
• •

--..------- -------- -. ------ ----------_.- Virtual Machine/System Product

System Product Interpreter Reference

Release 6

SC24-5239-03

Fourth Edition (July 1988)

This edition, SC24-5239-03, is a major revision of SC24-5239-02, and applies to Release 6 of the IBM Virtual
Machine/System Product (5664-167) unless otherwise indicated in new editions or Technical Newsletters.
Changes are periodically made to the information contained herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370, 30xx, 4300, and 9370
Processors Bibliography, GC20-0001, for the editions that are applicable and current.

Summary of Changes

For a detailed list of changes, see "Summary of Changes" on page 205.

Changes or additions to the text and illustrations are indicated by a vertical line to the left of the change.

In this manual are illustrations in which names are used. These names are fanciful and fictitious; they are
used solely for illustrative purposes and not for identification of any person or company.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for copies of IBM publications should be made to your IBM representative or to the IBM branch
office serving your locality., Publications are not stocked at the address given below.

A form for reader's comments is provided at the back of this publication; if the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Department 060, P.O. Box 6,
Endicott, NY, U.S.A. 13'].60. IBM may use or distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

The form for reader's comments provided at the back of this publication may also be used to comment on
the VM/SP online HELP facility.

© Copyright International Business Machines Corporation 1983, 1984, 1986, 1988. All rights reserved.

Contents

Chapter 1. Introduction
Who This Book Is For
What Systems Application Architecture Is

Supported Environments
Common Programming Interface

How to Use This Book
For Further REXX Know-how:

Chapter 2. General Concepts . . .
Brief Description of the Restructured Extended Executor Language
Where to Find More Information
Structure and General Syntax

Tokens
Implied Semicolons .. .
Continuations

Expressions and Operators
Expressions
Operators
Operator Priorities

Clauses
Null cIa uses
Labels
Assignments
Instructions
Commands .

Assignments and Symbols
Constant Symbols
Simple Symbols ..
Compound Symbols
Stems

Issuing Commands
Environment ..
Commands ...
The CMS Environment
The COMMAND Environment
Issuing Subcommands from Your Program

Chapter 3. Instructions
ADDRESS
ARG
CALL
DO .

Simple DO Group
Simple Repetitive Loops
Controlled Repetitive Loops
Conditional Phrases (WHILE and UNTIL)

DROP
EXIT
IF
INTERPRET
ITERATE
LEAVE

1
1
2
2
2
4
5

7
7
8
8
8

11
11
12
12
12
14
16
16
16
17
17
17
17
18
18
18
19
21
21
21
22
24
24

27
28
30
32
35
36
36
36
38
40
41
42
43
45
46

Contents iii

NOP ... 47
NUMERIC ... 48
OPTIONS .. 49
PARSE ... 50
PROCEDURE 53
PULL .. 55
PUSH .. 56
QUEUE ... 57
RETURN .. 58
SAY ... 59
SELECT ... 60
SIGNAL .. 61

The Special Variable SIGL 63
Using SIGNAL with the INTERPRET Instruction 64

TRACE ... 65
A Typical Example 68
Format of TRACE output 68

UPPER ... 70

Chapter 4. Functions 71
Syntax .. 71
Calls to Functions and Subroutines 71

Search Order
Errors during Execution

Built-in Functions
ABBREV
ABS
ADDRESS
ARG .. .
BITAND .. .
BITOR
BITXOR .. .
CENTRE/CENTER
CMSFLAG
COMPARE
COPIES .. .

72
75
75
76
76
76
77
78
78
79
79
80
80
80

CSL .. 80
C2D .. 80
C2X .. 81
DATATYPE \......... 81

i
DATE .. 82
DBCS ... /83
DELSTR ... 84
DELWORD 84
DIAG/DIAGRC 84
DIGITS ... 84
D2C .. 85
D2X ... 85
ERRORTEXT 86
EXTERNALS 86
FIND ... 86
FORM .. 87
FORMAT .. 87
FUZZ .. 88
INDEX .. 88
INSERT ... 89

iv VM/SP System Product Interpreter Reference

JUSTIFY .. 89
LASTPOS .. 90
LEFT ... 90
LENGTH .. 90
LINESIZE .. 91
MAX ... 91
MIN ... 91
OVERLAY 92
POS .. 92
QUEUED .. 92
RANDOM .. 93
REVERSE .. 94
RIGHT .. 94
SIGN ... 94
SOURCELINE 94
SPACE .. 95
STORAGE 95
STRIP .. 95
SUBSTR ... 96
SUBWORD 96
SYMBOL .. 97
TIME ... 97
TRACE ... 99
TRANSLATE 99
TRUNC .. 100
USERID .. 100
VALUE .. 100
VERIFY .. 101
WORD ... 102
WORDINDEX 102
WORD LENGTH 102
WORDPOS 102
WORDS .. 103
XRANGE 103
X2C ... 104
X2D .. 104

Function Packages 105
VM Functions 105

CMSFLAG 105
CSL ... 106
DIAG ... 108
DIAGRC 109
STORAGE 118

Chapter 5. Parsing for PARSE, ARG, and PULL 119
Introduction 119

Parsing Words 119
Parsing Using String Patterns 120
Parsing Using Numeric Patterns 120
Parsing Arguments 121

Definition ... 121
Parsing with Literal Patterns 122
Parsing with Variable Patterns 123
Use of the Period as a Placeholder 124
Parsing with Positional Patterns and Relative Patterns 124
Parsing Multiple Strings 126

Contents V

Chapter 6. Numerics and Arithmetic
Introduction
Definition

Chapter 7. System Interfaces
Calls to and from the Language Processor

Calls Originating from the CMS Command Line
Calls Originating from the XED IT Command Line
Calls Originating from CMS EXECs
Calls Originating from EXEC 2 Programs
Calls Originating from a Clause That Is an EXF>ression
Calls Originating from a CALL Instruction or a Function Call
Calls Originating from a MODULE
Calls Originating from an Application Program

DMSEXI
The Extended Parameter List

U sing the Extended Parameter List
The File Block

Function Packages
Non-SVC Subcommand Invocation .
Direct Interface to Current Variables

The Request Block (SHVBLOCK)
Function Codes (SHVCODE)
Using Routines from the Callable Service Library

Chapter 8. Debug Aids
Interactive Debugging of Programs
Interrupting Execution and Controlling Tracing
Help

Chapter 9. Reserved Keywords and Special Variables
Reserved Keywords
Special Variables

Chapter 10. Some Useful CMS Commands

Chapter 11. Invoking Communications Routines

Appendix A. Error Numbers and Messages

Appendix B. Double Byte Character Set (DBCS)
General Description

DBCS Enabling Data
Mixed String Validation
Instruction Examples ..

DBCS Function Handling
Built-in Function Examples

External Functions
Counting Option
Function Descriptions
DBADJUST .
DBBRACKET
DBCENTER
DBCJUSTIFY
DB LEFT .
DBRIGHT

vi VM/SP System Product Interpreter Reference

127
127
128

135
135
135
136
136
136
136
137
138
138
141
142
142
144
145
146
147
148
149
151

155
155
157
158

159
159
160

161

163

165

173
173
174
174
174
176
178
181
181
182
182
182
182
183
183
184

DBRLEFT .. 184
DBRRIGHT 185
DBTODBCS 185
DBTOSBCS 186
DBUNBRACKET 186
DBVALIDATE 186
DBWIDTH 187

Appendix C. Performance Considerations 189

Appendix D. Example of a Function Package 191

Appendix E. The System Product Interpreter in the GCS Environment 199
Processing execs in GCS (CSIREX module) 200

The Extended Plist 200
The Standard Tokenized Plist 200

The File Block 201
EXECCOMM Processing (Sharing Variables) 201

Shared Variable Request Block 202
Function Codes (SHVCODE) 202

Summary of Changes 205

Bibliography .. 209
Related Publications 209

Index .. 213

Contents vii

viii VM/SP System Product Interpreter Reference

Introduction

Chapter 1. Introduction

This introductory section:

• Identifies the book's purpose and audience
• Gives a brief overview of Systems Application Architecture™ (SAA)
• Explains how to use the book.

Who This Book Is For
This book describes the Virtual Machine/System Product (VM/SP) System Product
Interpreter (hereafter referred to as the interpreter or language processor) and the
Restructured EXtended eXecutor (sometimes abbreviated REXX) language.
Descriptions include use and syntax of the language and explain how the language
processor "interprets" the language as a program is executing.

The book is designed for experienced programmers, particularly those who have used
a block structured high level language (for example, PL/I, Algol, or Pascal).

For ease of reference, the material in this book is arranged in chapters:

1. Introduction

2. General Concepts

3. Instructions (in alphabetical order)

4. Functions (in alphabetical order)

5. Parsing (a method of dividing strings of words, such as commands)

6. Numerics and Arithmetic

7. System Interfaces

8. Debug Aids

9. Reserved Keywords and Special Variables

10. Some Useful CMS Commands

11. Invoking Communications Routines.

There are several appendixes covering:

• Error Numbers and Messages

• Double Byte Character Set (D BCS)

• Performance Considerations

• Example of a Function Package

• The System Product Interpreter in the GCS Environment.

* Systems Application Architecture is a trademark of the IBM Corporation.

Chapter 1. Introduction 1

Introduction

What Systems Application Architecture Is
Systems Application Architecture is a definition - a set of software interfaces,
conventions, and protocols that provide a·framework for designing and developing
applications with cross-system consistency.

The SAA Procedures Language has been defined as a subset of VMjSP REXX. Its
purpose is to define a common subset of the language that can be used on several
environments. For VM users, this will not hinder your ability to program in REXX.
If you plan on running your programs on other environments, however, some
restrictions may apply and consulting the SAA Common Programming Interface
Procedures Language Reference is advised.

Systems Application Architecture:

• Defines a common programming interface you can use to develop applications
that can be integrated with each other and transported to run in multiple SAA
environments.

• Defines common communications support that you can use to connect
applications, systems, networks, and devices.

• Defines a common user access that you can use to achieve consistency in panel
layout and user interaction techniques.

• Offers some common applications written by IBM using the common
programming interface, the common communications support and the common
user access.

Supported Environments
SAA provides a framework across the these IBM computing environments:

• TSOjE in the Enterprise Systems Architecture/370™

• CMS in the VM/System Product or VMjExtended Architecture

• Operating System/400™

• Operating System/2™ Extended Edition.

Common Programming Interface
As its name implies, the common programming interface (CPI) provides languages,
commands, and calls that programmers can use to develop applications which take
advantage of the consistency offered by SAA. These applications can easily be
integrated and transported across the supported environments.

The components of the interface currently fall into two general categories:

• Languages

Application Generator
C
COBOL

* Operating System/2, Operating System/400, and Enterprise Systems Architecture/370 are trademarks of the
International Business Machines Corporation.

2 VM/SP System Product Interpreter Reference

FORTRAN
Procedures Language
RPG

• Services

Communications Interface
Database Interface
Dialog Interface
Presentation Interface
Query Interface.

Introduction

The CPI is not in itself a product or a piece of code. But - as a definition - it does
establish and control how IBM products are being implemented, and it establishes a
common base across the SAA environments.

Thus, when you want to create an application that can be used in more than one
environment, you can stay within the boundaries of the CPI and obtain easier
portability. (Naturally, the design of such applications should be done with
portability in mind as well.) In addition to the CPI, you may also want to consider
the other aspects of Systems Application Architecture - for example, the common
user access - when creating your applications.

Chapter 1. Introduction 3

Introduction

How to Use This Book

How to Read the ,Syntax Diagrams
Throughout this book, syntax is described using the structure defined below.

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ~ symbol indicates the beginning of a statement.

The ~ symbol indicates that the statement syntax is continued.

The ~ symbol indicates that a line is continued from
the previous line.

The ~ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start
with the ~ symbol and end with the ~ symbol.

• Required items appear on the horizontal line (the main path).

~STATEMENT---requi red-i temm---------........

• Optional items appear below the main path.

~STATEMENT---T------------.----------------........
L-oPtional-ite~

• When you can choose from two or more items, they are stacked vertically.

If you must choose one of the items, an item of the stack appears on the main
path.

~STATEMENT~reqUired-choicel~
required-choice2

If choosing one of the items is optional, the entire stack appears below the main
path.

~STATEMENT-.....,r-----------r------"""~"

t==0ptional-choicel==J
optional-choice2

• An arrow returning to the left above the main line indicates an item that can be
repeated.

+
~STATEMENT---repeatab 1 e-i temm---'-----------~~ ..

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.

4 VMjSP System Product Interpreter Reference

Introduction

• Keywords appear in uppercase (for example, PARMI). They must be spelled
exactly as shown. Variables appear in all lowercase letters (for example, parmx).
They represent user-supplied names or values.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, they must be entered as part of the syntax.

For Further REXX Know-how:
Here is a list of books that you may wish to include in your REXX library:

• The VM/SP System Product Interpreter User's Guide, SC24-5238, is suitable for
beginners, and programmers who have not used a structured language before.

• If you have little or no experience in computer programming or programming in
REXX it may be worthwhile for you to read VM/IS Writing Simple Programs
with REX X, SC24-5357. This book is an excellent introduction to REXX and
can help you get started in programming.

• Another related publication that may be useful to more experienced REXX users
is the SAA Common Programming Interface Procedures Language Reference,
SC26-4358. This book defines the SAA Procedures Language, which is a subset
of VM/SP REXX. Descriptions include use and syntax of the language as well
as explanations on how the language processor interprets the language as a
program is executing.

Chapter 1. Introduction 5

Introduction

6 VMjSP System Product Interpreter Reference

General Concepts

Chapter 2. General Concepts

Brief Description of the Restructured Extended Executor Language
The Restructured Extended Executor (REXX) language is a language particularly
suitable for:

• Command procedures

• Application front ends

• User defined macros (such as: Dialog Manager, editor subcommands, ...)

• User defined XED IT subcommands

• Prototyping

• Personal computing.

It is a general purpose, programming language like PLjI. REXX has the usual
"structured programming" instructions - IF, SELECT, DO WHILE, LEAVE and
so on - and a number of useful built-in functions.

No restrictions are imposed by the language on program format. There can be more
than one clause on a line or a single clause can occupy more than one line.
Indentation is allowed. Programs can, therefore, be coded in a format that
emphasizes their structure, making them easier to read.

There is no limit to the length of the values of variables, so long as all variables fit
into the storage available. Symbols (variable names) are limited to a length of 250
characters.

Compound symbols, such as

NAME.X.Y

(where X and Y can be the names of variables) may be used for constructing arrays
and for other purposes.

REXX programs can reside in CMS Shared File System (SFS) directories or on
minidisks. REXX programs normally have a file type of EXEC; these files can
contain CP and CMS commands. REXX programs with a filetype of XED IT can in
addition contain XEDIT subcommands.

REXX programs are executed by a language processor (interpreter). That is, the
program is executed line-by-line and word-by-word, without first being translated to
another form (compiled). The advantage of this to the user is that if the program
fails with a syntax error of some kind, the point of failure is clearly indicated;
usually, it will not take long to understand the difficulty and make a correction.

Chapter 2. General Concepts 7

General Concepts

Where to Find More Information
This is the Reference Manual. Reference information is also available in a
convenient summary (card) form, the VMjSP System Product Interpreter Reference
Summary.

You can find useful information in the VMjSP System Product Interpreter User's
Guide and through the online HELP facility available with VMjSP. For any
program written in the Restructured Extended Executor (REXX) language, you can
get information on how the language processor interprets the program or a
particular instruction by using the REXX TRACE instruction.

Structure and General Syntax

Tokens

Programs written in the Restructured Extended Executor (REXX) language must
start with a comment (which distinguishes them from CMS EXEC and EXEC 2
language programs).

A REXX program is built from a series of clauses that are composed of: zero or
more blanks (which are ignored); a sequence of tokens (see below); zero or more
blanks (again ignored); and a semicolon (;) delimiter that may be implied by
line-end, certain keywords, or the colon (:) if it follows a single symbol. Each clause
is scanned from left to right before execution, and the tokens composing it are
identified. Instruction keywords are recognized at this stage, comments are removed,
and multiple blanks (except within literal strings) are converted to single blanks.
Blanks adjacent to special characters (including operators, see page 10) are also
removed.

Programs written in REXX are composed of tokens (of any length, up to an
implementation restricted maximum) that are separated by blanks or by the nature
of the tokens themselves. The classes of tokens are:

Comments:
A sequence of characters (on one or more lines) that are delimited by /*
and * /. Comments can contain other comments, as long as each begins
and ends with the necessary delimiters. Comments can be written
anywhere in a program. They are ignored by the language processor
(and hence may be of any length), but they do act as separators.

/* This is an example of a valid comment */
Literal Strings:

A sequence including any characters and delimited by the single quote (I)
or the double quote ("). Use two consecutive double quotes ("") to
represent a II character within a string delimited by double quotes.
Similarly, use two consecutive single quotes C I) to represent a I
character within a string delimited by single quotes. A literal string is a
constant and its contents are never modified when it is processed. A
literal string with no characters (that is, a string of length 0) is called a
null string.

8 VM/SP System Product Interpreter Reference

These are valid strings:

'Fred'
"Don't Panic!"
'You shouldn' It'

General Concepts

/* Same as "You shouldn't" */
Implementation maximum: A literal string may contain up to 250
characters. (But note that the length of computed results is limited only
by the amount of storage available.)

Note that if follo'wed immediately by a (, the string is considered to be
the name of a function. Or, if followed immediately by the symbol X, it
is considered to be a hexadecimal string.

Hexadecimal Strings:

Symbols:

Any sequence of zero or more hexadecimal digits (0-9, a-f, A-F),
optionally separated by blanks, delimited by single or double quotes and
immediately followed by the symbol x or X (the X cannot be part of a
longer symbol). A single leading 0 is added, if necessary, at the front of
the string to make an even number of hexadecimal digits, which represent
a character string constant formed by packing the hexadecimal codes
given. The blanks, which may only be present at byte boundaries (and
not at the beginning or end of the string), are to aid readability. They
are ignored by the language processor.

These are valid hexadecimal strings:

'ABCD'x
!lId ec f8"X
"1 d8"x

Implementation maximum: The packed length of a hexadecimal string
may not exceed 250 bytes.

Symbols are groups of characters, selected from the alphabetic and
numeric characters (A-Z, a-z, 0-9) and/or from the characters @#$¢.!?
and underscore. Any lowercase alphabetic character in a symbol is
translated to uppercase (i.e., a lowercasea-z to an uppercase A-Z).

These are valid symbols:

Fred
A 1 bert. Ha 11
WHERE?

A symbol can be a label (see page 16) or a REXX keyword (see page
159). Symbols that do not begin with a digit or a period can be used as
variables and can be assigned a value. If it has not been assigned a
value, its value is the characters of the symbol itself, translated to
uppercase (i.e., a lowercase a-z to an uppercase A-Z). Symbols that
begin with a number or a period are constant symbols and cannot be
assigned a value. There is one other type of symbol. If the first part of
a symbol starts with a digit (0-9) or a period, and ends in "E" or "e,"
then the "E" can be followed by a sign ("-" or "+") and some digits.
This type of symbol is assumed to be a number in exponential notation.

Chapter 2. G~neral Concepts 9

General Concepts

Numbers:

Operators:

These are valid exponential symbols:

17.3E-12
. 03e+9

Implementation maximum: A symbol may consist of up to 250
characters. (But note that its value, if it is a variable, is limited only by
the amount of storage available).

These are character strings consisting of one or more decimal digits
optionally prefixed by a plus or minus sign, and optionally including a
single period (.) that represents a decimal point. A number can also have
a power of ten suffixed in conventional exponential notation: an E
(uppercase or lowercase) followed optionally by a plus or minus sign then
followed by one or more decimal digits defining the power of ten.
Whenever a character string is used as a number, it is possible that
rounding will occur to a precision specified by the NUMERIC DIGITS
instruction (default nine digits). See pages 127-134 for a full definition of
numbers.

Numbers may have leading blanks (before and after the sign, if any) and
may have trailing blanks. Embedded blanks are not permitted. Note
that a symbol (see above) may be a number and so maya literal string.
A number cannot be the name of a variable.

These are valid numbers:

12
-17.9
127.0650
73e+128
I + 7.9E5

A whole number is a number that has a zero (or no) decimal part and
that would not normally be expressed by the language processor in
exponential notation. That is, it has no more digits before the decimal
point than the current setting of NUMERIC DIGITS (the default is 9).

Implementation maximum: The exponent of a number expressed in
exponential notation may have up to nine digits only.

The special characters: + - \ I % * I & = -, > < and the sequences >=
<= \> -,> \< -,< \= ~= /= >< <> == \== ~== 1== II
&& II ** » « »= \» ~» «= \« ~« are operator tokens
(see page 12), with or without embedded blanks or comments. One or
more blank(s), where they occur in expressions but are not adjacent to
another operator, also act as an operator.

Special Characters:
The characters, ; :) (together with the individual characters from
the operators have special significance when found outside of strings. All
these characters constitute the set of "special" characters. They all act as
token delimiters, and blanks adjacent to any of these are removed, with
the exception that a blank adjacent to the outside of a parenthesis is only
deleted if it is also adjacent to another special character.

10 VMjSP System Product Interpreter Reference

General Concepts

For example, the clause:

'REPEAT ' B + 3;

is composed of six tokens - a string (' REPEAT I), a blank operator, a symbol (B,
which may have a value), an operator (+), a second symbol (3, which is a number
and a symbol), and the clause delimiter (;). The blanks between the B and the +
and between the + and the 3 are removed. However, one of the blanks between the
REPEAT and the B remains as an operator. Thus, this is treated as though it were
written:

'REPEAT ' B+3;

Implementation maximum: During parsing of a clause, the internal form of a clause
(which is approximately the same length as the visible form, except that extra blanks
and comments are removed) may not exceed 500 characters. Note that this does not
limit in any way the length of data that can be manipulated, which is dependent
upon the amount of storage (memory) available.

Implied Semicolons

Continuations

The last element in a clause is the semicolon delimiter. The semicolon is implied by
the language processor in three cases: by a line-end, by certain keywords and by a
colon if it follows a single symbol. This means that semicolons need only be
included when there are more than one clause on a line.

A line-end usually marks the end of a clause and thus, a semicolon is implied at
most end of lines. However, there are a few exceptions:

• The line ends in the middle of a string.

• The line ends in the middle of a comment.

• The last noncomment token was the continuation character (denoted by a
comma).

If any of the cases listed previously are true, then it is not considered the end of a
clause and a semicolon is not implied.

Semicolons are also implied automatically after certain keywords when they are used
in the correct context. The keywords that have this effect are: ELSE,
OTHERWISE, and THEN. These special cases reduce typographical errors
significantly.

Note: If the two character combination, /*, is split by a line-end (that is, / and *
appear on different lines), then an implied semicolon would be added and it would
not be correctly recognized as the beginning of a comment. Similarly, the two
character combination indicating the end of a comment, * /, should not be split. The
two characters forming a double quote within a string are also subject to this
line-end ruling.

One way to continue a clause onto the next line is to use the comma, which is
referred to as the continuation character. The comma is functionally replaced by a
blank, and thus, no semicolon is implied. The continuation character cannot be used
in the middle of a string or it will be processed as part of the string itself. The same
situation holds true for comments. Note that the comma remains in execution
traces.

Chapter 2. General Concepts 11

General Concepts

The following example shows how the continuation character can be used to
continue a clause.

say 'You can use a comma',
'to continue this clause.'

This would display:

Expressions and Operators

Expressions

Operators

Clauses can include expressions consisting of terms (strings, symbols, and function
calls) intersper~ed with operators and parentheses.

Terms include:

• Literal Strings (delimited by quotes), which are literal constants

• Symbols (no quotes), which are translated to uppercase. Those that do not
begin with a digit or a period may be the name of a variable, in which case they
are replaced by the value of that variable as soon as they are needed during
evaluation. Otherwise they are treated as a literal string. A symbol can also be
compound.

• Function invocations, see page 71, which are of the form:

-rymbO 1 ']I---r--------r- __ ___.
stri ng(I f

[express ion]

Evaluation of an expression is left to right, modified by parentheses and by operator
precedence in the usual algebraic manner (see below). Expressions are always wholly
evaluated, unless an error occurs during evaluation.

All data is in the form of "typeless" character strings, (typeless because it is not - as
in some other languages - of a particular declared type, such as Binary,
Hexadecimal, Array, etc.). Consequently, the result of evaluating any expression is
itself a character string. All terms and results may be the null string (a string of
length 0). Note that REXX imposes no restriction on the maximum length of
results, but there is usually some practical limitation dependent upon the amount of
storage available to the language processor.

The following pages describe how each operator (except for the prefix operators) acts
on two terms, which may be symbols, strings, function calls, intermediate results, or
subexpressions in parentheses. Each prefix operator acts on the term or
subexpression that follows it. There are four types of operators.

12 VM/SP System Product Interpreter Reference

General Concepts

String Concatenation

Arithmetic

Comparison

The concatenation operators are used to combine two strings to form one string.
The combination may occur with or without an intervening blank:

(blank) Concatenate terms with one blank in between

II Concatenate without an intervening blank

(abuttal) Concatenate without an intervening blank

Concatenation without a blank may be forced by using the II operator, but it is
useful to know that if a string and a symbol are abutted, they will be concatenated.

Example:

If the variable FRED had the value 37.4, then Fredll%1I would evaluate to 37.4%.

Character strings that are valid numbers (see above) may be combined using the
arithmetic operators:

+

*

I
0/0

/I

**
Prefix -

Prefix +

Add

Subtract

Multiply

Divide

Divide and return the integer part of the result

Divide and return the remainder (not modulo, since the result
may be negative)

Raise a number to a whole-number power (expon,entiation)

Negate the following term. Same as 'O-term'

Take following term as if it was '0 + term'

See the section Chapter 6, "Numerics and Arithmetic" on page 127 for details of
accuracy, the format of valid numbers, and the combination rules for arithmetic.
Note that if an arithmetic result is shown in exponential notation, it is likely that
rounding has occurred.

The comparison operators return the value 1 if the result of the comparison is true,
or 0 otherwise.

The strict comparison operators all have one of the characters defining the operator
doubled. The" = =", "\ = =", "-, = =", and" / = =" operators test for strict
equality or inequality between two strings. Two strings must be identical before they
are considered strictly equal. Similarly, the strict comparison operators such as
"> >" or "< <" carry out a simple character-by-character comparison, with no
padding of either of the strings being compared. The comparison of the two strings
is from left to right. The strict comparison operators also do not attempt to perform
a numeric comparison on the two operands.

For all the other comparison operators, if both terms involved are numeric, a
numeric comparison (in which leading zeros are ignored, etc.) is effected; otherwise,
both terms are treated as character strings (leading and trailing blanks are ignored,
and then the shorter string is padded with blanks on the right).

Chapter 2. General Concepts 13

General Concepts

Logical (Boolean)

True if terms are strictly equal (identical)

True if the terms are equal (numerically or when padded, etc.)

\ = =, -. = =, / = = True if the terms are NOT strictly equal (inverse of = =)

\=,-.=,/=

>

<

»

«

><

<>

>=

\ <, -. <

»=

\«,-.«

<=

\ >, -. >

«=

\»,-.»

Not equal (inverse of =)

Greater than

Less than

Strictly greater than

Strictly less than

Greater than or le"ss than (same as not equal)

Greater than or less than (same as not equal)

Greater than or equal to

Not less than

Strictly greater than or equal to

Strictly NOT less than

Less than or equal to

Not greater than

Strictly less than or equal to

Strictly NOT greater than

Note: Throughout the language, the not symbol, "-,", is synonymous with the
backslash ("\"). The two symbols may be used interchangeably according to
availability and personal preference. The backslash can appear in the following
operators: \(prefix not), \=, \==, \<, \>, \«, and \».

A character string is taken to have the value "false" if it is 0, and "true" if it is a 1.
The logical operators take one or two such values (values other than 0 or 1 are not
allowed) and return 0 or I as appropriate:

& AND
Returns I if both terms are true.

Inclusive OR
Returns I if either term is true.

&& Exclusive OR
Returns I if either (but not both) is true.

Prefix \,-. Logical NOT
Negates; 1 becomes 0 and vice-versa.

Operator Priorities
Expression evaluation is from left to right; this is modified by parentheses and by
operator precedence:

• When parentheses are encountered, the expression in parentheses is evaluated
first.

14 VMjSP System Product Interpreter Reference

General Concepts

• When the sequence:

term1 operator1 term2 operator2 term3 ..•

is encountered, and operator2 has a higher preceden~e than operator!, the
expression (term2 operator2 term3 ...) is evaluated first, applying the same rule
repeatedly as necessary.

Note, however, that individual terms are evaluated from left to right in the
expression (that is, as soon as they are encountered). It is only the order of
operations that is affected by the precedence rules.

For example, * (multiply) has a higher priority than + (add), so 3+2*5 will evaluate
to 13 (rather than the 25 that would result if strict left to right evaluation occurred).
Likewise, the expression -3**2 will evaluate to 9 (instead of -9) since the prefix
minus operator has a higher priority than the exponential operator.

The order of precedence of the operators is (highest at the top):

\..., - +
**

*/0/01/

+ -

" " II (abuttal)

> <
» «

\= ..., =
>< <>
\> ...,>
\< ...,<
\= = ...,==
\> > ...,»
\< < ...,«
>= »=
<= «=
/= /= =

&

1&&

(prefix operators)

(exponentiation)

(multiply and divide)

(add and subtract)

(concatenation with/without blank)

(comparison operators)

(and)

(or, exclusive or)

Chapter 2. General Concepts 15

General Concepts

Examples

Clauses

Null clauses

Labels

Suppose that the following symbols represent variables; with values as shown:

A has the value '3' and DAY has the value 'Monday'

Then:

A+5 -> 18 1
A-4*2 -> I -51
A/2 -> 11.51
B.5**2 -> IB.25 1
(A+1»7 -> IBI /* that is, False */
I 1=11 -> 111 /* that is, True */
I 1==11 -> IBI /* that is, False */
I 1..,==1 I -> 111 /* that is, True */
(A+1)*3=12 -> 111 /* that is, True */
Today is Day -> I TODAY IS Monday I
I I f it is I day -> I If it is Monday I
Substr(Day,2,3) -> lond l /* Substr is a function *)
I! IXXX I! I -> I !XXX! I
label « labd l -> 111 /* that is, True */
IB771 » 1111 -> IBI /* that is, False */
label » lab l -> 111 /* that is, True */
lab I « labd l -> 111 /* that is, True */
IBBBBOB I » I BEBBee I -> 111 /* that is, True */

Note: The last example would give a different answer if the" >" operator had been
used rather than" > >". Since "OEOOOO" is a valid number in exponential notation,
a numeric comparison is done, thus "OEOOOO" and "000000" evaluate as equal.

Clauses can be subdivided into five types:

A clause consisting only of blanks and/or comments is completely ignored (except
that if it includes a comment it will be traced, if appropriate).

Note: A null clause is not an instruction; putting an extra semicolon after the
THEN or ELSE in an IF instruction (for example) is not equivalent to using a
dummy instruction (as it would be in PL/I). The NOP instruction is provided for
this purpose.

A label is a clause that consists of a single symbol followed by a colon. The colon
acts as an implicit clause terminator, so no semicolon is required. Labels are used to
identify the targets of CALL instructions, SIGNAL instructions, and internal
function calls. They can be traced selectively to aid debugging.

Any number of successive clauses may be labels, so permitting multiple labels before
another type of clause. Duplicate labels are permitted, but since the search
effectively starts at the top of the program, the control, following a CALL or
SIGNAL instruction, will always be passed to the first occurrence of the label.

16 VM/SP System Product Interpreter Reference

Assignments

Instructions

Commands

General Concepts

Assignments are single clauses of the form symbol = expression. An assignment gives
a variable a (new) value.

An instruction is one or more clauses, the first of which starts with a keyword that
identifies the instruction. These control the external interfaces, the flow of control,
etc. Some instructions can include other (nested) instructions. In this example, the
DO construct (DO, the group of instructions that follow it, and its associated END
keyword) is considered a single instruction.

DO

END

instruction
instruction
instruction

Commands are single clauses consisting of just an expression. The expression is
evaluated and passed as a command string to some external environment.

Assignments and Symbols
A variable is an object whose value may be changed during the course of execution
of a REXX program. The process of changing the value of a variable is called
assigning a new value to it. The value of a variable is a single character string, of
any length, that may contain any characters.

Variables can be assigned a new value by the ARG, PARSE, or PULL instructions,
but the most common way of changing the value of a variable is the assignment
instruction itself. Any clause of the form:

~symbo 1 = --r-L-----~-.,--;---+-011
expression

is taken to be an assignment. The result of express i on becomes the new value of the
variable named by the symbol to the left of the equal sign. If exp.ress i on is not
given, the variable is set to the null string.

Example:

/* Next line gives "FRED" the value "Frederic" */
Fred='Frederic '

The symbol naming the variable cannot begin with a digit (0-9) or a period.
(Without the restriction on the first character of a variable name, it would be
possible to redefine a number; for example 3=4; would give a variable called 3 the
value 4.)

Symbols can be used in an expression even if they have not been assigned a value,
since they have a defined value at all times. When unassigned, the defined value is
the character(s) of the symbol itself, translated to uppercase (i.e., a lowercase a-z to
an uppercase A-Z).

Chapter 2. General Concepts 17

General Concepts

Example:

/* If "Freda" has not yet been assigned a value, */
/* then next line gives "FRED" the value "FREDA" */
Fred=Freda

Symbols can be subdivided into four classes: constant symbols, simple symbols,
compound symbols, and stems. Simple symbols can be used for variables where the
name corresponds to a single value. Compound symbols and stems are used for
more complex collections of variables, such as arrays and lists.

Constant Symbols

Simple Symbols

A constant symbol starts with a digit (0-9) or a period.

The value of a constant symbol cannot be changed. It is simply the string consisting
of the characters of the symbol (that is, with any alphabetic characters translated to
uppercase).

These are constant symbols:

77
827.53
.12345
12e5
3D

/* Same as 12E5 */

A simple symbol does not contain any periods, and does not start with a digit (0-9).

By default, its value is the characters of the symbol (that is, translated to uppercase).
If the symbol has been used as the target of an assignment, it names a variable and
its value is the value of that variable.

These are simple symbols:

FRED
Whatagoodidea?
¢12

/* Same as WHATAGOODIDEA? */

Compound Symbols
A compound symbol contains at least one period, and at least one other character. It
can not start with a digit or a period, and if there is only one period, the period can
not be the last character.

The name begins with a stem (that part of the symbol up to and including the first
period), which is followed by parts of the name (delimited by periods) that are
constant symbols, simple symbols, or null.

These are compound symbols:

FRED.3
Array. I.J
AMESSY •• One.2.

Before the symbol is used, the values of any simple symbols (I, J, and One in the
example) are substituted into the symbol, thus generating a new derived name. This
derived name is then used just like a simple symbol. That is, its value is by default

18 VMjSP System Product Interpreter Reference

Stems

General Concepts

the derived name, or (if it has been used as the target of an assignment) its value is
the value of the variable named by the derived name.

The substitution into the symbol that takes place permits arbitrary indexing
(subscripting) of collections of variables that have a common stem. Note that the
values substituted can contain any characters (including periods). Substitution is
only done once.

To summarize: the derived name of a compound variable that is referred to by the
symbol

s0.s1.s2. --- .sn

is given by

d0.vl.v2. --- .vn

where d0 is the uppercase form of the symbol s0, and vI to vn are the values of the
constant or simple symbols sl through sn. Any of the symbols sl-sn can be null.
The values vl-vn can also be null and can contain any characters (lowercase
characters will not be translated to uppercase and blanks will not be removed).

Compound symbols can be used to set up arrays and lists of variables, in which the
subscript is not necessarily numeric, and thus offer great scope for the creative
programmer. A useful application is to set up an array in which the subscripts are
taken from the value of one or more variables, so effecting a form of associative
memory ("content addressable").

Some examples follow in the form of a small extract from a REXX program:

a=3 /* assigns '3' to the variable 'A' */
b=4 /* '4' to 'B' */
c='Fred' /* 'Fred' to 'C' */
a.b='Fred' /* 'Fred' to 'A.4' */
a.fred=5 /* '5' to 'A. FRED' */
a.c='Bill' /* 'Bill' to 'A. Fred' */
c.c=a.fred /* '5' to 'C. Fred' */
x.a.b='Annie' /* 'Annie' to 'X.3.4' */
say abc a.a a.b a.c c.a a.fred x.a.4
/* will display the string: */
/* '3 4 Fred A.3 Fred Bill C.3 5 Annie' */
Implementation maximum: The length of a variable name, before and after
substitution, may not exceed 250 characters.

A stem contains just one period, which is the last character. It can not start with a
digit or a period.

These are stems:

FRED.
A.

By default, the value of a stem is the characters of its symbol (that is, translated to
uppercase). If the symbol has been assigned a value, it names a variable and its
value is the value of that variable.

Further, when a stem is used as the target of an assignment, all possible compound
variables whose names begin with that stem are given the new value, whether they

Chapter 2. General Concepts 19

General Concepts

Notes

had a previous value or not. Following the assignment, a reference to any
compound symbol with that stem returns the new value until another value is
assigned to the stem or to the individual variable.

F or example:

ho 1 e. II empty II
hole.9 = "full"

say hole.1 hole.mouse hole.9

/* says "empty empty full II * /

Thus a whole collection of variables may be given the same value. For example,

total. = 0
do forever

say "Enter an amount and a name:"
pull amount name
if datatype(amount)='CHAR ' then leave
total.name = total.name + amount
end

Note: The value that has been assigned to the whole collection of variables can
always be obtained by using the stem. However, this is not the same as using a
compound variable whose derived name is the same as the stem. For example,

total~ = 0
null = 1111

total.null = total.null + 5
say total. total.null /* says "0 511 */
Collections of variables, referred to by their stem, can also be manipulated by the
DROP and PROCEDURE instructions. DROP FRED. drops all variables with that
stem (see page 40), and PROCEDURE EXPOSE FRED. exposes all possible
variables with that stem (see page 53).

1. When a variable is changed by the ARG, PARSE, or PULL instructions, the
effect is identical to an assignment. A stem used in a parsing template therefore
sets an entire collection of variables.

2. Since an expression may include the operator =, and an instruction may consist
purely of an expression (see next section), there would be a possible ambiguity
which is resolved by the following rule: any clause that starts with a symbol and
whose second token is = is an assignment, rather than an expression (or an
instruction). This is not a restriction, since the clause may be executed as a
command in several ways, such as by putting a null string before the first name,
or by enclosing the first part of the expression in parentheses.

Similarly, if a programmer unintentionally uses a REXX keyword as the variable
name in an assignment, this should not cause confusion. For example, the
clause:

Address='10 Downing Street ' ;

would be an assignment, not an ADDRESS instruction.

20 VM/SP System Product Interpreter Reference

General Concepts

Issuing Commands

Environment

Commands

The host system for the language processor is assumed to include at least one active
environment for executing commands. One of these is selected by default on entry
to a REXX program. The environment can be changed using the ADDRESS
instruction. It can be inspected using the ADDRESS built-in function.

The environment so selected will depend on the caller; for example if a program is
called from CMS, the default environment is CMS. If called from an editor that
accepts subcommands from the language processor, the default environment may be
that editor.

You can also write a REXX program that issues editor subcommands, and run your
program during an editing session. Your program can inspect the file being edited,
issue subcommands to make changes, test return codes to check that the
subcommands have been executed as you expected, and display messages to the user
when appropriate. The user can invoke your program by entering its name on the
editor's command line. For a discussion of this mechanism see "Issuing
Subcommands from Your Program" on page 24.

Executing commands using the current environment may be achieved using a clause
of the form:

expression;

The expression is evaluated, resulting in a character string (which may be the null
string) which is then prepared as appropriate and submitted to the host environment.

The environment then executes the command (which may have side-effects). It
eventually returns control to the language processor, after setting a return code. The
language processor places this return code in the REXX special variable RC. For
example., if the host environment were CMS, the sequence:

fn = IIJACK II ; ft = IlRABBIT"
STATE fn ft Al

would result in the string STATE JACK RABBIT Al being submitted to CMS. Of
course, the simpler expression:

'STATE JACK RABBIT AI'

would have the same effect in this case.

On return, the return code would be placed in RC that will have the value '0' if the
file JACK RABBIT Al existed, or '28' if it did not.

Note: Remember that the expression is evaluated before it is passed to the
environment. Any part of the expression that is not to be evaluated should be
written in quotes. '"

Chapter 2. General Concepts 21

General Concepts

Examples:

erase "*" listing /* not "multiplied by"! */

load progl "(" start /* not mismatched parentheses */

a = any
access 192 "blaH /* not IIdivided by ANY II */

The eMS Environment
When the environment selected is CMS (which is the default for execs), the
command is invoked exactly as if it had been issued from the command line (but
cleanup after the command has completed is different). See "Calls Originating from
a Clause That Is an Expression" on page 136. The language processor will create
two parameter lists:

• The result of the expression, tokenized and translated to uppercase, is placed in
a Tokenized Parameter List.

• The result of the expression, unchanged, is placed in an Extended Parameter
List.

The language processor then asks CMS to execute the command. The language
processor uses the same search order used for a command entered from the CMS
interactive command environment. The first token of the command is taken as the
command name. As soon as the command name is found, the search stops and the
command is executed.

The search order is:

1. Search for an exec with the specified command name:

a. Search for an exec in storage. If an exec with this name is found, CMS
determines whether the exec has a USER, SYSTEM, or SHARED attribute.
If the exec has the USER or SYSTEM attribute, it is executed.

If the exec has the SHARED attribute, the INSTSEG setting of the SET
command is checked. When INSTSEG is ON, all accessed directories and
minidisks are searched for an exec with that name. (To find a file in a
directory, read authority is required on both the file and the directory.) If
an exec is found, the filemode of the EXEC is compared to the filemode of
the eMS installation saved segment. If the filemode of the saved segment is
equal to or higher (closer to A) than the filemode of the directory or
minidisk, then the exec in the saved segment is executed. Otherwise, the
exec in the directory or on the minidisk is executed. However, if the exec is
in a directory and the file is locked, the execution will fail with an error
message.

b. Search for a file with the specified command name and a filetype EXEC on
any currently accessed directory or on any currently accessed minidisk.
CMS uses the standard search order (A through Z.) The table of active
(open) files is searched first. An open file may be used ahead of a file that
resides in a directory or on a minidisk higher in the search order. To find a
file in a directory, read authority is required on both the file and the
directory. If the file is in a directory and the file is locked, the execution will
fail with an error message.

2. Search for a translation or synonym for the command name. If found, search
for an exec with the valid translation or synonym by repeating Step 1. (For a

22 VM/SP System Product Interpreter Reference

General Concepts

description of the translate tables, see the SET TRANSLATE command in the
VMjSP CMS Command Reference. For a description of the synonym tables, see
the SYNONYM command in the VMjSP CMS Command Reference.)

3. Using a CMSCALL, CMS now searches for:

a. A command installed as a nucleus extension

b. A transient module already loaded with the command name

c. A nucleus resident command

d. A MODULE.

Note: For more information on using CMSCALL, refer to the VMjSP
Application Development Guide for CMS. The table of active (open) files is
searched first. An open file may be used ahead of a file that resides in a
directory or on a minidisk higher in the search order.

4. Search for a translation or synonym of the specified command name. If found,
search for a module with the valid translation or synonym by repeating Step 3.

5. If the command name is not known to CMS (that is, all the above fails), it is
changed to uppercase and the language processor asks CMS to execute the
command as a CP command.

Note: If the command is passed to CP, it will be executed as if it had been entered
from the CMS command line. (Specifically, if the password suppression facility is in
use, a CP command that provides a password will be rejected. To issue such a
command, use ADDRESS COMMAND CP cp_command.) Since execs are often used as
"covers" or extensions to existing MODULEs, there is one exception to this order.
A command issued from within an exec will not implicitly invoke that same exec and
hence cause a possible recursion loop. To make your exec call itself recursively, use
the CALL instruction or the EXEC command.

To invoke a CP command explicitly, use the CMS command prefix CPo

To illustrate these last two points, suppose your exec contains the clause:

cp spool printer class s

You may have a "cover" program, CP EXEC, which is intended to intercept all
explicit CP commands. If such a program exists, it will be invoked. If not, the CP
command SPOOL will be invoked. You would prefix your command with the word
cp if you wanted to avoid invoking SPOOL EXEC or SPOOL MODULE.

Notes:

1. The searches for execs, translations, synonyms, and CP commands are all
affected by the CMS SET command (IMPEX, ABBREV, IMPCP, and
TRANSLATE options). The full search order given above assumes these are all
ON.

2. When the environment is CMS, the language processor provides both a
Tokenized Parameter List and an Extended Parameter List. For example, the
sequence:

fn=" Jack"; ft="Assemblersource"
State fn ft Al
Myexec fn ft Al

Chapter 2. General Concepts 23

General Concepts

would result in both a Tokenized Parameter List and an Extended Parameter
List being built for each command and submitted to CMS. The STATE
command would use the Tokenized Parameter List

(STATE (JACK (ASSEMBLE) (Al

while MYEXEC (if it were a REXX EXEC) would use the Extended Parameter
List

(MYEXEC Jack Assemblersource Al)

For full details of this assembler language interface, see page 135.

The COMMAND Environment
If you wish to issue commands without the search for execs or CP commands, and
without any translation of the parameter lists, (without any uppercasing of the
tokenized parameter list) you may use the environment called COMMAND. Simply
include the instruction ADDRESS COMMAND at the start of your exec (see page
29). Commands will be passed to CMS directly, using CMSCALL, described on
page 136.

The COMMAND environment name is recommended for use in "system" execs that
make heavy use of modules and nucleus functions. This makes these execs more
predictable (commands cannot be usurped by user execs, and operations can be
independent of the user's setting of IMPCP and IMPEX) and faster (the exec and
first abbreviation searches are avoided).

Issuing Subcommands from Your Program
A command being executed by CMS may accept subcommands. Usually, the
command will provide its own command line, from which it takes subcommands
entered by the user. But this can be extended so that the command will accept
subcommands from a REXX program.

A typical example is an editor. You can write a REXX program that issues editor
subcommands, and run your program during an editing session. Your program can
inspect the file being edited, issue subcommands to make changes, test return codes
to check that the subcommands have been executed as you expected, and display
messages to the user when appropriate. The user can invoke your program by
entering its name on the editor's command line.

The editor (or any other program that is designed to accept subcommands from the
language processor) must first create a subcommand entry point, naming the
environment to which subcommands may be addressed, and then call your program.
Programs that can issue subcommands are called macros. The REXX language
processor has the convention that, unless instructed otherwise, it directs commands
to a subcommand environment whose name is the file type of the macro. Usually,
editors name their subcommand entry point with their own name and claim that
name as the file type to be used for their macros.

For example, the XEDIT editor sets up a subcommand environment named XED IT,
and the filetype for XEDIT macros is also XEDIT. The macro issues subcommands
to the editor (for example, NEXT 4, or EXTRACT /ZONE/). The editor "replies"
with a return code (which the language processor assigns to the special variable RC)
and sometimes with further information, which may be assigned to other REXX
variables. For example, a return code of 1 from NEXT 4 indicates that end-of-file
has been reached; EXTRACT /ZONE/ assigns the current limits of the zone of
XEDIT to the REXX variables ZONE. 1 and ZONE.2. By testing RC and the other

24 VM/SP System Product Interpreter Reference

General Concepts

REXX variables, the macro has the ability to react appropriately, and the full
flexibility of a programmable interface is available.

The language processor allows the default environment to be altered (between
various subcommand environments or the host environment) using the ADDRESS
instruction.

Note: The SUBCOM function is used to create, query, or delete subcommand
entry points.

Only the query form of the SUBCOM function is a subcommand, in the sense that it
can be issued from the terminal (or from a REXX program). The form of this
subcommand is:

SUBCOM name

This yields a return code of 0 if name is currently defined as a subcommand
environment name, or 1 if it is not.

The create, delete, and query subfunctions of the SUBCOM function, are described
in the VM/SP Application Development Reference for eMS. Note that there is also a
SUBCOM assembler language macro. The SUBCOM macro is described in the
VM/SP Application Development Guide for eMS and the VM/SP Application
Development Reference for eMS.

