer­
ence if the value is fetched in a single access to
each byte of the data field. In the case of overlap­
ping operands, the location may be accessed once
for each operand. A store-type reference is said to
be a single-access reference if a single store access
occurs to each byte location within the data field.
An update reference is said to be single-access if
both the fetch and store accesses are each single­
access.

Except for the accesses associated with multiple­
access operands and the stores associated with stor~
age change and restoration for DA T -associated
access exceptions, storage-operand references are
single-access references.

Multiple-Access Operands
For some instructions, multiple accesses may be
made to all or some of the bytes of a storage
operand. The following cases are those storage-

operand references which may be multiple-access
ones.
1. The storage references associated with the deci­

mal operands of the following instructions are
not necessarily single-access references: the
decimal instructions and the instructions CON­
VERT TO BINARY, CONVERT TO DECI­
MAL, MOVE WITH OFFSET, PACK, and
UNPACK.

2. The operands of MOVE INVERSE.
3. The stores into that portion of the first operand

of MOVE LONG which is filled with padding
bytes.

When a storage-operand store reference to a
location is not a single-access reference, the con­
tents placed at a byte location are not necessarily
the same for each store access; thus, intermediate
results in a single-byte location may be observed by
channels.

Programming Notes
1. When multiple fetch accesses are made to a

single byte that is being changed by a channel
or another CPU, the result is not necessarily
limited to that which could be obtained by
fetching the bits individually. For example, the
execution of MULTIPLY DECIMAL may con­
sist of repetitive additions and subtractions
each of which causes the second operand to be
fetched from storage.

2. When CPU instructions are used to modify
storage locations being accessed by a channel
simultaneously, multiple store accesses to a sin­
gle byte by the CPU may result in intermediate
values being observed by a channel. To avoid
these intermediate values (especially when
modifying a CCW chain), only instructions
making single-access references should be used.

Block-Concurrent References
For some references, the accesses to all bytes with­
in a halfword, word, or doubleword are specified to
be concurrent as observed by other CPUs. These
accesses do not necessarily appear to a channel to
include more than a byte at a time. The halfword,
word, or doubleword is referred to in this section as
a block. When a fetch-type reference is specified
to be concurrent within a block, no store access to
the block by another CPU is permitted during the
time that bytes contained in the block are being
fetched. I/O accesses to the bytes within the block
may occur between the fetches. When a store-type
reference is specified to be concurrent within a
block, no access to the block, either fetch or store,

Chapter 5. Program Execution 5-13

is permitted during the time that the bytes within
the block are being stored. I/O accesses to the
bytes in the block may occur between the stores.

Consistency Specification
The storage-operand references associated with all
S-format instructions and all RX-format instruc­
tions with the exception of EXECUTE, CONVERT
TO DECIMAL, and CONVERT TO BINARY, are
block-concurrent, as observed by all CPUs, if the
operand is addressed on a boundary which is inte­
gral to the size of the operand.

For the instructions COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP all access­
es to the storage operand appear to be concurrent
as observed by all CPUs.

The instructions LOAD MULTIPLE and STORE
MULTIPLE, when the operand starts on a word
boundary, and the under-mask instructions COM­
PARE LOGICAL CHARACTERS UNDER
MASK, INSERT CHARACTERS UNDER MASK,
and STORE CHARACTERS UNDER MASK, ac­
cess the storage operand in a left-to-right direction,
and all bytes accessed within each doubleword ap­
pear to all CPUs to be accessed concurrently.

When destructive overlap does not exist, the
operands of MOVE (MVC) are accessed as fol­
lows:
1. The first operand is accessed in a left-to-right

direction, and all bytes accessed within a dou­
bleword appear to all CPUs to be accessed con­
currently.

2. The second operand is accessed left to right,
and all bytes within a doubleword in the second
operand that are moved into a single double­
word in the first operand appear to all CPUs to
be fetched concurrently. Thus, if the first and
second operands begin on the same byte offset
within a doubleword, the second operand ap­
pears to be fetched doubleword-concurrent. If
the offsets within a double word differ by 4, the
second operand appears to be fetched word­
concurrent.

Destructive overlap is said to exist when the
result location is used as a source after the result
has been stored, assuming processing to be per­
formed one byte at a time.

The operands for MOVE LONG and COM­
PARE LOGICAL LONG appear to all CPUs to be
accessed doubleword-concurrent when both
operands start on doubleword boundaries and are
an integral number of doublewords in length, and,
for MOVE LONG, execution is in the nonpadding
portion and the operands do not overlap.

5-14 System/370 Principles of Operation

For EXCLUSIVE OR (XC), when the first and
second operands coincide, the operands appear to
all CPUs to be accessed doubleword-concurrent.

Programming Note
In the case of EXCLUSIVE OR (XC) designating
operands which coincide exactly, the bytes within
the field may appear to be accessed three times, by
two fetches and one store: once as the fetch por­
tion of the first operand update, once as the
second-operand fetch, and then once as the store
portion of the first-operand update. Each of the
three accesses appears to all CPUs to be
doubleword-concurrent, but the three accesses do
not necessarily appear to occur one immediately
after the other.

Relation between Operand Accesses
Storage-operand fetches associated with one in­
struction execution must appear to precede all
storage-operand references for conceptually subse­
quent instructions. A storage-operand store speci­
fied by one instruction must appear to precede all
storage-operand stores specified by conceptually
subsequent instructions, but it does not necessarily
precede storage-operand fetches specified by con­
ceptually subsequent instructions. However, a
storage-operand store must precede a conceptually
subsequent storage-operand fetch from the same
main-storage location.

When an instruction has two storage operands
both of which cause fetch references, it is unpre­
dictable which operand is fetched first, or how
much of one operand is fetched before the other
operand is fetched. When the two operands over­
lap, the common locations may be fetched inde­
pendently for each operand.

When an instruction has two storage operands,
the first of which causes a store and the second a
fetch reference, it is unpredictable how much of the
second operand is fetched before the results are
stored. In the case of destructively overlapping
operands, the portion of the second operand which
is common to the first is not necessarily fetched
from storage.

When an instruction has two storage operands,
the first of which causes an update reference and
the second a fetch reference, it is unpredictable
which operand is fetched first, or how much of one
operand is fetched before the other operand is
fetched. Similarly, it is unpredictable how much of
the result is processed before it is returned to stor­
age. In the case of destructively overlapping ope­
rands, the portion of the second operand which is

common to the first is not necessarily fetched from
storage.

Programming Note
The independent fetching of a single location for
each of two operands may affect the program exec­
ution in the following situation.

When the same storage location is designated by
two operand addresses of an instruction, and a
channel or another CPU causes the contents of the
location to change during execution of the instruc­
tion, the old and new values of the location may be
used simultaneously. For example, comparison of a
field to itself may yield a result other than equal, or
EXCLUSIVE-ORing of a field to itself may yield a
result other than zero.

Other Storage References
The restart, program, SVC, external, I/O, and
machine-check PSWs are accessed doubleword­
concurrent as observed by other CPUs. These ref­
erences occur after the conceptually previous unit
of operation and before the conceptually subse­
quent unit of operation. The relationship between
the new-PSW fetch, the old-PSW store, and the
interruption-code store is unpredictable.

Store accesses for interruption codes not stored
within the old PSW are not necessarily single­
access stores. The external and SVC interruption­
code stores occur between the conceptually previ­
ous and conceptually subsequent operations. The
program interruption-code store accesses may pre­
cede the storage-operand references associated with
the instruction which results in the program inter­
ruption.

The CSW and I/O-communications-area stores
occur within the conceptual limits of the interrup­
tion or I/O instruction with which they are associ­
ated.

Updating of the interval timer occurs after
storage-operand references for the conceptually
previous instruction and before storage-operand
references for the conceptually subsequent instruc­
tion. Interval-timer updates can also occur within
an interruptible instruction between units of opera­
tion.

Serialization
The sequence of functions performed by a CPU is
normally independent of the functions performed
by channels. Similarly, the sequence of functions
performed by a channel is normally independent of
the functions performed by other channels and by
the CPU. However, at certain points in its execu-

tion, serialization of the CPU occurs. Serialization
also occurs at certain points for channels.

CPU Serialization
All interruptions and the execution of certain in­
structions cause serialization of CPU operation. A
serialization operation consists in completing all
conceptually previous storage accesses by the CPU,
as observed by channels and other CPUs, before
the conceptually subsequent storage accesses occur.
Serialization affects the sequence of all CPU ac­
cesses to storage and to the storage keys, except for
those associated with OAT -table-entry fetching.

Serialization is performed by all interruptions
and by the execution of the following instructions:
1. The general instructions BRANCH ON CON­

DITION (BCR) with the Ml and R2 field con­
taining all ones and all zeros, respectively, and
COMPARE AND SWAP, COMPARE DOU­
BLE AND SWAP, STORE CLOCK, SUPER­
VISOR CALL, and TEST AND SET.

2. LOAD PSW and SET STORAGE KEY.
3. All I/ 0 instructions.
4. PURGE TLB and SET PREFIX, which also

cause the translation-look aside buffer to be
purged.

5. SIGNAL PROCESSOR, READ DIRECT, and
WRITE DIRECT.

6. INVALIDATE PAGE TABLE ENTRY.

The sequence of events associated with a serial­
izing operation is as follows:
• All conceptually previous storage accesses by the

CPU are completed, as observed by channels and
other CPUs. This includes all conceptually pre­
vious stores and changes to the storage keys.

• The normal function associated with the serializ­
ing operation is performed. In the case of in­
struction execution, operands are fetched, and
the storing of results is completed. The excep­
tions are LOAD PSW and SET PREFIX, in
which the operand may be fetched before previ­
ous stores have been completed, and interrup­
tions, in which the interruption code and associ­
ated fields may be stored prior to the serializa­
tion. The fetching of the serializing instruction
occurs before the execution of the instruction
and may precede the execution of previous in­
structions, but may not precede the completion
of the previous serializing operation. In the case
of an interruption, the old PSW, the interruption
code, and other information, if any, are stored,
and the new PSW is fetched, but not necessarily
in that sequence.

Chapter 5. Program Execution 5-15

• Finally, instruction fetch and operand accesses
for conceptually subsequent operations may
begin.

A serializing function affects the sequence of
storage accesses that are under the control of the
CPU in which the serializing function takes place.
It does not affect the sequence of storage accesses
under the control of a channel or another CPU.

Programming Notes
1. The following are some effects of a serializing

operation:
a. When an instruction changes the contents

of a storage location that is used as a
source of a following instruction and when
different addresses are used to designate
the same absolute location for storing the
result and fetching the instruction, a serial­
izing operation following the change
ensures that the modified instruction is ex­
ecuted.

b. When a serializing operation takes place,
the channel and any other CPUs observe
instruction and operand fetching and result
storing to take place in the sequence estab­
lished by the serializing operation.

2. Storing into a location from which a serializing
instruction is fetched does not necessarily
affect the execution of the serializing instruc­
tion unless a serializing function has been per-

5-16 System/370 Principles of Operation

formed after the storing and before the execu­
tion of the serializing instruction.

Channel Serialization
Serialization of a channel occurs as follows:
1. For a single channel program, all storage ac­

cesses and storage-key accesses by the channel
follow the execution of START I/O or START
I/O FAST RELEASE, as observed by the CPU
and other channels. This includes all accesses
for the CAW, CCWs, and data.

2. For the last CCW of a chain, all storage access­
es and storage-key accesses are completed, as
observed by the CPU and other channels, be­
fore the interruption condition indicating chan­
nel end is presented to the CPU.

3. If a CCW in the chain contains a PCI bit which
is one, all storage accesses and storage-key ac­
cesses due to CCWs preceding it in the chain
are completed, as observed by the CPU and
other channels, before the PCI condition is
presented to the CPU.

The serialization of a channel does not affect the
sequence of storage accesses or storage-key
accesses caused by a program in the CPU or anoth­
er channel. It also does not affect the sequence of
storage accesses or storage-key accesses caused by
other channel programs on the same channel.

Chapter 6. Interruptions

Contents

Interruption Action 6-1

Source Identification 6-4
Enabling and Disabling 6-4

Instruction-Length Code 6-5

Zero ILC 6-5
ILC on Instruction-Fetching Exceptions 6-5

Exceptions Associated with the PSW 6-6
Early Exception Recognition 6-6

Late Exception Recognition 6-7

External Interruption 6-7
Clock Comparator 6-8

CPU Timer 6-8
Emergency Signal 6-9

External Call 6-9
External Signal 6-9

Interrupt Key 6-9

Interval Timer 6-9
Malfunction Alert 6-10
TOD-Clock Sync Check

Input/Output Interruption
Machine-Check Interruption

Program Interruption 6-11

6-10
6-10

6-11

Program-Interruption Conditions 6-12
Addressing Exception 6-12

Data Exception 6-12

The interruption facility permits the CPU to change
its state as a result of conditions external to the
system, within the system, or within the CPU itself.
To permit fast response to conditions of high
priority and immediate recognition of the type of
condition, interruption conditions are grouped into
six classes: external, input/output, machine check,
program, restart, and supervisor call.

Interruption Action
An interruption consists in storing the current PSW
as an old PSW, storing information identifying the
cause of the interruption, and fetching a new PSW.
Processing resumes as specified by the new PSW.

The old PSW stored on an interruption normally
contains the address of the instruction that would
have been executed next had the interruption not
occurred, thus permitting resumption of the

Decimal-Divide Exception 6-13

Decimal-Overflow Exception 6-13
Execute Exception 6-13

Exponent-Overflow Exception 6-13
Exponent-Underflow Exception 6-13

Fixed-Point-Divide Exception 6-13
Fixed-Point-Overflow Exception 6-14

Floating-Point-Divide Exception 6-14

Monitor Event 6-14
Operation Exception 6-14

Page-Translation Exception 6-15
PER Event 6-15

Privileged-Operation Exception 6-15
Protection Exception 6-15

Segment-Translation Exception 6-16

Significance Exception 6-16

Special-Operation Exception 6-16
Specification Exception 6-16

Translation-Specification Exception 6-17
Recognition of Access Exceptions 6-17

Multiple Program-Interruption Conditions 6-19

Restart Interruption 6-22
Supervisor-Call Interruption 6-22
Priority of Interruptions 6-22

interrupted program. For program and
supervisor-call interruptions, the information stored
also contains a code that identifies the length of
the last-executed instruction, thus permitting the
program to respond to the cause of the
interruption. In the case of some program
conditions for which the normal response is
reexecution of the instruction causing the
interruption, the instruction address directly
identifies the instruction last executed.

Except for restart, an interruption can take place
only when the CPU is in the operating state. The
restart interruption can occur with the CPU in
either the stopped or operating state.

The details of source identification, location
determination, and instruction execution are
explained in later sections and are summarized in
the figure "Interruption Action."

Chapter 6. Interruptions 6-1

- ------------

PSW Mask Bits
Mask in Ctrl Execution of
Bits Registers Instruction

Source Interruption ILC Identified
Identification Code EC BC Reg, Bit Set by Old PSW

MACHINE CHECK Locations 232-239 1
(old PSW 48,

new PSW 112)

Exigent condition 13 13 x terminated20r nullified2
Repressible cond 13 13 14, 4-7 x unaffected

SUPERVISOR CALL Locations 138-139
(old PSW 32) in EC mode and

new PSW 96 34-35 in BC mode

Instruction bits 00000000 ssssssss 1 ,2 completed

PROGRAM Locations 142-143
(old PSW 40, in EC mode and

new PSW 104) 42-43 in BC mode

Operation 00000000 pOOOOO01 1 ,2,3 suppressed
Privi leged oper 00000000 pOOOO010 1 ,2 suppressed
Execute 00000000 pOOOO011 2 suppressed
Protection 00000000 pOOO0100 0,1,2,3 suppressed or terminated
Addressing 00000000 pOOO0101 0,1,2,3 suppressed or terminated
Specification 00000000 pOOO0110 0,1,2,3 suppressed or completed
Data 00000000 pOOO0111 2,3 suppressed or terminated
Fixed-pt overflow 00000000 pOO01000 20 36 1 ,2 completed
Fixed-point divide 00000000 pOO01001 1 ,2 suppressed or completed
Decimal Qverflow 00000000 pOO01010 21 37 2,3 completed
Decimal divide 00000000 pOO01011 2,3 suppressed
Exponent overflow 00000000 pOO01100 1 ,2 completed
Exponent underflow 00000000 pOO01101 22 38 1 ,2 completed
Significance 00000000 pOO01110 23 39 1 ,2 completed
Floating-pt divide 00000000 pOO01111 1 ,2 suppressed
Segment transl 00000000 p0010000 1,2,3 null ified
Page translation 00000000 p0010001 1 ,2,3 null ified
Translation spec 00000000 p0010010 1,2,3 suppressed
Special operation 00000000 p0010011 0, 1 2 suppressed
Monitor event 00000000 p10000003 8, 16+ 2 completed4
PER event 00000000 1nOnnnnn 1 * 9, 0-3 0,1,2,3 completed

Interruption Action (Part 1 of 2)

6-2 System/370 Principles of Operation

(

~

PSW Mask Bits
Mask in Ctrl Execution of
Bits Registers Instruction

Source Interruption ILC Ident if ied
Identification Code EC BC Reg. Bit Set by Old PSW

EXTERNAL Locations 134-135
(old PSW 24) in EC mode and
new PSW 88 26-27 in BC mode

Interval timer 00000000 leeeeeee 7 7 0, 24 x unaffected
Interrupt key 00000000 eleeeeee 7 7 O. 25 x unaffected
External signal 2 00000000 eeleeeee 7 7 O. 26 x unaffected
External signal 3 00000000 eeeleeee 7 7 O. 26 x unaffected
External signal 4 00000000 eeeeleee 7 7 O. 26 x unaffected
External signal 5 00000000 eeeeelee 7 7 0, 26 x unaffected
External signal 6 00000000 eeeeeele 7 7 O. 26 x unaffected
External signal 7 00000000 eeeeeeel 7 7 O. 26 x unaffected
Malfunction alert 00010010 00000000 7 7 O. 16 x unaffected
Emergency signal 00010010 00000001 7 7 0, 17 x unaffected
Externa 1 ca II 00010010 00000010 7 7 O. 18 x unaffected
TOO-clock sync chk 00010000 00000011 7 7 O. 19 x unaffected
Clock comparator 00010000 00000100 7 7 O. 20 x unaffected
CPU timer 00010000 00000101 7 7 O. 21 x unaffected

INPUT/OUTPUT Locations 186-187
(old PSW 56, in EC mode and

new PSW 120) 58-59 in BC mode

Channel 0 00000000 dddddddd 6 0 2. 05 x unaffected
Channel I 00000001 dddddddd 6 I 2, 15 x unaffected
Channel 2 00000010 dddddddd 6 2 2, 25 x unaffected
Channel 3 00000011 dddddddd 6 3 2, 35 x unaffected
Channel 4 00000100 dddddddd 6 4 2, 45 x unaffected
Channel 5 00000101 dddddddd 6 5 2, 55 x unaffected
Channel 6 & up cccccccc dddddddd 6 6 2. 6+ x unaffected

RESTART Locations 2-3 in
(old PSW 8) BC mode

new PSW 0

Restart key 00000000 000000006 x unaffected

Explanation:

I A model-independent machine-check interruption code of 64 bits ·is stored at loca­
tions 232-239.

2 The effect of the machine-check condition is identified by the validity bits in
the machine-check interruption code. The instruction is nullified or unaffected
only if all the associated validity bits are ones.

3 When the interruption code indicates a PER event. an ILC of 0 may be stored
only when bits 12-15 of the interruption code are not all zeros.

4 The uni.t of operation is completed. unless a program exception concurrently
indicated causes the unit of operation to be nullified. suppressed, or
terminated.

5 For channels 0-5. channel masks in control register 2 have no effect in the
BC mode.

6 Bits 16-31 in the old PSW in the BC mode are set to zeros. No interruption code
is provided in the EC mode.

+ Plus the following bits in the control register.
* In the BC mode. program-event recording is disabled.
c Channel~address bits.
d Device-address bits.
e If one, the bit indicates another concurrent external-interruption condition.
n A possible nonzero code, indicating another concurrent program-interruption

condition.
p If one, the bit indicates a concurrent PER-event interruption condition.
s Bits of the I field of SUPERVISOR CALL.
x Unpredictable in the BC mode; not stored in the EC mode.

Iuterruption Action (Part 2 of 2)

Chapter 6. Interruptions 6-3

Source Identification
The six classes of interruptions (external, I/O, ma­
chine check, program, restart, and supervisor call)
are distinguished by the storage locations at which
the old PSW is stored and from which the new
PSW is fetched. For most classes, the causes are
further identified by an interruption code and, for
some classes, by additional information placed in
permanently assigned storage locations during the
interruption. (See also the section "Assigned Stor­
age Locations" in Chapter 3, "Storage. ") For ex­
ternal, I/O, program, and supervisor-call interrup­
tions, the interruption code consists of 16 bits.

For external interruptions in the EC mode, the
interruption code is stored at locations 134-135. In
the BC mode, the interruption code is placed in the
old PSW.

For I/O interruptions in the EC mode, the inter­
ruption code, which contains the I/O address, is
stored at locations 186-187. In the BC mode, the
interruption code is placed in the old PSW. Addi­
tional information is provided by the contents of
the channel-status word (CSW) stored at location
64. Further information may be provided by the
limited channel logout stored at location 176 and
by the 1/ ° extended logout.

For machine-check interruptions, the interrup­
tion code consists of 64 bits and is stored at loca­
tions 232-239. Additional information for identify­
ing the cause of the interruption and for recovering
the state of the machine may be provided by the
contents of the machine-check logout and save
areas. (See Chapter 11, "Machine-Check Han­
dling. ")

For program interruptions in the EC mode, the
interruption code is stored at locations 142-143,
and the instruction-length code is stored in bit posi­
tions 5 and 6 of location 141. In the BC mode, the
interruption code and instruction-length code are
placed in the old PSW. Further information may
be provided in the form of the translation­
exception address, monitor-class number, monitor
code, PER code, and PER address, which are
stored at locations 144-159.

For restart interruptions in the EC mode, no
interruption code is stored. In the BC mode, an
interruption code of zero is placed in the old PSW.

For supervisor-call interruptions in the EC mode,
the interruption code is stored at locations 138-
139, and the instruction-length code is stored in bit
positions 5 and 6 of location 137. In the BC mode,
the interruption code and instruction-length code
are placed in the old PSW.

6-4 System/370 Principles of Operation

Enabling and Disabling
By means of mask bits in the current PSW and in
control registers, the CPU may be enabled or disa­
bled for all extern a!, I/O, and machine-check inter­
ruptions and for some program interruptions.
When a mask bit is one, the CPU is enabled for the
corresponding class of interruptions, and these in­
terruptions can take place.

When a mask bit is zero, the CPU is disabled for
the corresponding interruptions. The conditions
that cause I/O or external interruptions remain
pending. Machine-cheek-interruption conditions,
depending on the type, are ignored, remain pend­
ing, or cause the CPU to enter the check-stop state.
The disallowed program-interruption conditions are
ignored, except that some causes are indicated also
by the setting of the condition code.

Program interruptions for which mask bits are
not provided, as well as the supervisor-call and
restart interruptions, are always taken.

The mask bits may allow or disallow all interrup­
tions within the class, or they may selectively allow
or disallow interruptions for particular causes. This
control may be provided by mask bits in the PSW
that are assigned to particular causes, such as the
bits assigned to the four mask able program­
interruption conditions. Alternatively, there may
be a hierarchy of masks, where a mask bit in the
PSW controls all interruptions within a type, and
mask bits in a control register provide more de­
tailed control over the sources.

When the mask bit is one, the CPU is enabled
for the corresponding interruptions. When the
mask bit is zero, these interruptions are disallowed.
Interruptions that are controlled by a hierarchy of
masks are allowed only when all controlling mask
bits are ones.

Programming Notes
1. Mask bits in the PSW provide a means of disal­

lowing all maskable interruptions; thus, subse­
quent interruptions can be disallowed by the
new PSW introduced by an interruption. Fur­
thermore, the mask bits can be used to establish
a hierarchy of interruption priorities, where a
condition in one class can interrupt the program
handling a condition in another class but not
vice versa. To prevent an interruption-handling
routine from being interrupted before the nec­
essary housekeeping steps are performed, the
new PSW must disable the CPU for further
interruptions within the same class or within a
class of lower priority.

2. Since the mask bits in control registers are not
changed as part of the interruption procedure,
these masks cannot be used to prevent an inter­
ruption immediately after a previous interrup­
tion in the same class. The mask bits in control
registers provide a means for selectively ena­
bling the CPU for some sources and disabling it
for others within the same class.

Instruction-Length Code
The instruction-length code (ILC) occupies two bit
positions and provides the length of the last in­
struction executed. It permits identifying the in­
struction causing the interruption when the instruc­
tion address in the old PSW designates the next
sequential instruction. The ILC is provided also by
the BRANCH AND LINK instructions.

When the old PSW specifies the EC mode, the
ILC for program and supervisor-call interruptions is
stored in bit positions 5 and 6 of the bytes at loca­
tions 137 and 141, respectively. For external, I/O,
machine-check, and restart interruptions, the ILC is
not stored since it cannot be related to the length
of the last-executed instruction.

When the old PSW specifies the BC mode, the
ILC is stored in bit positions 32 and 33 of that
PSW. The ILC is meaningful, however, only after
a supervisor-call or program interruption. For
machine-check, external, I/O, and restart interrup­
tions, the ILC does not indicate the length of the
last-executed instruction and is unpredictable. Sim­
ilarly, the ILC is unpredictable in the PSW stored
during execution of the store-status function and
when the PSW is displayed.

For supervisor-call and program interruptions, a
nonzero ILC identifies in halfwords the length of
the instruction that was last executed. Whenever
an instruction is executed by means of EXECUTE,
instruction-length code 2 is set to indicate the
length of EXECUTE and not that of the target
instruction.

The value of a nonzero instruction-length code is
related to the leftmost two bits of the instruction.
The value is not contingent on whether the opera­
tion code is assigned or on whether the instruction
is installed. The following table summarizes the
meaning of the instruction-length code:

ILC Instr
Bits Instruction

Decimal Binary 0-1 Length

0 00 Not ava i I ab I e
1 01 00 One halfword
2 10 01 Two halfwords
2 10 10 Two halfwords
3 11 11 Three halfwords

Zero ILC
Instruction-length code 0, after a program interrup­
tion, indicates that the location of the instruction
causing the interruption is not made available to
the program.

An ILC of 0 occurs when a specification excep­
tion is recognized that is due to a PSW -format er­
ror, other than one due to an odd instruction ad­
dress, and the invalid PSW has been introduced by
LOAD PSW or an interruption. (See the section
"Exceptions Associated with the PSW" later in this
chapter.) In the case of LOAD PSW, the address
of the instruction has been replaced by the instruc­
tion address of the new PSW. When the invalid
PSW is introduced by an interruption, the PSW­
format error cannot be attributed to an instruction.

On some models without the translation feature,
an ILC of zero occurs also when an addressing
exception or a protection exception is recognized
during a store-type reference. In these cases, the
interruption due to the exception is delayed, the
length of time or number of instructions of the de­
lay being unpredictable. Neither the location of
the instruction causing the exception nor the length
of the last-executed instruction is made available to
the program. This type of interruption is sometimes
referred to as an imprecise program interruption.

In the case of LOAD PSW and the supervisor­
call interruption, a PER event may be indicated
concurrently with a specification exception having
an ILC of O.

ILC on Instruction-Fetching Exceptions
When a program interruption occurs because of an
exception that prohibits access to the instruction,
the instruction-length code cannot be set on the
basis of the first two bits of the instruction. As far
as the significance of the ILC for this case is con­
cerned, the following two situations are distin­
guished:
1. When an odd instruction address causes a spec­

ification exception to be recognized or when an
addressing, protection, or translation­
specification exception is encountered on fetch­
ing an instruction, the ILC is set to 1, 2, or 3,
indicating the multiple of 2 by which the in­
struction address has been incremented. It is

Chapter 6. Interruptions 6-5

unpredictable whether the instruction address is
incremented by 2, 4, or 6. By reducing the
instruction address in the old PSW by the num­
ber of halfword locations indicated in the ILC,
the address originally appearing in the PSW
may be obtained.

2.. When a segment-translation or page-translation
exception is recognized while fetching an in­
struction, including the target instruction of
EXECUTE, the ILC is arbitrarily set to 1, 2, or
3. In this case, the operation is nullified, and
the instruction address is not incremented.

The ILC is not necessarily related to the first
two bits of the instruction when the first halfword
of an instruction can be fetched but an access ex­
ception is recognized on fetching the second or
third halfword. The ILC may be arbitrarily set to
1, 2, or 3 in these cases. The instruction address is
or is not updated, as described in situations 1 and 2
above.

When any exceptions other than segment
translation or page translation are encountered on
fetching the target instruction of EXECUTE, the
ILC is 2.

Programming Notes
1. A nonzero instruction-length code for a pro­

gram interruption indicates the number of half­
word locations by which the instruction address
in the old PSW must be reduced to obtain the
address of the last instruction executed, unless
one of the following situations exists:
a. The interruption is caused by a segment­

translation or page-translation exception.
b. An interruption for a PER event occurs

before the execution of an interruptible in­
struction is ended.

c. The interruption is caused by a PER event
due to LOAD PSW or a branch or linkage
instruction, including SUPERVISOR
CALL.

d. The interruption is caused by an access ex­
ception encountered in fetching an instruc­
tion, and the instruction address has been
introduced into the PSW by a means other
than sequential operation (by a branch in­
struction, LOAD PSW, or an interruption).

e. The interruption is caused by a specification
exception because of an odd instruction ad­
dress.

f. The interruption is caused by an early spec­
ification exception or by an access excep­
tion encountered in fetching an instruction,
and changes have been made to the param-

6-6 System/370 Principles of Operation

eters that control the relation between the
logical and real instruction address. The
relation between logical and real addresses
can be changed by turning the translation
mode on or off without introducing an en­
tire new PSW, or changing the translation­
control parameters in control registers 0
and 1. The early specification exception
can be caused by executing STORE THEN
OR SYSTEM MASK or SET SYSTEM
MASK, which turns DAT on while intro­
ducing invalid values in bit positions 0-7 of
an EC-mode PSW.

For situations a and b above, the instruction
address in the PSW is not incremented, and the
instruction designated by the instruction ad­
dress is the same as the last one executed.
These two are the only cases in which the in­
struction address in the old PSW identifies the
instruction causing the exception.

For situations c, d, and e, the instruction
address has been replaced as part of the opera­
tion, and the address of the last instruction ex­
ecuted cannot be calculated using the one ap­
pearing in the old PSW.

For situation f, the instruction address in the
PSW has not been replaced, but the corre­
sponding real address after the change is differ­
ent.

2. When a PER event is indicated, bit 8 in the
interruption code is one, the PER address in the
word at location 152 identifies the location of
the instruction causing the interruption, and the
instruction-length code (ILC) is redundant.
Similarly, the ILC is redundant when the oper­
ation is nullified, since in this case the instruc­
tion address in the PSW is not incremented. If
the ILC value is required in this case, it can be
derived from the operation code of the instruc­
tion identified by the old PSW.

Exceptions Associated with the PSW
Exceptions associated with erroneous information
in the current PSW may be recognized when the
information is introduced into the PSW or may be
recognized as part of the execution of the next
instruction. Errors in the PSW which are
specification-exception conditions are called PSW­
format errors.

Early Exception Recognition
For the following error conditions, a program inter­
ruption for a specification exception occurs immedi-

'" ..J

ately after the PSW becomes active:
• A one is introduced into an unassigned bit posi­

tion of an EC-mode PSW (that is, bit positions
0,2-4, 16, 17, or 24-39).

• The EC mode is specified (PSW bit 12 is one) in
a CPU that does not have that mode.

The interruption takes place regardless of wheth­
er the wait state is specified. If the invalid PSW
causes the CPU to become enabled for a pending
I/O, external, or machine-check interruption, the
program interruption is taken instead, and the
pending interruption is subject to the mask bits of
the new PSW introduced by the program interrup­
tion. If the EC mode is not present, bits 0-15 and
34-63 of the invalid PSW are stored unchanged at
the corresponding bit positions of the program old
PSW, and the interruption code and instruction­
length code are stored at bit position 16-33 of the
program old PSW.

When the execution of LOAD PSW or an inter­
ruption introduces a PSW with one of the above
error conditions, the instruction-length code is set
to 0, and the newly introduced PSW, except for the
interruption code and the instruction-length code in
the BC mode, is stored unmodified as the old PSW.
When one of the above error conditions is intro­
duced by execution of SET SYSTEM MASK or
STORE THEN OR SYSTEM MASK, the
instruction-length code is set to 2, and the instruc­
tion address is updated by two halfword locations.
The PSW containing the invalid value introduced
into the system-mask field is stored as the old PSW.

When a PSW with one of the above error condi­
tions is introduced during initial program loading,
the loading sequence is not completed, and the load
indicator remains on.

Late Exception Recognition
For the following conditions, the exception is rec­
ognized as part of the execution of the next in­
struction:
• A specification exception is recognized due to an

odd instruction address in the PSW (PSW bit 63
is one).

• An access exception (addressing, page­
translation, protection, segment-translation, or
translation-specification) is associated with the
location designated by the instruction address or
with the location of the second or third halfword
of the instruction starting at the designated ad­
dress.

The instruction-length code and instruction ad­
dress stored in the program old PSW under these

conditions are discussed in the section "ILC on
Instruction-Fetching Exceptions" in this chapter.

If the invalid PSW causes the CPU to be enabled
for a pending I/O, external, or machine-check in­
terruption, the corresponding interruption occurs,
and the PSW invalidity is not recognized. Similar­
ly, the specification or access exception is not rec­
ognized in a PSW specifying the wait state.

Programming Notes
1. The execution of LOAD PSW, SET SYSTEM

MASK, STORE THEN AND SYSTEM MASK,
and STORE THEN OR SYSTEM MASK is
suppressed on an addressing or protection ex­
ception, and hence the program old PSW pro­
vides information concerning the program caus­
ing the exception.

2. When the first halfword of an instruction can
be fetched but an access exception is recogniz­
ed on fetching the second or third halfword,
the ILC is not necessarily related to the opera­
tion code.

3. If the new PSW introduced by an interruption
contains a PSW-format error, a string of inter­
ruptions occurs. (See the section "Priority of
Interruptions" in this chapter.)

External Interruption
The external interruption provides a means by
which the CPU responds to various signals originat­
ing either from within or from without the system.

An external interruption causes the old PSW to
be stored at location 24 and a new PSW to be
fetched from location 88.

The source of the interruption is identified in the
interruption code. When the old PSW specifies the
EC mode, the interruption code is stored at loca­
tions 134-135. When the old PSW specifies the
BC mode, the interruption code is placed in bit
positions 16-31 of the old PSW, and the
instruction-length code is unpredictable.

Additionally, for the malfunction-alert,
emergency-signal, and external-call conditions, a
16-bit CPU address is associated with the source of
the interruption and is stored at locations 132-133
in both the EC and Be modes. When the CPU
address is stored, bit 6 of the interruption code is
set to one. For all other conditions, no CPU ad­
dress is stored, and bit 6 of the interruption code is
set to zero. When bit 6 is zero and the old PSW
specifies the EC mode, zeros are stored at locations
132-133. When bit 6 is zero and the old PSW
specifies the BC mode, the contents of locations
132-133 remain unchanged.

Chapter 6. Interruptions 6-7

External-interruption conditions are of two
types: those for which an interruption request con­
dition is held pending, and those for which the con­
dition directly requests the interruption. Clock
comparator, CPU timer, and TOD-clock sync check
are conditions which directly request external inter­
ruptions. If a condition which directly requests an
external interruption is removed before the request
is honored, the request does not remain pending,
and no interruption occurs. Conversely, there­
quest is not cleared by the interruption, and if the
condition persists, more than one interruption may
result from a single occurrence of the condition.

When several interruption requests for a single
source are generated before the interruption is tak­
en, and the interruption condition is of the type
which is held pending, only one request for that
source is preserved and remains pending.

An external interruption for a particular source
can occur only when the CPU is enabled for inter­
ruption by that source. The external interruption
occurs at the completion of a unit of operation.
Whether the CPU is enabled for external interrup­
tion is controlled by the external mask, PSW bit 7,
and external subclass mask bits in control register
O. Each source for an external interruption has a
subclass mask bit assigned to it, and the source can
cause an interruption only when the external-mask
bit is one and the corresponding subclass-mask bit
is one. The use of the subclass-mask bits does not
depend on whether the CPU is in the EC or BC
mode.

When the CPU becomes enabled for a pending
external-interruption condition, the interruption
occurs at the completion of the instruction execu­
tion or interruption that causes the enabling.

More than one source may present a request for
an external interruption at the same time. When
the CPU becomes enabled for more than one con­
currently pending request, the interruption occurs
for the pending condition or conditions having the
highest priority.

The priorities for external-interruption requests
in descending order are as follows:
Interval timer, interrupt key, external signals 2-7
Malfunction alert
Emergency signal
External call
TOD-clock sync check
Clock comparator
CPU timer

The interval timer, interrupt key, and external
signals 2-7 are of equal priority; if more than one
of these conditions is pending and allowed, the

6-8 System/370 Principles of Operation

conditions are indicated concurrently. All other
requests are honored one at a time. When more
than one emergency-signal request exists at a time
or when more than one malfunction-alert request
exists at a time, the request associated with the
smallest CPU address is honored first.

Clock Comparator
An interruption request for the clock comparator
exists whenever either of the following conditions is
met:
1. The time-of-day clock is in the set or not-set

state, and the value of the clock comparator is
less than the value in the compared portion of
the time-of-day clock, both compare values be­
ing considered unsigned binary integers.

2. The clock comparator is installed, and the time­
of-day clock is in the error or not-operational
state.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption oc­
curs. Conversely, the request is not cleared by the
interruption, and, if the condition persists, more
than one interruption may result from a single oc­
currence of the condition.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions, if
any, that are due to the clock comparator mayor
may not be recognized for up to 1.048576 seconds
after the change.

The clock-comparator condition is indicated by
an external-interruption code of 1004 (hex).

The subclass-mask bit is in bit position 20 of
control register O. This bit is initialized to zero.

CPU Timer
An interruption request for the CPU timer exists
whenever the CPU-timer value is negative (bit 0 of
the CPU timer is one). If the value is made posi­
tive before the request is honored, the request does
not remain pending, and no interruption occurs.
Conversely, the request is not cleared by the inter­
ruption, and, if the condition persists, more than
one interruption may occur from a single occur­
rence of the condition.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions, if
any, that are due to the CPU timer mayor may not
be recognized for a period of time up to 1.048576
seconds after the change.

The CPU-timer condition is indicated by an
external-interruption code of 1005 (hex).

The subclass-mask bit is in bit position 21 of
control register O. This bit is initialized to zero.

Emergency Signal
An interruption request for an emergency signal is
generated when the CPU accepts the emergency­
signal order specified by a SIGNAL PROCESSOR
instruction addressing this CPU. The instruction
may have been executed by this CPU or by another
CPU configured to this CPU. The request is pre­
served and remains pending in the receiving CPU
until it is cleared. The pending request is cleared
when it causes an interruption and by CPU reset.

Facilities are provided for holding a separate
emergency-signal request pending in the receiving
CPU for each configured CPU, including the re­
ceiving CPU itself.

The emergency-signal condition is indicated by
an external-interruption code of 1201 (hex). The
address of the CPU that issued the SIGNAL
PROCESSOR instruction is stored at locations 132-
133.

The subclass-mask bit is in bit position 17 of
control register O. This bit is initialized to zero.

External Call
An interruption request for an external call is gen­
erated when the CPU accepts the external-call or­
der specified by a SIGNAL PROCESSOR instruc­
tion addressing this CPU. The instruction may
have been executed by this CPU or by another
CPU configured to this CPU. The request is pre­
served and remains pending in the receiving CPU
until it is cleared. The pending request is cleared
when it causes an interruption and by CPU reset.

Only one external-call request, along with the
processor address, may be held pending in a CPU
at a time.

The external-call condition is indicated by an
external-interruption code of 1202 (hex). The
address of the CPU that issued the SIGNAL
PROCESSOR instruction is stored at locations 132-
133.

The subclass-mask bit is in bit position 18 of
control register O. This bit is initialized to zero.

External Signal
An interruption request for an external signal is
generated when a signal is received on one or more
of the signal-in lines. Up to six signal-in lines may
be connected, providing for external signal 2
through external signal 7. The request is preserved
and remains pending in the CPU until it is cleared.
The pending request is cleared when it causes an
interruption and by CPU reset.

Facilities are provided for holding a separate
external-signal request pending for each of the six
lines.

External signals 2-7 are indicated by setting to
one interruption-code bits 10-15, respectively. Bits
0-7 are set to zeros, and any other bits in the right­
most byte are set to zeros unless set to ones for
other conditions that are concurrently indicated.

All external signals are subject to control by the
subclass-mask bit in bit position 26 of control regis­
ter O. This bit is initialized to one.

External signaling is independent of I/O opera­
tions and interruptions.

Programming Note
The pattern presented in bit positions 10-15 of the
interruption code depends on the pattern received
before the interruption is taken. Because of circuit
skew, all simultaneously generated external signals
do not necessarily arrive at the same time, and
some may not be included in the external interrup­
tion resulting from the earliest signals. These late
signals may cause another interruption to be taken.

Interrupt Key
An interruption request for the interrupt key is
generated when the operator activates that key.
The request is preserved and remains pending in
the CPU until it is cleared. The pending request is
cleared when it causes an interruption and by CPU
reset.

When the interrupt key is activated while the
CPU is in the load state, it depends on the model
whether an interruption request is generated or the
condition is lost.

The interrupt-key condition is indicated by set­
ting bit 9 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 8 and 10-15 are ze­
ros unless set to ones for other conditions that are
concurrently indicated.

The subclass-mask bit is in bit position 2.5 of
control register O. This bit is initialized to one.

Interval Timer
An interruption request for the interval timer is
generated when the value of the interval timer is
decremented from a positive number or zero to a
negative number. The request is preserved and
remains pending in the CPU until it is cleared. The
pending request is cleared when it causes an inter­
ruption and by CPU reset.

When the time-of-day clock accessed by a CPU
is set or changes state, interruption conditions, if
any, that are due to the interval timer mayor may

Chapter 6. Interruptions 6-9

not be recognized for up to 1.048576 seconds after
the change.

The interval-timer condition is indicated by set­
ting bit 8 in the interruption code to one and by
setting bits 0-7 to zeros. Bits 9-15 are zeros unless
set to ones for other conditions that are concur­
rently indicated.

The subclass-mask bit is in bit position 24 of
control register O. This bit is initialized to one.

Malfunction A.lert
An interruption request for a malfunction alert is
generated when another CPU that is configured to
the CPU enters the check-stop state or loses power.
The request is preserved and remains pending in
the receiving CPU until it is cleared. The pending
request is cleared when it causes an interruption
and by CPU reset.

Facilities are provided for holding a separate
malfunction-alert request pending in the receiving
CPU for each of the other configured CPUs. Con­
figuring a CPU out of the system does not generate
a malfunction-alert condition.

The malfunction-alert condition is indicated by
an external-interruption code of 1200 (hex). The
address of the CPU that generated the condition is
stored at locations 132-133.

The subclass-mask bit is in bit position 16 of
control register O. This bit is initialized to zero.

TOD-Clock Sync Check
The TOD-clock-sync-check condition indicates that
more than one time-of-day clock exists in the con­
figuration, and that the rightmost 32 bits of the
clocks are not running in synchronism.

An interruption request for a TOD-clock sync
check exists when the time-of-day clock accessed
by this CPU is running (that is, the clock is in the
set or not-set state), the clock accessed by any oth­
er CPU configured to this CPU is running, and bits
32-63 of the two clocks do not match. When a
clock is set or changes state, or when a running
clock is added to the configuration, a delay of up to
1.048576 seconds (220 microseconds) may occur
before the mismatch condition is recognized.

When only two time-of-day' clocks are in the
configuration and either or both of the clocks are
in the error, stopped, or not-operational state, it is
unpredictable whether a TOD-clock-sync-check
condition is recognized; if the condition is recog­
nized, it may continue to persist up to 1.048576
seconds after both clocks have been running with
the rightmost 32 bits matching. However, in this
case, the condition does not persist if the two CPUs
are configured apart.

6-10 System/370 Principles of Operation

When more than one CPU shares a time-of-day
clock, only the CPU with the smallest CPU address
among those sharing the clock indicates a TOD­
clock-sync-check condition associated with that
clock.

If the condition responsible for the request is
removed before the request is honored, the request
does not remain pending, and no interruption oc­
curs. Conversely, the request is not cleared by the
interruption, and, if the condition persists, more
than one interruption may result from a single oc­
currence of the condition.

The TOD-clock-sync-check condition is indicat­
ed by an external-interruption code of 1003 (hex).

The subclass-mask bit is in bit position 19 of
control register O. This bit is initialized to zero.

Input/ Output Interruption
The input/output (I/O) interruption provides a
means by which the CPU responds to conditions in
I/O devices and channels.

A request for an I/O interruption may occur at
any time, and more than one request may occur at
the same time. The requests are preserved and
remain pending in channels or devices until accept­
ed by the CPU. The I/O interruption occurs at the
completion of a unit of operation. Priority is estab­
lished among requests so that only one interruption
request is processed at a time. For more details,
see the section "Input/Output Interruptions" in
Chapter 12, "Input/Output Operations. II

When the CPU becomes enabled for I/O inter­
ruptions and a channel has established priority for
a pending I/O-interruption condition, the interrup­
tion occurs at the completion of the instruction
execution or interruption that causes the enabling.

An I/O interruption causes the old PSW to be
stored at location 56, a channel status word to be
stored at location 64, and a new PSW to be fetched
from location 120. Upon detection of equipment
errors, additional information may be stored in the
form of a limited channel logout at location 176
and in the form of an I/O extended logout starting
at the location designated by the contents of loca­
tions 173-175.

When the old PSW specifies the BC mode, the
I/O address identifying the channel and device
causing the interruption is stored at locations 186-
187, and zeros are stored at location 185. When
the old PSW specifies the BC mode, the interrup­
tion code in PSW bit positions 16-31 contains the
I/O address, and the instruction-length code in the
PSW is unpredictable.

An I/O interruption can occur only while the
CPU is enabled for interruption by the channel

presenting the request. Mask bits in the PSW and
channel masks in control register 2 determine
whether the CPU is enabled for interruption by a
channel; the method of control depends on whether
the current PSW specifies the EC or BC mode.

The channel-mask bits in control register 2 start
at bit position 0 and extend for as many contiguous
bit positions as the number of channels provided.
The assignment is such that a bit is assigned to the
channel whose address is equal to the position of
the bit in control register 2. Channel-mask bits for
installed channels are initialized to one. The state
of the channel-mask bits for unavailable channels is
unpredictable.

When the current PSW specifies the EC mode,
each channel is controlled by the 1/ O-mask bit,
PSW bit 6, and by the corresponding channel-mask
bit in control register 2; the channel can cause an
interruption only when the I/O-mask bit is one and
the corresponding channel-mask bit is one.

When the current PSW specifies the BC mode,
interruptions from channels 6 and up are controlled
by the I/O-mask bit, PSW bit 6, in conjunction
with the corresponding channel-mask bit: the
channel can cause an interruption only when the
I/O-mask bit is one and the corresponding
channel-mask bit is one. Interruptions from chan­
nels 0-5 are controlled by channel-mask bits 0-5 in
the PSW: an interruption can occur only when the
mask bit corresponding to the channel is one. In
the BC mode, bits 0-5 in control register 2 do not
participate in controlling I/O interruptions; they
are, however, preserved in the control register if
the corresponding channels are installed.

Machine-Check Interruption
The machine-check interruption is a means for re­
porting to the program the occurrence of equipment
malfunctions. Information is provided to assist the
program in determining the location of the fault
and extent of the damage.

A machine-check interruption causes the old
PSW to be stored at location 48 and a new PSW to
be fetched from location 112. When the old PSW
specifies the BC mode, the contents of the
interruption-code and ILC fields in the old PSW
are unpredictable.

The cause and severity of the malfunction are
identified by a 64-bit machine-cheek-interruption
code stored at locations 232-239. Further informa­
tion identifying the cause of the interruption and
the location of the fault may be stored at locations
216-511 and in the area starting with the location
designated by the contents of control register 15.

The interruption action and the storing of the
associated information are under the control of
PSW bit 13 and bits in control register 14. See
Chapter 11, "Machine-Check Handling," for more
detailed information.

Program Interruption
Program interruptions are used to report exceptions
and events which occur during execution of the
program. Exceptions include the improper specifi­
cation or use of instructions and data. Events are
detected during monitoring (monitor events) and
program-event recording (PER events).

A program interruption causes the old PSW to be
stored at location 40 and a new PSW to be fetched
from location 104.

The cause of the interruption is identified by the
interruption code. When the old PSW specifies the
EC mode, the interruption code is placed at loca­
tions 142-143, the instruction-length code is placed
in bit positions 5 and 6 of the byte at location 141
with the rest of the bits set to zeros, and zeros are
stored at location 140. When the old PSW speci­
fies the BC mode, the interruption code and the
ILC are placed in the old PSW. For some causes,
additional information identifying the reason for
the interruption is stored at locations 144-159 in
both the EC and BC modes.

Except for the PER-event condition, the condi­
tion causing the interruption is indicated by a cod­
ed value placed in the rightmost seven bit positions
of the interruption code. Only one condition at a
time can be indicated. Bits 0-7 of the interruption
code are set to zeros.

The PER-event condition is indicated by setting
bit 8 of the interruption code to one, with bits 0-7
set to zeros. When this is the only condition, bits
9-15 are also set to zeros. When a PER-event con­
dition is indicated concurrently with another pro­
gram interruption condition, bit 8 is one, and the
coded value for the other condition appears in bit
positions 9-15.

A program interruption can occur only when the
corresponding mask bit, if any, is one. The pro­
gram mask in the PSW permits masking four of the
exceptions, bit 1 in control register 0 controls
whether SET SYSTEM MASK causes a special­
operation exception, bits 16-31 in control register 8
control interruptions due to monitor events, and, in
the EC mode, masks are provided for controlling
interruptions due to PER events. When the mask
bit is zero, the condition is ignored; the condition
does not remain pending.

Chapter 6. Interruptions 6-11

Programming Notes
1. When the new PSW for a program interruption

has a PSW-format error or causes an exception
to be recognized in the process of instruction
fetching, a string of program interruptions takes
place. See the section "Priority of Interrup­
tions" in this chapter for a description of how
such strings are terminated.

2. Some of the conditions indicated as program
exceptions may be recognized also by an I/O
operation, in which case the exception is indi­
cated in the channel-status word.

Program-Interruption Conditions
The following is a detailed description of each
program-interruption condition.

Addressing Exception
An addressing exception is recognized when the
CPU causes a reference to a main-storage location
that is not available to the CPU. A main-storage
location is not available to the CPU when the loca­
tion is not provided, when the storage unit is not
configured to the CPU, or when power is off in the
storage unit. An address designating an unavaila­
ble storage location is referred to as invalid.

The operation is suppressed when the address of
the instruction, including the location of the target
instruction of EXECUTE, is invalid. Similarly, the
unit of operation is suppressed when the exception
is encountered during an implicit reference to a
dynamic-address-translation (DAT) table entry.
Except for some specific instructions whose execu­
tion is suppressed, the operation is terminated for
an operand address that can be translated but des­
ignates an unavailable location. See the figure
"Summary of Action for Addressing and Protection
Exceptions. "

Data in storage remains unchanged unless the
location is available to the CPU. When part of an
operand location is available to the CPU and part is
not, storing may be performed in the available part.

When the address of any halfword of an instruc­
tion is invalid, or the address of a DAT table entry
associated with an instruction fetch is invalid, the
instruction-length code OLC) is 1, 2, or 3, indicat­
ing the multiple of 2 by which the instruction ad­
dress has been incremented. It is unpredictable
whether the ILC is 1, 2, or 3.

In all cases of addressing exceptions not associ­
ated with instruction fetching, the ILC is 1, 2, or 3,
designating the length of the instruction that
caused the reference. However, when the excep­
tion is due to an attempt to store and the address
can be translated but designates an unavailable

6-12 System/370 Principles of Operation

operand location, the ILC on some models may be
o. When an addressing exception is associated with
fetching the target of EXECUTE, the ILC is 2.

Action On

DAT-Table- Instruction
Exception Entry Fetch Fetch Operand Reference

Addressing Suppress Suppress Suppress for LPSW, SCKC,
exception SPT, SPX, SSM, STNSM,

STOSM, and TPROT.

Terminate for all others'

Protection - Suppress Suppress for LPSW, SCKC,
except ion SPT, SPX, SSM, STNSM, and
for key- STOSM.
controlled
protection Terminate for all others I

Protection - - Suppress for STNSM and
exception STOSM.
for low-
address
protection Terminate for all others l

Explanation:

- Not appl icable

I For term i nat ion, changes may occur orlly to result
fields. In this context, "result fie I dl' includes
condition code, registers, and storage locations, if
any, which are designated to be changed by the
instruction. However, no change is made to a
storage location or a key in storage when the refer-
ence causes an access exception. Therefore, if an
instruction is due to change only the contents of a
field in main storage, and every byte of that field
would cause an access exception, the operation is
suppressed.

Summary of Action for Addressing and Protection Exceptions

Data Exception
A data exception is recognized when:
1. The sign or digit codes of operands in the deci­

mal instructions (described in Chapter 8,
"Decimal Instructions") or in CONVERT TO
BIN AR Yare invalid.

2. The operand fields in ADD DECIMAL, COM­
PARE DECIMAL, DIVIDE DECIMAL, MUL­
TIPL Y DECIMAL, and SUBTRACT DECI­
MAL overlap in a way other than with coinci­
dent rightmost bytes; or operand fields in
ZERO AND ADD overlap, and the rightmost
byte of the second operand is to the right of
the rightmost byte of the first operand.

3. The multiplicand in MULTIPLY DECIMAL
has an insufficient number of high-order zeros.

For all instructions other than EDIT and EDIT
AND MARK, the action taken for a data exception
depends on whether a sign code is invalid. The
operation is suppressed when a sign code is invalid,
regardless of whether any other condition causing
the exception exists; when no sign code is invalid,
the operation is terminated. When the operation is
terminated, the contents of the sign position in the
rightmost byte of the result field either remain un-

changed or are set to the preferred sign code; the
contents of the remainder of the result field are
unpredictable.

In the case of EDIT and EDIT AND MARK, an
invalid sign code is not recognized; the operation is
terminated on a data exception for an invalid digit
code.

The instruction-length code is 2 or 3.

Programming Notes
1. The definition for data exception permits termi­

nation when digit codes are invalid but no sign
code is invalid. On some models, valid digit
codes may be placed in the result location even
if the original contents were invalid. Thus it is
possible, after getting a data exception, for all
fields to appear valid.

2. When, on a program interruption for data ex­
ception, the program finds that a sign code is
invalid, the operation has been suppressed if
the following two conditions are met:
a. The invalid sign of the source field is not

located in the numeric portion of the result
field.

b. The sign code appears in a position speci­
fied by the instruction to be checked for
valid sign. (This condition excludes the
first operand of ZERO AND ADD and
both operands of EDIT and EDIT AND
MARK.)

An invalid sign code for the rightmost byte of
the result field is not generated when the operation
is terminated. However, an invalid second-operand
sign code is not necessarily preserved when it ap­
pears in the numeric portion of the result field.

Decimal-Divide Exception
A decimal-divide exception is recognized when in
decimal division the divisor is zero or the quotient
exceeds the specified data-field size.

The decimal-divide exception is indicated only if
the sign codes of both the divisor and dividend are
valid and only if the digit or digits used in estab­
lishing the exception are valid.

The operation is suppressed.
The instruction-length code is 2 or 3.

Decimal-Overflow Exception
A decimal-overflow exception is recognized when
one or more significant high-order digits are lost
because the destination field in a decimal operation
is too short to contain the result.

The interruption may be disallowed by PSW bit
21 in the EC mode and by PSW bit 37 in the BC
mode.

The operation is completed. The result is ob­
tained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 2 or 3.

Execute Exception
The execute exception is recognized when the tar­
get instruction of EXECUTE is another EXECU­
TE.

The operation is suppressed.
The instruction-length code is 2.

Exponent-Overflow Exception
An exponent-overflow exception is recognized
when the result characteristic in floating-point ad­
dition, subtraction, multiplication, or division ex­
ceeds 127 and the result fraction is not zero.

The operation is completed. The fraction is nor­
malized, and the sign and fraction of the result
remain correct. The result characteristic is made
128 smaller than the correct characteristic.

The instruction-length code is 1 or 2.

Exponent-Underflow Exception
An exponent-underflow exception is recognized
when the result characteristic in floating-point ad­
dition, subtraction, multiplication, halving, or divi­
sion is less than zero and the result fraction is not
zero.

The interruption may be disallowed by PSW bit
22 in the EC mode and by PSW bit 38 in the BC
mode.

The operation is completed. The exponent­
underflow mask also affects the result of the opera­
tion. When the mask bit is zero, the sign, charac­
teristic, and fraction are set to zero, making the
result a true zero. When the mask bit is one, the
fraction is normalized, the characteristic is made
128 larger than the correct characteristic, and the
sign and fraction remain correct.

The instruction-length code is 1 or 2.

Fixed-Point-Divide Exception
A fixed-point-divide exception is recognized when
in fixed-point division the divisor is zero or the
quotient exceeds the register size, or when the re­
sult of CONVERT TO BINARY exceeds 31 bits.

In the case of division, the operation is sup­
pressed. The execution of CONVERT TO BINA­
RY is completed by ignoring the high-order bits
that cannot be placed in the register.

The instruction-length code is 1 or 2.

Chapter 6. Interruptions 6-13

Fixed-Point-Overflow Exception
A fixed-point-overflow exception is recognized
when an overflow occurs during signed binary
arithmetic or left-shift operations.

The interruption may be disallowed by PSW bit
20 in the EC mode and by PSW bit 36 in the BC
mode.

The operation is completed. The result is ob­
tained by ignoring the overflow information, and
condition code 3 is set.

The instruction-length code is 1 or 2.

Floating-Point-Divide Exception
A floating-point-divide exception is recognized
when a floating-point division by a number with a
zero fraction is attempted.

The operation is suppressed. .
The instruction-length code is 1 or 2.

Monitor Event
A monitor event is recognized when MONITOR
CALL is executed and the monitor-mask bit in
control register 8 corresponding to the class speci­
fied by instruction bits 12-15 is one.

The monitor event can occur in both the EC and
BC modes.

Control Register 8:

11111111111111111 Monitor Masks

o 16 31

The monitor-mask bits, bits 16-31 of control
register 8, correspond to monitor classes 0-15, re­
spectively. Any number of monitor-mask bits may
be on at a time; together they specify the classes of
monitor events that are monitored at that time.
The mask bits are initialized to zero.

When a MONITOR CALL instruction is inter­
preted for execution and the corresponding
monitor-mask bit is one, a program interruption for
monitoring occurs. The cause of the interruption is
identified by setting bit 9 of the interruption code
to one, and by the information stored at locations
148-149 and 156-159. The format of the informa­
tion stored at these locations is the same in the EC
and BC modes and is as follows:

Locations 148-149:

o 8

Monitor
Class No.

15

6-14 System/370 Principles of Operation

Locations 156-159:

1000000001 Monitor Code

o 8 31

The contents of bit positions 8-15 of MONITOR
CALL are stored at location 149 and constitute the
monitor-class number. The address specified by
the Bl and Dl fields of the instruction forms the
monitor code, which is stored at locations 157-159.
Zeros are stored at locations 148 and 156.

The operation is completed, and the instruction­
length code is 2.

Operation Exception
An operation exception is recognized when the
CPU encounters an instruction with an invalid op­
eration code. The operation code may not be as­
signed, or the instruction with that operation code
may not be available on the CPU.

For the purpose of checking the operation code
of an instruction, the operation code is defined as
follows:
1. When the first eight bits of an instruction have

the value B2 or E5 (hex), the first 16 bits form
the operation code.

2. In all other cases, the first eight bits alone form
the operation code.

The operation is suppressed.
The instruction-length code is 1, 2, or 3.

Programming Notes
1. Some models may offer instructions not de­

scribed in this publication, such as those pro­
vided for emulation or as part of special or cus­
tom features. Consequently, operation codes
not described in this publication do not neces­
sarily cause an operation exception to be recog­
nized. Furthermore, these instructions may
cause modes of operation to be set up or may
otherwise alter the machine so as to affect the
execution of subsequent instructions. To avoid
causing such an operation, an instruction with
an operation code not described in this publica­
tion should be issued only when the specific
function associated with the operation code is
desired.

2. The operation code 00, with a two-byte instruc­
tion format, currently is not assigned. It is im­
probable that this operation code will ever be
assigned.

3. In the case of I/O instructions with the values
9C, 9D, 9E, and 9F in bit positions 0-7, the
value of bit 15 is used to distinguish between

two instructions. Bits 8-14, however, are not
checked for zeros, and these operation codes
never cause an operation exception to be recog­
nized.

To ensure that presently written programs
run if and when the I/O operation codes (9C,
9D, 9E, and 9F) are extended further to pro­
vide for new functions, only zeros should be
placed in the unused bit positions in the second
op-code byte. In accordance with these recom­
mendations, the operation codes for the I/O
instructions are shown as 9COO, 9C01, 9DOO,
etc.

Page-Translation Exception
A page-translation exception is recognized when:
1. The page-table entry indicated by the page­

index portion of a virtual address is outside the
page table.

2. The page-invalid bit is one.

The exception is recognized as part of the execu­
tion of the instruction that needs the page-table
entry in the translation of either the instruction or
operand address, except for the operand address in
LOAD REAL ADDRESS and TEST PROTEC­
TION, in which case the condition is indicated by
the setting of the condition code.

The unit of operation is nullified.
The segment-and-page portion of the virtual

address causing the exception is stored at locations
145-147, and zeros are stored at location 144.
When 2K-byte pages are used, the low-order 11
bits of the address are unpredictable; when 4K­
byte pages are used, the low-order 12 bits of the
address are unpredictable.

When the exception occurs during a reference to
an operand location, the instruction-length code
(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the excep­
tion occurs during fetching of an instruction, the
ILC is 1, 2, or 3, the value being unpredictable.

PER Event
A PER event is recognized when program-event
recording is specified by the contents of control
registers 9-11 and one or more of these events oc­
cur.

The interruption may be disallowed by PSW bit
1 in the EC mode. Program-event recording is
disallowed in the BC mode.

The unit of operation is completed, unless anoth­
er condition has caused the unit of operation to be
nullified, suppressed, or terminated.

As part of the interruption, information identify­
ing the event is stored at locations 150-155. See
the section "Program-Event Recording," in Chap­
ter 4, "Control," for a detailed description of the
interruption condition.

The instruction-length code is 0, 1, 2, or 3.
Code 0 is set only if a specification exception is
indicated concurrently.

Privileged-Operation Exception
A privileged-operation exception is recognized
when the CPU encounters a privileged instruction
in the problem state.

The operation is suppressed.
The instruction-length code is 1 or 2.

Protection Exception
A protection exception is recognized in the follow­
ing situations:
1. Key-Controlled Protection: The CPU attempts

to access a storage location that is protected
against the type of reference, and the access
key does not match the storage key.

2. Low-Address Protection: The CPU attempts a
store that is subject to low-address protection,
the address is in the range 0-511, and bit 3 of
control register 0 is one.

The execution of an instruction is suppressed
when the location of the instruction, including the
location of the target instruction of EXECUTE, is
protected against fetching.

Except for some specific instructions whose ex­
ecution is suppressed, the operation is terminated
when aprotection exception is encountered during
a reference to an operand location. See the figure
"Summary of Action for Protection and Addressing
Exceptions," which is included in the section
"Addressing Exception" in this chapter.

On fetching, the protected information is not
loaded into an addressable register or moved to
another storage location. When a part of an
operand is protected against storing and a part is
not, storing may be performed in the unprotected
part. However, the contents of a protected loca­
tion remain unchanged.

For a protected operand location, the
instruction-length code (ILC) is 1, 2, or 3, desig­
nating the length of the instruction that caused the
reference. However, for a store-protected operand
location, the ILC on some models may be O.

When the location of any part of an instruction
is protected against fetching, the ILC is 1, 2, or 3,
indicating the multiple of 2 by which the instruc-

Chapter 6. Interruptions 6-15

See the section "Exceptions Associated with the
PSW" in this chapter for a discussion of when the
exceptions associated with the PSW are recognized.

Translation-Specification Exception
A translation-specification exception is recognized
when:
1. Bit positions 8-12 of control register 0 do not·

contain one of the codes 01000, 01010, 10000,
or 10010.

2. Bit positions 4-7 and 29-30 in a valid segment­
table entry do not contain zeros (on some mod­
els, these bit positions are ignored and not
checked for zeros).

3. In a valid page-table entry, bit position 14,
when 2K-byte pages are used, or bit positions
13-14, when 4K-byte pages are used, do not
contain zeros.

The exception is recognized only as part of the
execution of an instruction using address transla­
tion; that is, when DAT is on and an instruction
encounters a logical address, instruction address, or
virtual address, or when LOAD REAL ADDRESS
is executed. Cause 1 is recognized on any transla­
tion attempt; causes 2 and 3 are recognized only
for table entries that are actually used.

The unit of operation is suppressed.
When the exception occurs during a reference to

an operand location, the instruction-length code

(ILC) is 1, 2, or 3 and indicates the length of the
instruction causing the exception. When the excep­
tion occurs during fetching of an instruction, the
ILC is 1, 2, or 3, indicating the mUltiple of 2 by
which the instruction address has been updated. It
is unpredictable whether the ILC is 1, 2, or 3.

Programming Note
When a translation-specification exception is recog­
nized in the process of translating an instruction
address, the operation is suppressed. In this case,
the instruction-length code (ILC) is needed to de­
rive the address of the instruction, as the instruc­
tion address in the old PSW has been incremented
by the amount specified by the ILC. In the case of
segment-translation and page-translation excep­
tions, the operation is nullified, the instruction ad­
dress in the old PSW identifies the instruction, and
the ILC' is redundant.

Recognition of Access Exceptions
The addressing, page-translation, protection,
segment-translation and translation-specification
exceptions are collectively referred to as access
exceptions. The figure "Handling of Access Excep­
tions" summarizes the conditions that can cause
access exceptions and the action taken when they
are encountered.

Chapter 6. Interruptions 6-17

I

Condition

Control-register-O contents 1
Invalid encoding of bits 8-12

Segment-table entry
Segment-table-length violation
Entry protected against fetching or

storing
Invalid address of entry
I bit on
One in an unassigned bit position2

Page-table ~
Page-ta61e-Tength violation
Entry protected for fetching or storing
Invalid address of entry
I bit on
One in an unassigned bit position2

Access for instruction fetch
Locat lo"protected -­
Invalid address

Access for operands
Location protected
Invalid address

Exp 1 anat ion:

TS
ST
PT
A
P
ccl
cc2
cc3
-

Translation-specification exception.
Segment-translation exception.
Page-translation exception.
Addressing exception.
Protection exception.
Condition code 1 set.
Condition code 2 set.
Condition code 3 set.
The condition does not apply.

Translation of
Translation of Virtual Address
Logical Address for LRA

Indic Action Indic Action

TS Suppress TS Suppress

ST Nullify cc3 Complete
- - - -
A Suppress A Suppress

ST Nullify ccl Complete
TS Suppress TS Suppress

PT Nullify cc3 Complete
- - - -
A Suppress A Suppress-

PT Nu 11 i fy cc2 Complete
TS Suppress TS Suppress

P Suppress - -
A Suppress - -

P Term* - -
A Term* - -

* Action is to terminate except where otherwise specified.

Translation of
Logical Address
for TPROT

Indic Action

TS Suppress

cc3 Complete
- -
A Suppress

cc3 Complete
TS Suppress

cc3 Complete
- -
A Suppress

cc3 Complete
TS Suppress

- -
- -

cc set3 Complete
A Suppress

1 A translation-specification exception for an invalid code in control register 0, bit
positions 8-12, is recognized as part of the execution of the instruction using address
translation; when OAT is on, it is recognized during translation of the instruction
address, and, when OAT is off, it is only recognized during translation of the operand
address of LRA.

2 A translation-specification exception for a format error in a table entry is recognized
only when the execution of an instruction requires the entry for the translation of an
address.

3 The condition code is set as follows:
o Operand location not protected
1 Fetches permitted, but stores not permitted
2 Neither fetches or stores permitted

Handling of Access Exceptions

Any access exception is recognized as part of the
execution of the instruction with which the excep­
tion is associated. An access exception is not rec­
ognized when the CPU has made an attempt to
fetch from an inaccessible location or has detected

6-18 Systern/370 Principles of Operation

some other access-exception condition, but a
branch instruction or an interruption changes the

',,-

.i

instruction sequence such that the instruction is not
executed.

Every instruction can cause an access exception
to be recognized because of instruction fetch. Ad­
ditionally, access exceptions associated with in­
struction execution may occur because of an access
to an operand in storage.

An access exception due to fetching an instruc­
tion is indicated when the first instruction halfword
cannot be fetched without encountering the excep­
tion. When the first halfword of the instruction
has no access exceptions, access exceptions may be
indicated for additional halfwords according to the
instruction length specified by the first two bits of
the instruction; however, when the operation can
be performed without accessing the second or third
halfwords of the instruction, it is unpredictable
whether the access exception is indicated for the
unused part. Since the indication of access excep­
tions for instruction fetch is common to all instruc­
tions, it is not covered in the individual instruction
definitions.

Except where otherwise indicated in the individ­
ual instruction description, the following rules apply
for exceptions associated with an access to an
operand location. For a fetch-type operand, access
exceptions are necessarily indicated only for that
portion of the operand which is required for com­
pleting the operation. It is unpredictable whether
access exceptions are indicated for those portions
of a fetch-type operand which are not required for
completing the operation. For a store-type
operand, access exceptions are recognized for the
entire operand even if the operation could be com­
pleted without the use of the inaccessible part of
the operand. In situations where the value of a
store-type operand is defined to be unpredictable, it
is unpredictable whether an access exception is
indicated.

Whenever an access to an operand location can
cause an access exception to be recognized, the
word "access" is included in the list of program
exceptions in the description of the instruction.
This entry also indicates which operand can cause
the exception to be recognized and whether the
exception is recognized on a fetch or store access
to that operand location. Access exceptions are
recognized only for the portion of the operand as
defined by each particular instruction.

Multiple Program-Interruption Conditions
Except for PER events, only one program­
interruption condition is indicated with a program
interruption. The existence of one condition, how­
ever, does not preclude the existence of other con­
ditions. When more than one program-interruption
condition exists, only the condition having the
highest priority is identified in the interruption
code.

With two conditions of the same priority, it is
unpredictable which is indicated. In particular, the
priority of access exceptions associated with the
two parts of an operand that crosses a page or pro­
tection boundary is unpredictable and is not neces­
sarily related to the sequence specified for the ac­
cess of bytes within the operand.

The type of ending which occurs (nullification,
suppression, or termination) is that which is defined
for the type of exception that is indicated in the
interruption code. However, if a condition is indi­
cated which permits termination, and another con­
dition also exists which would cause either nullifi­
cation or suppression, then the unit of operation is
suppressed.

The figure "Priority of Program-Interruption
Conditions" lists the priorities of all program­
interruption conditions other than PER events. All
exceptions associated with references to storage for
a particular instruction halfword or a particular
operand byte are grouped as a single entry called
"access." The figure "Priority of Access Excep­
tions" lists the priority of access exceptions for a
single access. Thus, the second figure specifies
which of several exceptions encountered either in
the access of a particular portion of an instruction
or in any particular access associated with an
operand, has highest priority, and the first figure
specifies the priority of this condition in relation to
other conditions detected in the operation.

The relative priorities of any two conditions can
be found by comparing the priority numbers within
a table from left to right until a mismatch is found.
If the first inequality is between numeric charac­
ters, either the two conditions are mutually exclu­
sive or, if both can occur, the condition with the
smaller number is indicated. If the first inequality
is between alphabetic characters, then the two con­
ditions are not exclusive, and it is unpredictable
which is indicated when both occur.

Chapter 6. Interruptions 6-19

LA

loB

Delayed addressing exception due to an attempted store by a previous
instruction (zero ILC).

Delayed protection exception due to an attempted store by a previous
instruction (zero ILC).

2. I Specification exception 1due to any PSW error of the type that causes an
immediate interruption.

2.2

3.

4.

5.

6.

7.A

7.B

7. C. I

7.C.2

7.C.3

7.C.4

7.0

Specification exception due to an odd instruction address in the PSW.

Access exceptions for first halfword of EXECUTE. 2

Access exceptions for second halfword of EXECUTE. 2

Specification exception dUi to target instruction of EXECUTE not being speci­
fied on halfword boundary.

Access exceptions for first instruction halfword.

Access exceptions for second instruction halfword. 3

Access exceptions for third instruction halfword. 3

Operation exception.

Privileged-operation exception.

Execute exception.

Special-operation exception.

Specification exception caused by an uninstalled instruction that has an
assigned operation code (for example, an uninstalled floating-point instruc­
tion specifying an odd floating-point register).

8.A Specification exception due to conditions other than those included in 2, 5,
and 7.0 above.

8.B4 Access exceptions for an access to an operand in storage. 5

8.C4 Access exceptions for any other access to an operand in main storage. 5

8.0 Data exception. 6

8.E Decimal-divide exception. 7

9. Fixed-point divide, floating-point divide, and conditions, other than PER
events, which result in completion. Either these conditions are mutually ex­
clusive or their priority is specified in the corresponding definitions.

Priority of Program-Interruption Conditions (Part 1 of 2)

6-20 System/370 Principles of Operation

Explanation:

Numbers indicate priority, with priority decreasing in ascending order of numbers;
letters indicate no priority.

2

3

4

5

6

7

PSW errors which cause an immediate interruption may be introduced by a new PSW
loaded as a result of an interruption or by the instructions LPSW, SSM, and STOSM.
The priority shown in the chart is for a PSW error introduced by an interruption
and may also be considered as the priority for a PSW error introduced by the pre­
vious instruction. The error is introduced only if the instruction encounters no
other exceptions. The resulting interruption has a higher priority than any in­
terruption caused by the instruction which would have been executed next; it has a
lower priority, however, than any interruption caused by the instruction which
introduced the erroneous PSW.

Priorities 3, 4, and 5 are for the EXECUTE instruction, and priorities starting
with 6 arc for the target instruction. When no EXECUTE is encountered, priorities
3, 4, and 5 do not apply.

Separate accesses may occur for each halfword of an instruction. The second in­
struction halfword is accessed only if bits 0-1 of the instruction are not both
zeros. The third instruction halfword is accessed only if bits 0-1 of the in­
struction are both ones. Access exceptions for one of these halfwords are not nec­
essarily recognized if the instruction can be completed without use of the con­
tents of the halfword or if an exception of priority 8 or 9 can be determined
without the use of the halfword.

As in instruction fetching, separate accesses may occur for each portion of an
operand. Each of these accesses is of equal priority, and the two entries 8.B
and 8.C are listed to represent the relative priorities of exceptions associated
with any two of these accesses. Access exceptions for INSERT STORAGE KEY, SET
STORAGE KEY, RESET REFERENCE BIT, and LOAD REAL ADDRESS are also included in 8.B.

For MOVE LONG and COMPARE LOGICAL LONG, an
operand can be indicated only if the
even-numbered register.

access exception for a particular
R field for that operand designates an

The exception can be indicated only if the sign, digit, or digits responsible for
the exception were fetched without encountering an access exception.

The exception can be indicated only if the digits used in establishing the excep­
tion, and also the signs, were fetched without encountering an access exception,
and only if the digits used in establishing the exception are valid.

Priority of Program-Interruption Conditions (Part 2 of 2)

Chapter 6. Interruptions 6-21

Chapter 7. General Instructions

Contents

Data Format 7-1
Binary-Integer Representation 7-2
Signed and Unsigned Binary Arithmetic 7-3

Signed and Logical Comparison 7-3
Instructions 7-4

ADD 7-4

ADD HALFWORD 7-4
ADD LOGICAL 7-4

AND 7-7
BRANCH AND LINK 7-7

BRANCH ON CONDITION 7-8
BRANCH ON COUNT 7-9

BRANCH ON INDEX HIGH 7-9
BRANCH ON INDEX LOW OR EQUAL 7-9

COMPARE 7-10
COMPARE AND SWAP 7-10

COMPARE DOUBLE AND SWAP 7-10
COMPARE HALFWORD 7-12

COMPARE LOGICAL 7-12
COMPARE LOGICAL CHARACTERS UNDER

MASK 7-12
COMPARE LOGICAL LONG 7-13

CONVERT TO BINARY 7-14
CONVERT TO DECIMAL 7-14

DIVIDE 7-15
EXCLUSIVE OR 7-15

EXECUTE 7-16
INSERT CHARACTER 7-17
INSERT CHARACTERS UNDER MASK 7-17
LOAD 7-17
LOAD ADDRESS 7-18
LOAD AND TEST 7-18
LOAD COMPLEMENT 7-18
LOAD HALFWORD 7-19
LOAD MULTIPLE 7-19

LOAD NEGATIVE 7-19
LOAD POSITIVE 7-19

This chapter includes all the unprivileged instruc­
tions described in this publication, other than the
decimal and floating-point instructions.

MONITOR CALL 7-20

MOVE 7-20
MOVE INVERSE 7-21
MOVE LONG 7-21
MOVE NUMERICS 7-24
MOVE WITH OFFSET 7-24
MOVE ZONES 7-25
MULTIPLY 7-25
MULTIPLY HALFWORD 7-26
OR 7-26

PACK 7-27
SET PROGRAM MASK 7-27

SHIFT LEFT DOUBLE 7-28
SHIFT LEFT DOUBLE LOGICAL 7-28

SHIFT LEFT SINGLE 7-28
SHIFT LEFT SINGLE LOGICAL 7-29

SHIFT RIGHT DOUBLE 7-29
SHIFT RIGHT DOUBLE LOGICAL 7-29

SHIFT RIGHT SINGLE 7-30
SHIFT RIGHT SINGLE LOGICAL 7-30

STORE 7-30
STORE CHARACTER 7-31

STORE CHARACTERS UNDER MASK 7-31
STORE CLOCK 7-31

STORE HALFWORD 7-32
STORE MULTIPLE 7-32

SUBTRACT 7-32
SUBTRACT HALFWORD 7-33

SUBTRACT LOGICAL 7-33
SUPERVISOR CALL 7-34

TEST AND SET 7-34
TEST UNDER MASK 7-34

TRANSLATE 7-35
TRANSLATE AND TEST 7-36
UNPACK 7-36

Data Format
The general instructions treat data as being of four
types: signed binary integers, unsigned binary in­
tegers, unstructured logical data, and decimal data.

Chapter 7. General Instructions 7-1

Data is treated as decimal by the conversion, pack­
ing, and unpacking instructions. Decimal data is
described in Chapter 8, "Decimal Instructions."

Data resides in general registers or in storage or
is introduced from the instruction stream.

In a storage-to-storage operation the operand
fields may be defined in such a way that they over­
lap. The effect of this overlap depends upon the
operation. When the operands remain unchanged,
as in COMPARE or TRANSLATE AND TEST,
overlapping does not affect the execution of the
operation. For instructions such as MOVE and
TRANSLATE, one operand is replaced by new
data, and the execution of the operation may be
affected by the amount of overlap and the manner
in which data is fetched or stored. For purposes of
evaluating the effect of overlapped operands, data
is considered to be handled one eight-bit byte at a
time. All overlapping fields are considered valid.

Binary-Integer Representation
Binary integers are treated as signed or unsigned.

In an unsigned binary integer, all bits are used to
express the absolute value of the number. When
two unsigned binary integers of different lengths
are added, the shorter number is considered to be
extended on the left with zeros.

For signed binary integers, the leftmost bit rep­
resents the sign, which is followed by the numeric
field. Positive numbers are represented in true
binary notation with the sign bit set to zero. Nega­
tive numbers are represented in two's-complement
binary notation with a one in the sign-bit position.

Specifically, a negative number is represented by
the two's complement of the positive number of the
same absolute value. The two's complement of a
number is obtained by inverting each bit of the
number, including the sign, and adding a one in the
low-order bit position.

This type of number representation can be con­
sidered the low-order portion of an infinitely long
representation of the number. When the number is
positive, all bits to the left of the most significant
bit of the number are zeros. When the number is
negative, all these bits are ones. Therefore, when a
signed operand must be extended with high-order
bits, the extension is achieved by setting these bits
equal to the sign bit of the operand.

The notation for signed binary integers does not
include a negative zero. It has a number range in
which the set of negative numbers is one larger
than the set of positive numbers. The maximum
positive number consists of a sign bit of zero fol­
lowed by all ones, whereas the maximum negative
number (the negative number with the greatest

7-2 System/370 Principles of Operation

absolute value) consists of a sign bit of one fol­
lowed by all zeros. The number zero consists of
all-zero bits.

A signed binary integer of either sign, except for
zero and for the maximum negative number, is
changed to the number with opposite sign by form­
ing its two's complement. This operation of com­
plementing a number is equivalent to subtracting
the number from zero. The complement of zero is
zero.

The complement of the maximum negative num­
ber cannot be represented in the same number of
bits. When an operation, such as a subtraction of
the maximum negative number from zero, attempts
to produce the complement of the maximum nega­
tive number, the result is the maximum negative
number, and a fixed-point-overflow exception is
recognized. An overflow does not result, however,
when the maximum negative number is comple­
mented as an intermediate result but the final result
is within the representable range. An example of
this case is a subtraction of the maximum negative
number from minus one. The product of two maxi­
mum negative numbers is representable as a
double-length positive number.

In discussions of signed binary integers in this
publication, a signed binary integer includes the
sign bit. Thus, the expression "32-bit signed binary
integer" denotes an integer with 31 numeric bits
and a sign bit, and the expression "64-bit signed
binary integer" denotes an integer with 63 numeric
bits and a sign bit.

In some operations, the result is achieved by the
use of the one's complement of the number. The
one's complement of a number is obtained by in­
verting each bit of the number.

In an arithmetic operation, a carry out of the
numeric field of a signed binary integer changes the
sign. However, in algebraic left-shifting the sign
bit does not change even if significant high-order
bits are shifted out.

Programming Notes
1. An alternate way of forming the two's comple­

ment of a signed binary integer is to invert all
bits to the left of the rightmost one bit, leaving
the rightmost one bit and all zero bits to the
right of it unchanged.

2. The numeric bits of a signed binary integer may
be considered to represent a positive value,
with the sign representing a value of either zero
or the maximum negative number.

Signed and Unsigned Binary
Arithmetic
Addition of signed binary integers is performed by
adding all bits of each operand, including the sign
bits. When one of the operands is shorter, the
shorter operand is extended on the left to the
length of the longer operand by propagating the
sign-bit value. If the carry out of the sign-bit posi­
tion and the carry out of the high-order numeric bit
position disagree, an overflow occurs. The sign bit
is not changed after the overflow.

Subtraction is performed by adding the one's
complement of the second operand and a low-order
one to the first operand.

Signed addition and subtraction produce an
overflow when the result is outside the range of
representation for signed binary integers. Specifi­
cally, for ADD and SUBTRACT, which operate on
32-bit signed binary integers, there is an overflow
when the proper result would be greater than or
equal to +231 or less than _231. The actual result
placed in the general register after an overflow
differs from the proper result by 232. An overflow
causes a program interruption for fixed-point over­
flow if it is allowed.

Addition of unsigned binary integers is per­
formed by adding all bits of each operand. When
one of the operands is shorter, the shorter operand
is extended on the left with zeros. Unsigned binary
arithmetic is used in address arithmetic for adding
the X, B, and D fields. It is also used to obtain the
addresses of the function bytes in the instructions
TRANSLATE and TRANSLATE AND TEST.
Furthermore, unsigned binary arithmetic is used on
32-bit unsigned binary integers by the instructions
ADD LOGICAL and SUBTRACT LOGICAL.
Given the same two operands, ADD and ADD
LOGICAL produce the same 32-bit result. The
instructions differ only in the interpretation of this
result. ADD interprets the result as a signed binary
integer and inspects it for sign, magnitude, and
overflow to set the condition code accordingly.
ADD LOGICAL interprets the result as an un­
signed binary integer and sets the condition code
according to whether the result is zero and whether
there was a carry out of the high-order bit position.
Such a carry is not necessarily considered an over­
flow, and no program interruption can occur for
ADD LOGICAL.

SUBTRACT LOGICAL differs from ADD
LOGICAL in that the one's complement of the
second operand and a low-:order one are added to
the first operand.

Programming Notes
1. Logical addition and subtraction may be used

to program multiple-precision arithmetic. Thus,
for multiple-precision binary-integer addition,
ADD LOGICAL is used to add the correspond­
ing lower-order parts of the operands. If the
condition code indicates a carry, a one is added
to the first operand of the next higher pair of
integers before adding the second operand. If
the integers are signed, the ADD instruction is
used on the highest-order parts after propagat­
ing any carry. The condition code then indi­
cates any overflow or the proper sign and mag­
nitude of the entire result; an overflow is also
indicated by a fixed-point-overflow interruption
if it is allowed. If the integers are unsigned,
ADD LOGICAL is used throughout.

2. Another use for ADD LOGICAL is to incre­
ment values representing binary counters,
which are allowed to wrap around from all ones
to all zeros without necessarily indicating over­
flow.

Signed and Logical Comparison
Comparison operations determine whether two
operands are equal or not and, for most operations,
which of two unequal operands is the greater
(high). Signed-binary comparison operations are
provided which treat the operands as signed binary
integers, and logical comparison operations are pro­
vided which treat the operands as unsigned binary
integers or as unstructured data.

The instructions COMPARE and COMPARE
HALFWORD are signed-binary comparison opera­
tions. These instructions are equivalent to SUB­
TRACT and SUBTRACT HALFWORD without
replacing either operand, the resulting difference
being used only to set the condition code. The
operations permit comparison of numbers of oppo­
site sign which differ by 232 or more. Thus, unlike
SUBTRACT, COMPARE can cause no overflow.

Logical comparison of two operands is per­
formed byte by byte, in a left-to-right sequence.
The operands are equal when all their bytes are
equal. When the operands are unequal, the com­
parison result is determined by a left-to-right com­
parison of corresponding bit positions in the first
unequal pair of bytes: the zero bit in the first une­
qual pair of bits indicates the low operand, and the
one bit the high operand. Since the remaining bit
and byte positions do not change the comparison, it
is not necessary to continue comparing unequal
operands beyond the first unequal bit pair.

Chapter 7. General Instructions 7-3

Instructions
The general instructions and their mnemonics, for­
mats, and operation codes are listed in the figure
"s ummary of General Instructions." The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

A detailed definition of instruction formats,
operand designation and length, and address gener­
ation is contained in the section "Instructions" in
Chapter 5, "Program Execution." Exceptions to
the general rules stated in that section are explicitly
identified in the individual instruction descriptions.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designations for the assembler language
are shown with each instruction. For LOAD AND
TEST, for example, LTR is the mnemonic and R l'
R 2 the operand designation.

ADD

AR

, lA'

o 8 12 15

A [RX]

o 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The operands and the sum are treated as 32-bit
signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

ReSUlting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of A only)
Fixed-Point Overflow

7-4 System/370 Principles of Operation

ADD HALFWORD

AH R1,D2(X2,B2) [RX]

'4A' I R 1 I X2 I B2 D2

0 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The second operand is two bytes in length and is
treated as a 16-bit signed binary integer. The first
operand and the sum are treated as 32-bit signed
binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

Programming Note
An example of the use of ADD HALFWORD is
given in Appendix A.

ADD LOGICAL

ALR R1,R2 [RR]

, 1 E ' I R1 I R2 I
0 8 12 15

AL R1,D2(X2,B2) [RX]

'5E' I R1 I X2 I B2 D2

o 8 12 16 20 31

The second operand is added to the first operand,
and the sum is placed in the first-operand location.
The operands and the sum are treated as 32-bit
unsigned binary integers.

Resulting Condition Code:
o Sum is zero, with no carry
1 Sum is not zero, with no carry
2 Sum is zero, with carry
3 Sum is not zero, with carry

.."

Mne- Op
Name monic Characteristics Code

ADD AR RR C IF R lA
ADD A RX C A IF R 5A
ADD HAlFWoRD AH RX C A IF R 4A
ADD lOGICAL AlR RR C R 1 E
ADD lOGICAL Al RX C A R 5E

AND NR RR C R 14
AND N RX C A R 54
AND (character) NC SS C A ST D4
AND (immediate) NI SI C A ST 94
BRANCH AND liNK BAlR RR B R 05

BRANCH AND liNK BAl RX
$1

B R 45
BRANCH ON CONDITION BCR RR B 07
BRANCH ON CONDITION BC RX B 47
BRANCH ON COUNT BCTR RR B R 06
BRANCH ON COUNT BCT RX B R 46

BRANCH ON INDEX HIGH BXH RS B R 86
BRANCH ON INDEX lOW OR EQUAL BXLE RS B R 87
COMPARE CR RR C 19
COMPARE C RX C A 59
COMPARE AND SWAP CS RS C SW A SP $ R ST BA

COMPARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST BB
COMPARE HAlFWORD CH RX C A 49
COMPARE lOGICAL ClR RR C 15
COMPARE lOGICAL Cl RX C A 55
COMPARE lOGICAL (character) ClC SS C A D5

COMPARE lOGICAL (immediate) Cli SI C A 95
COMPARE lOGICAL CHARACTERS UNDER MASK ClM RS C A BD
COMPARE lOGICAL lONG ClCl RR C A SP II R OF
CONVERT TO BINARY CVB RX A D IK R 4F
CONVERT TO DECIMAL CVD RX A ST 4E

DIVIDE DR RR SP IK R lD
DIVIDE D RX A SP IK R 5D
EXCLUSIVE OR XR RR C R 17
EXCLUSIVE OR X RX C A R 57
EXCLUSIVE OR (character) XC SS C A ST D7

EXCLUSIVE OR (immediate) XI SI C A ST 97
EXECUTE EX RX A SP EX 44
I NSERT CHARACTER IC RX A R 43
INSERT CHARACTERS UNDER MASK ICM RS C A R BF
lOAD lR RR R 18

lOAD l RX A R 58
lOAD ADDRESS lA RX R 41
lOAD AND TEST lTR RR C R 12
lOAD COMPLEMENT lCR RR C IF R 13
lOAD HAlFWoRD lH RX A R 48

lOAD MULTIPLE lM RS A R 98
lOAD NEGATIVE lNR RR C R 11
lOAD POSITIVE lPR RR C IF R 10
MONITOR CAll MC S I SP MO AF
MOVE (character) MVC SS A ST D2

MOVE (immediate) MVI SI A ST 92
MOVE INVERSE MVCIN SS MI A ST E8
MOVE lONG MVCl RR C A SP II R ST OE
MOVE NUMERICS MVN SS A ST D 1
MOVE WITH OFFSET MVO SS A ST Fl

MOVE ZONES MVZ SS A ST D3
MULTIPLY MR RR SP R lC
MULTIPLY M RX A SP R 5C
MULTIPLY HAlFWORD MH RX A R 4C
OR OR RR C R 16

Summary of General Instructions (Part 1 of 2)

Chapter 7. General Instructions 7-5

Mne- Op
Name monic Characteristics Code

OR 0 RX C A R 56
OR (character) DC SS C A ST D6
OR (immediate) 01 SI C A ST 96
PACK PACK SS A ST F2
SET PROGRAM MASK SPM RR L 04

SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D
SHIFT LEFT SINGLE SLA RS C IF R 8B
SHIFT LEFT SINGLE LOGICAL SLL RS R 89
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E

SH I FT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C
SHIFT RIGHT SINGLE SRA RS C R 8A
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88
STORE ST RX A ST 50
STORE CHARACTER STC RX A ST 42

STORE CHARACTERS UNDER MASK STCM RS A ST BE
STORE CLOCK STCK S C A $ ST B205
STORE HALFWORD STH RX A ST 40
STORE MULTIPLE STM RS A ST 90
SUBTRACT SR RR C IF R lB

SUBTRACT S RX C A IF R 5B
SUBTRACT HALFWORD SH RX C A IF R 4B
SUBTRACT LOGICAL SLR RR C R IF
SUBTRACT LOGICAL SL RX C A R 5F
SUPERVISOR CALL SVC RR $ OA

TEST AND SET TS S C A $ ST 93
TEST UNDER MASK TM S I C A 91
TRANSLATE TR SS A ST DC
TRANSLATE AND TEST TRT SS C A R DD
UNPACK UNPK SS A ST F3

Exelanation:

A Access exceptions for logical addresses
B PER branch event
C Condition code is set
D Data exception
EX Execute exception
IF Fixed-point-overflowexception
II Interruptible instruction
IK Fixed-point-divide exception
L New condition code loaded
MI Move-inverse feature
MO Monitor event
R PER general-register-alteration event
RR RR instruction format
RS RS instruction format
RX RX instruction format
S S instruction format
SI SI instruction format
SP Specification exception
SS SS instruction format
ST PER storage-alteration event
SW Conditional-swapping feature
$1 Causes serialization
$ Causes serialization when the Ml and R2 fields contain all ones and all zeros,

respectively.

Summary of General Instructions (Part 2 of 2)

7-6 System/370 Principles of Operation

Program Exceptions:
Access (fetch, operand 2 of AL only)

AND

NR R1.R2 [RR)

, 14' I Rl I R2 I
o 8 12 15

N R1·02(X2 ·B2) [RX]

'54' I R 1 I X2 I B2 I °2

0 8 12 16 20 31

NI °1(B 1)·1 2 [51J

'94' 12 B 1 °1

0 8 16 20 31

NC D1(L.B 1).02(B2) [55)
/-~-~-/I

L--_' D_4_'_L-_L_--,-1 _B...:...l ...JIL....-..~ 1 B 2 ~U
o 8 16 20 32 36 47

The AND of the first and second operands is
placed in the first-operand location.

The connective AND is applied to the operands
bit by bit. A bit position in the result is set to one
if the corresponding bit positions in both operands
contain ones; otherwise, the result bit is set to zero.

For NC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For NI, the first operand is one byte in length,
and only one byte is stored.

Resulting Condition Code:
o Result is zero
1 Result is not zero
2
3

Program Exceptions:
Access (fetch, operand 2, Nand NC; fetch and

store, operand 1, NI and NC)

Programming Notes
1. An example of the use of the AND instruction

is given in Appendix A.
2. The instruction AND may be used to set a bit

to zero.
3. Accesses to the first operand of NI and NC

consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a par­
ticular byte do not necessarily occur one imme­
diately after the other. Thus, the instruction
AND cannot be safely used to update a loca­
tion in storage if the possibility exists that an­
other CPU or a channel may also be updating
the location. An example of this effect is
shown for the instruction OR (01) in the sec­
tion "Multiprogramming and Multiprocessing
Examples" in Appendix A.

BRANCH AND LINK

[RR]

o 8 12 15

o 8 12 16 20 31

Information from the current PSW, including the
updated instruction address, is loaded as link in­
formation in the general register designated by R I .

Subsequently, the instruction address is replaced by
the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register designated by R2 are
used as the branch address; however, when the R2
field contains zeros, the operation is performed
without branching. The branch address is comput­
ed before the link information is loaded.

The link information consists of the instruction­
length code (ILC), the condition code (CC), the
program mask bits, and the updated instruction
address, arranged in the following format:

Chapter 7. General Instructions 7-7

Prog I ILC CC Mask Instruction Address

o 2 4 8 31

The instruction-length code is 1 or 2.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH AND

LINK is given in Appendix A.
2. When the R2 field in the RR format contains

all zeros, the link information is loaded without
branching.

3. When BRANCH AND LINK is the target in­
struction of EXECUTE, the instruction-length
code is 2.

4. The format and the contents of the link infor­
mation do not depend on whether the PSW
specifies the EC or BC mode. In both modes,
the link information is in the format of the
rightmost 32 bit positions of the BC-mode
PSW.

BRANCH ON CONDITION

BCR Ml,R2 [RR]

'07' I Ml I R2 I
0 8 12 15

BC Ml,02(X2,B2) [RX]

'47' I Ml I X2 I B2 °2

o 8 12 16 20 31

The instruction address in the current PSW is re­
placed by the branch address if the condition code
has one of the values specified by M1; otherwise,
normal instruction sequencing proceeds with the
updated instruction address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, bits
8-31 of the general register specified by R2 are
used as the branch address; however, when the R2
field contains zeros, the operation is performed
without branching.

The Ml field is used as a four-bit mask. The
four condition codes (0, 1, 2, and 3) correspond,

7-8 System/370 Principles of Operation

left to right, with the four bits of the mask, as fol­
lows:

Mask
Condition Instruction Position

Code Bit Value

0 8 8
1 9 4
2 10 2
3 11 1

The current condition code is used to select the
corresponding mask bit. If the mask bit selected by
the condition code is one, the branch is successful.
If the mask bit selected is zero, normal instruction
sequencing proceeds with the next sequential in­
struction.

When the Ml and R2 fields of BCR are all ones
and all zeros, respectively, a serialization function
is performed. CPU operation is delayed until all
previous accesses by this CPU to storage have been
completed, as observed by channels and other
CPUs. No subsequent instructions or their oper­
ands are accessed by this CPU until the execution
of this instruction is completed.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH ON CON­

DITION is given in Appendix A.
2. When a branch is to depend on more than one

condition, the pertinent condition codes are
specified in the mask as the sum of their mask
position values. A mask of 12, for example,
specifies that a branch is to be made when the
condition code is 0 or 1.

3. When all four mask bits are zero or when the
R2 field in the RR format contains zero, the
branch instruction is equivalent to a no­
operation. When all four mask bits are ones,
that is, the mask value is 15, the branch is un­
conditional unless the R2 field in the RR format
is zero.

4. Execution of BCR 15,0 (that is, an instruction
with a value of 07FO hex) may result in signifi­
cant performance degradation. To ensure opti­
mum performance, the program should avoid
use of BCR 15,0 except in cases when the seri­
alization or the checkpoint-synchronization
function is actually required.

5. Note that the relation between the RR and RX
formats in branch-address specification is not
the same as in operand-address specification.
For branch instructions in the RX format, the
branch address is the address specified by X2,
B2, and D2; in the RR format, the branch ad­
dress is contained in the register specified by
R2. For operands, the address specified by X2,
B2, and D2 is the operand address, but the reg­
ister specified by R2 contains the operand itself.

BRANCH ON COUNT

BCTR [RR]

'06'

o 8 12 15

o 8 12 16 20 31

A one is subtracted from the first operand, and the
result is placed in the first-operand location. The
first operand and result are treated as 32-bit binary
integers, with overflow ignored. When the result is
zero, normal instruction sequencing proceeds with
the updated instruction address. When the result is
not zero, the instruction address in the current
PSW is replaced by the branch address.

In the RX format, the second-operand address is
used as the branch address. In the RR format, the
contents of bit positions 8-31 of the general regis­
ter specified by R2 are used as the branch address;
however, when the R2 field contains zeros, the
operation is performed without branching.

The branch address is computed before the
counting operation.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH ON

COUNT is given in Appendix A.
2. The first operand and result can be considered

as either signed or unsigned binary integers
since the result of a binary subtraction is the
same in both cases.

3. An initial count of one results in zero, and no
branching takes place; an initial count of zero
results in -1 and causes branching to be execu­
ted; an initial count of -1 results in -2 and
causes branching to be executed; and so on. In
a loop, branching takes place each time the in­
struction is executed until the result is again
zero. Note that, because of the number range,
an initial count of _231 results in a positive val­
ue of 231 - l.

4. Counting is performed without branching when
the R2 field in the RR format contains zero.

BRANCH ON INDEX HIGH

BXH [RS]

'86'

o 8 12 16 20 31

BRANCH ON INDEX LOW OR EQUAL

o 8 12 16 20 31

An increment is added to the first operand, and the
sum is compared with a compare value. The result
of the comparison determines whether branching
occurs. Subsequently, the sum is placed in the
first-operand location. The second-operand ad­
dress is used as a branch address. The R3 field
designates registers containing the increment and
the compare value.

For BXH, when the sum is high, the instruction
address in the current PSW is replaced by the
branch address. When the sum is low or equal,
normal instruction sequencing proceeds with the
updated instruction address.

For BXLE, when the sum is low or equal, the
instruction address in the current PSW is replaced
by the branch address. When the sum is high, nor­
mal instruction sequencing proceeds with the up­
dated instruction address.

When the R3 field is even, it designates a pair of
registers; the contents of the even and odd registers
of the pair are used as the increment and the com­
pare value, respectively. When the R3 field is odd,
it designates a single register, the contents of which
are used as both the increment and the compare
value.

Chapter 7. General Instructions 7-9

For purposes of the addition and comparison, all
operands and results are treated as 32-bit signed
binary integers. Overflow caused by the addition is
ignored.

The original contents of the compare-value regis­
ter are used as the compare value even when that
register is also specified to be the first-operand
location. The branch address is computed before
the addition and comparison.

The sum is placed in the first-operand location,
regardless of whether the branch is taken.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of BRANCH ON IN­

DEX HIGH is given in Appendix A.
2. The word "index" in the names of these in­

structions indicates that one of the major pur­
poses is the incrementing and testing of an in­
dex value. The increment, being a signed bina­
ry integer, may be used to increase or decrease
the value in register Rl by an arbitrary amount.

COMPARE

CR [RR]

, 19 ' I R 1 I R2 I
o 8 12 15

o 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are treated as 32-bit signed
binary integers.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2 of Conly)

7-10 System/370Principies of Operation

COMPARE AND SWAP

cs R1,R3,D2(B2) [RS]

'BA' I R1 I R3 I B2 O2

0 8 12 16 20 31

COMPARE DOUBLE AND SWAP

CDS R1,R3,D 2(B 2) [RS]

'BB' I R1 I R3 I B2 O2

0 8 12 16 20 31

The first and second operands are compared. If
they are equal, the third operand is stored at the
second-operand location. If they are unequal, the
second operand is loaded into the first-operand
location. The result of the comparison is indicated
in the condition code.

For CS, the first and third operands are 32 bits
in length, with each operand occupying a general
register. The second operand is a word in storage.

For CDS, the first and third operands are 64 bits
in length, with each operand occupying an even­
odd pair of general registers. The second operand
is a doubleword in storage.

When the result of the comparison is unequal,
the second-operand location remains unchanged.
However, on some models, the value may be
fetched and subsequently stored back into the
second-operand location. No access by another
CPU to the second-operand location is permitted
between the moment that the second operand is
fetched for comparison and it is stored.

When an equal comparison occurs, no access by
another CPU to the second-operand location is
permitted between the moment that the second
operand is fetched for comparison and the moment
that the third operand is stored at the second­
operand location.

Serialization is performed before the operand is
fetched, and again after the operation is completed.
CPU operation is delayed until all previous accesses
by this CPU to storage have been completed, as
observed by channels and other CPUs, and then
the second operand is fetched. No subsequent in­
structions or their operands are accessed by this
CPU until the execution of this instruction is com­
pleted, including placing the result value, if any, in
storage, as observed by channels and other CPUs.

The second operand of CS must be designated

on a word boundary. The Rl and R3 fields for
CDS must each designate an even register, and the
second operand for CDS must be designated on a
double word boundary. Otherwise, a specification
exception is recognized.

Resulting Condition Code:
o First and second operands equal, second

operand replaced by third operand
1 First and second operands unequal, first

operand replaced by second operand
2
3

Program Exceptions:
Access (fetch and store, operand 2)
Operation (if the conditional-swapping feature is

not installed)
Specification

Programming Notes
1. Several examples of the use of the COMPARE

AND SWAP and COMPARE DOUBLE AND
SWAP instructions are given in Appendix A.

