
Systems

File No. S370-36
Order No. SV20-0887-1

IBM Virtual Machine
Facility/370:
System Logic and
Problem Determination
Guide Voiume 2
Conversational Monitor System (eMS)

I Release 6 PLC 1

This publication is intended for the IBM system
hardware and software support personnel. It
provides the following information for the CMS
component of VM/370:

• Description of program logic

• Module descriptions and cross-references

• Abend codes

PREREQUISITE PUBLICATIONS

IBM Virtual Machine Facility/370:

Introduction, Order No. GC2Q-1800

Terminal User's Guide, Order No. GC20-181 0

CMS Command and Macro Reference,
Order No. GC2Q-1818

CMS User's Guide, Order No. GC2Q-1819

--- ------ ----- ---- ----- - - -----------_ .. -

This is a major revision of, and obso~etes, 5Y20-0887-0 and Technical
Newsletter 5N25-0479. This edition applies to B~!~~2~ 2 ~~~ 1 (Prograa
Level Change) of tb~ IBM Virtual Machine Facility/370 and to all
sabsequent releases until otherwise indicated in new editions or
Tecbnical Newsletters. Technical changes and additions to text and
illustrations are indicated by a vertical bar to the left of the change.

Changes are periodically .ade to the infor.ation herein; before usin~
this publication in connection with the operation of IBM systems,
consult the latest !~~ ~I2!~~LJ1Q ~i~!iQgI~£hI, Order Ro. GC20-0001, for
the editions that are applicable and currant.

Publications are not stocked at the address given below; requests for
copies of IBK publications should be made to your IBM representative or
to the IBK branch office serving your locality.

A form for readers' com.ents is provided at the back of this
Fublication. If the form has been removed, co.ments .ay be addressed to
IEM Corporaticn, 'K/370 Publications, Dept. D58, Bldg. 706-2, P.o. Box
390, Pou~hkeeFsie, New York 12602. IBM may use or distribute any of the
information you supply in any way it believes appropriate without
incurring any Obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright International Business Machines Corporation 1977, 1979

This publication provides the IBM system
hardware and software support personnel
with the information needed to analyze
problems that may occur on the IBM Virtual
Machine Facility/370 (VM/370).

This manual comprises three volumes:

"Volume 1. VM/370 Control Program (CP),"
"Volume 2. Conversational Monitor System
(CMS)," and "Volume 3. Remote Spooling
Communications Subsystem (RSCS)" contain
the logic description for each of the
components. Each of these volumes is
divided into four sections: Introduction~
Method of Operation, Directory, and
Diagnostic Aids.

The method of operation and program
organization sections contain the functions
and relationships of the program routines
in VM/370. They indicate the program
operation and organization in a general way
to serve as a guide in understanding
VM/370. They are not meant to be a
detailed analysis of VM/370 programming and
cannot be used as such.

The directories contain descriptions of
all the assemble modules in CP, CMS, and
RSCS. They also contain extensive
cross-references between modules and labels
within a VM/370 component.

The diagncstic aids s~ctions contain
additional information useful for
determining the cause of a problem.

The Appendix -- which is in Volume 1 -
contains a description of VM/370 Extended
Control-Program Support (ECPS).

• Isolate the co~ponent of VM/370 in which
the problem occurred.

• Use the list of restrictions in !~Ll1Q
~y§~§~ ~~§§~gg§ to be certain that the
operation that was being performed was
valid.

Preface

• Use the directories and use the !~1IQ
£~i~ AE~as ~n£ £2niE21 ~12£! 199i£ to
help you to isolate the problem.

• Use the method of operation and program
organization sections, if necessary, to
understand the operation that was being
performed.

The following terms in this publication
refer to the indicated support devices:

• "2305" refers to IBe 2305 Fixed Bead
Storage, Models 1 and 2.

• "270x" refers to IBM 2701, 2702, and
2703 Transmission Control Units or the
Integrated Communications Adapter (ICA)
on the System/370 Model 135.

•

•

•

•

"3330" refers to the IBM 3330 Disk
Storage, Models 1, 2, or 11; the IBM
3333 Disk Storage and Control, Models 1
or 11; and the 3350 Direct Access
Storage operating in 3330/3333 Model 1
or 3330/3333 Model 11 compatibility
mode.

"3340" refers to the IBM 3340 Disk
Storage, Models A2, B1, and B2, and the
3344 Direct Access storage Model B2.

~3350~ refers to the
Access Storage Models
native mode.

IBM 3350
A2 and

Direct
B2 in

"3704", "3705", or "370X" refers to IEM
Communications 3704 and 3705

Controllers.

• The term "3705" refers to the 3705 I and
the 3705 II unless otherwise noted.

• "2741" refers to the IBM 2741 and the
3767, unless otherwise specified.

• "3270" refers to a series of display
devices, namely the IBM 3275, 3276,
3277, 3278 Disrlay Stations. A specific
device type is used only when a
distinction is required between device
types.

Information about disrlay terminal usage
also applies to the IBM 3036, 3138, 3148,
and 3158 Display Consoles when used in
display mode, unless otherwise noted.

Preface iii

Any information pertaining to the IBM
3284 or 3286 also pertains to the IEM 3287,
3288 dnd the 3289 printers, unless
otherwise noted.

PREREQUISITE PUBLICATIONS

Order No.

COREQUISITE PUBLICATIONS

~Y2!~~ ffQ9f~!~~f~2 QyiQ~, Order No.
GC20-l807

In addition, for EREP processing the
following OS/VS Library publications are
required:

and No:

SUPPLEMENTARY PUBLICATIONS

!~~ Q~L!~,]Q~L!~, ~~Q !]L1IQ !2§~!~!~f
1~ngy~g~, Order No. GC33-4010

RELATED PUBLICATION

!~~ !i!!~~l ~~£~i~~ !~£ili!lL11Q
~EQQli~g £2!!Y~!£~!iQ~§ ~Y~212!~!
Q2~f~2 ~Y!Q~, Order No. GC20-18l6

CMS/DOS is part of the CMS system and is
not a separate system. The term CMS/DOS is
used in this publication as a concise way
of stating that the DOS simulation mode of
CMS is currently active; that is, the CMS
command

SET DOS ON

has been previously issued.

The phrase "CMS file system" refers to
disk files that are in CMS's 800-byte block
format; CMS's VSAM data sets are not
included.

iv IBH VM/370 System Logic and Problem Determination--Volume 2

SU~~ARY OF A~LNDMENrS. • ix

CONVERSATIONAL MONITOR SYSTE~ (CMS) ••• 2-1

INTRODUCTION TO CMS ••
The CMS Command Language
The File System. • • • •
Program Development •••

INTERRUPT HANDLING IN CMS. •
SVC Interruptions. • • . •

Internal Linkage SVCs ••••
Other SVCs. • • • • ••

Input/Output Interruptions •
Termina: Interruptions • •
Reader/Punch/Printer Interruptions
User-Controlled Device Interruptions •

.2- 3

.2- 3

.2-4

.2- 5

.2-7

.2-7

.2-7

.2-7

.2- 8

.2- 9

.2- 9
• 2-9
.2-9 Program Interruptions ••••

External Interruptions • • • •
Machine Check Interruptions.

• • • • 2- 10
. 2-10

FUNCTION AL INFORMAr ION • • 2- 11
Re~ister Usage .. • • • 2-11
Structure of DMSNUC. • • 2-11

U:JERSSCT (User Area) •••••• 2-12
DEVT AB (Device rable) • • • 2-12

Structure of CMS Storage •• 2-12
Free Storage Management. • • • • 2- 14

GETMAIN Free Storage Management .•• 2-14
DMSFREE Free Storage Management. 2-17
Releasing Allocated Storage ••••• 2-21
DMSFREE Service Routines •••••• 2-22
Error Codes from DMSFRES, DMSFREE,
and DMSFRET • • • • • • • • •• 2-24

CMS Handling of P SW Keys • • • . • • 2- 25
CMS SVC Handling •••••••••• 2-26
SiC Types and Linkage Conventions •• 2-26
Search Hierarchy for SVC 202 •••• 2-28
User and Transient Program Areas •• 2-29
Called Routine Start-Up Table •••• 2-31
Returning to the Calling Routine. 2-31

CMS Interface for Display Terminals •• 2-34

Os MACRO SIMULATION UNDER CMS ••••• 2-35
OS Data Management Simulation ••••• 2-35

Handling Files that Reside on CMS
Disks • • • • • • • • • • 2-35

Handling Files that Reside on OS or
DOS Disks • • • • • • • . 2-36

Simulation Notes • • • • • • • 2-38
Access Method Support. • • 2-42
Reading OS Data Sets and DOS Files

Using Os Macros • • 2-45

DOS/VS SUPPORT ONDER CMS ••••••• 2-48
CMS Support for OS and DOS VSAM
Functions • • • • • • • • • 2-48

CMS METHOD OF OPERATION AND PROGRAM
ORGANIZATION. • ••••••••••• 2-51

~-

Contents

INITIALIZATION OF THE C~S VIRTUAL
MACHINE ENVIRONMENT . • • • • •• 2-57

Initialization: Loading a CMS Virtual
Machine from Ca ra. Reader. • • • 2- 57
Initializes Storage Contents and

System Tables • • • • • • • • 2-58
Processes IPL Command Line
Parameters. • • • • • • • • • 2-58

Initialize OS SVC-Handling without
the Use of the CMSSEG Segment ••• 2-59

Initializing a Named or Saved System • 2-bO
Handling the First Commanj Line Passed
to :MS. • • • • • • • • • • • • • • • 2-60

Setting and QueryinJ Virtual Machine
Environment Options ••••••••• 2-60

DMSSET: SET DOS ON (VSAM) Processing 2-60
DMSSET: SET SYSNAME Processing ••• 2-61

PRCCSSSING AND EXECUTING CMS PILES •• 2-62
~aintaining an Interactive Console
Environment e • • • • • • • • 2-62

Console Management and Command
Handling in CMS • • • • • 2- 62

Maintaining an Interactive
Command/Response Session ••••••• 2-62

Execute Commands Passed via DMSINS • 2-63
Handle Commands Entered During a CMS

Terminal Session •••••••••• 2-63
Method of Operation for DMSINT • • • • 2-64
Method of Operation for DMSITS •••• 2-65

Types of SVCs and Linka~e
Conventions • • • • • • • • • • • • 2-66

Search Hierarchy for SVC 202 • • • • 2-68
User ana Transient Pro~ram Areas • • 2-68
Called ROlltine Start-Up Tabl e.. 2-69
Returning to the Caller ••.•••• 2-69
System ana User Save Area For~ats. 2-70

Load and :sxecute Text Files. • • • • • 2-71
SL: :ard Routine • • • • • . • • • • 2-72
rcs Card Routine - C2AE1 .. ~ •••• 2-73
ESD Type a Card Routine - C3AA3. 2-74
ESD Type 1 Card Routine - ENTESD • • 2-74
ESC Type 2 Card Routine - C3AH1. 2-75
ESD Type 4 Routine - pc. . . .• 2-76
ESD TYFes 5 and 6 Card Routine -

PRVESD ana. COMESD ••••••••• 2-76
ESD Type 10 Routine - WEAK EXTRN • • 2-77
TXT :ard Routine - C4AA1 • • •• 2-77
REP C3.rd RO;Jt.ine - C4AA3 •••••• 2-78
END Card Routine - C6AA1 • • • 2-80
Control Card Routine - CTLCRD1 . 2-81
REFAD R Routine (DMSLDRB) • • • • 2- 82
PRSERCH Routine (DMSLDRD). • • • 2- 82
Loader Data Ba ses. • • • • • • 2- 83
ESIDTB Entry • • • • • •• • •• 2-83
Pa tch Control Block (PCB). • • • 2- 85
Loader Input Restrictions. • • 2-85

Processing Commands That Manipulate
the File System. • • • • • • • 2-85

Managing the CMS File System ••••• 2-86

Contents v

How CMS Files Are ~rganized in
File Status rabIes •
Chain Links. . • • • . • • •

Storag~ 2- 86
• • • • 2- 86

• 2- 87
CMS Record Formats • . • • • • • 2- 88

Disk or~anization ••.••
Physical Organization of Virtual

• 2-88

Disks • • • • • • • • • • • •• 2-88
The Master File Directory ••••.. 2-89
Keeping rrack of Read/Write Disk
Storage: QMSK and QQMSK •••••• 2-90

