
Program Product 

5C24-5219-1 
File no. 5370/4300-39 

IBM Virtual Machine/ 
System Product: 
EXEC 2 Reference 

Program Number 5664-167 

Release 2 

--- ------ - ---- ---- - ---- - - ----------_.-



Second Edition (April 1982) 

This edition, SC24-5219-1, applies to release 2 of IBM Virtual 
Machine/System Product, Program Humber 5664-167, and to all subsequent 
versions and releases until otherwise indicated in the new editions or 
Technical Newsletters. Changes are continually made to the information 
contained herein; before using this publication in connection with the 
operation of IBM systems, consult the ~ Svstem/370 and 4300 Processors 
Bibliography, GC20-0001, for the editions that are applicable and 
current. 

I Changes or additions to the text and illustrations are indicated by a 
vertical line to the left of the change. 

I Summary of Amendments 
For a list of changes, see page iii. 

It is possible that this material may contain reference to, or 
information about, IBM products (machines and programs), programming, or 
services that are not announced in your country. Such references or 
information must not be construed to mean that IBM intends to announce 
such IBM products, programming, or services in your country. 

Pli~licatio~s are not stocked at the address given below; requests for 
IBM publications should be made to your IBM representative or to the IBM 
branch office serving your locality. 

A form for reader's comments is provided at the back of this 
publication. If the form has been removed, comments may be addressed to 
IBM Corporation, Programming Publications, Department G60, P.O. Box 6, 
Endicott, Hew York, U.S.A. 13760. IBM may use or distribute any of the 
information you supply in any way it believes appropriate without 
incurring any obligation whatever. You may, of course, continue to use 
the information you supply. 

© Copyright International Business Machines Corporation 1980,1981,1982 

J 



VARIABLE SHARING 

summary of Amendments 

Summary of Amendments 
for SC24-5219-1 

Programs called from an EXEC 2 file can now directly access and 
manipulate all variables contained in that EXEC 2 file through an 
EXEC 2 facility called EXECCOMM. Variables can also be assigned 
values as a side-effect of command or subcommand execution. 

NEW PRE-DEFINED VARIABLE 

The pre-defined variable &CMDSTRING is i.nitialized to the 
untranslated command string available from the command line. 

Summary of Admendments iii 



PREFACE 

The purpose of this publication is to define the EXEC 2 language. It is 
to be used primarily as a reference manual; it contains all of the 
formats, syntax rules, and descriptions of the arguments for EXEC 2 
statements. 

For tutorial information on using the EXEC 2 language, refer to 
"Appendix D: EXEC 2 Primer for Hew Users." The material contained 
therein may be used in conjunction with the reference section. 

The reference section of this pUblication contains these parts: 

• "Part 1: Introduction" summarizes what the EXEC 2 language is and 
what it is capable of. It introduces and defines some of the 
terminology used throughout this manual. EXEC 2 statements and the 
rules for interpreting them are also discussed. 

• "Part 2: EXEC 2 Statements" discusses in detail the different types 
of EXEC 2 statements. This discussion is followed by illustrations 
of the syntax of each EXEC 2 statement and a description of the 
function of each statement. "User-Defined Functions" and "EXEC 2 
Hame Substitution" are also discussed. 

• "Part 3: Hotes on EXEC 2" contains detailed discussions on 
particular aspects of EXEC 2 that do not fit into a category by 
themselves. 

• "Part 4: BHF Description of the EXEC 2 Syntax" contains a 
description of the main features of the EXEC 2 syntax in Backus-Haur 
Form (BHF). This section presents an alternative description of the 
EXEC 2 syntax for those familiar with this type of notation. This 
is not essential reading. 

• "Part 5: EXEC 2 Errors" lists the error messages and return codes 
issued by the EXEC 2 interpreter. 

This publication also has these appendixes: 

• "Appendix A: CMS EXEC and EXEC 2 Relationship" makes a comparison 
between CMS EXEC and EXEC 2 statements. 

• "Appendix B: Sample EXEC 2 Files" gives two examples of EXECs 
written in the EXEC 2 language. 

• "Appendix C: EXEC 2 in CMS." This appendix discusses how CMS 
identifies EXEC 2 files, the limits CMS imposes on using EXEC 2, 
examples of using EXEC 2 with assembler language programs, and the 
execution of XEDIT macros in EXEC 2. Appendix C also contains a 
discussion of variable sharing through the EXECCOMM interface. 

iv IBM VM/SP EXEC 2 Reference 



• "Appendix D: EXEC 2 Primer for Hew Users" provides a tutorial aid 
for users who are unfamiliar with the EXEC 2 language. This primer 
is intended for the person who has a modest amount of CMS experience 
and enough familiarity with a text editor so that the mechanics of 
creating a disk file present no serious difficulty. Users who have 
already mastered a command programming language for some other 
system, or who have experience with the earlier CMS EXEC facility, 
may prefer to read the EXEC 2 reference material instead of the 
primer. 

• "Appendix E: Useful EXEC 2 Techniques" shows some solutions to some 
common EXEC 2 programming problems. 

If you are unfamiliar with writing EXEC files or need tutorial 
information, you may find it helpful to read "Appendix D: EXEC 2 Primer 
for Hew Users" before reading the reference section of this manual. 

Note: Although EXEC 2 is designed to be system independent, the 
implementation requirements of CMS (the host system) impose certain 
limits on using EXEC 2. See Appendix C for details. 

NOTATIONAL CONVENTIONS USED IN THIS BOOK 

The conventions used in this publication to illustrate EXEC 2 statements 
follow: 

• Uppercase letters and punctuation marks (except as described below) 
represent information that must be given exactly as shown. 

• Lowercase letters represent information that must be supplied by 
the user. 

• Information contained within brackets [] represents an option that 
can be included or omitted. 

• Vertical lists that ~ not enclosed in brackets represent 
alternatives, one of which must be given. For example: 

A 
B 

• Vertical lists that ~ enclosed in brackets represent 
alternatives, one of which may be given. For example: 

[ ~ 1 

Preface v 



• An ellipsis C ••• ) indicates that a variable number of items may be 
included. 

• Underlined elements represent an assumed (default) value in the 
event a parameter is omitted. 

Prerequisite Publications: 

IBM Virtual Machine/System Product: Introduction, GC19-6200 

Corequisite Publications: 

IBM Virtual Machine/System Product: System Messages, SC19-6204 

IBM Virtual Machine/System Product: CMS User's Guide, SC19-6210 

IBM Virtual Machine/System Product: CMS Command and Macro Reference, 
SC19-6209 

IBM Virtual Machine/System Product: System Product Editor User's 
Guide, SC24-5220 

IBM Virtual Machine/System Product: System Product Editor Command 
and Macro Reference, SC24-5221 

vi IBM VM/SP EXEC 2 Reference 

J 

J 



Publications that support VM/SP as used 

in conjunction with VM/370 Release 6 

VM/SP Licensed VM/SP General Information 
Program Spcifications - Manual 
GC20-1842 136) GC20-1838 100) System 

Programming 

J 
VM/SP Library Guide 
and Master Index - VM/SP Introduction Note: The numbers given in VM/SP Planning and 

GC19-6200 120) parentheses represent System Generation Guide 
GC19-6207 120) the Subject Code, SC19-6201 134) 

II J 
VM/SP Terminal User's VM/SP Operating Systems 
Guide in 8 Virtual Machine 

GC19-6206 140) 
Operations 

GC19-6212 134) 

.... , ..... " ... 

tJ D 
VM/SP System Messages VM/SP CP Command VM/SP System 
and Codes - Reference for General VM/SP Operator', Guide 

Programmer's Guide 
Users SC19-6202 140) SC19-6204 140) 
SC19-6211 136) 

SC19-6203 136) 
..... 

eMS User 

II 

'.' ••. 

EREP Messages VM/SP CMS Primer 

GC38-1045 140) SC24-5236 139) 

.... iii 
i VM/SP CMS User's Guide VM/SP CMS Command VM/SP Quick Guide for - and Macro Reference Users 

SC19-6210 139) 
uxiliary Support SC19-6209 139) SX20-4400 136) A 

D J ~ iii 
VM/370 Remote Spooling 

•••••• 

OSIVS and VM/370 OSIVS, DOSIVS, VM/370 VM/SP Commands Communications Assembler Programmer's ,- Assembler Language (General User) Susbsystem User's Guitle Guide 

GC20-1816 130) GC33-4021 121) GC33-4010 121) SX20-4401 136) 

II I 1'1 
VM/370 Systam Logic and VM/SP System Product VM/SP Commands Problem Determination 

...... Guide Volume 3 IRSCS) Editor User's Guide (Other than General Use) 

SY20-0888 136) ••••• SC24-5220 139) SX20-4402 136) 

II ! 
VM/370 Interactive .... VM/SP System Product VM/SP SP Editor 
Problem Control System Editor Command and Command Language 
IIPCS) User', Guida Macro Reference Reference Summary 

GC20-1823 137) SC24-5221 139) SX24-5122 136) 

................................ J l 
< 

VM/SP EX EC 2 Language VM/SP EXEC 2 Referenca Reference Summary 

•••••• 

SC24-5219 136) SX24-5124 136) 

•••• 

legend: 

II For SNA terminal users, the prerequisite publication is: VMNCNA Installtion, Operations, and Terminal Use, Order Number SC27 -0502. 

fJ All users of virtual machine must use the VM/sP System Messages and Codes publication. 

II Contains information on VM/EREP support. EREP Release 3 is recommended for use with VM/SP Release 2. 

II VM/370 Release 6 components. However, the IPes Extension Program Product (5748-SA 1) and the RSCS Networking Program Product (5748-XP1) 
are recommended for use with VM/SP. 

II If you want all three of the Reference Summary publications, use SBOF 3820 when ordering. 

Support 

i' 
, 

,. 
Device Support 
Facilities User's 
Guide and Reference 

GC35-0033 130) 

II 
VM/SP OL TSEP and 
Error Recording Guide 

SC19-6205 137) 

.' . i 
} 

VM/SP System Logic and 

" 
Problem Determination 
Guide Volue 1 ICP) 

LY20-0892 136) 
. .... 

VM/SP System Logic and 
Problem Determination 

.. ' •. 
Guide Volume 2 ICMS) 

LY20-0893 139) 

J 
VM/SP Data Areas and 
Control Block Logic 

LY20-0891 136) 

... , II 
VM/SP Service Routines 
Program Logic 

LY20-0890 137) 

OSIVS and VM/370 
Assembler Program Logic 

SY33-6041 121) 

11 
Environmental Recording, 
Editing, and Printing 
IEREP) Program 

GC28-0772 137) 

11 
Environmental Recording, 
Editing, and Printing 
(ER EP) Program Logic 

SY28-0773 137) 

Preface vi i 



J 

J 
viii IBM VM/SP EXEC 2 Reference 



L 

Part 1: Introduction 
Executi ng EXEC 2 Programs .... 
Introduction to the EXEC 2 Language 

Rules for Interpreting Executable Statements 

Part 2: EXEC 2 Statements 
Types of Executable Statements 
Predefined Variables 
Control Statements 
Predefined Functions 
User-Defined Functions 
EXEC 2 Name Substitution 

Part 3: Hotes on EXEC 2 

Part 4: BNF Description of the EXEC 2 Syntax 

Part 5: EXEC 2 Errors 

Appendix A: CMS EXEC and EXEC 2 Relationship 
Converting CMS EXEC Files to EXEC 2 Files 
EXEC Statement Comparison 

Control Statements 
Predefined Functions 
Predefined Variables 

Functions Unique to EXEC 2 
Control Statements 
Predefined Functions 
Predefined Variables 
Other . . . . . 

Appendix B: Sample EXEC 2 Files 

Appendix C: EXEC 2 in CMS 
Identifying EXEC 2 Files 

. . 

contents 

1 
1 
1 
3 

4 
4 
6 

10 
24 
31 
33 

35 

43 

46 

48 
48 
48 
48 
50 
50 
52 
52 
52 
52 
53 

54 

56 
56 

Calling EXEC 2 Programs from CMS Command Level 56 
Summary of Limits for EXEC 2 Files in CMS 57 
Using EXEC 2 Parameter Lists with Assembler Language Programs 59 

Executing XEDIT Macros in EXEC 2 . . . .. ..... 62 
EXECCOMM - Sharing EXEC 2 Variables with Assembler Language Programs 63 

Appendix D: EXEC 2 Primer for Hew Users 
Commands, Return Codes, and EXEC Variables 
EXEC Fi Ie Arguments . . . . 
EXEC Variable Names 
Conditional Interpretation of Statements 
Statement Labels 
Assignment Statements 

Contents 

67 
68 
70 
71 
71 
72 
72 

ix 



, 

EXEC Variable Evaluation 
An Example of Generating EXEC Variable Names 
The &LOOP Control Statement ...• 
Making EXEC Files Interact with Users 
EXEC 2 Implementation of Editor Macros 
Handling Embedded Blanks ..... . 
An Example of EDIT and CMS Commands in One File 
PARA -- A Complex XEDIT Macro 
Some Final Words 

Appendix E: Useful EXEC 2 Techniques 

INDEX 

x IBM VM/SP EXEC 2 Reference 

73 
74 
75 
76 
80 
82 
83 
85 
96 

97 

103 

J 

J 



part 1: Introduct;on 

EXEC 2 is intended for manipulating English-like words as they appear in 
computer command languages. It is also capable of performing integer 
arithmetic and simple string manipulation. 

The notational conventions used in this publication to illustrate EXEC 2 
statements are discussed in the Preface. 

Execut;ng EXEC Z Programs 

EXEC 2 programs reside in EXEC files, and are executed by the EXEC 2 
interpreter. The EXEC 2 interpreter can be invoked by issuing a command 
such as: 

EXEC filename [argl [arg2 J] 

where "filename" is the name of the EXEC 2 file to be executed, and 
"arg1", "arg2", ... , are arguments that are passed to it. In some 
command environments (such as XEDIT) the word "EXEC" is omitted, and in 
others (such as CMS console command mode) it is optional. (See Appendix 
C for the rules on how EXEC 2 files are distinguished from other EXEC 
files in CMS.) 

EXEC 2 files can have any filename. EXEC 2 files have the filetype EXEC 
for files that are invoked from CMS command mode, and the filetype XEDIT 
for files used as XEDIT macros. Other filetypes may be used for EXEC 2 
files that are invoked from other environments (see Appendix C). 

EXEC 2 files can have either "F" (fixed) or "V" (variable) format. 

Introduct;on to the EXEC Z Language 

EXEC 2 files contain EXEC 2 statements. An EXEC 2 statement occupies 
one line, and may be a comment or an executable statement. A comment is 
a line in which the first non blank character is an asterisk, and is 
ignored during execution. An executable statement consists of a 
sequence of words. the first of which does not begin with an asterisk. 
A word is a string of.contiguous nonblank characters. Words are 
separated from each other by one or more blanks. (Refer to Appendix C 
for implementation limits on EXEC 2 statements and words.) 

Part 1: Introduction 1 



An executable statement may be: 

• a null statement (which has no effect), 

• a command (which is issued to a command interpreter), 

• an assignment (which manipulates EXEC 2 variables), or 

• a control statement (which manipulates EXEC 2 variables, controls 
execution or flow through the file, or performs console input or 
output). 

Assignments start with the name of an EXEC 2 variable, and control 
statements start with an EXEC 2 control word. EXEC 2 variables and 
control words begin with an ampersand. Variables are local to the 
current EXEC 2 file. Most variables are initially unset, and they have 
an apparent null value. The variables &1 &2 ... , are special, and are 
initialized to the arguments "argl", "arg2", .•. , that are passed to the 
EXEC 2 file. For example, if an EXEC named "TEST" was invoked as "TEST 
X Y Z", &0 would contain "TEST" and the arguments &1, &2, and &3 would 
contain X, Y, and Z, respectively. 

The following are examples of variables: 

&X 
&3.1415927 
&UPPER_LIMIT 
leX) 

The following are examples of control words: 

&TYPE 
&LOOP 
&EXIT 

A label, appearing as the first word of a line, may be attached to an 
executable statement (including a null statement) but does not form part 
of the statement. A label is distinguished by its first character, 
which is a hyphen. 

The following are examples of labels: 

-X 

-&A 
-(TYPE) 

When an EXEC 2 file is invoked, execution starts at line number 1 and 
proceeds sequentially, except when otherwise directed by control 
statements. 

2 IBM VM/SP EXEC 2 Reference 

J 



Rules for Interpret;ng Executable statements 

Executable statements are interpreted, one at a time, according to the 
following general rules. (There are a few explicit exceptions, which 
are noted elsewhere.) 

1. The statement is scanned. This discards leading, trailing, and 
other surplus blanks, leaving a sequence of words separated from 
each other by a single blank. 

2. The words forming the statement are searched for the names of any 
EXEC 2 variables. These variables are replaced by their values, 
unless the variable is the target of an assignment, its name is 
retained. (A precise description is given later in the section 
"EXEC 2 Hame Substitution.") During this process, the words may 
grow or shrink in length. 

3. If, as a result of step 1, a word is reduced to the null string, it 
is discarded from the statement so that the next word is deemed 
immediately to follow the previous one. With this exception, the 
words retain their identity. For example, if the value of a 
variable contains an embedded blank, the word containing it is 
still treated as one word, although when printed it might appear as 
two. For more details, see the section "Part 3: Hotes on EXEC 2" 
on embedded blanks. 

4. The statement is analyzed syntactically, and executed according to 
the rules on the following pages. Hote that, except for 
identifying the targets of assignment, the syntax analysis is done 
after steps 1, 2, and 3 above. 

Part 1: Introduction 3 



Pa~t 2: EXEC ~ statements 

~ of Executable statements 

• Null statement. 

A null statement is an executable statement in which the number of 
words is zero. 

• Commands. 

• 

An executable statement is deemed to be a command if it contains at 
least one word, and its first word does not start with an ampersand. 
It is issued immediately to the host system (CMS) or to a subcommand 
environment (for example, XEDIT). When it is finished, control 
returns to the EXEC 2 file, and its return code can be obtained from 
the predefined EXEC 2 variable &RC. (See the section "EXECCOMM -
Sharing EXEC 2 Variables with Assembler Language Programs" for 
possible side-effects of command execution.) 

Assignments • 

An executable statement is an assignment if the first word starts 
with an ampersand and the second word is an equal sign. The first 
word is taken as the name of an EXEC 2 variable, and it is assigned 
the value of the expression that follows the equal sign. The 
expression may be any of the following: 

null 

a single word, for example: ABC 

an arithmetic expression, consisting of a sequence of words 
that represent positive or negative integers, separated by 
plus or minus signs, for example: 3 - 4 + -11 - 00 

a function invocation, for example: 

&PIECE OF &1 2 1 

an arithmetic expression (as above) in which the last term is 
replaced by a function invocation that yields a numeric value, 
for example: 

-1 + &LENGTH OF &1 

A variable of the form &j, where "j" is an unsigned integer without 
leading zeros, cannot be set with an assignment statement if "j" 
exceeds the number of EXEC 2 arguments that are currently set. 

4 IBM VM/SP EXEC 2 Reference 

• 



The value of the variable on the left-hand side of the assignment 
statement is not modified until the expression on the right-hand 
side has been evaluated. If an assignment statement is 
syntactically invalid, or if evaluation of the expression results in 
numeric overflow, execution stops abnormally with an error message, 
without further evaluation. 

• Control statements. 

An executable statement is a control statement if the first word is 
an EXEC 2 control word and the second word either is absent or is 
not an equal sign. Examples of control words are &GOTO, &EXIT, &IF, 
and &PRIHT. 

Part 2: EXEC 2 statements 5 



Predef;ned Var;ables 

The following EXEC 2 variables are initialized or maintained 
automatically. 

& 

Initialized to its own name (the value "&"). 

&0 

Initialized to the first word of the command string that is passed to 
the EXEC 2 interpreter. The first word may be delimited according to 
the parsing rules of the host system. In CMS, &0 may be delimited by a 
blank or a parenthesis. Normally, this variable has the same value as 
&FILENAME, but it may be different if the EXEC 2 file was invoked via a 
synonym. 

&1 &2 ... 

These are the EXEC 2 arguments. They are initialized to the arguments 
"arg1", "arg2", .•• , which are passed to the EXEC 2 file. EXEC 2 
identifies individual arguments passed to it by the presence of a blank 
character which delimits each argument. They are reset by &ARGS or 
&READ ARGS, and they are temporarily reset by invocation of user-defined 
subroutines and functions. EXEC 2 arguments beyond the last that is set 
have an apparent null value, and cannot be set explicitly (for example, 
with an assignment statement). (See the description of &N and &INDEX.) 

&ARGSTRING 

Initialized to the argument string that is passed to the EXEC 2 file. 
It is treated as a single literal string starting with the character 
immediately following the blank which was used to delimit &0 (see 
above); or, if the delimiter is a character rather than a blank, 
&ARGSTRING starts with the delimiter character itself. It includes any 
leading, embedded, or trailing blanks. The initial value includes the 
EXEC 2 arguments &1 &2 ... , but &ARGSTRING is not affected by changes to 
them. 

6 IBM VM/SP EXEC 2 Reference 

J 



, 

&BLANK 

A word that has the value of a single blank. 

&CMDSTRING 

Initialized to the untranslated command string that is passed to the 
EXEC 2 file. It is treated as a single literal string starting with the 
first word of the command string and including any embedded or trailing 
blanks. 

&COMLINE 

Initialized to zero, and maintained as the number of the line from which 
the last command (or subcommand) was issued from the EXEC 2 file. 

&DATE 

The true date on the primary meridian (Greenwich Mean Time (GMT» in the 
form YY/MM/DD. &DATE is evaluated when the statement containing it is 
executed. (See the description of &TIME.) 

&DEPTH 

Maintained as the number of user-defined functions and subroutine 
invocations to which return has not yet been made. 

&FILEMODE 

Initialized to the filemode (third qualifier) of the EXEC 2 file. 

&FILENAME 

Initialized to the filename (first qualifier) of the EXEC 2 file. 

Part 2: EXEC 2 Statements 7 



&FILETYPE 

Inltlallzed to the flletype (second quallfler) of the EXEC 2 file (for 
example, "EXEC"). 

&FRDM 

Initialized to zero, and maintained as the number of the line in the 
EXEC 2 file from which the last &GOTD statement was executed. 

&LINE 
&LINENUM 

Maintained as the number of the current line in the EXEC 2 file. 

&LINK 

Maintained as the number of the line from which the currently executing 
user-defined function or subroutine was invoked, or &LINK has the value 
o if there are no user-defined functions or subroutines in execution. 

&N 
&INDEX 

Maintained as the number of EXEC 2 arguments that are set. Initially 
this is the number of arguments that are passed to the EXEC 2 file. It 
is reset as a side effect of &ARGS and &READ ARGS. &N or &INDEX is 
temporarily reset by invocation of user-defined subroutines and 
functions. (See the description of &1 &2 .... ) 

&RC 
&RETCODE 

Initialized to zero, and maintained as the return code from the last 
command (or subcommand) issued from the EXEC 2 file. 

8 IBM VM/SP EXEC 2 Reference 



&TIME 

The true time-of-day on the primary meridian (Greenwich Mean Time (GMT» 
in the form HH:MM:SS. &TIME is evaluated when the statement containing 
it is executed. (See the description of &DATE.) 

Part 2: EXEC 2 Statements 9 



Cont~ol statements 

Control statements begin with a control word, which is usually followed 
by one or more additional words. The control words, and the rules for 
their use, are as follows. 

&ARGS [wordl [word2 . .. ]] 

Assign "wordl", "word2", ... , to the arguments &1 &2 ... , and discard 
any other EXEC 2 arguments that were previously set. The number of 
arguments now set is the number of words given in the &ARGS statement, 
which may be less or greater than the number of arguments previously 
set. 

(See the description of &READ ARGS; also see the predefined variables 
&N, &INDEX, and &1 &2 .... ) 

&BEGPRIHT 
&BEGTYPE 

linel 
line2 

n 

* 
label 
1 

Print at the console "line1", "line2", ... , truncated if necessary at 
column "k", without removing surplus blanks or replacing any EXEC 2 
variables. If the truncation column is not given, or is given as "*", 
the lines are not truncated by the EXEC 2 interpreter. (CMS truncates 
at 130 characters. See Appendix C.) 

The number of lines to be printed is determined by the first argument, 
as follows: 

n,l Print the given number of lines; or, if there are insufficient 
lines in the file, print all lines to the end of the file. 

* Print all lines to the end of the file. 

label Print down to, but not including, a line that contains the given 
label and nothing else; or, if such a line does not exist, print 
all lines to the end of the file. The label, to be recognized, 
must be wholly contained within the columns that would otherwise 

ID IBM VM/SP EXEC 2 Reference 

J 

J 

J 



be printed, and it must be the only word within these columns. 
The first character of a label must be a hyphen. 