2. The instruction CS can be used by programs
sharing common storage areas in either a multi­
programming or multiprocessing environment.
Two examples are:
a. By performing the following procedure, a

program can modify the contents of a stor­
age location even though the possibility ex­
ists that the program may be interrupted by
another program that will update the loca­
tion or even though the possibility exists
that another CPU may simultaneously up­
date the location. First, the entire word
containing the byte or bytes to be updated
is loaded into a general register . Next, the
updated value is computed and placed in
another general register. Then the instruc­
tion CS is executed with the Rl field desig­
nating the register that contains the original
value and the R3 field designating the regis­
ter that contains the updated value. If con­
dition code 0 is set, the update has been
successful. If condition code 1 is set, the
storage location no longer contains the
original value, the update has not been suc­
cessful, and the general register designated
by the Rl field of the CS instruction con­
tains the new current value of the storage
location. When condition code 1 is set, the
program can repeat the procedure using the
new current value.

b. The instruction CS can be used for con­
trolled sharing of a common storage area in
a manner similar to that described in the
programming note under TEST AND SET,
but it provides the added capability of leav­
ing a message when the common area is in
use. To accomplish this, a word in storage
can be used as a control word, with a zero
value in the word indicating that the com­
mon area is not in use, a negative value in­
dicating that the area is in use, and a
nonzero positive value indicating that the
common area is in use and that the value is
the address of the most recent message
added to the list. Thus, any number of pro­
grams desiring to seize the area can use CS
to update the control word to indicate that
the area is in use or to add messages to the
list. The single program which has seized
the area can also safely use CS to remove
messages from the list.

3. The instruction CDS can be used in a manner
similar to that described for CS. In addition, it
has another use. Consider a chained list, with
a control word used to address the first message
in the list, as described in programming note 2b
above. If multiple programs are permitted to
add and delete messages by using CS, there is a
possibility the list will be incorrectly updated.
This would occur if, after one program has
fetched the address of the most recent message
in order to remove the message, another pro­
gram removes the first two messages and then
adds the first message back into the chain. The
first program, on continuing, cannot easily de­
tect that the list is changed. By increasing the
size of the control word to a doubleword con­
taining both the first message address and a
word with a change number that is incremented
for each modification of the list, and by using
CDS to update both fields together, the possi­
bility of the list being incorrectly updated is
reduced to a negligible level. That is, an incor­
rect update can occur only if the first program
is delayed while changes exactly equal in num­
ber to a multiple of 232 take place and only if
the last change places the original message ad­
dress in the control word.

4. The instructions CS and CDS do not interlock
against storage accesses by channels. There­
fore, the instructions should not be used to up­
date a location which is in an I/O input area,
since the input data may be lost.
For the case of a condition-code setting of 1,
the instructions CS and CDS mayor may not,

Chapter 7. General Instructions 7 -11

depending on the model, cause any of the fol­
lowing to occur for the second-operand loca­
tion: a PER storage-alteration event may be
recognized; a protection exception for storing
may be recognized; and, provided no access
exception exists, the change bit may be turned
on.

COMPARE HALFWORD

o 8 12 16 20 31

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The second operand is two bytes in length
and is treated as a 16-bit signed binary integer.
The first operand is treated as a 32-bit signed bina­
ry ict~ger.

Resulting 'Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of COMPARE HALF­
WORD is given in Appendix A.

COMPARE LOGICAL

CLR R1,R2 [RR]

, 15 ' 1 Rl 1 R2 1
0 8 12 15

CL Rl,D2(X2,B2) [RX]

'55' 1 Rl 1 X2 1 B2 D2

o 8 12 16 20 31

7-12 System/370 Principles of Operation

o 8 16 20 31

CLC Dl(L,Bl),D2(B2) [55]

L-'_D_5 '--L __ L_..I...I_B_1 ..J...1_~-1 --'1-B-2 -rl-~u
o 8 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached. For CL and CLC,
access exceptions mayor may not be recognized for
the portion of a storage operand to the right of the
first unequal byte.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2, CL and CLC; fetch,

operand 1, CLI and CLC)

Programming Notes
1. Examples of the use of the COMPARE LOGI­

CAL instructions are given in Appendix A.
2. The COMPARE LOGICAL instructions treat

all bits of each operand alike as part of a field
of unstructured logical data. For CLC, the
comparison may extend to field lengths of 256
bytes.

COMPARE LOGICAL CHARACTERS
UNDER MASK

o 8 12 16 20 31

The first operand is compared with the second ope­
rand under control of a mask, and the result is indi­
cated in the condition code.

The contents of the M3 field are used as a mask.
These four bits, left to right, correspond one for

one with the four bytes, left to right, of the general
register designated by the Rl field. The byte posi­
tions corresponding to ones in the mask are consid­
ered as a contiguous field and are compared with
the second operand. The second operand is a con­
tiguous field in storage, starting at the second­
operand address and equal in length to the number
of ones in the mask. The bytes in the general reg­
ister corresponding to zeros in the mask do not
participate in the operation.

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the fields is reached.

When the mask is not zero, exceptions associated
with storage-operand access are recognized for no
more than the number of bytes specified by the
mask. Access exceptions mayor may not be recog­
nized for the portion of a storage operand to the
right of the first unequal byte. When the mask is
zero, access exceptions are recognized for one byte.

Resulting Condition Code:
o Selected bytes are equal, or mask is zero
1 Selected field of first operand is low
2 Selected field of first operand is high
3

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of COMPARE LOGICAL
CHARACTERS UNDER MASK is given in Ap­
pendix A.

COMPARE LOGICAL LONG

[RR]

o 8 12 15

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The shorter operand is considered to be ex­
tended on the right with padding bytes.

The Rl and R2 fields each specify an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the Rl
and Rz fields, respectively. The number of bytes in

the first-operand and second-operand locations is
specified by bits 8-31 of general registers Rl + 1
and Rz + 1, respectively. Bit positions 0-7 of regis­
ter R2 + 1 contain the padding byte. The contents
of bit positions 0-7 of registers Rl' R2, and Rl + 1
are ignored.

Graphically, the contents of the registers just
described are as follows:

R1 1////////1 First-Operand Address

o 8 31

R1+1 1////////1 First-Operand Length

0 8 31

R2 1////////1 Second-Operand Addressl

0 8 31

R2+1 Pad I Second-Operand Length I
0 8 31

The comparison proceeds left to right, byte by
byte, and ends as soon as an inequality is found or
the end of the longer operand is reached. If the
operands are not of the same length, the shorter
operand is considered to be extended on the right
with the appropriate number of padding bytes.

If both operands are of zero length, the operands
are considered to be equal.

The execution of the instruction is interruptible.
When an interruption occurs, other than one that
causes termination, the contents of registers Rl + 1
and R2+ 1 are decremented by the number of bytes
compared, and the contents of registers Rl and R2
are incremented by the same number, so that the
instruction, when reexecuted, resumes at the point
of interruption. The high-order bits which are not
part of the address in registers Rl and R2 are set to
zeros; the contents of the high-order byte of regis­
ters Rl + 1 and Rz+ 1 remain unchanged; and the
condition code is unpredictable. If the operation is
interrupted after the shorter operand has been ex­
hausted, the length field pertaining to the shorter
operand is zero, and its address is updated accord­
ingly.

If the operation ends because of an inequality,
the address fields in registers Rl and R2 at comple­
tion identify the first unequal byte in each operand.
The lengths in bit positions 8-31 of registers Rl + 1
and R2 + 1 are decremented by the number of bytes
that were equal, unless the inequality occurred with
the padding byte, in which case the length field for

Chapter 7. General Instructions 7-13

the shorter operand is set to zero. The addresses in
registers Rl and R2 are increment.ed by the .
amounts by which the correspondmg length fwlds
were reduced.

If the two operands, including the padding byte,
if necessary, are equal, both length fields are made
zero at completion, and the addresses are incre­
mented by the corresponding operand-length val­
ues. The bits which are not part of the address in
registers Rl and R2 are set to zeros, including the
case when one or both of the initial length values
are zero. The contents of bit positions 0-7 of reg­
isters R 1 + 1 and R2 + 1 remain unchanged.

Access exceptions for the portion of a storage
operand to the right of the first unequal byte may
or may not be recognized. For operands longer
than 2,048 bytes, access exceptions are not recog­
nized more than 2,048 bytes beyond the byte being
processed. Access exceptions are not indicated for
locations more than 2,048 bytes beyond the first
unequal byte.

When the length of an operand is zero, no access
exceptions are recognized for that operand. Access
exceptions are not recognized for an operand if the
R field associated with that operand is odd.

Resulting Condition Code:
o Operands are equal, or both have zero length
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Specification

Programming Notes
1. An example of the use of COMPARE LOGI­

CAL LONG is given in Appendix A.
2. When the Rl and R2 fields are the same, the

operation proceeds in the same way as when
two distinct pairs of registers having the same
contents are specified, and, in the absence of
dynamic modification of the operand area by
another CPU or a channel, condition code 0 is
set. However, it is unpredictable whether ac­
cess exceptions are recognized for the operand
since the operation can be completed without
storage being accessed.

3. Other programming notes concerning interrupt­
ible instructions are included in the section
"Interruptible Instructions" in Chapter 5,
"Program Execution. "

4. Special precautions should be taken when
COMPARE LOGICAL LONG is made the

7-14 System/370 Principles of Operation

target of EXECUTE. See the programming
note concerning interruptible instructions under
EXECUTE.

CONVERT TO BINARY

o 8 12 16 20 31

The radix of the second operand is changed from
decimal to binary, and the result is placed in the
first-operand location.

The second operand occupies eight bytes in stor­
age and is treated as packed decimal data, as de­
scribed in Chapter 8, "Decimal Instructions." It is
checked for valid sign and digit codes, and a data
exception is recognized when an invalid code is
detected.

The result of the conversion is a 32-bit signed
binary integer, which is placed in the general regis­
ter specified by R 1• The maximurh positive number
that can be converted and still be contained in a
32-bit register is 2,147,483,647; the maxin:tum neg­
ative number (the negative number with the great­
est absolute value) that can be converted is
-2,147,483,648. For any decimal number outside
this range, the operation is completed by placing
the 32 low-order bits of the binary result in the
register, and a fixed-point-divide exception is rec­
ognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Data
Fixed-Point Divide

Programming Notes
1. An example of the use of CONVERT TO BI­

NARY is given in Appendix A.
2. When the second operand is negative, the result

is in two's-complement notation.

CONVERT TO DECIMAL

o 8 12 16 20 31

The radix of the first operand is changed from bi­
nary to decimal, and the result is stored at the
second-operand location. The first operand is
treated as a 32-bit signed binary integer.

The result occupies eight bytes in storage and is
in the format for packed decimal data, as described
in Chapter 8, "Decimal Instructions." The low­
order four bits of the result represent the sign. A
positive sign is encoded as 1100; a negative sign is
encoded as 11 0 1.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Notes
1. An example of the use of CONVERT TO

DECIMAL is given in Appendix A.
2. The number to be converted is a 32-bit signed

binary integer obtained from a general register.
Since 15 decimal digits are available for the
result, and the decimal equivalent of 31 bits
requires at most 10 decimal digits, an overflow
cannot occur.

DIVIDE

DR [RR]

, 1 ° ' 1 R 1 1 R2 1

o 8 12 15

o 8 12 16 20 31

The doubleword first operand (the dividend) is
divided by the second operand (the divisor), and
the remainder and the quotient are placed in the
first-operand location.

The R1 field of the instruction specifies an even­
odd pair of general registers and must designate an
even-numbered register. When Rl is odd, a specifi­
cation exception is recognized.

The dividend is treated as a 64-bit signed binary
integer. The divisor, the remainder, and the quo­
tient are treated as 32-bit signed binary integers.
The remainder and quotient replace the dividend in
the pair of registers specified by the Rl field. The
remainder is placed in the even-numbered register,

and the quotient is placed in the odd-numbered
register.

The sign of the quotient is determined by the
rules of algebra. The remainder has the same sign
as the dividend, except that a zero quotient or a
zero remainder is always positive. When the mag­
nitudes of the dividend and divisor are such that
the quotient cannot be expressed by a 32-bit signed
binary integer, a fixed-point-divide exception is
recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of D only)
Fixed-Point Divide
Specification

EXCLUSIVE OR

XR R1,R2 [RR]

, 17 ' I R1 I R2 I
0 8 12 15

X R1,02(X2 ,B2) [RX]

'57' I R1 I X2 I B2 O2

o 8 12 16 20

XI [S I]

'97' B1 01

o 8 16 20

XC 01(L,B 1),02(B2) [SS]

31

31

r-----~------~--~-/--.---._/~

1....-_' _07_' __ l....-__ L __ ---L..1 _B....:..1---1...1 _~ 1 B2 ~U
o 8 16 20 32 36 47

The EXCLUSIVE OR of the first and second ope­
rands is placed in the first-operand location.

The connective EXCLUSIVE OR is applied to
the operands bit by bit. A bit position in the result
is set to one if the corresponding bit positions in
the two operands are unlike; otherwise, the result
bit is set to zero.

For XC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a

Chapter 7. General Instructions 7 -15

time and each result byte were stored immediately
after the necessary operand byte is fetched.

For XI, the first operand is one byte in length,
and only one byte is stored.

Resulting Condition Code:
o Result is zero
1 Result is not zero
2
3

Program Exceptions:
Access (fetch, operand 2, X and XC; fetch and

store, operand 1, XI and XC)

Programming Notes
1. An example of the use of EXCLUSIVE OR is

given in Appendix A.
2. The instruction EXCLUSIVE OR may be used

to invert a bit, an operation particularly useful
in testing and setting programmed binary bit
switches.

3. A field EXCLUSIVE-ORed with itself becomes
all zeros.

4. For XR, the sequence A EXCLUSIVE-OR B, B
EXCLUSIVE-OR A, A EXCLUSIVE-OR B
results in the exchange of the contents of A
and B without the use of an additional general
register.

S. Accesses to the first operand of XI and XC
consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a par­
ticular byte do not necessarily occur one imme­
diately after the other. Thus, the instruction
EXCLUSIVE OR cannot be safely used to up­
date a location in storage if the possibility ex­
ists that another CPU or a channel may also be
updating the location. An example of this ef­
fect is shown for the instruction OR (01) in the
section "Multiprogramming and Multiprocessing
Examples" in Appendix A.

EXECUTE

'44' I R1 I X2 I B2 D2

o 8 12 16 20 31

The single instruction at the second-operand ad­
dress is modified by the contents of the general
register specified by R1, and the resulting target
instruction is executed.

7-16 System/370 Principles of Operation

When the R1 field is not zero, bits 8-15 of the
instruction designated by the second-operand ad­
dress are ORed with bits 24-31 of the register spec­
ified by R I . The ORing does not change either the
contents of the register specified by R1 or the in­
struction in storage, and it is effective only for the
interpretation of the instruction to be executed.
When the R1 field is zero, no ORing takes place.

The target instruction may be two, four, or six
bytes in length. The execution and exception han­
dling of the target instruction are exactly as if the
target instruction were obtained in normal sequen­
tial operation, except for the instruction address
and the instruction-length code.

The instruction address of the current PSW is
increased by the length of EXECUTE. This updat­
ed address and the instruction-length code of EX­
ECUTE are used, for example, as part of the link
information when the target instruction is
BRANCH AND LINK. When the target instruc­
tion is a successful branching instruction, the in­
struction address of the current PSW is replaced by
the branch address specified by the target instruc­
tion.

When the target instruction is in turn an EXEC­
UTE, an execute exception is recognized.

The effective address of EXECUTE must be
even; otherwise, a specification exception is recog­
nized. When the target instruction is two or three
halfwords in length but can be executed without
fetching its second or third halfword, it is unpre­
dictable whether access exceptions are recognized
for the unused halfwords. Access exceptions are
not recognized for the second-operand address
when the address is odd.

Condition Code: The code may be set by the
target instruction.

Program Exceptions:
Access (fetch, target instruction)
Execute
Specification

Programming Notes
1. An example of the use of EXECUTE is given

in Appendix A.
2. The ORing of eight bits from the general regis­

ter with the designated instruction permits indi­
rect length, index, mask, immediate-data, and
register specification. !

3. The fetching of the target instruction is consid­
ered to be an instruction fetch for purposes of
program-event recording and for purposes of
reporting access exceptions.

4. An access or specification exception may be
caused by EXECUTE or by the target instruc­
tion.

5. When an interruptible instruction is made the
target of EXECUTE, the program normally
should not designate any register updated by
the interruptible instruction as the R 1, X2, or
B2 register for EXECUTE, since on resumption
of execution after an interruption, or if the in­
struction is ref etched without an interruption,
the updated values of these registers will be
used in the execution of EXECUTE. Similarly,
the program should normally not let the desti­
nation field of an interruptible instruction in­
clude the location of the EXECUTE, since the
new contents of the location may be interpreted
when resuming execution.

INSERT CHARACTER

Ie [RXl

'43'

o 8 12 16 20 31

The byte at the second-operand location is inserted
into bit positions 24-31 of the general register des­
ignated by the Rl field. The remaining bits in the
register remain unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

INSERT CHARACTERS UNDER MASK

o 8 12 16 20 31

Bytes from contiguous locations beginning at the
second-operand address are inserted into the first­
operand location under control of a mask.

The contents of the M3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the Rl field. The byte posi­
tions corresponding to ones in the mask are filled,
left to right, with bytes from successive storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the sec­
ond operand is equal to the number of ones in the

mask. The bytes in the general register corre­
sponding to zeros in the mask remain unchanged.

The resulting condition code is based on the
mask and on the value of the bits inserted. When
the mask is zero or when all inserted bits are zeros,
the condition code is set to O. When the inserted
bits are not all zeros, the code is set according to
the leftmost bit of the storage operand: if this bit
is one, the code is set to 1; if this bit is zero, the
code is set to 2.

When the mask is not zero, exceptions associated
with storage-operand access are recognized only for
the number of bytes specified by the mask. When
the mask is zero, access exceptions are recognized
for one byte.

Resulting Condition Code:
o All inserted bits are zeros, or mask is zero
1 Leftmost bit of the inserted field is one
2 Leftmost bit of the inserted field is zero, and

not all inserted bits are zeros
3

Program Exceptions:
Access (fetch, operand 2)

Programming Notes
1. Examples of the use of INSERT CHARAC­

TERS UNDER MASK are given in Appendix
A.

2. The condition code for INSERT CHARAC­
TERS UNDER MASK (ICM) is defined such
that, when the mask is 1111, the instruction
causes the same condition code to be set as for
LOAD AND TEST. Thus, the instruction may
be used as a storage-to-register load-and-test
operation.

3. AnICM instruction with a mask of 1111 or
0001 performs a function similar to that of a
LOAD (L) or INSERT CHARACTER (IC),
respectively, with the exception of the
condition-code setting. However, the perform­
ance of ICM may be slower.

LOAD

LR

, 18' I R1 I R2 I
o 8 12 15

Chapter 7. General Instructions 7-17

L [RX]

, 58 ' I R 1 I X2 I B2

o 8 12 16 20 31

The second operand is placed unchanged in the
first-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of L only)

Programming Note
An example of the use of LOAD is given in
Appendix A.

LOAD ADDRESS

LA [RX]

, 41'

o 8 12 16 20 31

The address specified by the X2, B2, and D2 fields
is placed in bit positions 8-31 of the general regis­
ter specified by the Rl field. Bits 0-7 of the regis­
ter are set to zeros. The address computation fol­
lows the rules for address arithmetic.

No storage references for operands take place,
and the address is not inspected for access excep,..
tions.

Condition Code: The code remains unchanged.

Program Exceptions: None.

Programming Notes
1. An example of the use of the LOAD AD­

DRESS instruction is given in Appendix A.
2. The same general register may be specified by

the R 1, X2, and B2 fields, except that general
register 0 can be specified only by the Rl field.
In this manner, it is possible to increment the
low-order 24 bits of a general register, other
than register 0, by the contents of the D2 field
of the instruction. The register to be incre­
mented should be specified by Rl and by either
X2 (with B2 set to zero) or B2 (with X2 set to
zero).

7-18 System/370 Principles of Operation

LOAD AND TEST

LTR [RR]

, 12 ' I R 1 I R2 I
o 8 12 15

The second operand is placed unchanged in the
first-operand location, and the sign and magnitude
of the second operand, treated as a 32-bit signed
binary integer, are indicated in the condition code.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions: None.

Programming Note
When the Rl and R2 fields designate the same reg­
ister, the operation is equivalent to a test without
data movement.

LOAD COMPLEMENT

LCR [RR]

, 13' I R 1 I R2 I
o 8 12 15

The two's complement of the second operand is
placed in the first-operand location. The second
operand and result are treated as 32-bit signed bi­
nary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Note
The operation complements all numbers. Zero and
the maximum negative number remain unchanged.
An overflow condition occurs when the maximum
negative number is complemented.

LOAD HALFWORD

LH R1,02(X2 ,B2) [RX]

'48' I R 1 I X2 I B2 °2
0 8 12 16 20 31

The second operand is extended to a 32-bit signed
binary integer and placed in the first-operand loca­
tion. The second operand is two bytes in length
and is considered to be a 16-bit signed binary in­
teger. The second operand is extended by propa­
gating the sign-bit value through the 16 high-order
bit positions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note
An example of the use of LOAD HALF WORD is
given in Appendix A.

LOAD MULTIPLE

o 8 12 16 20 31

The set of general registers starting with the regis­
ter specified by Rl and ending with the register
specified by R3 is loaded from storage beginning at
the location designated by the second-operand ad­
dress and continuing through as many locations as
needed.

The general registers are loaded in the ascending
order of their register numbers, starting with the
register specified by Rl and continuing up to and
including the register specified by R3, with register
o following register 15.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Note
All combinations of register numbers specified by
Rl and R3 are valid. When the register numbers
are equal, only four bytes are transmitted. When

the number specified by R3 is less than the number
specified by R1, the register numbers wrap around
from 15 to O.

LOAD NEGATIVE

LNR [RR]

, 11 ' I R 1 I R2 I
o 8 12 15

The two's complement of the absolute value of the
second operand is placed in the first-operand loca­
tion. The second operand and result are treated as
32-bit signed binary integers.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2
3

Program Exceptions: None.

Programming Note
The operation complements positive numbers; neg­
ative numbers remain unchanged. The number
zero remains unchanged.

LOAD POSITIVE

LPR [RR]

, 10 ' I R 1 I R2 I
o 8 12 15

The absolute value of the second operand is placed
in the first-operand location. The second operand
and the result are treated as 32-bit signed binary
integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Result is zero
1
2
3

Result is greater than zero
Overflow

Program Exceptions:
Fixed-Point Overflow

Chapter 7. General Instructions 7-19

Programming Note
The operation complements negative numbers; pos­
itive numbers and zero remain unchanged. An
overflow condition occurs when the maximum neg­
ative number is complemented; the number remains
unchanged.

MONITOR CALL

MC [5 t]

'AF'

o 8 16 20 31

A program interruption is caused if the appropriate
monitor-mask bit in control register 8 is one.

The monitor-mask bits are in bit positions 16-31
of control register 8, which correspond to monitor
classes 0-15, respectively.

Bit positions 12-15 in the 12 field contain a bina­
ry number specifying one of 16 monitoring classes.
When the monitor-mask bit corresponding to the
class specified by the 12 field is one, a monitor­
event program interruption occurs. The contents of
the 12 field are stored at location 149, with zeros
stored at location 148. Bit 9 of the program­
interruption code is set to one.

The first-operand address is not used to address
data; instead, the address specified by the Bland
Dl fields forms the monitor code, which is placed
in the word at location 156. Address computation
follows the rules of address arithmetic; bits 0-7 are
set to zeros.

When the monitor-mask bit corresponding to the
class specified by bits 12-15 of the instruction is
zero, no interruption occurs, and the instruction is
executed as a no-operation.

Bit positions 8-11 of the instruction must con­
tain zeros; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Monitor Event
Specification

Programming Notes
1. The MONITOR CALL instruction provides the

capability for passing control to a monitoring
program when selected points are reached in
the monitored program. This is accomplished
by implanting MONITOR CALL instructions at
the desired points in the monitored program.

7-20 System/370 Principles of Operation

This function may be useful in performing vari­
ous measurement functions; specifically, tracing
information can be generated indicating which
programs were executed, counting information
can be generated indicating how often particu­
lar programs were used, and timing information
can be generated indicating how long a particu­
lar program required for execution.

2. The monitor masks provide a means of disal­
lowing all interruptions due to MONITOR
CALL or allowing monitoring for all or selected
classes.

3. The monitor code provides a means of associat­
ing descriptive information, in addition to the
class number, with each MONITOR CALL in­
struction. Without the use of a base register,
up to 4,096 distinct monitor codes can be asso­
ciated with a monitoring interruption. With the
base register designated by a nonzero value in
the B 1 field, each monitoring interruption can
be identified by a 24-bit code.

MOVE

MVI [5 I]

'92'

o 8 16 20 31

MVC [55]

~'_D2_'~ ___ L~I_B_l~I_~-I~I-B-2~1-~~
o 8 16 20 32 36 47

The second operand is placed in the first-operand
location.

For MVC, each operand is processed left to
right. When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand byte is
fetched.

For MVI, the first operand is one byte in length,
and only one byte is stored.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of MVC; store, operand

1, MVI and MVC)

Programming Notes
1. Examples of the use of the MOVE instructions

are given in Appendix A.
2. It is possible to propagate one byte through an

entire field by having the first operand start
one byte to the right of the second operand.

MOVE INVERSE

MVCIN [SS]
/------,------,-/1

L-'_ES_'----'-__ L ---L1_B_l---,-I_~1 I B2 I ~U
o s 16 20 32 36 47

The second operand is placed in the first-operand
location with the left-to-right sequence of the bytes

. inverted.
The first-operand address designates the leftmost

byte of the first operand. The second-operand
address designates the rightmost byte of the second

. operand. Both operands have the same length.
The result is obtained as if the second operand

were processed from right to left and the first
operand from left to right. The second operand
may wrap around from location 0 to location
16,777,215. The first operand may wrap around
from location 16,777,215 to location O.

When the operands overlap by more than one
byte, the contents of the overlapped portion of the
result field are unpredictable.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)
Operation (if move-inverse feature is not installed)

Programming Notes
1. The contents of each byte moved remain un­

changed.
2. MOVE INVERSE is the only SS-format in­

struction for which the second-operand address
designates the rightmost, instead of the left­
mos~, byte of the second operand.

MOVE LONG

[RR]

o s 12 15

The second operand is placed in the first-operand
location, provided overlapping of operand locations

does not affect the final contents of the first­
operand location. The remaining rightmost byte
positions, if any, of the first-operand location are
filled with padding bytes.

The R1 and R2 fields each specify an even-odd
pair of general registers and must designate an
even-numbered register; otherwise, a specification
exception is recognized.

The location of the leftmost byte of the first
operand and second operand is designated by bits
8-31 of the general registers specified by the R1
and R2 fields, respectively. The number of bytes in
the first-operand and second-operand locations is
specified by bits 8-31 of general registers R1 + 1
and R2 + 1, respectively. Bit positions 0-7 of regis­
ter R2+ 1 contain the padding byte. The contents
of bit positions 0-7 of registers R 1, R2, and Rl + 1
are ignored.

Graphically, the contents of the registers just
described are as follows:

Rl 1////////1 First-Operand Address

0 S 31

R1+l 1////////1 First-Operand Length

0 S 31

R2 1////////1 Second-Operand Address I
0 8 31

R2+1 Pad I Second-Operand Length I
0 8 31

The movement starts at the left end of both
fields and proceeds to the right. The operation is
ended when the number of bytes specified by bit
positions 8-31 of register R1 + 1 have been moved
into the first-operand location. If the second op­
erand is shorter than the first operand, the remain­
ing rightmost bytes of the first-operand location are
filled with the padding byte.

As part of the execution of the instruction, the
values of the two length fields are compared for the
setting of the condition code, and a check is made
for destructive overlap of the operands. Operands
are said to overlap destructively when the first­
operand location is used as a source after data has
been moved into it, assuming the inspection for
overlap is performed by the use of logical operand
addresses. When the operands overlap destructive­
ly, no movement takes place, and condition code 3
is set.

Chapter 7. General Instructions 7-21

Operands do not overlap destructively, and
movement is performed, if the leftmost byte of the
first operand does not coincide with any of the
second-operand bytes participating in the operation
other than the leftmost byte of the second operand.
When an operand wraps around from location
16,777 ,215 to location 0, operand bytes in loca­
tions up to and including 16,777,215 are consid­
ered to be to the left of bytes in locations from 0
up.

When the length specified by bit positions 8-31
of register Rl + 1 is zero, no movement takes place,
and condition code 0 or 1 is set to indicate the
relative values of the lengths.

The execution of the instruction is interruptible.
When an interruption occurs other than one that
causes termination, the contents of registers Rl + 1
and R2 + 1 are decremented by the number of bytes
moved, and the contents of register Rl and R2 are
incremented by the same number, so that the in­
struction, when reexecuted, resumes at the point of
interruption. The high-order bits which are not
part of the address in registers R 1 and R2 are set to
zeros; the contents of the high-order byte of regis­
ters Rl + 1 and R2+ 1 remain unchanged; and the
condition code is unpredictable. If the operation is
interrupted during padding, the length field in reg­
ister R2 + 1 is 0, the address in register R2 is incre­
mented by the original contents of register R2+ 1 ,
and registers Rl and Rl + 1 reflect the extent of the
padding operation.

When the first-operand location includes the
location of the instruction, the instruction may be
ref etched from storage and reinterpreted even in
the absence of an interruption during execution.
The exact point in the execution at which such a
refetch occurs is unpredictable.

As viewed by channels and other CPUs, that
portion of the first operand which is filled with the
padding byte is not necessarily stored into in a left­
to-right direction and may appear to be stored more
than once.

At the completion of the operation, the length in
register Rl + 1 is decremented by the number of
bytes stored at the first-operand location, and the
address in register Rl is incremented by the same
amount. The length in register R2+ 1 is decrement­
ed by the number of bytes moved out of the
second-operand location, and the address in regis­
ter R2 is incremented by the same amount. The
bits which are not part of the address in registers
Rl and R2 are set to zeros, including the case when
one or both of the original length values are zeros
or when condition code 3 is set. The contents of

7-22 System/370 Principles of Operation

- --------------------------------

bit positions 0-7 of registers R 1+l and R2+1 re­
main unchanged.

When condition code 3 is set, no exceptions as­
sociated with operand access are recognized. When
the length of an operand is zero, no access excep­
tions for that operand are recognized. Similarly,
when the second operand is longer than the first
operand, access exceptions are not recognized for
the part of the second-operand field that is in ex­
cess of the first-operand field. For operands longer
than 2,048 bytes, access exceptions are not recog­
nized for locations more than 2,048 bytes beyond
the current location being processed. Access ex­
ceptions are not recognized for an operand if the R
field associated with that operand is odd. Also,
when the Rl field is odd, PER storage alteration is
not recognized, and no change bits are set.

Resulting Condition Code:
o First-operand and second-operand lengths are

equal
1 First-operand length is low
2 First-operand length is high
3 No movement performed because of destruc­

tive overlap

Program Exceptions:
Access (fetch, operand 2; store, operand 1)
Specification

Programming Notes
1. The instruction MOVE LONG may be used for

clearing storage by setting the padding byte to
zero and the second-operand length to zero.
On most models, this is the fastest instruction
for clearing storage areas in excess of 256
bytes. However, the stores associated with this
clearing may be mUltiple-access stores and
should not be used to clear an area if the possi­
bility exists that a channel or another CPU will
attempt to access and use the area as soon as it
appears to be zero.

2. The program should avoid specification of a
length for either operand which would result in
an addressing exception. Addressing (and also
protection) exceptions may result in termination
of the entire operation, not just the current unit
of operation. The termination may be such
that the contents of all result fields are unpre­
dictable; in the case of MVCL, this includes the
condition code and the two even-odd general­
register pairs, as well as the first-operand loca­
tion in main storage. The following are situa­
tions that have actually occu.rred on one or
more models.

a. When a protection exception occurs on a
2,048-byte block of a first operand which is
several blocks in length, stores to the pro­
tected block are suppressed. However. the
move continues into the subsequent blocks
of the first operand, which are not protect­
ed. Similarly, in the case of reconfigurable
storage, an addressing exception on a block
does not necessarily suppress processing of
subsequent blocks which are addressable.

b. The model may update the general registers
only when an II 0 interruption occurs or
when a program interruption occurs which
is required to nullify or suppress. Thus, if
after a move into several blocks of the first
operand, an addressing or protection excep­
tion occurs, the registers remain unchanged.

3. When the first-operand length is zero, the oper­
ation consists in setting the condition code and
setting the high-order bytes of registers Rl and
R2 to zero.

4. When the contents of the Rl and R2 fields are
the same, the operation proceeds the same way
as when two distinct pairs of registers having
the same contents are specified. Condition
code 0 is set.

5. The following is a detailed description of those
cases in which movement takes place, that is,
where destructive overlap does not exist. De­
pending on whether the second operand wraps
around from location 16,777,215 to location 0,
movement takes place in the following cases:
a. When the second operand does not wrap

around, movement is performed if the left­
most byte of the first operand coincides
with or is to the left of the leftmost byte of
the second operand, or if the leftmost byte

of the first operand is to the right of the
rightmost second-operand byte participating
in the operation.

b. When the second operand wraps around,
movement is performed if the leftmost byte
of the first operand coincides with or is to
the left of the leftmost byte of the second
operand, and if the leftmost byte of the
first operand is to the right of the rightmost
second-operand byte participating in the
operation.

The rightmo~t second-operand byte is deter­
mined by using the smaller of the first-operand
and second-operand lengths.

When the second-operand length is one or
zero, destructive overlap cannot exist.

6. Special precautions.must be taken if MOVE
LONG is made the target of EXECUTE. See
the programming note concerning interruptible
instructions under EXECUTE.

7. Since the execution of MOVE LONG is inter­
ruptible, the instruCtion cannot be used for situ­
ations where the program must rely on uninter­
rupted execution of the instruction or on the
interval timer not being updated during the ex­
ecution of the instruction. Similarly, the pro­
gram should normally not let the first operand
of MOVE LONG include the location of the
instruction since the new contents of the loca­
tion may be interpreted for a resumption after
an interruption, or the instruction may be re­
fetched without an interruption.

8. Further programming notes concerning inter­
ruptible instructions are included in the section
"Interruptible Instructions" in Chapter 5,
"Program Execution."

Chapter 7. General Instructions 7-23

MOVE NUMERICS

MVN [SS]

L....--'_D_l'---'-__ L_-'-I_B_l -,---1_~-1 ---'-1 -B2--,-1-~~
o 8 16 20 32 36 47

The rightmost four bits of each byte in the second
operand are placed in the rightmost bit positions of
the corresponding bytes in the first operand. The
leftmost four bits of each byte in the first operand
remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and. store,

operand 1)

Programming Notes
1. An example of the use of MOVE NUMERICS

is given in Appendix A.
2. MVN moves the numeric portion of a decimal­

data field that is in the zoned format. The
zoned-decimal format is described in Chapter
8, "Decimal Instructions." The operands are
not checked for valid sign and digit codes.

3. Accesses to the first operand of MVN consist in
fetching the rightmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not nec­
essarily occur one immediately after the other.
Thus, this instruction cannot be safely used to
update a location in storage if the possibility
exists that another CPU or a channel may also
be updating the location. An example of this
effect is shown for the instruction OR (01) in
the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

MOVE WITH OFFSET

MVO Dl(Ll,Bl),D2(L2,B2) [SS]

I L2 I B 1 I
/ /

'F 1 ' ILl D 1 B2 ~~ /
0 8 12 16 20 32 36 47

7-24 System/370 Principles of Operation

The second operand is placed to the left of and
adjacent to the rightmost four bits of the first
operand.

The rightmost four bits of the first operand are
attached as the rightmost bits to the second
operand, the second operand bits are offset by four
bit positions, and the result is placed in the first­
operand location.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all of the second operand, the remaining
leftmost portion of the second operand is ignored.
Access exceptions for the unused portion of the
second operand mayor may not be indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored
immediately after the necessary operand bytes are
fetched. The left digit of each second-operand
byte remains available for the next result byte and
is not refetched.

Condition Code: The code remains unchanged.

Program Exceptions: .
Access (fetch, operand 2; fetch and store,

operand 1)

Programming Notes
1. An example of the use of MOVE WITH

OFFSET is given in Appendix A.
2. Access to the rightmost byte of the first

operand of MVO consists in fetching the
rightmost four bits and subsequently storing the
updated value of this byte. These fetch and
store accesses to the rightmost byte of the first
operand do not necessarily occur one
immediately after the other. Thus, this
instruction cannot be safely used to update a
location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown for the instruction OR (01) in
the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

3. MVO may be used to shift packed decimal data
by an odd number of digit positions. The
packed-decimal format is described in Chapter
8, "Decimal Instructions." The operands are
not checked for valid sign and digit codes. In
many cases however, the instruction SHIFT

AND ROUND DECIMAL may be more
convenient to use.

MOVE ZONES

MVZ [55]

/ /~
L-'_D 3_' ----L __ L --1.1_B..:...1 -,-1_~...:.....1 ---l1_B-=.2LI_~~
o 8 16 20 32 36 47

The leftmost four bits of each byte in the second
operand are placed in the leftmost four bit positions
of the corresponding bytes in the first operand.
The rightmost four bits of each byte in the first
operand remain unchanged.

Each operand is processed left to right. When
the operands overlap, the result is obtained as if the
operands were processed one byte at a time and
each result byte were stored immediately after the
necessary operand byte is fetched.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)

Programming Notes
1. An example of the use of MOVE ZONES is

given in Appendix A.
2. MVZ moves the zoned portion of a decimal

field in the zoned format. The zoned format is
described in Chapter 8, "Decimal Instructions."
The operands are not checked for valid sign
and digit codes.

3. Accesses to the first operand of MVZ consist in
fetching the leftmost four bits of each byte in
the first operand and subsequently storing the
updated value of the byte. These fetch and
store accesses to a particular byte do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(01) in the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

MULTIPLY

MR R 1 ,R2 [RR]

, 1 C ' I R1 I R2 I
0 8 12 15

M R1,D 2(X2 ,B2) [RX]

'5C' I R1 I X2 I B2 D2

0 8 12 16 20 31

The second word of the first operand
(multiplicand) is multiplied by the second operand
(multiplier), and the doubleword product is placed
at the first-operand location.

The R 1 field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R1 is
odd, a specification exception is recognized.

Both the multiplicand and multiplier are treated
as 32-bit signed binary integers. The multiplicand
is taken from the odd-numbered register of the pair
specified by the R1 field. The contents of the
even-numbered register are ignored. The product is
a 64-bit signed binary integer, which replaces the
contents of the even-odd pair of general registers
specified by the R1 field. An overflow cannot
occur.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of M only)
Specification

Programming Notes
1. An example of the use of MUL TIPL Y is given

in Appendix A.
2. The significant part of the product usually

occupies 62 bits or fewer. Only when two
maximum negative numbers are multiplied are
63 significant product bits formed.

Chapter 7. General Instructions 7-25

MULTIPLY HALFWORD

o 8 12 16 20 31

The first operand (multiplicand) is multiplied by
the second operand (multiplier), and the product is
placed at the first-operand location. The second
operand is two bytes in length and is considered to
be a 16-bit signed binary integer.

The multiplicand is treated as a 32-bit signed
binary integer and is replaced by the low-order 32
bits of the signed-binary-integer product. The bits
to the left of the 32 low-order bits are not tested
for significance; no overflow indication is given.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand sign, except that a zero result is
always positive.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)

Programming Notes
1. An example of the use of MUL TIPL Y

HALFWORD is given in Appendix A.
2. The significant part of the product usually

occupies 46 bits or fewer. Only when two
maximum negative numbers are multiplied are
47 significant product bits formed. Since the
low-order 32 bits of the product are stored
unchanged, ignoring all bits to the left, the sign
bit of the result may differ from the true sign of
the product in the case of overflow. For a
negative product, the 32 bits placed in register
Rl are the low-order part of the product in
two's-complement notation.

OR

OR

, 16 ' I R1· I R2 I
o 8 12 15

7-26 System/370 Principles of Operation

0 R1,02(X2 ,B2) [RX]

'56' I R1 I X2 I B2 °2

0 8 12 16 20 31

01 °1(B 1),1 2 [S I]

'96' 12 B1 °1

0 8 16 20 31

oc [SS]

L-_'O_6_' __ L-__ L __ -L1 _B~1~1L-~'-1~~B-2~-~~
o 8 16 20 32 36 47

The OR of the first and second operands is placed
in the first-operand location.

The connective OR is applied to the operands bit
by bit. A bit position in the result is set to one if
the corresponding bit position itt. one or both
operands contains a one; otherwise, the result bit is
set to zero.

For OC, each operand is processed left to right.
When the operands overlap, the result is obtained
as if the operands were processed one byte at a
time and each result byte were stored immediately
after the necessary operand byte is fetched.

For 01, the first operand is only one byte in
length, and only one byte is stored.

Resulting Condition Code:
o Result is zero
1 Result is not zero
2
3

Program Exceptions:
Access (fetch, operand 2, 0 and OC; fetch and

store, operand 1, 01 and OC)

Programming Notes
1. Examples of the use of the OR instructions are

given in Appendix A.
2. The instruction OR may be used to set a bit to

one.
3. Accesses to the first operand of 01 and OC

consist in fetching a first-operand byte from
storage and subsequently storing the updated
value. These fetch and store accesses to a

..."

particular byte do not necessarily occur one
immediately after the other. Thus, the
instruction OR cannot be safely used to update
a location in storage if the possibility exists that
another CPU or a channel may also be
updating the location. An example of this
effect is shown in the section
"Multiprogramming and Multiprocessing
Examples" in Appendix A.

PACK

PACK [55]

/----,----r--/~

'---_' F_2_'_L--L_1--,-I_L_2--,-I_B_1---,-1_~ 1 B2 ~~
o 8 12 16 20 32 36 47

The format of the second operand is changed from
zoned to packed, and the result is placed in the
first-operand location. The zoned and packed
formats are described in Chapter 8, "Decimal
Instructions. "

The second operand is treated as having the
zoned format. The numerics are treated as digits.
All zones are ignored, except the zone in the
rightmost byte, which is treated as a sign.

The sign and digits are moved unchanged to the
first operand and are not checked for valid codes.
The sign is placed in the rightmost four bit
positions of the rightmost byte of the result field,
and the digits are placed adjacent to the sign and
to each other in the remainder of the result field.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on the left
with zeros. If the first operand is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand mayor may not be
indicated.

When the operands overlap, the result is
obtained as if each result byte were stored
immediately after the necessary operand bytes are
fetched. Two second-operand bytes are needed for
each result byte, except for the rightmost byte of
the result field, which requires only the rightmost
second-operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes
1. An example of the use of PACK is given in

Appendix A.
2. The PACK instruction may be used to

interchange the two hexadecimal digits in one
byte by specifying a zero in the L land L2
fields and the same address for both operands.

3. To remove the zones of all bytes of a field,
including the rightmost byte, both operands
must be extended on the right with a dummy
byte, which subsequently is ignored in the
result field.

SET PROGRAM MASK

5PM [RR]

o 8 12 15

The contents of the general register specified by
the Rl field are used to set the condition code and
the program mask of the current PSW. Bits 12-15
of the instruction are ignored.

Bits 2 and 3 of the register specified by the Rl
field replace the condition code, and bits 4-7
replace the program mask. Bits 0, 1, and 8-31 of
the register specified by the Rl field are ignored.

Resulting Condition Code:
o Bit 2 is zero, and bit 3 is zero
1 Bit 2 is zero, and bit 3 is one
2 Bit 2 is one, and bit 3 is zero
3 Bit 2 is one, and bit 3 is one

Program Exceptions: None.

Programming Notes
1. Bits 2-7 of the general register may have been

loaded from the PSW by BRANCH AND
LINK.

2. The instruction permits setting of the condition
code and the mask bits in either the problem or
supervisor state.

3. The program should take into consideration
that the setting of the program mask can have a
significant effect on subsequent execution of
the program. Not only do the four mask bits
control whether the corresponding interruptions
occur, but the exponent-underflow and
significance masks also determine the result
which is obtained.

Chapter 7. General Instructions 7-27

SHIFT LEFT DOUBLE

SLDA [RS]

o 8 12 16 20 31

The double-length numeric part of the first operand
is shifted left the number of bits specified by the
second-operand address. Bits 12-15 of the
instruction are ignored.

The Rl field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When Rl is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Zeros are supplied to the
vacated register positions on the right.

If one or more bits unlike the sign bit are shifted
out of bit position 1 of the even register, an
overflow occurs. The overflow causes a program
interruption when the fixed-point-overflow mask
bit is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow
Specification

Programming Notes
1. An example of the use of SHIFT LEFT

DOUBLE is given in Appendix A.
2. The eight shift instructions provide the

following three pairs of alternatives: left or
right, single or double, and signed or logical.
The signed shifts differ from the logical shifts
in that, in the signed shifts, overflow is
recognized, the condition code is set, and the
leftmost bit participates as a sign.

7-28 System/370 Principles of Operation

3. A zero shift amount in the two signed double­
shift operations provides a double-length sign
and magnitude test.

4. The base register participating in the generation
of the second-operand address permits indirect
specification of the shift amount. A zero in the
B2 field indicates the absence of indirect shift
specification.

SHIFT LEFT DOUBLE LOGICAL

o 8 12 16 20 31

The double-length first operand is shifted left the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The R} field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When R} is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 of the
even-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions:
Specification

SHIFT LEFT SINGLE

SLA [RS]

o 8 12 16 20 31

The numeric part of the first operand is shifted left
the number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignOfed.

'~

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the left shift. Zeros are
supplied to the vacated register positions on the
right.

If one or more bits unlike the sign bit are shifted
out of bit position 1, an overflow occurs. The
overflow causes a program interruption when the
fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Fixed-Point Overflow

Programming Notes
1. An example of the use of SHIFT LEFT

SINGLE is given in Appendix A.
2. For numbers with an absolute value of less than

230, a left shift of one bit position is equivalent
to multiplying the number by two.

3. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of the maximum negative
number or zero, depending on whether or not
the initial contents were negative.

SHIFT LEFT SINGLE LOGICAL

SLL [RS]

o 8 12 16 20 31

The first operand is shifted left the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 0 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the right.

Condition Code: The code remains unchanged.

Program Exceptions: None.

SHIFT RIGHT DOUBLE

SROA R1,02(B2) [RS]

'8E' I Rl 1////1 B2 °2

0 8 12 16 20 31

The double-length numeric part of the first operand
is shifted right the number of places specified by
the second-operand address. Bits 12-15 of the
instruction are ignored.

The Rl field of the instruction specifies an
even-odd pair of general registers and must
designate an even-numbered register. When Rl is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 64-bit signed
binary integer. The sign position of the even
register remains unchanged. The leftmost position
of the odd register contains a numeric bit, which
participates in the shift in the same manner as the
other numeric bits. Bits shifted out of bit position
31 of the odd-numbered register are not inspected
and are lost. Bits equal to the sign are supplied to
the vacated register positions on the left.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Specification

SHIFT RIGHT DOUBLE LOGICAL

o 8 12 16 20 31

The double-length first operand is shifted right the
number of bits specified by the second-operand
address. Bits 12-15 of the instruction are ignored.

The Rl field of the instruction specifies an
even-odd pair of general· registers and must

Chapter 7. General Instructions 7-29

designate an even-numbered register. When R} is
odd, a specification exception is recognized.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 64 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 of the
odd-numbered register are not inspected and are
lost. Zeros are supplied to the vacated register
positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions:
Specification

SHIFT RIGHT SINGLE

SRA [RS]

o 8 12 16 20 31

The numeric part of the first operand is shifted
right the number of bits specified by the second­
operand address. Bits 12-15 of the instruction are
ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

The first operand is treated as a 32-bit signed
binary integer. The sign of the first operand
remains unchanged. All 31 numeric bits of the
operand participate in the right shift. Bits shifted
out of bit position 31 are not inspected and are
lost. Bits equal to the sign are supplied to the
vacated register positions on the left.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions: None.

Programming Notes
1. A right shift of one bit position is equivalent to

division by 2 with rounding downward. When
an even number is shifted right one position,

7-30 System/370 Principles of Operation

the result is equivalent to dividing the number
by 2. When an odd number is shifted right one
position, the result is equivalent to dividing the
next lower number by 2. For example, +5
shifted right by one bit position yields +2,
whereas -5 yields -3.

2. Shift amounts from 31 to 63 cause the entire
numeric part to be shifted out of the register,
leaving a result of -lor zero, depending on
whether or not the initial contents were
negative.

SHIFT RIGHT SINGLE LOGICAL

SRL [RS]

o 8 12 16 20 31

The first operand is shifted right the number of bits
specified by the second-operand address. Bits
12-15 of the instruction are ignored.

The second-operand address is not used to
address data; its low-order six bits indicate the
number of bit positions to be shifted. The
remainder of the address is ignored.

All 32 bits of the first operand participate in the
shift. Bits shifted out of bit position 31 are not
inspected and are lost. Zeros are supplied to the
vacated register positions on the left.

Condition Code: The code remains unchanged.

Program Exceptions: None.

STORE

ST [RX]

'50'

o 8 12 16 20 31

The first operand is stored at the second-operand
location.

The 32 bits in the general register are placed
unchanged at the second-operand location.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

'\

..J

'{

..J

STORE CHARACTER

STC [RX]

o 8 12 16 20 31

Bits 24-31 of the general register designated by the
R1 field are placed unchanged at the second­
operand location. The second operand is one byte
in length.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE CHARACTERS UNDER MASK

o 8 12 16 20 31

Bytes selected from the first operand under control
of a mask are placed in contiguous byte locations
beginning at the second-operand address.

The contents of the M3 field are used as a mask.
These four bits, left to right, correspond one for
one with the four bytes, left to right, of the general
register designated by the R1 field. The bytes
corresponding to ones in the mask are placed in the
same order in successive and contiguous storage
locations beginning at the second-operand address.
When the mask is not zero, the length of the
second operand is equal to the number of ones in
the mask. The contents of the general register
remain unchanged.

When the mask is not zero, exceptions associated
with storage-operand accesses are recognized only
for the number of bytes specified by the mask.

When the mask is zero, the single byte
designated by the second-operand address remains
unchanged; however, on some models, the value
may be fetched and subsequently stored back at the
same storage location. No access by another CPU
is permitted to the location designated by the
second-operand address between the moment that
the value is fetched and the value is stored.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Notes
1. An example of the use of STORE

CHARACTERS UNDER MASK is given in
Appendix A.

2. STCM with a mask of 0111 may be used to
store a three-byte address, for example, in
modifying the address in a CCW.

3. STCM with a mask of 1111,0011, or 0001
performs the same function as STORE (ST),
STORE HALFWORD (STH), or STORE
CHARACTER (STC), respectively. However,
on most models, the performance of STCM will
be slower.

4. Using STCM with a zero mask should be
avoided since this instruction, depending on the
model, may perform a fetch and store of the
single byte specified by the second-operand
address. This access is not interlocked against
accesses by channels. In addition, it may cause
any of the following to occur for the byte
specified by the second-operand address: a
PER storage-alteration event may be
recognized; access exceptions may be
recognized; and, provided no access exceptions
exist, the change bit may be turned on.

STORE CLOCK

STCK [S]

'B20S'

o 16 20 31

The current value of the time-of-day clock is stored
at the eight-byte field designated by the second­
operand address, provided the clock is in the set,
stopped, or not-set state.

Zeros are stored for the rightmost bit positions
that are not provided by the clock.

When the clock is in the error state, the value
stored is unpredictable. When the clock is in the
not-operational state, zeros are stored at the
operand location.

The quality of the clock value stored by the
instruction is indicated by the resultant
condition-code setting.

A serialization function is performed before the
value of the clock is fetched and again after the
value is placed in storage. CPU operation is
delayed until all previous accesses by this CPU to

Chapter 7. Genera! Instructions 7-31

storage have been completed, as observed by
channels and other CPUs, and then the value of
the clock is fetched. No subsequent instructions or
their operands are fetched by this CPU until the
clock value has been placed in storage, as observed
by channels and CPUs.

Resulting Condition Code:
o Clock in set state

Clock in not-set state
Clock in error state

1
2
3 Clock in stopped state or not-operational

state

Program Exceptions:
Access (store, operand 2)

Programming Notes
1. Bit position 31 of the clock is incremented

every 1.048576 seconds; hence, for timing
applications involving human responses, the
high-order clock word may provide sufficient
resolution.

2. Condition code 0 normally indicates that the
clock has been set by the control program.
Accordingly, the value may be used in
elapsed-time measurements and as a valid
time-of-day and calendar indication. Condition
code 1 indicates that the clock value is the
elapsed time since the power for the clock was
turned on. In this case the value may be used
in elapsed-time measurements but is not a valid
time-of-day indication. Condition codes 2 and
3 mean that the value provided by STORE
CLOCK cannot be used for time measurement
or indication.

3. Condition code 3 indicates that the clock is
either in the stopped state or not-operational
state. These two states can normally be
distinguished since an all-zero value is stored
when in the not-operational state.

STORE HALFWORD

STH [RX]

'40'

o 8 12 16 20 31

Bits 16-31 of the general register designated by the
Rl field are placed unchanged at the second­
operand location. The second operand is two bytes
in length.

7-32 System/370 Principles of Operation

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

STORE MULTIPLE

5TH [RS]

'90'

o 8 12 16 20 31

The ,contents of the set of general registers starting
with the register specified by Rl and ending with
the register specified by R3 are placed in the
storage area beginning at the location designated
by the second-operand address and continuing
through as many locations as needed.

The general registers are stored in the ascending
order of register numbers, starting with the register
specified by Rl and continuing up to and including
the register specified by R3, with register 0
following register 15.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)

Programming Note
An example of the use of STORE MULTIPLE is
given in Appendix A.

SUBTRACT

SR

11 B 1

o 8 12 15

s [RX]

'5BI

o 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first­
operand location. The operands and the difference
are treated as 32-bit signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

'-' Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2 of S only)
Fixed-Point Overflow

Programming Notes
1. When, in the RR format, the Rl and R2 fields

designate the same register, subtracting is
equivalent to clearing the register.

2. Subtracting a maximum negative number from
another maximum negative number gives a zero
result and no overflow.

SUBTRACT HALFWORD

SH [RX]

o 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first­
operand location. The second operand is two bytes
in length and is treated as a 16-bit signed binary
integer. The first operand and the difference are
treated as 32-bit signed binary integers.

An overflow causes a program interruption when
the fixed-point-overflow mask bit is one.

Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2)
Fixed-Point Overflow

SUBTRACT LOGICAL

SLR R1,R2 [RR]

, 1 F ' I R1 I R2 I
0 8 12 lS

SL R1,D 2(X2 ,B2) [RX]

'SF' I R1 I X2 I B2 D2

0 8 12 16 20 31

The second operand is subtracted from the first
operand, and the difference is placed in the first­
operand location. The operands and the difference
are treated as 32-bit unsigned binary integers.

Resulting Condition Code:
o
1
2
3

Difference is not zero, with no carry
Difference is zero, with carry
Difference is not zero, with carry

Program Exceptions:
Access (fetch, operand 2 of SL only)

Programming Notes
1. Logical subtraction is performed by adding the

one's complement of the second operand and a
low-order one to the first operand. The use of
the one's complement and the low-order one
instead of the two's complement of the second
operand results in a carry when subtracting
zero.

2. SUBTRACT LOGICAL differs from
SUBTRACT only in the meaning of the
condition code and in the absence of the
interruption for overflow.

3. A zero difference is always accompanied by a
carry out of the high-order bit position.

4. The condition-code setting for SUBTRACT
LOGICAL can also be interpreted as indicating
the presence and absence of a borrow, as
follows:
1 Difference is not zero, with borrow
2 Difference is zero, with no borrow
3 Difference is not zero, with no borrow

Chapter 7. General Instructions 7-33

SUPERVISOR CALL

svc [RR]

lOA'

o 8 15

The instruction causes a supervisor-call
interruption, with the I field of the instruction
providing the interruption code.

Bits 8-15 of the instruction, with eight
high-order zeros appended, are placed in the
supervisor-call interruption code that is stored in
the course of the interruption. See
"Supervisor-Call Interruption" in Chapter 6,
"Interruptions. "

A serialization function is performed. CPU
operation is delayed until all previous storage
accesses by this CPU to storage have been
completed, as observed by channels and other
CPUs. No subsequent instructions or their
operands are accessed by this CPU until the
execution of this instruction is completed.

Condition Code: The code remains unchanged
and is saved as part of the old PSW. A new
condition code is loaded as part of the
supervisor-call interruption.

Program Exceptions: None.

TEST AND SET

TS [S]

o 8 16 20 31

The leftmost bit (bit position 0) of the byte located
at the second-operand address is used to set the
condition code, and then the byte is set to all ones.
Bits 8-15 of the instruction are ignored.

The byte in storage is set to all ones as it is
fetched for the testing of bit position O. No access
by another CPU to this location is permitted
between the moment of fetching and the moment
of stdring all ones.

A serialization function is performed before the
byte is fetched and again after the storing of all
ones. CPU operation is delayed until all previous
accesses by this CPU to storage have been
completed, as observed by channels and other

7-34 System/370 Principles of Operation

CPUs, and then the byte is fetched. No subsequent
instructions or their operands are accessed by this
CPU until the all-ones value has been placed in
storage, as observed by channels and other CPUs.

Resulting Condition Code:
o Leftmost bit of byte specified was zero
1 Leftmost bit of byte specified was one
2
3

Program Exceptions:
Access (fetch and store, operand 2)

Programming Notes
1. TEST AND SET may be used for controlled

sharing of a common storage area by more than
one program. To accomplish this, bit position 0
of a byte must be designated as the control bit.
The desired interlock can be achieved by
establishing a program convention in which a
zero in the bit position indicates that the
common area is available but a one means that
the area is being used. Each using program
then must examine this byte by means of TEST
AND SET before making access to the common
area. If the test sets condition code 0, the area
is available for use; if it sets condition code 1,
the area cannot be used. Because TEST AND
SET permits no other CPU access to the test
byte between the moment of fetching (for
lesting) and the moment of storing all ones
(setting), the possibility is eliminated of a
second program testing the byte before the first
program is able to set it.

2. It should be noted that TEST AND SET does
not interlock against storage accesses by
channels.

TEST UNDER MASK

TM [S I]

, 91'

o 8 16 20 31

A mask is used to select bits of the first operand,
and the result is indicated in the condition code.

The byte of immediate data, 12, is used as an
eight-bit mask. The bits of the mask are made to
correspond one for one with the bits of the byte in
storage designated by the first-operand address.

A mask bit of one indicates that the storage bit
is to be tested. When the mask bit is zero, the
storage bit is ignored. When all storage bits thus
selected are zero, condition code 0 is set.
Condition code 0 is also set when the mask is all
zeros. When the selected bits are all ones,
condition code 3 is set; otherwise, the code is set
to 1.

Access exceptions associated with the storage
operand are recognized for one byte even when the
mask is all zeros.

Resulting Condition Code:
o Selected bits all zeros; or the mask is all zeros
1 Selected bits mixed zeros and ones
2
3 Selected bits all ones

Program Exceptions:
Access (fetch, operand 1)

Programming Note
An example of the use of TEST UNDER MASK is
given in Appendix A.

TRANSLATE

TR [5S]

/--~--~-/~

,--_' D_C_' __ .l....-_L_----'-I_B_1----'-1_~ 1 B 2 ~U
o 8 16 20 32 36 47

The bytes of the first operand are used as eight-bit
arguments to reference a list designated by the
second-operand address. Each function byte
selected from the list replaces the corresponding
argument in the first operand.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected one
by one for translation, proceeding left to right.
Each argument byte is added to the initial second­
operand address. The addition is performed
following the rules for address arithmetic, with the
argument byte treated as an eight-bit unsigned
binary integer and extended with high-order zeros.
The sum is used as the address of the function byte,
which then replaces the original argument byte.

The operation proceeds until the first-operand
field is exhausted. The list is not altered unless an
overlap occurs.

When the operands overlap, the result is
obtained as if each result byte were stored

immediately after the corresponding function byte
is fetched.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)

Programming Notes
1. An example of the use of TRANSLATE is

given in Appendix A.
2. The instruction TRANSLATE may be used to

convert data from one code to another code.
3. The instruction may also be used to rearrange

data. This may be accomplished by placing a
pattern in the destination area, by designating
the pattern as the first operand of
TRANSLATE, and by designating the data that
is to be rearranged as the second operand.
Each byte of the pattern contains an eight-bit
number specifying the byte destined for this
position. Thus, when the instruction is
executed, the pattern selects the bytes of the
second operand in the desired order.

4. The fetch and subsequent store accesses to a
particular byte in the first-operand field do not
necessarily occur one immediately after the
other. Thus, this instruction cannot be safely
used to update a location in storage if the
possibility exists that another CPU or a channel
may also be updating the location. An example
of this effect is shown for the instruction OR
(01) in the section "Multiprogramming and
Multiprocessing Examples" in Appendix A.

5. Because each eight-bit argument byte is added
to the initial second-operand address to obtain
the address of a function byte, the list may
contain 256 bytes. In cases where it is known
that not all eight-bit argument values will
occur, it is possible to reduce the size of the
list.

6. Significant performance degradation is possible
when, with DAT on, the second-operand
address of TRANSLATE designates a location
that is less than 256 bytes to the left of a
2,048-byte boundary. This is because the'
machine may perform a trial execution of the
instruction to determine if the second operand
actually crosses the boundary.

Chapter 7. General Instructions 7-35

TRANSLATE AND TEST

TRT 0,(L,B,),02(B2) [SS]

/ /
'0O' L

1 B, 1 0, 1 B2 1 ~~ /
0 8 16 20 32 36 47

The bytes of the first operand are used as eight-bit
arguments to select function bytes from a list
designated by the second-operand address. The
first nonzero function byte is inserted in general
register 2, and the related argument address in
general register 1.

The L field designates the length of only the
first operand.

The bytes of the first operand are selected one
by one for translation, proceeding from left to
right. The first operand remains unchanged in
storage. Fetching of the function byte from the list
is performed as in TRANSLATE. The function
byte retrieved from the list is inspected for a value
of zero.

When the function byte is zero, the operation
proceeds with the next byte of the first operand.
When the first-operand field is exhausted before a
nonzero function byte is encountered, the operation
is completed by setting condition code O. The
contents of general registers 1 and 2 remain
unchanged.

When the function byte is nonzero, the
operation is completed by inserting the function
byte in general register 2 and the related argument
address in general register 1. This address points
to the argument byte last translated. The function
byte replaces bits 24-31 of general register 2. The
address replaces bits 8-31 of general register l.
Bits 0-7 of general register 1 and bits 0-23 of
general register 2 remain unchanged.

When the function byte is nonzero, either
condition code 1 or 2 is set, depending on whether
the argument byte is the rightmost byte of the first
operand. Condition code 1 is set if one or more
argument bytes remain to be translated. Condition
code 2 is set if no more argument bytes remain.

Access exceptions are recognized only for those
bytes in the second operand which are actually
required. Access exceptions are not recognized for
those bytes in the first operand which are to the
right of the first byte for which a nonzero function
byte is obtained.

7-36 System/370 Principles of Operation

ReSUlting Condition Code:
o All function bytes zero
1 Nonzero function byte; first-operand field

not exhausted
2 Nonzero function byte; first-operand field

exhausted
3

Program Exceptions:
Access (fetch, operands 1 and 2)

Programming Notes
1. An example of the use of TRANSLATE AND

TEST is given in Appendix A.
2. The instruction TRANSLATE AND TEST may

be used to scan the first operand for characters
with special meaning. The second operand, or
list, is set up with all-zero function bytes for
those characters to be skipped over and with
nonzero function bytes for the characters to be
detected.

UNPACK

UNPK 0,(L"B,),02(L2,B2) [SS]

r-----~--~--~--~-/--~--~-/

L--' F_3_' --L.....I _L ,---,-1 _L 2-----'-I_B_, -LI_~, B 2 ~~
o 8 '2 '6 20 32 36 47

The format of the second operand is changed from
packed to zoned, and the result is placed in the
first-operand location. The packed and zoned
formats are described in Chapter 8, "Decimal
Instructions. "

The second operand is treated as having the
packed format. Its digits and sign are placed
unchanged in the first-operand location, using the
zoned format. Zones with coding of 1111 are
supplied for all bytes except the low-order byte,
which receives the sign of the second operand. The
sign and digits are not checked for valid codes.

The result is obtained as if the operands were
processed right to left. When necessary, the second
operand is considered to be extended on· the left
with zeros. If the first-operand field is too short to
contain all digits of the second operand, the
remaining leftmost portion of the second operand is
ignored. Access exceptions for the unused portion
of the second operand mayor may not be
indicated.

When the operands overlap, the result is
obtained as if the operands were processed one
byte at a time and each result byte were stored

immediately after the necessary operand byte is
fetched. The entire rightmost second-operand byte
is used in forming the first result byte. For the
remainder of the field, information for two result
bytes is obtained from a single second-operand
byte, and the leftmost four bits of the byte remain
available and are not refetched. Thus, two result
bytes are stored immediately after fetching a single
operand byte.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; store, operand 1)

Programming Notes
1. An example of the use of UNPACK is given in

Appendix A.
2. A field that is to be unpacked can be destroyed

by improper overlapping. To save storage
space for unpacking by overlapping the
operands, the rightmost position of the first
operand must be to the right of the rightmost
position of the second operand by the number
of bytes in the second operand minus 2. If
only one or two bytes are to be unpacked, the
low-order positions of the two operands may
coincide.

Chapter 7. General Instructions 7-37

.."" I

Chapter 8. Decimal Instructions

Contents

Decimal-Number Formats 8-1
Zoned Format 8-1
Packed Format 8-1
Decimal Codes 8-1

Decimal Operations 8-2
Decimal-Arithmetic Instructions 8-2
Editing Instructions 8-3
Execution of Decimal Instructions 8-3
Other Instructions for Decimal Operands 8-3

Instructions 8-3

The decimal instructions of this chapter perform
arithmetic and editing operations on decimal data.
Additional operations on decimal data are provided
by several of the instructions in Chapter 7,
"General Instructions." Decimal operands always
reside in storage, and all instructions operating on
decimal data use the SS instruction format.

Decimal-Number Formats
Decimal numbers may be in either the zoned or
packed format. Both decimal-number formats have
from one to 16 bytes, each byte consisting of a pair
of four-bit codes. The four-bit codes include
decimal-digit codes, sign codes, and a zone code.
Decimal operands occupy storage fields that start
on a byte boundary.

Zoned Format

.-~--.--.--~/-.--.--.--,.-~

N I Z!S I N z N z N z
~-L __ ~~ __ ~/~ __ ~~ ___ ~_~~

In the zoned format, the rightmost four bits of a
byte are called the numeric bits (N) and normally
comprise a code representing a decimal digit. The
leftmost four bits of a byte are called the zone bits
(Z), except for the rightmost byte of a decimal
operand, where these bits may be treated either as
a zone or as a sign (S).

ADD DECIMAL 8-4
COMPARE DECIMAL 8-4
DIVIDE DECIMAL 8-5
EDIT 8-5
EDIT AND MARK 8-9
MULTIPLY DECIMAL 8-9
SHIFT AND ROUND DECIMAL 8-10
SUBTRACT DECIMAL 8-10
ZERO AND ADD 8-11

Decimal digits in the zoned format may be part
of a larger character set, which includes also
alphabetic and special characters. The zoned
format is, therefore, suitable for input, editing, and
output of numeric data in human-readable form.
There are no decimal-artthmettcinsttuctions which
operate directly on decimal numbers in the zoned
format; such numbers must first be converted to
the packed format.

Packed Format

.-~--.--.--~./-.--.--.--,,-.
D D D D D D D s

~-L __ ~~ __ ~./~ __ ~~ __ ~~

In the packed format, each byte contains two
decimal digits (D), except for the rightmost byte,
which contains a sign to the right of a decimal
digit. Decimal arithmetic is performed with
operands in the packed format and generates
results in the packed format.

For all decimal instructions in this chapter other
than EDIT and EDIT AND MARK, both operands
are in the packed format.

Decimal Codes
The decimal digits 0-9 have the binary encoding
0000-1001.

The preferred sign codes are 1100 for plus and

Chapter 8. Decimal Instructions 8-1

1101 for minus. These are the sign codes
generated for the results of the decimal-arithmetic
instructions and the CONVERT TO DECIMAL
instruction.

Alternate sign codes are also recognized as valid
when appearing in the sign position: 1010, 1110,
and 1111 are alternate codes for plus, and 1011 is
an alternate code for minus. Alternate sign codes
are accepted for any decimal operand but are never
generated or propagated in the signed result of a
decimal-arithmetic instruction or CONVERT TO
DECIMAL, even when an operand remains
otherwise unchanged, such as when adding zero to
a number. An alternate sign code is, however, left
unchanged by the instructions MOVE NUMERICS,
MOVE WITH OFFSET, MOVE ZONES, PACK,
and UNPACK.

When an invalid code is detected, a data
exception is recognized. For the decimal-arithmetic
instructions, the action taken for a data exception
depends on whether a sign code is invalid. When a
sign code is invalid, the operation is suppressed
regardless of whether any other condition causing
an exception exists. When no sign code is invalid,
the operation is terminated.

For the editing instructions EDIT and EDIT
AND MARK, an invalid sign code is not recog­
nized. The operation is terminated for a data
exception due to an invalid digit code. No validity
checking is performed by the instructions MOVE
NUMERICS, MOVE WITH OFFSET, MOVE
ZONES, PACK, and UNPACK.

The zone code 1111 appears in the left four bit
positions of each byte representing a decimal digit
in zoned-format results. Zoned-format results are
produced by the instructions EDIT, EDIT AND
MARK, and UNPACK, except that the left four bit
positions of the rightmost byte produced by
UNPACK contain whatever code exists in the sign
position of the packed operand. The right four bit
positions of each byte in the zoned format contain
a decimal-digit code.

The meaning of the decimal codes is summarized
in the figure "Summary of Digit and Sign Codes."

Programming Notes
1. Since 1111 is both the zone code and an

alternate code for plus, unsigned (positive)
decimal numbers may be represented in the
zoned format with 1111 codes in all byte
positions. The result of the PACK instruction
converting such a number to the packed format
may be used directly as an operand for decimal
instructions.

8-2 System/370 Principles of Operation

2. The use of the alternate minus code 1011 is not
recommended.

Recognized As

Code Digit Sign

0000 0 Inval d
0001 1 Inval d
0010 2 Inval d
0011 3 Inval d
0100 4 Inval d
0101 5 Inval d
0110 6 Inval d
0111 7 Inval d
1000 8 Inval d
1001 9 Inval d
1010 Invalid Plus
1011 I nva lid Minus
1100 I nval i d Plus (preferred)
1101 I nval i d Minus (preferred)
1110 Invalid Plus
1111 I nval id Plus (zone)

Summary of Digit and Sign Codes

Decimal Operations
The decimal instructions in this chapter consist of
two classes, the decimal-arithmetic instructions and
the editing instructions.

Decimal-Arithmetic Instructions
The decimal-arithmetic instructions, which comprise
all of the instructions in this chapter except the two
editing instructions, perform addition, subtraction,
multiplication, division, comparison, and shifting.

Operands of the decimal-arithmetic instructions
are in the packed format and are treated as signed
decimal integers. A decimal integer is represented
in true form as an absolute value with a separate
plus or minus sign. It contains an odd number of
decimal digits, from one to 31, and the sign; this
corresponds to an operand length of one to 16
bytes.

A decimal zero normally has a plus sign, but
multiplication, division, and overflow may produce
a zero value with a minus sign. Such a negative
zero is a valid operand and is treated as equal to a
positive zero by the COMPARE DECIMAL
instruction.

The lengths of the two operands specified in the
instruction need not be the same. If necessary, the
shorter operand is considered to be extended with
zeros to the left of the high-order digit. Results,
however, cannot exceed the first-operand length as
specified in the instruction.

When a carry or some high-order nonzero digits
of the result are lost because the first-operand field
is too short, the result is obtained by ignoring the
overflow information, condition code 3 is set, and,
if the decimal-overflow mask bit is one, a program
interruption for decimal overflow occurs. The
operand lengths alone are not an indication of
overflow; significant digits must have been lost
during the operation.

The operands of decimal-arithmetic instructions
should not overlap at all or should have coincident
rightmost bytes. In ZERO AND ADD, the
operands may also overlap in such a manner that
the rightmost byte of the first operand (which
becomes the result) is to the right of the rightmost
byte of the second operand. For these cases of
proper overlap, the result is obtained as if operands
were processed right to left. Because the codes for
digits and signs are verified during the performance
of the arithmetic, improperly overlapping operands
are recognized as data exceptions.

Programming Note
The same decimal field in storage may be specified
for both operands of the instructions ADD
DECIMAL, COMPARE DECIMAL, DIVIDE
DECIMAL, MUL TIPL Y DECIMAL, and
SUBTRACT DECIMAL. Thus, a decimal number
may be added to itself, compared to itself, etc.
SUBTRACT DECIMAL may be used to set a
decimal field in storage to zero.

Editing Instructions
The editing instructions are EDIT and EDIT AND
MARK. For these instructions, only one operand
(the pattern) has an explicitly specified length.
The other operand (the source) is considered to
have as many digits as necessary for the completion
of the operation.

Overlapping operands for the editing instructions
yield unpredictable results.

Execution of Decimal Instructions
During the execution of a decimal instruction, all
bytes of the operands are not necessarily accessed
concurrently, and the fetch and store accesses to a
single location do not necessarily occur one
immediately after the other. Furthermore, for
decimal instructions, intermediate values may be
placed in the result field that may differ from the
original operand and final result values. Thus, in a
multiprocessing system, an instruction such as ADD
DECIMAL cannot be safely used to update a
shared storage location when the possibility exists

that another CPU may also be updating that
location.

Other Instructions for Decimal Operands
In addition to the decimal instructions in this
chapter, the instructions MOVE NUMERICS and
MOVE ZONES are provided for operating on data
in the zoned format. Two instructions are provided
for converting data between the zoned and packed
formats: the PACK instruction transforms zoned
data into packed data, and UNPACK performs the
reverse transformation. The MOVE WITH
OFFSET instruction operates on packed data. Two
instructions are provided for conversion between
the packed-decimal and binary formats. The
CONVERT TO BINARY instruction converts
packed decimal to binary, and CONVERT TO
DECIMAL converts binary to packed decimal.
These seven instructions are not considered to be
decimal instructions and are described in Chapter
7, 11 General Instructions." The editing instructions
in this chapter may also be used to change data
from the packed to the zoned format.

Instructions
The decimal instructions and their mnemonics,
formats, and operation codes are listed in the figure
11 Summary of Decimal Instructions." The figure
also indicates when the condition code is set and
the exceptional conditions in operand designations,
data, or results that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For ADD
DECIMAL, for example, AP is the mnemonic and
D lL pB 1)' D lL 2,B 2) the operand designation.

Chapter 8. Decimal Instructions 8-3

Mne-
Name monic

ADD DECIMAL AP SS
COMPARE DECIMAL CP SS
DIVIDE DECIMAL DP SS
EDIT ED SS
EDIT AND MARK EDMK SS

MULTIPLY DECIMAL MP SS
SHIFT AND ROUND DECIMAL SRP SS
SUBTRACT DECIMAL SP SS
ZERO AND ADD ZAP SS

Explanation:

A Access exceptions
C Condition code is set
D Data exception
DF Decimal-overflow exception
DK Decimal-divide exception
R PER general-register-alteration event
SP Specification exception
SS SS instruction format
ST PER storage-alteration event

Summary of Decimal Instructions

ADD DECIMAL

AP [SS1

"---'_FA_' ----1...-1 _Ll---,I_L_2.....J.I_B_lI...1_~-1 1-B-2 I-~~
o 8 12 16 20 32 36 47

The second operand is added to the first operand,
and the resulting sum is placed in the first-operand
location. The operands and result are in the
packed format.

Addition is algebraic, taking into account the
signs and all digits of both operands. All sign and
digit codes are checked for validity.

If the first operand is too short to contain all
significant digits of the sum, decimal overflow
occurs. The operation is completed. The result is
obtained by ignoring the overflow information, and
condition code 3 is set. If the decimal-overflow
mask is one, a program interruption for decimal
overflow takes place.

The sign of the sum is determined by the rules of
algebra. When the operation is completed without
an overflow, a zero sum has a positive sign. When
high-order digits are lost because of an overflow, a
zero result may be either positive or negative, as
determined by what the sign of the correct sum
would have been.

8-4 System/370 Principles of Operation

Op
Characteristics Code

C A D DF ST FA
C A D F9

A SP D DK ST FD
C A D ST DE
C A D R ST DF

A SP D ST FC
C A D DF ST FO
C A D DF ST FB
C A D DF ST F8

Resulting Condition Code:
o Sum is zero
1 Sum is less than zero
2 Sum is gre.ater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data
Decimal Overflow

Programming Note
An example of the use of ADD DECIMAL is given
in Appendix A.

COMPARE DECIMAL

CP Dl(Ll,Bl),D2(L2,B2) [SS1
~----~--~----r---r-/'--~--~/

L--'_F9_' ---1..-1 _L l--1IL..-L_2......LI_B_l -L..I_~ liB 2 1 ~~
o 8 12 16 20 32 36 47

The first operand is compared with the second
operand, and the result is indicated in the condition
code. The operands are in the packed format.

Comparison is algebraic and follows the
procedure for decimal subtraction, except that both
operands remain unchanged. When the difference
is zero, the operands are equal. When a nonzero

difference is positive or negative, the first operand
is high or low, respectively.

Overflow cannot occur because the difference is
discarded.

All sign and digit codes are checked for validity.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operands 1 and 2)
Data

Programming Notes
1. An example of the use of COMPARE

DECIMAL is given in Appendix A.
2. The comparison operation does not distinguish

between valid sign codes. A valid plus or
minus sign is equivalent to any other valid plus
or minus sign, respectively.

DIVIDE DECIMAL

DP [S5]

L-'_FD_' ----L-I _L 1.-IL-L....:;.2---lI_B_1 --L1_~-l -'-1 -B2---.1-~iJ
o 8 12 16 20 32 36 47

The first operand (the dividend) is divided by the
second operand (the divisor). The resulting
quotient and remainder are placed in the first­
operand location. The operands and result are in
the packed format.

The quotient is placed leftmost in the first­
operand location. The number of bytes in the
quotient is equal to the difference between the
dividend and divisor lengths (L 1 - L2). The
remainder is placed rightmost in the first-operand
location and has a length equal to the divisor
length. Together, the quotient and remainder
occupy the entire first operand; therefore, the
address of the quotient is the address of the first
operand.

The divisor length cannot exceed 15 digits and
sign (L2 not greater than seven) and must be less
than the dividend length (L2 less than L 1);

otherwise, a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The dividend, divisor, quotient, and remainder
are all signed decimal integers, right-aligned in

their fields. All sign and digit codes of the
dividend and divisor are checked for validity.

The sign of the quotient is determined by the
rules of algebra from the dividend and divisor
signs. The sign of the remainder has the same
value as the dividend sign. These rules hold even
when the quotient or remainder is zero.

Overflow cannot occur. If the divisor is zero or
the quotient is too large to be represented by the
number of digits allowed, a decimal-divide
exception is recognized. The operation is
suppressed, and a program interruption occurs. The
operands remain unchanged in storage. The
decimal-divide exception is indicated only if the
sign codes of both the dividend and divisor are
valid, and only if the digit or digits used in
establishing the exception are valid.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data
Decimal Divide
Specification

Programming Notes
1. An example of the use of DIVIDE DECIMAL

is given in Appendix A.
2. The dividend cannot exceed 31 digits and sign.

Since the remainder cannot be shorter than one
digit and sign, the quotient cannot exceed 29
digits and sign.

3. The condition for a decimal-divide exception
can be determined by a trial subtraction. The
leftmost digit of the divisor is aligned one digit
to the right of the leftmost dividend digit.
When the divisor, so aligned, is less than or
equal to the dividend, a divide exception is
indicated.

4. A decimal-divide exception always occurs when
the leftmost dividend digit is not zero.

EDIT

ED D1(L,B1),D2(B2) [55]

1 B 1 1
/

1 B2 1 ~iJ • DE' L D1
/

0 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and

Chapter 8. Decimal Instructions 8-5

modified under the control of the first operand (the
pattern). The edited result replaces the first
operand.

The length field specifies the length of the first
operand, which may contain bytes of any value.

The length of the source is determined by the
operation according to the contents of the pattern.
The source has the packed format. The leftmost
four bits of each source byte must specify a decimal
digit code (0000-1001); a sign code (1010-1111)
is recognized as a data exception. The rightmost
four bits may specify either a sign or a decimal
digit. Access and data exceptions are recognized
only for those bytes in the second operand which
are actually required.

The result is obtained as if both operands were
processed left to right one byte at a time.
Overlapping pattern and source fields give
unpredictable results.

During the editing process, each byte of the
pattern is affected in one of three ways:
1. It is left unchanged.
2. It is replaced by a source digit expanded to the

zoned format.
3. It is replaced by the first byte in the pattern,

called the fill byte.

Which of the three actions takes place is
determined by one or more of the following: the
type of the pattern byte, the state of the
significance indicator, and whether the source digit
examined is zero.

Pattern Bytes: There are four types of pattern
bytes: digit selector, significance starter, field
separator, and message byte. Their coding is as
follows:

Name Code

Digit selector 0010 0000
Significance starter 0010 0001
Field separator 0010 0010
Message byte Any other

The detection of either a digit selector or a
significance starter in the pattern causes an
examination to be made of the significance
indicator and of a source digit. As a result, either
the expanded source digit or the fill byte, as
appropriate, is selected to replace the pattern byte.
Additionally, encountering a digit selector or a
significance starter may cause the significance
indicator to be changed.

8-6 System/370 Principles of Operation

The field separator identifies individual fields in
a multiple-field editing operation. It is always
replaced in the result by the fill byte, and the
significance indicat0r is always off after the field
separator is encountered.

Message bytes in the pattern are either replaced
by the fill byte or remain unchanged in the result,
depending on the state of the significance indicator.
They may thus be used for padding, punctuation, or
text in the significant portion of a field or for the
insertion of sign-dependent symbols.

Fill Byte: The first byte of the pattern is used as
the fill byte. The fill byte can have any code and
may concurrently specify a control function. If this
byte is a digit selector or significance starter, the
indicated editing action is taken after the code has
been assigned to the fill byte.

Source Digits: Each time a digit selector or
significance starter is encountered in the pattern, a
new source digit is examined for placement in the
pattern field. Either the source digit is disregarded,
or it is expanded to the zoned format, by
appending the zone code 1111 on the left, and
stored in place of the pattern byte.

The source digits are selected one byte at a time,
and a source byte is fetched for inspection only
once during ah editing operation. Each source digit
is examined only once for a zero value. The
leftmost four bits of each byte are examined first,
and the rightmost four bits, when they represent a
decimal-digit code, remain available for the next
pattern byte that calls for a digit examination.
When the leftmost four bits contain an invalid digit
code, the operation is terminated.

At the time the left digit of a source byte is
examined, the rightmost four bits are checked for
the existence of a sign code. When a sign code is
encountered in the rightmost four bit positions,
these bits are not treated as a decimal-digit code,
and a new source byte is fetched from storage
when the next pattern byte calls for a source-digit
examination.

When the pattern contains no digit selector or
significance starter, no source bytes are fetched and
examined.

Significance Indicator: The significance indicator
is turned on or off to indicate the significance or
nonsignificance, respectively, of subsequent source
digits or message bytes. Significant source digits
replace their corresponding digit selectors or
significance starters in the result. Significant
message bytes remain unchanged in the result.

The significance indicator, by its on or off state,
indicates also the negative or positive value,
respectively, of a completed source field and is used
as one factor in the setting of the condition code.

The indicator is set to off at the start of the
editing operation, after a field separator is
encountered, or after a source byte is examined
that has a plus code in the rightmost four bit
positions.

The indicator is set to on when a significance
starter is encountered whose source digit is a valid
decimal digit, or when a digit selector is
encountered whose source digit is a nonzero
decimal digit, provided that in both instances the
source byte does not have a plus code in the
rightmost four bit positions.

In all other situations, the indicator is not
changed. A minus sign code has no effect on the
significance indicator.

Result Bytes: The result of an editing operation
replaces and is equal in length to the pattern. It is
composed of pattern bytes, fill bytes, and zoned
source digits.

If the pattern byte is a message byte and the
significance indicator is on, the message byte
remains unchanged in the result. If the pattern
byte is a field separator or if the significance
indicator is off when a message byte is encountered
in the pattern, the fill byte replaces the pattern
byte in the result.

If the digit selector or significance starter is
encountered in the pattern with the significance
indicator off and the source digit zero, the source
digit is considered nonsignificant, and the fill byte
replaces the pattern byte. If the digit selector or
significance starter is encountered with either the
significance indicator on or with a nonzero decimal
source digit, the source digit is considered
significant, is changed to the zoned format, and
replaces the pattern byte in the result.

Condition Code: The sign and magnitude of the
last field edited are used to set the condition code.
The term "last field" refers to those source bytes in
the second operand selected by digit selectors or
significance starters after the last field separator.
When the pattern contains no field separator, there
is only one field, which is considered to be the last
field. The last field is considered to be of zero
length if no digit selectors or significance starters
appear in the pattern, if none appear after the last
field separator, or if the last byte in the pattern is a
field separator.

Condition code 0 is set when the last field is
zero or of zero length.

Condition code 1 is set when the last field edited
is nonzero and the significance indicator is on,
indicating a result less than zero.

Condition code 2 is set when the last field edited
is nonzero and the significance indicator is off,
indicating a result greater than zero.

The figure "Summary of EDIT Functions"
summarizes the functions of the editing operation.
The leftmost four columns list all the significant
combinations of the four conditions that can be
encountered in the execution of an editing
operation. The rightmost two columns list the
action taken for each case-the type of byte placed
in the result field and the new setting of the
significance indicator.

Resulting Condition Code:
o Last field is zero or of zero length
1 Last field is less than zero
2 Last field is greater than zero
3

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data

Programming Notes
1. Examples of the use of EDIT are given in

Appendix A.
2. Editing includes sign and punctuation control,

and the suppression and protection of leading
zeros by replacing them with blanks or
asterisks. It also facilitates programmed
blanking of all-zero fields. Several fields may
be edited in one operation, and numeric
information may be combined with text.

3. As a rule, the source is shorter than the pattern,
because each 4-bit source digit is generally
replaced by an 8-bit byte in the result.

4. The total number of digit selectors and
significance starters in the pattern must equal
the number of source digits to be edited.

5. If the fill byte is a blank, if no significance
starter appears in the pattern, and if the source
is all zeros, the editing operation blanks the
result field.

6. The resulting condition code indicates whether
or not the last field is all zeros and, if nonzero,
reflects the state of the significance indicator.
The significance indicator reflects the sign of
the source field only if the last source byte
examined contains a sign code in the low-order

Chapter 8. Decimal Instructions 8-7

digit position. For multiple-field editing
operations, the condition code reflects the sign
and value only of the field following the last
field separator.

7. Significant performance degradation is possible
when, with DAT on, the second-operand
address of EDIT designates a location that is
less than the length of the first operand to the
left of a 2,048-byte boundary. This is because

Conditions

Previous State
of Significance Source

Pattern Byte Indicator Digit

Digit selector Off 0
1-9
1-9

On 0-9
0-9

Significance starter Off 0
0
1-9
1-9

On 0-9
0-9

Field separator * **

Message byte Off **
On **

Ex~lanation:

Right

the machine may perform a trial execution of
the instruction to determine if the second
operand actually crosses the boundary. It
should be noted that the second operand of
EDIT, while normally shorter than the first
operand, can in the extreme case have the same
length as the first.

Resu Its

State of
Significance

Four Indicator at
Source Bits End of Digit
Are Plus Code Result Byte Examination

* Fill byte Off
No Source digit On
Yes Source digit Off
No Source digit On
Yes Source digit Off

No Fill byte On
Yes Fill byte Off
No Source digit On
Yes Source digit Off
No Source digit On
Yes Source digit Off

** Fill byte Off

** Fill byte Off
** Message byte On

* No effect on result byte or on new state of signtficance indicator
** Not applicable because source is not examined

Summary of EDIT Functions

8-8 System/370 Principles of Operation

EDIT AND MARK

EOMK 01(L,Bl),02(B2) [55]
r------.------,---.-/--~--~-/~

,---'_0 F_' ----L.. __ L -----1.1_B_l --l.1_~ 1 1 B 2 1 ~~
o 8 16 20 32 36 47

The second operand (the source), which normally
contains one or more decimal numbers in the
packed format, is changed to the zoned format and
modified under the control of the first operand (the
pattern). The address of each first significant
result byte is inserted in general register 1. The
edited result replaces the pattern.

The instruction EDIT AND MARK is identical
to EDIT, except for the additional function of
inserting the address of the result byte in bit
positions 8-31 of general register 1 whenever the
result byte is a zoned source digit and the
significance indicator was off before the
examination. Bits 0-7 of the register are not
changed.

Resulting Condition Code:
o Last field is zero or of zero length
1 Last field is less than zero
2 Last field is greater than zero
3

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data

Programming Notes
1. Examples of the use of EDIT AND MARK are

given in Appendix A.
2. The instruction EDIT AND MARK facilitates

the programming of floating currency-symbol
insertion. The address inserted in general
register 1 is one greater than the address where
a floating currency-sign would be inserted. The
instruction BRANCH ON COUNT (BCTR),
with zero in the R2 field, may be used to
reduce the inserted address by one.

3. No address is inserted in general register 1
when the significance indicator is turned on as
a result of encountering a significance starter
with the corresponding source digit zero. To
ensure that general register 1 contains a valid
address when this occurs, the address of the
pattern byte that immediately follows the
significance starter should be placed in the
register beforehand.

4. When multiple fields are edited with one EDIT
AND MARK instruction, the address inserted
in general register 1 applies only to the last
field edited.

5. See also the programming note under EDIT
regarding performance degradation due to a
possible trial execution.

MULTIPLY DECIMAL

MP °1(Ll,Bl),02(L2,B2) [55]

I Ll I L2 I Bl I
/

I B2 I ~iJ 'Fe' °1
/

0 8 12 16 20 32 36 47

The product of the first operand (the multiplicand)
and the second operand (the multiplier) is placed in
the first-operand location. The operands and result
are in the packed format.

The multiplier length cannot exceed 15 digits
and sign (L2 not greater than seven) and must be
less than the multiplicand length (L2 less than L 1);

otherwise a specification exception is recognized.
The operation is suppressed, and a program
interruption occurs.

The multiplicand must have at least as many
bytes of high-order zeros as the number of bytes in
the multiplier; otherwise, a data exception is
recognized, the operation is terminated, and a
program interruption occurs. This restriction
ensures that no product overflow occurs.

The multiplicand, multiplier, and product are all
signed decimal integers, right-aligned in their fields.
All sign and digit codes of the multiplicand and
multiplier are checked for validity.

The sign of the product is determined by the
rules of algebra from the multiplier and
multiplicand signs, even if one or both operands are
zeros.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data
Specification

Programming Notes
1. j\n example of the use of MUL TIPL Y

DECIMAL is given in Appendix A.
2. The product cannot exceed 31 digits and sign.

The leftmost digit of the product is always zero.

Chapter 8. Decimal Instructions 8-9

SHIFT AND ROUND DECIMAL

The first operand is shifted in the direction and for
the number of decimal-digit positions specified by
the second-operand address, and, when shifting to
the right is specified, the absolute value of the first
operand is rounded by the rounding digit, 13, The
first operand and the result are in the packed
format.

The first operand is considered to be in the
packed-decimal format. Only its digit portion is
shifted; the sign position does not participate in the
shifting. Zeros are supplied for the vacated digit
positions. The result replaces the first operand.
Nothing is stored outside of the specified first­
operand location.

The second-operand address, specified by the B2
and Dz fields, is not used to address data; bits
26-31 are the shift value, and the high-order bits of
the address are ignored.

The shift value is a six-bit signed binary integer,
indicating the direction and the number of
decimal-digit positions to be shifted. Positive shift
values specify shifting to the left. Negative shift
values, which are represented in two's complement
notation, specify shifting to the right. The
following are examples of the interpretation of shift
values.

Shift Value
011111
000001
000000
111111
100000

Amount and Direction
31 digits to the left
One digit to the left
No shift
One digit to the right
32 digits to the right

For a right shift, the 13 field, bits 12-15 of the
instruction, are used as a decimal rounding digit.
The first operand, which is treated as positive by
ignoring the sign, is rounded by decimally adding
the rounding digit to the leftmost of the digits to be
shifted out and by propagating the carry, if any, to
the left. The result of this addition is then shifted
right. Except for validity checking and the
participation in rounding, the digits shifted out of
the low-order decimal-digit position are ignored
and are lost.

If one or more significant digits are shifted out
of the high-order digit positions during a left shift,
decimal overflow occurs. The operation is

8-10 System/370 Principles of Operation

completed. The result is obtained by ignoring the
overflow information, and condition code 3 is set.
If the decimal-overflow mask is one, a program
interruption for decimal overflow takes place.
Overflow cannot occur for a right shift, with or
without rounding, or when no shifting is specified.

In the absence of overflow, the sign of a zero
result is made positive. Otherwise, the sign of the
result is the same as the original sign, but the code
is the preferred sign code.

A data exception is recognized when the first
operand does not have valid sign and digit codes or
when the rounding digit is not a valid digit code.
The validity of the first-operand codes is checked
even when no shift is specified, and the validity of
the rounding digit is checked even when no
addition for rounding takes place.

Resulting Condition Code:
o Result is zero
1 Result is less than zero
2 Result is greater than zero
3 Overflow

Program Exceptions:
Access (fetch and store, operand 1)
Data
Decimal Overflow

Programming Notes
1. Examples of the use of SHIFT AND ROUND

are given in Appendix A.
2. SHIFT AND ROUND can be used for shifting

up to 31 digit positions left and up to 32 digit
positions right. This is sufficient to clear all
digits of any decimal number even with
rounding.

3. For right shifts, the rounding digit 5 provides
conventional rounding of the result. The
rounding digit 0 specifies truncation without
rounding.

4. When the B2 field is zero, the six-bit shift value
is obtained directly from bits 42-47 of the
instruction.

SUBTRACT DECIMAL

The second operand is subtracted from the first
operand, and the resulting,oifference is placed in

the first-operand location. The operands and result
are in the packed format.

SUBTRACT DECIMAL is executed the same as
ADD DECIMAL, except that the second operand is
considered to have a sign opposite to the sign in
storage. The second operand in storage remains
unchanged.

Resulting Condition Code:
o Difference is zero
1 Difference is less than zero
2 Difference is greater than zero
3 Overflow

Program Exceptions:
Access (fetch, operand 2; fetch and store,

operand 1)
Data
Decimal Overflow

ZERO AND ADD

[55]

.----, F-S -, --r, -L-1 ...-, -L2---"r-B- 1 -r,-~ 1 , B2 ,

o S 12 16 20 32 36

The second operand is placed in the first-operand
location. The operation is equivalent to an
addition to zero. The operand and result are in the
packed format.

Only the second operand is checked for valid
sign and digit codes. Extra high-order zeros are

supplied for the shorter operand if needed.
If the first operand is too short to contain all

significant digits of the second operand, decimal
overflow occurs. The operation is completed. The
result is obtained by ignoring the overflow
information, and condition code 3 is set. If the
decimal-overflow mask is one, a program
interruption for decimal overflow takes place.

A zero result is positive. However, when
significant high-order digits are lost because of
overflow, a zero result has the sign of the second
operand.

The two operands may overlap, provided the
rightmost byte of the first operand is coincident
with or to the right of the rightmost byte of the
second operand. In this case the result is obtained
as if the operands were processed right to left.

Resulting Condition Code:
o Result is zero
1
2
3

Result is less than zero
Result is greater than zero
Overflow

Program Exceptions:
Access (fetch, operand 2; store, operand 1)
Data
Decimal Overflow

Programming Note
An example of the use of ZERO AND ADD is
given in Appendix A.

Chapter 8. Decimal Instructions 8-11

-S"!,

. .1

Chapter 9. Floating-Point Instructions

Contents

Floating-Point Number Representation 9-1
Normalization 9-2
Floating-Point-Data Format 9-2
Instructions 9-5

ADD NORMALIZED 9-5
ADD UNNORMALIZED 9-7

COMPARE 9-7

DIVIDE 9-8
HALVE 9-9
LOAD 9-9

Floating-point instructions are used to perform
calculations on operands with a wide range of
magnitude and to yield results scaled to preserve
precision.

The floating-point instructions provide for
loading, rounding, adding, subtracting, comparing,
multiplying, dividing, and storing, as well as
controlling the sign of short, long, and extended
operands. Short operands generally permit faster
processing and require less storage than long or
extended operands. On the other hand, long and
extended operands permit greater precision in
computation. Four floating-point registers are
provided. Instructions may perform either
register-to-register or storage-and-register
operations.

Most of the instructions generate normalized
results, which preserve the highest precision in the
operation. For addition and subtraction,
instructions are also provided that generate
unnormalized results. Either normalized or
unnormalized numbers may be used as operands for
any floating-point operation.

The rounding and extended-operand instructions
are part of the extended-precision floating-point
feature. The other floating-point instructions and
the floating-point registers are part of the floating­
point feature.

LOAD AND TEST 9-10
LOAD COMPLEMENT 9-10
LOAD NEGATIVE 9-11
LOAD POSITIVE 9-11
LOAD ROUNDED 9-11
MULTIPLY 9-12
STORE 9-13
SUBTRACT NORMALIZED 9-13
SUBTRACT UNNORMALIZED 9-14

Floating-Point Number
Representation
A floating-point number consists of a signed
hexadecimal fraction and an unsigned seven-bit
binary integer called the characteristic. The
characteristic represents a signed exponent and is
obtained by adding 64 to the exponent value
(excess-64 notation). The range of the
characteristic is 0 to 127, which corresponds to an
exponent range of -64 to +63. The value of a
floating-point number is the product of its fraction
and the number 16 raised to the power of the
exponent which is represented by its characteristic.

The fraction of a floating-point number is
treated as a hexadecimal number because it is
considered to be multiplied by a number which is a
power of 16. The name, fraction, indicates that the
radix point is assumed to be immediately to the left
of the leftmost fraction digit. The fraction is
represented by its absolute value and a separate
sign bit. The entire number is positive or negative,
depending on whether the sign bit of the fraction is
zero or one, respectively.

When a floating-point operation would cause the
result exponent to exceed 63, the characteristic
wraps around from 127 to 0, and an exponent­
overflow condition exists. The result characteristic
is then too small by 128. When an operation
would cause the exponent to be less than -64, the
characteristic wraps around from 0 to 127, and an
exponent-underflow con<;lition exists. The result

Chapter 9. Floating-Point Instructions 9-1

characteristic is then too large by 128, except that
a zero characteristic is produced when a true zero
is forced.

A true zero is a floating-point number with a
zero characteristic, zero fraction, and plus sign. A
true zero may arise as the normal result of an
arithmetic operation because of the particular
magnitude of the operands. The result is forced to
be a true zero when:
1. An exponent underflow occurs and the

exponent-underflow mask bit in the PSW is
zero,

2. The result fraction of an addition or subtraction
operation is zero and the significance mask bit
in the PSW is zero, or

3. The operand of HALVE, one or both operands
of MUL TIPL Y, or the dividend in DIVIDE has
a zero fraction.

When a program interruption for exponent
underflow occurs, a true zero is not forced; instead,
the fraction and sign remain correct, and the
characteristic is too large by 128. When a program
interruption for significance occurs, the fraction
remains zero, the sign is positive, and the
characteristic remains correct.

The sign of a sum, difference, product, or
quotient with a zero fraction is positive. The sign
of a zero fraction resulting from other operations is
established from the operand sign, the same as for
nonzero fractions.

Normalization
A quantity can be represented with the greatest
precision by a floating-point number of a given
fraction length when that number is normalized. A
normalized floating-point number has a nonzero
leftmost hexadecimal fraction digit. If one or more
leftmost fraction digits are zeros, the number is said
to be unnormalized.

Unnormalized numbers are normalized by
shifting the fraction left, one digit at a time, until
the leftmost hexadecimal digit is nonzero and
reducing the characteristic by the number of
hexadecimal digits shifted. A number with a zero
fraction cannot be normalized; its characteristic
either remains unchanged, or it is made zero when
the result is forced to be a true zero.

Floating-point operations may be performed with
or without normalization. Most operations are
performed only with normalization. Addition and
subtraction with short or long operands may be
specified as either normalized or unnormalized.

With unnormalized operations, leftmost zeros in
the result fraction are not eliminated. The result

9-2 System/370 Principles of Operation

mayor may not be normalized, depending upon the
original operands.

In both normalized and unnormalized operations,
the initial operands need not be in normalized
form. The operands for multiplication and division
are normalized before the arithmetic process. For
other normalized operations, normalization takes
place when the intermediate arithmetic result is
changed to the final result.

When the intermediate result of addition,
subtraction, or rounding causes the fraction to
overflow, the fraction is shifted right by one
hexadecimal-digit position and the value one is
placed in the vacated leftmost digit position. The
fraction is then truncated to the final result length,
while the characteristic is increased by one. This
adjustment is made for both normalized and
unnormalized operations.

Programming Note
Up to three leftmost bits of the fraction of a
normalized number may be zeros, since the
nonzero test applies to the entire leftmost
hexadecimal digit.

Floating-Point-Data Format
Floating-point numbers have a 32-bit (short)
format, a 64-bit (long) format, or a 128-bit
(extended) format. Numbers in the short and long
formats may be designated as operands both in
storage and in the floating-point registers, whereas
operands having the extended format can be
designated only in the floating-point registers.

The floating-point registers contain 64 bits each
and are numbered 0, 2, 4, and 6. A short or long
floating-point number requires a single floating­
point register. An extended floating-point number
requires a pair of these registers: either registers 0
and 2 or register 4 and 6; the two register pairs are
designated as 0 or 4, respectively. When the RI or
R2 field of a floating-point instruction designates
any register number other than 0, 2, 4, or 6 for the
short or long format, or any register number other
than 0 or 4 for the extended format, the operation
is suppressed, and a program interruption for
specification exception occurs.

Short Floating-Point Number

=1 s=l=c=h=a=r=a=c=t=e=r=i =s =t =i c==1 ==6=-=D=i=9=i=t=~=r_a-_c-_t-_.-j o=n===
018 31

Long Floating-Point Number

=ls=l=c=h=a=r=a=c=t=e=r=is=t==ic=I====1=4=-=D=i=9=i}==F=r=ac=t==io=n====
o 1 8

Extended Floating-Point Number
High-Order Part

63

~------------~--------/-----------,
High-Order Leftmost 14 Diqits

S Characteristic of 28-Digit Fraction
~ ____________ L-_______ / __________ ~

o 8 63

Low-Order Part

than zero, the characteristic is made 128 greater
than its correct value. Exponent underflow is
indicated only when the high-order characteristic
underflows.

When an extended result is made a true zero,
both the high-order and low-order parts are made a
true zero.

The range covered by the magnitude (M) of a
normalized floating-point number depends on the
format.

In the short format:

r---1r---------------.---------/ In the long format:
Low-Order Rightmost 14 Digits

S Characteristic of 28-Digit Fraction '----' ____________ -'---_______ / 16 -65 ~ M ~ (1 - 16 -14) X 1663

64 72 127

In all formats, the first bit (bit 0) is the sign bit
(S). The next seven bits are the characteristic. In
the short and long formats, the remaining bits
constitute the fraction, which consists of six or 14
hexadecimal digits, respectively.

A short floating-point number occupies only the
leftmost 32 bit positions of a floating-point register.
The rightmost 32 bit positions of the register are
ignored when used as an operand in the short
format and remain unchanged when a short result
is placed in the register.

An extended floating-point number has a
28-digit fraction and consists of two long floating­
point numbers which are called the high-order and
low-order parts. The high-order part may be any
long floating-point number. The fraction of the
high-order part contains the leftmost 14
hexadecimal digits of the 28-digit fraction. The
characteristic and sign of the high-order part are
the characteristic and sign of the extended
floating-point number. If the high-order part is
normalized, the extended number is considered
normalized. The fraction of the low-order part
contains the rightmost 14 digits of the 28-digit
fraction. The sign and characteristic of the low­
order part of an extended operand are ignored.

When a result in the extended format is placed
in a register pair, the sign of the low-order part is
made the same as that of the high-order part, and,
unless the result is a true zero, the low-order
characteristic is made 14 less than the high-order
characteristic. When the subtraction of 14 would
cause the low-order characteristic to become less

In the extended format:

In all formats, approximately:

5.4 x 10-79 ~ M ~ 7.2 x 1075

Although the final result of a floating-point
operation has six hexadecimal fraction digits in the
short format, 14 fraction digits in the long format,
and 28 fraction digits in the extended format,
intermediate results have one additional
hexadecimal digit on the right. This digit is called
the guard digit. The guard digit may increase the
precision of the final result because it participates
in addition, subtraction, and comparison operations
and in the left shift that occurs during
normalization.

