A0 GO s IS0 i) b st R N SR e Peao i o) " IR 5 i S O S s _— © SRR U e SRRV O

VSE/Advanced Functions

Diagnosis Reference
LIOCS Volume 1
General Information and
Imperative Macros

Program Number 5666-301

Order Number LY33-9116-0
File No. $370/4300-30

Licensed Program - Property of IBM

First Edition (March 1985)

This edition applies to Version 2 Release 1 of IBM
Virtual Storage Extended/Advanced Functions, Program
Number 5666-301, and to all subsequent releases until
otherwise indicated in new editions or Technical
Neuwsletters. Changes are made periodically to the
information herein; before using this publication in
connection with the operation of IBM systems, consult
the latest IBM Systems/370, 30XX and 4300 Processors
Qib}iograehx, GC20-0001, for the editions Eﬁag are
applicable and current.

References in this publication to IBM products,
programs, or services do not imply that IBM intends
to make these available in all countries in which IBM
operates. Any reference to an IBM program product in
this document is not intended to state or imply that

only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the addresses given
below; requests for copies of IBM publications should
be made to your IBM representative or to the

branch office serving your locality.

A form for readers' comments is provided at the back
of this publication. If the form has been removed,
comments may be addressed either to:

IBM Corporation

Dept. 6R1

180 Kost Road

Mechanicsburg, PA 17055, USA

or to:
IBM Deutschland GmbH
Dept. 3248

Schoenaicher Strasse 220
D-7030 Boeblingen, Federal Republic of Germany

IBM may use or distribute whatever information you
supply in any way it believes appropriate without
incurring any obligation to you.

(c) Copyright International Business Machines
Corporation 1985

Licensed Program - Property of IBM
PREFACE

This publication, although a _ O-edition, is
a major revision of the previously
available publication LY24-5209-0.

This manual is the first in a series of
four manuals providing detailed information
about the VSE/Advanced Functions Logical
I0CS programs. The four manuals are:

Volume 1: General Information and
Imperative Macros, LY33-9116.
Volume 2:

2: SAM, LY33-9117.
Volume 3: DAM and ISAM, LY33-9118.
Volume 4: SAM for DASD, LY33-9119.

This first volume is mainly intended for
persons involved in program maintenance and
for systems programmers who are altering
the program design. The volume contains
general information about Logical IOCS as
well as descriptive text and flouwcharts
about commonly used transients. Included
in this manual are:

1. The functions of logical 10CS,
including a short description of the
available access methods.

2. The modular-tabular system.

3. A short description of the declarative
macros.

4. Complete description of the imperative
macros.

File initialization and termination.

A detailed description of the open and
close routines.

7. A detailed description of DASD file
protect routines.

8. A detailed description of VTOC Display
and Dump routines.

9. Charts.

In addition, this volume contains
appendixes with information that is either

supplementary to LIOCS or is an aid for
information retrieval. To the first
category belongs the EBCDIC - ASCII
conversion tables. To the second category
belong the error message list, master error
message list, and master index.

Volumes 2, 3, and 4 contain information
relating to all the logical IOCS components
necessary to process the file types
described within those books. Exception to
this approach is found in those routines
that are either common to more than one
access method or independent of file types.
These routines, which include the open and
close monitor, DASD file protect, and VTOC
routines, are documented in this vclume.

PREREQUISITE PUBLICATIONS
. IBM S

m/370 Principles of Operation,
in conjunction with

m/360 Principles of Operation,

VS - DOS/VSE - VM/370 Assembler
Language, 6GC33-401T0.

. VSE/AF Data Management Concepts,
GC33-6192.

. VSE/Advanced Functions Macro User's
Guide, SC33- 6196.

. VSE/Advanced Functions Macro Reference,
SC33-6197.

. VSE/Advanced Functions System Control
Statements., 33—6188.

. VSE/Advanced Functions Diagnosis
Reference: upervisor, LY33-9107.

RELATED PUBLICATIONS

. VSE/Advanced Functions Diagnosis
Reference Inltlal Pro ram Load and

Job Confrol LY33-911
ced Functions Messages,

For other related publications, refer to
IBM System/370, 30xx and 4300 Processors
Bibliograph GC20-0001.

PREFACE iii

Licensed Program - Property of IBM

iv IBM VSE/Adv. Functions Diag. Ref., LIOCS Volume 1

Licensed Program - Property of IBM
CONTENTS Unit Record and 3881 Optical Mark

Reader Files 33
Magnetic Ink Character Recognltlon
Files 33
Optical Reader Files (Except 3881) 33
Magnetic Tape Files (DTFMT,
Figures . e e e e . vii DTFPH-MT) e e e e e e e e e 33
DASD Files N I N 33
CHARTS e e e e e e e e e e e e vii Diskette Files N 33
CLOSE ROUTINES CHARTS 05, 06 . e 33
PREFACE T T N T B | Unit Record Files (Except MICR) 34
PREREQUISITE PUBLICATIONS [iii MICR (Magnetic _Ink Character
RELATED PUBLICATIONS © e e e e e e iii Recognition) File N 349
Magnetic Tape Flles (DTFMT,
INTRODUCTION T | DTFPH-MT 34
LOGICAL IOCS e e e e e e e e e e e e 1 DASD Files e e e e e PO 34
LOGICAL IOCS PROCESSING METHODS . .2 Diskette Files e e e e e e . 34
Sequential Access Method (SAM) .o .2 File Labeling N 34
Direct Access Method (DAM) . .2 Label Processing C e e e e e e e e 34
Indexed Sequentlal Access Method Creation of Tape Volume Labels 34
(ISAM) .. 2 Standard Tape File Labels . e 34
Virtual Storage ‘Access Method’ Additional File Labels on Tape . 34
(VSE/VSAM) P S T 2 User Header and Trailer Labels on
Virtual and Basic Telecommunications Tape 35
Access Methods (ACF/VTAM and Tapemarks “with Standard Tape Labels 35
BTAM-ES) C e e e e e e e e e e 3 Standard Tape Label Processing 35
Storage Requirements e e e e e e » 3 Nonstandard Tape Labels . . 36
MODULAR-TABULAR SYSTEM e e e e e 0. 3 Unlabeled Tape Files I 36
DECLARATIVE MACROS . .« . . 6 DASD Label Processing _ . e e . 36
DTF (Define the Fi 1e) Macros . e 4 Diskette Label Processing . 37
MOD (Module Generation) Macros . 7
TRACK HOLD FUNCTION « e e e e e e 7 Common and Specnal Purpose Loglcal 10CS
REENTERABLE MODULES T 4 Routines 39
INTERRELATIONSHIPS OF THE DECLARATIVE $$BOESTV: Error Statistics by Tape
MACRO INSTRUCTIONS T 4 Volume e e e 39
IMPERATIVE MACROS T - $$BOPEN: Open Monitor . 39
IMPERATIVE MACRO EXPANSIONS « e . 12 $$BOPEN1: Open Monitor Phase 1 40
CHECK Macro e e e e e e e e 12 $$BOPEN4: DASD DTF DEV Type Update
CLOSE Macro e e e e e v e e e e 13 OPEN Phase e e e e e e e 40
CLOSER Macro e e e e e e e e e 14 $$BOPIGN: Open Ignore c e e 41
CNTRL Macro © e e e e e e e 14 $$BOPEN2: Open Monitor, Phase 2 461
DISEN Macro © e e e e e e e 16 $$BOPLBL: Open Monitor Label Space
DSPLY Macro v e e e e e e e e 16 Processor s e s e s e s e e 41
ENDFL Macro e e e e e e e e e 17 $$BOPENR: Relocate DTF Address
ERET Macro o e e e . . 17 Constants e e e e e e e e e 41
ESETL Macro e e e e e e e e 17 $$BOPENC: Check Duplicate Device
FEQOV Macro « e e e e e e 18 Assignments for Logical Units . 42
FEQOVD Macro e e e e s e 2 e e u 18 $SBENDQB: Enqueue and Dequeue for
FREE Macro e e e e e e e e e e 18 VSE/VSAM Routines 42
GET Macro e e e e e e e e e e 19 6$BOPNR2: Relocate DTF’ Address
LBRET Macro e e e e e e e e e 19 Constants, Phase 2 42
LITE Macro . C e e e e e e e 21 $$BOPNR3: Relocate DTF ‘Address
NOTE Macro e e e e e e e e e 21 Constants, Phase 3 42
OPEN Macro e e e e e « e e e s 22 MODLOOP (Address Modlflcatlon)
OPENC Macro c e e e e e e e 22 Subrouti . . 43
OPENR Macro © e e e e e e e e 23 SSBOPENS: RPS SVA Initialization
POINTR Macro e e e e e e e e e 26 Routine R 43
POINTS Macro © e e e e e e e e 26 $$VOPENT: RPS Phase Loading
POINTW Macro e e e e e e e e e 24 Routine e o s e e e s s s e u e 44
PRTOV Macro © e e e e e e e e 25 $$BCLOSE: Close Monitor, Phase 1 44
PUT Macro e e e e e e e e e e 25 $$BCLOS2: Close Monitor, Phase 2 G4
PUTR Macro . e e e e e e e 26 $$BCLOS4: Close Monitor, Phase 4 45
RDLNE Macro e e e e e e e e e 27 $$BCLLBL: Close Monitor Label
READ Macro e e e e e e e e e 27 Space Processor . 45
RELEASE Macro -- Dynamic Device SBCLRPS: DASD RPS Common Close 45
Release e e e e e e e e e e e 28 $$BOSDC1: SD Close Input and
RELSE Macro v e e e e e e e 29 Qutput P . 46
RESCN Macro e e e e e e e e 29 $$BOSDC2: Close: Free Track
SEQOV Macro e e e e e e e e e 30 Function « e e e e e 46
SETDEV Macro e e e e e e e e e 30 $$BOSDEV: SD Close 46
SETFL Macro e e e e e e e e 30 $$BODQUE: Remove Extents from
SETL Macro e e e e e e e e e 31 Extent Block e s s & e % s s 46
TRUNC Macro e e e e e e e e 31 SBRELSE: Device Release 47
WAITF Macro e e e e e e e e e 31 COMMONLY USED LOGICAL TRANSIENTS . . 47
WRITE Macro c e e e e e e e e 32 $$BOFLPT: DASD File-Protect . . 47
i ‘ . $$BODSPV: VTOC Display, Phase 1 47
File Initialization and Termination 33 $$BODSPW: VTOC Display, Phase 2 48
OPEN Routines Charts 01-04 e e e 33 $$BODSPO: Diskette VTOC Display 48

Contents v

Licensed Program - Property of IBM

Tapemarks

User-standard Label e e e e e
Nonstandard Labels. Output File

SAM and DAM Output Flle

$$BOVDMO: Diskette VTOC Dump . 48 Volume Labels on Diskette . e
$$BOWDMO: Diskette List VTOC . 49 IBM-Standard File Labels on
$$BODMSG: Diskette Open Error Diskette . e
Message Writer Phase 1 « e e s 49 Label Processing for Tape Flles . .
$$BODMS2: Diskette Open Error Standard Labels, Input File .«
Message Writer, Phase 2 o oee s 49 VOL1 Label C e e e e e e
$$BODSMO: Diskette Data Security HDR1 Label [. e
Message Writer e e e e e e e s 51 EOF1/EQV] Label .
$SBOVDMP: VTOC Dump e e e e e 51 User-Standard Labels (UHL/UTL)
$SBOWDMP: List VTOC e e 2 e e 51 Multivolume File e e e e e e
$$BOMSG1 Disk Open Error Message Multifile Volume o e e e
Writer, Phase 52 Read Backward e e e e e . e e
$$BOMSG2: Disk Open Error Message Tapemarks « e
Writer, Phase 2 . . 53 Standard Labels, Output F11e . e
$$BODSMU Data Security Message VOL1 Label « e e o« v e
Writer e e e e e e e e e e 53 HDR1/HDR2 Labels e e e e e e e s
EOF1/EQOV1 and EOF27EOVZ Labels .
Charts e e e s s e e e 4 e s e e o @ User-Standard Labels (UHL/UTL) .
Multivolume File e e e e e e e
Appendix A: Master Error Message List Multifile Volume e e e e e e .
Tapemarks e e e e e e e .
Appendix B: ASCII Conversion Tables Nonstandard Labels . « e e e
I0OCS Routines c e e e e e e
Appendix C: DASD and TAPE Labels . User Routine e e e e e e e
Label Processing for SAM and DAM Files Nonstandard Labels, Input File . e
on DASD or DISKETTE e e e e 4 e e e Header Label . .
SAM and DAM Input File e e e e e e End-of-File/End—of- Volume Label
VOL1 Label e e e e e e e e e e Multivolume File e e e e e
Format-1 Label e e e e e e e e Multifile Volume e e e e e e
Format-3 Label . . « e e Read Backward e e e e e e e

VOL1 Label .
Format-1 Label . .
Format-3 Label .
User-Standard Label

Diskette Files: Input Flle

VOL1 Label o e e e

HDR1 Label . . .
Diskette Files: Dutput File .
VOL1 Label . .« . e
HDR1 Label .
Label Processing for ISAM’ Flles
ISAM Files, Load (Create, Extent)
Function . . . e .
VOL1 Label e e e N
Format-1 label . S
Format-2 Label . e e .
ISAM Files, Add Function
L1 Label e e e e
Format-1 Label . .
Format-2 Label e e e e e e
ISAM Files, Retrieve Function
VOL1 Label . .« .
Format-1 Label . . .
Format-2 Label .
Label Fields for SAM and DAM files
DASD and DISKETTE Devices .
Label Fields for DASD
Volume Label on Disk (VOL1)
IBM-Standard File Labels on Disk
User-Standard File Labels on Disk
Label Fields for DISKET .

vi IBM VSE/Adv. Functions Diag.

e o o o o e 0 0 e o o o

UNRNOOOO VOVVVVVVVVIIREROIIREPOIRREXOPOONNNN N N & U»
L - IS, B < T -)

SUDLRHO ONYOAUINMIINHIOORRNNARUIVTNT DD NN - 000D

b et b et et

Header Labe

End-of-File/End- “of- Volume Label

Multivolume File
Multifile Volume [P

Tapemarks

Processing of Unlabeled Tape Flles

Unlabeled Files,
First Record
Last Record

Input File

Multivolume Flle . e e
Multifile Volume . e

Read Backward
Tapemarks
Unlabeled Flles,
First Record
Last Record

. . .

Dutput Flle

Multivolume Flle e e
Multifile Volume SR

Tapemarks

American National Standard La

Label Fields for

Tape . .

Volume Labels on Tape

IBM-Standard File Labels on Tape
User-Standard File Labels on Tape
Non-Standard File Labels on Tape
Label Records in the Label Area

Appendix D:

Master Index for

VSE/Z/Advanced Functions LIOCS

Index .

LIOCS Volume 1

o . « e e

e o e o o o

e o o o o o

o o o o
¢ o o o o o e

1 et ot et et (b b b et e e et e b b et et e et e b e et et et e e et et b e et et e e et b et b b et fd et e b fmh ot et b et o b s et
NNNOULTOTTUTTUTNTVTVTUTNTTTTNUTUTUTUTNNITONNU DD DD D DD DD D DD DDDDDDDDDDDUW W
WP UTUNTNIVIVTIUTUIR D DD DUWUNNNR R OOVVVOVRNNAUITNTIDA DD UHUWNIN—~—~OOON D

—
~
D

Licensed Program - Property of IBM
FIGURES

fTLIOCS and PIOCS Interrelationship 3

ypes

onship Between Imperative and Declarative Macros 8
CS Imperative Macros and DTFs

CS Imperative Macros and Devices 11

beled Workfile Format 43

ferent DTF Types by $$BCLRPS 46

or DAM DASD Device Independent Extension Work Area 47
VTOC Display of Disk Pack (DSPLYV Response) 48

1.

2

3

4

5

6

7

g.

10. VTOC Display of Diskette (DSPLYV Response) 49

11. VTOC Dump of Diskette (CANCELV Response) 50

12. VTOC Dump of Disk Pack (CANCELV Response) 52

13. Message Code for Disk Open Error Message Writer 54
14, Master Error Message List 67

15. ASCII to EBCDIC Conversion 75

16. EBCDIC to ASCII Conversion 77

17. Multivolume Indicator Combinations (3 Extents) 86

18. Disk Volume Label (VOL1 Label) 101

19. Standard Volume Label 1 Fields (DASD) 102

20. IBM-Standard Disk File Label (Format-1) 105

21. Format-1 Label Fields 107

22. IBM-Standard Disk File Continuation Label (Format-3) 117
23, Format-3 Label Fields 118

24. Format-2 Label Fields 120

25. VTOC Label (Format-4) 132

26. User-Standard Disk File Labels (Header and Trailer) 133
27. User-Standard Label Fields 133 .
28. User-Standard Disk File Labels (5 UHLs and 4 UTLs Specified) 134
29. User-Standard Disk File Labels (3 UHLs Specified) 134
30. Diskette Volume Label 134

31. Diskette Standard Volume Label Fields 135

32. Diskette File Label 136

33. Diskette HDR 1 Label Fields 137

34, Tape Volume Label for EBCDIC Code 158

35. Tape Standard Volume Label 1 Fields 159

36. Tape Volume Label for ASCII Code 160

37. Tape Standard Volume Label 1 (ASCII Mode) Fields 161
38. IBM-Standard Tape File Label for EBCDIC Code 162

39, Tape Standard File Label 1 Fields 163
40. IBM-Standard Tape File Label for ASCII Code 167
41, Tape Standard File Label 1 (ASCI]I Mode) Fields 167
42, User-Standard Tape File Label 171
43, Tape User-Standard Label Fields 172

FIGURES vii

Licensed Program - Property of IBM

CHARTS

Chart 01. Open Monitor. 56
Chart 02. Open Monitor. 57
Chart 03. Open Magnetic Tape. 58
Chart 04. Open ISAM « « . « 59
Chart 05. Close Monitor 60
Chart 06. EOF/EQV Routine_ 63
Chart 07. Open Diskette, Input. 64
Chart 08. Open Diskette, Output 65

viii IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
INTRODUCTION

The transfer of data between storage and
the input/output devices attached to a
system is controlled by the Input/Output
Control System (IOCS). I0OCS allows the
problem programmer to specify:

¢ MWhat data has to be transferred.
e Which 170 device is to be used.

e In which sequence data transfer is to
take place.

VSE/Advanced Functions gives the problem
programmer a choice of two input/output
control systems:

¢ Physical IOCS (PIOCS)
¢ Logical IOCS (LIOCS).

Full details on physical I0CS can be found

in VSE/Advanced Fuggt]gne Diagnosis
Reference: Supervisor, LY33-9107.

LOGICAL I0CS

LIOCS performs the data management function
required to locate and access logical
records for processing. Some LIOCS
routines are linked and executed as a part
of the user's problem program. Others,
notably SAM DASD and DAM LIOCS routines,
are provided by IBM, loaded into the System
Virtual Area (SVA) at IPL time, and are

dynamically linked to the user's program.
They provide an interface between the
user's file processing routine and the
PIOCS routines. Some of the data
management functions performed by LIOCS
are:

. Blocking and deblocking of logical
records.

. Switching between I/0 areas when two
areas are specified for a file.

e Handling End-of-File (EOF) and
End-of-Volume (EOV) conditions.

e JIssuing requests to PIOCS to execute the
appropriate channel programs.

LIOCS makes use of two types of macro
instructions to perform the required
functions: imperative macro instructions
and declarative macro instructions.
Imperative macro instructions supply the
facilities for reading, Wwriting, blocking
and deblocking, file labeling, and error
checking. These instructions can be used
only for data files that have been defined
by declarative macro instructions. The
declarative macro instructions specify the
characteristics of a data file, such as the
file name, I/0 device type, or
organization.

When LIOCS determines that a data area
contains no logical record, it issues a
physical I0CS macro instruction to execute
the actual data transfer. Figure 1 on
page 3 shows the relationship between
logical and physical I0CS for a LIOCS
imperative READ macro issued to an input
file when one I/0 area is used.

INTRODUCTION 1

Licensed Program - Property of IBM

LOGICAL IOCS PROCESSING METHODS

Logical I0CS routines process records in
any one of three ways:

1. Sequentially, through the use of the
Sequential Access Method (SAM). This
method can be used with all files on
serial devices (such as card readers,
tapes, and printers), and with
sequentially organized files on disk
and diskette.

2. Randomly, through the use of the Direct
Access Method (DAM). This method can
be used with files on disk only.

3. Both sequentially and randomly, through
the use of the Indexed Sequential
Access Method (ISAM) or the Virtual
Storage Access Method (VSAM). These
methods can be used with disk only.
VSAM is available to VSE users through
the VSE/VSAM program product.

Sequential Access Method (SAM)

Sequential processing reads/urites and
processes successive records in a logical
file. For example, card records are
processed in the order the cards are fed;
tape records are processed starting with
the first record following the header
labels and ending with the last record
before the trailer labels. DASD records
are processed starting with the beginning
DASD address and continuing in order
through the records on successive tracks
and cylinders up to the ending address.

Diskette records are processed starting
with the beginning diskette address and
continuing in order through the records on
successive tracks up to the ending address.

Volumes 2 and 4 contain a detailed
discussion on sequential processing.

Direct Access Method (DAM)

The Direct Access Method processes records
contained on IBM disk devices that are
usually organized in a random manner. DAM
is a method for processing records rather
than an organizational method.

The location reference required by LIOCS
for processing a file in a random manner
consists of two parts: a track reference
and a record reference. The record
reference may be the record key, or, if no
key areas are present, the record ID which
is in the count area of each DASD record.
Volume 3 contains a detailed description of
random processing through DAM.

Indexed Sequential Access Method (ISAM)

The Indexed Sequential Access Method can
process records on a DASD device in a
random and/or sequential order. Both
orders use the control information that is
in the key field of each record. The user
supplies ISAM with the key (control
information) of the desired record. ISAM

searches for the record and makes it
available for processing.

In sequential processing, a series of
records is made available. The first
record to be processed is specified by the
user. ISAM retrieves the succeeding
records (on demand) from the logical file,
in key order, until the problem program
terminates the operation.

ISAM creates an organized file and then
adds to, reads from, and updates records in
that file. The file is organized from
records that are presorted by control
information. As the DASD records are
loaded, ISAM constructs indexes for the
logical file. If records are added to the
file at a later stage, ISAM updates the
indexes to reflect the new records. Volume
3 describes ISAM in detail.

Virtual Storage Access Method (VSE/VSAM)

The Virtual Storage Access Method can
process records on a DASD device. It
differs from the access methods mentioned
so far in that:

e It allows three different ways of data
organization, each of which allous
different ways of processing.

e It includes a facility for automatic
space allocation.

. It includes a set of service programs
that allow for the execution of a number
of specialized functions.

L It allows ISAM files that have been
converted to the VSAM format to be
processed using ISAM macros.

. It offers device independence due to the
special format of its physical blocks.

e It offers data integrity control and
access control by means of design, and
integrity and access control options.

In VSE/VSAM, a user may choose betuween
three types of data organization:

e Key-sequenced data organization.

e Entry-sequenced data organization.

e Relative-record data organization.

In a key-sequenced organization, logical
records are stored on the basis of a
collating sequence determined by the
content of the primary keys of those
records. This key collating sequence is
kept at all times. The key-sequenced
organization is basically similar to the
organization of an ISAM file.

Key-sequenced data organization allouws for
the following types of processing:

e Keyed-direct processing.
e Keyed-sequential processing.

e Addressed-direct processing.

2 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program

Problem Program

to the file description

Next instruction after -

Property of IBM

Logicai 10CS

Issue READ request {refer

elsewhere in the program).

#Provide a new logical

record from a physical
block in the 1/0 area
(deblock) to the problem
program,

or

if actual input is required
(new block), issue a
physical read request
(EXCP)

Physicat 10CS 1/0 Device

and

WAIT

When /O is complete,
provide the first {(or only)
logical record from the
new block in the 1/O area
to the problem program.
|

READ request.

Determine channel and:

a) If channel is not busy,
- start |/O - Start device

b) If channel is busy, place
request into channel
queue and return to

Data transfer

1/0 complete

LIOCS. {Supervisor
will retry later.)

When 1/0 is complete, -
return to LIOCS via inter-
rupt handling routine.

Figure 1. Example of LIOCS and PIOCS Interrelationship

* Addressed-sequential processing.

In an entry-sequenced organization,

records are stored physically
sequence in which they are entered.
added logical records are stored at the

physical end of the file. This

organization

is basically similar to that
of the SAM file.

logical
in the same

Communications Function/VTAM or Basic
Telecommunications Access Method - Extended
Support,

These processing methods are not

documented, beyond an occasional reference,
in this set of Diagnosis Reference Manuals.

Specific information concerning ACF/VTAM
and BTAM-ES is found in the ACF/VTAM and
BTAM-ES publications.

Entry-sequenced data organization allous

for the following types of processing:
¢ Addressed-direct processing.
* Addressed-sequential processing.

In a relative-record organization, logical
records are stored 1n a string of
fixed—length slots, each of which has a
relative-record number, starting from one
up to the maximum number of relative
records that can be stored in the file. No
index is built.

A slot may be empty or it may be
occupied, in which case the record is
identified by the number of the slot. For
example, a record in the tenth slot of the
file gets relative-record 10; it will
always be the tenth record of the file
regardless of whether or not records have
been written into the preceding nine slots.
A record is retrieved by its
relative-record (that is, slot) number, the
number being treated as a key.

Virtual and Basic Telecommunications Access
Methods (ACF/VTAM and BTAM-ES)

VS5E/Advanced Functions communicates with
remote terminals with Advanced

Storage Requirements

Some logical IOCS routines are generated as
part of the problem program, others
(supplied by IBM) reside in the System
Virtual Area and are dynamically linked to
the user program. Imperative macro
expansions, which serve as linkage to the
logical or physical IOCS routines, are
generated inline at the point the macro is
used in the problem program. The open,
close, EOF/EQOV, and other special purpose
routines are called into the B-transient
(logical transient) area as required. The
physical IDCS routines used by logical 1I0CS
are generated as part of the supervisor
program.

MODULAR-TABULAR SYSTEM

The term tabular and modular indicate that
the system uses tables in conjunction with
data handling modules to implement its
functicns.

The modular-tabular system has the
advantages of:

e Saving assembly time by allowing the
data handling modules to be generated

INTRODUCTION 3

Licensed Program - Property of IBM

separately and to be stored in the
relocatable library for subsequent use.

* Using one module with many files if the
device types are the same and the files
are similar.

The modular-tabular combination for a
specific file is generated by two
declarative macros: the file definition
macros (DTFxx) and the module generation
macros (xxMOD).

The file definition macros describe the
logical file, indicate the type of
processing to be used for the file, and
specify storage areas (work area, I/0 area)
for the file. A number of file definition
macros define the files processed by
logical IOCS, and one defines files
processed by physical IOCS (DTFPH). The
file to be processed determines the type of
file definition macro to be used.

The module generation macros generate the
data handling logic modules. These modules
contain generalized routines needed to
perform the functions of the logical IO0CS
imperative macros. The generalized
routines in the logic modules are altered
and made more specific through various
parameters (specified by the problem
programmer) included in the xxMOD macro
statements. It is possible, therefore, to
generate many variations of a particular
type of logic module, each specifically
suited to the need of the problem
programmer. For sequential DASD and DAM
files, the data handling logic modules are
provided by IBM. If the user provides a
module in these cases, it is overridden by
the IBM-supplied version.

DECLARATIVE MACRGOS

DTF (Define the File) Macros

Whenever logical I0CS imperative macro
instructions are used in a problem program
to control the transfer of records in a
file, that file must be defined by a
declarative DTF macro instruction. The DTF
macro instruction describes (through
various parameters specified by the problem
programmer) the characteristics of the
logical file, indicates the type of
processing for the file, and specifies the
main storage areas and routines. Figure 2
on page 6 summarizes the various DTF table
types supported by VSE. Detailed
descriptions of the logical IOCS file
definition (DTF) macros and their
parameters appear in VSE/Advanced Functions
Macro Reference.

In general, the IBM-supplied file
definition declarative macros are
device-oriented. In addition, three
declarative macros, DTFSR, DTFBG, and DTFEN
are supported by VSE/Advanced Functions to
provide upward compatibility from the IBM
Basic Operating System (8K system).
brief description follows for each of the

DTF macros available to users of
VSE/Advanced Functions.

DTYFCD. Define The File for a Card Device.
To define a file associated with the
records on a card unit or on the 3881
Optical Mark Reader.

DTFCN. Define The File for a CoNsole. To
define a file associated with the console
printer-keyboard (3210 or 3215) or with a
Display Operator Console.

DTFCP. Define The File for a ComPiler. To
provide limited device independence for
IBM-uritten programs (COBOL, FORTRAN,
PL7I1). Because the DTFCP macro is uwritten
specifically to handle the needs of IBM
internal programs, it is not documented in
any System Reference Library publications.

DTFDA. Define The File for Direct Access
method. To determine a file when DASD
(Direct Access Storage Device) records are
ﬁot:edprocessed by the Direct Access
ethod.

DTFDI Define The File for Device
Independent system files. To define files
assigned to the device independent system
logical units SYSRDR, SYSIPT, SYSPCH, and
SYSLST to provide DOS/VSE Assembler users
S}?Epthe same capabilities extended by

DTFDR. Define the File for the 3886
Optical Character Reader. To define a file
Essgciated with a 3886 Optical Character
eader.

DTFDU. Define the File for a Diskette
nit. To define a file associated with a
3540 Diskette Input/0Output Unit.

DTFIS. Define The File for Indexed
Sequential file management system. To
define a file organized and processed by
the Indexed Sequential File Management
System.

DTFMR. Define The File for Magnetic
Recognition. To define a file associated
with a Magnetic Ink Character Recognition
(MICR) device (12557125971419) or Optical
Reader/Sorter (1270-1275%).

DTFEMT. Define The File for Magnetic Tape.
To define a file associated with a magnetic
tape device.

DTFOR. Define The File for an Optical
Reader. To define a file associated with
an Optical Character Reader device (1287).

DTFPH. Define The File for processing by
PHysical IOCS. To define a magnetic tape,
diskette, or DASD file with standard labels
that is processed by physical IOCS when the
user wishes to use the OPEN and CLOSE
macros for label processing. DTFPH
parameters define the magnetic tape,
diskette, and DASD files. No other files
processed by physical IOCS require
definition.

¥ These devices are not available in the United States of America.

4 IBM VSE/Adv. Functions Diag. Ref.

LIOCS Volume 1

C

Licensed Program - Property of IBM

Only the following logical I0CS functions
can be performed for files defined by a
DTFPH macro.

¢ Check the header labels on input files,
and close these files when requested.

e (Create header labels on output files,
and create trailer labels when the file
is closed.

. Force end-of-volume on an output file
when requested. (Force end-of-volume is
not supported on diskettes.)

When a DTFPH macro instruction is
encountered at assembly time, the assembler
builds a DTF table that includes only the
parameters needed for the OPEN, CLOSE, and
FEOV routines. The OPEN, CLOSE, and FEOV
macro expansions call the open and close
routines into the supervisor B-transient
area at object time.

DTFPR. Define The File for a PRinter. To
define a file associated with a printer
device, or a 2560 MFCM or 3525 Card Punch
with the print feature.

DTFPT Define The File for Paper Tape. To
define a paper tape file.

DTFSD. Define The File for Sequential
DASD. To define sequential files on a
Direct Access Storage Device (DASD).

DTFSR. Define The File in a SeRial type
file device. To define a file for
sequential processing of records on any
I0CS supported I/0 device.

The VSE DTFSR macro definition accepts
either the BOS or BPS DTFSR macro as valid
input. After determining the device type
required, the VSE DTFSR macro calls, from
the source statement library, the
appropriate VSE DTF macro. The DTF macro
called by the VSE DTFSR then sets up a DTF
table in the usual manner.

The VSE macro definition is used only to
allow upward compatibility and DTFSR should
not be used as a statement in the user's
VSE source deck.

DTFBG. The BeGin—definition must be
punched with DTFBG in the operation field
and DISK in the operand field. The name
field is left blank. DTFBG is included in
VSE to provide compatibility with the BOS
DTFSR macro instruction.

DTFEN. Define The Field ENd. To show
there are no more DTF source statements to
process. Only to allow upward
compatibility for BOS and BPS users.

ACB. The ACB macro produces an Access
Method Control Block (ACB) for a VSE/VSAM
file. The control block identifies the
key-sequenced file and its index or the
entry-sequenced file that is to be
processed, and indicates the types of
requests that are to be made. The ACB is
similar to a DTF in that it identifies the
file to be processed. However, most
information about the file, such as key
length and record format, is specified in
the DEFINE command of the access method
services. Information supplied in this
command resides in the VSAM catalog and is
read into storage when the ACB is opened.

INTRODUCTION 5

Licensed Program - Property of IBM

Description

DTF Type Code
(Byte 20)
of DTF Table DTF
X'0Q0’ DTFCD
X'Ql’ DTFPT
Xro2" DTFCD
X'03" DTFCN
X'04" DTFCD
X'05" DTFCD
X'07'" DTFPR
X'08"' DTFPR
X'09" DTFQOR
X'0A' DTFOR
X'0B' DTFMR
Xxroc’ DTFDR
X'10"' DTFMT
DTFCP
Xr'11’ DTFMT
Xriz’ DTFMT
DTFPH
X'13" DTFMT
X'14" DTFMT
X'15" DTFMT
X'1A" DTFDU
Xr2o" DTFSD
DTFCP
Xra2l! DTFPH
Xr22' DTFDA
Xr23" DTFPH
X'24" DTFIS
X'25" DTFIS
X'26" DTFIS
X128t ACB. >
Xr'33" DTFCP
X'31" DTFCP
Xr3z2" DTFCP
X'33"’ DTFDI
X'4Q" DTFBT
X'60"' - X'67"

Combined files

Paper tape files

Reader and 3881 Optical Mark Reader files

Console

Punch files

Reader files on 2560, 5424/5425

Printer files on 60

Printer files

Optical Reader files except 3881 and 3886 files
Optical Reader files (HEADER=YE

Magnetic Ink Character Recogn1t|on (MICR) and
Optical Reader/Sorter files

3886 Optical Character Reader files

Unlabeled tape work files

Unlabeled tape work files (caompiler). (Note 1)
Nonstandard or unlabeled tape files

Standard labeled, output tape files

Standard labeled, output tape files (physical IOCS)
Standard labeled, input tape files (read backward)
Standard labeled, input tape files (read forward)
Standard labeled tape work files

Diskette Input/Output Unit files

Sequential DASD work files and data files

DASD work files (compiler)

Sequential DASD files, MOUNTED=SINGLE (physir~=1 IOCS)
Direct access files

Direct access files, MOUNTED=ALL (physical IOCS)
Indexed sequential, LOAD file

Indexed sequential, ADD file

Indexed sequential, RETRVE file

Indexed sequential, ADDRTR file

Access Method Control Block for VSE/VSAM
Compiler file for DOS Version 1 (Note 1)

Compiler file for DOS Versions 2 onward

Compiler file for DOS Versions 2 onward (Note 2)

Device independent system unit files

Basic Telecommunications Access Method - Extended Support
(BTAM-ES) file (Notes 3 and

Figure 2. DTF Table

Notes:

1. DTF type is X'30°

Types

except for tape or DASD assigned to units SYS000

to SYSnnn. In this case, the DTFCP open phases change the DTF
type to X'10' for tape work files, or X'20' for DASD work files.

2. DTF type is
SYSnnn. In this
to X'20' fo

Xr32°

except for DASD assigned to units SYS000 to
case, the DTFCP open phases change the DTF type

r DASD work files.

3. The following control unit codes are ORed into the low-order &
bits of the DTF type code.
Control Unit Code
7770 1
2848 3
2701 4
2702 5
2703 6
4 The DTF tables for BTAM-ES files are not documented in this
manual. They are documented in the BTAM-ES publications.

6 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
MOD (Module Generation) Macros

DTF (except DTFCN, DTFPH, D
A, DTFSD, and DTFDI or DTFCP
iding on DASD and except DTFP
P with DISK=YES for PRT1 and
s which use logic modules i
ked to a logical IOCS module
ated by an xxMOD macro instruction.
se modules provide the necessary
structions to perform the input/output
functions required by the problem program.
For example, the module can read or urite
data, test for unusual input/output
conditions, block or deblock records, or
place logical records in a work area.

T
R
n

3~.

-

Some of the module functions are
provided on a selective basis, according to
the parameters specified in the xxMOD macro
instruction. The problem programmer has
the option of selecting (or omitting) some
of these functions according to the
requirements of his program. The omission
of some of these functions results in
smaller main-storage requirements for a
particular module.

There are two options for MOD macros.
The user can:

1. Insert the MOD macro

i ruction with
its file parameters in
mb

st

the problem
ndthis case, the
e

program source deck. h C A
in line with

logic module is assem
the problem program.

n
I
1

2. Choose to generate the logic modules
needed for his file formats and system
configuration. To do this, source
decks using macro parameters to
describe the file attributes are
punched for each MOD macro statement.
The logic module macro definition
generates its own unique name, or the
user can name the module in the name
field of the MOD macro statement. The
user name overrides the name the macro
definition normally generates.

For each type of xxMOD macro, the problem
programmer can generate, by issuing the
macro with varying parameters for each
required module, many logic modules. The
logic modules must be cataloged in the
relocatable library. The CATALR control
cards are automatically generated when the
module is assembled.

At assembly time, the Assembler produces
an EXTRN (External Symbol) card for every
V-type constant, or EXTRN statement, in the
user program. At the time this program is
link edited, the Linkage Editor resolves
these EXTRN symbols. MWhen these are
resolved, the program is cataloged into the
core image library, from which it is called

for execution.

TRACK HOLD FUNCTION

The track (or control interval) hold
function provides DASD track protection
when the parameter HOLD=YES is specified in
the operand of the module generation macro
(DAMOD/ISMOD) and the DTFSD/DTFDA/DTFIS
macro. If a task has previously accessed a

DASD track and is currently modifying a
record from that track, DASD track
protection prevents another task in storage
from accessing that track. The task
attempting to access the held track is put
in the wait state until the track has been
released.

For DAM and ISAM, the problem program
must issue the FREE macro to release a
track held on READ operation. The module
automatically holds and releases all tracks
for WRITE operations.

For sequential DASD, the track is held
and freed implicitly by the logic modules.

The track (or CI, for FBA) hold function
is applicable to four situations:

1. Sequential DASD update files (data).

2. Sequential DASD work files with the
UPDATE=YES parameter specified.

3. DAM files.
4, ISAM files.

REENTERABLE MODULES
A reenterable module i logic module that

s a
can be used g;xﬂgh;gn%ggle or shared, by
more than one file ncluding the
RDONLY=YES parameter in the module
generation macro generates a reenterable
logic module. The RDONLY (read-only)
parameter implies and assures, regardless
of the processing requirements of any
file(s) using the module, that the .
generated logic module is never modified in
any way. To provide this feature, unique
save areas, external to the logic module,
are established, one for each task using
the module. Each save area must be 72
bytes and double-word aligned. A task must
provide the address of its unique save area
in register 13 before an imperative macro
is issued to a file and a logic module
entered by the task.

The IBM-supplied logic modules used for
DAM and sequential DASD (DTFCP, DTFDA,
DTFDI, DTFSD) files are read-only and
re-entrant, but do not require the user to
provide a save area address in register 13
and will ignore such an address lf
Provnded The same is true for lo
modules used for tape support ulth DTFMT.

Reenterable modules include: CDMOD,
cpPMOD, DIMOD, DUMOD, and ISMOD

NSHIPS OF THE DECLARATIVE MACRO

—m
m oOom
o-

TFDA, DTFDI, DTFDR,
DTFMT, DTFOR, DTFPR,
larative macros are

t. They each generate
rences an IO0OCS logic
bytes of each table
ghat is, a Command
r

Ue s o CXO

—-—dF ZZ
+
T=3 A0 >

m o YOO —Ar
i ——~3 0N

a logic module
of each table is

M3 +=T——HCO XX

norm

aJ<op3Imnmm V-
0.
w

YOITIUNDO~ i

oowo
M Cc VO

INTRODUCTION 7

Licensed Program - Property of IBM

tailored to the particular device and file
type.

When one of these DTF macro instructions
is encountered at assembly time, the
assembler builds a DTF table tailored to
the DTF parameters. The table contains:

* Device CCB.
e A y the Linkage

V-type statement b
nkage to the
7
u

Editor to resolve
logic module with
the referenced log

used
the 1i
this DTF. For DTFMT,
ic module (IJJTCTL)
CNTRL
not opened magnetic tape
and,
RT1
f
he

processes only the commands for
files. For

DTFSD, DTFMT, DTFDA DTFPR/DI/CP if
actual device is a P or 3800 printer,
OPEN will dynamically fill in this field
with the address of t IBM-supplie
logic module. (Therefore for DTFSD and
DTFDA zeros are generated.)

® Logic indicators; that is, one I/0 area,
two I/0 areas, device type, and so on.

¢ Addresses of all (except work files) of
§he_areas and controls used by this
evice.

Regardless of the method of assembling
logic modules and DTF tables (that is, with
the main program or separately), a symbolic
linkage results between the DTF table and
the logic module. Normally, the linkage
editor resolves these linkages at edit

support SAM and DAM files on DASD, the

linkages are resolved at open time.

To accomplish the linkage between the
DTF table and the logic module, the
assembler generates a V-type address
constant in the DTF table and a named CSECT
in the logic module. To resolve this
linkage, the linkage symbols mo le names)
must be identical. Figure 3 ouws the
relationship of the program (the imperative
macro), the DTF, and the logic module.
Imperative macros initiate the action to be
performed on the file by branching to the
logic module entry point generated in the
DTF table. CRD is the name of the file;
IJCFAQZO the name of the logic module.

IMPERATIVE MACROS

The problem programmer issues
logical IOCS macro instructions to
such functions as opening a file,
records available for processing,
records that have been processed,
controlling physical device operations,
etc. Figure 4 on page 9 summarizes the
macro instructions provided by IBM for
logical IOCS. Figure 5 on page 11 further
defines the general function of each of the
macro instructions and indicates the
devices Wwith which they are used.

imperative
initiate

making

uriting

time. However, for logic modules that
ProbleT program DTF table Module
E ———> CRD ETFCD >IJCFAOZ0 CDMOD
PuT C§D DC V(IJCFADZO) -
Figure 3. The Relationship Between Imperative and Declarative Macros

8 IBM VSE/Adv. Functions Diag. Ref.

LIOCS Volume 1

Licensed Program — Property of IBM

D D D D D D D D D D D D D D D
macros | F 1 F | F | FJFIFELELELELEIRIREIELE]E
iR e (Al P R|D & R{TIRIE|RID|R
CHECK X x?! x1
CLOSE(R)Y| x x X b X X x x X X X x X x
CNTRL X H H X X x x2] x X
DISEN x
DSPLY X
ENDFL X
ERET X X X X X
ESETL X
FEOV X X
FEOVD X X
FREE x x!
GET X X X X X X X x3| x x3| x
LBRET X X X X
LITE X
NOTE x1 x1
OPEN(R) x X X X X X X X X X X X X X
POINTR x1! x1
POINTS x! x!
POINTH x! x?
PRTOV x2 X
PUT X X X X X X x3 X x3] x
PUTR X
RDLNE X
READ X X X X x1! x!
RELSE X X X
RESCN X

Figure 4 (Part 1 of 2). Logical IOCS Imperative Macros and DTFs

INTRODUCTION 9

Licensed Program - Property of IBM

D D D D D D D D D D D D D D D
T T T T T T T T T T T T T T T

MACROS F F F F F F F F F F F F F F F
[[[D D D D I M M 0 P P S S
D N P A I R U S R T R H R D R

SEOV X

SETDEV X

SETFL X

SETL X

TRUNC X X X

WAITF X X X X X

WRITE x x X3 x1

1. Work files only. 2 ,Not for 2560 work files. 3.Data files only

Figure 4 (Part 2 of 2). Logical I0CS Imperative Macros and DTFs

10 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

TYPE OF PROCESSING WITH LOGICAL 10CS
. Indexed
Sequential Sequential
=
g . 3| 3
@® o oW w
LEH P 5| |52 2
&85 3 (a5 |a88 5
Macro Instruction i 5|S5E|85 = Dw 33w L S ®
L TI2EE(28| 8 [¥| .|99/2%%| o] = E|. | ol 2
2 Pl el .L 5 cd|ow cl 3 | o 2|2
£ |E|RSE|8| 5, (2| 3135|980 2 (.22 |2 |8 K
© |15|982|c8| 08| |52|95(|99s| o (23| & (€K |8 |€|E|c
25 |2|908|88|R3[2[25|R0(530 | < |¥3| 5 (S8 &|8|e|8|%E
I s viag| alialasolloak| o |25 2 09| o|<|Z|S|E|%
08 |O|SYQ|S S| c5|O(08/Q2 Q02| L 10X § [Soja|.|h|E|s|§
28 |5/223(29/ 28 /5/85/58(988| 2192 558 2|83(3lE 3
@ - '] = X a & © slo|lg| s
Oy |83 Oz |8 B5|TQITEE| o |8 = [&F 2|56/ 3|<|c | &
OPEN(R) X X X X | X| X X X X X X X [X IX[X[X[X[X
Initialize LBRET! X X
GET X [X | x |x? X2 | X [X | X [X X
PUT X X X [x4 [x3 [x [x X X
PUTR11 X
READ X X X X X X X
WRITE X X X[X|[X]|X
Process CHECK X X X X
RELSES X X
TRUNKS X X
WAITF X X X X XXX [X
RDLNE X
RESCN X
DSPLY X
SETFL X
ENDFL X
Set Mode | SETL X
ESETL X
SETDEV X
CNTRL? X| X X| X | X X | x12 X X
CHNG X
Non Data | PRTOV X10
Operations [RTSEN X X
LITE X9 | X9
ERET X | X | X X[X|X]|X
READ X X
Work Files | WAITE X X
for DASD _CHECK X X
and NOTE X X
Magnetic | pPOINTR X X
Tape POINTW X X
POINTS X X
CLOSE(R) X| X X | X [X] x| X X X | X X X | X[X|X[X[X[X
FEQV X
FEOVD X
Complete FREE XE X
LBRET! X X
SEQV X
Notes: 1. Appliesonly if DTFSR, DTFMT, DTFDA, or DTFPH LABADDR or XTNTXIT is specified.
2. In the 2520 or 2540, GET normally reads cards in the read feed. If TYPEFLE =CMBND is specified, GET reads
cards at the punch —feed —read station. For the 3881, the WORKNAME operand is invalid.
3. Put rewrites on input DASD records if UPDATE is specified.
4. In the 1442, 2520, or 2540, PUT punches an input card with additional information if TYPEFLE=CMBND is
specified; PUT is specified by the 2560, 3525, and 5424/5425, if read/punch associated files are specified.
5. Applies only to blocked input records.
6. Applies only to blocked output records.
7. Provided only for upward compatibility for BPS and BOS.
8. Work files only.
9. Applicable to 1419 and 1275 with the Pocket Light Feature,
10. Not for 2560 or 5424/6425 with print feature.
11. Display Operator Console only.
12. CNTRL is treated as a no-op for FBA.
13. Applies also to 3211 compatable printers (with device type code of PRT1),

Figure 5. Logical IOCS Imperative Macros and Devices

INTRODUCTION

11

Licensed Program - Property of IBM
IMPERATIVE MACRO EXPANSIONS

For each imperative macro issued by the problem programmer, the
Assembler program generates an in-line expansion that links the
instruction to the DTF table (and thus the logic module) for the
specified file. The filename used for the DTFxx macro describing the
file must always be an operand of the imperative macro instruction.

Typical expansions and brief descriptions of the function and

grggedure of each of the logical I0OCS imperative macro instructions
ollow.

CHECK Macro

Label CHECK|{filename, PARAMx*

L 1,=A(filename) |Loads address of DTF table.

L 0,=A(PARM) Loads address of control field.

L 15,16(1) Loads address of logic module.

BAL 14,8(15) Branch to CHECK routine in logic module.

* Optional

Function: This macro instruction forces the program to wait for
completion of the I/0 operation started by a READ or WRITE macro for
the data file specified.

Procedure: This macro instruction waits for the completion of the
input/output operation, started by a READ or WRITE, for the device
associated with the filename. If the 1/0 operation is completed
without an error or other exceptional condition, CHECK returns control
to the next sequential instruction. If the operation results in an
unusual condition (EOV, EOF, overflow, errors), CHECK processes the
user's option specified in the DTF. Then, if the unusual condition is
resolved, control returns to the user. Generally, if the unusual
condition is not resolved, the routine posts a bit in some area set
aside to indicate the condition, or issues a message to the operator
on the system console printer.

12 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program — Property of IBM
CLOSE Macro

Label CLOSE|FILEA,FILEB,...,FILENn

CNOP 0,4

DC OF'0"'

LA 1,=C'6$BCLOSE" Initializes to fetch Close Monitor.

IJJCxxxXx BAL 0,%+4+4%(&N-1) Register 0 points to the address of the DTF

table for the first file in the file list.
The second operand causes a branch to the SVC
2 instruction.

DC ACFILEA) Start of file list.

DC ACFILEB) (The file list contains the addresses of the

. DTF tables for all the files specified in the

. CLOSE macro operand.)

6C ACFILEn) Address of the DTF table for the last file
specified in the CLOSE macro operand.

SvC 2 Fetches the Close Monitor, $$BCLOSE.

L FILEn = Symbolic address of the DTF table for the last file specified in the CLOSE
macro operand.
N = Sequenge number of a file (1, 2, 3) in the order it appears in the CLOSE macro
operand.
&N = N of last file +1.

Function: The CLOSE macro instruction deactivates any file previously
opened on any inputZoutput unit in the system. The symbolic name of
the logical file, assigned in the DTF header entry, is required in
this instruction. Up to 16 files can be closed by one instruction by
entering additional filename parameters. CLOSE is required whenever
logical I0OCS macro instructions have been used to transfer data, and
he file has been previously opened.

dure: The CLOSE macro instruction calls the Close Monitor,
OSE, 1nto the logical transient area to determine the device type
ned to the file.

r PRT1 or 3800 printers with DTFPR, DTFDI or DTFCP with DISK=YES
OSE frees the DTF extension created by OPEN and indicates in the
F that the file is no longer available for processing.

For other printers, card readers, card punches, CLOSE simply sets a
bit off in the DTF table to indicate that the file is no longer
available for processing. For magnetic tape, DASD, and MICR devices,
the monitor calls the appropriate device-oriented close logical
transient. For magnetic tape and DASD files, the CLOSE macro
instruction causes trailer label processing for an input file, and
trailer label creation for an output file, if necessary. If a
magnetic tape file is being closed, the rewind option selected is
executed. The file is deactivated by setting a bit off in the DTF
table to indicate that the file is no longer available for processing.

For Diskette I/0 Unit input files, the diskette is fed out and the
file is deactivated. For output files, the HDRl label is updated to
reflect the proper end-of-data, the diskette is fed out, and the file
is deactivated. The following table defines feed control:

I Input —-- | OQutput -- l Input —- | Qutput --
Programmer | Programmer System System
! Logical Unit ! Logical Unit ! Logical Unit | Logical Unit

DTFCP | A A | N I A
DTFDI | NA NA | N A
DTFDU | S S I N | N
DTFPH | A A N | A

A —-- always feed at close

S -—- user can suppress feed at close

N -- never feed at close

NA-- not applicable

‘ INTRODUCTION 13

If physi
are to b

Licensed Program - Property of IBM

cal IOCS is used, CLOSE is required only when standard labels

e checked or written.

CLOSER Macro

Label CLOSER|FILEA,FILEB,...,FILEN
CNOP 0,4
DC OF'0"
B *+8
DC A(x) Address used by CLOSER for relocation.
LA 1,%-6 Loads actual location address.
MVI *-4,X'58" Disable subsequent relocation.
L 0,%-12 Loads relocation factor.
SR 1,0 Finds displacement value.
L 0, IJJCxxxx+N*4 Gets address of DTF table for file to be
opened.
AR 0,1 Adds displacement value.
ST 0,IJJCxxxx+N*x64 Returns new DTF table address to file list.
(The three instructions listed are repeated
for each file specified in the OPENR macro
operand starting with FILEA.)
éﬁOP é.:C'$$BCLOSE' Initializes to fetch $$BCLOSE.
TJJUCxxxx BAL 0:*+4+4*(&N—1) Register 0 points to the address of the DTF
table for first in the file list. The second
operand causes a branch to the SVC 2
instruction.
DC ACFILEA) Start of file list.
DC ACFILEB) (The file list contains the addresses of the
. DTF tables for all files specified in the
. CLOSER macro operand.)
DC ACFILEnNn) Address of the DTF table for the last file in
the CLOSER macro operand.
SvC 2 Fetches Close Monitor, $$BCLOSE.
FILEn = Symbolic address of the DTF table for the last file specified in the CLOSER
macro operand.
N = Sequence number of a file (1, 2, 3), in the order it appears in the CLOSER
macro operand
&N = N of the last file +1.

Function
self—-rel

Procedur
same man

: The CLOSER macro instruction deactivates files used by

ocating programs.

e: The CLOSER macro instruction performs its function in the

ner as the CLOSE macro.

CNTRL Macro

Label ! CNTRL!filename.code, nt, n2 !1’2|3
| L |1.=A(fi1ename) |Loads address of DTF table. I*l* *
| MVI 123(1),code |]Puts control code in the DTF table B ERE]
| | Iif delayed printer control. | |
| LA |0,code Loads control code. 1| |x
| L |15,16(1) zLoads address of logic module. EIRRE;
| BALR }14,15 Branch to CNTRL routine in logic module. %] |x

1. Instruction assembled if skip or space immediate is specified.

2. Instruction assembled if delayed skip or space is specified.

3 Instruction assembled if both delayed and immediate skip and space are specified.

14 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Label CNTRL|filename,code, n!, n?

L l1,=A(filename) |Loads address of DTF table.

MVI 72(1),code Puts command code for DMK, LMK, and ESP on a 3886 to the
CCW in the DTF.

MVC %+11(1),fldname|Generated if code is ESP and n? is fldname. Move byte at
{lgna?e to second DC of parameter list (DC generated

ater).

MVC *+11(1),0(Cr) Same, but n? is a register.

BAL 0,%+6 Generated if n! is a number.

DC AL1(nt) Always generated if BAL is generated.

DC AL1(n?) Generated if code is LMK or ESP and n2 is a number.

DC AL1(0) Generated if code is LMK or ESP and n2 is fldname or a
register. The value is filled in by one of the MVC
instructions described above.

L 0,=A(fldname) Generated if code is DMK or LMK and n? is fldname.

LR O,r Same, but n? is a register other than register 0.

L 15,16(1) Loads address of logic module.

BALR |14,15 Branch to CNTRL routine in logic module.

CNTRL expansion for the 3886 Optical Character Reader.

Function: The CNTRL (control) macro instruction provides commands for
these input/output units: magnetic tape units, card reader-punches,
punches, DASD, printers, and 3881 and 3886 optical readers. Commands
apply to physical nondata operations of a unit and are peculiar to the
unit involved. They specify such functions as rewinding tape, stacker
selection of cards and documents, line spacing on a printer, etc.

When a CNTRL macro is executed, the routine waits for completion of
the operation before returning control to the user. On DASD, houwever,
control returns at channel end.

Whenever CNTRL is to be issued in the problem program, the DTF
entry CONTROL=YES must be included in the file definition (except in
DTFDR and DTFMT).

The CNTRL macro instruction must not be used for printer or punch
files, if the data records contain control characters and the entry
CTLCHR= is included in the file definition (DTF) macro.

The CNTRL macro may also be used to process sequential DASD (DTFSD
TYPEFLE=WORK,RECFORM=FIXUNB) work files backwards. The Backspace (BSL)
function is invoked as follows:

CONTRL {filename|(1)},BSL
Operands
filename (1) The name of the file specified as a symbol or in register
It must be the name of the file specified in the DTF.
BSL Mnemonic code for backspace.

As a result of the function code BSL, LIOCS sets the current position
pointer back to the previous sequential record, unless one of the
restrictions below applies, (i.e, assume record n has been handled
by the last request, then the positioning of the file after BSL will
be the same as after a POINTR or POINTW to record n-1, unless one of
the restrictions below applies.) BSL out of the End-of-Extent routine
specified by the EOXPTR parameter results in a POINTR or POINTW to the
last record successfully written. The BSL function code is the only
one recognized, all others will be ignored.

Violation of the following processing restrictions for BSL will
result in a return code in register 0:

Return code 8:

For non-control-interval-format CKD files

. BACKSPACE cannot cross EXTENT-limits or boundaries. T
already or is now positioned at the beginning of an E
1st EXTENT).

ile s
(

he fi wa
XTENT (not
CE request was issued and the pointer was already

INTRODUCTION 15

notation.

Licensed Program - Property of IBM

ing of the file, for instance immediately

positioned at the beginni
INTS, or the pointer is now positioned at

after OPEN or after PO
the beginning.

Restriction: A WRITE UPDATE should not fellow a BSL with re
4 or 8, task gets cancelled, if the file is positioned at th
beginning of an extent (POINTS like situation).

turn code
e

Procedure:;The control routine waits for completion of any previous
operation of the file. Then the device symbolic address is moved to
the CCB. The command code is moved to the CCHW, and the CCB address is
loaded into register 1. Next an SVC 0 is issued to perform the
control function indicated by the CNTRL macro instruction. Then
control returns to the problem program. CNTRL is treated as a no-op
for sequential (DTFSD) files, unless BSL (backspace one logical
record) and both RECFORM=FIXUNB and TYPEFLE=WORK are specified.

DISEN Macro

Label!DISEN!filename
I [1,=ACfilename)|Loads address of DTF table.
‘L I15.16(1) |Loads address of logic module.
IBAL ‘14,12(15) lBranch to DISEN routine in logic module.

Function: The DISEN (disengage) macro stops
through a magnetic ink character reader (MIC
Reader/Sorter,

the feeding of documents
R) or Optical

Procedure: The DISEN macro modifies the instructions in the CCW chain
and sets the disengage bit (bit 0 of byte 21) in the DTF table.
Control returns to the problem program at the next sequential
instruction following the DISEN macro expansion without waiting for
completion of the disengage operation.

DSPLY Macro

Label!DSPLY!filename;r‘,r2
|L |1,=A(fi1ename) Loads address of DTF table.
|MVC 188(8,1),0(r2) |Puts Load Format CCW for document coordinates
| | |lof field to be displayed in DTF table.
|MVC 196€16,1),0(r*)]|Puts Load Format CCW for document coordinates
|] |lof reference A
| | |mark for field to be displayed in DTF table.
|L [15,16(1) |Loads address of logic module.
|BAL 114,20(15) |Branch to DSPLY routine in logic module.

Function: The DSPLY macro displays a specific field on the display
scope of the IBM 1287 Optical Reader for entering the field from the
keyboard. The DSPLY macro should be used in Document Mode only.

The macro requires three parameters, none of which can be omitted.
The first parameter is the symbolic name of the 1287 file as specified
in the DTFOR header entry. This parameter may also be a register that
contains the address of the file. The second parameter must be a
register that contains the address of the CCW defining the coordinates
of the field to be displayed. The third parameter must also be a
register that contains the address of the landmark defining CCW.

Procedure: If the reader cannot scan a complete field due to specific
characters or fields running together, the field containing the error
is retried by PIOCS. If still unsuccessful, the user is informed of
the condition via his error correction routine (specified in the DTFOR
COREXIT entry). The DSPLY macro is then issued to display the field
in question on the 1287 display scope. The operator can then key in
the correct characters. If an error is made in keying in the

16 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

characters, the operator should press the cancel key and then the
enter key, and the field will be redisplayed.

