

• Program Product

•

SC24-5210-0
File No. S370/4300-30

VSE/ Advanced Functions
Macro User's Guide

Program Number 5746-XE9

Release 2

--- ------ ----- ----- - ---- - - ----------- _.-

First EdItion (October 1979)

This edition, SC24-521O-0, applies to Release 2 of IBM VSE/ Advanced Functions (Program
Number 5746-XE9), and to all subsequent releases until otherwise indicated in new editions or
Technical Newsletters. Changes are continually made to the information herein. Before using
this publication in connection with the operation of IBM systems, consult the latest edition of
IBM System/370 and 4300 Processors Bibliography. GC20-0001 for the editions that are
applicable and current.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the
change.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below; requests for IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication; if the form has been
removed, comments may be addressed to IBM Laboratory, Publications Department, Schoen­
aicher Strasse 220, D-7030 Boeblingen, Germany. IBM may use or distribute any ofthe
information you supply in any way it believes appropriate without incurring any obligation
whatever. You may, of course, continue to use the information you supply.

@Copyright International Business Machines Corporation 1979

..

•

•

Summary of Amendments
for VSE/ Advanced Functions Macro User's Guide

This manual contains information previously published in
DOS/ VSE Mucro User's Guide, GC24-5139. Changes reflect
support for:

• Sharing of data on DASD

• Device independence for files on disk

• Improved label processing

• Extended multiprogramming and subtask support

• Simplified supervisor assembly

• VSE/VSAM Space Management Feature

announced for Release 2 of VSE/ Advanced Functions.

Additional changes include 3262 printer support, APAR correc­
tions, and miscellaneous editorial corrections .

Summary of Amendments iii

/

".

J

..

J

iv VSE/ Advanced Functions Macro User's Guide

•

This book is a guide to programmers using the
YSE/ Advanced Functions macro instructions
(macros). Use of both 10CS (Input/Output Control
System) macros and the system control macros is
described.

After a brief introduction to the nature and use of
macros, the file processing and system control func­
tions are discussed from a conceptual and functional
point of view. Included in the discussion of file
processing are a chapter on file organization and one
on concepts of the 10CS access methods. These serve
as a foundation for several following chapters on
processing files found on various types of I/O de­
vices, device-independent system files, and the use
of PIOCS (Physicallocs).

Included in the chapters on system control func­
tions are discussions of such topics as virtual storage
control, check pointing, and multitasking.

Several appendixes on a variety of topics, a glos­
sary, and an index complete the book.

As this book is intended as a guide to macro us­
age, before consulting it, you should be familiar with
others that introduce important prerequisite inform­
ation on the nature and use of 10CS and system con­
trol programs:

• Introduction to DOS/VSE, GC33-6108

• IBM System/3 70 Principles of Operation,
GA22-7000

• IBM 4300 Processors Principles of Operation,
GA22-7070

• VSE/Advanced Functions System Management
Guide, SC33-6094

• VSE Systems Data Management Concepts,
GC24-5209

Preface

In addition, you should be familiar with the de­
vice manuals for those devices that you plan to use,
such as:

• DOS / VS IBM 3800 Printing Subsystem
Programmer's Guide, GC26-3900

System publications related to this one and refer­
red to in this book:

• VSE/ Advanced Functions Macro Reference,
SC24-52II

• VSE/Advanced Functions Tape Labels,
GC24-5212

• VSE/Advanced Functions DASD Labels,
GC24-5213

• OS/VS-DOS/VSE-VM/370Assembler
Language, GC33-4010

• VSE/Advanced Functions System Control
Statements, SC33-6095

• VSE/Advanced Functions System Generation,
SC33-6096

• VSE/Advanced Functions Operating
Procedures, SC33-6097

• VS E / A dvanced Functions Serviceability A ids
and Debugging Procedures, SC33-6099

In addition, see the following for information on
IBM Program Products:

• VSE/ VSAM General Information, GC24-5143

• DL/ I DOS/ VS General Information,
GH20-1246

These and other YSE/ Advanced Functions publi­
cations are described in the IBM System/3 70 and
4300 Processors Bibliography, GC20-000 I. Termi­
nology is defined in the Data Processing Glossary,
GC20-1699.

Preface v

/

•

vi VSE/ Advanced Functions Macro User's Guide

Contents

Chapter I: Macro Types and Their Use I-I
Source-Program Macros 1-1

10CS Macros 1-1
Control Program Function Macros 1-1

Macro Processing I-I
DTF Declarative Macros I-I

DTF Table 1-2
Symbolic Unit Addresses in the DTFxx Macro 1-3

Logic Module Generation Macros .. 1-4
Module Names 1-5
Interrelationship of the Macros .. 1-6

Link-Editing Logical 10CS Programs 1-6
Self-Relocating Programs and 10CS 1-7

.. Using DASD Support 1-7
Register Usage 1-8

Registers for VSE/ Advanced Functions Use 1-8
Registers for Your Use , .. 1-8

• Macro Format 1-8
Notational Conventions 1-9
Declarative Macro Statements ... " " I-IO

Chapter 2: File Organization 2-1
Sequential Organization without Index 2-1
Direct Organization 2-1
Sequential Organization with Index 2-3

Prime Data Area 2-4
Indexes 2-4
Overflow Area 2-7
Example of an ISAM File 2-8

Chapter 3: Access Methods Concepts 3-1
SAM (Sequential Access Method) 3-1

Control Interval Format 3-1
Defining Files and Functions 3-2
Activating a File for Processing 3-3
Processing Data Files with SAM 3-4
Processing Work Files with SAM 3-12
Deactivating a File After Processing 3-16
Non-Data Device Operations , 3-17
Logic Modules for SAM 3-17

DAM (Direct Access Method) 3-18
Record Types 3-19
I/O Area Specification 3-19
Creating a File or Adding Records 3-21
Locating Data: Reference Methods 3-21
Locating Free Space 3-24
Logic Modules for DAM 3-24

ISAM (Indexed Sequential Access Method) 3-24
Record Types 3-26
Storage Areas 3-26
Activating (Opening) a File for Processing 3-26
Processing an ISAM File 3-26
Deactivating (Closing) an ISAM File After Processing 3-30
Reorganizing an ISAM File 3-30
Logic Modules for ISAM 3-31

PIOCS (PhysicaIIOCS) 3-33

Chapter 4: Processing DASD Files4-1
DASD Capacities ,4-1
Processing with SAM 4-2

FBA (Fixed Block Architecture) DASD Processing 4-3
Opening a File 4-3
Label Processing4-5

Contents vii

r"-.
j

Error Handling ... 4-6
Deactivating a Sequential DASD File .. 4-8

Processing with DAM 4-8
Initialization ... 4-9
Processing .. 4-10
Completion 4-22

Processing with ISAM ... 4-22
DTFIS Operands for I/O Area Specification 4-22
Initialization4-24
Processing .. 4-26
Completion ... 4-33
Programming Considerations 4-34
ISAM Disk Storage Space Formulas .. 4-35

Chapter S: Processing Diskette Flies . 5-1
Opening a File 5-1

Output .. 5-1
Input ... 5-2

Processing Records with Command Chaining .. 5-2
Closing a File ... 5-3
Error Handling 5-3 •

Chapter 6: Processing Magnetic Tape Files .. 6-1
Label Processing 6-1
Block Size .. 6-1
Reading Magnetic Tape Backwards ... 6-1
Forcing End-Of-Volume 6-1
Error Handling .. 6-4

Programming Your Error Processing Routines 6-5
Non-Data Device Operations .. 6-6

Chapter 7: Processing Unit Record Files .. 7-1
Processing Punched Card Files ... 7-1

Associated Files .. 7-1
OMR Data .. 7-3
Updating Records 7-4
End-of-File Handling ... 7-5
Error Handling 7-6
Programming Considerations ... 7-6
Card Device and Printer Control .. 7-7
GET/CNTRL/PUT Sequence for Associated Files 7-10

Processing Printer Files .. 7- 10
Associated Files ... 7- 10
Printer Overflow ... 7- 10
Printer Control .. 7-11
Error Handling 7-14

Processing Console Files ... 7-14
Programming Considerations .. 7-15

Processing Magnetic Reader Files ... 7-15
Characteristics of Magnetic Ink Character Reader (MICR) 7-15
Programming Considerations .. 7-18

Processing Optical Reader Files ... 7-20
Non-Data Device Operations .. 7-24
Programming Considerations for Optical Readers 7-27

Processing Paper Tape Files .. 7-35
Programming Considerations for Paper Tape 7-35

Chapter 8: Processing Device-Independent System FIles 8-1
Record Size 8-1
Error Handling .. 8-2
End-Of-File Handling , ... 8-3

viii VSE/ Advanced Functions Macro User's Guide

Chapter 9: Processing Files with PIOCS (PhysicaIIOCS) 9-1
Initialization 9-1
Processing 9-3

Processing Labels and Extents 9-8
Forcing End-of-Volume 9-9

Termination 9-9
P10CS Programming Considerations .. 9-10

Situations Requiring L10CS Functions in P10CS Processing 9-10
Command Chaining Retry 9-10
Data Chaining .. 9-11
CKD DASD Channel Programs 9-11
RPS (Rotational Position Sensing) 9-11
Channel Programs for FBA Devices 9-11
Diskette Channel Programs 9-12
Console (printer-Keyboard) Buffering 9-12
Alternate Tape Switching 9-12

•
Bypassing Embedded Checkpoint Records on Magnetic Tape 9-13

Chapter 10: Requesting Control Functions 10-1
Program Loading................. 10-1

Shared Virtual Area Considerations for Program Load Macros. ' 10-1
Fast Loading of Frequently Used Phases 10-1

Virtual Storage Control 10-2
Fixing and Freeing Pages in Real Storage 10-2
Determining the Execution Mode of a Program. 10-3
Extracting Partition-Related Information 10-3
Influencing the Paging Mechanism' 10-3
Dynamic Allocation of Virtual Storage 10-4

Program Communication 10-4
Assigning and Releasing I/O Units 10-5

Assigning and Releasing Tape Drives 10-6
Timer Services and Exit Control 10-6

Timer Services 10-6
Linkages to User Exit Routines 10-8

Requesting Storage Dumps 10-10
Ending a Task or a Job 10-11

Normal End of the Main Task 10-11
Normal End of a Subtask 10-12
Program-Requested Abnormal Ends 10-12
Using the EXIT Macro 10-12

Check pointing a Program 10-12
Choosing a Checkpoint 10-12
Timing the Entry to the Checkpoint Routine 10-12
Saving Data for Restart 10-14
Restarting a Check pointed Program 10-14
Checkpoint File 10-14
Repositioning I/O Files 10-15

Program Linkage 10-16
Linkage Registers 10-19
Save Areas 10-19
CALL. SAVE, RETURN Macros 10-20

Multitasking Functions 10-21
Subtask Initiation 10-21
Subtask Termination 10-24
Resou rce Protection 10-24
Resource-Share Control 10-27
Intertask Communication 10-28
DASD Record Protection (Track Hold) 10-29
Shared Modules and Files 10-32

Loading a Forms Control Buffer 10-33 I Requesting System Information 10-34

Appendix A: Control Character Codes A-I

Appendix 8: Assembling Your Program, DTF's, and Logic Modules B-1
Comparison of the Five Methods B-12

Contents ix

r

RPS Example B-15
FBA DASD Example B-18

Appendix C: Label Processing C-I
DASD Standard Labels C-I

OPEN Macro Processing C-I
End-of-Volume Processing C-I
End-ol~File Processing C-I
User Standard Labels C-2

Diskette Labels C-3
OPEN Macro Processing C-3
End-of-Volume Processing .. C-3
End-of-File Processing .. C-3

Tape Labels C-3
Tape Output Files C-3
Tape Input Files ... C-5

Reading, Writing. and Checking with Nonstandard Labels C-8

Appendix 0: Writing Self-Relocating Programs D-I
Rules for Writing Self-Relocating Programs D-I

Programming Techniques D-2
•

Appendix ~:: American National Standard Code for Information Interchange (ASCII) E-I

Appendix F: Page Fault Handling Overlap F-I
Register Usage F-I
Entry Linkage F-I
Page Fault Queue F-I
Processing at the Initiation ofa Page Fault F-I
Processing at the Completion of a Page Fault F-2

Appendix G: Using System Control Macros in Reenterable Programs G-I

Index 1-\

x VSE/ Advan<.:ed Functions Macro User's Guide

•

•

•

•

Chapter 1: Macro Types and Their Use

A macro is a single assembler language instruction
that generates a sequence of assembler language
instructions. The macros you code in your program
are called the source program macros. The assem­
bler uses what is called the macro definition to gener­
ate the sequence of instructions requested by the
source program macro. Use of macros simplifies the
coding of programs and reduces the possibility of
programming errors.

A macro definition is a set of statements that de­
fines the name and format of and the conditions for
generating a sequence of assembler language in­
structions from a single macro instruction. Macro
definitions are stored in the macro sublibrary of the
source statement library.

Source-Program Macros
Source-program macros are those you specify in
your program; they indicate to the assembler which
macro definition is to be called from the library.
With a source-program macro you specify operands
and parameters which the assembler uses, together
with the called macro definition, to determine what
assembler instructions to- generate. There are two
different types of source-program macros: logical
10CS (input/output control system) macros, and
control program function macros.

IOCSMacros
10CS macros are divided into two basic categories:
imperative 10CS macros and declarative IOCS mac­
ros .

Imperative IOCS Macros
These macros identify what I/O operation you want
to perform. The GET macro, for example, indicates
that you want to obtain a record.

Declarative IOCS Macros
Declarative 10CS macros for all basic access methods
are of two related types -- DTFxx macros and logic
module generation (XXMOD) macros. The DTF mac­
ros Define The File for the various access methods
and I/O devices. The logic module generation mac­
ros define the logic modules that will handle the
conditions that you specify in the macro.

VSE/VSAM Macros: The Virtual Storage Access
Method (YSE/YSAM) has a set of declarative macros
different from the DTFxx and logic module genera­
tion macros described above.

The YSE/YSAM macros are discussed briefly in
VSE System Data Management Concepts and are
fully described in YSE/YSAM publications.

Control Program Function Macros
These macros, which are frequently referred to as
supervisor macros, enable you to make use of func­
tions performed by programs and routines of
YSE/ Advanced Functions. The RUNMODE macro,
for example, determines whether your program runs
in virtual or real mode.

Macro Processing
A direct relationship exists between the source­
program macros and the macro definitions.

During assembly, the source-program macro
specifies which macro definition is to be called from
the library. Figure I-I depicts schematically the
source program before and after inclusion of the
macro expansion. This is accomplished by a selec­
tion and substitution process using the general in­
formation in the macro definition and the specific
information in the source-program macro. The in­
sertion consists of a module, a table, or a small in­
line routine and is called the macro expansion.

After the insertion is made, the complete program
consists of both source program statements and as­
sembler language statements generated from the
macro definition. In subsequent phases of the as­
sembly, the entire program is processed to produce
the machine-language program.

IBM provides a number of tested macro defini­
tions. The source-program macros needed to use
these definitions are described in this manual. You
can also write your own macro definitions and in­
clude them in your source statement library. For
additional information on this subject, see
OS/VS-DOS/VSE- VM/370 Assembler Language,
as listed in the Preface.

DTF Declarative Macros
All basic access methods require a DTF declarative
macro to be coded for each file that your program
wants to access by means oflogicallocs imperative
macros such as GET, PUT, READ, WRITE, CNTRL. The
DTF (define the file) macro describes the characteris­
tics of the file, indicates the type of processing for
the file, and specifies the virtual storage areas and
routines to be used in processing the file.

Chapter 1: Macro Types and Their Use 1 - 1

SOURCE PROGRAM ASSEMBLER SOURCE PROGRAM
(Before) OPERATIONS (After)

1 1
2 2

Source
Locate Macro

Program
Defin ition

Statements Source
Program 15 Perform Indicated 15
Statements 16 Macro • Selection and 16 Macro

17 Subst i tut i on

Merge with }
Macro

Source Program •
Expansion

Figure I-I. Schematic of macro processing.

For example, if a GET is issued, the DTF macro
supplies such information as:

• Record type and length.

• Input device from which the record is to be
retrieved.

• Address of the area in storage where the record
is to be located for processing by your program.

Device-oriented DTF macros are available for
defining files processed by LIOCS (Logical
Input/Output Control System). An additional DTF

macro is available for magnetic tape or DASD files
processed by PIOCS (Physical Input/Output Control
System). Figure 1-2 contains an example ofa DTF

source statement. For LIOCS operations, the DTF
macro used depends on the type of processing that
will be performed and upon the type of device used.

Processing with SAM: Applies to input/output
with serial or diskette devices, or with direct access
devices when records are processed sequentially.
(ISAM may also be used with direct access devices
when records are to be processed sequentially). The
DTF macros used for SAM processing are listed by
device name in alphabetical order in Figure 1-3.

Processing with DAM: Whenever a file on a direct
access device is to be processed by DAM, DTFDA
must be used.

I - 2 VSE/ Advanced Functions Macro User's Guide

Source
Program
Statements

17 ____ _

Processing with ISAM: Whenever a file on a direct
access device is to be organil-ed or processed by
ISAM, DTFIS must be used.

Processing with PIOCS: When PIOCS macros
(EXCP, WAIT, etc.) are used for a file, the DTFPH ma­
cro is required only if standard labels are to be
checked or written on a file on a direct access device,
magnetic tape or diskette, or if the file on a direct
access device is file-protected.

DTFTable
A DTFxx macro generates a DTF table that contains
indicators and constants describing the file. You can
reference this table by using the symbol
jilename+constant, or jilenamex where x is a letter.
When referencing the DTF table, you must ensure
addressability through the use of an A-type con­
stant, or through reference to a base register. Should
you need to reference a DTF table in your program
(for example, to test error information in the CCB,

which is contained in the table), you can obtain de­
tailed information on the layout of DTF tables in the
VSE/ Advanced Functions Diagnosis Reference:
LIOCS manuals.

J

•

•

•

..

•

•

•

OLDMSTR DTFMT
BLKSIZE=400,
DEVADDR=SYS001,
EOFADDR=EOFMSTR,
FILABL=STD,
IOAREA1=AREAONE,
ERROPT=CKOLDBLK,
HDRINFO=YES,
IOAREA2=AREATWO,
IOREG=(3) ,
LABADDR=CKOLDBLK,
READ=FORWARD,
RECFORM=FIXBLK,
RECSIZE=80,
REWIND=UNLOAD,
SEPASMB=YES,
TYPEFLE=INPUT,
WLRERR=REG6

Figure 1-2. Sample DTFMT macro.

File to be processed on

Card device
Console printer-keyboard

DASD sequential

De~ce independent

Diskette I/O Unit
Display operator console
Magnetic reader (MICR)
Magnetic tape

Optical reader (excluding 3886)

3886 Optical character reader

Optical reader/sorter
Paper tape device
Printer
Sequential DASD

Figure 1-3. SAM declarative macros.

Column 72
.j.

Macro

DTFCD
DTFCN

DTFSD

DTFDI

DTFDU
DTFCN
DTFMR

DTFMT

DTFOR
DTFDR

DTFMR

DTFPT
DTFPR
DTFSD

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X

Symbolic Unit Addresses in the DTFxx
Macro
In most ofthe DTF macros you can specify a sym­
bolic unit name in the DEV ADDR operand. This
symbolic unit name is also used in the ASSGN job
control statement to assign an actual I/O device ad­
dress to the file. For files on diskettes or direct ac­
cess devices, the symbolic unit name is supplied in
the DEVADDR operand and/or with the EXTENT job
control statement (if both are provided, the EXTENT
specification overrides the DEVADDR specification).

The symbolic unit name of a device is chosen
from a fixed set of symbolic names. Programs are
written considering only the device type (tape, card,
etc.). At execution time, the actual physical device is
determined and assigned to a given symbolic unit.
For instance, a program that processes tape records
can call the tape device SYSOOO. At execution time
the operator (using ASSGN) assigns any available
tape drive to SYSooo.

Figure 1-4 shows the relationship between the
source program, the DTF table, and the job control
I/O assignment.

Source Program DTF Table Supervisor 1/0
Tables (Job Con-

GET FILE1 FILE1 DTFCD trollnitiated)

I t L SYSOOO. cuu

L... __ ---l DEVADDR~SYSOOO

Figure 1-4. Relationship between source program, DTF table,
and job controlI/O assignment.

The fixed set of symbolic names that can be used
with a DTF macro for a program in any partition is
the same and is represented by SYSxxx. Programs in
different partitions can reference the same logical
unit as long as different devices, or DASD extents, are
assigned.

These symbolic units are divided into system
logical units and programmer logical units.

System Logical Units

SYSRES System residence extent.
SYSRDR Card reader, magnetic tape unit, disk

extent, or diskette extent primarily for
job control statements.

SYSIPT Card reader, magnetic tape unit, disk
extent, or diskette extent as the primary
input unit for programs.

SYSPCH Card punch, magnetic tape unit, disk
extent, or diskette extent as the primary
unit for punched output.

SYSLST Printer, magnetic tape unit, disk extent,
or diskette extent as the primary unit for
printed output.

SYSLOG Console printer-keyboard or display op­
erator console for operator messages and
for logging job control statements. Can
also be assigned to a printer.

SYSLNK Disk extent as input to the linkage editor.
SYSCTL Used by VSE/ Advanced Functions at IPL

time to load the buffer(s) of FCB-type
pointers.

SYSCAT Disk extent for the VSE/VSAM catalog.
SYSCLB Disk extent for a private core image li­

brary.
SYSRLB Disk extent for a private relocatable li­

brary.
SYSUSE Disk extent used by the system for inter­

nal purposes, only.
SYSSLB Disk extent for a private source statement

library.
SYSREC Disk extent for error log records, pro­

gram history entries, and for the hard
copy file of the display operator console.

Chapter I: Macro Types and Their Use I - 3

SYSDMP Disk extent used to receive high speed
system dump.

SYSIN Can be used if you want to assign
SYSRDR and SYSIPT to the same card
reader or magnetic tape unit. Must be
used if you want to assign SYSRDR and
SYSIPT to the same disk extent.

SYSOUT Must be used if you want to assign
SYSPCH and SYSLST to the same magnetic
tape unit. Cannot be used to assign
SYSPCH and SYSLST to disk because these
two units must refer to separate disk ex­
tents.

Note: Of these system logical units, user programs
may use SYSIPT and SYSRDR for input, SYSLST
and SYSPCH for output, and SYSLOG for com­
munication with the operator. However, other sys­
tem logical units must not be used in place of pro­
gram mer logical units (that is, within user programs
or EXTENT statements). For instance, SYSIN and
SYSOUT are valid only to job control and cannot
be referenced in a user program. Examples for the
use ofSYSIN and SYSOUT are given in in the
VSE/ Advanced Functions System Management
Guide.

Programmer Logical Units
SYSnnn SYSnnn represents all the other symbolic

units that can be used under VSE. These
units range from SYSOOO to SYS254.

Each of these programmer logical units
can be assigned to any partition without
a prescribed sequence, except when using
DAM (see Note, below).

Note: For DAM the EXTENT job control statements must be
supplied in ascending order, and the symbolic units for multivo­
lume files must be assigned in consecutive order.

Each declarative macro requiring a symbolic unit
to be specified has a list of symbolic units that are
valid for that macro. In that list, SYSnnn represents
programmer logical units, while SYSxxx indicates
either a system or a programmer logical unit.

For files processed by either SAM or DAM, only
one symbolic unit may be assigned to all extents of a
file on one volume.

In physical IOCS, the symbolic unit name is speci­
fied in the CCB or IORB and in the DTFPH macro.
Instead, or additionally, it is specified with the
EXTENT job control statement. (If more than one of
these is used to provide the specification, an EXTENT
specification overrides a DTFPH specification, and a
CCB specification overrides an EXTENT and/or a
DTFPH specification.)

Figure 1-5 shows the relationship between the
source program and the job control I/O assignment.

I - 4 VSE/ Advanced Functions Macro User's Guide

Source Program J CCB Supervisor 1/0 Table
IJob Control Initiated)

EXCP ccbname SYSxxx _SYSxxx, cuu

Figure 1-5. Relationship between source program and job control
I/O assignment.

Logic Module Generation Macros
Each DTF, except DTFCN and DTFPH, must link to an
10CS logic module. More than one DTF can be
linked to the same logic module.

A logic module is generated by a logic module
generation (XXMOD) macro. The modules provide
the necessary instructions to perform the
input/output functions required by your program.
For example, a module reads or writes data, tests for
unusual input/output conditions, blocks or deb locks
records if necessary, or places records in a work
area. Most imperative macros use a logic module to
perform the requested function.

For DTFSD, DTFDA, DTFDI DASD files, the system
provides the logic modules. Any logic modules pro­
vided by the user for these DASD files are ignored by
OPEN.

Providing Logic Modules

Logic modules are provided for your DTFs in three
ways:

1. Code the logic module generation macros need­
ed by your DTFS, assembling them either in-line
with your program or supplying them at link­
edit time.

2. If the standard logic modules needed for your
installation were assembled and catalogued in
the relocatable library at system generation
time, you need not code them in your program.
Instead, you can autolink the necessary mo­
dules from the relocatable library at link-edit
time.

3. You need not code logic modules for certain
I/O devices. Support for DASD I/O devices
(except for ISAM files on DASDS without RPS)
and the IBM 3800 Printing Subsystem includes
preassembled logic modules. These logic mo­
dules are automatically loaded into the SVA
(system virtual area) at IPL time and linked to
the problem program during OPEN processing
for the DTF.

J

•

•

J

•

..

J

•

•

•

Keeping Modules Small

Some of the module functions are provided on a
selective basis, according to the parameters specified
in the xxMOD macro. If you code the xxMOD macro
yourself, you have the option of selecting or omit­
ting some of these functions according to the re­
quirements of your program. If, as described above,
you do not code the xxMOD macro yourself, IOCS
automatically selects or omits the appropriate func­
tions. In either case the omission of unneeded func­
tions saves storage space for a particular module.

Note: If you issue an imperative macro, such as WRITE or PUT,
to a module that does not contain that function, then an invalid
supervisor call (SVC SO) is generated, the job is terminated, and a
message is displayed.

Subsetting/Supersetting

Some modules may be subset modules to a superset
module. A superset module is one which performs
all the functions of its subset or component modules,
avoiding duplication and thereby saving storage
space. The functions required by several similiar
DTFs (that is, several DTFCDS, or several DTFPRs,
etc.) are thus available via a single xxMOD macro,
even ifthe DTFs have slightly different parameters.
An example is shown in Figure 1-6.

If you do not code the logic modules yourself,
IOCS automatically performs all subsetting and su­
persetting that is possible.

If you code the logic modules yourself,
subsetting/supersetting can be achieved by coding a
single xxMOD macro containing all of the functions
needed by all of the DTFS which use that macro. In
this case you may either:

• Not name the module and let IOCS name it for
you - that is, specify no name for the xxMOD
macro and also no MODNAME operands in the
DTFS; or

• Name the module, specifying a name for the
xxMOD macro and also specifying the same
name in the MODNAME operands of all the
DTFs which will use that module.

Subsetting/supersetting cannot be performed if
you supply an xxMOD macro for each DTF of a given
device type. In this case:

• If you did not name the modules, the assembler
program will detect a double declaration error
condition, or

• If you did name the modules, they will be gen­
erated without any subsetting/supersetting.

Superset Module Subset Module Subset Module

Functions Functions Functions

Optional use of CNTRL macro Optional use of

CNTRL macro cannot be used CNTRL macro

Workarea and Workarea and I/O area processing

I/O area process- I/O area process- only

ing ing

Support of printer No printer over- Support of printer

overflow flow support overflow

Support of user- Support of user- Support of user-

specified error specified error specified error

actions actions actions

Figure 1-6. Subset and superset module example.

Module Names
As mentioned under "Logic Module Generation
Macros," you can have IOCS provide a name for the
required logic module, or you can specify that name.
Both methods are discussed below.

IOCS Supplies the Name
In order to make use of this facility omit the
MODNAME operand from the DTF macro; the IOCS
macro will then generate a standard module name as
determined by the functions required by the DTF.

Likewise, if you code your own module, the name
should be omitted from the name field, and IOCS
will generate a standard module name matching that
referenced in the DTF.

Standard module names used by IOCS are given
under "Standard CDMOD Names," "Standard
DIMOD Names," etc., following the discussing of the
appropriate xxMOD macro in VSE/ Advanced Func­
tions M aero Reference.

For DTFSD, DTFDA, and DTFDI DASD files, the
module name, if supplied with the macro, is overrid­
den by OPEN. IBM-supplied superset modules are
used for these files. These fully reentrant modules
are loaded into the SVA during IPL. One copy of a
specific logic module is used for all requestors for
the type of file handled by that logic module.

IOCS Subset/Superset Names: The
supersetting/subsetting described below does not
apply to DTFSD, DTFDA, or DTFDI DASD files. Any
user specification is ignored because the logic mo­
dules are supplied by the system. OPEN determines
the appropriate file type and provides the linkage to
the selected module (resident in the SV A). IOCS per­
forms subsetting/supersetting of modules with stan­
dard module names by collecting the services re­
quired by the DTFs and generating a single module

Chapter I: Macro Types and Their Use 1 - 5

with different entry points corresponding to the
standard module names. If you are interested in
seeing how IOCS forms subset/superset names,
charts showing the name-building conventions are
given throughout the book for the various logic mo­
dules under "Subset/Superset CDMOD Names,"
"Subset/Superset DIMOD Names," etc., following
the discussion of the appropriate module in
VSE/Advanced Functions Macro Reference. Figure
1-7 shows a model for these charts:

* + + + *
I J x F B C W Y

U Z Y Z Z
v + +
W E N

Z S
Z

+ Subsetting/supersetting permitted.
* No subsetting/supersetting

permitted.

Figure 1-7. Model for a subset/superset naming chart.

The letters indicate functions which can be per­
formed by the logic module (these are fixed for a
given module and are explained in the sections
"Standard CDMOD Names," "Standard DIMOD
Names," etc.). If a module name were composed of
letters from the top row exclusively, it could only be
a superset name; and names including letters from
the second or lower rows would then be subset
names to the top-row superset name. For example,
the module IJxWESZZ is a subset module to superset
module IJXWENZZ. IJxWEZZZ is another subset mo­
dule to superset module IJXWENZZ. Similarly,
IJxWEZZZ is also a subset module to superset module
IJxWESZZ.

An asterisk (*) over a column indicates that no
subsetting or supersetting is permitted, while a plus
(+) sign in a column indicates that both are permit­
ted. Two plus signs in a single column divide that
column into mutually exclusive sets. In this exam­
ple, C is not a superset of N, S, or Z, and conversely,
N, S, or Z is not a subset of c.

The vertical arrangement of letters within a col­
umn is always in alphabetical order. If a column is
divided by plus and/or asterisk signs into sets, then
the vertical arrangement of letters within each set of
a column is in alphabetical order.

You Supply the Name
For DTFs other than DTFSD, DTFDA, or DTFDI files
assigned to DASD devices, specify the logic module
name in the MODNAME operand. A module with
this name must otherwise be present in your pro­
gram, or be supplied to your program when it is

I - 6 VSE/ Advanced Functions Macro User's Guide

link-edited. Subsetting/supersetting will occur if
one module contains all of the functions needed by
all of the DTFs which will use the module (all must
reference it by the same name).

Nothing is gained by giving your modules stan­
dard IOCS names (see "IOCS Supplies the Name,"
above), for IOCS will supply the same name for you
if you let it name the modules. Should you decide
to name your modules, use names which are mean­
ingful to you in the context of your program.

Interrelationship of the Macros
Figure 1-8 shows the relationship between the pro­
gram, the DTF, and the logic module. Imperative
macros initiate the action to be performed by
branching to the logic module entry point generated
in the DTF table. TAPE is the name of the file.
IJFFBCWZ is the name of the logic module.

Linkage between the program, DTF, and logic
module is accomplished by the assembler and the
linkage editor.

Program DTF Table M?dule

GET TAPE,WORK
TAPE ~TFMJIJFF~CWZ

IJFFBCWZ

Figure 1-8. Relationship between program, DTF, and logic
module.

Link-Editing Logical IOCS Pro­
grams
You have the option of assembling your DTFS, and
any logic modules which you code yourself, either
with your main program or separately for later link­
editing with the main program. These possibilities
are discussed below and are illustrated in Appendix
B.

Program, DTF, and Logic Module Assembled

Together
If you assemble DTFS and logic modules with the
main program, the linkage editor searches the input
stream and resolves the symbolic linkages between
tables and modules. This is accomplished by

•

•

•

L.

•

•

•

•

external-reference information (v-type address con­
stants generated in DTF tables) and the control sec­
tion definition information (CSECT definitions in
logic modules). Further information on link-editing
can be found in the section "Linkage Editor" of
VSE/ Advanced Functions System Control
Statements.

Program, DTF, and Logic Module Assembled
Separately
Specify the operand SEPASMB=YES in the DTF macro
or XXMOD macro which is to be separately assem­
bled. For DTFs which are separately assembled,
there are some symbolic linkages which you must
define yourself in the form of EXTRN and ENTRY
symbols. See Appendix B for a full description of
which symbolic linkages you must define yourself.

Supplying the SEPASMB=YES operand in a DTF
macro causes a CAT ALR card with the filename to be
punched ahead of the object deck and defines the
filename as an ENTRY point in the assembly. Speci­
fying the SEPASMB=YES operand in an xxMOD ma­
cro causes a CAT ALR card with the module name to
be punched ahead of the object deck and defines the
module name as an ENTRY point in the assembly. In
either case, a START card must not be used in a sepa­
rate assembly.

Using the Relocatable Library

As stated earlier, considerable coding effort is saved
if logic modules are cataloged in the relocatable
library. The same applies to DTFS. Using DTFS cata­
loged in the relocatable library requires that you
take care in naming the DTFS - that is, that you de­
velop a set of standard names and then use them
both for your DTFS and in all references your pro­
gram makes to the DTFS. However, should you de­
cide to name modules yourself, instead of letting
IOCS do it, then make sure that you refer to precisely
those modules in your DTFs by using their exact
names (see "Module Names" above).

If, during generation of your system, a standard
set of logic modules needed by the installation has
been generated, autolinking the appropriate mo­
dules to your DTFS presents no problem. This is
particularly true if both the modules and DTF refer­
ences to them use standard module names.

Using logic modules which you named yourself­
as opposed to those named by IOCS - cataloged in
the relocatable library requires care. You should
verify that the desired modules have been cataloged
in the library by consulting a DSERV listing ofthe
library. The linkage editor can perform an autolink
only if there is an exact match of module names

specified in the DTFS and the names of the modules
themselves.

Self-Relocating Programs and
IOCS
The Relocating Load feature, standard in VSE (a
system generation option in DOS/VS) makes it un­
necessary for you to write your own self-relocating
programs. If, however, you want to make IOCS im­
perative macros and control program function mac­
ros self-relocating you must do the following:

1. Use the OPENR and CLOSER macro.
2. Use register notation within all your imperative

and control program function macros (see
"Register Notation" later in this chapter, and
"Appendix D. Writing Self-Relocating
Programs").

Using DASD Support
For DTFSD, DTFDA, DTFDI files, and ISAM files resid­
ing on RPS DASD devices, the DTF in your problem
program is linked to a logic module in the shared
virtual area (SV A). This linkage is established during
open processing of the DTF. The logic modules re­
side in the core image library and are loaded into
the SVA after IPL (or, for ISAM files on RPS DASD
devices only, during open processing).

Logic Modules for DTFSD, DTFDA, and DTFDI
DASD files are supplied and used as described under
"IOCS Supplies the Name" earlier in this chapter.

The following prerequisites must be met before
the DTF will be linked to an ISAM RPS or DASD de­
vice independent logic module:

1. The DASD must have the RPS feature if an RPS
logic module is required.

2. The supervisor must be generated with the
RPS=YES option specified (for RPS, only).

3. The modules must be present in the core image
library. Logic modules for DTFSD, DTFDA, and
DTFDI DASD files are supplied with the system.

4. The logic module must be placed in the SVA
when the SVA is being built, or sufficient
GETVIS area in the SVA must be available dur­
ing the open processing to dynamically load the
module (for ISAM files on RPS DASD devices,
only).

5. Sufficient partition GETVIS area must be avail­
able to allow dynamic generation of an exten­
sion to the DTF to contain ISAM RPS or DASD
device independent channel programs and
work areas (partition GETVIS area is made
available with the SIZE parameter on the EXEC
job control statement).

Chapter 1: Macro Types and Their Use 1 - 7

Since the DTF is linked to a logic module in the
SV A, no logic module need to be included with the
problem program. However, if the above RPS sup­
port prerequisites are not met for ISAM files, open
processing bypasses the RPS module linkage and
opens the DTF as if a standard non-RPS module link­
age exists within the problem program.

Register Usage
Registers for VSE/ Advanced Functions Use
General registers 0, I, 13, 14, and 15 have special
uses, and are available to your program only under
certain conditions.

The following paragraphs describe the general
uses of these registers by IOCS, but the description is
not meant to be all inclusive. For more information
on subroutine linkage through registers, refer to the
"Linkage Registers" under "Requesting Control
Functions". In addition, special applications, such
as a MICR stacker selection routine, may require
different registers.

Registers 0 and 1
Logical IOCS macros, the control program function
macros, and other IBM-supplied macros use these
registers to pass parameters. Therefore, these regis­
ters may be used without restriction only for imme­
diate computations. However, if you use these regis­
ters for computations not completed before the sys­
tem requires them, you must save their contents and
reload them later when required.

Register 13
Control program subroutines, including logical
IOCS, use this register as a pointer to a 72-byte, dou­
bleword aligned save area. When using the CALL,
SA VE, or RETURN macros you can set the address of
the save area at the begining of each program phase,
and leave it unchanged thereafter. However, when
sharing a reentrant (read only) logic module among
tasks, each time that module is entered by another
task, register 13 must contain the address of another
72-byte save area to be used by that logic module.

Registers 14 and 15
Logical IOCS uses these two registers for linkage.
Register 14 contains the return address (to the pro­
gram) from called programs, DTF routines, and your
subroutines. Register 15 contains the entry point
into these routines and is used as a base register by
the OPEN, CLOSE, and certain DTF macros.

IOCS does not save the contents of these registers
before using them. If you use these registers, you
must either save their contents yourself (and reload

1 - 8 VSE/ Advanced Functions Macro User's Guide

them later) or finish with them before IOCS uses
them. Note also that not all logic modules use stan­
dard save area conventions. As a result, if you use a
read-only logic module (supplying a module savear­
ea) in a subroutine, the savearea back-chain pointer
can be lost.

Registersfor Your Use
Registers 2 through 12 are available for general us­
age. There are, however, a few restrictions.

The assembler instructions for the TRT (TRanslate
and Test) and the PUTR (PUT with Reply) macros
make special use of register 2. It is your responsibil­
ity to save the contents of this register for later use in
your program if the register contains valuable in­
formation (such as pointers or counters) before the
TRT or PUTR is executed. After they have been exe­
cuted, you can then restore the contents of register 2.

If an ISMOD logic module precedes a USING state­
ment or follows your program, the use of registers 2
through 12 remains unrestricted even at assembly
time. However, if the ISMOD logic module lies with­
in the problem program, you should issue the same
USING statement (which was issued before the logic
module) directly following the logic module. This
action is necessary because the ISMOD CORDATA
logic module uses registers I through 3 as base regis­
ters. Each time either module is assembled, these
registers are dropped.

Macro Format
Macros, like assembler statements, have a name
field, operation field, and operand field. Comments
can also be included as in assembler statements,
although certain macros require a comment to be
preceded by a comma if the macro is issued without
an operand. These macros are CANCEL, DETACH,
FREEVIS, GETIME, GETVIS, TESTT, and TTIMER.

The name field in a macro may contain a symbol­
ic name. Some macros require a name; for example,
CCB, TECB, DTFxx.

The operation field must contain the mnemonic
operation code of the macro.

The operand in the operandfield must be written
in either positional, keyword, or mixed formats.

Positional Operands
In this format, the parameter values must be in the
exact order shown in the individual macro discus­
sion. Each operand, except the last, must be fol­
lowed by a comma, and no embedded blanks are
allowed. If an operand is to be omitted in the macro

J

•

•

•

and following operands are included, a comma must
be inserted to indicate the omission. No commas
need to be included after the last operand. Column
72 must contain a continuation character (any non­
blank character) if the operands fill the operand
field and overflow onto another line.

For example, GET uses the positional format. A
GET for a file named CDFILE using WORK as a work
area is written:

GET CDFILE. WORK

Keyword Operands
An operand written in keyword format has this
form, for example:

LABADDR=MYLABELS

where LABADDR is the keyword, MYLABELS is the
specification or value, and LABADDR=MYLABELS is
the complete operand.

The keyword operands in the macro may appear
in any order, and any that are not required may be
omitted. Different keyword operands may be writ­
ten in the same line, each followed by a comma ex­
cept for the last operand of the macro. Or they may
be written in separate lines as shown in Figure 1-2.

Mixed Format
The operand list contains both positional and key­
word operands. The keyword operands can be writ­
ten in any order, but they must be written to the
right of any positional operand in the macro.

For additional information on coding macro
statements, see OSj VS-DOSj VSE- VM j 370 Assem­
bler Language, as listed in the Preface.

Notational Conventions
The following conventions are used in this book to
illustrate the format of macros:

I. Uppercase letters and punctuation marks
(except as described in these conventions) rep­
resent information that must be coded exactly
as shown.

2. Lowercase letters and terms represent informa­
tion which you must supply. More specifically,
an n indicates a decimal number, an r indicates
a decimal register number, and an x indicates
an alphameric character.

3. Information contained within brackets [] repre­
sents an optional parameter that can be includ­
ed or omitted, depending on the requirements
of the program.

4. Stacked options contained within brackets rep­
resent alternatives, one of which can be chosen,
for example:

[~:b:~]
address

A name-field symbol
in this assembly, or
an operand of an
EXTRN statement,
or * (the location
counter).

5. Stacked options contained within braces 0
represent alternatives, one of which must be
chosen.

6. Items 4 and 5 above may also be shown be­
tween brackets and braces, respectively, on one
line, that is, unstacked. In that case, the op­
tions are separated by OR symbols (I). Exam­
ples of this notation are

{phasenamel(l)} [,entrypointl,(O)]

7. An ellipsis (a series of three periods) indicates
that a variable number of items may be includ­
ed.

8. filename - Example of a symbol appearing in
the name field of a DTF macro.

9. n - Self-defining value, such as 3, X'04', (15),
B'OlO'.

10. length - Absolute expression, as defined in
OSjVS-DOSjVSE- VMj 370 Assembler
Language.

II. 1t:IBICI- Underlined elements represent an
assumed value in the event an operand is omit­
ted.

12. (r) - Ordinary register notation. Any register
except 0 or 1 to be specified in parentheses .

13. (0)1(1) - Special register notation (ordinary
register notation can be used.)

Register Notation
Certain operands can be specified in either of two
ways:

1. You may specify the operand directly which
results in code that, for example, cannot be exe­
cuted in the sv A because it is not reentrant.

2. You may load the address of the value into a
register before issuing the macro. This way the
generated code is reentrant and may be execut­
ed in the SVA. When using register notation,
the register should contain only the specific
address; high order bits should be set to O.

In the latter case, you must specify the register in
the macro. (The registers that can be used for this

Chapter 1: Macro Types and Their Use 1 - 9

purpose are discussed under "Register Usage,"
above.)

When the macro is assembled, instructions are
generated to pass the information contained in the
specified register to IOCS or to the supervisor. For
example, if an operand is written as (8), and if the
corresponding parameter is to be passed to the su­
pervisor in register 0, the macro expansion contains
the instruction LR 0,8. This is an example of ordi­
nary register notation.

You can save both storage and execution time by
using what is known as special register notation. In
this method, the operand is shown in the format
description of the macro as either (0) or (1), for ex­
ample. This notation is special because the use of
registers ° and 1 is allowed only for the indicated
purpose.

If special register notation is indicated by (0) or
(1) in a macro format description and you use ordi­
nary register notation, the macro expansion will
contain an extra LR instruction.

The format description for each macro shows
whether special register notation can be used, and
for which operands. The following example indi­
cates that the filename operand can be written as (1)
and the workname operand as (0):

GET {filenamel(1)} [,worknamel,(O)]

If either of these special register notations is used,
your program must load the designated parameter
register before executing the macro expansion. Or­
dinary register notation can also be used.

Operands in (S,address) Notation
Certain system control macros (e.g. ATTACH,
GENIORB, GENL, LOAD) allow three notations for an
operand:

1. Register notation, as described in the preceding
paragraphs.

2. Notation as a relocatable expression which, in
the macro expansion, results in an A-type ad­
dress constant.

3. Notation in the form (S,address). In the macro
expansion, an explicit address (that is, an as­
sembler instruction address in base­
displacement form) is generated. The address
can be specified either as a relocatable expres­
sion, for example: (S,RELOC), or as two absolute
expressions, the first of which represents the
displacement and the second, the base register,
for example: (S,512(12».

\ - \0 VSE/ Advanced Functions Macro User's Guide

You should consider using this notation if your
program is to be reenterable. In a reenterable
program, macro operands often refer to fields
in dynamic storage. The (S,address) format
offers an alternative to register notation: if two
or more of such operands have to be provided
for one macro, there is no need for loading ad­
dresses into that many registers.

Declarative Macro Statements
The operands of the DTFxx and the logic module
generation macros are written in assembler format
statements. Figure 1-2 shows an example of a
DTFMT macro. The first statement is the header and
the continuations following are the detail state­
ments. The header contains:

• The symbolic name of the file in the name field.
In a DTF, the symbolic file name may have as
many as seven characters. The file name may
also be required on standard label job control
statements and in certain macros as operands; it
must be the same as that used in the DTF head­
er. For a logic module, the name is not usually
required. See "Module Names", above.

• The mnemonic operation code of the macro in
the operation field.

• Keyword operands in the operand field, as re­
quired.

• A continuation character in column 72, if re­
quired.

Note: Avoid using IJ as the first two letters when defining sym­
bols liS they may conflict with IOCS symbols beginning with 11.
Avoid symbols that are identical to a filename plus a single char­
acter suffix because IOCS generates symbols by concatenating
the filename with an additional character. For the filename
RECIN, for example, IOCS generates the symbols RECINS,
RECINL, etc.

The details follow the header and may be ar­
ranged in any convenient order. In Figure 1-2, the
programmer has written only one operand on each
detail line in order to make it easier to change the
DTFMT specifications later, if necessary. If more
than one operand is written on a detail line, they
must be separated by a comma only. Except for the
final detail line, there must be a comma immediately
following each operand and have a continuation
character in column 72. Each continuation line must
begin in or after column 16. You may include a
comment on a header or a detail line if there is room
between a space following the last operand on a line
and column 72.

•

J

•

•

•

•

This chapter discusses data organization for files,
explaining how a file can be organized according to
the requirements of the user. It serves as a. basis for
the following chapter, which introduces three access
methods that can be used for batch processing and
discusses which file organization and access method
are best suited to a particular data processing appli­
cation.

When files are being organized and programs
being designed to do a particular job, certain ques­
tions must be asked:

What kind of information is available?

How much of the file must be processed in the
program?

How many different programs must use the
same file?

How often will the information in the file be
processed?

When properly asked and answered, these ques­
tions will lead to decisions to:

• process all or most of the records of a file se­
quentially in one program,

• process only selected records of a file randomly
in one program,

• process selected records randomly in two or
more programs or,

• any combination of the above.

Data organizations that can be chosen to meet
these requirements include sequential without an
index for processing records sequentially, and either
sequential with an index or direct organization for
processing records randomly.

If two or more programs process the same file, a
more complex data organization, one with a primary
index and one or more secondary indexes, for exam­
ple, may be appropriate. Such a complex data or­
ganization, which allows access to its records for
different purposes, is commonly referred to as a data
base. Data base organization is not discussed in this
book but is introduced in DL/I DOS/VS General
Information manual, and is treated in more detail in
other DL/I DOS/VS publications.

record 1 record 2 record 3 record 4.
prim.key prim.key prim.key pnm.key
= 000016 = 000258 = 000783 = 006846

Chapter 2: File Organization

Sequential Organization without
Index
In a file with sequential organization, records are
stored adjacent to one another, the physical se­
quence of the records in the file corresponding to the
sequence of the primary keys (see Figure 2-1).

This type of organization requires that, to retrieve
a specific record, all the preceding records must be
read. Therefore, a typical example of a sequentially
organized file might be one such as a payroll file
that has all of its records read at weekly intervals.
This is because the advantage of sequential organi­
zation is rapid access to the next record in the file
and it is best utilized in applications that process all
or most of the records in the file.

Sequentially organized files are found most com­
monly on serial storage media such as tape and
punched card, but sequential organization can also
be applied efficiently to files on DASD.

Direct Organization
A direct access file is characterized by some predict­
able relationship between the key of a record and
the address of that record on a direct access device.
The physical sequence of the records in such a file
seems to follow a random order. This explains why
such a file is sometimes called a randomly organized
file.

Direct organization ignores the physical sequence
of the records, and they are accessed on the basis of
their physical location on the storage device. The
advantage of direct organization is that any record
in a file can be accessed without reading all the pre­
ceding records. This form of organization is applica­
ble only to direct access devices (DASD) such as
disks.

In a direct organization, records are located and
identified by means of either a transformation
algorithm or by relative record number.

Direct organization, through an algorithm, means
that a formula is used to establish a relationship
between the primary key of a record and the address
of that record on a DASD (see Figure 2-2).

record 5 { prim.key etc.
= 006847

Figure 2-1. Sequential data organization. Records are usually stored in the sequence of an ascending identifier. They are always accessed
in their physical sequence.

Chapter 2: File Organization 2 - I

PRIMARY KEY DASD ADDR

21320 021320
21321 021321

021322*
21323 021323

021324*
021325*

21326 021326
21327 021327

This example shows that the contents of the pnmary
key is also the address of the data. Each value has
a unique record address . This is the simplest type
of transformation algorithm .
DASD addresses marked .*. are empty locations since
no records are present with that primary key (= address) .

PRIMARY KEY DASD AD DR

01861
01868
02478
02500
02503
02509

0000186
0000186
0000247
0000250
0000250
0000250

TRANSFORMATION ALGORITHM

(Primary Key)
10

This example shows an algorithm that gives non-
unique addresses . This might happen when a user wants
only the track address to be calculated and wants to
organize the records within the track himself.
assuming of course that a track has space for more than
one record . In this example 10 records can be stored
on a track .

Figure 2-2. Direct organization through an algorithm. In direct organization, an algorithm is used for relating keys to the addresses of
data records that need not be in physically sequential locations.

Record 0001 Record 0003 Record 0004

",1 ___ oI.l __ R_e_c_o_rd_0_0_0_9......1._R_ec_o_r_d_00_1O_"'--f:: I Recmd """"

Figure 2-3. Example of the layout of a relative record file.

This technique is often called randomizing or
hashing. The formula, or transformation algorithm,
is usually arrived at by trial and error. That is, an
algorithm is chosen and all primary keys are proc­
essed. Then an analysis of the resulting storage ad­
dresses is made and, if the algorithm proves to be
inadequate, a new one is developed and tested. An
algorithm is considered inadequate if it transforms
many different primary keys into the same storage
address, or if many addresses are never used.

Direct organization by relative record number is
a technique that can be used if (I) all records of a
me have the same length and (2) each record of the
me is assigned a number within the me. This num­
ber is multiplied by the number of bytes in each
record; the result is a byte address relative to the
beginning of the me. Figure 2-3 shows how the re­
cords might be arranged in a relative record me.

2 - 2 YSEj Advanced Functions Macro User's Guide

Data Areas
A direct access file usually has two types of data
areas, the prime data area and the overflow area.
The prime data area is the area in which the records
are written when the me is created or subsequently
reorganized. Additions to the me may also be writ­
ten in the prime data area. It may span multiple
volumes and may consist of several non-contiguous
areas.

The overflow area is used for records that, be­
cause of lack of space at a particular address, cannot
be placed in the prime data area. There are two
kinds of overflow areas (Figure 2-4): a cylinder over­
flow area, where the last tracks of each cylinder are
reserved for overflow records, and an independent
overflow area, where one or more cylinders on either
the same or a separate volume are reserved for over­
flow records~ Either or both ofthese types may be
used for a direct access file (see Figure 2-5).

•

J

..

•

•

•

2

Cvl. 1 Cvl. 2 etc. Cvl. n Cvl.

Prime data areas

---~---~-~~+ --
Cvllnder overflow areas

Figure 2-4. Two types of overflow areas .

Cyl. 1 Cyl. 2 Cyl. 3 etc.

PRIME DATA AREAS

1----- f-----1---- f- ---

Cylinder Cylinder Cylinder)
overflow overflow overflow etc.
area area area

Figure 2-5. Combining the two types of overflow areas.

The independent overflow area may be used as
an overflow area without any special structure. If a
record does not fit in the prime data area or in the
cylinder overflow area because both these areas are
full, it may be placed anywhere in the independent
overflow area.

The independent overflow area may also be or­
ganized as an extension of all prime data cylinders.
F or example: if a record must be stored in track xx
of cylinder yy, according to the randomizing algo­
rithm, this record can also be placed in track xx of
the independent overflow area (assuming one sepa­
rate cylinder), or in track xx of any cylinder of the
overflow area (assuming several cylinders for the
overflow area). This means that you can retrieve a
record in an independent overflow cylinder by mod­
ifying (with appropriate cylinder addresses) the ran­
domizing algorithm that was used to search the
prime data area. Note that when you use only an
independent overflow area, more I/O operations are
required than when you use it with cylinder over­
flow areas.

The choice of a good conversion algorithm is very
important. A poor algorithm will produce so many
synonyms that the overflow areas may prove to be
too small and the space in the prime data area is

Cvl. n

Indep.
overflow
area

Cyl. n

Indep.
overflow
area
for the
entire
file

used inefficiently. This means a waste of space. If a
good algorithm is used, however, the direct access
technique may be the most flexible method of all.

If an algorithm converts record keys to record
addresses, only the first record whose key is convert­
ed to a particular record address can be placed in the
prime data area. Any other record whose key con­
verts to the same address will have to be placed in
the overflow area.

The design of the IBM direct access devices allows
you to, in certain cases, randomize to a track address
instead of a record address. In some cases, even a
cylinder address may be sufficient. If an algorithm
converts record keys to a track address, as many
records as fit on the track can be placed in the prime
data area. Only when the track is full will a record
whose key converts to this track address be placed in
the overflow area. Under these conditions, develop­
ing a good randomizing algorithm is less urgent.

Sequential Organization with
Index
When this data organization is used, there is a sepa­
rate list or index that contains the primary keys of
records in the file. (See Figure 2-6.) Each key is
accompanied by a reference to the actual data in

Chapter 2: File Organization 2 - 3

external storage. The index may be part of the file,
or may be a separate file itself.

A sequential file with an index is similar to a se­
quential file in that rapid sequential processing is
possible. In addition, the associated index makes it
possible to locate individual records for non­
sequential processing. That is, you can refer to re­
cords at random throughout the file, or to records in
their presorted sequence. The organization also
provides for additions to the file at a later time,
while still maintaining both the random and sequen­
tial reference capabilities.

There are three areas in an indexed sequential
file. The prime data area contains data records and
related track indexes. The index area contains the
cylinder index and, if present, the master index. The
overflow area is used when records are added.

Prime Data Area
The data records are contained in the prime data
area, the starting and ending limits of which are
specified by EXTENT job control statements. The
records in the prime data area are arranged in physi­
cal sequence by key. Each data block is written with
count, key, and data areas. The count area specifies
the sequence number of the physical block on the
track, the length of the key area (which must be
constant throughout the file), and the length of the
data area (which must also be constant).

Records in the prime data area can be either
blocked or unblocked. (See Figure 2-7.) When re­
cords are blocked, the key to the highest (last) record
in the block is the key for the block and, therefore, is
stored in the key of the record.

When an indexed sequential file is. created, all
data blocks are written in the prime data area, and
the whole prime data area is filled with data blocks.

Space for the prime data area is allocated in units
of cylinders; it must begin with track 0 of a cylinder
and must continue to the last track of the same or a
subsequent clinder. Track 0 of every cylinder is used
for the track index.

Index

I

When an indexed sequential file spreads over
more than one volume, the prime data area tnust be
continuous from one volume to the next, with the
exception of cylinder 0, which is reserved for labels.
The space distribution for an ISAM file is illustrated
in Figure 2-8.

Note: The prime data area of a multivolume file on a 3340 can­
not extend over different types of data modules.

Indexes
As ISAM (Indexed Sequential Access Method) loads
a file of records sorted by key, it builds a set of in­
dexes for it. The indexes:

• permit rapid access to individual records for
random processing and

• supply the records in key order for sequential
processing.

Either two or three indexes are built: a track in­
dex and a cylinder index are always built, and a
master index is built if you specify the DTFIS

MSTIND operand.

Once a file is loaded and the related indexes are
built, the ISAM routines search for specified records
by referring to the indexes. When a particular re­
cord (specified by key) is requested, ISAM searches
the master index (if used), then the cylinder index,
then the track index, and finally the individual
track. Each index narrows the search by pointing to
the portion of the next-lower index whose range
includes the specified key.

Because of the high speed and efficiency of the
direct access devices, a master index should be es­
tablished only for exceptionally large files, for which
the cylinder index occupies several tracks (five or
more). That is, it is generally faster to search only
the cylinder index (followed by the track index)
when the cylinder index occupies four or less tracks.

The indexes are made up of a series of entries,
each a separate record composed of both a key area
and a data area. The key area contains the highest
key on the track or cylinder, and its length is the
same as that specified for logical data records in the
DTFIS KEY LEN operand. The data area of each in-

Records In the File

000016 I 0005 record 1, pnmary key = 006846
I

I~ 000258 I 0002 record 2, pnmary key = 000258
000783 I 0003 record 3, primary key = 000783
006846 I 0001 ,...- record 4, primary key = 006847
006847

I 0004 ~ record 5, primary key = 000016 I
I

Figure 2-6. Example of a sequential organization with index.

2 - 4 VSE/ Advanced Functions Macro User's Guide

J

..

..

•

•

dex is ten bytes long; it contains track information
including the track address.

The indexes are terminated by a dummy entry
that contains a key of all one bits. Therefore you
should not use a key of all one bits for any of your
records.

Track Indexes
Track indexes represent the lowest level in the index
structure. There is one track index for each cylinder
in the prime data area; it is written on track 0 of the
cylinder it indexes. Sometimes it needs more than

Unblocked

count
area

Blocked

key of
logical
record

one
logical record

one track and occupies also space on the next track,
or tracks.

A track index has one entry for each track of the
cylinder. This entry contains information on the
prime data track as well as on the records that have
been shifted out of it into the overflow area. Actual­
ly, the index entry is a double entry, namely a nor­
mal entry and an overflow entry (see Figure 2-9).

Figure 2-10 shows part of a track index and its
related prime data tracks.

count
area

key of
last logical
record In block

~0':1~1 ~~r~ ~ 1~lcal~eco~ 2ll0glc I I "(

Figure 2-7. Prime data records.

Single-volume ISAM file A

Multivolume ISAM file B

VOLUME

Figure 2-8. The prime data area.

each logical record has
Its own key embedded

VOLUME

Chapter 2: File Organization 2 - 5

Norm a 1/ Ove rflow Normal/Overflow
Pair Pair
A A r \1

Normal Overflow Normal Overflow

Entry Entry Entry Entry
.A A A. A

r V \r \r

Key 1 Data 2 Key
3 Data 4 Key 1 Data 2 Key

3 Data 4

1 Normal key

2 Normal data

= key of the highest record on the prime data track

= address of the prime data track

3 Overflow key = key of the highest overflow record logically associated with the prime data track

4 Overflow data = address of the lowest overflow record logically associated with the prime data track

\

\

{

• If there are no overflow records, overflow key and data entries are the same as normal key and data entries
• This figure IS a logical representation only, It makes no attempt to show the physical size of track Index entries

Figure 2-9. Format of track index entries.

TRACK INDEX PRIME DATA TRACKS

highest on Record Record Record fetcf
key track with with with

10 1 Track 1 key 4 key 6 key 7 8 10

18 2
28 3 -- 40 - r- 4

"\ Track 2 11 12 15 16 18
47 5
58 6
67 7
76 8 Track 3 19 21 26 27 28
82 9

--- --- 1----r-
Track 4 30 32 34 36 40

Track 5 42 43 44 46 47

Track 6 49 52 53 56 58

etc. ~~~~~

A search on key for the record with key 36 will find track 4 as ItS track address. Track 4 contains records with keys
higher than key 28 (highest key on tra.ck 3) and up to key 40. The record with key 36 present on track 4 will be
retrieved by a search on key for that track.

Figure 2-10. Track index and related prime data tracks. The overflow entries in the track index are not shown.

2 - 6 VSE/ Advanced Functions Macro User's Guide

..

•

.,

Cylinder Index
The cylinder index is an intermediate level index for
the logical file. It contains an index entry for each
cylinder occupied by the file. This index is built in
the location which you specify in an EXTENT job
control statement. You may change the upper extent
limit; however, no validity check is performed by the
ISMOD and it is therefore your responsibility to make
sure the change is correct.

This index contains one entry for each cylinder
occupied by the file. The key area contains the high­
est key associated with the cylinder, and the data
area contains the address of the track index for that
cylinder. The dummy entry indicates the end of the
cylinder index.

The cylinder index may not be built on one of the
cylinders that contains prime data records. Also, it
should not be built on a cylinder that contains over­
flow records as this could prevent future expansion
of the overflow area. The cylinder index should be
on a separate cylinder; it may be on a separate vol­
ume that is on-line whenever the logical file is proc­
essed.

The cylinder index may be located on one or
more successive cylinders. Whenever the index is
continued from one clinder to another, the last index
entry on the first cylinder contains a linkage field
that points to the first track of the next cylinder. A
cylinder index may not be continued from one vol­
ume to another, however.

Because cylinder index and track index must be
searched to locate individual records, it is useful to
have the cylinder index resident in virtual storage.
You can have all, or part, of the cylinder index re­
side in virtual storage. If only a part of the cylinder
index is kept in virtual storage, it is advisable to
presort the input transactions; otherwise, portions of
the index might have to be read several times. If all
of the cylinder index can reside in virtual storage at
the same time, there is of course no need to presort
the input transactions.

Master Index
If desired, an even higher index can be created; the
master index, which contains one entry for each
track of the cylinder index. It is advisable to use a
master index if the cylinder index occupies more
than four tracks and is not kept in virtual storage
permanently. The time to search for a given record
will then be significantly shorter.

The optional master index is the highest-level
index for a logical file. This index is built only if it is
specified by the DTFIS MSTIND operand. A master
index is built in the location specified by an EXTENT

job control statement. Like the cylinder index, it
may be located on the same volume with the data
records or on a different volume that is on-line
whenever the records are processed.

The master index must immediately precede the
cylinder index on a volume, and it may be located
on one or more successive cylinders. Whenever it is
continued from one cylinder to another, the last
index entry on the first cylinder contains a linkage
field that points to the first track of the next cylin­
der. A master index may not be continued from one
volume to another.

The master index contains an entry for each track
of the cylinder index. The key area contains the
highest key on the cylinder index track, and the data
area contains the address of that track. The dummy
entry indicates the end of the master index.

The complete index structure for an ISAM file,
including a master index, is shown in Figure 2-12.

Overflow Area
ISAM uses the prime data area to store records when
the file is created. ISAM further uses an overflow
area, which is needed only if records are added to
the file later. It is provided for those records that are
forced off their original tracks by the insertion of
additional records. Any new record is placed in the
physical sequence exactly where it belongs, accord­
ing to the value of its key. This implies that existing
records with higher keys must be shifted. Shifting
all of them would take too much time. Therefore,
only the records on the track that is affected will be
shifted. The record that is forced off its track be­
cause of this shifting is put into the overflow area.
The track index is adjusted in the process.

Records that are moved to the overflow area re­
main associated with their Oliginal prime data
tracks. They are always unblocked, even when the
records in the prime data area are blocked. Each
record has an additional link field (10 characters
long) in its data area. Figure 2-13 shows the struc­
ture of an overflow record.

The overflow entry (in the track index) for a giv­
en track references all overflow records associated
with that prime data track. They are chained to one
another through the information in their link fields,
and the overflow entry points to the beginning of
that chain.

You may request two types of overflow areas (see
Figures 2-4 and 2-5):

• A cylinder overflow area for each cylinder,
which provides a certain number of tracks on

Chapter 2: File Organization 2 - 7

CYLINDER INDEX
FOR FILE ABC

on highest
key cylinder

TRACK INDEX TRACK INDEX TRACK I~

FOR FOR FOR
050 1

CYLINDER 1 CYLINDER 2 CYLINDEI
~ 100 - f-2

135 3 highest on highest on highest
198 4 key track key track key
etc.

l 010 1 059 1 103

018 2 065 2
020 3 071 - f- 3
028 4 078 4
031 5 082 5

~~
035 6 086 6
040 7 090 7
045 8 095 8
050 9 100 ·9 135

A search on key for the record with key 67 will find, In the cylinder Index, the address of the track Index for cylinder 2
ThiS track Index contains entries for records with keys higher than key 50 (highest key on cylinder 1) and up to key 100
Track 3 on cylinder 2 will be found as the track address for the record with key 67

Figure 2-11. Cylinder index and related track indexes. The overflow entries in the track indexes are not shown.

each cylinder to hold the overflow records of
that cylinder.

• An independent overflow area for the entire file,
which provides a certain number of tracks on a
separate cylinder, perhaps even on another vol­
ume.

You may use either of these types or both of
them. If you use them together, the independent
overflow area will be used whenever one of the cyl­
inder overflow areas is full.

Example of an ISAM File
Figure 2-14 shows schematically a simplified exam­
ple of a file organized on a DASD by ISAM. This fig­
ure illustrates a file on a 3330, with the last two
tracks on each cylinder used for the overflow area.
The same file would have similar characteristics if it
was created on another DASD type. The assumptions
made and the items to be noted are:

l. The track index occupies part ofthe first track,
and prime data records occupy the rest ofthe
track. This is called a shared track.

2. The data records occupy part of track ° and all
of tracks 1-16. Tracks 17 and 18 are used for
overflow records in this cylinder.

2 - 8 VSE/ Advanced Functions Macro User's Guide

3. The master index is located on track x on a
different cylinder. The cylinder index is located
on tracks X+I through X+20.

4. A dummy entry signals the end of each index.

5. The file was originally organized with records
as follows:

Track

o
I
2

Records

5 - 75
100 - 150

16 900 - 980

6. The track index originally had two similar en­
tries for each track. It now shows that overflow
records have occurred for tracks I and 16.

7. Records 150, 140, and 130 were forced offthe
track by insertions on the track. Record 135
was added directly in the overflow area.

8. An SL (sequence-link) field was prefixed to
each overflow record. The records for track I
can be searched in sequential order by follow­
ing the SL fields:

Record

130
135
140
150

Sequence-Link Field (SL)

SL points to record with key 135
SL points to record with key 140
SL Points to record with key 150
End of search. (Key 150 was the highest key
on track 2 when the file was loaded.)

J

•

..

..

•

•

•

/

\...,

C

Cylinder 1

50 100

Data Data

10 20

Data Data

60 70

Data Data

110 120

Data Data

170 180

Track 0

Track 1

Track 2

Track 3

Track n

150

Data

40

Data

80

Data

130

Data

190

Cylinder Index

200 300 375

500 600 700

1000 1200 1500

200

Data

50

Data

100

Data

150

Data

200

Track Inde\

~
Data Track

\
Data Track

J
Data Track

J
iJ>ata Track

TRACK INDEX

DATA

TRACKS

Figure 2-12. Index structure for an ISAM file .

450

900

2000
'\

Cylinder 11

1
1500

Master Index

1 450 900 120001

)
./

Cylinder 12

'-
1

2000

MASTER

INDEX

CYLINDER

INDEX

Chapter 2: File Organization 2 - 9

Always unblocked:

key of logical record

Figure 2-13. ISAM overflow record.

9. When the file was loaded, the last record on
cylinder I was record 980; on cylinder 2, record
1850; and on cylinder 9, record 4730. This is
reflected in the cylinder index. The first entry
in the master index is the last entry of the first
track of the cylinder index.

10. When cylinder overflow areas are used, the first
record (record 0) in the track index for a cylin­
der is the COCR (Cylinder Overflow Control
Record). It contains the address of the last
overflow record on the cylinder and the num­
ber of tracks remaining in the cylinder overflow
area. When the number of remaining tracks is
zero, overflow records are written in the inde­
pendent area. The format of the record zero
data field is as follows: hhrbbtxx overflow area.

2 - 10 VSE/ Advanced Functions Macro User's Guide

one logical record

hh-

r-

bb-

t-

xx-

last cylinder overflow track con-
taining the records.

last overflow record on the track.

the number of bytes remaining on
the track (this is binary zeros for ...

fixed-length records).

the number of remaining tracks
available in the cylinder overflow
area.

reserved (with binary zeros).

(j
::r
~
'0

" ..,
!':>
:!1
" o

i" ~
g"

N
I

r

'T1
~"
s:: Track
~ 0

':"'
:f>-
tTl
~
3
'0

" 0 ..,
~

:::!l

" 0
~
g
N"
('0
Q.
::r
'<
V;
>
~

Trock ,

Trock
2

T~' ,.

c r ~ r

0 T A RECORDS

L-~~-=::=-"-~I ~rL...l.....-175 .1....--1 _Oat. ------'

DATA lECORDS

1100 l Oat. 1,05 i Oat. II 1,,5 Oat. 1120 ! Oa~
K 0

O T ... RECORDS

1 200 l Dat. 1210 i Oat. I II 12~ [Oat. 12~ i Oat.

o I(0 K 0 K 0

DATA RECORDS

I ~ i Oat. I W5 j Oat. II 1 ~ Oat. [975 i Oat.

_K ___ ~ ___ ~ __ ~ _______________________________ D ___ .!... __2 __ _
DVE.FLOW OATA lECOIDS

~;x. I~: Sl 0010 140 : Sl I Dolo 130 : Sl Data 990 : SL Data 135 : ;ol Dalo

I I ~50 r I ;°35 I I 140

T"",'
11

Tooc'
X

T"",'
X' ,

T .. ",
.. l

T •• .,.
X "0

OVEItFLQW DATA RECORDS

~ ________ ~Il~ __________ ~
MASTE. INDEX

r~ I I I Truck I I Trock
4T.ll1 X .. I 185601 X .. 2

I Add,,", I I Addr_
I

K 0

CYlINDEI INDEX

I Cyli_r I I i Cylinder 2
9110 , Track 0 11850 I Trac:k 0

I .4ddr_ I J AddresJ
I .c7JC) , Trod .. 0 ~ 1 I Cylinder 10

I I Add,... L-__ L-____ ~ __ ~ ______ _L __ ~\ J I

o

'c,n ,,' 'C,lind.,12 , i :C," 20 I
.48OQ I Troeil 0 14900 I Truck 0 I 18$60 I Trock 0

I Add,... : I Addreu I I I Add,... ,

'I I Cylinder 151,
,71711,TrodO 1
I I Add,."

K 0

I lCylind.r 1601 All I

~8.5010:~:r~ : I-.ih: DumMy

I(Key Areo
0- Dolo ",eo
Sl ~ Sequenu link ·Sl indicatel the end of the ollerflow ckain.
COCI Cyljnder Ollerflow Control Record (Contained in RO)

•

2 - 12 VSE/ Advanced Functions Macro User's Guide

•

,.

•

Chapter 3: Access Methods Concepts

Remember that a file may be organized in various
ways and the same file may be subjected to more
than one processing method. It is the user's respon­
sibility to choose both an organization and an access
method to fit his application.

The Input/Output Control System (I0CS) in­
cludes various types of file processing routines; these
routines are grouped into three different types of
access methods:

• SAM (Sequential Access Method), which allows
records to be read and written one after the
other.

• DAM (Direct Access Method), which allows
records to be read from or written at a DASD

address determined by the user.

• ISAM (Indexed Sequential Access Method),
which allows records (I) to be read or written in
logical sequence determined by keys, one after
the other, or (2) to be read from or written at
DASD locations determined by keys.

The routines of these three access methods, as a
group commonly referred to as logicallocs (LlOCS),

provide the user with a selection from which he can
choose the most suitable method to satisfy his specif­
ic problem and installation conditions. They pro­
vide all the functions necessary to organize a file and
to retrieve records from the file for later processing.

SAM (Sequential Access Method)
The Sequential Access Method applies to
sequentially-organized files, that is, to files whose
records are located adjacent to one another on the
storage medium and for which no index exists. An
example of this is a deck of punched cards or, even,
playing cards. If you are not a magician, you must
look at (or 'read') each card in the deck in order to
find a particular card. If you want to find several
cards in the deck, you may have to read through the
deck several times before you locate all of them.

One way to reduce the work involved in locating
several cards is to have the cards sorted into a
known sequence and to have those cards that you
want to find listed in the same sequence. This is, in
practice, how sequential files are almost invariably
organized: a convenient field in the record is select­
ed and the records in the file are sorted in order,
based on this field.

For instance, in a personnel file, the sort field
might be either employee number or name; in a
parts inventory file, it might be part number. The

actual field selected depends, of course, on both the
nature of the file itself and the particular data proc­
essing applications involved.

The foregoing remarks referred to card files but
in fact, you can use the Sequential Access Method
for other serial storage media such as magnetic or
paper tape, diskette, or sequentially-organized
DASD. SAM accepts all record formats supported in
VSE, creates sequential files from sorted input re­
cords, can update in place sequential DASD records,
and with some devices, read a card and punch addi­
tional information into the card.

The SAM macros allow you to process a file with a
minimum of effort. There are two varieties of proc­
essing available to you:

• record processing, using GET/PUT macros;

• block processing, using READ/WRITE macros.

When you deal with logical records, SAM does the
blocking and deblocking for you, as needed. You
can process the data in either a work area or in one
or two I/O areas, and SAM provides for overlapping
your processing with physical transfer to or from the
storage medium. If you choose to work with blocks
instead of logical records, you can, to a certain ex­
tent, do direct processing on sequential DASD files.
You must, however, code your own blocking and
deblocking routines.

The necessity to read all preceding records in a
file in order to find a particular record is both the
strength and weakness of the Sequential Access Me­
thod. It is relatively inefficient when a low percent­
age of the records in a file is to have transactions
posted to it, because of the need to read all records.
Conversely, there is no disadvantage when most or
all of the records are to be processed. In addition,
SAM allows relatively simple record-handling logic
to be used.

Control Interval Format
The discussion of the Sequential Access Method
deals in generalities to which some exceptions must
be made when you use CI (Control Interval) format.
Control interval format is required by VSAM (Virtual
Sequential Access Method) and by Fixed Block
Architecture.storage devices such as the IBM 3310.
VSE/VSAM, an IBM licensed program, is discussed
only incidently in this manual; for information see
the VSE/VSAM manuals listed in the Preface of this
book. In the context of this manual, control interval
format is used only with sequentially organized files

Chapter 3: Access Methods Concepts 3 - I

that are stored on FBA (Fixed Block Architecture)
devices.

Data storage on FBA devices contrasts with data
storage on CKD DASD, which depends on the pres­
ence of physical data blocks containing a separate
Count area, optional Key area, and Data area to
permit data access. Data is stored on FBA devices in
fixed-length data blocks called FBA blocks, whose
length is specific for each FBA device in use. A con­
trol interval is the unit of data transfer between an
area in virtual storage called the C I buffer and an
FBA device. The length of a CI is an integral multi­
ple of the FBA block length and may be specified in
the DTF (Define The File) macro when a file is de­
fined. The CI size can also be redefined later at exe­
cution time by means of the DLBL job control state­
ment.

When CI format is not used, the unit of storage
and of data transfer between virtual storage and an
external storage device is the physical block, which is
usually composed of several logical records. In its
simplest form, with unblocked records such as for a
work file, there is only one logical record in each
physical block. When the CI format is used, the
physical block is referred to as a logical block, to
emphasize that it is not the unit of data storage and
transfer.

A control interval is composed of one or more
logical blocks, control information, and usually
some free space. The number of logical blocks that
make up a CI is determined by SAM, based on the
record format and size. blocksize, and CI size that
you specify. The relationship between the various
record formats, the control intervals, and FBA blocks
is illustrated in VSE System Data Management
Concepts. Data transfer, and blocking/deblocking
between your defined I/O area(s) and the FBA block,
through the CI buffer, is automatically handled by
SAM and the storage device control units and is gen­
erally of little concern to the problem program. De­
pending on the record format you use, however, you
can control the number of records or blocks that are
blocked into a CI to optimize storage medium effi­
ciency.

Parts of the discussion of the Sequential Access
Method that follows are concerned with DASD de­
vices in general and with disk units in particular. If
you are using control interval format with an FBA
DASD, certain concepts and terms are invalid. For
instance, FBA devices store data in fixed-length FBA
blocks and SAM accesses the data by referring to the
physical block number. Because of this, discussions
concerning cylinder and track are meaningless when
FBA devices are being used.

3 - 2 VSE/ Advanced Functions Macro User's Guide

When blocking in general is discussed, bear in
mind that what is referred to is the user-specified
blocking of logical records into physical blocks
(logical blocks, with FBA). Any further
blocking/deblocking oflogical blocks into and out
of the CI buffer is specifically mentioned, where
appropriate.

Data transfer between virtual storage and an FBA
device takes place asynchronously through the CI
buffer. That is, a physical write to the file does not
necessarily take place when a PUT or WRITE macro
is issued, but rather when the CI buffer is filled.
Likewise, a physical read takes place when GETS or
READs have moved all data from the CI buffer to the
user-defined I/O areas.

Finally, logic modules need not be explicitly de­
fined by the programmer for SAM or DAM files
stored on DASD devices. Support for these devices
includes preassembled logic modules that are loaded
into the SVA (system virtual area) at IPL time and are
linked to the problem program when a file is
opened. To maintain device independence, howev­
er, you may choose to specify a logic module for a
SAM file; if the file is later assigned to a DASD device,
the correct logic module is used by SAM, instead of
the one that you defined.

Defining Files and Functions
A file can be described in several ways, based on its
organizational and physical characteristics, how it is
used, and the device on which it is stored. The DTF
macros describe the size and format of your records
to SAM by means of operands that you specify. Oth­
er operands define actions that you want SAM to
take, depending on events that take place or condi­
tions that are met. SAM requires that each file that
your program processes be described to it by means
of a DTF declarative macro. There are a number of
different DTF macros available for your use; the
proper one to use depends upon the particular stor­
age medium and the I/O device that you will use to
access the file. Refer again to Figure 1-3 for a list of
I/O devices and their corresponding SAM DTF mac­
ros.

For more details concerning the DTF operands
that you must or may specify, see the following sec­
tions on the particular devices that you will be work­
ing with.

Record Specification
Among characteristics that you can specify are re­
cord type, record format, and record size.

Depending on the particular DTF involved, these
may be mandatory or optional.

•

..

•

..

•

Record Type. Refers to how a file is processed,
that is, whether it is used as input, output, or as a
work file; whether it is updated in place; or whether
it is an associated file. Associated files are con­
cerned with card and printer files and are discussed
in "Chapter 7: Processing Unit Record Files". The
DTF operands ASOCFLE and FUNC define file associ­
ation.

If your file is on a direct access device or certain
card devices, it can be updated in place; that is, it
can be read and then have additional information
written back into the original record. For updating
card files, specify TYPEFLE=CMBND in the DTFCD;
for DASD files, specify TYPEFLE=INPUT or WORK
and also UPDATE=YES.

Work File. Is a single volume DASD or magnetic
tape file that is used to pass intermediate results
between successive phases or job steps. Like an up­
date file, a work file can be read and have informa­
tion re-written into it without closing and re-opening
it. Work files use fixed-length unblocked records or
undefined format, and are specified by:

TYPEFLE=WORK.

Certain devices, such as magnetic character read­
ers and optical readers, can only read records; speci­
fying the DTFs for these devices defines their files as
input. Other DTFs assume that a file is input unless
you explicitly specify otherwise, as with:

TY PEF LE=OUTPUT.

Record Format. Refers to whether your records
are of a constant ('fixed') or variable length and if
they are blocked or not. Records transferred be­
tween an I/O device and virtual storage are consid­
ered fixed unblocked unless otherwise specified. For
more information on record formats and their rela­
tionship to control intervals, see the section on the
topic in VSE System Data Management Concepts.

Record Size. For certain record types and for­
mats, SAM requires that you inform it of the record
size by specifying the RECSIZE operand. Its parame­
ter is either the number of bytes in a fixed-length
unblocked record or, using register notation for oth­
er record formats, the register in which the record
size is to be found during execution. For output
files, you must load the record length into the regis­
ter specified by RECSlzE=(r) before issuing a PUT
macro. For input files, SAM places the length of the
record transferred to virtual storage into the speci­
fied register. The RECSIZE operand is invalid for
work files.

I/O Area Specification
When SAM reads or writes a file, it transfers data
between an I/O device and an I/O area in virtual
storage. The I/O area must be specified by name
with the 10AREA 1 operand. When you use control
interval format, however, the primary I/O area is the
CI buffer and the use of the (secondary)
IOAREA1-named area is sometimes optional. To
obtain speedier overlapped I/O processing, you may
use a second I/O area by also specifying IOAREA2.
The length of these I/O areas is specified by the
BLKSIZE operand and depends on a number offac­
tors such as record format and blocking and the
device upon which the data is stored. Consult the
discussions of the various devices in later sections of
this book for permitted BLKSIZE ranges.

Note: I f you do not specify an I/O area. the system will issue a
G ETVIS macro to obtain the area for you. If you specify a larger
blocksize (for DTFSD data liles only) than the previously speci-

I lied blocksize. the system will dynamically allocate the larger I/O
area required.

You may wish to actually process your records in
a work area separate from the I/O area, especially if
you are using blocked records. You can specify this
by including the WORKA=YES operand in some DTFs
and including the work area address in your impera­
tive macros. If you do not use a work area, you need
a register that points within an I/O area or CI buffer
to either the next input record available or to the
address where you can build an output record. This
register is specified by 10REG; if omitted, it is as­
sumed to be in register 2.

A work area cannot be used with paper tape or
the 3881 optical mark reader.

Processing Specifications
The symbolic address (SYsxxx) and actual model
number of the device that you are working with are
specified by the operands DEVADDR and DEVICE.
The addresses of your routines that process end-of­
file and error conditions are specified by operands
such as EOFADDR. ERROPT. ERREXT. and WLRERR.

Because these operands are required for some
DTFS, optional for others, and invalid for yet others,
you should consult for details the later chapters on
the devices that you will be using.

Activating a File For Processing
To activate, or make ready a file for processing, you
normally use the initialization macro OPEN.

The OPEN macro associates the logical file de­
clared in your program with a specific physical file
on an I/O device. Thus an OPEN macro must be is­
sued for any file declared in your program with a
specific physical file before processing is attempted;

Chapter 3: Access Methods Concepts 3 - 3

an exception is that an OPEN need not be issued for
DTFCN and DTFPT files in a non-self-relocating envi­
ronment. The association of your logical file with a
physical file remains in effect throughout your pro­
gram until you issue a completion macro (see the
section "Deactivating a File After Processing".)

For an output file with two I/O areas, OPEN loads
your 10REG with the address of an I/O area. OPEN

also checks or writes standard or non-standard DASD

or magnetic tape labels.

If you prefer to do your own label checking and
writing, specify another initialization macro, LBRET.

This macro is discussed, along with other aspects of
label processing, in the chapters "Processing DASD

Files" and "Processing Magnetic Tape Files."

A maximum of 16 files may be activated with one
OPEN by entering additional filenames.

Whenever an input/output DASD or magnetic
tape file is opened and you plan to process user­
standard labels (UHL or UTL) or non-standard tape
labels, you must provide the information for check­
ing or building the labels. If this information is ob­
tained from another input file, that file must be
opened ahead of the DASD or tape file. To do this,
specify the input file ahead of the DASD or tape file
in the same OPEN, or issue a separate OPEN for the
file.

Alternatively, you can load the address of the DTF

filename into a register and specify the register using
ordinary register notation. The high-order 8 bits of
this register must be zeros or unpredictable results
may occur. The address of the filename may be
preloaded into any of the registers 2 through 15 al­
though practice usually restricts the choice to regis­
ters 2 through 12.

If OPEN attempts to activate a file whose device is
unassigned, the job is terminated. If the device is
assigned IGN, OPEN does not activate the file but
turns on the DTF byte 16, bit 2, to indicate that the
file is not activated. If DTF byte 16, bit 2 is on after
issuing an OPEN, I/O operations should not be at­
tempted for the file, as unpredictable results may
occur.

Self-relocating programs (see Appendix D) must
use OPENR for file activation, OPEN and OPENR per­
form essentially the same functions with the excep­
tion that when OPENR is specified, the symbolic ad­
dresses that are generated are self-relocating while,
with OPEN, the addresses are not self-relocating.
Throughout the manual, the term OPEN refers also
to OPENR, unless stated otherwise,

3 - 4 VSE/ Advanced Functions Macro User's Guide

Processing Data Files with SAM
SAM permits you to store and retrieve data records
without coding your own blocking and deblocking
routines, allowing you to concentrate on processing
your data rather than processing your files. A ma­
jor feature is the ability to use one or two I/O areas
and to process records either in a work area or an
I/O area.

The SAM routines provide for overlapping the
physical transfer of data with processing. The
amount of overlapping actually achieved is gov­
erned by your program through the assignment of

/
1/0 areas and work areas, and by the implementa­
tion of specific logic modu les. An I/O area is that
area of virtual storage to or from which a block of
data is transferred by SAM. A work area is an area
used for processing an individual record. For span­
ned records, the work area contains the entire re­
cord. This may consist of more than one block. The
address of an I/O area is specified in the DTF macro,
while the address of a work area is specified in the
processing macro.

The following combinations of I/O areas and
work areas are possible (except in the cases of span­
ned records and associated DTFCD files):

1. One I/O area without a work area

2. One I/O area with a work area

3. Two I/O areas without a work area

4. Two I/O areas with a work area.

When processing spanned records, you may use
either one or two I/O areas with a work area. Al­
though two I/O areas are permitted, normal overlap
is curtailed because each imperative macro that you
issue may require multiple I/O operations by the
logic module.

When processing associated DTFCD files, you may
use one I/O area, either with or without a work area.
Although two I/O areas are not permitted for associ­
ated files, a type of overlapped processing can be
achieved: see VSE System Data Management
Concepts for details.

When processing other SAM files on FBA devices,
all of the above combinations of I/O areas and work
files are valid but the utilization of the area differs
from the CKD devices, That is, with FBA devices,
physical I/O transfers data between virtual storage
and the FBA device through a single control interval
(CI) buffer. When a work area is specified, read re­
quests for a logical block result in data moving from
the CI buffer directly to the work area to avoid an
extra data move to the I/O area. This means that
your specified I/O area(s) is ignored when a work

-.

-.

•

..

•

•

area is used. When no work area is used, data is
transferred form the CI buffer to the I/O area(s).
Since logical blocks are retrieved asynchronously
(that is, not necessarily at the same time that retriev­
al requests are made), overlap can be achieved for
output files and non-update input files if two I/O
areas are provided, even though only one CI buffer
is used.

Required DTF Macro Entries
You must specify an I/O area by means of the
10AREA I operand of the DTF macro if you are not
using the CI format with:

• a WORKA work area, or

• an 10REG I/O register with input files, or

• an 10REG register with fixed-length output re­
cords without truncation .

Note: I f you do not specify an I/O area, the system will issue a
GETVIS macro to ohtain the area for you. If you specify a larger
hlocksize (for DTFSD data tiles only) than the previously speci­
tied hlocksize, the system will dynamically allocate the larger I/O
area reljuired.

F or a file other than a combined file or an associ­
ated file, two areas may be used to permit overlap­
ping of data transfer and processing operations. The
second area is specified as IOAREA2. Whenever two
I/O areas are specified, the SAM routines transfer
records alternately to or from each area. They com­
pletely handle this flip-flop so that the next sequen­
tial record or the proper output area is always avail­
able to your program for processing.

For a combined file, the input area is specified in
10AR EA I and the output area is specified in
IOAREA2, If the same area is used for both input and
output, IOAREA2 is omitted.

For associated files, only one input area may be
specified.

I Note: Combined and associated tiles pertain only to unit record
devices .

When records are processed in the I/O area(s), a
register must be specified in the 10REG operand of
the DTF macro if:

I, Two I/O areas are used, or

2, Records are blocked (chained on diskette), or

3, Undefined or variable-length magnetic tape
records are read backwards, or

4. Neither BUFOFF=O nor WORKS=YES is specified
for ASCII files.

The 10REG-Specified register identifies the next
single record to be processed. It always contains the
absolute address of the currently available record or
output record area. The GET and PUT routines place

the proper address in the register. You should al­
ways address the I/O areas by using the 10REG as a
base register and should not make any assumptions
about which I/O area is presently being used. If a
work area is used, WORKA=YES must be specified
and 10REG must not be specified.

For output, if blocked records of variable length
are built in the I/O area(s), an additional register
must be specified with the v ARBLD operand. SAM
stores the number of bytes remaining in the output
area in the VARBLD register each time a PUT macro
is executed.

Obtaining a Record for Processing
The GET macro makes the next sequential logical
record from an input file available for processing in
either an input area or a specified work area, passing
the data through an intermediate control interval
buffer, if CI format is used. It is used for any input
file in the system, and for any type of record. If GET
is used with a file containing checkpoint records,
they are automatically bypassed.

If a work area is specified, all GETs for the named
file must use a register or workname. This causes
GET to move each individual record from the input
area or CI buffer to a work area. If you use a work
area, WORKA=YES must also be specified in the DTF
but 10REG must not.

All records from a logical file may be processed
in the same work area, or different records from the
same logical file may be processed in different work
areas. In the first case, each GET for a file specifies
the same work area. In the second case, different
GET macros specify different work areas. If it is
advantageous to use two work areas, remember that
only one work area can be specified in anyone GET
macro: you must specify the alternate areas in alter­
nate GET macros.

When records are unblocked and only one input
area is used, each GET transfers a single record from
an I/O device to the input area (or CI buffer). The
record is then transferred to the work area, if one is
specified in the GET macro. If two input areas are
specified, each GET makes the last record that was
transferred to virtual storage available for processing
in the input area or work area.

When blocked records are specified for DASD or
magnetic tape with the DTF RECFORM operand, each
individual record must be located for processing
(that is, deblocked). Therefore, blocked records are
handled as follows:

I. The first GET macro transfers a block of records
from DASD or tape to the input area or Cl buff-

Chapter 3: Access Methods Concepts 3 - 5

er. It also initializes the specified register to the
address of the first data record, or it transfers
the first record to the specified work area.

2. Subsequent GETs either add an indexing factor
to the register or move the proper record to the
specified work area, until all records in the
block are processed.

3. Then, the next GET makes a new block of re­
cords available in virtual storage and either
initializes the register or moves the first record.

When spanned records are processed, the operand
RECFORM=SPNUNB or SPNBLK must be included in
the DTF and in the appropriate logic module macro
(MTMOD), if one is used. GET assembles spanned
record segments into logical records in your work
area. Null segments are recognized and not assem­
bled into logical records, but skipped. The length of
the logical record is passed to you in the register
specified in the DTF RECSIZE operand.

If you choose to update logical records, the point­
er to the physical record in which a logical record
starts is saved on each GET so that the device may be
repositioned. The extent sequence number (in the
DTF) is also saved in case the logical record spans
disk extents.

When undefined records are processed, the ope­
rand RECFORM=UNDEF must be included in the DTF
macro. GET treats undefined records as unblocked,
and you must locate (deblock) individual records
and fields. If a RECSIZE register is specified, SAM
stores in that register the length of the read record.
SAM considers undefined records to be variable in
length. No other characteristics of the record are
known or assumed by SAM. Determining these char­
acteristics is your responsibility.

An example of GET processing is shown in Figure
3-1. The operand 10AREA I points to the first I/O
area for this file, while IOAREA2 points to the second.
The operands of the GET macro point to the DTF
and to the work area A3, to which logical records are
moved from areas Al and A2 by SAM.

Filing a Record After Processing
The PUT macro writes, prints, or punches logical
records that have been built in either an output area
or in a specified work area. When control interval
format is used, as with an FBA DASD, the PUT trans­
fers data from the output area through an intermedi­
ate CI buffer. Blocking between storage and the Cl

buffer, and deblocking between the buffer and the
device is performed by the operating system and the
device control unit and is generally of no concern to
the problem program. The PUT macro is used by

3 - 6 VSE/ Advanced Functions Macro User's Guide

Name Operation Operand Column 72

FNAME DTFMT X

•
•
•

IOAREA 1 =A 1 , X
IOAREA2=A2, X
WORKA=YES, X

•
•
•

A1 DS 500e
A2 DS 500e

•
•
•
GET FNAME,A3
•
•
•

A3 DS lOOe
•

Figure 3-1. GET macro processing example.

any output file defined by a DTF, and for any record
type. It operates much like the GET macro, but in
reverse; it is issued after a record has been built.

Records may be built in a work area that you
define in your program. PUT then moves each re­
cord from the work area to the (output) I/O area or
CI buffer. If a work area is specified, all other PUTs
to the named file must also specify it.

Individual records for a logical file may be built
in the same work area or in different work areas.
Each PUT macro specifies the work area where the
completed record was built. However, only one
work area can be specified in anyone PUT macro.

Whenever a PUT macro transfers an output data
record from an output (or work) area to an I/O de­
vice, the data remains in the area until it is either
cleared or replaced by other data. SAM does not
clear the data. Therefore, if you plan to build anoth­
er record whose data does not use every position of
the output or work area, you must clear that area
before you build the record. If this is not done, the
new record will contain interspersed characters from
the previous record. If you specify a work area in
your program, you should use only that area to
build your records, and never change the contents of
the I/O area.

When records are unblocked, each PUT transfers a
single record from the output area (or input area if
updating is specified) to the file. If a work area is
specified in the PUT macro, the record is first moved
from the work area to the I/O area or CI buffer and
then to the file.

When blocked records are written on DASD or
magnetic tape, the individually built records must be

•

•

•

•

..

formed into a block in the output area before it can
be transferred to the output file. Fixed length
blocked records can be built directly in an output
area or in a work area. Each PUT macro for these
records either adds an indexing factor to the register
(I0REG), or moves the completed record from the
specified work area to the proper location in the
output area or CI buffer. When an output block of
records is complete, a PUT macro causes the block to
be transferred to the output file and initializes the
register, if one is used.

Variable-length blocked records can also be built
in either an output area or in a work area. The
length of each variable-length record must be deter­
mined by your program and included in the output
record as it is built. Your program can calculate the
length of the output record from the length of the
corresponding input records. That is, variable­
length output records are generally developed from
previously written variable-length input records.
Each variable-length input record must include the
field that contains the length of the record.

When variable-length blocked records are built in
a work area, the PUT macro performs the same func­
tions as it does for fixed-length blocked records. The
PUT routines check the length of each output record
to determine if the record fits in the remaining por­
tion of the output area or CI buffer. If the record
fits, PUT immediately moves the record. If it does
not fit, PUT causes the completed block to be written
and then moves the record from the work area.

However, if variable-length blocked records are
built directly in the output area, the DTF VARBLD

operand. the TRUNC macro, and additional pro­
gramming are required. Your program must deter­
mine whether each record built will fit in the re­
maining position of the output area. This must be
known before record processing for a subsequent
record begins, so that the completed block can be
written. Thus, the length of the record must be pre­
calculated and compared with the amount of re­
maining space.

The amount of space available in the output area
at any time is supplied to your program in a register
by the 10CS routines if v ARBLD is specified in the
DTF macro. This register is in addition to the regis­
ter specified in 10REG. Each time a PUT macro is
executed, 10CS loads into the specified register the
number of bytes remaining in the output area. Your
program uses this to determine whether the next
variable-length record will fit. If it will not fit, a
TRUNC macro must be issued to transfer the block of
records to the output file, or CI buffer. The entire

output area is then available for building the next
block.

I Note: When end of track or CI overflow occurs. the logic module
truncates the last variable-length blocked record to fit on the
track. The records that did not fit on the track are moved to the
beginning of the I/O area.

When PUT handles unblocked or blocked spanned
records, the operand RECFORM=SPNBLK or
RECFORM=SPNUNB (whichever applies) must be
included in the file definition (DTFMT. DTFSD) macro
and in the appropriate logic module definition
(MTMOD) macro (if one is used.) Records in your
work area are divided into spanned record segments
according to the length specified in the BLKSIZE

operand. In constructing the segments, full use is
made of the space available in each physical record
or logical block and extent unit. For disk output,
spanned records do not span volumes. If there is not
enough space on the current volume to contain a
spanned record. the logic module:

I. Rereads the last block of the previous spanned
record.

2. Rewrites the last block (truncated to the last
segment of the previous spanned record, if nec­
essary) to erase the remainder (if any) of the
track or control interval.

3. Writes an eight-byte record-block descriptor
word and one null segment on each remaining
track or control interval on the current volume.

4. Attempts to put the entire spanned record on
the next volume.

For update files, the logic module repositions the
device to the first block of the logical record by us­
ing the pointer saved in GET processing. If the logi­
cal record spans extents. the extent sequence num­
ber that was also saved in GET processing is used to
ensure that updating starts in the proper extent; that
is, from the beginning of the record.

When undefined records are processed, PUT treats
them as unblocked. You must provide any blocking
desired. You must also determine the length of each
record (in bytes) and load it in a register before issu­
ing the PUT macro for that record. The register used
for this purpose must be specified in the DTF

RECSIZE operand.

An update DASD record may be read. modified,
and written back to the same DASD location from
which it was read. This is possible with all DASD

devices. A card record may. with some devices, be
read and then have additional information punched
back into the same card.

When updating a file, one I/O area can be speci­
fied (using the 10AREAl operand) for both the input

Chapter 3: Access Methods Concepts 3 - 7

and output of a card record. If a second I/O area is
required, it is specified with the IOAREA2 operand.
For associated DTFCD files, however, two I/O areas
are not allowed.

A PUT for a DASD file or for a combined card file
must always be followed by a GET before another
PUT is issued: GETS, however, can be issued as many
times in succession as desired. When updating a
disk file, the record is not actually transferred with
the PUT but with the next GET for the file.

In the combined card file example of Figure 3-2
data is punched into the same card that was read.
Information from each card is read. processed. and
then punched into the same card to produce an up­
dated record.

Processing Blocked Records
The GET/PUT macros allow you to store and retrieve
logical records of a file without the need for coding
blocking/deblocking routines: these functions are
performed automatically by L10CS whenever neces­
sary. For example. each time you issue a GET macro
in your program, the next logical record is made
available for processing. Actual physical
input/output is performed only when the next logi­
cal record must be obtained from the next block or
control interval.