The entire set of floating-point operations is
available for both short and long operands. These
instructions generate a result that has the same
format as the operands, except that for
MULTIPLY, a long product is produced from a
short multiplier and multiplicand. Extended
floating-point instructions are provided only for
normalized addition, subtraction, and
multiplication. Two additional multiplication
instructions generate an extended product from a
long multiplier and multiplicand. The rounding
instructions provide for rounding from extended to
long format and from long to short format.

Programming Notes
1. A long floating-poin~ number can be converted

to the extended format by appending any long
floating-point number having a zero fraction,

Chapter 9. Floating-Point Instructions 9-3

r--
Mne- Op

Name monic Characteristics Code
'----------

ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36
ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 2A
ADD NORMALI ZED (long) AD RX C FP A SP EU EO LS 6A
ADD NORMALI ZED (short) AER RR C FP SP EU EO LS 3A
ADD NORMALI ZED (shortl AE RX C FP A SP EU EO LS 7A

ADD UNNORMALIZED (long) AWR RR C FP SP EO LS 2E
ADD UNNORMALIZED (long) AW RX C FP A SP EO LS 6E
ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 3E
ADD UNNORMALIZED (short) AU RX C FP A SP EO LS 7E
COMPARE (long) CDR RR C FP SP 29
~---

COMPARE (long) CD RX C FP A SP 69
COMPARE (short) CER RR C FP SP 39
COMPARE (short) CE RX C FP A SP 79
DIVIDE (long) DDR RR FP SP EU EO FK 2D
DIVIDE (long) DD RX FP A SP EU EO FK 6D

DIVIDE (short) DER RR FP SP EU EO FK 3D
DIVIDE (short) DE RX FP A SP EU EO FK 7D
HALVE (long) HDR RR FP SP EU 24
HALVE (short) HER RR FP SP EU 34
LOAD (long) LDR RR FP SP 28
r-----
LOAD (long) LD RX FP A SP 68
LOAD (short) LER RR FP SP 38
LOAD (short) LE RX FP A SP 78
LOAD AND TEST (long) LTDR RR C FP SP 22
LOAD AND TEST (short) L TER RR C FP SP 32

LOAD COMPLEMENT (long) LCDR RR C FP SP 23
LOAD COMPLEMENT (short) LCER RR C FP SP 33
LOAD NEGATIVE (long) LNDR RR C FP SP 21
LOAD NEGATIVE (short) LNER RR C FP SP 31
LOAD POSITIVE (long) LPDR RR C FP SP 20

LOAD POSITIVE (short) LPER RR C FP SP 30
LOAD ROUNDED (extended to long) LRDR RR XP SP EO 25
LOAD ROUNDED (long to short) LRER RR XP SP EO 35
MULTIPLY (extended) MXR RR XP SP EU EO 26
MULTIPLY (long) MDR RR FP SP EU EO 2C

MULTIPLY (long) MD RX FP A SP EU EO 6C
MULTIPLY (long to extended) MXDR RR XP SP EU EO 27
MULTIPLY (long to extended) MXD RX XP A SP EU EO 67
MULTIPLY (short to long) MER RR FP SP EU EO 3C
MULTIPLY (short to long) ME RX FP A SP EU EO 7C

STORE (long) STD RX FP A SP ST 60
STORE (short) STE RX FP A SP ST 70
SUBTRACT NORMALIZED (extended) SXR RR C XP SP EU EO LS 37
SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 2B
SUBTRACT NORMALIZED (long) SD RX C FP A SP EU EO LS 6B

SUBTRACT NORMALIZED (shor tl SER RR C FP SP EU EO LS 3B
SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 7B
SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 2F
SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 6F
SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 3F
SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 7F

EXf!lanation:

A Access exceptions
C Condition code is set
EO Exponent-overflow exception
EU Exponent-underflow exception
FK Floating-point-divide exception
FP Floating-point feature
LS Significance exception
RR RR instruction format
RX RX instruction format
SP Specification exception
ST PER storage alteration event
XP Extended-precision floating-point feature

I Summary of FloatiDg-PoiDt IDstructioDS

9-4 System/370 Principles of Operation

including a true zero. Conversion from the
extended to the long format can be
accomplished by truncation or by means of
LOAD ROUNDED.

2. In the absence of an exponent overflow or
exponent underflow, the long floating-point
number constituting the low-order part of an
extended result correctly expresses the value of
the low-order part of the extended result when
the characteristic of the high-order part is 14 or
higher. This applies also when the result is a
true zero. When the high-order characteristic
is less than 14 but the number is not a true
zero, the low-order part, when addressed as a
long floating-point number, does not have the
correct characteristic value.

3. The entire fraction of an extended result
participates in normalization. The low-order
part alone mayor may not appear to be a
normalized long floating-point number,
depending on whether the 15th digit of the
normalized 28-digit fraction is nonzero or zero.

Instructions
The floating-point instructions and their
mnemonics, formats, and operation codes are listed
in the figure "Summary of Floating-Point
Instructions. " The figure also indicates when the
condition code is set and the exceptional conditions
in operand designations, data, or results that cause
a program interruption.

Mnemonics for the floating-point instructions
have an R as the last letter when the instruction is
in the RR format. For instructions where all
operands are the same length, certain letters are
used to represent operand-format length and
normalization, as follows:

E short normalized
U short unnormalized
D long normalized
W long unnormalized
X extended normalized

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For a register-to­
register operation using LOAD (short), for
example, LER is the mnemonic and R 1,R 2 the
operand designation.

ADD NORMALIZED

AER R1,R2 [RR, Short Operands]

'3A' R1 R2

0 8 12 15

AE R1,02(X2,B2) [RX, Short Operands]

'7A'
I Rl I X2 I B2 I 02

0 8 12 16 20 31

AOR R1,R2 [RR, Long Operands]

'2A' R1 R2

0 8 12 15

AD R1,02(X2,B2) [RX, Long Operands]

'6A'
I R1 I X2 I B2 I 02

0 8 12 16 20 31

AXR R1,R2 [RR, Extended Operands]

'36' R1
I R2 I

0 8 12 15

Chapter 9. Floating-Point Instructions 9-5

The second operand is added to the first operand,
and the normalized sum is placed in the first­
operand location.

Addition of two floating-point numbers consists
in characteristic comparison, fraction alignment,
and fraction addition. The characteristics of the
two operands are compared, and the fraction
accompanying the smaller characteristic is aligned
with the other fraction by a right shift, with its
characteristic increased by one for each
hexadecimal digit of shift until the two
characteristics agree.

When a fraction is shifted right during
alignment, the leftmost hexadecimal digit shifted
out is retained as a guard digit. The fraction that is
not shifted is considered to be extended with a zero
in the guard-digit position. When no alignment
shift occurs, both operands are considered to be
extended with zeros in the guard-digit position.
The fractions are then added algebraically to form
an intermediate sum.

The intermediate-sum fraction consists of seven
(short format), 15 (long format), or 29 (extended
format) hexadecimal digits, including the guard
digit, and a possible carry. If a carry is present, the
sum is shifted right one digit position so that the
carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

If the addition produces no carry, the
intermediate-sum fraction is shifted left as
necessary to eliminate any leading hexadecimal
zero digits resulting from the addition, provided the
fraction is not zero. Vacated rightmost digit
positions are filled with zeros, and the
characteristic is reduced by the number of
hexadecimal digits of shift. The fraction thus
normalized is then truncated on the right to six
(short format), 14 (long format), or 28 (extended
format) hexadecimal digits. In the extended
format, a characteristic is generated for the low­
order part, which is 14 less than the high -order
characteristic.

The sign of the sum is determined by the rules of
algebra, unless all digits of the intermediate-sum
fraction are zero, in which case the sign is made
plus.

An exponent-overflow exception is recognized
when a carry from the leftmost position of the
intermediate-sum fraction would cause the
characteristic of the normalized sum to exceed 127.
The operation is completed by making the result
characteristic 128 less than the correct value, and a
program interruption for exponent overflow takes
place. The result sign and fraction remain correct,
and, for AXR, the characteristic of the low-order

9-6 System/370 Principles of Operation

part remains correct.
An exponent-underflow exception is recognized

when the characteristic of the normalized sum
would be less than zero and the fraction is not
zero. If the exponent-underflow mask bit is one,
the operation is completed by making the result
characteristic 128 greater than the correct value.
The result sign and fraction remain correct, and a
program interruption for exponent underflow takes
place. When exponent underflow occurs and the
exponent-underflow mask bit is zero, a program
interruption does not take place; instead, the
operation is completed by making the result a true
zero. For AXR, no exponent underflow is
recognized when the characteristic of the low-order
part would be less than zero but the characteristic
of the high-order part is zero or greater.

The result fraction is zero when the
intermediate-sum fraction, including the guard
digit, is zero. With a zero result fraction, the
action taken depends on the setting of the
significance mask bit. If the significance mask bit
is one, no normalization occurs, the intermediate
and final result characteristics are the same, and a
program interruption for significance takes place.
If the significance mask bit is zero, the program
interruption does not occur; instead, the result is
made a true zero.

The Rl field for AER, AE, ADR, and AD, and
the R2 field for AER and ADR must designate
register 0, 2, 4, or 6. The Rl and R2 fields for
AXR must designate register 0 or 4. Otherwise, a
specification exception is recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Access (fetch, operand 2 of AE and AD only)
Exponent Overflow
Exponent Underflow
Operation (if the floating-point feature is not

installed, or, for AXR, if the extended­
precision floating-point feature is not
installed)

Significance
Specification

Programming Notes
1. Interchanging the two operands in a floating­

point addition does not affect the value of the
sum.

2. The ADD NORMALIZED instructions
normalize the sum but not the operands. Thus,
if one or both operands are unnormalized,
precision may be lost during fraction alignment.

ADD UNNORMALIZED

AUR [RR, Short Operands]

o 8 12 15

AU R1,D 2(X2 ,B2) [RX, Short Operands]

'7E' I R1 I X2 I B2 O2

0 8 12 16 20 31

AWR R 1 ,R2 [RR, Long Operands]

o 8 12 15

AW R1,D2(X2 ,B2) [RX, Long Operands]

'6E' I R1 I X2 I B2 O2

o 8 12 16 20 31

The second operand is added to the first operand,
and the unnormalized sum is placed in the first­
operand location.

The execution of ADD UNNORMALIZED is
identical to that of ADD NORMALIZED, except
that:
1. When no carry is present after the addition, the

intermediate-sum fraction is truncated to the
proper result-fraction length without a left shift
to eliminate leading hexadecimal zeros and
without the corresponding reduction of the
characteristic.

2. Exponent underflow cannot occur.
3. The guard digit does not participa~e in the

recognition of a zero result fraction. A zero
result fraction is recognized when the
intermediate-sum fraction, excluding the guard
digit, is zero.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Access (fetch, operand 2 of AU and A W only)
Exponent Overflow
Operation (if the floating-point feature is not

installed)
Significance
Specification

Programming Note
Except when the result is made a true zero, the
characteristic of the result of ADD
UNNORMALIZED is equal to the greater of the
two operand characteristics, increased by one if the
fraction addition produced a carry.

COMPARE

[RR, Short Operands]

o 8 12 15

CE R1,D 2(X2 ,B2) [RX, Short Operands]

'79' I R1 I X2 I B2 O2

0 8 12 16 20 31

CDR R l' R2 [RR, Long Operands]

'29' I R1 I R2

0 8 12 15

CD R1,D 2 (X2 ,B2) [RX, Long Operands]

o 8 12 16 20 31

The first operand is compared with the second
operand, and the condition code is set to indicate
the result.

The comparison is algebraic and follows the
procedure for normalized floating-point
subtraction, except that the difference is discarded
after setting the condition code and both operands

Chapter 9. Floating-Point Instructions 9-7

remain unchanged. When the difference, including
the guard digit, is zero, the operands are equal.
When a nonzero difference is positive or negative,
the first operand is high or low, respectively.

An exponent-overflow, exponent-underflow, or
significance exception cannot occur.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Operands are equal
1 First operand is low
2 First operand is high
3

Program Exceptions:
Access (fetch, operand 2 of CE and CD only)
Operation (if the floating-point feature is not

installed)
Specification

Programming Notes
1. An exponent inequality alone is not sufficient

to determine the inequality of two operands
with the same sign, because the fractions may
have different numbers of leading hexadecimal
zeros.

2. Numbers with zero fractions compare equal
even when they differ in sign or characteristic.

DIVIDE

OER R1,R2 [RR, Short Operands]

'30' Rl R2

o 8 12 15

OE R1,02(X2 ,B2) [RX, Short Operands]

'70' I Rl I X2 I B2 I O2

0 8 12 16 20 31

OOR R1,R2 [RR, long Operands]

'20' Rl R2

0 8 12 15

9-8 System/370 Principles of Operation

00 R1,02(X2 ,B2) [RX, long Operands]

'60 ' I R 1 I X2 I B2 I O2

o 8 12 16 20 31

The first operand (the dividend) is divided by the
second operand (the divisor), and the normalized
quotient is placed in the first-operand location. No
remainder is preserved.

Floating-point division consists in characteristic
subtraction and fraction division. The operands are
first normalized to eliminate leading hexadecimal
zeros. The difference between the dividend and
divisor characteristics of the normalized operands,
plus 64, is used as the characteristic of an
intermediate quotient.

All dividend and divisor fradion digits
participate in forming the fraction of the
intermediate quotient. The intermediate-quotient
fraction can have no leading hexadecimal zeros, but
a right-shift of one digit position may be necessary
with an increase of the characteristic by one. The
fraction is then truncated to the proper result­
fraction length.

An exponent-overflow exception is recognized
when the characteristic of the final quotient would
exceed 127 and the fraction is not zero. The
operation is completed by making the characteristic
128 less than the correct value. The result is
normalized, and the sign and fraction remain
correct. A program interruption for exponent
overflow occurs.

An exponent-underflow exception exists when
the characteristic of the final quotient would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program
interruption for exponent underflow occurs. The
result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask bit
is zero, a program interruption does not take place;
instead, the operation is completed by making the
quotient a true zero.

Exponent underflow does not occur when an
operand characteristic becomes less than zero
during normalization of the operands or when the
intermediate-quotient characteristic is less than
zero, as long as the final quotient can be
represented with the correct characteristic.

When the divisor fraction is zero, the operation
is suppressed, and a program interruption for
floating-point divide occurs. This includes the
division of zero by zero.

When the dividend fraction is zero, but the
divisor fraction is nonzero, the quotient is made a
true zero. No exponent overflow or exponent
underflow occurs.

The sign of the quotient is determined by the
rules of algebra, except that the sign is always plus
when the quotient is made a true zero.

The Rl field for DER, DE, DDR, and DD, and,
the R2 field for DER and DDR, must designate
register 0, 2, 4, or 6. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of DD and DE only)
Exponent Overflow
Exponent Underflow
Floating-Point Divide
Operation (if the floating-point feature is not

installed)
Specification

HALVE

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is divided by 2, and the
normalized quotient is placed in the first-operand
location.

The fraction of the second operand is shifted
right one bit position, placing the contents of the
rightmost bit position into the leftmost bit position
of the guard digit and introducing a zero into the
leftmost bit position of the fraction. The
intermediate result, including the guard digit, is
then normalized, and the final result is truncated to
the proper length.

An exponent-underflow exception exists when
the characteristic of the final result would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program
interruption for exponent underflow occurs. The

result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask
bit is zero, a program interruption does not take
place; instead, the operation is completed by
making the result a true zero.

When the fraction of the second operand is zero,
the result is made a true zero, and no exponent
underflow occurs.

The sign of the result is the same as that of the
second operand, except that the sign is always plus
when the quotient is made a true zero.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Exponent Underflow
Operation (if the floating-point feature is not

installed)
Specification

Programming Notes
1. With short and long operands, the halve

operation is identical to a divide operation with
the number 2 as divisor. Similarly, the result of
HDR is identical to that of MD or MDR with
one-half as a multiplier. No multiply operation
corresponds to HER, since no multiply
operation produces short results.

2. The result of HALVE is zero only when the
second-operand fraction is zero, or when
exponent underflow occurs with the exponent­
underflow mask set to zero. A fraction with
zeros in every bit position, except for a one in
the rightmost bit position, does not become
zero after the right shift. This is because the
one bit is preserved in the guard-digit position
and becomes the leftmost bit after
normalization of the result.

LOAD

LER [RR, Short Operands]

o 8 12 15

Chapter 9. Floating-Point Instructions 9-9

LE [RX, Short Operands]

o 8 12 16 20 31

LOR R1,R2 [RR, Long Operands]

'28' R1 R2

0 8 12 15

LO R1,02(X2 ,B2) [RX, Long Operands]

'68' I R1 I X2 I B2 O2

0 8 12 16 20 31

The second operand is placed unchanged in the
first-operand location.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of LE and LD only)
Operation (if the floating-point feature is not

installed)
Specification

LOAD AND TEST

o 8 12 15

'22' I R1 I R2

o 8 12 15

[RR, Short Operands]

[RR, Long Operands]

The second operand is placed unchanged in the
first-operand location, and its sign and magnitude
are tested to determine the setting of the condition
code.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

9-10 System/370 Principles of Operation

Resulting Condition Code: ° Result fraction is zero
1 Result is less than zero
2
3

Result is greater than zero

Program Exceptions:
Operation (if the floating-point feature is not

installed)
Specification

Programming Note
When the same register is specified as the first­
operand and second-operand location, the
operation is equivalent to a test without data
movement.

LOAD COMPLEMENT

[RR, Short Operands]

o 8 12 15

[RR, Long Operands]

o 8 12 15

The second operand is placed in the first-operand
location with the sign bit inverted.

The sign bit is inverted, even if the fraction is
zero. The characteristic and fraction are not
changed.

The R} and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code: ° Result fraction is zero
1
2
3

Result is less than zero
Result is greater than zero

Program Exceptions:
Operation (if the floating-point feature is not

installed)
Specification

........,

LOAD NEGATIVE

LNER R l' R2 [RR, Short Operands]

, 31 ' I R 1 I R2

0 8 12 15

LNDR R1,R2 [RR, Long Operands]

'21 ' I R1 I R2

0 8 12 15

The second operand is placed in the first-operand
location with the sign made minus.

The sign bit is made one, even if the fraction is
zero. The characteristic and fraction are not
changed.

The R1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2
3

Program Exceptions:
Operation (if the floating-point feature is not

installed)
Specification

LOAD POSITIVE

LPER R1,R2 [RR, Short Operands]

o 8 12 15

LPDR R1,R2 [RR, Long Operands]

'20' I R1 I R2

o 8 12 15

The second operand is placed in the first-operand
location with the sign made plus.

The sign bit is made zero. The characteristic
and fraction are not changed.

The R1 and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1
2 Result is greater than zero
3

Program Exceptions:
Operation (if the floating-point feature is not

installed)
Specification

LOAD ROUNDED

LRER R1,R2
[RR, Long Operand 2, Short Operand 1]

o 8 12 15

LRDR R1 ,R2
[RR, Extended Operand 2, Long Operand 1]

'25'

o 8 12 15

The second operand is rounded to the next shorter
format, and the result is placed in the first-operand
location.

Rounding consists in adding a one in bit position
32 or 72 of the long or extended second operand,
respectively, and propagating any carry to the left.
The sign of the fraction is ignored, and addition is
performed as if the fractions were positive.

If rounding causes a carry out of the leftmost
hexadecimal digit position of the fraction, the
fraction is shifted right one digit position so that
the carry becomes the leftmost digit of the fraction,
and the characteristic is increased by one.

The sign of the result is the same as the sign of
the second operand. There is no normalization to
eliminate leading zeros.

An exponent-overflow exception exists when
shifting the fraction right would cause the
characteristic to exceed 127. The operation is
completed by loading a number whose
characteristic is 128 less than the correct value, and
a program interruption for exponent overflow
occurs. The result is normalized, and the sign and
fraction remain correct.

Exponent-underflow and significance exceptions
cannot occur.

The R1 field must designate register 0, 2, 4, or 6;
the R2 field of LRER must designate register 0, 2,

Chapter 9. Floating-Point Instructions 9-11

4, or 6; and the R2 field of LRDR must designate
register 0 or 4. Otherwise, a specification
exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Exponent Overflow
Operation (if the extended-precision floating-point

feature is not installed)
Specification

MULTIPLY

MER R1,R2
[RR, Short Multiplier and Multiplicand,
Long Product]

o 8 12 15

ME R1,D2(X2,B2)
[RX, Short Multiplier and Multiplicand,
Long Product]

o 8 12 16 20 31

MDR [RR, Long Operands]

o 8 12 15

MD [RX, Long Operands]

o 8 12 16 20 31

MXDR R1,R2
[RR, Long Multiplier and Multiplicand,
Extended Product]

o 8 12 15

9-12 System/370 Principles of Operation

MXD R1,D2(X2,B~)
[RX, Long Multiplier and Multiplicand,
Extended Product]

o 8 12 16 20 31

MXR R1,R2 [RR, Extended Operands]

'26' R 1 I R2 I
o 8 12 15

The normalized product of the second operand (the
multiplier) and the first operand (the multiplicand)
is placed in the first-operand location.

Multiplication of two floating-point numbers
consists in exponent addition and fraction
multiplication. The operands are first normalized
to eliminate leading hexadecimal zeros. The sum of
the characteristics of the normalized operands, less
64, is used as the characteristic of the intermediate
product.

The fraction of the intermediate product is the
exact product of the normalized operand fractions.
When the intermediate-product fraction has one
leading hexadecimal zero digit, the fraction is
shifted left one digit position, bringing the contents
of the guard-digit position into the rightmost
position of the result fraction, and the
intermediate-product characteristic is reduced by
one. The fraction is then truncated to the proper
result-fraction length.

For MER and ME, the multiplier and
multiplicand fractions have' six hexadecimal digits;
the product fraction has the full 14 digits of the
long format, with the two rightmost fraction digits
always zeros. For MDR and MD, the multiplier
and multiplicand fractions have 14 digits, and the
final product fraction is truncated to 14 digits. For
MXDR and MXD, the multiplier and multiplicand
fractions have 14 digits, with the multiplicand
occupying the high-order part of the first operand;
the final product fraction contains 28 digits and is
an exact product of the operand fractions. For
MXR, the multiplier and multiplicand fractions
have 28 digits, and the final product fraction is
truncated to 28 digits.

An exponent-overflow exception is recognized
when the characteristic of the final product would
exceed 127 and the fraction is not zero. The
operation is completed by making the characteristic
128 less than the correct value. If, for extended
results, the low-order characteristic would also

exceed 127, it, too, is decreased by 128. The result
is normalized, and the sign and fraction remain
correct. A program interruption for exponent
overflow occurs.

Exponent overflow is not recognized when the
intermediate-product characteristic is initially 128
but is brought back within range by normalization.

An exponent-underflow exception exists when
the characteristic of the final product would be less
than zero and the fraction is not zero. If the
exponent-underflow mask bit is one, the operation
is completed by making the characteristic 128
greater than the correct value, and a program
interruption for exponent underflow occurs. The
result is normalized, and the sign and fraction
remain correct. If the exponent-underflow mask
bit is zero, program interruption does not take
place; instead, the operation is completed by
making the product a true zero. For extended
results, exponent underflow is not recognized when
the low-order characteristic would be less than zero
but the high-order characteristic is equal to or
greater than zero.

Exponent underflow does not occur when the
characteristic of an operand becomes less than zero
during normalization of the operands, as long as
the final product can be represented with the
correct characteristic.

When either or both operand fractions are zero,
the result is made a true zero, and no exponent
overflow or exponent underflow occurs.

The sign of the product is determined by the
rules of algebra, except that the sign is always zero
when the result is made a true zero.

The Rl field for MER, ME, MDR, and MD, and
the R2 field for MER, MDR, and MXDR must
designate register 0, 2, 4, or 6. The Rl field for
MXDR, MXD, and MXR, and the R2 field for
MXR must designate register ° or 4. Otherwise, a
specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2 of ME, MD, and MXD

only)
Exponent Overflow
Exponent Underflow
Operation (if the floating-point feature is not

installed, or, for MXDR, MXD, and MXR, if
the extended-precision floating-point feature
is not installed)

Specification

Programming Note
Interchanging the two operands in a floating-point
multiplication does not affect the value of the
product.

STORE

STE R1,02(X2 ,B2) [RX, Short Operands]

'70' I R 1 I X2 I B2 °2

0 8 12 16 20 31

STO R1,02(X2 ,B2) [RX, Long Operands]

'60' I R1 I X2 I B2 °2

0 8 12 16 20 31

The first operand is placed unchanged in the
second-operand location.

The Rl field must designate register 0, 2, 4, or 6;
otherwise, a specification exception is recognized.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Operation (if the floating-point feature is not

installed)
Specification

SUBTRA.CT NORMA.LIZED

SER [RR, Short Operands]

'3B' I R1 I R2

o 8 12 15

SE R1,02(X2 ,B2) [RX, Short Operands]

'7B' I R1 I X2 I B2 °2

0 8 12 16 20 31

SOR R 1 ,R2 [RR, Long Operands]

'2B' I R1 I R2

0 8 12 15

Chapter 9. Floating-Point Instructions 9-13

so R1,02(X2 ,B2) [RX, Long Operands]

'6B'
I Rl I X2 I

B2 °2

0 8 12 16 20 31

SXR R1,R2 [RR, Extended Operands]

'37'
I Rl

I
R2

o 8 12 15

The second operand is subtracted from the first
operand, and the normalized difference is placed in
the first-operand location.

The execution of SUBTRACT NORMALIZED is
identical to that of ADD NORMALIZED, except
that the second operand participates in the
operation with its sign bit inverted.

The R} field of SER, SE, SDR, and SD, and the
R2 field of SER and SDR must designate register 0,
2, 4, or 6. The R} and R2 fields of SXR must
designate register 0 or 4. Otherwise, a
specification exception is recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Access (fetch, operand 2 of SE and SD only)
Exponent Overflow
Exponent Underflow
Operation (if the floating-point feature is not

installed, or, for SXR, if the extended­
precision floating-point feature is not
installed)

Significance
Specification

SUBTRACT UNNORMALIZED

[RR, Short Operands]

o 8 12 15

9-14 System/370 Principles of Operation

SU R1,02(X2 ,B2) [RX. Short Operands]

'7F'
I Rl I X2 I

B2 °2

0 8 12 16 20 31

SWR R1·R2 [RR, Long Operands]

'2F'
I Rl

I
R2

0 8 12 15

SW R1.02(X2 .B2) [RX. Long Operands]

'6F'
I Rl I X2 I

B2 °2

0 8 12 16 20 31

The second operand is subtracted from the first
'operand, and the unnormalized difference is placed
in the first-operand location.

The execution of SUBTRACT
UNNORMALIZED is identical to that of ADD
UNNORMALIZED, except that the second
operand participates in the operation with its sign
bit inverted.

The Rl and R2 fields must designate register 0,
2, 4, or 6; otherwise, a specification exception is
recognized.

Resulting Condition Code:
o Result fraction is zero
1 Result is less than zero
2 Result is greater than zero
3

Program Exceptions:
Access (fetch, operand 2 of SU and SW only)
Exponent Overflow
Operation (if the floating-point feature is not

installed)
Significance
Specification

Chapter 10. Control Instructions

Contents

CONNECT CHANNEL SET 10-3
DIAGNOSE 10-3
DISCONNECT CHANNEL SET 10-4
INSERT PSW KEY 10-4
INSERT STORAGE KEY 10-4
INVALIDATE PAGE TABLE ENTRY 10-5
LOAD CONTROL 10-6
LOAD PSW 10-6
LOAD REAL ADDRESS 10-7
PURGE TLB 10-7
READ DIRECT 10-8
RESET REFERENCE BIT 10-8
SET CLOCK 10-9
SET CLOCK COMPARATOR 10-9
SET CPU TIMER 10-10
SET PREFIX 10-10

The control instructions include all privileged
instructions, except the input/output instructions,
which are described in Chapter 12, "Input/Output
Operations. "

Privileged instructions may be executed only
when the CPU is in the supervisor state. An
attempt to execute a privileged instruction in the
problem state generates a privileged-operation
exception.

The control instructions and their mnemonics,
formats, and operation codes are listed in the figure
"Control Instructions." The figure also indicates

SET PSW KEY FROM ADDRESS 10-11
SET STORAGE KEY 10-11
SET SYSTEM MASK 10-12
SIGNAL PROCESSOR 10-12
STORE CLOCK COMPARATOR 10-13
STORE CONTROL 10-13
STORE CPU ADDRESS 10-14
STORE CPU ID 10-14
STORE CPU TIMER 10-15
STORE PREFIX 10-15
STORE THEN AND SYSTEM MASK 10-15
STORE THEN OR SYSTEM MASK 10-16
TEST PROTECTION 10-16
WRITE DIRECT 10-17

when the condition code is set and the exceptional
conditions in operand designations, data, or results
that cause a program interruption.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. For LOAD PSw, for
example, LPSW is the mnemonic and DiB~ the
operand designation.

Chapter 10. Control Instructions 10-1

Mne- Op
Name monic Characteristics Code

CONNECT CHANNEL SET CONCS S C CS P 8200 ..,
DIAGNOSE OM P OM 83
DISCONNECT CHANNEL SET DISCS S C CS P 8201
INSERT PSW KEY IPK S PK P R 8208
INSERT STORAGE KEY ISK RR P A1 SP R 09

INVALIDATE PAGE TA8LE ENTRY IPTE RRE EF P A1 $ 8221
LOAD CONTROL LCn RS P A SP B7
LOAD PSW LPSW S L P ~1 SP $ 82
LOAD REAL ADDRESS LRA RX C TR P R B 1
PURGE TL8 pn8 S TR P $ 8200

READ DIRECT RDD SI DC P A1 $ SD 85
RESET REFERENCE BIT RRB S C TR P A1 8213
SET CLOCK SCK S C P A SP 8204
SET CLOCK COMPARATOR SCKC S CK P A SP 8206
SET CPU TIMER SPT S CK P A SP 8208

SET PREFIX SPX S MP P A SP $ 8210
SET PSW KEY FROM ADDRESS SPKA S PK P

A1
820A

SET STORAGE KEY SSK RR P SP $ 08
SET SYSTEM MASK SSM S P A SP SO 80
SIGNAL PROCESSOR SIGP RS C MP P $ R AE

STORE CLOCK COMPARATOR STCKC S CK P A SP ST B207
STORE CONTROL STCn RS P A SP ST B6
STORE CPU ADDRESS STAP S MP P A SP ST B212
STORE CPU ID STiDP S P A SP ST 8202
STORE CPU TIMER STPT S CK P A SP ST 8209

STORE PREFIX STPX S MP P A SP ST 8211
STORE THEN AND SYSTEM MASK STNSM SI TR P A ST AC
STORE THEN OR SYSTEM MASK STOSM 51 TR P A1 SP ST AD
TEST PROTECTION TPROT SSE C EF P A1 E501
WRITE DIRECT WRD 51 DC P A $ 84

Explanation:

A1 Access exceptions
A Access exceptions; not all access exceptions may occur, see instruction

description for details.
C Condition code is set
CK CPU-timer and clock-comparator feature
CS Channel-set-switching feature
DC Direct-control feature
OM Depending on the model, DIAGNOSE may generate various program exceptions

and may change the condition code.
EF Extended facility
L New condition code loaded
MP Multiprocessing feature
P Privileged-operation exception
PK PSW-key-handling feature
R PER general-register-alteration event
RR RR instruction format
RRE RRE instruction format
RS RS instruction format
RX RX instruction format
S 5 instruction format
SD PER storage-alteration event, which can be caused by RDD only wnen IPTE is

not installed.
S I 51 instruction format
SO Special-operation exception
SP Specification exception
SSE SSE instruction format
ST PER storage-alteration event
TR Translation feature
$ Causes serialization

Summary of Control Instructions

.."",

10-2 System/370 Principles of Operation

CONNECT CHANNEL SET

CONCS [S 1

'8200'

o 16 20 31

The channel set currently connected to this CPU is
disconnected, and the addressed channel set, if
currently disconnected, is connected to this CPU.

I The second-operand address, specified by the B2
and D2 fields, is not used to address data; bits
16-31 form the 16-bit channel-set address. Bits
8-15 of the second-operand address are ignored.

When the channel set currently connected to this
CPU is not the channel set addressed by the
instruction, the currently connected channel set is
immediately disconnected from this CPU,
regardless of whether the channel set addressed by
the instruction is operational or can be connected
to this CPU.

If the addressed channel set is currently
connected to this CPU, no operation is performed,
and condition code 0 is set. If the addressed
channel set is operational and currently
disconnected, it is connected to this CPU, and
condition code 0 is set.

When the addressed channel set is connected to
another CPU, it is not connected to this CPU, and
condition code 1 is set.

When the addressed channel set is not
operational, condition code 3 is set.

A serialization function is performed. That is,
CPU operation is delayed until all previous accesses
by this CPU to main storage have been completed,
as observed by channels and other CPUs. No
subsequent instructions or their operands are
accessed by this CPU until the execution of this
instruction is completed. If a channel in the
channel set which is connected by means of this
instruction has an I/O interruption pending, and if
the CPU is enabled for I/O interruptions, the
interruption is recognized at the completion of this
instruction.

Resulting Condition Code:
o Connection operation completed
1 Connection operation not performed;

addressed channel set connected to another
CPU

2
3 Not operational

Program Interruptions:
Operation (if the channel-set-switching feature is

not installed)
Privileged Operation

DIAGNOSE

'83'

o 8 31

The CPU performs built-in diagnostic functions, or
other model-dependent functions. The purpose of
the diagnostic functions is to verify proper
functioning of CPU equipment and to locate faulty
components. Other model-dependent functions
may include disabling of failing buffers,
reconfiguration of storage and channels, and
modification of control storage.

Bits 8-31 may be used as in the SI or RS
formats, or in some other way, to specify the
particular diagnostic function. The use depends on
the model.

The execution of the instruction may affect the
state of the CPU and the contents of a register or
storage location. as well as the progress of an I/O
operation. Some diagnostic functions may cause
the test indicator to be turned on.

Condition Code: The code is unpredictable.

Program Exceptions:
Privileged Operation
Depending on the model, other exceptions may be

recognized.

Programming Notes
1. Since the instruction is not intended for

problem-program or supervisor-program use,
DIAGNOSE has no mnemonic.

2. DIAGNOSE, unlike other instructions, does not
follow the rule that programming errors are
distinguished from equipment errors. Improper
use of DIAGNOSE may result in false
machine-check indications or may cause actual
machine malfunctions to be ignored. It may
also alter other aspects of system operation,
including instruction execution and channel
operation, to an extent that the operation does
not comply with that specified in this
publication. As a result of the improper use of
DIAGNOSE, the system may be left in such a
condition that the power-on reset or initial­
microprogram-loading (IML) function must be

Chapter 10. Control Instructions 10-3

performed. Since the function performed by
DIAGNOSE may differ from model to model
and between versions of a model, the program
should avoid issuing DIAGNOSE unless the
program recognizes both the model number and
version code stored by STORE CPU ID.

DISCONNECT CHANNEL SET

[S 1

I B20 11

o 16 20 31

The addressed channel set is disconnected from the
CPU to which it is currently connected. If the
channel set is not connected, no operation is
performed.

The second-operand address, specified by the B2
and D2 fields, is not used to address data; bits
16-31 form the 16-bit channel-set address. Bits
8-15 of the second-operand address are ignored.

When the addressed channel set is not connected
to any CPU, no operation is performed, and
condition code 0 is set.

When the addressed channel set is connected
either to the CPU issuing the DISCONNECT
CHANNEL SET instruction or to a CPU that is in
the stopped or check-stop state, the disconnection
operation is performed, and condition code 0 is set.

When the addressed channel set is connected to
another CPU which is in the operating state, which
is being reset, or for which a SIGP reset is pending,
no disconnection operation is performed, and
condition code 1 is set.

When the addressed channel set is connected to
another CPU which is in the load state or which is
in the operator-intervening state, it depends on the
model if condition code 0 or 1 is set. The action
taken in this case is consistent with the condition
code indicated.

When the addressed channel set is not
operational, condition code 3 is set.

A serialization function is performed. That is,
CPU operation is delayed until all previous accesses
by this CPU to main storage have been completed,
as observed by channels and other CPUs. No
subsequent instructions or their operands are
accessed by this CPU until the execution of this
instruction is completed.

10-4 System/370 Principles of Operation

Resulting Condition Code:
o Disconnection operation completed
1 Disconnection operation not performed;

addressed channel set connected to another
CPU which is not in the proper state

2
3 Not operational

Program Interruptions:
Operation (if the channel-set-switching feature is

not installed)
Privileged Operation

INSERT PSW KEY

IPK [S]

I B20B I 111111111111111111

o 16 31

The four-bit PSW -key, bits 8-11 of the current
PSW, is inserted in bit positions 24-27 of general
register 2, and bits 28-31 of that register are set to
zeros. Bits 0-23 of general register 2 remain
unchanged.

Bits 16-31 of the instruction are ignored.

Resulting Condition Code: The code remains
unchanged.

Program Exceptions:
Operation (if the PSW-key-handling feature is not

installed)
Privileged Operation

INSERT STORAGE KEY

[RR]

109 1

o 8 12 15

The storage key associated with the 2K-byte block
that is addressed by the contents of the general
register designated by the R2 field is inserted in the
general register designated by the Rl field.

Bits 8-20 of the register designated by the R2
field designate a block of 2K bytes in real storage.
Bits 0-7 and 21-27 of the register are ignored. Bits
28-31 of the register must be zeros; otherwise, a
specification exception is recognized, and the
operation is suppressed.

The address designating the storage block, being
a real address, is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The execution of the instruction depends on
whether the PSW specifies the EC or BC mode. In
the EC mode, the seven-bit storage key is inserted
in bit positions 24-30 of the register designated by
the R} field, and bit 31 is set to zero. In the BC
mode, bits 0-4 of the storage key are placed in bit
positions 24-28 of that register, and bits 29-31 of
the register are set to zeros. In both modes, the
contents of bit positions 0-23 of the register remain
unchanged.

Condition Code: The code remains unchanged.

Program Exceptions:
Addressing (operand 2)
Privileged Operation
Specification

INVALIDATE PAGE TABLE ENTRY

IPTE [RREl

, B221'

o 16 24 28 31

The designated page-table entry is invalidated, and
the associated translation-look aside-buffer (TLB)
entries in all CPUs of the configured system are
purged.

The contents of the register designated by the R}
field have the format of a segment-table entry with
only the page-table origin used. The contents of
the register designated by the R2 field have the
format of a virtual address with only the page index
used. The contents of fields that are not part of
the page-table origin or page index are ignored.

The translation format, contained in bit positions
8-12 of control register 0, specifies the mode for
translation. If an invalid combination is contained
in these bit positions, a translation-specification
exception is recognized, and the operation is
suppressed.

The page-table origin and the page index
designate a page-table entry, following the
dynamic-address-translation rules for page-table
lookup. The address formed from these two
components is a real address. The page-invalid bit
of this page-table entry is set to one. During this
procedure, no page-table-length check is made, and

the page-table entry is not inspected for availability
or format errors. Additionally, the page-frame real
address contained in the entry is not checked for
an addressing exception.

The entire page-table entry is fetched
concurrently from main storage. Subsequently the
byte containing the page-invalid bit is stored.

A serialization function is performed on the
CPU which is issuing IPTE. CPU operation is
delayed until all previous accesses by this CPU to
main storage have been completed, as observed by
channels and other CPUs. No subsequent
instructions or their operands are accessed by this
CPU until the execution of this instruction is
completed.

In addition to setting the page-invalid bit to one,
this CPU performs a purge of selected entries from
its TLB and signals all CPUs configured to it to
perform a purge of selected entries from their
TLBs. Each TLB is purged of at least those entries
that have been formed using all of the following:
• The translation format specified in bit positions

8-12 of control register 0 of the CPU issuing
IPTE

• The page-table origin specified by the IPTE
instruction

• The page index specified by the IPTE instruction
• The page-frame real address contained in the

designated page-table entry

The execution of IPTE is not completed on the
CPU which is issuing it until all entries
corresponding to the specified parameters have
been purged from the TLB on this CPU and until
all other configured CPUs have completed any
storage accesses, including the updating of the
change and reference bits, using TLB entries
corresponding to the specified parameters.

When the generated address of the page-table
entry refers to a location outside the main storage
of the configured system, an addressing exception
is recognized, and the operation is suppressed.
When the attempt to set the page-invalid bit causes
a protection violation, a protection exception is
recognized, and the operation is suppressed. When
bit positions 8-12 of control register 0 contain an
invalid code, a translation-specification exception is
recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Chapter lO. Control Instructions 10-5

Program Exceptions:
Addressing (page-table entry)
Operation (if the extended facility is not installed)
Privileged Operation
Protection (fetch and store, page-table entry, key­

controlled protection and low-address
protection)

Translation Specification (bits 8-12 in CRO only)

Programming Notes
1. The selective purge may be implemented in

different ways, depending on the model, and, in
general, more entries may be purged than the
minimum number required. Some models may
purge all entries with the specified page-frame
real address. Others may purge all entries with
the page index, and some implementations may
purge precisely the minimum number of entries
required. Therefore, in order for a program to
run on all models, the program should not take
advantage of any properties obtained by a less
selective purge on a particular model.

2. The purge of TLB entries may make use of the
page-frame real address in the page-table entry.
Therefore, if the page-table entry, while being
attached, has had a page-frame real address
that is different from the current value, copies
of the previous values may remain not purged.

3. IPTE cannot be safely used to update a shared
location in main storage if the possibility exists
that another CPU may also be updating the
location.

LOAD CONTROL

[RS]

o 8 12 16 20 31

The set of control registers starting with the control
register designated by the Rl field and ending with
the control register designated by the R3 field is
loaded from the locations designated by the
second-operand address.

The storage area from which the contents of the
control registers are obtained starts at the location
designated by the second-operand address and
continues through as many storage words as the
number of control registers specified. The control
registers are loaded in ascending order of their
addresses, starting with the control register
designated by the Rl field and continuing up to

10-6 System/370 Principles of Operation

and including the control register designated by the
R3 field, with control register 0 following control
register 15. The second operand remains
unchanged.

The second operand must be designated on a
word boundary; otherwise, a specification exception
is recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

Programming Notes
1. To ensure that existing programs run if and

when new facilities using additional control­
register positions are defined, only zeros should
be loaded in unassigned control-register
positions.

2. Loading of control registers on some models
may require a significant amount of time. This
is particularly true for changes in significant
parameters. For example, the TLB may be
purged as a result of changing or enabling the
program-event-recording parameters in control
registers 9-11. Where possible, the program
should avoid loading unnecessary control
registers. In loading control registers 9-11, the
model will attempt to optimize for the case
when the bits of control register 9 are zeros.

LOAD PSW

[S]

o 8 16 20 31

The current PSW is replaced by the contents of the
doubleword at the location designated by the
second-operand address.

If the new PSW specifies the BC mode,
information in bit positions 16-33 of the new PSW
is not retained as the PSW is loaded. When the
PSW is subsequently· stored, these bit positions
contain the new interruption code and the
instruction-length code.

A serialization function is performed. CPU
operation is delayed until all previous accesses by
this CPU to storage have been completed, as
observed by channels and other CPUs. No

subsequent instructions, their operands, or
dynamic-address-translation entries are fetched by
this CPU until the e:xecution of this instruction is
complete.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

The value which is to be loaded by the
instruction is not checked for validity before it is
loaded. However, immediately after loading, a
specification exception is recognized and a program
interruption occurs when the newly loaded PSW
specifies the EC mode and either the contents of
bit positions 0, 2-4, 16-17, and 24-39 are not all
zeros or the EC mode is not present. In these
cases, the operation is completed, and the resulting
instruction-length code is zero.

Bits 8-15 of the instruction are ignored.

Condition Code: The code is set as specified in
the new PSW loaded.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

LOAD REAL ADDRESS

, B 1 ' I R 1 I X2 I B2 I
o 8 12 16 20 31

The real address corresponding to the second­
operand virtual address is inserted in the general
register designated by the R} field. The remaining
high-order bits of the register are set to zero.

The virtual address specified by the X2' B2, and
D2 fields is translated by means of the dynamic­
address-translation facility, regardless of whether
DAT is on or off. The translation is performed
using the current contents of control registers 0 and
1, but without the use of the translation-Iookaside
buffer (TLB). The resultant real address is
inserted in bit positions 8-31 of the general register
designated by the R} field, and bits 0-7 of the
register are set to zeros. The translated address is
not inspected for boundary alignment or for
addressing or protection exceptions.

Condition code 0 is set when translation can be
completed, that is, when the entry in each table lies
within the specified table length and its I bit is
zero.

When the I bit in the segment-table entry is one,
condition code 1 is set, and the real address of the
segment-table entry is placed in the register
designated by the R} field. When the I bit in the
page-table entry is one, condition code 2 is set, and
the real address of the page-table entry is placed in
the register designated by the R} field. When
either the segment-table entry or the page-table
entry is outside the table, condition code 3 is set,
and the register designated by the R} field contains
the real address of the entry that would have been
referred to if the length violation did not occur. In
all these cases, the real address is placed in bit
positions 8-31 of the register, and bits 0-7 of the
register are set to zeros.

An addressing exception is recognized when the
address of the segment-table entry or page-table
entry designates a location outside the available
main storage of the installed system. A
translation-specification exception is recognized
when bits 8-12 of control register 0 contain an
invalid code, or the segment-table entry or page­
table entry has a format error. For all these cases,
the operation is suppressed.

Resulting Condition Code:
o Translation available
1 Segment-table entry invalid (I bit is one)
2 Page-table entry invalid (I bit is one)
3 Segment- or page-table length exceeded

Program Exceptions:
Addressing
Operation (if the translation feature is not

installed)
Privileged Operation
Translation Specification

PURGE TLB

PTLB [5]

'B20D' 111111111111111111

o 16 31

All information in the translation--Iookaside buffer
(TLB) of this CPU is made invalid. No change is
made to the contents of addressable storage or
registers.

Chapter 10. Control Instructions 10-7

The TLB appears cleared of its original contents
for all following instructions. The invalidation is
not signaled to any other CPU.

A serialization function is performed. CPU
operation is delayed until all previous accesses by
this CPU to storage have been completed, as
observed by channels and other CPUs. No
subsequent instructions, their operands, or
dynamic-address-translation entries are fetched by
this CPU until the execution of this instruction is
complete.

Bits 16-31 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:
Operation (if the translation feature is not

installed)
Privileged Operation

READ DIRECT

ROO [S I]

'85' 12

o 8 16 20 31

The contents of the I2 field are made available as
signal-out timing signals. A direct-in data byte is
accepted from an external device in the absence of
a hold signal and is placed in the location
designated by the first-operand address.

When the extended facility is not installed, the
first-operand address is a logical address, and is
subject to the normal access exceptions and to the
PER storage-alteration event.

When the extended facility is installed, the first­
operand address is a real address and not subject to
dynamic address translation. Addressing and
protection exceptions apply, and the PER storage­
alteration event does not apply.

The contents of the 12 field are made available
on a set of eight signal-out lines as O.S-microsecond
to 1.0-microsecond timing signals. These signal-out
lines are also used in WRITE DIRECT. On a ninth
line (read out), a O.S-microsecond to
1.0-microsecond timing signal is made available
coincident with these timing signals. The read-out
line is distinct from the write-out line in WRITE
DIRECT. No checking bits are made available
with the eight instruction bits.

Eight data bits are accepted from a set of eight
direct-in lines when the hold signal on the hold-in

10-8 System/370 Principles of Operation

line is absent. The hold signal is sampled after the
read-out signal has been completed and should be
absent for at least 0.5 microsecond. No checking
bits are accepted with data signals, but a checking­
block code is generated as the data is placed in
storage. When the hold signal is not removed, the
CPU does not complete the instruction.

A serialization function is performed before the
signals are made available and again after the
first-operand byte is placed in storage. CPU
operation is delayed until all previous accesses by
this CPU to main storage have been completed, as
observed by channels and other CPUs, and then
the signal-out timing signals are presented. No
subsequent instructions or their operands are
accessed by this CPU until the first operand byte
has been placed in main storage, as observed by
channels and other CPUs.

An excessively long instruction execution may
result in incomplete updating of the interval timer.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 1; access applies only if the

extended facility is not installed)
Addressing (operand 1)
Operation (if the direct-control feature is not

installed)
Privileged Operation
Protection (store, operand 1; key-controlled

protection and low-address protection)

RESET REFERENCE BIT

RRB 02(B 2) [S]

'B213' B2 O2

o 16 20 31

The reference bit in the storage key associated with
the 2K-byte block that is designated by the
second-operand address is set to zero.

Bits 8-20 of the second-operand address
designate a block of 2K bytes in real storage. Bits
0-7 and 21-31 of the address are ignored.

The address designating the storage block, being
a real address, is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The values of the remaining bits of the storage
key, including the change bit, are not affected.

The condition code is set to reflect the state of
the reference and change bits before the reference
bit is set to zero.

Resulting Condition Code:
o Reference bit zero, change bit zero
1 Reference bit zero, change bit one
2 Reference bit one, change bit zero
3 Reference bit one, change bit one

Program Exceptions:
Addressing (operand 2)
Operation (if the translation feature is not

installed)
Privileged Operation

SET CLOCK

'B204' B2

o 16 20 31

The current value of the time-of-day clock is
replaced by the contents of the double word
designated by the second-operand address, and the
clock enters the stopped state.

The doubleword operand replaces the contents
of the clock, as determined by the resolution of the
clock. Only those bits of the operand are set in the
clock that correspond to the bit positions which are
updated by the clock; the contents of the remaining
rightmost bit positions of the operand are ignored
and are not preserved in the clock. In some
models, starting at or to the right of bit position 52,
low-order bits of the second operand are ignored,
and the corresponding positions of the clock which
are implemented are set to zeros.

After the clock value is set, the clock enters the
stopped state. The clock leaves the stopped state
to enter the set state and resume incrementing
under control of the TOD-clock sync-check control
(bit 2 of control register 0). When the bit is zero
or the TOD-clock-synchronization facility is not
installed, the clock enters the set state at the
completion of the instruction. When the bit is one,
the clock remains in the stopped state either until
the bit is set to zero or until any other running
time-of-day clock in the configured system is
incremented to a value of all zeros in bit positions
32-63.

When the TOD clock is shared by another CPU,
the clock remains in the stopped state under control

of the TOD-clock sync-check control bit of the
CPU which set the clock. If, while the clock is
stopped, it is set by another CPU, then the clock
comes under control of the TOD-clock sync-check
control bit of the CPU which last set the clock.

The value of the clock is changed and the clock
is placed in the stopped state only if the manual
TOD-clock control of any CPU in the
configuration is set to enable-set. If the
TOD-clock control is set to secure, the value and
the state of the clock are not changed. The two
results are distinguished by condition codes 0 and
1, respectively.

When the clock is not operational, the value and
state of the clock are not changed, regardless of the
setting of the TOD-clock control, and condition
code 3 is set.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed.

Resulting Condition Code:
o Clock value set
1 Clock value secure
2
3 Clock in not-operational state

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Specification

SET CLOCK COMPA.RA.TOR

'B206'

o 16 20 31

The current value of the clock comparator is
replaced by the contents of the doubleword
designated by the second-operand address.

Only those bits of the operand are set in the
clock comparator that correspond to the bit
positions to be compared with the time-of-day
clock; the contents of the remaining rightmost bit
positions of the operand are ignored and are not
preserved in the clock comparator.

The operand must be designated on a
double word boundary; otherwise, a specification
exception is recognized, and the operation is

Chapter 10. Control Instructions 10-9

suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Operation (if the CPU-timer and clock-comparator

feature is not installed)
Privileged Operation
Specification

SET CPU TIMER

'S20S'

o 16 20 31

The current value of the CPU timer is replaced by
the contents of the doubleword designated by the
second-operand address.

Only those bits of the operand are set in the
CPU timer that correspond to the bit positions to
be updated; the contents of the remaining
rightmost bit positions of the operand are ignored
and are not preserved in the CPU timer.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Operation (if the CPU-timer and clock-comparator

feature is not installed)
Privileged Operation
Specification

SET PREFIX

'S210'

o 16 20 31

10-10 System/370 Principles of Operation

The contents of the prefix register are replaced by
the contents of bit positions 8-19 of the word at
the location designated by the second,..operand
address. All information in the translation-
look aside buffer (TLB) of this CPU is made
invalid.

After the second operand is fetched, depending
on the model, the prefix value mayor may not be
tested to determine whether the corresponding
block in absolute storage is available before it is
used to replace the contents of the prefix register.

On models which do not test the value, the
instruction is completed after setting the prefix
register. If the address loaded specifies a location
which is not available, the machine subsequently
hangs up when an instruction or interruption
procedure is performed that requires prefixing to be
applied to the storage address.

On models which do test the value, some or all
of the necessary checks are performed to ensure
that the entire 4K-byte block designated by the
prefix address is available. If the storage area is
not available, an addressing exception is
recognized, and the operation is suppressed. The
check to determine that the 4K-byte block is
available may involve accessing the location. This
access is not subject to protection; however, the
access may cause the reference bits to be turned
on.

If the operation is completed, the new prefix is
used for any interruptions following the execution
of the instruction and for the execution of
subsequent instructions. The contents of bit
positions 0-7 and 20-31 of the operand are
ignored.

The TLB appears cleared of its original contents
for all following instructions.

A serialization function is performed. CPU
operation is delayed until all previous accesses by
this CPU to main storage have been completed, as
observed by channels and other CPUs. No
subsequent instructions, operands, or dynamic­
address-translation entries are fetched by this CPU
until the execution of this instruction is completed.

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on protection and
addressing exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Addressing (new prefix area)
Operation (if the multiprocessing feature is not

installed)
Privileged Operation
Specification

SET PSW KEY FROM ADDRESS

[S1

IB20A I

o 16 20 31

The four-bit PSW key, bits 8-11 of the current
PSW, is replaced by bits 24-27 of the second­
operand address.

The second-operand address is not used to
address data; instead, bits 24-27 of the address
form the new FSW key. Bits 8-23 and 28-31 of
the second-operand address are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:
Operation (if the PSW-key-handling feature is not

installed)
Privileged Operation

Programming Notes
1. The format of the SET PSW KEY FROM

ADDRESS instruction permits the program to
set the PSW key either from the general
register designated by the B2 field or from the
D2 field in the instruction itself.

2. When a problem program requests a control
program to access a location specified by the
problem program, the SET PSW KEY FROM
ADDRESS instruction can be used by the
control program to verify that the problem
program is authorized to make this access,
provided the storage location of the control
program is not protected against fetching. The
control program can perform the verification by
replacing the PSW key of the control program
with the problem-program PSW key before
making the access and subsequently restoring
the control-program PSW key to its original
value. Caution must be observed, however, in
handling any resulting protection exceptions
since such exceptions may cause the operation
to be terminated. See the instruction TEST

PROTECTION, and associated programming
notes, for an alternative approach to the testing
of addresses passed by a calling program.

SET STORAGE KEY

108 1

o 8 12 15

The storage key associated with the 2K-byte block
that is addressed by the contents of the general
register designated by the R2 field is replaced by
the contents of the general register designated by
the Rl field.

Bits 8-20 of the register designated by the R2
field designate a block of 2K bytes in real storage.
Bits 0-7 and 21-27 of the register are ignored. Bits
28-31 of the register must be zeros; otherwise, a
specification exception is recognized, and the
operation is suppressed.

The address designating the storage block, being
a real address, is not subject to dynamic address
translation. The reference to the storage key is not
subject to a protection exception.

The new seven-bit storage-key value is obtained
from bit positions 24-30 of the register designated
by the Rl field. The contents of bit positions 0-23
and 31 of the registe: are ignored. When dynamic
address translation is not installed, bits 29 and 30
are ignored.

A serialization function is performed at the
beginning and also at the completion of the
operation.

The CPU operation is delayed until all storage
accesses due to previous instructions by this CPU
have been completed, as observed by channels and
other CPUs. Then the storage key is set. No
subsequent instructions or their operands are
accessed by this CPU until the storage key has
been set, as observed by channels and other CPUs.

Condition Code: The code remains unchanged.

Program Exceptions:
Addressing (operand 2)
Privileged Operation
Specification

Chapter 10. Control Instructions to-II

SET SYSTEM MASK

[51

o 8 16 20 31

Bits 0-7 of the current PSW are replaced by the
byte at the location designated by the second­
operand address.

When the SSM-suppression facility is installed,
the execution of the instruction is subject to the
SSM-suppression bit, bit 1 of control register O.
When the bit is zero, the instruction is executed
normally. When the bit is one and the CPU is in
the supervisor state, a special-operation exception is
recognized, and the operation is suppressed.

The operation is suppressed on protection and
addressing exceptions.

The value to be loaded into the PSW is not
checked for validity before loading. However,
immediately after loading, a specification exception
is recognized, and a program interruption occurs, if
the CPU is in BC mode and the contents of bit
positions 0 and 2-4 of the PSW are not all zeros.
In this case, the instruction is completed, and the
instruction-length code is set to 2. The
specification exception in this case is considered to
be caused as part of the execution of the
instruction.

Bits 8-15 of the instruction are ignored.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 2)
Privileged Operation
Special Operation
Specification

Programming Note
The SSM instruction is frequently used in the BC
mode to disable or enable the CPU for I/O or
external interruptions. Hence, suppressing the
execution of the SSM instruction by means of the
SSM-suppression bit, bit 1 of control register 0,
may be useful when converting a program written
for aBC-mode PSW to operate with an EC-mode
PSW.

10-12 System/370 Principles of Operation

SIGNAL PROCESSOR

[RSl

o 8 12 16 20 31

An eight-bit order code is transmitted to the CPU
designated by the CPU address contained in the
third operand. The result is indicated by the
condition code and may be detailed by status
assembled in the first-operand location.

The second-operand address is not used to
address data; instead, bits 24-31 of the address
contain the eight-bit order code. Bits 8-23 of the
second-operand address are ignored. The order
code specifies the function to be performed by the
addressed CPU. The assignment and definition of
order codes appear in the section "CPU Signaling
and Response" in Chapter 4, "Control."

The 16-bit binary number contained in bit
positions 16-31 of the general register designated
by the R3 field forms the CPU address. The high­
order 16 bits of the register are ignored.

A serialization function is performed at the
beginning and also at the completion of the
operation.

The CPU operation is delayed until all storage
accesses due to previous instructions by this CPU
have been completed, as observed by channels and
other CPUs, and then the signaling occurs. No
subsequent instructions or their operands are
accessed by this CPU until the execution of the
instruction is completed.

When the order code is accepted and no nonzero
status is returned, condition code 0 is set. When
status information is generated by this CPU or
returned by the addressed CPU, the status is placed
in the general register designated by the Rl field,
and condition code 1 is set.

When the access path to the addressed CPU is
busy, or the addressed CPU is operational but in a
state where it cannot respond to the order code,
condition code 2 is set.

When the addressed CPU is not operational
(that is, it is not provided, or it is not configured to
this CPU, or it is in certain customer-engineer test
modes, or its power is off), condition code 3 is set.

A more detailed discussion of the condition-code
settings for SIGNAL PROCESSOR is contained in
the section "CPU Signaling and Response" in
Chapter 4, "Control."

The format of the operands of the SIGNAL
PROCESSOR instruction are illustrated below.

General register R1:

Status

o 31

General register R3:

1////////////////1 CPU Address

o 16

Second-operand address:

1////////////////////////

o 24

Resulting Condition Code:
o Order code accepted
1 Status stored
2 Busy
3 Not operational

Program Exceptions:

Order
Code

31

31

Operation (if the multiprocessing feature is not
installed)

Privileged Operation

Programming Notes
1. To ensure that presently written programs will

be executed properly when new facilities using
additional bits are installed, only zeros should
appear in the unused bit positions of the
second-operand address and in bit positions
0-15 of the register designated by the R3 field.

2. Certain orders are provided with the
expectation that they will be used primarily in
special circumstances. Such orders may be
implemented with the aid of an auxiliary
maintenance or service processor, and, thus, the
execution time may take several seconds.
Unless all of the functions provided by the
order are required, combinations of other
orders, in conjunction with appropriate
programming support, can be expected to
provide a specific function more rapidly. The

SIGP orders emergency signal, external call,
and sense are the only orders which are
intended for frequent use. The following
orders are intended for infrequent use, and the
performance therefore may be much slower
than for the frequently used orders: IML,
restart, start, stop, and all the reset orders.

STORE CLOCK COMPARATOR

[S 1

IB207 1

o 16 20 31

The current value of the clock comparator is stored
at the doubleword location designated by the
second-operand address.

Zeros are provided for the rightmost bit positions
of the clock comparator that are not compared with
the time-of-day clock.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Operation (if the CPU-timer and clock-comparator

feature is not installed)
Privileged Operation
Specification

STORE CONTROL

o 8 12 16 20 31

The set of control registers starting with the control
register designated by the R1 field and ending with
the control register designated by the R3 field is
stored at the locations designated by the second­
operand address.

The storage area where the contents of the
control registers are placed starts at the location
designated by the second-operand address and
continues through as many storage words as the

Chapter 10. Control Instructions 10-13

number of control registers specified. The contents
of the control registers are stored in ascending
order of their addresses, starting with the control
register designated by the Rl field and continuing
up to and including the control register designated
by the R3 field, with control register 0 following
control register 15. The contents of the control
registers remain unchanged.

The information stored for unassigned control­
register positions, or positions associated with a
facility which is not installed, is unpredictable.

The second operand must be designated on a
word boundary; otherwise, a specification exception
is recognized, and the operation is suppressed.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operation
Specification

Programming Note
Although STORE CONTROL may provide zeros in
the bit positions corresponding to the unassigned
register positions, the program should not depend
on such zeros.

STORE CPU ADDRESS

'8212'

o 16 20 31

The CPU address by which this CPU is identified
in a multiprocessing system is stored at the
halfword location designated by the second­
operand address.

The operand must be designated on a halfword
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Operation (if the multiprocessing feature is not

installed)
Privileged Operation
Specification

10-14 System/370 Principles of Operation

STORE CPU ID

STIDP [S]

'B202'

o 16 20 31

Information identifying the CPU is stored at the
double word location designated by the second­
operand address.

o

The format of the information is as follows:

Version
Code

I
32

CPU Identification
Number

8

Model
Number

48

31

Maximum MCEl
length

63

Bit positions 0-7 contain the version code, which
is model-dependent information, not otherwise
easily obtained, that is normally of importance only
in model-dependent recovery or diagnostic
programs.

Bit positions 8-31 contain the CPU identification
number, consisting of six digits: a high-order zero
digit and five digits selected from the physical serial
number stamped on the CPU, or six digits selected
from the serial number. The contents of the CPU
identification-number field, in conjunction with the
model number, permit unique identification of the
CPU.

Bit positions 32-47 contain the model number,
consisting of four digits: high-order zero digits, if
necessary, followed by the digits of the System/370
model number. For example, a Model 145 or
Model 158 system would store "0145" or "0158,"
respectively.

Bit positions 48-63 contain a 16-bit binary value
indicating the length in bytes of the longest
machine-check extended logout (MCEL) that can
be stored by the CPU.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Privileged Operatiori
Specification

Programming Notes
1. The program should allow for the possibility

that the CPU identification number may
contain the digits A-F as well as the digits 0-9.

2. The principal uses of the information stored by
the instruction STORE CPU ID are the
following:
a. The CPU identification number, combined

with the model number, provides a unique
CPU identification that can be used in
associating results with an individual
system, particularly in regard to functional
differences, performance differences, and
error handling.

b. The model number, in conjunction with the
version code, can be used by model­
independent programs in determining which
model-dependent recovery programs should
be called.

c. The MCEL length can be used by model­
independent programs to allocate main
storage for the MCEL area.

STORE CPU TIMER

[S 1

'B209'

o 16 20 31

The current value of the CPU timer is stored at the
doubleword location designated by the second­
operand address.

Zeros are provided for the rightmost bit positions
that are not updated by the CPU timer.

The operand must be designated on a
doubleword boundary; otherwise, a specification
exception is recognized, and the operation is
suppressed. The operation is suppressed on
addressing and protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Operation (if the CPU-timer and clock-comparator

feature is not installed)
Privileged Operation
Specification

STORE PREFIX

'B211'

o 16 20 31

The contents of the prefix register are stored at the
word location designated by the second-operand
address. Zeros are provided for bit positions 0-7
and 20-31.

The operand must be designated on a word
boundary; otherwise, a specification exception is
recognized, and the operation is suppressed. The
operation is suppressed on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 2)
Operation (if the multiprocessing feature is not

installed)
Privileged Operation
Specification

STORE THEN AND SYSTEM MASK

STNSM D1{B 1>,1 2 [51]

'AC'

o 8 16 20 31

Bits 0-7 of the current PSW are stored at the first­
operand location. Then the contents of bit
positions 0-7 of the current PSW are replaced by
the logical AND of their original contents and the
second operand.

The operation is suppressed on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Chapter 10. Control Instructions 10-15

Program Exceptions:
Access (store, operand 1)
Operation (if the translation feature is not

installed)
Privileged Operation

Programming Note
The STORE THEN AND SYSTEM MASK
instruction permits the program to set selected bits
in the system mask to zeros while retaining the
original contents for later restoration. For
example, it may be necessary that a program, which
has no record of the present status, disable
program-event recording for a few instructions.

STORE THEN OR SYSTEM MASK

STOSM 0,(B,),1 2 [51]

'AO'

o 8 16 20 3'

Bits 0-7 of the current PSW are stored at the first­
operand location. Then the contents of bit
positions 0-7 of the current PSW are replaced by
the logical OR of their original contents and the
second operand.

The value to be loaded into the PSW is not
checked for validity before loading. However,
immediately after loading, a specification exception
is recognized, and a program interruption occurs, if
the CPU is in the EC mode and the contents of bit
positions 0 and 2-4 of the PSW are not all zeros.
In this case, the instruction is completed, and the
instruction-length code is set to 2. The
specification exception in this case is considered to
be caused as part of the execution of the
instruction.

The operation is suppresseu on addressing and
protection exceptions.

Condition Code: The code remains unchanged.

Program Exceptions:
Access (store, operand 1)
Operation (if the translation feature is not

installed)
Privileged Operation
Specification

Programming Note
The STORE THEN OR SYSTEM MASK
instruction permits the program to set selected bits

10-16 System/370 Principles of Operation

in the system mask to ones while retaining the
original contents for later restoration. For
example, the program may enable the CPU for I/O
interruptions without having available the current
status of the external-mask bit.

TEST PROTECTION

TPROT [SSE]

'----_' E_50_' _' _....I....I _B 1----,--1 _0 ;---r-I -B2-1"--0~J
o 16 20 32 36 47

The location specified by the first-operand address
is tested for protection exceptions using the access
key specified in bits 24-27 of the second-operand
address.

The second-operand address is not used to
address data; instead, bits 24-27 of the address
form the access key to be used in testing. Bits 8-23
and 28-31 of the second-operand address are
ignored.

The first-operand address is a logical address
and thus is subject to translation when DAT is on.
When DA T is on and the first-operand address
cannot be translated because of a situation that
would normally cause a page-translation or
segment-translation exception, the instruction is
completed by setting condition code 3.

When translation of the first-operand address
can be completed, or when DAT is off, the storage
key associated with the first-operand address is
tested against the access key specified in bits 24-27
of the second-operand address, and the condition
code is set to indicate whether store and fetch
accesses are permitted, taking into consideration all
applicable protection mechanisms. Thus, if bit 3 of
control register 0 is one, indicating that low-address
protection is enabled, and if the first-operand
address is less than 512, then a store access is not
permitted.

The contents of storage, including the change
bit, are not affected. Depending on the model, the
reference bit associated with the first-operand
address may be set to one, even for the case in
which the location is protected against fetching.

When DA T is on, an addressing exception is
recognized when the address of the segment-table
entry, the page-table entry, or the operand real
address after translation designates a location
outside the available storage of the system. Also,
when DAT is on, a translation-specification
exception is recognized when the segment-table

entry or page-table entry has a format error. When
DAT is off, only the addressing exception due to
the operand real address applies. For all of these
cases, the operation is suppressed.

Resulting Condition Code:
o Both fetching and storing are permitted
1 Fetching is permitted, but storing is not
2 Neither fetching nor storing are permitted
3 Translation not available

Program Exceptions:
Addressing (operand 1)
Operation (if the extended facility is not installed)
Privileged Operation
Translation Specification

Programming Notes
1. The instruction TPROT permits a program to

check the validity of an address passed from a
calling program without incurring program
exceptions. The instruction sets a condition
code to indicate whether fetching or storing is
permitted at the location specified by the first­
operand address of the instruction. The
instruction takes into consideration both
protection mechanisms in the machine: key­
controlled and low-address protection.
Additionally, since segment translation and
page translation may be a substitute for a
protection violation, these exceptions are used
to set the condition code rather than cause an
interruption.

2. See the programming notes under SET PSW
KEY FROM ADDRESS for more details and
for an alternative approach to testing validity
of addresses passed by a calling program. The
approach using TEST PROTECTION has the
advantage of a test which does not result in
exceptions; however, the test and use are
separated in time and may not be accurate if
the possibility exists that the control program
can change the storage key of the location in
question.

3. In the handling of dynamic address translation,
TEST PROTECTION is similar to LOAD
REAL ADDRESS in that the instructions do
not cause page-translation and segment­
translation exceptions. Instead, these situations
are indicated by means of a condition-code
setting. Situations which result in condition
codes 1, 2, and 3 for LRA result in condition
code 3 for TPROT. However, the instructions
differ in several respects. TPROT has a logical
address and thus is not subject to translation

when DAT is off. LRA has a virtual address
which is always translated. TPROT may use
the TLB for translation of the address, whereas
LRA does not use the TLB.

When DA T is off for LRA, the translation
specification for an invalid value of bits 8-12 of
control register 0 occurs after instruction
fetching as part of the execution portion of the
instruction. This situation cannot occur for
TPROT since the operand address is a logical
address and does not examine control register 0
when DAT is off. When DAT is on, the
exception would be recognized during
instruction fetch. Since the instruction-fetch
portion of an instruction is common for all
instructions, access exceptions associated with
instruction fetching are not described in the
individual instruction definition.

WRITE DIRECT

WRD [S IJ

'84'

o 8 16 20 31

The byte at the location designated by the first­
operand address is made available as a set of
direct-out static signals. Eight instruction bits are
made available as signal-out timing signals.

When the extended facility is not installed, the
first-operand address is a logical address and
subject to normal access exceptions. When the
extended facility is installed, the first-operand
address is a real address and therefore not subject
to translation; only addressing and protection
exceptions apply.

The eight data bits of the byte fetched from the
real storage location specified by the first-operand
address are presented on a set of eight direct-out
lines as static signals. These signals remain until
the next WRITE DIRECT is executed. No
checking bits are presented with the eight data bits.

The contents of the 12 field are made available
simultaneously on a set of eight signal-out lines as
O.S-microsecond to 1.0-microsecond timing signals.
On a ninth line (write out), a O.S-microsecond to
1.0-microsecond timing signal is made available
concurrently with these timing signals. The eight
signal-out lines are also used in READ DIRECT.
No checking bits are made available with the eight
instruction bits.

Chapter 10. Control Instructions 10-17

A serialization function is performed before the
operand is fetched and again after the signals have
been presented. CPU operation is delayed until all
previous accesses by this CPU to main storage have
been completed, as observed by channels and other
CPUs, and then the first operand byte is fetched
and the signals made available. No subsequent
instructions or their operands are fetched by this
CPU until the signals have been made available.

10-18 System/370 Principles of Operation

Condition Code: The code remains unchanged.

Program Exceptions:
Access (fetch, operand 1; access applies only if the

extended facility is not installed)
Addressing (operand 1)
Operation (if the direct-control feature is not

installed)
Privileged Operation
Protection (fetch, operand 1)

Chapter 11. Machine-Check Handling

Contents
Machine-Check Detection 11-2
Correction of Machine Malfunctions 11-2

Error Checking and Correction 11-2

CPU Retry 11-2
Unit Deletion 11-2

Handling of Machine Checks 11-2
Validation 11-3
Invalid CBC in Storage 11-4

Programmed Validation of Storage 11-4

Invalid CBC in Storage Keys 11-4
Invalid CBC in Registers 11-6

Check-Stop State 11-7

Machine-Check Interruption 11-8
Exigent Conditions 11-8

Repressible Conditions 11-8

Interruption Action 11-9

Point of Interruption 11-10
Machine-Cheek-Interruption Code 11-11

Subclass 11-11
System Damage 11-11

Instruction-Processing Damage

System Recovery 11-12
Interval-Timer Damage

Timing-Facility Damage

External Damage 11-12

Degradation 11-12
VVarning 11-13

11-12

11-12

11-11

Time of Interruption Occurrence 11-13

Backed Up 11-13
Delayed 11-13

Synchronous Machine-Check Interruption

Conditions 11-13
Processing Backup 11-13

Processing Damage 11-13
Storage-Error Type 11-13

Storage Error Uncorrected 11-14

Storage Error Corrected 11-14
Storage-Key Error Uncorrected 11-14

Machine-Check Interruption-Code Validity Bits 11-14

The machine-cheek-handling mechanism provides
extensive equipment-malfunction detection to
ensure the integrity of system operation and to
permit automatic recovery from some malfunctions.
Equipment malfunctions and certain external

PSVV-EMVVP Validity 11-14
PSVV Mask and Key Validity 11-14

PSVV Program-Mask and Condition-Code

Validity 11-15
PSVV-Instruction-Address Validity

Failing-Storage-Address Validity
Region-Code Validity 11-15
External-Damage-Code Validity

11-15

11-15

11-15

Floating-Point-Register Validity 11-15

General-Register Validity 11-15
Control-Register Validity 11-15

Logout Validity 11-15

Storage Logical Validity 11-15
CPU-Timer Validity 11-15

Clock-Comparator Validity 11-15

Machine-Check Extended-Logout Length 11-16

Machine-Check Extended Interruption Information 11-16

Register-Save Areas 11-16

External-Damage Code 11-16
Failing-Storage Address 11-18

Region Code 11-18

Machine-Check Masking 11-18
Check-Stop Control 11-19

Recovery-Report Mask 11-19

Degradation-Report Mask 11-19

External-Damage-Report Mask 11-19
VVarning Mask 11-19

Machine-Check Logout 11-19

Logout Controls 11-20
Synchronous Machine-Check Extended-Logout

Control 11-20

Input/ Output Extended-Logout Control 11-20
Asynchronous Machine-Check Extended-Logout

Control 11-20

Asynchronous Fixed-Logout Control 11-20
Machine-Check Extended-Logout Address 11-20

Summary of Machine-Check Masking and Logout 11-21

disturbances are reported by means of a machine­
check interruption to assist in program-damage
assessment and recovery. The interruption supplies
the program with information about the extent of
the damage and the location and nature of the

Chapter 11. Machine-Check Handling 11-1

cause. Equipment malfunctions, errors, and other
situations which can cause machine-check
interruptions are referred to as machine checks.

Machine-Check Detection
Machine-check-detection mechanisms may take
many forms, especially in control functions for
arithmetic and logical processing, addressing,
sequencing, and execution. For program­
addressable information, detection is normally
accomplished by encoding redundancy into the
information in such a manner that most failures in
the retention or transmission of the information
result in an invalid code. The encoding normally
takes the form of one or more redundant bits,
called check bits, appended to a group of data bits.
Such a group of data bits and the associated check
bits are called a checking block. The size of the
checking block depends on the model.

The inclusion of a single check bit in the
checking block allows the detection of any single­
bit failure within the checking block. In this
arrangement, the check bit is sometimes referred to
as a "parity bit." In other arrangements, a group
of check bits is included to permit detection of
multiple errors, to permit error correction, or both.

For checking purposes, the entire contents of a
checking block, including the redundancy, is called
a checking-block code (CBC). When a CBC
completely meets the checking requirements (that
is, no failure is detected), it is said to be valid.
When both detection and correction are provided
and a CBC is not valid but satisfies the checking
requirements for correction (the failure is
correctable), it is said to be near-valid. When a
CBC does not satisfy the checking requirements
(the failure is uncorrectable), it is said to be
invalid.

Correction of Machine Malfunctions
Three mechanisms may be used to provide recovery
from machine-detected malfunctions: error
checking and correction, CPU retry, and unit
deletion.

Machine failures which are corrected successfully
mayor may not be reported as machine-check
interruptions. If reported, they are system-recovery
conditions, which permit the program to note the
cause of CPU delay and to keep a log of such
incidents.

Error Checking and Correction
When sufficient redundancy is included in circuitry
or in a checking block, failures can be corrected.
For example, circuitry can be triplicated, with a

11-2 System/370 Principles of Operation

voting circuit to determine the correct value by
selecting two matching results out of three, thus
correcting a single failure. An arrangement for
correction of failures of one order and for detection
of failures of a higher order is called error checking
and correction (ECC). Commonly, ECC allows
correction of single-bit failures and detection of
double-bit failures.

Depending on the model and the portion of the
machine in which ECC is applied, correction may
be reported as a system-recovery machine-check
condition or no report may be given.

Uncorrected errors in storage and in the storage
key may be reported, along with a failing-storage
address, to indicate where the error occurred.
Depending on the situation, these errors may be
reported along with system recovery, with external
secondary report, or with the damage or backup
condition resulting from the error.

CPU Retry
In models with CPU-retry capability, information
about the state of the machine is saved periodically.
The point in the processing to which this saving of
information pertains is referred to as a checkpoint.
When a malfunction is detected, recovery is
attempted by returning the machine state to that
existing at the latest hardware checkpoint and
proceeding from that point. The interval between
checkpoints is model-dependent. In some cases,
several checkpoints are established within a single
instruction; in others, checkpoints are established
only at the beginning of instructions, or even less
frequently.

Unit Deletion
In some models, malfunctions in certain transparent
units of the system can be circumvented by
discontinuing the use of the unit. Examples of
cases where transparent-unit deletion may be used
include the disabling of all or a portion of a cache
or of a translation-Iookaside buffer (TLB). Unit
deletion may be reported as a degradation
machine-check condition.

Handling of Machine Checks
A machine check is caused by a machine
malfunction and not by data or instructions. This
is ensured during the power-on sequence by
initializing the machine controls to a valid state and
by placing valid CBC in the CPU registers, in the
storage keys, and, if it is volatile, also in main
storage.

Specification of an unavailabltl component, such
as a storage unit, channel, or II 0 device, does not

cause a machine-check indication. Instead, such a
condition is indicated by the appropriate program
or I/O interruption or condition-code setting. In
particular, an attempt to access a storage location
which has been configured out of the system results
in an addressing exception and does not generate a
machine-check condition, even though the storage
location or its associated storage key has invalid
CBC.

A machine check is indicated whenever the
result of an operation could be affected by
information with invalid CBC, or when any other
malfunction makes it impossible to establish reliably
that an operation can be, or has been, performed
correctly. When information with invalid CBC is
fetched but not used, the condition mayor may not
be indicated, and the invalid CBC is preserved.

When a machine malfunction is detected, the
action taken depends on the model, the nature of
the malfunction, and the situation in which the
malfunction occurs. Malfunctions affecting
operator-facility actions may result in machine
checks or may be indicated to the operator.
Malfunctions affecting certain other operations
such as SIGNAL PROCESSOR may be indicated
by means of a condition code or may result in a
machine-check interruption.

A malfunction detected as part of an I/O
operation may cause a machine-check condition, an
I/O-error condition, or both. I/O-error conditions
are indicated by an I/O interruption or by the
appropriate condition-code setting during the
execution of an I/O instruction. When the
machine reports a failing-storage location detected
during an I/ 0 operation, both I/O-error and
machine-check conditions may be presented. The
I/O-error condition is the primary indication to the
program. The machine-check condition is a
secondary indication, which is presented as system
recovery or as an external secondary report,
together with a failing-storage address.

Validation
Machine errors can be generally classified as solid
or intermittent, according to the persistence of the
malfunction. A persistent machine error is said to
be solid. In the case of a register or storage
location, a third type of error must be considered,
called externally generated. An externally
generated error is one where no failure exists in the
register or storage location but invalid CBC has
been introduced into the location from something
external to the location. For example, the value
could be affected by a power transient, or an

incorrect value may have been introduced when the
information was placed in the location.

Invalid CBC is preserved as invalid when
information with invalid CBC is fetched or when
an attempt is made to update only a portion of the
checking block. When an attempt is made to
replace the contents of the entire checking block
and the block contains invalid CBC, it depends on
the operation and the model whether the block
remains with invalid CBC or is replaced. An
operation which replaces the contents of a checking
block with valid CBC, while ignoring the current
contents, is called a validation operation.
Validation is used to introduce a valid CBC into a
register or location which is suffering from an
intermittent or externally generated error.

Validating a checking block does not ensure that
a valid CBC will be observed the next time the
checking block is accessed. If the failure is solid,
validation is effective only if the information
placed in the checking block is such that the failing
bits are set to the value to which they fail. If an
attempt is made to set the bits to the state opposite
to that in which they fail, then the validation will
not be effective. Thus, for a solid failure,
validation is only useful to eliminate the error
condition, even though the underlying failure
remains, thereby reducing the exposure to
additional reports. The locations, however, cannot
be used since invalid CBC will result from attempts
to store other values in the location. For an
intermittent failure, however, validation is useful to
restore a valid CBC such that a subsequent partial
store into the checking block (a store into a
checking block without replacing the entire
checking block) by either the CPU or a channel
will be permitted.

When a checking block consists of multiple bytes
in storage, or multiple bits in CPU registers, the
invalid CBC can be made valid only when all of
the bytes or bits are replaced simultaneously.

For each type of field in the system, certain
instructions are defined to validate the field.
Depending on the model, additional instructions
may also perform validation; or, in some models, a
register is automatically validated as part of the
machine-check-interruption sequence after the
original contents of the register are placed in the
appropriate save area.

When an error occurs in a checking block, the
original information contained in the checking
block should be considered lost even after
validation. Automatic register validation leaves the
contents unpredictable. Programmed and manual

Chapter 11. Machine-Check Handling 11-3

validation·of checking blocks causes the contents to
be changed explicitly.

Programming Note
The machine-check-interruption handler must
assume that the registers require validation. Thus,
each register should be loaded, using an instruction
defined to validate, before the register is used or
stored.

Invalid CBC in Storage
When a checking block contains an invalid CBC
and an attempt is made to store into the block
without replacing the entire block, the data in the
block (including the check bits) is regenerated by
the storage unit, and no new data is entered into
the block. Normally the contents of the block can
only be changed by presenting an entire block of
data to be entered on one storage cycle.

The size of the main-storage checking block
depends on the model. When the main-storage
checking block consists of mUltiple bytes and
contains an invalid CBC, special procedures are
necessary to restore or place new information into
the block. The restoring of a valid CBC in a
storage location is called storage validation.
Validation of storage is provided as a program
function and is also provided with the system-clear
manual operation.

A checking block with invalid CBC is never
validated under programming control unless the
entire contents of the checking block are replaced.
Even when an instruction, or an I/O input
operation, specifies that the entire contents of a
checking block are to be replaced, validation may
or may not occur, depending on the operation and
the model. Storage validation during the IPL input
operations follows the same rules as for normal
input operations.

Programmed Validation of Storage
Execution of the instruction MOVE (MVC) or
MOVE LONG (MVCL) validates the main-storage

11-4 System/370 Principles of Operation

area containing the first operand when the
following conditions are satisfied:
• The first-operand field and second-operand field

participating in the operation do not overlap.
• The first-operand field starts on a boundary of a

checking block and is an integral number of
checking blocks in length.

•. For MVCL, the second-operand field, if nonzero
in length, starts on a boundary of a checking
block and, if it is shorter than the first-operand
field, is an integral number of checking blocks in
length.

An interruption or stopping of the CPU during
execution of MVCL does not affect the validation
function performed.

Invalid CBC in Storage Keys
Depending on the model, each storage key may be
contained in a single checking block, or the
access-control and fetch-protection bits and the
reference and change bits may be in separate
checking blocks.

The figure "Invalid CBC in Storage Keys"
describes the action taken when the storage key has
invalid CBC. The figure indicates the action taken
for the case when the access-control and fetch­
protection bits are in one checking block and the
reference and change bits are in a separate
checking block. In machines where both fields are
included in a single checking block, the action
taken is the combination of the actions for each
field in error, except that completion is permitted
only if an error in all affected fields permits
completion. References to main storage to which
protection does not apply are treated as if an access
key of zero is used for the reference. This includes
such references as channel references during the
initial program load procedure and implicit
references, such as interruption action and DAT­
table accesses.

•

Action Taken on Invalid CBC

Type of Reference

Set storage key

Insert storage key

Reset reference bit

For Access-Control and
Fetch-Protection Bits

Complete; validate.

po; preserve.

PO or complete;
preserve.

CPU prefetch (informa- CPF; preserve.
tion not used)

I/O prefetch (informa- IPF; preserve.
tion not used)

Fetch, nonzero access MC; preserve.
key

Store. nonzero access MC'; preserve.
key

Fetc2' zero access
key

Stor~, zero access
key

Explanation:

MC or complete;
preserve.

MC or complete;
preserve.

For Reference and
Change Bits

Complete; validate.

po in EC mode, PO or
complete in BC mode;
preserve.

po; preserve.

CPF; preserve.

IPF; preserve.

MC or complete;
preserve.

MC or complete;
preserve or correct 3

MC or complete;
preserve.

MC or complete;
preserve or correct 3

Complete The condition does not cause termination of the execution
of the instruction and, unless an unrelated condition pro­
hibits it, the execution of the instruction is completed.
ignoring the error condition. No machine-cheek-damage
conditions are generated, but a system-recovery condition
may be generated.

CPF Invalid CBC in the storage key for a CPU prefetch which is
unused may give rise to any of the following:
• Completed operation; no error reported.
• Completed operation; system recovery reported with

storage-key error uncorrected and a failing-storage
address.

• Damage (either with or without backup); storage-key
error uncorrected and a fail ing-storage address.

IPF Inval id CBC in the storage key for an I/O prefetch which
is unused may result in any of the following:
• Completed operation; no error reported.
• Completed operation; system recovery reported with

storage-key error uncorrected and a failing-storage
address.

• I/O-error condition; no machine-check condition.
• External damage; storage-key error uncorrected and a

failing-storage address. or no storage-key error un­
corrected; I/O-error condition or no I/O-error condi­
tion.

• External damage; valid external-damage code, external
secondary report, storage-key error uncorrected, and
a failing-storage address; I/O-error condition or no
I/O-error condition.

PO Instruction-processing-damage; storage-key error uncor­
rected and a failing-storage address, or no storage-key
error uncorrected.

Invalid CDC in Storage Keys (Part 1 of 2)

Chapter 11. Machine-Check Handling 11-5

Explanation (Continued):

MC Same as PO for CPU references, but an I/O reference may
result in the following combinations of I/O-error condi­
tion and machine-check interruption.
• I/O-error condition and no machine-check interruption
• System recovery, with storage-key error and a failing-

storage-address or without storage~key error and an
I/O-error condition '

•

•

External damage, with storage-key error uncorrected
and a failing-storage address or without storage-key
error, and with or without an I/O-error condition.
External damage, with a valid external-damage code,
external secondary report, and a failing-storage ad­
dress, and an I/O-error condition.

Validate The entire key is set to the new value with valid CBC.

Preserve The contents of the entire checking block having invalid
CBC are left unchanged.

Correct The reference and change bits are set to ones with valid
CBC.

2

The contents of the main-storage location are not changed.

The action shown for an access key of zero is also appli­
cable to references to which protection does not apply.

3 The contents of the reference and change bits are pre­
served if the "MC" action is taken and are converted to
ones if the "complete" action is taken.

Invalid CDC in Storage Keys (Part 2 of 2)

Invalid CBC in Registers
When invalid CBC is detected in a CPU register, a
machine-check condition may be recognized. CPU
registers include the general, floating-point, and
control registers, the current PSW, the prefix
register, the time-of-day clock, the CPU timer, and
the clock comparator.

When a machine-check interruption occurs,
whether or not it is due to invalid CBC in a CPU
register, the following actions affecting the CPU
registers, other than the prefix register and the
time-of-day-clock, are taken as part of the
interruption.
1. The contents of the registers are saved in

assigned storage locations. Any register which
is in error is identified by a corresponding
validity bit of zero in the machine-check­
interruption code. Malfunctions detected
during register saving do not result in additional
machine-check-interruption conditions; instead,
the correctness of all the information stored is
indicated by the appropriate setting of the
validity bits.

2. On some models, registers with invalid CBC are
then validated, their actual contents being
unpredictable. On other models, programmed
validation is required.

11-6 System/370 Principles of Operation

The prefix register and the time-of-day clock are
not stored during a machine-check interruption,
have no corresponding validity bit, and are not
validated.

On those models in which registers are not
automatically validated as part of the machine­
check interruption, a register with invalid CBC will
not cause a machine-check-interruption condition
unless the contents of the register are actually used.
In these models, each register may consist of one or
more checking blocks, but mUltiple registers are not
included in a single checking block. When only a
portion of a register is accessed, invalid CBC in the
unused portion of the same register may cause a
machine-check-interruption condition. For
example, invalid CBC in the right half of a long
operand of a floating-point register may cause a
machine-check-interruption condition if a LOAD
(LE) operation attempts to replace the left half, or
short form, of the register.

Invalid CBC associated with the check-stop­
control bit (control register 14, bit 0) and with the
asynchronous fixed-logout-control bit (control
register 14, bit 9) will cause the CPU either to
enter the check-stop state immediately or to assume
that bits 0 and 9 have their initialized values of one
and zero, respectively.

•

Invalid CBC associated with the prefix register
cannot safely be reported by the machine-check
interruption, since the interruption itself requires
that the prefix value be applied to convert real
addresses to the corresponding absolute addresses.
Invalid CBC in the prefix register causes the CPU
to enter the check-stop state immediately when the
check-stop-control bit (control register 14, bit 0) is
one. When the check-stop-control bit is zero the
machine is permitted to ignore even the most severe
errors; thus, invalid CBC in the prefix register may
be ignored or may cause the CPU to enter the
check-stop state.

On those models which do not validate registers
during a machine-check interruption, the following
instructions will cause validation of a register,
provided the information in the register is not used
before the register is validated. Other instructions,
although they replace the entire contents of a
register, do not necessarily cause validation.

General registers are validated by BRANCH
AND LINK (BAL, BALR), LOAD (LR), and
LOAD ADDRESS (LA). LOAD (L) and LOAD
MUL TIPLE (LM) validate if the operand is on a
word boundary, and LOAD HALFWORD (LH)
validates if the operand is on a halfword boundary.

Floating-point registers are validated by LOAD
(LDR) and, if the operand is on a double word
boundary, by LOAD (LD).

Control registers may be validated either singly
or in groups by using the instruction LOAD
CONTROL (LCTL).

The CPU timer and clock comparator are
validated by SET CPU TIMER (SPT) and SET
CLOCK COMPARATOR (SCKC), respectively.

The time-of-day clock is validated by SET
CLOCK (SCK) if the TOD-clock control is set to
enable-set.

Programming Note
Depending on the register, and the model, the
contents of a register may be validated by the
machine-check interruption or the model may
require that a program issue a validating instruction
after the machine-check interruption has occurred.
In the case of the CPU timer, depending on the
model, both the machine-check interruption and
validating instructions may be required to restore
the CPU timer to full working order.

Check-Stop State
In certain situations it is impossible or undesirable
to continue operation when a machine error occurs.
In these cases, the CPU may enter the check-stop
state, which is indicated by the check-stop

indicator.
In general, the CPU may enter the check-stop

state whenever an uncorrectable error or other
malfunction occurs and the machine is unable to
recognize a specific machine-check-interruption
condition.

The CPU always enters the check-stop state if
the check-stop-control bit, bit 0 of control register
14, is one and if any of the following conditions
exists:
• PSW bit 13 is zero and an exigent machine­

check condition is generated.
• During the execution of an interruption due to

one exigent machine-check condition, another
exigent machine-check condition is detected.

• During a machine-check interruption, the
machine-check-interruption code cannot be
stored successfully or the new PSW be fetched
successfully.

• Invalid CBC is detected in the prefix register.
• A malfunction in the receiving CPU, which is

detected after accepting the order, prevents the
successful completion of a SIGNAL
PROCESSOR order and the order was a reset,
or the receiving CPU cannot determine what the
order was. The receiving CPU enters the
check-stop state.

If the check-stop-control bit is zero when one of
these conditions occurs, the CPU mayor may not
enter the check-stop state, depending on the model.
There may be many other conditions for particular
models when an error may cause check stop.

When the CPU is in the check-stop state,
instructions and interruptions are not executed, the
interval timer is not updated, and channel
operations may be stopped. In systems with
channel-set switching, I/O operations are normally
not affected. The time-of-day clock is normally
not affected by the check-stop state. The CPU
timer mayor may not run in the check-stop state,
depending on the error and the model. The start
key and stop key are not effective in this state.

The CPU may be removed from the check-stop
state by CPU reset.

In a multiprocessing configuration, a CPU
entering the check-stop state generates a request
for a malfunction-alert external interruption to all
CPUs in the configuration. Except for the
reception of a malfunction alert, other CPUs and
I/O operations are not normally affected by the
check-stop state in a CPU. However, depending
on the nature of the condition causing the check
stop, other CPUs may also be delayed or stopped,

Chapter 11. Machine-Check Handling 11-7

and I/O activity for channels connected to other
CPUs may be affected.

Programming Note
The program should avoid setting the check-stop
control, bit 0 of control register 14, to zero, since
the machine may continue to operate rather than
enter the check-stop state when extremely serious
conditions, such as an error in the prefix register,
occur.

Machine-Check Interruption
A request for a machine-check interruption, which
is made pending as the result of a machine check, is
called a machine-check-interruption condition.
There are two major types of machine-check­
interruption conditions: exigent conditions and
repressible conditions.

Exigent Conditions
Exigent machine-check-interruption conditions are
those in which damage has or would have occurred
such that the current instruction or interruption
sequence cannot safely continue. Exigent
conditions are identified in the machine-check­
interruption code by two bits: instruction­
processing damage and system damage. In addition
to indicating specific exigent conditions, the
system-damage bit is used to report any
malfunction or error which cannot be isolated to a
less severe report.

Exigent conditions for instruction sequences are
classified as two types, nullifying exigent conditions
and terminating exigent conditions, according to
whether the instruction affected is nullified or
terminated. The terms "nullification" and
"termination" have the same meaning as that used
. Ch 6 "I t . " t th t 1D apter, n erruptlons, excep a more
than one instruction may be involved. Thus
nullification indicates that the CPU has returned to
the beginning of a unit of operation prior to the
error. Termination means that the results of one or
more instructions may have unpredictable values.

Repressible Conditions
Repressible machine-check-interruption conditions
are those in which the results of the instruction­
processing sequence have not been affected.
Repressible conditions can be delayed, until the
completion of the current instruction or even
longer, without affecting the integrity of CPU
operation. Repressible conditions are of three
classes: recovery, alert, and repressible damage.
Each class has one or more subclasses.

11-8 System/370 Principles of Operation

A malfunction in the CPU, storage, channel, or
operator facilities which has been successfully
corrected or circumvented internally without logical
damage is called a recovery condition. Depending
on the model and the type of malfunction, some or
all recovery conditions may be discarded and not
reported. Recovery conditions that are reported
are grouped in one subclass, system recovery.

A machine-check-interruption condition not
directly related to a machine malfunction is called
an alert condition. The alert conditions are
grouped in two subclasses: degradation and
warning.

A malfunction resulting in an incorrect state of a
portion of the system not directly affecting
sequential CPU operation is called a repressible­
damage condition. Repressible-damage conditions
are divided into three subclasses, according to the
function affected: timing-facility damage, interval­
timer damage, and external damage.

Programming Notes
1. Even though repressible conditions are usually

reported only at normal points of interruption,
they may also be reported with exigent
machine-check conditions. Thus, if an exigent
machine-check condition causes an instruction
to be abnormally terminated and a machine­
check interruption occurs to report the exigent
condition, any pending repressible conditions
may also be reported. The meaningfulness of
the validity bits depends on what exigent
condition is reported.

2. Classification of a damage condition as
repressible does not imply that the damage is
necessarily less severe than damage classified as
an exigent condition. The distinction is
whether action must be taken as soon as the
damage is detected (exigent) or whether the
CPU can continue processing (repressible).
For a repressible condition, the current
instruction can be completed before taking the
machine-check interruption if the CPU is
enabled; if the CPU is disabled for machine
checks, the condition can safely be kept
pending until the CPU is again enabled for
machine checks.

For example, the CPU may be disabled for
machine-check interruptions because it is
handling an earlier instruction-processing­
damage interruption. If, during that time, an
I/O operation encounters a storage error, that
condition can be kept pending because it is not
expected to interfere with the current
machine-check processing. If, however, the

CPU also makes a reference to the area of
storage containing the error before re-enabling
machine-check interruptions, another
instruction-processing-damage condition is
created, which is treated as an exigent
condition and causes the CPU to enter the
check-stop state, if the check-stop-control bit is
set to one.

Interruption Action
A machine-check interruption causes the following
actions to be taken. The PSW reflecting the point
of interruption is stored as the machine-check old
PSW at location 48. The contents of other
registers are stored in register-save areas at
locations 216-231 and 352-511. After the
contents of the registers are stored in register-save
areas, depending on the model, the registers may be
validated with the contents being unpredictable. A
failing-storage address, if any, is stored at location
248, an external-damage code may be stored at
location 244, and a region code may be stored at
location 252. Then a machine-cheek-interruption
code (MCIC) of eight bytes is placed at location
232. The new PSW is fetched from location 112.
Additionally, sometime before the storing of the
MCIC, one or more machine-check logouts may
have occurred. The machine-generated addresses
to access the old and new PSW, the interruption
code and extended interruption information, and
the fixed-logout area are all real addresses. The
machine-check extended-logout address is also a
real address.

The fields accessed during the machine-check
interruption are summarized in the figure
"Machine-Check -Interruption Locations. "

(Fetched)
Starting length

Information Stored Location in Bytes

Old PSW 48 8
New PSW (fetched) 112 8
Machine-cheek-interruption code 232 8
Failing-storage address 248 4
Register-save areas

CPU timer 216 8
Clock comparator 224 8
Floating-point registers 0, 2, 4, 6 352 32
General registers 0-15 384 64
Control registers 0-15 448 64

Extended interruption information
External-damage code 244 4
Region code 252 4

logout areas
Fixed logout 256 96
Machine-check extended logout (MCEl) Note I Note 2

Notes:
!.The starting location of the MCEl is determined by the

MCEl address in control register 15.
2. The length of the MCEl is model-dependent.

Machine-Check-Interruption Locations

If the machine-check-interruption code cannot
be stored successfully or the new PSW cannot be
fetched successfully, the CPU enters the check-stop
state when the check-stop-control bit is one.

A repressible machine-check condition can
initiate a machine-check interruption only if both
PSW bit 13 is one and the associated subclass mask
bit in control register 14 is also one. When it
occurs, the interruption does not terminate the
execution of the current instruction; the
interruption is taken at a normal point of
interruption, and no program or supervisor-call
interruptions are eliminated. If the machine check
occurs during the execution of a machine function,
such as a CPU-timer update, the machine-check
interruption takes place after the machine function
has been completed.

When the CPU is disabled for a particular
repressible machine-check condition, the condition
remains pending. Depending on the model and the
condition, multiple repressible conditions may be
held pending for a particular subclass, or only one
condition may be held pending for a particular
subclass, regardless of the number of conditions
that may have been detected for that subclass.
When multiple external-damage conditions occur,
each condition is retained.

When a repressible machine-check interruption
occurs because the interruption condition is in a
subclass for which the CPU is enabled, pending
conditions in other subclasses may also be indicated
in the same interruption code, even though the
CPU is disabled for those subclasses. All indicated
conditions are then cleared.

If a machine check which is to be reported as a
system-recovery condition is detected during the
execution of the interruption procedure due to a
previous machine-check condition, the system­
recovery condition may be combined with the other
conditions, discarded, or held pending.

An exigent machine-check condition can cause a
machine-check interruption only when PSW bit 13
is one. When a nullifying exigent condition causes
a machine-check interruption, the interruption is
taken at a normal point of interruption. When a
terminating exigent condition causes a machine­
check interruption, the interruption terminates the
execution of the current instruction and may
eliminate the program and supervisor-call
interruptions, if any, that would have occurred if
execution had continued. Proper execution of the
interruption steps, including the storing of the old
PSW and other information, depends on the nature
of the malfunction. When an exigent machine-

Chapter 11. Machine-Check Handling 11-9

check condition occurs during the execution of a
machine function, such as a CPU-timer update, the
sequence is not necessarily completed.

When PSW bit 13 is zero and an exigent
machine-check condition is generated, subsequent
action depends on the state of the check-stop­
control bit, bit 0 of control register 14. When the
check-stop-control bit is zero, the machine-check
condition is held pending, and an attempt is made
to complete the execution of the current instruction
and to proceed with the next sequential instruction.
When the check-stop-control bit is one, processing
stops immediately, and the CPU enters the check­
stop state. Depending on the model and the
severity of the error, the CPU may enter the
check-stop state even when the check-stop-control
bit is zero.

Similarly, if, during the execution of an
interruption due to one exigent machine-check
condition, another exigent machine check is
detected, the subsequent action depends on the
state of the check-stop-control bit. If the check­
stop-control bit is one, the CPU enters the check­
stop state; if the bit is zero, an attempt is made to
proceed with the condition held pending for
subsequent interruption. If an exigent machine
check is detected during an interruption due to a
repressible machine-check condition, system
damage is reported.

Exigent machine-check conditions held pending
while the check-stop-control bit is zero remain
pending and do not cause the CPU to enter the
check-stop state if the check-stop-control bit is
subsequently set to one.

Machine-cheek-interruption conditions are
handled in the same manner regardless of whether
the wait-state bit in the PSW is one or zero: a
machine-check condition causes an interruption if
the CPU is enabled for that condition.

Machine checks which occur while the rate
control is set to instruction step are handled in the
same manner as when the control is set to process;
that is, recovery mechanisms are active, and logout
and machine-check interruptions occur when
allowed. Machine checks occurring during a
manual operation may be indicated to the operator,
may generate a system-recovery condition, may be
reported as an external secondary report, may
result in system damage, or may cause a check stop,
depending on the model.

Every reasonable attempt is made to limit the
side effects of any machine check and the
associated interruption. Normally, interruptions, as
well as the progress of I/O operations, remain
unaffected. The malfunction, however, may affect

11-10 System/370 Principles of Operation

these activities, and, if the currently active PSW
has bit 13 set to one, the machine-check
interruption will indicate the total extent of the
damage caused, and not just the damage which
originated the condition.

Point 0/ Interruption
The point in the processing which is indicated by
the interruption and used as a reference point by
the machine to determine and indicate the validity
of the status stored is referred to as the point of
interruption.

Because of the checkpoint capability in models
with CPU retry, the interruption resulting from an
exigent machine-check-interruption condition may
indicate a point in the CPU processing sequence
which is logically prior to the error. Additionally,
the model may have some choice as to which point
in the CPU processing sequence the interruption is
indicated, and, in some cases, the status which can
be indicated as valid depends on the point chosen.

Only certain points in the processing may be
used as a point of interruption. For repressible
machine-check interruptions, the point of
interruption must be after one unit of operation is
completed and any associated program or
supervisor-call interruption is taken, and before the
next unit of operation is begun.

Exigent machine-check conditions are those in
which damage has or would have occurred to the
instruction stream. Thus, the damage can normally
be associated with a point part way though an
instruction and this point is called the point of
damage. In some cases there may be one or more
instructions separating the point of damage and the
point of interruption, and the processing associated
with one or more instructions may be damaged.
When the point of interruption is a point prior to
the point of damage due to a nullifiable exigent
machine-check condition, the point of interruption
can be only at the same points as for repressible
machine-check conditions.

Exigent machine-check conditions which are
delayed (disallowed and presented later when
allowed) can be presented only at the same points
of interruption as repressible machine-check
conditions. When a terminating exigent machine­
check condition is not delayed, the point of
interruption may also be after the unit of operation
is completed but before any associated program or
supervisor-call interruption occurs. In this case, a
valid PSW instruction address is defined as that
which would have been stored in the old PSW for
the program or supervisor-call interruption. Since
the operation has been terminated, the values in the

result fields, other than the instruction address, are
unpredictable. Thus the validity bits associated
with fields which are due to be changed by the
instruction stream are meaningless when a
terminating exigent machine-check condition is
reported.