Dynamic Storage Management: Active
Disks and Files •••••••.•• 2-93

CMS Routines Used To Access the File
System. • • • ••••••••••• 2-93

Access a Virtual Disk: DMSACC •••• 2-93
Handling IIO Operations. • • • • 2-94

Unit Record I/O Processing • • 2-94
Han.dlin;, Interruptions •••••••• 2- 98
Disk 1/0 in CMS. • • • • 2- 98

Read or Write Disk I/O •• 2-98
Managin] eMS Stnr~~p _ .•.•• 2-99

Types of Allocated Free Storage ••• 2-99
GE~~AIN Free Storage Management
Pointers. • • ••••••••••• 2-100

DMSFREE Free Storage Pointers •••• 2-101
DMSFRS Method of Operation.. .2-104
Relative Efficiency of DMSFREE
Requests. • • • • • • • • • • .2-105

Releasing Allocated Storage ••••• 2-105
DMSFRE Service Routines. • .2-105
Stora;,e Protection Keys. • • • • • .2-107
CMS System Handling of PSW Keys ••• 2-107
CP Handling for Saved Syste.s •••• 2-108
Error Codes from DMSFRRF., DMSFRES,

and DMSFRET • • • • • .2-110
The DMSFRES Macro. • • .2-111
The DMSKEY Macro.. • ••••• 2-111
The DMSEXS Macro. • • •• 2-112

SIMULATE NON-CMS OPERATING
ENVIRONMENTS ••••••••••••• 2-113

Access Method Support for Non-CMS
Operating Environments •••••••• 2-113

OS Access Method Support •••••• 2-113
CMS Support for the Virtual Storage

Access Method •••••••••••• 2-114
Creating the DOSCB Chain •••••• 2-114

Executing an AMSERV Function ••••• 2-114
Executing a VSAM Function for a DOS

User. • • • • • • • • .2-116
CMS/DOS SVC Handling •••••••• 2-116

Executing ~ VSAM Function for an as
User. • . • • • • • . . •2-118
Completion processing for OS and

DOS VSAr. Programs •..•••••. 2-121
OS Simulation by CMS ••.•.•.•. 2-122
Simulating a DOS Environment under

eMS ••••••••••••••••• 2-137
Initializing DOS and Processing DOS

System Control Commands •••••• 2-137
Setting or Resettin~ System
Environment Options •••••••• 2-139

Process CMS/DOS OPEN aL~ CLOSE
Functions ••••••••••••• 2-140

Process CMS/DOS Exe=ution-Related
Control Commands •••••••••• 2-142

Simulate DOS SVC Functions ••••• 2-144
SV:s Tredted as No-Op by CMS/DOS •• 2-1~7
Process CMS/DOS sarvice .Commands •• 2-148
Terminate processing the CMS/DOS
Environment • • • • • • .2-148

PERFORMING MISCELLANEOUS CMS
FUN:TIONS • . • • • •

eMS 3atch Facility ••
Error Printouts.

• • • • • .2-149
• • .2-149

• •••••• 2-153

C MS DI RECl'ORI ES. • • .2-155

MODULE ENTRY POINT DIRECTORY. • .2-157

~ODULE-TO-LAB~L CROSS REFERENCE •••• 2-169

LABEL-TO-MODULE CROSS REFERENCE •••• 2-189

CMS DIAGNOSTIC AIDS. • .2-237

SUPPORTED DEVICES. • • • .2-239

DMSFREX E~ROR CODES. • • • • .2-240
Error :odes from DMSFREE, DMSFRES,

and DMSFRET • • • • .2-240

ABEND CODES. • ••••••••• 2-241
Abend Recovery ••••••• 2-241

Unrecoverable Termination -- The
HALT Option of DMSERR • • • • .2-242

APPENDIX A: CMS MACRO LIBRARY • .2- 241

APPENDIX E: CMS/DOS Macro Library ••• 2-251

INDEX. • .2-253

vi IBM VM/370 System Logic and Program Determination--Volume 2

Figure 1.
FiJure 2.

Figure 3.
Figure 4.

Fi;Iure 5.

Figure 6.

Figu:r:e 7.

Figure 8.

I'igure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

CftS File System ••••••••••••• 2-6
Devices Supporte1 by a C~S
virtual 5achine •••••••••••• 2-13
CftS Storage ftap •••••••••••• 2-16
CftS Co.~and (and Request;
processing ••••••••••••••••• 2-30
PSi Fields when :alled
Routine Starts ••••••••••••• 2-31
Register Conte&ts when :alled
Routine Starts ••••••••••••• 2-31
Simulated os Supervisor
Calls ••••••••••• __ .========2-31
An Overview of the Functional
Areas ~f CKS ••••••••••••••• 2-52
Details of CftS Systea
Functions and the Routines that
Perform Them ••••••••••••••• 2-53
PSi Fields when Callea
Routine is Started ••••••••• 2-69
Register Contents when :alled
Routine is Started ••••••••• 2-10
How CMS File Records are
Chained Togehter ••••••••••• 2-86
Format of a File Status
Block; Format of a rile Status
rable •••••••••••••••••••••• 2-86
For.at of the First Chain
Link and Nth Ch~in Links ••• 2-89

Figur~ 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

FIGURES

Arr~nlement of Fixed-Length
Recoras and Variable-Length
Re=oris in Files ••••••••••• 2-B9
structure of the Master
File Directort ••••••••••••• 2-92
Disk Storage Allocation Using
the QMSK Data Block •••••••• 2-92
Flow of Control for Unit
Recora I/O processing •••••• 2-94
Relationships in storage
between the CMS Interface
~oaule DMSA~S and the
CMSAMS ana CHSVSAM
DCSSs •••••••••••••••••••• ~2-115

Figure 20. The Relationships in
storage between the User
Program and the C~SDOS
ana CMSVSAft DCSSs ••••••••• 2-111

Figure 21. Relationship in storage
between the User Program,
the os Simulation and
Interface Routines, and the
CMSDOS ana CMSVSAft DCSSs •• 2-118

figure 22. OS Functions that CMS
Simulates ••••••••••••••••• 2-123

Figure 23. Devices Supported by a
Virtual Machine ••••••••••• 2-239

Figure 24. CBS Abend Codes ••••••••••• 2-243

Contents vii

viii IBM VM/370 System Logic and Program Determination--Voluae 2

AUTOMATIC REINITIALIZATION SUPPORT

!~!: Program and Documentation

rhis support allows a eMS virtual
machine to specify that control be given
to a reinitialization program as an
alternative to entering a disabled wait
state after an abend. This information
is included in the "CMS Method of
Operation and program Organization"
section of this publication under
"Processes IPL Line Parameters" and in
the "CMS Diagnostic Aids" section of
this publication under "Unrecoverable
Termination."

Summary of Amendments
for SY20-0887-1

V!/310 Release 6 pte 1

Summary of Amendments ix

summary cf Amendments
for SY20- 0887- 0
as updated by TNL SN25-0479
VM/370 Release 5 PLC 12

INDEX CORRECTION

£~gng~£: Documentation only

The index for !~lIQ
Problem Q~i~!!!~g!!~~
(~R~f--was in error
corrected.

x IBM VM/370 Syste~ Logic and Problem Determination--Volu.e 2

SISTEK LOGIC AND PROBLEM DETERMINATION
GUIDE HAS BEEN REORGANIZED

~hgDqed: Documentation only

!~L~lQ ~I§!~~ 1991£ and Problem
Determination Guide has been-split-Into
three-VOIuies.--ioIuae 1 contains the CP
component, Volume 2 the C~S component,
and Volume 3 the RSCS component.

The following material has been removed
from this publication:

• "Introduction to Debugging"
"Debugging with C~S."
information can be found in
~Y§!~. ff~ra~~~f~ ~~!£~.

and
This

Y~LJ1~

• "Appendix A. VM/370 Coding
Conventions." This information can
be found in !~LJIQ aI§!~ ff2gf~!2I§
§yid~.

• "Appendix B. DASD Record Formats."
This information can be found in
!~LJIQ ~~I!ic~ RQY!!~2§ f!Qg!~! ~~!£
in the FORMAT section.

• "Appendix c. V~/370 Restrictions."
This information can be found in
!~11Q fJ~niDg gDg Syste! ~2D2Ig!!QD
~Ylg~ or !~LJIQ ~!§!2! ~2§§~g2§·

• "~ppendix D. Applying PTFs." This
information can be found in !~LJIQ

fJSD~~~~ g~g ~I§!~! ~2n~~!i2n Guid2·

The following sections have been reaoved
from the "C~S Diagnostic Aids" section
of this publication:

• ZAP Service Program. A complete
description of ZAP can be found in
!~L11Q QE~atQ!~ Qy!Q~·

• DDR. A complete
can be found in
§Yig~·

description of DDR
!~LJIQ QE~Iat2I~§

• CMS Return Codes. These can be found
in !~LJIQ a!§1~~ Me§§ggg§.

• Commands for Debugging.
description of DEBUG can
!~LJIQ ~~~ US~f~§ §~!g~.

A complete
be found in

Summary of Amendments
for SI20-0887

VM/370 Release 5 PLC 1

The following has been added to Volume
2:

• "Appendix!: CMS Macro Library"

• "Appendix B: CMS/Des Macro Library"

The following topics have been removed
from PCP Diagnostic Aids":

• CP Commands Used to Debug the Virtual
Machine. These are contained in
!~LJIQ ~E CO!!~~Q ~~feI~~~ !Q!
~~n~Ig! Q2~§·

• CP Commands for System
ihese are contained
QE~IatoI~ §yid~.

V8/370 SUPPORTS
PROCESSORS

3031, 3032,

!2!: Program Feature

Programmers.
in Y~~IQ

AND 3033

VM/370 provides support for the new
channel-attached consoles that are part
of the 3033 processors. VM/370 uses the
3033 processor aodel numbers in
selecting monel-dependent routines and
setting pertinent time slices. The
channels of the new processors are
supported by the channel check error
______ ~n ~~".~no
~Cvv.cLI ~~~~~"~.

During initialization of the machine
check handler/channel check handler,
error frames are read from the Service
Record File (SRF) and written to the
V8/370 error recording area as a new
record type.

Su •• ary of Amendments xi

VM/370 MONITOR COMMAND ENHANCED

!~~: Progra~ Feature

VM/370 monitor facilities now include,
in addition to data collection on tape,
spooling to disk. Operands have been
added to the MONITOR command that allow:

•

•

The autcmatic start and
collection by defined
values.

stop of data
time-fo-day

The automatic start and stop of data
collection by defining a high limit
value.

• Specification
recipient of
data.

!H SCELLANEOUS

of i1 userid
the spocled

as the
monitor

fhg~g~g: Programming and Documentation

Minor technical and editorial changes
have been made in order to clarify the
text.

xii IBM VM/370 System Logic and problem Determination--Volume 2

Conversational Monitor System (CMS)

This section contains the following information:

• Introduction to CMS

• Interrupt Handling in C"S

• Functional Inforaation

• OS ftacros Under CMS

• DOS/iS Support Under eMS

CMS Introduction 2-1

2-2 IB! V!/370 Syste. Logic and program Deteraination--Voluae 2

Introduction To eMS

The Conversational Monitor system (CMS), the major subsystem of Vft/370,
provides a comprehensive set of conversational facilities to the user.
Several copies of CMS may run under CP, thus providing several users
with their own time sharing system. CftS is designed specifically for
the Vft/370 virtual machine environment.

Each copy of CMS supports a single user. This means that the storage
area contains only the data pertaining to that user. Likewise, each CftS
user has his own machine configuration and his own files. Debugging is
simpler because the files and storage area are protected fro. other
users .•

Programs can be debugged fro. the terminal. The terminal is used as
a printer to examine limited a.ounts of data. After examining program
data, the terminal user can enter commands on the terminal that will
alter the program. This is the most common method used to debug
programs that run in CMS.