The GET macro is used to obtain logical records
in physical sequence from a file on any device. Au­
tomatic record deblocking is included. As required.
the system schedules the filling of input areas. de­
blocks records, and directs error recovery proce­
dures.

Issuing a GET macro after the last record of an
input file has been processed results in an end-of-file
condition. The system also checks for end-of­
volume conditions. and initiates automatic volume
switching if an input file extends over more than one

Name Operation Operand Column 72

FILEC DTFCD X
TYPEFLE=CMBND, X
IOAREA1=AREA, X
DEVADDR=SYS005, X
RECFORM=FIXUNB, X
IOAREA2=AREA2

•
•
•
GET FILEC
•
•
•
PUT FILEC
•
•

Figure 3-2. Combined card file example.

3 - R VSE/ Advanced Functions Macro User's Guide

Record Number of Separate
Amount of Maxi-
mum Achievable

Format I/O Areas Work Area
Overlap

Overlap of the de-
vice operation only
for buffered devices

no
such as 1403. 1443.
2540. No overlap of

1 magnetic tape. disk
or unbuffered unit

Unblocked record devices.

yes
Overlap processing
of each record.

no
Overlap processing
of each record.

2

yes
Overlap processing
of each record.

no No overlap.

1 Overlap processing
yes of fi rst record of a

block.
Blocked

no
Overlap processing
of full block.

2

yes
Overlap processing
of full block.

Note 1: If UPDATE=YES is specified. no overlap occurs
with DTFSD DASD files.
Note 2: The amount of effective overlap depends on the
workload of the system.

Figure 3-3. Overlap of processing and I/O.

volume. When a file occupies more than one area
on a DASD volume. automatic switching from one
extent to the next is also performed.

The PUT macro releases logical records to the
system for output. in physically sequential order.
Automatic record blocking is included. As required,
the system blocks records, schedules the emptying
of output areas. and handles output error correction
procedures where possible. The system checks for
end-of-volume condition and performs automatic
volume switching and label creation. References to
other DASD extents are resolved.

A major feature of this level of sequential proc­
essing is the choice of using one or two input or out­
put areas per file. with or without a separate work­
area. Figure 3-3 indicates the amount of overlap
that can be achieved with various combinations.

In a multiprogramming environment, the amount
of overlap is impossible to predict because the pro­
gram may loose control after I/O begins. Processing,
however, may be faster in a "no overlap" situation
because the path length of the logic module is short­
er.

The processing of the logical record can be done
in either a workarea or in an I/O area. Figure 3-4
contrasts the processing of a logical record with and

•

•

GET {PUT sequence without a workarea GET {PUT sequence with a workarea

PUP l,_--'-_----J
_ OUTPUT AREA

GEP

•
PUT

GET

PUT* l~_-------L.._---..-..J
_ OUTPUT AREA

GET*

•

* This InstructIon also causes an I / O operatton No overlap IS assumed In order to sImplIfy the IllustratIon .

Figure 3-4. GET/PUT sequence with and without a workarea.

Chapter 3: Access Methods Concepts 3 - 9

without a workarea; it shows a sequence of GET and
PUT macros with and without a workarea.

If you issue GET or PUT with the filename as the
only operand, GET provides the address of the logi­
cal record available in the input area; PUT provides
the address of that part of the output area where the
next logical record may be built.

If you specify, in addition to the filename, the
workname operand, the logical record is actually
transferred from the input area for GET to an area
specified by the work name operand; with PUT, it is
transferred from the specified area to the output
area. The area referred to by the workname operand
can be a separate workarea or part of an I/O area
used as such.

Operating with GET and PUT using a separate
workarea offers ease in coding, in maintaining the
code, and in debugging. Operating with GET and
PUT without a separate workarea provides faster
performance, since there is no need for data transfer
between the work area and the I/O areas. A combi­
nation of GET with a workarea, PUT without a
workarea can also be used. In this case, the work­
name operand of the GET macro specifies a register.
The register contains a pointer, provided by the pre­
ceding PUT, to a location within the output area.

The following text points out some of the implica­
tions of your decision to use one or two input or
output areas for a file, to use a workarea or not, and
to process the records in the workarea or in the I/O
area. Inasmuch as the following discussion deals
with overlap, it is primarily significant for one­
partition operation. When, in a multiple-partition
system, a program in one partition must wait for an
I/O operation to be completed, control is given to a
program in another partition.

Our example assumes an input file whose records
are to be processed and written to an output file.
The records are assumed to be blocked. Actual in­
put is performed only when the record requested
belongs to a new block; actual output is performed
only after completion of a whole block. I/O requests
for all other records of the block do not result in
actual I/O; they merely cause the pointer to the next
logical record to be updated. If a workarea is used,
the logical record is transferred from the workarea
to the output area or from the input area to the
workarea.

Recall the extra level of blocking present when CI
format is used and that actual I/O operations take
place into and out of the CI buffer. Successive GETs
transfer logical blocks from a CI buffer to the input
area, as required, meanwhile updating the pointer to

3 - to VSE/ Advanced Functions Macro User's Guide

the next logical record. Actual read operations take
place only when the CI buffer, not the logical block,
is depleted. Likewise, PUTS update the logical record
pointer, transfer logical blocks to the output CI buff­
er, and write to the output file when the buffer is
filled, all asynchronously and as required.

If you decide that you want only one input and
one output area and no workarea, no overlap at all
occurs. In this case, it would be advisable to process
the records in the output area. This allows data
transfer from the device to the input area to be start­
ed right after the last record of the block is moved to
the output area and before it is processed.

The I/O time per record can be slightly reduced
by increasing the blocking factor. The blocksize can
be dynamically assigned during OPEN, via the DLBL

statement, for blocked records.

Establishing a second input area and a second
output area in our example makes an overlap possi­
ble. The amount of the effective overlap depends on
the workload of the system. One block or control
interval is processed while the transfer of another
block between device and virtual storage is taking
place.

Using a separate workarea together with one in­
put and one output area has the great advantage
that lies in the fact that writing and maintaining the
code is less complicated, and debugging easier. You
would issue GET, process the record in the workarea,
and issue PUT. The input and the output files are
connected to the same workarea. The name of the
workarea (or, for self-relocating programs, a register
containing the address of the workarea) would be
specified as the workname operand with both mac­
ros.

Selective Processing of Blocked Records
Mostly, a program will process a file starting with
the first logical record and proceed until end-of-file
is signalled by 10CS. In these cases, processing
blocked records or unblocked records is equally
suitable to the application, especially since blocking
or deblocking is performed automatically with the
GET and PUT macros. For some special situations,
however, the use of blocked records offers possibili­
ties that do not exist when records are unblocked.

When processing a logical record of a block, you
can have the system ignore the remaining records of
that block and obtain the first logical record of the
next block. For output, you can skip the remainder
of the current block and place the next logical re­
cord as the first of the next block. When blocked
spanned records are processed, you can bypass all
subsequent records of the block being processed,

•

•

and obtain the first segment of the next logical re­
cord in the new block.

A case in which the application could benefit
from these possibilities is, for example, a file that
consists of several major groups oflogical records. If
each category started on a new block, it would be
easy to locate any of the categories for selective
processing. Only the first record of each block
would have to be checked. To achieve this, you
would use the RELSE (release) macro with input, and
the TRUNC (truncate) macro with output.

The RELSE macro causes the following GET to
ignore any logical records remaining in the current
block and to obtain the first logical record of the
following block. When spanned records are proc­
essed, RELSE causes the following GET to skip any

I subsequent records of the current block and makes
the first record of the next block available.

The RELSE macro is used with blocked input re­
cords read from a DASD device, or with blocked
spanned records read from, or updated on, a DASD

device. This macro is also used with blocked input
records read from magnetic tape.

If RELSE immediately precedes a CNTRL macro
with the codes FSL or BSL (tape spacing for spanned
records), then the FSL or BSL logical record spacing
is ignored.

The symbolic name of the file, specified in the
DTF header entry, is the only parameter required for
the RELSE macro. It can be specified as a symbol or
in register notation.

RELSE discontinues the deblocking of the present
block ofrecords, which may be of either fixed or
variable length. RELSE causes the next GET macro to
transfer a new block to the input area, or switch I/O
areas, and make the first record of the next block
available for processing. GET initializes the register
or moves the first record to a work area.

For example, RELSE may be used in a job in
which records on DASD or tape are categorized.
Each category (perhaps a major grouping) is plan­
ned to start as the first record in a block. For selec­
tive reports, specified categories can be located read­
ily by checking only the first record in each block.

The TRUNC macro is used with blocked output
records written on DASD or magnetic tape. It allows
you to write a short block of records. Blocks do not
include padding. The TRUNC macro causes the fol­
lowing PUT macro to regard the output area as full
and, subsequently, the next logical record to be
placed into the following block. Thus, the TRUNC

macro can be used for a function similiar to that of
the RELSE macro for input records. That is, when

the end of a category of records is reached, the last
block can be written and the new category can be
started at the beginning of a new block. IOCS pro­
vides for reading truncated blocks, so that reading a
short block will not result in an error condition on
input. The CLOSE macro truncates the last block of a
file.

Ifthe TRUNC macro is issued for fixed-length
blocked DASD records, the DTF entry TRUNCS must
be included in the file definition.

When the TRUNC is issued, the short block is usu­
ally written (on DASD or tape), and the output area
is made available to build the next block. If the file
resides on an FBA device, however, TRUNC will not
necessarily cause a physical write to the FBA DASD

unless PWRITE=YES is specified on the DTF. The last
record written in the short block is the record that
was built and included in the output block by the
last PUT preceding the execution of the TRUNC ma­
cro. Therefore, if records are built in a work area
and the program determines that a record belongs in
a new block, TRUNC should be issued first to write
the block. This should be followed by a PUT for this
particular record to move the record into the new
block. If records are built in the output area, howev­
er, you must determine if a record belongs in the
block before you build the record.

Whenever variable-length blocked records are
built directly in the output area, the TRUNC macro
must be used to write a complete block of records.
When a PUT is issued after each variable-length
record is built, the output routines supply you with
the space (number of bytes) remaining in the output
area. From this, you determine whether your next
variable-length record fits in the block. If it does not
fit, issue the TRUNC macro to transfer the block and
make the entire output area available to build the
next record. The amount of remaining space is sup­
plied in the register specified in the DTF v ARBLD

operand.

The name of the file must be specified as an ope­
rand for both the RELSE and the TRUNC macros.

Multivolume File Processing - Forcing End of Vol­
ume: Both the GET and the PUT macros check for
the normal end-of-volume condition. If such a con­
dition occurs, the system performs automatic vol­
ume switching.

You may also deliberately stop processing a file
on a volume before the normal end-of-volume oc­
curs, and resume processing the same file on the
next volume. You can force end-of-volume and
cause automatic volume switching by using the
FEOV or FEOVD macro.

Chapter 3: Access Methods Concepts 3 - II

The FEOV macro forces the system to assume an
end-of-volume condition on either an input or out­
put magnetic tape file, thereby causing automatic
volume switching.

When FEOV is issued for an input' file, trailer la­
bels are not checked. The header labels of the next
volume, however, are verified. When FEOV is issued
for an output file, trailer labels are created as re­
quired.

The FEOVD macro forces the system to assume an
end-of-volume condition on either an input or out­
put DA SD file, thereby causing automatic volume
switching. The operation is the same as for the FEOV

macro, except that trailer labels are also processed
for input.

The name of the file is required as an operand for
both the FEOV and the FEOVD macros.

Processing Update Files: Files that are processed
sequentially are normally either input or output
files. With certain devices it is also possible to use
the same file as both input and output file. In this
case, you obtain a logical record from the file and,
after processing, write the updated version of the
record back into the original location of the file.

The devices that can have input and output file
combined are:

• All types of DASD. Specify UPDATE=YES in the
DTFSD declarative macro.

• IBM 1442 Card Read Punch, IBM 2520 Card
Read Punch, IBM 2540 Card Read Punch
equipped with the Punch-Feed-Read special
feature. Specify TYPEFLE=COMBND in the
DTFCD declarative macro.

• IBM 2560 Multifunction Card Machine, IBM

3525 Card Punch equipped with the Card Read
special feature, IBM 5424/5425 Multifunction
Card Unit. Specify the ASOCFLE and the FUNC

operands in the DTFCD declarative macro.

Records are obtained from the file as usual by a
GET macro. After the record has been processed,
the next PUT causes the record to be returned to its
original location in the file (DASD), or to be punched
into the same card from which it was read.

Processing is done in the input area. After proc­
essing, the records are returned to the file from the
input area. For card devices, the records are re­
turned to the file by PUT; for DASD, the PUT sets an
indicator which is used by the next GET (or CLOSE)

to accomplish the transfer. The input area must not
be modified between a PUT and the next GET.

3 - 12 VSE/Advanced Functions Macro User'sGuide

If a workarea is used for the file, the records are
returned by PUT from the workarea to the input area
and then from the input area to the file. When con­
trol interval format is used, of course, the CI buffer is
the primary input area and any user-specified input
area is bypassed when a workarea is specified. For
spanned records, you must have a workarea that is
sufficiently large to hold the entire spanned record.

If a particular record does not require updating, a
subsequent PUT may be omitted, except for the 2540,
2560,3525,or5424/5425.

Processing Work Files with SAM
A work file is a file used for both input and output.
Typically, it is used to pass intermediate results be­
tween successive phases or job steps, but it can also
be written, read, and rewritten within a single phase
without being closed and reopened. By using the
READ and WRITE work file macros, you can perform
overlapped processing. That is, while your program
is waiting for an I/O operation on a record to be
completed, it can perform other operations that do
not depend upon the presence of the record. You
must use the CHECK macro to ensure that a READ or
WRITE has been completed before allowing the pro­
gram to continue.

By using the NOTE, POINTR. POINTS, and POINTW

work file macros, you can do a certain amount of
direct processing. That is, you can position the file
to a specific point within the file and continue se­
quential processing from that point.

There are certain restrictions on the use of work
files; for instance, they may be specified only as hav­
ing unblocked records of fixed lengths or of unde­
fined format. If you want to use blocked records
with a work file, you must either code your own
blocking and deblocking routines, or use CI format
with an FBA device, or both. Automatic 1/0 area
switching is not provided; your program must sup­
ply the address of your 1/0 area each time it issues a
READ or WRITE macro. A work file must be con­
tained on a single volume. You may not use mag­
netic tapes written in ASCll mode for work files.
Both normal extents (type 1) and split extents (type
8) are supported for CKD disks, but only type I ex­
tents for FBA DASD.

In addition, if you use CI format, the work file
logic module limits the number of logical blocks per
control interval to no more than 255. This means
that an error condition may occur if you attempt to
use a ci-format work file that has been created or
modified by other than SAM with the DTFSD

I TYPEFLE=WORK operand specified, as the creation

•

•

..

I of the file may have caused more than 255 blocks to
be put into a single Cl.

Required DTF Macro Entries

Work files are defined by specifying the
TYPEFLE=WORK operand on the DTF. The
RECFORM operand must have either UNDEF or
FIXUNB specified to define the file as 'undefined' or
'fixed-length unblocked'. (If you omit the RECFORM

operand, FIXUNB is assumed.)

Retaining and Deleting a Work File

If you want to retain a DASD work file for later use,
you must specify the DTFSD operand DELETFL=NO

and make sure that the expiration date is not the
current date. When this is done, the CLOSE routines
do not delete the format-l file extent label created
by the open routines, and the file can be saved until
the expiration date is reached.

To delete the file after use, do not specify the
DELETFL=NO operand of DTFSD; the close routines
will delete the format-l label that was created when
the file was opened. This allows another job requir­
ing a work file to use the same extents and file name.

Opening a Work File

When a work file is opened, it is opened as an out­
put file and the OPEN routines determine if standard
labels are present. If the file is on DASD, file protec­
tion is ensured only if the labels are unexpired; you
must supply label information with the job or by
means of standard labels.

Because a work file is always opened as an output
file, a DASD work file that is being reopened (as
when you are using it to pass information to a sec­
ondjob step) causes an overlapping extent message
to be printed to the operator. The operator can then
delete the format-l label, after which the open rou­
tines create a new label for the file, and the job con­
tinues.

If the work file is on tape, however, label inform­
ation job control statements are not needed, and the
DTFMT FILABL operand is ignored. If the tape does
not contain standard labels, no labels are created for
it. Trailer labels are not processed. If standard la­
bels are present and the date has expired, a new
label is created, consisting of a HDR I followed by 76
blanks, which marks the file as a work file. If OPEN

determines from the HDRI label that the file already
is a work file, the label is not rewritten. Trailer la­
bels are not processed.

Sequential Processing of Work Files
Using READ and WRITE macros permits you to do
sequential processing of work file records. Since
work files are considered by SAM to be unblocked,
when you issue a READ (for instance) for a logical
record, you actually obtain a physical block from a
magnetic tape or a CKD disk. If the records are in
fact blocked, you are generally responsible for de­
blocking them. The reverse is true for the WRITE

macro, of course: if you do your own blocking, the
WRITE transfers the block to the I/O device; un­
blocked logical records are transferred to the tape or
disk as single physical blocks.

If you use control interval format and select a CI

size that will hold an integral multiple of your logi­
cal record size (plus the needed control informa­
tion), SAM will block (and deblock) your logical
records through a logical block in the CI buffer, and
the FBA DASD control unit will transfer the logical
block to (or from) the FBA DASD as one or more
physical FBA blocks.

Use the CHECK macro to halt processing until a
READ or WRITE I/O transfer is complete. By defer­
ring a CHECK, you can overlap processing that is
unrelated to a record with the I/O transfer of the
record. Depending on circumstances, this can signif­
icantly increase throughput efficiency.

The format of the READ macro is as follows:

Name Operation

[name] READ

Operand

(filename\(I)) ,SO, (area\(O))

[,length\,(r)\,S]

filename I (1): Specifies the name of the file from
which the record is to be read and is always re­
quired. This name is the same as the name specified
in the DTFMT or DTFSD header entry for the file.
The name can be specified as a symbol or in register
notation.

SQ (for sequential): Is always required.

areal(O): Specifies the name (as a symbol or in reg­
ister notation) of the input area used by the file. If
tape is to be read backwards, area must be the ad­
dress of the rightmost byte of the input area.

lengthl(r)IS: Is used only for records of undefined
format (RECFORM=UNDEF). To read only a portion
of a record, specify the actual number (or a register
containing the number) of bytes, Or, specify an S to
indicate that the entire physical record should be
read.

Chapter 3: Access Methods Concepts 3 - 13

If the work file records are fixed length un­
blocked records (RECFORM=F1XUNB), this parameter
must not be specified in the READ macro. In this
case, the number of characters to be read is specified
in the BLKSIZE operand. You can change this num­
ber (which is stored in the DTF table) at any time by
referencing the halfwordfilenameL.

Before processing this data, you must make sure
that the input operation for that block is complete.
To do so, issue a CHECK macro after each READ
macro.

After READ has retrieved all blocks of a file and
discovers that no more data is available for process­
ing, IOCS passes control to your end-of-file routine,
whose address is specified in the DTFxx macro.

Because the READ macro has been designed for
workfiles, multiple-volume support is not available.
That is to say, a file to be processed by means of the
READ macro must be contained on one volume.
READ can also be used to read backwards from mag­
netic tape.

The WRITE macro requests that a block of data be
transferred from an area in virtual storage to a file.
lt operates in the same fashion as READ, but in rev­
erse order. Each WRITE must be followed by a
CHECK, and the file to be processed must be con­
tained on one volume.

The format of the WRITE macro is as follows:

Name Operation

[name] WRITE

Operand

{filenamel(l)j
,{SQIUPDATE}, (areal(O)j
[.lengthl,(r)]

filenamel(l): Specifies the name of the file to which
the record is to be written and is always required.
This name is the same as the name specified in the
DTFMT or DTFSD header entry for this file. The
name can be written as a symbol or in register nota­
tion.

SQ\UPDATE: Specifies the type of WRITE to be
executed. Always specify sQ for a magnetic tape
file. For DASD work files, sQ produces aformatting
write, UPDATE a non-formatting write,

When you are using control interval (CI) format,
as with an FBA DASD, a non-formatting WRITE (with
UPDA TE) writes the current CI, while a formatting
WRITE (with sQ) writes the CI and follows it immedi­
ately with a Software-End-Of-File (SEOF). When
not writing in CI format, as with CKD disk, a format­
ting WRITE writes count, key, and data, while a non­
formatting WRITE writes only data. An update

3 - 14 YSE/ Advanced Functions Macro User's Guide

WRITE should be preceded by a READ, WRITE, UP­
DATE, POINTR, or POINTW macro. A CLOSE macro
(following an update write) protects the updated file
by not writing an end-of-file record. If SQ is speci­
fied and a CLOSE immediately follows an OPEN (no
formatting WRITE commands were issued), an end­
of-file record is not written.

areal(O): Specifies the name, as a symbol or in reg­
ister notation, of the output area used by the file.

lengthl(r): Is used only for records of undefined
format (RECFORM=UNDEF). Length specifies the
actual number (or register containing the number)
of bytes to be written. If fixed-length unblocked
records (RECFORM=F1XUNB) are written, length is
not used in the WRITE macro.

The number of characters to be written is speci­
fied in the BLKSIZE entry. You can change this num­
ber, which is stored in the DTF table, at any time by
referencing the halfwordfilenameL. For disk, the
BLKSIZE entry in the DTF itself should not include
eight bytes for the length of a count field.

The CHECK macro prevents data requested by a
READ or a WRITE macro from being processed be­
fore its transfer is completed. In addition, it tests for
errors and exceptional conditions that may have
occurred during the data transfer. When necessary,
control is passed to the appropriate exits (for error
analysis and end-of-file) specified in the DTFxx ma­
cro for the file. Use the CHECK macro after each
READ or WRITE before you issue any other macro for
the same file, or before the contents of the input or
output area in virtual storage are altered.

If the data transfer is completed without any error
or other exceptional condition, CHECK returns con­
trol to the next instruction. If the operation results
in a read error, CHECK processes the option specified
in ERROPT. If CHECK finds an end-of-file condition,
control is passed to the routine specified in
EOFADDR.

Both READ and WRITE operate in a strictly se­
quential manner, starting either at the beginning of
a file or at a given point, to which the file can be
positioned by one of the POINTx macros (see below).

Selective Processing of Work Files
You can position a sequentially organized file to a
specific block within the file and start sequential
processing from this point. When you want to do
this, be prepared to identify this block, that is, you
must be able to indicate its position in the file.

During processing you may issue the NOTE ma­
cro. It returns information about the position of the

J

•

..

..

•

•

"

block just read or written. The format of the NOTE
macro is the same as that of the CHECK macro. That
is, the only operand is the name of the file being
processed, which may be specified as a symbolic
name or in register notation.

NOTE can be issued after a READ or a WRITE ma­
cro and after the I/O operation was checked for com-I pletion through use of a CHECK macro. It identifies
a record on magnetic tape by its physical record
number counted from the load point of the file. It
identifies a record on CKD disk by its physical record
number counted from the beginning of the track,
and on FBA DASD by counting from the beginning of
the file. For an output file on DASD, NOTE also re­
turns the number of bytes of space left on the track
or in the control interval.

To NOTE a desired record successfully, the
POINTR. POINTS, or POINTW macro must not be is­
sued between the CHECK and NOTE.

For magnetic tape, the last record read or written
is identified by the number of physical records read
or written in the specified file from the load point.
The physical record number is returned in binary in
the three low-order bytes of register 1. The high­
order byte contains binary zero.

You must store the identification so that it can be
used later in either a POINTR or POINTW macro.

For disk, if a READ precedes the NOTE, the record
identified is the last record read. If a WRITE pre­
cedes the NOTE, the record just written is the identi­
fied record.

For CKD DASD, the identification is returned in
register I in the form cchr, where

cc= cylinder number,

h= track number,

r= record number within the track.

cc, h, and r are binary numbers. If NOTE follows a
READ or WRITE to a disk file, the unused space re­
maining on the track following the end of the identi­
fied record is returned in register 0 as the binary
number OOnn.

For FBA DASD, because the unit of data transfer is
a control interval (CI) instead of a physical block,
information returned when a NOTE macro is issued
is different.

Register 0 contains the length of the longest logi­
cal block that can be guaranteed to fit in the CI fol­
lowing the NOTEd logical block. A logical block
three bytes longer than the returned value will fit in
the CI if it is of the same length as both the NOTEd
block and the block preceding the NOTEd block.
(This means that if the CI were exactly filled when

the NOTE was issued, a value of -3 would be passed
back in register 0.)

Register 1 contains a record identifier that is an
address relative to the beginning of the file. The first
three bytes contain the relative CI number of the
current CI within the file (with origin 0). The fourth
byte is the relative block number of the logical block
within the current CI (with origin 1).

You must construct a six-byte field and store in it
the identification of the record (from register 1 after
NOTE) and the remaining capacity (from the low­
order two bytes of register 0 after NOTE) so that it
can be used later in a POINTR or POINTW macro to
find the NOTEd record again. The remaining capac­
ity is required only if the POINTR or POINTW will be
followed by a WRITE SQ or another NOTE while still
positioned on the same CI or track that was pointed
to .

The POINTS macro causes a file to be repositioned
to the beginning. For magnetic tape files, POINTS
causes a rewind of the tape to the load point and the
positioning of the tape to the first data block; labels
are bypassed. For DASD files, POINTS positions the
file to the lower limit of the first extent.

On DASD, a POINTS macro followed by a WRITE
SQ causes the new record to be written and the re­
mainder of the track or control interval to be erased.
POINTS should not be followed by a WRITE UPDATE.

An example of POINTS with workfile processing is
given in Figure 3-5.

L 12,LENGTH
x WRITE F,SQ,OUT,(12)

•
•
•
CHECK F
•
•
•
BNZ X
POINTS F

y READ F,SQ,IN,S
•
•
•
CHECK F
•
•
BNZ Y
EOJ

A Load the length of the record
B Write a record
C Process data unrelated to OUT
D Wait until the record is written
E Reposition to the beginning of the

file
F Read physical record 1
G wait until the record is read

A
B

C

o

E
F

G

Figure 3-5. Example of POINTS macro with workfile processing.

Chapter 3: Access Methods Concepts 3 - 15

The POINTR macro is used to position the file to a
specific block. The block can then be read by a sub­
sequent READ macro. A series of READ macros fol­
lowing a POINTR will pick up blocks sequentially,
starting with the block specified in the POlNTR ma­
cro. The address to be specified in the POINTR ma­
cro can be obtained from the result of a previously
issued NOTE macro.

For magnetic tape, POlNTR repositions the file to
read the record that was read or written immediately
before the NOTE that was used to create the record
identification field. For magnetic tape, a WRITE
must not follow POINTR.

For disk, POINTR repositions the file to read the
record identification returned when a previous NOTE
macro was issued. If a WRITE UPDATE follows the
POINTR macro, the noted record is overwritten. If a
WRITE sQ follows the POlNTR macro, the record
after the noted record is written, and the remainder
of the track or CI is erased. On FBA devices only, an
SEOF is written immediately after the current CI.

Some programs using disk work files may include
multiple WRITE macros following a NOTE macro. If
a POINTR macro is used with a DASD and the work
file records are in undefined format, there may be
occasions when a replacement record longer than
the original record remains as the last record on the
track or control interval when the next WRITE is
performed. The replacement record is written as the
first record on the next track or control interval of
the file.

The POINTW macro is used to position the file to
the block following the one specified. A block can
then be written to that location by a subsequent
WRITE macro. A series of WRITE macros following a
POINTW will write blocks sequentially, starting at the
location following the block specified in the POINTW
macro. The address to be specified can be obtained
from the result of a previously issued NOTE macro.

For magnetic tape, POINTW repositions the file to
read or write a record after the one previously iden­
tified by the NOTE.

For disk, POINTW repositions the file to write at
the record location that was read or written immedi­
ately before the last NOTE macro was issued. If a
WRITE UPDATE is issued, the noted record is over­
written. If a WRITE sQ is issued, the record following
the noted record is written and the remainder of the
track or CI is erased. On FBA devices only, a SEOF is
written immediately after the current CI. A READ
macro can follow the POlNTW macro, in which case
the record identified by the NOTE is the record read.

Some programs using disk work files may include
multiple WRITE macros following a NOTE macro. If

3 - 16 VSE/ Advanced Functions Macro User's Guide

a POINTW macro is issued to a CKD DASD and the
work file records are in undefined format, there may
be occasions when a replacement record longer than
the original record cannot be written in the space

I available on the track or CI. In this case, when the
next WRITE is performed, the original record re­
mains as the last record on the track. The replace­
ment record is written as the first record on the next
track or CI of the file.

For files on DASD, the WRITE macro can be used
after either POlNTW or POINTR. If you specify
WRITE it will be executed as a WRITE UPDATE, and
the block specified in the POINTx macro will be ov­
erwritten. Otherwise WRITE is considered a WRITE
sQ (sequential), and the block will be written after
the one specified in the POINTx macro, and the re­
mainder of the track will be erased.

You will have gathered from the preceding text
that SAM allows for direct processing through these
macros. This is true to a certain extent, provided the
following limitations are recognized:

In SAM. the READ and WRITE macros can be ap­
plied only to files that are completely contained on
one single volume.

Direct processing on magnetic tape, although
possible, is inefficient, since many blocks may have
to be bypassed before a block wanted for processing
is reached. Furthermore, on magnetic tape, direct
processing is restricted to reading. Writing should
be done sequentially, because it takes some time
before actual writing starts; when actual writing
stops, it takes some time before the medium comes
to a complete standstill. The interrecord gaps be­
tween blocks allow for this, but frequent overwriting
of blocks may cause an interrecord gap to be too
short or too long, and may even affect a following
block.

Deactivating a File After Processing
The FEOV and FEOVD macros force an end-of­
volume condition before it actually occurs. Use an
FEOV /D macro to indicate to SAM that processing on
one volume is finished, but that reading or writing
will take place on the following volume.

The completion macro CLOSE must be used after
processing has peen completed. CLOSE ends the
association of the logical file declared in your pro­
gram with a specific file on an I/O device.

Forcing End-Of-Volume
Force end-of-volume by using an FEOV macro for
magnetic tape files or FEOVD for DASD files.

When SAM macros are used for a file, FEOV initi­
ates the same functions that occur at a normal end-

J

•

•

•

"

of-volume condition, except for checking of trailer
labels.

For an input tape, FEOV immediately rewinds the
tape (as specified by REWIND) and provides for a
volume change (as specified by the ASSGN cards).
Trailer labels are not checked. FEOV then checks
the standard header label on the new volume and
allows you to check any user-standard header labels
if LABADDR is specified. If nonstandard labels are
specified (FILABL=NSTD). FEOV allows you to check
these labels as well.

For an output tape, FEOV writes

• A tape mark (two tape marks for ASCII files.)

• A standard trailer label and user-standard la­
bels (if any).

• A tape mark .

If the volume is changed, FEOV then writes the
header label(s) on the new volume (as specified in
the DTFMT REWIND, FILABL, LABADDR operands,
and the ASSGN cards). If nonstandard labels are
specified, FEOV allows you to write trailer labels on
the completed volume, and header labels on the new
volume, if desired.

When FEOVD is issued for an output file assigned
to a CKD DASD, a short last block is written, if neces­
sary, with an end-of-file record containing a key
length of 0 (indicating end of volume). If the output
file is assigned to an FBA device, SAM writes a Soft­
ware End-Of-File (SEOF), which is a control interval
containing only zeros. An end-of-extent condition is
posted in the DTF. When the next PUT is issued for
the file, all remaining extents on the current volume
are bypassed. The first extent on the next volume is
then opened, and normal processing continues on
the new volume.

If the FEOVD macro is followed immediately by
the CLOSE macro, the end-of-volume marker is rew­
ritten as an end-of-file marker, and the file is closed
as usual.

Closing a File
CLOSE must be issued to deactivate all files previous­
ly activated by means of an OPEN macro, with the
exception of console (DTFCN) files. No deactivation
of console files is necessary, and the CLOSE macro
must not be issued for them.

After you issue a CLOSE macro, no further com­
mands can be issued to the file unless it is reopened.
Sequential DASD files cannot be successfully re­
opened for output unless the DTFSD table is saved
before the file is first opened and then restored be­
tween closing the file and reopening it again as an
output file.

A CLOSE normally deactivates an output file by
writing an EOF record and output trailer labels, if
any. CLOSE sets a bit in the format-l label to indi­
cate the last volume of the file. A file may be deacti­
vated at any time by issuing CLOSE. Up to 16 files
may be deactivated with one CLOSE.

Note that if you issue CLOSE to a magnetic tape
input file that has not been opened, the option speci­
fied in the DTF REWIND operand is performed. If
you issue CLOSE to an unopened output magnetic
tape file, no tapemark or labels are written, and no
REWIND options are performed.

As with an OPENR macro, you must use the
CLOSER macro if your program is to be self­
relocating. The CLOSE and the CLOSER macros are
essentially the same with the exception that when
CLOSER is specified, symbolic addresses that are
generated are self-relocating. Throughout the man­
ual the term CLOSE refers also to CLOSER, unless
stated otherwise.

Non-Data Device Operations
The CNTRL (control) macro provides commands for
magnetic tape units, card devices, printers, and opti­
cal readers. For DTFSD files, CNTRL is treated as a
No-Op.

Commands apply to physical non data operations
of a unit and are specific to the unit involved. They
specify such functions as rewinding tape, card stack­
er selection, and line spacing on a printer. For opti­
cal readers, commands specify marking error lines,
correcting a line for journal tapes, document stacker
selecting, or ejection and incrementing documents.
The CNTRL macro does not wait for completion of
the command before returning control to you, ex­
cept when certain mnemonic codes are specified for
optical readers. The permitted mnemonic codes are
device-dependent and are discussed in later sections
of this manual.

The CNTRL macro must not be used for printer or
punch files if the data records contain control char­
acters and the entry CTLCHR is included in the file
definition. Whenever CNTRL is issued in your pro­
gram, the DTF CONTROL operand must be included
(except for DTFMT and DTFDR) and CTLCHR must
be omitted. If control characters are used when
CONTROL is specified, the control characters are
ignored and treated as data.

Logic Modules/or SAM
I Unless a file is assigned to a DASD device, or unless

it uses extended printer buffering for the IBM 3800
printer, a logic module must be assembled by the
programmer. The logic modules for DASD and for

Chapter 3: Access Methods Concepts 3 - 17

extended printer buffering are automatically loaded
into the sv A (system virtual area) at IPL time and are
linked to the problem program when the file is
opened. The logic modules for the files assigned to
other than DASD devices or the IBM 3800 must be
assembled by the programmer from a source state­
ment library, supplied by IBM. This is a one-time
process. Once assembled, the logic modules can be
stored in the relocatable library.

The logic modules can be link-edited with any
problem program that requires them. If preferable,
however, they can also be assembled along with the
user's program and included in the same object mo­
dule.

The logic module for a specific type of file in a
particular problem program is assembled on a selec­
tive basis, according to the requirements specified by
the user. The requirements vary depending on the
characteristics of the file, the type of device on
which the file resides, and the operations to be per­
formed on the file.

The functions that a particular module is to pro­
vide are specified in the parameters of the xxMOD
macro. There are different xxMOD macros for differ­
ent device types (see Figure 3-6). For console files,
no logic module is required.

The characteristics of the file are specified as par­
ameters of the DTFxx macro, which generates a DTF
table, serving as a link between the user's program
and the logic module for a certain file. There are

Device Type
xxMOD DTFxx
Macro Macro

Card. and 3881 Optical Mark CDMOD DTFCD
Reader

Console - DTFCN

Device Independent DIMOD2 DTFDI

3886 Optical Character DRMOD DTFDR
Reader DFR

DLiNT

Diskette DUMODFx DTFDU

Magnetic Character Reader, MRMOD DTFMR
Optical Character Reader

Magnetic Tape MTMOD DTFMT

Optical Reader, ORMOD DTFOR
Optical Page Reader

Printer PRMOD' DTFPR

Paper Tape PTMOD DTFPT

Sequential DASD - DTFSD

I Not needed for 3800 with extended printer buffering.
I 2 Not needed for DASD devices.

Figure 3-6. Declarative macro instructions for SAM.

3 - 18 VSE/ Advanced Functions Macro User's Guide

different DTFXX macros for different device types
(see Figure 3-6).

DAM (Direct Access Method)
The Direct Access Method is a flexible access me­
thod provided specifically for use with CKD direct
access storage devices. Some of the features of these
devices are:

• Flexible record referencing, either to physical
track and record address (record 10) or to re­
cord key (control field of the physical block).

• Ability to search sequentially through an area
for a physical block, using a minimum of cen­
tral processing unit time.

DAM does not include elaborate routines for han­
dling file maintenance functions such as adding
records to existing files, handling overflow records,
locating synonym records, and deleting records.
These functions are entirely the user's responsibility.
This may seem a disadvantage, but, once a user has
determined the way he will handle his data, DAM
will prove to be a flexible access method. High-level
programming languages, on the other hand, may not
be able to support the devices fully, because of the
restricted nature of the languages themselves; high­
level language programmers should consult their
language reference manual in order to learn about
the device features that are under their control.

With the Direct Access Method you can process
records in random order. The records may be read
or written; they may be updated, or they may be
replaced.

DAM supports the following DASD equipment:
IBM 2311 Disk Storage Drive
IBM 2314 Direct Access Storage Facility
IBM 2319 Disk Storage
IBM 3330 Disk Storage
IBM 3340 Disk Storage
IBM 3344 Direct Access Storage
IBM 3350 Direct Access Storage

For programming purposes, the 3344 can be re­
garded as being identical to the 3340. The 3350 can
be regarded as either a 3350 (operating in 'native'
mode) or a 3330 (in '3330-compatible' mode). For
information about the device characteristics of all
the DASDs listed above, see the appropriate compo­
nent description manuals.

DAM can be applied to all record formats of VSE.
When record spanning is used, the segmentation of
the logical records and their reassembly is per­
formed by LlOCS routines whenever necessary. The
records can be written with or without a key area.
When records in a file have keys that are to be proc­
essed, every record must have a key, and all keys
must be of the same length. Records without keys

J

..

•

•

are identified by their position in the physical se­
quence of a given track.

DAM uses one I/O area for a file. To determine
the size of the I/O area, the length of the data area
and the use of the count and key areas as well as the
control information must be taken into account.

DAM processes only unblocked records; that is, a
physical block is regarded by 10CS as containing one
logical record. If blocking is desired, the
blocking/deblocking must be done by the program­
mer in the problem program.

Blocking records can hardly be recommended for
DAM. Blocking logical records without keys
amounts to greater difficulty in establishing an effi­
cient randomizing algorithm. Although it may seem
advantageous as far as storage utilization is con­
cerned, it may have an adverse effect on the time
needed to locate a specific record. On the other
hand, blocking records with keys makes sense only if
the key sequence and the physical sequence of the
logical records coincide. Such an organizational
requirement goes beyond the requirements met by
an ordinary direct access file. As a matter of fact,
this kind of organization is employed more ade­
quately in ISAM, to be described later.

With DAM you can process DASD records in ran­
dom order. You specify the address of the record to
10CS and issue a READ or WRITE macro to transfer
the specified record.

Variations in the parameters of the READ or
WR ITE macros permit records to be read, written,
updated, or replaced in a file.

Whenever DAM is used, the file must be defined
by the declarative macro DTFDA (Define The File
for Direct Access). The detail entries for this macro
are described later in this book. In order to under­
stand the use of some of these entries, however, it is
necessary to provide information about how DAM

processing uses them.

Record Types
DASD records that will be processed by DAM can
exist on the DASD in either of two formats: with a
key area, or without.

With key area:

Count Key Data

Without key area:

Count Data

When processing spanned records, this format
applies only to the first segment. For additional
information on spanned records, see VSE System
Data Management Concepts, as listed in the Preface.

Whenever records in a file have keys that are to
be processed, every record must have a key and all
keys must be the same length.

When the DTFDA KEYLEN operand is not speci­
fied for a file, 10CS ignores keys, and the DASD re­
cords mayor may not contain key areas. A WRITE

ID or READ ID reads or writes the data portion of the
record. However, when KEYLEN is not specified in
the DTF for a file, WRITE AFTER cannot be used to
extend a file that has keys.

10CS considers all records as unblocked; if you
want blocked records, you must perform your own
blocking and deblocking. Records are also consid­
ered to be either fixed, variable, or undefined length.
A spanned record indicates variable blocks where
the size of each segment is a function of the track
size and record size. The record size is set by a for­
matting WRITE macro (WRITE AFTER). All the varia­
ble record segments of a given spanned record are
logically contiguous. The type of records in the file
must be specified in the DTFDA RECFORM operand.
Whenever records specified as undefined are writ­
ten, you must determine the length of each record
and load the length in a register (specified by the
DTFDA RECSIZE operand) before issuing the WRITE

macro for that record.

I/O Area Specification
The DTFDA 10AREAI operand is available to define
an area of virtual storage in which records are read
on input or built on output.

Format
The format of the I/O area is determined at assembly
time by the following DTFDA operands: AFTER, KEY­

LEN, REA DID, WRITEID, READKEY, and WRITEKY.

Figure 3-7 shows the DTFDA macro entries and the
I/O areas that they define. The information in this
figure should be used to determine the length of the
I/O area specified in the BLKSIZE operand. The I/O

area must be large enough to contain the largest
record in the file. If the DTF used requires it, the I/O

area must include room for an 8-byte count field.
The count is provided by 10CS.

Contents
Figures 3-7 and 3-8 give a summary of what the
contents of lOA REA 1 are for the various types of
DTFDA macros. These contents are provided by, or
to, 10CS when an imperative macro is issued. When
you build a record, you must place the contents

Chapter 3: Access Methods Concepts 3 - 19

DTFDA MACRO ENTRIES I/O AREA DEFINED

AFTER KEY LEN READID WRITEID READKEY WRITEKY

• x • x • •
I COUNT I KEY I DATA I

l h I. I IBlKSIZE = n--i
engt -I I

(Bytes) I. 8 IKEYLEN=nl largest Record I

II0AREAl !: I

x • •
! COUNT I DATA d

l th I. BlKSIZE=n
eng --l I I

(Bytes) I. 8 I largest Rec ord I

II0AREAl : I

x o o • •
I KEY I DATA I
1 • BlKSIZE n ~

length ~KEYlEN=nl
(Bytes) I. I largest Record 1

II0AREAl : I

o o I DATA I
r----t-----t------t-----t------+-------I len th t-- BlKSIZE = n~

g --i I
(Bytes) I. largest Rec ord I

!IOAREAl :
x o o

x - Specified

• = May also be specified

0= Of two entries, one and/or the other is specified

Figure 3-7. I/O area for different DTFDA macro operands for fixed unblocked and undefined record formats.

shown in Figures 3-7 and 3-8 in the appropriate field
of the I/O area. For example, if the DTF used for the
file resulted in the uppermost format shown in Fig­
ure 3-7, the data would be located to the right of the
count or key area.

As opposed to fixed unblocked and undefined
records, the 10AREAI for variable length and span­
ned unblocked records is independent of the DTFDA

macro entries. If you specify the KEYLEN entry of
the DTFDA macro, the key is transmitted to or from
the field you specified on the KEYARG entry. The
count field, if desired, is taken from an area reserved
automatically by logicallocs.

Control fields I DATA

-8 bYtes...J largest record

14--------BlKSIZE=n ---------./

t
10AREA 1

Figure 3-8. I/O areas for variable length and spanned unblocked
DTFDA record format.

3 - 20 VSE/ Advanced Functions Macro User's Guide

The control fields are built by logicallocs except
for the case when you create your file or add records
to it by using the WRITE AFTER macro. You must, in
that case, insert the data length of the record (plus
four) into the 5th and 6th bytes of the control fields.
When you read a variable length or spanned un­
blocked record these bytes will contain the length of
the record. When updating records, you should not
change any parts of the control fields.

The maximum length of a logical record plus its
key and control fields, if any, is shown in Figure 3-9.

RECFORM

Device FIXUNB
VARUNB SPNUNB
UNDEF

2311 3625 32767

2314,2319 7294 32767

3330/3333 13,030 32767

3340 8,535 32767

3350 19,069 32767

Figure 3-9. Maximum length of DTFDA records including key
and control fields.

•

•

•

•

Creating a File or Adding Records
Your program can preformat a file or an extension
to an existing file in one of two ways depending on
the type of processing to be done. If the WRITE
AFTER macro is used exclusively, the WRITE RZERO
macro is enough for pre formatting the tracks. If
nonformatting functions of the WRITE macro are
used, the tracks should be preformatted with the
IBM-supplied Clear Disk utility program. The Clear
Disk utility also resets the capacity record to reflect
an empty track.

In addition to reading, writing, and updating
records randomly, DAM permits you to create a file
or write new records on a file. When this is done, all
three areas of a DASD record are written: the count
area, the key area (if present), and the data area.
The new record is written after the last record previ­
ously written on a specified track. The remainder of
the track is erased. This method is specified in a
WRITE macro by the parameter AFTER.

10CS ensures that each record fits on the track
specified for it. If the record fits, 10CS writes the
record. Ifit does not fit, 10CS sets a no-room-found
indication in your error/status byte specified by the
DTFDA ERRBYTE operand. If WRITE AFTER is speci­
fied, 10CS also determines (from the capacity record)
the location where the record is to be written.

Whenever the AFTER option is specified, 10CS
uses the first record on each track (RO) to maintain
updated information about the data records on the
track. Record 0 (Figure 3-10) has a count area and a
data area, and contains the following:

Count Area:

• Flag (normally not transferred to virtual stor-
age)

• Physical Identifier

• Key Length (KL)

• Data Length (DL)

Data Area:

• Physical 10 oflast record written on track
(cchhr)

• Number of unused bytes remaining on track

• Flag (used by operating systems other than
YSE)

Each time a WRITE AFTER macro is executed,
10CS updates the data area of this record.

Locating Data: Reference Methods
DAM requires two references for all read or write
operations, the track reference and the record refer­
ence. The track reference may be either the actual
physical DASD address, which specifies the location

of the track, or the relative track address, which
specifies the position of the track in relation to the
beginning of the file. The record reference may be
either the record key (if the records contain key
areas) or the record identifier (lD).

10CS seeks the specified track, searches it for the
individual record, and reads or writes the record as
indicated by the macro. If a specified record is not
found, 10CS sets a no-record-found indication in
your error/status byte specified by the DTFDA
ERRBYTE operand. This indication can be tested
and appropriate action can be taken to suit your
requirements.

Multiple tracks can be searched for a record spec­
ified by key (SRCHM). If a record is not found after
an entire cylinder (or the remainder of a cylinder) is
searched, an end-of-cylinder bit is turned on instead
of the no-record-found bit in ERRBYTE.

When an I/O operation is started, control returns
immediately to your program. Therefore, when the
program is ready to process the input record, or
build the succeeding output record for the same file,
a test must be made to ensure that the previous
transfer of data is complete. Do this by issuing a
W AITF macro.

After a READ or WRITE macro for a specified re­
cord has been executed, 10CS can make the 10 of the
next record available to your program. The WAITF
macro should be issued to assure that the data trans­
fer is complete. You must set up a field (in which
10CS can store the 10) to request that 10CS supply the
10. You must also specify the symbolic address of
this field in the DTFDA IDLOC operand.

When record reference is by key and multiple
tracks are searched, the I D of the specified record
(rather than the next record) is supplied. The func­
tion of supplying the 10 is useful for a random up­
dating operation, or for the processing of successive
DASD records. If you are processing consecutively
on the basis of the next 10 and do not have an end­
of-file record, you can check the 10 supplied by 10CS
against your file limits to determine when the end of
the file has been reached.

Track Reference
To provide 10CS with the track reference, you set up
a track reference field in virtual storage, assign a
name in the DTFDA SEEKADR operand, and deter­
mine by DTFDA operand specifications which type
of addressing to use. Before issuing any READ or
WRITE macro for a record, you must store the proper
track identifier in either the first seven hexadecimal
bytes (mbbcchh), or the first three hexadecimal
bytes (ttt), or the first eight zoned decimal (tttttttt)

Chapter 3: Access Methods Concepts 3 - 21

COUNT AREA

Bytes __

I
I

I
I

Contains ~:

en
0

u.

0 I

Identifiel KL

5 6

Stondol d Informot i on

Figure 3-10. Contents ofrecord 0 for capacity-record option.

bytes of this field. The latter two track references,
along with the DSKXTNT and REL TYPE operands,
indicate that relative addressing is to be performed.
Thus, instead of providing the exact physical track
location (mbbcch), only the track number relative to
the starting track of the file need be provided. If
these operands are omitted, the physical track loca­
tion is assumed.

The fields for each of these track reference me­
thods are shown in Figure 3-11. For reference to
records by record number, r of rr is used (see
"Identifier (ID) Reference," below). When the
READ or WRITE is executed, IOCS refers to this field
to select the specific track on the appropriate DASD.

Physical Track Addressing: An actual physical
DASD address can be shown as an 8-byte binary
address in the form mbbcchhr.

m identifies the volume. If a single file extends
over more than one volume, the physical units
must be assigned (in EXTENT job control state­
ments) to a sequential set of symbolic unit
numbers. The value of m is always 0 for the
first volume, 1 for the second, 2 for the third,
etc.

For example, a single logical file located on
three volumes could be assigned to the logical
unit numbers SYS002, SYS003, and SYSOO4. Here,
m=O refers to SYSOO2, m= I refers to SYSOO3, and
m=2 refers to SYSOO4.

The value of m is never actually read or written
on the storage device. It references the proper
element in the LUB table.

bb is a 2-byte reserved field; it is set to zeros.

cc is a 2-byte field that contains the cylinder num­
ber in binary form.

3 - 22 VSE/ Advanced Functions Macro User's Guide

DL

7 e

DATA AREA

o

I

:C
I
I
I
I

Identifier
of Last Record

C H H

4 5
I
I

en
c
'c

..... '0
! E " ..
co ""

I Numb"r
R: of Unu,ed

Byte,

6 7

hh is a 2-byte field containing the head number in
binary form in the second byte. The first byte is
reserved.

r is the record number within a track. This 1-
byte field can contain a binary value of 0 to 255
to identify the physical location of a record on
the track. This field is not used when records
are referenced by record key.

The 8-byte DASD addresses described above are
used either as a starting point for a search on record
key (control field) or as the actual address for a read
or write operation. When searching for a key, you
have the option of specifying that the search be only
within the specified track (hh) or from track to track
starting at the address given and continuing either
until the record is found or until the end of the cyl­
inder (cc) is reached.

Relative Track Addressing: The required DASD

address may also be given as a relative address,
which is then converted by IOCS to an actual ad­
dress. Relative track addressing is more convenient
to use than the physical address for the following
reasons:

• The data file is treated logically as if it were
located in one continuous area, although it may
occupy several non-adjacent areas.

• You need to know only the relative position of
the data within the file; its actual physical ad­
dress is not required. This is especially advan­
tageous if you plan to move the file from one
location to another. In such cases the relative
addressing scheme remains the same, and the
actual addresses are automatically converted by
IOCS.

You may specify the relative address either in
hexadecimal (in the form tttr), or in zoned decimal
(in the form ttttttttrr). The hexadecimal notation

J

•

•

•

•

Bytes
Decimal

Contents in Zoned Decimal
Identifier

0-7 tttttttt 0-16.777.215

8-9 rr 0-99

Bytes
Hexadecimal

Contents in Hexadecimal
Identifier

0-2 ttt O-FFFFFF

3 r O-FF

Bytes
Physical

Contents in Hexadecimal
Identifier

0 m OO-FF

1-2 bb 0000

3-4 cc 0000-00C7 (2311.2314.2319)
0000-0193 (3330-1.-2.3333)
0000-0327 (3330-11)
0000-0158 (3348 model 35)
0000-0287 (3348 model 70)
0000-022A (3350)

5-6 hh 0000-0009 (2311)
0000-0013 (2314)
0000-0012 (3330)
0000-0012 (3333)
0000-0008 (3340)
0000-00" D (3350)

7 r O-FF

Figure 3-11. Types of track reference fields .

requires four bytes, while the zoned decimal nota­
tion requires ten bytes.

ttt or tttttttt represents the track number relative
to the beginning of the file.

r or rr represents the record number on the track.

Please note that the addressing techniques de­
scribed above are used by the system, and can be
applied in assembler language. Addressing in a
high-level programming language, such as COBOL or
PL/I, may be different. Information about DASD

addressing in a high-level programming language
should be obtained from the appropriate language
reference manuals.

For certain types of operations, you can request
the system to return the actual record address (10) of

Information

Track number relative to the first track of the file.

Record number relative to the first record on the track. If refer-
ence is by key. rr should be zero.

Information

Track number relative to the first track of the file.

Record number relative to the first record on the track. If refer-
ence is by key. r should be zero.

Information

Number of the volume on which the record is located. Volumes
and their symbolic units for a file must be numbered consecu-
tively. The first volume number for each file must be zero. but
the first symbolic unit may be any SYSnnn number. The sys-
tem references the volume by adding its number to the first
symbolic unit number .
Example: The first extent statement / / EXTENT SYS005 •...
and m=O result in the system referencing SYS005.

The maximum number of the cylinder in which the record can
be located is:
for 2311.2314.2319: 199
for 3330-1.-2.3333: 403
for 3330-11 : 807
for 3340 with 3348 model 35: 347
for 3340 with 3348 model 70: 695
for 3350: 554
These two bytes (cc). together with the next two (hh). provide
the track identification. DAM does not permit the use of differ-
ent data module sizes in a multivolume file on a 3340.

The number of the read/write head that applies to the record.
The first byte is always zero and the second byte specifies one
of the disk surfaces in a disk pack.

Sequential number of the record on the track.
Note: r=O if reference is by key.

the block read or written, or of the block following
the one just read or written. This returned 10 can
be used to either read or write a new record, or to
update the one just read and write the updated re­
cord back to the same location.

The format of the returned 10 is the same as the
format of the DASD address used for locating data,
namely mbbcchhr, tttr, or ttttttttrr.

Record Reference
DAM allows records to be specified by either record
key or record identifier.

Key Reference: If records contain key areas, the
records on a particular track can be randomly

Chapter 3: Access Methods Concepts 3 - 23

searched by their keys. This allows you to refer to
records by the logical control information associated
with the records, such as an employee number, a
part number, a customer number, etc.

Fo'r this type of reference you must specify the
name of a key field in virtual storage in the DTFDA
KEYARG operand. You then store each desired key
in this field.

Identifier (ID) Reference: Records on a particular
track can be randomly searched by their position on
the track, rather than by control information (key).
To do this, use the record identifier. The physical
record identifier, which is part of the count area of
the DASD record, consists of five bytes (cchhr). The
first four bytes (cylinder and head) refer to the loca­
tion of the track, and the fifth byte (record) uniquely
identifies the particular record on the track. You
may, however, use the relative track notation instead
of cylinder and head notation if specified in the
DSKXTNT and REL TYPE operands. When records are
specified by !D, they should be numbered in succes­
sion (without missing numbers) on each track. The
first data record on a track should be record number
1, the second number 2, etc.

Whenever records are identified by a record !D,

the r-byte of the track-reference field (see Figure
3-10) must contain the number of the desired record.
When a READ or WRITE macro that searches by ID is
executed, IOCS refers to the track-reference field to
determine which record is requested by the program.
The number in this field is compared with the corre­
sponding fields in the count areas of the disk re­
cords. The r-byte (or bytes) specifies the particular
record on the track.

Locating Free Space
DASD design allows the operating system to locate
track space that has not yet been used. For this pur­
pose, DAM maintains a capacity record as a part of
record zero on each track.

When a record must be written, the system will
do this:

• It reads the data portion of record zero (the
capacity record).

• It determines whether or not there is space on
the track for the record.

• If the new record fits, it writes it onto the track
as a new last record and updates the capacity
record.

• If there is not enough space on the track, it no­
tifies the problem program. An overflow rou­
tine in the problem program may then become
active.

3 - 24 VSE/ Advanced Functions Macro User's Guide

This design makes a randomizing problem less
critical than in the past, when every single record
was supposed to have its unique address. Each syno­
nym resulting from a conversion algorithm resulted
in an overflow record. Now the conversion algo­
rithm may randomize to a track address, and more
than one record may have the same track address
assigned by the algorithm.

The capacity record is not always used. The de­
scription of the WRITE macro explains when it is
used.

The capacity record is updated for each record
that fills empty space on a track. When a record is
deleted, however, the capacity record does not show
it as empty space. Space that is 'free' because a re­
cord has been deleted can be recognized as such
only by the user. You may, for example, do this:
When you delete a record from a direct access file
that has records with key areas, you may search on
key to read the block and request that the record ID
be returned. You then use this ID to write blanks or
zeros (or whatever unique identification is accepta­
ble to mark the deleted key and data area) to this
location. If you later want to re-use deleted blocks
for data, you may randomize the key of a new logi­
cal record to a starting location, make a search for a
blank or zeroed key, and use the !D returned to write
the new record with the new key into the same loca­
tion.

Logic Modules/or DAM
Four preassembled superset logic modules, supplied
by IBM and loaded into the SVA during IPL, will be
linked to the DTF when the file is OPENed. These
logic modules are fully reentrant so that one copy of
a logic module can be used by all requestors having
the type of file for which the logic module was gen­
erated. Any other logic module referenced by the
DTF will be ignored. .

ISAM (Indexed Sequential
Access Method)
The Indexed Sequential Access Method is ajiJe
management system developed for use with CKD
DASD; logical records are organized by ISAM on the
basis of a collating sequence determined by their
keys.

ISAM supports the following devices:
IBM 2311 Disk Storage Drive
IBM 2314 Direct Access Storage Facility
IBM 2319 Disk Storage
IBM 3330 Disk Storage
IBM 3340 Disk Storage
IBM 3344 Direct Access Storage
IBM 3350 Direct Access Storage when operating in 3330-1

compatibility mode

..

•

•

•

For programming purposes, the 3344 can be re­
garded as being identical to the 3340. The 3350 is
not supported by ISAM when operating in either
3350 mode or 3330-11 compatibility mode, nor is the
3330-11 supported in native mode. For information
about the device characteristics of all the DASDs
listed above, see the appropriate component descrip­
tion manuals.

With ISAM, you can process DASD records in ei­
ther random or sequential order. For random proc­
essing, you supply the key (control information) of
the desired record to ISAM and issue a READ or
WRITE macro to transfer the specified record. For
sequential processing, you specify the first record to
be processed and then issue GET or PUT macros until
all desired sequential records are processed. The
successive records are made available in sequential
order by key. Variations in macros permit:

• Creating a DASD file.

• Reading, adding to, or updating a DASD file.

Whenever ISAM is used, the file must be defined
by the declarative macro DTFIS (Define The File for
Indexed Sequential organization). The detail entries
for this macro are described later in the book. In
order to understand the use of some of these entries,
however, it is necessary to provide information
about how ISAM processing uses them.

As a file management system, ISAM takes care of
the data organization where SAM and DAM do not.
For instance, handling overflow when inserting re­
cords on an existing file and retrieving those records
later is managed by ISAM routines. As a result, the
management of ISAM data requires little I/O pro­
gramming.

IS AM offers the programmer flexibility in the op­
erations he can perform on a file. He has the ability
to:

• Read or write logical records whose keys are in
ascending collating sequence.

• Read or write individual records randomly, on
the basis of the primary keys. If a large portion
of a file is being processed, reading records in
this manner is somewhat slower than reading
according to a collating sequence. A search
through indexes is required for each logical
record.

• Add logical records with new keys to the exist­
ing file. The file management routines of ISAM
find proper locations in the file for the new re­
cords and make all necessary adjustments to
the indexes so that the new records may be re­
trieved easily. New logical records are physi­
cally stored in a separate overflow area; the log-

ical sequence to other logical records in the file
is maintained through the indexes. As new re­
cords are added, the performance of ISAM de­
creases slightly, until it becomes advisable to
reorganize the file (see below).

ISAM has the following restrictions:

• Data records must be of fixed length.

• All physical blocks must contain key areas, all
of the same length.

• For multivolume files, all volumes must be
online for any function to be performed.

• ISAM uses three types of data areas in auxiliary
storage: prime data area, overflow area, and
indexes. The prime data area must be allocated
in one continuous area which may be over
more than one volume; it must begin on the
first track (track 0) of a cylinder and it must
end on the last track of a cylinder. For a multi­
volume file, the prime data area must continue
from the last track of the last cylinder on one
volume to the first track of cylinder 1 of the
next volume so that the area is considered con­
tinuous by ISAM (cylinder 0 is reserved for la­
bels). The overflow area and the indexes may
be located on separate volumes.

• An ISAM file cannot be used as input for
sort/merge programs. The data is organized on
a logical basis: the logical records are se­
quenced logically, according to the keys of the
records. Should a user attempt to re-sort this
file, the indexes would no longer be an inter­
face between the user's problem program and
the data records, and individual records can no
longer be located. It is possible, of course, to
create another (sequential) file from the con­
tents of an ISAM file, and then to re-sort this
newly created file. If this is needed, VSE/VSAM
alternate index support should be considered.

• Once a file has been created as an ISAM file, it
should be processed and updated by means of
ISAM only. SAM or DAM must never be used to
process an ISAM file; doing so might cause seri­
ous problems with data integrity. ISAM man­
ages the data completely, and this management
function might be made impossible if a user
were to destroy an index/data relationship as
established by ISAM.

• ISAM does not actually delete logical records
from an ISAM file. However, since a user may
update any logical record, he can 'delete' a logi­
cal record by overwriting the data portion with,
for example, binary zeros, decimal zeros, or
blanks. However, he must make sure not to

Chapter 3: Access Methods Concepts 3 - 25

overwrite the key field. He may also enter a
special field in his logical record which contains
the status of the data: current data or deleted
data (see note, below). The main issue is that
the user himself must distinguish deleted data
from current data, and choose some satisfactory
way of doing so.

A disadvantage of this restriction is that an
ISAM file increases in size as many logical re­
cords are tagged as deleted, and many new re­
cords are added. Eventually, the file must be
reorganized in order to obtain a 'clean' file.
During this reorganization, the file is read se­
quentially (logically, according to the primary
keys) and written (loaded) to a new file; logical
records that have been tagged as deleted are
then ignored by the user, and not written to the
new file.

Note: Under OS/VS I or OS/VS2, deleted records are flagged by
placing the hexadecimal value "FF" in the first byte. It is recom­
mended that VSE users who plan to use VSE ISAM data under
OS/VS follow this procedure.

Record Types
When an ISAM file is originally organized, it is load­
ed onto the volume(s) from presorted input records.
These records must be sorted by key and all records
in the file must contain key areas:

Count Key Data

All keys must be the same length and this length
must be specified in the DTFIS KEYLEN operand.

The logical records must be fixed length, and the
length must be specified in the DTFIS RECSIZE ope­
rand. Logical records may be either blocked or un­
blocked, and this is specified in the DTFIS RECFORM
operand. When blocked records are specified, the
key of the highest (last) record in the block is the key
for the block and, therefore, ISAM stores it in the key
area ofthe record. The number of records in a block
must be specified in the DTFIS NRECDS operand.

Storage Areas
Records of one logical file are transferred to, or
from, one or more I/O areas in virtual storage. The
areas must always be large enough to contain the
key area and a block of records, or a single record if
unblocked records are specified. Also, space must be
allowed for the count area when a file is loaded, or
when records are added to a file. For the functions
of adding or retrieving records, the I/O area must
also provide space for a sequence-link field used
with overflow records (see "Addition of Records and
Overflow Areas," below). When an overflow record

3 - 26 VSE/ Advanced Functions Macro User's Guide

is brought into the I/O area, you should not alter the
sequence-link field. The I/O area requirements are
illustrated in Figure 4-16 and described in detail in
the discussions of the DTFlS 10AREAL,IOAREAR,
10AREAS, and IOAREA2 operands.

Records may be processed directly in the I/O area
or in a work area for either random or sequential
retrieval. If the records are processed in the I/O area,
a register must be specified in the DTFIS 10REG ope­
rand. This register is used for indexing, and points
to the beginning of each record.

If the records are processed in a work area, the
DTFIS WORKL, WORKR, or WORKS operand must be
specified (WORKL must always be specified when
creating or adding records to a file). ISA M moves
each individual input record from the I/O area to the
work area where it is available to your program for
processing. Similarly, on output, ISAM moves the
completed record from the work area to the I/O area
where it is available for transfer to DASD storage.
Whenever a work area is used, no register is re­
quired.

Activating (Opening) a File for Processing
AlllSAM files must be activated or opened before
any processing can take place. The OPEN macro
makes files available for processing by associating a
logical file declared in your program with a specific
physical file on a DASD unit. This association re­
mains in effect throughout your program until you
deactivate, or close, the file by issuing a CLOSE ma­
cro.

Self-relocating programs (see Appendix D) must
use OPEN R instead of OPEN to activate a file.

Processing an ISAM File
This section describes in general how the following
functions are performed with ISAM:

• creating (loading) a file

• extending a file

• adding records

• sequential retrieval and update

• direct retrieval and update

• deleting records

• reorganizing a file

Figure 3-12 summarizes which macros apply to
the individual processing functions. ISAM provides
for processing with both the GET/PUT and the
READ/WRITE macros; their purpose and effect vary,
however, depending on the logic modules used and
the conditions set by preceding macros.

J

•

•

ENDFL

ADDING NEW
ISAM RECORDS

Figure 3-12. Controlling lSAM functions in assembler language.

Creating an (SAM File

An ISAM file is created by a load routine. You speci­
fy the characteristics of the output lSAM file in your
problem program. The format-2 DASD label used
for an ISAM file contains pre-recorded information
about the record format, such as record length,
block length, and key length. This implies that these
must be fixed for a given file.

Before the actual loading begins, a SETFL macro
is issued, which sets up the file and initializes the
indexes. Each record is presented to the load routine
separately, in ascending key sequence, by means of a

DTFIS

I
ISMOD

I
OPEN(R)

ESETL

CLOSE(R)

I

WRITE macro. (The W AITF macro is not used when
a file is loaded or extended.) Before transferring a
record, lSAM performs a sequence check and a
duplicate-record check. When all records have been
loaded, an ENDFL macro terminates the loading
process. It writes the last block of records followed
by and end-of-file record; it completes the index and
creates dummy index entries for the unused portion
of the prime data extent.

The input may have a different format and be
described separately as another file, or even more
than one file. It may be provided by any access me-

Chapter 3: Access Methods Concepts 3 - 27

thod, from any device, in any format suitable for
that access method or device. The problem program
constructs an ISAM record from the input; it presents
the logical records to the ISAM load routine, one by
one in ascending order by key. If requested by the
problem program, the load routine performs record
blocking. It also builds the indexes.

Creating the file cannot be combined with any
other processing functions.

Extending an ISAM File
The function of extending an ISAM file by adding
presorted records with keys higher than those al­
ready present is the same as creating an ISAM file
from presorted records. Both are considered a load
operation and should be defined as such in the
DTFIS declarative macro by specifying
IOROUT=LOAD. Both functions also use the same
macros and the same program that initially sets up
an ISAM file can also be used to extend the file.

Addition of Records and Overflow Areas
After a logical file is organized on a DASD, it may
subsequently become necessary to add records.
These records may contain keys that are above the
highest key presently in the file and thus constitute
an extension of the file. Or, these records may con­
tain keys that fall between keys already in the file
and therefore require insertion in the proper se­
quence in the file.

If all records to be added have keys that are high­
er than the highest key in the file, the upper limit of
the prime area of the file can be adjusted (if neces­
sary) with an EXTENT job control statement. The
new records can then be added by presorting them
and loading them into the file. No overflow area is
required, and the file is merely extended further on
the volume. However, new records can be batched
with the normal additions and added to the end of
the file.

If records must be inserted among those already
in the file, an overflow area is required. IS AM uses
the overflow area to permit the insertion of records
without necessitating a complete reorganization of
the established file. The fast random and sequential
retrieval of records is maintained by inserting refer­
ences to the overflow chains in the track indexes,
and by using a chaining technique for the overflow
records. For chaining, a sequence-linked field is
prefixed to your data record in the overflow area
that has the next-higher key. Thus a chain ofse­
quential records can be followed when searching for
a particular record. The sequence-link field of the
highest record in the chain indicates the end of the
chain. All records in the overflow area are un-

3 - 28 VSE/ Advanced Functions Macro User's Guide

blocked, regardless of the specification in the DTFIS

RECFORM operand for the data records in the file.

An example of the addition ofrecords to an ISAM

file using an overflow area is shown in Figure 3-13.

You may request two types of overflow .areas;

• A cylinder overflow area for each cylinder.
Specify the number of tracks to be reserved for
each cylinder overflow area with the DTFIS

CYLOFL operand when a file is loaded or when
records are added to an existing file.

• An independent overflow area for the entire
file, specified with an EXTENT job control state­
ment. This area may be on the same volume as
the file or on a different (on-line) volume of the
same device type. An independent overflow
area may be added to a file originally created
without it when the DTFIS IOROUT operand
specifies LOAD, ADD, or ADDRTR.

The independent overflow area may be used ei­
ther in addition to cylinder overflow areas or with­
out them. When used in addition to cylinder over­
flow areas, it is used whenever one of the cylinder
overflow areas is filled.

There must always be one prime data track avail­
able for a DASD EOF record when additions are
made to the last track in the prime data area con­
taining records.

Sequential Retrieval and Update
A sequential processing routine retrieves all records
in ascending sequence by key, starting with a speci­
fied record somewhere in the file and continuing to
the point where the program decides to break the
sequence. The program can then choose another
starting point to process another sequential set of
records. The SETL macro specifies the first record of
the series of records to be retrieved sequentially.
The actual retrieval of these records in logically
sequential order is accomplished by GET macros.
The ESETL macro ends the sequential mode initiated
by the SETL macro. You may resume sequential
processing at some other point in the file by issuing
another SETL.

Updating is possible, since each record that is
retrieved by the sequential processing routine can be
processed and returned to its original location in the
file. After a record has been processed, a PUT macro
must follow to restore the record to its originalloca­
tion. If you have some records that do not need up­
dating, GET macros can be issued without any PUT

between.

When unblocked records are processed, the key
areas are not read. Information regarding record,

J

•

•

•

•

Initial status of ISAM file

Normal Entry Overflow Entry

Track Index
Track 0

Prime Data
Track 1

Prime Data
Track 2

Overflow
Track 3

100

10

150

Track
1

100

20

175

Status after inserting records with keys 25 and 101

Track Index

Prime Data

Prime Data

Overflow

Status after inserting records with keys 26 and 199

Track Index

Prime Data

Prime Data

Overflow

10

101

100
Track

1

Figure 3-13. Adding records to an ISAM file.

100

20

150

Track
1

Track
2

200

190

40

190

25

175

Track
2

Track
2

200

200

200

100

200

Track
2

I Tl'<itl(3
IR~td2

40

190

Chapter 3: Access Methods Concepts 3 - 29

block, and key sizes is obtained from the format-2
DASD label. When records are blocked, the complete
block is restored, but only if a PUT has been issued
for any of its records.

In a program that processes an ISAM file sequen­
tially, new records can be added. The sequential
processing must then be terminated properly by an
ESETL macro before you issue a WRITE macro to add
a new record. After the addition of one or more
records, sequential processing can be resumed by
another SETL macro.

Direct Retrieval and Update
To retrieve a record directly from a file, place the
record key in the key field specified in the DTFIS
macro. A READ macro returns the specified record
from the file by searching the indexes, reading the
record, and presenting the data portion of the record
to the problem program. Information regarding the
record, block, and key sizes is obtained from the
format-2 DASD label.

If the data is to be updated, you must also issue a
WRITE macro to write the updated record back in its
original positions. AWAIT macro must follow each
READ or WRITE to suspend record processing until
the data transfer is complete.

Combining Sequential and Direct Retrieval
It is possible to perform both sequential and direct
processing in one problem program. Figure 3-14
illustrates how sequential and direct processing can
be combined. You may, for example, process re­
cords sequentially and yet update some record in the
file directly. Or you may, in a program that process­
es records sequentially, also add some records. Add­
ing records and direct updating should not, however,
be interspersed. Whether you are updating directly
or adding records, the direct processing and the se­
quential processing must be kept separate. The se­
quential processing begins at a specified point and
must be explicitly terminated before any direct proc­
essing can start.

Deleting Records in an ISAM File
ISAM provides no facility for actually deleting re­
cords. A programmer may, however, tag a record
for deletion by any method desired as long as it does
not alter the logical record sequence in the file. The
data portion of a record may, for example, be over­
written with zeros, or a special field in a record may
indicate that the record is deleted. If you plan to
interchange data between VSE and OS/VS, you
should use the hexadecimal value X'FF" in the first
byte of the record for that purpose.

3 - 30 VSE/ Advanced Functions Macro User's Guide

Records that are tagged for deletion can be elimi­
nated when the file is reorganized.

Deactivating (Closing) an ISAM File
After Processing
A CLOSE completion macro must be issued after the
processing of an ISAM file has been completed in
order to deactivate or close any file that was previ­
ously opened. Closing a file ends the association of
a logical file with a specific physical file on a DASD
unit.

Self-relocating programs (see Appendix D) must
use CLOSER instead of CLOSE to deactivate a file.

See the section on "Label Processing" in
"Appendix C" for information on label processing
done by the CLOSE macro.

Reorganizing an ISAM File
As new records are added to an ISAM file, existing
records are moved to the overflow areas. The access
time for retrieving a record from an overflow area is
greater than that for retrieving one from the prime
data area. This is because prime data records are
located by a device search over a track, whereas
overflow records are found by scanning, record by
record, through a chain of records. Therefore, an
increasing number of overflow records reduces per­
formance. For this reason, you should reorganize
IS AM files as soon as you recognize the need for it.

The system maintains statistics to assist you in
determining when reorganization is required. These
statistics are maintained, in binary form, in the
format-2 DASD label recorded with the file:

• Non-first-overflow reference count
A 3-byte count of the number of times a refer­
ence (direct retrieval) is made to records that
are second or higher links in an overflow chain.

• Prime record count
A 4-byte count of the number of records in the
prime data area.

• Number of independent overflow tracks
A 2-byte count of the number of tracks that are
still available in the independent overflow area
(if used).

• Overflow record count
A 2-byte count of the number of records in the
overflow area.

• Cylinder overflow area count
A 2-byte count of the number of cylinder over­
flow areas that are full.

These fields are maintained automatically by
ISAM. In addition, there is another field that can
contain statistics: tag deletion count. It is, however,

•

•

•

..

•

I
START SEQUENT1IAL PROCESSING

(specify starting POint)
I

sequent1lal read

I
process

I
(sequential write)

I
or ------------------~

I
END SEQUENTIAL PROCESSING

supp y key
direct read

I
process

I
(direct write)

I
r

Figure 3-14. Combining sequential and direct processing.

not maintained by the ISAM routines, but the prob­
lem program can maintain it. The contents of this
field are retrieved by the OPEN routines of ISAM and
placed in virtual storage. After processing, the
CLOSE routines of ISAM return this field to the
format-2 DASD label. Before ISAM returns the field,
you may use it for counting the number of records
that have been tagged for deletion .

Reorganization is accomplished by creating a
new version of the file, using the existing version as
input. Two ISAM files are defined: the existing file
as sequential input and the new version as load out­
put. As far as the system is concerned, these two
files are not related. It is the problem program that
establishes a relationship by reading the existing
version and loading the new version. Therefore, the
records of the new version may be given quite an­
other format provided that the problem programs
that will process the new version are designed ac­
cordingly.

Depending on the capacity of the system, the
reorganization is done in one step or in two steps.
For a reorganization to be done in one step, the ca­
pacity of the system must be large enough to hold
both files online. Otherwise the reorganization must
be done in two steps: the first reads the existing ver-

sion in key sequence and writes it to magnetic tape;
the second then reads the magnetic tape and creates
a new version. Records that are tagged for deletion
may be eliminated in either step.

. Figure 3-15 indicates how the reorganization
process can be accomplished, in one or in two steps.
When in two steps, an intermediate file is created in
step 1 and processed as input in step 2. This file is
processed in both steps by means of the Sequential
Access Method. It may be written on magnetic tape
or on DASD. Since this file need not be completely
online, a single DASD or tape drive is sufficient.

Logic Modules/or ISAM
You must assemble the logic modules available with
ISAM from a source statement library supplied by
IBM. This is a one-time process. Once assembled,
the modules can be stored in the relocatable library.

The logic modules can be link-edited with any
problem program that requires them. If preferable,
however, they can also be assembled along with
your program and included in the same output ob­
ject module.

Four basic types of routines are available with
ISAM:

Chapter 3: Access Methods Concepts 3 - 31

FILA (existing version) = Input
FILB (new version) = output

MFILE = Intermediate file; can be on tape

OPEN FILA FOR
SEQUENTIAL
PROCESSING

OPEN FILB
IN
LOAD MODE

READ RECORD
FILA

WRITE RECORD
FILS

CLOSE
FILA AND
FILB

yes

no

OPEN FILA FOR
SEQUENTIAL
PROCESSING

OPEN MFILE

READ RECORD
FILA

WRITE RECORD
MFILE

CLOSE
FILA

Figure 3-15. Reorganizing an ISAM file in one step or in two steps.

3 - 32 VSE/ Advanced Functions Macro User's Guide

yes

no

OPEN FILS
IN
LOAD MODE

READ RECORD
MFILE

WRITE RECORD
FILB

CLOSE
MFILE AND
FILS

~

...

no

•

•

•

..

LOAD
to create or extend an ISAM file,

ADD
to insert additional records in an ISAM file,

SEQUENTIAL RETRIEVAL
to retrieve records in logical sequence from an
ISAM file,

DIRECT RETRIEV AL
to retrieve individual records by key from any
point in an ISAM file.

The load routine is always separate; no other
functions can be performed at the same time. The
add and retrieval functions can be used in combina­
tion. Futhermore, the retrieval routines have an
updating capability, which allows you to write up­
dated records back into their original location in the
file .

The logic module for a specific file in a given
problem program is assembled on a selective basis
according to the requirements you specify in the
DTFIS and the ISMOD declarative macros. The DTFlS
macro generates a DTF table, which serves as a link
between the problem program and the logic module.

If the DTFIS and the ISMOD macros specify that
two I/O areas are used, overlap of the physical trans­
fer of data with processing can take place in the load
and the sequential retrieval routines.

PIoes (Physical IOeS)
Records can be transferred to or from an input or
output device by issuing physical IOCS macros.
These macros relate directly to the physical IOCS
routines and are distinct from the logical IOCS macro
described in the SAM. DAM. and ISAM sections of this
book. For more information on the distinction be~
tween the physical and logicallocs, see VSE System
Data Management Concepts, as listed in the Preface.

When using physicallOCS macros, you must pro­
vide for such functions as the blocking or deblock­
ing of records, performing programmed wrong­
length record checks, testing the CCB for certain

errors, switching I/O areas when two areas are used,
and setting up ccws. You must also recognize and
bypass checkpoint records if they are interspersed
with data records on an input tape.

Physical IOCS routines control the transfer of data
to or from the external device. These routines per­
form the following:

• Starting I/O operations

• I/O interrupt handling

• Channel scheduling

• Device error handling.

Thus physical IOCS macros provide you with the
capability of obtaining data and performing nondata
operations with I/O devices using exactly the ccws
you request. For example, if your program handles
only physical records, you do not need the logical
IOCS routines for blocking and deblocking logical
records.

The macros available for direct communication
with physicallocs are CCB (command control block)
or 10RB (I/o request block); EXCP (execute channel
program); WAIT and, if Rotational Position Sensing
is used in your installation, SECTV ~L.

Whenever physicallocs macros are used, you
must provide the ccws for input and output opera­
tions in your program. Use the assembler instruc­
tion ccw statement to do this. A detailed technical
description of the ccw can be found in IBM
System/370 Principles of Operation or the IBM 4300
Processors Principles of Operation, as listed in the
Preface. Considerations for ccw programming are
given in Chapter 9.

Macros normally used with files processed by
logicallocs are necessary in addition to the macros
provided by PIOCS when standard DASD or magnetic
tape labels are processed, or when DASD file protect
is present. The DTFPH, OPEN. CLOSE, LBRET. FEOV
and SEOV macros can be used in this processing.
The OPEN and the DTFPH macros are also necessary
when a disk is used for a checkpoint file.

Chapter 3: Access Methods Concepts 3 - 33

..

3 - 34 VSE/ Advanced Functions Macro User's Guide

..

..

Chapter 4: Processing DASD Files

DASD Capacities
Capacity is a physical characteristic - for different
types of DASD volumes the characteristics differ.
Figures 4-1, 4-2, and 4-3 give capacity characteris­
tics for count-key-data and fixed block architecture

Maximum number of bytes per physical
record formatted without keys Records

2311 2314 3330 3340 3350
per track

2319

3625 7294 13030 8368 19069 1
1740 3520 6447 4100 9442 2
1131 2298 4253 2678 6233 3
830 1693 3156 1966 4628 4
651 1332 2498 1540 3665 5

532 1092 2059 1255 3024 6
447 921 1745 1052 2565 7
384 793 1510 899 2221 8
334 694 1327 781 1954 9
295 615 1181 686 1740 10

263 550 1061 608 1565 11
236 496 962 544 1419 12
213 450 877 489 1296 13
193 411 805 442 1190 14
177 377 742 402 1098 15

162 347 687 366 1018 16
149 321 639 335 947 17
138 298 596 307 884 18
127 276 557 282 828 19
118 258 523 259 777 20

109 241 491 239 731 21
102 226 463 220 690 22

95 211 437 204 652 23
88 199 413 188 617 24
82 187 391 174 585 25

77 176 371 161 555 26
72 166 352 149 528 27
67 157 335 137 502 28
63 148 318 127 478 29
59 139 303 117 456 30

Figure 4-1. Record capacities of selected DASDs.

DASDS to help you to determine the number of vol­
umes needed to contain your files.

Maximum number of bytes per physical
record formatted with keys

2311 2314 3330 3340 3350 2319

3605 7249 12974 8293 18987
1720 3476 6391 4025 9360
1111 2254 4197 2603 6151

811 1649 3100 1891 4546
632 1288 2442 1465 3583

512 1049 2003 1180 2942
428 877 1689 977 2483
364 750 1454 824 2139
315 650 1271 706 1872
275 571 1125 611 1658

244 506 1005 533 1483
217 452 906 469 1337
194 407 821 414 1214
174 368 749 367 1108
158 333 686 327 1016

143 304 631 291 936
130 277 583 260 865
119 254 540 232 802
108 233 501 207 746

99 215 467 184 695

90 198 435 164 649
82 183 407 145 608
76 168 381 129 570
69 156 357 113 535
63 144 335 99 503

58 133 315 86 473
53 123 296 74 446
48 114 279 62 420
44 105 262 52 396
40 96 247 42 374

Chapter 4: Processing DASD Files 4 - I

Track Capacity in Bytes Required for Data Records
Storage Bytes When RO is Used

Data Records (except for last record) Last Record Device as Specified by IBM
Programming Systems Without key With key Without key With key

I 537-D 537-(K+D)
2311 3625 61+--- 81 + D 20+K+D

512 512

2314
2137-D 2137-(K+D)

2319 7294 101+--- 146+ D 45+K+D
2048 2048

3330 13165 135+D 191 +K+D 135+D 191+K+D 3333

3340 8535 167+D 242+K+D 167+D 242+K+D

3350 19254 185+D 267+K+D 185+D 267+K+D

D = data length K = key length

Figure 4-2. Track capacities of selected DASDs.

Count-Key-Data (CKD) Devices

2314' 3330-1'
Storage Device ~ 2311 3330-2' 3330-11 • 3340" 3350' 2319' 3333'

Volumes per device 1 8 8 8 2 8

Cylinders per volume 200 200 404 808 696 555
Cylinders per device 200 1,600 3,232 6,464 1,392 4,440

Tracks per cylinder 10 20 19 19 12 30

Tracks per volume 2,000 4,000 7,676 15,352 8,352 16,650

Tracks per device 2,000 32,000 61,408 122,816 16,704 133,200

Sectors per track (RPS) - - 128 128 64 -
Bytes per track 3,625 7,294 13,165 13,165 8,535 19,254

Bytes per cylinder 36,250 145,880 247,570 247,570 100,416 572,070

Bytes per volume 7,250,000 29,176,000 100,018,280 200,036,560 69,889,536 31 7,498,850

Bytes per device 7,250,000 233,408,000 800,146,240 1,600,292,480 139,779,072 2,539,990,800

, The table shows the maximum data capacity of an installation with eight disk drives.

" The table shows the data capacity of a model A2 with two 3348 Model 70 or Model 70 F data modules.

Fixed Block Architecture (FBA) Devices

Storage Device ~ 3310

Actuators per spindle 1

Blocks per actuator' 126,016

Blocks per spindle' 126,016

Bytes per actuator 64,520,192
Bytes per spindle 64,520,192

, An FBA block = 512 bytes

Figure 4-3. Disk storage capacity table.

Processing with SAM
Before any processing can be done on a sequentially
organized file by SAM, the file must be defined by
the DTFSD macro. The DTFSD operands are listed in
Figure 4-4.

SAM DASD logic modules are pre-assembled, and
loaded into the SV A at IPL time. When a SAM DASD
file is OPENed, the proper logic module is automati­
cally selected and connected to the DTF. Because of

4 - 2 VSE/ Advanced Functions Macro User's Guide

3370

2

558,000
1,116,000

285,696,000
571,392,000

this, problem programs no longer need to specify an
SDMODxx macro to obtain a SAM DASD logic mo­
dule.

Programs that have an assembled SDMODxx will
run as if SDMODxx were not there at all because
OPEN routes control to the logic module in the SV A.

...

J

•

•

FBA (Fixed Block Architecture) DASD
Processing
An FBA (Fixed Block Architecture) DASD is a direct
access device on which data resides in blocks of a
fixed size that are addressed by relative block num­
ber. These blocks are known as FBA blocks and
their number and size depends upon the individual
DASD device, as shown in Figure 4-3.

A sequentially-organized data set on an FBA
DASD is an ordered set of units of data transfer
called CI'S (Control Intervals). In recording the data
on an FBA device, SAM writes each Clover an inte­
gral number of FBA blocks. A control interval is
composed of one or more logical blocks, which cor­
respond to the physical blocks that were discussed
earlier. That is, a logical block, whose length is
specified by the DTF BLKSIZE operand, is made up of
one or more logical records. The control interval
size is determined by OPEN routines, based upon the
DTF parameters CISIZE, BLKSIZE, and RECSIZE, and
the DLBL statement parameter CISIZE.

For more information about the FBA CI concept,
see VSE System Data Management Concepts.

Most programs that use SAM (that is, non-ExcP)
imperative macros to access data can run unchanged
with FBA DASD. Exceptions are programs containing
elements that are sensitive to I/O synchronization,
such as error exits and logging. These programs will
have to be reevaluated and may require program­
ming changes.

In the discussions that follow, bear in mind that
FBA DASDs use control intervals as the unit of data
transfer, rather than the physical block. Since these
need not be the same size as logical blocks, issuing a
macro that usually causes a block transfer need not
cause an actual CI transfer.

For instance, issuing a WRITE macro to an FBA
file transfers a logical record from the output area to
the CI buffer. When the CI buffer is filled, it is trans­
ferred to the DASD asynchronously with the WRITE.
For applications that require physical writes to be
done when a WRITE or PUT is issued, the force write
(PWRITE=YES) operand must be specified on the
DTFSD macro.

SAM automatically reformats CIS into logical
blocks and vice versa, as it automatically blocks and
deblocks, and should be of no concern to the pro­
grammer.

Proper selection of CISIZE for FBA devices can
affect overall throughput. For example, if the CI size
is such that only one logical block and attendant
control information fits into the CI, the number of
physical I/O operations required to access a file is

essentially the same as is required for CKD devices.
However, if the CI size is large enough to contain
two or more logical blocks plus the needed control
information, throughput is improved because fewer
physical I/O operations are required to access the
same file.

Indiscriminate increasing of the CISIZE must be
avoided in a heavily multi-programming system or
system throughput may be adversely affected by
excessive paging activity.

Opening a File
In order to make a file available for processing, your
program must issue an OPEN macro.

DASD Input
In a multi-volume file only one extent is processed
at a time, and thus only one pack need be mounted
at a time. When processing on a volume is
completed, message

4n55A WRONG PACK, MOUNT nnnnnn

will be issued so that the next volume may be
mounted.

When a volume is opened, OPEN checks the
standard VOLl label and goes to the VTOC to check
the file label(s). OPEN checks the specified extents in
the extent statements against the extents in the labels
to make sure the extents exist. If LABADDR is
specified, OPEN makes the user standard header
labels (UHL) available to you one at a time for
checking.

After the labels are checked, the first extent of the
file is ready to be processed. The extents are made
available in the order of the sequence number on the
extent statements. The same extent statements that
were used to build the file can be used when the file
is used as input, and if your specifications fall within
these limits, IOCS makes the area that you specified
available for processing.

Note: If EXTENT cards with specified limits are included in the
job stream, or if an extent was created by replying with an extent
to message

4450A NO MORE A V AILABLE EXTENTS
when the file was built, then an additional EXTENT card must
be submitted on input to process that extent. Ifno EXTENT
cards are submitted, however, this additional extent is processed
normally.

When the last extent on the mounted volume is
processed, the user standard trailer labels are made
available for checking one at a time. The next
volume is then opened.

For DASD devices that are file protected, when
OPEN makes the first extent of the new volume

Chapter 4: Processing DASD Files 4 - 3

Applies to

Input Output

X X

X

X X

X X

X X

X X

X

X X

X X

X X

X X

X

X X

X X

X X

X X

X X

X

X

X

X

X X

M = Mandatory
0= Optional

Work

X M

X M

X 0

X 0

X 0

X 0

0

X 0

0

0

0

0

X 0

X 0

0

0

0

X 0

X 0

0

X 0

0

0

BLKSIZE = nnnn Length of one I/O area, in bytes. Can be overridden at OPEN
time via the DLBL statement.

EOFADDR= XXXXXXXX Name of your end-of-file routine.

CISIZE=nnnn Size of FBA Control Interval. If omitted for an FBA device, the
default is 0, and the CISIZE will be set dynamically by OPEN.

DELETFL=NO CLOSE is not to delete format-1 and format-3 labels for work
file.

DEVADDR=SYSnnn Symbolic unit required only when not provided on an EXTENT
statement.

ERROPT = XXXXXXXX (IGNORE, SKIP, or name of error routine). Prevents job
termination on error records. Do not use SKIP for output files.

FEOVD=YES Forced end of volume for disk is desired.

HOLD=YES Employ the track or block hold function.

IOAREA1 =xxxxxxxx Name of first I/O area. Optional for FBA files. If not specified,
it will be GETVISed by OPEN. If the blocksize is increased, the
10AREA(s) is GETVISed to the larger size.

IOAREA2 = XXXXXXXX If two I/O areas are used, name of second area.

10REG=(nn) Register number. Use only if GET or PUT does not specify
work area or if two I/O areas are used. Omit WORKA.

LABADDR = XXXXXXXX Name of your routine to check/write user-standard labels.

PWRITE=YES For FBA files only, specify for a physical write of each logical
block.

RECFORM = XXXXXX (FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB, SPNBLK, or
UNDEF). For work files use FIXUNB or UNDEF. If omitted,
FIXUNB is assumed.

RECSIZE = nnnnn If RECFORM = FIXBLK, number of characters in record. If
RECFORM=SPNUNB, SPNBLK, or UNDEF, register number.
Not required for other records.

SEPASMB=YES DTFSD is to be assembled separately.

TRUNCS=YES RECFORM=FIXBLK or TRUNC macro used for this file.

TYPEFLE= XXXXXX (INPUT, OUTPUT, or WORK). If omitted, INPUT is assumed.

UPDATE=YES Input file or work file is to be updated.

VARBLD=(nn) Register number if RECFORM=VARBLK and records are built
in the output area. Omit if WORKA=YES.

VERIFY=YES Check disk records after they are written.

WLRERR = XXXXXXXX Name of your wrong-length-record routine.

WORKA=YES GET or PUT specifies work area. Omit 10REG. Required for
RECFORM=SPNUNB or SPNBLK.

Note: With Release 2 of VSE/ Advanced Functions, some operands of the DTFSD macro are no longer required since support for them is
always included. These operands are:

CONTROL-YES
DEVICE=@.l.!12314133301334013350IFBA}. The actual device type is determined by OPEN.
ERREXT-YES
MODNAME-name. Open will always load an IBM-supplied logic module and link it to the DTF.
NOTEPNT- {POINTRWIYES}. NOTEPNT=YES is always assumed.
RDONLY-YES.

No compilation problems will occur when submitting the obsolete operands if properly specified; they will simply be ignored by OPEN.

Figure 4-4. DTFSD macro operands. For details of these operands, see VSE/ Advanced Functions Macro Reference.

4 - 4 VSE/ Advanced Functions Macro User's Guide

..

..

•

available, it makes the extent(s) from the previous
volume unavailable.

DASD Output
When a multi-volume DASD file is created using
SAM, only one extent is processed at a time.
Therefore, only one pack need be mounted at a
time. When processing on a volume is completed,
message

4n55A WRONG PACK, MOUNT nnnnnn

will be issued so that the next volume may be
mounted.

When a file is opened, OPEN checks the standard
VOLI label and the specified extents:

I. The extents must not overlap each other.

2. The first extent must be at least two tracks long
(for CKD) if user standard labels are created.

3. Only extent types 1 and 8 are valid.

The data extents of a sequential CKD DAsD file
can be type 1, type 8 or both. Type 8 extents are
called split cylinder extents and use only a portion of
each cylinder in the extent. The portion of the
cylinder used must be within the head limits of the
cylinder and within the range of the defined extent
limits. For example, two files can share three
cylinders - one file occupying the first two tracks of
each cylinder and the other file occupying the
remaining tracks. In some applications, the use of
split cylinder files reduces the access time.

For an FBA DASD, only type 1 extents are valid.
Split cylinder extents are not valid on FBA devices as
the addressing scheme does not use cylinders.

When OPENing a file, the FBA control interval size
is stored in the format-l label when the file is
created, and retrieved from it when the file is
re-oPENed as an input file .

OPEN checks all the labels in the VTOC to ensure
that the file to be created does not destroy an
existing file whose expiration date is still pending. It
also checks to determine that the extents do not
overlap existing extents. After having checked the
VTOC, OPEN creates the standard label(s) for the file
and writes the label(s) in the VTOC.

If you wish to create your own user standard
labels (UHL or UTL) for the file, include the DTFxx
LABADDR operand. OPEN reserves the first track of I the first extent or a sufficient number of FBA blocks
for the user header and trailer labels. Then, your
label routine is given control at the address specified
in LABADDR.

After the header labels are built, the first extent of
the file is ready to be used. The extents are made
available in the order of the sequence numbers on
the actual extent statements. When the last extent
on the mounted volume is filled, your LABADDR
routine is given control and user standard trailer
labels can be built. Then, the next specified volume
in the extent statements is mounted and opened.

For a file-protected DASD, when OPEN makes the
first extent of the new volume available, it makes the
extent(s) from the previous volume unavailable.
When the last extent on the final volume of the file
is processed, OPEN issues an operator message. The
operator has the option of canceling the job or
typing in an extent on the console printer-keyboard
or the operator display console and continuing the
job .

Label Processing
If your program has specified a label processing
routine (with LABADDR), the LBRET macro will I cause SAM to write or check standard DASD labels.
The LBRET macro has only one operand, the
numerals 1, 2, or 3. Use one of these to specify
which function you want SAM to perform:

Checking User Standard DASD Labels: IOCS
passes the labels to you one at a time until the
maximum allowable number is read (and updated),
or until you signify you want no more. In the label
routine, use LBRET 3 if you want IOCS to update
(rewrite) the label just read and pass you the next
label. Use LBRET 2 if you simply want IOCS to read
and pass the next label. If an end-of-file record is
read when LBRET 2 or LBRET 3 is used, label
checking is automatically ended. If you want to
eliminate the checking of one or more remaining
labels, use LBRET I.

Writing User Standard DASD Labels: Build the
labels one at a time and use LBRET to return to IOCS,
which writes the labels. Use LBRET 2 if you w~mt
control returned to you after IOCS writes the label.
If, however, IOCS determines that the maximum
number of labels has already been written, label
processing is terminated. Use LBRET I if you wish to
stop writing labels before the maximum number of
labels is written..

See also the section on "Label Processing" in
Appendix C.

Chapter 4: Processing DASD Files 4 - 5

Error Handling
I Certain DTFSD macro operands are provided to

assist you in processing I/O and record-length errors.
Before discussing the use of these macro operands in
detail, it is important that you understand the basic
alternatives open to you regarding the handling of
SAM file errors.

For example, the first decision you must make is
whether or not you want to code your own error
processing routine for the file and have LIOCS exit to
it when an error condition occurs.

The alternative to doing your own error
processing is to rely on LIOCS to satisfy the handling
of error conditions in a more general and limited
way. However, even if you choose this alternative,
you still have some options open to you and these
will be discussed more fully when the use of a
specific macro operand is described.

I The DTFSD macro operands which you may use
to achieve the desired error processing are: WLRERR
and ERROPT.

Control can be returned from your WLRERR or
ERROPT error processing routine by means of the
ERET imperative macro. Nonrecoverable I/O errors
(such as 'no record found') occurring before data
transfer takes place are indicated to your error
processing routine.

To take full advantage ofthe error processing
capabilities, you must include the ERROPT=name
operand.

When an error condition occurs, register I will
contain the address of a 2-part parameter list. The
first four bytes of the list is the address of the DTF
table and the second four bytes is the address of the

I physical record in error. Logic modules provide the
error exit parameter list. You can make use of both
addresses in your error routine, the first address to
interrogate specific indicators in the CCB (the first 16
bytes of the DTF table - see Figures 9-3 and 9-4),
and the second address to access the record for error
processing.

The WLRERR=name operand (only in the DTF
macro) is used only in conjunction with input files.
With it you identify your routine for processing
wrong-length records. If you omit this operand, one
of the following actions will occur if a wrong-length
record is detected:

• If the ERROPT operand is also omitted, the
wrong-length record condition is ignored, or

• If the ERR OPT operand is included for this file,
the wrong-length record is treated as an error
block and it is handled according to your

4 - 6 VSE/ Advanced Functions Macro User's Guide

specification for an error (see the discussion of
the ERROPT operand which follows).

The ERROPT operand is used to indicate your
choice of action if an error block is encountered. It
has three valid parameters - IGNORE, SKIP, or the
name of your error routine. However, for an output
file, the only acceptable ERROPT parameters are
IGNORE or name. On an UPDATE=YES file, the
parameter SKIP causes write errors to be ignored.
The functions of these parameters are:

IGNORE
For input files, the error condition is
completely ignored and records are made
available for processing by your main
program. When reading spanned records, the
entire spanned record or block of spanned
records is returned to you rather than just the
one physical record in which the error
occurred.

When writing spanned records, the error is
ignored and the physical record containing the
error is treated as a valid record. If possible,
any remaining spanned record segments are
written.