When the point of interruption and the point of
damage due to an exigent machine-check condition
are separated by a LOAD PSW or an interruption,
the damage has not been isolated to a particular
program, and system damage is indicated.

Programming Note
When an exigent machine-check-interruption
condition occurs, the point of interruption which is
chosen affects the amount of damage which must
be indicated. An attempt is made, when possible,
to choose a point of interruption which permits the
minimum indication of damage. In general, the
preference is the interruption point immediately
preceding the error.

When all the status information stored as a result
of an exigent machine-cheek-interruption condition
does not reflect the same point, an attempt is made
when possible to choose the point of interruption so
that the instruction address which is stored in the
machine-check old PSW is valid.

Machine-Cheek-Interruption Code
On all machine-check interruptions, a machine­
check-interruption code (MCIC) is stored at the
doubleword starting at location 232 and has the
format shown in the figure "Machine-Check
Interruption-Code Format."

Bits in the MCIC which are not assigned, or not
implemented by a particular model, are stored as
zeros.

Programming Note
The program should not depend on unassigned bits
in the machine-check-interruption code being zeros,
so as to ensure that existing programs run if and
when new facilities using these bits are defined.

Subclass
Bits 0-5, 7, and 8 are the subclass bits which
identify the type of machine-check condition
causing the interruption. At least one of the
subclass bits is stored as a one. When multiple
errors have occurred, several of the defined bits
may be set to ones.

o 20

I 0 0 0 -~-~-o 0 0 0 0 0 0 0 0 I i ~ I HCEl length

32 46 48 63

!li.!.2. Name

o ;ystem damage (SO)
1 Instruction-processing damage (PO)
2 System recovery (SR)
3 Interval-timer damage (TO)
4 Timing-faci 1 ity damage (CD)
5 External damage (ED)
7 Degradation (DG)
8 Warning (W)
14 Backed up (6)
15 Delayed (D)
16 Storage error uncorrected (SE)
17 Storage error corrected (SC)
18 Storage-key error uncorrected (KE)
20 PSW-EMWP validity (WP)
21 PSW mask and key val idlty (HS)
22 PSW program-mask and condition-code val idity (PM)
23 PSW-instruction-address val idity (IA)
24 Fai 1 ing-storage-address val idity (FA)
25 Region-code val idlty (RC)

126 External-damage-code val idity (Ee)
27 Floating-paint-register validity (FP)
28 General-register val idity (GR)
29 Control-register val idlty (CR)
30 logout validity (lG)
31 Storage logical validity (ST)
46 CPU-timer val idity (cT)
47 Clock-comparator validity (CC)
48-63 Mach I ne-check-extended-I ogout (HCEl) length

Note: All other bits of the MelC are unassiqned and stored as zeros.

Machine-Check Interruption-Code Format

System Damage
Bit 0 (SD), when one, indicates that damage has
occurred which cannot be isolated to one or more
of the less severe machine-check subclasses. When
system damage is indicated, the remaining bits in
the machine-check-interruption code are not
meaningful, and information stored in the register­
save areas, machine-check extended-interruption
fields, and failing-storage-address field is not
meaningful. System damage is a terminating
exigent condition.

Instruction-Processing Damage
Bit 1 (PD), when one, indicates that damage has
occurred to the instruction processing of the CPU.

The exact meaning of bit 1 depends on the
setting of the backed-up bit, bit 14. When the
backed-up bit is one, the condition is called
processing backup. When the backed-up bit is
zero, the condition is called processing damage.
These two conditions are described in the section
"Synchronous Machine-Check-Interruption
Conditions" in this chapter.

Instruction-processing damage is a nullifying or
terminating exigent condition.

Chapter 11. Machine-Check Handling 11-11

System Recovery
Bit 2 (SR), when one, indicates that malfunctions
were detected but did not result in damage or have
been successfully corrected. Some malfunctions
detected as part of an I/O operation may result in
a system-recovery condition in addition to an I/O­
error condition. The presence and extent of the
system-recovery capability depend on the model.

System recovery is a repressible condition.

Programming Notes
1. System recovery may be used to report a

failing-storage address detected by a CPU
prefetch or by an I/O operation.

2. Unless the corresponding validity bits are ones,
the indication of system recovery does not
imply storage logical validity, or that the fields
stored as a result of the machine-check
interruption are valid.

Interval-Timer Damage
Bit 3 (TD), when one, indicates that damage has
occurred to the interval timer or to storage location
80. Interval-timer damage is a repressible
condition.

Timing-Facility Damage
Bit 4 (CD), when one, indicates that damage has
occurred to the time-of-day clock, the CPU timer,
the clock comparator, or to the CPU-timer or
clock-comparator external-interruption conditions.
The timing-facility-damage machine-check
condition is set whenever any of the following
occurs:
1. The time-of-day clock accessed by this CPU

enters the error or not-operational state.
2. The CPU timer is damaged, and the CPU is

enabled for CPU-timer external interruptions.
On some models, this condition may be
recognized even when the CPU is not enabled
for CPU-timer interruptions. Depending on the
model, the machine-check condition may be
generated only as the CPU timer enters an
error state. Or, the machine-check condition
may be continuously generated whenever the
CPU is enabled for CPU-timer interruptions,
until the CPU timer is validated.

3. The clock comparator is damaged, and the CPU
is enabled for clock-comparator external
interruptions. On some models, this condition
may be recognized even when the CPU is not
enabled for clock-comparator interruptions.

Timing-facility damage may also be set along
with instruction-processing damage when an

11-12 System/370 Principles of Operation

instruction which accesses the CPU timer or clock
comparator produces incorrect results. Depending
on the model, the CPU timer or clock comparator
may be validated by the interruption which reports
the CPU timer or clock comparator as invalid.

Timing-facility damage is a repressible condition.

Programming Note
Timing-facility-damage conditions for the CPU
timer and the clock comparator are not recognized
on most models when these facilities are not in use.
The facilities are considered not in use when the
CPU is disabled for the corresponding external
interruptions (PSW bit 7, or the subclass-mask bits,
bits 20 and 21 of control register 0, are zeros), and
when the corresponding set and store instructions
are not being issued. Timing-facility-damage
conditions that are already pending remain
pending, however, when the CPU is disabled for
the corresponding external interruption.

Timing-facility-damage conditions due to damage
to the time-of-day clock are always recognized.

External Damage
Bit 5 (ED), when one, indicates that damage has
occurred to a channel or to storage during
operations not directly associated with processing
the current instruction. Channel malfunctions are
reported as external damage only when the channel
is unable to report the malfunctions by an I/O­
error condition. Depending on the model and on
the type and extent of the error, an external­
damage condition may be indicated as system
damage instead of external damage.

When bit 5, external damage, is one and bit 26,
external-damage-code validity, is also one, the
external-damage code has been stored to indicate,
in more detail, the cause of the external-damage
machine-check interruption. When the external
damage cannot be isolated to one or more of the
conditions as defined in the external-damage code,
or when the detailed indication for the condition is
not implemented by the model, external damage is
indicated with bit 26 set to zero.

External damage is a repressible condition.

Degradation
Bit 7 (DG), when one, indicates that continuous
degradation of system performance, more serious
than that indicated by system recovery, has
occurred. Degradation may be reported when
system-recovery conditions exceed a machine­
preestablished threshold or when unit deletion has
occurred. The presence and extent of the

degradation-report capability depends on the
model.

Degradation is a repressible condition.

Warning
Bit 8 (W), when one, indicates that damage is
imminent in some part of the system (for example,
that power is about to fail, or that a loss of cooling
is occurring). Whether warning conditions are
recognized depends on the model.

If the condition responsible for the imminent
damage is removed before the interruption request
is honored (for example, if power is restored), the
request does not remain pending, and no
interruption occurs. Conversely, the request is not
cleared by the interruption, and, if the condition
persists, more than one interruption may result
from the same condition.

Warning is a repressible condition.

Time 0/ Interruption Occurrence
Bits 14 and 15 of the machine-check-interruption
code indicate when the interruption occurred in
relation to the error.

Backed Up
Bit 14 (B), when one, indicates that the point of
interruption is at a checkpoint before the point of
error. This bit is meaningful only when the
instruction-processing-damage bit, bit 1, is also set
to one. The presence and extent of the capability
to indicate a backed-up condition depends on the
model.

Delayed
Bit 15 (D), when one, indicates that some or all of
the machine-check conditions were delayed in
being reported because the CPU was disabled for
that type of interruption at the time the condition
occurred.

Synchronous Machine-Check Interruption
Conditions
Instruction-processing-damage and backed-up bits,
bits 1 and 14 of the machine-check-interruption
code, identify, in combination, two conditions.

Bit 1
1
1

Bit 14
o
1

Processing Backup

Condition
Processing damage
Processing backup

The processing-backup condition indicates that the
point of interruption is prior to the point, or points,

of error. This is a nullifying exigent condition.
When all of the validity bits associated with CPU
status are indicated as valid, the machine has
successfully returned to a checkpoint prior to the
malfunction, and no damage has yet occurred. The
validity bits in the machine-check-interruption code
which must be one for this to be the case are as
follows:

MCIC Bit
20
21
22

23
27
28
29
31
46
47

Fields Covered by Bit
PSW EMWP bits
PSW mask and key
PSW program mask and

condition code
PSW instruction address
Floating-point registers
General registers
Control registers
Storage logical validity
CPU timer
Clock comparator

Programming Note
The processing-backup condition is reported rather
than system recovery to indicate that a malfunction
or failure stands in the way of continued operation
of the CPU. The malfunction has not been
circumvented and damage would have occurred if
instruction processing had continued.

Processing Damage
The processing-damage condition indicates that
damage has occurred to the instruction processing
of the CPU. The point of interruption is a point
beyond some or all of the points of damage.
Processing damage is a terminating exigent
condition; therefore, the contents of result fields
may be unpredictable and still indicated as valid.

Processing damage may include malfunctions in
program-event recording, monitor call, and dynamic
address translation. Processing damage causes any
SVC interruption and program interruption to be
discarded.

Storage-Error Type
Bits 16-18 of the machine-cheek-interruption code
are used to indicate an invalid eBe or a near-valid
eBe detected in main storage or an invalid eBe in
a storage key. The failing-storage-address field,
when indicated as valid, identifies an address
within the storage checking block containing the
error, or, for storage-key error uncorrected, within
the 2K-byte block associated with the storage key.
The portion of the system affected by an invalid
CBC is indicated in the subclass field of the
machine-check-interruption code. I/O-detected

Chapter 11. Machine-Check Handling 11-13

storage errors, when indicated as I/O-error
conditions, may also be reported as (1) system
recovery, (2) external damage with the external­
damage code either valid or invalid, or (3) external
secondary report. CBC errors that occur in storage
or in the storage key and that are detected on
prefetched or unused data by the CPU mayor may
not be reported, depending on the model.

Storage Error Uncorrected
Bit 16 (SB), when one, indicates that a checking
block in main storage contained invalid CBC and
that the information could not be corrected. The
contents of the checking block in main storage have
not been changed. The location reported may have
been accessed by this CPU or another CPU or by
an I/O operation, or its contents may have been
prefetched for a program or fetched as the result of
a model-dependent storage access.

Storage Error Corrected
Bit 17 (SC), when one, indicates that a checking
block in main storage contained near-valid CBC
and that the information has been corrected before
being used. Depending on the model, the contents
of the checking block in main storage mayor may
not have been restored to valid CBC. The location
reported may have been accessed by this CPU or
another CPU or by an I/O operation, or its
contents may have been prefetched for a program
or fetched as the result of a model-dependent
storage access. The presence and extent of the
storage-error-correction capability depends on the
model.

Storage-Key Error Uncorrected
Bit 18 (KE), when one, indicates that a storage key
contained invalid CBC and that the information
could not be corrected. The contents of the
checking block in the storage key has not been
changed. The storage key may have been accessed
by this CPU or another CPU or by an 1/ 0
operation, or its contents may have been pre fetched
for a program or fetched as the result of a model­
dependent storage access.

Programming Note
The storage-error-uncorrected and storage-key­
error-uncorrected bits do not in themselves indicate
the occurrence of damage because the error
detected may not have affected a result. The
accompanying subclass bits of the interruption code
indicate the area affected by the error.

11-14 System/370 Principles of Operation

Maehine-Check Interruption-Code Validity
Bits
Bits 20-31, 46, and 47 of the machine-check­
interruption code are validity bits. Each bit
indicates the validity of a particular field in storage.
With the exception of the storage-logical-validity
bit (bit 31), each bit is associated with a field
stored during the machine-check interruption.
When a validity bit is one, it indicates that the
saved value placed in the corresponding storage
field is valid with respect to the indicated point of
interruption and that no error was detected when
the data was stored.

When a validity bit is zero, one or more of the
following conditions may have occurred: the
original information was incorrect, the original
information had invalid CBC, additional
malfunctions were detected while storing the
information, or none or only part of the
information was stored. Bven though the
information is unpredictable, the machine will
attempt, when possible, to place valid CBC in the
storage field and thus reduce the possibility of
additional machine checks being caused.

The validity bits for the floating-point registers,
general registers, control registers, CPU timer, and
clock comparator indicate the validity of the saved
value placed in the corresponding save area. The
information in these registers after the machine­
check interruption is not necessarily correct even
when the correct value has been placed in the save
area and the validity bit set to one. The use of the
registers and the operation of the facilities
associated with the control registers, CPU timer,
and clock comparator are unpredictable until these
registers are validated. (See the section "Invalid
CBC in Registers" earlier in this chapter.)

PSW-EMWP Validity
Bit 20 (WP), when one, indicates that the EMWP
bits (bits 12-15) of the machine-check old PSW are
correct.

PSW Mask and Key Validity
Bit 21, when one, indicates that the system mask,
PSW key, and miscellaneous bits of the machine­
check old PSWare correct. Specifically, this bit
covers bits 0-11 of both BC-mode and BC-mode
PSWs, and also bits 16, 17, and 24-39 of the
BC-mode PSW.

PSW Program-Mask and Condition-Code Validity
Bit 22 (PM), when one, indicates that the program
mask and condition code of the machine-check old
PSW are correct.

PSW - Instruction-Address Validity
Bit 23 (IA), when one, indicates that the
instruction address (bits 40-63) of the machine­
check old PSW is correct.

Programming Note
When a machine check occurs which stores a
BC-mode PSW, the contents of the interruption
code and ILC in the machine-check old PSW are
unpredictable, and no PSW -validity bit covers these
bits. The four PSW -validity bits cover all 64 bits
of the BC-mode PSW.

Failing-Storage-Address Validity
Bit 24 (FA), when one, indicates that a correct
failing-storage address has been placed at location
248 after a storage error uncorrected or storage­
key error uncorrected or storage error corrected.
The presence and extent of the capability to
identify the failing storage location depend on the
model. When no such errors are reported, that is,
bits 16-18 of the machine-cheek-interruption code
are zeros, the failing-storage address is
meaningless, even though it may be indicated as
valid.

Region-Code Validity
Bit 25 (RC), when one, indicates that a correct
region code has been stored. The presence of the
region code depends on the model. When a model
does not provide a region code, bit 25 is set to
zero.

External-Damage-Code Validity
Bit 26 (BC), when one, indicates that a valid
external-damage code has been stored, provided
that bit 5, external damage, is also one. When bit
5 is zero, bit 26 has no meaning.

Floating-Point-Register Validity
Bit 27 (FP), when one, indicates that the contents
of the floating-paint-register save area at locations
352-383 reflect the correct state of the floating­
point registers at the point of interruption. When
the floating-point feature is not installed, this bit is
set to zero.

General-Register Validity
Bit 28 (GR), when one, indicates that the contents
of the general-register save area at locations

384-447 reflect the correct state of the general
registers at the point of interruption.

Control-Register Validity
Bit 29 (CR), when one, indicates that the contents
of the control-register save area at locations
448-511 reflect the correct state of the control
registers at the point of interruption.

Logout Validity
Bit 30 (LG), when one, indicates that the
machine-check extended-logout information was
correctly stored. When a model does not provide
extended-logout information, bit 30 is set to zero.

Storage Logical Validity
Bit 31 (ST), when one, indicates that the storage
locations, the contents of which are modified by
the instructions being executed, contain the correct
information relative to the point of interruption.
That is, all stores before the point of interruption
are completed, and all stores, if any, after the point
of interruption are suppressed. When a store
before the point of interruption is suppressed
because of an invalid CBC, the storage-Iogical­
validity bit may be indicated as one, provided that
the invalid CBC has been preserved as invalid.

When instruction-processing damage, without the
backed-up bit set to one, is indicated, the storage
logical validity has no meaning.

Storage logical validity reflects only the
instruction-processing activity and does not reflect
errors in the state of storage as the result of
interval-timer update or I/O operations, or of the
storing of the old PSW and other interruption
information.

CPU-Timer Validity
Bit 46 (CT), when one, indicates that the CPU
timer is not in error and that the contents of the
CPU-timer save area at location 216 reflect the
correct state of the CPU timer at the time the
interruption occurred. When the CPU timer is not
installed, bit 46 is set to zero.

Clock-Comparator Validity
Bit 47 (CC), when one, indicates that the clock
comparator is not in error and that the contents of
the clock-comparator save area at location 224
reflect the correct state of the clock comparator.
When the clock comparator is not installed, bit 47
is set to zero.

Chapter 11. Machine-Check Handling 11-15

Programming Note
The validity bits must be used in addition to the
subclass bits and the backed-up bit in order to
determine the extent of the damage caused by a
machine-check condition. No damage has occurred
to the system when the following are true:
• The four PSW validity bits, the three register

validity bits, the two timing-facility-validity bits,
and the storage-logical-validity bit must all be
ones.

• The damage-subclass bits 0, 3, 4, and 5 must be
zeros.

• The instruction-processing-damage bit must be
zero or, if one, the backed-up bit must also be
one.

Machine-Check Extended-Logout Length
Bits 48-63 of the machine-cheek-interruption code
contain a 16-bit binary value indicating the length
in bytes of the information most recently stored in
the extended-logout area, starting at the location
designated by the machine-check extended-logout
address in control register 15. When no extended
logout has occurred, this field is set to zero.

Programming Note
When asynchronous machine-check extended
log outs are permitted (control register 14, bit 8, is
one), more than one extended logout may have
occurred. The length stored on interruption does
not necessarily indicate the longest logout which
has occurred.

Machine-Check Extended Interruption
Information
As part of the machine-check interruption, in some
cases, extended interruption information is placed
in fixed areas assigned in storage. The contents of
registers associated with the CPU are placed in
register-save areas. For external damage,
additional information is provided for some models
by storing an external-damage code. When storage
error uncorrected, storage error corrected, or
storage-key error uncorrected is indicated, the
failing-storage address is saved. Some models store
a region code to show the location of the error.

Each of these fields has associated with it a
validity bit in the machine-check-interruption code.
If, for any reason, the machine cannot store the
proper information in the field, the associated
validity bit is set to zero.

Register-Save Areas
As part of the machine-check interruption, the
current contents of the CPU registers, except for

11-16 System/370 Principles of Operation

the time-of-day clock, are stored in five register­
save areas assigned in storage. Each of these areas
has associated with it a validity bit in the machine­
check-interruption code. If, for any reason, the
machine cannot store the proper information in the
field, the associated validity bit is set to zero.

The following are the five sets of registers and
the locations in storage where their contents are
saved during a machine-check interruption.

Locations
216-223
224-231
352-383

384-447
448-511

Registers
CPU timer
Clock comparator
Floating-point registers

0,2,4,6
General registers 0-15
Control registers 0-15

When the CPU-timer and clock-comparator
feature or the floating-point feature is not installed,
the corresponding locations remain unchanged.
The information stored for unassigned or
uninstalled control-register positions is
unpredictable.

External-Damage Code
The word at location 244 is the external-damage
code. This field, when implemented and indicated
as valid, describes the cause of external damage.
The field is valid only when bit 5, external damage,
and bit 26, external-damage validity are both ones.
The code provides the following information.

External Secondary Report: Bit 2, when one,
indicrtes that the machine-check interruption has
been reported for an external error for which the
primary indication of the error has been or will be
J,l1ade by means of some other report. The primary
indication may be an I/O-error condition, an
indication to the operator, another machine-check
interruption, or even another bit in the same
machine-check interruption.

The external secondary report has three main
purposes. First, it is used to present the failing­
storage address associated with storage errors
detected during channel accesses to storage. In this
case, the failing-storage address and storage-error­
uncorrected, storage-error-corrected, or storage­
key-error-uncorrected indication are used to
identify the cause of failure and the associated
location.

Second, the external secondary report is used to
present model-dependent logout information for an
error associated with a channel that is physically
integrated with the CPU. The machine-check
indication in this case is provided so that channels

integrated with the CPU can use the normal CPU
logout mechanism for presenting the model­
dependent logout information.

For these two purposes, the primary error
indication is normally presented by means of an
I/O-error condition. These errors include
conditions presented as channel-control check,
channel-data check, and interface-control check.
External secondary reports due to I/ 0 and channel
errors (1) may be presented to any or all CPUs in
the configuration, (2) are not necessarily presented
to the CPU to which the channel is connected, and
(3) when channel-set switching is installed, may be
presented even when the channel set is
disconnected. In some models, external secondary
reports due to I/O and channel errors may be
broadcast to all CPUs in the configuration.

The third use of external secondary report is to
provide a mechanism for presenting logout
information associated with errors detected by
other external devices or during operator-initiated
operations. The primary indication in this case is
normally by means of the external device or by an
indication to the operator.

Channel Not Operational: Bit 3, when one,
indicates that one or more channels in the
configuration have entered the not-operational
state without performing an I/ 0 system reset on
the I/O interface. This situation occurs when these
channels have detected an error of such severity
that channel operations cannot continue. In
systems with channel-set switching, channel-not­
operational conditions are reported to all CPUs in
the configuration even when the channel set is
disconnected. Only those state changes in the
channel which would be seen if the channel set
were connected to a CPU are considered for
purposes of this interruption. The channel-not­
operational condition is reported only on systems in
which all channels have implemented the CLEAR
CHANNEL (CLRCH) instruction.

Channel-Control Failure: Bit 4, when one,
indicates that one or more channels in the
configuration have entered the not-operational
state and mayor may not have performed an I/O
system reset on the I/O interface. This situation
occurs when the channels have lost power or
detected an error of such severity that channel
operations cannot continue. In systems with
channel-set switching, channel-control-failure
conditions are reported to all CPUs in the
configuration, even when the channel set is
disconnected. The channel-control-failure

condition is reported only on systems in which all
channels have implemented the CLEAR
CHANNEL (CLR CH) instruction.

When the machine can determine that all
affected channels actually entered the not­
operational state without performing I/O system
reset on the I/O interface, the channel-not­
operational condition is indicated rather than
channel-control failure.

I/O-Instruction Timeout: Bit 5, when one,
indicates that the execution time of an I/O
instruction has exceeded the maximum allowed by
the CPU. The I/O instruction has been completed
by setting condition code 3. When the CPU is
enabled for external-damage machine-check
conditions at the time the timeout occurs, the
instruction address stored in the machine-check old
PSW (if indicated as valid) points to the instruction
following the I/O instruction. In this case, the
address of the failing I/O instruction (or of the
EXECUTE) can be obtained by subtracting 4 from
the instruction address. Timeout of an I/O
instruction is reported by means of bit 5 only when
the CPU can ensure that the channel has not issued
an I/O system reset on the I/ 0 interface.
Depending on the channel and the timeout
condition, the channel mayor may not be
operational. The I/O-instruction-timeout condition
is reported only on systems in which all channels
have implemented the CLEAR CHANNEL
(CLRCH) instruction.

I/O-Interruption Timeout: Bit 6, when one,
indicates that the channel portion of an I/O
interruption has exceeded the time limit established
by the CPU and that the CPU has canceled the
interruption. The I/O-interruption condition may
or may not have been lost, and information mayor
may not have been stored at the locations of the
old PSW, CSW, and other areas associated with an
I/O interruption. The I/O interruption was not
taken; that is, sequential instruction processing
continued without loading the I/O new PSW.
Timeout of an I/O interruption is reported by
means of bit 6 only when the CPU can ensure that
the channel has not issued an 1/ 0 system reset on
the I/O interface. Depending on the channel and
the timeout condition, the channel mayor may not
be operational. The I/O-interruption-timeout
condition is reported only on systems in which all
channels have implemented the CLEAR
CHANNEL (CLRCH) instruction.

Chapter 11. Machine-Check Handling 11-17

Reserved: Bits 0, 1, and 7-31 are reserved for
future expansion and are always set to zeros.

Programming Notes
1. Bit 0 is reserved for future expansion and

possible redefinition of the remaining bits in
the external-damage code. Thus, the program
should test bit 0 for a zero value before
interpreting the other bits in the external­
damage code.

2. Bit 3 (channel not operational), bit 4
(channel-control failure), and external damage
with the external-damage code invalid, form a
set of three errors of increasing severity. When
a channel-not-operational or channel-control­
failure condition is reported, the affected
channels enter the not-operational state. Thus,
if the program is aware of the addresses of all
channels which have been operational in the
system, then, by means of a TEST CHANNEL
instruction to all channels in the system, the
program can determine which channels have
entered the not-operational state. Since the
channel-not-operational and channel-control­
failure conditions are reported to all CPUs in
the configuration, all channels on all CPUs
must be tested. When channel-set switching is
installed, then all channels, including those not
currently connected to any CPU, must be
tested.

Channel not operational is the least severe
indication of the three. The affected channels can
be determined as indicated above, and it is known
in this case that I/O system reset has not been
performed on the I/O interface.

Channel-control failure is more severe than
channel not operational in that I/O system reset
may have been performed on the I/O interface.

External damage with the external-damage code
invalid is the most severe indication of the three.
All channels in the configuration may have been
affected, and the affected channels mayor may not
appear to be not operational to a TEST CHANNEL
instruction. Damage which can be reported by
means of this indication includes errors occurring
during the execution of an I/O interruption. For
example, this indication can be used to report that
an I/O interruption occurred with incorrect I/O
address, incorrect CSW, incorrect limited-channel­
logout information, or channel-control failure.

Failing-Storage Address
When storage error uncorrected, storage error
corrected, or storage-key error uncorrected is
indicated in the machine-check-interruption code,

11-18 System/310 Principles of Operation

the associated address, called the failing-storage
address, is stored in bits 8-31 of the word at
location 248. Bits 0-7 of that word are set to
zeros.

In the case of storage errors, the failing-storage
address may designate any byte within the checking
block. For storage-key error uncorrected, the
failing-storage address may designate any address
within the 2,048-byte block of storage associated
with the storage key that is in error. When an
error is detected in more than one location before
the interruption, the failing-storage address may
designate any of the failing locations. The address
stored is an absolute address; that is, the value
stored is the address that is used to reference
storage after dynamic address translation and
prefixing have been applied.

Region Code
Depending on the model, a region code may be
stored at the word at location 252. The region
code may contain model-dependent information
which more specifically defines the location of the
error. For example, it may contain a model­
dependent address of the unit causing an external
damage or recovery report.

Machine-Check Masking
All machine-check interruptions are under control
of the machine-check mask, PSW bit 13. In
addition, some machine-check conditions are
controlled by subclass masks in control register 14.

The exigent machine-check conditions (system
damage and instruction-processing damage) are
controlled only by the machine-check mask, PSW
bit 13. When PSW bit 13 is one, an exigent
condition causes a machine-check interruption.
When PSW bit 13 is zero and the check-stop­
control bit, bit 0 of control register 14, is one, the
occurrence of an exigent machine-check condition
causes the CPU to enter the check-stop state.
When PSW bit 13 is zero and the check-stop­
control bit is zero, the machine may attempt to
continue or may enter the check-stop state
depending on the type of error.

The repressible machine-check conditions are
controlled both by the machine-check mask, PSW
bit 13, and by four subclass-mask bits in control
register 14. If PSW bit 13 is one and one of the
subclass-mask bits is one, the associated condition
initiates a machine-check interruption. If a
subclass-mask bit is zero, the associated condition
does not initiate an interruption. However, when a
machine-check interruption is initiated because of a
condition for which the CPU is enabled, those

conditions for which the CPU is not enabled may
be presented along with the condition which
initiates the interruption. All conditions presented
are then cleared.

Control Register 14

C RDEW
S MMMM

o 4 7

Control register 14 contains mask bits that
specify whether certain conditions can cause
machine-check interruptions. With the exception
of bit 0, which is provided on all models, each of
the bits is necessarily provided only if the
associated function is provided.

Programming Note
The program should avoid, whenever possible,
operating with PSW bit 13, the machine-check
mask, set to zero, since any exigent machine-check
condition which is recognized during this situation
may cause the CPU to enter the check-stop state.
In particular, the program should avoid issuing I/O
instructions or allowing for I/O interruptions with
PSW bit 13 a zero.

Check-Stop Control
Bit 0 (CS) of control register 14, controls the
system action taken when an exigent machine­
check condition occurs under one of the following
two conditions:
1. When the CPU is disabled for machine-check

interruptions (that is, PSW bit 13 is zero).
2. When an exigent machine-check condition

occurs during the process of storing the
machine-cheek-interruption code, storing the
machine-check old PSW, or fetching the
machine-check new PSW during a machine­
check interruption.

If the check-stop control bit is one and either
condition occurs, the machine enters the check-stop
state; if the check-stop control bit is zero, the
machine may attempt to continue or may enter the
check-stop state, depending on the type of error
and the model. The check-stop control bit is
initialized to one. If damage occurs to control
register 14, the check-stop control bit is assumed to
be one.

Recovery-Report Mask
Bit 4 (RM) of control register 14 controls system­
recovery-interruption conditions. This bit is

initialized to zero.

Degradation-Report Mask
Bit 5 (DM) of control register 14 controls
degradation-interruption conditions. This bit is
initialized to zero.

External-Damage-Report Mask
Bit 6 (EM) of control register 14 controls timing­
facility-damage, interval-timer-damage, and
external-damage conditions. This bit is initialized
to one.

Warning Mask
Bit 7 (WM) of control register 14 controls warning
conditions. This bit is initialized to zero.

Machine-Check Logout
Some models place model-dependent information in
main storage as a result of a machine check. This
is referred to as a machine-check logout.
Machine-check logouts are of four different types:
synchronous fixed logout, asynchronous fixed
logout, synchronous machine-check extended
logout, and asynchronous machine-check extended
logout.

Machine-cheek-logout information may,
depending on the model, be placed in the
machine-check extended-logout (MCEL) area.
The starting location of the MCEL area is specified
by the contents of control register 15. The
existence and length of the MCEL are model­
dependent.

Some models may place machine-cheek-logout
information in the fixed-logout area. This area is
96 bytes in length and starts at location 256. The
fixed logout may be in addition to or instead of an
extended logout.

When a machine-check logout occurs during the
machine-check interruption it is called a
synchronous logout. If a machine-check logout
occurs without a machine-check interruption, or if
the logout and the interruption are separated by
instruction processing or by CPU retry, then the
logout is called an asynchronous logout.

To preserve the initial machine-check conditions,
some models perform an asynchronous logout
before invoking CPU retry. Depending on the
model, logout may occur before recovery, after
recovery, or at both times. If logout occurs at both
times it may be into the same portion or two
different portions of the logout area.

Chapter 11. Machine-Check Handling 11-19

Logout Controls
Control register 14 contains bits which control
when a logout may occur.

Control Register 14

I I IJTI[F
L L L L

I
1 2 8 9

Synchronous Machine-Check Extended-Logout
Control
Bit 1 (SL) of control register 14 controls the logout
action during a machine-check interruption. When
this bit is one, the machine-check extended-logout
area may be changed during the interruption; when
this bit is zero, the area may be changed only under
control of the asynchronous machine-check
extended-logout-control bit, bit 8 of control register
14. This bit is initialized to one.

Input/Output Extended-Logout Control
Bit 2 (IL) of control register 14, when one, permits
channel logout into the I/O extended-logout area
as part of an I/O interruption. When this bit is
zero, I/O extended logouts cannot occur. This bit
is initialized to zero.

Asynchronous Machine-Check Extended-Logout
Control
Bit 8 (AL) of control register 14, in conjunction
with PSW bit 13, controls asynchronous change of
the machine-check extended-logout area. When
this bit and PSW bit 13 are both ones, the machine
may change the machine-check extended-logout
area at any time; when this bit is zero, the area
may be changed only under control of the
synchronous machine-check extended-Iogout­
control bit, bit 1 of control register 14. This bit is
initialized to zero.

Asynchronous Fixed-Logout Control
Bit 9 (FL) of control register 14, when one,
permits the fixed-logout area to be changed at any
time. When this bit is zero, the fixed-logout area
may be changed only during a machine-check
interruption or during an I/O interruption. This bit
is initialized to zero.

11-20 System/370 Principles of Operation

Machine-Check Extended-Logout Address

MCEL Address

o 8 29 31

Bits 8-28 of control register 15, with three low­
order zeros appended, specify the starting location
of the machine-check extended-logout (MCEL)
area. The contents of control register 15 are
initialized by setting bit 22 to one and all other bits
to zeros, which specifies a starting address of 512
(decimal). The MCEL address is a real address.

When a model provides the machine-check
extended logout (MCEL), control register 15 is
implemented.

Programming Notes
1. The availability and extent of the machine­

check extended-logout area differs among
models and, for any particular model, may
depend on the features or engineering changes
installed. In order to provide for such
variations, the program should determine the
extent of the logout by means of STORE CPU
ID whenever a storage area for the extended
logout is to be assigned. A length of zero in
the MCEL field that results from executing
STORE CPU ID indicates that no MCEL is
provided.

2. The maximum logout information is obtained
by setting both the synchronous and
asynchronous machine-check extended-logout
control bits to ones. Both of these bits must be
zeros to prevent any changes to the machine­
check extended-logout area.

3. Use of the machine-check extended-logout area
while asynchronous machine-check extended
logout is allowed may produce unpredictable
results.

4. When the asynchronous fixed logout control bit
is one, program use of the fixed logout area
should be restricted to the fetching of data
from this area. Store operations or channel
programs reading into the fixed logout area may
cause machine checks or undetected errors if
the store occurs during CPU retry. Note that
this is an exception to the rule that
programming errors do not cause machine­
check indications.

Summary of Machine-Check Masking
and Logout
A summary of machine-check masking and logout
is given in the figures "Machine-Cheek-Condition
Masking," "Machine-Cheek-Logout Control," and
"Machine-Check Control-Register Bits."

Action When CPU
Disabled for
Subclass and

Sub-
class Check-Stop Check-Stop

Subclass Mask C t r I = a Ctrl

System damage - p* Check
Instruction-processing damage - p* Check
Interval-timer damage EM P P
Timing-faci I ity damage EM P P
System recovery RM Y Y
External damage EM P P
Degradation DM P P
Warning WM P P

Exelanation:

p Indication held pending.

X Indication may be held pending or may be discarded.
System integrity may have been los t , and the system
cannot be considered dependable.

Machine-Check-Condition Masking

IPS\! CRI4 Bit
Bit 13 (Sl)

0 X
1 0
1 1

1 CRI4 Bit 8
(Al)

x
o
o

No MCEl
No MCEl

MCEl Action

MCEL may occur only during
mach i ne-check interrupt i °2. 1

MCEL may occur at any time.
MCEL may occur at any time.

= 1

stop
stop

___ L--, ___ ~ ______ ~ ____________________ ~
CRI4 Bit 9

(FL) Fixed-logout Act ion

o Fixed-logout area may be changed by the CPU
only during machine-check interruption. 1

1 F i xed-\ ogout area may be changed at any time.

Explanation:

AL Asynchronous machine-check extended-logout control

FL Asynchronous fixed-logout control

MCEL Mach i ne-check extended logout

SL Synchronous mach i ne-check extended-logout contro I

X Indicates the same action occurs whether the bit is zero
or one.

Logout prior to instruction retry is not permissible in
this state even though recovery reports are enabled.

I n some mode Is, the asynchronous mach 1 ne-check extended­
logout control (AL) is ignored, and no logout occurs in
this state.

Machine-Check-Logout Control

Control State of Bit
Register 14 at Initial

Bit Description Bit Position CPU Reset

Check-stop control a I
Synchronous MCEL control 1 1
IDEL control 2 a
Recovery-report mask 4 0
Degradation-report mask 5 a
External-damage-report mask 6 1
Warning mask 7 a
Asynchronous MCEl control 8 a
Asynchronous fixed-logout control 9 a

~

Machine-Check Control-Register Bits

Chapter 11. Machine-Check Handling 11-21

.."", ,

Chapter 12. Input/Output Operations

Contents

Attachment of Input/Output Devices 12-2
Input/Output Devices 12-2

Control Units 12-2
Channels 12-3

Modes of Operation 12-3
Types of Channels 12-4

I/O-System Operation 12-5
Compatibility of Operation 12-7

Control of Input/Output Devices 12-7
Input/Output Device Addressing 12-7
States of the Input/Output System 12-8
Resetting of the Input/Output System 12-10

I/O-System Reset 12-10
I/O Selective Reset 12-10
Effect of Reset on a Working Device 12-10
Reset Upon Malfunction 12-11

Condition Code 12-11
Instruction Formats 12-13
Instructions 12-14
CLEAR CHANNEL 12-15
CLEAR I/O 12-15
HALT DEVICE 12-17
HALT I/O 12-20
START I/O 12-21
START I/O FAST RELEASE 12-21
STORE CHANNEL ID 12-24
TEST CHANNEL 12-25
TEST I/O 12-25
Input/Output-Instruction-Exception Handling 12-27

Execution of Input/Output Operations 12-27
Blocking of Data 12-27
Channel-Address Word 12-27
Channel-Command Word 12-28
Command Code 12-29
Designation of Storage Area 12-29
Chaining 12-30

Data Chaining 12-31
Command Chaining 12-33

Skipping 12-33
Program-Controlled Interruption 12-33
Channel Indirect Data Addressing 12-34
Commands 12-35

Write 12-36
Read 12-36
Read Backward 12-36
Control 12-37

Sense 12-37
Transfer in Channel 12-39

Command Retry 12-39
Conclusion of Input/Output Operations 12-40

Types of Conclusion 12-40
Conclusion at Operation Initiation 12-40
Immediate Operations 12-41
Conclusion of Data Transfer 12-41
Termination by HALT I/O or HALT
DEVICE 12-42

Termination by CLEAR I/O 12-43
Termination Due to Equipment Malfunction 12-44

Input/Output Interruptions 12-44
Interruption Conditions 12-44
Channel-Available Interruption 12-45

Priority of Interruptions 12-45
Interruption Action 12-46

Channel-Status Word 12-46
Unit Status 12-48

Attention 12-48
Status Modifier 12-48
Control-Unit End 12-48
Busy 12-49

Channel End 12-49
Device End 12-51
Unit Check 12-51
Unit Exception 12-52

Channel Status 12-52
Program-Controlled Interruption 12-52
Incorrect Length 12-52
Program Check 12-53
Protection Check 12-54
Channel-Data Check 12~54

Channel-Control Check 12-54
Interface-Control Check 12-54
Chaining Check 12-55

Contents Of Channel-Status Word 12-55
Information Provided by Channel-Status
Word 12-55

Sub channel Key 12-56
CCW Address 12-56
Count 12-56
Status 12-57

Channel Logout 12-57
I/O-Communication Area 12-59

Chapter 12. Input/Output Operations 12-1

The transfer of information to or from main
storage, other than to or from the central
processing unit or by means· of the direct control
path, is referred to as an input or output operation.
An input/output (I/O) operation involves the use
of an I/O device. Input/output devices perform
I/O operations under control of control units,
which are attached to the central processing unit
(CPU) by means of channels.

This portion of the publication describes the
programmed control of 1/ 0 devices by the channels
and by the CPU. Formats are defined for the
various types of I/O control information. The
formats apply to all I/O operations and are
independent of the type of I/O device, its speed,
and its mode of operation.

The formats described include provisions for
functions unique to some I/O device types, such as
an erase gap on a magnetic-tape unit. The way in
which a device makes use of the format is defined
in the System Library (SL) publication for the
particular device.

All main-storage references for I/O operations
are references to absolute storage. Unless
indicated otherwise, "storage" means absolute
storage, and "address" means absolute address.
The terms "I/O address," "channel address," and
"device address" are never abbreviated to
"address" in this publication.

Attachment of Input/Output Devices

Input/Output Devices
Input/ output devices provide external storage and a
means of communication between data-processing
systems or between a system and its environment.
Input/ output devices include such equipment as
card readers, card punches, magnetic-tape units,
direct-access-storage devices (disks and drums),
display units, typewriter-keyboard devices, printers,
teleprocessing devices, and sensor-based equipment.

Most types of I/O devices, such as printers, card
equipment, or tape devices, deal directly with
external media, and these devices are physically
distinguishable and identifiable. Other types
consist only of electronic equipment and do not
directly handle physical recording media. The
channel-to-channel adapter, for example, provides
a channel-to-channel data-transfer path, and the
data never reaches a physical recording medium

12-2 System/370 Principles of Operation

outside main storage. Similarly, a transmission­
control unit handles transmission of information
between the data-processing system and a remote
station, and its input and output are signals on a
transmission line. An 1/ 0 device may be physically
distinct equipment, or it may time-share equipment
with other I/O devices.

An input/output device ordinarily is attached to
one control unit and is accessible from one channel.
Switching equipment is available to make some
devices accessible to two or more channels by
switching devices between control units and control
units between channels. The time required for
switching occurs during device-selection time and
may be ignored.

Control Units
A control unit provides the logical capabilities
necessary to operate and control an I/O device and
adapts the characteristics of each device to the
standard form of control provided by the channel.

The control unit accepts control signals from the
channel, controls the timing of data transfer, and
provides indications concerning the status of the
device.

The I/O device attached to the control unit may
be designed to perform only certain limited
operations, or it may perform many different
operations. A typical operation is moving the
recording medium and recording data. To
accomplish these functions, the device needs
detailed signal sequences peculiar to the type of
device. The control unit decodes the commands
received from the channel, interprets them for the
particular type of device, and provides the signal
sequence required for execution of the operation.

A control unit may be housed separately, or it
may be physically and logically integral with the
1/ 0 device or the CPU. In most electromechanical
devices, a well-defined interface exists between the
device and the control unit because of the
difference in the type of equipment the control unit
and the device contain. These electromechanical
devices often are of a type where only one device
of a group attached to a control unit is required to
operate at a time (magnetic-tape units or
disk-access mechanisms, for example), and the
control unit is shared among a number of I/O
devices. On the other hand, in some electronic I/O

devices such as the channel-to-channel adapter, the
control unit does not have an identity of its own.

From the programmer's point of view, most
functions performed by the control unit can be
merged with those performed by the I/O device.
Therefore, this publication normally does not make
specific mention of the control unit function; the
execution of I/O operations is described as if the
I/O devices communicated directly with the
channel. Reference is made to the control unit
only when emphasizing a function performed by it
or when describing how sharing of the control unit
among a number of devices affects the execution of
I/O operations.

Channels
A channel directs the flow of information between
I/O devices and main storage. It relieves the CPU
of the task of communicating directly with the
devices and permits data processing to proceed
concurrently with I/O operations.

A channel provides a means for connecting
different types of I/O devices to the CPU and to
storage. The channel accepts control information
from the CPU in the format supplied by the
program and changes it into a sequence of signals
acceptable to a control unit and device. Similarly,
when an I/O device provides signals that should be
brought to the attention of the program, the
channel transforms the signals to information that
can be used in the CPU.

A channel contains facilities for the control of
I/ 0 operations. During execution of an I/O
operation involving data transfer, the channel
assembles or disassembles data and synchronizes
the transfer of data bytes with storage cycles. To
accomplish this, the channel maintains and updates
an address and a count that describe the
destination ot source of data in storage. When the
channel facilities are provided in the form of
separate autonomous equipment deSigned
specifically to control I/O devices, I/O operations
are completely overlapped with the activity in the
CPU. The only storage cycles required during I/O
operations in such channels are those needed to
transfer data and control information to or from
the final locations in storage. These cycles do not
interfere with the CPU program, except when both
the CPU and the channel concurrently attempt to
refer to the same storage area.

If separate equipment is not provided, facilities
of the CPU are used for controlling I/O devices.
When the CPU and channels, or the CPU,
channels, and control units, share common
facilities, I/O operations cause interference to the

CPU, varying in intensity from occasional delay of
a CPU cycle to a complete lockout of CPU activity.
The intensity depends on the extent of sharing and
on the I/O data rate. The sharing of the facilities,
however, is accomplished automatically, and the
program is not affected by CPU delays, except for
an increase in execution time.

Modes of Operation
An I/O operation occurs in one of two modes:
burst or byte-multiplex.

In burst mode, the I/O device monopolizes the
channel and stays logically connected to the
channel for the transfer of a burst of information.
No other device can communicate with the channel
during the time a burst is transferred. The burst
can consist of a few bytes, a whole block of data, a
sequence of blocks with associated control and
status information (the block lengths may be zero),
or status information which monopolizes the
channel. The facilities in a channel capable of
operating in burst mode may be shared by a
number of concurrently operating I/O devices.

Some channels can tolerate an absence of data
transfer during a burst-mode operation, such as
occurs when reading a long gap on magnetic tape,
for not more than approximately 1/2 minute.
Equipment malfunction may be indicated when an
absence of data transfer exceeds this time.

In byte-multiplex mode, the I/O device stays
logically connected to the channel only for a short
interval of time. The facilities in a channel capable
of operating in byte-multiplex mode may be shared
by a number of concurrently operating I/O devices.
In this mode, all I/ 0 operations are split into short
intervals of time during which only a segment of
information is transferred. During such an interval,
only one device is logically connected to the
channel. The intervals associated with the
concurrent operation of multiple I/O devices are
sequenced in response to demands from the
devices. The channel controls are occupied with
anyone operation only for the time required to
transfer a segment of information. The segment
can consist of a single byte of data, a few bytes of
data, a status report from the device, or a control
sequence used for initiation of a new operation.

Operation in burst and byte-multiplex modes is
differentiated because of the way the channels
respond to I/ 0 instructions. A channel operating a
device in the burst mode appears busy to new I/O
instructions, whereas a channel operating one or
more devices in the byte-multiplex mode is capable
of initiating an operation on another device. If a
channel that can operate in either mode is

Chapter 12. Input/Output Operations 12-3

communicating with an I/O device at the instant a
new I/ 0 instruction is issued, action on the
instruction is delayed by the channel until the
current mode of operation is established.
Furthermore, the new I/O operation is initiated
only after the channel has serviced all outstanding
requests from devices previously placed in
operation.

The distinction between a short burst of data
occurring in the byte-multiplex mode and an
operation in the burst mode is in the length of the
bursts of data. A channel that can operate in
either mode determines its mode of operation by
timeout. Whenever the burst causes the device to
be connected to the channel for more than
approximately 100 microseconds, the channel is
considered to be operating in the burst mode.

Ordinarily, devices with a high data-transfer rate
operate with the channel in burst mode, and slower
devices run in byte-multiplex mode. Some control
units have a manual switch for setting the mode of
operation.

Types of Channels
A system can be equipped with three types of
channels: selector, byte mUltiplexer, and block
multiplexer.

The channel facilities required for sustaining a
single I/O operation are termed a subchannel. The
sub channel consists of internal storage used for
recording the addresses, count, and any status and
control information associated with the I/O
operation. The capability of a channel to permit
multiplexing depends upon whether it has more
than one sub channel.

A selector channel, which contains a minimum of
facilities, has one subchannel and always forces the
I/O device to transfer data in the burst mode. The
burst extends over the whole block of data, or,
when command chaining is specified, over the
whole sequence of blocks. A selector channel
cannot perform any multiplexing and therefore can
be involved in only one I/O operation or chain of
operations at a time. In the meantime, other I/O
devices attached to the channel can be executing
previously initiated operations that do not involve
communication with the channel, such as
backspacing tape. When the selector channel is not
executing an operation or a chain of operations and
is not processing an interruption, it monitors the
attached devices for status information.

A byte-multiplexer channel contains multiple
subchannels and can operate at anyone time in
either byte-multiplex or burst mode. The channel
operates most efficiently when running I/O devices

12-4 System/370 Principles of Operation

that are designed to operate in byte-multiplex
mode. The mode of operation is determined by the
I/O device, and, during data transfer, the mode can
change at any time. Unless data transfer is
occurring, the mode of operation has no meaning.
The data transfer associated with an operation can
occur partially in the byte-multiplex mode and
partially in the burst mode.

A block-multiplexer channel contains multiple
subchannels and can only operate in burst mode.
The channel operates most efficiently when running
devices that are designed to operate in burst mode.
When multiplexing is not inhibited, the channel
permits multiplexing between blocks, between
bursts, or when command retry is performed. On
most models, the burst is forced to extend over the
block of data, and multiplexing is permitted either
between blocks of data or when command chaining
is specified. Whether or not multiplexing occurs
depends on the design of the channel and I/O
device and on the state of the block-multiplexing­
control bit.

When the block-multiplexing-control bit, bit 0 of
control register 0, is zero, multiplexing is inhibited;
when it is one, multiplexing is allowed.

Whether a block-multiplexer channel executes an
I/O operation with multiplexing inhibited or
allowed is determined by the state of the block­
multiplexing-control bit at the time the operation is
initiated by START I/O or START I/O FAST
RELEASE and applies to that operation until the
involved subchannel becomes available.

For brevity, the term "multiplexer channel" is
used hereafter when describing a function or
facility that is common for both byte-multiplexer
and block-multiplexer channels.

Multiplexer channels vary in the number of
sub channels they contain. When multiplexing, they
can sustain concurrently one I/O operation per
subchannel, provided that the total load on the
channel does not exceed its capacity. Each
subchannel appears to the program as an
independent selector channel, except in those
aspects of communication that pertain to the
physical channel (for example, individual
subchannels on a multiplexer channel are not
distinguished as such by the TEST CHANNEL
instruction or by the masks controlling I/O
interruptions from the channel). When a
multiplexer channel is not servicing an I/O device,
it monitors its devices for data and for status
information.

Sub channels on a multiplexer channel may be
either nonshared or shared.

A sub channel is referred to as nonshared if it is
associated with and can be used only by a single
I/O device. A non~hared subchannel is used with
devices that do not have any restrictions on the
concurrency of channel-program operations, such
as the IBM 3211 Printer Modell or one drive of
an IBM 3330 Disk Storage.

A sub channel is referred to as shared if data
transfer to or from a set of devices implies the use
of the same subchannel. Only one device
associated with a shared subchannel may be
involved in data transmission at a time. Shared
subchannels are used with devices, such as
magnetic-tape units or some disk-access
mechanisms, that share a control unit. For such
devices, the sharing of the subchannel does not
restrict the concurrency of I/ 0 operations since the
control unit permits only one device to be involved
in a data-transfer operation at a time. I/O devices
may share a control unit without necessarily sharing
a subchannel. For example, each transmission line
attached to the IBM 2702 Transmission Control is
assigned a nonshared subchannel, although all of
the transmission lines share the common control
unit.

Programming Notes
A block-multiplexer channel can be made to
operate as a selector channel by the appropriate
setting of the block-multiplexing-control bit.
However, since a block-multiplexer channel
inherently can interleave the execution of multiple
I/O operations and since the state of the block­
multiplexing-control bit can be changed at any
time, it is possible to have one or more operations
that permit multiplexing and an operation that
inhibits mUltiplexing being executed simultaneously
by a channel.

Therefore, to ensure complete compatibility with
selector channel operation, all operational
sub channels on the block-multiplexer channel must
be available or operating with multiplexing
inhibited when the use of that channel as a selector
channel is begun. All subsequent operations should
then be initiated with the block-multiplexing­
control bit inhibiting multiplexing.

I/O-System Operation
Input/ output operations are initiated and controlled
by information with two types of formats:
instructions and channel-command words (CCWs).
Instructions are decoded by the CPU and are part
of the CPU program. CCWs are decoded and
executed by the channels and I/O devices and
initiate I/O operations, such as reading and

writing. One or more CCWs arranged for
sequential execution form a channel program. Both
instructions and CCWs are fetched from storage
and their formats are common for all types of I/O
devices, although the modifier bits in the command
code of a CCW may specify device-dependent
operations.

The CPU program initiates I/O operations with
the instruction START I/O or START I/O FAST
RELEASE. These instructions identify the channel
and device and cause the channel to fetch the
channel-address word (CAW) from a fixed location
in storage. The CAW contains the sub channel key
and designates the location in storage from which
the channel subsequently fetches the first CCW.
The CCW specifies the command to be executed
and the storage area, if any, to be used.

When the CAW has been fetched, some channels
consider the execution of START I/O FAST
RELEASE complete. The results of the execution
of the instruction to that point are indicated by
setting the condition code in the program-status
word (PSW) and, in certain situations, by storing
pertinent information in the channel-status word
(CSW).

If the channel is not operating in burst mode and
if the subchannel associated with the addressed I/O
device is available, the channel attempts to select
the device by sending the address of the device to
all control units attached to the channel. A control
unit that recognizes the address connects itself
logically to the channel and responds to its
selection by returning the address of the selected
device. The channel subsequently sends the
command .. code part of the CCW to the control
unit, and the device responds with a status byte
indicating whether it can execute the command.

At this time, the execution of START I/O and
of START I/O FAST RELEASE, if not previously
considered complete, is completed. The results of
the attempt to initiate the execution of the
command are indicated by setting the condition
code in the PSW and, in certain situations, by
storing pertinent information in the CSW.

If the I/O operation is initiated at the device
and its execution involves transfer of data, the
sub channel is set up to respond to service requests
from the device and assumes further control of the
operation. In operations that do not require any
data to be transferred to or from the device, the
device may signal the end of the operation
immediately on receipt of the command code.

An I/O operation may involve transfer of data
to one storage area, designated by a single CCW,
or to a number of noncontiguous storage areas. In

Chapter 12. Input/Output Operations 12-5

the latter case, generally a list of CCWs is used for
execution of the I/O operation, each CCW
designating a contiguous storage area, and the
CCWs are said to be coupled by data chaining.
Data chaining is specified by a flag in the CCW
and causes the channel to fetch another CCW upon
the exhaustion or filling of the storage area
designated by the current CCW. The storage area
designated by a CCW fetched on data chaining
pertains to the I/O operation already in progress at
the 1/ 0 device, and the I/O device is not notified
when a new CCW is fetched.

Provision is made in the CCW format for the
programmer to specify that, when the CCW is
decoded, the channel request an 1/ 0 interruption
as soon as possible, thereby notifying the CPU
program that chaining has progressed at least as far
as that CCW.

To complement the dynamic-address-translation
facility available in the CPU, which can make data
stored in more than one noncontiguous page of
storage appear as one storage area, channel indirect
data addressing is available. A flag in the CCW
specifies that an indirect-data-address list is to be
used to designate the storage areas for that CCW.
Each time the boundary of a 2,048-byte block of
storage is reached, the list is referenced to
determine the next block of storage to be used. By
extending the storage-addressing capabilities of the
channel, channel indirect data addressing permits
essentially the same CCW sequences to be used for
a program running with dynamic address
translation in the CPU that would be used if it
were operating with equivalent contiguous real
storage.

The conclusion of an I/O operation normally is
indicated by channel end and device end. Channel
end indicates that the I/O device has received or
provided all data associated with the operation an<'
no longer needs channel facilities. Device end
indicates that the I/O device has concluded
execution of the operation. Device end can occur
concurrently with channel end or later.

Operations that keep the control unit busy after
releasing channel facilities may, in some situations,
cause a third indication called control-unit end.
Control-unit end may occur only concurrently with
or after channel end and indicates that the control
unit has become available for initiation of another
operation.

Concurrent with channel end, both the channel
and the I/O device can provide indications of
unusual situations. Control-unit end and device
end can be accompanied by error indications from
the I/O device.

12-6 System/370 Principles of Operation

The indication of the conclusion of an I/O
operation can be brought to the attention of the
program by I/O interruptions or, when the CPU is
disabled for I/O interruptions from the channel, by
programmed interrogation of the I/O device. An
indication that will result in an interruption or that
can be observed through interrogation is called an
interruption condition. In either case, a CSW is
stored, which contains additional information
concerning the execution of the operation. When
channel end is indicated in the CSW, the CSW
identifies the last CCW used and provides its
residual byte count, thus indicating the extent of
storage used.

Facilities are provided for the program to initiate
the execution of a chain of I/O operations with a
single START I/O or START I/O FAST
RELEASE. When the chaining flags in the current
CCW specify command chaining and no unusual
conditions have been detected in the operation, the
receipt of the device-end signal causes the channel
to fetch a new CCW and to initiate a new
command at the device. A chained command is
initiated in the same way as the first operation.
Channel end and device end are not presented to
the program when chaining causes another
operation to follow. However, unusual situations
can cause premature termination of command
chaining and generation of an interruption
condition.

Activities that cause I/O-interruption conditions
are asynchronous to activity in the CPU, and more
than one interruption condition can exist at the
same time. The channel and the CPU establish
priority among the conditions so that only one
condition is presented to the CPU at a time. The
conditions are preserved in the I/O devices or
subchannels until accepted by the CPU.

The execution of an I/O operation or chain of
operations thus involves up to four levels of
participation:
1. Except for the effects caused by the integration

of CPU and channel equipment, the CPU is
busy for the duration of execution of START
I/O or START I/O FAST RELEASE, which
lasts at most until the addressed I/O device
responds to the first command.

2. The subchannel is busy with the execution from
the time the CPU sets condition code 0 for the
START I/O or START I/O FAST RELEASE
instruction until the interruption condition
caused by the signal that terminates the last

operation of the command chain is accepted by
the CPU.

3. The control unit may remain busy after the
subchannel has been released and may generate
control-unit end when it becomes free.

4. The I/O device is busy from the initiation of
the first operation until the interruption
condition caused by the device end associated
with the operation is accepted or cleared by the
CPU.

An interruption condition caused by device end
makes the device appear busy, but normally does
not affect the state of any other part of the system.
An interruption condition caused by control-unit
end may block communications through the control
unit to any device attached to it, and an
interruption condition caused by channel end
normally blocks all communications through the
subchannel.

Compatibility of Operation
The organization of the I/O system provides for a
uniform method of controlling I/O operations. The
capability of a channel, however, depends on its
use and on the CPU model to which it is attached.
Channels are provided with different data-transfer
capabilities, and an I/O device designed to transfer
data only at a specific rate (a magnetic-tape unit or
a disk storage, for example) can operate only on a
channel that can accommodate at least this data
rate.

The data rate a channel can accommodate
depends also on the way the I/O operation is
programmed. The channel can sustain its highest
data rate when no data chaining is specified. Data
chaining reduces the maximum allowable rate, and
the extent of the reduction depends on the
frequency at which new CCWs are fetched and on
the address resolution of the first byte in each new
storage area. Furthermore, since a channel shares
storage with the CPU and other channels, activity
in the rest of the system affects the accessibility of
storage and, hence, the instantaneous load the
channel can sustain.

In view of the dependence of channel capacity
on programming and on activity in the rest of the
system, an evaluation of the ability of elements in a
specific I/O configuration to function concurrently
must be based on a consideration of both the data
rate and the way the I/O operations are
programmed. Two systems differing in
performance but employing identical complements
of I/O devices may be able to execute certain
programs in common, but it is possible that other

programs requiring, for example, data chaining,
may not run on one of the systems because of the
increased load caused by the data chaining.

Control of Input/ Output Devices
The CPU controls I/O operations by means of nine
I/O instructions: CLEAR CHANNEL, CLEAR
I/O, HALT DEVICE, HALT I/O, START I/O,
START I/O FAST RELEASE, STORE CHANNEL
ID, TEST CHANNEL, and TEST I/O.

The instructions TEST CHANNEL, CLEAR
CHANNEL, and STORE CHANNEL ID address a
channel; they do not address an I/O device. The
other six I/ 0 instructions address a channel and a
device on that channel.

Input/Output Device Addressing
An I/O device and the associated access path are
designated by an I/O address. The 16-bit I/O
address consists of two parts: a channel address in
the leftmost eight bit positions and a device address
in the rightmost eight bit positions.

The channel address provides for identifying up
to 256 channels. Channels are numbered 0-255.
Channel 0 is a byte-multiplexer channel, and each
of channels 1-255 may be a byte-multiplexer,
block-multiplexer, or selector channel.

The number and type of channels and
subchannels available, as well as their address
assignment, depend on the system model and the
particular installation.

The device address identifies the particular I/O
device and control unit on the designated channel.
The address identifies, for example, a particular
magnetic-tape drive, disk-access mechanism, or
transmission line. Any number in the range 0-255
can be used as a device address, providing facilities
for addressing up to 256 devices per channel. An
exception is some multiplexer channels that provide
fewer than the maximum configuration of
subchannels and hence eliminate the corresponding
unassignable device addresses.

Devices that do not share a control unit with
other devices may be assigned any device address
in the range 0-255, provided the address is not
recognized by any other control unit. Logically,
such devices are not distinguishable from their
control unit, and both are identified by the same
address.

Devices sharing a control unit (for example,
magnetic-tape drives or disk-access mechanisms)
are assigned addresses within sets of contiguous
numbers. The size of such a set is equal to the
maximum number of devices that can share the
control unit, or 16, whichever is smaller.

Chapter 12. Input/Output Operations 12-7

Furthermore, such a set starts with an address in
which the number of low-order zeros is at least
equal to the number of bit positions required for
specifying the set size. The high-order bit positions
of an address within such a set identify the control
unit, and the low-order bit positions designate the
device on the control unit.

Control units designed to accommodate more
than 16 devices may be assigned nonsequential sets
of addresses, each set consisting of 16, or the
number required to bring the total number of
assigned addresses equal to the maximum number
of devices attachable to the control unit, whichever
is smaller. The addressing facilities are added in
increments of a set so that the number of device
addresses assigned to a control unit does not
exceed the number of devices attached by more
than 15.

The control unit does not respond to any address
outside its assigned set or sets. For example, if a
control unit is designed to control devices having
only the values 0000 to 1001 in the low-order bit
positions of the device address, it does not
recognize addresses containing 1010 to 1111 in
these bit positions. On the other hand, a control
unit responds to all addresses in the assigned set,
regardless of whether the device associated with the
address is installed. If no control unit responds to
an address, the I/O device appears not operational.
If a control unit responds to an address for which
no device is installed, the absent device appears in
the not-ready state.

Input/ output devices accessible through more
than one channel have a distinct address for each
path of communications. This address identifies
the channel and the control unit. For sets of
devices connected to two or more control units, the
portion of the address identifying the device on the
control unit is fixed, and does not depend on the
path of communications.

The assignment of channel and device addresses
is arbitrary, subject to the rules described and any
model-dependent restrictions. The assignment is
mad~ at the time of installation, and the addresses
normally remain fixed thereafter.

States of the Input/Output System
The state of the I/O system identified by an I/O
address depends on the collective state of the
channel, subchannel, and I/O device. Each of
these components of the I/O system can have up to
four states, as far as the response to an I/O
instruction is concerned. These states are listed in
the figure "Input/Output System States." The

12-8 System/370 Principles of Operation

name of the state is followed by its abbreviation
and a brief definition.

A channel, subchannel, or I/O device that is
available, interruption-pending, or working is called
"operational." A channel, subchannel, or 1/ 0
device that is interruption-pending, working, or
not-operational is called "not available."

In a multiplexer channel, the channel and
subchannel are easily distinguishable and, if the
channel is operational, any combination of channel
and subchannel states is possible. Since the
selector channel can have only one subchimnel, the
channel and subchannel are functionally coupled,
and certain states of the channel are related to
those of the subchannel. In particular, the working
state can occur only concurrently in both the
channel and subchannel and, whenever an
interruption condition is pending in the subchannel,
the channel also is in the same state. The channel
and subchannel, however, are not synonymous, and
an interruption condition not associated with data
transfer, such as attention, does not affect the state
of the subchannel. Thus, the subchannel may be
available when the channel has an interruption
condition pending. Consistent distinction between
the subchannel and channel permits selector and
multiplexer channels to be covered uniformly by a
single description.

Name Abbreviation and Definit ion

Channel

Available A None of the following states
Interruption pending I Interruption condition immedi-

ately available from channel
Working W Channel operating in burst mode
Not operational N Channel not operational

Subchannel

Avai lable A None of the fo 11 owi ng states
Interruption pending I Information for CSWavailable in

subchannel
Working W Subchannel executing an operation
Not operational N Subchannel not operational

liD Device

Available A None of the following states
Interruption pending I Interruption condition in device
Working W Device executing an operation
Not operational N Device not operational

Input/Output-System States

The device referred to in the figure
"Input/Output-System States" includes both the
device proper and its control unit. For some types
of devices, such as magnetic-tape units, the working
and the interruption-pending states can be caused
by activity in the addressed device or control unit.
A "not available" shared control unit imposes its
state on all devices attached to the control unit.

The states of the devices are not related to those of
the channel and subchannel.

When the response to an 110 instruction is
determined by the state of the channel or
subchannel, the components further removed are
not interrogated. Thus, 10 composite states may be
distinguished as conditions for the execution of I/O
instructions. Each composite state is identified by'
three letters. The first letter specifies the state of
the channel, the second letter specifies the state of
the subchannel, and the third letter specifies the
state of the device. Each letter may be A, I, W, or
N, denoting the state of the component. The letter
X indicates that the state of the corresponding
component is not significant for the execution of
the instruction.

Available (AAA): The addressed channel,
subchannel, control unit, and I/O device are
operational, are not engaged in the execution of
any previously initiated operations, and do not
contain any pending interruption conditions.

Because of internal activity, some
block-multiplexer channels may at times appear to
be working even though they are not engaged in
the execution of a previously initiated operation
and do not contain any interruption condition.
This will result in a WXX state instead of the AAA
state.

Interruption Pending in Device (AAI) or Device
Working (AAW): The addressed channel and
subchannel are available. The addressed control
unit or I/O device is executing a previously
initiated operation or contains an interruption
condition. These situations are possible:
1. The device is executing an operation, such as

rewinding magnetic tape or seeking on a disk
file, after signaling channel end.

2. The control unit associated with the device is
executing an operation, such as backspacing file
on a magnetic-tape unit, after signaling channel
end.

3. The device or control unit is executing an
operation on another subchannel or channel.

4. The device or control unit contains the
device-end, control-unit-end, or attention
condition or a channel-end condition associated
with a terminated operation.

Device Not Operational (AAN): The addressed
channel and subchannel are available. The
addressed I/O device is not operational. A device
appears not operational when no control unit

recognizes the address. This occurs when the
control unit is not provided in the system, when
power is off in the control unit, or when the control
unit has been logically disconnected from the
system. The not-operational state is indicated also
when the control unit is provided and is designed to
attach the device, but the device has not been
installed and the address has not been assigned to
the control unit. (See also the section
"Input/Output Device Addressing" in this
chapter.)

If the addressed device is not installed or has
been logically removed from the control unit, but
the associated control unit is operational and the
address has been assigned to the control unit, the
device is said to be not ready. When an instruction
is addressed to a device in the not-ready state, the
control unit responds to the selection and indicates
unit check whenever the not-ready state precludes
a successful execution of the operation. (See the
section "Unit Check" in this chapter.)

Interruption Pending in Sub channel (AIX): The
addressed channel is available. An interruption
condition is pending in the addressed subchannel.
The sub channel is able to provide information for a
CSW. The interruption information indicates status
associated with the addressed device or another
device on the subchannel. The state of the
addressed device is not significant, except when
TEST I/O is addressed to the device associated
with the interruption condition, in which case the
CSW contains status information provided by the
device.

The state AIX does not occur on the selector
channel. On the selector channel, the existence of
an interruption condition in the sub channel
immediately causes the channel to assign to this
condition the highest priority for I/O interruptions
and, hence, leads to the state IIX.

Sub channel Working (AWX): The addressed
channel is available. The addressed subchannel is
executing a previously initiated operation or chain
of operations and has not yet received channel end
for the last operation. The state of the addressed
device is not significant, except when HALT I/O
or HALT DEVICE is issued. During the execution
of HALT I/O and HALT DEVICE, the state of
the device may be interrogated and will then be
indicated in either the CSW or the condition code.

The subchannel-working state does not occur on
the selector channel since all operations on the
selector channel are executed in the burst mode

Chapter 12. Input/Output Operations 12-9

and cause the channel to be in the working state
(WWX).

Subchannel Not Operational (ANX): The
addressed channel is available. The addressed
subchannel on the multiplexer channel is not
operational. A sub channel is not operational when
it is not provided in the system. This state cannot
occur on the selector channel.

Interruption Pending in Channel (IXX): The
addressed channel is not working and has
established which device will cause the next I/O
interruption from this channel. The state in which
the channel contains an interruption condition is
distinguished only by the instruction TEST
CHANNEL. This instruction does not cause the
sub channel and I/O device to be interrogated. The
other I/ 0 instructions, with the exception of
STORE CHANNEL ID, consider the channel
available when it contains an interruption
condition. A channel with an interruption
condition may be considered to be working by the
instruction STORE CHANNEL ID. When the
channel assigns priority for interruptions among
devices, the interruption condition is preserved in
the I/O device or subchannel. (See the section
"Interruption Conditions" in this chapter.)

Channel Working (WXX): The addressed channel
is operating in the burst mode. In the multiplexer
channel, a burst of bytes is currently being handled.
In the selector channel, an operation or a chain of
operations is currently being executed, and the
channel end for the last operation has not yet been
signaled. The states of the addressed device and,
in the multiplexer channel, of the subchannel are
not significant. In addition, because of internal
activity, some block-multiplexer channels may at
times appear to be working even though they are
not operating in burst mode. Depending on the
model and the channel type, TEST I/O and HALT
DEVICE may consider the channel to be available
when the channel is working with a device other
than the addressed device.

Channel Not Operational (NXX): The addressed
channel is not operational. A channel is not
operational when it is not provided in the system,
when power is off in the channel, when it is not
configured to the CPU, or when it detects a
channel-check-stop condition. As long as a
channel-check-stop condition persists, the channel
performs no I/O instructions, with the exception of
CLEAR CHANNEL (which may be executed,

12-10 System/370 Principles of Operation

depending on the system model); performs no I/O
interruptions; executes no channel programs; and
suspends all I/O-interface activity. When a
channel is not operational, the states of the
addressed I/O device and sub channel are not
significant.

Resetting of the Input/Output System
Two types of resetting can occur in the I/O system:
an I/O system reset and an I/O selective reset.
The response of each type of I/O device to the two
kinds of reset is specified in the SL publication for
the device.

I/O-System Reset
I/ O-system reset is performed in the channel and
on the associated I/O interface when the CPU to
which the channel is configured executes the
instruction CLEAR CHANNEL or performs a
program reset, initial-program reset, clear reset, or
power-on reset, when a power-on sequence is
performed by the channel, and, under certain
conditions on some earlier models, when a channel
detects equipment malfunctions and the
clear-channel facility is not installed.

I/O-system reset causes the channel to conclude
operations on all subchannels. Status information
and all interruption conditions in all subchannels
are reset, and all operational sub channels are
placed in the available state. The channel signals
system reset to all I/O devices attached to it.

I/O Selective Reset
The I/O selective reset is performed by some
channels when they detect certain equipment
malfunctions.

I/ 0 selective reset causes the channel to signal
selective reset to the device that is connected to the
channel at the time the malfunction is detected.
No subchanne1s are reset.

Effect of Reset on a Working Device
With either type of reset, if the device is currently
communicating with a channel, the device
immediately disconnects from the channel. Data
transfer and any operation using the facilities of
the control unit are immediately concluded, and the
I/O device is not necessarily positioned at the
beginning of a block. Mechanical motion not
involving the use of the control unit, such as
rewinding magnetic tape or positioning a
disk-access mechanism, proceeds to the normal
stopping point, if possible. The device appears in
the working state until the termination of
mechanical motion or the inherent cycle of

operation, if any, whereupon it becomes available.
Status information in the device and control unit is
reset, but an interruption condition may be
generated upon completing any mechanical
operation.

Reset Upon Malfunction
When a malfunction occurs and the program is
alerted by an I/O interruption, or when a
malfunction occurs during the execution of an I/O
instruction and the program is alerted by the setting
of a condition code, then an I/O selective reset
may have been performed. A CSW is stored
identifying the cause of the malfunction.

The device addressed by the I/ 0 instruction is
not necessarily the device that is reset.

When a malfunction occurs and the program is
alerted by a machine-check interruption, then an
I/O selective reset or, on some earlier models, I/O
system reset may have been performed. This may
or may not be accompanied by an I/ 0 interruption.
When no I/O interruption occurs, a CSW is not
stored and a device is not identified.

Condition Code
The results of certain tests by the channel and
device, and the original state of the addressed part
of the I/O system are used during the execution of
an I/O instruction to set one of four condition
codes in the PSW. The condition code is set at the
time the execution of the instruction is concluded,
that is, the time the CPU is released to proceed
with the next instruction. The condition code
ordinarily indicates whether or not the function
specified by the instruction has been performed
and, if not, the reason for the rejection. In the
case of START I/O FAST RELEASE executed
independent of the device, a condition code 0 may
be set that is later superseded by a deferred
condition code stored in the CSW.

The figure "Condition-Code Settings for I/O
States and Instructions" lists the I/O-system states
and the corresponding condition codes for each
I/O instruction. The I/O-system states and
associated abbreviations were defined in the section
"States of the Input/Output System" earlier in this
chapter. The digits in the figure represent the
decimal value of the code.

The available state results in condition code 0
only when no errors are detected during the
execution of the I/ 0 instruction.

When a subchannel on a multiplexer channel
contains an interruption condition (state AIX), the
I/O device associated with the concluded operation
normally is in the interruption-pending state.
When the channel detects during the execution of
TEST I/O that the device is not operational,
condition code 3 is set. Similarly, condition code 3
is set when HALT I/O or HALT DEVICE is
addressed to a subchannel in the working state
(state A WX), but the device is not operational.

Error conditions, including all equipment or
programming errors detected by the channel or the
I/O device during execution of the I/O instruction,
generally cause the CSW to be stored. However,
when the nature of the error causes a
machine-check interruption, but no I/O
interruption, to occur, the CSW is not stored.
Three types of errors can occur:

Channel-Equipment Error: The channel can
detect the following equipment errors during
execution of START I/O, START I/O FAST
RELEASE,TESTI/O,CLEARI/O,HALTI/O,
and HALT DEVICE:
1. The channel received an address from the

device during initial selection that either had a
parity error or was not the same as the one the
channel sent out. Some device other than the
one addressed may be malfunctioning.

2. The unit-status byte that the channel received
during initial selection had a parity error.

3. A signal from the I/O device occurred at an
invalid time or had invalid duration.

4. The channel detected an error in its control
equipment. (This is also true for STORE
CHANNEL ID and TEST CHANNEL.)

The channel may perform an I/O selective reset
or, on some earlier models, may perform an I/O
system reset or generate a halt signal, depending on
the type of error and the model. If a CSW is
stored, channel-control check or interface-control
check is indicated, depending on the type of error.

Chapter 12. Input/Output Operations 12-11

Condition-Code Settings

liD S 10
Conditions State SIOF TID CLRIO HID HDV TCH STIDC CLRCH

Available
Interruption pending in device
Device working
Device not operational
Interruption pending in subchannel
For the addressed device
For another device

Subchannel working
With the addressed device
With another device

Subchannel not operational
Interruption pending in channel
Channel working
With the addressed device
With another device

Channel not operational

Explanation:

AAA
AAI
AAW
AAN
AIX

AWX

ANX
IXX

WXX

NXX

0,1 *@ 0
1 *@ 1 *
1 *@ 1 *
3@ 3

2 1*#
2 2

2 2
2 2
3 3

See

2 2
2 2-
3 3

o
o
o
o
1*
o
1*
o
3

1* 1*
1* 1*
1* 1*
3 3

o 0
o 0

1 *# 1 *#
1*# 0
3 3

Note-----

**
3

2 +
2 ;t

3 3

o
o
o
o

o
o

o
o
o
1

2
2
3

o
o
o
o

o
o

o
o
o

3

* Whenever condition code 1 is set, the CSW or its status portion is
stored at location 64 during execution of the instruction.

**

When CLEAR liD encounters the WXX state, either condition code 2 is
set, or the channel is treated as available and the condition code is
set according to the state of the subchannel. When the channel is
treated as available, the condition codes for the WXX states are the
same as for the AXX states.

A condition code 1 (with the CSW stored) or 2 may be
on the channel.

set, depending

;t The condition code depends on the state of the subchannel, the
channel type, and the system model. If the subchannel is not
operat i ona I, a cond i t i on code 2 or 3 is set. I f the subchanne lis
available or working with the addressed device, a condition code 2 is
set. Otherwise, a condition code 0 or 2 is set.

When a "device not operational" response is received in selecting the
addressed device, condition code 3 is set.

@ START liD FAST RELEASE may cause the same condition code to be set as
for START liD or may cause condition code 0 to be set.

+ The condition code depends on the liD interface sequence, the channel
type, and the system model. If the channel ascertains that the
device received the signal to terminate, a condition code 1 is set
and the CSW stored. Otherwise, a condition code 2 is set.

When the channel is unable to store the channel 10 because of the
working or interruption pending state, a condition code 2 is set. If
the working or interruption pending state does not preclude storing
the channel 10, a condition code 0 is set.

Condition-Code Settings for I/O States and Instructions (Part 1 of 2)

12-12 System/370 Principles of Operation

o
o
o
o

o
o

o
o
o
o

0&
0&
3&&

Explanation (Continued):

• If the subchannel is interruption pending for the addressed device.
condition code 1 may be set depending on the channel type.

& On certain channels. when the working state precludes performing the
I/O system reset. condition code 2 is set.

&& On certain channels, when the ~ot-operational state is due to a
channel-check-stop condition, the instruction is executed, and condi­
tion code 0 is set.

Note: For the purpose of executing START I/O, START I/O FAST RELEASE, TEST
~CLEAR I/O, HALT DEVICE, and HALT I/O, a channel containing an
interruption condition appears the same as an available channel, and the
condition-code setting depends on the states of the subchannel and device.
The condition codes for the IXX states are the same as for the AXX states.
where the XS represent the states of the subchannel and the device. As an
example, the condition code for the lAW state is the same as for AAW.

Condition-Code Settings for I/O States and Instructions (Part 2 of 2)

Channel-Programming Error: The channel can
detect the following programming errors during
execution of START I/O or START I/O FAST
RELEASE. All of the errors are indicated during
START I/O, and during START I/O FAST
RELEASE when it is executed as START I/O, by
the condition-code setting and by the status portion
of the CSW. When the SIOF function is
performed, the first two errors are indicated as for
START I/O, and the remaining errors are indicated
in a subsequent interruption.

Depending on the model, conditions 9, 10, 11
and 12 may cause an error indication and prevent
operation initiation or may cause an error
indication only if the operation causes the device to
attempt to transfer data. In the second case, a
command that specifies an immediate operation
would not cause an error indication for an SIO or
SIOF function.
1. Invalid CCW -address specification in CAW
2. Invalid CAW format
3. Invalid CCW address in CAW
4. First-CCW location protected against fetching
5. First CCW specifying transfer in channel
6. Invalid command code in first CCW
7. Invalid count in first CCW
8. Invalid format for first CCW
9. If channel indirect data addressing (CIDA) was

specified, an invalid data-address specification
in the first CCW

10. If CIDA was specified, an invalid data address
in the first CCW

11. If CIDA was specified, the first-IDA W location
protected against fetching

12. If CIDA was specified, invalid format for the
first IDAW

The CSW indicates program check, except for
items 4 and 11, for which protection check is
indicated.

Device Error: Programming or equipment errors
detected by the device during the execution of
START I/O, or START I/O FAST RELEASE are
indicated by unit check or unit exception in the
CSW.

The causes of unit check and unit exception for
each type of I/ 0 device are detailed in the SL
publication for the device.

Instruction Formats
All I/O instructions use the following S format:

Op Code

o 16 20 31

Except for STORE CHANNEL ID, bit positions
8-14 of these instructions are ignored.

The second-operand address specified by the Bz
and Dz fields is not used to designate data but
instead is used to identify the channel and I/O
device. Address computation follows the rules of
address arithmetic. The address has the following
format:

1////////IChn AddrlDev Addrl

8 16 24 31

Bit positions 16-31 contain the 16-bit I/O
address. Bit positions 8-15 are ignored.

Chapter 12. Input/Output Operations 1Z-13

Instructions
All I/O instructions cause a serialization function
to be performed. See the section "Serialization" in
Chapter 5, "Program Execution."

The names, mnemonics, format, and operation
codes of the 1/ ° instructions are listed in the figure
"Input/Output Instructions." The figure also
indicates that all I/O instructions cause a program
interruption when they are encountered in the
problem state, that all I/ ° instructions set the
condition code, and that all I/O instructions are in
the S instruction format.

Note: In the detailed descriptions of the individual
instructions, the mnemonic and the symbolic
operand designation for the assembler language are
shown with each instruction. In the case of
START I/O, for example, SID is the mnemonic
and D lB 2) the operand designation.

Mne-
Name monic

CLEAR CHANNEL CLRCH
CLEAR liD CLRlo
HALT DEVICE HDV
HALT liD HID
START liD SID
START liD FAST RELEASE SloF
STORE CHANNEL 10 STIDC
TEST CHANNEL TCH
TEST 110 TID

Explanation:

C Condition code is set.
P Privileged-operation exception.
RE Recovery-extension feature.
S S instruction format.

S
S
S
S
S
S
S
S
S

Programming Note
The instructions CLEAR I/O, HALT DEVICE,
HALT I/O, START I/O, START I/O FAST
RELEASE, STORE CHANNEL ID, and TEST I/O
cause a CSW to be stored. To prevent the contents
of the CSW stored by the instruction from being
destroyed by an immediately following I/O
interruption, the CPU must be disabled for all I/O
interruptions before CLEAR I/O, HALT DEVICE,
HALT I/O, START I/O, START I/O FAST
RELEASE, STORE CHANNEL ID, and TEST I/O
is issued and must remain disabled until the
information in the CSW provided by the instruction
has been acted upon or stored elsewhere for later
use.

op
Characteristics Code

C RE P $ 9F01*
C P $ 9001*
C P $ 9E01*
C P $ 9EOO*
C P $ 9COO*
C P $ 9C01*
C P $ B203
C P $ 9FOO*
C P $ 9DOO*

* Bits 8-14 of the operation code are ignored.
$ Causes serialization.

Summary of Input/Output Instructions

12-14 System/370 Principles of Operation

CLEAR CHANNEL

CLRCH [S]

'9F01'

o 16 20 31

With the clear-channel feature installed, the
CLRCH function is performed. Otherwise, the
TCH function, which is described in the definition
of TEST CHANNEL, is performed.

I/O-system reset is performed in the channel,
and system reset is signaled to all I/O devices
attached to the addressed channel.

The instruction CLEAR CHANNEL is executed
only when the CPU is in the supervisor state.

Bits 8 -14 of the instruction are ignored. Bits
16-23 of the second-operand address identify the
channel to which the instruction applies. Bits
24-31 of the address are ignored.

The instruction CLEAR CHANNEL inspects
only the state of the addressed channel. When the
channel is available or interruption-pending,
I/O-system reset is performed.

When the channel is working, some channels
may indicate busy and cause no I/O-interface
action, while other channels cause I/O-system reset
to be performed.

When the channel is not operational because of
a channel-cheek-stop condition, some channels will
cause an I/O-system reset to be performed on the
I/O interface. In all other not-operational-state
cases, the reset function is inhibited.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o I/O-system reset was performed on the I/O

interface associated with the addressed
channel

1
2 Channel busy
3 Not operational

The condition code set when CLEAR
CHANNEL causes the CLRCH function to be
performed is shown for all possible states of the
1/ 0 system in the figure "Condition Codes Set by
CLEAR CHANNEL." The condition code set
when CLEAR CHANNEL causes the TCH
function to be performed is shown for all possible
states of the I/O system in the figure "Condition
Codes Set by TEST CHANNEL" in the definition

of the instruction TEST CHANNEL. See the
section "States of the Input/Output System" in this
chapter for a detailed definition of the A, I, W, and
N states.

Channel N

3++

A Ava i I ab I e
I Interruption Pending
W Working
N Not Operational
+ On certain channels, when the working

state precludes performing the I/O
system reset on the I/O interface,
condition code 2 is set.

++ On certain channels, when the
not-operational state is due to a
channel-cheek-stop condition, the
instruction is executed, and condition
code 0 is set.

Condition Codes Set by CLEAR CHANNEL

Programming Note
CLEAR CHANNEL should be used to reset an
I/O-device association with an I/O interface when
I/O devices are shared with other systems or have
multiple paths to the same system. In those cases
when I/O devices are shared, before using CLEAR
CHANNEL, steps should be taken to protect
against compromising data integrity until the
desired I/O-device association can be reestablished.

CLEAR CHANNEL can be instrumental in
restoring channels which are in the not-operational
state because of a channel-check-stop condition.
The execution of CLEAR CHANNEL by all
channels experiencing the channel-check-stop
condition will, on some systems, cause an
I/O-system reset and an initial microprogram load
of the affected channels. If the initial­
microprogram-load procedure is not completed
successfully or if the system is not designed to
perform the initial microprogram load, the affected
channels remain in the not-operational state, and
the channel-check-stop conditions persist.

CLEAR I/O

CLRIO [S 1

9DOI

o 16 20 31

Chapter 12. Input/Output Operations 12-15

Either a TIO or CLRIO function is performed,
depending on the channel and the
block-multiplexing control, bit 0 of control register
O. The TIO function is performed when the
CLRIO function is not implemented by the channel
or when the block-multiplexing-control bit is zero.

The TIO function is described in the definition
of the instruction TEST I/O.

Bits 8-14 of the instruction are ignored. Bit
positions 16-31 of the second-operand address
identify the channel, subchannel, and I/O device to
which the instruction applies.

The CLRIO function causes the current
operation with the addressed device to be
discontinued and the state of the operation at the
time of the discontinuation to be indicated in the
stored CSW.

When the subchannel is available, interruption­
pending with another device, or working with
another device, no channel action is taken, and
condition code 0 is set. Channels not capable of
determining subchannel states while in the working
state may instead set condition code 2.

When the subchannel is either working with the
addressed device or interruption-pending with the
addressed device, the CLRIO function causes
condition code 1 to be set and causes the channel
to discontinue the operation with the addressed
device by storing the status of the operation in the
CSW and making the subchannel available. When
the channel is working with the addressed device,
the device is signaled to terminate the current
operation. Some channels may, instead, indicate
busy and cause no channel action.

When any of the following conditions occurs, the
CLRIO function causes the CSW at location 64 to
be stored. The contents of the entire CSW pertain
to the I/O device addressed by the instruction.
1. The channel is available or interruption­

pending, and the subchannel contains an
interruption condition for the addressed device
or is working with the addressed device. The
subchannel-key, command-address, and count
fields describe the state of the operation at the
time of the execution of the instruction.

2. The channel is working with the addressed
device. The subchannel-key, command­
address, and count fields describe the state of
the operation at the time the instruction is

12-16 System/370 Principles of Operation

executed. (Some channels alternatively
indicate busy under this condition.)

3. The channel is working with a device other
than the one addressed, and the sub channel
contains an interruption-pending condition for
the addressed device or is working with the
addressed device. The subchannel-key,
command-address, and count fields describe the
state of the operation at the time CLEAR I/ 0
is executed. (Some channels alternatively
indicate busy under these conditions.)

4. The channel detected an equipment error
during the execution of the instruction. The
CSW identifies the error condition. The states
of the channel and the I/O operations in
progress are unpredictable. The limited
channel logout, if stored, indicates a sequence
code of 000.

When CLEAR I/O cannot be executed because
of a pending logout that affects the operational
capability of the channel, a full CSW is stored.
The fields in the CSW are all set to zeros, with the
exception of the logout-pending and channel­
control-check bits, which are set to ones. No
channel logout is associated with this status.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o No operation in progress for the addressed

device
1 CSW stored
2 Channel busy
3 Not operational

The condition code set when CLEAR I/O causes
the CLRIO function to be performed is shown for
all possible states of the I/O system in the figure
"Condition Codes Set by CLEAR I/O." The
condition code set when CLEAR I/O causes the
TIO function to be performed is shown for all
possible states of the I/ 0 system in the figure
"Condition Codes Set by TEST I/O" in the
definition of the instruction TEST I/O. See the
section "States of the Input/Output System" in this
chapter for a detailed definition of the A, I, W, and
N states.

Channe I

Subchanne 1

A Avai lable
I I nterrupt ion pend i ng

I~ = Interruption pending for a device other than the one
addressed

1# = Interruption pending for the addressed device
W Working

wit = Working with a device other than the one addressed
W# = Working with the addressed device

N Not oper at i ana 1
* CSW stored

t In the W;tAX. WitlitX, and W;tW;tX states, a condition code 0
or 2 may be set, depend t ng on the channe 1.

tt In the W~I#X, W~W#X, and W#XX states, a condition code I
(wi th the CSW stored) or 2 may be set, depend i ng on
the channe I.

ttt I n the W;tNX state, a cond i t i on code 2 or 3 may be set,
depend i ng on the channe I.

Note: Underscored codes perta 1 n to 5 i tuat ions that can
occur only on the multiplexer channel.

Condition Codes Set by CLEAR I/O

Programming Notes
1. Since some channels cause a condition code 2

to be set when the instruction is received and
the channel is working, it may be useful to issue
a halt instruction and then CLEAR I/O to the
desired address. Using HALT DEVICE will
ensure that condition code 2 is received on the
CLEAR I/O only when the channel is working
with a device other than the one addressed.
Using HALT I/O will ensure that the current
working state, if any, is terminated without
regard for the address.

2. Because of the inability of CLEAR I/O to
terminate operations on some channels when in
the working state, the instruction is not a
suitable substitute for HALT I/O or HALT
DEVICE.

3. The combination of HALT DEVICE followed
by CLEAR I/O can be used to clear out all
activity on a channel by executing the two
instructions for all device addresses on the
channel.

HALT DEVICE

HDV [5]

9EOI

o 16 20 31

The current I/O operation at the addressed I/O
device is terminated. The subsequent state of the

subchannel depends on the type of channel. Bits
8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address
identify the channel, the subchannel, and the I/O
device to which the instruction applies.

When the channel is either available or
interruption-pending with the subchannel available
or working with the addressed device, HALT
DEVICE causes the addressed device to be selected
and to be signaled to terminate the current
operation. If the subchannel is working with the
addressed device, HALT DEVICE also causes the
subchannel to signal termination of the device
operation the next time the device requests or
offers a byte of data, if any. If chaining is
indicated for the I/O operation using the
subchannel, it is suppressed. If the subchannel is
available, the subchannel is not affected.

When the channel is either available or
interruption-pending with the subchannel either
working with a device other than the one addressed
or interruption-pending, no action is taken.

When the channel is working in burst mode with
the addressed device, data transfer for the
operation is immediately terminated, and the device
immediately disconnects from the channel. If
chaining is indicated for the I/O operation using
the subchannel, it is suppressed.

When the channel is working in burst mode with
a device other than the one addressed, and the
subchannel is available, interruption-pending, or
working with a device other than the one
addressed, no action is taken. If the subchannel is
working with the addressed device, the subchannel
signals termination of the device operation the next
time the device requests or offers a byte of data, if
any. If chaining is indicated for the I/O operation
using the subchannel, it is suppressed.

When the channel is working in burst mode with
a device other than the one addressed and the
subchannel is not operational, is interruption­
pending, or is working with a device other than the
one addressed, the resulting condition code may, in
some channels, be determined by the sub channel
state.

Termination of a burst operation by HALT
DEVICE on a selector channel causes the channel
and subchannel to be placed in the interruption­
pending state. Generation of the interruption
condition is not contingent on the receipt of status
information from the device. When HALT
DEVICE causes a burst operation on a byte­
multiplexer channel to be terminated, the
subchannel associated with the burst operation

Chapter 12. Input/Output Operations 12-17

remains in the working state until the device
provides ending status, whereupon the subchannel
enters the interruption-pending state. The
termination of a burst operation by HALT
DEVICE on a block-multiplexer channel may,
depending on the model and the type of
subchannel, take place as for a selector channel or
may allow the sub channel to remain in the working
state until the device provides ending status.

When any of the three situations numbered
below occurs, HALT DEVICE causes the 16-bit
unit-status and channel-status portion of the CSW
to be replaced by a new set of status bits. The
contents of the other fields of the CSW are not
changed. The CSW stored by HALT DEVICE
pertains only to the execution of HALT DEVICE
and does not describe the I/O operation, at the
addressed subchannel, that is terminated. The
extent of data transfer and the status at the
termination of the operation at the sub channel are
provided in the CSW associated with the
interruption condition caused by the termination.
The three situations are:
1. The addressed device is selected and signaled to

terminate the current operation, if any. The
CSW then contains zeros in the status field
unless a machine malfunction is detected.

2. The control unit is busy and the device cannot
be given the signal to terminate the operation.
The CSW unit-status field contains ones in the
busy and status-modifier bit positions. The
channel-status field contains zeros unless a
machine malfunction is detected.

3. The channel detects a machine malfunction
during the execution of HALT DEVICE. The
status bits in the CSW then identify the type of
malfunction. The state of the channel and the
progress of the I/O operation are
unpredictable.

When HALT DEVICE cannot be executed
because of a pending logout which affects the
operational capability of the channel or subchannel,
a full CSW is stored. The fields in the CSW are all
set to zeros, with the exception of the logout­
pending bit and the channel-control-check bit,
which are set to ones. No channel logout occurs in
this case.

When HALT DEVICE causes data transfer to be
terminated, the control unit associated with the
operation remains not available until the data­
handling portion of the operation in the control
unit is concluded. Conclusion of this portion of the
operation is signaled by the generation of channel
~nd. This may occur at the normal time for the

12-18 System/370 Principles of Operation

operation, or earlier, or later, depending on the
operation and type of device. If the control unit is
shared, all devices attached to the control unit
appear in the working state on that channel until
the channel-end condition is accepted by the CPU.
The I/O device executing the terminated operation
remains in the working state until the end of the
inherent cycle of the operation, at which time
device end is generated. If blocks of data at the
device are defined, as in read-type operations on
magnetic tape, the recording medium is advanced to
the beginning of the next block.

If HALT DEVICE is issued at a time when the
subchannel is available and no burst operation is in
progress, the effect of the HALT DEVICE signal
depends partially on the type of device and its
state. In all cases, the HALT DEVICE signal has
no effect on devices that are not in the working
state or are executing a mechanical operation in
which data is not transferred, such as rewinding
tape or positioning a disk-access mechanism. If the
device is executing a type of operation that is
unpredictable in duration, or in which data is
transferred, the device interprets the signal as one
to terminate the operation. Pending attention or
device-end conditions at the device are not reset.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Subchannel busy with another device or

interruption pending
1 CSW stored
2 Channel working
3 Not operational

The condition code set by HALT DEVICE for
all possible states of the I/ 0 system is shown in the
figure "Condition Codes Set by HALT DEVICE."
See the section "States of the Input/Output
System" in this chapter for a detailed definition of
the A, I, W, and N states.

Channel

Subchannel

A
Control Unit
-Device 1*

A
I
W

Available
Interruption pending
Working

A W#

@
W#

W~ = Working with a device other than the one addressed
W# = Working with the addressed device

N
*

Not operational
CSW Stored

@ In the W#XX state, either condition code 1 (with CSW
stored) or condition code 2 may be set, depending on
the channel. However, condition code 1 (with CSW
stored) can be set only if the control unit has
received the signal to terminate or if control-unit-
busy status is received by the channel.

+ In the W~IX and W~W~X states, either condition
code 0 or 2 may be set.

• In the W~NX state, either condition code 2 or 3 may
be set, depending on the model and the channel type.

Note: Underscored condition codes pertain to situations
that can occur only on the mUltiplexer channel.

Condition Codes Set by HALT DEVICE

Programming Notes
1. Some selector and byte-multiplexer channels

designed prior to the defining of HALT
DEVICE (for example, the 2860), will execute
HALT DEVICE as HALT I/O. A program
can ensure complete compatibility between
HALT DEVICE and HALT I/O on such
channels by observing the following
conventions:
a. On a byte-multiplexer channel, do not issue

HALT DEVICE to a multiplexing device
when a burst operation is in progress on the
channel.

b. On a byte-multiplexer channel, do not issue
HALT DEVICE to a device on a shared
sub channel while that subchannel is
working with a device other than the one
addressed.

c. On a selector channel in the working state,
do not issue HALT DEVICE to any device
other than the one with which the channel
is working.

2. The execution of HALT DEVICE always
causes data transfer between the addressed
device and the channel to be terminated. The
condition code and the CSW (when stored)
indicate whether the control unit was signaled
to terminate its operation during the execution

of the instruction. If the control unit was not
signaled to terminate its operation, the
condition code and the CSW (when stored)
imply the situations under which the execution
of a HALT DEVICE for the same address will
cause the control unit to be signaled to
terminate.

Condition Code 0 indicates that HALT DEVICE
cannot signal the control unit until an interruption
condition on the same subchannel is cleared.

Condition Code 1 with Control-Unit-Busy Status
in the CSW indicates that HALT DEVICE cannot
signal the control unit until the control-unit-end
status is received from that control unit.

Condition Code 1 with Zeros in the Status Field
of the CSW indicates that the addressed device
was selected and signaled to terminate the current
operation, if any.

Condition Code 2 indicates that the control unit
cannot be signaled until the channel is not working.
The end of the working state can be detected by
noting an interruption from the channel or by
noting the results of repeatedly executing HALT
DEVICE.

Condition Code 3 indicates that manual
intervention is required in order to allow HALT
DEVICE to signal the control unit to terminate.

Chapter 12. Input/Output Operations 12-19

HALT I/O

HID [S 1

9EOO D2

o 16 20 31

Execution of the current I/ 0 operation at the
addressed I/O device, subchannel, or channel is
terminated. The subsequent state of the
sub channel depends on the type of channel. Bits
8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address
identify the channel and, when the channel is not
working, identify the subchannel and the I/ 0
device to which the instruction applies.

When the channel is either available or
interruption-pending, with the subchannel either
available or working, HALT I/O causes the
addressed device to be selected and to be signaled
to terminate the current operation, if any. If the
subchannel is available, its state is not affected. If,
on the byte-multiplexer channel, the sub channel is
working, data transfer is immediately terminated,
but the subchannel remains in the working state
until the device provides the next status byte,
whereupon the subchannel is placed in the
interruption-pending state.

When HALT I/ 0 is issued to a channel
operating in the burst mode, data transfer for the
burst operation is terminated, and the device
performing the burst operation is immediately
disconnected from the channel. The sub channel
and I/O-device address in the instruction, in this
case, is ignored.

The termination of a burst operation by HALT
I/O on the selector channel causes the channel and
sub channel to be placed in the interruption-pending
state. Generation of the interruption condition is
not contingent on the receipt of a status byte from
the device. When HALT I/O causes a burst
operation on the byte-multiplexer channel to be
terminated, the subchannel associated with the
burst operation remains in the working state until
the device signals channel end, whereupon the
subchannel enters the interruption-pending state.
The termination of a burst operation by HALT I/O
on a block-multiplexer channel may, depending on
the model and the type of subchannel, take place as
for a selector channel or may allow the subchannel
to remain in the working state until the device
provides ending status.

12-20 System/370 Principles of Operation

On the byte-multiplexer channel operating in the
byte-multiplex mode, the device is selected and the
instruction executed only after the channel has
serviced all outstanding requests for data transfer
for previously initiated operations, including the
operation to be halted. If the control unit does not
accept the HALT I/O signal because it is in the
not-operational or control-unit-busy state, the
subchannel, if working, is set up to signal
termination of device operation the next time the
device requests or offers a byte of data. If
command chaining is indicated in the subchannel
and the device presents status next, chaining is
suppressed.

When the addressed subchannel is interruption­
pending, with the channel available or
interruption-pending, HALT I/O does not cause
any action.

When any of the following conditions occurs,
HALT I/O causes the status portion, bits 32-47, of
the CSW to be replaced by a new set of status bits.
The contents of the other fields of the CSW are not
changed. The CSW stored by HALT I/O pertains
only to the execution of HALT I/O and does not
describe the I/O operation, at the addressed
subchannel, that is terminated. The extent of data
transfer, and the status at the termination of the
operation at the subchannel, are provided in the
CSW associated with the interruption condition due
to the termination.
1. The addressed device was selected and signaled

to terminate the current operation. The CSW
contains zeros in the status field unless an
equipment error is detected.

2. The channel attempted to select the addressed
device, but the control unit could not accept
the HALT I/O signal because it is executing a
previously initiated operation or had an
interruption condition associated with a device
other than the one addressed. The signal to
terminate the operation has not been
transmitted to the device, and the subchannel,
if in the working state, will signal termination
the next time the device identifies itself. The
CSW unit-status field contains ones in the busy
and status-modifier bit positions. The
channel-status field contains zeros unless an
equipment error is detected.

3. The channel detected an equipment
malfunction during the execution of HALT
I/O. The status bits in the CSW identify the
error condition. The state of the channel and
the progress of the I/O operation are
unpredictable.

When HALT I/O cannot be executed because of
a pending logout which affects the operational
capability of the channel or subchannel, a full CSW
is stored. The fields in the CSW are all set to
zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout occurs in this case.

When HALT I/O causes data transfer to be
terminated, the control unit associated with the
operation remains unavailable until the data­
handling portion of the operation in the control
unit is terminated. Termination of the data­
transfer portion of the operation is signaled by the
generation of channel end, which may occur at the
normal time for the operation, earlier, or later,
depending on the operation and type of device. If
the control unit is shared, all devices attached to
the control unit appear in the working state until
the channel-end signal is accepted by the CPU.
The I/O device executing the terminated operation
remains in the working state until the end of the
inherent cycle of the operation, at which time
device end is generated. If blocks of data at the
device are defined, such as reading on magnetic
tape, the recording medium is advanced to the
beginning of the next block.

When HALT I/O is issued at a time when the
subchannel is available and no burst operation is in
progress, the effect of the HALT I/O signal
depends on the type of device and its state and is
specified in the SL publication for the device. The
HALT I/O signal has no effect on devices that are
not in the working state or are executing a
mechanical operation in which data is not
transferred, such as rewinding tape or positioning a
disk-access mechanism. If the device is executing a
type of operation that is variable in duration, the
device interprets the signal as one to terminate the
operation. Attention or device-end signals at the
device are not reset.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Interruption pending in subchannel
1 CSW stored
2 Burst operation terminated
3 Not operational

The condition code set by HALT I/O for all
possible states of the I/ 0 system is shown in the
figure "Condition Codes Set by HALT I/O." See
the section "States of the Input/Output System" in

this chapter for a detailed definition of the A, I, W,
and N states.

Channel

Subchannel

Control Unit
-Device

A
I
W
N
*

Available
Interruption pending
Working
Not operational
CSW stored

When a device-not-operational response is received in
selecting the addressed device, 'a condition code 3 is
set.

Note: Underscored condition codes pertain to situations
that can occur only on the mUltiplexer channel.

Condition Codes Set by HALT I/O

Programming Note
The instruction HALT I/ 0 provides the program
with a means of terminating an I/O operation
before all data specified in the operation has been
transferred or before the operation at the device
has reached its normal ending point. It permits the
program to immediately free the selector channel
for an operation of higher priority. On the byte­
multiplexer channel, HALT I/O provides a means
of controlling real-time operations and permits the
program to terminate data transmission on a
communication line.

START I/O

SID [S 1

9COO D2

o 16 20 31

START I/O FAST RELEASE

SIOF [S 1

9COI D2

o 16 20 31

A write, read, read backward, control, or sense
operation is initiated with the addressed I/O device
and subchannel. Bits 8-14 of the instruction are
ignored.

Either an SIO or SIOF function is performed,
depending on the instruction, the channel, and the

Chapter 12. Input/Output Operations 12-21

block-multiplexing control, bit 0 of control register
O. The instruction START I/O always causes the
SIO function to be performed, as does START I/O
FAST RELEASE when the block-multiplexing­
control bit is zero. When the bit is one, START
I/O FAST RELEASE may, depending on the
channel, cause either the SIO or the SIOF function
to be performed.

Bits 16-31 of the second-operand address
identify the channel, subchannel, and I/O device to
which the instruction applies. The CAW, at
location 72, contains the subchannel key and the
address of the first CCW. This CCW specifies the
operation to be performed, the storage area to be
used, and the action to be taken when the
operation is completed.

For the SIO function, the I/O operation is
initiated if the addressed I/ 0 device and
subchannel are available, the channel is available or
interruption-pending, and errors or exceptional
situations have not been detected. The I/O
operation is not initiated when the addressed part
of the I/O system is in any other state or when the
channel or device detects any error or exceptional
situations during execution of the instruction.