ENDFL Macro

Label!ENDFLIfilename

IL |0,—A(f|1en)ILoads address of DTF table.
| LA |1,C*"SBENDF |Loads Address of B-transient phase name.
|SVC |2 |Fetches phase $$BENDFL.

Function: The ENDFL (END File Load mode) macro instruction ends the
ISAM mode initiated by the SETFL macro. The name of the file that has
been loaded is the only parameter required, and must be the same as
the name specified in the file definition (DTF) macro.

Procedure: The ENDFL macro instruction performs a close operation for
a file that was just loaded. It writes the last block of data
records, if necessary, and then writes a DASD end-of-file record after
the last record written. The EOF record is a DASD record with a data
length of zero. The routine also updates the index entries as
required, and writes dummy index entries for the unused portion of the
prime data extent. Control then returns to the problem progranm.

ERET Macro
Label!ERET!
IB | 0c14)] 1f operand is SKIP.
|B | 4(14)| If operand is IGNORE.
|B | 8(14)| If operand is RETRY.

Function: The ERET (Error RETurn) macro returns control to a logic
module from an error routine in the problem program when ERREXT=YES is
specified in the DTF macro. The choice of one of the three operands
provided (SKIP, IGNORE, or RETRY) allows the problem programmer to
select the subsequent action of the logic module. The problem
programmer should select his operand based on the nature of the error
as analyzed within his routine.

Procedure: An ERET macro issued in the problem program error routine
generates a branch instruction to return control to the logic module.
Register 14 in the generated branch instruction contains the address
of the return point in the module. The macro operand (SKIP, IGNORE,
or RETRY) supplies the displacement (0, 4, or 8 bytes respectively)
from the return point of an instruction that returns control to the
desired reentry point in the logic module.

ESETL Macro

Label!ES L!filename
|L '1;=A(fllename)|Loads address of DTF table.
| L 115,16(1) | Loads address of logic module.
| BAL 114,20(015) |Branch to ESETL routine in logic module.

Function: The ESETL (End SET Limit) macro instruction ends the
sequential mode initiated by the SETL macro.

Procedure: If blocked records are specified, ESETL writes the last
block if a PUT macro was issued.

INTRODUCTION 17

ticensed Program - Property of IBM

FEOV Macro
Label!FEOV !filename
IL '1,=A(fi1ename) Loads address of DTF table.
L 115,16(1) Loads address of logic module.
|BAL 114,16(15) Branch to FEOV routine in logic module.

Function: The FEOV (Force End-of-Volume) macro instruction is for
either input or output files on magnetic tape devices to force an
end-of-volume condition when neither an EOF indicator nor a reflective
marker has been sensed. It indicates that processing of records on
one volume is considered finished, but that more records for the same
logical file are to be read from, or written on, the following volume.

Procedure: The FEOV macro fetches the proper phases to close the
current volume and open the new volume.

FEOVD Macro

Label !FEOVD!filename

LA Il,-CLB'ssBOSDEV' |Loads address of B-Transient name.
IJJOxxxx|BAL |0,* |

|DC AlCfilename) |

isve |2 [Fetch phase $$BOSDEV.

Function: The FEOVD (Forced End-of-Volume for Disk) macro instruction
is used for either input or output files in sequential disk processing
to force an end-of-volume condition before end-of-volume has actually
been reached. It indicates that record processing on one volume is
finished, but that more records for the same logical file are to be
read from, or written on, the following volume. If no extents are
available on the new volume, the job is canceled.

The FEOVD macro fetches $$BOSDEV to close the current volume and open
a new volume.

Procedure: When FEOVD is issued, an end of extent switch is set in the
DTFSD. When the next GET or PUT is issued, end of extent is detected
and the open transients are called.

FREE Macro
Label!FREE !fllename
|L |1,=A(fi1ename) Loads address of DTF table.
| L]15,16(1) Loads address of logic module.
| BAL [14,44(15) |Branch to FREE routine in the logic module.

Function: The FREE macro instruction releases a protected track (Track
hold function included for Asynchronous Processing) on a direct access
storage device.

Procedure: The FREE routine in the logic module determines the seek
address of the protected (held) track, and loads the address of the
control seek CCB into general register 1. The routine then issues an
SVC 36 to free the track. For sequential DASD files, FREE is treated
as a no-op since the holding and freeing of tracks (or control
intervals) is done implicitly by the logic modules.

18 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

GET Macro
Label GET filename, PARAMx
L 1,=A(filename) |Loads address of DTF table.
L 0,=A(PARAM) | Loads address of work area if specified. %
L 15,16(1) Loads address of logic module.
BAL 14,8(15) Branch to GET routine in logic module.

¥ Optional

Function: This instruction makes the next sequential logical record
from an input file available for processing in either an input area or
a specified work area. It is used for any input file in the system,
and for any type of record: blocked or unblocked, spanned or
unspanned, fixed or variable length, and undefined. When the GET
routine detects an end-of-volume or an end-of-file condition, it calls
in the EOV/Z/EOF monitor, which initiates the correct file termination
procedures.

The GET macro instruction is written with one or two parameters,
depending on the area where the records will be processed. Either
form, but not both, can be used for one logical file. If records are
to be processed directly in the input area(s), the GET macro
instruction requires only one parameter. This parameter specifies the
name of the file from which the record is to be retrieved. The file
2gmefmf5t be the same as the one specified in the DTF header entry for

e file.

The second parameter is optional, and if used, specifies the
address (or a register containing the address) of the work area. This
parameter is used if records are to be processed in a work area
defined by the user. The second parameter causes the GET routine to
move each logical record from the input area to the work area.

Procedure: Two input areas permit an overlap of data transfer and
processing operations. Whenever two input areas are specified, the
LIOCS routines transfer records alternately to each area (except when
combined files are specified). The LIOCS routines completely handle
the switching of I/0 areas so that the next sequential record is
always available to the problem program for processing. If the file
is blocked, it is not necessary to transfer data from the input device
to main storage on every GET instruction. Only when the first record
gfta block is required (blocked records), is it necessary to transfer
ata.

If overlap is possible, the transfer of data required for the
current GET was initiated on a previous GET. If overlap is not
possible, it is necessary to start data transfer, read data, and wait
for completion of the I/0 operation. The handling of the data is done
after a test for unusual condition is made. Unusual conditions are:
$nd gf rsel. wrong-length record, irrecoverable error, no record

ound, etc.

LBRET Macro

Label |LBRET|1

SR 1,1 |Zero register 1.
SvC 9 |Return to logical IOCS.

Label | LBRET]|2
SvVC 9 |Return to logical I0CS.

INTRODUCTION 19

Licensed Program - Property of IBM

Label!LBRET

|3
ILNR |1,1 Put negative value in register 1.
|sve 19 Return to logical IO0CS.

Function: The LBRET (LaBel RETurn) macro instruction provides the
return from:

1. Your routine for the processing of additional user labels or
nonstandard labels that you want to check or write.

2. Your routine for any examination or processing of extent
information during the direct access open of a DASD file.

To return from a label processing routine (spec1fled by the DTF entry
LABADDR), issue the LBRET macro after each user's header or trail
label is processed. Tape files need an operand of 1 or 2, while DASD
label routines use all three operands as required.

To return from an extent processing routine (specified by the DTF
entry XTNTXIT), issue the LBRET macro after handling each extent. An
operand of 2 passes the next extent to your routine. After processing
the last extent, an operand of 1 signifies to LIOCS that all user
extent processing has been completed.

Procedure for Tape and DASD Labels:

1. Input Files. The LBRET macro checks for an operand of 1. If one,
the user label processing is terminated and any addltlonal labels
are skipped. If all the labels on an input file are to
processed, the LBRET 1 macro is not needed. That is, IOCS ends
procegsing when the DASD end-of-file record or the tapemark is
sensed.

2. Output Files. LBRET 1 is required to return to logical I0CS when
all user labels have been created and written. Otheruwise, LIOCS
terminates label processing after a maximum of 8 header or (where
allowed) 8 trailer labels.

Operand 1 is invalid for tape input files that contain nonstandard
labels (FILABL NSTD).

Operand 2 (input file) returns t
standard label has been checked. L
present, available for checking in
senses the end of the label set (DA
it terminates label processing.

o LIOCS after each additional user

I0CS makes the next label, if

the label input area. When I0CS

SD end-of-file record or tapemark),
Operand 2 (output file) returns to LIOCS after each additional user

standard label except the last has been built. LIOCS writes the label

from the label output area and returns to the user's label routine to

permit him to build his next label. LBRET 1 terminates the label set

or_i§ is terminated after 8 header or 8 trailer labels have been

written.

For nonstandard tape labels, LIOCS branches to the user's label
routine only once, and the problem program must read or write every
required label before issuing LBRET 2 to return to LIOCS.

Procedure for DASD Extents:;The LBRET macro checks for an operand of 2
to determine if the user desires any additional extents for
examination. Control passes between LIOCS and the user's routine for
each extent requested until an operand of 1 terminates extent
processing for this file.

label onto a DASD input

Operand 3 causes LIOCS to write an updated
ET 2 procedures are

a
file. After writing the updated label, LB
followed.

Note: If register 15 is required in your routine, save the con
it, and restore the contents before returning to LIOCS via the
macro instruction.

t
R

20 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

LITE Macro
Label!LITE!fllename.PARAM
|L |1.=A(filename) |Loads address of DTF table.
L 0,=A(PARAM) | Loads address of user's 2-byte pocket light
indicator.
|L 115,16(1) Loads address of logic module.
|BAL |14,16(15) IBrgngh to pocket light routine in the logic
module.

Function: The LITE macro turns on the 127571419 pocket lights
specified by the problem programmer.

Note: The problem program must issue a DISEN macro before issuing a
LITE macro.

Procedure: The LITE macro turns on the pocket lights that are
specified by setting indicators (bits) in a 2-byte field identified in
the macro operand. When all the specified pocket lights are turned
on, control returns to the problem program at the next sequential
instruction following the LITE macro expansion.

NOTE Macro
Label!NDTEIfllename
|L l,=A(filename)|Loads address of DTF table.
I L 15,16(1) |Loads address of logic module.
|BAL |14,12(15) |Branch to NOTE routine in logic module.

Function: The NOTE macro instruction retains the identification of a
physical record just read or written in a specified file.

The user must ensure that the previous operation was completed
satisfactorily by using the CHECK macro before issuing a NOTE. The
record identification is placed in register 1.

Procedure: For a tape file, this routine loads the physical record
count into register 1, and control returns to the user.

For DASD, register 1 is loaded with the four bytes identifying the
cylinder, head, and record number (CCHR) or BBBn for control interval
format, where:

BBB = physical Block Number of the Control interval and
n = the logical block number within the control interval.

If NOTE follows a WRITE macro, the unused space remaining on the track
or control interval is loaded into register 0.

INTRODUCTION 21

Licensed Program - Property of IBM

OPEN Macro
Label OPEN |FILEA,FILEB,...,FILEnNn
CNOP (0,4
DC OF'0"
LA 1,=C'"$$BOPEN" Initializes to fetch the QOPEN processor.
IJJOxxxx BAL 0,%+4+4%(&N-1) Register 0 points to the address of the DTF
table for the first file in the file list.
The second operand causes a branch to the
SVC 2 instruction.
DC ACFILEA) Start of the file list.
DC ACFILEB) (The file list contains the addresses of the
. DTF tables for all of the files specified in
. the operand of the OPEN macro.)
DC A(FILER) Address of the DTF table for the last file
specified in the OPEN macro operand.
SvC 2 Fetches the OPEN processor, $$BOPEN.
FILEn = Symbolic address of the DTF table for the last file specified in the OPEN macro
operand.
N = Sequence number of a file (1, 2, 3, etc.), in the order it appears in the OPEN
macro operand.
&N = N of the last file +1.

Function:
problem p

The OPEN

macro instruction activates each file in the
rogram. The symbolic name of the logical file (assigned by
in the operand field of this

the DTF header entry) is entered

instructi

instruction by entering the filenames

physical

Procedure
SS$BOPEN,
dev

on. Up to 16 files may be opened with an OPEN macro

I0OCS is us

: The QOPEN

in the operand field. If

ed, OPEN is required only when standard labels are
to be checked or created.

macro instruction calls the OPEN processor,

into the logical transient area.
and calls the appropriate

ice type assigned to the file,
device-oriented open logical transient.
open transients do all processing required to check or create standard

labels for their respective files.
DASD an indicator
that these files have been opened.

tape, dis

kette, or

The monitor checks for the

The tape, diskette, and DASD

For devices other than magnetic
is set in the DTF table to show
For PRT1 or 3800 printers uwith

DTFPR, DTFDI or DTFCP with DISK=YES OPEN creates a DTF extension in a

getvised area.
OPENC Macro
Label OPENC|SYSxxx!,SYSxxx%,.....5YSxxxn
LA 1,=C'$$BOPENC"'|Loads address of B-transient name.
BAL 0,IJJOxxxx Branch to fetch B-transient.
DC AlLl(class)? Logical unit class for SYSxxx!?!,
DC ALl (number)? Logical unit number for SYSxxx?!.
DC AlLl(class)? Logical unit class for SYSxxx?2,
DC ALl1(number)? Logical unit number for SYSxxx2.
5C ALl(class)n Logical unit class for last SYSxxx in list.
DC ALlCnumber)n Logical unit number for last SYSxxx in list.
TJJOxxxx svc 2 Fetches phase $$BOPENC.
n = a maximum of 16 symbolic units (either system or programmer) can be included in the
macro operand.

22 IBM VSE/Adv.

Functions Diag.

Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Function: The OPENC macro instruction determines if a physical device
is assigned to more than one of the symbolic units specified in the
macro operand. A maximum of 16 symbolic units can be checked with a
single macro instruction.

The OPENC macro instruction calls the logical transient,
which checks each symbolic unit specified in the macro
operand in turn. $$BOPENC determines the PUB entry address specified
in the LUB for the corresponding symbolic unit, and compares it to the
PUB entry addresses of each of the remaining symbolic units in the
macro operand. If an equal comparison results between the PUB
addresses of any two symbolic units, an error message is printed and
the job is canceled.

Procedure:
$$BOPENC,

DPENR Macro

Label OPENR |FILEA,FILEB,...,FILEnN

CNOP 0,4

DC OF'0"

LA 1,IJJ0xxxx+% Loads actual location address.

MVI ¥-4,X'58" Disable subsequent relocation.

L 0,IJJOxxxx+4 Loads relocation factor.

SR 1,0 Finds displacement value.

L 0,IJJOxxxx+4+4%N Gets gddress of DTF table for file to be
opened.

AR 0,1 Adds displacement value.

ST 0,IJJOxxxx+4+4%N Returns new DTF table address to file list.
(The three instructions listed are repeated
for each file specified in the OPENR macro
operand starting with FILEA.)

EQOP 0,ZC'SSBOPENR' Initializes to fetch $$BOPENR.

IJJOxxxx BAL 0:*+8+4*(&N—1) Register 0 points to the address used for
relocation. The second operand causes a
branch to the SVC 2 instruction.

DC A(x) Address used by OPENR for relocation.

DC ACFILEA) Start of file list.

DC ACFILEB) (The file list contains ADCONS for the

. addresses of the DTF tables for all the files

. specified in the operand of the OPENR macro.)

DC AC(FILEN) ADCON for last file in file list.

SvC 2 Fetches $$BOPENR.

FILEn = Symbolic address of the DTF table for the last file specified in the operand of

the OPENR macro.

N = Sequence number of a file (1, 2, 3, etc.), in the order it appears in the OPENR
macro operand.

&N = N of the last file +1.

Function: The OPENR macro instruction activates files used by
self-relocating programs. In addition to the basic function performed
by the OPEN macro, the OPENR macro relocates all the address constants
within the DTF tables for the files specified in the operand field. A
maximum of 16 files can be specified in the operand of a single OPENR
macro instruction.

Procedure: The OPENR macro instruction calls the logical transient
SBOPENR to perform the relocation of the DTF table address constants
for each individual file. After the DTF address constants for all the
files specified in the macro operand have been relocated, $$BOPENR
calls the OPEN processor ($$BOPEN), then the Open Monitor ($$BOPEN1)
to perform the actual open function. After all the specified file
are opened, control returns to the problem program.

1
5

INTRODUCTION 23

Licensed Program - P-operty of IBM
POINTR Macro

LabellPOINTR!fllename PARAM
IL |1,=A(fi1ename) Loads address of DTF table.
IL]0,=A(PARAM) Loads address of field containing record identification.
I L 115,16(C1) Loads address of logic module.
| BAL |114,16(15) |[Branch to POINTR routine in logic module.

Function: The POINTR macro instruction repositions the file to read a
maggetlg_tape or DASD record previously identified by a NOTE macro
instruction.

Procedure: If the file is on tape, this routine spaces tape either
forward or backward until the block count in the DTF table reaches the
value provided as a parameter of the POINTR macro. Then the file is
backspaced so0 the record may be read.

For DASD files, the POINTR macro instruction logic flow is the same

as POINTW except track space is not considered. The POINTR macro is
only used with IBM disk devices.

POINTS Macro

Label!POINTS!fllename
IL |1.=A(fll name) |Loads address of DTF table.
IL |15,16(1) Loads address of logic module.
| BAL 14,24(15) Branch to POINTS routine in logic module.

Function: The POINTS macro instruction repositions a magnetic tape or
DASD file to the beginning of the file.

Procedure: For a magnetic tape file, a POINTS macro instruction
rewinds the tape associated with the filename. 1If any_ header labels
are present, they are bypassed on the next READ or WRITE instruction.
Th: tape is positioned to the first data record following the label
set.

For a DASD file, a POINTS macro instruction positions the file to
the lower limit of the first extent. The first record on the file is
read or written when the next READ or HWRITE macro instruction is
issued for the file

POINTW Macro

Label!POINTN!fllename,PARAM
|L |1,=A(f11 name) Loads address of DTF table.
IL 10,=ACPARAM) Loadss address of field containing record
identification.
| L 115,16(1) Loads address of logic module.
|BAL 114,20C15) |Branch to POINTHW routine in logic module.

Function: The POINTW macro instruction repositions the file to write a
magnetic tape or DASD record following the one previously identified
by a NOTE macro instruction.

Procedure: If the file is on magnetic tape, this routine spaces tape
either forward or backward until the block count in the DTF table
reaches the value provided as a parameter of the POINTW macro.

For a DASD file, the DASD address of the record to be written is

calculated. The POINTHW routine determines if the record can be
contained in the same extent used by the preceding record (the

24 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM

preceding record is the one identified by the NOTE macro). If not,
the Sequential DASD Open routine is called to open the required
extent. MWhen the correct extent is obtained, the CCW seek address is
modified and the space remaining on the extent is updated in the DTF
table. Control then returns to the problem program.

PRTDOV Macro

Label PRTOV|filename,CHAN,routinex
L 1,=A(filename) |Loads address of DTF table.
L 0,=A(routine) |Loads address of user's overflow routine if specified. x
SR 0,0 Zero register 0 if no user routine specified.
L 15,16(1) Loads address of logic module.
01 21(1),1 Sets channel 9 bit in DTF table if CHAN is 9; otherwise,
channel 12 assumed. %
BAL 14,4(15) Branch to PRTOV routine in logic module.

¥ Optional
%% 0Only if CHAN=9

Function: The PRTOV (PRinTer OVerflow) macro instruction specifies the
operation to be performed when an overflow condition is reached on a
printer. Whenever this macro instruction is to be issued in a problem
program, the DTFPR or the DTFSR entry PRINTOV must be included in the
file definition.

Procedure: The program performs the functions specified by the problem
programmer. That is, skip to channel 1 on a 9 or 12, or perform his
own functions when & 9 or 12 is sensed. If skip to channel 1 on a 9
or 12 is desired and a 9 or 12 is sensed, skip to channel 1 is placed
in the CCH chain. Then, an SVC 0 executes the skip and resets the
channel 9 and 12 indicators.

If a user routine is specified in the macro instruction, the
problem programmer may issue any logical IOCS macro instructions
(except another PRTOV) in his routine to perform whatever functions
are desired. For example: print total lines, skip to channel 1, and
print overflow page headings. The user routine must return to LIOCS
by a branch to the address in register 14. Logical IOCS supplies this
address upon entry to the user's routine. Therefore, if LIOCS macros
are used in the routine or if register 14 is used, the return address
must be saved.

PUT Macro
Label PUT filename, PARAM,controlx

L l1,=A(filename) Loads address of DTF table.
L 0,=A(STLSP) Loads address of control field, if control = STLSP.
L 0,=A(STLSK) Loads address of control field, if control = STLSK. x
L 0,=A(PARAM) Loads address of work area, if specified. *
oI 48(1),X'80" Sets indicator in DTF table if control = STLSK. x*
L 15,16(1) Loads address of logic module.
BAL 14,12(15) Branch to PUT routine in logic module.
NI 48(1),X"7F" Resets control = STLSK indicator in DTF table.

¥ Optional

Function: This instruction writes or punches logical records that have
been built directly in the output area or in a specified work area.
It is for any output file in the system (except work file), and for

INTRODUCTION 25

Licensed Program - Property of IBM

any type of record: blocked or unblocked, spanned or unspanned, fixed
or variable length, and undefined. It operates much the same as GET
but in reverse. It is issued after a record is built.

Similar to GET, the PUT macro instruction is written with one or
two parameters, depending on the area where the records are built.
Either form, but not both, can be used for one specified logical file.
If records are built directly in the output area(s), the PUT macro
instruction requires only one parameter. This parameter spectfles the
name of the file to which the record is to be transferred.

{;1e2aTe must be the same as the one specified in the DTF entry for
e file.

The second parameter is optional and if used, specifies the address
(or a register containing the address) of the work area. This
parameter is used if records are to be built in a work area defined by
the user. The second parameter causes the PUT routine to move each
logical record from the work area to the output area.

A third (optional) parameter, CONTROL=, is included in the macro
?g$[§ng fgr files assigned to printers with the Selective Tape Lister
eature.

Procedure: Two output areas permit an overlap of data transfer and
processing operation. Whenever two output areas are specified, the
LIOCS routines transfer records alternately from each area (except for
combined files). The LIOCS routines completely handle the switching
of I/0 areas so that the proper area is available to the program for
the next sequential output record.

If a work area is specified, the output record is moved from the
work area to the output area.

With blocked files specified, it is not necessary to transfer
information from main storage to the output device on each PUT
instruction. Only if the logical record is the last record of a block
is it necessary to transfer a physical record to the output device.

If overlap is possible, the transfer of information need not bhe
completed before another PUT requiring data transfer is issued. When
overlap is not possible, the transfer of data must be completed before
another PUT is issued.

Tests are made for unusual conditions, which include: end of reel,
wrong length record, irrecoverable error, no record found, etc.

PUTR Macro
Label {PUTR filename,workout*,workinp*

L l1,=A(filename) |Loads address of DTF table.
L 0,=A(workout) |Loads address of output work area. %
L 2y=Alworkinp) Loads address of input work area. %
01l 2(1),X'08" Set action message indicator in CCB.
L 15,16(1) Load address of logical module.
BAL 14,4(15) Branch to PUTR routine in logic module.

* Optional

Function: The PUTR (PUT with Reply) macro handles action messages that
appear on the screen of the Display Operator Console. PUTR used with
the 3210 or 3215 performs the same functions as a PUT followed by a
GET. Moreover, the message non-deletion code for the Display Operator
Console is then provided.

Procedure: The PUTR macro is issued after a record has been built. It
processes fixed-length records only. The PUTR macro is written with
either one or three parameters, depending on the area in which the
records must be built. Either form, but not both, can be used for a
logical file. If the records are_built in the I/0 area, only the
filename parameter is required. If the records are to be built in a
user-specified work area, both workout and workinp must be specified.
In this case, the record is moved from the work area to the I/0 area.

26 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

In the case of overlap, information transfer need not be completed
before the next PUTR requests new data to be transferred. If overlap
is not possible, the next PUTR must wait for the completion of the
previous PUTR. Tests are made for unusual conditions such as
$nd—gf-r:el, wrong length record, irrecoverable error, no record
ound, etc.

PUTR sets bit 5 of byte i the CCB to '1' to indicate an action

3 in
message; it then passes control to logical IOCS, which executes a PUT
immediately followed by a GET

RDLNE Macro

Label!RDLNE !filename
|L |1.=A(filename) |Loads address of DTF table.
| L 115,16(1) | Loads address of logic module.
| BAL 114,4(15) |Branch to RDLNE routine in logic module.

Function: The RDLNE macro provides selective online correction when
journal tapes are being processed on an IBM 1287 Optical Reader. This
macro reads a line in the online correction mode while processing is
in the offline correction mode.

Procedure: If the reader cannot read a character, logical IOCS retries
the line containing the unread character. If still unsuccessful, the
user is informed of the condition via his error correction routine
(specified in the DTFOR COREXIT entry). The RDLNE macro causes
another attempt to read the line. If the character in the line cannot
be read during this attempt, the character is displayed on the 1287
display scope. The operator may key in the correct character, if
possible. If the defactive character cannot be readily identified by
the operator, he may enter a reject character in the error line. This
condition is posted in byte 80 of the DTF table for user examination.
Wrong length records and lost line conditions are also posted to byte
80 of the DTF table. RDLNE should be used in COREXIT only; otheruwise
thg line following the one in error Will be read in online correction
mode.

The macro requires only one parameter, the symbolic name of the
file from which the record is to be retrieved. This name is the same
as that specified in the DTFOR header entry for this file. The
filename can be specified as a symbol or in special or ordinary
register notation.

READ Macro
Label READ |filename, TYPE,PARAM,length
L 1,=A(filename) Loads address of DTF table.
L 0,=A(PARAM) Loads address of input area.
L 15,16(1) Loads address of logic module.
BAL 14,28(15) If TYPE=ID., »
BAL 14,24(15) If TYPE=KEY, *
BAL 14,0(15) If TYPE=MR. *
LA 14, IJJRSYSNDX+10 Loads return address for TYPE=SQ.
IJJRSYSNDX|BAL 0,4(15) Branch to READ routine in the
logic module if TYPE=SQ.
DC A(PARAM) Address of input area.
DC H'length®' Length of record to be read.

% Portion of macro expansion determined by TYPE= parameter.

INTRODUCTION 27

Licensed Program - Property of IBM

Label !READ filename,DR,PARAM]1, PARAMZ
|L 1,=A(filename) |Loads address of DTF table.
| L 0,=A(fldname) |Loads the field name specified by PARAML.
| LR O,r |Loads the register specified by PARAMI1.
|BAL 0,*+6 |
| DC AL1(PARAM]) | Generated if PARAM1l and PARAMZ2 are numbers.
|DC AL1(PARAM2) |
| L 15,16(1) | Loads address of logic module,
| BAL 14,8(15) |Branch to read routine in logic module.
READ macro expansion for the 3886 Optical Character Reader.

Function: The READ macro instruction causes part or all of the next
sequential physical record (or the next logical block for control
interval format) to be read from the file associated with _the filename
into the area of storage indicated. If the file is on a 3886 Optical
Character Reader, the storage area is indicated in the DTF.

Procedure: The READ macro instruction must always be followed by
either a CHECK macro (MICR and work files) or a WAITF macro (DAM,
ISAM, and 3886 files) to ensure the completion of the READ
instruction.

The read logic sets up the channel program, modifies the CCHW,
inserts the address and number of bytes to be r«ad, and issues an SVC
0. For control interval format the READ may not cause physical 1I/0.

The read logic does not provide for deblocking of records. If the
user wishes to use blocked records, he must provide this function in
the problem program.

RELEASE Macro -- Dynamic Device Release
Label!RELEASE!SYSxxx,...

lsTm l0,1,sAVE |Saves registers 0 and 1.
LA [1,=C*"$$BRELSE' |Loads address of B-Transient name.
| BAL [0,%+4+6 |Branches to fetch and skip table.
|SVC |2 Fetches $$BRELSE.
| LM [0,1,SAVE Restores registers 0 and 1.
|Sve |14 |Normal end of job.

Function: This macro releases a unit table as specified by the problem
program and fetches $$BRELSE.

The 'savearea' parameter is optional. If it is provided, it should
be the name of an 8-byte area where registers 0 and 1 are saved for
the user. If it is not provided, the contents of registers 0 and 1
are destroyed.

the operand
sted for
E i issued

Procedure: The macro checks all of the units provided i
sublist to assure that no system logical units are requ
release. If system logical units are specified, an MNO
and the unit is ignored.

n th
este
=

After all checking is done, a unit table is set up, register 0 is
loaded with the table address, and $$BRELSE is fetched. If the
'savearea' option is specified, registers 0 and 1 are saved, and code
is generated to restore them after the transient returns control to

the RELEASE macro.

28} IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
RELSE Macro

Label!RELSE !filename
I |1,=A(filename) |Loads address of DTF table.
|L 115,16(1) |Loads address of logic module.
| BAL 114,4(15) |Branch to RELSE routine in logic module.

Function: The RELSE (release) macro instruction is used in conjunction
with blocked input records. It allows the programmer to skip the
remaining records in a block. If the record spans multiple physical
blocks, the entire logical spanned record is bypassed. Processing
continues with the first record of the next block when the next GET
macro instruction is issued.

Procedure: The GET routine is modified to make the current record
being processed look like the last record of the block. With this
indication, the next GET transfers information from the input device
to main storage and makes the first record of the new block available
to the problem program.

RESCN Macro

Label!RESCN !filename,r‘,rz
!tA !é.;g(filename) |Loads address of DTF table.
| MVC laé(B.l).O(rz) |Puts Load Format CCW for reference mark
| | Iin DTF table.
jMVC]96C16,1),0C(r!) |[Puts Load Format CCW for field to be read
! | [in DTF table.
I L 115,16(1) | Loads address of logic module.
| BAL 114,16(15) |Branch to RESCN routine in logic module.

Function: The RESCN macro provides the capability of rereading a field
that has a defective character. This macro pertains only to the
document mode and rereads into the portion of IOAREAl corresponding to
the original read. Online correction can also be forced by this
macro.

The macro requires from three to five parameters. The first
parameter specifies the symbolic name of the 1287D file given in the
DTFOR header entry for the file. The second parameter specifies a
general purpose register (2-12) which must contain the address of the
Load Format CCW giving the document coordinates for the field to be
read. The third parameter specifies a general purpose register (2-12)
that must contain the address of the Load Format CCW giving the
coordinates of the reference mark. The fourth parameter specifies a
number (n), which is the number of retries to be given. The fifth
parameter specifies one more retry with forced online correction.
This parameter must be the letter F.

Procedure: When a character cannot be read, logical IOCS retries the
line containing the unread character. If the character still cannot
be read, the user is informed of the condition in his error correction
routine specified in the DTFOR COREXIT entry. The user can then issue
the RESCN macro to reread the field with the unreadable character. If
the character still cannot be read, it is retried up to nine times
depending on what the user specified. If the error still exists on
gng last retry, online correction is forced if the user specified
15.

INTRODUCTION 29

Licensed Program - Property of IBM

SEOV Macro
Label!SEOV !filename
ILA '1,=C'$$BCEOV1' | Loads addreess of B-transient name.
| L |]0,=A(filename) |Saves filename for B-transient phase.
jsvcC 12 | Fetches phase $$BCEOVI.

Function: The SEOV (System Units End-of-Volume) macro instruction
allows automatic volume switching to occur if the reflective spot is
reached on a magnetic tape output file assigned to either SYSLST or

SYSPCH.

Procedure: An SEOV macro, issued after the physica

been detected on a tape file,

1l end-of-volume has
fetches phase $$BCEOV]1 to determine the

file type, and to select the proper tape close routine. The selected
tape close routine performs the appropriate close functions and
determines if an alternate tape is available. If an alternate tape is
available, it is opened and made ready for processing.

SETDEV Macro

| Loads address of the DTF table.

}Generated if the phasename is an actual phasename.
|If phasename is specified in a register (r)

jother than register 0.

| Loads address of logic module,.

|Branch to SETDEV routine in logic module.

Label!SETDEV!filename,phasename
|L |1=A(filename)
| BAL j0,*+12
|DC |]CL8"phasename’
}LR ’U,r
| L 115,16(C1)
| BAL 114,16C15)
Function: The SETDEV (SET
record into the 3886 Optic

DEVice) macro instruction loads a format
al Character Reader.

Procedure: The SETDEV macro generates code which sets up parameters
and branches to the 3886 logic module. The logic module gets the
format record from the core image library and loads it into the 3886

device control unit.

SETFL Macro

!Label!SETFL |filename

| |L |0,=A(filename) | Loads address of DTF table (DTFIS Load).
| |LA j1,=C"$$BSETFL" Loads address of B-transient name.

| |SVC |2 Fetches phase $$BSETFL.

| |LR 11,0 Saves address of DTF table for the problem
. |program.

Function: The SETFL (SET File Load mode) macro instruction sets up the
ISAM file so that the load function can be performed.

Procedure: The SETFL macro instruction preformats the last track index
of each cylinder of a file with zero entries, and initializes for a
WRITE. Control then returns to the problem program.

30 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

SETL Macro
Label SETL |filename, PARAM
ST PARAM(I),IJJS&SYSNDX+8 Saves parameter.
LA 1,=C"SBSETL" Loads address of B-transient name.
IJJS&SYSNDX|BAL 0,%+12 Branch to fetch B-transient.
DC A(filename) Address of DTF table.
DC ACPARAM(1)) Address of field contalnlng starting (or
lowest) reference if PARAM=ID name. *
DC CL4'PARANM' If PARAM = BOF, KEY, or GKEY. %
SveC 2 Fetches phase $$BSETL.
L 1,TJJS&SYSNDX+4 Loads address of DTF table.
¥0Optional
Function: The SETL (SET Limits) macro instruction i tiates the mode
for sequential retrieval and initializes the ISAM routines to begin
retrieval at a specified starting address.
Procedure: If KEY is specified in the DTFIS table, the SETL routine
searches the indexes to find the track and record address of the keyed

record.
address of the keyed record.
specified,

The GET/PUT constants are initialized to begin with the
When BOF (beginning of the file) is

SETL initializes the GET/PUT logic to begin retrieval with

the first record in the file. If ID is specified in the DTF,
GET/PUT logic is initialized to start with the record
data area corresponding to the specified

TRUNC Macro

the
in the prime

Label!TRUNC !fllename
|L |1.=A(f|1 name) |Loads address of DTF table.
| L '15,16(1) Loads address of logic module.
| BAL 14,20(015) Branch to TRUNC routine in logic module.

The TRUNC (TRUNCate) macro instruction
output records. It allows the programmer to write a
records. (Blocks do not include padding.) Thus,

used for a function similar to the RELSE (release)

Function:

the TRUNC macro
instruction for

is used with blocked
short block of

is

input records, but in reverse. That is, when the end of a group of
logical records is reached, that block is written and a new group is
started at the beginning of a new block.
Procedure: If (as a result of the previous PUT) the block has already
been transferred to the output device, the TRUNC macro requires no
additional handling. If physical I/0 is needed, the PUT routine is
modified to handle the truncated record. Control then returns to the
problem program.
WAITF Macro
Label !NAITF !filename‘.filenamez,...filenamen
IST |SYSLIST(n.1), |Stores end of list code, n+1,
| | TJJWESYSNDX+n*4 in last entry in file list.
| L |1,=A(f|1enamen) Loads address of DTF table.
|L 15,16(1) Loads address of logic module.
IJJW&E&SYSNDX |BAL |14.4(15) Branch to WAITF routine in
| logic module.
|DC |ACSYSLIST(n)) Address of file list.
n = a maximum of 16 files can be specified in the macro operand.
INTRODUCTION 31

Licensed Program - Property of IBM

Function: The WAITF macro tests the condition of MICR device(s) and
tests for I/0 complete when used with DAM or ISAM files.

Procedure: For MICR files, if any one of the devices tested is
operative and ready (that is, has records or error conditions to be
processed), control returns to the problem program at the next
sequential instruction following the macro expansion. On the other
hand, if all the devices tested are not operational (that is, they are
a%ltwaiting for documents to process), the system enters the wait
state.

For DAM or ISAM files, the WAITF macro makes the system enter the
wait state until a previously started 170 operation is complete.

Note: Only that partition in which the device(s) tested is operating

enters the wait state. This allows processing to continue in another
partition.

WRITE Macro

Label WRITE*|filename, TYPE,PARAM

L l1,=A(filename) Loads address of DTF table.

L 0,=A(PARAM) Loads address of output area.

L 15,16(1) Loads address of logic module.

BAL 14,32(015) Branch to WRITE routine in logic
module if TYPE=SQ. * %

BAL 14,28,(15) Branch to WRITE routine in logic
module if TYPE=UPDATE. %%

* For RECFORM = FIXUNB.
*% 0Optional

Function: The WRITE macro instruction writes a record from the
indicated area in main storage to the file associated with the file
name.

Procedure: The WRITE macro sets up the channel program, modifies the
CCW command code to write, inserts the address and number of bytes to
be written, and issues an SVC 0. For control interval format,
physical I/0 may or may not occur.

The write logic does not provide for blocking of records. If the
user wWwishes to block records, he must provide for it in the problem
program.

The WRITE macro instruction must always be followed by either a
CHECK macro (work files) or a WAITF macro (DAM and ISAM files) to
ensure the completion of the WRITE instruction before another
instruction is issued.

32 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM
FILE INITIALIZATION AND TERMINATION

File initialization and termination
routines open files required by the problem
programmer, and close the files when they
are no longer needed. These routines,
called into the B-transient (logical
transient) area by the corresponding OPEN
and CLOSE macros, consist of:

1. TES Processor ($$BOESTV).

2. Open Monitor ($$BOPEN, $$BOPENI1,
$$¢BOPEN2, $$BOPEN4, and $$BOPLBL).

3. Close Monitor ($$BCLOSE, $$BCLOSZ2,
$$BCLOS4, S$$BCLRPS, and $BCLLBL).

4, EOF/EOV Monitor ($$BCEOV1).

5. Device or file-processing method
oriented open and close transients.

OPEN ROUTINES

The open routine opens each file needed in
the problem program. Up to 16 files can be
opened with each OPEN macro instruction by
entering their filenames as parameters.

CHARTS 01-04

To open a particular file, the Open
Monitor (Chart 02) examines the DTF table
specified by the filename to determine the
file type ands/or the file processing
method. This information is obtained from
byte 20 of the DTF table. Figure 2 on
page 6 summarizes these DTF type codes. In
addition, the Open Monitor performs some
initialization and checking, and reads any
necessary label information into main
storage. The Open Monitor then calls the
appropriate open transient{(s) to handle the
file open.

Unit Record and 3881 Optical Mark Reader
Files

When opening unit record devices (readers,
punches, consoles, printers, paper tapes,
and the 3881 Optical Mark Reader), the Open
Monitor calls $$BOURO1 to determine if the
device is in the ready condition. If the
device is ready, the open indicator in the
DTF table is set to a 1 (bit 0 of byte 21)
to indicate the file is open.

The Open Monitor calls $$BOMRCE if the

device is a 3505 with OMR and RCE or a 3525
with RCE.

Magnetic Ink Character Recognition Files

When opening MICR type devices (IBM 1255,
1259, 1270, 1275, and 1419), the Open
Monitor calls $$BOMROl, which clears the
document buffer area and initializes the
document buffer pointer within the DTF.

The address of the DTF is inserted into the
correct entry of the supervisor PDTABB
table. The unit exception bit in the CCB
is turned on, and the device address is
calculated and moved into the DTF. The
OPEN indicator in the DTF table is set to
indicate that the file is open.

Optical Reader Files (Except 3881)

When opening the IBM 1287 Optical Reader,
the Open Monitor calls $$BO0ORO1, which
determines if the device is ready, and if
so, further determines if a header is to be
read (HEADER=YES specified in the DTF). If
it is, the open routine waits for the
operator to manually key in a header. MWhen
the header has been read, the OPEN
indicator in the DTF table is set to 1 to
indicate that the file is open.

When opening the 3886 Optical Character
Reader file, the Open Monitor calls
$6BO0OR01, which determines if the device is
ready and if so, loads a format record from
disk into the format area of the DTF. If
the length of the format record is found to
be within the required limits, it is loaded
into the 3886 control unit. If no errors
occur on the load, the open bit in the DTF
is set on and control is returned to the
Open Monitor. If the format record length
is incorrect or if an error occurs on the
load, the open routine is canceled by an
illegal SVC.

Magnetic Tape Files (DTFMT, DTFPH-MT)

When opening magnetic tape files, the Open
Monitor calls $$BOTSVA to link to the
$IJJTTOP SVA phase to complete the OPEN
processing.

DASD Files

When opening DASD files, the Open Monitor
checks the label information to determine
the type of processing used for the file:
SAM, DAM, ISAM, or VSAM. The monitor then
calls the appropriate transient to complete
the open. If an ISAM DTF is linked with a
VSAM file, IIPOPEN is called.

Diskette Files

When opening diskette files, the Open
Monitor checks the DTF type code (byte 20
of the DTF table) and the device code (byte
29 of the DTF table) to determine if the
Diskette Inputs/0Output Unit transients are
needed. The monitor then fetches the
appropriate transient to complete the open
(see Charts 07 and 08).

CLOSE ROUTINES CHARTS 05, G6

The close routine closes any file that was
previously opened in the system. Up to 16
files can be closed by each CLOSE macro
instruction by entering their filenames as
parameters.

File Initialization and Termination 33

Licensed Program - Property of IBM

Unit Record Files (Except MICR)

For unit record devices, the Close Monitor
sets the close indicator in the DTF table

(bit 0 of byte 21) to a 0 to indicate that
the file is closed.

MICR (Magnetic Ink Character Recognition)
Files

For MICR type files, the Close Monitor
calls $$BCMRO1l to complete the close
function.

Magnetic Tape Files (DTFMT, DTFPH-MT)

For magnetic tape files, the CLOSE Monitor
calls $$BOTSVA to link to the $IJJTTOP SVA
phase to complete the CLOSE processing.

DASD Files

For DASD files processed by SAM the Close
Monitor calls $$BOSFBL to link to the
$IJJGTOP SVA phase to complete the close
function. For DASD files processed by
ISAM, the Close Monitor calls $$BCISOA to
update and rewrite the format-1 and
format-2 standard file labels, and to set
the close indicator in the DTF table. If
an ISAM DTF is linked with a VSAM file,
ISCCLOSE is called. For DASD files
processed by DAM, $$BCLRPS is called to
free storage that was obtained for the DTF
extension.

Diskette Files

For Diskette Input/0Output Unit files, the
Close Monitor calls $$BODI04 to complete
the close function.

FILE LABELING

VSE/Advanced Functions can identify and
protect DASD, diskette, and magnetic tape
files by recording labels on each volume
(DASD pack, diskette, or magnetic tape
reel). These labels ensure that the
correct volume is used for input and that
no current information is destroyed when a
volume is used for output.

DASD, diskette, and magnetic tape files
processed by logical I0CS must conform to
certain standards regarding the use of
labels. Although it is possible to process
files with physical I0CS macros such as
EXCP and WAIT, without processing labels,
any file processed this way that is defined
by a DTFPH macro must also conform to the
same label standards established for files
processed by logical IOCS.

The standard label set processed by
logical I0OCS includes one volume label for
each volume, and one or more fgig labels
for each logical file contained within the
volume. Optional user labels can be
included in the label set but these must be
processed by an independent user routine.
(Logical IOCS routines pass control to the
user's label routine in the problem program

if the LABADDR= parameter is specified in
the file definition, DTF, macro.)
Additional volume and file labels can also
be included in the label set but these
labels can only be processed by the user,
and only if nonstandard labels are
specified in the file definition macro.

User labels are not supported for
diskette files.

LABEL PROCESSING

Creation of Tape Volume Labels

The IBM or American National Standards
Institute, Inc. standard volume label 1,
and any additional EBCDIC volume labels,
are written by an IBM-supplied utility
program at the time a reel is prepared for
use. The information in the standard
volume label is checked, but _ never altered,
during file processing. Logical IOCS
bypasses all additional volume labels when
building output files.

Standard Tape File Labels

Standard file labels are written before and
after every logical file on a reel. These
labels are referred to as file header
labels or file trailer labels, depending on
their position and use. They are always 80
bytes long and always have the same format
and content, with the following exceptions:

1. The label identifier field (bytes 1-3)
contains:

a. HDR to indicate a header label
(precedes the data file).

b. EOV to indicate an End-of-Volume
(end of reel) trailer label
(written at the end of a reel,
indicating that the file is
continued on another reel).

c. EOF to indicate an End-of-File
trailer label (written at the end
of the logical file).

2. The block count field is used only in
the EOF and EOV trailer labels. This
field is set to zero in the HDR label.

Additional File Labels on Tape

Each standard file label (one header and
one trailer) can be followed by up to seven
additional file labels for EBCDIC tape
files, or by up to eight additional file
labels for ASCII tape files. The labels
are 80 bytes long and must contain the
label identifier HDR, EOV, or EOF in the
first three bytes. The_fourth byte should
contain a character 2, 3,...n, indicating
the second, third,... and up to the last
file label. These labels are not processed
by LIOCS. If required, these labels must
be written in the user's LABADDR routine by
use of physical I/0 macro instructions.

34 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

>

Licensed Program — Property of IBM

LIOCS bypasses additional header labels on
input files. For ASCII ouput files a

HDR2,EOF2 or EOVZ2 label is written by LIOCS

following the HDRl1, EOFl or EOV1 label.

User Header and Trailer Labels on Tape

The user can include additional header and
trailer labels to further define his file,
if he desires. Each additional label in
the set is 80 characters long. EBCDIC
label identifiers are numbered from UHL1
and UTL1 through UHL8 and UTL8, maximum,
for user header and trailer labels,
respectively. American National Standards
Institute, Inc., user header and trailer
labels are identified by UHLa and UTLa,
respectively, wherein "a"™ represents the
range 270 through 5/14 except 2/7
(quotation mark). The remaining 76
characters can contain any information and
arrangement desired by the user.

Tapemarks with Standard Tape Labels

The sequence of items on the tape that uses
standard label sets is:

1. Nottapemark preceding the header label
set.

2. Header label set:
a. Standard volume label (required).

b. Additional volume labels (0-7,
optional: EBCDIC only).

c. Additional user volume labels (0-9,
optional: American National
Standards Institute, Inc., only).

d. Standard file header label
(required).

e. Additional file labels (0-7,
EBCDIC: 0-8, American National
Standards Institute, Inc.,
optional).

f. User header labels (0-8, EBCDIC:
or range 2/0-5/14 except 2/7,
American National Standards
Institute, Inc., optional).

3. Tapemark between header label set and
first data record.

G, Physical data records for file.

Tapemark between last data record and
trailer label set.

6. Trailer label set:

a. Standard file trailer label
(required at end-of-file and
end-of-volume).

b. Additional file labels (0-7,
EBCDIC: 0-8, American National
Standards Institute, Inc.,
optionall.

c. User trailer labels (0-8, EBCDIC:
range 2/0-5/14 except 2/7

(quotation mark), American National
Standards Institute, Inc.,
optional).

7. Tapemark after trailer label set.

If multifile reel (EOF label), next
standard file header label follows
here. If single-file reel (EOF label)
or if last file of a multifile reel,
another tapemark follows here. If
multireel file (EOQOV label), one
tapemark follows the EQOV label on an
EBCDIC file. Two tapemarks follow the
EOV label on a multireel ASCII file.

Standard Tape Label Processing

Standard tape label processing is performed
by the LIOCS transient label-processing
(Open, Close, EOF/EQV) routines. These
routines use the information supplied in
the job control card (/7 TLBL) that was
stored in the label information area.

The actual label processing consists of the
following checks:

Tape Input File:

* The volume serial number in the standard
volume label on the first or only reel
is compared to the file serial number in
the TLBL card. All other volume labels
on all reels of the file are bypassed.

* The contents of the TLBL card are
compared to the corresponding fields in
the standard file neader label on the
first reel. Fields 1-10 are required.
Fields 11-14 are optional. For
successive reels of a multireel file,
the volume sequence number (EBCDIC file)
or file section number (ASCII file) is
increased by 1 for each reel.

y they are
e open

e user's
bels are

1 have been

e If user labels are indicated
read into main storage by th
routine for processing by th
label routines. The user 1la
read one at a time, until al
processed.

e When a standard file trailer label is
read, the block count is compared to a
count accumulated by IOCS.

e If user trailer labels are indicated,
they are read into main storage by the
close routine for processing by the
user's label routine. The user trailer
labels are read one at a time until all
have been processed.

Tape Qutput File:

e The volume serial number in the standard
volume label on the first or only reel
is compared to the file serial number in
the /7 TLBL card. All other volume
labels on all reels are bypassed.

® The expiration date in the standard file
header label is checked against the
today's date in the communications

File Initialization and Termination 35

Licensed

region. If the expiration date has
passed, the reel is backspaced to write
the new standard file label. If not,
the operator is notified of the
condition. This check is performed on
each reel of a multireel output file.
If no file label is present, the tape
considered expired. For an expired
9-track tape, the user-specified density
is compared to the VOL!l density of the
mounted tape. If a discrepancy is
found, and if the tape is at load point,
the volume label(s) is reuwritten
according to the user-specified density.

is

* The new standard file label is uwritten
with the information supplied in the /7
TLBL card. For multireel files, the
volume sequence number (EBCDIC file) or
file section number (ASCII file) is

for each successive reel.

the

increased by 1

¢ If user header labels are indicated,
user's label routine is entered to
furnish the labels as each reel is
opened. This can be done for as many as
eight user header labels per EBCDIC file
and for an unlimited number of user
header labels per ASCII file.

. If end of reel is sensed before
completing the file, an EOV trailer
label is written with all fields
presented in the /7 TLBL card plus a

block count.

¢ When end of file is reached, an EOF
trailer label is written identical to
the EOV label previously mentioned.

. If user trailer labels are indicated,
the user's label routine is entered to
furnish the labels after each trailer
(EOV or EOF) label is written. This can
be done for as many as eight user
trailer labels for EBCDIC files and an
unlimited number of trailer labels for
ASCII labels.

Nonstandard Tape Labels

Any tape labels that do not conform to the
standard label specifications are
considered nonstandard. Nonstandard labels
are not supported in ASCII files. f
nonstandard labels are to be read, checked,
or written, it must be done by the user.

On input files, the nonstandard labels may
or may not be followed by a tapemark.
Therefore, four conditions are possible:

1. Nonstandard label(s), followed by a
tapemark, to be checked.

2. Nonstandard label(s), not followed by a
tapemark, to be checked.

3. Nonstandard label(s), followed by a
tapemark, not to be checked.

4. Nonstandard label(s), not followed by a
tapemark, not to be checked.

For conditions 1 and 2, the DTFMT or DTFSR

entries must specify nonstandard labels and

36 IBM VSE/Adv. Functions Diag. Ref.

Program - Property of IBM
the address of a user-written routine to do
the reading or writing.

nonstandard labels must
but the address of a user
routine is omitted. IOCS skips all labels,
passes the tapemark, and positions the tape
at the first data record to be read.

For condition 3,
be specified,

For condition 4, nonstandard labels and
a user address are specified. I0OCS cannot
distinguish labels from data records
because there is no tapemark to indicate
the end of the labels. Therefore, to
position the tape at the first data record,
the user must read all labels.

With nonstandard labels when an
end-of-file or an end-of-volume conditio
exists, the user indicates to IOCS which
condition it is. On end-of-file, IOCS
branches to the user's end-of-file address.
On end-of-volume, IOCS initiates the
end-of-volume procedures to close the
completed volume and open the next volume
for processing.

n

On output files, nonstandard labels are
written by the user's routine by using
physical IO0CS. The OPEN routine writes a
tapemark between the user's nonstandard
headar labels and his first data record
unless the DTF macro instruction has the
entry: TPMARK=NO. The close routine
writes a tapemark after the user's last
data record before he writes his
nonstandard trailer labels, and after the
trailer labels.

Unlabeled Tape Files

The DTF macro instruction specifies whether
the first record of an unlabeled file is a
tapemark.

Unlabeled IBM EBCDIC input tape files
may or may not have a tapemark as the first
record. (If the first record is not a
tapemark, IOCS assumes it is a data
record.) Any tape that is to be read
backward may have a tapemark as the first
record on tape. Unlabeled output tape
files (written by I10CS) may be written with
a tapemark as the first record. ASCII
unlabeled tapes do not contain leading
tapemarks. A read backward operation is
performed to load point for these files by
special error recovery procedures.

Note:;Seven—-track tapes may be read
backward only if they were written in
EBCDIC, and they must not have been written
in the conversion mode.

When an unlabeled output file is
specified, the open routine assumes the
mounted scratch tape is also unlabeled.
checking of expiration date is performed.

Therefore, any existing labels, including
the volumé label, are gestroxeé.

DASD Label Processing
When a DASD file is processed by logical

I0OCS, the file must be opened before any
transfer of data can be made. The open

No

LIOCS Volume 1

Licensed Program — Property of IBM

routines check the DASD labels identifying
the file. The open routines also compare
information from the actual file labels in
the VTOC against the label information
supplied by the user in job control cards,
and stored in the label information area by
job control.

Note: References made in this manual to the
/7 DLBL and // EXTENT job control
statements also apply to the /7 VOL, //
DLAB, and // XTENT statements for the 2311,
and 2314/72319.

The DTFSD and DTFSR routines process the
labels of a sequential file (input or
output) one volume at a time. For DTFSR,
as each extent is checked, IOCS can pass
control to a user's extent exit routine.
When the end of the last extent on a volume
is reached, an automatic open is issued for
the next volume. The DTFDA and DTFIS
routines require that all volumes be online
for the initial OPEN. DTFPH can be used to
process SAM or DAM files. The actual label
processing consists of the following
operations:

DASD Input Files:

¢ The volume serial numbers in the volume
labels are compared to the volume serial
numbers in the DLBL/EXTENT cards.

¢ The file identification, format
identifier, and the file serial number
in the format-1 label are compared to
the corresponding fields in the DLBL
card. The volume sequence number, the
creation and expiration dates are then
checked against their EBCDIC equivalents
in the DLBL card.

* Each of the extent definitions in the
format—-1 and format—-3 labels is checked
against the limit fields supplied in the
EXTENT cards.

. If user header labels are indicated
(when DTFSD, DTFSR, DTFPH, or DTFDA are
used), they are read as each volume is
opened. After reading each label, the
open routine branches to the user's
label routine to perform any processing
necessary.

. If user trailer labels are indicated
(when DTFSD or DTFSR are used), they are
read after reaching the end of the last
extent on each volume or an end-of-file
read by logical I0CS. As with the user
header labels, the trailer labels are
processed by the user's routine.

DASD Output Files:

¢ The volume serial numbers in the volume
labels are compared to the volume serial
numbers in the DLBL/EXTENT cards.

¢ The extent definitions in all labels in
the VTOC are checked to determine
whether any extend into those defined in
the EXTENT cards. If any do overlap,
the expiration date is checked against
the current date in the communication
region. If the expiration date has

passed, the old labels are deleted. If
not, the operator is notified of the
condition.

e The file names of all entries in the
VTOC are compared with the filename in
the DLBL statement. If a match is found
with an expired file, the expired file
is deleted. If a match is found with an
unexpired file, the operator is

notified.

* The new format-1 label is wWwritten with
information supplied in the DLBL card.
If an indexed sequential file is being
processed, the DTFIS table supplies
information for the format-2 label.

e The information in the EXTENT cards is
placed in the format-1 labels, and (if
necessary) additional format-3 labels.

. If user header labels are ind ted

icate
(when DTFSD, DTFSR, DTFPH, or DTFDA are
used), the user's label routine is
entered to furnish the labels as each
volume is opened. This can be done for
as many as eight header labels per
volume. As each label is presented,
I0OCS writes it out on the first track of
the first extent of the volume.

. If user trailer labels are indicated
(when DTFSD or DTFSR are used), the
user's label routine is entered to
furnish the labels when the end of the
last extent on each volume is reached.
This can be done for as many as eight
user trailer labels. As each label is
presented, IOCS writes it out on the
first track of the first extent of the
volume. The CLOSE macro instruction
must be issued to create trailer labels
for the last volume of a file.

Diskette Label Processing

When a diskette file is processed by
logical I0OCS, the file must be opened
before any transfer of data can be made.
The open routines check the diskette labels
(which identify the file) against the label
information supplied by the user in the
control cards (stored in the label
information area by job control).

A diskette file can be identified by two
job control statements: ~// DLBL and
/77 EXTENT. When the extent limits on a
volume are exhausted, an automatic open is
issued for the next volume (for DTFDU and
DTFPH). DTFPH can be used to process
diskette files, feed the diskettes out for
a multivolume file, and issue an open to
get the new extent limits for the new
diskette (both for input and for output).

Diskette Input Files

* The volume serial numbers in the labels
are compared to the serial numbers in
the DLBL/EXTENT cards.

e If 'file ID' is supplied on the DLBL
card, then that file on the diskette is

File Initialization and Termination 37

Licensed Program -

If "file ID' is
is used.

processed (if found).
omitted, the DTF name

Both volume and file security label
fields are examined and handled to
ensure data integrity.

All symbolic units specified in the
EXTENT cards are checked to ensure that
only one physical unit is being
addressed. This is necessary to ensure
that only one file is open on a
diskette.

The extent limits in the
checked for validity; if
to be correct, the DTF i

file label are
they are found
s initialized.

For multivolume diskette input files
using DTFDU, the extent cards and the
multivolume indicator are used in
conjunction by the OPEN transients to
determine when end-of-file has occurred.
If three extents were provided by the
user, the following multivolume
indicator combination could occur:

Multivolume

I

Action by OPEN Transients
ndicator

L

’

’

Process first volume and
issue warning message.

anything

No volumes are processed;
issue permanent error
message.

anything

Process first volume and
issue permanent error
message.

X Process first volume and
issue permanent error
message because file not
found.

Process through the 'L’
and issue warning
message.

L, anything

Process through the
number of extents.
No message.

L.

Process through the
No message.

38

IBM VSE/Adv. Functions Diag. Ref.

In summary,

Property of IBM
for DTFDU the number of

diskettes can be less than the number of

extents provided.
DTF's,
number of extents
of the DTF type,

For all other supported
processing continues until the

is exhausted. Regardless
for system files

processing continues until all extents are
exhausted.

Diskette Output Files

The volume serial numbers in the labels
are compared to the serial numbers in
the DLBL/EXTENT cards.

If "file ID' is supplied on the DLBL

it will become the name of the new
file on the diskette. If "file ID' is
omitted, the DTF name is used.

Extent limits are determined by OPEN;
any expired files that are overlapped by
the file to be created are deleted. The
operator is informed of any overlap wWith
an unexpired file.

All file names are compared with the

name of the file to Le created. If a

match is found with an expired file,

file is deleted. The operator is

;q{ormed of a matcn with an unexpired
ile.

The new HDR1 label is created and
written back out onto the diskette.

the

If a secured file is being created, the
volume label is updated to indicate a
secured volume.

A CLOSE macro instruction must be issued
to ensure that all records are written
and to update the HDR1l label for the
last volume of the file.

LIOCS Volume 1

Licensed Program - Property of IBM

COMMON AND SPECIAL PURPOSE LOGIC S
£OHNON AND SPECIAL PURPOSE LOGICAL IOCS

This section contains detailed descriptions
of certain routines generic to logical
I0CS. In general, these routines cannot be
related to a specific file type or file
processing method. Describing LIOCS in
four volumes has made it necessary to
include details of these routines in Volume
1 even though they may relate to file
processing described in other volumes.