SKIP

name

For input files, no records in the error block
are made available for processing by your
main program. The next block is read from the
disk and processing continues with the first
record of that block.· When reading spanned
records, the entire spanned record or block of
spanned records is skipped rather than just the
one physical record in which .. the error
occurred.

On an UPDATE-YES file, the physical record in
which the error occurred is ignored as if it were
written correctly. If possible, any remaining
spanned record segments are written.

IOCS branches to your error processing routine
named by this parameter. In your routine, you
process or make note of the error condition as
you wish.

Programming Your Error Processing Routines
You may perform any kind of error processing you
want in your error routine; however, you must abide
by certain rules and restrictions.

• For a file assigned to a DASD device, the use of
any LIOCS macro other than ERET in your error
processing routine may cause termination of
the task.

•

...

• Register I contains the address of the 2-part
parameter list; otherwise, register I contains the
address of the physical record in error. You
must access the error block, or the records in
the error block, by the address in the parameter
list or in register 1. (The content of the IOREG
register or work area - if either is specified -
is unpredictable and, therefore, should not be
used for error processing.) When spanned
records are processed, the address is that of the
whole blocked or unblocked spanned record.

• The data transfer bit (byte 2, bit 2) of the DTF
table (CCB) should be tested to determine
whether a nonrecoverable I/O error has
occurred. If the bit is on, the physical record in
error has not been read or written. If the bit is
ofT, data was transferred and your routine must
address the physical record in error to
determine the action to be taken.

• At the conclusion of error processing, your
routine must return control to LIOCS either:

- by the ERET macro.

For an input file:

The program skips the block in error and
reads the next block with an ERET SKIP.

Or, it ignores the error with an ERET
IGNORE.

Or, it makes another attempt to read the
block with an ERET RETRY.

For an output file:

The program ignores the error condition
with an ERET IGNORE or BRET SKIP.

Or, attempts to write the block with an
ERETRETRY.

- by branching to the address in register 14.
For a read error, IOCS skips the error block
and makes the first record of the next block
available for processing in your main
program.

Note: You cannot use the ERET RETRY option in your
WLRERR error routine when processing record length errors.
For this condition, ERET RETRY results in job termination.

Wrong-length Error Processing Considerations: If
the block read is shorter than the length specified in
the BLKSIZE operand, the first two bytes of the DTF
table (CCB) contain the number of bytes left to be
read (residual count). Therefore, the size ofthe
actual block is equal to the specified block size
minus the residual count. In this case there is no
wrong-length error condition for variable and
spanned records. If the block read is longer than the

length specified in the BLKSIZE operand, the residual
count is zero, and there is no way to compute the
actual size of the block. In this latter case, the
number of bytes transferred is equal to the length
specified in the BLKSIZE operand, and the remainder
of the block is lost (truncated).

Undefined records are not checked for incorrect
record length. The record is truncated if its length
exceeds the length specified in the BLKSIZE operand.

You issue an ERET macro in your error processing
routine to skip or ignore the wrong-length error.
SKIP causes the logic module to skip the block that
contained the error and to read the next block.
IGNORE causes control to be passed back to the logic
module to ignore the error and to continue
processing the block in error. (RETRY is invalid for
use in WLRERR routines for sequential DASD files.
Its use causes the job to be canceled with an invalid
SVC message.)

Other Error Processing Considerations:
• When a parity error is encountered, attempts

are made (by device ERPS) to reread or rewrite
the erring block of records. If the attempts are
unsuccessful, the job is terminated unless the
ERROPT operand in the DTFSD macro is
included.

• If an error occurs while rereading the physical
block when updating spanned records, and
neither WLRERR nor ERROPT operands are
included, the entire logical record is skipped.
Likewise, if an error occurs when rereading the
physical block that contains the last segment of
a blocked spanned record, the next entire
logical record is !,kipped. If WLRERR and/or
ERROPT has been included, the error recovery
procedure is the same as for nonspanned
records .

• A sequence error may occur if LIOCS is
searching for a first segment of a logical
spanned record and fails to find it. If you have
specified either WLRERR=name or
ERROPT=name, the error recovery procedure is
the same as for wrong-length record errors. If
you have specified neither WLRERR=name nor
ERROPT=name, LIOCS ignores the sequence
error and searches for the next first segment.
Write errors are ignored.

Figure 4-5 summarizes the DTFSD error options
for various combinations of error specifications and
errors.

Chapter 4: Processing DASD Files 4 - 7

To Terminate the job, specify nothing;

Skip the error record, specify ERROPT=SKIP;

Ignore the error record, specify
ERROPT = IGNORE;

Process the error record, specify ERROPT=name,

and/or (for wrong-length specify WLRERR=name.
record error)

After processing the record, to leave the error-processing
routine and

Skip the record (input only), execute ERET SKIP;

Ignore the record, execute ERET IGNORE;

Retry the record, execute ERET RETRY.

Figure 4-5. DTFSD error options.

Deactivating a Sequential DASD File
ToJorce end-oj-volume on a sequential DASD file
means that your program has finished processing
records on one volume, but that more records in the
same logical file are to be processed on the following
volume. Issuing the FEOVD macro allows you to
force end-of-volume before it actually occurs. If
extents are not available on the new volume, or if
the format-l label is posted as the last volume ofthe
file, control is passed to the EOF address specified in
the DTF.

When FEOVD is issued to an input file, an end of
extent is posted in the DTF. When the next GET is
issued for this file, any remaining extents on the
current volume are bypassed, and the first extent on
the next volume is opened. Normal processing is
then continued on the new volume.

When FEOVD is issued for an output file assigned
to a CKD DASD, a short last block is written, if
necessary, with a standard end-of-file record
containing a data length of 0 (indicating end of
volume). The end-of-volume indicator is not written
on an FBA DASD, however, because an SEOF has
already been written (if there was room for it)
following the last data CI. An end-of-extent
condition is posted in the DTF. When the next PUT is
issued for the file, all remaining extents on the
current volume are bypassed. The first extent on the
next volume is then opened, and normal processing
continues on the new volume. The end-of-volume
marker written by VSE when an FEOVD macro is
issued is compatible with the end-of-volume marker
that OS/VS writes when an EOV macro is issued.

If the FEOVD macro is followed immediately by
the CLOSE macro, the end-of-volume marker is
rewritten as an end-of-file marker, and the file is
closed as usual.

A CLOSE normally deactivates an output file by
writing an EOF record and output trailer labels, if

4 - 8 VSE/ Advanced Functions Macro User's Guide

any, after writing any outstanding data, for example
the last block. CLOSE sets a bit in the format-l label
to indicate the last volume of the file. A file may be
closed at any time by issuing this macro.

Because, for FBA DASD, the unit of data transfer is
the control interval instead of the physical block,
SAM will (if necessary) automatically write the last
CI when a CLOSE is issued. The program must

I always issue a CLOSE, for both FBA and CKD devices,
to insure that all processing for the file has been
completed.

If there is no room in the last CI to hold an SEOF,
the data set will be considered delimited by
end -of-last -extent.

After a CLOSE, no further commands can be
issued for the file unless it is reopened. Sequential
DASD files cannot be successfully reopened for
output unless the DTFSD table is saved before the file
is first opened, and restored between closing the file
and reopening it again as an output file.

Processing with DAM
Before any processing can be done on DAM files,
they must be defined by the declarative macro
DTFDA. Figure 4-6 shows the operands permitted
for the DTFDA macro.

DAM DASD logic modules are pre-assembled, and
loaded into the SVA at IPL time. When a DAM DASD
file is OPENed, the proper logic module is
automatically selected and connected to the DTF.
Because of this, problem programs no longer need to
specify a DAMOD or DAMODV macro to obtain a
DAM DASD logic module.

Programs that have an assembled DAMOD or
DAMODV will run as if they were not there at all
because OPEN routes control to the logic module in
the SVA.

DTFDA should not be used to define SYSIPT if the
program may be invoked by a catalogued procedure
and if SYSIPT contains data. In this case, the
program must process the data sequentially, and the
DTFDI macro should be used.

After the DAM files are defined by the declarative
macros, the imperative macros are used to operate
on the files. The imperative macros are divided into
three groups: those for initialization, processing, and
completion.

..

Applies to

Input Output

X X

X X

X X

X X

X X

X X

X

X X

X X

X X

X X

X

X

X X

X X

X X

X X

X X

X

X

X X

X X

X X

X X

X X

X

X

X X

X X

X X

M ... Mandatory
0= Optional

M BLKSIZE=nnnn

0
DEVICE=nnnn

M ERRBYTE = xxxxxxxx

M 10AREA 1 = xxxxxxxx

M SEEKADR = xxxxxxxx

M TYPEFLE = xxxxxx

0
AFTER=YES

0 CONTROL=YES

0
DEVADDR=SYSnnn

0 DSKXTNT=n

0 ERREXT=YES

0 FEOVD=YES

0 HOLD=YES

0 IDLOC= xxxxxxxx

0
KEY ARG = xxxxxxxx

0
KEYLEN=nnn

0 LABADDR = xxxxxxxx

0
RDONLY=YES

0 READID=YES

0 READKEY=YES

0
RECFORM = xxxxxx

0 RECSIZE=(nn)

0
REL TYPE =xxx

0 SEPASMB=YES

0 SRCHM=YES

0 TRLBL=YES

0 VERIFY=YES

0 WRITEID=YES

0 WRITEKY=YES

0 XTNTXIT = xxxxxxxx

Length of one I/O area, in bytes

This keyword will be ignored and the actual DASD device will
be determined at OPEN time.

Name of 2-byte field for error /status codes supplied by 10CS.

Name of I/O area.

Name of track-reference field.

(INPUT or OUTPUT).

WRITE filename, AFTER or WRITE filename, RZERO macro is
used for this file.

CNTRL macro is used for this file.

Symbolic unit required only when no extent statement is
provided.

Indicates the number (n) of extent for a relative ID.

Nondata transfer errors are to be indicated in ERRBYTE.

Support for sequential disk end of volume records is desired.

Employ the track hold function.

Name of field in which 10CS stores the ID of a record.

Name of key field if READ filename, KEY; or WRITE
filename,KEY; or WRITE filename,AFTER is used for this file.

Number of bytes in record key if keys are to be processed. If
omitted, 10CS assumes zero (no key).

Name of your routine to check/write user labels.

Generates a read-only module. Requires a module save area
for each task using the module.

READ filename, ID macro is used for this file.

READ filename, KEY macro is used for this file.

(FIXUNB, SPNUNB, VARUNB, or UNDEF). If omitted, FIXUNB
is assumed.

Register number if RECFORM=UNDEF.

(DEC or HEX). Indicates decimal or hexadecimal relative
addressing.

DTFDA is to be assembled separately.

Search multiple tracks, if record reference is by key.

Process trailer labels, LABADDR must be specified.

Check disk records after they are written.

WRITE filename, ID macro is used for this file.

WRITE filename, KEY macro is used for this file.

Name of your routine to process extent information.

Note: With Release 2 of VSE/ Advanced Functions, the following operands of the DTFDA are no longer required:

DEVICE= {llD12314133301334013350}. The actual device type is determined by OPEN.
MODNAME=name. Open will always load an IBM-supplied logic module and link it to the DTF.

No compilation problem will occur when submitting the obsolete operands if properly specified; they will simply be ignored by OPEN.

Figure 4-6. DTFDA macro operands. For details of these operands, see VSE/Advanced Functions Macro Reference.

Initialization
The initialization macro OPEN must be used to acti­
vate a DAM file for processing. The OPEN macro
associates the logical file declared in your program
with a specific physical file on a DASD. The associa­
tion by OPEN of your program's logical file with a

specific physical file remains in effect throughout
your processing of the file until you issue a CLOSE

macro.

Included here under the category of initialization
macros is the LBRET macro, which is concerned only

Chapter 4: Processing DASD Files 4 - 9

with label and extent processing. LBRET is used to
return to IOCS from a subroutine of your program
that writes or checks labels and extents.

If OPEN attempts to activate a LlOCS file (DTF)

whose device is unassigned, the job is terminated. If
the device is assigned IGN, an OPEN does not activate
the file but turns on DTF byte 16, bit 2, to indicate
the file is not activated. If DTF byte 16, bit 2 is on
after issuing an OPEN, input/output operations
should not be performed for the file, as unpredicta­
ble results may occur.

Whenever an input/output DASD file is opened
and you plan to process user standard header labels
(UHL only), you must provide the information for
checking or building the labels. If this information
is obtained from another input file, that file must be
opened, if necessary, ahead of the DASD file. To do
this, specify the input file ahead of the DASD file in
the same OPEN or issue a separate OPEN preceding
the OPEN for the file.

If the XTNTXIT operand is specified, OPEN stores
the address of a 14-byte extent information area in
register 1. Then, OPEN gives control to your extent
routine. You can save this information for use in
specifying record addresses. The next volume is
opened (on an input file, only after the requested
user labels are written). When all the volumes are
open, the file is ready for processing. If the DASD

device is file protected, all extents specified in extent
cards are available for use.

If an output file is created using DAM, all volumes
used must be mounted at the same time, and all the
volumes must be opened before the processing is
begun.

For each volume, OPEN checks the standard VOLl

label and checks the extents specified in the extent
cards for the following:

1. The extents must not overlap.

2. Only type-l extents can be used.

3. Ifuser standard header labels are created, the
first extent must be at least two tracks long for a
CKD file.

OPEN checks all the labels in the VTOC to ensure
that the created file does not write over an existing
unexpired file. OPEN then creates the standard
label(s) for the file and writes the label(s) in the
VTOC.

If you wish to create your own user (UHL) labels
for the file, include the DTF LABADDR operand.
OPEN reserves the first track of the first extent for
these header labels and gives control to your label
routine.

4 - to VSE/ Advanced Functions Macro User's Guide

Direct access input processing requires that all
volumes containing the file be on-line and ready at
the same time. All volumes used are opened before
any processing can be done.

For each volume, OPEN checks the standard VOLl

label and then checks the file label(s) in the VTOC.

OPEN checks some of the information specified in
the extent cards for that volume. If LABADDR is
specified, OPEN makes the user standard header
labels available one at a time for checking.

Self-relocating programs using LlOCS must use
OPENR to activate all files. In addition to activating
files for processing, OPENR relocates all address con­
stants within the DTF tables (zero constants are relo­
cated only when they constitute the module ad­
dress).

The LBRET macro is issued in your subroutines
when you have completed processing labels or ex­
tents and wish to return control to IOCS. LBRET ap­
plies to subroutines that write or check DASD user
standard labels or handle extent information. The
operand used depends on the function to be per­
formed. See also "Appendix C: Label Processing".

Processing
Once DAM files have been readied for processing
with the initialization macros, the READ, WRITE,

W AITF, and CNTRL macros may be used.

Loading and Processing a Direct Access File
The only difference between loading a direct access
file (creating) and processing a direct access file
(updating or retrieving records) is the file's initial
status. In both cases, the same conversion algorithm
is used for locating data blocks, and the entire file
must be online.

Note: Multivolume direct access files on a 3340 cannot extend
over different types of data modules.

Before creating a file, however, you must make
sure that the disk storage area is cleared of any data
that may have been stored previously. IBM provides
two system utility programs to clear disk storage
areas:

I Device Support Facility
This system utility program operates on com­
plete volumes. It writes a preformatted VTOC

and clears the entire volume. Afterwards each
track contains a home address and a record
zero describing the entire track as free space.
The preformatted VTOC contains empty file
labels. Although the Device Support Facility
program cannot clear a portion of a volume,
you can do so by writing a complete file con-

•

J

..

sisting of erased tracks preceded by record zero
with the desired contents.

Clear Disk
This system utility program operates on logical
files. It is used to preform at a disk storage area
with dummy blocks of fixed-length format. It
can be used either on a new pack after it has
been initialized or on a used pack to clear data
areas for a new file. Pre formatting by means
of the Clear Disk program is necessary for files
of fixed-length records.

There are different methods that can be used for
randomizing. The choice depends on the record
structure (with or without key) and the record for­
mat (fixed or variable length).

Processing Records With a Key Area: If records are
written with a key, certain functions which you must
otherwise control yourself can be performed by the
device. In the following text, a distinction is made
between fixed-length and variable-length data
blocks.

Fixed-length Blocks With a Key Area: The file
should be pre formatted by means of the Clear Disk
utility program. The file will then contain dummy
records of fixed length. If you place the same con­
tents into dummy records and deleted records, you
can use the same procedure for both creating and
updating the file. 4

The key of a block allows you to distinguish a
current data block from a dummy block. The keys
of all dummy blocks have the same contents; keys of
current dilta blocks are unique, each key identifying
a particular data record. A dummy key identifies an
empty location. You have two options for writing a
record:

1. Randomizing to a CYLINDER address.
You should specify the search-multiple-tracks
option in the DTFDA macro (SRCHM=YES). This
allows you to search for the first dummy record
on a cylinder. You specify the cylinder address
obtained from the randomizing algorithm. The
search will start at the beginning of that cylin­
der and continue until either a dummy record is
found or the end of the cylinder is reached.

When a dummy record is found, the system
returns a record address, and returns control to
the problem program. You can write the new
record at the address that was supplied. If no
dummy record is found, the system indicates
'no record found'. The overflow routine must
then become active. The technique for locating

a record in the overflow area is the same as that
for the prime data area.

When randomizing to a cylinder address, it is
preferable to use one or more separate cylinders
as an independent overflow area. Cylinder
overflow areas are not very useful here, unless
the last tracks of each cylinder are excluded by
the randomizing algorithm.

2. Randomizing to a CYLINDER and TRACK ad­
dress.
You mayor may not use the search-multiple­
tracks option. If you specify the option, the
procedure is the same as above, except that the
search begins at a specified track instead of at
the beginning of a cylinder. If you do not speci­
fy the search-multiple-tracks option, the search
for a dummy record will not extend beyond the
specified track. The search continues until ei­
ther a dummy record is found, or the end of the
track is reached. When the system returns a
record address, this address refers to the block
following the one that was identified as a dum­
my block. The system will also return control
to the problem program.

If the system indicates 'no record found' on that
track, you may issue a search for a subsequent
track or activate your overflow routine.

The method of searching specific tracks is prob­
ably more time consuming, but it gives you
more direct control. You can choose between
cylinder overflow areas and independent over­
flow areas. It is difficult to predict, though,
which type will be most efficient. If the prime
data area and the independent overflow area
reside on the same volume, a switch to and
from the overflow cylinders requires a move­
ment of the read/write mechanism, which can
be avoided if cylinder overflow areas are used.

Variable-length Blocks With a Key Area: The file
should not be preformatted with the Clear Disk util­
ity program. The Device Support Facility program
can be used to clear a complete volume. To clear a
particular area on a volume, you must write erased
tracks with the appropriate contents in each record
zero.

On each track of a file that contains variable­
length blocks, record zero contains a count field
(capacity record) that states the amount of free space
at the end of that track. Space that is 'free' because a
record has been deleted is not taken into account.
Unlike fixed-length blocks, deleted variable-length
blocks cannot be re-used for other data records.

Chapter 4: Processing DASD Files 4 - II

You should always establish a randomizing algo­
rithm that delivers a cylinder and a track address.
The system checks the contents of the capacity re­
cord to determine whether or not the track can ac­
commodate the new block. If it can, the new block
is written after the last block on that track. If there
is not enough space left in the prime data area, you
are notified. You can perform the inquiry in the
overflow area in exactly the same way, track by
track, until a track is found that can accommodate
the new record.

It is useful to provide cylinder overflow areas as
well as a separate independent overflow area. When
a prime data track overflows, try first to store the
record in the cylinder overflow area. If this is not
possible, store the record in the independent over­
flow area.

A record stored in the cylinder overflow area can
later be retrieved automatically if the search­
multiple-tracks option is specified by the retrieving
program. For records that are stored in the inde­
pendent overflow area, you must make a search
when you later want to retrieve them.

Since records cannot be stored in the space occu­
pied by deleted records, the cylinder overflow areas
themselves may also overflow. In order to maintain
processing efficiency, reorganization of the entire
file will then soon be necessary. It can be done by
reading the file track after track, clearing each track
separately and then restoring each current data
block as if it were new. Since deleted records are not
restored, free space will be concentrated again at the
end of the tracks. After the prime data tracks have
been reorganized, the overflow area may then be
processed, and an attempt will be made to write
overflow records to the prime data area. Overflow
records that cannot be moved to the prime data area
are moved back into the overflow tracks. Deleted
records are omitted.

Retrieving Records With a Key Area: Records may
be retrieved by a search on key. If the option for a
search on multiple tracks is specified, a record can
be found on a cylinder, as long as you specify the
start of the search at, or before, the record address.
The same conversion algorithm that is applied for
writing a record can be used for retrieving it.

A summary of the randomizing techniques dis­
cussed above is presented in Figure 4-9 later in this
chapter.

Processing Records Without a Key Area: If records
are written without a key, the location of a data
block can be determined only by the randomizing

4 - 12 VSE/ Advanced Functions Macro User's Guide

algorithm. The device has no means of identifying a
data block other than by the record address you
have specified.

For data without a key, the most practical me­
thod of randomizing is to establish a conversion
algorithm that calculates a cylinder, track, and re­
cord address. This implies that fixed-length records
must be used, and that the file is preformatted by
means of the Clear Disk utility program before be­
ing loaded. Variable-length blocks without a key
cannot be processed directly on the basis of a unique
record address, since writing to such an address re­
quires a predefined block at that address. However,
the size of that block cannot be predicted before the
size of the actual data block to be inserted is known.

All of this makes the conversion algorithm for
data without a key more critical, since each synony­
mous record becomes an overflow record.

In the prime data area, each block has a pointer
field. As long as no synonyms are present for a cer­
tain prime data record, this pointer will be empty. If
synonyms are present, this pointer will point to the
synonym that comes first in the chain of overflow
records. All synonyms for a particular prime data
record are linked by overflow chain pointers (see
Figure 4-7). The chain of overflow pointers is used
to trace a specific overflow record; it says nothing,
however, about the physical sequence of the records
on the track. The physical sequence is invisible and
of no concern to the user.

The procedure for adding a new record may be
quite complex. Generally speaking you must do the
following:

1. Compute a DASD record address by means of
the randomizing algorithm.

2. Check whether or not the block at the comput­
ed address contains current data. This requires
an input operation.

3. a. If the block contains no current data, write
the new record at the computed address.
Clear the overflow pointer to make sure it
indicates that no synonyms are present.

b. If the block does contain current data and
the overflow pointer is empty: establish the
address of a free record location for the
synonym. (How this can be done will be
described below.) Put this address into the
overflow pointer. Restore the prime data
block to its original location on disk and
write the new record as the first overflow
record.

..

PRIME DATA AREA

Figure 4-7. Prime data record and related overflow records.

c. If the block does contain current data and
the overflow pointer indicates the presence
of synonyms: save the address in the over­
flow pointer (this is the address of the first
synonym in the overflow chain). Establish
the address of a free record location for the
new synonym. (How this can be done will
be described below.) Write this address into
the overflow pointer. Restore the prime
data block to its original location on disk.
Put the former contents of the overflow
pointer into the overflow chain pointer of
the new synonym. Finally, write the new

synonym at its destined address in the over­
flow area.

The effect of this procedure is that the new­
ly inserted record becomes the first syno­
nym in the overflow chain, and the former
first one becomes the second. The rest of
the sequence remains unchanged.

The randomizing algorithm calculates only prime
data addresses. You must therefore establish an
address in the overflow area by another method.
You want to be able to find the address of a 'free'
record location without having to scan the entire

Chapter 4: Processing DASD Files 4 - 13

overflow area; you would lose time in searching the
overflow area block by block. A good method is to
reserve the first record of the overflow area as an
'overflow area descriptor record'. This record is
made to contain, at all times, the address of the first
free block in the overflow area. This block has a
pointer to the next free block. If a new record must
be added to the overflow area, the 'overflow area
descriptor record' gives the direct address of the
block where this new record can be stored. The
pointer to the next free record is then moved to the
'overflow area descriptor record'. At the same time,
the new overflow record is added to a chain, as was
explained before.

When a record is deleted from the overflow area,
the address of that block is moved to the 'overflow
area descriptor record', and becomes the address of
the new first free record. The address that was in the
'overflow area descriptor record' is moved to the
block that just became free, becoming the pointer to
the next free block. The examples in Figure 4-8
illustrate this process.

Block 1 in the overflow area is the 'overflow area
descriptor record'. The data portion of this block
may contain any information you need, in addition
to a pointer that points to the first 'free' block. In
the top diagram it points, as an example, to block 3.
Block 3, in turn, points to block 5 as the next 'free'
block, etc. Thus, starting in block 1, you can easily
locate all blocks that are free.

The same diagram illuStrates the overflow chain:
block 4 in the prime data area points to block 2 in
the overflow area as being its first synonym. This
synonym location, in turn, points to a next synonym,
if any, and so on. Thus, overflow blocks 2, 4, and 6
form the overflow chain for prime data block 4.

If, for example, a new record must be placed on
prime data location 4 (according to some conversion
algorithm), this new record must be placed in the
overflow area since prime data block 4 already con­
tains current data. In this situation, the new record
can be written into overflow block 3, which is the
first 'free' block, and added to the overflow chain
that already exists. The center diagram in Figure
4-8 shows the situation after the new record has
been added. Note that the new record becomes the
first overflow block in the overflow chain, and that
block 1 in the overflow area now points to block 5 as
the first 'free' overflow block.

When a block must be deleted from the overflow
area, you must locate it properly following the over­
flow chain. The deleted record becomes the first
'free' overflow block. The bottom diagram in Figure

4 - 14 VSE/ Advanced Functions Macro User's Guide

4-8 shows the situation after deleting block 6 from
the overflow area.

A result of this method may be that a chain of
records must be searched before the desired record is
found. A requirement of this method is that the
pointers must be adjusted when a record is deleted.

There is an alternative method that can be used
for fixed-length records without a key. In this me­
thod, the randomizing algorithm calculates a cylin­
der and track address only. You must then check to
see whether the track can accommodate the new
record. This means that a record-by-record scan
must be performed until a record is found that con­
tains no current data. Most likely, more than one
block will have to be read before the right one is
retrieved and the overflow area must be used if the
track is full. Since overflow records are now chained
by track, the overflow chains may be much longer
than when randomizing down to a record address.
As a result, this procedure will be rather time con­
suming, and is therefore not very attractive. For
variable-length blocks this method is not practical; it
may impose serious retrieval problems.

A summary of the randomizing techniques dis­
cussed is presented in Figure 4-9.

Reading Blocks of Data
The READ macro transfers a record from DASD to an
input area in virtual storage. The input area must be
specified in the DTFDA [OAREAI operand, and the
WA[TF macro must be used.

The READ macro returns control to the problem
program after requesting P[OCS to execute a ccw
chain. You can perform processing unrelated to that
block of data and then issue a WAITF macro to check
for the completion of the read operation.

The READ macro is written in either of two forms
depending on the type of reference used to search
for the record. Both forms may be used for records
in anyone DTFDA-specified file if the file has keys.

This macro always requires two parameters. The
first parameter specifies the name of the file from
which the record is to be retrieved. This name is the
same as that specified in the DTFDA header entry for
the file and can be specified either as a symbol or in
register notation. The second parameter specifies
the type of reference used for searching the records
in the file.

If records are undefined (RECFORM=UNDEF),
DAM supplies the data length of each record in the
designated register in the DTF RECS[ZE operand.

•

..

..

•

•

Initial status of DASD file

Prime Data Area

Block 1 Block 2 Block 3

Block 3
free

,--------

Status after inserting a new synonym for prime data block 4

Prime Data Area

Overflow Area

Block 1

~----------------------

Status after deleting overflow block 6

Prime Data Area

I
\

'"

Block 5
free

Block 5
free

Block 5
free

, . . /

,---------- -- ------- ------- -- --..".

Block 6

----- ------

Block
free

Figure 4-8. Sample overflow organization. Blocks that remain unchanged in the center and bottom diagrams are left blank. The
'free-record pointers' in the overflow area must be written by the user after the file has been preformatted by the Clear Disk
program and before the file is loaded for the first time.

Chapter 4: Processing DASD Files 4 - 15

LOADING AND PROCESSING DIRECT
ACCESS FILES

RECORDS WITH A KEY
Fixed-length blocks

Loading: The file is preformatled by the Clear Disk pro-
gram. Randomize to a track or a cylinder ad-
dress, whichever method is used for the file. A
record will become an overflow record if the
search for a dummy record is unsuccessful.

Processing: Randomize to the track or the cylinder address,
whichever method is used for the file.

Variable-length blocks

Loading: Randomize to a track address. The file is not
preformatled; record zero (capacity record)
indicates how much space is left on the track.
A record will become an overflow record if the
space left is not large enough.

Processing: Randomize to the track address.

RECORDS WITHOUT A KEY
Fixed-length blocks

Loading: The file is preformatled by the Clear Disk pro-
gram. Randomize to a record address. Each
synonym will become an over-flow record to be
inserted logically in an overflow chain.

Processing: Randomize to the record address. Read the
record and check whether it is the one desired.
If it is not, search the overflow chain.

Figure 4-9. Summary of randomizing methods.

Record Reference by Key: If the record reference is
by key (control information in the key area of the
DASD record), the second parameter in the READ
macro must be the word KEY, and the READKEY
operand must be specified in the DTFDA:

READ filename,KEY

Whenever this method of reference is used, your
program must supply the desired record key to IOCS
before the READ macro is issued. For this, the key
must be stored in the key field (specified in the
DTFDA KEY ARG operand). When the READ macro is
executed, IOCS searches the previously specified
track (stored in the 8-byte track-reference field) for
the desired key. When a DASD record containing the
specified key is found, the data area of the record is
transferred to the data portion of the input area.

Only the specified track is searched unless you
request that multiple tracks be searched on each
READ (by including the SRCHM operand in the
DTFDA). With this entry, the specified track and all
following tracks are searched until the desired re­
cord is found or the end of the cylinder is reached.
The search of multiple tracks continues through the
cylinder even though part of the cylinder may be
assigned to a different file.

4 - 16 VSE/ Advanced Functions Macro User's Guide

Record Reference by ID: If the record reference is
by ID (identifier in the count area of records), the
second paramter in the READ macro must be the
letters ID, and the REA DID operand must be included
in the DTFDA:

READ filename,ID

Whenever this method of reference is used, your
program must supply both the track information
and the record number in the track-reference field.
When the READ macro is executed, IOCS searches
the specified track for the particular record. When a
record containing the specified ID is found, both the
key area (if present and specified in the DTFDA
KEYLEN operand) and the data area of the record
are transferred to key and data portions of the input
area.

LIOCS can be requested to return the ID of records
after reading. You must specify the name of the
field that is to contain returned IDs in the
IDLOC=name parameter of the DTFDA macro. The
ID returned is the ID of the record following the one
read, but if the search-multiple-tracks option is spec­
ified (referencing by KEY), the ID of the record read.

Writing Blocks of Data
Data blocks can be written as new records or as up­
dates for existing records. When a new record is
written over a dummy record, this is also treated as
an update.

The system can assign a new record to a record
location that was not used before, by means of the
capacity record. For overwriting an existing record,
whether updating an old record or making use of a
dummy record for actual data, a reference must be
made by either ID or KEY.

To perform the various write operations the
WRITE macro is issued, but in different formats. In
all cases, the WRITE macro returns control to the
problem program after requesting services from
PIOCS. You can perform processing unrelated to the
block of data to be written. You must issue a W AITF
macro to check for the completion of the write oper­
ation.

Adding New Records: This is done with the WRITE
macro in the format:

WRITE filename,AFTER[,EOF]

The program must supply the track address. The
system examines the capacity record in record zero
to determine the location and the amount of space
available for the record.

If the remaining space is large enough, the count
area, the key area (if any), and the data area are

•

•

•

written to the location immediately following the
last record on that track. 10CS updates the capacity
record.

If the space remaining on the track is not large
enough, the problem program is notified.

This format ofthe WRITE macro cannot return an
10.

EOF is optional and applies only to the WRITE
filename, AFTER form of the macro. This form
writes an end-of-file record (a record with a length
of zero) on a specified track after the last record on a
track.

Overwriting Existing Records: If reference is by 10,

the macro format is:
WRITE filename,ID

The program must supply the track address and
the record number of the record to be written. The
system searches for this 10 and starts writing the key
(if any) and the data. If an 10 was requested, the 10

returned will be the 10 ofthe next record in the file.

If reference is by key, the macro format is:
WRITE filename,KEY

The program must supply the key ofthe record to
be located, and the address of the track on which the
record resides. The system then searches that track
or, ifthe search-multiple-tracks option is specified in
the DTFDA declarative macro, searches through the
cylinder starting with the track specified. When the
key is found, the data is written without the key.

If the DTFDA macro specifies that an 10 must be
returned, this 10 will be the 10 of the record follow­
ing the one written; if the search multiple-tracks
option is specified, the 10 of the record written will
be returned .

Write Verification: If you specify in the DTFDA
macro that write operations must be verified
(VERIFY=YES), a read command is issued after a
write operation with any of the options 10, KEY, or
AFTER. This is done without actually transferring
data. The system checks whether the data, as it was
recorded, is valid.

Clearing a Track: You can cause the contents of a
track to be erased by issuing a WRITE macro in the
format:

WRITE filename,RZERO

The program must supply the cylinder address
and the track address. The system searches for this
track, resets the capacity record (in record zero) to
indicate the maximum capacity for the track, and
erases the remainder of the track.

This format of the WRITE macro can be used to
initialize a limited number of tracks or cylinders for
a file.

Seeks: The READ and WRITE macros do not have to
be preceded by a CNTRL macro with the SEEK ope­
rand. They automatically seek to the correct cylin­
der by means of the supplied track address. It may,
however, improve processing speed to issue a seek in
order to position the access mechanism to the correct
cylinder before the actual value for 10 or KEY is
available. Keep in mind that such a preliminary
seek operation may be canceled if more than one
problem program is operating on the same volume
(not necessarily the same file) at the same time. A
seek issued by one program may be made useless by
another program that issues an I/O request on the
same volume. The CNTRL macro with the SEEK ope­
rand returns control to the problem program as soon
as the operation is initiated.

If records in the file are undefined (that is,
RECFORM=UNDEF), you must determine the length
of each record and load it into a register for 10CS use
before you issue the WRITE macro for that record.
The register for this purpose must be specified in the
DTFDA RECSIZE operand.

If you are creating variable length or spanned
unblocked records with WRITE filename,AFTER you
must put the data length of the record to be written
plus 4 into the 5th and 6th bytes of the control fields
preceding the data. In the case that you are updat­
ing records previously read by a READ macro from
the same physical file, you should not change the
control fields. Otherwise, the wrong length record
bit will be set in the error information returned to
your program.

Record Reference by Key: If the DASD location for
writing records is determined by the record key
(control information in the key area ofthe DASD
record), the word KEY must be entered as the second
parameter ofthe WRITE macro. Also the WRITEKY
operand must be included in the DTFDA.

Whenever this method of reference is used, your
program must supply the key of the desired record
to 10CS before the WRITE is issued. The key must be
stored in the key field (specified by the DTFDA
KEYARG operand). When the WRITE is executed,
10CS searches the previously specified track (stored
in the track-reference field) for the desired key.
When a DASD record containing the specified key is
found, the data in the output area is transferred to
the data area of the DASD record. This replaces the
information previously recorded in the data area.
The DASD count field of the original record controls

Chapter 4: Processing DASD Files 4 - 17

the writing of the new record. If a record is shorter
than the original record, it is padded with zeros. A
record longer than the original record is written only
to the extent of the area indicated in the count field
on the track, and any excess bytes are lost. IOCS
turns on the wrong-length-record bit in the error­
status field if any short or long records occur.

Only the specified track is searched unless you
request that multiple tracks be searched on each
WRITE macro. Searching multiple tracks is specified
by including the SRCHM operand in the DTFDA. In
this case, the specified track and all following tracks
are searched until the desired record is found or the
end of the cylinder is reached. The search of multi­
ple tracks continues through the cylinder even
though part of the cylinder may be assigned to a
different file.

Record Reference by ID: If the DASD location for
writing records is determined by the record 10

(identifier in the count area of records), 10 must be
entered as the second parameter of the WRITE macro
and the WRITEIO operand must be included in the
DTFDA.

Whenever this method of reference is used, your
program must supply both the track information
and the record number in the track-reference field.
When the WRITE is executed, IOCS searches the spec­
ified track for the particular record. When the DASD
record containing the specified 10 is found, the in­
formation in the output area is transferred to the key
area (if present and specified in DTFDA KEY LEN)
and to the data area of the DASD record.

If FIXUNB or UNDEF is specified in the RECFORM
operand, the key must precede your data in the
IOAREA I area, otherwise you must load the key into
the key field (specified by the KEYARG operand)
before you issue the WRITE macro. This replaces the
key and data previously recorded.

IOCS uses the count field of the original record to
control the writing of the new record. A record long­
er than the original record is written only to the ex­
tent of the area indicated in the count field on the
track, and any excess bytes are lost. IOCS turns on
the wrong-length-record bit in the error/status field
if any long records occur. If an updated record is
shorter than the original record, it is padded with
binary zeros to the length of the original record. The
wrong-length-record bit is not set on.

Record Reference by AFTER: If a record is written
following the last record previously written on a
track (regardless of its key or 10), the second param­
eter of the WRITE macro must be AFTER and the

4 - 18 VSE/ Advanced Functions Macro User's Guide

AFTER=YES operand must be included in the
DTFDA.

Whenever this method of reference is used for
writing records, your program must supply the track
information in the track-reference field. When
WRITE is executed, IOCS examines the capacity re­
cord (record 0) on the specified track to determine
the location and amount of space available for the
record. If the remaining space is large enough, the
information in the output area is transferred to the
track in the location immediately following the last
record. The count area, the key area (if present and
specified by DTFDA KEYLEN), and the data area are
written. IOCS then updates the capacity record. If
the space remaining on the track is not large enough
for the record, or the track is not followed by
enough empty tracks in the case of spanned records,
IOCS does not write the record and, instead, sets an
indication in your error/status byte specified by the
DTFDA ERRBYTE operand.

Whenever a new file is built in an area of the disk
pack containing outdated records, the capacity re­
cords must first be set up to reflect empty tracks by
issuing the WRITE RZERO macro.

For the 2311 and 2314, the capacity record will
take into account a track tolerance of about 5%, to
ensure that minor hardware imprecisions on the disk
tracks do not interfere with program execution. If a
record is close to the maximum record size for a
track, the capacity record could thus show a nega­
tive value.

Record Reference by RZERO: Executing a WRITE
filename,RZERO resets the capacity record to reflect
an empty track. Your program must supply, in
SEEKADR, the cylinder and track number of the
track to be reinitialized. Any record number is valid
but will be ignored. IOCS writes a new RO with the
maximum capacity of the track in a two-byte field
and erases the full track after RO. The maximum
track capacities are:

for 2311 3,625
for 2314 or 2319 7,294
for 3330 or 3333 13,165
for 3340 8,535
for 3350 19,254

This form of the WRITE macro should be issued
every time your program reuses a certain portion of
a pack or data module. It may be used as a utility
function to initialize a limited number of tracks or
cylinders.

•

..

Completion of Read or Write Operations
You must issue a W AITF macro to check if a read or
write operation has been completed. This macro
tests for errors and exceptional conditions. Any
exceptional condition discovered is passed to a spe­
cial two-byte field, the name of which is specified in
the DTFDA macro. This field must be defined in the
problem program.

The W AITF macro makes sure that the transfer of
a record is complete. It requires only one parameter:
the name of the file containing the record. The par­
ameter can be specified either as a symbol or in reg­
ister notation.

This macro must be issued before your program
attempts to process an input record which has been
read or to build another output record for the file
concerned. The program does not regain control
until the data transfer is complete. Thus, the W AITF
macro must be issued after any READ or WRITE ma­
cro for a file, and before the succeeding READ or
WRITE macro for the same file. The W AITF macro
makes error/status information, if any, available to
your program in the field specified by the DTFDA
ERRBYTE operand.

Non-Data Device Command
By issuing a CNTRL macro with a filename, SEEK
specified, you can cause access movement to begin
for the next read or write operation. While the arm
is moving for a SEEK, you can process data and/or
request I/O operations on other devices.

IOCS seeks the track that contains the next block
for that file without your having to supply a track

address. If the CNTRL macro is not used, IOCS per­
forms the seek or restore operations when a READ,
WRITE, GET, or PUT macro is issued.

Issuing a CNTRL macro to seek a track address
might not result in an improvement of throughput if
the volume containing your file is being shared with
files that are accessed by another program or task
active at the same time. A condition such as this is
even more likely to arise if your file is stored on a
physical volume that represents two or more logical
volumes of another device (a 3344, for example,
which represents four logical 3348 70M data
modules per spindle and access mechanism).

Error Handling

When you specify ERRBYTE=name in the DTFDA
macro and ERREXT=YES in DTFDA, DAM will return
to you I/O error condition codes in the two-byte field
whose name is specified with ERRBYTE.

The ERRBYTE codes are available for testing by
your program after the attempted transfer of a re­
cord is complete. You must issue the W AITF macro
before you interrogate the error status information.
After testing the ERRBYTE status code, your program
can return to IOCS by issuing another macro. One or
more of the error status indication bits may be set to
I by IOCS. An explanation of these bits is given in
Figure 4-10.

The ERREXT operand enables unrecoverable I/O
errors (occurring before a data transfer takes place)
to be indicated to your program.

Chapter 4: Processing DASD Files 4 - 19

Byte Bit
Error /Status Code

Explanation Indication

0 0 Not applicable Not applicable .
0 1 Wrong-length The wrong-length record indication is applicable to fixed-length, undefined length,

record variable-length, and spanned records.
Fixed-length Records: This bit is set on under the following conditions:
• A READ KEY or WRITE KEY is issued, and the keylength differs from the length as

specified by KEYLEN=n. No data is transferred.
• A READ KEY is issued, and the data length differs from the specified length

(BLKSIZE minus KEYLEN, or BLKSIZE minus KEYLEN plus 8 if AFTER=YES was
specified).

• A READ ID is issued, and the length of the record (including key if KEYLEN was
specified) differs from the specified length (BLKSIZE, or BLKSIZE minus 8 if
AFTER=YES was specified).

• A WRITE KEY is issued, and the data length of the record is greater than specified
in the count field in the DASD record on disk. The original record positions are
filled, and the remainder of the updated record is truncated and lost.

• A WRITE ID is issued, and the record length is greater than specified in the count
field in the DASD record on disk. The original record positions are filled, and the
remainder of the updated record is truncated and lost.
Note: If an updated record is shorter than the original record, it is padded with
binary zeros to the length of the original record. The wrong-length record bit is not
set on.

Undefined-length Records: This bit is set on under the following conditions:
• A READ KEY or WRITE KEY is issued, and the keylength differs from the length as

specified by KEYLEN=n. No data is transferred.
• A READ KEY is issued, and the data length is greater than the maximum data size

(BLKSIZE minus KEYLEN, or BLKSIZE minus KEYLEN plu!' 8 if AFTER=YES was
specified). IOCS supplies the actual data length of the record read in the
RECSIZE register.

• A READ ID is issued, and the length of the record (including key if KEYLEN was
specified) is greater than the maximum record length (BLKSIZE, or BLKSIZE
minus 8 if AFTER = YES was specified). IOCS supplies the actual data length of
the record read in the RECSIZE register.

• A WRITE (KEY, ID, or AFTER) is issued, and the data length (loaded into the
RECSIZE register) of the record is greater than the maximum data size (BLKSIZE
minus KEYLEN, or BLKSIZE minus KEYLEN plus 8 if AFTER=YES was specified).
The length of the record written is equal to the maximum data size.

• A WRITE KEY is issued and the data length (loaded into the RECSIZE register) is
greater than specified in the count field of the DASD record on disk. The original
record positions are filled, and the remainder of the updated record is truncated
and lost.

• A WRITE ID is issued, and the record length is greater than specified in the count
field of the DASD record on disk. The original record is truncated and lost.
Note: If an updated record is shorter than the original record, it is padded with
binary zeros to the length of the original record. The wrong length record bit is not
set on.

Variable-length Records: This bit is set on under the following conditions:
• When a READ is issued and the LL count' is greater than the maximum value

specified by the BLKSIZE operand.
• When a nonformatting WRITE is issued and the record is larger than the physical

record on the device, the record is written with the low-order bytes truncated. The
indicator also is set on if the record is shorter than the physical record, but the •
low-order bytes of the physical record are padded with binary zeros.

• When a formatting WRITE is issued and the LL count' is greater than the maximum
specified block size, the record is written with the low-order bytes truncated.

Spanned Records: This bit is set on under the following conditions:
• When a READ is issued and the logical record size is larger than the value

specified by BLKSIZE minus 8. Only the number of bytes specified is read.
• When a nonformatting WRITE is issued and the record length is not the same as

that of the record being processed. If the length specified is longer than the
record being processed, the low-order bytes are ignored. If the length specified is
less than the record being processed, it is padded with binary zeros.

, The LL count is contained in the first two bytes of the block descriptor and counts the length of the physical block including all
control information. For more details see VSE System Data Management Concepts.

Figure 4-10. ERRBYTE error status indication bits (Part I of2).

4-20 VSE/ Advanced Functions Macro User's Guide

Byte Bit
Error /Status Code Explanation

Indication

0 1 Wrong-length • If a formatting WRITE is issued and the logical record size is larger than the size
record (continued) specified with BLKSIZE minus 8, the record is truncated to the size specified.

• If the first physical record encountered is not an only or first segment. The
no-record-found indicator is also set on.

• If another first segment is encountered after the first segment is read out before a
middle or last segment.

0 2 Non-data-transfer The block in error was neither read nor written. If ERREXT is specified and this bit is
error off, transfer took place and your program should check for other errors in the

ERRBYTE field.

0 3 Not applicable Not applicable
0 4 No room found This indication is applicable only when the WRITE AFTER form of the macro is used for

a file. The bit is set on if 10CS determines that there is not enough room left on the
track to write the record. The record is not written.
With spanned records the no-room-found condition is set if not at least one data byte
will fit on the specified track in addition to the key (if any) and the 8 byte control field,
or if any successive tracks required to transfer the record are not completely empty.

0 5 Not applicable Not applicable

0 6 Not applicable Not applicable

0 7 Reference outside The relative address given is outside the extent area of the file. No I/O activity has
extents been started and the remaining bits should be off. If IDLOC is specified, its value is set

to 9s for a zoned decimal ID or to Fs for a hexadecimal ID.

1 0 Data check in This is an unrecoverable error.
count area

1 1 Track overrun The number of bytes on the track exceeds the theoretical capacity.
1 2 End of cylinder This indication bit is set on when SRCHM is specified for READ or WRITE KEY and the

end-of-cylinder is reached before the record is found. If IDLOC is also specified,
certain conditions also turn this bit on (see "IDLOC operand").

1 3 Data check when This is an unrecoverable error.
reading key or data

1 4 No record found This indication is given when a search ID or key is issued and a record is not found.
This applies to both READ commands and WRITE commands and may be caused by
these conditions:
a. The record searched for does not exist in the file.
b. The record cannot be found because of a machine error (that is, incorrect seek).
For spanned record processing, if the first physical record encountered is not the first
or only segment, this indicator is set on.

1 5 End of file This indication is applicable only when the record to be read has a data length of zero.
The ID returned in IDLOC, if specified, is hexadecimal FFFF or, in the case of
RELTYPE=DEC, zoned decimal 9's. The bit is set only after all the data records have
been processed. For example, in a file having n data records (record n+1 is the
end-of-file record), the end-of-file indicator is set on when you read the n+ 1 record.
This bit is also posted when an end-of-volume marker is detected. It is your
responsibility to determine if this bit means true EOF or end of volume on a SAM file.
This·bit is also posted upon successful execution of a WRITE filename,AFTER,EOF
macro.

1 6 End of volume' This indication is given in conjunction with the end-of-cylinder indication. This bit is set
on if the next record ID (n + 1,0,1) that is returned on the end of the cylinder is higher .. than the volume address limit. The volume address limit is:

for 2311 cylinder 199, head 9
for 2314 or 2319 cylinder 199, head 19
for 3330-1, 3330-2 or 3333 cylinder 403, head 18
for 3330-11 cylinder 807, head 18
for 3340 with 3348 model 35 cylinder 347, head 11
for 3340 with 3348 model 70 cylinder 695, head 11
for 3350 cylinder 554, head 29

These limits allow for the reserved alternate track area.
If both the end of cylinder and EOV indicators are set on, the ID returned in IDLOC is
FFFF or, in the case of RELTYPE=DEC, zoned decimaI9's.

1 7 Not applicable Not applicable

Figure 4-10. ERRBYTE error status indication bits (Part 2 of 2).

Chapter 4: Processing DASD Files 4 - 21

Completion
The CLOSE completion macro must be used after the
processing of a file is completed. Theses macros end
the association of the logical file declared in your
program with a specific physical file on a DASD.

The CLOSE macro deactivates any file that was
previously opened. If trailer labels are specified,
they are written on output, and checked on input. A
file may be closed at any time by issuing this macro.
No further commands can be issued for the file un­
less it is reopened.

CLOSER must be used if the file was activated by
means of the OPENR macro.

Processing with ISAM
Before any processing can be done on an indexed
sequential file, it must first be defined by the decla­
rative macros DTFIS and ISMOD. Figure 4-11 shows
the operands for the DTFIS macro and Figure 4-12
for ISMOD.

After the ISAM files are defined by the declarative
macros, the imperative macros are divided into three
groups: those for initialization, processing, and com­
pletion.

DTFIS Operandsfor I/O Area
Specification
Certains of the DTFIS operands define the size and
format of the I/O area. These operands are discussed
below and their results are illustrated in Figure 4-13.

IOAREAL=name
This operand must be included when a file is created
(loaded) or when records are added to a file. It spec­
ifies the name of the output area used for loading or
adding records to the file. The specified name must
be the same as the name used in the DS instruction
that reserves the area of storage. The ISAM routines
construct the contents of this area and transfer the
records to DASD.

This output area must be large enough to contain
the count, key, and data areas of records. Further­
more, the data-area portion must provide enough
space for the sequence-link field of overflow records
whenever records are added to a file (see Figure
4-14).

If 10AREAL is increased to permit the reading and
writing of more than one physical record on DASD at
a time, the 10SIZE operand must be included when
records are added to the file. In this case, the
10AREAL must be at least as large as the number of
bytes specified in the 10SIZE operand.

4 - 22 VSE/ Advanced Functions Macro User's Guide

When simultaneously buildin, two ISAM files
using two DTFS, do not use a common 10AREAL.
Also, do not use a common area for 10AREAL,
10AREAR, and 10AREAS in multiple DTFS.

IOAREAR=name
This operand must be included whenever records
are processed in random order. It specifies the name
of the input/output area for random retrieval (and
updating). The specified name must be the same as
that used in the DS instruction that reserves this area
of storage.

The I/O area must be large enough to contain the
data area for records. Furthermore, the data-area
portion must provide enough space for the
sequence-link field of overflow records (see Figure
4-15).

IOAREAS=name
This operand must be included whenever records
are processed in sequential order by key. It specifies
the name of the input/output area used for sequen­
tial retrieval (and updating). The specified name
must be the same as that used in the DS instruction
that reserves this area of storage.

This I/O area must be large enough to contain the
key and data areas of unblocked records and the
data area for blocked records. Furthermore, the
data-area portion must provide enough space for the
sequence-link field overflow records (see Figure
4-15).

IOAREA2=name
This operand permits overlapping of I/O with index­
ed sequential processing for either the load
(creation) or sequential retrieval functions. Specify
the name of an I/O area to be used when loading or
sequentially retrieving records. The I/O area must
be at least the length of the area specified by either
the 10AREAL operand for the load function or the
IOAREAS operand for the sequential retrieval func­
tion. If the operand is omitted, one I/O area is as­
sumed. IfTYPFLE=RANSEQ, this operand must not
be specified.

IOREG=(r)
This operand must be included whenever records
are retrieved and processed directly in the I/O area.
It specifies the register that ISAM uses to indicate
which individual record is available for processing.
ISAM puts the address of the current record in the
designated register (any of2 through 12) each time a
READ, WRITE, GET, or PUT is executed.

..

..

Applies to

Ran. Seq.
Rtvl. Rtvl.

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X

X

X

X

X

X X

X X

X X

X X

X X

X X

X X

X X

X X

X

X

M = Mandatory
0= Optional

Load

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Add

X M

X M

X M

X M

X M

X M

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

X 0

0

0

0

0

X 0

0

X 0

X 0

X 0

X 0

X 0

0

X 0

X 0

0

0

..
DSKXTNT=n Maximum number of extents specified for this file.

10ROUT = xxxxxx (LOAD, ADD, RETRVE, or ADDRTR).

KEYLEN=nnn Number of bytes in record key (maximum is 255).

NRECDS=nnn Number of records in a block. Specify for blocked
records only; if unblocked, 1 is assumed.

RECFORM = xxxxxx (FIXUNB or FIXBLK).

RECSIZE=nnnn Number of characters in logical record.

CYLOFL=nn Number of tracks for each cylinder overflow area.
Maximum = 8 for 2311, 18 for 2314, 17 for 3330
and 3333, 10 for 3340.

DEVICE=nnnn (2311, 2314, 3330, 3340). If omitted, 2311 is
assumed.

ERREXT=YES Non data-transfer error returns and ERET desired.

HINDEX = nnnn (2311,2314,3330,3340). Unit containing highest
level index. If omitted, 2311 is assumed.

HOLD=YES Track hold function is desired.

INDAREA = xxxxxxxx Symbolic name of cylinder index area.

INDSKIP=YES Index skip feature is to be used.

INDSIZE=nnnnn Number of bytes required for the cylinder index area.

10AREAL= xxxxxxxx Name of I/O area.

10AREAR = xxxxxxxx Name of I/O area.

10AREAS= xxxxxxxx Name of I/O area.

IOAREA2=xxxxxxxx Name of second I/O area.

10REG=(nn) Register number. Omit if WORKA or WORKS is
specified.

10SIZE=nnnn Bytes allotted to lOA REAL.

KEY ARG = xxxxxxxx Name of key field in storage, for random retrieval or
sequential retrieval starting by key.

KEYLOC=nnnn Number of high-order position of key field within
record, if RECFORM=FIXBLK.

MODNAME=xxxxxxxx Name of ISMOD logic module for this DTF. If omitted,
10CS generates standard name.

MSTIND=YES Master index used.

RDONLY=YES Generates a read-only module. Requires a module
save area for each task using the module.

SEPASMB=YES DTFIS is to be assembled separately.

TYPEFLE= xxxxxx (RANDOM, SEONTL, or RANSEO).

VERIFY=YES Check disk records after they are written.

WORKL=xxxxxxxx Name of work area for loading or adding to the file.

WORKR = xxxxxxxx Name of work area for random retrieval. Omit
10REG.

WORKS=YES GET or PUT specifies work area.

Figure 4-11. DTFIS macro. For details of these operands, as well as for those ofiSMOD, see VSE/Advanced Functions Macro Reference.

Chapter 4: Processing DASD Files 4 - 23

Operand Remarks

ERREXT=YES Required if non-data-transfer error
conditions or ERET are desired.

CORDATA=YES Required to add records using the
DTF 10SIZE operand.

CORINDX = YES Required to add or retrieve records
with the cylinder index entries in vir-
tual storage.

HOLD=YES Specifies the track hold option.

IOAREA2 = YES Required if two I/O areas are to be
used.

10ROUT= Specifies function to be performed.
{LOAD I
ADDI
RETRVEI
ADDRTR}

RDONLY=YES Required if a read-only module is to
be generated.

RECFORM= Describes file. Required if 10ROUT
{FIXUNBI specifies ADD or ADDRTR. If 10R-
FIXBLKI OUT specifies LOAD or RETRVE,
BOTH} BOTH is assumed.

RPS=SVA To assemble RPS logic modules.

SEPASMB=YES If the module is assembled separate-
ly.

TYPEFLE= Required if 10ROUT specifies
{RANDOM I RETRVE or ADDRTR.
SEONTLI
RANSEOl

Figure 4-12. Operands of the (SMOD macro

IOROUT= {LOADIADDIRETRVEIADDRTR}
This entry must be included to specify the type of
function to be performed, The parameters have the
following meanings:

LOAD

ADD

To build a logical file on a DASD or to extend a
file beyond the highest record presently in a
file.

To insert new records into a file.

RETRVE

To retrieve records from a file for either ran­
dom or sequential processing and/or updating.

ADDRTR

To both insert new records into a file (ADD)

and retrieve records for processing and/or up­
dating (RTR).

IOSIZE=n
This operand specifies the (decimal) number of
bytes in the virtual-storage area assigned for the add
function using (OAREAL. The number n can be com­
puted using the following formula:

n=m(keylength+ blocksize+40)+ 24

4 - 24 VSE/ Advanced Functions Macro User's Guide

where m is the maximum number of physical re­
cords that can be read into virtual storage at one
time; 40 is the sum of 8 for the count field and 32 for
an (SAM ccw; 24 is another (SAM CCW. The number
n must also be at least equal to

(key length + b locksize+ 74)

This formula accounts for a needed sequence link
field for unblocked records or short blocks (see Fig­
ure 4-15 and Figure 4-16).

If the operand is omitted, or if the minimum re­
quirement is not met, no increase in throughput is
realized.

The number n should not exceed the track capac­
ity because throughput cannot be increased by spec­
ifying a number larger than the capacity of a track.

Initialization
The OPEN macro must be used to activate an (SAM

file for processing. These macros associate the logi­
cal file declared in your program with a specific
physical file on a DASD. The association by OPEN of
your program's logical file with a specific physical
file remains in effect throughout your processing of
the file until you issue a CLOSE macro.

Self-relocating programs using L10CS must use
OPENR to activate all files. In addition to activating
files for processing, OPENR relocates all address con­
stants (except zero constants) within the DTF tables.

If OPEN attempts to activate a L10CS file (DTF)

whose device is unassigned, the job is terminated. If
the device is assigned (GN, the OPEN does not acti­
vate the file but turns on DTF byte 16, bit 2, to indi­
cate that the file is not activated. If DTF byte 16, bit
2, is on after issuing an OPEN, input/output opera­
tions should not be performed for the file, or unpre­
dictable results may occur.

Whenever a DASD file is opened, you must pro­
vide the information for checking or building the
labels. (See "Appendix C".)

When a file is created or extended, those volumes
of the file to be written on are opened as output files.
If the file consists of more than one volume, all the
volumes must be on line and ready when the file is
first opened.

For each volume, OPEN checks the standard VOLI

label and performs extensive checks on the extents
specified in the EXTENT job control statements for
that volume. The extents must meet the following
conditions:

I. All prime data extents must be contiguous.

J

..

..

Length
(Bytes)

LOAD

Count Key Data

I
----1 8 KEYLEN = n ... 100--------- RECSIZE x NRECDS ----------<.Ooil

It
IOAREAL or
IOAREA2

ADD - Unblocked Records

Count Key

I

I (Minimum size = 10) I

Data (Unused)
~---~--------or------~-----i

SL Doto

Length --I 8
I I
I KEYLEN =n I 10

~1,~ ______ RECSIZE=n ________ ~.1

I NRECDS - 1 I (Bytes) I t I I

Length
(Bytes)

Length
(Bytes)

IOAREAL

ADD - Blocked Records

Key (of last
Count record in the Data

block)

I I
---+j 8 KEYLEN =n ~Io~-------- RECSIZE x NRECDS ---------~.I

I t I (Minimum size - One record' 10) I

IOAREAL

SEQUENTIAL RETRIEVE - Unblocked Record

Doto (Unu,ed)
Key

I SL
~----r----------or----------~---~

Doto

I I
--t KEYLEN - n I 10 I'

I t I I

~ ________ RECSIZE =n __________ • I

NRECDS=I I

IOAREAS or
IOAREA2

RANDOM RETRIEVE - Unblccked Records

~~------~~------~--~
Doto (Unused J I

SL I Doto .

Length I 10 1 ... 0----------- RECSIZE =n _____________ ~I
(Bytes) it I' NRECDS=I '1

IOAREAR I I

Length
(Byte,)

RETRIEVE - Sequentiol or Rondom Blocked Records

Record I Record 2 Record 3

SL I Re co rd Le ng th

I I
- '"I .----------RECSIZE x N RECDS ----------~.~I

I t
IOAREAR,
IOAREAS, or
IOAREA2

(Minimum size -- One record + 10) r

SL = Sequence Link

Figure 4-13. I/O areas resulting from different DTFIS operands.

Chapter 4: Processing DASD Files 4-25

Output Area Requirements (in Bytes)
Function Sequence Count Key

Link Data

Load Unblocked Records a Key Length - Record Length

Load Blocked Records a Key Length - Record Length x Blocking Factor

Add Unblocked Records a Key Length 10 Record Length

Add Blocked Records - Record Length x Blocking Factor
a Key Length

OR'

a Key Length 10 Record Length

• Whichever Is Larger

Figure 4-14. Output area requirements for loading or adding records to a file by ISAM.

I/O Area Requirements (in Bytes)
Function Sequence Count Key

Link
Data

Retrieve Unblocked Records Key Length for sequential
10

Record Length - unblocked records

Retrieve Blocked Records Record Length (including keys) x Block--
- - ing Factor

OR'

- - 10 Record Length

• Whichever is Larger

Figure 4-15. I/O area requirements for random or sequential retrieval by ISAM.

2. The master and cylinder index extents must be
contiguous and on the same unit.

3. No extents must overlap.

4. Only type 1,2, or 4 extents are valid.

5. The extent sequence numbers must be in the
following order:

o for master index, when present. 1 for cylinder
index. 2, 3, 4, ... for the prime data and inde­
pendent overflow tracks.

6. For a single volume, only one prime data extent
should be specified.

The EXTENT job control statements for the inde­
pendent overflow tracks can be placed either before
or after all the EXTENT job control statements for the
prime data extents.

OPEN checks all the labels in the VTOC to ensure
that the file to be created does not write over an
existing file. Any expired labels are deleted from the
VTOC. After having checked the VTOC. OPEN creates
the standard labels for the file and writes the labels
in the VTOC. If the DASD device is file protected, all
extents specified in the EXTENT job control state­
ments are available for writing. All volumes con­
taining an ISAM file must be on-line and ready when
the file is first opened.

For each volume, OPEN checks the extents speci­
fied in the EXTENT job control statements for that

4 - 26 VSE/ Advanced Functions Macro User's Guide

volume (for example, checks that the data extents
are contiguous). OPEN also checks the standard
VOLt label and then goes to the VTOC to check the
file label(s) before opening the next volume. After
all the volumes are opened, the file is ready for proc­
essing. If the DASD device is file protected, all ex­
tents specified in EXTENT job control statements are

I file protected for the user.

Processing
Once ISAM files have been readied for processing
with the OPEN macro, the processing macros de­
scribed in this section may be used.

In this section, first the frequently used ERET

macro is described, and then the groups of macros
used for:

• Loading or extending a file

• Adding records to a file

• Retrieving records randomly

• Retrieving records sequentially.

Error Handling
At the completion of each imperative macro, your
error routine should check filenamec. See the DTFIS

ERREXT operand for details and for the format of
filenamec. The ERET (error return) macro enables a
program specifying the ERREXT operand in the DTF

...

to return to IDes and specify an action to be taken
for each error condition.

The ERREXT=YES operand is required for ISAM to
supply your program with detailed information
about unrecoverable I/O errors occurring before a
data transfer takes place, and for your program to be
able to use the ERET imperative macro to return to
IDes specifying an action to be taken for an error
condition.

Some error information is available for testing by
your program after each imperative macro is execut­
ed, even if ERREXT= YES is not specified, by refer­
encing field filenamec. Filename is the same name
as that specified in the DTF header entry for the file.
One or more of the bits in the filenamee byte may
be set to I by IDes. The meaning of the bits varies
depending on which parameter was specified in the
10ROUT operand; Figure 4-16 shows the meaning if
10ROUT=ADD, RETRVE, or ADDRTR was specified;
Figure 4-17 shows the meaning if 10ROUT=LOAD
was specified.

If ERREXT=YES is not specified, IDes returns the
address of the DTF table in register 1, as well as any
data-transfer error information in filenamee, after
each imperative macro is executed; non-data­
transfer error information is not given. After testing
filenamee, return to IDes by issuing any imperative
macro except ERET; no special action is taken by
IDes to correct or check an error.

If ERREXT=YES is specified, IDes returns the ad­
dress of an ERREXT parameter list in register 1 after
each imperative macro is executed, and information
about both data-transfer and non-data-transfer er­
rors in filenamec. The format of the ERREXT par­
ameter list is shown in Figure 4-18. After testing
filenamee and finding an error, return to IDes by
using the ERET imperative macro; IDes takes the
action indicated by the ERET operand. IfHOLD=YES
(and ERREXT=YES), ERET must be used to return to
IDes to free any held track.

In your program, you should check byte 16, bit 7
of the DTF for a blocksize compatibility error when
adding to, or extending a file. If the blocksize of
your program is not equal to the blocksize of the
previously built file, this bit will be set to I.

Note: The ERREXT routiue does not handle nonrecoverable
errors that are posted in filenameC. Examples of nonrecoverable
errors are: no record found (may also be caused by hardware
errors), prime data area full, master index full, etc. The supervi­
sor may recover from a no record found condition if byte 3, bit 5
of the DTF is set. However, a recovery would then be initiated
also for a nonrecoverable no record found condition.

Your error routine should determine whether or
not data was transferred. This can be done by
checking the data transfer bit (byte 2, bit 2) in the

DTF. If the data transfer bit is on, the data was not
read or written. If it is off, data transfer did take
place.

,

If any IDes macro other than ERET is issued in
the error routine, the contents of registers 14 and 13
(with RDONL Y) should be saved before use and re­
stored after use.

Note: Ifthe error occurred on an index record, you should not
IGNORE this record unless it is first checked for accuracy. If the
record was read inaccurately, you should RETRY to read the
record.

Loading or Extending a File

The function of originally loading a file of presorted
records onto a DASD, and of extending the file by
adding new presorted records beyond the previous
high record, are the same. Both are considered a
load operation (specified by the DTFIS operand
10ROUT=LOAD), and use the same macros. Howev­
er, the codes field in a DLBL job control statement
must specify Ise for load creation and ISE for load
extension.

The areas of the volumes used for the file are
specified by EXTENT job control statements. The
areas are:

The prime data area where the data records are
written.

A cylinder index area where you want ISAM to
build the cylinder index.

A master index area if a master index is to be
built (specified by the DTFIS MSTIND operand).

During a load operation, ISAM builds the track,
cylinder, and master indexes.

A combination of three different macros is re­
quired in your program to load original or extension
records onto a DASD. These macros are SETFL,
WRITE, and ENDFL.

SETFL sets the ISAM processing mode for loading
or extending a file. WRITE performs the actual load­
ing of new records into the file. ENDFL turns the
load mode off. These three macros are described in
detail below.

The SETFL (set file load mode) macro causes ISAM
to set up the file so that the load or extension func­
tion can be performed. This macro must be issued
whenever the file is loaded or extended.

When loading a file, SETFL preformats the last
track of each track index. When extending a file,
SETFL preformats only the last track of the last track
index plus each new track index for the extension of
the file. This allows prime data on a shared track to

Chapter 4: Processing DASD Files 4 - 27

Bit Cause Explanation

0 DASD error Any uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong length record has been detected during an I/O operation.

2 End of file The EOF condition has been encountered during execution of the sequential retrieval
function.

3 No record found The record to be retrieved has not been found in the file. This applies to Random (RANSEQ)
and to SETL in SEQNTL (RANSEQ) when KEY is specified, or after GKEY.

4 Illegal 10 specified The 10 specified to the SETL in SEQNTL (RANSEQ) is outside the prime file limits.

5 Duplicate record The record to be added to the file has a duplicate record key of another record in the file.

6 Overflow area full An overflow area in a cylinder is full, and no independent overflow area has been specified;
or an independent overflow area is full, and the addition cannot be made. You should assign
an independent overflow area or extend the limit.

7 Overflow The record being processed in one of the retrieval functions (RANDOM/SEQNTL) is an
overflow record.

Figure 4-16. FilenameC - status or condition code byte if 10ROUT=ADD, RETRVE, or ADDRTR.

Bit Cause Explanation

0 DASD error An uncorrectable DASD error has occurred (except wrong length record).

1 Wrong length record A wrong length record has been detected during an I/O operation.

2 Prime data area full The next to the last track of the prime data area has been filled during the load or extension
of the file. You should issue the ENDFL macro, then do a load extend on the file with new
extents given.

3 Cylinder Index area full The Cylinder Index area is not large enough to contain all entries needed to index each
cylinder specified for the prime data area. This condition can occur during the execution of
the SETFL. You must extend the upper limit of the cylinder index by using a new extent
card.

4 Master Index full The Master Index area is not large enough to contain all the entries needed to index each
track of the Cylinder Index. This condition can occur during SETFL. You must extend the
upper limit, if you are creating the file, by using an extent card. Or, you must reorganize the
file and assign a larger area.

5 Duplicate record The record being loaded is a duplicate of the previous record.

6 Sequence check The record being loaded is not in the sequential order required for loading.

7 Prime data area over- There is not enough space in the prime data area to write an EOF record. This condition can
flow occur during the execution of the ENDFL macro.

Figure 4-17. FilenameC - status or condition code byte ifiOROUT=LOAD.

be referenced even though no track indexes exist on
the shared track.

The name of the file loaded is the only parameter
required for this macro and is the same as that speci­
fied in the DTFIS header entry for the file. It can be
specified as a symbol or in register notation. Regis­
ter notation is necessary if your program is to be
self-relocating.

When a WRITE macro with the parameter
NEWKEY is issued in your program between a SETFL

macro and an ENDFL macro, ISAM loads a record
onto the DASD.

The WRITE macro for loading and extending re­
quires two parameters. The first parameter is the
name of the file specified in the DTFIS header entry.
The filename can be specified as a symbol or in reg­
ister notation. The second parameter must be
NEWKEY.

4 - 28 VSE/ Advanced Functions Macro User's Guide

Before issuing the WRITE macro, your program
must store the key and data portions of the record in
a work area (specified by DTFIS WORKL). ISAM

builds the output record in the I/O area (see Figure
4-13) by moving the data record to the data area,
moving the key to the key area, and building the
count area. When the I/O area is filled, ISAM trans­
fers the record to DASD storage and then constructs
the count area for the next record. The WAITF ma­
cro should not be used when loading or extending
an ISAM file.

Before records are transferred, ISAM performs
both a sequence check and a duplicate-record check.
This ensures that the records are in order by key.

After each WRITE is issued, ISAM makes the ID of
the record or block available to your program. The
ID is located in an 8-byte field labeled filenameH,
which must not exceed seven characters. For exam­
ple, if the filename in the DTFIS header entry is

•

Bytes Bits Contents

0-3 - DTF address.

4-7 - Virtual storage address of the re-
cord in error.
DASD address of the error
(mbbcchhr) where m is the extent
sequence number and r is a re-

8-15 - cord number which can be inac-
curate if a read error occurred
during a read of the highest level
index.

16 Record identification:
1 Data record

2 Track index record
Cylinder index record

3 Master index record

Type of operation:
4 Not used

5 Not used

6 Read
7 Write

17 - Command code of failing CCW.

Figure 4-18. ERREXT parameter list.

PA YRD, the ID field is addressed by PA YRDH. The ID

of any selected record can be punched or printed for
later use by referencing this field. Using filenameH
is required if you plan to retrieve records in sequen­
tial order starting with the ID of a particular record.

As records are loaded or extended on DASD, ISAM
uses the I/O areas to write:

• The new track address each time a track is
filled.

• Two track index records (one prime data, one
overflow) each time a track is filled.

• A cylinder index record each time a cylinder is
filled.

• A master index record (if DTFIS MSTIND is spec­
ified) each time a cylinder index is filled .

The ENDFL (end file load mode) macro ends the
'mode initiated by the SETFL macro. The name of
the file to be loaded is the only parameter required,
and is the same as the name specified in the DTFIS
header entry for the file. The filename can be speci­
fied either as a symbol or in register notation. Regis­
ter notation is necessary if your program is to be
self-relocating. The ENDFL macro must be issued
only after a SETFL and before a CLOSE.

The ENDFL macro performs an operation similiar
to CLOSE for a blocked file. It writes the last block of
data records, if necessary, and then writes an end-of­
file record after the last data record. Also, it writes
any index entries that are needed followed by dum-

my index entries for the unused portion of the prime
data extent.

Adding Records to a File
If after having created the file, you want to add re­
cords with keys that are within the key range al­
ready present, you must use a different routine to
place these records in the proper sequence and to
write them. Each record is inserted in the proper
place sequentially by key. To provide this function,
specify ADD or ADDRTR in the DTFIS IOROUT ope­
rand.

The routine searches the indexes to determine the
appropriate location for the new record. If the prop­
er place for the new record is on a prime data track,
the block on that location is read and the new record
is inserted. Succeeding records on that track are
shifted. The last record on the track is forced off the
track and moved to the overflow area. Shifting on
the last track of a file does not necessarily produce
an overflow record, since there may be free space
available. Figure 3-13 illustrates this process.

If it turns out that the proper place for an addi­
tional record is in the overflow chain, the record will
be physically written into the next free location in
the overflow area. Logically, however, it will be
properly inserted in the overflow chain according to
the value of its key.

The beginning of the overflow chain associated
with a given prime data track is found in the over­
flow entry (in the track index) which also indicates
the highest key of that chain. The chain is followed
until a record is found with a key higher than that of
the record to be inserted. The information in the
link fields is updated to maintain the logically se­
quential order by key.

When you want to add a whole string of new
records it is advisable to presort them in descending
sequence. This will save time in executing the addi­
tions of these records.

The file may contain either blocked or unblocked
records, as specified by the DTFIS RECFORM ope­
rand. When the file contains blocked records, you
must provide ISAM with the location of the key field
by means of the DTFIS KEYLOC operand. The re­
cords to be inserted are written one record at a time.
The records must contain a key field in the same
location as the records already in the file. Whenever
the addition of records follows sequential retrieval
(ADDRTR), the macro ESETL must be issued before a
record is added. Two macros - WRITE and W AITF -
are used in a program to actually add records to a
file.

Chapter 4: Processing DASD Files 4 - 29

Each WRITE macro must be followed by a WAITF
macro to ensure that the data transfer is complete
before a new record is prepared. ISAM determines
the appropriate location to insert the record; it
checks for duplicate record keys and writes the re­
cord. If the new record is inserted on a prime data
track, ISAM shifts all succeeding records on that
track and sets up the last one as an overflow record.
If the new record is inserted in an overflow chain,
ISAM updates the appropriate linkages to maintain
logically sequential order by key. The indexes are
updated as well.

Whenever the addition of records follows sequen­
tial retrieval, the macro ESETL must be issued before
a record can be added.

New records are added to the file by means of the
WRITE macro with the NEW KEY parameter specified.
Before the WRITE macro is issued for unblocked
records, the program must store the record (key and
data) to be added into a work area specified in the
DTFIS WORKL operand. For blocked records, the
program must store only the data since the key is
assumed to be a part of the data. Before any records
are transferred, ISAM checks for duplicate record
keys. If none are found, ISAM inserts the record into
the file.

To insert a record into a file, ISAM performs an
index search at the highest level. This search deter­
mines whether the key of the record to be inserted is
lower or higher than the key of the last record in the
file. If it is lower, the record can be inserted, and
searching the master index (if available), the cylin­
der index, and the track index determines the appro­
priate location to insert the record.

To add an entry to an unblocked file, an
equal/high search is performed in the prime data
area of the track. When such a condition occurs, the
record is read from the track and placed in the I/O
area specified in the DTFlS 10AREAL operand. The
two records are then compared to check for dupli­
cate records. If a duplication is found, this informa­
tion is posted in the DTF table at filenamec. If none
is found, the appropriate record (in your work area)
is written directly to the track. The record (just dis­
placed from the track) in the I/O area is moved by
ISAM to your work area, and the next record on the
track is read into the I/O area. Then, the record in
the work area is written on the track. Succeeding
records are shifted until the last record on the track
is set up as an overflow record.

If the add I/O area {lOA REAL) is increased to per­
mit the reading or writing of more than one record
at a time, an equal/high search is performed in the
prime data area of the track. When such a condition

4 - 30 VSE/ Advanced Functions Macro User's Guide

occurs, as many records as fit are read from the
track and placed in the I/O area (specified in the
DTFlS operand 10AREAL). The added record is com­
pared with existing records in the I/O area. If a du­
plicate key is found, the condition is posted for you
in the DTF table at filenamec. If no duplicate is
found, the records are shifted in virtual storage,
leaving the record with the highest key remaining in
the work area. The other records are rewritten di­
rectly onto the track. Any remaining record(s) on
the track are then read into the I/O area. This proc­
ess continues until the last record on the track is set
up as an overflow record. It is then written into the
appropriate overflow area, and the track index en­
tries are updated. This area becomes the cylinder
overflow area, if CYLOFL is specified and the area is
not filled.

Note that if a file was created with CYLOFL=n, all
DTFS that add records to the file must specify the
same number (n) of cylinder overflow tracks.

If the cylinder overflow area is filled, or if only an
independent area is specified by an EXTENT job
control statement, the end record is transferred to
the independent overflow area. If an independent
overflow area was not specified (or is filled) and the
cylinder area is also filled, no room is made avail­
able to store the overflow record. ISAM posts this
condition in the DTF table at filenamec. In all cases,
ISAM determines whether room is available before
any records are written.

If records are to be added to a blocked file, a
work area must be specified by the DTFlS WORKL
operand. Each added record must contain a key
field in the same location as the records already in
the file. You must specify the high-order position of
the key field (relative to the leftmost position of the
logical record). Use the DTFIS KEYLOC operand for
this purpose.

When a WRITE macro is issued, ISAM first locates
the correct track by referring to the necessary master
(if available), cylinder, and track indexes. Then, a
search on the key areas of the DASD records on the
track is made to locate the desired block of records.
The block of records is read into the I/O area. If
10REAL is included for reading and writing more
than one record on DASD at a time, several blocks
may be read into the I/O area.

ISAM then examines the key field within each
logical record to find the exact position in which to
insert the new record and then checks for any dupli­
cate records. If a duplicate key exists, the condition
is posted in filenamec. If the key of the record in­
serted (contained in WORKL) is low, the record is
exchanged with the record presently in the block.

•

•

This procedure continues with each succeeding re­
cord in the block until the last record is moved into
the work area. ISAM then updates the key area of the
DASD record to reflect the highest key in the block.
If 10AREAL was included, succeeding blocks in the
I/O are also updated. The block (or blocks) is then
written back onto DASD. The remaining blocks on
the track are similarly processed until the last logical
record on the track is moved into the work area.
This record (set up as an overflow record with the
proper sequence-links) is then moved to the over­
flow area. The indexes are updated and ISAM re­
turns control to the program for the next record to
be added. If the overflow area is filled, the informa­
tion is posted in filenameC.

If the proper track for a record is an overflow
track (determined by the track index), ISAM searches
the overflow chain and checks for any duplication.
If no duplication is found, ISAM writes the record
(preceded by a sequence-link field in the data area
of the DASD record) and adjusts the appropriate
linkages to maintain sequential order by key. The
new record is written in either the cylinder overflow
area or an independent overflow area. If these areas
are filled, this condition is posted in filenameC.

If the new record is higher than all records pre­
sently in the file (end-of-file), ISAM checks to deter­
mine whether the last track containing data records
is filled. If it is not, the new record is added, replac­
ing the end-of-file record. The end-of-file record is
written in the next record location on the track, or
on the next available prime data track. Another
track must be available within the file limits. If the
end-of-file record is the first record on any track, the
new record is written in the appropriate overflow
area. After each new record is ins«rted in its proper
location, ISAM adjusts all indexes affected by the
addition.

Random Retrieval of Records
Records in an ISAM file can be retrieved in random
order for processing and/or updating. Retrieval
must be specified in the DTFIS with the operand
10ROUT=RETRVE or 10ROUT=ADDRTR. Random
processing must be specified in the DTFIS with the
operand TYPEFLE=RANDOM or TYPEFLE=RANSEQ.

Because random reference to the file is by record
key, your progam must supply the key ofthe desired
record. To do this, the key must be stored in the key
field specified by the DTFIS KEY ARG operand. The
specified key designates both the record to be re­
trieved and the record to be written back into the file
in an updating operation. Adding and updating
should not be interspersed. Records that are added
to a file (between the READ and WRITE macros for a

particular record to be updated) can result in a lost
record and duplicate key.

The DTFIS RECSIZE operand should specify the
same value as entered at load time. If these values
differ, no error will result; however, the RECSIZE
from the load DTFIS is used. The necessary informa­
tion for a retrieval operation comes from the format-
2 label and not the RETRVE operand in the DTFIS.

The READ macro causes ISAM to retrieve the spec­
ified record from the file. This macro requires two
parameters. The first parameter specifies the name
of the file from which the record is to be transferrred
to virtual storage. This name is the same as the
name specified in the DTFIS header entry for the file
and can be specified as a symbol or in register nota­
tion. The second parameter must be the word KEY.

To locate a record, ISAM first searches the indexes
to determine the track on which the record is stored
and then searches the track for the specific record.
When the record is found, ISAM transfers it to the
I/O area specified by the DTFIS 10AREAR operand.
The ISAM routines also move the record from the I/O
area to the specified work area ifthe WORKR ope­
rand is included in the DTFIS.

When records are blocked, ISAM transfers the
block that contains the specified record to the I/O
area. It makes the individual record available for
processing either in the I/O area or in the work area
(if specified). For processing in the I/O area, IS AM
supplies the address ofthe record in the register
specified by the DTFIS 10REG operand. The ID of
the record can be referenced using filenameG. A
W AITF macro must follow a READ macro.

The WRITE macro with the parameter KEY is used
for random updating. It causes ISAM to transfer the
specified record from virtual storage to DASD. This
macro requires two parameters. The first parameter
specifies the name of the file to which the record is
transferred. The specified name is the same as that
used in the DTFIS header entry and in the preceding
READ macro. The name can be specified as a sym­
bol or in register notation. The second parameter
must be the word KEY.

ISAM rewrites the record following a READ macro
for the same file. The record is updated from the
work area (if one is specified) or from the I/O area.
The key need not be specified again ahead of the
WRITE macro. A W AITF macro must follow a WRITE
macro.

The W AITF macro is issued to ensure that record
transfer is completed. Filename is the same name as
that used in the DTFIS header entry, and can be
specified as a symbol or in register notation.

Chapter 4: Processing DASD Files 4 - 31

This macro must be issued before your program
attempts to process the input record which has been
read or to build another output record for the desig­
nated file. The program does not regain control
until the previous transfer of data is complete, unless
ERREXT=YES is specified in the DTFIS and an error
occurs. In this case, the ERET macro should be is­
sued to handle the error and complete the transfer of
data.

The WAITF macro posts any exceptional condi­
tions in the DTFIS table at filenamec. The W AITF
macro applies to the functions described in "Adding
Records to a File" and "Random Retrieval of
Records," above.

Sequential Retrieval of Records
Records of an ISAM file can be retrieved in sequen­
tial order by key for processing and/or updating.
The DTFIS IOROUT=RETRVE operand must be speci­
fied. Sequential processing must be specified in the
DTFIS TYPEFLE= operand by specifying SEQNTL or
RANSEQ.

Although records are retrieved in order by key,
sequential retrieval can start at a record in the file
identified either by key or by the 10 (identifier in the
count area) of a record in the prime data area. Se­
quential retrieval can also start at the beginning of
the logical file. You must specify, in SETL, the type
of reference you use in your program.

Whenever the starting reference is by key and the
file contains blocked records (RECFORM=FIXBLK),
you must also provide ISAM with the position of the
key records. This is specified in the DTFIS KEYLOC
operand. To search for a record, ISAM first locates
the correct block by the key in the key area of the
DASD record. The key area contains the key of the
highest record in the block. ISAM then examines the
key field within each record in the block to find the
specified record. As with random retrieval, the
RECSIZE operand should specify the same number as
indicated when the file was loaded.

The SETL (set limits) macro initiates the mode for
sequential retrieval and initializes ISAM to begin
retrieval at the specified starting address. The first
operand (filename) specifies the same name as that
used in the DTFIS header entry, as a symbol or in
register notation. Register notation is necessary if
your program is to be self-relocating.

The second operation specifies where processing
is to begin.

If you are processing by the record 10, the ope­
rand id-name or (r) specifies the symbolic name of
the 8-byte field in which you supply the starting (or

4 - 32 VSE/ Advanced Functions Macro User's Guide

lowest) reference for ISAM use. This field contains
the information shown in Figure 4-19.

If processing begins with a key you supply, the
second operand is KEY. The key is supplied in the
field specified by the DTFIS KEY ARG operand. If the
specified key is not present in the file, an indication
is given at filenamec.

BOF specifies that retrieval is to start at the begin­
ing of the logical file.

Selected groups of records within a file contain­
ing identical characters or data in the first locations
of each key can be selected by specifying GKEY
(generic key) as the second operand. GKEYallows
processing to begin at the first record (or key) within
the desired group. You must supply a key that iden­
tifies the significant (high order) bytes of the re­
quired group of keys. The remainder (or insignifi­
cant) bytes of the key must be padded with blanks,
binary zeros, or bytes lower in collating sequence
than any of the insignificant bytes in the first key of
the group to be processed. For example, a GKEY
specification of D6420000 would permit processing
to begin at the first record (or key) containing
D642xxxx, regardless of the characters represented
by the x's. Your program must determine when the
generic group is completed. Otherwise, ISAM contin­
ues through the remainder of the file.

Note: If the search key is greater than the highest key on the file,
the filenameC status byte is set to X'\O' (no record found).

The ESETL (end set limit) macro should be issued
before issuing a READ or WRITE if ADDRTR and/or
RANDSEQ are specified in the same DTF. Another
SETL can be issued to restart sequential retrieval.
Sequential processing must always be terminated by
issuing an ESETL macro.

The GET macro causes ISAM to retrieve the next
record in sequence from the file. If records are to be
processed in the I/O area (specified by the DTFIS
IOAREAS operand), the only required parameter is
the name of the file from which the record is to be
retrieved. This is the same name as that specified in
the DTFIS header entry and can be specified as a
symbol or in register notation. ISAM transfers the
record from the file to the I/O area after which the
record is available for the execution of the next in­
struction in your program. The key is located at the
beginning of IOAREAS and the register (IOREG)
points to the data. If the records are blocked, ISAM
makes each record available by supplying its address
in the register specified by the DTFIS IOREG operand.
The key is contained in the record.

If records are to be processed in a work area
(specified by the DTFIS WORKS operand), it requires

..

two parameters, both of which can be specified as
symbols or in register notation. The first parameter
is the name ofthe file, and the second is the name of
the work area. When using register notation, work­
name should not be preloaded into register 1.

Ifthe records are blocked, each GET that transfers
a block of records to virtual storage will also write
the preceding block back into the file in its previous
location if a PUT macro is issued for at least one of
the records in that block. If no PUT macro was is­
sued, updating is not required for the block and a
GET does not rewrite the block. Whenever an un­
blocked record is retrieved from the prime data area,
ISAM supplies the lD of that re~ord in the field ad­
dressed by filenameH. If blocked records are speci­
fied, ISAM supplies the lD ofthe block.

The PUT macro is used for sequential updating of
a file, and causes ISAM to transfer records to the file
in sequential order. PUT returns a record to a file. A
GET macro must precede each PUT macro.

If records are to be processed in the I/O area
(specified by the DTFIS IOAREAS operand), PUT re­
quires only the name of the file to which the records
are to be transferred. The name is the same as that
used in the DTFIS header entry and can be specified
in register notation or as a symbol.

If records are to be processed in a work area, PUT

requires two parameters, both of which can be speci­
fied either as a symbol or in register notation. The
first parameter is the name of the file, and the sec­
ond is the name of the work area. When using regis­
ter notation, workname should not be loaded into
register 1. The work area name may be the same as
that specified in the preceding GET for the file, but
this is not required. ISAM moves the record from the
work area specified in the PUT macro to the I/O area
specified for the file in the DTFlS IOAREAS operand.

Byte Identifier Contents in Hexadecimal

When the records are unblocked, each PUT writes
a record back onto the file in the same location from
which it was retrieved by the preceding GET for the
file. Thus, each PUT updates the last record that was
retrieved from the file. If some records do not re­
quire updating, a series of GETS can be issued with­
out intervening PUTS. Therefore, it is not necessary
to rewrite unchanged records.

When the records are blocked, PUTS do not trans­
fer records to the file. Instead, each PUT indicates
that the block is to be written after all the records in
the block are processed. When processing for the
block is complete and a GET is issued to read the
next block into virtual storage, the GET also writes
the completed block back into the file in its previous
location. If a PUT is not issued for any record in the
block, GET does not write the completed block. The
ESETL macro writes the last block processed, if nec­
essary, before the end-of-file.

The ESETL (end set limit) macro ends the sequen­
tial mode initiated by the SETL macro. For filename
specify the same name as was specified in the DTFlS

header entry. The name can be specified as a sym­
bol or in register notation. If the records are
blocked, ESETL writes the last block back if a PUT

was issued.

Note: If ADDRTR and/or RANSEQ are specified in the same
DTF, ESETL should be issued before issuing a READ or
WRITE; another SETL can be issued to restart sequential retriev­
al. Sequential processing must always be terminated by issuing
an ESETL macro.

Completion
The CLOSE completion macro must be used after the
processing of a file is completed. The CLOSE macro
ends the association of the logical file declared in
your program with a specific physical file on a
DASD.

Information

0 m 02-F5 Number of the extent in which the starting record is located.

1-2 bb 0000 (disk) Always zero for disk

3-4 cc Cylinder number for disk:
0000-00C7 (2311, 2314, 2319) for 2311, 2314, 2319; 0-199

0000-0193 (3330, 3333) for 3330, 3333; 0-403
0000-0158 (3348 model 35) for 3340 with 3348 model 35; 0-347
0000-0287 (3348 model 70) for 3340 with 3348 model 70; 0-695

5-6 hh 0000-0009 (2311) Head position for disk.
0000-0013 (2314.2319)
0000-0012 (3330, 3333)
0000-0008 (3340)

7 r 01-FF Record location.

Figure 4-19. Field supplied for SETL processing by record ID.

Chapter 4: Processing DASD Files 4 - 33

The CLOSE macro deactivates any file that was
previously opened. A file may be closed at any time
by issuing this macro. Once a file is closed, no fur­
ther commands can be issued for the file unless it is
reopened.

If a load or load extension file is not closed, the
format-2 label associated with the file is not updated
with the information that is in the DTF. Further
processing of such a file may give unpredictable
results.

CLOSER must be used if the file was activated by
means of the OPENR macro.

See Appendix C for information on label process­
ing done by the CLOSE macro.

Programming Considerations
Recordsize=keylength+(blocking factor x record
length).

The maximum record size possible for ISAM on
the various direct access devices is shown as follows:

Device
2311
2314
2319
3330
3333
3340

Maximum Record Size
(in Number of bytes)

3,605
7,249
7,249

12,974
12,974
8,293

Formulas to facilitate estimating the disk storage
requirements for an ISAM file on the various direct­
access devices are given later in this section.

I When writing ISAM programs, do not forget to
include the DLBL job control statement. On anyone
given volume, only one prime data EXTENT is al­
lowed. Information about the DLBL job control
statement will be found in VSE/ Advanced Functions
System Control Statements. Examples of complete
sets of job control statements for ISAM will also be
found there.

VSE does not support a null ISAM file. If an at­
tempt is made to access a null file, IOCS places the
X'IO' error indication in field filenamec.

Severe degradation can occur if too many records
are added to an ISAM file without reorganizing it.
To assist you in determining when reorganization of
a file is required, ISAM maintains a helpful set of

4 - 34 VSE/ Advanced Functions Macro User's Guide

statistics. These statistics are maintained in the
format-2 DASD label recorded with the file; when the
file is processed, the statistics occupy fields within
the DTFIS table. You can test these fields as you
process the file. The fields, and the names by which
you reference them are:

• prime record count (filenamep).
A 4-byte count of the number of records in the
prime data area. The field is used for DTFIS
ADD, while a 4-byte count field at filenamep+4
is used for DTFIS LOAD.

• overflow record count (filenameo).
A two-byte count of the number of records in
the overflow area(s).

• available independent overflow tracks
(filenamel).
A two-byte count of the number of tracks re­
maining in the independent overflow area, if
used.

• cylinder overflow areas full (filenameA).
A two-byte count of the number of cylinder
areas that are full, necessitating use of the inde­
pendent overflow area.

• non-first-overflow reference (filenameR).
A four-byte count of the number of times a
random reference (READ) is made to records
that are the second or higher links in an over­
flow chain.

In addition to these fields maintained automati­
cally by ISAM, there is another field (filenameT)
which you can use to keep a count of the records
tagged for deletion. This field is kept in the format-2
DASD label recorded with the file and is available in
the DTFIS table when the file is processed. You may
tag the records for deletion by any method you de­
sire, so long as the keys of the records are not
changed in such a way that the sequence in the file
would be altered. For instance, you could overwrite
the data portion of a record with zeros; or a special
field within a record could indicate that the record is
deleted. You can keep a count of such records in
filenameT. When reorganizing the file, tagged or
deleted records can be eliminated. Additional in­
formation on reorganizing an ISAM file appears in
Chapter 3.

•

..

..

ISAM Disk Storage Space Formulas

IBM 2311
Three formulas compute IBM 2311 disk storage requirements for an ISAM file. The known
quantities for the computations given are:

D = Logical Record Length
K = Key Length
B = D x blocking factor
X = Number of prime data tracks, shared with track index and non-shared, per cylinder.

I. To calculate the number of prime data records per cylinder (Npr):

Npr=A + C(X-I)

Where:
A = Number of prime data records on a shared track
C = Number of prime data records on a non-shared track

Notes: These values must be whole numbers. A shared track is one in which prime data
records occupy space not needed by the track index. The last track of the prime data area
cannot be used during a load or an extension of a file. The programmer should issue the
ENDFL macro and perform a load extend on the file.

To compute A:

a. Determine the size of the track index (T I) in bytes:

TI = (2X + 1)(81 + 1.049 (K + 10))

IfTI > 3,625, part of track I may be required for the track index in addition to track O.
The additional requirement on track I (T I') is calculated as follows~

Determine the number of track index entries (N) on track 0:

3,625
N = N rounded to next smaller integer

81 + 1.049(K + 10)

TI' = (2X-I) (81 + 1.049 (K + 10»-N(81 + 1.049 (K + 10))

IfT 1':5 0, only track 0 is needed forthe track index (no index entries being required
for track 0); you can adjust X and proceed to compute C.

If T I' is still larger than 3,625, repeat the procedure with X reduced by I.

1fT I' > 0, use TI' instead ofT 1 in step b.

b. Determine the number of bytes remaining on the track for prime data records (T 2):

T2 = 3,625-T 1

c. Determine the size of the last prime record (T3) on a track:

T3 = 20 + K + B

If (T2-T3) <0, set A = O.

If(T2-T3)=O,setA= I.

To compute C:

3,605-(K + B)
C=I+

81 + 1.049(K+B)

2. To determine the number of overflow records per track (Nor):
3,605-(K + D + 10)

Nor = 1+
81 + 1.049(K+D+IO)

3. To determine the number of cylinder or master index records per track (Nir):

Nir= 1+
3,605-(K + 10)

81 + 1.049(K + 10)

Note: Allow for a dummy record.

Chapter 4: Processing DASD Files 4- 35

IBM 2314/2319
Three formulas compute IBM 2314/2319 disk storage requirements for an ISAM file. The
known quantities for the computations given are:

D = Logical Record Length
K = Key Length
B = D x blocking factor
X = Number of prime data tracks, shared with track index and non-shared, per cylinder.

t. To calculate the number of prime data records per cylinder (Npr):

Npr=A + C(X-I)

Where:
A = Number of prime data records on a shared track
C = Number of prime data records on a non-shared track

Notes: These values must be whole numbers. A shared track is one in which prime data
records occupy space not needed by the track index. The last track of the prime data area
cannot be used during a load or an extension of a file. The programmer should issue the
ENDFL macro and perform a load extend on the file.

To compute A:

a. Determine the size of the track index (T I) in bytes:

TI = (2X + 1)(146 + 1.043 (K + 10»

IfTI > 7,294, part of track I may be required for the track index in addition to track O.
The additional requirement on track I (T I') is calculated as follows:

Determine the number of track index entries (N) on track 0:

7,249
N= N rounded to next smaller integer

146 + 1.043(K + 10)

- T 1'=(2X-I)(l46+ 1.043(K+ 10»-N(146+ 1.043(K+ 10»

IfT1' ~ 0, only track 0 is needed for the track index (no index entries being required
for track 0); you can adjust X and proceed to compute C.

If T I' is still larger than 7,294, repeat the procedure with X reduced by I.

1fT I' > 0, use T I' instead ofT 1 in step b.

b. Determine the number of bytes remaining on the track for prime data records (T 2):

T2 = 7,294-T 1

c. Determine the size of the last prime record (T) on a track:

T) =45 + K + B

If (T2-T)<0, set A = O.

If (T 2-T)=0, set A = I.

To compute C:

C=I+
7,249-(K+B)

146 + 1.043(K + B)

2. To determine the number of overflow records per track (Nor):
7,249-(K+D+ 10)

Nor= 1+
146 + 1.043(K + D + 10)

3. To determine the number of cylinder or master index records per track (Nir):
7,249-(K + 10)

Nir= I +
146 + 1.043(K + 10)

Note: Allow for a dummy record.

4- 36 VSE/ Advanced Functions Macro User's Guide

J

J

IBM 3330/3333

•

Three formulas compute IBM 3330/3333 disk storage requirements for an ISAM file. The
known quantities for the computations given are:

D = Logical Record Length
K = Key Length
B = D x blocking factor
X = Number of prime data tracks, shared with track index and non-shared, per cylinder.

I. To calculate the number of prime data records per cylinder (Npr):

Npr=A + C(X-I) if there are shared data tracks
N pr=CX if there are no shared data tracks

Where:
A = Number of prime data records on a shared track
C = Number of prime data records on a non-shared track

Notes: These values must be whole numbers. A shared track is one in which prime data
records occupy space not needed by the track index. The last track of the prime data area
cannot be used during a load or an extension of a file. The programmer should issue the
ENDFL macro and perform a load extend on the file.

To compute A:

a. Determine the size of the track index (T,) in bytes:

T, = (2X+I)(l91+K+ 10)

1fT, > 13,165, part of track I may be required for the track index in addition to track
O. The additional requirement on track I (T, ') is calculated as follows:

Determine the number of track index entries (N) on track 0:

N=
13,165

N rounded to next smaller integer
191 + K + 10)

T,' = (2X-I) (191 +K+ 10))-N(191 +K+ 10)

If T,' ::s 0, only track 0 is needed for the track index (no index entries being required
for track 0); you can adjust X and proceed to compute C.

If T,' is still larger than 13,165, repeat the procedure with X reduced by I.