After the lines have been printed, execution continues on the line 
following the last one printed. If printing is terminated by a label, 
execution continues on the line following the label. 

This and "&BEGSTACK" are the only statements that occupy more than one 
line. They are also the only statements that permit the lines of an 
EXEC 2 file to be handled literally, that is, without removing surplus 
blanks or replacing EXEC 2 variables. 

(See the description of &PRINT and &TYPE.) 

&BEGSTACK In [k [FIFO II 
linel 
line2 

* ~ LIFO 
label 
1 

Place in the console stack "line1", "line2", ... , truncated if necessary 
at column "k", without removing surplus blanks or replacing any EXEC 2 
variables. If the truncation column is not given, or is given as "*", 
the lines are not truncated. The lines are by default stacked FIFO 
(first in, first out), but this can be changed by giving "LIFO" (last 
in, first out) as the third argument. 

The number of lines to be stacked is determined by the first argument, 
as follows: 

n,l 

label 

Stack the given number of lines; or, if there are insufficient 
lines in the file, stack all lines to the end of the file. 

Stack all lines to the end of the file. 

Stack down to, but not including, a line which contains the 
given label and nothing else; or, if such a line does not exist, 
stack all lines to the end of the file. The label, to be 
recognized, must be wholly contained within the columns which 
would otherwise be stacked, and it must be the only word within 
these columns. The first character of a label must be a hyphen. 

After the lines have been stacked, execution continues on the line 
following the last one stacked. If stacking is terminated by a label, 
execution continues on the line following the label. 

Part 2: EXEC 2 Statements 11 



This, &BEGPRINT, and &BEGTYPE are the only statements that occupy more 
than one line. They are also the only statements that permit the lines 
of an EXEC 2 file to be handled literally, that is, without removing 
surplus blanks or replacing EXEC 2 variables. 

(See the description of &STACK.) 

&BUFFER n 

* 

Discard the lookaside buffer (if any) together with its contents. Then, 
if "n" is given, and is positive, or if "*" is given, create a new 
lookaside buffer. If "n" is given, and is zero, a new lookaside buffer 

t is not created. The value of "n" must not be negative. (In CMS, the 
initial buffer size is 32 lines. See Appendix c.) 

The lookaside buffer is a device that enables the EXEC 2 interpreter to 
remember the location of labels to which reference has already been made 
and to keep a private copy of some of the more recently executed lines 
of the file. The lookaside buffer can thereby improve the performance 
of EXEC 2 loops, in which the same labels and lines are used repeatedly. 

If "n" is given, it defines the maximum number of lines that can be kept 
in the buffer; if "*" is given, there is no fixed limit. For maximum 
effect, the buffer should be capable of keeping the longest loop in its 
entirety and should be set up before entering the loop. An even larger 
buffer may be advantageous if user-defined functions or subroutines are 
invoked from within a loop. 

A lookaside buffer should not be used if the EXEC 2 file is subject to 
modification during execution. If it is used, the results are 
unpredictable. 

&CALL line-number 
label 

[ar9' [ar92 ••• ]] 

Create a new generation of the EXEC 2 arguments &1 &2 ... , initialized 
to "argl", "arg2", .•• , and invoke the specified subroutine by 
transferring control to the given line, or to a line starting with the 
given label, in such a way as to allow control to be returned with the 
&RETURN statement. 

The new generation of arguments supersedes the arguments that were 
previously set, making the previous values, and the number of arguments 

12 IBM VM/SP EXEC 2 Reference 

J 

J 

J 



previously set, temporarily inaccessible. On entry to the subroutine, 
the values of the arguments, and the number of arguments set, are as 
given in the &CALL statement. Their values, and the number of arguments 
set, can be changed inside the subroutine in the same way as outside, 
such as by assignment or with the &ARGS or &READ statement. 

On return, the new generation of arguments is discarded, making the 
previous values, and the number of arguments previously set, again 
accessible. Execution resumes on the line following the &CALL 
statement. 

The first character of a label must be a hyphen. The search for a label 
starts on the line following the &CALL statement; then, if a match is 
not found before the end of the file, the search resumes at the toP. If 
a matching label does not exist, execution stops abnormally with an 
error message. 

(See the description of &RETURN; also see the section "User-Defined 
Functions.") 

&CASE 

Translate to uppercase (U) any lowercase alphabetic characters that are 
read in response to 
them (allow "mixed" 
change the setting. 

subsequent &READ statements, or do not translate 
(M) cases), or (if no argument is given) do not 
Initially the translation is set to HUH. 

(See the description of &UPPER.) 

&COMMAND wordl [word2 ... ] 

Issue to the host system (CMS) the command comprlslng of "wordl", 
"word2", ... , separated from each other by a single blank. When it is 
finished, its return code is obtainable from the predefined EXEC 2 
variables &RC and &RETCODE. The &COMMAND statement normally has the 
same effect as: 

wordl word2 

There are, however, the following differences: 

• A command, the first word of which begins with an asterisk, a 
hyphen, or an ampersand can be issued by giving it as the argument 
to &COMMAND; otherwise it is interpreted as a comment, a labeled 
statement, an assignment, or a control statement. (Note however, 

Part 2: EXEC 2 Statements 13 



) , 

that these characters are not acceptable to CMS command mode. See 
Appendix C.) 

• &COMMAND overrides any presumption of a subcommand environment and 
always issues the command to the host system (CMS). 

(See the description of &SUBCOMMAND and &PRESUME; see the predefined 
variables &COMLINE, &RC, and &RETCODE. Refer to the section "EXECCOMM -
Sharing EXEC 2 Variables with Assembler Language Programs" for possible 
side-effects of command execution.) 

&DUMP ARGS 
VAR[S] [varl [var2 

Print lines at the console of the form: 

var = VALUE 

] ] 

where var is &1 &2 ... or "varl", "var2", ..•. 

ARGS Print one line for each EXEC 2 argument &1 &2 ... that is 

VAR[S] Print one line for each of the variables "varl", "var2", 

The lines are truncated if their length exceeds the implementation 
for printed output. (In CMS, the line is truncated if its length 
p-xceeds 130. See Appendix C.) 

&ERROR action 

set. 

Ii mi t 

Set the action which, until further notice, is to be invoked 
automaticallY on return from any commands (and subcommands) that yield 
an error return code (a return code that is not zero). The action may 
be any executable statement, including a null statement. 

The action is not inspected at the time the &ERROR statement is 
executed. Instead, the search for and replacement of any EXEC 2 
variables takes place each time the action is executed. The action is 
executed as if it occupied the same line in the EXEC 2 file as the 
command (or subcommand) that yielded the nonzero return code. 

What happens after the action depends upon the type and consequences of 
the action. If it is itself a command (or subcommand) which also yields 
an error return code, execution stops abnormally with an error message; 
otherwise (unless the action causes a transfer of control), execution 
resumes at the line following the command that caused the action to be 
invoked. 

14 IBM VM/SP EXEC 2 Reference 

J 



L Initially. the error action is set to the null statement. 

&EXIT [;oturn-COdO [commont]] 

Stop execution of the EXEC 2 file. and yield the given return code. The 
return code must be numeric. If the given return code is not within the 
range of return codes acceptable to the host system. the result is 
defined by the implementation. (In CMS. the range is -2.147.483.648 to 
+2.147.483.647. See Appendix C.) 

&GOTO line-number 
label 

Transfer control to the given line or to the line starting with "label". 

The first character of a label must be a hyphen. The search for a label 
starts on the line following the &GOTO statement. Then. if a match has 
not been found before the end of the file. the search resumes at the 
top. If a matching label does not exist. execution stops abnormally 
with an error message. 

(See the description of &SKIP and &CALL; also see the predefined 
variable &FROM.) 

&IF wordl =IEQ 
~=INE 
<ILT 
<=I~>ILEING 
>IGT 
>=I~<IGEINL 

word2 executable-statement 

If the condition is satisfied. execute the given executable statement; 
otherwise. proceed to the next statement. The comparative may be given 
in any of the forms shown (for example "=" or "EQ"). The comparison is 
numeric if both comparands are numeric; otherwise both comparatives are 
treated as character strings. and the shorter one is (for the purpose of 
the comparison) padded on the right with blanks. If "word2" is absent. 
a null string is used in its stead. 

Part 2: EXEC 2 statements 15 



&LOOP n m 
label * 

WHILE condition 
UNTIL condition 

Loop through the following "n" lines, or down to (and including) the 
first line starting with "label", for "m" times, or indefinitely (*), or 
"WHILE" (or "UNTIL") the given condition is satisfied. 

The values of "n" and "m" (if given) must be numeric; also "n" must be 
positive, and "m" must not be negative. If "m" is zero, the entire loop 
is ignored. 

The first character of the label (if given) must be a hyphen. The label 
must be attached, as the first word of the line, to an executable 
statement that lies below the &LOOP statement. 

The form of the condition (if given) is similar to that of the &IF 
• statement previously described, namely: 

• 
• 

word1 =IEQ 
-=INE 
<ILT 
<=\->\LE\NG 
>IGT 
>=I-<IGE\NL 

word2 comment 

The condition is evaluated before each iteration of the loop, including 
the first. If "word2" is absent, a null string is used in its stead. 
The comparison is numeric if both comparands are numeric; otherwise, 
both comparands are treated as character strings, and the shorter one is 
(for the purpose of the comparison) padded on the right with blanks. 

If the condition is invalid, execution stops abnormally with an error 
message that identifies the line containing the &LOOP statement. 

&PRESUME 
[

&COMMAND 1 
&SUBCOMMAND environment 

Presume that any executable statements that have the syntax of a command 
(that is, the first word of the statement does not begin with an 
ampersand) are to be issued to the host system (CMS), or presume that 
they are to be issued to the given subcommand environment. 

16 IBM VM/SP EXEC 2 Reference 

J 

J 



The name of the subcommand environment is not checked when the &PRESUME 
statement is executed. If, when a subcommand is subsequently issued, 
the environment does not exist, the only effect is to set a special 
return code. (In CMS, it is -3.) 

The "&PRESUME" control statement with no arguments is equivalent to 
"&PRESUME &COMMAND". 

By convention, the presumption is initially set to "&COMMAND" if the 
EXEC 2 file has a filetype of EXEC; otherwise, it is set to "&SUBCOMMAND 
filetype", where "filetype" is the filetype of the EXEC 2 file. 

The presumption has no effect on &COMMAND or &SUBCOMMAND statements 
since these do not have the syntax of a command. 

(See the description of &COMMAND and &SUBCOMMAND.) 

&PRINT 
&TYPE 

[word1 [word2 ... ]] 

Print at the console a line containing "wordl", "word2", ... , separated 
from each other by a single blank, or print a blank line if there are no 
words given. The line is truncated if necessary. (In CMS, the line is 
truncated if its length exceeds 130. See Appendix C.) 

Unlike &BEGPRINT and &BEGTYPE, surplus blanks are removed and the words 
to be printed are searched in the normal way for the names of EXEC 2 
variables, that are replaced by their values. 

(See the description of &BEGPRINT and &BEGTYPE.) 

&READ n 
1 
lE 

ARGS 
STRING var 

VAR[S] [v:r1 [va r2 .•• ~] [lE ••• 

Read from the stack (if the stack is not empty), or read from the 
console (otherwise). Then execute or assign what is read according to 
the following rules. 

Part 2: EXEC 2 Statements 17 



• 

n, 1, * 

ARGS 

STRING 

VARS 

Read "n" lines, read 1 line. or read an indefinite number of 
lines (*), and execute them individually as if they had been 
part of the EXEC 2 file. Reading stops (and normal execution 
resumes) when "n" lines have been read, or when a &BEGPRINT, 
&BEGTYPE, &BEGSTACK, &EXIT, &GOTO, &LOOP, or &SKIP statement 
is encountered. Reading is suspended if a user-defined 
function or subroutine is invoked and continues when control 
returns from that invocation. 

If a "&READ n" statement is read in response to a previous 
"&READ n" statement, the new value of n is added to the number 
of lines that remain from the previous statement. Reading 
stops if the number remaining becomes zero or less. The value 
of "n" may be negative. 

If a "&READ *" statement is read in response to a previous 
"&READ n" or "&READ *" statement. or if a "&READ n" statement 
is read in response to a previous "&READ *" statement, an 
indefinite number of lines remain to be read. 

Read a single line, assign the words in it to the EXEC 2 
arguments &1 &2 ... , and discard any other EXEC 2 arguments 
that were previously set. The number of arguments now set is 
the number of words in the line, which may be less or greater 
than the number of arguments previously set. (See the 
description of &ARGS, and the predefined variables &N, &INDEX, 
and &1 &2 ... ) 

Read a single line and assign it, as a literal string, to 
"var", without removing any surplus blanks or replacing any 
EXEC 2 variables. 

Read a single line and assign the words in it to the variables 
"varl", "var2", .... If the number of words in the line read 
exceeds the number of variables given in the statement, the 
surplus words are discarded. If the number of variables 
exceeds the number of words, the remaining variables are set 
to the null string. Therefore "&READ VARS" (without any 
variables) can be used to read a line and discard it. 
Asterisks (*) may be used in lieu of variable names to 
indicate that the corresponding words in the line read are to 
be discarded. 

In the case of &READ ARGS and &READ VARS ... , the line that is read is 
scanned for words (leading, trailing, and other surplus blanks are 
discarded), but the words are treated as literals (there is no 
replacement of EXEC 2 variables). 

The names of the variables in &READ VARS and &READ STRING are treated in 
the same way as on the left-hand side of an assignment statement. (See 
the section "EXEC 2 Name Substitution.") A variable of the form &j. 
wh~re "j" is an unsigned integer without leading zeros. cannot be set 
with &READ VARS or &READ STRING if "j" exceeds the number of EXEC 2 
arguments that are currently set. 

18 IBM VM/SP EXEC 2 Reference 

J 

J 



Lines that are read mayor may not be translated to uppercase. The case 
is determined by the translation mode that is set by the tCASE control 
statement. The &CASE control statement is issued prior to the &READ 
control statement. (See the description of &CASE.) However, if no case 
is specified, the lines read in default to uppercase. 

Lines that are read are not truncated by the EXEC 2 interpreter; they 
are unaffected by the setting of &TRUNC. (See the description of 
&TRUNC.) 

(In CMS, the maximum length of a line read from the console is 130, and 
the maximum length of a line read from the console stack is 255. See 
Appendix C.) 

&RETURN [word] [comment] 

Return control to the most recent subroutine invocation (&CALL 
statement) to which return has not yet been made; or return "word" (or 
the null string) to the most recent user-defined function invocation to 
which a value has not yet been returned. 

The generation of EXEC 2 arguments that was created at invocation is 
discarded. The previous values and the number of arguments previously 
set become accessible again. The number of lines (if any) that remain 
to be read from the stack or console in response to a previous "&READ n" 
statement is reset to the number outstanding at the time of the 
invocation. Any loops that have been opened in the subroutine or 
function, and not closed, are aborted; and any loops that were open at 
the time of invocation are reinstated. 

If there is both a subroutine invocation and a function invocation to 
which return has not yet been made, return is to the more recent point 
of invocation. If there is neither, execution stops abnormally with an 
error message. 

(See the description of &CALL; also see the section "User-Defined 
Functions.") 

&SKIP 

If n > 0, skip the next "n" lines of the EXEC 2 file. If n < 0, 
transfer control to the line that is "-n" lines above the current line. 
If n = 0, transfer control to the next line. 

Part 2: EXEC 2 Statements 19 



, 

If an attempt is made to transfer control to a line number that is zero 
or negative, execution stops abnormally with an error message. If 
control is transferred to a line below the last in the EXEC 2 file, 
execution stops normally with a return code of zero. 

(See the description of &GOTO.) 

&STACK [~:~~ [wordl [word2 ... ]] ] 

Place a line in the console stack containing "wordl", "word2", ... , 
separated from each other by a single blank, or stack a null line if 
there are no words. (In CMS, stacked lines are truncated at 255. See 
Appendix C.) The line is by default stacked FIFO (first in, first out), 
but this can be changed by giving "LIFO" (last in, first out) as the 
first argument. 

Unlike &BEGSTACK, surplus blanks are removed and the words to be stacked 
are searched in the normal way for the names of EXEC 2 variables, that 
are replaced by their values. 

(See the description of &BEGSTACK.) 

&SUBCOMMAND environment [wordl [word2 ... ]] 

Issue to the given subcommand environment the subcommand comprising of 
"wordl", "word2", ... , separated from each other by a single blank. 
When it is finished, its return code is obtainable from the predefined 
EXEC 2 variable &RC. 

If the given environment does not exist, the only effect is to set a 
special return code. (In CMS, it is -3.) 

Normally, it is convenient to "presume" the environment so that this 
control statement does not have to be issued for every subcommand (see 
the description of &PRESUME, above). The explicit use of the 
&SUBCOMMAND statement does, however, allow subcommands that start with 
an asterisk, a hyphen, or an ampersand to be issued. (Compare with the 
description of &COMMAND.) Also note that the statement "&SUBCOMMAND 
environment" (without any additional arguments) is the only way of 
issuing a null subcommand. 

(See the description of &COMMAND; also see the predefined variables 
&COMlINE, &RC, and &RETCODE. Refer to the section "EXECCOMM - Sharing 
EXEC 2 Variables with Assembler Language Programs" for possible 
side-effects of command execution.) 

20 IBM VM/SP EXEC 2 Reference 

J 



&TRACE ON 
ERR 
ALL 
OFF 

output-action 

* 

where "output-action", if given, is: 

&PRINT [word1 [word2 ... ] ] 

or: 
&COMMAND word1 [word2 ... ] 

or: 
&SUBCOMMAND environment [word1 [word2 ... ] ] 

Trace commands (and subcommands) that are issued from the EXEC 2 file; 
or trace commands (and subcommands) that yield an error return code (a 
return code that is not zero); or trace all executable statements; or do 
not trace any statements; or (if "*" is given) do not change the 
setting. The setting remains in effect until reset. The initial 
setting is OFF. 

Trace information can be printed at the console, or passed to a command 
(or subcommand) for processing. The trace destination is determined by 
the output action, as described below. 

ON When tracing is ON, each command is traced before it is 
executed. Subsequently, the return code is traced if it is not 
zero. The return code is traced on a line by itself in the form 
"+++ E(nnn) +++". 

ERR When ERR is in effect, commands that yield a nonzero return code 
are traced after execution, followed by the return code. The 
return code is traced on a line by itself in the form 

ALL 

"+++ E(nnn) +++". 

When ALL is in effect, every executable statement, preceded by 
its line number, is traced before it is executed. Nonzero 
return codes are traced (as for ON and ERR). Loop conditions 
and lines that are read from the console are also traced. The 
statement following an &IF clause, the action given in an &ERROR 
statement, and the conditional phrase in a &LOOP statement are 
traced as literal words (that is, without replacement of any 
variables). These statements and phrases are traced again, with 
the normal replacement of variables, at the time of their 
execution. A statement that is executed as a consequence of a 
satisfied &IF clause is preceded in the trace by an ellipsis. 
Words that exceed 24 characters in length are truncated in the 
trace at 21 characters and followed by an ellipsis. Statements 
that exceed 80 characters in length (with the line number and 

Part 2: EXEC 2 Statements 21 

1 



, 

• t 

• 
t 
• t 
t 

preceding ellipsis, if present) are truncated in the trace at an 
integral number of words and followed by an ellipsis. 

OFF Do not trace any statements. This is the initial setting. 

* Do not change the setting. "&TRACE" without arguments is 
equivalent to "&TRACE *". 

output-action 

&TRUNC 

The output action gives the destination of the tracing 
information. The words in it are searched in the normal way for 
the names of EXEC 2 variables. These variables are replaced by 
their values, and the resulting sequence of words is set aside. 
When a trace line is produced, it is prefixed with the sequence 
of words, and the resulting EXEC 2 statement is executed without 
tracing. (See the description of &PRINT, &TYPE, &COMMAND, and 
&SUBCOMMAND). If the return code from the command or subcommand 
is nonzero, execution stops abnormally with an error message. 

Initially the output action is set to "&PRINT", which causes the 
trace to be printed at the console. If the output action is not 
given, the previous action remains in effect. 

Set the truncation column for EXEC 2 statements to "k", or set it to the 
maximum value (*), or (if no argument is given) do not change it. 
Initially, it is set to the maximum value. (In CMS, the maximum value 
is 255. See Appendix C.) 

This setting affects only the reading of EXEC 2 statements from a file 
and the search for labels; it does not affect lines read from the 
console (that are not truncated) or lines appearing within a &BEGPRINT, 
&BEGTYPE, or &BEGSTACK statement (that are separately controlled). This 
setting does not affect the length to which a statement can grow during 
or after replacement of EXEC 2 variables. 

Changing the truncation column has the side-effect of purging the 
lookaside buffer (if there is one), and may consequently degrade 
performance if done within a loop. 

(See the description of &BUFFER.) 

22 IBM VM/SP EXEC 2 Reference 

r 

J 



&UPPER ARGS 
VAR[S] [varl [var2 ... ]] 

Translate to uppercase any lowercase alphabetic characters in the values 
of the EXEC 2 arguments &1 &2 ... , or translate to uppercase any 
lowercase alphabetic characters in the values of "varl", "var2", .... 

A variable of the form &j, where "j" is an unsigned integer without 
leading zeros, cannot be translated with &UPPER VARS if "j" exceeds the 
number of EXEC 2 arguments that are currently set. 

(See the description of &CASE.) 

Part 2: EXEC 2 Statements 23 

I 
4 

• 
I 
~ , 



, 

• 
J 

• • 
t 
• t 
• 

Predefined Funct;ons 

A predefined function can be invoked only in the last term on the 
right-hand side of an assignment statement. The invocation takes the 
form: 

function-name OF [argl [arg2 ... ]] 

The names of the predefined functions, and the rules for their use are 
as follows. 

&CONCATENATION OF 
&CONCAT OF 

[wordl [word2 ... 1 1 

Concatenates "word1", "word2", ..• , into a single word, without 
intervening blanks; or yields the null string if there are no words. 
Example: 

&A = ** 
&8 = &CONCAT OF XX &A 45 
&PRINT &B 

This results in the printed line: 

&DATATYPE OF 
&TYPE OF 

[ word 1 

Yields the value NUM if "word" represents a valid (signed or un~igned) 
number; otherwise, yields the value CHAR. 

&DIVISION OF 
&DIV OF 

dividend divisor 

Yields a numeric value that results from dividing the dividend by the 
divisor. 80th the dividend and the divisor must be numeric and the 
divisor must not be zero. 

24 IBM VM/SP EXEC 2 Reference 

J 



In precise terms, the value is the integral part of the division of the 
absolute value of the dividend by the absolute value of the divisor, or 
minus this value if the dividend is not zero and the sign of the 
dividend differs from that of the divisor. 

Examples: 

&W = &DIV OF 7 2 
&X = &DIV OF -7 -2 
&Y = &DIV OF -7 2 
&Z = &DIV OF 0 -2 

This sets &W to 3, &X to 3, &Y to -3, and &Z to o. 

&LEFT OF word j 

Yields a string of length "j" in which "word" is left-justified and 
either padded with blanks or truncated on the right. 

(See the description of &RIGHT OF.) 

&LENGTH OF [word] 

Yields a numeric value representing the length of the word (that is, the 
number of characters in it); or yields zero if the word is absent. 

&LITERAL OF [string] 

Yields the literal string that begins with the character following the 
blank that terminates "OF" and ends with the last nonblank character 
before or at the truncation column. Any leading or embedded blanks are 
retained, and the search for and replacement of any EXEC 2 variables 
that may appear in the string is suppressed. Example: 

& = &LITERAL OF &X = 
&X = ** 
&PRINT & &X 

This results in the printed line: 

&X = ** 
(See the description of &STRING OF.) 

Part 2: EXEC 2 Statements 25 

1 

t 
f 

I , 
I 
~ 



I 

I 
t 

I 
t 
t , 

&LOCATION OF needle [haystackJ 

Searches "haystack" for the first occurrence of "needle", and yields a 
number indicating its starting position, or yields zero if there is no 
occurrence (or if the length of "needle" exceeds that of "haystack"). 
Example: 

&X = &LOCATION OF ANN LIZANNE 

This sets &X to 4. 

(See the description of &PIECE OF, &SUBSTR OF, and &POSITION OF.) 

&MULTIPLICATION OF 
&MULT OF 

j 

Yields a numeric value representing the result of multiplying the given 
words. There must be at least two words given (i and j), and each word 
must be numeric (signed or unsigned). Example: 

&X = &MULT OF 4 5 6 

This sets &X to 120. 