For the SIOF function, the I/O operation is
initiated if the subchannel is available, the channel
is available or interruption-pending, and errors or
exceptional situations have not been detected. The
I/O operation is not initiated when the subchannel
and channel are in any other state or when the
channel or device detects any error or exceptional
situation during execution of the instruction. The
device state or device-detected errors are not
relevant during instruction execution but are
indicated in a CSW stored during a subsequent
interruption.

When the channel is available or interruption­
pending, and the sub channel is available before the
execution of the instruction, the following
situations cause a CSW to be stored. How the
CSW is stored depends on whether an SIO or SIOF
function is performed. The SIO function causes
the status portion of the CSW to be replaced by a
new set of status bits. The status bits pertain to
the device addressed by the instruction. The
contents of the other fields of the CSW are not
changed. When the SIOF function is performed,
the first situation causes the same action as for the
SIO function; also, the control-unit and device
state may be tested, and so situation 5 may cause
the same action as for the SIO function, or the
situation may be indicated in a subsequent I/O
interruption during which the entire CSW will be
stored. The remaining situations for the SIOF

12-22 System/370 Principles of Operation

function will be indicated in a subsequent
interruption, during which the entire CSW will be
stored.
1. The channel detects a programming error in the

contents of the CAW or detects an equipment
error during execution of the instruction. The
CSW identifies the error. If selection of the
device occurred prior to detection of the error
or if the error condition was detected during
the selection of the device, the device status is
indicated in the CSW.

2. The channel detects a programming error
associated with the first CCW or, if CIDA is
specified, with the first IDAW; or, for the SIOF
function, the channel detects an equipment
error after completion of the instruction. The
CSW identifies the error. If selection of the
device occurred prior to detection of the error,
or if the error condition was detected during
the selection of the device, the device status is
indicated in the CSW.

3. An immediate operation was executed, and
either (1) no command chaining is specified
and no command retry occurs, or (2) chaining
is suppressed because of unusual situations
detected during the operation. In the CSW, the
channel-end bit is one, the busy bit is zero, and
other status may be indicated. The PCI bit is
one if PCI was specified in the first CCW. The
I/O operation is initiated, but no information
has been transferred to or from the storage area
designated by the CCW. No interruption
conditions are generated at the subchannel, and
the subchannel is available for a new I/O
operation. If device end is not indicated, the
device remains busy, and a subsequent device­
end condition is generated.

4. The I/O device is interruption-pending, or the
control unit is interruption-pending for the
addressed device. The CSW unit-status field
contains one in the busy-bit position, identifies
the interruption condition, and may contain
other bits provided by the device or control
unit. The interruption condition is cleared.
The I/ 0 operation is not initiated. The
channel-status field indicates any errors
detected by. the channel, and the PCI bit is one
if PCI was specified in the first CCW.

5. The I/O device or the control unit is executing
a previously initiated operation, or the control
unit is interruption-pending for a device other
than the one addressed. The CSW unit-status
field contains one in the busy-bit position or, if
the control unit is busy, the busy and status­
modifier bits are ones. The I/O operation is

not initiated. The channel-status field indicates
any errors detected by the channel, and the
PCI bit is one if specified in the first CCW.

6. The I/O device or control unit detected an
equipment or programming error during the
initiation, or the addressed device is not ready.
The CSW identifies the error. The channel-end
and busy bits are zeros, unless the device was
busy, in which case the busy bit, as well as any
bits causing interruption conditions, are ones.
The interruption conditions indicated in the
CSW have been cleared at the device. The I/O
operation is not initiated. No interruption
conditions are generated at the I/O device or
subchannel. The PCI bit in the CSW is one if
PCI was specified in the first CCW.

When the SIO or SIOF function cannot be
executed because of a pending logout which affects
the operational capability of the channel or
subchannel, a full CSW is stored. The fields in the
CSW are all set to zeros, with the exception of the
logout-pending bit and the channel-control-check
bit, which are set to ones. No channel logout
occurs in this case.

When the SIOF function causes condition code 0
to be set and subsequently a situation is
encountered which would have caused a condition
code 1 to be set had the function been SIO, a
deferred-condition-code-l I/O-interruption
condition is generated. When the SIOF function
causes condition code 0 to be set and,
subsequently, it is determined that the device is not
operational, a deferred-condition-code-3
I/O-interruption condition is generated. In both of
the above cases, in the resulting I/O interruption, a
full CSW is stored, and the deferred condition code
appears in the CSW.

On the byte-multiplexer channel, both the SIO
and SIOF functions cause the addressed device to
be selected and the operation to be initiated only
after the channel has serviced all outstanding
requests for data transfer for previously initiated
operations.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o I/O operation initiated and channel

proceeding with its execution
1 CSW stored
2 Channel or sub channel busy
3 Not operational

The condition code set by START I/ 0 and
START I/O FAST RELEASE for all possible
states of the I/O system is shown in the figure
"Condition Codes Set by START I/ 0 and START
I/O FAST RELEASE." See the section "States of
the Input/Output System" in this chapter for a
detailed definition of the A, I, W, and N states.

Channel A W N

2 3
Subchannel

Control Unit
-Device

A
I
W
N
*

@

Avai lable
Interruption pending
Working
Not operational
CSW stored

When a nonimmediate I/O operation has been
initiated, and the channel is proceeding
with its execution, condition code 0 is set.
When an immediate operation has been initiated,
and no command chaining or command retry is
taking place, or the device is not ready, or
an error has been detected by the control unit
or device, for the SID function condition code 1
is set, and the CSW is stored. Under the same
circumstances, for the SIOF function, condition
code 0 is set, and a deferred-condition-code-l
I/O-interruption condition is generated.

The SIOF function may cause condition code 0 to be
set, in which case the other condition code shown
will be specified as a deferred condition code.

Note: Underscored condition codes pertain to situations
that can occur only on the mUltiplexer channel.

Condition Codes Set by START I/O and START I/O FAST
RELEASE

Programming Notes
1. The instruction START I/O FAST RELEASE

has the advantage over START I/O that the
CPU can be released after the CAW is fetched,
rather than after completion of the lengthy
device-selection procedure. Thus, the CPU is
freed for other activity earlier. A disadvantage,
however, is that if a deferred condition code is
presented, the resultant CPU execution time
may be greater than that required in executing
START I/O.

2. When the channel detects a programming error
during execution of the SIO function, when the
addressed device contains an interruption
condition, and when the channel and
sub channel are available, the instruction mayor
may not clear the interruption condition,
depending on the type of error and the model.
If the instruction has caused the device to be
interrogated, as indicated by the presence of
the busy bit in the CSW, the interruption
condition has been cleared, and the CSW
contains program or protection check, as well
as the status from the device.

Chapter 12. Input/Output Operations 12-23

3. Two major differences exist between the SIO
and SIOF functions:
a. Unchained immediate commands on certain

channels (that is, those which execute SIOF
independent of the device) result in a
condition code 0 for the SIOF function,
whereas condition code 1 is set for the SIO
function. See also Programming Note 2 in
the section "Command Retry" of this
chapter.

b. Condition code 0 is set by these certain
channels for the SIOF function, even
though the addressed device is not available
or the command is rejected by the device.
The device information will be supplied by
means of an interruption.

STORE CHANNEL ID

STIDC [S]

B203

o 16 20 31

Information identifying the designated channel is
stored in the four-byte field at real storage location
168.

Bits 16-23 of the second-operand address
identify the channel to which the instruction
applies. Bit positions 24-31 of the address are
ignored.

The format of the information stored at location
168 is:

'Type'Channel Model 'Max IOEL Length

o 4 16 31

Bits 0-3 specify the channel type. When a
channel can operate as more than one type, the
code stored identifies the channel type at the time
the instruction is executed. The following codes
are assigned:

0000 Selector
0001 Byte multiplexer
0010 Block multiplexer

Bits 4-15 identify the channel model. When the
channel model is implied by the channel type and
the CPU model, zeros are stored in the field.

Bits 16-31 contain the length in bytes of the
longest I/O extended logout that can be stored by
the channel during an I/O interruption. If the

12-24 System/370 Principles of Operation

channel never stores logout information using the
IOEL address, then this field is set to zero.

When the channel detects an equipment
malfunction during the execution of STORE
CHANNEL ID, the channel causes the status
portion, bits 32-47, of the CSW to be replaced by a
new set of status bits. With the exception of the
channel-control-check bit (bit 45), which is stored
as a one, all bits in the status field are stored as
zeros. The contents of the other fields of the CSW
are not changed.

When STORE CHANNEL ID cannot be
executed because of a pending logout which affects
the operational capability of the channel, a full
CSW is stored. The fields in the CSW are all set to
zero, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout occurs in this case.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Channel ID correctly stored
1 CSW stored
2 Channel activity prohibited storing ID
3 Not operational

The condition code set by STORE CHANNEL
ID for all possible states of the I/O system is
shown in the figure "Condition Codes Set by
STORE CHANNEL ID." See the section "States
of the Input/Output System" for a detailed
definition of the A, I, W, and N states.

Channel ~I~I~I~

A Available
I Interruption pending
W Working
N Not operational
• When the channel is unable to store

the channe I I D because of its work i ng
state or because it contains a
pending-interruption condition,
condition code 2 is set. If the
working or interruption-pending state
does not preclude the storing of the
channel ID, condition code 0 is set.

Condition Codes Set by STORE CHANNEL ID

TEST CHANNEL

TCH [S 1

9FOO

o 16 20 31

The condition code in the PSW is set to indicate
the state of the addressed channel. The state of
the channel is not affected, and no action is
caused. Bits 8-14 of the instruction are ignored.

Bits 16-23 of the second-operand address
identify the channel to which the instruction
applies. Bit positions 24-31 of the address are
ignored.

The instruction TEST CHANNEL inspects only
the state of the addressed channel. It tests whether
the channel is operating in the burst mode, is
interruption-pending, or is not operational. When
the channel is operating in the burst mode and
contains an interruption condition, the condition
code is set as for operation in the burst mode.
When none of these situations exist, the available
state is indicated. No device is selected, and, on
the multiplexer channel, the sub channels are not
interrogated.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Channel available
1 Interruption or logout condition in channel
2 Channel operating in burst mode
3 Channel not operational

The condition code set by TEST CHANNEL for
all possible states of the addressed channel is
shown in the figure "Condition Codes Set by TEST
CHANNEL." See the section "States of the
Input/Output System" in this chapter for a detailed
definition of the A, I, W, and N states.

Channe 1 11--;--+----111--:-+-1-:---11
A Available
I Interruption pending
W Working
N Not operational

Condition Codes Set by TEST CHANNEL

TEST I/O

TID [S 1

9DOO

o 16 20 31

The state of the addressed channel, subchannel,
and device is indicated by setting the condition
code in the PSW and, in certain situations, by
storing the CSW. Interruption conditions may be
cleared. Bits 8-14 of the instruction are ignored.

Bits 16-31 of the second-operand address
identify the channel, subchannel, and I/O device to
which the instruction applies.

The TIO function is performed by the instruction
TEST I/O and, on some channels and under
certain circumstances, by CLEAR I/O.

When the channel is operating in burst mode and
the addressed sub channel contains an interruption
condition, the TIO function causes condition code
1 or 2 to be set, depending on the model and
channel type. If condition code 1 is set, the CSW
is stored at location 64 to identify the interruption
condition, and the interruption condition is cleared.

When the situation described in the following
paragraph occurs with the channel either available
or interruption-pending or, on some channels,
working, the TIO function causes the CSW to be
stored. The contents of the entire CSW pertain to
the 1/ 0 device addressed by the instruction.

The subchannel contains an interruption
condition due to a terminated operation at the
addressed device. The CSW identifies the
interruption condition, and the interruption
condition is cleared. The subchannel key,
CCW address, and count fields contain the
final values for the I/O operation, and the
status field may include bits provided by the
channel and the device. The interruption
condition in the sub channel is not cleared, and
the CSW is not stored if the channel is working
and has not yet accepted the interruption
condition from the device.

When any of the following situations occurs with
the channel either available or interruption­
pending, the TIO function causes the CSW to be
stored. The contents of the entire CSW pertain to
the I/O device addressed by the instruction.
1. The subchannel is available, and the I/O device

contains an interruption condition or the
control unit contains control-unit end for the
addressed device. The CSW unit-status field

Chapter 12. Input/Output Operations 12-25

identifies the interruption condition and may
contain other bits provided by the device or
control unit. The interruption condition is
cleared. The busy bit in the CSW is zero. The
other fields of the CSW contain zeros unless an
equipment error is detected.

2. The subchannel is available, and the I/O device
or the control unit is executing a previously
initiated operation or the control unit has an
interruption condition associated with a device
other than the one addressed. The CSW unit­
status field contains one in the busy-bit position
or, if the control unit is busy, the busy and
status-modifier bits are ones. Other fields of
the CSW contain zeros unless an equipment
error is detected.

3. The subchannel is available, and the I/O device
or channel detected an equipment error during
execution of the instruction or the addressed
device is not ready and does not have any
interruption condition. The CSW identifies the
error. If the device is not ready, unit check is
indicated. No interruption conditions are
generated at the I/ 0 device or the subchannel.

When TEST I/O cannot be executed because of
a pending logout which affects the operational
capability of the channel or subchannel, a full CSW
is stored. The fields in the CSW are all set to
zeros, with the exception of the logout-pending bit
and the channel-control-check bit, which are set to
ones. No channel logout is associated with this
status.

When the TIO function is used to clear an
interruption condition from the subchannel and the
channel has not yet accepted the condition from
the device, the function causes the device to be
selected and the interruption condition in the
device to be cleared. During certain I/ 0
operations, some types of devices cannot provide
their current status in response to TEST I/O.
Some magnetic-tape control units, for example, are
in such a state when they have provided channel
end and are executing the backspace-file operation.
When TEST I/O is issued to a control unit in such
a state, the unit-status field of the CSW has the
busy and status-modifier bits set to ones, with zeros
in the other CSW fields. The interruption
condition in the device and in the subchannel is not
cleared.

On some types of devices, the device never
provides its current status in response to TEST
I/O, and an interruption condition can be cleared
only by permitting an I/O interruption. When
TEST I/O is issued to such a device, the unit-status

12-26 System/370 Principles of Operation

field has the status-modifier bit set to one, with
zeros in the other CSW fields. The interruption
condition in the device and in the subchannel, if
any, is not cleared.

However, at the time the channel assigns the
highest priority for interruptions to a condition
associated with an operation at the subchannel, the
channel accepts the status from the device and
clears the corresponding condition at the device.
When the TIO function is addressed to a device for
which the channel has already accepted the
interruption condition, the device is not selected,
and the condition in the sub channel is cleared
regardless of the type of device and its present
state. The CSW contains unit status and other
information associated with the interruption
condition.

On the byte-multiplexer channel, the TIO
function causes the addressed device to be selected
only after the channel has serviced all outstanding
requests for data transfer for previously initiated
operations.

Program Exceptions:
Privileged Operation

Resulting Condition Code:
o Available
1 CSW stored
2 Channel or subchannel busy
3 Not operational

The condition code set by the TIO function for
all possible states of the I/O system is shown in the
figure "Condition Codes Set by TEST I/O." See
the section "States of the Input/Output System" in
this chapter for a detailed definition of the A, I, W,
and N states.

Channe I

Subchanne 1

Control Unit
-Dev ice

A Avai lable
I Interruption pending

1;<: = Interrup~ion pending for a device other than the one
addressed

1# = Interruption pending for the addressed device
\oJ Working

W;Z: = Working with a device other than the one addressed
W# = Working with the addressed device
Not operational
CSW stored
In the W;%:I#X state, either condition code 1 may be set
wi th the CSW stored. or cond i t i on code 2 may be set.
depending on the channel and the activity in the
channe I.

Note: Underscored condition codes pertain to situations
tii"a'tcan occur only on the multiplexer channel.

Condition Codes Set by TEST I/O

Programming Notes
1. Disabling the CPU for I/O interruptions

provides the program with a means of
controlling the priority of 1/ 0 interruptions
selectively by channels. The priority of devices
attached on a channel cannot be controlled by
the program. The instruction TEST I/O in
some cases permits the program to clear
interruption conditions selectively by I/O
device.

2. When a CSW is stored by the no function, the
interface-control-check and channel-control­
check indications may be due to an interruption
condition already existing in the channel or
may be due to an interruption condition created
by the no function. Similarly, the unit-check
bit set to one with the channel-end, control­
unit-end, or device-end bits set to zeros may be
due to a situation created by the preceding
operation, the I/O device being not ready, or
an equipment error detected during the
execution of TEST I/O. The instruction TEST
I/O cannot be used to clear an interruption
condition due to the PCI flag while the
subchannel is working.

3. The use of a TEST I/O loop on a multiplexer
channel to retrieve ending status for a channel
program should, in general, be avoided. TEST
I/O loops may be used to return ending status
to a sense command when that command was
initiated by a START I/O that received
condition code O. TEST I/O loops under other
conditions may result in hang conditions.

Input / Output-Instruction-Exception
Handling
Before the channel is signaled to execute an I/O
instruction, the instruction is tested for validity by
the CPU. Exceptional situations detected at this
time cause a program interruption.

The following exception may cause a program
interruption:

Privileged Operation: An I/O instruction is
encountered when the CPU is in the problem state.
The instruction is suppressed before the channel
has been signaled to execute it. The CSW, the
condition code in the PSW, and the state of the
addressed sub channel and I/O device are not
affected by the attempt to execute an I/O
instruction while in the problem state.

Execution of Input/Output
Operations
The channel can execute six commands: write,

read, read backward, control, sense, and transfer in
channel. Each command except transfer in channel
initiates a corresponding I/O operation. The term
"I/O operation" refers to the activity initiated by a
command in the I/O device and associated
sub channel. The sub channel is involved with the
execution of the operation from the initiation of the
command until the channel-end signal is received
or, in the case of command chaining, until the
device-end signal is received. The operation in the
device lasts until device end is signaled.

Blocking of Data
Data recorded by an I/O device may be divided
into blocks. The length of a block depends on the
device; for example, a block can be a card, a line of
printing, or the information recorded between two
consecutive gaps on magnetic tape.

The maximum amount of information that can
be transferred in one I/O operation is one block.
An 1/ 0 operation is terminated when the
associated storage area is exhausted or the end of
the block is reached, whichever occurs first. For
some operations, such as writing on a magnetic­
tape unit or at an inquiry station, blocks are. not
defined, and the amount of information transferred
is controlled only by the program.

Channel-A.ddress Word
The channel-address word (CAW) specifies the
subchannel key and the address of the first CCW
associated with START I/O or START I/O FAST
RELEASE. The channel refers to the CAW only
during the execution of START I/O or START
I/O FAST RELEASE. The CAW is fetched from
real storage location 72 of the CPU issuing the
instruction. The pertinent information thereafter is
stored in the subchannel, and the program is free to
change the contents of the CAW. Fetching of the
CAW by the channel does not affect the contents
of the location.

The CAW has the following format:

IKeylooool CCW Address

o 4 8 31

The fields in the CAW are allocated for the
following purposes:

Subcbannel Key: Bits 0-3 form the access key for
all fetching of CCWs, IDA Ws, and output data and
for the storing of input data associated with

Chapter 12. Input/Output Operations 12-27

STAR T I/O and START I/O FAST RELEASE.
This key is matched with a storage key during these
storage references. For derails, see the section
"Key-Controlled Protection II in Chapter 3,
II Storage. II

CCW Address: Bits 8-31 designate the location
of the first CCW in absolute storage.

Bit positions 4-7 of the CAW must contain
zeros. The three low-order bits of the CCW
address must be zeros to specify the CCW on
integral boundaries for doublewords. If any of
these restrictions is violated, or if the CCW address
specifies a storage location which is not provided or
is protected against fetching, START I/O and, in
some cases, START I/O FAST RELEASE, cause
the status portion of the CSW to be stored, with
the protection-check or program-check bit set to
one. In this event, the I/O operation is not
initiated.

Programming Note
Bit positions 4-7 of the CAW, which presently must
contain zeros, may in the future be assigned to the
control of new functions. It is, therefore,
recommended that these bit positions not be set to
ones for the purpose of obtaining an intentional
program-check indication.

Channel-Command Word
The channel-command word (CCW) specifies the
command to be executed and, for commands
initiating I/O operations, it designates the storage
area associated with the operation and the action to
be taken whenever transfer to or from the area is
completed. The CCWs can be located anywhere in
storage, and more than one can be associated with
a START I/O or START I/O FAST RELEASE.

The first CCW is fetched during the execution of
START I/O or START I/ 0 FAST RELEASE
being executed as START I/O. When START I/O
FAST RELEASE is executed independent of the
device, the first CCW is fetched subsequent to the
execution of START I/O FAST RELEASE. Each
additional CCW in the sequence is obtained when
the operation has progressed to the point where the
additional CCW is needed. Fetching of the CCWs
by the channel does not affect the contents of the
location in storage.

12-28 System/370 Principles of Operation

The CCW has the following format:

Icmd cOdel Data Address

o 8 31

IFlags 1001////////1 Count

32 38 40 48 63

The fields in the CCW are allocated for the
following purposes:

Command Code: Bits 0-7 specify the operation to
be performed.

Data Address: Bits 8-31 specify a location in
absolute storage. It is the first location referred to
in the area designated by the CCW.

Chain-Data (CD) Flag: Bit 32, when one,
specifies chaining of data. It causes the storage
area designated by the next CCW to be used with
the current operation.

Chain-Command (CC) Flag: Bit 33, when one,
and when the CD flag is zero, specifies chaining of
commands. It causes the operation specified by the
command code in the next CCW to be initiated on
normal completion of the current operation.

Suppress-Length-Indication (SLI) Flag: Bit 34
controls whether incorrect-length is to be indicated
to the program. When this bit is one and the CD
flag is zero, the incorrect-length indication is
suppressed. When both the CC and SLI flags are
one, command chaining takes place regardless of
any incorrect-length situation.

Skip (SKIP) Flag: Bit 35, when one, specifies
suppression of the transfer of information to
storage during a read, read backward, or sense
operation.

Program-Controlled-Interruption (PCI) Flag: Bit
36, when one, causes the channel to generate an
interruption condition when the CCW takes control
of the channel. When bit 36 is zero, normal
operation takes place.

Indirect-Data-Address (IDA) Flag: Bit 37, when
one, specifies indirect data addressing.

Count: Bits 48-63 specify the number of bytes in
the storage area designated by the CCW.

Bit positions 38-39 of every CCW other than
one specifying transfer in channel must contain
zeros. Otherwise, a program-check condition is
generated. When the first CCW designated by the
CAW does not contain zeros in bit positions 38-39,
the I/O operation is not initiated, and the status
portion of the CSW with the program-check
indication is stored during execution of START
I/O or START I/O FAST RELEASE being
executed as START I/O. Detection of this
condition during data chaining causes the I/O
device to be signaled to conclude the operation.
When the absence of these zeros is detected during
command chaining or subsequent to the execution
of START I/O FAST RELEASE, the new
operation is not initiated, and an interruption
condition is generated.

The contents of bit positions 40-47 of the CCW
are ignored.

Programming Note
Bit positions 38-39 of the CCW, which presently
must contain zeros, may in the future be assigned
to the control of new functions. It is
recommended, therefore, that these bit positions
not be set to ones for the purpose of obtaining an
intentional program-check indication.

Command Code
The command code, bit positions 0-7 of the CCW,
specifies to the channel and the I/O device the
operation to be performed. A detailed description
of each command appears under "Commands."

The two low-order bits or, when these bits are
00, the four low-order bits of the command code
identify the operation to the channel. The channel
distinguishes among the following four operations:

Output forward (write, control)
Input forward (read, sense)
Input backward (read backward)
Branching (transfer in channel)

The channel ignores the high-order bits of the
command code.

Commands that initiate I/O operations (write,
read, read backward, control, and sense) cause all
eight bits of the command code to be transferred to
the I/O device. In these command codes, the
leftmost bit positions contain modifier bits. The
modifier bits specify to the device how the
command is to be executed. They may, for
example, cause the device to compare data received
during a write operation with data previously

recorded, and they may specify such information as
recording density and parity. For the control
command, the modifier bits may contain the order
code specifying the control function to be
performed. The meaning of the modifier bits
depends on the type of I/O device and is specified
in the SL publication for the device.

The command-code assignment is listed in the
following table. The symbol X indicates that the
bit position is ignored; M identifies a modifier bit.

Code Command

xxx X 0000 I nval id
MMMM MM01 Wr ite
MMMM MM10 Read
MMMM 1100 Read Backward
MMMM MM11 Control
MMMM 0100 Sense
XXXX 1000 Transfer in Channel

Whenever the channel detects an invalid
command code during the initiation of a command,
a program check is generated. When the first
CCW designated by the CAW contains an invalid
command code, the status portion of the CSW with
the program-check indication is stored during
execution of START I/O or START I/O FAST
RELEASE being executed as START I/O. When
the invalid code is detected during command
chaining or subsequent to the execution of START
I/O FAST RELEASE, the new operation is not
initiated, and an interruption condition is
generated. The command code is ignored during
data chaining, unless it specifies transfer in
channel.

Designation of Storage Area
The storage area associated with an I/O operation
is defined by one or more CCWs. A CCW defines
an area by specifying the address of the first byte
to be transferred and the number of consecutive
bytes contained in the area. The address of the
first byte appears in the data-address field of the
CCW, except when channel indirect data
addressing is specified. Channel indirect data
addressing is described in the section II Channel
Indirect Data Addressing." The number of bytes
contained in the storage area is specified in the
count field.

In write, read, control, and sense operations,
storage locations are used in ascending order of
addresses. As information is transferred to or from
storage, the address from the address field is
incremented, and the count from the count field is

Chapter 12. Input/Output Operations 12-29

decremented. The read-backward operation places
data in storage in a descending order of addresses,
and both the count and the address are
decremented. When the count reaches zero, the
storage area defined by the CCW is exhausted.

Any storage location that is provided can be
used in the transfer of data to or from an I/O
device if the location is not protected against the
type of reference. Similarly, a CCW can be located
in any part of storage if the location is not
protected against a fetch-type reference.

When the first CCW is designated by the CAW
as being at a storage location that is not provided,
the I/O operation is not initiated, and the status
portion of the CSW with the program-check
indication is stored during the execution of START
I/O or START I/O FAST RELEASE being
executed as START I/O. When, subsequently,
during the operation or chain of operations, the
channel refers to a storage location that is not
provided, an interruption condition indicating
program check is generated, and the device is
signaled to terminate the operation.

When the first CCW designated by the CAW is
in a location that is protected against a fetch-type
reference, the I/O operation is not initiated, and
the status portion of the CSW with the protection­
check indication is stored during the execution of
START I/O or START 1/ 0 FAST RELEASE
being executed as START I/O. When,
subsequently, during the I/O operation or chain of
operations, the channel refers to a protected
location, an interruption condition indicating
protection check is generated, and the device is
signaled to terminate the operation.

During an output operation, the channel may
fetch data from storage before the time the I/O
device requests the data. Any number of bytes
specified by the current CCW may thus be
prefetched. When data chaining during an output
operation, the channel may prefetch the next CCW
at any time during the execution of the current
CCW.

Prefetching may cause the channel to refer to
storage locations that are protected or not
provided. Such errors detected during prefetching
of data or CCWs do not affect the execution of the
operation and do not cause error indications until
the 1/ 0 operation actually attempts to use the data
or until the CCW takes control. If the operation is
concluded by the I/O device or by HALT I/O,
HALT DEVICE, or CLEAR I/O before the invalid
information is needed, no program check or
protection check is generated.

12-30 System/370 Principles of Operation

The count field in the CCW can specify any
number of bytes from one to 65,535. Except for a
CCW specifying transfer in channel, which has no
count field, the count field may not contain the
value zero. Whenever the count field in the CCW
initially contains a zero, a program check is
generated. When this occurs in the first CCW
designated by the CAW, the operation is not
initiated, and the status portion of the CSW with
the program-check indication is stored during
execution of START I/O or START I/O FAST
RELEASE being executed as START I/O. When a
count of zero is detected during data chaining, the
1/ 0 device is signaled to terminate the operation.
Detection of a count of zero during command
chaining or subsequent to the execution of START
I/O FAST RELEASE suppresses initiation of the
new operation and generates an interruption
condition.

Chaining
When the channel has performed the transfer of
information specified by a CCW, it can continue
the activity initiated by START I/O or START
I/O FAST RELEASE by fetching a new CCW.
Such fetching of a new CCW is called chaining,
and the CCWs belonging to such a sequence are
said to be chained.

Chaining takes place between CCWs located in
successive double word locations in storage. It
proceeds in an ascending order of addresses; that
is, the address of the new CCW is obtained by
adding 8 to the address of the current CCW. Two
chains of CCWs located in noncontiguous storage
areas can be coupled for chaining purposes by a
transfer-in-channel command. All CCWs in a
chain apply to the I/O device specified in the
original START I/O or START I/O FAST
RELEASE.

Two types of chaining are provided: chaining of
data and chaining of commands. Chaining is
controlled by the chain-data (CD) and chain­
command (CC) flags in conjunction with the
suppress-length-indication (SLI) flag in the CCW.
These flags specify the action to be taken by the
channel upon the exhaustion of the current CCW
and upon receipt of ending status from the device,
as shown in the figure" Channel-Chaining Action."

The specification of chaining is effectively
propagated through a transfer-in-channel
command. When in the process of chaining a
transfer-in-channel command is fetched, the CCW
designated by the transfer in channel is used for
the type of chaining specified in the CCW
preceding the transfer in channel. The CD and CC

flags are ignored in the transfer-in-channel
command.

Note: For a description of the storage area
associated with a CCW when channel indirect data
addressing is invoked, see the section "Channel
Indirect Data Addressing" later in this chapter.

Data Chaining
During data chaining, the new CCW fetched by the
channel defines a new storage area for the original
1/ 0 operation. Execution of the operation at the
I/O device is not affected. When all data
designated by the current CCW has been
transferred to storage or to the device, data
chaining causes the operation to continue, using the
storage area designated by the new CCW. The
contents of the command-code field of the new
CCW are ignored, unless they specify transfer in
channel.

Data chaining is considered to occur immediately
after the last byte of data designated by the current
CCW has been transferred to storage or to the
device. When the last byte of the transfer has been
placed in storage or accepted by the device, the
new CCW takes over the control of the operation
and replaces the pertinent information in the
subchannel. If the device signals channel end after
exhausting the count of the current ·CCW but
before transferring any data to or from the storage
area designated by the new CCW, the CSW
associated with the concluded operation pertains to
the new CCW.

If programming errors are detected in the new
CCW or during its fetching, the error indication is
generated, and the device is signaled to conclude
the operation when it attempts to transfer data
designated by the new CCW. If the device signals
channel end after the new CCW takes control but
before transferring any data designated by the new
CCW, program check or protection check is
indicated in the CSW associated with the
termination. The contents of the CSW pertain to
the new CCW unless a program check or protection
check is generated while fetching the new CCW or
while fetching or executing an intervening
transfer-in-channel command. A data address
which causes a program check or protection check
gives an error indication only after the I/O device
has attempted to transfer data to or from the
addressed storage location.

Data chaining during an input operation causes
the new CCW to be fetched when all data
designated by the current CCW has been placed in
storage. On an output operation, the channel may

fetch the new CCW from storage ahead of the time
data chaining occurs. Any programming errors in a
prefetched CCW, however, do not affect the
execution of the operation until all data designated
by the current CCW has been transferred to the
I/O device. If the device concludes the operation
before all data designated by the current CCW has
been transferred or if data chaining is suppressed
for any other reason, the errors associated with the
prefetched CCW are not indicated to the program.

Only one CCW describing a data area may be
prefetched. If the prefetched CCW specifies
transfer in channel, only one more CCW may be
fetched before the exhaustion of the current CCW.

Programming Note
Data chaining may be used to rearrange data as it
is transferred between storage and an I/O device.
Data chaini11g permits data to be transferred to or
from noncontiguous areas of storage, and, when
used in conjunction with the skipping function (see
the section "Skipping" later in this chapter), data
chaining enables the program to place in storage
selected portions of a block of data.

When, during an input operation, the program
specifies data chaining to a location into which data
has been placed under the control of the current
CCW, the channel, in fetching the next CCW,
fetches the new contents of the location. This is
true even if the location contains the last byte
transferred under the control of the current CCW.
When, on input, a channel program data-chains to
a CCW placed in storage by the CCW specifying
data chaining, the block is said to be self­
describing. A self-describing block contains one or
more CCWs that specify storage locations and
counts for subsequent data in the same block.

The use of self-describing blocks is equivalent to
the use of unchecked data. An I/O data-transfer
malfunction that affects validity of a block is
signaled only at the completion of data transfer.
The error normally does not prematurely terminate
or otherwise affect the execution of the operation.
Thus, there is no assurance that a. CCW read as
data is valid until the operation is completed. If
the CCW is in error, the use of the CCW in the
current operation may cause subsequent data to be
placed in wrong storage locations with resultant
destruction of the contents of those locations.

Chapter 12. Input/Output Operations 12-31

Action in Channel upon Exhaustion of Count
Flags in or Receipt of Channel End
Current
CCW Regular Operation

CD CC SLI Immediate Operation I II III

0 0 0 End, NIL Stop, IL End, NIL End, IL
0 0 1 End, NIL Stop, NIL End, NIL End, NIL
0 1 0 Chain Command Stop, IL Chain command End, IL
0 1 1 Chain Command Chain command Chain command Chain command

1 0 0 End, NIL Chain Data * End, IL
1 0 1 End. NIL Chain Data * End, IL
1 1 0 End. NIL Chain Data * End, IL
1 1 1 End. NIL Chain Data * End, IL

Explanation:

I

II

III

End

Stop

IL

NIL

Count exhausted, end of block at device not reached.

Count exhausted and channel end from device.

Count not exhausted and channel end from device.

The operation is terminated. If the operation is
immediate and has been specified by the first CCW
associated with a START 1/0, a condition code 1 is set,
and the status portion of the CSW is stored as part of
the execution of the START 1/0. In all other cases, an
interruption condition is generated in the subchannel.

The device is signaled to terminate data transfer, but
the subchannel remains in the working state until
channel end is received; at this time an interruption
condition is generated in the subchannel.

Incorrect length is indicated with the interruption
condition.

Incorrect length is not indicated.

Chain command The channel performs command chaining upon receipt of
device end.

Chain data

*

The channel immediately fetches a new CCW for the same
operation.

The situation where the residual count is zero but data
chaining is indicated at the time the device provides
channel end cannot validly occur. When data chaining
is indicated, the channel fetches the new CCW after
transferring the last byte of data designated by the
current CCW but before the device provides the next
request for data or status transfer. As a result, the
channel recognizes the channel end from the device only
after it has fetched the new CCW, which cannot contain
a count of zero unless a programming error has been
made.

Channel-Chaining Action

12-32 System/370 Principles of Operation

Command Chaining
During command chaining, the new CCW fetched
by the channel specifies a new I/O operation. The
channel fetches the new CCW and initiates the
new operation upon receipt of the device-end signal
for the current operation. When command
chaining takes place, the completion of the current
operation does not generate an interruption
condition, and the count indicating the amount of
data transferred during the current operation is not
made available to the program. For operations
involving data transfer, the new command always
applies to the next block at the device.

Command chaining takes place and the new
operation is initiated only if no unusual situations
have been detected in the current operation. In
particular, the channel initiates a new I/O
operation by command chaining upon receipt of a
status byte signaling one of the following status
combinations: device end, device end and status
modifier, device end and channel end, device end
and channel end and status modifier. In the former
two cases, channel end must have been signaled
before device end, with all other status bits set to
zeros. If status such as attention, unit check, unit
exception, incorrect length, program check, or
pmtection check has occurred, the sequence of
operations is concluded, and the status associated
with the current operation causes an interruption
condition to be generated. The new CCW in this
case is not fetched. Incorrect length does not
suppress command chaining if the current CCW has
the SLI flag set to one.

An exception to sequential chaining of CCWs
occurs when the I/ 0 device presents status
modifier with device end. When no unusual
conditions have been detected and command
chaining is specified or when command retry has
been previously signaled and an immediate retry
could not be performed, the combination of status
modifier and device end causes the channel to alter
the sequential execution of CCWs. If command
chaining was specified, the status causes the
channel to chain to the CCW whose storage
address is 16 higher than that of the CCW that
specified chaining. If command retry was
previously signaled and immediate retry could not
be performed, the status causes the channel to
command-chain to the CCW whose storage address.
is 8 higher than that of the CCW for which retry
was initially signaled.

When both command and data chaining are
used, the first CCW associated with the operation
specifies the operation to be executed, and the last
CCW indicates whether another operation follows.

Programming Note
Command chaining makes it possible for the
program to initiate transfer of multiple blocks by
means of a single START I/O or START I/O
FAST RELEASE. It also permits a sub channel to
be set up for the execution of auxiliary functions,
such as positioning the disk-access mechanism, and
for data-transfer operations without interference by
the program at the end of each operation.
Command chaining, in conjunction with the
status-modifier condition, permits the channel to
modify the normal sequence of operations in
response to signals provided by the I/O device.

Skipping
Skipping is the suppression of storage references
during an I/O operation. It is defined only for
read, read backward, and sense operations and is
controlled by the skip flag, which can be specified
individually for each CCW. When the skip flag is
one, skipping occurs; when zero, normal operation
takes place. The setting of the skip flag is ignored
in all other operations.

Skipping affects only the handling of information
by the channel. The operation at the I/ 0 device
proceeds normally, and information is transferred
to the channel. The channel keeps updating the
count but does not place the information in storage.
Chaining is not precluded by skipping. In the case
of data chaining, normal operation is resumed if the
skip flag in the new CCW is zero.

When the skip flag is set to one, the data address
in the CCW is not checked.

Programming Note
Skipping, when combined with data chaining,
permits the program to place in storage selected
portions of a block from an I/O device.

Program-Controlled Inte""ption
The program-con trolled-interruption (PCI) function
permits the program to cause an I/O interruption
during the execution of an I/O operation. The
function is controlled by the PCI flag in the CCW.
The flag can be on either in the first CCW
specified by START I/O or START I/O FAST
RELEASE or in a CCW fetched during chaining.
Neither the PCI flag nor the associated interruption
affects the execution of the current operation.

Whenever the PCI flag in the CCW is one, an
interruption condition is generated in the channel.
When the first CCW associated with an operation
contains the PCI flag, either initially or upon
command chaining, the interruption may occur as
early as immediately upon the initiation of the

Chapter 12. Input/Output Operations 12-33

operation. The PCI flag in a CCW fetched on data
chaining causes the interruption to occur after all
data designated by the preceding CCW has been
transferred. The time of the interruption, however,
depends on the model and the current activity in
the system and may be delayed even if I/O
interruptions are allowed. No predictable
relationship exists between the time the
interruption due to the PCI flag occurs and the
progress of data transfer to or from the area·
designated by the CCW, but the fields within the
CSW pertain to the same instant of time.

If chaining occurs before the interruption due to
the PCI flag has taken place, the PCI interruption
condition is carried over to the new CCW. This
carryover occurs both on data and command
chaining and, in either case, the interruption
condition is propagated through the transfer-in­
channel command. The interruption conditions due
to the PCI flags are not stacked; that is, if another
CCW is fetched with a PCI flag before the
interruption due to the PCI flag of the previous
CCW has occurred, only one interruption takes
place.

A CSW containing the PCI bit set to one may be
stored by an interruption while the operation is still
proceeding or by an interruption, TEST I/O, or
CLEAR I/O upon the termination of the operation.
A CSW cannot be stored by TEST I/O while the
subchannel is in the working state.

When the CSW is stored by an interruption
before the operation or chain of operations has
been concluded, the CCW address is 8 greater than
the address of the current CCW, and the count is
unpredictable. All unit-status bits in the CSW are
zero. If the channel has detected any unusual
situations, such as channel-data check, program
check, or protection check by the time the
interruption occurs, the corresponding
channel-status bit is one, although the status in the
sub channel is not reset and is indicated again upon
the termination of the operation.

A unit-status bit set to one in the CSW indicates
that the operation or chain of operations has been
concluded. The CSW in this case has its regular
format with the PCI bit set to one.

However, when the interruption due to the PCI
flag is delayed until the operation at the subchannel
is concluded, two interruptions from the subchannel
may still take place. The first interruption indicates
and clears the interruption condition due to the
PCI flag, and the second provides the CSW
associated with the ending status. Whether one or
two interruptions occur depends on the model and
on whether the interruption condition due to the

12-34 System/370 Principles of Operation

PCI flag has been assigned the highest priority for
interruption at the time of conclusion. TEST I/O
or CLEAR 1/ 0 addressed to the device associated
with an interruption condition in the subchannel
clears the interruption condition due to the PCI
flag, as well as the one associated with the
conclusion.

The setting of the PCI flag is inspected in every
CCW except those specifying transfer in channel,
where it is ignored. The PCI flag is also ignored
during initial program loading.

Programming Notes
1. Since no unit-status bits are set to ones in the

CSW associated with the conclusion of an
operation of a selector channel by HALT I/O
or HALT DEVICE, unit-status bits and the
PCI bit set to ones are not necessary for the
operation to be concluded. When status in a
selector channel includes PCI at the time the
operation is concluded by HALT 1/ 0 or HALT
DEVICE, the CSW associated with the
concluded operation is indistinguishable from
the CSW provided by an interruption during
execution of the operation.

2. Program-controlled interruption provides a
means of alerting the program to the progress
of chaining during an I/O operation. It permits
programmed dynamic storage allocation.

Channel Indirect Data Addressing
Channel indirect data addressing permits a single
channel-command word to control the transmission
of data that spans noncontiguous pages in real
storage.

Channel indirect data addressing is specified by
a flag bit in the CCW which, when one, indicates
that the data address in the CCW is not used to
directly address data. Instead, the address specifies
the first word in a list of words, called indirect­
data-address words (IDA WS), each of which
contains an absolute address designating a data
area within a 2,048-byte block of storage.

When the indirect-data-addressing bit in the
CCW is one, bits 8-31 of the CCW specify the
location of the first IDA W to be used for data
transfer for the command. Additional IDA Ws, if
needed for completing the data transfer for the
CCW, are in successive storage locations. The
number of IDA Ws required for a CCW is
determined by the count field of the CCW and by
the data address in the initial IDA W. When, for
example, the CCW count field specifies 4,000 bytes
and the first IDA W specifies a location in the

middle of a 2,048-byte block, three IDA Ws are
required.

Each IDA W is used for the transfer of up to
2,048 bytes. The IDA W specified by the CCW can
designate any location. Data is then transferred,
for read, write, control, and sense commands, to or
from successively higher storage locations or, for a
read backward command, to successively lower
storage locations, until a2,048-byte block
boundary is reached. The control of data transfer
is then passed to the next IDA W. The second and
any subsequent IDAWs must specify, depending on
the command, the first or last byte of a 2,048-byte
block. Thus, for read, write, control, and sense
commands, these IDA Ws will have zeros in bit
positions 21-31. For a read-backward command,
these IDA Ws will have ones in bit positions 21-31.

Except for the unique restrictions on the
specification of the data address by the IDA W, all
other rules for the data address, such as for
protected storage and invalid addresses, and the
rules for data prefetching, remain the same as when
indirect data addressing is not used.

A channel may pre fetch any of the IDA Ws
pertaining to the current CCW or to a prefetched
CCW. An IDAW takes control of the data transfer
when the last byte has been transferred. The same
rules apply as with data chaining regarding when
an IDA W takes control of data transfer during an
I/O operation. That is, when the count in the
CCW has not reached zero, an IDA W takes controi
of the data transfer when the last byte has been
transferred for the previous IDA W for that CCW.
A prefetched IDA W does not take control of an
I/O operation if the count in the CCW reached
zero with the transfer of the last byte of data for
the previous IDA W for that CCW. Errors detected
in prefetched IDA Ws are not indicated until the
IDA W takes control of the data transfer.

The format of the IDA Wand the significance of
its fields are as follows:

1000000001 Data Address

o 8 31

Bit positions 0-7 are reserved for future use and
must contain zeros. If any of the bits is a one, a
program check is generated, and the operation is
terminated.

Bits 8-31 specify the location of the first byte to
be used in the data transfer. In the first IDA W for
a CCW, any location can be specified. For
subsequent IDA Ws, depending on the command,

either the first or the last location of a 2,048-byte
block located on a 2,048-byte boundary must be
specified. For read, write, control, and sense
commands, the beginning of the block must be
specified, and bits 21-31 of the IDA W will be
zeros. For a read-backward command, the end of
the block must be specified, and bits 21-31 of the
IDA W will be ones. Improper data-address
specification causes a program check to be
generated and the operation to be terminated.

When the IDA W flag (bit 37) of the CCW is set
to one and any of the following conditions occurs:
1. The address in the CCW does not designate the

first IDAW on an integral word boundary,
2. The address in the CCW does not designate a

valid storage location,
3. Access to the storage location specified by the

address in the CCW is prohibited by protection,
or

4. Bits 0-7 of the first IDA Ware not zeros,

then, depending on the model, the above four
conditions may be handled in one of two ways:
1. The channel checks for the above conditions

before initiating the operation with the device.
If any of these conditions is encountered, the
channel indicates program check and does not
initiate any operation with the device.

2. The channel initiates the operation with the
device prior to checking for these conditions.
In this case, any of these conditions causes the
channel to indicate program check only if the
device attempts to transfer data. An immediate
command does not result in a program-check
indication.

Commands
The figure "Channel-Command Codes" lists the
command codes for the six commands and indicates
which flags are defined for each command. The
flags are ignored for all commands for which they
are not defined.

Name Code Flags

WrHe MMMM MMOI CD CC SLI PCI IDA
Read MMMM MM10 CD CC SLI SKIP PCI IDA
Read backward MMMM 1100 CD CC SLI SKIP PCI IDA
Control MMMM MMll CD CC SLI PCI IDA
Sense MMMM 0100 CD CC SLI SKIP PCI IDA
Transfer in channel XXXX 1000

Explanation:

CD Chain data
CC Chain command
SLI Suppress length indication
SKIP Skip
PCI Program-controlled interruption
IDA Indirect data addressing
M Modifier bit
X Ignored

Channel-Command Codes

Chapter 12. Input/Output Operations 12-35

All flags have, individual significance, except that
the CC and SLI flags are ignored when the CD flag
is set to one. The SLI flag is ignored on immediate
operations, in which case the incorrect-length
indication is suppressed, regardless of the setting of
the flag. The PCI flag is ignored during initial
program loading.

Each command is described below, and the
format is illustrated.

Programming Note
A malfunction that affects the validity of data
transferred in an 1/ 0 operation is signaled at the
end of the operation by means of unit check or
channel-data check, depending on whether the
device (control unit) or the channel detected the
error. In order to make use of the checking
facilities provided in the system, data read in an
input operation should not be used until the end of
the operation has been reached and the validity of
the data has been checked. Similarly, on writing,
the copy of data in storage should not be destroyed
until the program has verified that no malfunction
affecting the transfer and recording of data was
detected.

Write

IHMMHHHOII Data Address

o 8 31

C C S P I
D C L I C D 00 IIIIIIII Count

I I A

32 35 40 48 63

A write operation is initiated at the I/O device,
and the subchannel is set up to transfer data from
storage to the 110 device. Data in storage is
fetched in an ascending order of addresses, starting
with the address specified in the CCW.

A CCW used in a write operation is inspected
for the CD, CC, SLI, PCI, and IDA flags. The
setting of the skip flag is ignored. Bit positions 0-5
of the CCW contain modifier bits.

Programming Note
When writing on devices for which block length is
not defined, such as a magnetic-tape unit or an
inquiry station, the amount of data written is

12-36 System/370 Principles of Operation

controlled only by the count in the CCW. Every
operation terminated under count control causes
the incorrect-length indication, unless the
indication is suppressed by the SLI flag.

Read

MMMMMM10 Data Address

o 8 31

s
C C S K P I
D C L I C D 00 11111111 Count

I P I A

32 40 48 63

A read operation is initiated at the I/O device, and
the subchannel is set up to transfer data from the
device to storage. For devices such as magnetic­
tape units, disk storage, and card equipment, the
bytes of data within a block are provided in the
same sequence as written by means of a write
command. Data is placed in storage in an
ascending order of addresses, starting with the
address specified in the CCW.

A CCW used in a read operation is inspected for
every flag-CD, CC, SLI, SKIP, PCI, and IDA. Bit
positions 0-5 of the CCW contain modifier bits.

Read Backward

MMMM1100 Data Address

o 8 31

s
C C S K P I
D C L I C D 00 11111111 Count

I P I A

32 40 48 63

A read-backward operation is initiated at the I/O
device, and the subchannel is set up to transfer
data from the device to storage. On magnetic-tape
units, read backward causes reading to be
performed with the tape moving backward. The
bytes of data within a block are sent to the channel

in a sequence opposite to that on writing, The
channel places the bytes in storage in a descending
order of address, starting with the address specified
in the CCW. The bits within a byte are in the
same order as sent to the device on writing.

A CCW used in a read-backward operation is
inspected for every flag-CD, CC, SLI, SKIP, PCI,
and IDA. Bit positions 0-3 of the CCW contain
modifier bits.

Control

Data Address

o 8 31

C C S P I
D C L I C D 00 11111/11 Count

I I A

32 35 40 48 63

A control operation is initiated at the I/O device,
and the subchannel is set up to transfer data from
storage to the device. The device interprets the
data as control information. The control
information, if any, is fetched from storage in an
ascending order of addresses, starting with the
address specified in the CCW. A control command
may be used to initiate at the I/O device an
operation not involving transfer of data, such as
backspacing or rewinding magnetic tape or
positioning a disk-access mechanism.

For many control functions, the entire operation
is specified by the modifier bits in the command
code, and the function is performed as an
immediate operation (see the section "Immediate
Operations" later in .this chapter). If the command
code does not specify the entire control function,
the data-address field of the CCW designates the
location containing the required additional
information. This control information may include
a code further specifying the operation to be
performed or an external address, such as the disk
address for the seek function, and is transferred in
response to requests by the device.

A control command code containing zeros for
the six modifier bits is defined as a no-operation.
The no-operation order causes the addressed device
to respond with channel end and device end
without causing any action at the device. The
control command can be executed as an immediate
operation, or the device can delay the status until

after the initial selection sequence is completed.
Other operations that can be initiated by means of
the control command depend on the type of I/O
device. These operations and their codes are
specified in the SL publication for the device.

A CCW used in a control operation is inspected
for the CD, CC, SLI, PCI, and IDA flags. The
setting of the skip flag is ignored. Bit positions 0-5
of the CCW contain modifier bits.

Programming Note
Since a CCW (other than transfer in channel) with
a count of zero is invalid, the program cannot use
the CCW count field to specify that no data be
transferred to the I/O device. Any operation
terminated before data has been transferred causes
the incorrect-length indication, provided the
operation is not immediate and has not been
rejected during the initiation sequence. The
incorrect-length indication is suppressed when the
SLI flag is on.

Sense

MMMM0100 Data Address

o 8 31

s
C C S K P I
D C L I C D 00 IIIIIIII Count

I P I A

32 40 48 63

A sense operation is initiated at the I/O device,
and the subchannel is set up to transfer data from
the device to storage. The data is placed in storage
in an ascending order of addresses, starting with
the address specified in the CCW.

Data transferred during a sense operation
provides information concerning both unusual
conditions detected in the last operation and the
status of the device. The status information
provided by the sense command is more detailed
than that supplied by the unit-status byte in the
CSW and may describe reasons for the unit-check
indication. It may also indicate, for example, if the
device is in the not-ready state, if the tape unit is
in the file-protected state, or if magnetic tape is
positioned beyond the end-of-tape mark.

Chapter 12. Input/Output Operations 12-37

For most devices, the first six bits of the sense
data describe situations detected during the last
operation. These bits are common to all devices
having this type of information and are designated
as follows:

Bit Designation

0 Command reject
1 Intervention required
2 Bus-out check
3 Equipment check
4 Data check
5 Overrun

The following is the meaning of the first six bits:

Command Reject: The device has detected a
programming error. A command has been received
which the device is not designed to execute, such as
read backward issued to a direct-access storage
device, or which the device cannot execute because
of its present state, such as write issued to a
file-protected tape unit. Command reject is
indicated when the program issues an invalid
sequence of commands, such as write to a
direct-access storage device without previous
designation of the block. Command reject may
also be indicated when invalid data is transferred
and the data is treated as an extension of the
command. For example, command reject is
indicated when an invalid seek argument is
transferred to a direct-access storage device.

Intervention Required: The last operation could
not be executed because of a situation requiring
some type of intervention at the device. This bit
indicates situations such as the hopper in a card
punch being empty or the printer being out of
paper. It is also turned on when the addressed'
device is not ready, is in test mode, or is not
provided on the control· unit.

Bus-Out Check: The device or the control unit
has received a data byte or a command code with
an invalid parity from the channel. During writing,
bus-out check indicates that incorrect data has
been recorded at the device, but this does not cause
the operation to be terminated prematurely. Parity
errors on command codes and control information
cause the operation to be terminated immediately
and suppress checking for situations that would
cause command reject and intervention required.

12-38 System/370 Principles of Operation

Equipment. Check: During the last operation, the
device or the control unit has detected equipment
malfunctioning, such as an invalid card-hole count
or a printer-buffer parity error.

Data Check: The device or the control unit has
detected a data error other than those included in
bus-out check. Data check identifies errors
associated with the recording medium and includes
errors such as reading an invalid card code or
detecting invalid parity on data recorded on
magnetic tape.

On an input operation, data check indicates that
incorrect data may have been placed in storage.
The control unit forces correct parity on data sent
to the channel. On writing, data check in.dicates
that incorrect data may have been recorded at the
device. Unless the operation is of a type where the
error precludes meaningful continuation, data
errors on reading and writing do not cause the
operation to be terminated prematurely.

Overrun: The channel has failed to respond on
time to a request for service from the device.
Overrun can occur when data is transferred to or
from a nonbuffered control unit operating with a
synchronous medium, and the total activity initiated
by the program exceeds the capability of the
channel. When the channel fails to accept a byte
on an input operation, the following data
transferred to storage may be used to fill the gap.
On an output operation, overrun indicates that data
recorded at the device may be invalid. The overrun
bit is also set to one when the device receives the
new command too late during command chaining.

All information significant to the use of the
device normally is provided in the first two bytes.
Any bit positions following those used for
programming information contain diagnostic
information, which may extend to as many bytes as
needed. The amount and the meaning of the status
information are peculiar to the type of I/O device
and are specified in the SL publication for the
device.

The basic sense command has zero modifier bits.
This command initiates a sense operation on all
devices and cannot cause the command-reject,
intervention-required, data-check" or overrun bit to
be. set to one. If the control unit . detects an
equipment malfunction, or invalid parity of the
sense command code, the equipment-check or bus­
out-check bit is set to one, and unit check is
indicated in the unit-status byte.

Devices that can provide special diagnostic sense
information or can be instructed to perform other

special functions by use of the sense command may
define modifier bits for the control of these
functions. The speCial sense operations may be
initiated by a unique combination of modifier bits,
or a group of codes may specify the same function.
Any remaining sense command codes may be
considered invalid, thus causing the unit-check
indication, or may cause the same action as the
basic sense command, depending upon the type of
device.

The sense information that pertains to the last
I/O operation or other action at a device may be
reset any time after the completion of a sense
command addressed to that device. Any command
addressed to the control unit of a device, other
than the no-operation command and the command
which results from a TEST I/O instruction, may be
allowed to reset the sense information, provided
that the busy bit is not included in the initial status.
The sense information may also be changed as a
result of asynchronous actions, such as when
attention or not-ready-to-ready device-end status is
generated.

A CCW used in a sense operation is inspected
for every flag-CD, CC, SLI, SKIP, PCI, and IDA.
Bit positions 0-3 of the CCW contain modifier bits.

Transfer in Channel

ccw Address

o 4 8 31

\1 I I I I I I I I I I I I I I I
32 63

The next CCW is fetched from the location in
absolute storage designated by the data-address
field of the CCW specifying transfer in channel.
The transfer-in-channel command does not initiate
any I/O operation at the channel, and the I/O
device is not signaled. The purpose of the
transfer-in-channel command is to provide chaining
between CCWs not located in adjacent doubleword
locations in an ascending order of addresses. The
command can occur in both data and command
chaining.

The first CCW designated by the CAW must not
specify transfer in charmel. When this restriction is
violated, no I/O operation is initiated, and a
program check is generated. The error causes the
status portion of the CSW, with the program-check
status bit set to one, to be stored during the

execution of START I/O or START I/O FAST
RELEASE being executed as START I/O. When
ST AR T I/ 0 FAST RELEASE is executed
independent of the device, the error causes an
interruption condition to be generated.

To address a CCW on integral boundaries for
doublewords, a CCW specifying transfer in channel
must contain zeros in bit positions 29-31.
Furthermore, a CCW specifying a transfer in
channel must not be fetched from a location
designated by an immediately preceding transfer in
channel. When either of these errors is detected, a
program check is generated.

The contents of the second half of the CCW, bit
positions 32-63, are ignored. Similarly, the
contents of bit positions 0-3 of the CCW are
ignored.

Command Retry
Some channels have the capability to perform
command retry, a channel and control-unit
procedure that causes a command to be retried
without requiring an I/O interruption. This retry is
initiated by the control unit presenting either of
two status-bit combinations by means of a special
communication sequence with the channel. When
immediate retry can be performed, the control unit
signals a channel-end, unit-check, and
status-modifier status-bit combination, together
with device end. When immediate retry cannot be
performed, the presentation of device end is.
delayed until the control unit is prepared. If device
end and no other status bits are signaled, command
retry is performed. If device end is accompanied
by status modifier, command retry is not
performed, and the channel command-chains to the
CCW following the one for which retry was
signaled. When any other status bits accompany
device end or device end and status modifier, an
interruption condition is generated. In this
situation, the CSW will contain the status
indications causing the interruption condition.

When the channel is not capable of performing
command retry, the retry is suppressed, and an
interruption condition is generated. The CSW will
contain the channel-end, unit-check, and
status-modifier status indications, along with any
other appropriate status.

During command retry, the channel action is
similar to that taken when command chaining.
Thus, when command retry is performed, a START
1/ 0 initiating an immediate operation for which
command chaining is not indicated in the CCW
causes a condition code 0, rather than a condition
code 1, to be set. The subsequent termination of

Chapter 12. Input/Output Operations 12-39

the I/O operation causes an interruption condition
to be generated. During command retry, the CCW
may be refetched.

Programming Note
The following possible results of a command retry
must be anticipated by the program:
1. A CCW with the PCI flag set to one may, if

retried because of command retry, cause
multiple PCI interruptions to occur.

2. A channel program consisting of a single,
unchained CCW specifying an immediate
command may cause a condition code 0 rather
than a condition code 1 to be set. This setting
of the condition code occurs if the control unit
signals command retry at the time initial status
is signaled to the channel. An interruption
condition is generated upon completion of the
operation.

3. If a CCW used in an operation is changed
before that operation has been successfully
completed, the results are unpredictable.

4. A CSW stored after the initiation of a retry but
before the presentation of device end, as when
an interruption condition due to the PCI flag is
taken, contains the address of the command to
be retried plus 8.

5. If a HALT I/O, HALT DEVICE, or CLEAR
I/O instruction is issued after the initiation of a
retry but before the presentation of device end,
the CSW contains the address of the command
to be retried plus 8.

6. On a multiplexer channel, chained CCWs which
might ordinarily have been executed in a burst
may, upon the occurrence of command retry,
cause multiplexing to occur, with the result that
the channel becomes unexpectedly available.

7. Command chaining may occur even though the
CCW does not indicate command chaining.
This can occur if immediate retry is not
requested and the control unit or device
presents a status of device end and status
modifier.

Conclusion of Input/Output
Operations
When the operation or sequence of operations
initiated by START I/O or START I/O FAST
RELEASE is ended, the channel and the device
generate status. Status can be brought to the
attention of the program by means of an I/O
interruption, by TEST I/O or CLEAR I/O, or, in
certain cases, by START I/O or START I/O FAST
RELEASE. This status, as well as an address and
a count indicating the extent of the operation

12-40 System/370 Principles of Operation

sequence, are presented to the program in the form
of a channel-status word (CSW).

Types of Conclusion
Normally an I/O operation at the subchannellasts
until the device signals channel end. Channel end
can be signaled during the sequence initiating the
operation, or later. When the channel detects
equipment malfunctioning or an I/O system reset is
performed, the channel disconnects the device
without receiving channel end. The program can
force a device to be disconnected prematurely by
issuing CLEAR I/O, HALT I/O, or HALT
DEVICE.

Conclusion at Operation Initiation
After the addressed channel and sub channel have
been verified to be in a state where START I/O or
START I/O FAST RELEASE can be executed,
certain tests are performed on the validity of the
information specified by the program and on the
availability of the addressed control unit and I/O
device. This testing occurs during the execution of
START I/O, either during or subsequent to the
execution of START I/O FAST RELEASE, and
during command chaining.

A data-transfer operation is initiated at the
sub channel and device only when no programming
or equipment errors are detected by the channel
and when the device responds with zero status
during the initiation sequence. When the channel
detects or the device signals any unusual situations
during the initiation of an operation, the command
is said to be rejected.

Rejection of the command during the execution
of START I/O or START I/O FAST RELEASE is
indicated by the setting of the condition code in the
PSW. Unless the device is not operational, the
reasons for the rejection are detailed by the portion
of the CSW stored by START I/O or START I/O
FAST RELEASE. The device is not started, no
interruption conditions are generated, and the
sub channel is available subsequent to the initiation
sequence. The device is immediately available for
the initiation of another operation, provided the
command was not rejected because the device was
busy or not operational.

When an unusual situation causes a command to
be rejected during initiation of an I/O operation by
command chaining, an interruption condition is
generated, and the subchannel is not available until
the condition is cleared. The reasons for the
rejection are indicated to the program by means of
the corresponding status bits in the CSW. The
not-operational state of the I/O device, which

during the execution of START I/O and sometimes
during the execution of START I/O FAST
RELEASE causes condition code 3 to be set,
instead causes the interface-control-check bit to be
set to one. The new operation at the I/O device is
not started.

When START I/O FAST RELEASE is executed
by a channel independent of the addressed device;
tests for most program-specified information, for
control-unit and device availability, for control-unit
and device status, and for most errors are
performed subsequent to the execution of START
I/O FAST RELEASE. Some situations which
would have caused a condition code 1 or 3 to be
set had the instruction been START I/O instead
cause an interruption condition to be generated.
The CSW, when stored, indicates that the
interruption condition is a deferred condition code
1 or 3.

Immediate Operations
Some control commands cause the I/O device to
signal channel end immediately upon receipt of the
command code. An I/O operation causing channel
end to be signaled during the initiation sequence is
called an immediate operation.

When the first CCW designated by the CAW
during a START I/O or START I/O FAST
RELEASE executed as a START I/O initiates an
immediate operation with command chaining not
indicated and command retry not occurring, no
interruption condition is generated. In this case,
channel end is brought to the attention of the
program by causing START I/O or START I/O
FAST RELEASE to store the CSW status portion.
The subchannel is immediately made available to
the program. The I/O operation, however, is
initiated, and, if channel end is not accompanied by
device end, the device remains busy. Device end,
when subsequently provided by the device, causes
an interruption condition to be generated.

An immediate operation initiated by the first
CCW designated by the CAW during a START
I/O FAST RELEASE executed independent of the
addressed device appears to the program as a
nonimmediate command. That is, any status
generated by the device for the immediate
command, or for a subsequent command if
command chaining occurs, causes an interruption
condition to be generated.

When command chaining is specified after an
immediate operation and no unusual situations have
been detected during the execution, or when
command retry occurs for an immediate operation,
neither START I/O nor START I/O FAST

RELEASE causes the immediate storing of CSW
status. The subsequent commands in the chain are
handled normally, and channel end for the last
operation generates an interruption condition even
if the device provides the signal immediately upon
receipt of the command code.

Whenever immediate completion of an I/O
operation is signaled, no data has been transferred
to or from the device.

Since a count of zero is not valid, any CCW
specifying an immediate operation must contain a
nonzero count. When an immediate operation is
executed, however, incorrect length is not indicated
to the program, and command chaining is
performed when so specified.

Programming Note
Control operations for which the entire operation is
specified in the command code may be executed as
immediate operations. Whether the control
function is executed as an immediate operation
depends on the operation and type of device and is
specified in the SL publication for the device.

Conclusion of Data Transfer
When the device accepts a command, the
subchannel is set up for data transfer. The
subchannel is in the working state during this
period. Unless the channel detects equipment
malfunctioning or the operation is concluded by
CLEAR I/O, or, on the selector channel, the
operation is concluded by CLEAR I/O, HALT
I/O, or HALT DEVICE, the working state lasts
until the channel receives the channel-end signal
from the device. When no command chaining is
specified or when chaining is suppressed because of
unusual situations, channel end causes the
operation at the sub channel to be terminated and
an interruption condition to be generated. The
status bits in the associated CSW indicate channel
end and any unusual situations. The device can
signal channel end at any time after initiation of
the operation, and the signal may occur before any
data has been transferred.

For operations not involving data transfer, the
device normally controls the timing of channel end.
The duration of data-transfer operations may be
variable and may be controlled by the device or the
channel.

Excluding equipment errors, CLEAR I/O,
HALT DEVICE, and HALT I/O, the channel
signals the device to conclude data transfer
whenever any of the following events occurs:
1. The storage areas sp~cified for the operation

are exhausted or filled.

Chapter 12. Input/Output Operations 12-41

2. A program check is detected.
3. A protection check is detected.
4. A chaining check is detected.

The first event occurs when the channel has
stepped the count to zero in the last CCW
associated with the operation. A count of zero
indicates that the channel has transferred all
information specified by the program. The other
three events are due to errors and cause premature
conclusion of data transfer. In every case, the
conclusion is signaled in response to a service
request from the device and causes data transfer to
cease. If the device has no blocks defined for the
operation (such as writing from magnetic tape), it
concludes the operation and generates channel end.

The device can control the duration of an
operation and the timing of channel end. On
certain operations for which blocks are defined
(such as reading from magnetic tape), the device
does not provide the channel-end signal until the
end of the block is reached, regardless of whether
or not the device has been previously signaled to
conclude data transfer.

If the initial data address in the CCW is invalid,
no data is transferred during the operation, and the
device is signaled to conclude the operation in
response to the first service request. On writing,
devices such as magnetic-tape units request the first
byte of data before any mechanical motion is
started and, if the initial data address is invalid, the
operation is concluded before the recording medium
has been advanced. However, since the operation
has been initiated, the device provides channel end,
and an interruption condition is generated.
Whether a block at the device is advanced when no
data is transferred depends on the type of device
and is specified in the SL publication for the
device.

When command chaining takes place, the
sub channel is in the working state from the time
the first operation is initiated until the device
signals channel end for the last operation of the
chain. On the selector channel, the device
executing the operation stays connected to the
channel and the whole channel is in the working
state during the entire execution of the chain of
operations. On the multiplexer channel, an
operation in the burst mode causes the channel to
be in the working state only while transferring a
burst of data. If channel end and device end do
not occur concurrently, the device disconnects from
the ch:;:;nnel after providing channel end, and the
channel can in the meantime communicate with
other devices.

12-42 System/370 Principles of Operation

Any unusual situations cause command chaining
to be suppressed and an interruption condition to
be generated. The unusual situations can be
detected by either the channel or the device, and
the device can provide the indications with channel
end, control-unit end, or device end. When the
channel is aware of the unusual situation by the
time the channel-end signal for the operation is
received, the chain is ended as if the operation
during which the situation occurred were the last
operation of the chain. The device-end signal
subsequently is processed as an interruption
condition. When the device signals unit check or
unit exception with control-unit end or device end
the subchannel terminates the working state upon'
receipt of the signal from the device. The
channel-end indication in this case is not made
available to the program.

Termination by HALT I/O or HALT DEVICE
The instructions HALT I/O and HALT DEVICE
cause the current operation at the addressed
channel or subchannel to be immediately
terminated. The method of termination differs
from that used upon exhaustion of count or upon
detection of programming errors to the extent that
termination by HALT I/O or HALT DEVICE is
not necessarily contingent on the receipt of a
service request from the device.

When HALT I/O is issued to a channel
operating in burst mode, the channel issues the halt
signal to the device currently operating with the
channel, regardless of the device address specified
with the HALT I/ 0 instruction. If the channel is
involved in the data-transfer portion of an
operation, data transfer is immediately terminated,
and the device is disconnected from the channel.
If HALT I/O is addressed to a selector channel
executing a chain of operations and the device has
already provided channel end for the current
operation, the instruction causes the device to be
disconnected and command chaining to be
immediately suppressed.

When HALT DEVICE is issued to a channel
operating in burst mode, the halt signal is issued to
the device involved in the burst-mode operation
only if that device is the one to which the HALT
DEVICE is addressed. If the operation thus
terminated is in the data-transfer portion of the
operation, data transfer is immediately terminated,
and the device is disconnected from the channel.
If the terminated burst involves a selector channel
executing a chain of operations and the device has
already provided channel end for the current
operation, HALT DEVICE causes the device to be

disconnected and command chaining to be
immediately suppressed. If, on a selector channel,
the device involved in the burst is not the one to
which the HALT DEVICE is addressed, no action
is taken. If, on a multiplexer channel, the device
involved in the burst is not the one to which the
HALT DEVICE is addressed, HALT DEVICE
causes any operation for the addressed device to be
terminated at the addressed sub channel by
suppressing any further data transfer or command
chaining for that device.

When HALT I/O or HALT DEVICE is issued to
a channel not operating in burst mode, the
addressed device is selected, and the halt signal is
issued as the device responds. On a multiplexer
channel, command chaining, if indicated in the
subchannel, is immediately suppressed.

The termination of an operation by HALT I/O
or HALT DEVICE on the selector channel results
in up to four distinct interruption conditions. The
first one is generated by the channel upon
execution of the instruction and is not contingent
on the receipt of status from the device. The
channel-status bits reflect the unusual situations, if
any, detected during the operation. If HALT I/ 0
or HALT DEVICE is issued before all data
specified for the operation has been transferred,
incorrect length is indicated, subject to the control
of the SLI flag in the current CCW. The execution
of HALT I/O or HALT DEVICE itself is not
reflected in CSW status, and all status bits in a
CSW due to this interruption condition can be
zero. The channel is available for the initiation of
a new I/O operation as soon as the interruption
condition is cleared.

The second interruption condition on the
selector channel occurs when the control unit
signals channel end. The selector channel handles
this condition as any other interruption condition
from the device after the device has been
disconnected from the channel, and provides zeros
in the subchannel-key, CCW-address, count, and
channel-status fields of the associated CSW.
Channel end is not made available to the program
when HALT I/O or HALT DEVICE is issued to a
channel executing a chain of operations and the
device has already provided channel end for the
current operation.

Finally, the third and fourth interruption
conditions occur when control-unit end, if any, and
device end are signaled. These signals are handled
as for any other I/O operation.

The termination of an operation by HALT I/O
or HALT DEVICE on a multiplexer channel causes
the normal interruption conditions to be generated.

If the instruction is issued when the subchannel is
in the data-transfer portion of an operation, the
sub channel remains in the working state until
channel end is signaled by the device, at which
time the subchannel is placed in the
interruption-pending state. If HALT I/O or HALT
DEVICE is issued after the device has signaled
channel end and the subchannel is executing a
chain of operations, channel-end is not made
available to the program, and the subchannel

. remains in the working state until the next status
byte from the device is received. Receipt of a
status byte subsequently places the subchannel in
the interruption-pending state.

The CSW associated with the interruption
condition in the subchannel contains the status byte
provided by the device and the channel. If HALT
I/O or HALT DEVICE is issued before all data
areas associated with the current operation have
been exhausted or filled, incorrect length is
indicated, subject to the control of the SLI flag in
the current CCW. The interruption condition is
processed as for any other type of termination.

The termination of a burst operation by HALT
I/O or HALT DEVICE on a block-multiplexer
channel may, depending on the model and the type
of subchannel, take place as for a selector channel
or may allow the sub channel to remain in the
working state until the device provides ending
status.

Programming Note
The count field in the CSW associated with an
operation terminated by HALT I/O or HALT
DEVICE is unpredictable.

Termination by CLEAR I/O
The termination of an operation by CLEAR I/O
causes the subchannel to be set to the available
state and causes a CSW to be stored. The validity
of the CSW fields is defined in the instruction
CLEAR I/O earlier in this chapter.

When CLEAR I/O terminates an operation at a
sub channel in the interruption-pending state, up to
three subsequent interruption conditions related to
the operation can occur. Since CLEAR I/O causes
the sub channel to be made available, these
interruption conditions will result in only the
unit-status portion of the CSW being indicated.

The first interruption condition arises on a
selector channel when channel end is signaled to
the channel. This occurs only when the
interruption-pending states of the channel and
subchannel at the execution of CLEAR I/O were

Chapter 12. Input/Output Operations 12-43

due to the previous execution of HALT I/O or
HALT DEVICE.

The second and third interruption conditions
arise when control-unit end, if any, and device end
are signaled to the channel.

When CLEAR I/O terminates an operation at a
subchannel in the working state, up to four
subsequent interruption conditions related to the
operation can occur. For all of these conditions,
only the status portion of the CSW is indicated.

The first interruption condition arises on certain
channels when the terminated operation was in the
midst of data transfer. Since the device is not
signaled to terminate the operation during the
execution of CLEAR I/O unless the channel is
working with the addressed device when the
instruction is received, the device may, subsequent
to the CLEAR I/O, attempt to continue the data
transfer. The channel responds by signaling the
device to terminate data transfer. Depending on
the channel, the need to signal the device to
terminate data transfer may be ignored or may be
considered an interface-control check which creates
an interruption condition. Only channel status is
indicated in the CSW.

The second interruption condition occurs when
channel-end status is received from the device.
The third and fourth conditions occur when
control-unit end, if any, and device end are
presented to the channel. In these three cases, only
unit status is indicated in the CSW.

Termination Due to Equipment Malfunction
When channel-equipment malfunctioning is
detected or invalid signals are received from a
device, the recovery procedure and the subsequent
states of the subchannels and devices on the
channel depend on the type of error and on the
model. Normally, the program is alerted to the
termination by an I/O interruption, and the
associated CSW indicates channel-control check or
interface-control check. However, when the nature
of the malfunction prevents an I/O interruption, a
machine-check interruption occurs, and a CSW is
not stored. A malfunction may cause the channel
to perform the I/O selective reset or to generate
the halt signal.

Input/Output Interruptions
Input/ output interruptions provide a means for the
CPU to change its state in response to conditions
that occur in I/O devices or channels. The
conditions are indicated in an associated CSW
wh.ich is stored at the time of interruption. These

12-44 System/370 Principles of Operation

conditions can be caused by the program or by an
external event at the device.

Interruption Conditions
A request for an I/O interruption is called an
I/O-interruption condition, or, in this chapter,
simply an interruption condition. An interruption
condition can be brought to the attention of the
program only once and is cleared when it causes an
interruption. Alternatively, an interruption
condition can be cleared by TEST I/O or CLEAR
I/O, and conditions generated by the I/O device
following the termination of the operation at the
subchannel can be cleared by START I/O or
START I/O FAST RELEASE. The latter include
interruption conditions caused by· attention, device
end, and control-unit end, and channel end when
provided by a device after conclusion of the
operation.

The device attempts to initiate a request to the
channel for an I/O interruption whenever it detects
any of the following:

Channel end
Control-unit end
Device end
Attention

The channel combines the above status with
information in the subchannel and either causes an
I/O interruption or continues command chaining.
When command chaining takes place, channel end
and device end do not cause an interruption and
are not made available.

The channel may also, if command chaining
exists, create an interruption condition, which can
be due to the following:

Unit check
Unit exception
Busy indication from device
Program check
Protection check

When an operation initiated by command
chaining is terminated because of an unusual
situation detected during the command initiation
sequence, the interruption condition may remain
pending within the channel, or the channel may
create an interruption condition at the device. This
interruption condition is created at the device only
in response to presentation of status by the device
and causes the device subsequently to present the
same status for interruption purposes. The
interruption condition at the device mayor may not
be associated with unit status. If the unusual
situation is detected by the device (unit check or

unit exception) the unit-status field of the
associated CSW identifies the condition. If the
unusual situation is detected by the channel, as in
the case of program and protection check, the
identification of the error is preserved in the
subchannel and appears in the channel-status field
of the associated CSW.

An interruption condition caused by the device
may be accompanied by channel and other unit
status. Furthermore, more than one condition
associated with the same device can be cleared at
the same time. As an example, when channel end
is not cleared at the device by the time device end
is generated, both may be indicated in the CSW
and cleared at the device concurrently.

However, at the time the channel assigns highest
priority for interruptions to an interruption
condition associated with an operation at the
subchannel, the channel accepts the status from the
device and clears the condition at the device. The
interruption condition and the associated status
indication are subsequently preserved in the
subchannel. Any subsequent status generated by
the device is not included when the CSW is stored,
even if the status is generated before the
interruption condition is cleared.

When the channel is not working, a device that
is interruption-pending may attempt to initiate a
request to the channel for an I/O interruption by
presenting a nonzero status byte to the channel.
Depending on the channel, some models may
accept the status in the subchannel. Alternatively,
some models may signal the device to hold the
status until the channel is capable of causing an
interruption. In this case, the channel selects the
device to obtain the status when the interruption
occurs. The status stored by the channel is the
status presented by the device at interruption time
and, because of changed conditions at the device,
may not be the same status presented by the device
initially. Specifically, a status of zero, busy, or
busy and status modifier may be stored.

When the channel detects any of the following,
it generates an interruption condition without
necessarily communicating with or having received
the status byte from the device:
• PCI flag in a CCW
• Execution of HALT I/O or HALT DEVICE on

a selector channel
• Channel-available interruption (CAl)
• A programming error associated with the CCW

or first IDA W following the SIOF function

The interruption conditions from the channel,
except for CAl, can be accompanied by other

channel-status indications, but none of the device
status bits is on when the channel initiates the
interruption.

Channel-Available Interruption
The channel-available-interruption (CAl) condition
is provided on block-multiplexer channels and
causes the entire CSW to be replaced by a new set
of bits. All fields of. the CSW are set to zero. The
1/ 0 address stored contains a zero device address
and a channel address identifying the interrupting
channel.

The channel generates the CAl condition only if
it previously had responded with a condition code 2
to an I/O instruction other than HALT 1/ 0 or
HALT DEVICE and if the working state thus
indicated no longer exists. When the working state
which caused condition code 2 was due to a
subchannel busy with a device other than the one
addressed, the conclusion of the working state is
not signaled by a CAL Since any other
interruption condition (except PCI) accomplishes
the same function as CAl, a CAl condition is reset
upon the occurrence of any interruption (except
PCI) on that channel. Some channels also reset a
CAl condition when another interruption condition
(except PCI) is cleared by a TEST I/O on the same
channel. The occurrence of another
channel-working state before the CAl causes the
CAl condition to be suspended until the working
state ends.

Programming Note
The CAl is designed to inform the program that a
channel which previously indicated busy is no
longer busy. The CAl condition pending in a
channel does not cause the rejection of a
subsequent START I/O or START I/O FAST
RELEASE but does cause a condition code 1 to be
returned to TEST CHANNEL. The CAl can
therefore be used as a tool for keeping 1/ 0
requests in sequence by using it in conjunction with
TEST CHANNEL. A channel which responded
with condition code 2 because the channel was
busy does not subsequently respond with a
condition code 0 to a TEST CHANNEL without
clearing an interruption condition in the interim.

Priority 0/ Interruptions
Generation of interruption conditions is
asynchronous to the activity in the CPU, and
interruption conditions associated with more than
one I/O· device can exist at the same time. The
priority among interruptiqn conditions is controlled
by two types of mechanisms-one establishes the

Chapter 12. Input/Output Operations 12-45

priority among interruption conditions within a
channel, and another establishes priority among
interruption conditions from different channels. A
channel requests an 1/ ° interruption only after it
has established priority among interruption
conditions. The status associated with interruption
conditions is preserved in the devices or channels
until accepted by the CPU.

Assignment of priority among requests for
interruption associated with devices on anyone
channel is a function of the type of channel, the
type of interruption condition, and the position of
the device on the I/O interface. A device's
position on the interface is not related to its
address. Interruption conditions from different
devices do not necessarily occur in the sequence in
which they are generated. However, multiple
interruption conditions for a single device are
presented in the sequence in which they are
generated.

The priorities among requests for I/O
interruptions from different channels depend on
channel addresses. The priorities of channels 1-15
are in the order of their addresses, with channel 1
having the highest priority. The priority of
byte-multiplexer channel 0 is undefined. Its
priority may be above, below, or between those
priorities of channels 1-15.

Interruption Action
An I/O interruption can occur only when the CPU
is enabled for I/O interruptions. The interruption
occurs at the completion of a unit of operation. If
a channel has established the priority among
interruption conditions, while the CPU is disabled
for I/O interruptions, the interruption occurs
immediately after the completion of the instruction
enabling the CPU and before the next instruction is
executed. This interruption is associated with the
highest priority condition for the channel. If
interruptions are allowed from more than one
channel concurrently, the interruption occurs from
the channel having the highest priority among those
requesting interruption.

If the priority among interruption conditions has
not yet been established in the channel by the time
the interruption is allowed, the interruption does
not necessarily occur immediately after the
completion of the instruction enabling the CPU.
This delay can occur regardless of how long the
interruption condition has existed in the device or
the subchannel.

The interruption causes the current
program-status word (PSW) to be stored as the old
PSW at location 56 and causes the CSW associated

12-46 System/370 Principles of Operation

with the interruption to be stored at location 64.
In EC mode, the channel and device causing the
interruption are identified by the I/O address
which is stored at locations 186-187. In BC mode,
the channel and device causing the interruption are
identified by the I/O address in bit positions 16-31
of the I/O old PSW.

If a limited-channel logout is present, it is stored
at locations 176-179.

Subsequently, a new PSW is loaded from
location 120, and processing resumes in the state
indicated by this PSW. The CSW associated with
the interruption identifies the interruption condition
responsible for the interruption and provides
further details about the progress of the operation
and the status of the device.

Programming Note
When a number of 1/ ° devices on a shared control
unit are concurrently executing operations such as
rewinding tape or positioning a disk-access
mechanism, the initial device-end signals generated
on completion of the operations are provided in the
order of generation, unless command chaining is
specified for the operation last initiated. In the
latter case, the control unit provides the device-end
signal for the last initiated operation first, and the
other signals are delayed until the sub channel is
freed. Whenever interruptions due to the
device-end signals are delayed because the CPU is
disabled for 1/ ° interruptions or the subchannel is
busy, the original order of the signals is destroyed.

Channel-Status Word
The channel-status word (CSW) provides to the
program the status of an I/O device or the
indication of the reasons for which an I/O
operation has been concluded. The CSW is
formed, or parts of it are replaced, in the process of
I/O interruptions and possibly during the execution
of START I/O, START I/O FAST RELEASE,
TESTI/O,CLEARI/O,HALTI/O,HALT
DEVICE, and STORE CHANNEL ID. The CSW
is stored at real storage location 64 and is available
to the program at this location until the time the
next I/ ° interruption occurs or until another I/O
instruction causes its contents to be replaced,
whichever occurs first.

The information placed in the CSW by an I/O
interruption pertains to the device which is
identified by the 1/ ° addr.ess stored during the
interruption. The information placed in the CSW
by START I/O, START I/O FAST RELEASE,
TEST I/O, CLEAR I/O, HALT I/O, or HALT

DEVICE pertains to the device addressed by the
instruction.

The CSW has the following format:

IKeylolLICCI CCW Address

o 4 6 8 31

Unit Channel
Status Status Count

32 40 48 63

The fields in the CSW are allocated as follows:

Subchannel Key: Bits 0-3 form the access key
used in the chain of operations at the subchannel.

Logout Pending (L): Bit 5, when one, indicates
that an I/O instruction cannot be executed until a
logout has been cleared. Bit 45, channel-control
check, will always be one when bit 5 is one.

Deferred Condition Code (CC): Bits 6 and 7
indicate whether situations have been encountered
subsequent to the setting of a condition code 0 for
START I/O FAST RELEASE that would have
caused a different condition-code setting for
START I/O. The possible setting of these bits,
and their meanings, are as follows:

Setting of

Bit 6 Bit 7 Meaning

0 0 Normal I/O interruption
0 1 Deferred condition code is 1
1 0 (Reserved)
1 1 Deferred condition code is 3

CCW Address: Bits 8-31 form an absolute
address that is 8 higher than the address of the last
CCW used.

Status: Bits 32-47 identify the status of the
device and the channel that caused the storing of
the CSW. Bits 32-39, the unit status, indicate
situations detected by the device or control unit.
Bits 40-47, the channel status, are provided by the
channel and indicate situations associated with the
subchannel. The 16 bits are designated as follows:

Bit Designation
32 Attention
33 Status modifier
34 Control-unit end
35 Busy
36 Channel end
37 Device end
38 Unit check
39 Unit exception
40 Program-controlled interruption
41 Incorrect length
42 Program check
43 Protection check
44 Channel-data check
45 Channel-control check
46 Interface-control check
47 Chaining check

Count: Bits 48-63 form the residual count for the
last CCW used.

Chapter 12. Input/Output Operations 12-47

Unit Status
The following status indications are generated by
the I/O device or control unit. The timing and
causes of these status indications for each type of
device are specified in the SL publication for the
device.

When the 1/ ° device is accessible from more
than one channel, status due to channel-initiated
operations is signaled to the channel that initiated
the associated I/O operation. The handling of
status not associated with I/O operations, such as
attention or device end due to transition from the
not-ready to the ready state, depends on the type
of device and situation and is specified in the SL
publication for the device.

Attention
Attention is signaled when the device detects an
asynchronous situation that is significant to the
program. Attention is interpreted by the program
and is not associated with the initiation, execution,
or conclusion of an I/O operation.

The device can signal attention to the channel
when no operation is in progress at the I/O device,
control unit, or subchannel. Attention can be
signaled with device end upon completion of an
operation, and it can be signaled to the channel
during the initiation of a new I/O operation.
Attention along with device end and unit exception
can also be signaled whenever a device changes
from the not-ready to the ready state. The
handling and presentation of attention to the
channel depends on the type of device.

When the device signals attention during the
initiation of an operation, the operation is not
initiated. Attention causes command chaining to
be suppressed.

Status Modifier
Status modifier is generated by the device when the
device cannot provide its current status in response
to TEST I/O, when the control unit is busy, when
the normal sequence of commands has to be
modified, or when command retry is to be initiated.

When status modifier is signaled in response to
TEST I/O and status modifier is the only status bit
that is set to one, this indicates that the device
cannot execute the instruction and has not provided
its current status. The interruption condition,
which may be pending at the device or subchannel,
has not been cleared, and the CSW stored by TEST
I/O contains zeros in the subchannel-key, CCW­
address, and count fields.

12-48 System/370 Principles of Operation

When the status-modifier bit in the CSW is set
to one together with the busy bit, it indicates that
the busy status pertains to the control unit
associated with the addressed 1/ ° device. The
control unit appears busy when it is executing a
type of operation that precludes the acceptance and
execution of any command or the instructions
TEST I/O, HALT I/O, and HALT DEVICE or
when it contains an interruption condition for a
device other than the one addressed. The
interruption condition may be due to control-unit
end, due to channel end following the execution of
CLEAR I/O, or, on the selector channel, due to
channel end following the execution of HALT I/O
or HALT DEVICE. The busy state occurs for
operations such as backspace file, in which case the
control unit remains busy after providing channel
end, for operations concluded by CLEAR I/O, and
for operations concluded on the selector channel by
HALT I/O or HALT DEVICE, and temporarily
occurs on the 2702 Transmission Control after
initiation of an operation on a device
accommodated by the control unit. A control unit
accessible from two or more channels appears busy
when it is communicating with another channel.

Presence of status modifier and device end
means that the normal sequence of commands must
be modified. The handling of this status
combination by the channel depends on the
operation. If command chaining is specified in the
current CCW and no unusual situations have been
detected, presence of status modifier and device
end causes the channel to fetch and chain to the
CCW whose storage address is 16 higher than that
of the current CCW. If the I/O device signals
status modifier at a time when no command
chaining is specified, or when any unusual
situations have been detected, no action is taken in
the channel, and the status-modifier bit and any
other status bit presented by the device are set to
ones in the CSW.

Status modifier is set to one in combination with
unit check and channel end to initiate the
command-retry procedure.

Control-Unit End
Control-unit end indicates that the control unit has
become available for use for another operation.

Control-unit end is provided only by control
units shared by I/O devices or control units
accessible by two or more channels, and only when
one or both of the following have occurred:
1. The program had previously caused the control

unit to be interrogated while the control unit
was in the busy state. The control unit is

considered to have been interrogated in the
busy state when a command or the instructions
TEST I/O, HALT I/O, or HALT DEVICE had
been issued to a device on the control unit, and
the control unit had responded with busy and
status modifier in the unit-status byte. See the
section "Status Modifier" earlier in this
chapter.

2. The control unit detected an unusual situation
during the portion of the operation after
channel end had been signaled to the channel.
The indication of the unusual situation
accompanies control-unit end.

If the control unit remains busy with the
execution of an operation after signaling channel
end but has not detected any unusual situations and
has not been interrogated by the program, control­
unit end is not generated. Similarly, control-unit
end is not provided when the control unit has been
interrogated and could perform the indicated
function. The latter case is indicated by the
absence of busy and status modifier in the response
to the instruction causing the interrogation.

When the busy state of the control unit is
temporary, control-unit end is included with busy
and status modifier in response to the interrogation
even though the control unit has not yet been
freed. The busy condition is considered to be
temporary if its duration is commensurate with the
program time required to handle an 1/ 0
interruption. The 2702 Transmission Control is an
example of a device in which the control unit may
be busy temporarily and which includes control-unit
end with busy and status modifier.

Control-unit end can be signaled with channel
end, with device end, or between the two. When
control-unit end is signaled by means of an I/O
interruption in the absence of any other status, the
interruption may be identified by any address
assigned to the control unit. A control-unit end
may cause the control unit to appear busy for the
initiation of new operations with any attached
device. Alternatively, a control-unit end may be
assigned by the control unit to a specific device
address, and only that device would appear busy
for the initiation of new operations.

Busy
Busy indicates that the I/O device or control unit
cannot execute the command or instruction because
(1) it is executing a previously initiated operation,
(2) it contains an interruption condition, (3) it is
shared by channels or I/O devices and the shared
facility is not available, or (4) a self-initiated

function is being performed. The status associated
with the interruption condition for the addressed
device, if any, accompanies the busy status. If busy
applies to the control unit, busy is accompanied by
status modifier.

The figure "Indications of Busy in CSW" lists
the situations for devices connected to only one
channel when the busy bit is set to one in the CSW
and when busy is accompanied by status modifier.
For devices shared by more than one channel,
operations related to one channel may cause the
control unit or device to appear busy to the other
channels.

Channel End
Channel end is caused by the completion of the
portion of an I/O operation involving transfer of
data or control information between the I/O device
and the channel. The condition indidtes that the
sub channel has become available for use for
another operation.

Each I/O operation causes channel end to be
signaled, and there is only one channel end for an
operation. Channel end is not signaled when
programming errors or equipment malfunctions are
detected during initiation of the operation. When
command chaining takes place, only the channel
end of the last operation of the chain is made
available to the program. Channel end is not made
available to the program when a chain of
commands is prematurely concluded because of an
unusual situation indicated with control-unit end or
device end or during the initiation of a chained
command.

The instant within an I/O operation when
channel end is signaled depends on the operation
and the type of device. For operations such as
writing on magnetic tape, channel end occurs when
the block has been written. On devices that verify
the writing, channel end mayor may not be
delayed until verification is performed, depending
on the device. When magnetic tape is being read,
channel end occurs when the gap on tape reaches
the read-write head. On devices equipped with
buffers, channel end occurs upon completion' of
data transfer between the channel and the buffer.
During control operations, channel end is generated
when the control information has been transferred
to the deVices, although for short operations
channel end may be delayed until completion of the
operation. Operations that do not cause any data
to be transferred can provide channel end during
the initiation sequence.

Chapter 12. Input/Output Operations 12-49

CSW Status Stored By

SID or HID or I/O
Condition SIOF;t TID CLRIO+ HDV Irpt

Subchannel avai lable
DE or attention in device B,cl NB,cl * * NB,cl
Device working, CU available B B * * B

CU end or channel end in CU:
for the addressed device B,cl NB,cl NB * NB,cl
for another device B,SM B,SM NB * NB,cl

CU working B,SM B,SM NB * B,SM
Interruption condition in

subchannel for the addressed
device because of:
chaining terminated by busy * B,cl NB,cl * B,cl
other type of termination * NB,cl NB,cl * NB,cl

Subchannel working
CU available * * NB NB *
CU working * * NB B,SM *

Explanation:

B Busy bit in CSW is one.

cl Interruption condition cleared; status is placed in CSW.

CU Control unit.

DE Device end.

NB Busy bit is zero.

SM Status-modifier bit appears in CSW.

* CSW not stored, or I/O interruption cannot occur.

When a channel executes START I/O FAST RELEASE as START I/O, the CSW
status stored for the two instructions is identical. When START I/O
FAST RELEASE is executed independently of the device, the same status
is stored by an I/O interruption with the CSW also indicating
deferred condition code 1.

+

Except when the I/O interruption is caused by a deferred condition
code 1 for START I/O FAST RELEASE.

The entries in this column apply only when the CLRIO function is
executed. When CLEAR I/O causes the TID function to be executed, the
entries in the TID column apply.

Indications of Busy in CSW

12-50 System/370 Principles of Operation

Channel end in the control unit may cause the
control unit to appear busy for the initiation of new
operations.

Channel end is presented in combination with
status modifier and unit check to initiate the
command-retry procedure.

Device End
Device end is caused by the completion of an I/O
operation at the device, by manually changing the
device from the not-ready to the ready state, or by
the termination of an activity which previously
caused a response of busy to the channel. Device
end normally indicates that the 1/ 0 device has
become available for use in another operation.

Each I/O operation causes device end, and there
is only one device end to an operation. Device end
is not generated when any programming or
equipment malfunction is detected during initiation
of the operation. When command chaining takes
place, only the device end of the last operation of
the chain is made available to the program unless
an unusual situation is detected during the
initiation of a chained command, in which case the
chain is concluded without device end.

Device end associated with an I/O operation is
generated either simultaneously with channel end
or later. For data-transfer operations on devices
such as magnetic-tape units, the device concludes
the operation at the time channel end is generated,
and both device end and channel end occur
together. On buffered devices, device end occurs
upon completion of the mechanical operation. For
control operations, device end is generated at the
completion of the operation at the device. The
operation may be completed at the time channel
end is generated or later.

When command chaining is specified, receipt of
the device-end signal, in the absence of any
unusual situations, causes the channel to initiate a
new I/O operation.

When the state of a device is changed from not
ready to ready, a device end is generated. Some
devices generate attention and unit exception along
with device end when they change from the
not-ready to ready state. A device is considered to
be not-ready when operator intervention is required
in order to make the device available. A not-ready
condition can occur, for example, because of any of
the following:
1. An unloaded condition for magnetic tape
2. Card equipment out of cards or with the

stacker full
3. A printer out of paper

4. Error conditions that need operator
intervention

5. The unit having changed from the enabled to
the disabled state

Unit Check
Unit check indicates that the I/O device or control
unit has detected an unusual situation that is
detailed by the information available to a sense
command. Unit check may indicate that a
programming or equipment error has been detected,
that the not-ready state of the device has affected
the execution of the command or instruction, or
that an exceptional situation other than the one
identified by unit exception has occurred. The
unit-check bit provides a summary indication of the
sense data.

An error causes the unit-check indication only
when it occurs during the execution of a command
or TEST I/O, or during some activity associated
with an I/O operation. Unless the error pertains to
the activity initiated by a command and is of
immediate significance to the program, the error
does not cause the program to be alerted after
device end has been cleared; a malfunction may,
however, cause the device to become not ready.

Unit check is indicated when the existence of the
not-ready state precludes a satisfactory execution
of the command, or when the command, by its
nature, tests the state of the device. When no
interruption condition is pending for the addressed
device at the control unit, the control unit signals
unit check when TEST I/O or the no-operation
control command is issued to a not-ready device.
In the case of no-operation, the command is
rejected, and channel end and device end do not
accompany unit check.

Unless the command is designed to cause unit
check, such as rewind and unload on magnetic tape,
unit check is not indicated if the command is
properly executed even though the device has
become not ready during or as a result of the
operation. Similarly, unit check is not indicated if
the command can be executed with the device not
ready. Selection of a device that is not ready does
not cause a unit check when the sense command is
issued or when an interruption condition is pending
for the addressed device at the control unit.

If the device detects during the initiation
sequence that·the command cannot be executed,
unit check is signaled to the channel without
channel end, control-unit end, or device end. Such
unit status indicates that no action has been taken
at the device in response to the command. If the
situation precluding proper execution of the

Chapter 12. Input/Output Operations 12-51

operation occurs after execution has been started,
unit check is accompanied by channel end,
coritrol-unit end, or device end, depending on when
the situation was detected. Any errors associated
with an operation, but detected after device end
has been cleared, are indicated by signaling unit
check with attention.

Errors, such as invalid command code or invalid
command-code parity, do not cause unit check
when the device is working or contains an
interruption condition at the time of selection.
Under these circumstances, the device responds by
providing busy status and indicating the
interruption condition, if any. The command-code
invalidity is not indicated.

Concluding an operation with the unit-check
indication causes command chaining to be
suppressed.

Unit check is presented in combination with
channel end and status modifier to initiate the
command-retry procedure.

Programming Notes
1. If a device becomes not ready upon completion

of a command, the ending interruption
condition can be cleared by TEST I/O without
generation of unit check due to the not-ready
state, but any subsequent TEST I/O issued to
the device causes a unit-check indication.

2. In order that sense indications set in
conjunction with unit check are preserved by
the device until requested by a sense command,
some devices inhibit certain functions until a
command other than test 110 or no-operation
is received. Furthermore, any command other
than sense, test I/O, or no-operation causes the
device to reset any sense information. To
avoid degradation of the device and its control
unit and to avoid inadvertent resetting of the
sense information, a sense command should be
issued immediately to any device signaling unit
check.

Unit Exception
Unit exception is caused when the I/O device
detects a situation that usually does not occur.
Unit exception includes situations such as
recognition of a tape mark and does not necessarily
indicate an error. It has only one meaning for any
particular command and type of device.

Unit exception can be generated only when the
device is executing an I/O operation, or when the
device is involved with some activity associated
with an 110 operation and the situation is of
immediate significance to the program. If the

12-52 System/370 Principles of Operation

device detects during the initiation sequence that
the operation cannot be executed, unit exception is
presented to the channel and appears without
channel end, control-unit end, or device end. Such
unit status indicates that no action has been taken
at the device in response to the command. If the
situation precluding normal execution of the
operation occurs after the execution has been
started, unit exception is accompanied by channel
end, control-unit end, or device end, depending on
when the situation was detected. Any unusual
situation associated with an operation, but detected
after device end has been cleared, is indicated by
signaling unit exception with attention.

A command does not cause unit exception when
the device responds with busy status to the
command during the initial selection.

Concluding an operation with the unit-exception
indication causes command chaining to be
suppressed.

Unit exception along with device end and
attention can also be generated whenever a device
changes from the not-ready state to the ready state.

Channel Status
The following status bits are generated by the
channel. Except for the status bits resulting from
equipment malfunction, they can occur only while
the subchannel is involved with the execution of an
I/O operation.

Program-Controlled Interruption
A program-controlled interruption occurs when the
channel fetches a CCW with the
program-controlled-interruption (PCl) flag set to
one. The 1/ 0 interruption due to the PCI flag
takes place as soon as possible after the CCW takes
control of the operation but may be delayed an
unpredictable amount of time because I/O
interruptions are disallowed or because of other
activity in the system.

The interruption condition due to the PCI flag
does not affect the progress of the I/O operation.

Incorrect Length
Incorrect length occurs when the number of bytes
contained in the storage areas assigned for the I/O
operation is not equal to the number of bytes
requested or offered by the I/O device. Incorrect
length is indicated for one of the following reasons:

Long Block on Input: During a read,
read-backward, or sense operation, the device
attempted to transfer one or more bytes to storage
after the assigned storage areas were filled. The

extra bytes have not been placed in storage. The
count in the CSW is zero.

Long Block on Output: During a write or control
operation, the device requested one or more bytes
from the channel after the assigned storage areas
were exhausted. The count in the CSW is zero.

Short Block on Input: The number of bytes
transferred during a read, read-backward, or sense
operation is insufficient to fill the storage areas
assigned to the operation. The count in the CSW is
not zero.

Short Block on Output: The device terminated a
write or control operation before all information
contained in the assigned storage areas was
transferred to the device. The count in the CSW is
not zero.

Incorrect length is not indicated when the
current CCW has the SLI flag set to one and the
CD flag set to zero. The indication does not occur
for immediate operations and for operations
rejected during the initiation sequence.

When incorrect length occurs, command chaining
is suppressed, unless the SLI flag in the CCW is
one or unless the operation is immediate. See the
figure "Channel-Chaining Action" in this chapter
for the effect of the CD, CC, and SLI flags on the
indication of incorrect length.

Programming Note
The setting of incorrect length is unpredictable in
the CSW stored during CLEAR I/O.

Program Check
Program check occurs when programming errors are
detected by the channel. Program check can be
due to the following causes:

Invalid CCW -Address Specification: The CAW
or the transfer-in-channel command does not
designate the CCW on integral boundaries for
double words. The three rightmost bits of the CCW
address are not zeros.

Invalid CCW Address: The channel has
attempted to fetch a CCW from a storage location
which is not available to the channel. An invalid
CCW address can occur in the channel because the
program has specified an invalid address in the
CAW or in the transfer-in-channel command or
because on chaining the channel has attempted to
fetch a CCW from an unavailable location.

Invalid Command Code: The command code in
the first CCW designated by the CAW or in a
CCW fetched on command chaining has four
low-order zeros. The command code is not tested
for validity during data chaining.

Invalid Count: A CCW other than a CCW
specifying transfer in channel contains the value
zero in bit positions 48-63.

Invalid IDAW-Address Specification: Channel
indirect data addressing is specified, and the data
address does not designate the first IDA W on an
integral word boundary.

Invalid IDA W Address: The channel has
attempted to fetch an IDA W from a storage
location which is not available to the channel. An
invalid IDA W address can occur in the channel
because the program has specified an invalid
address in a CCW that specifies indirect data
addressing or because the channel, on sequentially
fetching IDA Ws, has attempted to fetch from an
unavailable location.

Invalid Data Address: The channel has attempted
to transfer data to or from a storage location which
is not available to the channel. An invalid data
address can occur in the channel because the
program has specified an invalid address in the
CCW, or in an IDA W, or because the channel, on
sequentially accessing storage, has attempted to
access an unavailable location.

Invalid IDA W Specification: Bits 0-7 of the
IDA Ware not all zeros, or the second or
subsequent IDA W does not specify the first or, for
read-backward operations, the last byte of a
2,048-byte storage block.

Invalid CAW Format: The CAW does not contain
zeros in bit positions 4-7.

Invalid CCW Format: A CCW other than a CCW
specifying transfer in channel does not contain
zeros in bit positions 38-39.

Invalid Sequence: The first CCW designated by
the CAW specifies transfer in channel, or the
channel has fetched two successive CCWs both of
which specify transfer in channel.

Detection of program check during the initiation
of an operation causes execution of the operation
to be suppressed. When program check is detected
after the device has been started, the device is

Chapter 12. Input/Output Operations 12-53

signaled to conclude the operation the next time it
requests or offers a byte of data. Program check
causes command chaining to be suppressed.

Protection Check
Protection check occurs when the channel attempts
a storage access that is prohibited by key-controlled
storage protection. Protection applies to the
fetching of CCWs, IDA Ws, and output data, and to
the storing of input data. Storage accesses
associated with each channel program are
performed using the sub channel key provided in the
CAW associated with that channel program. For
details, see the section "Key-Controlled
Protection" in Chapter 3, "Storage."

When protection check occurs during the
fetching of a CCW that specifies the initiation of
an I/O operation, or occurs during the fetching of
the first IDA W, the operation is not initiated.
When protection check is detected after the device
has been started, the device is signaled to conclude
the operation the next time it requests or offers a
byte of data. Protection check causes command
chaining to be suppressed.