1fT,' > 0, use T,' instead ofT, in step b.

b. Determine the number of bytes remaining on the track for prime data records (T 2):

T2 = 13,165-T,

T2
A=

191 + K + B

To compute C:

C=I+
13, 165-(K + B)

191 + K + B)

2. To determine the number of overflow records per track (Nor):
13,165

Nor = 1+
191+K+D+1O

3. To determine the number of cylinder or master index records per track (Nir):

Nir= I +
13,165

191+K+1O

Chapter 4: Processing DASD Files 4- 37

IBM 3340
Three formulas compute IBM 3340 disk storage requirements for an ISAM file. The known
quantities for the computations given are:

D = Logical Record Length
K = Key Length
B = D x blocking factor
X = Number of prime data tracks, shared with track index and non-shared, per cylinder.

I. To calculate the number of prime data records per cylinder (N pr):

N pr=A + C(X-I) if there are shared data tracks
N pr=<CX if there are no shared data tracks

Where:
A = Number of prime data records on a shared track
C = N umber of prime data records on a non-shared track

Notes: These values must be whole numbers. A shared track is one in which prime data
records occupy space not needed by the track index. The last track of the prime data area
cannot be used during a load or an extension of a file. The programmer should issue the
ENDFL macro and perform a load extend on the file.

To compute A:

a. Determine the size of the track index (T I) in bytes:

TI = (2X+ 1)(242+K+ 10)

If T I > 8,535, part of track I may be required for the track index in addition to track o.
The additional requirement on track I (T I') is calculated as follows:

Determine the number of track index entries (N) on track 0:
8,535

N= N rounded to next smaller integer
242+ K + 10

T 1' = (2X-I) (242+K+ 10)-N(242+K+ 10)

IfT1'!S 0, only track 0 is needed for the track index (no index entries being required
for track 0); you can adjust X and proceed to compute C.

If T I' is still larger than 8,535, repeat the procedure with X reduced by I.

IfT1' > 0, use TI' instead ofT I in step b.

b. Determine the number of bytes remaining on the track for prime data records (T 2):

T2 = 8,535-T 1

T2

242 +.K + B

To compute C:
8,535

C=I+
242 + K + B

2. To determine the number of overflow records per track (Nor):
8,535

Nor = I +
242 + K + D + 10

3. To determine the number of cylinder or master index records per track (Nir):
8,535

Nir= 1+
242 + K + 10

4- 38 VSE/ Advanced Functions Macro User's Guide

•

L

•

Chapter 5: Processing Diskette Files

Before any processing can be done on a diskette file,
it must be defined by a DTF macro. The DTFDU

macro defines sequential processing for a diskette
file; its operands are listed in Figure 5-1. Alterna­
tively, you may use DTFDI to provide device inde­
pendence for system logical units. See Chapter 8 for
more information on device-independent files. Fi­
nally, you must use DTFPH if you plan to process a
diskette file with the PIOCS (Physical IOCS) macros.
(See Chapter 9.)

Opening a File

Output
When a multi-volume diskette file is created, feed­
ing from diskette to diskette is automatically per­
formed by IOCS. If the file was defined by a DTFDI

macro, the last diskette is ejected automatically by
IOCS. If the DTFDU macro was used, the ejection of
the last diskette is controlled by the FEED operand of
this macro.

TQere are two logic module generation macros
associated with DTFDU, DUMODFI for input files, and
DUMODFO for output files. For details of these and
other macros, see VSE/Advanced Functions Macro
Reference .

When a file is opened, OPEN checks the VTOC on
the diskette and:

• ensures that the file to be created does not have
the same name as an existing unexpired file.

Note that special records (deleted or sequential
relocated records) on an input file are skipped, and
not passed to the user. The DTFDU macro cannot be
used when a card image diskette file is to be proc­
essed under VSE/POWER.

• ensures there is at least one track available to
be allocated.

• allocates space for the file, starting at the track
following the last unexpired or write-protected
file on the diskette.

Applies to

Input Output

X

X X

X X

X X

X X

X X

X X

X X

X X

X

X X

X X

X X

X X

X X

X X

X

X

X X

X

M = Mandatory
0'"' Optional

M EOFADDR = xxxxxxxx

M 10AREA 1 = xxxxxxxx

M RECSIZE=nnn

0 CMDCHN=nn

0
DEVADDR=SYSxxx

0 DEVICE = 3540

0 ERREXT=YES

0 ERROPT = xxxxxxxx

0
FEED=xxx

0 FILESEC=YES

0 IOAREA2 = xxxxxxxx

0 10REG=(nn)

0
MODNAME = xxxxxxxx

0
RDONLY=YES

0 SEPASMB=YES

0 TYPEFLE = xxxxxx

0 VERIFY=YES

0 VOLSEQ=YES

0 WORKA=YES

0 WRTPROT = YES

Figure 5-\. DTFDU macro operands.

Name of your end-of-file routine. (Required for input only).

Name of first I/O area.

Length of one record in bytes.

Number of read/write CCWs (records) to be command-chained.

Symbolic unit, required only when not provided on an EXTENT state-
ment.

Must be 3540. If omitted, 3540 is assumed.

Indicates additional errors and ERET desired. Specify ERROPT.

IGNORE, or SKIP, or name of error routine.

YES means feed at end-of-file. NO means no feed. YES assumed if
omitted.

YES means create file secure.

Name of second I/O area, if two areas are used.

General register 2 to 12 in parentheses. Omit WORKA.

Name of DUMODFx logic module for this DTF. If omitted, 10CS gener-
ates standard name.

Generates a read-only module. Requires a module save area for each
task using the module.

DTFDU is to be assembled separately.

INPUT or OUTPUT. If omitted, INPUT is assumed.

3741/3742 input is verified.

YES means OPEN is to check sequencing of multivolume files.

GET or PUT specifies work area. Omit 10REG.

File will be created with Write-Protect on (cannot be overwritten).

Chapter 5: Processing Diskette Files 5 - I

After this check, OPEN creates the format-l label
for the file and writes the label in the VTOC. Each
time you determine that all processing for an extent
is complete, you must feed to make the next diskette
available and then issue another OPEN for the file, to
make the next extent available. CLOSE will auto­
matically cause the last volume to be fed out. If the
last extent of the file is completely processed before
a CLOSE is issued, OPEN assumes an error condition
and the job is canceled.

Input
When processing input files on diskettes with physi­
cal 10CS, OPEN is used to check standard labels.

When a multi-volume diskette file is read, feeding
from diskette to diskette is automatically performed
by 10CS. If the file was defined by a DTFDI macro,
the last diskette is not ejected. If the DTFDU macro
was used, the ejection is controlled by the FEED ope­
rand of this macro.

When the first volume is opened, OPEN checks the
VTOC on the diskette and determines the extent lim­
its of the file from the file label.

After the label is checked, OPEN makes the first
extent available for processing. Each time you de­
termine that all processing for a diskette is complete,
you must feed to make the next diskette available,
and then issue another OPEN for the file, to make the
next extent available. If another extent is not avail­
able, OPEN stores the character F (for EOF) in byte 31
of the DTF table. You can determine the end of file
by checking the byte at filename +30.

The extents are made available in the order of the
sequence number on the extent statements (if the
statements are not numbered, job control numbers
them consecutively). The same extent statements
used to build the file can be used when the file is
used as input.

Processing Records with Com­
mand Chaining
Elsewhere in this manual the concept of a block of
data has been discussed. Except for FBA direct ac­
cess storage devices, a block is treated as a physical
entity which is read or written as a unit on the exter­
nal device. To apply this concept correctly to disk­
ette files, you must be aware of the following -- you
can achieve faster performance by allowing LIOCS to
read and write multiple records each time the disk­
ette is accessed. Physically, each logical data record
that the user reads or writes is a separate record on
the diskette. By allowing LIOCS to chain I/O opera­
tions to the device on input, the user-provided I/O

5 - 2 VSE/ Advanced Functions Macro User's Guide

area will be filled each time the device is accessed.
On output, LIOCS waits until the I/O area provided is
full before writing individual logical records on the
diskette.

When records on diskettes are specified as com­
mand chained in the DTFDU CMDCHN operand, each
individual record must be located for processing.
Therefore, command chained records are handled as
follows:

l. The first GET macro transfers a chain of records
(2, 13, or 26 records depending on the CMDCHN

operand) from diskette to the input area. It also
initializes the specified register to the absolute
address of the first data record, or it transfers
the first record to the specified work area.

2. Subsequent GET macros either add an indexing
factor to the register or move the proper record
to the specified work area, until all records in
the block are processed.

3. Then, the next GET makes a new chain ofre­
cords available in virtual storage, and either
initializes the register or moves the first record.

So, for diskette files you can logically "block"
records in the I/O areas by chaining I/O operations;
however, each record on the diskette remains a
physically separate entity.

If, for example, you want to process 80-byte re­
cords, you could establish two I/O areas, each 160
bytes in length, and you could indicate chaining of
two records. Then, when a record is requested for
input, data transfer would occur as illustrated in
Figure 5-2.

RECORDS AS ON DISKETTE /~ ______________ ~A~ ____________ ~

Rl R2 R3 R4

1/0 Area 1 1/0 Area 2

Figure 5-2. Diskette data transfer on input.

Physically, the diskette records are always 128
bytes in length (See Figure 5-4.) Because only 80
bytes are desired, only the first 80 bytes of each
physical record are placed in the I/O areas.

For output, when an I/O area is full, records are
written on the diskette as shown in Figure 5-3.

•

I/O AREA

DATA 1 DATA 21

'~--------------v~-------------t/
DISKETTE RECORDS

Figure 5-3. Diskette data transfer on output.

When you want to take advantage of this com­
mand chaining, you can chain either 2, or 13, or 26
diskette records and have them processed - read or
written - together as a group: specify the desired
number in the CMDCHN operand of the DTFDU dec­
larative macro. In conjunction with this operand,
specify either the 10REG operand if you want the
records to be processed in an I/O area (one or two
I/O areas), or the WORKA operand if you want the
records to be processed in a workarea.

TRACKS PER VOLUME 77

Track 0 System Use

Tracks 1 - 73 Data Records

Track 74 Reserved

Tracks 75 - 76 Alternates for

Defective Tracks

RECORDS PER TRACK

BYTES PER RECORD

PER TRACK

PER VOLUME

Figure 5-4. Diskette layout and storage capacity.

26

128

3.328

242.944

The first GET macro transfers a chain of records
from diskette to the input area. It also initializes the
specified register to the absolute address ofthe first
data record, or it transfers the first record to the
specified workarea. Subsequent GET macros either
add an indexing factor to the register or move the
proper record to the specified work area, until all
records in the block are processed. Then, the next
GET makes a new chain of records available in virtu­
al storage, and either initializes the register or moves
the first record.

The PUT macro accomplishes this data transfer
for output in the same way. That is, when command
chained records are written on diskettes, the individ­
ually built records must be formed into a chain in

the output area before they can be transferred to the
output file.

Command chained records can be built directly
in an output area or in a work area. Each PUT ma­
cro for these records either adds an indexing factor
to the register (lOREG), or moves the completed re­
cord to the proper location in the output area. When
an output chain of records is complete, a PUT macro
causes the chain of records to be transferred to the
output file and initializes the register, if one is used.

Closing a File
For diskette files, CLOSE sets the multivolume indi­
cator in the HDRI label to indicate the last volume of
the file. Then, it sets up the end-of-data address in
the HDRI label and feeds the last diskette, deter­
mined by the FEED operand in the DTF macro.

Error Handling
By specifying the ERREXT and ERROPT operands in
the DTFDU and logic module generation macros,
LIOCS assists you in processing permanent I/O errors.

Specifying ERREXT=YES in DTFDU and DUMODFx
enables your ERROPT routine to return to DUMODFx
with the ERET macro. It also enables permanent
errors to be indicated to your program. For ERREXT
facilities, the ERROPT operand must be specified.
However, to take full advantage of this option use
the ERROPT=name operand.

Specify the DTF ERROPT operand if you do not
want a job to be terminated when a permanent error
cannot be corrected in the diskette error routine. If
attempts to reread a chain of records are unsuccess­
ful, the job is terminated unless the ERROPT entry is
included. Either IGNORE, SKIP, or the name of an
error routine can be specified. The functions of
these parameters are described below.

IGNORE

SKIP

The error condition is ignored. The records are
made available for processing. On output, the
error condition is ignored and the records are
considered written correctly.

No records in the error chain are made avail­
able for processing. The next chain of records
is read from the diskette, and processing con­
tinues with the first record of that chain. On
output, the SKIP option is the same as the
IGNORE option.

name
10CS branches to your error routine named by
this parameter regardless of whether or not
ERREXT= YES is specified. In this routine you

Chapter 5: Processing Diskette Files 5 - 3

can process or make note of the error condition
as desired.

If ERREXT is not specified, register I contains the
address of the first record in the error chain. When
processing in the ERROPT routine, you reference
records in the error chain by referring to the address
supplied in register I. The contents of the IOREG

register or work area are variable and should not be
used to process error records. Also, GET macros
must not be issued for records in the error chain. If
any other IOCS macros (excluding ERET if
ERREXT=YES) are used in this routine, the contents
of register 12 (with RDONLY) and 14 must be saved
and restored after their use. At the end of the rou­
tine, return control to IOCS by branching to the ad­
dress in register 14. For a read error, IOCS skips that
error chain of records, and makes the first record of
the next chain available for processing in the main
program.

If ERR EXT is specified, register I contains the
address of a two part parameter list containing the
4-byte DTFDU address and the 4-byte address ofthe
first record in the error chain. Register 14 contains
the return address. Processing is similar to that de­
scribed above except for addressing the records in
error.

At the end of its processing, the error processing
routine returns to LIOCS by issuing the ERET macro.

For an input file, the program:

• skips the error chain and reads the next chain
with an ERET SKIP, or

5 - 4 VSE/ Advanced Functions Macro User's Guide

• ignores the error with an ERET IGNORE, or

• it makes another attempt to read the error
chain with an ERET RETRY.

For an output file the only acceptable parameters
are IGNORE or name, and the program:

• ignores the error condition with ERET IGNORE

or ERET SKIP, or

• attempts to write the error chain with an
ERET=RETRY. Bad spot control records (I, 2,
13, or 26 records depending on the CMDCHN

specification) are written at the current diskette
address, and the write chain is retried in the
next 1,2, 13, or 26 (depending on the CMDCHN

specification) sectors on the diskette.

The DTFDU error options are shown in Figure
5-5.

To Terminate the job, specify nothing;

Skip the error record, specify ERROPT=SKIP;

Ignore the error record, specify
ERROPT=IGNORE;

Process the error record, specify ERROPT = name;

After processing the record, to leave the error-processing
routine and

Skip the (input) record, execute ERET SKIP;

Ignore the record, execute ERET IGNORE;

Retry reading or writing the re- execute ERET RETRY.
cord,

Figure 5-5. DTFDU error options.

J

..

J

II.

..

Chapter 6:

Before any processing can be done on a magnetic
tape file, it must be defined by the DTFMT macro
and the logic module generation macro, MTMOD.

The operands for DTFMT are listed in Figure 6-1,

and the operands for MTMOD are listed in Figure
6-2. For details about these and other macros, see
VSE/Advanced Functions Macro Reference.

Label Processing
You can issue an LBRET macro in your program
when you have completed processing labels and
wish to return control to 10CS. LBRET applies to
subroutines that write or check magnetic tape user­
standard or nonstandard labels. The operand used
- 1,2, or 3 - depends on the function to be per­
formed. The functions and operands are explained
below. See also the section "Label Processing" in
Appendix C.

Checking User Standard Tape Labels: 10CS reads
and passes the labels to you one at a time until a
tapemark is read, or until you indicate that you do
not want any more labels. Use LBRET 2 if you want
to process the next label. If IOCS reads a tapemark,
label processing is automatically terminated. Use
LBRET I if you want to bypass any remaining labels.

Writing User Standard Tape Labels: Build the
labels one at a time and return to 10CS, which writes
the labels. When LBRET 2 is used, IOCS returns con­
trol to you (at the address specified in LABADDR)

after writing the label. Use LBRET I to terminate the
label set.

Writing or Checking Nonstandard Tape Labels:
You must process all your nonstandard labels at
once. Use LBRET 2 after all label processing is com­
pleted and you want to return control to 10CS. Ap­
pendix C shows an example of this.

Block Size
The BLKSIZE operand of DTFMT specifies the num­
ber of bytes transferred to or from the I/O area and
tape. If a READ or WRITE macro specifies a length
greater than the BLKSIZE value for work files, the
record to be read or written will be truncated to fit
in the I/O area. The maximum block size is 32,767
bytes. The minimum size of a physical tape record
(gap to gap) is 12 bytes. A record of eleven bytes or
less is treated as noise.

Processing Magnetic Tape Files

For output processing of variable records, the
minimum physical record length is 18 bytes. If less
than 18 bytes are specified for variable blocked or
variable unblocked records, BLKSIZE=18 is assumed.

For output processing of spanned records, the
minimum physical record length is 18 bytes. If
SPNBLK or SPNUNB and TYPEFLE=OUTPUT are speci­
fied in the DTFMT and the BLKSIZE is invalid or less
than 18 bytes, an MNOTE is generated and
BLKSIZE= 18 is assumed.

For ASCII tapes, the BLKSIZE includes the length
of any block prefix or padding characters present. If
ASCII=YES and BLKSIZE is less than 18 bytes (for
fixed-length records only) or greater than 2048
bytes, an MNOTE is generated because this length
violates the limits specified by American National
Standards Institute, Inc.

Reading Magnetic Tape
Backwards
If records on magnetic tape are read backwards (the
DTF operand READ=BACK is specified), blocks of
records are transferred from tape to virtual storage
in reverse order. The last block is read first, the
next-to-last block is read second, etc. For blocked
records, each GET macro also makes the individual
records available in reverse order. The last record in
the input area is the first record available for proc­
essing (either by indexing or in a work area).

Any 9-track tape can be read backwards. 7 -track
tape can be read backwards only if the data conver­
sion special feature was not used when the tape was
written.

Forcing End-Of-Volume
The FEOV (force end-of-volume) macro is used for
either input or output files on magnetic tape drives,
to which programmer logical units were assigned, to
force an end-of-volume condition before sensing a
tapemark or reflective marker. This indicates that
processing of records on the current volume is fm­
ished, but that more records for the same logical file
are to be read from, or written on, a following vol­
ume. If a spanned record is begun on an output file
and there is not enough space to contain it, MTMOD
issues an FEOV at the end of the last completed span­
ned record. The last spanned record (for which
there was no room) is rewritten on a new volume.

The name of the file, specified in the header en­
try, is the only parameter required. The name can

Chapter 6: Processing Magnetic Tape Files 6 - I

AppUeato

I~ut Output

X X

X X

X

X X

X X

X X

X X

X

X X

X X

X X

X X

X X

X X

X

X X

X X

X

X X

X X

X X

X X

X

X X

X

X

X X

M - Mandatory
0- Optional

Work

X M

X M

X M

X M

M

0

0

0

X 0

X 0

X 0

0

0

0

0

X 0

X 0

X 0

X 0

X 0

0

X 0

X 0

0

X 0

0

0

0

Figure 6-1. DTFMT macro operands.

BLKSIZE = nnnnn

DEVADDR = SYSxxx

EOFADDR=xxxxxxxx

FILABL=xxxx

10AREA 1 = xxxxxxxx

ASCII=YES

BUFOFF=nn

CKPTREC=YES

ERREXT=YES

ERROPT =xxxxxxxx

HDRINFO=YES

IOAREA2 = xxxxxxxx

10REG=(nn)

LABADDR =xxxxxxxx

LENCHK=YES

MODNAME = xxxxxxxx

NOTEPNT = xxxxxx

RDONLY=YES

READ=xxxxxx

RECFORM = xxxxxx

RECSIZE=nnnn

REWIND=xxxxxx

SEPASMB=YES

TPMARK= {YESINO}

TYPEFLE = xxxxxx

VARBLD=(nn)

WLR ERR = xxxxxxxx

WORKA=YES

6 - 2 YSE/ Advanced Functions Macro User's Guide

Length of one I/O area in bytes (maximum = 32,767).

Symbolic unit for tape drive used for this file.

Name of your end-of-file routine.

(NO, STD, or NSTD). If NSTD specified, include LABADDR.
If omitted, NO is assumed.

Name of first I/O area.

ASCII file processing is required.

Length of block prefix if ASCII=YES.

Checkpoint records are interspersed with input data re-
cords. 10CS bypasses checkpoint records.

Additional errors and ERET are desired.

(IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.

Print header label information if FILABL=STD.

If two I/O areas are used, the name of the second area. •
General registers 2-12, written in parentheses. Use only if
GET or PUT does not specify work area or if two I/O areas
are used. Omit WORKA.

Name of your label routine if FILABL=NSTD, or if
FILABL=STD and user-standard labels are processed.

Length check of physical records if ASCII=YES and
BUFOFF=4.

Name of MT~OD logic module for this DTF. If omitted,
10CS generates standard name.

(YES or POINTS). YES if NOTE, POINTW, POINTR, or
POINTS macro used. POINTS if only POINTS macro used.

Generate read-only module. Requires a module save area
for each task using the module.

(FORWARD or BACK). If omitted, FORWARD assumed.

(AXUNB,AXBLK,VARUNB,VARBLK,SPNUNB,SPNBLK,
or UNDEF). For work files use FIXUNB or UNDEF. If omit-
ted, FIXUNB is assumed.

If RECFORM =FIXBLK, number of characters in record. If
RECFORM=UNDEF, general registers 2-12, written in
parentheses. Not required for other records.

(UNLOAD or NORWD). Unload on CLOSE or end-of-
volume, or prevent rewinding. If omitted, rewind only.

DTFMT is to be assembled separately.

Causes 10CS to write or to omit a tapemark ahead of data
records if FILABL=NSTD or NO is specified.

(INPUT, OUTPUT, or WORK). If omitted, INPUT is assumed.

General registers 2-12 written in parentheses, if
RECFORM=VARBLK and records are built in the output
area.

Name of wrong-length-record routine.

GET or PUT specifies work area. Omit 10REG.

•

Applies to

Input Output

X X

X

X X

X X

X X

X

X X

X X

X X

X X

M = Mandatory
0= Optional

Work

0 ASCII = YES

0 CKPTREC=YES

X 0 ERREXT=YES

X 0
ERROPT = xxxxxxxx

X 0
NOTEPNT = xxxxxx

X 0
RDONLY=YES

X 0 READ=xxxxxx

RECFORM =xxxxxx
X 0

X 0 TYPEFLE = xxxxxx

X 0 SEPASMB=YES

0 WORKA=YES

Figure 6-2. MTMOD macro operands.

Maximum Data
Rates

Magnetic Tape Device Kilo- Control Unit
bytes Bytes

per sec- per inch
ond

IBM 2401,M. 1 30 800
2 60 800 2803

3 90 800 or
4 60 1,600 2804
5 120 1,600
6 180 1,600

8 60 800

IBM 2415,M. 1-3 15 800 .
4-6 30 1,600

IBM 2420,M. 5 160 1,600 2803
7 320 1,600

IBM 341 0/3411,M. 1 20 1,600

2 40 1,600 ..
3 80 1,600

IBM 3420,M. 3 120 1,600
4 470 6,250
5 200 1,600 3803
6 780 6,250
7 320 1,600
8 1,250 6,250

IBM 8809 20/160 1,600 ...
• Control unit is included in the device.
•• A first tape drive in a string of 3410' s must be a 3411
which is a 3410 with a control unit.
••• Native attachment via file/tape adapter.

Figure 6-3. Characteristics of magnetic tape devices.

ASCII file processing is required.

Checkpoint records are interspersed with input data re-
cords. IOCS bypasses checkpoint records.

Indication of additional errors and ERET are desired.

(IGNORE, SKIP, or name of error routine). Prevents job
termination on error records.

(YES or POINTS). YES if NOTE, POINTW, POINTR, or
POINTS macro used. POINTS if only POINTS macro used.

Generate read-only module. Requires a module save area
for each task using the module.

(FORWARD or BACK). If omitted, FORWARD assumed.

(FIXUNB, FIXBLK, VARUNB, VARBLK, SPNUNB, SPNBLK,
or UNDEF). For work files use FIXUNB or UNDEF. If omit-
ted, FIXUNB is assumed.

(INPUT, OUTPUT, or WORK). If omitted, INPUT is assumed.

MTMOD is to' be assembled separately.

GET or PUT specifies work area. Omit IOREG.

be specified either as a symbol or in register nota­
tion.

When LlOCS macros are used for a file, FEOV

initiates the same functions that occur at a normal
end-of-volume condition, except for checking of
trailer labels.

For an input tape, FEOV immediately rewinds the
tape (as specified by REWIND) and provides for a
volume change (as specified by the ASSGN cards).
Trailer labels are not checked. FEOV then checks the
standard header label on the new volume and allows
you to check any user-standard header labels if
LABADDR is specified. If nonstandard labels are
specified (FILABL=NSTD), FEOV allows you to check
these labels as welL

For an output tape, FEOV writes:

• A tapemark (two tapemarks for ASCII files.)

• A standard trailer label and user-standard la­
bels (if any).

• A tapemark.

If the volume is changed, FEOV then writes the
header label(s) on the new volume (as specified in
the DTFMT REWIND, FILABL, LABADDR operands,
and the ASSGN cards). If nonstandard labels are
specified, FEOV allows you to write trailer labels on
the completed volume and header labels on the new
volume, if desired.

Chapter 6: Processing Magnetic Tape Files 6 - 3

Error Handling
Certain DTFMT and MTMOD macro operands are
provided to assist you in processing I/O and record­
length errors. Before discussing the use of these
macro operands in detail, it is important that you
understand the basic alternatives open to you re­
garding the handling of magnetic tape file errors.

For example, the first decision you must make is
whether or not you want to code your own error
processing routine for the file and have LIOCS exit to
it when an error condition occurs.

The alternative to doing your own error process­
ing is to rely on LIOCS to satisfy the handling of er­
ror conditions in a more general and limited way.
However, even if you choose this alternative, you
still have some options open to you and these will be
discussed more fully when the use of a specific ma­
cro operand is described.

The DTFMT and MTMOD macro operands which
you may use to achieve the desired error processing
are: ERREXT, WLRERR (only in the DTF macro), and
ERROPT.

By including ERREXT=YES in your DTFMT and
MTMOD macros, you indicate to LIOCS that control
can be returned from your error processing routine
by means of the ERET imperative macro. If you omit
the ERREXT operand, a return to LIOCS from your
error processing routine must be accomplished with
a branch to the address contained in register 14.

Including ERR EXT-YES also causes nonrecovera­
ble I/O errors occurring before data transfer takes
place to be indicated to your error processing rou­
tine.

To take full advantage of the capabilities of the
ERR EXT operand, you must also include the
ERR OPT-name operand.

If you specify ERREXT=YES, when an error condi­
tion occurs, register I will contain the address of a
2-part parameter list. The first four bytes of the list
is the address of the DTF table and the second four
bytes is the address of the physical record in error.
You can make use of both addresses in your error
routine, the first address to interrogate specific indi­
cators in the CCB (the first 16 bytes of the DTF table
- see Figures 9-3 and 9-4), and the second address
to access the record for error processing.

If you omit the ERREXT operand, when an error
condition occurs, register I will contain the address
of the physical record in error. In this case, your
routine must use register I to access the record for
error processing.

6 - 4 VSE/ Advanced Functions Macro User's Guide

Note: If ERR EXT is not specified for an output file, no code is
generated and an MNOTE is issued. If an error condition occurs,
the job is canceled.

The WLRERR=name operand (only in the DTF
macro) is used only in conjunction with magnetic
tape input files. With it you identify your routine for
processing wrong-length records. If you omit this
operand, one of the following actions will occur if a
wrong-length record is detected:

• If the ERROPT operand is also omitted, the
wrong-length record condition is ignored, or

• If the ERROPT operand is included for this file,
the wrong-length record is treated as an error
block and it is handled according to your speci­
fication for an error (see the discussion of the
ERROPT operand which follows).

The ERROPT operand is used to indicate your
choice of action if an error block is encountered.

If either FILABL=STD, or CKPTREC=YES, or both,
is specified, the error block is included in the block
count. After this, the job is automatically termi­
nated unless the ERROPT operand is included to
specify other procedures to be followed in case of an
error condition. Either, IGNORE, SKIP, or the sym­
bolic name of an error routine can be specified;
however, for output files, only IGNORE and name
are valid parameters. The functions of these specifi­
cations are:

IGNORE
For input files, the error condition is complete­
ly ignored and records are made available for
processing by your main program. When
reading spanned records, the entire spanned
record or block of spanned records is returned
to you rather than just the one physical record
in which the error occurred.

When writing spanned records, the error is
ignored and the physical record containing the
error is treated as a valid record. The remain­
der, if any, of the spanned record segments are
written, if possible.

SKIP
For input files, no records in the error block
are made available for processing by your
main program. The next block is read from the
tape and processing continues with the first
record of that block. The error block is includ­
ed in the block count. When reading spanned
records, the entire spanned record or block of
spanned records is skipped rather than just the
one physical record in which the error occur­
red.

J

•

..

•

•

..

name

When writing spanned records, the error is
ignored and the physical record containing the
error is treated as a valid record. The remain­
der, if any, of the spanned record segments are
written.

10CS branches to your error processing routine
named by this parameter (regardless ofwheth­
er or not you have included ERREXT=YES). In
your routine, you process or make note of the
error condition as you wish.

Programming Your Error Processing Rou­
tines
You may perform any kind of error processing you
want in your error routine; however, you must abide
by certain rules and restrictions.

• In your error processing routine, you must not
issue a GET to the file.

• If your routine issues any other 10CS macros
(excluding ERET when you have specified
ERREXT=YES), the contents of register 13 (with
RDONLY) and register 14 must be saved before
and restored after the macros are used.

• If your routine issues I/O macros which use the
same read-only module that caused control to
pass to the error routine, you must provide an­
other save area. One save area is used for the
normal I/O operations and the second for I/O
operations in the error routine itself. Before
returning to the module that entered the error
routine, register 13 must be set to the save area
address originally specified for the task.

• If you have specified ERREXT=YES, register 1
contains the address of the 2-part parameter
list; otherwise, register 1 contains the address of
the physical record in error. You must access
the error block, or the records in the error
block, by the address in the parameter list or in
register 1. (The content of the 10REG register or
work area - if either is specified - is unpre­
dictable and, therefore, should not be used for
error processing.) When spanned records are
processed, the address is that of the whole span­
ned record, blocked or unblocked.

Note: For ASCII tapes, the pointer to the block in error indicates
the first logical record following the block prefIX.

• IfERREXT-YES, the data transfer bit (byte 2, bit
2) of the DTF table (CCB) should be tested to
determine whether a nonrecoverable I/O error
has occurred. If the bit is on, the physical re­
cord in error has not been read or written. If
the bit is ofT, data was transferred and your

routine must address the physical record in er­
ror to determine the action to be taken.

• At the conclusion of error processing, your rou­
tine must return control to LIOCS either by
branching to the address in register 14 or, if you
have specified ERREXT=YES, via the ERET
IGNORE or SKIP option.

Note: The RETRY option of the ERET macro is not valid for
magnetic tape files and results in job termination if used.

Wrong-length Error Processing Considerations
If the block read is shorter than the length specified
in the BLKSIZE operand, the first two bytes of the
DTF table (CCB) contain the number of bytes left to
be read (residual count). Therefore, the size of the
actual block is equal to the specified block size mi­
nus the residual count. If the block read is longer
than the length specified in the BLKSIZE operand,
the residual count is zero, and there is no way to
compute the actual size of the block. In this latter
case, the number of bytes transferred is equal to the
length specified in the BLKSIZE operand, and the
remainder of the block is lost (truncated).

When fixed-length unblocked records are speci­
fied (RECFORM=FIXUNB), a wrong-length record
error condition is given when the length of the re­
cord read is not the same as specified in the BLKSIZE
operand. For EBCDIC fixed-length blocked records,
record length is considered incorrect if the physical
tape record (gap-to-gap) that is read is not a multi­
ple of the logical record length, as specified in the
RECSIZE operand. This permits reading of short
blocks of logical records without a wrong-length
record indication.

For EBCDIC variable-length records (blocked and
unblocked), the record length is considered incorrect
if the length of the tape record is not the same as the
block length specified in the 4-byte block length
field. The residual count can be obtained by ad­
dressing the halfword in the DTF table at
filename+98.

For ASCII variable-length records (blocked and
unblocked), a check on the physical record length is
made if LENCHK=YES is specified. The physical
record length is considered incorrect if the tape re­
cord is not the same as the block length specified in
the 4-byte block prefix. In this case, the WLR bit
(byte 5, bit I) in the DTF table is set ofT.

For undefmed records, a wrong-length record is
indicated if the record read is longer than the size
specified in the BLKSIZE operand.

Chapter 6: Processing Magnetic Tape Files 6 - 5

Other Error Processing Considerations
• If a parity error is detected when a block of

records is read, the tape is backspaced and re­
read a specified number oftimes (device ERP)
before the block is considered an error block.

Output parity errors are considered to be an
error block if they exist after 10CS attempts to
forward erase and write the tape output a speci­
fied number oftimes (device ERP). Under this
condition, your error processing routine must
treat the device as inoperative and must not
attempt further processing on it. Any subse­
quent attempt to return to MTMOD results in job
termination.

• A sequence error may occur if LIOCS is search­
ing for a first segment of a logical spanned re­
cord and fails to find it. If you have specified
either WLRERR=name or ERROPT=name, the
error recovery procedure is the same as for
wrong-length record errors. If you have speci­
fied neither WLRERR=name nor ERROPT=name,
LIOCS ignores the sequence error and searches
for the next first segment.

Figure 6-4 summarizes the DTFMT error options
for various combinations of error specifications and
errors.

To Terminate the job, specify nothing;

Skip the error record, specify ERROPT=SKIP;

Ignore the error record, specify
ERROPT = IGNORE;

Process the error record, specify ERROPT=name,
and/or (for wrong-length re- specify WLRERR=name.
cord error)

After processing the record, to leave the error-processing
routine and

Skip the record (input only), execute BR 14, or execute
ERET SKIP;

Ignore the record, execute ERET IGNORE;

Retry the record, execute ERET RETRY.

Figure 6-4. DTFMT error options.

Non-Data Device Operations
By using the CNTRL macro, your program can con­
trol a number of magnetic tape handling operations
that are not concerned with reading or writing data.
The format of the CNTRL macro is as follows:

[name] CNTRL {filenamel(l)} ,code

Where code is one of the 3-character mnemonic
codes in the following list of function categories:

Rewinding tape to the load point:
REW -Rewind
RUN - Rewind and unload

6 - 6 VSE/ Advanced Functions Macro User's Guide

Moving tape to a specified position:
BSR - Backspace to interrecord gap
BSF - Backspace to tapemark
FSR - Forward space to interrecord gap
FSF - Forward space to tapemark

Forward or backward logical record spacing:
FSL - Forward space logical record
BSL - Backward space logical record

Writing a tapemark:
WTM - Write tapemark

Erasing a portion of the tape:
ERG - Erase gap (writes blank tape)

The tape rewind (REW and RUN) and tape move­
ment (BSR, BSF, FSR, and FSF) functions can be used
before a tape file is opened. This allows the tape to
be positioned at the desired location for opening a
file, so that:

• The tape can be positioned to a file located in
the middle of a multifile-reel.

• Rewinding of the tape can be performed even if
NORWD was specified in the DTF REWIND ope­
rand.

Note: If you are using a self-relocating program, you must open
the file before issuing any commands for it.

The tape movement functions (BSR, BSF, FSR, and
FSF) apply only to input files, and the following
should be considered:

1. The FSF (or BSR) function permits you to skip
over a physical tape record (from one interre­
cord gap to the next). The record passes with­
out being read into storage. The FSF (or BSF)
function permits you to skip to the end of the
file (identified by a tapemark).

2. The functions of FSR, FSF, BSR, and BSF always
start at an interrecord gap.

3. If blocked input records are processed and if
you do not want to process the remaining re­
cords in the block, nor one or more succeeding
blocks, issue a RELSE macro before the CNTRL
macro. The next GET then makes the first re­
cord of the new block available for processing.
If the CNTRL macro (with FSR, for example) is
issued without a preceding RELSE, the tape is
advanced. The next GET makes the next record
in the old block available for processing.

4. For any I/O area combination except one I/O
area and no work area, 10CS always reads one
tape block ahead of the one that is being proc­
essed. Thus, the next block after the current
one is in storage ready for processing. There­
fore, if a CNTRL FSR is given, the second block
beyond the present one is passed without being
read into storage.

•

J

•

•

L

5. If FSR or BSR is used, LIOCS does not update the
block count. Furthermore, IOCS cannot sense
tapemarks on an FSR or BSR command. There­
fore, IOCS does not perform the usual EOV or
EOF functions in these cases.

The tape spacing functions (FSL or BSL) apply to
spanned record input files only. These codes are
used when logical record spacing is desired. Consid­
er these factors when FSL or BSL is specified:

1. Logical record spacing is ignored if it immedi­
ately follows a RELSE macro .

2. Forward and backward spacing refer to the
absolute direction of the spacing. For example,
if BSL is specified on an input file with
READ=BACK, only one logical record is skipped.

3. If an end-of-file, end-of-volume, or an error
condition occurs while a FSL or BSL spacing
function is being executed, the condition is han­
dled as if it occurred during a normal GET oper­
ation.

Chapter 6: Processing Magnetic Tape Files 6 - 7

•

J

6 - 8 YSE/ Advanced Functions Macro User's Guide

Chapter 7:

Unit record files are, in general, characterized by
utilizing a wide variety of storage media. These
range from punched card and paper tape through
printer and console to the latest in magnetic ink
(MICR) and machine readable printed (OCR) media.
For some of these, each record is complete on one
unit of information storage such as a punched card
or MIcR-inscribed check. For other files, such as
printer or console file, a unit is the line of print or
display characters, rather than a physical entity like
a piece of paper. For yet others, as with paper tape
or OCR journal tape, the nature of a unit is not so
well defined.

The result of this variety is that unit record pro­
gramming is highly device-dependent, to the degree
that different DTFS are needed to define files for
different types of unit record I/O devices. This chap­
ter discusses the following unit record files, based on
device types:

Punched Card Files
Printer Files
Console Files
Magnetic Ink Character Reader Files
Optical Reader Files
Paper Tape Files

Processing Punched Card Files
Before punched card files can be processed, they
must be defined by the DTFCD macro and the
CDMOD logic module generation macro. DTFCD and
CDMOD are also required to define 3881 Optical
Mark Reader files. See the section "Processing Opti­
cal Reader Files" for more information on process­
ing 3881 files. The DTFCD operands are listed in
Figure 7-1. For details ofthe DTFCD and CDMOD
macros, see VSE/ Advanced Functions Macro
Reference.

The range of punched card equipment provided
by IBM allows the user to select devices that best
support his applications. Some of these devices per­
form only one function, for example reading or
punching. Other types are able to perform different
functions in separate card paths, while yet others
can perform different functions in a single card
path.

The first part of this section ("Associated Files")
provides hints to bear in mind when using the IBM
2560, 3525, or 5424/5425 to perform multiple func­
tions on a file in one pass.

The IBM 3504 and 3505 offer support for a differ­
ent kind of application: these card readers can be

Pr.ocessing Unit Record Files

equipped with the Optical Mark Reader special
feature, which allows reading of up to 40 columns of
marked data. Hints for dealing with this OMR data
are given under "OMR Data".

When only one function is to be performed on a
card file the DTFCD declarative macro is used for the
files to be read or punched, and the DTFPR macro
for files to be printed. The FUNC operand specifies
the function to be performed on the file, namely:

FUNC=R
FUNC=P
FUNC=W
FUNC=I

for reading,
for punching,
for printing,
for punching/interpreting.

When more than one function is performed on a
file, one speaks of associatedfiles. All combinations
of the three functions read, punch, and print are
possible.

Associated Files
In VSE assembler language, a file definition must be
given for each function to be performed on the
cards. (Punch-interpret is an exception.) These
definitions are established by DTFCD macros for
read and punch files, and by the DTFPR macro for
print files. The files are associated by means of their
respective FUNC and ASOCFLE operands. The FUNC
operand specifies the function combination to be
performed on the card file. Valid parameters are:

FUNC=RP
FUNC=RW
FUNC=RPW
FUNC=PW

for read-punch,
for read-print,
for read-punch-print,
for punch-print.

The ASOCFLE operand in each DTF identifies one
associated read, punch, or print file by its filename
(ASOCFLE=filename). Figure 7-2 shows how, for the
different function combinations, the ASOCFLE ope­
rands must be specified in the two or three DTF mac­
ros. For example, if FUNC=PW is specified, specify
the filename of the punch DTFCD in the ASOCFLE
operand of the print DTFPR.

Associated files can have only one I/O area each.
The I/O area with or without workarea may be dif­
ferent for each associated file, or it may be the same.
When, for example, you specify the same I/O area
(or workarea) for an RW file, the same information
will be read and printed. Or, if you use the same I/O
area (or workarea) for the print and punch files of
an RPW card file, the information that is printed will
be the same as the information punched.

Chapter 7: Processing Unit Record Files 7 - I

Applies to

Input Output

X X

X X

X X

X X

X X

X

X

X X

X

X X

X X

X X

X X

X X

X X

X X

X X

X

X X

X X

X X

X X

M = Mandatory
0= Optional

Combined

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 7-1. DTFCD macro operands.

M DEVADDR = SYSxxx

M IOAREA1 =xxxxxxxx

0 ASOCFLE = xxxxxxx

BLKSIZE=nnn

0

0
CONTROL=YES

0
CRDERR = RETRY

CTLCHR=xxx

0

DEVICE=nnnn
0

0 EOFADDR=xxxxxxxx

0
ERROPT =xxxxxx

0
FUNC=xxx

IOAREA2 =xxxxxxx
0

0
10REG=(nn)

MODE=xx
0

0
MODNAME=xxxxxxxx

OUBLKSZ=nn
0

0
RDONLY=YES

0
RECFORM = xxxxxx

0
RECSIZE=(nn)

0 SEPASMB=YES

SSELECT=n
0

TYPEFLE = xxxxxx
0

0
WORKA=YES

7 - 2 VSE/ Advanced Functions Macro User's Guide

SymbOlic unit for reader-punch used for this file.

Name of first I/O area, or separate input area if
TYPEFLE=CMBND and IOAREA2 are specified.

Name for FUNC=RP, RW, RPW, PW.

Length of one I/O area, in bytes. If omitted, 160 is as-
sumed for a column binary on the 2560, 3504, 3505, or
3525; 96 is assumed for the 2596 or 5424/5425, other-
wise 80 is assumed.

CNTRL macro used for this file. Omit CTLCHR for this file.
Does not apply to 2501.

RETRY if punching error is detected. Applies to 2520 and
2540 only.

(YES or ASA). Data records have control character. YES ..
for S/370 character set; ASA for American National Stan-
dards Institute character set. Omit if TYPEFLE=CMBND.
Omit CONTROL for this file.

(1442,2501,2520,2540, 2560P, 2560S,2596,3504,
3505, or 3525. Specify 5425P or 5425S for 5424/5425 (P
or S). If omitted, 2540 is assumed.

Name of your end-of-file routine.

IGNORE, SKIP, or name. Applies to 2560, 3504, 3505,
3525 and 5424/5425 only.

R, P, I, RP, RW, RPW, PW. Applies to 2560, 3525, and
5424/5425 only.

Name of second I/O area, or separate output area if
TYPEFLE=CMBND. Not allowed if FUNC=RP, RW, RPW,
or PW. Not allowed for output file if ERROPT=IGNORE.

Register number, if two I/O areas used and GET or PUT
does not specify a work area. Omit WORKA.

(E or C) for 2560. (E, C, 0, R, EO, ER, CO, CR) for 3504
and 3505. (E, C, R, ER, CR) for 3525. If omitted E is as-
sumed.

Name of CDMOD logic module for this DTF. If omitted,
10CS generates standard name.

Length of IOAREA2 if TYPEFLE=CMBND. If OUBLKSZ
omitted, length specified by BLKSIZE is assumed for
IOAREA2.

Generates a read-only module. Requires a module save
area for each task using the module.

(FIXUNB, UNDEF, or VARUNB). If omitted, FIXUNB is as-
sumed. Input or combined files always FIXUNB.

Register number if RECFORM=UNDEF. General registers
2-12, written in parentheses.

DTFCD is to be assembled separately.

(1 or 2) for 1442, 2520, 2596, 3504, or 3525. (1,2, or 3)
for 2540. (1, 2, 3, 4, or 5) for 2560. (1, 2, 3, or 4) for
5424/5425. Stacker-select character.

(INPUT, OUTPUT, or CMBND). If omitted INPUT assumed.
CMBND may be specified for 1442N1, 2520B 1, or 2540
punch-feed-read only.

GET or PUT specifies work area. Omit 10REG. Not allowed
for output file if ERROPT=IGNORE.

•

-
Code in FUNC=operand

filename specification in ASOCFlE = operand :)' .-

read DTFCD punch DTFCD print DTFPR

FUNC=PW filename of print DTFPR filename of punch DTFCD

FUNC=RP filename of punch DTFCD filename of read DTFCD

FUNC=RPW filename of punch DTFCD filename of print DTFPR filename of read DTFCD

FUNC=RW filename of print DTFPR filename of read DTFCD

Examples:
1. If FUNC=PW is specified:

a. specify the filename of the print DTFPR in the ASOCFLE operand of the punch DTFCD and
b. specify the filename of the punch DTFCD in the ASOCFLE operand of the print DTFPR.

2. If FUNC=RPW is specified:
a. specify the filename of the punch DTFCD in the ASOCFLE operand of the read DTFCD, and
b. specify the filename of the print DTFPR in the ASOCFLE operand of the punch DTFCD, and
c. specify the filename of the read DTFCD in the ASOCFLE operand of the print DTFPR.

Figure 7-2. ASOCFLE operand usage with print associated files

Processing Considerations for Associated Files
VSE does not provide any special macros to control
the overlapping of reading with processing. For the
IBM 2560 and the 5424/5425, however, the assem­
bler language programmer who uses LIOCS can
achieve improved performance through the use of
dummy PUTS as described in the following text. The
assembler language programmer who uses PIOCS can
design his own overlapped processing.

Note: When using associated files and ASSGN ... ,lGN. alilogi­
cal units of the associated files must be ASSGN-ed IGN.

Read-Punch Associated Files: For RP associated
files, the GET for the readfile and the PUT for the
punch file must both be issued for each card. If
punching is not desired, the output area or the
workarea must be filled with blanks. LIOCS tests for
blanks in the output area or workarea and, if it finds
them, suppresses the punching. When the operand
CTLCHR=YES or ASA is specified in the DTFCD ma­
cro for the punch file, the control character must
always be present in the first byte of the output area
or workarea; only the data portion following the
control character may be filled with blanks. If the
CNTRL macro is used, it must be issued before the
PUT. As a result of the PUT, LIOCS will initiate the
reading of the next card, and read it into a special
buffer, which is part of the DTF table for the read
file. The user need not, and cannot, set up this buff­
er, nor control its use. The next GET will obtain the
data from this buffer and move it into the input
area. Thus, by issuing the PUT as soon as possible
after the GET, as much as possible of the next card
will be read while the program is doing other proc­
essing.

Read-Print Associated Files: For RW associated
files, the GET for the read file must be issued for
each card. The PUT for the print file needs to be
issued only when actual printing is desired. But

since the PUT initiates the reading of the next card, it
is advisable to issue a PUT even if no printing is de­
sired and to fill the output area or work area with
blanks (as described for the RP files above). Ifno
PUT is issued, overlapped processing cannot take
place.

Read-Ponch-Print Associated Files: For RPW asso­
ciated files, the GET for the read file and the PUT for
the punch file must both be issued for each card.
The PUT for the print file, however, needs to be is­
sued only when actual printing is desired. Since it is
this PUT that initiates the reading of the next card, it
is advisable to issue the PUT for the print file even if
no printing is desired and to fill the output area or
workarea with blanks (as described for the RP files
above). If no PUT for the print file is issued, overlap­
ped processing cannot take place. When the ope­
rand CTLCHR=YES or ASA is specified in the DTFCD

macro for the punch file, the control character must
always be present in the first byte of the output area
or workarea; only the data portion following the
control character may be filled with blanks. If the
CNTRL macro is used, it must be issued before the
PUT for the punch file.

Associated files are discussed further in VSE Sys­
tem Data Management Concepts.

OMR Data

Format Descriptor Card: When you process an in­
put file on the IBM 3504 or the 3505, you can specify
MODE=O in the DTFCD macro to indicate optical
mark read mode and MODE=R to indicate read col­
umn eliminate mode.

The specification of either 0 or R requires a for­
mat descriptor card defining the columns to be read
or eliminated. This descriptor card must be the first
card in the file. When it is found, an 80-byte record

Chapter 7: Processing Unit Record Files 7 - 3

is built which relates to the specified format on a
column-per-column basis. If the format descriptor
record is not found, a message is issued to the opera­
tor and the job is terminated. The format descriptor
card is written as follows:

FORMAT (nl,n2)[,(n3,n4) ...]

FORMAT must be punched in columns 2-7, fol­
lowed by a blank in column 8. Operands begin in
column 9 and may continue through column 71;
they must be separated by a comma. Continuation
cards can be specified by punching an x in column
72; coding on the next card must then begin in col­
umn 16. Both nl and n2 must be greater than or
equal to 1, and less than or equal to 80. The ope­
rand n2 must be greater than or equal to n 1. If the
format descriptor card is written

FORMAT (nl,n2),(n3,n4), ...

n2 must be less than n3. For OMR, n3 minus n2 must
be greater than or equal to 2.

For MODE-O, nl indicates the first column, and
n2 indicates the last column to be read in OMR
mode. Only every other column between n 1 and n2
can be read in OMR mode; therefore, n 1 and n2 must
both have even values or both have odd values.

For MODE-R, nl indicates the first column not to
be read, and n2 indicates the last column not to be
read.

For example, ifthe operand MODE=O is specified
and you want to read columns 1,3,5,7,9, 70, 72, 74,
76, 78, and 80 in OMR mode, you would use the fol­
lowing format descriptor card:

FORMAT (1,9),(70,80)

Or, if the operand MODE=R is specified and you
want to read all card columns except 20 through 30
and 52 through 76, you would use the following
format descriptor card:

FORMAT (20,30),(52,76)

Data Card: The following rules apply to the coding
of an input card to be read in OMR mode:

• Mark characters (character to be read optically)
must be separated by at least one column that
contains neither marks nor punches. "M" in the
example indicates mark characters and "b"
indicates the blanks:

MbMbMbbM

• Mark characters must be separated from any
columns containing punched holes (in the ex­
ample indicated by "H") by at least one column
that contains neither marks nor punches:

1- 4 VSE/ Advanced Functions Macro User's Guide

MbHbHHH

• Mark characters in odd columns must be sepa­
rated from mark characters in even columns by
at least two columns that contain neither marks
nor punches:

MbMbbMbM

OMR Data Record: Although OMR data is physi­
cally located in alternating columns, the data in the
I/O area is compressed into contiguous bytes. The
relationship of the data on card columns to the loca­
tion of the data in storage is as follows:

1. If column n does not contain OMR data, the
data content of column n+ 1 represents the con­
tiguous byte in virtual storage which follows
the column n data byte.

2. If column n does contain OMR data, the data
content of column n+2 represents the contigu­
ous byte in virtual storage which follows the
column n data byte. The data contents of col­
umn n+ 1 is not placed in virtual storage.

3. The data content of column 1 always represents
the first data byte in virtual storage.

Figure 7-3 shows how these rules apply to the
data card and its format descriptor card, and the
record which results from reading the data card.

When a weak mark or poor erasure is detected in
a column, the column's data is replaced with a hexa­
decimal3F (X'3F') when reading in EBCDIC mode, or
two hexadecimal 3Fs (X'3F3F') when reading in col­
umn binary mode. Checking for this condition is the
user's responsibility.

If X'3F' is placed in the data, an X'3F' is also
placed in byte 80 of the I/O area when reading in
EBCDIC mode, or in byte 160 when reading in col­
umn binary mode, to indicate an OMR reading error.
You can then determine whether or not an OMR
reading error occurred on the card by checking this
byte. If, however, the I/O area length is less than 80
for EBCDIC mode or less than 160 for column binary
mode, the X'3F' is not placed in virtual storage. In
this case, to determine if a reading error occurred,
you must check each OMR byte for an X'3F'.

Updating Records
A card record may, with some devices, be read and
then have additional information punched back into
the same card. This is possible with the 2560, 3525,
and 5424/5425. and with the 1442,2520, and 2540
equipped with the special punch-feed-read feature.

J

•

•

Card column 1 2 3 4 5 6 7 8 9

Card Data P1 P2 15 M4 15 M6 15 15 M9

Format Data 1> 15 15 F4 - F6 - 1) F9

~ ~

Switch from Switch from even
punch to mark to odd marks

Format
Descriptor F 0 R M A T (

Card

Channel Data P1 P2 15 M4 M6 1) M9 Mll P13

15 = Must have neither hole nor mark data

1) = Hexadecimal 40

- = May be character or blank

P = Punched data in column x
x

M = Mark data in column x
x

F
x

= Format data for column x

Figure 7-3. OMR coding example.

For the card devices, there are two ways of speci­
fying in the DTFCD that such updating is desired;
which way is used depends on device type.

• For the 1442,2520, or 2540 equipped with the
punch-feed-read feature, use a combined file by
specifying TYPEFLE=CMBND in the DTFCD. An
example of a combined card file is given below.
For the 2540 with the punch-feed-read feature,
the file to be updated must be in the punch
feed.

• For the 2560, 3525, or 5424/5425, use associat­
ed files. Associated files are defined in the as­
sociated file declarations (DTFCD and DTFPR)

by the ASOCFLE and FUNC operands.

When updating a file, one I/O area can be speci­
fied (using the IOAREAl operand) for both the input
and output of a card record. If a second I/O area is
required, it can be specified with the IOAREA2 ope­
rand. For associated DTFCD files, however, two I/O

areas are not allowed.

A PUT for a combined card file must always be
followed by a GET before another PUT is issued:
GETS, however, can be issued as many tirnes in suc-
cession as desired. The corresponding rules for an
associated card file are given in the section
"GET /CNTRL/PUT Sequence for Associated Files,"
below.

10 11 12 13 14 15 16 17 18 19 20

15 M11 15 P13 P14 P15 P16 P17 P18 P19 P20

- Fll - 15 15 1) 15 15 1) 15 15

~

Switch from
mark to punch

4 6) (9 1 1)

P14 P15 P16 P17 P18 P19 P20

For a file using the 2540 with the punch-feed­
read special feature, a PUT macro must be issued for
each card. For a 1442 or 2520 file, however, a PUT

macro may be omitted if a particular card does not
require punching. The operator must run out the
2540 punch following a punch-feed-read job.

In the combined card file example of Figure 3-2
data is punched into the same card which was read.
Information from each card is read, processed, and
then punched into the same card to produce an up­
dated record.

End-oJ-File Handling
The EOFADDR operand must be included for input
and combined files and specifies the symbolic name
of your end-of-file routine. IOCS automatically
branches to this routine on an end-of-file condition.
In your routine you can perform any operations
required for the end of the file (you generally issue a
CLOSE instruction for the file).

10CS detects end-of-file conditions in the card
reader by recoginizing the characters 1* punched in
card columns 1 and 2 (column 3 must be blank). If
the system logical units SYSIPT and SYSRDR are as­
signed to a 5424/5425, 10CS requires that the 1*
card, indicating end-of-file, be followed by a blank
card. An error condition results if cards are allowed

Chapter 7: Processing Unit Record Files 7 - 5

to run out without a r trailer card (and without a
/ & card if end-of-job).

Error Handling
The ERROPT operand specifies the error option used
for an input or output file on a 2560, 3504, 3505,
3525, or 5424/5425. Either IGNORE, SKIP, or the
symbolic name of an error routine can be specified
for output files. This operand must be omitted when
using 2560 or 5424/5425 associated output files.
The functions of these parameters are described
below.

IGNORE indicates that the error is to be ignored.
The address of the record in error is put in register 1
and made available for processing. For output files,
byte 3, bit 3 ofthe CCB is also set on (see Figure 9-3);
you can check this bit and take the appropliate ac­
tion to recover from the error. Only one I/O area
and no work area is permitted for output files.
When IGNORE is specified for an input file associat­
ed with a punch file (FUNC=RP or RPW) and an error
occurs, a PUT for the card in error must nevertheless
be given for the punch file.

SKIP indicates that the record in error is not to be
made available for processing. The next card is read
and processing continues.

If name is specified, 10CS branches to your rou­
tine when an error occurs, where you may perform
whatever actions you desire. Register 1 contains the
address of the record in error, and register 14 con­
tains the return address. GET macros must not be
issued in the error routine for cards in the same de­
vice (or in the same card path for the 2560 or
5424/5425). If the file is an associated file, PUT mac­
ros must not be issued in the error routine for cards
in the same device (for the 2560 or 5424/5425 this
applies to cards in either card path). If any other
10CS macros are issued in the routine, register 14
must be saved. If the operand RDONLY=YES is spec­
ified, register 13 must also be saved. At the end of
your routine return to 10CS by branching to the ad­
dress in register 14. Ifthe input file is associated
with an output file (FUNC=RP, RPW or RW), no
punching or printing must be done for the card in
error. IOCS continues processing by reading the next
card.

Note: When ERR OPT is specified for an input file and an error
occurs, there is danger that the I" end-of-file card may be lost.
This is because IOCS, after taking the action for the card in error
specified by the ERROPT operand, returns to normal processing
by reading the next card which is assumed to be a data card. If
this card is in fact an end-of-file card, the end-of-file condition
cannot be recognized.

If an ERROPT routine issues I/O macros using the
same read-only module that causes control to pass to

7 - 6 VSE/ Advanced Functions Macro User's Guide

the error routine your program must provide anoth­
er save area. One save area is used for the normal
I/O operations, and the second for I/O operations in
the ERROPT routine. Before returning to the module
that entered the ERROPT routine, register 13 must
contain the save area address originally specified for
the task.

Programming Considerations
If OMR or RCE is specified for a 3505 card reader or
if RCE is specified for a 3525 card punch, OPEN re­
trieves the data from the first data card and analyzes
this data to verify the presence of a format descrip­
tor card. If a format descriptor card is found, OPEN

builds an 80-byte record corresponding to the for­
mat descriptor card. If a format descriptor card is
not found, a message is issued and the job is can­
celed.

For a 2560, 3525, or 5424/5425 print only file,
OPEN will feed the first card to ensure that a card is
at the print station.

For 2560,3525, or 5424/5425 associated files, all
of the associated files must be opened before a GET

or PUT is used for any of the files.

When a 2540 is used for a card input file, each
GET macro normally reads the record from a card in
the read feed. However, if the 2540 has the special
punch-feed-read feature installed and if
TYPEFLE=CMBND is specified in the DTFCD macro,
each GET reads the record from a card in the punch
feed, at the punch-feed-read station. This record can
be updated with additional information that is then
punched back into the same card when the card
passes the punch station and a PUT macro is issued.

2560 Printing
The 2560 has a maximum of 6 print heads, one for
each print line. For a description of how the print
heads may be set, see the appropriate IBM 2560
Multi-Function Card Machine manuals. The output
area can be as large as 384 bytes, the equivalence of
64 characters per line.

With one PUT macro, one logical line of up to 384
characters in length is printed. This logical line is
split up into 6 physical lines. Thus a single PUT ma­
cro prints all the information for a card. The next
PUT macro will cause printing for the next card.

3525 Printing
For a 3525 with a 2-line printer, output is automati­
cally printed on lines 1 and 3.

When automatic line positioning is used for a
print-only file on a 2-line printer, the one PUT macro

J

•

J

•

causes line 3 to be printed and the other PUT causes
a new card to be fed and the printing of line I to be
started.

With a multiline printer, card feeding is caused
by the PUT macro which follows the PUT causing
printing on line 25. This PUT macro also starts the
printing on line I of the next card. If you want to
control line positioning, either the CONTROL ope­
rand or the CTLCHR operand must be specified in
the DTFPR macro. (CONTROL and CTLCHR are not
valid for card feeding when they are specified for a
printer file associated with a read or punch file.)
You are then responsible for all spacing and skip­
ping during printing. If CTLCHR=YES is specified,
you are also responsible for card feeding. The fol­
lowing restrictions apply to user-controlled line posi­
tioning:

1. Any attempt to print on lines other than lines 1
or 3 on a 2-line printer results in a command
reject. Otherwise, 2-line printer support is iden­
tical to multiline printer support.

2. A space after printing command for line 25
results in positioning on line 1 of the next card.

3. Any attempt to print and suppress spacing re­
sults in a command reject.

4. Any skip command to a channel number less
than or equal to the present channel position
results in line positioning at that channel posi­
tioning on the next card.

5. If CONTROL or CTLCHR is specified, FUNC is
ignored for 2-line printer support.

5424/5425 Printing
The 5424/5425 has a maximum of 4 print heads, one
for each print line. The output area can be as large
as 128 bytes, the equivalent of32 characters per line.

With one PUT macro, one logical line of up to 128
characters in length is printed. This logical line is
split up into 4 physical lines. Thus a single PUT ma­
cro prints all the information for a card. The next
PUT macro will cause printing for the next card.

Closing a File
For the 2560, 3525, or 5424/5425, when CLOSE is
issued for a file, it must also be issued for any associ­
ated files without any intervening input/output op­
erations. Reopening one associated file requires
reopening the others.

For 2560 or 5424/5425 read associated files, the
last card must not be punched or printed. When a
read file (single or associated) is closed, the last card
read will be selected into the output stacker when
2560 "unit exception" has occurred - that is, when

there is no following card. Two extra feed cycles are
executed to perform this. When a punch or print file
(without an associated read file) is closed, LIOCS

performs one feed cycle to select the last card into
the output stacker. When an associated punch-print
file is closed, LIOCS performs one feed cycle to select
the last card into the output stacker; if a print PUT

was not specified for the last card, LIOCS executes
the punch PUT before performing one feed cycle to
select the card into the output stacker.

When 0 or R has been included in the DTFCD
MODE operand for a 3504, 3505, or 3525 running
batched jobs, a non-data card must follow the card
which causes your program to close the file.

For the 3525, Figure 7-4 shows the card move­
ment caused by issuing CLOSE.

File Type Feed Caused by CLOSE for:

Read Read"
Punch Punch
Print Print
Read/Print Print"
Read / Punch / Print Print" "
Read/Punch Punch" "
Punch/Print Print
Punch /Interpret Punch

" A card feed is executed only if R has been specified in
the DTFCD MODE operand. Programs using read-
column-eliminate mode must detect an end-of-file condi-
tion themselves.

" " Delimiter cards cannot be punched or printed in these
files. CLOSE always issues a feed command.

Figure 7-4. CLOSE card movement for the 3525.

Card Device and Printer Control
Output stacker selection for a card device, and line
spacing or skipping for a printer, can be controlled
either by specified control characters in the data
records or by the CNTRL macro. Either method, but
not both, may be used for a particular file.

The CNTRL macro cannot be used for an input
file with two I/O areas (when the IOAREA2 operand
is specified).

The CNTRL macro must not be used for printer or
punch files if the data records contain control char­
acters and the entry CTLCHR is included in the file
definition.

Whenever CNTRL is issued in your program, the
DTF CONTROL operand must be included (except for
DTFMT and DTFDR) and CTLCHR must be omitted.
If control characters are used when CONTROL is
specified, the control characters are ignored and
treated as data.

The CONTROL operand must not be specified for
an input file used in association with a punch file

Chapter 7: Processing Unit Record Files 7 - 7

(when the operand FUNC=RP or RPW is specified) on
the 2560, 3525, or 5424/5425; in this case, however,
this operand can be specified in the DTFCD for the
associated punch file.

CNTRL usually requires two or three parameters.
The first parameter must be the name of the file
specified in the DTF header entry. It can be specified
as a symbol or in register notation.

The second parameter is the mnemonic code for
the command to be performed. This must be one of
a set of predetermined codes (see Figure 7-5).

When control characters in data records are used,
the DTF CTLCHR operand must be specified, and
every record must contain a control character in the
virtual-storage output area. This control character
must be the first character of each fixed-length or
undefined record, or the first character following the
record-length field in a variable-length record. The
BLKSIZE specification for the output area must in­
clude the byte for the control character. Ifunde­
fmed records are specified, the RECSIZE specification
must also include this byte.

When a PUT macro is executed, the control char­
acter in the data record determines the command
code (byte) of the ccw that 10CS establishes. The
control character is used as follows:

If CTLCHR-ASA, the control character is translat­
ed into the command code.

If CTLCHR=YES, the control character is used
directly as the command code.

If a program using ASA control characters sends a
space and/or skip command (without printing) to
the printer, the output area must contain the first

IBM Unit
Mnemonic

Code

1442, 2520 Card Read Punch SS

E

2540 Card Read Punch PS
3504,3505 Card Readers
3525 Card Punch

2560 Multi-Function Card Machine SS

2596 Card Read Punch SS

5424/5425 Multi-Function Card Unit SS

Figure 7-5. CNTRL Codes.

7 - 8 VSE/ Advanced Functions Macro User's Guide

n l

1
2

1
2
3

1
2
3
4
5

1
2

1
2
3
4

character forms control, and the remainder of the
area must be blanks (X'40').

If a program using ASA control characters prints
on the 3525, you must use a space 1 control charac­
ter (a blank) to print on the first line of a card. The
particular character to be included in the record
depends on the function to be performed. For exam­
ple, if double spacing is to occur after a particular
line is printed, the code for the double spacing must
be the control character in the output line to be
printed. The first character after the control charac­
ter in the output data becomes the first character
punched or printed. Appendix A gives a complete
list of control characters.

1442 and 2520 Card Read Punch Codes
Cards fed in the 1442 and 2520 are normally direct­
ed to the stacker specified in the DTF SSELECT ope­
rand. If SSELECT is omitted, they go to stacker 1.
The CNTRL macro can be used to temporarily over­
ride the normally selected stacker.

Input File: CNTRL can be used only when one I/O

area, with or without a work area, is specified for the
file. To stack a particular card, the CNTRL macro
should be issued after the GET for that card, and
before the GET macro for the following card. When
the next card is read, the previous card is stacked in
the specified stacker.

Note: If CNTRL is not issued after each GET, the same card
remains at the read station.

Output File: CNTRL can be used with any permissi­
ble combination of I/O areas and work areas. To
stack a particular card, the CNTRL macro should be
issued before the PUT for that card. After the card is

Command

Select stacker 1 or 2

Eject to stacker 1 (1442 only)

Select stacker 1, 2, or 3 (For 3504, 3505, and 3525,
3 defaults to stacker 2)

Select stacker 1, 2, 3, 4, or 5.

Select stacker 1 for Read, or stacker 3 for Punch.
Select stacker 2 for Read, or stacker 4 for Punch.

Select stacker 1, 2, 3, or 4.

J

•

J

..

•

punched, it is stacked immediately into the specified
pocket.

Combined File: CNTRL can be used with any per­
missible combination of I/O areas and work areas. If
a particular card is to be selected, the CNTRL macro
for the file should be issued after the GET and before
the PUT for the card. When the next card is read, the
previous card is stacked into the specified stacker.

2540 Card Read Punch Codes
Cards read or punched on the 2540 normally fall
into the stacker specified in the DTF SSELECT ope­
rand (or the RI or PI stacker ifsSLECT is omitted).
The CNTRL macro with code PS is used to select a
card into a different stacker, which is specified by
the third operand, n 1. The possible selections are
shown below. (These selections are also those which
may be specified in the DTF SSELECT operand.)

Feed Stacker Valueofnl

Read RI I
Read R2 2
Read RP3 3
Punch PI I
Punch P2 2
Punch RP3 3

Input File: CNTRL can be used only when one I/O
area, with or without a work area, is specified for the
file. To stack a particular card, the CNTRL macro
should be issued after the GET for that card. Before
the next GET macro is executed, the card is stacked
into the specified stacker.

Note: If your program indicates that operator intervention is
required on a 2540 (for example, to correct a card out of sequence
in a card deck), and your program has specified
CONTROL=YES in CDMOD, and you do not use the CNTRL
macro, then you should issue a CNTRL macro before the opera­
tor intervention is requested. Issuing CNTRL in this situation
assures that subsequent commands issued to the 2540 after the
operator intervention are not rejected as invalid.

Output File: CNTRL can be used with any permissi­
ble combination of I/O and work areas. When you
want to select a particular card, CNTRL must be is­
sued before the PUT for that card. However, CNTRL
does not have to precede every PUT.

2560 and 5424/5425 Card Device Codes
Cards fed into the 2560 or 5424/5425 are normally
directed to the output stacker specified in the DTF
SSELECT operand. If SSELECT is omitted, cards
which corne from hopper 1 go to output stacker 1;
and cards which corne from hopper 2 go to output
stacker 5 for the 2560, or to output stacker 4 for the
5424/5425. The CNTRL macro can be used to tem­
porarily override the stacker selection specified in
the SSELECT operand or by default.

Single File: CNTRL cannot be used for a print file.
For a read file, to stack a particular card the CNTRL
macro must be issued after the GET for that card.
F or a punch file, or a punch/interpret file (DTFCD
FUNC=I), to stack a particular card, CNTRL must be
issued before the PUT for that card.

Associated File: The sequence of CNTRL macro
usage with associated files is described below and is
summarized in the section "GET /CNTRL/PUT Se­
quence for Associated Files". CNTRL must be used
with only one of the associated files:

• With the read file if the associated file is
read/print. In this case, to stack a particular
card, CNTRL must be issued after the GET and
before any PUT for that card. If no PUT is is­
sued for that card, then CNTRL must be issued
after the GET for that card and before the GET
for the next card.

• With the punch file if the associated file is any­
thing other than read/print. In this case, to
stack a card, CNTRL must be issued before the
PUT which punches that card.

2596 Card Read Punch Codes
Cards fed into the 2596 are normally directed to the
stacker specified in the DTF SSELECT operand. If
SSELECT is omitted, cards go to stacker 1 for read
and stacker 3 for punch. The CNTRL macro can be
used to temporarily override the normally selected
stacker. The possible selections are shown in Figure
7-5. (These selections are also those which may be
specified in the DTF SSELECT operand.)

Input File: CNTRL can be used only when one I/O
area, with or without a work area, is specified for the
file. To stack a particular card, the CNTRL macro
should be issued after the GET for that card, and
before the GET for the next card. When the next
card is read, the previous card is stacked in the spec­
ified stacker.

Output File: CNTRL can be used with any permissi­
ble combination of I/O areas and work area. To
stack a particular card, the CNTRL macro should be
issued before the PUT for that card. After the card is
punched it is stacked immediately into the specified
stacker.

3504 and 3505 Card Readers and 3525 Card
Punch Codes
Cards read on the 3504 or 3505 or punched on the
3525 are normally directed to the stacker specified in
the DTF SSELECT operand. If SSELECT is omitted
and if no other CNTRL issuance in the program se-

Chapter 7: Processing Unit Record Files 7 - 9
} ,

lects stacker 2 or 3, stacker 1 is assumed. If a CNTRL

macro is issued elsewhere in the program, selecting
stacker 2 or 3, then stacker 1 must be explicitly se­
lected. The CNTRL macro overrides the stacker se­
lection specified in the SSELECT operand or by de­
fault. For input files, CNTRL can be used only when
one I/O area is specified for the file.

3525 Card Printing Codes
The CNTRL macro can control spacing and skipping
to a specific line on a card for the 3525 card print
feature. The command code SP is used to direct the
3525 to space one, two, or three lines on a card; SK is
used to skip to a channel (l through 12) on a card.

The 3525 print channels correspond to specific
rows on a printed card. The channels and their cor­
responding card rows are shown below:

Row Number Corresponding Channel

I --------------------1
2
3 --------------------2
4
5 --------------------3
6
7 --------------------4
8
9 --------------------5
10
II --------------------6
12
I3 --------------------7
14
15 --------------------8
16
17 --------------------9 (overflow)
18
19 ------------------- IO
20
21 -------------------11
22
23 -------------------12 (overflow)
24
25

GET/CNTRL/PUT Sequence/or
Associated Files
For 2560,3525, or 5424/5425 associated files, GET,

CNTRL, and PUT macros must be used with the files
in the sequence given in Figure 7-6. For example, to
process a card of a read-punch associated file re­
quires first issuing a GET macro for the file defined
in the read DTFCD, and then issuing a CNTRL macro
(if desired) for the file declared in the punch DTFCD,

and then issuing a PUT macro for the file declared in
the punch DTFCD.

GET/PUT sequences other than those given in
Figure 7-6 will cause an abnormal termination with
an illegal supervisor call 32 message. The use of
CNTRL in sequences other than those shown in Fig­
ure 7 -6 will cause unpredictable results.

7 - IO VSE/ Advanced Functions Macro User's Guide

Improved performance for the 2560 or 5424/5425
may be achieved by a type of overlapped processing
through the use of dummy PUTS.

Processing Printer Files
Before it can be processed, a printer file must be
defined with the DTFPR and PRMOD macros. Figure
7-7 lists the operands for these macros. (Note that
not all operands are valid for PRMOD). For details,
see VSE/Advanced Functions Macro Reference.

Associated Files
The ASOCFLE operand is used together with the
FUNC operand to define associated files for the 2560,
3525, or 5424/5425. (For a description of associated
files, see the section in "Processing Punched Card
Files," preceding.)

ASOCFLE specifies the filename of an associated
read and/or punch file, and enables macro sequence
checking by the logic module of each associated file.
One filename is required per DTF for associated
files.

Figure 7-2 defines the filename specified by the
ASOCFLE operand for each of the associated DTFS.

FUNC= {WITIIRWITIIRPWITIIPWITJ}
This operand specifies the type of file to be proc­
essed by the 2560, 3525, or 5424/5425. W indicates
print, R indicated read, P indicates punch, and T (for
the 3525 only) indicates an optional2-line printer.

RW[T), RPW[T), and PW[T) are used, together with
the ASOCFLE operand, to specify associated files;
when one of these parameters, other than T, is speci­
fied for a printer file it must also be specified for the
associated file(s). Note: Do not use T for associated
files; it is valid only for printer files.

If a 2-line printer is not specified for the 3525,
multi-line print is assumed. T is ignored if CONTROL

or CTLCHR is specified.

Printer Overflow
The PRTOV (printer overflow) macro is used with a
printer file to specify the operation to be performed
when a carriage overflow condition occurs. To use
this macro, the PRINTOV=YES operand must be in­
cluded in the DTFPR.

The PRTOV macro causes a skip to channell, or
branches to your routine, if an overflow condition
(channel 9 or 12) is detected on the preceding space
or print command. An overflow condition is not
recognized during a carriage skip operation. After
the execution of any command that causes carriage
m.ovement (PUT or immediate CNTRL), you should

•

•

To: Issue: For file declared in: FUNC=

GET DTFCD (read file)

READ/PUNCH I[CNTRl]' DTFCD (punch file) RP

PUT DTFCD (punch file)

GET DTFCD (read file)

[CNTRl]' DTFCD (punch file)
RPW READ/PUNCH/PRINT

PUT DTFCD (punch file)

[PUT]' • DTFPR

GET DTFCD

READ/PRINT [CNTRl]' DTFCD RW

[PUT]' • DTFPR

[CNTRl]' DTFCD

PUNCH/PRINT PUT DTFCD PW

I[PUT]' • DTFPR

• Optional. If used, however, the sequence is as shown .
•• Optional provided you do not want to print on the card. If used, however, the sequence is as shown .

Figure 7-6. GET /CNTRL/PUT macro usage to process one card of an associated file.

issue a PRTOV macro before issuing the next CNTRL

or PUT. This ensures that your overflow option is
executed at the correct time.

On the 3525 card punch, a channel 9 test indi­
cates print line 17. A channel 12 test indicates print
line 23. An overflow condition from either of these
channels causes:

• a transfer of control to the overflow routine
specified in the PRTOV macro, or

• a skip to channel one to begin printing on the
next card for print only files.

When the PRTOV macro is used on a 3525 2-line
printer, the result of the test is always negative since
lines 17 and 23 are not available. The test is logical­
ly a no-operation.

Note: PRTOV without the routine name option is invalid for
3525 associated files. A skip to channel one is valid only for 3525
print only files. PRTOV is not allowed for the 2560 or
5424/5425.

Printer Control
Line spacing or skipping for a printer can be con­
trolled either by specified control characters in the
data records or by the CNTRL macro. Either method,
but not both, may be used for a particular file. For
use of the latter method, see "Printer Codes," fol­
lowing.

When control characters in data records are used,
the DTF CTLCHR operand must be specified, and
every record must contain a control character in the
virtual-storage output area. This control character
must be the first character of each fixed-length or
undefined record, or the first character following the
record-length field in a variable-length record. The

BLKSIZE specification for the output area must in­
clude the byte for the control character. If unde­
fined records are specified, the RECSIZE specification
must also include this byte. For maximum and de­
fault output area sizes for different printers, see Fig­
ure 7-8.

When a PUT macro is executed, the control char­
acter in the data record determines the command
code (byte) of the ccw that IOCS establishes. The
control character is used as follows:

If CTLCHR=ASA, the control character is translat­
ed into the command code.

If CTLCHR=YES, the control character is used
directly as the command code.

If a program using ASA control characters sends a
space and/or skip command (without printing) to
the printer, the output area must contain the first­
character forms control, and the remainder of the
area must be blanks (X'40').

If a program using ASA control characters prints
on the 3525, you must use a space 1 control charac­
ter (a blank) to print on the first line of a card. The
particular character to be included in the record
depends on the function to be performed. For exam­
ple, if double spacing is to occur after a particular
line is printed, the code for double spacing must be
the control character in the output line to be printed.
The first character after the control character in the
output data becomes the first character punched or
printed. Appendix A gives a complete list of control
characters.

Chapter 7: Processing Unit Record Files 7 - II

I

PRMOD

n/a

n/a

n/a

n/a

0

0

0

0

0

n/a

n/a

0

0

0

0

0

0

0

n/a

0
M '" Mandatory
0- Optional

DTFPR

M

M

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

n/a = not allowed

DEVADDR = SYSxxx

IOAREA 1 = xxxxxxxx

ASOCFlE = xxxxxxxx

BlKSIZE=nnn

CONTROl=YES

CTlCHR=xxx

DEVICE=xxxxx

ERROPT = xxxxxxxx

FUNC=xxxx

IOAREA2 = xxxxxxxx

IOREG=(nn)

MODNAME=xxxxxxxx

PRINTOV=YES

RDONlY=YES

RECFORM = xxxxx

RECSIZE=(nn)

SEPASMB=YES

STLlST=YES

TRC=YES

UCS=xxx

WORKA=YES

Symbolic unit for the printer used for this file.

Name for the first output area.

Name of the associated file for FUNC=RW, RPW, PW.

length of one output area, in bytes. If omitted, 121 is assumed for 1403,
1443, 3203 or PRn; 136 is assumed for 3800 without TRC (or 137 with
TRC); 64 is assumed for 2560 or 3525; 96 is assumed for 5203 or
5424/5425. 1

CNTRl macro used for this file. Omit CTlCHR for this file. Not allowed for
2560 or 5424/5425.

(YES or ASA). Data records have control character. YES for S/370 charac-
ter set; ASA for American National Standards Institute character set. Omit
CONTROL for this file. Not allowed for 2560 or 5424/5425.

1403, 1443, 2245, 2560P, 2560S, 3203, 3211, 3525, 3800, 5203. Speci-
fy 5425P or 5425S for 5424/5425 (P or S). Specify PRT1 for 3203-4,
3203-5, 3211, 3262, or 3289-4. If omitted, 1403 is assumed. I

RETRY or the name of your error routine for PRn. IGNORE for 3525. Not
allowed for other devices. I

(W, RW, RPW, PW) for 2560 or 5424/5425. (W[T], RW[T], RPW[T], PW[T]
for 3525.)

If two output areas are used, name of second area.

Register number, if two output areas used and PUT does not specify a work
area. Omit WORKA.

Name of PRMOD logic module for this DTF. If omitted, IOCS generates
standard name. Not needed with 3800 advanced printer buffering.

PRTOV macro used for this file. Not allowed for 2560 or 5424/5425.

Generates a read-only module. Requires a module save area for each task
using the module.

(FIXUNB, VARUNB, or UNDEF). If omitted, FIXUNB is assumed.

Register number if RECFORM=UNDEF.

DTFPR is to be assembled separately.

1403 selective tape listing feature is to be used.

For 3800, output data lines include table reference character.

(ON) process data checks. (OFF) ignores data checks. Only for printers
with the UCS feature, PRT1, or 3800. If omitted, OFF is assumed. I

PUT specifies work area. Omit IOREG.

II PRTl refers to 321 I-compatible printers (that is, with a device type code of PRTl).

Figure 7-7. DTFPR and PRMOD macro operands.

Printer Codes
The CNTRL macro can be used for forms control on
any printer. CNTRL usually requires two or three
parameters. The first parameter must be the name of
the file specified in the DTF header entry. It can be
specified as a symbol or in register notation.

The second parameter is the mnemonic code for
the command to be performed. This must be one of
a set of predetermined codes (see Figure 7-9).

The third parameter, nl, is required whenever a
number is needed for stacker selection or immediate
printer carriage control. The fourth parameter, n2,
applies to delayed spacing or skipping. In the case

7 - 12 VSE/ Advanced Functions Macro User's Guide

of a printer file, the parameters n 1 and n2 may be
required.

The CNTRL macro must not be used for printer or
punch files if the data records contain control char­
acters and the CTLCHR operand is included in the
file definition.

Whenever CNTRL is issued in your program, the
DTF CONTROL operand must be included and
CTLCHR must be omitted. If control characters -are
used when CONTROL is specified, the control charac­
ters are ignored and treated as data.

The codes for printer operation cause spacing (SP)

over a specified number of lines, or skipping (SK) to
a specified location on the form. The third parame-

•

•

..

•

Maximum length (In
Length assumed

Devices bytes) which can be (in bytes)2
specified'

1403-1, -4 100 121

1403-6, -7 120 121

1403-2, -3, -5, 132 121
-8, -9

1443 144 121

2560 384 64

3203 132 121

PRT1
132 121

(except 3211)

3211 150 121

3525 64 64

3800 2043 1363

5203 132 96

5424/5425 128 96

RECFORM is FIXUNB or UNDEF and operand CTLCHR
is not specified.

2 The parameter BLKSIZE=n is omitted.

Without TRC=YES. With TRC=YES, the maximum length
is 205 and the assumed length is 137.

Notes:

• IfCTRCHR=YES/ ASA is specified, add 1 byte to the
maximum length which can be specified.

• IfRECFORM=VARUNB is specified add 4 bytes to the
maximum value which can be specified.

• For the 2245, ifRECFORM=VARUNB and
CTLCHR=YES/ ASA are specified, the maximum block­
size is 805 bytes.

Figure 7-8. Maximum and assumed lengths for the IOAREA I.

ter, nl, is required for immediate spacing and skip­
ping (before printing). The fourth parameter, n2, is
required for delayed spacing or skipping (after print­
ing).

The SP and SK operations can be used in any se­
quence. However, two or more consecutive immedi-

IBM Unit
Mnemonic

Code n,

1403,1443,3203,PRT1,3800, SP c
5203 Printers
3525 Card Punch with Print feature'

SK c

1403, 5203 Printers with Universal UCS ON
Character Set feature or 3203, 3800, OFF
PRT1 Printers.'

PRT1 Printer' FOLD

UNFOLD

n2

d

d

c = An integer that indicates immediate printer control (before printing).
d - An integer that indicates a delayed printer control.

ate skips (SK) to the same carriage channel on the
same printer result in a single skip immediate. Like­
wise, two or more consecutive delayed spaces (SP)

and/or skips (SK) to the same printer result in the
last space or skip only. Any other combination of
consecutive controls (SP and SK), such as immediate
space followed by a delayed skip or immediate space
followed by another immediate space, causes both
specified operations to occur.

Printer With the ues Feature: The CNTRL macro
can be used before a PUT for a file to change the
method of processing data checks. Data checks can
be either processed with an indication given to the
operator, or ignored with blanks printed in place of
the unprintable characters.

A data check occurs when a character except null,
(X'OO'), or blank, (X'40') sent to the printer does not
match any of the characters in the ucs buffer. On a
3800, a data check occurs when an attempt is made
to merge a character with another character differ­
ent from itself in the same print position, as well as
when an unprintable character is transmitted.

Before opening a file, the BLOCK parameter of the
ucs job control command determines for a 1403
whether data check processing takes place. For an­
other ucs printer, the NOCHK option of the
SYSBUFLD program (see VSE/Advanced Functions
System Control Statements) has the same meaning.
For a 3800, the DCHK parameter on the SETPRT job
control statement (or SETPRT macro instruction)
determines whether data checks are blocked or al­
lowed.

If several DTFPRS are assigned to the same physi­
cal unit, the ucs parameter of the DTF last opened
determines whether data check processing takes
place. If a DTFDI is opened for a ucs printer, it has
the effect of a NOCHK option. This change is operat-

Command

Carriage space 1, 2, or 3 lines

Skip to channel c and/or d (for 3525, a skip to channel
1 is valid only for print only files.)

Data checks are processed with an operator indication
Data checks are ignored and blanks are printed.

Print upper case characters for any byte with equivalent
bits 2-7.

Print character equivalents of any EBCDIC byte.

PRTI refers to 32 II-compatible printers (that is, with a device type of PRTl).

Figure 7-9. CNTRL macro command codes.

Chapter 7: Processing Unit Record Files 7 - 13

ed on the physical device and is valid for all DTFS
assigned to this device.

If the ucs form of the CNTRL macro is used for a
printer (other than the 3800) without the ucs fea­
ture, the CNTRL macro is ignored.

FOLD and UNFOLD Codes: Except on a 1403,
3203,3800, or 5203, the CNTRL macro can also be
used before a PUT to control the printing of lower­
case letters. Lower-case letters can either be printed
or replaced by upper-case equivalents.

Prior to using a CNTRL macro, the printing of
lower case letters is controlled by the UCB FOLD
parameter of SYSBUFLD. If the FOLD parameter is
specified, bits 0 and 1 are considered ones and the
upper case equivalent of bits 2 to 7 is printed. If
UNFOLD is specified, the character equivalent of the
EBCDIC byte is printed.

When you issue a PUT for a printer file, this PUT
causes the pertinent printer to space automatically
by one line, provided the DTFPR macro for the file
does not include the CTLCHR=code operand. Under
these circumstances, there is no need to issue a
CNTRL macro or to specify a control character in
order or advance the paper on the printer by one
line. If the DTFPR macro for the file does include
CTLCHR=code, the appropriate control character
must be moved to the first byte of the output area.
For a list of control characters, see Appendix A.

STLSP=control field: This optional PUT operand
specifies a control byte that allows for spacing while
using the selective tape listing feature on the 1403
printer. To use this feature, the operand STLIST=YES
must be specified in the DTFPR. Up to 8 paper tapes
may be independently spaced. The control byte is
set up like any other data byte in virtual storage.
You can also use ordinary register notation to pro­
vide the address of the control byte. Registers 2
through 12 are available without restriction. You
determine the spacing (which occurs after printing)
by setting on the bits corresponding to the tapes you
want to space. The correspondence between control
byte bits and tapes is as follows:

Control byte bits

Tape position

The tape position 1 is the leftmost tape on the
selective tape listing device.

Note: Double-width tapes must be controlled by both bits of the
control field.

STLSK=control field: This optional PUT operand
specifies a control byte that allows for skipping
while using the selective tape listing feature on the

7 - 14 VSE/ Advanced Functions Macro User's Guide

1403 printer. To use this feature, the operand
STLIST=YES must be specified in the DTFPR. Up to 8
paper tapes may be independently skipped. The
control byte is set up like any other data byte in
virtual storage. You can also use ordinary register
notation to provide the address of the control byte.
Registers 2 through 12 are available without restric­
tion. You determine the skipping (which occurs
after printing) by setting on the bits corresponding
to the tapes you want to skip. The correspondence
between control byte bits and tapes is shown in the
figure under "STLSP=control field", above.

Error Handling
The ERROPT operand specifies the action to be taken
in the case of an equipment check error. The func­
tions of the parameters are described below.

RETRY can be specified only for the a PRTl print­
er. RETRY indicates that if an equipment check with
command retry is encountered, the command is
retried once. If the retry is unsuccessful a message is
issued and the job is canceled.

IGNORE can be specified only for the 3525.
IGNORE indicates that the error is to be ignored. The
address of the record in error is put in register 1 and
made available for processing. Byte 3, bit 3 of the
CCB is also set on (see Figure 9-3); you can check
this bit and take the appropriate action to recover
from the error. IGNORE must not be specified for
files with two I/O areas or a work area.

ERROPT=name can be specified only for a 3211-
compatible printer. It indicates that if an equipment
check with command retry is encountered, the com­
mand is retried once. If the retry is unsuccessful a
message is issued and the job is canceled. With oth­
er types of errors (for these see the CCB, Figure 9-3)
an error message is issued, error information is
placed in the CCB, and control is given to your error
routine, where you may perform whatever actions
are desired. If any IOCS macros are issued in the
routine, register 14 must be saved; if the operand
RDONL Y=YES is specified, register 13 must also be
saved. To continue processing at the end of the rou­
tine, return to IOCS by branching to the address in
register 14.

Processing Console Files
DTFCN defines an input or output file that is proc­
essed on a 3210 or 3215 console printer-keyboard, or
a display operator console. DTFCN provides
GET /PUT logic as well as PUTR logic for a file, and
does not require a separate logic module macro to be
coded.

J

•

J

•

..

Figure 7-10 lists the keyword operands contained
in the operand field.

Programming Considerations
Communication with the operator console uses GET

or PUT logic, combined with a TYPEFLE=INPUT de­
fmtion for GET, and OUTPUT specification for PUT.

In addition, you may use the PUTR (PUT with reply)
macro to issue a message to the operator that re­
quires operator action and which will not be deleted
from the display screen until the operator has issued
a reply.

You may also use PUTR with the 3210 or 3215
console printer-keyboard, in which case PUTR func­
tions the same as PUT followed by GET for these
devices, but provides the message non-deletion code
for the display operator console. Use of PUTR for
the 3210 or 3215 is therefore recommended for com­
patibility if your program may at some time be run
on the display operator console instead ofthe 3210
or 3215.

Use PUTR for fixed unblocked records (messages).
Issue PUTR after a record has been built.

If PUTR is used in a program, TYPEFLE=CMBND

must be specified. DEY ADDR=SYSLOG must be spec­
ified if your DTFCN macro includes
TYPEFLE=CMBND.

The 10AREAI operand specifies the name of the
I/O area used by the file. For PUTR macro usage, the
first part of the I/O area is used for output, and the
second part is used for input. The lengths of these
parts are specified by the BLKSIZE and INPSIZE ope­
rands respectively. The I/O area is not cleared be­
fore or after a message is printed, or when a message
is canceled and reentered on the console.

The BLKSIZE operand specifies the length ofthe
I/O area; if the PUTR macro is used (that is, if
TYPEFLE=CMBND is specified), this operand specifies
the length of the output part ofthe I/O area. For the
undefmed record format, BLKSIZE must be as large
as the largest record to be processed. The length
must not exceed 256 characters.

Processing Magnetic Reader Files
Before a 1255, 1259, or 1419 magnetic reader input
file can be processed, it must first be defmed by the
DTFMR and MRMOD macros. The operands of
DTFMR are listed in Figure 7-11; for details, see
VSE/Advanced Functions Macro Reference. The
DTFMR and MRMOD macros also defme files for the
1270 and 1275 optical reader/sorter.

Some general characteristics of magnetic reader
processing are discussed below. For a discussion of
optical reader processing, see the following section
on the topic.

Characteristics of Magnetic Ink
Character Reader (MICR)
Important general characteristics of Magnetic Ink
Character Reader (MICR) processing are given in the
VSE System Data Management Concepts.

In addition, examples of GET -PUT document
processing and multiple 1419 operation (either all
single or dual) will be found in VSE/ Advanced
Functions System Generation.

MICR Document Buffer
The MICR Document Buffer provides you with proc­
essing status indicators and detected error indica­
tors. Before you can begin any MICR programming,
you must be aware ofthe purpose and format of this
buffer .

M DEVADDR=SYSxxx Symbolic unit for the console used for this file.

M IOAREA1 =xxxxxxxx

0
BLKSIZE=nnn

0 INPSIZE=nnn

0
MODNAME=xxxxxxx

0 RECFORM = xxxxxx

0
RECSIZE =(nn)

0
TYPEFLE = xxxxxx

0 WORKA=YES

M ... Mandatory
0- Optional

Figure 7-10. DTFCN macro operands.

Name of I/O area.

Length in bytes of I/O area (for PUTR macro usage, length of output part of I/O
area). If RECFORM =UNDEF, maximum is 256. If omitted, 80 is assumed.

Length in bytes for input part of I/O area for PUTR macro usage.

Logic module name for this DTF. If omitted, 10CS generates a standard name. The
logic module is generated as part of the DTF.

(FIXUNB or UNDEF). If omitted, FIXUNB is assumed.

Register number if RECFORM=UNDEF. General registers 2-12, written in parenthes-
es.

(INPUT, OUTPUT, or CMBND). INPUT processes both input and output. CMBND
must be specified for PUTR macro usage. If omitted, INPUT is assumed.

GET or PUT specifies work area.

Chapter 7: Processing Unit Record Files 7 - 15

M DEVADDR = SYSnnn Symbolic unit assigned to the magnetic character reader.

M IOAREA1=-xxxxxxxx Name of the document buffer area.

0
ADDAREA=nnn Additional document buffer area (ADDAREA+RECSIZE=250). If omitted. no area is

allotted.

0 ADDRESS = DUAL Must be included only if the device is a 1419 or 1275 with a dual address adapter.

0 BUFFERS=nnn Specifies the number of buffers needed. If omitted. 25 is assumed.

0 ERROPT =xxxxxxxx Name of your error routine. Required only if the CHECK macro is used.

0 EXTADDR .. xxxxxxxx Name of your stacker selection routine. Required only if SORTMDE=ON.

0
10REG=(nn) Pointer register number. If omitted. register 2 is assumed. General registers 2-12.

written in parentheses.

0 MODNAME=xxxxxxxx Name of your I/O module. Required only if a nonstandard module is referenced.

0 RECSIZE=nnn Specifies the maximum record length. If omitted. 80 is assumed.

0
SECADDR=SYSnnn Specifies secondary symbolic unit assigned to (dual address) 1275 or 1419. Re-

quired only if LITE macro is used.

0 SEPASMB=YES Required only if the DTF is assembled separately; otherwise it should be omitted.

0
SORTMDE=xxx ON-1255/1259/1270 or program sort mode used; OFF-1419/1275 sort mode used.

If omitted. ON is assumed.

M - Mandatory
0- Optional

Figure 7-11. DTFMR macro operands.

Figure 7-12 is a storage map of the document
buffer. The minimum number of document buffers
you may specify is 12, and the maximum number is
254. Before any data is read into the document buff­
er, logical IOCS sets the entire buffer, including the
status indicators, to binary zeros. The processing
macro - GET if your program uses one MICR device,
or READ if your program uses more than one MICR
device - then engages the device, and documents are
read into the I/O area until the MICR device is out of
documents, or until the I/O area is filled. The exter­
nal interrupt routine of the supervisor continually
monitors the reading of data so that processing of
other document buffers is never disrupted. At the
completion of each read for a MICR document, the
external interrupt routine interrupts your program
to give control to your stacker selection routine
which then determines pocket selection for that doc­
ument.

The MICR document buffer format is given in
detail in Figure 7-13.

Stacker Selection Routine for MICR
Your stacker selection routine resides in your pro­
gram area and receives control whenever a docu­
ment is ready to be stacker selected. This routine
determines the pocket (stacker) selected to receive
the document and whether batch numbering update
is to be performed (1419 only). The entry point is
specified in the DTFMR operand EXTADDR=name.
All registers are saved upon exiting from, and re­
stored upon returning to, your program. The use of
the general registers in this routine is as follows:

7 - 16 VSE/ Advanced Functions Macro User's Guide

Register Comment

0-4,6,8-15 These registers are available to your stacker selec­
tion routine for any purpose. However, because the
routine can be interrupted at any time, the contents
of these registers are unpredictable. If you want to
reference an area outside the stacker select routine,
you must reestablish addressability to the refer­
enced area. That is, you must re-load your USING
register (by means of, for instance, an address con­
stant placed within the stacker select routine).

5 When your stacker selection routine is entered, this
register contains the address of the routine. Regis­
ter 5 should be utilized as the base register for the
routine.

7 This register alway contains the address of the
buffer for the document being selected. Bytes 2 and
3 of the buffer (see Figure 7-13) indicate the read
status of the document.

Before entering your stacker selection routine, 10CS
aids in stacker selection by setting the entire docu­
ment buffer to binary zeros, reading the document
into the document data area, and posting informa­
tion in bytes 2 and 3. When the stacker selection
routine has determined which pocket to select for
the document, the actual stacker selection command
code for this pocket must be placed into byte 4 of
the document buffer pointed to by register 7. The
final destination of the document is indicated in byte
5 of the buffer. This indication is the same as byte 4
except in the case of a late stacker select, an auto­
selected document, a program malfunction, or a
device malfunction. Any of these results in an I/O
error. The reject code X'CF', indicating that the doc­
ument is placed in the reject pocket, is placed in byte
5.

J

..

•

B . ,-- eg.nning 0 document b ff u er area (dd a T d ' IOAREA1) ress spec I Ie In

..-Byte 0-5 buffer status indicators (address specified in IOREG and in regi ster 7 for your stacker selection rout ine)

r-- Batch numbering updates

.---- Error indicator for MICR device

-Pocket you selected

r-- Pocket document selected into

.---- Byte 6 - your addi ti onal work area
.---- Byte xxx - document data area

"
.. 80 80 00 IF SF SF Your work areo . Document reco rds right-adjusted with in _

Length is specified in ADDAREA this area . Length is specified in RECSIZE .

II
rl I----------------- Maximum Length is 256 Bytes---------------... .,I

D Indicates the normal condition (no errors - all fields read) when the document is being p rocessed and the stacker selection is
c omplete to pocketS and batch numbering update was performed (1419 model 1 or 3) .

m Number of buffers is limited only by the amount of storage availab le (see BUFFERS operand).

Figure 7-12. MICR document buffer.

The command codes to be used to select pockets
are:

Pocket

A
B
o
I
2
3
4
5
6
7
8
9

Reject

Code

X'AF' (Only for 1419)
X'BF' (Only for 1419)
X'OF'
X'IF'
X'2F'
X'3F'
X'4F'
X'5F'
X'6F'
X'7F'
X'8F'
X'9F'
X'CF'

An invalid code placed in byte 4 puts the docu­
ment into the reject pocket and posts bit 1 of byte 0
of the buffer. Byte 0, bit 2 of the next buffer is post­
ed.