&PIECE OF 
&SUBSTR OF 

word 

Extracts that piece of "word" that starts at character "in, with length 
"j"; or that starts at character "in and runs to the end of the word 
00. 

The value of "in (and "j" if given) must be numeric; also "in must be 
positive, and "j" must not be negative. 

If the value of "in exceeds the length of the word, the value of the 
function is the null string. If "j" is given, but exceeds the remaining 
length of the word, the remaining length is used instead. 

Example: 

&A = &PIECE OF ABCDE 2 3 
&B = &PIECE OF ABCDE 2 999 

26 IBM VM/SP EXEC 2 Reference 

J 

J 

J 



&C = &PIECE OF ABCDE 33 2 
&PRINT &A &B &C *** 

This results in the printed line: 

BCD BCDE *** 
(See the description of &LOCATION OF.) 

&POSITION OF word [word1 [word2 ... ]] 

Compares "word" with "word1", "word2", ... , looking for a match, and 
yields a numeric value representing the position of the first matching 
word, or yields zero if "word" does not match any of the other words (or 
if there are no other words given). Example: 

&X = &POSITION OF THE NOW IS THE TIME 

This sets &X to 3. 

(See the description of &LOCATION OF and &WORD OF.) 

&RANGE OF stem j 

Yields a string consisting of the words that are composed by appending 
to the given stem the numbers i, i+1, ... , j, the words being separated 
from each other by a single blank; or yields the null string if i > j. 

The stem is treated as a literal until after the composition is 
performed. The numbers that are appended to it are stripped of any plus 
sign or redundant leading zeros. 

The composed names are searched for any EXEC 2 variables, which are 
replaced by their values in the usual way. If, as a result of this, a 
word is reduced to the null string, it is discarded from the result, and 
the next word is deemed immediately to follow the previous one. 

Examples: 

A. Irrespective of the values of &A, &AS, &A4, and &A5, the sequence: 

&X = &RANGE OF &A 3 5 
&PRINT &X 

produces the same result as: 

&PRINT &A3 &A4 &A5 

Part 2: EXEC 2 Statements 27 



} 

) 
) 

B. The sequence: 

&ARGS A BC DEF GHIJ KLMNO 

&X = &RANGE OF & 1 &N 
&PRINT &X 

yields the printed line: 

A BC DEF GHIJ KLMNO 

C. The sequence: 

&X = &RANGE OF AB -2 +2 
&PRINT &X 

yields the printed line: 

AB-2 AB-l ABO ABl AB2 

&RIGHT OF word j 

Yields a string of length "j" in which "word" is right-justified and 
either extended with blanks or shortened on the left. 

(See the description of &LEFT OF.) 

&STRING OF [string] 

Yields the string that begins with the character following the blank 
that terminates "OF" and ends with the last nonblank character before, 
or at, the truncation column, suppressing the removal of any leading or 
embedded blanks in the string. 

Each word in the string is searched in the usual way for the names of 
EXEC 2 variables. These variables are replaced by their values. 
However, blanks are not removed from the string, even if they are 
adjacent to a word that is reduced to the null string. 

Example: 

&A = STRING 
&B = ENDS 
&X = &STRING OF A PIECE OF &A 
&PRINT &X 

This yields the printed line: 

28 IBM VM/SP EXEC 2 Reference 

HAS TWO &B 

J 

J 



A PIECE OF STRING HAS TWO ENDS 

(See the description of &LITERAL OF.) 

&TRANSLATION OF 
&TRANS OF 

word1 

Makes a copy of "word1", modifies the characters in it as directed by 
"word2" and "word3", and yields the resulting string. 

The rules for modification are as follows. Each character of the copy 
is considered in turn, and: 

1. if "word2" does not contain a matching character, the character in 
the copy is left unchanged; or 

2. if "word2" contains a matching character, in position Hi" (or if it 
contains several matching characters, the first of which occupies 
position Hi"), the character in the copy is replaced by the ith 
character of "word3", or by a blank if "word3" is not given or 
contains fewer than Hi" characters. 

The result has the same length as "word1". 

Examples: 

1. The sequence: 

&X = ABC123,XYZ 
&X = ITRANS OF IX ABCDEF, abcdef 
&PRINT &X 

yields the printed line: 

abc123 XYZ 

2. The sequence: 

&YY/MM/DD = 80/10/29 
&MM/DD/YY = &TRANS OF 45678312 12345678 &YY/MM/DD 
&PRINT &MM/DD/YY IYY/MM/DD 

yields the printed line: 

10/29/80 80/10/29 

Part 2: EXEC 2 Statements 29 



f 

• 
• • 
1 
I 
• 

&TRIM OF [word] 

Yields a string consisting of "word" with any trailing blanks removed, 
or yields the null string if "word" is not given. 

&WORD OF [wordl [word2 ... ]] 

Yields the ith word from the given list of words, or yields the null 
string if Hi" is zero or exceeds the number of words that are given. 
The value of Hi" must be numeric, and Hi" must not be negative. 

(See the description of &POSITION OF.) 

30 IBM VM/SP EXEC 2 Reference 

J 

J 



User-Def;ned Funct;ons 

A user-defined function can be invoked only 
right-hand side of an assignment statement. 
form: 

line-number OF 
label OF 

in the last term on the 
The invocation takes the 

The effect is to create a new generation of the EXEC 2 arguments &1 &2 
... , initialized to "arg1", "arg2", ... , and to invoke the given 
function; that is, to transfer control to the given line, or to a line 
starting with the given label, in such a way as to allow a value to be 
returned with the &RETURN statement. 

The new generation of arguments supersedes the arguments that were 
previously set, making the previous values and the number of arguments 
previously set temporarily inaccessible. On entry to the body of the 
function, the values of the arguments, and the number of arguments set, 
are as given in the function invocation. Their values, and the number 
of arguments set, can be changed in the body of the function in the same 
way as outside, such as by assignment or with the &ARGS or &READ 
statement. On return, the new generation of arguments is discarded, and 
the previous values, and the number of arguments previously set, become 
accessible again. 

The first character of a label must be a hyphen. The search for a label 
starts on the line following the function invocation. Then, if a match 
is not found before the end of the file, the search resumes at the top. 
If a matching label does not exist, execution stops abnormally with an 
error message. 

(See the description of the &CALL and &RETURN control statements.) 

Examples: 

A. The user-defined function 

-OVERLAY OF layee layer 

is to return the string "layee" overlaid by "layer". (The result 
will be different from "layer" only if "layee" is longer than 
"layer".) Here is the body of the function, preceded by an example 
of its invocation: 

Part 2: EXEC 2 Statements 31 



, 
• • • , 
J 

• 

l 

&S = -OVERLAY OF &S * 

* THIS FUNCTION USES "I" AS A TEMPORARY VARIABLE 
-OVERLAY & = 1 + &LENGTH OF &2 
&1 = &PIECE OF &1 & 
&1 = &CONCAT OF &2 &1 
&RETURN &1 

B. Suppose there is an external program TIME that stacks the CPU time 
consumed in (say) microseconds. The user-defined function -TIME OF 
is to return this number as its value. relieving its caller of the 
need to issue the external command. check the return code. and read 
the answer. Here is the body of the function. preceded by an 
example of its use: 

&T = -TIME OF 
(sequence to be timed) 

&T = 0 - &T + -TIME OF 
&PRINT TIME CONSUMED WAS &T 

-TIME &COMMAND TIME 
&IF &RC ~= 0 &GOTO -UNEXPECTED 
&READ ARGS 
&RETURN &1 
-UNEXPECTED &PRINT UNEXPECTED ERROR FROM TIME 
&EXIT &RC 

32 IBM VM/SP EXEC 2 Reference 

J 



The words that form an executable statement are searched for the names 
of EXEC 2 variables. These variables are replaced by their values. 
This is done according to the following steps: 

1. Each word is inspected for ampersands, starting with the rightmost 
character of the word and proceeding to the left. 

2. If an ampersand is found, then it, with the rest of the word to the 
right, is taken as the name of an EXEC 2 variable and replaced (in 
the word) by its value. This may increase or decrease the length 
of the word. Initially, all variables have a null value, except: 

a. the variables that represent the EXEC 2 control words and 
predefined functions; they are initialized to their own names 
(for example, the value of "&IF" is "&IF"); and 

b. the EXEC 2 arguments. and the other predefined variables, that 
have the values specified in the section "Predefined 
Variables." 

3. Inspection resumes at the next character to the left, and the 
procedure is repeated from step 2 above, until the word is 
exhausted. 

There is an exception if the word is the target of an assignment. In 
this case, inspection for ampersands stops on the second character of 
the word. 

Note that any characters that are substituted are not themselves 
inspected for ampersands. They are, however, included in the name of 
the next variable if another ampersand is found to the left. 

These rules make it possible to construct arrays of subscripted 
variables. 

Examples: 

1. The sequence: 

(Original file) (After Substitution) 

&X = 123 2. &X = 123 
&PRINT ABC &X ABC&X OOO&X 3. &PRINT ABC 123 ABC123 000123 

yields the printed line: 

ABC 123 ABC123 000123 

Part 2: EXEC 2 Statements 33 



, 
\ 

2. The sequence: 

(Original file) 

&I = 2 
&X&I = 5 
&I = &I - I 
&X&I = &1 + I 
&X = &X&I + &X&X&I 
&PRINT ANSWER IS &X 

yields the printed line: 

ANSWER IS 7 

3. The sequence: 

(Original file) 

&X = &CONCAT OF X &BLANK X 
&&X = 7 
&DUMP VARS &X &&X 

yields the printed line: 

&X = X X 
&X X = 7 

34 IBM VM/SP EXEC 2 Reference 

J 
(After Substitution) 

2. &I = 2 
3. &X2 = 5 
4. &I = 2 - I 
5. &XI = I + I 
6. &X = 2 + 5 
7. &PRINT ANSWER IS 7 

• 

(After Substitution) 

2. &X = &CONCAT OF X X 
3. &X X = 7 
4. &DUMP VARS &X &X X 

J 



1. 

1. Recursive execution 
2. Termination of an EXEC 2 file 
3. Console input buffer 
4. Assignment statement 
5. Evaluation of &DATE and &TIME 
6. Size and treatment of numbers 
7. Removing plus signs and leading zeros 
8. Syntax of conditional phrases 
9. Embedded blanks 

10. &LOOP statement 
11. Closing of loops 
12. Search for labels 
13. Performance of label searches 
14. EXEC 2 words are not reserved words 
15. Example of &TRACE ALL 
16. Truncation column 

Recursive execution. 

An EXEC 2 file may invoke itself recursively, or may invoke other 
EXEC 2 files, by issuing the appropriate command or subcommand. 
(EXEC 2 files may also invoke CMS EXEC files. See Appendix C.) 
EXEC 2 files that have the filetype EXEC can, for example, be 
invoked by means of the statement: 

&COMMAND EXEC filename <arg1 <arg2 ... » 

2. Termination of an EXEC 2 file. 

An EXEC 2 file stops execution and returns to its caller: 

a. when an &EXIT statement is executed; or 

b. when an attempt is made to pass control to a line beyond the 
last (for example by "falling off" the end of the file), in 
which case a return code of zero is used; or 

c. when an EXEC 2 error is encountered, in which case a message is 
printed and execution stops abnormally. 

3. Console input buffer. 

EXEC 2 can use the CMS console input buffer (sometimes referred to 
as the console stack). This is a conceptual area in which lines can 
be deposited FIFO (first in, first out), or LIFO (last in, first 
out), and subsequently retrieved by attempts to read from the 
console. It provides a simple mechanism for communicating between 

Part 3: Notes on EXEC 2 35 



I 

I , 
I 

t , 
I 
t 

programs. In EXEC 2 files, lines can be deposited in the buffer 
with the &STACK or &BEGSTACK statements, and can be retrieved with 
the &READ statement. 

4. Assignment statement. 

The word immediately following the target of an assignment must be a 
literal equal sign. It cannot be an EXEC 2 variable that has the 
value of an equal sign nor an EXEC 2 variable that is discarded from 
the statement due to having a null value. Conversely, if an equal 
sign is to be the first word following a control word, either it 
must be given as an EXEC 2 variable that has the value of an equal 
sign, or there must be an intervening word that reduces to the null 
string; otherwise, the statement is interpreted as an assignment, 
and (if it is valid as such) the control word is assigned a new 
value (see below, under "EXEC 2 words are not reserved words"). 
With this exception, a word that is discarded due to having a null 
value has no effect on whether a statement is interpreted as an 
assignment, even if it occurs at the beginning of the statement. 
For example, in the sequence: 

&X = 
&LOOP 2 2 

&X &Y = 2 + 1 
&X = &PRINT 

the first statement in the loop is executed as an assignment to &Y, 
and then (the second time) as a &PRINT statement, resulting in the 
line: 

3 = 2 + 1 

5. Evaluation of &DATE and &TIME. 

The time is taken once for each execution of a statement that refers 
to the predefined variable &DATE or &TIME. Therefore, multiple 
references to these variables within a statement yield the same 
values. If consistency (rather than currentness) is required over a 
range exceeding one statement, then the values of &DATE and &TIME 
must be assigned to ordinary variables. For example, 

&STACK LIFO &DATE &TIME 
&READ VARS &0 &T 

6. Size and treatment of numbers. 

Words that are treated as numbers must represent integers. No limit 
is imposed on the size of a number that appears in a comparison, or 
as an argument to the predefined function &DATATYPE OF. In contexts 
that require numeric values, numbers must lie within a range that is 
defined by the implementation. (In CMS, the range is -2,147,483,648 
to +2,147,483,647. See Appendix C.) An attempt to interpret a 
number outside the allowable range, or to derive such a number by 

36 IBM VM/SP EXEC 2 Reference 

J 



.. 

7. 

arithmetic, causes numeric overflow. This overflow causes execution 
to stop abnormally with an error message. 

Removing plus signs and leading zeros. 

A plus sign, and any redundant leading zeros, can be stripped from a 
numeric quantity by performing an arithmetic operation on it. 

Example: 

&X = 0000000000000000000012 
&y = &X + 0 
&PRINT &X &Y 

This yields the printed line: 

0000000000000000000012 12 

8. Syntax of conditional phrases. 

In the conditional phrases that occur in the &IF and conditional 
&LOOP statements, a missing second comparand is regarded as a null 
string. The first comparand and the comparator must always be 
present; otherwise execution stops abnormally with an error message. 
If there is a risk of the first comparand having a null value, 
syntactic validity can be ensured by prefixing both comparands with 
the same character. For example, the clause 

&IF /&1 = / 

is satisfied if, and only if, &1 is null or blank; and 

&IF /&1 = /PRINT 

is syntacticallY valid even if &1 is nUll. 

A similar technique can be used to force character-string 
comparisons even if both of the comparands are numeric. (In this 
case, the prefix must not be numeric.) For example, if it is known 
that &1 has a numeric value, the clause 

&IF /&1 < /0 

is satisfied if and only if &1 begins with a plus or minus sign. If 
&1 is equal to "1", the clause is false. However, if &1 is equal to 
"+1", the clause is true, since "+" is less than "0" in a 
character-string comparison. (For the relative values of 
characters, refer to the internal codes for the EBCDIC character 
set, given in IBM System/370 Reference Summary, GX20-1850.) 

Part 3: Notes on EXEC 2 37 



t 

t , 
t 

9. Embedded blanks. 

With a few exceptions, EXEC 2 does not embed blanks in the values of 
variables. The exceptions are as follows: 

a. &ARGSTRING is initialized to the string containing the EXEC 2 
arguments, and &CMDSTRING is initialized to the command string 
exactly as passed to the EXEC 2 file. Therefore, these 
variables may contain embedded blanks. 

b. The "&READ STRING var" statement assigns to the given variable 
the complete line exactly as read, that may contain embedded 
blanks. 

c. The predefined variable &BLANK can be used to embed blanks in 
the value of a variable, for example: 

&V = &CONCAT OF A &BLANK B 

d. The predefined function &RANGE OF inserts a blank between each 
word; the predefined functions &LITERAL OF and &STRING OF retain 
embedded blanks that are given in their arguments; and the 
predefined functions &LEFT OF, &RIGHT OF, and &TRANSLATION OF 
can yield leading, embedded, or trailing blanks. 

e. Embedded blanks can be transmitted from one variable to another 
with the assignment statement, and to the EXEC 2 arguments &1 &2 
•.. with the &ARGS statement or by invocation of user-defined 
subroutines and functions. 

Embedded blanks are always significant. For example, "&IF " is not 
recognized as "&IF"; and "10 " and" 10" cannot be used as numbers. 

Embedded blanks can be removed from the value of a variable by 
stacking it and rereading it as a sequence of words. Suppose, for 
example, that a line to be read from the console is required both in 
its literal form (with embedded blanks, if any) and as a series of 
normal words (without embedded blanks). The following sequence 
achieves this: 

&READ STRING &S 
&STACK LIFO &S 
&READ ARGS 

Now &S contains the literal string, and the EXEC 2 arguments &1 &2 
... , contain the constituent words. 

10. &LOOP statement. 

The first three words of the &LOOP statement are searched for EXEC 2 
variables (in the normal way) when the &LOOP statement is executed. 
However, the remainder of the statement (which is present only if 
"WHILE" or "UNTIL" is given) is saved without inspection. This 

38 IBM VM/SP EXEC 2 Reference 

J 

J 

J 



saved phrase is then interpreted as a condition each time around the 
loop (including the first time). For example: 

&J = 3 
&LOOP 2 UNTIL &J = 5 

&J = &J + 1 
&PRINT &J 

This results in the printed lines: 

4 
5 

11. Closing of loops. 

A loop may be in any of three mutually exclusive states: active, 
suspended, or closed. A loop becomes active when execution of its 
defining &LOOP statement begins. It is suspended if another loop 
becomes active before the first is closed or if a user-defined 
subroutine or function is invoked. It becomes active again when the 
second loop is closed or when a corresponding &RETURN statement is 
executed. A loop is closed when it is active, and when either: 

a. the requirement for termination, given in the &LOOP statement, 
is met; or 

b. control is transferred to a line outside the scope of the loop 
by any means other than invocation of a user-defined function or 
subroutine. 

In addition, the &EXIT statement closes all loops, and the &RETURN 
statement closes any loops that have been opened during execution of 
a user-defined subroutine or function. 

Examples: 

a. In the following sequence, the &SKIP statement closes the loop 
after ten iterations, since it transfers control to a line below 
the last in the loop. 

&J = 0 
&LOOP 2 * 

&J = &J + 1 
&IF &J > 9 &SKIP 0 

b. In the following sequence, the second loop closes the first loop 
since it causes control to be transferred to a line outside the 
scope of the first loop. 

&LOOP 1 * 
&LOOP 1 1 

& = 

Part 3: Notes on EXEC 2 39 



• 
t 
I 

• t 
• 
t 

The first loop would similarly be closed. for the same reason. 
if the second loop statement were replaced by a &BEGPRINT. 
&BEGTYPE, or &BEGSTACK statement which occupied more than one 
line. 

12. Search for labels. 

The search for a label to which reference is made in a &CAll, &GOTO, 
or &LOOP statement, or in the invocation of a user-defined function, 
involves examination of the first word on each line, without regard 
to its context, or what follows it. It is, therefore, necessary to 
avoid using labels that would be matched by the first word of a line 
within a &BEGPRINT, &BEGTYPE, or &BEGSTACK statement. 

Labels that are attached to statements are treated literally; they 
are not searched for EXEC 2 variables. Labels need not be unique. 

13. Performance of label searches. 

a. &CALL, &GOTO, and user-defined functions 

A &CALl statement, a &GOTO statement, or an invocation of a 
user-defined function that transfers to a label above the 
current statement tends to be inefficient, especially in long 
EXEC 2 files. It is preferable to use the &lOOP statement in 
place of an upward "&GOTO label" statement. 

b. &lOOP label 

A "&lOOP label ... " statement is converted, at the time of its 
execution, into the equivalent "&lOOP n ... " statement. 
Therefore, the overhead for finding the label is incurred only 
once, when the loop is entered, irrespective of the number of 
iterations. 

14. EXEC 2 words are not reserved words. 

EXEC 2 control words, predefined functions, and predefined variables 
are known as EXEC 2 words. EXEC 2 words begin with an ampersand; 
but, unlike ordinary variables, they have an initial value that is 
not null. 

The initial value of EXEC 2 control words and predefined functions 
is the word itself (for example, the value of "&IF" is "&IF"). If 
one of these words is assigned a different value (for example. &IF = 
ABC). then the feature that it represents in the language is lost to 
the EXEC 2 file unless it, or another variable, is reset to the old 
value (for example &IFX = &LITERAL OF &IF) and used appropriately. 

In the case of predefined variables other than the EXEC 2 arguments. 
the special properties of a variable disappear if an explicit 
assignment is made to it. For example, the statement: 

40 IBM VM/SP EXEC 2 Reference 

J 



&TIME = &TIME 

inhibits further automatic updating of the variable &TIME. 

Words of the form &j, where "j" is an unsigned integer without 
leading zeros, are reserved for the EXEC 2 arguments. They can be 
set explicitly (for example, &2 = 1) only if they are within the 
range of arguments that are currently set. With this exception, 
EXEC 2 words are not reserved words, and can, if desired, be used 
like ordinary variables. 

&READ VARS, &READ STRING, and &UPPER VARS are treated as explicit 
assignments to the variables given; &ARGS, &READ ARGS, and &UPPER 
ARGS are not treated as explicit assignments to &N or &INDEX. 

If a feature, function, or value is accessible through more than one 
name (for example, &PIECE OF and &SUBSTR OF), an assignment to one 
of the names does not affect the other name or names. 

With the exception of the arguments &1 &2 ... , there are no EXEC 2 
words that end with a numeral, and it is intended that no such words 
will ever be introduced. Therefore, variables such as &A1, &A2, 
... , can be relied upon to have an initial value of null. However, 
the names of variables that do not end with a numeral should not be 
used in a way that relies upon their initial value being null. 

15. Example of &TRACE ALL 

Assume that an editor accepts the requests NEXT (which moves down 
the file, and yields a return code of zero unless the end of file is 
reached), LENGTH (which stacks the length of the current line), and 
TOP (which moves to the first line in the file). The following 
sample edit macro (called LONGER) searches for the next line that is 
longer than the given length (passed to the EXEC file as an 
argument). 

&TRACE ALL 
NEXT 0 
&IF &RC ~- 0 TOP 
HEXT 
&LOOP 4 WHILE &RC = 0 

LENGTH 
&READ VAR &L 
&IF &L > &1 &EXIT 
NEXT 

&EXIT &RC 

If the macro is invoked at the end of the file, the search starts 
from the top. 

Part 3: Notes on EXEC 2 41 



I 
I 

f 
• 
.~ 

Suppose that the macro is invoked with the parameter 40 at the end 
of a file containing two lines, both of length 30. This is the 
trace: 

2. NEXT 0 
+++ E(l) +++ 
3. &IF 1 -= 0 TOP 
3. . .. TOP 
4. NEXT 
5. &LOOP 4 WHILE &RC = 0 
--- LOOP WHILE 0 = 0 
6. LENGTH 
7. &READ VAR &L 
30 
8. &IF 30 > 40 &EXIT 
9. NEXT 
--- LOOP WHILE 0 = 0 
6. LENGTH 
7. &READ VAR &L 
30 
8. &IF 30 > 40 &EXIT 
9. NEXT 
+++ E( 1) +++ 

LOOP WHILE 1 = 0 
10. &EXIT 1 

16. Truncation Column 

A truncation column may be specified with the &BEGSTACK, &BEGTYPE, 
&BEGPRINT, and &TRUNC statements. 

In all cases the truncation column is the last column in which 
characters are significant. Characters in columns that are beyond 
the truncation column are ignored. 

Example: 

----:----1----:----2 
&TRUNC 10 
&X = ABCDEFGHIJK 

This sets &X to ABCDE. 

42 IBM VM/SP EXEC 2 Reference 

J 



What follows is a description of the EXEC 2 syntax in Backus-Naur Form 
(BNF). This is an alternative to the other descriptions in this manual 
and is not essential reading. 

The items enclosed in the angular brackets "<" and ">" are variables 
(nonterminal symbols). These items are replaced by the items to the 
right of "::=". ("::=" means "is to be replaced by".) The items to the 
right of "::=" may give exact replacements. other variables to be 
replaced. or the final step of the syntax breakdown. Items in capital 
letters are exact replacements. Items in lowercase. not surrounded by 
the angular brackets. are the final step (terminals) of the syntax 
breakdown. 