CMS, operating with the VM/370 Control Program, is a time sharing
system suitable for problem solving, program development, and general
work. It includes several programming language processors, file
manipulation commands, utilities, and debugging aids. Additionally, CftS
provides facilities to simplify the operation of other operating systems
in a virtual machine environment when controlled from a remote terminal.
For example, CMS capabilities are used t~ create and modify job streams,
and to analyze virtual Frinter output.

Part of the CMS environment is related to the virtual machine
environment created by CP. Each user is completely isolated from the
activities of all other users, and each machine in which CBS executes
has virtual storage available to it and managed for it. The CP commands
are recognized by CBS. For example, the co •• ands allow messages to be
sent to the operator or to other users, and virtual devices to be
dynamically detached from the virtual machine configuration.

The CMS Command Language

The CMS command language offers terminal users a wide range of
functions. It supports a variety of programming languages, service
functions, file manipulation, program execution control, and general
system control. For detailed information on CftS commands, refer to the
!~L11Q CMS ~QD~~£ g~g ~g£!Q Re!~renc~.

Figure 4 describes CMS command processing.

CMS Introduction 2-3

The File System

The Conversational Monitor System interfaces with virtual disks, tapes,
and unit record equipment. The CMS residence device is kept as a
read-only, shared, system disk. Permanent user files may be accessed
from up to nine active disks. Logical access to those virtual disks is
controlled by CMS, while CP facilities manage the device sharing and
virtual-to-real mapping.

User files in CMS are identified with three designators. The first
is filename. The second is a filetype designator that may imply
specific file characteristics to the CMS file .anagement routines$ The
third is a filemode designator that describes the location and access
mode of the file.

The compilers available under eMS default to particular input
filetypes, such as ASSEMBLE, but the file manipulation and listing
commands do not. Files of a particular filetype form a logical data
library for a user; for example, the collection of all COBOL source
files, or of all object (TEXT) decks, or of all EXEC procedures. This
allows selective handling of specific groups of files with minimum input
by the user.

User files can be created directly from the terminal with the CftS
EDIT facility. EDIT provides extensive context editing services. Pile
characteristics such as record length and format, tab locations, and
serialization options can be specified. The system includes standard
definitions for certain filetypes.

eMS automatically allocates compiler work files at the beginning of
command execution on whichever active disk has the greatest amount of
available space, and deallocates them at completion. Compiler object
decks and listing files are normally allocated on the same disk as the
input source file or on the primary read/write disk, and are identified
by combining the input filename with the filetypes TEXT and LISTING.
These disk locations may be overridden by the user.

1 single user file is limited to a maximum of 65533 records and must
reside on one virtual disk. The file management system limits the
number of files on anyone virtual disk to 3400. All CftS disk files are
written as aOO-byte records, chained together by a specific file entry
that is stored in a table called the Master File Directory; a separate
Master File Directory is kept for, and on, each virtual disk. The data
records may be discontiguous, and are allocated and deallocated
automatically. 1 subset of the Master File Directory (called the User
File Directory) is made resident in virtual storage when the disk
directory is made available to CMS; it is updated on the virtual disk at
least once per command if the status of any file on that disk has been
changed.

Virtual disks may be shared by eMS users; the facility is provided by
YM/370 to all virtual .achines, although a user interface is directly
available in CMS commands. Specific files may be spooled between
virtual machines to accomplish file transfer between users. Commands
allow such file manipulations as writing from an entire disk or from a
specific disk file to a tape, printer, punch, or the terminal. Other
commands write from a tape or virtual card reader to disk, rename files,
copy files, and erase files.· Special macro libraries and text or
program libraries are provided by CMS, and special commands are provided
to update and use them. eMS files can be written onto and restored from
unlabeled tapes via CMS commands.

£2utiQ~: Multiple write access under eMS can produce unpredictable
results.

2-4 IBM VM/370 System Logic and Program Determination--Volume 2

Problem programs which execute in CMS can create files on unlabeled
tape in any record and block size; the record format can be fixed,
variable, or undefined. Figure 1 describes the CMS file system.

Program Development

The Conversational Monitor System includes commands to create and
compile source programs, to modify and correct source programs, to build
test files, to execute test programs and to debug from the terminal.
The commands of CMS are especially useful for as and DOS/VS program
development, but also may be used in combination with other operating
systems to provide a virtual machine program development tool.

CMS utilizes the as and DOS/VS compilers via interface modules; the
compilers themselves normally are not changede In order to provide
suitable interfaces, CMS includes a certain degree of as and DOS/VS
simulation. The sequential, direct, and partitioned access methods are
logically simulated; the data reco~ds are physically kept in the chained
SOO-byte blocks that are standard to CMS, and are processed internally
to simulate as data set characteristics. CMS supports VSAM catalogs,
data spaces, and files on as and DOS disks using the DOS/VS Access
Method Services. as Supervisor Call functions such as GETMAIN/FREEMAIN
and TIME are simulated. The simulation restrictions concerning what
types of as object programs can be executed under CMS are primarily
related to the as/pcP, MFT, and MVT Indexed sequential Access Method
(ISAM) and the telecommunications access methods, while functions
related to multitasking in as and DOS/VS are ignored by CMS. For more
information, see "as Macro simulation under CMS" and "DOS/VS Support
under CMS."

CMS Introduction 2-5

to..) ~
I ..,- DMSNUC Area of Storage

0\ I.Q
Free Storage Di,;k Storage

j:;i
1-/

H CD
to AFT

3 ~

~
3: DMSNUC

......... n
w 3:
..,.J til
0

"2iI
til ..,-
"<
en CD
c+
CD til
iI ~

en
1:-4 ri-
O CD

I.Q I!II ..,.
()

~
t:I
Pol

i1:1
1-/
0

\Q
H
jl.I
iii

t='
(D

r+
CD
H
iI
t:I
~
ri-..,.
0
t:I
I
I
~
0
d
II
CD

to..)

Interrupt Handling In eMS

CMS receives virtual SiC, input/output, program, machine, and external
interruptions and passes control to the appropriate handling program.

SVC Interruptions

The Conversational Monitor System is SVC (supervisor call) driven. SVC
interruptions are handled by the DMSITS resident routines. Two types of
SVCs are processed by DMSITS: internal linkage SVC 202 and 203, and any
other SVCs. The internal linkage SiC is issued by the command and
function programs of the system when they require the services of other
CMS programs. (Commands entered by the user from the terminal are
converted to the internal linkage SVC by DMSINT). ~he as SVCs are
issued by the processing programs (for example, the Assembler).

INTERNAL LINKAGE SVCS

When DMSITS receives control as a result of an internal linkage SVC (202
or 203), it saves the contents of the general registers, floating-point
registers, and the SVC old PSW, establishes the normal and error return
addresses, and passes control to the specified routine. (The routine is
specified by the first 8 bytes of the parameter list whose address is
passed in register 1 for SVC 202, or by a halfword code following SVC
203.)

For SVC 202, if the called program is not found in the internal
function table of nucleus {resident} routines, then DMSITS attempts to
call in a module (a CMS file with file type MODULE) of this name via the
LOADMOD command.

If the program was not found in the function table, nor was a module
successfully loaded, DMSITS returns an error code to the caller.

To return from the called program, DMSITS restores the calling
program's registers, and makes the appropriate normal or error return as
defined by the calling program.

OTHER SVCs

The general approach taken by DMSITS to process other SVCs supported
under CMS is essentially the same as that taken for the internal linkage
SVCs. However, rather than passing control to a command or functiorr
program, as is the case with the internal linkage SVC, DMSITS passes
control to the appropriate routine. The SVC number determines the
appropriate routine.

In handling non-CMS SiC calls, DMSITS refers first to a user-defined
SVC table (if one has been set up by the DMSHDS program). If the
user-defined SVC table is present, any SVC number (other than 202 or
203) is looked for in that table. If it is found, control is
transferred to the routine at the specified address.

CMS Introduction 2-7

If the SVC number is not found in the user-defined SVC table (or if
the table is nonexistent), DMSITS either transfers control to the CftSDOS
shared segment (if SETDOS ON has been issued), or the standard system
table (contained in DMSSVT) of OS calls is searched for that SVC number.
If the SVC number is found, control is transferred to the corresponding
address in the usual manner. If the SVC is not in either table, then
the supervisor call is treated as an abend call.

The DMSHDS initialization program sets up the user-defined SVC table.
It is possible for a user to provide his own SVC routines.

Input/Output Interruptions

All input/output interruptions are received by the I/O interrupt
handler, DftSITI. DftSITI saves the I/O old PSi and the CSi (channel
status word). It then determines the status and requirements of the
device cau~in; the interruption and passes c0fil~01 Lo the ~uutine that
processes interruptions from that device. DMSITI scans the entries in
the device table until it finds the one containing the device address
that is the same as that of the interrupting device. The device table
(DEVTAB) contains an entry for each device in the system. Each entry
for a particular device contains, among other things, the address of the
program that processes interruptions from that device.

When the appropriate interrupt handling routine completes its
processing, it returns control to DMSITI. At this point, DftSITI tests
the wait bit in the saved I/O old PSi. If this bit is off, the
interruption was probably caused by a terminal (asynchronous) I/O
operation. DftSITI then returns control to the interrupted program by
loading the I/O old PSi.

If the wait bit is on, the interruption was probably caused by a
nanterminal (synchronous) I/O operation. The program that initiated the
operation most likely called the DMSIOi function routine to wait for a
particular type of interruption (usually a device end) • In this case,
DMSITI checks the pseudo-wait bit in the device table entry for the
interrupting device. If this bit is off, the system is waiting for some
event other than the interruption from the interrupting device; DftSITI
returns to the wait state by loading the saved I/O old PSi. (This PSi
has the wait bit on.)

If the pseudo-wait bit is on, the system is waiting for an
interruption from that particular device. If this interruption is not
the one being waited for, DMSITI loads the saved I/O old PSi. This will
again place the machine in the wait state. Thus, the program that is
waiting for a particular interruption will be kept waiting until that
interruption occurs.

If the interruption is the one being waited for, DftSITI resets both
the pseudo-wait bit in the device table entry and the wait bit in the
I/O old PSi. It then loads that PSi. This causes control to be
returned to the DftSIOi function routine, which, in turn, returns control
to the program that called it to wait for the interruption.

2-8 IBM VM/370 System Logic and Program Determination--Volume 2

Terminal Interruptions

Terminal input/output interruptions are handled by the DMSCIT module.
All interruptions other than those containing device end, channel end,
attention, or unit exception status are ignored. If device end status
is present with attention and a write CCW was terminated, its buffer is
unstacked. An attention interrupt causes a read to be issued to the
terminal, unless attention exits have been queued via the STAX macro.
The attention exit with the highest priority is given control at each
attention until the queue is exhausted, then a read is issued. Device
end status indicates that the last I/O operation has been co.pleted. If
the last 1/0 operation was a write, the line is deleted from the output
buffer and the next write, if any, is started. If the last IIO
operation was a normal read, the buffer is put on the finished read list
and the next operation is started. If the read was caused by an
attention interrupt, the line is first checked for the commands RTI HC,
O~, V~ OA, and the appropriate flags are set if one is found. Unit
exception indicates a canceled read. The read is reissued, unless it
had been issued with ATTREST=NO, in which case unit exception is treated
as device end.

Reader I Pu nchl Pri nter I nterru ptions

Interruptions from these devices are handled by the routines that
actually issue the corresponding I/O operations. When an interruption
from any of these devices occurs, control passes to D~SITI. Then DMSITI
passes control to DMSIOW, which returns contrel to the routine that
issued the I/O operation. This routine can then analyze the cause of
the interruption.

User-Controlled Device Interruptions

Interrupts from devices under user control are serviced the same as CMS
devices except that DMSIOW and DMSITI manipulate a user-created device
table, and DMSITI passes control to any user-written interrupt
processing routine that is specified in the user device table.
Otherwise, the processing program regains control directly.

Program Interruptions

The program interruption handler, DMSITP, receives control when a
program interruption occurs. When DMSITP gets control, it stores the
program old PSi and the contents of the registers 14, 15, 0, 1, and 2
into the program interruption element (PIE). (the routine that handles
the SPIE macro instruction has already placed the address of the program
interruption control area (PICA) into PIE.) DMSITP then determines
whether or not the event that caused the interruption was one of those
selected by a SPIE macro instruction. If it was not, DMSITP passes
control to the DMSABN abend recovery routine.