Included in this section are:
¢ TES Processor ($$BOESTV)

Open Mo r ($$BOPEN, $$BOPEN1,
$SBOPEN2, $$BOPEN4, and $$BOPLBL)

e (Close Monitor ($$BCLOSE, $$BCLOS?2,
$§$BCLOS4, $$BCLLBL, and $$BCLRPS)

e (QOpen for self-relocating programs
($$BOPENR, and $$BOPNR2, and $$BOPNR3)

¢ RPS SVA initialization routine
(SBOPENS) and RPS phase loading routine
($SVOPENT).

e DASD File Protect and VTOC Display and

Dump routines.
¢ DASD RPS Common Close ($$BCLRPS)

¢ Check Duplicate Device Assignments for
Logical Units ($$BOPENC)

¢ Enqueue and Dequeue for VSE/VSAM
Routines ($$BENDQB)

e SD Close Input and Output ($$BOSDC1)
¢ Close, Free Track Function ($$B0OSDC2)
¢ Forced End of Volume for Disk ($$BOSDEV)

¢ Remove Extents from Extent Block
($$BODQUE)

e Device Release ($$BRELSE)

$$BOESTV: Error Statistics by Tape Volume

Objective: For tape, record TES information
from the PUB2 table onto SYSREC as
applicable, post the new tape open, and
pass control to the next transient.

Entry:

1. From $$BOPEN1 or $$BPCP01 when tape
unit ready.

2. From $$BOPEN for job control tape OPEN.

3. From a message writer routine to post
OPEN and process new volume label.

Exit:3To next transient.

Method: $$BOESTV tests the device type of
the device to be opened. It does the
following:

1. The tape label is read and compared
with the label currently stored in the
PUB2 table for that device.
ed t
he t

o the appropriate
ape was previously

2. Control is pass
exit phase if t

opened.

3. The tape open bit is posted, the volume
serial number in the PUB2 table is
saved, and control is passed to the
appropriate exit phase if this is the

first tape on the device.

4., The tape open bit is posted and control
is passed to the appropriate exit
routine if the tape is unlabeled, there
is no volume ID in the PUB2 table (the
previous tape was also unlabeled), and
individual recording was not specified.

5. The TES record is written onto SYSREC,
the tape open bit is posted, an
control is passed to the appropriate
exit phase if the tape is unlabeled and
either individual recording was
specified or the previous tape was
labeled.

6. The TES record is uwritten onto SYSREC,
the tape open bit is posted, the new
volume ID is stored in the PUB2 table,
and the appropriate phase is fetched if
the tape label read is different from
the label in the PUB2 table.

SBOPEN:
Objective:

Open Monitor

1. 1Initialization of the Logical
Transients Common Area and the Fetch
RPS Initialization Routine.

Common and Special Purpose Logical IOCS Routines 39

Licensed Program - Property of IBM

2. Tape Error Recording Routine for Job
Control open.

Entry:

1. From an OPEN macro expansion in the
problem program.

2. From a successfully completed open
routine.

3. From the $$BOPENR or $$BOPNR2, DTF
relocation routines.

4. From a message writer routine.

5. From the open routine for DTFCP or
DTFDI files.

Exits: To $$BOPEN1, $$BOESTV, and $$BOPENS.
Method:

1. If RPS is not yet initialized, $$BOPENS
is fetched to do so.

2. $SBOPEN tests the device type of the
device to be opened. If the device is
a tape, the logical transients common
area is initialized for tape open. If
$$SBOPEN was fetched by job control, an
exit is taken to $$BOESTV to do
recording. If the open is not for job
control, $$BOPEN1l is fetched. If the
device is not a tape, initialization of
the logical transients common area
takes place and $$BOPEN1 is fetched.

SBOPEN1:

Objective: To determine, initialize for,

and fetch the proper open routine for DASD,

diskette, magnetic ink character A

recognition (MICR), magnetic tape, optical

;g?der. unit record, and telecommunications
iles.

Open Monitor Phase 1

Entry: From $$BOPEN, or return from another
logical transient.

Exits:

. TOZSSBOSFBL for DTF type code X'20' and
Xr21"

e To $$BOPLBL, and then to $$BOPEN2 for
ISAM files.

. To $$B35400 for diskette files.

. To an appropriate open routine if other
files are to be opened.

. To a message writer routine if an error
has occurred.

. To the problem program if no more files
are to be opened.

e To $$BOCPO1 for DTFCP printer files.
¢ To $$BOURDO1 for DTFPR/DI printer files.

40 IBM VSE/Adv. Functions Diag. Ref.

Method: The $$BOPEN1 phase begins the
initialization of the open table located at
the end of the logical transient area. The
open table is initialized for all file
types and passes information to the
successive open phases. Next, the type of
entry into the $$BOPEN1 phase is
determined. If entry was made directly
from an OPEN macro, the monitor prepares to
open the first file specified in the macro
operand. If access control is in the
system, the monitor links first to the
access control module residing in the SVA.
If entry was made from another open phase,
the monitor prepares to open the next file
specified in the macro operand. If entry
to the $$BOPEN1 phase was from a message
writer phase or from a device independent
file (CP or DI) open phase, processing
continues on the current file. At this
point $$BOPEN1 checks whether the control
block is a DTF or a VSAM ACB by testing the
type code (byte 20 of the control block).
If the code is X'28', the file being opened
is a VSAM file with an ACB control block.
In this case, phase $$BOVSAM is called. If
the code is anything other than X'28°',
X'20', X'21', X'22', and X'23', $$BOPEN1
loads and branches to $$BOPIGN.

When $$BOPIGN returns control, $$BOPEN1
determines the type of file being opened
from byte 20 of the DTF table. If an
invalid file type is detected, message
48801 is printed and the job is canceled.
The file type governs the functions that
the open monitor must perform to open a
particular file:

o

e Console (DTFCN) files are ignored.

* Unit record (DTFCD, DTFPR, and DTFPT),
optical reader (DTFOR), magnetic ink
character recognition (DTFMR), compiler
(DTFCP), and basic telecommunication
access method - extended support
(BTAM-ES) files are checked to validate
the address limits of the respective DTF
tables and the proper open phase is
fetched.

For all DTFMT and DTFPH-MT files, $$BOPEN1
fetches the SVA link phase $$BOTSVA to link
to the S$IJJTTOP SVA phase to complete the
OPEN processing.

For DAM and sequential DASD files defined
by DTFCP, DTFDA, DTFDI and DTFSD $$BOPENI1
fetches the SVA link phase $$BOSFBL to link
the $IJJGTOP SVA phase to complete the OPEN

processing.

For diskette files, $$BOPEN1l prepares to
read sequential DASD labels from the label
area into the logical transient area and
fetches diskette open phase $$B35400.

SSBOPENG:
Phase

DASD DTF DEV Type Update OPEN

Objective:

1. To locate the PUB for the DASD, using
the corresponding LUB pointer.

2. To test the PUB to make sure it is used
for a 3340.

LIOCS Volume 1

Licensed Program — Property of IBM

3. To check the VOL ID to make sure that
the corresponding 3340 is ready and the
VOL ID is correct.

Entry: From $$BOPLBL and reentry from
$$BOMSGI.

Exits: To $$BOPEN2 to continue OPEN
processing for ISAM or to $$BOMSG1 for
operator communication.

Method:;The logical unit address in the
first type-1 label extent information of an
ISAM file defines the correct size for all
3340 data modules containing prime data
and/or overflow areas c¢f an ISAM
multivolume file. The logical unit address
of the first (or only) type-4 label extent
information defines the size of the 3340
data module containing the index area(s).

$$BOPIGN:

Objective: To check for the COBOL open
ignore option.

Entry: From $$BOPENI1.
Exits:

e To $$BOPEN1 to continue opening the
files.

Open Ignore

e To $$BOMSG1 if an error occurs.

Method: $$BOPIEN determlnesflfdtge CQEOL
open ignore option is specifie or e
file by testing bit 2 in byte 16 of the DTF
table. If the bit is on, a _second test
determines if the flle ls either unassigned
or assigned ignored. this is the case,
the open for the fi ls bypassed. and
control returns to SSBOP N1 to open th

next file In all other cases, $$BOPIGN
validates the address limits of the DTF
table, and returns to $$BOPEN1 which
continues opening the file.

SBOPEN2:

Objective: To read label information from
the label area for ISAM files, and to fetch
the rgquired open phase for the file being
opened.

Entry: From SBOPLBL, $$BOPEN
message writer phase ($$BOMSG

Exits:

Open Monitor, Phase 2

4, or from a
1).

* To the required open phase determined by
$$BOPENL.

e To $$BOMSG1 if an error is detected.

* To phase IIPOPEN if an ISAM DTF is
linked with a VSAM file.

¢ To phase $$BOCISC if CDLOAD for IIPOPEN
was not successfu

Method: This phase of the Open Monitor
reads the label information (stored by Job
Control on the label area) into the area
obtained by $$BOPLBL through a GETVIS
macro.

For ISAM files, $$BOPEN2 of the Open
Monitor reads a single DLBL/ZEXTENT record.
This record can contain more than one
EXTENT card image. The DLBL label type
indicator is checked. If it contains 'V’',
the file is a VSAM file. In this case the

open—active indicator is reset and phase
IIPOPEN is loaded using the CDLOAD
function. IIPOPEN is part of the ISAM
interface program, IIP. The user return
address is _stored from the user save area
into the DTF. The file list pointer is
stored into register 0 of the user's save
area, control is given to IIPOPEN, and the
B-transient area is released. If the DLBL
label type indicator contains 'C' or 'F’',
indicating an ISAM file, the file type is
checked against the DTF type. Then the
DASD address limits of each extent are
checked. Any extent errors cancel the job.
When checking of the extent address limits
is complete, SSBOPENZ2 fetches the
appropriate open phase determined by
$SBOPEN1.

$$BOPLBL:
Processor

Open Monitor Label Space

Objective: To determine the size of the
read—in area required to process the
DLBL/ZEXTENT information and to issue a
GETVIS for the required space

Entry: From $$BOPENL.
Exit:
e To $$BOPEN4 for ISAM.

e To $$BOMSG1 if an error occurs.

Method: $$BOPLBL, at open time, builds a
parameter list and calls Symbolic Label
Access to determine the amount of
LBL/EXTENT information to be processed.

f the space obtained by a previous OPEN or
LOSE in this job step is not sufficient to
eet the label processing requirements, a

FREEVIS macro is issued to release this

space and a GETVIS macro is issued to
obtain the required space. Pointers and
channel programs are then updated and an
exit is taken to the next phase.

3 OHO

$$BOPENR:
Objective: To relocate all DTF address
constants from the assembled address into
executable main storage addresses.

Entry: From the OPENR macro to the label
START.

Exits:
e To $$BOPNR3.

Relocate DTF Address Constants

Common and Special Purpose Logical IOCS Routines 41

Licensed
* To the Open Monitor, $$BOPEN, when the
last DTF table is processed.

Method: The $$BOPENR routine first
determines if modification (relocation) of
the DTF address constants is necessary by
subtracting the assembled DTF table address

from the relocated DTF table address. The
relocation factor in register RELOCREG is
the result of this operation.
relocation factor is 0, no relocatlon is
necessary.

If relocation is required and if the DTF

has not already been relocated, the
relocation indicator in the DTF is turned
on. The CCW address in the CCB and the
logic module address in the common portion
of the DTF are then modified. If the
required relocation was accomplished by a
previous opening of the file, the entire
?giocation routine is bypassed for the

ile

Following the modification of addresses
in the common portion of the DTF, the
individual DTF type is determined and the
address of the corresponding address
modification table is obtained. When the
remaining addresses in the DTF have been
modified, a branch is made to the ending
routine.

The ending routine determines the next
operation. If there are more DTFs to be
processed, a branch is made to the
beginning of the relocation routine to

repeat the procedure for the next DTF. If
the last DTF has been relocated, the Open
Monitor, $$BOPEN, is fetched

$$BOPENC: Check Duplicate Device

Assignments for Logical Units

Objective: To determine if a physical
device is assigned to more than one of the
logical units specified in the operand of
the OPENC macro.

Entry: From an OPENC macro expansion to the
label OPENCNAM.

Exits: To the problem program if no error
is detected, or to CANCEL if a physical
deyice is assigned to more than one logical
unit.

Method: The $$BOPENC phase begins by
building a table, called the OPENC table,
containing the 2-byte LUB entry for each
logical unit specified in the OPENC macro
operand. Because the first byte of a LUB
entry contains a pointer to a specific PUB
(physical device), the byte can be compared
to the corresponding byte of any other LUB
to determine if a duplicate assignment

exists. (Refer to VSE/Advanced Functions
Diagnosis Reference: Supervisor for

additional information pertaining to LUB

and PUB entries.)

The comparison is carried out in the
following manner. Byte 0 of the first LUB
entry in the OPENC table is compared to the
corresponding byte in the second, third,

42 IBM VSE/Adv. Functions Diag. Ref.

Property of IBM

fourth, etc., until the end of the table
reached. Then, byte 0 of the second LUB
entry in the OPENC table is compared to the
corresponding byte in the third, fourth,
fifth, etc., until the end of the table is
reached. The procedure is repeated until
all of the LUB entries are similarly
checked. If an equal comparison is made at
any point in the procedure, checking is
discontinued, error message 48851 is
printed, and the job is canceled.

Program -

is

$SBENDQB:
Routines

Enqueue and Dequeue for VSE/VSAM

Objective: To enable the VSE/VSAM routines
to enqueue and dequeue their OPEN and CLOSE
routines in the B-transient area of the
supervisor, although these routines are not
themselves B-transient routines.

Entry: From a VSE/VSAM routine that
he ENQB macro.

it: To the calling routine that
ENQB macro.
o

i
e
thod: When a VSE/VSAM routine issues the
QB macro, $$BENDQB is fetched (via SVC 2)
om the core image library and put into
he B-transient area. Control is
ransferred to $$BENDQB, which temporarily
eturns control (via SVC 8) to the routine
that issued the ENQB macro. (The
B-transient area is not released.) MWhen
the DEQB macro is issued, control is
returned (via SVC 9) to the B-transient
routine $$BENDQB, which has been previously
loaded into the transient area by the ENQB
macro. $$BENDQB now executes an SVC 11 to
release the B-transient area and to return
to the highest-priority program ready to
run. (Note: The ENQB and DEQB macros
gestaoy the original contents of registers
an

issues

X issued
h

SZm

t
E
t
M
E
f
t
t
r

$$BOPNR2: Relocate DTF Address Constants,

Phase 2

Objective: To relocate the address
constants in DTFCP, DTFPT, DTFDI, DTFDR,
and DTFDU tables.

Entry: From $$BOPNR3.

Exit: To $$BOPEN.

Method: This phase is an extension of

$$BOPENR and performs the same function in

the same manner.

SSBOPN§3: Relocate DTF Address Constants,

Phase

Objective: To relocate the address
constants of DTFs connected with unit
record files.

Entry: From $$BOPENR.
Exits:

e To $6BOPNR2 if other than unit record
files still have to be relocated.

LIOCS Volume 1

Licensed Program - Property of IBM

* To the Open Monitor, $$BOPEN,
files have to be relocated.

if no more

MODLOOP (Address Modification) Subroutine

The MODLOOP subroutine performs the actual
address modification using an address
modification table. The following example
of the relocation of a unlabeled work file
DTFMT table (see Figure 6) illustrates the
operation of the MODLOOP subroutine and the
use of the address modification table.

Modification of the address constants
starts with those in the common portion of
the DTF table. At this time the following
registers are loaded:

¢ BASEREG - with the address of byte 0 of
the DTF table (this register is used as
a pointer within the DTF table).

e MODREG - with the address of byte 0 of
the address modification table at the
label COMMON.

CCWREG - with the address of byte 0 of
the DTF table.

The address modification table at the label
COMMON contains three hexadecimal bytes,
X'020808"'. The first byte is a count of

th number of address constants (ADCONs) to
be modified; two in this case. This count
controls the number of times the
modification loop is used. The succeeding
bytes contain displacement values to update
the register, BASEREG.

The first time through the address
modification loop, the second byte of the
modification table (X'08') is added to the
starting address of the DTF (BASEREG) to
obtain the location of the CCW address in
the CCB to which the relocation factor
(RELOCREG) is added. The count of address

e
M
0
e

constants to be modified is then reduced by
1, and the modification loop is entered a
second time. Upon reentering the
modification loop, the BASEREG contains the
starting address of the DTF+8 to which is
added the third byte of the modification
table (X'08'). As a result, BASEREG then
points to byte 16 in the DTF table, that
is, to the logic module address. The
relocation factor is added to this address
and the count of address constants to be
modified is again reduced by 1. Since the
count now goes to 0, an exit is made from

the modification loop.
After determining that the DTF type is a

DTFMT work file, the MODLOOP subroutine is
again used. This time the register MODREG
is loaded with the address of byte 0 of the
address modification table at the label
MAGWORK which contains four hexadecimal
bytes, X'030C040C"'. This means that three
address constants (the address of the EOF
routine, the data address in the CCW, and

the address of the error routine) are to be
modified. The register BASEREG contains

the starting address of the DTF+16 (carried
over from the modification of addresses in
the common portion of the DTF). To this is
added the second byte of the AGNORK
address modification table (X'0C') As a

Byte Bits|Function
0-15 CCB.
(0-F)
16(10) X'08' indicates DTF
relocated by OPENR.
17-19 Address of logic module.
(11-13)
20(14) DTF type (X'10')
21(15) 0 1 = No rewind.
1 1 = Unload rewind.
2 1 = Work file.
3 1 = Read backward.
4 1 = Hrite.
5 1 = POINTH.
6 1 = Force checking of read
or uwrite.
7 1 = Forward space before
next operation.
22-23 Not used.
(16-17)
24-25 Record length.
(18-19)
26-27 Maximum BLKSIZE.
(1A-1B)
28(1C) Read op code.
29-31 EOF address.
(1D-1F)
32-39 CCHW.
(20-27)
40-463 Block count, initialized
(28-2B) 00000000 for read forward,
00400000 for read backward.
44(2C) 0 1 = Error routine.
1 1 = Ignore.
2 1 = Read next record switch
3 1 = Record fixed unblocked.
4-7|Not used.
45-647 Address of error routine.
(2D-2F)
Numbers in parentheses are displacements
in hexadecimal notation.

Figure 6. DTFMT Unlabeled Workfile Format

result, BASEREG contains the location of
the EOF routine address (that is, 16 + 12),
or byte 28.

Note: Register BASEREG points to the start
of a 4-byte field, the last three bytes of
which contain the address of interest.

The relocation factor (RELOCREG)
added to the address constant. This
procedure is repeated for the remaining two
address constants in the DTF table.

is then

$SBOPENS: RPS SVA Initialization Routine
Objective: To load the RPS local directory
list and phase loading routine into the

SVA, if this routine was called by $$BOPEN
during the first DASD open.

Entry: From IPL and $$BOPEN.

Exits: To IPL and $$BOPEN.

Method: When called by IPL, the SVA
initialization routine returns immediatly.

Common and Special Purpose Logical IOCS Routines 43

Licensed Program - Property of IBM

If this routine was called by $$BOPEN
during the first open of a DASD file, space
is obtained from the SVA, and the local
directory list and the phase loading
routine are loaded into the GETVIS area of
the SVA. A SYSCOM indicator (displacement
X'FC') is set when all operations are
completed successfully, or when either the
GETVIS or load operations fail.

$$BOPENS exits back to IPL with an SVC
11 or to $$BOPEN with an SVC 2.

$SVOPENT: RPS Phase Loading Routine
Objective: To locate in or load into the
SVA the RPS phases for all access methods,
when called by an open transient. To
remove RPS phases and release SVA space for
a terminating job, when called by $IJBEOT.

From open transients when RPS
From

Entry:
support is provided for a DTF.
$IJBEQOT when a job terminates.

Exit:

Method: When called by an open transient,
the RPS phase loading routine issues a load
to search the RPS local directory list for
the required phase. If the phase is not in
the SVA, a GETVIS is issued to acquire
space and the phase is loaded. Exit is
taken to the calling transient with the
load address of the phase or an
unsuccessful condition code set.

When called by $IJBEOT, the routine
searches the RPS local directory list for
phases that were loaded into the GETVIS
area of the SVA for a terminating job. If
this is the last job requiring the phase,
the SVA space is released and the directory
entr is set to inactive. On return to
$IJB EUT no condition codes are set.

To the calling transient.

$$BCLOSE: Close Monitor, Phase 1

Objective: To determine the DTF file type
and to fetch the proper close phase.

Entry: From a problem program CLOSE macro
expansion, or from a successful CLOSE if
more than one file is specified by the same
CLOSE macro instruction. In addition,
$$BPCLOS enters SBCLOSE at EOJ to close
any unclosed 3800 printer extended
buffering DTFs.

Exits:
e To the appropriate close phase.

e To the message writer if an error is
detected.

¢ To the problem program if no files
remain to be closed

e To phase 2 of the Close Monitor,
$$BCLOS2.

¢ To $$BPCLOS whe

n $$BCLOSE was originally
invoked by $$BPCLOS.

44 IBM VSE/Adv.

Method: The first phase of the Close
Monitor begins the initialization of a
table, located at the end of the logical
transient area, for the close operation.
This table is called the open table even
though it is used by both 1nitialization
(open) and termination (close) phases.
Files requiring label processing, except
for sequential DASD, also enter information
into the GETVIS label area.

Next, the $$BCLOSE phase validates the
address of the first 44 bytes of the DTF
table for all file types except VSE/VSAM
files; for VSE/VSAM files, phase $SBCVSAM
is called. For magnetic tape (DTFDI, and
DTFCP), unit record (DTFCD, DTFPT, DTFCN,
and DTFPR), optical reader (DTFOR), and
magnetic ink character recognition (DTFMR)
files, $$BCLOSE fetches the second phase of
the Close Monitor, $$BCLOSZ2.

For all sequential DASD files $$BCLOSE

fetches the SVA link phase $$BOSFBL to link
to the $IJJGTOP SVA phase to complete the
close processing. For ISAM and DAM DTFs
$$BCLLB is called which in turn calls
$$BCL054 for ISAM DTFs and $$BCLRPS for DAM
DTFs.

For all DTFMT and DTFPH-MT files
$$BCLOSE fetches the SVA link phase
$$BOTSVA to link to the $IJJTTOP SVA phase
to complete the close processing.

For diskette files, $$BCLOSE reads label
information into the transient label area
at the beginning of the open table, saves
address of this area in the open table for
use by the next close phase, and fetches
the diskette close phase $$B0ODIO4.

$$BCLOS2:
Objective: To initiate the proper close

cedure for unit record, optical reader,
R, and Optical Reader/Sorter files.

Close Monitor, Phase 2

{ Erom phase 1 of the Close Monitor,

Exits:

e To phase 1 of the Close Monitor,
$$BCLOSE, to handle next DTF if any.

e To $$BCLOSP for punch and paper tape
files.

e To $$BCTCO01 for BTAM-ES
telecommunication files.

e To $$BCCPT1 for magnetic tape (DTFCP,
DTFDI) files.

. To $$BCMRO1 for magnetic ink character
recognition (MICR) type files.

e To the message uwriter phase, $$BOMSG1,
if an invalid file type is detected.

e To IJDPR3 for printer files opened in
extended buffering mode.

e To IJDPRT for PRT1l or 3800 printer files
opened with DTFPR/CP/DI.

Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Method: The function performed by the
second phase of the Close Monitor depends
upon the file type:

¢ For files opened to a 3800 printer,
$$BCLOS2 enters module IJDPR3 (residing
in the SVA) at offset 32 to perform
close processing related to the }800
printer. The address of IJDPR3 is
obtalned from the Anchor Table Extension
). e address of the ATX is
ined by issuing a CDLOAD for phase

. IJDPR3 is called only if the
00 bit in COMRG is on, indicating
one or more files were opened in
printer extended buffering mode.

e For optical reader and unit records
files, except paper tape and DTFCD punch
files, the only function performed by
phase $$BCL0OS2 is to turn off the open
indicator in the DTF table for the file
being closed.

e For DTFCD punch files, after turning off
the open indicator, $$BCL0S2 fetches
phase $$BCLOSP if error recovery is
possible.

e For DTFCP and DTFDI magnetic tape files,
$$BCL0OS2 fetches phase $$BCCPT1 after
first checking to determine whether or
not tape error statistics by volume are
being collected. For DTFCP and DTFDI
punch files, phase $$BCLOSP is fetched.

e For BTAM—-ES telecommunication files,
$$BCLOS2 fetches phase $$BCTCO1l.

* For 3505 or 3525 with OMR or RCE
specified, $$BCL0OSZ2 resets the device to

the normal mode.

$$BCLOSY:
Objective: To determine the DTF file type
and to fetch the proper close phase for
ISAM files.

From $$BCLOSE.

Close Monitor, Phase 4

Entry:
Exits:
e To the appropriate close phase.

e To the message writer if an error is
detected.

. To the problem program if no files
remain to be closed.

* To phase IIPCLOSE if an ISAM DTF is
linked with a VSE/VSAM file.

¢ To phase $$BOCISC if CDLOAD for IIPCLOSE
was not successful.

Method: This phase of the Close Monitor
begins the initialization of a table,
located at the end of the logical transient
grea.lfoa €:e close og?ration.thThia t:b;e
is calle e open %a e even ough i is
used by both initialization (open) and
termination (close) phases. Files
requiring label processing, except for

sequential DASD, also enter information
into the GETVIS label area.

For ISAM DTFs, byte 16 bit 0 of the DTF
table is checked This bit is set to one
by phase ISCOPEN if the ISAM DTF is linked
with a VSE/VSAM file. In that case the
close-active indicator is reset and phase
IIPCLOSE is_loaded using the CDLOAD
function. IIPCLOSE is a part of the ISAM
Interface program, IIP. The user return

address is stored from the user save area
into the DTF, the file list pointer is
stored into register 0 of the user save
area, control is given to ISCCLOSE, and the
B-transient area is released.

For all ISAM DTFs not linked to a

E/VSAM file, $$BCLOS4 reads label
ormation from the label information area
the open table for use by the next
02nd fetches the ISAM close phase

$$BCLLBL:
Processor

Close Monitor Label Space

Objective: To determine the size of the
read-in area required to process the
DLBL/Z/EXTENT information and to issue a
GETVIS for the required space.

Entry: From $$BCLOSE.

Exit:
e To $$BCLOS4 for an ISAM file.

e To $$BOMSGl if an error occurs.

Method: $$BCLLBL, at close time, bui s
parameter list and calls Symbolic Label
Access to determine the amount of
DLBLZEXTENT information to be processed. If
the space obtained by a previous OPEN or
CLOSE in this job step is not sufficient to
meet the label processing requirements, a
FREEVIS macro is issued to release this
space and a GETVIS macro is issued to
obtain the required space. Pointers and
channel programs are then updated and an
exit is taken to the next phase.

lds a
be
se

SBCLRPS: DASD RPS Common Close
Objective: To reestablish the original DTF
that was modified for ISAM/RPS or for DAM
DASDs.

Entry:

* From $$BCLLBL for DAM or ISAM DTFs.

Exits:

e To $$BCLOSE for direct access or I10CS
type DTFs.

e To $$BODACL for direct access type DTFs
with user trailer labels.

e To $$BOISO0A for indexed sequential
access type DTFs.

Common and Special Purpose Logical IOCS Routines 45

Licensed Program - Property of IBM

Method: This routine is called when the DTF
for the device being closed was modified to
support RPS.

All access methods use this routine.
Therefore, it is necessary to first
determine the DTF type, since the
displacements are different in each case.
Refer to Figure 7 and Figure 8 on page 47.

The addresses of the original logic module
and channel program are restored in the
DTF. The bits indicating an RPS DTF and
that it has been extended into the virtual
area are turned off. The user save area
that was obtained for the DTF extension is
freed, and the use count for the RPS logic
module is decremented.

SD Close Input and Output
Objective: To restore the DTF to its
original state in the event the file was
not opened.

From $$BCLOSE.

$$BOSDC1:

Entry:
Exits:
¢ To the CLOSE Monitor, $$BCLOSE.

Method:;This routine is only entered if the
file was not opened successfully. It

restores the DTF to its original state and
returns to $$BCLOSE to process another DTF.

$$BOSDC2: Free Track Function

Objective: To free any tracks held by the
file being closed.

From ISAM CLOSE.

Close:

Entry:
Exits:
¢ To the close monitor, $$BCLOSE.
e To $$BCISOA for ISAM files.

¢ To the problem program.

s routine searches the track
to determine whether a track is
by the file being closed. If
36 is issued to free the track.
another file remains to be closed,
control returns to the close monitor,
$$BCLOSE. If ISAM files are being
processed, control returns to $$BCISOA.
Otherwise, control returns to the problem
program,

i

Jas
Ua O

t
1 a
i h
’

3 ﬂ'\'l

h
e
d
c

—0hWOoOIJX
+~0OMmMOMm
(/lfDU'

<=

$$BOSDEV: SD Close

Objective: When FEOVD has been specified,
$$BOSDEV closes the current volume and
opens a hew volume.

Entry:

. From the FEOVD macro.

46 IBM VSE/Adv. Functions Diag. Ref.

DTFDA no DTFDA
DTF trailer with DTFIS
labels and| trailer (all)
DTFPH labels
Type 22,23 22 24,25
Code 26,27
Byte 32(20) 32(20) 66(461)
Dev TYpe 1 1 4,73
DTF Tgpe 7 7 5
Bit
Exit to $$BCLOSE $$BODACL $$BCISOA
Numbers in parentheses are displacements
in hexadecimal notation.

1 If this bit is set on, the device
supports RPS.

2 If this bit is on, the DTF extends
into the partition virtual area.

3 Bit 4 on indicates prime data. Bit 7
on indicates index.

Figure 7. Use of Different DTF Types by
$SBCLRPS

Exits:

* To $$BOPEN.

¢ To the problem program.

Method: An interface to the OPEN/CLOSE SVA
phase is established allowing the FEOVD
request to be processed

$$BODQUE: Remove Extents from Extent Block

Objective: To delete all entries for a

g?rt;cular logical unit from the extent
ock.

Entry: From the ISAM DASD open phase.

Exit: To the problem program if no files
remain to be opened, or to $$BOPEN, unless
the name of the phase to be returned to is
supplied by the calling phase.

Method: After storing the contents of
registers 3 through 8 and, if it is
specified, the name of the phase to which
control is to be returned, phase $$BODQUE
builds the EXTENT macro parameter list.
All extent block entries for the logical
unit of the current DTF are erased by
\ssglng an EXTENT macro for this logical
uni

Phase $$BODQUE then fetches the calling
phase or $$BOPEN, if the name of the
calling phas2 was not supplied and there is
another file to be opened. If the name of
the calling phase was not supplied and
there are no other files to be opened,
phase $$BODQUE returns control to the
problem program via an SVC 11.

LIOCS Volume 1

C

Licensed Program - Property of IBM

o0 (0)
Channel Program
(Variable Length)
Work Space
172 (AC) (Except ISAM)
Sector values
(up to &)
176 (BD) 180 (B4)
Address of Address of original
original channel |[logic module
program
184 (B8)

72 Byte Register Save Area

256 (100)
Additional Work Space
256 bytes for M
128 bytes for ISAM
Figure 8. ISAM RPS or DAM DASD Device

Independent Extension Work Area

$SBRELSE:
Objective: To perform the actual device
release of the units in the table released
by the RELEASE macro.

Entry: From the RELEASE macro.

Exit:

Device Release

¢ To the problem program via SVC 11.

Method: To perform the actual device
release, the transient sets the unit to the
permanent assignment, if one exists.
Otherwise, the device is unassigned. If
the device is at permanent assignment
leY$1, the transient takes no action on the
uni

The PUBOWNER bits of all requested units,
for :hlch no other assignments exist, are
rese

COMMONLY USED LOGICAL TRANSIENTS

The logical transients included in this
section of the manual are those that
pertain to sequential, indexed-sequential,
and direct access DASD files.

$$BOFLPT: DASD File-Protect

To place the upper and lower
its into the Extent Block to
e protection for DASD files.

[y

Entry:;
* From phase $$BOIS07 for ISAM files.

Exits:

e To the open monitor, $$BOPEN, if more
files are to be opened and a specific
phase name is not supplied.

¢ To the problem program if a specific
phase name is not supplied and no more
files remain to be opened.

e To the transient phase specified by the
calling phase.

Method: The $$BOFLPT phase provides file
protection for DASD files by storing extent
limit information in the extent block.
Further information pertaining to the
extent block and LUBs is found in
VSE/Advanced Functions Diagnosis Reference:

rvisor.
The $$BOFLPT phase begins by determining:
e The number of extents to be processed.

¢ The addresses of the DLBL-EXTENT card
image.

* The file type.
* The device type.

When these factors are known, the phase
determines the maximum number of extents
per logical unit and the required GETVIS
space if the workarea is too small to hold
all extents. It loads the extents per
logical unit into the workarea and sorts
them according to disk addresses.
Contiguous extents are combined. The
EXTENT macro is used to add extent entries
into the extent block. After all logical
units are processed, a FREEVIS is issued
for the workarea, if necessary.

From information passed by the calling
phase, $$BOFLPT determines the next action
required and issues either an SVC 2 to
fetch the proper transient phase, or an SVC
11 to return to the problem program.

$$BODSPV: VTOC Display, Phase 1

Objective: To determine the logical unit

(SYSLOG or SYSLST) on which the operator
wants the VTOC displayed, and to print an
error message if SYSLST is the unit
selected but not assigned to a printer.
Entry: From phases $$BODMSZ2, $$B0ODIOS,
$$B0ODSMO, or $$BDMSG2 when the operator's
response is DSPLYV.

Exit:

. To the second phase of VTOC display,
(If a diskette is being
dlsplaye » exit is to phase $$BODSPO)

e To job control via an SVC 11 if the
operator's response to message 4V95A is

Common and Special Purpose Logical IOCS Routines 47

Licensed Program — Property of IBM

END or CANCEL and the open was for job
control.

* To phase $$BCNCL via an SVC 6 to cancel
the job if the operator's response to
message 4V96A is END or CANCEL and the
open was not for job control.

Method: The first phase of VTOC display
issues a message on SYSLOG to determlne
whether the operator wants the VT

d!splayed on SYSLOG or on SYSLST. If the
operator’'s reply is SYSLST, a check is made
to ensure that SYSLST is a printer.

SYSLST is not a printer, error message

4V96A is issued. If the VTOC is to be
displayed on SYSLST, preparation is made to
start the display on a new page. Phase
$$BODSPV then fetches phase 2 of VTOC
display, $$BODSPW (or, if a diskette is
being displayed, $$BODSPV fetches
$$BODSPO) .

$$BODSPW: VTOC Display, Phase 2

Objective: To display, on either SYSLST or
SYSLOG, the VTOC for the volume currently
being opened.

Entry: From the first phase of VTOC
display, $$BODSPV.

Exit: To $$BOMSG1l or $$BODSMW.

Method: The volume label on the current
volume being opened is read to retrieve the
pointer (CCHHR address) to the VTOC and the
volume serial number. A header line is
printed to indicate the date and identify
the volume by the volume serial number.
Next, the first label in the VTOC (format-4
label) is read to determine the limits of
the VTOC, and the CCW chain is initialized
to read the file labels (format-1)
contained in the VTOC.

The file label for each file on the
volume is displayed by printing the
contents of the label. The first line
printed for each format-1 label contains
the first 59 bytes of the label and
includes:

filename

format identifier

file serial number
volume sequence number
creation date
expiration date.

e 0000

ucceeding lines printed for a format-1
abel contain extent information. Each
.ine contains a maximum of three extents.
If more than three extents are specified
or the file, the additional extents are
ontained in a format-3 label.) When all
xtents for a file have been printed, phase
$ ializes to process the next

o in the same manner.

mat-1 labels in the VTOC
ed, the message 'VTOC

' is printed and control
VDMP. Figure 9 i1s a

C dlsplay printed by this

> ‘ﬁwmﬁ—hf\—h‘(ﬁ

ave been
DISPLAY C
is passed
sample of
phase.

48 IBM VSE/Adv.

DSPLYV DISPLAY
VOLUNE SERIAL NO: IS 311111

Sevist Mo Volume Mo. Createon & Expaation Dater
PAYROLL MASTER INPUT FILE
2300 DOB40000-00850013

\ \ m
31111331 0001 49001 3-6 3014
\E.l—n‘

SYSTEN WORK FILE NUMBER 1 11111111 000L 490013-63016D
010} 00CLOGDO-00CL0013

3330 INDEXER X(IUEIH‘I. OPEN STD LABELED 231103 000y 49003345007 9
‘DODEDO0C-003F 001

VTOC DISFLAY CONMPLETED

lay of Disk Pack

Figure 9. VTOC
(DSP esponse)

lll
2T

$6BODSPO: Diskette VTOC Display

Objective: To display, on either SYSLST or
SYSLOG, the VTOC for the diskette currently
being opened.

Entry: From the first phase of VTOC
display, $$BODSPV.

Exit: To $$BODIO8, $$BODMSG, or $$BODSMO.

Method:; The volume label on the volume
currently beino opened is read to retrieve
the volume serial number., A header line is
printed to indicate the date and identify
the volume by the volume serial number.
Next, the CCW chain is initialized to read
$¥8Cfile labels (HDR1) contained in the

The file label for each file on the
volume is displayed by printing the
contents of the label. The printed line
includes:

file name

beginning extent

end extent

volume sequence number
creation date
expiration date

When extents for a file have been printed,
phase $$BODSPO initializes to process the
next label in the same manner.

When all HDR1l labels in the VTOC have
been processed, control is returned to the
calling transient. Figure 10 on page 49 is
a sample of the VTOC display printed by
this phase.

$$BOVDMO: Diskette VTOC Dump

Objective: To provide a list of all the
labels in the VTOC for the diskette being
opened.

Entry: From phase of the Diskette Open
Message MWriter, $$BODMSZ. or $$BODIO8, when
the operator's response is CANCELV, or from

the problem program.

Functions Diag. Ref. LIOCS Volume 1

9

C

Licensed Program — Property of IBM

Beginning Extant Volume Sequence No. Expiration Date
File Name 'End Extent

Creation Date

VOLUME SERIAL NO. IS HWS009 03/30/73

INPUT 05001 08026 01 721201 741231
INPUT 09001 10026 01 721201 741201
DMPVTOC 11001 11026 730319 7431231

TSTJCL 12001 13026 730321 741231

VTOC DISPLAY COMPLETED

Display of Diskette
LYV Response)

Exits: To phase $$BCNCL via SVC 6 to cancel
the job if $$BOVDMO is entered from the
message writer phase $$BODMS2, or to the
Ezﬁgéfe program, or to $$BOWDMO to continue

Method: Phase $$BOVDMO reads the VOL1 label
to retrieve the volume serial number for
the volume being opened. A header line is
then printed on SYSLST to_indicate the date
and identify the volume with the volume
serial number. If SYSLST is not assigned
to a printer, the VTOC Dump is ignored.

$$BOWDMO: Diskette List VTOC

Objective: To provide a listing of all the
labels in the VTOC for the diskette.

Entry: From phase 1 of the VTOC dump,
SBOVDMO.

Exits: Control returns to job control or to
the user's program.

Figure 11 on page 50 is a sample of the
VTOC Dump printed by this phase.

Method: All the VTOC labels for unsecured
files (except blank labels) and the file
being accessed (whether secured or
unsecured) are listed. Any other secured
files are not listed. When all labels have
been printed, an EOJ message is printed and
control returns to the user or to job
control.

Note: NB, NS, NP, NE, or NV indicate that a
label field is blank. B,S, P, E, or Vv
indicate that the label field was found to
be not blank.

$$BODMSG: Diskette Open Error Message
Writer Phase

Objective: To initialize the message output
area, SYSLOG CCB and CCWs, and to fetch
phase 2 of the message writer, $$BODMSZ2.

Entry:
e From the diskette VTOC display phase,
$$BODSPO.

* From a diskette open or close phase.
* From the DTFCP open phase, $$BODUCP.

Exit: To phase 2 of the open error message
writer, $$BODMS2.

Method: The calling phase supplies the
fo;%ouing information to the message
uriter:

e Register 0 contains the last four
characters in the name of the phase
requesting the message. On cancel
messages, register 0 need not be
initialized. $$B0 is assumed for the
first four characters of the phase name.

* Register 2 contains the address of the

DTF table for the current file

Register 3 contains the message code (in
binary) for the message to be printed.
This code is converted to the last two

digits of the message number (XX in the
example 4nXXI).

* Transient region * 1185 contains the
numeric decimal value assigned to the
various open/close phases for message
numbering (X in the example 4Xnnl).

e Transient region + 1000 contains the
start of the CCB.

The message writer overlays the first 888
bytes of the transient region. Therefore,
any information that the calling phase
needs to save is located beyond this point.

This phase first saves the last four
characters in the name of the phase
requesting the message. It initializes the
SYSLOG message output area with the
organization type numeric code, DTF file
name, and symbolic unit and constant. It
builds the SYSLOG CCWs for writing the
message and reading the response, and
determines if the required message is in
this phase of the message writer. If it is

not in this phase, the routine determines
which overlay phase contains the message
(either $$BOMSG3. $$BOMSG4, $$BOMSGS,
$$BOMSG6, or $$BOMSG7) and fetches $$BUDM52
to load the required overlay phase.
$$BODMS2: Diskette Open Error Message

Writer, Phase

Objectives: To issue an error message to
the operator, read the operator's reply (if
an IBM 1052 Printer—Keyboard is assigned to
SYSLOG) or exit to the phase that requested
the message (after ensuring the validity of
the operator's response). Also, to cancel
the job either by operator request or, if
the message type indicates this, by
end-of-job.

Common and Special Purpose Logical IOCS Routines 49

Licensed Program - Property of IBM

FileName Beginning Extent No Bypms Vowme Seavence No Expiration Date End-of~Dawa -‘
Block Length End Extent [No Write Protect Crastion O No venty

VOLUME SERIAL NO. 15 HWS009 Blank

T T

INPUTI 128 05001 08026 NB NS NP NE 01 721231 741231 NV 0900

No Security No Exchange
00009 HDRI LABEL

INPUTZ 128 11001 10026 NB NS NP NE 01 721201 741231 NV 11001
00010 HDR1 LABEL

DMPVTOC 128 11001 11026 NB NS NP NE 730319 761231 v 11007
00011 HDR) LABEL

TSTJCL 080 12001 13026 NB NS NP NE 730321 741231 Vv 12020
00012 HDR1 LABEL

00613 HDRI LABEL

00014 HDR1 LABEL

00015 HDR! LABEL

00016 HDRI LABEL

00017 HDR1! LABEL

00018 HDR1 LABEL

00019 HDR1 LABEL

00020 HDR1 LABEL

00021 HDR) LABEL

00022 HDR) LABEL

00023 HDR1 LABEL

00024 HDR1 LABEL

00025 HDR1 LABEL

00026 HDR1 LABEL

VTOC LISTING COMPLETED

T e e T T T T~

VTOC Dump of Diskette (CANCELV
Response)

Figure 11.

Entry: From phase 1 of the
Error Message Writer, $$BOD

Exit:
¢ To the VTOC dump phase, $$BOVDMO.

¢ To phase 1 of the VTOC display routine,
$$BODSPV.

e To the diskette open/close organization
phase requesting the message (if a
cancel was not encountered).

g' kette Open

50 IBM VSE/Adv.

Method: $$BODMSG supplied the following
information to this phase:

. geﬂister 1
characters
to fetch i
in some ot

contains the name (last four
s) of the message overlay phase
f the required message appears
her phase than $$BOMSG1.

®* Register 3 contains the address of the
message to be written on SYSLOG.

This phase determines the message type. It
can be either a file overlap pack, wWrong
pack, or other.

For wrong-pack type, the message is
initialized with the pack number and the
wrong-pack suwitch is turned on. This
switch is interrogated later in the routine
to test if the operator has mounted the
correct pack.

Next, the routine determines if the
message to _be written on SYSLOG is in _main
storage. If the message is not in main
storage, the message overlay phase
containing the required message is loaded
into main storage. The message overlay
phases consist of $$BOMSG3, $$BOMSG4,
$$BOMSG5, $$BOMSG6, and $$BOMSG7. These
phases contain messages only. The message
is then moved to the SYSLOG output area and
an SVC 0 is issued to type the message and
read the reply.

If the message indicates the job is not
to be canceled, the routine determines if
the user wants a VT0OC display. If a VTOC
display is wanted, the routine issues an
SVC 2 to fetch $$BODSPV, the VTOC display
phase. If the user does not want a VTOC
display, the routine tests for a D-type
message.

If the message is a D-type, the message
return indicator is set, the address of the
next phase name is retrieved, and an SVC 2
is issued to fetch the return phase. If
the message is not a D-type, the routine
tests the wrong-pack switch as previously
mentioned.

The message writer issues an illegal
response message for the following
conditions:

1. Operator reply of IGNORE for a D-type
message.

2. Equal file ID message.
3. No EXTENT to be bypassed.
4., Next pack not mounted.

If the job is to be canceled, a test
determines if the job control open switch
(in communications region) is on. If so,
an SVC 11 is issued to return to job
control. If the switch is not on, the
routine checks to determine if a request
has been made for a VTOC dump. If yes, an
SVC 2 is issued to call the VTOC dump
transient, $$BOVDMO. If a VTOC dump has
not been requested, an SVC 6 is issued and
the job is canceled.

Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Figure 13 on page 54 shows the message
code (passed via register 3) together with
the last two digits and action indicator of
the associated number. For reference
purposes, the text of the message is also
included

BODSMO:
iter

Diskette Data Security Message

$$
Wr
Objective: To issue message 4n99D and read
the reply from the operator.

Entry: From $$BODSPO, $$BODIOI, $$BODIOS,
and return from $$BODS .

Exits: The exit depends on the operator's
reply to message 4n99D.

. If reply is YES, control returns to the
problem program.

e If the reply is EOB, NO, CANCEL, or

CANCELV, the problem program is
canceled. If a VTOC dump is requested,
$$BOVDMO is fetched. If $$BODSMO was
fetched by job control, an exit is made
to job control.

e If the reply is DSPLYV, $$BODSPV is
fetched.

Method: After gathering prelvmlnary data

about the calling routine, $$BODSMO issues

message 4n99D, 'DATA SECURED FILE/VOLUME

ACCESSED'. If the operator types YES on

SYSLOG, the file is made available.

$$BOVDMP: VTOC Dump

Objective: To provide a list of all the
labels in the VTOC, for the volume being
opened.

Entry: From phase 2 of th
Message Writer, $$BOMSGZ,
operator's response is CA
problem program.

Exits: To phase $$BCNCL via an SVC 6 to
cancel the job if $$BOVDMP is entered from
the message writer phase $$BOMSG2, or to
the problem program. or to $$BOWDMP to
continue CANCELV

Method: Phase $$BOVDMP reads the VOL1l label
to retrieve the volume serial number and
the CCHHR address of the VTOC for the
volume being opened. A header line is then
printed on SYSLST to indicate the date and
identity of the volume with the volume
serial number. If SYSLST is not assigned
to a printer, the VTOC Dump is ignored.

$$BOWDMP: List VTOC

ective° To provide a listing of all the
in the VTOC.

rom phase 1 of the VTOC dump,

If no record if found, exit is to
lsk message Writer, $$BOMSG1
wise, contraol returns to job control
o the user's program.

ethod: All the VTOC labels for unsecured
iles (except blank labels) and for the
file being accessed (whether secured or
unsecured) are listed. Any other secured
files are not listed. A maximum of five
extents are printed on a line. MWhen all
labels have been printed, an EOJ message is
printed, and control returns to the user or
to job control.

tm l'f o

Figure 12 on page 52 is a sample of the
VTOC Dump printed by this phase.

Common and Special Purpose Logical IOCS Routines 51

CANCELV DISPLAY

VOLUME SERIAL NOs» (S 111111
00000DODD4 FORMAT & LABEL
04040404 D4D404D4 D4D4D404
0ODODDDLEF DDCADOD2 OO3AADOL
00DDDODD DDDDOODD OOO0000
00000DDD0S FORMAT S LABEL

0S0S0S0S DOODODDDD 0ODDOODD
00000000

04040404
0D0DO0CH
00000000

00000000

04040404
D041 C7E
00001300

00000000

04040404
[22Db2p0)
DDoDODDO

00000000

00000000

000D00000L FORMAT 1 LABEL

PAYROLL MASTER INPUT FILE

DOOODOD0O0? FORMAT 1 LABEL
SYSTEM WORK FILE NUMBER 1
00000000 DODODD4D

00000000

04040404
02161612
slslolslslals]s]

00000000
00000000
[slslalelululals]

Licensed Program - Property of IBM

04040404
00000000
alelalslals]els}

00000000
00000000
00000000

SERIAL NO. 111111 VOL NO. 0001

40404040 4D404DO0 DODODOODDS 00DOADODD OODOA04O
2100 00B4000D-DDBA00L3 DOOD 0D0DOOOOO-00000000 0000 DODOOOOO-00000000

40404000 0ODODDOO 4040

SERtAL NO. 111111 VOL NO, 0DO3

00000DD0DS FORMAT 1 LABEL

00000008 DODDOD40D

0101 00CLODOD-0DCL0013 0000

0ooo

3330 INDEXED SEQUENTIAL OPEN STD LABELED

00000000

SERIAL NO.

VTOC LISTING COMPLETED

Figure 12. VTOC Dump of Disk Pack (CANCELV

0100 O0DDEODDO-003F0012 0000

0000
-00000000

131111 voL NO. 0001

00000000 DOODOODO DOOO

~00000000 0000 0ODOO0DO-00000000

$$BOMSG1l Disk Open Error Message HWriter,

Phase

04040404
0D0D0DDO
[alels]els]alels]

0ooooooo
00000000
00000000

480013-63016D 014040

490013-63016D0 0107

49001 3-4%00F9 010700

Objective: To initialize the message output
and to fetch

area, SYSLOG CCB and CCHWs,

phase 2 of the message wuriter,

informational messages.

requiring operator action/response,
$$BOMSVA is fetched,
transfers control to the SVA.

Entry:

. From a DASD open or

* From the DTFCP open
$$BOCP0O2, $$BOCPLl1,

From IJDPRT OPEN routine.

Exit: To phase
writer, $$BOMS
VSE/Advanced F
LIOCS Volume 2).
Method: The cal
following infor
writer:

which

in turn

close ph

phases,
or $$BOC

a
$
P

se.

2

iBOCPOl:

or to $SBOMSVA (see

* Register 0 contains the last four

characters in
requesting the message.

initialized.

52 IBM VSE/Adv.

he name of

$$B0

Functions Diag.

9 phase supplies the
ion to the message

the phase

On cancel
messages, register 0 need not be
is assumed for the
first four characters of the phase name.

Ref.

$$BOMSG2 for
For messages

G% of the open error message
gnétions Diagnosis Reference:

D4D404D4 D4D4D4DZ F4DDDDDD
00000000 DODDODOD DODDDDOOD
00000DOD DODDDDDD

00000000 DDDODOOD FSO00000
00000000 DOOCODOD DODODOOD
00000000 0OOODDOD

SYS. CODE 1S DOS/370 VER &

POINTER (S 00D0O0OOOOD

00
SYS: CODE IS DOS VERSION S

POINTER IS DDOOODOOOO

SYS: CODE IS mx RAFTDL W

POINTER IS 0O000OOODOD

Response)

* Register 2 contains the address of the
DTF table for the current file.
3

e Register contains the message code (in
binary) for the message to be printed.
This code is converted to the last two
digits of the message number (xx in the

example 4nxxI).

* Transient region + 1185 contains the
numeric decimal value assigned to the
various open/close phases for message
numbering. (x in the example 4xnnl.)

e Transient re
start of th

The message writer overlays the first 888
bytes of the transient region. Any
information that the calling phase needs to
save is located beyond that point.

gign + 1000 contains the
e

.

This phase first saves the last four
characters in the name of the phase
requesting the message. It then checks the

message type. For action type messages,
$$BOMSVA is fetched in order to transfer
control to the SVA. For information type
messages, it initializes the SYSLOG message
output area with the organization type
numeric code, DTF filename and symbolic
unit and constant. It builds the SYSLOG
CCWs for writing the message and determines
if the required message is in this phase of
the message writer. If it is not in this

c
S
i

h
T

LIOCS Volume 1

Licensed Program - Property of IBM

phase, the routine determines in which
overlay phase the message is located
(either $$BOMSG3, $$BOMSG4, $$BOMSG6,
$$BOMSG7, or $$BOMSG8) and fetches $$BOMSG2
to load the required overlay phase.

$$BOMSG2:
Phase 2

Disk Open Error Message Writer,

Objectives: To issue informational error
message to the operator, and to cancel the
job if the message indicates end of job.

Entry: From phase 1l of the disk open error
message writer, $$BOMSG1.

Exit:
* To the DASD open/close organization
phase requesting the message.

Method: $$BOMSG1l supplied the following
information to this phase:

¢ Reqgister 1 contains the name (last four
characters) of the message overlay phase
to be fetched if the required message
appears in some phase other than
$$BOMSG1.

¢ Register 3 contains the address of the
message to be written on SYSLOG

This routine determines if the message
to be written on SYSLOG is in storage. If
the message is not in storage, the message
overlay phase containing the required

o storage. The

s consist of $$BOMSG3,
SBOMSG6, SSBOMSG7,

9. These phases

message is loaded
message overlay ph
$$BOMSG4 ., $$BOMSGS
$$BOMSG8, and $$BQ
contain messages o The message is then
moved to the SYSLO utput area, and an SVC
0 is issued to type the message.

int
ase
y S
MSG
nly.
G o

Then, a test determines if the job
control open switch (in communications
region) is on. If so, an SVC 11 is issued
to return to job control. If the switch is
not on, an SVC 6 is issued and the job is
canceled.

Figure 13 on page 54 shouws the
message code (passed via register 3)
together with the last two digits and
action indicator of the associated message
number. For reference purposes, the text
of the message is also included.

$$BODSMW Data Security Message Writer

Objective: To issue message 4n99D and read
the reply from the operator.

Entry: From $$BODSPW, $$BOIS06, $$BORTVI,
and return from $$BODSPV.

Exit: To $$BOMSVA (see VSE/Advanced
ggnctions Diagnosis Reference: LIOCS Volume
Method: After gathering preliminary data
about the calling routine, $$BOMSVA is
fetched to transfer control to the SVA.

Common and Special Purpose Logical IOCS Routines 53

Licensed Program - Property of IBM

Message|Message

Code Number |Message

0 GG A OVERLAP ON UNEXPRD FILE

1 55A WRONG PACK, MOUNT nnnnnn

2 40A EXTENT OVERLAPS ANOTHER

3 41A EXTENT OVERLAP ON VTOC

4 42A NO MATCHING EXTENT

5 33A EQUAL FILE ID IN VTOC

6 66A 1 TRACK USER LBL EXTENT

7 594A INVALID EXTENT

15 84D NEED FILE PROTECT RNG

16 31D VOLUME SEQUENCE ERROR

17 38D USER HDR LBL IS NOT STD

18 39D USER TRL LBL IS NOT STD

19 08D NO UTLO FILE MARK FOUND

20 47A EXTENTS NOT ON SAME UNIT

21 86D TAPE UNIT NOT READY

22 00I NO RECORD FOUND

23 01l NO RECORD FOUND

24 02I NO RECORD FOUND

25 03I NO RECORD FOUND

26 041 NO RECORD FOUND

27 051 NO RECORD FOUND

28 061 NO RECORD FOUND

29 071 NO RECORD FOUND

31 091 NO RECORD FOUND

32 00I NO LABEL SPACE IN VTOC

33 01I NO FORMAT 1 LABEL FOUND

3¢ 021 NO FORMAT 2 LABEL FOUND

35 03I NO FORMAT 3 LABEL FOUND

36 041 NO FORMAT 4 LBL IN VTOC
Note: A- and D-type messages are not

M SR AR Cash

Figure 13 (Part 1 of 3).

54 IBM VSE/Adv.

Message Code for
Disk Open Error
Message Writer

Functions Diag. Ref.

Message|Message

Code Number Message

37 061 NO STANDARD VOL1 LABEL
38 411 EXTENT OVERLAP ON VTOC
39 G661 DISCONT INDEX EXTENTS

40 511 SYSUNITS NOT IN SEQUENCE
41 521 DISCONT TYPE 1 EXTENTS
42 541 DSKXTN ENTRY TABLE FULL
43 621 NO PRIME DATA EXTENT

44 451 TOO MANY EXTENTS

45 491 DATA TRACK LIMIT INVALID
46 591 INVALID EXTENT

47 601 NO EXTENTS, ALL BYPASSED
48 611 INVALID DLBL FUNCTION

49 631 LOAD FILE NOT CLOSED

50 801 INVALID FILE TYPE

51 811 NO LABEL INFORMATION

52 831 INVALID LOGICAL UNIT

53 90I SVA EXTENT AREA EXHAUSTD
54 871 SYS FILE EXTENT EXCEEDED
55 351 DELETED WORKFILE LABEL
56 341 CURRENT FILE LBL DELETED
57 401 EXTENT OVERLAPS ANOTHER
58 361 NO MORE AVAIL/MATCH XTNT

Figure 13 (Part 2 of 3).

LIOCS Volume 1

Message Code for
Disk Open Error
Message Writer

Licensed Program

-~ Property of IBM

Message|Message

Code Number {[Message

59 481 SYSIN/SYSOUT UNSUPPORTED

60 701 1ST XTNT CB NOT INDX VOL

61 711 EXTENT INFO NEEDED

62 721 MOD AND DTF INCOMPATIBLE

63 581 NO EXTENT FOR OUTPUT
FILE

64 881 EOF ON SYSTEM FILE

68 98I OVLAP UNEXPRD SECRD FILE

69 691 FILE IS OPEN FOR ADD

70 971 OVLAP EXPIRED SECRD FILE

71 851 INVALID FORMAT RECORD

74 301 INVALID HDR1 LABEL

75 331 EQUAL FILE ID vTOC

76 371 CHAINING TO SYSTEM UNIT

77 311 VOLUME SEQUENCE ERROR

80 821 ISAM NULL FILE

82 761 BLKSIZE OPEN FAILURE

83 751 BLKSZ NOT MULT OF RECSZ

85 781 NO LOGIC MODULE ...

86 791 GETVIS FAILED

87 051 UNRECOVERABLE I/0 ERROR

Figure 13 (Part 3 of 3). Message Code for

Disk Open Error
Message Writer

Common and Special Purpose Logical IOCS Routines

55

Telecommunications and VSAM are

56 IBM VSE/Adv.

Functions Diag.

not documented

Ref.

LIOCS Volume 1

Licensed Program - Property of IBM
CHARTS
Chart 01. Open Monitor
Entry to
Open Monitor
|
v
$SBOPEN
1.Called by OPEN macro for
Disk?
r—— No Y?s >| $$BOPENS
| v 1. Get space in SVA
| 2.RPS initialization 2. Load the RPS open
| necessary? routine.
| No Yes
| | |
L v |
>{3.Initialize part of |
transient open table.
§.Calculate and save PUB2
address for tape devices.
|
v
$SBOPEN1
1.More files to open?
Yes No. > SvVC 11
& Return to user
2.Determine file type.
3.Set up to fetch proper Call $$BOUROL o
open routine. >|6$BOCP0O1/$$BOCP11 or
4.DTF device type? $6BO0OR0O1 or
Unit Record $$B35400 Chart 07708
Tape Call proper Tape
>| open; Chart 03
Telecommunications
>|call ssBoTCO1|
VSE/VSAM
>[call ssBovsam|
DASD
v
Chart 02
Note:

in VSE/AF LIOCS Manuals.

Licensed Program — Property of IBM
Chart 02. Open Monitor

From Open
Monitor Chart 01

v

AM >| $$BOPEN2

4.For Sequential DASD or Process extent limits
Direct access DASD

|
\

Call $$BOISO1
Chart 04

<—t

$$BOSFBL

l.Locate OPEN/CLOSE SVA
phase ($IJJGTOP).