<statement> 

<comment> 

<label> 

<executable_stmt> 

<word> 

<unconditional_stmt> 

<number> 

<character_string> 

.. -.. -

: : = 

: : = 

: : = 

: : = 

: : = 

: : = 

: : = 

: : = 

: : = 

<statement> 
<exec_file> <statement> 

<comment> 
<label> <executable_stmt> 
<executable_stmt> 

IE anything 

-<word> 

<unconditional_stmt> 
<if_clause> <executable_stmt> 

<number> 
<character_string> 
<variable> 

<assignment> 
<control_stmt> 
<command> 
null 

&IF <word> <comparator> <word> 

<unsigned_integer> 
+<unsigned_integer> 
-<unsigned_integer> 

<character> 
<character_string><character> 

Part 4: BNF Description of the EXEC 2 Syntax 43 



j 

I 
I 

i 

<variable> · . -· . -

<assignment> : : = 

<control_stmt> : : = 

<command> : : = 

<comparator> : : = 

<unsigned_integer> : : = 

<character> : : = 

<letter> · . -· . -

44 IBM VM/SP EXEC 2 Reference 

&<character_string><letter> 
&<character_string><variable> 
&<character_string>symbol 
&symbol 

<variable> = <rhs> 

&ARGS 
&BEGPRINT 
&BEGTYPE 
&BEGSTACK 
&BUFFER 
&CALL 
&CASE 
&COMMAND 
&DUMP 
&ERROR 
&EXIT 
&GOTO 
&IF 
&lOOP 
&PRESUME 
&PRINT 
&READ 
&RETURN 
&SKIP 
&STACK 
&SUBCOMMAND 
&TRACE 
&TRUNC 
&TYPE 
&UPPER 

CP command 
eMS command 
XEDIT command (if working with 

an XEDIT macro) 

=IEQ 
~=INE 

<ILT 
<=I~>ILEING 

>IGT 
>=I~<IGEINL 

<digit> 
<unsigned_integer><digit> 

<letter> 
<unsigned_integer> 
symbol 

alblcldl .•. Ixlylz 



<rhs> 

<digit> 

<function_invocation> 

<arithmetic_rhs> 

<arithmetic_expr> 

: : = 

: : = 

: : = 

: : = 

: : = 

<word> 
<function invocation> 
<arithmetic_rhs> 
null 

0111213141516171819 

&CONCAT OF 
&CONCATENATION OF 
&DATATYPE OF 
&DIV OF 
&DIVISION OF 
&LEFT OF 
&LENGTH OF 
&LITERAL OF 
&LOCATION OF 
&MULT OF 
&MULTIPLICATION OF 
&PIECE OF 
&POSITION OF 
&RANGE OF 
&RIGHT OF 
&STRING OF 
&SUBSTR OF 
&TRANS OF 
&TRANSLATION OF 
&TRIM OF 
&TYPE OF 
&WORD OF 
user-defined function 

<arithmetic_expr> 
<arithmetic_expr> + <function_invocation> 
<arithmetic_expr> - <function_invocation> 

<number> 
<arithmetic_expr> + <number> 
<arithmetic_expr> - <number> 

Part 4: BNF Description of the EXEC 2 Syntax 45 



t , 
I 

t 

• 
I 
I 

t 
• 

If the EXEC 2 interpreter finds an error, it issues the following 
message: 

ERROR IN EXEC FILE fn ft fm, LINE nnn - description of error 

(In CMS, this is message DMSEXE085E.) 

Execution of the EXEC 2 file then stops abnormally with one of the 
following return codes. 

Return 
Code 

10001 
10002 
10003 
10004 
10005 
10006 
10007 
10008 
10009 
10010 
10011 
10012 
10013 
10014 
10015 
10016 
10017 
10019 
10020 
10021 
10097 
10098 
10099 

Description 
of Error 

FIL E NOT FOUND 
WRONG FILE FORMAT 
WORD TOO LONG 
STATEMENT TOO LONG 
INVALID CONTROL WORD 
LABEL NOT FOUND 
INVALID VARIABLE NAME 
INVALID FORM OF CONDITION 
INVALID ASSIGNMENT 
MISSING ARGUMENT 
INVALID ARGUMENT 
CONVERSION ERROR 
NUMERIC OVERFLOW 
INVALID FUNCTION NAME 
END OF FILE FOUND IN LOOP 
DIVISION BY ZERO 
INVALID LOOP CONDITION 
ERROR RETURN DURING &ERROR ACTION 
ASSIGNMENT TO UNSET ARGUMENT 
STATEMENT OUT OF CONTEXT 
INSUFFICIENT STORAGE AVAILABLE 
FILE READ ERROR nnn 
TRACE ERROR nnn 

The EXEC 2 interpreter also issues the following messages: 

INVALID EXEC COMMAND 

(In eMS, this is message DMSEXE175E.) 

Return Code: 10000 

46 IBM VM/SP EXEC 2 Reference 

J 

J 



INSUFFICIENT STORAGE FOR EXEC INTERPRETER 

(In eMS, this is message DMSEXE255T.) 

Return Code: 10096 

The &CRASH statement is useful in debugging the EXEC 2 interpreter 
(module DMSEXE). It is intended for use only by IBM or customer system 
support personnel. Note that the &CRASH command is not used for 
debugging programs or EXEC 2 files written in the EXEC 2 language. For 
information on debugging EXEC files written in the EXEC 2 language, 
refer to the &TRACE statement in this book. 

A complete description of the &CRASH command can be found in VM/SP 
System Programmer's Guide. 

Part 5: EXEC 2 Errors 47 



, 

Converting CMS EXEC F;les to EXEC ~ F;les 

CMS EXEC files continue to be supported without modification. However, 
to take advantage of the new function and performance available under 
EXEC 2, you must convert your EXEC files to conform to EXEC 2 language. 
The first step in converting CMS EXEC files to EXEC 2 files is to change 
the &CONTROL statement to &TRACE. This statement determines which EXEC 
interpreter will handle the EXEC file. &CONTROL indicates the CMS EXEC 
interpreter, and &TRACE indicates the EXEC 2 interpreter. This must be 
the first record in the EXEC file. 

Next, the CMS EXEC statements must be converted to their corresponding 
EXEC 2 counterparts. A comparison between the language definitions of 
CMS EXEC and of EXEC 2 follows. A section listing unique EXEC 2 
functions follows the comparison sections. 

~ statement compar;son 

Control statements 

&ARGS 

&BEGEMSG 

&BEGPUNCH 

&BEGSTACK 
ALL parameter specifies 
stacking of the entire 
line up to 130 characters. 
The absence of ALL results 
in truncation at 72 
characters. 

48 IBM VM/SP EXEC 2 Reference 

Supported; does not have a limit 
of 30 arguments. 

Not supported 

Not supported 

ALL parameter is not supported. 
If a truncation value is not 
specified, the lines are not 
truncated. &END is not supported 
as a data list delimiter. The 
number of lines to be stacked 
can be specified with the "n" 
parameter. An "*" will stack 
lines to the end of the file. 
The "label" parameter allows 
lines to be stacked down to 
a specified label. Parameters 



&BEGTYPE 

&CONTINUE 

&CONTROL 

&EMSG 

&END 

&ERROR 

&EXIT 

&GOTO 
The parameter TOP directs 
the EXEC processor to the 
first line of the program. 

&HEX 

&IF 

&LOOP 

&PUNCH 

&READ 

&SKIP 

&SPACE 

&STACK 

FIFO and LIFO are supported. 

(See comment for &BEGSTACK; 
also supported as &BEGPRINT.) 

Treated as a null statement. 

&TRACE. &TRACE does not 
support the following parameters: 
MSG, TIME, PACK, HOMSG, NOTIME, 
NOPACK. Uses parameter ON in 
place of CMS. Parameters OFF, 
ERRORCERR), ALL are supported. 
"*" has been added. 

Not supported 

Not supported 

Supported; &CONTINUE is 
treated as a null statement. 

Supported 

TOP is not explicitly supported. 
The line number value 1 provides 
equivalent function. The line 
number and label parameters are 
supported. 

Not supported 

Supported; &$ and &* are not 
supported. 

The conditional expression 
must be preceded with "WHILE" 
or "UNTIL". "*" has been added. 

Not supported 

Supported; "*" and STRING have 
been added. 

Supported 

Not supported; see &PRINT. 

Supported. HT and RT are 
not supported. SET CMSTYPE HT 
and SET CMSTYPE RT are their 
equivalents. 

Appendix A: CMS EXEC and EXEC 2 Relationship 49 



t 
I , 
J 
I 

&TIME 
Used to request timing 
information during 
execution. 

&TYPE 

P~edefined Functions 

CMS EXEC 

&CONCAT 

&DATATYPE 

&LENGTH 

&LITERAL 

&SUBSTR 

P~edefined Variables 

&0 Represents the filename. 

&1 &2 ... 

50 IBM VM/SP EXEC 2 Reference 

Not supported as a control 
statement. Used as a pre­
defined variable to display 
the true time-of-day on the 
primary meridian (Greenwich 
Mean Time (GMT». See &TIME 
under the section "PREDEFINED 
VARIABLES" in this publication. 

Supported; also supported as 
&PRINT. 

EXEC ~ 

Supports &CONCAT OF and 
&CONCATENATION OF 

Supports &DATATYPE OF 
and &TYPE OF 

Supports &LENGTH OF 

Supports &L ITERAl OF 

Supports &SUBSTR OF and 
&PIECE OF 

Normally, this parameter 
represents the filename, 
but this may be different 
if the EXEC was invoked by 
a synonym. 

Supported; does not have a limit 
of 30 arguments. 

Not supported, but see &POSITION OF 
and &LOCATION OF. 

J 



&$ 

&DISKX 

&DISK* 

&DISK? 

&DOS 

&EXEC 

&GLOBAL 

&GLOBALn 

&INDEX 

&LINENUM 

&READFLAG 

&RETCODE 

&TYPEFLAG 

Not supported, but see &POSITION OF 
and &LOCATION OF. 

Not supported 

Not supported 

Not supported 

Not supported 

Supported as &FILENAME 

Not supported 

Not supported 

Supported; also supported as &N, 
does not have a limit of 
30 arguments. 

Supported; also supported as 
&LINE 

Not supported 

Supported; also supported as 
&RC 

Not supported 

Appendix A: CMS EXEC and EXEC 2 Relationship 51 



Functions Unique to EXEC ~ 

Control statements 

&BUFFER &RETURN 

&CALL &SUBCOMMAND 

&CASE &TRACE (similar to &CONTROL 
in CMS EXEC) 

&COMMAND 
&TRUNC 

&DUMP 
&UPPER 

, 
Predefined Functions 

&DIVISION OF and &RANGE OF 
&DIV OF 

&RIGHT OF 
&LEFT OF J I 

&STRING OF 

• 
&LOCATION OF 

&TRANSLATION OF and 
&MUL TIPLICATION OF and &TRANS OF 
&MULT OF 

&TRIM OF 
&POSITION OF 

&WORD OF 

Predefined Variables 

& &FILEMODE 

&ARGSTRING &FILENAME 

&BLANK &FILETYPE 

&CMDSTRING &FROM 

&COMLINE &LINK 

&DATE &TIME 

J &DEPTH 

52 IBM VM/SP EXEC 2 Reference 



other 

User-Defined Functions 

Blanks in values of variables 

Arbitrary characters allowed in variable names 

Appendix A: CMS EXEC and EXEC 2 Relationship 53 



1. This sample EXEC 2 file, called GRAB EXEC, copies a file from any 
CMS disk to the user's A-disk. 

&TRACE 
&IF &N = 0 &GOTO -TELL 
&IF &N < 2 &GOTO -BAD 
&IF &N > 3 &GOTO -BAD 
&IF &N = 2 &ARGS &1 &2 * 
COPYFILE &1 &2 &3 &1 &2 A 
&EXIT &RC 

-BAD &PRINT INVALID GRAB COMMAND 
&EXIT 101 

-TELL &PRINT COMMAND IS: GRAB FN FT [MODE] 
&PRINT COPIES THE GIVEN FILE TO THE A-DISK, 
&PRINT AND PASSES BACK THE RETURN CODE FROM 
&PRINT 'COPYFILE'. 
&EXIT 100 

2. This sample EXEC 2 file, called SHIP EXEC, sends a specified CMS 
file to a specified user. The comments are included for tutorial 
purposes. 

&TRACE 

* COMMAND IS: SHIP USER FILENAME FILETYPE [MODE] 
* IF THERE ARE NO ARGUMENTS GIVEN, TELL USER HOW ... 

&IF &N = 0 &GOTO -TELL 

* CHECK THE NUMBER OF ARGUMENTS, AND USE FILEMODE 
* OF "*" IF IT IS NOT GIVEN ... 

&IF &N < 3 &GOTO -BAD 
&IF &N > 4 &GOTO -BAD 
&IF &N = 3 &ARGS &1 &2 &3 * 

* SPOOL PUNCH TO RECIPIENT'S CARD-READER, OR 
* COMPLAIN IF RECIPIENT IS NOT KNOWN TO SYSTEM ... 

CP SPOOL PUNCH TO &1 CLASS A 
&IF &RC ~= 0 &GOTO -BADUSER 

* PUNCH THE FILE, OR COMPLAIN IF FAILURE ... 

54 IBM VM/SP EXEC 2 Reference 

J 



PUNCH &2 &3 &4 
&IF &RC -= 0 &GOTO -ERROR 

* TELL RECIPIENT WHAT HAS BEEN DONE; THEN UN SPOOL 
* THE PUNCH, AND RETURN WITH SUCCESS ... 

CP MSG &1 I HAVE PUNCHED YOU MY FILE &2 &3 &4 
CP SPOOL PUNCH TO * CLASS A 
&EXIT 

* TELL RECIPIENT INVALID SHIP COMMAND, AND RETURN 
* WITH ERROR ... 

-BAD &PRINT INVALID SHIP COMMAND 
&EXIT 101 

* TELL RECIPIENT GIVEN USERID IS NOT VALID, AND 
* RETURN WITH ERROR ... 

-BADUSER &PRINT &1 IS NOT A VALID USERID 
&EXIT 102 

* TELL RECIPIENT ERROR WHEN PUNCHING FILE; THEN 
* UNSPOOL PUNCH AND RETURN WITH ERROR ... 

-ERROR &PRINT ERROR &RC FROM "PUNCH" (WHILE IN SEND) 
CP SPOOL PUNCH TO * CLASS A 
&EXIT 103 

* TELL USER HOW ... 

-TELL &PRINT COMMAND IS: SHIP USER FN FT [FM] 
&EXIT 100 

Appendix B: Sample EXEC 2 Flies 55 



I , , 
t 

Since both CMS EXEC and EXEC 2 files are called in the same way, CMS 
examines the first statement of the EXEC 2 file to determine which EXEC 
interpreter must handle it. If the first statement of the EXEC file is 
&TRACE, CMS calls the EXEC 2 interpreter to handle it. If the first 
statement is not &TRACE, CMS calls the CMS EXEC interpreter to handle 
it. 

Calling EXEC ~ Programs from CMS Command Level 

When EXEC 2 programs are called from command level, the command verb 
(which becomes &0) and the arguments (which individually become &1 &2 
... and collectively become &ARGSTRING) are translated to uppercase. 
&CMDSTRING will contain the untranslated command string. 

When EXEC 2 programs are invoked from another EXEC 2 program, no 
translation takes place, and &CMDSTRING will be the same as the &STRING 
OF &0 &ARGSTRING (if &0 was delimited by a blank) or &CONCAT OF &0 
&ARGSTRING (if &0 was delimited by a parenthesis). 

It is possible to 'pretend' a command-level call by using the CMS 
command, CMDCALL. CMDCALL converts EXEC 2 extended plist function calls 
to CMS extended plist command calls. The use of CMDCALL in an EXEC 2 
exec allows the message 'FILE NOT FOUND' to be displayed for the ERASE, 
LISTFILE, RENAME, and STATE commands. Also, an EXEC 2 program invoking 
another EXEC 2 program will have the same results as an EXEC 2 program 
being called from command level. &0, &1 &2 ... , and &ARGSTRING will be 
translated as stated above. 

In either case, calling an EXEC 2 program from command level or invoking 
an EXEC 2 program from another EXEC 2 program, the CMS convention that 
parentheses are token delimiters is applied to separate &0 from 
&ARGSTRING, but it is not applied to delimit &1, &2, .•• from each 
other. 

56 IBM VM/SP EXEC 2 Reference 



Some CMS limits that apply to EXEC 2 files are: 

• EXEC 2 files used as CMS command files must have the word &TRACE as 
the first word in the first record of the file. In subcommand 
environments, such as XEDIT for XEDIT macros, the word &TRACE is 
optional. 

• The maximum length of an EXEC 2 line is 255. 

• The maximum length of a statement, after replacement of variables, is 
511. (This limit is enforced only as needed by the interpreter; some 
statements can grow to a greater length.) 

• The maximum length of a word, after replacement of variables, is 255. 

• The maximum length of a line read from the console is 130, and from 
the console stack is 255. 

• The maximum length of a printed line is 130. 

• An EXEC 2 filename can be from one to eight characters long. The 
valid characters are A-Z, 0-9, $, I, ~, +, : (colon), - (hyphen), and 

(underscore). The filetype must be EXEC for files that are invoked 
from CMS command mode and XEDIT for files used as XEDIT macros. 

• All EXEC 2 files have an initial lookaside buffer of 32 lines (see 
the &BUFFER description in the "Control statements" section). The 
&BUFFER 0 statement must be issued to delete the lookaside buffer if 
the fila is to be modified while being executed. 

• In a context that requires numeric values, numbers must be in the 
range -2,147,483,648 to +2,147,483,647. 

• In CMS, return codes for the &EXIT control statement are limited to 
the range ~2,147,483,648 to +2,147,483,647. Attempts to exceed these 
limits will cause the EXEC 2 file to stop abnormally with an error 
message (NUMERIC OVERFLOW). 

• CMS commands issued from EXEC 2 files are invoked in such a way that 
most information and error messages issued by the following eMS 
commands will not be typed: ERASE, LISTFILE, RENAME, STATE, and 
FILEDEF. (See the description of CMDCALL, in section "Calling EXEC 2 
Programs from CMS Command Level" above, for an exception to this 
statement.) This is also true for any other system or user command 
that makes a distinction in its operation based on flags passed in 
register 1. However, note that a nonzero return code from any of 
these commands will be reflected in the predefined variables &RETCODE 
and &RC. 

Appendix C: EXEC 2 in CMS 57 



I • EXEC 2 is designed to maintain a complex program environment. For 
I this reason, automatic clean-up will not be invoked at the completion 
I of each command within the EXEC. It is the programmer's 
I responsibility to enstire that any necessary clean-up functions (i.e. 
I STRINIT, OS RESET, VSAM CLEAN-UP, etc.) are invoked when needed. 
I 
I • CP and CMS commands issued from an EXEC 2 file must be in uppercase. 
I 
I • The length limit for values assigned via the EXECCOMM interface is 
I 255. If the limit is exceeded, the return code from the EXECCOMM 
I interface is 16 (INVALID VALUE). 

• The length limit for the external name of a shared variable is 254. 
If the limit is exceeded, the return code from the EXECCOMM interface 
is 8 (INVALID NAME). 

• If a "STORE" reference is made to an unset EXEC 2 argument (i.e. a 
variable of the form &i where "i" i5 an unsigned number without 
leading zeros that exceeds the number of EXEC 2 arguments that are 
currently stored), no assignment is performed, and the return code 
from the EXECCOMM interface is 8 (INVALID NAME). 

• If a "FETCH" reference is made to &ARGSTRING (or &CMDSTRING) via the 
EXECCOMM interface and the length of &ARGSTRING (or &CMDSTRING) 
exceeds 255, a length of 256 is recorded. If the length of the 
caller's area exceeds 255, the value is truncated without any error 
indication. 

• If a "FETCH" reference is made to &TIME or &DATE via the EXECCOMM 
interface, the time-of-day returned ;s the same for all references 
from a given program invocation, since (as far as the EXEC 2 
interpreter is concerned) the same statement is still in execution 
(see note 5, "Evaluation of &DATE and &TIME," in section 3). 

58 IBM VM/SP EXEC 2 Reference 



Us;ng EXEC ~ Parameter L;sts w;th Assembler Language Programs 

The calls illustrated below are made via CMS SVC 202 calls. 

1. EXEC 2 interpreter calling another program: 

For &COMMAND wordO wordl ... wordn 
RO = ACNPLIST) 
Rl = ACtokenized CMS plist) 
High-order byte of R1 is X'Ol'. 

For &SUBCOMMAND wordO word1 ... wordn 
RO = A(NPLIST) 
R1 = AC=CL8'wordO') 
High-order byte of Rl is X'02'. 

where: 

NPLIST DS OF 
DC ACCOMVERB) 
DC A(BEGARGS) 
DC ACENDARGS) 
DC ACO) 

COMVERB EQU * the command verb 
DC C'wordO' 
DC C' , optional blanks 

BEGARGS EQU 
DC 
DC 
DC 
DC 

DC 
ENDARGS EQU 

* 
C'word1' 
C' , 
C'word2' 
C' , 

C'wordn' 

* 

the argument string 

2. Calling the EXEC 2 interpreter with a tokenized plist only: 

RO = irrelevant 
Rl = A(CMS tokenized plist) 
High-order byte of R1 as from LA, BAl, or BAlR. 

The value of &ARGSTRING in this case is set as if by the EXEC 2 
statement: 

&ARGSTRING = &RANGE OF & 1 &INDEX 

Appendix C: EXEC 2 in CMS 59 



3. The EXEC 2 interpreter can be passed an extended plist, that 
specifies an untokenized argument string. In addition, the 
parameter list may precisely identify the EXEC file to be executed 
Cand thereby specify a filetype other than EXEC, or an explicit 
filemode); or it may identify an "in-memory file." An "in-memory 
file" is similar in concept to a file on disk, but it is resident in 
memory. 

RO = A(NPLIST) 
Rl = ACCMSPLIST) 
High-order byte of Rl is X'Ol'. 

NPLIST DS OF 
DC A(O) (ignored by EXEC 2) 
DC ACBEGARGS) 
DC ACENDARGS) 
DC A(O) or ACFBLOCK) 

CMSPLIST OS OF 

* 
* 

DC CL8'EXEC' 
DC CL8'filename' (Ignored if file block is given) 

(Always ignored by EXEC 2 interface) 

If no FBLOCK is given for the above instruction in the NPLIST 
(i. e. A(FBLOCK) is zero), the filename of the EXEC file is 

* taken from the second a-byte token of the area addressed 
* by register 1. This will be the value after synonym resolution 
* so it may be different from &0. 

* 
* 
* 
* 
* 

BEGARGS EQU * 
DC C'ampO' 
DC C' , 
DC C'argstring' 

ENDARGS EQU * 

FBLOCK DS OF 
DC CL8'filename' 
DC CL8'filetype' 
DC CL2'filemode' 

the argument string 
no embedded blanks, becomes &0 
single blank separates &0 from &ARGSTRING 
becomes &ARGSTRING 

** File Descriptor ** 
if blank, &0 will be used - see &0 
may be blanks for &PRESUME &COMMAND 
should be given as '*', or blanks for 
in-memory files 

IMPORTANT NOTE: The default &PRESUME setting is as follows: 

No file block given: &COMMAND 
File block given, filetype blank: &COMMAND 
File block given, filetype non-blank: &COMMAND filetype 

60 IBM VM/SP EXEC 2 Reference 

J 



L 

* * Thus, if a filetype of EXEC is explicitly specified in the file 
* block, the default presumption will be &SUBCOMMAND EXEC, and not 
* &COMMAND, even though an EXEC file of filetype EXEC will be 
* executed. 

* * The following is an FBLOCK extension block. The first 
* halfword specifies how many words are in the extension 
* block. CMS requires a value of either zero or two. 

DC XL2'0002' 
DC AL4(PGMFILE) 

Number of full words that follow 
Address of the in-memory 
EXEC 2 descriptor 

DC AL4(PGMEND-PGMFILE) Number of bytes in the 
descriptor 

* If no "in-memory file" is provided, the values in 
* the extension must either both be zero, or be 
* omitted by changing the XL2'0002' to XL2'OOOO'. 

PGMFILE DS OF in-memory EXEC 2 Program 
DS ACl i ne 1),F'len 1 ' Address and length of 

file line I 
DS A( 11 ne 2),F'len 2' Address and length of 

file line 2 
OS ACl i ne 3),F'len 3' Address and length of 

file line 3 

OS A(line n),F'len n' Address and length of 
* file line n 

PGMENO DS OH 

* The above fields are not checked by the interpreter, but they 
* are used in error messages and in the predefined variables 
* lFILENAME, lFILETYPE, and lFILEMODE. If they contain embedded 
* blanks, the results are unpredictable. 