Channel-Data Check
Channel-data check indicates that a machine error
has been detected in the information transferred to
or from storage during an I/O operation, or that a
parity error has been detected on the data on
bus-in during an input operation. This information
includes the data read or written, as well as the
information transferred as data during a sense or
control operation. The error may have been
detected in the channel, in storage, or on the path
between the two. Channel-data check may be
indicated for data with an invalid checking-block
code in storage when the data is referred to by the
channel but the data does not participate in the
operation.

Whenever a parity error on I/O input data is
indicated by means of channel-data check, the
channel forces correct parity on all data received
from the I/O device, and all data placed in storage
has valid checking-block code. When, on an input
operation, the channel attempts to store less than a
complete checking block, and when invalid
checking-block code is detected on the checking
block in storage, the contents of the location
remain unchanged with invalid checking-block
code. On an output operation, whenever a
channel-data check is indicated, all bytes that came
from a checking block with invalid checking-block
code have been transmitted with parity errors.

12-54 System/370 Principles of Operation

Channel-data check causes command chaining to
be suppressed but does not affect the execution of
the current operation. Data transfer proceeds to
normal completion, if possible, and an interruption
condition is generated when the device presents
channel end. A logout may be performed,
depending on the channel. Accordingly, the
detection of the error may affect the state of the
channel and the device.

Channel-Control Check
Channel-control check is caused by machine
malfunction affecting channel controls. It may be
caused by invalid checking-block code on CCW
and data addresses and invalid checking-block code
on the contents of the CCW. Channel-control
check may also include those channel-detected
errors associated with data transfer that are not
indicated as channel-data check, as well as those
I/O interface errors detected by the channel that
are not indicated as interface-control check. Errors
responsible for channel-control check may cause
the contents of the CSW to be invalid and
conflicting. The CSW as generated by the channel
has valid checking-block code.

Detection of channel-control check causes the
current operation, if any, to be immediately
concluded.

Channel-control check is set whenever CSW bit
5, logout pending, is set to one.

In some situations, machine malfunctions
affecting channel control may instead be reported
as an external-damage or system-damage
machine-check condition.

Interface-Control Check
Interface-control check indicates that an invalid
signal has been received by the channel when
communicating with a control unit or device. This
check is detected by the channel and usually
indicates malfunctioning of an I/O device. It can
be due to the following:
1. The address or status byte received from a

device has invalid parity.
2. A device responded with an address other than

the address specified by the channel during
initiation of an operation.

3. During command chaining the device appeared
not operational.

4. A signal from a device occurred at an invalid
time or had invalid duration.

5. A device Signaled I/O error alert.

The interface-control-check condition may also
include those channel-detected errors associated

with bus-in during data transfer that are not
indicated as channel-data check.

Detection of interface-control check causes the
current operation, if any, to be immediately
concluded.

Chaining Check
Chaining check is caused by channel overrun
during data chaining on input operations. Chaining
check occurs when the I/O data rate is too high to
be handled by the channel and by storage under
current conditions. Chaining check cannot occur
on output operations.

Chaining check causes the I/O device to be
signaled to conclude the operation. It causes
command chaining to be suppressed.

Contents Of Channel-Status Word
The contents of the CSW depend on the reason the
CSW was stored and on the programming method
by which the information is obtained. The status
portion always identifies the reason the CSW was
stored. The subchannel-key, CCW-address, and
count fields may contain information pertaining to
the last operation or may be set to zero, or the
original contents of these fields at location 64 may
be left unchanged.

Information Provided by Channel-Status Word
Interruption conditions resulting from the execution
or conclusion of an operation at the sub channel
cause the whole CSW to be replaced. Such a CSW
can be stored only by an I/O interruption or by
TEST I/O or CLEAR I/O. Except for situations
associated with command chaining and equipment
malfunctioning, the storing can be caused by PCI
or channel end and by the execution of HALT I/O
or HALT DEVICE on the selector channel. The
contents of the CSW are related to the current
values of the corresponding quantities, although the
count is unpredictable after program check,
protection check, and chaining check, and after an
interruption due to the PCI flag.

A CSW stored upon the execution of a chain of
operations pertains to the last operation which the
channel executed or attempted to initiate.
Information concerning the preceding operations is
not preserved and is not made available to the
program.

When an unusual situation causes command
chaining to be suppressed, the premature conclusion
of the chain is not explicitly indicated in the CSW.
A CSW associated with a conclusion due to a
situation occurring at channel-end time contains
channel end and identifies the unusual situation.

When the device signals the unusual situation with
control-unit end or device end, the channel-end
indication is not made available to the program,
and the channel provides the current sub channel
key, CCW address, and count, as well as the
unusual indication, with control-unit end or device
end in the CSW. The CCW-address and count
fields pertain to the operation that was executed.

When the execution of a chain of commands is
concluded by an unusual situation detected during
initiation of a new operation, the CCW -address
and count fields pertain to the rejected command.
Except for situations resulting from equipment
malfunctioning, conclusion at initiation time can
occur because of attention, unit check, unit
exception, or program check, and causes both the
channel-end and device-end bits in the CSW to be
set to zeros.

A CSW associated with status signaled after the
operation at the subchannel has been concluded
contains zeros in the subchannel-key,
CCW-address, and count fields, provided the status
is not cleared during START I/O or START I/O
FAST RELEASE and provided logout pending is
not indicated. This status includes attention,
control-unit end, and device end (and channel end
when it occurs after the conclusion of an operation
on the selector channel by HALT I/O or HALT
DEVICE).

When the above status indications, other than
logout pending, are cleared during START I/O or
START I/O FAST RELEASE, only the status
portion of the CSW is stored, and the original
contents of the subchannel-key, CCW-address,
deferred-condition-code, logout-pending, and count
fields in location 64 are preserved. Similarly, only
the status bits of the CSW are changed when the
command is rejected or the operation at the
subchannel is concluded during the execution of
START I/O or START I/O FAST RELEASE or
whenever HALT I/O or HALT DEVICE causes
CSW status to be stored.

Errors detected during execution of the I/O
operation do not affect the validity of the CSW
unless channel-control check or interface-control
check are indicated. Channel-control check
indicates that equipment errors have been detected
which can cause any part of the CSW, as well as
the I/O address, to be invalid. Interface-control
check indicates that the address identifying the
device or the status bits received from the device
may be invalid. The channel forces correct parity
on invalid CSW fields. The validity of these fields
can be ascertained by inspecting the limited
channel logout.

Chapter 12. Input/Output Operations 12-55

When any 110 instruction cannot be executed
because of a pending logout which affects the
operational capability of the channel or subchannel,
a full CSW is stored. The fields in the CSW are all
set to zeros, with the exception of the
logout-pending bit and the channel-control-check
bit, which are set to ones.

Subchannel Key
A CSW stored to reflect the progress of an
operation at the subchannel contains the
sub channel key used in that operation. The
contents of this field are not affected by
programming errors detected by the channel or by
the situations causing termination of the operation.

CCW Address
When the CSW is formed to reflect the progress of
the I/O operation at the subchannel, the CCW
address is normally 8 higher than the address of the
last CCW used in the operation.

The figure "Contents of the CCW-Address Field
in the CSW" lists the contents of the CCW -address
field for all situations that can cause the CSW to be
stored. They are listed in order of priority; that is,
if two situations occur, the CSW appears as
indicated for the situation higher on the list. When
a CSW has been stored and the situation exists that
a command-retry request has been recognized but
the CCW has not been reexecuted, the "last-used
CCW + 8" is the CCW that is to be retried.

Count
The residual count, in conjunction with the original
count specified in the last CCW used, indicates the
number of bytes transferred to or from the area
designated by the CCW. When an input operation
is concluded, the difference between the original
count in the CCW and the residual count in the
CSW is equal to the number of bytes transferred to
storage; on an output operation, the difference is
equal to the number of bytes transferred to the I/O
device.

The figure "Contents of the Count Field in the
CSW" lists the contents of the count field for all
situations that can cause the CSW to be stored.
They are listed in the order of priority; that is, if
two situations occur, the CSW appears as for the
situation higher on the list.

12-56 System/370 Principles of Operation

Situations

Channe I-contro 1 check
Status stored by START I/O or

START I/O FAST RELEASE
Status stored by HALT I/O or

HALT DEVICE
I nva 1 i d CCW-address spec in

transfer in channel (TIC)
Inval id CCW address in TIC
I nva 1 i d CCW address generated
I nva 1 i d command code
Inval id count
Inval id data address
I nva 1 i d CCW format
Inval id sequence - 2 TICs
I nva lid key on CCW fetch
I nva 1 i d key on data or I DAW

access
Chaining check
Termination under count control
Termination by lID device
Termination by HALT I/O
Term i nat i on by CLEAR I/O
Suppress i on of command

chaining due to unit check
or unit exception with de­
vice end or control-unit end

Termination on command
chaining by busy, unit
check, or unit exception

Deferred condition code 1 or 3
for START I/O FAST RELEASE

PCI flag in cell
Interface control check
Channel end after HALT I/O

on selector channel
Channe I end after CLEAR I/O
Control-unit end
Dev i ce end
Attention
Busy
Status modifier

Contents of Field

Unpred i ctab I e
Unchanged

Unchanged

Address of TIC + 8

Address of TIC + 8
First inval id CCW address + 8
Address of inval id CCW + 8
Address of inval id CCW + 8
Address of i nva 1 i d CCW + 8
Address of inval id CCW + 8
Address of second TIC + 8
Address of protected CCW + 8
Address of current CCW + 8

Address of last-used CCW + 8
Address of last-used CCII + 8
Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last-used CCW + 8
Address of last CCW used in

the completed operation + 8

Address of CCW spec i fy i ng
the new operation + 8

Address of CCW specifying
the new operation + 8

Address of last-used CCII + 8
Unpredictable
Zero

Zero
Zero
Zero
Zero
Zero
Zero

Contents of the CCW-Address Field in the CSW

Situations

Channe I-contra I check
Status stored by START I/O or

START I/O FAST RELEASE
Status stored by HALT I/O or

HALT DEVICE
Program check
Protect ion check
Cha i n i n9 check
Termination under count control
Termination by 1/0 device
Termination by HALT I/O or

HALT DEVICE
Termination by CLEAR I/O
Suppress ion of command

chaining due to unit check
or un i t except i on wi th dey i ce
end or control-unit end

Termination on command chaining
by busy, unit check, or unit
except j on

Defer red cond i t j on code 1 or 3
for START I/O FAST RELEASE

PCI flag in cell
Interface-control check
Channe I end after HALT I/O

on selector channel
Channel end after CLEAR I/O
Control-unit end
Dev j ce end
Attent ion
Busy
Status modifier

Contents of Field

Unpred ictab Ie
Unchanged

Unchanged

Unpredictable
Unpred ictab Ie
Unpred ictab Ie
Correct
Correct
Unpred ictab Ie

Unpred i c tab 1 e
Correct. Residual count of last

CCW used in the completed
operat ion.

Correct. Original count of
CCW specifying the new
operation.

Correct. Original count of CCW
specifying the new operation.

Unpredictable
Unpredictable
Zero

Zero
Zero
Zero
Zero
Zero
Zero

Contents of the Count Field in the CSW

Status
The status bits identify the situations that have
been detected during the I/O operation, that have
caused a command to be rejected, or that have
been generated by external events.

When the channel detects several errors, all
corresponding status bits in the CSW may be set to
ones or only one may be set, depending on the
error and model. Errors associated with equipment
malfunctioning have precedence, and whenever
malfunctioning causes an operation to be
terminated, channel-control check,
interface-control check, or channel-data check is
indicated, depending on the error. When an
operation is concluded by program check,
protection check, or chaining check, the channel
identifies the situation responsible for the
conclusion and mayor may not indicate incorrect
length. When a data error has been detected and
the operation is concluded prematurely because of a
program check, protection check, or chaining check,
both data check and the programming error are
identified.

If the CCW fetched on command chaining has
the PCI flag set to one but a programming error in
the contents of the CCW precludes the initiation of
the operation, it is unpredictable whether the PCI
bit is one in the CSW associated with the
interruption condition. Similarly, if a programming
error in the contents of the CCW causes the
command to be rejected during execution of
START I/O or START I/O FAST RELEASE, the
CSW stored by the instruction mayor may not
have the PCI bit set to one. Furthermore, when
the channel detects a programming error in the
CAW or in the first CCW, the PCI bit is
unpredictable in a CSW stored by START I/O or
START I/O FAST RELEASE even when the PCI
flag is zero in the first CCW associated with the
instruction.

However, if the CCW fetched on command
chaining has the PCI flag set to one but an unusual
situation detected by the device precludes the
initiation of the operation, the PCI bit is one in the
CSW associated with the interruption condition.
Likewise, if device status causes the command to be
rejected during execution of START I/O or
START I/O FAST RELEASE, the CSW stored by
the instruction contains the PCI bit set to one.

Situations detected by the channel are not
related to those identified by the I/O device.

The figure "Contents of the CSW Status Fields"
summarizes the handling of status bits. The figure
lists the states and activities that can cause status

indications to be created and the methods by which
these indications can be placed in the CSW.

Channel Logout
When a channel stores a CSW that indicates
channel-control check in the absence of logout
pending, or interface-control check, or, on some
channels, channel-data check, a channel logout
accompanies the storing of the CSW. Such a
logout is useful for error recovery. The logout may
be a limited channel logout, a full channel logout,
or both. The type of logout that occurs and, for
the full channel logout, the length of the full
channel logout and the location at which it is
stored, depend on the channel type and model
number.

The limited channel logout contains
model-independent information and is stored at
reallocations 176-179 of the CPU to which the
channel is configured. When it is stored, bit 0 of
the logout is always stored as a zero.

The full channel logout contains model­
dependent information. When the length of the
full channel logout exceeds 96 bytes, it is stored at
the location specified by the I/O extended-logout
(IOEL) address in reallocations 173-175 of the
CPU to which the channel is configured. When the
length of the full channel logout is 96 bytes or
fewer, the channel may either use the IOEL
address or store the full channel logout in the
fixed-logout area, reallocations 256-351 of the
CPU to which the channel is configured. The
information stored by the STORE CHANNEL ID
instruction implies whether the 10EL is used and, if
it is used, specifies the maximum
full-channel-logout length. The full-channel-logout
information may be stored in the 10EL area only
when the IOEL-mask bit (control register 14, bit 2)
of the CPU to which the channel is configured is
one.

Chapter 12. Input/Output Operations 12-57

Status

When
I/O Is
Idle

Attention C*
Status modifier
Control-unit end
Busy
Channel end
Device end C*
Unit check C
Unit exception
Program-controlled

interruption
Incorrect length
Program check
Protection check
Channel-data check
Channel-control check C*
Interface-control check C*
Chaining check
Deferred cond code 1
Deferred cond code 3

Explanation:

When
Subch
Is
Working

C*
C
C
C
C
C*
C*
C

Upon Termination
of Operation at During By By

Cmd SID BY HID BY I/O
Ctrl I/O Chain- or By CLRIO or Inter-

Subch Unit Dev ing SIOF tio + HDV ruption

C*

C
C

C*
C
C
C
C
C*
C*
C

C*

C*H

C
C

C*
C*

C* C*
C C

C
C*;t

C* C;t
C C*
C C*

C

C*
C*

C* C*
C* C*

S S S
CS CS S
CS CS S
CS CS S
CS;t S S
CS;t S S
CS CS S
CS S S

CS S S
S S

CS S S
CS S S

S S
CS CS CS
CS CS CS

S S
C*# S S
C*# S S

S
CS S
CS S
CS S

S
S
CS
S

S
S
S
S
S

CS CS
CS CS

S
S
S

C The channel or device can create or present status at the indicated time. A CSW
or its status portion is not necessarily stored at this time.

Status such as channel end or device end is created at the indicated time. Other
status bits may have been created previously but are made accessible to the program
only at the indicated time. Examples of such status bits are program check and
channel-data check, which are detected while data is transferred but are made
available to the program only with channel end, unless the PCI flag or an equipment
malfunction has caused an interruption condition to be generated earlier.

S The status indication is stored in the CSW at the indicated time.

*

An S appearing alone indicates that the status has been created previously. The
letter C appearing with the S indicates that the status did not necessarily exist
previously in the form that causes the program to be alerted, and may have been
created by the I/O instruction or I/O interruption. For example, an equipment
malfunction may be detected during an I/O interruption, causing channel-control or
interface-control check to be indicated; or a device such as the 2702 may signal
control-unit busy in response to interrogation by an I/O instruction, causing status
modifier, busy, and control-unit end to be indicated in the CSW.

The status generates an interruption condition.

Channel end and device end do not result in interruption conditions when command
chaining is specified and no unusual situations have been detected.

;t This indication is created at the indicated time only by an immediate operation.

Applies only to SIOF.

H When an operation on the selector channel has been concluded by HALT DEVICE or HALT
I/O, or an operation has been concluded by CLEAR I/O, channel end indicates the
conclusion of the data-hand I ing portion of the operation at the control unit.

+ The entries in this column apply only when the CLRIO function is executed. When
CLEAR I/O causes the TID function to be executed, the entries in the TID column
apply.

Contents of the CSW Status Fields

12-58 System/370 Principles of Operation

I/O-Communication Area
Real locations 160-191 of the CPU to which the
channel is configured comprise a permanently
assigned area of storage used for I/O, designated
the I/O-communication area (IOCA). (See the
figure "I/O-Communication Area. ")

Locations 160-167, 180-184, and 188-191 are
reserved for future I/O use.

Channel ID (Locations 168-170: Locations
168-171, when stored during the execution of a
STORE CHANNEL ID instruction, contain
information which describes the addressed channel.

I/O Extended-Logout Address (Locations
173-175): The I/O extended-logout (IOEL)
address (locations 173-175) is program-set to
designate an area to be used by channels not
capable of storing or not choosing to store the full
channel logout in the fixed-logout area (locations
256-351). The low-order three bits of the
I/O-extended-Iogout address are reserved and are
ignored by the channel so that the full channel
logout always begins on a doubleword boundary.

Whether the IOEL facility is used depends on
the channel type and model number. Channels
with a full-channel-logout length not exceeding 96
bytes use either the IOEL area or locations
256-351 as the full-channel-logout area. Channels
with a full-channel-logout length exceeding 96
bytes use the IOEL area.

Programming Note
The extent of the full-channel-logout area differs
among channels and, for any particular channel,
may depend on the features or engineering changes
installed. In order to provide for such variations,
the program should determine the extent of the full
channel logout by means of STORE CHANNEL ID
whenever a storage area for the full channel logout
is to be assigned.

160

164

I

Channe 1 10

I DEL Address

168

172

176

180

184

Limited Channel Logout

1000 0 0 0 0 01 I/O Address

188

I/O-Communication Area

Limited Channel Logout (Locations 176-179):
The limited-channel-logout field (locations
176-179) contains model-independent information
related to equipment errors detected by the
channel. This information is used to provide
detailed machine status when errors have affected
I/O operations. The field may be stored only when
the CSW or a portion of the CSW is stored.

The limited-channel-logout facility may not be
available on all channels. The field, if stored, may
or may not be accompanied by the full channel
logout. Channels which do not store the
limited-channel-logout field instead usually store
equivalent information in the full channel logout.

The bits of the field are defined as follows:
o This bit is always stored as a zero when

a limited channel logout is stored. If
the program ensures that this bit is set
to one and any channel-control check,
interface-control check, or channel-data
check occurs, a test of this bit can
determine if the LCL was stored by the
channel. The LCL cannot be stored by
a channel unless one of these three
channel-status bits is set to one.

1-3 Identity of the storage-control unit
(SCU) identifies the SCU through
which storage references were directed
when an error was detected. This
identity is not necessarily the identity of
the storage unit involved with the
transfer. When only one physical path
exists between channel and storage, the
storage-control unit has the identity of
the CPU. If more than one path exists,
the storage-control unit has its own
identity.

When bit 3 is zero, bits 1 and 2 are
undefined. In this case, the SCU
identity is implied to be the same as the
CPU identity. When bit 3 is one, the
binary value of bits 1 and 2 identifies a
physical SCU. Each SCU in the system
has a unique identity.

4-7 Detect field identifies the type of unit
that detected the error. At least one bit
is present in this field, and mUltiple bits
may be set when more than one unit
detects the error.

Bit 4 - CPU
Bit 5
Bit 6
Bit 7

Channel
Main-storage control
Main storage

Chapter 12. Input/Output Operations 12-59

8-12

13-14
15-23

Source field indicates the most likely
source of the error. The determination
is made by the channel on the basis of
the type of error check, the location of
the checking station, the information
flow path, and the success or failure of
transmission through previous check
stations.

Normally, only one bit will be present
in this field. However, when interunit
communication cannot be resolved to a
single unit, such as when the interface
between units is at fault, multiple bits
(normally two) may be set to ones in
this field. When a reasonable
determination cannot be made, all bits
in this field are set to zeros.

If the detect and source fields
indicate different units, the interface
between them can also be considered
suspect.

Bit 8 CPU
Bit 9 - Channel
Bit 10 - Main-storage control
Bit 11 - Main storage
Bit 12 - Control unit

Reserved. Stored zero.
Field-validity flags. These bits indicate
the validity of the information stored in
the designated fields. When the validity
bit is set to one, the field is stored and
usable. When the validity bit is set to
zero, the field is not usable.

The fields designated are:

Bit 15 - Full channel logout. This bit
is set to one, by some models
that implement the clear­
channel feature, when full­
channel-logout information
with correct contents is
stored by the channel.
Otherwise, the bit is stored as
zero.

Bit 16 Reserved. Stored zero.
Bit 17 Reserved. Stored zero.
Bit 18 Reserved. Stored zero.
Bit 19 - Sequence code
Bit 20 Unit status
Bit 21 CCW address and sub channel

key in CSW
Bit 22 Channel address
Bit 23 Device address

12-60 System/370 Principles of Operation

24-25

26
27

28

29-31

Type of termination that has occurred
is indicated by these two bits.

This encoded field has meaning only
when a channel-control check or an
interface-control check is indicated in
the CSW. When neither of these two
checks is indicated, no termination has
been forced by the channel.

00 Interface disconnect
01 Stop, stack, or normal termination
10 Selective reset
11 System reset

Reserved. Stored zero.
Interface inoperative. When the
clear-channel feature is installed, this
bit is set to one when the channel
detects an 1/ O-interface malfunction
which persists after selective reset is
signaled on the interface.
Interface-control check is also set when
this condition is detected. When the
clear-channel feature is not installed, bit
27 is stored as zero.

Programming Note: This bit implies
that devices involved in active I/O
operations related to the identified
channel may have been left in the
working state. CLEAR CHANNEL
addressed to that channel can be used
to relieve the condition.

I/O-error alert. This bit, when set to
one, indicates that the limited channel
logout resulted from the signaling of
I/O-error alert by the indicated unit.
The I/O-error-alert signal indicates that
the control unit has detected a
malfunction which prevents it from
communicating properly with the
channel. The channel, in response,
performs a malfunction reset and causes
interface-control check to be set.
Sequence code identifies the I/O
sequence in progress at the time of
error. It is meaningless if stored during
the execution of HALT 1/ 0 or HALT
DEVICE.

For all cases, the CCW address in the
CSW, if validly stored and nonzero, is
the address of the current CCW plus 8.

The sequence code assignments are:
000 A channel-detected error occurred

during the execution of a TEST
I/O or CLEAR I/O instruction.

001 Command-out with a nonzero
command byte on bus-out has been
seni by the channel, but device
status has not yet been analyzed by
the channel. This code is set with
a command-out response to
address-in during initial selection.

010 The command has been accepted
by the device, but no data has been
transferred. This code is set by a
service-out or command-out
response to status-in during an
initial selection sequence, if the
status is either channel end alone,
or channel end and device end, or
channel end, device end, and status
modifier, or all zeros.

011 At least one byte of data has been
transferred between the channel
and the device. This code is set
with a service-out response to
service-in and, when appropriate,
may be used when the channel is in
an idle or polling state.

100 The command in the current CCW
has either not yet been sent to the
device or else was sent but not
accepted by the device. This code
is set when one of the following
situations occurs:
1. When the CCW address is

updated during command
chaining or a START I/O.

2. When service-out or
command-out is raised in
response to status-in during an
initial selection sequence with
the status on bus-in including
attention, control-unit end, unit

check, unit exception, busy,
status modifier (without
channel end and device end),
or device end (without channel
end).

3. When a short, control-unit­
busy sequence is signaled.

4. When command retry is
signaled.

5. When the channel issues a
test-I/O command rather than
the command in the current
CCW.

101 The command has been accepted,
but data transfer is unpredictable.
This code applies from the time a
device comes on the interface until
the time it is determined that a new
sequence code applies. The code
may thus be used when a channel
goes into the polling or idle state
and it is impossible to determine
that code 010 or 011 applies. The
code may also be used at other
times when a channel cannot
distinguish between code 010 or
OIl.

110 Reserved.
111 Reserved.

Reserved (Location 185): Zero is stored at
location 185 whenever an I/O address is stored at
locations 186-187.

I/O Address (Locations 186-187); A two-byte
field is provided for storing the I/O address on
each I/O interruption in the BC mode.

Chapter 12. Input/Output Operations 12-61

Chapter 13. Operator Facilities

Contents

Manual Operation 13-1

Basic Operator Facilities 13-1

Address-Compare Controls 13-1

Alter-and-Display Controls 13-2

Check Control 13-2

Check-Stop Indicator 13-2

IML Controls 13-2

Interrupt Key 13-3

Interval-Timer Control 13-3

Load Indicator 13-3

Load-Clear Key 13-3

Load-Normal Key 13-3

Load-Unit-Address Controls 13-3

Manual Operation
The operator facilities provide functions for the
manual operation and control of the machine. The
functions include operator-to-machine
communication, indication of machine status,
control over the setting of the time-of-day clock,
initial program loading, resets, and other manual
controls for operator intervention in normal
machine operation.

A model may provide additional operator
facilities which are not described in this chapter.
Examples are the means to indicate specific error
conditions in the equipment, to change equipment
configurations, and to facilitate maintenance.
Furthermore, controls covered in this chapter may
have additional settings which are not described
here. Such additional facilities and settings are
contained in the appropriate System Library (SL)
publication.

Most models provide, in association with the
operator facilities, a console device which may be
used as an I/O device for operator communication
with the program; this console device may also be
used to implement some or all of the facilities
described in this chapter.

The operator facilities may be implemented on
different models in various technologies and
configurations. On some models, more than one

Manual Indicator 13-3

Power Controls 13-3

Rate Control 13-4

Restart Key 13-4

Start Key 13-4

Stop Key 13-4

Store-Status Key 13-4

System-Reset-Clear Key 13-4

System-Reset-Normal Key 13-4

Test Indicator 13-5

TOO-Clock Control 13-5

Wait Indicator 13-5

Multiprocessing Configurations 13-5

set of physical representations of some keys,
controls, and indicators may be provided, such as
on multiple local or remote operating stations,
which may be effective concurrently.

A machine malfunction that prevents a manual
operation from being performed correctly, as
defined for that operation, may cause the CPU to
enter the check-stop state or give some other
indication to the operator that the operation has
failed. Alternatively, a machine malfunction may
cause a machine-check-interruption condition to be
recognized.

Basic Operator Facilities

Address-Compare Controls
The address-compare controls provide a way to
stop the CPU when a preset address matches the
address used in a specified type of main-storage
reference.

One of the address-compare controls is used to
set up the address to be compared with the storage
address.

Another control provides at least two settings to
specify the action, if any, to be taken when the
address match occurs. The two settings are normal
and stop. When this control is set to stop, the test
indicator is turned on.

Chapter 13. Operator Facilities 13-1

1. The normal setting disables the address­
compare operation.

2. The stop setting causes the CPU to enter the
stopped state on an address match. Depending
on the model and the type of reference,
pending I/O, external, and machine-check
interruptions mayor may not be taken before
entering the stopped state.

A third control may specify the type of storage
reference for which the address comparison is to be
made. A model may provide one or more of the
following settings, as well as others:
1. The any setting causes the address comparison

to be performed on all storage references.
2. The data-store setting causes address

comparison to be performed when storage is
addressed to store data.

3. The I/O setting causes address comparison to
be performed when storage is addressed by a
channel to transfer data or to fetch a channel­
command or indirect-data-address word.
Whether references to the channel-address
word or the channel-status word cause a match
to be indicated depends on the model.

4. The instruction-address setting causes address
comparison to be performed when storage is
addressed to fetch an instruction. The
rightmost bit of the address setting mayor may
not be ignored. The match is indicated only
when the first byte of the instruction is fetched
from the selected location. It depends on the
model whether a match is indicated when
fetching the target instruction of EXECUTE.

Depending on the model and the type of
reference, address comparison may be performed
on virtual, real, or absolute addresses, and it may
be possible to specify the type of address.

In a multiprocessing configuration, it depends on
the model whether the address setting applies to
one or all CPUs in the configuration and whether
an address match causes one or all CPUs in the
configuration to stop.

Alter-and-Display Controls
The operator facilities provide controls and
procedures to permit the operator to alter and
display the contents of locations in storage, the
storage keys, the general, floating-point, and
control registers, the prefix, and the PSW.

Before alter-and-display operations may be
performed, the CPU must first be placed in the
stopped state. During alter-and-display operations,

13-2 System/370 Principles of Operation

the manual indicator may be turned off
temporarily, and the start and restart keys may be
inoperative.

Addresses used to select storage locations for
alter-and-display operations are real addresses.
The capability of specifying logical, virtual, or
absolute addresses may also be provided.

Check Control
The check control has at least two settings, stop
and normal. If the control is set to stop, the CPU
enters the check-stop state when either:
1. A machine-check condition is detected and not

corrected
2. A channel check occurs which would cause

information to be stored in a channel-logout
area at reallocations 176-179 or 256-351

Whether information is actually stored in
assigned storage locations as a result of the
machine check or channel check, the indications
given for the cause of the stop, and the manner of
resuming CPU operation depend on the model.

If the check control is set to normal, the action
resulting from the detection of a machine check or
channel check is the same as described in Chapter
11, "Machine-Check Handling," or in Chapter 12,
"Input/ Output Operations," respectively.

The test indicator is on while the check control
is set to stop.

Programming Note
Except that recovery from a machine check or a
channel check with logout is not possible, the check
control permits a System/360 program, which uses
assigned storage locations above 128 as ordinary
storage, to be run in the BC mode. The check
control also permits running a System/370 program
which, while handling a machine check or channel
check, expects model-dependent information that is
not consistent with the information supplied by the
particular model on which the program is to be run.

Check-Stop Indicator
The check-stop indicator is on when the CPU is in
the check-stop state. Reset operations normally
cause the CPU to leave the check-stop state and
thus turn off the indicator. The manual indicator
may also be on in the check-stop state.

IML Controls
The IML controls provided in some models perform
initial microprogram loading (IML).

The IML controls are effective while the power
is on.

Note: The name IMPL controls is used in earlier
models.

Interrupt Key
When the interrupt key is activated, an external­
interruption condition indicating the interrupt key
is generated. (See the section "Interrupt Key" in
Chapter 6, "Interruptions.")

The interrupt key is effective when the CPU is
in the operating or stopped state. It depends on
the model whether the interrupt key is effective
when the CPU is in the load state.

Interval-Timer Control
The interval-timer control disables or enables
operation of the interval timer. Disabling the
interval timer does not affect any other facility.

When the control is set to disable the interval
timer, updating of assigned storage locations 80-83
ceases. The contents of locations 80-83 remain at
the last value to which they were updated, unless
changed by a subsequent store operation.
Depending on the model, any pending interval­
timer-interruption condition is unaffected, is
cleared, or is kept pending without regard to the
state of the external mask, PSW bit 7, and the
interval-timer mask, bit 24 of control register O.

When the control is set to enable the interval
timer, updating of locations 80-83 is resumed using
the current contents. If an interval-timer­
interruption request existed and was kept pending
when the interval-timer control was last set to
disable, that condition remains pending until the
CPU is enabled for the interruption.

The setting to enable the interval timer is
considered the normal setting. The test indicator
mayor may not be turned on when the interval­
timer control is set to disable.

Programming Note
Disabling the interval timer allows execution of a
program which uses locations 80-83 as ordinary
storage. A program which does not use the interval
timer will function correctly with the interval timer
disabled, even when the interval timer fails.

Load Indicator
The load indicator is on during initial program
loading, indicating that the CPU is in the load
state. The indicator goes on when the load-clear or
load-normal key is activated and the corresponding
operation is started. It goes off after the new PSW
is loaded successfully.

Load-Clear Key
Activating the load-clear key causes a clear-reset
operation to be performed and initial program
loading to be started using the I/O device specified
by the load-unit-address controls. In a
multiprocessing configuration, a clear reset is
propagated to all CPUs in the configuration. For
details, see the sections "Resets" and "Initial
Program Loading" in Chapter 4, "Control."

The load-clear key is effective when the CPU is
in the operating, stopped, load, or check-stop state.

Load-Normal Key
Activating the load-normal key causes an initial­
CPU-reset and a subsystem-reset operation to be
performed and initial program loading to be started
using the I/O device specified by the load-unit­
address controls. In a multiprocessing
configuration, a CPU reset is propagated to all
CPUs in the configuration. For details, see the
sections "Resets" and "Initial Program Loading" in
Chapter 4, 11 Control. 11

The load-normal key is effective when the CPU
is in the operating, stopped, load, or check-stop
state.

Load-Unit-Address Controls
The load-unit-address controls select three
hexadecimal digits, which provide the 12 rightmost
I/O address bits used for initial program loading.

Manual Indicator
The manual indicator is on when the CPU is in the
stopped state. Some functions and several manual
controls are effective only when the CPU is in the
stopped state.

Power Controls
The power controls are used to turn the power on
and off.

The CPUs, storage, channels, operator facilities,
and I/O devices may all have their power turned
on and off by common controls, or they may have
separate power controls. When a particular unit
has its power turned on, that unit is reset. The
sequence is performed so that no instructions or
I/ a operations are performed until explicitly
specified. The controls may also permit power to
be turned on in stages, but the machine does not
become operational until power-on is complete.

When the power is completely turned on, an
IML operation is performed on models which have
an IML function. A power-on reset is then

Chapter 13. Operator Facilities 13-3

initiated (see the section "Resets" in Chapter 4,
"Control").

Rate Control
The setting of the rate control determines the effect
of the start function and the manner in which
instructions are executed.

The rate control has at least two settings. The
normal setting is process. When the rate control is
set to process and the start function is performed,
the CPU starts operating at normal speed. When
the rate control is set to instruction step, one
instruction or, for interruptible instructions, one
unit of operation is executed each time the start
function is performed. For details, see the section
"Stopped, Operating, Load, and Check-Stop
States" in Chapter 4, "Control."

The test indicator is on while the rate control is
not set to process.

If the setting of the rate control is changed while
the CPU is in the operating or load state, the
results are unpredictable.

Restart Key
Activating the restart key initiates a restart
interruption. (See the section "Restart
Interruption" in Chapter 6, "Interruptions. ")

The restart key is effective when the CPU is in
the operating or stopped state. The key is not
effective when the CPU is in the check-stop state.
It depends on the model whether the restart key is
effective when the CPU is in the load state.

Start Key
Activating the start key causes the CPU to perform
the start function. (See the section "Stopped,
Operating, Load, and Check-Stop States" in
Chapter 4, "Control. I')

The start key is effective only when the CPU is
in the stopped state. The effect is unpredictable
when the stopped state has been entered by a reset.

Stop Key
Activating the stop key causes the CPU to perform
the stop function. (See the section "Stopped,
Operating, Load, and Check-Stop States" in
Chapter 4, "Control. ")

The stop key is effective only when the CPU is
in the operating state.

Operation Note
Activating the stop key has no effect when:
• An unending string of certain program or

external interruptions occurs.
• The prefix register contains an invalid address.

13-4 System/370 Principles of Operation

• The CPU is in the load or check-stop state.

Store-Status Key
Activating the store-status key initiates a store­
status operation. (See the section "Store Status" in
Chapter 4, "Control.")

The store-status key is effective only when the
CPU is in the stopped state.

Operation Note
The store-status operation may be used in
conjunction with a standalone dump program for
the analysis of major program malfunctions. For
such an operation, the following sequence would be
called for:
1. Activation of the stop or system-reset-normal

key
2. Activation of the store-status key
3. Activation of the load-normal key to enter a

standalone dump program

The system-reset-normal key must be activated
in step 1 when the stop key is not effective because
a continuous string of interruptions occurs, the
prefix register contains an invalid address, or the
CPU is in the check-stop state.

System-Reset-Clear Key
Activating the system-reset-clear key causes a
c1ear-:-reset operation to be performed. In a
multiprocessing configuration, a clear reset is
propagated to all CPUs in the configuration. For
details, see the section "Resets" in Chapter 4,
I I Control. I I

The system-reset-clear key is effective when the
CPU is in the operating, stopped, load, or check­
stop state.

System-Reset-Normal Key
When the store-status facility is not installed,
activating the system-reset-normal key causes an
initial-CPU-reset operation and a subsystem-reset
operation to be performed. When the store-status
facility is installed, activating the system-reset­
normal key causes a CPU-reset operation and a
subsystem-reset operation to be performed. In a
multiprocessing configuration, a CPU reset is
propagated to all CPUs in the configuration. For
details, see the section "Resets" in Chapter 4,
"Control. "

The system-reset-normal key is effective when
the CPU is in the operating, stopped, load, or
check-stop state.

Test Indicator
The test indicator is on when a manual control for
operation or maintenance is in an abnormal
position that can affect the normal operation of a
program.

Setting the address-compare controls or the
check control to stop or setting the rate control to
instruction step turns on the test indicator. Setting
the interval-timer control to disable mayor may
not turn on the test indicator.

The test indicator may be on when one or more
diagnostic functions under the control of
DIAGNOSE are activated, or when other abnormal
conditions occur.

Operation Note
If a manual control is left in a setting intended for
maintenance purposes, such an abnormal setting
may, among other things, result in false machine­
check indications or cause actual machine
malfunctions to be ignored. It may also alter other
aspects of machine operation, including instruction
execution, channel operation, and the functioning
of operator controls and indicators, to the extent
that operation of the machine does not comply with
that described in this publication.

The abnormal setting of a manual control causes
the test indicator of the affected CPU to be turned
on; however, in a multiprocessing configuration, the
operation of other CPUs may be affected even
though their test indicators are not turned on.

TOD-Clock Control
When the TOD-clock control is not activated, that
is, the control is set to secure, the value of the
time-of-day (TOD) clock is protected against
unauthorized or inadvertent change by not
permitting the instruction SET CLOCK to change
the value.

When the TOD-clock control is activated, that
is, the control is set to enable set, alteration of the

clock value by means of SET CLOCK is permitted.
This setting is temporary, and the control
automatically returns to secure.

In a multiprocessing configuration, activating the
TOD-clock control enables all TOD clocks in the
configuration to be set. If there is more than one
physical representation of the TOD-clock control,
no TOD clock is secure unless all TOD-clock
controls in the configuration are set to secure.

Wait Indicator
The wait indicator is on when the wait-state bit in
the current PSW is one.

Multiprocessing Configurations
In a multiprocessing configuration, one of each of
the following keys and controls is provided for each
CPU: alter and display, interrupt, rate, restart,
start, stop, and store status. The load-clear key,
load-normal key, and load-unit-address controls are
provided for each CPU capable of performing I/O
operations. Alternatively, a single set of keys and
controls may be used together with a control to
select the desired CPU.

There need not be more than one of each of the
following keys and controls in a multiprocessing
configuration: address compare, check, IML,
interval timer, power, system reset clear, system
reset normal, and TOD clock.

One check-stop, manual, test, and wait indicator
is provided for each CPU. A load indicator is
provided only on a CPU capable of performing I/O
operations. Alternatively, a single set of indicators
may be switched to more than one CPU.

There need not be more than one system
indicator in a multiprocessing configuration.

In a system capable of being partitioned, there
must be a separate set of keys, controls, and
indicators in each configuration.

Chapter 13. Operator Facilities 13-5

Appendix A. Number Representation and
Instruction-U se Examples

Contents

Number Representation A-2
Binary Integers A-2

Signed Binary Integers A-2
Unsigned Binary Integers A-3

Decimal Integers A-3
Floating-Point Numbers A-4
Conversion Example A-5

Instruction-Use Examples A-5
Machine Format A-6
Assembler-Language Format A-6

General Instructions A-6
ADD HALFWORD (AH) A-6
AND (N, NR, NI, NC) A-6

AND (NI) A-7
BRANCH AND LINK (BAL, BALR) A-7
BRANCH ON CONDITION (BC, BCR) A-7
BRANCH ON COUNT (BCT, BCTR) A-8
BRANCH ON INDEX HIGH (BXH) A-8
BRANCH ON INDEX LOW OR EQUAL
(BXLE) A-9

COMPARE HALFWORD (CH) A-9
COMPARE LOGICAL (CL, CLC, CLI, CLR) A-9

Compare Logical (CLC) A-9
Compare Logical (CLI) A-IO
Compare Logical (CLR) A-IO

COMPARE LOGICAL CHARACTERS UNDER MASK
(CLM) A-IO

COMPARE LOGICAL LONG (CLCL) A-II
CONVERT TO BINARY (CVB) A-12
CONVERT TO DECIMAL (CVD) A-12
DIVIDE (D, DR) A-13
EXCLUSIVE OR (X, XC, XI, XR) A-13

Exclusive OR (XC) A-13
Exclusive OR (Xn A-I4

EXECUTE (EX) A-I4
INSERT CHARACTERS UNDER MASK (ICM) A-I5
LOAD (L, LR) A-16
LOAD ADDRESS (LA) A-I6
LOAD HALFWORD (LH) A-I7
MOVE (MVC, MVI) A-I7

Move (MVC) A-17
Move (MVI) A-I8

MOVE LONG (MVCL) A-I8
MOVE NUMERICS (MVN) A-I8
MOVE WITH OFFSET (MVO) A-I9
MOVE ZONES (MVZ) A-I9
MULTIPLY (M, MR) A-20
MULTIPLY HALFWORD (MH) A-20
OR (0, OR, 01, OC) A-20

OR (01) A-20
PACK (PACK) A-21
SHIFT LEFT DOUBLE (SLDA) A-2I
SHIFT LEFT SINGLE (SLA) A-21
STORE CHARACTERS UNDER MASK
(STCM) A-22

STORE MULTIPLE (STM) A-22
TEST UNDER MASK (TM) A-22
TRANSLATE (TR) A-23
TRANSLATE AND TEST (TRT) A-23
UNP ACK (UNPK) A-25

Decimal Instructions A-25
ADD DECIMAL (AP) A-25
COMPARE DECIMAL (CP) A-25
DIVIDE DECIMAL (DP) A-26
EDIT (ED) A-26
EDIT AND MARK (EDMK) A-27
MUL TIPL Y DECIMAL (MP) A-28
SHIFT AND ROUND DECIMAL (SRP) A-28

Decimal Left Shift A-28
Decimal Right Shift A-28
Decimal Right Shift and Round A-29
Multiplying by a Variable Power of 10 A-29

ZERO AND ADD (ZAP) A-29
Floating-Point Instructions A-30

ADD NORMALIZED (AD, ADR, AE, AER,
AXR) A-30

ADD UNNORMALIZED (AU, AUR, AW,
AWR) A-30

COMPARE (CD, CDR, CE, CER) A-30
Floating-Point-Number Conversion A-3I

Fixed Point to Floating Point A-3I
Floating Point to Fixed Point A-31

Multiprogramming and Multiprocessing Examples A-32
Example of a Program Failure Using OR
Immediate A-32

COMPARE AND SWAP (CS, CDS) A-33
Setting a Single Bit A-33
Updating Counters A-34

Bypassing POST AND WAIT A-34
BYPASS POST Routine A-34
BYPASS WAIT Routine A-35

LOCK/UNLOCK A-35
LOCK/UNLOCK with LIFO Queuing for
Contentions A-35

LOCK/UNLOCK with FIFO Queuing for
Contentions A-36

Free-Pool Manipulation A-37

Appendix A. Number Representation and Instruction-Use Examples A-I

Number Representation

Binary Integers

Signed Binary Integers
Signed binary integers are most commonly
represented as halfwords (16 bits) or words (32
bits). In both lengths, the leftmost bit (bit 0) is the
sign of the number. The remaining bits (bits 1-15
for halfwords and 1-31 for words) are used to
designate the magnitude of the number. Binary
integers are also referred to as fixed-point numbers,
because the radix point is considered to be fixed at
the right, and any scaling is done by the
programmer.

Positive binary integers are in true binary
notation with a zero sign bit. Negative binary
integers are in two's-complement notation with a
one bit in the sign position. In all cases, the bits
between the sign bit and the leftmost significant bit
of the integer are the same as the sign bit (that is,
all zeros for positive numbers, all ones for negative
numbers).

Negative binary integers are formed in two's­
complement notation by inverting each bit of the
positive binary integer and adding one. As an
example using the halfword format, the binary
number with the decimal value + 26 is made
negative (-26) in the following manner:

+26 0 000 0000 0001 1010
Invert 1 111 1111 1110 0101
Add 1 1

-26 111 1111 1110 011 0 (Two I s comp I e­
ment form)

This is equivalent to subtracting the number

from
00000000 00011010

00000000 00000000

Negative binary integers are changed to positive
in the same manner.

The following .addition examples illustrate
two's-complement arithmetic and overflow
conditions. Only eight bit positions are used.

A-2 System/370 Principles of Operation

1. +57 0011 1001
+35 0010 0011

+92 0101 1100

2. +57 = 0011 1001
-35 1101 1101

+22 0001 0110 No overflow-carry
into leftmost posi-
tion and carry out.

3. +35 0010 0011
-57 1100 0111

-22 1110 1010 Sign change only-no
carry into leftmost
position and no
carry out.

4. -57 = 1100 0111
-35 = 1101 1101

-92 1010 0100 No overflow-carry
into leftmost posi-
tion and carry out.

5. +57 0011 1001
+92 0101 1100

+149 = *1001 0101 *Overflow-carry
into leftmost posi-
tion, no carry out.

6. -57 1100 0111
-92 1010 0100

-149 *0110 1011 *Overflow-no carry
into leftmost posi-
tion but carry out.

The presence or absence of an overflow
condition may be recognized from the carries:
• There is no overflow:

a. If there is no carry into the leftmost bit
position and no carry out (examples 1
and 3).

b. If there is a carry into the leftmost position
and also a carry out (examples 2 and 4).

• There is an overflow:
a. If there is a carry into the leftmost position

but no carry out (example 5).

b. If there is no carry into the leftmost position
but there is a carry out (example 6).

The following are 16-bit signed binary integers.
The first is the maximum positive 16-bit binary
integer. The last is the maximum negative 16-bit
binary integer (the negative 16-bit binary integer
with the greatest absolute value).

32,767
1
o

-1
-32,768

o 111 1111 1111 1111
o 000 0000 0000 0001
o 000 0000 0000 0000
1 111 1111 1111 1111
1 000 0000 0000 0000

The following are several 32-bit signed binary
integers arranged in descending order. The first is
the maximum positive binary integer that can be
represented by 32 bits, and the last is the maximum
negative binary integer that can be represented by
32 bits.

231 - 1 = 2 147483647 = a 111 1111 1111 1111 1111 1111 1111 1111
2 16 65 536 = a 000 0000 0000 0001 0000 0000 0000 0000
20 1 = a 000 0000 0000 0000 0000 0000 0000 0001

_go _ ~ : ~ ~~~ ~~~~ ~~~~ ~m m~ ~m ~~~~ m~
_21 -2 = 1 111 1111 1111 1111 1111 1111 1111 1110
_2 16 = -65536 = 11111111111111110000 0000 0000 0000
_2 31 + 1 = -2 147 483 647 = 1 000 0000 0000 0000 0000 0000 0000 000 1
_2 31 = -2 147 483 648 = 1 000 0000 0000 0000 0000 0000 0000 0000

Unsigned Binary Integers
Certain instructions, such as ADD LOGICAL, treat
binary integers as unsigned rather than signed.
Unsigned binary integers have the same format as
signed binary integers, except that the leftmost bit
is interpreted as another numeric bit rather than a
sign bit. There is no complement notation because
all unsigned binary integers are considered positive.

The following examples illustrate the addition of
unsigned binary integers. Only eight bit positions
are used. The examples are numbered the same as
the corresponding examples for signed binary
integers.

1. 57
35

92

2. 57
221

0011 1001
0010 0011

0101 1100

0011 1001
1101 1101

278 *0001 0110 *Carry out of
leftmost position

3. 35 0010 0011
199 1100 0111

234 = 11101010

4. 199 1100 0111
221 11011101

420 = *1010 0100 *Carry out of
leftmost position

5. 57 0011 1001
92 0101 1100

149 1001 0101

6. 199 1100 0111
164 = 1010 0100

363 = *0110 1011 *Carry out of
leftmost position

A carry out of the leftmost bit position mayor
may not imply an overflow, depending on the
application.

The following are several 32-bit unsigned binary
integers arranged in descending order.

4294967296 = 1111 1111 1111 1111 1111 1111 1111 1111
2 147 483 648 = 1000 0000 0000 0000 0000 0000 0000 0000
2 147483647 = 0111 1111 1111 1111 1111 1111 1111 1111

65 536 = 0000 0000 0000 000 1 0000 0000 0000 0000
1 = 0000 0000 0000 0000 0000 0000 0000 0001
a = 0000 0000 0000 0000 0000 0000 0000 0000

Decimal Integers
Decimal integers are represented as one or more
decimal digits and a sign digit. Each digit is a 4-bit
code. The decimal digits are in binary-coded
decimal (BCD) form, with the values 0-9 encoded
as 0000-1001. The sign is usually represented as
1100 (C hex) for plus and 1101 (D hex) for minus.
These are the preferred sign codes, which are
generated by the machine for the results of decimal
operations. There are also several alternate sign
codes (1010, 1110, and 1111 for plus; 1011 for
minus). The alternate sign codes are accepted by
the machine as valid but are not generated for
results.

Decimal integers may have different lengths,
from one to 16 bytes. There are two decimal
formats: packed and zoned. In the packed format,
each byte contains two decimal digits, except for
the rightmost byte which contains the sign in its
right digit. The number of decimal digits in the
packed format can vary from one to 31. Because

Appendix A. Number Representation and Instruction-Use Examples A-3

decimal integers must consist of whole bytes and
there must be a sign digit on the right, the number
of decimal digits is always odd. If an even number
of significant digits is desired, a leading zero must
be inserted on the left.

In the zoned format, each byte consists of a
decimal digit on the right and the zone code 1111
(F hex) on the left, except for the rightmost byte
where the sign code replaces the zone code. Thus,
decimal integers in the zoned format can have
anywhere from one to 16 digits. The zoned format
may be used directly for input and output in the
extended binary-coded-decimal interchange code
(EBCDIC), except that the sign must be separated
from the rightmost digit and handled as a separate
character. For positive (unsigned) numbers,
however, the sign code of the rightmost digit can
simply be replaced by the zone code, which is one
of the acceptable alternate codes for plus.

In either format, negative decimal integers are
represented in true notation with a separate sign.
As for binary integers, the radix point (decimal
point) of decimal integers is considered to be fixed
at the right, and any scaling is done by the
programmer.

The following are some examples of decimal
integers shown in hexadecimal notation:

Value Packed Format Zoned Format

+123 12 3C Fl F2 C3 or Fl F2
-4321 04 32 10 F4 F3 F2 01
+000050 00 00 05 OC FO FO FO FO F5 CO

FO FO FO FO F5 FO
-7 70 07

00000 00 00 OC FO FO FO FO CO or
FO FO FO FO FO

F3

or

Under some circumstances, a zero with a minus
sign (negative zero) is produced. For example, the
multiplicand:

00 123D (-123)

times the multiplier:

OC (+0)

generates the product:

00 OOOD (-0)

because the product sign follows the algebraic rule
of signs even when the value is zero. A negative
zero, however, is entirely equivalent to a positive
zero; they compare equal in a decimal comparison.

A-4 System/370 Principles of Operation

Floating-Point Numbers
A floating-point number is expressed as a fraction
multiplied by a separate power of 16. The term
floating point indicates that the radix-point
placement, or scaling, is automatically maintained
by the machine.

The part of a floating-point number which
represents the significant digits of the number is
called the fraction. A second part specifies the
power (exponent) to which 16 is raised and
indicates the location of the radix point of the
number. The fraction and exponent may be
represented by 32 bits (short format), 64 bits (long
format), or 128 bits (extended format).

Short Floating-Point Number

~~----------~---------/--------~
IslCharacteristicl6-Digit Fri_c_t_io __ n ____ ~
o 1 a 31

Long Floating-Point Number

~----------~--------/----------,
IslCharacteristicl14-Di9it F/_ac_t __ ·lo_n ______ ~
o 1 a 63

Extended Floating-Point Number

High-Order Part
~------------~-------/-.~------~

High-Order Leftmost 14 Digits
S Characteristic of 2a-Digit Fraction
~------------~-------l----------~
o a 63

Low-Order Part
~------------~-------/----------~

Low-Order 1 Rightmost 14 Digits
S Characteristicl of 2a-Digit Fraction
~------------~-------l----------~
64 72 127

A floating-point number has two signs: one for
the fraction and one for the exponent. The
fraction sign, which is also the sign of the entire
number, is the leftmost bit of each format (0 for
ph,ls, 1 for minus). The numeric part of the
fraction is in true notation regardless of the sign.
The numeric part is contained in bits 8-31 for the
short format, in bits 8-63 for the long format, and
in bits 8-63 followed by bits 72-127 for the
extended format.

The exponent sign is obtained by expressing the
exponent in excess-64 notation; that is, the
exponent is added as a signed number to 64. The
resulting number is called the characteristic. It is
located in bits 1-7 for all formats. The
characteristic can vary from 0 to 127, permitting
the exponent to vary from -64 through 0 to +63.
This provides a scale multiplier in the range of
16-64 to 16+63 . A nonzero fraction, if normalized,
must be less than one and greater than or equal to
1/16, so that the range covered by the magnitude
M of a floating-point number is:

16-65 S M < 1663

In decimal terms:

16-65 is approximately equal to 5.4 x 10-79

1663 is approximately equal to 7.2 x 1075

More precisely,

In the short format:

16-65 S M S (1 - 16-6) x 1663

In the long format:

16-65 S M S (1 - 16-14) x 1663

In the extended format:

16-65 S M S (1 - 16-28) x 1663

Within a given fraction length (6, 14, or 28
digits), a floating-point operation will provide the
greatest precision if the fraction is normalized. A
fraction is normalized when the leftmost digit (bit
positions 8, 9, 10, and 11) is nonzero. It is
unnormalized if the leftmost digit contains all
zeros.

If normalization of the operand is desired, the
floating-point instructions that provide automatic
normalization are used. This automatic
normalization is accomplished by left-shifting the
fraction (four bits per shift) until a nonzero digit
occupies the leftmost digit position. The
characteristic is reduced by one for each digit
shifted.

The following are sample normalized short
floating-point numbers. The last two numbers
represent the smallest and the largest positive
normalized numbers.

~
1.0
0.5
1/64
0.0

-J~4el0-79
7.2xl075

Powers of 16
+1/16x16 1
+8/16x160
+4/16x16-1
+0 x16-64
-15/16x16614

'+1/16x16-
(1-16-6)x1663

S <-Char-> <--- ------Fract ion ----->
o 100 000 1 0001 0000 0000 0000 0000 0000
a 100 0000 1000 0000 0000 00000000 0000
a all 1111 0100 0000 0000 0000 0000 0000
o 000 0000 0000 0000 0000 0000 0000 0000
1 100 000 1 1111 0000 0000 0000 0000 0000
o 000 0000 0001 0000 0000 0000 0000 0000
o 111 1111 1111 1111 1111 1111 1111 1111

Conversion Example
Convert the decimal number 59.25 to a short
floating-point number. (In another appendix are
tables for the conversion of hexadecimal and
decimal integers and fractions.)
1. The number is decomposed into a decimal

integer and a decimal fraction.

59.25 ... 59 plus 0.25

2. The decimal integer is converted to its
hexadecimal representation.

5910 = 3B 16

3. The decimal fraction is converted to its
hexadecimal representation.

0.25 10 .. 0.416

4. The integral and fractional parts are combined
and expressed as a fraction times a power of 16
(exponent).

3B.416 - 0.3B416 x 162

5. The characteristic is developed from the
exponent and converted to binary.

base + exponent - characteristic

64 + 2 = 66 ,. 1000010

6. The fraction is converted to binary and grouped
hexadecimally.

0.3B416 = 0.0011 1011 0100

7. The characteristic and the fraction are stored in
the short format. The sign position contains
the sign of the fraction.

Fraction

o 1000010 00111011 0100000000000000

Examples of instruction sequences that may be
used to convert between signed binary integers and
floating-point numbers are shown in the section
"Floating-Point-Number Conversion" later in this
appendix.

Instruction-U se Examples
The following examples illustrate the use of many
of the unprivileged instructions. Before studying
one of these examples, the reader should consult

Appendix A. Number Representation and Instruction-Use Examples A-5

the instruction description in this manual for the
particular instruction of interest to him.

The instruction-use examples are written
principally for assembler-language programmers, to
be used in conjunction with the appropriate
assembler-language manuals.

Most examples present one particular instruction,
both as it is written in an assembler-language
statement and as it appears when assembled in
storage (machine format).

Machine Format
All machine-format numerical operands are written
in hexadecimal notation unless otherwise specified.
Hexadecimal operands are shown converted into
binary, decimal, or both if such conversion helps to
clarify the example for the reader. Storage
addresses are also given in hexadecimal.

Assembler-Language Format
In assembler-language statements, registers and
lengths are presented in decimal. Displacements,
immediate operands, and masks may be shown in
decimal, hexadecimal, or binary notation; for
example, 12, X'C', or B'llOO' represent the same
value. Whenever the value in a register or storage
location is referred to as "not significant," this
value is replaced during the execution of the
instruction.

When SS-format instructions are written in the
assembler language, lengths are given as the total
number of bytes in the field. This differs from the
machine definition, in which the length field
specifies the number of bytes to be added to the
field address to obtain the address of the last byte
of the field. Thus, the machine length is one less
than the assembler-language length. The assembler
program automatically subtracts one from the
length specified when the instruction is assembled.

In some of the examples, symbolic addresses are
used in order to simplify the examples. In
assembler-language statements, a symbolic address
is represented as a mnemonic term written in all
capitals, such as FLAGS which may denote the
address of a storage location containing data or
program-control information. When symbolic
addresses are used, the assembler supplies actual
base and displacement values according to the
programmer's specifications. Therefore, the actual
values for base and displacement are not shown in
the assembler-language format or in the machine­
language format. For assembler-language formats,
in the labels that designate instruction fields, the
letter "s" is used to indicate the combination of
base and displacement fields for an operand

A-6 System/370 Principles of Operation

address. (For example, S 1 represents the
combination of Bl and Dl.) In the machine­
language format, the base and displacement address
components are shown as asterisks (***).

General Instructions
(See Chapter 7.)

ADD HALFWORD (AH)
The ADD HALF WORD instruction algebraically
adds the halfword contents of a storage location to
the contents of a register. The halfword storage
operand is expanded to 32 bits after it is fetched
and before it is used in the add operation. The
expansion consists in propagating the leftmost
(sign) bit 16 positions to the left. For example,
assume that the contents of storage locations
2000-2001 are to be added to register 5. Initially:
Register 5 contains 00 00 00 19 = 25 10,
Storage locations 2000-2001 contain FF FE = -210,
Register 12 contains 00 00 18 00.
Register 13 contains 00 00 01 50.

The format of the required instruction is:

Machine Format

Op Code

4A 5 D

Assembler Format

Op Code R1,D 2(X2 ,B2)

AH 5,X'6BO'(13,12)

After the instruction is executed, register 5
contains 00 00 00 17 = 23 10,

AND (N, NR, NI, NC)
When the Boolean operator AND is applied to two
bits, the result is one when both bits are one;
otherwise, the result is zero. When two bytes are
ANDed, each pair of bits is handled separately;
there is no connection from one bit position to
another. The following is an example of ANDing
two bytes:

First-operand byte:
Second-operand byte:

Result byte:

0011 0101 2
0101 11002

0001 01002

AND(NI)
A frequent use of the AND instruction is to set a
particular bit to zero. For example, assume that
storage location 4891 contains 0100 00112. To set
the rightmost bit of this byte to zero without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 0000
4890):

Machine Format

Op Code

94 FE 8 I 001 1

Assembler Format

Op Code 01(B 1),12

NI 1(8),X'FE'

When this instruction is executed, the byte in
storage is ANDed with the immediate byte (the 12
field of the instructions):

Location 4891
Immediate byte

Result:

0100 0011 2
1111 11102

0100 00102

The resulting byte, with bit 7 set to zero, is
stored back in location 4891. Condition code 1 is
set.

BRANCH AND UNK (BAL, BALR)
The BRANCH AND LINK instructions are
commonly used to branch to a subroutine with the
option of later returning to the main instruction
sequence. For example, assume that you wish to
branch to a subroutine at storage address 1160.
Also assume:
The contents of register 2 are not significant.
Register 5 contains 00 00 11 50.
Address 00 00 C6 contains the BAL instruction, so that 00
00 CA is the address of the next sequential instruction.

The format of the BAL instruction is:

Machine Format

Op Code

45 2 o

Assembler Format

Op Code R1,02(X2 ,B2}

BAL 2, X' 10' (0,5)

5 I 010 1

After the instruction is executed:
Register 2 (bits 8-31) contains 00 00 CA.
PSW bits 40-63 contain 00 11 60.

The programmer can return to the main
instruction sequence at any time with a BRANCH
ON CONDITION (BCR) instruction that specifies
register 2 and a mask of 15 10, provided that
register 2 has not meanwhile been disturbed.

The BALR instruction with the R2 field set to
zero may be used to load a register for use as a
base register. For example, in the assembler
language, the sequence of statements:
BALR 15,0
USING *,15

tells the assembler program that register 15 is to be
used as the base register in assembling this program
and that, when the program is executed, the
address of the next sequential instruction following
the BALR will be placed in the register. (The
USING statement is an "assembler instruction" and
is thus not a part of the object program.)

As another example, BALR 6,0 may be used to
preserve the current condition code in bits 2 and 3
of register 6 for future inspection.

Note that, in all three examples, a value of zero
in the X2 or R2 field indicates that the
corresponding function is not performed; it does
not refer to register O. Register 0 can be
deSignated by the Rl field, however.

BRANCH ON CONDITION (BC, BCR)
The BRANCH ON CONDITION instructions test
the condition code to see whether a branch should
or should not be taken. The branch is taken only if
the condition code is as specified by a mask.

Mask
Value

8
4
2
1

Condition
Code

o
1
2
3

Appendix A. Number Representation and Instruction-Use Examples A-7

For example, assume that an ADD (A or AR)
operation has been performed and that you wish to
branch to address 6050 if the sum is zero or less
(condition code 0 or 1). Also assume:
Register 10 contains 00 00 50 00.
Register 11 contains 00 00 10 00.

The RX form of the instruction performs the
required test (and branch if necessary) when
written as:

Machine Format

Op Code M1

47 C B A I 050 1

Assembler Format

Op Code M1,D2(X2,B2)

BC 12,X'50'(11,10)

A mask of 15 indicates a branch on any
condition (an unconditional branch). A mask of
zero indicates that no branch is to occur (a no­
operation).

BRANCH ON COUNT (BCT, BCTR)
The BRANCH ON COUNT instructions are often
used to execute a program loop for a specified
number of times. For example, assume that the
following represents some lines of coding in an
assembler-language program:

LUPE AR 8,1

BACK BCT 6,LUPE

where register 6 contains 00 00 00 03 and the
address of LUPE is 6826. Assume that, in order to
address this location, register 10 is used as a base
register and contains 00 00 68 00.

The format of the BCT instruction is:

A-8 System/370 Principles of Operation

Machine Format

Op Code

46 6 o

Assembler Format

Op Code R1,D 2(X2 ,B2)

BCT 6,X'26'(0,10)

The effect of the coding is to execute three times
the loop defined by locations LUPE through
BACK.

BRANCH ON INDEX HIGH (BXH)
The BRANCH ON INDEX HIGH instruction is an
index-incrementing and loop-controlling instruction
that causes a branch whenever the sum of an index
value and an increment value is greater than some
compare value. For example, assume that:
Register 4 contains 000000 8A = 13810 = the index.
Register 6 contains 00000002 = 210 "" the increment.
Register 7 contains 00 00 00 AA = 17010 = the compare
value.
Register 10 contains 00 00 71 30 = the branch address.

The format of the instruction is:

Machine Format

Op Code

86 4 6 A I 0001

Assembler Format

Op Code R1,R3,D 2(B 2)

BXH 4,6,0(10)

When the instruction is executed, first the
contents of register 6 are added to register 4,
second the sum is compared with the contents of
register 7, and third the decision whether to branch
is made. After execution:
Register 4 contains 00 00 00 8e = 14010,
Registers 6 and 7 are unchanged.

Since the new value in register 4 is not yet
greater than the value in register 7, the branch to
address 7130 is not taken. Repeated use of the
instruction will eventually cause the branch to be
taken when the value in register 4 reaches 172.

When the register used to contain the increment
is odd, that register also becomes the compare­
value register. The following assembler-language

subroutine illustrates how this feature may be used
to search a table.

Table

2 Bytes 2 Bytes

ARGI FUNCTI
ARG2 FUNCT2
ARG3 FUNCn
ARG4 FUNCT4
ARGS FUNCTS
ARG6 FUNCT6

Assume that:
Register 8 contains the search argument.
Register 9 contains the width of the table in bytes (00 00 00
04).
Register 10 contains the length of the table in bytes (0000
00 18).
Register 11 contains the starting address of the table.
Register 14 contains the return address to the main
program.

As the following subroutine is executed, the
argument in register 8 is successively compared
with the arguments in the table, starting with
argument 6 and working backward to argument 1.
If an equality is found, the corresponding function
replaces the argument in register 8. If an equality
is not found, FFFF 16 replaces the argument in
register 8.

SEARCH LNR 9,9
NOTEQUAL BXH 10,9,LOOP
NOT FOUND LA 8,X'FFFF'

BCR 15,14
LOOP CH 8,0(2,3)

BC 7,NOTEQUAL
LH 8,2(10,11)
BCR 15,14

The first instruction (LNR) causes the value in
register 9 to be made negative. After execution of
this instruction, register 9 contains FFFFFFFC =
-410, Considering the case when no equality is
found, the BXH instruction will be executed seven
times. Each time BXH is executed, a value of -4 is
added to register 10, thus reducing the value in
register 10 by 4. The new value in register lOis
compared with the -4 value in register 9. The
branch is taken each time until the value in register
10 is -4.

BRANCH ON INDEX LOW OR EQUAL
(BXLE)
This instruction is similar to BRANCH ON INDEX
HIGH except that the branch is successful when

the sum is low or equal compared to the compare
value.

COMPARE HALFWORD (CH)
The COMPARE HALFWORD instruction
compares a 16-bit signed binary integer in storage
with the contents of a register. For example,
assume that:
Register 4 contains FF FF 8000 ... -32,768 10,
Register 13 contains 00 01 60 50.
Storage locations 16080-16081 contain 8000 ... -32,76810,

When the instruction

Machine Format

Op Code Rl

49 4 o

Assembler Format

Op Code R1,D2(X2,B2)

CH 4,X'30'(0,13)

is executed, the contents of locations 16080-16081
are fetched, expanded to 32 bits (the sign bit is
propagated to the left), and compared with the
contents of register 4. Because the two numbers
are equal, condition code 0 is set.

COMPARE LOGICAL (CL, CLC, CLI,
CLR)
The COMPARE LOGICAL instructions differ
from the signed-binary comparison instructions (C,
CH, CR) in that all quantities are handled as
unsigned binary integers or as unstructured data.

Compare Logical (CLC)
The COMPARE LOGICAL (CLC) instruction can
be used to perform the byte-by-byte comparison of
storage fields up to 256 bytes in length. For
example, assume that the following two fields of
data are in storage:

Field 1
1886 1891

1011061C810sIE21D610s16BICl14BIC214BI

Field 2
1900 190B

1011D61C810sIE21D610s16BICl14BIC314BI

Appendix A. Number Representation and Instruction-Use Examples A-9

Also assume:
Register 9 contains 0000 18 80.
Register 7 contains 00 00 19 00.

Execution of the instruction

Machine Format

Op Code L

05 OB

Assembler Format

Op Code 01(L.B 1).02(B2)

CLC 6(12.9).0(7)

7 I 0001

sets condition code 1, indicating that the contents
of field 1 are lower in value than the contents of
field 2.

Because the collating sequence of the EBCDIC
code is determined simply by a logical comparison
of the bits in the code, the CLC instruction can be
used to collate EBCDIC-coded fields. For
example, in EBCDIC, the above two data fields
are:
Field 1 JOHNSON,A.B.
Field 2 JOHNSON,A.C.

Condition code 1 tells us that A.B.JOHNSON
precedes A.C.JOHNSON, thus placing the names in
the correct alphabetic sequence.

Compare Logical (CLI)
The COMPARE LOGICAL (CLI) instruction
compares a byte from the instruction stream with a
byte from storage. For example, assume that:
Register 10 contains 00 00 17 00.
Storage location 1703 contains 7E.

Execution of the instruction

Machine Format

Op Code 12 B 1 ° 1

95 AF

Assembler Format

Op Code 01(B 1).1 2

CLI 3(10).X'AF'

sets condition code 1, indicating that the first
operand (the quantity in main storage) is lower
than the second (immediate) operand.

A-I0 System/370 Principles of Operation

Compare Logical (CLR)
Assume that:
Register 4 contains 00000001 = 1.
Register 7 contains FF FF FF FF _ 232 - 1.

Execution of the instruction

Machine Format

Op Code

15 4 7

Assembler Format

Op Code R 1 .R2

CLR 4.7

sets condition code 1. Condition code 1 indicates
that the first operand is lower than the second.

If, instead, the signed-binary comparison
instruction COMPARE (CR) had been executed,
the contents of register 4 would have been
interpreted as + 1 and the contents of register 7 as
-1. Thus,the first operand would have been
higher, so that condition code 2 would have been
set.

COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM)
The COMPARE LOGICAL CHARACTERS
UNDER MASK (CLM) instruction provides a
means of comparing bytes selected from a general
register to a contiguous field of bytes in storage.
The M3 field of the CLM instruction is a four-bit
mask that selects zero to four bytes from a general
register, each mask bit corresponding, left to right,
to a register byte. In the comparison, the register
bytes corresponding to ones in the mask are treated
as a contiguous field. The operation proceeds left
to right. For example, assume that:
Three bytes starting at storage location 10200 contain FO
BC 7B.
Register 12 contains 10000.
Register 6 contains FO BC 5C 7B.

Execution of the instruction

Machine Format

Op Code Rl

BO 6 o

Assembler Format

ClM 6,B'1101' ,X'200'(12)

causes the following comparison:

Register 6: FO
Mask 1

Three bytes
starting at
location
10200

Be
1

5C
o

7B
1

Because the selected bytes are equal, condition
code 0 is set.

COMPARE LOGICAL LONG (CLCL)
The COMPARE LOGICAL LONG (CLCL)
instruction is used to compare two operands in
storage, byte by byte. Each operand can be of any
length. Two even-odd pairs of general registers
(four registers in all) are used to locate the
operands and to control the execution of the CLCL
instruction, as illustrated in the following diagram.
The first register of each pair must be an even
register, and it contains the storage address of the
byte currently being compared in each operand.
The odd register of each pair contains the length of
the operand it covers, and the leftmost byte of the
second-operand odd register contains a padding
byte which is used to extend the shorter operand, if
any, to the same length as the longer operand.

The following illustrates the assignment of
registers:

R1(even) !IIIIIIIIIFirst-Operand Address

o 8 31

R1+l(odd) I11111111I First-Operand length I

o 8 31

R2(even) 1IIIIIIII1 Second-Operand Address I
o 8 31

R2+1(odd) Ipad By tel Second-Operand length I
o 8 31

Since the CLCL instruction may be interrupted
during execution, the interrupting program must
preserve the contents of the four registers for use
when the instruction is resumed.

The following instructions set up two register
pairs to control a text-string comparison. For
example, assume:

0E!erand 1
Address: 20800 (hex)
length: 100 (dec)

0E!erand 2
Address: 20AOO (hex)
length: 132 (dec)

Padding Blte
Address: 20003 (hex)
length: 1
Value: 40 (hex)

Register 12 contains 00 02 00 00

The setup instructions are:
LA 4,X'80Q'(12) Point register 4 to start of first

operand
LA 5,100 Set register 5 to length of first

operand
LA 8,X'AOO'(2) Point register 8 to start of second

operand
LA 9,132 Set register 9 to length of second

operand
ICM 9,B'lOOO',3(2) Insert padding byte in leftmost

byte position of register 9.

Register pair 4,5 defines the first operand. Bits
8-31 of register 4 contain the storage address of
the start of an EBCDIC text string, and bits 8-31
of register 5 contain the length of the string, in this
case 100 bytes.

Appendix A. Number Representation and Instruction-Use Examples A-ll

Register pair 8,9 defines the second operand,
with bits 8-31 of register 8 containing the starting
location of the second operand and bits 8-31 of
register 9 containing the length of the second
operand, in this case 132 bytes. Bits 0-7 of register
9 contain an EBCDIC blank character (X'40') to
pad the shorter operand. In this example, the
padding byte is used in the first operand, after the
100th byte, to compare with the remaining bytes in
the second operand.

With the register pairs thus set up, the format of
the CLCL instruction is:

Machine Format

Op Code Rl

OF 4 8

Assembler Format

Op Code R1,R2

CLCL 4,8

When this instruction is executed, the
comparison starts at the left end of each operand
and proceeds to the right. The operation ends as
soon as an inequality is detected or the end of the
longer operand is reached.

If this CLCL instruction is interrupted after 60
bytes have compared equal, the operand lengths in
registers 5 and 9 will have been decremented to
X'28' and X'48', respectively, and the operand
addresses in registers 4 and 8 will have been
incremented to X'2083C' and X'20A3C'. The
padding byte X'40' remains in register 9. When
the CLCL instruction is reissued with these register
contents, the comparison resumes at the point of
interruption.

Now, assume that the instruction is interrupted
after 110 bytes. That is, the first 100 bytes of the
second operand have compared equal to the first
operand, and the next 10 bytes of the second
operand have compared equal to the padding byte
(blank). The residual operand lengths in registers
5 and 9 are 0 and X'16', respectively, and the
operand addresses in registers 4 and 8 are X'20864'
(the value when the first operand was exhausted),
and X'20A6E' (the current value for the second
operand).

When the comparison ends, the condition code is
set to 0, 1, or 2, depending on whether the first
operand is equal to, less than, or greater than the
second operand, respectively.

A-12 System/370 Principles of Operation

When the operands are unequal, the addresses in
registers 4 and 8 locate the bytes that caused the
mismatch.

CONVERT TO BINARY (CVB)
The CONVERT TO BINARY instruction converts
an eight-byte, packed-decimal number into a signed
binary integer and loads the result into a general
register. After the conversion operation is
completed, the number is in the proper form for use
as an operand in signed binary arithmetic. For
example, assume:
Storage locations 7608-760F contain a decimal number in
the packed format: 0000 00 00 0025 59 4C (+25,594).
The contents of register 7 are not significant.
Register 13 contains 00 00 76 00.

The format of the conversion instruction is:

Machine Format

Op Code

4F 7 o o 1 008 1

Assembler Format

Op Code R1,D2(X2 ,B2)

CVB 7,8(0,13)

After the instruction is executed, register 7
contains 00 00 63 FA.

CONVERT TO DECIMAL (CVD)
The CONVERT TO DECIMAL instruction
performs functions exactly opposite to those of the
CONVERT TO BINARY instruction. CVD
converts a signed binary integer in a register to
packed decimal and stores the eight-byte result.
For example, assume:
Register 1 contains the signed binary integer: 0000 OF OF.
Register 13 contains 00 00 76 00.

The format of the instruction is:

Machine Format

Op Code

4E o D 1 008 1

Assembler Format

Op Code R1,D2(X2 ,B2)

CVD 1,8(0,13)

After the instruction is executed, storage
locations 7608-760F contain 00 00 00 00 00 03 85
5C (+3855).

The plus sign generated is the preferred plus
sign, 11002.

DIVIDE (D, DR)
The DIVIDE instruction divides the dividend in an
even-odd register pair by the divisor in a register or
in storage. Since the dividend is assumed to be 64
bits long, it is important that the proper sign be
first affixed. For example, assume that:
Storage locations 3550-3553 contain 00 00 08 DE - 227010
.. the dividend.
Storage locations 3554-3557 contain 00 00 00 32 .. 5010 -
the divisor.
The initial contents of registers 6 and 7 are not significant.
Register 8 contains 00 00 35 50.

The following assembler language statements
load the registers properly and perform the divide
operation:

Statement Comments

L 6.0(0.8) Places 00 00 08 DE into

SROA 6.32(0)
register 6.

Shifts 00 00 08 OE into
register 7. Register
is filled with zeros

6.4(0.8)
(sign bits).

D Performs the division.

The machine format of the above DIVIDE
instruction is:

Machine Format

50 6 0

6

After all the foregoing instructions are executed:
Register 6 contains 00 00 00 14 .. 2010 .. the remainder.
Register 7 contains 00 00 00 2D .. 45 10 .. the quotient.

Note that if the dividend had not been first
placed in register 6 and shifted into register 7,
register 6 might not have been filled with the
proper sign bits (zeros in this example), and the
DIVIDE instruction might not have given the
expected results.

EXCLUSIVE OR (X, XC, XI, XR)
When the Boolean operator EXCLUSIVE OR is
applied to two bits, the result is one when either,
but not both, of the two bits is one; otherwise, the

result is zero. When two bytes are EXCLUSIVE
ORed, each pair of bits is handled separately; there
is no connection from one bit position to another.
The following is an example of the EXCLUSIVE
OR of two bytes:

First-operand byte:
Second-operand byte:

Result byte:

Exclusive OR (XC)

0011 0101 2
0101 11002

0110 1001 2

The EXCLUSIVE OR (XC) instruction can be
used to exchange the contents of two areas in
storage without the use of an intermediate storage
area. For example, assume that register 7 contains
000003 58 and assume two 3-byte fields in
storage:

359 35B

Field 1 1001171901

360 362

Field 2 I 00 1141 0 1 I

Execution of the instruction

Machine Format

Op Code L

D7 02 7 I 001 1 7 I 008 1

Assembler Format

Op Code Dl(L.Bl).02(B2)

XC 1(3.7).8(7)

causes field 1 to be EXCLUSIVE ORed with field
2 as follows:

Field 1 : 0000 0000 0001 0111 1001 00002
00 17 90

Field 2: 0000 0000 0001 0100 0000 0001 2
00 14 01

Result: 0000 0000 0000 0011 1001 0001 2
00 03 91

The result replaces the former contents of field 1.

Appendix A. Number Representation and Instruction-Use Examples A-13

Now, execution of the instruction

Machine Format

Op Code L B2 02

07 02 7 I 008 1 7 I 001 1

Assembler Format

Op Code 01(L,B 1),02(B2)

XC 8(3,7}.1(7)

produces the following result:

Field 1: 0000 0000 0000 0011 1001 0001 2
00 03 91

Field 2: 0000 0000 0001 0100 0000 0001 2 = 00 14 01

Result: 0000 0000 0001 0111 1001 00002
00 17 90

The result of this operation replaces the former
contents of field 2. Field 2 now contains the
original value of field 1.

Lastly, execution of the instruction

Machine Format

Op Code L BIO I B2 02

07 02 7 I 00 11 7 I 008 1

Assembler Format

Op Code 01(L,B 1),02(B2)

XC 1(3.7),8(7)

produces the following result:

Field 1 : 0000 0000 0000 0011 1001 0001 2
00 03 91

Field 2: 0000 0000 0001 0111 1001 00002
00 17 90

Result: 0000 0000 0001 0100 0000 0001 2
00 14 01

The result of this operation replaces the former
contents of field 1. Field 1 now contains the
original value of field 2.

Exclusive OR (XI)
A frequent use of the EXCLUSIVE OR (XI)
instruction is to invert a bit (change a zero bit to a

A-14 System/370 Principles of Operation

one or a one bit to a zero). For example, assume
that storage location 8082 contains 0110 1001 2,

To invert the leftmost and rightmost bits without
affecting any of the other bits, the following
instruction can be used (assume that register 9
contains 00 00 80 80):

Machine Format

Op Code 12

97 81 9 I 002 1

Assembler Format

Op Code 01(B 1),1 2

XI 2(9),X'81'

When the instruction is executed, the byte in
storage is EXCLUSIVE ORed with the immediate
byte (the 12 field of the instruction):

Location 8082:
Immediate byte:

Result:

0110 1001 2
1000 000 12

1110 10002

The resulting byte is stored back in location 8082.
Condition code 1 is set to indicate a nonzero result.

Notes:
1. With the XC instruction, fields up to 256

bytes in length can be exchanged.
2. With the XR instruction, the contents of two

registers can be exchanged.
3. Because the X instruction operates storage to

register only, an exchange cannot be made
solely by the use of X.

4. A field EXCLUSIVE ORed with itself is
cleared to zeros.

5. For additional examples of the use of
EXCLUSIVE OR, see the section "Floating­
Point-Number Conversion" later in this
appendix.

EXECUTE (EX)
The EXECUTE instruction causes one target
instruction in main storage to be executed out of
sequence without actually branching to the target
instruction. Unless the Rl field of the EXECUTE
instruction is zero, bits 8-15 of the target
instruction are ORed with bits 24-31 of the Rl
register before the target instruction is executed.
Thus, EXECUTE may be used tq supply the length
field for an SS instruction without modifying the SS

instruction in storage. For example, assume that a
MOVE (MVC) instruction is the target that is
located at address 3820, with a format as follows:

Machine Format

Op Code L

D2 00 D I 0001

Assembler Format

Op Code D1(L,B 1),D2(B2)

MVC 3(1,12),0(13)

where register 12 contains 00 00 89 13 and register
13 contains 00 00 90 AO.

Further assume that at storage address 5000, the
following EXECUTE instruction is located:

Machine Format

Op Code

44 o A I 0001

Assembler Format

Op Code R1,D2(X2 ,B2)

EX 1,0(0,10)

where register 10 contains 00 00 38 20 and register
1 contains 00 OF FO 03.

When the instruction at 5000 is executed, the
rightmost byte of register 1 is ORed with the
second byte of the target instruction:

Register byte:
Instruction byte:

Result :

0000 00002 00
0000 00 11 2 03

0000 0011 2 = 03

causing the instruction at 3820 to be executed as if
it originally were:

Machine Format

Op Code L

D2 03 D I 0001

Assembler Format

MVC 3(4,12) ,O(13)

However, after execution:
Register 1 is unchanged.
The instruction at 3820 is unchanged.
The contents of the four bytes starting at location 90AO
have been moved to the four bytes starting at location
8916.
The CPU next executes the instruction at address 5004
(PSW bits 40-63 contain 00 50 04).

INSERT CHARACTERS UNDER MASK
(ICM)
The INSERT CHARACTERS UNDER MASK
OCM) instruction may be used to replace all or
selected bytes in a general register with bytes from
storage and to set the condition code to indicate
the value of the inserted field.

For example, if it is desired to insert a three-byte
address from FIELD A into register 5 and leave the
leftmost byte of the register unchanged, assume:

Machine Format

Op Code Rl

BF 5 7 * * * *

Assembler Format

ICM 5,B'0111' ,FIELDA

FIELDA:
Register 5 (before):
Register 5 (after):
Condition code (after):

FE DC BA
12 34 56 78
12 FE DC BA
1 (leftmost bit

of inserted
field is one)

Appendix A. Number Representation and Instruction-Use Examples A-15

As another example:

Machine Format

Op Code Rl

BF 6 9 * * * *

Assembler Format

ICM 6,B'1001',FIELDB

FIELDB:
Register 6 (before):
Register 6 (after):
Condition code (after):

12 34
00 00 00 00
12 00 00 34
2 (i nserted field

is nonzero
with leftmost
zero bit)

When the mask field contains 1111, the ICM
instruction produces the same result as LOAD (L)
(provided that the indexing capability of the RX
format is not needed), except that ICM also sets
the condition code. The condition-code setting is
useful when an all-zero field (condition code 0) or
a leftmost one bit (condition code 1) is used as a
flag.

LOAD (L, LR)
The LOAD instructions take four bytes from
storage or from a general register and place them
unchanged into a general register. For example,
assume that the four bytes starting with location
21003 are to be loaded into register 10. Initially:
Register 5 contains 00 02 00 00.
Register 6 contains 00 00 1003.
The contents of register 10 are not significant.
Storage locations 21003-21006 contain 00 00 AB CD.

To load register 10, the RX form of the
instruction can be used:

Machine Format

58 A 5 6 I 0001

Assembler Format

Op Code R1,D 2(X2 ,B2)

L 10,0(5,6)

A-16 System/370 Principles of Operation

After the instruction is executed, register 10
contains 00 00 AB CD.

LOAD ADDRESS (LA)
The LOAD ADDRESS instruction provides a
convenient way to place a nonnegative binary
integer up to 4095 10 in a register without first
defining a constant and then using it as an
operand. For example, the following instruction
places the number 2048 10 in register 1:

Machine Format

Op Code Rl

41 1 o o I 800 1

Assembler Format

Op Code R1,D2 (X2 ,B2)

LA 1,2048(0,0)

The LOAD ADDRESS instruction can also be
used to increment a register by an amount up to
4095 10 specified in the D2 field. Only the
rightmost 24 bits of the result are retained,
however. For example, assume that register 5
contains 00 12 34 56.

The instruction

Machine Format

Op Code Rl

41 5 o

Assembler Format

Op Code R1,D2 (X2 ,B2)

LA 5, 1 0 (0 , 5)

adds 10 (decimal) to the contents of register 5 as
follows:

Register 5 (old): 00 12 34 56
D2 field: 00 00 00 OA

Register 5 (new): 00 12 34 60

The register may be specified as either B2 or X2.
Thus, the instruction LA 5,10(5,0) produces the
same result.

As the most general example, the instruction LA
6,10(5,4) adds the displacement,. in this case 10, to
the contents of register 4 and to the contents of

register 5 and places the 24-bit sum of these three
values in register 6.

LOAD HALFWORD (LH)
The LOAD HALFWORD instruction places
unchanged a halfword from storage into the right
half of a register. The left half of the register is
loaded with zeros or ones according to the sign
(leftmost bit) of the halfword.

For example, assume that the two bytes in
storage locations 1803 -1804 are to be loaded into
register 6. Also assume:
The contents of register 6 are not significant.
Register 14 contains 00 00 18 03.
Locations 1803-1804 contain 0020.

The instruction required to load the register is:

Machine Format

Op Code R1 X2 B2 02

48 6 0 E I 0001

Assembler Format

Op Code R1,02(X2 ,B2)

LH 6,0(0,14)

After the instruction is executed, register 6
contains 00 00 0020. If locations 1803-1804 had
contained a negative number, for example, A 7 B6,
a minus sign would have been propagated to the
left, giving FF FF A 7 B6 as the final result in
register 6.

MOVE (MVC, MVI)

Move (MVC)
The MOVE (MVe) instruction can be used to
move data from one storage location to another.
For example, assume that the following two fields
are in storage:

2048

3840

Field 2

Also assume:
Register 1 contains 00 00 20 48.
Register 2 contains 00 00 38 40.

2052

3848

With the following instruction, the first eight
bytes of field 2 replace the first eight bytes of
field 1:

Machine Format

Op Code L B1 01

02 07 I 000 I 2 I 0001

Assembler Format

Op Code 01(L,B 1),02(B2)

MVC 0(8,1),0(2)

After the instruction is executed, field 1
becomes:

2048 2052

Field 1 IF11F21F31F41F51F61F71F81C91CAICBI

Field 2 is unchanged.
MVe can also be used to propagate a byte

through a field by starting the first-operand field
one byte location to the right of the second­
operand field. For example, suppose that an area
in storage starting with address 358 contains the
following data:

358 360

With the following MVe instruction, the zeros in
location 358 can be propagated throughout the
entire field (assume that register 11 contains 00 00
03 58):

Machine Format

Op Code L B 1 01

02 07 B I 0001

Assembler Format

Op Code

MVC 1(8,11),0(11)

Because the MVe handles one byte at a time,
the above instruction essentially takes the byte at
address 358 and stores it·at 359 (359 now contains

Appendix A. Number Representation and Instruction-Use Examples A-17

00), takes the byte at 359 and stores it at 35A, and
so on, until the entire field is filled with zeros.
Note that an MVI instruction could have been used
originally to place the byte of zeros in location 358.

Notes:
1. Although the field occupying locations

358-360 contains nine bytes, the length coded
in the assembler format is equal to the number
of moves (one less than the field length).

2. The order of operands is important even
though only one field is involved.

Move (MVI)
The MOVE (MVI) instruction places one byte of
information from the instruction stream into
storage. For example, the instruction

Machine Format

Op Code 12 81 01

92 58 1 0001

Assembler Format

Op Code 01(81},12

MVI O(l},C'$'

may be used, in conjunction with the instruction
EDIT AND MARK, to insert a dollar symbol at the
storage address contained in general register 1 (see
also the example for EDIT AND MARK).

MOVE LONG (MVCL)
The MOVE LONG (MVCL) instruction can be
used for moving data in storage as in the first
example of the MVC instruction, provided that the
two operands do not overlap. MVCL differs from
MVC in that the address and length of each
operand are specified in an even-odd pair of
general registers. Consequently, MVCL can be
used to move more than 256 bytes of data with one
instruction. As an example, assume:
Register 2 contains 00 OA 00 00.
Register 3 contains 00 00 08 00.
Register 8 contains 00 06 00 00.
Register 9 contains 00 00 08 00.

Execution of the instruction

A-I8 System/370 Principles of Operation

Machine Format

Op Code R1 R2

OE 8 2

Assembler Format

Op Code R1,R2

MVCl 8,2

moves 2,048 10 bytes from locations AOOOO-A07FF
to location 60000-607FF. Condition code 0 is set
to indicate that the operand lengths are equal.

If register 3 had contained FO 00 04 00, only the
1,02410 bytes from locations AOOOO-A03FF would
have been moved to locations 60000-603FF. The
remaining locations 60400-607FF of the first
operand would have been filled with 1,024 copies
of the padding byte X'FO', as specified by the
leftmost byte of register 3. Condition code 2 is set
to indicate that the first operand is longer than the
second.

The technique for setting a field to zeros that is
illustrated in the second example of MYC cannot
be used with MYCL. If the registers were set up to
attempt such an operation with MVCL, no data
movement would take place and condition code 3
would indicate destructive overlap.

Instead, MYeL may be used to clear a storage
area to zeros as follows. Assume register 8 and 9
are set up as before. Register 3 contains only
zeros, specifying zero length for the second
operand and a zero padding byte. The contents of
register 2 are not significant. Executing the
instruction MVCL 8,2 causes locations
60000-607FF to be filled with zeros. Condition
code 2 is set.

MOVE NUMERICS (MVN)
Two related instructions, MOVE NUMERICS and
MOVE ZONES, may be used with decimal data in
the zoned format to operate separately on the
rightmost four bits (the numeric bits) and the
leftmost four bits (the zone bits) of each byte.
Both are similar to MOVE (MVC), except that
MOVE NUMERICS moves only the numeric bits
and MOVE ZONES moves only the zone bits.

To illustrate the operation of the MOVE
NUMERICS instruction, assume that the following
two fields are in storage:

7090 7093

7041 7046

Also assume:
Register 14 contains 00 00 70 90.
Register 15 contains 00 00 70 40.

After the instruction

Machine Format

Op Code L B1 01

01 03 F I 001 I

Assembler Format

Op Code 01(L,B 1),02(B2)

MVN 1(4,15),0(14)

is executed, field B becomes:

7041 7046

E I 0001

The numeric bits of the bytes at locations
7090-7093 have been stored in the numeric bits of
the bytes at locations 7041-7044. The contents of
locations 7090-7093 and 7045-7046 are
unchanged.

MOVE WITH OFFSET (MVO)
MOVE WITH OFFSET may be used to shift a
packed-decimal number an odd number of digit
positions or to concatenate a sign to an unsigned
packed-decimal number.

Assume that the three-byte unsigned packed­
decimal number in storage locations 4500-4502 is
to be moved to locations 5600-5603 and given the
sign of the packed-decimal number ending at
location 5603. Also assume:
Register 12 contains 00 00 56 00.
Register 15 contains 00 00 45 00.
Storage locations 5600-5603 contain 77 88 99 OC.
Storage locations 4500-4502 contain 12 34 56.

After the instruction

Machine Format

Op Code

F1 3 2 C I 0001 F I 0001

Assembler Format

Op Code 01(L1,B1),02(L2,B2)

MVO 0(4,12),0(3,15)

is executed, the storage locations 5600-5603
contain 01 23 45 6C. Note that the second
operand is extended on the left with one zero to fill
out the first-operand field.

MOVE ZONES (MVZ)
The MOVE ZONES instruction can, similarly to
MOVE (MVC) and MOVE NUMERICS, operate
on overlapping or nonoverlapping fields. When
operating on nonoverlapping fields, MOVE ZONES
works like the MOVE NUMERICS instruction (see
the example for MOVE NUMERICS), except that
MOVE ZONES moves only the zone bits of each
byte. To illustrate the use of MOVE ZONES with
overlapping fields, assume that the following data
field is in storage:

800 805

Also assume that register 15 contains 00 00 08
00. The instruction

Machine Format

Op Code L B1 01

03 04 F I 001 1 F I 0001

Assembler Format

Op Code 01(L,B 1),02(B2)

MVZ 1(5,15),0(15)

propagates the zone bits from the byte at address
800 through the entire field, so that the field
becomes:

Appendix A. Number Representation and Instruction-Use Examples A-19

800 80S

IF11F21F31F41FSIF61

MULTIPLY (M, MR)
Assume that a number in register 5 is to be
multiplied by the contents of a word at address
3750. Initially:
The contents of register 4 are not significant.
Register 5 contains 00 00 00 9A = 15410 = the
multiplicand.
Register 11 contains 00 00 06 00.
Register 12 contains 00 00 30 00.
Storage locations 3750-3753 contain 00000083 = 131 10 -
the multiplier.

The instruction required for performing the
multiplication is:

Machine Format

Op Code X2 82 02

SC 4 B

Assembler Format

Op Code R1,D2(X2 ,B2)

M 4,X'150'(11,12)

After the instruction is executed, the product is
in the register pair 4 and 5:
Register 4 contains 00 00 00 00.
Register 5 contains 00 00 4E CE = 20,17410,
Storage locations 3750-3753 are unchanged.

The RR format of the instruction can be used to
square the number in a register. Assume that
register 7 contains 00 01 00 05. The instruction

Machine Format

Op Code R2

1 C 6 7

Assembler Format

Op Code R1,R2

MR 6,7

multiplies the number in register 7 by itself and
places the result in the pair of registers 6 and 7:
Register 6 contains 00000001.
Register 7 contains 00 OA 00 19.

A-20 System/370 Principles of Operation

MULTIPLY HALFWORD (MH)
The MUL TIPL Y HALFWORD instruction is used
to multiply the contents of a register by a halfword
in storage. For example, assume that:
Register 11 contains 00 00 00 15 - 2110 - the
multiplicand.
Register 14 contains 00 00 01 00.
Register 15 contains 00 00 20 00.
Storage locations 2102-2103 contain FF 09 ., -39 ... the
multiplier.

The instruction

Machine Format

Op Code R1 X2 B2 02

4C B E F I 002 1

Assembler Format

Op Code R1,02(X2 ,B2)

MH 11,2(14,lS)

multiplies the two numbers. The product, FF FF
FC CD = -81910, replaces the original contents of
register 11.

Only the rightmost 32 bits of a product are
stored in a register; any significant bits on the left
are lost. No program interruption occurs on
overflow.

OR (0, OR, 01, OC)
When the Boolean operator OR is applied to two
bits, the result is one when either bit is one;
otherwise, the result is zero. When two bytes are
ORed, each pair of bits is handled separately; there
is no connection from one bit position to another.
The following is an example of ~Ring two bytes:

First-operand byte:
Second-operand byte:

Result byte:

OR(OI)

0011 0101 2
0101 11002

0111 1101 2

A frequent use of the OR instruction is to set a
particular bit to one. For example, assume that
storage location 4891 contains 0100 00102, To set
the rightmost bit of this byte to one without
affecting the other bits, the following instruction
can be used (assume that register 8 contains 00 00
48 90):

Machine Format

Op Code 12 81 01

96 01 8 I 001 1

Assembler Format

Op Code 01(B 1),1 2

01 1(8),X'OI'

When this instruction is executed, the byte in
storage is ORed with the immediate byte (the 12
field of the instruction):

Location 4891:
Immediate byte:

Result:

0100 00102
0000 0001 2

0100 0011 2

The resulting byte with bit 7 set to one is stored
back in location 4891. Condition code 1 is set.

PACK (PACK)
Assume that storage locations 1000-1003 contain
the following zoned-decimal number that is to be
converted to a packed-decimal number and left in
the same location:

1000 1003

Zoned number IF11F21F31C41

Also assume that register 12 contains 00 00 10
00. After the instruction

Machine Format

Op Code Ll L2 B2 02

F2 3 3 C I 0001 C I 0001

Assembler Format

Op Code 01(Ll,B 1),02(L2 ,B2)

PACK 0(4,12),0(4,12)

is executed, the result in locations 1000-1003 is in
the packed-decimal format:

1000 1003

Notes:
1. This example illustrates the operation of

PACK when the first- and second-operand
fields overlap completely.

2. During the operation, the second operand was
extended on the left with zeros.

SHIFT LEFT DOUBLE (SLDA)
The SHIFT LEFT DOUBLE instruction is similar
to SHIFT LEFT SINGLE except that SLDA shifts
the 63 bits (not including the sign) of an even-odd
register pair. The R1 field of this instruction must
be even. For example, if the contents of registers 2
and 3 are:

00 7F OA 72 FE DC BA 98 =
0000 0000 0111 1111 0000 1010 0111 0010
1111 1110 1101 1100 1011 1010 1001 10002

the instruction

Machine Format

B2 O2

8F 2 I1111I

Assembler Format

Op Code

SLOA 2,31(0)

results in registers 2 and 3 both being left-shifted
31 bit positions, so that their new contents are:

7F 6E 50 4C 00 00 00 00 =
0111 1111 0110 1110 0101 1101 0100 1100
0000 0000 0000 0000 0000 0000 0000 00002

In this case, a significant bit is shifted out of bit
position 1 of register 2. Condition code 3 is set to
indicate this overflow and, if the fixed-point­
overflow mask bit in the PSW is one, a fixed-point
overflow interruption occurs.

SHIFT LEFT SINGLE (SLA)
Because SHIFT LEFT SINGLE leaves the sign bit
unchanged, this instruction performs an algebraic
shift. For example, if the contents of register 2
are:

00 7F OA 72 - 000000000111 1111 0000 1010 0111 00102

then execution of the instruction

Appendix A. Number Representation and Instruction-Use Examples A-21

Machine Format

Op Code

SB 2 111111 o I Oosi

Assembler Format

Op Code R1,D2(B2)

SLA 2,8(0)

results in register 2 being shifted left eight bit
positions so that its new contents are:
7F OA 72 00 =- 0111 1111 0000 1010 0111 0010000000002

Condition code 2 is set to indicate that the result is
nonzero and positive.

If a left shift of nine places had been specified, a
significant bit would have been shifted out of bit
position 1. Condition code 3 would have been set
to indicate this overflow and, if the fixed-point­
overflow mask bit in the PSW is one, a fixed-point
overflow interruption would have occurred.

STORE CHARACTERS UNDER MASK
(STCM)
STORE CHARACTERS UNDER MASK (STCM)
may be used to place selected bytes from a register
into storage. For example, if it is desired to store a
three-byte address from general register 8 into
location FIELD3, assume:

Machine Format

Op Code R1

BE 8 7 * * * *

Register Format

STeM S,B'Ol11',FIELD3

Register 8:
FIELD3 (before):
F I ELD3 (after):

12 34 56 78
Not significant
34 56 78

As another example:

A-22 System/370 Principles of Operation

Machine Format

Op Code R1 M3 S2

BE 9 5 * * * *

Register Format

Op Code R1,M3,S2

STeM 9,B'0101' ,FIELD2

Register 9: 01 23 45 67
FIELD2 (before): Not significant
FIELD2 (after): 23 67

STORE MULTIPLE (STM)
Assume that the contents of general registers 14,
15,0, and 1 are to be stored in consecutive words
starting with location 4050 and that:
Register 14 contains 00 00 25 63.
Register 15 contains 0001 27 36.
Register 0 contains 12 43 00 62.
Register 1 contains 73 26 12 57.
Register 6 contains 00 00 40 00.
The initial contents of locations 4050-405F are not
significant.

The STORE MULTIPLE instruction allows the
use of just one instruction to store the contents of
the four registers:

Machine Format

Op Code

90 E 6 I 050 1

Assembler Format

Op Code R1,R3,D2(B 2)

STM 14,1,X'50'(6)

After the instruction is executed:
Locations 4050-4053 contain 00 00 25 63.
Locations 4054-4057 contain 00 01 27 36.
Locations 4058-405D contain 12 43 00 62.
Locations 405C-405F contain 7326 1257.

TEST UNDER MASK (TM)
The TEST UNDER MASK instruction examines
selected bits of a byte and sets the condition code
accordingly. For example, assume that:
Storage location 9999 contains FD.
Register 7 contains 00 00 99 90.

Execution of the instruction

Machine Format

Op Code 12 B1 D1

91 C3 7 I 009 1

Assembler Format

TM 9(7).B'l1000011'

produces the following result:

FB = 1111 1011 2
Mask = 1100 00112

Result 11 xx xx 112

Condition code 3 is set: all selected bits are ones.
If location 9999 had contained B9, the result

would have been:

B9 1011 1001 2
Mask = 1100 00112

Result = 10xx xx01 2

Condition code 1 is set: the selected bits are both
zeros and ones.

If location 9999 had contained 3C, the result
would have been:

3C
Mask

= 0011 11002
1100 0011 2

Result = OOxx xx002

Condition code 0 is set: all selected bits are zeros.

Note: Storage location 9999 remains unchanged.

TRANSLATE (TR)
The TRANSLATE instruction can be used to
translate data from any character code to any other
desired code, provided that each coded character
consists of eight bits or fewer. In the following
example, EBCDIC is translated to ASCII. The first
step is to create a 256-byte table in storage
locations "1000-10PP. This table contains the
characters of the target code in the sequence of the
binary representation of the source code; that is,
the ASCII representation of a character is placed in
storage at the starting address of the table plus the
binary value of the EBCDIC representation of the

same character. Por simplicity, the example shows
only the part of the table containing the decimal
digits:

Translate Table for Decimal Digits:

10FO 10F9

1301311321331341351361371381391

Assume that the four-byte field at storage
location 2100 contains the EBCDIC code for the
digits 1984:
Locations 2100-2103 contain Fl F9 F8 F4.
Register 12 contains 00 00 21 00.
Register 15 contains 00 00 10 00.

As the instruction

Machine Format

Op Code L B1 Dl B2 D2

DC 03 C I 0001 F I 0001

Assembler Format

Op Code D1(L.B 1),D2(B2)

TR 0(4,12) ,O(15)

is executed, the binary value of each source byte is
added to the starting address of the table, and the
resulting address is used to fetch a target byte:

Table starting address:
First source byte:

Address of target byte:

1000
Fl

10Fl

After execution of the instruction:
Locations 2100-2103 contain 31 3938 34.

Thus, the ASCII code for the digits 1984 has
replaced the EBCDIC code in the four-byte field at
storage location 2100.

TRANSLATE AND TEST (TRT)
The TRANSLATE AND TEST instruction can be
used to scan a data field for characters with a
special meaning. To indicate which characters have
a special meaning, a table similar to the one used
for the TRANSLATE instruction is set up, except
that zeros in the table indicate characters without
any special meaning and nonzero values indicate
characters with a special meaning.