2.Exit the LTA (SVC 11)
and transfer control to
$IJJGTOP.

Charts 57

Chart 03.

58

Op

Licensed Program - Property of IBM

en Magnetic Tape

Open Tape
from Chart 01

IBM VSE/Adv.

Functions Diag. Ref.

v
DTF file type?
For DTFMT, DTFPH—MT
For DTFCP, DTFDI
|
v v
$$BOPEN2 $§SBOTSVA
Read and check DLBL/EXTENT 1. Locate OPEN/CLOSE SVA
information phase (8IJJTTOP)
2. Exit the LTA (SVCll) and
| transfer control to
v $IJJTTOP
$$BOESTV &
1. Retrieve and process TES
znggrmation from PUB2 $IJJTTOP
able.
2. Write TES record on SYSREC 1. Process OPEN request
3. Entry from JOBCTLJ or 2. Exit the SVA and transf.
JOBCT control to $$BOTLTA
Yes No
| | '
| I !
v v 6$BOTLTA
Call JOBCT D SVC 2 Return to open monitor to
or $$BJCOP $$BOPEN handle next DTF or to
return to problem program

LIOCS Volume 1

Licensed Program

- Property of IBM

Chart 04. Open ISAM

Open IS
from Chart 02

$$BOISO1

1. Get address of DLAB and
EXTENTs.

2. Compute no. of tracks of
the independent overflow

extent.

$$BOIS02

If load create file:

® Check for dup. ID in
VTOC.

® Check incomming extents
against all existing files in
VTOC for overiap.

If input file:

® Read format-1 label for
file.

® Check incomming extents
against Format-1 extents,

l

$3B801S05

1. Save extent limits.

2. Build DSKXTNT table.

$$BOIS06

1. Check labels for input
files.

2. Create labels for output
files.

$$BOISO7

1. Get format-2 label and
update DTF table.

2. Put EXTENT card infor-
mation and constants in
DTF table.

3. File protect?

NO

4. ADD file type?

$SBOFLPT

-

. Put extent information in
extent block to file protect
DASD fites.

<>

YE

\

$$BOISO8

1. Build CCW chain in
IOAREAL.

2. Update prime data
in-storage add section of
DTF.

2. More files to open?

SVC 2
$SBOPEN

Charts

59

Licensed Program - Property of IBM

Chart 05. Close Monitor
CLOSE entry
v
> ssBCcLOSE
—>{1. More files to close?
Yes No >|SVC 11 Return to
& problem program
2. Set up to fetch proper
close routine
3. VSE/VSAM file?
No YES >|SVC 2
& $$BCVSAM
4. OPEN ignored and no
DASD or DTFMT >| $$BOTSVA
Yes No
& l.Locate IJJTTOP
in
5. DTF file type? 2.Call $IJJTTOP to
complete CLOSE
DTFDA processing
[call ssBCLRPS |
L) DTFPH—DA DTFMT &
DTFSD or DTFPH—MT
CP/DI DASD SSBOTLTA
$$BOSFBL
DTFPH-SD Free workareas
l.Locate $I1JJGTOP DISKETTE
phase in SVA |
2.Call $IJJGTOP | v
to complete the V'
CLOSE processing 6.If file protect []
set dequeue req
| 7.Read label
v information ——>| $$BODIO4
DTFIS
E] 1.Write last block
I 2.Process user
v labels or Feed
8.Read label diskette
Other information 3.S5et file status
Call $$BCLOS2 | to closed
Chart 05A T
v |
v
Call $$BCLOSA
Chart 05B [a]

Note:
$$BCLLBL is called to GETVIS the label buffer and to read the label
information for DASD files.

60

IBM VSE/Adv.

Functions Diag.

Ref.

LIOCS Volume 1

Licensed Program -
Chart 05A.

Property of IBM

Close Monitor Part 2
$$BCLOS2 from
Chart 05
I
v
$6BCLOS2
1.Device 3800 and ext. buff. DTF's
open
| Yes
>[cal1 1JDPR3 |
NoV £ .
2.DTYFCP/DI/PR and device PRT1
or 3800 I
N7 Yes >|Call IJDPRT l
v
3.DTF file type?
> SBCMRO1
MICR
1.Reset open and traffic
Unit record bit in DTF.
2.Turn off ext. line ind.
Paper tape \II in PDTABB table
4,Reset file open indicator |
in DT v
5.2520 or 2540 punch file?
No Yes—m rahart 05, entry A
| [8] '
v L
6.Paper tape file v
No Yes 1 > $$BCLOSP
l 1.Repunch correctable
| error in last card.
TP L—>] 2.Check last record if
ouput file with two ID
areas.
DTFCP/DI
7.Device type tape?
Yes >[Chart 05, entry A

z
<————0

v
8.System file? L———> SvVC 2
Yes No $$BCTCO1
10.2520 or 2540 |
punch file?
Yes No——m—mmmmmm >
> SvVC 2
! | $$BCCPT1
s \
Eﬂ chart 05
entry A

Note:
$BCTCOl is not documented in VSE/Advanced

Functions LIOCS

Charts 61

Licensed Program - Property of IBM
Chart 05B. Close Monitor Part 3

$$BCLOSG from

Chart 05
v
$$BCLOSG
1.%??2’DTF linked with VSE/VSAM
Yes No > $$BCISOA

|
Y 1.Read, format, and
2.CDLOAD successful? rewrite—format—l—and

Yes No format—2 labels.
| | 2.More files to close?
! | Yes No
v v | |
SVC 11 return SVC 2 v v
to IIPOPEN $$BOCISC
Chart 05 SVC 11 return to
entry A problem program

62 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
Chart 06. EOF/EOV Routine

FEOV for EQV for
DTFPH DTFCP/DI
v v
$$BCEQOV] SBCMTO7?
Determine file 1. Close current SYSPCH or
and format of SYSLST output file by
the file from writing tapemark
its DTF 2. Rewind and unload initial
tape reel
3. Suwitch to alternate drive
if specified
v
$$BOTSVA |
'
see Chart 03 $$BJCOPT
Open alternate tape assigned
to SYSLST or SYSPCH by
reading label/tapemark

I
v

SVC 11 return to
problem program

Charts 63

Licensed Program

Chart 07. Open Diskette, Input
from Chart 02
$$83540i

DTF from DIB.

No
i Yes Yes
3. Get extent information for

4, More files to open?

1. Get next DLBL extent.
2, System file open?

Unit exception?

No

No

Neo

Bypass required?

Call $3BODMSG
10 print message

SVC 11 return to
problem program

SvC2

N

1

$$BODIOT

1. Process VOL 1 label.
2. Secured volume?

Yes
No

1

$$BODI0S

1. Process HDR1 label.

2. Another file to
open?

No

$SBOPEN

64

IBM VSE/Adv.

Functions Diag.

Ref.

LIOCS Volume 1

Property of IBM

Cal
$380O

Licensed Program - Property of IBM

Chart 08. Open Diskette, Output
Diskette
Open Output
from Chart 02
$$835400

1. Control sequence operation.
2. System file, and open?

. No .
File open, but no more extents?

Yes

N
3. Use DIB to complete DTF. <> 2
4. More files to open? Yes

\/;No

Yes
SVC 11 return to
problem program
Call
$$BOPEN

$$B0ODI08

1. Operator communi=-
cation.

2. Continue response?
Yes

No

3. Cancel requested?
Yes_~\ No
NV

Call $$BOVDMO
to dump VTOC

Call $8BODSP

v
to display VTOC)

$$80OD!O1

Secured volume?

No
7
>

Call
$$BODSMO

$$BOD102

1. Cause duplicate
data set?
Yes

No

2. Determine extent
limits.

3. Delete duplicate and
overiapped labels.

I

$$BODI103

1. Space in VTOC?

No

Call $$BODMSG
to print message

Yes

2. At least 1 track
available?
No

Yes

3. Create and write
new HDR1 label.

4. More files to open?

No

Call 3BODMSG
to print message

Yes

5. Close required?
No o~ Yes
~

SVC 11 return to
problem program

Call
$SBOPEN

Call
SSBODI04

Charts

65

Licensed Program - Property of IBM

APPENDIX A: MASTER ERROR MESSAGE LIST

The messages in this list are arranged in sequence by message number,
The message numbers of all logical IOCS messages start with the digit 4.
The second digit of the message number indicates the type of file or
routine issuing the message. The indicators are:

Punch file
agaetic tape file

equential DASD, diskette - open input
equential DASD, diskette - open output
equential DASD, diskette - close

AM - input

AM - output

ommon open/close routines

equential DASD - work file

TOC display routines

<VBRNANDUWN—O

T T T TR T T T]

<VOOODVIVINHI
w

The alphabetic character after the message number is the action
indicator. These indicators are:

Action A

Indicator Meaning

A - Action The operator must perform a specific manual action
before the program can continue. For example, mount a
tape or ready an 170 device.

D - Decision The operator must make a choice of alternative courses
of action.

I - Information The message does not require immediate operator action.

For example: This type of message can indicate
successful completion of a problem program.

The number(s) in the volume column refers to the documentation of the
message issuing routine(s) in the following VSE/Advanced Functions
Diagnosis Reference manuals:

1. LIOCS Volume 1: General Information and Imperative Macros.,

2. LIOCS Volume 2: SAM,

3. LIDCS Volume 3: DAM and ISAM.

4. LIOCS Volume 4: SAM for DASD

For further detailed information on these messages, see VSE/Advanced
Eunctions Messages.

66 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program -

Property of IBM

Message

Number |Module Volume |Message

4110A $$BOCPT3 2 NO VOL1 LBL FOUND TLBL=xxxxxx filename SYSxxx=cuu
IJJTOPN 2

41111 $$BOCPT4 2 NO VOL1 LBL FOUND filename SYSxxx=cuu
IJJTOPN 2

4112A $$BOCPT3 2 VOL SERIAL NO. ERROR TLBL=xxxxxx filename SYSxxx=cuu
$$BOCPT4 2
IJJTOPN 2

4113D $$BOCPT4 2 NO HDR1 LBL FOUND filename SYSxxx=cuu

41131 IJJTOPN 2

41164A $$BOCPT4 2 FILE SEQ NO, ERROR filename SYSxxx=cuu
IJJTOPN 2

4115A $$BCCPT4 2 FILE SER. NO. ERROR TLBL=xxxxxx filename SYSxxx=cuu
IJJTOPN 2

4116A $$BOCPT4 2 VOLUME SEQ. NO. ERROR filename SYSxxx=cuu
IJJTOPN 2

7D IJJTOPN 2 NO TM FOUND ON READBK filename SYSxxx=cuu

Z%ig? IJJTOPN 2 FILE ID ERROR, READBK filename SYSxxx=cuu

G119A $$BOCPT3 2 FILE UNEXPIRED filename SYSxxx=cuu
IJJTOPN 2

41201 IJJTOPN 2 TAPE POSITIONED WRONG filename SYSxxx=cuu
IJJTSRYV 2

41221 IJJTEOF 2 EOV ENCOUNTERED SYSxxx=cuu

2%%%? IJJTOPN 2 WRONG POSITN, READBK filename SYSxxx=cuu

41241 IJJTSRV TOO MANY UHL'S filename SYSxxx=cuu

41250 IJJTOPN 2 VOL1 LBL FOUND filename SYSxxx=cuu

61251

41261 IJJTSRV 2 EOV ENCOUNTERED filename SYSxxx=cuu

41281 IJJTOPN 2 ACCESS TO FILE NOT ALLOWED filename SYSxxx=cuu
IJJTSRV 2

4130A IJJTEOF 2 EOF OR EOV INQUIRY filename SYSxxx=cuu

4131D IJJTEQF 2 BLOCK COUNT ERROR filename SYSxxx=cuu DTF=xxxxxx

2 LBL=xxxXxxXx

4132D $$BOCPT4 2 ERROR IN FILE ID filename SYSxxx=cuu
IJJTOPN 2

41330 $SBOCPT4 2 ERROR IN HDR LBL filename SYSxxx=cuu
IJJTOPN 2

Figure 14 (Part 1 of 8).

Master Error Message List

Appendix A: Master Error Message List 67

Licensed Program - Property of IBM

Message
Number |[Module Chart|Volume|Message
4140A IJJTSRV 2 NO ALTERN DRIVE ASSGN filename SYSxxx=cuu
41511 IJJTOPN % HDR1 LBL INFORMATION filename SYSxxx=cuu
4170A $$BJCOPT 2 FILE PROTECTED TAPE filename SYSxxx=cuu
4171A $$BJCOP1 2 UNEXPIRED FILE SYSxxx=cuu
4172A IJJTOPN 2 INVALID LABEL SET SYSxxx=cuu
41831 $$BJCOPT 2 INVALID LOGICAL UNIT filename SYSxxx=cuu
IJJTOPN 2
4184D $$BOCPT2 2 NEED FILE PROTECT RNG filename SYSxxx=cuu
$$BOCPT3 2
IJJTSRV 2
41851 $$BOMRCE 2 INVALID FORMAT RECORD
$$BOMRCE 2
41901 IJJTOPN 2 LOG. UNIT NOT ASSIGNED TO A TAPE filename SYSxxx=cuu
41911 IJJTLOG 2 ERROR WHILE PROCESSING FILE filename SYSxxx=cuu RC=nn
IJJTOPN 2
IJJTSRV 2
IJJTTOP 2
41921 IJJTSRV 2 VOLUME ACCESS DENIED filename SYSxxx=cuu
41931 IJJTSRV 2 FILE ACCESS DENIED filename SYSxxx=cuu
40001 CDMOD 2 RETRY
$$BCLOSP 2
$$BCLOSP 2
SBERRTN 2
4n001I IJJGSDVH 3-93 4 NO LABEL SPACE IN VTOC
44001 $$BODIO3 2
4n0ll IJJGSDVH 3-93 4 NO FORMAT 1 LABEL or NO RECORD FOUND
42011 $$BOIS02 3
$$BOISOA 3
43011 $$B0OSIOS 2
42021 $$BCISOA 3 NO RECORD FOUND
4n031 IJJGDAIl 3-66 4 NO FORMAT 3 LABEL FOUND
IJJGDAI2 3-67
IJJGSDI3 3-62
IJJGSDI4 3-43
I1JJGSDW3 3-48
4n04I IJJGSDVH 3-93 NO FORMAT 4 LBL IN VTOC
42041 $6B0OIS02 3 NO FORMAT 4 LBL IN VTOC or NO RECORD FOUND
Figure 14 (Part 2 of 8). Master Error Message List

68

IBM VSE/Adv.

Functions Diag.

Ref. LIOCS Volume 1

C

Licensed Program -

Property of IBM

Message
Number |Module Chart |Volume|Message
4n051 SBOPEN2 1 UNRECOVERABLE I/0 ERROR
$SBOPLBL 1
$$BCLLBL 1
$$BOSDK1 2
$$BCCPT1 2
IJJGDARL 3-97 4
IJJTSRYV 2
4n061 IJJGSDGC 3-97 4 NO STANDARD VOL 1 LABEL or NO RECORD FOUND
42061 $$BOIS02 3
$$BCISOA 3
43061 $¢$BODIO1L 2
45061 $$B0ODI0YG 2
48061 SBOPENG 1
4n071 IJJGSDRL 3-96 4 NO RECORD FOUND
43071 $$B35400 2
44071 $§$B35401 2
4n08D/1|$$BOKULL 3-11 4 NO UTLO FILE MARK FOUND or NO RECORD FOUND
$$BIKULL 3-5
$SBOULI1L 3-5.1
$$BOULDL (3-11.1
4608D $$BODACL 3
4329D $$B35401 2 EXTENTS NOT EXHAUSTED
4n31D IJJGSDIZ2 3-41 4 VOLUME SEQUENCE ERROR
43321 $$BODIOS 2
4n33D IJJGDAO3 3-62 4 EQUAL FILE IN VTOC
1JJGSDO4 3-30
4433D $$BODIO2
4n341 IJJGSDO6 3-32 4 CURRENT FILE LBL DELETED
IJJGSDW3 3-48
4n361 IJJGSDKW3 -48 4 NO MORE AVAIL/MATCH EXTENT
43371 $$B35401 CHAINING TO SYSTEM UNIT
$$BODIOG
44371 $$B35400 2
$$BODIO7
4n38D $$BIKUL1L 3-5 4 USER HDR LBL IS NOT STD
$$BOULI1 |3-5.1
4639D $$BODACL 3 USER TRL LBL IS NOT STD
4n40D 1JJGSDO4 3-30 4 EXTENT OVERLAY ON ANOTHER
IJJGDAO3 3-62
Figure 14 (Part 3 of 8). Master Error Message List

Appendix A:

Master Error Message List 69

Licensed Program -

Property of 1IBM

Message |
Number |[Module ChartIYolume Message
426401 $sBOIS02 ' 3 EXTENT OVERLAPS ANOTHER
4n4lD I1JJGDAO3 3-62 4 EXTENT OVERLAP ON VTOC
1JJGSDO4 3-30
42611 $¢BOIS02 3
4n42D I1JJGSDI4 3-43 4 NO MATCHING EXTENT
42631 $$BORTV1 3 INV EXTENT HI/LO LIMITS
4n64D IJJGDAQ3 3-62 4 OVERLAP ON UNEXPIRED FILE
1JJGSDO4 3-30
4n451 IJJGDACX 3-58 4 TOD MANY EXTENTS
IJJGSDSF 3-23
I1JJGSDXT 3-34
42451 $sBOIS06 3
44451 $$B0ODIOS 2
42461 $$B0OIS07 3 DISCONT INDEX EXTENTS
4nG7A IJJGSDW1 3-46 4 EXTENTS NOT ON SAME UNIT
4n481 IJJGSDSF 3-23 G SYSIN/SYSQUT UNSUPPORTED
code is still in the modules, bhut situation cann't
43481 $$B35400 2 occure anymore.
42491 $¢B0OISO5 3 DATA TRACK LIMIT INVALID
4n50D IJJGSDXT 3-34 [NO MORE AVAILABLE EXTENTS
4450D $$B0ODI0S 2
4nb511 IJJGDACX 3-58 G SYSUNITS NOT IN SEQUENCE
62521 $$BOIS05 3 DISCONT TYPE 1 EXTENTS
4n541 IJJGDART 3-68 4 DSKXTN ENTRY TABLE FULL
42541 $$BOISO5 3
$$BORTVZ
4n55A IJJGDAVC 3-59 4 WRONG PACK, MOUNT nnnnnn
IJJGSDLP 3-98
4355A $$B0ODIC1 2
4855A $$BOPENG 1
4856A SBOPENG 1 WRONG MODULE SIZE
4n581 I1JJGDAO1L 3-60 4 NO EXTENT FOR QUTPUT FILE
IJJGSDRL 3-95
43581 $$B35400 2

Figure 14 (Part 4 of 8).

70 IBM VSE/Adv.

Functions Diag.

Master Error Message List

Ref. LIOCS Volume 1

C

Licensed Program — Property of IBM

Message
Number |Module hart Volume|Message
4n59D 1JJGSD02 3-29 4 INVALID EXTENT
1JJGSDI4 3-43
IJJGDACX 3-58
1JJGSDOS 3-31
I1JJGSDLP 3-98
4n591 IJJGSDRL 3-95 4
43591 SBODIOS
$$BODI0G
46591 $$B0ODIO3 2
48591 SBOPEN2
4n601 I1JJGSDO1 3-28 4 NO EXTENTS, ALL BYPASSED
IJJGSDIL 3-39
I1JJGSDSF 3-23
IJJGSDKW1 3-46
1JJGDAO1L 3-60
I1JJGDAD2 3-61
1JJGDAO4 3-63
63601 $$B35401
4né6ll I1JJGSDRL 3-95 INVALID DLBL FUNCTION
IJJGDARL 3-57
42611 $$B0OISO1 3
SBORTV1]
43611 $$B35400 2
48611 $§SBOPEN2 1
42621 $$BOISO5 3 NO PRIME DATA EXTENT
$SBORTV1
62631 $$B0OISO07 3 LOAD FILE NOT CLOSED
43641 $$BODIOS INVALID HDR1 LABEL
$$BODI0G
44651 $$BODI02 2 EQUAL FILE LABEL IN vVTOC
4né66D IJJGSDI4G 3 1 TRACK USER LBL EXTENT
1JJGSDOS 1
I1JJGDAQ2 1
62661 $$BOISO05 3
4né671 1JJGSDO4G 3-30 CVH PROCESSING FAILURE
1JJGSDVH 3-93
I1JJGVDOO 3-77
1JJGVD10 3-85
1JJGDAO3 3-62
4né68D I1JJGSDI4 3-43 4 USER LBLS EXHAUST FIRST EXTENT
1JJGSDOS5 3-31
4né68D IJJGDAD2 3-61 4
42691 $$BOIS07 FILE IS OPEN FOR ADD
42701 $$BORTVZ2 1ST XTNT CD NOT INDX VvOL

Figure 14 (Part 5 of 8).

Master Error Message List

Appendix A: Master Error Message List

Licensed Program - Property of IBM

Message
Number |Module Chart|Volume|Message
42711 $$B0OISO1 3 EXTENT INFO NEEDED
42721 $$B0OIS08 3 MOD AND DTF INCOMPATIBLE
4n741 IJJGSDBS 3-37 4 BLKSIZE OPEN FAILURE
IJJGSDW1 3-46
IJJGDAMX 3-52
4n75I1 IJJGSDBS 3-37 4 BLKSIZE NOT MULT OF RECSIZE
IJJGSDI2 3-41
4n76D IJJGSDLP 3-98 4 VOL SER NOT XXXXXX
IJJGDAVC 3-59
4n77D IJJGSDXT 3-34 4 EXTENT ENTRY ERROR - RETRY
4n791 SBOFLPT GETVIS FAILED
SBOPLBL
$$BCLLBL
SBOPEN2
$$BCEOV1 2
$$BCCPT1
$$BOTSVA
IJDPRT
IJJTSRV
SBOSVLT 3-4 4
$$BOSFBL 3-3
IJJGMFBA 3-18
IJJGSDVH 3-93
I1JJGSDUL 3-100
IJJGDARL 3-57
IJJGDAIZ2 3-67
IJJGVDOO 3-77
I1JJGVD1O0 3-85
IJJGSDFP [|3-102
IJJGMMBF 3-21
IJJGDAMX 3-52
4n801 $$BOSFBL 3-3 4 INVALID FILE TYPE
48801 SBOPEN1 1
$$BCLOS2
$$BCEOV1
4n811 IJJGSDRL 3-95 4 NO LABEL INFORMATION
I1JJGSDMO 3-22
IJJGSDSF 3-23
IJJGDARL 3-57
48811 CLOSE 1
$$BCLLBL
$SBOPENZ2
$$BOPLBL
$$BCCPT1 2
$SBCEOV1
$$B35400
IJJTOPN
42821 $$B0OISO07 3 JISAM NULL FILE

Figure 14 (Part 6 of 8). Master Error Message List

72 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Message
Number |Module Chart|Volume|Message
4n831 IJJGSDGC 3-97 4 INVALID LOGICAL UNIT
IJJGSDNV 3-99
IJJGSDRL 3-95
IJJGDACX 3-58
43831 $$B35401 2
46831 $$B35400 2
48831 $SBOPENG 1
$$BOCPO1 2
$$BOCP02
$$BOCP11
$SBOCP12
$$BOURO1
‘ 4884D $SBOPEN1 1 NEED FILE PROTECT RNG filename SYSxxx=cuu
$$BOCP02 2
$$BOCP11
$$BOCP12
48851 $SBOPENC 1 SYSxxx AND SYSyyy ARE ASSIGNED TO THE SAME PHYSICAL UNIT
4n86D $SBOPEN1 1 TAPE UNIT NOT READY
IJJTSRY 2
48871 SSBERRTN 2 SYS FILE EXTENT EXCEEDED
48881 SBERRTN 2 EOF ON SYSTEM FILE
4n891 I1JJGSDSF 3-23 4 WORKFILE NOT SUPPORTED FOR SYSFIL
4n901I IJJGSDVH 3-93 4 SVA EXTENT AREA EXHAUSTED
IJJGVDOOD 3-77
IJJGVD1O 3-85
IJJGSDFP [|3-102
48901 $$BOFLPT 1
4n931 IJJGSDRL 3-96 UNRECOVERABLE I/0 ERROR
4n961 IJJGSDCI 3-94 CISIZE INCORRECT
IJJGMIOI 3-24
4n951 IJJGSDRL 3-96 4 (PHASENAME) NOT IN SVA
$$BOSFBL 3-3
IJIJGMLLM 3-19
IJJGDAMX 3-52
L $$SBOTSVA 2
IJJTSRV
4n961 IJJGSDSF 3-23 IMPROPER DTFSD SYSFIL OPEN
4n971 IJJGDAO3 3-62 OVLAP EXPIRED SECRD FILE
IJJGSDO4 3-30
4n981 I1JJGSDO4 3-30 4 OVLAP UNEXPRD SECRD FILE
IJJGDAO3 3-62
4n99D IJJGSDI2 3-41 4 DATA SECURED FILE ACCESSED
IJJGDAIL 3-66

Figure 14 (Part 7 of 8). Master Error Message List

‘ Appendix A: Master Error Message List 73

Licensed Program - Property of IBM

Message
Number Module Chart|Volume |Message
GHO11I IJDPRT 2 INVALID ASA CONTROL CHAR nn filename SYSxxx
4H021 IJDPRT 2 PRTOV USED BUT NO PRINTOV SPECIFIED filename SYSxxx
GHOD31 IJDPRT 2 CNTRL USED BUT NO CONTROL SPECIFIED filename SYSxxx
4HO04G1I IJDPRT 2 PHASE IJDPRT INTERNAL ERROR RC=nn filename SYSxxx
4HOS5I IJDPRT 2 INVALID RECORD LENGTH filename SYSxxx
4HO61 IJDPRT 2 DTF INCORRECT RC=01 filename SYSxxx
4MR11I MRMOD 2 EXTERNAL INTERRUPT I/0 ERROR filename SYSxxx
4MR21 MRMOD 2 SCU NOT OPERATIONAL filename SYSxxx
4P011 SBERPTP 2 DATA CHECK SYSxxx=cuu
4P02D S$SBERPTP 2 DATA CHECK SYSxxx=cuu
V031 $$BODSPUW 1 NO RECORD FOUND filename SYSxxx
4v0al SBODSPW 1 NO RECORD FOUND filename SYSxxx, or
$$BOVDMP NDO FORMAT 4 LBL IN VTOC filename SYSxxx
4V061 $$BOVDMO 1 NO STANDARD VOLUME LABEL filename SYSxxx
$$BOVDMP
GV091I $SBODSPHW 1 NO RECORD FOUND filename SYSxxx
$SBOWDMP
4Ve7I I1JJGVDOO 3-83 4 CVH PROCESSING FAILURE
1JJGVD1O 3-90
GV95A $$BODSPV 1 SYSLOG OR SYSLST
I1JJGVD1O 3-85 4
GVI6A $$BODSPV 1 SYSLST NOT A PRINTER
I1JJGVD1O 3-85 4
P2001 SBOPR3 2 3800 PRINTER EXTENDED BUFFERING MODE NOT USED
REASON CODE = nn

Figure 14 (Part 8 of 8).

Note: A-
Wwri

and D-

74 IBM VSE/Adv.

Master Error Message List

type messages are not issued by the B-transient message
ter. The respective message uwriters call $$BOMSVA which in
turn transfers control to the SVA message writers in order to
issue the message from the SVA.

Functions Diag.

Ref. LIOCS Volume 1

Licensed Program - Property of IBM
APPENDIX B: ASCII CONVERSION TABLES

ASCII 1o EBCDIC Correspondence (0/0 to 3/15)

ASCI [BCDIC
T T
i Col | Row ;
Character Col : Row P:":em - 1 PaB'::m Comments
| (in Hex)
1

NUL o | o 0000 0000 o 1 o 0000 ! 0000
SOH o '™ 0000 0001 0o ' 1 0000 1 0001
STX 0o I 2 0000 0010 0o | 2 0000 1 0010
EIX o [3 0000 0011 0o, 3 0000 1 0011
EOT 0 | 4 0000 0160 3, 7 0011 . oIl
ENQ 0 | 5 0000 0101 2 . D 0010 ' 01
ACK 0 [0000 T 0110 2 ¢ E 0010 N 110
BEL 0o 7 0000 T 0111 2 I F 0010 | 11
BS 0o g 0000 | 1000 T T 6 0001 T 0110
HT 0 (9 0000 T 1001 0 | 5 0000 T 0101
LF 0 1 10 0000 1 010 2 |5 0010 1 0101
VT 0| 11 0000 011 0 | B 0000 | 1011
FF 0| 12 0000 1 1100 [G000 1 1100
CR 0 13 0000) o1 0 | D 0000 | 1101
SO 0 | 14 0000) 1110 0 | E 0000 M 1110
Sl 0 15 0000 H 111 0 | F 0000 ' 1
OLE 1TV o 0001 ! 0000 T ;0 0001 v 0000
DCl1 R 0001 T 0001 14 1 0001 1 0001
DC2 T T2 0001 v 0010 [0001 T 0010
DC3 1T | 3 0001 J 0011 T 1 3 0001 [0011
DG4 1| 4 0001 | 0100 3 | ¢ 0011 1 1100
NAK 1 | 5 0001 T 0101 3 . D 0011 | 1101
SYN 1 1 6 0001 T 0110 3, 2 0011 1 0010
ETB 1T . 7 0001 1 o111 P 0010 |___olio
CAN] 0001 1000 T_ 138 0001 1 1000
EM [0001 1001 T 9 0001 I 1001
SUB 1 T 10 0001 1010 3 1 F 0011 | 111
ESC T 11 0001 011 2 1 7 0010 MR
FS 1] 12 0001 1100 1 C 0001 N 1100
GS E 0001 1 1101 1 D 0001 M 1101
RS 1T T4 0001 1 1110 1 E 0001 1 1110
us T, 15 0001 i1] F 0001 I 111
SP 2 | o0 0010 | 0000 7 1T o 0100 | 0000
| 2 1 0010 M 0001 4 1 F 0100 | 111 Logical OR
- 7_1 2 0010 i 0010 7 U ¢ o111 v ni
r 2 13 0010 T 0011 7 1 8 0111 I o1
$ 2 1 4 0010 | 0100 5 [8 0101 I 1011
% 2 5 0010 | 0101 & | ¢ 0110 1 1100
& 2 6 0010 I 0110 5 | 0 0101 ;0000
' 2 7 0010 | o111 7 1. D o1l Y]
(2 | 8 0010 1 1000 4 ' D 0100 N 1101
) 2 | ¢° 0010) 1001 5 1D 0101 H 1101
* 2, 10 0010 ! 1010 5 C 0101 H 1100
+ 2 ' n 0010 H 1011 4 E 0100 q 1110
. 2 "2 0010 ' 1100 & B 0110 N 1011
- 2 |13 0010 1 1701 & | 0 G110 L 0000 Hyphen, Minus
- 2 4 0010 H TT10 4 | B —0T100 N[11]
/ 2 15 0010 N 1 6 1 1 oitlo____ 1V 0001
0 3 0 001 ! 0000 F | o i I 0000

L1 0011 1 0001 F |1 1 I 0001

3 | 2 0011 v 0010 F | 2 1 1 0010
3 3 0011 ! 0011 F | 3 [1 0011
4 3 1 "4 0011 I 0100 F | 4 [N} T 0100
5 3 1 5 0011 i 6101 F |5 111 0101
3 3 6 0011 ! 0110 F | 6 i1 0110
7 3 7 0011 | o111 F] 7 1111 0111
8 3 8 0011 1 1000 F | 8 1111 1000
9 3 | 9 0011 ! 1001 F | 9 T 1001
: 3 [10 0011 1010 7 1A o1l 1010
; 3 0011 1011 5 | € 0101 1 1110
< 3, 12 0011 1100 4 . C 0100 N 1100
= 3, 13 0011 1 1101 7 . E o111l N 1110
> 3 T4 0011 N 1110 6 ' E 0110 L1110
? 3 Vs 0011 i KL s I °F 0110 ! 1711
Figure 15 (Part 1 of 2). ASCII to EBCDIC Conversion

Appendix B:

ASCII Conversion Tables

75

ASCI| to EBCDIC Correspondence (4/0 to 7/15)

Licensed Program -

Property of IBM

ASCII EBCDIC
T
l Bit Col | Row Bit
Character Col | Row Pattern t Pattern Comments
| (in Hex)
T t T
@ 4 ! 0 0100 ! 0000 71 ¢ o111 1100
A 4 1 0100 1 0001 c | 1 1100 T~ o001
B 4 | 2 0100 0010 <] 1100 | 0010
C 4] 3 0100 0011 C ' 3 1100 | 0011
D 4 T 4 0100 0100 c 4 1100 | 0100
E 4 1 "5 0100 1 0101 C 5 1100 | 0101
F 4 | s 0100 N 0110 C 6 1100) 0110
G 4 | 7 0100 N o1l C 7 1100 § 01
H 4, 8 0100 ! 000 cC | 8 1100 ' 1000
| 4 1 3 0100] 001 [1100 T 1001
J 4 [10 0100 410 D ' 1 1101 I 0001
K 4 | 1 0100 1011 D I 2 1101 I 0010
L 4| 12 0100 1100 D 3 1101 | 0011
M 4_ ' 13 6100 i 1101 D 7] 1101 | 0100
N 4 V4 0100 1 1110 D | 5 1101 | 0101
) 4 [15 0100 | 1111 D , & 1101 | 0110
3 5 | 0 0101 ' 0000 D | 7 1101 ! 0111
Q 5 | 1 0101 ! 0001 D ' 8 1101 I 1000
R 5 ' 2 0101 | 6010 D I 9 1101 | 1001
S 5 1 3 0101 T 0011 E [2 110 N 0010
T 5 1 4 0101 | 0100 E | 3 1710 I~ 6on
1] 5 | 5 0101 0101 E | 4 1110 1 0100
v 5 T ¢ 0101 | 0110 [1110 | 0101
w 5 1 7 0i01 1 o111 E 6 1110 | 0110
X 5 | 8 0101) 1000 E | 7 o, (1N}
Y 5 ;-9 0101 N 1001 E [8 1110 ' 1000
2 5 1 10 o101 § 1010 E | 9 1110 T 1001
C 5 | 1N 0101 ' 1011 4 | A 0100 18 1010
N 5 | 12 0101 I 1100 E 1 o o 1 0000 Reverse Slant
] 5 | 13 0101 | 1101 5 ' A 0101 | 1010
= 5 T 4 0101] 1110 5 | F 0101 | 1 Logical NOT
— 5 1 15 0101 NI 6 1 D 0110 | 1101 Underscore
N &1 o 0110 4 0000 7 1.9 ol 1 1001 Grave Accent
a 6 | 1 0110 I 0001 8 | 1 1000 ' 0001
b .2 0110 I 0010 g | 2 1000 y 0010
¢ 3 0110 | 0011 e | 3 1000 ! 0011
d 4 0110 0 0100 8 | 4 1000 I 0100
e 5§ |5 0110 N 0101 8 | 5 1000 | 0101
f 6 | & 0110 ' 0110 8 | 6 1000 | 0110
9 &, 7 0110 { G117 8 . 7 1000 1 o111
h & 8 0110 | 1000 g [8 1000 N 1000
i 6 [9 0110, 1001 8 | ¢ 1000 T 1001
i 6 | 10 0110 T 1010 9 1 1001 [o001
i 6 0110 I 1011 9 | 2 1001] 0010
1 6 ' 12 010 | 1100 9 '3 1001 | 0011
m 6 | i3 0110 | 1101 9 T4 1001 T 0100
n 6 | 14 0110 T 1110 5 1 5 1001 I o0
° 6 | 15 6110 ¥ T 9 1 & 1001 1 0110
P 7 |0 o111 1 0000 9 1 7 1001 | 0111
q 7 11 o111 t 0001 9 ' 8 1001 | 1000
v 7 12 o111 | 0010 5 I 9 1001 T 1001
s 7 13 0111 T 0011 A 1 32 1010 ! 0010
v 7 1 4 o111 1 0100 A | 3 1010 I 0011
v 7 |5 o111 1 0101 A | 4 1010 1 0100
v 7 16 0111 | 6110 A [5 1010 | 0101
w 7 7 o111 | 0111 A % 1010 i 0110
x 7 I8 o111 - 1000 A 1l 7 1010 | o111
Y 7 I 9 o1 I 1001 A T8 1010 | 1000
z 7 | 10 o111 | 1010 A | 9 1010 1 1001
1 7 | 1 o 1011 C | 0 1100 0000
| 7 V2 01 N 1100 6, A 0110 N 1010 Vertical Line
7 7 113 o1l 1 1101 D "o 1101 T 0000
~ 7 | 14 o111 I 1110 A 11 1010 I 0001 Tilde
DEL 7 L 15 0111 | 1111 o | 7 0000 | 0111
Figure 15 (Part 2 of 2). ASCII to EBCDIC Conversian

76

IBM VSE/Adv.

Functions Diag.

Ref. LIOCS Volume 1

Licensed Program -

Property of IBM

EBCDIC 1o ASCII Correspandence (X'00' 10 X'82')

EBCDIC ASCHI
‘ L]
Col Row) | .
Choracter : Bir Col | Row Bir Comments
. Pattein Pattern
(in Hex) II
T
NUL 0 } 0 0000 ! 0000 o 1 o oo | 0000
OH 0 | 1 0000 H 0001 o [1 0000 1 000
X 0y 2 0000 ! 0010 [0000 | 001
ETX [0000) 0011 0, 0000 1 001
HT 0 5 0000 I 0101 0 ! 0000 1001
DEL 0 7 0000 | (1Y 7 1 15 o111 | T
V1 0 [0000 1 1011 0o | 1 0000 v 101
FF 0 | ¢ 0000 N 1100 0 12 0000 I 110C
CR 0O , D 0000 1 1101 0, 13 0000 [110
SO o ' & 0000 1110 0o 4 0000 | [N
St 0 1 ¢ 0000 1 T 0 | 15 0000 v [N
DLE [) 0001 | 0000 [0001 I 0000
DC1 [0001 | 0001 [0001 | 0001
DC2 T 2 0001 N 0010 1 2 0001 | 0010
DC3 "3 0001 1 0011 T | 3 0001 N 0011
BS L 0001 [0110 0o |, 8 0000 | 1000
CAN [0001 | 1000 T, 8 000 1 ‘1000
EM 7 |9 0001 N 1001 [000 | 1001
FS 1, C 0001 ' 1100 [T3 000 N 1100
GS) 0001 ! 1101 [K 000 V 110
RS T TE 0001 | 1110 [T 000 T [N
us T F 0001 1 (1IN [000 | 1
LF 2 5 0010 1 0101 0 . 10 0000 1 1010
8 2 6 0010] 0110 "7 0001 | onl
SC 2 7 0010 I o111 T [n 0001 | 1011
NQ 2 , D 0010 | 1101 0 | 5 0000 N 0101
ACK 2, E 0010 M 1110 0o, & 0000 | 0110
BEL 2 ' F 0010 | T 0o ' 7 0000 1 o
SYN 3 | 2 0011 | 0010 [0001 | o110
EOT 3 [7 0011 N ol o | 4 0000 N 0100
DC4 3 | C [N I 1100 1, 4 0001 1 0100
NAK 3D 0011 T 1101 1 ' 5 0001 I 0101
SUB L 0011 | [N [T 0001 | 1010
SP 4 J o 0100 | 0000 - 2 | o 0010 N 0000
{ 4 | A 0100 T 1010 s | n 0101 \ 1011
. 4, 8 0100 | 1011 2, 4 0010 V 1110
< T ¢ 0100} 1100 3 T2 ooli T oo
(a | o 0100 | 1101 2 | 0010 1 1000
- 4| E 0100 . 1110 2 11 0010 | 1011
I 4 | F 0100 I 1 2, 0010 000! Logical OR
& 5 ., 0 0101 | 0000 2 I 6 0010 T ono
] 5 1 A 0101) 1010 5 |13 0101 1101
S 5 1 8 0101 v 1011 2 | 4 0010 0100
. s | ¢ 0101 1 1100 2 ;10 0010 1010
) 5 | D 101 1 1101 2, 9 0010 | 1001
; 5 o+ E 100 1110 31 n 0011 \ 1011
- 5 ' F 0101 N [T 5 | 14 0101 H 1110 Logical NOT
- L) 0110 T 0000 2 | 13 0010 v 1101 Hyphen, Minus
/ 6 | 1 0110 |) 2 1 15 0010 1 nn
: 6 | A 0110 1 1010 7 L 12 0Nl 1100 Vertical Line
. 6 B 0110 ' 1011 2 ' 0010 1100
% 6 , C 0110 v 1100 2 |1 5 0010 0101
- 6 I o 0110 1 1101 s [15 ~_olol 1111 Undersgor
> 6 |t 0110 | 1110 3 | 14 0011 N 110
2 6 | ¢ 0110 1 T 3 115 0011 v T
N 7 19 ol ! 1001 6 | o o110 |)000 Grave Accent
: 7 A 0111 | 1010 3 110 0011 1 010
7 T8 ol | 1011 2 1 3 0010 1 011
(@ 7 T ¢ ol 1 1100 4, 0 0100 T 0000
: 7 T p ol N 1101 7 Y010 | o1l
- 7 T oll ! 1110 13 ol T 101
" 7 ¢ 0l | [T T2 010 |)0 10
o 8 | 1 1000 1 0001 6 | 1 0110 1)00
b 8 2 1000 | 0010 6 | 2 0110 1 01

Figure 16 (Part 1 of 2).

EBCDIC to ASCII Conversion

Appendix B: ASCII Conversion Tables

77

Licensed Program - Property of IBM

EBCDIC 10 ASCII Correspordence (X'83' to X'F9")

EBCDIC ASCII
|’ I
Co Row ; ;
Character ! 3 Bit Col | Row Bit Comments
attern Pattern
{in Hex) !
¢ s | 3 1000 T 0011 6 1 3 0110 1 oonl
d 8 | 4 1000 1 0100 6 ' a4 0110 L 0100
e 8 |5 1000 1 0101 6 1 5 0110 | 0101
f 8 | & 1000 I 0110 6 1 & 0110 ' 0110
g 8 |, 7 1000 | ol 6 , 7 0110 H 0111
h 8§ | 8 7000 | 1000 6 ' 8 0110 | 1000
i 8 | 9 1000 ! 1001 6 I 9 0110 | 1001
i 9 | 1 1001 H 0001 6 1 1o 0110 | 1010
i L] 00T ’ 0010 6 1 11 0110 | 011
] 9 | 3 1001 I 0011 6 | 12 0110 H 1100
m 9 | 4 1001 | 0100 6 | 13 0110 T 1101
n 9 | 5 1001 1 0101 6 | 14 0110 I 1110
° (2 1001 N 0110 6 , 15 o110 111
P 9 1 7 1001 ! ol 7 | 0 olll 0000
q 9 | 8 1001] 1000 7 V1 0111 0001
v g1 3 T001 | 1001 7 12 011 | 0010
~ A] 1 1010 1 0001 7 | 14 0111 N 1110 Lilde
s A | 2 1010 | 0010 7 |3 o111 1 0011
] A T3 1010 | 0011 7 |4 (1NN 1 0100
v A [4 1010 N 0100 7 L5 0111 T 0101
v A | 5 1010 ! 0101 7 | 6 o111 | 0110
w A I 6 1010 | 0110 7 7 ot I 0111
x A | 7 1010 I o111 7 |, 8 o1 | 1000
y A | 8 1010 | 1000 7 9 o111 | 1001
z A, 9 070 I 001 7 1 10 o111 1 1010
{ c o 1100 | 0000 7 T n 0111 | 1011
A [1100 | 0001 4 [0100 | 0001
] c 12 1100 ! 0010 ! 0100 H 0010
C [l) 1100 1 0011 4) 3 0100 | 0011
[5) C | 4 1100 0100 4y 4 0100 ! 0100
E [1100 0101) 0100 T 0101
F [1100 0110 % 0100 ™ ono
G [1100 | ol 4 |7 0100 1 o111
H c I 8 1100 | 1000 s | 8 0100 | 1000
1 c T 9 1100 v 1001 a | 9 0100 | 1001
] D | 0 1101 ! 0000 7 | 13 0111 | 1101
J D 1 101 T 0001 2 10 0100 | 1010
K D |, 2 1101 | 0010 4, 1 0100 1 1011
L D . 3 1101 | 0011 2 . 12 0100 1100
M D | a4 1101 | 0100 4" 13 0100 1101
N D [s 1101 | 0101 4 1 14 0100 1110
[¢) D | 6 1101 1 0110 4 | 15 0100 | 11
P D, 7 1101 | 0111 5 | o 0101 H 0000
Q D ' 8 1101 H 1000 5 1 1 0101 T 0001
R D | 9 1101 ! 1001 5 |2 0101 ¥ 0010
N E | 0 1110 1 0000 5 | 12 o101 T 1100 Reverse Slgnt
S E |- 2 110 | 0010 5 | 3 0101 T 0011
1 E | 3 1110 | 0011 5 | 4 0101 I 0100
U E ' 4 1110 | 0100 5 1 5 0101 T 0101
v E | 5 1110 1 0101 5 1 ¢ 0101 | 0110
v E] ¢ 1110 1 0110 5 |7 0101 | o1l
| X E | 7 1110 | o111 5 | 8 0101 | 1000
Y E ., 8 1110 H 1000 5 | 9 0101 | 1001
2 E ' 9 1110 H 1001 5 1 10 0101 N 1010
0 F 1 0 nn H 0000 3 | 0 0011 d 0000
1 F T 1 H 0001 3, 1 0011 N 0001
2 oy 2 I H 0010 ER] 0011 ' 0010
3 F | 3 T v 0011 37U 3 0011 t 0011
4 F_, 4 T T 0100 3 1 4 0011 T 0100
5 F s 11 | 0101 31T 5 0011 T 0101
6 F 6 1111 | 0110 31 6 0011 I 0110
7 F 7 11 | 0111 i1 7 o011 | ol
8 F 8 T | 7000 3 | 8 0011 1 1000
9 F | 9 1 1 1001 3 | 9 0011 | 1001

Figure 16 (Part 2 of 2). EBCDIC to ASCII Conversion

78 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Prcperty of IBM
APPENDIX C: DASD AND TAPE LABELS

contains information formarely provided in s 2 and 3 of
(VSE;Advanced Functions Tape Labels) and SC
ce un

ctions DASD Labels)}.

~n-

his part
C24-5212
VSE/Advan

LABEL PROCESSING FOR SAM AND DAM FILES ON DASD OR DISKETTE

This section summarizes DASD label processing performed for sequential
(consecutive) and direct access files. Processing performed for i
standard format-1 and format-3 labels, and for user- standard labels is
described under the headings "Input File™ and "Output File." This
section also describes diskette label processing. Processing performed
for standard HDR1 labels is described under the headings "Disket

Files: Input File™ and "Diskette Files: Output File."

SAM AND DAM INPUT FILE

VOL1 Label

The standard volume label (VOL1) must be on cylinder 0, track 0, record
3 for CKD devices, and in block 1 for FBA devices. If it is not, the
job is canceled.

The VOL1 label, written by the IBM-supplied program for initializing
disks, contains a permanent Volume Serial Number.

Whenever a logical file is to be processed, IOCS reads and checks the
VOL1 label against the Volume Serial Number that you supply in an EXTENT
statement. For a multiextent, or multivolume multiextent file, IOCS
performs this check for each EXTENT. If an error is detected, a message
is issued to the operator. The operator may mount the correct volume
and continue processing or he may terminate the job.

If you use EXTENT and omit the Volume Serial Number, I0CS checks the
Volume Serial Number against the serial number, of the previous EXTENT.
If there was no previous EXTENT, IOCS assumes that the correct volume is
mounted and does not check the VOL1 label.

For a multivolume SAM file, only one extent is processed at a time, and
thus, only one volume need be mounted at a time.

For a multivolume DAM file, all extents (and therefore all volumes) are
opened before any data records are processed. Thus, all volumes
containing the file must be on-line ready at tha2 same time.

IOCS determines the location of the VIOC from the Data File Directory
field of the VOL1 label.

If any additional volume labels (VOL2-VOL8) follow the VOL1 label, IOCS
ignores them.

Format-1 Label

You must supply one DLBL or DLAB statement for the logical file to
processed, and one EXTENT statement for each separate area (extent)
the file occupies on the volume. The EXTENT statement may_be itt
for a SAM file if the file is on a single volume and the DTF DEVADD
entry is included.

be
that
ed

R

If you use EXTENT for a i le volume file and omit the Symbolic Unit
§ ?lc

field, IOCS uses the Symbo Unit of the preceding EXTENT. If there is
no preceding EXTENT, the Symbolic Unit specified in the DTF is used. 1If
you also omit Symbolic Unit ln the DTF, you get an error message. If
you use EXTENT for a multivo SAM file, you must supply, for each
volume, at least the first EXTENT statement containing the Symbolic
Unit. In a multivolume DAM you must supply a sequential set of
Symbolic Unit numbers in EX EN for the volumes required.

Appendix C: DASD and TAPE Labels 79

Licensed Program - Property of IBM

IOCS locates the format-1 label of the file to be processed by first
reading the address of the VTOC in the VOL1 label and then searching the
VTOC for the format—-1 label that contains the File ldentification that
you specify in DLBL The File Identification (field K1) was written in
the key area of the label record when the file was created. Thus, you
must specify the same identification now as you did when the file wuwas
written as an output file.

If you use DLBL and omit the File Identification, IOCS searches for the
ég?el in ¥belzTOC by using the DTF name that you specify in the DLBL
ilename field.

For label fields D1-D21, IOCS OPEN routines check the appropriate fields
against the corresponding information supplied by you in DLBL or in a
DTF specification. Some fields provide information that is required
during the processing of data, and other fields are not required by VSE
and are ignored. See "Section Label Fields™ (Figure 20 on page 105 and
Figure 21 on page 107) for the details about each field of the label.

Label fields D22-D25 define the area (extent) of the volume where the
data records are located (if user-standard labels have not been written
for the file). The extent is one continuous area, and these fields
contain the lower limit (starting address) and upper limit (ending
address) of the area. They also contain a code for the type of records
written in the area, and they provide the order in which this extent
should be processed in a multiextent file.

If a file is scattered over separate areas (extents) of the volume, a
separate definition is required for each extent. Fields D26-D29 define a
second extent in the same way as fields D22-D25 define the first. Fields
D30-D33 define a third extent.

If user-standard labels have been uwritten for the file, IOCS previously
established an area for them (the first track of the first extent
specified for data records) and defined that area in the first Extent
field (D22-D25). In this case, the second Extent field (D26-D29)
defines the first area that contains data records.

In a SAM file, IOCS checks the starting and ending addresses you supply
in EXTENT statements (for the data records) against the lower and upper
limits in the corresponding Extent field of the label. If your
specifications equal or fall within these limits, I0OCS makes the area
you specify (in EXTENT) available for processing. If not, a message is
issued to the operator. 1If you omit EXTENT, I0CS does no checking and
makes available the area defined by the label.

If you have a multiextent SAM file, IOCS checks your second EXTENT
statement information against the second Extent field (or third with
user-standard labels).I0OCS performs this check after all the data
records in the first extent have been processed, and then makes the
second area available for processing.

If you have a multiextent DAM file, IOCS makes all the areas you specify
in EXLENT statements available at the same time, when the file is first
opened.

If more than three Extent fields are used, IOCS reads the Pointer field
(D%Q)tand searches for the format—-3 label that defines the additional
extents.

For a DAM file, you can determine the exact areas of the volume that
were specified when the file was created by including the DTFDA entry
SXTNTXIT=Name and supplying an extent-processing routine. I0CS branches
to your routine after each EXTENT statement is processed. IOCS stores,
in register 1, the address of the l4-byte field that contains the
information from the Extent field of the label that corresponds to the
EXTENT statement just processed. From this field you can obtain, for
example, the lower and upper limit of each extent, and save them to
check the address of data records. At the end of your routine, return
control to IOCS by issuing a LBRET macro instruction.

If you include the DTF LABADDR entry to indicate that user-standard
labels are to be processed, I0CS branches to your label routine after
processing the standard labels. At the end of your routine, return
control to IOCS by issuing a LBRET macro instruction.

You can control the processing of any remaining label fields by the
operand in the LBRET instruction. A LBRET 3 instruction permits I0CS to
update (rewrite) the label read and pass you the next label; a LBRET 2

80 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

instruction permits the processing of another label; a LBRET 1
instruction terminates the processing of user labels.

Format-3 Label

If more than three extent fields were required when the file was
creatid, I0CS set up and created a format-3 label for the additional
extents.

Dn input, IOCS searches for the format-3 label when it reads another
EXTENT after the third extent of the format-1 label has been processed.
I0CS reads the address of the format-3 label from the Pointer field
(D34) of the format-1 label.

For a SAM file, I0OCS searches for a second format-3 label if it reads
another EXTENT after the 13th extent of the first format-3 label has
been processed. I0CS reads the address of the second format-3 label
from the Pointer field (D38) -of the first format-3 label.

A DAM file permits the use of only one format-3 label.

I0OCS processes the extent fields of the format-3 label in the same
manner as those in the format-1 label.

User—-standard Label

When user-standard labels (UHL/UTL) are to be checked and logical IOCS
macros are used for the file, DTF LABADDR=Name must be specified. If it
is not specified, IOCS bypasses all user—-standard labels.

When physical IOCS macros are used for a file and DTFPH is specified,
LABADDR=Name must be included if user—standard header labels (UHL) are
to be checked. I0OCS does not provide for user checking of user-standard
trailer labels (UTL) with the DTFPH.

For a SAM file, I0CS provides for checking user-standard ‘'header labels
after it checks the standard VOL1 and format-1 labels. In a multivolume
file, I0OCS provides for checking user-standard header labels on each

volume when that volume is ready to be processed.

For a DAM file, I0CS reads the user-standard header label after it
checks the standard VOL1 and format-1 labels of a single-volume file and
makes the label available to you. In a multivolume file, I0CS processes
all labels when the file is initially opened.

At that time, I0CS checks the standard VOL1 and format-1 labels on the
first volume, and then reads the user-standard header labels on the
first volume, and makes the label available to you.

Next, IOCS checks the standard labels on the second volume and reads
the user—-standard header labels on that volume. Label processing
progresses in this manner through all on-line volumes, before any data
records are processed.

I0CS provides for user checking of user—-standard trailer labels on an
end-of-volume or end-of-file condition. IOCS indicates the status of
the file through the low-order byte in register 0. The indication is O,
V, or F; meaning open, end-of-volume, or end-of-file, respectively.

The input file (such as a card reader) that contains the user's
information for checking user-standard labels must be opened before the
file with the UHL labels. This is done by specifying the
label-information file ahead of the labeled file in the same OPEN
instruction, or by issuing a prior, separate OPEN instruction.

I0CS identifies the user-standard labels by UHL or UTL in the first
three bytes of the label.

I0OCS reads each user—-standard label, one at a time, from the partition
GETVIS area. I0CS supplies the address of the area into which the
labels are read in register 1.

After a label is read in, 10CS branches to your label-checking routine.
The same routine (specified by DTF LABADDR=Name) is used for checking
both user-standard header (UHL) and user-standard trailer (UTL) labels,
You can identify the type of label by the UHL or UTL in the first three
positions of the label itself.

Appendix C: DASD and TAPE Labels 81

Licensed Program - Property of IBM

After you check a label, return to IOCS by issuing_a LBRET macro
instruction. VYou control the checking of any remaining user-standard
labels by the operand in the LBRET instruction. A LBRET 3 instruction
permits I0OCS to update (rewrite) the label read and pass you the next
label. A LBRET 2 instruction permits the checking of another label. A
LBRET 1 instruction or an end-of-file record terminates label checking.

If the user, or an end-of-file record, does not terminate the label
checking, IOCS reads in the next user-standard header label.

SAM AND DAM OUTPUT FILE

VOL1 Label

The standard volume label (VOL1) must be on cylinder 0, track 0, record
3, or in block 1 for FBA devices. If it is not, the job is canceled.

The (VOL1) label contains a permanent Volume Serial Number.
IOCS neither rewrites nor alters the VOL1 label in any way.

Whenever a logical file is to be processed, I0OCS reads and checks the
VOL1 label against the Volume Serial Number that you supply in an EXTENT
statement. For a multiextent, or multivolume multiextent file, IOCS
performs this check for each EXTENT. If an error is detected, a message
is issued to the operator. The operator may mount the correct volume
and continue processing, or terminate the job.

If you use EXTENT and omit the Volume Serial Number, IOCS checks against

the number of the previous EXTENT. If there was no previous EXTENT,

68CS ?ssumes that the correct volume is mounted and does not check the
L1 label.

For a multivolume SAM file, only one extent is written at a time, and
thus only one volume need ge mounted at a time.

For a multivolume DAM file, all extents (and therefore all volumes) are
opened before any data records are written. Thus, all volumes that will
contain the file must be on-line and ready at the same time.

IOCS determines the location of the VTOC from the Data File Directory
field of the VOL1 label.

If any additional volume labels (VOL2-VOL8) follow the VOL1 label, IOCS

ignores them.

Format-1 Label

You must supply one DLBL statement for the logical
e

statement for each separate area (extent) that th
the volume(s).

file, and one EXTENT
file will occupy on

An EXTENT statement defines the area (extent) of the disk pack where the
data records are to be uwritten. For a CKD device, an EXTENT statement
provides the starting address (relative track) and the number of tracks,
which indirectly gives the ending address of the extent. For an FBA
device, an EXTENT statement specifies the address of the physical block
¥;th NtiCh the extent begins and the number of physical blocks within

e extent.

An EXTENT statement also contains a code for the ty
are to be written, and provides the order in which
processed in a multiextent file.

of records that
s

pe
thi extent should be

If you use EXTENT for a single volume file and omit the Symbolic Unit
field, I0CS uses the Symbolic Unit of the preceding EXTENT. If there
no preceding EXTENT, the Symbolic Unit specified in the DTF is used.

you also omit Symbolic Unit in the DTF, you get an error message. If

you use EXTENT for a multivolume SAM file, you must supply, for each
volume, at least the first EYTENT statement containing the Symbolic
Unit. In a multivolume DA Ei*gf you must supply a sequential set of
Symbolic Uni numbers 1in T or the volumes required. Also, in a
multivolume DAM file a separate physical device must be assigned to each
symbolic unit.

i
-

82 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

If a file is to be scattered over separate areas (extents) of the disk
pack, a separate EXTENT statement is required for each extent. In that
case, the same Symbolic Unit number must be used.

I0CS first validates the EXTENT statement specifications:

1. The extents must not overlap each other.

2. If user—-standard labels are to be written (specified by DTF
LABADDR), the first extent must be at least two tracks.

3. The valid extent types for a SAM file are:

1 - data records

8 - data records with split cylinder, in EXTENT (not valid for FBA)

128 - data records with split cylinder, in XTENT (not valid for FBA)
4. The valid extent type for a DAM file is 1 (data records).

5. For a DAM file, the maximum number of EXTENT statements is 15 if
user-standard labels are specified, or 16 if they are not.

{OgSIOPEN routines locate the VTOC by reading its address in the VOL1
abel.

I0OCS checks the limits of an EXTENT against the limits of each extent
field of each label already written in the VTOC. If the new extent
overlaps any previously written extent, IOCS checks the expiration date
of the old file to ensure that the data records are no longer active.

If the expiration date has passed, I0CS deletes the old label(s) by
setting the File Identification Field of the format-1 label to binary
zeros, which, in effect, removes the expired file from the volume and
makes a record in the VTOC available. A format-3 label associated with
the expired file is deleted at OPEN time along with the format-1 label.