4. Using the EXEC 2 interpreter as a macro processor. 

The use of EXEC 2 programs as macros or command files for user 
specified command processors requires functions provided by the CMS 
SUBCOM function. 

The following paragraphs describe how to use SUBCOM and the EXEC 2 
interpreter to implement a macro facility. 

Issue SUBCOM SVC 202 to set up an entry point in the command 
processor. (For information on how to do this, refer to VM/SP 
System Programmer's Guide under SVC 202 and SUBCOM/DYNAMIC LINKAGE.) 

Appendix C: EXEC 2 in CMS 61 



• 
• t 

f 

Call EXEC 2 as in example 3 above. The filetype from the file 
descriptor block becomes the default &PRESUME &SUBCOMMAND 
environment except when it is blank. in which case the default 
filetype is EXEC, and the default presumption is &PRESUME &COMMAND. 

When subcommands are encountered in the macro, the EXEC 2 
interpreter will call the entry point specified in the SUBCOM call. 
This entry point may then take whatever action is necessary with the 
command. 

Upon return, the EXEC 2 interpreter continues with the next 
statement or command. 

When the EXEC 2 file terminates, control is returned to the 
initiating program at the calling point. 

Executing XEDIT Macros in EXEC 2 

The basic subcommand language of the XEDIT editor can be extended by 
writing macros that are executed by the EXEC 2 interpreter . 

These XEDIT macros are CMS files with the filetype of XEDIT. 

When the EXEC 2 interpreter encounters an XEDIT subcommand, it sends the 
command to XEDIT for execution. 

XEDIT processes the command and returns to the EXEC 2 file with a return 
code. The EXEC 2 file then continues execution with the next statement 
or command. When the EXEC 2 file completes, control returns to XEDIT. 

See VM/SP System Product Editor Command and Macro Reference for further 
information on XEDIT macros. 

62 IBM VM/SP EXEC 2 Reference 

J 

J 



EXECCOMM - Shar;ng EXEC ~ Var;ables w;th Assembler LangUage Programs 

EXEC 2 permits programs called from an EXEC 2 file to access all EXEC 
variables used within that EXEC file. Variables accessed in this manner 
are called "shared variables." The EXECCOMM facility of EXEC 2 provides 
this variable sharing environment. Using the "FETCH" and "STORE" 
functions of EXECCOMM, programs can directly access and manipulate EXEC 
2 variables. Also, the execution of commands or subcommands can result 
in assignments to some of these variables as a side-effect of their 
execution. It is also possible to create new variables in the called 
program. 

When variables are stored by a program, their names are checked for 
validity, but no substitution is carried out by EXEC 2. In other words, 
names passed through EXECCOMM are taken exactly as is, and embedded 
ampersands (&) do not cause multiple substitution. 

Variables are identified by an "external name," which is the same as 
their "internal name," but without the leading ampersand. For example, 
to "fetch" a value contained in the internal variable "&VALUE," a 
program should use the external name "VALUE." 

The facility works as follows: 

When EXEC 2 starts to interpret a new EXEC or XEDIT macro, it first sets 
up a subcommand entry point called EXECCOMM. When a program (command or 
subcommand) is called by EXEC 2, it may in turn use the current EXECCOMM 
entry point to Store or Fetch variable values. 

To access variables, the EXECCOMM entry point is invoked using both the 
normal and the extended Plist (see below, also see the VM/SP System 
Programmer's Guide). SVC 202 should be issued with register 1 pointing 
to the normal Plist and the top flag byte of register 1 set to X'02'. 

Appendix C: EXEC 2 in eMS 63 



, , 

f 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

On return from the SVC, register 15 contains a summary return code for 
the entire Plist. The possible return codes are: 

Return Code Meaning 

0 or positive Entire Pli st was processed. Register 15 is 
the composite OR-ing of the SHVRET flags 
(see below) . 

-1 Invalid entry conditions. 

-2 Insufficient storage was available for the 
requested operation. Processing was terminated. 

-3 from SUBCOM No EXECCOMM entry point found ( i . e. not called 
from inside a EXEC 2 Exec) . 

The register 1 Pljst: Register 1 should point to a Plist which consists 
of the eight character string "EXECCOMM". 

The register ~ Plist: Register 0 should point to the SUBCOM Plist. The 
first word of the SUBCOM plist should also point to the word "EXECCOMM." 
No argument string should be given, so the second and third words should 
be the same (e.g. point to the same address or both 0). The fourth word 
of the Plist should point to the first of a chain of one or more request 
blocks. 

The call is made via CMS supervisor call SVC 202, with the Plist 
registers set up as follows: 

RO = A(HPLIST> (see below) 
Rl = A(CL8'EXECCOMM') high-order byte = X' 02' 

where: 

HPLIST DS OF subcommand Plist 
DC A(CL8'EXECCOMM') same as register 1, but with 0 

* high-order byte 
DC ACARGS) null argument string 

in the 

DC A(ARGS) end address of null argument string 
DC ACSHRLIST> pointer to first variable access 

* request block 

64 IBM VM/SP EXEC 2 Reference 

J 

J 



The reguest block: Each request block in the chain must be laid out as 
follows: 

************************************************************************ * SHVBLOCK: Layout of shared-variable Plist element. * 
************************************************************************ 
* SHRLIST DS OF Variable Access Request Block 
SHVNEXT DS A Chain pointer (0 if last block) 
SHVUSER DS F Not used, available for private use 
SHVCODE DS CLl Individual function code 
SHVRET OS XLl Individual return code flag 

OS H' 0 ' Not used, should be zero 
SHVBUFL OS F Length of ' FETCH' value buffer 
SHVNAMA DS A Address of external variable name 
SHVNAML OS F Length of external variable name 
SHVVALA DS A Address of value buffer (0 = 'none') 
SHVVALL DS F Length of value (set by 'FETCH') 

* 
* 
* 

Function Codes (SHVCODE) 

SHVFETCH EQU 
SHVSTORE EQU 

C'F' 
C'S' 

* Return Code 

* SHVCLEAN 
I SHVTRUNC 
I SHVBADN 
I SHVBADV 

I * 
I SHVBADF 

I * 

EQU X' 00' 
EQU X'04' 
EQU X' 08' 
EQU X'10' 

EQU X'80' 

FETCH - Copy value to caller's area 
STORE - Store from value supplied by caller 

Flags (SHVRET) 

(Decimal 0) Execution was OK 
(Decimal 4) Truncation occurred during 'FETCH' 
(Decimal 8) Invalid variable name (e.g. too long) 
(Decimal 16) Value too long - "STORE" not 

performed 
(Decimal 128) Invalid function code (SHVCODE) 

I * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 
I 
I A typical calling sequence for the EXECCOMM interface might be: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I * 
I 
I 
I 

LA 
LA 
ICM 
SVC 
DC 
LTR 
BM 

RO, NPLIST 
Rl,=CL8'EXECCOMM' 
Rl,B'1000',=X'02' 
202 
AL4(l) 
R15,R15 
DISASTER 

Execution was okay 

Subcom Plist as shown 
Name of Subcom entry point 
Insert 'subcommand call' flag 
Issue SVC 
Sequential return 
Check for a negative return code 
If yes, quit 

Appendix C: EXEC 2 in CMS 65 



I 
I 

The specific actions for each function code are as follows: 

S Store variable. SHVNAMA contains the address of the external 
variable name, and SHVNAML contains the length of this name. 
SHVVALA contains the address of the buffer where the "value" of 
SHVNAMA is stored, and SHVVALL contains the length of the "value." 
The external name (SHVNAMA) is checked (e.g. length limitations), 
and the corresponding internal variable (same name as the external 
name, only with a leading ampersand (l» is set to the value of the 
external variable. If a "STORE" reference is made to an unset EXEC 
2 argument (i.e. a variable of the form &i where Hi" is an unsigned 
number without leading zeros that exceeds the number of EXEC 2 
arguments that are currently stored), no assignment is performed. 
The SHVBADN bit is set to X'08' (INVALID NAME). 

F Fetch variable. SHVNAMA contains the address of the external 
variable name, which is the same as the internal variable name that 
you want to fetch, but without the leading ampersand (&). SHVNAML 
contains the length of this external name. SHVVALA contains the 
address of a buffer where the fetched variable value will be copied, 
and SHVBUFL contains the length of the buffer. The external 
variable name (SHVNAMA) is checked (e.g. length limitations), and 
the internal variable is located and copied into the buffer. The 
total length of the fetched variable is placed in SHVVALL, and if 
the fetched value was truncated because the buffer was not big 
enough, the SHVTRUNC bit is set to X'04'. If the referenced 
variable is shorter than the length of the buffer, no padding is 
done. 

If there is insufficient storage (return code -2), some of the 
SHRLIST elements may not have been processed. These elements 
(including the SHVRET field) are left unchanged. 

Note: The value returned by a FETCH operation is a snapshot of the 
internal variable at the time the operation is done. The returned 
value is therefore unaffected by subsequent STORE operations to the 
same internal variable (even within the same list). 

66 IBM VM/SP EXEC 2 Reference 

J 

j 



The function of a command programming language such as EXEC 2 is to 
improve the effectiveness of a programming system by matching the 
available commands to the particular needs and applications of each 
user. As a CMS user. you probably have observed that some commands were 
needed more frequently than others. Some of the commands you used were 
short and easy to type while others involved several arguments and were 
more difficult to issue. There may have been instances when you had to 
look up the correct command format or issue several commands in 
succession to perform an operation which would be more convenient if it 
were done by only one command. Command procedures. written using the 
EXEC 2 language. can adapt existing commands to user needs by storing 
commands that are issued frequently. and in the sequence that you wish 
them executed. in a disk file. Within this file. the validation of 
arguments can be checked and default values can be supplied. (A default 
value is a specific value assumed when an argument has not been 
explicitly specified. Usually. default values are chosen to be the most 
frequently used argument values. so that the convenience of not having 
to write that particular value is realized as many times as possible.) 
The name of the file containing these commands becomes a new command 
name. and hence. a new CMS command. The format of this new command can 
be tailored to the individuals needs. 

To illustrate this. assume you have the files listed in the first column 
of the following table. and wish to rename them as indicated in the 
second column: 

Current Name 

X MEMO 
NEW MEMO 
OLD MEMO 

Desired Name 

NEW MEMO 
OLD MEMO 
(erased) 

The commands used to perform this operation are straightforward. though 
they are a bit lengthy because two of the three fileids must be repeated 
and filemodes are required for the RENAME commands: 

ERASE OLD MEMO 
RENAME NEW MEMO A OLD MEMO A 
RENAME X MEMO A NEW MEMO A 

EXEC 2 makes it easy for the user to issue a sequence of commands by 
typing only a single command line. This is achieved by storing the 
desired commands in a disk file. and invoking the stored commands by 
typing the file's name as the command name. Such files of stored 
commands must have a filetype of EXEC. Note that other filetypes are 
possible. but they cannot be called directly by a command that you type 
at your terminal; they can be invoked from a program. such as a text 
editor. When CMS reads a command typed by the user. it searches for a 

Appendix D: EXEC 2 Primer for New Users 61 



I 

f 

I 

disk file having the same filename as the typed command name and a 
filetype of EXEC. If such a file is found, the EXEC interpreter 
interprets the command statements read from the disk file. 

If we used a text editor to create the following file named RIPPLE EXEC: 

&TRACE ON 
ERASE OLD MEMO 
RENAME NEW MEMO A OLD MEMO A 
RENAME X MEMO A NEW MEMO A 

we could command the renaming of the files described above by typing the 
line: 

RIPPLE 

The first line of the RIPPLE EXEC file is an EXEC 2 control statement. 
Such statements affect the operation of the EXEC interpreter instead of 
performing some operation in the CMS environment. The &TRACE ON 
statement tells the EXEC interpreter to display on your console any 
commands that it issues before they are executed. A &TRACE OFF 
statement would suppress this display of executed commands. A 
&TRACE ALL statement would display EXEC control statements as well as 
commands that are executed. 

In the CMS environment, where the EXEC 2 interpreter coexists with the 
CMS EXEC interpreter, a second purpose is served by the &TRACE 
statement. Whenever an EXEC file is to be interpreted, the first record 
of the file is read and scanned to see if the first word is &TRACE. If 
it is, the file is deemed to be an EXEC 2 file; otherwise, the CMS EXEC 
interpreter is used to interpret that file. 

EXEC control statements make it possible to conditionally interpret 
statements in an EXEC file. to repeat the interpretation of statements, 
and to control the working of the EXEC interpreter in various ways. 
They make it possible to write EXEC files which perform different 
operations depending on the arguments entered on the EXEC command line 
or the results of commands issued from the EXEC file. This is a very 
important concept, for it is this ability to modify the commands issued 
from an EXEC file (and the order in which they are issued) which 
underlies the most useful features of EXEC files. 

Commands, Retu~n Codes, and EXEC Va~;ables 

Every command executed in eMS issues a return code indicating the 
success or failure of the operation requested. This return code is a 
numeric value that is passed back to the caller of the command. If a 
command is issued from an EXEC file, the return code generated by that 
command can be examined and used to control the subsequent 
interpretation of statements in the EXEC file. For example, the ERASE 

68 IBM VM/SP EXEC 2 Reference 



command displayed above in RIPPLE EXEC will yield a return code of: 0 
(zero) if it succeeds in erasing a file, 28 if the file to be erased 
does not exist, 36 if the file exists but is on a read-only disk, and 
other values for less common conditions. 

A command's return code is saved by the EXEC 2 interpreter as the value 
of the EXEC variable &RC. EXEC variables are symbols that are used to 
refer to values that may change during the interpretation of an EXEC 
file. You can use the symbol &RC in an EXEC statement to refer to the 
return code generated by the most recent command issued from the EXEC 
file. One way the &RC variable might be used in the RIPPLE EXEC file is 
to force termination of the EXEC file (before renaming any files) if the 
X MEMO file does not exist. To do this, the CMS command STATE is used 
to determine whether X MEMO exists on the A-disk. STATE generates a 
return code of 0 if the designated file exists, or a return code greater 
than 0 if it does not. 

&TRACE OFF 
STATE X MEMO A 
&IF &RC > 0 &EXIT 1 
ERASE OLD MEMO 
RENAME NEW MEMO A OLD MEMO A 
RENAME X MEMO A HEW MEMO A 

The third statement in this file (&IF ... ) tests the return code from 
STATE, and uses the &EXIT control statement to force immediate 
termination of the EXEC file if the value of &RC is greater than zero. 
Like CMS commands and user programs, EXEC files also generate return 
codes. If an EXEC file terminates because an end-of-file is reached and 
there are no more statements to interpret, the return code will be zero. 
However, various errors detected by the EXEC 2 interpreter (invalid EXEC 
control word, nonexistent file, and so on) will cause termination with a 
return code greater than 10000. Or, you may write the &EXIT control 
statement to terminate the EXEC file with a specific return code, as 
shown above. 

The ampersand character is used at the beginning of a word to signal the 
EXEC interpreter that this word is an EXEC variable or an EXEC control 
word. When the EXEC 2 interpreter processes a statement from an EXEC 
file, it begins by examining each word and replacing any EXEC variables 
with their current values. (Later, we'll see exactly how this is done.) 
EXEC control words are like EXEC variables, except their values are 
initialized to their names by the EXEC interpreter (that is, the value 
of &TRACE is &TRACE, the value of &IF is &IF, etc.). 

&RC is one of a group of variables that are handled in a special manner 
by the EXEC interpreter. They are called "predefined variables" because 
the EXEC interpreter assigns values to them automatically. Some of 
these predefined variables are given values only once, when the EXEC 
interpreter starts processing a file (&FILEHAME is such a variable, 
whose value is the name of the EXEC file being processed). Other 
predefined variables are assigned values whenever some specific action 
occurs. Examples are &RC, which is set to the return code value 
whenever a command is issued, and &H, which is initially set to the 

Appendix D: EXEC 2 Primer for New Users 69 



I 

f 
J 

number of arguments present on the EXEC command line and is updated when 
an EXEC control statement redefines the set of argument variables. 

EXEC File Arguments 

The EXEC variables &1 &2 &3 ... are used to refer to the arguments in 
the EXEC command invoking the file. The value of &1 is the first word 
following the name of the EXEC file in the command line, &2 is the 
second word, etc. If you refer to an argument that was not present in 
the command line (such as &1, if no operands were written), its value 
will be null, and that word will disappear from any statement in which 
it is used. The same is true for a reference to any other EXEC variable 
that has not been assigned a value, or has been explicitly assigned the 
null value. 

We will now modify the RIPPLE EXEC again so that it accepts the name of 
any MEMO file as an argument instead of always using the file X MEMO: 

&TRACE OFF 
STATE &1 MEMO A 
&IF &RC > 0 &EXIT &RC 
ERASE OLD MEMO 
RENAME NEW MEMO A OLD MEMO A 
RENAME &1 MEMO A NEW MEMO A 

Here the return code from STATE is used as the return code from the 
RIPPLE EXEC file. A nonzero value indicates failure of the RIPPLE 
command, and provides a little more information than simply returning a 
value of 1. (Refer to VM/SP CMS Command and Macro Reference for the 
Responses, and the Error Messages and Return Codes issued by CMS for the 
STATE command.> 

With this RIPPLE EXEC file, we could have any number of current, or 
working, MEMO files, each with a different filename. Whenever we wish 
to rename one of them (RWR MEMO, for example) we could use the command: 

RIPPLE RWR 

to rename it, making the original filename available to be used again. 
There will always be copies of the last two files renamed, in case a 
need arose to use one of them again. Files more than two iterations old 
are automatically erased. 

There is no limit (other than disk capacity) to the number of files that 
can be ke.pt. By adding more RENAME commands to the EXEC file, we can 
keep as many old files as we desire. By using some additional EXEC 
control statements, we could rename any number of files using only one 
RENAME statement, interpreting it as many times as necessary, each time 
with different arguments. 

70 IBM VM/SP EXEC 2 Reference 

J 

J 



L 
EXEC variables and EXEC control words always start with an ampersand. 
The ampersand may be followed by any other characters, up to a maximum 
length of 256 characters (including the initial ampersand). This is the 
maximum length allowed for any word; it is also the maximum length 
allowed for any line in an EXEC 2 file. 

The characters ampersand and blank have special meanings, and cannot be 
made part of a variable name by simply writing them as part of a word. 
A blank denotes the end of a word, so it can not be included as part of 
the word. An ampersand denotes the beginning of an EXEC variable name. 
That name (including the ampersand) is replaced with the value of the 
variable when the word containing it is evaluated during statement 
interpretation. Value substitution for variable names makes it possible 
to put blanks or ampersands (or any other characters) into names, but 
it's principal benefit is the ability to manipulate an indefinite number 
of variables by modifying the words in a few statements instead of 
writing all of the variable names explicitly. 

Cond;t;onal Interpretat;on of statements 

Before looking at more sample EXEC files, we will examine the structure 
of the conditional (&IF) statement more closely and introduce some other 
EXEC control statements. The &IF statement is actually a compound 
statement. The first part defines a condition; the second part may be 
any executable statement, which is interpreted only when the condition 
is true. (An executable statement is any statement except a comment. 
Comment statements have an asterisk as their first nonblank character, 
and are ignored by the EXEC interpreter.) The complete &IF statement 
has the format: 

&IF word1 comparator word2 statement 

where "comparator" is =, -=, >, <, >=, or <=. The comparison is 
performed numerically if both word1 and word2 are numeric data items; it 
is performed on a character basis if either is not numeric. Thus, 
"&IF 2 = +2" is true and "&IF 000 = 0" is true, but "&IF 1. = 1" and 
"&IF +A = 10" are false. A numeric data item consists of decimal 
digits, optionally preceded by a plus or minus sign. EXEC 2 does not 
support fractional numbers as numeric data. 

The "statement" part of an &IF statement may be another &IF statement. 
Therefore, several conditions may be written in one conditional 
statement, with the last "statement" interpreted only when all of the 
conditions are true. Thus, 

&IF &1 = A &IF &2 = B &EXIT 

will terminate an EXEC file only if both conditions are true. 

Appendix D: EXEC 2 Primer for New Users 71 



, 

statement Labels 

You may attach a label to an EXEC statement (including the null 
statement, which has no words in it) so that an EXEC control statement 
can reference the labeled statement. The label must be the first word 
of the statement, and it must start with a hyphen. EXEC 2 does not 
consider a label to be part of a statement, so it is not inspected for 
EXEC variables. References to labels, however, may involve EXEC 
variables. The most frequent references to statement labels are &GOTO 
control statements, which modify the regular, sequential processing of 
an EXEC file. A typical &GOTO statement is: 

&GOTO -END 

which means continue interpretation of statements with the next 
statement having the label -END. 

When a &GOTO statement is interpreted, EXEC 2 searches for the specified 
label by reading successive statements from the disk file and examining 
the first word of each statement to determine if it is the desired 
label. If it is, sequential interpretation of statements resumes with 
that statement. If the end of the disk file is encountered without 
finding the specified label, EXEC 2 continues to read statements, 
starting at the beginning of the file, until either the desired label is 
found, or all statements before the one being interpreted have been 
examined. 

Assignment statements 

The EXEC 2 assignment statement is a special case, in that it is 
recognized when the second word of the statement (not counting a label) 
is an equal sign and the first word starts with an ampersand. (This is 
a simplification of the actual rule, which is discussed in Note 4 of 
"Part 3. Notes on EXEC 2.") The function of the assignment statement is 
to make the EXEC variable specified by the first word have the value 
specified by the expression following the equal sign. Thus, 

&OPTION = GESUNDHEIT 

assigns the value GESUNDHEIT to the EXEC variable &OPTION. 

&ITEM = &ITEM + 2 

increments the value of &ITEM by 2, assuming the value of &ITEM was 
numeric to start with (if it was not numeric, EXEC 2 considers it an 
error and terminates interpretation of the EXEC file). The following 
statement: 

&L = &LENGTH OF &OPTION 

72 IBM VM/SP EXEC 2 Reference 



uses the predefined function &LENGTH OF to compute the number of 
characters in the value of the variable &OPTION; that number is then 
assigned as the value of the variable &L. If &OPTION has the value 
GESUNDHEIT, then &L would be assigned the value 10. The right side of 
an expression in an assignment statement is the only place to use a 
predefined (or user-defined) function in EXEC 2. There are several 
predefined functions used in the EXEC files discussed later. 

It is possible to set a variable to the null value by using an 
assignment statement: 

&NOTHING = 

and it is possible, of course, to have labels on assignment statements: 

-SETONE &ONE = 1 

EXEC Var;able Evaluat;on 

It is time to explain in detail how EXEC 2 examines a word for variable 
names and replaces them with values. Inspection for EXEC variables is 
performed by examining the characters in a word from right to left. 
Whenever an ampersand is detected, the ampersand and all characters to 
the right of it are taken as the name of an EXEC variable, which is then 
replaced by that variable's current value. After a value has replaced a 
variable name in a word, the inspection process resumes with the next 
character to the left, so it is possible to use EXEC variables to build 
the names of other EXEC variables. 

To illustrate, if &X = 1 and &1 = FIRST, the word &&X means &1, which is 
replaced by the value FIRST. Suppose the value of &1 is an ampersand 
instead of FIRST; then, &&X ==> &1 ==> &, but no further substitution 
occurs, since there are no more characters of the original word to be 
inspected. 

In the case of an assignment statement, the inspection of the first word 
for ampersands is stopped just before the first character has been 
tested (remember that characters are examined from right to left). 
Therefore, that word retains its initial ampersand and remains an 
appropriate name for an EXEC variable. Retention of the initial 
ampersand of a word also occurs in other contexts where a variable name 
is required (the &READ VARS and tUPPER VARS statements, for example). 

Recall that there are no undefined EXEC variables. If an EXEC variable 
has no default or explicitly assigned value, its value is taken to be 
null (the character string that has no characters in it, and whose 
length is zero). 

Appendix 0: EXEC 2 Primer for New Users 73 



An Example of Generat;n9 EXEC Var;able Names 

We are now ready to look at an EXEC file that depends on this ability to 
use an EXEC variable to build the names of other variables. LFN EXEC 
uses the CMS command LISTFILE to display information about all of the 
files on all accessed disks that have the filenames (arguments) 
specified on the command line invoking the EXEC file. Because the 
number of filename arguments may differ from one use to the next, the 
EXEC variable &J is used to select the next argument to use in the 
LISTFILE command. 