If the cause of the interruption was one of those selected in a SPIE
macro instruction, DMSITP picks up the exit routine address from the
PICA and passes control to the exit routine. Upon return from the exit
routine, DMSITP returns to the interrupted program by loading the
original program check old PSW. The address field of the PSi was
modified by a SPIE exit routine in the PIE.

CMS Introduction 2-9

External Interruptions

An external interruption causes control to be passed to the external
interrupt handler DMSITE. If the user has issued the HNDEXT macro to
trap external interrupts, DMSITE passes contrel to the user's exit
routine. If the interrupt was caused by the timer, D~SITE resets the
timer and types the BLIP character at the terminal. The standard BLIP
tiaer setting is two seconds, and the standard BLIP character is
uppercase, followed by the lowercase (it moves the typeball without
printing). Otherwise, control is passed to the DEBUG routine.

Machine Check Interruptions

Hard machine check interruptions on the real processor are not reflected
to a CMS virtual user by CP. A message prints en the console indicating
the failure. The user is then disabled and must IPL C~S again in order
to continue.

2-10 IBM VM/370 System Logic and Program Determination--Volume 2

Functional Information

Tbe most important thing to remember about eMS, from a debugging
standpoint, is that it is a one-user system. The supervisor manages
only one user and keeps track of only one user's file and storage
chains. Thus, everything in a dump of a particular machine relates only
to that virtual machine's activity.

You should be familiar with register usage, save area structuring,
and control block relationships before attempting to debug or alter Cfts.

When a CMS routine is called, R1 must point to a valid parameter list
(PLIST) for that program. On return, RO mayor may not contain
meaningful information (for example, on return from a call to FILEDFF
with no change, RO will contain a negative address if a new FCB has been
set up; otherwise, a positive address of the already existing FCB). R15
will contain the return code, if any. The use of Registers 0 and 2
through 11 varies.

On entry to a command or routine called by SVC 202 the following are
in effect:

R~g!§!~;:
1

12
13

14
15

Contents
The-address of the PLIST supplied by the caller.
The address entry point of the called routine.
The address of a work area (12 doublewords) supplied by

SVCINT.
The return address to the SVCINT routine.
The entry point (same as register 12).

On return from a routine, Register 15 contains:

Return
-~.Qg~

o
<0
>0

~~~1!!ml 
No error occurred 
Called routine not found 
Error occurred 

If a CMS routine is called by an SVC 202, registers 0 through 14 are 
saved and restored by CftS. 

Most CMS routines use register 12 as a base register. 

Structure of DMSNUC 

DMSNUC is the portion of storage in a CMS virtual machine that contains 
system control blocks, flags, constants, and pointers. 

The CSECTs in DMSNUC contain only symbolic references. This means 
that an update or modification to CMS, which changes a CSECT in DMSNUC, 
does not automatically force all CMS modules to be recompiled. Only 
those modules that refer to the area that was redefined must be 
recompiled. 

CMS Introduction 2-11 



USERSECT (USER AREA) 

The USERSECT CSECT defines space that is not used by CMS. A 
modification or update to CMS can use the 18 full words defined for 
USERSECT. There is a pointpr (AUSER) in the NUCON area to the user 
space. 

DEVTAB (DEVICE TABLE) 

The DEVTAB CSECT is a table describing the devices available for the CMS 
syste.. The table contains the following entries: 

• 1 console 
• 10 disks 
• 1 reader 
• 1 punch 
• 1 pl:'in'tt?!" 

• 4 tapes 

You can change some existing entries in DEVTAB. Each device table 
entry contains the following information: 

• Virtual device address 
• Device flags 
• Device types 
• Symbol device name 
• Address of the interrupt processing routine (for the console) 

The virtual address of the console is defined at IPL time. The 
virtual addre~s of the user disks can be altered dynamically with the 
ACCESS command. The virtual address of the tapes can te altered in the 
device table. Changing the virtual address of the reader, printer, or 
punch will have no effect. Figure 2 describes the devices supported by 
CMS. 

Structure of eMS Storage 

Figure 3 describes how CMS uses its virtual storage. The pointers 
indicated (MAIISTRT, MAINHIGH, FREELOWE, and FREEUPPR) are all found in 
NUCOI (the nucleus constant area). 

• 

The sections of CMS storage have the following uses: 

DMSNUC (X'OOOOO' 19 gEE!g!!!g!glI X'03000'). 
poInters,--ilags; and other data updated--by 
routines .. 

This area contains 
the various system 

• 12!=~!2!gg~ DMSFREE Free ~!2!gg~ !!gg (!EEf2!img!eII 1~03~OO~ 12 
!~Q~QOO~). ThIs--area-Is a free storage area, from which requests 
from DMSFREE are allocated. The top part of this area contains the 
file directory for the System Disk (SSTAT). If there is enough room 
(as there will be in most cases), the FREETAB table also occupies 
this area, just below the SSTAT. 

2-12 IBM VM/370 System Logic and Program Determination--Volume 2 



Virtual 
IBM Device 

3210, 3215, 1052, 
3066, 3270 

2314. 3330. 3340 
3350 

2314, 3330, 3340 
3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

1403, 3203, 3211 
1443 

2540, 2501, 3505 
2540, 3525 
2415, 2420, 3410, 

3420 

Virtual I Symbolic 
Address11 Name 

ccu 

190 

191 2 

ccu 

ccu 

192 

ccu 

ccu 

ccu 

19E 

cell 

OOE 

OOC 
000 
181-4 

CON1 

DSKO 

DSK1 

DSK2 

DSK3 

DSK4 

DSK5 

DSK6 

DSK7 

DSK8 

DSK9 

PRNl 

RDRl 
PCHl 

TAP1-TAP4 

Device Type 

system console 

System disk (read-only) 

Primary disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Line printer 

Card reader 
Card punch 
Tape drives 

lThe device addresses shown are those that are preasseabled into the 
CMS resident device table. These need only be modified and a new 
device table made resident to change the addresses. 

2The virtual device address (ccu) of a disk for user files can be 
any valid System/370 device address, and can be specified by the 
eMS user when he activates a disk. If the user does not activate 
a disk immediately after loading CMS, CftS automatically activates 
the primary disk at virtual address 191. 

Figure 2. Devices supported by a eMS Virtual Machine 

• Transient fro~~! !f~~ (!~Q~QQQ~ 12 !~lQQQQ~) • Since it is not 
essential to keep all nucleus functions resident in storage all the 
time, some of them are made "transient." This means that when they 
are needed, they are loaded from the disk into the transient prograa 
area. Such programs may not be longer than two pages, because that 
is the size of the transient area. (A page is 4096 bytes of virtual 
storage.) All transient routines must be serially reusable since 
they are not read in each time they are needed. 

• ~~~ !ucl~y§ (~lQQQ~ 12 ~lQQQ~) • Segment 1 of storage contains 
the reentrant code for the CMS Nucleus routines. In shared eftS 
systems, this is the "protected segment," which must consist only of 
reentrant code, and aay not be modified under any circumstances. 
Thus, such functions as DEBUG breakpoints or CP address stops cannot 
be placed in Segment 1 when it is a protected segment in a saved 
system. 

CMS Introduction 2-13 



• Q§~! Pr~g!A~ Ar~A (!~~QQQQ~ !~ 1~Ag~! IA~les). User programs are 
loaded into this area by the LOAD command. Storage allocated by 
means of the GET"AIN macro instruction is taken from this area, 
starting from the high address of the user program. In addition, 
this storage area can be allocated from the top down by DftSFREE, if 
there is not enough storage available in the low DftSFREE storage 
area. Thus, the usable size of the user program area is reduced by 
the amount of free storage that has been allocated from it by 
DftSFREE. 

• ~~Ag~! ~g~J~§ (~~E Egg~ ~f §!Q!~~). The top of storage is occupied 
by the loader tables, which are required by the CMS loader. These 
tables indicate which modules are currently loaded in the user 
program area (and the transient program area after a LOAD command) • 
The size of the loader tables can be varied by the SET LDRTBLS 
command. However, to successfully change the size of the loader 
tables, the SET LDRTBLS co.mand must be issued immediately after 1PL. 

Free Storage Management 

Free storage can be allocated by issuing the GETft!II or DftSFREE macros. 
Storage allocated by the GETft!IN macro is taken from the user program 
area, beginning after the high address of the user program. 

Storage allocated by the DftSFREE macro can be taken from several 
areas. 

If possible, DftSFREE requests are allocated from the low address free 
storage area. Otherwise, DMSFREE requests are satisfied from the 
storage above the user program area. 

There are two types of DftSFREE requests for free storage: requests 
for USER storage and BUCLEUS storage. Because these two types of 
storage are kept in separate 4K pages, it is possible for storage of one 
type to be available in low storage, while no storage of the other type 
is available. 

GETftAIN FREE STORAGE ftANAGEftENT 

All GET"AIN storage is allocated in the user program area, starting 
after the end of the user's actual program. Allocation begins at the 
location pointed to by the BUCON pointer ftAINSTRT. The location 
ftA1NHIGB in NUCON is the "high extend" pointer for GET!AIN storage. 

Before issuing any GETft!IN macros, user programs must use the STRIIIT 
macro to set up user free storage pointers. The STRIIIT macro is issued 
only once, preceding the initial GETftAII request. The format of the 
STRINIT macro is: 

I r r,' 
[label] STRIIIT I ITYPC!LL=ISVC II 

I lii~RII 
ILL .I.J 

2-14 IBft VM/370 System Logic and Program Determination--Volume 2 

1 

I 
I 
I 
I 



r , 
TIPCALL=I.§!£ I 

IBALRI 
L .J 

indicates how control is passed to DESSTG, the routine that 
processes the STRINIT macro. Since DMSSTG is a 
nucleus-resident routine, other nucleus-resident routines can 
branch directly to it ( TYPCALL=BALR) while routines that are 
not nucleus-resident must use linkage SYC (TIPCALL=SYC). If no 
operands are specified, the default is TYPCALL=SVC. 

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH are 
initialized to the end of the user's program, in the user program area. 
As storage is allocated from the user program area to satisfy GET MAIN 
requests, the MAINHIGH pointer is adjusted upward. Such adjustments 
are always in multiples of doublewords, so that this pointer is always 
on a doubleword boundary. As the allocated storage is released, the 
MAIN HIGH pointer is adjusted downward. 

The pointer MAINHIGH can never be higher than FREELOWE, the "low 
extend" pointer for DMSFREE storage allocated in the user program area. 
If a GETMAIN request cannot be satisfied without extending MAINHIGH 
above FREELOWE, then GETMAIN will take an error exit, indicating that 
insufficient storage is available to satisfy the request. 

The area between MAINSTRT and ~AINHIGH may contain blocks of storage 
that are not allocated and that are, therefore, available for allocation 
by a GETMAIN instruction. These blocks are chained together, with the 
first one pointed to by the NUCON location MAINSTRT. Refer to Figure 3 
for a description of CMS virtual storage usage. 

The format of an element on the GETMAIN free element chain is as 
follows: 

.- 1 I 
I FREPTR -- pointer to next free 

o (0) I eleme nt in the chain I or 0 
I if there is no next element 
I I 'I I 
I FRELEN -- length, in bytes, of 

4 (4) I this element 
I 
I I I 1-------
I Remainder of this free element 

When issuing a variable-length GETMAIN, two and one-half pages are 
reserved for CMS usage; this is a design value. A user who needs 
additional reserved pages (for example, for larger directories) should 
free up some of the variable GETMAIN storage from the high end. 

eMS Introduction 2-15 



VIRTUAL 
STORAGE 

ENDOFSTORAGE,-----------~~--------------~ 

FREEUPPR----~----------------------~_r----4;~ 

FREELOWE 

MAINHIGH 

MAINSTRT 

DMSFREE requests when 
no more low storage available 

T 
Unused portion of User 

Program Area 

•• H .... 'Q~t:' f't:'V 

---------z--GETMAIN requests Storage 

__________ ~~~E' 

The User's Program 
(program is loaded via the 

LOAD command) 

X7~'-+----------------------~~--~ 
CMS Nucleus 

In "saved systems" this area 
is a protected segment 
(that is, all code must be 
reentrant and cannot be 

modified) 

X'tOOOO -1-------------------'----'------1 
Transient Progra~ Area 

X'EOOO' ~----------------..:.....------i:.<::\.;: 
Low Storage DMSFREE Free Storage Area 

DMSFREE requests are filled from 
this area. The upper part of this 
area contains the System Disk MFD 
followed by the FREETAB, if there is 
enough room. 

X'3000' -I--------------~~---------
DMSNUC 

System Control Blocks, flags, constants, 
and pointers, 

X~'--~ __ --------------__ ~~~ __ __ 
'The half-page containing OPSFCT and TSOBLOKS 
has a storage key; X'E' 

Figure 3. eKS Storage ~ap 

CONTROL BLOCKS 
INFREESTORAGE----------~ 

BRR 
BEJG 

2-16 IBK VK/370 System Logic and Program Determination--Volume 2 



DMSFREE FREE STORAGE MANAGEMENT 

The DMSFREE macro allocates CMS free storage. The format of the DMSFREE 
macro is: 

[label] 

label 

DMSFREE 
r , 

DiORDS={ n } I, MIN={ n }I 
(0) I (1), 

L J 

r r "r r " 
I,TYPE=I~~~~ II I,ERR=lladdrl I 

INUCLEUSII 1 I * II 
I L L 

I r r" 
I I~AREA=ILOW II 
I I tHIGHl1 
ILL JJ 

.JJ L L J.J 

r r" 
I,TYPCALL=I~VC II 
I IBALRII 
L L JJ 

is any valid assembler language label. 

----, 

DWORDS={ n } 
l (0) 

I!IN={ n }' 
(1) 

is the number of doublewords of free storage requested. 
DiORDS=n specifies the number of doublewords directly and 
DWORDS=(O) indicates that register 0 contains the number of 
doublewords requested. 

indicates a variable request for free storage. If the exact 
number of doublewords indicated by the DWORDS operand is not 
available, then the largest block of storage that is greater 
than or equal to the minimum is returned. MIN=n specifies the 
minimum number of double words of free storage directly while 
MIN=(1) indicates that the minimum is in register 1. The 
actual amount of free storage allocated is returned to the 
requestor via general register o. 

r , 
TYPE=IQSER I 

IBUCLEUSI 
L J 

indicates the type of CMS storage with which this request for 
free storage is filled: USER or NUCLEUS. 

r , 
ERR=lladdri 

I * I 
L J 

is the return address if any error occurs. "laddr" is any 
address that can be referred to in an LA (load address) 
instruction. The error return is taken if there is a macro 
ceding error or if there is not enough free storage available 
to fill the request. If the asterisk (*) is specified for the 
return address, the error return is the same as a normal 
return. There is no default for this operand. If it is 
omitted and an error occurs, the system will abend. 

CMS Introduction 2-17 



r , 
AREA=,LOW I 

IHIGHI 
L J 

indicates the area of CMS free storage from which this request 
for free storage is filled. LOW indicates the low storage 
area between DMSNUC and the transient program area. HIGH 
indicates the area of storage between the user program area 
and the CMS loader tables. If AREA is not specified, storage 
is allocated wherever it is available. 

r , 
TYPCALL=I~!~ I 

IBALRI 
L .I 

indicates how control is passed to DMSFREE. Since DMSFREE is 
a nucleus-resident routine, other nucleus-resident routines 
can branch directly to it (TYPCALL=BALR) while routines that 
are not nucleus-resident must use linkage SVC (TYPCALL=SVC). 

The pointers FREEUPPR and FREELOWE in NUCON indicate the amount of 
storage that DMSFREE has allocated from the high portion of the user 
program area. These pointers are initialized to the teginning of the 
loader tables. 

The pointer FREELOVE is the "low extend" pointer of DMSFREE storage 
in the user program area. As storage is allocated from the user program 
area to satisfy DMSFREE requests, this pointer will be adjusted 
downward. Such adjustments are always in multiples of 4K bytes, so that 
this pointer is always on a 4K boundary. As the allocated storage is 
released, this pointer is adjusted upward. 

The pointer FREELOVE can never be lower than ftIINHIGH, the "high 
extend" pointer for GETMAIN storage. If a DftSFREE request cannot be 
satisfied without extending FREELOVE below MAINHIGH, then DMSFREE will 
take an error exit, indicating that storage is insufficient to satisfy 
the request. Figure 3 shows the relationship of these storage areas. 

The FREETAB free storage table is kept in free storage, usually in 
low storage, just below the Master File Directory for the System Disk 
(S-disk). However, the FREETAB may be located at the top of the user 
program area. This table contains one byte for each page of virtual 
storage. Each such byte contains a code indicating the use of that page 
of virtual storage. The codes in this table are as follows: 

Code Mea!!!!!Sl 
USERCODE(X' 01') The page is assigned to user storage. 

lfUCCODE (X' 02' ) The page is assigned to nucleus storage. 

TRNCODE (X' 03' ) The page is part of the transient program area. 

USARCODE (X' 04' ) The page is part of the user program area. 

SYSCODE (X' 05 • ) The page is none of the above. The page is assigned 
to system storage, system code, or the loader 
tables. 

Other DMSFREE storage pointers are maintained in the DftSFRT CSlCT, in 
NUCON. The four chain header blocks are the most important fields in 
DMSFRT. The four chains of unallocated elements are: 

2-18 IBM VM/370 System Logic and Program Determination--Volume 2 



• The low storage nucleus chain 
• The low stcrage user chain 
• The high storage nucleus chain 
• The high storage user chain 

For each of these chains of unallocated elements, there is a control 
block consisting of four words# with the following format: 

POINTER 