If the expiration date has not passed, a message is issued to the
operator. The operator can delete the unexpired file and continue
processing, bypass this EXTENT, or terminate the job.

IOCS reads the format-4 label (first record in VTOC) to determine the
limits of the VTOC.

I0OCS searches the Key Identification Field (K1) for zeros, which
indicate an available location. I0OCS checks this location to verify
that it is contained within the VTOC limits, and then writes the
formgt—é label. The process is repeated if a format-3 label is
required.

For label fields K1 and D1-D21 of the format-1 label, IOCS writes the
information supplied by you in DLBL or in a DTF entry, or generated by
the system. See "Section Label Fields" (Figure 20 on page 105 and
Figure 21 on page 107) for the details about each field of the label.

If you use DLBL and omit some specifications, I0OCS writes predetermined
default values (see Figure 21 on page 107).

Label fields D22-D25 define the area (extent) of the volume where the
ta records will be written. I0OCS writes these fields from the first
IE?T statement (if user-standard labels are not specified for the
e).

-y

file is to be scattered over separate areas (extents) of the

, a separate definition will be required for each extent. Fields
9 are used to define a second extent, and fields D30-D33 to define
d. These fields are written from additional EXTENT statements you

NO

T Ao
Toicw

standard labels are written for the file (specified by DTF

I0OCS establishes an area for them (the first track of the

nt you specify for the data records) and defines that area in
gxtent field (D22-D25). In this case, I0CS writes your first
e

—Am S w
tm nX>»c

Tment information for data records in the second extent field

OMer~hr— WNMUOKSH MO

WX T =P C

Appendix C: DASD and TAPE Labels 83

Licensed Program - Property of IBM

After writing the label(s), I0CS makes the area(s) of the volume
available for writing the data records. In a SAM multiextent file, IOCS
makes only the first specified extent available.

After that extent is filled, IOCS makes the next specified extent
available. In a DAM multiextent file, IOCS makes all the extents
available at the same time.

If you include more than three EXTENT statements (without user-standard
labels, or two with user—-standard labels), I0QCS writes a format-3 label,
and writes the address of that label in the Pointer field (D34) of the
format—-1 label.

If you include the DTF LABADDR entry to indicate that user-standard
labels are to be written, IOCS branches to your label routine prior to
writing each standard label.

Format-3 Label

If more than three Extent fields are required for the file, IOCS sets up
a format-3 label for the additional extents.

On output, I0OCS writes the format-3 label when it reads another EXTENT
statement after the three Extent fields of the format—-1 label have been
filled. I0OCS writes the address of the format—-3 label in the POINTER
field (D34) of the format-1 label.

For a SAM file, IOCS writes a second format-3 label if it reads a
EXTENT statement after the 13 Extent fields of the first format-3
have been filled. I0CS writes the address of the second format-3
in the Pointer field (D38) of the first format-3 label.

A DAM file permits the use of only one format-3 label.

IOCS processes the Extent fields of the format-3 label in the same
manner as those in the format-1 label.

User-Standard Label

When user-standard labels are to be written for a file, DTFSD, DTFDA, or
DTFPH LABADDR=Name must be specified.

Whenever LABADDR=Name is specified, at least one UHL label and one UTL
label will be written.

For a SAM file, IOCS uwrites user—standard header labels after it writes
the standard file labels. In a multivolume file, IOCS writes
user-standard header labels in each volume.

For a DAM file, IOCS writes user—standard header labels after it uwrites
the standard file labels of a single-volume file. In a multivolume
file, IOCS writes all labels when the file is initially opened. At that
time, I0OCS writes the standard file labels on the first volume, and then
writes the user-standard header labels on the first volume. Next, I0CS
writes the standard file labels in the second volume and urites
user-standard header labels on that volume. Label processing progresses
in this ganner through all on-line volumes, before any data records are
processe

I0OCS writes user—-standard trailer labels on an end-of-volume or
end-of-file condition. I0OCS indicates the status of the file through
the low-order byte in register 0. The indication is 0, V, or F; meaning
open, end-of-volume, or end-of file, respectively.

The input file (such as a card reader) that contains the user's
information for writing user—-standard labels must be opened before the
file on which the UHL labels are to be written. To do this, the input
file must be specified before the file to be labeled in the same QOPEN
instruction, or a prior separate OPEN instruction must be issued.

The user must build each user-standard label. To provide for this, 10CS
branches to the user's label routine. The same routine (specified by
LABADDR=Name) is used for building both user-standard header labels
(UHL) and user-standard trailer labels (UTL). IOCS supplies a code in
EheblgT;order byte of register 0 to indicate which type of label should
e bui :

84 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
UHL - Code 0O (letter 0)
UTL - Code F for end-of-file condition
Code V for end-of-volume condition

You must establish an 80-byte area to build your labels, and you must
load the address of that area in register 0.

When building the label, you must include UHL or UTL in the first 3
bytes of the 80-byte data area followed by a digit 1-8 in the fourth
By:e. You may include whatever information you need in the remaining 76
ytes.

After building a label, you return to IOCS by issuing a LBRET
instruction. I0OCS then writes the label on the volume.

You control the building and writing of successive user-standard labels
by the operand in the LBRET instruction. If another label is to be
written, specify operand 2 and IOCS again branches to your label
routine. When you have built you last user label, issue the LBRET macro
with the operand 1. I0OCS writes the last label.

A maximum of eight user—-standard header and eight user—-standard trailer
labels may be written. After eight labels, IOCS terminates the label
writing, regardless of the LBRET macro instruction.

Each user-label set (header or header and trailer) is terminated by an
end-of-file record, which is a data record with a data length of 0.

DISKETTE FILES: INPUT FILE

VOL1 Label
The VOL1l label is on track 0, record 7.

Whenever a logical file is to be processed, IOCS reads and checks the
VOL1 label against the Volume Serial Number that you supply in an EXTENT
statement. For a multivolume file, I0CS performs this check for each
EXTENT. If an error is detected, a message is issued to the operator.
The operator may mount the correct volume and continue processing, or he
may terminate the job.

If you omit the Volume Serial Number, IOCS assumes that the correct
volume is mounted and does not check the VOL1 label.

For a multivolume file, only one extent is processed at a time. I10CS
automatically feeds between volumes of a multivolume file.

The VTOC on a diskette is always on track 0, records 8-26.

HDR1 Label

You must supply one DLBL statement for the logical file to be processed,
and one EXTENT statement for each volume on which the file is contained.
One exception exists to this: the EXTENT statement may be omitted if the
file is on a single volume and the DTF DEVADDR entry is included.

If you omit the Symbolic Unit field on the EXTENT statement of a single
volume file, or on all EXTENT statements of a multi-volume file, IOCS
uses the Symbolic Unit specified in the DTF. If you also omit Symbolic
Unit in the DTF, you get an error message. All symbolic unit fields
provided on the EXTENT statements must be identical.

I0CS locates the HDR1 label of the file to be processed by searching the
VTOC for the HDR1 label that contains the File Identification that vyou
specify in the DLBL. The File Identlflcat\on (field D4) was written in
the label when the file was created. Thus, you must specify the same
identification now as you did when the file was written as an output.
See "Section Label Fields™ (Figure 32 on page 136 and Figure 33 on

page 136) for the details about each field of the label.

If you omit the File Identification, I0OCS searches for the label in the
VTOC, using the DTF name that you specify in the DLBL Filename field.

Appendix C: DASD and TAPE Labels 85

Licensed Program - Property of IBM

Label fields D8, D10, and D23 define the area (extent) of the diskette
where data records are located. These fields contain the lower limit
(starting address), the upper limit (ending address), and the
end-of-data address (address of the last record in the file +1). Files
with multiple extents on a single volume are not supported on diskettes.
IEC% igngres any starting and ending addresses you supply on the EXTENT
statement.

For multivolume diskette input files using DTFDU, the EXTENT statements
and the multivolume indicator are used in conjunction by the OPEN
transients to determine when end of file has occurred. If three extents
were provided by you, the multivolume indicator combinations shown in
Figure 17 could occur.

Multivolume.indicator Action taken by OPEN transients

b, anything Process first volume and issue warning message.

L, anything No volumes are processed, permanent-error messagé
issued.

C, b Process first volume; the b indicates that no
further volume checking is to be done.

C, x Process first volume, and issue permanent-error
message because the file was not found.

Cy, L, anything Process through the "L" and issue warning message.

c,C,C Process through the number of extents. No message

is issued.

c,C,L Process through the "L." No message is issued.

Figure 17. Multivolume Indicator Combinations (3 Extents)

In summary, for DTFDU the number of diskettes can be less than the
number of extents provided.

For all other supported DTF's, processing continues until the number of

extents is exhausted. Regardless of the DTF type for system files,
processing continues until all extents are exhausted.

DISKETTE FILES: OUTPUT FILE

VOL1l Label
The VOL1 label is on track 0, record 7.

IOCS will update the accessibility indicator (field D4) to an
"S"whenever a secured file is created on the volume.

Whenever a logical file is to be processed, IOCS reads and checks the
VOL1 label against the Volume Serial Number that you supply in an EXTENT
statement. For a multivolume file, IO0OCS performs this check for each
EXTENT. If an error is detected, a message is issued to the operator.

The operator may mount the correct volume and continue processing, or he
may terminate the job.

If you omit the Volume Serial Number, IOCS assumes that the correct
volume is mounted, and does not check the VOL1 bel.
n a
ivo

t a time. I0CS

me
la
For a multivolume file, only one extent is writte
1t lume file to the

autgmatically feeds from the one volume of a mu
next.

v

The VTOC on a diskette is always on track 0, records 8-26.

86 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
HDR1l Label

You must supply one DLBL statement for the logical file, and one EXTENT
statement for each volume on which the file is to be written.

If you omit the Symbolic Unit field on the EXTENT statement of a single
volume file, or on all EXTENT statements of a multi-volume file, IOCS
uses the Symbolic Unit specified in the DTF. Tf you also omit Symbolic
Unit in the DTF, you get an error message. All symbolic unit fields
provided on the EXTENT statements must be identical.

The extent limits for the file are determined by IOCS from available
space on the diskette, and any extent limits provided by you on the
EXTENT statement are ignored.

The name of the output file to be created is the same as the File .
Identification you specify in the DLBL statement. If you omit the File
Identification, the name will be the same as the DTF name that you
specify in the DLBL Filename field.

If the name of the output file to be created is equal to that of an
unexpired or write-protected (field D14) file already present on the
volume, you will get an error message and the job will be canceled. VYou
Wwill not be allowed to request that the duplicate file (unexpired or
write-protected) be deleted.

If the duplicate file is expired and not write-protected, or if a
duplicate file is not being created, IOCS will allocate space for the
file starting at the track following the end of the last unexpired or
write-protected file on the volume, and ending at the end of the volume
(track 73, record 26). If expired and non-write-protected files are
overlapped by this allocation, their labels are deleted from the VTOC by
writing delete records in their location in the VTOC.

If there is not at least one track of space available on the volume, you
will get an error message and the job will be terminated.

IOCS created the HDR1 label based on the information supplied by you in
the DLBL or in a DTF entry, or information generated by the system. See
"Section Label Fields"™ (Figure 32 on page 136 and Figure 33 on

page 136) for the details about each field of the label,

If you omit some specifications IOCS defaults to predetermined values.
See "Section Label Fields"™ (Figure 33 on page 137).

After writing the label, IOCS makes the area of the diskettes available
for writing the data records.

At CLOSE time IOCS reads and rewrites the HDR1 label in order to update
certain fields. They are:

End-of-Data (D23) This field will be set up as the address of the
record following the last record in the file.

End-of-Extent (D10) This field will be updated to be the address of
the last record in the data set.

Multivolume Indicator (D16) This field will be set up to indicate
if this 1is a multivolume file; a blank indicates a single volume
file; a C indicates all but the last volume of a multivolume file;
and an L indicates the last volume of a multivolume file.

LABEL PROCESSING FOR ISAM FILES

This section summarizes DASD label processing performed for indexed
sequential files. Processing performed for format-1 and format-2 labels
is described under Load(Create, Extend) Function Add Function and
Retrieve Function. The ADD and RETRVE (retrieve) functions can be
combined into one operation by specifying the DTFIS entry IOROUT=ADDRTR.
ISAM is not supported for FBA devices, the 3330-11, or the 3350 except
when operated in 3330-1 compatibility mode.

Appendix C: DASD and TAPE Labels 87

Licensed Program - Property of IBM

ISAM FILES, LOAD (CREATE, EXTENT)
FUNCTION

VOL1 Label

The standard volume label (VOL1) must be on cylinder 0, track 0, record
3 (except for 3350 operated in 3330-1 compatibility mode). If it is
not, the job is canceled.

The VOL1 label contains a permanent Volume Serial Number.

I0OCS neither reurites nor alters the VOL1 label in any way.

Whenever a logical file is to be processed, IOCS reads and checks the
VOL1 label against the Volume Serial Number that _ you supply in an EXTENT

or XTENT statement. For a single volume (requiring a minimum of two
extents), or for a multivolume file, IOCS performs this check for each
EXTENT. If an error is detected, a message is issued to the operator.

The operator may mount the correct volume and continue processing, or
terminate the job.

If you use EXTENT and omit the Volume Serial Number, IOCS checks against

the number of the previous EXTENT. If there was no previous EXTENT,

égf? ?sguTes that the correct volume is mounted and does not check the
abel.

For a multivolume file, all extents (and therefore all volumes) are
opened before any data records are uritten. Thus, all volumes that will
contain the file must be on-line and ready at the same time. Each
different symbolic unit must be assigned to a separate physical device.

I0CS determines the location of the VTOC from the Data File Directory
field of the VOL1 label.

If any additional volume labels (VOL2-VOL8) follow the VOL1 label, IOCS
ignores them.

Format-1 Label

You must supply one DLBL statement for the lo

gica
statement for each separate area (extent) that th
the volume.

al file, and one EXTENT
e file will occupy on

EXTENT statements define the areas (extents) of the volume where the
data records (prime data area), cylinder and master indexes, and
independent overflow records are to be uritten.

An EXTENT statement provides the starting address (called relative
track) and the number of tracks which indirectly give the ending
address. An EXTENT statement so contains a code for the type of records
to be written, and indicates the sequence in which this statement should
be inserted into the input stream. The EXTENT statements you supply for
a LOAD function must also be supplied for any subsequent ADD or RETRVE
(retrieve) functions. (See Add Function and Retrieve Function, in this
chapter, for details on additional requirements for these functions.)

The prime data area (data records) and the cylinder index area are
required, and you must supply an EXTENT statement for each. If you want
a master index and/or an independent overflow area, you must also supply
an EXTENT statement for each desired area.

The prime data area for a logical file must be one continuous area on
any one volume. It cannot be scattered over separate areas of a single
volume. The prime data area can, however, extend to one or more
voiumes, in which case a separate EXTENT statement is required for each
volume.

The prime data area on any pack must start on track 0 of any cylinder,
with the exception of track 0 of cylinder 0, which is reserved for
labels and system use. Therefore, the prime data area must start on
some cylinder other than cylinder 0 and is never uwritten on cylinder 0,
track 0 of any pack.

For a multivolume file, the prime data area of the f\rst pack may start
on any cylinder (except 0) and must extend through the last track on the

88 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM

pack. On all packs after the first, the prime data area must start on
cylinder 1, track 0 so that IOCS considers the prime data area as one
continuous area. On all succeeding packs (except the last) the prime
data area must extend through the last track on the pack. On the last
pack, it may end at the end of any cylinder. Thus, in a multipack file,
all packs, except the first and the last, are completely allotted to the
prime data area from cylinder 1, track 0 through the last track on the
last cylinder.

For a multivolume file, the VTOC for the first volume must precede the

prime data area. On the last volume, the VTOC may be on cylinder 0 or

it may follow the prime data area. On all other volumes, the VTOC must
be on cylinder O.

Because the prime data area must be considered as one continuous area in
a multivolume file, the master/cylinder index and independent overflow
area must be located before the prime data area on the first volume or
after the prime data area on the last volume.

During the load operation ISAM builds a separate track index for each
cylinder used by the file. Track indexes are considered a part of the
prime data area and, as such, do not require separate EXTENT statements.
Each track index starts on the first track (0) of the cylinder that it
is indexing.

It can occupy a full track, more than one track, or part of a track and
share that partially used track with prime data records (shared track).

Also within the prime data area certain tracks may be reserved, if
desired, for overflow records that uwill occur when records are added to
the file in later operations. These tracks, called a cylinder overflo
area, must be reserved during the load operation by specifying the DTF%S
entry CYLOFL. Because this is part of the prime data area, no separate
EXTENT statements are required.

The master index and the cylinder index are separate indexes and require
two separate EXTENT statements. However, when they are written on the
volume, IOCS combines them into one index area and urites the address of
that combined area in the format-1 label. .Therefore, for these indexes,
{ou muat :ﬂecify (in the EXTENT statements) two areas that are adjacent
o each other.

SAM builds the master (if used) and cylinder indexes during the load
operation. These indexes must be separate from the prime data area and
wholly contained on one volume. They can be on the same volume with the
prime data or on a separate volume. They even can be on a different
type of device from the prime data area.

You must specify the location of the cylinder index by an EXTENT
statement. It must immediately follow the master index on a volume, and
it may be located on one or more successive cylinders. You must also
specify an Extent Type of 4 and an Extent Sequence Number of 1 in the
EXTENT statement. If you use EXTENT and omit the Extent Type, IOCS
assumes the code for a data area. This index contains one entry for
each cylinder occupied by the data file.

If you plan to use a master index for a file, you must specify this
option with the DTFIS entry MSTIND and you must specify its location by
EXTENT. It must immediately precede the cylinder index on a volume, and
it may be located on one or more successive cylinders. You must also
specify an Extent Type of & and an Extent Sequence Number of 0 in the
EXTENT statement. If you use EXTENT and omit the Extent Type, IOCS
writes in the code for a data area. This index contains an entry for
each track of the cylinder index.

ISAM OPEN first validates the EXTENT statement specifications:
1. All prime data extents must be continuous.

2. The master and cylinder index extents must be continuous and on the
same unit.

3. No extents must overlap.
4. The valid extent types are:
1 rime Data

- P
2 - Independent Overflow
4 - Master Index

Appendix C: DASD and TAPE Labels 89

Licensed Program - Property c¥ IBM
4 - Cylinder Index
5. The Extent Sequence Number must be in a specified order:

Master Index

Cylinder Index
hrough n Prime Data

Independent Overflow

OR

JN=O
-t

0 Master Index

1 Cylinder Index

2 Independent Overflow
3 through n Prime Data

If a master index is not used, Extent Sequence Number begins with 1.
{OgSIOPEN routines locate the VTOC by reading its address in the VOL1
abel.

t the limits of each
ocC. If the new

s
T

S checks the

to ensure that the

I0CS checks the limits of an EXTENT statement agai

Extent field of each label already written in the

extents overlap any previously uritten extents, IO
expiration date of the old (being overlapped) file
data records are no longer active.

If the expiration date has passed, I0OCS deletes the old label(s), which
in effect removes the expired file from the volume.

If the expiration date has not passed, a message is issued to the
operator. The operator can terminate the job or delete the unexpired
file and continue processing.

I0OCS reads the format-4 label (first record in VTOC) to determine where
to write the format-1 and format-2 labels and then writes the labels.

In a multivolume file, IOCS writes the format-2 label only in the volume
that contains the cylinder index.

For a multivolume file, all extents (and therefore all volumes) are
opened before any data records are written. Thus, all volumes that will
contain the file must be on-line and ready at the same time. For each
volume, I0OCS checks the extents specified in the extent statements for
that volume (for example, checks that the data extents are continuous).
I0OCS also checks the standard VOL1 label and then goes to the VTOC to
check the file label(s). Then, the next volume is opened. After all
the volumes have been opened, the file is ready for processing.

If you use EXTENT and omit the Symbolic _Unit field, IOCS uses the
Symbolic Unit of the preceding EXTENT. The first EXTENT must contain the
Symbolic Unit. If you use EXTENT for a multivolume file, you must
supply, for each volume, at least one EXTENT statement containing the
Symbolic Unit. All extents on one physical unit must have the same
symbolic unit number.

For label fields K1 and D1-D21 of the
information supplied by you in DLBL o

the system. See "Section: Label Fields™ (Figure 20 on page 105 and
Figure 21 on page 107) for the detai ls about each field of the label.

Specify in the DLBL statement a File Type if ISC when using LOAD to
create a file and a File Type of ISE when using LOAD to extend the file.
If you use DLBL and omit this fie (D11 of the_ format-1 label), I0CS
writes the code for a SAM file in this field. If an ISC is specified in
DLBL for a non-load function, the system cancels the job.

The LOAD function is specified by the DTFIS entry IOROUT. The functions
of originally loading a file of presorted records and of ing the
file by adding new presorted records are the same. Both are considered
a LOAD operation.

format—-1 label, IOCS writes the
r a DTFIS entry, or generated by

If you use DLBL and omit some specifications, I0CS uwrites predetermined
default values. See "Section: Label Fields™ (Figure 21 on page 107)

90 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Label fields D22-D25, D26-D29, and D30-D33 of the format-1 label define
three areas (extents) of the volume, IOCS writes these fields from the
EXTENT statements you supply.

The Extent Type 1 (prime data), 2 (independent overflow area), and &
(master or cylinder index) in the EXTENT is converted to a hex 01, 02,
ang ?4 respectively by IOCS in fields D22, D26, and D30 of the format-1
label.

If you use EXTENT and omit the type, IOCS uwrites hex 01, the
designation for a prime data area.

Extent data is written in the format-1 label in the same order that
EXTENT statements are supplied. This order is specified by the Extent

Sequence Number, fields D23, D27, and D31. First Extent (D22-D25) is
for master index (if specified) and cylinder index. Additional Extent
(D26-D29) is for the prime data area, and Additional Extent (D30-D33) is
for the independent overflow area (if specified). Prime data araa and

independent overflow area may be reversed.

During the load operation, ISAM uses the Extent Sequence Number and the
Symbolic Unit (SYSnnn, specified in EXTENT) to determine on what volume
the extent area is located. The EXTENT statements must be entered in
ascending order by Extent Sequence Number, with none missing.

During a LOAD Extend function, IOCS checks the Extent Upper Limit
(fields D25 and D29 in the format-1 label) against the upper limit
specified by EXTENT. If the specified limit of either the cylinder
index or the prime data area is beyond the upper limit in the label,
I0OCS changes the label and makes the new area available for records. If
the prime data area is extended onto a new volume, I0OCS writes the lower
and upper limits of the next extent specified by EXTENT. Under any
other condition, the job is canceled if the limits do not agree.

After writing the label(s), IOCS makes the areas of the volume available
for writing the data records, index(es), and independent overflow
records. In a multivolume file, IOCS makes all the volumes available at
the same time.

I0CS always uwrites a {

the address of that label
in the Pointer Field 1.

Format-2 Label

1 d

A format-2 label is required and maintained by ISAM. This
to carry updated information from one use (function) of the

next and to retain many fields of the DTFIS table.

No separate EXTENT statements are required for the format-2 label. ISAM
OPEN/CLOSE routines write the label by using the information that you
supply in DTF specifications or that is calculated during the processing
of data records. Generally, job control statement information is not
used. The OPEN routine, however, uses EXTENT specifications in four
fields during LOAD Create function.

-

abel is use
file to the

Some of the fields in the format-2 label are written wuhen the file is
opened, whereas other fields are written when the file is closed.

I0CS aluways uwrites a format-2 label in the VTOC after it has uwritten the
format-1 label. It writes the address of the format-2 label in the
Pointer Field (D34) of the format-1 label.

The RECSIZE written in the format-2 label is used for any following ADD
or RETRVE functions.

If a file occupies two or more volumes, IOCS writes the format-2 label
only on the volume containing the cylinder index. This volume may or
may not contain data records. The format-2 label is not repeated on the
additional volumes (as the format—-1 label is).

If a load file is not closed, such as during an abnormal end of job, th
format-2 label associated with that file is not completely updated with
the information that is in the DTF. Caution: Further processing of this
file may give unpredictable results.

The statistics provided in several fields of the format-2 label can be
used to determine whether you should reorganize the file:

Appendix C: DASD and TAPE Labels 91

Licensed Program - Property of IBM

D12 - Tag Deletion Count: The number of records you identify (tag)
for deletion (not processed by I0CS).

D13 - Non-First Overflow Reference Count: The number of times a
READ instruction causes a search of the overflow area(s) for a
record that is the second or higher in an overflow chain.

D16 - Prime Record Count: The number of logical records uritten in
the organized file in the prime data area(s). IOCS accumulates this
count during a LOAD operation.

D27 - Number of Independent Overflouw Tracks: The number of tracks
still available in the independent overflow area.

D28 - Overflow Record Count: The number of records written in all
the overflow areas for the file (cylinder overflow areas and/or
independent overflow area)d.

D29 - Cylinder Overflow Area Count: The number of cylinder overflow
areas that have been filled.

Label Fields"™ (Figure 24 on page 120) for the details
ld of the format-2 label.

See "Section:
about each fie

ISAM FILES, ADD FUNCTION

VoLl Label

The standard volume label (VOL1) must be on cylinder 0, track 0, record
3. If it is not, the job is canceled.

The VOL1 label contains a permanent Volume Serial Number.
IOCS neither rewrites nor alters the VOL1 label in any wuway.

Whenever a logical file is to be processed, I0OCS reads and checks the
VOL1 label against the Volume Serial Number that you supply in an EXTENT
statement. N N

For a single volume (requiring a minimum of two extents), or for a
multivolume file, I0CS performs this check for each EXTENT. If an error
is detected, a message is issued to the operator. The operator may
mount the correct volume and continue processing, or terminate the job.

If you use EXTENT and omit the Volume Serial Number, IOCS checks against

the number of the previous EXTENT. If there was no previous EXTENT,

58%% ?sguTes that the correct volume is mounted and does not check the
abel.

For a multivolume file, all extents (and therefore all volumes) are
opened before any data records are uwritten. Thus, all volumes that will
contain the file must be on-line and ready at the same time.

I0OCS determines the location of the VTOC from the Data File Directory
field of the VOL1 label.

If any additional volume labels (VOL2-VOL8) follow the VOL1 label, IOCS
ignores them.

Format-1 Label

You must supply one DLBL statement for the logic

a
statement for each separate area (extent) that th
volume.

1 file, and one EXTENT
e file occupies on the

EXTENT statements define the areas (extents) of the volume where the
data records (prime data areal), cylinder and master indexes, and
independent overflow records are written. An EXTENT statement provides
the starting address (called relative track) and the number of tracks
which indirectly give the ending address. An EXTENT statement also
contains a code for the type of records to be written, and indicates the
sgquence in which this statement should be inserted into the input
stream.

For an ADD function, you must supply the same EXTENT statements that you
supplie or the LOAD function. VYou must supply an EXTENT for the prime

92 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM

data area (data records) and the cylinder index. If you specified a
master index, you must supply an EXTENT for this area. If you specified
an independent overflow area during the load operation, you must supply
an EXTENT for this area. If an independent overflow area has not been
established, you can specify one during the add function by supplying an
EXTENT statement for this area.

The prime data area for a logical file is one continuous area on any one
volume. It is not scattered over separate areas of a single volume.

If, however, the prime data area extends to one or more other volumes,
you must supply a separate EXTENT statement for each volume.

The prime data area on any volume starts on track 0 of any cylinder with
the exception_of track 0 of cylinder 0, which is reserved for labels and
system use. Therefore, the prime data area starts on some cylinder
ot?er than cylinder 0 and is never written on cylinder 0, track 0 of any
volume.

For a multivolume file, the prime data area of the first volume starts
on any cylinder (except 0) and extends through the last track on the
volume. On all volumes after the first, the prime data starts on
cylinder 1, track 0 so that I0CS considers the prime data area as one
continuous area. On all succeeding volumes (except the last), the prime
data area extends through the last track on the volume. On the last
volume, it ends at the end of any cylinder. Thus, in a multivolume file
all volumes, except the first and last, are completely allotted to the
prime data area from cylinder 1, track 0 through the last track in the
last cylinder.

For a multivolume file the VTOC for the first volume precedes the prime
data area. On the last volume, the VTOC is on cylinder 0 or it follous
the prime data area. On all other volumes, the VTOC is on cylinder 0.

Because the prime data area is considered as one continuous area in a
multivolume file, the master/cylinder index and independent overflow
areas are located before the prime data on the first volume or after the
prime data area on the last volume.

During the load operation, ISAM has built a separate track index for
each cylinder used by the file. Track indexes are considered a part of
the prime data area and, as such, do not require separate EXTENT
statements. Each track index is located on the first track (8) of the
cylinder that it is indexing. It can occupy a full track, more than one
track, or part of a track and share that track with prime data records
(shared track).

Also, within the prime data area, certain tracks may have been reserved
for overflow records that occur when records are added to the file.
These tracks, called a cylinder overflow area, are reserved during the
load operation and used during an add operation. If you use cylinder
overflow areas, you must specify the DTFIS entry CYLOFL during both the
load and add functions. Because the cylinder overflow areas are a part
of the prime data area, no separate EXTENT statements are required.

The master index and the cylinder index are separate indexes and require
two separate EXTENT statements. However, when they were written on the

volume, IOCS combined them into one index area and wrote the address of

that combined area in the format-1 label. Therefore, for these indexes,

you must specify (in the EXTENT statements) two adjacent areas.

ISAM has built the master (if used) and cylinder indexes during the load
operation. These indexes are separate from the prime data area and
wholly contained on one volume. They can be on the same volume with the
prime data or on a separate volume. They can also be on a different
type of device than the prime data area.

You must specify the location of the cylinder index by EXTENT. It
immediately follows the master index on a volume, and it may be located
on one or more successive cylinders. You must also specify an Extent
Type of 4 and an Extent Sequence Number of 1 in the EXTENT statement. If
you use EXTENT and omit the Extent Type, 1 is assumed.

If you specified a master index during the load operation, you must
again specify this option for the add function with the DTFIS entry
MSTIND. You must specify its location by EXTENT. The master index
immediately precedes the cylinder index on a volume, and it may be
located on one or more successive cylinders. You must also specify an
Extent Type of 4 and an Extent Sequence Number of 0 in the EXTENT

Appendix C: DASD and TAPE Llabels 93

Licensed Program - Property of IBM

statement. If you use EXTENT and omit the Extent Type, this field is
not checked.

An independent overflow area may be specified for storing overflow
records that occur when records are added to the file. If you plan to
use an independent overflow area, you must supply an EXTENT to specify
its location on the volume. The independent overflow area may be on the
same volume with the prime data area, or on a separate volume, but it
must be wholly contained on one volume. It must be on the same type of
device as that containing the prime data area. You can specify this
area during a load or add operation, but it is used during the add
operation.

If you specify both an independent overflow area and cylinder overflow
area (by DTFIS entry CYLOFL), ISAM places overflow records first in the
cylinder overflow area within the prime data area. When any cylinder
overflow area becomes filled, ISAM uwrites the additional overflow
records from that cylinder in the independent overflow area.

ISAM OPEN first validates the EXTENT statement specifications:

1. The master and cylinder index extents must be continuous and on the
same unit.

2. No extents must overlap.

3. The valid extent types are:

1l - Prime Data

2 - Independent Overflow
4 - Master Index

4 - Cylinder Index

4, The Extent Sequence Number must be in a specified order:

Master Index

Cylinder Index
hrough n Prime Data

Independent Overflow

OR

IO
-t

0 Master Index

1 Cylinder Index

2 Independent Overflowuw
3 through n Prime Data

I0CS checks the limits of an EXTENT against the limits of each Extent
field of each label already uwritten in the VTOC. If the new extents
overlap any previously written extents, I0OCS checks the expiration data
of the old (being overlapped) file to ensure that the data records are
no longer active.

If the expiration data has passed, IOCS deletes the old label(s), which
in effect, removes the expired file from the volume.

If an expiration date has not passed, a message is given to the
operator. The operator can terminate the job or delete the unexpired
file and continue processing.

If you use EXTENT and omit the Symbolic Unit field, IOCS uses the

Symbolic Unit of the preceding EXTENT. The first EXTENT must contain
the Symbolic Unit. If you use EXTENT for a multivolume file, you must
supply, for each volume, at least one EXTENT statement containing the

Symbolic Unit.

For a multivolume file, all extents (and therefore all volumes) are
opened before any data records are added. Thus, all volumes that
contain the file must be on-line and ready at the same time.

I0OCS locates the format—-1 label of the file to be processed by first
reading tha address of the VTOC in the VOL1 label and then searching the
VTOC for the format-1 label that contains the File Identification you
specify in DLBL. If an independent overflow area is specified during
the add function on an existing volume, I0OCS updates the format-1 label.

964 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

If the independent overflow area is specified on a new volume, IOCS
writes a format-1 label for that volume.

The File Identification (field K1) was written in the Key area of the
label record when the file was created. Thus, you must specify the same
identification now as you did when the file was written during the load
operation.

If you use DLBL and omit the File Identification, I0CS searches for
label in the VTOC by using the DTF name that you specify in the DLBL
Filename field.

For label fields, D1-D21, IOCS OPEN routines check the appropriate
fields against the corresponding information supplied by you in DLBL or
in a DTF specification. Some fields provide information that is required
during the processing of data, and other fields are ignored. See
"Section: Label Fields™ (Figure 20 on page 105 and Figure 21 on

page 107) for the details about each field of the label.

You must specify in the DLBL statement a File Type of ISE for the ADD

the

function. If you use DLBL and omit this field (Dil of the format-1
label), IOCS assumes the code for an SAM file in this field.

The ADD function is used to insert new records into an organized file
and is specified by the DTFIS entry IOROUT.

If you use DLBL and omit some specifications, I0OCS assumes predetermined
default values (see Figure 21 on page 107)

Label fields D22-D25, D26-D29, and D30-D33 of the format—1 label define

three areas (extents) of the volume, IOCS wrote these fields during the
load operation from the EXTENT statements you supplied.

The Extent Type 1 (prime data), 2 (independent overflow area), and &
(master or cylinder index) in the EXTENT is converted to a hex 01, 02,
and 04, respectively by IOCS in fields D22, D26, and D30 of the format-1l
label. If you use EXTENT and omit the type, this field is not checked.

The extent information was written in the format-1 label in the same
order that the EXTENT statements were supplied during the load
operation. The EXTENT statements must be supplied in this same order
for the retrieve function. This order is specified by the Extent
Sequence Number, fields D23, D27, and D31. The First Extent (D22-D25)
is for the master index (if specified) and cylinder index. Additional
Extent (D26-D29) is for the prime data area, and Additional Extent
(D30-D33) is for the independent overflow area if specified. The prime
data area and independent overflow area may be reversed.

During an ADD operation, ISAM uses the Extent Sequence Number in
conjunction with the Symbolic Unit (SYSnnn, specified in EXTENT) to
determine on what volume the extent area is located. The EXTENT
statements must be entered in ascending order by Extent Sequence Number,
with none missing. '

During an ADD function, IOCS checks the Extent Upper Limit (fields D25
and D29 in the format—-1 label) against the upper limit specified by
EXTENT. If the specified limit of the independent overflow area is
beyond the upper limit in the label, I0CS changes the label and makes
the new area available for records. If an independent overflow area is
established at this time, IOCS writes the lower and upper limit of the
new extent specified by EXTENT. Under any other condition, the job is
canceled if the limits do not agree.

After checking the label(s), IOCS makes the areas of the volume
available for processing. In a multivolume file, IOCS makes all volumes
available at the same time.

I0OCS locates the format—-2 label by reading the address of that label in
the Pointer Field (D34) of the format-1 label.

Format-2 Label

A format-2 label is required and maintained by ISAM, This 1

a
to carry updated information from one use (function) of the f
next and to retain many fields of the DTFIS table.

Appendix C: DASD and TAPE Labels 95

Licensed Program - Property of IBM

No separate EXTENT statements are required for the format-2 label. ISAM
OPEN/CLOSE routines wrote the label during the load operation by using
the information that you supplied in the DTF specification or that was
calculated during the processing of data records.

Some of the fields in the format-2 label are uwritten when the file is
opened, whereas other fields are written when the file is closed.

I0CS always uwrites a format-2 label in the VTOC after it has written the
format-1 label. It writes the address of the format—-2 label in the
Pointer Field (D34) of the format-1 label.

If a file occupies two or more volumes, IOCS writes the format-2 label
only on the volume containing the cylinder index. This volume may or
may not contain data records. The format-2 label is not repeated on the
additional volumes (as the format-1 label is).

The RECSIZE written in the format-2 label by the LOAD is used by the
LOAD during the ADD operation, not the RECSIZE in the ADD DTFIS.

Several fields of the format-2 label can be used to determine the status
of overflow areas:

D9 - Highest "R"™ on Overflow Tracks: The number of the last record
on each track of the cylinder and/or independent overflow area.

D25 - Last Independent Overflow Record Address: The address of the
last record written in the independent overflouw area.

D27 - Number of Independent Overflow Tracks: The number of tracks
still available in the independent overflow area.

D28 - Overflow Record Count: A count of the records written in the
cylinder overflow areas and/or independent overflow.

D29 - Cylinder Overflow Area Count: A count of the cylinder
overflow areas that have been filled. The statistics provided in
several fields of the format-2 label can be used to determine
whether you should reorganize the file:

D12 - Tag Deletion Count: The number of records you identify (tag)
for deletion (not processed by I0CS).

D13 - Non-First Overflow Reference Count: The number of times a
READ instruction causes a search of the overflow area(s) for a
record that is the second or higher in an overflow chain.

D16 - Prime Record Count: The number of logical records uwritten in
the organized file in the prime data area(s). I0CS accumulates this
count during a LOAD operation.

D27 - Number of Independent Overflow Tracks: The number of tracks
still available in the independent overflow area.

D28 - Overflow Record Count: The number of records uwritten in all
the overflow areas for the file (cylinder overflow areas and/or
independent overflow area).

D29 - Cylinder Overflow Area Count: The number of cylinder overflow
areas that have been filled.

See "Section: Label Fields™ (Figure 24 on page 120) for the details
about each field of the format-2 label.
ISAM FILES, RETRIEVE FUNCTION

VOL1 Label

The standard volume label (VOL1) must be on cylinder 0, track 0, record
3. If it is not, the job is canceled.

The VOL1 label contains a permanent Volume Serial Number.
Whenever a logical file is to be processed, I0CS reads and checks the

VOL1 label against the Volume Serial Number you supply in an EXTENT
statement. For a single volume (requiring a minimum of two extents), or

96 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

for a multivolume file, IOCS performs this check for each EXTENT. If an
error is detected, a message is issued to the operator. The operator
may mount the correct volume and continue processing, or terminate the
job.

If you use EXTENT and omit the Volume Serial Number, IOCS checks against
the number of the previous EXTENT. If there was no previous EXTENT,
68%5 ?sguTes that the correct volume is mounted and does not check the

1 abel.

For a multivolume file, all extents (and therefore all volumes) are
opened before any data records are read or updated. Thus, all volumes
containing the file must be on-line and ready at the same time.

I0CS determines the location of the VTOC from the Data File Directory
field of the VOL1 label.

If any additional volume labels (VOL2-V0OL8) follew the VOL1 label, IOCS
ignores them.

Format-1 Label

You must supply one DLBL statement for the logica

1 f
statement for each separate area (extent) that the f
volume(s).

ile, and one EXTENT
ile occupies on the

EXTENT statements define the areas (extents) of the volume where the
data records (prime data area), cylinder and master_ indexes, and
independent overflow records are written. An EXTENT statement provides
the starting address (called relative track) and the number of tracks
which indirectly give the ending address. An EXTENT statement also
contains a code for the type of records to be uwritten, and indicates the
siquence in which this statement should be inserted into the input
s<ream.

For a retrieve (RETRVE) function you must supply the same EXTENT
statements that you supplied for the LOAD or ADD function. VYou must
supply an EXTENT for the prime data area (data records) and the cylinder
index. If you specified a master index during the load operation, you
must supply an EXTENT for this area. If you specified an independent
overflow area during the load or add operation, you must supply an
EXTENT for this ares.

The prime data area for a logical file is one continuous area on any one
volume. It is not scattered over separate areas on a single volume. If
the prime data area, however, extends to one or more other volumes, you
supply a separate EXTENT statement for each volume.

The prime data area on any volume starts on track 0 of any cylinder,
with the exception of track 0 of cylinder 0, which is reserved for
labels and system use. Therefore, the prime data area starts on some
cylinder other than cylinder 0 and is never written on cylinder 0, track
0 of any volume.

For a multivolume file, the prime data area of the first volume starts
on any cylinder (except 0) and extends through the last track on the
volume. On all volumes after the first, the prime data starts on
cylinder 1, track 0 so that I0OCS considers the prime data area as one
continuous area. On all succeeding volumes (except the last) the prime
data area extends through the last track on the volume. On the last
volume, it ends at the end of any cylinder. Thus, in a multivolume file
all volumes, except the first and last, are completely allotted to the
prime data area from cylinder 1, track 0 through the last track in the
last cylinder.

For a multivolume file, the VTOC for the first volume precedes the prime
data area. On the last volume, the VTOC is on cylinder 0 or it follous
the prime data area. On all other volumes, the VTOC is on cylinder O.

Because the prime data area is considered as one continuous area in a
multivoelume file, the master/cylinder index and independent overflow
areas are located before the prime data on the first volume or after the
prime data area on the last volume.

During the load operation, ISAM has built a separate track index for

each cylinder used by the file. Track indexes are considered a part of
the prime data area and, as such, do not require separate EXTENT

Appendix C: DASD and TAPE Labels 97

Licensed Program - Property of IBM

statements. Each track index starts on the first track (0) of the
cylinder that it is indexing. It can occupy a full track, more than one
track, or part of a track and share that track with prime data records
(shared track).

Also, within the prime data area, certain tracks may have been reserved
;gr ovgrflgu rec?;dg thatlgcgur whenf;ecords are added to ghg file.th

ese tracks, called a cyli r overflow area, are reserve uring e
load operation by specifying the BEFTS entry CYLOFL, and are used during
an add operation.

Because this is part of the prime data area, no separate EXTENT
statements were required during the load operation. For the retrieve
function, the DTFIS entry is not required.

The master index and the cylinder index are separate indexes and require
two separate EXTENT statements. However, when they were written on the
volume, IOCS combined them into one index area and uwrote the address of
that combined area in the format-1 label. Therefore, for these indexes,
you must specify (in the EXTENT statements) two adjacent areas.

ISAM has built the master (if used) and cylinder indexes during the load
operation. These indexes are separate from the prime data area and
wholly contained on one volume. They can be on the same volume with the
prime data or on a separate volume. They can also be on a different
type of device than the prime data area.

You must specify the location of the cylinder index by EXTENT. It
immediately follows the master index on a volume, and it may be located
on one or more successive cylinders. VYou must also specify an Extent
Type of 4 and an Extent Sequence Number of 1 in the EXTENT statement.
If you use EXTENT and omit the Extent Type, this field is not checked.

If you specified a master index during the load operation, you must
again specify this option for the retrieve function with the DTFIS entry
MSTIND. VYou must specify its location by EXTENT. The master index
immediately precedes the cylinder index on a volume, and it may be
located on one or more successive cylinders. You must also specify an
Extent Type of 4 and an Extent Sequence Number of 0 in the EXTENT
sﬁatsmgnt. If you use EXTENT and omit the Extent Type, this field is not
checked.

An independent overflow area may have been specified for storing
overflow records that occurred when records were added to the file. 1If
you specified an independent overflow area during the load or add
function, you must again supply an EXTENT statement to specify its
location during the retrieve function. The independent overflow area
may be on the same volume with the prime data area, or on a separate
volume, but it must be wholly contained on one volume. It must be on
the same type of device as that containing the prime data area.

If you specified both an independent overflow area and cylinder overflow
areas (by DTFIS entry CYLOFL during the load operation), ISAM placed
overflow records first in the cylinder overflow area within the prime
data area. When any cylinder overflow area became filled, ISAM wrote the
additional overflow records from that cylinder in the independent
overflow area.

If you use EXTENT and omit the Symbolic Unit field, IOCS wuses the

Symbolic Unit of the preceding EXTENT. The first EXTENT must contain
the Symbolic Unit. If you use EXTENT for a multivolume file, you must
supply, for each volume, at least one EXTENT statement containing the

Symbolic Unit.

For a multivolume file, all extents (and therefore all volumes) are
opened before any data records are retrieved. Thus, all volumes that
contain the file must be on-line and ready at the same time.

IOCS locates the format-1 label of the file to be processed by first
reading the address of the VTOC in the VOL1 label and then searching the
VTOC for the format-1 label that contains the File Identification that
you specify in DLBL. The File Identification (field K1) was written in
the key area of the label record when the file was created. Thus, you
mu;itspecify the same identification now as you did when the file was
written.

If you use DLBL and omit the File Identification, IOCS searches for the

label in the VTOC by using the DTF name that you specify in the DLBL
Filename field.

98 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

IOCS does not check label fields D1-D21 against the corresponding A
information supplied by you in DLBL or in a DTF specification as it did
during the load or add operation.

You must specify in the DLBL statement a File Type of ISE for the
retrieve (RETRVE) function. If you use DLBL and omit this field (D11l of
format—-1 label), I0CS assumes the code for an SAM file in this field.

Use the DTFIS entry INROUT to specify the retrieve (RETRVE) function,
which retrieves records from a file for either random or sequential
processing and/or updating. You must also specify the DTFIS entry
TYPEFLE for a retrieve function to designate whether the type of
processing to be performed is random, sequential, or both.

If you use DLBL and omit some specification, IOCS assumes predetermined
default values (see Figure 21 on page 107).

Label fields D22-D25, D26-D29, and D30-D33 of the format-1 label define
three areas (extents) of the volume. I0OCS wrote these fields from the
EXTENT statements you supplied during the load operation.

The Extent Type 1 (prime datal), 2 (independent overflow areal), and &
(master or cylinder index) in the EXTENT is converted to a hex 01, 02,
and 04, respectively, by IOCS in fields D22, D26, and D30 of the
format—-1 label. If you use EXTENT and omit the type, this field is not

checked.

The extent information was written in the format-1 label in the same
order that the EXTENT statements were supplied during the load
operation. The EXTENT statements must be supplied in this same order for
the retrieve operation. This order is specified by the Extent Sequence
Number, fields D23, D27, and D31. The First Extent (D22-D25) is for the
master index (if specified) and cylinder index. Additional Extent
(D26-D29) is for the prime data area, and Additional Extent (D30-D33) is
for the independent overflow area (if specified). The prime data area

and independent overflow area may be reversed.

During a retrieve operation, ISAM uses the Extent Sequence Number in
conjunction with the Symbolic Unit (SYSnnn, specified in EXTENT) to
determine on what volume the extent area is located. The EXTENT
statements must be entered in ascending order by Extent Sequence Number,
with none missing.

I0OCS makes available (for processing) the areas you specify in EXTENT
(the data records, index(es), and independent overflow records) without
checking against the limits in the label (Extent Sequence Number and
Symbolic Unit are checked). In a multivolume file, IOCS makes all the
volumes available at the same time.

I0CS locates the format-2 label by reading the address of that label in
the Pointer Field (D34) of the format-1 label,.

Format-2 Label

A format—-2 label is required and maintained by ISAM. This label
to carry updated information from one use (function) of the file
next and to retain many fields of the DTFIS table.

No separate EXTENT statements are required for the format-2 label. ISAM
OPEN/CLOSE routines wrote the label during the load operation by using
the information you supplied in DTF specifications or that were
calculated during the processing of data records.

is used
to the

Some of the fields in the format-2 label are written when the file is
opened, whereas other fields are written when the file is closed.

I0CS always writes a format—-2 label in the VTOC after it has written the
format—-1 label. It writes the address of the format—-2 label in the
Pointer Field (D34) of the format-1 label.

If a file occupies two or more volumes, IOCS writes the format—-2 label
only on the volume containing the cylinder index. This veclume may or
may not contain data records. The format-2 label is not repeated on the
additional volumes (as the format-1 label is).

The RECSIZE written in the format-2 label by the LOAD is used during the
retrieve operation, not the RECSIZE in the RETRVE DTFIS.

Appendix C: DASD and TAPE Labels 99

Licensed Program - Property of IBM

The statistics provided in several fields of the format-2 label can be
used to determine whether you should reorganize the file:

D12 - Tag Deletion Count: The number of records you identify tag
for deletion (not processed by I0CS).

D13 - Non-First Overflow Reference Count: The number of times a
READ instruction causes a search of the overflow area(s) for a
record that is the second or higher in an overflow chain.

D16 - Prime Record Count: The number of logical records uritten in
the organized file in the prime data area(s). IOCS accumulates this
count during a LOAD operation.

D27 - Number of Independent Overflow Tracks: The number of tracks
still available in the independent overflow area.

D28 - Overflow Record Count: The number of records written in all
the overflow areas for the file cylinder overflow areas and/or
independent overflow area.

D29 - Cylinder Overflow Area Count: The number of cylinder overflow
areas that have been filled.

See "Section: Label Fields™ (Figure 24 on page 120) for the details
about each field of the format-2 label.

32;5 section describes all the DASD and diskette labels supported by

Volume Label 1 (VOL1)) - DASD and Diskette
Format-1 label
Format-2 label
Format-3 label

Format-4 label

HDR1 label - Diskette

User-Standard Header Label (UHL1-UHLS)

User-Standard Trailer Label (UTL1-UTLS8).
Each label is illustrated, and each field of each label is described in
detail. The individual fields in the illustrations are numbered to
relate to the corresponding descriptions. The label fields located in
the key area of a DASD record are numbered Kl1-Kn. The fields of a
glssette record, or in the data area of the DASD record are numbered

-Dn.

The descriptions of the label fields include the:

. Displacement in hex notation.
. Field Number - Kn or Dn
. Length of the field in bytes (hex notation).

. Content of each field, together with the name of the field.
An additional table shows for each field:

. Source of Information for checking or writing this field.
. Purpose of the field.
. Processing performed on input/output.

100 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM

. DLBL/EXTENT Default for the format—-1 and format—-3 labels only.

Throughout this section, the requirements and specifications relating to
the 3330 apply also to the 3333 and the 3350 in 3330-1 compatibility
mode . The requirements and specifications given for the 3340 apply
also to the 3344.

LABEL FIELDS FOR DASD

Volume Label on Disk (VOL1l)

The volume label has a 4-byte key area and an 80-byte data area. Both
the key area and the first four bytes of the data area always contain
the characters "VOL1"™ for the first volume label. Additional volume
labels are ignored by VSE.

placement is in hex notation, counting from the beginning of the

The dis
label.(after the key fields). The fields are identified by the numbers
K1,K2 (key fields) and D1 to D13 (data fields).

Figure 18 shows the format of volume labels on disk.

Displ. Field Length Content

0 K1 3 Identifier: VOL. IOCS checks whether a
VOLUME Label is present on
the Volume.

3 K2 1 Volume Label No. VSE supports only VOL1.

0 D1 3 Identifier: VOL. Checked by I0CS

3 D2 1 Volume Label No. only VOLl1 supported

4 D3 [Volume serial number provides a unique
identification for the volume.
It is generally assigned when the volume is
first received in the installation.
The source of information is the EXTENT
statement.
I0CS checks the Serial No. given in the
EXTENT statement against this field.
If no Serial No. Operand is specified in
the EXTENT Statement IOCS assumes the
correct volume mounted.

A D& 1 Security byte used by OLTEP

B D5 5 VTOC address. Contains the address of the
Format—-4 label.
Ibis address is uwritten at initialisation

ime.

10 D6 5 Blank

15 D7 4 CI-size for FBA, blanks for CKD

19 D8 4 Number of blocks per CI for FBA, blanks for CKD

1D D9 4 Number of labels per CI for FBA, blanks for CKD

21 D10 4 Blank

25 D11 E Owner code for LVTOC listing

33 Dl2 1D Blank

Figure 18. Disk Volume Label (VOL1 Label)

Appendix C: DASD and TAPE Labels 101

Licensed Program - Property of IBM

Field

K1,Dl1 Source of Information : System
Purpose:
Identifies the standard volume label. This field is written in the first
three positions of both the key and data areas of the volume label record.
Processing:
On both input and out,I0CS checks this field to verify that a standard
volume label is present on the volume.The volume label should be written
previously, before a logical file of data records is written on the volume.

K2,D2 Source of Information : System
Purpose:
Indicates the sequence of this label within the volume label (VOL) group.
DOS/VSE supports Volume Label only, but provision is made for additional
standard volume labels if required in other systems. This field is written
in the fourth position of both the key and data areas of the volume label
record.
Processing:
This field is processed in conjunction with the label identifier to
completely identify the volume label.

D3 Source of Information ¢ EXTENT
Purpose:
Provides a unique identification for a volume. The number is generally
assigned when the volume is first received in th stallation. This number is
also used as the File Serial Number in the format-1 label of each logical
file written on the volume. This provides a unique identification of the
volumes/file relationship. If a multivolumelogical file is written, the
Volume Serial Number of the first volume becomes the File Serial Number in
the format-1 label on all volumes.
Processing:
On both input and out,I0CS checks this field against the number supplied by
the user in the Volume Serial Number field of EXTENT. If EXTENT is used and
no operand is specified, I0OCS assumes the correct volume is mounted and does
not check this field.

D& Source of Information H -
Purpose:
Provides a code to indicate that additional identification is required
before a volume can be considered the correct one for processing. DOS/VSE
does not use this field, but provision is made for additional sec in other
system. For example,0S/VS allows an operator response of a predetermined
'password' to futher authorize a volume for processing.
Processing:
On both input and out,I0OCS ignores this field.

D5 Source of Information H -
Purpose:
Provides the starting address of the Volume Table of Contents (VTOC). This
address is written along with the Volume Serial Number when the volume is
initialized.
Processing:
On both input and out,I0OCS refers to this field to find out where standard
labels are located on this volume.

Dé Source of Information H -
Purpose:
Reserved for future use. Should contain blanks.

Figure 19 (Part 1 of 2). Standard Volume Label 1 Fields (DASD)

102 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program — Property of IBM

Field
D7 Source of Information : -
Purpose:
Identifies the fixed—length control interval size by which the VTOC for FBA
devices is subdivided. '
D8 Source of Information : -
Purpose:
Indicates the number of physical blocks per control interval.
D9 Source of Information : -
Purpose:
Indicates the number of fixed-length slots in each control interval which
may contain labels.
D10 Source of Information : -
Purpose:
Reserved for futher use. Should contain blanks.
D11 Source of Information : -
Purpose:
Identifies the owner or assignee to whom this volume belongs, such as a
customer, installation, department, or system. This can be of value for
controlling the allocation of volumes in a large installation. This field
is printed on SYSLST when the LISTVTOC program is executed.
Processing:
On both input and out,I0CS ignores this field.
D12 Source of Information : -
Purpose:
Reserved for future use. Should contain blanks.

Figure 19 (Part 2 of 2). Standard Volume Label 1 Fields (DASD)

Appendix C: DASD and TAPE Labels 103

Licensed Program - Property of IBM
IBM-Standard File Labels on Disk

Types: Traditionally, four types of IBM-standard file labels are
counted:

. Format-1, the normal disk file label for the first 3 extents
. Format-3, a file continuation label for the next 13 extents
. Format-2, used with ISAM only.

. gormat—ﬁ, the VTOC file label, written at initialization of the
evice

ize: An IBM-standard file label is 140 bytes long and consists of a
4-byte key area and a 96-byte data area.
h

S
4
The VTOC: All IBM-standard file labels on a volume are in the VTOC, a
directory of all files on the volume. The VTOC itself is a file also and
has its own file label, the VTOC label. The VTOC is located where you
specify it when you initialize your volume. The address of the VTOC
label (format-4) is saved in the volume label.

Several Volumes: For several volumes of one file, the file label is
repeated in the VTOC of each volume. The file label on each volume
describes the portion of the file on that volume and its extents.

Figure 20 on page 105 to Figure 24 on page 120 show IBM-standard label

formats for disk files, that is, the first IBM-standard file label, the
continuation label, the ISAM label and the VTOC label.

104 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
FORMAT-1 LABEL LAYOUT AND CONTENT

Displ. Field Lencth Content

0 K1 2C File-ID: 1-35 bytes if generation number (Gnnn)
and version number (Vnn) are specified,
else 1 to 44.
Source of Information:
DLBL or 1IO0CS
VSAM catalog routines,
AMS DEFINE command.

Processing:
The File—-ID may be specified in the
DLBL-File-ID field, if this specification
is omited, IOCS uses the DTF-name specified
in the DLBL-filename—field (stored in the
key area of the label record) to search
(on input) in the VTOC key areas
for the file entry.

Under VSAM a data space name
(VSAM catalog routine) or the name f an
index or data is the contents (AMS DEFINE
Stmt. or generated by VSAM).

2C D1 1 Format ID: 1. Written (on output) and checked
by IOCS to distinguish this label from the
other types (Format 2-5).

2D D2 6 Volume serial no.: numeric identification for
the first volume of the file.

Written by I0OCSon output.

33 D3 2 Volume sequence number wWwithin the file to
identify the volume in an multivolume file.
Written (on output) and checked by I0CS.

35 D& 3 Creation date: yyddd. By IOCS from SYSCOM (on
output), checked against label record (DLBL)
on input. The actual year may be calculated
by adding yy to 1900.

38 D5 3 Expiration date indicates when the data record
is considered inactive. (Same format as
creation date.)

Source: DLBL, I0OCS, AMS or System (creation
date + 7 by default).

3B Dé 1 Number of extents of the multi extent file on
this volume.
D7 1 Used by 0S/VS
3D D8 1 Reserved
D9 D System code: indicates the Programming System
which has written the file.
¥BMDDSXS is the code written by IOCS if DLBL
is used.
4B D10 3 Date of last access: yyddd; not used by VSE
4E D10A 2 Reserved
50 D10B 2 Number of blocks per CI for FBA, blanks for CKD
52 D11 2 File type: hex 0008 for VSAM
hex 2000 for DAM
hex 4000 for SAM (default, field in
DLBL omited)
hex 8000 for ISAM
Checked against type of DTFon input.
Written from DLBL by IOCS on output.

Figure 20 (Part 1 of 2). IBM-Standard Disk File Label (Format-1)

Appendix C: DASD and TAPE Labels 105

Licensed Program - Property of IBM

Displ. Field Length Content
54 D12 1 Record Format: Used by 0S/VS. I0CS writes 0
55 D13 1 Flags for optional areas used for ISAM file:
Bit 2: Master index
Bit 3: Independent overflow area
Bit 4: Cylinder overflow area
From DTF and EXTENT
56 D14 2 Byte length of ISAM blocks, from DTF
58 D15 2 Record length of ISAM files. From DTF
5A D16 1 Key length of ISAM blocks. From DTF
5B D17 2 Key field locati in ISAM block. From DTF
5D D18 1 Flags: Bit 0: Last volume (SAM only)
Bit 3: File security. From DLBL
S5E D19 1 Original space request was:
Bit 1: in blocks
4: for continuous extent
5: for maximum continuous extent
6: not under specified minimum
5F D19A 3 Used by 0S/VS. IOCS writes blanks
62 D20 5 Used by 0S/VS. I0CS writes zeros
67 D21 2 Start of next record to end-of-data distance
(negative displacement)
69 D22 1 Type of extent: Categorie of records
(from EXTENT)
(default) 01: (prime) data area or data space extent
02: independent overflow area extent
04: master/cylinder index area extent
40: extent for user-standard labels
80: split cylinder extent (SAM)
6A D23 1 Sequence number of extent in the file.
From EXTENT or I10CS
6B D24 4 Extent lower limit (cchh for CKD, bbbb for FBA)
6F D25 4 Extent upper limit (cchh for CKD, bbbb for FBA)
The fields D22 - D25 are now repeated twice as D26 - D33 to
describe the next two extents still allowed on this label.
The Format-1 label can reflect 3 extents of a multiextent-file,
ngifional extents are documented in an corresponding Format-3
abe
87 D34 5 Address of next label for the file
on this volume. Written and used by IOCS

Figure 20 (Part 2 of 2). IBM-Standard Disk File Label (Format-1)

106 IBM VSE/Adv. Functiors Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

K1

DLBL/EXTENT Default DTF Filename

Source of Information: : DLBL/IOCS
I0OCS (VSAM Catalog Routines)
Access Method Services DEFINE
command

Purpose:
File-ID permit identify your logical file by an application-oriented
unique name. D can be composed by linking together key words in a
form compatibl he 0S/VS file structure (for example,

DDS.SYSSLB.FIL ME.3).