Before returning to a 1419 external interrupt rou­
tine via the EXIT macro with the MR operand
(required method), you can request a batch number­
ing update. You can do this only within a your 1419
stacker selection routine by turning on byte I, bit 0
in the current document buffer. The instruction

01 I (7)X80'

does this for you.

•

For the 1419 (dual address), you cannot obtain
batch numbering update on an auto-selected docu­
ment (byte 2, bit 6 on). Such requests are ignored by
the external interrupt routine.

Timings for Stacker Selection
Because an MICR reader continuously feeds docu­
ments while engaged, it is necessary to reinstruct the
reader within a certain time limit after a read com­
pletion is signaled by an external interrupt. This
period is generally called minimum stacker selection
time. This available time depends on the reader
model, the length of documents being read, single or
dual address adapter (1419), and the fields to be
read on the 1419 (dual address) only. Refer to the
appropriate MICR publications listed in the latest
IBM System/3 70 and 4300 Processors Bibliography,
for a more complete description of device timings.

Failure to reinstruct the 1255, 1259, or 1419
(single address adapter) within the allotted time
causes the document(s) processed after this time to

Chapter 7: Processing Unit Record Files 7 - 17

be auto-selected into the reject pocket (late read
condition). Failure to reinstruct the 1419 (dual ad­
dress adapter) within the allotted time causes the
document being processed to be autoselected into
the reject pocket (late stacker-select condition).

Programming Considerations for 1419 Stacker
Selection
The stacker selection routine operates in the pro­
gram state with the protection key of its program
and with I/O and external interruption disabled. If
your stacker selection routine fails to return to the
supervisor (loops indefmitely), there is no possible
recovery. If such looping occurs, the system must be
re-IPLed to continue operation. It is therefore re­
commended that you thoroughly debug your stacker
selection routine in a dedicated environment.

In your stacker selection routine, no system ma­
cro other than EXIT MR can be used. The routine
runs with an all zero program and system mask, but
the machine check interruption is enabled and a
program check cancels the program.

Note: Any modification of floating point registers without saving
and restoring them may cause erroneous processing by any con­
current program using floating-point instructions.

When processing with the dual address adapter
on the 1419, you have more time for your stacker
selection routine. The only additional processing
you must do within the main line is to check byte 2,
bit 0, of the document buffer for stacker selection
errors.

Note: Batch numbering is not performed with the stacker selec­
tion of auto-selected documents.

Programming Considerations
MICR devices can be operated in any partition. The
user is supplied with an extension to the supervisor
which monitors, by means of external interrupts, the
reading of documents into a user-supplied I/O area
(document buffer area).

The user must access all MICR documents through
logical 10CS macros. Upon request, 10CS gives a
next sequential document and automatically en­
gages and disengages the devices to provide a con­
tinuous stream of input. Detected error conditions
and information about errors are passed to the user
in each docment buffer. Documents are read at a
rate dictated by the device rather than by the pro­
gram. To allow time for necessary processing
(including the determination of pocket selection),
the device generates an external interruption at the
completion of each read operation for each docu­
ment. The supervisor gives absolute priority to ex­
ternal interrupt processing.

7 - 18 VSE/ Advanced Functions Macro User's Guide

In problem programs, these devices can be con­
trolled by assembler language only, at the LIOCS GET
level if one device is attached, or at the LIOCS
READ/CHECK/WAITF level if multiple MICR devices
are attached.

Within a particular program, you should utilize
either the GET macro or the READ, CHECK, WAITF
combination.

For a program operating with two or more MICR
devices, the READ, CHECK, W AITF combination al­
lows processing to continue within the program
when any document buffer is ready for processing.
On the other hand, the GET macro (suggested for a
program operating with only one MICR device) in­
cludes an inherent wait for a document buffer to
become available within the file before processing
begins. Control always passes to another partition
whenever aWAIT condition occurs.

The DTFMR and the MRMOD declarative macros
are used' to describe the file. For any type ofproc­
essing you need a document buffer area with a spe­
cial buffer format. A document buffer must not
exceed 256 bytes, including the six-byte buffer status
indicators, any additional user work area, and the
maximum document data area. You may specify
any number of document buffers between 12 and
254; the actual maximum number depends on the
amount of virtual storage available.

Before any MICR document processing can be
done, the file(s) must be opened. For MICR devices,
OPEN sets the entire I/O area to binary zeros.

The first time a GET(or READ) is executed, the
supervisor engages the device for continuous read­
ing. Each time thereafter, the GET (or READ) merely
points (through 10REG) to the next sequential buffer
within each document buffer area. When a buffer
for a file becomes available, the user's main line
processing continues with the instruction after the
GET (or READ, CHECK combination).

When the GET macro detects an end-of-file con­
dition, 10CS branches to your end-of-file routine
(specified by EOFADDR). For MICR document proc­
essing, you do not regain control until either a buffer
becomes filled with a stacker-selected document, or
error conditions are posted in the buffer status indi­
cators.

If an unrecoverable I/O error occurs when a GET
macro is executed, no more GETS can be issued for
the file. If an unrecoverable I/O error occurs when
using the READ, CHECK, W AITF combination or when
document processing for that file is complete, you
can effectively continue by closing the file. Further
READ, CHECK, WAITFS treat this file as having no

J

•

..

•

..

documents ready for processing (see byte 0, bits 5
and 6 of the document buffer in Figure 7-13).

Each time an end-of-document condition occurs,
the user's main line processing routine, or any other
routine having control at that time, is interrupted by
the supervisor's external interrupt routine. The ex­
ternal interrupt routine branches immediately to the
user's stacker selection routine. After selecting a
pocket, you exit from your stacker selection routine
so that the supervisor can issue the stacker selection
command. At this time, the MICR device should be
reading document data into its respective document
buffer area. The supervisor, in priority order, passes
control to your main line processing routine, or to
the routine that had been interrupted.

Thus, document processing continues concurrent-
ly (see Figure 7-14) within

(1) the user's main line processing routine,
(2) the supervisor's external interrupt routine, and
(3) the user's stacker selection routine.

The order for exiting from these routines is the
reverse of the indicated order. Processing and moni­
tor operations continue concurrently until the reader
is disengaged, either normally or because of an er­
ror.

End-of-file must be detected and handled by the
user's main line processing routine. You can use the
OlSEN macro to stop the feeding of documents
through the MICR device: the program proceeds to
the next sequential instruction without waiting for
the disengagement to complete. You continue to
issue GETS or READs until the unit exception bit in­
dicates that all following documents have been proc­
essed.

The GET and the READ macros perform the same
functions. The GET, however, waits while the docu­
ment buffer fills, whereas the READ posts an indica­
tor in the buffer for you to examine with the CHECK
macro. If this indicator bit is on, the buffer is not
ready for processing, and a branch is made to the
second operand address of the CHECK macro. Your
routine at this operand address can then READ and
CHECK another file for document availability. If this
buffer is ready for processing, control passes to the
next instruction. If a special non-data status exists,
you should analyze the conditions in your ERROPT
routine and issue a READ to obtain a document un­
less an I/O error has occurred. If a second operand is
not provided within the CHECK macro, control
passes to the ERR OPT routine address.

The READ filename, MR macro makes the next
sequential buffer available to you, but it does not
verify that it is ready for processing (the CHECK ma-

cro is provided to make that test). If the buffer is not
ready for processing, the next READ to that file
points to the same buffer. Filename specifies the
name of the file associated with the record. It is the
same as that specified in the DTFMR header entry.
Register notation may be used. MR signifies that the
file is for a magnetic ink character reader (MICR).

The CHECK macro examines the buffer status
indicators. A READ macro must therefore have been
issued to the file before a CHECK macro is issued.

The CHECK macro determines whether the buffer
contains data ready for processing, is waiting for
data, contains a special non data status, or the file
(filename) is closed. If the buffer has data ready for
processing, control passes to the next sequential
instruction. If the buffer is waiting for data, or the
file is closed, control passes to the address specified
for control address, if present. If the buffer contains
a special non data status, control passes to the
ERROPT routine for you to examine the posted error
conditions before determining your action. (See
byte 0, bits 2, 3, and 4, of the document buffer in
Figure 7-13.) Return from the ERROPT routine to
the next sequential instruction via a branch on regis­
ter 14, or to the control address in register 0.

If the buffer is waiting for data, or if the file is
closed, and the control address is not present, con­
trol is given to you at the ERROPT address specified
in the DTFMR macro.

If an error, a closed file, or a waiting condition
occurs (with no control-address specified) and no
ERROPT address is present, control is given to you at
the next sequential instruction.

If the waiting condition occurred, byte 0, bit 5 of
the buffer is set to 1. If the file was closed, byte 0,
bits 5 and 6 of the buffer are set to 1 (see Figure
7-13.)

The WAITF (wait multiple) macro allows process­
ing of programs in other partitions while waiting for
document data. If any device within the WAITF ma­
cro list has records or error conditions ready to be
processed, control remains in the partition and proc­
essing continues with the instruction following the
W AITF macro.

One W AITF macro must be issued after a set of
READ-CHECK combinations before your program
attempts to return to a previously issued combina­
tion. Thus, the W AITF macro must be issed between
successive executions of a particular READ macro.

The OlSEN macro stops the feeding of documents
through the magnetic character reader. The pro­
gram proceeds to the next sequential instruction
without waiting for the disengagement to complete.

Chapter 7: Processing Unit Record Files 7 - 19

Byte

o

Buffer Status Indicators

Bit Comment

o The document is ready for processing (you need never test this bit).

1 Unrecoverable stacker select error, but all document data is present. You may continue to issue GETs and
READs.

2 Unrecoverable I/O error. An operator I/O error message is issued. The file is inoperative and must be
closed.

3 Unit Exception. You requested disengage and all follow-up documents are processed. The LITE macro may
be issued, and the next GET or READ engages the device for continued reading.

4 Intervention required or disengage failure. This buffer contains no data. The next GET or READ continues
normal processing. This indicator allows your program to give the operator information necessary to select
pockets for documents not properly selected and to determine unread documents.

5 The program issued a READ, no document is ready for processing, byte 0, bits 0 to 2 are off, or the file is
closed (byte 0, bit 6 is on). The CHECK macro interrogates this bit.
Note: You must test bits 1 through 4 and take appropriate action. Any data from a buffer should not be
processed if bits 2, 3, or 4 are on.

6 The program has issued a GET or READ and the file is closed. Bit 5 is also on.

7

o
Reserved.

Your stacker selection routine turns this bit on to indicate that batch numbering lIpdate (1419 only) is to be
performed in conjunction with the stacker selection for this document. The document is imprinted with the
updated batch number unless a late stacker selection occurs (byte 3, bit 2).

1-7 Reserved

o

Note: If bits 6 or 7 (byte 2) are on, bit 0 is ignored by the external interrupt routine. With the 1419 (dual
address) only, batch numbering update cannot be performed with the stacker selection of auto-selected
documents.

For 1419 or 1275 (dual address) only. An auto-select condition occurred after the termination of a READ
but before a stacker select command. The document is auto-selected into the reject pocket.

1-3 Reserved.

4 Data check occurred while reading. You should interrogate byte 3 to determine the error fields.

5 Overrun occurred while reading. Byte 3 should be interrogated to determine the error fields. Overruns
cause short length data fields. When the 1419 or 1275 is enabled for fixed-length data fields, bit 4 is set.

6-7 The specific meanings of bits 6 and 7 depend on the device type, the model, and the Engineering Change
level of the MICR reader; but if either bit is on, the document(s) concerned is (are) auto-selected into the
reject pocket.
1. 1412 or 1270: Bit 6 on indicates that a late read condition occurred. Bit 7 on indicates that a document

spacing error occurred. (Unique to the 1270: both the current document and the previous document are
auto-selected into the reject pocket when this bit is on. This previous document reject cannot be
detected by 10CS, and byte 5 of its document buffer does not reflect that the reject pocket was selected.)

2. 1275 and 1419 (single address) without engineering change #125358: Bit 6 indicates that either a late
read condition or a document spacing error occj.lrred. Bit 7 indicates a document spacing error for the
current document.

3. 1255,1259,1275, and 1419 (single or dual address) with engineering change #125358: Bit 6
indicates that an auto-select condition occurred while reading a document. The bit is set at the termina­
tion of the READ command before the stacker select routine receives control. Bit 7 is always zero.

I Byte 2 (bits 4, 5, 6, and 7) and byte 3 contain MICR sense information.

Figure 7-13. MICR document butTer format (Part lof2).

You should continue to issue GETS or READS until
the unit exception bit (byte 0, bit 3) of the buffer
status indicators is set on.

The LITE macro lights any combination of pocket
lights on a 1419 magnetic character reader.

Before using the LITE macro, the OlSEN macro
must be issued to disengage the device. Processing
of the documents should be continued until the unit
exception bit (byte 0, bit 3) of the buffer status indi­
cators is set on (see Figure 7-13). When this bit is
on, the follow-up documents have been processed,
the MICR reader has been disengaged, and the LITE

macro can be issued.

7 - 20 VSE/ Advanced Functions Macro User's Guide

The bit configuration for the pocket light switch
area is shown in Figure 7-15. The pocket lights that
are turned on should have their indicator bits set to
1. If an error occurs during the execution of the
pocket lighting I/O commands, bit 7 in byte 1 is set
to 1. This error condition normally indicates that
the pocket light operation was unsuccessful.

Processing Optical Reader Files
Before processing, files for the 1270/1275 Optical
Reader /Sorters must be defmed by a DTFMR macro.
The operands for this macro were listed in Figure
7 -11 in the preceding section on Magnetic Readers.

Programs for the 3881 Optical Mark Reader re-

J

•

•

Buffer Status Indicators

Byte Bit Comment

3 1 0 Field 6 valid.2

1 Field 7 valid.2

2 A late stacker selection (unit check late stacker select on the stacker select command). The document is
auto-selected into the reject pocket.

3 Amount field valid (or field 1 valid).2

4 Process control field valid (or field 2 valid).2

5 Account number field valid (or field 3 valid).2

6 Transit field valid (or field 4 valid). 2

7 Serial number field valid (or field 5 valid).2
Notes:
1. For the 1270, bits 3-7 are set to zero when the fields are read without error.
2. For the 1255, 1259, 1275, and 1419, bits 3-7 are set on when each respective field, including bracket

symbols, is read without error. This applies to bits 0, 1, and 3-7 on the 1259 and 1419 model 32.
3 . For the 1255, 1259, 1275, and 1419, unread fields contain zero bits. Errors are indicated when an

overrun or data check condition occurs while reading the data field.

4 Inserted pocket code determination by your stacker select routine. Whenever byte 0, bits 2, 3, or 4 are on,
this byte is X'OO' because no document was read and your stacker selection routine was not entered.
Whenever auto-selection occurs, this value is ignored. A no-op (X'03') is issued to the device, and a reject
pocket value (X'CF') is placed in byte 5. The pocket codes are (byte 2, bit 6 or 7 on):
Pocket A - X'AF'l Pocket 5 - X'5F'
Pocket B - X'BF'4 Pocket 6 - X'6F' Except 1270
Pocket 0 - X'OF' Pocket 7 - X'7F' models 1 and 3
Pocket 1 - X'1 F' Pocket 8 - X'8F'
Pocket 2 - X'2F' Pocket 9 - X'9F'
Pocket 3 - X'3F' Reject Pocket - X'CF'
Pocket 4 - X'4F'

5 The actual pocket selected for the document. The contents are normally the same as that in byte 4.
Note:
1. X'CF' is inserted whenever auto-selection occurs (byte 2, bit 6; byte 2, bit 7; byte 2, bit 0; or byte 3, bit

2). These conditions may result from late READ commands, errant document spacing, or late stacker
selection.
a. Start 1/0 for stacker selection is unsuccessful (byte 0, bit 1).
b. An I/O error occurs (for example, invalid pocket code) on the 1419 (dual address) secondary control

unit when selecting this document.

Additional User Work Areas

This additional buffer area can be used as a work area and lor output area. Its size is determined by the DTFMR ADDAREA
operand. The only size restriction is that this area, plus the 6-byte status indicators and data portion must not exceed 256
bytes. This area may be omitted.

Document Data Area

The document data area immediately follows your work area. The data is right-adjusted in the document data area. The length
of this data area is determined by the DTFMR RECSIZE operand.

I Byte 2 (bits 4, 5, 6, and 7) and byte 3 contain MICR sense information.
2 Only for the 1 259 model 34 or 1419 model 32. Bits 0 and 1 are not used for other models.
1 1275, 1419, and 1270 models 2 and 4 only.
41275 and 1419 only .

Figure 7-13. MICR document buffer format (Part 2 of2).

quire its files to be defmed with a DTFCD macro,
whose operands are listed in Figure 7-1, in the sec­
tion on Punched Card files.

You must use the DTFDR macro to define each
3886 Optical Character Reader file in your program.
This macro defmes the characteristics of the file, the
format record to be loaded into the 3886 when the
file is opened, and the storage areas and routines
used. In addition, LIOCS requires you to code the
following macros together with the DTFDR:

DRMOD to have the assembler generate the logic
module needed to process the file.

DFR

DLINT

to define attributes common to a group
of lines described in one format record.

to describe the individual line in the
format record.

The operands for DTFDR, DFR, and DLINT are
listed in Figures 7-16,7-17, and 7-18.

DTFOR is used to defme input files to be proc­
essed on a 1287 Optical Reader or a 1288 Optical
Page Reader; its operands are listed in Figure 7-19.

Chapter 7: Processing Unit Record Files 7 - 21

Processing Operation IUser)

~------------------~

I Main Line ProcesSing I

I I
I I

Document Buffer Area

I
I
I
I
I

The above GET or READ
provides the next buffer
address In 10REG and
the user processes the
data.

I I
: _____ ______________ J

Figure 7-14. MICR/OCR document processing.

Bits 0 1 2 3 4

Pocket Lights
A B 0 1 2

5 6 7

3 4 5

8

6

Figure 7-15. Bit configuration for pocket light switch area of the 1419/1275.

7 - 22 VSE/ Advanced Functions Macro User's Guide

Monitor Operation ISupervisor)

Supervisor starts and/or reads documents from
a MICR device .

Document data IS placed Into the I/ O area.

DUring data transfer. control is passed to the
user's main line processmg routine.

When end-of-document occurs, the supervISor
branches to the user stacker selection routine

SupervISor selects pocket according to the
user's pocket selection.

9 A B CDE F

7 8 9 Reserved Error indicator
bit

J

•

M COREXIT = xxxxxxxx

M DEVADDR=SYSxxx

M EOFADDR=xxxxxxxx

M EXITIND=xxxxxxxx

M FRNAME=xxxxxxxx

M FRSIZE=nn

M HEADER=xxxxxxxx

M IOAREA1 =xxxxxxxx

0 BLKSIZE=nnn

0 DEVICE=3886

0
MODNAME=xxxxxx

0 RDONLY=YES

0 SEPASMB=YES

0
SETDEV=YES

M = Mandatory
0= Optional

Figure 7-16. DTFDR macro operands.

M FONT=xxxx

0 BCH=n

0 BCHSER=n

0 CHRSET=n

0
EDCHAR=(x, ... ,)

0 ERASE=YES

0
NATNHP=YES

0
REJECT=x

M = Mandatory
0= Optional

Figure 7-17. DFR macro operands.

M LFR-nn

M LlNBEG=nn

0 IMAGE=YES

0 NOSCAN-(n,n)

0
FLDn=(n,n,NCRIT,xxx)

0
EDITn - (xxxxxx,EDCHAR)

0
FREND=YES

M = Mandatory
0- Optional

Figure 7-18. DLINT macro operands.

Name of your error condition routine.

Symbolic unit assigned to 3886 optical character reader.

Address of your end-of-file routine.

Name of completion code return area.

Phase name of format record to be loaded upon file opening.

Number of bytes to be reserved in DTF expansion for format records.

Name of area for header record from 3886.

Name of file input area.

Length of area named by IOREG1. If omitted, the maximum length of 130 is assumed.

If omitted, 3886 is assumed.

Name of DRMODxx logic module for this DTF. If omitted, IOCS generates standard
name.

If DTF is to be used with read-only module.

If DTFDR is to be assembled separately.

If SETDEV macro is issued in your program to load a different format record into the
3886.

Default font for all codes described by format record.

Batch numbering is to be performed by 3886. If used, BCHSER is invalid.

Both batch and serial numbering are to be performed. If specified, BCH is invalid.

Specifies recognizing character (see Figure 7-16). If omitted, 0 is assumed.

Characters that may be deleted from any field that is read. If omitted, no character
deletion occurs.

Group and character erase symbols are to be recognized. If omitted, NO is assumed.

European Numeric Hand Printing (ENHP) characters 1 and 7 are used. If omitted, NO
is assumed, indicating that Numeric Hand Printing (NHP) characters 1, 7 are used.

Replacement character for any reject character in the data record read by the 3886.
If omitted, X'3F' is assumed.

Line format record for this line.

Specifies beginning of a line.

Data record is to be in image mode. If omitted, NO (standard mode) is assumed.

Indicates an area on the document line that is to be ignored by the 3886.

Describes a field in a line. n in the FLD keyword may be from 1 to 14; if specified, a
corresponding EDITn keyword must follow each FLDn keyword.

Specifies editing functions to be performed on the data by 3886. A corresponding
FLDn keyword must precede each EDITn keyword.

Indicates last DLiNT macro for the format record. If omitted, NO is assumed meaning
that further DLiNT macros follow.

For detailed discussions of the operands for these macros, see VSE/Advanced Functions Macro Reference.

Chapter 7: Processing Unit Record Files 7 - 23

Applies to

1287T 1287D

X X

X X

X X

X X

X

X X

X X

X X

X X

X

X

X

X X

X X

X X

X X

X

M - Mandatory
0= Optional

1288

X M

X M

X M

X M

0

X 0

X 0

X 0

0

X 0

0

0

X 0

X 0

X 0

X 0

0

Figure 7-19. DTFOR macro operands.

COR EXIT = xxxxxxxx

DEVADDR=SYSnnn

EOFADDR=xxxxxxxx

10AREA 1 = xxxxxxxx

BlKFAC=nn

BlKSIZE=nn

CONTROl= YES

DEVICE=xxxxx

HEADER==YES

HPRMTY==YES

IOAREA2 = xxxxxxxx

10REG=(nn)

MODNAME = xxxxxxxx

RECFORM = xxxxxx

RECSIZE=(nn)

SEPASMB==YES

WORKA=YES

Non-Data Device Operations
The CNTRL (control) macro provides commands
that apply to physical non-data operations of an I/O
unit and are specific to the unit involved.

For optical readers, commands specify marking
error lines, correcting a line for journal tapes, docu­
ment stacker selecting, or ejecting and incrementing
documents. The CNTRL macro does not wait for
completion of the command before returning con­
trol to you, except when certain mnemonic codes are
specified for optical readers.

CNTRL usually requires two or three parameters.
The first parameter must be the name of the file
specified in the DTF header entry. It can be specified
as a symbol or in register notation.

The second parameter is the mnemonic code for
the command to be performed. This must be one of
a set of predetermined codes (see Figure 7-20).

The third parameter, nl, is required whenever a
number is needed for stacker selection, immediate
printer carriage control, or for line or page marking
on the 3886. The fourth parameter, n2, applies to
delayed spacing or skipping, or to timing mark

7 - 24 VSE/ Advanced Functions Macro User's Guide

. Name of your correction routine.

Symbolic unit assigned to the optical reader.

Name·of your end-of-file routine.

Name of first input area.

If RECFORM=UNDEF in journal tape mode.

length of I/O area(s). If omitted, 38 is assumed.

If CNTRl macro is to be used for this file.

(1287D or 1287T). For 1288, specify 1287D. If omitted,
1287D is assumed.

If a header record is to be read from the optical reader key-
board by OPEN.

If hopper empty condition is to be returned.

If two input areas are used, name of second input area.

Register number if two input areas or UNDEF records are to be
used. If omitted, register 2 is assumed. General registers
2-12, written in parentheses.

Name of logic module. If omitted, 10CS generates a standard
name.

(FIXBlK, FIXUNB, or UNDEF). If omitted, FIXUNB is assumed.

Register number containing record size, if RECFORM=UNDEF.
If omitted, register 3 is assumed.

If the DTFOR is to be assembled separately.

If records are to be processed in a work area. Omit 10REG.

check on the 3886. In the case of a printer file, the
parameters n 1 and n2 may be required.

Whenever CNTRL is issued in your program, the
DTF CONTROL operand must be included (except for
DTFDR) and CTLCHR must be omitted. If control
characters are used when CONTROL is specified, the
control characters are ignored and treated as data.

1287 and 1288 Optical Reader Codes
The CNTRL macro for the 1287 and 1288 is used for
the non-data functions of marking a journal tape
line, incrementing a document, and ejecting and/or
stacker selecting a document. It is also used to read
data from the 1287 keyboard when processing jour­
nal tapes.

When the CNTRL macro is used with the READKB

mnemonic, it allows a complete line to be read from
the 1287 keyboard when processing journal tapes.
This permits the operator to key in a complete line
on the keyboard if a 1287 read error makes this type
of correction necessary. When IOCS exits to your
COREXIT routine, you may issue the CNTRL macro to
read from the keyboard. The 1287 display tube then
displays the full line and the operator keys in the
correct line from the keyboard, if possible. The line

•

•

IBM Unit
Mnemonic

Code
n l n2

3881 Optical Mark Reader PS 1
2

1287 Optical Reader MARK

READKB

EJD

SSD 1

2
3
4

ESD 14

INC

1 288 Optical Page Reader ESD 1

3

INC

3886 Optical Character Read- DMK name
er (r)

number

LMK name (r)
number,
number

ESP
1

name

2
(r)

number

Figure 7-20. CNTRL macro command codes.

read from the keyboard is always read left-justified
into the correct input area. The macro resets this
area to binary zeros before the line is read.

After CNTRL REAOKB is used, the contents of
filename+80 are meaningful only for a wrong­
length error indication (X'Q4'). Therefore, you must
determine whether the operator was able to recog­
nize the unreadable line of data. The CNTRL macro
with the REAOKB mnemonic waits for completion of
the order before returning control to the user.

When processing journal tapes, the CNTRL macro
with the MARK mnemonic marks (under program
control) a line on the input tape that results in a data
transfer error or is otherwise suspect of error. To
ensure that the proper line is marked, the CNTRL

macro must be issued in your error correction rou­
tine (specified in OTFOR COREXIT). If CNTRL is is­
sued at any other time, the line following the one in
error is marked.

When processing is done in document mode on
the 1287, each document may be ejected with a
CNTRL macro. The EJO mnemomic causes the docu­
ment to eject and the next document to be fed. Doc­
uments may also be stacker selected by using the
CNTRL macro with the sso mnemonic.

The CNTRL macro with th~ ESO mnemonic com­
bines the ejection and stacker selection functions.
To satisfy the alternate ejection and stacker selection

Command

Select Stacker 1 or 2

Mark Error Line in Tape Mode.

Read 1287 Keyboard in Tape Mode.

Eject Document.

Select Stacker A, B, Reject, or Alternate Stacking Mode.

Eject Document and Select Stacker.

Increment Document at Read Station.

Select Stacker A.
Reject Stacker (R).

Increment Document at Read Station.

Page mark the document when it is stacker selected as speci-
fied in parameter n1.

Line mark the document when it is stacker selected as speci-
fied in parameter n1 .

Eject and stacker select the current document to stacker A or
B. Perform line mark station tuning mark check as indicated in
parameter n2.

functions, the combined mnemonic must not be
immediately preceded by an eject or immediately
followed by a stacker select.

A document may be directed to stacker A, B, or R

(reject stacker) by specifying a selection number of
1,2, or 3 respectively. Also, documents may be se­
lected into stackers A and B in an alternate stacking
mode, with automatic stacker switching when one
stacker becomes full. The selection number for al­
ternate mode is 4. If selection number 4 is used in
the first stacker selection macro, stacker A is filled
first. If selection number 4 is used after other selec­
tion numbers, the last preceding selection number
determines the first stacker to be filled. Only selec­
tion numbers I and 3 are available for the 1288.

If a CNTRL macro is issued in a COREXIT routine
and a late stacker select or nonrecoverable error
condition occurs, IOCS branches to the next sequen­
tial instruction. Filename+80 should therefore be
tested for these conditions after issuing a CNTRL

macro.

The CNTRL macro with the INC mnemonic may
be used for document incrementation. For the 1287,
this macro is not used with documents having a
scannable area shorter that 6 inches (15.24 cm).
When this mnemonic is issued, the document is
incremented forward 3 inches (7.62 cm). This macro
may be used only once per document.

Chapter 7: Processing Unit Record Files 7 - 25

For the 1288, the CNTRL macro with the INC

mnemonic can increment only documents with a
scannable area longer than 6.5 inches (16.51 cm).
The document is incremented to the next stopping
point as selected by console switches on the 1288.
More than one CNTRL macro can be used per docu­
ment.

Document ejection and/or stacker selection and
document increment functions can also be accom­
plished be including the appropriate ccw(s) within
the ccw list addressed by the READ macro, rather
than by using the CNTRL macro. This technique
results in increased document throughput.

Note: For processing documents in a multiprogramming envi­
ronment where the partition containing 1287 support does not
have highest priority, the eject and stacker select functions must
be accomplished by a single command. However, when process­
ing documents in a dedicated environment, the stacker select
command can be executed separately. It must follow the eject
command within 270 milliseconds if the document was incre­
mented, or within 295 milliseconds if the document was not
incremented. The eject and stacker select function must occur
alternately. If the timing requirements are not met, a late stacker
selection condition occurs.

3886 Optical Character Reader Codes
When you are using the 3886 Optical Character
Reader, you can use the CNTRL macro to perform
the following operations:

• Page mark the current document

• Line mark the current document

• Eject and stacker select the current document

• Perform timing mark check.

When the operation has been completed success­
fully, control is returned to the next instruction in
your program. Ifthe operation does not complete
successfully, the COREXIT routine receives control.
The end-of-file routine receives control when an
operation is requested but no documents are avail­
able and the end-of-file key has been pressed.

The contents of parameters n I and n2 vary de­
pending on the mnemonic operation code specified.
Therefore, this discussion treats each mnemonic
code separately.

DMK,nl: Specifies that the document currently
being processed is to be marked when the next
eject/stacker-select command is issued. The digits to
be printed on the page are specified by the four low­
order bits of the field indicated in parameter nl.
The sum of the mark digits printed will equal the
value specified in the four bits. The high-order four
bits of the field are not used. You can specify the
digits you want printed in one ofthree ways:

7 - 26 VSE/ Advanced Functions Macro User's Guide

• name specifies the symbolic name of a one-byte
field in your program in which the low-order
four digits indicate the combination of digits to
be printed.

• (r) indicates the number of the register that
contains the address ofthe one-byte field used
for page marking.

• number indicates the sum ofthe digits to be
printed. The decimal number may be any from
I through 15.

LMK,nl: Specifies a line on the current document
that is to be line-marked when the eject/stacker­
select command is issued. The digits to be printed
and the line on which they should be printed are
specified in a two-byte field. The digits to be printed
are specified in the low-order four bits of the first
byte as in the document marking operation. The
line to be marked is specified in binary in the low­
order six bits of the second byte of the field. You
can specify the mark digits and line number in three
ways:

• name specifies the symbolic name of a two-byte
hexadecimal field in your program that con­
tains the necessary information.

• (r) indicates the number of the register that
contains the address of the two-byte field with
the necessary information.

• number,number provides first, the sum of the
decimal digits to be printed (any number from
1 to 15) and second, the decimal line number to
be marked (any number from 1 to 33).

ESP,nl,n2: nl specifies that the current document
should be ejected immediately and routed to stacker
I or 2. (The valid entries are I and 2). A request for
timing mark check can also be made in this parame­
ter. If the number oftiming marks on the document
disagrees with the number you specify, either a non­
recovery error or timing mark check error occurs.
You can specify the number of timing marks, by
using parameter n2, in three ways:

• name specifies the name of a one-byte hexade­
cimal field in your program that indicates the
number oftiming marks that should be on the
document.

• (r) specifies the number ofthe register that con­
tains the address of the one-byte hexadecimal
field containing the expected number of timing
marks.

• number is a decintal number from 0 through 33
specifying the number of timing marks that
should be on the document.

•

J

•

..

If the number of timing marks is not specified or
if zero is specified, no timing mark check is per­
formed.

3881 Optical Mark Reader Codes
Documents read by the 3881 are directed to the
stacker specified in the CNTRL macro or to the stack­
er specified on the format control sheet. Stacker I is
the normal stacker and stacker 2 is the select stacker.
If you use both the CNTRL macro and the format
control sheet to control stacker selection and either
specifies stacker 2, data documents are stacked in
stacker 2. The DTF SSELECT operand is not valid for
the 3881.

Programming Considerations for Optical
Readers
There are four parts to this section; they apply to:

• IBM 1270, 1275 Optical Readers/Sorters

• IBM 1287 Optical Reader and IBM 1288 Optical
Page Reader

• IBM 3886 Optical Character Reader

• IBM 3881 Optical Mark Reader.

Optical Readers/Sorters (IBM 1270,
IBM 1275)
Optical Character Reader/Sorter (OCR) devices can
be operated in any partition. The user is supplied
with an extension to the supervisor which monitors,
by means of external interrupts, the reading of docu­
ments into a user-supplied I/O area (document buff­
er area).

The user must access all OCR documents through
logical IOCS macros. Upon request, LIOCS gives a
next sequential document and automatically en­
gages and disengages the devices to provide a con­
tinuous stream of input. Detected error conditions
and information about errors are passed to the user
in each document buffer. Documents are read at a
rate dictated by the device rather than by the pro­
gram. To allow time for necessary processing
(including the determination of pocket selection),
the device generates an external interruption at the
completion of each read operation for each docu­
ment. The supervisor gives absolute priority to ex­
ternal interrupt processing.

In problem programs, these devices can be con­
trolled by assembler language only, at the LIOCS GET
level if one device is attached, or at the LIOCS
READ/CHECK/WAIT level if multiple OCR devices are
attached. In the latter case, you are allowed to con­
tinue processing as long as one file has documents
ready for processing.

The DTFMR and the MRMOD declarative macros
are used to describe the file. For any type ofproc­
essing you need a document buffer area with a spe­
cial buffer format. A document buffer must not
exceed 256 bytes, including the six-byte buffer status
indicators, any additional user work area, and the
maximum document data area. You may specify
any number of document buffers between 12 and
254; the actual maximum number depends on the
amount of virtual storage available.

The first time a GET (or READ) is executed, the
supervisor engages the device for continuous read­
ing. Each time thereafter, the GET (or READ) merely
points (through IOREG) to the next sequential buffer
within each document buffer area. When a buffer
for a file becomes available, the user's main line
processing continues with the instruction after the
GET (or READ CHECK combination).

Each time an end-of-document condition occurs,
the user's main line processing routine, or any other
routine having control at that time, is interrupted by
the supervisor's external interrupt routine. The ex­
ternal interrupt routine branches immediately to the
user's stacker selection routine. After selecting a
pocket, you exit from your stacker selection routine
so that the supervisor can issue the stacker selection
command. At this time, the OCR device should be
reading document data into its respective document
buffer area. The supervisor, in priority order, passes
control to your main line processing routine, or to
the routine that had been interrupted.

Thus, document processing continues concurrent-
ly (see Figure 7-14) within

(1) the user's main line processing routine,

(2) the supervisor's external interrupt routine, and

(3) the user's stacker selection routine.

The order for exiting from these routines is the
reverse ofthe indicated order. Processing and moni­
tor operations continue concurrently until the reader
is disengaged, eitheJ: normally or due to error.

End-of-file must be detected and handled by the
user's main line processing routine. You can use the
OlSEN macro to stop the feeding of documents
through the OCR device: the program proceeds to the
next sequential instruction without waiting for the
disengagement to complete. You should continue to
issue GETs or READs until the unit exception bit
(byte 0, bit 3), of the buffer status indicators is set on
(see Figure 7-13.)

When the IBM 1275 is equipped with the Program
Control for Pocket lights (special feature), you can,
by means of the LITE macro, light any combination

Chapter 7: Processing Unit Record Files 7 - 27

of pocket lights to indicate that a specified number
of documents has entered the pockets.

Before using the LITE macro, the OlSEN macro
must be issued to disengage the device. Processing
of the documents should be continued until the unit
exception bit (byte 0, bit 3) of the buffer status indi­
cators is set on (see Figure 7-13). When this bit is
on, the follow-up documents have been processed,
the reader has been disengaged, and the pocket LITE

macro can be issued.

The bit configuration for the pocket light switch
area is shown in Figure 7-15. The pocket lights that
are turned on should have their indicator bits set to
1. If an error occurs during the execution of the
pocket lighting I/O commands, bit 7 in byte 1 is set
to 1. This error condition normally indicates that
the pocket light operation was unsuccessful.

The GET and the READ macro perform the same
functions. The GET, however, waits while the docu­
ment buffer fills, whereas the READ posts an indica­
tor in the buffer for you to examine with the CHECK

macro. If this indicator bit is on, the buffer is not
ready for processing, and a branch is made to the
second operand address of the CHECK macro. Your
routine at this operand address can then READ and
CHECK another file for document availability. If this
buffer is ready for processing, control passes to the
next instruction. If a special non-data status exists,
you should analyze the conditions in your ERROPT

routine and issue a READ to obtain a document un­
less an I/O error has occurred. If a second operand is
not provided within the CHECK macro, control
passes to the ERROPT routine address.

At least one W AITF macro must be issued between
two successive executions of anyone READ to the
same file. The multiple W AITF tests device operation
availability or buffer processing availability. Ifwork
can be done on any specified file, control remains in
the partition. If not, control passes to a lower­
priority partition until this partition is ready for
processing.

Optical Reader (IBM 1287) and Optical Page
Reader (IBM 1288)
The IBM 1287 and 1288 can be operated in any par­
tition. You must access all operations through
LIOCS macros or through PIOCS. In your problem
program, these devices are controlled by means of
the assembler language: for 1287 journal tape proc­
essing at the LIOCS GET level, for 1287 and 1288
document processing at the READ/WAITF level. You
use the DTFOR macro to describe the input file; the
MRMOD macro generates the logic module to process
the file. The non-data functions are performed by

7 - 28 VSE/ Advanced Functions Macro User's Guide

the CNTRL macro, which is used to increment, eject,
and stacker select documents on the 1287 and 1288,
as well as to mark error lines and to read keyboard
information when reading journal tapes on the 1287.

You supply the name of your own COREXIT cor­
rection routine in the DTFOR macro. If an error con­
dition occurs after a GET, WAITF, or CNTRL macro
has been executed, COREXIT provides an exit to your
error correction routine. In this routine you can
reset a number of error conditions and take appro­
priate actions.

When processing journal tapes on the 1287, the
RDLNE macro provides online correction; it causes
the reader to read a line in online correction mode
while processing in offiine correction mode. When
processing documents on the 1287 or 1288, you can
use the RESCN macro to selectively reread a field on
a document when a read error makes this necessary.
The DSPL Y macro displays a document field on the
display screen and allows the 1287 operator to key in
a complete field on the keyboard for correction.

When LIOCS is used for processing journal tapes
on the 1287 optical reader, OPEN may be issued at
the beginning of each input roll.

To process in two or more rolls on the 1287 as one
file (when an end-of-tape condition occurs), instruct
your operator to run out the tape by pressing the
start key on the optical reader instead of the end-of­
file key. This creates an intervention-required con­
dition. The next tape can then be loaded and proc­
essed as a continuation of the previous tape. How­
ever, because OPEN is not reissued, no header in­
formation can be entered between tapes.

When processing documents on the 1287, OPEN

must be issued to make the file available.

OPEN allows header (identifying) information to
be entered at the 1287 keyboard for journal tape or
cut documents. When header information is en­
tered, it is always read into IOAREAl, which must be
large enough to accomodate the desired header in­
formation.

In conjunction with optical reader input, the GET

macro can be used only to retrieve records from a
journal tape on a 1287.

The READ macro causes the next sequential 1287
or 1288 optical reader (document mode only) record
to be read.

To accomplish document ejection and/or stacker
selection and document increment functions, in­
clude the appropriate ccw(s) within the CCW list
addressed by the READ macro. This technique re­
sults in increased processing throughput, and is pre-

J

•

..

•

•

L

ferable to using the CNTRL macro for document
control.

The W AlTF macro must be issued after the READ

macro and before the program attempts to process
an input record of that file. The program waits until
the transfer of data is complete.

The W AlTF macro accomplishes all checking for
read errors on the 1287 or 1288 file and exits to your
COREXlT routine for handling of these conditions, if
necessary.

The RESCN macro selectively rereads a field on a
document if one or more defective characters make
this type of operation necessary. The field is always
right-justified into the area (normally within
IOAREAI) that was originally intended for this field
as specified in the ccw. The macro first resets this
area to binary zeros.

Note: For the 1287 models 3 and 4 and the 1288, this macro can
only be used with READ BACKWARD commands. If used with
READ FORWARD commands, the input area is not cleared.
When 1288 unformatted fields are read, the RESCN macro
should not be used.

When this macro is used in the COR EXIT routine,
the address of the load format ccw is obtained by
subtracting 8 from the 3-byte address that is right­
justified in the fullword location beginning in
filename+ 32. (The high-order fourth byte of this
fullword should be ignored.) If the RESCN macro is
not used in the COREXIT routine, you must deter­
mine the load format ccw address.

When using the RESCN macro, you must ensure
that the load format ccw (giving the document's
coordinates for the field to be read) is command
chained to the ccw used to read that field.

If the reread of the field results in a wrong-length
record, incomplete read, or an unreadable character,
it is indicated in filename+80.

The DSPL Y macro displays the document field on
the 1287 display scope. A complete field may be
keyboard-entered if a 1287 read error makes this
type of correction necessary. An unreadable charac­
ter may be replaced by the reject character either by
the operator (if processing in the on-line correction
mode) or by the device (if processing in the off-line
correction mode). You may then use the DSPL Y

macro to display the field error.

The 1287 display tube displays the full field and
the operator keys in the correct field from the key­
board, if possible. The field read from the keyboard
is always read into the area (normally within
IOAREAI) that was originally intended for this field
as specified in the CCW. The macro first resets this

area to binary zeros. At completion of the operation,
the data is left-justified in the area.

When the DSPL Y macro is used in the COREXIT

routine, the address of the load format CCW can be
obtained by subtracting 8 from the 3-byte address
that is right-justified in the fullword location begin­
ning at filename + 32. (The high-order fourth byte of
this full word should be ignored.) Ifthe DSPL Y ma­
cro is not used in the COREXIT routine, you must
determine the load format ccw address. The third
parameter specifies a general-purpose register (2
through 12) into which you place the address of the
load format CCW giving the coordinates of the refer­
ence mark associated with the displayed field.

The contents of filename+80 are meaningful only
for X'40' (1287 scanner cannot locate the reference
mark) and X'04' (wrong-length record) after the
DSPL Y macro is issued. Therefore, you must deter­
mine whether the operator was able to recognize the
unreadable line of data.

Note: When using the DSPL Y macro, you must ensure that the
load format CCW is command chained to the CCW used to read
that field. This provides the document coordinates for the field to
be displayed.

The RDLNE macro provides selective on-line cor­
rection when processingjoumal tapes on the 1287
optical reader. This macro reads a line in the on-line
correction mode while processing in the off-line
correction mode. RDLNE should be used in the
COREXIT routine only, or else the line following the
one in error will be read in on-line correction mode.

lethe 1287 cannot read a character, IOCS first
resets the input area to binary zeros and then rereads
the line containing the character which could not be
read. If the read is unsuccessful, you are informed
of this condition via your error correction routine
(specified in DTFOR COREXlT). The RDLNE macro
may then be issued to cause another attempt to read
the line. If the character in the line still cannot be
read, the character is displayed on the 1287 display
scope. The operator keys in the correct character, if
possible. If the operator cannot readily identify the
defective character, he may enter the reject charac­
ter in the error line. This condition is posted in
filename+80 for your examination. Wrong-length
records and incomplete read conditions are also
posted in filename+80.

COREXIT provides an exit to your error correction
routine for the 1287 or 1288. After a GET, WAITF, or
CNTRL macro is executed (to increment or eject
and/or stacker-select a document), an error condi­
tion causes an error condition routine to be entered
with an error indication provided in filename+80.
The byte at filename+80 contains the following

Chapter 7: Processing Unit Record Files 7 - 29

hexadecimal bits indicating the conditions that oc­
curred during the last line or field read. The byte
should also be tested after issuing the optical reader
macros DSPL Y, RESCN, RDLINE, CNTRL READKB, and
CNTRL MARK. More than one error condition may
be present.

Code
Dec Hex

32 X'20'

X'OJ'

2 X'02'

4

8

16

64

X'04'

X'08'

X'IO'

X'40'

Meaning

For the 1288, reading in unformatted mode,
the end-of-page (EOP) condition has been
detected. Normally, on an EOP indication,
the problem program ejects and stacker se­
lects the document.
After issuing one of the macros CNTRL
ESD, CNTRL SSD, CNTRL EJD in your
COREXIT routine, a late stacker selection
condition occurred.
For the 1287, a stacker select was given after
the allotted elapsed time and the document
was put in the reject pocket.

A data check has occurred. Five read at­
tempts for journal tape processing or three
read attempts for journal tape processing
were made.

The operator corrected one or more charac­
ters from the keyboard (1287T) or a hopper
empty condition (see HPRMTY=YES ope­
rand) has occurred (12870).

A wrong-length record condition has occur­
red (for journal tapes, five read attempts
were made; for documents, three read at­
tempt were made). Not applicable for unde­
fined records.

An equipment check resulted in an incom­
plete read (ten read attempts were made for
journal tapes or three for documents).
If an equipment check occurs on the first
character in the record, when processing un­
defined journal tape records, the RECSIZE
register contains zero, and the 10REG (if
used) points to the rightmost position of the
record in the I/O area. You should test the
RECSIZE register before moving records
from the work area or the I/O area.

A nonrecoverable error occurred.

The 12870 scanner was unable to locate the
reference mark (for journal tapes, ten read
attempts were made; for documents, three
read attempts were made).

The byte filename+80 can be interrogated to
determine the reason for entering the error correc­
tion routine. Choice of action in your error correc­
tion routine is determined by the particular applica­
tion.

If you issue an I/O macro to any device other than
the 1287 and/or 1288 in the COREXIT routine, you
must save registers 0, 1, 14, and 15 upon entering the
routine, and restore these registers before exiting.
Furthermore, if I/O macros (other than the GET,

WAITF, and/or READ, which cannot be used in
COREXIT) are issued to the 1287 and/or 1288 in this
routine, you must also save and later restore regis­
ters 14 and 15 before exiting. All exits from

7 - 30 YSE/ Advanced Functions Macro User's Guide

COREXIT should be to the address specified in regis­
ter 14. This provides a return to the point from
which the branch to COREXIT occurred. If the com­
mand chain bit is on in the READ CCW for which the
error occurred, 10CS completes the chain upon re­
turn from the COREXIT routine.

Note: Do not issue a GET, READ, OPEN, or W AITF macro to
the 1287 or 1288 in the error correction routine. Do not process
records in the error correction routine. The record that caused the
exit to the error routine is available for processing upon return to
the mainline program. Any processing included in the error
routine would be duplicated after return to the mainline program.

When processing journal tapes, a nonrecovery
error (tom tape, tape jam, etc.) normally requires
that the tape be completely reprocessed. In this case,
your routine must not branch to the address in regis­
ter 14 from the COREXIT routine or a program loop
will occur. Instead, the routine should ignore any
output resulting from the document. Following an
unrecoverable error:

• the optical reader file must be closed.

• the condition causing the nonrecovery must be
cleared.

• the file must be reopened before processing can
continue.

If a nonrecoverable error occurs while processing
documents (indicating that a jam occurred during a
document incremenation operation, or a scanner
control failure has occurred, of an end-of-page con­
dition, etc.), the document should be removed either
manually or by nonprocess runout. In such cases,
your program should branch to read the next docu­
ment.

If the 1287 or 1288 scanner is unable to locate the
document reference mark, the document cannot be
processed. In this case, the document must be eject­
ed and stacker selected before attempting to read the
following document or a program loop will result.

Eight binary error counters are used to accumu­
late totals of certain 1287 and 1288 error conditions.
Each of these counters occupies four bytes, starting
at filename+48. Filename is the name specified in
the DTF header entry. The error counters are:
Counter and
Address

I filename+48

2 filename+52

3 filename+56

4 filename+60

Contents

Equipment check (see Note belpw).

Equipment check uncorrectable after ten
read attempts for journal tapes or three read
attempts for documents (see Note below).

Wrong-length records (not applicable for
undefmed records).

Wrong-length records uncorrectable after
five read attempts for journal tapes or three
read attempts for documents (not applicable
for undefined records).

J

•

L

5 filename+64

6 filename+68

7 filename+ 72

8 filename+ 76

Keyboard corrections (journal tape only).

Journal tape lines (including retried lines) or
document fields (including retried fields) in
which data checks are present.

Lines marked (journal tape only).

Count of total lines read from journal tape
or the number ofCCW chains executing
during document processing.

Note: Counters I and 2 apply to equipment checks that result
from incomplete reads or from the inability of the 1287 or 1288
scanner to locate a reference mark (when processing documents
only).

All previous counters contain binary zeros at the
start of each job step. You may list the contents of
these counters for analysis at end of file, or at end of
job, or you may ignore the counters. The binary
contents of the counters should be converted to a
printable format.

Optical Character Reader (IBM 3886)
The IBM 3886 Optical Character Reader can be op­
erated in any partition. You must access all opera­
tions through LIOCS macros or PIOCS. In problem
programs, the device is controlled by means of the
assembler language only, at the LIOCS READ/WAITF

level.

Two steps are required to use the 3886 as an input
device. In one assembly, you must define the docu­
ments to be read. Then, in the problem program,
you issue the instructions to process the documents.
You use the DTFDR macro to define the characteris­
tics of the 3886 file in your problem program, to
describe the format record to be loaded into the
3886 when the file is opened, and to specify the stor­
age areas and routines to be used. The DRMOD ma­
cro generates the logic module to process the file.

Defining Documents: Two macros are provided for
derming documents. One, the DFR macro, defines
attributes common to a group of line types. The
other, the DLINT macro defines specific attributes of
an individual line type. As many as 27 DLINT

macros can be associated with one DFR macro as
long as the number of line types plus the number of
fields is less than or equal to 53.

The DFR and associated DLINT macros are used
in one assembly to build a format record. Only one
DFR with its associated DLINT macros may be speci­
fied in each assembly. The DFR is link-edited into
the core image library so that it can be loaded into
the 3886 when the field is to be processed. A format
record contains information about the documents
being read, each individual line on the document,
and each field in the line. This information is used
to read the line and edit the data before it is passed
to the problem program.

When opening a 3886 optical reader file, OPEN

loads the appropriate format records (as specified in
the DTFDR) into the 3886 control unit.

Document Control and Marking: 3886 support also
provides for

• changing format records

• ejecting and stacker selecting documents

• performing timing and mark checks

• line and page marking documents.

All format records are created in separate assem­
blies; they must be cataloged in the core image li­
brary before they can be used for processing docu­
ments.

You can change format records during program
execution by using the SETDEV macro. It loads a
new format record into the 3886 and returns control
to the next sequential instruction in your program.
If the operation is not successful, control is passed to
your COR EXIT routine, or the job is canceled. If you
issue SETDEV macro when no documents remain to
be processed and the end-of-file has been pressed on
the device, control is passed to the end-of-file rou­
tine.

To perform the other control and marking func­
tions, you can use the CNTRL macro. When the op­
eration is successful, control returns to the next in­
struction in your program; otherwise, control passes
to the COREXIT routine or to the end-of-file routine.

Reading Data Records: Each time a READ macro is
issued, one line of data is supplied to your program.
Each line read is considered to be a data record. A
header record is provided to your program with each
data record: it is 20 bytes in EBCDIC and contains
the number ofthe line scanned, the number oftimes
the line was scanned, and other important informa­
tion about the line and its fields.

The data record passed to your program is a
fixed-length record containing up to 130 bytes of
data. You specify its length in the DTFDR macro.
The data record is in one of two formats as follows:

I. If standard mode is specified (IMAGE=NO in the
DLINT macro), the data record contains the
EBCDIC character codes for the line of data af­
ter the editing functions have been performed.
The editing functions are specified in the DLINT

macro.

2. If image mode is specified (IMAGE=YES in the
DLINT macro), the data record contains two
types of information: field length and data
from the document. The first 28 bytes contain

Chapter 7: Processing Unit Record Files 7 - 31

14 two-byte entries that indicate the length of
each field in the record. If the number of fields
is less than 14, the entries for the rightmost un­
used fields contain EBCDIC zero (X'FOFO'). The
data read from the document follows the field
length entries, beginning in the 29th byte.

If the number of characters in the data record is
less than the space allowed for the input record, the
unused rightmost portion of the record is padded
with blanks (X'40').

The W AITF macro is used to ensure that an I/O
operation is completed before the execution contin­
ues. If the operation is not completed when the
W AITF macro is issued, the active partition is placed
in a wait condition until the I/O operation is com­
pleted. The completed operation is then tested for
errors. If no errors are detected, control is returned
to the next instruction in your program.

Error Handling: If an error occurs during the I/O
operation, control is passed to the COREXIT routine.
If an I/O operation is requested, no more documents
are available, and the end-of-file key has been
pressed, control is given to the end-of-file routine.

LIOCS branches to the COREXIT routine whenever
an error is indicated in the EXITIND byte. The
COREXIT routine and EXITIND are both specified by
operands in the DTFDR macro.

EXITIND=name specifies the symbolic name of
the I-byte area in which the completion code is re­
turned to the COREXIT routine for error handling
from an I/O operation.

The completion codes are:

Code Meaning

Dec Hex
240 X'FO' No errors occurred. (This code should not

be present when the COREXIT routine re­
ceives control.)

241 X'F I' Line mark station timing mark check error.
242 X'F2' Nonrecovery error. Do not issue the

CNTRL macro to eject the document from
the machine. Have the operator remove the
document.

243 X'F3' Incomplete scan.
244 X'F4' Line mark station timing mark check and

equipment check.
249 X'F9' Permanent error.

Note: If any of these errors occur while the file is being opened,
the COREXIT routine does not receive control and the job is
canceled.

You can attempt to recover from various errors
that occur on the 3886 through the COREXIT routine
you provide. Your COREXIT routine receives control
whenever one of the following conditions occurs:

7 - 32 VSE/ Advanced Functions Macro User's Guide

• Incomplete scan

• Line mark station timing mark check error

• Nonrecovery error

• Permanent error.

Note: If any of these errors occur while the file is being opened,
the COREXIT routine does not receive control and the job is
canceled.

Figure 7-21 describes normal functions for the
COREXIT routine for the various error conditions
and provides the exits that must be taken from the
COREXIT routine.

Each time an imperative macro (except OPEN,
LBRET, SETL, or SETFL) is issued using a particular
DTF, register 13 must contain the address of the save
area associated with that DTF. The fact that the save
areas are unique or different for each task makes the
module reentrant (that is, capable of being used
concurrently by several tasks). For more informa­
tion see "Shared Modules and Files" in the
"Multitasking Functions" section.

If a COREXIT routine issues I/O macros using the
same read-only module that caused control to pass
to either routine, your program must provide
another save area. One save area is used for the
normal I/O operations, and the second for I/O
operations in the COREXIT routine. Before returning
to the module that entered the COREXIT routine,
register 13 must contain the save area address
originally specified for that DTF.

Assembling a Format Record for the 3886 Optical
Character Reader: This section describes a use for
the IBM 3886 Optical Character Reader. Included
are a sample document, a format record assembly
and the data provided by the 3886.

A typical application for an optical character
reader is processing insurance premiums. Figure
7-22 shows an insurance premium notice for the
Standardacme Life Insurance Company. The docu­
ment has three lines of data to be read (see Figure
7-24 for sample data). The first line contains one
field, the name of the policy holder. The second line
contains four fields: the policy holder's address, the
policy number, the premium amount due, and a
code to be hand-printed if the amount paid is differ­
ent from the amount due. The third line contains
one field that contains the amount paid if different
from the amount due.

To process documents like that in Figure 7-22,
one format record is used. The format record must
be created in a separate assembly. The coding nec­
essary to create the format record is shown in Figure

•

J

•

..

•

Error Normal COREXIT Function Exit to

X'F2' Eliminate the data that has been read from this document Routine in your program to read the next document.
and prepare to read the next input document. (See Note
1).

X'F4' Do whatever processing is necessary before the job is Your end-of-job routine.
or canceled. (See Note 1).
X'F9'

X'F1 ' Do any processing that may be required. The document Branch to the address in register 14 to return to the
may have been read incorrectly; you may want to delete instruction following the macro causing the error.
all data records from the document. (See Note 2).

X'F3' Rescan the line using another format record or using Branch to the address in register 14 to return to the
image processing and editing the record in your program instruction following the macro causing the error.
(see Note 2).

Note 1: If, in your COREXIT routine, you issue an I/O macro to the 3886 and an error occurs during that operation, control is
returned to the beginning of the COREXIT routine. You must take precautions in the COREXIT routine to prevent looping in this
situation. If no errors occur, control returns to the instruction following the I/O macro .
Note 2: If, in your COREXIT routine, you issue an I/O macro to the 3886, control always returns to the instruction following the
macro. You should then check the completion code to determine the outcome of the operation.

Figure 7-21. COREXIT routine functions.

ST ANDARDACME LIFE NOTICE OF PAYMENT DUE
INSURANCE COMPANY

DU: [lATE ANNI" DISI
PREMIUM MO "" " MONTH NO

06 23 72 07 45 249.75 H

-- DALE E . STUEMKE 1

1363 SE 10TH AVE.

-- ROCHESTER, MINN 58395404 249.75 D
POLICY NUMBER S AMOUNT DUE

INSURED DAWN STUEMKE
II your address IS olher thin shown, please nollfy the

.1
I
I I I I (I Compuy Please make check or money order payable to I . -- Standard.emf ltfe and present With nollce 1(' y~ur • Compuy Represent.ltve or to

PLEASE RETURN WITH YOUR PAYMENT FOR COMPANY USE ONLY

Figure 7-22. Premium notice example.

7-23. The numbers at the left of the coding form
correspond to those in the following text.

I. The job control statements indicate that the job
is an assembly. The output of the assembly is
to be cataloged as phase FORMAT.

2. The DFR macro specifies the characteristics
common to all lines on the document:

FONT=ANAI: The alphameric OCR-A font is
used for reading any fields that do not have
another font specified in the DLINT macro field
entries.

REJECT=@: The commercial at sign @ is sub­
stituted for any reject characters encountered.

EDCHAR=(',',.): The comma and period are
removed from one or more fields as indicated
in DLINT entries (line 2, field 3).

3. The DLINT macro describes one line type in a
format record described by the DFR macro.

The following information is provided about the
first line:

LFR=I,LINBEG=4: The first line on the docu­
ment has a line format record number of 1.
The first field read from the line begins four­
tenths of an inch (10.16 mm) from the left edge
of the document. The data record is in stan­
dard mode; editing is performed on the field.

Chapter 7: Processing Unit Record Files 7 - 33

II JOB FORMAT
II OPTION CATAL
1 PHASE FORMAT,+O,NOAUTO
II EXEC ASSEMBLY

TITLE 'DOCLIST-FORMAT'
START

•••••••••••••••••••••••••••••••••••••••
• THIS ASSEMBLY WILL CREATE A FORMAT •
• RECORD DESCRIBING AN INSURANCE •
• PREMIUM NOTICE •
•••••••••••••••••••••••••••••••••••••••

2 DFR FONT=ANA1,REJECT=@, X
EDCHAR= (, , , , .)

3 DLINT LFR=1,LINBEG=4, X
FLD1=(32,20,NCRIT), X
EDIT1=HLBLOF

4 DLINT LFR=2,LINBEG=4, X
FLD1=(30,20,NCRIT), X
EDIT1=HLBLOF, X
FLD2=(42,8), X
EDIT2=ALBNOF, X
FLD3=(54,6), X
EDIT3=(HLBHIF,EDCHAR), X
FLD4=(62,1 ,NHP1), X
EDIT4=ALBHIF

5 DLINT LFR=3,LINBEG=45, X
FLD1=(64,7,NHP1), X
EDIT1=ALBHIF, X
FREND=YES

END
I·
II EXEC LNKEDT
I·

Figure 7-23. Format record assembly example.

FLDI=(32,20,NCRIT),EDITl=HLBLOF: The first
and only field on the line ends 3.2 inches
(81.28 mm) from the left edge ofthe document,
the edited data is placed in a 20-character
field. The field is not considered critical. All
leading and trailing blanks are removed, the
data should be left-justified, and the field is
padded to the right with blanks.

4. The second line on the document is described as
follows:

LFR=2,LINBEG=4: The second line of the docu­
ment has a line format record number of 2.
The first field read begins four tenths of an
inch (10.16 mm) from the left edge ofthe doc­
ument. The data record is in standard mode;
editing is performed on all fields on the line.

FLDI=(30,20,NCRIT),EDITl=HLBLOF: The first
field on the line ends 3.0 inches (76.2 mm)
from the left edge of the document, the edited
data is placed in a 20-byte field. The field is
not considered critical. All leading and trailing
blanks are removed, the data is left-justified,
and the field is padded to the right with
blanks.

FLD2=(42,8),EDIT2=ALBNOF: The second field
ends 4.2 inches (106.68 mm) from the left edge

7 - 34 VSE/ Advanced Functions Macro User's Guide

of the document, the edited data is placed in
an eight-byte field, the field is critical. All
leading and trailing blanks are removed from
the field. The resulting field must be eight dig­
its in length or a wrong-length field indicator is
set.

FLD3=(54,6),EDIT3=(HLBHIF,EDCHAR): The
third field ends 5.4 inches (137.16 mm) from
the left edge of the document, the edited data
is placed in a six-byte field, the field is critical.
All leading and trailing blanks are removed,
the data is right-justified, and the field is pad­
ded to the left with zeros. A comma, if present,
and the decimal point are removed from the
edited field.

FLD4=(62,I,NHPI),EDIT4=ALBHIF: The fourth
field ends 6.2 inches (157.48 mm) from the left
edge of the document, the edited data is placed
in a one-byte field, the field is critical and is
read using the numeric handprinting normal
mode. All blanks are removed, and data is
right-justified, and the field is padded to the
left with zeros.

5. The third line on the document is described as
follows:

LFR=3,LINBEG=45: The third line on the docu­
ment has a line format record number of 3.
The field to be read begins 4.5 inches (114.3
mm) from the left edge of the document. The
data record is in standard mode; editing is per­
formed.

FLDI=(63,7,NHPI),EDITI=ALBHIF: The field on
this line ends 6.3 inches (160.02 mm) from the
left edge of the document, the edited data is
placed in a seven-byte field, the field is critical
and is read using the numeric handprinting
normal mode. All blanks are removed, the
data is right-justified, and the field is padded
to the left with zeros.

FREND=YES: This is the format record end.
No DLINT macros follow this statement.

Optical Mark Reader (IBM 3881)
In general, remarks in the earlier section that ap­
plied to processing card files, using DTFCD for file
definition, also apply to 3881 files. Some program­
ming considerations for the 3881 and exceptions to
the DTFCD general remarks follow.

Block size, or, the I/O area size, for 3881 files
must be specified by the DTFCD operand BLKSIZE. It
must be sufficient to contain:

• Six bytes of record description information

•

J

•

J

•

•

•

Line 1:

01011000000000000000 Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

DALEoE. oSTUEMKEo 00000 ... 0
~~----------\/~---------~

Line 2:

Policyholder
Field

02021000000000000000

Pad to
130 Bytes

Header Record:
(20 Bytes)
Data Record :
(130 Bytes)

ROCHESTER, oMINNo 0 0 0 05839540402497500 ... 0

Address Policy Amoun)~ 130 Bytes
Field N umber Due [code

Line 3:

Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

Figure 7-24. Sample data.

• Mark read data

03031000000000000000

00000000 ... 0
~

Amount Pad to
Paid 130 Bytes

• BCD (binary coded decimal) mark read data if
the BCD feature is being used.

• 7 bytes of serial number and batch number
data if the serial number feature is being used.

The BLKSIZE operand for the 3881 cannot exceed
900. If specified greater than 900, BLKSIZE defaults
to 900. If the BLKSIZE operand is omitted, 900 is
assumed.

A device address (DEVADDR operand) OfSYSIPT,
SYSPCH, or SYSRDR must not be specified.

Use ofa work area is not permitted with the 3881;
that is, the WORKA=YES operand is forbidden.

Only fixed, unblocked, input records are valid for
the 3881.

Processing Paper Tape Files
Before processing paper tape files, they must be
defined by means of the DTFPT macro and the
PTMOD logic module generation macro. The ope­
rands for these macros are listed in Figure 7-25. For
details of these macros, see VSE/Advanced Func­
tions Macro Reference.

Note that not all ofthe DTFPT operands are valid
for PTMOD; Figure 7-26 shows operands valid for the
various paper tape handling devices.

Programming Considerations for Paper
Tape
Paper tape I/O routines can only be programmed in
assembler language. You specify the characteristics
of the file in the DTFPT declarative macro and use
GET and PUT macros to perform input and output.
Two record formats are acceptable: fixed-length
unblocked and undefined. The record format speci­
fied does not necessarily apply to the physical for-

Chapter 7: Processing Unit Record Files 7 - 35

Applies to

Input Output

X X

X X

X X

X

X X

X

X

X X

X

X

X X

X X

X

X

X X

X X

X X

X X

X

X X

X X

X

M = Mandatory
0= Optional

DTFPT

M

M

M

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

PTMOD

BLKSIZE=n

DEVADDR - SYSnnn

IOAREA1 =xxxxxxxx

DELCHAR=x'nn'

0 DEVICE=nnnn

EOFADDR = xxxxxxxx

EORCHAR=x'nn'

ERROPT = xxxxxxxx

FSCAN = xxxxxxxx

FTRANS = xxxxxxxx

IOAREA2 = xxxxxxxx

10REG=(nn)

LSCAN = xxxxxxxx

LTRANS=xxxxxxxx

MODNAME=xxxxxxxx

OVBLKSZ-n

0 RECFORM - xxxxxx

RECSIZE-(nn)

0 SCAN = xxxxxxxx

0 SEPASMB-YES

0 TRANS - xxxxxxxx

WLR ER R - xxxxxxxx

Figure 7-25. DTFPT and PTMOD macro operands.

mat of the data on the paper tape, but to the format
of the logical record as it appears in the I/O area.
The physical data may have characters embedded
that must be deleted, such as delete characters and
shift codes.

Paper Tape Input
Data read from paper tape may physically be in any
paper tape code the user requires. Logical data in
virtual storage is expected to be in internal IBM code
(EBCDIC). If some code or shifted code (figure shift
and letter shift) must be translated, this can be done
automatically.

After a GET has been issued, a logical record is
obtained from physical data. During this process,
the delete characters and the shift characters are
removed from the data. The data that follows such
characters is automatically shifted to the left. Atten­
tion must be given to the problem of synchronizing
the data fields with the program. The paper tape is
read character by character, and all characters are

7 - 36 VSE/ Advanced Functions Macro User's Guide

Length of your I/O areas.

Svmbolic unit to be associated with this file.

Name of first I/O area.

Delete character.

(2671, 1017, 1018). If omitted, 2671 is assumed.

Name of your end-of-file routine.

End-of-record character. (For RECFORM =UNDEF).

(IGNORE, SKIP, or error routine name). Prevents job termina-
tion on error records.

(For shifted codes). Name of your scan table used to select
figure groups.

(For shifted codes). Symbolic address of your figure shift
translate table.

Name of second I/O area.

Used with two I/O areas. Register (2-12) containing current
record address.

(For shifted codes). Name of your scan table used to select
letter groups.

(For shifted codes). Name of your letter shift translate table.

For module names other than standard.

Used if I/O records are compressed or expanded.

(FIXUNB or UNDEF). If omitted, FIXUNB is assumed.

Register containing the record length.

Name of your scan table for shift or delete character.

DTF is assembled separately.

Name of your table for code translation.

Name of wrong-length-record error routine.

placed in subsequent character locations in the input

area. If, in some data field, one character too many
or too few is specified, all following fields will be out
of phase. Therefore one usually adds extra charac­
ters with a special bit configuration to the data.
These characters are expected to occur in each re­
cord in the same character locations. By checking
these locations in his program, the user can identify
incorrectly formatted records.

Another method of checking whether data that is
processed is valid, is to expand data fields with an
additional check character which is the result of
some calculation, and later repeat this calculation in
the program. For example, for numeric data fields
you may add all characters on even locations, do the
same for all characters in uneven locations, multiply
the two sums, and then use the last character of the
product as a check character. A data field with the
content 85318 would then be represented on paper
tape as 853184, the calculation being 8 + 3 + 8 = 19,
5 + 1 = 6, 19 x 6 = 114.

J

•

•

•

Operand·
Resulting Module

DEVICE- RECFORM= SCAN= TRANS=

2671" FIXUNS' , Does not handle translation or shift or delete characters.

2671" FIXUNS' , YES Handles translation of un shifted codes, but not delete charac-
ters.

2671" FIXUNS' , YES
Handles shift and delete characters for records of fixed un-
blocked format

2671" UNDEF YES
Handles shift and delete characters for records of undefined
format.

1017 FIXUNS' , Does not handle translation or shift or delete characters.

1017 FIXUNS' , YES
Handles translation of unshifted codes, but no delete charac-
ters.

1017 FIXUNS' , YES
Handles shift and delete characters for records of fixed un-
blocked format.

1017 UNDEF YES
Handles shift and delete characters for records of undefined
format.

1018 FIXUNS' , YES
Handles translation of unshifted codes, if specified in DTFPT,
for records of fixed unblocked format.

1018 FIXUNS' ,

1018 UNDEF
Handles translation of unshifted codes, if specified in DTFPT,
for records of undefined format.

1018 UNDEF YES

1018 FIXUNS' , YES Handles shift characters for records of fixed unblocked format.

1018 UNDEF YES Handles shift characters for records of undefined format.
, In all cases, SEPASMS=YES may either be specified or omitted.
, , Specified explicitly or by default.

Figure 7-26. PTMOD operand combinations.

Undefined Record Format on Input: Each record
must be followed by an end-of-record character,
which is specified in a translation table set up by the
user. The input area must be at least one position
longer than the longest record anticipated, including
the EOR character and any delete characters and
shift codes embedded in the data. If an input area is
filled completely, the record is assumed to be too
long, and the wrong-length record routine of 10CS

will become active. After a GET, a read is per­
formed, count-controlled by the BLKSlZE operand
(length of the I/O area). Reading stops when an EOR

character is sensed.

After data has been read up to an EOR character,
the delete and shift characters are removed by the
translation process. The translated and compressed
record is presented to the user; its length is commu­
nicated in a register. Consecutive EOR characters are
skipped; the system will never return a data length
of zero.

Fixed-Length Unblocked Format on Input: The
term 'fixed-length' applies to the format ofthe logi­
cal record in the input area after it has been translat­
ed (if necessary) and compressed. It does not apply
to the format of the data as it appears physically on
the paper tape. A paper tape file consistes of one

continuous string of data characters, and it is 10CS

that establishes boundaries between the records by
means of the BLKSlZE operands specified by the
user. The physical data may have embedded delete
characters and shift codes. It may therefore be nec­
essary to read more characters than the size of the
logical record seems to indicate. The number of
characters that must be read is specified by the
OYBLKSZ operand in the DTFPT macro .

After a GET, 10CS starts a count-controlled read
until the input area contains the number of charac­
ters specified in OYBLKSZ. Then the translation
process starts, eliminating shift codes and delete
characters from the data. If the resulting record is
shorter than BLKSlZE, additional reads are per­
formed until 10CS has obtained a logical record with
a size equal to BLKSIZE. As a result, some characters
may be read which belong to the next logical record.
These characters are moved to the beginning of the
input area when the next GET is issued. Therefore,
do not clear the input area beyond the size of the
logical record as defmed in BLKSlZE. If you do, you
will destroy part of the following logical record.

Undefined Format versus Fixed-Length Format:
The main difference between the processing of the
two formats is that 10CS can recognize record

Chapter 7: Processing Unit Record Files 7 - 37

boundaries of undefined records, but not of fixed­
length records. An mcorrect specification of the
number of characters is more serious with fixed­
length records than w nh undetined records. With
undefined records, only one record would be out of
phase, whereas with fixed-length records all records
following the wrong record would be out of phase.
Therefore, it is usually better to use the undefined
record format, even if the logical records have a
fixed-length format. When you do this, make sure
that the input area is large enough to contain all
physical data of one record.

Code Translation on Input: The TRANS operand in
the DTFPT macro is used for the translation of non­
shifted code directly into internal IBM code (EBCDIC).
If the input is in EBCDIC, no translation is required,
and the TRANS operand may be omitted. The SCAN
operand may be used alone or in conjunction with
TRANS to delete characters from records that do not
contain shifted code.

If the input contains shifted code, the FTRANS,
L TRANS, and SCAN operands must be specified in the
DTFPT macro. Translation of shifted code is accom­
plished by IOCS as follows:

1. The data is scanned for shift characters. The
segments between shift characters are translat­
ed, using the appropriate shift table.

2. The translated segments are moved to the left
to remove the shift characters.

3. Steps 1 and 2 are repeated for each segment
until the complete record has been translated
and compressed.

These steps result in a translated and compressed
record, left-justified in the input area. The record
length is communicated to the user in a register,
which is designated in the RECSIZE operand.

The EOR character at the end of undefined re­
cords must be shift-independent. That is, it must be
effective whether the coding be in letter shift or fig­
ure shift. If there is valid code in either shift that
corresponds to the coding of the EOR character es­
tablished for a particular job, then this shift code
must not be included in the input.

IOCS assumes that the first record read from pa­
per tape starts with figure shift coding. Therefore, if
the first record starts with letter shift code, you must
make sure that the first character in the first physical
block is a letter shift character. The shift status is
carried from one record to the next and remains
unchanged until another shift character is encoun­
tered.

7 - 38 VSE/ Advanced Functions Macro User's Guide

EOF Condition (Input Only): The EOF condition
occurs with an end-of-tape condition when the EOF
switch is on. When IOCS detects this EOF condition
(unit exceptlOn flag on in the tirst CSw status byte),
it automatically branches to your end-of-file routine.
However, at the end of the routine, you can choose
to return to IOCS to read a new tape by branching to
the address in register 14. If any IOCS macro is con­
tained in this routine, the contents of register 14
must be saved and restored.

If an end-of-tape condition is detected while
reading characters other than blanks or deletes (all
punched holes), the unit check bit in the first csw
status byte is set on. This applies only to the 1017,
and causes the broken tape bit (bit 7) to appear in
the sense byte. The broken tape condition may oc­
cur in addition to the EOF condition if the EOF
switch is on.

Trailer Length (Input Only): To avoid a broken
tape condition that would result if the tape trailer is
too short, make sure that the length of the trailer is
as shown below:

• For undefined records (read-EoR command):
longer than two inches (5.08 cm).

• For fixed unblocked records (read command):
longer than
byte count + 2 inches, or 0.254 (byte count) +5.08 cm

to

Note: Byte count is either the count specified in BLKSIZE
(record without shifted codes or records with shifted codes but
without using the OVBLKSZ operand in the DTFPT), or the
count specified in OVBLKSZ (records with shifted codes using
the OVBLKSZ operand).

However, when your program processes unde­
fined records, and a trailer longer than

byte count + 2 inches, or 0.254 (byte count) +5.08 cm
to

is read, this trailer will be mistaken for a wrong­
length record.

Paper Tape Output
Data may be written in any code the user requires.
Translation of shifted and non-shifted code can be
done automatically.

After a PUT has been issued, the logical record is
expanded by IOCS during the translation process, if
required, and shift characters are added when neces­
sary.

Undefined Record Format on Output: You specify
the end-of-record character in the EORCHAR ope­
rand of the DTFPT macro. IOCS writes this character
after the last character in each record. The size of

,.

•

J

L

•

..

•

L

the output area (specified in the BLKSIZE operand)
must be at least equal to that of the longest record
anticipated, including all shift characters that are to
be inserted.

Fixed-Length Record Format on Output: The out­
put area must be the same size as each logical record
before translation and insertion of shift characters.
Its length is specified in the BLKSIZE operand. Logi­
cal records are translated by IOCS if necessary. As a
result of PUT, a count-controlled write causes the
specified number of characters to be written. For
shifted-code files, the records are expanded by IOCS

with shift characters. IOCS performs additional
writes to construct the required physical block.

Code Translation on Output: The TRANS operand
in the DTFPT macro is used for translation on non­
shifted code, from internal IBM code (EBCDIC) into
any other code required by the user. If the output is
to be punched in EBCDIC, no translation is required,
and the TRANS operand may be omitted.

If the output contains shifted code, the TRANS,

FSCAN, and LSCAN operands must be included in the
DTFPT macro. The OYBLKSZ operand may be used
or omitted. If omitted, the records are written seg­
ment by segment, and IOCS adds a shift character in
front of each segment. If OYBLKSZ is used, however,
the segments are moved to the right, while shift
characters are inserted in the data before each seg­
ment. If OYBLKSZ is specified too low, additional
writes are performed to produce the physical data.

I/O areas
The BLKSIZE operand specifies the length of the
input or output area. The maximum block size is
32,767 bytes.

Input Area: For undefined records, this area must
be at least one byte larger than the longest record
including all shift and delete characters included in
the record. For fixed-length records, this area must
be the same size as the record. If shift and delete
characters are included in the record (the SCAN en­
try is specified), BLKSIZE indicates the number of
characters required by the program after translation
and compression. OYBLKSZ contains the number of
characters to be read in to produce the BLKSIZE

number.

Output Area: For undefined records, the area must
be at least as large as the longest record, including
all shift characters that are to be included in the
record. For fixed-length records, the area must be
the same size as the record. For shifted codes (when

the FSCAN and LSCAN entries are specified), BLKSIZE

must contain the number of characters after transla­
tion and insertion of shift characters.

Error Conditions
The paper tape reader or punch stops immediately
on an error condition. If the error cannot be correct­
ed and the job is not terminated, IOCS causes the
entire record containing the error to be:

• Translated and compressed, if needed (for in­
put records).

• Translated, expanded, and punched, before
taking the error option specified by the prob­
lem program (for output records) .

Wrong Length: For input file, the only wrong­
length condition that can be detected is an over­
length undefmed record. This should be reflected in
the BLKSIZE operand.

When IOCS finds a wrong-length record, it
branches to the symbolic name specified in the
WLRERR entry. If this entry is omitted and the
ERROPT entry is included, IOCS considers the error
uncorrectable and uses the ERROPT option specified.
Absence of both ERROPT and WLRERR entries causes
the wrong-length record to be accepted as normal
records. Wrong-length checking is not performed
for fixed-length records because a fixed number of
characters is read in each time. IOCS detects over­
length undefined records when the incoming record
fills the input area. The input area must, therefore,
be at least one point longer than the longest record
anticipated.

At the end of the WLRERR routine, return to IOCS

by branching to the address in register 14. The next
IOCS read operation will normally cause the remain­
der of the overlength, undefmed record to be read.
If any other IOCS macros are included in the record­
length error routine, the contents of register 14 must
be saved and restored.

Note: A wrong-length condition appears during the first read
operation on a 1017 if the com bined length of the tape reader and
the first record is greater than the length of the longest record
anticipated (the length specified in BLKSIZE).

Wrong-length record indication is impossible
with fixed unblocked records, because each record is
a sequence of a specified number of characters. Use
the FIXUNB record format carefully, because speci­
fying one character too few or too many in any re­
cord causes all subsequent records to be out of
phase. The problem program should specify the
RECSIZE operand to check for the correct length of
the last record of any file. A record must be entirely
on one reel of input tape.

Chapter 7: Processing Unit Record Files 7 - 39

Data Check: Figure 7-27 shows the decision taken

by LIOCS, or possible operator actions, after an unre­

coverable data check occurs.

Type of Record Processed Input Opera- Output Opera-
tion tion

Fixed unblocked record in Action 1 Action 1
shifted code

Fixed unblocked record in Action 2 Action 2 nonshifted code

Undefined record in non- Action 2 Action 2 shifted code

Undefined record in shifted Action 2 Action 1 code

Action I:

Action 2:

The system automatically cancels the job.

The operator may choose to:
• cancel the job
• ignore the error
• retry the operation (for 2671 only).

Figure 7-27. LIOCS decision on a paper tape data check.

Following an ignore decision, logical 10CS takes

action in accordance with the parameter specified in

ERROPT. If

ERROPT=IGNORE:

The record is handled as if no errors were de­

tected.

7 - 40 VSE/ Advanced Functions Macro User's Guide

ERROPT=SKIP:

The erroneous record is skipped and the next

record is read in.

ERROPT=name:

The record is handled as if no error were de­

tected, and control is given to your error rou­

tine. At the end of this routine, return to 10CS

by branching to the address in register 14. The

next record is then read in or written out.

If ERROPT was not specified, the job is canceled.

Notes:

I. The character in error is repunched preceded by its corre­
sponding shift character:

• For output records expressed in a paper tape code where
the delete character and one of the shift characters have
the same configuration.

• Following a data check.

2. The entire erroneous record is repunched as ifno errors
were detected:

• If an irrecoverable error occurs and ERR 0 PT =name or
ERROPT=IGNORE was specified in the DTFPT.

• In the case of output records with two I/O areas, the
CLOSE macro checks the successful completion of the
last operation.

3. No error condition occurs on the 1018 if the setting of the
tape width selector does not match the tape code specified
in the problem program.

4. When reading paper tape with physical 10CS, restore the
CCW address in the CCB before using the EXCP macro.

J

•

..

•

Chapter 8: Processing Device-Independent System Files

Device independence allows you to program as if a
certain device were always available. When the
program is actually run and the device happens not
to be available, the symbolic device name can be
assigned easily to some other device. In some cases,
the other device may even be of a different type.

The DTFDI macro provides device independence
for system logical units. If several DTFDI macros are
assembled within one program and all of them have
the same RDONL Y condition, only one logic module
(DIMOD) is required. Therefore, DTFDI processing
requires fewer parameters and less storage than de­
vice dependent LIOCS macros.

If you are using a DASD device or advanced print­
er buffering on an IBM 3800 Printing Subsystem, you
do not need to specify DIMOD. Support for DASD

devices and for the advanced printer buffering in­
cludes pre-assembled logic modules that automati­
cally are loaded into the SVA (system virtual area) at
IPL time and are linked to the problem program
when the assigned file is opened. To maintain de­
vice independence, however, you may choose to
include a DIMOD specification in your program if,
when you write the program, you are not certain
which device will be assigned to the file at execution
time. When the file is opened, the OPEN routines for
DASD devices or the 3800 will override the DIMOD

linkage if the file is assigned to either a DASD device
or a 3800.

The DTFDI macro should always be used to read
SYSIPT data if the program might be invoked by a
catalogued procedure.

The restrictions on DTFDI processing are:

• Only fixed unblocked records are supported.

• Only forward reading is allowed.

• In a multivolume diskette file, new volumes are
fed automatically.

• The last volume of a multivolume diskette
output file will be ejected automatically, but the
last volume of a multivolume diskette input file
will not.

• If DTFDI is used with diskettes, special records
(deleted or sequentially relocated records) on
input files are skipped and not passed to the
user.

• Rewind options are not provided, that is, no
repositioning is done at OPEN and CLOSE time.

• Combined file processing is not supported for
reader-punches.

• Reading of cards is restricted to the first 80
bytes per card.

• The CNTRL and PRTOV macros cannot be used
with this macro.

• Reading, writing, or checking of standard or
user-standard labels for tape/disk is not sup­
ported.

• If ASA control character code is used in a multi­
tasking environment and more than one DTF

uses the same module with RDONL Y=YES, over­
printing may occur.

• If a DASD device is assigned to a system logical
unit and ERROPT or WLRERR specified, no
LIOCS macros other than ERET may be issued
within the user-written error handling routine.

The operands for DTFDI are listed in Figure 8-1.
For more details about DTFDI and the logic module
generation macro, DIMOD, see VSE/ Advanced Func­
tions Macro Reference.

Record Size
For input files, (SYSIPT and SYSRDR), the maximum
allowable record size is 80 bytes. For output files,
the record must include one byte for a control char­
acter. The maximum record size for SYSLST is 121
bytes and 81 bytes for SYSPCH. For printers and
punches, the logic module assumes a S/370-type
control character if the character is not a valid ASA

character. The program checks ASA control charac­
ters before S/370-type control characters. There­
fore, if it is a valid ASA control character (even
though it may also be a S/370-type control charac­
ter), it is used as an ASA control character. Other­
wise, it is used as a S/370-type control character.

Control character codes are listed in Appendix A,
except for the following:

• 2520 stacker selection codes must be used for
the 1442.

• 2540 stacker selection 3 must not be used if
device independence is to be maintained.

The record size is specified by the RECSIZE ope­
rand. If this operand is omitted, the following is
assumed:

80 bytes for SYSIPT.
80 bytes for SYSRDR.
81 bytes for SYSPCH.
121 bytes for SYSLST.

The use of assumed values for the RECSIZE ope­
rand assures device independence. For disk and

Chapter 8: Processing Device-Independent System Files 8 - I

M DEVADDR = SYSxxx SYSIPT, SYSLST, SYSPCH, or SYSRDR. System logical unit.

M IOAREA1 =xxxxxxxx Name of first I/O area.

0 CISIZE=nnnnn Size of FBA DASD Control Interval.

0 EOFADDR = xxxxxxxx Name of your end-of-file routine.

0 ERROPT = xxxxxxxx IGNORE, SKIP, or name of your error routine. Prevents termination on errors.

0 FBA=YES Specifies a Fixed Block Architecture DASD file.

0 IOAREA2 = xxxxxxxx If two I/O areas are used, name of second area.

0
10REG=(nn) General registers 2-12, written in parentheses. If omitted and two I/O areas are used,

register 2 is assumed.

0
MODNAM E = xxxxxxxx DIMOD name for this DTF. If omitted, 10CS generates a standard name. Not needed with

DASD or 3800 advanced printer buffering.

0
RDONLY=YES Generates a read-only module. Requires a module save area for each task using the

module.

0
RECSIZE=nnn Number of characters in record. Assumed values: 121 (SYSLST), 81 (SYSPCH), 80

(otherwise).

0 SEPASMB=YES DTFDI to be assembled separately.

0 TRC=YES For 3800, output data lines include Table Reference Character.

0 WLRERR = xxxxxxxx Name of your wrong length record routine.

M = Mandatory
0= Optional

Figure 8-1. DTFDI macro operands.

diskette files, the assumed values are required to
assure device independence.

Error Handling
By means of two DTFDI operands, ERROPT and
WLRERR, 10CS assists you in processing I/O and
record-length errors. The WLRERR operand applies
only to input files on devices other than diskette
units. It specifies the name of your routine to which
10CS branches if a wrong-length record is read on a
tape or disk device.

Because only fixed-length records are allowed, a
wrong-length record error condition results when
the length of the record read is not equal to that
specified in the RECSlZE operand. If the length of
the record is less then that specified in the RECSIZE

operand, the first two bytes of the CCB (first 16 bytes
of the DTF) contain the number of bytes left to be
read (residual count). If the length of the record to
be read is larger than that specified in the RECSIZE

operand, the residual count is set to zero and there is
no way to compute its size. The number of bytes
transferred is equal to the value of the RECSIZE ope­
rand, and the remainder of the record is truncated.

The address of the record is supplied in register I.
In your routine, you can perform any operation
except issuing another GET for this file. Also if you
use any other 10CS macros in your routine for a file
assigned to a DASD, you must save the contents of
register 14. If RDONLY=YES, you must save the con­
tents of register 13 as well. For a file assigned to a

8 - 2 VSE/ Advanced Functions Macro User's Guide

DASD, use of a LlOCS macro other than ERET will
cause the task to be terminated (for the file in error).

At the end of the routine, you must return to 10CS

by branching to the address in register 14. When
control returns to your program, the next record is
made available. If this operand is omitted but a
wrong-length record is detected by 10CS, the action
depends on whether the ERROPT operand is includ­
ed:

• Ifthe ERROPT operand (always assumed for
DASD) is included, the wrong-length error re­
cord is treated as an error record and handled
according to the ERROPT parameter.

• If the ERROPT operand is omitted, 10CS ignores
wrong-length errors and the record is made
available to you. If, in addition to a wrong­
length record error, an unrecoverable parity
error occurs, the job is terminated.

The ERROPT operand does not apply to output
files. For output files for most devices, the job is
automatically terminated after 10CS has attempted
to retry writing the record; for 2560 or 5424/5425
output files, normal error recovery procedures are
followed.

ERROPT applies to wrong-length records if
WLRERR is omitted. Ifboth ERROPT and WLRERR

are omitted and wrong-length records occur, 10CS

ignores the error.

ERROPT specifies the function to be performed for
an error block. If an error is detected when reading
a magnetic tape, a disk pack, or a diskette volume,

J

•

J

"

•

..

IOCS attempts to recover from the error. If the error
i~ not corrected, the job is terminated unless this
operand is included to specify other procedures to
be taken. The three specifications are described
below.

IGNORE

SKIP

name

Indicates that the error condition is to be ig­
nored. The address of the error record is made
available to you for proces$ing (see "CCB

Macro" in "Chapter 9. Processing Files with
PIOCS (Physical IOCS)").

Indicates that the error block is not to be made
available for processing. The next record is
read and processing continues.

Indicates that IOCS is to branch to your routine
when an error occurs, where you may perform
whatever functions are desired or simply note
the error condition. The address of the error
record is supplied in register 1. The contents of
the IOREG register may vary and should not be
used for error records. Also, you must not is­
sue any GET instructions in your error routine.
If you use any other IOCS macros for a file as­
signed to a DASD, you must save the contents
of register 14. If RDONL Y=YES is specified, you
must also save the contents of register 13. For
a file assigned to a DASD, use of a LIOCS macro

(other than ERET) for the file in error will
cause the task to be terminated. At the end of
the error routine, return to IOCS by branching
to the address in register 14. The next record is
then made available for processing.

End-Of-File Handling
The EOFADDR operand specifies the name of your
end-of-file routine. It is required only if SYSIPT or
SYSRDR is specified.

IOCS branches to this routine when it detects an
end-of-file condition. In this routine, you can per­
form any operations necessary for the end-of-file
condition (you generally issue the CLOSE macro).

IOCS detects the end-of-file condition by recog­
nizing the characters 1* in positions 1 and 2 of the
record for cards, a tapemark for tape, and an end-of­
file record for disk. If the system logical units
SYSIPT and SYSRDR are assigned to a 5424/5425,
IOCS requires that the 1* card, indicating end-of-file,
be followed by a blank card. An error condition
results if the records are allowed to run out without
a 1* card (and without a / & card, if end-of-job).
IOCS detects the end-of-file condition on diskette
units by recognizing that end-of-data has been
reached on the current volume and that there are no
more volumes available .

Chapter 8: Processing Device-Independent System Files 8 - 3

J

' ..

If

•

J

8 - 4 VSE/ Advanced Functions Macro User's Guide

•

Chapter 9: Processing Files with PIOCS (Physical IOCS)

When your program processes magnetic tape, DASD,
or diskette files by means of the PIOCS macros (such
as EXCP and WAlT), the files must first be defined by
the DTFPH declarative macro. No logic module gen­
eration macro is needed. The DTFPH macro must
also be used for a checkpoint file on disk.

Figures 9-1 and 9-2 list the DTFPH operands; for
details of these operands, refer to VS E / Advanced
Functions Macro Reference.

Operand Optional Required

CCWADDR=name X

CISIZE=nnnnn X

DEVADDR = SYSnnn X

DEVICE=2311, 2314, 3330,
3340.3350.3540, FBA'. X

DISK' ,

LABADDR=name X

MOUNTED=SINGLE X

TYPEFLE = OUTPUT X

, Specify FBA for 3310 or 3370.

, , Specify DISK to indicate any DASD device. The actual
one to be determined at OPEN time.

Figure 9-1. Operands to define a checkpoint file on disk.

After the files are defined by the DTFPH macro,
the imperative macros can be used to operate on the
files. The imperative macros are divided into three
groups: those for initialization, processing, and com­
pletion .

Initialization
The OPEN macro activates files processed with the
DTFPH macro. The macro associates the logical file
declared in your program with a specific physical
file on a DASD. The association remains in effect
throughout your processing of the file until you issue
a C LOSE macro.

If OPEN attempts to activate a logicallocs file
(DTF) whose device is unassigned, the job is termi­
nated. If the device is assigned IGN, OPEN does not
activate the file and turns on DTF byte 16, bit 2, to
indicate the file is not activated. If the file is not
activated, do not attempt I/O operations, as unpre­
dictable results may occur.

Enter the symbolic name of the file (DTF file­
name) in the operand field. A maximum of 16 files

may be opened with one OPEN by entering the file­
names as additional operands. Alternatively, you
can load the address of the DTF filename into a reg­
ister and specify the register using ordinary register
notation. The address of filename may be preload­
ed into register 0 or 'any of the registers 2 through 15.
The high-order 8 bits of this register must contain
zeros or unpredictable results may occur.

Note: If you use register notation, we recommend that you follow
the practice of using only registers 2 through 12.

Whenever an input/output DASD or magnetic
tape file is opened and you plan to process user­
standard labels (UHL or UTL), or nonstandard tape
labels, you must provide the information for check­
ing or building the labels. If this information is ob­
tained from another input file, that file must be
opened ahead of the DASD or tape file. Do this by
specifying the input file ahead of the tape or DASD
file in the same OPEN, or by issuing a separate OPEN
preceding the OPEN for the file.

If an output tape specified to contain standard
labels is opened and does not contain a volume la­
bel, a message is issued to the operator. He can then
enter a volume serial number allowing the volume
label to be written on the output tape.

Single Volume Mounted - Output
When processing output files with physicallOCS,
OPEN is used only if you want to build standard la­
bels. When the first OPEN for the volume is issued,
OPEN checks the standard VOLI label and the extents
specified in the EXTENT job control statements for
the mounted volume:

I. The extents must not overlap each other.

2. If user standard header labels are written, the
first extent must be at least two tracks long.

3. Only type 1 and type 8 extents are valid. (For
files assigned to FBA DASD, only type I extent is
valid.)

OPEN checks all the labels in the VTOC to ensure
that the file to be created does not destroy an exist­
ing file whose expiration date is still pending. After
this check, OPEN creates the standard label(s) for the
file and writes the label(s) in the VTOC.

If you wish to create your own user standard
header labels (UHL) for the file, you must include the
LABADDR operand in the DTF. OPEN reserves the
first track of the first extent for these labels and
gives control to your label routine. After this, the
first extent of the file can be used. Each time you

Chapter 9: Processing Files with PIOCS (PhysicaIIOCS) 9 - I

determine that all processing for an extent is com­
pleted, issue another OPEN for the file to make the
next extent available. When the last extent on the
last volume of the file is processed, OPEN issues a
message. The system operator has the option of
canceling the job, or typing in an extent on the
printer-keyboard and continuing the job. If the sys­
tem provides DASD file protection, only the extents
opened for the mounted volume are available to
you.

Single Volume Mounted - Input

When processing input files with physicallocs,
OPEN is used only if you want to check standard
labels.

All Volumes Mounted - Output

If all output volumes are mounted when creating an
output file with physicallocs, each volume is
opened before the file is processed. OPEN is used
only if standard labels are checked or written.

For each volume, OPEN checks the standard VOLI

label and checks the extents specified in the EXTENT

job control statements:

I. The extents must not overlap each other.

2. Only type-I extents can be used.

3. If user standard header labels are created, the
first extent must be at least two tracks long.

4. For 3340, all data modules must be of the same
type.

OPEN checks all the labels in the VTOC to ensure
that the created file does not write over an existing
file with an expiration date still pending. After this

check, OPEN creates the standard label(s) for the file
and writes the label(s) in the VTOC.

When the mounted volume is opened for the first
time, OPEN checks the extents specified in the extent
cards (for example, checks that the extent limit ad­
dress for the device being opened is valid). OPEN

also checks the standard VOLI label and then checks
the file label(s) in the VTOC. If the system provides
DASD file protection, only the extents opened for the
mounted volume are available for use.

If LABADDR is specified, OPEN makes the user
standard header labels (UHL) available to you one at
a time for checking. Then, OPEN makes the first
extent available for processing.

Each time you determine that all processing for
an extent is completed, issue another OPEN for the
file to make the next extent available if
MOUNTED=SINGLE is specified. If another extent is
not available, OPEN stores the character F (for EOF)

in byte 31 of the DTFPH table. You can determine
the end of file by checking the byte at filename +30.

If you wish to create your own user standard
header labels for the file, include the LABADDR ope­
rand in the DTF. OPEN reserves the first track of the
first extent for these labels and gives control to your
label routine.

If the XTNTXIT operand is specified, OPEN stores
the address of a 14-byte extent information area in
register 1. Then, OPEN gives control to your extent
routine. You can save this information for later use
in specifying record addresses. If your DASD file is
file protected, you cannot write on any extents while
in the XTNTXIT routine. When checking is complete,
return control to OPEN by issuing the LBRET 2 macro

M TYPEFLE = xxxxxx INPUT or OUTPUT. Specifies type of file.

0 ASCII=YES

0 CCWADDR = xxxxxxxx

0 CISIZE=nnnnn

0 DEVADDR=SYSxxx

0
DEVICE=xxxx

0 HDRINFO=YES

0 LABADDR = xxxxxxxx

0 MOUNTED=xxxxxx

0 XTNTXIT = xxxxxxxx

M = Mandatory

0= Optional

Figure 9-2. DTFPH macro operands.

ASCII file processing is required.

To be used if CCB is generated by DTFPH.

For Fixed Block Architecture DASD; Control Interval size.

Symbolic unit required only when not provided on an EXTENT statement.

(T APE, DISK, FBA, 2314, 3330, 3340, 3350, 3540). Specify FBA for 3310 or 3370.

omitted, TAPE is assumed.

Print header label information.

Routine to check or build user standard labels.

ALL or SINGLE. Required for DASD files only; for diskette files, specify SINGLE.

If EXTENT statements are to be processed, DASD only.

9 - 2 VSE/ Advanced Functions Macro User's Guide

If

•

..

which opens the next volume. After all volumes are
opened, the file is ready for processing.

All Volumes Mounted - Input
When all volumes containing the input file are on­
line and ready at the same time, each volume is
opened, one at a time, before any processing is done.
OPEN is used only when standard labels are to be
processed. For each volume, OPEN checks the ex­
tents specified in the EXTENT job control statements,
and checks the standard YOLI label on track 0 and
the file label(s) in the YTOC. If LABADDR is specified
in the DTF, OPEN makes the user standard labels
available, one at a time, for checking.

If XTNTXIT is specified, OPEN stores the address
of a 14-byte extent information area into register I.
Then OPEN gives control to your extent routine. For
example, you can save this area and use the inform­
ation later on for specifying record addresses. If the
DASD file is file protected, you cannot write on any
extents while in the XTNTXIT routine.