Nue 

MAX 

FLAGS 

• I I 
POINTER -- pointer to the first 

o (0) free ele.ent on the chain, or 
zero, if the chain is empty. 

I I I 
Nue -- the number of elements on 

4 (4) the 1. • 
C ... al.R. 

I 
I I 

MAX -- a value equal to or greater I 
S (S) than the size of the largest I 

element. I 
I I I 

FLAGS- I SKEY - I TCODE -I Unused 1 
12 (C) Flag I Storage IFREETAB 1 I 

byte I key I code I I 
I J I 

points to the first element on this chain of free elements. 
If there are no elements on this free chain, then the POINTER 
field contains all zeros. 

contains the number of elements on this 
elements. If there are no elements on this 
this field contains all zeros. 

chain of free 
free chain, then 

is used to avoid searches that will fail. It contains a 
number not exceeding the size, in bytes, of the largest 
element on the free chain. Thus, a search for an element of a 
given size will not be made if that size exceeds the elX 
field. Ho~everr this number may actually be larger than the 
size of the largest free element on the chain. 

The following flags are used: 

FLCLN (X'SO') -- Clean-up flag. This flag is set if the chain 
.ust be updated. This will be necessary in the following 
circumstances: 

• If one of the two high storage chains contains a 4K page to 
which FREELOVE points, then that page can be re.oved fro. 
the chain, and FREELOVE can be increased. 

• All completely unallocated 4K pages are kept on the user 
chain, by convention. Thus, if one of the nucleus chains 
(low storage or high storage) contains a full page, then 
this page must be transferred to the corresponding user 
chain. 

FLCLB (X'40') -- Destroyed flag. Set if the chain has been 
destroyed. 

FLHC (X'20') -- High storage chain. 
and user high-storage chains. 

Set for both the nucleus 

ces Introduction 2-19 



SKEY 

TCODE 

FLNU (1'10') -- Nucleus chain. Set for both the low storage 
and high storage nucleus chains. 

FLPA (1'08') -- Page available. This flag is set if there is 
a full 4K page available on the chain. This flag may be set 
even if there is no such page available. 

contains the one-byte storage key assigned to storage on this 
chain. 

contains the one-byte FREETAB table code for storage on this 
chain. 

When DMSFREE with TYPE=USER (the default) is called, one or more of the 
following steps are taken in an attempt to satisfy the request. As soon 
as one of tn~ following step~ zucccca~, then ~~cr frea StO~~g6 
allocation processing terminates. 

1. Search the low storage user chain for a block of the required size. 

2. Search the high storage user chain for a block of the required 
size. 

3. Extend high storage user storage downward into the user program 
area, modifying FREELOVE in the process. 

4. For a variable request, put all available storage in the user 
program area onto the high storage user chain, and then allocate 
the largest block available on either the high storage user chain 
or the low storage user chain. The allocated block will not be 
satisfactory unless it is larger than the minimum requested size. 

When DMSFREE with TYPE=NUCLEUS is called, the fcllowing steps are taken 
in an attempt td satisfy the ~equest, until one succeeds: 

1. Search the low storage nucleus chain for a block of the required 
size~ 

2. Get free pages from the low storage user chain, if any are 
available, and put them on the low storage nucleus chain. 

3. Search the high storage nucleus chain for a block of the -required 
size. 

4. Get free pages from the high storage user chain, if they are 
available, and put them on the high storage nucleus chain. 

5. Extend high storage nucleus storage downward into the User Program 
Area, modifying FREELOVE in the process. 

6. For variable requests, put all available pages from the user chains 
and the user program area onto the nucleus chains, and allocate the 
largest block available on either the low storage nucleus chains, 
or the high storage nucleus chains. 

2-20 IBM VM/370 System Logic and Program Determination--Volume 2 



The DMSFRET macro releases free storage previously allocated with the 
DMSFREE macro. The format of the DMSFRET macro is: 

[label] DMSFRET I DWORDS={(~) },LOC={l~~fr} 

label 

DiORDS={ n } 
(0) 

LOC={laddr} 
(1) 

r , 
ERR=lladdrl 

1*' 
L ~ 

r , 

I 
I r r " r r " I I,ERR=lladdrl I I,TYPCALL=I~!£ II 
I I I * II I IBALRII 
I L L JJ L L JJ 

J 

is any valid Assembler language label. 

is the number of doublewords of storage to be released. 
DWORDS=n specifies the number of doublewords directly and 
DWORDS=(O) indicates that register 0 contains the number 
of doublewords being released. 

is the address 
"laddr" is any 
(load address) 
address directly 
in register 1. 

of the block of storage being released. 
address that can be referred to in an LA 
instruction. LOC=laddr specifies the 

while LOC=(1) indicates the address is 

is the return address if an error occurs. "laddr" is any 
address that can be referred to ty an LA (load address) 
instruction. The error return is taken if there is a 
macro coding error or if there is a problem returning the 
storage. If an asterisk (*) is specified, the error 
return address is the same as the normal return address. 
There is no default for this operand. If it is oaitted 
and an error occurs, the system will abend. 

TYPCALL=I~!£ I indicates how control is passed to D~SFRET. Since DMSFRET 
IBALRI is a nucleus-resident routine, otner nucleus-resident 
L ~ routines can branch directly to it (TY~CALL=BALR) while 

routines that are not nucleus-resident must use SVC 
linkage (TYPCALL=SVC). 

When DMSFRET is called, the block being released is placed on the 
appropriate chain. At that point, the final update operation is 
performed, if necessary, to advance FREELOWE, or to move pages from the 
nucleus chain to the corresponding user chain. 

Similar update operations will be performed, when necessary, after 
calls to DMSFREE, as well. 

RELEASING ALLOCATED STORAGE 

Storage allocated by the GETMAIN macro instruction may be released in 
any of the following ways: 

1. A specific block of such storage may be released by means of the 
FREEMAIN macro instruction. 

CMS Introduction 2-21 



2. The STRINIT macro instruction releases 
any previous GETMAIN requests. 

all storage allocated by 

3. Almost all C~S coamands issue a STRINIT macro instruction. Thus, 
executing almost any CMS command will cause all GETMAIN storage to 
be released. 

Storage allocated by the DMSPREE macro instruction may be released in. 
any of the following ways: 

1. A specific block of such storaqe may be released by means of thp. 
DMSPRET macro instruction. -

2. Whenever any user routine or CMS command abnormally terminates (so 
that the routine DMSABN is entered) ~ and the abend recovery 
facility of the system is invoked, all DMSPREE storage with 
TYPE=USER is released automatically. 

LAcepl ~ll the case of abena recovery, storage allocated by the 
DMSPREE macro is never released automatically by the system. ·Thus, 
storage allocated by means of this macro instruction should always be 
released explicitly by means of the DMSPRET macro instruction. 

DMSPREE SERVICE ROUTINES 

The DMSPRES macro instruction is used by the system to request certain 
free storage management services. 

The format of the DKSPRES macro is: 

r-------------------------------------------------------------------------------, 
[label] DMSPRES INlT1 

INIT2 
CHECK 
CKON 
CKOFP 
UREC 
CALOC 

r r" 
"TYPCALL=I~!~ I I 

IBALRII 
-t. t. 

I 
I 
I 
I 
I 
I 
I ~ _____________________________________________________________________________ J 

label 

IIIT1 

is any valid Assembler language label. 

invokes the first free storage initialization routine, so 
that free storage requests can be made to access the 
system disk. Before INIT1 is invoked, no free storage 
requests may be made. After lNlT1 has been invoked, free 
storage requests may be made, but these are subject to 
the following restraints until the second free storage 
management initialization routine has been invoked: 

• All requests for USER type storage are changed to 
requests for NUCLEUS type storage. 

• Error checking is limited before initialization is 
complete. In particular, it is sometimes possible to 
release a block that vas never allocated. 

2-22 IBM VM/370 System Logic and program Determination--Volume 2 



INIT2 

CHECK 

CKON 

CKOFF 

UREC 

CALoe 

• All requests that are satisfied in high storage must 
be of a temporary nature, since all storage allocated 
1n high storage is released when the second free 
storage initialization routine is invoked. 

When CP's saved system facility is used, the CMS systea 
is saved at the point just after the A-Disk has been made 
accessible. It is necessary for DMSFRE to be used before 
the size of virtual storage is known, since the saved 
system can be used on any size virtual machine. Thus, 
the first initialization routine initializes DMSFRE so 
that limited functions can be requested, while the second 
initialization routine performs the initialization 
necessary to allow the full functions of DKSFRE to be 
exercised. 

invokes the second initialization routine. This routine 
is invoked after the size of virtual storage is known, 
and it performs initialization necessary to allow all the 
functions of DMSFRE to be used. The second 
initialization routine performs the following steps: 

• Releases all storage that has been allocated in the 
high storage area. 

• Allocates the FREETAB free storage tablee This table 
contains one byte for each 4K page of virtual storage, 
and so cannot be allocated until the size of virtual 
storage is known. 

• The FREETAB table is initialized, and all storage 
protection keys are initialized. 

• All completely unallocated 4K pages on the low storage 
nucleus free storage chain are removed to the user 
chain. Any other necessary operations are performed. 

invokes a routine that checks all free storage chains for 
consistency and correctness. Thus, it checks to see 
whether or not any free storage pointers have been 
destroyed. This option can be used at any time for 
system debugging. 

turns on a flag that causes the CHECK routine to be 
invoked each time a call is made to DKSFREE or DMSFRET. 
This can be useful for debugging purposes (for example, 
when you wish to identify the routine that destroyed free 
storage management pointers). Care should be taken when 
using this option, since the CHECK routine is coded to be 
thorough rather than efficient. Thus, after the CKCN 
option has been invoked, each call to DMSFREE or DMSFRET 
will take much longer to be completed than before. 

turns off the flag that was turned on by the CKOB option. 

is used by DMSABB during the abend recovery process to 
release all user storage. 

is used by DMSABN after the abend recovery process has 
been completed. It invokes a routine which returns, in 
register 0, the number of doublewords of free storage 
that have been allocated. This number is used by DMSAEN 
to determine whether or not the abend recovery has been 
successful. 

CMS Introduction 2-23 



r , 
TYPCALL=I~!~ I indicates how control is passed to D~SFES. Since DMSFRES 

IBALRI is a nucleus-resident routine, other nucleus-resident 
L ~ routines can branch directly to it, (TYPCALL=BALR) while 

routines that are not nucleus-resident aust use SVC 
linkage (TYPCALL=SVC). 

ERROR CODES FROM DMSFRES, DMSFREE, AND DMSFRET 

A nonzero return code upon return from DMSFRES, DMSFREE, or DMSFRET 
indicates that the request could not be satisfied. Register 15 contains 
this return code, indicating which error has occurred. The following 
codes apply to the DMSFRES, DMSFREE, and DMSFRET macros. 

2 

3 

Error 
(DMSFREE) Insufficient storage space is available to satisfy 
the request for free storage. In the case of a variable 
request, even the minimum request could not be satisfied. 

(D~SFREE or DMSFRET) User storage pointers destroyed. 

(DMSFREE, DMSFRET, or DMSFRES) 
destroyed. 

Nucleus storage pointers 

4 (DMSFREE) An invalid size was requested. This error exit is 
taken if the requested size is not greater than zero. In the 
case of variable requests, this error exit is taken if the 
m1n1mua request is greater than the maximum request. 
(However, the latter error is not detected if DMSFREE is able 

5 

to satisfy the maximum request.) 

(DMSFRET) An invalid size was passed to the 
This error exit is taken if the specified 
positive. 

DMSFRET macro. 
length is not 

6 (DMSFRET) The block of storage that is being released was 
never allocated by DMSFREE. Such an error is detected if one 
of the following errors is found: 

• The block does not lie entirely inside either the low 
storage free storage area or the user program area between 
FREELOVE and FREEUPPR. 

• The block crosses a 
allocated for USER 
NUCLEUS type storage. 

page boundary 
storage from 

that separates a page 
a page allocated for 

• The block overlaps another block already on the free 
storage chain. 

7 (DMSPRET) The address given for the tlock being released is 
not doubleword aligned. 

8 (DMSFRES) An invalid request code was passed to the DMSFRRS 
routine. Since all request codes are generated by the DMSPRES 
macro, this error code should never appear. 

9 (DMSFREE, DMSFRET, or DMSFRES) Unexpected and unexplained 
error in the free storage management routine. 

2-24 IBM VM/310 System Logic and Program Determination--Voluae 2 



CMS HANDLING OF PSW KEYS 

The purpose of the CMS Nucleus protection sche.e is to protect the CMS 
nucleus fro. inadvertent destruction by a user program. Without it, it 
would be possible, for example, for a FORTRAN user who accidentally 
assigns an incorrectly subscripted array element to destroy nucleus 
code, wipe out a crucial table or constant area, or even destroy an 
entire disk by destroying the contents of the master file directory. 

In general, user programs and disk-resident CMS commands are executed 
with a PSW key of X'E', while nucleus code is executed with a PSi key of 
1'0'. 

There are, however, some exceptions to this rule. Certain 
disk-resident CMS commands run with a PSW key of X'O', since they have a 
constant need to modify nucleus pointers and storage. The nucleus 
routines called by the GET, PUT, READ, and WRITE macros run with a user 
PSi key of X'E', to increase efficiency. 

Two macros are available to any routine that wishes to change its PSi 
key for some special purpose. These are the DMSKEY macro and the DKSEXS 
.acro. 

The DMSKEY macro .ay be used to change the PSi key to the user value 
or the nucleus value. The DMSKEY NUCLEUS option causes the current PSi 
key to be placed in a stack, and a value of 0 to be placed in the PSW 
key. The DMSKEY USER option causes the current PSi key to be placed in 
a stack, and a value of X'E' to be placed in the PSi key. The D5SKEY 
RESET option causes the top value in the DMSKEY stack to be removed and 
re-inserted into the PSi. 

It is a requirement of the CMS system that when a routine terminates, 
the DKSKEY stack must be empty. This .eans that a routine should 
execute a DMSKEY RESET option for each DKSKEY NUCLEUS option and each 
DMSKEY USER option executed by the routine. 

The DMSKEY key stack has a current maxi.u. depth of seven for each 
routine. In this context, a "routine" is anything invoked by an SVC 
call. 