Chapter 2. General Concepts 25

General Concepts

26 VM/SP System Product Interpreter Reference

Instructions

Chapter 3. Instructions

An instruction is one or more clauses, the first of which starts with a keyword that
identifies the instruction. Some instructions affect the flow of control, while others
provide services to the programmer. Some instructions, like DO, can include nested
instructi ons.

In the syntax diagrams on the following pages, symbols (words) in capitals denote
keywords, other words (such as expression) denote a collection of symbols as defined
above. Note however that the keywords are not case dependent: the symbols if, If,
and iF would all invoke the instruction IF. Note also that most of the clause
delimiters (;) shown may usually be omitted as they will be implied by the end of a
line.

As explained on page 16, an instruction is recognized only if its keyword is the first
token in a clause, and if the second token is neither an = character (implying an
assignment) nor a colon (implying a label). The keywords ELSE, END,
OTHERWISE, THEN, and WHEN are recognized in the same situation. A syntax
error will result if the keywords are not in their correct position(s) in a DO, IF, or
SELECT instruction. (The keyword THEN will also be recognized in the body of
an IF or WHEN clause.) In other contexts, all these keywords are not reserved and
can be used as labels or as the names of variables (though this is generally not
recommended).

Certain other keywords, known as subkeywords, are reserved within the clauses of
individual instructions. For example, the symbols VALUE and WITH are
sub keywords in the ADDRESS and PARSE instructions respectively. For details,
refer to the description of the respective instruction. For a general discussion on
reserved keywords, see page 159.

Blanks adjacent to keywords have no effect other than that of separating the
keyword from the subsequent token. One or more blanks following VALUE are
required to separate the expression from the subkeyword in the example following:

ADDRESS VALUE command

However, no blanks would be required after the VALUE subkeyword in the
following example, but it would add to the readability:

ADDRESS VALUE'ENVIR ' I I number

Chapter 3. Instructions 27

ADDRESS

ADDRESS

~ADDRESS .----...... ,
-envi ronment L, . lJ

expreSSlon

LVALUEJ
expressionl-----

Where:

environment
is a literal string or a single symbol, which is taken to be a constant.

This instruction is used to effect a temporary or permanent change to the destination
of commands. The concept of alternative subcommand environments is described on
page 24.

To send a single command to a specified environment, an environment name
followed by an expression is given. The expression is evaluated, and the resulting
command string is routed to environment. After execution of the command,
environment will be set back to whatever it was before, thus giving a temporary
change of destination for a single command.

Example:

Address CMS 'STATE PROFILE EXEC AI

If only envi ronment is specified, a lasting change of destination occurs: all following
commands (clauses that are neither REXX instructions nor assignment instructions)
will be routed to the given command environment, until the next ADDRESS
instruction is executed. The previously selected environment is saved.

Example:

address CMS
'STATE PROFILE EXEC AI
if rc=O then ICOPY PROFILE EXEC A TEMP = =1
address XEDIT

Similarly, the VALUE form may be used to make a lasting change to the
environment. Here expression1 (which may be just a variable name) is evaluated,
and the result forms the name of the environment. The sub keyword VALUE may
be omitted as long as expression1 starts with a special character (so that it cannot be
mistaken for a symbol or string).

Example:

ADDRESS ('ENVIR' I I number)

If no arguments are given, commands will be routed back to the environment that
was selected before the previous lasting change of environment was made, and the
current environment name is saved. Repeated execution of just ADDRESS will
therefore switch the command destination between two environments alternately.

28 VM/SP System Product Interpreter Reference

ADDRESS

The two environment names are automatically saved across subroutine and internal
function calls. See under the CALL instruction (page 32) for more details.

The current ADDRESS setting may be retrieved using the ADDRESS built-in
function, described on page 77.

Note: In CMS, there are environment names that have special meaning. Following
are three commonly used environment names:

CMS

COMMAND

"

This environment name, which is the default for execs, implies full
command resolution just as provided in normal interactive
command (terminal) mode. (See page 22 for details.)

This implies basic CMS CMSCALL command resolution. To
invoke an exec, the word EXEC must prefix the command, and to
issue a command to CP, the prefix CP must be used (see page 24).

(Null); same as COMMAND. Note that this is not the same as
ADDRESS with no arguments, which will switch to the previous
environment.

Chapter 3. Instructions 29

ARG

ARG

~ARG------.----------r--- ---------+.~~

Ltemplate~

Where:

template
is a list of symbols separated by blanks and/or patterns.

ARG is used to retrieve the argument strings provided to a program or internal
routine and assign them to variables. It is just a short form of the instruction

~PARSE UPPER ARG L --.J;~
template

Unless a subroutine or internal function is being executed, the arguments given on
the program invocation will be read, translated to uppercase (i.e. a lowercase a-z to
an uppercase A-Z), and then parsed into variables according to the rules described in
the section on parsing (page 119). Use the PARSE ARG instruction if uppercase
translation is not desired.

If a subroutine or internal function is being executed, the data used will be the
argument string(s) passed to the routine.

The ARG (and PARSE ARG) instructions can be executed as often as desired
(typically with different templates) and will always parse the same current input
string(s). There are no restrictions on the length or content of the data parsed
except those imposed by the caller.

Example:

/* String passed to FRED EXEC is "Easy Rider" */

Arg adjective noun .

/* Now: "ADJECTIVE" contains IEASY I
/* "NOUN" contains IRIDERI

*/
*/

If more than one string is expected to be available to the program or routine, each
may be selected in turn by using a comma in the parsing template.

Example:

/* function is invoked by FRED(ldata XI,1,5) */

Fred: Arg string, num1, num2

/* Now:
/*
/*

"STRING" contains IDATA XI
"NUM1" contains 111
"NUM2" contains 15 1

*/
*/
*/

30 VMjSP System Product Interpreter Reference

Notes:

1. The argument string(s) to a REXX program or internal routine can also be
retrieved or checked by using the ARG built-in function. See page 77.

ARG

2. The source of the data being processed is also made available on entry to the
program. See the PARSE instruction (SOURCE option) on page 51 for details.

3. A string passed from CMS command level is restricted to 255 characters
(including the name of the exec being invoked.)

Note for CMS EXEC and EXEC 2 Users: Unlike CMS EXEC and EXEC 2, the
arguments passed to REXX programs can only be used after executing either the
ARG or PARSE ARG instructions (or retrieving their value with the ARG built-in
function). They are not immediately available in predefined variables as in the other
languages.

Chapter 3. Instructions 31

CALL

CALL

~cALL--name-I'---f----------'--;-+-4

[express ion]

CALL is used to invoke a routine. The routine may be an internal routine, an
external routine, or a built-in function. The name must be a valid symbol, which is
treated literally, or a string. If a string is used for name (that is, name is specified in
quotes) the search for internal labels is bypassed, and only a built-in function or an
external routine will be invoked. Note that the names of built-in functions (and
generally the names of external routines too) are in uppercase, and hence the name
in the literal string should be in uppercase.

The invoked routine may optionally return a result upon its completion, which is
functionally identical to the clause:

~result=name(--r-I-f ---I --'--1)-;--­

[express ion]

except that the variable RESULT will become uninitialized if no result is returned by
the routine invoked.

VM/SP supports specifying up to ten expressions, separated by commas. The
expressions are evaluated in order from left to right, and form the argument string(s)
during execution of the routine. Any ARG or PARSE ARG instructions, or ARG
built-in function in the called routine will access these strings, rather than those
previously active in the calling program. Expressions may be omitted if desired.

The CALL then causes a branch to the routine called name using exactly the same
mechanism as function calls. The order in which these are searched for is described
in the section on functions (page 71), but briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction. If the routine
name is specified in quotes, then an internal routine will not be
considered for that search order.

Built-in routines:
These are routines built in to the language processor for providing
various functions. They always return a string containing the result of
the function. (See page 75.)

External routines:
Users can write or make use of routines that are external to the language
processor and the calling program. An external routine can be written in
any language, including REXX, which supports the system dependent

32 VMjSP System Product Interpreter Reference

CALL

interfaces - see page 145 for details. A REXX program can be invoked
as a subroutine by the CALL instruction, and in this case may be passed
more than one argument string. These can be retrieved using the ARG
or PARSE ARG instructions or the ARG built-in function.

During execution of an internal routine, all variables previously known are normally
accessible. However, the PROCEDURE instruction may be used to set up a local
variables environment to protect the subroutine and caller from each other. The
EXPOSE option on the PROCEDURE instruction can be used to expose selected
variables to a routine.

Calling an external program as a subroutine is similar to calling an internal routine.
The external routine, however, is an implicit PROCEDURE in that all the caller's
variables are always hidden and the status of internal values (NUMERIC settings,
etc.) start with their defaults (rather than inheriting those of the caller).

When control reaches the internal routine, the line number of the CALL instruction
is available in the variable SIGL (in the caller's variable environment). This may be
used as a debug aid, as it is therefore possible to find out how control reached a
routine.

Eventually the subroutine should execute a RETURN instruction, and at that point
control will return to the clause following the original CALL. If the RETURN
instruction specified an expression, the variable RESULT will be set to the value of
that expression. Otherwise, the variable RESULT is dropped (becomes
uninitialized).

An internal routine can include calls to other internal routines, as well as recursive
calls to itself.

Example:

/* Recursive subroutine execution .•• */
arg x
call factorial x
say Xl! =1 result
exit

factorial: procedure
arg n
if n=0 then return 1
call factorial n-l
return result * n

/* calculate factorial by.. */
/* .. recursive invocation. */

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are:

• The status of DO loops and other structures - Executing a SIGNAL while within
a subroutine is "safe" in that DO loops, etc., that were active when the
subroutine was called are not deactivated (but those currently active within the
subroutine will be deactivated).

• Trace action - Once a subroutine is debugged, you can insert a TRACE Off at
the beginning of it, and this will not affect the tracing of the caller. Conversely,
if you only wish to debug a subroutine, you can insert a TRACE Results at the
start and tracing will automatically be restored to the conditions at entry (for

Chapter 3. Instructions 33

CALL

example, "Off') upon return. Similarly,? (interactive debug) and! (command
inhibition) are saved across routines.

• NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations,
described on page 48) are saved and are then restored on RETURN. A
subroutine can therefore set the precision, etc., that it needs to use without
affecting the caller.

• ADDRESS settings (the current and secondary destinations for commands - see
the ADDRESS instruction on page 28) are saved and are then restored on
RETURN.

• Exception conditions (SIGNAL ON condition) are saved and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF can be used in a
subroutine without affecting the conditions set up by the caller.

• Elapsed-time clocks - A subroutine inherits the elapsed-time clock from its caller
(see the TIME function on page 97), but since the time clock is saved across
routine calls, a subroutine or internal function can independently restart and use
the clock without affecting its caller. For the same reason, a clock started
within an internal routine is not available to the caller.

• OPTIONS ETMODE/EXMODE are saved and are then restored on RETURN.
For more - see the OPTIONS instruction on page 49.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

34 VMjSP System Product Interpreter Reference

DO

~DO

L-repetito~ L-conditiona'~

Where:

repetitor
is:

~instruction~

1ame=expri

FOREVER----------------I
expr~------------------------------~

conditional
IS:

~WHILE-exprw I

LUNTI L -expru---1

END;~

L-symbo,J

DO

DO is used to group instructions together and optionally to execute them
repetitively. During repetitive execution, a control variable (name) can be stepped
through some range of values.

Syntax Notes:

• The exprr, expri, exprb, exprt, and exprJ options (if any are present) are any
expressions that evaluate to a number. The exprr and exprJ options are further
restricted to result in a nonnegative whole number. If necessary, the numbers
will be rounded according to the setting of NUMERIC DIGITS.

• The exprw or expru options (if present) can be any expression that evaluates to 1
or O.

• The TO, BY, and FOR phrases can be in any order, if used.

• The instruction(s) can include constructs such as IF, SELECT, and the DO
instruction itself.

• The subkeywords TO, BY, FOR, WHILE, and UNTIL are reserved within a
DO instruction, in that they cannot name variables in the expression(s) but they
can be used as the name of the control variable. FOREVER is similarly
reserved, but only if it immediately follows the keyword DO.

• The exprb option defaults to 1, if relevant.

Chapter 3. Instructions 35

DO

Simple DO Group
If neither repetitor nor conditional is given, the construct merely groups a number of
instructions together. These are executed once. Otherwise, the group of instructions
is a repetitive DO loop, and they are executed according to the repetitor phrase,
optionally modified by the conditional phrase.

In the following example, the instructions are executed once.

Example:

/* The two instructions between DO and END will both */
/* be executed if A has the value 3. */
If a=3 then Do

a=a+2
Say I Smil e! I

End

Simple Repetitive Loops
If repetitor is not given or the repetitor is FOREVER, the group of instructions will
nominally be executed "forever"; that is, until the condition is satisfied or a REXX
instruction is executed that will end the loop (for example, LEAVE).

Note: For a discussion on conditional phrases, see "Conditional Phrases (WHILE
and UNTIL)" on page 38.

In the simple form of a repetitive loop, exprr is evaluated immediately (and must
result in a nonnegative whole number), and the loop is then executed that many
times:

Example:

/* This displays "Hello" five times */
Do 5

say 'Hello '
end

Note that, similar to the distinction between a command and an assignment, if the
first token of exprr is a symbol and the second token is an "=", the controlled form
of repetitor will be expected.

Controlled Repetitive Loops
The controlled form specifies a control variable, name, which is assigned an initial
value (the result of expri). The variable is then stepped (by adding the result of
exprb, at the bottom of the loop) each time the group of instructions is executed.
The group is executed repeatedly while the end condition (determined by the result
of exprt) is not met. If exprb is positive or zero, the loop will be terminated when
name is greater than exprt. If negative, the loop will be terminated when name is less
than exprt.

The expri, exprt, and exprb options must result in numbers. They are evaluated
once only, before the loop begins and before the control variable is set to its initial
value. The default value for exprb is 1. If exprt is not given, the loop will execute
indefinitely unless some other condition terminates it.

36 VM/SP System Product Interpreter Reference

Example:

Do I=3 to -2 by -1
say
end

/* Would display: */
/* 3 */
/* 2 */
/* 1 */
/* 0 */
/* -1 * /
/* -2 */

The numbers do not have to be whole numbers:

Example:

X=0.3
Do Y=X to X+4 by 0.7

say Y
end

/* Would display: */
/* 0.3 */
/* 1.0 */
/* 1.7 */
/* 2.4 */
/* 3.1 * /
/* 3.8 */

DO

The control variable can be altered within the loop, and this may affect the iteration
of the loop. Altering the value of the control variable is not normally considered
good programming practice, though it may be appropriate in certain circumstances.

Note that the end condition is tested at the start of each iteration (and after the
control variable is stepped, on the second and subsequent iterations). It is therefore
possible for the group of instructions to be skipped entirely if the end condition is
met immediately. Note also that the control variable is referred to by name. If (for
example) the compound name "A. I" was used for the control variable, altering "I"
within the loop will cause a change in the control variable.

The execution of a controlled loop can be bounded further by a FOR phrase. In
this case, exprf must be given and must evaluate to a nonnegative whole number.
This acts just like the repetition count in a simple repetitive loop, and sets a limit to
the number of iterations around the loop if no other condition terminates it. Like
the TO and BY expressions, it is evaluated once only - when the DO instruction is
first executed and before the control variable is given its initial value. Like the TO
condition, the FOR condition is checked at the start of each iteration.

Example:

Do Y=0.3 to 4.3 by 0.7 for 3 /* Would display: */
say Y /* 0.3 */
end /* 1.0 */

/* 1.7 */
In a controlled loop, the symbol describing the control variable can be specified on
the END clause. This symbol must match name in the DO clause in all respects
except case (note that no substitution for compound variables is carried out); a
syntax error will result if it does not. This enables the nesting of loops to be checked
automatically, with minimal overhead.

Example:

Do K=l to 10

End k /* Checks that this is the END for K loop */

Chapter 3. Instructions 37

DO

Note: The values taken by the control variable may be affected by the NUMERIC
settIngs, since normal REXX arithmetic rules apply to the computation of stepping
the control variable.

Conditional Phrases (WHILE and UNTIL)
Any of the forms of repetitor (none, FOREVER, simple, or controlled) can be
followed by a conditional phrase, which may cause termination of the loop. If
WHILE or UNTIL is specified, exprw or expru, respectively, is evaluated each time
around the loop using the latest values of all variables (and ml!-st evaluate to either 0
or 1), and the group of instructions will be repeatedly executed either while the result
is 1, or until the result is 1.

For a WHILE loop, the condition is evaluated at the top of the group of
instructions, and for an UNTIL loop the condition is evaluated at the bottom -
before the control variable has been stepped.

Example:

Do 1=1 to 10 by 2 until i>6
say i
end

/* Will display: 1, 3, 5, 7 */
Note: The execution of repetitive loops can also be modified by using the LEAVE
or ITERATE instructions.

38 VMjSP System Product Interpreter Reference

Start value assigned to control
variable

DO

TO value (exprt) used to test ~~~ Discontinue execution of DO
control variable for termination ~-v group if TO value is exceeded .

...------...&.------... Discontinue execution of DO
FOR value (exprf) used to test
for termination

... ~~-"'.... group if FOR value (number of

.. ~--v iterations through the loop) is
~ _____ ~ _____ -J" exceeded.

WHILE expression (exprw) ~_-"'..... Discontinue execution of DO
used to test for termination -V group if WHILE condition is ________ ------' ~- not met.

UNTIL expression (expru) "~_~ Discontinue execution of DO
used to test for termination group if UNTIL condition is ________ -------' ~- met.

BY value (exprb) used to
update control variable

Figure 1. How a Typical DO Loop Is Executed

Chapter 3. Instructions 39

DROP

DROP

~DROP~....ItL....--name'-~-- --------+.~4

Where:

name
is a symbol, and valid variable symbol, separated from any other names by one
or more blanks or comments.

DROP is used to "unassign" variables; that is, to restore them to their original
uninitialized state.

Each variable specified will be dropped from the list of known variables. The
variables are dropped in sequence from left to right. It is not an error to specify a
name more than once, or to DROP a variable that is not known. If an EXPOSEd
variable is named (see the PROCEDURE instruction), the variable itself in the older
generation will be dropped.

Example:

j=4
Drop a x.3 x.j
/* would reset the variables: "A", "X.3", and "X.4" */
/* so that reference to them returns their name. */
If a stem is specified (that is, a symbol that contains only one period, as the last
character), all variables starting with that stem are dropped.

Example:

Drop x.
/* would reset all variables with names starting with "X." */

40 VM/SP System Product Interpreter Reference

EXIT

~EXIT--"'r----------r- -------II~~.

~expression~

EXIT

EXIT is used to leave a program unconditionally. Optionally EXIT returns a data
string to the caller. The program is terminated immediately, even if an internal
routine is currently being executed. If no internal routine is active, RETURN (see
page 58) and EXIT have the same function.

If expression is given, it is evaluated and the string resulting from the evaluation is
then passed back to the caller when the program terminates.

Example:

j=3
Exit j*4
/* Would exit with the string 1121 */
If expression is not given, no data is passed back to the caller. If the program was
called as an external function, this will be detected as an error - either immediately
(if RETURN was used), or on return to the caller (if EXIT was used).

"Running off the end" of the program is always equivalent to the instruction EXIT,
in that it terminates the whole program and returns no result string.

Note: The language processor does not distinguish between invocation as a
command on the one hand, and invocation as a subroutine or function on the other.
If in fact the program was invoked via a command interface, an attempt is made to
convert the returned value to a return code acceptable by the host. The returned
string must be a whole number whose value will fit in a S/370 register (that is, must
be in the range -2**31 through 2**31-1). If the conversion fails, it is deemed to be a
failure of the host interface and is thus not subject to trapping by SIGNAL ON
SYNTAX. Note also that only the last five digits of the return code (four digits for
a negative return code) will be displayed by the standard eMS ready message.

Chapter 3. Instructions 41

IF

IF

~IF-expressionTJTHENTJinstruction L J
" ELSETJinstruction

,

The IF construct is used to conditionally execute an instruction or group of
instructions depending on the evaluation of the expression. The expression must
evaluate to 0 or 1.

The instruction after the THEN is executed only if the result of the evaluation was 1.
If an ELSE was given, the instruction after the ELSE is executed only if the result of
the evaluation was O.

Example:

if answer='YES ' then say 10K! I

else say 'Why not?1

Remember that if the ELSE clause is on the same line as the last clause of the
THEN part, you need a semicolon to terminate that clause.

Example:

if answer='YES ' then say 10K! I; else say 'Why not?1

The ELSE binds to the nearest IF at the same level. The NOP instruction can be
used to eliminate errors and possible confusion when IF statements are nested, as in
the following example.

Example:

if answer='YES ' then if name='FRED ' then say 10K, Fred. I

else nop
else say 'Why not?1

Notes:

1. The instruction includes all the more complex constructs such as DO groups and
SELECT groups, as well as the simpler ones and the IF instruction itself. A null
clause is not an instruction; so putting an extra semicolon after the THEN or
ELSE is not equivalent to putting a dummy instruction (as it would be in PLjI).
The NOP instruction is provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the IF clause to be terminated by the THEN, without a ";" being
required. Were this not so, people used to other computer languages would
experience considerable difficulties.

42 VM/SP System Product Interpreter Reference

INTERPRET

INTERPRET

~ I NTERPRET--express i on--;--------.

INTERPRET is used to execute instructions that have been built dynamically by
evaluating expression.

The expression is evaluated, and will then be executed (interpreted) just as though
the resulting string were a line inserted into the input file (and bracketed by a DO;
and an END;).

Any instructions (including INTERPRET instructions) are allowed, but note that
constructions such as DO ... END and SELECT ... END must be complete. For
example, a string of instructions being INTERPRETed cannot contain a LEAVE or
ITERATE instruction (valid only within a repetitive DO loop) unless it also contains
the whole repetitive DO ... END construct.

A semicolon is implied at the end of the expression during execution, as a service to
the user.

Example:

data='FRED '
interpret data 1= 41
/* Will a) build the string "FRED = 4" */
/* b) execute FRED = 4; * /
/* Thus the variable "FRED" will be set to "4" */

Example:

data='do 3; say
interpret data

Notes:

"Hello there!"; end '
/* Would display:
/* Hello there!
/* He 11 0 there!
/* Hello there!

*/
*/
*/
*/

1. Labels within the interpreted string are not permanent and are therefore ignored.
Hence, executing a SIGNAL instruction from within an interpreted string will
cause immediate exit from that string before the label search begins.

2. If you are new to the concept of the INTERPRET instruction and are getting
results that you do not understand, you may find that executing it with TRACE
R or TRACE I set is helpful.

Chapter 3. Instructions 43

INTERPRET

Example:

/* Here we have a small program. */
Trace lnt
name='Kitty'
indirect='name'
interpret Isay "Hello" ' indirect'Il!II'

when run gives the trace:

Here, lines 3 and 4 set the variables used in line 5. Execution of line 5 then
proceeds in two stages. First the string to be interpreted is built up, using a
literal string, a variable (INDIRECT), and another literal. The resulting pure
character string is then interpreted, just as though it were actually part of the
original program. Since it is a new clause, it is traced as such (the second *-*
trace flag under line 5) and is then executed. Again a literal string is
concatenated to the value of a variable (NAME) and another literal, and the
final result (He 11 0 Kitty!) is then displayed.

3. For many purposes, the VALUE function (see page 100) can be used instead of
the INTERPRET instruction. Line 5 in the last example could therefore have
been replaced by:

say IIHello" value(indirect)II!"

INTERPRET is usually only required in special cases, such as when more than
one statement is to be interpreted at once.

44 VM/SP System Product Interpreter Reference

ITERATE

~ITERATE---'.------r-- -------.. ~ .. 4

Lname.-J

ITERATE

ITERATE alters the flow within a repetitive DO loop (that is, any DO construct
other than that with a simple DO).

Execution of the group of instructions stops, and control is passed to the DO
instruction just as though the bottom of the group of instructions had been reached.
The UNTIL expression (if any) is tested, the control variable (if any) is incremented
and tested, and the WHILE expression (if any) is tested. If these tests indicate that
conditions of the loop have not yet been satisfied, the group of instructions is
executed again (iterated), beginning at the top.

If name is not specified, ITERATE will step the innermost active repetitive loop. If
name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and this is the loop that is stepped. Any active
loops inside the one selected for iteration are terminated (as though by a LEAVE
instructi on).

Example:

do ;=1 to 4
if ;=2 then iterate
say i
end

/* Would display the numbers: 1, 3, 4 */

Notes:

1. If specified, name must match the one on the DO instruction in all respects
except case. No substitution for compound variables is carried out when the
comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. ITERATE cannot be used to step an inactive loop.

3. If more than one active loop uses the same control variable, the innermost loop
will be the one selected by the ITERATE.

Chapter 3. Instructions 45

LEAVE

LEAVE

~LEAVE--~-------r--- -------------~.~~

Lname~

LEAVE causes immediate exit from one or more repetitive DO loops (that is, any
DO construct other than that with a simple DO).

Execution of the group of instructions is terminated, and control is passed to the
instruction following the END clause, just as though the END clause had been
encountered and the termination condition had been met normally. However, on
exit, the control variable (if any) will contain the value it had when the LEAVE
instruction was executed.

If name is not specified, LEAVE will terminate the innermost active repetitive loop.
If name is specified, it must be the name of the control variable of a currently active
loop (which may be the innermost), and that loop (and any active loops inside it) is
then terminated. Control then passes to the clause following the END that matches
the DO clause of the selected loop.

Example:

do ;=1 to 5
say ;
if i=3 then leave
end

/* Would display the numbers: 1, 2, 3 */

Notes:

1. If specified, name must match the one on the DO instruction in all respects
except case. No substitution for compound variables is carried out when the
comparison is made.

2. A loop is active if it is currently being executed. If a subroutine is called (or an
INTERPRET instruction is executed) during execution of a loop, the loop
becomes inactive until the subroutine has returned or the INTERPRET
instruction has completed. LEAVE cannot be used to terminate an inactive
loop.

3. If more than one active loop uses the same control variable, the innermost will
be the one selected by the LEAVE.

46 VM/SP System Product Interpreter Reference

NOP

NOP

~NOP---;--------------------------~~~.

NOP is a dummy instruction that has no effect. It can be useful as the target of a
THEN or ELSE clause:

Example:

Select
when a=b then nop /* Do nothing */
when a>b then say IA > 81

otherwise
end

say IA < 8 1

Note: Putting an extra semicolon instead of the NOP would merely insert a null
clause, which would be ignored. The second WHEN clause would be seen as the
first instruction expected after the THEN, and hence would be treated as a syntax
error. NOP is a true instruction, however, and is a valid target for the THEN
clause.

Chapter 3. Instructions 47

NUMERIC

NUMERIC

"-NUMERIC DIGITS ;~

expression
FOR

SCIENTIFIC
ENGINEERING

expression

FUZZ
expression

The NUMERIC instruction is used to change the way in which arithmetic
operations are carried out. The options of this instruction are described in detail on
pages 127-134, but in summary:

NUMERIC DIGITS

controls the precision to which arithnietic operations will be carried out. If
specified, expression must evaluate to a positive whole number, and the default is
9. This number must be larger than the FUZZ setting.

There is no limit to the value for DIGITS (except the amount of storage
available), but note that high~ precisions are likely to be very expensive in CPU
time. It is recommended that the default value be used wherever possible.

NUMERIC FORM

controls which form of exponential notation will be used for computed results.
This may be either SCIENTIFIC (in which case only one, nonzero digit will
appear before the decimal point), or ENGINEERING (in which case the power
of ten will always be a multiple of three). The default is SCIENTIFIC. The
FORM is set either directly by the subkeywords SCIENTIFIC or
ENGINEERING or is taken from the result of evaluating the expression
following VALUE. The result in this case must be either 'SCIENTIFIC' or
'ENGINEERING'. The subkeyword VALUE may be omitted if the expression
does not begin with a symbol or a literal string (i.e., if it starts with a special
character, such as an operator or parenthesis).

NUMERIC FUZZ

controls how many digits, at full precision, will be ignored during a numeric
comparison operation. If specified, expression must result in a nonnegative
whole number that must be less than the DIGITS setting. The default value for
FUZZ is O.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the FUZZ
value before every comparison operation, so that the numbers are subtracted
under a precision of DIGITS-FUZZ digits during the comparison and are then
compared with o.

Note: The three numeric settings are automatically saved across subroutine and
internal function calls. See under the CALL instruction (page 32) for more details.

48 VM/SP System Product Interpreter Reference

OPTIONS

OPTIONS

~OPTIONS--express i on--;-----.. ~

The OPTIONS instruction is used to pass special requests or parameters to the
language processor. For example, they may be language processor options, or
perhaps be defining a special character set.

The expression is evaluated, and the result is examined one word at a time. If the
words are recognized by the language processor, then they are obeyed. Words that
are not recognized are ignored and assumed to be instructions to a different
processor.

The following words are recognized by the language processors:

ETMODE specifies that literal strings containing DBCS characters may be
used in the program.

NOETMODE specifies that literal strings do not contain DBCS characters.
NOETMODE is the default.

EXMODE specifies that DBCS data operations capability is enabled.

NOEXMODE specifies that DBCS data operations capability is disabled.

Notes:

1. Because of the System Product Interpreter's scanning procedures, you are
advised to place an OPTIONS ETMODE instruction near the beginning of a
program.

2. The OPTIONS ETMODE and OPTIONS EXMODE settings will be saved and
restored across subroutine and function calls.

3. To distinguish DBCS characters from one-byte EBCDIC characters, sequences
of DBCS characters are enclosed with a shift-out (SO) character and a shift-in
(SI) character. The hexadecimal values of the SO and SI characters are X I OE I

and X I OF I, respectively.

DBCS fields within a literal string, which are delimited by SO-SI characters, are
excluded from the search for a closing quote in literal strings.

4. The words ETMODE, EXMODE, NOEXMODE, and NOETMODE can
appear several times within the result. The last valid word specified takes effect.

Chapter 3. Instructions 49

PARSE

PARSE

~PARSE--~----~~ARG------------------~~----------r-·~

EXTERNAL ~template~ ,

Where:

template

NUMERIC---------1
PULL---------I
SOURCE--------i
VALUE WITH-

Lexpress i onJ
VAR-name---------------1
VERSION----------'

is a list of symbols separated by blanks and/or patterns.

The PARSE instruction is used to assign data (from various sources) to one or more
variables according to the rules described in the section on parsing (page 119).

If the UPPER option is specified, the data to be parsed is first translated to
uppercase (i.e., a lowercase a-z to an uppercase A-Z). Otherwise, no uppercase
translation takes place during the parsing.

If template is not specified, no variables will be set but action will be taken to get the
data ready for parsing if necessary. Thus for PARSE EXTERNAL and PARSE
PULL, a data string will be removed from the queue; and for PARSE VALUE,
expression will be evaluated. For PARSE VAR, the specified variable will be
accessed. If it does not have a value, the NOVALUE condition will be raised, if it is
enabled.

The data used for each variant of the PARSE instruction is:

PARSEARG

The string(s) passed to the program, subroutine, or function as the input
argument list are parsed. (See the ARG instruction for details and examples.)

Note: The argument string(s) to a REXX program or internal routine can also
be retrieved or checked by using the ARG built-in function, described on page
77.

PARSE EXTERNAL

The next string from the terminal input buffer (system external event queue) is
parsed. This queue may contain data that is the result of external asynchronous
events - such as user console input, or messages. If that queue is empty, a
console read results. Note that this mechanism should not be used for "normal"
console input, for which PULL is more general, but rather it could be used for
special applications (such as debugging) when the program stack cannot be
disturbed.

The number of lines currently in the queue may be found with the
EXTERNALS built-in function, described on page 86.

50 VM/SP System Product Interpreter Reference

PARSE

PARSE NUMERIC

The current numeric controls (as set by the NUMERIC instruction, see page 48)
are made available. These controls are in the order DIGITS FUZZ FORM.

Example:

After: Parse Numeric Varl
Varl would be equal to: 9 0 SCIENTIFIC

See NUMERIC instruction on page 48. Also refer to the built-in functions
DIGITS, FORM, and FUZZ found on pages 84, 87, 88, respectively.

PARSE PULL

The next string from the queue is parsed. If the queue is empty, lines will be
read from the default input (typically the user's terminal). Data can be added to
the head or tail of the queue by using the PUSH and QUEUE instructions
respectively. The number of lines currently in the queue can be found by using
the QUEUED built-in function, described on page 92. The queue will remain
active as long as the language processor is active. The queue can be altered by
other programs in the system and can be used as a means of communication
between these programs and programs written in REXX.

Note: PULL and PARSE PULL read from the program stack. If that is
empty, they read from the terminal input buffer; and if that too is empty, a
console read results. (See the PULL instruction, on page 55, for further details.)

PARSE SOURCE

The data parsed describes the source of the program being executed.

The source string contains the characters CMS, followed by either COMMAND,
FUNCTION, or SUBROUTINE depending on whether the program was
invoked as some kind of host command (for example, exec or macro), or from a
function call in an expression, or via the CALL instruction. These two tokens
are followed by the program filename, filetype, and filemode; each separated
from the previous token by one or more blanks. (The filetype and filemode may
be unknown if the program is being executed from storage, in which case the
SOURCE string will have one * for each unknown value.) Following the
filemode is the name by which the program was invoked (due to synonyms, this
may not be the same as the filename). It may be in mixed case and will be
truncated to 8 characters if necessary. (If it cannot be determined, "1" is used as
a placeholder.) The final word is the initial (default) address for commands.

If the language processor was called from a program that set up a subcommand
environment, the filetype is usually the name of the default address for
commands - see page 24 for details. Note that if a PSW is used for the default
address, the PARSE SOURCE string will use 1 as the name of the environment.

The string parsed might therefore look like this:

CMS COMMAND REXTRY EXEC * rext CMS

PARSE VALUE

expression is evaluated, and the result is the data that is parsed. Note that
WITH is a subkeyword in this context and so cannot be used as a symbol within
expression.

Thus, for example:

PARSE VALUE time() WITH hours 1:1 mins 1:1 sees

will get the current time and split it up into its constituent parts.

Chapter 3. Instructions 51

PARSE

PARSE V AR name

The value of the variable specified by name is parsed. name must be a symbol
that is valid as a variable name (that is, it can not start with a period or a digit).
Note that the variable name may be included in the template, so that for
example:

PARSE VAR string word! string

will remove the first word from string and put it in the variable word], and

PARSE UPPER VAR string word! string

will also translate the data from string to uppercase before it is parsed.

PARSE VERSION

Information describing the language level and the date of the language processor
is parsed. This consists of five words: first the string "REXX370", then the
language level description (for example, "3.45"), and finally the interpreter
release date (for example, "20 Oct 1987").

Note: PARSE VERSION information should be parsed on a word basis rather
than on an absolute column position.

52 VM/SP System Product Interpreter Reference

PROCEDURE

PROCEDURE

Where:

name
is a symbol, separated from any other names by one or more blanks.

The PROCEDURE instruction can be used within an internal routine (subroutine or
function) to protect all the existing variables by making them unknown to the
following instructions. On executing a RETURN instruction, the original variables
environment is restored and any variables used in the routine (which were not
exposed) are dropped.

The EXPOSE option modifies this, in that the variables specified by names are
exposed, so that any references to them (including setting them and dropping them)
refer to the variables' environment owned by the caller. If the EXPOSE option is
used, at least one name must be specified. Any variables not specified by name on a
PROCEDURE EXPOSE instruction are still protected. Hence, some limited set of
the caller's variables can be made accessible, and these variables can be changed (or
new variables in this set can be created). All these changes will be visible to the
caller upon RETURN from the routine.

The variables are exposed in sequence from left to right. It is not an error to specify
a name more than once, or to specify a name that has not been used as a variable by
the caller.

Example:

/* This is the main program */
j=l; x.l='a '
call toft
say j k m
exit

/* would display "1 7 W */

toft: procedure expose j k x.j
say j k x.j /* would display "1 K an */
k=7; m=3 /* note "M" is not exposed */
return

Note that if X.J in the EXPOSE list had been placed before J, the caller's value of J
would not have been visible at that time, so X.l would not have been exposed.

If a stem is declared in names, all possible compound variables whose names begin
with that stem are exposed. (A stem is a symbol containing just one period, which is
the last character. See page 19.)

Chapter 3. Instructions 53

P,ROCEDURE

Example:

Procedure Expose i j a. b.
/* This exposes "I", "J", and all variables whose */
/* names start with "A." or "B." * /
A.l=I?1 /* This will set "A.l" in the caller1s */

/* environment, even if it did not */
/* previously exist. */

Variables may be exposed through several generations of routines, if desired, by
ensuring that they are included on all intermediate PROCEDURE instructions.

Only one PROCEDURE instruction in each level of routine call is allowed; all
others (and those met outside of internal routines) are in error.

Notes:

1. An internal routine need not include a PROCEDURE instruction, in which case
the variables it is manipulating are those "owned" by the caller.

2. The PROCEDURE instruction must be the first instruction executed after the
CALL or function invocation - that is, it must be the first instruction following
the label.

See the CALL instruction and function descriptions on pages 32 and 71 for details
and examples of how routines are invoked.

54 VMjSP System Product Interpreter Reference

PULL

..--PULL----.------.,...--- ------..~
Ltemplate~

Where:

template
is a list of symbols separated by blanks and/or "patterns."

. PULL

PULL is used to read a string from the head of the queue. It is just a short form of
the instruction:

"-PARSE UPPER PULL L =oJ ;~
template

The current head-of-queue will be read as one string. If no template is specified, no
further action is taken (and the data is thus effectively discarded). Otherwise, the
data is translated to uppercase (i.e. a lowercase a-z to an uppercase A-Z) and then
parsed into variables according to the rules described in the section on parsing (page
119). Use the PARSE PULL instruction if uppercase translation is not desired.

Note: The VM implementation of the queue is the program stack. If the program
stack is empty, the terminal input buffer is used. If that too is empty, a console read
will occur. Conversely, if you "type-ahead" before an exec asks for your input, your
input data is added to the end of the terminal input buffer and will be read at the
appropriate time. The length of data in the program stack is restricted to 255
characters and the length of data in the terminal input buffer is restricted to 255
characters.

Example:

Say 100 you want to erase the file? Answer Yes or No: 1

Pull answer.
if answer=INO I then Say IThe file will not be erased. I

Here the dummy placeholder"." is used on the template so as to isolate the first
word entered by the user.

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 92.

Chapter 3. Instructions 55

PUSH

PUSH

..---PUSH:----,--------,--- ------.~
~expression~

The string resulting from evaluating expression will be stacked LIFO (Last In, First
Out) onto the queue. If expression is not specified, a null string is stacked.

Note: The VM implementation of the queue is the program stack. The length of
an element in the program stack is restricted to 255 characters. If longer the data
will be truncated. The program stack contains one buffer initially, but additional
buffers can be created using the eMS command MAKEBUF.

Example:

a='Fred '
push
push a 2

/* Puts a null line onto the stack */
/* Puts "Fred 2" onto the stack */

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 92.

56 VM/SP System Product Interpreter Reference

QUEUE

~UEUE--'"'T"--------"-- -------~
~expression~

QUEUE

The string reSUlting from expression will be appended to the tail of the queue. That
is, it will be added FIFO (First In, First Out). If expression is not specified, a null
string is queued.

Note: . The VM implementation of the queue is the program stack. The length of
an element in the program stack is restricted to 255 characters. The program stack
contains one buffer initially, but additional buffers can be created using the eMS
command MAKEBUF.

Example:

a='Toft'
queue a 2 /* Enqueues "Toft 2" */
queue /* Enqueues a null line behind the last */

The number of lines currently in the queue may be found with the QUEUED
built-in function, described on page 92.

Chapter 3. Instructions 57

RETURN

RETURN

~RETURN----r-------r--- -----... ~
Lexpress i O~

RETURN is used to return control (and possibly a result) from a REXX program or
internal routine to the point of its invocation. .

If no internal routine (subroutine or function) is active, RETURN is identical to
EXIT. (See page 41.)

If a subroutine is being executed (see the CALL instruction), expression (if any) is
evaluated, control passes back to the caller, and the REXX special variable
RESULT is set to the value of expression. If expression is not specified, the special
variable RESULT is dropped (becomes uninitialized). The various settings saved at
the time of the CALL (tracing, addresses, etc.) are also restored. (See page 32.)

If a function is being executed, the action taken is identical, except that expression
must be specified on the RETURN instruction. The result of expression is then used
in the original expression at the point where the function was invoked. See the
description of functions on page 71 for more details.

If a PROCEDURE instruction was executed within the routine (subroutine or
internal function), all variables of the current generation are dropped (and those of
the previous generation are exposed) after expression is evaluated and before the
result is used or assigned to RESULT.

58 VM/SP System Product Interpreter Reference

SAY

SAY

~SAY-----r-----------T--- -------~.~.

Lexpression~

The result of evaluating expression is written to the output stream. This typically
means displayed to the user, but the output destination can be dependent on the
implementation. The result of expression may be of any length.

Note: When in full-screen mode, the result from the SAY instruction will be
formatted to the width of of the virtual screen. However, the window in which you
are viewing the result may be smaller than your virtual screen. In this case the
characters in the columns defined by the virtual screen but not by the window may
not be seen immediately. To view these characters you can scroll right. You can
also reformat the data to fit within the bounds of the window being viewed.

For more information concerning windows and virtual screens, see your VMjSP
eMS User's Guide.

Also, when not in full-screen mode, the data may be reformatted to fit the terminal
line size (which may be determined using the LINESIZE built-in function), if'
necessary. The line size is restricted to a maximum of 130 characters. This
reformatting is done by the language processor, hence allowing any length data to be
displayed. Lines are typed on a typewriter terminal, or displayed on a display
terminal. If you are disconnected (in which case there is no "real" console, but data
can still be written to the console log), or CP TERMINAL LINESIZE OFF has
been issued (in which case LINESIZE = 0), SAY will use a default line size of 80.

Example:

data=100
Say data Idivided by 4 =>1 data/4
/* Would display: "10e divided by 4 => 25" */

Chapter 3. Instructions 59

SELECT

SELECT

"--SELECT;~HEN-expression~THEN [.J instructioL
, ,

~~----T------------------------------T--END;----·~~4
LOTHERWISE.....,r-~--____ "T""1

L) UinstructionlJ

SELECT is used to conditionally execute one of several alternative instructions.

Each expression following a WHEN is evaluated in turn and must result in 0 or 1.
If the result is I, the instruction following the THEN (which may be a complex
instruction such as IF, DO, or SELECT) is executed and control will then pass to
the END. If the result is 0, control will pass to the next WHEN clause.

If none of the WHEN expressions evaluate to 1, control will pass to the
instruction(s), if any, following OTHERWISE. In this situation, the absence of an
OTHERWISE will cause an error.

Example:

balance = balance - check
Select

when balance> 0 then
say 'Congratulations! You still have' balance 'dollars left.'

when balance = 0 then do
say 'Warning, Balance is now zero! STOP all spending.'
say "You cut it close this month! Hope you don't have any"
say "checks left outstanding."
end

Otherwise
say "You hav~ just overdrawn your account."
say "Your balance now shows" balance "dollars."
say "Oops! Hope the bank doesn't close your account."

end /* Select */

Notes:

1. A null clause is not an instruction, so putting an extra semicolon after a WHEN
clause is not equivalent to putting a dummy instruction. The NOP instruction is
provided for this purpose.

2. The symbol THEN cannot be used within expression, because the keyword
THEN is treated differently, in that it need not start a clause. This allows the
expression on the WHEN clause to be terminated by the THEN without a ;
(delimiter) being required.

60 VMjSP System Product Interpreter Reference

SIGNAL

SIGNAL

~SIGNAL~abelname ---.---r-I-----,r-;
expresslon---l

VALUE

ON~ERROR---"-----'
OFF FAILURE---I

Where:

labelname

HALT-----1
NOVALUE---I
SyNTAX----'

is a symbol that is taken as a constant.

The SIGNAL instruction causes an abnormal change in the flow of control, or (if
ON or OFF is specified) controls the trapping of exceptions.

In the case of neither ON nor OFF being specified:

labelname is used directly, or is the result of expression if VALUE is specified.
The subkeyword VALUE may be omitted if expression does not begin with a
symbol or literal string (Le. if it starts with a special character, such as an
operator or parentheses). All active pending DO, IF, SELECT, and
INTERPRET instructions in the current routine are then terminated (that is,
they cannot be reactivated). Control then passes to the first label in the
program that matches the required string, as though the search had started from
the top of the program. The match is done independently of alphabetic case,
but otherwise the label must match exactly.

Example:

Signal fred; /* Jump to label "FRED" below */

Fred: say I Hi! I

Since the search effectively starts at the top of the program, control will always
pass to the first occurrence of the label in the program if duplicates are present.

In the case of either ON or OFF being specified:

The condition is either enabled (ON) to trap an event or disabled (OFF). When
a condition is enabled and the corresponding event occurs, the following actions
will be taken:

ERROR
raised if any host command indicates an error condition upon return. It is
also raised if any command indicates failure and SIGNAL ON FAILURE is
not set.

In VM, SIGNAL ON ERROR will trap all positive return codes, and
negative return codes only if SIGNAL ON FAILURE is not set. '

Chapter 3. Instructions 61

SIGNAL

FAILURE
raised if any host command indicates a failure condition upon return.

In VM, SIGNAL ON FAILURE will trap all negative return codes from
commands.

HALT
an external attempt is made to interrupt execution of the program.
For example, in VM, the eMS immediate command, HI (Halt
Interpretation), will create a halt condition. Refer to "Interrupting
Execution and Controlling Tracing" on page 157.

NOVALUE
an uninitialized variable is used in an evaluated expression, or following the
V AR subkeyword of the PARSE instruction.

SYNTAX
an interpretation error is detected.

If ON is specified, the given condition is enabled; and if OFF is specified, the
condition is disabled. The initial setting of all conditions is OFF.

When a condition is currently enabled (ON has been specified), the trap is in effect.
So, when the corresponding event occurs, instead of the usual action at that point,
execution of the current instruction will immediately cease. A "SIGNAL xxx"
(where xxx is ERROR, FAILURE, HALT, NOVALUE, or SYNTAX) is then
executed automatically. This (if not trapped itself) causes control to pass to the first
label in the program that matches the condition.

Example:

Signal on error

erase /* this command gives a nonzero */
/* return code */

ERROR: /* Program will continue from here */
say IIReturn code wasil rc

Once an event is trapped, its corresponding condition is disabled (before the
SIGNAL takes place), and a new SIGNAL ON instruction is required to re-enable
it. Therefore, for example, if the required label is not found, a normal syntax error
termination will occur, which traces the name of that label and the clause in which
the event occurred.

For ERROR and FAILURE, the REXX special variable RC is set to the command
return code error humber before control is transferred to the condition label. For
SYNTAX, RC is set to the syntax error number.

The conditions are saved on entry to a subroutine and are then restored on
RETURN. This means that SIGNAL ON and SIGNAL OFF can be used in a
subroutine without affecting the conditions set up by the caller. See under the
CALL instruction (page 32) for more details.

Notes:

1. In all cases, the condition will be raised immediately upon detection of the error
and the current instruction terminated. Therefore, the instruction during which
an event occurs may be only partly executed. For example, if SYNTAX is

62 VM/SP System Product Interpreter Reference

SIGNAL

raised during the evaluation of the expression in an assignment, the assignment
will not take place. Note that ERROR, FAILURE, and HALT can only occur
at clause boundaries, but could arise in the middle of an INTERPRET
instruction.

2. While user input is executed during interactive tracing, all conditions are set
OFF so that unexpected transfer of control does not occur should (for example)
the user accidentally use an uninitialized variable while SIGNAL ON
NOVALUE is active. For the same reason, a syntax error during interactive
tracing will not cause exit from the program, but is trapped specially and then
ignored after a message is given.

3. Certain execution errors are detected by the host interface either before
execution of the program starts or after the program has exited. These errors
cannot be trapped by SIGNAL ON SYNTAX, and are listed on page 165.

Note that labels are clauses consisting of a single symbol followed by a colon. Any
number of successive clauses can be labels; therefore, multiple labels are allowed
before another type of clause.