Diskette Volumes - Output
When processing output files on diskettes with phys­
icallocs. OPEN is used to build standard labels.
When OPEN is issued for the first volume, it checks
the YTOC on the diskette, and

• ensures that the file to be created does not have
the same name as an existing unexpired file;

• ensures there is at least one track available to
be allocated;

• allocates space for the file, starting at the track
following the last unexpired or write-protected
file on the diskette.

After this check, OPEN creates the format-I label
for the file and writes the label in the YTOC. Each
time you determine that all processing for an extent
is complete, you must feed to make the next diskette
available and then issue another OPEN for the file, to
make the next extent available. CLOSE will automat­
ically cause the last volume to be fed out. If the last
extent of the file is completely processed before a
CLOSE is issued, OPEN assumes an error condition
and the job is canceled.

Diskette Volumes - Input
When processing input files on diskettes with physi­
callocs, OPEN is used to check standard labels.

When the first volume is opened, OPEN checks the
YTOC on the diskette and determines the extent lim­
its of the file from the file label.

After the label is checked, OPEN makes the first
extent available for processing, Each time you de-

termine that all processing for a diskette is complete,
you must feed to make the next diskette available,
and then issue another OPEN for the file, to make the
next extent available, If another extent is not avail­
able, OPEN stores the character F (for EOF) in byte 31
of the DTFPH table, You can determine the end of
file by checking the byte at filename +30.

For a programmer logical unit, the last diskette
will always be fed out; for a system logical unit, the
last diskette will not be fed out.

Processing
In order to process a file by means of physicallocs,
you must provide either a Command Control Block
(CCB) or an I/O Request Block (IORB) for each I/O

device. These control blocks are used to maintain
communications between your program and PIOCS

about such things as determining the status of the
device in use and specifying the operations that you
want performed.

Using the operands that you specify, the CCB

macro generates a Command Control Block of ei­
ther 16 or 24 bytes. See Figure 9-3 for the format
and contents of the CCB. Similarly, the 10RB and
GENIORB macros generate an I/O Request Block,
which is the same as a CCB except that, in the 10RB,

bytes 6-12 and 16-23 are reserved for use by PIOCS.

Using the 10RB or G ENIORB macros instead of the
CCB macro allows you additional options, such as
specifying areas to be page-fixed. This frees the
system from having to determine which areas are to
be fixed.

The macros differ from one another further in
that issuing a CCB or 10RB macro generates the block
when the program is assembled, while GENIORB

generates it at execution time, Otherwise, depending
on the requirements of your program, the macros
may be interchangeable.

For details of the CCB,IORB, and GENIORB macros
and their operands, see VSEj Advanced Functions
Macro Reference.

The significance of bits in bytes 2 and 3 of the
Command Control Block, the 'transmission
information' or 'user option bits,' is listed in Figure
9-4. The CCB macro can set any or all of these bits; if
more than one bit must be set, the sum of the values
is used. For example, to set on user option bits 3, 5,
and 6 of byte 2, X'16oo' is used.

(X'1600'=X'IOoo' + X'04oo' + X'02oo')

Only certain of these bits can be set on when you
use the lORB or GENlORB macros; you do this by
specifying the lOFLAG operand.

Chapter 9: Processing Files with PlOCS (PhysicallOCS) 9 - 3

When certain I/O devices are used, user option
bits must be set. For instance, if the CCB (or IORB) is
for an IBM 2560 or 5424/5425, option bit 5 of CCB

byte 2 (post at device end) must be set on. If com­
mand chaining is used in the channel programs for
these devices, or for the 3895, option bit 7 of CCB

byte 3 (command chain retry) must also be set on.

Also, if your program has its own user error rou­
tine (byte 2, bit 7 of the CCB is on, or x'nnnn' in the
CCB macro = x'O toO') but has not specified a sense
address in the CCB macro, the sense information is
cleared by the supervisor in order to prevent dead­
locks in the control unit. If the user then issues an
EXCP with the ccw address for SENSE from the error
routine, the information has already been destroyed.

(When under control of LIOCS, the CCB macro is
generated as a result of the DTFxx macro).

The EXCP (EXecute Channel Program) macro is
used for including an I/O request to PIOCS. It is
translated into an svc instruction (which calls the
channel scheduler) and a reference to the CCB or
10RB. This reference can be given as a symbolic
reference by means of a ccbname or a reference to a
general register which contains its address.

Physical 10CS determines the device from the CCB

specified by blockname, places the CCB in a queue of
such CCBS for this device, and returns control to
your program. Physical 10CS causes the channel
program to be executed as soon as the channel and
device are available. I/O interruptions are used to
process I/O completion and to start I/O for requests
if the channel or device was busy at the time the
EXCP was executed. You can determine the actual
device type to which a logical unit is assigned by
means of the EXTRACT ID-PUB macro.

PIOCS does not wait for the completion of an I/O

operation after the operation has been started. In­
stead, control is returned to the problem program,
which must make sure that it does not start process­
ing data that has not been completely read, or start

9 - 4 VSE/ Advanced Functions Macro User's Guide

overwriting an output area before the previous block
has been completely written. A problem program
can wait for the completion of an I/O operation by
issuing a WAIT macro that refers to a CCB or 10RB.

The reference can be made in either way described
above for the EXCP macro. The effect of a WAIT

macro is another svc instruction which checks, in
the interrupt routine, the status of the I/O operation
in the process.

When WAIT is executed, the supervisor gives con­
trol to another program until the traffic bit (byte 2,
bit 0) of the related CCB or IORB is turned on.

The relationship between the three PIOCS macros
CCB, EXCP, and WAIT is shown in Figure 9-5. Note
that in this figure the assembler instruction ccw is
illustrated as well. The ccw instruction is not a ma­
cro. It is included in the figure only for clarification.
Note also that a IORB or GENIORB macro may be
substituted for the CCB, in some cases.

The EXTRACT ID=PUB macro retrieves partition­
related device information, that is, for a given logi­
cal unit PUB information can be obtained. The PUB

information retrieved can be interpreted using the
mapping DSECT generated by the IJBPUB macro.

The SECTV AL macro calculates the sector value of
the address of the requested record on the track of a
disk storage device when RPS is used. The macro
returns this value in register O.

The sector value is calculated from data length,
key length, and record number information. Values
are calculated for fixed or variable length and for
keyed and non-keyed records.

The LBRET macro is issued in your subroutines
when processing is completed and you wish to re­
turn control to 10CS. LBRET applies to subroutines
that write or check tape nonstandard labels, or check
DASD extents. The operand used depends on the
function to be performed (see the section "Label
Processing").

,

J

•

Bytes

Q

reserved CCW address 0 reserved CCW address in CSW

8

16

2

3

optional sense CCW

After a record has been transferred, 10CS places the
residual count from the CSW into these two bytes. By
subtracting the residual count from the original count in
the CCW, your program can determine the length of the
transferred record. The field is set to zero for negative
values.

Used for transmission of information between physical
10CS and your program. For detailed information on the
use and purpose of the individual bits in this field, see
Figure 9-4. Your program can test any of the bits in this
field using the mask given in the last column of Figure
9-4. Your program may test more than one bit by the
hexadecimal sum of the test values.

All bits are set to 0 when your program is assembled
unless the X'nnnn' operand is specified. If this operand
is specified, it is assembled into these two bytes. When
your program is being executed, each bit may be set to
1 by your program (to request certain functions or spe­
cific feedback information) or by physical 10CS (as a
result of having detected a particular condition). Any
bits that can be turned on by physical 10CS during pro­
gram execution are reset to zero by PIOCS the next time
an EXCP macro is executed against the same CCB.

Byte 4 is set to X'OO' whenever an EXCP macro is
issued against the CCB. For non-teleprocessing de­
vices, a program-controlled interruption (PCI) is ignored.

The meaning of the bits in these two bytes is as follows:

Byte 4:

o = attention

1 = status modifier
2 = control unit end
3 = busy
4 = channel end
5 = device end
6 = unit check

Byte 5:

o = program-controlled
interruption

1 = incorrect length
2 = program check
3 = protection check
4 = channel data check
5 = channel control check
6 = interface control check

7 = unit exception 7 = chaining check

If bit 5 of CCB byte 2 is set to 1 and device end results
as a separate interrupt, device end will be posted.

Figure 9-3. Layout and contents of Command Control Block (CCB).

4 Contents of byte 6:

X'Qu' = original CCB
X'4u' = BTAM-ES CCB
X'8u' = user-translated CCB in virtual partition

Note: if u = 0: the address in byte 7 refers to a sys­
tem logical unit.
if u = 1: the address in byte 7 refers to a pro­
grammer logical unit

Contents of byte 7:
Hexadecimal representation of SYSnnn as follows:

SYSROR = 00
SYSIPT = 01
SYSPCH = 02
SYSLST = 03
SYSLOG = 04
SYSLNK = 05
SYSRES = 06
SYSSLB = 07
SYSRLB = 08
SYSUSE = 09
SYSREC = OA
SYSCLB = OB
SYSOMP = OC
SYSCAT = 00

SYSOOO = 00
SYS001 = 01
SYS002 = 02

•

SYS254=FE

5 Address of CCW (or of the first of a chain of CCWs)
associated with the CCB:
This is a real address if CCB byte 6 = X'8u'.
This is a virtual address if CCB byte 6 = X'Ou'.

6 Either of the following:
The CCW address contained in the CSW at channel-end
interrupt for the I/O operation involving the CCB; or the
address of the associated channel appendage routine if
CCB byte 12 contains X'40'.

7 Bytes 16 to 23 are provided only if the sense operand
was specified in the CCB macro. They accommodate
the CCW for returning sense information to your pro­
gram.

Chapter 9: Processing Files with PIOCS (PhysicaIIOCS) 9 - 5

Condition Indicated On Values for
Mask for Test

Byte Bit
Third Ope-

Under Mask
1 (ON) o (OFF) rand in CCB

Instruction Macro

2 0 Traffic Bit (WAIT) I/O Completed. Normally I/O requested X'80'
set at Channel End. Set at and not complet-
Device End if bit 5 is on. ed.

1 End of File on System Input /. or / & on SYSRDR or X'40'
SYSIPT. Byte 4, Unit ex-
ception Bit is also on.

3211 UCB Parity Check (line Yes No
complete)~

2 Irrecoverable I/O Error I/O error passed back due No program or X'20'
to program option or opera- operator option
tor option. error was passed

back.

3 1 Accept Irrecoverable I/O Error (Bit Return to user after physi- Operator Option: X'1000' X'10'
2 is ON) cal 10CS attempts to cor- Dependent on the

rect I/O error.2 Error

4 1 Return: Operator Options: Operator Options: X'0800' X'08'

DASD data checks, 3540 data Ignore, Retry, or Cancel. Retry or Cancel.
checks,

2671 data checks, 1017/1018 Ignore or Cancel. Cancel.
data checks.

5424/5425 not ready. Return to user.
Indicate action type messages for
DOC

51 Post at Device End. Specify this Device End condition is Device End condi- X'0400' X'04'
bit to be set on for a 2560 or posted: that is, byte 2, bit 0 tions are not post-
5424/5425. and byte 3, bits 2 and 6 set ed. Traffic bit is

at Device End. Also byte 4, set at Channel
bit 5 is set. End.

Sl Return: Uncorrectable tape read Return to user; after physi- Operator Option: X'0200' X'02'
data check (2400 series or 3420); cal 10CS attempts to cor- Ignore or Cancel
1018, 2560 data check, 2520 or rect 3211 x, tape, or DASD for tapes, paper
2540 punch equipment check; error; when 1018 or 2560 tape punch
2560, 5424/5425 read, punch, data check4; when 2560 or (1018), card
print data, and print clutch equip- 5424/5425 equipment punches other
ment checks; 3881 equipment check; when 3504, 3505, than 2560 and
check; 3504, 3505, or 3525 per- 3525 permanent error (byte 5424/5425. Re-
manent errors; DASD read or read 3, bit 3 is also on).4.X try or Cancel for
verify data check; 3211 passback DASD, 2560, or
requested; 3895 error codes re- 5424/5425.
quested. (Data checks on count
not retained)x •

71 User Error Routine User handles error A physical 10CS X'0100' X'01 '
recovery.' error routine is

used unless the
CCB sense ad-
dress operand is
specified. The
latter requires
user error re-

I covery.

Figure 9-4. Conditions indicated by CCB bytes 2 and 3 (Part lof3).

9 - (-, VSE/ Advanced Functions Macro User's Guide

Condition Indicated On Values for
Mask for Test

Byte Bit
Third Ope-

Under Mask
1 (ON) o (OFF) rand in CCB

Instruction
Macro

3 0 Data check in DASD count field. Yes-Byte 3, bit 3 is off; No X'80'
Permanent error for 3330, 3340, Byte 2, bit 2 is on.
or 3350.

Data check - 1287 or 1288. Yes No

MICR - SCU not operational. Yes No

3211 Print Check (equipment Yes No
check).H

3540 special record transferred. Yes No

1 DASD Track overrun. Yes No X'40'

1017 broken tape. Yes No

Keyboard correction 1287 in Jour- Yes No
nal Tape Mode

3211 print quality error Yes No
(equipment check)x.

MICR intervention required. Yes No

" 2 End of DASD Cylinder. Yes No X'20'

Hopper Empty 1287/1288 Docu- Yes No
ment Mode.

MICR - Document feeding stopped. No
1255/1259/1270/1275/1419,
disengage.

1275/1419D, I/O error in exter- Channel data check or Bus-
nal interrupt routine. out check.

3211/2245 line position error5 •X Yes No

3 Tape read data check (2400 se- Operation was un success- No X'10'
ries); 2520, 2540 or 3881 equip- ful. Byte 2, bit 2 is also on.
ment check; any DASD data Byte 3, bit 0 is off.
check.

1017, 1018 data check. Yes No

1287, 1288 equipment check. Yes No

2560,3203,5203,5424/5425 Byte 2, bit 6 is also on. No
read, punch, print data, and print
clutch equipment checks.

3504, 3505, 3525 permanent er- Byte 2, bit 6 is also on. No
rors.

3211 data check/print check.x Yes No

3540 data check. Yes No

4 Nonrecovery Questionable Condi- Card: unusual command X'08'
• tion. sequence. For DASD, no

record found. 1287, 1288
document jam or torn tape.
3211 UCB parity check
(command retry).

5424/5425 not ready.

51 No record found condition (retry Retry command if no record Set the nonrecov- X'0004' X'04'
on 2311, 2314, 2319, 3330, found condition occurs ery questionable
3340, or 3350). (disk). condition bit on

and return to
user.

Figure 9-4. Conditions indicated by CCB bytes 2 and 3 (Part 2 of3).

Chapter 9: Processing Files with PIOCS (PhysicaIIOCS) 9 - 7

Condition Indicated On Values for
Mask for Test

Byte Bit
Third Ope-

Under Mask
1 (ON) o (OFF) rand in CCB Instruction

Macro

3 6 Verify error for DASD or Carriage Yes. (Set on when Channel No X'02'
Channel 9 overflow. 9 is reached only if Byte 2,

bit 5 is on).
1287 document mode: late stack- Yes No
er select.

1 288 End-of-Page (EOP). Yes No

7 1 Command Chain Retry. Specify Retry begins at last CCW Retry begins at X'0001 ' X'01 '
this bit to be set on if command executed'" first CCW or
chaining is used for a 2560 or channel program.
5424/5425.

Notes:

User Option Bits. Set in CCB macro. Physical 10CS sets the other bits off at EXCP time and on when the specified condition
occurs.

2 I/O program check, command reject, or tape equipment check always terminates the program.
3 You may not handle Channel Control Checks and Interface Control Checks. The occurrence of a channel data check, unit check, or

channel chaining check cause byte 2, bit X'20' of the CCB to turn on, and completion of posting and dequeuing to occur. I/O
program and protection checks always cause program termination. Incorrect length and unit exception are treated as normal
conditions (posted with completion). Also, you must request device end posting (CCB byte 2, bit X'04') in order to obtain errors
after channel end.

4 Error correction feature for IOIR is not supported by physicallOCS. When a 1018 data check occurs and CCB byte 2, bit X'OT is on,
control returns directly to you with CCB byte 3, bit X'IO' turned on.

5 A line position error on the 3211 can occur as a result of an equipment check, data check, or FCB parity check.
(, If an error occurs, physicallOCS updates the CCW address in bytes 9 through II of the CCB that is used for the pertinent I/O

operation. The original CCW address must therefore be restored before another I/O operation using the same CCB is issued.
7 A deleted or bad spot record has been read on a 3540 diskette. CCW chain broken, after CCW reads special record.
R 3211 remarks apply also to 321 I-compatible printers (that is, with device type code of PRT I). 3R95 error codes are returned in CCB

byte R. Refer to the 3R95 Document Reader/Inscriber manuals for information on these error codes.

Figure 9-4. Conditions indicated by CCB bytes 2 and 3 (Part 3 of3).

Processing Labels and Extents

Checking User Standard DASD Labels: 10CS passes
labels to you one at a time until the maximum al­
lowable number is read and updated, or until you
signify you want no more. Use LBRET 3 in your la­
bel routine if you want 10CS to update (rewrite) the
label read and pass you the next label. Use LBRET 2
if you want 10CS to read and pass you the next label.
If an end-of-file record is read when LBRET 2 or
LBRET 3 is used, label checking is automatically
ended, If you want to eliminate the checking of one
or more remaining labels, use LBRET I.

Writing User Standard DASD Labels: Build the
labels, one at a time, and use LBRET to return to
10CS to write the labels. Use LBRET 2 if you wish to
regain control after 10CS wrote the label. If however,
10CS determines that the maximum number of labels
has been written, label processing is terminated. Use
LBRET I to stop writing labels before the maximum
number is written.

Checking DASD Extents: When processing an
input file with all volumes mounted, you can process
your extent information. After each extent is proc­
essed, use LBRET 2 to receive the next extent. When

9 - 8 VSE/ Advanced Functions Macro User's Guide

extent processing is complete, use LBRET I to return
control to 10CS.

Checking User Standard Tape Labels: 10CS reads
and passes the labels to you one at a time, until a
tape mark is read, or until you indicate that you want
no more labels. Use LBRET 2 if you want to process
the next label. Use LBRET I if you want to bypass
any remaining labels.

Writing User Standard Tape Labels: Build the
labels one at a time and return to 10CS, which writes
the labels. You are responsible for accumulating the
block count, if desired, and supplying it to 10CS for
inclusion in the standard trailer label; for this, the
count (in binary form) must be moved to the 4-byte
field named filenameB. When LBRET 2 is used, 10CS
returns control to you (at the address specified in
LABADDR) after writing the label. LBRET I must be
used to terminate the label set.

Writing or Checking Nonstandard Tape Labels:
You must process all your nonstandard labels at
once. LBRET 2 is used after all label processing is
completed and you want to return control to IOCS.
For an example see Appendix C.

J

•

*'

..

•

L

PROBLEM PROGRAM

EXCP ccbname

WAIT ccbname

etc

ccbname CCB' SYSxxx,ccwname,optlonal operands.

!
ccwname CCW cc, data-addr, flags, count

CCW cc, data-addr, flags, count

CCW cc, data-addr, flags, count

etc

Figure 9-5. Relationship between the PIOCS macros.

Forcing End-of- Volume
The FEOV (forced end-of-volume) macro is used for
files on magnetic tape (programmer logical units
only) to force an end-of-volume condition before
sensing a reflective marker. This indicates that proc­
essing of records on one volume is considered fin­
ished, but that more records for the same logical file
are to be read from, or written on, the following
volume.

When physicallocs macros are used and DTFPH
is specified for standard label processing, FEOV may
be issued for output files only. In this case, FEOV
writes a tapemark, the standard trailer label, and
any user-standard trailer labels if DTFPH LABADDR
is specified. When the new volume is mounted and
ready for writing, 10CS writes the standard header
label and user-standard header labels, if any.

The SEOV (system end-of-volume) macro must
only be used with physicallocs to automatically
switch volumes ifsYSLST or SYSPCH are assigned to
a tape output file. SEOV writes a tapemark, rewinds
and unloads the tape, and checks for an alternate
tape. If none is found, a message is issued to the
operator who can mount a new tape on the same
drive and continue. If an alternate unit is assigned,
the macro fetches the alternate switching routine to
promote the alternate unit, opens the new tape, and
makes it ready for processing. When using this ma-

~ Channel

)
program

cro, you must check for the end-of-volume condition
in the CCB.

Termination
The CLOSE macro is used to deactivate any file that
was previously opened. Console files, however, can­
not be closed. The macro ends the association of the
logical file declared in your program with a specific
physical file on an 1/0 device. A file may be closed
at any time by issuing this macro. No further com­
mands can be issued for the file unless it is opened.

A maximum of 16 files may be closed by one
macro by entering additional filename parameters as
operands. Alternatively, you can load the address of
the filename in a register by using ordinary register
notation. The address of the filename may be pre­
loaded into register 0 or any of the registers 2
through 15. The high-order eight bits of this register
must be zeros.

Notes:

I. If you use register notation. we recommend that you follow
the practice of using only registers 2 through 12.

2. If CLOSE is issued to an unopened tape input file. the
option specified in the DTF rewind option is performed. If
CLOSE is issued to an unopened tape output file. no tape­
mark or labels are written.

Chapter 9: Processing Files with PIOCS (PhysicaIIOCS) 9 - 9

PIOCS Programming
Considera tions
The following paragraphs indicate a few program­
ming problems and explain how they can be solved.
Some restrictions are also mentioned.

Situations Requiring LIOCS Functions in
PIOCS Processing
In explaining PIOCS it was said that the programmer
is responsible for providing all of the logical func­
tions that are normally provided by L10CS routines.
There are, however, two exceptions to this rule. In
fact, a programmer must use some of the logical
functions of L10CS for:

I. DASD files that are file-protected.

2. Magnetic tape files, diskette files, or DASD files
that require standard label processing.

These two situations are closely related to access
control and data integrity control, for which a sys­
tem can accept responsibility only if it is recognized
as the only authority having access to system in­
formation.

In either of the two situations above, files must be
defined to L10CS by means of the DTFPH macro.
This macro, like any other DTFxx macro for L10CS,
specifies the characteristics of the file. The logic
module will provide the minimum facilities neces­
sary for label processing and protecting files, where
applicable. Label processing will be performed, as
usual, in response to the OPEN and CLOSE macros.

"

In addition, the FEOV macro can be used for volume
switching on magnetic tape output files.

If the DTFPH macro is used, a program may look
slightly different from the example given in Figure
9-5. As was explained before, the DTF table contains
the CCB in the first 16 bytes, so that the EXCP and
WAIT macros can now refer to the name of the
DTFPH macro. The DTFPH macro in turn contains a
parameter CCWNAME=ccwname, so that the CCB has
the proper reference to the first ccw in the appropri­
ate channel program (see Figure 9-6).

For information about the ccw format and the
concepts of data chaining and command chaining,
refer to System/370 Principles 0/ Operation or to the
IBM 4300 Processors Principles o/Operation, as list­
ed in the Preface.

Command Chaining Retry,
If a system has been generated to support command
chaining retry, you can use this option for your
PIOCS channel programs by setting the command
chaining retry bit in the CCB on. If an error that in­
volves retry occurs, the retry will then begin with the
last ccw executed. If this bit is off, the entire chan­
nel program will be re-executed.

When the command chaining retry bit is on, you
must move the address of the first ccw in the chan­
nel program to bytes 9-11 of the CCB before an EXCP
is issued. This ensures that the CCB always contains
the correct ccw address; bytes 9-11 are modified by
PIOCS for a retry after an error with the address of

filename DTFPH (parameters, among which SYSxxx, and ccbnamel

t
-.---· · ·

OPEN filename '.

·
filename ~ EXCP

WAIT ',I",me I-· ·
CLOSE filename

+ · I

· t
ccbname CCB SYSxxx, ccwname, optional operands ,

t ·
ccwname CCW cc, data-addr, flags, count

CCW cc, data-addr, flags, count

etc

Figure 9-6, Relationship hetween DTFPH and other PIOCS macros,

9 - 10 VSE/ Advanced Functions Macro User's Guide

J

to

•

J

•

•

the ccw to be re-executed, and is not reset to its
original value.

If a command chain is broken by some exception­
al condition (for example, wrong-length record, or
unit exception) that does not result in device error
recovery by 10CS, you can determine the address of
the last ccw executed and, if necessary, restart the
channel program at that point. To obtain the ad­
dress of the last ccw executed, subtract 8 from the
address in bytes 13-15 of the cc B. On a 1403 printer,
a command chain is broken after sensing channel 9
or 12. When using command chaining on a printer,
the program should therefore always check if the
entire ccw chain has been executed.

The command chaining retry bit must not be
used to read multiple blocks from SYSIPT or
SYSRDR. Moreover, this bit should never be on for
DASD or diskette channel programs.

Restrictions for the 3800 Printing Subsystem
Before using PIOCS on a 3800, consult the DOS/ VS
IBM 3800 Printing Subsystem Programmer's Guide,
to learn about channel programming restrictions
that should be followed to prevent errors for subse­
quentjobs.

Data Chaining
When performing data chaining, the CCws in a
channel program should all contain the proper com­
mand code of the operation to be executed, in order
to ensure proper I/O error recovery. In normal cases
where nothing goes wrong, the command code is not
used if a preceding ccw has the data chaining bit
on. In case of an error, however, recovery frequent­
ly depends on the command being executed and the
command code in the last ccw is often examined. In
such a case, a 'dummy' command code might pre­
vent error recovery.

CKD DASD Channel Programs
The user should begin a DASD channel program
with a full seek (command code X'OT); if the chan­
nel program contains embedded seeks, they should
be full seeks as well.

If embedded full seeks are used, a program can­
not run under DASD file protection, nor can it take
full advantage of the seek separation feature. With
DASD file protection, an embedded full seek causes
cancellation of the program in error.

The seek separation feature initiates a seek and
separates it from the channel program chain. Thus,
the channel is available for other input or output
operations on the same channel. The seek separa-

tion feature, however, applies only to the first seek
in a channel command chain.

When executing a channel program (Figure 9-7),
the supervisor sets up a channel program with three
commands:

I. A Seek that is identical to the user's seek.

2. A Set File Mask that prevents other X'OT seeks
from being executed.

3. A Transfer in Channel (TIC) command that
transfers control to the command following the
user's seek.

RPS (Rotational Position Sensing)
If a system has been generated to support RPS, the
user can include the channel commands set sector
and read sector for DASDs supporting the feature
(standard on the IBM 3330/3333/3350; optional on
the IBM 3340). These commands can be used to es­
tablish the angular position of the requested record
relative to the read/write head and to free the chan­
nel for other operations until the requested record is
under the read/write head.

The SECTYAL macro can be used to calculate a
sector value for a specified record.

Channel Programs for FBA Devices
Access to data on FBA devices occurs via the execu­
tion of a channel program with three basic steps:

I. The channel program for an FBA device must
start with a DEFINE EXTENT command
(command code X'63') - there is no SEEK CCW
for FBA devices. There should be only one
DEFINE EXTENT command in the channel pro­
gram.

The DEFINE EXTENT command defines the
location and size of a data extent; that is, it es­
tablishes bounds on the storage medium within
which subsequent chained commands are per­
mitted to operate. The command also contains
a file protect mask for controlling the execution
of following commands.

2. A LOCATE command (command code X'43')
specifies the location and number of addressa­
ble blocks of the data space to be processed,
and the operation (read or write) to be per­
formed.

3. When the storage device is positioned for a data
transfer, a READ or WRITE command causes the
transfer of data between the storage device and
main storage. A READ or WRITE command
must be chained from a LOCATE command. If
the chaining prerequisite is not satisfied, the

Chapter 9: Processing Files with PIOCS (PhysicallOCS) 9 - II

1
SUPERVISOR

Problem
program

j

.-----. SIO

+
SEEK

Set File Mask
TIC

CCBJ

EXCP

SEEK
SEARCH 10
nC*-8

Channel program set up
by the SupervIsor to
protect the DASD device

Channel program
written by the
user (CCW
instructions)

LCCW
ccw
ccw
ccw WRITE Count. Key and Data

Figure 9-7. Example of channel programming a tile-protected CKD DASD tile.

command is rejected with a unit check
(command reject). Although READ (WRITE)
commands may not be command chained from
another READ (WRITE), data chaining of READ
(WRITE) CCws is permitted. However, data
chaining within a block may cause unpredicta­
ble overruns or chaining checks.

Diskette Channel Programs
The user must begin a diskette channel program
with a define operations command (command code
X"2F'). This command is intended for use during
the program initiation, and sets the operating mode
for a file during program execution. It defines
whether read or write operations will be done. If
write operations are to be done, the define opera­
tions command determines how many writes will be
done between seeks. This command must be reis­
sued to change the mode of operations on the file.

Following the define operation should be a seek
(command code X"OT).

Following the seek should be the read or write
CCws. You can chain I, 2, 13, or 26 read/writes.
You have to check however, where your chaining
begins. With 26 chained records, for instance, you
have to start chaining on a track boundary. Record
length can be chosen freely up to 128 bytes. If write
operations are being performed, a NOP command
should be chained to the last write command to en­
sure that any errors occurring on this channel pro­
gram are returned.

9 - 12 VSE/ Advanced Functions Macro User's Guide

Console (Printer-Keyboard) Buffering
If the console buffering option is specified at system
generation and if the printer-keyboard is assigned to
SYSLOG, throughput on output under PIOCS can be
increased for physical blocks that do not exceed 80
characters. This is accomplished by starting the I/O
command and returning to the problem program
before the output is completed.

Blocks are always printed in a FIFO (first-in-first­
out) order, regardless of whether the output blocks
are buffered (queued on an I/O completion basis).

Console buffering is performed on output only if
the following conditions are maintained:

- The actual block to be written must not exceed
80 characters.

- No data chaining or command chaining must
be performed.

- The acceptance of unrecoverable I/O errors, of
posting at device end, or of user error routines
must not be indicated in the CCB associated
with the operation.

- Sense information must not be requested by the
CCB.

Alternate Tape Switching
Alternate tape drives cannot be used on input proc­
essed by PIOCS.

On output, automatic alternate tape drive switch­
ing can be done through the DTFPH and FEOV mac­
ros. The FEOV (Force End of Volume) macro writes
the trailer label sets (standard labels and any desired
user labels), and deactivates the current volume.

..

•

•

•

•

•

The next volume is then mounted on the alternate
tape drive, and 10CS writes the header label sets
(standard labels and any desired user labels) on the
new volume.

Bypassing Embedded Checkpoint Records
on Magnetic Tape
Checkpoint information is written as a set of mag­
netic tape records:

- One 20-byte header record;

- One status descriptor record in which the status
of the system is saved;

- As many core-image records as are needed to
save the required parts of virtual storage;

- One 20-byte trailer record which is identical to
the header record.

Depending on whether the file is processed for­
ward or backward, the header or trailer record can
be used to recognize and bypass checkpoint sets.
The format of both header and trailer record is:
Bytes Contents

00-11 / / /bC H K PTb/ / (note the two space characters:
one before. and one after 'CHKPT)

12-13 The number (in binary) of checkpoint records
containing program data.

14-15 The total number (in binary) of checkpoint records.
16-19 The serial number of the checkpoint taken.

Checkpoint data sets can always be identified by
the first 12 bytes of the header record or trailer re­
cord (depending on whether the file is read forward
or backward).

When the file is read forward, the checkpoint
header record occupies the 20 high-order bytes of
the I/O area; when the file is read backward, the
checkpoint trailer record occupies the 20 low-order
bytes of the I/O area.

These methods may be used to bypass checkpoint
sets:

I. Go into a read loop, until a checkpoint trailer
record (reading forward) or header record
(reading backward) is encountered.

2. Extract bytes 14-15 from the header or trailer
record and space forward or backward that
number of records.

Method 2 allows the use of read commands in­
stead of forward space commands, except when the
checkpoint data sets are on a 7-track-tape. Using
read commands in that case results in data checks.

Chapter 9: Processing Files with PIOCS (Physical 10CS) 9 - 13

9 - 14 VSE/ Advanced Functions Macro User's Guide

•

..

Chapter 10: Requesting Control Functions

Program Loading
Phases are normally loaded by the supervisor in
response to a II EXEC phasename job control state­
ment. However, through the use of a FETCH, LOAD,

or CDLOAD macro, an executing phase can load an­
other phase. The phase to be loaded may be in the
system core image library, or a private core image
library, or it may be in the SVA (shared virtual area).
The FETCH macro gives control to the phase just
loaded. With the LOAD or CDLOAD macro, control
remains with the phase that issued the macro. The
load and entry point for the requested phase varies
as described below for each of the three macros.

Fetch Macro
The load point and the entry point of the requested
phase are the addresses determined when the phase
was link-edited. A different entry point may be
specified in the FETCH macro. The load point must
be in the same partition as the requesting phase.
The FETCH macro may not load self-relocating
phases.

Load Macro
The load point and entry point of the requested
phase may be the addresses determined when the
phase was link-edited. The entry point is returned to
you in register I, and it is up to you to transfer con­
trol to the newly loaded phase. The LOAD macro
permits you to override the link-edited load point of
the subject phase. When you override the link edit
load point, the entry point address is also relocated.
For non-relocatable or self-relocating phases no
other addresses will be relocated by the supervisor.
A relocatable phase, however, will have all address­
es relocated to reflect the current load point of the
phase.

CDLOAD Macro
The CDLOAD macro requests a phase to be loaded
into the partition's GETVIS area, an area available in
the partition for dynamic allocation of storage. For
more information about the partition GETVIS area,
see VSE/Advanced Functions System Management
Guide. CDLOAD determines the size of the phase,
acquires the appropriate amount of G ETVIS storage,
and loads the phase. The entrypoint address of that
phase is returned to you in register I. The entry

point will be at the same relative distance from the
actual load point in the partition GETVIS area as it
was from the link-edited load point. It is up to you
to transfer control to the newly loaded phase.

Shared Virtual Area Considerationsfor
Program Load Macros
A requested phase may reside in the shared virtual
area (SVA). In this case, no actual load operation
takes place. For a FETCH macro, the system trans­
fers control to the entry point in the SVA and contin­
ues executing. For the LOAD and CDLOAD macros,
the appropriate addresses are returned into register
l. When the CDLOAD macro is issued from a pro­
gram running in real mode, the phase will be loaded
into the partition G ETVIS area even if it exists in the
SVA. This is done to conform with the requirements
of execution in real mode.

The systems directory list (SDL), located in the
SVA, contains copies of system core image library
directory entries for frequently used phases. Param­
eters in the FETCH and LOAD macros cause the SDL

to be searched prior to any private core image li­
brary directory. By placing the directory entry of a
frequently used phase in the SDL and by coding the
FETCH and LOAD macros appropriately, you can
reduce the time needed for locating the requested
phase.

Fast Loading of Frequently Used Phases
For a phase which is being loaded frequently during
execution of one program, it is preferable to use the
GENL macro rather than to include the phase's direc­
tory entry in the SDL. The GENL macro generates a
local directory list within the partition. On the first
LOAD or FETCH, the supervisor supplies each entry
with information that helps to reduce access time on
any subsequent LOAD or FETCH.

The following example illustrates how to use the
LOAD macro in connection with a local directory list.
Note that the first issuance of the LOAD macro

I serves only to locate a particular entry (xxxxxxx)
within the directory list; the contents of the phase
are not being transferred into storage (TXT=NO):

Chapter 10: Requesting Control Functions 10 - I

•
•
•
LOAD XXXXXXX,LIST=GENLIST,TXT=NO
LR 2,0 GET PTR TO DIRECTORY ENTRY
TM 16(2) ,X'06' PHASE FOUND ?
BO NOTFOUND NO
TM 16(2),X'10' PHASE IN SVA ?
BO NOLOAD YES, BRANCH AROUND LOAD
LA O,LOADPT
LOAD (2) ,(0) ,DE=YES

NOLOAD EQU * RFG.1 POINTS TO ENTRY POINT
•
•
•

GENLIST GENL XXXXXXX,
•
•

LOADPT DS OD LOAD POINT OF

Virtual Storage Control
The macros designed for use by virtual-mode pro­
grams, which are discussed in this section, perform
the following services:

• fix pages in real storage (PFIX macro) and later
free the same pages for normal paging (PFREE

macro).

• allocate and release virtual storage dynamical­
ly.

• determine the mode of execution of a program
(RUN MODE macro).

• extracting partition related information, such as
partition boundaries.

• influence the paging mechanism in order to
reduce the number of page faults, minimize the
page I/O activity, and control the page traffic
within a specific partition.

The discussion of the available virtual storage
control macros in this section assumes that you are
familiar with the virtual storage concept implement­
ed in VSE and described in Introduction to the VSE
System.

Fixing and Freeing Pages in Real Storage
Parts of virtual-mode programs must be in real stor­
age only at certain times. These parts include not
only the instructions and data being processed at
anyone moment by the cPu, but also data areas for
use by channel programs. Instructions and data are
always in real storage when being used. Data areas
could be paged out during an I/O operation if some­
thing were not done to keep them in real storage
during the entire operation. The supervisor fixes I/O
areas in real storage for the duration of the I/O oper­
ation.

There are other parts of a program which cannot
tolerate paging, and these parts are not necessarily

10 - 2 VSE/ Advanced Functions Macro User's Guide

OVERLAY PHASE

kept in storage by the system. For instance, pro­
grams that control time-dependent I/O operations
cannot tolerate paging. A familiar example is a
MICR (Magnetic Ink Character Reader) stacker se­
lect routine. If a page fault were to occur during the
execution of one of these programs, the results
would be unpredictable. A page fault in one of these
programs can be avoided by fixing the affected
pages in real storage, that is, by using the PFIX ma­
cro. Using the PFIX macro, you may request that
specific pages of your program be fixed in processor
storage. Associated with each partition is a defined
number of page frames that are available for fixing.
The ALLOCR command determines how many page
frames are available for the PFIX macro.

The PFIX macro fixes the pages in real storage,
regardless of whether these pages are contained in
contiguous page frames or not. The supervisor
keeps count of the number of times a PFIX was is­
sued for a specific page without this page having
been freed. A page that is fixed more than once
without having been freed (via the PFREE macro) is
not brought in repeatedly and given additional page
frames. Instead, the page-fix counter for that page is
increased by one each time, and the page remains in
the same page frame. If more than 255 PFIX requests
were issued for the same page (without having is­
sued PFREE), the issuing task is canceled.

The PFREE macro does not directly free a page for
paging out, but each time it is issued, the counter of
fixes is reduced by one. As soon as the counter for a
page reaches zero, the page can be paged out. At the
end of a job step, all pages that have been fixed dur­
ing the job step are freed. The PFREE macro should
be used as soon as possible to make the page frames
available to all programs running in virtual mode.

Figure 10-1 is an example using the PFIX and
PFREE macros. After the execution of a PFIX macro,

J

•

•

J

p

..

•

•

L

a return code is given in register 15. The meaning of
the return codes are:

0- The pages were fIXed successfully.

4- You requested more page frames than can be
PFIXed in the allocated address space.

8- Insufficient free page frames were available.

12- You specified invalid addresses in your mac­
ros.

Note in the example how the return code can be
used to establish a branch to parts of the program
that handle these specific conditions.

Determining the Execution Mode of a
Program
You may have a program that must do different
processing depending upon what its execution mode
is. It may be impractical to have two separate pro­
grams cataloged in the core image library, one pro­
gram for real mode and another program for virtual
mode. The RUNMODE macro can be issued during
the execution of the program to inquire which mode
of execution is being used. A return code is issued
to the program in register 1.

Extracting Partition-Related Information
You may have programs for which you may want to
do your own storage management within the parti­
tion in which they are running. This may be the
case if a program does a lot of I/O and therefore
would like to have as many buffers available as the

•
•

size of the partition permits. In order to do such
storage management you therefore need partition
related information, such as partition boundaries.
Use the EXTRACT ID=BDY macro to retrieve such
information. You can interpret the information
retrieved with the help of a mapping DSECT generat­
ed by the MAPBDY macro.

Influencing the Paging Mechanism
The macro support discussed here is intended pri­
marily for programmers who wish to control the
paging activity of the system in order to optimize
program execution beyond the level of optimization
provided by the VSE paging mechanism.

Releasing Pages: With the RELPAG macro, you
inform the page management routines that the con­
tents of one or more pages is no longer required and
need not be saved on the page data set. Thus, page
frames occupied by these released pages can be
claimed for use by other pages, and page I/O activity
is reduced.

All program pages paged out as a result of a
FCEPGOUT are saved by writing them onto the page
data set, unless a RELPAG macro is being executed
for one (or more or all) of those pages. A page for
which a RELPAG macro is being executed is not
saved.

Forcing Page-Out: The FCEPGOUT macro is used to
inform the page management routines that one or
more pages will not be needed until a later stage of

FIXER PFIX ARTN,ARTNEND+2 FIX ARTN IN STORAGE

HERE

ARTN

ARTNEND
NOPAGES

CANCL
WAIT

END
OPCCB
OPCCW
MSG

B .+4(15) BRANCH ACCORDING TO RETURN CODE
B HERE CONTINUE IF OK
B NOPAGES GO TO CANCEL IF PART TOO SMALL
B WAIT GO TO WAIT UNTIL PAGES FREED
B CANCL GO TO CANCEL IF PFIX ADDRESSES INVALID
BAL 14,ARTN GO TO ARTN
PFREE ARTN,ARTNEND+2 FREE ROUTINE AFTER EXECUTION

(time dependent processing which cannot be
paged out during execution)

BR R14 RETURN
LA R1,OPCCB
EXCP (1) WRITE MESSAGE TO OPERATOR
WAIT (1) WAIT FOR COMPLETION
CANCEL ALL

(routine to free other pages)

EOJ
CCB SYSLOG,OPCCW
CCW X'09' ,MSG,X'20' ,61
DC CL32'AM CANCELING PLEASE ENLARGE REAL'
DC CL29'PARTITION AND RESTART THE JOB'
•
•

Figure 10-1. PFIX and PFREE example.

Chapter 10: Requesting Control Functions 10 - 3

processing. The pages are given the highest page-out
priority, with the result that other pages which are
still needed for immediate reference are kept in stor­
age. Except when the RELPAG macro is in operation,
the contents of any pages written out are saved.

Page-in in Advance: The PAGEIN macro allows you
to request that one or more pages be paged-in in
advance, in order to avoid page faults when the
specified pages are needed in real storage. Unlike
the PFIX macro, the PAGEIN macro does not fix
pages and, therefore, does not guarantee that the
paged-in pages are still in real storage when they are
needed. If the specified pages are already in real
storage when the macro is issued, they are given the
lowest priority for page-out.

Balancing Teleprocessing: The TP (teleprocessing)
balancing function is intended for those TP users
who experience problems with response time when
they have concurrent batch processing in a paging
environment. TP response time can then be im­
proved at the expense ofless throughput in the
batch partition(s).

Supervisor support for this function is generated
automatically when you specify your teleprocessing
access method in the TP parameter of the SUPVR

macro. This function must, however, be invoked by
the operator via the TPBAL command (see
VSE/Advanced Functions Operating Procedures);
you can then use the TPIN and TPOUT macros.

The TPIN macro deactivates one or more parti­
tions and is issued by the teleprocessing su bsystem
to request preferred access to system resources. The
request is ignored in each of the following cases:

• The operator has not made TP balancing active
by means of the TPBAL command.

• None ofthe partitions specified in the TPBAL

command contains a program running in virtu­
al mode.

• The only partition that could be affected by TP

balancing is the partition that issued the TPIN

request.

• There is no paging in the system.

The TPIN macro must always be used in conjunc­
tion with the TPOUT macro.

The TPOUT macro is issued by the teleprocessing
subsystem, to inform the supervisor that the telepro­
cessing subsystem has no further processing to do
for the time being. The purpose of this macro is to
release system resources that were exclusively used
by the teleprocessing subsystem and to make them
available for general use.

10 - 4 VSE/ Advanced Functions Macro User's Guide

Failure to issue the TPOUT macro can cause con­
siderable and unnecessary performance degradation
in the batch partition(s). The operand field is ig­
nored.

It is not recommended that you use the TPIN and
TPOUT macros in your teleprocessing application
programs. Use them instead in the telecommunica­
tions access methods and data base/data communi­
cation interface programs such as the IBM program
produCt CICS/DOS/VS. The latter, when running
under VSE, supports the TPIN/TPOUT interface with
the supervisor.

Dynamic Allocation of Virtual Storage
With the GETVIS and FREEVIS macros, a program
can dynamically acquire and release blocks ofstor­
age in the GETVIS area of the partition in which the
program is running.

A minimum GETVIS area is always reserved in a
partition as long as a job in that partition runs in
virtual mode. The minimum can be enlarged by the
SIZE command. For a discussion of the SIZE com­
mand, refer to the VSE/Advanced Functions System
Management Guide.

For any partition, the SIZE parameter may be
specified in the EXEC job control statement: it over­
rides a permanent value (minimum or set by the
SIZE command) and sets aside GETVIS storage for the
duration of the job step.

The SVA (Shared Virtual Area) contains a GETVIS

area, too. However, that GETVIS area is reserved for
system use.

Program Communication
For each partition, the supervisor contains a storage
area called the communication region. Through the
available macro support, your program can read
information that is stored in that area and modify
one specific field, the user area, of the communica­
tion region.

Figure 10-2 shows the portion of the communica­
tion region containing information of interest. This
information is also described below.
Field
Length

8 bytes

4 bytes

II bytes

Information

Calendar date. Supplied from the system date
whenever the JOB statement is encountered. De­
pending on the system default or the specification
in the STDOPT command, the format of the date is
either mm/dd/yy of dd/mm/yy where mm is
month, dd is day, yy is year. This date can be tem­
porarily overridden by a DATE statement.

Reserved

User area for communication within a job step or
between job steps. All II bytes are set to zero

J

•

..

•

User Area - set to zero
Date

when JOB statement is Mo /Day / Yr Reserved read. (Communication
or within a job step or
Day /Mo /Y. between job steps)

Bytes_ 0 7 8 11 12 22

• Address of fi,st
byte supplied in
reg.ster 1 by
COMRG

Figure 10-2. Partition Communication Region .

I byte

8 bytes

4 bytes

4 bytes

whenever the JOB statement for ajob is encoun­
tered.

UPSI (user program switch indicators). Set to
binary zero when the JOB statement for the job is
encountered. Initialized by the UPSI job control
statement.

Job name as found in the JOB statement for the
job.

Address of the partition's uppermost byte available
to the problem program.

Address of the uppermost byte of the phase placed
in the program area by the last FETCH or LOAD
macro in the job.

4 bytes Highest ending main storage address of the longest
phase, starting with the same 4 characters as the
root phase (operand on the EXEC statement) and
residing in the same core image library as the root
phase. If the root phase is in the SV A, the partition
start address plus 2K will be used.

2 bytes Length of program label area

The COMRG and MVCOM macros allow your pro­
gram to check the communication region and to
modify the user area, respectively.

The COMRG macro places the address of the par­
tition communication region in register I .. Your
program can read any portion of its own partition's
communication region by using that register as a
base register; however, IBM guarantees the format
and use of only those fields of a partition communi­
cation region which are shown in Figure 10-2.

The MVCOM macro modifies the contents of bytes
12 through 23 of the communication region. The
following example shows how to move three bytes
from the symbolic location DATA into bytes 16
through 18 of the communication region:

MVCOM l6,3,DATA

The JOBCOM macro makes communication possi­
ble between jobs or job steps of a partition. Inform­
ation being communicated is stored in a 256-byte
area. The system provides such an area for each
partition. Through the JOBCOM macro, a program

Vi
0-

2
~ ..

.s:.

.g
;:

IJ)

E
'" e;,
0
Q:

23

Address : Address : Address : Length of
Uppermost Uppermost Uppermost Problem

Job Name Byte of Byte of Byte of Program
(Entered from Problem phase last phase with Label
Job Control) Program loaded by highest Area

24

Area a FETCH ending
or LOAD address

31 32 35 36 39 40 43 44 45

either moves information into that area or retrieves
information that had previously been stored there
by another program. The area remains unaltered
from one job (or job step) to the next. Unless it is
modified through execution of the JOBCOM macro,
the contents of the area remain unchanged over any
number of jobs.

The program that issues the JOBCOM macro must
provide a register save area 18 fullwords long. Prior
to execution of the macro, register 13 has to point to
that save area.

The following example shows how 8 bytes of in­
formation are stored into the first 8 bytes of the
system-supplied area. The other 248 bytes of that
area remain unchanged.

•
•

LA l3,JCOMSAVE
JOB COM FUNCT=PUTCOM, X

•
•

JCOMSAVE DS
JCOMINFO DC

•
•

AREA=JCOMINFO,LENGTH=8

l8F
C'ABCDEFGH'

Assigning and Releasing I/O Units
Programmer logical units can be released from with­
in a program by the RELEASE macro. RELEASE may
be used only for units that are assigned to the parti­
tion in which the macro is issued.

Execution of the macro unassigns the specified
programmer logical unit or units, unless they are
assigned permanently. For more information about
logical unit assignment, see VSEj Advanced Func­
tions System Management Guide.

Be sure your program informs the system opera­
tor via a message that the assignment was released.

Chapter 10: Requesting Control Functions 10 - 5

Assigning and Releasing Tape Drives
A magnetic tape drive that is not tied up to one of
the system's partitions by a previous assignment of a
logical unit can be made available to the program
dynamically using the ASSIGN macro. This macro is
also used for dynamic release of the drive when the
program has no further use for it. The dynamic as­
signing and releasing of a tape drive may be particu­
larly useful in long running, complex applications
that require a magnetic tape volume only for a short
period of time (for instance, for storing intermediate
processing results).

•

•
• •

ASSIGN ASPL DSECT=YES

•
•

XC ASPLX,ASPLX
LA RX,ASPLX
USING ASSIGN,RX
MVI ASGFUNCT,ASGTPT

ASSIGN ASPL=(RX),SAVE=SAVEAREA

MVC ASGLUNO,+DTF
•
•

OPEN/GET/PUT/CLOSE
•
•

LA RX,ASPLX
MVI ASGFUNCT,ASGUAP
ASSIGN ASPL=(RX) ,SAVE=SAVEAREA

•
•

ASPLX DS CL(ASGLNG)
SAVEAREA DS 18F

Timer Services and Exit Control
Timer Services
VSE provides optional timing facilities which use
hardware features that are standard in most VSE

supported processors. Those timing facilities are:

1. The TOD (time-of-day) clock, used to determine
the current time.

2. The IT (interval timer), which enables a time
interval (measured in seconds or 1/300ths of a
second) to be preset so that a program can be
notified when the time interval has expired.

3. The TT (task timer), which allows a timer inter­
val (measured in milliseconds) to be preset by
the main task so that the task can give control
to an exit routine when the specified time inter­
val has elapsed. This discrete time interval is
decremented only when the main task is exe­
cuting.

10 - 6 VSE/ Advanced Functions Macro User's Guide

The assignment is temporary. If the assignment is
not released with the ASSIGN macro, it is reset along
with all other temporary assignments when the next
EOJ statement (/&) is encountered. If the ASSIGN

macro is used to release a tape drive, it must be en­
sured that the logical unit number of the unit to be
released is still present in the parameter list used by
the macro. The layout of the parameter list can be
interpreted with the help of the mapping DSECT

generated by the ASPL macro. The following skele­
ton example shows how a tape drive can be assigned
and released dynamically.

Generate mapping DSECT for
parameter list

Clear parameter list
Establish addressing and mapping
to the parameter list
Indicate assign

Temporarily assign any
available programmer logical unit
to any available tape drive
Put logical unit
into tape DTF (e.g. DTFDI)

Perform desired I/O functions

Ensure addressability
Indicate unassign
Free tape and logical unit
(ASGLUNO still intact)

Define parameter list
Define save area

Time of Day Clock
The TOD (time-of-day) clock is a standard high­
resolution hardware feature. Any program execut­
ing under VSE can obtain the time of day by issuing
the GETIME macro. This causes VSE to present to
your program the time of day in accordance with
your specification in the macro in one of the follow­
ing formats:

- As a packed decimal number in the form
hhmmss (where hh = hours, mm = minutes, ss
= seconds).

- As a binary number in seconds.
- As a binary number in 1/300 seconds.

Interval Timer
Any program (or task) can set a real time interval,

in seconds, or 1/300 of a second, by using a SETIME

macro. The maximum valid interval is 55924 -
equivalent to 15 hours, 32 minutes, 4 seconds, or
8388607 - equivalent to 7 hours, 46 minutes, 2 sec-

J

•

•

onds (approximately) - if expressed in 1/300 of a
second. Expiration of the specified interval causes
an external interrupt.

When the interrupt occurs and the program has
established linkage to a timer exit routine via a
STXIT IT macro, the program is interrupted and con­
trol is transferred to the timer exit routine.

At the end of the timer exit routine (statement
EXIT IT), control is transferred to the point of inter­
ruption.

Note: This support is independent of the time-of-day clock; the
use of the interval timer and ofGETIME have no effect on one
another.

Waiting for a Time Interval to Elapse: When proc­
essing depends on the expiration of a time interval, a
WAIT macro can be issued to suspend processing
until the interval set by a SETlME macro has elapsed.

The SETlME macro passes to the supervisor the
name of the timer event control block (defined by a
TECB macro) to be posted when the specified inter­
val has elapsed. The WAIT macro specifies the same
TECB and passes control to the supervisor, which
allows another task to execute in the meantime.
When the timer interrupt occurs, the event bit in the
TECB is turned on and the task that has issued the
SETlME and WAIT macros is made ready to proceed.
Figure 10-3 illustrates a program that waits for a
time interval to expire.

Getting the Unexpired Time: After a SETlME macro
has been issued, the task issuing the macro can ob­
tain the unexpired part of the interval by issuing a
TTlMER macro. This macro returns the residual time
(seconds) without disturbing the interval timer func­
tion .

START 0
•
•

TECB1 TECB
•
•

If the TTlMER macro includes the operand
CANCEL, a previously issued SETIME macro is can­
celed.

Task Timer

The task timer support can be generated only for the
main task of a specific partition.

The main task sets the desired time interval by
specifying it, in milliseconds, in the operand of the
SETT macro; or by putting the desired interval, in
milliseconds, in binary, in the register specified as
the operand of the SETT macro. The maximum va­
lid interval is 21,474,836 milliseconds. The time
interval is decremented only when the main task is
executing.

When the specified time interval has elapsed, the
task timer routine supplied in the STXIT TT macro is
entered. If a routine was not supplied to the supervi­
sor by the time the interrupt occurs, the interrupt is
ignored.

When a program is restarted from a checkpoint,
the timer interval set by the SETT macro is not res­
tarted. The task timer support is further discussed
under "Task-Timer User Exit" later in this chapter.

Obtaining or Canceling the Time Remaining: The
task using the task timer can issue a TESTT macro to
test how much time remains in the time interval set
by an associated SETT macro. The time remaining in
the interval is returned, expressed in hundredths of
milliseconds - in binary, in register O.

The time remaining in the interval can be can­
celed by specifying CANCEL as the operand of a
TESTT macro. This prevents the task timer exit rou­
tine from being entered.

STIMER SETIME 30,TECB1 START 30 SECOND INTERVAL
•
•

(normal processing not time-dependent)
•
•
WAIT TECB1 WAIT FOR TIMER END
•

(time-dependent processing)
•
•
END

Figure 10-3. Skeleton ex.ample ofa program in which a 30-second interval must elapse before special processing is performed.

Chapter \0: Requesting Control Functions 10 - 7

Linkages to User Exit Routines
Linkage to a user exit routine can be established
through the STXIT macro. The STXIT macro specifies
the condition under which control is to be passed to
the user-written exit routine named in the macro.
Figure 10-4 shows the conditions that you can re­
quest to cause control to be transferred, the request­
ing code you provide as the first operand, and the
type of user exit routine normally associated with
the exit condition.

Condition STXIT Operand User Routine

Interval Timer External IT Interval timer
Interrupt exit

Task Timer Interrupt TT Task limer exit

Abnormal Termination of AS Abnormal ter-
Problem Program mination exit

Program Check Inter- PC Program
rupt check exit

Operator Communica- OC Operator com-
lions Interrupt munications

exit

Figure 10-4. Condition, request codes and exit routines.

Interval-Timer User Exit
If a certain processing is required when a specified
time interval has elapsed, the STXIT IT macro can be
used to establish and terminate linkage to the appro­
priate interval-timer exit routine and subsequently,
when this routine completes processing, an EXIT IT

macro to return control to the next sequential in­
struction in the main routine.

Note: If the program issuing the STXIT IT macro is an applica­
tion program using ACF /VT AME, the exit will not be taken
while ACF/VTAME is processing any request on behalf of the
application program; the exit will be taken when ACF /VT AM E
has completed the program's request.

Figure 10-5 shows the application of an STXIT IT

macro for entering a checkpoint routine every half
hour during processing. Notice that in this example
the user's interval timer exit routine need not be
fixed in real storage; since there is no real-time de­
pendency, the results cannot be influenced by the
paging activity.

Multitasking Considerations: The main task or any
subtask in a partition or both may issue a SETIME

macro. Each may also issue a STXIT macro to estab­
lish linkage to a common user exit routine provided
that this routine is reenterable and that each task has
its own unique save area. Figure 10-6 illustrates this
approach.

10 - 8 VSE/ Advanced Functions Macro User's Guide

Task-Timer User Exit
Task timer support may be generated via the FOPT

supervisor generation macro.

Linkage to a routine for processing a task timer
interrupt is established and terminated by the STXIT

TT macro. This linkage must be established before
an interrupt occurs, or the interrupt will be ignored.
The macro can only be issued by the main task of
the partition owning the task timer.

The task timer exit routine returns control to the
supervisor by issuing an EXIT TT macro. When the
EXIT TT macro is processed, the interrupt status in­
formation and the contents of registers are restored
from the save area. It is important, therefore, that
the contents of the save area specified in the associ­
ated STXIT TT macro not be destroyed.

Abnormal-Termination User Exit

The STXIT AB macro establishes or terminates link­
age to a user routine that is entered whenever the
issuing program is to be terminated for any reason

I other than a self-requested termination. In this rou­
tine, you can do any necessary housekeeping such as
closing files and writing messages before the pro­
gram is terminated. You cannot use any of the mac­
ros STXIT, SETIME, and SETT within your abnormal
termination exit routine. Also, do not use LOCK or
ENQ in an AB exit routine for a resource that is held
by the main task, since a dead lock may occur.

If the exit routine executes as a subtask, you can­
not recover from an error, and it must end with a
CANCEL. DETACH, DUMP, JDUMP, or EOJ macro.
However, if the exit routine is part of the main task,
it may be preferable to continue processing. The
EXIT AB macro can be used for this purpose.

Program-Check User Exit
The linkage established by the STXIT PC macro in­
struction provides entry to a user exit routine for
handling any program check interrupt that is not
caused by a page fault. The routine can analyze the
interrupt status information and the contents of the
general registers stored in the user's save area.

If an error condition caused the interrupt, your
exit routine can correct the error or decide to ignore
it, depending on the severity of the error. Your rou­
tine can either return control to the interrupted pro­
gram or request termination of the program.

J

..

•

...

TIMECHK START 0
STXIT IT,TIMINTR,TIMSA
MVI STATSW,X'80'
SETIME 1800

SET UP LINK TO TIMER RTN
SET SW FIRST TIME THROUGH
TAKE CHCKPNTS EVERY 30 MIN

•
•

PROCESS (perform normal processing)
•
•
CLI
BNE
B

STATSW,X'40'
PROCESS
CHKPTR

CHECK FOR TIMER INTERRUPT
IF NOT CONT PROCESSING
IF SO TAKE CHECKPOINT

* TIMER INTERRUPT ROUTINE
TIMINTR MVI STATSW,X'40'

EXIT IT
SHOW INTERRUPT
RETURN TO INTERRUPTED PNT

* CHECKPOINT ROUTINE
CHKPTR (do necessary processing before taking checkpoint)

•
•
CHKPT
LTR
BE
ST
LA
STCM
LA
EXCP
WAIT
MVI
SETIME
B

* RESTART ROUTINE

SYS001 ,RSTRTR" "DSKELE TAKE CHECKPOINT
RO,RO CHECK IF CHECKPOINT OK
ERROR GO TO ERROR RTN IF NOT
RO,CHKPTNR PUT CHKPT NUMBER IN MSG
R1,MSG1 GET ADDRESS OF RIGHT MSG
R1,7,OPCCW+1 PUT MSG ADDR IN CCW
R1,OPCCB MESSAGE CCB
(1) WRITE MESSAGE TO OPERATOR
(1) WAIT FOR COMPLETION
STATSW,X'80' RESET CHECKPOINT SWITCH
1800 RESET TIMER
PROCESS RESUME PROCESSING

RSTRTR STXIT IT,TIMINTR,TIMSA RESTORE TIMER INTERR LINK
SETIME 1800 SET TIMER
•
•
(restore everything saved in checkpoint)

* MESSAGE
ERROR

•
•
B

ROUTINE
LA
STCM
LA
EXCP
WAIT
CANCEL
•
•

END EOJ

* CONSTANTS
TIMSA DS
OPCCB CCB
OPCCW CCW
MSG1 DC
CHKPTNR DS

DC
MSG2 DC
STATSW DS

END

PROCESS

FOR INVALID
R1,MSG2
R1,7,OPCCW+1
R 1 ,OPCCB
(1)
(1)
ALL

9D
SYSLOG,OPCCW

START PROCESSING

CHECKPOINT
GET ADDRESS OF ERROR MSG
PUT MSG ADDR IN CCW
LOAD MESSAGE CCB
WRITE MESSAGE TO OPERATOR
WAIT FOR COMPLETION
CANCEL PROGRAM

X'09' ,MSG1 ,X'20' ,80
CL16'CHECKPOINT NR'
F
CL60'HAS BEEN TAKEN'
CL80'CHECKPOINT FAILED JOB IS CANCELED'
X

Figure 10-5. Example of using the interval timer for taking a checkpoint every half-hour.

Chapter 10: Requesting Control Functions 10 - 9

MAINTASK START 0
•
• (set up addressability)
STXIT IT,STRTER,MISKSA
SETIME 300 MAIN TASK TIMER TO 5 MINS
ATTACH SUBTASK1,SAVE=SAV1
ATTACH SUBTASK2,SAVE=SAV2
•
•

• IT USER EXIT ROUTINE
STRTER (reenterable routine)

•
•
EXIT IT

SUBTASK1 STXIT IT,STRTER,STSK1SA USE SAME EXIT ROUTINE
SETIME 400 SET TIME INTERVAL
•
•
DETACH

SUBTASK2 STXIT IT,STRTER,STSK2SA USE SAME EXIT ROUTINE
SETIME 500 SET TIME INTERVAL
•
•
TTIMER CANCEL CNCL INTRVL THIS TSK ONLY
•
•
DETACH

MTSKSA DS 9D
STSK1SA DS 9D
STSK2SA DS 9D
SAV1 DS 16D
SAV2 DS 16D

Figure 10-6. Skeleton example of multitask linkage to a common IT exit routine.

Having a user's program check routine can be
useful when it is known that one or more programs
may be checked by processing errors that are insig­
nificant to the results or can be corrected easily.
Figure 10-7 shows an exit routine for recovering
from a program check caused by attempting to di­
vide by zero. In this example, any other errors caus­
ing a program check result in the user save area be­
ing dumped before the job is terminated.

Operator-Communication User Exit
A direct communications link between the operator
and a program can be established by issuing an
STXIT OC macro instruction. It may be issued only
by the main task in any partition.

To initiate communication the operator presses
the Request key. This causes an I/O interrupt to
occur. When the attention routine identifier AR ap­
pears, the operator enters MSG followed by the parti­
tion identifier (such as BG or F2), which sets the link­
age to the user's operator-communication exit rou­
tine.

The operator communication exit routine may
perform any processing. A typical application is the
taking of a checkpoint record in a program that has
to be canceled in order to start a high-priority job

10- to VSE/ Advanced Functions Macro User's Guide

that has just been handed in; the check pointed pro­
gram can then be restarted later on.

Note: If the program issuing the STXIT IT macro is an applica­
tion program using ACF /VT AME, the exit will not be taken
while ACF /VTAME is processing any request on behalf of the
application program; the exit will be taken when ACF /VT AME
has completed the program's request.

Requesting Storage Dumps
Whenever a program is to be terminated by the sys­
tem for a reason other than a normal end-of-job
condition, and especially after a program check in­
terrupt, a printout of all or part of the storage area
occupied or used by the program at that moment is a
useful aid for tracing the cause. For guidance on
reading and interpreting the printout, see
VS E / A dvanced Functions Serviceability A ids and
Debugging Procedures.

VSE provides several macros to request such a
printout. These macros may be used, for example,
at the end of a user's exit routine for handling an
abnormal termination condition.

The following is a summary of the functions of
macros that request storage dumps:

DUMP The macro dumps, in hexadecimal for­
mat, the contents of the supervisor area,

..

..

•

DIVTEST CSECT
•
•

•
(set up addressability)

STXIT PC,PCRTN,PCSAV SET UP PROGRAM CHECK LINK
•
•
LM
D
•
•

R2,R3,DIVIDEND
R2,DIVISOR

LOAD FOR DIVIDING
DIVIDE

• USER'S PROGRAM CHECK ROUTINE
PCRTN SR R5,R5 CLEAR REGISTER 5

CL R5,DIVISOR CHECK FOR ZERO DIVISOR
BNE CANCELR IF NOT CLEAR FILES & CNCL
•
(special recovery routine)
•
•
EXIT PC

CANCELR PDUMP PCSAV,PCSAV+71
RETURN TO NORMAL PROC
DUMP SAVE AREA

•
(close files and do other housekeeping)
(equates and storage definitions)
•
CANCEL ALL

Figure 10-7. Skeleton example of a routine for processing a program check caused by zero division.

JDUMP

PDUMP

or the contents of some supervisor con­
trol blocks, depending on the parameters
specified in the STDOPT job control com­
mand or on the / / OPTION job control
statement in a specific job step. (For de­
tails about the dump options you can
specify in the STDOPT command or on
the / / OPTION statement, refer to
VSE/Advanced Functions System Control
Statements.) In addition, the DUMP ma­
cro dumps the storage contents of the
partition, and all registers. The job step
is terminated if the macro is issued by the
main task; but if issued by a subtask,
then only that subtask is detached.

This macro causes the same areas to be
dumped as for a DUMP macro, but termi­
nates the entire job.

This macro provides a hexadecimal
dump of the general registers and of the
storage area between the addresses speci­
fied by two operands. After execution of
this macro, processing continues at the
next sequential instruction.

A PDUMP macro may, therefore, be is­
sued several times in a program to pro­
vide dumps of selected storage fields for
examination at different stages of the
program's execution.

Regardless of which of the above macros are
used, the resulting dump is always produced on the
SYSLST, which may be assigned to a printer, to disk,
or to magnetic tape.

If the device assigned to SYSLST is a 3211 printer
and indexing was used prior to taking a dump, a
certain number of characters on every line of the
printed dump may be lost.

To avoid losing characters, ensure that an FCB

(forms control buffer) image without an indexing
byte is loaded into the printer's FCB before you issue
the dump generating macro in your problem pro­
gram. You can use the LFCB macro for this purpose.

Ending a Task or a Job

Normal End of the Main Task
The normal way of ending the main task (which
might be the only program executing in the parti­
tion) is to issue the EOJ macro.

Through the EOJ macro, a program informs the
supervisor that the job step is to be terminated. At
this time, sub tasks should no longer be attached. If
nevertheless they are, issuance of the EOJ macro by
the main task is considered an abnormal termination
condition for the subtask. In case the subtask pro­
vided an STXIT AB routine, this routine is entered.

Chapter 10: Requesting Control Functions 10-11

Normal End of a Sub task
The normal way of ending a subtask is by issuing
the DETACH macro. Either the subtask terminates
itself, or the main task does it by making use of an
operand in the DETACH; the operand points to the
subtask's save area. For more information about
using the DETACH macro, see the secti0n
"Multitasking" later in this chapter.

To detach itself, the subtask may also issue the
EO] macro. All other tasks in the same partition
continue processing; the job step is not terminated as
was the case with an EO] issued in the main task.

Program-Requested Abnormal Ends
To terminate a task under abnormal conditions, you
may use either the DUMP or JDUMP macro or the
CANCEL macro.

The macros DUMP and JDUMP were discussed
previously in section "Requesting Storage Dumps".
When issued by the main task, the DUMP or JDUMP

macro causes the job step (job) to be terminated. If
the macro is issued by a subtask, only this subtask
gets detached.

The CANCEL macro provides another way ofter­
minating abnormally. As with DUMP or JDUMP, a
CANCEL issued in the main task terminates process­
ing of all tasks within the partition. A CANCEL is­
sued in a subtask detaches only the subtask, unless
the ALL was specified in the CANCEL macro; a
CANCEL ALL in a subtask causes all processing in the
partition to terminate.

Using the EXIT Macro
EXIT is another macro used to end a portion of your
program. However, it should not be confused with
the task-terminating macros EO], DETACH, DUMP,

JDUMP. or CANCEL. Via the EXIT macro, a user exit
routine (discussed previously in section "Time Ser­
vices and Exit Control") causes control to return to
the point of interruption within the main-line rou­
tine; thus the task continues processing.

Checkpointing a Program
The progress of a program that performs considera­
ble processing in one job step should be protected
against destruction in case the program is canceled
later. The system provides support for taking up to

I 9999 checkpoint records in a job. Through this facil­
ity, information can be preserved at regular intervals
and in sufficient quantity to allow restarting a pro­
gram at an intermediate point.

The CHKPT macro stores the checkpoint record
on a magnetic tape or disk.

10- 12 VSE/ Advanced Functions Macro U ser's Guide

The RSTRT job control statement restarts the pro­
gram from the last or any specified checkpoint taken
before cancelation. For full details on using this
statement, see VSEj Advanced Functions System
Control Statements.

Choosing a Checkpoint
The most important criterion for a checkpoint deci­
sion is a minimum of necessary housekeeping before
the checkpoint record can be taken. The possibility
of an error occurring either in the checkpoint rou­
tine or at restart is then also minimal. Checkpoints
cannot be taken by a sub task or by a main task with
subtasks attached. Therefore, when multitasking,
checkpoints should be avoided where a number of
subtasks must first be detached.

A successful checkpoint record taken immediate­
ly after opening all files used by the program indi­
cates that processing can safely proceed. If such a
checkpoint record is invalid, however, then the pro­
gram should be canceled.

Other checkpoint records may be taken at logical
breaks in data, such as at the end of a reel of mag­
netic tape.

After a CHKPT macro is successfully executed,
register 0 contains the checkpoint number in un­
packed decimal format; if CHKPT macro execution is
unsuccessful, register 0 contains zero, and the reason
for the failure is printed on SYSLOG.

Timing the Entry to the Checkpoint
Routine
Having decided where your program can conven­
iently be checkpointed, you may consider entering
the checkpoint routine only if a certain time interval
has elapsed since the previous checkpoint record
was taken.

By issuing a SETIME macro after an STXlT IT ma­
cro has established linkage to a user exit routine that
sets a switch and returns, the main program can test
this switch and then branch to the checkpoint rou­
tine or continue processing according to whether the
switch is set or not. An example of this technique
can be found in Figure 10-5.

By issuing an STXlT oc macro instruction, it is
also possible to have checkpoint records taken at
convenient points on command from the operator.
This method is illustrated by Figure 10-8.

J

...

CHKPTRTN CSECT
(set up addressability)
STXIT OC,OCMSG,OCSAV SET UP LINKAGE FOR OC MSG
•
•
MVI
OPEN

• DTF ADDRESSES
BAL
•
•

SW1,X'40' SET CHECKPOINT SWITCH
(RDISKOUT) , (RCHKPTF) OPEN FILES
FROM MAIN ROUTINE ARE USED
RLINK,CHECKPT TAKE TEST CHECKPOINT

START (normal processing)
•
•
CLI
BE

SW1,X'40'
START

SEE IF OPERATOR SENT MSG
CONTINUE IF NOT

• THE FOLLOWING IS THE CHECKPOINT ROUTINE ENTERED ON
THE OPERATOR • A SIGNAL FROM

STD
STD
STD
STD
CHKPT
LTR

FO,REGO SAVE FLOATING POINT REGS

BZ
MVI
B
•
•

F2,REG2
F4,REG4
F6,REG6
SYS011 , (RSTRTR) ",,(RCKPTF) TAKE CHKPTS
RO,RO TEST IF SUCCESSFUL
CANCEL CANCEL IF NOT
SW1,X'40' RESET CHECKPOINT SWITCH
START RETURN TO NORMAL PROCESSING

(equates)
OCMSG MVI SW1,X'80' SET CHECKPOINT SWITCH

EXIT OC RETURN TO POINT OF INTERR
CHECKPT CHKPT SYS011 , (RSTRTR) ",,(RCHKPTF)

LTR 'RO,RO SEE IF CHECKPNT SUCCESSFUL
BNZ O(RLINK) RETURN IF TAKEN

CANCEL CANCEL ALL CANCEL IF CHECKPOINT FAILED
STRTR STXIT OC,OCMSG,OCSAV RESTORE LINKAGE

LD FO,REGO RESTORE FLOATING POINT REGS
LD F2,REG2
LD F4,REG4
LD F6,REG6
B START RESTART PROGRAM

END EOJ
REGO OS 0
REG2 OS 0
REG4 OS 0
REG6 OS 0
OCSAV OS 90
SW1 OS X

•
•
(equates)
•
•
end

Figure 10-8. Skeleton example of a routine for check pointing a program on operator command.

II JOB
II ASSGN
II ASSGN
II ASSGN
II RSTRT

CHECKPOINT (the JOBNAME must be the same as before)
(all ASSGNs must be renewed)
(new assignments may be made)

SYS001 ,1111 ,CHKPTF

Figure 10-9. Example of job control statements for restarting a check pointed job from checkpoint 1111.

Chapter 10; Requesting Control Functions 10-\3

Saving Data/or Restart
Besides the information stored by the CHKPT macro,
certain data must usually be saved by the user's
checkpoint routine in order to facilitate a successful
restart. This may include the contents of floating
point registers, any linkage that was established by a
STXIT or a SETPFA macro, the interval value for a
SETIME macro, and the program mask in the prob­
lem program psw.

Restarting a Checkpointed Program
When a check pointed program is to be restarted, the
partition must start at the same location as when the
program was check point ed, and its end address must
not be lower than the end address specified at check­
point time.

If any of the pages of a virtual mode program
were PFlxed when the checkpoint was taken, for
S/370 mode, the real partition must also start at the
same location or lower and its end address must be
at least as high as at checkpoint time; for ECPS: VSE
mode, the amount of PFlxable storage set by the
ALLOCR command must be as high as at checkpoint
time. The pages that were fixed when the check­
point was taken are refixed by the system when the
program is restarted.

Unless you reset all linkages to SV A phases your­
self, the contents and location of the modules in the
SV A, when restarting, must also be the same as when
the program was checkpointed. The SDL must be
identical if the restarted program uses a local direc­
tory list (for example, one that was generated by the
GENL macro).

To restart a check pointed program, use the job
control statement RSTRT. In addition to the job con­
trol statements originally used to execute the pro­
gram, label information for the checkpoint file must
be submitted. An example of appropriate job con­
trol statements for restarting a check pointed pro­
gram on disk is illustrated in Figure lO-9.

Information That is Saved
When the CHKPT macro is issued, the following in­
formation is saved:

• The general registers.

• Problem-program-related information from the
partition communication region.

• PFlx-information.

• All DASD file protection extents attached to
logical units that belong to the check pointed
program.

IO - 14 VSE/ Advanced Functions Macro User's Guide

• Information related to the IBM 3800 Printing
Subsystem.

• The problem program area.

Information That is Not Saved
• The floating-point registers. (If needed, these

registers should be stored in the problem pro­
gram area before issuing CHKPT, and restored
in your restart routine. If needed, any XECBs
defined by your program must be also defined
by your restart routine.)

• Any linkages to your routines set by the STXIT
or SETPFA macros. (If needed, STXIT or SETPFA
must be used in your restart routine.)

• Any timer values set by the SETIME macro. (If
needed, SETIME must be used in your restart
routine.)

• The program mask in your program's psw. (If
anything other than all zeros is desired, the
mask should be reset in your restart routine.)

Considerations for DASD, Diskette, MICR, and
3886 Files
DASD or diskette system input or output files
(SYSIPT, SYSLST, etc.) must be reopened at restart
time. In your restart routine, you must be able to
identify the last record processed before the check­
point.

For MICR files, your program must disengage the
device and process all follow-up documents in the
document buffer before taking a checkpoint. MICR
files require the DTFMR supervisor linkages to be
initiated at restart time. Do this by reopening the
MICR file in your restart routine that clears the docu­
ment buffer.

For 3886 files, the SETDEV macro must be issued
at restart time. This ensures that the proper format
record will be loaded into the 3886 if the job must be
restarted. If the job processing the 3886 file uses line
marking with reflective ink, the job cannot be res­
tarted.

Checkpoint File
The checkpoint information must be written on disk
or on an EBCDIC magnetic tape (7- or 9-track). The
7-track tape can be in either data conversion or
translation mode. However, the magnetic tape unit
must have the data conversion feature. On 7-track
tapes, the header and trailer labels are written in the
mode of the tape and the records are written in data
convert mode, with odd parity.

•

Checkpoint on Tape
You can either establish a separate file for check­
points or embed the checkpoint records in an output
file. When the file is read at a later time using
LlOCS, the checkpoint records are automatically
bypassed. If physicallocs is used, you must pro­
gram to bypass the checkpoint record sets.

If a separate magnetic tape checkpoint file with
standard labels is maintained, the labels should be
either checked by an OPEN or bypassed by an MTC

command before the first checkpoint is taken. Alter­
nate tape drives must not be assigned for a separate
checkpoint file.

Checkpoints on Disk
If checkpoints are written on disk, the following
must be observed:

• One continuous area on a single disk volume
must be defined at execution time by the job
control card necessary to define a DASD file.

• For checkpoints to be written to a CKD device,
the number of required tracks is computed as
follows:

t = n(l + (w/25 + x/20 + y)/v + c/z)

where

c= number of bytes to be checkpointed as
determined by the end address operand
(size of partition by default).

n= the number of checkpoints to be retained
(when the checkpoint file is full, the
checkpoint file is overlaid, starting at the
beginning).

v= the number of 256-byte records per track:

for 2311 11
for 2314/2319 17
for 3330/3333 33
for 3340 20
for 3350 44

w= maximum number of page frames which
are fixed by PFIX at the time the check­
point is taken.

x= the number of disk extents including
nonoverlapping split-cylinder extents. If
split-cylinder extents overlap on the same
cylinder, the number of extents counted
is one. (This number is zero if DASD file
protect is not used.)

y= the number of IBM 3800 printers attached
to the partition being checkpointed.

z= the number of checkpoint records per
track:

for 2311 3
for 2314/2319 6
for 3330/3333 10
for 3340 7
for 3350 16

• For checkpoints to be written to an FBA device,
the number of required blocks is computed as
follows:

b = n(l + (w /25 + x/20 + y)v + c X z)

where

c, n, w, x, yare defined as for a CKD de­
vice, but

v= 256 divided by the blocksize of the FBA

device.

z= the number of blocks required for one
checkpoint record, that is, 1024 divided
by the blocksize of the FBA device.

For each division, the quotient is round­
ed to the next highest integer before mul­
tiplying by n.

• Each program can use a common checkpoint
file or define a separate one. If a common file is
used, only the last program using the file can be
restarted.

• The checkpoint file must be opened before the
CHKPT macro can be used.

• A DTFPH macro specifying MOUNTED=SINGLE

and TYPEFLE=OUTPUT must be included for
use by OPEN and the checkpoint routine. A
CISIZE specified with the DTFPH macro is ig­
nored by the checkpoint routine.

Repositioning I/O Files
The I/O files used by the checkpointed program
must be repositioned on restart to the record you
want to read or write next. The recorded checkpoint
information provides no aids for repositioning unit­
record files. You must establish your own reposi­
tioning aids and communicate these to the operator
when necessary. Some suggested ways are:

• Taking checkpoints at a logical break point in
the data, such as paper tape end of reel.

• Switching card stackers after each checkpoint.

• Printing information at the checkpoint to iden­
tify the record in process.

• Issuing checkpoints on operator demand.

Sequential DASD input, output, and work files
require no repositioning.

Chapter 10: Requesting Control Functions 10 - 15

When updating DASD records in an existing file,
you must be able to identify the last record updated
before the checkpoint was taken. This can be done
in various ways, such as:

• Creating a history file to record all updates.

• Creating a field in updated records to identify
the last transaction record that updated it. This
field can be compared against each transaction
at restart time.

Repositioning Magnetic Tape
Checkpoint provides some aid in repositioning mag­
netic tape files at restart. Files can be repositioned
to the record following the last record processed at
checkpoint. This section and Figure 10-10 describe
the procedure.

The dpointer operand of the CHKPT macro points
to two v-type address constants which you define in
you program. The order of these constants is impor­
tant.

The first constant points to a table containing the
filenames of alliogicallocs magnetic tape files to be
repositioned. The second constant points to a table
containing repositioning information for physical
IOCS magnetic tape files to be repositioned.

If the first, second, or both constants are zero, no
tapes processed by logical, physical, or both types of
IOCS, repectively, are repositioned.

If the tables are contained in the same CSECT as
the CHKPT macro, the constants may be defined as
A-type constants. You are responsible for building
these tables.

Each filename in the logicallocs table points to
the corresponding DTF table where IOCS maintains
repositioning information.

• Magnetic tapes with nonstandard labels should
be repositioned past the labels at restart time
(presumably the labels are followed by a tape­
mark so that forward-space file may be used).

• If a nonstandard label or unlabeled magnetic
tape file is to be repositioned for reading back­
ward, you must position the tape immediately
past the tape mark following the last data re­
cord.

• Restart does not rewind magnetic tape when
repositioning them.

• A multi-file reel should be repositioned to the
beginning of the desired file.

• The correct volume of a multi-volume file must
be mounted for restart.

10- 16 VSE/ Advanced Functions Macro User's Guide

• For tapes with a standard VOL label, restart
writes the file serial number and volume se­
quence number on SYSLOG, and gives the oper­
ator the opportunity to verify that the correct
reel is mounted.

• The logicallocs can completely reposition files
on system logical units (SYSIPT, SYSLST, etc.), if
the tape is not shared with any other program
and if you keep a physicallocs repositioning
table. However, if a system logical unit file is
shared with other programs, a problem exists.
Output, produced after the checkpoint, is dupli­
cated at restart. Input records must be recon­
structed from the checkpoint, or your restart
routine must find the last record processed be­
fore the checkpoint.

The entries in the physicallocs table are:

• First halfword - hexadecimal representation of
the symbolic unit address of the tape (copy
from CCB).

• Second half word - number of files within the
tape in binary notation. That is, the number of
tape marks between the beginning of tape and
the position at checkpoint.

• Third half word - number (in binary notation)
of physical records between the preceding tape­
mark and the position at checkpoint.

DASD Operator Verification Table
If the dpointer operand of the CHKPT macro is used,
you can build a table (in your own area of virtual
storage) to provide the symbolic unit number of
each DASD file used by your program. At restart, the
volume serial number of each of these files is printed
on SYSLOG for operator verification.

The entries in the DASD operator verification
table must consist of the following two half words, in
the order stated below:

I. The symbolic unit in hexadecimal notation
copied from the CCB bytes 6 and 7.

2. Reserved.

There must be one entry for each DASD unit to be
verified by the operator.

Program Linkage
A program may consist of several phases or routines
produced by language translators and combined by
the linkage editor. The CALL, SAVE, and RETURN
macros are used for linkage between routines in
storage and within the same or different phases.
These macros, with conventional register and save
a:cea usage, allow branching from one routine to

•

•

... .

Name

t
POINTER

J
L()G I C L

PHYSCL

filenamel
filename2

~DAS[)

Operatlon
CHKPT

Operand
SYSOOx, (r 1), , POI NTER, DASD

I I

DC ...----- V(LOGICL)
V(PHYSCL)

CN()P
DC

DC

DC

OTFxx
DTFxx

2,4
H'n'

I

Number of entries in
the following table.

~V(fllenamcl)
V (f 1 lenamc2)

Symbolic DTF
name of each
tape file to
be repositioned
at restart.

V (f i 1 enamen)
H ' n ' Number of entries in

the following table.

3H Six bytes (3 halfwords)
for each tape file

3H

H'n'

2H

2H

to be repositioned
at restart.

Number of entries In

the following table.
Four bytes (2 halfwords)
are required for each
DASD unit so that the
operator can verify each
volume serial number
at restart time.

Figure 10-10. Repositioning magnetic tape and verification of DASD volume serial numbers.

another or from one phase to another and also allow
passing parameters.

Passing control from one routine to another with­
in the same phase is referred to as direct linkage.
Figure lO-11 shows linkage between a main pro­
gram and two subroutines. Linkage can proceed
through as many levels as necessary, and each rou­
tine may be called from any level. The routine given
control during the job step is initially a called pro­
gram.

During execution of a program, the services of
another routine may be required, at which time the
current program becomes a calling program. Using
Figure lO-11 as an example, when the main program
passes control to B, B is a called program. When
control is passed from B to C, B is the calling pro­
gram and C is the called program.

Chapter 10: Requesting Control Functions 10- 17

J

•

"

J

Figure 10-11. Direct Linkage.

to - 18 VSE/ Advanced Functions Macro User's Guide

..

....

•

Linkage Registers
To standardize branching and linking, registers are
assigned specific roles (see Figure 10-12). Registers
0, 1, 13, 14, and 15 are known as the linkage regis­
ters. Before a branch to another routine, the calling
program is responsible for the following calling se­
quence:

1. Loading register 13 with the address of a regis­
ter save area which the called program is to use.

2. Loading register 14 with the address to which
the called program will return control.

3. Loading register 15 with the address of the
called program's entry point.

4. Loading registers 0 and 1 with parameters, or
loading register 1 with the address of a parame­
ter list.

Register Register
Contents

Number Name

0 Parameter Parameter to be passed to the
register called program.

1 Parameter Parameter to be passed to the
register called program.

or

Parameter Address of a parameter list to be
list register passed to your subprogram

13 Save area Address of the register save area
register to be used by the called program.

14 Return reg- Address of the location in the
ister calling program to which control

should be returned after execu-
tion of the called program.

15 Entry point Address of the entry point in the
register called program.

Figure 10-12. Linkage Registers .

Save Areas
A called program should save and restore the con­
tents of the linkage registers, as well as the contents
of any register that it uses. The registers are stored
in a save area that the higher (calling) level program
provided. This procedure conserves storage because
the instruction to save and restore registers need not
be repeated in each calling sequence.

Any calling program must provide a save area
and place its address in register 13 before it executes
a direct linkage. This address is then passed to the
called routine. A save area occupies nine double­
words and is aligned on a doubleword boundary
plus one additional word at the end if your program
uses double buffering for a 2501. For programs to
save registers in a uniform manner, the save area has
a standard format shown in Figure 10-13 and de­
scribed below.

Word Displacement Contents

1 0 Indicator byte and storage length;
used by PL/llanguage program.

2 4 The address of the previous save
area; that is, the save area of the
subprogram that called this one
(used for tracing purposes).

3 8 The address of the next save
area; that is, the save area of the
subprogram to which this subpro-
gram refers.

4 12 The contents of register 14 con-
taining the address to which re-
turn is made.

5 16 The contents of register 15 con-
taining the address to which entry
into this subprogram is made.

6 20 (The contents of) register O.

7 24 (The contents of) register 1 .

8 28 (The contents of) register 2.

9 32 (The contents of) register 3.

10 36 (The contents of) register 4.

11 40 (The contents of) register 5.

12 44 (The contents of) register 6.

13 48 (The contents of) register 7.

14 52 (The contents of) register 8.

15 56 (The contents of) register 9.

16 60 (The contents of) register 10.

17 64 (The contents of) register 11 .

18 68 (The contents of) register 1 2.

19 72 CCB switch for double CCB
support.

Figure 10-\3. Save area words and contents in calling programs.

• Word 1: An indicator byte followed by three
bytes that contain the length of allocated stor­
age. Use of these fields is optional, except in
programs written in the PL/I language.

• Word 2: A pointer to word 1 of the save area of
the calling program. The address is passed to
the called routine in register 13. The contents
of register 13 must be stored by a calling pro­
gram before it loads register 13 with the address
of the current save area that is passed to a lower
level routine (see instruction ST \3.SAVEB+4 in
Figure 10-II).

• Word 3: A pointer to word I of the save area of
the next lower level program, unless this called
program is at the lowest level and does not have
a save area. (The called program required a
save area only ifit is also a calling program.)

Chapter 10: Requesting Control Functions \0 - 19

Thus, the called program, if it contains a save
area, stores the save area address in this word.

• Word 4: The return address, which is register
14, when control is given to the called program.
The called program may save the return ad­
dress in this word.

• Word 5: The address of the entry point of the
called program. This address is in register IS
when control is given to the called program.
The called program stores the entry-point ad­
dress in this word.

• Words 6 through 18: The contents of registers 0
through 12, in that order. The called program
stores the register contents in these words if it is
programmed to modify these registers.

• Word 19: The second CCB in the case of double
buffering support for the 2501 Card Reader.

In any routine, the contents of register 13 must be
saved so that the registers may be restored upon
return. For purposes of tracing from save area to
save area, the address of the new save area is stored.
Only the registers to be modified in the routine need
be saved. However, the safest procedure is to save
all registers to ensure that later changes to the pro­
gram do not result in the modification of the con­
tents of a register that was not saved.

The called program would not save and restore a
register if it passes a processing result in that register
(see example in Figure 10-14).

CALL, SA VE, RETURN Macros
Using the CALL, SAVE, and RETURN macros greatly
facilitates coding for direct linkage. Only one other
instruction has to be coded: prior to the CALL state­
ment, load the address of the calling program's save
area into register 13.

The CALL macro loads registers 14 and IS (and, if
parameters were passed, register I) appropriately
and then passes control to a specified entry point in
the called program.

Examples: In the following examples EXI gives
control to an entry point named ENT. EX2 gives con­
trol to an entry point whose address is contained in
register IS. The examples are:

EX1 CALL ENT
EX2 CALL (15) ,(ABC,DEF)

Two parameters, ABC and DEF, can be accessed
by the called program: after execution of the macro,
register I points to a list of fullwords that contain the
addresses of ABC and DEF.

10-20 VSE/ Advanced Functions Macro User's Guide

Code in calling routine:
LA 13,SAVAREA1
•
•
•
CALL SUBROUT,(PAR1,PAR2)
C 12,ZERO
•
•
•

SAVAREA1 DS 9D
•
•

PAR1 DC C'ABCDEF'
PAR2 DS F
ZERO DC F'O'

Code in called routine:
SAVE (14,11)
BALR
USING
ST 13,SAVAREA2+4·
LA 13,SAVAREA2
•
•
•

processing
•
•
•
L 13,SAVAREA2+4
RETURN (14,11)

SAVAREA2 DS 9D

A

B
C

o
E

F

G

H

J

•
•

Points to save area in calling
program.
Passes parameters PAR1, PAR2.
Saves registers of calling pro­
gram.
Establishes addressability.
Provides a backpointer to the
calling program's save area.
Points to new save area (for trac­
ing purposes).
Restores calling program's save
area register.
Restores the specified registers
and returns control to instruction
at J.
May be smaller if no other program
is called.
The called program passed the
processing result to the calling
program in register 12.

Figure 10-14. Use of CALL, SA V E, and RETURN macros.

A

B
J

C
0
0
E
F

G
H
I

The called program must be in virtual storage
when the CALL macro is executed. The called pro­
gram is brought into virtual storage in one of two
ways:

l. As part of the program issuing the CALL. In this
case, the CALL macro must specify an entry
point by symbolic name, the linkage editor in­
cludes the phase containing that entry point in
the phase containing the CALL macro, and the
called program resides in storage throughout

•

..

•

execution of the calling program. This may
waste storage if the called program is not need­
ed throughout execution of the calling program.

2. As the phase specified by a LOAD macro. In
this case, the CALL macro specifies register 15
(the entry-point register) into which the entry­
point address of the program to be called was
loaded. The LOAD macro must precede the first
CALL for that program. Specifying register 15
preceded by a LOAD macro is most useful when
the same program is called several times during
execution of the calling program, but is not
needed in storage throughout execution of the
calling program.

The SAVE macro stores the contents of specified
registers in the save area provided by the calling
program. It should be written before any registers
can be modified by the new program, preferably at
the entry point.

The RETURN macro restores the registers whose
contents were saved and returns control to the call­
ing program. Prior to execution of the RETURN ma­
cro, register 13 must contain the address of the save
area of the program to which control will be re­
turned.

Figure 10-14 illustrates the usage of the CALL,

SAVE, and RETURN macros.

Multitasking Functions
This section discusses subtask initiation and termi­
nation, resource protection, intertask communica­
tion, and DASD track protection. In addition, this
section discusses the use of shared modules and files.

Sub task Initiation
The maximum possible number of sub tasks that can
be initiated at anyone time in the system is deter­
mined by the NTASKS parameter of the SUPVR ma­
cro. The maximum number is 208. Up to 31 sub­
tasks can run concurrently within a partition, pro­
vided the overall limitation of NTASKS is not exceed­
ed.

The part of the subtask containing the entry point
must be in storage before the subtask can be success­
fully attached. The block of program instructions
that makes up the subtask can be part of one large
CSECT program section which, possibly, includes
also the main task; or the subtask can be a separate
phase, in which case the phase must first be read
into storage with the LOAD or CDLOAD macro before
the ATTACH is issued.

Required Save Areas
The system provides a save area for the main task.
The attaching task must provide a save area for the
subtask it attaches. When, later on during its execu­
tion, the subtask receives an interrupt, the supervisor
saves in that area the subtask's interrupt status in­
formation, the contents of the general registers, and
the floating-point registers.

The first 8 bytes are reserved for the subtask
name. The attaching task should fill in the subtask's
name before attaching it. The name is used to iden­
tify the subtask in an abnormal termination mes­
sage.

A second save area is needed if the attached task
is using the attaching task's abnormal termination
routine. The save area of the attaching task is then
reserved for the abnormal termination of only the
attaching task.

Specifying an Event Control Block
In the A TT ACH macro, the name of an event control
block (ECB) can be specified. The ECB is a fullword
defined in the main task; for the format see Figure
10-15. Specifying an ECB is required if other tasks
can be affected by this subtask's termination, or if
resources are controlled by ENQ and DEQ macros
within the subtask. A task may be waiting for the
subtask's termination by having issued the WAIT or
W AITM macro with the ECB as an operand. When
the subtask terminates, the ECB gets "posted" (see
Figure 10-15) by setting to one:

I bit 0 of byte 2 on program-requested termi­
nation, that is, as a result of a
CANCEL, DETACH, DUMP,

JDUMP or EOJ macro,

bit 1 of byte 2 on abnormal termination

I Reserved Reserved Reserved

o 2 3
Byte

• Byte 2

Bit 0: Turned on (X'80') at prograr:n­
requested termination of subtask

Bits 0 and 1: Turned on (X'CO') if the
subtask is abnormally terminated,

Bits 2 - 7: Reserved

Note: Other blocks that may be used as
ECBs are CCBs, TECBs, and MICR CCBs
since posting is done in bit 0 of byte 2 of
the block.

Figure IO-IS, Event Control Block (ECB).

Chapter \0: Requesting Control Functions \0 - 21

Testing for Successful Subtask Attachment
The attempt to attach a subtask may not be success­
ful. This happens when the maximum possible
number of subtasks is already attached. In this case,
the main task will keep control and register I (main
task) will contain the address of an ECB within the
supervisor that will be posted when the system can
initiate another subtask. Register 1 will also have
the high order bit 0 on to aid the main task in testing
for an unsuccessful ATTACH.

10 - 22 VSE/ Advanced Functions Macro User's Guide

Changing the Processing Priority
If the ATTACH macro successfully initiates a subtask,
the subtask is given higher priority than the main
task. Among all the subtasks in a partition, a sub­
task can give itself the lowest processing priority of
all attached subtasks within a partition by issuing
the CHAP macro.

J

J

..

•

J

L

•

•

MAINTASK BALR
USING:
•
•
STXIT

A MVC
B ATTACH
C LTR

BNM
WAIT
B

ATST10K BCTR
ST
•
•

0 SUBTASK1 BALR
USING

E ST
•
•

F MTABEND STC
G C

BE
•
•

ST1ABEND EQU
•
•

ST1SAV DC
ST1ABSV DC

H ST1ECB DC
MTSVAR DC
ST1SVEND DC
SUB1NAME DC
ABSVCODE DC
MTSAVE DS

2,0
*,2

AB,MTABEND,MTSAVE
ST1SAV(8),SUB1NAME Initialized subtask 1 save area
SUBTASK1,SAVE=ST1SAV,ECB=ST1ECB,ABSAVE=ST1ABSV
1,1 Test if ATTACH is successful
ATST10K BR if successful
(1) WAIT to retry ATTACH
ATST1 BR to retry
0,0 Get end of subtask save area
0,ST1SVEND and store it

3,0
*,3
1,MTSVAR

O,ABSVCODE
1,=A(ST1ABSV)
ST1ABEND

*

16D'0'
9D'0'
F'O'
F'O'
F'O'
C'SUBTASK1 '
X'O'
9D

Store address of main task save area

Save ABTERM code
Test if subtask 1 ABTERM

BR if YES

Subtask
Subtask
Subtask

save area with FP regs
AB save area
ECB

Address of main task save area
End address of subtask 1 save area
Subtask 1 name

Main task save area used by STXIT

A Initializes the subtask save area with the subtask's name which is used for subtask identification in messages written on SYSLOG.

B Attaches the subtask. SUBT ASK I is the entry point of the subtask. ST ISA V is the subtask's save area, ST I ECB is its ECB, and
STIABSV is its abnormal termination save area. In this example, the subtask uses the main task's abnormal termination routine.

C The statements test for a successful ATTACH. If the A TT ACH was successful, the main task stores the ending address of the subtask's
save area for later reference, if necessary. The main task can then continue to do other processing.

o This is the subtask's entry point. In this example, the main task and the subtask use different base registers. This may not be necessary,
depending on program design. The subtask could have omitted the BALR and USING statements because addressability is warranted
through the main task's register 2.

E The statement saves the address of the main task's save area for reference by the subtask -- if it is necessary for the subtask to name the
main task in the POST macro .

F The statement stores the ABTERM code when the abnormal termination routine is entered. This routine is shared by the main task
and the subtask.

G The statements determine which task was abnormally terminated (the ABTERM save area of the task in error is stored in register I).

H Defines the user-coded ECB for the subtask.

Figure 10-16. Attaching a subtask.

Chapter 10: Requesting Control Functions 10-23

Sub task Termination
A subtask is normally terminated via the DETACH

macro issued by the main task or by the subtask
itself.