&TRACE 
&J = 1 
-LOOP LISTFILE &&J * * (LABEL 
&J = &J + 1 
&IF &J <= &N &GOTO -LOOP 

Suppose this EXEC file were invoked by the command 

LFN HEW OLD 

The first time the LISTFILE command is issued, the EXEC variable &J will 
have the value 1, so &&J ==> &1 ==> HEW and the command passed to CMS is 

LISTFILE HEW * * (LABEL 

After the first LISTFILE command, the value of &J is incremented from 1 
to 2, and the &IF statement is interpreted. Since there are two 
argument words, NEW and OLD, the value of &N is 2, the condition part of 
the &IF control statement is true, and the &GOTO statement is executed. 
Interpretation of EXEC statements continues with the LISTFILE statement 
again, but this time &&J ==> &2 ==> OLD and the command issued is 

LISTFILE OLD * * (LABEL 

After &J is incremented to 3, the &IF condition is false, so the &GOTO 
statement is not interpreted and the EXEC file terminates with a return 
code of zero. 

If more than one of the specified filenames is found on a disk, the 
output generated by this EXEC is not as pretty as it could be. This is 
because the LISTFILE command produces a title line each time it is 
invoked and finds at least one file meeting its argument pattern. The 
following elaboration of LFN EXEC uses the return code generated by the 
LISTFILE command to detect when the title line is first displayed and 
uses the NOH EADER option in subsequent LISTFILE commands to prevent 
duplicate title lines from being displayed. 

74 IBM VM/SP EXEC 2 Reference 

J 

J 



&TRACE 
&J = 1 
-LOOP LISTFILE &&J * * (LABEL &NOHEADER 
&IF &RC = 0 &NOHEADER = NOHEADER 
&J = &J + 1 
&IF &J <= &N &GOTO -LOOP 

Here, we take advantage of the fact that the initial value of &NOHEADER 
is null, so that word disappears the first time the LISTFILE command is 
interpreted. When the command is successful (that is, it produces a 
return code of zero), the EXEC variable &NOHEADER is given the value 
NOHEADER. and all subsequent LISTFILE commands have the NOHEADER option 
following the LABEL option. 

The &LOOP Control statement 

There is another way of writing this EXEC file. That is by using the 
&LOOP control statement, which is more efficient because it eliminates 
the need for repetitively interpreting the &IF statement and searching 
the file for the label -LOOP: 

&TRACE 
&J = 1 
&LOOP 3 &N 

LISTFILE &&J * * (LABEL &NOHEADER 
&IF &RC = 0 &NOHEADER = NOH EADER 
&J = &J + 1 

The &LOOP statement can take several forms. Here. it specifies that the 
three lines following the &LOOP statement are to be repeated &N times; 
that is. for as many times as there are arguments to the EXEC file. The 
statements to be repeated (the scope of the loop) were indented to make 
it easier to read the EXEC file. It is often more convenient to use a 
label reference in a &LOOP statement instead of an absolute count of the 
number of statements to be repeated. In this case, the label is written 
in place of the count and the EXEC interpreter determines how many 
statements to repeat: 

&TRACE 
&J = 1 
&LOOP -X &N 

LISTFILE &&J * * (LABEL &NOHEADER 
&IF &RC = 0 &NOHEADER = NOH EADER 
-X &J = &J + 1 

The label defining the scope of the loop must occur before the end of 
the EXEC file or an error is reported. It is valid to have a loop count 
of zero. in which case no statements within the loop are interpreted. 

Appendix D: EXEC 2 Primer for New Users 75 



This would happen in the above EXEC if it were invoked with no 
arguments. 

A loop statement that defines its scope through the use of a label 
reference is more resistant to errors introduced because of a change 
than a loop statement that specifies an absolute number of lines. The 
label reference avoids a common error: forgetting to update the line 
count in a &LOOP statement when a change is made that alters the number 
of statements within the scope of the loop. 

One of the problems accompanying the writing of EXEC files to extend the 
user's command set is that it becomes more difficult to remember the 
correct formats for invoking this larger set of commands. A very useful 
technique is to make the EXEC files self-documenting; that is, whenever 
they are invoked with incorrect arguments, or with a question mark as an 
argument, they display a description of the correct command format and 
whatever additional description the writer deems appropriate. Such 
additional information might be a description of what the file does and 
how to use it, or perhaps a reference to a MEMO file or a publication 
containing more information. Here is a version of LFN EXEC with such a 
feature: 

&TRACE 
&IF &N = 0 &GOTO -TELL 
&IF &N = 1 &IF &1 = ? &GOTO -TELL 
&J = 1 
&LOOP -X &N 

LISTFILE &&J * * (LABEL &NOHEADER 
&IF &RC = 0 &NOHEADER = NOHEADER 
-X &J = &J + 1 

&IF /&NOHEADER = / &EXIT 28 
&EXIT 
-TELL &PRINT Format is: &FILENAME fn1 fn2 .. , 
&PRINT Uses LISTFILE to display information about 
&PRINT all files with filenames fn1, fn2, etc. 
&EXIT 100 

The &PRINT control statement directs the EXEC interpreter to perform its 
usual replacement of EXEC variables with values, then to display the 
words following &PRINT as a line on the user's console. 

The above version of LFN EXEC generates a nonzero return code in any 
instance where no files were found. Since the EXEC variable &NOHEADER 
was already being used to detect a successful invocation of LISTFILE, an 
appropriate test after all the LISTFILE commands have been issued is to 
return a nonzero code whenever the value of &NOHEADER is null. It is 
not possible to simply write 

76 IBM VM/SP EXEC 2 Reference 

J 



&IF &NOHEADER ~= NOH EADER &EXIT 28 

In the case where &NOHEADER is null, this would cause a syntax error in 
the &IF statement because the &NOHEADER word would disappear and we 
would be left with 

&IF ~= NOH EADER &EXIT 28 

A solution for testing the value of an EXEC variable that might be null 
is to use some prefix on both the variable and the value compared with 
it. In the case of lFN EXEC, the slash is that prefix, and the two 
statements which can result after substituting for the variable 
&NOHEADER are: 

&IF /NOHEADER = / &EXIT 28 

&IF / = / &EXIT 28 

for success (&NOHEADER = NOH EADER) or failure (&NOHEADER is null), in 
that order. 

All of the previous EXEC files have used only the arguments provided on 
the command line to determine what function they would perform. You can 
also write an EXEC file that interacts with the user, displaying 
prompting messages on the console and reading instructions or values 
which are typed. 

When CMS or CP reads a command line, it translates the command line into 
uppercase before interpreting it. When a program, such as the EXEC 
interpreter, reads a console input line, it chooses whether or not to 
translate to uppercase. The EXEC control statement 

&CASE M 

instructs the EXEC interpreter to read subsequent input lines in mixed 
case (uppercase and lowercase combined) while 

&CASE U 

requests translation into upper case. &CASE U is the initial setting 
when the EXEC interpreter starts processing an EXEC file. 

Data is read from the console using the &READ control statement. A 
&READ statement may read one input line and assign it as the value of a 
single EXEC variable: 

&READ STRING &S 

&5 will contain the entire text of the input line, including all blanks. 
Alternatively, the input line can be separated into words and each word 
assigned to an EXEC variable. 

&READ VARS &FIRST &SECOND &THIRD &FOURTH 

Appendix D: EXEC 2 Primer for New Users 77 



If there are more variables than words in the input line, those 
variables remaining after all words have been used are assigned the null 
value. If there are more words than variables, the extra words are 
ignored. If you don't know how many words will be on an input line, it 
is often convenient to use the statement: 

&READ ARGS 

which redefines the EXEC argument variables &1 &2 &3 ... etc., and 
assigns to &N the number of words (arguments) in the input line. All of 
the prior values for &1 &2 ... etc. are lost when this is done. So, 
remember to assign any EXEC argument variables that will be needed later 
to other EXEC variables before interpreting a &READ ARGS statement. The 
predefined variable &ARGSTRING is not affected by a &READ ARGS 
statement. Its value continues to be the original argument string 
passed to the EXEC file, or whatever value the user last gave it in an 
assignment statement. 

It is possible to read lines from the console and interpret them as EXEC 
statements using the form: 

&READ n 

where "n" is the number of lines to read. If no explicit number of 
lines is given, only one line will be read. An asterisk (*) may be used 
in place of a number to denote that statements are to be read from the 
console until a statement which modifies sequential processing of lines 
is interpreted (&EXIT, &GOTO, &SKIP, etc.). It is easy to test the 
effect of various EXEC statements by using the file: 

&TRACE ALL 
&READ * 

which reads statements from your console and traces their 
interpretation. 

The next example is CPM EXEC, which enhances the CP MSG command in two 
respects. First, it transmits multiline messages to one or to a group 
of VM users (the same message is sent to all of the specified users). 
Second, it transmits messages in uppercase and lowercase. 

78 IBM VM/SP EXEC 2 Reference 



&TRACE 
tCASE M 
&IF &N = 0 &GOTO -TELL 
&IF &1 = ? &GOTO -TELL 
&READ STRING & 
&LOOP -E UNTIL /& = / 

&X = 1 
&LOOP -EE &N 

CP MSG &&X & 
-EE &X = &X + 1 

-E &READ STRING & 
&EXIT 
-TELL &BEGPRINT -X 
Format is: CPM user1 <user2 ... > 
CP 'MSG' console function is used to send lines to the 
specified users. Enter blank or null line to end. 
~X 

&EXIT 101 

This EXEC uses two loops, one nested inside the other. The scope of 
both loops is defined by labels. The inner loop containing the 
statements 

CP MSG &&X & 
-EE &X = &X + 1 

is similar to the loop in LFN EXEC; that is, it is interpreted once for 
each argument. The outer loop uses a condition like an &IF statement to 
determine when repetition of the loop will end. In this case, we wish 
to repeat the loop until the user enters a null or blank line from his 
console. The EXEC variable & (that is the shortest possible name for an 
EXEC variable) contains the string read from the console, and the word 
"UNTIL" identifies the nature of the condition being tested; that is, 
repeat the loop until the condition is true. Because the value of & may 
be null, we use the prefix technique discussed before to avoid a null 
value from destroying the syntax of our &LOOP statement. We could also 
have written the first &LOOP statement like this: 

&LOOP -E WHILE /& ~= / 

which repeats while the condition is true (that is, until the condition 
is false). The choice between these two forms is purely a personal 
matter of what the EXEC writer sees as easier to write or understand. 

At label -TELL in this EXEC file, we see an example of a statement 
which, unlike all those seen before, requires more than one line in the 
EXEC file. This, and the &BEGSTACK statement that has a similar syntax, 
are the only statements that can use more than one line of an EXEC file. 
The lines following &BEGPRINT are not examined for EXEC variables. The 
EXEC interpreter prints each line exactly as it is read from the disk 
file, until either the end-of-file occurs, or a line is reached that 
contains only the label specified in the &BEGPRINT statement. 

Appendix D: EXEC 2 Primer for New Users 79 



EXEC ~ Implementation of Ed;to~ Mac~os 

CMS commands are not the only commands that may be executed from an 
EXEC 2 file. An important application of EXEC 2 is the creation of 
editor macros; that is, procedures that issue commands to an editor 
instead of, or in addition to, the regular CMS command interpreter. The 
benefits of such procedures are the same as for EXEC 2 files containing 
normal CMS commands; the avoidance of. repetitive keying of commands by 
the user, and the ability to build new commands that are specially 
adapted to particular applications, making the user-to-application 
Interface more efficient. 

XEDIT, the System Product Editor, causes CMS to establish an interface 
through which EXEC 2, or another program, can issue editing commands. 
Commands issued through this interface are called "XEDIT subcommands" 
because they are not interpreted by CMS in its regular command 
environment, but instead are delivered to XEDIT, which interprets them 
in its own environment. 

When XEDIT receives a command that it does not recognize as one of its 
basic editing commands, it determines (using the CMS command STATE) 
whether there is an EXEC file (an edit macro) that implements this 
command. If there is, the editor invokes the EXEC 2 interpreter to 
interpret that file. 

The EXEC file author has several means to designate whether a command in 
his file is for a particular subcommand environment or for CMS. The 
most explicit of these is to use the &SUBCOMMAND control statement. 
Thus, an edit macro that has to issue a NEXT 8 command to XEDIT could 
use the statement: 

&SUBCOMMAND XEDIT NEXT 8 

Since most edit macros contain many subcommands, it can be convenient to 
tell the EXEC 2 interpreter to send all commands to the XEDIT 
environment by executing the statement: 

&PRESUME &SUBCOMMAND XEDIT 

All command statements interpreted after the above statement are 
presumed to be subcommands for the XEDIT environment, and are treated as 
though they were prefaced by &SUBCOMMAND XEDIT. This presumption does 
not affect commands explicitly directed to another environment by the 
&SUBCOMMAND statement, so 

&SUBCOMMAND ZOO ELEPHANT 3 

would continue to send the command ELEPHANT 3 to the ZOO environment, 
irrespective of a &SUBCOMMAND XEDIT presumption. 

How, then, maya normal eMS command be executed if all commands are 
presumed to be subcommands? By using the &COMMAND control statement, 

80 IBM VM/SP EXEC 2 Reference 

J 



which always treats the accompanying command as a regular CMS command. 
For example: 

&COMMAND STATE &1 MEMO * 
will always be interpreted as a CMS command. A &SUBCOMMAND presumption 
may be reset, and regular CMS command processing resumed by executing 
the statement: 

&PRESUME &COMMAND 

At the beginning of this primer, it was noted that a program could call 
the EXEC 2 interpreter to interpret a file that had a filetype other 
than EXEC. The System Product Editor (XEDIT) does this when it 
encounters an edit macro. This macro must have the filetype XEDIT 
instead of EXEC. When EXEC 2 interprets a file not having a filetype of 
EXEC, it starts with a &SUBCOMMAND presumption of the filetype. Thus, 
there is no need to preface XEDIT subcommands in an XEDIT macro with 
&SUBCOMMAND XEDIT, unless the default &SUBCOMMAND presumption has been 
explicitly changed. It is necessary, however, to preface regular CMS 
commands with &COMMAND if they are not to be passed to XED!T. XEDIT 
macros do not require an initial &TRACE statement to indicate that they 
should be interpreted by the EXEC 2 interpreter because that is 
indicated by the way in which XEDIT invokes the EXEC 2 program. 

To illustrate just how simple an edit macro can be, consider the case 
where it is desired to replace lines that currently contain: 

.SK 3 

with the three lines: 

.SK 

.CE ----------

.SK 

This can be done using the XEDIT commands: 

FIND .SK 3 
REPLACE .SK 
INPUT .CE ---------­
INPUT .SK 

If those commands are put into a file named REPSK XEDIT, they may be 
executed by simply entering the command 

REPSK 

in the XEDIT environment. Of course, this only affects the next 
occurrence of the ".SK 3" line. All occurrences could be changed by 
writing a loop in the edit macro: 

Appendix D: EXEC 2 Primer for New Users 81 



FIND .SK 3 
&LOOP 4 UNTIL &RC ~= D 

REPLACE .SK 
INPUT .CE ---------­
INPUT .SK 
FIND .SK 3 

Note that here take advantage of the fact that XEDIT subcommands 
generate return codes indicating their success or failure much like 
regular CMS commands. In this example, the FIND command generates a 
return code of zero if it succeeds in finding the specified text, and a 
return code of one if it fails. 

The above example contains all uppercase data, but it may be necessary 
to process mixed case data in edit macros. EXEC 2 statements may be 
written in whatever case you desire, but control words such as &LOOP and 
predefined variables such as &RC must be in uppercase. Variables to 
which you assign values, such as &X or &ZILCH, may be written in 

, uppercase or lowercase, but remember that &ZILCH and &zilch are two 
distinct variables. Likewise, &LOOP is an EXEC 2 control word, but 
&loop is a variable. You can use variables such as &JuGGerNauT if you 
like pressing the shift key. 

Suppose we want to use the REPSK XEDIT file for lines starting with 
.SK 2, or .SK 3, or .sp 3, etc. We can use two arguments to define the 
lines we are int~rested in finding, as follows: 

FIND &1 &2 
&LOOP 4 UNTIL &RC ~= 0 

REPLACE .SK 
!NPUT .CE ---------­
INPUT .SK 
FIND &1 &2 

This works fine, but the question of case rises again. If the editor is 
operating in CASE U, it will translate input commands into uppercase 
before invoking an edit macro. Therefore, if a REPSK .sp 3 command is 
to work properly (meaning it is to look for ".sp 3", not ".SP 3"), it 
must be entered while XEDIT is in mixed case mode. (XEDIT allows a 
second argument on a CASE subcommand, indicating whether locate and find 
operations "RESPECT" or may "IGNORE" case when comparing characters. 
Using the "IGNORE" value produces a different effect than the above 
macro, because REPSK .sp 3 would find lines starting with any of these: 
".sP 3", ".sP 3", ".Sp 3", ".SP 3". 

Handl;ng Embedded Blanks 

If you wanted to find a line starting with the words ".SK" and "3" 
separated by two blanks, the above macro would fail. This happens 
because when EXEC 2 prepares a command, it builds a parameter list by 
concatenating all the words of the command (after variable substitution) 

82 IBM VM/SP EXEC 2 Reference 



with a single blank between words. If a word is null (that is, it has 
zero characters in it), the word and its delimiting blank disappear from 
the command. 

To handle a case having two blanks between words, we can rewrite REPSK 
XEDIT using the predefined variable &ARGSTRING. This variable has an 
initial value of the entire string of arguments passed to the EXEC file. 
This string does not include the command name used to invoke the EXEC 
file, nor the blank separating it from the argument string. It does 
include all blanks separating the argument words, plus any additional 
blanks preceding or following those words. 

&C ; &CONCAT OF FIND &BLANK &ARGSTRING 
&C 
&LOOP 4 UNTIL &RC -; 0 

REPLACE .SK 
INPUT .CE ---------­
INPUT .SK 
&C 

The idea here is to build the edit command we want, with blanks exactly 
where we want them, as the value of an EXEC variable. Then, the FIND 
command is represented as a single word, and we avoid any difficulties 
stemming from the combination of several words to form a command. To 
build the FIND command, we use the predefined function &CONCATENATION 
OF, whose value is the string obtained by placing all of its argument 
values (after variable substitution) side by side without any 
intervening blanks. Since we need one blank to separate the FIND edit 
command from its operand, that blank is included explicitly by using the 
predefined variable &BLANK, whose value is a single blank character. 

Actually, it really wasn't necessary to build the FIND command quite so 
carefully. It would work equally well using FIND &ARGSTRING, but the 
method displayed above is more general, and can be used to build any 
possible command. 

An Example of EDIT and CMS Commands ;n One File 

The next example is an XEDIT macro that assumes the user is editing a 
file such as CMS EXEC, produced when the CMS LISTFILE command is used 
with the EXEC option. Each line of this file identifies a disk file. 
The format of the lines are: 

&1 &2 filename filetype filemode ... 

and the function of this macro is either (1) to edit the file identified 
by the current line, or (2) if the value of the first argument is ERASE, 
to execute a CMS ERASE command to remove that file from disk, then to 
delete the identifying line from the current editor display. This 
function is useful for cleaning a minidisk of files that are no longer 
wanted, because often a file must be examined before the decision to 

Appendix 0: EXEC 2 Primer for New Users 83 



erase it can be made. The ability to examine and erase files without 
having to type their fileids can be a boon to the user who must cope 
with a dozen, or maybe a hundred, files. 

&F = &1 
STACK 1 
&READ ARGS 
&IF &N = 0 &EXIT 
& = &lITERAl OF &1 
&IF & = &1 &ARGS &3 &4 &5 
&IF &N < 2 &EXIT 
&IF /&F = /ERASE &GOTO -ERASE 
XEDIT &1 &2 &3 
&EXIT 
-ERASE &COMMAND ERASE &1 &2 &3 
DELETE 

The first statement remembers the optional argument as the value of &F, 
so that later a branch can be made to -ERASE in case the argument value 
is ERASE. Next, the command STACK puts the current line from the file 
being edited into the console stack (explained in the next paragraph). 
This is to prepare for the following &READ ARGS statement which reads 
the line and separates it into words that are used to redefine the 
argument variables &1 &2 •.. etc. The predefined variable &N, which 
records the current number of arguments, is also updated by the 
&READ ARGS statement. 

The console stack may be thought of as a buffer or staging area for 
console input. Whenever CMS is asked to read the next input line from a 
terminal, it first checks to see if any lines are already available in 
the console stack. If there is a line in the console stack, it is used 
as the next input line; if there is no line in the console stack, then 
CMS waits until a line has been entered from the console. Programs can 
create their own "input" lines, and put them into the console stack. 
This is what the STACK edit command does. The console stack is an 
important facility for passing data between programs and EXEC files. 

If there is nothing on the line stacked, &EXIT terminates execution of 
the EXEC file immediately. Otherwise, a test is made to see whether the 
first word was literally &1, as would be the case for a line from a CMS 
EXEC file produced by LISTFILE. The predefined function &LITERAl OF 
suppresses variable substitution in its argument string, thereby 
providing a means of assigning values containing ampersands and blanks 
to EXEC variables. 

If an initial, literal &1 is present, an &ARGS statement redefines the 
argument values to eliminate the &1 (and the &2 assumed to follow it); 
therefore, what remains is the filename, filetype, and filemode. The 
&ARGS statement works by evaluating the words following &ARGS, clearing 
the current argument variables (for example, assigning the null string 
as their value), and assigning the value of the first non-null word to 
&1, the second to &2, etc. The variable &N is then assigned the new 
number of arguments. Note that even if there used to be more arguments 

84 IBM VM/SP EXEC 2 Reference 

J 



than were specified in the &ARGS statement, all the old values are 
cleared. The value of &ARGSTRING is not affected by an &ARGS statement. 

Next in the macro, is a test to ensure that there are at least two 
arguments left to be used as a filename and filetype. Then we test &F 
and either branch to -ERASE, or issue the needed XEDIT command. Note 
that, if the file is to be erased, the CMS ERASE command is explicitly 
invoked by the &COMMAND statement. If the &COMMAND control word was not 
used, EXEC 2 would presume the command was for the editor and mistakenly 
pass it to XEDIT. After the ERASE command, a DELETE command tells XEDIT 
to remove the current line. which identified the file just erased. from 
the file being edited. 

A Complex XEDIT Macro 

The next example illustrates the complex text manipulation that is 
possible with edit macros implemented in the EXEC 2 language. The 
objective is to take a specified number of lines from the current file 
and reformat them into a paragraph. Arguments from the command line 
specify the number of lines to be reformatted and the left and right 
hand margins between which the new paragraph is to be formed. This edit 
macro is particularly useful for editing MEMO files, or any files that 
contain text that might be presented on a display screen. Modifications 
to the PARA macro can adapt it for dealing with comment lines in 
programs written in assembly language, FORTRAN, PL/!, and even in EXEC 
files. 

This file is rather long, so it will be analyzed in two parts. First, 
we will look at the part that actually does the formatting -- the 
kernel, so to speak. Then we will surround that kernel with statements 
that expand upon the basic command syntax, supplying default values for 
arguments that were omitted and checking to see that argument values 
that were written are not flawed (by typing errors. for example) in ways 
that could lead to a failure in the interpretation of the EXEC file. 
You will find that, after the kernel has been developed. about twice as 
many statements are used in support of that kernel than are in the 
kernel itself. This is not unusual for this type of file. 

The format of the PARA macro is: 

PARA nlines leftmargin rightmargin 

where "nlines" is the number of lines in the file to be reformatted, 
starting with the current line. "Leftmargin" and "rightmargin" specify 
the columns within which the reformatted text is to be placed; that is, 
there will be leftmargin-l blanks at the beginning of each new line, and 
no line will exceed the position defined by rightmargin, unless a single 
word exceeds the paragraph width. 

The basic plan of the kernel is to implement two nested loops. The 
outer loop. interpreted as many times as there are input lines, uses the 

Appendix D: EXEC 2 Primer for New Users 85 



STACK subcommand to put a line from the file being edited into the 
console stack. Then the outer loop uses a &READ ARGS statement to 
define the words in the stacked line as EXEC arguments. The inner loop 
is interpreted once for every word, and builds an output line by 
concatenating individual words and blanks onto the end of the string &S 
until the next word causes the length of &5 to exceed the right margin. 
At that point. the existing &S string is put into the edit file and the 
next line is started with the word that did not fit into the previous 
string. Whenever there are no more argument words to add to &5, another 
iteration of the outer loop occurs until all input lines have been 
processed. A more detailed analysis of the file follows this listing. 