The DMSKEY LASTUSER option causes the current PSi key to be placed in 
the stack, and a new key inserted into the PSi, determined as follows: 
the SVC system save area stack is searched in reverse order (top to 
bottom) for the first save area corresponding to a user routine. The 
PSi key that was in effect in that routine is then taken for the new PSi 
key. (If no user routine is found in the search, then LISTUSER has the 
same effect as USER.) This option is used ty as macro simulation 
routines when they wish to enter a user-supplied exit routine; the exit 
routine is entered with the PSW key of the last user routine on the SVC 
system save area stack. 

The NOSTACK option of DMSKEY may be used with NUCLEUS, USER, or 
LASTUSER (as in, for example, DMSKEY NUCLEUS,NOSTACK) if the current key 
is not to be placed on the DMSKEY stack. If this option is used, then 
no corresponding DMSKEY RESET should be issued. 

The DMSEXS ("execute in system mode") macro instruction is useful in 
situations where a routine is being executed with a user protect key. 
but wishes to execute a single instruction that, for example, sets a bit 
in the NUCON area. The single instruction may be specified as the 
argument to the DMSEXS macro, and that instruction will be executed with 
a system PSi key. 

CMS Introduction 2-25 



Whenever possible, CMS commands are executed with a user protect key. 
This protects the CMS Nucleus in cases where there is an error in the 
system command that would otherwise destroy the nucleus. If the command 
must execute a single instruction or small group of instructions that 
modify nucleus storage, then the DMSKEY or DMSEXS macros are used, so 
that the system PSW key will be used for as short a period of time as is 
possible. 

CMS SVC HANDLING 

DMSITS (INTSVC) is the CMS system SVC handling routine. 
operation of DMSITS is as follows: 

The general 

1. The SVC new PSi (low storage location X'60') contains, in the 
address field, the address of DMSITS1. The DMSITS module will be 
entered whenever a supervisor call is executed. 

2. DMSITS allocates a system and user save area. The 
~s used as a register save area (or work area) 
routine. 

3. The called routine is called (via a LPSW or EALR). 

user save area 
by the called 

4. Upon return from the called routine, the save areas are released. 

5. Control is returned to the caller (the routine that originally made 
the SVC call). 

SVC TYPES AND LINKAGE CONVENTIONS 

SVC conventions are important to any discussion of CMS because the 
system is driven by SVCs (supervisor calls). SVCs 202 and 203 are the 
most common CMS SVCs. 

SVC 202 is used 
calling routines 
modules). 

both for 
written 

calling nucleus-resident routines, and for 
as commands (for example, disk resident 

A typical coding sequence for an SVC 202 call is the following: 

LA Rl,PLIST 
SVC 202 
DC AL4(ERRADD) 

Whenever SVC 202 is called, register 1 must point to a parameter list 
(PLIST). The for.at of this parameter list depends upon the actual 
routine or co.mand being called, but the SVC handler will examine the 
first eight bytes of this parameter list to find the name of the routine 
or command being called. 

The "DC AL4(address)" instruction following the SVC 202 is optional, 
and may be omitted if the programmer does not expect any errors to occur 
in the routine or command being called. If included, an error return is 
made to the address specified in the DC. DMSITS determines whether this 
DC was inserted by examining the byte following the SVC call inlinea A 
nonzero byte indicates an instruction, a zero value indicates that "DC 
AL4(address)" follows. 

2-26 IBM VM/370 System Logic and program Determination--Volume 2 



SVC 203 is called by C~S macros to perform various internal system 
functions. It is used to define SVC calls for which no parameter list 
is provided. For example, D~SFREE parameters are passed in registers 0 
and 1. 

A typical calling sequence for an SVC 203 call is as follows: 

SVC 203 
DC H'code' 

The halfvord decimal code following the SVC 203 indicates the 
specific routine being called. DMSITS examines this halfword code, 
taking the absolute value of the code by an LPR instruction. The first 
byte of the result is ignored, and the second byte of the resulting 
halfvord is used as an index to a branch table. ine address of the 
correct routine is loaded, and centrol is transferred to it. 

It is possible for the address in the SVC 203 index table to be-zero. 
In this case, the index entry will contain an 8-byte routine or co.mand 
name, which will be handled in the same way as the 8-byte name passed in 
the parameter list to an SVC 202. 

The programmer indicates an error return by the sign of the halfword 
code. If an error return is desired, then the code is negative. If the 
code is positive, then no error return is made. The sign of the 
halfword code has no effect on determining the routine that is to be 
called, since DMSITS takes the absolute value of the code to determine 
the routine called. 

Since only the second byte of the absolute value of the code is 
examined by DMSITS, seven bits (bits 1-7) are available as flags or for 
other uses. Thus, for example, D~SFREE uses these seven bits to 
indicate such things as conditional requests and variable requests. 

When an SVC 203 is invoked, DMSITS stores the halfword code into the 
IUCON location CODE203, so that the called routine can examine the seven 
bits made available to it. 

All calls made by means of SVC 203 should be made by macros, with the 
macro expansion computing and specifying the correct halfword code. 

The programmer may use the HNDSVC macro to specify the address of a 
routine that will handle any SVC call other than for SVC 202 and SVC 
203. 

In this case, the linkage conventions are as required by the 
user-specified SVC-handling routine. 

C~S supports selected SVC calls generated by 05 and DeS/VS macros, by 
simulating the effect of these macro calls. DMSITS is the initial SVC 
interrupt handler. If the SET DOS command has been issued, a flag in 
NUCON will indicate that DOS/VS macro simulation is to be used. Control 
is then passed to DMSDOS. Otherwise, as macro simulation is assumed and 
DMSITS passes control to the appropriate as simulation routine. 

CftS Introduction 2-27 



There are several types of invalid SVC calls recognized by D~SITS. 

1. Invalid SVC number. If the SVC number does not fit into any of the 
four classes described above, then it is not handled by D6SITS. An 
appropriate error message is displayed at the terminal, and control 
is returned directly to the caller. 

2. Invalid routine name in SVC 202 parameter list. If the routine 
named in the SVC 202 parameter list is invalid or cannot be found, 
DMSITS handles the situation in the same way as it handles an error 
return from a legitimate SVC routine. The error code is -3. 

3. Invalid SVC 203 code. If an invalid code follows SVC 203 inline, 
then an error message is displayed, and the abend routine is called 
to terminate execution. 

SEARCH RIER!RCH! FOP. SYC 

When a program issues SVC 202, passing a routine or command name in the 
parameter list, then DMSITS must be searched for the specified routine 
or command. (In the case of SVC 203 with a zero in the table entry for 
the specified index, the same logic must be applied.) 

1. 

The search algorithm is as follows: 

I check is made to see if there is a routine with 
name currently occupying the system transient area. 
case, then control is transferred there. 

the specified 
If this is the 

2. The system function name table is searched, to see if a co.mand by 
this name is a nucleus-resident command. If the search is 
successful, control goes to the specified nucleus routine. 

3. A search is then made for a disk file with the specified name as 
the filename, and MODULE as the filetype. The search is made in 
the standard disk search crder. If this search is successful, then 
the specified module is loaded (via the LOIDMOD command), and 
control passes to the storage location now occupied by the command. 

4. If all searches so far have failed, then DftSINI (IEEREV) is called, 
to see if the specified routine name is a valid system abbreviation 
for a system co •• and or function. User-defined abbreviations and 
synonyms are also checked. If this search is successful, then 
steps 2 through 4 are repeated with the full function name. 

5. If all searches fail, then an error code of -3 is issued. 

When a command is entered from the terminal, DMSINT processes the 
command line, and calls the scan routine to convert it into a parameter 
list consisting of eight-byte entries. The following search is 
performed: 

1. DMSINT searches for a disk file whose filename is the command name, 
and whose filetype is EXEC. If this search is successful, EXEC is 
invoked to process the EXEC file. 

2-28 IBM VM/370 System Logic and Program Determination--Volume 2 



If not found, the co.mand naae is considered to be an abbreviation 
and the appropriate tables are examined. If found, the abbreviation 
is replaced by its full equivalent and the search for an EXEC file 
is repeated. 

2. If there is no EXEC file, DMSINT executes SVC 202, passing the 
scanned parameter list, with the cOmmand name in the first eight 
bytes. DMSITS will perform the search described for SVC 202 in an 
effort to execute the command. 

3. If DMSITS returns to DMSINT with a return code of -3, indicating 
that the search was unsuccessful, then DMSINT uses the CP DIAGNOSE 
facility to attempt to execute the command as a CP command. 

4. If all of these searches fail, then DMSINT displays the error 
message UNKNOWN CP/CMS COMMAND. 

See Figure 4 for a description of this search a command na:e. 

USER AND TRANSIENT PROGRAM AREAS 

Two areas can hold programs that are loaded from disk. These are called 
the user program area and the transient program area. (See Figure 3 for 
a description of CMS storage usage.) A summary of CP, CMS. IPCS, and 
RSCS modules and their attributes, including whether they reside in the 
user program area or the transient area is contained in the !BML1I~: 
R~leg§~ 2 2y!Q~· 

The user program area starts at location X'20000' and extends upward 
to the loader tables. Generally, all user programs and certain system 
commands (such as EDIT, and COPYFILE) are executed in the user program 
area. Since only one program cari be executing in the user program area 
at anyone time, it is impossible (without unpredictable results) for 
one program being executed.in the user program area to invoke, by means 
of SVC 202, a module that is also intended to te executed in the user 
program area. 

The transient program area is tvo pages long, extending from location 
X'EOOO' to location X'PPPP'. It provides an area for system commands 
that may also be invoked from the user program area by means of an SVC 
202 call. When a transient module is called by an SVC, it is normally 
executed with the PSi system mask disabled for I/O and external 
interrupts. 

The transient program area is also used to handle certain OS macro 
simulation SVC calls. OS SVC calls are handled by the JS simulation 
routines located either in the CMSSEG discontiguous shared segment or in 
the user program area, as close to the loader tables as possible. If 
DMSITS cannot find the address of a supported OS SVC handling routine, 
then it loads the file DMSSVT MODULE into the transient area, and lets 
that routine handle the SVC. 

A program being executed in the transient program area may not invoke 
another program intended for execution in the transient program area, 
including OS macro simulation SVC calls that are handled by DMSSVT. For 
example, a program being executed in the transient program area may not 
invoke the RENAME command. In addition, it may not invoke the OS macro 
iTO, which generates an SVC 35, which is handled by DMSSVT. 

DMSITS starts the programs to be executed in the user program area 
enabled for all interrupts but starts the programs to be executed in the 
transient program area disabled for all interrupts. The individual 
program may have to use the SSM (Set System Mask) instruction to change 
the current status of its system mask. 

CMS Introduction 2-29 



Figure 4. CMS Co •• and (and Request) Processing 

Notes 

Pass contfol to the 
routine !In the nucleus. 

userarea'toe.ecute 
the command 

1. If the terminal line was actually from an EXEC file, or if the 
command SET IMPEX OFF has been executed, implied EXEC 

is not In effect. 

2. A -3 return code md,cates SVC 202 processing did not find 

the command. 

3. If the terminal hne was actually from an EXEC file, or if the 
command SET IMPEX OFF has been executed, implied CP 

15 not In effect. 

2-30 IBM VM/370 System Logic and Program Determination--Volume 2 



CALLED ROUTINE START-UP TABLE 

Figures 5 and 6 show how the PSW and registers are set up when the 
called routine is entered. 

r 
I "Called" Type System Mask 
1---------------
ISVC 202 or 203 Disabled 
I - Nucleus 
I resi1ent 
1--------------- --------------
ISVC 202 or 203 

- Transient 
area MODULE 

SVC 202 or 203 
- User area 

User- handled 

as - DOS/VS 
Nucleus 
resident 

as - DOS/VS 
Transient 
area module 

Disabled 

Enabled 

Enabled 

Disabled 

Di~abled 

Storage Key Problem Bit 

System Off 

User Off 

User Off 

User Off 

System Off 

System Off 

Figure 5. PSW Fields When Called Routine Starts 

, 
Registers RegisterslRegisterlRegister RegistertRegisterl 

Type o - 1 2 - 11 1 12 I 13 14 I 15 I 
I I 1 I 

SVC 202 Same as Unpre- IAddress IUser Return 'Address I 
or 203 caller dictable I of I save address' of I 

I called I area to I called I , routine I D~SITS , routine I 
----I I I I 

other Same as Same as IAdd ress IUser Return ISame as I 
caller caller I of I save address I caller , 

1 caller , area to , 1 
I I D~SITS I I 

Figure 6. Register Contents When Called Routine Starts 

RETURNING TO THE CALLING ROUTINE 

When the called routine finishes processing, control is returned to 
DMSITS, which in turn returns control to the calling routine. 

The return is accomplished by leading the original SVC old PSi (which 
was saved at the time DMSITS was first entered), after possibly 
modifying the address field. The address field modification depends 
upon the type of SVC call, and upon whether or not the called routine 
indicated an error return. 

eftS Introduction 2-31 



For SVC 202 and 203, the called routine indicates a normal return by 
placing a zero in register 15 and an error return by placing a nonzero 
code in register 15. If the called routine indicates a normal return, 
then DMSITS makes a normal return to the calling routine. If the called 
routine indicates an error return, DMSITS passes the error return to the 
calling routine, if one was specified, and abnormally terminates if none 
was specified. 

For an SVC 202 not followed by "DC AL4(address)", a normal return is 
.ade to the instruction following the SVC instruction, and an error 
return causes an abend. For an SVC 202 followed by "DC AL4~ddress)", a 
normal return is made to the instruction following the DC, and an error 
return is made to the address specified in the DC. In either case, 
register 15 contains the return code passed back by the called routine. 

For an SVC 203 with a positive half word code, a normal return is .ade 