The translate-and-test table that follows has
been set up to distinguish alphameric characters (A

Appendix A. Number Representation and Instruction-Use Examples A-23

to Z and 0 to 9) from blanks, certain special
symbols, and all other characters which are
considered invalid. EBCDIC coding is assumed.
The 256-byte table is assumed stored at locations
2000-20FF.

o 1 234 5 6 7 8 9 ABC D E F

200

201

202

203

204

205

206

207

-

-

208

209_

20A

20B

20C

20D

20E

20F

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

04 40 40 40

14 40 40 40

24 28 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 00 00 00

40 00 00 00

40 40 00 00

00 00 00 00

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 08

40 40 40 40 40 40 40 18

40 40 40 40 40 40 40 2C

40 40 40 40 40 40 40 30

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

40 40 40 40 40 40 40 40

00 00 00 00 00 00 40 40

00 00 00 00 00 00 40 40

00 00 00 00 00 00 40 40

00 00 00 00 00 00 40 40

Note: I f the character codes in the
S'fa"tement being trans lated occupy a range
smaller than 00 through FF16. a table
of fewer than 256 bytes can be used.

Translate and Test Table

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 OC 10 40

lC 20 40 40

40 40 40 40

34 38 3C 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

40 40 40 40

The table entries for the alphameric characters in
EBCDIC are 00; thus, the letter A (code Cl)
corresponds to byte location 20C 1, which contains
00.

The 15 special symbols have nonzero entries
from 0416 to 3C16 in increments of 4. Thus, the
blank (code 40) has the entry 04 16, the period
(code 4B) has the entry 08 16, and so on.

All other table positions have the entry 4016 to
indicate an invalid character.

The table entries are chosen so that they may be
used to select one of a list of 16 words containing
addresses of different routines to be entered for
each special symbol or invalid character
encountered during the scan.

Assume that this list of 16 branch addresses is
stored at locations 3004-3043.

Starting at storage location CA80, there is the
following sequence of 2110 EBCDIC characters:
Locations CA80-CA94: UNPKbPROUT(9),WORD(5)

Also assume:
Register 1 contains 00 00 2F FF.
Register 2 contains 00 00 30 00.
Register 15 contains 00 00 20 00.

As the instruction

A-24 System/370 Principles of Operation

Machine Format

Op Code L B1 D1

DD 14
1 001 1 F 1 0001

Assembler Format

Op Code D1(L,B1),D2(B2)

TRT 1(21,1),0(15)

is executed, the value of the first argument byte,
the letter U, is added to the starting address of the
table to produce the address of the table entry to
be examined:

Table starting address
First argument byte (U)

Address of table entry

2000
E4

20E4

Because zeros were placed in storage location
20E4, no special action occurs. The operation
continues with the second and subsequent argument
bytes until it reaches the blank in location CA84.
When this symbol is reached, its value is added to
the starting address of the table, as usual:

Table starting address
Argument byte (blank)

2000
40

Address of table entry 2040

Because location 2040 contains a nonzero value,
the following actions occur:
1. The address of the argument byte, 00CA84, is

placed in the rightmost 24 bits of register 1.
2. The table entry, 04, is placed in the rightmost

eight bits of register 2, which now contains 00
003004.

3. Condition code 1 is set (scan not completed).

The TRANSLATE AND TEST instruction may
be followed by instructions to branch to the routine
at the address found at location 3004, which
corresponds to the blank character encountered in
the scan. When this routine is completed, program
control may return to the TRANSLATE AND
TEST instruction to continue the scan, except that
the length must first be adjusted for the characters
already scanned.

For this purpose, the TRANSLATE AND TEST
may be executed by the use of an EXECUTE
instruction, which supplies the length specification
from a general register. In this way, a complete
statement scan can be performed with a single

TRANSLATE AND TEST instruction repeated
over and over by means of EXECUTE, and without
modifying any instructions in storage. In the
example, after the first execution of TRANSLATE
AND TEST register 1 contains the address of the
last argument byte translated. It is then a simple
matter to subtract this address from the address of
the last argument byte (CA94) to produce a length
specification. This length minus one is placed in
the register that is referenced as the Rl field of the
EXECUTE instruction. (Note that the length code
in the machine format is one less than the total
number of bytes in the field.) The second-operand
address of the EXECUTE instruction points to the
TRANSLATE AND TEST instruction, which is the
same as illustrated above, except for the length (L)
which is set to zero.

UNPACK (UNPK)
Assume that storage locations 2501-2502 contain a
signed, packed-decimal number that is to be
unpacked and placed in storage locations
1000-1004. Also assume:
Register 12 contains 00 00 10 00.
Register 13 contains 00 00 25 00.
Storage locations 2501-2502 contain 12 3D.
The initial contents of storage locations 1000-1004 are not
significant.

After the instruction

Machine Format

Op Code

F3 4 C I 0001 D I 001 1

Assembler Format

Op Code Dl(Ll,Bl),D2(L2,B2)

UNPK 0(5,12),1(2,13)

is executed, the storage locations 1000-1004
contain PO PO PI P2 D3.

Decimal Instructions
(See Chapter 8.)

ADD DECIMAL (AP)
Assume that the signed, packed-decimal number at
storage locations 500-503 is to be added to the
signed, packed-decimal number at locations
2000-2002. Also assume:
Register 12 contains 00 00 20 00.
Register 13 contains 00 00 05 00.

Storage loca.tions 2000-2002 contain 38 46 OD (a negative
number).
Storage locations 500-503 contain 01 12 34 5C (a positive
number).

After the instruction

Machine Format

Op Code

FA 2 3 C I 0001 D I 0001

Assembler Format

Op Code Dl(Ll,Bl),D2(L2,B2)

AP 0(3,12),0(4,13)

is executed, the storage locations 2000-2002
contain 73 88 5C; condition code 2 is set to
indicate that the sum is positive. Note that:
1. Because the two numbers had different signs,

they were in effect subtracted.
2. Although the second operand is longer than the

first operand, no overflow interruption occurs
because the result can be entirely contained
within the first operand.

COMPARE DECIMAL (CP)
Assume that the signed, packed-decimal contents of
storage locations 700-703 are to be algebraically
compared with the signed, packed-decimal contents
of locations 500-502. Also assume:
Register 12 contains 00 00 06 00.
Register 13 contains 00 00 03 00.
Storage locations 700-703 contain 17 25 35 6D.
Storage locations 500-502 contain 72 14 2D.

After the instruction

Machine Format

Op Code Ll

F9 3 2 C I 100 I
Assembler Format

CP X'100'(4,12),X'200'(3,13)

is executed, condition code 1 is set, indicating that
the first operand (the contents of locations
700-703) is less than the second.

Appendix A. Number Representation and Instruction-Use Examples A-25

DIVIDE DECIMAL (DP)
Assume that the signed, packed-decimal number at
storage locations 2000-2004 (the dividend) is to be
divided by the signed, packed-decimal number at
locations 3000-3001 (the divisor). Also assume:
Register 12 contains 00 00 20 00.
Register 13 contains 00 00 30 00.
Storage locations 2000-2004 contain 01 23 45 67 8C.
Storage locations 3000-3001 contain 32 1D.

After the instruction

Machine Format

Op Code

FD 4 C I 0001 D I 0001

Assembler Format

Op Code Dl(Ll,Bl),D2(L2,B2)

DP 0(5,12),0(2,13)

is executed, the dividend is entirely replaced by the
signed quotient and remainder, as follows:

2000 2004

Locations 2000-2004

Quotient Remainder

Notes:
1. Because the dividend and divisor have different

signs, the quotient receives a negative sign.
2. The remainder receives the sign of the dividend

and the length of the divisor.
3. If an attempt were made to divide the dividend

by the one-byte field at location 3001, the
quotient would be too long to fit within the
four bytes allotted to it. A decimal-divide
exception would exist, causing a program
interruption.

EDIT (ED)
Before decimal data in the packed format can be
used in a printed report, digits and signs must be
converted to printable characters. Moreover,
punctuation marks, such as commas and decimal
points, may have to be inserted in appropriate
places. The highly flexible EDIT instruction
performs these functions in a single instruction
execution.

A-26 System/370 Principles of Operation

This example shows step-by-step one way that
the EDIT instruction can be used. The field to be
edited (the source) is four bytes long; it is edited
against a pattern 13 bytes long. The following
symbols are used:

Symbol Meaning

b (Hexadecimal 40) Blank character
((Hexadecimal 21) Significance starter
d (Hexadecimal 20) Digit selector

Assume that the source and pattern fields are:

Source

1200 1203

10215714216CI

L+
Pattern

1000 lOOC

14012012016BI2012112014BI20120140lC31D91

b d d d (d d d b C R

Execution of the instruction (assume that
register 12 contains 00 00 10 00)

Machine Format

Op Code L

DE OC C I 0001

Assembler Format

ED 0(13,12),X'200'(12)

alters the pattern field as follows:

Significance
Indicator Location

Pattern Digit (Before/After) Rule IOOO-IOOC

b off /off leave(I) bdd,d(d.ddbCR
d 0 off /off f i I I bbd,d(d.ddbCR
d 2 off/on(2) dig i t bb2,d(d.ddbCR

d
on/on leave same

5 on/on digit bb2,5(d.ddbCR
(7 on/on digit bb2,57d.ddbCR
d 4 on/on digit bb2,574.ddbCR

on/on leave same
d 2 on/on digit bb2,574.2dbCR
d 6+ on/off (3) digit bb2,574.26bCR
b of floff fill same
C off /off fill bb2,574.26bbR
R off /off fill bb2,574.26bbb

Notes:

1. This character is the fill byte.
2. First nonzero decimal source digit turns on significance

indicator.
3. Plus sign in the four rightmost bits of the byte turns

off significance indicator.

Thus, after the instruction is executed, the
pattern field contains the result as follows:

Pattern

1000 100C
140140lF216BIFSIF71F414BIF21F61401401401

b b 2 S 7 4 2 6 b b b

When printed, the new pattern field appears as:

2,574.26

The source field remains unchanged. Condition
code 2 is set because the number was greater than
zero.

If the number in the source field is changed to
00 00 02 6D, a negative number, and the original
pattern is used, the edited result this time is:

Pattern

1000 100e
140140140140140140lFOl4BIF21F6140lC31091

b b b b b b 0

This pattern field prints as:

0.26 CR

2 6 b C R

The significance starter forces the significance
indicator to the on state and hence causes the
decimal point to be preserved. Because the minus­
sign code has no effect on the significance

indicator, the characters CR are printed to show a
negative (credit) amount.

Condition code 1 is set (number less than zero).

EDIT AND MARK (EDMK)
The EDIT AND MARK instruction may be used, in
addition to the functions of EDIT, to insert a
currency symbol, such as a dollar sign, at the
appropriate position in the edited result. Assume
the same source in storage locations 1200-1203,
the same pattern in locations lOOO-lOOC, and the
same contents of general register 12 as for the
EDIT instruction above. The previous contents of
general register 1 are immaterial; a LOAD
ADDRESS instruction is used to set up the first
digit position that is forced to print if no significant
digits occur to the left.

The instructions
LA 1,6(0,12)

EDMK 0(13, 12),X'200'(12)

BCTR 1,0

MYI O(1),C'$'

Load address of forced
significant digit into GRl.
Leave address of first
significant digit in GR 1.
Subtract 1 from address in
GRl.
Store dollar sign and address
in GRl.

produce the following results for the two examples

Pattern

1000 100C
140lSBIF216BIFSIF71F414BIF21F614014014Ul

b $ 2 S 7 4 2 6 b b b

This pattern field prints as:

$2,574.26

Condition code 2 is set to indicate that the
number edited was greater than zero.

Pattern

1000 100C
140140140140140lSBIFOl4BIF21F6140lC31D91

b b b b b $ 0 2 6 b e R

This pattern field prints as:

$0.26 CR

Condition code 1 is set because the number is
less than zero.

Appendix A. Number Representation and Instruction-Use Examples A-27

MULTIPLY DECIMAL (MP)
Assume that the signed, packed-decimal number in
storage locations 1202-1204 (the multiplicand) is
to be multiplied by the signed, packed-decimal
number in locations 500-501 (the multiplier).

'202 1204

Multiplicand 1381461001

500 501

Multipl ier ~

Because the multiplier and multiplicand have a
total of eight significant digits, at least five bytes
must be reserved for the signed result. ZERO
AND ADD can be used to move the multiplicand
into a longer field. Assume:
Register 4 contains 00 00 12 00.
Register 6 contains 00 00 OS 00.

Then execution of the instruction

ZAP X'100'(5,4),2(3,4)

sets up a new multiplicand in storage locations
1300-1304:

1300 1304

Multiplicand (new) 1001001381461001

Now, after the instruction

Machine Format

Op Code

FC 4 4 1 100 1 6 1 0001

Assembler Format

Op Code 01(Ll,Bl),02(L2,B2)

MP X'100'(5,4),0(2,6)

is executed, storage locations 1300-1304 contain
the product: 01 23 45 66 OC.

SHIFT AND ROUND DECIMAL (SRP)
The SHIFT AND ROUND DECIMAL (SRP)
instruction can be used for shifting decimal
numbers in storage to the left or right. When a
number is shifted right, rounding can also be done.

A-28 System/370 Principles of Operation

Decimal Left Shift
In this example, the contents of storage location
FIELD 1 are shifted three places to the left,
effectively multiplying the contents of FIELD 1 by
1000. FIELD 1 is six bytes long. The following
instruction performs the operation:

Machine Format

FO 5 0 1****1

Assembler Format

Op Code Sl(Ll},S2,13

SRP FIEL01(6),3,0

o 1 003 1

FIEL01 (before): 00 01 23 45 67 8C
FIEL01 (after): 12 34 56 78 00 OC

The second-operand address in this instruction
specifies the shift amount (three places). The
rounding factor, 13, is not used in left shift, but it
must be a valid decimal digit. After execution,
condition code 2 is set to show that the result is
greater than zero.

Decimal Right Shift
In this example, the contents of storage location
FIELD2 are shifted one place to the right,
effectively dividing the contents of FIELD2 by 10
and discarding the remainder. FIELD2 is five
bytes in length. The following instruction performs
this operation:

Machine Format

Op Code

FO 4 o 1****1

01 11

HI: 1,
complement
for -1

Assembler Format

Op Code SI(Ll)'~2,13

SRP FIELD2(5),64-1,O

FIELD 2 (before): 01 23 45 67 8C
FIELD 2 (after): 00 12 34 56 7C

In the SRP instruction, shifts to the right are
specified in the second-operand address by negative
shift values, which are represented as a six-bit
value in two's complement form.

The six-bit two's complement of a number, n,
can be specified as 64 - n. In this example, a
right shift of one is represented as 64 - 1.

Condition code 2 is set.

Decimal Right Shift and Round
In this example, the contents of storage location
FIELD3 are shifted three places to the right and
rounded, effectively dividing by 1000 and rounding
to the nearest whole number. FIELD3 is four
bytes in length.

Machine Format

Op Code L1

FO 3 5 1****1

Assembler Format

Op Code SI(L 1),S2,1 3

SRP FIELD3(4),64-3,5

01 10

6-b;: ,L,
complement
for -3

FIELD 3 (before): 12 39 60 00
FIELD 3 (after): 00 01 24 00

The shift amount (three places) is specified in
the D2 field. The 13 field specifies the rounding
factor of 5. The rounding factor is added to the
last digit shifted out (which is a 6), and the carry is

propagated to the left. The sign is ignored during
the addition.

Condition code 1 is set because the result is less
than zero.

Multiplying by a Variable Power of 10
Since the shift value designated by the SRP
instruction specifies both the direction and amount
of the shift, the operation is equivalent to
multiplying the decimal first operand by 10 raised
to the power specified by the shift value.

If the shift value is variable, it may be specified
by the B2 field instead of the displacement D2 of
the SRP instruction. The general register
designated by B2 should contain the shift value
(power of 10) as a signed binary integer.

A fixed scale factor modifying the variable
power of 10 may be specified by using both the B2
field (variable part in a general register) and the D2
field (fixed part in the displacement).

The SRP instruction uses only the rightmost six
bits of the effective address D2(B2) and interprets
them as a six-bit signed binary integer to control
the left or right shift as in the previous two
examples.

ZERO AND ADD (ZAP)
Assume that the signed, packed-decimal number at
storage locations 4500-4502 is to be moved to
locations 4000-4004 with four leading zeros in the
result field. Also assume:
Register 9 contains 00 00 40 00.
Storage locations 4000-4004 contain 12 34 56 78 90.
Storage locations 4500-4502 contain 38 46 OD.

After the instruction

Machine Format

Op Code

F8 4 2 9 1 0001

Assembler Format

Op Code Dl(L 1,B 1),D2(L2,B2)

ZAP 0(5,9),X'500'(3,9)

9 1 500 1

is executed, the storage locations 4000-4004
contain 00 00 38 46 OD; condition code 1 is set to
indicate a negative result.

Note that, because the first operand is not
checked for valid sign and digit codes, it may
contain any combination of hexadecimal digits
before the operation.

Appendix A. Number Representation and Instruction-Use Examples A-29

Floating-Point Instructions
(See Chapter 9.)

In this section, the abbreviations FPRO, FPR2,
FPR4, and FPR6 stand for floating-point registers
0, 2, 4, and 6 respectively.

ADD NORMALIZED (AD, ADR, AE,
AER, AXR)
The ADD NORMALIZED instructions perform the
addition of two floating-point numbers and place
the normalized result in a floating-point register.
Neither of the two numbers to be added must
necessarily be normalized before addition occurs.
For example, assume that:
FPR6 contains C3 08 21 00 00 00 00 00 = -82.1 16 =
-130.0610 approximately (unnormalized).
Storage locations 2000-2007 contain 41 12 34 56 0000 00
00 == +1.2345616 - +1.1410 (normalized).
Register 13 contains 00 00 20 00.

The instruction

Machine Format

Op Code R1 X2 B2 D2

7A 6 0 D I 0001

Assembler Format

Op Code R1,D 2(X2 ,B2)

AE 6,0 (0, 13)

performs the short-precision addition of the two
operands, as follows.

The characteristics of the two numbers (43 and
41) are compared. Since the number in storage has
a characteristic that is smaller by 2, it is right­
shifted two hexadecimal digit positions. The two
numbers are then added:

GD 1
FPR6: -43 08 21 00
Shifted no. from storage: +43 00 12 34 5

Intermediate sum: -43 08 OE CB B

1Guard digit

Because the intermediate sum is un normalized, it is
left-shifted to form the normalized floating-point
number -42 SO EC BB = -SO.ECBB 16 = -12S.92.
Combining the sign with the characteristic, the
result is C2 SO EC BB, which replaces the left half
of FPR6. The right half of FPR6 and. the contents
of storage locations 2000-2007 are unchanged.

A-30 System/370 Principles of Operation

Condition code 1 is set to indicate a negative
result.

If the long-precision instruction AD is used, the
result in FPR6 is C2 SO EC BA AO 00 00 00.
Note that the long-precision instruction avoids a
loss of precision in this example.

ADD UNNORMALIZED (AU, AUR, AW,
AWR)
The ADD UNNORMALIZED instructions operate
identically to the ADD NORMALIZED
instructions, except that the final result is not
normalized. For example, using the the same
operands as in the example for ADD
NORMALIZED, when the short-precision
instruction

Machine Format

7E 6 0 ° I 0001

Assembler Format

Op Code R1,D2(X2,B2)

AU 6 ,0 (0, 13)

is executed, the two numbers are added as follows:

GD 1
FPR6: -43 08 21 00
Shifted no. from storage: +43 00 12 34 5

Sum: -43 08 OE CB B

1Guard digit

The guard digit participates in the addition but is
discarded. The unnormalized sum replaces the left
half of FPR6. Condition code 1 is set because the
result is negative.

The result in FPR6 (C3 OS OE CB 00 00 00 00)
shows a loss of a significant digit when compared
to the result of short-precision normalized addition.

COMPARE (CD, CDR, CE, CER)
Assume that FPR4 contains 43000000000000
00 (=0), and FPR6 contains 34 123456 7S 9A
Be DE (a positive number). The contents of the
two registers are to be compared using a long­
precision COMPARE instruction.

Machine Format

Op Code Rl ~2

29 4 6

Assembler Format

Op Code R1,R2

CDR 4,6

The number with the smaller characteristic,
which is the one in register FPR6, is right-shifted
15 hexadecimal digit positions so that the two
characteristics agree. The shifted contents of FPR6
are 43 00 00 00 00 00 00 00, with a guard digit of
zero. Therefore, when the two numbers are
compared, condition code 0 is set, indicating an
equality.

As the above example implies, when floating­
point numbers are compared, more than two
numbers may compare equal if one of the numbers
is unnormalized. For example, the unnormalized
floating-point number 41 00 12 34 56 78 9A BC
compares equal to all numbers of the form 3F 12
34 56 78 9A BC OX (X represents any hexadecimal
digit). When the COMPARE instruction is
executed, the two rightmost digits are shifted right
two places, the 0 becomes the guard digit, and the
X does not participate in the comparison.

However, when two normalized floating-point
numbers are compared, the relationship. between
numbers that compare equal is unique: each digit
in one number must be identical to the
corresponding digit in the other number.

Floating-Point-Number Conversion
The following examples illustrate one method of
converting between binary fixed-point numbers
(32-bit signed binary integers) and normalized
floating-point numbers. Conversion must provide
for the different representations used with negative
numbers: the two's-complement form for signed
binary integers, and the signed-absolute-value form
for the fractions of floating-point numbers.

Fixed Point to Floating Point
The method used here inverts the leftmost bit of
the signed binary integer which, after appending
additional zero bits on the left as necessary, is
equivalent to adding 231 to the number. This
changes it from a signed integer in the range
231 - 1 through _231 to an unsigned integer in the
range 232 - 1 through O. After conversion to the

long floating-point format, the value 231 is
subtracted again.

Assume that general register 9 (GR9) contains
the integer -59 in two's-complement form:

GR9 FF FF FF C5

Further, assume two eight-byte fields in storage:
TEMP, for use as temporary storage, and TW031,
which contains the floating-point constant 231 in
the following format:

TW031 4E 00 00 00 80 00 00 00

This is an unnormalized long floating-point
number with the characteristic 4E, which
corresponds to a radix point to the right of the
number.

The following instruction sequence performs the
conversion:

Result

X 9, TW031+4 GR9:
7F FF FF C5

ST 9,TEMP+4 TEMP:
7F FF FF C5

MVC TEMP(4),TW031 TEMP:
4E 00 00 00 7F FF FF C5

LO 2,TEMP FPR2:
4E 00 00 00 7F FF FF C5

SO 2,TW031 FPR2:
C2 3B 00 00 00 00 00 00

The EXCLUSIVE OR (X) instruction inverts
the leftmost bit in general register 9, using the right
half of the constant as the source for a leftmost one
bit. The next two instructions assemble the
modified number in an unnormalized long
floating-point format, using the left half of the
constant as the plus sign, the characteristic, and the
leading zeros of the fraction. LOAD (LD) places
the number unchanged in floating-point register 2.
The SUBTRACT NORMALIZED (SD) instruction
performs the final two steps by subtracting 231 in
floating-point form and normalizing the result.

Floating Point to Fixed Point
The procedure described here consists basically in
reversing the steps of the previous procedure. Two
additional considerations must be taken in account.
First: the floating-point number may not be an
exact integer. Truncating the excess hexadecimal
digits on the right requires shifting the number one
digit position farther to the right than desired for
the final result, so that the units digit occupies the
position of the guard digit. Second: the floating­
point number may have to be tested as to whether

Appendix A. Number Representation and Instruction-Use Examples A-31

it is outside the range of numbers representable as
a signed binary integer.

Assume that floating-point register 6 contains
the number 59.25 10 = 3B.416 in normalized form:

FPR6 42 3B 40 00 00 00 00 00

Further, assume three eight-byte fields in
storage: TEMP, for use as temporary storage, and
the constants 232 (TW032) and 231 (TW031R) in
the following formats:
TW032 4E 00 00 01 00 00 00 00
TW031R 4F 00 00 00 08 000000

The constant TW031R is shifted right one more
position than the constant TW031 of the previous
example, so as to force the units digit into the
guard-digit position.

The following instruction sequence performs the
integer truncation, range tests, and conversion to a
signed binary integer in general register 8 (GR8):

Result

SO 6,TW031R FPR6:
CS 7F FF FF C5 00 00 00

BC 11,OVERFLOW Branch to overflow
routine if result
nonnegative

AW 6,TW032 FPR6:
4E 00 00 00 SO 00 00 3B

BC 4,OVERFLOW Branch to overflow
routine if result
negative

STO 6,TEMP TEMP:
4E 00 00 00 SO 00 00 3B

XI TEMP+4,X'SO' TEMP:
4E 00 00 00 00 00 00 3B

L S,TEMP+4 GRS:
00 00 00 03

The SUBTRACT NORMALIZED (SO)
instruction shifts the fraction of the number to the
right until it lines up with TW031R, which causes
the fraction digit 4 to fall to the right of the guard
digit and be lost; the result of subtracting 231 from
the remaining digits is renormalized. The result
should be negative; if not, the original number was
too large in the positive direction. The first
BRANCH ON CONDITION (BC) performs this
test.

The ADD UNNORMALIZED (A W) instruction
adds 232: 231 to correct for the previous
subtraction and another 231 to change to an all­
positive range. The second BC tests for a negative
result, showing that the number was too large in
the negative direction. The unnormalized result is
placed in temporary storage by the STORE (STD)
instruction. There the leftmost bit of the binary

A-32 System/370 Principles of Operation

integer is inverted by the EXCLUSIVE OR (XI)
instruction before being loaded into GR8.

Multiprograml!liJ!g and
Multiprocessing Examples
When two or more programs sharing common
storage locations are running concurrently in a
multiprogramming or multiprocessing environment,
one program may, for example, set a flag bit in the
common-storage area for testing by another
program. Note that the instructions AND (NI or
NC), EXCLUSIVE OR (XI or XC), and OR (01
or OC) could be used to set flag bits in a
multiprogramming environment; but the same
instructions may cause program logic errors in a
multiprocessing system where two or more CPUs
can fetch, modify, and store data in the same
storage locations simultaneously.

Example of a Program Failure Using OR
Immediate
Assume that two independent programs try to set
different bits to one in a common byte in storage.
The following example shows how the use of the
instruction OR immediate (01) can fail to
accomplish this, if the programs are executed nearly
simultaneously on two different CPUs. One of the
possible error situations is depicted.

Execution of Execution of
Instruction Instruction
01 FLAGS,X '01' 01 FLAGS,X'SO'
on CPU A FLAGS on CPU B

X'OO' Fetch
FLAGS X'OO'

Fetch X'OO'
FLAGS X'OO'

X'OO' OR X·SO·
into X'OO'

OR x' a I' X'OO'
into X'OO'

X·SO· Store X'SO'
into FLAGS

Store X'Ol' X '01'
into FLAGS

FLAGS should have value of X'SI' follow-
ing both updates.

The problem shown here is that the value stored
by the 01 instruction executed on CPU A overlays
the value that was stored by CPU B. The X'80'
flag bit was erroneously turned off, and the date is
now invalid.

The COMPARE AND SWAP instruction has
been provided to overcome this and similar
problems.

COMPARE AND SWAP (CS, CDS)
The COMPARE AND SWAP (CS) and
COMPARE DOUBLE AND SWAP (CDS)
instructions can be used in multiprogramming or
multiprocessing environments to serialize access to
counters, flags, control words, and other common
storage areas.

The following examples of the use of the
COMPARE AND SWAP and COMPARE
DOUBLE AND SWAP instructions illustrate the
applications for which the instructions are intended.
It is important to note that these are examples of
functions that can be performed by programs
running enabled for interruption
(multiprogramming) or by programs that are
running on a multiprocessing configuration. That
is, the routine allows a program to modify the
coritents of a storage location while running
enabled, even though the routine may be
interrupted by another program on the same CPU
that will update the location, and even though the
possibility exists that another CPU may
simultaneously update the same location.

The CS instruction first checks the value of a
storage location and then modifies it only if the
value is what the program expects; normally this
would be a previously fetched value. If the value
in storage is not what the program expects, then
the location is not modified; instead, the current
value of the location is loaded into a general
register, in preparation for the program to loop
back and try again. During the execution of CS,
no other CPU can access the specified location.

Setting a Single Bit
The following instruction sequence shows how the
CS instruction can be used to set a single bit in
storage to one. Assume that FLAGS is the first
byte of a word in storage called "WORD."

LA 6,X'80'

SLL 6,24

L 7,WORD

RETRY LR 8,7

OR 8,6

Put bit to be ORed
into GR6

Shift left 24 places to
align the byte to be
ORed with the loca­
tion of FLAGS within
WORD

Get original flag bit
values

Put flags to be modi­
fied into GR8

Set bit to one in new
copy of flags

CS 7,8,WORD Store new flags unless
original flags were
changed

BC 4,RETRY If new flags are not
stored, try again

The format of the CS instruction is:

Machine Format

Op Code

BA 7 8 1****1
Assembler Format

Op Code R1,R3 ,S2

CS 7,8,WORD

The CS instruction compares the first operand
(general register 7 containing the original flag
values) to the second operand (WORD) while
storage access to the specified location is not
permitted to any CPU other than the one executing
the CS instruction.

If the comparison is successful, indicating that
FLAGS still has the same value that it originally
had, the modified copy in general register 8 is
stored into FLAGS. If FLAGS has changed since
it was loaded, the compare will not be successful,
and the current value of FLAGS is loaded into
general register 7.

The CS instruction sets condition code 0 to
indicate a successful compare and swap, and
condition code 1 to indicate an unsuccessful
compare and swap.

The program executing the sample instructions
tests the condition code following the CS
instruction and reexecutes the flag-modifying
instructions if the CS instruction indicated an
unsuccessful comparison. When the CS instruction
is successful, the program continues execution
outside the loop and FLAGS contains valid data.

The branch to RETRY will be taken only if
some other program modifies the update location.

Appendix A. Number Representation and Instruction-Use Examples A-33

This type of a loop differs from the typical "bit­
spin" loop. In a bit-spin loop, the program
continues to loop until the bit changes. In this
example, the program continues to loop only if the
value does change during each iteration. If a
number of CPUs simultaneously attempt to modify
a single location by using the sample instruction
sequence, one CPU will fall through on the first
try, another will loop once, and so on until all
CPUs have succeeded.

Updating Counters
In this example, a 32-bit counter is updated by a
program using the CS instruction to ensure that the
counter will be correctly updated. The original
value of the counter is obtained by loading the
word containing the counter into general register 7.
This value is moved into general register 8 to
provide a modifiable copy, and general register 6
(containing an increment to the counter) is added
to the modifiable copy to provide the updated
counter value. The CS instruction is used to ensure
valid storing of the counter.

The program updating the counter checks the
result by examining the condition code. The
condition code 0 indicates a successful update, and
the program can proceed. If the counter had been
changed between the time that the program loaded
its original value and the time that it executed the
CS instruction, the CS instruction would have
loaded the new counter value into general register
7 and set the condition code to 1, indicating an
unsuccessful update. The program then must
update the new counter value in general register 7
and retry the CS instruction, retesting the condition
code, and retrying until a successful update is
completed.

The following instruction sequence performs the
above procedure:

LA 6,1 Put increment (l) into
GR6

L 7,CNTR Put original counter
value into GR7

LOOP LR S,7 Set up copy in GRS to
modify

AR S,6 Increment copy
CS 7,8,CNTR Update counter in

storage
BC 4,LOOP If original value had

changed, update new
value

The following shows two CPUs, A and B,
executing this instruction sequence simultaneously:
both CPUs attempt to add one to CNTR.

A-34 System/370 Principles of Operation

CPU A CPU B
GR7 GRS CNTR GR'T"m{s Comments

16
16 16 CPU A loads GR7

and GRS from CNTR
16 16 CPU B loads GR7

and GRS from CNTR
17 CPU B adds one to

GRS
17 CPU A adds one to

GRS
17 CPU A executes CS;

successful match,
store

17 CPU B executes CS;
no match, GR7
changed to CNTR
value

lS CPU B loads GRS
from GR7, adds
one to GRS

lS CPU B executes CS;
successful match,
store

Bypassing POST A.ND W A.IT

BYPASS POST Routine
The following routine allows the SVC "POST" as
used in OS/VS to be bypassed whenever the
corresponding WAIT has not yet been issued,
provided that the supervisor WAIT and POST
routines use COMP ARB AND SWAP to
manipulate event control blocks (BCBs).

Initial conditions:
GRl contains the address of the ECD.
GRO contains the POST code.

HSPOST L 3,O(l}

LTR 3,3

BM PSVC

CS 3,O,O(1}

BE EXITHP
PSVC POST (l},(O)

EXITHP [Any instruction]

GR3= CONTENTS OF
ECB
ECB MARKED 'WAIT­
ING'?
YES, I SSUE POST
SVC
NO, STORE POST
CODE
CONTINUE
ECB ADDRESS IS IN
GR1, POST CODE IN
GRO

The following routine may be used in place of
the previous HSPOST routine if the BCB is
assumed to contain zeros when it is not marked
"WAITING."

HSPOST

EXITHP

SR
CS
BE
POST
[Any

3,3
3,0,0(1)
EXITHP
(1),(0)
instruction]

BYPASS WAIT Routine
A BYPASS WAIT function, corresponding to the
BYPASS POST, does not use the CS instruction,
but the FIFO LOCK/UNLOCK routines which
follow assume its use.

HSWA IT TM O(1),X'80'
BO EX ITHW IF HIGH-ORDER BIT IS

ONE, THEN ECB IS
ALREADY POSTED;
BRANCH TO EXIT

WAIT ECB=(l)
EX ITHW [AflY instruction]

LOCK/UNLOCK
When SRRs larger than a double word are to be
updated, it is usually necessary to provide special
interlocks to ensure that a single program at a time
updates the SRR. In general, updating a list, or
even scanning a list, cannot be safely accomplished
without first "freezing" the list. However, the
COMPARE AND SWAP instructions can be used
in certain restricted situations to perform queuing
and list manipulation. Of prime importance is the
capability to perform the lock/unlock functions and
to provide sufficient queuing to resolve contentions,
either in a LIFO or FIFO manner. The
lock/unlock functions can then be used as the
interlock mechanism for updating an SRR of any
complexity.

The lock/unlock functions are based on the use
of a "header" associated with the SRR. The
header is the common starting point for
determining the states of the SRR, either free or in
use, and also is used for queuing requests when
contentions occur. Contentions are resolved using
WAIT and POST. The general programming
technique requires that the program that encounters
a "locked" SRR must "leave a mark on the wall"
indicating the address of an ECB on which it will
WAIT. The program "unlocking" sees the mark
and posts the ECB, thus permitting the waiting
program to continue. In the two examples given,
all programs using a particular SRR must use either
the LIFO queuing scheme or the FIFO scheme; the
two cannot be mixed. When more complex queuing
is required, it is suggested that the queue for the
SRR be locked using one of the two methods
shown.

LOCK/UNLOCK with LIFO Queuing for
Contentions
The header consists of a word, which can contain
zero, a positive value, or a negative value.
• A zero value indicates that the SRR is free.
• A negative value indicates that the SRR is in use

but no additional programs are waiting for the
SRR.

• A positive value indicates that the SRR is in use
and that one or more additional programs are
waiting for the SRR. Each waiting program is
identified by an element in a chained list. The
positive value in the header is the address of the
element most recently added to the list.

Each element consists of two words. The first
word is used as an ECB; the second word is used as
a pointer to the next element in the list. A
negative value in a pointer indicates that the
element is the last element in the list. The element
is required only if the program finds the SRR
locked and desires to be placed in the list.

The following chart describes the action taken
for LIFO LOCK and LIFO UNLOCK routines:

Act i on

Header Contains Header Contains Header Contains
Function Zero Positive Value Negative Value

LIFO LOCK SRR is free. SRR is in use. Store the
(the incoming Set the header contents of the header into
element is at to a negative location A+4. Store address A
locat ion A) value. Use the into the header. WAIT; the

SRR. ECB is at location A.

LIFO UNLOCK Error Someone is The list is
waiting for the empty. Store
SRR. Move the zeros into the
pointer from header. The SRR
the "last in" Is free.
element into
the header.
POST; the ECa
is in the "last
in " element.

The following routines allow enabled code to
perform the actions described in the previous chart.
LIFO LOCK Routine:
Initial conditions:
GRI contains the address of the incoming element.
GR2 contains the address of the header.

Appendix A. Number Representation and Instruction-Use Examples A-35

LLOCK SR 3,3 GR3=0
ST 3,0(1) INITIALIZE THE ECB
LNR 0, 1 GRO=A NEGATIVE VALUE

TRYAGN CS 3,0,0(2) SET THE HEADER TO A
NEGATIVE VALUE IF
THE HEADER CONTAINS
ZEROS

BE USE DID THE HEADER CON-
TAIN ZEROS?

ST 3,4(1) NO, STORE THE VALUE
OF THE HEADER INTO
THE POINTER IN THE
INCOMING ELEMENT

CS 3,1,0(2) STORE THE ADDRESS OF
THE INCOMING ELEMENT
INTO THE HEADER

LA 3,0(0) GR3=0
BNE TRYAGN DID THE HEADER GET

UPDATED?
WAIT ECB=(l) YES, WAIT FOR THE

RESOURCE;
THE ECB IS IN THE IN-
COMING ELEMENT

USE [Any instruction]

LIFO UNLOCK Routine:
Initial conditions:
GR2 contains the address of the header.

LUNLK L 1,0(2) GR1=THE CONTENTS OF
THE HEADER

A LTR 1 , 1 DOES THE HEADER CON-
TAIN A NEGATIVE

BM B VALUE?
L 0,4(1) NO, LOAD THE POINTER
CS 1,0,0(2) FROM THE "LAST IN"

ELEMENT AND STORE
IT IN THE HEADER

BNE A DID THE HEADER GET
UPDATED?

POST (1) YES, POST THE "LAST
IN" ELEMENT

B EXIT CONTINUE
B SR 0,0 THE HEADER CONTAINS A

CS 1,0,0(2) NEGATIVE VALUE; FREE
THE HEADER AND

BNE A CONTINUE
EXIT [Any instruction]

Note that the L 1,0(2) instruction at location
LUNLK would have to be CS 1,1,0(2) if it were
not for the rule that a full word fetch starting on a
word boundary must fetch the· word such that if
another CPU changes the word being fetched,
either the entire new or the entire old value of the
word, and not a combination of the two, is
obtained.

A-36 System/370 Principles of Operation

LOCK/UNLOCK with FIFO Queuing for
Contentions
The header always contains the address of the most
recently entered element. The header is originally ,..,
initialized to contain the address of a posted ECB.
Each program using the SRR must provide an
element regardless of whether contention occurs.
Each program then enters the address of the
element which it has provided into the header,
while simultaneously it removes the address
previously contained in the header. Thus,
associated with any particular program attempting
to use the SRR are two elements, called the
"entered element" and the "removed element."
The "entered element" of one program becomes
the "removed element" for the immediately
following program. Each program then waits on
the removed element, uses the SRR, and then posts
the entered element.

When no contention occurs, that is, when the
second program does not attempt to use the SRR
until after the first program is finished, then the
POST of the first program occurs before the WAIT
of the second program. In this case, the bypass­
post and bypass-wait routines described in the
preceding section are applicable. For simplicity,
these two routines are shown only by name rather
than as individual instructions.

In the example, the element need be only a
single word, that is, an ECB. However, in actual
practice, the element could be made larger to
include a pointer to the previous element, along
with a program identification. Such information
would be useful in an error situation to permit
starting with the header and chaining through the
list of elements to find the program currently
holding the SRR.

It should be noted that the element provided by
the program remains pointed to by the header until
the next program attempts to lock. Thus, in
general, the entered element cannot be reused by
the program. However, the removed element is
available, so each program gives up one element
and gains a new one. It is expected that the
element removed by a particular program during
one use of the SRR would then be used by that
program as the entry element for the next request
to the SRR.

It should be noted that, since the elements are
exchanged from one program to the next, the
elements cannot be allocated from storage that
would be freed and reused when the program ends.
It is expected that a program would obtain its first
element and release its last element by means of
the routines described in the section "Free-Pool

Manipulation" in this appendix.
The following chart describes the action taken

for FIFO LOCK and FIFO UNLOCK.

Function Action

FIFO LOCK Store address A
into the header.

(the incoming ele- WAIT; the ECB is at
ment is at location the location addres-
A) sed by the old con-

tents of the header.

FIFO UNLOCK POST; the ECB is at
location A.

The following routines allow enabled code to
perform the actions described in the previous chart.

FIFO LOCK Routine:
Initial conditions:
GR3 contains the address of the header.
GR4 contains the address, A, of the element currently
owned by this program. This element becomes the entered
element.

FLOCK LR 2,4 GR2 NOW CONTAINS
ADDRESS OF ELEMENT
TO BE ENTERED

SR 1 , 1 GR1=ZERO
ST 1,0(2) INITIALIZE THE ECB
L 1,0(3) GR1=CONTENTS OF

THE HEADER
TRYAGN CS 1,2,0(3) ENTER ADDRESS A

INTO HEADER WHILE
BNE TRYAGN REMEMBERING OLD

CONTENTS OF
HEADER IN GRI
GRI NOW CONTAINS
ADDRESS OF
REMOVED ELEMENT

LR 4,1 REMOVED ELEMENT
BECOMES NEW CUR-
RENTLY OWNED
ELEMENT

HSWAIT PERFORM BYPASS-
WAIT ROUTINE; IF
ECB ALREADY
POSTED, CONTINUE;
IF NOT, WAIT; GRI
CONTAINS THE AD-
DRESS OF THE ECB

USE [Any instruction] THE SRR MAY NOW BE
USED

FIFO UNLOCK Routine:
Initial conditions:
GR2 contains the address of the removed element,
obtained during the FLOCK routine.

FUNLK LR 1,2 PLACE ADDRESS OF EN­
TERED ELEMENT IN GR1;
GR1=ADDRESS OF ECB TO
BE POSTED

SR 0,0 GRO=O; GRO HAS A POST
CODE OF ZERO

HSPOST PERFORM BYPASS-POST
ROUTINE; IF ECB HAS
NOT BEEN WAITED ON,
THEN MARK POSTED AND
CONTINUE; IF IT HAS
BEEN WAITED ON, THEN
POST

CONTINUE [Any instruction]

Free-Pool Manipulation
It is anticipated that a program will need to add
and delete items from a free list without using the
lock/unlock routines. This is especially likely since
the lock/unlock routines require storage elements
for queuing and may require working storage. The
lock/unlock routines discussed previously allow
simultaneous lock routines but permit only one
unlock routine at a time. In such a situation,
mUltiple additions and a single deletion to the list
may all occur simultaneously, but multiple deletions
cannot occur at the same time. In the case of a
chain of pointers containing free storage buffers,
multiple deletions along with additions can occur
simultaneously. In this case, the removal cannot be
done using the CS instruction without a certain
degree of exposure.

Consider a chained list of the type used in the
LIFO lock/unlock example. Assume that the first
two elements are at locations A and B, respectively.
If one program attempted to remove the first
element and was interrupted between the fourth
and fifth instructions of the LUNLK routine, the
list could be changed so that elements A and Care
the first two elements when the interrupted
program resumes execution. The CS instruction
would then succeed in storing the value B into the
header, thereby destroying the list.

The probability of the occurrence of such list
destruction can be reduced to near zero by
appending to the header a counter that indicates
the number of times elements have been added to
the list. The use of a 32-bit counter guarantees
that the list will not be destroyed unless the
following events occur, in the exact sequence:
1. An unlock routine is interrupted between the

fetch of the pointer from the first element and
the update of the header.

2. The list is manipulated, including the deletion
of the element referenced in 1, and exactly
23L1 additions to the list are performed. Note

Appendix A. Number Representation and Instruction-Use Examples A-37

that this takes on the order of days to perform in
any practical situation.
3. The element referenced in 1 is added to the

list.
4. The unlock routine interrupted in 1 resumes

execution.

The following routines use such a counter in
order to allow multiple, simultaneous additions and
removals at the head of a chain of pointers.

The list consists of a doubleword header and a
chain of elements. The first word of the header
contains a pointer to the first element in the list.
The second word of the header contains a 32-bit
counter indicating the number of additions that
have been made to the list. Each element contains
a pointer to the next element in the list. A zero
value indicates the end of the list.

The following chart describes the free-pool-list
manipulation:

Action

Function Header=O,Count Header=A,Count

ADD TO LI ST Store the first word of the header into
(the incoming location A. Store the address A into the
element is at first word of the header. Decrement the
location A) second word of the header by one.

DELETE FROM The list is empty. Set the first word of the
LIST header to the value of

the contents of location
A. Use element A.

The following routines allow enabled code to
perform the free-pool-list manipulation described in
the above chart.

ADD TO FREE LIST Routine:
Initial conditions:
GR2 contains the address of the element to be added.
GR4 contains the address of the header.

A-38 System/370 Principles of Operation

ADDQ LM 0,1,0(4) GRO,GR1=CONTENTS OF
THE HEADER

TRYAGN ST 0,0(2) POINT THE NEW ELEMENT
TO THE TOP OF THE LIST

LR 3, 1 MOVE THE COUNT TO GR3
BCTR 3,0 DECREMENT THE COUNT
CDS 0,2,0(4) UPDATE THE HEADER
BNE TRYAGN

DELETE FROM FREE LIST Routine:
Initial conditions:

GR4 contains the address of the header.

DELETQ LM 2,3,0(4) GR2,GR3=CONTENTS
OF THE HEADER

TRYAGN LTR 2,2 IS THE LIST EMPTY?
BZ EMPTY YES, GET HELP
L 0,0(2) NO·, GRO=THE

POINTER FROM THE
FIRST ELEMENT

LR 1,3 MOVE THE COUNT TO
GR1

CDS 2,0,0(4) UPDATE THE HEADER
BNE TRYAGN

USE [Any instruction] THE ADDRESS OF THE
REMOVED ELEMENT IS
IN GR2

Note that the LM instructions at locations ADDQ
and DELETQ would have to be CDS instructions if
it were not for the rule that a doubleword fetch
starting on a doubleword boundary must fetch the
doubleword such that if another CPU changes the
doubleword being fetched, either the entire new or
the entire old value of the doubleword, and not a
combination of the two, is obtained.

Appendix B. Lists of Instructions

The following four figures list instructions arranged
by name, mnemonic, operation code, and feature.
Some models may offer instructions that do not
appear in the figures, such as those provided for
emulation or as part of special or custom features.

The operation code 00 with a two-byte
instruction format is allocated for use by the
program when an indication of an invalid operation
is required. It is improbable that this operation
code will ever be assigned to an instruction
implemented in the CPU.

Explanation of Symbols in "Characteristics" and
flOp Code" Columns
A Access exceptions for logical addresses
A 1 Access exceptions; not all access

exceptions may occur; see instruction
description for details

B PER branch event
C Condition code is set
CK CPU-timer and clock-comparator feature
CS Channel-set-switching feature
D Data exception
DC Direct-control feature
DF Decimal-overflow exception
DK Decimal-divide exception
DM Depending on the model, DIAGNOSE

may generate various program exceptions
and may change the condition code

EF Extended facility
EO Exponent-overflow exception
EU Exponent-underflow exception
EX Execute exception
FK Floating-point-divide exception
FP Floating-point feature
IF Fixed-point-overflow exception

II
IK
L
LS
MI
MO
MP
P
PK
R
RE
RR
RRE
RS
RX
S
SD

SI
SO
SP
SS
SSE
ST
SW
TR
XP
$
$1

•

Interruptible instruction
Fixed-point-divide exception
New condition code loaded
Significance exception
Move-inverse feature
Monitor event
Multiprocessing feature
Privileged -operation
PSW-key-handling feature
PER general-register-alteration event
Recovery-extension feature
RR instruction format
RRE instruction format
RS instruction format
RX instruction format
S instruction format
PER storage-alteration event, which can
be caused by RDD only when IPTE is not
installed
SI instruction format
Special-operation exception
Specification exception
SS instruction format
SSE instruction format
PER storage-alteration event
Conditional-swapping feature
Translation feature
Extended-precision floating-point feature
Causes serialization
Causes serialization when the M 1 and R2
fields contain all ones and all zeros,
respectively
Bits 8-14 of the operation code are
ignored

Appendix B. Lists of Instructions B-1

Mne- Op Page
Name monic Characteristics Code No.

ADD AR RR C IF R 1A 7-4
ADD A RX C A IF R 5A 7-4
ADD DECIMAL AP SS C A D DF ST FA 8-4
ADD HALFWORD AH RX C A IF R 4A 7-4
ADD LOGICAL ALR RR C R IE 7-4

ADD LOGICAL AL RX C A R 5E 7-4
ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36 9-5
ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 2A 9-5
ADD NORMALIZED (long) AD RX C FP A SP EU EO LS 6A 9-5
ADD NORMALIZED (short) AER RR C FP SP EU EO LS 3A 9-5

ADD NORMALIZED (short) AE RX C FP A SP EU EO LS 7A 9-5
ADD UNNORMALIZED (long) AWR RR C FP SP EO LS 2E 9-7
ADD UNNORMALIZED (long) AW RX C FP A SP EO LS 6E 9-7
ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 3E 9-7
ADD UNNORMALIZED (short) AU RX C FP A SP EO LS 7E 9-7

AND NR RR C R 14 7-7
AND N RX C A R 54 7-7
AND (character) NC SS C A ST D4 7-7
AND (immediate) NI SI C A ST 94 7-7
BRANCH AND LINK BALR RR B R 05 7-7

BRANCH AND LINK BAL RX B R 45 7-7
BRANCH ON CONDITION BCR RR $1 B 07 7-8
BRANCH ON CONDITION BC RX B 47 7-8

BRANCH ON COUNT BCTR RR B R 06 7-9
BRANCH ON COUNT BCT RX B R 46 7-9
BRANCH ON INDEX HIGH BXH RS B R 86 7-9
BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87 7-9
CLEAR CHANNEL CLRCH S C RE P $ 9F01* 12-15

CLEAR I/O CLRIO S C P $ 9D01* 12-15
COMPARE CR RR C 19 7-10
COMPARE C RX C A 59 7-10
COMPARE (long) CDR RR C FP SP 29 9-7
COMPARE (long) CD RX C FP A SP 69 9-7

COMPARE (short) CER RR C FP SP 39 9-7
COMPARE (short) CE RX C FP A SP 79 9-7
COMPARE AND SWAP CS RS C SW A SP $ R ST BA 7-10
COMPARE DECIMAL CP SS C A D F9 8-4
COMPARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST BB 7-10

COMPARE HALFWORD CH RX C A 49 7-12
COMPARE LOGICAL CLR RR C 15 7-12
COMPARE LOGICAL CL RX C A 55 7-12
COMPARE LOGICAL (character) CLC SS C A D5 7-12
COMPARE LOGICAL (immediate) CLI SI C A 95 7-12

COMPARE lOGICAL CHARACTERS UNDER MASK ClM RS C A BD 7-12
COMPARE LOGICAL LONG CLCl RR C A SP II R OF 7-13
CONNECT CHANNEL SET CONCS S C CS P B200 10-3
CONVERT TO BINARY CVB RX A D IK R 4F 7-14
CONVERT TO DECIMAL CVD RX A ST 4E 7-14

DIAGNOSE DM P DM 83 10-3
DISCONNECT CHANNEL SET DISCS S C CS P B201 10-4
DIVIDE DR RR SP IK R lD 7-15
DIVIDE D RX A SP IK R 5D 7-15
DIVIDE (long) DDR RR FP SP EU EO FK 2D 9-8

DIVIDE (long) DO RX FP A SP EU EO FK 6D 9-8
DIVIDE (short) DER RR FP SP EU EO FK 3D 9-8
DIVIDE (short) DE RX FP A SP EU EO FK 7D 9-8
DIVIDE DECIMAL DP SS A SP 0 OK ST FD 8-5
EDIT ED SS C A 0 ST DE 8-5

EDIT AND MARK EDMK SS C A D R ST OF 8-9
EXCLUSIVE OR XR RR C R 17 7-15
EXCLUSIVE OR X RX C A R 57 7-15
EXCLUSIVE OR (character) XC SS C A ST 07 7-15
EXCLUSIVE OR (immediate) XI SI C A ST 97 7-15

Instructions Arranged by Name (Part 1 of 3)

B-2 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

EXECUTE EX RX A SP EX 44 7-16
HALT DEVICE HDV S C P $ 9E01* 12-17
HALT I/O HIO S C P $ 9EOO* 12-20
HALVE (long) HDR RR FP SP EU 24 9-9
HALVE (shortl HER RR FP SP EU 34 9-9

INSERT CHARACTER IC RX A R 43 7-17
INSERT CHARACTERS UNDER MASK ICM RS C A R BF 7-17
INSERT PSW KEY I PK S PK P R B20B 10-4
INSERT STORAGE KEY ISK RR P Al SP R 09 10-4
I NVALI DATE PAGE TABLE ENTRY I PTE RRE EF P Al $ 8221 10-5

LOAD LR RR R 18 7-17
LOAD L RX A R 58 7-17
LOAD (long) LDR RR FP SP 28 9-9
LOAD (long) LD RX FP A SP 68 9-9
LOAD (short) LER RR FP SP 38 9-9

LOAD (short) LE RX FP A SP 78 9-9
LOAD ADDRESS LA RX R 41 7-18
LOAD AND TEST LTR RR C R 12 7-18
LOAD AND TEST (long) LTDR RR C FP SP 22 9-10
LOAD AND TEST (shor tl LTER RR C FP SP 32 9-10

LOAD COMPLEMENT LCR RR C IF R 13 7-18
LOAD C0I1PLEMENT (long) LCDR RR C FP SP 23 9-10
LOAD COMPLEMENT (short) LCER RR C FP SP 33 9-10
LOAD CONTROL LCTL RS P A SP B7 10-6
LOAD HALFWORD LH RX A R 48 7-19

LOAD MULTIPLE LM RS A R 98 7-19
LOAD NEGATIVE LNR RR C R 11 7-19
LOAD NEGATIVE (long) LNDR RR C FP SP 21 9-11
LOAD NEGATIVE (short) LNER RR C FP SP 31 9-11
LOAD POS I TI VE LPR RR C IF R 10 7-19

LOAD POSITIVE (long) LPDR RR C FP SP 20 9-11
LOAD POSITIVE (short) LPER RR C FP SP 30 9-11
LOAD PSW LPSW S L P ~1 SP $ 82 10-6
LOAD REAL ADDRESS LRA RX C TR P R Bl 10-7
LOAD ROUNDED (extended to long) LRDR RR XP SP EO 25 9-11

LOAD ROUNDED (long to short) LRER RR XP SP EO 35 9-11
MONITOR CALL MC 51 SP MO AF 7-20
MOVE (character) MVC 55 A ST D2 7-20
MOVE (immediate) MVI SI A ST 92 7-20
MOVE INVERSE MVCIN SS MI A ST E8 7-21

MOVE LONG MVCL RR C A SP II R ST OE 7-21
MOVE NUMERICS MVN SS A ST Dl 7-24
MOVE WITH OFFSET MVO 55 A ST F 1 7-24
MOVE ZONES MVZ 55 A ST 03 7-25
MULTIPLY MR RR SP R 1 C 7-25

MULTIPLY M RX A SP R 5C 7-25
MULTIPLY (extended) MXR RR XP SP EU EO 26 9-12
MULTIPLY (long to extended) MXDR RR XP SP EU EO 27 9-12
MULTIPLY (long. to extended) MXD RX XP A SP EU EO 67 9-12
MULTIPLY (long) MDR RR FP SP EU EO 2C 9-12

MULTIPLY (long) MD RX FP A SP EU EO 6C 9-12
MUL TI PLY (short to long) MER RR FP SP EU EO 3C 9-12
MULTIPLY (short to long) ME RX FP A SP EU EO 7C 9-12
MULTIPLY DECIMAL MP 55 A SP D ST FC 8-9
MULTIPLY HALFWORD MH RX A R 4C 7-26

OR OR RR C R 16 7-26
OR 0 RX C A R 56 7-26
OR (character) OC 55 C A ST D6 7-26
OR (immediate) 01 SI C A ST 96 7-26
PACK PACK 55 A ST F2 7-27

PURGE TLB pnB S TR P
Al

$ B20D 10-7
READ DIRECT RDD 51 DC P $ SD 85 10-8
RESET REFERENCE BIT RR6 S C TR P Al 6213 10-8
SET CLOCK SCK S C P A SP 6204 10-9
SET CLOCK COMPARAIUR SCKC S CK P A SP B206 10-9

Instructions Arranged by Name (Part 2 of 3)

Appendix B. Lists of Instructions B-3

Mne- Op Pa!;1e
Name monic Characteristics Code No.

SET CPU TIMER SPT S CK P A SP B208 10-10
SET PREFIX SPX S MP P A SP $ B210 10-10
SET PROGRAM MASK SPM RR L 04 7-27
SET PSW KEY FROM ADDRESS SPKA S PK P B20A 10-11
SET STORAGE KEY SSK RR P Al SP $ 08 10-11

SET SYSTEM MASK SSM S P A SP SO 80 10-12
SHIFT AND ROUND DECIMAL SRP SS C A 0 OF ST FO 8-10
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F 7-28
SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 80 7-28
SHIFT LEFT SINGLE SLA RS C IF R 8B 7-28

SH I FT LEFT SINGLE LOGICAL SLL RS R 89 7-29
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E 7-29
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C 7-29
SHIFT RIGHT SINGLE SRA RS C R 8A 7-30
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88 7-30

SIGNAL PROCESSOR SIGP RS C MP P $ R AE 10-12
START I/O 510 S C P $ 9COO* 12-21
START I/O FAST RELEASE SIOF S C P $ 9C01* 12-21
STORE ST RX A ST 50 7-30
STORE (long) STD RX FP A SP ST 60 9-13

STORE (short) STE RX FP A SP 5T 70 9-13
STORE CHANNEL ID STIDC S C P $ B203 12-24
STORE CHARACTER STC RX A 5T 42 7-31
STORE CHARACTERS UNDER MA5K STCM RS A 5T BE 7-31
STORE CLOCK 5TCK S C A $ ST B205 7-31

STORE CLOCK COMPARATOR STCKC S CK P A SP ST B207 10-13
STORE CONTROL STCn RS P A SP ST B6 10-13
STORE CPU ADDRESS STAP S MP P A SP ST B212 10-14
STORE CPU 10 STIDP S P A SP ST B202 10-14
STORE CPU TIMER STPT S CK P A SP ST B209 10-15

STORE HALFWORD STH RX A ST 40 7-32
STORE MULTIPLE STM RS A ST 90 7-32
STORE PREFIX STPX S MP P A SP 5T B211 10-15
STORE THEN AND SYSTEM MASK STNSM SI TR P A ST AC 10-15

STORE THEN OR SYSTEM MASK STOSM SI TR P A SP ST AD 10-16
SUBTRACT SR RR C IF R lB 7-32
SUBTRACT S RX C A IF R 5B 7-32
SUBTRACT DECIMAL SP SS C A 0 OF ST FB 8-10
SUBTRACT HALFWORD SH RX C A IF R 4B 7-33

SUBTRACT LOGICAL SLR RR C R IF 7-33
SUBTRACT LOGICAL SL RX C A R 5F 7-33
SUBTRACT NORMALIZED (extended) SXR RR C XP SP EU EO LS 37 9-13
SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 2B 9-13
SUBTRACT NORMALIZED (long) SO RX C FP A SP EU EO LS 6B 9-13

SUBTRACT NORMALIZED (short) SER RR C FP SP EU EO LS 3B 9-13
SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 7B 9-13
SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 2F 9-14
SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 6F 9-14
SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 3F 9-14

SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 7F 9-14
SUPERVISOR CALL SVC RR $ OA 7-34
TEST AND SET TS S C A $ ST 93 7-34
TEST CHANNEL TCH S C P $ 9FOO* 12-25

TEST I/O TIO S C P $ 9000* 12-25
TEST PROTECTION TPROT SSE C EF P Al E501 10-16
TEST UNDER MASK TM SI C A 91 7-34
TRANSLATE TR SS A ST DC 7-35
TRANSLATE AND TEST TRT SS C A R DO 7-36

UNPACK UNPK SS A 5T F3 7-36
WRITE DIRECT WRD SI DC P Al $ 84 10-17
ZERO AND ADD ZAP S5 C A 0 OF ST F8 8-11

Instructions Arranged by Name (Part 3 of 3)

B-4 System/370 Principles of Operation

Mne- Op Page
monic Name CharacteristiCs Code No.

DIAGNOSE DM P DM 83 10-3
A ADD RX C A IF R 5A 7-4
AD ADD NORMALIZED (long) RX C FP A SP EU EO LS 6A 9-5
ADR ADD NORMALI ZED (long) RR C FP SP EU EO L5 2A 9-5

AE ADD NORMALIZED (short) RX C FP A SP EU EO L5 7A 9-5
AER ADD NORMALIZED (short) RR C FP SP EU EO L5 3A 9-5
AH ADD HAlFWORD RX C A IF R 4A 7-4
AL ADD lOGICAL RX C A R 5E 7-4
ALR ADD lOGICAL RR C R IE 7-4

AP ADD DECIMAL S5 C A D DF 5T FA 8-4
AR ADD RR C IF R lA 7-4
AU ADD UNNORMALIZED (short) RX C FP A SP EO L5 7E 9-7
AUR ADD UNNORMALIZED (short) RR C FP 5P EO L5 3E 9-7
AW ADD UNNORMALIZED (long) RX C FP A 5P EO L5 6E 9-7

AWR ADD UNNORMALIZED (long) RR C FP 5P EO L5 2E 9-7
AXR ADD NORMALIZED (extended) RR C XP SP EU EO L5 36 9-5
BAl BMNCH AND LINK RX B R 45 7-7
BAlR BRANCH AND LINK RR B R 05 7-7

BC BRANCH ON CONDITION RX B 47 7-8
BCR BRANCH ON COND IT ION RR $1 B 07 7-8
BCT BRANCH ON COUNT RX B R 46 7-9
BCTR BRANCH ON COUNT RR B R 06 7-9

BXH BRANCH ON INDEX HIGH RS B R 86 7-9
BXlE BRANCH ON INDEX lOW OR EQUAL RS B R 87 7-9
C COMPARE RX C A 59 7-10
CD COMPARE (long) RX C FP A SP 69 9-7
CDR COMPARE (long) RR C FP SP 29 9-7

CDS COMPARE DOUBLE AND SWAP RS C SW A SP $ R ST BB 7-10
CE COMPARE (short) RX C FP A SP 79 9-7
CER COMPARE (short) RR C FP SP 39 9-7
CH COMPARE HAlFWORD RX C A 49 7-12
Cl COMPARE LOGICAL RX C A 55 7-12

ClC COMPARE LOGICAL (character) 55 C A D5 7-12
ClCl COMPARE LOGICAL LONG RR C A SP II R OF 7-13
Cli COMPARE LOGICAL (immediate) SI C A 95 7-12
ClM COMPARE LOGICAL CHARACTERS UNDER MASK RS C A BD 7-12
ClR COMPARE LOGICAL RR C 15 7-12

ClRCH CLEAR CHANNEL S C RE P $ 9F01* 12-15
ClRIO CLEAR I/O S C P $ 9D01* 12-15
CONCS CONNECT CHANNEL SET S C CS P B200 10-3
CP COMPARE DECIMAL 55 C A D F9 8-4
CR COMPARE RR C 19 7-10

CS COMPARE AND SWAP R5 C SW A SP $ R 5T BA 7-10
CVB CONVERT TO BINARY RX A 0 IK R 4F 7-14
CVD CONVERT TO DECIMAL RX A ST 4E 7-14
0 DIVIDE RX A SP IK R 5D 7-15
DD DIVIDE (long) RX FP A 5P EU EO FK 60 9-8

DDR DIVIDE (long) RR FP SP EU EO FK 2D 9-8
DE DIVIDE (short) RX FP A SP EU EO FK 7D 9-8
DER DIVIDE (short) RR FP SP EU EO FK 3D 9-8
DISCS DISCONNECT CHANNEL SET S C C5 P B201 10-4
DP DIVIDE DECIMAL SS A 5P D DK ST FD 8-5

DR DIVIDE RR 5P IK R 1 D 7-15
ED EDIT SS C A D ST DE 8-5
EDMK EDIT AND MARK S5 C A D R ST DF 8-9
EX EXECUTE RX A 5P EX 44 7-16
HDR HALVE (long) RR FP 5P EU 24 9-9

HDV HALT DEVICE S C P $ 9E01* 12-17
HER HALVE (short) RR FP SP EU 34 9-9
HIO HALT I/O S C P $ 9EOO* 12-20
IC INSERT CHARACTER RX A R 43 7-17
ICM INSERT CHARACTERS UNDER MASK R5 C A R BF 7-17

Instructions Arranged by Mnemonic (Part 1 of 3)

Appendix B. Lists of Instructions B-5

Mne- Op Page
monic Name Characteristics Code No.

IPK INSERT PSW KEY S PK P R B20B 10-4
I PTE INVALIDATE PAGE TABLE ENTRY RRE EF P Al $ B221 10-5
ISK INSERT STORAGE KEY RR P Al SP R 09 10-4
L LOAD RX A R 58 7-17
LA LOAD ADDRESS RX R 41 7-18

LCDR LOAD COMPLEMENT (long) RR C FP SP 23 9-10
LCER LOAD COMPLEMENT (short) RR C FP SP 33 9-10
LCR LOAD COMPLEMENT RR C IF R 13 7-18
LCTL LOAD CONTROL RS P A SP B7 10-6
LD LOAD (long) RX FP A SP 68 9-9

LOR LOAD (long) RR FP SP 28 9-9
LE LOAD (short) RX FP A SP 78 9-9
LER LOAD (short) RR FP SP 38 9-9
LH LOAD HALFWoRD RX A R 48 7-19
LM LOAD MULTIPLE RS A R 98 7-19

LNDR LOAD NEGATIVE (long) RR C FP SP 21 9-11
LNER LOAD NEGATIVE (short) RR C FP SP 31 9-11
LNR LOAD NEGATIVE RR C R 11 7-19
LPDR LOAD POSITIVE (long) RR C FP SP 20 9-11
LPER LOAD POSITIVE (short) RR C FP SP 30 9-11

LPR LOAD POSITIVE RR C IF R 10 7-19
LPSW LOAD PSW S L P A SP $ 82 10-6
LR LOAD RR R 18 7-17
LRA LOAD REAL ADDRESS RX C TR P Al R B 1 10-7
LRDR LOAD ROUNDED (extended to long) RR XP SP EO 25 9-11

LRER LOAD ROUNDED (long to short) RR XP SP EO 35 9-11
LTDR LOAD AND TEST (long) RR C FP SP 22 9-10
LTER LOAD AND TEST (short) RR C FP SP 32 9-10
LTR LOAD AND TEST RR C R 12 7-18
M MULTIPLY RX A SP R 5C 7-25

MC MONITOR CALL SI SP MO AF 7-20
MD MULTIPLY (long) RX FP A SP EU EO 6C 9-12
MDR MULTIPLY (long) RR FP SP EU EO 2C 9-12
ME MULTIPLY (short to long) RX FP A SP EU EO 7C 9-12
MER MULTIPLY (short to long) RR FP SP EU EO 3C 9-12

MH MULTIPLY HALFWORD RX A R 4C 7-26
MP MULTIPLY DECIMAL SS A SP D ST FC 8-9
MR MULTIPLY RR SP R lC 7-25
MVC MOVE (character) SS A ST 02 7-20
MVCIN MOVE INVERSE SS MI A ST E8 7-21

MVCL MOVE LONG RR C A SP II R ST OE 7-21
MVI MOVE (immediate) SI A ST 92 7-20
MVN MOVE NUMERICS SS A ST 01 7-24
MVO MOVE WITH OFFSET SS A ST Fl 7-24
MVZ MOVE ZONES SS A ST 03 7-25

MXD MULTIPLY (long to extended) RX XP A 5P EU EO 67 9-12
MXDR MULTIPLY (long to extended) RR XP SP EU EO 27 9-12
MXR MULTIPLY (extended) RR XP 5P EU EO 26 9-12
N AND RX C A R 54 7-7
NC AND (character) SS C A ST 04 7-7

NI AND (immediate) 51 C A 5T 94 7-7
NR AND RR C R 14 7-7
0 DR RX C A R 56 7-26
OC DR (character) SS C A 5T 06 7-26
01 OR (immediate) SI C A ST 96 7-26

DR DR RR C R 16 7-26
PACK PACK 55 A ST F2 7-27
PTLB PURGE TLB 5 TR P

Al
$ B20D 10-7

ROD READ DIRECT 51 DC P $ SO 85 10-8
RRB RESET REFERENCE BIT 5 C TR P Al B213 10-8

S SUBTRACT RX C A IF R 5B 7-32
SCK SET CLOCK S C P A 5P B204 10-9
SCKC SET CLOCK COMPARATOR S CK P A SP B206 10-9
SO SUBTRACT NORMALIZED (long) RX C FP A SP EU EO LS 6B 9-13
SDR SUBTRACT NORMALIZED (long) RR C FP SP EU EO LS 2B 9-13

Instructions Arranged by Mnemonic (Part 2 of 3)

B-6 System/370 Principles of Operation

Mne· Op Page
monic Name Characteristics Code No.

SE SUBTRACT NORMALIZED (short) RX C FP A SP EU EO LS 7B 9-13
SER SUBTRACT NORMALIZED {short} RR C FP SP EU EO LS 3B 9-13
SH SUBTRACT HALFWORD RX C A IF R 4B 7-33
SIGP SIGNAL PROCESSOR RS C MP P $ R AE 10-12
SIO START I/O S C P $ 9COO'" 12-21

SIOF START I/O FAST RELEASE 5 C P $ 9C01'" 12-21
SL SUBTRACT LOGICAL RX C A R SF 7-33
SLA SHIFT LEFT SINGLE RS C IF R 8B 7-28
SLDA SHIFT LEFT DOUBLE RS C SP IF R 8F 7-28
StDL SHIFT LEFT DOUBLE LOGICAL RS SP R 80 7-28

SLL SHIFT LEFT SINGLE LOGICAL RS R 89 7-29
SLR SUBTRACT LOGICAL RR C R IF 7-33
SP SUBTRACT DECIMAL SS C A 0 OF ST FB 8-10
SPKA SET PSW KEY FROM ADDRESS S PK P B20A 10-11
SPM SET PROGRAM· MASK RR L 04 7-27

SPT SET CPU T I MER S CK P A SP B208 10-10
SPX SET PREFIX S MP P A SP $ B210 10-10
SR SUBTRACT RR C IF R lB 7-32
SRA SHIFT RIGHT SINGLE RS C R 8A 7-30
SRDA SHIFT RIGHT DOUBLE RS C SP R 8E 7-29

SRDL SHIFT RIGHT DOUBLE LOGICAL RS SP R 8C 7-29
SRL SHIFT RIGHT SINGLE LOGICAL RS R 88 7-30
SRP SHIFT AND ROUND DECIMAL SS C A 0 OF ST FO 8-10
SSK SET STORAGE KEY RR P Al SP $ 08 10-11
SSM SET SYSTEM.MASK S P A SP SO 80 10-12

ST STORE RX A ST 50 7-30
STAP STORE CPU ADDRESS S MP P A SP ST B212 10-14
STC STORE CHARACTER RX A ST 42 7-31
STCK STORE CLOCK S C A $ ST B205 7-31
STCKC STORE CLOCK COMPARATOR S CK P A SP ST B207 10-13

STCM STORE CHARACTERS UNDER MASK RS A ST BE 7-31
SrcTL STORE CONTROL RS P A SP ST B6 10-13
STD STORE {long} RX FP A SP ST 60 9-13
STE STORE (short) RX FP A SP ST 70 9-13
STH STORE HALFWORD RX A ST 40 7-32

STIDC STORE CHANNEL 10 5 C P $ B203 12-24
STIDP STORE CPU 10 S P A SP ST B202 10-14
STM STORE MULTIPLE RS A ST 90 7-32
STNSM STORE THEN AND SYSTEM MASK 51 TR P A ST AC 10-15
STOSM STORE THEN OR SYSTEM MASK 51 TR P A SP ST AD 10-16

STPT STORE CPU TIMER 5 CK P A SP ST B209 10-15
STPX STORE PREFIX S MP P A SP ST B211 10-15
SU SUBTRACT UNNORMALIZED (short) RX C FP A SP EO LS 7F 9-14
SUR SUBTRACT UNNORMALIZED (short) RR C FP SP EO LS 3F 9-14
SVC SUPERVISOR CALL RR $ OA 7-34

SW SUBTRACT UNNORMALIZED (long) RX C FP A SP EO LS 6F 9-14
SWR SUBTRACT UNNORMALIZED (long) RR C FP SP EO LS 2F 9-14
SXR SUBTRACT NORMALIZED (extended) RR C XP SP EU EO LS 37 9-13
TCH TEST CHANNEL S C P $ 9FOO'" 12-25

TIO TEST I/O S C P $ 9000'" 12-25
TM TEST UNDER MASK SI C A 91 7-34
TPROT TEST PROTECTION SSE C EF P Al E501 10-16
TR TRANSLATE SS A ST DC 7-35
TRT TRANSLATE AND TEST SS C A R DO 7-36

TS TEST AND SET S C A $ ST 93 7-34
UNPK UNPACK SS A ST F3 7-36
WRD WRITE DIRECT SI DC P Al $ 84 10-17
X EXCLUSIVE OR RX C A R 57 7-15
XC EXCLUSIVE OR (character) SS C A ST 07 7-15

XI EXCLUSIVE OR (immediate) SI C A ST 97 7-15
XR EXCLUSIVE OR RR C R 17 7-15
ZAP ZERO AND ADD SS C A 0 OF ST F8 8-11

Instructions Arranged by Mnemonic (Part 3 of 3)

Appendix B. Lists of Instructions B-7

Op Mne- Page
Code Name monic Characteristics No.

04 SET PROGRAM MASK SPM RR L 7-27
05 BRANCH AND LINK BALR RR B R 7-7
06 BRANCH ON COUNT BCTR RR B R 7-9
07 BRANCH ON CONDITION BCR RR $1 B 7-8
08 SET STORAGE KEY SSK RR P Al SP $ 10-11

09 INSERT STORAGE KEY ISK RR P Al SP R 10-4
OA SUPERVISOR CALL SVC RR $ 7-34
OE MOVE LONG MVCL RR C A SP II R ST 7-21
OF COMPARE LOGICAL LONG CLCL RR C A SP II R 7-13

10 LOAD POSITIVE LPR RR C IF R 7-19
II LOAD NEGATIVE LNR RR C R 7-19
12 LOAD AND TEST LTR RR C R 7-18
13 LOAD COMPLEMENT LCR RR C IF R 7-18
14 AND NR RR C R 7-7

15 COMPARE LOGICAL CLR RR C 7-12
16 OR OR RR C R 7-26
17 EXCLUSIVE OR XR RR C R 7-15
18 LOAD LR RR R 7-17
19 COMPARE CR RR C 7-10

lA ADD AR RR C IF R 7-4
lB SUBTRACT SR RR C IF R 7-32
lC MULTIPLY MR RR SP R 7-25
lD DIVIDE DR RR SP IK R 7-15
IE ADD LOGICAL ALR RR C R 7-4

IF SUBTRACT LOGICAL SLR RR C R 7-33
20 LOAD POSITIVE (long) LPDR RR C FP SP 9-11
21 LOAD NEGATIVE (long) LNDR RR C FP SP 9-11
22 LOAD AND TEST (long) LTDR RR C FP SP .9-10
23 LOAD COMPLEMENT (long) LCDR RR C FP SP 9-10

24 HALVE (long) HDR RR FP SP EU 9-9
25 LOAD RDUNDED (extended to long) LRDR RR XP SP EO 9-11
26 MULTIPLY (extended) MXR RR XP SP EU ED 9-12
27 MULTIPLY (long to extended) MXDR RR XP SP EU EO 9-12
28 LOAD (long) LDR RR FP SP 9-9

29 COMPARE (long) CDR RR C FP SP 9-7
2A ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 9-5
2B SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 9-13
2C MULTIPLY (long) MDR RR FP SP EU EO 9-12
2D DIVIDE (long) DDR RR FP SP EU EO FK 9-8

2E ADD UNNORMALIZED (long) AWR RR C FP SP EO LS 9-7
2F SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 9-14
30 LOAD POSITIVE (short) LPER RR C FP SP 9-11
31 LOAD NEGATIVE (short) LNER RR C FP SP 9-11
32 LOAD AND TEST (short) LTER RR C FP SP 9-10

33 LOAD COMPLEMENT (short) LCER RR C FP SP 9-10
34 HALVE (short) HER RR FP SP EU 9-9
35 LOAD ROUNDED (long to short) LRER RR XP SP EO 9-11
36 ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 9-5
37 SUBTRACT NORMALIZED (extended) SXR RR C XP SP EU EO LS 9-13

38 LOAD (short) LER RR FP SP 9-9
39 COMPARE (short) CER RR C FP SP 9-7
3A ADD NORMALIZED (short) AER RR C FP SP EU EO LS 9-5
3B SUBTRACT NDRMALIZED (short) SER RR C FP SP EU EO LS 9-13
3C MULTIPLY (short to long) MER RR FP SP EU EO 9-12

3D DIVIDE (short) DER RR FP SP EU EO FK 9-8
3E ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 9-7
3F SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 9-14
40 STORE HALFWORD STH RX A ST 7-32
41 LOAD ADDRESS LA RX R 7-18

42 STORE CHARACTER STC RX A ST 7-31
43 INSERT CHARACTER IC RX A R 7-17
44 EXECUTE EX RX A SP EX 7-16
45 BRANCH AND LINK BAL RX B R 7-7
46 BRANCH ON COUNT BCT RX B R 7-9

Instructions Arranged by Operation Code (Part 1 of 3)

B-8 System/370 Principles of Operation

Op Mne- Page
Code Name monic Characteristics No.

47 BRANCH ON CONDITION Be RX B 7-8
48 LOAD HALFWORD LH RX A R 7-19
49 COMPARE HALFWORD CH RX C A 7-12
4A ADD HALFWORD AH RX C A IF R 7-4
4B SUBTRACT HALFWORD SH RX C A IF R 7-33

4C MULTIPLY HALFWORD MH RX A R 7-26
4E CONVERT TO DECIMAL CVD RX A ST 7-14
4F CONVERT TO BINARY CVB RX A 0 IK R 7-14
50 STORE ST RX A ST 7-30

54 AND N RX C A R 7-7
55 COMPARE LOGICAL CL RX C A 7-12
56 OR 0 RX C A R 7-26
57 EXCLUSIVE OR X RX C A R 7-15
58 LOAD L RX A R 7-17

59 COMPARE C RX C A 7-10
5A ADD A RX C A IF R 7-4
5B SUBTRACT S RX C A IF R 7-32
5C MULTIPLY M RX A SP R 7-2.5
5D DIVIDE D RX A SP IK R 7-15

5E ADD LOGICAL AL RX C A R 7-4
5F SUBTRACT LOGICAL SL RX C A R 7-33
60 STORE (long) STD RX FP A SP ST 9-13
67 MULTIPLY (long to extended) MXD RX XP A SP EU EO 9-12
68 LOAD (long) LD RX FP A SP 9-9

69 COMPARE (long) CD RX C FP A SP 9-7
6A ADD NORMALIZED (long) AD RX C FP A SP EU EO LS 9-5
6B SUBTRACT NORMALIZED (long) SD RX C FP A SP EU EO LS 9-13
6C MULTIPLY (long) MD RX FP A SP EU EO 9-12
6D DIVIDE (long) DD RX FP A SP EU EO FK 9-8

6E ADD UNNORMALIZED (long) AW RX C FP A SP EO LS 9-7
6F SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 9-14
70 STORE (short) STE RX FP A SP ST 9-13
78 LOAD (short) LE RX FP A SP 9-9
79 COMPARE (short) CE RX C FP A SP 9-7

7A ADD NORMALIZED (short) AE RX C FP A SP EU EO LS 9-5
7B SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 9-13
7C MULTIPLY (short to long) ME RX FP A SP EU EO 9-12
7D DIVIDE (short) DE RX FP A SP EU EO FK 9-8
7E ADD UNNORMALIZED (short) AU RX C FP A SP EO LS 9-7

7F SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 9-14
80 SET SYSTEM MASK SSM S P A SP SO 10-12
82 LOAD PSW LPSW S L P A SP $ 10-6
83 DIAGNOSE DM P DM 10-3

84 WRITE DIRECT WRD SI DC P Al $ 10-17
85 READ DIRECT RDD SI DC P Al $ SO 10-8
86 BRANCH ON INDEX HIGH BXH RS B R 7-9
87 BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 7-9
88 SHIFT RIGHT SINGLE LOGICAL SRL RS R 7-30

89 SH I FT LEFT SINGLE LOGICAL SLL RS R 7-29
8A SH I FT RIGHT SINGLE SRA RS C R 7-30
88 SHIFT LEFT SINGLE SLA RS C IF R 7-28
8C SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 7-29
8D SH I FT LEFT DOUBLE LOGICAL SLDL RS SP R 7-28

8E SHIFT RIGHT DOUBLE SRDA R5 C SP R 7-29
8F SH I FT LEFT DOUBLE SLDA R5 C 5P IF R 7-28
90 STORE MULTIPLE STM R5 A ST 7-32
91 TEST UNDER MASK TM SI C A 7-34
92 MOVE (immediate) MVI SI A ST 7-20

93 TEST AND SET TS S C A $ ST 7-34
94 AND (immediate) NI SI C A ST 7-7
95 COMPARE LOGICAL (immediate) CLI SI C A 7-12
96 OR (immediate) 01 SI C A 5T 7-26
97 EXCLU51VE OR (immediate) XI 51 C A 5T 7-15

Instructions Arranged by Operation Code (Part 2 of 3)

Appendix B. Lists of Instructions B-9

Op Mne- Page
Code Name monic Characteristics No.

98 LOAD MULTIPLE LM RS A R 7-19
9COO'" START I/O SIO S C P $ 12-21
9CO 1!' START I/O FAST RELEASE SIOF S C P $ 12-21
9DOO" TEST I/O TIO S C P $ 12-25
9DO 1 ,', CLEAR I/O CLRIO S C P $ 12-15

9£00* HALT I/O HIO S C P $ 12-20
9E01* HALT DEVICE HDV S C P $ 12-17
9FOO* TEST CHANNEL TCH S C P $ 12-25
9F01* CLEAR CHANNEL CLRCH S C RE P $ 12-15
AC STORE THEN AND SYSTEM MASK STNSM SI TR P A ST 10-15

AD STORE THEN OR SYSTEM MASK STOSM SI TR P A SP ST 10-16
AE SIGNAL PROCESSOR SIGP RS C MP P $ R 10-12
AF MONITOR CALL MC SI SP MO 7-20
81 LOAD REAL ADDRESS LRA RX C TR P Al R 10-7
B200 CONNECT CHANNEL SET CONCS S C CS P 10-3

B201 DISCONNECT CHANNEL SET DISCS S C CS P 10-4
B202 STORE CPU ID STIDP S P A SP ST 10-14
B203 STORE CHANNEL ID STIDC S C P $ 12-24
B204 SET CLOCK SCK S C P A SP 10-9
8205 STORE CLOCK STCK S C A $ ST 7-31

B206 SET CLOCK COMPARATOR SCKC S CK P A SP 10-9
8207 STORE CLOCK COMPARATOR STCKC S CK P A SP ST 10-13
B208 SET CPU TIMER SPT S CK P A SP 10-10
B209 STORE CPU TIMER STPT S CK P A SP ST 10-15
B20A SET PSW KEY FROM ADDRESS SPKA S PK P 10-11

B20B INSERT PSW KEY IPK S PK P R 10-4
B20D PURGE TLB PTLB S TR P $ 10-7
B210 SET PREFIX SPX S MP P A SP $ 10-10
8211 STORE PREFIX STPX S MP P A SP ST 10-15
B212 STORE CPU ADDRESS STAP S MP P A SP ST 10-14

8213 RESET REFERENCE BIT RRB S C TR P Al 10-8
B221 INVALIDATE PAGE TABLE ENTRY IPTE RRE EF P Al $ 10-5
86 STORE CONTROL STCTL RS P A SP ST 10-13
87 LOAD CONTROL LCTL RS P A SP 10-6

BA COMPARE AND SWAP CS RS C SW A SP $ R ST 7-10
BB COMPARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST 7-10
BD COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C A 7-12
BE STORE CHARACTERS UNDER MASK STCM RS A ST 7-31
BF INSERT CHARACTERS UNDER MASK ICM RS C A R 7-17

D1 MOVE NUMERICS MVN SS A ST 7-24
D2 MOVE (character) MVC SS A ST 7~20
D3 MOVE ZONES MVZ SS A ST 7-25
04 AND (char ac ter) NC SS C A ST 7-7
D5 COMPARE LOGICAL (character) CLC SS C A 7-12

D6 OR (character) OC SS C A ST 7-26
D7 EXCLUSIVE OR (character) XC SS C A ST 7-15
DC TRANSLATE TR SS A ST 7-35
DO TRANSLATE AND TEST TRT SS C A R 7-36
DE EDIT ED 5S C A D ST 8-5

DF EDIT AND MARK EDMK 55 C A D R ST 8-9
E501 TEST PROTECTION TPROT SSE C EF P Al 10-16
£8 MOVE INVERSE MVCIN SS MI A ST 7-21
FO SHIFT AND ROUND DECIMAL SRP SS C A D DF ST 8-10
F 1 MOVE WITH OFFSET MVO SS A ST 7-24

F2 PACK PACK SS A ST 7-27
F3 UNPACK UNPK 5S A ST 7-36
F8 ZERO AND ADD ZAP SS C A D DF ST 8-11
F9 COMPARE DECIMAL CP SS C A D 8-4
FA ADD DECIMAL AP SS C A D DF ST 8-4

FB SUBTRACT DECIMAL SP 5S C A D OF ST 8-10
FC MULTIPLY DECIMAL MP SS A SP 0 ST 8-9
FD DIVIDE DECIMAL DP SS A SP 0 DK ST 8-5

Instructions Arranged by Operation Code (Part 3 of 3)

B-lO System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

CONNECT CHANNEL SET CONCS S C Cslp I I
B200 10-3

D~SCONNECT CHANNEL SET DISCS S C CS P B201 10-4

I Instructions Arranged by Feature: Channel-Set Switching

Mne- Op Page
Name monic Characteristics Code No.

ADD AR RR C IF R lA 7-4
ADD A RX C A IF R 5A 7-4
ADD DECIMAL AP SS C A D DF ST FA 8-4
ADD HALFWORD AH RX C A IF R 4A 7-4
ADD LOGICAL ALR RR C R IE 7-4

ADD LOGICAL AL RX C A R 5E 7-4
AND NR RR C R 14 7-7
AND N RX C A R 54 7-7
AND (character) NC SS C A ST D4 7-7
AND (immed i ate) NI SI C A ST 94 7-7

BRANCH AND LINK BALR RR B R 05 7-7
BRANCH AND LI NK BAL RX B R 45 7-7
BRANCH ON CONDITION BCR RR $1 B 07 7-8
BRANCH ON CONDITION BC RX B 47 7-8
BRANCH ON COUNT BCTR RR B R 06 7-9

BRANCH ON COUNT BCT RX B R 46 7-9
BRANCH ON INDEX HIGH BXH RS B R 86 7-9
BRANCH ON INDEX LOW OR EQUAL BXLE RS B R 87 7-9
CLEAR I/O CLRIO S C P $ 9001* 12-15
COMPARE CR RR C 19 7-10

COMPARE C RX C A 59 7-10
COMPARE DECIMAL CP 55 C A D F9 8-4
COMPARE HALFWORD CH RX C A 49 7-12
COMPARE LOGICAL CLR RR C 15 7-12
COMPARE LOGICAL CL RX C A 55 7-12

COMPARE LOGICAL (character) CLC 55 C A D5 7-12
COMPARE LOGICAL (immed i ate) CLI SI C A 95 7-12
COMPARE LOGICAL CHARACTERS UNDER MASK CLM RS C A BD 7-12
COMPARE LOGICAL LONG CLCL RR C A SP II R OF 7-13
CONVERT TO BINARY CVB RX A 0 IK R 4F 7-14

CONVERT TO DECIMAL CVD RX A ST 4E 7-14
DIAGNOSE OM P DM 83 10-3
DIVIDE DR RR SP IK R 10 7-15
DIVIDE D RX A SP IK R 50 7-15
DIVIDE DECIMAL DP SS A SP 0 DK ST FD 8-5

EDIT ED SS C A D ST DE 8-5
EDIT AND MARK EDMK SS C A D R ST DF 8-9
EXCLUSIVE OR XR RR C R 17 7-15
EXCLUSIVE OR X RX C A R 57 7-15
EXCLUSIVE OR (character) XC SS C A ST D7 7-15

EXCLUSIVE OR (immediate) XI 51 C A ST 97 7-15
EXECUTE EX RX A SP EX 44 7-16
HALT DEVICE HDV 5 C P $ 9E01* 12-17
HALT I/O HIO S C P $ 9EOO* 12-20
INSERT CHARACTER IC RX A R 43 7-17

INSERT CHARACTERS UNDER MASK ICM RS C A R BF 7-17
INSERT STORAGE KEY ISK RR P Al SP R 09 10-4
LOAD LR RR R 18 7-17
LOAD L RX A R 58 7-17
LOAD ADDRESS LA RX R 41 7-18

I Instructions Arranged by Feature: Commercial Instruction Set (Part 1 of 2)

Appendix B. Lists of Instructions B-l1

Mne- Op Page
Name monic Characteristics Code No.

LOAD AND TEST LTR RR C R 12 7-18
LOAD COMPLEMENT LCR RR C IF R 13 7-18
LOAD CONTROL LCTL RS P A SP B7 10-6
LOAD HALFWORD LH RX A R 48 7-19
LOAD MULTIPLE LM RS A R 98 7-19

LOAD NEGATIVE LNR RR C R 11 7-19
LOAD POSITIVE LPR RR C IF R 10 7-19
LOAD PSW LPSW S L P A SP $ 82 10-6
MONITOR CALL MC SI SP MO AF 7-20
MOVE (character) MVC SS A ST D2 7-20

MOVE (immediate) MVI SI A ST 92 7-20
MOVE LONG MVCL RR C A SP II R ST OE 7-21
MOVE NUMERICS MVN SS A ST D 1 7-24
MOVE WITH OFFSET MVO SS A ST F 1 7-24
MOVE ZONES MVZ SS A ST D3 7-25

MULTIPLY MR RR SP R lC 7-25
MULTIPLY M RX A SP R 5C 7-25
MULTIPLY DECIMAL MP SS A SP D ST FC 8-9
MULTIPLY HALFWORD MH RX A R 4C 7-26
OR OR RR C R 16 7-26

OR 0 RX C A R 56 7-26
OR (character) DC SS C A ST 06 7-26
OR (immediate) 01 SI C A ST 96 7-26
PACK PACK SS A ST F2 7-27
SET CLOCK SCK S C P A SP B204 10-9

SET PROGRAM MASK SPM RR L 04 7-27
SET STORAGE KEY SSK RR P Al SP $ 08 10-11
SET SYSTEM MASK SSM S P A SP SO 80 10-12
SHIFT AND ROUND DECIMAL SRP SS C A D DF ST FO 8-10
SHIFT LEFT DOUBLE SLDA RS C SP IF R 8F 7-28

SHIFT LEFT DOUBLE LOGICAL SLDL RS SP R 8D 7-28
SHIFT LEFT SINGLE SLA RS C IF R 8B 7-28
SHIFT LEFT SINGLE LOGICAL SLL RS R 89 7-29
SHIFT RIGHT DOUBLE SRDA RS C SP R 8E 7-29
SHIFT RIGHT DOUBLE LOGICAL SRDL RS SP R 8C 7-29

SH 1FT RIGHT SINGLE SRA RS C R 8A 7-30
SHIFT RIGHT SINGLE LOGICAL SRL RS R 88 7-30
START I/O SIO S C P $ 9COO'\ 12-21
START I/O FAST RELEASE SIOF S C P $ 9C01* 12-21
STORE ST RX A ST 50 7-30

STORE CHANNEL ID STIDC S C P $ B203 12-24
STORE CHARACTER STC RX A ST 42 7-31
STORE CHARACTERS UNDER MASK STCM RS A ST BE 7-31
STORE CLOCK STCK S C A $ ST B205 7-31
STORE CONTROL STeTL RS P A SP ST B6 10-13

STORE CPU ID STIDP S P A SP ST B202 10-14
STORE HALFWORD STH RX A ST 40 7-32
STORE MULTIPLE STM RS A ST 90 7-32
SUBTRACT SR RR C IF R lB 7-32

SUBTRACT S RX C A IF R 5B 7-32
SUBTRACT DECIMAL SP SS C A D OF ST FB 8-10
SUBTRACT HALFWORD SH RX C A IF R 4B 7-33
SUBTRACT LOGICAL SLR RR C R IF 7-33
SUBTRACT LOGICAL SL RX C A R 5F 7-33

SUPERVISOR CALL SVC RR $ OA 7-34
TEST AND SET TS S C A $ ST 93 7-34
TEST CHANNEL TeH S C P $ 9FOO* 12-25
TEST I/O TIO S C P $ 9000* 12-25
TEST UNDER MASK TM SI C A 91 7-34

TRANSLATE TR SS A ST DC 7-35
TRANSLATE AND TEST TRT SS C A R DD 7-36
UNPACK UNPK SS A ST F3 7-36
ZERO AND ADD ZAP SS C A 0 OF ST F8 8-11

Instructions Arranged by Feature: Commercial Instruction Set (Part 1 of 1)

B-12 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

COMPARE AND SWAP CS RS C S~/ A SP/ $

/

R ST BA 7-10
COMPARE DOUBLE AND SWAP CDS RS C SW A SP $ R ST BB 7-10

._-_._-,---

Instructions Arranged by Feature: Conditional Swapping

Mne- Op Page
Name monic Characteristics Code No.

SET CLOCK COMPARATOR SCKC 5 CK P A SP B206 10-9
SET CPU T I MER SPT 5 CK P A SP B208 10-10
STORE CLOCK COMPARATOR STCKC S CK P A SP ST B207 10-13
S~ORE CPU TIMER STPT S CK P A SP ST B209 10-15

Instructions Arranged by Feature: CPU Timer and Clock Comparator

Mne- Op Page
Name monic Characteristics Code No.

READ DIRECT RDD SI D~lp Al

I
$

I
SD 85 10-8

WRITE DIRECT WRD SI DC P Al $ 84 10-17

Instructions Arranged by Feature: Direct Control

Mne- Op Page
Name monic Characteristics Code No.

INVALIDATE PAGE TABLE ENTRY* IPTE RRE EF/P Al

/

$

/

B221 10-5
TEST PROTECTION* TPROT SSE C EF P Al E501 10-16

Explanation:

* The extended facility actually consists of 14 instructions, 12 of which are MVS-dependent.

Instructions Arranged by Feature: Extended Facility (wltbout MVS Assist)

Mne- Op Page
Name monic Characteristics Code No.

ADD NORMALIZED (extended) AXR RR C XP SP EU EO LS 36 9-5
LOAD ROUNDED (extended to long) LRDR RR XP SP EO 25 9-11
LOAD ROUNDED (long to short) LRER RR XP SP EO 35 9-11
MULTIPLY (extended) MXR RR XP SP EU EO 26 9-12
MULTIPLY (long to extended) MXDR RR XP SP EU EO 27 9-12
MULTIPLY (long to extended) MXD RX XP A SP EU EO 67 9-12
SUBTRACT NORMALIZED (extended) SXR RR C XP SP EU EO LS 37 9-13

Instructions Arranged by Feature: Extended-Precision Floating Point

Appendix B. Lists of Instructions B-13

Mne- Op Page
Name monic Characteristics Code No.

ADD NORMALIZED (long) ADR RR C FP SP EU EO LS 2A 9-5
ADD NORMALIZED (long) AD RX C FP A SP EU EO LS 6A 9-5
ADD NORMALIZED (short} AER RR C FP SP EU EO LS 3A 9-5
ADD NORMALIZED (short) AE RX C FP A SP EU EO LS 7A 9-5
ADD UNNORMALIZED (long) AWR RR C FP SP EO LS 2E 9-7

ADD UNNORMALI ZED (long) AW RX C FP A SP EO LS 6E 9-7
ADD UNNORMALIZED (short) AUR RR C FP SP EO LS 3E 9-7
ADD UNNORMALIZED (short) AU RX C FP A SP EO LS 7E 9-7
COMPARE (long) CDR RR C FP SP 29 9-7
COMPARE (long) CD RX C FP A SP 69 9-7

COMPARE (short) CER RR C FP SP 39 9-7
COMPARE (shor tl CE RX C FP A SP 79 9-7
DIVIDE (long) DDR RR FP SP EU EO FK 2D 9-8
DIVIDE (long) DO RX FP A SP EU EO FK 6D 9--8
DIVIDE (short) DER RR FP SP EU EO FK 3D 9-8

DIVIDE (shortl DE RX FP A SP EU EO FK 7D 9-8
HALVE (long) HDR RR FP SP EU 24 9-9
HALVE (short) HER RR FP SP EU 34 9-9
LOAD (long) LOR RR FP SP 28 9-9
LOAD (long) LD RX FP A SP 68 9-9

LOAD (short) LER RR FP SP 38 9-9
LOAD (short) LE RX FP A SP 78 9-9
LOAD AND TEST (long) LTDR RR C FP SP 22 9-10
LOAD AND TEST (short) LTER RR C FP SP 32 9-10
LOAD COMPLEMENT (long) LCDR RR C FP SP 23 9-10

LOAD COMPLEMENT (short) LCER RR C FP SP 33 9-10
LOAD NEGATIVE (long) LNDR RR C FP SP 21 9-11
LOAD NEGATIVE (short) LNER RR C FP SP 31 9-11
LOAD POSITIVE (long) LPDR RR C FP SP 20 9-11
LOAD POSITIVE (short) LPER RR C FP SP 30 9-11

MULTIPLY (long) MDR RR FP SP EU EO 2C 9-12
MULTIPLY (long) MD RX FP A SP EU EO 6C 9-12
MULTIPLY (short to long) MER RR FP SP EU EO 3C 9-12
MULTIPLY (short to long) ME RX FP A SP EU EO 7C 9-12
STORE (long) STD RX FP A SP ST 60 9-13

STORE (short) STE RX FP A SP ST 70 9-13
SUBTRACT NORMALIZED (long) SDR RR C FP SP EU EO LS 2B 9-13
SUBTRACT NORMALIZED (long) SD RX C FP A SP EU EO LS 6B 9-13
SUBTRACT NORMALIZED (shor tl SER RR C FP SP EU EO LS 3B 9-13
SUBTRACT NORMALIZED (short) SE RX C FP A SP EU EO LS 7B 9-13

SUBTRACT UNNORMALIZED (long) SWR RR C FP SP EO LS 2F 9-14
SUBTRACT UNNORMALIZED (long) SW RX C FP A SP EO LS 6F 9-14
SUBTRACT UNNORMALIZED (short) SUR RR C FP SP EO LS 3F 9-14
SUBTRACT UNNORMALIZED (short) SU RX C FP A SP EO LS 7F 9-14

Instructions Arranged by Feature: Floating Point

Mne- Op Page
Name monic Characteristics Code No.

MOVE INVERSE MVCIN SS Mil A I I ST E8 7-21

I Instructions Arranged by Feature: Move Inverse

B-14 System/370 Principles of Operation

Mne- Op Page
Name monic Characteristics Code No.

SET PREFIX SPX S MP P A SP $ B210 10-10
SIGNAL PROCESSOR SIGP RS C MP P $ R AE 10-12
STORE CPU ADDRESS STAP S MP P A SP ST B212 10-14
STORE PREFIX STPX S MP P A SP ST B211 10-15

Instrudions Arranged by Feature: Multiprocessing

Mne- Op Page
Name monic Characteristics Code No.

INSERT PSW KEY IPK S PKlp I I
R B20B 10-4

SET PSW KEY FROM ADDRESS SPKA S PK P B20A 10-11

Instrudions...AtRtDiieCl by-Feature: PSW-Key Handling

Mne- Op Page
Name monic Characteristics Code No.

CLEAR CHANNEL CLRCH S C RElp I $ I 9F01* 12-15

Instructions Arranged by Feature: Recovery Extensions

Mne- Op Page
Name monic Characteristics Code No.

LOAD REAL ADDRESS LRA RX C TR P Al R Bl 10-7
PURGE TLB PTLB S TR P $ B200 10-7
RESET REFERENCE BIT RRB S C TR P Al B213 10-B
STORE THEN AND SYSTEM MASK STNSM SI TR P A ST AC 10-15
STORE THEN OR SYSTEM MASK STOSM SI TR P A SP ST AD 10-16

Instrudlons Arranged by Feature: Translation

Appendix B. Lists of Instructions B-IS

Appendix C. Condition-Code Settings

Condition Code

Instruction 0 1 2 3

ADD, ADD HALFWORD zero < zero > zero overflow
ADD DECIMAL zero < zero > zero overflow
ADD LOGICAL zero, not zero, zero, not zero,

no carry no carry carry carry
ADD NORMALIZED zero < zero > zero -
ADD UNNORMALIZED zero < zero > zero -
AND zero not zero - -
CLEAR CHANNEL reset signaled - - not operational
CLEAR I/O no operation CSW stored channel busy not operational

in progress
COMPARE, COMPARE HALFWORD equal low high -
COMPARE AND SWAP equal not equal - -
COMPARE DECIMAL equal low high -
COMPARE DOUBLE AND SWAP equal not equal - -
COMPARE LOGICAL equal low high -
COMPARE LOGICAL CHARACTERS UNDER MASK equal low high -
COMPARE LOGICAL LONG equal low high -

CONNECT CHANNEL SET successful connected to - not operational
another CPU

DISCONNECT CHANNEL SET successful connected to - not operational
another CPU

EDIT, EDIT AND MARK zero < zero > zero -
EXCLUSIVE DR zero not zero - -
HALT DEVICE interruption CSW stored channel not operational

pending/busy working

HALT I/O interruption CSW stored burst op not operational
pending stopped

INSERT CHARACTERS UNDER MASK all zeros 1st bit one 1st bit zero -
LOAD AND TEST zero < zero > zero -
LOAD COMPLEMENT (fixed point) zero < zero > zero overflow
LOAD COMPLEMENT (floating point) zero < zero > zero -

LOAD NEGATIVE zero < zero - -
LOAD POSITIVE (fixed point) zero - > zero overflow
LOAD POSITIVE (floating point) zero - > zero -
LOAD REAL ADDRESS translation ST entry PT entry length

avai lable inval id inval id violation
MOVE LONG length equal length low length high destr overlap

OR zero not zero - -
RESET REFERENCE BIT R bit zero, R bit zero, R bit one, R bit one,

C bit zero C bit one C bit zero C bit one
SET CLOCK set secure - not operational
SHIFT AND ROUND DECIMAL zero < zero > zero overflow
SHIFT LEFT (DOUBLE or SINGLE) zero < zero > zero overflow

SHIFTRIGIfT (DOUBLE or SINGLE) zero < zero > zero -
SIGNAtPROCES$OR order code status stored busy not operational

START I/O, START I/O FAST RELEASE
accepted

successful CSW stored busy not operational
STORE CHANNELID ID stored CSW stored busy not operational
STORE CLOCK set not set error not operational

SUBTRACT, SUBTRACT HALFWORD zero < zero > zero overflow
SUBTRACT DECIMAL zero < zero > zero overflow
SUBTRACT LOGICAL - not zero, zero, not zero,

SUBTRACT NORMALIZED
no carry carry carry

zero < zero > zero -
SUBTRACTU~NORMAUZED zero < zero > zero -

Summary of Condition-Code Settings (Part 1 of 2)

Appendix C. Condition-Code Settings C-l

Condition Code

Instruction 0 1 2 3

TEST AND SET left zero left one - -
TEST CHANNEL available interruption burst mode not operational

pending
TEST I/O avai lable CSW stored busy not operational
TEST PROTECTION fetch and store no store no fetch, no translation

no store

TEST UNDER MASK all zeros mixed - all ones
TRANSLATE AND TEST zero incomplete complete -
ZERO AND ADD zero < zero > zero overflow

Exelanation:

- Not app I i cab Ie
> zero Result is greater than zero
< zero Result is less than zero
high First operand compares high
low First operand compares low
length Length of first operand

Note: The condition code may also be changed by DIAGNOSE, EXECUTE, LOAD PSW, SET PROGRAM MASK,
and SUPERVISOR CALL, and by an interruption.