&CASE M 
&STACK LIFO &1 &2 &3 
&READ VARS &NLINES &MLEFT &MRIGHT 
&SINIT = &LEFT OF &BLANK &MLEFT 
&SINIT = &PIECE OF &SINIT 2 
&S = &SINIT 
&LOOP -Z &NLINES 
STACK 
&IF &RC ~= 0 &GOTO -END 
&READ ARGS 
DELETE 
&X = 1 
&LOOP -Z UNTIL &X > &N 
&T = &CONCAT OF &S &&X &BLANK 
& = &LENGTH OF &T 
&IF & < &MRIGHT &GOTO -OK 
UP 
INPUT &S 
NEXT 
&T = &CONCAT OF &SINIT &&X &BLANK 
-OK &5 = &T 
-Z &X = &X + 1 

* 
-END UP 
&IF /&S ~- / INPUT &S 

The first six lines perform initialization functions. &CASE M is set. 
so that subsequent lines read from the console stack will not be 
translated into uppercase. The values of the first three arguments are 
assigned to the variables &NLINES, &MLEFT, and &MRIGHT. This is so that 
these values will be available later, after the argument variables &1 &2 
... have been redefined to refer to words from a line in the edit file. 
It is possible to use three assignment statements to achieve this. 
namely: 

&NLINES = &1 
&MLEFT = &2 
&MRIGHT = &3 

86 IBM VM/SP EXEC 2 Reference 

J 

J 

J 



but the same effect is realized by stacking the three values in one line 
in the console stack, then using a &READ VARS statement to read the 
stacked line and assign the words in it to the desired variables. 

When a program puts a line into the console stack, it specifies whether 
the line is to be put "at the end of the stack," where it will be read 
after all of the lines already in the stack, or whether it is to be put 
"at the beginning of the stack," where it will be read first, when the 
next input line is requested. These two choices are named "First-In 
First-Out" and "Last-In First-Out," respectively, and are frequently 
designated by the initials FIFO and LIFO. In this case, where we wish to 
immediately use the line we stack, we explicitly designate LIFO in the 
&STACK statement. This avoids any possible complication from lines that 
may already be in the console stack. 

After assigning values to the variables &NLINES, &MLEFT, and &MRIGHT, we 
prepare the initial value for the string as. This value contains 
&MLEFT-1 blanks. The predefined function &LEFT OF (and the similar 
function &RIGHT OF) always generates a result containing the number of 
characters specified by the second argument. These characters are 
obtained from the word given as the first argument, adding blanks or 
truncating on the right according to whether that word is shorter or 
longer than the speci fi ed length (on the le.ft, in the case of 
&RIGHT OF). 

The predefined function &PIECE OF acts just as its name implies: its 
value is the specified piece of the word supplied as its first argument. 
The second argument denotes where the result piece starts (1 means start 
with the first character, etc.). An optional third argument may be used 
to define how long the result piece is to be. If it is omitted, the 
result contains all characters from the starting character specified by 
argument 2 to the end of the word. If the specified length is larger 
than the number of characters available, the result is the same as if 
the length argument were omitted. 

This use of &PIECE OF serves to shorten the value of &SINIT by one 
character, yielding a string containing exactly the number of blanks 
desired. The value of the variable as, which will eventually become a 
reformatted output line, is initialized to the value of &SINIT. 

The statements that obtain input data to be reformatted are: 

&LOOP -Z &NUNES 
STACK 
&IF &RC -= 0 &GOTO -END 
&READ ARGS 
DELETE 
&X = 1 

Since we are to start with the current line in the edit file, STACK puts 
it into the console stack. In case there is no current line (XEDIT is 
at the end of file, for example) we test the return code from STACK and 
branch if it is not zero, meaning no line was stacked. If the STACK 
command succeeds, &READ ARGS reads the stacked line and assigns the 

Appendix D: EXEC 2 Primer for New Users 87 



words of the line to the variables &1 &2 ... , while also assigning the 
number of words (the new number of arguments) to &N. Since we now have 
the words from the line, a DELETE command removes the original line from 
the file. &X will be used as an index denoting which word (from the set 
of new argument words &1 &2 •.. ) is to be processed next, so it is 
assigned the value 1 each time a new line is acquired. 

The statements to format a new line consist of: 

&LOOP -Z UNTIL &X > &N 
&T = &CONCAT OF &S &&X &BLANK 
& = &LENGTH OF &T 
&IF & < &MRIGHT &SKIP 4 

UP 
INPUT &5 
NEXT 
&T = &CONCAT OF &5INIT &&X &BLANK 

&5 = &T 
-Z &X = &X + 1 

Note that this inner loop also terminates with the statement labeled -Z. 
There is no problem here; the interpretation of the two loops can be 
understood by imagining there are unique labels for each loop, the first 
one for the inner loop, the last one for the outer loop. 

This inner loop is interpreted once for each argument (zero times in the 
case of a blank line). The variable &X is initially 1, and is 
incremented by one for each subsequent iteration, so the word &&X 
denotes the first, second, ... , nth argument value during the first. 
second, ...• nth iteration of the loop. The variable &T is assigned the 
string containing the current contents of the output line, &5, followed 
by the current word, &&X. and a blank. The length of the string &T is 
then compared with the right margin value, &MRIGHT. If the string 
length is less than the margin, four lines are skipped to where &5 is 
assigned the value of &T because we now know the current word will fit 
into the current output line. Finally, the statement labeled -Z 
increments the value of &X by one, so that the next time around, this 
inner loop uses the next input word. 

If the length of the temporary variable &T exceeds &MRIGHT. the current 
word will not fit into the output line &5, so the skip does not occur. 
Instead, &5 is inserted into the edit file above the current line, 
because we do not want to mistake an output line for the next input 
line. The NEXT command restores the current line pointer so that it 
points to our next input line. We assign to the variable &T the initial 
value of &5 (the string containing &MLEFT-l blanks). followed by the 
word &&X (which did not fit into the line just put into the edit file), 
and a single blank to separate this word from the next word. With this 
value assigned to &T, we can continue as we did for the case where the 
word fit, assigning the value of &T to the variable &5, incrementing the 
value of &X, and looping for the next word. 

Finally. we reach the -END label. We can arrive here either because the 
attempt to STACK a line failed, or simply because after processing all 

88 IBM VM/5P EXEC 2 Reference 

J 



the lines specified, we fell through the outer loop. In either case, 
the only thing left to do is to back up one line, and if there are any 
words in the string as, insert that final output line into the edit 
file. 

The PARA XEDIT file discussed above performs the indicated function, but 
it suffers from two deficiencies which we shall now correct. The first 
problem manifests itself if the user incorrectly specifies an argument. 
For example, if the user typed U instead of 7 for the first argument, 
the &lOOP -Z &HlIHES statement would fail because of incorrect syntax 
and EXEC 2 would immediately terminate interpretation of the file. The 
second problem is simply one of convenience. It should not be necessary 
to enter the paragraph margins each time the macro is used. Instead, 
some default value should be assumed whenever an explicit value is not 
used. 

While we are fixing up those two problems, we will take advantage of the 
opportunity to incorporate two new features. If asterisk (*) is used as 
the first argument (the number of lines to reformat), the macro will 
process all lines from the current line until the next blank line or to 
the end of the file if no blank line is found. Since this will also be 
used as the default "number of lines to process," it will be possible to 
issue the command PARA with no arguments. This default value will be 
especially useful because the second feature we shall add is a test to 
see whether the line following the last reformatted line is blank, and, 
if it is, advance the current line pointer to the line following such a 
blank line. Then, we will be able to enter one PARA command specifying 
or implying "*" as the number of lines to process, reformat an entire 
paragraph, then use the XEDIT command "=" (which means "repeat the last 
command typed") to reformat the next paragraph. The "=" command may 
then be repeated to process as many consecutive paragraphs as desired. 

Note that it isn't possible to assume a default value for one argument 
if an explicit value is given for a later argument. For example, if 
PARA EXEC is invoked to reformat the lines before the next blank line, 
but the left margin is to be 15, the default value for the first 
argument must be explicitly written so that the second argument is 
really the second argument and not mistaken for the first. 

The second new feature supplies an option, INDENT, which allows us to 
request that the first line of a paragraph be indented by a desired 
amount. 

Since the function of the PARA command has now become a bit elaborate, 
with default values, optional arguments, where the current line pointer 
ends up, etc., it would also seem like a good idea to include a TEll 
function in case the user can't remember the details of the command 
format or operation. 

When all of these features have been included, our little 25-line edit 
macro has grown to almost 100 lines. However, the kernel described 
above is basically unchanged. The other features are implemented by 
relatively short series of statements that do not interact with one 
another, so they should be comprehensible. 

Appendix D: EXEC 2 Primer for New Users 89 



Here is the complete, final form of the PARA XEDIT file. Following it 
is a detailed discussion of the its parts. 

&IF &N = 1 &IF &1 = ? &GOTO -TELL 
* Establish default values, initialize variables. 
&STACK LIFO * 1 65 0 NLINES MLEFT MRIGHT 1 
&READ VARS &NLINES &MLEFT &MRIGHT &INDENT &XI &X2 &X3 &X 
* Test arguments for valid values. 
&IF &N = 0 &GOTO -DOlT 
&IF &1 = * &X = 2 
&LOOP -NEXTARG UNTIL &X > 3 

&IF &X > &N &GOTO -DOlT 
& = &DATATYPE OF O&&X 
&IF & -= NUM &GOTO -TESTOPT 
&&X&X = &&X 
-NEXTARG &X = &X + I 

&IF &X > &N &GOTO -DOlT 

* * Test for valid option. 
-TESTOPT & = &PI ECE OF UX 
&IF & -= ( &GOTO -TELL 
& = &LENGTH OF UX 
&IF & = 1 &X = &X + 1 

I 1 

&IF & > 1 &&X = &PIECE OF UX 2 
&IF &X > &N &GOTO -DOlT 
& = &LENGTH OF UX 
& = &PIECE OF INDENT&BLANK 
&IF &&X -= & &GOTO -TELL 
&X = &X + 1 
&INDENT = 5 
&IF &X > &N &GOTO -DOlT 
& = &DATATYPE OF &&X 
&IF & -= NUM &GOTO -TELL 
&INDENT = &&X 
&IF &N > &X &GOTO -TELL 

* 

1 & 

-DOlT &IF &NLINES -= * &GOTO -SKIPSEARCH 
* Convert * into number of lines 
TRANSFER LENGTH LINE 
&READ VARS &L 
&LOOP 4 UNTIL &L = 0 

NEXT 

&CURLINE 

&IF &RC -= 0 &GOTO -EOF 
TRANSFER LENGTH 
&READ VARS &L 

-EOF TRANSFER LINE 
&READ VARS &ELINE 
&NLINES = &ELINE - &CURLINE 
: &CURL HIE 

* 
-SKIPSEARCH &CASE M 
&SINIT = &LEFT OF &BLANK &MLEFT 
&SINIT = &PIECE OF &SINIT 2 
& = &INDENT + &MLEFT - 1 

90 IBM VM/SP EXEC 2 Reference 

J 



&IF & < 0 & = 0 
&S = &LEFT OF &BLANK & 
&ARGS 
&LOOP -Z &NUNES 
STACK 
&IF &RC ~= 0 &GOTO -END 
&READ ARGS 
DELETE 
&X = 1 
&LOOP -Z UNTIL &X > &N 
&T = &CONCAT OF &S &&X &BLANK 
& = &LENGTH OF &T 
&IF & < &MRIGHT &SKIP 4 

UP 
INPUT &5 
NEXT 
&T = &CONCAT OF &SINIT &&X &BLANK 

&5 = &T 
-Z &X = &X + 1 
)( 

-END TRANSFER 
&READ VARS 
UP 

LENGTH 
&L 

&IF /&5 ~= / INPUT &S 
&IF &L = 0 NEXT 2 
&EXIT 

* -TELL XEDIT PARA TELL 
&BEGSTACK -X 

Format is: PARA <n <left <right»> «Indent <i» 
Defaults: * 1 65 5 

The PARA XEDIT Macro reformats the current line, and the next n-1 
lines using the specified "left" and "right" margins. Optionally, 
the first line reformatted may be indented Hi" spaces. If ")(" is 
specified for the number of lines, lines are reformatted until a 
blank line is encountered. 

The reformatted text replaces the original text, and the current 
line pointer is set to the last line of reformatted text, or, if 
a blank line follows the last reformatted line, 
the current line pointer is set to the line 
following the blank line that terminated reformatting. 

-X 
&STACK 
SET CASE M 
INPUT 
:8 

---------------END OF EXAMPLE----------------

Appendix D: EXEC 2 Primer for New Users 91 



The XEDIT file starts with the traditional test for an information 
query. If there is only one argument, and if it is a question mark, go 
to label -TELL where a complete description of the PARA command is put 
into the console stack. XEDIT is commanded to edit the file PARA TELL, 
and the stacked lines are read into that file. Since the editor will 
display that file, the user will see the entire description on his 
display screen and may use the QUIT XEDIT command to return to the file 
he was editing. 

If this is not simply a request for information, a set of EXEC variables 
are assigned initial values by the &STACK LIFO and the following 
&READ VARS statements. These work just as in the kernel described 
before, but this time there are more variables involved. The extra 
spaces in the commands are only to improve readability; they do not 
affect interpretation of the commands. Note that there are some comment 
statements in this file, which should make it easier for a user to 
locate and modify various features such as default values. 

* Test arguments for valid values. 
&IF &N = 0 &GOTO -DOlT 
&IF &1 = * &X = 2 
&LOOP -NEXTARG UNTIL &X > 3 

&IF &X > &N &GOTO -DOlT 
& = &DATATYPE OF O&&X 
&IF & -= NUM &GOTO -TESTOPT 
&&X&X = &&X 
-NEXTARG &X = &X + 1 

Now that we have assigned default values for the variables &NlINES, 
&MlEFT, &MRIGHT, and &INDENT, the above statements examine the arguments 
and change any of the default values to valid values given with the 
command. Instead of repeating the statements to test that an argument 
is an unsigned integer, a loop is used. The variable &X is an index to 
the argument value being examined and, at the same time, an index to the 
name of the related EXEC variable, stored as the values of &X1, &X2, and 
&X3. As soon as an argument value is found not to be an unsigned 
integer, a branch is made to -TESTOPT to check that it is a valid INDENT 
option. 

The &DATATYPE OF predefined function returns the value NUM if its 
argument is an integer, or CHAR if its argument is not an integer. 
Since this edit macro will not accept a signed integer for any of the 
first three arguments (number of lines, left margin, and right margin), 
&DATATYPE OF 0&1 will be NUM only if &1 is an unsigned integer, etc. 

Note how the assignment statement 

&&X&X = &&X 

works: if &X is 1, &&X denotes the value of &1, while &&X&X ==> &&X1 
==> &NlINES, the name of the EXEC variable initialized to the default 
value for "nlines". 

92 IBM VM/SP EXEC 2 Reference 



Now, statements to check the validity of any MARGIN arguments: 

* Test for valid option. 
-TESTOPT & = &PIECE OF &&X 1 1 
&IF & ~= ( &GOTO -TELL 
& = &LENGTH OF &&X 
&IF & = 1 &X = &X + 1 
&IF & > 1 &&X = &PIECE OF &&X 2 
&IF &X > &N &GOTO -DOlT 
& = &LENGTH OF &&X 
& = &PIECE OF INDENT&BLANK 1 & 
&IF &&X ~= & &GOTO -TELL 
&X = &X + 1 
&INDENT = 5 
&IF &X > &N &GOTO -DOlT 
& = &DATATYPE OF &&X 
&IF & -= NUM &GOTO -TELL 
&INDENT = &&X 
&IF &N > &X &GOTO -TELL 

When the above section of the macro is entered, &&X is the first 
argument value that could not be a specification for number of lines, 
left margin, or right margin. Our PARA command syntax, then, requires 
that the first character of this word be a left parenthesis. This is 
the first test. If it is not a left parenthesis, hence not a proper 
INDENT option, branch to -TELL and display the correct command format 
for the user. Once we know the left parenthesis is present, we must 
then find out whether the word starting with the left parenthesis 
contains any more characters, that is, the word INDENT, or an 
abbreviation for it. Possibly the user separated the word INDENT from 
the left parenthesis by a blank, leaving a left parenthesis alone in 
this argument word. &LENGTH OF tells us this, so if the left 
parenthesis was the sole character in the current argument word, we 
simply advance the index variable &X by one and look for INDENT in the 
next argument word. If the left parenthesis was followed by other 
characters, we use the &PIECE OF function to "cut away" the parenthesis, 
leaving the remainder of the word to be tested for INDENT. 

As always, before using the next argument word, we must make a test to 
see that we haven't run out of argument values. As long as &X <= &N, 
there is at least one argument word, &&X, to be examined. We use 
&LENGTH OF again to determine the length of the argument, then we use 
this length to form a piece of the word INDENT of the same length as the 
argument. (Actually, we append a blank to INDENT, so that in case 
someone used INDENTURE or INDENTZ, etc., as an option, it will not be 
accepted.) Now that we have both the argument and the acceptable value 
of the same length, if they are not equal, go to -TELL to explain 
things. 

If the word INDENT was properly typed, it may be followed by an optional 
indention amount. Therefore the variable &X is incremented again. This 
is so that it may be compared with &N to see if another argument is 
available, and access it if there is. Before making this test, however, 
the default value of &INDENT is changed from 0 (appropriate when INDENT 

Appendix D: EXEC 2 Primer for New Users 93 



is not used) to 5. the default indention amount when INDENT is 
specified. If another argument word remains. and if it is an integer 
(this time, a signed number is permitted), that value is assigned to 
&INDENT. Finally, we check to see if any additional arguments were 
given in the command. If they were. branch to -TELL since we have no 
idea what they could mean. 

Only one thing remains to be done before entering the reformatting 
kernel. All of the command arguments have been verified and default 
values have been supplied where appropriate. but it may be necessary to 
convert the number of lines (the value of &NLINES) from asterisk into an 
actual number of lines. This is done by these statements: 

* Convert * into number of lines 
TRANSFER LENGTH LINE 
&READ VARS &L &CURLINE 
&LOOP 4 UNTIL &L = 0 

NEXT 
&IF &RC -= 0 &GOTO -EOF 
TRANSFER 
&READ VARS 

-EOF TRANSFER 
&READ VARS 

LENGTH 
&L 

LINE 
&ELINE 

&NLINES = &ELINE - &CURLINE 
:&CURLINE 

The TRANSFER command is the mechanism whereby an XEDIT macro may query 
the value of internal XEDIT values, such as the xname and type of the 
edit file. length of the current line. line number of the current line. 
etc. The TRANSFER command arguments denote a set of variables whose 
values XEDIT stacks LIFO in one line. Sometimes. more than one value is 
given for a single variable name. such as CURSOR. In this case. 
however. the command: 

TRANSFER LENGTH LINE 

causes a line containing two words to be stacked. The first word is the 
length of the current line. excluding trailing blanks. Therefore, 
the value of &L is zero. we know the current line is a blank line. 
second word is the current line number. This is remembered as the value 
of &CURLINE. so that we can return to this line after finding the next 
blank line. 

The loop advances the current line pointer to the next line and checks 
for a blank line. If the return code from NEXT is nonzero. it means we 
have encountered the end-of-file or end-of-range, which we treat the 
same as finding a blank line. If NEXT succeeds, the value of &L is 
updated and the loop continues until &L = O. 

Once a blank line is found, another TRANSFER command retrieves the line 
number of this line and the necessary number of lines to process is 
simply the difference between this line number and the line number at 
which we started. After computing the difference, the command :&CURLINE 

94 IBM VM/SP EXEC 2 Reference 

J 



L 
restores the current line pointer to the value it had when the macro was 
entered, and we are ready to enter the reformatting kernel. 

The only difference between this kernel and the one discussed above 
concerns the setting of the initial value of &S before entering the 
outer loop. Instead of setting it to &SINIT, the following statements 
are used in order to accommodate the possibly of a negative value for 
the value of &INDENT: 

& = &INDENT + &MLEFT - 1 
&IF & < 0 & = 0 
&S = &LEFT OF &BLANK & 

Some final words about the PARA XEDIT file. Like other edit macros, 
this one is not really final, for many users will think of features they 
would like to add, or changes they could make to better fit it to their 
needs. Many such changes can be made rather simply, and the description 
or documentation for them carried in the text of the macro itself and 
presented to the user at his command (PARA ?). 

For example, if you would like two blanks following a word ending with a 
period, add the statements: 

& = &RIGHT OF &&X 1 
&IF & = &S = &CONCAT OF &S &BLANK 

just before the statement labeled -Z. Or, if you wanted to process 
comments in EXEC files, automatically inserting "*" before each line, 
you could replace the inner loop statement in the reformatting kernel: 

&LOOP -Z UNTIL &X > &N 

with the following: 

&IF &N = 0 &GOTO -Z 
& = &PIECE OF &1 1 1 
&IF & = * &1 = &PIECE OF &1 2 
&LOOP -Z UNTIL &X > &N 
&IF /&&X = / &GOTO -Z 

and change both of the INPUT commands to "INPUT * &S". 

Do not believe that all of this can be done instantly. This PARA XEDIT 
file was written by the author in about two hours (including time to 
correct a few errors), but he has had a lot of experience. The first 
few XEDIT macros that you write will probably take a long time because 
you are learning about EXEC 2 and you are also learning a new way of 
using XEDIT. However, the reward for writing them is more than simply a 
better understanding of XEDIT and EXEC 2, or some justified feeling of 
accomplishment. The time will come when your work can be done easier 
and more efficiently if you write or modify an EXEC file, then you will 
gain the greatest benefit from the effort invested in learning about 
EXEC 2. 

Appendix 0: EXEC 2 Primer for New Users 95 



This primer has illustrated barely half of the total facilities in 
EXEC 2, though it has discussed many ideas needed to understand and 
start writing EXEC 2 files. This introduction, and perhaps a little 
practice, should make it possible for the novice to better use the 
information in the EXEC 2 Reference section. Like any programming 
language, facility with EXEC 2 is gained through experience in using it. 
Often it is easier (and more educational) to try something out. making 
changes as errors are detected, than to ponder each statement. The 
trace facility helps in this. It lets the user watch while his program 
is being executed and identify most errors as they occur. 

96 IBM VM/SP EXEC 2 Reference 

J 



Append;x E: Useful EXEC g Techn;9ues 

The following illustrations exhibit solutions to some EXEC programming 
problems. These solutions frequently involve nonobvious uses of 
predefined functions to achieve the desired result in a minimum of 
statements. There has been no attempt to present a comprehensive 
catalog of solutions. The objective is to give the reader some insight 
into the possibilities inherent in the EXEC 2 functions. 

The statement 

& = &DATATYPE OF +&1 

sets & to 'NUM' if, and only if, &1 contains an unsigned integer. 

If &J is an unsigned integer not exceeding 99999999, the statement 

&J = &RIGHT OF OOOOOOO&J 8 

extends it with leading zeros to a total length of 8. 

A string of any number of blanks, 23 for example, can be created by: 

&B23 = &LEFT OF &BLANK 23 

A string of some character other than blanks, asterisks for example, is 
easily obtained from the string of blanks by using the &TRANSLATION OF 
predefined function: 

&*23 = &TRANSLATION OF &B23 &BLANK * 

A multi-way branch is desired, based on an argument value supplied by 
the caller and currently in &F. However, the value of &F must first be 

Appendix E: Useful EXEC 2 Techniques 97 



tested to verify it is valid -- that is, its value is either CASEl, 
CASE2, etc. 

& = &POSITION OF &F CASEI CASE2 CASE3 ... 
&IF & -= 0 &GOTO -&F 
&TYPE INVALID CASE: &F 

-CASEI 

-CASE2 

The statement 

& = &LOCATION OF 1&1 IIPRINT 

sets & to 2 if, and only if, &1 contains the word "PRINT" or an 
abbreviation for it. Note that & would have the value 1 if &1 is null. 

Suppose &1 is as given on entry, and is, therefore, known not to contain 
any blanks. Then the following sequence transfers control to the label 
-BLUE if &1 contains the word "BLUE" or an abbreviation for it, to the 
label -GREEN if &1 contains the word "GREEN" or an abbreviation for it, 
... , or to the label -ERR if &1 is null or does not contain a color or 
an abbreviation therefor. 

&X = &LITERAL OF ERR IERR IBLUE IGREEN IRED IYELLOW 
& = 1 + &LOCATION OF 1&1 &X 
& = &PIECE OF &X & 
&STACK LIFO &GOTO -& 
&READ 

The first statement assigns to &X the string containing all of the 
expected labels prefaced with I and separated by blanks. In addition, 
the first word (ERR) is included in case the value of &1 does not appear 
in &X, and the second word (/ERR) is included in case the value of &1 is 
null. The third statement assigns to & that part of &X starting with 
the desired label. A &GOTO statement is then stacked. This statement 
is read and interpreted by the last, &READ statement. When the stacked 
line is read, it is broken into words and examined in the ordinary way, 
so the desired label becomes the &GOTO operand, and any surplus data 
from the original value of &X is treated as a comment. 