The Special Variable SIGL
When any transfer of control due to a SIGNAL (or CALL) takes place, the line
number of the clause currently executing is stored in the REXX special variable
SIGL. This is especially useful for SIGNAL ON SYNTAX (see above) when the
number of the line in error can be used, for example, to control an editor. Typically,
code following the SYNTAX label may PARSE SOURCE to find the source of the
data~ then invoke an editor to edit the source file positioned at the line in error.
Note that in this case the program has to be reinvoked before any changes made in
the editor can take effect.

Alternatively, SIGL can be used to help determine the cause of an error (such as the
occasional failure of a function call) as in the following example:

/* Standard handler for SIGNAL ON SYNTAX */
syntax:

errormsg='REXX error l rc lin line ' sig1 1:1 errortext(rc)
say errormsg
say sourceline(sigl)
trace '?r'; nop

This code displays the error code, line number, and message text, then displays the
line in error, and finally drops into debug mode to allow you to inspect the values of
the variables used at the line in error. This may be followed, in CMS, by the
following lines, so that by pressing ENTER you will be placed in XEDIT as
suggested above:

call trace ' 0 I
address command 'Dropbuf 0 1

parse source . . fn ft fm .
push 'Command : 'sigl; push 'Command EMSG ' errormsg
address ems 'Xedit' fn ft fm
exit rc

Chapter 3. Instructions 63

SIGNAL

Using SIGNAL with the INTERPRET Instruction
If, as the result of an INTERPRET instruction, a SIGNAL instruction is issued or a
trapped event occurs, the remainder of the string(s) being interpreted will not be
searched for the given label. In effect, labels within interpreted strings are ignored.

64 VMjSP System Product Interpreter Reference

TRACE

~TRACE--r---------------~-------r------'-;~

Or, alternatively:

All------I
Commands--------t
Error-------1
Fa i1 u re'---------I
Intermediates
Labe 1 s-----I
Norma1-----;
ff------I

Res u 1 ts---------I
Scan--------'

~ TRACE--.----------------------r- ----. ~

Where:

I----s t ri ng--------;
I----symbo 1--------;
~-r------r--,express i on-

LVALUEJ

number is a whole number.

stri ng or express i on evaluates to:

• A number option

TRACE

• One of the valid prefix and/or alphabetic character (word) options shown above

• Null.

symbo 1 is taken as a constant, and is, therefore:

• A number option
• One of the valid prefix and/or alphabetic character (word) options shown above.

Chapter 3. Instructions 65

TRACE

TRACE is primarily used for debugging. It controls the tracing action taken (that
is, how much will be displayed to the user) during execution of a REXX program.
The syntax of TRACE is more concise than other REXX instructions. The economy
of key strokes for this instruction is especially convenient since TRACE is usually
entered manually during interactive debugging.

The tracing action is determined from the option specified following TRACE, or
from the result of evaluating express i on. If the expression form is used, the
subkeyword VALUE preceding it may be omitted as long as expressi,on starts with a
special character or operator (so it cannot be mistaken for a symbol or string).

Alphabetic Character (Word) Options
Although it is acceptable to enter the word in full, only the capitalized character is
significant, all other letters are ignored. That is why these are referred to as
alphabetic character options.

TRACE actions taken correspond to the alphabetic character options as follows:

All

Commands

Error

Failure

Intermediates

Labels

Normal

Off

Results

Scan

all clauses are traced (that is, displayed) before execution.

all host commands are traced before execution, and any error
return code is displayed.

any host command resulting in an error return code is traced
after execution.

any host command resulting in a negative return code is traced
after execution. This is the same as the Normal option.

all clauses are traced before execution. Intermediate results
during evaluation of expressions and substituted names are also
traced.

labels passed during execution are traced. This is especially
useful with debug mode, when the language processor will pause
after each label. It is also convenient for the user to make note
of all subroutine calls and signals.

(Normal or Negative); any host command resulting in a negative
return code is traced after execution. This is the default setting.

nothing is traced, and the special prefix actions (see below) are
reset to OFF.

all clauses are traced before execution. Final results (contrast
with Intermediates option, above) of evaluating an expression
are traced. Values assigned during PULL, ARG, and PARSE
instructions are also displayed. This setting is recommended for
general debugging.

all remaining clauses in the data will be traced without being
executed. Basic checking (for missing ENDs etc.) is carried out,
and the trace is formatted as usual. This is only valid if the
TRACE S clause itself is not nested in any other instruction
(including INTERPRET or interactive debug) or in an internal
routine.

66 VMjSP System Product Interpreter Reference

Prefix Options

Numeric Options

TRACE

The prefixes! and? are valid either alone or with one of the alphabetic character
options. Both prefixes may be specified, in any order, on one TRACE instruction.
A prefix may be specified more than once, if desired. Each occurrence of a prefix on
an instruction reverses the action of the previous prefix. The prefix(es) must
immediately precede the option (no intervening blanks).

The prefixes ! and ? modify tracing and execution as follows:

? is used to control interactive debug. During normal execution, a TRACE
instruction prefixed with? will cause interactive debug to be switched on. (See
separate section on page 155 for full details of this facility). While interactive
debug is on, interpretation will pause after most clauses that are traced. As an
example, the instruction TRACE ?E will make the language processor pause for
input after executing any host command that returns an Error (that is, a nonzero
return code).

Any TRACE instructions in the file being traced are ignored. (This is so that
you are not taken out of interactive debug unexpectedly.)

When it is in effect, Interactive debug can be switched off by issuing a TRACE
instruction with a prefix? Repeated use of the? prefix will, therefore, switch
you alternately in and out of interactive debug. Or, interactive debug can be
turned off at any time by issuing TRACE 0 or TRACE with no options.

Note: The CMS immediate command TS, entered from the command line, can
also be used to enter interactive debug.

is used to inhibit host command execution in the VM environment. During
normal execution, a TRACE instruction prefixed with! will cause execution of all
subsequent host commands to be suspended. As an example, TRACE ! C will cause
commands to be traced but not executed. As each command is bypassed, the
REXX special variable RC is set to O. This action may be used for debugging
potentially destructive programs. (Note that this does not inhibit any commands
issued manually while in interactive debug, which are always executed.)

Command inhibition can be switched off, when it is in effect, by issuing a
TRACE instruction with a prefix!. Repeated use of the! prefix will, therefore,
switch you alternately in and out of command inhibition mode. Or, command
inhibition can be turned off at any time by issuing TRACE 0 or TRACE with no
options.

If interactive debug is active and if the option specified is a positive whole number
(or an expression that evaluates to a positive whole number), that number indicates
the number of debug pauses to be skipped over. (See separate section on page 155,
for further information.) However, if the option is a negative whole number (or an
expression that evaluates to a negative whole number), all tracing, including debug
pauses, is temporarily inhibited for the specified number of clauses. For example,
TRACE -100 means that the next 100 clauses that would normally be traced will not,
in fact, be displayed. After that, tracing will resume as before.

If interactive debug is not active, numeric options are ignored.

Chapter 3. Instructions 67

TRACE·

Tracing Tips
1. If no option is specified on a TRACE instruction, or if the result of evaluating

the expression is null, the default tracing actions are restored. The defaults are
TRACE N , command inhibition (!) off, and interactive debug (?) off.

2. The trace actions currently in effect can be retrieved by using the TRACE
built-in function, described on page 99.

3. Comments associated with a traced clause are included in the trace, as are
comments in a null clause, if TRACE A, R, I, or S is specified.

4. Commands traced before execution always have the final value of the command
(that is, the string passed to the environment), and the clause generating it
produced in the traced output.

5. Trace actions are automatically saved across subroutine and function calls. See
under the CALL instruction (page 32) for more details.

A Typical Example
One of the most common traces you will use is:

TRACE ?R
/* Interactive debug is switched on if it was off, */
/* and tracing Results of expressions begins. */
Note: Tracing may be switched on, without requiring modification to a program, by
using the CMS command SET EXECTRAC ON. Tracing may also be turned on or
off asynchronously, (that is, while an exec is running) using the TS and TE
immediate commands. See page 157 for the description of these facilities.

Format of TRACE output
Every clause traced will be displayed with automatic formatting (indentation)
according to its logical depth of nesting etc., and results (if requested) are indented
an extra two spaces and are enclosed in double quotes so that leading and trailing
blanks are apparent.

Terminal control codes (for example, EBCDIC values less than '40'X) are replaced
by a question mark (?) to avoid terminal interference.

The first clause traced on any line will be preceded by its line number. If the line
number is greater than 99999, it is truncated on the left and the truncation is
indicated by a prefix of? For example, the line number 100354 would be shown as
?00354.

All lines displayed during tracing have a three-character prefix to identify the type of
data being traced. These can be:

- identifies the source of a single clause, that is, the data actually in the
program.

+++ identifies a trace message. This may be the nonzero return code from a
command, the prompt message when interactive debug is entered, an
indication of a syntax error when in interactive debug, or the traceback
clauses after a syntax error in the program (see below).

»> identifies the Result of an expression (for TRACE R) or the value assigned
to a variable during parsing, or the value returned from a subroutine call.

68 VM/SP System Product Interpreter Reference

TRACE

>.> identifies the value "assigned" to a placeholder during parsing (see page
124).

The following prefixes are only used if Intermediates (TRACE I) are being traced:

>C> The data traced is the name of a compound variable, traced after
substitution and before use, provided that the name had the value of a
variable substituted into it.

>F> The data traced is the result of a function call.

>L> The data traced is a literal (string, uninitialized variable, or constant
symbol).

>0> The data traced is the result of an operation on two terms.

>P> The data traced is the result of a prefix operation.

>V> The data traced is the contents of a variable.

Following a syntax error that is not trapped by SIGNAL ON SYNTAX, the clause
in error will always be traced, as will any CALL or INTERPRET or function
invocation clauses active at the time of the error. If the error was caused by an
attempt to transfer control to a label that could not be found, that label is also
traced. These traceback lines are identified by the special trace prefix +++.

Chapter 3. Instructions 69

UPPER

UPPER

-UPPER~vari ab 1 e·-'----- ------... ~4

Where:

variable
is a symbol, separated from any other variables by one or more blanks or
comments.

UPPER may be used to translate the contents of one or more variables to uppercase.
The variables are translated in sequence from left to right.

It is more convenient than using repeated invocations of the TRANSLATE built-in
function.

Example:

a='Hello ' ; b='there '
Upper a b
say a b /* would display "HELLO THERE" */
Only simple symbols and compound symbols may be specified (see page 18). An
error is signalled if a constant symbol or a stem is encountered. Using an
uninitialized variable is not an error, and has no effect, except that it will be trapped
if the NOV ALUE condition (SIGNAL ON NOVALUE) is enabled.

70 VM/SP System Product Interpreter Reference

Functions

Chapter 4. Functions

Syntax
Function calls to internal and external routines can be included in an expression
anywhere that a data term (such as a string) would be valid, using the notation:

~function-name(--r-I-f------I-'-I)~

[express ion]

funct i on-name is a literal string or a single symbol, which is taken to be a constant.

There can be up to an implementation maximum of expressions, separated by
commas, between the parentheses. In VM, the implementation maximum is up to
ten expressions. These expressions are called the arguments to the function. Each
argument expression may include further function calls.

Note that the "(", must be adjacent to the name of the function, with no blank in
between, or the construct will not be recognized as a function call. (A blank
operator will be assumed at this point instead.)

The arguments are evaluated in turn from left to right and they are all then passed
to the function. This then executes some operation (usually dependent on the
argument strings passed, though arguments are not mandatory) and will eventually
return a single character string. This string is then included in the original
expression just as though the entire function reference had been replaced by the
name of a variable that contained that data.

For example, the function SUBSTR is built-in to the language processor (see page
96) and could be used as:

Nl= I abcdefghi j k I
ZI=IPart of Nl is: IS ubstr(Nl,2,7)
/* would set Zl to IPart of Nl is: bcdefghl */
A function call without any arguments must always include the parentheses,
otherwise it would not be recognized as a function call.

date() /* returns the date in the default format dd mon yyyy */

Calls to Functions and Subroutines
The function calling mechanism is identical to that for subroutines. The only
difference between functions and subroutines is that functions must return data,
whereas subroutines need not.

Chapter 4. Functions 71

Functions

Search Order

The following types of routines can be called as functions:

Internal If the routine name exists as a label in the program, the current
processing status is saved, so that it will later be possible to return to the
point of invocation to resume execution. Control is then passed to the
label found. As with a routine invoked by the CALL instruction, various
other status information (TRACE and NUMERIC settings, etc.) is saved
too. See the CALL instruction (page 32) for details of this. If an
internal routine is to be called as a function, any RETURN instruction
executed to return from it must have an expression specified. This is not
necessary if it is called only as a subroutine.

Example:

/* Recursive internal function execution •.. */
arg x
say Xl! =1 factorial(x)
exit

factorial: procedure
arg n

/* calculate factorial by •• */
/* recursive invocation. */

if n=0 then return 1
return factorial(n-l) * n

FACTORIAL is unusual in that it invokes itself (this is known as
"recursive invocation"). The PROCEDURE instruction ensures that a
new variable n is created for each invocation).

Built-in These functions are always available and are defined in the next section
of this manual. (See pages 75-105.)

External Users can write or make use of functions that are external to the user's
program and to the language processor. An external function can be
written in any language, including REXX, that supports the system
dependent interfaces used by the language processor to invoke it. Again,
when called as a function it must return data to the caller.

Notes:

1. Calling an external REXX program as a function is similar to calling
an internal routine. The external routine is, however, an implicit
PROCEDURE in that all the caller's variables are always hidden
and the status of internal values (NUMERIC settings, etc.) start with
their defaults (rather than inheriting those of the caller).

2. Other REXX programs can be called as functions. Either EXIT or
RETURN can be used to leave the invoked REXX program, and in
either case an expression must be specified.

The search order for functions is the same as in the list above. That is, internal
labels take precedence, then built~in functions, and finally external functions.

Internal labels are not used if the function name is given as a string (that is, is
specified in quotes); in this case the function must be built-in or external. This lets
you usurp the name of, say, a built-in function to extend its capabilities, yet still be
able to invoke the built-in function when needed.

72 VM/SP System Product Interpreter Reference

Example:

/* Modified DATE to return sorted date by default */
date: procedure

arg in
if in=" then in='Sorted'
return 'DATE'(in)

Functions

Built-in functions have uppercase names, and so the name in the literal string must be
in uppercase for the search to succeed, as in the example. The same is usually true
of external functions.

External functions and subroutines have a system-defined search order.

1. Check to see if it is part of the DBCS function package.

2. The name is prefixed with RX, and the language processor attempts to execute
the program of that name, using CMSCALL.

3. If the function is not found, the function packages will be interrogated and
loaded if necessary (they return RC = 0 if they contained the requested function,
or RC = I otherwise). The function packages are checked in the order
RXUSERFN, RXLOCFN, and RXSYSFN. If the load is successful, step (2) is
repeated and will succeed.

4. If still not found, the name is restored to its original form, and all directories
and accessed minidisks are first checked for a program with the same file type as
the currently executing program (if the filetype is not EXEC, as with XED IT
macros for example), and then checked for a file with the filetype of EXEC. If
either is found, control is passed to it. (The IMPEX setting has no control over
this.)

5. Finally the language processor attempts to execute the function under its original
name, using CMSCALL. (If still not found, an error results.)

The name prefix mechanism, RX, allows new REXX functions to be written with
little chance of name conflict with existing MODULES.

Chapter 4. Functions 73

Functions

Yes

Yes

Yes

START

Autoload from:
1. RXUSERFN OK
2. RXLOCFN
3. RXSYSFN

Yes

Does EXEC
exist?

No

No

Yes

No

Prepare
invocation
for macro
or EXEC

Figure 2. External Routine Resolution and Execution

74 VMjSP System Product Interpreter Reference

Functions

Errors during Execution
If an external or built-in function detects an error of any kind, the language
processor is informed, and a syntax error results. Execution of the clause that
included the function call is therefore terminated. Similarly, if an external function
fails to return data correctly, this will be detected by the language processor and
reported as an error.

If a syntax error occurs during the execution of an internal function, it can be
trapped (using SIGNAL ON SYNTAX) and recovery may then be possible. If the
error is not trapped, the program is terminated.

Built-in Functions
REXX provides a rich set of built-in functions. These include character
manipulation, conversion, and information functions. Further external functions are
generally available - see page 105.

General notes on the built-in functions:

• The built-in functions work internally with NUMERIC DIGITS 9 and
NUMERIC FUZZ 0 and are unaffected by changes to the NUMERIC settings,
except where stated.

• Where a string is referenced, a null string can be supplied.

• If an argument specifies a length, it must be a nonnegative whole number. If it
specifies a start character or word in a string, it must be a positive whole
number, unless otherwise stated.

• Where the last argument is optional, a comma can always be included to
indicate that it has been omitted; for example, DAT ATYPE(1 ,), like
DAT ATYPE(1), would return NUM.

• If a pad character is specified, it must be exactly one character long.

• If a function has a suboption selected by the first character of a string, that
character can be in upper- or lowercase.

• Conversion between characters and hexadecimal involves the machine
representation of character strings, and hence will return appropriately different
results for ASCII and EBCDIC machines. The examples below assume an
EBCDIC implementation.

• A number of the functions described in this chapter support the
Double-Byte-Character-Set (DBCS). A complete list and description of these
functions is given in Appendix B, "Double Byte Character Set (DBCS)" on
page 173.

Chapter 4. Functions 75

Functions

ABBREV

ABS

ADDRESS

"-ABBREV(information, info [~)
, length

returns I if info is equal to the leading characters of i nformat i on and the length of
info is not less than 1 ength. Returns 0 if either of these conditions is not met.

1 ength, if specified, must be a nonnegative whole number. The default for 1 ength is
the number of characters in info.

Here are some examples:

ABBREV('Print','Pri') -> 1
ABBREV('PRINT','Pri ') -> 0
ABBREV('PRINT ' ,'PRI ' ,4) -> 0
ABBREV('PRINT','PRY') -> 0
ABBREV('PRINT',' I) -> 1
ABBREV('PRINT ' ,",l) -> 0

Note: A null string will always match if a length of 0 (or the default) is used. This
allows a default keyword to be selected automatically if desired; for example:

say I Enter option:'; pull option.
select /* keyword1 is to be the default */

when abbrev('keyword1 1,option) then
when abbrev('keyword2 1,option) then •..

otherwise nop;
end;

..-ABS(number)-----.... •

returns the absolute value of number. The result has no sign and is formatted
according to the current NUMERIC settings.

Here are some examples:

ABS(112.3 1)
ABS(I -0.307 1)
ABS(I -lo0E1 1)

->
->
->

12.3
0.307
10

"-ADDRESS ()------...... ~ ..

76 VM/SP System Product Interpreter Reference

ARG

Functions

returns the name of the environment to which host commands are currently being
submitted. In eMS, the environment may be a name of a subcommand
environment or a PSW. Trailing blanks are removed from the result.

Here are some examples:

ADDRESS()
ADDRESS()

->
->

leMS I

I XEDIT I

/* perhaps */
/* perhaps */

~ARG (--r-L-n=::=======:==Ir--)-------to

L, opt ion<=]

returns an argument string, or information about the argument strings to a program
or internal routine.

If no parameter is given, the number of arguments passed to the program or internal
routine is returned.

If only n is specified, the nth argument string is returned. If the argument string
does not exist, the null string is returned. n must be a positive whole number.

If option is specified, ARG tests for the existence of the nth argument string. Valid
. opt ions (of which only the capitalized letter is significant, all others are ignored) are:

Exists returns 1 if the nth argument exists; that is, if it was explicitly specified
when the routine was called. Returns 0 otherwise.

Omi tted returns 1 if the nth argument was omitted; that is, if it was not explicitly
specified when the routine was called. Returns 0 otherwise.

Here are some examples:

/* fall owi ng "Call name; II (no arguments) */
ARG() -> (:)

ARG(l) -> II

ARG(2) -> I I

ARG(1, I e I) -> (:)

ARG(1, 10 1) -> 1

/* following "Call name la l " Ibl;" */
ARG() -> 3
ARG(1) -> la I
ARG(2) -> II

ARG(3) -> Ib l

ARG(n) -> II /* for n>=4 */
ARG(l, I e I) -> 1
ARG(2, I E I) -> (:)

ARG(2, 10 1) -> 1
ARG(3, 10 1) -> (:)

ARG(4, 10 1) -> 1

Chapter 4. Functions 77

Functions

BITAND

BITOR

Notes:

1. The argument strings to a: program or internal routine may be retrieved and
parsed directly using the ARG or PARSE ARG instructions - see pages 30, 50,
and 119.

2. Programs called as commands can have only 0 or 1 argument strings. The
program will have 0 argument strings if it is called with the name only and will
have 1 argument string if anything else (including blanks) is included with the
command.

~BITAND(stringl [I)
, [string2] [,pad]

returns a string composed of the two input strings logically ANDed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad
character is provided, the AND operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right, before carrying out the logical operation. The default for
stri ng2 is the zero length (null) string.

Here are some examples:

BITAND('73'x,'27'x)
BITAND('13'x,'5555'x)
BITAND('13'x,'5555'x,'74'x)
BITAND('pQrS' ,,'BF'x)

->
->
->
->

'23'x
'1155' x
'1154' x
'pqrs'

~BITOR(stringl [I)
, [string2] [,pad]

returns a string composed of the two input strings logically ORed together, bit by
bit. The length of the result is the length of the longer of the two strings. If no pad
character is provided, the OR operation terminates when the shorter of the two
strings is exhausted, and the unprocessed portion of the longer string is appended to
the partial result. If pad is provided, it is used to extend the shorter of the two
strings on the right, before carrying out the logical operation. The default for
stri ng2 is the zero length (null) string.

78 VM/SP System Product Interpreter Reference

BITXOR

Here are some examples:

BITOR{'15 I x,'24 I x)
BITOR('15 I x,'2456 I x)
BITOR('15 I x,'2456 Ix,'F0 I x)
BITOR('ll11 I x,,'4D 'x)
BITOR('Fred ' ,,'40 Ix)

->
->
->
->
->

'35 1x
'3556 1x
'35F6 1 x
'5D5D 'x
'FRED'

~BITXOR(stringl [I)
, [string2] [,pad]

Functions

.4

returns a string composed of the two input strings logically eXclusive ORed together,
bit by bit. The length of the result is the length of the longer of the two strings. If
no pad character is provided, the XOR operation terminates when the shorter of the
two strings is exhausted, and the unprocessed portion of the longer string is
appended to the partial result. If pad is provided, it is used to extend the shorter of
the two strings on the right, before carrying out the logical operation. The default
for string2 is the zero length (null) string.

Here are some examples:

BITXOR{'12 I x,'22 I x)
BITXOR('1211 I x,'22 Ix)
BITXOR('C711'x,'222222Ix,' I)
BITXOR('l111 I x,'444444 I x)
BITXOR('ll11 I x,'444444 I x,'40 Ix)
BITXOR('llll l x,,'4D ' x)

->
->
->
->
->
->

'30 1 x
'3011 'x
'E53362 1 x
'555544 1 x
I 555504 IX

'5C5C 'x

CENTRE/CENTER

-{
CENTER(]-

string, length L I) • 4

CENTRE(,pad~

returns a string of length length with string centered in it, with pad characters
added as necessary to make up length. The default pad character is blank. If the
string is longer than 1 ength, it will be truncated at both ends to fit. If an odd
number of characters are truncated or added, the right-hand end loses or gains one
more character than the left-hand end.

Here are some examples:

CENTER(abc,7)
CENTER(abc,8,'-')
CENTRE('The blue sky',8)
CENTRE('The blue sky',7)

->
->
->
->

ABC
'--ABC---'
Ie blue Sl

Ie blue I

Note: This function can be called either CENTRE or CENTER, which avoids
errors due to the difference between the British and American spellings.

Chapter 4. Functions 79

Functions

CMSFLAG

COMPARE

COPIES

CSL

C2D

This is a CMS external function. See page 105.

~COMPARE(stringl,string2 --.------r-)--... ~ ...
L,pad~

returns 0 if the strings, stri ngl and stri ng2, are identical. If they are not identical,
the returned number is the position of the first character that does not match. The
shorter string is padded on the right with pad if necessary. The default pad character
is a blank.

Here are some examples:

COMPARE('abc','abc ')
COMPARE('abc','ak')
COMPARE('ab ','ab ')
COMPARE('ab ','ab',' I)

COMPARE (i ab I', I ab I , I X I)

COMPARE('ab-- ','ab','_')

->
->
->
->
->
->

~COPIES(string,n) ~ ..

o
2
o
o
3
5

returns n concatenated copies of stri ng. n must be a nonnegative whole number.

Here are some examples:

COPIES(iabc ' ,3)
COPIES (' abc' ,0)

->
->

'abcabcabc'
II

This is a CMS external function. See page 106

I ' -C2D(string [~) ~ ..
,n

Character to Decimal. Returns the decimal value of the binary representation of
stri ng. If the result cannot be expressed as a whole number, an error results. That
is, the result must.not have more digits than the current setting of NUMERIC
DIGITS.

If stri n9 is the null string, then '0' is returned.

80 VM/SP System Product Interpreter Reference

C2X

DATATYPE

Functions

If n is not specified, the sequence of hexadecimal digits is processed as an unsigned
binary number.

Here are some examples:

C2D(109 1 X)
C2D('81 IX)
C2D('FF81 IX)
C2D(I a I)

->
->
->
->

9
129

65409
129 /* EBCDIC */

If n is specified, the given stri n9 is padded on the left with 'OO'x characters (note,
not "sign-extended"), or truncated on the left to n characters. The resulting string of
n hexadecimal digits is taken to be a signed binary number: positive if the leftmost
bit is off, and negative, in two's complement notation, if the leftmost bit is on. If n
is 0, then 0 is always returned.

Here are some examples:

C2D('SI IX,I) -> -127
C2D(1811 X,2) -> 129
C2D('FF81 IX,2) -> -127
C2D(I FF81 ' X, 1) -> -127
C2D(I FF7F I X, 1) -> 127
C2D('F0SI ' X,2) -> -3967
C2D(I F0SI ' X, 1) -> -127
C2D('0031IX,0) -> 0

Implementation maximum: The input string may not have more than 250 characters
that will be significant in forming the final result. Leading sign characters ('OO'x and
'ffx) do not count towards this total.

~C2X(string) ~ ..

Character to Hexadecimal. Converts a character string to its hexadecimal
representation (unpacks). The data to be unpacked can be of any length.

Here are some examples:

C2X('72s I)
C2X(10123 1 X)

->
->

'F7F2A21
10123 1

/* EBCDIC */

~DATATYPE(string L .oJ)
,type

If only stri n9 is specified, the returned result is NUM if stri ng is a valid REXX
number (any format), otherwise CHAR will be the returned result.

Chapter 4. Functions 81

Functions

DATE

If type is specified, the returned result is 1 if stri ng matches the type, otherwise a 0
is returned. If stri ng is null, 0 is returned (except when type is X, which returns 1).
The following is a list of valid types. Only the capitalized and boldfaced letter is
significant (all letters following the significant letter are ignored).

Alphanumeric

Bits

c
Dbcs

Lowercase

Mixed case

Number

Symbol

Uppercase

Whole number

heXadecimal

returns 1 if stri ng contains only characters from the ranges a-z,
A-Z, and 0-9.

returns 1 if stri ng contains only the characters 0 and/or 1.

returns 1 if stri ng is a mixed SBCS/DBCS string.

returns 1 if s t ri ng only is a pure D BCS string enclosed by SO and
SI bytes.

returns 1 if string contains only characters from the range a-z.

returns 1 if stri ng contains only characters from the ranges a-z and
A-Z.

returns 1 if stri ng is a valid REXX number.

returns 1 if stri ng contains only characters that are valid in REXX
symbols (see page 9). Note that not only uppercase alpha be tics are
permitted, but lowercase alpha be tics as well.

returns 1 if stri ng contains only characters from the range A-Z.

returns 1 if stri ng is a REXX whole number under the current
setting of NUMERIC DIGITS.

returns 1 if stri ng contains only characters from the ranges a-f,
A-F, 0-9, and blank (so long as blanks only appear between pairs
of hexadecimal characters). Also returns 1 if string is a null string.

Here are some examples:

DATATYPE(' 12 I) -> 'NUM '
DATATYPE(") -> 'CHAR '
DATATYPE('123*') -> 'CHAR '
DATATYPE('12.3 1 ,'N ') -> 1
DATATYPE('12.3 1 ,'W ') -> 0
DATATYPE('Fred','M ') -> 1
DATATYPE(",'M ') -> 0
DATATYPE('Fred','L ') -> 0
DATATYPE('¢20K ' ,'S') -> 1
DATATYPE('BCd3 1 ,'X ') -> 1
DATATYPE('BC d3 1 ,'X') -> 1

~DATE (---,r-------r-)--.......
LoPtion~

returns the local date in the format: dd mon yyyy (for example, 27 Aug 1988), with
no leading zero on the day. The mon is the month name. If the active language has
an abbreviated form of the month name, then it will be used (for example, Jan, Feb,
and so on).

82 VM/SP System Product Interpreter Reference

Dacs

Functions

The following opt ions (of which only the capitalized letter is needed, all others are
ignored) can be used to obtain alternative formats:

Basedate returns the number of complete days (that is, not including the current
day) since and including the base date, January 1, 0001, in the format:
dddddd (no leading zeros). The expression DATE (B) //7 returns a
number in the range 0-6, where 0 is Monday and 6 is Sunday.

Thus, this function can be used to determine the day of the week
independent of the national language you're working in.

Note: The origin of January 1, 0001 is based on the Gregorian calendar.
Though this calendar did not exist prior to 1582, Basedate is calculated
as if it did: 365 days per year, an extra day every four years except
century years, and leap centuries if the century is divisible by 400. It
does not take into account any errors in the calendar system that created
the Gregorian calendar originally.

Century returns the number of days, including the current day, since January 1 of
the last year which is a multiple of 100 in the format: ddddd (no leading
zeros). Example: if a call is made to DATE(C) on June 30, 1988, the
number of days from January 1, 1900 to June 30, 1988 will be returned.

Days returns the number of days, including the current day, so far in this year
in the format: ddd (no leading zeros)

European returns date in the format: dd/mm/yy

Jul i an returns date in the format: yyddd

Month returns full name of the current month, for example, August

Norma 1 returns date in the default format: dd mon yyyy

Ordered returns date in the format: yy/mm/dd (suitable' for sorting, etc.)

Sorted returns date in the format: yyyymmdd (suitable for sorting, etc.)

Usa returns date in the format: mm/dd/yy

Weekday returns day of the week, for example, Tuesday.

Note: The first call to DATE or TIME in one expression causes a time stamp to be
made which is then used for all calls to these functions in that expression. Hence, if
multiple calls to any of the DATE and/or TIME functions are made in a single
expression, they are guaranteed to be consistent with each other.

The following are all part of the DBCS function package. See page 173.

DBADJUST
DBBRACKET
DBCENTER
DBCJUSTIFY
DB LEFT

DBRIGHT
DBRLEFT
DBRRIGHT
DBTODBCS
DBTOSBCS

DBUNBRACKET
DBVALIDATE
DBWIDTH

Chapter 4. Functions 83

Functions

DELSTR

DELWORD

DIAG/DIAGRC

I DIGITS

~DELSTR(string,n L =oJ)
,length

deletes the substring of stri ng that begins at the nth character, and is of length
1 ength. If 1 ength is not specified, the rest of s tri ng is deleted. If n is greater than
the length of string, the string is returned unchanged. n must be a positive whole
number.

Here are some examples:

DELSTR('abcd ' ,3)
DELSTR('abcde ' ,3,2)
DELSTR('abcde ' ,6)

->

->

->

'ab '
label
I abcde I

~DELWORD(string,n L =oJ)
,length

deletes the substring of stri ng that starts at the nth word. The 1 ength option refers
to the number of blank-delimited words. If 1 ength is omitted, it defaults to be the
remaining words in stri ng. n must be a positive whole number. If n is greater than
the number of words in s t ri ng, s t ri ng is returned unchanged. The string deleted
includes any blanks following the final word involved.

Here are some examples:

DELWORD('Now is the time ' ,2,2) -> 'Now time '
DELWORD('Now is the time 1,3) -> 'Now is I

DELWORD('Now is the time ' ,5) -> 'Now is the time '

These are CMS external functions. See page 108.

~DIGITS O------t .. ~ ..

returns the current setting of NUMERIC DIGITS.

Example:

DIGITSO -> 9 /* by default */

84 VM/SP System Product Interpreter Reference

D2C

D2X

Functions

~D2C(wholenumber [.oJ)
,n

Decimal to Character. Returns a character string that is the binary representation of
the decimal number. Length may be specified by n, or length is as needed if n is
omitted.

If n is not specified, who 1 enumber must be a nonnegative number or an error will
result. If n is not specified, the result is returned such that there are no leading 'OO'x
characters.

If n is specified, it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, then the result will be truncated on the
left.

Here are some examples:

D2C(9) -> 109 1x
D2C(129) -> 181 1 x
D2C(129,1) -> 181 1 x
D2C(129,2) -> 100811 x
D2C(257,1) -> 101 1x
D2C(-127,1) -> 181 1 x
D2C(-127,2) -> I FF81 I x
D2C(-1,4) -> IFFFFFFFFlx
D2C(12,0) -> I I

Implementation maximum: The output string may not have more than 250
significant characters, though a longer result is possible if it has additional leading
sign characters ('OO'x and 'ffx).

~D2X (who 1 en umber [.oJ)
,n

• III

Decimal to Hexadecimal. Returns a string of hexadecimal characters that is the
hexadecimal representation of the decimal number.

If n is not specified, who 1 enumber must be a nonnegative number or an error will
result. If n is not specified, the result is returned such that there are no leading 0
characters.

If n is specified, it is the length of the final result in characters; that is, after
conversion the input string will be sign-extended to the required length. If the
number is too big to fit into n characters, it will be truncated on the left.

Chapter 4. Functions 85

Functions'

ERRORTEXT

EXTERNALS

FIND

Here are some examples:

D2X(9) -> 19 1

D2X(129) -> 1811

D2X(129 , 1) -> 111

D2X(129,2) -> 1811

D2X(129,4) -> 1OO81 1

D2X(257,2) -> 101 1

D2X(-127,2) -> 1811

D2X(-127,4) -> I FF811
D2X(12,0) -> II

Implementation maximum: The output string may not have more than 500
significant hexadecimal characters, though a longer result is possible if it has
additional leading sign characters (0 and F).

"---ERRORTEXT(n) .4

returns the error message associated with error number n. n must be in the range
0-99, and any other value is an error. If n is in the allowed range, but is not a '.
defined REXX error number, the null string is returned. See Appendix A, "Error
Numbers and Messages" on page 165 for a complete description of error numbers
and messages.

Here are some examples:

ERRORTEXT(16)
ERRORTEXT(60)

->
->

I Label not found I

I I

"---EXTERNALS () • 4

returns the number of elements in the terminal input buffer (system external event
queue), that is, the number of logical typed-ahead lines, if any. See PARSE
EXTERNAL on page 50 for a description of this queue.

Here is an example:

EXTERNALS 0 -> ° /* Usually */

WORDPOS is the preferred built-in function for this type of word search. Refer to
page 102 for a complete description.

"---FIND (stri ng ,phrase)-------.~4

86 VM/SP System Product Interpreter Reference

I FORM

FORMAT

Functions

searches stri ng for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in stri ng. Multiple
blanks between words are treated as a single blank for the comparison. Returns 0 if
phrase is not found or if there are no words in phrase.

Here are some examples:

FIND('now is the time','is the time')
FIND('now is the time','is the')
FIND('now is the time','is time ')

~FORM{)-----"·~4

->
->
->

returns the current setting of NUMERIC FORM.

Example:

FORM() -> 'SCIENTIFIC' /* by default */

2
2
a

~FORMAT{number-r---------------------.--)-+--1 L --.--_---.--..---_______ ---.-'1
, [before] ['.....,,..----......--.-L-----~I

Lafte,J 'l J I
expp [,exptJ

rounds and formats number.

If only number is given, it will be rounded and formatted to standard REXX rules,
just as though the operation "number + 0" had been carried out. The before and
after options describe how many characters are to be used for the integer part and
decimal part of the result respectively. If either or both of these are omitted, the
number of characters used will be as many as are needed for that part.

If before is not large enough to contain the integer part of the number, an error
results. If before is too large, the number is padded on the left with blanks. If
after is not the same size as the decimal part of the number, the number will be
rounded (or extended with zeros) to fit. Specifying 0 will cause the number to be
rounded to an integer.

~

Chapter 4. Functions 87

Functions

I FUZZ

INDEX

Here are some examples:

FORMAT (13 1,4) -> 31
FORMAT(11.73 1,4,0) -> 21
FORMAT(11.73 1,4,3) -> 1.730 1
FORMAT(I-.76 1,4,1) -> -0.8 1
FORMAT (13.03 1,4) -> 3.03 1
FORMAT(I - 12.73 1,,4) -> 1-12.73001
FORMAT(I - 12.73 1) -> 1-12.73 1
FORMAT (10.0001) -> 10 1

The first three arguments are as described above. In addition, expp and expt control
the exponent part of the result: expp sets the number of places to be used for the
exponent part, the default being to use as many as are needed. The expt sets the
trigger point for use of exponential notation. If the number of places needed for the
integer part exceeds expt, exponential notation will be used. Likewise, exponential
notation will be used if the number of places needed for the decimal part exceeds
twice expt. The default is the current setting of NUMERIC DIGITS. If 0 is
specified for expt, exponential notation is always used unless the exponent would be
O. The expp must be less than 10, but there is no limit on the other arguments. If 0
is specified for the expp field, no exponent will be supplied, and the number will be
expressed in "simple" form with added zeros as necessary. Otherwise, if expp is not
large enough to contain the exponent, an error results.

Here are some examples:

FORMAT(112345.73 1",2,2)
FORMAT(112345.73 1,,3,,0)
FORMAT(11.234573 1,,3,,0)
FORMAT(112345.73 1",3,6)
FORMAT(11234567e5 1,,3,0)

~FUZZ()-----"'''''''''

->
->
->
->
->

I 1. 234573E+04 I
11.235E+41
11.2351
112345.73 1

1123456700000.000 1

returns the current setting of NUMERIC FUZZ.

Example:

FUZZ(} -> o /* by default */

~ I NDEX (hays tack, needl e'-~----"""'-- ----...........
L,start.-l

returns the character position of one string, needl e, in another, haystack. If the
string needl e is not found, 0 is returned. By default the search starts at the first
character of haystack (start is of the value 1). This can be overridden by giving a
different start point, which must be a positive whole number.

88 VM/SP System Product Interpreter Reference

INSERT

JUSTIFY

Functions

Here are some examples:

INDEX('abcdef','cd') -> 3
INDEX('abcdef','xd') -> <:)

INDEX('abcdef','bc',3) -> <:)

INDEX('abcabc','bc',3) -> 5
INDEX('abcabc', 'bc',6) -> <:)

~INSERT(new, target L I)
, Ln] L I

, llengthJ [,pad]

inserts the string new, padded to length 1 ength, into the string target after the nth
character. If specified, n must be a nonnegative whole number. If n is greater than
the length of the target string, padding is added there also. The default pad
character is a blank. The default value for n is 0, which means insert before the
beginning of the string.

Here are some examples:

INSERT (' ',' abcdef' ,3)
INSERT('123','abc',5,6)
INSERT('123','abc',5,6,'+')
INSERT('123', 'abc')
INSERT('123','abc',,5,'-')

->
->
->
->
->

'abc deft
'abc 123
'abc++123+++'
'123abc'
'123--abc'

~JUSTIFY(string, length----.----r-)----.~~ ..
L,pad~

formats blank-delimited words in stri ng, by adding pad characters between words to
justify to both margins. That is, to width length (length must be nonnegative). The
default pad character is a blank.

The string is first normalized as though SPACE(string) had been executed (that is,
mUltiple blanks are converted to single blanks, and leading and trailing blanks are
removed). If 1 ength is less than the width of the normalized string, the string is then
truncated on the right and any trailing blanks are removed. Extra pad characters are
then added evenly from left to right to provide the required length, and the blanks
between words are replaced with the pad character.

Here are some examples:

JUSTIFY('The blue sky',14) -> 'The blue sky'
JUSTIFY('The blue sky' ,8) -> 'The blue'
JUSTIFY('The blue sky',9) -> 'The blue'
JUSTIFY('The blue sky' ,9, '+') -> 'The++blue'

Chapter 4. Functions 89

Functions

LASTPOS

LEFT

LENGTH

~LASTPOS(needle,haystack ...
L,start~

returns the position of the last occurrence of one string, needl e, in another,
haystack. (See also POS.) If the string needl e is not found, 0 is returned. By
default the search starts at the last character of haystack (that is,
start=LENGTH(string» and scans backwards. This may be overridden by specifying
start, the point at which to start the backwards scan. start must be a positive
whole number, and defaults to LENGTH(string) if larger than that value.

Here are some examples:

LASTPOS(' ','abc def ghi')
LASTPOS(' ','abcdefghi')
LASTPOS(' ','abc def ghi ' ,7)

->

->

->

~LEFT(string, length [:=oJ)
,pad

8
e
4

...

returns a string of length 1 ength, containing the leftmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated) on the right
as needed. The default pad character is a blank. 1 ength must be nonnegative. The
LEFT function is exactly equivalent to SUBSTR(string,l, length[,pad]).

Here are some examples:

LEFT(I abc d 1,8)
LEFT (I abc d I ,8, I • I)

LEFT('abc def ' ,7)

->

->

->

'abcd
I abc d ••• I

'abc del

~LENGTH (stri ng)------........

returns the length of stri ng.

Here are some examples:

LENGTH('abcdefgh')
LENGTH('abc defg')
LENGTH(I I)

->
->

->

8
8
e

90 VMjSP System Product Interpreter Reference

LINESIZE

MAX

MIN

Functions

~LI NES I ZE ()--------.~

returns the current terminal line width (the point at which the interpreter will break
lines displayed using the SAY instruction). A value of 0 is returned if any of the
following are true: the terminal line size cannot be determined by the interpreter,
the virtual machine is DISCONNected, the command CP TERMINAL LINE SIZE
OFF has been issued.

Note: The terminal line width can be set with the CP TERM LINESIZE command.
When not in full-screen CMS, the terminal line width is limited to the CMS
maximum of 130. When in full-screen CMS, the line size will always return a value
of 999999999.

~MAX(nUmbe~)

1l,numbeJJ

to ..

returns the largest number from the list specified, formatted according to the current
setting of NUMERIC DIGITS. Up to ten numbers can be specified, although calls
to MAX can be nested if more arguments are needed.

Here are some examples:

MAX(12,6,7,9)
MAX(17.3,19,17.03)
MAX(-7,-3,-4.3)
MAX(1,2,3,4,5,6,7,8,9,MAX(10,11,12,13))

~MIN(nUmbe~)

1l,numbeJJ

->
->
->
->

12
19
-3
13

returns the smallest number from the list specified, formatted according to the
current setting of NUMERIC DIGITS. Up to ten numbers can be specified,
although calls to MIN can be nested if more arguments are needed.

Here are some examples:

MIN(12,6,7,9)
MIN(17.3,19,17.03)
MIN(-7,-3,-4.3)

->
->
->

6
17.03
-7

Chapter 4. Functions 91

Functions

OVERLAY

POS

QUEUED

~OVERLAY(new, target L I)-....
, LJ L I

n '[1 ength] [,pad]

overlays the string target, starting at the nth character with the string new, padded
or truncated to length 1 ength. If 1 ength is specified it must be positive or zero. If n
is greater than the length of the target string, padding is added before the new string.
The default pad character is a blank, and the default value for n is 1. If specified, n
must be a positive whole number.

Here are some examples:

OVERLAY(' ','abcdef',3)
OVERLAY('.',' abcdef ' ,3,2)
OVERLAY('qq','abcd ')
OVERLAY('qq','abcd ' ,4)
OVERLAY('123 1

,' abc ' ,5,6,'+')

->

->
->

->

->

lab def '
lab. ef '
'qqcd '
'abcqq'
'abc+123+++ '

~POS(needle,haystack-.--------;r--)-----·"'''
L,start~

returns the position of one string, needle, in another, haystack. (See also the
INDEX and LASTPOS functions.) If the string needl e is not found, 0 is returned.
By default the search starts at the first character of haystack (that is start is of the
value 1). This can be overridden by specifying start (which must be a positive
whole number), the point at which to start the search.

Here are some examples:

POS('day','Saturday')
POS(IXI ,'abc def ghi')
POS (I I, I abc def gh i I)
POSe ','abc def ghi ' ,5)

->

->

->

->

~QUEUED 0-------. ,.

6
o
4
8

returns the number of lines remaining in the queue at the time when the function is
invoked. If no lines are remaining, a PULL or PARSE PULL will read from the
terminal input buffer. If there is no terminal input waiting this causes a console read
(VM READ).

92 VMjSP System Product Interpreter Reference

RANDOM

Functions

Here is an example:

QUEUEDO -> 5 /* Perhaps */

~RANDOM(Linin]

returns a pseudorandom nonnegative whole number in the range mi n to max
inclusive. If only one argument is specified, the range will be from 0 to that number.
Otherwise, the default values for mi n and max are 0 and 999, respectively. A specific
seed (which must be a whole number) for the random number can be specified as the
third argument if repeatable results are desired.

The magnitude of the range (that is, max minus mi n) must not exceed 100000.

Here are some examples:

RANDOM 0 -> 305
RANDOM(5,8) -> 7
RANDOM(,,1983) -> 123 /* always */
RANDOM(2) -> 0

Notes:

1. To obtain a predictable sequence of pseudorandom numbers, use RANDOM a
number of times, but only specify a seed the first time. For example, to
simulate forty throws of a six-sided, unbiased die:

sequence = RANDOM(1,6,12345) /* any number would */
/* do for a seed */

do 39
sequence = sequence RANDOM(1,6)
end

say sequence

The numbers are generated mathematically, using the initial seed, so that as far
as possible they appear to be random. Running the program again will produce
the same sequence; using a different initial seed will almost certainly produce a
different sequence. If you do not supply a seed, the first time RANDOM is
called, the microsecond field of the time-of-day clock will be used as the seed;
and hence your program will almost always give different results each time it is
run.

2. The random number generator is global for an entire program; the current seed
is not saved across internal routine calls.

3. The actual random number generator used may differ from implementation to
implementation.

Chapter 4. Functions 93

Functions

REVERSE

RIGHT

SIGN

SOURCELINE

~REVERSE (stri ng)--------~

returns stri ng, swapped end for end.

Here are some examples:

REVERSE(I ABc. I)
REVERSE('XYZ I)

->
->

'.cBA'
I ZYXI

~RI GHT (s t ri ng, 1 ength---.---...-) ------~
L,pad~

returns a string of length 1 ength containing the rightmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated) on the left'
as needed. The default pad character is a blank. 1 ength must be nonnegative.

Here are some examples:

RIGHT('abc d ' ,8)
RIGHT('abc def',5)
RIGHT('12 1,5,'01)

->
->
->

I abc d '
IC def '
1000121

~SIGN(number)--------'~""""

returns a-I, 0, or 1 that represents the sign of number after rounding to the current
setting of NUMERIC DIGITS. If number is less than 0 then '-1' is returned; if it is 0
then '0' is returned; and if it is greater than 0 then' l' is returned.

Here are some examples:

SIGN('12.3 1)
SIGN(' -0.307 1)
SIGN(0.0)

->
->
->

1
-1
o

~SOURCELINE(L.oJ)
n

If n is omitted, returns the line number of the final line in the source file.

94 VM/SP System Product Interpreter Reference

SPACE

STORAGE

STRIP

Functions

If n is given, the nth line in the source file is returned. If specified, n must be a
positive whole number, and must not exceed the number of the final line in the
source file.

Here are some examples:

SOURCELINE() -> 10
SOURCELINE(l) -> '/* This is a 10-line program */'

~SPACE(string [I)
'--""'-[-nJ"'--'-L-,-pa-d=:J--r--'

formats the blank-delimited words in stri ng with n pad characters between each
word. The n must be nonnegative. If it is 0, all blanks are removed. Leading and
trailing blanks are always removed. The default for n is 1, and the default pad
character is a blank.