Generation number identifies the various editions of a file, such as a
grandfather—father-son relationship. Thus, it can be used to ensure that
the desired edition of the file is selected for processing, if several
editions are maintained. The editions should be numbered in sequence.

Version number provides a more detailed identification of the editions of a
file. For example, generation could specify a month é1‘12), and version
ile
I

s o
A I
e t
E E

o
could specify a particular week (1-5) of the month. il ID, generation,
and/or version occupy the key area of the label record. 0CS uses this to
identify the label of a file specified for processing.

Processing:

You can specify the file
If you use DLBL and onmit
DLBL Filename field. On
identification specified
area of the label record.

to ed in the corresponding field of DLBL.
thi 0CS uses the DTF name specified in the
in earches the VTOC key areas for this

i tification or Filename) in the key
Under VSAM, this field will normally contain a data space name generated by
VSAM catalog routines. However, if this data space contains the data or the
index of a Unique file, this field contains the name of the data or index
specj;jeg)in the DEFINE statement or generated by VSAM (if a name was not
specified).

D1

DLBL/EXTENT Default : ut only

r Input
CS for Output

Qutp
Source of Information L fo
L/10

oo -
—r

/

urpose:
15tuggg}shes this type of label (format-1) from other types (formats 2, 3,
y an

;! or writes, the type of label specified by DLBL. If you use
ignores this field on input; on output, IOCS writes 1.

D2

X|{—-Jhn
— | o -
m|ood
Z | wnxa

T Default H Volume Serial Number of first
volume of the file. Output only.

Source of Information : DLBL for Input
DLBL/IOCS for Output

Purpose:

Provides a numeric (or code) identification for this logical file. It
contains the Volume Serial Number from the VOL label, and this uniquely
identifies the volumes/file relationship. In a multivolume file, the
fo;mat—l label on each volume contains the Volume Serial Number of the first
volume.

» or writes, the file serial number specified by DLBL. If you
O0CS ignores this field on input; on output, IOCS writes the
al Number of the first or only volume.

Figure 21 (Part 1 of 11). Format-1 Label Fields

Appendix C: DASD and TAPE Labels 107

Licensed Program - Property of IBM

Field

D3 DLBL/EXTENT Default : 01
Source of Information H DLBLsIOCS
Purpose:
%qﬁntifies the order of the volumes of data records in a multivolume logical

ile.

Processing:
In a multivolume file you need to specify in DLBL the number of the first
volume only. When you use DLBL, IOCS supplies 01 for the first volume.
I0CS increases the number by 1 for each additional volume. IOCS checks, or
writes, the number specified or updated. In DLBL specify a 4-digit EBCDIC
number, which is converted to a 2-byte binary number in the label.

D4 DLBL/EXTENT Default : Today's date

Qutput only

Source of Information : DLBL for Input
System for Output

Purpose:

Provides the date that the file was originally created. This can be used at
a later time to determine how old the records are. Or, it can be used (in
conjunction with, or in place of, generation number) to ensure that the
desired edition of the file is selected for processing.

Processing:

On input, I0CS checks this date against that supplied by DLBL. Specify
YYDDD (year and day of the year), which is converted to a 3-byte
discontinuous binary number (ydd) in the label. If you use DLBL, the
creation date in the label is not checked.

On output, IOCS uwrites the system date that is available in the
communication region of the Supervisor. You do not supply a creation date
for an output file, in either DLBL.

Figure 21 (Part 2 of 11). Format-1 Label Fields

108 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

D5

DLBL/Z/EXTENT Default B
only

Source of Information
tput (Action P/H)

cess Method Services
for Output (Action W)

~0 OO OO

0oc oo
[22n]
(%]
Y
[
<
0
+
1
3

Purpose:

Indicates the date that the data records may be considered inactive. At that
time, the label of the old file may be deleted from the VTOC, which, in
effect, deletes the entire file and makes the extent(s) available for new
data. Processing:

On input, IOCS checks this date against that supplied by DLBL. If you use
DLBL, this field is not checked.

On output, IOCS first determines if the extent(s) specified for the new
output file overlaps an existing file. If so, IOCS then checks the
expiration date of the existing file by comparing this field in the old file
label to the system date in the communications region of the Supervisor. If
the old file has expired, I0CS writes the label(s) for the new file in the
VTOC. This label includes the new expiration date supplied by DLBL or DLBL.
The extent(s) is then available for the data records of the new output file.
If the old file has not expired, a message is given to the operator, who
determines whether to overwrite the old data. The expiration date of a VSAM
data space is for information only. A data space can only be deleted,
N£e§her 1t has expired or not, by an Access Method Services DELETE
statement.

In DLBL, specify yyddd (year and day of the year).

In the DLBL Expiration Date field, you may specify either the date the file
will expire, or a retention period for the file. For expiration date,
specify yysddd (year/day of the year). The day may have 1-3 digits. For a
retention period, specify d—-dddd (1-4 digits, 0-9999). If you omit this
field in DLBL, IOCS adds a 7-day retention period to the system date in the
communication region of the Supervisor and writes the resulting date. In
each case, the expiration date (after calculation, if necessary) written in
the label is a 3-byte discontinuous binary number.

Dé

DLBL/EXTENT Default : -
Source of Information : I0CS for Output

Purpose:

Provides a control of the number of separate areas (extents) established for
this file, as represented by the Extent fields written in the format-1 label
(3 fields) and the format-3 label (13 fields). In a multivolume file, the
count is accumulated separately for each volume,

Processing:

On input, IOCS ignores this field. On output, IOCS writes the accumulated
count in this field, or gives a message to the operator and cancels the job
if the count exceeds the allowable number. The maximum allowable count is:
3 - for an ISAM file. (Because the master and cylinder indexes are combined
into one area, a maximum of 3 areas are set up from 4 EXTENT statements.)

15 - for a DAM file with user—-standard labels. (Because I0CS sets up one
extra Extent field for the user-standard label track, 16 areas are set up
from a maximum of 15 EXTENT statements.) 16 - for a DAM file without
user—-standard labels, and for a VSAM data space.

SAM files may have any number of extents.

Figure 21 (Part 3 of 11). Format-1 Label Fields

Appendix C: DASD and TAPE Labels 109

Licensed Program - Property of IBM

Field
D7 DLBL/EXTENT Default : Blank. Output only
Source of Information : IOCS for Output
Purpose:
Used by 0S/VS for partitioned data sets. VSE does not use this field.
Processing:
On output, IOCS writes a blank.
D8 DLBL/EXTENT Default : Blank. Output only
Source of Information : I0OCS for Output
Purpose:
Reserved for future use. IO0OCS writes a blank.
D9 DLBL/7EXTENT Default : DOS/360 Version 3. Output only
Source of Information : DLBL/IOCS for Output
Purpose:
Indicates the Programming System under which this file is written. This can
be of value when an installation uses more than one programming system.
Processing:
On input, IOCS ignores this field. On output, IOCS writes the information
supplied in DLBL. If you use DLBL, IOCS writes: IBMDOSVS.
D10 DLBL/EXTENT Default : .
Source of Information : -
Purpose:
Indicates the date of last access of this data set.
D10A DLBL/EXTENT Default H Blanks. Output only
Source of Information : IOCS for Output
Purpose:
Reserved for future use. IOCS writes blanks.
D10B DLBL/EXTENT Default : DLBL/DTF
Source of Information : -
Purpose:
Indicates the number of physical blocks per control interval for the FBA
device file.
D11 DLBL/EXTENT Default : X'4000"
Source of Information : DTF for Input
DLBL/DLBL for Output
Purpose:
Verifies the type of organization used for this file.
Processing:
On input, IOCS checks this field against the type of DTF (DTFSD, DTFDA, or
DTFIS) that ycu specify. For an output file, I0CS convarts the code
specified in DLBL Typa of File, and writes this field: If you omit this
field in DLBL, IOCS writes X'4000' in the label field.

Figure 21 (Part 4 of 11). Format—-1 Label Fields

110 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Field

Dl2 DLBL/Z/EXTENT Default : -
Source of Information : I0CS for Output
Purpose: A
Used by 0S/VS to define the type of records: fixed length, blocked,
truncated, etc. DOS/VSE does not use this field.
Processing
On output, IOCS writes a binary zero.

D13 Source of Information H DTF/ EXTENT for Output
Purpose: A . . .
Indicates which optional areas are built for an ISAM file. This field is
provided for use by VSE.
Processing: .
I0CS checks, or writes, the appropriate code from the DTF specifications and
extent information that you supply.

D14 Source of Information : DTF/DLBL for Output
Purpose:
Tells the length of the blocks of logical records (and therefore, the length
of a physical record).
Processing:
On input, I0CS refers to this field to determine the_length of the blocks of
records previously written in the file. On output, IOCS writes the block
length from the DTF specification that you supply.

D15 Source of Information H DTF for OQutput
Purpose:
Tells the length of each logical record.
Processing:
On input, IOCS refers to this field to determine the len th of the logical
records previously written in this file. On output, IOCS writes the record
length from the DTF specification that you supply.

D16 Source of Information : DTF for Output
Purpose:
Tells the length of the key area for each record (unblocked records) or
block of records.
Processing:
On input, IO0OCS refers to this field to determine the length of the key area
used in this file. On output, IOCS writes the key length from the DTF
specification that you supply.

D17 Source of Information H DTF for Output
Purpose:
Tells the location of the key field within the logical records, when blocked
records are written in the file.
Processing:
On input, IOCS refers to this field to determine where the key field is
located within each record.
On output, IOCS writes the location of the high-order position of the key
field from the DTF specification that you supply.

Figure 21 (Part 5 of 11). Format-1 Label Fields

Appendix C: DASD and TAPE Labels 111

Licensed Program - Property of IBM

Field
D18 Source of Information : I0OCS 7 DLBL for Output
Purpose:
Indicates that this is the last volume of a multivolume file that has been
closed.
Processing: .
On input, iocs ignores this field. When an output file is closed, IOCS
writes 1 in this field of the label on the last (or only) volume of the
file. For all other volumes, I0OCS writes '0 in this field on an
end-of-volume condition.
Purpose:
Invokes data set security to prevent problem programs from accidentally
accessing a data secured file.
Processing:
On input, this field is checked for the data security indicator. 1If it is
ON, a message is issued to the operator stating that a data secured file is
being accessed. On output, if DSF is specified in the DLBL statement, bit 3
is set to 1. Bit 3 is set ON for all VSAM format 1 labels.
D19 DLBL/EXTENT Default : -
Source of Information : -
Purpose:
Indicates the type of request that was issued for the initial allocation.
Bit
0,1 01 = Original request was in blocks
2,3 (Reserved, binary zeros.)
4 1 = Original request was for a
contiguous extent.
5 1 = Original request was for the
maximum contiguous extent.
6 1 = Original request was for the
five or less largest extents
that are larger than or equal
to a specified minimum.
7 (Reserved, binary zeros.)
D19%9A DLBL/EXTENT Default : -
Source of Information : I0CS for Output
Purpose:
Used by 0S5/VS to indicate the amount of storage requested at the end of each
extent. VSE does not use this field.
Processing:
On output, IOCS wmrites blanks.
D20 DLBL/EXTENT Default : -
Source of Information : IDCS for Output
Purpose:
Used by 0S5/VS to point to the last record of a seque ntial or
partition-organization file. VSE does not use this field.
Processing
On output. IOCS writes binary zeros.

Figure 21 (Part 6 of 11). Format-1 Label Fields

112 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Field
D21 DLBL/Z/EXTENT Default H -
Source of Information: H -
Purpose:
Indicates the starting position of the next sequential record relative to
the End~of-Date Pointer if it is used, and contains a binary value to be
used as a negative displacement.
ng DLBL/Z/EXTENT Default : X'01° Output only
D30 Source of Information : EXTENT for Input
EXTENT/ I0CS for Output
Purpose:
Defines the category of records (data, overflow, index, or user-standard
labels) for which this area is reserved. The area is specified by the
Extent Lower Limit and Extent Upper Limit fields.
Processing:
I0OCS checks, or Writes, this label field with the extent type specified by
EXTENT:
If you use EXTENT and omlt the type, this field is not checked on input; on
output, IOCS writes X'01l°'
If you include user-standard labels, I0OCS establishes an area for them. You
do not include EXTENT for this area. I0OCS uses the First Extent field
(D22-D25) to define this extent, codes it Extent Type X'40' (blank), and
numbers it Extent Sequence 0. If less than 3 extents are required for a
file, IOCS wmrites X'00"' in the Extent Type field of the unused Additional
Extent fields (D26 and D30).
D23 DLBL/EXTENT Default : D23-0
D27 D27-1
D30 D31-2
SD/DA files
Output only
Source of Information : EXTENT for Input
EXTENT/ 1I0CS for Qutput

Purpose:

Determines the proper order of the extent areas in a multiextent file. For
a SAM, or DAM file, separate extents may be located on the same or different
volumes. For an ISAM file, multivolumes may be used for the data records
(prime data area), but on any one volume, the data records must be contained
within one extent. ISAM indexes and the ISAM independent overflow area are
separate extents, on the same volume as the prime data area or on a
different volume than the prime data area.

Processing:

For a SAM or DAM file, or VSAM data space, I0CS checks, or mrites, this
label field with the sequence number supplied by EXTENT. You may specify
any sequence numbers you choose, but the numbers must be in ascending order.
If you include user-standard labels, I0CS establishes an extent area and
assigns it sequence number 0 (see Extent Type, field D22).

If you use EXTENT for a SAM or DAM file, or for the creation of a VSAM data
space, and omit the extent sequence number, this field is not checked on
input. On output IOCS writes Extent Squence 0 in the First Extent Field,
and adds 1 for each subsequent Extent field used. Extent sequence 0
represents the first EXTENT card or, if they are used, it represents the
area for user—-standard labels. In the latter case, the first EXTENT card
becomes Extent Sequence

For an ISAM file, 10CS processes this fie
Lower and Upper Limit fields, D24 and D25
area and specify Extent Sequence Number.
supplied in a specified order.

1ld the same way it processes the
. You must include EXTENT for each
Extent information must be

Figure 21 (Part 7 of 11). Format-1 Label Fields

Appendix C: DASD and TAPE Labels 113

Licensed Program - Property of IBM

DLBL/EXTENT Default
Source of Information : EXTENT

Purpose:
Defines the beginning of a disk area allocated to this file.

.

Processing:
For a SAM input file, IOCS checks this field and the Upper Limit fiel

d
(D25/D29/D33) against the starting and ending addresses supplied by EXTENT.
I0CS makes the area specified by EXTENT available for processing if it is
equal to, or falls within, the limits defined by these label flelds. If
not, a message is issued to the operator. If you omit EXTENT* for a SAM
input file, IOCS does no checking and makes available the area defined by

the label.

For a DAM input file, IOCS makes the ar
does not check this field against the E

e

X
For a SAM, or DAM output file, I0CS it
address (lower limit) supplied by EX NT

a efined by EXTENT available. It

ad
TENT specifications.
es

» in this field the starting

Figure 21 (Part 8 of 11). Format-1 Label Fields

114 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM

Field

D24 For an ISAM file, processing aof this field varies with the type of operation

g%g performed:
. LOAD Create: IOCS writes the starting address (lower limit) supplied by
EXTEN
e LOAD Extent: IOCS checks this field against the lower limit supplied by
EXTENT. If the limits are not the same, the job is canceled. If the prime
data area is extended onto a new volume, IOCS writes the lower limit of the
new extent specified by EXTENT.
* RETRVE: This field determines the lower limit of the extent. If you use
EXTENT, you need specify only Operation, Symbolic Unit, and Volume Serial
Number.
* ADD or ADDRTR: IDCS checks this field against the lower limit supplied by
EXTENT. If the limits are not the same, the job is canceled.
If an independent overflow area is established at this time, IOCS writes the
lower limit of the new extent specified by EXTENT.
If you include EXTENT for both a master index area and a cylinder index area
in an ISAM file, IGCS combines the two areas into one extent and uses the
lower limit of the master index for this field.
For the creation of a VSAM data space, I0OCS writes the starting address
(lower limit) supplied by the EXTENT statement.
In EXTENT, specify a Relative Track number (n~nnnnn). This is the
sequential number of the track relative to cylinder 0, track 0:
For 2311, Relative Track = 10 x cylinder number + track number.
For 2314 or 2319, Relative Track = 20 x cylinder number + track number.
For 3330, Relative Track = 19 x cylinder number + track number
For 3340, Relative Track = 12 x cylinder number + track number.
For 3350, Relative Track = 30 x cylinder number + track number.
In EXTENT, for 2311/2314/2319 specify: 00O0CCCOHH where
CCC = Cylinder number (000-199)
HH = Head (or track) number (00-09) for 2311; (00-19) for 2314 or 2319.
IOCS converts the specification to CCHH for the label field.
Because cylinder 0, track 0 on each volume must be reserved for labels and
system use, never specify a lower limit of all zeros.

Figure 21 (Part 9 of 11). Format—-1 Label Fields

Appendix C: DASD and TAPE Labels 115

Licensed Program - Property of IBM

Field
g%g DLBL/EXTENT Default : -
D33 Source of Information H EXTENT

Purpose:
Defines the end of a disk area allocated to this file.

Processing:

For a SAM input file, IOCS checks this field and the Lower Limit field (D24/
D287 D32) against the addresses supplied by EXTENT. 1I0CS makes the area
specified by EXTENT available for processing if it is equal to, or falls
within, the limits defined by these label fields. If not, a message is
issued to the operator. 1If you omit EXTENT for a SAM input file, IOCS does
no checking and makes available the area defined by the label.

For a SAM or DAM output file, IDOCS writes, in this field, the ending address
(upper limit) supplied by EXTENT.

For an ISAM file, processing of this field varies with the type of operation
performed:

Ex%gﬁ¥ Create: I0OCS writes the ending address (upper limit) supplied by

e LOAD Extent: I0OCS checks this field against the upper limit specified by
EXTENT. If the specified limit of either the cylinder index or the prime
data area is beyond the upper limit in the label, IOCS changes the label and
makes the new area available for records. If the prime data area is
extended onto a new volume IOCS writes the upper limit of the new extent
specified by EXTENT. Under any other condition, the job is canceled if the
limits do not agree.

e RETRVE: This field determines the upper limit of the extent. If you use
EXTENT, you need specify only Operation, Symbolic Unit, and Volume Serial
umber.

s ADD or ADDRTR; IOCS checks this field against the upper limit specified by
EXTENT. If the specified limit of the independent overflow area is beyond
the upper limit in the label, IOCS changes the label and makes the new area
available for records. If an independent overflow area is established at
this time, IOCS writes the upper limit of the new extent specified by
EXTENT. Under any other condition, the job is canceled if the limits do not
agree.

If you include EXTENT for both a master index area and a cylinder index area
in an ISAM file, IOCS combines the two areas into one extent and uses the
upper limit of the cylinder index for this field. For the creation of a
VSAM data space, I0OCS writes the ending address (upper limit) supplied by
the EXTENT statement.

In EXTENT, specify a Relative Track number (n-nnnnn) for the starting
address, as described for label Fields D24/D28/D32 and the Number of Tracks
(n-nnnnn). From these, IOCS computes the upper limit.

In EXTENT, for disk specify: D000CCCOHH where: CCC = Cylinder number HH =
Head (or track) number

I0OCS converts the specifications to CCHH for the label field.

Figure 21 (Part 10 of 11). Format-1 Label Fields

116 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

D34

o

DLBL/EXTENT Default

Source of Information

I0CS for Output

Purpose:

Provides the address of the next label for this file on this pack, if
required. For an ISAM file, it points to a format-2 label. For a SAM/DAM
file, or VSAM data space, it points to a format-3 label if more than three
extents are used on this volume.

Processing:

On input, IOCS refers to this field to find the address of the next label,
if any. On output, whenever a format-2 or format-3 label is required for a
file, IOCS finds a VTOC location for the label and writes its address in
this Pointer field. IOCS always writes a format-2 label for an ISAM file.
For a SAM/DAM file or VSAM data space, I0CS establishes a format-3 label if
another EXTENT card is read after the format-1 label if filled. If a
SAM/DAM file or VSAM data space does not require a format—-3 label, I0CS
writes binary zeros in this field.

Figure 21 (Part 11 of 11). Format-1 Label Fields

FORMAT-3 LABEL LAYOUT AND CONTENT

Displ. Field Length Content
0 K1 4 Key code for continuation label(03030303)
Written by IOCS
4 K2 1 Type of extent, from EXTENT:
01 = data extent (default)
80 = split cylinder extent
5 K3 1 Extent sequence number (3 or more)
6 K& & Extent lower limit (cchh for CKD, bbbb for FBA)
A K5 G Extent upper limit (cchh for CXD, bbbb for FBA)
The fields K2 to K5 are repeated three times as K6 - K17, to
describe the extents 2, 3, and 4 of the key area.
2C 1 Continuation label code: EBCDIC 3, from I0CS
The flelds K2 to K5 are now repeated nine more times as D2 - D37,
to describe the nine extents of the data area.
87 D38 5 Address of next contin.label (cchhr or Obbbb)
or zeros. From SAM I0CS only

Figure 22. IBM-Standard Disk File Continuation Label (Format-3)

Appendix C: DASD and TAPE Labels 117

Licensed Program - Property of IBM

Field

K1 DLBL/Z/EXTENT Default H -
Source of Information: : 10CS
REMARKS:
Provides a code to distinguish this key from the keys (File Identification)
of format—-1 labels.

ﬁia DLBL/EXTENT Default H X'01l' OQutput only

DZ,’ Source of Information: : EXTENT for Input

D34 EXTENT/IOCS for OQutput
REMARKS:
Like the extents in the format-1 label, the first byte (Extent Type) of each
Extent field defines the category of records for which this area is
reserved.
I0OCS checks against, or writes, the extent type specified by EXTENT: Type
EXTENT Specifications Label Field Data area 1 X'01' Data area with split
cylinder (SAM) 8 in EXTENT 128 in XTENT X'80'
If you use EXTENT and omit the type, this field is not checked on input; on
output, I0CS writes 01.
I0OCS writes 00 in the Extent Type fields of any unused Extents (2-13).
Extent Types 02, 04, and 40, which may be written in a format-1 label, do
not occur in a format-3 label. Types 02 and 04 apply only to ISAM files,
which support three extents and the format-1 label only. Type 40 indicates
user-standard labels, which precede the first data area extent for the file
and therefore appear in the format-1 label.

E?é DLBL/EXTENT Default : 3, 4, ... 15 Qutput only

D3,’ Source of Information: : EXTENT for Input

D35 EXTENT/IOCS for Output
REMARKS:
The second byte (Extent Sequence Number) of each Extent field in this label
serves the same purpose as in the format-1 label. It determines the proper
order of the extent areas in a multiextent file.
I0CS checks against, or writes, the sequence number specified by EXTENT. If
you use EXTENT and omit the extent sequence number, this field is not
checked on input. On output, I0OCS writes 0 for the first extent for the
file (in the format-1 label), and adds 1 for each succeeding EXTENT. Thus,
the first extent sequence number in the format-3 label is 3.

ﬁ?é DLBL/EXTENT Default : -

DG,, Source of Information: H EXTENT* for Input

D36 EXTENT for QOutput
REMARKS:
Bytes 3-6 (Lower Limit) of each Extent field define the beginning of a
volume area allocated to this file. Your EXTENT specification and the
processing of this field are the same as that described for the lower limit
of a SAM/DAM extent in the format-1 label.

Figure 23 (Part 1 of 2). Format-3 Label Fields

118 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program — Property of IBM

Field

5? DLBL/EXTENT Default : -

DS,, Source of Information: : EXTENT® for Input

D37 EXTENT for Output
REMARKS:
Bytes 7-10 (Upper Limit) of each Extent field define the end of a volume
area allocated to this file. Your EXTENT specification and the processing
of this field are the same as that described for the upper limit of a
SAM/DAM extent in the format-1 label.

D1 DLBL/EXTENT Default : 3 Output only
Source of Information: : I0CS
REMARKS:
Distinguishes this type of label (format 3) from other types (formats 1, 2,
4, and 5). IOCS writes a format—-3 label on any volume of the file that
requires more than three extents, as indicated by a series of EXTENT
statements and user-standard labels, if used (see format 1, Extent Type
Field D22)

D38 Source of Information: : I0OCS for Output
REMARKS:
Provides the address of another format-3 label, if required for a SAM file.
DAM files support a maximum of 16 extents, which are defined by a format-1
label and one format-3 label.
On input, IOCS refers to this field to find the address of the next label,
if any. On output for a SAM file, if another EXTENT card is read after a
format-3 label is filled, IOCS establishes an additional format-3 label.
I0CS finds a VTOC location and uwrites its address in this Pointer field. If
2po§2er format—-3 label is not required, IOCS writes binary zeros in this

ield.

Figure 23 (Part 2 of 2). Format-3 Label Fields

Appendix C: DASD and TAPE Labels 119

FORMAT-2 LABEL LAYOUT AND CONTENT

Licensed Program - Property of

IBM

Field
K1l Name : Key Identification
(00)
No. of Bytes: : 1
Content : X'o02"
Open/Close : X/-
Functions : LOAD Create
Source of Information : I0CS
gfﬂé?ﬁié a code to distinguish this key from the keys (File Identification)
of format-1 labels
%gl) Name s Address of 2nd Level Master Index
No. of Bytes: : 7
Content : Binary Zeros - Applies to 0S/VS only.
Open/Close : X/-
Functions s LOAD Create
Source of Information : Iocs
REMARKS: Used by 0S/VS to provide the address (MBBCCHH) of the first track
of the second level of the master index.
K3 Name : Last 2nd Level Master Index Entry
(08 No. of Bytes: : 5
Content : Binary Zeros - Applies to 0S/VS only.
Opens/Close : X/-
Functions s LOAD Create
Source of Information : I10CS
5&2A§§§;ndU§§eeinogszzg ;gsgggvgggetTe address (CCHHR) of the last entry in
4 Name : Address of 3rd Level Master Ind.
(oD No. of Bytes: 3 7
Content : Binary Zeros - Applies to 0S/VS only.
Opens/Close : X/-
Functions : LOAD Create
Source of Information : I0CS
REMARKS: Used by 0S/VS to provide the address (MBBCCHH) of the first track
of the third level of the master index.

Figure 24 (Part 1 of 12).

120

IBM VSE/Adv.

Functions Diag.

Ref.,

Format-2 Label Fields

LIOCS Volume 1

Licensed Program - Property of IBM

Field
KS Name : Last 3rd Level Master Index Entry Address
(s No. of Bytes: : 5

Content : Binary Zeros - Applies to 0S/VS only.

Open/Close H X/ -

Functions : LOAD Create

Source of Information : I0CS

gﬁzAgﬁ?;d gzsg1bgf0§;:Sm§gt::o¥;g:x?he address (CCHHR) of the last entry in
Ké Name : (Reserved)
(19)

No. of Bytes: s 11

Content : Binary Zeros

Opens/Close : X/-

Functions H LOAD Create

Source of Information 3 I0CS

REMARKS : Reserved for future use.
K7 Name : Last Prime Track Address
(24 No. of Bytes: : 8

Content : DASD Address (CCHHR)

Open/Close H -/

Functions : -

Source of Information B -

REMARKS:

Indicates the address of the last prime track on the last prime cylinder.
?%C) Name : Format Identifier

No. of Bytes: : 1

Content : 2 = Format 2 Numeric EBCDIC

Opens/Close : X/-

Functions : LOAD Create

Source of Information s I0CS

REMARKS:

gisgiggggfhes this type of label (formats 2) from other types (formats 1, 3

Figure 24 (Part 2 of 12).

Appendix C:

Format-2 Label Fields

DASD and TAPE Labels 121

Licensed Program - Property of IBM

Field
?SD) Name H Number of Index Levels
No. of Bytes: : 1
Content : 1l = Cylinder Index
2 = Cylinder Index and Master Index
Binary

Open/Close H X/-

Functions : LOAD Create

Source of Information B DTFIS

REMARKS:

A cylinder index is always required. Also, you may specify a master index

(DTFIS MSTIND), if desired.

?gE) Name : High Level Index Development Indicator
No. of Bytes: : 1
Content : xXro2"

Opens/Close : X/-

Functions : LOAD Create

Source of Information : 10CS

REMARKS: Used by 0S/VS to indicate that a master index is used and to tell
the number of tracks reserved for it. :

?gF) Name : First Data Record in Cylinders
No. of Bytes: : 3
Content : DASD address (HHR)

Open/Close H X/-

Functions : LOAD Create

Source of Information : DTFIS + Calculation

REMARKS:

Provides the address of the first data record in each cylinder. This record
follows the track index, which is written at the beginning of each cylinder.
I0CS uses the record key length, specified by DTFIS KEYLEN, in the
calculation of the length of the track index.

?32) Name Last Data Track in Cylinders
No. of Bytes: : 2
Content : DASD Address (HH)

Opens/Close H X7/-
Functions H LOAD Create
Source of Information H DTFIS + Calculation

D5 REMARKS:

(32) Indicates the last track that can be used, in each cylinder, for the
organized file of data records. this is other than 09 (19), a cylinder
overflow area follows the organized file. I0OCS determines this track from
the size of the cylinder overflow area that you specify in DTFIS CYLOFL.

Figure 24 (Part 3 of 12).

Format-2 Label Fields

122 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Field
?g“) Name : Number of tracks for Cylinder Overflow
No. of Bytes: : 1
Content : Binary Zeros - Applies to 0S/VS only
Open/Close : X/=
Functions : LOAD Create
Source of Information : I0CS
REMARKS: Used by 0S/VS. Contains the number of tracks allocated to each
cylinder overflow area.
?;5) Name H Highest 'R' on High Level Index Tracks
No. of Bytes: : 1
Content H Record Number
Open/Close : X/~
Functions : LOAD Create
Source of Information H DTFIS + Calculation
REMARKS:
Provides the number of the last record on each track of the master and/or
cylinder indexes. IOCS uses the record key length, specified by DTFIS
KEYLEN, to determine how many index entries can be written on each track.
?gs) Name : Highest 'R' on Prime Data Tracks
No. of Bytes: 3 1
Content : Record Number
Open/Close : X7/-
Functions H LOAD Create
Source of Information H DTFIS + Calculation
REMARKS:
Provides the number of the last data record, or block of records, on each
full track of the organized file in the prime data area. IOCS uses the
DTFIS specifications for record length, key length, and blocked records to
calculate how many physical records can be written on each track. The
number of the last data record in the first track of the file differs from
the others if data records and track index entries share the same track (see
Field D10).
?37) Name H Highest 'R' on Overflow Tracks
No. of Bytes: H 1
Content H Record Number
Open/Close H X/~
Functions : LOAD Create
Source of Information H DTFIS + Calculation
REMARKS:
Provides the number of the last record on each track of the cylinder and/or
independent overflow area. I0CS uses the DTFIS specifications for record
length and key length in the calculation of the number of records that can
be written on an overflow track.

Figure 24 (Part 4 of 12). Format-2 Label Fields

Appendix C: DASD and TAPE Labels 123

Licensed Program - Property of IBM

Field
?ég) Name H 'R' of Last Data Record on Shared Tracks
No. of Bytes: H 1
Content : Record Number
Open/Close : X/-
Functions : LOAD Create
Source of Information H DTFIS + Calculation
REMARKS:
If data records and track index entries are written on the same track
(shared track), this field provides the number of the last data record on
this track. I0OCS uses the DTF specifications for record length, key length,
and blocked records to determine how many physical data records can be
written after the track index on the shared track.
?é%? Name : *R" of Last Date record on Unshared Track
No. of Bytes: : 1
Content : Record Number
Open/Close H X/-
Functions : LOAD Create
Source of Information : DTFIS + Calculation
REMARKS:
Indicates the record number of the last data record on an unshared track of
the track index.
Dll? Name H Highest 'R' on Independent Overflow Track
(3A
No. of Bytes: H 1
Content : Record Number
Open/Close H X/-
Functions H -
Source of Information : -
REMARKS:
Indicates the highest possible record number for independent overflow tracks
with format F records.

Figure 24 (Part 5 of 12). Format-2 Label Fields

124 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

?%g) Name : Tag Deletion Count
No. of Bytes: : 2
Content H Number of records. Binary
Open/Close : -/X
Functions : RETRVE
Source of Information : Count you accumulate in filenameT
REMARKS:
Provides a count of the number of records you identify (tag) for deletion.
As you tag a record during a retrieve operation, you should add 1 to the
counter addressed as filenameT. In subsequent retrieve operations, the
count is read from the label back into filenameT, and additional tagged
records can be added. The delete option is not supported by VSE. You must
provide coding to test for records tagged for deletion. VSE passes this
field between the format-2 label and the DTF. VYou can use this statistic
(along with those in Fields D13, D16, D27, D28, and D29) to determine
whether the file should be reorganized.

?%3) Name : Non-First Overflow Reference Count
No. of Bytes: H 3
Content : Number of random references. Binary
Opens/Close H -7X
Functions : RETRVE
Source of Information H I0OCS: Count in filenameR
REMARKS:
Provides a count of the number of times a READ instruction causes a search
of the overflow area(s) for a record that is the second or higher in an
overflow chain. I0OCS accumulates this count in filenameR during a retrieve
operation. In subsequent retrieve operations, IOCS reads the count from the
label back into filenameR, and adds to it as required. You can use this
statistic (along with those in Fields D12, D16, D27, D28, and D29%) to
determine whether a file should be reorganized.

?ég) Name : Number of Bytes for Highest Level Index
No. of Bytes: : 2
Content H Size of master index. Binary
Open/Close : X7/-
Functions H LOAD Create
Source of Information : DTFIS + Calculation
REMARKS: .
Provides the size of the master index and thus indicates how many bytes of
main storage are required for this index. I0OCS calculates the size from the
EXTENT limits and DTFIS KEYLEN specification.

Figure 24 (Part 6 of 12). Format-2 Label Fields

Appendix C: DASD and TAPE Labels 125

Licensed Program - Property of IBM

Field
?ig) Name : Number of Tracks for Highest Level Index
No. of Bytes: : 1
Content : Tracks of master index. Binary
Opens/Close : X/-
Functions : LOAD Create
Source of Information : EXTENT
REMARKS:
Er Y from the EXTENT Limiis For Extent Sequence'n: or 'mdex. 10CS obtains
?ég) Name H Prime Record Count
No. of Bytes: : %
Content H Number of logical records. Binary
Opens/Close H X/=
Functions : LOAD/ ADD
Source of Information : I0CS: Count in filenameP+4 or filenameP

REMARKS:

Provides a count of the logical records written in the organized file in the
prime data area(s). In a multi-volume file, this count is_a total of the
logical records on all volumes. During a LOAD operation, IOCS accumulates
this count in the filename P+4., For an ADD operation, IOCS reads this count
into filenameP and updates it to include the added records. VYou can make
note of the count and use it during a retrieve operation to verify that all
records are read. You can also use this statistic (along with those in
Fields pxzé D13, D27, D28, and D29) to determine whether a file should be
reorganized.

Figure 24 (Part 7 of 12). Format-2 Label Fields

126 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field
D17 Name : Status
(47)
No. of Bytes: H 1
Content : Codes for filled area:
Bit No.
ON Meaning
2 File has been successfully closed
6 Last track full
7 Last block full
Otherwise each bit is OFF (0)
Open/Close : -/X
Functions : LOAD/ ADD
Source of Information : 10CS
REMARKS:
If bit 2 is OFF, the file is being used for an ADD or ADDRTR. If an OPEN is
then issued to the file for ADD or ADDRTR when HOLD=YES, the problem program
is canceled because another program is already using the file for ADD or
ADDRTR. If an ADD or ADDRTR program terminates without issuing a CLOSE to
the file, bit 2 remains OFF. Bit 2 should be set ON by issuing a CLOSE to
that file in in any job in which ADD or ADDRTR is specified and HOLD does
not equal YES. Bits 6 and 7 indicate that the organized file completely
fills the prime data area. Bit 6 is ON when the last track that can be used
for data records is filled and the end-of-file record is written on the last
track of the area. When blocked records are specified, the last block may
or may not be filled. If it is not, bit 7 is OFF and more logical records
may be added to the last block. When the last block becomes full, bit 7 is
turned ON. Thus, when both bits 6 and 7 are ON, any additional records for
the file are written in an overflow area.
?23) Name : Address of Cylinder Index
No. of Bytes: H 7
Content : DASD address (MBBCCHH)
Open/Close : X/-
Functions H LOAD Create
Source of Information : EXTENT
REMARKS :
Provides the address of the first track of the cylinder index. 10CS obtains
this address from the starting address you supply in the cylinder index
(Extent Sequence 1) EXTENT statement.
?gg) Name : Address of Lowest Level Master Index
No. of Bytes: : 7
Content : DASD address of index (MBBCCHH)
Open/Close : X/-
Functions : LOAD Create
Source of Information : EXTENT
D19 REMARKS:
(4F) Provides the address of the first track of the master index. IOCS obtains
this address from the starting address you supply in the master index
(Extent Sequence 0) EXTENT statement. In VSE, this field, and Field D20,
are identical whenever a master index is specified. The two fields are
provided for use by 0S/VS, uwhich provides for three levels of master
indexes. If a master index is not specified, this field contains binary
zeros.

Figure 24 (Part 8 of 12). Format-2 Label Fields

Appendix C: DASD and TAPE Labels 127

Licensed Program - Property of IBM

Field
?gg) Name B Address of Highest Level Index
No. of Bytes: : 7
Content : DASD address of master or
cylinder index (MBBCCHH)
M = Extent sequence number
Opens/Close : X7/-
Functions : LOAD Create
Source of Information : EXTENT
REMARKS:
Provides the address of the first track of the master index, if specified
(same as Field D19). If a master index is not used, this field contains the
address of the cylinder index (same as Field D18). This field, and Field
D19, are provided for use by 0S/VS, which provides for three levels of
master indexes.
?gé) Name : Last Prime Data Record Address
No. of Bytes: : 8
Content : DASD address (MBBCCHHR)
M = Extent sequence number
Opens/Close : -/X
Functions : LOAD/ ADD
Source of Information : I0CS
REMARKS:
Provides the address of the last record (or block of records) uwritten in the
organized file in the prime data area. This address is first written during
a LOAD operation and then updated, if necessary, during a LOAD Extend or ADD
operation.
?gg) Name : Last Track Index Entry Address
No. of Bytes: : 5
Content : DASD ‘Address (CCHHR)
Opens/Close : -/X
Functions : LOAD
Source of Information : I0CS
REMARKS:
Provides the address of the last normal entry in the last track index
currently written for the file. This address is first written during a LOAD
Create operation, and then updated during a LOAD Extend Operation.

Figure 24 (Part 9 of 12). Format-2 Label Fields

128 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

?gi) Name H Last Cylinder Entry Address
No. of Bytes: H 5
Content H DASD Address (CCHHR)
Open/Close H -/X
Functions : LOAD
Source of Information H 10CS
REMARKS:
Provides the address of the last entry written in the cylinder index. This
address is written during a LOAD Create operation, and then updated during a
LOAD Extend operation.

?gé) Name H Last Master Index Entry
No. of Bytes: H 5
Content H DASD Address (CCHHR)
Open/Close : -/X
Functions : LOAD
Source of Information H I10CS
REMARKS:
Provides the address of the last entry written in the master index, if used.
If a master index has not been specified, this field contains binary zeros.
This address is first written during a LOAD Create operation, and then
updated, if necessary, during a LOAD Extend operation.

?%2) Name H Last Independent Overflow Record Address
No. of Bytes: H 8
Content : DASD Address (MBBCCHHR)

M = Extent sequence number

Open/Close : -/X
Functions : LOAD Creates/ ADD
Source of Information H 10CS
REMARKS:
Provides the address of the last record written in the independent overflow
area. This address is first written during a LOAD Create operation, when an
end-of—-file record is entered as the first record of the independent
overflow area. The address is updated if records are transferred to the
independent overflow area during an ADD operation.

?%g) Name : Bytes Remaining on Overflow Track
No. of Bytes: H 2
Content : Binary Zeros. Applies to 0S/VS only.
Open/Close : X/~
Functions H LOAD Create
Source of Information H I0CS
REMARKS: Used by 0S/VS to indicate the number of bytes that are still
available in the last track in use at this time in the independent overflow
area.

Figure 24 (Part 10 of 12).

Appendix C:

Format-2 Label Fields

DASD and TAPE Labels 129

Licensed Program - Property of IBM

Field

?%E) Name : Number of Independent Overflow Tracks
No. of Bytes: : 2
Content : Number of unused tracks. Binary.
Opens/Close : -7X
Functions : ADD
Source of Information : I0CS: Count in filenamel.
REMARKS:
Provides the number of tracks that are still available in the independent
overflow area. IOCS maintains this count in filenamel during an ADD
operation. In subsequent ADD operations, IOCS reads the count from the
label back into filenamel, and updates it as required. You can use this
statistic (along with those in Fields D12, D13, D16, D28 and D29) to
determine whether a file should be reorganized.

?gg) Name : Overflow Record Count
No. of Bytes: : 2
Content : Number of records. Binary
Opens/Close H -7X
Functions : ADD
Source of Information : I0CS: Count in filenameO.
REMARKS:
Provides a count of the records uwritten in all the overflow areas for the
file (cylinder overflow areas and/or independent overflow area). cS
accumulates this_count in filenameO during an ADD operation. In subsequent
ADD operations, I0OCS reads the count from the label back into filenameO and
adds to it for additional overflow records. You can use this statistic
(along with those in Fields D12, D13, D16, D27, and D29) to determine
whether a file should be reorganized.

?gg) Name : Cylinder Overflow Area Count
No. of Bytes: : 2
Content : Number of overflow areas. Binary
Open/Close : -7X
Functions : ADD
Source of Information : I0CS: Count in filenameA.
REMARKS:
Provides a count of the cylinder overflow areas that have been filled. IOCS
accumulates this count in filenameA during an ADD operation. In subsequent
ADD operations, I0CS reads the count from the label back into filenameA, and
adds to it as required. You can use this statistic (along with those in
Fields Dlz& D13, D16, D27, and D28) to determine whether a file should be
reorganitized.

Figure 24 (Part 11 of 12). Format-2 Label Fields

130 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Functions

Source of Information

Field
D30 Name H Dummy Track Index Entry
(8% No. of Bytes: : 3
Content : DASD Address (HHR)
Open/Close : X7/~
Functions : LOAD Create
Source of Information : -
REMARKS: Contains the address (HHR) of the dummy track index entry.
D31 Name : Pointer
(87)
No. of Bytes: : 5
Content : Binary Zeros. Applies toc 0S/VS only.
Open/Close : X/7-

LOAD Create
I0CS

REMARKS: Used by 0S/VS to provide the address (CCHHR) of a format-3 label
if more than three extents are used on this volume. VSE does not support
more than three extents for an ISAM file.

Figure 24 (Part 12 of 12).

Appendix C:

Format-2 Label Fields

DASD and TAPE Labels 131

Licensed Program - Property of IBM
FORMAT-4 LABEL LAYOUT AND CONTENT

Every field in this label, except the VSAM indicators (D9A), is
written by DSF at initialization time.
Disp. Field Length Content
0 K1 2C Key code for VTOC label: 44 times 04
2C D1 1 VTOC label identifier: EBCDIC 4.
2D D2 5 Used by 0S/VS
32 D3 2 Number of available file label spaces
in VIOC at initialization (tracks x cylinder
minus 2)
34 D& 4 Address of next alternate track (cchh},
for FBA: zeros. From DSF
38 D5 2 Number of alternate tracks left. For FBA zeros
From DSF
3A Dé 1 Flags: Bit 0: always on
Bit 3: Volume reserved for emulators
Bit 5: VTOC being updated by VSAM
3B D7 1 Extent count. Always 1. VTOC is 1 extent
3C D8 2 Reserved
3E D9 E CKD device constants: (FBA: zeros)
3E 2 Number of cylinders
40 2 Tracks per cylinder
G2 2 Track length
44 1 Overhead bytes for I
45 1 Overhead bytes for Lx
46 1 Overhead bytes for K»
47 1 Flag byte
Bit 4: I or L value* has two bytes for 3350
Bit 7: A tolerance is added to each record
except the last on a track
48 2 Tolerance*% per device type
GA 1 Number of labels on VTOC track per device
4B 1 Reserved
4C D9A B VSAM indicators, from VSAM catalog routines
4C 8 Time when last data space was added
54 1 Ownership byte: Bit 0: Owned by VSAM catalog
55 2 Number of first track of CKD catalog recovery
area, for FBA zeros
57 D10A/B 9 Used by 0S/VS
60 D10C 4 Number of first block of FBA catalog recovery
area, for CKD zeros
64 D10D 5 Reserved
69 D11 1 Extent type: 01 for VTOC extent
6A D12 1 Extent sequence number: 00 (VTOC has 1 extent)
6B D13 4 Start address of VTOC (label).
6F D14 4 End address of VTOC. Used by IOCS
73 D15 19 Zeros
%) I = for a record with key area
L = for a last record with key area on a track
K = for a key area
¥*¥)The tolerance is added to the length of a record if bit 7 in
the flag byte is on.

Figure 25. VTOC Label (Format-4)

132 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM
User—-Standard File Labels on Disk

Figure 26 shows user-standard disk file labels (header and trailer).
Displ, Field Length Content
0 K1 3 UHL or UTL
3 K2 1 Label sequence number: 1 to 8 for header labels
0 to 7 for trailer label
4 D1 3 Same as field K1
7 D2 1 Label sequence number: 1 to 8 for all
8 D3 4C User's label information
Figure 26. User-Standard Disk File Labels (Header and Trailer)
Field
K1,D1 Source of Information: : I0CS
REMARKS:
This field identifies the label as a user-standard header (UHL) or trailer
(UTL) label. It is written in the first three positions of both the key and
data areas of the label record. On input you can refer to this field to
determine whether a header or trailer label is to be processed. On output,
I0CS provides the information (UHL/UTL) for this field.
Ke Source of Information: H IoCS
REMARKS:
Indicates the sequence of this label within this header label set (UHL) or
trailer label set (UTL). This field is written in the fourth position of
the key area of the label record. User-standard header labels are numbered
UHL1-UHL8. User-standard trailer labels are numbered UTLO-UTL7. This field
is processed with the Label Identifier to completely identify the
user-standard label.
D2 Source of Information: H I0CS
REMARKS:
Indicates the sequence of this label within this_ header label set (UHL) or
trailer label set (UTL). This field is written in the fourth position of
the data area of the label record User-standard header and trailer labels
are numbered UHL1-UHL8 and UTL1-UTLS. This field is processed with the
Label Identifier to completely identify the user-standard label.
D3 Source of Information: : User
REMARKS:
Provides a means for you to label your SAM/DAM file with any information you
need in addition to that supplied by the standard labels.

Figure 27.

User-Standard Label Fields

User-standard labels may be included for SAM or DAM files. VSAM and ISAM
do not support them.

User-standard labels are header labels located and processed before the
data of the file, and trailer labels located before and processed after
the data of the file.

These label
key area an
the remaini
maximum of
describe a

There is al
specified.

e a 4-byte key area and an 80-byte data area. Both the

irst four bytes of the data area contain UHLn or UTLn
es of the data area contain user-chosen data. A
der and eight trailer labels may be written to

(LA
oty

one header and one trailer label more written than
extra label has only a 4 byte key area and no data area.

—~E =3I Oawn

Appendix C: DASD and TAPE Labels 133

Licensed Program - Property of IBM

An example of a file for which five header labels and_four trailer
labels were specified is shown in Figure 28 on page 134,

Label# Key Area Data Area
1 UHL1 UHL]l + 76 bytes of label data fields
2 UHL2 UHL2 "
3 UHL3 UHL3 "
4 UHLG UHLG "
5 UHLS UHLS "
6 UHLé
7 UTLO UTL1l + 76 bytes of label data fields
8 UTL1 UTL2 "
9 UTL2 UTL3 "
10 UTL3 UTLG "
11 UTLG
Here follow the data.

Figure 28. User-Standard Disk File Labels (5 UHLs and 4 UTLs
Specified)

If only header labels are specified, one UTLO label without data is
written by the system. An example is shown in Figure 29 where only I
header labels were specified.

Label# Key Area (4 bytes) Data Area (80 bytes)
+ 76 bytes gf label data fields

1 UHL1 UHL1
2 UHL?2 UHL2
3 UHL3 UHL3
4 UHL4

5 UTLO

Here follow the data.

Figure 29. User-Standard Disk File Labels (3 UHLs Specified)

You can include definitions or descriptions of your file in addition to
those provided by the standard labels. For example, you may want to
identify end-of-volume as opposed to end-of-file conditions, or you may
have subcategories that you want _ to define for your files, or you may
want to maintain an audit trail in these labels without the system
security standards.

LABEL FIELDS FOR DISKETTE

Volume Labels on Diskette

Figure 30 shows the format of a diskette volume label.

Displ. Field Length Content

0 D1 3 Label ID: VOL

3 D2 1 Ignored by VSE

4 D3 6 Volume serial number from EXTENT

A D4 1 Accessibility indicator: S or Blank. From DTF
B D5,D6 1A Reserved

25 D7 E Name or code of volume ouwner

33 D8 1C Reserved

4F D9 1 Label standard level: W

Figure 30. Diskette Volume Label

134 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

D1 Source of Information: : System
Purpose:
Identifies the standard volume label. This field is written in the first
three positions of the volume label record.
Processing:
On both input and output, IOCS checks this field to verify that a standard
volume label is present on the volume.

D2 Source of Information: : System

Purpose:

Ingigates the sequence of this label within a volume label set; must contain
a
Processing:

completely identify the volume label

‘ This field is processed in conjunction with the label identifier, to

D3 Source of Information: : EXTENT

Purpose:
Provides a

unique skette (volume); generally assigned
when the diskette

lde tification for i
is firs he installation.

a di

t received in t

Processing:

On both input and output, IOCS checks this field agains

by the user in the Volume Serial Number field of EXTENT

gﬁgCI;ieTa I10CS assumes the correct volume is mounted a
is field.

t the number supplied
. If no operand is
nd does not check

D4 Source of Information: : -
Purpose:
L Provides a code which indicates that additional qualification is needed

before a volume can be processed.

Processing:

If the volume is secure, an operator message is written any time a file is
to be read or written on this volume. The operator must then make the
ﬁpproprla$e response. For more information see 'VSE/Advanced Functions
essages.

D5 Source of Information: : -
53223333 for future use; should contain blanks.
Dé Source of Information: : -
L Purpose:

Reserved for future use; should contain blanks.

D7 Purpose:
This field specifies the owner of the volume.

Processing:
On both input and output, IOCS ignores this field.

D8 Source of Information: : -

Purpose:
Reserved for future use; should contain blanks.

Figure 31 (Part 1 of 2). Diskette Standard Volume Label Fields

‘ Appendix C: DASD and TAPE Labels 135

Licensed Program - Property of IBM

Field

D9 Source of Information: : System

Purpose:

formats on this volume conform; must contain 'W'.
Processing:

terminated with a message.

I0CS checks this field on both input and output; if not a 'W',

job

Identifies the version of label standard to which the labels and data

is

Figure 31 (Part 2 of 2). Diskette Standard Volume Label Fields

A diskette volume has one volume label of 80 bytes. It is located on
track 0, sector 7 and begins by VOL.

IBM-Standard File Labels on Diskette
Figure 32 shous the format of the diskette file label.

Displ. Field Length Content

Label ID: HDR
Label sequence number: 1
Blank
File-ID from DLBL or system
Blanks
Record length. From 10CS
Blank
Start address of extent: Track and sector.
From IOCS
Blank
End address of extent: Track and sector.
From IOCS
Blank
Bypass byte: B or blank: B = job ends on input
Security byte: S or blank
Write protection byte: P or blank
Interchange level: blank= sector length 128,
unblocked, unspanned,
sequential
non-blank= job ends on input
Volume byte: blank= file complete on this
volume
C= file continued on next
volume A
L= file ends on this volume
Volume sequence number
Creation date: YYMMD
Blanks
Expiration date: Default= 7 days after output
Verify byte: V or blank
Blank
End of data address
Blank

tn

Wrwow~N N~ OUueoudeo
e =0 OQUUogQooo
VIHUN— O OO~V DN =
e e T U UTNO OO0 b e

NRNONOR NN e
oo o

N
(]
[w]
[
(<]
—

HDDDPDUWNN
TM>onTOo
(o lolwlwlelelole)
PN NI NI RS =2 s e
NN OV~
Ul —= T NN

Figure 32. Diskette File Label

136 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program — Property of IBM

Field

D1 Source of Information: : System
Purpose:
Identifies the Header label; must contain 'HDR'.
Processing: .
I0OCS checks this field on input, writes it on output.

D2 Source of Information: : System
Purpose: .
In9i$ates the sequence of this label within a header label set; must contain
a
Processing:
IOCS checks this field on input, uwrites it on output.

D3 Source of Information: H -
Purpose:
Reserved for future use; should contain blanks.

D& Source of Information: : DLBL/IOCS
Purpose:
File ID permits you to identify your logical file.
Processing: .
You can specify the file to be processed in the corresponding field of the
DLBL. If you omit this field, I0OCS uses the DTF name specified in the DLBL
Filename field. On input, I0CS searches the VTOC for this identification.
On output, IOCS writes the identification specified (in File Identification
or Filename) in the label record. If this name is the same as an unexpired
or write—-protected file on the diskette, the job is terminated.

D5 Source of Information: : -
Purpose:
Reserved for future use; should contain blanks.

Dé Source of Information: : I0CS
Purpose:
Contains length of the data records recorded in this file.
Processing:
For an input DTFPH file, I0CS uses this field to set up the length field in
the Read CCH. On output, the IOCS sets up this field.

D7 Source of Information: H -
Purpose:
Reserved for future use; should contain blanks.

D8 Source of Information: : I0CS
Purpose:
Defines the beginning of the diskette area allocated to this file.
Processing:
For an input file, I0OCS makes available the area defined by the label. For
an output file, IOCS writes, in this field, the starting address (lower
limit) of the file. This address uWill be the address of the first record of
the first track following the last unexpired or write~-protected file on the
diskette. IOCS ignores any values specified on the EXTENT card for both
input and output files.

Figure 33 (Part 1 of 4). Diskette HDR 1 Label Fields

Appendix C: DASD and TAPE Labels 137

Licensed Program - Property of IBM

Field

D9 Source of Information: H -
Purpose:
Reserved for future use; should contain blanks.

D10 Source of Information: : I0CS
Purpose:
Defines the end of the diskette area allocated to this file.
Processing:
For an input file, IOCS makes_available the area defined by the label. For
an output file at OPEN time, IOCS writes, in this field, the address of the
last record on the diskette (73026). At CLOSE time, IOCS updates this field
to be the address of the last record in the file. OCS ignores any values
specified on the EXTENT card for both input and output files.

D11 Source of Information: : -
Purpose:
Reserved for future use; should contain blanks.

D12 Source of Information: H I0CS
Purpose:
Indicates whether or not a file is to be interchanged.
Processing:
I0OCS terminates the job on input if this field is non-blank. For an output
file, IOCS creates this field as a blank.

D13 Source of Information: H I10CS
Purpose:
Indicates whether or not additional qualifications must be supplied in order
to access this file.
Processing:
For an input file, if this by is an 'S', an operator message is written.
The operator must reply 'YES' to access the file.
For an output file, if the user specifies (in the DTF) the flle to be
created as a secure file, IOCS will create this field as an 'S"'

Dla Source of Information: : I0CS
Purpose:
Indicates whether or not a file may be overuritten.
Processing:
For input files, I0CS ignores this field. For output files, if the user
indicates in the DTF that the file is to be write-protected, IOCS puts a P
in this field. If a file is created write-protected, it cannot be
overwritten.

Figure 33 (Part 2 of 4). Diskette HDR 1 Label Fields

138 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

D15 Source of Information: : 10CS
Purpose:
Identifies the following file attributes:
e Physical Record Length = 128 bytes
e Record lLength — Fixed = 128 bytes
* Record Attributes - unblocked/ unspanned
e File Organization - Sequential
Processing:
On both input and output, IOCS assumes the above attributes if this field is
a blank. IOCS will create this field as a blank on output. If this field
is not blank on an input file, the job will be terminated.

D16 Source of Information: : 10CS
Purpose:
Indicates whether a file is complete on this volume, continued to another
volume, or completed on this volume: ($uB8%$2)Su ~ file complete on this
volume C - file continued to another volume L - file completed on this
volume.
Processing:
On input, IOCS checks this field to ensure that this indicator is correct.
The only correct values are: ($u8¢2)%u, for a single volume file; C for all
but the last volume of a multivolume file; and L for the last volume of a
multivolume file. On output, IOCS will set this indicator to the proper
value based on the type of file being created.

D17 Source of Information: : I0CS
Purpose:
Indicates the order of a volume in a multivolume file, relative to the first
volume of that file.
Processing:
On input, if the DTFDU VOLSEQ parameter is specified, IOCS will check that
the volume sequence numbers of a multivolume file are in consecutive,
sequential, ascending order, starting with 1. On output 10CS will
automatically create consecutive, sequential, ascending sequence numbers for
a multivolume file (starting with 1).

D18 Source of Information: : I0CS/System
Purpose:
Indicates the date the file was created; the format is YYMMDD.
Processing: A .
On input, IOCS ignores this field. On output, IOCS creates this field equal
to the current system date.

D19 Source of Information: H -
Purpose:
Reserved for future use; should contain blanks.

Figure 33 (Part 3 of 4). Diskette HDR 1 Label Fields

Appendix C: DASD and TAPE Labels 139

Licensed Program - Property of IBM

Field

D20 Source of Information: : IDCS/ EXTENT
Purpose:
Indicates the date this file may be purged; the format is YYMMDD.
Processing:
On input, IOCS ignores this field. On output IOCS creates this field equal
to the expiration date specified on the EXTENT card. If a retention period
is specified, the expiration date is calculated from that. If no date is
specified, IOCS creates this date equal to seven days from the current
system date. When creating an output file, I0OCS deletes expired and
non-write-protected files which begin after the last unexpired or
write-protected file on the volume.

D21 Source of Information: : I0CS
Purpose:
Indicates whether or not data has been subjected to a verification
procedure.
Processing:
IOCS ignores this field on both input and output.

D22 Source of Information: : -
Purpose:
Reserved for future use; should contain blanks.

D23 Source of Information: : I0CS
Purpose:
Contains the address of the next higher consecutively numbered unused
record; the format is CCHHR.
On input, IOCS supplies this field as the actual end-of-data address. On
output, IO0CS creates this field as the actual end-of-data address.

D24 Source of Information: : -
Purpose:
Reserved for future use; should contain blanks.

Figure 33 (Part 4 of 4). Diskette HDR 1 Label Fields

The IBM-standard file label on diskette is 80 bytes long. The key area
of 4 bytes always contains the characters HDRI. The 76 byte data area
contains the start and end address of the file or of the extent of a
file on this volume. As only one extent of each file is on a diskette,
no continuation labels are needed.