S.lmDary 0' Condition-Code Settings (Part 2 0' 2)

C-2 System/370 Principles of Operation

Appendix D. Facilities

Contents

Commercial Instruction Set 0-1
Floating-Point Feature 0-1
Universal Instruction Set 0-1
Extended-Precision Floating-Point Feature 0-1
External-Signal Feature 0-1
~irect-Control Feature 0-1

Translation Feature 0-2
CPU-Timer and Clock-Comparator Feature 0-2
Conditional-Swapping Feature 0-2

PSW-Key-Handling Feature D-2
Move-Inverse Feature 0-2
Multiprocessing Feature 0-2

Extended Facility 0-2

This appendix lists the facilities in System/370,
shows how they are grouped, and indicates their
availability as features on models implementing the
System/370 architecture. A facility is an
architectural grouping of functions.

Commercial Instruction Set
Every CPU incorporates the commercial instruction
set, which includes the standard instruction set and
the decimal instructions (listed in Appendix B), and
the associated basic computing functions, including:
• Byte-oriented operands
• General registers
• Control registers, with bit positions for the

block-mUltiplexing control bit (if block
multiplexing is provided), for the interrupt-key
and interval-timer masks, for channel masks
associated with installed channels, for monitor
masks, for control of installed machine-check­
handling facilities, and for the IOEL control (if
an installed channel has the I/O-extended­
logout facility)

• Key-controlled protection
• Interval timer
• Time-of-day clock
• Basic operator facilities

Every system also includes the capability for at
least one byte-multiplexer, block-multiplexer, or
selector channel. The capability may be

Recovery-Extension Feature 0-2
Channel-Set-Switching Feature 0-2
Fast-Release Feature 0-2

Clear-I/O Feature 0-2
Channel-Indirect-Oata-Addressing Feature 0-2
Command-Retry Feature 0-3

Limited-Channel-Logout Feature 0-3
I/O-Extended-Logout Feature 0-3

Availability of Features 0-3

Features Not Oescribed in the Principles of
Operation 0-4

implemented as a separate physical unit or may be
provided by sharing the physical unit with the
CPU.

Additionally, the following features may be
available:

Floating-Point Feature
Includes the floating-point instructions (listed in
Appendix B) and the floating-point registers.

Universal Instruction Set
Includes the instructions of the commercial
instruction set and the floating-point feature.

Extended-Precision Floating-Point Feature
Includes the extended-precision floating-point
instructions (listed in Appendix B).

External-Signal Feature
Includes the extension to external interruptions for
external signals, the control-register position for the
external-signal mask, and the means to accept
external signals.

Direct-Control Feature
Includes the external-signal feature and the
instructions READ DIRECT and WRITE DIRECT.

Appendix O. Facilities 0-1

Translation Feature
Includes the following facilities:
• Dynamic Address Translation (DAT). The DAT

facility includes the translation mechanism, with
the associated control-register positions and
program-interruption codes, and reference and
change recording.

• Program-Event Recording (PER). The PER
facility includes the associated control-register
positions and extensions to the program­
interruption code.

• Extended-Control (EC) Mode.
• SSM Suppression. This facility includes the

control-register position for the SSM­
suppression-control bit and the program­
interruption code for special operation.

• Store Status and Noninitializing Manual Reset.

As part of these facilities, the following
instructions are provided: LOAD REAL
ADDRESS, PURGE TLB, RESET REFERENCE
BIT, STORE THEN AND SYSTEM MASK, and
STORE THEN OR SYSTEM MASK.

Cpu-Timer and Clock-Comparator Feature
Includes the clock comparator, the CPU timer, the
associated extensions to external interruption,
control-register positions for the clock-comparator
and CPU-timer masks, and the instructions SET
CLOCK COMPARATOR, STORE CLOCK
COMPARATOR, SET CPU TIMER, and STORE
CPU TIMER.

Conditional-Swapping Feature
Includes the instructions COMPARE AND SWAP
and COMPARE DOUBLE AND SWAP.

PSW-Key-Handling Feature
Includes the instructions SET PSW KEY FROM
ADDRESS and INSERT PSW KEY.

~ove-Inverse Feature
Includes the instruction MOVE INVERSE.

~ultiprocessing Feature
Includes the following facilities, which permit the
formation of a multiprocessing system:
• Shared Main Storage
• Prefixing
• CPU Signaling and Response
• TOD-Clock Synchronization

These facilities include four extensions to the
external interruption (external call, emergency
signal, TOD-clock-sync check, and malfunction
alert), control-register positions for the TOD-

D-2 System/370 Principles of Operation

clock-sync-control bit and for the masks for the
four external-interruption conditions, and the
instructions SET PREFIX, SIGNAL PROCESSOR,
STORE CPU ADDRESS, and STORE PREFIX.

Extended Facility
Includes the instructions INVALIDATE PAGE
TABLE ENTRY and TEST PROTECTION, the
common-segment facility and the associated bit
position in the segment-table entry, low-address
protection and the associated control-register
position for the control bit, and 12 MVS-dependent
instructions.

Recovery-Extension Feature
Includes the following:
• Machine-check external-damage code in storage

at location 244, the external-damage-code­
validity bit (bit 26 of the machine-check­
interruption code), and the channel-not­
operational indication in the machine-check
external-damage code

• The CLEAR CHANNEL instruction
• The logout-valid bit (bit 15) and the interface­

inoperative bit (bit 27) in the limited channel
logout

Channel-Set-Switching Feature
';fhe channel-set-switching feature provides the
ability to connect a channel set to any CPU in a
multiprocessing configuration. It includes the
instructions CONNECT CHANNEL SET and
DISCONNECT CHANNEL SET.

Fast-Release Feature
Provides for fast release of the CPU by the channel
during the execution of the START I/O FAST
RELEASE instruction. The release occurs before
the device-selection procedure is completed,
reducing the CPU delay associated with the
initiation of the I/O operation. When the fast
release is not implemented, START I/O FAST
RELEASE is executed as START I/O.

Clear-I/O Feature
Provides the clear-I/O function in a channel when
the CLEAR I/ 0 instruction is executed. When the
clear-I/O function is not implemented, CLEAR
I/O is executed as TEST I/O.

Channel-Indirect-Data-Addressing Feature
Includes indirect-data-address words and the
associated CCW flag, which facilitate storage
addressing when virtual addresses are used.

I

I

Command-Retry Feature I/O-Extended-Logout Feature
Provides the capability in a channel to retry a
command without the occurrence of an I/O inter­
ruption. The retry is initiated by the control unit.

Provides for the storing of detailed channel-error
information in a storage area designed by a pointer.

Limited-Channel-Logout Feature
Availability of Features

Provides four bytes of channel-status information
for model-independent recovery from channel
errors.

The following figure shows the features that are
available:

Feature

Commerc i a 1 instruct ion set
Floating point
Extended-prec is i on floating po i nt
Direct control
Translation

CPU t irner and clock comparator
Cand i tiona 1 swapp i n9
PSW-key hand Ii n9
Move inver se
Multiprocessing

Extended fae iii ty
Recovery extens ions
Channe I-set switching
Fast re 1 ease
Clear I/O

Channe I indirect data address i n9
Command retry
Limited channel logout
t /0 extended logout

~
I
F 1
Ex
D i
Tr

CP
Co
PS
Mo
Mu

Ex
Re
Ch
Fa
C 1

Ch
Co

t~ ~

Feature

mmercial instruct ion set
oat i ng po i nt
tended-prec i sian floating po i nt
reet contro 1
anslation

U timer and clock compar ator
nditional swapping
W-key handling
ve inver se
Itiprocessing

tended facility
covery extens ions
anne I-set switching
5 t re I ease
ear I/O

anne 1 i nd i reet data address i ng
mmand retry
mi ted ehanne I logout

0 extended logout
~ ----- -------- ---~

~~-----------~

Explanation:

A Channel indirect data addressing
is avai lable as an option on the
2860, 2870, and 2880 channe Is.

AMP Multiprocessing feature is pra-
vi ded ; n an attached-processor
configuration and a multiprocessor
configuration.

115

5
FP
FXP
ES
S

S
S
-
-
-

-
-
-
-
-

S
-
S
-

165

S*
S
S
S
PQ

PQ
PQ
PQ
-
-

-
-
-
B
-

A
B
-

B

AP Multiprocessing feature is provided
in an attached-processor configura­
t i on.

AP5 Advanced-contro I-program-s uppor t
feature.
Feature is only avai lable as a
s t andar d par t of the 2880 channe 1 .

CK CPU-t imer and clock-comparator
feature.

C55 Channel-set-switching feature is
provided along with the multi­
processing feature.

125 135 135- 138 145 145- 148 155
3 3

S S S S S S S S
FXP FP S S FXP S S S
FXP XP XP S FXP S S XP
ES DC DC DC DC DC DC DC
S S S S S S S PQ

S CK S S CK CK S PQ
S SW S S SW S S PQ
- - S S APS S S PQ
- - - - - - - -
- - - - - - - -

- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - - - - -
- - - - APS S S PQ

S S S S S S S PQ
- S S S S S S S
S S S S S S S S
- - - - S S S -

168 168- 195 3031 3032 3033 4331)'4341
3 See Note

S S S S S S S S
S S S S S S S S
S S S S S S S S
S S S DC S S ES ES
S S - S S S S S

S S - 5 S 5 S 5
S S - S S S S S
S S - S 5 S S S
- - - - - - S S
MP AMP - AP - AMP - -
EF EF - S 5 S - -
- - - S 5 S - -

- - - - - CS5 - -
8 B B S S S - -
B B - S S 5 S 5

A A - S 5 S S S
B B B S 5 S S S
- - - S S 5 S 5

B B B 5 S S - -

DC 0 i rec t-cont ro I feature.
EF Extended facility.
ES External-signal feature; does not

inc 1 ude t he READ DIRECT and WR I TE
DIRECT instructions.

FP F I oat i ng-po i nt feature.
FXP Float ing-point and extended­

precision floating-point feature.
MP Multiprocessing feature is provided

ina mu 1 t i processor canf i gur at ion.
PQ These items are available for field

installation only on purchased
models.

5 Facility is standard.
SW Conditional-swapping feature.
XP Extended-prec i s ion float i ng-·po i nt

feature.
Feature is not available.
Model 165 includes MONITOR CALL only
as part of the translation feature.

Note: This figure shows the features provided by the 4300 Processors
operating in 5ystem/370 mode.

Feature Availability

158 158-
3

S S
S S
XP XP
DC DC
S S

S S
S S
S S
- -
AMP AMP

EF EF
- -
- -
S S
S S

S S
S S
S S
- -

Appendix D. Facilities D-3

Features Not Described in the
Principles of Operation
The following additional features are available on
some models. Included with each entry are
references indicating where additional information
can be found on the subject.

OS/DOS Compatibility

DOS to OS/VS Emulator: Logic Prog. No.
5744-AS1, SY33-7015

APL Assist

"An APL Emulator on System/370," A.
Hassitt and L. E. Lyon, IBM Systems Journal,
Volume 15, Number 4, 1976. (Article available
as a reprint, G321-5041.)

Virtual-Machine Assist (VMA)

IBM Virtual-Machine Assist and
Shadow-Ta.ble-Bypass Assist, GA22-7074

Shadow-Table-Bypass Assist

See preceding entry.

0-4 System/370 Principles of Operation

ECPS:VSl

IBM OS/VSl Supervisor Logic, SY24-5155,
and IBM OS/VSl I/O Supervisor Logic,
SY24-5156

ECPS:VM/370

IBM Virtual Machine Facility/370: System
Programmer's Guide, GC20-1807

IBM Virtual Machine Facility/370: System
Logic and Problem Determination Guide,
Volume 1, Appendix A, SY20-0886

MVS Assist

Part of the extended facility, which is described
in IBM System/370 Extended Facility,
GA22-7072

Appendix E. Table of Powers of 2

PLUS
1
2
4
8

16
32
64

128

256
512

1,024
2,048

4,096
8,192

16,384
32,768

65,536
131,072
262,144
524,288

1,048,576
2,097,152
4,194,304
8,388,608

16,777,216
33,554,432
67,108,864

134,217,728

268,435,456
536,870,912

1,073,741,824
2,147,483,648

4,294,967,296
8,589,934,592

17,179,869,184
34,359,738,368

68,719,476,736
137,438,953,472
274,877,906,944
549,755,813,888

1,099,511,627,776
2,199,023,255,552
4,398,046,511,104
8,796,093,022,208

17,592,186,044,416
35,184,372,088,832
70,368,744,177,664

140,737,488,355,328

281,474,976,710,656
552,949,953,421,312

1,125,899,906,842,624
2,251,799,813,685,248

4,503,599,627,370,496
9,007,199,254,740,992

18,014,398,509,1,81,984
36,028,797,018,963,968

72,057,594,037,927,936
144,115,188,075,855,872
288,230,376,151,711,744
576,460,752,303,423,488

1,152,921,504,606,845,975
2,305,843,009,213,693,952
4,611,686,018,427,387,904
9,223,372,036,854,775,808

18,446,744,073,709,551,616

Powers of 2 (Part 1 of 2)

o
1

4

5
6

9
10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40
41
42
43

44
45
46
47

48
49
50
51

52
53
54
55

56
57
58
59

60
61
62
63

64

MINUS
1.0
0.5
0.25
0.125

0.0625
0.03125
0.01562 5
0.00781 25

0.00390 625
0.00195 3125
0.00097 65625
0.00048 82812

0.00024 41406 25
0.00012 20703 125
0.00006 10351 5625
0.00003 05175 78125

0.00001 52587 89062
O.O~OO 76293 94531 25
0.00000 38146 97265 625
0.00000 19073 48632 8125

0.00000 09536 74316 40625
0.00000 04768 37158 20312
0.00000 02384 18579 10156 25
0.00000 01192 09289 55078 125

0.00000 00596 04644 77539 0625
0.00000 00298 02322 38769 53125
0.00000 00149 01161 19384 76562 5
0.00000 00074 50580 59692 38281 25

0.00000 00037 25290 29846 19140 625
0.00000 00018 62645 14923 09570 3125
0.00000 00009 31322 57461 54785 15625
0.00000 00004 65661 28730 77392 57812

0.00000 00002 32830 64365 38696 28906 25
0.00000 00001 16415 32182 69348 14453 125
0.00000 00000 58207 66091 34674 07226 5625
0.00000 00000 29103 83045 67337 03613 28125

0.00000 00000 14551 91522 83668 51806 64062
0.00000 00000 07275 95761 41834 25903 32031 25
0.00000 00000 03637 97880 70917 12951 66015 625
0.00000 00000 01818 98940 35458 56475 83007 8125

0.00000 00000 00909 49470 17729 28237 91503 90625
0.00000 00000 00454 74735 08864 64118 95751 95312
0.00000 00000 00227 37367 54432 32059 47875 97656 25
0.00000 00000 00113 68583 77216 16029 73937 98828 125

0.00000 00000 00056 84341 88608 08014 86968 99414 0625
0.00000 00000 00028 42170 94304 04007 43484 49707 03125
0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5
0.00000 00000 00007 10542 73575 01001 85871 12426 7~781 25

0.00000 00000 00003 55271 36788 00500 92q35 55213 37890 625
0.00000 00000 00001 77635 68394 00250 46467 78106 68945 3125
0.00000 00000 00000 8B817 84197 00125 23233 89053 34472 65625
0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812

0.00000 00000 00000 27204 4604Q 25031 30808 47263 33518 16406 25
0.00000 00000 00000 11102 21024 62515 65404 23631 66809 08203 125
0.00000 00000 00000 05551 11512 31257 82702 11815 83404 54101 5625
0.00000 00000 00000 02775 55756 15628 91351 05907 91702 27050 78125

0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062
0.00000 00000 onooo 00693 8g939 03~07 22837 76476 97925 56762 69531 25
0.00000 00000 00000 00346 94469 51953 61418 88238 48962 78381 34765 625
0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125

0.00000 00000 00000 00086 73617 37988 40354 72059 62240 69595 33691 40625
0.00000 00000 00000 00043 36808 6a 0 94 20177 36029 81120 34797 66845 70312
0.00000 00000 00000 00021 68404 34497 100A8 68014 90560 17398 83422 85156 25
0.00000 00000 00000 00010 84202 17248 55044 34007 45280 08699 41711 42578 125

0.00000 00000 00000 00005 ~?101 08624 27522 17003 72640 04349 70855 71289 0625

Appendix E. Table of Powers of 2 E-I

lat4~6,744,O!3.709.5S1.S!~ ~~

36,8q3.488.14",419.1f')~.2?:' F.'i
73,786 ,q7~ ,~94 ,~39 ,2'10 ,4F,4 Fe

147.S73,952.5SQ,676.412,928 67

295,147,905,179,~52,825,B56 fR
590,29S,81C,358,7()5,651.':2 ~9

l,leO,~91,620,717,411,303,"l. 7~

2,361,!83,241,"34,822,G06,848 71

~,722,266,482,869,645,213,,,96 72
9,444,732,955,739,290,427,3 0 2 73

18,889.'''65,g31.478,SAO,8S'',7A4 74
37,778,931,e62,957,l~l,709,S68 75

75,557 ,A 6 3 ,725 ,91 u ,323 ,1+ 1 I] .136 7/1
151,115,727,451,828,646,838,272 77
302,231,454,903,657,293,676,544 78
604,462,909,807,31" ,587 ,153 ,098 7q

1,208,925,819,614,62Q,174,706,176 80
2,417,851,639,;29,2S8,1b9,41~,1:2 31
4,835,703,278,458,516,698,B24,704 82
9,671,406,556,917,033,397,649,408 83

19,342,B13,113,S34,066,795,2~B,~16 84
38,685,626,227,668,133,590,597,632 85
77,371,252,455 ,236,2G7 ,181,195 ,204 8f)

154,742,504,910,672,534,362,390,528 87

309,495,009,821,345,060,724,781,056 88
618,970,019,64~,690,137,449,562.112 89

1,237.940,03g.285,380,274,eQQ,124,224 90
2,475,a80,078,570,7~O,540,798,248,448 91

4,951,~60,1.57,141,521,099,596,496,896 92
9.903.520.J14,283.0~2.1;g,192,993.792 93

19,807,040,628,566,084,398,385,987,584 94
~9,61~,oal,257.132,169,796,771,q75,168 95

79,228,162,514,264,337,593,543,950,336 96
158,456,325,028,528,075,187,087,900,572 97
316,912,650,057,057,350,374,175,801,344 08
633,825,300,114,114,700,748,351,602,688 99

1,267,650,600,228,229,40" ,496,703 ,205,37r, 100
1,535,301,200,456,"58,802,993,406,410,752 101
5,070,602,400,912,917,605 ,986 ,812 ,821,504 102

10,l~l,204,801,825,835,211,973,625,641,008 103

20,282,409,603,651,670,423,947,251,286,016 IOU
40,564,819,207,303,340,847,894,502,572,032 105
81,129,638,414,606,681,695,789,00,,144,064 106

162,259,276,829,213,363,391,578,010,288,128 107

324,518,553,658,426,725,783,156,020,570,256 108
649,'37,107,316,853,453,566,312,041,152,512 109

1,298,074,214,633,706,907,132,624,082,305,024 110
2,596,148,429,267,413,814,265,248,164,610,048 111

5,192,296,658,534,827,628,530,496,329,220,096 112
10,384,593,717,069,655,257,060,992,658,440,192 113
20,769,187,434,139,310,514,121,985,316,880,384 114
41,538,374,868,278,621,028,243,970,633,760,768 115

83,076,749,736,557,242,056,487,9 4 1,267,521,536 116
166,153,499,473,114,484,112,975,882,535,043,072 117
332,3C6,998,945,228,969,225,951,765,070,086,144 118
66~,613,9~7,892,457,936,451,903,530,140,172,J88 119

1,329,227,995,784,915,872,903,807,060,280,344,576 120
2,658,"55,991,569,831,7 4 5,907,614,120,560,689,152 121
S,316,n1,983,139,663,491,f15,228,241,121,37B,304 122

10,633,823,966,279,326,983,230.456,482,242,756,608 123

21,267,647,932,558,653,966,460,,12,964,485,513,216 124
42,535,295,965.117,307,932 ,S21 ,825 ,928,971,02G,432 125
85,070,591,730,234,615,865 ,843 .651,A~7 .941,OS7.ef,4 126

170,141,!83,460 ,469,231,731,587 ,303,715,884,105,728 12'1

340,282,366,920,938,463,463,374,607,431,763,211,456 128

Powers of 2 (Part 2 of 2)

E-2 System/370 Principles of Operation

Appendix F. Hexadecimal Tables

The following tables aid in converting hexadecimal values
to decimal values, or the reverse.

Direct Conversion Table

This table provides direct conversion of decimal and
hexadecimal numbers in these ranges:

Hexadecimal
000 to FFF

Decimal
0000 to 4095

To convert numbers outside these ranges, and to con­
vert fractions, use the hexadecimal and decimal conver­
sion tables that follow the direct conversion table in this
Appendix.

0 1 2 3 4 5 6

00_ 0000 0001 0002 0003 0004 0005 0006
OL 0016 0017 0018 0019 0020 0021 0022
OL 0032 0033 0034 0035 0036 0037 0038
03_ 0048 0049 0050 0051 0052 0053 0054
OL 0064 0065 0066 0067 0068 0069 0070
05_ 0080 0081 0082 0083 0084 0085 0086
06_ 0096 0097 0098 0099 0100 0101 0102
OL 0112 0113 0114 0115 0116 0117 0118
08_ 0128 0129 0130 0131 0132 0133 0134
09_ 0144 0145 0146 0147 0148 0149 0150
OA_ 0160 0161 0162 0163 0164 0165 0166
OB_ 0176 0177 0178 0179 0180 0181 0182
OC_ 0192 0193 0194 0195 0196 0197 0198
OD_ 0208 0209 0210 0211 0212 0213 0214
OE_ 0224 0225 0226 0227 0228 0229 0230
OL 0240 0241 0242 0243 0244 0245 0246

10_ 0256 0257 0258 0259 0260 0261 0262
1L 0272 0273 0274 0275 0276 0277 0278
12 - 0288 0289 0290 0291 0292 0293 0294
13_ 0304 0305 0306 0307 0308 0309 0310
1L 0320 0321 0322 0323 0324 0325 0326
15 - 0336 0337 0338 0339 0340 0341 0342
16_ 0352 0353 0354 0355 0356 0357 0358
lL 0368 0369 0370 0371 0372 0373 0374
18_ 0384 0385 0386 0387 0388 0389 0390
19_ 0400 0401 0402 0403 0404 0405 0406
lA_ 0416 0417 0418 0419 0420 0421 0422
IB_ 0432 0433 0434 0435 0436 0437 0438
lC_ 0448 0449 0450 0451 0452· 0453 0454
lD_ 0464 0465 0466 0467 0468 0469 0470
IE - 0480 0481 0482 0483 0484 0485 0486
lL 0496 0497 0498 0499 0500 0501 0502

7 8 9 A B C D E F

0007 0008 0009 0010 0011 0012 0013 0014 0015
0023 0024 0025 0026 0027 0028 0029 0030 0031
0039 0040 0041 0042 0043 0044 0045 0046 0047
0055 0056 0057 0058 0059 0060 0061 0062 0063
0071 0072 0073 0074 0075 0076 0077 0078 0079
0087 0088 0089 0090 0091 0092 0093 0094 0095
0103 0104 0105 0106 0107 0108 0109 0110 0111
0119 0120 0121 0122 0123 0124 0125 0126 0127
0135 0136 0137 0138 0139 0140 0141 0142 0143
0151 0152 0153 0154 0155 0156 0157 0158 0159
0167 0168 0169 0170 0171 0172 0173 0174 0175
0183 0184 0185 0186 0187 0188 0189 0190 0191
0199 0200 0201 0202 0203 0204 0205 0206 0207
0215 0216 0217 0218 0219 0220 0221 0222 0223
0231 0232 0233 0234 0235 0236 0237 0238 0239
0247 0248 0249 0250 0251 0252 0253 0254 0255

0263 0264 0265 0266 0267 0268 0269 0270 0271
0279 0280 0281 0282 0283 0284 0285 0286 0287
0295 0296 0297 0298 0299 0300 0301 0302 0303
0311 0312 0313 0314 0315 0316 0317 0318 0319
0327 0328 0329 0330 0331 0332 0333 0334 0335
0343 0344 0345 0346 0347 0348 0349 0350 0351
0359 0360 0361 0362 0363 0364 0365 0366 0367
0375 0376 0377 0378 0379 0380 0381 0382 0383
0391 0392 0393 0394 0395 0396 0397 0398 0399
0407 0408 0409 0410 0411 0412 0413 0414 0415
0423 0424 0425 0426 0427 0428 0429 0430 0431
0439 0440 0441 0442 0443 0444 0445 0446 0447
0455 0456 0457 0458 0459 0460 0461 0462 0463
0471 0472 0473 0474 0475 0476 0477 0478 0479
0487 0488 0489 0490 0491 0492 0493 0494 0495
0503 0504 0505 0506 0507 0508 0509 0510 0511

Appendix F. Hexadecimal Tables F-l

0 1 2 3 4 5 6 7 8 9 A B C D E F

20_ 0512 0513 0514 0515 0516 0517 0518 0519 0520 0521 0522 0523 0524 0525 0526 0527
2L 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 0540 0541 0542 0543
22_ 0544 0545 0546 0547 0548 0549 0550 0551 0552 0553 0554 0555 0556 0557 0558 0559
23_ 0560 0561 0562 0563 0564 0565 0566 0567 0568 0569 0570 0571 0572 0573 0574 0575
2L 0576 0577 0578 0579 0580 0581 0582 0583 0584 0585 0586 0587 0588 0589 0590 0591
25_ 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 0605 0606 0607
26_ 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 0622 0623
2L 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639
28_ 0640 0641 0642 0643 0644 0645 0646 0647 0648 0649 0650 0651 0652 0653 0654 0655
29_ 0656 0657 0658 0659 0660 0661 0662 0663 0664 0665 0666 0667 0668 0669 0670 0671
2A - 0672 0673 0674 0675 0676 0677 0678 0679 0680 0681 0682 0683 06"84 0685 0686 0687
2B_ 0688 0689 0690 0691 0692 0693 0694 0695 0696 0697 0698 0699 0700 0701 0702 0703
2C_ 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2D_ 0720 0721 0722 0723 0724 0725 0726 0727 0728 0729 0730 0731 0732 0733 0734 0735
2E - 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 0748 0749 0750 0751
2L 0752 0753 0754 0755 0756 0757 0758 0759 0760 0761 0762 0763 0764 0765 0766 0767

30_ 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777 0778 0779 0780 0781 0782 0783
3L 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
3L 0800 0801 0802 0803 0804 0805 0806 0807 0808 0809 0810 0811 0812 0813 0814 0815
33 - 0816 0817 0818 0819 0820 0821 0822 0823 0824 0825 0826 0827 0828 0829 0830 0831
3L 0832 0833 0834 0835 0836 0837 0838 0839 0840 0841 0842 0843 0844 0845 0846 0847
35_ 0848 0849 0850 0851 0852 0853 0854 0855 0856 0857 0858 0859 0860 0861 0862 0863
36_ 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 0875 0876 0877 0878 0879
3L 0880 0881 0882 0883 0884 0885 0886 0887 0888 0889 0890 0891 0892 0893 0894 0895
38_ 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
39_ 0912 0913 0914 0915 0916 0917 0918 0919 0920 0921 0922 0923 0924 0925 0926 0927
3A_ 0928 0929 0930 0931 0932 0933 0934 0935 0936 0937 0938 0939 0940 0941 0942 0943
3B_ 0944 0945 0946 0947 0948 0949 0950 0951 0952 0953 0954 0955 0956 0957 0958 0959
3C_ 0960 0961 0962 0963 0964 0965 0966 0967 0968 0969 0970 0971 0972 0973 0974 0975
3D_ 0976 0977 0978 0979 0980 0981 0982 0983 0984 0985 0986 0987 0988 0989 0990 0991
3E_ 0992 0993 0994 0995 0996 0997 0998 0999 1000 1001 1002 1003 1004 1005 1006 1007
3F_ 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023

0 1 2 3 4 5 6 7 8 9 A B C D E F

40_ 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
4L 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
4L 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
43_ 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
4L 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
45_ 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119
46_ 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
4L 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
48_ 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
49_ 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4A_ 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
4B_ 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
4C_ 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4D_ 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247
4E_ 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
4L 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

50_ 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
5L 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
5L 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53_ 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
5L 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55_ 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375
56_ 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391
5L 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
58_ 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
59_ 1424 1425 1426 1427 1428 1429 1430 l431 1432 1433 1434 1435 1436 1437 1438 1439
5A_ 1440 1441 1442 l443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
5B_ 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
5C_ 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
5D_ 1488 l489 '1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
5E_ 1504 1505 1506 1507 L'508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5L 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

F-2 System/370 Principles of Operation

0 1 2 3 4 5 6 7 8 9 A B C D E F

60_ 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
6L 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567
62_ 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
63_ 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

6L 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
65_ 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
66_ 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
6'- 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
68_ 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679
69_ 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695
6A- 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
6B_ 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727
6C_ 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
6D_ 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6E_ 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6F_ 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791

70_ 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
7L 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823
72_ 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
73_ 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855
74_ 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871
75_ 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887
76_ 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
7'- 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919
78_ 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935
79_ 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
7A- 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967
7B_ 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 198.1 1982 1983
7C_ 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
7D_ 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
7E_ 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031
7L 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

0 1 2 3 4 5 6 7 8 9 A B C D E F

80_ 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063
8L 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
82_ 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095
83_ 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111

8L 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127
85_ 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143
86_ 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
8'- 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175
88_ 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
89_ 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207
8A_ 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
8B_ 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239
8C_ 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
8D_ 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271
8E_ 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
8F_ 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303
90_ 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319
9L 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335
92_ 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351
93_ 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367
9L 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383
95_ 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
96_ 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2,.14 2415
9'- 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431
98_ 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447
99_ 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463
9A- 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479
9B - 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
9C_ 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
9D_ 2512 2513 2514 2515 2516 2517 2518 25-19 2520 2521 2522 2523 2524 2525 2526 2527 9E_ 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543
9F_ 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559

Appendix P. Hexadecimal Tables P-3

0 1 2 3 4 5 6 7 8 9 A B C D E F

AO_ 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575
AL 2576 2577 2578 2519 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591
A2_ 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607
A3_ 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623
A4 - 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A5_ 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655
A6_ 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671
AL 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687
A8_ 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A9_ 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719
AA_ 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735
AB_ 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751
AC_ 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
AD_ 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AE_ 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799
AL 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815
BO_ 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
BL 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847
B2_ 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
B3_ 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879
BL 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895
B5_ 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911
B6_ 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B7 - 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943
B8_ 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
B9_ 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BA_ 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991
BB - 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007
Be 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023
BD_ 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BE - 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055
BL 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071

0 1 2 3 4 5 6 7 8 9 A B C D E F

CO_ 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087
CL 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103
C2_ 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119
C3 - 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135
C4_ 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151
C5_ 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167
C6_ 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183
C7 - 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199
C8_ 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
C9_ 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CA_ 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CB_ 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263
CC_ 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279
CD_ 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295
CE_ 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
CL 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327
DO_ 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
Dl -- 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359
D2_ 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375
D3 - 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391
DL 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
D5_ 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D6_ 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
DL 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455
D8_ 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 D9_ 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 DA_ 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DB_ 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
DC_ 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535
DD - 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DE - 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567
DL 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

F-4 System/370 Principles of Operation

0 1 2 3 4 5 6 7 8 9 A B C D E F

EO_ 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599
EL 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615
E2_ 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E3_ 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647

EL 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
E5_ 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679
E6_ 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695
EL 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711
E8_ 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
E9_ 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EA..... 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EB_ 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 .3770 3771 3772 3773 3774 3775
EC_ 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
ED_ 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EE_ 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823
EL 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839

FO_ 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
FL 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871
F2_ 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887
F3_ 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903
FL 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
F5_ 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
F6_ 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
FL 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967
F8_ 3968 3969 3970 3971 3912 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
F9_ 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
FA_ 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015
FB_ 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031
FC_ 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047
FD_ 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
FE_ 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079
FL 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095

Appendix F. Hexadecimal Tables F-S

Conversion Table: Hexadecimal and Decimal Integers

HALFWORD

BYTE BYTE

BITS: 0123 4567 0123 4567

Hex Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 \1 0 0 0 0 0
1 268,435,456 1 16,m,216 1 1 048 576 1 65 536
2 531>;870,912 2 33,554,432 2 2,097,152 2 131,072
3 ROS 306,368 3 50 331 648 3 3 145 728 3 196 608
4 I 07J,741 814 4 67 108 864 4 4 194 304 4 262 144
5 1,342,177,280 5 83,886,080 5 5,242,880 5 327,680
6 1,610,612,736 6 100,663,296 6 6,291,456 6 393,216
7 1,879,048,192 7 117,440,512 7 7 340,032 7 458 752
8 2,1.47,483,648 8 134,217,728 8 8,388,608 8 524 288
'I l,41!>,'1I'1,104 'I 150,994,944 9 9,4J7,184 9 589 824
A 2,684,354,560 A 167,772,160 A 10,485,760 A 655,360
B 2,952,790 016 B 184 549 376 B 11 534 336 B 721l 896
C 3 221 225 472 C 201 326 592 C 12 582 912 C 786432
D 3 489 660 928 D 218,103 808 D 13 631 488 0 851 968
E 3,758,096,384 E 234,881,024 E 14,680,064 E 917,504
F I 4, UlO, !>J 1 ,l!4U f l!>I,658,l4U F 15,728,040 F 983,040

8 7 6 5

TO CONVERT HEXADECIMAL TO DECIMAL
EXAMPLE

1. Lo~"te the calumn af decimal numbers carresponding ta Canversion of
the left-most digit or letter of the hexadecimal; select Hexadecimal Value
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter. 1. 0

2. Repeot step 1 for the next (second from the left)
2. 3 position.

3. Repeot step 1 for the units (third from the left) 3. 4
position .

4. Add the numbers selected from the table to form the
4. Decimal

decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL
EXAMPLE

1. (a) Select from the table the highest decimal number Conversion of that is equal to or less than the number to be con-
Decimal Value verted.

(b) Record the hexadecimal of the column containing
1. 0 the se lected number.

(c) Subtract the selected decimal from the number to
be converted. 2. 3

2. Using the remainder from step 1(c) repeat all of step 1
to develop the second position of the hexadecimal
(and a remainder). 3. 4

3. Using the remainder from step 2 repeat all of step 1 to 4. Hexadecimal
develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

POWERS OF 16 TABLE

Example: 268,435,45610 = (2.68435456 x 108)10 = 1000 000016 = (107)16

16n

1
16

256
4 096

65 536
1 048 576

16 m 216
268 435 456

4 294 967 296
68 719 476 736

1 099 511 627 776
17 592 186 044 416

281 474 976 710 656
4 503 599 627 370 496

72 OS7 594 037 927 936
,1 152 921 504 606 846 976

y
Decimal Values

o
1
2
3
4
5
6
7
8
9

10 =A
11 = B
12 =C
13 = 0
14 = E
15J= F

F-6 System/370 Principles of Operation

Hex

0
1
2
3
4
5
6
7
8
9
A
B
C
0
E
F

034

3328

48

4

3380

3380

-3328
----s2

-48
--4

-4

034

HALFWORD

BYTE BYTE

0123 4567 0123 4567

Decimal Hex Decimal Hex Decimal Hex Decimal

0 0 0 0 0 0 0
4096 1 256 1 16 1 1
8,192 2 512 2 32 2 2
12,288 3 168 3 48 3 3
16384 4 1 024 4 64 4 4
20,480 5 1,280 5 80 5 5
24,576 6 1,536 6 96 6 6
28,672 7 1,792 7 112 7 7
32768 8 2048 8 128 8 8
36 864 9 2 304 'I 144 9 9
40 960 A 2,560 A 160 A 10
45 056 B 2816 B 176 B 11
49152 C 3072 C 192 C 12
53 248 0 3328 D 208 0 13
57344 E 3,584 E 224 E 14
61,440 F 3,840 F l4U F 15

4 3 2 1

To convert integer numbers greater than the capacity of
table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units position.

Example: 03416 = 338010

DECIMAL TO HEXADECIMAL

0= 13
~
208

3 = + 3
2i1
x16

3376
4= +4

3380

Divide and collect the remainder in reverse order.

Conversion Table: Hexadecimal and Decimal Fractions

BYTE

BITS 0123 4567

Hex Decimal Hex Decimal Hex

.0 .0000 .00 .0000 0000 .000 .0000

.1 .0625 .01 .0039 0625 .001 .0002

.2 .1250 .02 .0078 1250 .002 .0004

.3 .1875 .03 .0117 1875 .003 .0007

.4 .2500 .04 .0156 2500 .004 .0009

.5 .3125 .05 .0195 3125 .005 .0012

.6 .3750 .06 .0234 3750 .006 .0014

.7 .4375 .07 .0273 4375 .007 .0017

.8 .5000 .08 .0312 5000 .008 .0019

.9 .5625 .09 .0351 5625 .009 .0021

.A .6250 .OA .0390 6250 .OOA .0024

.B .6875 .08 .0429 6875 .008 .0026

.C· .7500 .OC .0468 7500 .OOC .0029

.0 .8125 .00 .0507 8125 .000 .. 0031

.E .8750 .OE .0546 8750 .OOE .0034

.F .9375 .OF .0585 9375 .OOF .0036

1 2

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find.A in position 1 .6250

Find .OB in position 2 .0429 6875

Find .OOC in position 3 .0029 2968 7500

• ABC Hex is equal to .6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

HALFWORD

3

BYTE

0123 4567

Decimal Hex Decimal Equivalent

0000
4414
8828
3242
7656
2070
6484
0898
5312
9726
4140
8554
2968
7382
1796
6210

0000 .0000 .0000 0000 0000 0000
0625 .0001 .0000 1525 8789 0625
1250 .0002 .0000 3051 7578 1250
1875 .0003 .0000 4577 6367 1875
2500 .0004 .0000 6103 5156 2500
3125 .0005 .0000 7629 3945 3125
3750 .0006 .0000 9155 2734 3750
4375 .0007 .0001 0681 1523 4375
5000 .0008 .0001 22(Jl 0312 0000
5625 .0009 .0001 3732 9101 5625.
6250 .OOOA .0001 5258 7890 6250
6875 .OOOB .0001 6784 6679 6875
7500 .OOOC .0001 8310 5468 7500
8125 .0000 .0001 9836 4257 8125
8750 .OOOE .0002 1362 3046 8750
9375 .OOOF .0002 2888 1835 9375

4

Ta convert fractions beyond the capocity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Canvert the hexodecimal fractian to its decimal equivalent using the same
technique as for integer numbers. Divide the results by 16n (n is the
number of fractian positions) .
Example: .8A7 = .54077110

8A716 = 221510

163 = 4096 409612215.000000
1. Find .1250 next lowest to

subtract
.1300

-.1250 = .2 Hex

2 . Find. 0039 0625 next lowest to .0050 0000
-.00390625 = .01

3. Find.OOO9 7656 2500 .00109375 0000
-.0009 '7656 2500 = .004

4. Find .0001 0681 1523 4375 .0001 1718 7500 0000
-.0001 0681 1523 4375 = .0007

.0000 1037 5976 5625 = .2147 Hex

5 .• 13 Decimal is appraximately equal to _______ --CJ+

DECIMAL FRACTION TO HEXADECIMAL

Collect integer ports of product in the order of calculation.

Example:

1
8~

A

7 --

.540810 = .8A716

.5408
x16

[]J.6528
x16

[Q].4448
x16

[].1168

Appendix F. Hexadecimal Tables F-7

HeXildecimal Addition and Subtraction Table

Excmple: 6 + 2 = 8, 8 - 2 .. 6, and 8 - 6 = 2

1 2 3 4 5 6 7 8 9 A 8 C 0 E F

1 02 03 04 05 06 07 08 09 OA 08 OC OD OE OF 10

2 03 04 05 06 07 08 09 OA OB OC 00 OE OF 10 11

3 04 05 06 07 08 09 OA 08 OC OD OE OF 10 11 12

4 05 06 07 OB 09 OA 08 OC OD OE OF 10 11 12 13

5 06 07 08 09 OA 08 OC OD OE OF 10 11 12 13 14

6 07 08 09 OA 08 OC OD OE OF 10 11 12 13 14 15

7 08 09 OA 08 OC 00 OE OF 10 11 12 13 14 15 16

8 09 OA 08 OC OD OE OF 10 11 12 13 14 15 16 17

9 OA 08 OC OD OE OF 10 11 12 13 14 15 16 17 18

A 08 OC OD OE OF 10 11 12 13 14 15 16 17 18 19

8 OC OD OE OF 10 11 12 13 14 15 16 17 18 19 lA

C OD OE OF 10 11 12 13 14 15 16 17 18 19 lA 18

0 OE OF 10 11 12 13 14 15 16 17 18 19 IA 18 lC

E OF 10 11 12 13 14 15 16 17 18 19 IA 18 IC 10

F 10 11 12 13 14 15 16 17 18 19 lA 18 lC 10 IE

HeXildecimal Multiplication· Table
Example: 2 x 4 = 08, F x 2 = 1 E

1 2 3 4 S 6 7 8 9 A 8 C 0 E F

1 01 02 03 04 05 06 07 08 09 OA 08 oc OD OE OF

2 02 04 06 08 OA oc OE 10 12 14 16 18 lA lC IE

3 03 06 09 oc OF 12 15 18 18 IE 21 24 27 2A 20

4 04 08 oc 10 14 18 lC 20 24 28 2C 30 34 38 3C

5 05 OA OF 14 19 IE 23 28 20 32 37 3C 41 46 48

6 06 oc 12 18 IE 24 2A 30 36 3C 42 48 4E 54 SA

7 07 OE IS lC 23 2A 31 38 3F 46 40 54 58 62 69

8 08 10 18 20 28 30 38 40 48 SO 58 60 68 70 78

9 09 12 18 24 20 36 3F 48 51 SA 63 6C 75 7E 87

A OA 14 IE 28 32 3C 46 SO SA 64 6E 78 82 8C 96

8 08 16 21 2C 37 42 4D 58 63 6E 79 84 8F 9A AS

C oc 18 24 30 3C 48 54 60 6C 78 84 90 9C III. B4

0 OD lA 27 34 41 4E 58 68 75 82 8F 9C A9 B6 C3

E OE lC 2A 38 46 54 62 70 7E 8C 9A III. B6 C4 02

F OF IE 20 3C 48 SA 69 78 87 96 AS B4 C3 02 El

F-8 System/370 Principles of Operation

Appendix G. EBCDIC Chart

Extended Binary-Coded-Dec;mallnterchange
Code (EBCDIC)

The 256-position EBCDIC table, outlined by the heavy
black lines, shows the graphic characters and control char­
acter representations for EBCDIC. The bit-position numbers,
bit patterns, hexadecimal representations and card hole
patterns for these and other possible EBCDIC characters are
also shown.

To find the card hole patterns for most characters, parti­
tion the 256'position table into four blocks as follows:

1 3

2 4

Block 1: Zone punches at top of table;
digit punches at left

Block 2: Zone punches at bottom of table;
digit punches at left

Block 3: Zone punches at top of table;
digit punches at right

Block 4: Zone punches at bottom of table;
digit punches at right

Fifteen positions in the table are exceptions to the above
arrangement. These positions are indicated by small num­
bers in the upper right corners of their boxes in the table.
The card hole patterns for these positions are given at the
bottom of the table. Bit-position numbers, bit patterns, and
hexadecimal representations for these positions are found in
the usual manner.

Following are some examples of the use of the EBCDIC
chart:

Choracter Type

PF Control Character
% Soecial G<oohic
R Up"d: ...
a Lower eas.

ContrOl Character I
function not yet
assigned

Bit Pattern

00000100
01101100
II 01 1001
000000

00 II 0000

-­Bit Positions
01 234567

Hex

04
6C
D9
81
30

Hoi. Pattern

Zo,. Pund ... I Digit Punchet

l:i - 9'- 4
0-8-4

11,- 9
12 - 0'- I

12 - II - 0 - 9,- 8 - I
I
I

Appendix G. EBCDIC Chart G-I

.0,

" ",' -;;
",'

E
·0

..,.' 1 c
0 :l!
"' ~ g

'" ~

0000

0001

0010 DC2 FS

0011 DC3 WUS

0100 RES/ BYP/
ENP INP

0101 NL LF

0110 BS ETB

0111 ESC

1000 CAN SA

1001 EM

1010 UBS SM/SW

lOll CUI CSP

1100 IFS MFA

1101 IGS ENQ

1110 IRS ACK

1111

Cord Hole PoHerns

CD 12-0-9-8-1 CD
CD 12-11-9-6-1 CD

~
11-0-9-8-1 CD
12-11-0-9-8-1 CD

Control Character Repre~ntotion5

ACK Acknowledge ETB
BEL Bell ETX
85 Bcckspoce FF
BYP/IN? Byposs/lnhibit Presentation FS
CAN Cance 1 GE
CR Carriage Return HT
CSP Control Sequence Prefix IF5
CUI Customer Use 1 IGS
CU3 Customer Use 3 lR
DCI Device Control 1 IRS
DC2 Devi ce Control 2 1T

SYN

IR

PP

TRN

NBS

EOT

SBS

IT

RFF

CU3

DC4 < %

NAK

>

No Punchl!s CD
12 @
11 ®
12-11-0 @

End of' Transmission Btock
End of Text
Form Feed
Field Separator
Graphi c Escape
Horiz.ontal Tab
Interchange Fi Ie SefXlrator
Interchange Group Separotor
Index Return
Interchange Record Separator
Indent Tab

OC3 Device Control 3 IUS/ITB Interchange Unit Separator/
Intermediate Transmission Block
Line Feed

DC4 Device Control 4
DEL Delete IF
OLE Octo link Escape MFA
OS Digit Select NAK
EM End of Medium NBS
ENQ Enquiry NL
EO Eight One'S NUL
EOT End of Transrpission POC
ESC Escape

PP

Modify Field Attribute
Negative Acknowledge
Numeric Backspace
New Line
Null
Progrom- Opera tor
Communication
Presenta tion Posi tion

G-2 System/370 Principles of Operation

(q.

12-0

11-0

0-8-2

RES;1'NP

RFF
RNL
RPT
SA
SBS
SEL
SI
SM/SW
SO
SOH
SOS
SP
SPS
STX
SUB
SYN
UBS
VT
WUS

C

D M U

N V

0 W

G X

H Q Y

Z

J rI

'r'

® 0-1

@ 11-0-9-1

® 12-11

Res tore IE nob Ie
Presentation
Required Form Feed
Required New Line
Repeat
Set Attribute
Subscript
Select
Shift In
Set Mode/Switch
Shift Out
Start of Heading
Stort of Signi fi conce
Space
Superscript
Stort of Text
Substi tute
Synchronous Idle
Unit Backspace
Vertical Tab
Word Underscore

<

I
&

I

%

Cent Sign
Period, Decimal Point
Le$s-thon Sign
Left Parenthesis
Pius Sign
Logical OR
Ampersand
Exclamation Point
001101' Sign
Asterisk
Right Palerlthesis
Semicolon
Logical NOT

Minus Sign, Hyphen
Slash

Vertical Une
Comma
Percent
Underscore

} firH Hexadecimal Digit

> Greater-than Sign
Question Mark
Grave Accent
Colon ,
Number Sign

@ At Sign
Prime I Apostrophe
Equal Sign
Quotation fv\ark

Tilde

I Opening Broce

J' Hook
~ Fork
) Closing Brace

Reverse Slant
Chair
Long Verti col Mork

Appendix H. Changes Affecting Compatibility between
System/360 and System/370

Contents

Removal of USASCII-8 Mode H-l
Operation Code for Halt Device and for Clear Channel H-l
Logout H-l
Command Retry H-2
Channel Prefetching H-2
Validity of Data H-2

This appendix summarizes those changes included
in the System/370 architecture that may affect
whether or not a program written according to the
System/360 architecture runs on machines
implementing the System/370 architecture
described in this publication. Not included are
descriptions of System/370 functions which are
compatible extensions-that is, (1) those that are
suppressed on initialization, such as block
multiplexing, and (2) those that are specified in
such a manner that they cause program exceptions
on System/360, such as new instructions.

Removal of USASCII-8 Mode
System/360 provides for USASCII-8 by a mode
under control of PSW bit 12. USASCII-8 was a
proposed zoned-decimal code that has since been
rejected. When bit 12 of the System/360 PSW is
one, the preferred codes for the USASCII-8 are
generated for decimal results. When PSW bit 12 is
zero, the preferred codes for EBCDIC are
generated.

In System/370, the USASCII-8 mode and the
associated meaning of PSW bit 12 are removed. In
System/370, all instructions whose execution in
System/360 depends on the setting of PSW bit 12
are executed generating the preferred codes for
EBCDIC.

Bit 12 of the PSW is handled in System/370 as
follows:
• In models that do not have the extended-control

(EC) mode installed, a one in PSW bit position
12 causes a program interruption for
specification exception.

• In models that have the EC mode installed, a
one in PSW bit position 12 causes the CPU to
operate in the EC mode.

Operation Code for Halt Device and for
Clear Channel
In System/370, the first eight bits of the operation
code assigned to HALT DEVICE (HDV) are the
same as those assigned to HALT I/O (HIO), the
distinction between the two instructions being
specified by bit position 15. In System/360, bit
position 15 is ignored, and the HIO function is
performed for both instructions.

In System/370, the first eight bits of the
operation code assigned to CLEAR CHANNEL
(CLRCH) are the same as those assigned to TEST
CHANNEL (TCH), the distinction between the
two instructions being specified by bit position 15.
In System/360, and also in those System/370
machines which do not have CLRCH installed, bit
position 15 is ignored, and the TCH function is
performed for both instructions.

Logout
In System/360, the logout area starts with location
128 and extends through as many locations as the
given model requires. Portions of this area are
used for machine-check logout, and other portions
may be used for channel logout. While no limit is
set on the size of the logout area, the extent of the
area used on most System/360 models is less than
that stored by a comparable System/370 model.

On System/370, the machine-check interruption
causes information to be stored at locations

Appendix H. Changes Affecting Compatibility between System/360 and System/370 H-l

216-239,248-255, and 352-511. Additionally, the
model may store logout information in the fixed
logout area, locations 256-351, and the model may
also have a machine-check extended logout
(MCEL) area, which, on initialization, is specified
to start at location 512. Channels may place
logout information in the limited channel logout
area, locations 176-179, and in the fixed logout
area, locations 256-351.

In System/360, logout is not permitted on data
check. System/370 permits logout to occur when
the channel causes an I/O interruption with the
data-check indication.

Command Retry
System/370 channels may provide command retry,
whereby the channel, in response to a signal from
the device, can retry the execution of a channel
command. Since 1/ 0 devices announced prior to
System/370 do not signal for command retry, no
problem of compatibility exists on these devices.
However, some new devices, which would
otherwise be compatible with former devices, do
signal for command retry.

The effects of command retry usually are not
significant; however, the following is a list of some
of the differences which command retry can cause:

H-2 System/370 Principles of Operation

1. An immediate command specifying no chaining
may result in setting condition code ° rather
than condition code 1.

2. Multiple PCI interruptions may be generated
for a single CCW with the PCI flag.

3. Since CCWs may be refetched, programs which
dynamically modify CCWs may be affected.

4. The residual count in the CSW reflects only the
last execution of the command and does not
necessarily reflect the maximum storage used in
previous executions.

Channel Pre/etching
In System/360, on an output operation, as many as
16 bytes may be prefetched and buffered; similarly,
with data chaining specified, the channel may
prefetch the new CCW when up to 16 bytes remain
to be transferred under control of the current
CCW. In System/370, the restriction of 16 bytes
is removed.

Validity 0/ Data
In System/360, the contents of main storage are
preserved when power is turned off. In
System/370, because main storage may be volatile
or nonvolatile, the program must not depend on the
validity of data in main storage after system power
has been lost or turned off and then restored.

Appendix I. Changes Affecting Compatibility
within System/370

Contents

READ DIRECT and WRITE DIRECT 1-1
Store Accesses 1-1
Fetch Access 1-1
Operand-Access Consistency 1-2
Change Bit 1-2
Subchannel Interruption State 1-2

This appendix summarizes those changes included
in the System/370 architecture that may affect
whether or not a program written according to the
original System/370 architecture runs on machines
implementing the architecture described in this
publication. Not included here are descriptions of
compatible extensions, such as new facilities
incorporated in System/370 that make use of
unassigned operation codes and format.

READ DIRECT and WRITE DIRECT
When the instruction INVALIDATE PAGE
TABLE ENTRY is installed, the following changes
apply:
• Both READ DIRECT and WRITE DIRECT are

changed to use real instead of logical addresses.
• Program-event recording does not apply to the

storage alteration performed by READ DIRECT.

Store Accesses
The following changes are made as to when an
access to storage for storing can take place.
• When the execution of the instruction is nullified

or suppressed because of certain program
exceptions, an update may occur at the operand
location. Originally no storage access was
permitted. In some of these situations, the
channel may observe intermediate results which
differ from the final result. See the section
"Exceptions to Nullification and Suppression" in
Chapter 5, "Program Execution."

• When the mask in STORE CHARACTERS
UNDER MASK is zero, an update may occur at

the byte location designated by the operand
address. Originally no storage access was
permitted.

• When the result of comparison in COMPARE
AND SWAP or COMPARE DOUBLE AND
SWAP is unequal, an update may occur at the
operand location. Originally no storage access
was permitted.

• When the result of the store operation is defined
to be unpredictable, such as for STORE CLOCK
with the clock in the error state, the store access
may be omitted.

Whether or not a store access takes place is
visible to the program in four ways: an access
exception may be indicated, the change bit may
be set, a PER storage-alteration event may be
indicated, and, for stores that are part of an
update, the channel may observe the distinct
accesses for fetching and storing. The fetch and
store parts of an update appear interlocked to
another CPU.

Fetch Access
Originally the definition required that, with the
exception of some compare instructions, access
exceptions on fetching be indicated for the unused
portion of an operand. The changed definition
permits the indication of the access exception for
the unused parts to be unpredictable, except that an
access exception still must be indicated for TEST
UNDER MASK, INSERT CHARACTERS UNDER
MASK, and COMPARE LOGICAL

Appendix I. Changes Affecting Compatibility within System/370 1-1

CHARACTERS UNDER MASK when the mask is
zero.

Operand-A.ccess Consistency
Originally the access for the operand of LOAD
MUL TIPLE was specified to be
doubleword-concurrent; that is, all bytes within a
doubleword appear to all CPUs to be accessed
concurrently. This definition is changed to require
doubleword concurrency only if the operand is
designated on a word boundary.

The restriction is removed that, during the
padding portion of a MOVE LONG execution,
another CPU can observe the operand to be stored
only once and only in the left-to-right sequence.

Change Bit
Originally the System/370 architecture specified
that the change bit be set to one each time
information is stored in the corresponding storage
block. This definition is changed as follows:
• The change bit now is necessarily set to one only

when the contents of the corresponding storage
block are changed. In situations where
execution of the instruction can be completed
without making a store access, such as in MOVE
(MVC) with coincident operands or in OR (01)
with an immediate operand of zeros, the change

1-2 System/370 Principles of Operation

bit may be unaffected. However, even when the
change bit is not set, any applicable access
exceptions or PER storage-alteration events are
still indicated.

• The change bit may be set to one as a result of
those situations described in the section "Store
Accesses" in this appendix.

•. Because of CPU retry, the change bit may be set
to one for locations which the program has not
accessed.

Subchannel Interruption State
Originally only status associated with the
termination of an I/O operation could cause the
subchannel to enter the interruption-pending state.
Status not associated with the termination of an
I/O operation was held pending. at the device, and
the subchannel would be available. The changed
definition allows status not associated with the
termination of an I/O operation to be accepted
into the subchannel. As a result of this change, a
subchannel that is shared among mUltiple devices
may cause condition code 2 to be returned to a
START I/O or TEST I/O instruction even if no
previous ST ART I/ 0 had been issued to the
addressed device. This busy state persists until the
interruption condition is cleared.

Index

a
"absolute address 3-3
absolute storage 3-4

assigned locations in 3-24
access-control bits 3-4
access exceptions 6-17

priority of 6-19
access key 3-4
ADD (A,AR) binary instructions 7-4
ADD DECIMAL (AP) instruction 8-4

example A-25
ADD HALFWORD (AH) instruction 7-4

example A-6
ADD LOGICAL (AL,ALR) instructions 7-4
ADD NORMALIZED (AD,ADR,AE,AER,AXR)

instructions 9-5
example A-30

ADD UNNORMALIZED (AU,AUR,AW,AWR)
instructions 9-7

example A-30
address

arithmetic, unsigned binary 7-3
base 5-4
channel-set 4-33
comparison 13-1

effect on CPU state 4-2
CPU 4-28
failing-storage (see failing-storage address)
format 3-2
generation 5-3

for storage addressing 3-2
I/O (channel/device) (see I/O, address)
invalid 6-12
numbering of byte locations 3-2
PER 4-9
summary information 3-20
transformation 3-3

by DAT 3-8
by prefixing 3-6

translation (DAT) 3-8
by LOAD REAL ADDRESS instruction 10-7
control of 3-9

type of 3-3
wraparound 3-2

address-compare controls 13-1
address space 3-8
addressing exception 6-12

as an access exception 6-17
alert

as class of machine-check conditions 11-8
error (in limited channel logout) 12-60

allowed interruptions 6-4
alter-and-display controls 13-2
alteration

general-register (PER event) 4-11
storage (PER event) 4-11

AND (N,NC,NI,NR) instructions 7-7
examples A-6

arithmetic
binary 7-3
decimal (see decimal instructions)
floating-point (see floating-point, instructions)
logical (see unsigned binary arithmetic)

assembler language A-6
instruction formats in (see individual instruction

descriptions)
assigned storage locations 3-22
asynchronous logout 11-19
attached TLB entry 3-16
attachment of I/O devices 12-2
attention (I/O unit status) 12-48
auxiliary storage (see storage, auxiliary)
available state (I/O system) 12-9

b
B field of instruction 5-4
backed-up bit 11-13
backup condition 11-13
base address 5-4

register 2-3
basic control (see BC mode)
BC (basic-control) mode 4-3

program conversion to EC mode 10-12
PSW format in 4-5

binary
(see also fixed point)
arithmetic 7-3
negative zero 7-2
number representation 7-2

examples A-2
one's complement for 7-2, 7-2

overflow 7-3
example A-2

sign bit 7-2
binary-to-decimal conversion 7-15
block-concurrent storage references 5-13
block-multipl'exer channel 12-4
block-multiplexing control 12-4

effect on CLEAR I/O instruction 12-16
effect on START I/O FAST RELEASE instruction

of 12-21
block of I/O data 12-27

incorrect length for 12-52
self-describing 12-31

block of storage 3-3
(see also page)

borrow 7-33
boundary alignment 3-2

for instructions 5-2
branch address 5-4

Index X-I

BRANCH AND LINK (BAL,BALR) instructions 7-7
example A-7

BRANCH ON CONDITION (BC,BCR) instructions 7-8
example A-7

BRANCH ON COUNT (BCT,BCTR) instructions 7-9
example A-8

BRANCH ON INDEX HIGH (BXH) instruction 7-9
example A-8

BRANCH ON INDEX LOW OR EQUAL (BXLE)
instruction 7-9

branching 5-4
buffer storage (cache) 3-1
burst mode (channel operation) 12-3
bus-out check (bit in I/O-sense data) 12-38
busy

as CPU state 4-30
as I/O unit status 12-49
in I/O operations 12-6

byte 3-2
byte index 3-8
byte-multiplex mode (channel operation) 12-3
byte-multiplexer channel 12-4
byte-oriented-operand feature 3-3

C
cache 3-1
CAl (channel-available interruption) 12-45
carry 7-2
CAW (channel-address word) 12-27

assigned storage location for 3-22
in initial program loading 4-26

CBC (checking-block code) 11-2
in registers 11-6
in storage 11-4
in storage keys 11-4

CC (chain-command) flag in CCW 12-28
CCW (channel-command word) 12-28

address in CAW 12-28
address in CSW 12-47

contents of 12-56
validity flag for 12-60

command code 12-29
in initial program loading 4-26

assigned storage locations for 3-24
prefetching of 12-30
role in I/O operations 12-5

CD (chain-data) flag in CCW 12-28
central processing unit (see CPU)
chain-command (CC) flag in CCW 12-28
chain-data (CD) flag in CCW 12-28
chaining 12-30
chaining check (channel status) 12-55
change bit 3-4
change recording 3-6

X-2 System/370 Principles of Operation

channel 2-3, 12-3
address (see I/O, address)
address word (CAW) 12-27
block-multiplexer 12-4
byte-multiplexer 12-4
command word (see CCW)
commands (see commands)
control check 12-54
data check 12-54
end (I/O unit status) 12-49
equipment error 12-11
identification (ID) 12-24

assigned storage location for 3-23
in I/O-communication area 12-59

indirect data addressing 12-34
feature D-2
role in I/O operations 12-6

logout 12-57
masks 6-10

difference between EC and BC modes 4-3
in BC-mode PSW 4-5

model and type 12-24
multiplexer 12- & 12A114.
not operational (I/O-system state) 12-10

bit in external-damage code 11-17
program 12-5
programming error 12-12
selector 12-4
serialization 5-16
status 12-52
status word (CSW) 12-46
timeout 12-4
working (I/O-system state) 12-10

channel-available interruption (CAl) 12-45
channel-control failure (bit in external-damage

code) 11-17
channel set 2-3, 4-32

address 4-33
resetting of connections for 4-25
switching feature D-2

channel-to-channel adapter 12-2
characteristic (of floating-point number) 9-1
check bits 3-2, 11-2
check control 13-2
check stop 11-7

as signal-processor status 4-31
indicator 13-2
state 4-1

control bit for 11-10, 11-19
due to malfunctioning manual operation 13-1
effect on CPU timer 4-20
entering of 11-7, 11-10
malfunction alert when entering 6-10
manual control for 13-2

checking block 11-2
code (see CBC)

checkpoint 11-2
CLEAR CHANNEL (CLRCH) instruction 12-15
CLEAR I/O (CLRIO) instruction 12-15
clear-I/O feature D-2
clear reset 4-25
clearing operation

by clear-reset function 4-25
by load-clear key 13-3
by system-reset-clear key 13-4

clock (see time-of-day clock)
clock comparator 4-19

as part of feature D-2
external interruption 6-8
machine-check save area for 3-24
validity bit for 11-15

clock unit 4-18
code

checking-block 11-2
command 12-29
condition (see condition code)
decimal digit and sign 8-1
external-damage 11-16

validity bit for 11-15
instruction-length (see instructions, length code)
interruption 6-4
monitor 6-14
operation 5-1
PER 4-9
region 11-18

validity bit for 11-15
version 10-14

commands (I/O) 12-35
chaining of 12-33

during initial program loading 4-26
code in CCW 12-29
control 12-37
read 12-36
read backward 12-36
rejection of 12-40

bit in I/O-sense data 12-38
retry of 12-39

feature for D-3
sense 12-37
transfer in channel 12-39
write 12-36

commercial instruction set D-l
common-segment bit 3-10
communication area, I/O 12-59
COMPARE (C,CR) binary instructions 7-10
COMPARE (CD,CDR,CE,CER) floating-point

instructions 9-7
example A-30

COMPARE AND SWAP (CS) instruction 7-10
examples A-33

COMPARE DECIMAL (CP) instruction 8-4
example A-25

COMPARE DOUBLE AND SWAP (CDS)
instruction 7 -10

COMPARE HALFWORD (Cm instruction 7-12
example A-9

COMPARE LOGICAL (CL,CLC,CLI,CLR)
instructions 7 -12

examples A-9
COMP ARE LOGICAL CHARACTERS UNDER MASK

(CLM) instruction 7-12
example A-lO

COMPARE LOGICAL LONG (CLCL) instruction 7-13
example A-II

comparison
address 1 3-1
decimal 8-4
floating-point 9-7
logical 7-3
signed-binary 7-3
time-of-day-clock 4-19

compatibility 1-2
I/O operation 12-7
of BC-mode PSW with System/360 4-3

completion of instruction 5-5
conceptual sequence 5-8

effect on storage-operand accesses 5-14
conclusion of I/O operations 12-40
concurrency of storage references 5-13
condition code 5-5

deferred 12-11
for SIOF function 12-23
in CSW 12-47

for I/O operations 12-11
in PSW 4-4, 4-6
tested by BRANCH ON CONDITION instruction 7-8
validity bit for 11-15

conditional-swapping feature D-2
conditions

interruption 6-1
I/O 12-44
program 6-12

CONNECT CHANNEL SET (CONCS) instruction 10-3
connection of channels (see channel set)
connective (see logical, connective)
consistency (storage operand) 5-13
console device 13-1
control 4-1

as an I/O command 12-37
instructions 10-1
manual (see manual operations)
register 2-3

description and assignments 4-6
machine-check save area for 3-24
validity bit fQr 11-15

control unit 2-4, 12-2
end (I/O unit status) 12-48
sharing of 12-5

Index X-3

conversion
binary-to-decimal 7-15
decimal-to-binary 7-14
floating-poi nt-number

basic example A-5
instruction-sequence examples A-31

of program from BC to EC mode 10-12
CONVERT TO BINARY (CVB) instruction 7-14

example A-12
CONVERT TO DECIMAL (CVD) instruction 7-14

example A-12
count field

in CCW 12-28
in CSW 12-47

contents of 12-56
counter updating (example) A-34
counting operations 7-9
CPU (central processing unit) 2-2

address 4-28
assigned storage location for 3-23
when stored during external interruptions 6-7

checkpoint 11-2
hangup due to string of interruptions 4-2
identification (ID) 10-14
model number 10-14
power-on reset 4-26
registers 2-2

save area for 3-23
reset 4-24

as signal-processor order 4-29
retry 11-2
serialization 5-15
signaling 4-28
state 4-1
" no effect on time-of-day clock 4-16

timer 4-19
as part of feature D-2
external interruption 6-8
machine-check save area for 3-24
validity bit for 11-15

version code 10-14
CR (see control, register)
CSW (channel-status word) 12-46
current PSW 4-3, 5-5

stored during interruption 6-1

d
D field of instruction 5-4
damage

code, external 11-16
validity bit for 11-15

external 11-12
mask bit for 11-19

instruction-processing 11-11
interval-timer 11-12
processing 11-13
system 11-11
timing-facility 11-12

X-4 System/370 Principles of Operation

DAT (see dynamic address translation)
DAT mode (bit in PSW) 4-4

use in address translation 3-9
data

chaining of (I/O) 12-31
check (bit in I/O-sense data) 12-38
exception 6-12
format for

decimal instructions 8-1
floating-point instructions 9-2
general instructions 7-1

I/O-sense 12-38
prefetching for output operation 12-30

decimal
comparison 8-4
digit codes 8-1
divide exception 6-13
instructions 8-1

examples A-25
number representation 8-1

examples A-3
operand overlap 8-3
overflow

exception 6-13
mask in PSW 4-5,4-6

rounding and shifting 8-10
sign codes 8-1

decimal-to-binary conversion 7-14
decision making 5-5
deferred condition code (see condition code, deferred)
degradation (machine-check condition) 11-12

mask bit for 11-19
delay, in storing 5-12
deletion, of malfunctioning unit 11-2
designation (origin and length), page table 3-10
destructive overlap 5-14, 7-21
detect field (in limited channel logout) 12-59
device (see I/O, device)

address (see I/O, address)
console 13-1

DIAGNOSE instruction 10-3
digit codes (decimal) 8-1
digit selector 8-6
direct-access storage 3-1
direct control 4-15

feature D-l
disabling

for interruptions 6-4
of interval timer 4-21

disallowed interruptions 6-4
DISCONNECT CHANNEL SET (DISCS)

instruction 10-4
displacement 5-4
display (manual controls) 13-2
DIVIDE (D,DR) binary instructions 7-15

example A-13
DIVIDE (DD,DDR,DE,DER) floating-point

instructions 9-8

DIVIDE DECIMAL (DP) instruction 8-5
example A-26

divide exception
decimal 6-13
fixed-point 6-13
floating-point 6-14

doubleword 3-2
concurrency of reference 5-13

dump, standalone 13-4
dynamic address translation (OAT) 3-8

mode bit in PSW 4-4
sequence of table fetches 5-11

e
early exception recognition 6-6
EC (extended-control) mode 4-3

control bit in PSW 4-4, 4-5
ECC (error checking and correction) 11-2
EDIT (ED) instruction 8-5

example A-26
EDIT AND MARK (EDMK) instruction 8-9

example A-27
editing instructions 8-3
effective address, used for storage interlocks 5-9
emergency signal

as signal-processor order 4-28
external interruption 6-9

enabling (for interruptions) 6-4
epoch (for time-of-day clock) 4-17
equipment check

as signal-processor status 4-31
bit in I/O-sense data 12-38

error
alert (in limited channel logout) 12-60
channel-equipment 12-11
channel-programming 12-12
checking and correction 11-2
device 12-13
effect of DIAGNOSE instruction 10-3
in PSW format 6-6
intermittent 11-3
state of time-of-day clock 4-17
storage 11-13
storage-key 11-14

event 6-11
PER 4-8

EX (EXECUTE) (see EXECUTE instruction)
exception, privileged-operation, for I/O

instructions 12-27

exceptions 6-11
access 6-17
addressing 6-12
associated with PSW 6-6
data (decimal) 6-12
decimal-divide 6-13
decimal-overflow 6-13
early recognition of 6-6
execute 6-13
exponent-overflow 6-13
exponent-underflow 6-13
fixed-point-divide 6-13
fixed-point-overflow 6-14
f1oating-point-divide 6-14
for invalid translation addresses and formats 3-14
late recognition of 6-7
operation 6-14
page-translation 6-15
privileged-operation 6-15
protection 6-15
segment-translation 6-16
significance 6-16
special-operation 6-16
specification 6-16
translation-specification 6-17

EXCLUSIVE OR (X,XC,XI,XR) instructions 7-15
examples A-13

EXECUTE (EX) instruction 7-16
effect of address comparison on target instruction

of 13-1
example A-14
exceptions while fetching target instruction of 6-6
PER event for target instruction 4-10

execute exception 6-13
exigent machine-check condition 11-8
exponent 9-1

(see also floating point)
overflow 9-1

exception 6-13
underflow 9-1

exception 6-13
mask in PSW 4-5, 4-6

extended control (see EC mode)
extended facility (feature) 0-2
extended floating-point number 9-2
extended logout

I/O 12-57
control bit for 11-20

machine-check 11-19
address 11-20
validity bit for 11-15

extended-precision floating-point feature 0-1

Index X-5

external
call

as signal-processor order 4-28
external interruption due to 6-9
pending (signal-processor status) 4-31

damage 11-12
mask bit for 11-19

damage code 11-16
assigned storage location for 3-24
validity bit for 11-15

interruption 6-7
clock-comparator 4-19, 6-8
CPU-timer 4-20, 6-8
emergency-signal 6-9
external-call 6-9
external-signal 6-9
interrupt-key 6-9
interval-timer 4-21, 6-9
malfunction-alert 6-10
TO D-clock -sync-check 6-10

mask in PSW 4-4, 4-5
signal 6-9

facility 4-15
feature D-l

external secondary report (bit in external-damage
code) 11-16

externally initiated functions 4-21

f
facilities D-l
failing-storage address 11-18

assigned storage location for 3-24
validity bit for 11-15

fast-release feature (I/O) D-2
features D-l
fetch protection 3-4

bit in storage key 3-4
fetch reference 5-11

access exceptions for 6-19
fetching

of DAT-table entries 5-11
of instructions 5-10

field 3-2
field separator 8-6
fill byte 8-6
fixed-length field 3-2
fixed logout

assigned storage location for 3-24
channel 12-57
machine-check 11-19

fixed point
(see also binary)
divide exception 6-13
overflow exception 6-14

mask in PSW 4-5, 4-6

X-6 System/370 Principles of Operation

flags
field-validity (in limited channel logout) 12-60
in CCW 12-28

floating interruption conditions, clearing of 4-25
floating point

(see also exponent)
comparison 9-7
conversion

basic example A-5
instruction-sequence examples A-31

data format 9-2
divide exception 6-14
feature D-l
instructions 9-1

examples A-30
numbers 9-1

examples A-4
register 2-3

machine-check save area for 3-24
floating-point, register, validity bit for 11-15
floating point, shifting (see normalization)
format

data
decimal 8-1
floating-point 9-2
general-instruction 7-1

I/O instruction 12-13
information 3-2
instruction 5-2
PSW 4-3

error 6-6
fraction 9-1
full channel logout 12-57
fullword (see word)

g
general instructions 7-1

data formats for 7-1
examples A-6

general registers 2-3
alteration of (PER event) 4-11
machine-check save area for 3-24
validity bit for 11-15

guard digit 9-3

h
halfword 3-2

concurrency of reference 5-13
HALT DEVICE (HDV) instruction 12-17
HALT I/O (HIO) instruction 12-20
HALVE (HDR,HER) instructions 9-9
hexadecimal (hex) representation 5-3

i
I field of instruction 5-3
I/O (input/output) error, with machine check 11-3
I/O (input/output) 2-3, 12-2

address 12-7
assigned storage location for 3-23
format of 12-13
in limited channel logout 12-61
validity flags for 12-60

commands 12-35
communication area (IOCA) 12-59
control unit 2-4, 12-2
data block 12-27
device 2-4, 12-2

address 12-7
end (unit status) 12-51
error 12-13
not~ready state 12-9
status of 12-37
used for initial program loading 4-26

effect on CPU timer 4-20
effect on interval timer 4-21
error, alert (in limited channel logout) 12-60
extended logout (IOEL) 12-57

control bit for 11-20
feature D-3

instructions 12-14
timeout (bit in external-damage code) 11-17

interface position, effect on interruption
priority 12-46

interruption 6-10
action 12-46
conditions 12-44
priority 12-45
timeout (bit in external-damage code) 11-17

logout 12-57
mask in PSW 4-4, 4-5
operations 12-2

channel compatibility 12-7
conclusion of 12-40
initiation of 12-27
storage-area designation for 12-29
termination of 12-42

power-on reset 4-26
selective reset 12-10
sense data 12-38
status 12-48, 12-52
system reset 12-10

as part of program reset 4-25
as part of subsystem reset 4-24
effect on channel set 4-33

system state 12-8
IC (instruction counter) (see instruction(s), address)
ID (see channel, identification; CPU, identification)
IDA Gndirect-data-address) flag 12-28
IDAW (indirect-data-address word) 12-34
ILC (instruction-length code) 6-5
IML (initial microprogram loading) controls 13-2
immediate I/O operation 12-41

immediate operand 5-3
imprecise program interruptions 6-5
incorrect length (channel status) 12-52
index

for address generation 5-4
instructions for handling 7-9

register 2-3
indicator

check-stop 13-2
load 13-3
manual 13-3
test 13-5
wait 13-5

indirect data address 12-34
flag (IDA flag) 12-28
role in I/O operations 12-6
word (IDA W) 12-34

information format 3-2
initial CPU reset 4-24

as signal-processor order 4-29
initial microprogram loading (IML), as signal-processor

order 4-29
initial program loading (IPL) 4-26

assigned storage locations for 3-24
effect on CPU state 4-2

initial program reset 4-25
as signal-processor order 4-29

input/output (see I/O)
INSERT CHARACTER (IC) instruction 7-17
INSERT CHARACTERS UNDER MASK (ICM)

instruction 7 -17
examples A-15

INSERT PSW KEY (IPK) instruction 10-4
INSERT STORAGE KEY (ISK) instruction 10-4
instruction sets D-l
instructions

address 4-5, 4-6
validity bit for 11-15

backing up of 11-13
classes of 2-2
control 10-1
damage to 11-11, 11-13
decimal 8-1

examples A-25
examples of use A-5
execution 5-5
fetching 5-10

access exception for 6-19
PER event 4-10

floating-point 9-1
examples A-30

format 5-2
I/O 12-13

general 7-1
examples A-6

I/O 12-14
exception handling 12-27
role in I/O operations 12-5

Index X-7

instructions (continued)
interruptible 5-6
length code (ILC) 6-5

assigned storage locations for 3-23
for program interruptions 6-11
for supervisor-call interruption 6-22
in BC-mode PSW 4-5

length 5-3
modification by EXECUTE instruction 7-16
prefetching 5-10
privileged 4-4, 4-5

for control 10-1
for I/O 12-14

processing damage 11-11, 11-13
sequence of execution 5-1
stepping (rate control) 13-4

effect on CPU state 4-2
effect on CPU timer 4-20

integer
binary 7-2

address as 5-4
examples A-2

decimal 8-2
integral boundary 3-2
interface

control check (channel status) 12-54
inoperative 12-60

interlock of storage 5-9
for update references 5-12

during instruction suppression 5-8
intermittent errors 11-3
internal storage (see storage, internal)
interrupt key 13-3

external interruption 6-9
interruptible instructions 5-6

COMPARE LOGICAL LONG 7-13
effect on interval timer 4-21
MOVE LONG 7-22
stopping of 4-2

interruption 6-1
(see also masks)
action

I/O 12-46
machine-check 11-9

classes 6-4
code 6-4

I/O 6-10
in BC-mode PSW 4-5
machine-check 11-11
program 6-11
supervisor-call 6-22

conditions
clearing 4-24
I/O 12-44

effect on instruction sequence 5-5
external 6-7

X-8 System/370 Principles of Operation

interruption (continued)
identification, assigned storage locations for 3-23
input/ output 6-10
machine-check 6-11, 11-8

code 11-11
masking of 6-4
pending 6-4

external 6-8
I/O 12-9
machine-check 11-9
relation to CPU state 4-2

priority 6-22
access exceptions for 6-19
external 6-8
I/O 12-45
PER event 4-9
program-interruption conditions 6-19

program 6-11
imprecise 6-5

program-controlled (I/O) 12-33
restart 6-22
string (see string of interruptions)
supervisor-call 6-22

interruption code, assigned storage locations for 3-23
interval timer 4-20

damage 11-12
external interruption 6-9
manual control for 13-3
update reference 5-15

intervention required (bit in I/O-sense data) 12-38
invalid

address 6-12
CBC 11-2

in registers 11-6
in storage 11-4
in storage keys 11-4

channel programs 12-53
operation code 6-14
order (signal-processor status) 4-31
page 3-11
segment 3-11
translation address 3-14
translation format 3-9

exception recognition 3-14
INVALIDATE PAGE TABLE ENTRY (IPTE)

instruction 10-5
effect when CPU is stopped 4-2

inverse move 7-21
IOCA (I/O-communication area) 12-59
10EL (I/O extended logout) 12-57

address 12-59
assigned storage location for 3-23

maximum length 12-24
IPL (initial program loading) 4-26

assigned storage locations for 3-24

k
key

access 3-4
for I/O (see subchannel key)

manual (see manual operations)
PSW (see PSW key)
storage 3-4
subchannel (see subchannel key)

key-controlled protection 3-4
exception for 6-15
not for translation-table lookup 3-12

I
L fields of instruction 5-3
late exception recognition 6-7
left-to-right addressing 3-2
length

field 3-2
I/O-block 12-52

(see also count field)
instruction 5-3
register operand 5-3
variable (storage operands) 5-3

limited channel logout 12-57
assigned storage location for 3-23
feature D-3

link information, for BRANCH AND LINK
instruction 7-7

linkage (subroutine) 5-5
LOAD (L,LR) binary instructions 7-17

example A-16
LOAD (LD,LDR,LE,LER) floating-point instructions 9-9
load, (see also initial program loading, initial

microprogram loading)
LOAD ADDRESS (LA) instruction 7-18

examples A-16
LOAD AND TEST (L TDR,L TER) floating-point

instructions 9-10
LOAD AND TEST (LTR) binary instruction 7-18
load-clear key 13-3
LOAD COMPLEMENT (LCDR,LCER) floating-point

instructions 9-10
LOAD COMPLEMENT (LCR) binary instruction 7-18
LOAD CONTROL (LCTL) instruction 10-6
LOAD HALFWORD (LH) instruction 7-19

examples A-17
load indicator 13-3
LOAD MULTIPLE (LM) instruction 7-19
LOAD NEGATIVE (LNDR,LNER) floating-point

instructions 9-11
LOAD NEGATIVE (LNR) binary instruction 7-19
load-normal key 13-3
LOAD POSITIVE (LPDR,LPER) floating-point

instructions 9-11
LOAD POSITIVE (LPR) binary instruction 7-19
LOAD PSW (LPSW) instruction 10-6
LOAD REAL ADDRESS (LRA) instruction 10-7

LOAD ROUNDED (LRDR,LRER) instructions 9-11
load state 4-1

assigned storage while in 3-24
in initial program loading 4-26

load-unit-address controls 13-3
location not provided 6-12
location 80 (for interval timer) 4-20
logical

address 3-3
arithmetic (see unsigned binary arithmetic)
comparison 7-3
connective

AND 7-7
EXCLUSIVE OR 7-15
OR 7-26

data 7-1
logout

channel 12-57
extended machine-check 11-19

address 11-20
length of 11-16
validity bit for 11-15

fixed
assigned storage location for 3-24
channel 12-57

. machine-check 11-19
limited channel 12-57

assigned storage location for 3-23
machine-check 11-19
pending (bit in CSW) 12-47

long floating-point number 9-2
long I/O block 12-52
loop control 5-5
loop of interruptions (see string of interruptions)
low-address protection 3-5
low-address protection (LAP), exception for 6-15

m
machine check 11-1

(see also malfunction)
extended logout (MCEL) 11-19

address 11-20
length of 11-16
validity bit for 11-15

fixed logout 11-19
interruption 6-11, 11-8

action 11-9
code (MCIC) 11-11

logout 11-19
control bits for 11-20

mask in PSW 4-4, 4-5
subclass masks 11-18

main storage 3-1
(see also storage)
power-on reset 4-26
sharing of 4-28

Index X-9

malfunction 11-1
alert (external interruption) 6-10

when entering check-stop state 11-7
correction of 11-2
effect of DIAGNOSE instruction 10-3
effect on manual operation 13-1
indication of 11-2

manual indicator 13-3
(see also stopped state)

manual operations 13-1
controls

address-compare 13-1
alter-and-display 13-2
check 13-2
IML 13-2
interval-timer 13-3
load-unit-address 13-3
power 13-3
rate 13-4
TOD-clock 13-5

effect on CPU signaling 4-30
keys

interrupt 13-3
load-clear 13-3
load-normal 13-3
restart 13-4
start 13-4
stop 13-4
store-status 13-4
system-reset-clear 13-4
system-reset-normal 13-4

masks 6-4
(see also interruption)
channel 6-10
in BRANCH ON CONDITION instruction 7-8
in COMPARE LOGICAL CHARACTERS UNDER

MASK instruction 7-12
in INSERT CHARACTERS UNDER MASK

instruction 7-17
in PSW 4-4, 4-5
in STORE CHARACTERS UNDER MASK

instruction 7-31
machine-check-subclass 11-18

degradation-report 11-19
external-damage-report 11-19
recovery-report 11-19
warning 11-19

monitor 6-14
PER event 4-8
PER general-register 4-8
program-interruption 6-11

maximum negative number 7-2
MCEL (see machine check, extended logout)
MCIC (machine-cheek-interruption code) 11-11
message byte 8-6

X-I0 System/370 Principles of Operation

microprogram, initial loading of 13-2
mode

BC (see BC mode)
burst (channel operation) 12-3
byte-multiplex (channel operation) 12-3
EC (see EC mode)

model
channel 12-24
CPU 10-14

modifier bits (in CCW command code) 12-29
MONITOR CALL (MC) instruction 7-20
monitor class and code, assigned storage locations

for 3-23
monitor event, program-interruption condition 6-14
monitoring, for PER events (see PER)
MOVE (MVC,MVI) instructions 7-20

examples A-14, A-17
MOVE INVERSE (MVCIN) instruction 7-21
move-inverse feature D-2
MOVE LONG (MVCL) instruction 7-21

example A-18
MOVE NUMERICS (MVN) instruction 7-24

example' A-18
MOVE WITH OFFSET (MVO) instruction 7-24

example A-19
MOVE ZONES (MVZ) instruction 7-25

example A-19
multiplexer channel (see block-multiplexer channel;

byte-multiplexer channel)
multiplexer channel 12-& 12A114.
MULTIPLY (M,MR) binary instructions 7-25

examples A-20
MULTIPLY (MD,MDR,ME,MER,MXD,MXDR,MXR)

floating-point instructions 9-12
MULTIPLY DECIMAL (MP) instruction 8-9

example A-28
MULTIPLY HALFWORD (MH) instruction 7-26

example A-20
multiprocessing 4-27

considerations for A-32, 8-3
feature D-2
manual operations for 13-5
time-of-day clock for 4-15
timing-facility interruptions for 4-18

multiprogramming examples A-32

n
near-valid CBC 11-2

in storage 11-3
negative zero

binary 7-2
decimal 8-2

example A-4
new PSW 4-3

assigned storage locations for 3-22
fetched during interruption 6-1

no-operation
as an 1/0 command (control) 12-37
instruction (BRANCH ON CONDITION) 7-8

nonshared subchannel 12-5
nonvolatile storage 3-2
normalization 9-2
not available (I/O-system state) 12-8
not operational

as CPU state 4-29
effect on channel set 4-33

as I/O-system state 12-9
as time-of-day-clock state 4-17

not ready
as I/O-device state 12-9
as signal-processor status 4-31

not set (time-of-day-clock state) 4-16
nullification of instruction 5-5

exceptions to 5-6
for exigent machine-check conditions 11-8

numbering
addresses (byte locations) 3-2
bits 3-2

numbers
binary 7-2

examples A-2
CPU-model 10-14
decimal 8-1

examples A-3
floating-point 9-1

examples A-4
numeric bits 8-1

moving of 7-24

o
offset (for MOVE WITH OFFSET instruction) 7-24
old PSW 6-1

assigned storage locations for 3-22
one's complement binary notation 7-2

used for SUBTRACT LOGICAL instruction 7-33
op code (operation code) 5-1
operand 5-1

address generation for 5-4
immediate 5-3
length 5-1
overlap 7-2

decimal 8-3
register 5-3
sequence of references for 5-11
storage 5-3
types (fetch, store, and update) 5-11
used for result 5-2

operating state 4-1
operation

code (op code) 5-1
invalid 6-14

exception 6-14
unit of 5-6

operational state (I/O system) 12-8
operator facilities 2-4, 13-1
operator intervening (signal-processor status) 4-31
OR (O,OC,OI,OR) instructions 7-26

example of problem with OR immediate A-32
examples A-20

orders (signal-processor) 4-28
CPU reset 4-29
emergency signal 4-28
external call 4-28
initial CPU reset 4-29
initial microprogram load 4-29
initial program reset 4-29
program reset 4-29
response to 4-29
restart 4-29
sense 4-28
start 4-29
stop 4-29
stop and store status 4-29

organization (system) 2-1
overflow

binary 7-3
example A-2

decimal 6-13
exponent (see exponent, overflow)
exponent 6-13
fixed-point 6-14

overlap
destructive 7-21
operand 7-2

decimal 8-3
operation 5-8

overrun (bit in I/O-sense data) 12-38

P
PACK (PACK) instruction 7-27

example A-21
packed decimal numbers 8-1

conversion from zoned format 7-27
conversion to zoned format 7-36
examples A-3

padding byte
for COMPARE LOGICAL LONG instruction 7-13
for MOVE LONG instruction 7-21

page 3-8
frame, real address (PFRA) 3-11
index 3-8
invalid bit 3-11
size 3-9
swapping 3-8
table 3-11

designation 3-10
lookup 3-14

translation exception 6-15
as an access exception 6-17

Index X-II

parameters, translation 3-9
parity bit 11-2
pattern for editing 8-6
PCI (see program-controlled interruption)
pending interruption (see interruption, pending)
PER (program-event recording) 4-8

address, wraparound 4-10
code and address 4-9

assigned storage locations for 3-23
ending address 4-8
events 4-8

general-register-alteration 4-11
instruction-fetching 4-10
masks 4-8
priority of interruptions 4-9
program-interruption condition 6-15
storage alteration 4-11
storage-area designation 4-10
successful branching 4-10

general-register masks 4-8
mask (in PSW) 4-4

subclass masks 4-8
starting address 4-8

PFRA (page-frame real address) 3-11
point of damage 11-10
point of interruption 5-6

for machine check 11-10
postnormalization 9-2
power controls 13-3
power-on reset 4-25
precision (floating-point) 9-1
preferred sign codes 8-1
prefetching

for I/O 12-30
of DAT-table entries 5-11
of instructions 5-10

prefix 3-6
prenormalization 9-2
priority (see interruption)
privileged instructions 4-4, 4-5

for control 10-1
for I/O 12-14

privileged-operation exception 6-15
problem state 4-4, 4-5
processing backup 11-13
processing damage 11-13
processor (see CPU)
program

check (channel status) 12-53
event recording (see PER)
events (see PER events)
exceptions 6-11
execution 5-1
initial loading of 4-26
interruption 6-11

for I/O instructions 12-27
imprecise 6-5
priority 6-19

mask (in PSW) 4-5, 4-6

X-12 System/370 Principles of Operation

program (continued)
reset 4-25

as signal-processor order 4-29
status word (see PSW)

program-controlled interruption (PCI) 12-33
channel status 12-52
flag 12-28

program mask (in PSW), validity bit for 11-15
protection

check (channel status) 12-54
exception 6-15

as an access exception 6-17
of storage (see storage protection)

PSW (program-status word) 2-3, 4-3
assigned storage locations for 3-22
BC-mode 4-5
EC-mode 4-4
exceptions associated with 6-6
format error 6-6
in initial program loading 4-26

assigned storage locations 3-24
in program execution 5-5
validity bits for 11-14

PSW key
in PSW 4-4, 4-5
used as access key 3-4
validity bit for 11-14

PSW-key-handling feature D-2
PURGE TLB (PTLB) instruction 10-7

r
R field of instruction 5-3
range, floating-point 9-1
rate control 13-4
read (I/O command) 12-36
read backward (I/O command) 12-36
READ DIRECT (RDD) instruction 10-8
read-write-direct facility 4-15
real address 3-3
real storage 3-4

assigned locations in 3-22
receiver check (signal-processor status) 4-31
recovery

condition 11-8
extension feature D-2
system 11-12

mask bit for 11-19
redundancy 11-2
reference

bit 3-4
recording 3-5
sequence for storage 5-8

DAT-table entries 5-11
instructions 5-10
operands 5-11
storage keys 5-11

single-access 5-13

region code 11-18
assigned storage location for 3-24
validity bit for 11·15

register
base-address 2-3
control 2-3
designation of 5-3
floating-point 2-3
general 2-3
index 2-3
prefix 3-6
save areas 3-23, 11-16
validation 11-6
validity bits for 11-15

remote operating stations 13-1
report masks 11-19
repressible machine-check condition 11-8
RESET REFERENCE BIT (RRB) instruction 10-8
resets 4-21

effect on CPU, state 4-2
effect on time-of-day clock 4-16
I/O 12-10

resolution
of clock comparator 4-19
of CPU timer 4-19
of interval timer 4-20
of time-of-day clock 4-16

restart
as signal-processor order 4-29
effect on CPU state 4-2
interruption 6-22
key 13-4

result operand 5-2
retry

CPU 11-2
I/O command 12-39

rounding (decimal) 8-10
RR instruction format 5-2
RRE instruction format 5-2'
RS instruction format 5-2
running (of time-of-day clock) 4-16
RX instruction format 5-2

s
S instruction format 5-2
save, areas for registers 3-23, 11-16
segment 3-8

index 3-8
invalid bit 3-11
size 3-9
table 3-10

lookup 3-14
translation exception 6-16

as an access exception 6-17
selective reset (I/O) 12-10
selector channel 12-4
self-describing block of I/O data 12-31

sense
as an I/O command 12-37
as signal-processor order 4-28

sense data (I/O) 12-38
sequence

code (in limited channel logout) 12-60
conceptual 5-8
instruction-execution 5-1
of storage references 5-8

serialization 5-15
completion of store operations 5-12

SET CLOCK (SCK) instruction 10-9
SET CLOCK COMPARATOR (SCKC) instruction 10-9
SET CPU TIMER (SPT) instruction 10-tO
SET PREFIX (SPX) instruction 10-10
SET PROGRAM MASK (SPM) instruction 7-27
SET PSW KEY FROM ADDRESS (SPKA)

instruction 10-11
set state (time-ot-day clock) 4-16
SET STORAGE KEY (SSK) instruction 10-11
SET SYSTEM MASK (SSM) instruction 10-12
shared control unit and subchannel 12-5
shared main storage 4-28
shared storage (see storage, shared)
shared time-ot-day clock 4-15
SHIFT AND ROUND DECIMAL (SRP) instruction 8-10

examples A-28
SHIFT LEFT DOUBLE (SLDA) instruction 7-28

example A-21
SHIFT LEFT DOUBLE LOGICAL (SLDL)

instruction 7-28
SHIFT LEFT SINGLE (SLA) instruction 7-28

example A-21
SHIFT LEFT SINGLE LOGICAL (SLL) instruction 7-29
SHIFT RIGHT DOUBLE (SRDA) instruction 7-29
SHIFT RIGHT DOUBLE LOGICAL (SRDL)

instruction 7-29
SHIFT RIGHT SINGLE (SRA) instruction 7-30
SHIFT RIGHT SINGLE LOGICAL (SRL)

instruction 7-30
shifting

decimal 8-10
floating-point (see normalization)

short floating-point number 9-2
short I/O block 12-53
SI instruction format 5-2
sign bit

binary 7-2
floating-point 9-1

sign codes (decimal) 8-1
signal-in lines 6-9
SIGNAL PROCESSOR (SIGP) instruction 10-12

order codes 4-28
signed binary

arithmetic 7-3
comparison 7-3
integer 7-2

examples A-2

Index X-13

significance
exception 6-16
loss 9-2, 4-6
mask in PSW 4-5, 4-6
starter 8-6

single-access reference 5-13
SIO function 12-21
SlOP fUnction 12-21
size

notation for iv
of segment and page 3-9

skip flag in CCW 12-28
skipping (during I/O) 12-33
SLI (suppress-length indication) flag in CCW 12-28
solid errors 11-3
source

field in limited channel logout 12-60
of interruption 6-4

special-operation exception 6-16
specification exception 6-16
SS instruction format 5-2
SSE instruction format 5-2
SSM -suppression-control bit 6-16
standalone dump 13-4
standard epoch (for time-of-day clock) 4-17
standard instruction set 0-1
start

as signal-processor order 4-29
function 4-2
key 13-4

START I/O (SIO) instruction 12-21
START I/O PAST RELEASE (SlOP) instruction 12-21
state

CPU (see CPU state)
I/O system 12-8
time-of-day clock 4-16

status
device 12-37
in CSW 12-47, 12-57
modifier (of I/O unit status) 12-48
program (see PSW)
register for 4-28, 10-12
resulting from signal-processor orders 4-30
storing of 4-27

manual key for 13-4
STL (segment-table length) 3-10
STO (segment-table origin) 3-10
stop

as signal-processor order 4-29
function 4-2
key 13-4

stop and store status (signal-processor order) 4-29
stopped bit (in signal-processor status) 4-31
stopped state

of CPU 4-1
effect on completion of store operations 5-12

of time-of-day clock 4-16

X-14 System/370 Principles of Operation

storage 3-1
absolute 3-4
address wraparound

for MOVE INVERSE instruction 7-21
for MOVE LONG instruction 7-22

addressing 3-2
(see a/so address)

alteration
manual control for 13-2
PER event 4-11

area designation
for I/O operations 12-29
for PER events 4-10

assigned locations in 3-22
auxiliary 3-1, 3-8
block 3-3
buffer (cache) 3-1
clearing, by clear-reset function 4-25
configuration of 3-3
control unit (in limited channel logout> 12-59
direct-access 3-1
display 13-2
error 11-13
failing address (see failing-storage address)
interlocks 5-9
internal 2-2
key 3-4

error 11-14
sequence of references to 5-11
validation of 11-4

logical validity bit for 11-15
main 3-1
operand 5-3

consistency 5-13
fetch reference 5-11
store reference 5-12
update reference 5-12

prefixing for 3-6
protection 3-4

key-controlled protection 3-4
low-address protection 3-5

real 3-4
sequence of references 5-8
shared

by CPUs and channels 3-3
examples A-32

size of, notation for iv
validation 11-4
virtual 3-8

created by OAT 3-8
volatile 3-2

effect of power-on reset 4-26
STORE (ST) binary instruction 7-30
STORE (STD,STE) floating-point instructions 9-13
STORE CHANNEL ID (STIDC) instruction 12-24
STORE CHARACTER (STC) instruction 7-31

STORE CHARACTERS UNDER MASK (STCM)
instruction 7-31

examples A-22
STORE CLOCK (STCK) instruction 7-31
STORE CLOCK COMPARATOR (STCKC)

instruction 10-13
STORE CONTROL (STCTL) instruction 10-13
STORE CPU ADDRESS (STAP) instruction 10-14
STORE CPU ID (STIDP) instruction 10-14
STORE CPU TIMER (STPT) instruction 10-15
STORE HALFWORD (STH) instruction 7-32
STORE MULTIPLE (STM) instruction 7-32

example A-22
STORE PREFIX (STPX) instruction 10-15
store reference 5-12

access exceptions for 6-19
store status 4-27

as signal-processor order 4-29
key 13-4
save area for 3-25

STORE THEN AND SYSTEM MASK (STNSM)
instruction 10-15

STORE THEN OR SYSTEM MASK (STOSM)
instruction 10-16

string of interruptions 4-2, 6-22
by clock comparator 4-19
by CPU timer 4-20

subchannel 12-4
not operational (I/O-system state) 12-10
working (I/O-system state) 12-9

sub channel key
in CAW 12-27
in CSW 12-47

contents of 12-57
validity flag for 12-60

used as access key 3-4
used for initial program loading 4-26

subclass-mask bits 6-4
external-interruption 6-8
machine-check 11-18

subroutine linkage 5-5
subsystem, reset 4-24
SUBTRACT (S,SR) binary instructions 7-32
SUBTRACT DECIMAL (SP) instruction 8-10
SUBTRACT HALFWORD (SH) instruction 7-33
SUBTRACT LOGICAL (SL,SLR) instructions 7-33
SUBTRACT NORMALIZED (SD,SDR,SE,SER,SXR)

instructions 9-13
SUBTRACT UNNORMALIZED (SU,SUR,SW,SWR)

instructions 9-14
successful branching (PER event) 4-10
SUPERVISOR CALL (SVC) instruction 7-34
supervisor-call interruption 6-22
supervisor state 4-4, 4-5
suppress-length-indication (SLI) flag in CCW 12-28
suppression of instruction 5-5

exceptions to 5-6

swapping
by COMPARE (DOUBLE) AND SWAP

instructions 7 -10
by EXCLUSIVE OR instruction 7-16

switching, channel-set 4-32
synchronization

CPU timer with time-of-day clock 4-20
of time-of-day clocks 4-16, 4-18

synchronous
logout 11-19
machine-check interruption conditions 11-13

system
damage 11-11
manual control of 13-1
mask (in PSW) 4-3

validity bit for 11-14
organization 2-1
recovery 11-12
reset (see resets)

I/O (see I/O, system reset)
system-reset-clear key 13-4
system-reset-normal key 13-4

t
target instruction (see EXECUTE instruction)
termination

code (in limited channel logout) 12-60
of instruction 5-5

termination of instruction, for exigent machine-check
conditions 11-8

TEST AND SET (TS) instruction 7-34
TEST CHANNEL (TCH) instruction 12-25
TEST I/O (TIO) instruction 12-25

function performed by CLEAR I/O instruction 12-16
test indicator 13-5
TEST PROTECTION (TPROT) instruction 10-16
TEST UNDER MASK (TM) instruction 7-34

example A-22
TIC (transfer-in-channel) I/O command 12-39
time-of-day (TOD) clock 4-16

effect of power-on reset 4-26
manual control for 13-5
setting and storing 4-17
state 4-16

effect on interval timer 4-21
sync check (external interruption) 6-10
synchronization facility 4-18
unique values 4-17
validation 11-6

timeout
bits in external-damage code 11-17
channel 12-4

timer
CPU (see CPU, timer)
interval (see interval timer)

Index X-15

timing facilities 4-15
damage 11-12

for time-of-day clock 4-17
TLB (translation-Iookaside buffer) 3-15

deletion of entries 3-17
entry

effect of translation changes 3-17
state 3-16

TOO clock (see time-of-day clock)
TOO-clock control 13-5

enables time-of-day clock 4-16
TOD-clock-sync-control bit 4-16, 4-19
transfer-in-channel (TIC) I/O command 12-39
TRANSLATE (TR) instruction 7-35

example A-23
TRANSLATE AND TEST (TRT) instruction 7-36

example A-23
translation

address 3-8
control of 3-9

exception address, assigned storage location for 3-23
feature 0-2
format 3-9
lookaside buffer (see TLB)
parameters 3-9
specification exception 6-17

as an access exception 6-17
tables for 3-10

trial execution 5-7
true zero 9-1
two's complement binary notation 7-2

examples A-2

U
underflow (exponent) 6-13, 9-1
unit check 12-51
unit exception 12-52
unit of operation 5-6
unit status 12-48

validity flag for 12-60
universal instruction set D-l
unnormalized floating-point number 9-2
UNPACK (UNPK) instruction 7-36

example A-25
unsigned binary

arithmetic 7-3
integer 7-2

examples A-3
in address generation 5-4

update reference 5-12
usable TLB entry 3-16

X-16 System/370 Principles of Operation

V
valid, CBC 11-2
valid TLB entry 3-16
validation 11-3

of registers 11-6
of storage 11-4
of storage key 11-4
of time-of-day clock 11-6

validity bits (in machine-check-interruption code) 11-14
validity flags (in limited channel logout) 12-60
variable-length field 3-2
version code 10-14
virtual address 3-3
virtual storage 3-8

created by OAT 3-8
volatility (see storage, volatile)

W
wait indicator 13-5
wait state (bit in PSW) 4-4, 4-5
warning (machine-check condition), mask bit for
warning, (machine-check condition) 11-13
word 3-2

concurrency of reference
working state (I/O system)
wraparound

of instruction addresses
of PER addresses 4-10
of register numbers

5-13
12-9

5-4

for LOAD MULTIPLE instruction 7-19
for STORE MULTIPLE instruction 7-32

of storage addresses 3-2
for MOVE INVERSE instruction 7-21
for MOVE LONG instruction 7-22

of time-of-day clock 4-16
write (I/O command) 12-36
WRITE DIRECT (WRD) instruction 10-17

x
X field of instruction 5-4

Z
zero, true 9-1
ZERO AND ADD (ZAP) instruction 8-11

example A-29
zero instruction-length code 6-5
zone bits 8-1

moving of 7-25
zoned decimal numbers 8-1

examples A-3

11-19

IBM System/370
Principles of Operation

Order No. GA22-7000-6

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you
supply.

Note: Copies of IBM publications are not stocked at the Location to which this form is addressed.
PLease direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your Locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number oflatest Newsletter associated with this pUblication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

GA22-7000-6

Reader's Comment Form

F old and tape Please Do Not Staple

""II
BUSINESS REPLY MAIL
FI RST CLASS PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 898
P.O. Box 390
Poughkeepsie, New York 12602

F old and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape Please Do Not Staple Fold and tape

===-= =® - ----- ---- - ---- - - -----------'-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

.,
.s
-l
Cl c
o
~
"tl o
u..
(5 ...
:J

U

I

I

.,
.=
-l
Cl c
o
~
"tl o
u..

o ...
:J
U

I
I
I

o ...,

'T1

m
z
o

(J)
W
-..J
o
6

..
c:

E a.
':;
tT •
CD E
'" .. . 5 0
0·­.. .r:. - .. '; -
E ~ ..

"C 0 ; ;;
E a.
o !!l
;i
~ E
.<::: E
~ ::l
.. C)

E :.;
CD.r:.
:0 15 e "­a. 0

51 ~
~ '';: ... -" .. c:
c: 51
~ d.
~ 5
a.~
~ C.

51
::l

'. 51
l!l .. o CD
~a:

IBM System/370
Principles of Operation

Order No. GA22-7000-6

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you
supply.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number oflatest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the front cover or title page.)

GA22-7000-6

Reader's Comment Form

Fold and tape Please Do Not Staple

II "I
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department B98
P.O. Box 390
Poughkeepsie, New York 12602

F old and tape

NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

Fold and tape Please Do Not Staple Fold and tape

==-= =® - ----- ---- - ---- - - ------------'-
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

.,
c:
::;

"" c: o
<
"0
(5
u..

...
~
u

I

I

.,
.S
oJ

"" c: o
<
"0
(5
u..
(; ...
~
u

I
I
I

o -..
o
"0
<D
Q)
o·
:l

z
o

en w,
9 o