Here are some examples:

SPACE(' abc def ') -> 'abc def'
SPACE(, abc def' ,3) -> 'abc def'
SPACE('abc def ' ,1) -> 'abc def'
SPACE(' abc def ' ,O) -> 'abcdef'
SPACE('abc def ',2,'+') -> 'abc++def'

This is a eMS external function. See page 118.

~STRIP(string [I)
'~[-O-Pt-i-on-J-r--r[-,-ch-a-y:J--,--I

removes leading and/or trailing characters from s t ri ng based on the opt ion
specified. Valid opt i ons (of which only the capitalized letter is significant, all others
are ignored) are:

Both removes both leading and trailing characters from stri ng. This is
default.

Leading removes leading characters from string.

Tra il i ng removes trailing characters from s t ri ng.

The third argument, char, specifies the character to be removed, with the default
being a blank. If given, char must be exactly one character long.

Chapter 4. Functions 9S

Functions

SUBSTR

SUBWORD

Here are some examples:

STRIP(I ab e I) -> lab e l

STRIPe' ab e I, I L I) -> lab e
STRIP(I ab e I , I t I) -> ab e l

STRIP('12.7000 1,,0) -> 112.71
STRIP('0012.700 1,,0) -> 112.71

~SUBSTR(string,n [I)
, [length] L, pad]

returns the substring of string that begins at the nth character, and is of length
1 ength, padded with pad if necessary. n must be a positive whole number.

If 1 ength is omitted the rest of the string will be returned. The default pad character
is a blank.

Here are some examples:

SUBSTRe' abc 1,2)
SUBSTR('abe ' ,2,4)
SUBSTR(' abe ' ,2,6,'.')

->
->
->

'be '
'be
I be .•.• I

Note: In some situations the positional (numeric) patterns of parsing templates are
more convenient for selecting substrings, especially if more than one substring is to
be extracted from a string.

~SUBWORD(string,n --r-------,r-)--... .. ~~
L, 1 ength.-J

returns the substring of stri ng that starts at the nth word, and is of length 1 ength,
blank-delimited words. n must be a positive whole number. If 1 ength is omitted, it
defaults to be the remaining words in stri ng. The returned string will never have
leading or trailing blanks, but will include all blanks between the selected words.

Here are some examples:

SUBWORD('Now is the time ' ,2,2)
SUBWORD('Now is the time ' ,3)
SUBWORD('Now is the time ' ,5)

->
->
->

I is the '
'the time '
II

96 VM/SP System Product Interpreter Reference

SYMBOL

TIME

Functions

~SYMBOL(name)--------~~4

If name is not a valid REXX symbol, BAD is returned. If it is the name of a variable
(that is, a symbol that has been assigned a value), VAR is returned. Otherwise LIT
is returned, which indicates that it is either a constant symbol or a symbol that has
not yet been assigned a value (that is, a literal).

Like for symbols appearing normally in REXX expressions, lowercase characters in
the name will be translated to uppercase and substitution in a compound name will
occur if possible.

Note: Normally name should be specified in quotes (or derived from an expressifln),
to prevent substitution by its value before it is passed to the function.

Here are some examples:

/* following: Drop A.3; J=3 */
SYMBOL('J') -> 'VAR'
SYMBOL(J) -> 'LIT' /* has tested "3" */
SYMBOL('a.j') -> 'LIT' /* has tested "A.3" */
SYMBOL(2) -> 'LIT' /* a constant symbol */
SYMBOL('*') -> 'BAD' /* not a valid symbol */

by default returns the local time in the 24-hour clock format: 'hh:mm:ss' (hours,
minutes, and seconds); for example, '04:41:37 1

•

The following opt ions (of which only the capitalized letter is needed) may be used to
obtain alternative formats, or to gain access to the elapsed-time calculator.

Ci vi 1 returns 1 hh :mmxx', the time in Civil format, in which the hours may take
the values 1 through 12, and the minutes the values 00 through 59. The
minutes are followed immediately by the letters "am" or "pm" to
distinguish times in the morning (midnight 12:00am through 11:59am)
from noon and afternoon (noon 12:00pm through 11:59pm). The hour
will not have a leading zero. The minute field shows the current minute
(rather than the nearest minute) for consistency with other TIME results.

El apsed returns sssssssss. uuuuuu, the number of seconds. microseconds since the
elapsed-time clock was started or reset (see below). The number will
have no leading zeros, and is not affected by the setting of NUMERIC
DIGITS.

Hours returns number of hours since midnight in the format: hh (no leading
zeros).

Chapter 4. Functions 97

Functions

Long

Minutes

Normal

Reset

Seconds

returns time in the format: hh:mm:ss. uuuuuu (uuuuuu is the fraction of
seconds, in microseconds).

returns number of minutes since midnight in the format: mmmm (no
leading zeros).

returns the time in the default format 'hh:mm:ss', as described above.

returns sssssssss. uuuuuu, the number of seconds. microseconds since the
elapsed-time clock was started or reset (see below), and also resets the
elapsed-time clock to zero. The number will have no leading zeros, and
is not affected by the setting of NUMERIC DIGITS.

returns number of seconds since midnight in the format: sssss (no leading
zeros).

Here are some examples:

TIME(1 L I) -> 116:54:22.1234561 /* Perhaps */
TIMEO -> 116:54:22 1
TIME(1 HI) -> 116 1
TIME(1 M I) -> 11014 1 /* 54 + 60*16 */
TIME(' S I) -> 1608621 /* 22 + 60*(54+60*16) */
TIME('N ') -> 116:54:22 1
TIME(1 C I) -> '4:54pm '

The elapsed-time clock:

The elapsed-time clock may be used for measuring· real time intervals. On the first
call to the elapsed-time clock, the clock is started, and both TIME (1 E I) and TIME (1 R 1)
will return O.

The clock is saved across internal routine calls, which is to say that an internal
routine will inherit the time clock started by its caller, but if it should reset the clock
any timing being done by the caller will not be affected. An example of the
elapsed-time calculator:

time('E') -> 0 /* The first call */
/* pause of one second here */
time('E') -> 1.002345 /* or thereabouts */
/* pause of one second here */
time('R') -> 2.004690 /* or thereabouts */
/* pause of one second here */
time(1 R I) -> 1.002345 /*or thereabouts * /

Note: See the note under DATE about consistency of times within a single
expression. The elapsed-time clock is synchronized to the other calls to TIME and
DATE, so multiple calls to the elapsed-time clock in a single expression will always
return the same result. For the same reason, the interval between two normal
TIME/DATE results may be calculated exactly using the elapsed-time clock.

Implementation maximum: Should the number of seconds in the elapsed time exceed
nine digits (equivalent to over 31.6 years), an error will result.

98 VM/SP System Product Interpreter Reference

TRACE

TRANSLATE

Functions

returns trace actions currently in effect.

If opt; on is supplied, it must be one of the valid prefixes (? or!) and/or alphabetic
character options (A, C, E, F, I, L, N, 0, R, or S) associated with the TRACE
instruction. (See the TRACE instruction, on page 65, for full details.) The function
uses opt; on to alter the effective trace action (like, tracing Labels, etc.). Unlike the
TRACE instruction, the TRACE function alters the trace action even if interactive
debug is active.

Unlike the TRACE instruction, opt i on cannot be a number.

Here are some examples:

TRACEO
TRACE(10 1)
TRACE('?I I)

-> '?R' /* maybe */
-> '?R' /* also sets tracing off */
-> 10 1 /* now in interactive debug */

~TRANSLATE(string [I)~
, [tableo] [I

, [tab 1 e;J [, pad]

translates characters in stri ng to other characters, or reorders characters in a string.
If neither translate table is given, stri ng is simply translated to uppercase (i.e. a
lowercase a-z to an uppercase A-Z). The output table is tableo and the input
translate table is tablei (the default is XRANGE('00 Ix, 'FF'X». The output table
defaults to the null string and is padded with pad or truncated as necessary. The
default pad is a blank. The tables can be of any length: the first occurrence of a
character in the input table is the one that is used if there are duplicates.

Here are some examples:

TRANSLATE('abcdef')
TRANSLATE('abbe ' ,1&1 ,'b')
TRANSLATE('abedef','121,'ee ')
TRANSLATE('abedef','121,'abed ' ,'.')
TRANSLATE('4123 1,'abed ' ,'12341)

->
->

->
->

->

'ABCDEF '
la&&e l
'ab2d1f '
112 •• ef I
Idabel

Note: The last example shows how the TRANSLATE function can be used to
reorder the characters in a string. In the example, any four-character string could be
specified as the second argument and its last character would be moved to the
beginning of the string.

Chapter 4. Functions 99

Functions

TRUNC

USERID

VALUE

~TRUNC(number [:=J)
,n

returns the integer part of number, and n decimal places. The default n is zero. If
specified, n must be a nonnegative whole number. number is truncated to n decimal
places (or trailing zeros are added if needed to make up the specified length).
Exponential form will not be used.

Here are some examples:

TRUNC (12.3)
TRUNC(127.09782,3)
TRUNC(127.1,3)
TRUNC (127 ,2)

->
->
->
->

12
127.097
127.100
127.00

Note: The number will be rounded according to the current setting of NUMERIC
DIGITS if necessary before being processed by the function.

~USERID ()-------t.~ ..

returns the system-defined User Identifier.

USERID() -> 'ARTHUR ' /* Maybe */

~VALUE(name)-----+·"'''

The value of the symbol name is returned. Like symbols appearing normally in
REXX expressions, lowercase characters in name will be translated to uppercase (i.e.
a lowercase a-z to an uppercase A-Z) and substitution in a compound name will
occur if possible. A name must be a valid REXX symbol, or an error results.

Here are some examples:

/* following:
VALUE(I fred I)
VALUE(fred)
VALUE('a'j)
VALUE('a'j 11j)

Drop A3; A33=7; J=3; fred='J' */
-> IJI /* looks up "FRED" */
-> 13 1 /* looks up "J" */
-> 'A3 1

_> 17 1

100 VM/SP System Product Interpreter Reference

VERIFY

Functions

Note: The VALUE function is typically used when a variable contains the name of
another variable, or a name is constructed dynamically; for example,
VALUE('LINE'index). It is not useful to wholly specify name as a quoted string, since
the symbol is then constant and so the whole function call could be replaced directly
by the data between the quotes. (For example, fred=VALUE(' j') is always identical
to the assignment fred=j).

..-VERIFY(string,reference,---r-[------------r-)~

, [oPtion~ [,start]

verifies that stri ng is composed only of characters from reference, by returning the
position of the first character in stri ng that is not also in reference. If all the
characters were found in reference, 0 is returned.

The third argument, opt i on, can be any expression that results in a string starting
with N or M that represents either Nomatch (the default) or Match. Only the first
character of opt i on is significant and it can be in upper or lower case, as usual. If
Nomatch is specified, the position of the first character in stri ng that is not also in
reference is returned. 0 is returned if all characters in stri ng were found in
reference. If Match is specified, the position of the first character in stri ng that is
in reference is returned, or 0 if none of the characters were found.

The default for start is 1, thus, the search starts at the first character of string.
This can be overridden by giving a different start point, which must be a positive
whole number.

If stri ng is null, the function returns 0, regardless of the value of the third
argument. Similarly if start is greater than LENGTH (stri ng), 0 is returned. If
reference is null and option Match is specified, the function will return O. If
reference is null and opt ion Nomatch specified, or left to default, the function will
return 1.

Here are some examples:

VERIFY('123','1234567890') -> 0
VERIFY('lZ3', '1234567890') -> 2
VERIFY('AB4T','1234567890') -> 1
VERIFY('AB4T','1234567890','M') -> 3
VERIFY('AB4T','1234567890','N') -> 1
VERIFY('lP3Q4','1234567890',,3) -> 4
VERIFY('AB3CD5','1234567890','M',4) -> 6

Chapter 4. Functions 101

Functions

WORD

WORDINDEX

WORDLENGTH

I WORDPOS

..-WORD(string,n) ••

returns the nth blank-delimited word in stri ng. n must be a positive whole number.
If there are fewer than n words in string, the null string is returned. This function is
exactly equivalent to SUBWORD(stri ng, n, 1).

Here are some examples:

WORD('Now is the time ' ,3)
WORD('Now is the time ' ,5)

->

->

'the '
II

..-WORDINDEX(string,n) ••

returns the position of the first character in the nth blank-delimited word in stri ng.
n must be a positive whole number. If there are fewer than n words in the string, 0
is returned.

Here are some examples:

·WORDINDEX('Now is the time ' ,3)
WORDINDEX('Now is the time ' ,6)

->

->

..-WORDLENGTH(string,n) ••

8
o

returns the length of the nth blank-delimited word in stri ng. n must be a positive
whole number. If there are fewer than n words in the string, 0 is returned.

Here are some examples:

WORDLENGTH('Now is the time ' ,2)
WORD LENGTH (' Now comes the time I ,2)
WORDLENGTH('Now is the time ' ,6)

->

->

->

2
5
o

"-WORDPOS(Phrase,string---'L---,--r-- ---.... ~.
, start---.J

102 VM/SP System Product Interpreter Reference

WORDS

XRANGE

Functions

searches stri ng for the first occurrence of the sequence of blank-delimited words
phrase, and returns the word number of the first word of phrase in stri ng. Multiple
blanks between words in either phrase or string are treated as a single blank for the
comparison, but otherwise the words must match exactly. Returns 0 if phrase is not
found.

By default the search starts at the first word in stri ng. This may be overridden by
specifying start (which must be positive), the word at which to start the search.

Examples:

WORDPOS('the',' now is the time ') -> 3
WORDPOS('The',' now is the time ') -> 0
WORDPOS('is the','now is the time ') -> 2
WORDPOS('is the','now is the time ') -> 2
WORDPOS('is time ',I now is the time ') -> 0
WORDPOS('be','To be or not to bel) -> 2
WORDPOS('be','To be or not to bel ,3) -> 6

~ORDS(string) ...

returns the number of blank-delimited words in string.

Here are some examples:

WORDS('Now is the time ')
WORDS (I I)

->
->

4
o

"-XRANGE () • ..
L-start~ L-,end~

returns a string of all one-byte codes between and including the values start and
end. The default value for start is 'OO'x, and the default value for end is 'FF'x. If
start is greater than end, the values will wrap from 'FF'x to 'OO'x. If specified,
s ta rt and end must be single characters.

Here are some examples:

XRANGE('a','f') ->
XRANGE('03 Ix,'07 I x) ->
XRANGE(,'04 I x) ->
XRANGE('i','j') ->
XRANGE('FE 'x,'02 I x) ->

'abcdef' /* EBCDIC */
I 03040S0607IX
'0001020304 1 x
'898A8B8C8D8E8F9091 'x /* EBCDIC */
I FEFF000102 IX

Chapter 4. Functions 103

Functions

X2C

X2D

~X2C(hexstring) ~ ..

Hexadecimal to Character. Converts hexstring (a string of hexadecimal characters)
to character. If necessary, hexstri ng will be padded with a leading 0 to make an
even number of hexadecimal digits.

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

Here are some examples:

X2C (I F7 F2 A2 I)
X2C (I F7f2a21)
X2C(I F I)

->
->
->

'72s '
'72s '
'0F ' x

~X2D(hexstring [.oJ)
,n

/* EBCDIC */
/* EBCDIC */

...

Hexadecimal to Decimal. Converts hexstri ng (a string of hexadecimal characters)
to decimal. If the result cannot be expressed as a whole number, an error results.
That is, the result must have no more than NUMERIC DIGITS digits.

Blanks can optionally be added (at byte boundaries only, not leading or trailing) to
aid readability; they are ignored.

If hexstri ng is the null string, then '0' is returned.

If n is not specified, hexstri ng is processed as an unsigned binary number.

Here are some examples:

X2D('0E I) -> 14
X2D('81I) -> 129
X2D('F81 I) -> 3969
X2D(I FF81 1) -> 65409
X2D('c6 f0 1X) -> 240

Ifn is specified, the given sequence of hexadecimal digits is padded on the left with
zeros (note, not "sign-extended"), or truncated on the left to n characters. The
resulting string of n hexadecimal digits is taken to be a signed binary number:
positive if the leftmost bit is off, and negative, in two's complement notation, if the
leftmost bit is on. If n is 0, 0 is always returned.

104 VM/SP System Product Interpreter Reference

Functions

Here are some examples:

X2D('81 1,2) -> -127
X2D('81 1,4) -> 129
X2D(I F081 I ,4) -> -3967
X2D(I F081 I ,3) -> 129
X2D(I F081 I ,2) -> -127
X2D('F081 1,1) -> 1
X2D(10031 1,0) -> 0

Implementation maximum: The input string may not have more than 500
hexadecimal characters that will be significant in forming the final result. Leading
sign characters (0 and F) do not count towards this total.

Function Packages

VM Functions

CMSFLAG

If an external function or subroutine is called, which is in a function package known
to the language processor, the language processor will automatically load the
function package before calling the function. To the general user with adequate
virtual storage, the functions that have been provided in packages seem like ordinary
built-in functions.

The language processor searches each of the function packages named below, if it is
installed.

RXUSERFN This is the name of a package that the general user may write. The
package would be written in assembler language and would contain a
number of functions and their common subroutines. For a
description of assembler language interfaces to the language
processor, see page 135. For a description of function packages, see
page 145.

RXLOCFN Similarly, this is the name of a package that system support people at
your installation may write.

RXSYSFN This is the name of the additional function package that can be
created and used by both system support personnel and general users.

The language processor will search for a function in the packages in the order given
above. See page 72 for the complete search order.

The following are additional external functions provided in the VM environment:
CMSFLAG returns the setting of certain indicators, CSL is used to to call CSL
(callable services library) routines, DIAG and DIAGRC can be used to issue special
commands to CP, and STORAGE can be used to inspect or alter the main storage
of your virtual machine.

~CMSFLAG(flag)----~"~4

Chapter 4. Functions 1 05

Functions

I CSL

returns the value 1 or 0 depending on the setting of fl ago Specify anyone of the
following fl ag names. (No abbreviations are allowed). For more information on
the flags listed below, refer to the VMjSP CMS Command Reference.

ABBREV returns 1 if, when searching the synonym tables, truncations will be
accepted; else returns o. Set by SET ABBREV ON; reset by SET
ABBREV OFF.

AUTOREAD returns 1 if a console read is to be issued immediately after command
execution; else returns o. Set by SET AUTOREAD ON; reset by SET
AUTOREAD OFF.

CMSTYPE returns 1 if console output is to be displayed (or typed) within an exec;
returns 0 if console output is to be suppressed. Set by SET CMSTYPE
RT or the immediate command RT. Reset by SET CMSTYPE HT or
the immediate command HT.

DOS returns 1 if your virtual machine is in the DOS environment; else returns
o. Set by SET DOS ON; reset by SET DOS OFF.

EXECTRAC returns 1 if EXEC Tracing is turned on (equivalent to the TRACE prefix
option "?"); else returns O. Set by SET EXECTRAC ON or the
immediate command TS. Reset by SET EXECTRAC OFF or the
immediate command TE. (See page 158.)

IMPCP returns 1 if commands that CMS does not recognize are to be passed to
CP; else returns O. Set by SET IMPCP ON; Reset by SET IMPCP OFF.
Applies to commands issued from the CMS command line and also to
REXX clauses that are commands to the 'CMS' environment.

IMPEX returns 1 if execs may be invoked by filename; else returns O. Set by SET
IMPEX ON; Reset by SET IMPEX OFF. Applies to commands issued
from the CMS command line and also to REXX clauses that are
commands to the 'CMS' environment.

PROTECT returns 1 if the CMS nucleus is storage-protected; else returns O. Set by
SET PROTECT ON; Reset by SET PROTECT OFF.

RELPAGE returns 1 if pages are to be released after certain commands have
completed execution; else returns O. Set by SET RELPAGE ON; Reset
by SET RELPAGE OFF.

SUBSET returns 1 if you are in the CMS subset; else returns o. Set by SUBSET
(this command is issued by some editors); reset by RETURN. (For
details, refer to "CMS subset" in the reference manual of the editor you
are using).

~CSL('rtnname retcode~')

It parJ

...

allows a REXX programmer to call a routine that resides in a callable services
library (CSL). Unlike other REXX functions (which use commas to separate
expressions), the CSL function uses blanks to separate the parameters.

106 VMjSP System Product Interpreter Reference

Usage Notes

Return Codes

Functions

rtnname
is the name of the CSL routine to be called.

retcode
is the name of a variable to receive the return code from the CSL routine. The
value returned in this variable will always be greater than or equal to zero. This
return code value is also returned as the value of the function call.

parm
is the name of one or more parameters to be passed to the communications
routine. The number and type of these parameters are routine-dependent. A
parameter being passed must be the name of a variable.

1. Use the CSL function in a REXX program to call routines in VM/SP's supplied
callable services library (VMLIB) that do the following:

• Perform shared file system functions (see "Using Routines from the Callable
Service Library" on page 151)

• Invoke the CMS extract/replace facility. (see the VM/SP Application
Development Reference for eMS for more information)

Do not, however, use the CSL function to call VM/SP-supplied routines that
perform program-to-program communication. These routines are part of the
Common Programming Interface (CPI) Communications and must be called in a
REXX program by using the ADDRESS CPICOMM function. Refer to page
163 for more information.

2. Only character string and signed binary data can be passed to a CSL routine. If
a CSL parameter is defined as a signed binary number, the REXX CSL function
makes the necessary translations to and from the CSL routine. However, the
CSL function cannot translate a number in exponential notation to signed
binary. Use the NUMERIC instruction to ensure that exponential notation is
not used.

The list below shows the possible return codes from the CSL function of REXX.
The return code values will be in the REXX variable RC.

o Routine was executed and control returned to the REXX exec
-7 Routine was not loaded from a callable services library
-8 Routine was dropped from a callable services library
-9 Insufficient storage was available
-10 More parameters than allowed were specified
-11 Fewer parameters than required were specified
-20 Invalid call
-22 Invalid REXX argument
-23 Subpool create failure
-24 REXX fetch failure
-25 REXX set failure
-26nnn Incorrect data length for parameter number nnn
-27nnn Invalid data type for parameter number nnn.
-28nnn Invalid variable name for parameter number nnn.

(F or the last three return codes, note that parameters are numbered serially,
corresponding to the order in which they are coded. The rtnname is always
parameter number 001, retcode is always parameter number 002, the next parameter
is 003, etc.)

Chapter 4. Functions 107

Functions

Example

DIAG

The retcode parameter contains the return code from the called CSL routine, and its
value will be greater than or equal to zero. However, if the REXX variable RC
contains a nonzero value, any value in retcode is meaningless.

The following example program section shows the CSL function of REXX calling a
routine DMSEXIFI to check whether or not a given shared file exists.

/* Portion of Example REXX Program that Uses CSL function */

fileid = 'SAMPLE FILE .subdirl.subdir2 1

f_len = length(fileid)
answer = csl('OMSEXIFI rtnc rsnc fileid f len

COMMIT 6 1
)

select
when rtnc = 0 then say 'File Exists '
Otherwise Do

Say 'File does not exist as specified. 1

Say 'Return code is 1 rtnc
Say 'Reason code is 1 rsnc

End
End

Exit rtnc

/* --- End of Example --- */

"-0 lAG (n--r[-?J"--'--[-,-da-t-aj--r-- -----l.~.

communicates with CP via a dummy DIAGNOSE instruction and returns data as a
character string. (This interface is described in the discussion on the DIAGNOSE
Instruction in the VM System Facilities for Programming.)

The n is the hexadecimal diagnose code to be executed. Leading zeros can be
omitted. The? indicates that diagnostic messages are to be displayed if appropriate.
The optional item, data, is dependent upon the specific diagnose code being
executed; it is generally the input data for the given diagnose.

(Warning: A DIAGNOSE instruction with invalid parameters may in some cases
result in a specification exception or a protection exception.)

The data returned is in binary format; that is, it is precisely the data returned by the
DIAGNOSE; no conversion is performed.

Note: The REXX built-in functions C2X and C2D can be used for converting the
returned data. Samples of the use of these functions are included in the descriptions
of Diagnoses 'OC' and '60'.

108 VM/SP System Product Interpreter Reference

DIAGRC

Functions

Codes are the same as for DIAGRC.

is identical to the DIAG function where:

n is the hexadecimal diagnose code to be executed. Leading zeros can be omitted.
The use of quotes is optional but recommended. This is especially true for
DIAGNOSE codes C, C8 and CC. The? indicates that diagnostic messages are to
be displayed if appropriate. The optional item, data, is dependent upon the specific
diagnose code being executed; it is generally the input data for the given diagnose.

In contrast to the DIAG function the data returned in this function is prefixed with:

Character
position Contents

1 to 9 Return code from CP

10

11

A blank

12 to 16

Condition code from CP

Five blanks

The input and the returned data for each supported diagnose are:

DIAG(OO) - Store Extended-Identification Code

DIAGRC(OO)

The value returned is a string, at least 40 characters in length, depending on
the level of nesting of VM/SP. Ordinarily 40 bytes of data are returned.

DIAG (08, cpcommand [, s i zebuf]) - Virtual Console Function

DIAGRC(08,cpcommand[,sizebuf])

Input is cpcommand (CP command) to be issued (240 bytes maximum), followed
(optionally) by a third argument, sizebuf, that specifies the size (in bytes) of
the buffer that will contain the result. This buffer size must be a nonnegative
whole number; the default is 4096. When sizebuf is 0 then the command is
not executed.

Any command response is returned as the function value. If the response
contains multiple lines, they are delimited in the returned data by the character
X'15 1

•

Note that the command is passed to CP without any translation to uppercase.
Thus commands specified as a quoted string (a good idea) must be in
uppercase or CP will not recognize them.

Chapter 4. Functions 109

Functions

F or example:

Diag(8,lquery rdr all I) /* fails because CP has no */

Diag(8,query rdr all)

/* IIqueryll command (only */
/* IIQUERY II). */

/* ordinarily works, but will*/
/* fail if IIqueryll, IIrdr ll or * /
/* lIall ll are variables that */
/* have been assigned values */
/* other than their own names*/

Diag(8,IQUERY RDR ALLI) /* is the best and safest. */

D I AG (0C) - Pseudo Timer

DIAGRC(0C)

The value returned is a 32 byte string containing the date, time, virtual time
used, and total time used.

For example, to display the virtual time:

Say IVirtual time =1 c2x(substr(diag(IC 1),17,8» I(Hex)1

/* This results in a display of the form */

Virtual time = 00000000004BF959 (Hex)

The virtual time may be displayed as a decimal value by using the C2D
function:

Say IVirtual time =1 c2d(substr(diag(IC 1),17,8»

/* This results in a display of the form */

Virtual time = 4979033

DIAG(14,acronym,rdrvaddr,addvals) - Input File Manipulation

DIAGRC(14,acronym,rdrvaddr,addvals)

Where:

1. acronym is one of those as described below.

2. rdrvaddr is the address of the virtual reader.

3. addva 1 s are one or more additional and sometimes optional values
associated with a given acronym. Acronym descriptions (below) describe
any additional, associated values as well.

The value returned is:

Character
position Contents

2

3 to 6

7 to 8

Condition code

A blank

F our bytes from register y + 1

Two blanks

110 VMjSP System Product Interpreter Reference

Character
position

9 onwards

Contents

A return string (if any) whose
length and content depend upon
the function being performed.

Functions

Note: The PARSE instruction may be used to assign these operands to
suitable variables, as in the examples given below.

Acronym Descriptions:

RNSB, rdrvaddr - Read Next Spool Buffer (data record)

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer. For example,

Parse value diag(14,'RNSB','00C '),
with cc 2 . 3 Rypl 7 . 9 buffer

/* will read the next spool buffer from the */
/* card reader at address X'00C ' and assign: */
/* CC = the condition code */
/* RYPI = the contents of register y+l */
/* BUFFER = the 4096 byte spool buffer */

RNPRSFB, rdrvaddr[, readnum] - Read Next PRint Spool File Block

The readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose XI 14 1

" on
page 114.)

The return string is the next spool file block of type PRT. Thus to read
the next spool file block of type PR T from device XI OOC 1 :

Parse value diag(14,'RNPRSFB ' ,'00C ' ,15),
with cc 2 • 3 Rypl 7 • 9 SFB

/* will read the next print spool file block from */
/* the card reader at address X' 00C ' and assign: */
/* CC = the condition code */
/* RYPl = the contents of register y+l */
/* SFB = the 120 byte spool file block */
/* (or 15 doublewords) */

RNPUSFB, rdrvaddr[, readnum] - Read Next PUnch Spool File Block

The readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose X 114 1" on
page 114.)

The return string is the next spool file block of type PUN.

Thus to read the next spool file block of type PUN from device XI OOC 1 :

Chapter 4. Functions 111

Functions

Parse value diag(14,'RNPUSFB','00C',15),
with cc 2 . 3 Ryp1 7 • 9 SFB

/* will read the next punch spool file block from */
/* the card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */

SF,rdrvaddr,spfileid - Select a File for processing

The spfil ei d specifies the spool file ide

There is no return string other than the condition code and Ry + 1 value.

Thus to select spool file number 8159 for processing from device X' OOC I:

Parse value diag(14,'SF','00C',8159),
with cc 2 . 3 Ryp1 7

/* will select a file for processing from the */
/* card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */

RPF, rdrvaddr, newcopy - RePeat active File nn times

The newcopy specifies the new copy count.

There is no return string other than the condition code and Ry + 1 value.

Thus to change the copy count for the active file on device X' OOC' to 5:

Parse value diag(14,'RPF','00C',5),
with cc 2 . 3 Ryp1 7

/* will repeat active file 5 times on the */
/* card reader at address X'00C' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */

RSF, rdrvaddr - ReStart active File at beginning

There are no additional values associated with this acronym.

The return string is the first 4096 byte spool file buffer.

Thus to reset the active file on device X' OOC' to the beginning and read
the first spool buffer:

Parse value diag(14,'RSF','00C '),
with cc 2 . 3 Ryp1 7 . 9 buffer

BS, rdrvaddr - BackSpace one record

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer.

112 VM/SP System Product Interpreter Reference

Functions

Thus to read the previous spool buffer from the file active on device
XIOOCI:

Parse value diag(14,'BS','00C '),
with cc 2 . 3 Rypl 7 • 9 buffer

/* will read the previous spool file buffer from */
/* the card reader at address X' 00C ' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* BUFFER = the first 4096 bytes of the file */

RNMNSFB, rdrvaddr[, readnum] - Read Next MoNitor Spool File Block

The readnum may be used to specify the number of doublewords of the
spool file block to be read. (See item 3 of "Notes on Diagnose X 114 1" on
page 114.)

The return string is the spool file block.

Thus to read the next monitor spool file block from device X I OOC I:

Parse value diag(14,'RNMNSFB','00C ' ,15),
with cc 2 • 3 Ryp1 7 . 9 SFB

/* will read the next monitor spool file block from */
/* the card reader at address X' 00C ' and assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+1 */
/* SFB = the 120 byte spool file block */

RNMNSB, rdrvaddr - Read Next MoNitor Spool Buffer

There are no additional values associated with this acronym.

The return string is the 4096 byte spool file buffer.

Thus to read the next monitor spool buffer from the card reader at
address X'OOC':

Parse value diag(14,'RNMNSB','00C '),
with cc 2 . 3 Ryp1 7 . 9 buffer

/* will read the next monitor spool file buffer */
/* from the card reader at address X' 00C ' and */
/* assign: */
/* CC = the condition code */
/* RYP1 = the contents of register y+l */
/* BUFFER = the 4096 byte spool buffer */

RSFD,spfilenum[,numwords[,3800]] - Retrieve Subsequent File Descriptor

The spfi 1 enum specifies the spool file number. The optional numwords
specifies the number of doublewords of spool file block data to be
returned. (See item 3 of "Notes on Diagnose X 114 1" on page 114.)
3800, also optional, may be specified to cause 40 bytes of 3800
information to be included between the spool file block and tag.

Chapter 4. Functions 113

Functions

Thus to obtain information about the next spool file without regard to
type, class, etc.:

Parse value diag(14,IRSFD 1 ,0,15,3800),
with cc 2 . 3 Ryp1 7 . 9 SFB,
129 data_3800 169 • 181 tag

/* will read the spool file block
/* from the card reader at address Xl 00C 1

/* assign:
/* CC = the condition code
/* RYP1 = the contents of register y+1
/* SFB = the 120 byte spool file block
/* DATA_3800 = the 3800 data
/* TAG = the tag data

*/
and */

*/
*/
*/
*/
*/
*/

(Refer to Notes 1 and 2 below for additional information.)

RSFDNPR,n[,numwords[,3800]] - Retrieve Subsequent File Descriptor Not
Previously Retrieved

The n is either 0 (to retrieve subsequent file descriptor not previously
retrieved), or 1 (to reset the previously retrieved flags for all the file
descriptors; then retrieve the first file descriptor). The optional numwords
specifies the number of doublewords of spool file block data to be
returned. (See item 3 of "Notes on Diagnose X 1 14 1

" below.) 3800 also
optional, may be specified to cause 40 bytes of 3800 information to be
included between the spool file block and the tag.

Thus to obtain information about the next not previously retrieved file
without regard to type, class etc.:

Parse value diag(14,IRSFDNPR 1 ,0,15),
with cc 2 • 3 Ryp1 7 . 9 SFB 129 . 181 tag

/* will read the spool file block
/* from the card reader at address XI00C 1

/* assign:
/* CC = the condition code
/* RYP1 = the contents of register y+1
/* SFB = the 120 byte spool file block
/* TAG = the tag data

*/
and */

*/
*/
*/
*/
*/

(Refer to Notes I and 2 below for additional information.)

Notes on Diagnose X'14'

1. Because only one bit is provided to indicate that the length of return data
is being explicitly stated and that 3800 data is being requested, if either is
specified (on RSFD or RSFDNPR calls), 40 bytes of 3800 data are
returned.

2. RSFD and RSFDNPR will wait for a file being used by a system function.
If, however, the file does not become available in the 250 millisecond time
limit, the function will return a null string for DIAG, normal return code
information for DIAGRC. For a discussion of possible causes for this
condition, see the notes on "DIAGNOSE Code XI 14 1

" in the VM System
Facilities for Programming.

3. For RNPRSFB, RNPUSFB, RMNSFB, RSFD, and RSFDNPR, the
default number of doublewords of spool file block is 13; however, the

114 VM/SP System Product Interpreter Reference

Functions

length of the spool file in the current release of VMjSP is 15 doublewords
(120 bytes).

DIAG(24,devaddr) - Device Type and Features

DIAGRC(24,devaddr)

The input, devaddr, is the device address (or -1 for virtual console).

The value returned is a 13-byte string of virtual and real device information:

Position Contents

1 through 4 Virtual device information from
Register y

5 through 8 Real device information from
Register y + 1

9 through 12 If -1 was specified, virtual console
information from Register x

13 Condition code

DIAG(5C,editstring[,headerlen]) - Error Message Editing

DIAGRC(5C,editstring[,headerlen])

The edi tstri ng, is a string to be edited according to the current EMSG
setting. The headerl en is the length of the header used for the editing. If
headerlen is not specified, the default length is 10. The headerlen may not be
longer than edi tstri ng.

The value returned is the edited message, which will be a null string, the
message code, the message text, or the entire input string, depending on the
EMSG setting.

DIAG(60) - Determine Virtual Storage Size

DIAGRC(60)

The value returned is the 4 byte virtual storage size.

This value may be displayed in hexadecimal via:

Say 'Virtual storage =' c2x(Diag(60))

resulting (for example) in display of the line:

Virtual storage = 00100000

Alternatively, storage size may be expressed in terms of K via:

Say 'Virtual storage =' c2d(diag(60))/1024'K'

resulting (for example) in display of the line:

Virtual storage = 512K

Comparisons of the value returned may be done in hexadecimal:

Say diag(60) > '00100000'x

results in display of I for virtual machines greater than 1M in size and 0 for
those 1M or less.

Chapter 4. Functions 115

Functions

The same comparison may be expressed in terms of megabytes:

Say c2d(diag(60»/(1024*1024) > 1

with the same results.

DIAG(64,subcode,name) - Find, Load, or Purge a Named Segment

DIAGRC(64,subcode,name)

The input, subcode, is a I-character code indicating the subfunction to be
performed, followed by a third argument, name, the name of the segment.

The value returned is a 9-byte string consisting of the returned Rx and Ry
values, and a single byte condition code.

The subfunction codes are:

S Load the named segment in shared mode.
L Load the named segment in nonshared mode.
P Release the named segment from virtual storage.
F Find starting address of the named segment.
N Find starting address of the named saved system.

For example, to find the load address of the segment SPFSEG and display the
starting and ending addresses and the condition code:

spfsegaddr=diag(64,'F ' ,'SPFSEG ')
Say 'Start: I c2x(substr(spfsegaddr,2,3»,

End: I c2x(substr(spfsegaddr,6,3»,
CC:' substr(spfsegaddr,9,1)

/* which displays:
Start: 230000 End: 24FFFF CC: 0 */

indicating that the segment loads from 230000 to 24FFFF, and is already
loaded (cc = 0).

Warning: The Land S functions should be used with care. It is the coder's
responsibility to ensure that the loaded segment will not overlap virtual storage
(see DIAG 60 above). CP will load a segment in the middle of your virtual
storage if requested, so code carefully.

Note: You may use the CMS SEGMENT command instead of this function
to load and purge a Named Segment. See the VM/SP CMS Command
Reference, for a description of the SEGMENT command.

DIAG(8C) - Access Certain Device Dependent Information

DIAGRC(8C)

The value returned is a string no larger than 502 bytes. The string contains
device-dependent information about the device (the virtual console). If the
virtual machine is disconnected or the virtual console is a TTY device, then the
returned string is null.

116 VM/SP System Product Interpreter Reference

Functions

The value returned is:

Byte Contents

o

2-3

4-5

Flags:

X I 01 I 14-bi t addressing is
available

X I 20 I programmed symbol sets
are a vaila ble

X I 40 I device has extended
highlighting

X I 80 I device has extended
color

Number of partitions

N umber of columns on the
terminal

Number of rows on the terminal

6-n, n < 502 Information returned to CP by
the initial Write Structured Field
Query Reply

DIAG('C8 1 ,langid) - SET CP's language

The function value returned is a five byte string containing the langid that CP
set.

DIAGRC('C8 1 ,langid)

The diagrc value returned is a sixteen byte string composed of nine characters
for the return code, a blank, and six characters for the condition code.

If this DIAGNOSE code is issued from an exec and CMS is on a back level
version of CP, error message DMSREX475E (Incorrect call to routi ne) is
issued and the exec will terminate.

Note: VMjXA SP does not support DIAGNOSE code X I C8 I. If your exec
will be used in VMjXA SP, you can not use this DIAGNOSE code.

DIAG(I CC 1,1 angid,addr) - SAVE CP's language repository at address addr

The value returned for the DIAG function is a null string. addr must be on a
page boundary.

DIAGRC('CC',langid,addr)

The diagrc value returned is a sixteen byte string composed of nine characters
for the return code, a blank, and six characters for the condition code.

If this DIAGNOSE code is issued from an exec and CMS is on a back level
version of CP, error message DMSREX475E (Incorrect call to routi ne) is
issued and the exec will terminate.

Message DMSREX475E also results if an unauthorized use rid tries to issue
DIAGNOSE code X I CC I. Return code 20040 is set.

Note: VMjXA SP does not support DIAGNOSE code X' CC I. If your exec will be
used in VMjXA SP, you can not use this DIAGNOSE code.

Chapter 4. Functions 117

Functions

STORAGE

~STORAGE(-"""---------------"-- -----...,~4

Laddress-"""[-_-:~~~~~~:~~~~==:~
, [length] [,data]

returns the current virtual machine size expressed as a hexadecimal string if no
arguments are specified. Otherwise, returns 1 ength bytes from the user's memory
starting at address. The 1 ength is in decimal; the default is 1 byte. The address is a
hexadecimal number.

If data is specified, after the "old" value has been retrieved, storage starting at
address is overwritten with data (the 1 ength argument has no effect on this).

If 1 ength would imply returning storage beyond the virtual machine size, only those
bytes up to the virtual machine size are returned; and if an attempt is made to alter
any bytes outside the virtual machine size, they are left unaltered.

Warning: The STORAGE function allows any location in your virtual machine to be
altered. Do not use this function without due care and knowledge.

Example:

STORAGE (AA,9) ->
STORAGE () ->

•

'IBM VM/SP ' /* Maybe! */
I 15E0001 /* After DEF STOR 1400K */

118 VMjSP System Product Interpreter Reference

Parsing

Chapter 5. Parsing for PARSE, ARG, and PULL

Introduction

Parsing Words

PARSE, ARG, and PULL allow a selected string to be parsed (split up) into
variables, under the control of a template. The various mechanisms in the template
allow a string to be split up into words (delimited by blanks), or by explicit matching
of patterns, or by selecting absolute columns with numeric patterns - for example to
extract data from particular columns of a record read from a file.

This section first gives some informal examples of how the parsing template can be
used, then describes the mechanisms used.

Here are some examples that illustrate how parsing works.

The simplest form of a parsing template consists of a list of variable names. The
data being parsed is split up into words (characters delimited by blanks), and each
word from the data is assigned to a variable in sequence. The final variable is
treated differently in that it will be assigned whatever is left of the original data and
may therefore contain several words, and possibly leading and trailing blanks.

Parse value 'This is a sentence. I with vI v2 v3
/* is equivalent to: */
vI = "This"; v2 = "is"; v3 = "a sentence."

In this example, vI would get the value Th i s, v2 would get the value is, and v3
would get a sentence.

Leading blanks and trailing blanks are removed from each word in the string before
the word is assigned to a variable, except for the word or group of words assigned to
the last variable. Variables set in this manner (vI and v2 in the example above) will
never have leading or trailing blanks. But the last variable (v3 in the example) could
have both leading and trailing blanks, if extra blanks were specified before a or after
sentence.

F or example,

Parse value 'This is a sentence. I with vI v2 v3
/* is equivalent to: */
vI = "This"; v2 = "is"; v3 =" a sentence."

In this example, vI would get the value This, v2 would get the value is, and v3
would get a sentence.

In addition, if PARSE UPPER (or the ARG or PULL instruction) is used, the
whole string is translated into uppercase (i.e. a lowercase a-z to an uppercase A-Z)
before parsing begins.

Note that all variables mentioned in a template are always given a new value; if
there are fewer words in the data than variables in the template, the unused variables
will be set to null.

Chapter 5. Parsing for PARSE, ARG, and PULL 119

Parsing

Parsing Using String Patterns
A string can be used in a template to split up the data:

Parse value ITo be, or not to be?1 with wI 1,1 w2
/* would cause the data to be scanned for the comma, */
/* then split at that point, thus: */
wI = "To be"; w2 = " or not to be?"

wI would be set to To be, and w2 is set to or not to be? A string used in this way
is called a pattern. Note that the pattern itself (and only the pattern) is removed
from the data. In fact each section is treated in just the same way as the whole
string was in the previous example, and so either section can be split up into words.

Parse value ITo be, or not to be?1 with wI 1,1 w2 w3 w4
/* is equivalent to: */
wI = "To be"; w2 = "or"; w3 = "not"; w4 = "to be?"

w2 and w3 get the values or and not, and w4 would get the remainder: to be? If
UPPER were specified on the instruction, all the variables would be translated to
uppercase.

If the string in these examples did not contain a comma, the pattern would
effectively "match" the end of the string: so the variable to the left of the pattern
would get the entire input string, and the variables to the right would be set to null.
Note that a null string will never be found; it will always match the end of the
string.

The pattern can be specified as a variable by putting the variable name in
parentheses. The following instructions therefore have the same effect as the last
example:

comma=1 , I
Parse value ITo be, or not to be?1 with wI (comma) w2 w3 w4

Parsing Using Numeric Patterns
The third type of parsing mechanism is the numeric pattern. This works in the same
way as the string pattern except that it specifies a column number. So:

Parse value IFlying pigs have wingsl with xl 5 x2
/* splits the data at column 5. Equivalent to */
xl = "Flyi"; x2 = "ng pigs have wings"

splits the data at column 5, and xl becomes Flyi and x2 starts at column 5 and
becomes ng pigs have wings.

More than one pattern is allowed, so for example:

Parse value IFlying pigs have wingsl with xl 5 x2 10 x3
/* splits the data at columns 5 and 10. Equivalent to */
xl = "Flyi"; x2 = "ng pi"; x3 = "gs have wings"

splits the data at columns 5 and 10, and x2 becomes ng pi and x3 becomes gs have
wi ngs.

The numbers can be relative to the last number used, so

Parse value IFlying pigs have wingsl with xl 5 x2 +5 x3

has exactly the same effect as the last example: here the +5 can be thought of as
specifying the length of the data to be assigned to x2.

120 VM/SP System Product Interpreter Reference

Parsing

String patterns and numeric patterns can be mixed (in effect the beginning of a string
pattern just specifies a variable column number) and some very powerful things can
be done with templates. The "Definition" section (below) describes in more detail
how the various mechanisms interact.

Parsing Arguments

Definition

Finally, it is possible to parse more than one string. For example, an internal
function can have more than one argument string. To get at each string in turn, you
just put a comma in the parsing template. For example, if the invocation of the
function "FRED" was:

fred('This is the first string ' ,2)

the instruction

PARSE ARG first, second
/* is equivalent to */
first = "This is the first string"; second = "2"

The variable fi rst contains the string "This is the first string". The variable second
contains the string "2". Between the commas you can put a normal template, with
patterns, etc., to do more complex parsing on each of the argument strings.

This section describes the rules that govern parsing.

In its most general form, a template consists of alternating pattern specifications and
variable names. The pattern specifications and variable names are used strictly in
sequence from left to right, and are used once only. In practice, various simpler
forms are used in which either variable names or patterns can be omitted: we can
therefore have variable names without patterns in between, and patterns without
intervening variable names.

In general, the value assigned to a variable is that sequence of characters in the input
string between the point that is matched by the pattern on its left and the point that
is matched by the pattern on its right.

If the first item in a template is a variable, there is an implicit pattern on the left
that matches the start of the string, and similarly if the last item in a template is a
variable, there is an implicit pattern on the right that matches the end of the string.
Hence the simplest template consists of a single variable name which in this case is
assigned the entire input string.

Setting a variable during parsing is identical to setting a variable in an assignment.
It is therefore possible to set an entire collection of compound variables during
parsing. (See pages 18 and 19.)

The constructs that appear as patterns fall into two categories:

• Patterns that act by searching for a matching string
- Literal patterns
- Variable patterns

• Numeric patterns that specify a position in the data
Positional patterns

- Relative patterns

Chapter 5. Parsing for PARSE, ARG, and PULL 121

Parsing

For the following examples, assume that the following string is being parsed (note
that all blanks are significant):

'This is the data which, I think, is scanned.'

Parsing with Literal PaHerns
Literal patterns cause scanning of the input data string to find a sequence that
matches the value of the literal. Literals are expressed as a quoted string.

When the template:

wi ',' w2 ',' rest

is used to parse the example string, the result is:

wi = "This is the data which~
w2 = " I think~

rest =" is scanned."

Here the string is parsed using a template that asks that each of the variables receive
a value corresponding to a portion of the original string between commas; the
commas are given as quoted strings. Note that the patterns (in this example, the
commas) themselves are removed from the data being parsed.

A different parse would result with the template:

wi ',' w2 ',' w3 ',' rest

which would result in:

wi = "This is the data which~
w2 = " I think~

w3 =" is scanned."
rest = "" (null)

This illustrates an important rule. When a match for a pattern cannot be found in
the input string, it instead "matches" the end of the string. Thus, no match was
found for the third ',' in the template, and so w3 was assigned the rest of the string.
REST was assigned a null value because the pattern on its left had already reached
the end of the string.

A p.ull pattern (a string of length 0) can be used to match the end of the data
explicitly. This is mainly useful with positional patterns (see below).

Note that all variables that appear in a template are assigned a new value.

If a variable is followed by another variable, a special action is taken. This is similar
to there being the pattern' '(a single blank) between them, except that leading
blanks at the current position in the input data are skipped over before the search
for the next blank takes place. This means that the value assigned to the left-hand
variable will be the next word in the string and will have neither leading nor trailing
blanks.