All IBM-standard file labels for all files on a diskette volume are
stored in the VTOC on track 0, sectors 8-26.

Only IBM-standard file labels are supported on diskettes.

LABEL PROCESSING FOR TAPE FILES

STANDARD LABELS, INPUT FILE

VOL1l Label

1) must be the first record on the reel

The standard volume labe L
(F STD) are specified.

1 (VO
when standard labels ILABL=
The VOL1 label can be written by the IBM-supplied utility progranm,
Initialize Tape. It is generally written once, when the reel of tape is
first received in an installation. At that time, a permanent volume
serial numb-* is assigned to the reel and written on it as part of the
volume label. This provides a permanent identification of the reel, as
long as it is used for files with standard labels. Following the VOL1

140 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

label, Initialize Tape writes a dummy HDR1 label and a tapemark. Either
IBM or American National Standards Institute, Inc. labels may be
specified in the Initialize Tape program.

Whenever the tape reel is positioned at the load point for processing
the first or only volume of an input data file (or multifile), IOCS
reads and checks the VOL1 label against the File Serial Number supplied
by the user in TLBL. If an error is detected, a message is given to the
operator. The operator may mount the correct volume, continue
processing wWwith the mounted volume (if your system does not have data
protection), or terminate the job.

If TLBL is used and the File Serial Number is not specified, IOCS
nguTes that the correct volume is mounted and does not check the VOL1
abel.

In a multivolume file, the VOL]1 label of succeeding volumes after the
first one processed is not checked (see "Input File, Multivolume File").

If any additional volume labels (VOL2—VOL8) follow a VOL1 label, IOCS
bypasses them. Similarly, IOCS bypasses additional user volume labels
(UVL1—UVL9) on an ASCII tape file.

HDR1 lLabel

IDCS identifies the appropriate file to be processed by reading the HDRI1
label and comparing the File Serial Number, the Volume Sequence Number,
and the File Sequence Number in the label, to those numbers supplied by
TLBL. If the specified header label cannot be found, a message is
issued to the operator. The operator must mount the correct volume, or
terminate the job.

I0OCS checks fields 3 and 7—10 (describe
against information supplied in TLBL. F
READ=BACK has been specified.

If the TLBL minimum specification (File Name only) is given, I0CS
assumes that the correct file is positioned for processing and does not
check the HDR1 label.

In a multivolume file, the HDR1l label on each volume after the first one
processed is checked against the TLBL information that has been updated
by IOCS where necessary (see "Input File, Multivolume File™).

d F;gure 38 on _page 162)
i

in
elds —14 are ignored, unless

If any additional HDR labels (HDR2—HDR8 for EBCDIC files or HDR2—HDRY9
for ASCII files) follow an HDR1 label, IOCS bypasses them.

If any user-standard labels (UHL1—UHL8 for EBCDIC files or UHLa for
ASCII files) follow the HDR label(s) and if DTFMT or DTFPH LABADDR=Name

has been specified, I0OCS branches to the user's label routine. If not,
IOCS positions the tape at the first date record.

EOF17EOV1 Label

IOCS reads an EOF1 or EOV1 trailer label after the tapemark that follous
the last data record of a file or volume.

EOF1 indicates to I0OCS that an end-of-file condition exists. EOV1
indicates to IOCS that an end-of-volume condition exists (see "Input
File, Multivolume File").

For either label, IOCS checks the Block Count field only.

If any additional trailer labels (for EBCDIC files EOF2—EQOF8 or

EOV2—EQOV8; for ASCII files EOF2—EOF9 or EOV2—EOVY9) follow an EOF1 or
EOV1 label, I0CS bypasses them.

If any user-standard trailer labels (UTL1—UTL8 for EBCDIC files or UTLa
for ASCII files) follow the EOF or EOV label(s) and if DTFMT or DTFPH
LABADDR=Name has been specified, I0CS branches to the user's label
routine. If not, IOCS reads the tapemark that follows the last EOF
label (see "Input File, Tapemarks™).

If processing of an input file is terminated by a CLOSE or FEQV
instruction before the end of the input data on the volume is reached,

Appendix C: DASD and TAPE Labels 141

Licensed Program - Property of IBM

the EOF1 or EOV1 1

ab
as specified by DTF

el is not read and checked. IOCS rewinds the tape
REWIND.

User-Standard Labels (UHL/ZUTL)

When user-standard labels (UHL/UTL) are to be checked and logical IOCS
macros are used for the file, DTF LABADDR=Name must be specified. If it
is not specified, IOCS bypasses all user-standard labels.

When physical I0OCS macros are used for a file and DTFPH is specified,
LABADDR=Name must be included if user-standard 'header labels (UHL) are
to be checked. IOCS does not provide for user checking of user-standard
trailer labels (UTL).

The input file (such as a card reader) that contains the user's
information for checking user—-standard labels must be opened ahead of
the file with the UHL labels. This is done by specifying the
label-information file ahead of the labeled file in the same OPEN
instruction, or by issuing a separate OPEN instruction ahead.

I0OCS identifies the user-standard labels by UHL or UTL in the first
three bytes of the label.

I0OCS reads each user-standard label, one at a time, into a label area
used by IOCS for standard labels. IOCS supplies the address of this
area in Register 1.

After a label is read in, IOCS branches to the user's label-checking
routine. The same routine (specified by DTF LABADDR=Name) is used for
checking both user-standard header (UHL) and user-standard trailer (UTL)
labels. The user can identify the type of label by the UHL or UTL in
the first three positions of the label itself.

After the user checks a label, he returns to IOCS by issuing a LBRET
macro instruction. He controls the checking of any remaining
user-standard labels by the operand in the LBRET instruction. A LBRET 2
instruction permits the checking of another label. A LBRET 1
instruction or a tapemark terminates label checking.

If the user, or a tapemark, does not terminate the label checking, IO0CS
reads in the next user-standard header label.

Multivolume File

When the volumes of a multivolume file are to be processed in sequence,
starting with the first volume, no special instructions need be made by
the user for the transition from one volume to the next. Logical IO0CS
recognizes the end-of-volume condition,and uses the existing CLOSE and
OPEN routines to process, first the trailer labels, and then the header
labels on the following volume.

When an EOV1 label is read or an FEOV macro is executed, I0CS checks
trailer labels as described in the sections "Input File, EOFl1/EOV1
Label" and "Input File, User-Standard Labels (UHL/UTL)."™ IOCS then
prepares for checking the HDRllabel on the next volume. IOCS increases
by 1 the Volume Sequence Number in storage (read in from TLBL), and
alsoupdates the active drive number if an ASSGN statement or command
specified an alternative drive (ALT) for the file.

After all trailer labels have been checked, IO0OCS switchesto the
alternate tape drive, if one has been specified by ASSGN. If an
alternate tape drive has not been specified, a message is given to the
operator and the system enters the wait state. The operator must mount
the new volume and restart processing.

IOCS verifies that a VOL1 label is present on each vo
check the Volume Serial Number on any volume after th
processed.

The HDR1 label of each volume, after the first one pr
against the TLBL information that has been updated by
necessary (for example: Volume Sequence Number).

me, but does not
first one

;, is checked
here

I0CS provides for user checking of user-standard header labels on the
new volume.

142 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program ~ Property of IBM

If physical I0CS macros are used for a file, an OPEN instruction must be
issued for the new volume. This causes I0OCS to check the HDR1 label and
provide for user checking of user-standard bels, if any.

»

S

la

If the user wants to start the processing of a multivolume file with

some volume other than the first, he should supply TLBL information as
follows:

Field 4: File Serial Number should contain the volume serial number of
the first volume of the set (not the volume being processed).

Field 5: Volume Sequence Number should contain the sequence number of
the volume that will be processed first in this run.

Field 6: Flle Sequence Number should contain the sequence number of the
file to be processed, if this is a multifile multivolume set.

All other fields should contain the same information as when starting
with the first volume of the set.

This will properly check the HDR1 label. I0OCS checking of the VOL1 label
Wwill detect the discrepancy in the volume serial numbers and issue a
message to the operator. The operator can bypass this condition and
continue processing.

If a multivolume file is reopened after a CLOSE, I0OCS expects that the
volume available to OPEN is the same_volume, on the same drive, as that
in process when CLOSE was executed. If it is not, a message is issued to

{hg ?perator Also, the first record read on the reopen must be a file
abe

When physical IOCS macros are used and DTFPH is specified for standard
label processing, FEOV may not be issued for an input file.

Multifile Volume
TLBL must be submitted for each file to be processed.

I0OCS locates the first or only file that is to be opened by verifying
the Volume Serial Number in the VOL1 label and then searching the tape
;Ethhe HDR1 label that contains the File Sequence Number specified in

If two or more files are to be opened, all files may be opened uwithout
remwinding the tape provided they are specified in ascending sequence.
For any file after the first one opened, I0CS merely searches the tape
for the file with the specified file sequence number. IOCS does not
check the VOL1 label again.

If the files to be opened are not specified in ascending sequence, the
tape must be rewound before each file is opened

If the tape is positioned beyond a specified file when OPEN for that
file is executed, a message is issued to the operator. The operator may
remount or reposition the tape, or terminate the job.

If the TLBL minimum specification (File Name only) is given for the
file, either on input or when the file was originally written as an
output file, the user must position the tape to read the desired file.
For this, he can use the Job Control MTC FSF statement or command, and
skip three tapemarks for each file to be bypassed.

Read Backward

d by DTF READ=BACK), the trailer label

For a read backuward file (s ifie
OPEN, and the header label (HDR1l) is read

pe
(EOF1) is read and checked by
and checked by CLOSE.

eci

The trailer label should contain both the header (except HDR) and
trailer (Block Count) information. If the file labels were originally
written by IOCS with FILABL=STD specified, the trailer label will be

complete.

I0CS checks only the File Identifier field (field 3), in th
label, against information supplied by the user in TLBL. 1
not specified, no checking is performed.

e tr e
f Fi

Appendix C: DASD and TAPE Labels 143

Licensed Program - Property of IBM

The tape should be positioned so that the first record read, when OPEN
is executed, is the tapemark immediately following the trailer labels.
If the tape is not positioned this way, a message is issued to the
operator and processing can be continued. The message will occur if the
user begins reading backward in the middle of a file

Reading backward is confined to one volume, and an end-of-file condition
exists when I0CS reads a tapemark.

{Dgslprovides for user-checking of user-standard trailer and header
abels.

If physical 10CS macros are used by the problem program to read records
backward, IOCS does not check labels. The DTFPH definition must be
omitted and the user must provide his own checking, if any.

Tapemarks

The tapemark that follows the set of standard volume and header labels
for a file indicates, to IOCS, that the last header label has been
checked. The tape is positioned for user reading of the first data
record. If files on other volumes are to be opened, IOCS opens the next
fi;gtspgcified. The header labels for that file are checked (or
written).

The tapemark that follows the data records indicates, to I0CS, that the
end of the input for the file or the volume has been reached. I0CS
getermizes the EOF/EQOV condition from the trailer label that follows the
apemark.

The tapemark that follows all trailer labels for a file or volume
indicates to I0OCS, that the last trailer label (EOF, EOV, or UTL) has
been checked. If an EOF label has been read, I0CS branches to the
user's end-of-file routine (specified by DTF EOFADDR=Name). If an EOQV
label has been read, IOCS provides for the processing of the next volume

(including label checking).
STANDARD LABELS, OQUTPUT FILE

VOL1 Label

A standard volume label (VOL1) should have been previously written as
the first record on the volume, whenever standard file labels
(FILABL=STD) are to be written.

The VoLl label can be written by the IBM-supplied utility program,

ialize Tape, when the reel of tape is first received in the
lnstallatIOn At that time, a permanent volume serial number is
assigned and written on the reel as part of the volume label. This
provides a permanent identification of the reel as long as it is used
for files with standard labels. Following the VOL label, Initialize
Tape writes a dummy HDR1 label and a tapemark. Either EBCDIC or ASCII
files can be initialized by this utility progranm.

For a 9-track dual density output tape, a comparison is made between the
user specified density and the VOL1 density of the mounted tape. If a
discrepancy is found, and if the tape is at load point, the volume
label(s) are rewritten according to the user-specified density.

The volume on which an output file is written should be determined ahead
of time if the user plans to include the File Serial Number field. This
permits the volume serial number, already recorded in the VOL! label, to
be specified in the File Serial Number field.

Whenever the tape reel is positioned at the load point for writing the
first or only volume of an output data file, IOCS reads and checks the
VOL1 label against information supplied by the user. If an error is
detected, a message is given to the operator. The operator may mount the
correct volume, continue processing with the mounted volume, or
terminate the job.

If TLBL is used and the File Serial Number is not specified, IOCS
?sguTes that the correct volume is mounted and does not check the VOL1
abel.

144 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM

If the output tape is positioned at the load point and IOCS reads a
record that is not a VOL1 label, a message is given to the operator.
can cancel the job, mount a different tape reel, or key in a six-digi
Volume Serial Number, In the latter case, I0CSurites theVOL1 label a
the beginning of the tape and processing continues.

He
t
t

Because I0CS expects to read a record to check for a VOL1 label, the
tape used for output must contain some type of record (a label, data
record, or tapemark). If it does not, the entire reel of tape is passed
through the tape unit.

In a multivolume file, the VOL1 label of succeeding volumes after the
first one written is not checked (see "Qutput File, Multivolume File").

If any additional volume labels (VOL2—VOL8) follow a VOL1 label, I0CS
bypasses them. Similarly, I0OCS bypasses any user volume labels
(UVL1—UVLY9) on ASCII tape files.

HDR1/HDRZ2 Labels

If an output file is to be written on a tape reel that already contains
standard file labels, I0OCS first reads the old HDR1 label. It checks the
expiration date to ensure that the data on the tape is no longer active.

If the expiration date has passed, I0CS backspaces the tape and writes
ﬁgglniwbH?RI label immediately after the VOL label(s) and over the old
abel.

If the expiration date has not passed, a message is given to the
operator. The operator can ignore the expiration date and continue
processing, mount a new volume, or terminate the job.

If an output file is to be written on a tape that does not contain
standard file labels, I0OCS assumes that the expiration date has passed.
IOCS writes the new HDR1 label immediately after the VOL label(s).

If an output file is to be uwritten on a multifile volume(s) uith
standard labels, only the expiration date of the first file to be
overwritten is checked. I0OCS assumes that all succeeding files have the
same expiration date.

The HDR1 label is written from the information supplied by the user in
TLBL, or generated by I0CS (see "Section: Label Fields for Tape").

IflTLBL specifications are omitted, I0OCS writes predetermined default
values

In @ multivolume file, the HDR1l label on each volume after the first one
processed is Wwritten with the TLBL information that has been updated by
I0CS where necessary (see "Qutput File, Multivolume File™).

In a multifile volume, the HDR1l label for each file after the first is
written with information obtained partly from the preceding standard
Srfilen)label and partly from TLBL (see "Qutput File, Multifile
olume™).

For EBCDIC IODCS does not write additional header labels (HDRZ——HDR&) If
the user wants to write any of these labels he can specify a la
routine (DTF LABADDR=Name) and use physical I10CS macros (EXCP and NAIT).

For ASCII IOCS writes an additional header label (HDR2) which contains
the record format, block length, record length and buffer offset.

If DTFMT or DTFPH LABADDR=Name is specified to indicate that
user-standard header labels (UHL1—UHL8 for EBCDIC; UHLa for ASCII) are
to be written after the HDRlabels(s), I0CS branches to the user's label
routine. If not, 10CS writes a tapemark and positions the tape for
writing the first data record.

EOF1/7EOV1 and EQF2/EQVZ2 Labels
When I0CS CLOSE is executed, after all records for a file have been

processed, it writes the last block of data records (if any), a
tapemark, and an EOF1 trailer 1label.

Appendix C: DASD and TAPE Labels 145

Licensed Program - Property of IBM

If I0CS detects the reflective marker at the end of the tape before the

end of the output file is reached (see "Qutput File, Multivolume File"),

gr 1{ aanEOY macro is executed, IOCS writes a tapemark and an EOV1
railer label.

The EOF1 or EOV] trailer label is written with HDR1l information in all
fields except Block Count. Block Count is written with count accumulated
during processing of the data file.

For EBCDIC IOCS does not write additional EOF or EOV labels (EQOF2—EOF8
or EOV2—EOQOV8) If the user uWwants to write any of these labels he can
specify a label routine (DTF LABADDR=Name) and use physical I0OCS macros
(EXCP and WAIT).

For ASCII IOCS writes an additional trailer label (EOV2/EOF2) which
contains the same information as the HDR2 label.

If DTFMT or DTFPH LABADDR=Name is specified to indicate that
user—-standard trailer labels (UTL1—UTL8 for EBCDIC; UTLa for ASCII) are
to be written after the EOF/EOV trailer label(s), IOCS branches to the
user's label routine. If not, I0OCS writes one or two tapemarks as
determined by an end-of-volume or end-of-file condition (see "Output
File, Tapemarks"). Logical IOCS then rewinds the tape as specified by

DTF REWIND.

User-Standard Labels (UHL/UTL)

When user-standard labels are to be written for an EBCDIC or ASCII file,
DTFMT or DTFPH LABADDR=Name must be specified.

Whenever LABADDR=Name is specified, at least one UHL label and one UTL
label must be written.

The input file (such as a card reader) that contains the user's
information for writing user-standard labels must be opened ahead of the
file on which the UHL labels are to be written. To do this, the input
file must be specified ahead of the file to be labeled in the same OPEN
instruction, or a separate OPEN instruction must be issued ahead.

The user must build each user-standard label. To provide for this, IOCS
branches to the user's label routine. The same routine (specified by
LABADDR=Name) is used for building both user-standard header labels

(UHL) and user-standard trailer labels (UTL). IOCS supplies a code in
the low-order byte of Register 0 to indicate which type of label should
be built:

UHL — Code 0 (letter 0)

UTL — Code F for end-of-file condition

Code V for end-of-volume condition

The user must establish an 80-byte area within his problem program area
of main storage for building his labels. He must load the address of
the area he uses into Register 0 before returning control to I0CS.

When building the label for an EBCDIC file, the user must include UHL or
UTL in the first 3 bytes and a digit 1—8 in the fourth byte. He may
include whatever information he needs in the remaining 76 bytes.

Note: When user header and trailer labels are created for 7-track
Eagei. only unpacked data is valid in the 76-byte data portion of the
abel.

To comply with the standards for AS

CII files, a user standard header and
trailer label must contain UHL and UT
e

I
L, respectively, in the first three
%R ASCII character in the range 270

bytes. Also, the fourth byte must b
e remaining 76 bytes may be used

through 5714, excluding 277 (quote)
as desired.

After building a label, the user returns to I0OCS by iss
instruction. IOCS moves the label to the standard label
necessary, and then writes the label on the tape.

g a LBRET

uin
I/0 area, if

The user controls the building and writing of succeeding user-standard
labels by the operand in the LBRET instruction. If another label is to
be written, operand 2 is specified and I0CS again branches to the user's
label routine. When the user has built his last user label, he issues
the LBRET macro with the operand 1. IOCS writes the last label.

146 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program — Property of IBM

For EBCDIC files a maximum of 8 user-standard header and 8 user-standard
trailer labels may be written. After 8 labels, I0CS terminates the label
writing, regardless of the LBRET macro instruction. For ASCII files,
theoretically there is no limit to the number of user standard labels
(UHLa and UTLa). There is a physical limit since the physical tape may
be reached before all user labels are written.

After the last user-standard header label (UHL), IOCS writes one
tapemark. After the last user-standard trailer label (UTL), IOCS writes
one or two tapemarks, as determined by an end-of-volume or end-of-file
condition (see "Output File, Tapemarks™).

Multivolume File

When a multivolume file is to be written, no special instructions need
be made by the user for the transition from one volume to the next.
Logical 10CS recognizes an end-of-volume condition and uses the existing
CLOSE and OPEN routines to write, first the trailer label(s), and then
the header label(s) on the following volume.

After I0CS detects the reflective marker at the end of tape, it
etermines the EOF/EOV condition by the next I/0 instruction for this
ile in the problem program. If the instruction is CLOSE, an end-of-file
EOF) condition exists and I0OCS writes a tapemark and an EOFl label,
ollowed by an EOF2 label (for ASCII only). If, however, the next
instruction is a PUT, an end-of-volume (EOV) condition exists and I0CS
tes a tapemark and an EOV1 label, followed by an EOV2 label (for
%Ii gniy. For an ASCII file, two tapemarks are uritten follouwing the
abel.

en an EOV condition exists or an FEOV (forced end-of-volume) macro is
executed, I0CS permits the writing of user—standard trailer labels, if
any, and then prepares for writing the HDR1 label on the next volume.
IOCS increases by 1 the Volume Sequence Number in storage (read in from
TLBL), and updates the active drive number if an ASSGN statement or
command specified an alternate drive (ALT) for the file.

“w~hO

1
s
i
c
v

E m>x»Ek

r
S
0
h

After all trailer labels have been written, IOCS writes one tapemark and
switches to the alternate tape drive, if one has been specified by
ASSGN., If an alternate tape drive has not been specified, a message is
given to the operator and the system enters the wait state. The operator
must mount the new volume and restart processing.

IOCS verifies that a VOL1 label is present on each volume, but does not
check the Volume Serial Number on any volume after the first.

The HDR1 label of each volume after the first is written with the TLBL
information that has been updated by I0CS where necessary (for example:
Volume Sequence Number).

On each volume, the File Serial Number field of the HDR1l label is
written with the Volume Serial Number of the first volume of the set.
Thus on each volume after the first, the File Serial Number in the HDR1
label differs from the Volume Serial Number in the VOL1 label.

IO?S provides for user writing of user—-standard header labels on the new
volume.

If physical I0OCS macros are used for the file, an OPEN instruction must
be issued for a new volume. This causes I0OCS to write the standard
header label and provide for user writing of user-standard labels, if
any.

Multifile Volume
TLBL must be submitted for each file to be written.

When two or more files are to be written in the same operation, the DTF
entry REWIND=NORWD should be specified for each file. With this
specification, the tape is located at the correct position for the OPEN
routines to write the standard file header label for each additional
file (after the first) on the reel.

To properly position the tape at the load point for the first file, the
programmer can include a CNTRL REW macro instruction ahead of the OPEN
instruction, or the operator can position the tape at the load point.

Appendix C: DASD and TAPE Labels 147

Licensed Program - Property of IBM

When the tape is at the load point for the first file, I0CS OPEN ensures
that the correct volume has been mounted by checking the Volume Serial
Number in the VOL1 label against the information supplied by TLBL. If
the File Serial Number is not specified, I0OCS assumes that the correct
volume is mounted.

IOCS OPEN then checks the expiration date in the old HDR1l label (if
any).

IOCS writes the HDR1 label for the first output file from the
specifications supplied by the user in the TLBL or supplied by IOCS as
default values.

For the HDR1 label of each file after the first, the OPEN routines
obtain the file serial number (field 4), the volume sequence number
(field 5), and the file sequence number (field 6) from the preceding
EOF1 label. OPEN increases the file sequence number by 1 for the new
file. The remaining fields of the header label are uwritten with the
information supplied by the user in TLBL or as default values.

If the tape is rewound or repositioned after a file is closed, it is the
user's responsibility to properly position the tape for wWwriting any
additional file(s) at a later time. The tape must be positioned so that
the file header label is written immediately after one tapemark
following the last file currently on the tape. Thus, it must replace the
second of the two tapemarks that normally follow the last file on the
tape.

The tape can be advanced from the load point to the correct position by
skipping three tapemarks for each file presently on the tape. ob
Control MTC FSF command or statement is used for this skipping and the
DTF entry REWIND=NORWD must be included for the file. In this case, the
VOL1 label is not checked, and the expiration date of the file to be
overwritten (if any) is checked.

When the tape has been positioned and the file is opened, the OPEN
routines obtain the information for writing the HDR1 lsbel from the
preceding standard trailer label and from TLBL. This is the same as
described previously for multiple files that are written without
rewinding the tape.

User-standard header and trailer labels may follow the standard header
and trailer label for each file of a multifile volume.

Tapemarks

After all the header labels for a file are uwritten, I0OCS writes one
tapemark. The tapemark follows the HDR label(s) if DTFMT or DTFPH
LABADDR=Name is not specified for a file. If LABADDR is specified, I0CS
writes the tapemark when the problem program issues a LBRET 1

instruction, which indicates that all the desired user-standard labels
have been written, or when the maximum of eight UHL labels has been
written. he tape is positioned for writing the first data record. If
files on other volumes are to be opened, IOCS opens the next file
specified and writes (or checks) the header label(s) for that file.

When the problem program issues either a CLOSE or FEOV macro
instruction, or when I0OCS detects the reflective marker at the end of
the tgpe, I0OCS writes a tapemark following the last block of data
recoras.

I0CS writes two tapemarks after an EOFl label, or after a set of EOF and
UTL labels if LABADDR=Name is specified.

IOCS writes one tapemark after an EOV1 label, or after a set of EQOV and

UTL labels if LABADDR=Name is specified. For ASCII files IOCS writes two

tapemarks.

In a multifile volume, one tapemark follows the end-of-file label(s) of
each file except the last. Two tapemarks follow the end-of-file label(s)
of the last file. If a file is added later to a multifile volume, the
second tapemark is replaced by the HDR1 label of the additional file.

148 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
NONSTANDARD LABELS

The following discussion is concerned with nonstandard labels (DTFMT
FILABL=NSTD). When nonstandard labels are specified, I0OCS OPEN/CLOSE
routines provide for user processing of nonstandard header labels at the
beginning of the file, and nonstandard trailer labels at the end of the
file. The functions performed by I0OCS vary depending on input file vs
output file and header label vs trailer label.

A user routine is required to supply the information for
checking/creating nonstandard labels. This routine, the functions
performed by IOCS OPEN/CLOSE routines, and the specific processing
performed for each type of label (within each type of file) are
summarized in this section.

Note: Nonstandard labels cannot be used on ASCII tape files.

I0OCS Routines
i nonstandard

I0CS OPEN and CLOSE routines provide for user proce ing of
DTF LABADDR=Name is

s
labels. 10CS branches to the user's label routine if
specified.

s

The OPEN/CLOSE routines are transient routines of the Supervisor. As
such, they are stored on the system pack (SYSRES) and called into the
transient area of main storage whenever an OPEN or CLOSE macro

instruction is executed.

User Routine

The information for creating/checking nonstandard header and trailer
labels is generally supplied by the user in a separate input file, such
as a card reader. The information is stored by the user's problem
program in a location that meets the requirements of his job.

Nonstandard labels must be read and checked, or built and written, by a
routine supplied by the user. The symbolic address of the user's label
routine must be specified in the DTF entry LABADDR=Name.

In his label routine, the user must issue physical I0OCS macros
instructions (EXCP and HWAIT) to read or write the labels. He must set up
a Command Control Block, by issuing a CCB macro instruction, and
establish a CCW (Channel Command Word).

The user must define his own label read-in or read-out area.

In his label routine, the user performs whatever label reading and
checking or building and Wwriting he requires for his job.

At the end of his routine, the user returns to IOCS by issuing a LBRET 2
instruction.

NONSTANDARD LABELS, INPUT FILE

Header Label

If the input file was previously written using VSE (with FILABL=NSTD
specified), the first record on the reel is the user's first nonstandard
label. There is no volume label at the beginning of the reel.

Nonstandard header labels may, or may not, be followed by a tapemark.
This choice, combined with the user's requirement to check the labels,
or not, results in four possible conditions that can be encountered when
an input file is opened:

. Label(s) followed by a tapemark are to be checked.

. Label(s) not followed by a tapemark are to be checked.

. Label{(s) followed by a tapemark are not to be checked.

. Label(s) not followed by a tapemark are not to be checked.

For the first two conditions, DTF FILABL=NSTD and LABADDR=Name must be

specified

i he file definition. I0OCS branches to the user's label
routine whe

is executed.

Ot
o
m
z

Appendix C: DASD and TAPE Labels 149

Licensed Program — Property of IBM

For the third g dtt n. DTF FILABL=NSTD must be specified. DTF LABADDR
is omitted and IOCS skips all labels, passes the tapemark, and positions
the tape at the frrst data record to be read.

For the fourth condition, DTF FILABL=NSTD and LABADDR=Name must be
specified. IOCS branches to the user's label routine when OPEN is
executed, and the user must read all labels even though checking is not
desired. This positions the tape at the first data record. This is
necessary because IOCS cannot distinguish labels from data records and
because there is no tapemark to indicate the end of the labels. If this
were not done, I0CS would search the tape for a tapemark, and thus pass
the wgole file until it reached the tapemark that follows the last data
record.

When DTF LABADDR=Name is specified for checking labels, IDCS branches to
the user's label routine only once. The problem program must perform all
required reading and checking of header labels before returning to IOCS.
The user can determine that the last label has been read by checking
some identifying information he has provided in the last label, or by
the tapemark, if any, that folllows the label(s).

After all header labels have been processed and the user has returned
control to IOCS OPEN (by use of the LBRET 2 macro instruction), I0CS
reads and checks the next record. If it is a tapemark, IOCS assumes that
the following record is the first data record. If it is not a tapemark,
I0CS backspaces the tape one record and assumes that this record is the
first data record. Thus, the user should read all labels, before
Eeturning go I0OCS so that the tape is properly positioned at the first
ata record.

If a file is reopened after a CLOSE, it is the user's responsibility to
identify the first record read as a file label or a data record.

End-of-File/End-of-Volume Label

When DTF LABADDR=Name is specified for checking labels, IOCS branches to
the user's label routine when it reads the tapemark that follows the
last data record.

IOCS branches to the user's routine only once. The problem program must
read and check all trailer labels before returning to IO0CS.

From his trailer label, the user must determine if an end-of-file or an
end-of-volume condition exists and indicate this to I0CS. For this he
must load either EF (end-of-file) or EV (end-of-volume) in the two
low-order bytes of Register 0.

After all trailer labels have been processed, the user returns control
to I0CS by issuing a LBRET 2 macro instruction.

If an EF condition was indicated, IOCS branches to the user's
end~of-file address (specified by DTF EOFADDR) when the problem program
returns to I0OCS at the end of the label routine. The user can perform
whatever processing is required for the end of his data records, and he
generally closes the logical file.

If processing of an input file is terminated by a CLOSE, or an FEOV
(forced end-of-volume) instruction, before the tapemark at end of the
inpgt data is reached, IOCS does not branch to the user's label checking
routine.

Multivolume File

When the problem program reads an end-of-volume label and specifies an
EV condition to IOCS, or issues a forced end-of-volume instruction
(FEOV), I0CS prepares for processing records from the next volume. IOCS
updates the active drive number if an ASSGN statement or command
specifies an alternate drive (ALT) for the file.

I0OCS switches to the alternate drive: if one has been specified. If not,
a message is5 given to the operator, and the system enters the wait
state. The operator must mount the new volume and restart processing.

I0CS provides for user checking of header labels on the next volume, if
LABADDR=Name is specified for the file

150 IBM VSEs/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

When an alternate drive is assigned to a file, the number of the drive
currently in _use must be supplied to the Command Control Block (CCB)_
used by the EXCP macro for label reading. I0OCS provides the hexadecimal
value of this drive in the two low-order bytes of Register 1. The user's
label routine should move this value to bytes 6 and 7 of the CCB.

If physical IOCS macros are used for a file, an OPEN instruction must be
issued for a new volume. This causes I0OCS to provide for user checking
of nonstandard labels.

If a multivolume file is reopened after a CLOSE, IOCS expects that the
volume available to OPEN is the same volume, on the same drive, as that
in process when CLOSE was executed. If it is not, a message is issued to
the operator.

Multifile Volume

If multiple files on the same volume are to be read in sequence, the DTF
entry REWIND=NORWD should be specified for each file. With this
specification, the tape is located at the correct position for the user
to read his first header label or data record when each file (after the
first on the reel) is opened.

To properly position the tape for the first file on the reel, the
programmer can include a CNTRL REW macro instruction ahead of the OPEN
instruction, or the operator can position the tape at the load point.

When the first file to be opened is not the first file on the reel, the
tape can be advanced from the load point to the correct position by use
of the Job Control MTC FSF statement or command. Either two or three
tapemarks are skipped for each file to be passed. If TPMARK=ND was
specified when the files were written, two tapemarks are skipped. If
not, three tapemarks are skipped. The DTF entry REWIND=NORWD must he
included for the file to be opened.

f
a
ND

When any file is opened, IOCS branches to the user's label routine, if
specified. The user can read and check header labels.

Read Backward

The tape should be positioned so that the first record read, when OPEN
is executed, is the tapemark immediately following the trailer labels.

When the file is opened, IOCS provides for user checking of the trailer
label(s) in the same manner that header labels are checked on a forward
read (see "Input File, Header Label"™).

I0OCS assumes that the end of the input file has been reached uwhen it
reads a tapemark at the beginning of the tape (between the header label
and the first data record).

I0CS CLOSE branches to the user's label routine (specified by DTF
DDR=Name) where he can read and check the 'header label{(s).

he tape does not contain a tapemark between the header label(s) and

first data record (TPMARK=ND was specified when the tape uas

ten), ghe user must determine whether a record is a file label or a
record.

not expect a tapemark at the beginning of the volume. HWhen
xecuted, IOCS branches immediately to the user's label routine
DR=Name is specified) so that the problem program can read and
first record.

=00 W

k may, or may not, follow the nonstandard labels depending on
PMARK=NO was specified when the file was written.

-3 Mmoo Wn

3J3 mom

L

k

p

h

onstandard labels are not to be checked, IOCS can properly position
tape for reading the first data record, only if a tapemark exists
een the labels and the data records. If a tapemark is not present,
user must read the labels in order to advance the tape to the proper
tion for reading the first data record. Thus, in this case, DTF
DDR=Name must be specified even though labels are not to be checked.

Appendix C: DASD and TAPE Labels 151

Licensed Program - Property of IBM
The tapemark that follows all data records indicates to IOCS that the
end of input from the file or volume has been reached.

NONSTANDARD LABELS, OUTPUT FILE

Header Label

Nonstandard header labels are written starting at the location where the
tape is positioned. Thus if the tape has been rewound to the load point,
the first nonstandard label is written over any label(s) that is already

on the tape, such as a volume label.

I0OCS does not check for the presence of a volume label or the expiration
of a previously written standard or nonstandard file label.

Whenever DTF LABADDR=Name is specified, at least one header label must
be written.

The input file (such as a card reader) that contains the user's
information for writing nonstandard labels must be opened ahead of the
file on which the header labels are to be written. To do this the input
file must be specified ahead of the file to be labeled in the same OPEN
instruction, or a separate OPEN instruction must be issued ahead.

The same routine (specified by DTF LABADDR=Name) is used for building
and writing both nonstandard header and nonstandard trailer labels. HWhen
I0OCS branches to this routine at OPEN time, it supplies the letter 0 in
Ehe lgzgorder byte of Register 0 to indicate that a header label should
e written.

I0OCS branches to the user's label routine only once for header labels.
Therefore, the problem program must build and write all the required
header labels before returning to I0CS.

After all header labels have been uwritten, the user returns control to
I0OCS OPEN by use of the LBRET 2 macro instruction.

IOCS writes a tapemark after the last header label, unless the user has
specified DTF TPMARK=NO.

End-of-File/End-of-Volume Label

When IOCS CLOSE is executed after all records for a file have been
processed, it writes the last block of data records (if any) and a
tapemark, and then branches to the user's label routine.

If I0CS detects the reflective marker, at the end of the tape, before
the end of the output file is reached (see "Output File, Multivolume
File"), or if an FEOV macro is executed, IOCS uwrites a tapemark and
branches to the user's label routine.

IOCS indicates (to the user) which type of trailer label should be
written, by supplying a code in the low order byte of Register O0:

Code F — end-of-file label
Code V — end-of-volume label

The user should code his trailer label to indicate whether it is an
end-of-file label or an end-of-volume label. This will be required by
the user's label routine when the file is used later as input.

IOCS branches to the user's label routine only once on an end-of-file or
end-of-volume condition. The problem program must build and write all
the required trailer labels before returning to I0CS.

After all the trailer labels are written, the user returns control to
IOCS by use of the LBRET 2 macro instruction.

I0OCS writes one or two tapemarks as determined by an end-of-volume or
end-of-file condition (see "Output File, Tapemarks"™).

152 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
Multivolume File

If IOCS detects the reflective marker at the end of the tape, it
determines the end-of-file or end-of-volume condition by the next I/0
instruction for this file in the problem program. If the instruction is
a CLOSE, an end-of-file condition exists; houwever, if the next
instruction is a PUT, an end-of-volume condition exists.

If the problem progam issues an FEOV (forced end-of-volume) macro
instruction, an end-of-volume condition exists.

On any end of-volume condition, IOCS writes a tapemark _and branches to
the user's label routine (if LABADDR=Name is specified), so that
nonstandard trailer label(s) can be uritten.

After all trailer labels are written and the user has returned to 10CS
by a LBRET 2 instruction, IOCS writes one tapemark and prepares for the
next volume. I0CS updates the active drive number if an ASSGN statement
or command specifies an alternate drive (ALT) for the file.

I0CS switches to the alternate drive, if one has been specified, If not,
a message is given to the operator and the system enters the uwait state.
The operator must mount the new volume and restart processsing.

I0OCS positions the new volume at the load point and branches again to
the user's label routine, so that he can write the header label(s) on
the new volume.

When an alternate drive is assigned to a file, the number of the drive
currently in use must be supplied to the Command Control Block (CCB)

used by the EXCP macro for label reading. I0CS provides the hexadecimal
value of this drive in the two low-order bytes of Register 1. The user's
label routine should move this value to bytes 6 and 7 of the CCB.

If physical IOCS macros are used for a file, an OPEN instruction must be

issued for a new volume. This causes I0CS to provide for user uwriting of
header labels.

Multifile Volume

Multiple files can be written on the same volume in the same operation
without repositioning the tape, by specifying DTF REWIND=NORWD for each
file. With this specification the tape is properly located for the user
to write his nonstandard label for each additional file (after the

first) on the reel.

To properly position the tape at the load point for the first file on
the reel, the programmer can include a CNTRL REW macro instruction ahead
gf ghe QPEN instruction, or the operator can position the tape at the

oad point.

When any file is opened, IOCS branches to the user's label routine uwhere
he can write his nonstandard header label(s).

If the tape is rewound or repositioned after a file is closed, the user
must properly position the tape to write any additional file(s) at a
later time. The tape can be advanced from the load point to the correct
position by skipping either two or three tapemarks for each file
presently on the reel. If TPMARK=NO was specified for those files
already written, two tapemarks are skipped. If not, three tapemarks are
skipped. A Job Control MTC FSF statement or command is used for the
skipping, and the DTF entry REWIND=NORWD must be included for the file.

Tapemarks

On an OPEN condition, when the tape is at the load point, IOCS
immediately provides for user—-writing of nonstandard header labels. I0CS
does not write a tapemark ahead of the first header label.

I0OCS writes a tapemark after the last nonstandard header label, unless
DTF TPMARK=NO is specified.

On a CLOSE or end-of-volume condition, IOCS writes one tapemark after
the last data record of the file or volume.

Appendix C: DASD and TAPE Labels 153

Licensed Program - Property of IBM

After the last trailer label is written for a file, I0OCS writes two
tapemarks.

After the last trailer label is written for an end-of-volume condition,
IOCS writes one tapemark.

In a multifile volume, one tapemark follows the end-of-file label(s) of
each file except the last. Two tapemarks follow the end-of-file label(s)
of the last file.

PROCESSING OF UNLABELED TAPE FILES

The following discussion is concerned with unlabeled files (DTFMT
FILABL=NO). Whenever the DTF entry FILABL=NO is specified, or the FILABL
entry is omitted, IOCS assumes that a file does not contain labels,
regardless of what is actually written on the tape. The functions
performed by I0CS ahead of, and after, a file of data records consists
merely of writing tapemarks and positioning the tape reel for reading or
w;i¥ing records. These functions are summarized in this section by type
[¢] ile.

UNLABELED FILES, INPUT FILE

First Record

If the input file was previously written using VSE (with DTF FILABL=NO
specified, or FILABL omitted), the first record for the file is either a
tapemark or data record. Tapemarks are not written at the beginning of
an unlabeled ASCII tape.

If a tapemark is present, I0OCS assumes that the next record is the first
data record of the logical file.

If I0OCS does not detect a tapemark when it reads the first record from
gh: tape, ét backspaces the tape and assumes that the first record is a
ata record.

If the input file was previously written with labels, I0CS treats the
label as a data record.

An unlabeled file may be opened anywhere in the midst of the file.
Regardless of whether the file is opened at the first data record or
somewhere in the middle of the file, no message is given to the operator
(as it is with standard labels).

Last Record

I0CS assumes that the end of the input file has been reached when it
reads the tapemark that follows the last data record. I0OCS immediately
branches to the user's end-of-file routine, specified by DTF
EOFADDR=Name.

In his end-of-file routine, the user must determine if an end-of-file
condition actually exists or if this is an end-of-volume condition.

On an end-of-file, the user performs whatever processing is required for
the end of his data records, and he generally closes the logical file.

Multivolume File

ition exists (instead

If the user determines that an end-of-volume t
by issuing an FEOV

cond
of an end-of-file), he must indicate this to IOCS
macro instruction in his end-of-file routine.

Whenever an FEOV macro is executed, I0CS prepares for the next volume by
updating the active drive number if an ASSGN statement or command
specifies an alternate drive (ALT) for the file.

I0OCS switches to the alternate tape drive if one has been specified. If
not, a message is given to the operator and the system enters the wait
state. The operator must mount the new volume and restart processing.
I0OCS then positions the new volume at the first data record.

154 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
If a multivolume file is reopened after a CLOSE, IOCS expects that t?g

volume is on the same drive as that in use when CLOSE was executed.
it is not, a message is issued to the operator.

Multifile Volume

If multiple files on the same volume are to be read in sequence, the DTF

entry REWIND=NORWD should be specified for each file. With this
specification the tape is located at the correct position for the user
to regd his first record when each file (after the first on the reel} is
opened,

To properly position the tape for the first file on the reel, the
programmer can include a CNTRL REW macro instruction ahead of the OPEN
instruction, or the operator can position the tape at the load point.

When the first file to be opened is not the first file on the reel, the
tape can be advanced from the load point to the correct position by use
of the Jogb Control MTC FSF command or statement. One tapemark is
skipped for each file to be passed. If the reel contains a tapemark

before the first file (TPMARK=NO was not specified when the file uwas
written), that tapemark must also be skipped. The DTF entry
REWIND=NORWD must be included for the file to be opened.

Read Backward

An unlabeled tape file can be read backward if it has not been written
in the data conversion mode (7-track).

Because of special error-recovery procedures, unlabeled ASCII tapes
(Wwithout any leading tapemark) may be read backward.

Tapemarks

I0OCS expects the first record for a3 file to be either a tapemark or a
data record. In either case, IOCS positions the tape so that the user
can read the first data record. IOCS treats a label (if present) as a

data record.

The tapemark that follows all data records indicates to IOCS that the
end of input from a file or volume has been reached.

UNLABELED FILES, OUTPUT FILE

First Record

IOCS writes a tapemark as the first record, unless the user specified
DTF TPMARK=NO.

The tapemark, or the first data record,_ is written starting at the
location where the tape is positioned. Thus if the tape has been rewound
to the load point, the tapemark or data is written over any label(s)
that is already on the tape, such as a volume label.

{fbt?e tape is at load point, IOCS checks for the presence of a volume
abel.,

Last Record

When I0OCS CLOS
processed, 10C
tapemarks.

If I0CS detects the reflective marker at the end of the tape before the
end of the output file is reached (see "Output File, Multivolume File"™),
or if an FEOV macro is executed, IOCS writes one tapemark.

s executed after all records for a file have been
r

E i
S writes the last block of data records (if any) and two

Multivolume File

If I0OCS detects the reflective marker before a CLOSE i5s executed, it
determines the end-of-file or end-of-volume condition by the next I/0

Appendix C: DASD and TAPE Labels 155

Licensed Program - Property of IBM

instruction for this file in the problem program. If the instruction is
a CLOSE, an end-of-file condition exists. If, however, the next
instruction is a PUT, an end-of-volume condition exists.

If the problem program issues an FEOV (forced end-of-volume) macro
instruction, an end-of-volume condition exists.

On any end-of-volume condition, IOCS writes one tapemark and prepares
for the next volume. IOCS updates the active drive number if an ASSGN
statement or command specifies an alternate drive (ALT) for the file.

I0OCS switches to the alternate drive, if one has been specified. If not,
a message is given to the operator and the system enters the wait state.
The operator must mount the new volume and restart processing.

I0CS positions the new tape at the load point and writes a tapemark,
unless DTF TPMARK=NO has been specified.

Multifile Volume

Multiple files can be written on the same volume in the same operation
without repositioning the tape, by specifying DTF REWIND=NORWD for each
file. With this specification, the tape is properly located for the user
to write the first record for each file (after the first) on the reel.

To properly position the tape at the load point for the first file on
the reel, the programmer can include a CNTRL REW macro instruction ahead
?f Ehe QPEN instruction, or the operator can position the tape at the

oad point.

If the tape is rewound or repositioned after a file is closed, the user
must properly position the tape to write any additional file(s) at a
later time. The tape can be advanced from the load point to the correct
position by skipping one tapemark for each file presently on the reel.
If the reel contains a tapemark before the first file (TPMARK=NO was not
specified for those files already written), that tapemark must also be
skipped. A Job Control MTC FSF statement or command is used for this
skipping, and the DTF entry REWIND=NORWD must be included for the file.

Tapemarks

IOCS writes a tapemark ahead of the first data record, unless DTF
specifies TPMARK=NO.

I0OCS urites two tapemarks after the last data record whenever the CLOSE
macro is executed; if REWIND=NORWD is specified, the tape is then
positioned between those two tapemarks.

IOCS writes one tapemark after the last data record for a volume when an
FEOV (forced end-of-volume) macro is executed.

AMERICAN NATIONAL STANDARD LABELS

VSE processes tape files written in the American National Standard Code
for Information Interchange (ASCII), in addition to processing tape
files written in EBCDIC. ASCII is based on the specifications of the
American National Standards Institute, Inc. and standard labels for
ASCI] files are referred to as American National Standard standard
labels. ASCII files may be unlabeled or labeled with American National
Standard standard or user-standard labels. Nonstandard labels are not
permitted on ASCII files.

This section briefly summarizes the differences in specifications and
processing of ASCII and EBCDIC standard labeled files. The American
National Standard standard volume label and standard file 1 label are
shown in Figure 36 on page 160 and Figure 40 on page 167, respectively.
The fields are described in Figure 37 on page 160 and Figure 41 on

page 167 respectively.

The differences between the American National Standard standard volume
label and the IBM standard volume label fields are as follows:

156 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Field EBCDIC Name ASCII Name Bytes

No. EBCDIC ASCII

4 Volume Security Accessibility 11 11

5 Data File Directory (Reserved) 12-21 12-31

6 (Reserved) (Reserved) 22-31 32-37

7 (Reserved) Owner ID 32-41 38-51

8 Owner ID (Reserved)} 42-51 52-79

9 (Reserved) Label Standard Level 52-80 80

Some fields in the American National Standard standard file 1 label have

ield
names different from the corresponding fields in the IBM standard file
These differences are as followus:

Eield EBCDIC Name ASCII Name Bytes
o.

4 File Serial No. Set Identifier

5 Volume Sequence No. File Section Number

11 File Security Accessibility

The optional standard volume labels VOL2—VOL8 are supported for EBCDIC
files only. ASCII has the optional user volume labels (UVL1—UVLY9)
in:tegd. VSE ignores these labels on input and does not create them on
output.

EBCDIC files may have up to seven additional HDR, EOF, and EOV labels
(HDR2-HDR8, EOF2-EOF8, EOV2-EOV8), whereas ASCII may have up to eight of
each of these labels (HDR2-HDRY9, EOF2-EOF9, EOV2-EOV9). By VSE, these
additional labels are bypassed on input and not created on output,
except the HDR2, EOF2, EOV2 labels which were created for ASCII output
files The user-standard header and trailer labels for each mode are:
EBCDIC -- UHL1-UHL8 and UTL1-UTLS.

ASCII -—-— UHLa and UTLa, where 'a' represents an ASCII character in

the range 270 through 5714, excluding 2/7 (quote).

The default for the version number in the American National Standard
standard file label is 00; the IBM standard file label version number
defaults to 01l.

EQV labels on an EBCDIC tape file are followed by one tapemark; on an
ASCII tape file these labels are followed by two tapemarks.

When an ASCII file is processed, IOCS translates the labels from ASCII
into EBCDIC (on input) and from EBCDIC into ASCII (on output). Two
translate tables are provided in the SVA for this purpose. The address
of the ASCII-to-EBCDIC table is in the extension of each communication
region in bytes 44-47. The address of the EBCDIC-to-ASCII table is 256
bytes higher than_ the address of the first table. The address of the
communication region extension is found in bytes 136 - 139 of the
communication region.

Tapes to be used for ASCII files may be initialized with American

National Standard standard labels by the IBM-supplied progranm,
Initialize Tape.

Appendix C: DASD and TAPE Labels 157

Licensed Program - Property of IBM
LABEL FIELDS FOR TAPE

Each label is illustrated, and each field of each label is described in
detail. The individual fields in the illustrations are numbered D1-D to
relate to the corresponding descriptions.

The descriptions of the label fields include the:

. Displacement in hex notation.

. Field Number - Kn or Dn

. Length of the field in bytes (hex notation).

. Content of each field, together with the name of the field.
An additional table shows for each field:

. Source of Information for checking or uWriting this field.

. Purpose of the field.
. Processing performed on input/output.

TLBL statement has only one required field, the
1l other fields are optional, and need be entered
y the user. If any one of these fields is left
blank for OUT files, I0OCS mrites a certain default value in the
corresponding put
fields is left ank
and no checking f t

Th
only if desired
PU
o]

label field. If any one of these optional
for INPUT files, no default value is assumed
he corresponding label field is performed.

e
A
T
u
b

Q= T

Volume Labels on Tape
Figure 34 and Figure 36 on page 160 show volume labels for EBCDIC and
ASCII tapes.

Displ. Field Length Content

0 D1 3 Label ID: VOL

3 D2 1 Ignored by VSE

4 D3 6 Volume serial number

A D& 1 Ignored by VSE

B D5-D7 1E Reserved

29 D8 A Volume owner name or code
33 D9 1D Reserved

Figure 34. Tape Volume Label for EBCDIC Code

158 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program — Property of IBM

Field

D1 Source of Information : System
Purpose:
Identifies the standard volume label.
Processing:
On both input and output, IOCS checks this field to verify that a standard
volume label is present on the tape when DTF FILABL = STD, or DTFPH, is
specified for the first or only file on a tape reel (at the load point). The
volume label should be written previously, before a logical file of data
records is written on the tape.

D2 Source of Information : System
Purpose:
Indicates the sequence of this label within the volume label (VOL) group. VSE
supports Volume Label 1 only, but provision is made for additional standard
volume labels if required in other systems.
Processing:
This field is processed in conjunction with the label identifier (field 1) to
completely identify the volume label.

D3 Source of Information : TLBL/System
Purpose: .
Provides a unique identification for a reel (volume). The number is generally
assigned when the reel is first received in the installation, and retained as
long as the reel is used for files with standard labels. This number should
also be used as the File Serial Number in the file HDR1 label of each logical
file written on the volume. This provides a unique identification of the
volumesfile relationship. If a multivolume logical file is written, the
Volume Serial Number of the first volume becomes the Volume Serial Number in
the file HDR1 label on all volumes.
Processing:
On both input and output, IOCS checks this field against the number supplied
by the user in the File Serial Number field of TLBL, for a singlevolume file.
If TLBL is used and no operand is specified, IDCS assumes the correct volume
is mounted and does not check this field. For a multivolume file, IOCS checks
the Volume Serial Number of the first volume only. On succeeding volumes, the
Volume Serial Number and the File Serial Number differ (as described in
Purpose). On output if the tape does not contain a volume label, the operator
may key in a 6-digit Volume Serial Number and IOCS then uwrites the volume
label. In the TLBL control card, the Volume Serial Number may be between
quotes, or without quotes. If between quotes, the Volume Serial Number is
assumed alphabetic and the field in the label is assumed to contain trailing
blanks. If without quotes, the Volume Serial Number is assumed numeric and the
field in the label is assumed to contain leading zeros.

D4 Source of Information H -
Purpose:
Provides a code to indicate that additional identification is required before
a volume can be considered the correct one for processing. VSE does not use
this field, but provision is made for additional security in other systems.
For example, 0S/VS allouws operator response of a predetermined 'password' to
further authorize a volume for processing.
Processing:
On both input and output, IOCS ignores this field.
Note: OLTEP and OLTSEP will access this byte to determine if the volume is
security protected. If the byte contains other than HEX'F0', '40', or '00' on
an EBCDIC VOL!l label (Tape or DASD), OLT(s), OLTSEP(s) will not allow this
volume to be accesssed by ONLINE TESTS. If VOLl label on Tape is an American
National Standard Label, DOS/0LTSEP will not allow this volume to be accessed
if the security byte is other than X'20', '30', or '00°'.

Figure 35 (Part 1 of 2). Tape Standard Volume Label 1 Fields

Appendix C: DASD and TAPE Labels 159

Licensed Program - Property of IBM

Field
D5 Source of Information : -
Purpose:
Used for Direct Access volumes only. Should contain blanks on tape volumes.
D6 Source of Information : -
Purpose:
Reserved for future use. Should contain blanks.
D7 Source of Information : -
Purpose:
Reserved for future use as required for American National Standard Institute,
Inc. Should contain blanks.
D8 Source of Information : -
Purpose:
Reserved for the identification of the owner or assignee to whom this volume
belongs, such as a customer, installation, department, or system. This can be
a value for controlling the allocation of tape reels in a large installation.
Processing:
On both input and output, IOCS ignores this field.
D9 Source of Information : -
Purpose:
Reserved for future use. Should contain blanks.
Figure 35 (Part 2 of 2). Tape Standard Volume Label 1 Fields

Hon
TN DO

Displ. Field Length Content

D1 3 Label ID: VOL

D2 1 Ignored by VSE

D3 6 Volume serial number

D4 1 Accessibility

D5,D6 1A Reserved

D7 E Name or code of volume ouwner
D8 1C Reserved

D9 1 Standard byte:

= file has ANSI standards
= file does not have ANSI
standard

1
blank

Figure 36.

Tape Volume Label for ASCII Code

160 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program — Property of IBM

Field

D1 Source of Information : System
Purpose:
Identifies the standard volume label.
Processing: N) N
On both input and output, IOCS checks this field to verify that a standard
volume label is present on the tape when DTF FILABL = STD, or DTFPH, is
specified for the first or only file on a tape reel (at the load point). The
volume label should be written before a logical file of data records is
written on the tape.

D2 Source of Information : System
Purpose:
Must be 1. Any other VOL labels will be ignored.
Processing:
This field is processed in conjunction with label identifier (field 1) to
identify the volume label completely.

D3 Source of Information : TLBL
Purpose:
Provides a unique identification for a tape reel (volume). The number is
generally assigned when the reel is first received in the installation, and
retained as long as the reel is used for files with standard labels. This
number should also be used as the File Serial Number in the file HDR1 label of
each logical file written on the volume. This provides a unique
identification of the volume/file relationship. If a multivolume logical file
is written, the Volume Serial Number of the first becomes the File Serial
Number of the file HDRl label on all volumes.
Processing:
On both input and output, IOCS checks this field against the number supplied
by the user in the File Serial Number field of TLBL, for a single-volume file.
If TLBL is used and no operand is specified, IOCS assumes the correct volume
is mounted and does not check this field. For a multivolume file, IOCS checks
the Volume Serial Number of the first volume only. On succeeding volumes, the
Volume Serial Number and the File Serial Number differ (as described in
Purpose). On output if the tape does not contain a volume label, the operator
Tag Eey in a 6-digit Volume Serial Number and IOCS then writes the volume
abel.

D4 Source of Information : -
Purpose:
Provides a code to indicate that additional identification is required before
a volume can be considered the correct one for processing.
Processing:
On input, if this field is not x'40' I0CS calls phase $IJJTSEC for further
checking (see Macro User's Guide). On output, I0CS uwrites space a space.

D5 Sogurce of Information : -
Purpose:
Reserved for future use as required for American National Standards Institute,
Inc. Should contain spaces.

D6 Source of Information H -
Purpose:
Reserved for future use as required for American National Standards Institute,
Inc. Should contain spaces.

Figure 37 (Part 1 of 2). Tape Standard Volume Label 1 (ASCII Mode)

Fields

Appendix C: DASD and TAPE Labels 161

Licensed Program - Property of IBM

Field
D7 Source of Information : -
Purpose:
Provides for the identification of the owner or assignee to whom this volume
belongs, such as a customer, installation, department, or system. This can be
a value for controlling the allocation of tape reels in a large installation.
Processing:
On both input and output, IOCS ignores this field.
D8 Source of Information : -
Purpose:
Reserved for future use as required for American National Standards Institute,
Inc. Should contain spaces.
D9 Source of Information : -
Purpose:
1. This file observes the American National Standard Institute, Inc.
standards.
(Decimal 1)
2. This file does not necessarily observe the American National Standards
Institute, Inc. standards but it follows an agreed format.
(Space)
Figure 37 (Part 2 of 2). Tape Standard Volume Label 1 (ASCII Mode)

The volume label for ta

Fields

is 80 bytes long and begins by VOLl for the

pes
first volume label. Additional volume labels are ignored by VSE.

IBM-Standard File Labels on Tape

Figure 38
tapes.

and Figure 40 on page 167 show IBM-standard file labhels for

DUWWWN PN -
VORUIT VNI NDWo

Displ. Field Length Content

Label ID: HDR, EOF, or EOV

Label sequence number: 1

File-ID from TLBL

Volume serial number of the volume where

the file begins

Volume sequence number within the file

File sequence number on the volume

Version number of the file

Sub-version number

Creation date: cyyddd

¢ indicates the century, blank=19, 0=20, 1=21
Expiration date: cyyddd

Ignored by VSE

Number of blocks; used in trailer labels only
System code: IBMDOSVS

Reserved

D1
D

o
GIN
—

el o = lw lo] ol o BN o]
DUINFO VONOUT D
~NOON=s SNDDPD N W

ooUoUoo

Figure 38.

IBM-Standard Tape File Label for EBCDIC Code

162 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Field t

D1 TLBL Default (Qutput) : -
Source of Information : System 0
Purpose: . .
Identifies the type of standard file label. HDR signifies a standard header
label at the beginning of a logical data file, and EOF signifies a standard
trailer label at the end of a logical data file. EOV is a standard trailer
label that signifies the end of records on one reel of tape, with additional
records on one reel of tape, with additional records for the same logical file
on another reel (volume).
Processing: L.
On input, IOCS OPEN/CLOSE routines search for HDR to locate the beginning of a
file, and check EOF/EQOv to determine the end-of file vs end-of-volume i
condition. On output, IOCS OPEN/CLOSE writes the appropiate identification.
The user never specifies this identification.

D2 TLBL Default (Qutput) : -
Source of Information : System
Purpose:
Indicates_the sequence of this label within a label group (HDR, EQF, EOV). VSE
supports File Label 1 only, but provision is made for additional standard file
labels in other systems. For example, 0S/VS uses both HDR1, EOF1l, EOV1 and
HDR2, EOF2, EOQOV2 standard file labels.
Processing:
This field is processed in conjunction with the label identifier (field 1) to
completely identify the type of standard label.