A subtask can further detach itself by issuing the
CANCEL. EOJ or DUMP macro. When a subtask is
detached, all pending I/O operations are completed
and any tracks held by this subtask are freed.

If a subtask being detached has an ECB, that ECB

is posted and any tasks waiting on the ECB are re­
moved from the wait state. The task with the highest
priority then gains control. The supervisor ECB for
subtask attachment is also posted so that any main
task in another partition waiting to attach another
subtask is removed from the wait state.

Figure 10-17 shows an example of detaching sub­
tasks. The main task attaches two subtasks. When
subtask I completes processing, it notifies the main
task. The main task then detaches sub task I by issu­
ing a DETACH macro and specifying the. save area of
subtask I. When subtask 2 completes its processing,
it detaches itself.

MAINTASK BALR 2,0
USING *,2
•
•

ATST1 ATTACH ST1,SAVE=ST1SAV,
ECB=ST1ECB

•
•

ATST2 ATTACH ST2,SAVE=ST2SAV,
ECB=ST2ECB

•
•
DETACH SAVE=ST1SAV

Detach subtask
•
•

ST1 ST 1,MTSVAR1
•
•
B ST1+4

ST2 ST 1,MTSVAR2
•
•

*Subtask 2 DETACHes itself
DETACH

Figure 10-17. Detaching a subtask.

Resource Protection

x

x

When two or more tasks in the same partition ma­
nipulate a resource (data in the same area, an I/O
device, a set of instructions, etc.), protection should
be provided to prevent the resource from being used
concurrently by these tasks. If every task within the
partition uses the RCB. ENQ, and DEQ macros, such
protection is possible. Note, however, that resource

10 - 24 VSE/ Advanced Functions Macro User's Guide

protection is not possible for system units such as the
SYSLST device.

A task protects a resource by issuing an ENQ

(enqueue) macro. The ENQ macro refers to the re­
source through the name of a resource control block
(RCB). The RCB is an 8-byte field generated by issu­
ing the RCB macro. For the format of the RCB, refer
to Figure 10-18.

Reserved

o I 2

I Flag I ECB address of cur­
Byte rent resource owner

6 7

• Byte 0: Availability byte -
All ones when resource is in use.
All zeros when not in use.

• Byte 4: Flag byte: Bit 0 =
1. another task waiting for the resource.
O. no other task waiting for the resource.

Figure 10-18. Resource Control Block (RCB).

Any subtask that enqueues a resource must have
an ECB specified in its ATTACH macro, and that ECB

should not be used for any purpose other than re­
source protection as long as the resource is en­
queued. The address of the ECB is stored in the RCB

(see Figure 10-18).

A task requesting the use of a resource is either
enqueued and executed or put into the wait state if
the resource has already been enqueued by another
task. If an ENQ macro is issued for an already en­
queued resource, the system indicates this in the RCB

and stores the address of the current resource
owner's ECB in register I ofthe task that is placed
into the wait state.

A task releases a resource by issuing the DEQ ma­
cro. If other tasks are enqueued on the same RCB,

the DEQ macro frees from their wait condition all
other tasks that were waiting for that resource. Once
a resource has been enqueued, only the current own­
er of the resource can dequeue that resource. The
task with the highest priority obtains control. If no
other tasks are waiting for the RCB, control returns
to the dequeueing task.

Figures 10-19 through 10-21 show examples of
the use of the ENQ, DEQ, and RCB macros and the
resource control block.

Figure 10-19 shows a main task which has two
subtasks sharing the same resource and protecting
that resource from simultaneous access. The sub­
tasks use the same file in a common subroutine.
The subroutine is not reentrant, and the file cannot
use track hold. Each subtask must, therefore, en­
queue the RCB associated with the resource and de­
queue it when the resource can be released.

J

J

•

J

..

•

..

In Figure 10-20, two subtasks share a common
processing routine that is defined in the first subtask.
The common routine, called TOTAL, is protected in
subtask 1 by the RCB named RCBA. The protection is
effective only if every segment of code within the
partition that refers to TOTAL issues the ENQ macro
before executing TOTAL and subsequently dequeues
that resource with the DEQ macro. This is effectively
accomplished by branching to the same code in sub­
task 1.

The common code need not be reentrant. You
should, however, ensure that the values for constants
associated with the subroutine do not have to be
retained from one reference to the next, whenever
the resource is used. If the values must be retained,
you should save them in the appropriate subtask
and restore them when required.

In Figure 10-21, the subtasks again share the use
of the same resource, but they use different subrout­
ines for processing that resource. The resource,
called RESRCA, may be a data area or a file defined
by a DTF macro. In either case, RESRCA is protected
from being used by subtask 2 while subtask 1 is op­
erating on it. Thus, if all tasks enqueue and dequeue
each reference to RESRCA. RESRCA is protected dur­
ing the time it takes to process instructions from that
task's ENQ to its DEQ macro. This is readily appar­
ent if RESRCA is in storage. However, if it is a file,
the record being operated upon is protected while in
storage, but it is not necessarily protected on the

MAINTASK BALR 2,0
USING *,2
•
•

SUBTASKl EQU *
•
•

SBTASK1A EQU RCBl Protect resource
BAL ~., WRITEDTA Write a record
DEQ RCBl Release resource
•
•
B SBTASK1A
•
•

SUBTASK2 EQU *
•
•

SBTASK2A ENQ RCBl Protect resource
BAL 4,WRITEDTA Write a record
DEQ RCBl Release resource
•
•
B SBTASK2A
•
•

external storage device. If the file is on DASD, the
track hold facility should, if possible, be used.

In your program design, be careful to avoid situa­
tions that might lead execution of the program into a
deadlock.

Consider the following two segments of code be­
ing executed concurrently by two tasks:

taskl executes: task2 executes:

A ENQ RCBA B ENQ RCBB
• •
• •
• •

C ENQ RCBB D ENQ RCBA
• •
• •
• •

DEQ RCBA DEQ RCBB

If the macros were executed in the sequence A, B,

c, processing of both tasks would end at statements
C and D without a chance of ever being resumed.

RCBl RCB Resource control block for WRITEDTA

Figure 10-19. Sharing a resource in a common subroutine.

Chapter 10: Requesting Control Functions 10- 25

MTASK START 0
•
•
ATTACH STASKl ,SAVE=SAVEl ,ECB=ECBl
•
•
ATTACH STASK2,SAVE=SAVE2,ECB=ECB2
•
•

STASKl ENQ RCBA Protect resource TOTAL
•
•

* Process TOTAL Used by STASKl and STASK2
•
•
OEQ RCBA Release resource TOTAL
•
•

STASK2 EQU * •
•
B STASKl Process TOTAL
•
•

RCBA RCB RCB for resource TOTAL

Figure 10-20. Sharing a resource defined in one task.

MTASK START 0
•
•
ATTACH STl ,SAVE=SAVEl ,ECB=ECBl
•
•

J ATTACH ST2,SAVE=SAVE2,ECB=ECB2
•
•

STASKl EQU * •
•
ENQ RCBA Protect resource RESRCA
•
•

* Update RESRCA
•
•
OEQ RCBA Release resource RESRCA ... •
•

STASK2 EQU * •
•
ENQ RCBA Protect resource RES RCA
•
•

* Update RESRCA Process using RESRCA
•
•
OEQ RCBA Release resource RESRCA
•
•

RCBA RCB RCB for resource RESRCA
RESRCA OS or OTF Shared resource

Figure 10-21. Sharing a resource in different subroutines.

10- 26 VSE/ Advanced Functions Macro User's Guide

..

..

Resource-Share Control
Another set of macros protect a resource against
concurrent use by different tasks (in the same or in
different partitions) while permitting controlled
sharing of the resource. The macros:

• define a protected resource: DTL, GENDTL,

MODDTL

• control resource sharing: LOCK, UNLOCK.

As with the ENQ/DEQ macros, protection is possi­
ble only if all users of a particular resource use the
protection service in a consistent manner; that is,
make use of the available macros and adhere to in­
stallation defined naming conventions.

Unlike the ENQ/DEQ macros, the LOCK/UNLOCK

macros protect a resource across partitions and al­
low sharing among several tasks.

Defining a Shareable Resource
A resource to be protected by this share control ser­
vice must be defined in a lock control block called
DTL (Define The Lock). The DTL macro is used to
assemble a DTL in your program; the GENDTL macro
is used to dynamically build a DTL when your pro­
gram is executed. The lock control block indicates
the installation-defined name of the protected re­
source and how access to the resource may be shared
with other programs.

In the macro that defines the DTL, you can speci­
fy the resource as either type E (exclusive) or type S
(shareable). In addition, you specify a lock option
that determines the extent of shareability; this may
be one of the following:

• LOCKOPT=I means that the resource is either
accessed by one user exclusively or is shared by
several users .

• LOCKOPT=2 means that the resource may be
accessed by one exclusive user and by several
shared users.

The DTL definition macros also allow you to spec­
ify the scope of share control; whether a locked re­
source is automatically released at the end of the
particular job step, or whether it remains locked for
the next job step (the resource is always released at
end of job). You may also specify whether a lock
issued by one task can be unlocked only by the same
task or also by another task.

Controlling a Shareable Resource
Once the DTL has been built, a task can request con­
trol over the protected resource with the LOCK ma­
cro and give up control over the resource with the
UNLOCK macro.

When a LOCK request is issued and the resource is
already locked by another task, further system ac­
tion depends on your specification in the FAIL ope­
rand of the LOCK macro. For example, you can
request that control is to return to the requesting
task regardless of whether the resource can be ob­
tained or not - in which case your program has to
test the return code set by the system, or that the
requesting task be set into the wait state until a
locked resource can be accessed.

A task or partition may lock a resource more than
once. The system maintains a lock request count
which reflects the number oflock requests issued for
the resource. When a resource is locked more than
once by a task or partition, the task or partition has
to issue as many unlock requests as it issued lock
requests to yield control of the resource completely.

The MODDTL macro modifies a lock control block
at the time of program execution. This is its normal
function. In addition, it is also used to lower the
lock control level of a locked resource. When its
CHANGE operand is specified as ON, the MODDTL

macro causes a subsequent issuance of the UNLOCK

macro to keep the resource locked, but with a lower
locking level, rather than release the resource. The
resource continues to be held; however, another task
waiting for this resource can be dispatched again.
This method of reducing the lock level can be em­
ployed only when the lock level is defined with the
most stringent values possible; that is, CONTROL=E

(exclusive) and LOCKOPT=1.

Figure 10-22 illustrates the two occurrences of the
UNLOCK macro.

In addition to coding the macros, implementation
of resource-share control requires that your
installation's supervisor includes a sufficiently large
lock table space (which you define in the NRES ope­
rand of the IOTAB generation macro). A maximum
size table accomodates up to 512 concurrent locks.

Chapter 10: Requesting Control Functions 10- 27

•
•
LOCK MYDTL
•
•
process
•
•
MODDTL

A UNLOCK
ADDR=MYDTL,CONTROL=S,CHANGE=ON
MYDTL

•
•
process
•
•
MODDTL

B UNLOCK
•
•
•

ADDR=MYDTL,CHANGE=OFF
MYDTL

C MYDTL DTL NAME=RESOURCE,CONTROL=E,LOCKOPT=1

A The resource is not unlocked. It remains locked, but it may now be shared with other tasks.
B Due to CHANGE=OFF in the preceding MODDTL macro, the resource is actually unlocked.
C CONTROL=E with LOCKOPT= I indicates that no other task is to gain access to resource RESOURCE as long as access is

controlled via this DTL.

Figure 10-22. Example of the UNLOCK Macro when CHANGE isset ON in the MODDTL Macro.

Intertask Communication
Tasks communicate with each other through event
control blocks (ECBS). For the format, refer to Fig­
ure 10-15. One task sets itself into the wait state by
issuing the WAlT or W AITM macro, another task is­
sues a POST macro. These macros use ECBS as ope­
rands.

AWAIT macro would be used if your task waits
for a single event to occur; a W AlTM macro is appro­
priate if your task can continue processing when one
or several out of a number of events occurred. The
task that issues the WAIT or W AITM remains in the
wait state until one of the designated ECBs gets post­
ed by the POST macro, that is: bit 0 of byte 2 set to I.
Blocks that can be used as ECBS are CCBs and TECBs.
However, a task never regains control if it is waiting
for a CCB to be posted by another task's I/O comple­
tion.

A MICR CCB gets posted only when the device
stops, not when reading a record is complete. Fur­
thermore, telecommunication ECBs and all RCBs
must not be waited for because bit 0 of byte 2 of
these blocks would never be posted.

When control returns to a task that was waiting
due to a W AITM, register I points to the posted ECB.
This allows the task to determine which event re­
moved it from the wait state.

A task that issues the W AlTM macro should en­
sure that the waiting task allows an eventual outlet if
an event might not occur. (Such a condition could

10- 28 VSE/ Advanced Functions Macro User's Guide

occur if, for example, a task that is to post an event
is terminated abnormally.)

In Figure 10-23, the W AITM macro specifies a
preferred event (ECBPREF) as the first operand and a
secondary event (ECBSEC) as the second operand.
The preferred event is the posting of ECBPREF after
sub task I completes its processing. If, however, the
subtask is terminated before it can finish its process­
ing, the supervisor posts the ECB defined via the
ATTACH macro (ECBSEC). This would be the second­
ary event and satisfy the W AITM macro. With either
event, the address of the posted ECB is in register I
after the W ArFM macro has been satisfied. This ad­
dress can select a problem program routine.

In this particular example, a branch instruction
points to a table that contains a list of ECBs with
corresponding branch instructions to the routine
that is to receive control when the pertinent ECB was
posted. The table can easily be expanded to include
a maximum of 16 ECBs.

Whenever a task posts an ECB, any task waiting
on this ECB to be posted is removed from the wait
state.

You can code your application to have just one
task or all tasks waiting on a particular event re­
moved from the wait state. To have all tasks re­
moved, simply issue a POST macro with the ECB
name specified as the only operand. Example:

POST TSK1ECB

•

..

..

MAINTASK

PREVENT

SEVENT

ST1

BALR
USING
•
•

2,0
·,2

ATTACH ST1 ,SAVE=SAVE1 , ECB=ECBSEC
•
•
WAITM ECBPREF,ECBSEC

B

•
•
EQU
•
•
EQU
•
•
EOJ
•
•
EQU
•
POST
•
•

4 (1)

•

•

•
ECBPREF

Wait for preferred or secondary event

BR to branch in vector table

Continue after preferred event

Continue after secondary event

Main task end of job

POST completion of preferred event

ECBSEC DC
B
DC
B

F'O'
SEVENT
F'O'
PREVENT

ECB for secondary event

ECBPREF
Vector BR from secondary event
ECB for preferred event
Vector BR from preferred event

Figure 10-23. Waiting for preferred and secondary events.

To have only one task removed, specify the name
of the task's save area in the POST macro. Example:

POST TSK1ECB,SAVE=SAVTSK1

Time is saved by specifying the SAVE operand.
This operand can be used to control which task is to
receive control. That is to say, the SAVE operand
can be used to prevent the task with the highest pri­
ority from gaining control.

Be careful with this technique when the ECB to be
posted is the ECB specified in the A TT ACH macro and
the ENQ/DEQ macros are used, because the DEQ ma­
cro also removes from the wait state all tasks waiting
for the protected resource. To avoid such problems,
you are advised to use two different ECBS, you are
responsible for resetting the traffic bit (bit 0 of byte
2) in the second ECB using the instruction MVI
ECB+2, X'OO' so that tasks testing that ECB can be put
into the wait state.

Figure 10-24 illustrates the use ofthe POST ma­
cro. The example shows three subtasks: ST!, ST2,
and ST3. ST! depends on input which can be sup­
plied by ST2 or ST3 and, therefore, issues a W AITM
macro on the ECBs for those subtasks.

Initially, ST! is placed into the wait state by the
W AITM macro. Control then passes to ST2 and then
to ST3. When either of the two subtasks has the nec­
essary data for STI, it posts its ECB that removes STI
from the wait state. When ST 1 finishes processing, it

posts its ECB, thus causing the main task to be taken
from the wait state. The main task can then detach
STI.

DASD Record Protection (Track Hold)
When a record is being modified by one task, the
data transmission unit containing that record must
be prevented from being accessed by another. For a
CKD device, the data transmission unit is one track;
for an FBA device, this unit is an intergral number of
blocks. For ease of reading, this unit is frequently
referred to as "track". VSE includes the DASD record
protection support (frequently called "track hold
function") to ensure the required data integrity as
indicated above. This support is available for use
with both CKD and FBA devices.

Within a partition, record protection can be ac­
complished for a particular DASD by the resource
protection macros or the intertask communication
macros. With the resource protection macros, an
RCB can be enqueued before each reference to the
DASD. With the intertask communication macros, a
subtask can wait for an ECB to be posted before each
reference to the DASD.

The hold function obtains DASD record protection
for programs that define files by means of the
DTFSD, DTFlS, or DTFDA macros. In these cases,
DASD record protection can be obtained within the
entire system ifthe TRKHLD operand of the FOPT

Chapter 10: Requesting Control Functions 10- 29

MAINTASK BALR 2,0
USING .,2
•
ATTACH ST1 ,SAVE=AREA1 ,ECB=ECB1
•
•
ATTACH ST2,SAVE=AREA2,ECB=ECB2
•
•
ATTACH ST3,SAVE=AREA3,ECB=ECB3

ST1

ST1EOJ

ST2

ST2A

ST3

ST3A

MTSVAR
ECB1A
ECB1
ECB2
ECB3

•
•
WAIT ECB1
DETACH SAVE=AREA1
•
•
EOJ
ST
•
•
WAITM
•
•
•
L
POST
WAIT
•
•
EQU
•
•
EQU
•
•
POST
•
•

1,MTSVAR

ECB2,ECB3

O,MTSVAR
ECB 1 ,SAVE= (0)
ECB1A

•

•

ECB2

B ST2A
•
•
EQU •
•
•
EQU •
•
•
POST ECB3
•
•
B ST3A
•
•
DC
DC
DC
DC
DC

F'O'
F'O'
F'O'
F'O'
F'O'

Figure 10-24. Use of the POST Macro.

Wait for completion of subtask 1
Detach subtask 1

Store address of main task save area

Wait for subtask 2 or subtask 3

Get address of main task save area
POST ECB for main task
WAIT to be detached

POST ECB for subtask 1

Save area address for main task
Dummy ECB for subtask 1
ECBs for subtasks

macro is specified at system generation time, and if
every task specifies the HOLD=YES operand of the
DTFxx macro.

3. Processing DTFDA files.

4. Processing DTFIS files.

The hold function can be used in four specific
situations:

1. Updating DTFSD data files.

2. Updating DTFSD work files.

10- 30 VSE/ Advanced Functions Macro User's Guide

I In the first and second situation, the track or
block range being held is freed automatically by the
system. More specifically, the next GET issued to a
new track for the file frees the previous hold, and

I your program should not issue the FREE macro. If a
FREE macro is issued by your program, it is ignored

J

..

...

I because the logic modules implicitly handle the
holding and freeing of tracks (blocks).

For situation 3, the program must issue the FREE
macro for each hold that is placed on the track. A
hold is placed on a track each time the track is ac­
cessed with a READ, and each hold is released by
issuing FREE, or a CLOSE macro for that file, or a
DETACH macro for the associated task.

For DTFDA files using WRITE or WRITE AFTER,
DAMOD initially places a hold on the track. Howev­
er, a WRITE AFTER issued to a track that has the
maximum number of holds already in effect cancels
the task (or partition).

When a READ ID or READ KEY macro is issued,
DAMOD holds the track but does not free it automat­
ically. This must be done in the user program by the
FREE macro.

For situation 4, the method of implementation
depends on the function being performed:

• Sequential Retrieval - The track index is held
at the beginning of retrieval from each cylinder.
A search and hold is issued for the data track,
the index track is released, and a wait is issued
for the data track. When the system is finished
with the data track (prime or overflow), it is
released, and the next track is held. Your pro­
gram must release the track hold function by
issuing either a PUT (if the file is updated) or a
GET (no update) for the next record, or an
ESETL.

• Random Retrieval - The track index is held
while IS AM reads in the required entries. The
data track is held, and the desired record is
searched for. When the record is found, the
track index is released. Your program must
release the data track by issuing a WRITE (if the
file is updated) or a FREE (no update).

• Add - The track index and the data track are
held. If the record is not going onto the prime
data track, the track index is released. All
tracks being changed are held during modifica­
tion. The track index is again held while it is
updated to reflect the added records. After al­
teration, the tracks are released automatically.

A file for which HOLD=YES is specified must be
closed by a CLOSE macro in your program in
order to be opened again for processing some­
time in the future. If, for any reason, a file can­
not be closed properly during execution of a
job, run a dummy job that does no more than
issue a CLOSE for that file.

• SETL macro - SETL issues a hold on the track
index on which processing will begin. This hold
is released automatically at the appropriate
time.

• ESETL macro - ESETL frees any tracks that are
held by sequential retrieval when the ESETL is
issued. Since the ESETL macro issues a FREE
whether or not any tracks are held, you should
not issue ESETL if SETL has not been successful.

The maximum number of DASD track protection
holds that can be in effect within a system is speci­
fied at the time of system generation. This can be
any number up to 255, with a system default option
of 10. If a task attempts to exceed the limit, the task
is placed in the wait state until a previous hold is
lifted.

The same track can be held more than once with­
out an intervening FREE if the hold requests are
from the same task. The same number of FREEs
must be issued before the track is completely freed.
However a task is terminated if more than 16 hold
requests from it are recorded without an intervening
FREE, or if the task issues FREE for a file that does
not have a hold request for that track.

If a task requests a track that is being held by
another task, that task is placed into the wait state at
the GET (or WAIT F) macro associated with the I/O
request. The request is fulfilled after the track is
freed and when control returns to the requesting
task.

If more than one track is being held, it is possible
for your program to inadvertently put the entire
system in the wait state. This occurs if each task is
waiting for a track that is already held by another
task. A way to prevent this is to FREE each track
held by a task before this task places (or attempts to
place) a hold on another track.

Track Hold - An Example
Figure 10-25 shows an example of the use of the
track hold facility in a multitasking program.

Although track hold applies across partitions, the
example in Figure 10-25 only shows two subtasks
sharing the same DA file and the same DA modules.
A similar set of routines could be executing in an­
other partition and share the file with this partition,
but the second partition would then have to have its
own DA module.

Because the subtasks in Figure 10-25 share the
same file, HOLD=YES and RDONLY=YES must have
been specified in both DTFDAS and in the DAMOD
macro. In addition, before any READ, WRITE, or
WAITF macro is issued, register 13 must contain the

Chapter 10: Requesting Control Functions 10 - 31

address of a unique save area to store the registers
used by the module. Register 13 is not altered be­
tween I/O operations performed by a given task and,
therefore, needs to be initialized only once. If other
reentrant access methods were used by the subtask,
register 13 would have to be initialized for each
LIOCS function.

Shared Modules and Files
The DTF and logic module macros for the various
file types contain the operand RDONLY=YES indicat­
ing that a shareable read-only module is to be gener­
ated.

Each time a read-only module is entered, register
13 must contain the address of a 72-byte,
doubleword-aligned save area. A separate save area
is also required if an exit to a user routine (AB, IT, OC,

MAINTASK START
•
•
ATTACH
•
•
ATTACH
•
•

o

ST1 ,SAVE=AREA1 ,ECB=ECB1

ST2,SAVE=AREA2,ECB=ECB2

PC, TT) is established and the exit routine issues I/O

request(s) requiring the same logic module as the
main routine.

Each task using a read-only module requires its
own unique save area in addition to the save areas
that might be needed for multitasking and program
linkage. The fact that the module save areas are
unique for each task makes the module reentrant
(that is, capable of being used concurrently by sever­
al tasks).

If an ERROPT or WLRERR routine issued I/O mac­
ros that use the same read-only module which
passed control to either error routine, your program
must provide another save area: one save area for
the initial I/O and the other for I/O operations in the
ERROPT or WLRERR routine. Before control returns
to the module that entered the ERROPT routine, reg-

ST1 OPEN DAFILE1 OPEN DA master file

DAFILE1

ST2

DAFILE2

DASAVE1
DASAVE2

•
•
LA
READ
•
•
WAITF
•
•
WRITE
WAITF
FREE
•
•
DTFDA
•
•
OPEN
•
•
LA
READ
WAITF
•
•
WRITE
WAITF
•
•
FREE
•
•
DTFDA
•
•
DC
DC

13,DASAVE1
DAFILE1,KEY

DAFILE1

DAFILE1,KEY
DAFILE1
DAFILE1

Initialize register 13 with DA save area
Read and hold record

Write updated record

Release track

HOLD=YES,RDONLY=YES, ...

DAFILE2

13,DASAVE2
DAFILE2,KEY
DAFILE2

DAFILE2,KEY
DAFILE2

DAFILE2

OPEN DA master file

Initialize register 13 with DA save area
Read and hold record
From DA master file

Write updated record

Release track

HOLD=YES,RDONLY=YES, ...

8D'0'
8D'0'

Save areas used for
Shared and reentrant modules

Figure 10-25. Using the track hold facility.

10-32 VSE/ Advanced Functions Macro User's Guide

•

•

..

•

ister 13 must contain the address of the save area
originally specified for the task.

Programs using devices such as an optical reader
can make use of the multitasking function to in­
crease I/O overlap without reentrant modules. How­
ever if the program ignores module considerations,
two tasks may attempt to use a single nonentrant
module. When this occurs, the results are unpredict­
able because values for the first task using the mo­
dule are modified by the second task. To prevent
this undesirable situation, several methods can be
used.

One method is to assemble a module with a dif­
ferent module name for each task that could attempt
to use the module simultaneously. This method
requires that you specify the appropriate module
name in the DTF macro operand MODNAME.

Another method is to link-edit DTF and module
separately for each task that could simultaneously
attempt to use the same module. Then, before a task
attempts to reference a device through that module,
the DTF and module can be fetched or loaded into
storage.

Either of these methods prevents the linkage edi­
tor from resolving linkage to one module. Thus,
separate modules can be provided to perform each
function. For more information on the linkage be­
tween the DTF and logic module, see
"Interrelationship ofthe Macros" in the section
"Macro Types and Their Use".

If several tasks are to share processing or to refer­
ence data on the same file, not only should reentrant
modules be employed but each task must contain its
own DTF table for that file (unless you use the ENQ
and DEQ macros). Each task can either open its own
DTF, or the main task in the partition can open all
files for the subtasks.

There are two methods that can be used for a
shared file. You can either supply a separate set of
label statements (DLBL and EXTENT, TLBL etc.) for
each corresponding DTF filename, or you can assem­
ble each DTF and program (subtask) separately with
the same filename and one set of label statements.
In the latter case, each separately assembled pro­
gram must open its DTF.

Loading a Forms Control Buffer
An application may require a change of forms one
or more times during its execution. VSE provides the
LFCB macro for that purpose.

The LFCB macro loads a phase that is cataloged in
the core image library into the printer's forms con-

trol buffer (FCB). The phase contains the forms
spacing layout that you wish to load into the
printer's FCB. For information on the contents and
format of an FCB phase, see the section "System
Control Buffer Load (SYSBUFLD)" in VSE/ Advanced
Functions System Control Statements.

An FCB whose contents have been changed by
means of this macro retains new contents until one
of the following occurs:

• another LFCB macro is issued for the printer;

• an LFCB command is issued for the printer;

• the SYSBUFLD program is executed to reload
the printer's FCB;

• IPL is performed for the system.

The LFCB macro can be particularly useful in an
abnormal termination routine that you specify in an
STXIT macro. If the routine causes a dump to be
produced on a 3211 printer, and if indexing was
used before your abnormal termination routine re­
ceived control, a certain number of characters on
every line of the printed dump may be lost. To
avoid losing characters, your abnormal termination
routine must first issue an LFCB macro that specifies
an image without an indexing byte, followed by the
macro that requests the dump.

The LFCB macro, when executed, generates mes­
sages to request operator action (such as changing
forms) if any manual action is required, and to in­
form the operator that the FCB of the specified print­
er has been reloaded.

If the load of the FCB fails, the program is not
canceled. A return code is posted in register 15.
After each use of the LFCB macro, it is advisable to
examine the return code and take appropriate action
in your program. A list of return codes is shown in
VSE/Advanced Functions Macro Reference. Follow­
ing is an example of how testing register 15 will per­
mit you to continue execution when the LFCB macro
fails.

Controlling the number of lines per inch (LPI) of
printed output differs for PRTl printers and
non-PRTl printers. For non-PRTI printers the LPI is
controlled by a hardware switch. For PRTl printers
the LPI is controlled by a code in the FCB image.
With the LFCB macro you have the option of
specifying LPI=6 or 8. When this macro is issued for
the nOn-PRTl printer, a message is generated so that
the operator can adjust the hardware switch to 6 or 8
lines per inch. If the operand is specified for a PRTl
printer, the system compares the value in the buffer
image with the value in the LPI operand of the LFCB
macro. If they do not match, the load of the FCB

Chapter 10: Requesting Control Functions 10 - 33

fails and a return code of X'04' is placed in register
15.

There may be times when it is not possible to
determine which of several printers at an installation
will be used at execution time. The following rou­
tine will allow the appropriate FCB phase to be load­
ed whether or not the printer is a PRTI or non-PRTI
type:

LFCB
LTR
BZ
CH
BE
PDUMP
B

TRYAGAIN LFCB
LRT
BZ
B

CONTINUE •
•
•
EOJ

SYSLST,FCB5203,LPI=8
1 5, 1 5
CONTINUE
15,=H'4'
TRYAGAIN
INAREA,OUTAREA
CONTINUE (or B CANCL)
SYSLST, FCBPRTl
15,15
CONTINUE
CANCL

CANCL CANCEL ALL

In the above example the first LFCB macro will
attempt to load the phase FCB5203. If the printer is a
nOD-PRTI printer (such as the 5203) a message will
be issued to the operator to set the hardware switch

10 - 34 YSE/ Advanced Functions Macro User's Guide

for 8 lines per inch. If the printer is of the PRTI type,
the value 8 (from the LFCB macro) is compared with
the value in the buffer image in the phase FCB5203.
In phases that are to be loaded in non-PRTI printers,
the buffer image for lines per inch should be a 0 in
bit 3. In phases that are meant to be loaded in PRTI
printers, a 0 in bit 3 means 6 lines per inch. If the
printer that you arc attempting to load is a PRTI, the
LFCB would fail and give a return code of X'04'. This
would cause a branch to the LFCB at the label
TRYAGAIN. The second LFCB loads the phase
FCBPRTI, which has been coded appropriately for
the PRTI printer.

Requesting System Information
You can make inquiries about the current supervisor
using the SUBSID INQUIRY macro. The macro re­
trieves a byte string, which can be interpreted using
the mapping DSECT generated by the MAPSSID ma­
cro. Thus, you can for instance check whether your
current supervisor has been generated for ECPS:YSE
mode or for 370 mode, or whether it contains DASD
sharing support.

J

•

..

J

•

..

Appendix A: Control Character Codes

CTLCHR=ASA
If the ASA option is chosen, a control character must
appear in each record. If the control character for
the printer is not valid, a message is given and the
job is canceled. If the control character for card
devices other than the 2560, 5424, and 5425 is not v
or w, the card is selected into stacker 1. The codes
are:

Code Interpretation

blank Space one line before printing·

0 Space two lines before printing

- Space three lines before printing

+ Suppress space before printing
1 Skip to channel 1 before printing·

2 Skip to channel 2 before printing

3 Skip to channel 3 before printing
4 Skip to channel 4 before printing
5 Skip to channel 5 before printing

6 Skip to channel 6 before printing
7 Skip to channel 7 before printing
8 Skip to channel 8 before printing

9 Skip to channel 9 before printing
A Skip to channel 10 before printing
8 Skip to channel 11 before printing

C Skip to channel 1 2 before printing
V Select stacker 1
W Select stacker 2
X Select stacker 3 (2560 and 5424/5425

OTFCO files only)
y Select stacker 4 (2560 and 5424/5425

OTFCO files only)
X Select stacker 5 (2560 OTFCO files only)

For OTFOI files on 2560 and 5424/5425

V Primary hopper: select stacker 1

W Primary hopper: select stacker 2
V Secondary hopper: select stacker 5 (on 2560)

V Secondary hopper: select stacker 4 (on
5424/5425)

W Secondary hopper: select stacker 3 . For 3525 print (not associated) files, either space one or
skip to channel 1 must be used to print on the first line
of a card. For 3525 print associated files, only space
one must be used to print on the first line of a card.

CTLCHR=YES
The control character for this option is the
command-code portion of the ccw used in printing
a line or spacing the forms. If the character is not
one of the following characters, unpredictable events
will occur:

Stacker Selection Codes

Hexadecimal Punch Combi-
Function

Code nation

Stacker Selection on 1442 and 2596

81 12,0,1 Select into stacker 1
C1 12,1 Select into stacker 2

Stacker Selection on 2520

01 12,9,1 Select into stacker 1
41 12,0,9,1 Select into stacker 2

Stacker Selection on 2540

01 12,9,1 Select into stacker 1
41 12,0,9,1 Select into stacker 2

81 12,0,1 Select into stacker 3

13 11,3,9 Primary hopper: select into
stacker 1

23 0,3,9 Primary hopper: select into
stacker 2

33 3,9 Primary hopper: select into
stacker 3

43 12,0,3,9 Primary hopper: select into
stacker 4

53 12,11,3,9 Primary hopper: select into
stacker 5 (2560 only)

93 12,11,3 Secondary hopper: select
into stacker 1

A3 11,0,3 Secondary hopper: select
into stacker 2

83 12,11,0,3 Secondary hopper: select
into stacker 3

C3 12,3 Secondary hopper: select
into stacker 4

03 11,3 Secondary hopper: select
into stacker 5 (2560 only)

Stacker Selection on 3504, 3505, and 3525

01 12,9,1 Select into stacker 1
41 12,0,9,1 Select into stacker 2

Appendix A: Control Character Codes A - I

Printer Control Codes

Hexadecimal Punch Combi-
Function Code nation

Hexadecimal Punch Combi-
Function Code nation

Printer Control (except for 3525) Printer Control for 3525 with Print Feature

01 12,9,1 Write (no automatic space) 00 12,5,8,9 Print on line 1
09 12,9,8,1 Write and space 1 line after 15 11,5,9 Print on line 2

printing 10 11,5,8,9 Print on line 3
11 11,9,1 Write and space 2 lines after

printing
19 11,9,8,1 Write and space 3 lines after

printing

89 12,0,9 Write and skip to channel 1 af-
ter printing

25 0,5,9 Print on line 4
20 0,5,8,9 Print on line 5
35 5,9 Print on line 6
3D 5,8,9 Print on line 7
45 12,0,5,9 Print on line 8

91 12,11,1 Write and skip to channel 2 af- 40 12,5,8 Print on line 9

ter printing 55 12,11,5,9 Print on line 1 °
99 12,11,9 Write and skip to channel 3 af- 50 11,5,8 Print on line 11

ter printing 65 11,0,5,9 Print on line 12
A1 11,0,1 Write and skip to channel 4 af- 60 0,5,8 Print on line 13

ter printing 75 12,11,0,5,9 Print on line 14
A9 11,0,9 Write and skip to channel 5 af-

ter printing
B1 12,11,0,1 Write and skip to channel 6 af-

ter printing

7D 5,8 Print on line 15
85 12,0,5 Print on line 16
80 12,0,5,8 Print on line 1 7

B9 12,11,0,9 Write and skip to channel 7 af- 95 12,11,5 Print on line 18

ter printing 90 12,11,5,8 Print on line 19

C1 12,1 Write and skip to channel 8 af- A5 11,0,5 Print on line 20
ter printing AD 11,0,5,8 Print on line 21

C9 12,9 Write and skip to channel 9 af- B5 12,11,0,5 Print on line 22
ter printing BO 12,11,0,5,8 Print on line 23

01 11,1 Write and skip to channel 1 °
after printing

09 11,9 Write and skip to channel 11

C5 12,5 Print on line 24
CD 12,0,5,8,9 Print on line 25

after printing
E1 11,0,9,1 Write and skip to channel 12

after printing
OB 12,9,8,3 Space 1 line immediately
13 11,9,3 Space 2 lines immediately
1B 11,9,8,3 Space 3 lines immediately
8B 12,0,8,3 Skip to channel 1 immediately

93 12,11,3 Skip to channel 2 immediately
9B 12,11,8,3 Skip to channel 3 immediately
A3 11,0,3 Skip to channel 4 immediately
AB 11,0,8,3 Skip to channel 5 immediately
B3 12,11,0,3 Skip to channel 6 immediately
BB 12,11,0,8,3 Skip to channel 7 immediately
C3 12,3 Skip to channel 8 immediately

CB 12,0,9,8,3 Skip to channel 9 immediately
03 11,3 Skip to channel 10 immediate-

ly
DB 12,11,9,8,3 Skip to channel 11 immediate-

ly

E3 0,3 Skip to channel 12 immediate-
ly

03 12,9,3 No operation

A - 2 VSEj Advanced Functions Macro User's Guide

•

..

Appendix B: Assembling Your Program, DTF's, and Logic
Modules

All the programs described in this (first) section of
Appendix B perform the same function, namely, a
card-to-disk operation with the following equipment
and options:

1. Card reader: 2540 (SYSOO4)

2. Disk: 3330 with user labels

3. Record size: 80 bytes

4. Block size: 408 bytes including 8-byte count
field (blocking factor of 5)

5. One I/O area and work area for the card reader

6. Two I/O areas for the disk .

The following methods may be used to furnish the
DTFs and loes logic modules to the card-to-disk
program.

1. DTFS, loes logic modules, and your program
assembled together.

2. Logic modules assembled separately.

3. DTFs and logic modules assembled separately,
label exit, EOF exit, and I/O areas assembled
with DTFs.

4. Same as in 3 except that I/O areas are moved
back into main program.

5. Same as in 4 except that label exit and EOF exit
are also moved back into main program.

An example of each of these five methods of assem­
bling the main program, modules, DTFS, and related

functions follows. In the figures that accompany the
examples, each dashed arrow

------+

represents a symbolic linkage; with an external ref­
erence at the base of the arrow, and a label or sec­
tion definition designating the same symbol at the
head of the arrow.

At the points where an arrow is marked with a cir­
cle,

-0-----+

it is your responsibility to define an ENTRY or
EXTRN symbol, as applicable.

Each dotted arrow

• •••• +

represents a direct linkage. Components are repre­
sented by the small rectangles. Assemblies are rep­
resented by the larger bordered areas.

Some of the coding examples have numbers in par­
entheses in the left hand margin opposite specific
instructions. These are provided as reference points
in the discussion of subsequent examples.

The examples are followed by a comparison of the
five methods.

This section of the appendix finally provides an RPS
example to show how the DTFS of an existing pro­
gram are linked to the RPS logic module in the sv A.

Appendix B: Assembling Your Program, DTF's, and Logic Modules B-1

Example 1: Assembling Your Programs, DTFs, and Logic Modules Together

I Figure B-1 shows the assembly of the DTFs, logic modules, and your program. Note that the disk logic module
is pre-assembled and loaded into the Shared Virtual Area at IPL time. The assembly source deck is:

CDTODISK

NEXT

SAVEAREA

EOFCD

MYLABELS

CARDS

DISK

A1
A2
A3

START
BALR
USING
LA
OPEN
GET

PUT
B
DS

CLOSE
EOJ

•
•
LBRET

DTFCD

DTFSD

DS
DS
DS
CDMOD

END

column 72

o
12,0
*,12
13,SAVEAREA
CARDS,DISK
CARDS, (2)

DISK
NEXT
9D

CARDS,DISK

2

DEVADDR=SYS004,
EOFADDR=EOFCD,
IOAREA 1 =A 1 ,
WORKA=YES
BLKSIZE=408,
IOAREA1=A2,
IOAREA2=A3,
IOREG=(2) ,
LABADDR=MYLABELS,
RECFORM=FIXBLK,
RECSIZE=80,
TYPEFLE=OUTPUT
80C
408C
408C
DEVICE=2540,

X
X
X

X
X
X
X
X
X
X

X

TYPEFLE=INPUT, X
WORKA=YES
CDTODISK

B-2 VSE/ Advanced Functions Macro User·s Guide

Initialize base register.
Establish addressability.
Use reg 13 as ptr to save area
Open both files.
Read one card and move it
to the disk output buffer.
Return for next card.

Save area is 72-byte, doubleword
aligned.
At card-reader EOF, close both
files and exit to job control.

Your label-processing routine.

Return to main program.

Card-input buffer
First disk buffer
Second disk buffer
Card logic module

Program-start address

•

J

..

V
I
R
T
U
A
L

S
T
o
R
A
G
E

G
E
T
V
I
S

S
V
A

Your Program
• DTF's

L

· · · OPEN CARDS,DISK --------------------------------------- .. DISK

GET · · · ·
CARDS,(2) :---.,...C.:..A __ Roo.:..D.:..S ________ --.

: ~
,---------- CARDS DTFCD

DEVADDR=SYS004 r-------------------- ----------- EOFADDR=EOFCD
--IOAREA1=Al

WORKA=YES
,

DISK DTFSD

BLKSIZE=408
IOAREA1=A2 --------- ---..

~ •• ------ IOAREA2=A3
: IOREG=(2) ,
: LABADDR=MYLABELS- - ~

: RECFORM=FIXBLK : , .
: RECSIZE=80 :
: TYPFLE=OUTPUT :

,-........... - ~------- CCW String :

A 1 (Buffer Area)

111111111111111111111111111 __ ---- .. --

t
EOFCD (End-of-File Processing) ·

"'-- _________ ..1

I
t

CDMOD

(Logic for a Card File) · · · ·

: Logie Module ----- -:-- .. ---..... ---------- :
Channel Program in DTF :

NOT USED :
I
I
I
I

MYLABELS j
(Your Routine) ----- - .. · · ·

A2 (Buffer Area)

111111111111111111111111111· _0

A3 (Buffer Area)

Lo ____________ 111111111111111111111111111

------------------------~----------------------~
I
I

DTF Extension ----------------------------!
Channel Program ------ ----------------------------------IL. _C_C_W_S_t_ri_ng ____ ~
SSR Module -------- ---

,-__ I SAM Service Routine I I Logic Modules
"I Loaded at IPL Loaded at IPL

Figure B-1. Assembling your programs, DTFs, and logic modules together (Example I).

Appendix B: Assembling Your Program, DTF's, and Logic Modules B-3

Example 2: Assembling the Logic Modules Separately

The main-program source deck is identical to that in Example I up to (I). Figure B-2 shows the separation of
I the I/O logic modules. The disk logic module is preassembled. The source deck for assembly of the card logic

module is as follows:

CDMOD

END

DEVICE=2540,
TYPEFLE=INPUT,
WORKA=YES,
SEPASMB=YES

column 72

x
X
X

Card
logic

module

B - 4 VSE/ Advanced Functions Macro User's Guide

•

L

V
I
R
T
U
A
L

S
T
o
R
A
G
E

Your Program . DTF's

OPEN CARDS,DISK _ •••••••••••••••••••••••••••••••••••••• ,.. DISK

GET

f

CARDS,(2) p •• _ CARDS
, 'r---------------------,
L : CARDS DTFCD

DEVADDR=SYS004
••••••• ••••••••••••• • ••••••••• EOFADDR=EOFCD

A 1 (Buffer Area)

111111111111111111111111111-·

•
I

I

I

I

I

I

I

I

I

I

I

EOFCD (End-of-File Processing)

I

I

I

I

I

r-----------~ ,
CDMOD (Separately Assembled)

(Logic for a Card File)

· : · · ·

DISK DTFSD

BLKSIZE=408
IOAREA1=A2 _

, •••••••• IOAR EA2=A3
IOREG=(2)
LABADDR=MYLABELS ._,
RECFORM=FIXBLK :
RECSIZE=80 :
TYPF LE=OUTPUT

, , ,
·-----·!·---····CCW String :

: Logic Modu Ie •• _...... ..)- ...

t- - - ~ - Ch-;n-;;-el P~;a; ~ DTF - - - :

, , s __ .. _____ _

NOT USED : , , , ,
MYLABELS : , ,
(Your Routine) ••••••• ,

A2 (Buffer Area)

111111111111111111111111111-' ... ~
A3 (Buffer Area

... -11111111111111111111111111]

~ r ~- :T~:X::i:----=~~.~.~.~~.~.~=~.=j-----------------------~-
T Channel Program •• -l CCW String I
V
I
S

SSR Module

~..L J..
~

~~----------------~--~
S
V.(,
A

...... 1 SAM Service Routine I l Logic Modules
"I Loaded at IPL Loaded at IPL

Figure B·2. Logic modules assembled separately (Example 2).

•••••••••••••••••• ___ J

After assembly, each logic module is preceded by the appropriate CATALR card. The modules may be added to
the system relocatable library during a maintenance run. Thereafter, logic modules are automatically included
in your program by the linkage editor while it prepares the preceding main program for execution.

Appendix B: Assembling Your Program, DTF's, and Logic Modules B - 5

Example 3: Assembling the DTFs and Logic
Modules Separately
The source deck for the main program is as follows:

CDTODISK

NEXT

SAVEAREA
2

START
BALR
USING
LA
OPEN
GET
PUT
B
OS
EXTRN
END

o
12,0
*,12
13,SAVEAREA
CARDS,DISK
CARDS, (2)
DISK
NEXT
90
CARDS,DISK
CDTODISK

The logic modules are assembled as in Example 2.
Figure B-3 shows the separation of the DTFs and
logic modules. The DTFCD and related functions are
assembled; the source cards are:

CARDS DTFCD

USING

EOFCD CLOSE
EOJ
EXTRN

3 Al OS
END

column 72

• X
DEVADDR=SYS004, X
SEPASMB=YES, X
EOFADDR=EOFCD, X
IOAREA1=Al, X
WORKA=YES
*,14

CARDS,DISK

DISK
80C

The DTFCD and related functions are assembled; the
source deck contains cards as follows:

DISK

MYLABELS

4 A2
5 A3

DTFSD

BALR
USING
•
•
LBRET
OS
OS
END

column 72

BLKSIZE=408,
SEPASMB=YES,
•
•
•
TYPEFLE=OUTPUT
10,0
*,10

2
408C
408C

• X
X
X

In the card-file and the disk-file assemblies, a
USING statement was added because certain routines
are segregated from the main program and moved
into the DTF assembly.

B - 6 VSEj Advanced Functions Macro User's Guide

When your routines, such as error, label process­
ing, or EOF routines, are segregated from the main
program, it is necessary to establish addressability
for these routines. You can provide this addressabil­
ity by assigning and intializing a base register. In
the special case of the EOF routine, the addressabili­
ty is established by logicallocs in register 14. For
error exits and label-processing routines, however,
this addressability is not supplied by logicallocs.
Therefore, if you segregate your error routines, it is
your responsibility to establish addressability for
them.

Figure B-4 contains the printer output to show
how the coding of Example 3 would look when as­
sembled.

In Figure B-4, the standard name was generated
for the logic module: V(IJCFZIWO) for DTFCD (see
statement 13). The module name appears in the
External Symbol Dictionary of the logic module
assembly.

A DTF assembly generates a table that contains
no executable code. Each of the two DTF tables is
preceded by the appropriate CAT ALR card. The two
object decks can be cataloged as follows into the
relocatable library together with the logic modules:

II JOB CATRELOC
II EXEC MAINT

(DTFCD Assembly)
(DTFSD Assembly)
(CDMOD Assembly)

1*

Alternatively, the object decks from these assem­
blies (DTF tables and logic modules) can be fur­
nished to the linkage editor along with the main
program object deck. The sequence follows:

I I JOB CATALOG
II OPTION CATAL

INCLUDE
PHASE name,*

1*

(object deck, main program)
(object deck, DTFCD assembly)
(object deck, DTFSD assembly)
(object deck, CDMOD assembly)

II EXEC LNKEDT
1&

Note: It is not necessary to remove the CAT ALR card because
the linkage editor bypasses it.

J

•

..

J

V
I
R
T
U
A
L

S
T
o
R
A
G
E

G
E
T
V , J
S

S
V~
A

'-

Your Program I
DTF's (Assembled Separately)

OPEN CARDS,DISK {) --- - - - - - - --- ~DISK

GET CARDS,(2) r-~ ~CARDS
I I
L--0-' CARDS DTFCD DISK DTFSD

DEVADDR=SYSOO4 BLKSIZE=408
' ."' _-- EOFADDR=EOFCD IOAREA1=A2.-------_ -,
: :--- IOAREA1=A1 ~- •• - •• --IOAREA2=A3

0
0
0

: WORKA=YES : LABADDR=MYLABELS 0
0 ,

0 SEPASMB=YES RECFORM=FIXBLK
I 0

0 I 0

: 0

: 0
RECSIZE=80 : : 0 0

TYPEFLE=OUTPUT : 0
0
0 : , 0 SEPASMB=YES 0 0 : : : 0
0
0 r---- - - - - • - - ~ - - - • - - -- CCW Stri ng : 0
0

: Logic Module·-·-- - ···· .~.~. 0
0

---~-------------- : 0

: Channel Program in DTF : 0

: : 0

NOT USED :
,. : :

A 1 (Buffer Area) 0
0 MYLABELS 0 0

: 0
0

111111111I1111111111111111t--
(Your Routine) .-----

0
0

-.

:
: A2 (Buffer Area)

EOFCD (End-of·File Processing) :
11111111111111111111111111t-·

.....

A3 (Buffer Area)
..................

·_··,11111111111111111111111111
r-- - - - - - - - - - - - :

t
CDMOD (Separately Assembled)

:
(Logic for a Card File) : :

0
0
0
0

: 0

I
0
0
0

~------------------------~-
0

--------------------~-
0 0

DTF Extension ~--------------- --------- ___ .;
0

Channel Program u __ --. - -- -- --. - ••• ---------------- -- ----..J CCW String I :
SSR Module - •••••• --- : ._ ...

0

o

L _1L...::S.:;.;A:;.;M;.;;Se.;;;..;;;rV.;.ic;.;.e..::R;..o_u_ti_n_e _J L...;;L;.;;O.:;.;9i:;.;C ..;;.M..;;.O.;.du;.;,.l..::es __ ---II-. -. -: ·1 Loaded at IPL Loaded at IPL r

,~--~

Figure 8-3. Logic modules and DTFs assembled separately (Example 3).

Appendix 8 : Assembling Your Program, DTF's, and Logic Modules 8-7

MAIN PROGRAM

EXTERNA~ SY"BO~ DICTIONARY

SYMBO~ TYPE ID ADDR ~ENGTH ~D ID

CDTODISK
CARDS
DISK

SD 01 000000 000090
ER 02

~OC

000000
000000
000002
000002

000006
000008
000008
OOOOOC
OOOOOE
000010
000014
000018
OOOOlC

OOOOlE
000022
000024
000028

00002C
000030
000034
000038
000040

ER 03

OBJECT CODE

05CO

41DO C03E

0700

4UO C086
lBFF
0700
4500 COlA
00000000
00000000
OA02

5810 C08E
1802
58Fl 0010
45EF 0008

5810 C092
58Fl 0010
45EF OOOC
47FO C01C

ADDRl ADDRZ

00040

00088

OOOlC

00090

00010
00008

00094
00010
OOOOC
OOOlE

Section definition.
Ext.mol reference.
Ext.mol reference.

C""lrol Mclion defin.d by START .. al nl.

Defined by EXTRN .Iale.,.nl.

EXAMPLE 3

STMT SOURCE STATEMENT

o 1 CDTODI SK
2

START
BUR
USING

12.0
* ,1.2
13.SAVEAREA

INITIA~IZE BASE REGISTER
ESTAB~ISH ADDRESSABI~ITY

4 ~A USE REGISTER 13 AS POINTER TO SAVE
5 * OPEN THE FI~E

6 OPEN CARDS.DISK OPEN BOTH FI~ES

7+* 10CS - OPEN -
8+ CNOP 0.4
9+ DC OF'O'

10+ ~A 1.=C'$$BOPEN'
11+ SR 15.15 ZERO R15 FOR ERROR RETURN 5-0
12+ NOPR 0 WORD A~IGNMENT 5-0
13+IJJOOOOl BA~ 0.*+4+4*13-11
14+ DC AICARDSI
15+ DC AIDISKI
16+ SVC 2
17 NEXT GET CARDS.IZI READ ONE CARD. MOVE TO WORK AREA
18+* 10CS AND DEVICE INDEPENDENT 1/0 - GET -
19+NEXT ~ 1.=AICARDSI GET DTF TAB~E ADDRESS
ZO+ ~R 0.2 GET' WORK AREA ADDRESS
Zl+ ~ 15.16111 GET ~OGIC MODU~E ADDRESS
22+ BA~ 14.81151 BRANCH TO GET ROUTINE
23 PUT DISK WRITE ON DISK
24+* IOCS AND DEVICE INDEPENDENT 1/0 - PUT -
25+ ~ 1.=AIDISKI GET DTF TAB~E ADDRESS
Z6+ ~ 15.16111 GET ~OGIC MODU~E ADDRESS
27+ BA~ 14.121151 BRANCH TO PUT ROUTINE
28 B NEXT GO FOR NEXT CARD
29 SAVEAREA DS 9D 72-BYTE SAVE AREA
30 EXTRN CARDS.DISK

3-5
3-5

000000 31 END CDTODI SK
000088 5B5BC2D6D7C5D540 3Z =C'$$BOPEN '
000090 00000000 33 .AICARDSI

PAGE

PAGE 1

l_~~~~:~~~~~ _____________ ~~ _________ ~~~~~ _________________________________ _
Figure B-4. Separate assemblies, Example 3 (Part I of 4).

B-8 VSE/ Advanced Functions Macro User's Guide

J

r
---~-

DTFCD ASSEMBLY

EXTERNAL SYMBOL DICTIONARY PAGE ~

SYMBOL TYPE lU ADDR LeNGTH LD ID

CARDSC SD O~ 000000 OOOOAO Section definition.
: Generated by spec;fy;ng SEPASMB=YES ;n DTFCD macro.

CARDS LD 000000 O~ Lebel definition (entry point) .
IJCFZIWJ ER 02 External reference. Corresponds to V -type address constont generated in DTFCD.
DISK ER 03 E,dernol reference. Defined by EXTRN stotement.

PAGE

EXAMPLE 3

LOC OBJEC T CODE ADDR~ ADDR2 STMT SOURCE STATEMENT

000000

000000
000000 000080000000
000006 O~
000007 04
000008 00000020
OOOOOC 00000000
OOOO~O 00
000011 000000
0000~4 02
0000~5 O~

0000~6 02
0000~7 02
0000~8 0000004C
0000LC 00
OOOO~D 00000034
000020 0200004C20000050
000028 4700 0000 00000
00002C D24F DOOO EOOO 00000 00000
000032
000032

000032 0700
000034
000034 4110 E06E OOOAO
000038 ~BFF
00003A 0700
00003C 4500 EO~6 00048
000040 00000000
000044 00000000
000048 OA02

00004A OAOE

00004C

OOOOAO 5H5BC2C3D3D3D6E2C5

CARDS DTFCD DEVADDR=SYS004, X
SEPASMB=YES, X
EOFADDR=EOFCD,
IOAREA1=A~,

WORKA=YES
2+* IOCS AND DEVICE INDEPENDENT 110 - DTFCD -
3+ PUNCH I CATALR CARDS,4.0· 4-0
4+CARDSC CSECT
5+ ENTRY CARDS
6+ DC OD'O'
7+ CARDS DC X'000080000000' RES. COUNT,COM. BYTES,STATUS BTS
8+ DC AL~I~J LOGICAL UNIT CLASS
9+ DC AL~14J LOGICAL UNIT

10+ DC AIIJCX0001J CCW ADDRESS
~~+ DC 4X'OO' CCB-ST BYTE,CSW CCW ADDR.
~2+ DC AL1(O) SWITCH 3 4-0
~3+ DC VL3(IJCFZIWO) ADDRESS OF LOGIC MODULE 3-3
~4+ DC X'02' DTF TYPE (READER)
~5+ DC AL~(~) SWITCHES
~6+ DC AL~(2) NORMAL COMM.CODE
~7+ DC AL~(2J CNTROL COMM . CODE
~8+ DC A(A1J ADDR. OF IOAREA~

~9+ DC AL~IO) JJ
20+ DC AL3(EOFCD) EOF ADDRESS JJ
21+IJ(XQOOl CCW 2,Al,X'20',80
22+ NOP 0 LOAD USER POI NTER REG.
23+ MVC 0(80,:I:3),O(~4) MOVE IOAREA TO WORKA
24+IJJZOOO~ EQU
2 5 USING *,~4 ESTABLISH ADDRESSABILITY
26 • CLOSE THE FILE
27 EOFCD CLOSE CARDS,DISK END OF FILE ADDRESS FOR CARD READER
28+* IOCS - C LO SE -
29· CNOP 0,4
30 +EOFCD DC OF'Q'
3~ • LA ~,=C'$$BCLOSE'

~2+ SR ~5,~5 ZERO R ~5 FOR ERROR RETURN 5-0
33+ NOPR 0 WORD ALIGNMENT 5-0
34+IJJCOO02 BAL 0,*+4+4*(3-1)
35+ DC A (CARDS J
36+ DC A(DISKJ
37+ SVC 2
38 EOJ
39.* SUPVR COMMN MACROS - EOJ -
40+ SVC ~4
4L EXTRN DISK
42 A~ DS 80C CARD 110 AREA
43 END
44 =C' $$BCLOSE'

Figure B-4. Separate assemblies, Example 3 (Part 2 of 4).

Appendix B: Assembling Your Program, DTF's, and Logic Modules B-9

DTFSD ASSEMBLY

EXTERNAL SYMBOL DICTIONARY

SYMBOL TYPE ID ADDR LENGTH LD ID

Section definition. " . Generated by 'Pecifying SEPASM8=YfS in OTFSO macro.
lobel definition (entry point).

DISKC SD O. 000000 0003D4
DISK LD 000000 O~
I JGFOZZZ ER 02 External reference . Correiponds to V -type address constant generated in DTFSD .

EXAMPLE 3

LOC OBJEC T CODE ADDR. ADDR2 STMT SOURCE STATEMENT

000000

000000
000000 000080040000
000006 FF
000007 FF
000008 00000068
OOOOOC 00000000
0000.0 00
OOOOU 000000
0000.4 20
0000.5 49
0000.6 C4C9E2D2404040
OOOO.D 04
OOOO.E 000000000000
000024 0000
000026 08
000027 00
000028 00
000029 OOOOAO
00002C 000000A4
000030 80000000
000034 0000
000036 00000000
00003A 0000
00003C OOOOFFOO
000040 00
000041 00
000042 0.90
000044 00000000
000048 .7
000049 04
00004A 0.8F
00004C FFFFFFFFFF
00005. 00
000052 32E6
000054 58n 0058 00058
000058 OOOOOOAC
00005C 00000050
000060 0000023B
000064 OA
000065 000000
000068 0700003A40000006
000070 3.00003C40000005
000078 0800007000000000

DISK DrFSD BLKSIZE ~ 408,
SEPASMB=YES,
IOAREA.=A2,
IOAREA2=A3,
IOREG=(2),
LABADDR=MYLABELS,
RECFORM=FIXBLK,
RECSIZE=80,
TYPE FLE =OUTPUT,
DEVICE=3330

? +* SEQUENTIAL DISK IO CS - DTFSD -
3+ PUNCH I CATALR DISK,4.0' 4-0
4+DISKC CSECT
5+ ENTRY
6+ DC
7+DISK DC
8 + DC
9+ DC

.0+ DC
U+ DC
.2+ DC
.3+ DC
>4+ DC
.5+ DC
16+ DC
.7+ DC
.8+ DC
.9+ DC
20+ DC
2.+ DC
22+ DC
23+ DC
24+ DC
25+ DC
26+ DC
27+ DC
28+DISKS DC
29+ DC
30+ DC
3>+ DC
32+ DC
33 + DC
34+ DC
35+ DC
36+ DC
37+ DC
38+ DC
39+ DC
40+ L
41+ DC
42+ DC
43+ DC
44+ DC
45+ DC
46 + I JGCOOO. CCW
47+ CCW
48 + CCW

DISK
OD'O'
X'000080040000' CCB
AL.(255) LOGICAL UNIT CLASS
AL.(255) LOGICAL UNIT NUMBER
A(IJGCOOO.) CCB-CCW ADDReSS
4X'00' CCB - ST BYTE,CSW CCW ADDRESS
AU(O) 3-3
XL3'O'
X'2Q' DTF TYPE
AL.(73) OPEN/CLOSE INDI CATORS
CL7'DISK' FILENAME
X'04' INDICATE 3330 4-0
6X'00' BCCHHR ADDR OF F. LABEL IN VTOC
2X'00' VOL SEQ NUMBER
~'80' OPEN COMMUNICATIONS By TE
X'OO' XTENT SEQ NO OF CURRENT EX TEN T
X'OO' XTENT SEQ NO LAST XTENT OPENED
AL3(MYLABELS) USER'S LABEL ADDR ESS
A(A2) ADDRESS OF IOAREA 4-0
X'80000000' CCHH ADDR OF USER LABEL TRA CK
2X'OO' LOWER HEAD LIMIT
4X'OQ' xTENT UPPER I {MIT
2X'00' SEEK ADDRESS - BB
X'OOOOFFOO' SEARCH ADDRESS-CCHH
X'OO' RECORD NUMBER
X'QQ' KEy LENGTH
H'400' DATA LENGTH
4X'OO' CCHH CONTROL FIELD
AL.(23) R CONTROL FIELD
B'OOOOO.OO' 3-2
H'399' SIZE OF BLOCK-.
5X'FF' CCHHR BU(~ ET 3 - 7
X'QQ'
H'.3030' TRACK CAPACITY CONSTANT
2,88<» LOAD USER'S IOREG
A(A2+8) DEBLOCKER-INI TIAL POINTER 4-0
F'80' DEBLOCKER-RECORD SIZE
A(A2+8+400-.) DEBLOCKER LIMIT
AL.(.OJ LOGICAL INDICATORS
AL3(OJ USER'S ERROR ROUTINE
7,*-46,64,6 seEK
X'31.',*-52,64,5 SEARCH JD EOUAL
8,*-8,0,0 TIC

3-9

PAGE

PAGE •

L ___ . ______________ _ _ __ _________ _ ____ _

Figure B-4. Separate assemblies, Example 3 (Part 3 of 4).

B-tO VSE/ Advanced Functions Macro User's Guide

\

J

•

J

..

DTFSD (Continued)

EXAMPLE 3

LOC
00
000080
000088
000090
000098
0000,~O

OOOOAO
0000A2

OBJECT CODE ADDRL ADDR2 STMT SOURCE STATEMENT

LD00023COOOOOL98
3L00003C40000005
0800008800000000
LE0000983000000L

C~AO

0000A2 OA09
0000A4
00023C

CDMOD ASSEMBLY

49+
50+
5L+
52+
53+IJJZOOOL
54 MYLABE LS
55
56 •
57 •
58
59+* laCS -
60+
6L A2
62 A3
63

SYMBOL TYPE ID ADDR LENGTH LD ID

CCW
CCW
CCW
CCW
EQU

X'LD',A3,0,400+8 WRITE COUNT KEY AND DATA
X'3L' ,DISKS+2,64,5 SEARCH ID EQUAL
8,*-8,0,0 TIC
30,.,48,1 VERIFY

BALR
USING

•

LBRET -

LO,O
*,10

LBRE T 2

SVC 9 BRANCH BACK TO lacs
DS 408C
DS 408C
END

EXTERNAL SYMBOL DICTIONARY

INITIALIZE BASE REGISTER
ESTABLI'H ADDRESSABILITY
USER'S LABEL
PROCESSING ROUTINE
RE TURN TO Ll OCS

FIRST DISK liD AREA
SECOND DISK liD AREA

IJCFZIWO SD OL 000000 000060 Section definition. CSECT name generated by CDMOD macro .

LaC OBJECT CODE ADDRL ADDR2 STMT

73

EXAMPLE 3

SOURCE STATEMENT

PRINT NOGEN
CDMOD

END

DEVICE=2540,
SEPASMB=YES,
TYPi:FLE=INPUT,
WORKA=YES

PAGE

x
x
x
x

[~. -------------
------------------ -- -- -- - --- - --- - --- ---- ---------------------------------~
Figure B-4. Separate assemblies, Example 3 (Part 4 of 4).

Appendix B: Assembling Your Program, DTF's, and Logic Modules B -II

Example 4: DTFs and Logic Modules Assem­
bled Separately, I/O Areas with Main Program
The main program is identical to Example 3 except
the following four cards, which are inserted after the
card marked (2):

A1
A2
A3

os 80C
os 408C
OS 408C
ENTRY A 1 ,A2 ,A3

The separate assembly of logic modules is identical
to Example 3 except as indicated below:

In the card-file assembly of Example 3, replace
the card marked (3) with the following card:

EXTRN A1

Similarly, in the disk-file assembly of the previ­
ous example, replace the cards marked (4) and (5)
with the following card:

EXTRN A2,A3

Figure B-S shows the separation of the logic mo­
dules, DTFS, and I/O areas.

Example 5: Assembling DTFs and Logic Mo­
dules Separately; I/O Areas, Label Exit, and
End-of-File Exit with Main Program
In addition to the changes in Example 4, the label
exit and the end-of-file exit may be assembled sepa­
rately. Figure B-6 shows these separate assemblies.
The main program is assembled:

column 72

CDTODISK START
BALR
USING
LA
OPEN

NEXT GET
PUT
B

SAVEAREA OS
EOFCD CLOSE

MYLABELS
EOJ

•
•
•

o
12,0
*,12
13,SAVEAREA
CARDS,DISK
CARDS, (2)
DISK
NEXT
90
CARDS,DISK

LBRET 2

A1
A2
A3

EXTRN
OS
OS
OS
ENTRY

END

CARDS,DISK
80C
408C
408C
A1,A2,A3,
EOFCD,MYLABELS
CDTODISK

The file definitions are separately assembled:

B - 12 VSE/ Advanced Functions Macro User's Guide

x

CARDS DTFCD

EXTRN
END

DISK DTFSD

EXTRN
END

DEVADDR=SYS004,
WORKA=YES,
EOFADDR=EOFCD,
SEPASMB=YES,
IOAREA1=A1
EOFCD,A1

BLKSIZE=408,
TYPEFLE=OUTPUT,
SEPASMB=YES,
•
•
•
IOAREA1=A2,
IOAREA2=A3
A2 ,A3 ,MYLABELS

column 72

"" X
X
X
X

X
X
X

X

The separate assembly of logic modules is identical
to Example 3 and Example 4.

Comparison of the Five Methods

Example 1: Requires the most assembly time and
the least link-edit time. Because the linkage editor is
substantially faster than the assembler, frequent
reassembly of the program requires more total time
for program preparation than examples 2 through S.

Example 2: Segregates the 10CS logic modules from
the remainder of the program. Because these mo­
dules are generalized, they can serve several differ­
ent applications. Thus, they are normally retained
in the system relocatable library for ease of access
and maintenance.

When a system pack is generated or when it re­
quires maintenance, the 10CS logic modules that are
required for all applications should be identified and
generated onto it. Each such module requires a sep­
arate assembly and a separate catalog operation, as
shown in examples 2 through S. Many assemblies,
however, can be batched together as can many cata­
log operations.

Object programs produced by COBOL, PL/l, and
RPG require one or more 10CS logic modules in each
executable program. These modules are usually
assembled (as in Example 2) during generation of a
system pack and are permanently cataloged into the
system relocatable library.

Example 3: Shows how a standardized 10CS pack­
age can be separated almost totally from a main
program. Only the imperative 10CS macros, OPEN,

CLOSE, GET, and PUT remain. All file parameters,
label processing, other 10CS exits, and buffer areas
are preassembled. If there are few 10CS changes in
an application, compared to other changes, this me-

..

•

V
I
R
T
U
A
L

S
T
o
R
A
G
E

S
V
A

Your Program · · ·
DTF's (lssembled Separately)

OPEN

GET

CARDS,DISK-o- - - - - - - - - - - - - _DISK

CARDS,(2)
L __ {)- _ .oj ,..;C;,;..A;,;..R;.;;D.,;;S _______ --.

A 1 (Buffer Area)

11111111111111111111111111111-

A2 (Buffer Area)

IIIIIIIIIIIIIIIIIIIIIIIIIIII~
A3 (Buffer Area)

IIIIIIIIIIIIIIIIIIIIIIIIIIII~

.
t

CARDS DTFCD DISK DTFSD

DEVADDR=SYS004
••••••••• EOFADDR=EOFCD

rO- IOAREA1=Al
I WORKA=YES

r
1 r -
II I SEPASMB=YES

~~---~~~~~~---~ II

BLKSIZE=408

- - 0- IOAREA1=,LI.2
- -0- - -IOAREA2=A3

IOREG=2
r·.··· ·LABADDR=MYLABE LS

I I II

I I II.

RECFORM=F I XB LK
RECSIZE=80
TYPEF LE=OUTPUT

I I II:
{)I I r •••••• + CCW String

SEPASMB=YES

I

I
.. 0- - - .- - - - - -

I

0- - - I

II : Logic Module ••• - •••••
~--.--------------II

JI
I

I

_I

: Channel Program in DTF

: NOT USED

MYLABELS

•••• - .. (Your Routine)

EO~CD (End-of-File Processing)

· · · ·
r -

t
CDMOD

(Logic for a Card File) · · · · · ·

SSR Module ••••••••••

. .
~-.

- ,

SAM Service Routine I
Loaded at IPL I Logic Modules

Loaded at IPL
•••••••••••••• J

~~--~

Figure B-5. Logic modules and DTFs assembled separately, I/O areas with main program (Example 4).

thod reduces to a minimum the total development
and maintenance time. This approach also serves to
standardize file descriptions so that they can be
shared among several different applications. This
reduces the chance of one program creating a file
that is improperly accessed by subsequent programs.
In example 3, you need only be concerned with the

record format and the general register pointing to
the record. You can virtually ignore the operands
BLKSIZE, LABADDR, etc. in your program, although
you must ultimately consider their effect on virtual
storage, job control cards, etc.

Appendix B: Assembling Your Program, DTF's, and Logic Modules B - 13

V
I
R
T
U
A
L

S
T
o
R
A
G
E

Your Program · · ·
OPEN CARDS,DISK- -0

GET CARDS,(2)

I

DTF's (Assembled Separately)

- - - - - - - - - - - - ~DISK

L - - -0 - ~ r"C;..;.A;...;.;RD;;....;S'---_____ --,

r-------
I

I

I

1

I
1

A 1 (Buffer Area)

IIIIIIIIIIIIIIIIIIIIIIIIIIII~
A2 (Buffer Area)

CARDS DTFCD DISK DTFSD

DEVADDR=SYS004 BLKSIZE=40B

1- - - - <>- _IOAREA1=A2
-0 - - -IOAREA2=A3

IOREG=(2)

- -0- EOFADDR=EOFCD
r(f--IOAREA1=Al I r
I WORKA=YES
I SEPASMB=YES I I

~~I----~~--------~ I I

I 1 I I

I I 1 I

f"Ll 1 1 1
"'\.,T' I 1 1

rO -LABADDR=MYLABELS
RECFORM=FIXBLK
RECSIZE=BO
TYPEFLE=OUTPUT
SEPASMB=YES

--- ---T---- -CCW String

IIIIIIIIIIIIIIIIIIIIIIIIIIII~ - -0- -

I

I

- -1- -- - - -

II

J 1
1

I- __ I ___ ~~~~~e!..:.:..-.=.~-.:: •
1 Channel Program in DTF

NOT USED

A3 (Buffer Area)

¢ IIIIIIIIIIIIIIIIIIIIIIIIIII~ - -0 - -

,
EOFCD (End-of-File Processing) · · · · ·
,.-----------
t

CDMOD

(Lopic for a Card File)

1 I
- 1- _____ ..I

1

1

I

I

I

I

I
_J

1

1

1-0

MYLABELS

I- '-(Your Routine) . .

r-----------------------------~-----------------~

:

G
VEI

{ DTF Extension .. ---------------------------------------j
Channel Program • ___ n -----.. - .. h ... _______ .. _______ n ________ 1 CCW String I

SSR Module ---------- ---,
~------------~ : ·

S
V-<
A

· · L_I SAM Service Routine I
I Loaded at IPL I Logic Modules

Loaded at IPL

,~--~
Figure B-6. DTFs and logic modules assembled separately; I/O areas, label exit, EOF exit with main program (Example 5).

In Example 4, a slight variant of example 3, the
I/O buffer areas are moved into the main program
rather than being assembled with the DTFs.

In Example 5, the label processing and exit func­
tions are also moved into the main program.

B - 14 VSE/ Advanced Functions Macro User's Guide

Examples 4 and 5: Show how buffers and IOCS
facilities can be moved between main program and
separately assembled modules. If user label process­
ing is standard throughout an installation, label exits
should be assembled together with the DTFs. If each
application requires special label processing, label
exits should be assembled into the main program.

•

•

•

L

RPSExampie

Example 6: Shows DTFS and logic modules assem­
bled jointly with the program and with Rotational
Position Sensing support included.

This example, which applies to DTFIS disk storage
access method, shows how the DTF is linked to the
RPS DTF extension and the logic module before,
during, and after processing with imperative macros.
Figure B-7 shows the contents and linkages between

these elements before opening the DTF, after a stan­
dard non-RPS open, and after closing the file. Figure
B-8 shows the linkage between the assembled DTF,
the RPS DTF extension, and the RPS logic module in
the shared virtual area; the program flow and the
related DTFCD block have been omitted for clarity's
sake. Note that the original, non-RPS logic module is
not used to process the file after a successful RPS
open.

Appendix B: Assembling Your Program, DTF's, and Logic Modules B - 15

Problem Program . . DTF's

OPEN CARDS,DISK • ---:

GET CARDS,(2)----------- CARDS L ______ • DISK

V
I
R
T
U
A
L

S
T
o
R
A
G

I E

CARDS DTFCD

DEVADDR=SYS004

-------------- --------- -- -- - - ----- -- EOFADDR=EO FCD
r----- - IOAR EA 1 =A 1

WORKA=YES .

A 1 (Buffer Area)

1111111111111111111111111111111 _u_.

t
EOFCD (End-of-File Processing)

~ ----------------------------.. · · · • CDMOD

(Logic for a Card File)

Figure B-7. DTFs and logic modules assembledjointiy (Example 6).

B - 16 VSE/ Advanced Functions Macro User's Guide

DISK DTFIS

KEYLEN=4
NRECDS=10
RECFORM=FIXBL.K
RECSIZE=80
CYLOFL=2
DEVICE=3330

----- --------- IOAREAL=A2
HINDEX=3330
WORKL=WRKGB
KEYLOC=1

r--- .. Non-RPS CCW String
: Non-RPS Logic Module ------ 1-; . . h_. :

Non-RPS Channel Program : · · • · • · r--------------·_·-------_· • • • · · · · · · A2 (Buffer Area) .. m ____ u+u ·~IIIII""11111111II11II1I1II11
· · · · · • ·
· • ,

ISMOD IOROUT=LOAD

(Logic for a Disk File)

Non-RPS

•

•

V
I
R
T
U
A
L

5
T
o
R
A
G
E

5
V
A

G
E
T
V
I
S

..L

Yo~r Program

· · · OPEN

GET

:--__ .. ________ --------- - - --. --- ----______________ .------------.- 0 I SK

F I LEA,D ISK,F I LEB

DISK .--------------------- .. -.-- -- - - ••••• _-. --_________________ DISK DTF IS

A 1 (Buffer Area)

KEYLEN~4

NRECDS~10

RECFORM=FIXBLK
RECSIZE=80
CYLOFL=2
DEVICE=3330
IOAREAL-A1
HINDEX"3330
WORKL-WRKGB
KEYLOC~1

;------------ ----- RPS CCW String
RPS Logic Module·-····· 1--------------

,---•• --- _Non-RPS Channel Program
• • · · · · · · · · · : · · · · · · · • · • • I • • ---....... --------- - ----- - - - -- - --:--!--- - -------------j

: : . :

DTF Extension
RPS Channel Program r-----------

• • I . .
~._. ____ • ____ • __ .••• _ •• __ l :

· · • • · · Non-RPS CCW String ---.. -----------------------------;

RPS Version Logic Modules
loaded at IPL

Figure 8-8. DTFs and logic modules assembled jointly, with Rotational Position Support included (Example 6).

Appendix 8: Assembling Your Program, DTF's, and Logic Modules 8 -17

FBA DASD Example

Example 7: Shows a DTF assembled with a program
and a pre-assembled FBA logic module that was
loaded into the Shared Virtual Area at IPL time.

This example, which applies to DTFDI and DTFSD

B - 18 VSE/ Advanced Functions Macr.o.User'sGuide

access methods, shows how the DTF is linked to the
FBA DTF extension and the logic module after a file
ASSGNed to an FBA device is opened. OPEN process­
ing establishes the linkages, which are illustrated in
Figure B-9.

J

.'
V
I
R
T
U
A
L

S
T
o
R
A
G
E

S

V

A

G
E
T
V<
I
S

Your Program

• • • • • •
OPEN FILEA,FBAFILE,FILEB ...
GET FBAFILE •• ~ FBAFILE DTFSD

• • • • • • A 1 (Buffer Area) I ~ ... :: :.: : :: : : : : : :
111111111111111~ .. · .. : :

BLKSIZE=408
IOAREA1 =A1
IOAREA2=A2
IOREG=(2)
TYPEFLE=OUTPUT
RECFORM= FIXBLK
RECSIZE=80
EOFADDR=EOFDSK
CCW String

A2 (Buffer Area) I ~
11I111111111111~f······:

,--:--------------------~ ,
EOFDSK (End-of-File Processing)

• • • • • •

•
Logic Module··············

1-------------- .
Channel Program in DTF

NOT USED

- - - - - - - - - - - - - - - - " - - - - - - - - - - - - - - :- -

~ '~I FBA CCW String I
DTF Extension
FBA Channel Program

I
Control I nterval Buffer ••••••••••••••••

I Control I nterval Buffer
FBA SSR Module··············· • '--_____ J : : ·~IIIIIIIIIIIIIIIIIIIIIIIIIII

---:--

... ~

F BA Logic Modules ~ ••••••••••••••••••••••••••••••••••••••
loaded at IPL

FBA SAM Service Routine
loaded at I P L

Figure B-9. DTFs and logic modules assembled jointly, with FBA DASD support included (Example 7).

Appendix B: Assembling Your Program, DTF's, and Logic Modules B -19

'-

J

J

B-20 VSE/ Advanced Functions Macro User's Guide

The information contained in this section applies to
the non-YSAM access methods available under YSE.
For YSE/YSAM, the YSE/YSAM catalog management
routines rather than the YSE label processing rou­
tines receive control, and it is those YSE/YSAM rou­
tines which perform functions such as making sure
that the correct volume has been mounted and that
no unexpired files are overwritten. Detailed inform­
ation on label processing for YSE/YSAM files is found
in the publications associated with the YSE/YSAM
Program Product.

This section provides the information you need in
order to process labels with the non-YSAM IOCS mac­
ros. More information about labeling conventions
and label processing considerations will be found in
VSE System Data Management Concepts,
VSE/Advanced Functions DASD Labels, and
VSE/ Advanced Functions Tape Labels, as listed in
the Preface.

DASD Standard Labels
Labels are required when processing files on direct
access devices. Accordingly you must supply both a
DASD label (DLBL) job control statement for each
logical file to be processed, and one or more EXTENT
job control statements to allocate one or more areas
on a direct access device. More information will be
found in VSE/Advanced Functions System Control
Statements, as listed in the Preface.

OPEN Macro Processing
The OPEN macro uses the information supplied in
the DLBL and EXTENT job control statements as well
as information from the DTF for the file.

For input, the extent(s) for a file must either coin­
cide with, or be within, the existing extent(s) as de­
fined in the YTOC (Volume Table of Contents). This
is necessary input because IOCS opens only an exist­
ing file or a subset of an existing file.

Note: If the extent(s) is within'the existing extent(s), it is valid
only for DTFSD or DTFPH (MOUNTED=SINGLE) process­
ing.

For output, the file to be written cannot overlap
existing unexpired files. IOCS does not destroy an
unexpired file without your explicit request, except
when an internal system file (IJSYS) overlays an
identical system file. However, if OPEN determines
that the output file will overlay an existing file that
has expired, the OPEN deletes the expired label(s)
from the YTOC. This in effect removes the file from
the volume. In a multi-volume file, the file may be

Appendix C: Label Processing

removed from all the volumes that it occupies or
from only some of the volumes.

If OPEN determines that an existing file to be ov­
erlaid by the output file has not expired, the old file
cannot be destroyed automatically. In this case, one
of the following actions are possible:

1. Delete the unexpired file or

2. Terminate the job.

Reopening a File
If further processing of a file which your program
has closed is required at some later time in the pro­
gram, the file must be reopened. When a file is proc­
essed in sequential order, IOCS checks the label(s) on
the first volume and makes the first extent available,
the same as at the original OPEN. When a file is
processed by physical IOCS with the
MOUNTED=SINGLE operand of the DTFPH macro,
IOCS opens the next extent specified by your EXTENT
job control statement. When a file is processed by
DAM (defined by the DTFDA macro), by ISAM
(defined by the DTFIS macro), or by physical IOCS
with the DTFPH operand MOUNTED=ALL specified,
all label processing is repeated and all extents are
again made available.

For more information on label processing see the
discussion of the OPEN macro under the appropriate
access method.

End-oJ- Volume Processing
During processing, IOCS recognizes an end-of­
volume condition when the extents on one volume
have been processed and an extent for another vol­
ume is encountered. When this condition occurs,
IOCS branches to your LABADDR routine (ifprovid­
ed) to write or pass individually each user standard
trailer label to be processed. After all user standard
trailer labels are processed, IOCS processes the stan­
dard labels on the next volume and branches to your
LABADDR routine to process user standard header
labels. After the header labels are processed, IOCS
continues to process the data.

End-oj-File Processing

Output Files
When all records for a logical output file have been
written, the CLOSE macro must be issued to perform
normal end-of-file processing. IOCS then branches
to your LABADDR routine (if provided) to write user
trailer labels, and the file is closed. If the end of the

Appendix C: Label Processing C - I

last extent specified for the file is reached before the
CLOSE macro is issued, IOCS assumes an error condi­
tion.

Input Files
10CS determines an end-of-file condition for a logi­
cal input file either by the ending address of the last
extent specified for the file in the EXTENT job con­
trol statement, or by an end-of-file record read from
the file. For SAM processing with DTFSD, 10CS
branches to the EOFADDR routine upon an end-of­
file condition. For sequential processing with DTFIS,
10CS posts the end-of-file condition in the field refer­
red to as filenamec. You can then test this byte and
take action necessary to close your file. However,
when processing in random order you must deter­
mine the end-of-file by checking filenamec (DTFIS)
or ERRBYTE (DTFDA).

User Standard Labels
If you want user standard labels, you must supply a I LABADDR routine, SAM and DAM process both user
header and trailer standard labels. ISAM does not
process user standard labels. User labels cannot be
created for a file whose first extent is a split cylinder
extent. DAM writes a user trailer label only on the
first volume of a multi-volume file.

When the LABADDR routine is entered, 10CS loads
an alphabetic 0, v, or F into the low-order byte of
register O. 0 indicates header labels, v indicates end­
of-volume trailer labels, and F indicates end-of-file
labels. Your LABADDR routine can test this charac­
ter to determine the labels to be processed. IOCS also
loads the address of an 80-byte 10CS label area in
register 1; this is the address you use if you are
checking labels, or from which you move the label
to your program's label area if you are modifying
labels.

Within the LABADDR routine, you cannot issue a
macro that calls a transient routine (such as OPEN,
CLOSE, DUMP, CANCEL, or CHKPT). For multi­
volume files, the LABADDR routine should save reg­
isters 14 and 15 upon entry, and restore them before
issuing the LBRET macro to return to IOCS.

Writing User Standard Labels on Disk
When you specify LABADDR, OPEN reserves the first
track of the first data extent as a user label area. At
least one user header and trailer label must be writ­
ten if the access method is to process it. For DAM,
when TRLBL-YES is specified with LABADDR, trailer
labels are processed.

10CS uses bytes 1 through 4 of the 80-byte label
for the label identification (for example: UxLn,

C - 2 VSE/ Advanced Functions Macro User's Guide

where x = H or T and n = 1,2, ... , 8). You can use
the other 76 bytes as you wish. The maximum num­
ber of user standard header or trailer labels is eight
for files on all DASDS. 10CS stores the label informa­
tion (uHLn or uTLn) that it generates in bytes 1
through 4 of the 10CS label area. You can test this
information, in addition to registers 0 and 1, to de­
termine the type and number of the label. (The la­
bel formats will be found in VSE/ Advanced Func­
tions DASD Labels, as listed in the Preface.)

In your area of virtual storage, build either an
80-byte label, leaving the first four bytes free, or
simply a 76-byte label. For the 80-byte label, load
the address of the label area into register 0; for the
76-byte label, load the label area address minus four
into register O. Then issue the LBRET macro. When
the label is moved into the 10CS area, 10CS adds four
to the address in register 0, thus only moving the 76
bytes of user information into the 10CS label area.

When the label is ready to be written, the LBRET
macro returns control to 10CS. If LBRET 2 is used,
OPEN writes the label and returns control to your
label routine unless the maximum number oflabels
has been written. If LBRET 1 is used, the label set is
considered complete and no more labels can be cre­
ated.

When 10CS receives control, the 10CS routine
moves the label from the address you loaded into
register 0 into the IOCS label area. If the maximum
number oflabels has not been written, IOCS increas­
es the identification number by 1 and returns to
your label routine unless LBRET 1 was used. If the
maximum number oflabels has been created, 10CS
automatically terminates building of the label set.

Checking User Standard Labels on Disk
When a file on a DASD contains user standard labels,
10CS makes these labels available one at a time if
LABADDR is specified in the DTF (see "DASD Stan­
dard Labels," above). If the labels are to be checked
against information obtained from another input
file, that file must be opened ahead of the file on a
DASD.

When your program has fmished checking a la­
bel, it can update it or leave it unmodified. If it is to
be updated, your program must move the label to an
area within the program before modifying it. After
the label is modified, the program must initialize
register 0 with the address of the modified label be­
fore issuing the LBRET 3 macro. The program then
updates the appropriate label fields by issuing the
LBRET 3 macro. This causes the OPEN routine to
rewrite that label and read the next label. Register 1
points to the label in the IOCS label area. If the label

J

J

J

L

is to remain unmodified, you can issue a LBRET 2
macro so OPEN will read the next label. In either
situation, if the end-of-file record is encountered at
the end of the labels, OPEN automatically terminates
label checking.

If you wish to end label checking before all the
labels have been read, the LBRET I macro may be
issued.

Diskette Labels
Labels are required when processing files on diskette
I/O units. Accordingly, you must supply a DASD

label (DLBL) job control statement for each logical
file to be processed, and one or more EXTENT job
control statements (more information will be found
in VSE/ Advanced Functions System Control
Statements, as listed in the Preface).

OPEN Macro Processing
The OPEN macro uses information that is supplied in
the DLBL and EXTENT job control statements, the
DTF for the file, and the file label on the diskette.

For input, extent limits are taken directly from
the file label in the VTOC on the diskette; extent lim­
its provided in the extent statement(s) are ignored.

For output files, the extent limits for the file are
determined by OPEN from available space on the
diskette; extent limits provided by the user are ig­
nored. If the name of the output file to be created is
the same as that of an unexpired or write-protected
file already present on the volume, OPEN will cause
the job to be canceled. You will not be allowed to
request that a duplicate file (unexpired or write­
protected) be deleted. If the duplicate file has ex­
pired and is not write-protected or if the file to be
created is not a duplicate one, OPEN will allocate
space for the file, starting at the cylinder following
the end of the last unexpired or write-protected file
on the diskette. If expired and non-write-protected
files are overlapped by this allocation, their labels
are deleted from the VTOC.

End-oJ- Volume Processing
During processing, 10CS recognizes an end-of­
volume condition when end-of-extent is reached on
a volume and more extents are available. When this
occurs, 10CS processes the standard labels on the
next volume and continues to process the data.

End-oJ-File Processing

Output Files
When all records for an output logical file have been
written, the CLOSE macro must be issued to perform
normal end-of-file procedures. If the end of the last
extent specified for the file is reached before the
CLOSE macro is issued, 10CS assumes an error condi­
tion.

Input Files
10CS determines an end-of-file for an input logical
file by the end-of-data address. This address is spec­
ified in the file label in the VTOC of the last or only
diskette of the file. 10CS branches to the EOFADDR

routine upon an end-of-file condition.

Tape Labels

Tape Output Files
For output on magnetic tape, OPEN, CLOSE, or an
end-of-volume condition rewinds the tape as speci­
fied in the DTFMT REWIND operand. No rewind can
be defined in the DTFPH macro, and tape positioning
depends on the labels to be processed and is your
responsibility.

If you write any user standard labels, a LABADDR

routine must be supplied. (For ASCII tape files, the
LABADDR routine may be used only to process user
standard labels.) Your LABADDR routine, specified
in the DTF, cannot issue a macro that calls a tran­
sient routine. For example, OPEN, CLOSE, DUMP,

CANCEL, and CHKPT cannot be issued. Also when
processing multi-volume files, your label routine
must save and restore register 15 if any logical 10CS

macros other than LBRET are used. When user stan­
dard labels are written, they always follow the stan­
dard labels on the tape.

When all records of a file are processed, CLOSE

can be issued to execute the EOF (end-of-file) rou­
tines. These routines write any record or blocks of
records that are not already written. A partially
filled record block is truncated; that is, a short block
is written on the tape. Following the last record,
10CS writes a tapemark, the trailer labels, and two
tapemarks, then executes the rewind option. If no
trailer labels are written, two tapemarks are written
and the rewind option is executed. In either case, if
no rewind is specified and you have not specified
any positioning, the tape is positioned between the
two tapemarks at the end of the file.

If an EOV (end-of-volume) reflective marker is
sensed on an output tape before a CLOSE is issued,
logical 10CS prepares for closing the file by ensuring

Appendix C: Label Processing C - 3

that all records are written on the tape. If you issue
another PUT, indicating that more records are to be
written on this output file, EOV procedures are initi­
ated. If you issue a CLOSE, the EOF procedures are
initated.

Under certain conditions, an unfilled block of
records may be written at an EOV or EOF condition,
even though the file is defined as having fixed­
length blocked records. When this file is used for
input, logical IOCS recognizes and processes this
short block. You need not be concerned or aware of
the condition.

Label processing for the EOV condition resembles
that for the EOF condition, except that a standard
label is coded EOV instead of EOF. Also, only one
tapemark is written after the label set or after the
data for unlabeled files. In an ASCII file, two tape­
marks follow the EOV labels.

When IOCS detects the EOV condition, it switches
to an alternate unit as designated in an ASSGN job
control statement. If an alternate drive is not speci­
fied, the operator is requested to mount a new vol­
ume (on the same drive) or cancel the job. When the
operator mounts the volume, IOCS checks the stan­
dard header labels and processing continues.

In some cases, you may need to force an end-of­
volume condition at a point other than the reflective
marker. You may want to discontinue writing the
records on the present volume and continue on an­
other volume. This may be necessary because of
some major change in category of records or in proc­
essing requirements. The FEOV (forced EOV) macro
is available for this function (see "Forcing End-of­
Volume" in "Chapter 6. Processing Magnetic Tape
Files").

Writing Standard Labels
When standard labels are written (DTFMT
FILABL=STD or DTFPH TYPEFLE=OUTPUT), you must
supply the TLBL job control statement for standard
label information. More information will be found
in VSE/ Advanced Functions System Control
Statements, as listed in the Preface.

When an OPEN macro is issued and the tape is
positioned at load point, the volume (VOLl) label is
checked. Whether at load point or not, the old file
header, if present, is read and checked to make sure
that the file on the tape is no longer active and may
be over-written. If the file is inactive or if a tape­
mark was read, the tape is backspaced and the new
file header (HDRl) label is written with the informa­
tion you supply in the tape label statement. The
volume label is not rewritten, altered, or updated.

C - 4 VSE/ Advanced Functions Macro User's Guide

A comparison is made between the specified den­
sity and the VOLI density of the expired tape. If a
discrepancy is found and the tape is at load point,
the volume label(s) is (are) rewritten according to
the specified density.

If an output file begins in the middle of a reel, it
is your responsibility to properly position the tape
immediately past the tapemark for the preceding file
before issuing the OPEN macro. The MTC command
can be used to do this. If the tape is improperly posi­
tioned, IOCS issues an appropriate message to the
operator.

If user standard labels are written, the LABADDR
operand must be specified in the DTF. After writing
the standard label (header or trailer), IOCS loads
register 0 (low-order byte) as follows:

o indicates header labels.

V indicates end-of-volume labels.

F indicates end-of-file labels.

Your LABADDR routine can test this character to
determine what labels should be written. IOCS also
loads the address of an 80-byte IOCS label area in
register 1; this is the address you use if checking
labels, or from which you move the label to your
program's label area if you are modifying labels.

Note: For ASCII files, you process your standard labels in
EBCDIC.

A maximum of eight user standard header (UHL),
or trailer (UTL) labels can be written following the
standard header (HDRl), or trailer (EOVI or EOFl)
labels. The user standard labels are 80 bytes long
and are built entirely by you. Bytes 1 through 4
must contain the label identification (UxLn, where
x=H or T and n=l, 2, ... , 8); the other 76 bytes can
be used as desired.

For ASCII tape files, you can have any number of
user standard header or trailer labels. To comply
with the standards for an ASCII file, these labels are
identified by UHLa and UTLa, where a represents an
ASCII character in the range 2/0 through 5/14, ex­
cluding 2/7 (apostrophe). The remaining 76 bytes
can be used as desired. It is your responsibility to
ensure that labels contain UHLa and UTLa in the first
four bytes.

Note: When creating user header and trailer labels for 7-track
tapes, only unpacked data is valid in the 76-byte data portion of
the label.

You should build your labels in your area of vir­
tual storage, and load the address of the label into
register 0 before issuing the LBRET macro.

When the label is ready to be written, you issue
the LBRET macro, which returns control to IOCS. If

J

LBRET 2 is used, IOCS writes the label and returns
control to your label routine. If LBRET 1 is used, the
label set is terminated and no more labels can be
created. When IOCS receives control, IOCS writes the
label on the magnetic tape and either returns control
(LBRET 2) or writes a tapemark (LBRET 1).

When a standard trailer label is written, IOCS
accumulates the block count for the label when logi­
cal IOCS is used. However, if physical IOCS (DTFPH)
is used, your program must accumulate the block
count, if desired, and supply it to IOCS for inclusion
in the standard trailer label. For this, the count (in
binary form) must be moved to the 4-byte field with­
in the DTF table named filenameB. For example, if
the filename specified in the DTFPH header name is
DEL TOUT, the block count field is addressed by
DELTOUTB.

If checkpoint records are interspersed among data
records on an output tape, the block count accumu­
lated by logical IOCS does not include a count of the
checkpoint records. Only data records are counted.
Similarly, if physical IOCS is used, your program
must omit checkpoint records and count data re­
cords only.

After all trailer labels (including user labels, if
any) are written at end-of-volume or end-of-file,
IOCS initiates the EOF or EOV routines.

Writing Nonstandard Labels
To write nonstandard labels, you must specify
FILABL-NSTD and LABADDR=name. When the file
is opened, the tape must be positioned to the first
label that you wish to process. The MTC job control
statement can be used to skip the necessary number
of tapemarks or records to position the file. You
must also write your own channel program and use
physical IOCS macros to transfer the labels from
virtual storage onto tape.

When a file is opened or closed, or when a vol­
ume is fmished, IOCS supplies the hexadecimal rep­
resentation (in the two low-order bytes ofregister 1)
of the symbolic unit currently in use. See bytes 6
and 7 of the CCB for these values. IOCS also loads
into the low-order byte of register 0 one of the fol­
lowing:

o to indicate header labels.

V to indicate end-of-volume labels.

F to indicate end-of-file labels.

Your LABADDR routine can then test this charac­
ter to determine the type of labels to be written.

In your LABADDR routine, physical IOCS macros
must be used to transfer labels from virtual storage

onto tape. For each label record, a CCB and ccw
must be established, and the EXCP macro must be
issued. Other logical IOCS macros can be used for
any processing other than the transfer of labels from
virtual storage to tape. Additional LABADDR routine
restrictions have been discussed above.

After all labels are written, you return control to
IOCS by use of the LBRET 2 macro. IOCS processing
after LBRET is executed has been discussed above.

Note: Nonstandard labels are not permitted with ASCII.

Writing Unlabeled Files
If you use unlabeled files, you should specify
FILABL=NO and omit TPMARK=NO in the DTF to
improve the efficiency of your program. Your file
must be positioned properly with the MTC job con­
trol statement, if necessary, and writing begins im­
mediately. Other processing information can be
found under "Tape Input Files," below.

For unlabeled ASCII files, TPMARK=NO is the only
valid entry. If the operand is omitted entirely,
TPMARK=NO is the default. Leading tapemarks are
not supported on unlabeled ASCII files. Special error
recovery procedures facilitate reading backwards.

Tape Input Files
For a magnetic tape input file, the macros OPEN,
CLOSE, or an end-of-volume condition cause the
tape to be rewound as specified by the DTFMT
REWIND parameter. No rewind can be defined in
the DTFPH macro. Tape positioning depends on the
labels to be processed and is your responsibility.

If any labels other than standard labels are to be
checked, a LABADDR routine must be supplied.
Your LABADDR routine, specified in the DTF, cannot
issue a macro that calls a transient routine. This is
the same as for the tape output files.

When an end-of-file condition occurs, IOCS
branches to your EOFADDR routine specified in the
DTF. Generally, you issue a CLOSE in this routine to
initiate a rewind operation for the tape (as specified
by the DTF REWIND operand), and deactivate the
file. If CLOSE is issued before the end of data is
reached, the rewind option is executed and the file is
deactivated without any subsequent label checking.

When logical IOCS reads a tapemark on a tape
input file, either an end-of-file or end-of-volume
condition exists. This condition is determined by
IOCS or by yourself, depending on the type oflabels
(if any) used for the file. IOCS performs the appro­
priate functions.

IOCS can determine an end-of-volume condition
only when trailer labels have been checked (see

Appendix C: Label Processing C - 5

"Checking Standard Labels" or "Checking Non­
standard Labels," below). Iflabels are not proc­
essed, your EOFADDR routine must process the con­
dition (see "Forcing End-of-Volume" in "Chapter 6.
Processing Magnetic Tape Files"). When IOCS does
detect the EOV condition, it switches to an alternate
unit as designated in an ASSGN job control state­
ment. If an alternate drive is not specified, a mes­
sage to mount a new volume is issued. At this time,
the operator may also cancel the job. When the op­
erator mounts the volume, processing resumes. If
the input file is processed by physical IOCS (DTFPH),
you must issue an OPEN macro for the new volume.
Then, IOCS checks the header label(s) and process­
ing continues.