122 VM/SP System Product Interpreter Reference

Thus the template:

wI w2 w3 rest I,'

results in:

wl = "Thi s"
w2 = "i s"
w3 = "the"
rest = "data which"

Parsing

Note that the final variable (rest in this example) could have had both leading
blanks and trailing blanks, since only the blank that delimits the previous word is
removed from the data.

Also observe that this example is not the same as specifying explicit blanks as
patterns, as the template:

wI ' , w2 ' , w3 ' , rest ','

(in fact) results in:

wI = "Thi s"
w2 = "i s"
w3 = " " (null)
rest = "the data whi ch"

since the third pattern would match the third blank in the data.

Note: Quotes are not part of the value. They are shown here and in following
examples only to indicate leading or trailing blanks.

In general then, when a variable is followed by another variable, parsing of the input
by tokenization into words is implied.

Parsing with Variable Patterns
It is sometimes desirable to be able to specify a matching pattern by using a variable
instead of a literal string. This can be achieved by placing the name of the variable
to be used as the pattern in parentheses. The variable can be one that has been set
earlier in the parsing process, so for example:

input="L/look forl1 10"
parse var input verb 2 delim +1 string (delim) rest'

will set:

verb "L"
delim "I"
string = "look for"
rest "1 10"

Chapter 5. Parsing for PARSE, ARG, and PULL 123

Parsing

Use of the Period as a Placeholder
The symbol consisting of a single period acts as a placeholder in a template. It has
exactly the same effect as a variable name, except that no variable is set. It is
especially useful as a "dummy variable" in a list of variables or to collect unwanted
information at the end of a string. Thus, when the template:

••• word4 •

is used to parse the same example string:

IThis is the data which, I think, is scanned. 1

the result is:

word4 = "data"

That is, the fourth word (data) is extracted from the string and placed in the variable
word4.

Parsing with Positional Patterns and Relative Patterns
Positional patterns can be used to cause the parsing to occur on the basis of position
within the string, rather than on its contents. They take the form of signed or
unsigned whole numbers and can cause the matching operation to "back up" to an
earlier position in the data string. "Backing up" can only occur when positional
patterns are used.

Unsigned numbers in a template refer to a particular character column in the input.
For example, the template

s1 10 s2 20 s3

results in

51 = "This is
52 = "the data w"

53 = "hich, I think, is scanned."

Here s 1 is assigned characters from input through the ninth character, and s2

receives input characters 10 through 19. The final variable, s3, is assigned the
remainder of the input.

Signed numbers can be used as patterns to indicate movement relative to the
character position at which the previous pattern match occurred.

If a signed number is specified, the position used for the next match is calculated by
adding or subtracting the number given to the last matched position. The last
matched position is the position of the first character of the last match, whether
specified numerically or by a string. For example, the instructions:

a = 1123456789 1

parse var a 3 w1 +3 w2 3 w3

result in:

w1 = "345"

w2 = "6789"

w3 = "3456789"

The +3 in this case is equivalent to the absolute number 6 in the same position and
specifies the length of the data to be assigned to the variable wI.

124 VM/SP System Product Interpreter Reference

Parsing

This example also illustrates the effects of a pattern that implies movement to a
character position to the left of, or to the point where matching has already
occurred. Movement is from column 6, the starting position for w2, to column 3,
the starting position for w3. The variable on the left is assigned characters through
the end of the input, and the variable on the right is, as usual, assigned characters
starting at the position dictated by the pattern.

The following PARSE instruction assigns the same values to wI, w2, and w3 as
above:

a = 1123456789 1

parse var a 3 wI +3 w2 -3 w3

3 specifies the starting position for wI, column 3. +3 tells you to move 3 positions to
the right of the starting position of wI. This is the starting position of w2, column 6.
-3 tells you to move 3 positions to the left of the starting position of w2. This is the
starting position of w3, column 3.

A useful effect of this is that multiple assignments can be made:

parse var x 1 wI 1 w2 1 w3

results in assigning the (entire) value of x to wI, w2, and w3. (The first "I" here could
be omitted as it is effectively the same as the implicit starting pattern described at
the beginning of this section.)

If a positional pattern specifies a column that is greater than the length of the data,
it is equivalent to specifying the end of the data (that is, no padding takes place).
Similarly, if a pattern specifies a column to the left of the first column of the data,
this is not an error but instead is taken to specify the first column of the data.

Any pattern match sets the "last position" in a string to which a relative positional
pattern can refer. The "last position" set by a literal pattern is the position at which
the match occurred; that is, the position in the data of the first character in the
pattern. The first character in this case is not removed from the parsed data. Thus
the template:

1,1 -1 x +1

will:

1. Find the first comma in the input (or the end of the string if there is no comma).

2. Back up one position.

3. Assign one character (the character immediately preceding the comma or end of
string) to the variable x.

A possible application of this is looking for abbreviations in a string. Thus the
instruction:

/* Ensure options have leading blank and are uppercase */
parse upper value 1 lopts with 1 PR ' +1 prword 1 1

will set the variable prword to the first word in opts that starts with PR or will set it
to null if no such word exists. Note that + 0 is a valid positional pattern.

Chapter 5. Parsing for PARSE, ARG, and PULL 125

Parsing

When a literal pattern is followed by a signed(+ j-) positional pattern the literal
string WILL NOT BE REMOVED from the data being parsed. Instead it will be
parsed into the first variable following the literal pattern. Thus the following two
cases:

a='This is the data which, I think, is scanned.'

CASE 1:
CASE 2:

parse var a 'which' +5 y
parse var a 'which' x +5 y

would result in:

CASE 1: y = ", I think is scanned"
CASE 2: x = "whi ch"

y =", I think is scanned."

Note: If a number in a template is preceded by a "+" or a "-," this is taken to be a
signed positional pattern. There can be blanks between the sign and the number,
since initial scanning removes blanks adjacent to special characters.

Parsing Multiple Strings
A parsing template can parse multiple strings. This is effected by using the special
character comma (,) in the template. Each comma is an instruction to the parser to
move on to the next string. For each string a normal template (with patterns, etc.)
can be specified. The only time multiple strings are available is in the ARG (or
PARSE ARG) instruction. When an internal function or subroutine is invoked it
can have several argument strings, and a comma is used to access each in turn.
Thus the template:

wordl string1, string2, nurn

would put the first word of the first argument string into word1, the rest of that
string into stri ng1, and the next two strings into stri ng2 and nurn. If insufficient
strings were specified in the invocation, unused variables are set to null, as usual.

126 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

Chapter 6. Numerics and Arithmetic

Introduction

. REXX defines the usual arithmetic operations (addition, subtraction, multiplication,
and division) in as "natural" a way as possible. What this really means is the rules
followed are those that are conventionally taught in schools and colleges.

During the design of these facilities, however, it was found that unfortunately the
rules used vary considerably (indeed much more than generally appreciated) from
person to person and from application to application and in ways that are not
always predictable. The arithmetic described here is therefore a compromise that
(although not the simplest) should provide acceptable results in most applications.

Numbers (that is, character strings used as input to REXX arithmetic operations) can
be expressed very flexibly. Leading and trailing blanks are permitted, and
exponential notation can be used. Some valid numbers are:

12 /* an integer */
-76 /* signed integer */
12.76 /* decimal places */

, + 0.003 I /* blanks around the sign etc */
17 • / * s arne as" 17 " * /

.5 /* same as "0.5" */
4E9 /* exponential notation */
0.73e-7 /* exponential notation */

(Exponential notation means that the number includes a power of ten following an E
that indicates how the decimal point should be shifted. Thus 4E9 above is just a
short way of writing 4000000000, and 0.73e-7 is short for 0.000000073.)

The arithmetic operators include addition (+), subtraction (-), multiplication (*),
exponentiation (**), division (/), and prefix (+ or -). In addition, there are two
further division operators: integer divide (%) that divides and returns the integer
part, and remainder (/ /) that divides and returns the remainder.

The result of an arithmetic operation is formatted as a character string according to
definite rules. The most important of these rules are as follows (see the Definition
section for full details):

• Results will be calculated with up to some maximum number of significant digits
(the default is 9, but this can be altered with the NUMERIC DIGITS
instruction to give whatever accuracy you need). Thus if a result requires more
than 9 digits, it would normally be rounded to 9 digits. For example, the
division of 2 by 3 would result in 0.666666667 (it would require an infinite
number of digits for perfect accuracy).

• Except for division and exponentiation, trailing zeros are preserved (this is in
contrast to most popular calculators, which remove all trailing zeros). So, for
example:

2.40 + 1
2.40 - 2
·2.5 * 2

->

->

->

3.40
0.40
5.0

This behavior is desirable for most calculations (especially financial calculations).

Chapter 6. Numerics and Arithmetic 127

Numerics and Arithmetic

Definition

If necessary, trailing zeros can be easily removed with the STRIP function (see
page 95), or by division by 1.

• A zero result is always expressed as the single digit O.

• Exponential form is used for a result depending on the setting of NUMERIC
DIGITS (the default is 9). If the number of places needed before the decimal
point exceeds the NUMERIC DIGITS setting, or the number of places after the
point exceeds twice the NUMERIC DIGITS setting, the number will be
expressed in exponential notation:

le6 * le6 -> lE+12
/* not 1000000000000 */

1 / 3E10 -> 3.33333333E-ll
/* not 0.0000000000333333333 */

A precise definition of the arithmetic facilities of the REXX language is given here.

Numbers

Precision

A number in REXX is a character string that includes one or more
decimal digits, with an optional decimal point. The decimal point may
be embedded in the number, or may be prefixed or suffixed to it. The
group of digits (and optional decimal point) constructed this way can
have leading or trailing blanks and an optional sign (+ or -) that must
come before any digits or decimal point. The sign can also have leading
or trailing blanks.

Therefore, number is defined as:

Where:
s;gn is either 1+1 or I_I

blanks are one or more spaces

~
di9itS
digits.digits
.digits-----1
di gits .-----'

d;g;ts are one or more of the decimal digits 0-9.

Note that a single period alone is not a valid number.

The maximum number of significant digits that can result from an
operation is controlled by the instruction:

~NUMERIC DIGITS---.L-----..--;~

express i onJ

express i on is evaluated and must result in a positive whole number.
This defines the precision (number of significant digits) to which
calculations are carried out. Results are rounded to that precision.

If express i on is not specified in this instruction, or if no NUMERIC
DIGITS instruction has been executed since the start of a program, the
default precision is used. The REXX standard for the default precision is
9.

128 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

Arithmetic operators

The four basic operators + , - , * , and / (add, subtract, multiply, and
divide) produce results that are rounded if necessary to the precision
specified by the NUMERIC DIGITS instruction.

Every operation is carried out in such a way that no errors will be
introduced except during the final rounding of the result to the specified
significance. (That is, input data is first truncated to the appropriate
significance (NUMERIC DIGITS + 1) before being used in the
computation, and then divisions and multiplications are carried out to
double that precision, as needed.)

Rounding is done in the "traditional" manner, in that the digit to the
right of the least significant digit in the result (the "guard digit") is
inspected and values of 5 through 9 are rounded up, and values of 0
through 4 are rounded down. Even/odd rounding would require the
ability to calculate to arbitrary precision at all times and is therefore not
the mechanism defined for REXX.

A conventional zero is supplied in front of the decimal point, otherwise
there would be no digit preceding it. Significant trailing zeros are
retained for addition, subtraction, and multiplication, according to the
rules given below, except that a result of zero is always expressed as the
single digit O. For division, trailing zeros are removed after rounding.

The FORMAT built-in function is supplied (see page 87) to allow a
number to be represented in a particular format if the standard result
provided does not meet your requirements.

The precise rules for the operations are described below, but the
following examples illustrate the main implications of the rules:

/* With: Numeri c di gits 5 */
12+7.00 -> 19.00
1.3-1.07 -> 0.23
1. 3-2.07 -> -0.77
1.20*3 -> 3.60
7*3 -> 21
0.9*0.8 -> 0.72
1/3 -> 0.33333
2/3 -> 0.66667
5/2 -> 2.5
1/10 -> 0.1
12/12 -> 1
8.0/2 -> 4

The exponentiation operator (**), integer divide operator (%), and
remainder operator (j j) are also defined:

The ** (exponentiation) operator raises a number to a whole power,
which may be positive or negative. If negative, the absolute value of the
power is used, and then the result is inverted (divided into 1). For
calculating the result, the number is effectively multiplied by itself for the
number of times expressed by the power, and finally trailing zeros are
removed (as though the result were divided by one). In practice (see note
below for rationale), the result is calculated by the process of left-to-right
binary reduction. For x**n: n is converted to binary, and a temporary
accumulator is set to 1. If n = 0 the calculation is complete. Otherwise

. each bit (starting at the first nonzero bit) is inspected from left to right.
If the current bit is I, the accumulator is multiplied by x. If all bits have

Chapter 6. Numerics and Arithmetic 129

Numerics and Arithmetic

now been inspected the calculation is complete, otherwise the
accumulator is squared and the next bit is inspected for multiplication.
When the calculation is complete, the temporary result is ready for
division by or into I to provide the final answer. The multiplications
and division are done under the normal REXX arithmetic combination
rules, detailed below. (Note that a number is rounded to the current
setting of NUMERIC DIGITS before the first multiplication, and that
intermediate results are rounded after each subsequent multiplication.)

The % (integer divide) operator divides two numbers and returns the
integer part of the result, which will not be rounded unless the integer
has more digits than the current DIGITS setting. The result returned is
defined to be that which would result from repeatedly subtracting the
divisor from the dividend while the dividend is larger than the divisor.
During this subtraction, the absolute values of both the dividend and the
divisor are used: the sign of the final result is the same as that which
would result if normal division were used. Note that this operator may
not give the same result as truncating normal division (which could be
affected by rounding).

The II (remainder) operator will return the remainder from integer
division, and is defined such that:

a//b == a-(a%b)*b

Thus:

/* Again with: Numeri c di gits 5 */
2**3 -> 8
2**-3 -> 0.125
1.7**8 -> 69.758
2%3 -> 0
2.1//3 -> 2.1
10%3 -> 3
10//3 -> 1
-10//3 -> -1
10.2//1 -> 0.2
10//0.3 -> 0.1

Note: A particular algorithm for calculating exponentiation is used,
since it is efficient (though not optimal) and considerably reduces the
number of actual multiplications performed. It therefore gives better
performance and can give higher accuracy than the simpler definition of
repeated multiplication. Since results may differ from those of repeated
multiplication, the algorithm is defined here.

Arithmetic combination rules

The rules for combination of two numbers by the four basic operators
are as follows. All numbers have insignificant leading zeros removed .
before being used in computation.

Addition and Subtraction

The numbers are extended on the right and left as necessary and
then added or subtracted as appropriate.

130 VM/SP System Product Interpreter Reference

Example:

becomes:

xxx.xxx + yy.yyyyy

xxx.xxx00
+ 0yy.yyyyy

zzz.zzzzz

Numerics and Arithmetic

The result is then rounded to the current setting of NUMERIC
DIGITS if necessary, and any insignificant leading zeros are
removed.

Multiplication

The numbers are multiplied together ("long multiplication")
resulting in a number that may be as long as the sum of the lengths
of the two operands.

Example:

xxx. xxx * yy.yyyyy

becomes: zzzzz.zzzzzzzz

The result is then rounded to the current setting of NUMERIC
DIGITS.

Division

For the division:

yyy / xxxxx

the following steps are taken: First the number yyy is extended to
be at least as long as the number xxxxx (with note being taken of the
change in the power of ten that this implies). Thus in this example,
yyy becomes yyy00. Traditional long division then takes place,
which might be written:

zzzz

xxxxx yyy00

The length of the result (zzzz) is such that the rightmost z will be at
least as far right as the rightmost digit of the (extended) y number in
the example. During the division, the y number will be extended
further as necessary, and the z number may increase up to
NUMERIC DIGITS + 1 digits at which point the division stops and
the result is rounded. Following completion of the division (and
rounding if necessary), insignificant trailing zeros are removed.

Note: In the above examples, the position of the decimal point is
arbitrary. In fact the operations may be carried out as integer operations
with the exponent being calculated and applied after. Therefore none of
the operations are in any way dependent on the position of the decimal
point and hence results are completely independent of the number of
decimal places.

Comparison Operators

The comparison operators are listed on page 13. Any of these can be
used for comparing numeric strings. However, = =, \ = =, -, = =, > >,
\ > >, -, > >, < <, \ < <, and -, < <, should not be used to compare

Chapter 6. Numerics and Arithmetic 131

Numerics and Arithmetic

numeric values because leading/trailing blanks and leading zeroes are
significant with these operators.

A comparison of numeric values is effected by subtracting the two
numbers (calculating the difference) and then comparing the result with
O. For example, the operation:

A ? B

where? is any numeric comparison operator, is identical to:

(A - B) ? 10 1

It is therefore the difference between two numbers, when subtracted
under REXX subtraction rules, that determines their equality.

Comparison of two numbers is affected by a quantity called "fuzz,"
which is set by the instruction:

~NUMERI C Fuzz----,Lr------J~;---+-011
expression

Here express i on must result in a whole number that is zero or positive.
This FUZZ number controls the amount by which two numbers may
differ before being considered equal for the purpose of comparison. The
default is O.

The effect of FUZZ is to temporarily reduce the value of DIGITS by the
FUZZ value for each comparison operation. That is, the numbers are
subtracted under a precision of DIGITS-FUZZ digits during the
comparison. Clearly FUZZ must be less than DIGITS.

Thus if DIGITS = 9, and FUZZ = 1, the comparison will be carried
out to 8 significant digits, just as though NUMERIC DIGITS 8 had
been put in effect for the duration of the operation. Example:

Numeric digits 5
Numeric fuzz 0
say 4.9999 = 5
say 4.9999 < 5
Numeric fuzz 1
say 4.9999 = 5
say 4.9999 < 5

/* would display 0
/* would display 1

/* would display 1
/* would display 0

*/
*/

*/
*/

Exponential notation

The description above describes "pure" numbers, in the sense that the
character strings that describe numbers could be very long. For example:

10000000000 * 10000000000
would give 100000000000000000000

and

.00000000001 * .00000000001
would give 0.000000000000000000001

For both large and small numbers some form of exponential notation is
useful, both to make numbers more readable, and to reduce execution
time storage requirements. In addition, exponential notation is used
whenever the "simple" form would give misleading information. For
example:

numeri c di gits 5
say 54321*54321

132 VM/SP System Product Interpreter Reference

Numerics and Arithmetic

would display 2950800000 if long form were to be used. This is clearly
misleading, and so the result is expressed as 2.9508E + 9 instead.

The definition of "numbers" (see above) is therefore extended as (note
that blanks are shown below only for readability):

E
di9itS
di gits. di gi ts------I
• di gits------I
dig its. -------'

II •

the integer following the E represents a power of ten that is to be applied
to the number; and the E can be in uppercase or lowercase.

Here are some examples:

12E11 1200000000000
12E-5 = 0.00012
-12e4 = -120000

The aboye numbers are valid for input data at all times. The results of
calculations will be returned in either conventional or exponential form
depending on the setting of DIGITS. If the number of places needed
before the decimal point exceeds DIGITS, or the number of places after
the point exceeds twice DIGITS, exponential form will be used. The
exponential form generated by REXX always has a sign following the E
in order to improve readability. An exponential part of E + 0 will never
be generated.

Numbers can be explicitly converted to exponential form, or forced to be
displayed in "long" form, by using the FORMAT built-in function,
described on page 87.

The user can control whether Scientific or Engineering notation is to be
used by using the instruction:

~NUMERIC FORM-..,----------,--;~

SC I ENTI FI C'------I
ENGINEERING,-----I

'--T---r--express ion

The default setting of FORM is SCIENTIFIC.

Scientific notation adjusts the power of ten so there is a single nonzero
digit to the left of the decimal point. Engineering notation causes powers
of ten to always be expressed as a multiple of 3: the integer part may
therefore range from I through 999.

/* after the instruction */
Numeric form scientific

123.45 * 1el1 -> 1. 2345E+ 13

/* after the instruction */
Numeric form engineering

123.45 * 1el1 -> 12.345E+12

Numeric Information

The current settings of the NUMERIC options can be found by using
the built-in functions DIGITS, FORM, and FUZZ. These functions

Chapter 6. Numerics and Arithmetic 133

Numerics and Arithmetic

return the current settings of NUMERIC DIGITS, NUMERIC FORM,
and NUMERIC FUZZ, respectively.

Use of Numbers by REXX

Errors

Whenever a character string is used as a number (for example as an
argument to a built-in function, or the expressions on a DO clause),
rounding may occur according to the setting of NUMERIC DIGITS.

Various types of errors may occur in computation:

• Overflow IU nderflow

This error will occur if the exponential part of a result becomes
greater than 999999999 or becomes less than -999999999. The
exponential part of a result exceeds the range that can be handled by
the language processor. Since this allows for (very) large exponents,
overflow or underflow is treated as a terminating "syntax" error.

• Storage exception

Storage is needed for calculations and intermediate results, and on
occasion an arithmetic operation may fail due to lack of storage.
This is considered a terminating error as usual, rather than an
arithmetical error.

134 VMjSP System Product Interpreter Reference

System Interfaces

Chapter 7. System Interfaces

This chapter is addressed mainly to assembler language programmers and system
programmers. It describes:

1. Calls to and from the language processor. A general description of calls to and
from the REXX programs (from the CMS command line, from another exec,
and so on) with an indication of the type of parameter list used in each case.

2. DMSEXI-the CMS interface module that receives calls to exec programs and
passes them to the appropriate language processor.

3. Parameter lists. Details, at assembler language level, of the parameter lists used
for calls to and from the language processor.

4. Function Packages. How to write a function or subroutine that can be called by
the language processor and how to put it into a Function Package.

S. The EXECCOMM subcommand, which allows other programs to read and alter
REXX variables and extract other information.

6. How the language processor sets and tests the flags in the EXECFLAG control
byte so as to obey the CMS immediate commands HI (Halt Interpreter), TS
(Trace Start), and TE (Trace End).

Calls to and from the Language Processor
When called, the language processor can process either the Tokenized Plist
(Parameter List) or an Extended Plist. When calling, the language processor
generates both Plists. A special parameter list (subsequently referred to in this
manual as the six-word Extended Plist) is used by the language processor for
function calls and subroutine calls. The contents of the General Register 1 high
order byte (Byte 0) define the format of the Plist passed by the caller.

Note: The general formats for CMS Plists (parameter lists) are described in the
VM/SP Application Development Guide for eMS. The Extended Plist and the
six-word Extended Plist are described below.

Calls Originating from the CMS Command Line
To invoke a REXX language program, the user may enter on the command line:

• Just the name of the program (execname) and the argument string. In this case,
if IMPEX is ON (the default) and if the file execname exec exists, CMS issues
the command EXEC, using the original command line as the argument string. If
IMPEX is OFF, the exec cannot be invoked in this way, and the word exec
must be given explicitly.

Note: If ABBREV is ON (the default) DMSINT will search the synonym
tables.

• The command EXEC followed by the name of the REXX language exec (and
the argument string, if any).

Note: In this case synonyms are not recognized.

In both cases, CMS uses CMSCALL to invoke the exec. Register 0 points to the
Extended Plist and the user call-type information is a X lOB I, indicating that:

• This is a CMS environment

Chapter 7. System Interfaces 135

System Interfaces

• CMS used the full CMS search order

• An Extended Plist is available.

CMS passes control to the language processor via the EXEC command handler
(DMSEXI, see below).

Calls Originating from the XEDIT Command Line
To invoke a REXX macro that is stored in a file with a filetype of XEDIT, the user
may enter on the XEDIT command line:

• Just the name of the macro and the argument string (if any). In this case,
XEDIT executes the subcommand MACRO, using the original command line as
the argument string. Note that if the macro has the same name as an XEDIT
built-in command, it will not be invoked unless MACRO is set ON (which is not
the default).

• The command MACRO followed by the name of the REXX macro (and the
argument string, if any). This will always invoke the specified macro, if it exists.

In both cases XED IT checks to see if the macro is already loaded into storage. If
not, it loads the macro if it exists, constructing an Extended Plist, a File Block, and
a Program Descriptor List. Word 4 of the Extended Plist points to the File Block
and the user call-type information is a X 'Oll. CMS passes control to the language
processor via the EXEC command handler (DMSEXI, see below).

If the user enters the name of the macro (macroname ...) on the XED IT command
line and the file macroname XEDIT is not found and IMPCMSCP is set ON, XEDIT
assumes that an exec or a CMS command is being invoked, and will try the normal
full CMS search order for the command, as though the command had been entered
from the CMS command line. In this case, the user-type information is a X I OB I as
usual.

Calls Originating from CMS EXECs
Calls from CMS EXECs must be explicit invocations of the exec. Only the
Tokenized Plist is available. If the called exec is written in REXX, DMSEXI
constructs an argument string from the tokenized Plist. The user call-type
information is dependent upon the setting of the &CONTROL statement - X I OD I

if MSG was specified (default), and X 'OE I if NOMSG was specified.

Calls Origi"ating from EXEC 2 Programs
Calls originating from EXEC 2 programs must again be explicit invocations of the
exec. However, EXEC 2 provides both the Tokenized Plist and the Extended Plist.
The user call-type information is a X I 011, which signifies that the Extended Plist is
available.

Calls Originating from a Clause That Is an Expression
For a REXX clause that is an expression, the resulting string is issued as a command
to whichever environment is currently selected (See pages 21-25). The Plist format
used is dependent upon the environment selected (by default or by the ADDRESS
instruction).

If the environment for the command is CMS, the call is the same as from the CMS
command line (same search order, same Plist structure, and the user call-type
information is set to XIOB').

136 VM/SP System Product Interpreter Reference

System Interfaces

If the environment is COMMAND (or null), the command is issued directly: the
user call-type information is set to X'OI' and CMS is called using CMSCALL.
(Note to EXEC 2 users: this is the way in which EXEC 2 issues commands.)

Note that (whether the environment is CMS or COMMAND) no cleanup is
performed by DMSINT after the command has been executed, interrupts are not
cancelled, and the LASTCMD field in NUCON is not updated.

When the environment is XED IT (for calls from XEDIT macros, for example), the
subcommands are passed to XEDIT using the SUBCOM Plist. The user call-type
information is X' 02' indicating that the call is to a CMS subcommand environment.

Register 1 points to a Tokenized Plist that gives the name of the subcommand entry
point that is to receive control (XEDIT in this case), and Register 0 points to the
Extended Plist.

All other environment names are treated in the same way as XEDIT, that is, the
SUBCOM mechanism is used (unless the name is a valid PSW - see page 146).

Calls Originating from a CALL Instruction or a Function Call
A different interface is used when the language processor calls an external subroutine
or function. The called routine may be a MODULE, a Nucleus Extension, or a
REXX program; all use the same Plist, but a FILEBLOK is provided by the
language processor only when the routine is called via the EXEC interface. The
search order for external routines is described on page 72.

When the language processor calls a module, the module may reside above the 16Mb
line (in a 370-XA mode virtual machine). However, the module may not pass data
that resides above the 16Mb line back to the language processor. All data that the
language processor accesses must reside below the 16Mb line. This is because the
language processor resides below the 16Mb line and uses only 24-bit addressing to
access data. AMODE 31 and ANY programs will be invoked in 31-bit mode if
called from the language processor in an XA machine. If the module the language
processor is calling has an AMODE of 24, the language processor calls the module
in 24-bit mode.

If the language processor is running in a Systemj370 mode virtual machine, the
language processor calls the module in 24-bit mode, regardless of the AMODE of
the module.

In all cases, the user call-type information is a X' 05' , indicating that the six-word
Extended Plist is used. Word 5 of this Plist points to the argument list (see page
143). Word 6 points to a fullword location in USER storage, which is zero on entry
and will be used to store the address of an EV ALBLOK if a result is returned. A
routine that does not return a result must leave this location unchanged.

Chapter 7. System Interfaces 137

System Interfaces

A routine called as a function must return a result, but a routine called as a
subroutine need not. The caller sets Register 0 Bit 0 to:

o if the routine is called as a function
1 if the routine is called as a subroutine

(If the called routine is an exec written in REXX this information can be obtained
using the PARSE SOURCE instruction, described on page 51.)

If the REXX program is being called as a function, it must end with a RETURN or
EXIT instruction with an expression, and the resulting string is returned in the form
of an EV ALBLOK.

Note: DMSEXI always passes control to the language processor when the user
call-type information is X 105 1.

Calls Originating from a MODULE
REXX may be called from a user MODULE using any of the standard forms of
Plist:

• Only the Tokenized Plist: The user call-type information is a X I 00 I. Register 0
is not used.

• The Extended Plist: The user call-type information is a X 'Oll. Register 1 must
point to a doubleword-aligned 16-byte field, containing

CL8 I EXEC '
CL8 l execname '

The rest of the Tokenized Plist will not be inspected. Register 0 must point to
an Extended Plist. The FILEBLOK may be provided if desired (see page 144).

• The six-word Extended Plist: The user call-type information is X 105 I. Other
conditions are the same as for the Extended Plist. This form should be used if
more than one argument string is to be passed to the exec, or the exec is being
called as a function. (Note that if the exec returns data in an EVALBLOK, it is
the responsibility of the caller to free that storage.)

Note: You should use the CMSCALL macro to make your calls. CMSCALL has
parameters that allow you to setup your Plists and your user call-type information.
For example, if you use the COPY option, CMSCALL will allow you to pass a Plist
that resides above the 16Mb line back to REXX. See VM/SP Application
Development Reference for eMS for more information on the CMSCALL macro.

Calls Originating from an Application Program
An application program written in a language such as VS FORTRAN or OS/VS
COBOL can call REXX using a callable services library (CSL) routine. Calling this
routine is useful when the application program needs to invoke a CMS or CP
command.

138 VM/SP System Product Interpreter Reference

System Interfaces

An application program can call a REXX exec via a CSL routine using the following
format:

~CALL DMSCSL DMSCCE, retcode,execname,number _0 f_args-----••

where:

call to DMSCSL
is the language-dependent format for invoking a callable services library (CSL)
routine. The following list shows the call formats for the languages l that
support CSL.

Assembler
CALL DMSCSL,(rtnname,retcode,parml,parm2, ••• parmn),VL

COBOL2
CALL "DMSCSL" USING rtnname,retcode,parml,parm2, .•• parmn.

VSFORTRAN
CALL DMSCSL (rtnname,retcode,parml,parm2, ... parmn)

VS Pascal
DMSCSL (rtnname,retcode,parml,parm2, .•• parmn);

PL/I
CALL DMSCSL (rtnname,retcode,parml,parm2, ..• parmn);

C
DMSCSL(rtnname,retcode,parml,parm2, •.. parmn);

Additional language-specific statements may be necessary so that language
compilers can provide the proper assembler interface. Other programming
notation, such as variable declarations, is also language-dependent.

DMSCCE
is the name of the CSL routine being invoked. The value DMSCCE can be
passed directly or in a variable. Note that you must pad two blanks on the right
because the CSL routine name must be eight characters in length.

retcode
is a signed four-byte binary variable to hold the return code from DMSCCE.

execname
is the name of the REXX EXEC being invoked. This field must be an
eight-byte character string padded with blanks on the right if necessary, and it is
used for input only.

1 It is not appropriate to use this CSL routine DMSCCE in a REXX program.

2 This pertains to COBOL II and OS/VS COBOL.

Chapter 7. System Interfaces 139

System Interfaces

number _of_args
is the number of input argument character strings being passed to the REXX
exec. There is a maximum of ten input character strings allowed on a call. (See
Usage Note 3 on page 141.) This field must be a four-byte binary number, and
it is used for input only.

inarg 1 ... inargn
are the character string arguments passed to the REXX exec. These fields are
used for input only.

inarg l_length ... inargn _length
are the lengths of the corresponding character string arguments. These fields
must be four-byte binary numbers, and they are used for input only.

return_area
is a buffer area to receive data from the REXX exec. This field must be a
fixed-length character string, and it is used for output only.

return_area _length
on input, this is the length of return_area; on output, this is the length of the
data returned in return_area. (See Usage Note 4 on page 141.) It must be a
four-byte binary integer.

For more information on calling REXX using a callable services library routine, see
the VMjSP Application Development Referencefor eMS.

Usage Notes:

1. This routine is useful when the application needs to invoke some CMS or CP
command. The REXX exec issues the CP or CMS command and passes the
results back to the application program.

2. An example of a good way to use DMSCCE is to issue a FILEDEF command
from an application program. A REXX exec named DATADEF, supplied with
VM, issues the FILEDEF command. The following code fragment from a PLjI
program shows an example of this:

/* Declares for parameters of CALL statement */
DCL DMSCCE CHAR(8) INIT('DMSCCE'),

RETCODE FIXED BIN(31) INIT(0),
DATADEF CHAR(8) INIT('DATADEF'),
ONE FIXED BIN(31) INIT(l),
ARG CHAR(37) INIT('INFILE DISK FILENAME FILETYPE A (PERM'),
ARGL FIXED BIN(31) INIT(37),
RET CHAR(10) INIT (' '),
RETL FIXED BIN(31) INIT(10);

/* Call statement to FILEDEF EXEC */
CALL DMSCSL (DMSCCE,RETCODE,DATADEF,ONE,ARG,ARGL,RET,RETL);

After the application program issues the above CALL statement, the FILEDEF
command is executed using the arguments supplied in the "ARG" parameter.

Note: Using DMSCCE to issue a FILEDEF command is especially useful if
your application program calls the SAA file-related functions OPEN,
READ, WRITE, or CLOSE. Your program can be portable across

140 VM/SP System Product Interpreter Reference

DMSEXI

System Interfaces

different IBM systems when you use SAA functions; however, a program
must issue a FILEDEF before calling an SAA file-related function.

An application program can just use the VM-specific shared file system
routines to perform an OPEN, READ, WRITE, or CLOSE, but the
program would not be portable across systems.

3. Although you cannot specify more than ten arguments on a call to DMSCCE,
an argument string can represent multiple variables. For example, you could
pass I varl var2 var3 var4 var5 1 as a single argument string, and this single
string can be parsed into five separate variables.

4. If the data returned from the REXX exec is longer than the length of
return_area, the data is truncated and a return code of 200 is issued.

Return Codes:

o Normal completion.

20 Invalid CMS character in EXEC name.

28 The REXX exec specified on the call does not exist.

112 The number of parameters passed on the call was incorrect.

118 The parameter list passed to the routine was not in a valid format.

123 The number of arguments passed to the REXX exec exceeded the number
specified in number _of_args.

200 The data returned in return_area has been truncated. (The return_area_length
variable contains the length of the data before it was truncated.)

10nn The data type for parameter nn is incorrect.

20nn The length for parameter nn is incorrect.

All calls to the CMS command EXEC are first processed by DMSEXI, which builds
any necessary argument strings and also selects the language processor which is to
process the program.

This selection is done by reading up to 255 bytes of the first line of the program file
(or Fileblock defined data) and scanning it until the first non-blank character is met.

1. If the first non-blank characters are j* (that is, the start of a REXX comment)
or the user call-type information is X I 05 I, the program is assumed to be written
in the REXX language.

2. If the first non-blank characters are &TRACE, (or if the user call-type
information is X'Ol' or X'OB' and a FILEBLOK exists, indicating that the call
cannot be processed by CMS EXEC), the program is assumed to be written in
the EXEC 2 language.

3. Otherwise the program is assumed to be written in the CMS EXEC language.

DMSEXI calls the appropriate language processor.

Chapter 7. System Interfaces 141

System Interfaces

The Extended Parameter List
The language processor may be called with an Extended Plist (in addition to the
8-byte Tokenized Plist) that allows the following possibilities:

• One or more arbitrary parameter strings (mixed case and untokenized) may be
passed to the language processor, and one string may be returned from it when
execution ends.

• A file other than that defined in the Tokenized Plist may be used. (The file type,
for example, need not be EXEC).

• A default target for commands (other than CMS) can be specified. If a file type
other than EXEC or blanks is specified, then it is stored in the file block. The
language processor can then use the information in the file block to send
commands to the appropriate environment.

• A program that exists in storage may be executed (instead of first being read
from a file). This in-storage execution option may be used for improved
performance when a REXX program is being executed repeatedly.

• A default target for commands may be specified that overrides the default
derived from the file type.

Using the Extended Parameter List
To use the Extended Plist, both Register 1 and Register 0 are used. Register 1
points to the Tokenized Plist. The first token of this Plist must be CL8X I EXEC I,
and the second token must contain the name of the exec or macro to be processed
unless a FILEBLOK that specifies the name is provided.

The user call-type information may have the following values:

X I 011 or X I OB I Extended Plist available. The argument string defined by words 2
and 3 (BEGARGS and ENDARGS) of the Extended Plist is used
to find the called name of the program and the argument string
passed to the language processor. The first two tokens of the

X '05 1

T okenized Plist are used.

a language processor call (for example, originating from a CALL
instruction or a function call to a REXX external routine). The
six-word Extended Plist is available. The argument list pointed to
by Word 5 of the Plist is used for the· strings accessed by the ARG
instruction and the ARG function. Only the first token of the
Tokenized Plist is used. If the argument list is specified, only the
first word of the BEGARGS/ENDARGS string is used (for the
called name of the program).

Any other value (for example, X I 00 I) only the Tokenized Plist is available.

Note: You should use the CMSCALL macro to make your calls. CMSCALL has
parameters that allow you to setup your user call-type information. Register 0
points to the Extended Plist.

142 VM/SP System Product Interpreter Reference

The Extended Plist has the form:

EPUST OS 0F

*

*
*

DC A(COMVERB)
DC A(BEGARGS)
DC A(ENOARGS)

DC A(FBLOK)

PLIST with pointers:
_> CL51EXEC I

-> start of Argstring
-> character after end of

the Argstring
-> File Block, described below.

(if there is no File Block,
this pOinter must be 0)

System Interfaces

The six-word Extended Plist (which only exists if the user call-type information is
X I 05 I) is the same four pointers followed by:

DC AL4 (ARGUST)
*
*
*
*

DC A(SYSFUNRT)
*
*
*
*
*

-> Argument list.
If there is no argument
list this pointer is 0,
and BEGARGS/ENOARGS are
used for the ARG string.

-> SYSFUNRT location, which:
* contains a zero on entry
* will be unchanged if
* no result is returned
* will contain the address of an
* EVALBLOK if a result is returned.

The argument list consists of an Adlen (Address/Length) pair for each argument
string. The final value pair is followed by two fullwords containing -1 (that is, hex
FFFFFFFF). There is no limit to the number of strings when the language
processor is called, but note that the language processor itself will only provide from
zero to ten argument strings.

If the argument list is given, the simple argument string (as defined by BEGARGS
and ENDARGS) is not used for the ARG instruction or the ARG built-in function.

Note: The argument list and the strings it defines must be in privately owned
storage. This means that the language processor need not copy the data strings
before using them (as has to be done for the BEGARGS/ENDARGS string, when it
is used).

The result of a subroutine or function call using the six-word Extended Plist is
returned in a block of USER storage allocated by DMSFREE and which has the
following storage assignments and values:

-- OSECT for the returned data block -----------------
EVALBLOK OSECT
EVBPAOI OS
EVSIZE OS
EVLEN OS
EVBPA02 OS
EVOATA OS

F
F
F
F
C •••

Reserved
Total block size in OWlS
Length of Data (in bytes)
Reserved -- should be set to 0
The returned character string

A result may only be returned if the called routine ends cleanly, with a Register 15
return code of O.

Note: The EV ALBLOK must be below the 16Mb line.

Chapter 7. System Interfaces 143

System Interfaces

The File Block
This block is pointed to by word 4 of the Extended Plist described above. It is only
needed if the language processor is to execute a non-EXEC file or is to execute from
storage, or is to have an address environment that is not the same as its file type. If
it is not required, word 4 of the Extended Plist should be set to O.

FBLOK DS 0F ** File block

*
*

*
*
*
*

*

DC CL8 1filename i

DC CL8 1filetype i

DC CL2 1filemode i

DC Wextlen l

logical name of program
(also physical name if not
in storage).

logical type of program (also
default destination for
commands -- blanks or "EXEC"
cause commands to be
passed to CMS environment).

normally 1* 1 or 1
length of extension block

in fullwords (may be 0).
*->
*->

Extension block starts here.
In-storage program definition

*
*

*

Following two words should be 0 if extlen >= 2 and
in-storage program is not supplied.

DC AL4(PROG) -> Start of program
descriptor list.

DC AL4(PGEND-PROG) Length of same in bytes.
*->
*

Initial Address environment (overrides default from
file type).

*

*
*
*
*

Should be set to 2F I 01 if not used and extlen = 4.
DC CL8 1environment i The initial environment.

May be a PSW for non-SVC
subcommand call.

DC CL8 1 envname 1 Name of an initial environment
for non-SVC subcommand call.

*-> End of FILEBLOK

The descriptor list for an in-storage program looks like this:

** Descriptor list for ,in-storage program
PROG DS 0F ** In storage program **

DC A(linel),F1lenl l Address, length of line 1
DC A(line2),F 1len2 1 Address, length of line 2

DC A(lineN),F1lenN I Address, length of line N
PGEND EQU *

Notes:

1. The in-storage program lines need not be contiguous, since each is separately
defined in the descriptor list.

2. For in-store execution, the file type is still required in the file block, since this
determines' the logical program name. The file type similarly sets the default
command environment, unless it is explicitly overridden by the name in the
extension block.

3. If the extension length is > = 4 Fullwords, the 3rd and 4th fullwords form an
8-character environment address that overrides the default address set from the
Filetype in the file block; and thus forms the initial ADDRESS to which
commands will be issued. This new address may be all characters (for example,
blank, eMS, or some other environment name), or it may be a PSW for

144 VM/SP System Product Interpreter Reference

System Interfaces

non-SVC subcommand execution - described on page 146. It may be cleared to
8X 1 00 1 if not required. The PSW must be in a valid format for the mode of
virtual machine (370-XA mode or 370 mode).

4. If the extension length is > = 6 Fullwords, the 5th and 6th fullwords form an
8-character environment name that is used for the default address unless this is a
non-SVC command execution. In this case, the 4th and 5th Fullwords are used
as a PSW for non-SVC subcommand execution - described on page 146. The
environment name will be returned by PARSE SOURCE and the ADDRESSO
built-in function and the PSW in the 4th and 5th Fullwords will be used to
invoke subcommands.

Function Packages
Functions and subroutines may be written in REXX, or in any other language that
has an interface that conforms to the six-word Extended Plist described above.
Those routines not written in REXX may be supplied simply as a file with a file type
of MODULE. For a further improvement in performance, routines which are called
frequently may be loaded as Nucleus Extensions, or placed in a Function Package.

A function package contains the code for functions that are candidates for loading
as nucleus extensions. The first time a function in one of the three packages known
to the language processor (RXUSERFN and RXLOCFN and RXSYSFN) is
invoked, a call to the package with a LOAD request causes the package to load itself
as a nucleus extension (if it is not already in storage). The entry point to the
particular function required is then declared as a nucleus extension by the package.
On subsequent calls, the code for the function is directly available using CMSCALL
and the extra processing for loading the package MODULE is avoided. The
functions in a package will usually share common code and subroutines. For an
example of a function package, see "Appendix B: Example of a Function Package"
on page 191.

Refer to page 72 for the full search order of external routines.

All external routines are invoked using the six-word Extended PHst defined above. If
the called routine is not an exec or macro (that is, will not be processed by EXEC),
then word 4 is zero. Word 5 points to the list of arguments, and word 6 points to a
location that may be used to return the address of an EV ALBLOK which will
contain the result of the function or subroutine. If the routine is being called as a
subroutine (rather than as a function), so that it need not return a result, then the
top bit of RO will be set to indicate this. Otherwise the routine should return a
result - the language processor will raise an error if it does not.

During calculation of the result, the routine may use the argument strings (which
reside in USER storage owned by the language processor) as work areas, without
fear of corrupting internal REXX values.

External function packages must be able to respond to a call of the form:

RXnameFN LOAD RXfname

(which is issued using just the Tokenized Plist, with the user call-type information
being X 100 I).

Chapter 7. System Interfaces 145

System Interfaces

If, when the package RXnameFN is invoked with this request, RXfname is
contained within the package, RXnameFN will:

• load itself, if necessary
• install the NUCEXT entry point for the function
• return with a return code 0;

otherwise, the return code will be 1. This allows the function packages and entry
points to be automatically loaded by the language processor when necessary.

Non-SVC Subcommand Invocation
When a command is issued to an environment, there is an alternative non-SVC fast
path available for issuing commands. This mechanism may be used if an
environment'wishes to support a minimum-overhead subcommand call.

The fast path is used if the current eight character environment address has the form
of a PSW (signified by the fourth byte being X 1.00 I). This address may be set using
the Extended Plist (see above) or by normal use of the ADDRESS instruction jf the
PSW has been made available to the exec in some other way. Note that if a PSW is
used for the default address, the PARSE SOURCE string will use? as the name of
the environment unless an environment name has also been provided. You must
make sure you code the correct PSW format for the addressing mode you are
running in (System/370 mode PSW or 370-XA mode PSW).

The definition of the interface follows:

1. the language processor will pass control to the routine by executing an LPSW
instruction to load the eight-byte environment address. On entry to the called
program the following registers are defined:

Register 0 Extended Plist as per normal subcommand call. First word
contains a pointer to the PSW used, second and third words define
the beginning and end of the command string, and the fourth word
is O.

Register 1 Tokenized Plist. First doubleword will contain the PSW used,
second double word is 2F I -1 I. Note that the top byte of Register 1
does not have a flag.

Register 2 is the original Register 2 as encountered on the initial entry to the
language processor's external interface. This register is intended to
allow for the passing of private information to the subcommand
entry point, typically the address of a control block or data area.
This register is only safe if the exec is invoked via a BALR to the
entry point contained at label AEXEC in NUCON, otherwise this
register is altered by the SVC processor.

Register 13 points to an 18 Fullword save area.

Register 14 contains the return address.

(All other registers are undefined.)

2. It is the called program's responsibility to save Registers 9 through 12 and to
restore them before returning to the language processor. All other registers may
be used as work registers.

3. On return to the language processor, Registers 9 through 12 must be unchanged
(see Item 2 above), and Register 15 should contain the return code (which will

146 VM/SP System Product Interpreter Reference

System Interfaces

be placed in the variable RC as normal). Contents of other registers are
undefined. The language processor will set the storage key and mask that it
requires.

Note: The EXECCOMM subcommand entry point is always set up when execution
of a REXX program begins, even if the exec is called via BALR. This results in a
subcommand block being added to the SUBCOM chain.

Direct Interface to Current Variables
The language processor provides an interface whereby called commands may easily
access and manipulate the current generation of REXX variables. Variables may be
inspected, set, or dropped; and if required all active variables may be inspected in
turn. The manipulation of internal work areas is carried out by the language
processor's own routines: user programs do not therefore need to know anything of
the structure of the variables' access method (which includes complex binary trees,
etc.). Names are checked for validity by the interface code, and optionally
substitution into compound symbols is carried out according to normal REXX rules.
Certain other information about the program that is running is also made available
through the interface.

The interface works as follows:

When the language processor starts to process a new program it first sets up a
subcommand entry point called EXECCOMM. When a program (Command,
Subcommand, or external Routine) is invoked by the language processor, it may in
tum use the current EXECCOMM entry point to Set, Fetch, or Drop REXX
variables, using the language processor's internal mechanisms. Part of the language
processor carries out all changes to pointers, allocation of storage, substitution of
variables in the name, etc. and hence isolates user programs from the internal
mechanisms of the language processor.

To access variables, EXECCOMM is invoked using both the Tokenized and the
Extended Plist (see also page 142). CMSCALL is issued with RI pointing to the
normal Tokenized Plist, and the user call-type information set to X 102 1, as this is a
subcommand call.

The Rl Plist: Register 1 must point to a Plist which consists of the eight byte string
EXECCOMM.

The RO Plist: Register 0 must point to an Extended Plist. The first word of the Plist
must contain the value of Register 1 (without the user call-type information in the
high order byte). No argument string may be given, so the second and third words
must be identical (for example, both 0). The fourth word in the Plist must point to
the first of a chain of one or more request blocks, see below.

On return from the CMSCALL, Register 15 will contain the return code from the
entire set of requests. The possible return codes are:

o (Positive). Entire Plist was processed. Register 15 is the composite OR of Bits
0-5 of the SHVRET bytes (see below.)