D3 TLBL Default (QOutput) H DTF Filename
Source of Information : TLBL
Purpose:
Permits the user to identify his logical file by an application-oriented
unique name.
Processing:
I0OCS OPEN/CLOSE check against, or write, the name specified by the user, but
do not use this field to select the proper file for processing. If TLBL is
used and no operand is specified for an output file, I0OCS writes the DTF
filename.,

D& TLBL Default (QOutput) : Volume Serial Number of 1lst file
Source of Information : TLBL
Purpose:
Provides a numeric (or code) identification for the logical file. In a
multivolume file, this field contains the same number in the header label on
each volume. This field should contain the Volume Serial Number from the VOL
label of the first or only volume of the file. If it does, this uniquely
identifies the volumes/file relationship. If it does not, an error message is
issued to the operator when the volume label is checked (see Figure 35 on
page 158, field 3),.
Processing:
On input, I0CS OPEN/CLOSE uses this field in conjunction with label fields 5
and 6 to identify the file specified for processing. The file is specified,
by the user by these same three fields in TLBL.
On output, I0CS OPEN/CLOSE urite the file serial number specified by the user.
If TLBL is used and no operand is specified for an output file, IOCS writes
the volume serial number of the first (or only) reel of the file.

Figure 39 (Part 1 of 4). Tape Standard File Label 1 Fields

Appendix C: DASD and TAPE Labels 163

Licensed Program - Property of IBM

Field

D5 TLBL Default (Qutput) : 0001
Source of Information H TLBL/System
Purpose:
Identifies the order of the columns of data records in a multivolume logical
file or in a multivolume multifile set. In a logical file the Volume Sequence
Number should be 0001.
Processing:
In a_multivolume file or ina multivolume multifile set, the user need specify
(in TLBL) only the number of the first volume to be processed. I0CS increases
this number by 1 for each succeeding volume after the first. On input, IO0CS
uses this label field, in conjunction with fields 4 and 6, to identify the
file and volume specified (by TLBL). On output, I0CS urites the volume
sequence number as specified by the user or updated by 10CS. If TLBL is used
and no operand is specified for an output file, IOCS writes 0001.

D6 TLBL Default (Output) : 0001
Source of Information : TLBL/System
Purpose:
Identifies the order of the logical files on a multifile volume or in a
multifile multivolume set. In a single-file volume, the File Sequence Number
should be 0001.
Processing:
On input, IOCS OPEN uses this field in conjunction with label fields 4 and 5
to identify the file specified for processing. The file is specified, by the
user, by these same three fields in TLBL. On output, when a multifile
volume(s) is to be written starting at the load point, the user need specify
the File Sequence Number of the first file only. If TLBL is used and no
operand is specified for the output file, IOCS writes 0001. IOCS increases
the number by 1 for each succeeding file. I0OCS OPEN/CLOSE uwrites the
appropiate number, as specified or updated.

D7 TLBL Default (Output) : blanks
Source of Information H TLBL
Purpose:
Identifies the various editions of a file, such as a grandfather-father-son
relationship. Thus it can be used to ensure that the desired edition of the
file is selected for processing, if several editions are maintained in the
library for history reference. The editions should be numbered in sequence.
Processing:
I0CS checks against, or writes, the number supplied by the user. If TLBLis
used and no operand is specified for an output file, IOCS writes blanks.

D8 TLBL Default (Output) H blanks
Source of Information H TLBL
Purpose:
Provides a more detailed identification of the editions of a file. For
example, field 7 could specify a month (1-12), and this field could specify
the activity for a particular week (1-5) of the month.
Processing:
I0OCS checks against, or writes, the number supplied by the user. If TLBL is
used and no operand is specifi d for an output file, IOCS writes blanks.

Figure 39 (Part 2 of 4). Tape Standard File Label 1 Fields

164 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

D9 TLBL Default (Qutput) : -
Source of Information H TLBL for Input

System for Output

Purpose:
Provides the date that the file was originally created. This can be used at a
later time to determine how old the records are. Or, it can be used (in
conjunction with or in place of generation number) to ensure that the desired
edition of the file is selected for processing.
Processing:
On input, I0CS OPEN checks this date against the data supplied by the user.
If TLBL is used, the data is supplied in the Date field. If it is omitted,
the creation date in the label is not checked. The_format of the date_to be
entered in TLBL is yy/ddd (year/day of the year). The day may have 1-3
characters. On output, IOCS mrites the date that is available in the
communication region of the Supervisor. The user does not supply a creation
date for an output file.

D10 TLBL Default (Qutput) H Creation Date
Source of Information H TLBL or SYSTEM for OUTPUT
Purpose:
Indicates the date that the records may be considered inactive. At that time
the old file may be deleted by overurltlng it with a current edition of the
same logical data, or another file
Processing:
If TLBL is used, this field is not checked on input. On output, IOCS OPEN
compares this field in the old header label to today's date in the
communication region to determine if the old label has expired. If so, I0CS
overwrites the old label and data records. If not, a message is given to the
operator, who then determines whether to to overurite the old data. In a
multifile volume(s) processed sequentially, I0CS checks the expiration date in
the old header of only the first file processed. All succeeding files are
considered to have expired on the same date. I0CS OPEN/CLOSE urites the
expiration date supplied by the user for the new output file. If TLBL is
used, the Date field can specify either the date that the file will expire, or
a retention period for the file. If the expiration date is specified, the
format is yy/ddd (years/day of the year). You may enter 1-3 characters for
ddd. The retention period is specified as 0-9999%. If this field is omitted,
a 0-day retention period is assumed, and IO0OCS uwrites the date avaible in the
communication region.

D11 TLBL Default (Output? H -
Source of Information : System for Output
Purpose: .
Provides a code to indicate that additional identification is required before
a file can be considered the correct one for processing. VSE does not use
this field, but provision is made for additional protection in other systems.
For example, 0S allous operator response of a predetermined 'password' to
futher authorize a file for processing.
Processing:
On input I0CS ignores this field. On output XOCS OPEN/CLOSE uwrites the code
supplied by the user. If none is specified, I0OCS writes a character zero.

Figure 39 (Part 3 of 4). Tape Standard File Label 1 Fields

Appendix C: DASD and TAPE Labels 165

Licensed Program - Property of IBM

Field

D12

TLBL Default (Qutput)
Source of Information H System for Output

.o

Purpose:

Provides the number of physical records (blocks) uwritten in a file when it was
created. This can be used (as a 'hash' total) to verify that all records have
been read, when the file is processed later as an input file. The number of
records is the total of all physical records between the header and trailer
labels of a logical file, excluding tapemarks and checkpoint records. This
field is used in trailer labels only. In header labels it contains character
zeros.

Processing:

For a read forward input file, IOCS OPEN sets a counter at zero. During
processing, IOCS routines accumulate a count of the blocks read from the tape.
At the end of the file or volume, IOCS checks the accumulated count against
that in the block count field of the trailer label. If an input file is read
backwards, I0OCS stores the block count read from the trailer label on OPEN,
and decrements the count during processing. At the end of the file (header
label), IOCS CLOSE checks the decremented count against the zero in the block
count field of the header label. A read backwards file must be contained
within one volume. If the accumulated block count does not agree with the
count in the trailer label (or header label on read backwards), a message is
given to the operator who may ignore the error or terminate the job. On
output, IOCS OPEN writes character zeros in this field of the header label.
During processing, IOCS routines accumulate the block count and write it in
the trailer label at the end of the file or volume. In a multivolume file
eagh EOV/EOF trailer label contains the number of blocks written on that
volume only.

D13

TLBL Default (Qutput)

Source of Information : System for QOutput

Purpose:

Provides a code to indicate the IBM Programming System under which this file
is written. This can be of value when an installation uses more than one
programming system.

Processing: N

On input IOCS ignores this field. On outp
supplied by the user. If none is supplied
IBMDOSVSbbbbb in this field.

ut I0CS OPEN/CLOSE writes the code
by the user, I0OCS writes

D14

TLBL Default (Qutput) H -

Source of Information

Purpose:
This field is reserved for future use as required for American National
Standards Institute, Inc.

Processing: .
On input IOCS ignores this field. On output, IOCS writes blanks.

Figure 39 (Part 4 of 4). Tape Standard File Label 1 Fields

1646 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Displ. Field Length Content

Label ID: HDR, EOF, or EOV

Label sequence number:

File-ID from TLBL i i
Volume serial number of first volume of the fil
Volume sequence number within the file

File sequence number within volume(s)

Version number of the file

Sub-version number

Creation date: cyyddd

¢ indicates the century, X'40'=19, X'F0'=20,

X'F1'=21

Expiration : cyyddd
y
5
M

WV NUWTITBNHUO
Ogpouooooog
WVOONONIDWN -
AN W

TN A bt 4t

da
Accessibility
Number of blo
System code:
Reserved

te

byte i
cks written; only in trailer label
IBMZLB

t
4 followed by two blanks

DULLWUIN
MY l-NUE
ooooo
= e e
PRI NS -]
~NOo—os

L Figure 40. IBM-Standard Tape File Label for ASCII Code

Field

D1 TLBL Default (QOutput) : -
Source of Information H System
Purpose: .
Identifies the type of standard file label. HDR signifies a standard header
label at the beginning of the logical data file, and EOF signifies a standard
trailer label at the end of a logical data file. EQVis a standard trailer
label that signifies the end of a record on one reel of tape, with additional
records for the same logical file on another tape reel (volume).
Processing: .
On input, IOCS OPEN/CLOSE routines search for HDR to locate the beginning of a
file, and check EOF/EQOV to determine the end-of-file versus end-of-volume
condition. On output, IOCS OPEN/CLOSE writes the appropiate identification.
The user never specifies this identification.

D2 TLBL Default (Output) H -
Source of Information : System
Purpose: .
Indicates the sequence of this label within a label group (HDR, EOF, EOV).

‘ VSE supports File Label 1 and 2 for ASCII, and ignores subsequent numbers.

Processing:
This field is processed in conjunction with the label identifier (field 1) to
identify the type of standard label completely.

D3 TLBL Default (Output) : DTF Filename
Source of Information : TLBL
Purpose:
Permits the user to identify his logical file by a unique,
application-oriented name.
Processing:
IOCS OPEN/CLOSE check against, or write, the name specified by the user, but
do not use this field to select the proper file for processing. If TLBL is
g;id and no operand is specified for an output file, IOCS writes the DTF

Tlename.

Figure 41 (Part 1 of 5). ;gp?dstandard File Label 1 (ASCII Mode)
ields

‘ Appendix C: DASD and TAPE Labels 167

Licensed Program - Property of IBM

Field

D& TLBL Default (Qutput) : Volume Serial Number of lst file
Source of Information : TLBL
Purpose:
Provides a numeric (or code) identification for the logical file. In a
multivolume file, this field contains the same number in the header label on
each volume. This field should contain the Volume Serial Number from the
first file (or only file). If it does, this uniquely identifies the
volume/file relationship. If it does not, an error message is issued to the
operator when the volume label is checked (see Figure 37 on page 160, field
Processing
On input, IOCS OPEN uses this field in conjunction with fields 5 and 6 to
identify the file specified for processing. The file is specified, by the
user, by these three fields in TLBL On output, IOCS OPEN/CLOSE writes the
set identifier specified by the user. If TLBL is used and no operand is
specified for an output file, IOCS writes the volume serial number of the
first (or only) reel of the file

D5 TLBL Default (Output) : 0001
Source of Information H TLBL/System
Purpose:
Identifies the order of the volume of data records in a multivolume logical
file or in a multivolume multifile set. 1In a singlevolume file, the File
Section Number should be 0001.
Processing:
In a multivolume file or in a multivolume multifile set, the user need specify
(in TLBL) only the number of the first volume to be processed. IOCS increases
this number by 1 for each succeeding volume after the first. On input, IOCS
uses this label field, in conjunction with fields 4 and 6, to identify the
file and volume specified (by TLBL). On output, IOCS writes the volume
sequence number as specified by the user or updated by IOCS. If TLBL is used
and no operand is specified for an output file, IOCS writes 0001.

D6 TLBL Default (Output) : 0001
Source of Information H TLBL/System
Purpose:
Identifies the order of the logical files on a multifile volume or in a
multifile multivolume set. In a singlefile volume, the File Sequence Number
should be 0001.
Processing:
On input, IOCS OPEN uses this field in conjunction with label fields 4 and 5
to identify the file specified for processing. The file is specified, by the
user, by these same three fields in TLBL. On output when a multifile
volume(s) is to be written starting at the load point, the user must specify
the File Sequence Number of the first file. If TLBL is used and no operand is
specified for the output file, IOCS writes 0001. IOCS increases the number by
1 for each succeeding file. I0CS OPEN/CLOSE writes the appropiate number, as
specified or updated.

Figure 41 (Part 2 of 5). Tape Standard File Label 1 (ASCII Mode)

Fields

168 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

Field

D7 TLBL Default (Output) : blanks
Source of Information : TLBL
Purpose:
Identifies the various editions of a file, such as a grandfather-father-son
relationship. Thus it can be used to ensure that the desired edition of the
file is selected for processing, if several editions are maintained in the
library for history reference. This edition should be numbered in sequence.
Processing:
I0OCS checks against, or writes, the number supplied by the user. If TLBL is
used and no operand is specified for an output file, IOCS writes blanks.

D8 TLBL Default (QOutput) : blanks
Source of Information : TLBL
Purpose:
Provides a more detailed identification of the editions of a file. For
example, field 7 could specify the month (1-12), and this field could specify
the activity for a particular week (1-5) of the month.
Processing:
I0OCS chechs against, or writes, the number supplied by the user. If TLBL is
used and no operand is specified for an output file, IOCS writes blanks.

D9 TLBL Default (Output) : -
Source of Information : TLBL for Input

System for Output

Purpose:
Provides the date that the file was originally created. This can be used at a
later time to determine how old the records are. Or, it can be used (in
conjunction with or in place of generation number) to ensure that the desired
edition of the file is selected for processing.
Processing:
On input, IOCS OPEN checks this date against the date supplied by the user.
If TLBL is used, the date is supplied in the Date field. If it is omitted,
the creation date in the label is not checked. The format of the date to be
entered in TLBL is yy/ddd (year/ day of the year). The day may have 1-3
characters. On output, IOCS writes the date that is available in the
communication region of the Supervisor. The user does not supply a creation
date for an output file.

Figure 41 (Part 3 of 5). Tape Standard File Label 1 (ASCII Mode)

Fields

Appendix C: DASD and TAPE Labels 169

Licensed Program - Property of IBM

Field

D10

TLBL Default (Output) : Creation Date
Source of Information : SYSTEM or TLBL for Output

Purpose:

Indicates the date that the records may be considered inactive. At that time
the old file may be deleted by overuwriting it with a current edition of the
same logical data, or another file.

Processing:

If TLBL is used, this field is not checked on input. On output, IOCS OPEN
compares this field in the old header label to today's date in e
communication region to determine whether the old has expired. If so, IOCS
overwrites the old label and data records with the new label and data records.
If not, a message is given to the operator, who then determines whether to
overwrite the old data. In a multifile volume(s) processed sequentially, IOCS
checks the expiration date in the old header of only the first file processed.
All succeeding files are considered to have expired on the same date. I0CS
OPEN/CLOSE writes the expiration date supplied by the user for the new output
file. If TLBL is used, the Date field can specify either the date that the
file will expire, or a retention period for the file. If the expiration date
is specified, the format is yys/ddd (year/day of the year). The day may have
1-3 characters. If a retention period is specified, 0-9999 days (1-4
characters) may be entered. If this field is omitted, a 0-day retention
period is assumed, and I0OCS writes the date available in the communication
region of the Supervisor.

TLBL Default (QOutput)

.

Source of Information : -

Purpose:
Provides a code to indicate that additional identification is required before
a file can be considered the correct one for processing.

Processing:
On input, if this field is not X'40' IOCS calls phase $IJJTSEC for further
checking (see Macro User's Guide). On output IOCS writes a space.

TLBL Default (Qutput) : -
Source of Information : System

Purpose:
Provides the number of physical records (blocks) written in a file when it was
created. This can be used (as a 'hash' total) to verify that all records have
been processed, when the file is processed later as an input file. The number
of records is the total of all physical records between the header and trailer
labels of a logical file, excluding tapemarks. This field is used in trailer

labels only. In header labels it contains character zeros.

Processing:

For a read forward input file, IOCS OPEN sets a counter to zero. During
processing, I0OCS routines accumulate a counter of the blocks read from the
tape. At the end of the file or volume, IOCS checks the accumulated count
against that in the block count field of the trailer label. If an input file
is read backwards, IOCS stores the block count read from the trailer label on
OPEN, and decrements the count during processing. At the end of the file
(header label), IOCS CLOSE checks the decremented count against the zero in
the block count field of the header label. A Read backwards file must be
contained within one volume. If the accumulsted block count does not agree
with the count in the trailer label (or header label on read backwards), a
message is given to the operator who may ignore the error or terminate the
job. On output, IOCS OPEN writes character zeros in this field of the header
label. During processing, I0OCS routines accumulate the block count and write
it in the trailer label at the end of the file or volume. In a multivolume
fiie eachlEOV/EOF trailer label contains the number of blocks written on that
volume only.

Figure 41

(Part 4 of 5). Tape Standard File Label 1 (ASCII Mode)
Fields

170 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

C

Licensed Program - Property of IBM

Field

D13 TLBL Default (Output) : -
Source of Information : System for Output
Purpose: .)
Provides a code to indicate the IBM Programming System under which this file
is written. This can be of value when an installation uses more than one
programming system.
Processing:
On input I0OCS ignores this field. On output I0OCS OPEN/CLOSE writes the code
supplied by the user. If none is supplied by the user, IOCS writes
IBMDOSVSbbbbb in this field.

D14 TLBL Default (Output) : -
Source of Information : -
Purpose:
This field is reserved for future use as required for American National
Standards Institute, Inc.
Processing:
On input IOCS ignores this field. On output, IOCS writes spaces.

Figure 41 (Part 5 of 5). ;gp?dstandard File Label 1 (ASCII Mode)
ields

IBM-standard file labels are 80 bytes long. Each file has a header and
a trailer label which have the same format, for reading the tape forward
or backward. The first four characters of each label identify the
particular label:
header label —-- HDRI1, H23§ trailer label -- EOF1,EOF2 at the end of
a file
EOV1,EOV2 at the end of

a volume but not of
the file HDR2, EOF2 and EOV2 for ASCII only.

Additional labels (HDR3 to 8) are ignored by VSE.

User-Standard File Labels on Tape

Figure 42 shows user-standard file label format for tapes.

Displ. Field Length Content

0 Dl 3 Label ID: UHL or UTL
3 D2 1 Label sequence number: 1 to 8
4 D3 4C User's label information

Figure 42. User-Standard Tape File Label

Appendix C: DASD and TAPE Labels 171

Licensed Program - Property of IBM

Field

D1 Source of Information : System

Purpose:
Identifies the standard volume label.

Processing:

On both input and output, IOCS checks this fie
volume label is present on the tape when DTF F
specified for the first or only file on a tape
volume label should be written previously, bef
records is written on the tape.

D2 Source of Information : System

Purpose:
Indicates the sequ nce of this label within the user header (UHL) or the user
trailer label (UTL) group.

Processing:
This field is processed in conjunction with the label identifier (field 1) to
completely identify the user header label or the user trailer label.

D3 Source of Information : User

Purpose:
Provides a means for you to label your SAM/DAM file with any information you
need in addition to that supplied by the standard labels.

Figure 43. Tape User-Standard Label Fields

User-standard labels are header labels located and processed before the
data of the file, and trailer labels located and processed after the
file. Header and trailer labels are identified by:

User header labels UHLn User trailer labels UTLn
n may be 1 to 8.

User-standard file labels are 80 bytes long. The first four bytes
contain UHLn or UTLn and the remaining 76 bytes contain user data.

You can include definitions or descriptions of the file in addition to
that in the IBM-standard labels. For example, you may have a unique
numbering system for file identification or you may have subcategories
that you want to define for the files, or you may want to maintain an
audit trail in these labels.

Non-Standard File Labels on Tape

Non-standard labels are only supported on EBCDIC code tape labels. They
may have any length, do not have a specified identification in the first
four characters, and do not have a fixed format. They may contain
whatever information the user desires, and in any arrangement. They are
completely the responsibility of the user. He should, however, use some
of the features found in standard labels. For example: header labels
must be distinguished from trailer labels, end-of-file trailer labels
must be distinguished from end-of-volume trailer labels, and some name
or number must identify the file to which the label bel ngs.

When files with non-standard labels or unlabeled files are written on a
volume, the volume label is destroyed. Therefore, these files can only
be written on volumes that are not expected to be used again for files

with standard labels.

172 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
LABFL RECORDS IN THE LABEL AREA

When the system reads the DLBL or TLBL and EXTENT statements, it first
stores the label information in the label area. The format of the label
records in this area is not quite the same as the actual labels on the
device. It is shown in VSE/Advanced Functions Diagnosis Reference:
Initial Program Load and Job Control.

Appendix C: DASD and TAPE Labels 173

Licensed Program - Property of IBM
APPENDIX D: MASTER INDEX FOR VSE/ADVANCED FUNCTIONS LIOCS

This Master Index contains references to the VSE/Advanced Functions
Logical IOCS manuals. The number(s) after each entry is the key to the
manual(s) in which the information is found. The keys correspond to the
following manuals.

1. VSE/Advanced Functions LIOCS Volume 1l: General Information and
Imperative Macros , LY33-9116.

2. VSE/Advanced Functions LIOCS Volume 2: SAM , LY33-9117.
3. VSE/Advanced Functions LIOCS Volume 3: DAM and ISAM , LY33-9118.
4. VSE/Advanced Functions LIOCS Volume 4: SAM FOR DASD , LY33-9119.
ACB (access method control block) 1
access methods 1, 2, 3
direct 1, 3 buffer
indexed sequential 1, 3 (MICR) 2
sequential 1, 2, 4 status indicator 2
telecommunications 1 truncation, 3800 printer 2
virtual 1 buffering, double 3
ADD function (ISAM) 3 byte, sync
add to the overflow area 3
adding records to a file 3
address modification subroutine 1 capacity record (RO) 3
ADDRTR function (ISAM) 3 card device files 2
channel program builder 3 CCWs (basic), channel program builder 3
end-of-file add 3 CDMOD 2
ESETL macro 3 CWTRL macro 2
GET macro 3 GET macro 2
overflow area add 3 PUT macro 2
prime data area add 3 chain reading of VTOC labels 4
PUT macro channel program builder
READ KEY macro 3 ISMOD D
SETL macro phase 1, $$BSETL 3 ISMOD ADDRTR
SETL macro phase 2, $$BSETL1 3 ISMOD, RANDOM RETRVE 3
SETL macro phase 3, $$BSETLZ2 3 ISMOD, SEQNTL RETRVE 3
WAITF macro 3 strings 3
WRITE KEY macro 3 CHECK macro 1, 2
WRITE NEWKEY macro 3 MRMOD 2
algorithm to calcualte upper/louwer limits CIDF ¢4
for FBA devices & CKD
alteration factors 3 DASD file, contents of &
alternate switching 2 logical units &
EOV, tape 2 CLOSE macro 1
system units, tape 2 close
ANSI monitor
control codes 2 functions 1
tape file label 1 general chart 1
tape volume label 1 phases
ASCII subroutines 1
conversion tables 1 close
standard volume label 1 routines 1, 2, 3, 4
associated files 2 alternate switching for EOV 2
asynchronous processing 3 alternate switching for system units
relative addressing extensions 3 2
direct access DASD 3
diskette 2 N
B-transients (see logical transients) 1, 2 DTFCP/DTFDI tape files 2
3,4 DUMODFO 2
basic telecommunications access method 1 EOF/EQV input forward 2
block size, logical EOV output forward 2
BSI (buffer status indicator) 2 files 1
IJDPR3 2
IJDPRT 2
ISAM 3
magnetic tape 2
MICR
opt

ape files 2

2
i a% reader files 2
r files for 3800 2

VT
S
-0
3M -~
+30

e

1764 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM
punch files 2

sequential DASD ¢4

unit record files 2

VTOC 4

CLOSER macro 1
CNTRL macro 1, 2, 3, &
CDMOD 2
DAMOD 3
DAMODV 3
DRMOD 2
Magnetic tape 2
ORMOD 2
printer files for 3800 2
PRMOD 2
sequential DASD 4
COBOL, input file closing 2
cocC 3
codes. DTF type

1

combined files (DTFCD) 2
command control block (CCB) 1
common LIOCS routines 1
common VTOC handler (CVH) 4
commonly used logical transients 1
compiler files 1,

characteristics 2

CPMOD macro 2

DTFCP 2

initialization and termination 2

logic module (CPMOD)Y 2

open monito 1
console files (DTFCN) 1, 2

close 2

DTFCN macro 2

GET macro

open monitor 1
control

PUT macro
(CI) 4
control 1,

2
interval
block, access method (ACB) 1
information &
conventions for relative addresses 3
conversion of relative addresses 3
converting relative block addresses &
count-key-data (CKD) addressing 4
covV 4
CPMOD macro 2
ET

IOPTR=YES 2

one I/0 area 2
TRC=YES 2

two I/0 areas 2
ameters 2

IOPTR=YES 2

one I/0 area 2

two I/0 areas 2
CP) 4

CPOINT (DTFCP) 4
CPODINTS (DTFCP) ¢4
creation of tape volume labels 1
cross reference list
label ¢4
phase name — CSECT 4
cross-reference label list 1, 2, 3
cvTOoC
cylinder 3
index 3
overflow area 3
overflow control record 3

co
e

DAM (direct access method) 3

DAMOD 3

DAMODV 3

DASD file processing, sequential 4

DASD 1, 2,
device independent functional support
DTF dense type update open phase label

Appendix D:

4

Master Index for VSE/Advanced Functions LIOCS

procedures for (LBRET macro) 1
file protect 1,
files

close routine 1

open routine 1

inp
label information 3
label information 1
label 1
RD? common close data organization, VSAM
data areas 2, 4
Magnetic tape 2
PRT1/3800 printer support 2
sequential DASD 4
data security 1, 3
indicator 3
message writer 1
declarative macros
define the file (DTFxx) 1
interrelationship of instructions 1
module generation (xxMOD) 1
delete label
open output sequential DASD 2
sequential DASD open output 4
dequeue extent block entries
dequeue for VSAM routines ($$BENDQB) 1
descriptor byte,
builder 3
independent DTF extension 1

DAM channel program

device
device
independent files 2
initialization and termination 2
RPS interface
system files (DI) 2
release transient $$BRELSE 1
FR macro 2
IMOD 2
irect access method (DAM) 1, 3
ISEN macro 1,
i

error message uwriter 1
phase 1 1
phase 2 1
volume ID support 1
diskette
error message wWwriter 1
file labels
files
close routine 1
module save areas 2
open routine 1
record format 2
storage areas 2
ay VT0OC 1

ocessing &
macro
4
information record 2

2
NT table 3
acro 1, 2

1
7/
im
r
T
T
ment
D

T

Y

VrX0CnNZo

JGDTF) &
ension (IJJGDTFX) G
es 1, ’ '

oooooooagco
—AA—4—H0UVWO rr
TITTIOTVRIO -t

UoUoUUoUooUTyY
L
TAMTTNATNTTY X
HMOOOODOOOWO A+ GNT
NZCR—BETZOO—

N PNIN NN NN =

175

Licensed Program - Property of IBM

DTFMR 2 recovery, punch ¢
DTEMT 2 ESETL macro_ 1, 3
DTFOR 2 ADDRTR 3
DTFPH 2, 3, 4 RETRVE, SEQNTL 3
DAM 3 explanation of flowchart symbols 1, 2, 3
diskette 2 extended buffering for the 3800 2
magnetic tape 2 extending
sequential disk 4 a file with ISAM 3
DTFPR 2 information to user, DAM 3
DTFPT 2 extents, console open output sequential ¢4
DTFSD 4 EXTRN symbol linkage
DTFSR 1
DTF
address constants 1 factor, reconversion 3
extensions 3 FBA 4
types FEOV macro 1, 2
used by $$BCLRPS 1 FEOVD
DTFCD 2 macro 1, 2
DTFCN 2 processing &
DTFCP 2, 4 field
DTFDA DTF Extension & information record 2
DTFDA macro 3 sequence link
DTFDI 2 file protection ¢4
DTFDR 2 file 1, y 3
DTFDU additions 3
DTFIS macro 3 definition macros
DTFMR initialization and termination 1
DTFMT 2 labels 1,
DTFOR 2 DASD 1
DTFPH 2, 3 diskette 1
diskette 2 tape
DAM 3 files, associated 2
magnetic tape 2 fixed block architecture, definition of ¢4
sequential disk 4 flowchart
DTFPR 2 labels 1, 3
DTFPT 2 symbols 1, 2, 3
DTFSD 2 forced-end-of-volume 1, 2, 4
dump VTOC format—1 label
DASD 1 extents in ¢
diskette 1 format 3 label, extent overflow 4
duplicate device assignment 1 FREE macro 1, 2,
dynamics device release (RELEASE macro) 1 DAMOD 3
DAMODV 3
ISMOD, RANDOM RETRVE 3
ENDFL macro 1, 3
enqueue for VSAM routines ($$BENDQB) 1
entry/sequenced data organization 1 generation macros, module 2
LOAD 3 for diskette
EOF add 3 GET logic for the 1017 paper tape reader
EOF/EQV GETVCE output parameter lis (IJJGGCP) G
monitor 2
routines, general chart 1
EOQV handling DASD labels 1
and logical spacing routine 2 handling tape labels 1
limits for prime data area 3
ERET macro _1 X
ERREXT 2, 3 I/0 area requirements 3
DUMODFI 2 I/0 areas
DUMODFO 2 add (blocked records) 3
option 3 add (unblocked records) 3
parameter list 3 load
ERROPT 2 retrieve (blocked records) 3
DUMODF I 2 retrieve (unblocked records) 3
DUMODFO 2 ID, reference by (DAM) 3
error conditions, DTFCP & IDLOC 3
error/status indicator 3 ignore open sequential DASD 2
error 1, 2, IIPCLOSE 1
exit routine 2 ITIPOPEN 1
message list, master 1 imperative
message writer macro expansions 1
data security 1 macros
disk open phase 1 1 independent overflow area 3
disk open phase 2 1 index level pointer
diskette open phase 1 1 indexed sequential access method 1, 3
diskette open phase 2 1 indexes 3
messages 2 cylinder 3

option extension 3 master 3
options extension 2

176 IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

track 3 logic modules, channel program building &
indicator, error/status 3 logic modules, versions of in SVA 4
information record logic modules 2, 3,
document 2 CDMOD 2
field 2 CPMOD 2
line 2 DAMOD 3
initialization DAMODV 3
and termination 1, 2, 3 DIMOD 2
CP and DI files 2 DTFCN 2
DAM 3 ISMOD 3
magnetic tape files 2 MRMOD 2
MICR files 2 ORMOD 2
optical reader files 2 PRMOD 2
procedures PRT1 printers 2
sequential DASD files 6 PTMOD 2
unit record files 2 SAM DASD 4
I0CS 1 Tape 2
ISAM (indexed sequential access method) l, 3 logic Processing
close 3 magnetic tape 2
file extension 3 sequential DASD 4
ISAM DTF device type update open phase 3 logical
macro instructions 3 I0CS 1
add records to a file 3 common routines 1
load or extend a DASD file 3 general information 1
random retrieval 3 special purpose routines 1
sequential retrieval 3 spacing and EOV routines 2
rotational positional sensing 3 transient 1, 2, 3, &

ISMOD macro
job control 1, 2

key
referenced by DAM 3
sequenced data organization 1

parameter and I/0 area

cross-r t 4
information, DAS 3, 4
list, flowchart 1, 2, 3
processing

r
4

rence lis
D

D 1
IBM standard volume 1
nonstandard 1
processing 1
standard tape, file labels 1
standard volume
magnetic tape 1

additional 1

input file 1

nonstandard 1

output file 1

processing 1

standard file 1

BODDDDDDDPDDLDDDODDDDODDDODDODODDODODDODPDODDDPDODOOODOOOD
DDDDDDDDDDDDDDDDDDDDODDDDDDDDDDODODODOODOOODOOOOOOG

0 o o 0o 09 00 00 09 09 0o 00 oo 09 (90 00 00 0 00 b o 0o 00 b9 U0 10 60 00 00 00 E0 U0 60 09 o 100 60 D0 00 00 0 00 100 09 00 40 U0 L0 00 £ oo oo
0000000000000 000C00000000000000IIICLHFHMMMMMOOOOOOOOO
oUupooUoUooOoOUoOoooOOooOgOoOOOO00000000OVMIOOZROVZIZZIrrrrre=moO
VONOZIIHHHHHHHFHDI>»»P> U T T T T UV TV TUOOOMO000COTUOO0OXTTOO000VNO T
VTXEZCHYOOOO000OCHTNHOOO———{—HOIIEENTIMrA—HOTTOTUNNVVNO <N
OEOMNOONCUILSUNEFFPU TN WNEDWNE TN OO0 X~ ZTOWr T~ eN DM~ O
[lanl o el ol WHLRENT SN LV R FPNP RPN XY N7 N1 NTNT ST ST NT ST XT T N XY NT T N SYOTI N N T N ONE o) Ny Sy Ny V) N NP

LBRET macro 1,
length field, sequence 3
line information record 2
link f1eld. sequence 3
linkage, XTRN 1
LIOCS inte rrelationship, example of 1
list VTOC 1
LITE macro 1, 2
MRMOD 2
load FBA open 4
LOAD function 3
ENDFL macro, phase 1 3
ENDFL macro, phase 2 3
SETFL macro 3
WRITE NEWKEY macro 3
loading or extending a file 3
logic module/SSR work area (IJGXZWA) &

Appendix D: Master Index for VSE/Advanced Functions LIOCS 177

Property of IBM

Licensed Program -

"
(1}
—-
-
- m
~N —t
(]
N ~) -
x] M-t m
[} > -0 >
- — o
QT M " ~M G G-
[N (] n = (XS
Sty “ <0V >4
n o w w n+<caw
(TR >Aa > > - Q-
L lal o] o E oc [+ ~ N
MppC m | il " - |l T X4t
M NN N KT} MW - MLWwmm W MmaLawn
MmN e o~ o~ K g~ o~ N M o NONANNNNNX DM €0 Lo
Ewnwou [=] ney o - a oOUL 4 ~N
> M- ”m - - <~ o < [« = - >E N ~4 >-WUOEC e
[a]alal. JodaTa) N ,] NAEANNASNNNMANNANMNNNQTENNNNASD —A--0 ~~ OO0 FAQAZANAk 30A+ L 0UM— o —— N ~
0000000 e X Z i, A000A sax0000000Z 000V DTS — e
EXEXOQEE >0o .o a [=]<gl] TrXZAQXEFUWLFEFONEESUDAOCT xnNzx
<CxOHOHIXXAOANA AZFA>QAZAIHEDNNMFXEITIIMMFQLdYS JAwWwE N g4 QAALHFMX-WUPLILILDT oI~ 0O OxAk—FFAQ
QQAQHHOLMLOO00 OWZOo1000ANAAHEEOCLAAANANNULLLFF-F<CSUV AS>>WANQNY <COOAAFX0OLN SAAN L NAOWWOWZZZOZZZO
EFXFfFfary—-HEo bl oyl AOuiw aoow |t Q] T E WU E - —-HE
oL -HdXN—— = —ZZxwn X w c [=4 VOHXOoOAO A O000N
[S]ajalalajajaulaalajalalajalalajalalajelalalalalalafe] TN} [IFTRTR TN (4] — — HJaXxZOoo0000a0a

-t

~

m
HANAATOI I MMM MMM NN A=A NN N A A A A A A A e e e e A D D) e e = T T O AN T N A e A A = O MMM MMM — D
—
A
>XA > SNTNONORO AU AANLNdA ONANTZ INM AN I A ~A~—e= 0000 W JUL (DT ~ANHHO -
A0 OFAXOOOOODOON—JOOOMOM>>00ZZZZZZZ0MKAEM>S>O0WAISNHOOEEEEZVLLULL JJJ00Z .Y
NUDUNINVNVVNVNVNNSEENVVDS XWILWWLIWWH JZZ&E - -OAAL >N JD Jd IO OQ I W b - - W O
OOQAWL HHHMHMHHHHHHM EEEEEEZOA0A 0000000 XEONNVVNEEFFDDD>> T W wwwnno. o
OOoO0000000000O00O000000DO0000O0000NOO0O000DOO0O0O000000O000000OXINVVNVNUVIMNMO~
aoommomMMMm@MMMMMOMMOMMM@MOMMMEOMMAMOMMOAOMMOEOMaMMMMOMOMMOMmMMMMaoMMMmMmMmMOMmAmm>.0
BDDDDDDDDDDDDDDDDDDDDDDDHDDDDDDDDDDDDDDDDDDDDDDDDDDDDDODVDVODODDOLDOOOOND
DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDUBDDDDDDDDDDODDODDDDDDDOOGODDOOOOONI
=
=

o
[
o
n
E

”

-

NN NN

- — -
N 0

=] (=}

p x4 x X
AxE-WW a0
OOELVVNXKO
W OO+
AL TIJZ
OO OO0

Functions Diag. Ref. LIOCS Volume 1

IBM VSE/Adv.

178

L Licensed Program - Property of IBM
PRTOV

fo
PTMOD
PUT

a0 -
~
W

OAZTIUMIIZIOT~ 3

-

0700
moc

»r—
U0~ ~ZOOTOOOO™ -

3
M RETRVE 3

N

B records 3
B records 3
Shlp

2
2

N=DVDZIZT<<< X

— moCCoO
== JZZO0000OPPU =

[
-
N

w Voo
m mmmmmmmo
-

— AHownrr—
DO r»r <
Zo—0
ZOoOOMMMHHUO P DA XN —~O0DO000U0 R - ——-
WW
mw
—

w
<
m
w

—C
KNV ZZZARXARRHEPL>—A0IFHHHOUOO—AZN>r rTMO<ONMY <VOXXRXRAXHOUZON o U—~HOOOO>
>

v~ e —X

=—
3720
<

PUPHHHOOOOP»TERENNND>OON WD
ZOUO W

o3>
Tow

3
RETRVE 3

[w k-]
o

=
~
—

ommm 00000000
<<<OVPXI .
IIIXO<SWLO
cco
U000NP» WZZOw
COPOWw T
zo

ZIVLLVLWDODUOUO mZ I~
OXxXXX

3
UNB records 3
RUNB records 3
B records 3
UNB records 3

ONNNMITIMMMMOTMTTITTMODOVVNOEE>TIOMO Orm ZM>aA>o00mMmmmoo M mA"C—H~DO00
<no

ROZMMMEEZE<SK<<<< ——4-4 IXXIIIIIX
CXoXoWORRXXR

macros
declarative 1
imperative 1
module generation 1

magnetic ink character recognition (MICR)

files 1,

Magnetic Tape Files 1, 2
close monitor functions 1
Data areas 2
DTFMT macro 2
DTFPH macro 2

Tape Labels 2
Label Processing 1, 2
Logic Processing 2
message writers 1, 2
open, general chart 1

Open/Close 2
master
error message list 1
index, ISAM 3
message Writer interface table (IJJGIFT) 4
message-module relationship
message
code for disk open error 1
cross-reference list 1, 2, 3, 4
writer
writers 1, 2
data security 1

diskette data security 1
diskette open phase 1 1
diskette open phase 2 1
DTFCP/DTFDI 2
magnetic tape 2
MICR 2
messages 1
$$BOMSGLl 1
$$BOMSG2 1
master error list 1
mathod of processing 1
MFCM 1, 2
MFCU 1
MICR 1
buffer 2
close 2

DTFMR macro 2
error messages 2
files 2
initialization and
logic module (MRMOD
message writer 2
MRMOD macro 2
ope 2
ocket light indicators 2

MUDLOD 1
address modification subroutine 1
subroutines for open

modular
generation macros (xxMOD) 1, 2
tabular system

modules 1, 2,
direct access method 3
fixed-length records 2
reenterable 1,
undefined records 2
variable-length records 2

MRMOD 2

multiple track search 3

termination 2
) 2

nonstandard tape labels 1
normal add to prime data area 3
NOTE macro 1,

OMR/RCE format open routines 2
open VTOC (OVTOC) macro 4
OPEN/CLOSE and problem program save area
(IJJGSVEA) 4

OPEN/CLOSE general modules/routines

B-transients

monitor, functions of 1
OPEN/CLOSE logic 2,

DAM 3

ISAM 3
OPEN 1, 2, 3, 4

console files 2

DAM 1, 3

general chart 1
user labels 3
device independen
device independen
diskette files 2

2
» RPS interface

Appendix D: Master Index for VSE/Advanced Functions LIOCS 179

C

2

org
ORM
ove

ovT
pap

par
PDT
PFR
pha
phy

0
I
I
1

DTFCP/DTFDI 2
input tape

2

labeled input file 2

output tape
3
T 2

= et e
[72 Joo Y T |

nor
DPR
DPR
put s
AM 1
gene
logic D
logic I
macro

a
M
A

13>~ @

2
i e ($$BOPIGN) 1

quential DASD 4

3

1 chart 1

y general chart 3
M, general chart 3

magnetic tape files 1, 2
general chart

monitor

$$BOPEN1 phase

card device
compiler fil

1
$$BOPEN2 phase 2
s
1

file
es

1

console files 1

DAM files 1

general chart 1

ISAM files

1

maanetic tape files 1

MICR files

optical reader files 1

phases
routines 1

telecommunications files 1

unit record

files

OMR/RCE routines 2

optical reader
printer files
printer files f
extended buf
punch files 2
reader files
routines 1
sequential DA
unit record f
work files %

c
d
c R
lose monitor
RMOD macro
TFDR macro
TFOR macro

open routine 1
ORMOD macro

S
i
’
i
a
al reader (O
2
2
2

2
D 4
1

;iles 2
or 3800 2

fering 2
2

ess constants
nd DR) files

2
anization, VSAM data 1

oD 2

rflow area 3
cylinder 3
ISMOD ADD 3

upper limits 3

0C, format of

er tape 1, 2

files, close monitor 1
punch error recovery 2
ameter list, ERREXT 3
ABB, MICR
(punch/feed/read) files 2
se—~name — CSECT cross-reference list

sical I0CS 2
magnetic tape (
sequential dasd
CS/LI0CS interr
NTR macro 1
NTS macro 1
NTW macro 1

4

DTFPH) 2
(DTFPH)Y 2
elationship 1

prime data area EQV limits 3

pri

180

nter files 1,
close monitor

IBM VSE/Adv.

1

Functions Diag.

Licensed Program - Property of IBM

1
1, 2

25

ate device assignment
dr

a

1

Ref.

1

4

open monitor 1
printer
PRMOD 2
process VTOC (PVTOC) macro &
protect DASD files 1
PRTOV macro 1, 2
DPR3 2
DPRT 2
PTMOD 2
punch/feed/read (PFR) files 2

— -
[y 3

PUT logic for the 1018 paper tape punch

PUT macro 1, 2,

VOHHHHOODODO
DXL CCHHT
IIXZIUOUIZINZX
O0gQoOoOvUTWOONO00
jvlolwiwh Folelebdole)

W=7

Or

N

RCE open routines 2
RDF/CIDF reference overlay (IJGXZRDF)
RDLNE macro 1,
RDONLY 3
read cylinder index into storage 3
read format 3 label (IJJGVD1D) &
READ macro 1, 2, 3

DRMOD 2

ID DAMOD 3

KEY DAMOD 3

KEY ISMOD ADDRTR 3

KEY ISMOD RANDOM RETRVE 3

MRMOD 2

ORMOD 2
reader file open

2

reading VTOC labels &
reconversion factor 3
record definition field (RDF) &4
record 1, 2, 3

document information 2

field information 2

format 2

ID returned (IDLOC) 3

line information

relationship of format 2

spanned

types 3

zero (RO} 3
reenterable modules 1, 3
reference 3

by ID (DAM) 3

by KEY (DAM) 3

methods and addressing systems 3
relative

address conversion 3

addressing conventions 3
ASE macro
cate DTF address constants 1
E macro 1,
E 2
r

039
mmm m
-
o m

anslate subroutine
fixed-length records 2
undefined records
variable—-length records 2
TRUNC 2
work area subroutine 2
WRITE work files
rename VTOC label &
requirements

LIOCS Volume 1

4

C

Licensed Program - Property of IBM

for I/0 areas 3 table
storage 1 DSKXTNT 3
RESCN macro 1, 2 PDTABB for MICR 2
RETRVE functions random (ISAM) 3 tabular modular system 1
channel program builder 3 linkage
FREE macro 3 tape error statistics (TES) 1
READ KEY macro 3 tape labels procedure (LBRET macro)
WAITF macro 3 tape volume labels, creation of 1
WRITE KEY macro 3 tape 2
RETRVE functions sequential (ISAM) 3 tapemarks 1
channel program builder 3 telecommunications access methods 1
ESETL macro 3 termination procedures 3,
GET macro 3 termination 1,
PUT macro 3 ile 1
SETL macro ($$BSETL) 3 of DAM 3
SETL macro ($$BSETL1) 3 procedures 3, 4
RETRVE open (ISAM) 3 TES
phase 1 3 processor 1
phase 2 3 support 1
returned record ID (IDLOC) 3 track R
rotational positional sensing (RPS) 4 hold function 1
RPS index
DTF extension work area 1 search, multiple 3
indicators 4 trademarks, placement of 2
phase loading 1 trailer labels or tape, user 1
SVA initialization 1 translation, paper tape files 2
TRC (table reference character) 2
CPMOD
SAM (sequential access method) 1, 2, &4 DTFCP
scratch VTOC label DTFDI 2
search multiple tracks 3 DTFPR 2
seek overlap subroutines 3 PRMOD - PUT macro 2
selective tape lister (STL) 2 truncation 2
SEOF 4 IJDPR3 2
SEQOV macro 1 3800 buffer 2
sequence link field 3 type code, DTF 1
entries 3 types of records 3
index level pointer format 3
sequential access DASD files 4
sequential access method (SAM) 1, 2 UNIT RECORD FILES 1, 2
sequential processing 1 CLOSE MONITOR 1
SETDEV macro 1, 2 CLOSE ROUTINE 1
SETFL macro OPEN MONITOR 1
LOAD 1, 3 OPEN ROUTINE 1
SETL macro unlabeled MT file option 2
ISMOD ADDRTR 1, 3 unlabeled tape files 1
ISMOD SEQNTL RETRVE 1, 3 upper/lower limits for FBA devices,
shared virtual area (SVA) 4 algorithm to calculate
software end-of-file (SEOF) ¢4 user label parameter llst (IJJGULTB) 4
spanned records & user label processor
control field 3 for input files &
READ macro 3 for output files 4
WRITE AFTER macro 3 user labels 1,
WRITE macro 3 magnetic tape 1
WRITE RZERQ macro 3
special purpose routines for LIOCS 1
split cylinder extents 4 VARUNB records 3
standard READ macro 3
label processing 1 WRITE after macro 3
tape file labels 1 WRITE macro 3
STL control fields 2 WRITE RZERO
storage requirements 1 version 3 DTF (IJGVERS) 4
supervisor SYSFIL routine, function of 4 virtual storage access method (VSAM) 1
support, TES 1 virtual transients (logical transient
SVA to LTA bridge 2, &4 extension running in virtual) 1
switching, alternate 2 $SVOPENT 1
symbols, flowchart 1, 2, 3 volume descriptor list (IJJHDLST) 4
sync byte 2 volume label 1, 2
SYSFIL volume labels DASD/dlskette 1
logic modules & VSAM (virtual storage access method) 1
logical units & data organization
system files, device independent 2 VSE/BTAM
system files vVTOoC
SYSIPT 4 closing of &
SYSLST 4 display phase 1 1
SYSPCH & display phase 2 1
SYSRDR 4

Appendix D: Master Index for VSE/Advanced Functions LIOCS 181

Licensed Program - Property of IBM

display phase 3 (diskette) 1 DAMOD 3
dump 1 SPNUNB records 3
dump (diskette) 1 VARUNB records 3
list 1 WRITE ID macro 3
list (diskette) 1 DAMOD
label processing & WRITE KEY macro 3
opening of DAMOD 3
reading labels of 4 ISMOD ADDRTR
rename label in 4 ISMOD RANDOM RETRVE 3
scratch label 4 WRITE macro y 2, 3
writing labels to 4 SPNUNB records 3
VARUNB records 3
WRITE NEWKEY macro
WAITF macro 1, 2, 3 ISMOD 3
DAMOD 3 ISMOD 3
DAMODV 3 ISMOD 3
DRMOD 2 ISMOD 3
ISMOD 3 write requests, types of 4
ISMOD 3 WRITE RZERQO macro
ISMOD 3 DAMOD 3
ISMOD 3 SPNUNB records 3
MRMOD 2 VARUNB records 3
ORMOD 2 writing VTOC labels 4
WRITE AFTER macro 3

182 1IBM VSE/Adv. Functions Diag. Ref. LIOCS Volume 1

Licensed Program - Property of IBM

INDEX

ACB (access control block) 5
Acces Method Services (AMS) 105
access methods
direct 2 A
indexed sequential 2
sequential
telecommunications 3
virtual 2
additional file labels on
tape
address modification
subroutine
AMS (Access Method Services) 105
ASCII conversion tables 75
audit trail 134, 172

B-transients

See logical transients
backspace (BSL) 15
basic telecommunications access
method
BSL (backspace) 15
BTAM-ES 3

CCB (command control block) 7
check duplicate device
assignements
for logical units 642
CHECK macro 12
CLOSE macro 13
close monitor
DASD files 34, 464
diskette files 34, 44
general chart 60
general chart, part 2 61
general chart, part 3 62
ISAM files 44
label space processing &
magnetic ink character
recognition
(MICR) file 34, 44
magnetic tap s 3
optical r

5

- OOy
owwwa
DAY OOOMD D
D=trtrrr
—==000 -kl
mOoOWVWVUI-Hh=—
N3 ONM e
N~~~
m
1]
oD
Do

unit record
VSAM files
close routines
files 33
close sequential DASD
FEOVD 46
free track function 46
input and output 46
CLOSER macro 1
CNTRL macro 14
codes, DTF type 6

command control block? (
common LIOCS routines 3
commonly used logical
transients
compiler file, open monitor 40
console file, open monitor 40
control block, access method
(ACB) 5
creation of tape volume
labels 34

[o]

DAM (direct access method) 2
DAM device independent extension
work area 47
DASD
file protect 47
label procedure (for LBRET
macro) 0
label processing 36
input files 37
output files 37
DASD files
close routine 34
open routine 33
DASD RPS common close 45
data organisation, VSAM 2
declarative macros 1,
define the file (DTFxx) &
module generation (xxMOD) &
dequeue extent block entries 46
device independent DTF extension
work area 47
evice release transient
r

ccB) 7
9

$BRELSE) 47
ct accesslmethod (DAM) 2

lose routine 34
abel processing 37
input files 37
output files 38
open routine 33
diskette open
input, general chart 64
output, general chart 65
Device Support
ity) 132

16
fine the File) 105

DSF
Fac
DSPL
DTF
DTF os

A A A A AAAAAAAAAAAAAT A=~
TN ATNTITITIMANI IO
VITITTOII-MOUOODOOOWOM
O—-NI0-10NZCO~P>TVZOOD

[=lwlelelelelelv]elvlo]vielele]wle)
s ppppnpLDD DB DN

Index 183

DTFSR 5
DTF types 6
DTF types used by $$BCLRPS 46
duplicate device assignement 42
dynamic device release (RELEASE
macro)

[e]

ENDFL macro 17

enqueu/dequeue for VSAM
routines

entry-sequenced data
organization

EOF/EQV routine, general
chart 63

ERET macro 17

error message list, master 66
error statistics by tape
volume 39

ESETL macro 17

EXTRN symbol linkage 7

FEOV macro 18
FEOVD macro 18
file
definition macros &
initislization and
termination 33
labeling 34
forced end of volume 646
format-1, -2, -3, -4 labels 104
FREE macro 18

GET macro 19

IIPCLOSE 45
IIPOPEN 33, 4l
imperative macro expansions 12
imperative macros 1,
indexed sequential access method
(ISAM) 2
initialization and
termination
10CSs 1
ISAM (indexed sequential access
method) 2
ISAM open, general chart 59

[«]

key-sequenced data
organisation 2

184 IBM VSE/Adv. Functions Diag.

Licensed Program - Property of IBM

labels, DASD
input file 37
output file 37
processing 36

labels, diskette
input file 37
output file 38
processing 37

labels, magnetic tape
additional
input file 35
nonstandard 36
output file 35
processing 35
standard file 34
user, header and trailer

T
DASD and tape labels
procedure 20

macro 9
LIOCS/PIOCS interrelationship,
example of 3
LITE macro 21
logical I0QCS

function of 1

processing methods 2
logical transients

LLBL 5

DOPDPOPDPDOPDPDDDPDPDDODODPDDODPODOODOOPDOOOODOON
<< 0o 0o 0o 0o 00 09 60 00 60 O G 00 10 O 00 B9 00 1 60 00 00 0 150 09 B0 1 60 O 09 DU 0 4o O0 00 0o U0 o9
MrOoO000OD0ZZr-mmmmmmmour-unnnnnoIIoo000
ZNXZIIZIMOONVAOPNZZZZZZZODTV—TVTOITIICHNOTNNN
“MUVOVOKNHWNFZANFNOO NVR-HCESOEZOMNNODOLnLSNM
W
HSLNLVDDDDDDDLDDDDDDOVNNIDWDDDNNILDDDDDDDDD
PO RNNRROROWHN WNNVOINOOWROVONTNID D

c
c
c
c
C
E
0
¢}
0
0
o
0
0
0
0
0
0
0
0
o
0
o]
0
0
0
0
0
0
Q
0
0]
0
0
0
0
0
R
0
4

NOOGPOPDPDDPOPDDPDPOPDPDDPDDPDDDODPDPDRDDDPOODOPODOOOOOND

L
L
L
L
N
D
D
D
D
D
D
D
D
E
F
M
M
P
P
]
P
P
P
P
-]
-]
-]
P
S
S
S
v
N
W
W
E
P
7

Ref. LIOCS Volume 1

('\

Licensed Program - Property of IBM

[+]

~
H

O r r<Zrmmx
B N NOODHWN

-

0

-
NN D= =
NN = QO Q0] s s

L —{=~{—H00O
N 0D

[CISTRTNTIN
S LD

mn N
~

n
N
(o]

W
WWWHW ONN NN N

N~ OW Vv
o

DPOMMMAMMMMMAOCCO0O000VUVTOHIMIOMMNOVZVHZ™ IO
w

EEXHOOVVONOOoO00X0 VUV VU000 ZAr ~OMTTIMMMoOoOOOOy
H-HC—A——H0OWNrr>r—~A—A A H-HMTMM—S =20 —~{mMOOoOmMmMOoonNn-—-00om
—~-HZrMO<OUMOZD QOZZZZZZMMM M~ maonuno

mToO rm ZmMmP» m
<

macro expansions, imperative 12
macro relationship
macros
declarative &
imperative 8-11
module generation 6
magnetic ink character
recognition
(MICR) files close routine 34
magnetic tape files
close routine 34
open routine 33
magnetic tape open, general
chart 58
master index, LIOCS manuals 174
message code for disk open error
message uwriter
message writers
data security, disk
($$BODSPW) 53
data security, diskette
($$BODSMO) 51
disk open phase 1
($$BOMSG1l) 52
disk open phase 2
($$BOMSG2) 53
diskette open phase 1
($SBODMSG) 49
diskette open phase 2
($$BODMS2) 49
master error list 66
method of processing 2
MICR 34

MICR files
open routines 33

MOD macros 6
MODLOOP, address modification
subroutine
modular tabular system 3
module generaticon macros
(xxMOD) 4,
modules reenterable 7
Multi-Extent-file 105
Multiextent-file 106
Multivolume File 105

[~]

NOTE macro 21

[e]

open diskette
input, general chart 64
output, general chart 65

open ignore ($$BOPIGN) 41

open ISAM, general chart 59

OPEN macro 22

open magnetic tape, general

chart

open monitor
$$BOPEN 39
$$BOPEN1 phase 1
$$BOPEN2 phase 2
compiler files 40
console files 40
DASD files 33, 40
diskette files 33
general chart 56
ISAM files 41
label space processor
magnetic tape files 33, 40
MICR files 33, 40
optical reader files 33, 4
telecommunications files &
unit record f;les 33, 40

40
41

y 40

dequeue extent block
entries 46
OPENC macro 22
OPENR macro 23
optical reader files
close monitaor 44, 45
open routine 33
organization, VSAM data 2

7]

PIOCS/LINCS interrelationship,
example of 3

POINTR macro 2

POINTS macro 2
OINTW macro 2
rocessing meth
RTOV macro 25
HT macro 25

[*]
p
o]
P
PUTR macro 26

Index

0
0

185

RDL
REA

[&]

NE macro 27
D macro 27

reenterable modules 7
relative-record data

or
REL

ganization 2
EASE wmacro 28

relocate DTF address

co

nstants

T

>

o

n

m

~n
P Pa)
NN

29
CN macro 29
DTF extension
phase loading

work area 47

&4
SVA initialization 43

[s]

SAM (sequential access method) 2

SEO

V macro

sequential access method (SAM) 2
sequential processing

nunnn

ET
ET
ET
P

LI

DEV macro
FL macro 30
L macro 31

0cs 39

ecial purpose routines for

standard tape file labels 34
storage requirements

tabular modular system 3

tap

linkage
e

label procedure (for LBRET

macro) 20

tape error statistics

186

See

IBM VSE/Adv.

Functions Diag.

Licensed Prog

tape volume 1
of 34
tapemarks 35

telecommunica
methods

TES (tape err
track hold fu

TRUNC macro
type code, DT

[v]

unit record f
close moni
close rout
open routi

unlabeled tap

user labels,
on tape 35

<

ra

onr» <9

<
—A3 ¢ A~
O~~aaaoo0tand

<

~“~XW0WX0NnTUVUO
+ X XTIz

WAITF macro
WRITE macro

ram - Property of IBM

abels, creation

tions access

or statistics) 39
nction

31
F 6

iles

tor 45

ines 34

nes 33

e files 36

header and trailer

ge access method

isation 2
storage access
ase 1 47

ase 2 48

ase 3 (diskette) 48
ette) 48
($$BOVDMP) 51

ette) 49
($$BTHOMP) 51
ion 24

31

32

Ref. LIOCS Volume 1

Note: Staples can cause problems wit: automated mail sorting e!quipment.

Please use pressure sensitive or other gummed tape to seal this form.

VSE/Advanced Functions Diagnosis Reference LIOCS Volume 1 READER’S
General Information and Imperative Macros COMMENT
Order No. LY33-9116-0 FORM

This form may be used to communicate your views about this publication. They will be sent to
the author’s department for whatever review and action, if any, is deemed appropriate.
Comments may be written in your own language; use of English is not required.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.
Possible topics for comments are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name and mailing address:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp is. necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you may
mail directly to the address in the Edition Notice on the back of the title page).

LY33-9116-0

Reader’s Comment Form

Fold And Tape Please Do Not Staple Fold And Tape

...

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

|

BUSINESS REPLY MAIL —_—
FIRST CLASS PERMIT NO.40 ARMONK, N.Y. e ——
]

|

POSTAGE WILL BE PAID BY ADDRESSEE: |
.]

International Business Machines Corporation —
Department 6R1 T —
|

180 Kost Road ———
Mechanicsburg, PA 17055 ——
L |

]

|

Fold And Tape Please Do Not Staple Fold And Tape

T
q'l'

jju
@

aul] 6uo|y pIo4 0 IND-

C

0-9L16-€EAT "V'S'N ul pajulid (0€-00€Y/0LES ON @fld)

| aWN[OA SOOI @ouUaiaey sisoubel(SuoiOUNg PAUdBAPY/ISA

C

'S

LY33-9116-0

[T