In some cases, you may desire to force an end-of­
volume condition at a point other than at the normal
tapemark. You may want to discontinue reading the
records on the present volume and continue reading
records on the next volume. This may be necessary
because of some major change in record category or
in processing requirements. An FEOV (forced end­
of-volume) macro is available for such cases.

Reading a Tape Backwards
When reading backwards (READ=BACK), a labeled
tape must be positioned so that the first record read,
when OPEN is executed, is the tapemark physically
following the trailer labels. An unlabeled file must
be positioned so that the first record read, when
OPEN is executed, is the tapemark physically follow­
ing the first logical data record to be read (the last
record written when the file was created). Although
ASCII unlabeled tapes contain no leading tape mark,
special error recovery procedures allow these tapes
to be read backwards.

Label checking of standard and nonstandard
labels is similar. That is, IOCS still processes stan­
dard labels, and your routine (if specified) still proc­
esses user or nonstandard labels. The only differ­
ence is that the volume label is not read immediately
for standard labels, the trailer labels are processed in
reverse order (relative to writing), and header labels
are processed at EOF time, also in reverse order. If
physical IOCS macros are used to read records back­
wards, labels cannot be checked (DTFPH must not be
specified).

Because backwards reading is confined to one
volume, an end-of-file condition always exists when
the header label is encountered. At end-of-file for
standard labels, IOCS checks only the block count
(which was stored from the trailer label) and then
branches to your EOFADDR routine. At EOF for non­
standard labels, IOCS branches to your LABADDR
routine where the header label may be checked. To

C - 6 VSE/ Advanced Functions Macro User's Guide

check labels, you must evoke physical IOCS macros
to read the label(s).

Your LABADDR routine, specified in the DTF,
cannot issue a macro that calls a transient routine.
For example, OPEN, CLOSE, DUMP, CANCEL, or
CHKPT cannot be issued. Also, when processing
multivolume files, your label routine must save and
restore register 15 if any logical IOCS macros other
than LBRET are used. When user standard labels are
checked, the checking is the same as that for stan­
dard labels.

Checking Standard Labels
When standard labels are to be checked (DTFMT
FILABL=STD or DTFPH TYPEFLE=INPUT), you must
supply the TLBL job control statement for standard
label information. More information is found in
VSE/Advanced Functions System Control
Statements, as listed in the Preface.

When standard labeled files positioned at load
point are opened, IOCS requires that the first record
be a volume (VOLl) label. The next label could be
any HDRI label preceding the file. IOCS locates the
correct file header (HDRl) label by checking the file
sequence number.

After checking the standard label (if user stan­
dard labels UHLl through UHL8 or UTLl through
UTL8 are present for EBCDIC files, or UHLa or UTLa
for ASCII files), IOCS enters the LABADDR routine
and inserts one of the following in the low-order
byte of register 0:

o to indicate header labels.

V to indicate end-of-volume labels.

F to indicate end-of-file labels.

Your routine can test this character to determine
what labels should be checked. IOCS also loads the
address of an 80-byte IOCS label area in register 1;
this is the address you use if checking labels, or from
which you move the label to your program's label
area if you are modifying labels.

After each label is checked, a LBRET 2 macro can
be issued for IOCS to read the next label. However, if
a tape mark is read instead, label checking is termi­
nated. If you wish to end label checking before all
labels are read, you can issue a LBRET 1 macro. Af­
ter all trailer labels are checked, IOCS initiates EOV
or EOF procedures.

Checking Nonstandard Labels
Any tape labels not conforming to the standard label
specifications are considered nonstandard. It is your
responsibility to check such labels if they are pre­
sent. The MTC job control statement can be issued to

skip the necessary number of tapemarks or records
to position the file. On input, nonstandard labels
mayor may not be followed by a tapemark. The
following possible conditions can thus be encoun­
tered:

1. One or more labels, followed by a tapemark,
are to be checked.

2. One or more labels, not followed by a tape­
mark, are to be checked.

3. One or more labels, followed by a tapemark,
are not to be checked.

4. One or more labelS, not followed by a tape­
mark, are not to be checked.

For conditions 1 and 2, the DTFMT operands
FILABL=NSTD and LABADDR=name must be speci­
fied. For condition 3, the operand FILABL=NSTD
must be specified. If LABADDR is omitted, IOCS skips
all labels, bypasses the tapemark, and positions the
tape at the first data record to be read. For condi­
tion 4, the entries FILABL=NSTD and
LABADDR=name must be specified. In this case,
IOCS cannot distinguish labels from data records
because there is no tapemark to indicate the end of
the labels. Therefore, you must read all labels even
though checking is not desired to position the tape at
the first data record.

Each time IOCS opens a file or reads a tapemark,
it supplies (in the low-order bytes of register 1) the
hexadecimal representation of the symbolic unit
currently used. These values are as shown in the
layout description of CCB bytes 6 and 7 in Figure
9-3. IOCS also loads the character 0 into the low­
order byte of register 0 when the file is opened.

When your routine gains control, the tape is not
moved by OPEN. Physical IOCS macros must be used
to transfer labels from tape to virtual storage.
Therefore, you must establish a CCB and a CCW.
The EXCP macro is used to initiate the transfer. Af­
ter all labels are checked, you return control to OPEN
by use of the LBRET 2 macro.

When IOCS reads a tapemark, it checks to deter­
mine if you have supplied a LABADDR routine. If a
LABADDR routine was supplied, IOCS exits to the
routine. Otherwise, IOCS skips the labels and
branches to the EOFADDR routine. In the LABADDR
routine, you must use physical IOCS macros to read
your label(s). Furthermore, you must determine the
EOF and/or EOV condition and indicate to IOCS
which condition exists by loading either EF (end-of­
file) or EV (end-of-volume) into the two low-order
bytes of register O. When this information is passed
to IOCS, it initiates the end-of-file or end-of-volume
procedures.

Unlabeled Input Files

The first record for unlabeled tapes (FILABL=NO)
mayor may not contain a tapemark. Unlabeled
tapes with ASCII contain no leading tapemark. If a
tapemark is present, the next record is considered to
be the first data record. If there is no tapemark,
IOCS reads the first record, determines that it is not a
tapemark, and backspaces to the beginning of that
record. The file can be properly positioned by use of
the MTC job control statement. When the tapemark
following the last data record is read, IOCS branches
to the end-of-file address.

Label Processing With Access Control Option

On systems with VSE/ICCF installed, you can take
advantage of the protection offered when processing
standard labeled or unlabeled tape input files.

If the access control option is present in your sys­
tem (SEC=xx in the FOPT macro; where xx is a value
between 10 and 32K-l), the tape label processing
routines protect against unauthorized use or acci­
dental destruction of file data. This is accomplished
by not allowing an "IGNORE" response to various
label processing messages that would otherwise per­
mit skipping over label errors or processing labeled
input files as if they were unlabeled files.

Appendix C: Label Processing C - 7

Reading, Writing, and Checking with Nonstandard Labels

r---
FXTEKNAl SYM~LJl DICTlON.,y PAGE

SY"BOl TYPE JD ACC~ lENGT" lC 10

PC (11 ec;;coe CCC~8C
IJCFIIIO ER 02
IJFFllll E~ 03
IJFFBlll ~, C.
IJDFllll •• O~
I JilOO06 sn Cb CC3.9C CCCC6~ --

~---

TESI CKtATING A~D PRCCESSINC ~f~-SIANrAPO LA~tL> PAGE

lOC OBJECT crc~ ADDRI ACCP2 ST"T sellPCE SIATEMENI

003000

0031A[0520
0031AE

00310b 47FO 2JIO

003216 .1Fe 2e50

003252 .1FO 2J.c

031~E

031Ft

003214 .900 nAt 0345'
00327E 4770 20~O 032~E
003282 ~Z27 <21(<ICC 0;3(A 03,7A

.Rl~T LJ~,~OGEN,NODATA ~STCOCC~
,TA_T I«dd NSTC0005

• NSTCOOO~

R<'OE< DTFLu ut.1CE.25.0,nE~ArO"=SysIPT,BLKSIIE.8C,TYPEFLF=INPUT, '~SlOOOOl
<u.AODR·ENOCARO.I~A"EAI=IOARFA NSTD0008

20 • NSTCOCOq
'7 IAPEDUI uT~~1 ~EVAODR.SYSCO •• llA.EAI=IOAREA,~lKSIIE.80,TYPEFlE.CUTP~T"~STCOOIO

lA~AOO~·LA&ELrUI,"EAL·FCR.APC,FIlA8l=NSTD
'5f' •
5< TAPfl~ uT~~T Uc~AUOQ=SYS00~,ICA~f~1=I O b~fA,BlKSllEs8c,TYPEFlE=I~PLT,

tOFAODk=ENDIAPE.RFAO·Fr.w.RD,FIlAel=NSTO,RE~IND·NOR.C,

LAIlAuC.'LA9tLIN
<;? • Q. TAP<IN2 ulfMI UEVAUO"·SY~00',IL'.[AI'IOA"FA,BlKSIZE.8C,TYPEFlF·INPLT,

EG'ADDR=fNDTAPE;.~<AL·EA[K,FILAdl=NSTO
liC; ..
I3C PPI'T CIFP~ 0<VILE=I.03,Of~Ar) •• SYSLST.ICA~EAI=IOAREA,BlKSIZf=8~
151 •
152 CC~srlf vT~C~ OL~SIIE·80,rf~ArO.=,YSLcG,ICAREAI·CAREA,"fCFOR"=FI'U~~,

.U~KA·YES

221 •
222 0

'23 SH~T
224 U~tl'~ .,t
")2~ RrIJ"Fll-"L TlJ ",kITE TAPr:
'?6 Ltlu\ TAPtUUT
2~' (ETCARL bET READER
2~q ~JT TAPcOUT
7" ~tlCA"O
74~ F~1CARO ~.u>t IAP~OUT
,~~ .. *. RCUTII~L TO KEAO TAPE ~nk~~~~

2~4 LPt~ PkINT,TAPEIN
2~3 GETTAPE bET TA'EIN
2'8 PUT P~I~I
213 ~EITAPE P·A·Ir.~

2" EN~IAOE LlUSE TAPEIN
2~2 0 o. RrUIINE TO kEAO TAPE BACKwA~DS

193 ~PU. IAPtlN2
2.1 GETTAPE2 btl TAPEINZ
2~6 PJI PRINT
3CI d ~EITAPE2 t"ANCM
3CZ ENCTAPE2 lLU~E PRINT,TAPEIN?
"'11 C. • .n"'l TAoPEJN2,REw
317 EUJ
~2r ••• LABel lk~ATlu~ ~curINf
3'1 LARElCUT.M v,ALPHAO
322 o~~ T •• IL[UT
323 ~V(IGAkEA(40)t~fAOFR
324 RIT~LA~ CX~~ aUTl~B

328 .AIT JUTeeS
~34 lo~~T 2

SET uP A BASE "EGISTER

TO .RITf ~STD RtroPO~
REAr A CAke <"r~ CARr. REAOF"
.RITE CARr, I.ArE rN TAPE
BRANCH .~r G~T A~CTHFR CARD
TO .'IIE NSTO IRAILf< LABEL

Ie PPGeESS NSTO LABEL
lET A CA~O I~AG' FRQ. TAPF
PRINT (ARO IMAGE eN PRI~TF"

AND GET A~CIHER TAPE RECORD
PkCCE(~ ~STC LA8FLS

ByPASS NSTC lAbFlS
"EAC A TAPE ~ECORr

PRINT RECCRO
ANe GEl ANCT"EP IAPE REeJoO
eYPASS NSTC RFCORes
RE.INC IAPE TC lCAC PCINT
NORMAL ENO 0< JO.

CPEN OF ClCSE
B •• NC" IF CLJSE
~r~E ~EAOER TC I/G AREA
.-ITF LASEl
.AIT Fr< CCMPLfllON
OETURN CONTROL TO 10CS

~STDOOll
~STDOC1Z

ONSTeoc 13
oNST00014
~HOOCI5
~STDOClb

ONSTCOCIl
~STOOOI8

NSTCOCI9
NSTOOCZO
~qCOC21

o~STrec2Z

~<rrOC23

~STCOC2'
~STCOOZ5
NSTOCC2b
~ SIDocn
, <TCOCZ8
~STCor29

~STCOC30

~srrool

~STroC32
~STDOCH

~SICOC3'
NSTC0C35
,'STC006
'STeOCH
~sn0038
NSTOOOq
~STCCC40
~STOOC41

NSTr.CC42
NSICOOH
~STMO.'
NSlrCC45
~SHCC4b

NSTDOC41
NST[OC'B
NSTOOO.q
~STCOC50
NSTDOC51
NHnOC5Z
NSTOOC~3

NST[l005~

~---

Figure C-I. Reading, writing, and checking with nonstandard labels (Part I of 2).

C-8 VSE/ Advanced Functions Macro User's Guide

J

Loe OBJECT ~OOf AOO~I AOOA2 ST~T SOLRCE , TA lEMENJ

00329E 0227 l21C 21f4 033CA 0~3Ai
0032A4 47FO 2JOA 032~~

331 T~AllOLT Mv~ IOAREAI40I,TRAllE_
3~8 c RIJ<LA8

~uvE TR'ILE~ LABEL Te 110 AREA
8RA~CH TO ~RITE THE LA8EL

0032A8 4900 l2Ab
C032AC 4780 212C

0341F

03454
032CA

03312

3~Q ••• lAA<L P~uCESSI~G ~OUTI~E
34C lA9Ell~ U1 O,A .. PHAO
341 bE I'1E"OI~
342 T~AllJ~ ~ALP !N(lS
~46 wAlT I~C~D
~~2 1M JNLI..8+o\.X'Ol'
", uO tXIJEOf
~~4 cLc IUAREAI40I,JRAllF"

f)Pf" O~ CL CSE
[PFN T IM~
REAr A TRAILEk LAPEL
.AIT feR 1/0 CGMPLETION
TE~T FGf A T'PF "AAK
SA A"CH If YE S
CCMP'~E T~AILE~ LABEL

0032C4 9101 2270
0032C8 4710 21 b4
C032CC 0527 i21C
003202 4780 2102
00320b 47fO 21S<

21f4 C'3eA C3~Al
032eo
O~CO

3~~ b< TkAILI~
3~b 0 ERRLAB
'S7 ~f~nl~ tX~f I~LLB

BAANC~ TO GET ANnThE~ ~Ecr~~

If LAeFLS re 'OT COMPARF
READ A HEACEP LAfEL

3< I .AI T I~CC~ .AIT,fC' CC~PLfTlrN
0341E ,t7 1M I~Cl~+4,X'OI' Tf~T fep A TAPf ~A~K

'tB bu EXIT cRANCH IF YES
36'7 t,..Ll. JOAkE'.AtO),I"IEAOi c DOES ~fAOER LAeEL eeMPAAE

0032EE 9101 2270
0032f2 4710 21c8
0032F6 0527 211(,
0032FC 4780 ll2C

0331<
21(C 033CA 0337A

032C l 31C ~~ HtA~l~
~71 ~.'lAe PuT L~~SulE,lAbELF.f

IF YES, SPANCH ANC RfAD TAPF
PUT LAbfL f~RO" .ESSAG~

? 17 fO..l TE"" INATE Jed
003312 5800 2lA2 OH50 3BC EXITECf O,EJflNO INCICATE Eef TO I~CS

381 FXIT lBktT 2 "ETUPN CONT~CL Te IOC S

';L~U' , CONSOLE 110 ARFA 003318 404040404C~04C40
00334A E4E2C50S4CC3CIC2
003376 E4E2C5)~~CC8C5CI
0033A2 E4ElC;094CE30SCl
0033CA 404040404C4C4C4C

~P4 • CC~STANI S
3es OREA u(.

~Pt lABfLERA OC
~n ~.ACf~ DC
388 TRA I LH DC
leG ICAOE. cC
39C T~r.C~ ~Cb
4CI rUTCce ('CB

C'uSER LA8~LS DC ~UT C(MPIRE. ABNORMlL F~D

CL~O'USE~ HEACE" LA~fL'
f'F JO~.'

00343A 0000000COCCC
003440 0200~3CAOCCCCC28
003441 010033CAOOOC(028
003450 OOOOC SCb
003454 0006
003lAC
003458 585BClubC7(5CS4C
0034bO 585BC2C303CoE2C5
003468 00003000
OOH6C 00003038
003470 00003C90
003474000031S0
003478 000030fO
00347C 0000342A
003480 0000341A
003484 0000318C
003488 00003346

Tape Output

USER HEADER LAIfL

412 INCC.
413 [uTCC.
414 ECFI~C

41S ALPHAC
41<
417
41~

41~
4?C
421
422
423
424
425
42t
477

(40 char .. t ...) 'i!
~
K.
a ...

CL4u'~SER TRATLFA LABEL'
eLba' , INPcT/CUTPLT APFA
SY~004,I~CC. ~EAC T~PE cee
SY~004,OUTCCw wRITE TAPE ece

X'(J,,',IOAREA,X'OC','tO RE,IC TAPE cew
~'Ol',IOAREA,X'OC',40 WRITE TAPE ((w
x'OOOOC5Cb'
X'0006'
START
II:C' •• BOPEN •
=(.' uaCLOSE'
=AI kEACER)
-AITAPEGUT)
=AI TAPE IN)
-AIP~T~TI
=AIIAPEIN21
=~IOUTCCbl

=AIINCCB)
=AICUNSOLEI
=ACLAeEL.R~1

J
-l!
~
K.

Data ••• / a ...
(40 char .. ten)

USER TRAILER LAIfL

Notes: 1. loes wrote the first tapemark because the TPMARKaNO parameter was omitted.
2. loes always writes the tapemark following the data.
3. loes wrote the two tapemarks after the user trailer label.

T ... lnput

(40 char .. t ...) 'i!

1 (40 characten) r
l a. USER HEADER LAIfL ... Data ••• a USER lRAI LER LAIEL ...

Not .. : 1. loes reads the first tapemark or bypasses it if user libels are not checked.
2. Upon encountering the second tapemark IOes branches to your label routine address.
3. After you read the third tapemark you should issue a LBR ET 1 and loes will branch to the end·of·file address.

Figure C-1. Reading, writing, and checking with nonstandard labels (Part 2 of2).

..>t

~
I ...

'i!
r
l ...

Appendix C: Label Processing

PAGE

'i!
~

NST00055
NSTOOOSb
~5TCOC57
NST00058
NSTI'OC59
NSTC0060
NSTC0061
~STD0062

NSTOOOb3
N5TOOC64
NST00065
N5TOOCbb
~ST00067
~STrOC68

~STD0069
NSTC0070
~STOOC71

NSTCOC72
NST00073
NSTCOCH
NSTr.007S
NSTC007b
NsrrOC77
NSTC0078
NSTOOC79
NSl('0080
~ST00081

~STooce2
~STrOC83

NSTrCC84

~qCoces

NST0008b
~STr.OC88

NSTC0089
~STrOC.,o

a.
D ...

..>t) ~
l (
...

C-9

J

C-IO VSE/ Advanced Functions Macro User's Guide

•

Appendix D: Writing Self-Relocating Programs

A self-relocating program is one that can be loaded
for execution at any location in virtual storage.
While having this distinct advantage, self-relocating
programs are slightly more time consuming to write
and they usually require slightly more storage. And,
they may only be written in assembler language.
F or these reasons you may want to make use of the
relocating loader instead. The relocating loader,
standard in VSE (available as a system generation
option in DOS/VS), accomplishes the same thing as
writing self-relocating programs but without any of
these disadvantages .

However, prior to the availability of a relocating
loader, some users coded self-relocating programs to
gain the advantage of running them in anyone of
the available partitions without their having to be
link-edited again. When the program was link­
edited, OPTION CATAL and a PHASE statement such
as:

PHASE phasename,+O

were used. This caused the linkage editor to assume
that the program was loaded at storage location
zero, and to compute all absolute addresses from the
beginning of the phase. The job control EXEC func­
tion recognized a zero phase address to compensate
for the current partition boundary save area. Con­
trol was then given to the updated entry address of
the phase. Programs that were written using self­
relocating techniques could be cataloged as either
self-relocating or non-self-relocating phases.

If you have to perform maintenance on such a
program, you must write this program in assembler
language according to the same rules under which
the program was originally written.

Rules for Writing Self-Relocating
Programs
In general, if a problem program is written to be
self-relocating, the rules below must be followed.
Rules 1 through 5 apply to any program that is to be
self-relocating. Rules 6 through 8 apply only to
those self-relocating programs which consist of two
or more control sections.

1. The PHASE card must specify an origin of +0.

2. The program must relocate all address con­
stants used in the program. Whenever possible,

use the LA instruction to load an address in a
register instead of using an A-type address con­
stant. For example, instead of writing:

USING *,12
BALR 12,0
LA 12,0 (12)
BCTR 12,0
BCTR 12,0
LA 1,EOF
ST 1,AEOF
•
•
L 10,AEOF
•
•

EOF EOJ
•
•

AEOF DC A(EOF)

Code your program like this:
USING *,12
BALR 12,0
LA 12,0 (12)
BCTR 12,0
BCTR 12,0
•
•
LA 10,EOF
•

EOF EOJ

3. Iflogical 10CS is used, the program must use
the OPENR and CLOSER macros to open and
close all files, including console files.

4. If physical 10CS is used, the program must relo­
cate the ccw address field in the CCB or 10RB,
and the address field in each ccw.

5. Register notation must be used with imperative
I/O macros and supervisor macros. An example
of coding the GET macro with a work area in
self-relocating format follows:

RCARDIN
RPRTOUT
RWORK

EQU 4
EQU 5
EQU 6
LA RCARDIN,CARDIN
LA RPRTOUT,PRTOUT
LA RWORK,WORK
OPENR (RCARDIN),(RPRTOUT)
•
•
•
GET (RCARDIN),(RWORK)

Note: Since the DTF name can be a maximum of seven
characters, an R can be prefixed to this name to identify the
file. Thus, RCARDIN in this example can immediately be
associated with the corresponding DTF name CARDIN.

Appendix D: Writing Self-Relocating Programs D - I

6. The relocation factor should be calculated and
stored in a register for future use. For register
economy, the base register can hold the reloca­
tion factor. For example:

See Figure 0-1 for an example of the calling
program relocating the address constants in a
calling list.

USING
BALR
LA
BCTR
BCTR

*,12
12,0
12,0(12)
12,0
12,0

Register 12 now contains the relocation factor
and the program base.

7. When branching to an external address, use
one of the following techniques:

L 15,=V(EXTERNAL)
BAL 14,0(12,15)

or
L 15,=V(EXTERNAL)
AR 15,12
BALR 14,15

where register 12 is the base register.

Programming Techniques
A self-relocating program is capable of proper exe­
cution regardless of where it is loaded. OTFDI
should be used to resolve the problem of device dif­
ferences between partitions. A self-relocating pro­
gram must also adjust all its own absolute addresses
to point to the proper address. This must be done
after the program is loaded, and before the absolute
addresses are used.

8. The calling program is responsible for relocat­
ing all address constants in the calling list(s).

Within these self-relocating programs, some mac­
ros generate self-relocating code. For example the
OPENR and CLOSER macros, which can be used in
place of OPEN and CLOSE, adjust all ofthe address
constants in the OTFs opened and closed. OPENR
and CLOSER can be used in any program because the
OPENR macro computes the amount of relocation. If
relocation is 0, the standard open is executed. In
addition, all of the module generation (XXMOO) mac­
ros generate self-relocating code.

II JOB A
II OPTION LINK

II EXEC ASSEMBLY
CSECT1 START

USING
BALR
LA
BCTR
BCTR
•
LA
LA
LA
LA
STM
01
LA
L
AR
CALL

LIST EQU
EOJ

SAVEAREA DC
END

1* *
II EXEC ASSEMBLY
CSECT START

ENTRY
EXTERNAL SAVE

USING
BALR
•
•

o
*,12
12,0
12,0(12)
12,0
12,0

1,A
2,B
3,C
4,0
1,4,LIST
LIST+12,X'80'
13,SAVEAREA
15,=V(EXTERNAL)
15, 1 2
(15), (A,B,C,D)
*-16

90'0'

o
EXTERNAL
(14,12)
* , 12
12,0

RETURN (14,12)
END

1* *
II EXEC LNKEDT
IF,

Figure 0-1. Relocating address constants in a calling list.

0- 2 VSE/ Advanced Functions Macro User's Guide

Use load point value as the base to
find the load point value.

Modify the CALL address constant list.

Restore end of list bit in last adcon.

Adjust CALL address by relocating Factor.

For-address constants (4 bytes each).

Establish new base

J

..

The addresses of all address constants containing
relocatable values are listed in the relocation dic­
tionary in the assembly listing. This dictionary in­
cludes both those address constants that are modi­
fied by self-relocating macros, and those that are
not. The address constants not modified by self­
relocating macros must be modified by some other
technique. After the program has been link-edited
with a phase origin of +0, the contents of each ad­
dress constant is the displacement from the begin­
ning of the phase to the address pointed to by that
address constant.

The following techniques place relocated absolute
addresses in address constants. These techniques are
required only when the LA instruction cannot be
used.

Technique 1: Code named A-type address con­
stants:

•
LA 4,ADCONAME
ST 4,ADCON
•
•

ADCON DC A(ADCONAME)

Techique 2: Place A-type address constants in the
literal pool:

•
LA 3,=A(ADCONAME)
LA 4,ADCONAME
ST 4,0 (3)
•
LTORG =A(ADCONAME)

Technique 3: Code A-type address constants with a
specified length of three bytes, and a non-zero value
in the adjacent left byte (as in ccws):

A. If the CCW list dynamically changes during
program execution:

•
LA 4, IOAREA
STCM 4,X'07' , TAPECCW+ 1
•

TAPECCW CCW 1,IOAREA,X'20' ,100
•

IOAREA OS CL100

B. If the ccw list is static during program execu­
tion:

•
LA 4, IOAREA
ST 4,TAPECCW
MVI TAPECCW,l
•

TAPECCW CCW 1,IOAREA,X'20' ,100

•
IOAREA OS CL100

or

•
USING .,12
BALR
LA 12,0(12)
BCTR 12,0
BCTR 12,0 Reg 12 contains

relocation factor

•
L 11,TAPECCW
ALR 11 , 12
ST 11,TAPECCW
•

TAPECCW CCW 1 ,IOAREA,X'20', 100

•
IOAREA OS CL100

Technique 4: Use named v-type or A-type address
constants:

•
•
LA 3,ADCONAST Determine
S 3,ADCONAST relocation

factor
•
L 4,ADCON
AR 4,3 Add reloc.

factor
ST 4,ADCON
•

ADCONAST DC A(·)
ADCON DC V(NAME)

The load point of the phase is not synonymous with
the relocation factor as developed in register 3
(technique 4). If the load point of the phase is taken
from register 0 (or calculated by a BALR and sub­
tracting 2) immediately after the phase is loaded,
correct results are obtained if the phase is link­
edited with an origin of +0. If a phase is link-edited
with an origin of • or s, incorrect results will follow
because the linkage editor and the program have
both added the load point to all address constants.
Figure D-2 shows an example of a self-relocating
program.

Appendix D: Writing Self-Relocating Programs D - 3

PROGRAM

REPRO
PHASE EXAMPLE, +0
PRINT NOGEN
START 0
BALR 12,0
USING *,12

+0 ORIGIN IMPLIES SELF-RELOCATION

* ROUTINE TO RELOCATE ADDRESS CONSTANTS
LA 1 , PRINTCCW
ST 1,PRINTCCB+8
LA 1,TAPECCW
ST 1,TAPECCB+8
IC 2,PRINTCCW
LA 1,OUTAREA
ST 1 , PRINTCCW
STC 2,PRINTCCW
LA 1, INAREA
ST 1 , TAPECCW
MVI TAPECCW,READ

* MAIN ROUTINE ... READ TAPE AND PRINT
READTAPE LA 1,TAPECCB

EXCP (1)

CHECK

CHA12

EOFTAPE

WAIT (1)
LA 1 0 , EOFTAPE
BAL 14,CHECK
MVC OUTAREA(10) ,INAREA
MVC OUTAREA+15(70) ,INAREA+10
MVC OUTAREA+90(20),INAREA+80
LA 1 , PRINTCCB
EXCP (1)
WAIT (1)
LA 10,CHA12
BAL 1 4 , CHECK
B READTAPE
TM 4 (1) ,1
BCR 1,10
BR 14
MVI PRINTCCW,SKIPT01
EXCP (1)
WAIT (1)
MVI PRINTCCW,PRINT
BR 14
EOJ
CNOP 0,4

RELOCATE CCW ADDRESS
IN CCB FOR PRINTER

RELOCATE CCW ADDRESS
IN CCB FOR INPUT TAPE

SAVE PRINT CCW OP CODE
RELOCATE OUTPUT AREA ADDRESS

IN PRINTER CCW
RESTORE PRINT CCW OP CODE
RELOCATE INPUT AREA ADDRESS

IN TAPE CCW
SET TAPE CCW OP CODE TO READ

RECORDS
GET CCB ADDRESS
READ ONE RECORD FROM TAPE
WAIT FOR I/O COMPLETION
GET ADDRESS OF TAPE EOF ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE
EDIT RECORD
IN
OUTPUT AREA
GET CCB ADDRESS
PRINT EDITED RECORD
WAIT FOR I/O COMPLETION
GET ADDRESS FOR CHAN 12 ROUTINE
GO TO UNIT EXCEPTION SUBROUTINE

CHECK FOR UNIT EXEC. IN CCB
YES-GO TO PROPER ROUTINE
NO-RETURN TO MAINLINE

SET SEEK TO CHAN 1 OP CODE
SEEK TO CHAN 1 IMMEDIATELY
WAIT FOR I/O COMPLETION
SET PRINTER OP CODE TO WRITE
RETURN TO MAINLINE
END OF JOB
ALIGN CCB'S TO FULL WORD

PRINTCCB
TAPECCB
PRINTCCW
TAPECCW
OUTAREA
INAREA
SLI

CCB
CCB
CCW
CCW
DC
DC
EQU
EQU
EQU
EQU

SYS004,PRINTCCW,X'0400'
SYS001,TAPECCW
PRINT,OUTAREA,SLI,L'OUTAREA
READ,INAREA,SLI,L'INAREA

READ
PRINT
SKIPT01

END

CL 110' ,
CL 100' ,
X' 20'
2
9
X'8B'
PROGRAM

Figure 0-2. Self-relocating sample program.

0-4 VSE/ Advanced Functions Macro User's Guide

J

J

Appendix E: American National Standard Code for Information
Interchange (ASCII)

In addition to the EBCDIC mode, VSE accepts mag­
netic tape files written in ASCII, a 128-character 7-bit
code. The high-order bit in this 8-bit environment is
zero. ASCII is based on the specifications of the
American National Standards Institute, Inc.

VSE processes ASCII files in EBCDIC with the help
of two translate tables, which are loaded into the
SVA. Using these tables, logicallocs translates from
ASCII to EBCDIC all data as it is read into the I/O
area. For ASCII output, logicallocs translates data
from EBCDIC to ASCII just before writing the record.

Figure E-I shows the relative bit positions of the
ASCII character set. An ASCII character is described
by its column/row position in the table. The col­
umns across the top of Figure E-I list the three high­
order bits. The rows along the left side of Figure E-I
are the four low-order bits.

For example, the letter p in ASCII is under column
5 and row 0 and is described in ASCII notation as
5/0. ASCII 5/0 and EBCDIC X'SO' represent the same
binary configuration (B'OIOIOOOO'). However, P graph­
ically represents this configuration in ASCII and & in
EBCDIC. ASCII notation is always expressed in deci­
mal. For example, the ASCII Z is expressed as 5/10
(not 5/ A).

For those EBCDIC characters that have no direct
equivalent in ASCII, the substitute character (SUB) is
provided during translation. See Figure E-2 for
ASCII to EBCDIC correspondence.

Note: If an EBCDIC file is translated into ASCII, and you trans­
late back into EBCDIC, this substitute character may not receive
the expected value.

Appendix E: American National Standard Code for Information Interchange (ASCII) E - I

b7 • 0 0 0 0 I

~6 • 0 0 I I 0
b5 • 0 I 0 I 0

~bt b3 b2 bl ~ 0 I 2 3 4

I + + Row

0 0 0 0 0 NUL DlE SP 0 @

0 0 0 I I SOH DCI ,<D I A

0 0 I 0 2 STX DC2 " 2 B

0 0 I I 3 ETX DC3 N 3 C

0 I 0 0 4 EOT DC4 $ 4 D

0 I 0 I 5 ENQ NAK % 5 E

0 I I 0 6 ACK SYN & 6 F

0 I I I 7 BEL ETB 7 G

I 0 0 0 8 BS CAN (8 H

I 0 0 I 9 HT EM I 9 I

I 0 I 0 10 lF SUB . : j

I 0 I I II VT ESC + ; K

I I 0 0 12 FF FS < l

I I 0 I 13 CR GS - M

I I I 0 14 SO RS > N

I I I I 15 SI US / ? 0

CD The grophic I (logical ORI may also be u.ed in.tead of , (Exclomotion Point)'

@ The graphic """'Ilogical NOT) moy, 01.0 be u.ed in.tead of" (Circumflex).

I I I
0 I I

I 0 I

5 6 7

P
,

p

Q a q

R b r

S c s

T d t

U e u

V f v

W g w

X h x

Y i y

Z i z

[k !

\ I I
I

] m , ,

,,0 n ~

0 DEL -

G) The 7 bit ASCII cade expand. to 8 bit. when in .torage by adding a high orner 0 bit.

Example: Pound .ign I # I i. repre.ented by

b7 b6 b5 b4 b3 b2 bl

o 0 0 0 0

Control Character Representations

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
lF
VT
FF
CR
SO
SI

Null
Start of Head ing ICC I
Start of Text (CC I
End of Text (CC)
End of Tran.mission ICCI
Enquiry ICC I
Acknowledge (CC I
Bell
Backspoce (FE I
Horizontal Tabulation IFE)
line Feed (FEI
Vertical Tabulation (FE)
Form Feed [FEI
Carriage Ret urn j, FE)
Shift Out
Shift In

(CC) Communication Control
(FE) Format Effector
(IS) Information Separator

Figure E-l. ASCII character set.

DlE
DCI
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SUB
ESC
FS
GS
RS
US
DEL

Data link E.cape (CC)
De vice Control 1
De vice Control 2

Dev ice Control 3

Device Control 4
Negative Acknowledge (CCI
Synchronous Idle (CCI
End of Tron.mission Block (CC I
Cancel
End of Med ium
Substitute

E.cope
File Seporator (lSI
Group Separator (I S)
Record Separator (IS)
Unit Separator (IS)
Delete

E - 2 VSE/ Advanced Functions Macro User's Guide

Special Graphic Characters

SP

&

+

/

Spoce
Exclamation Point
logical OR
Quotat ion Marks
Number Sign
Dollar Sign
Percent

Ampersand
Apo.trophe
Opening Parenthesis
Closing Parenthesis
Asterisk
Plu.
Commo
Hyphen (Minu.1
Periad (Decimal Point I
Slant
Colon
Semicolon

<

>
?

@
[
\
1
1\

less Than
Equal.
Greater Thon

Quest ion Mark
Commercial At
Opening Bracket
Reverse Slant
Closing Bracket
Circumfle)(

logical NOT
Underline
Grove Accent
Opening Broce
Vertical Line !This graphic
is stylized to distinguish it
from logical OR)
Closing Brace
Tilde

J

J

ASCII EBCDIC

I Col I Row Bit Character Col I Row Bit - --+----- Comments
I Pattern

(in Hex)
Pattern

I

NUL a [) 0000 I 0000 a I a 0000 I 0000
SOH a I 0000 I 0001 a I 0000 I 0001
STX a I 2 0000 0010 a 2 0000 I ()I) I 0
ETX a I 3 0000 0011 a 3 0000 0011
EOT a I 4 0000 0100 3 7 0011 0111
ENQ a 5 0000 I 0101 2 I D 0010 1101
ACK a 6 0000 I 0110 2 I E 0010 I 1110
BEL a 7 0000 I 0111 2 F 0010 I 1111
BS a I 8 0000 1000 1 6 0001 0110
HT a I 9 0000 1001 a 5 0000 0101
LF a I 10 0000 1010 2 5 0010 0101
VT a 11 0000 1011 a B 0000 1011
FF a 12 0000 I 1100 0 I C 0000 1100
CR 0 13 0000 I 1101 a I D 0000 I 1101
SO a 14 0000 I 1110 a I E 0000 I 11 10
SI a 15 0000 1111 a F 0000 I 1111
OLE 1 I a 0001 0000 1 a 0001 0000
DCl 1 I 1 0001 0001 1 1 0001 0001
DO 1 I 2 0001 0010 1 2 0001 0010
DC3 1 3 0001 I 0011 1 I 3 0001 I 0011
DC4 1 4 0001 I 0100 3 I C 0011 I 1100
NAK 1 5 0001 I 0101 3 I D 0011 I ll01
SYN 1 I 6 0001 0110 3 2 0011 0010
ETB 1 I 7 0001 0111 2 6 0010 0110
CAN 1 I 8 0001 1000 1 8 0001 1000
EM 1 9 0001 I 1001 1 I 9 0001 1001
SUB 1 10 0001 I 1010 3 , F 0011 , 1111
ESC 1 11 0001 I 1011 2

,
7 0010 , 0111

FS 1 12 0001 1100 1 C 0001
,

1100
GS 1 , IJ 0001 1101 1 0 0001 1101
RS 1 , 14 0001 1110 1 E 0001 1110
us 1 15 0001 1111 1 F 0001 1111
SP 2 0 0010 0000 4 I 0 0100 0000
Lill 2 1 0010 , 0001 4 , F 0100 , 1111 Logical OR
" 2 2 0010 , 0010 7

, F 0111 , 1111 ,
2 2 0010 0011 7 B 0111 , 1011

S 2 4 0010 0100 5 B 0101 , 1011
% 2 , 5 0010 0101 6 C 0110 1100
.\ 2 , 6 0010 0110 5 0 0101 0000

2 ,
7 0010 0111 7 0 0111 1101

(2 8 0010 , 1000 4 I 0 0100 I 1101
) 2 9 0010 I 1001 5 I 0 0101 I 1101 . 2 10 0010 , 1010 5 I C 0101 I 1100
+ 2 11 0010

, 1011 4 E 0100 I 1110
2 I 12 0010 1100 6 B 0110 1011

- 2 , 13 0010 1101 6 0 0110 0000 Hyphen,Minus
2 I 14 0010 1110 4 I B 0100 1011

/ 2 I 15 0010 I 1111 6 , 1 0110 0001 I

0 3 0 0011 I 0000 F I 0 1111 I 0000
1 3 1 0011 I 0001 F 1 1111 , 0001
2 3 , 2 0011 0010 F 2 1111 0010
3 3 , 3 0011 0011 F 3 1111 0011
4 3 I 4 0011 0100 F 4 1111 0100
5 3 5 0011 0101 F 5 1111 0101
6 3 6 0011 , 0110 F , 6 1111 I 0110
7 3 7 0011 , 0111 F , 7 1111 , 0111
8 3 8 0011 1000 F 8 1111 , 1000
9 3 , 9 0011 1001 F 9 1111 1001
: 3 , 10 0011 1010 7 A 0111 1010
; 3 I 11 0011 1011 5 I E 0101 1110
< 3 12 0011 I 1100 4 I C 0100 I 1100
: 3 13 0011 I 1101 7 I E 0111 I 1110
> 3 14 0011 , 1110 6 I E 0110 I 1110
? 3 I 15 0011 I 1111 6 F 0110 1111

Figure E-2. ASCII to EBCDIC correspondence (Part lof2).

Appendix E: American National Standard Code for Information Interchange (ASCII) E - 3

AS(II ,
I Bit

(horocter (01 I Row
Pattern

I

@ 4 I a 0100 0000
A 4 I 0100 0001
B 4 2 0100 1 0010
(4 3 0100 1 0011
D 4 I 4 0100 1 0100
E 4 1 5 0100 0101
F 4 6 0100 0110
G 4 7 0100 0111
H 4 8 0100 I 1000
I 4 9 0100 I 1001
J 4 10 0100 I 1010
K 4 I II 0100 1011
l 4 I 12 0100 1100
t.I. 4 13 0100 1101
N 4 14 0100 1110
0 4 15 0100 I 1111
P 5 a 0101 I 0000
Q 5 1 I 0101 I 0001
R 5 1 2 0101 0010
S 5 I 3 0101 0011
T 5 I 4 0101 0100
U 5 5 0101 I 0101
V 5 6 0101 I 0110
W 5 I 7 0101 I 0111
X 5 I 8 0101 I 1000
Y 5 I 9 0101 1001
Z 5 10 0101 1010
[5 II 0101 1011

"- 5 12 0101 I 1100
J 5 13 0101 I 1101
~(2) 5 14 0101 I 1110

- 5 I 15 0101 1111
6 I a 0110 0000

a 6 I I 0110 0001
b 6 2 0110 0010
c 6 3 0110 I 0011
d 6 4 0110 I 0100
e 6 I 5 0110 I 0101
f 6 I 6 0110 0110

9 6 I 7 0110 0111
h 6 8 0110 1000
i 6 9 0110 I 1001

6 10 0110 I 1010
k 6 I ullu I 1011
I 6 I 12 0110 1100
m 6 I 13 0110 1101
n 6 I 14 0110 1110
0 6 15 0110 1111
p 7 0 0111 I 0000
Q 7 I 0111 I 0001
r 7 2 0111 I 0010

• 7 I 3 0111 0011
t 7 I 4 0111 0100
u 7 I 5 0111 0101
v 7 6 0111 0110
w 7 7 0111 I 0111
x 7 8 0111 I 1000

Y 7 I 9 0111 I 1001
z I UI IUIY

(7 11 0111 1011
: 7 12 0111 1100
} 7 13 0111 1101 - 7 14 0111 I 1110
DEL 7 15 0111 I 1111

<D Th. graphic! (Exclamation Point) con be used in.tead of I (logical OR) .

a> Th. graphic" (Circumflex) can be used instead of ~ (Logicol NOT) .

Figure E-2. ASCII to EBCDIC correspondence (Part 2 of 2).

E - 4 VSE/ Advanced Functions Macro User's Guide

E8(DI(

(01 I Row
Bit

I Pattern (omment,
(in H,ex)

7
I

(011 I 1100
(I 1100 0001
(1 2 1100 I 0010
(1 3 1100 I 0011
(1 4 1100 I 0100
(5 1100 0101
(6 1100 0110
(7 1100 0111
(8 1100 1 1000
(I 9 1100 1 1001
D I I 1101 1 0001
D 2 1101 0010
D 3 1101 0011
D 4 1101 0100
D 5 1101 0101
D 6 1101 I 0110
D I 7 1101 I 0111
D I 8 1101 1000
D I 9 1101 1001
E 2 1110 0010
E 3 1110 0011 •
E 4 1110 0100
E I 5 1110 I 010 1
E I 6 1110 I 0110
E I 7 1110 0111
E 8 1110 1000
E 9 1110 1001
4 A 0100 1010
E a 1110 I 0000 R.v.". Siont
5 I A 0101 I 1010
5 I F 0101 I 1111 Loaical NOT
6 I D 0110 1101 Und."cor.
7 9 0111 1001 Gro Accent
8 I 1000 0001
8 2 1000 0010
8 3 1000 I 0011
8 I 4 1000 I 0100
8 I 5 1000 0101
8 I 6 1000 0110
8 7 1000 0111
8 8 1000 1000
8 9 1000 L 1001
9 I I 1001 I 0001
9 I 2 lOCI I OCIO
9 I 3 1001 I 0011
9 4 1001 0100
9 5 1001 0101
9 6 1001 0110
9 7 1001 I 0111
9 I 8 1001 I 1000
9 I 9 1001 1001
A I 2 1010 0010
A 3 1010 0011
A 4 1010 0100
A 5 1010 0101
A 6 1010 I 0110
A I 7 1010 I 0111
A I 8 1010 I 1000
A 9 1010 100
(0 1100 0000
6 A 0110 1010 V.rtica Line
D a 1101 _0000
A 1 1010 1 0001 Tild.
a I 7 QOOO 1 0111

J

Appendix F:

For some special types of processing, users may
choose to write programs which, while executing as
one VSE user task, provide for the asynchronous
processing of several tasks. This multitasking, which
is not to be confused with VSE multitasking, is
generally used only in very sophisticated
applications where no other technique would give
acceptable performance.

This type of asynchronous processing (called
'private multitasking') is not supported by IBM and
therefore is not documented as such. VSE does, how­
ever, provide one tool which aids the programmer
doing private multitasking. This is the ability to
overlap the handling of a page fault in one private
subtask with the processing of another private sub­
task.

The user may set up an appendage routine which
is to be entered whenever his VSE task causes a page
fault. This appendage routine sets the conditions for
dispatching a private subtask originating in the same
VSE task. The routine is called by the VSE supervisor
whenever the VSE task causes a page fault and
whenever a page fault has just been handled for that
task.

The VSE task is not put into the wait state when it
causes a page fault as is usually the case, but re­
mains dispatchable. The linkage to the appendage
is established by issuing a SETPF A macro.

The appendage routine must not cause a page
fault and, therefore, must be fixed in real storage
using the PFIX macro before the SETPF A macro is
issued. Also, the appendage routine must not issue
an svc instruction. The routine is given control in
the supervisor state, with I/O interrupts disabled,
and with protection key zero. Following is a de­
scription of the conventions observed by page fault
appendages in VSE as well as suggestions on how an
appendage should be set up.

Register Usage
The following registers are used to pass information
between the supervisor and the page fault append­
age:

• Register 7 contains the return address to the
supervisor.

• Register 8 contains the address of the append­
age routine and can, therefore, be used as the
base register.

• Register 13 contains a parameter with informa­
tion about the page fault to be handled. The

o

Page Fault Handling Overlap

information in register 13 has the following
format:

reserved

Bytes 1-2:

address of page I reserved
2 3

leftmost 16 bits of the address of the page
(on page boundary) which has to be han­
dled.

• The contents of the remaining registers (0 to 6,
9 to 12, and 14 to 15) are undefined. However,
the contents of all registers are saved by the
supervisor before it transfers control to the ap­
pendage routine.

Entry Linkage
The entry coding for the appendage should be as
follows:

label USING *,8 use reg.8 as base
register

B ENTRYA used after page
fault

B ENTRYB used after page
fault completion

The name specified for label is the entry point of
the routine specified in the SETPFA macro. The
branch to ENTRY A is taken whenever the task causes
a page fault. The branch to ENTRYB is taken when­
ever a page fault for the task has been handled.

Page Fault Queue
The appendage must have a queue with a four-byte
entry for each private subtask controlled by that VSE
task. This queue is used to store the page fault in­
formation passed in register 13.

Processing at the Initiation of a
Page Fault
When the routine is entered at ENTRYA, register 13
contains information on the page fault which has
just occurred. The appendage must store the con­
tents of register 13 in an internal page fault queue,
put the task causing the page fault into an internal
wait state, and, if possible, have a private subtask
dispatched.

To be able to always dispatch a private subtask, a
special subtask must exist that issues aWAIT or a
W AITM with an unposted ECB. This special subtask
will be dispatched if no "normal" private subtask is
dispatchable.

To have a private subtask dispatched, the ap­
pendage routine must store, in bytes 8 to 15 of the

Appendix F: Page Fault Handling Overlap F - I

task's save area, an EC-mode psw that contains the
address of the subtask instruction which is to be
executed first. Normally, this is accomplished by
setting up this psw (along with any values that
should be loaded into specific registers for the
subtask's execution) in the save area of the particu­
lar subtask and exchanging this save area's contents
with the contents of the save area for the task that
issued the SETPF A macro.

The routine must then return control to the su­
pervisor.

Processing at the Completion of a
Page Fault
Whenever a page fault request has been handled for
the VSE task, control is passed to ENTRYB. The ap­
pendage routine should dequeue the request which

s
u ~ "~,~,, P (PFR4)
E
R Page Faull Handler
V .- (request PFR4 is not enqueued

I to system queue)

S occupied by

0 other VSE
tasks

R

A
page fault request
PF R4 is transferred

R to appendage routine

E in register 13

A

Entry A of page fault
appendage routine

p 0
on

A c:
" private" subtask that

R
.~ · set
c: caused PF R4 to internal

T
0
u wait state

I ~ · activate another " private"
~ subtask T ..
1;;

I .;;'
enqueue PFR4 to internal PFR4 ., · 0 a: page fault queue

N - · return via register 7

has just been handled from the internal page fault
queue. If there are any more page fault requests in
the queue, the information for the next request to be
handled must be returned in register 13; otherwise,
register 13 must contain zero.

Each time control is passed to ENTRYB, the traffic
bit (bit 0, byte 2) in the ECB used by the special sub­
task should be set on. Since the page manager will
remove the VSE task from the WAIT state ifit was put
there because of the WAIT or W AITM issued by the
special subtask, the special subtask will get control
and can then resume internal dispatching.

Figure F-l is an example of how page faults are
handled when the task causing the page faults has
set up a page fault appendage. For the layout of a
task's (or subtask's) save area, see the section "Save
Areas" in VS E / A dvanced Functions Serviceability
Aids and Debugging Procedures.

system page

"Y VSE';~.""
fault queue Page Manager

··········· 1 · get PF R 1 from queue r--· transfer control to entry 8

>< when PF R 1 has been handled

>< · enqueues PF R2 to system
queue at location of PFR 1

t
(VSE)

dispatcher

Entry 8 of page fault
appendage routine ,

internal page · post "private" subtask fault queue
PFR1 that caused PF R 1 - · dequeue PF R 1 from internal

PFR3 PFR2
queue

· load register 13 with PFR2
PFR2 from internal queue

· return via register 7

Assumptions: • Sequence of page fault requests to be handled is PFR 1, PFR2, PFR3, PFR4 .
• During handling of PFR1 three other page fault requests have been caused by the same VSE task.

queue entry is removed from queue

Figure F-1. Page fault handling overlap.

F - 2 VSE/ Advanced Functions Macro User's Guide

J

,

Appendix G: Using System Control Macros in Reenterable
Programs

A reenterable program can be entered and used
concurrently by several tasks without sacrificing the
integrity of its instructions or data areas.

Data areas that may be modified by a reenterable
program must be unique to each task executing that
program. Examples of such areas are: save areas, I/O
areas, control blocks. Consider a program contain­
ing the A TT ACH macro:

column 72

"' ATTACH SUBTASK, X
SAVE=LOCSAV, X
ECB=LOCECB, X
ABSAVE=LOCSAVAB

•
•
•
WAIT LOCECB
•
•
•

LOCSAV DS 9D
LOCSAVAB DS 9D
LOCECB DC F'O'

•
•

A task that executes the above ATTACH macro
initializes the save area (LOCSA V) for the subtask to
be attached. After the attached subtask has started
processing, it can be interrupted. While the subtask
remains in the wait state, another task may be dis­
patched and execute the macro. Because only one
subtask save area exists, this task, in initializing the
save area, would destroy whatever was saved there
when the interrupt occurred. As coded above, the
ATTACH macro is not reenterable because data areas
are not unique to the tasks executing the macro.

A commonly used method of isolating data areas
for individual tasks is to establish them outside the
program's boundaries. Through the GETVIS macro,
a task may dynamically acquire storage which it will
use as a data area; this data area may be kept unique
to the task that acquires it.

Fields in the dynamic storage area are addressa­
ble through registers. Figure 0-1 shows how to
acquire and address dynamic storage and how to
refer to the individual fields in the A TT ACH macro:

DYNSTOR DSECT , DYNAMIC STORAGE AREA
DYNPARM DS CL64 REENTERABLE MACRO PARM AREA
DYNSAV DS CL72 SUBTASK SAVE AREA
DYNSAVAB DS CL72 SUBTASK AB-EXIT SAVE AREA
DYNECB DS F SUBTASK ECB
DYNSTORL EQU *-DYNSTOR LENGTH OF DYN STORAGE

•
•
•
LA O,DYNSTORL LENGTH FOR GETVIS
GETVIS ADDRESS=(10)
•
•
USING DYNSTOR, 1 0 MAKE DYNAMIC STORAGE

* ADDRESSABLE THRU BASE REG.l0
LA 7,DYNSAV
LA 8,DYNECB
LA 9,DYNSAVAB
ATTACH SUBTASK,SAVE=(7) ,ECB=(8) ,ABSAVE=(9)
•
•
•

Figure G-1. Acquiring and addressing dynamic storage.

Appendix G: Using System Control Macros in Reenterable Programs G - I

Writing the ATTACH macro as shown in Figure
G-I generates the following code (macro expan­
sion):

A
B

CNOP
ST
ST
LR
BAL
DC
DC
DC
SVC

2,4
8,14+4+*
9,10+8+*
0,7
1, *+16
A(SUBTASK)
A(O)
A(O)
38 ATTACH SUBTASK

Data areas (a parameter list) exist inside the ma­
cro expansion. They are common to all tasks con­
currently executing this ATTACH macro and are
modified via statements at A and B. In the context
ofreentrancy, they belong in the same category as
save areas, I/O areas, or control blocks. A program
containing a macro as written above is not reentera­
ble.

For system control macros with the MFG operand
(such as ATTACH, FETCH, GETIME, etc.) VSE builds a
parameter list outside the macro expansion. The
MFG operand points to this list. The list is a 64-byte
area which the program provides for the macro's
execution.

To make the program reenterable the parameter
list must be unique to any task executing the macro.
Again, a convenient method of establishing that
uniqueness is to make the parameter list part of a
dynamically obtained storage area. The ATTACH

macro would then look as follows:

ATTACH SUBTASK, X
SAVE=(7) ,ECB=(8) ,ABSAVE=(9), x
MFG=(1 0)

Note: MFG stands for "Macro Format: Generate", bearing some
resemblance to the MF=(G, ...) parameter in VSAM macros.

G - 2 VSE/ Advanced Functions Macro User's Guide

The macro expansion shows that the parameter
list is no longer stored into the generated code; in­
stead, the parameter list is only referenced (using
register 10 in this example):

L O,=A(SUBTASK)
ST 0,0+0 (1 0)
ST 8,0+4+0(10)
ST 9,0+8+0(10)
LR 0,7
LA 1,0(10)
SVC 38

Register notation, as used in the preceding exam­
ple, may be costly because each operand uses up a
register and, in addition, each register has to be pre­
loaded with the address of the pertinent field.

Where indicated in the macro format (refer to
VSE/Advanced Functions Macro Reference), the
operand may be specified in (s,address) notation
instead of register notation. The A TT ACH macro is
one of the macros that allows this alternative:

ATTACH SUBTASK,
SAVE=(S,DYNSAV) ,
ECB=(S,DYNECB),
ABSAVE=(S,DYNSAVAB) ,
MFG=(S,DYNPARM)

x
x
x
x

An operand written in (s,address) notation as­
sembles like an s-type address constant: its object
code is an assembler instruction address in base
register/displacement form. Example: for the above
ATTACH macro,

DYNSAV
DYNECB

assembles into
into

X' A040' ,
X'AODO' .

Observe that both addresses contain the same
register (10). With (s,address) notation, only one
register is used, the one that serves as the base regis­
ter for the DSECT.

L

A-type address constants D-3
abnormal end (see STXIT macro)
abnormal end

of task, su btask 10-12
abnormal termination (see STXIT macro)
abnormal termination user exit 10-8
access control

tape label processing C-7
Access Methods 3-1
activating (initializing) a DAM file 4-9
activating (opening) a DASD file 4-3
activating a SAM file 3-3,4-3
activating (initializing) an ISAM file 3-26,4-24
adding new records

DAM 4-16
ISAM 4-29, 4-27

adding overflow areas to an ISAM file 3-28
adding records to a DAM file 3-21
adding records to an ISAM file 3-28, 3-29,4-27,4-29
address constants in self-relocating programs D-3
advanced page-in 10-4
advanced printer buffering (3800) 8-1
advantages of self-relocating programs D-2
algorithm

choice of 2-3
DAM transformation 2-1,2-2

Alternate Tape Switching 9-12
appendage routine for page faults F-I
ASA option for control character codes A-I
ASCII E-I

character set E-2
files C-4, E-I

assembling a format record
3886 7-32,7-34

assembling DTFs and logic modules 1-6
assembling your program, DTFs, and logic modules B-1
assembly examples B-2 - B-19
Assigning and Releasing I/O Units 10-5
Assigning and Releasing Tape Drives 10-6
ASSIGN macro 10-6
associated files

card 7-1
GET/CNTRL/PUT Sequence 7-10
printer 7-10
processing considerations for card files 7-3
Read-Punch-Print 7-3

asynchronous processing F-I
attaching a subtask 10-23
ATTACH macro 10-21,10-22

in reenterable programs G-I

backward reading of tapes C-6
balancing teleprocessing 10-4
block size, magnetic tape file 6-1
block

FBA 3-2
logical 3-2
physical 3-2

blocked record
processing (SAM) 3-8
selective processing 3-10

blocked records
ISAM 3-25
SAM 3-6,3-7

blocking diskette files 5-2
branching between phases 10-16
buffer

CI (control interval) 3-2
forms control (FCB) 10-33

CALL macro 10-16,10-20
called program 10-17
calling program 10-17
CANCEL macro 10-12
capacity record, DAM 3-24
Card Device Control 7-7
card files

end-of-file handling 7-5
error handling 7-6

card-to-disk operations B-1
CAT ALR card B-5
CCB (Command Control Block) 9-3,9-5
CCB

conditions indicated 9-6
format 9-5
macro 9-3

CDLOAD macro 10-1
CDMOD macro 7-1
changing processing priority 10-22
channel program example 9-12
channel programs

CKD DASD, with PIOCS 9-11
diskette, with PIOCS 9-12
FBA devices 9-11

CHAP macro 10-22
character set, ASCII E-2
CHECK macro

MICR 7-18,7-19
work file 3-14, 3-1 ~

checking DASD extents (PIOCS) 9-8
checking nonstandard labels 9-8, C-6
checking standard labels C-2, C-6
checking user standard tape labels 6-1, 9-8
checkpoint records

bypassing, with PIOCS 9-13
checkpoint

choosing a 10-12
files 10-14
information not saved 10-14
information saved 10-14
on CKD DASD 10-15
on FBA DASD 10-15
on tape 10-15
operator verification table 10-16
repositioning files 10-15
restarting 10-14
saving data for restart 10-14
timing 10-12

Checkpointing a Program 10-12
CHKPT macro 10-12
CI 4-3,3-1

buffer 3-2
logical blocks 4-3

CISIZE
DLBL parameter 4-3

CKD architecture 3-2
CKDDASD 3-2
CKD DASD Channel Programs, with PIOCS 9-11
Clear Disk utility program 3-21, 4-11
clearing a track, with DAM 4-17
CLOSE macro

DAM 4-22
ISAM 4-33
PIOCS 9-9
SAM 3-17
SAM, on DASD 4-8

CLOSER macro
DAM 4-22
ISAM 4-34
SAM 3-17
self-relocating programs D-3

Index

Index I - I

closing a file
DAM 4-22
diskette 5-3
ISAM 4-33
PIOCS 9-9
SAM 3-17,4-8

CNTRLmacro
card devices 7 -7, 7-8
DAM 4-19
magnetic tape 6-6
printer 7-10,7-11,7-12,7-14
SAM 3-17
1287/1288 7-24,7-25,7-26
3881 7-27
3886 7-26

COCR (Cylinder Overflow Control Record) 2-10
code translation on input (paper tape) 7-38,7-39
codes, control A-I
combined card file processing example 3-8
combined files (SAM) 3-12
combining sequential and direct retrieval (ISAM) 3-30
command chaining

diskette 5-2
FBA device 9-12
PIOCS 9-10
retry bit 9-10

Command Control Block (CCB) 9-5
Command Control Block format 9-5
communication between job steps 10-4, 10-5
communication between tasks 10-28
communication region 10-4, 10-5
COMRG macro 10-5
console buffering

PIOCS 9-12
console files

processing 7 -14
programming considerations 7-15

control character codes A-I
control characters A-I
control functions 10-1
Control Interval (see also Cl)
control interval

buffer 3-2
format 3-1
hold function 10-29

Control Program Function Macros I-I
count area

DAM 3-21
creating a file

DAM 3-21
ISAM 3-27

CTLCHR operand A-I
cylinder address (DAM) 4-11
cylinder index 2-4,2-7
cylinder index area (ISAM) 4-27
cylinder overflow area 2-2
Cylinder Overflow Control Record (COCR) 2-10

DAM (Direct Access Method) 3-18
DAM

adding new records 4-16
adding records to a file 3-21
capacity record 3-24
closing a file 4-22
count area 3-21
creating a file 3-21
data area 3-20, 3-21
error handling 4-19
error status bits 4-20,4-21
I/O area format 3-19, 3-20
1/0 Area Specification 3-19
identifier (10) reference 3-24
initialization 4-9
key reference 3-23

1- 2 VSE/ Advanced Functions Macro User's Guide

locating data 3-21
Locating Free Space 3-24
logic modules 3-24
non-data-device command 4-19
opening a file 4-9
overflow organization 4-15
overwriting existing records 4-17
processing 4-8, 4-10
reading blocks of data 4-14
record reference by AFTER 4-18
record reference by 10 4-16,4-18
record reference by Key 4-16,4-17
record reference by RZERO 4-18
record types 3-19
record zero (RO) 3-21,3-22
reference methods 3-21
spanned record 3-19
writing blocks of data 4-16
writing over existing records 4-17

DAMOD 4-8
DAMODV 4-8
DASD Record Protection (Track Hold) 10-29
DASD standard labels C-I
DASD

capacities 4-1,4-2
checkpoint considerations 10-14
checkpoints on disk 10-15
error handling by DAM 4-19
error handling by ISAM 4-26
error handling by SAM 4-6
label processing by SAM 4-5
processing with SAM 4-2
record capacities 4-1
track capacities 4-2

data area 2-4
DAM 3-21
ISAM 2-4

data areas 2-2
direct organization 2-2
prime 2-4

data base 2-1
Data Chaining

PIOCS 9-11,9-12
data file processing (with SAM) 3-4
data organization 2-1

direct 2-1
sequential with index 2-3
sequential without index 2-1

data records, reading 3886 7-31
data transfer

FBA device 3-2
diskette 5-2

deactivating a DAM file 4-22
deactivating a sequential DASD file 4-8
deactivating a PIOCS file 9-9
deactivating a SAM file 3-16,4-8
deactivating an ISAM file 3-30, 4-34
Declarative IOCS Macros I-I
Declarative Macro Statements 1-10
declarative macros (SAM) 3-18
Define The Lock (DTL) macro 10-27
defining DAM files 4-8
defining ISAM files 4-22
defining SAM files 3-2
deleting records (ISAM) 3-30
DEQ macro 10-21, 10-24 - 10-29
dequeueing a resource 10-24
describing SAM files 3-2
DETACH macro 10-12,10-24
detaching a subtask 10-24
device independence 8-1
device-independent system files 8-1

end-of-file handling 8-3
error handling 8-2

•

..

•

processing 8-1
record size 8-1

Device Support Facility 4-10
DFR macro operands 7-23
DFR macro, with 3886 7-31
DIMOD macro 8-1
direct (random) processing, lSAM 3-30
direct (random) retrieval, lSAM 3-30
Direct Access Method (DAM) 3-18
direct linkage (between routines) 10-18
direct organization 2-1
DlSEN macro

MlCR 7-19
with 1270/1275 7-27

disk utility programs 4-10, 4-11
diskette files 5-1

blocking 5-2
command chaining 5-2
processing 5-1
with PlOCS 5-1

diskette 5-1
channel programs 9-11,9-12
checkpoint considerations 10-14
data transfer 5-2
error handling 5-3
labels C-3
standard labels 9-3

DLINT macro operands 7-23
DLiNTmacro

with 3886 7-31
document control on 3886 7-31
document marking on 3886 7-31
DSPLY macro

with 1287/1288 7-29
DTF table 1-2
DTFCD macro 7-1,7-2
DTFCN macro operands 7-15
DTFDA files

hold function 10-29
module name 1-5

DTFDA macro operands 4-9
DTFDA 4-8
DTFDl macro operands 8-2
DTFDI

macro 8-1
module name 1-5
restrictions 8-1

DTFDR macro operands 7-23
DTFDRmacro

with 3886 7-31
DTFDU error options 5-4
DTFDU macro 5-1
DTFlS files

hold function 10-29
DTFlS macro operands 4-23
DTFMR macro operands 7-16
DTFMRmacro

with 1270/1275 7-27
DTFMT error options 6-6
DTFMT macro operands 6-2
DTFMT macro sample 1-3
DTFOR macro operands 7-24
DTFPH macro 9-1
DTFPH macro operands 9-2
DTFPR macro 7-10
DTFPR macro operands 7-12
DTFPT macro operands 7-36
DTFs, assembling 1-6, B-1
DTFSD data files, hold function 10-29
DTFSD macro 4-2
DTFSD macro operands 4-4
DTFSD work files

hold function 10-29
DTFSD

error handling 4-6
module name 1-5

DTL macro 10-27
DUMP macro 10-10,10-11
dumps, requesting storage 10-10
Dynamic Allocation of Virtual Storage 10-4
dynamic storage area G-I

EBCDIC to ASCII correspondence E-2
ECB (event control block) 10-21

specifying, for multitasking 10-21
end-of-file handling

card files 7-5
DASD standard labels C-2
device-independent system files 8-3
diskette labels C-3

end-of-volume processing
DASD standard labels C-I
diskette labels C-3

ENDFL macro 4-29, 4-27
ending a

job 10-11
subtask 10-12
task 10-11

ENQ macro 10-21,10-24 - 10-25
enqueueing a resource 10-24
entry linkage for page fault appendage F-I
EOJ macro 10-11
ERET macro 4-6, 4-26, 6-4, 8-3
error handling

card files 7-6
DAM 4-19
device-independent system files 8-2
diskette 5-3
DTFMT 6-4
lSAM 4-26
magnetic tape files 6-4
paper tape 7-39
printer files 7-14
SAM, on DASD 4-6
3886 7-32

error options
DTFDU 5-4
DTFMT 6-4, 6-6

error processing routines
magnetic tape 6-5
sequential DASD 4-6

error status bits (for ERRBYTE on DAM) 4-20, 4-21
ESETL macro 4-29, 4-32
ESETLmacro

issuing a hold 10-31
event control block (see ECB)
example

assembling DTFs and logic modules B-1 - B-19
attaching a subtask 10-23
channel program 9-12
checkpointing 10-9, 10-13
combined card file processing 3-8
DAM overflow organization 4-15
detaching a subtask 10-24
interval timer 10-9
lSAM file 2-8
multitask linkage 10-10
OMR coding 7-5
PFlXand PFREE 10-3
POST macro 10-30
program check user exit 10-11
restarting check pointed program 10-13
sharing a resource 10-26
supersetting/subsetting 1-5
track hold 10-32
UNLOCK macro 10-28

EXCP macro 9-4
execution mode

Index 1-3

determining the 10-3
EXIT macro 10-8, 10-12
extending an ISAM file 3-28, 4-27
extent checking (on DASD) 4-3
extent checking, with PIOCS 9-8

FBA (Fixed Block Architecture) 3-1
FBADASD 3-2
FBA

blocks 3-2,4-3
channel programs 9-11
DASD Processing 4-3
data transfer 3-2

FCB (Forms Control Buffer), loading an 10-33
FCB 1O-11,1O-33
FCEPGOUT macro 10-3
FEOV macro 3-16,6-1

PIOCS 9-9,9-12
FEOVD macro 3-16

SAM, on DASD 4-8
FETCH macro 10-1
file management system (ISAM) 3-24
file organization 2-1

direct 2-1
sequential, with index 2-3
sequential, without index 2-1

file reorganization (ISAM) 3-25
file-protected D AS D files 9-10
FilenameC (ISAM) 4-28
Fixed Block Architecture (see also FBA) 3-1
fixing pages in real storage 10-2
forcing end-of-volume 3-16

magnetic tape 6-1
PIOCS 9-9,9-12
SAM 3-11
SAM on DASD 4-8

forcing page-in 10-4
forcing page-out 10-3
format record

assembling (3886) 7-32,7-34
format, macro 1-8
formatting write (WRITE SQ) 3-14
forms control buffer (FCB), loading a 10-33
forms control buffer (see FCB)
FREE macro 10-31
freeing pages in real storage 10-2
FREEVIS macro 10-4

generate macro format G-2
generation of system pack B-12
GENDTL macro 10-27
GENIORB macro 9-3
GENL macro 10-1
GET macro

ISAM 4-32
MICR 7-18,7-19
SAM 3-5
with 1270/1275 7-27

GETIME macro 10-6
GETVIS area 10-1, 10-4
GETVIS macro 10-4
GETVIS macro

in reenterable programs G-I

hashing 2-2
header labels (see tape labels)
hold function 10-29

I/O area format
DAM 3-19,3-20

I/O area requirements (ISAM) 4-26
I/O area specification, ISAM 4-22
I/O Area Specification

1- 4 VSE/ Advanced Functions Macro User's Guide

DAM 3-19
SAM 3-3

I/O areas
ISAM 4-25
papertape 7-39

I/O Request Block (IORB) 9-3
I/O units

assigning/releasing 10-5
identifier (10) reference with DAM 3-24
Imperative 10CS Macros I-I
independent overflow area 2-2
index area 2-4
index structure for ISAM file 2-9
Indexed Sequential Access Method (ISAM) 3-24
indexes, ISAM 2-4
influencing the paging mechanism 10-3
initialization with DAM 4-9
initialization

ISAM 4-24
initializing disk (Device Support Facility) 4-10
initiation, subtask 10-21
interrelationship of macros 1-6
Intertask Communication 10-28
interval timer (see STXIT macro)
interval timer 10-6

interrupt 10-7
setting 10-6
testing 10-7
unexpired time 10-7
user exit 10-8

10CS logic modules
assembling B-1

10CS Macros I-I
10RB (I/O Request Block) 9-3
IORB macro 9-3
ISAM (Indexed Sequential Access Method) 3-24
ISAM

activating a file for processing 3-26
adding overflow areas to a file 3-28
adding records to a file 3-28, 3-29, 4-29
blocked records 3-25
closing a file 3-30, 4-33
creating a file 3-27
cylinder index 2-7,2-8,2-4
cylinder index area 4-27
data area 2-4
deleting records 3-30
disk storage space formulas 4-35
error handling 4-26
extending a file 3-28, 4-27
file example 2-8
file index structure 2-9
file reorganization 3-30
indexes 2-4
key area 2-4
key areas 3-26
loading a file 4-27
logic modules 3-31
logical records 3-26
master index area 4-27
opening a file 3-26, 4-24
prime data area 4-27
processing a file 3-26
processing files 4-26
programming considerations 4-34
record types 3-26
reorganizing a file 3-30, 3-32
restrictions 3-25
sequential processing 3-25
sequential retrieval 4-32
storage areas 3-26

ISMOD macro operands 4-24

J

•

•

J

..

JDUMP macro 10-11, 10-12
JOBCOM macro 10-5
job end 10-11
job steps, communication between 10-4, 10-5

key area 2-4
key areas

ISAM 3-26
key reference

DAM 3-23
keyword operands 1-9

LABADDR routines
for DASD files C-I
for tape input files C-5
for tape output files C-3

label processing C-I
magnetic tape 6-1

label processing
SAM, on DASD 4-5
with access control C-7

LBRETmacro
DAM 4-10
magnetic tape 6-1
PIOCS 9-4, 9-8

LFCB macro 10-33
line skipping on printer 7-11
line spacing on printer 7-11, 10-33
link-editing programs 1-6
linkage editor 10-17
linkage

direct, (between routines) 10-18
registers 10-19

LlOCS functions in PIOCS processing 9-10
LITE macro

MICR 7-20
with 1270/1275 7-27

LOAD macro 10-1
loading a phase 10-1
loading a program 10-1
loading an ISAM file 4-27
loading DAM files 4-10
Locating Data (DAM) 3-21
Locating Free Space (DAM) 3-24
lock control block 10-27
LOCK macro 10-27
LOCK OPT, resource sharing 10-27
lock request count 10-27
lock table size 10-27
Logic Module Generation Macros 1-4
logic modules, supplying the name for 1-5
logic modules

assembling B-1, 1-6
DAM 3-24
ISAM 1-4,3-31
preassembled 1-4
providing 1-4
RPS 1-5
SAM 3-17
standard module names 1-5

logical block 3-2
logical blocks

in FBA blocks 4-3
logical records

ISAM 3-25

macro format 1-8
macro format: generate (MFG) G-2
macro processing I-I
macro statements, declarative 1-10
macro types I-I
macro

ASSIGN 10-6

ATTACH 10-22
CALL 10-16, 10-20
CANCEL 10-12
CCB 9-3
CDLOAD 10-1
CDMOD 7-1
CHAP 10-22
CHECK 3-15,7-19
CHKPT 10-12
CLOSE (see CLOSE)
CLOSER (see CLOSER)
CNTRL (magnetic tape) 6-6
CNTRL (see CNTRL)
COMRG 10-5
DEQ 10-21,10-24
DETACH 10-12
DFR 7-21,7-23
OIMOD 8-1
OlSEN 7-19,7-27
DLiNT 7-21,7-23
DSPLY 7-29
DTFCD 7-1,7-2
DTFCN 7-14,7-15
DTFOI 8-1
DTFDR 7-21,7-23
DTFDU 5-1
DTFlS 4-22,4-23
DTFMR 7-15,7-16
DTFOR 7-24
DTFPH 9-1
DTFPR 7-10,7-12
DTFPT 7-35,7-36
DTL 10-27
DUMP 10-10,10-11
ENDFL 4-27,4-29
ENQ 10-21,10-24
EOJ 10-11
ERET 4-6, 4-26, 6-5, 8-3
ESETL macro 4-29, 4-32
EXCP 9-4
EXIT 10-8, 10-12
FCEPGOUT 10-3
FEOV 6-1
FEOV (see FEOV)
FETCH 10-1
FREE 10-30
FREEVIS 10-4
GENDTL 10-27
GENIORB 9-3
GENL 10-1
GET (see GET)
GETIME 10-6
GETVIS 10-4
IORB 9-3
ISMOD 4-24
JDUMP 10-11
JOBCOM 10-5
LBRET 4-10,6-1,9-4,9-8
LFCB 10-33
LITE 7-20,7-27
LOAD 10-1
LOCK 10-27
MODDTL 10-27
MRMOD 7-15
MVCOM 10-5
NOTE 3-15
OPEN (see OPEN)
OPENR (see OPENR)
PAGEIN 10-4
PDUMP 10-11
PFIX 10-2
PFREE 10-2
POINTR 3-15,3-16
POINTS 3-15,3-16

Index 1- 5

POINTW 3-15,3-17
POST 10-28, 10-29
PRMOD 7-10,7-12
PRTOV 7-10
PTMOD 7-35,7-36
PUT (see PUT)
PUTR 7-15
RCB 10-24
READ (see READ)
RELEASE 10-5
RELPAG 10-3
RELSE 3-11
RESCN 7-29
RETURN 10-16,10-20,10-21
RUNMODE 10-2
SAVE 10-16, 10-20
SECTVAL 9-4
SETDEV 10-14,7-31
SETFL 4-27
SETIME 10-6
SETL macro 4-32
SETPFA F-I
SETT 10-7
STXIT 10-8, 10-10
TECB 10-7
TESTT 10-7
TPIN 10-4
TPOUT 10-4
TRUNC 3-11
TTl MER 10-7
UNLOCK 10-27, 10-28
WAIT 10-7,10-28
WAIT (PIOCS) 9-4
WAITF (see WAITF)
WAITM 10-28
WRITE (see WRITE)

macros, interrelationship of 1-6
macros

control program function I-I
declarative(DTF) 1-1,1-10
declarative IOCS I-I
imperative IOCS I-I
IOCS I-I
source-program I-I
supervisor I-I
VSAM I-I

Magnetic Ink Character Reader (MICR) 7-15
magnetic reader files

processing 7 -15
magnetic tape device characteristics 6-3
magnetic tape labels C-3
magnetic tape

label processing C-3
reading backwards 6-1, C-6

master index 2-4, 2-7
master index area (ISAM) 4-27
MFG operand G-2
MICR (Magnetic Ink Character Reader) 7-15
MICR

characteristics 7-15
checkpoint considerations 10-14
document buffer 7-15,7-16,7-17
document buffer format 7-20,7-21
document processing 7-22
programming considerations 7-18
stacker selection routine 7-16
stacker selection timing 7-18

mixed format (macro operands) 1-9
MODDTL macro 10-27
module names, standard 1-5
modules, supplying the name for 1-5, 1-6
MRMOD macro 7-15
MRMODmacro

with 1270/1275 7-27

I - 6 VSE/ Advanced Functions Macro User's Guide

MTC job control statement C-6
MTMOD macro operands 6-3
multitask linkage example 10-10
Multitasking Functions 10-21
multitasking

attaching a subtask 10-23
private F-I
save areas required 10-21
subtask initiation 10-21
terminating a subtask 10-24

multivolume file processing (SAM) 3-11
MVCOM macro 10-5

non-data device operations
DAM 4-19
magnetic tape 6-6
optical readers 7-24
SAM 3-17

non-formatting write (WRITE UPDATE) 3-14
non-standard labels

checking, with PIOCS 9-8
writing, with PIOCS 9-8

non-standard tape labels 6-1
nonstandard labels C-6
normal end

of sub task 10-12
of task 10-11

notation, register 1-9
notation

S,address 1-10
notational conventions (macro operands) 1-9
NOTE macro

work file 3-15

obtaining a record (SAM) 3-5
OCR document processing 7-22
OMR coding example 7-5
OMR Data 7-3
OMRdata

data card 7-4
data record 7-4
format descriptor card 7-3

OPEN macro processing
DASD standard labels C-I
diskette labels C-3

OPEN macro
DAM 4-9
DASD 4-3
ISAM 4-24
PIOCS 9-1
SAM 3-3,3-4
with 1287/1288 7-28

opening a file
DAM 4-9
DASD 4-3
diskette 5-1
ISAM 3-26, 4-24
PIOCS 9-1
SAM 3-3

opening a work file 3-13
OPENRmacro

DAM 4-10
ISAM 4-24
SAM 3-4
self-relocating programs D-3

operands
keyword 1-9
mixed format 1-9
positional 1-8

operator communication (see STXIT macro)
operator communication user exit 10-10
operator verification table 10-16
Optical Mark Reader(see OMR)
optical reader files

J

..

J

J

•

processing 7-20
optical readers, programming considerations 7-27
output area requirements (ISAM) 4-26
overflow area 2-2, 2-3, 2-4, 2-7, 2-8

cylinder 2-2
independent 2-2
ISAM 2-7, 2-8

overwriting existing records
DAM 4-17

page fault appendage F-I
page fault handling overlap F-I
page fault queue F-I
page fIXing 10-2
page freeing 10-2
page-fix counter 10-2
page-in in advance 10-4
page-out; forcing 10-3
PAGEIN macro 10-4
paging 10-2, 10-3
paging mechanism 10-2, 10-3
paper tape

code translation on input 7-38
code translation on output 7-39
end-of-file (input) 7-38
error handling 7-39
file processing 7-35
I/O areas 7-39
input 7-36
output 7-38
programming considerations 7-35
record format (input) 7-37
record format (output) 7-38
trailer length (input) 7-38

partition related information 10-2, 10-3
Partition Communication Region 10-4, 10-5
passing parameters between phases 10-17
PDUMP macro 10-11
PFIX macro 10-2
PFREE macro 10-2
phase loading 10-1
physical block 3-2
physical DASD address (DAM) 3-21
Physical 10CS (PIOCS) 9-1
physical track address (DAM) 3-22
PIOCS (Physical 10CS) 3-33,9-1
PlOCS macros, relationship between 9-9
PlOCS 3-33

activating a file 9-1
Alternate Tape Switching 9-12
checkpoint records, bypassing 9-13
CKD DASD Channel Programs 9-11
CLOSE macro 9-9
console butTering 9-12
Data Chaining 9-11, 9-12
diskette channel programs 9-12
extent processing 9-8
FBA channel programs 9-11
FEOV macro 9-9,9-12
forcing end-of-volume 9-9
Initialization 9-1
label processing 9-2, 9-8
OPEN macro 9-1
opening a file 9-1
Processing 9-3
processing, LIOCS functions in 9-10
Programming Considerations 9-10
RPS 9-11
Termination 9-9
3800 Printing Subsystem restrictions 9-11

pocket light switches 7-22
POINTR macro

work file 3-15,3-16
POINTS macro

work file 3-15,3-16
POINTW macro

work file 3-15, 3-17
positional operands 1-8
POST macro 10-28, 10-29
preassembled logic modules 1-4
primary keys 2-1,2-2
primedataarea(DAM) 4-13
prime data area (ISAM) 4-27
prime data area

DAM 2-2
ISAM 2-4

prime data records 2-4
Printer Control 7-7, 7-11
printer control codes 7-12, A-I, A-2
Printer Overflow 7-10
printer-keyboard (see also console files) 7-14
printer

associated files 7-10
control codes 7-12,7-13, A-I, A-2
error handling 7-14
file processing 7-10
UCS feature 7-13

priority, changing processing 10-22
private multitasking F-I
private subtask F-I
PRMOD macro 7-10
PRMOD macro operands 7-12
Processing Blocked Records (SAM) 3-8
processing considerations

associated files 7 -3
Processing Console Files 7-14
processing DAM files 4-8, 4-10
processing DAM records

with Key area 4-11
without Key area 4-12

Processing DASD Files 4-1
processing data files (with SAM) 3-4
Processing Device-Independent System Files 8-1
processing diskette files 5-1
processing ISAM files 3-26, 4-26
Processing labels, magnetic tape 6-1
Processing Magnet;,; Reader Files 7-15
processing magnetic tape files 6-1
Processing Optical Reader Files 7-20
Processing Paper Tape Files 7-35
Processing Printer Files 7-10
Processing Punched Card Files 7-1
processing standard labels

PlOCS 9-8
Processing Unit Record Files 7-1
processing update files (SAM) 3-12
Processing with DAM 4-8,4-10
Processing with SAM

DASD 4-2
processing work files (with SAM) 3-12
processing

at the completion ofa page fault F-2
at the initiation of a page fault F-I
DAM input 4- \0
DAM output 4-10
device-independent system files 8-1

Processing
PIOCS 9-3

program assembling B-1
program check (see STXIT macro)
program check user exit 10-8
Program Communication 10-4
Program Linkage 10-16
program loading 10-1
programmer logical units 1-4
programmer logical units

releasing 10-5
programming considerations

Index 1-7

console files 7-15
interval timer with multitasking 10-8
ISAM 4-34
MICR 7-18
optical readers 7-27
paper tape 7-35
PIOCS 9-10
proBram, phase loading 10-1
2560 printing 7-6
3525 printing 7-6
5424/5425 printina 7-7

programming error processing routines
magnetic tape 6-5
sequential DASD 4-6

proaramming techniques for self-relocating programs D-2
proBrams

assembling with DTFs a!ld logic modules B-1
link -editin& 1-6
reenterable G-I
self-relocating 0.1, 1-7

protecting resources 10-27
providing logic modules 1-4
PRTOV macro 7-10
PTMOD macro operands 7-36,7-37
punch-read-feed feature (on card devices) 7-4
PUT macro

ISAM 4-33
printer 7-11
SAM 3-6

PUTR macro 7-15

random processing with ISAM 3-25, 3-30
random (direct) retrieval (ISAM) 3-30,4-31
randomizing 2-2

methods, summary 4-16
to cylinder address with DAM 4-11
to track address with DAM 4-11

RCB (Resource Control Block) 10-24
RCB macro 10-24
RDLNE macro

with 1287/1288 7-29
read backward 6-1, C-6
READ macro

MICR 7-18,7-19
with 1270/1275 7-27
with 1287/1288 7-28
with 3886 7-31
work file (SAM) 3-13

read-only module 10-32
reading a tape backwards C-6,6-1
readina blocks of data

DAM 4-14
readina data records

3886 7-31
Reading Magnetic Tape Backwards 6-1
real storage

fixing pages in 10-2
freeina pages in 10-2

record format
SAM 3-3

record ID (DAM) 3-21
record identifier (DAM) 3-21
record key (DAM) 3-18
record reference

by AFTER (DAM) 4-18
by ID 3-24,4-16,4-18
by K.ey 3-23, 4-16, 4-17
DAM 3-23,4-16

recm-d size
device-independent system files 8-1
SAM 3-3
system IOBical units 8-1

~rdtypes
DAM 3-19

1- 8 VSE/ Advanced Functions Macro User's Guide

ISAM 3-26
SAM 3-3

record zero (RO) 2- 10, 3-21
DAM 3-21

reenterable programs G-I
reentrant module 10-33
reference methods (DAM) 3-21
register notation 1-9
register usage 1-8
register usage in page fault appendage F-I
registers, linkage 10-19
relative record 2-1

file 2-2
number 2-1

relative track address (DAM) 3-22, 3-21
RELEASE macro 10-5
Releasing I/O Units 10-5
releasing pages 10-3
relocatable library, using the 1-7
relocating address constants D-2
relocating loader D-I
RELPAG macro 10-3
RELSE macro (SAM) 3-11
reopening a file C-I
reorganizing a file (ISAM) 3-30
repositioning I/O files 10-15
repositioning magnetic tape 10-16
Requesting Control Functions 10-1
Requesting Storage Dumps 10-10
RESCN macro with 1287/1288 7-29
Resource Control Block (see RCB) 10-24
Resource Control Macros 10-27
Resource Definition Macros 10-27
Resource Protection 10-24, 10-27
Resource Sharing 10-27
restarting

a check pointed program 10-14
repositioning files 10-15

restrictions
DTFDI 8-1
ISAM 3-25
3800 Printing Subsystem,with PIOCS 9-11

RETURN macro 10-16,10-20,10-21
rewinding magnetic tape C-3
RPS (rotational position sensing) example B-15
RPS DTF extension B-15
RPS

ISAM files 1-7
logic modules 1-7
PIOCS 9-11
support 1-7

RSTRT job control statement 10-14
rules for writing self-relocating programs D-I
RUNMODE macro 10-3
itO (record zero) 2- 10, 3-21

S,address notation 1-10
SAM (Sequential Access Method) 3-1
SAM declarative macros 1-3
SAM files, describing 3-2
SAM logic modules 3-17
SAM

activating (opening) a file 3-3
combined files 3-12
control interval format 3-1
deactivating (closing) a file 3-16,3-17
declarative macros 3-18
describing records 3-2
forcing end of volume 3-11
GET macro 3-5
I/O area specification 3-3
logic modules 3-17
multivolume file processing 3-11
non-data device operations 3-17

J

•

\

processing data files 3-4
processing update files 3-12
processing work files 3-12
PUT macro 3-6
record format 3-3
record size 3-3
record types 3-3
work area specification 3-3
work files 3-12

sample DTFMT macro 1-3
save areas 10-19

required for multitasking 10-21
SAVE macro 10-16, 10-20
saving data for checkpoint/restart 10-14
SOL (Systems Directory List) 10-1
SECTV AL macro 9-4
seek, with DAM 4-17
Selective Processing of Blocked Records (SAM) 3-10
selective processing of work files 3-14
self-relocating programs 0-1, 1-7
SEOF macro

with FBA DASD 4-8
sequence-link (SL) field 2-8
Sequential Access Method (SAM) 3-1
sequential organization, with index 2-3
seq uential organization, without index 2-1
seq uential processing

ISAM 3-25, 3-28
SAM work files 3-13

sequential retrieval (lSAM) 3-28, 4-32
sequentially organized files 2-1
SETDEV macro 10-14,7-31
SETFL macro 4-27
SETIME macro 10-6
SETL macro 4-32

issuing a hold 10-31
SETPF A macro F-I
SETT macro 10-7
share control 10-27
shared files 10-32
shared modules 10-32
shared resources 10-27
shared track 2-8
Shared Virtual Area (SV A) 10-1, 10-4
sharing a resource among tasks 10-27
sharing a resource by subtasks 10-24, 10-25
skipping on printer 7-11
SL (sequence-link) field 2-8
Source-Program Macros I-I
spacing on printer 7-11
spanned records

DAM 3-19
SAM 3-6,3-7

stacker selection control codes A-I
standard labels

DASD C-I
diskette 9-3
magnetic tape C-4, C-6
processing with PIOCS 9-8, 9-10

standard module names 1-5
storage areas

ISAM 3-26
storage dumps, requesting 10-10
storage space formulas for IS AM 4-35
STXIT macro 10-8, 10-10
subtask termination 10-24
subtask

testing for attachment 10-22
subtasks sharing a resource 10-24, 10-25
superset/subset module names 1-5
supersetting/subsetting IOCS modules 1-5
supervisor area dump 10-10
supervisor macros I-I
supplying the name for logic modules 1-5, 1-6

SVA (Shared Virtual Area) 10-1, 10-4
symbolic unit address 1-3
SYSnnn 1-4
SYSxxx 1-3
system control macros in reenterable programs G-2
system files, processing device-independent 8-1
system logical units 1-3

record sizes 8-1
system pack generation B-12
Systems Directory List (SOL) 10-1

table,DTF 1-2
tape drives, assigning/releasing 10-6
tape input files C-5
tape labels C-3
tape output files C-3
tapemarks C-3
task end 10-11
task timer 10-7, 10-8

setting 10-7
testing 10-7
unexpired time 10-7
user exit 10-8

TECB (timer event control block) 10-7
TECB macro 10-7
teleprocessing balancing 10-4
TESTT macro 10-7
time-of-day clock (TOO) 10-6
timer event control block

(see TECB) 10-7
timer services 10-6
TOO (time-of-day) clock 10-6
TPIN macro 10-4
TPOUT macro 10-4
track address (DAM) 4-11
Track Hold (see also DASD Record Protection)
track hold example 10-32
track index 2-5
track index entries 2-5
track reference

DAM 3-21
field types 3-23

trailer labels (see tape labels)
transmission information (CCB) 9-3
TRUNCmacro

SAM 3-11
TTIMER macro 10-7

UCS
feature 7-13
job control command 7-13

unblocked records, SAM 3-6, 3-7
undefined records, SAM 3-6, 3-7
unexpired time

interval timer 10-7
task timer 10-7

unlabeled input files C-7
UNLOCK macro 10-27
update files (SAM) 3-7,3-12
updating records on card devices 7-4
user exit (see STXIT macro)
user exit control 10-8
user exit

abnormal termination 10-8
interval timer 10-8
operator communicatiOR 10-10
program check 10-8
task timer 10-8

user option bits (CC8) 9-3
user standard labels C-2

checking, on disk C-2
checking, with PlOCS 9-8
DASD 4-5
tape 6-1

Index 1- 9

writing, on disk C-2
writing, with PIOCS 9-8

using registers 1-8
using RPS support 1-7
using system control macros in reenterable programs G-2
using the relocatable library 1-7
utility programs 4-10, 4-11

V -type address constants 0-3
Virtual Storage Access Method I-I
Virtual Storage Control 10-2
virtual storage dynamic allocation 10-4
VSAM macros I-I
VSE/VSAM catalog management C-I
VSE/VSAM Macros I-I
VTOC (volume table of contents) C-I

WAIT (PIOCS) macro 9-4
WAIT macro 10-7,10-28
WAITFmacro

DAM 4-19
MICR 7-18,7-19
with 1270/1275 7-28
with 1287/1288 7-29
with 3886 7-32

waiting for a time interval to elapse 10-7
WAITM macro 10-28
work area

SAM 3-3
work file processing (with SAM) 3-12
work file (SAM)

deleting 3- 13
DTF macro entries 3-13
macros 3-13
opening a 3- 13
processing 3-12
retaining 3- 13

work files
selective processing 3-14
sequential processing 3-12

WRITE macro
DAM 4-16
ISAM 4-28,4-30
work file (SAM) 3-14

WRITE SQ (formatting write) 3-14
WRITE UPDATE (non-formatting write) 3-14
write verification, with DAM 4-17
writing blocks of data

DAM 4-16
writing self-relocating programs 0-1
writing

nonstandard labels C-5
standard labels C-4
unlabeled files C-5
user standard tape labels 6-1

1255
processing 7-15

1259
processing 7-15

1270 7-15
programming considerations 7-27

1275 7-15
pocket light switch bits 7-22
programming considerations 7-27

1287/1288
CNTRL macro 7-24,7-25
optical reader codes 7-24
programming considerations 7-27,7-28

1419
pocket light switch bits 7-22
processing 7-15
stacker selection 7-16

1- 10 VSE/ Advanced Functions Macro User's Guide

1442
card read punch codes 7-8
stacker selection codes A-I
updating records 7-4

2311
capacities 4-1,4-2
storage space formula (ISAM) 4-35

2314
capacities 4-1,4-2
storage space formula (lSAM) 4-36

2319
capacities 4-1,4-2
storage space formula (ISAM) 4-36

2401 characteristics 6-3
2415 characteristics 6-3
2420 characteristics 6-3
2520

card read punch codes 7-8
stacker selection codes A-I
updating records 7-4

2540
card read punch codes 7-9
stacker selection codes A-I
updating records 7-4

2560 7-1
card read punch codes 7-9
printing 7-6
updating records 7-4

2596
card read punch codes 7-9

3210 7-15
3211 7-12,7-13
3211-compatible printers 7-12
3215 7-15
3262 printer 7-12
3289 7-12,7-13
3310

capacity 4-2
3330

capacities 4-1,4-2
storage space formula (ISAM) 4-37

3333
capacities 4-1,4-2
storage space formula (lSAM) 4-37

3340
capacities 4-1, 4-2
storage space formula (ISAM) 4-38

3350
capacities 4-1,4-2

3370
capacity 4-2

3410/3411 characteristics 6-3
3420 characteristics 6-3
3504/3505 7-1

card read codes 7-9
OMR Data 7-3
stacker selection codes A-I

3525 7-1
card punch codes 7-9
card printing codes 7-10
printing 7-6
updating records 7-4

3800 Printing Subsystem restrictions 9-11
3881 7-34

CNTRL macro 7-27
optical mark reader codes 7-27
programming considerations 7-34

3886 7-31
assembling a format record 7-32, 7-34
checkpoint considerations 10-14
CNTRt macro 7-26
COREXIT routine functions 7-33
document control 7-31
document marking 7-31

J

J

•

error handling 7-32
optical reader codes 7-26
programming considerations 7-31

5424/5425 7-1
card read punch codes 7-9

printing 7-7
updating records 7-4

8809
characteristics 6-3

/

Index I - II

SC24-521 0-0

==-= =C,,-' - ----- ---- -. ----- -- --------
-~-.-
International Business Machine. Corporation
Data Proce.sing Divi.ion
1133 Westchester Avenue. White Plein • • N.Y. 10604

11M World Trade Americe./Fer Ea.t Corporation
Town of Mount Ple •• ant. Route 9. North Tarrytown. N.Y .. U.S.A. 10591

11M World Trade Europe/Middle Ea.t/Africa Corporation
310 Hamitton Avenue. White Plain •• N.Y .• U.S.A. 10801

<
Ul
m » a.
<

J

Q) ~

::J
n a
" c
::J
n
~ o·
::J
I/)

" ro
z
o
Ul
W
-..J
o
~
w
o o
W
9

Ul
()
N
~

t'n
N
o
6

..

~
o

\ Z

VSEj Advanced Functions
Macro User's Guide
SC24-5210-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate with­
out incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation? __________________________ _

Number of latest Newsletter associated with this publication: __________ ..::-..;..;,..'"--_

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you rilay niail directly to the address
in the Edition Notice on the back of the title page.)

SC24-521 0-0

Reader's Comment Form

Fold and tape Plea. Do Not Staple

IIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 812 BP
1133 Westchester Avenue
White Plains, New York 10604

FOld Ind tlpe

==-= =CR) - -----~--- -. ----- -- -~---_ .. ---- _.-
Int.rnational Busin.ss Machin.s Corporation
Data Proc.ssing Division

PI ... Do Not Stapl.

1133 Westch.ster Av.nue. White PI.ins. N.Y. 10604

IBM World Tr.d. Am.ric.s/F.r East Corpor.tion
Town of Mount PI •••• nt. Rout. 9. North T.rrytown. N.Y .• U.S.A. 10591

IBM World Tr.de Europe/Middl. East/Afric. Corpor.tion
380 H.milton Av.nu •• White PI.ins. N.Y .• U.S.A. 10101

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

Fold Ind tape

I
(")

~
Q .,.
o
Zi
» o
::I

'" r
3"

< en
m
};;
a.
<
III
::I
(")

~
."
c:
::I
(") o·
::I
en

s:
III
(") ..,
0

c
Yd .., -en
G>
c:
c:
(I)

."

CD
z
?
en
w
-..J
0
~
w
0
0
W
8
""tI ..,
:i"
(I)
a.
5·
c
en
>
en
(")
N
.J:>
U,
N
0
6

J

....

•

J

~

4

c

•

,
QI
OJ o
Z

0;>
VSEj Advanced Functions
Macro User's Guide
SC24-S21O-0

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts, programmers, and
operators of IBM systems. This form may be used to communicate your views about this publication.
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes appropriate with­
out incurring any obligation whatever. You may, of course, continue to use the information you supply.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply. give your name and mailing address:

Whatisyouroccupation? __ __

Number of latest Newsletter associated with this pUblication: __________________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

... :occ::::
SC24-521 0-0

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

I
C'l
S.
~
"TI
o
is:
»
0'
~

'" !:
:>
CO ,
I ,
,
I
I , ,
I ,
I
I ,
I
I

... ,

I " III
BUSINESS REPLY MAIL
F'RST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 812 BP
1133 Westchester Avenue
White Plains, New York 10604

NO POSTAGE
NECESSARY
'F MAILED

IN THE
UNITED STATES

, ,
I ,
, ,
,
, ,
I ,
, , ,
I
I
I
I
I
I
i
I
I
I
I
I
I
I ,
I
I
I
I
I
I .. •• .. ••••·• .. •••••••••••••• .. ••• .. • .. •• .. ••• .. •••··•• .. ·1

Pl Do Not Staple

==-= =(~" - - ---- ----- -... ----- -- --'---------- _ .. -
International Bu.ine •• Machine. Corporation
Data Proce •• ing Oivi.ion
1133 We.tche.t.r Av.nu •. Whit. Plain., N.Y. 10604

IBM World Trade Am.rica./Far E •• t Corporation
Town of Mount PI •••• nt. Rout. 9, North Tarrytown, N.Y .• U.S.A. 10591

IBM World Tr.de Europe/Middle Ea.t/Afric. Corporation
380 Hamilton Avenue. White Plain., N.Y., U.S.A. 10801

Fold and tape
I
I
I
I
I
I

< en
m » c­
<
III
:::l
n
~
"TI
C
::J
n o·
::J
Vl

s:
III
n
(3
C

~
en'
C')
c
a:
CI>

"TI

en
z
o
en w
-...I

~
W
o o
W
9
"'0
~ .
::J
CI> c-
::J

C
en
):.

•