-1 Invalid entry conditions (for example, BEGARGS -, = ENDARGS, or
EXECCOMM is being called when the language processor is active).

Chapter 7. System Interfaces 147

System Interfaces

-2 Insufficient storage was available for a requested SET. Processing was aborted
(some of the request blocks may remain unprocessed - their SHVRET bytes will
be unchanged).

-3 (from SUBCOM). No EXECCOMM entry point found; for example, not called
from inside a REXX program.

The Request Block (SHVBLOCK)
Each request block in the chain must be structured as follows:

**
* SHVBLOCK: layout of shared-variable Plist element
**
SHVBLOCK DSECT
SHVNEXT DS A Chain pointer (0 if last block)

Available for private use, except SHVUSER DS F
*
SHVCODE
SHVRET

SHVBUFL
SHVNAMA
SHVNAML
SHVVALA
SHVVALL
SHVBLEN

*

during "Fetch Next".
DS CLI Individual function code
DS XLI Individual return code flags
DS H'01 Not used, should be zero
DS F Length of 'fetch ' value buffer
DS A Address of variable name
DS F Length of variable name
DS A Address of value buffer
DS F Length of value
EQU *-SHVBLOCK (length of this block = 32)
SPACE

* Function Codes (SHVCODE):
*
* (Note that the symbolic name codes are lowercase)
SHVSTORE EQU CIS I Set variable from given value
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVDROPV EQU C'D' Drop variable
SHVSYSET EQU CIS I Symbolic name Set variable
SHVSYFET EQU C'f' Symbolic name Fetch variable
SHVSYDRO EQU C'd ' Symbolic name Drop variable
SHVNEXTV EQU C'N' Fetch "next" variable
SHVPRIV EQU Cipi Fetch private information

SPACE
*
* Return Code Flags (SHVRET):
*
SHVCLEAN EQU
SHVNEWV EQU
SHVLVAR EQU
SHVTRUNC EQU
SHVBADN EQU
SHVBADV EQU
SHVBADF EQU

X'00 1 Execution was OK
X' 01 ' Variable did not exist
X'02 1 Last variable transferred (for liN")
X'04 1 Truncation occurred during "Fetch"
X'08 1 Invalid variable name
X' 10 1 Value too long (EXEC 2 only)
X'80 1 Invalid function code (SHVCODE)

*---
Figure 3. Request Block (SHVBLOCK)

148 VM/SP System Product Interpreter Reference

System Interfaces

A typical calling sequence using fully relocatable and read-only code might be:

LA R0, EPLI ST -> Extended Plist, same format as
the R0 Plist described above.

-> Setup the call using CMSCALL.
CMSCALL will take care of the
user call-type information,
will setup the address of the
Extended Plist and Tokenized
Plist and will setup the
error routine address.

CMSCALL EPLIST=(R0),PLIST=EXNAME,CALLTYP=SUBCOM,ERROR=DISASTER
BM DISASTER Where to go if bad return code

EX NAME DC CL8 I EXECCOMM '
DC XL8 I FFFFFFFFFFFFFFFF '

Tokenized Plist
Fence for Plist copy

Function Codes (SHVCODE)
Three function codes (S, F, and D) may be given either in lowercase or in uppercase:

Lowercase (The Symbolic interface). The names must be valid REXX symbols (in
mixed case if desired), and normal REXX substitution will occur in
compound variables.

Uppercase (The Direct interface). No substitution or case translation takes place.
Simple symbols must be valid REXX variable names (that is, in
uppercase, and not starting with a digit or a period), but in compound
symbols any characters (including lowercase, blanks, etc.) are permitted
following a valid REXX stem.

Note: The Direct interface, which is also provided (in part) by EXEC 2, should be
used in preference to the Symbolic interface whenever generality is desired.

The other function codes, Nand P, must always be given in uppercase. The specific
actions for each function code are as follows: .

Sand s Set variable. The SHVNAMAjSHVNAML adlen describes the name of
the variable to be set, and SHVV ALAjSHVV ALL describes the value
which is to be assigned to it. The name is validated to ensure that it does
not contain invalid characters, and the variable is then set from the value
given. If the name is a stem, all variables with that stem are set, just as
though this was a REXX assignment. SHVNEWV is set if the variable
did not exist before the operation.

F and f Fetch variable. The SHVNAMAjSHVNAML adlen describes the name of
the variable to be fetched. SHVVALA specifies the address of a buffer
into which the data is to be copied, and SHVBUFL contains the length of
the buffer. The name is validated to ensure that it does not contain
invalid characters, and the variable is then located and copied to the
buffer. The total length of the variable is put into SHVV ALL, and if the
value was truncated (because the buffer was not big enough) the
SHVTRUNC bit is set. If the variable is shorter than the length of the
buffer, no padding takes place. If the name is a stem, the initial value of
that stem (if any) is returned.

Chapter 7. System Interfaces 149

System Interfaces

SHVNEWV is set if the variable did not exist before the operation, and in
this case the value copied to the buffer is the derived name of the variable
(after substitution etc.) - see page 18.

D and d Drop variable. The SHVNAMA/SHVNAML adlen describes the name of
the variable to be dropped. SHVV ALA/SHVV ALL are not used. The
name is validated to ensure that it does not contain invalid characters, and
the variable is then dropped, if it exists. If the name given is a stem, all
variables starting with that stem are dropped.

N Fetch Next variable. This function may be used to search through all the
variables known to the language processor (that is , all those of the
current generation, excluding those "hidden" by PROCEDURE
instructions). The order in which the variables are revealed is not
specified.

The language processor maintains a pointer to its list of variables: this is
reset to point to the first variable in the list whenever 1) a host command
is issued, or 2) any function other than "N" is executed via the
EXECCOMM interface.

Whenever an N (Next) function is executed the name and value of the
next variable available are copied to two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to be
copied, and SHVBUFL contains the length of that buffer. The total
length of the name is put into SHVNAML, and if the name was truncated
(because the buffer was not big enough) the SHVTRUNC bit is set. If the
name is shorter than the length of the buffer, no padding takes place. The
value of the variable is copied to the users buffer area using exactly the
same protocol as for the Fetch operation.

If SHVRET has SHVL V AR set, the end of the list of known variables has
been found, the internal pointers have been reset, and no valid data has
been copied to the user buffers. If SHVTRUNC is set, either the name or
the value has been truncated.

By repeatedly executing the N function (until the SHYLY AR flag is set) a
user program may locate all the REXX variables of the current
generation.

P Fetch private information. This interface is identical to the F fetch
interface, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name), and the following names are
recognized:

ARG Fetch primary argument string. The first argument string
that would be parsed by the ARG instruction is copied to
the user's buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 51, is copied to the user's buffer.

VERSION Fetch version string. The version string, as described for
PARSE VERSION on page 52, is copied to the user's
buffer.

150 VMjSP System Product Interpreter Reference

System Interfaces

Notes:

1. Only the S (Set) and F (Fetch) functions are supported by EXEC 2. Other
requests will be rejected.

2. The interface is only enabled during the execution of commands (including CMS
subcommands) and external routines (functions and subroutines). An attempt to
call the EXECCOMM entry point asynchronously will result in a return code of
-1 (Invalid entry conditions).

3. While the EXECCOMM request is being serviced, interrupts will be enabled for
most of the time.

Using Routines from the Callable Service Library
When REXX calls another program that is written in REXX or another
programming language (Assembler, OSjVS COBOL, VS FORTRAN, VS Pascal,
PLjI, C), that program can access and manipulate the current generation of REXX
variables by using routines that reside in VMjSP's supplied callable services library.
The following list describes these CSL routines:

• DMSCDR-causes REXX to drop a REXX variable or group of variables.

• DMSCGR-gets the value of a variable known to an active REXX procedure.

• DMSCGS-gets special REXX values.

• DMSCGX-gets the names and values of all variable known to an active REXX
procedure one at a time.

• DMSCSR-sets the value of a variable for an active REXX procedure.

These CSL routines use the EXECCOMM interface described earlier in this section.
You can refer to the VMjSP Application Development Reference for eMS for more
information about coding these CSL routines.

Example:

The following example shows a REXX exec named TEST invoking a VS
FORTRAN program named GETNXT. Once invoked, GETNXT calls the CSL
routine DMSCGX to get the value of all the REXX variables from the TEST EXEC
and then displays those values.

REXX EXEC-TEST

/* This is a sample REXX exec that sets some variables and
then invokes a FORTRAN program called GETNXT */

A = 12
B.1 = 0.5
C = 3.5E6
D. =-2
0.1 = 5
0.2 =-4
E = '123456789ABCDEF'
LAST_GET_NEXT_VAR = 'CHAR STRING'
'LOAD GETNXT'
'START'

Chapter 7. System Interfaces 151

System Interfaces

VS FORTRAN Program-GETNXT

C This is the VS FORTRAN program GETNXT to get the values of all
C REXX variables from the TEST EXEC, store them in an array,
C and then display the variables with their values.
C GETNXT calls the CSL routine "DMSCGX" to get the values.
C

PROGRAM GETNXT
C
C DMSCSL - external interface routine to call csl routine

EXTERNAL DMSCSL
C
C Declare all parameters for the CSL call.
C This accommodates 20 variables with names + values up to 25 characters

INTEGER RTCODE,VARLEN,BUFLEN,ACVLEN,ACBLEN
CHARACTER*25 VARNAM(20)
CHARACTER*25 BUFFER(20)

C
C Input length of buffer and variable length for all variables

BUFLEN = 25
VARLEN = 25

C
C Initialize the return code

RTCODE = 0
J = 20

C
C Keep getting the next variable until they are all depleted
C (RC=206) or until you get 20 variables.

DO 10 I = 1, J
C
C Initialize the next variable and value

VARNAM(I) I I

BUFFER(I) = • •
C
C Make the call to I DMSCGX I

CALL DMSCSL('DMSCGX ',RTCODE,VARNAM(I),VARLEN,BUFFER(I),
1 BUFLEN,ACVLEN,ACBLEN)

C
C Display results

IF (RTCODE .EQ. 206) THEN
WRITE (6,31) I RTCODE = ',RTCODE
GO TO 40
END IF

WRITE (6,30) I I, VARNAM(I), I = • ,BUFFER(I)
10 CONTINUE
40 CONTINUE
30 FORMAT (A1,A25,A3,A25)
31 FORMAT (A10, 14)

END

152 VMjSP System Product Interpreter Reference

System Interfaces

Output from the Program:

After executing the TEST EXEC, here is what would be displayed at your terminal:

Chapter 7. System Interfaces 153

System Interfaces

154 VMjSP System Product Interpreter Reference

Debug Aids

Chapter 8. Debug Aids

In addition to the TRACE instruction, described on page 65, there are the following
debug aids.

• The interactive debug facility

• The CMS immediate commands:

HI Halt Interpretation
TS Trace Start
TE Trace End

• The CMS HELP command.

Interactive Debugging of Programs
The debug facility permits interactively controlled execution of a program.

Changing the TRACE action to one with a prefix? (for example, TRACE ?A or the
TRACE built-in function) turns on interactive debug and indicates to the user that
interactive debug is active. Further TRACE instructions in the program are ignored,
and the language processor pauses after nearly all instructions that are traced at the
console (see below for the exceptions). When the language processor pauses,
indicated by a VM READ or unlocking of the keyboard, three debug actions are
available:

1. Entering a null line (no blanks even) makes the language processor continue
execution until the next pause for debug input. Repeatedly entering a null line,
therefore, steps from pause point to pause point. For TRACE ?A, for example,
this is equivalent to single-stepping through the program.

2. Entering an equal sign (=) with no blanks makes the language processor
re-execute the clause last traced. For example: if an IF clause is about to take
the wrong branch, you can change the value of the variable(s) on which it
depends, and then re-execute it.

Once the clause has been re-executed, the language processor pauses again.

3. Anything else entered is treated as a line of one or more clauses, and processed
immediately (that is, as though DO; 1 ine ; END; had been inserted in the
program). The same rules apply as in the INTERPRET instruction (for
example, DO-END constructs must be complete). If an instruction has a syntax
error in it, a standard message is displayed and you are prompted for input
again. Similarly all the other SIGNAL conditions are disabled while the string
is processed to prevent unintentional transfer of control.

During execution of the string, no tracing takes place, except that nonzero
return codes from host commands are displayed. Host commands are always
executed (that is, are not affected by the prefix! on TRACE instructions), but
the variable RC is not set.

Once the string has been processed, the language processor pauses again for
further debug input unless a TRACE instruction was entered. In this latter case,
the language processor immediately alters the tracing action (if necessary) and
then continues executing until the next pause point (if any). Hence to alter the
tracing action (from All to Results for example) and then re-execute the
instruction, you must use the built-in function TRACE (see page 99). For

Chapter 8. Debug Aids 155

Debug Aids

example, CALL TRACE I changes the trace action to "I" and allows re-execution of
the statement after which the pause was made. Interactive debug is turned off
when it is in effect, if a TRACE instruction uses a prefix, or at any time, when a
TRACE 0 or TRACE with no options is entered.

The numeric fonn of the TRACE instruction may be used to allow sections of
the program to be executed without pause for debug input. TRACE n (that is,
positive result) allows execution to continue, skipping the next n pauses (when
interactive debug is or becomes active). TRACE -n (that is, negative result)
allows execution to continue without pause and with tracing inhibited for n
clauses that would otherwise be traced.

The trace action selected by a TRACE instruction is saved and restored across
subroutine calls. This means that if you are stepping through a program (say after
using TRACE ?R to trace Results) and then enter a subroutine in which you have no
interest, you can enter TRACE 0 to turn tracing off. No further instructions in the
subroutine are traced, but on return to the caller, tracing is restored.

Similarly, if you are interested only in a subroutine, you can put a TRACE ?R
instruction at its start. Having traced the routine, the original status of tracing is
restored and hence (if tracing was off on entry to the subroutine) tracing (and
interactive debug) is turned off until the next entry to the subroutine.

Tracing may be switched on (without requiring modification to a program) by using
the command SET EXECTRAC ON. Tracing may be also turned on or off
asynchronously, (that is, while a program is running) by using the TS and TE
immediate commands. See page 157 for the description of these facilities.

Since any instructions may be executed in interactive debug you have considerable
control over execution.

Some examples:

Say expr /* displays the result of evaluating the */

name=expr

Trace 0

Trace ?A

Trace L

exit

/* expression. */

/* alters the value of a variable.

/* (or Trace with no options) turns off
/* interactive debug and all tracing.

/* turns off interactive debug but continue
/* tracing all clauses.

*/

*/
*/

*/
*/

/* makes the language processor pause at labels */
/* only. This is similar to the traditional */
/* "breakpoint" function, except that you */
/* don't have to know the exact name and */
/* spelling of the labels in the program. */

/* terminates execution of the program. */

Do i=l to 10 /* displays ten elements of the array stem. */
say stem. i
end

156 VM/SP System Product Interpreter Reference

Debug Aids

Exceptions: Some clauses cannot safely be re-executed, and therefore the language
processor does not pause after them, even if they are traced. These are:

• Any repetitive DO clause, on the second or subsequent time around the loop.

• All END clauses (not a useful place to pause in any case).

• All THEN, ELSE, OTHERWISE, or null clauses.

• All RETURN and EXIT clauses.

• All SIGNAL and CALL clauses (the language processor pauses after the target
label has been traced).

• Any clause that causes a syntax error. (These may be trapped by SIGNAL ON
SYNT AX, but cannot be re-executed.)

Interrupting Execution and Controlling Tracing
The language processor may be interrupted during execution in several ways:

• The HI (Halt Interpretation) immediate command may be used to cause all
currently executing REXX programs to terminate, as though there has been a
syntax error. This is especially useful when an editor macro gets into a loop,
and it is desirable to halt it without destroying the whole environment (as HX
would do). When a HI interrupt causes a REXX program to terminate, the
program stack is cleared. A HI interrupt may be trapped by using SIGNAL ON
HALT, described on page 61.

• The TS (Trace Start) immediate command turns on the external tracing bit. If
the bit is not already on, TS puts the program into normal interactive debug and
you can then execute REXX instructions etc. as normal (for example, to display
variables, EXIT, etc.). This too is useful when you suspect that a REXX
program is looping - TS may be entered, and the program can be inspected and
stepped before a decision is made whether to allow the program to continue or
not.

• The TE (Trace End) immediate command turns off the external tracing bit. If it
is not already off, this has the effect of executing a TRACE 0 instruction. This
can be useful to stop tracing when not in interactive debug (as when tracing was
started by issuing SET EXECTRAC ON and interactive debug was subsequently
terminated by issuing TRACE 7).

The System External Trace Bit

Before each clause is executed, an external trace bit, owned by CMS is inspected.
The user may turn the bit on by the TS immediate command, and turn it off by the
TE immediate command. The user may also alter the bit by using the SET
EXECTRAC command (see below). This bit is never altered by CMS itself, except
tha tit is cleared on return to CM S command level.

The language processor maintains an internal "shadow" of the external bit, which
therefore allows it to detect when the external bit changes from a 0 to a 1, or
vice-versa. If the language processor sees the bit change from 0 to 1, ? (interactive
debug) is forced on and the tracing action is forced to R if it is A, C, E, F, L, N, or
O. The tracing action is left unchanged if it is I, R, or S.

Chapter 8. Debug Aids 157

Debug Aids

Help

Similarly, if the shadow bit is seen to change from 1 to 0, all tracing is forced off.
This means that tracing may be controlled externally to the REXX program:
interactive debug can be switched on at any time without making any modifications
to the program. The TE command can be useful if a program is tracing clauses
without being in interactive debug (that is, after SET EXECTRAC ON, TRACE ? was
issued). TE may be used to switch off the tracing without affecting any other output
from the program.

If the external bit is on upon entry to a REXX program, the SOURCE string is
traced (see page 51) and interactive debug is switched on as normal -- hence with use
of the system trace bit, tracing of a program and all programs called from it, can be
easily controlled.

The internal "shadow" bit is saved and restored across internal routine calls. This
means that (as with internally controlled tracing) it is possible to turn tracing on or
off locally within a subroutine. It also means that if a TS interrupt occurs during
execution of a subroutine, tracing will also be switched on upon RETURN to the
caller. .

The CMSFLAG(EXECTRAC) function and the command QUERY EXECTRAC
may be used to test the setting of the system trace bit.

The command SET EXECTRAC ON turns on the trace bit. Using it before
invoking a REXX program causes the program to be entered with debug tracing
immediately active. If issued from inside a program, SET EXECTRAC ON has the
same effect as TRACE ?R (unless TRACE I or S is in effect), but is more global in
that all programs called are traced, too. The command SET EXECTRAC OFF
turns the trace bit off. Issuing this when the bit is on is equivalent to the instruction
TRACE 0, except that it has a system (global) effect.

Note: SET EXECTRAC OFF turns off the system trace bit at any time; for
example, if it has been set by a TS immediate command issued while not in a REXX
program.

The CMS command HELP REXX MENU displays a menu. You can then display
the description of any REXX instruction, REXX built-in function, or RXSYSFN
function from this menu.

Alternatively, any of these may be displayed directly by using:

~HELP REXX-.....,------------,.-----... ~ 4

L--instruction-name~
Lfunction-name~

158 VM/SP System Product Interpreter Reference

Keywords and Variables

Chapter 9. Reserved Keywords and Special Variables

Keywords may be used as ordinary symbols in many situations where there is no
ambiguity. The precise rules are given here.

There are three special variables: RC, RESULT and SIGL.

Reserved Keywords
The free syntax of REXX implies that some symbols are reserved for use by the
language processor in certain contexts.

Within particular instructions, some symbols may be reserved to separate the parts
of the instruction. These symbols are referred to as keywords. Examples of REXX
keywords are the WHILE in a DO instruction, and the THEN (which acts as a
clause terminator in this case) following an IF or WHEN clause.

Apart from these cases, only simple symbols that are the first token in a clause and
that are not followed by an "=" or ":" are checked to see if they are instruction
keywords; the symbols may be freely used elsewhere in clauses without being taken
to be keywords.

It is not, however, recommended for users to execute host commands or
subcommands with the same name as REXX keywords (QUEUE, for example).
This can create problems for any programmer whose REXX programs might be used
for some time and in circumstances outside his or her control, and who wishes to
make the program absolutely "watertight."

In this case, a REXX program may be written with (at least) the first words in
command lines enclosed in quotes.

Example:

'ERASE' Fn Ft Fm

This also has an advantage in that it is more efficient; and with this style, the
SIGNAL ON NOVALUE condition may be used to check the integrity of an exec.

An alternative strategy is to precede such command strings with two adjacent quotes,
which will have the effect of concatenating the null string on to the front.

Example:

"Erase Fn Ft Fm

A third option is to enclose the entire expression (or the first symbol) in parentheses.

Example:

(Erase Fn Ft Fm)

More important, the choice of strategy (if it is to be done at all) is a personal one by
the programmer. It is not imposed by the REXX language.

Chapter 9. Reserved Keywords and Special Variables 159

Keywords and Variables

Special Variables
There are three special variables that may be set automatically by the language
processor:

RC is set to the return code from any executed host command (or
subcommand). Following the SIGNAL events, SYNTAX, ERROR, and
FAILURE, RC is set to the code appropriate to the event: the syntax
error number (see appendix on error messages, page 165) or the
command return code. RC is unchanged following a NOV AL UE or
HALT event.

Note: Host commands executed manually from debug mode do not
cause the value of RC to change.

RESULT is set by a RETURN instruction in a subroutine that has been CALLed
if the RETURN instruction specifies an expression. If the RETURN
instruction has no expression on it, RESULT is dropped (becomes
unini tialized.)

SIGL contains the line number of the clause currently executing when the last
transfer of control to a label took place. (This could be caused by a
SIGNAL, a CALL, an internal function invocation, or a trapped error
condition.)

None of these variables has an initial value. They may be altered by the user, just
like any other variable, and they may be accessed, via the "Direct Interface to
Current Variables" on page 147. The PROCEDURE and DROP instructions also
affect these variables in the usual way.

Certain other information is always available to a REXX program. This includes
the name by which the program was invoked and the source of the program (which
is available using the PARSE SOURCE instruction, see page 51). The latter consists
of the string CMS followed by the call type and then the filename, filetype, and
filemode of the file being executed. These are followed by the name by which the
program was invoked and the initial (default) command environment.

In addition, PARSE VERSION (see page 52) makes available the version and date
of the language processor code that is running. The built-in functions TRACE and
ADDRESS return the current trace setting and environment name respectively.

Finally, the current settings of the NUMERIC function can be obtained using the
DIGITS, FORM, and FUZZ built-in functions.

160 VMjSP System Product Interpreter Reference

CMS Commands

Chapter 10. Some Useful CMS Commands

There are a number of CMS commands that can be especially useful to REXX
programmers. Some can access and change REXX variables.

DROPBUF

EXECDROP

EXECIO

EXEC LOAD

EXECMAP

EXECOS

EXECSTAT

EXECUPDT

GLOBALV

IDENTIFY

LISTFILE

Eliminates only the most recently created program stack buffer or a
specified program stack buffer and all the buffers created after it.

Purges storage-resident EXECs.

Reads and writes CMS files. Issues CP commands, placing the
output that would normally appear on the screen in the program
stack. Reads from the virtual reader. Writes to the virtual printer
and virtual punch.

Loads an exec or System Product Editor macro into storage and
prepares it for execution.

Lists storage-resident execs.

Cleans up after OS, VSAM and Vector programs, and should be
used if more than one OS or VSAM program is called between
returns to CMS command level.

Provides the status of a specified exec.

An extension to the UPDATE command, EXECUPDT modifies a
REXX program file with one or more update files. The input files
must have fixed length, 80-column records. The result is an
executable, V-format program file.

Saves exec data (variables) from one invocation to the next.

Displays or stacks userid, nodeid, rscsid, date, time, time zone, and
day of the week.

Lists information about CMS files in accessed directories and on
accessed minidisks.

MAKEBUF Creates a new buffer within the program stack.

NUCXLOAD Installs specific types of modules as nucleus extensions.

NUCXMAP Displays or stacks information about currently defined nucleus
extensions.

PARSECMD Parses and translates an exec's arguments.

PROGMAP Displays or stacks information about programs currently in
storage.

QUERY See SET below. (See also the CMSFLAG function.)

SEGMENT Manages saved storage by: reserving CMS storage for a saved
segment that will reside within a virtual machine, loading or
purging a saved segment, or releasing storage previously reserved
for a saved segment.

SET ABBREV, IMPEX, IMPCP, INSTSEG modify the search order;
CMSTYPE controls output to the screen (including output
generated by the SAY instruction); EXECTRAC controls tracing.

Chapter 10. Some Useful CMS Commands 161

CMS Commands

XEDIT

XMITMSG

When used as an Editor, additional subcommands (macros) may be
written inREXX. XEDIT may also be used to write and read
menus (full screen displays). In both applications, XEDIT
variables may be assigned to REXX variables using the EXTRACT
subcommand of XEDIT.

Retrieves messages from a repository file. These messages can then
be displayed.

For more details on these CMS commands, refer to the VM/SP eMS Command
Reference.

162 VM/SP System Product Interpreter Reference

Chapter 11. Invoking Communications Routines

Usage Notes

You can use the ADDRESS CPICOMM statement in your REXX program to call
program-to-program communications routines. These communications routines
must be part of Common Programming Interface (CPI) Communications, which is
defined in IBM's Systems Application Architecture.

CPI Communications routines are described in the SAA Common Programming
Interface Communications Reference.

In VM/SP, all communications routines are stored in the supplied callable services
library, named VMLIB.

Here is the format to use when calling a CPI communications routine from a REXX
program:

~ADDRESS CPICOMM 'rtnname~ retcode'

lLparnJJ

rtnname
is the name of the CPI-Communications routine to be called.

parm
is the name of one or more parameters to be passed to the CPI-Communications
routine. The number and type of these parameters are routine-dependent. A
parameter being passed must be the name of a variable.

ADDRESS CPICOMM uses the EXECCOMM interface to build a
properly-formatted parameter list before completing the call to the routine.

retcode
is the name of a variable to receive the return code from the
CPI-Communications routine. The value returned in this variable will always be
greater than or equal to zero. Return codes are documented for individual
CPI-Communications routines in the SAA Common Programming Interface
Communications Reference.

1. Do not use ADDRESS CPICOMM to call other routines that are part of
VM/SP's supplied callable services library. Instead, use the CSL function (see
"CSL" on page 106).

2. Only character string and signed binary data can be passed to a
CPI-Communications routine. If a routine's parameter is defined as a signed
binary number, the ADDRESS CPICOMM function makes the necessary
translations to and from the routine. However, ADDRESS CPICOMM cannot
translate a number in exponential notation to signed binary. Use the
NUMERIC instruction to ensure that exponential notation is not used.

3. When a CPI-Communications routine returns data in a buffer variable, the data
will be left-justified and may have trailing blanks. You can use the STRIP
function of REXX to extract data from the buffer.

Chapter 11. Invoking Communications Routines 163

Return Codes

4. See the VMjSP Connectivity Programming Guide and Reference, which contains
scenarios and examples for using ADDRESS CPICOMM in a VMjSP
environment.

The list below shows the possible return codes from ADDRESS CPICOMM. The
return code values will be in the REXX variable RC.

o Routine was executed and control returned to the REXX exec
-7 Routine was not loaded in a callable services library
-8 Routine was dropped from a callable services library
-9 Insufficient storage was available
-10 More parameters than allowed were specified
-11 Fewer parameters than required were specified
-20 Invalid call
-22 Invalid REXX argument
-23 Subpool create failure
-24 REXX fetch failure
-25 REXX set failure
-26nnn Incorrect data length for parameter number nnn
-27nnn Invalid data type for parameter number nnn.
-28nnn Invalid variable name for parameter number nnn.

(For the last three return codes, note that parameters are numbered serially,
corresponding to the order in which they are coded. rtnname is always parameter
number 001, the next parameter is 002, etc.)

The retcode parameter contains the return code from the called communication
routine, and its value will be greater than or equal to zero. However, if the REXX
variable, RC, contains a nonzero value, any value in retcode is meaningless.

164 VMjSP System Product Interpreter Reference

Appendix A. Error Numbers and Messages

The error numbers produced by syntax errors during processing of REXX programs
are all in the range 3-49 (and this is the value placed in the variable RC when
SIGNAL ON SYNTAX event is trapped). The language processor adds 20000 to
these error return codes before leaving an exec in order to provide a different range
of codes than those used by CMS EXEC and EXEC 2. When the language
processor displays an error message, it first sets the CMSTYPE indicator to 'RT',
ensuring that the message will be seen by the user, even if 'HT' was in effect when
the error occurred.

Three of the error messages can be generated by the external interfaces to the
language processor either before the language processor gains control, or after
control has left the language processor. Therefore these errors cannot be trapped by
SIGNAL ON SYNTAX. The error numbers involved are: 3 and 5 (if the initial
requirements for storage could not be met) and 26 (if on exit the returned string
could not be converted to form a va)id return code). Also, Error 4 can be trapped
only by SIGNAL ON HALT.

Note: There are five errors detected by the language processor that cannot be
trapped by SIGNAL ON SYNTAX unless the label SYNTAX appears earlier in the
program than the clause with the error. These errors include: 6, 12, 13, '22, and 30.

The CP command SET EMSG ON causes error messages to be prefixed with a CMS
error code. The full form of the message, including this error code, is given below.
Each message is followed by an explanation giving possible causes for the error. The
same explanation can be obtained from CMS using the following command:

HELP MSG DMSnnnE (where nnn is the eMS error number and error
type is either lEI orlTI)

In addition to the following error messages, the System Product Interpreter issues
this terminal(unrecovera ble) message:

DMSREX255T Insufficient storage for Exec interpreter

Explanation: There is insufficient storage for
the System Product Interpreter to initialize
itself.

System Action: Execution is terminated at the
point of the error.

User Response: Redefine storage and reissue
the command.

DMSREX449E Error 22 running fn ft, line nn: Invalid
character string

Explanation: A character string that has
unmatched SO-SI pairs (that is, an SO without
an SI) or an odd number of bytes between the
SO-SI characters was scanned with OPTIONS
ETMODE in effect.

System Action: Execution stops.

User Response: Correct the invalid character
string in the EXEC file.

DMSREX450E Error 5 running fn ft, line nn: Machine
storage exhausted

Explanation: While attempting to process a
program, the System Product Interpreter was
unable to get the space needed for its work
areas and variables. This may have occurred
because the program (such as the Editor) that
invoked the System Product Interpreter has
already used up most of the available storage
itself, or because a program that issued
NUCXLOAD did not terminate properly, but
instead, went into a loop.

System Action: Execution stops.

User Response: Run the exec or macro on its
own, or check a program issuing NUCXLOAD
for a possible loop that has not terminated
properly. More free storage can be obtained
by releasing a minidisk or SFS directory (to
recover the space used for the file directory) or

Appendix A. Error Numbers and Messages 165

by deleting a nucleus extension. Alternatively,
re-IPL CMS after defining a larger virtual
storage size for the virtual machine.

DMSREX451E Error 3 running In ft: Program is
unreadable

Explanation: The REXX program could not
be read from the minidisk. This problem
almost always occurs only when you are
attempting to execute an exec or program from
someone's minidisk for which you have
Read/Only access, while someone with
Read/Write access to that minidisk has altered
the program so that it no longer exists in the
same place on the minidisk.

System Action: Execution stops.

User Response: Reaccess the minidisk on
which the program (such as, exec) resides.

DMSREX452E Error 4 running In ft, line nn: Program
interrupted

Explanation: The system interrupted execution
of your REXX program. Usually this is due to
your issuing the HI (halt interpretation)
immediate command. Certain utility modules
may force this condition if they detect a
disastrous error condition.

System Action: Execution stops.

User Response: If you issued an HI command,
continue as planned. Otherwise, look for a
problem with a Utility Module called in your
exec or macro.

DMSREX453E Error 6 running fn ft, line nn:
Unmatched" /*" or quote

Explanation: The System Product Interpreter
reached the end of the file (or the end of data
in an INTERPRET statement) without finding
the ending "* /" for a comment or quote for a
literal string.

System Action: Execution stops.

User Response: Edit the exec and add the
closing "* /" or quote. You can also insert a
TRACE SCAN statement at the top of your
program and rerun it. The resulting output
should show where the error exists.

DMSREX454E Error 7 runningfnft, line nn: WHEN or
OTHERWISE expected

Explanation: The System Product Interpreter
expects a series of WHEN s and an
OTHERWISE within a SELECT statement.
This message is issued when any other
instruction is found or if all WHEN
expressions are found to be false and an
OTHERWISE is not present. The error is
often caused by forgetting the DO and END

166 VM/SP System Product Interpreter Reference

instructions around the list of instructions
following a WHEN. For example,

WRONG RIGHT

Select Select
When a=b then When a=b then DO

Say IA equals 81 Say IA
exit exit

Otherwise nop end
end Otherwise

end

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX455E Error 8 running fn ft, line nn:
Unexpected THEN or ELSE

equals 81

nop

Explanation: The System Product Interpreter
has found a THEN or an ELSE that does not
match a corresponding IF clause. This
situation is often caused by using an invalid
DO-END in the THEN part of a complex
IF-THEN-ELSE construction. For example,

WRONG

If a=b then do;
Say EQUALS
exit

else
Say NOT EQUALS

RIGHT

If a=b then do;
Say EQUALS
exit
end

else
Say NOT EQUALS

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX456E Error 9 running fn ft, line nn:
Unexpected WHEN or OTHERWISE

Explanation: The System Product Interpreter
has found a WHEN or OTHERWISE
instruction outside of a SELECT construction.
You may have accidentally enclosed the
instruction in a DO-END construction by
leaving off an END instruction, or you may
have tried to branch to it with a SIGNAL
statement (which cannot work because the
SELECT is then terminated).

System Action: Execution stops.

User Response: Make the necessary
correction.

DMSREX457E Error 10 runningfn ft, line nn:
Unexpected or unmatched END

Explanation: The System Product Interpreter
has found more ENDs in your program than
DOs or SELECTs, or the ENDs were placed so
that they did not match the DOs or SELECTs.

This message can be caused if you try to signal

into the middle of a loop. In this case, the
END will be unexpected because the previous
DO will not have been executed. Remember
also, that SIGNAL terminates any current
loops, so it can not be used to jump from one
place inside a loop to another.

This message can also be caused if you place
an END immediately after a THEN or ELSE
construction.

System Action: Execution stops.

User Response: Make the necessary
corrections. It may be helpful to use "TRACE
Scan" to show the structure of the program
and make it more obvious where the error is.
Putting the name of the control variable on
ENDs that close repetitive loops can also help
locate this kind of error.

DMSREX458E Error 11 running fn ft, line nn: Control
stack full

Explanation: This message is issued if you
exceed the limit of 250 levels of nesting of
control structures (DO-END, IF-THEN-ELSE,
etc.).

This message could be caused by a looping
INTERPRET instruction, such as:

line='INTERPRET line '
INTERPRET line

These lines would loop until they exceeded the
nesting level limit and this message would be
issued. Similarly, a recursive subroutine that
does not terminate correctly could loop until it
causes this message.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX459E Error 12 running fn ft, line nn: Clause
> 500 characters

Explanation: You have exceeded the limit of
500 characters for the length of the internal
representation of a clause.

If the cause of this message is not obvious to
you, it may be due to a missing quote, that has
caused a number of lines to be included in one
long string. In this case, the error probably
occurred at the start of the data included in the
clause traceback (flagged by + + + on the
console).

The internal representation of a clause does not
include comments or multiple blanks that are
outside of strings. Note also that any symbol
(name) gains two characters in length in the
internal representation.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX460E Error 13 running fn ft, line nn:
Invalid character in data

Explanation: The System Product Interpreter
found an invalid character outside of a literal
(quoted) string. Valid characters are:

A-Z a-z 0-9 (Alphamerics)

@ # $ ¢ . ? (Name Characters)

& * () - + = \ ~ I " ; : < , > / (Special Characters

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX461E Error 14 runningfnft, line nn:
Incomplete DO ISELECT /IF

Explanation: The System Product Interpreter
has reached the end of the file (or end of data
for an INTERPRET instruction) and has found
that there is a DO or SELECT without a
matching END, or an IF that is not followed
by a THEN clause.

System Action: Execution stops.

User Response: Make the necessary
corrections. You can use "TRACE Scan" to
show the structure of the program, thereby
making it easier to find where the missing
END or THEN should be. Putting the name
of the control variable on ENDs that close
repetitive loops can also help locate this kind
of error.

DMSREX462E Error 15 runningfnft, line nn:
Invalid hex constant

Explanation: For the System Product
Interpreter, hexadecimal constants can not
have leading or trailing blanks and can have
imbedded blanks at byte boundaries only.

The following are all valid hexadecimal
constants:

'13 l x
'A3C2 lc34 1 x
'lde8 l x

You may have mistyped one of the digits, for
example typing a letter 0 instead of a O. This
message can also be caused if you follow a
string by the I-character symbol X (the name of
the variable X), when the string is not intended
to be taken as a hexadecimal specification. In
this case, use the explicit concatenation
operator (II) to concatenate the string to the
value of the symbol.

System Action: Execution stops.

Appendix A. Error Numbers and Messages 167

User Response: Make the necessary
corrections.

DMSREX463E Error 16 running In It, line nn: Label
not found

Explanation: The System Product Interpreter
could not find the label specified by a SIGNAL
instruction or a label matching an enabled
condition when the corresponding (trapped)
event occurred. You may have mistyped the
label or forgotten to include it.

System Action: Execution stops. The name of
the missing label is included in the error
traceback.

User Response: Make the necessary
corrections.

DMSREX464E Error 21 running In It, line nn: Invalid
data on end of clause

Explanation: You have followed a clause, such
as SELECT or NOP, by some data other than
a comment.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX465E Error 17 running In It, line nn:
Unexpected PROCEDURE

Explanation: The System Product Interpreter
encountered a PROCEDURE instruction in an
invalid position. This could occur because no
internal routines are active, because a
PROCEDURE instruction has already been
encountered in the internal routine, or because
the PROCEDURE instruction was not the first
instruction executed after the CALL or
function invocation. This error can. be caused
by "dropping through" to an internal routine,
rather than invoking it with a CALL or a
function call.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX466E Error 26 running In It, line nn:
Invalid whole number

Explanation: The System Product Interpreter
found an expression in the NUMERIC
instruction, a parsing positional pattern, or the
right hand term of the exponentiation (**)
operator that did not evaluate to a whole
number, or was greater than the limit, for these
uses, of 999 999 999.

This message can also be issued if the return
code passed back from an EXIT or RETURN
instruction (when a REXX program is called as

168 VM/SP System Product Interpreter Reference

a command) is not a whole number or will not
fit in a System/370 register. This error may be
due to mistyping the name of a symbol so that
it is not the name of a variable in the
expression on any of these statements. This
might be true, for example, if you entered
"EXIT CR" instead of "EXIT RC."

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX467E Error 27 running In It, line nn: Invalid
DO syntax

Explanation: The System Product Interpreter
found a syntax error in the DO instruction.
You might have used BY or TO twice, or used
BY, TO, or FOR when you didn't specify a
control variable.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX468E Error 30 running In It, line nn: Name or
string > 250 characters

Explanation: The System Product Interpreter
found a variable or a literal (quoted) string that
is longer than the limit.

The limit for names is 250 characters, following
any substitutions. A possible cause of this
error is the use of a period (.) in a name,
causing an unexpected substitution.

The limit for a literal string is 250 characters.
This error can be caused by leaving off an
ending quote (or putting a single quote in a
string) because several clauses can be included
in the string. For example, the string I don I t I

should be written as I don I I t I or \I don I t \I •

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX469E Error 31 running In It, line nn: Name
starts with numeric or "."

Explanation: The System Product Interpreter
found a symbol whose name begins with a
numeric digit or a period (.). The REXX
language rules do not allow you to assign a
value to a symbol whose name begins with a
numeric digit or a period, because you could
then redefine numeric constants which would
be catastrophic.

System Action: Execution stops.

User Response: Rename the variable correctly.
It is best to start a variable name with an

alphabetic character, but some other characters
are allowed.

DMSREX470E Error 34 running In It, line nn: Logical
value not 0 or 1

Explanation: The System Product Interpreter
found an expression in an IF, WHEN, DO
WHILE, or DO UNTIL phrase that did not
result in a 0 or 1. Any value operated on by a
logical operator (-., \, /, &, or &&) must result
in a 0 or 1. For example, the phrase "If result
then exit rc" will fail if Result has a value
other than 0 or 1. Thus, the phrase would be
better written as If result-.=0 then exit rc

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX471E Error 35 running In It, line nn: Invalid
expression

Explanation: The System Product Interpreter
found a grammatical error in an expression.
You might have ended an expression with an
operator, or had two adjacent operators with
no data in between, or included special
characters (such as operators) in an intended
character expression without enclosing them in
quotes. For example LISTFILE * * * should
be written as LI STFI LE 1 * * * 1 (if LISTFILE
is not a variable) or even as 1 LISTFILE

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX472E Error 36 running In ft, line nn:
Unmatched "(" in expression

* * *1

Explanation: The System Product Interpreter
found an unmatched parenthesis within an
expression. You will get this message if you
include a single parenthesis in a command
without enclosing it in quotes. For example,
COPY ABC A B D (REP should be written
as COpy ABC A B D '('REP.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX473E Error 37 running fn It, line nn:
Unexpected" ," or ")"

Explanation: The System Product Interpreter
found a comma (,) outside a routine invocation
or too many right parentheses in an expression.
You will get this message if you include a
comma in a character expression without
enclosing it in quotes. For example, the
instruction:

Say Enter A, B, or C

should be written as:

Say 1 Enter A, B, or C1

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX474E Error 39 runningfnft, line nn:
Evaluation stack overflow

Explanation: The System Product Interpreter
was not able to evaluate the expression because
it is too complex (many nested parentheses,
functions, etc.).

System Action: Execution stops.

User Response: Break up the expressions by
assigning sub-expressions to temporary
variables.

DMSREX475E Error 40 running fn ft, line nn: Incorrect
call to routine

Explanation: The System Product Interpreter
encountered an incorrectly used call to a
built-in or external routine. Some possible
causes are:

• You passed invalid data (arguments) to the
routine. This is the most common possible
cause and is dependent on the actual
routine. If a routine returns a non zero
return code, the System Product
Interpreter issues this message and passes
back its return code of 20040.

• The module invoked was not compatible
with the System Product Interpreter.

If you were not trying to invoke a routine, you
may have a symbol or a string adjacent to a
"(" when you meant it to be separated by a
space or an operator. This causes it to be seen
as a function call. For example, TIME(4+ 5)
should probably be written as TIME* (4+5).

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX476E Error 41 running In It, line nn: Bad
arithmetic conversion

Explanation: The System Product Interpreter
found a term in an arithmetic expression that
was not a valid number or that had an
exponent outside the allowed range of -999 999
999 to + 999 999 999.

You may have mistyped a variable name, or
included an arithmetic operator in a character
expression without putting it in quotes. For

Appendix A. Error Numbers and Messages 169

example, the command MSG * Hi! should be
written as I MSG * Hi! I, otherwise the System
Product Interpreter will try to multiply "MSG"
by "Hi!."

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX477E Error 42 running In It, line nn:
Arithmetic overflow Junderflow

Explanation: The System Product Interpreter
encountered a result of an arithmetic operation
that required an exponent greater than the
limit of 9 digits (more than 999 999 999 or less
than -999 999 999).

This error can occur during evaluation of an
expression (often as a result of trying to divide
a number by 0), or during the stepping of a
DO loop control variable.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX478E Error 43 running In It, line nn: Routine
not found

Explanation: The System Product Interpreter
was unable to find a routine called in your
program. You invoked a function within an
expression, or in a subroutine invoked by
CALL, but the specified label is not in the
program, or is not the name of a built-in
function, and CMS is unable to locate it
externally.

The simplest, and probably most common,
cause of this error is mistyping the name.
Another possibility may be that one of the
standard function packages is not available.

If you were not trying to invoke a routine, you
may have put a symbol or string adjacent to a
"(" when you meant it to be separated by a
space or operator. The System Product
Interpreter would see that as a function
invocation. For example, the string 3(4+ 5)
should be written as 3* (4+5).

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX479E Error 44 running In It, line nn: Function
did not return data

Explanation: The System Product Interpreter
invoked an external routine within an
expression. The routine seemed to end without
error, but it did not return data for use in the
expression.

170 VM/SP System Product Interpreter Reference

This may be due to specifying the name of a
CMS module that is not intended for use as a
System Product Interpreter function. It should
be called as a command or subroutine.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX480E Error 45 running In It, line nn: No data
specified on function RETURN

Explanation: A REXX program has been
called as a function, but an attempt is being
made to return (by a RETURN; instruction)
without passing back any data. Similarly, an
internal routine, called as a function, must end
with a RETURN statement specifying an
expression.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX481E Error 49 running In It, line nn:
Interpreter failure

Explanation: The System Product Interpreter
carries ou~ numerous internal self-consistency
checks. It issues this message if it encounters a
severe error.

System Action: Execution stops.

User Response: Report any occurrence of this
message to your IBM representative.

DMSREX482E Error 19 running In It, line nn: String or
symbol expected

Explanation: The System Product Interpreter
expected a symbol following the keywords
CALL, SIGNAL, SIGNAL ON, or SIGNAL
OFF but none was found. You may have
omitted the string or symbol, or you may have
inserted a special character (such as a
parenthesis) in it.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX483E Error 20 running In It, line nn: Symbol
expected

Explanation: The System Product Interpreter
either expected a symbol following the END,
ITERATE, LEAVE, NUMERIC, PARSE, or
PROCEDURE keywords or expected a list of
symbols following the DROP, UPPER, or
PROCEDURE (with EXPOSE option)
keywords. Either there was no symbol when
one was required or some other characters
were found.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX484E Error 24 running In It, line nn: Invalid
TRACE request

Explanation: The System Product Interpreter
issues this message when:

• The action specified on a TRACE
instruction~ or the argument to the built-in
function~ starts with a letter that does not
match one of the valid alphabetic character
options. The valid options are A~ C~ E~ F ~
I~ L~ N~ O~ R~ or S~ or

• An attempt is made to request "TRACE
Scan" when inside any control construction
or while in interactive debug.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX485E Error 25 running In It, line nn: Invalid
subkeyword found

Explanation: The System Product Interpreter
expected a particular sub keyword at this
position in an instruction and something else
was found. For example, the NUMERIC
instruction must be followed by the
subkeyword DIGITS, FUZZ, or FORM. If
NUMERIC is followed by anything else, this
message is issued.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX486E Error 28 running In It, line nn: Invalid
LEAVE or ITERATE

Explanation: The System Product Interpreter
encountered an invalid LEAVE or ITERATE
instruction. The instruction was invalid
because:

• No loop is active, or

• The name specified on the instruction does
not match the control variable of any
active loop.

Note that internal routine calls and the
INTERPRET instruction protect DO loops by
making them inactive. Therefore, for example~
a LEAVE instruction in a subroutine cannot
affect a DO loop in the calling routine.

Yon can cause this message to be issued if you
use the SIGNAL instruction to transfer control
within or into a loop. A SIGNAL instruction
terminates all active loops, and any ITERATE

or LEAVE instruction issued then would cause
this message to be issued.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX487E Error 29 running In It, line nn:
Environment name too long

Explanation: The System Product Interpreter
encountered an environment name specified on
an ADDRESS instruction that is longer than
the limit of 8 characters.

System Action: Execution stops.

User Response: Specify the environment name
correctly.

DMSREX488E Error 33 running In It, line nn: Invalid
expression result

Explanation: The System Product Interpreter
encountered an expression result that is invalid
in its particular context. The result may be
invalid because an illegal FUZZ or DIGITS
value was used in a NUMERIC instruction
(FUZZ can not become larger than or equal to
DIGITS).

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX489E Error 38 running In It, line nn: Invalid
template or pattern

Explanation: The System Product Interpreter
found an invalid special character~ for example
%, within a parsing template, or the syntax of
a variable trigger was incorrect (no symbol was
found after a left parenthesis). This message is
also issued if the WITH subkeyword is omitted
in a PARSE VALUE instruction.

System Action: Execution stops.

User Response: Make the necessary
corrections.