98 IBM VM/SP EXEC 2 Reference 

J 



The argument values are to be assigned to the variables lXi, for i = 1, 
2, ... , &N. The object of this is to make it possible to reuse the 
numeric variables without losing access to the current arguments. 
Calling a user-defined function which needs the argument values that 
existed before the function was invoked illustrates such a need. 

&S = &RANGE OF & 1 &N 
&STACK LIFO &S 
&S = &RANGE OF *X 1 &N 
&S = &TRANS OF &S * & 
&STACK LIFO &READ VARS &S 
&READ 

The first two lines construct a string from the argument values &1 &2 
&&N separated by blanks, and stack it. A corresponding string of 

variable names is then created in two steps. First, a string of words 
*Xl *X2 ..• *X&N is built, then all of the asterisks in that string are 
translated to ampersands. The string of variable names is then used 
when stacking a &READ VARS statement. The final statement causes the 
just stacked &READ VARS statement to be read and interpreted by EXEC 2. 
When executing this statement, the previously stacked argument values 
are read and assigned to the desired variables. Note that use of & as a 
temporary variable is avoided so that its predefined value (ampersand) 
will be available as an argument to &TRANS OF. 

If only a (contiguous) subset of the current arguments are to be 
transferred to the variables lXi, the arguments to &RANGE OF may be 
adjusted as required. If the values of the original arguments, instead 
of the current argument values, were desired, the first two lines could 
be replaced with: 

&STACK LIFO &ARGSTRING 

To verify that a value is a valid hexadecimal number (contains no 
characters other than the digits 0-9 and the letters A-F): 

& = &TRANS OF &HEXNUM 0123456789ABCDEF 
&IF /& ~= / &GOTO -BADHEX 

The first statement uses &TRANSLATION OF to translate all valid 
characters in &HEXNUM into blanks. Then, the &IF condition succeeds 
only if the translation contained something other than blanks (since the 
shorter word is extended with blanks for purposes of comparing the two 
strings). This corresponds to the presence of one or more untranslated 
(that is, invalid) characters in &HEXNUM. 

This scheme works only if it is known that there are no blanks embedded 
in &HEXNUM, or if blanks are acceptable characters. The following 
elaboration will detect embedde~ blanks as invalid characters: 

Appendix E: Useful EXEC 2 Techniques 99 



&Z = &CONCAT OF &BLANK 0123456789ABCDEF 
& = &TRANS OF &HEXNUM &Z * 
&IF /& -= / &GOTO -BADHEX 

Here, a blank in &HEXNUM is explicitly translated into an asterisk so 
that it forces the subsequent comparison to fail. 

The following EXEC file is useful when it is necessary to extract 
information delimited by parentheses within a string. Blanks and nested 
parentheses are retained, so PAREN EXEC may be invoked multiple times 
when there are nested parentheses. The result is two lines put into the 
console stack. The first one, stacked LIFO, contains all characters of 
the original argument string except the first left parenthesis, the 
characters following it to the matching right parenthesis, and that 
right parenthesis. The second line contains the data excised from the 
first line without the delimiting parentheses, but includes any nested 
parentheses. 

&TRACE 
&A = &ARGSTRING 
& = -1 + &LOCATION OF ( &ARGSTRING 
&IF & < 0 &GOTO -END 
&A = &PIECE OF &ARGSTRING 1 & 
& = & + 2 
&B = &PIECE OF &ARGSTRING & 
&IF .&B EQ &GOTO -END 
& = 1 + -NESTED OF 1 
&Z = &PIECE OF &B & 
&A = &CONCAT OF &A &Z 
& = & - 2 
&B = &PIECE OF &B 1 & 
-END &STACK LIFO &A 
&STACK LIFO &B 
&EXIT 
* Recursive subroutine to balance parentheses. 
* &1 = index into string &B where search is to start. 
* Returns index into &B of matching ). 
-NESTED &ARGS &1 0 0 0 
&LOOP -X * 

&2 = &PIECE OF &B &1 
&3 = &LOCATION OF ) &2 
&4 = &LOCATION OF ( &2 
&IF &4 -= 0 &IF &4 < &3 &SKIP 3 

&IF &3 = 0 &3 = 1 + &LENGTH OF &2 
&3 = &1 + &3 - 1 
&RETURN &3 

&2 = &1 + &4 
-X &1 = 1 + -NESTED OF &2 

100 IBM VM/SP EXEC 2 Reference 

J 



This implementation of PAREN illustrates the use of a recursive 
user-defined function. Notice the &ARG5 statement at the beginning of 
-NESTED which creates three local variables (&2, &3 and &4) each time 
the function is entered. This automatically associates a unique group 
of EXEC variables with every invocation of the function (in addition to 
the function's explicit arguments). Because these variables are unique 
to an individual invocation of the user-defined function, they are 
guaranteed not to conflict with any other EXEC variable name. Actually, 
in this instance the technique is not necessary. The &ARGS statement 
could be eliminated, and the variables &2, &3, and &4 renamed &5, &L, 
and &R, without introducing an error. An error would occur only if a 
subsequent modification of the EXEC file introduced one of those 
variable names outside of the -NESTED function. 

The following version of PAREN EXEC illustrates an alternative 
implementation which doesn't use a user-defined function: 

&TRACE 
&A = &ARG5TRING 
& = -1 + &LOCATION OF ( &ARGSTRING 
&IF & < 0 &GOTO -END 
&A = &PIECE OF &ARG5TRING 1 & 
& = & + 2 
&B = &PIECE OF &ARGSTRING & 
&IF .&B EQ. &GOTO -END 
&LP = 1 
& = 1 
&LOOP -X UNTIL &LP = 0 

&5 = &PIECE OF &B & 
&R = &LOCATION OF ) &5 
&IF &R = 0 &GOTO -END 
&L = &LOCATION OF ( &5 
&IF &L ~= 0 &IF &L < &R &SKIP 3 

& = & + &R 
&LP = &LP - 1 
&GOTO -X 

& = & + &L 
&LP = &LP + 1 
-X 

&Z = &PIECE OF &8 & 
&A = &CONCAT OF &A &Z 
& = & - 2 
&B = &PIECE OF &B 1 & 
-END &STACK LIFO &A 
&STACK LIFO &B 
&EXIT 

Appendix E: Useful EXEC 2 Techniques 101 



102 IBM VM/SP EXEC 2 Reference 



& 6 
&ARGS 6, 10 

embedded blanks 38 
&ARGSTRING 6, 56 

embedded blanks 38 
&BEGPRINT 10 

number of lines 10 
truncation column 10, 42 

&BEGSTACK 11 
first-in, first-out (FIFO) 11 
last-in, first-out (LIFO) 11 
number of lines 11 
truncation column 11, 42 

&BEGTYPE 10 
number of lines 10 
truncation column 10, 42 

&BLANK 7 
embedded blanks 38 
example 38 

&BUFFER 12 
&CALL 12 

label search 40 
&CASE 13 
&CMDSTRING 7, 56 
&COMLINE 7 
&COMMAND 13, 80 

&PRESUME 14, 16 
&CONCAT OF 24 

example 24 
&CONCATENATION OF 24 

example 24 
&CRASH 47 
&DATATYPE OF 24 
&DATE 7 

evaluation 36 
Greenwich Mean Time (GMT) 7 

&DEPTH 7 
&DIV OF 24 

example 25 
&DIVISION OF 24 

example 25 
&DUMP 14 
&ERROR 14 
&EXIT 15 

&FILEMODE 7 
&FILENAME 7 
&FIL ETYPE 8 
&FROM 8 
&GOTO 15 

label search 40 
&IF 15 

comparands 15 
comparatives 15 
conditional interpretation 71 

&INDEX 8 
&L EFT OF 25 

embedded blanks 38 
&LENGTH OF 25 
&LINE 8 
&LINENUM 8 
&LINK 8 
&L ITERAL OF 25 

embedded blanks 38 
example 25 

&LOCATION OF 26 
example 26 

&LOOP 16, 75 
closing 39 
example 39 
label search 40 

&MULT OF 26 
example 26 

&MULTIPLICATION OF 26 
example 26 

&N 8 
&PIECE OF 26 

example 26 
&POSITION OF 27 

example 27 
&PRESUME 16, 80 

&COMMAND 14, 17 
&SUBCOMMAND 17, 20 

&PRINT 17 
&RANGE OF 27 

embedded blanks 38 
example 27 

&RC 8 
&READ 17 

&TRUNC 19, 22 
ARGS 18 
embedded blanks 38 
examples 77 

Index 103 



n,l,lE 17 
STRING 18 
VARS 18 

&RETCODE 8 
&RETURN 19 
&RIGHT OF 28 

embedded blanks 38 
&SKIP 19 
&STACK 20 

first-in, first-out (FIFO) 20 
last-in, first-out (LIFO) 20 

&STRING OF 28 
embedded blanks 38 
example 28 

&SUBCOMMAND 20, 80 
&PRESUME 16, 20 

&SUBSTR OF 26 
example 26 

&TIME 9 
&Greenwich Mean Time (GMT) 9 
evaluation 36 

&TRACE 21 
lE 22 
ALL 21, 41 
ERR 21 
example 41 
OFF 22 
ON 21 
output-action 22 

&TRANS OF 29 
embedded blanks 38 
examples 29 
rules for modification 29 

&TRANSLATION OF 29 
embedded blanks 38 
examples 29 
rules for modification 29 

&TRUNC 19, 22 
truncation column 22, 42 

&TYPE 17 
&TYPE OF 24 
&UPPER 23 
&0 6 
&1 &2 ... 6 

&ARGS 6, 10, 18 
&READ ARGS 6, 18 
arguments 2, 6, 10, 70 
embedded blanks 38 

104 IBM VM/SP EXEC 2 Reference 

"in memory file" 60 

arguments 2, 6, 10, 70 
&1 &2 ... 2, 6, 10 

assembler language programs 59-62 
SVC 202 calls 59, 61 
tokenized plist 59 
untokenized plist 60 

assignment statement 36, 72 
example 36 

assignments 2 

BNF syntax 43 

CMDCALL 56 
CMS 56-66 
CMS EXEC 48-51 

&$ 50 
&lE 50 
&ARGS 48 
&BEGEMSG 48 
&BEGPUNCH 48 
&BEGSTACK 48 
&BEGTYPE 49 
&CONCAT 50 
&CONTINUE 49 
&CONTROL 49 
&DATATYPE 50 
&DISKlE 51 
&DISK? 51 
&DISKX 51 
&DOS 51 
&EMSG 49 
&END 49 
&ERROR 49 



L &EXEC 51 
&EXIT 49 
&GLOBAL 51 
&GLOBALn 51 
&GOTO 49 
&HEX 49 
&IF 49 
&INDEX 51 
&LENGTH 50 
&LINENUM 51 
&LITERAL 50 
&LOOP 49 
&PUNCH 49 
&READ 49 
&READFLAG 51 
&RETCODE 51 
&SKIP 49 
&SPACE 49 
&STACK 49 
&SUBSTR 50 
&TIME 50 
&TYPE 50 
&TYPEFLAG 51 
&0 50 
&l &2 ... 50 
ALL 48 
control statements 48 
predefined functions 50 
predefined variables 50 
TOP 49 

CMS EXEC and EXEC 2 
relationship 48-51 

CMS limits 57 
&EXIT return codes 57 
&TRACE 57 
console 57 
console stack 57 
filename 57 
line length 57 
lookaside buffer 57 
NUMERIC OVERFLOW 57 
numeric values 57 
printed line length 57 
statement length 57 
word length 57 

commands 
comment 

2, 4, 68 
1 

concatening words 24 
conditional interpretation of 
statements 71 

conditional phrases 

example 37 
syntax 37 

console input buffer 35 
console stack 

See console input buffer 
control statements 2, 5, 10-23 

&ARGS 6, 10 
&BEGPRINT 10 
&BEGSTACK 11 
&BEGTYPE 10 
&BUFFER 12 
&CALL 12 
&CASE 13 
&COMMAND 13 
&DUMP 14 
&ERROR 14 
&EXIT 15 
&GOTO 15 
&IF 15 
&LOOP 16 
&PRESUME 16 
&PRINT 17 
&READ 17 
&RETURN 19 
&SKIP 19 
&STACK 20 
&SUBCOMMAND 20 
&TRACE 21 
&TRUNC 22 
&TYPE 17 
&UPPER 23 

control words 
examples 2 

converting CMS EXEC files to EXEC 
2 files 48 

debugging the EXEC 2 
interpreter 47 

delimiters 
parenthesis 6 
space 6 

dividing numbers 24 
DMSEXE085E 46 
DMSEXE175E 46 
DMSEXE255T 47 

Index 105 



editor macros 62, 80-82 
examples 81, 86, 90 
executing 62 
filetype 62 
implementation 80 

embedded blanks 38, 82 
examples 38, 83 
exceptions 38 
handling 82 
variables 38 

errors 46 
DMSEXE085E 46 
DMSEXE175E 46 
DMSEXE255T 47 
messages 46 

evaluation of &DATE and &TIME 
examples 

&BLANK 38 
&CONCAT OF 24 
&CONCATENA TION OF 24 
&DIV OF 25 
&DIVISION OF 25 
&lITERAL OF 25 
&lOCATION OF 26 
&LOOP 39 
&MULT OF 26 
&MU L TI PLICA TI ON OF 26 
&PIECE OF 26 
&POSITION OF 27 
&RANGE OF 27 
&STRING OF 28 
&SUBSTR OF 26 
&TRACE ALL 41 
&TRANS OF 29 
&TRANSLATION OF 29 
assembler language 

programs 59-62 
assignment statement 36 
conditional phrases 37 
control words 2 

- EDIT and CMS commands in one 
file 83 

editor macros 81, 86, 90 
generating EXEC variable 

names 74 
labels 2 
leading zeros 37 
name substitution 33 
plus signs 37 

106 IBM VM/SP EXEC 2 Reference 

36 

programming techniques 97-101 
SVC 202 59 
tokenized plist 59 
untokenized plist 60 
user-defined functions 31 
variable 2 

exceptions 
embedded blanks 38 
EXEC 2 words 41 

EXEC 2 files 1 
filetype 1, 62 
format 1 
recursive execution 35 
sample of 54 
terminating 

EXEC 2 in CMS 
35 

56-66 
assembler language 

programs 59-62 
EXECCOMM 63 
identifying EXEC 2 files 56 
limits in CMS 57 
XEDIT macros 62 

EXEC 2 interpreter 1 
as a macro processor 61 
invoked 1 

EXEC 2 language 1 
EXEC 2 parameter lists 59 
EXEC 2 programs 1 

assembler language 
programs 59-62 

EXEC 2 file 1 
EXEC 2 interpreter 1 
executing 1 
interaction with users 76 

EXEC 2 statements 1 
comment 1 
executable statement 1 

EXECCOM 63-66 
EXECCOMM 

FETCH 58 
length lim.t for external names 
of shared variables '58 

length limit for values 
assigned by 58 

STORE 58 
executable statements 1, 4 

assignment 4 
assignment statement 2 
command 2, 4 
control statement 2, 5 
interpreting 3 
null statement 2, 4 
types 4 



FIFO (first-in, first-out) 20 
function invocation 

predefined function 24 
user-defined functions 31 

functions 
predefined 24-30 
unique to EXEC 2 52 
user-defined 31 

HT 49 

interpreting executable 
statements 3 

label 
description of 72 
example 2 
performance 40 
search 40 

leading zeros 
example 37 
removing 37 

left-justified 25 
length of words, finding 25 
LIFO (last-in, first-out) 20, 87 
limits for EXEC 2 files in eMS 
locating a word in a character 
string 26 

lookaside buffer 12 

57 

messages 
DMSEXE085E 46 
DMSEXE175E 46 
DMSEXE255T 47 
return codes 46 

mixed case data 13, 77, 82 
multiplying numbers 26 

name substitution 
examples 33 
steps 33 

notes on EXEC 2 35-42 
&LOOP statement 38 
&TRACE AL L 41 
assignment statement 36 
closing loops 39 
conditional phrases 37 
console input buffer 35 
embedded blanks 38 
evaluation of &DATE and 

&TIME 36 
label search 40 
leading zeros 37 
numbers 36 
plus signs 37 
recursive execution 35 
reserved words 40 
termination 35 
truncation column 42 

null statement 2, 4 
numbers 

dividing 24 
multiplying 26 
size and treatment 36 

parameter lists 59 
plus signs 

example 37 
removing 37 

predefined functions 24-30 

Index 107 



&CONCAT OF 24 
&CONCATENATION OF 24 
&DATATYPE OF 24 
&DIV OF 24 
&DIVISION OF 24 
&LEFT OF 25 
&LENGTH OF 25 
&LITERAL OF 25 
&LOCATION OF 26 
&MULT OF 26 
&MULTIPLICATION OF 
&PIECE OF 26 
&POSITION OF 27 
&RANGE OF 27 
&RIGHT OF 28 
&STRING OF 28 
&SUBSTR OF 26 
&TRANS OF 29 
&TRANSLATION OF 29 
&TRIM OF 30 
&TYPE OF 24 
&WORD OF 30 
format of 24 
reserved words 40 

predefined variables 
& 6 
&ARGSTRING 6 
&BLANK 7 
&CMDSTRING 7 
&COMLINE 7 
&DATE 7 
&DEPTH 7 
&FIL EMODE 7 
&FILENAME 7 
&FILETYPE 8 
&FROM 8 
&INDEX 8 
&LINE 8 
&LINENUM 8 
&LINK 8 
&N 8 
&RC 8 
&RETCODE 8 
&TIME 9 
&0 6 
&l &2 2, 6 
description of 69 
reserved words 40 

Primer 67-96 

26 

&LOOP control statement 75 
assignment statements 72 
commands, return codes, and 
vari abIes 68 

108 IBM VM/SP EXEC 2 Reference 

conditional interpretation of 
statements 71 

edit commands and CMS 
commands 83 

embedded blanks 82 
file arguments 70 
generating variable names 74 
implementation of editor 
macros 80 

statement labels 72 
user interaction 76 
variable evaluation 73 
variable names 71 
XEDIT macro example 85 

programming techniques 
examples 97-101 

recursive execution 35 
removing plus signs and leading 
zeros 37 

reserved words 
predefined functions 40 
predefined variables 40 

return codes 46, 68-70 
right-justified 28 
RT 49 

SET CMSTYPE HT 49 
SET CMSTYPE RT 49 
sharing EXEC 2 variables with 
assembler language programs 63 

subroutine invocation, returning 
control to 19 

substituting variables 33 
SVC 202 call 

example 59 
SUB COM function 61 

syntax 
BNF description 43 
conditional phrases 37 
predefined functions 24 
user-defined functions 31 

J 



terminating EXEC 2 file 35 
tokenized plist 

example 59 
translating to uppercase 56, 77 
truncation 42 
types of executable statements 2, 

4 
assignments 2, 4 
commands 2, 4 
control statements 2, 5 
null statement 2, 4 

UNTIL keyword 16 
untokenized plist 

"in-memory file" 60 
example 60 

uppercase data 56, 77 
user interaction 76-79 
user-defined functions 

examples 31 
form of 31 
invocation 31 
label search 40 
returning to 19 

variables 
embedded blanks 38 
evaluation 73 
example 2 
EXEC variables 68 
names 71, 74 

WHILE keyword 16 
words 

definition of 1 
reserved 40 

XEDIT macros in EXEC 2 
example 85 
executing 62 
filetype 62 

Index 109 



SC24-5219-1 

OJ 
s: 
< s: -(f) 
""'0 

m 
X 
m 
(') 

N 
::0 
(I) -(I) .., 
(I) 
:J 
C'l 
(I) 

:!'! 
CD 

J z 
!-' 
(f) 
w ....., 
0 -.t> 
W 
0 
0 
I 

W 
~ 

""'0 
::!. 
:J .... 
(I) 
c.. 
:J 

C 

(f) 

~ 
(f) 
(') 
N 
.t> 
I 

01 
N 
-" 
CO 
I --...- ------ - ---- ----

~---- - _ .... ---_ ... ------ _ .. -
® 



,..; E 
c::: 0 
Q) -E en 

.9-- :.c 
:l -g: 
0> en 
.: 0 - -o Q) 
en c.. 
- '" "CO .... 
Eal 

"'C E 
.l!l E 
'" :l E 0> 
o ~ 

- Q) :l.=; 

'" 15 
E 0 
3: Q) 

en .~ 
E ."!:: 
Q) en 
:E a; e en 
c.. Q) 

Q) ~ 
en en 
:l en 
~ E 

c.. c::: 
'" Q) c.:> en 
en :l 
Q) Q) 

-0..; 
'" Q) Ci5o: 

Q) -o 
Z 

IBM VM/SP 
EXEC 2 Reference 
SC24-5219-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in your own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality. 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

D 

D 
D 
D 
D 
D 

D 
D 
D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

D 
D 
D 

If you would like a reply, please supply your name and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 



SC24-5219-1 

Reader's Comment Form 

Fold and Tape 

Fold 

Please Do Not Staple 

III 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold 

If you would like a reply, please print: 

-------- - ------
~ ---­- - -------- .. ------_ ... -

® 

Your Name ____________________________________________________ ___ 

Company Name _____________________________ Department _____ _ 
Street Address _____________________________ _ 
City _________________________ _ 

State _______________ Zip Code _____ _ 

IBM Branch Office serving you ______________________ ___ 

III 
~ 
< 
~ -C/) 
""0 

m 
X 
m 
(') 

N 
::c 
CD .... 
CD .., 
CD 
::J 
(') 
CD 

:::!1 
CD 

J z 
!' 
C/) 
W 
"'-J 
0 -~ w 
8 
I 

W 
~ 

""0 
::::!. 
::J 
r+ 
CD 
C. 

::J 

C 

~ 

I. !> 
C/) 
(') 
N 
~ 
I 

U'I 
N .... 
co 
I 

J 



.. 

..... E 
c:: 0 
"'­E en 

.!2- :E 
= -g"-: 
CO en .= 0 t-
O '" en Co 

==s ca 
E~ 

"CI E 
.!! E 
ca = E CO 
o .... - '" = .J:::. 
cae; 

E (3 
~ '" 
en .~ 
E ."!:: 

..5!! ~ 

..c '" o en 
0.", 
'" :; en en = en 
~ ~ 
c:: 
~ ~ 
en = 
'" '" -a= f!..5!! 

Cf.) 1:1.. 

'" -o 
Z 

IBM VM/SP 
EXEC 2 Reference 
SC24-S219-1 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding 
that IBM may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if 
any, are deemed appropriate. Comments may be written in your own language; English is 
not required. 

Note: Copies of IBM publications are not stocked at the location to which this form is 
addressed. Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your IBM representative or to the IBM branch office serving your locality . 

• Does the publication meet your needs? 

• Did you find the material: 

Easy to read and understand? 

Organized for convenient use? 

Complete? 

Well illustrated? 

Written for your technical level? 

• What is your occupation? 

• How do you use this publication: 

As an introduction to the subject? 

For advanced knowledge of the subject? 

To learn about operating procedures? 

Your comments: 

Yes 

D 

D 
D 
D 
D 
D 

D 
D 
D 

No 

D 

D 
D 
D 
D 
D 

As an instructor in class? 

As a student in class? 

As a reference manual? 

D 
D 
D 

If you would like a reply, please supply your name and address on the reverse side of this form. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or 
you may mail directly to the address in the Edition Notice on the back of the title page.) 



SC24-5219-1 

Reader's Comment Form 

Fold and Tape 

Fold 

Please Do Not Staple 

IIII 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

I nternational Business Machines Corporation 
Department G60 
P. O. Box 6 
Endicott, New York 13760 

Fold and Tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold 

If you would like a reply, please print: 

YourName ________________________________________ __ 

Company Name _________________________ Department __________ _ 
Street Address ________________________ _ 
City _________________________ _ 

State _____________ Zip Code ______ _ 

------ IBM Branch Office serving you ____________________ _ 
--------. ---- - - -~---_ .. ----- _ ... -

® 

OJ 
s: 
< s: 
....... 
en 
""C 

m 
X 
m 
(") 

N 
:::xl 
CD -CD ..., 
CD 
:::J 
n 
CD 

::!1 
CD 

J z 
~ 
en 
w 
-..J 
0 ....... 
..j::> 
w 
0 
0 
I 

W 
~ 

""C 
:::!. 
:::J .... 
CD 
a. 
:::J 

C 

en 
"1> 
en 
(") 
N 
..j::> • I 
U1 
N 

(0 
I 