DMSREX490E Error 48 running In it, line nn: Failure
in system service

Explanation: The System Product Interpreter
halts execution of the program because some
system service, such as user input or output or
manipulation of the console stack has failed to
work correctly.

System Action: Execution stops.

User Response: Ensure that your input is
correct and that your program is working
correctly. If the problem persists, notify your
system support personnel.

Appendix A. Error Numbers and Messages 171

DMSREX491E Error 18 running fn ft, line nn: THEN
expected

Explanation: All REXX IF and WHEN
clauses must be followed by a THEN clause.
Another clause was found before a THEN
statement was found.

System Action: Execution stops.

User Response: Insert a THEN clause between
the IF or WHEN clause and the following
clause.

DMSREX492E Error 32 running fn ft, line nn: Invalid
use of stem

Explanation: The REXX program attempted
to change the value of a symbol that is a stem.
(A stem is that part of a symbol up to the first
period. You use a stem when you want to
affect all variables beginning with that stem.)
This may be in the UPPER instruction where

172 VM/SP System Product Interpreter Reference

the action in this case is unknown, and
therefore in error.

System Action: Execution stops.

User Response: Change the program so that it
does not attempt to change the value of a stem.

DMSREXl106E Error 23 runningfnft, line nn: Invalid
SBCS/DBCS mixed string.

Explanation: A character string that has
unmatched SO-SI pairs (that is, an SO without
an SI) or an odd number of bytes between the
SO-SI characters was processed with OPTIONS
EXMODE in effect.

System Action: Execution stops.

User Response: Correct the invalid character
string.

Appendix B. Double Byte Character Set (DBCS)

Double-Byte-Character-Sets (DBCS) are used to support languages that have more
characters than can be represented by eight bits (such as Korean Hangeul and
Japanese Kanji). REXX has a full range of DBCS functions and handling
techniques.

These include:

• String handling capabilities with DBCS characters.

• OPTIONS modes that handle DBCS not only as literal strings, but also in data
operations.

• An external function package with functions that deal with DBCS.

• Defined DBCS enhancements to current instructions and functions.

General Description
The following characteristics help define the rules used by DBCS to represent the
extended character set:

• Each D BCS character consists of two bytes

• There are no DBCS control characters

• The codes are wi thin the ranges

1st byte - X '41 ' to X'FE'

2nd byte - X ' 41 ' to X'FE'

The DBCS Blank (X 14040 I) is also a valid DBCS code.

• DBCS alphanumeric/special symbols

A DBCS contains double-byte representation of alphanumeric and special
symbols corresponding to those of Single-Byte-Character-Set (SBCS). The first
byte of a double-byte alphanumeric/special symbol is X 1421 and the second is
the same hex code as the corresponding EBCDIC code.

Here are some examples:

X' 42Cl ' is a double byte A
X' 4281 ' is a double byte a
X' 427D ' is a double byte quote

• No case translation

In general, there is no concept of lowercase and uppercase in DBCS. Later we
will show how the shift-out (SO) and shift-in (SI) characters are used to
distinguish DBCS characters from SBCS characters.

• Notation conventions

Throughout this Appendix, the following notational conventions will be used:

DBCS character -> AA BB CC DD ...
SBCS character
Shift-out (X '0E')
Shift-in (X '0F')

->

->
->

abc d e
<
>

Appendix B. Double Byte Character Set (DBCS) 173

DSCS Enabling Data
The OPTIONS instruction is used to control how REXX regards DBCS data.
DBCS operations are enabled using the EXMODE option. (See the OPTIONS
instruction on page 49 for more information.)

A pure D BCS string consists of only D BCS codes. The SO and SI are used to
bracket the DBCS data and distinguish it from the SBCS data. Since the SO and SI
are only needed in the mixed strings, they are not associated with the pure DBCS
strings.

Pure OBCS string
Mixed string
Mixed string

Mixed String Validation

->
->
->

AABBCC
ab<AABB>
<AABB>

The validation of mixed strings depends on the instruction, operator, or function. If
an invalid mixed string is used in one that does not allow invalid mixed strings under
DBCS enabled mode, it causes a SYNTAX ERROR.

The following rules must be followed for mixed string validation:

• SO and SI must be 'paired' in a string.

• Nesting of SO or SI is not permitted.

• Data between SO and SI must be an even byte length.

These examples show some possible misuses:

I ab<cd I _>
I <AA<BB>CC> ->
I <AABBC> I ->

INVALID - not paired
INVALID - nested
INVALID - odd byte length

When a variable is created/modified/referred in a REXX program under OPTIONS
EXMODE, it is validated whether it contains correct mixed string or not. Even
though a referred variable contains invalid mixed string, it depends on the
instruction/function/operator whether it causes a syntax error.

The ARG, PARSE, PULL, PUSH, QUEUE, SAY, TRACE, and UPPER
instructions all require valid mixed strings with OPTIONS EXMODE in effect.

Instruction Examples
Here are some examples that illustrate how instructions work with DBCS.

174 VM/SP System Product Interpreter Reference

PARSE

PUSH and QUEUE

xl = '<><AABB>< ><EE><FF><>,

PARSE VAR xl wI
wI --> '<><AABB>< ><EE><FF><>,

PARSE VAR xl I wI
wI --> '<><AABB>< ><EE><FF><>,

PARSE VAR xl wI •
wI --> I <AABB> I

The leading and trailing SO and SI are unnecessary for word parsing
and thus they are stripped off. However, one pair is still
needed in order for a valid mixed DBCS to be returned.

PARSE VAR xl • w2
w2 --> ,< ><EE><FF><>I

Here the first blank delimited the word and the SO is added to the
string to insure the DBCS blank and the valid mixed string.

PARSE VAR xl wI w2
wI --> I <AABB> I
w2 --> ,< ><EE><FF><>I

PARSE VAR xl wI w2 •
wI --> I <AABB>,
w2 --> I <EE><FF> I

The word delimiting allows for unnecessary SO and SI to be dropped.

x2 = 'abc<>def <AABB><><CCDD>I

PARSE VAR x2 wI I I w2
wI -->
w2 -->

'abc<>def <AABB><><CCDD>I
II

PARSE VAR x2 wI ,<>, w2
wI -->
w2 -->

'abc<>def <AABB><><CCDD>I
II

PARSE VAR x2 wI ,<><>, w2
wI --> 'abc<>def <AABB><><CCDD>I
w2 --> II

Note that for the last three examples all of I ','<>', and '<><>' are
a null character (a string of length 0). When parsing, the
null character matches the end of string. For this reason,
wI is assigned the value of the entire string
and w2 is assigned the null string.

The PUSH and QUEUE instructions are used for adding entries to the program
stack. Since a stack entry is limited to 255 bytes, the expression must be truncated
less than 256 bytes. If the truncation splits a DBCS string, REXX will insure that
the integrity of the SO-SI pairing will be kept unders OPTIONS EXMODE.

Appendix B. Double Byte Character Set (DBCS) 175

SAY and TRACE

UPPER

The SAY and TRACE instructions are used to display data on the user's terminal.
As was true for the PUSH and QUEUE instructions, REXX will guarantee the
SO-SI pairs are kept for any data that is separated to meet the requirements of the
terminal line size. This is generally 130 bytes or fewer if the DIAG-24 value returns
a smaller value.

When the data is split up in shorter lengths, again the SO and SI integrity is kept
under OPTIONS EXMODE. However, if the terminal line size is less than 4, the
string will be treated as SBCS data, as 4 is the minimum for mixed string data.

Under OPTIONS EXMODE, the UPPER instruction translates only SBCS
characters in contents of one or more variables to uppercase, but it never translates
DBCS characters. If the content of a variable is not valid mixed string data, no
uppercasing will occur.

OBCS Function Handling
Some built-in functions can handle DBCS. The functions that deal with word
delimiting and length determining conform with the following rules under OPTIONS
EXMODE:

1. Counting characters- When counting the length of a string, SO and SI are
considered to be transparent, and not counted, for every string operation.

2. Character extraction from a string- When extracting a DBCS character from a
string, leading SO and trailing SI are not considered as part of one DBCS
character. For instance, 'AA' and 'BB' are extracted from' <AABB >', and SO
and SI are added to each DBCS character when they are finally preserved as
completed DBCS characters. When multiple characters are consecutively
extracted from a string SO and/or SI that are between characters are also.
extracted. For example, 'AA > < BB' is extracted from '< AA > < BB > " and
when the string is finally used as a completed string, the SO will prefix and the
SI will suffix it to give' < AA > < BB > '.

176 VM/SP System Product Interpreter Reference

I
I
I
I

I
I
I
I
I
I
I

~ I

Here are some examples:

Sl = 'abe<>def'

SUBSTR(Sl,3,1)
SUBSTR(Sl,4,1)
SUBSTR(Sl,3,2)

S2 = I <><AABB><>I

-->
-->
-->

SUBSTR(S2,1,1) -->
SUBSTR(S2,2,1) -->
SUBSTR(S2,1,2) -->
SUBSTR(S2,1,3,' x') -->

S3 = I abe<><AABB> I

SUBSTR(S3,3,1) -->
SUBSTR(S3,4,1) -->
SUBSTR(S3,3,2) -->
DELSTR(S3,3,1) -->
DELSTR(S3,4,1) -->
DELSTR(S3,3,2) -->

lei
'd '
'e<>d '

I <AA> I
'<BB>'
I <AABB>I
I <AABB><>xI

lei
I <AA> I
I e<><AA> I
I ab<><AABB> I
I abe<><BB> I
I ab<BB> I

3. Character concatenation- String concatenation can only be done with valid
mixed strings. Adjacent SI/SO or SO/SI which are a result of the string
concatenation are removed. Even during implicit concatenation as in the
DELSTR function, unnecessary SO and/or SI are removed.

4. Character comparison- Valid mixed strings must be used when comparing
strings on a character basis. A DBCS character is always considered greater
than a SBCS if they are compared. In all but the strict comparisons leading
andlor trailing contiguous SO/SI or SI/SO,SBCS blanks, and DBCS blanks are
removed. SBCS blanks may be added if the lengths are not identical.
Contiguous SO/SI and SI/SO between nonblank characters are also removed for
comparison. The strict comparison operators do not cause syntax errors even if
invalid mixed strings are specified.

'AA' I <AA> I --> false
'AA' < I <AA> I --> true

I <AA> I '<AA >1 --> true
I <><><AA> I I <AA><><>I --> true
1<> <AA> I I <AA> I --> true

I <AA><><BB> I = I <AABB>I --> true
label < 'ab< >1 --> false

5. Word extraction from a string- 'Word' means that characters in a string are
delimited by a SBCS or DBCS blank. Leading andlor trailing contiguous SO/SI
and SI/SO are also removed when words are separated in a string, but
contiguous SO/SI and SI/SO in a word are not removed or separated for word
operations. Leading and/or trailing contiguous SO/SI and SI/SO of a word are
not removed if they are among words that are extracted at the same time.

Appendix B. Double Byte Character Set (DBCS) 177

WI = '<>< AA BB><CC 00><>'

SUBWORO(WI,I,I) --> '<AA>'
SUBWORO(WI,I,2) --> '<AA BB><CC>,
SUBWORO(WI,3,1) --> '<~O>'

SUBWORO(Wl,3) --> '<~O>'

W2 = '<AA BB><CC><> <DO>'

SUBWORO(W2,2,1)
SUBWORO(W2,2,2)

-->
-->

'<BB><CC>,
'<BB><CC><> <DO>'

Built-in Function Examples

ABBREV

COMPARE

COPIES

DATATYPE

Examples for current functions, those that support DBCS and follow the rules
defined, are given in this section. For full function descriptions and the syntax
diagrams, refer to Chapter 4, "Functions" on page 71.

ABBREV('<AABBCC>','<AABB>') --> 1
ABBREV('<AABBCC>','<AACC>') --> 0
ABBREV('<AA><BBCC>','<AABB>') --> 1
ABBREV('aa<>bbccdd','aabbcc') --> 1

Applying the 'Character comparison' and 'Character extraction from a string' rules.

COMPARE('<AABBCC>','<AABB><CC>')
COMPARE('ab<>cde','abcdx')
COMPARE('<AA><>','<AA>','<>')

--> 0
--> 5
--> 0

Applying the 'Character concatenation for padding', the 'Character extraction from
a string', and 'Character comparison' rules.

COPIES('<AABB>',2)
COPIES('<AA><BB>',2)
COPIES('<AABB><>',2)

--> '<AABBAABB>'
--> '<AA><BBAA><BB>'
--> '<AABB><AABB><>'

Applying the 'Character concatenation' rule.

OATATYPE('<AABB>') --> 'CHAR'
OATATYPE('<AABB>','O') --> 1
DATATYPE('<AABB>','C') --> 1
OATATYPE('a<AABB>b','O') --> 0
OATATYPE('a<AABB>b','C') --> 1
OATATYPE('abcde','C') --> 0
OATATYPE('<AABB','C') --> 0
Note: If string is invalid mixed string and
"C" or "0" is specified as type, 0 is returned.

178 VM/SP System Product Interpreter. Reference

FIND
FIND('<AA BBCC> abc','<BBCC> abc') --> 2
FIND('<AA BB><CC> abc','<BBCC> abc') --> 2
FIND('<AA BB> abc','<AA> <BB>') --> 1

Applying the 'Word extraction from a string' and 'Character comparison' rules.

INDEX, POS, and LASTPOS
INDEX('<AA><BB><><CCDDEE>','<DDEE>')
POS('<AA>','<AA><BB><><AADDEE>')
LASTPOS('<AA>','<AA><BB><><AADDEE>')

--> 4
--> 1
--> 3

Applying the 'Character extraction from a string' and 'Character comparison' rules.

INSERT and OVERLAY

JUSTIFY

INSERT('a','b<><AABB>',l) --> 'ba<><AABB>'
INSERT('<AABB>','<CCDD><>',2) --> '<CCDDAABB><>,
INSERT('<AABB>','<CCDD><><EE>',2) --> '<CCDDAABB><><EE>,
INSERT('<AABB>','<CCDD><>',3,,'<EE>') --> '<CCDD><EEAABB>,

OVERLAY('<AABB>','<CCDD><>',2)
OVERLAY('<AABB>','<CCDD><><EE>',2)
OVERLAY('<AABB>','<CCDD><><EE>',3)
OVERLAY('<AABB>','<CCDD><>',4,,'<EE>')
OVERLAY('<AA>','<CCDD><EE>',2)

--> '<CCAABB>,
--> '<CCAABB>,
--> '<CCDD><><AABB>'
--> '<CCDD><EEAABB>,
--> '<CCAA><EE>'

Applying the 'Character extraction from a string' and 'Character comparison' rules.

JUSTIFY('<>< AA BB><CC DD>',10,'p')
--> '<AA>ppp<BB><CC>ppp<DD>,

JUSTI FY (' <>< AA BB><CC DD> " 11, 'p')
--> '<AA>pppp<BB><CC>ppp<DD>,

JUSTIFY('<>< AA BB><CC DD>',10,'<PP>')
--> '<AAPPPPPPBB><CCPPPPPPDD>,

JUSTIFY('<><xx AA BB><CC DD>',ll,'<PP>')
--> '<XXPPPPAAPPPPBB><CCPPPPDD>,

Applying the 'Character concatenation for padding' and 'Character extraction from
a string' rules.

LEFT, RIGHT, and CENTER
LEFT('<AABBCCDDEE>',4) -->
LEFT('a<>',2) -->

LEFT('<AA>' ,2, '*') -->
RIGHT('<AABBCCDDEE>',4) -->
RIGHT ('a<>' ,2) -->
CENTER('<AABB>' ,10, '<EE>') -->

CENTER('<AABB>',ll, '<EE>') -->
CENTER('<AABB>',10,'e') -->

'<AABBCCDD>'
'a<> '
'<AA>*'
'<BBCCDDEE>'
, a'
'<EEEEEEEEAABBEEEEEEEE>'
'<EEEEEEEEAABBEEEEEEEEEE>'
'eeee<AABB>eeee'

Applying the 'Character concatenation' for padding and 'Character extraction from
a string' rules.

Appendix B. Double Byte Character Set (DBCS) 179

LENGTH

REVERSE

SPACE

STRIP

LENGTH('<AABB><CCOO><>') --> 4

Applying the 'Counting characters' rule.

REVERSE('<AABB><CCOO><>') --> I <><OOCC><BBAA>I

Applying the 'Character extraction from a string' and 'Character concatenation' ,
rules.

SPACE('a<AABB CCOO>',l) -->
SPACE('a<AA><>< CCOO>',l,'x') -->
SPACE('a<AA><><CCOO>',l,'<EE>') -->

'a<AABB> <CCOO>I
I a<AA>x<CCOO> I
I a<AAEECCOO> I

Applying the 'Word extraction from a string' and 'Character concatenation' rules.

STRIP('<><AA><BB><AA><>',,'<AA>') --> '<BB>'

Applying the 'Character extraction from a string' and 'Character concatenation'
rules.

SUBSTR and DELSTR
SUBSTR('<><AA><><BB><CCOO>',1,2)
OELSTR('<><AA><><BB><CCOO>',1,2)
SUBSTR('<AA><><BB><CCOO>',2,2)
OELSTR('<AA><><BB><CCOO>',2,2)
SUBSTR('<AABB><>',1,2)
SUBSTR('<AABB><>',l)

-->
-->
-->
-->
-->
-->

I <AA><><BB>I
I <><CCOO>I
I <BB><CC>I
I <AA><><OO> I
I <AABB>I
I <AABB><> I

Applying the 'Character extraction from a string' and 'Character concatenation'
rules.

SUBWORD and DELWORD

TRANSLATE

SUBWORO('<>< AA BB><CC 00>1,1,2)
OELWORO('<>< AA BB><CC 00>1,1,2)
SUBWORO('<><AA BB><CC 00>1,1,2)
OELWORO('<><AA BB><CC 00>1,1,2)
SUBWORO('<AA BB><CC><> <00>1,1,2)
OELWORO('<AA BB><CC><> <00>1,1,2)

-->
-->
-->
-->
-->
-->

'<AA BB><CC>I
1<>< 00>1
'<AA BB><CC>I
1<><00>1
'<AA BB><CC>I
1<00>1

Applying the 'Word extraction from a string' and 'Character concatenation' rules.

TRANSLATE('abed ' , '<AABBCC>', label) --> I <AABBCC>dI
TRANSLATE('abed','<><AABBCC>','abe ') --> I <AABBCC>dI
TRANSLATE('abed','<><AABBCC>','ab<>e ') --> I <AABBCC>dI
TRANSLATE('a<>bed','<><AABBCC>','ab<>e ') --> I <AABBCC>dI
TRANSLATE('a<>xed','<><AABBCC>','ab<>e ') --> I <AA>x<CC>dI

Applying the 'Character extraction from a string', 'Character comparison', and
'Character concatenation' rules.

180 VM/SP System Product Interpreter Reference

VERIFY
VERIFY('<><><AABB><><XX>' ,'<BBAACCOOEE>') --> 3

Applying the 'Character extraction from a string' and 'Character comparison' rules.

WORD, WORDINDEX, and WORDLENGTH

WORDS

WORDPOS

x = '<>< AA BB><CC 00>'

WORO(X,l) --> '<AA>'
WORDINDEX(X,l) --> 2
WORDLENGTH(X,l) --> 1

Y = '<><AA BB><CC DO>'

WORD(Y,l) --> '<AA> ,
WORDINOEX(Y,l) --> 1
WORDLENGTH(Y,l) --> 1

Z = '<AA BB><CC<> <00>'

WORD(Z,2)
WORDINDEX(Z,2)
WORDLENGTH(Z,2)

-->
-->

-->

'<BB><CC>,
3
2

Applying the 'Word extraction from a string' and 'Counting characters'(for
WORDINDEX and WORDLENGTH) rules.

x = '<>< AA BB><CC 00>'

WORDS (X) --> 3

Applying the 'Word extraction from a string' rule.

WOROPOS('<BBCC> abe','<AA BBCC> abc') --> 2
WOROPOS('<AABB>' ,'<AABB AABB>< BBCC AABB> , ,3) --> 4

Applying the 'Word extraction from a string' and 'Character comparison' rules.

External Functions

Counting Option

This section describes the external functions package that supports DBCS mixed
string. These functions handle mixed strings regardless of the OPTIONS mode.

Note: When used with DBCS functions, 1 ength is always measured in bytes (as
opposed to LENGTH(string) which is measured in characters).

When specified in the functions, the counting option can be used to control whether
or not the SO and SI are considered present when determining the length. If "Y" is
specified, SO and SI within mixed strings are counted. "N" specifies NOT to count
the SO and SI, and is the default.

Appendix B. Double Byte Character Set (DBCS) 181

Function Descriptions

DBADJUST

DBBRACKET

DBCENTER

~DBADJUST(string--.-------.--- --...........
C==,operation~

adjusts all contiguous SI-SO and SO-SI characters in string based on the operation
specified. Valid operations (of which only the capitalized letter is significant, all
others are ignored) are:

Blank

Remove

changes contiguous characters to blanks (X I 4040 I).

removes contiguous characters, and is the default.

Here are some examples:

DBADJUST('<AA><BB>a<>b','B')
DBADJUST('<AA><BB>a<>b','R')
DBADJUST('<><AABB>','B')

->
->
->

'<AA BB>a b '
I <AABB>ab I

1< AABB> I

~DBBRACKET(string)-----------+·"""

adds SO-SI brackets to a un-bracketed DBCS string. If stri ng is not a pure DBCS
string, a SYNTAX error results. That is, the input string must be an even number
of bytes in length and each byte must be a valid DBCS value.

Here are some examples:

DBBRACKET('AABB ')
DBBRACKET (I abc I)
DBBRACKET('<AABB>')

->
->
->

I <AABB> I

SYNTAX error
SYNTAX error

~DBCENTER (stri ng, 1 ength----,[r---=:~~~:~~:~~~~~~:~=I-)---t.~ ..

'[pad] [, opt ion]

returns a string of length 1 ength with stri ng centered in it, with pad characters
added as necessary to make up length. The default pad character is a blank. If the
string is longer than 1 ength, it will be truncated at both ends to fit. If an odd
number of characters are truncated or added, the right hand end loses or gains one
more character than the left hand end.

182 VMjSP System Product Interpreter Reference

DBCJUSTIFY

I DBLEFT

Opt i on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBCENTER('<AABBCC>',4) -> 1 <BB> 1
DBCENTER('<AABBCC>',3) -> 1 <BB> 1
DBCENTER('<AABBCC>',10,'x') -> 'xx<AABBCC>XX'
DBCENTER('<AABBCC>',10,'x','Y') -> 'x<AABBCC>X'
DBCENTER('<AABBCC>',4,'x','Y') -> 1<88>1
DBCENTER('<AABBCC>',5,'x','Y') -> 1 x<BB> 1
DBCENTER('<AABBCC>',8,'<PP>') -> 1 <AABBCCPP> 1
DBCENTER('<AABBCC>',9,'<PP>') -> 1 <AABBCCPP>1
DBCENTER('<AABBCC>',10,'<PP>') -> 1 <PPAABBCCPP> 1
DBCENTER('<AABBCC>',12,'<PP>','Y') -> 1 <PPAABBCCPP> 1

"-DBCJUSTI FY (st ri ng, 1 ength---'Lr--=:~~~:~~:~~~~~~:~-=I-)-----"~"

, L pad] L, opt ion]

formats stri ng by adding pad characters between non blank CHARACTERs to
justify to both margins and length of bytes 1 ength (1 ength must be nonnegative).
Rules for adjustments are the same as the JUSTIFY function. The default pad
character is a blank.

Opt i on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBCJUSTIFY('<><AA BB><CC>',20,,'Y')
-> 1 <AA> <BB> <CC> 1

DBCJUSTI FY (I <>< AA 88>< CC>',20,'<XX>','Y')
-> I <AAXXXXXXBBXXXXXXCC>1

DBCJUSTI FY (I <>< AA BB>< CC>',21,'<XX>','Y')
-> '<AAXXXXXXBBXXXXXXCC> 1

DBCJ UST I FY (I <>< AA BB>< CC>',ll,'<XX>','Y')
-> '<AAXXXXBB> I

DBCJUSTI FY (1<>< AA BB>< CC>',ll,'<XX>','N')
-> '<AAXXBBXXCC> I

"-DBLEFT (s t ri ng, 1 ength--Lr--=:===:==:=======:===Ir-) -------.. ~ ..
, L pad] L, opt ion]

Appendix B. Double Byte Character Set (DBCS) 183

I DBRIGHT

I DBRLEFT

returns a string of length 1 ength containing the leftmost 1 ength characters of stri ng.
The string returned is padded with pad characters (or truncated) on the right as
needed. The default pad character is a blank.

Opt i on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBLEFT('ab<AABB>',4) -> 'ab<AA>'
DBLEFT('ab<AABB>' ,3) -> lab '
DBLEFT('ab<AABB>',4,'x','Y') -> 'abxx'
DBLEFT('ab<AABB>',3,'x ' ,'Y') -> 'abx'
DBLEFT('ab<AABB>',S,'<PP>') -> I ab<AABBPP> I

DBLEFT('ab<AABB>',9,'<PP>') -> 'ab<AABBPP> I

DBLEFT('ab<AABB>',S,'<PP>','Y') -> I ab<AABB> I

DBLEFT('ab<AABB>',9,'<PP>','Y') -> 'ab<AABB> I

~DBRI GHT (s t ri ng, 1 ength-Lr--=:===:==:=======:===I~) -------~
, [pad] [, opt ion]

returns a string of length 1 ength containing the rightmost 1 ength characters of
string. The string returned is padded with pad characters (or truncated) on the left
as needed. The default pad character is a blank.

Opt i on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBRIGHT('ab<AABB>',4) -> I <AABB> I

DBRIGHT('ab<AABB>',3) -> I <BB>'
DBRIGHT('ab<AABB>',5,'x ' ,'Y') -> 'x<BB>'
DBRIGHT('ab<AABB>',10,'x','Y') -> 'xxab<AABB>'
DBRIGHT('ab<AABB>',S,'<PP>') -> '<PP>ab<AABB>'
DBRIGHT('ab<AABB>',9,'<PP>') -> ' <PP>ab<AABB>,
DBRIGHT('ab<AABB>',S,'<PP>','Y') -> 'ab<AABB>,
DBRIGHT(' ab<AABB>',ll,'<PP>','Y') -> ab<AABB>,
DBRIGHT('ab<AABB>',12,'<PP>','Y') -> '<PP>ab<AABB>,

~DBRLEFT (stri ng, 1 ength-.....,;-----.........,r-)--.. ~
L,oPtion~

returns the remainder from the DBLEFT function of stri ng. If 1 ength is greater
than the length of stri ng, a null string is returned.

184 VM/SP System Product Interpreter Reference

I DBRRIGHT

I DBTODBCS

Opti on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBRLEFT('ab<AABB>',4) -> '<BB>'
DBRLEFT('ab<AABB>',3) -> I <AABB> I

DBRLEFT('ab<AABB>',4,'Y') -> I <AABB> I

DBRLEFT('ab<AABB>',3,'Y') -> I <AABB> I

DBRLEFT('ab<AABB>',8) -> I I

DBRLEFT('ab<AABB>',9,'Y') -> II

~DBRRIGHT(string, length-""T-------r- --..... ~
L,oPtion~

returns the remainder from the DBRIGHT function of stri ng. If length is greater
than the length of stri ng, a null string is returned.

Opt i on is used to control the counting rule. "Y" will count SO and SI within mixed
strings as one. "N" will not count the SO and SI and is the default.

Here are some examples:

DBRRIGHT('ab<AABB>',4) -> 'ab '
DBRRIGHT('ab<AABB>',3) -> I ab<AA> ,
DBRRIGHT(lab<AABB>',S) -> 'a 1
DBRRIGHT('ab<AABB>I,4,lyl) -> I ab<AA> I

DBRRIGHT('ab<AABB>',S,'Y') -> I ab<AA> I
DBRRIGHT('ab<AABB>',S) -> II
DBRRIGHT('ab<AABB>',S,'Y') -> I I

~DBTODBCS (s t ri ng)-----------t.~ ..

converts EBCDIC characters which have the range X 141' -X I FE I and EBCDIC
blanks within string to DBCS characters from X ' 4241 1 to X I42FE' and DBCS
blanks. SO and SI brackets are added where appropriate. Other EBCDIC
characters and all DBCS characters are not changed.

Here are some examples:

DBTODBCS('Rexx 19S5 ')
DBTODBCS('<AA> <BB>'

->

->

'<.R.e.x.x .1.9.S.S>1
'<AA BB>'

where "." = X'42 1

Appendix B. Double Byte Character Set (DBCS) 185

I DBTOSBCS

DBUNBRACKET

DBVAllDATE

~DBTOSBCS(string)---------i~~"

converts nBCS characters which have the range X 14241 I_X I 42FE 1 and nBCS
blanks within string to SBCS characters from X '41 1 to X'FE' and X'40' for
blanks. SO and SI brackets are removed where appropriate. Other nBCS
characters and all SBCS characters are not changed.

Here are some examples:

DBTOSBCS('<.S.d>/<.2.-.1>')
DBTOSBCS(:<AA BB>')

->
->

'Sd/2-1 1

'<AA> <BB> I
where; "." = X' 42 1

~DBUNBRACKET (stri ng)---------i~~ ..

removes the SO-SI brackets from a pure nBCS stri ng enclosed by SO and SI
brackets. If the s t ri ng is not bracketed, a SYNTAX error results.

Here are some examples:

DBUNBRACKET('<AABB>')
DBUNBRACKET(lab<AA>I)

->

->

IAABBI
SYNTAX error

~DBVALIDATE (stri ng'---r----r--- --.... ~
L,c~

returns 1 if the stri ng is a valid mixed string or SBCS string which has no SO or SI.
Otherwise, 0 is returned. Mixed string validation rules are:

1. Proper SO-SI pairing

2. nBCS string is an even number of bytes in length

3. Only valid nBCS character codes between SO and SI bytes.

If C is omitted, each nBCS character is not checked.

186 VMjSP System Product Interpreter Reference

DBWIDTH

Here are some examples:

x='abc<de '

DBVALIDATE('ab<AABB>')
DBVALIDATE (x)

y='CIC20Ell1213140F 'X

DBVALIDATE(y)
DBVALIDATE(y,'C ')

->
->

->
->

1
o

1
o

~DBWI DTH (st ri ng-"'T-------r-)----. .. ~4
L,oPtion~

returns the length of string in bytes. Option is used to control the counting rule.
"Y" will count SO and SI within mixed strings as one. "N" will not count the SO
and SI and is the default.

Here are some examples:

DBWIDTH('ab<AABB>','Y')
DBWIDTH('ab<AABB>','N')

->
->

8
6

Appendix B. Double Byte Character Set (DBCS) 187

188 VMjSP System Product Interpreter Reference

Appendix C. Performance Considerations

REXX is unusual in being an interpreted structured language. Because of this
REXX has required some fairly complicated coding techniques to improve
performance. These include:

• Variable names are held in a two-level binary tree to provide fast lookup and an
efficient implementation of the PROCEDURE EXPOSE function.

• The position in the program of all labels is saved in a look-aside buffer arranged
in most-recently-used order: this considerably improves the performance of
subroutine and internal function calls. Accesses to built-in and external routines
are similarly recorded and reordered for improved performance.

• The internal form of all clauses is saved in a second look-aside buffer to save the
need for parsing each clause each time it is executed, giving speed improvements
of a factor of two in many loops. This look-aside is not started until the first
CALL, INTERPRET, repetitive DO, or label is found. This look-aside also
means that the overhead of including comments on a line with an instruction is
negligible except for the storage they take up and the initial read-in time.
Comments on a separate line may affect performance, but these may be removed
in the executable form by EXECUPDT.

• Special look-aside information is kept for DO-loops to minimize loop overhead.

• Parsing is optimized for mixed case data. PARSE ARG and PARSE PULL are
therefore slightly faster than ARG and PULL.

Where possible, the executable form of REXX programs should be in V -format.
This minimizes execution time, main storage use (paging), and file space or minidisk
space required. (Note: If EXECUPDT is used, the library files are F-format but the
executable file is V-format.)

Wherever possible, REXX programs should be written in mixed case (especially
comments). This maximizes reading speed and minimizes human errors due to
misreading data, and so improves the performance of the human side of the REXX
programming operation.

There is no particular area in the interpreter that can be described as a bottleneck.
However, any external call may incur significant system overheads. High precision
numbers should be avoided unless truly needed.

Appendix C. Performance Considerations 189

190 VM/SP System Product Interpreter Reference

Appendix D. Example of a Function Package

TITLE 'USERFN: Sample model for user function package I

*
* The first part of this example deals with obtaining free
* storage and moving the rest of the program into that storage
* as a nucleus extension. The code just loaded (from FREEGO
* label to the table before FUNC1) then responds to the
* original call and successive calls to RXUSERFN. Calls to
* load a user function are handled by setting up their entry
* points as nucleus extensions.
* In order to set up new user functions, the user must add an
* entry in the FUNlIST table and add the code following the
* other functions.
* This program uses macros found in the DMSSP MAClIB.
* If this MAClIB is not GlOBAled, a 'GLOBAL MAClIB DMSSP CMSlIB '
* command should be issued.
*
USERFN CSECT *

*

*
*

USING *,R12
USING NUCON,0
lR R10,R14
SlR R2,R2

Save return address
Assume it's NUCEXT
IIRXUSERFN II only.

ClI ARG1(Rl),X'FF ' Any arguments?
BE GOlOAD Br if not - go install
ClC ARG1(8,Rl),=Cl8 I lOAD ' Is this explicit load?
BNE BADPl Br if not - go complain
Note: We do not have to handle RESET because the

package has not yet been loaded
SPACE 1

*-> lOAD request, so check function name against FUNlIST
SPACE 1

CHECK

*

lA R4, lENTRY
lA R2, FUNLIST
lA R5,EFUNlIST
EQU *

length of FUNlIST entry
Start of function table
End of function table

ClC ARG2(,Rl),FUNlNAME(R2) Names match?
BE GOlOAD Br if yes - go do

BXlE R2,R4,CHECK
lA R15,1
BR ·R10
SPACE 1

appropriate NUCEXTing.
Continue testing if more
Indicate function not found
Not in list - return

*=> NUCEXT IIRXUSERFN II as well as specific function (e.g. if
* lOAD specified on invocation).

SPACE 1
GO lOAD EQU *

*
lA R0,FREElEND length of code in DWs

Get the storage
CMSSTOR OBTAIN,DWORDS=(R0),SUBPOOl='NUClEUS ' ,

lA
l
lR
lR

ERROR=NOSTORE
R8,FREEGO
R9,=A(FREElEN)
R7,R9
R4,R9

Start of free storage code
Get length in bytes
Copy length for MVCl
Save for later use

x

Appendix D. Example of a Function Package 191

lR R3,RI 1111

lR R6,RI Free storage area start
SPKA ° Set nucleus key
MVCl R6,R8 Move code to free storage
NUCEXT SET,MF=(E,NPlIST),NAME='RXUSERFN ' ,ENTRY=(R3),- X

ORIGIN=((R3),(R4»,KEY=NUClEUS,SYSTEM=YES, X
SERVICE=YES,ERROR=(RI0)

*-> See if we have a function •••
lTR R2,R2 Install "RXUSERFN" only?
BZR RIO Br if yes - return to caller

* R2 points to FUNlIST entry to be installed.
* R3 points to start of NUCXlOADed area.

A R3,FUNOFFS(,R2) Calculate true start address
lA R2,FUNlNAME(R2) Address of startup name
NUCEXT SET,MF=(E,NPlIST),NAME=(R2),ENTRY=(R3),KEY=NUClEUS, X

ORIGIN=(0,0),SYSTEM=YES,SERVICE=NO,ERROR=*
BR RIO Return to caller
DROP R12
SPACE 3
lTORG ,
TITLE 'USERFN: Code residing in free storage I

* The following code resides in free storage, and is capable *
* of replying to lOAD or RESET. *
* A lOAD call results in the identifying of the functions *
* passed as parameters following lOAD as entry points in *
* RXUSERFN. *
* A RESET service call from NUCXDROP will turn the functions *
* OFF. A PURGE service call is ignored. *

SPACE 2
FREEGO DS 0D
*

USING *,RI2
B STARTCOD

Force doubleword alignment
of free-loaded code.

DC Cl8 1>USERFN<' Eye-catcher for storage dump
STARTCOD EQU *

lR R10,R14 Save return address
ClC ARGl(8,RI),=Cl8 I lOAD ' Is this a load?
BE CHK4ARGS Yes, check for any args
ClC ARGl(8,RI),=Cl8 I RESET ' Reset?
BE DOOFF Yes, turn off functions
SlR R15,R15 In case of service call
ClI USERCTYP,EPlFABEN Is it an abend call?
BER R14 Br if yes - quick quit
lA R15,4 No, set error RC
BR Rl4 •• and return
SPACE I

CHK4ARGS EQU *
lA R15,1
ClI ARG2(Rl),X ' FF '
BER Rl4

Set possible return code
Any arguments passed?
No, error (already loaded)

* AUTOLOAD: switch on selected function *

*
* I lOAD I request. Check function name against FUNlIST.
*

192 VMjSP System Product Interpreter Reference

*
*
*

* Only turn on the requested (autoload) function. *

SPACE 1
PUSH USING
USING DNUCX,RI3

AUTOLOAD EQU *
LR R3,RI
LR Rl,R13
MVC 0(LQLIST,Rl),QLIST
LA R4,LENTRY
LA R5,EFUNLIST
LA R2, FUNLIST
LA R15,1

CHECKI EQU *

Save USING status
Use save area for PLIST

Save old plist pointer
Get new plist address
Move skeleton to work area
Length of FUNLIST entry
End of function table
Start of function table
Set error return code

CLC ARG2(,R3),FUNLNAME(R2) Check against name
BE TURNON Found - turn function on
BXLE R2,R4,CHECKI Loop for another check
BR RI0 Return with RC = 1
SPACE I

TURNON EQU *
* See if function is already a nucleus extension

LA R3,FUNLNAME(R2) Get startup name
NUCEXT QUERY,MF=(E,(Rl»,NAME=(R3),ERROR=(R10)
L R6,FUNOFFS(,R2) Load address offset
ALR R6,R12 True start address
MVC 0(LNLIST,Rl),NLIST Move skeleton to work area
NUCEXT SET,F=(E,(Rl»,NAME=(R3),ENTRY=(R6),KEY=NUCLEUS, X

ORIGIN=(0,0),SYSTEM=YES,SERVICE=NO,ERROR=*
BR RI0 Return
POP USING Restore USING status
SPACE 1

* RESET call: switch off functions *

DOOFF EQU *

LA R5,FUNLIST -> to list
LA RI,NLIST -> PLIST

FUN LOOP EQU *
LT R15,FUNOFFS(R5) Any more to cancel?
BZR RI0 o = all done .•. Get out
LA R3,FUNLNAME(R5)
NUCEXT CLR,MF=(E,(RI»,NAME=(R3),ERROR=*

* (we ignore errors e.g.: function already cancelled)
LA R5,LENTRY(,R5) -> next item in FUNLIST
B FUNLOOP
EJECT

* PLIST for invoking 'NUCEXT'
NLIST NUCEXT SET,MF=L,SYSTEM=YES,KEY=NUCLEUS
LNLIST EQU *-NLIST Length of list

SPACE
QLIST NUCEXT QUERY
LQLIST EQU *-QLIST Length of list

SPACE
CLIST NUCEXT CLR
LCLIST EQU *-CLIST Length of list

SPACE 5

* List of functions included in this pack, with their offsets

Appendix D. Example of a Function Package 193

FUNLNAME EQU
FUNOFFS EQU
FUNLIST DC
LENTRY EQU

DC
DC

EFUNLIST EQU
DC

4,8 Offset & length of name
O,4 Offset to the routine
A(FUNC1-FREEGO),CL8 I RXUSER1 1
*-FUNLIST Length of a single entry
A(FUNC2-FREEGO),CL8 I RXUSER2 1
A(FUNC3-FREEGO),CL8 I RXUSER3 1
* End of the funlist proper
A(*-*) End fence

EJECT

*+-+-+-+-+-+-+-+-+~+-+

* A sample user written function is shown below. As many
* other functions can be added as the user desires. The only
* restriction is that the module must fit in the transient
* area (where it runs before loading itself as a nucleus
* extension).
* The normal order is to obtain an EVALBLOK (here done by
* the GETBLOK routine), do the function and put the result
* in the EVALBLOK, and finally to complete the EVALBLOK and
* return (here done by the EBLOCK routine).
*+-+-+~+-+

SPACE 2
* 'USERFN: USER1 - User function 11
* This function simply returns the first passed parameter!
FUNC1 EQU *

USING *,R12
LR R10,R14
LR R13,R0
USING EFPLIST,R13
L R11,EARGLIST
MVC SAVEFRET,EFUNRET
DROP R13
USING PARMBLOK,R11
L R1,PARM1LEN
LR R3,R1
BAL R14,GETBLOK
USING EVALBLOK,R5

Tell assembler of base
Save return address
Get copy of R0
Addressing for the plist
Get pointer to arg list
Save function return addr
Done with this for now
Tell assembler
Returned data length
Save it for later
Go get EVALBLOK
Tell assembler

* *
* other processing for function 1 would be here *
* *

L R15,PARM1ADR
EX R3,MOVEIT Move the data
LA R15,0 Set good return code
B EBLOCK Complete EVALBLOK & return

MOVEIT MVC EVDATA(0) ,0(R15). Move user parm to eval block
SPACE 2

* 'USERFN: USER2 - User function 21
FUNC2 EQU *

*
* code for user function 2 goes here!
*

*
*
*

SPACE 2

* 'USERFN: USER3 - User function 31

194 VM/SP System Product Interpreter Reference

FUNC3 EQU *

*
* code for user function 3 goes here!
*

*
*
*

TITLE 'USERFN: Common get EVALBLOK subroutine '

* This subroutine obtains an EVALBLOK.
* The assumed input is:
* - Rl: length of EVDATA (return data length)
* - R14: return address
*
* The output is:
* - R0, Rl, & R2 undefined
* - R4: number of doublewords in entire EVALBLOK
* - R5: address of the EVALBLOK
*
*
*

- R15: undefined
- other registers are unchanged.

*
*
*
*
*
*
*
*
*
*
*
*

* If storage is not available, an error message is displayed *
* and return is taken to the caller with a non-zero return *
* code. *

SPACE 2
GETBLOK EQU *

BALR R2,0 Establish base register
USING *,R2 Tell ass emb 1 e r
LA R0,EVCTLEN+7(,Rl) Add in overhead + rounding
SRL R0,3 Make it doublewords
LR R4,R0 Return number of doublewords

* in entire EVALBLOK.
CMSSTOR OBTAIN,DWORDS=(R0),ERROR=NOSTORE Get the storage
LR R5,Rl Save A(EVALBLOK)

* Now clear the storage block
LR R15,R3 Save R3
LR R0,R5 Addr of storage block in R0
LR Rl,R4 Length of storage in Rl
SLL Rl,3 Make it bytes!
LA R3,0 length to 0, pad of '00 1 x
MVCL R0,R2 Clear the block
LR R3,R15 Restore R3
BR R14 Return to caller
DROP R2 Done with this guy
TITLE 'USERFN: Common complete EVALBLOK routine '

* At this point the EVALBLOK is filled in. The registers
* are assumed to be as follows:
* R3 - the number of bytes of data to be returned
* R4 - the size (in doublewords) of the entire EVALBLOK
* R5 - the address of the EVALBLOK

*
*

*
*

SPACE 1

EBLOCK EQU *
BALR R12,0
USING *,R12
USING EVALBLOK,R5
ST R4,EVSIZE

Set base register
Tell assembler
Addressing for EVALBLOK
Total block size (DW's)

Appendix D. Example of a Function Package 195

L R4,SAVEFRET
ST R5,0(R4)
ST R3,EVLEN
BR R10
DROP R5

Get back return address
Pass address back to caller
Set it in EVALBLOK
Abandon ship

TITLE ICommon Error Processing Routines I

* Error handling routines. *
* Note that in order to avoid the generation of relocatable *
* address constants, the TYPLIN PLIST is "hand built" rather *
* than using WRTERM. *

BADPL
SPACE 3
EQU *
BALR R12,0
USING *,R12
LA R2,MSGI
B DISPMSG
SPACE 1

NOS TORE EQU *
BALR R12,0
USING *,R12
LA R2,MSG2

DISPMSG EQU *

Something's wrong with PLIST
Load base for this code
Tell assembler of this
Get message address
Go display the message

DMSFREE not successful
Load base for this code
Tell assembler of this
Get message address

BALR R12,0 Load base for this code
USING *,R12 Tell assembler of this
LR RI,R13 Use USERSAVE for plist
APPLMSG APPLID=USR, TEXTA=(R2) ,ERROR=* ,MF=(E, (RI»

NODISPLI EQU *
LA R15,4
BR R10
SPACE 1

MSGI All (MSGIEND)

Set non-zero return code
Return

DC C' DMSRUF070E Invalid parameter I
MSGIEND EQU *-MSGI-I

SPACE
MSG2 All (MSG2END)

DC C' DMSRUF450E Machine storage exhausted I
MSG2END EQU *-MSG2-I

SPACE 2
SAVEFRET OS F

ORG ,
SPACE 2

Function return address

LTORG Literal pool
TITLE 'USERFN: Common symbolic assignments I
SPACE 1

CMS202 EQU 202
ARG1 EQU 8,8
ARG2 EQU 16,8

REGEQU
OS 00

FREEL EN EQU *-FREEGO
FREEL END EQU (*-FREEGO+7)/8
*

SPACE 1
* NUCEXT PLIST Flags:
SERVICE EQU X' 40 1

SYSTEM EQU X'80 1

196 VM/SP System Product Interpreter Reference

CMS SVC 202
First argument
Second argument

Get to doubleword boundary
Bytes of free store code.
Doublewords of free store
code.

SPACE 2
*-- OSECT for the function plist -----------------------------­
EFPLIST OSECT
ECOMVERB OS F COMVERB pointer
EBEGARGS OS F pointer to argument string
EENOARGS OS F pointer to arg string end
EFBLOCK OS F fileblock pointer (0)
EARGLIST OS F pointer to function args
EFUNRET OS F location of return data
*-- OSECT for the returned data block ------------------------­
EVALBLOK OSECT
EVBPAOI OS F
EVSIZE OS F
EVLEN OS F
EVBPA02 OS F
EVCTLEN EQU *-EVALBLOK
EVOATA OS 00
EVOATAWI OS F
EVOATAW2 OS F
EVOATAW3 OS F
EVOATAW4 OS F
EVOATAW5 OS F

SPACE 3

Rese,rved
Total block size in OW's
Length of Data (in bytes)
Reserved
Length of preceding section
First byte of data
First word of data
Second word of data
Third word of data
Fourth word of data
Fifth word of data

-- OSECT for NUCEXT plist -----------------------------------
ONUCX OSECT Overlayed by register 13
ONLIST OS CL8 'NUCEXT' Name
ONLNAME OS CL8 'RXUSERFN' Function name
ONLMASK OS X '00' Mask
ONLKEY OS X '04' SYSTEM for RXUSERFN Key (04 - system,
* E4 - user)
ONLFLAG OS ALl (SYSTEM) NUCEXT Flag

OS X '00' Spare flags
ONLAOOR OS A Entry point address
* (CANCEL = e)

OS AL4 (*-*)
OLSTART OS A
OLNLLEN OS AL4 (FREELEN)

SPACE 3

private
Start address
Length

Appendix D. Example of a Function Package 197

*-- OSECT for input parameters
PARMBLOK OSECT
PARMIAOR OS
PARMILEN OS
PARMNTRY EQU
PARM2AOR OS
PARM2LEN OS
PARM3AOR OS
PARM3LEN OS
PARM4AOR OS
PARM4LEN OS
PARM5AOR OS
PARM5LEN OS

F
F
*-PARMBLOK
F
F
F
F
F
F
F
F

PAOR EQU O,4
*
PLEN EQU 4,4
*

SPACE 3
USERSAVE
EPLIST
NUCON
END

198 VM/SP System Product Interpreter Reference

------------------------------*
Address of parameter 1
Length of parameter 1
Length of table entry
Address of parameter 2
Length of parameter 2
Address of parameter 3
Length of parameter 3
Address of parameter 4
Length of parameter 4
Address of parameter 5
Length of parameter 5
Offset in each pair to
parameter's address.
Offset in each pair to
parameter's length.

Appendix E. The System Product Interpreter in the GCS
Environment

Most REXX capabilities available in the CMS environment are also available in the
Group Control System (GCS) environment. You can use the REXX instructions,
functions, expressions, operators, etc. There are, however, some differences between
writing REXX programs for the GCS environment and writing REXX programs for
the CMS environment.

The differences in the GCS environment are as follows:

1. execs normally reside in CMS formatted disk files and have a filetype of GCS.
The GCS filetype can be overridden by using the FILEBLK.

2. GCS does not support the following immediate commands: TS, TE, and HI.

3. An exec written for the GCS environment should not have the same name as an
immediate command. (Note that an immediate command lets you interrupt a
program and halt its execution either temporarily or permanently.) Immediate
commands are higher in the search order, therefore, an immediate command
would be executed before an exec. An exec written for the GCS environment
with the same name as an immediate command would never get executed.

4. GCS does not support the external function libraries: RXSYSFN, RXLOCFN,
and RXUSERFN. However, GCS does support external function calls. These
functions and subroutines must be written in the REXX language.

5. The GCS CMDSI macro can be used to invoke REXX programs from
Assembler language programs. The FILEBLK parameter on the CMDSI macro
contains the address of the file block. FILEBLK is useful for executing
in-storage execs, executing execs with filetypes other than GCS, and establishing
an initial subcommand environment.

6. The default ADDRESS environment of REXX is GCS.

ADDRESS GCS specifies that full command resolution is in effect. With full
command resolution, first search for an exec with the given name. If such an
exec does not exist, then invoke the given name using SVC 202. If the above
fails, search for a CP command with the given name.

ADDRESS COMMAND searches for host commands (GCS commands).

7. GCS does not have a terminal input buffer. If you issue a PULL instruction
and the program stack is empty, the WTOR macro generates a read to the
console.

8. Each task has its own program stack. Therefore, data in a program stack can
be shared among execs running in the same task.

9. To specify other subcommand environments in GCS you must use LOADCMD.
LOADCMD defines a command name to the requested module of a CMS load
library and loads this command module into storage. Therefore, GCS can call
the requested command module when a command is entered at the console or
submitted by a program with the CMDSI macro.

GCS does not support non-SVC fast path subcommand invocation.

10. The SIGNAL ON HALT instruction has no effect in GCS.

Appendix E. The System Product Interpreter in the GCS Environment 199

Processing execs in GCS (CSIREX module)
All exec processing in GCS is routed to the GCS module, CSIREX. CSIREX is the
external interface for the System Product Interpreter (CSIRIN).

SVC 202 calls CSIREX with the contents of the registers as follows:

RO Address of the extended parameter list

Rl Address of the standard tokenized parameter list

R12 Address of the entry point

R13 Address of a register savearea

R14 Return address

R15 Address of the entry point (same as R12)

The Extended Plist
The extended plist has the following format:

EPLIST DSECT
EPLCMD DS A
EPLARGBG DS A
EPLARGND DS A
*
EPFBL DS A
EPARGLST DS A
*
EPFUNRET DS A
*
EPLIND DS X
EPLPGM EQU XI 00 1

EPLACMD EQU XI 01 1

*
EPLFNC EQU XI 05 1

EPLCONS EQU XI 0B 1

EPLRESVD DS 3X

The Standard Tokeliized Plist

Address of command token
Address of beginning of arguments
Address 'of byte following the end
of arguments
Address of the file block
Address of function-argument list
for EXEC
Address for return of function data
for EXEC

Indicator
Program issued command
Call from System Product Interpreter
when ADDRESS COMMAND is specified
Subroutine/function call
Console command
Reserved

The standard tokenized plist has the following format:

DC CL8 I. EXEC 1

DC CL8 1 execname i

DC XL8 1 FF 1

200 VMjSP System Product Interpreter Reference

The File Block
The file block has the following format:

FBLOCK DSECT
FBLNAME DS CL8
FBLTYPE DS CL8
*
FBlMODE DS
FBlEXTl DS
FBlEXT EQU

Cl2
H

*

Program name (usually EXEC filename)
Program type/default prefix
(usually GCS filetype)
Program filemode
Extension block length in fullwords
Extension block starts here

* The next 2 words represent the start
* and end of in-storage EXECs
FBLDlS DS AL4 Descriptor list starts here
FBlDlE DS AL4 Descriptor length
FBlPREF DS Cl8 Explicit initial prefix

EXECCOMM Processing (Sharing Variables)
The EXECCOMM macro allows programs to access and manipulate the current
generation of REXX variables. These variables may be inspected, set, or dropped.
To use the EXECCOMM capability, a REXX program must be active on the
current task.

The format of the EXECCOMM macro is:

[label] EXECCOMM REQLIST=addr

where:

REQLIST is a RX-type address or register. addr specifies the address of the shared
variable request block chain. Each caller is responsible for setting up its
variable request block chain.

The internal REXX work areas are manipulated by the System Product Interpreter's
own routines. Therefore, the user's program does not need to know the structure of
the variable's access method.

The EXECCOMM macro generates an SVC 203, and the register input for
EXECCOMM processing is as follows:

RO Shared variable request block chain pointer

R12 Entry point address

R 13 Save area address

R 14 Return address

R15 Entry point address

On return from the SVC 203, register 15 contains the return codes. The possible
return codes are:

o or positive

-1

-2

Entire request list was processed

Invalid entry condition (no REXX program active on this task)

Insufficient storage available to process the request

Appendix E. The System Product Interpreter in the GCS Environment 201

Shared Variable Request Block
If the address of the shared variable request block passed in register 0 is invalid, the
task is terminated with abend code FCB and reason code ODOI. Each request block
in the chain must be structured as follows:

**
SHVBLOCK DSECT
SHVNEXT DS A
SHVUSER DS F
SHVCODE DS CL1
SHVRET DS XL1

DS H'e'
SHVBUFL DS F
SHVNAMA DS A
SHVNAML DS F
SHVVALA DS A
SHVVALL DS F
*

Chain pointer to next element or 0
Used during "Fetch Next"
Individual function code
Individual return code flags
Not used
Length of 'Fetch' value buffer
Address of variable name
Length of variable name
Address of value buffer
Length of value (set on 'Fetch')

* Function Codes (SHVCODE):
*
SHVSET EQU CIS' Set variable from given value
SHVFETCH EQU C'F' Copy value of variable to buffer
SHVDROPV EQU C'D' Drop variable
SHVSYSET EQU CiS' Symbolic name Set variable
SHVSYFET EQU C'f' Symbolic name Fetch variable
SHVSYDRO EQU C'd' Symbolic name Drop variable
SHVNEXTV EQU C'N' Fetch 'Next' variable
SHVPRIV EQU C' pi Fetch private information
*
* Return Codes (SHVRET)
*
SHVCLEAN EQU X'00' Execution was OK
SHVNEWV EQU X 1011 Variable did not exist
SHVLVAR EQU X'02 1 Last variable transferred (for IN')
SHVTRUNC EQU X'04' Truncation occurred during 'Fetch'
SHVBADN EQU X'0S ' Invalid variable name
SHVBADV EQU X' 10 1 Reserved in REXX
SHVBADF EQU X'S0 1 Invalid function code (SHVCODE)
**

A typical calling sequence using the EXECCOMM macro is:

EXECCOMM REQLIST=(5)

where register 5 points to the first of a chain of one or more request blocks.

Function Codes (SHVCODE)
Three function codes (S, F, and D) may be given either in lowercase or in uppercase:

Lowercase (The symbolic interface). The names must be valid REXX symbols (in
mixed case if desired), and normal REXX substitution will occur in
compound variables.

Uppercase (The direct interface). No substitution or case translation takes place.
Simple symbols must be valid REXX variable names (that is, in
uppercase, and not. starting with a digit or a period). Compound
symbols must contain a valid REXX stem. However, any characters are
permitted (including lowercase, blanks, etc.) following this valid stem.

202 VM/SP System Product Interpreter Reference

Note: The direct interface should be used in preference to the symbolic interface
whenever generality is desired.

The other function codes, Nand P, must always be given in uppercase. The specific
actions for each function code are as follows:

Sand s Set variable. The SHVNAMAjSHVNAML adlen describes the name of
the variable to be set, and SHVV ALAjSHVV ALL describes the value that
is to be assigned to it. The name is validated to ensure that it does not
contain invalid characters. The variable is then set from the value given.
If the name is a stem, all variables with that stem are set, just as though
this were a REXX assignment. SHVNEWV is set if the variable did not
exist before the operation.

F and f Fetch variable. The SHVNAMAjSHVNAML adlen describes the name of
the variable to be fetched. SHVV ALA specifies the address of a buffer
into which the data is to be copied, and SHVBUFL contains the length of
the buffer. The name is validated to ensu:re that it does not contain
invalid characters, and the variable is then located and copied to the
buffer. The total length of the variable is put into SHVV ALL, and, if the
value was truncated (because the buffer was not big enough), the
SHVTRUNC bit is set. If the variable is shorter than the length of the
buffer, no padding takes place. If the name is a stem, the initial value of
that stem (if any) is returned.

SHVNEWV is set if the variable did not exist before the operation, and in
this case the value copied to the buffer is the derived name of the variable
(after substitution etc.). See page 18.

D and d Drop variable. The SHVNAMAjSHVNAML adien describes the name of
the variable to be dropped. SHVV ALAjSHVV ALL are not used. The
name is validated to ensure that it does not contain invalid characters, and
the variable is then dropped, if it exists. If the name given is a stem, all
variables starting with that stem are dropped. SHVNEWV is set if no
variables were affected by the operation.

N Fetch Next variable. This function may be used to search through all the
variables known to the interpreter (that is, all those of the current
generation, excluding those "hidden" by PROCEDURE instructions).
The order in which the variables are revealed is not specified.

The interpreter maintains a pointer to its list of variables: this is reset to
point to the first variable in the list whenever 1) a host command is issued,
or 2) any function other than "N" is executed via EXECCOMM.

Whenever an N (Next) function is executed, the name and value of the
next variable available are copied to two buffers supplied by the caller.

SHVNAMA specifies the address of a buffer into which the name is to be
copied, and SHVUSER contains the length of that buffer. The total
length of the name is put into SHVNAML, and, if the name was
truncated (because the buffer was not big enough), the SHVTRUNC bit is
set. If the name is shorter than the length of the buffer, no padding takes
place. The value of the variable is copied to the user's buffer area using
exactly the same protocol as for the fetch operation.

If SHVRET has SHVL V AR set, the end of the list of known variables has
been found, the internal pointers have been reset, and no valid data has
been copied to the user buffers. If SHVTRUNC is set, either the name or
the value has been truncated.

Appendix E. The System Product Interpreter in the GCS Environment 203

By repeatedly executing the N function (until the SHVL V AR flag is set), a
user program can locate all the REXX variables of the current generation.

P Fetch private information .. This function is identical to the F fetch
function, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name). The following names are
recognized:

ARG Fetch primary argument string. The first argument string that
would be parsed by the ARG instruction is copied to the user's
buffer.

SOURCE Fetch source string. The source string, as described for
PARSE SOURCE on page 51, is copied to the user's buffer.

VERSION Fetch version string. The source string, as described for
PARSE VERSION on page 52, is copied to the user's buffer.

204 VM ISP System Product Interpreter Reference

Summary of Changes

To obtain the edition of this publication that pertains to Release 5 of VMjSP, order

SQ24-5239

Summary of Changes
for SC24-5239-03
for VM/SP Release 6

New Built-in Functions for Release 6 of VMjSP

DIGITS

FORM

FUZZ

WORDPOS

Returns the current setting of NUMERIC DIGITS.

Returns the current setting of NUMERIC FORM.

Returns the current setting of NUMERIC FUZZ.

Returns the word number of the first word of a given phrase
found in a given s t ri ng.

New External Function/or Release 6 of VMjSP

CSL Allows a REXX programmer to call a routine that resides in
a callable services library.

New Options Added to Functions and Instructions for Release 6 of VM/SP

• DATATYPE function added the D option for pure DBCS strings and C
option for mixed DBCS strings.

• DATE function added the Normal option to get the date in the format: dd
man yyyy.

• DIAG 64 added the subfunction code N

• NUMERIC FORM instruction added the Value option.

• OPTIONS instruction added the EXMODE and NOEXMODE options for
DBCS handling.

• SIGNAL instruction added the Failure option.

• TIME function added the Civil and Normal options. The Civil option
returns the time in the format: hh :mmxx while the Normal option returns the
time in the format: hh :mm: 55.

• TRACE instruction and TRACE function added the Failure option.

• VERIFY function added the Nomatch option.

New Comparison Operators Addedfor Release 6 of VMjSP that include:

«

»

\«,-,«

\»,-,»

«=

»=

Strictly less than

Strictly greater than

Strictly not less than

Strictly not greater than

Strictly less than or equal to

Strictly greater than or equal to

Note: The backslash (\) is synonymous with the NOT
character (-,). The two may be used interchangeably.

New Error Number and Message for Release 6 of VM/SP:

Error 23 Invalid SBCS/DBCS mixed string.

Summary of Changes 205

New Chapter and Appendix Addedfor Release 6 of VM/SP

• The Invoking Communications Routines chapter has been added to describe
how to use the ADDRESS CPICOMM stateme'nt in a REXX program to
call program-to-program communications routines.

• Appendix E has been added to describe the DBCS functions and handling
techniques supported by REXX.

Other Changes

• Restriction on the placement of the PROCEDURE statement is enforced.
The PROCEDURE instruction, if used, must be the first instruction
executed after the CALL or function invocation.

• New section added to the System Interfaces chapter, I Calls Originating from
an Application Program I. This section describes how an application
program can call REXX using a callable services library routine.

• The backslash character(\) is supported as a synonym for the NOT character
(-,).

• Added the DROPBUF, MAKEBUF, NUCXMAP, NUCXLOAD,
PROGMAP, and SEGMENT CMS commands.

• New syntax diagrams are used to illustrate the syntax of instructions and
functions.

• Information on the EXECFLAG External Control Byte has been deleted.

Miscellaneous

• Minor changes to accommodate the CMS Shared File System (SFS) and
VM/XA.

• Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes
for SC24-5239-02
for VM/SP Release 5

New Functions for Release 5 of VM/SP

DIAG Functions DIAG(C8), DIAGRC(C8), DIAG(CC) and
DIAGRC(CC) returns information related to CP
language repository.

New Options Added to Functions and Instructions for Release 5 of VM/SP

• DATE function added the Basedate option.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes
for SC24-5239-01
for VM/SP Release 4

New Instruction and Function for Release 4 of VM/SP

OPTIONS Instruction Specifies whether double byte character set (DBCS)
strings can be manipulated.

DIAG Functions DIAG(8C) and DIAGRC(8C) returns device-dependent
information about the virtual console.

206 VM/SP System Product Interpreter Reference

GCS Environment

• A new appendix, Appendix D, has been added to describe REXX in the
GCS environment.

Miscellaneous

Minor technical and editorial changes have been made throughout this
publication.

Summary of Changes 207

208 VM/SP System Product Interpreter Reference

Bibliography

Related Publications
The reader may also need to refer to:

The VMjSP Application Development Reference for CMS, SC24-5284

The VMjSP Application Development Guidefor CMS, SC24-5286

The VMjSP CMS Command Reference, SC19-6209

The VMjSP Connectivity Programming Guide and Reference, SC24-5377

The VMjSP CP General User Command Reference, SC19-6211

The VMjSP CP System Command Reference, SC24-5402

The VMjSP System Product Editor Command and Macro Reference, SC24-5221

The VMjSP System Product Interpreter Reference Summary, SX24-5126

The VMjSP System Messages and Codes, SC19-6204

The VMjSP System Messages Cross-Reference, SC24-5264

The VM System Facilities for Programming, SC24-5288.

Related documentation dealing with Systems Application Architecture can be found in:

The SAA Common Programming Interface Procedures Language Reference, SC26-4358

The SAA Common Programming Interface Communications Reference, SC26-4399.

Tutorial books which may be useful are:

The VMjSP System Product Interpreter User's Guide, SC24-5238

The VMjIS Writing Simple Programs with REX X, SC24-5357

The VMjSP CMS Primer, SC24-5236

The VMjSP CMS Primer for Line-Oriented Terminals, SC24-5242

The VMjSP CMS User's Guide, SC19-6210

The VMjSP System Product Editor User's Guide, SC24-5220.

Bibliography 209

VM/SP RELEASE 6 LIBRARY
Evaluation

General
Information

GC20-1838

VM
Running
Guest
Operating
Systems

GC19-6212

Administration -----..

Application Development

End Use

Quick
: r Reference

t::

t::SX20-4400

Introduction
to Security

SC24-5316

CMS Primer
for Line­
Oriented
Terminals

SC24-5242

1,.jil1 one copy of each shaded manual received with product tape

210 VM/SP System Product Interpreter Reference

Installation and Service

VM/SP RELEASE 6 LIBRARY

Diagnosis

CP
Data Areas
and Control
Blocks

lY24-5220

CMS
Diagnosis
Reference

LY20-0893

Reference Summaries

Service
Routines
Program
Logic

LY20-0890

CMS
Data Areas
and Control
Blocks

LY24-5221

Auxiliary Communication Support
r7 r7 r7

VTAM VTAM VTAM
Installation Customization Operation
and Resource
Definition

SC23-0111 SC23-0112 SC23-0113

r7 r7

VTAM VTAM
Programming Data Areas
for LU 6.2 (VM)

SC3O-3400 LY30-5593

7

RSCS RSCS RSCS

General Planning and Messages

Information Installation and Codes

GH24-5055 SH24·5057 SH24-5196

VM CP
Trace Table
(Poster)

SX24-5225

VTAM
Messages
and Codes

SC23-0114

VM/Pass-
Through
Facility
Overview

GC24-5373

RSCS
Operation
and Use

SH24-5058

7

Diagnosis
Guide

LY24-5241

VM Summary
of End Use
Tasks and
Commands
(Poster)

SX24-5173

VTAM
Programming

SC23-0115

VM/Pass-
Through
Facility:
Managing
and Using

SC24-5374

RSCS
Diagnosis
Reference

LY24-5228

CP
Diagnosis
Reference

LY20-0892

VTAM
Diagnosis
Guide

LY3O-5601

RSCS
Exit
Customization

SH24-5197

Bibliography 211

212 VM/SP System Product Interpreter Reference

Index

A
ABBREV function

description 76
using to select a default 76

abbreviations
looking for one in a string 125
testing with ABBREV function 76

abnormal change in flow of control 61
ABS function 76
absolute value

finding using ABS function 76
used with exponentiation 129

abuttal 12
active loops 45
addition

definition 129
operator 13

ADDRESS
function 77
instruction 28
settings saved during subroutine calls 33

Address CPICOMM 163
algebraic precedence 14
alphabetics

checking with DATATYPE 81
used as symbols 9

alphanumeric checking with DATATYPE 81
altering

flow within a repetitive DO loop 45
REXX variables 21

AND operator 14
AND'ing character strings together 78
AND, logical 14
ARG function 77
ARG instruction 30
ARG option of PARSE instruction 50
arguments

checking with ARG function 77
of execs 30
of functions 30, 71
of subroutines 30, 32
passing to execs 142
passing to functions 71
retrieving with ARG function 77
retrieving with ARG instruction 30
retrieving with the PARSE ARG instruction 50

arithmetic
combination rules 130
comparisons 131
errors 134
NUMERIC settings 48
operators 13, 127, 129
overflow 134

arithmetic (continued)
precision 128
underflow 134

array
initialization of 19
setting up 18

assigning data to variables 50
assignment

description of 17
of compound variables 18, 19

assignment indicator (=) 17
associative storage 18

B
backslash, use of 14
BASEDA TE option of DATE function 82
BIT AND function 78
BITOR function 78
bits checked using DATATYPE 81
BITXOR function 79
blank removal with STRIP function 95
blanks

adjacent to special character 8
as concatenation operator 12

boolean operations 14
bottom of program reached during execution 41
bracketed DBCS strings

DBBRACKET function 182
DBUNBRACKET function 186
distinguishing from SBCS data 174

built-in function invoking 32
built-in functions

ABBREV 76
ABS 76
ADDRESS 77
ARG 77
BITAND 78
BITOR 78
BITXOR 79
CENTER 79
CENTRE 79
COMPARE 80
COPIES 80
C2D 80
C2X 81
DATATYPE 81
DATE 82
DELSTR 84
DELWORD 84
description of 71
DIGITS 84
D2C 85
D2X 85

Index 213

built-in functions (continued)
ERRORTEXT 86
EXTERNALS 86
FIND 87
FORM 87
FORMAT 87
FUZZ 88
INDEX 88
INSERT 89
JUSTIFY 89
LASTPOS 90
LEFT 90
LENGTH 90
LINESIZE 91
MAX 91
MIN 91
OVERLAY 92
POS 92
QUEUED 92
RANDOM 93
REVERSE 94
RIGHT 94
SIGN 94
SOURCELINE 94
SPACE 95
STRIP 95
SUBSTR 96
SUBWORD 96
SYMBOL 97
TIME 97
TRACE 99
TRANSLATE 99
TRUNC 100
USERID 100
VALUE 100
VERIFY 101
WORD 102
WORD INDEX 102
WORDLENGTH 102
WORDPOS 103
WORDS 103
XRANGE 103
X2C 104
X2D 104

BY phrase of DO instruction 35

C
CALL instruction 32
Callable Services Library (CSL)

ADDRESS CPICOMM 163
calls originating from an application program 138
CSL function 106
using routines from the callable service library 151

CENTER function 79
centering a string using CENTER function 79
centering a string using CENTRE function 79

214 VMjSP System Product Interpreter Reference

CENTRE function 79
CENTURY option of DATE function 82
changing destination of commands 28
character position of a string 90
character position using INDEX 88
character removal with STRIP function 95
character to decimal conversion 80
character to hexadecimal conversion 81
clause

as labels 16
assignment 17
continuation of 11
description of 8
null 16

CMS (Conversational Monitor System)
COMMAND environment 24
environment name 22, 29
issuing commands to 21, 22, 28, 29
search order 22
unique functions 105

CMS (Conversational Monitor System) commands
DROPBUF 161
EXECDROP 161
EXECIO 161
EXEC LOAD 161
EXECMAP 161
EXECOS 161
EXECSTAT 161
EXECUPDT 161
GLOBALV 161
IDENTIFY 161
LISTFILE 161
MAKEBUF 161
NUCXLOAD 161
NUCXMAP 161
PARSECMD 161
PROGMAP 161
QUERY 161
SEGMENT 161
SET 161
XEDIT 161
XMITMSG 161

CMSCALL 29, 73
CMSFLAG

as a debug aid 158
function 105

codes, error 165-172
collating sequence using XRANGE 103
colon

as a special character 10
in a label 16

colon as label terminators 16
combination, arithmetic 130
comma

as continuation character 11
in CALL instruction 32
in function calls 71
separator of arguments 32, 71

comma (continued)
within a parsing template 30, 120, 121, 126

COMMAND as an environment name 24,29 \
command environments

See environments
command errors, trapping

See SIGNAL instruction
command inhibition

See TRACE instruction
commands

alternatIve destinations 21
destination of 28
inhibiting with TRACE instruction 67
issuing to host 21

comments
description of 8
to identify program language 135

Communications Routines 163
COMPARE function 80
comparisons

of numbers 13, 131
of strings 13

using COMPARE 80
compound symbols 18
compound variable

description of 18
setting new value 19

concatenation of strings 12
concatenation operator

abuttal 12
blank 12
II 12

conditional loops 35
conditions

ERROR 61
HALT 61
NOVALUE 61
saved during subroutine calls 33
SYNTAX 61

conditions, trapping of
See SIGNAL instruction

console
reading from with PULL 55
writing to with SAY 59

constant symbols 18
content addressable storage 18
continuation

character 11
of clauses 11
of data for display 59

Control Program (CP)
issuing commands to 22

control variable 36
controlled loops 36
Conversational Monitor System (CMS)

COMMAND environment 24
environment name 22, 29
issuing commands to 21, 22, 28

('

Conversational Monitor System (CMS) (continued)
search order 22
unique functions 105

conversion
character to decimal 80
character to hexadecimal 81
decimal to character 85
decimal to hexadecimal 85
formatting numbers 87
hexadecimal to character 104
hexadecimal to decimal 104

conversion functions 75-105
function packages 105

COPIES function 80
copying a string using COPIES 80
counting words in a string 103
CP (Control Program)

issuing commands to 22
CPICOMM 163
CSL (callable services library)

ADDRESS CPICOMM 163
calls originating from an application program 138
CSL function 106
using routines from the callable service library 151

current terminal line width 91
C2D function 80
C2X function 81

D
data length 12
data terms 12
DATATYPE function 81
date and version of the language processor 52
DATE function 82
DBADJUST function 182
DBBRACKET function 182
DBCENTER function 182
DBCJUSTIFY function 183
DBCS functions

DBADJUST 182
DBBRACKET 182
DBCENTER 182
DBCJUSTIFY 183
DBLEFT 184
DB RIGHT 184
DBRLEFT 184
DBRRIGHT 185
DBTODBCS 185
DBTOSBCS 186
DBUNBRACKET 186
DBVALIDATE 186
DBWIDTH 187

DBCS handling 173
DBCS strings 49, 173
DBCS (Double-Byte Character Set) characters 173
DBLEFT function 184

Index 215

DBRIGHT function 184
DBRLEFT function 184
DBRRIGHT function 185
DBTODBCS function 185
DBTOSBCS function 186
DBUNBRACKET function 186
DBVALIDATE function 186
DBWIDTH function 187
debugging programs

See interactive debug
See TRACE instruction

debug, interactive 65, 155
decimal arithmetic 127-134
decimal to character conversion 85
decimal to hexadecimal conversion 85
default environment 21
deleting part of a string 84
deleting words from a string 84
delimiters in a clause

See colon
See semicolons

DELSTR function 84
DELWORD function 84
derived name 18
derived names of variables 18
DIAG function 108
DIAGRC function 109
DIGITS function 84
DIGITS option of NUMERIC instruction 48, 128
direct interface to variables 147
displaying data

See SAY instruction
division

definition 129
operator 13

DMSCSL 139
DO instruction 35, 39

See also loops
Double-Byte Character Set (D BCS) strings 49, 173
DROP instruction 40
DROPBUF 161
dummy instruction

See NOP instruction
D2C function 85
D2X function 85

E
editor macros 28
elapsed time saved during subroutine calls 33
elapsed-time calculator 97
ELSE keyword

See IF instruction
END clause

See also DO instruction
See also SELECT instruction
specifying control variable 36

216 VM/SP System Product Interpreter Reference

engineering notation 133
environments

addressing of 28
default 29, 51, 142
determining current using ADDRESS function 77
temporary change of 28

equal operator 13
equality, testing of 13
error codes 165-172
ERROR condition of SIGNAL instruction 61
error messages

retrieving with ERRORTEXT 86
error messages and codes 165-172
errors

during execution of functions 75
from host commands 21
syntax 165-172
traceback after 69

errors, trapping
See SIGNAL instruction

ERRORTEXT function 86
EUROPEAN option of DATE function 82
EV ALBLOK format 143
evaluation of expressions 12
exception conditions saved during subroutine calls 33
exclusive OR operator 14
exclusive ORing character strings together 79
EXECCOMM

interface to variables 147
subcommand entry point 147

EXECIO 161
execs

arguments to 30
calling as functions 145
in-store execution of 142
invoking 135
plist for 135
retrieving name of 51

EXECTRAC flag
external control of tracing 158

execution by language processor 7
execution of data 43
EXIT instruction 41
exponential notation

definition 132
description of 121
usage 10

exponentiation
definition 129
operator 13

EXPOSE option of PROCEDURE instruction 53
expressions

evaluation 12
examples 15
parsing of 51
results of 12
tracing results of 65

extended plist 142
external functions

description of 72
interface 145

EXTERNAL option of PARSE instruction 50
external routine invoking 32
external subroutines

interface 145
external trace bit 157
EXTERNALS function 86
extracting a substring 96
extracting words from a string 96

F
FIFO (first-in/first-out) stacking 57
file block 144

in the GCS environment 201
file name, type, mode of program 51
FIND function 87
finding a mismatch using COMPARE 80
finding a string in another string 88, 92
finding the length of a string 90
flow control

abnormal, with SIGNAL 61
with CALL/RETURN 32
with DO construct 35
with IF construct 42
with SELECT construct 60

FOR phrase of DO instruction 35
FOREVER repetitor on DO instruction 35
FORM function 87
FORM option of NUMERIC instruction 48, 133
FORMAT function 87
formatting

DBCS blank adjustments 182
DBCS bracket adding 182
DBeS bracket stripping 186
DBCS DBCS strings to SBCS 186
DBCS EBCDIC to DBCS 185
DBCS string width 187
DBCS text justification 183
numbers for display 87
numbers with TRUNC 100
of output during tracing 68
text centering 79
text justification 89
text left justification 90, 184
text left remainder justification 184
text right justification 94, 182, 184
text right remainder justification 185
text spacing 95
text validation function 186

functions
built-in 71, 76
calling execs as 145
description of 71
external 71

functions (continued)
external interface 145
external packages 105-118
for VM/SP information 105
forcing built-in or external reference 72
internal 71
invocation of 71, 142
numeric arguments of 134
return from 58
variables in 53

function, built-in
See built-in functions

FUZZ
controlling numeric comparison 132
option of NUMERIC instruction 48, 132

FUZZ function 88

G
GCS (Group Control System) environment 199
GOTO, abnormal

See SIGNAL instruction
greater than operator 13
greater than or equal operator 13
greater than or less than operator (> <) 13
Group Control System (GCS) environment 199
grouping instructions to execute repetitively 35
group, DO 35

H
HALT condition of SIGNAL instruction 61
Halt Interpretation (HI) immediate command 155
halting a looping program 157
halt, trapping

See SIGNAL instruction
hexadecimal

See also conversion
checking with DATATYPE 81

hexadecimal digits 9
hexadecimal strings 9
HI (Halt Interpretation) immediate command 157
host commands 21
hours calculated from midnight 97
HT flag

cleared before error messages 165

identifying users 84, 87, 88, 100
IF instruction 42
immediate commands

HI (Halt Interpretation) 157
TE (Trace End) 157
TS (Trace Start) 157

implementation details 189
implied semicolons 11

Index 217

imprecise numeric comparison 132
in-store execution of execs 142
inclusive OR operator 14
indefinite loops 35

See also looping program
indentation during tracing 68
INDEX function 88
indirect evaluation of data 43
inequality, testing of 13
infinite loops 35

See also looping program
inhibition of commands with TRACE instruction 67
initialization

of arrays 19
of compound variables 19

INSERT function 89
inserting a string into another 89
instructions

ADDRESS 28
ARG 30
CALL 32
DO 35
DROP .40
EXIT 41
IF 42
INTERPRET 43
ITERATE 45
LEAVE 46
NOP 47
NUMERIC 48
OPTIONS 49
PARSE 50
PROCEDURE 53
PULL 55
PUSH 56
QUEUE 57
RETURN 58
SAY 59
SELECT 60
SIGNAL 61
TRACE 65
UPPER 70

integer arithmetic 127-134
integer division

definition 129
description of 127
operator 13

interactive debug 65, 155
See also TRACE instruction

interfaces
system 135
to external routines 145
to variables 147

internal functions
description of 72
return from 58
variables in 53

218 VM/SP System Product Interpreter Reference

internal routine invoking 32
INTERPRET instruction 43
interpretive execution of data 43
interrupting program execution 157
invoking

built-in functions 32
routines, 32

ITERATE instruction

J

See also DO instruction
description 45
use of variable on 45

JULIAN option of DATE function 83
JUSTIFY function 89

K
keywords

L

See also instructions
conflict with commands 159
mixed case 27
reservation of 159

label
as targets of CALL 32
as targets of SIGNAL 61
description of 16
duplicate 61
in INTERPRET instruction 43
search algorithm 61

language processor date and version 52
language structure and syntax 8
LASTPOS function 90
leading blank removal with STRIP function 95
leading zeros

adding with the RIGHT function 94
removal with STRIP function 95

LEA VE instruction
See also DO instruction
description of 46
use of variable on 46

leaving your program 41
LEFT function 90
LENGTH function 90
less than operator 13
less than or equal operator 13
less than or greater than operator « » 13
LIFO (last-in/first-out) stacking 56
line length of terminal 91
line width of terminal 91
lines from a program retrieved with SOURCELINE 94
LINESIZE function 91
list 18

literal patterns, parsing with 122
literal strings 8
locating a phrase in a string 87
locating a string in another string 88, 92
logical bit operations

. BITAND 78
BITOR 78
BITXOR 79

logical operations 14
lookaside buffering 189
looping program

halting 157
tracing 157

loops
See also DO instruction
See also looping program
active 45
execution model 38
modification of 45
repetitive 35
termination of 46

lower case symbols 9

M
macros, editor 28
MAKEBUF

creating additional buffers 56, 57
description of 161

MAX function 91
memory

accessing 118
finding upper limit of 118

messages, error 165-172
MIN function 91
minutes calculated from midnight 97
mixed DBCS string 82, 174
MONTH option of DATE function 82
multiple

argument passing 142
string parsing 126

multiplication

N

definition 129
operator 13

names
of execs 51
of functions 71
of programs 51
of subroutines 32
of variables 9

negation
of logical values 14
of numbers 13

nesting of control structures 34

NOP instruction 47
Normal option of DATE function 83
not equal operator 13
not greater than operator 13
not less than operator 13
NOT operator 14
notation

engineering 133
scientific 133

NOTYPING flag cleared before error messages 165
NOV ALUE condition

on SIGNAL instruction 61
use of 159

null clauses 16
null instruction

See NOP instruction
null strings 8, 12
numbers

arithmetic on 13, 127, 129
checking with DATATYPE 81
comparison of 13, 131
definition 128
description of 10, 127
formatting for display 87
in DO instruction 35
truncating 100
use in the language 134

NUMERIC
DIGITS option 48
FORM option 48
FUZZ option 48
instruction 48
option of PARSE instruction 50, 133
settings saved during subroutine calls 33

numeric patterns, parsing with 120

o
operation tracing results 65
operator

arithmetic 13, 127, 129
as special characters 10
comparison 13, 131
concatenation 12
logical 14
precedence (priorities) of 14

OPTIONS instruction 49
ORDERED option of DATE function 82
ORing character strings together 78
OR, logical

exclusive 14
inclusive 14

OTHERWISE clause
See SELECT instruction

overflow, arithmetic 134
OVERLAY function 92
overlaying a string onto another 92

Index 219

p
packing a string with X2C 104
parameter list

extended 22
tokenized 22

parentheses
adjacent to blanks 10
in expressions 12
in function calls 71
in parsing templates 123

PARSE instruction 50
parsing 119-126

definition 121
general rules 119, 121
introduction 119
literal patterns 122
multiple strings 126
patterns 122
positional patterns 124
selecting words 122
variable patterns 123

parsing templates
in ARG instruction 30
in PARSE instruction 50
in PULL instruction 55

patterns in parsing 122
performance considerations 189
period

causing substitution in variable names 18
in numbers 128

period as placeholder in parsing 124
permanent command destination change 28
plist

extended 142
for accessing variables 147
for invoking execs 135
for invoking external routines 145

POS function 92
position

last occurrence of a string 90
of character using INDEX 88

positional patterns, parsing with 124
powers of ten in numbers 10
precedence of operators 14
precision of arithmetic 128
prefix operators 13, 14
presumed command destinations 28
PROCEDURE instruction 53
programming restrictions 7
programming style 189
programs

retrieving lines with SOURCELINE 94
retrieving name of 51

protecting variables 53
pseudo random number function of RANDOM 93
PSW

as an environment name 51, 77

220 VMjSP System Product Interpreter Reference

PSW (continued)
non-svc subcommand invocation 145

PULL instruction 55
PULL option of PARSE instruction 51
pure DBCS string 82, 174
purging storage resident execs 161
PUSH instruction 56

Q
QUERY EXECTRAC command 158
queue

counting lines in 92
reading from with PULL 55
writing to with PUSH 56
writing to with QUEUE 57

QUEUE instruction 57
QUEUED function 92

R
RANDOM function 93
random number function of RANDOM 93
RC (return code)

not set during interactive debug 155
set by CSL external function 107
set by host commands 21
set to 0 if commands inhibited 67
special variable 160

reading CMS files 161
reading the stack and console 55
remainder

definition 129
description of 127
operator 13

reordering data with TRANSLATE function 99
repeating a string with COPIES 80
repetitive loops

altering flow 46
controlled repetitive loops 36
exiting 46
simple do group 36
simple repetitive loops 36

request block
for accessing variables 148

reservation of keywords 159
restoring variables 40
restrictions

embedded blanks in numbers 10
first character of variable name 17
maximum length of results 12

restrictions in programming 7
Restructured Extended Executor language (REXX)

interpreter structure 189
RESULT

set by RETURN instruction 33, 58
special variable 160

results
length of 12

retrieving argument strings with ARG 30
return codes

as set by host commands 21
setting on exit 41

RETURN instruction 58
return string

setting on exit 41
returning control from REXX program 58
REVERSE function 94
REXX (Restructured Extended Executor) language

interpreter structure 189
RIGHT function 94
rounding

definition 129
using a character string as a number 10

routines
See functions
See subroutines

running off the end of a program 41
RX

search order 73
RX prefix on external routines 145
RXLOCFN

description of 105
in GCS environment 199
search order 73

RXSYSFN
description of 105
in GCS environment 199
search order 73

RXUSERFN
description of 105
example 191

s

in GCS environment 199
search order 73

SAY instruction 59
scientific notation 133
search order

for commands 22
for functions 72
for subroutines 32

searching a string for a phrase 87
seconds calculated from midnight 97
SELECT instruction 60
semicolons

implied 11
omission of 27
within a clause 8

SET EXECTRAC command
external control of tracing 158

SFS directories 7
Shared File System directories 7

Shift-in (SI) characters 173, 177
Shift-out (SO) characters 173, 177
SHVBLOCK format 148
SIGL

set by CALL instruction 33
set by SIGNAL instruction 63
special variable 160

SIGN function 94
SIGNAL

execution of in subroutines 33
in INTERPRET instruction 43, 64

SIGNAL instruction 61-64
significant digits in arithmetic 128
simple number

See numbers
simple symbols 18
single stepping

See interactive debug
six-word extended plist 142
SORTED option of DATE function 82
source of the program and retrieval of information 51
SOURCE option of PARSE instruction 51
SOURCELINE function 94
SPACE function 95
special characters 10
special variables

RC 160
RESULT 160
SIGL 160

SPOOL EXEC, avoiding 23
SPOOL MODULE, avoiding 23
stem of a variable

assignment to 19
description of 18
used in DROP instruction 40
used in PROCEDURE instruction 53

stepping through programs
See interactive debug

storage
accessing 118
finding upper limit of 118

STORAGE function 118
storage, execution from 142
strictly equal operator 13
strictly greater than operator 13, 14
strictly greater than or equal operator 14
strictly less than operator 13, 14
strictly less than or equal operator 14
strictly not equal operator 13
strictly not greater than operator 14
strictly not less than operator 14
string

as literal constants 8
as names of functions 8
as names of subroutines 34
comparison of 13
concatenation of 12
description of 8

Index 221

string (continued)
hexadecimal specification of 9
interpretation of 43
length of 12
null 8, 12
quotes in 8
verifying contents of 101

string patterns, parsing with 120
STRIP function 95
structure and syntax 8
style, programming 189
SUBCOM function 25
subcommand destinations 28
subcommands

addressing of 28
concept 24

subroutines
calling of 32
external interface 145
forcing built-in or external reference 32
naming of 34
passing back values from 58
return from 58
use of labels 32
variables in 53

substitution
in expressions 12
in variable names 18

SUBSTR function 96
subtraction

definition 129
operator 13

SUBWORD function 96
symbol

assigning values to 17
classifying 18
compound 18
constant 18
description of 9
simple 18
uppercase translation 9
use of 17
valid names 9

SYMBOL function 97
syntax checking

See TRACE instruction
SYNTAX condition of SIGNAL instruction 61
syntax diagrams 4
syntax error

traceback after 69
trapping with SIGNAL instruction 61

syntax, general 8
system interfaces 135
System Product Interpreter User's Guide 5
system trace bit 157
Systems Application Architecture(SAA) 5

222 VM/SP System Product Interpreter Reference

T
TE (Trace End) immediate command 157
templates, parsing

general rules 119
in ARG instruction 30
in PARSE instruction 50
in PULL instruction 55

temporary command destination change 28
ten, powers of 132
terminals

finding width with LINESIZE 91
reading from with PULL 55
writing to with SAY 59

terms and data 12
text formatting

See formatting
See word

THEN
as free standing clause 27
following IF clause 42
following WHEN clause 60

TIME function 97
TO phrase of DO instruction 35
tokens 8
trace bit, external 157
Trace End (TE) immediate command 155
TRACE function 99
TRACE instruction 65

See also interactive debug
TRACE setting

altering with TRACE function 99
altering with TRACE instruction 65
querying 99

Trace Start (TS) immediate command 155
trace tags 68
traceback, on syntax error 69
tracing

action saved during subroutine calls 33
by interactive debug 155
data identifiers 68
execution of programs 65
external control of 157, 158
lo'oping programs 157

tracing flags
+ + + 68
- 68
>C> 69
>F> 69
>L> 69
>0> 69
>P> 69
>V> 69
>.> 68
> > > 68

trailing blank removed using STRIP function 95
trailing zeros 130

TRANSLATE function 99
translation

See also uppercase translation
with TRANSLATE function 99
with UPPER instruction 70

trapping of conditions
See SIGNAL instruction

TRUNC function 100
truncating numbers 100
TS (Trace Start) immediate command 157
type of data checking with DATATYPE 81
type-ahead line counting with EXTERNALS 86
typing data

See SAY instruction

U
unassigning variables 40
unconditionally leaving your program 41
underflow, arithmetic 134
unpacking a string with C2X 81
UNTIL phrase of DO instruction 35
UPPER instruction 70
UPPER option of PARSE instruction 50
uppercase translation

during ARG instruction 30
during PULL instruction 55
of symbols 9
with PARSE UPPER 50
with TRANSLATE function 99
with UPPER instruction 70

USA option of DATE function 82
USERID function 100

v
VAL UE function 100
VALUE option of PARSE instruction 51
V AR option of PARSE instruction 52
variable names 9
variable patterns, parsing with 123
variables

compound 18
controlling loops 36
description of 17
direct interface to 147
dropping of 40
exposing to caller 53
getting value with VALUE 100
in internal functions 53
in subroutines 53
new level of 53
parsing of 52
resetting of 40
setting new value 17
simple 18
special

RC 160
RESULT 160

variables (continued)
special (continued)

SIGL 160
testing for initialization 97
translation to uppercase 70
valid names 17

VERIFY function 101
VERSION option of PARSE instruction 52
VMLIB 107, 163
VM/SP unique functions 105

W
WEEKDAY option of DATE function 82
WHEN clause

See SELECT instruction
WHILE phrase of DO instruction 35
whole numbers

checking with DATATYPE 81
description of 10

word
counting in a string 103
deleting from a string 84
extracting from a string 96, 102
finding in a string 87
finding length of 102
in parsing 122
locating in a string 102

WORD function 102
word processing

See formatting
See word

WORDINDEX function 102
WORD LENGTH function 102
WORDPOS function 103
WORDS function 103
writing CMS files 161
Writing Simple Programs in REXX 5
writing to the stack

X

with PUSH 56
with QUEUE 57

XEDIT macro interface 24
XORing character string together 79
XOR, logical 14
XRANGE function 103
X2C function 104
X2D function 104

Z
zeros added on the left 94
zeros removal with STRIP function 95

Index 223

Special Characters
. (period)

as placeholder in parsing 124
causing substitution in variable names 18
in numbers 128

< (less than operator) 13
< < (strictly less than operator) 13, 14
< < = (strictly less than or equal operator) 14
< > (less than or greater than operator) 13
< = (less than or equal operator) 13
+ (addition operator) 13, 129
+ + + tracing flag 68
I (inclusive OR operator) 14
II (concatenation operator) 12
& (AND operator) 14
&& (exclusive OR operator) 14
! prefix on TRACE option 67
* (multiplication operator) 13, 129
- tracing flag 68
** (exponentiation operator) 13, 129
--, (NOT operator) 14
--, < (not less than operator) 13
--, < < (strictly not less than operator) 14
--, > (not greater than operator) 13
--, > > (strictly not greater than operator) 14
--, = (not equal operator) 13
--, = = (not strictly equal operator) 13
I (division operator) 13, 129
II (remainder operator) 13, 129
I = (not equal operator) 13
1= = (not strictly equal operator) 13
, (comma)

as continuation character 11
in CALL instruction 32
in function calls 71
separator of arguments 32, 71
within a parsing template 30, 120, 121, 126

% (integer division operator) 13, 129
> (greater than operator) 13
> C > tracing flag 69
> F > tracing flag 69
> L > tracing flag 69
> 0 > tracing flag 69
> P > tracing flag 69
> V > tracing flag 69
> . > tracing flag 68
> < (greater than or less than operator) 13
> > (strictly greater than operator) 13, 14
> > > tracing flag 68
> > = (strictly greater than or equal operator) 14
> = (greater than or equal operator) 13
? prefix on TRACE option 67
: (colon)

as a special character 10
in a label 16

= (equal sign)
assignment indicator 17

224 VM/SP System Product Interpreter Reference

= (equal sign) (continued)
equal operator 13
immediate debug command 155
in DO instruction 35

= = (strictly equaJ operator) 13
- (subtraction operator) 13, 129
\ (NOT operator) 14
\ < (not less than operator) 14
\ < < (strictly not less than operator) 14
\ > (not greater than operator) 14
\ > > (strictly not greater than operator) 14
\ = (not equal operator) 14
\ = = (strictly not equal operator) 13, 14

--------- - ------- - ---- - - -----------.-
®

Printed in U.S.A.

Program Number
5664-167

File Number
S370/4300-39

VM/SP
System Product Interpreter Reference
Order No. SC24-5239-03

READER'S
COMMENT
FORM

Is there anything you especially like or dislike about this book? Feel free to comment on
specific errors or omissions, accuracy, organization, or completeness of this book.

If you use this form to comment on the online HELP facility, please copy the top line of the
HELP screen.

___ Help Information line of

IBM may use or distributl? whatever information you supply in any way it believes appropriate without incurring any
obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead, contact your
IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

mM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5239-03

Reader's Comment Form

Fold and tape Please Do Not Staple

II

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1111111.11.1'1.1.11 •• 1111.1.111111 •• 1111.1111111 ••• 1

Fold and tape Please Do Not Staple

--------- ----- ~ ----- - ---- - - -----------,-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

VM/SP
System Product Interpreter Reference
Order No. SC24-5239-03

READER'S
COMMENT
FORM

Is there anything you especially like or dislike about this book? Feel free to comment on
specific errors or omissions, accuracy, organization, or completeness of this book.

If you use this form to comment on the online HELP facility, please copy the top line of the
HELP screen.

---- Help Information line of

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you, and all such information will be considered nonconfidential.

Note: Do not use this form to report system problems or to request copies of publications. Instead, contact your
IBM representative or the IBM branch office serving you.

Would you like a reply? _YES _NO

Please print your name, company name, and address:

mM Branch Office serving you:

Thank you for your cooperation. You can either mail this form directly to us or give this
form to an IBM representative who will forward it to us.

SC24-5239-03

Reader's Comment Form

Fold and tape Please Do Not Staple

I I
BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY

POSTAGE WILL BE PAID BY ADDRESSEE:

--------- -------- - ---- - - -----------,-
INTERNATIONAL BUSINESS MACHINES CORPORATION
DEPARTMENT G60
PO BOX 6
ENDICOTT NY 13760-9987

1 ••• 11 •• 11.1 ••• 1.11 •• 11 ••• 1.1 •• 1.1 •• 1111.1 ••• 11111.1

Fold and tape Please Do Not Staple

--------- - ------- - ---- - - ----------_.-
®

CUT
OR

FOLD
ALONG

LINE

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

. ~ . • • •