to the instruction following the half word code, and an error return 
causes an abend. For an SVC 203 with a negative halfword code, both 
normal and error returns are made to the instruction following the 
halfword code. In any case, register 15 contains the return code passed 
t~ck by the called routine. 

For macro simulation SVC calls, and for user-handled SVC calls, no 
error return is recognized by DMSITS. As a result, DftSITS always 
returns to the calling routine by loading the SVC old PSW, which was 
saved when DMSITS was first entered. 

Upon entry to DMSITS, all registers are saved as they were when the SVC 
instruction was first executed. Upon exiting from DMSITS, all registers 
are restored fro. the area in which they were saved at entry. 

The exception to this is register 15 in the case of SVC 202 and 203. 
Upon return to the calling routine, register 15 always contains the 
value that was in register 15 when the called routine returned to DftSIIS 
after it had completed processing. 

If the called routine 
storage protect key of 
Save Area, 

has system status, so that it runs with a PSW 
0, then it may store new values into the System 

If the called routine wishes to modify the location to which control 
is to be returned, it must modify the following fields: 

• For SVC 202 and 203, it must modify the NUftRET and ERRET (normal and 
error return address) fields. 

• For other SVCs, it must modify the address field of OLDPSW. 

To modify the registers that are to be returned to the calling routine, 
the fields EGPR1, EGPR2, ••• , EGPR15 must be modified. 

If this action is taken by the called routine, then thp. SVCTRACE 
facility may print misleading information, since SVCTRACE assumes that 
these fields are exactly as they were when D!SITS was first entered. 
Whenever an SVC call is made, DMSITS allocates two save areas for that 
particular SVC call. Save areas are allocated as needed. For each SVC 
call, a system and user save area are needed. 

2-32 IBM VM/310 System Logic and Program Determination--Volume 2 



When the SVC-called routine returns, the save areas are not released, 
but are kept for the next SVC. At the completion of each command, all 
SVC save areas allocated by that command are released. 

The System Save Area is used by DMSITS to save the value of the SVC 
old PSi at the time of the SVC call, the calling routine's registers at 
the time of the call, and any other necessary control information. 
Since SVC calls can be nested, there can be several of these save areas 
at one time. The system save area is allocated in protected free 
storage. 

The user save area contains 12 doublewords (24 words), allocated in 
unprotected free storage. DKSITS does not use this area at all, but 
simply passes a pointer to this area (via register 13.) The called 
routine can use this area as a temporary work area, or as a register 
save area. There is one user save area for each system save area. The 
USAVEPTR field in the system save area points to the user save area. 

The exact format of the system save area can be found in the !~L1IQ 
Data Areas and ~g~!fgl ~lg£! 199!£. The most important fields, and 
their-uses, are as follows: 

~iel£ 
CALLER 

CALLER 

CODE 

OLDPSi 

~§~g~ 
(Fullword) The address of the SVC instruction that resulted in 
this call. 

(Doubleword) Eight-byte symbolic name of the called routine. 
For as and user-handled SVC calls, this field contains a 
character string of the form SVC nnn, where nnn is the SVC 
nu.ber in decimal. 

(Halfword) For SVC 203, this field contains the halfword code 
following the SVC instruction line. 

(Doubleword) The SVC old PSi at the time that DMSITS was 
entered. 

BR~RET (Fullword) The address of the calling routine to which control 
is to be passed in the case of a normal return from the called 
routine. 

ERRET (Fullword) The address of the calling routine to which control 
is to be passed in the case of an error return from the called 
routine. 

EGPRS (16 Fullwords, separately labeled EGPRO, EGPR1, EGPR2, EGPR3, 
••• , EGPR15) The entry registers. The contents of the 
general registers at entry to DMSITS are stored in these 
fields. 

EFPRS (4 Doublewords, separately labeled EFPRO, EFPR2, EFPR4, EFPR6) 
The entry floating-point registers. The contents of the 
floating-point registers at entry to DMSITS are stored in 
these fields. 

SSAVENY.T (Fullword) The address of the next system save area in the 
chain. This points to the system save area that is being 
used, or will be used, for any SVC call nested in relation to 
the current one. 

SSAVEPRV (Fullword) The address of the previous system save 
the chain. This points to the system save area for 
call in relation to which the current call is nested. 

area in 
the SVC 

USAVEPTR (Fullword) Pointer to the user save area for this SVC call. 

CMS Introduction 2-33 



eMS Interface for Display Terminals 

CMS has an interface that allows it to display large amounts of data in 
a very rapid fashion. This interface for 3270 display terminals (also 
3138, 3148, and 3158) is much faster and has less overhead than the 
normal write because it displays up to 1760 characters in one operation, 
instead of issuing 22 individual writes of 80 characters each (that is 
one write per line on a display terminal). Data that is displayed in 
the screen output area with this interface is net placed in the console 
spool file. 

The DISPW macro allows you to use this display terminal interface. 
It generates a calling sequence for the CMS display terminal interface 
module, DMSGIO. DMSGIO creates a channel program and issues a DIAGNOSE 
instruction (Code X'58') to display the data. DMSGIO is a TEXT file 
which must be loaded in order to use DISPW. The format of the CMS DISPW 
macro is: 

.- --------------------------------------------------------------------, 
I 
I (label] 
I 
I 
I 

where: 
"fa bel 

bufad 

r , 
I L INE=n I 
ILINE=OI 
L J 

r , 
I BYTES=bbbb I 
1~!I~2=!I~QI 
L J 

DISPW 
r , 

bufad "LINE=n I 
IL1I!!~=.Q1 
L J 

r , 
I,BYTES=bbbbl 
'.L!!!1~.2=11'§.Q1 
L J 

[ERASE=YES] [ CANCEL=YES] 

I 
I , 
I , 

________________________ J 

is an optional macro statement label. 

is the address of a buffer containing the data to be 
written to the display terminal. 

is the number of the line, 0 to 23, on the 
display terminal that is to be written. Line 
number 0 is the default. 

is the 
on the 

number of bytes 
display terminal. 

(0 to 1760) to be written 
1760 bytes is the default. 

[EHASE=YES] specifies that the display screen is to be erased before 
the current data is written. The screen is erased 
regardless of the line or number of bytes to be 
displayed. Specifying ERASE=YES causes the screen to go 
into "MORE" status. 

[ CANCEL=YES ] causes the CANCFL oppration to be performed: the output 
area is erased. 

~2i~: It is advisable for the user to save registers before issuing the 
tISPW macro and to restore them after the macro, because neither the 
macro nor its called modules save the user's registers. 

2-34 IBM VM/370 System Logic and Program Determination--Volume 2 



OS Macro Simulation Under eMS 

When a language processor or a user-written program is executing in the 
CMS environment dnd using Os-type functions, it is not executing os 
code. Instead, CMS provides routines that simulate the os functions 
required to support as language processors and their generated object 
code. 

CMS functionally simulates the os macros in a way that presents 
equivalent results to programs executing under CMS. The as macros are 
supported cnly to the extent stated in the publications for the 
supported language processors, and then only to the extent necessary to 
successfully satisfy the specific requirement of the supervisory 
function. 

The restrictions for COBOL and PL/I program execution listed in 
"Executing a program that Uses as Macros" in the !~Ll1Q ~!~!!ing ~!!g 
~I§!~~ Q~!!~f~!i2!! ~Yigg exist because of the limited CMS simulation of 
the as macros. 

Figure 7 shows the as macro functions that are partially or 
completely simulated, as defined by SVC number. 

as Data Management Simulation 

The disk format and data base organization of CMS are different froll 
those of as. A CMS file produced by an as program running under eMS and 
written on a CMS disk, has a different format from that of an as data 
set produced by the same as program running under os and written on an 
as disk. The data is exactly the same, but its format is different. (An 
as disk is one that has been formatted by an as program, such as 
IBCDASDI. ) 

HANDLING FILES THAT RESIDE ON CMS DISKS 

CMS can read, write, or update any as data that resides on a eMS disk. 
By simulating as macros, CMS simulates the following access methods so 
that as data organized by these access methods can reside on eMS disks: 

direct 

partitioned 

sequential 

identifying a record by a key or by its relative 
position within the data set. 

seeking a named member within the data set. 

accessing a record in a sequence in relation to 
preceding or following ite.s in the data set. 

Refer to Figure 7 and the "Simulation Notes," then read "Access 
Method Support" to see how CMS handles these access methods. 

Since CMS does not simulate the indexed sequential access aethod 
(ISAM), no as program that uses 1SAM can execute under CMS. Therefore, 
no program can write an indexed sequential data set on a CftS disk. 

CMS Introduction 2-35 



HANDLING FILES THAT RESIDE ON OS OR DOS DISKS 

By simulating 
sequential and 
same simulated 
on DOS disks. 
Thus, a DOS 
running under 

OS macros, CMS can read, but not write or update, CS 
pactitioned data sets that reside on OS disks. Using the 
OS macros, eMS can read DOS sequential files that reside 
The OS macros handle the DOS data as if it were OS data. 

sequential file can be used as input to an as program 
CMS. 

However, an as s9quential or partitioned data set that resides on an 
as disk can be written or updated only by an as program running in a 
real OS machine. 

eMS can execute programs that read and write VSAE files from OS 
programs written in the VS BASIC, COBOL, or PL/I programming languages. 
This CMS support is based on the DOS/VS Access Method Services and 
Virtual Storage Access Method (VSAM) and, therefore, the as user is 
li.ited to those VSAM functions that are available under DOS/VS. 

2-36 IBM VM/370 System Logic and Program Determination--Volume 2 



r 

I 
1 
I 
I 

~acro 

Na!.§ 
XDApt 
WAIT 
POST 
EXIT/RETURN 
GETMAIN 
FREE~AIN 

GET POOL 
FREEPOOL 
LINK 
XCTL 

LOAD 
DELETE 
GET~AIN/ 

FREEMAIN 
TIMEI 
ABEND 
SPIEl 

RESTOREI 
BLDL/FINDI 

OPEN 
CLOSE 
STOll1 
OPENJ 
TeLOSE 
DEVTYPEI 

TRKBAL 
FEOV 
WTO/WTORI 
EXTRACTI 
IDENTIFyt 
ATTACHI 
CHApl 
TTI~ERI 

STIMER' 
DEQ1 
SNAp1 
ENQI 
FREEDBUF 
STAE 

DETACHl 
CHKPTI 
RDJFCBI 

SYNAD1 
BSPI 
GET/PUT 
READ/WRITE 
NOTE/POINT 
CHECK 
TGET/TPUT 
TCLEARQ 
STAX 

SVC 
Number --00-

01 
02 
03 
04 
05 

06 
07 

08 
09 
10 

11 
13 
14 

17 
18 

19 
20 
21 
22 
23 
24 

25 
31 
35 
40 
41 
42 
44 
46 
47 
48 
51 
56 
57 
60 

62 
63 
64 

68 
69 

93 
94 
96 

Function 
Read-or-write direct access volumes 
Wait for an I/O completion 
Post the I/O completion 
Return from a called phase 
Conditionally acquire user storage 
Release user-acquired storage 
Simulate as SVC 10 
Simulate as SVC 10 
Link control to another phase 
Delete, then link control to another 

load phase 
Read a phase into storage 
Delete a loaded phase 
~anipulate user free storage 

Get the time of day 
Terminate processing 
Allow processing program to 

handle program interrupts 
Effective NOP 
Manipulate simulated partitioned 

data files 
Activate a data file 
Deactivate a data file 
Manipulate partitioned directories 
Activate a data file 
Te=pcrarily deactivate a data file 
Obtain device-type physical 

characteristics 
NOP 
Set forced EOV error code 
Communicate with the terminal 
Effective NOP 
Add entry to loader table 
Effective LINK 
Effective NOP 
Access or cancel timer 
Set timer 
Effective NOP 
Dump specified areas of storage 
Effective NOP 
Release a free storage buffer 
Allow processing program to 

decipher abend conditions 
Effective NOP 
Effective NOP 
Obtain information from FILEDEF 

comlland 
Handle data set error conditions 
Back up a record on a tape or disk 
Access system-blocked data 
Access system-record data 
Manage data set positioning 
Verify READ/WRITE completion 
Read or write a terminal line 
Clear terminal input queue 
Create an attention exit block 

1------·-----------------------------------------------------------------
IlSimulated in the transient routine DMSSVT. Other simulation 
I routines reside in the nucleus. 

Figure 7. Simulated OS Supervisor Calls 

, 

CMS Introduction 2-37 



SIMULATION NOTES 

Because CMS has its own file system and is a single-user system 
operating in a virtual machine with virtual storage, there are certain 
restrictions for the simulated as function in CMS. For example, HIAFCHY 
options and options that are used only by OS multitasking systems are 
ignored by CMS. 

Due to the design of the CMS loader, an XCTL from the explicitly 
loaded phase, followed by a LINK by succeeding phases, may cause 
unpredictable results. 

Listed belcw are descriptions of all the OS macro functions that are 
simulated by CMS as seen by the programmer. ImFlementation and program 
results that differ from those given in Q~ ~gl~ ~g~g~!~n1 ~~£!2 
1~§1!Y£1!Q~§ and Q~ 2Y~~!!!§Q! Services and Macro Instructions are 
stated. HIARCHY options and those-used--only-by-os-iultItaskIng-systems 
are ignored by CMS. Validity checking is not performed within the 
simulation routines. The entry point name in LINK, XCTL, and LOAD (SVC 
6, 7, 8) must be a member name or alias in a TXTLIB directory unless the 
COMPSWT is set to on. If the COMPSWT is on r svr n: 7; ~n~ ~ ~qst 
specify a module name. This switch is turned on and off by using the 
COMPSWT macre. See the !~11Q ~~~ ~Q!!~~Q ~~g ~~£!Q S~!~!~~£~ for 
descriptions ef all CMS user macros. 

Macro-SVC No. xnAP=SvcO----

wAIT-SVCl 

POST-SVC2 

EXIT/RETURN 
-SYC3 

GETMAIN-SVC4 

FREEMAIN-SYCS 

LINK-SVC6 

leTL-SVC7 

~!!!~!~~£~§_!~_!!E!g!g~1~1!Q~ 
The TYPE option must be R or W; the V, I, and K 
options are not supported. The BLKREF-ADDR must point 
to an item number acquired by a NOTE macro. Other 
options associated with V, I, cr K are not supported. 

All 0Ftions of 
waits for the 
specified ECBs. 

WAIT are supported. 
completion bit to 

The 
be 

WAIT routine 
set in the 

All options of POST are supported. POST sets a 
completion code and a completion bit in the specified 
ECB. 

Post ECB, execute end of task routines, release 
phase storage, unchain and free latest request block, 
and restore registers depending upon whether this is 
an exit or return from a linked or an attached 
routine. 

\ 
All options of GETMAIN are supported except SP and 
HIARCHY, Which are ignored by CMS, and LC and LV, 
which will result in abnormal termination if used. 
GETMAIN gets blocks of free storage. 

All options of FREEMAIN are supported except SP, which 
is ignored by CMS, and L, which will result in 
abnormal termination if used. FREEMAIN frees blocks 
of storage acquired by GETMAIN. 

The DCB and HIARCHY options are ignored by CMS. All 
other options of LINK are supported. LINK loads the 
specified program into storage (if necessary) and 
passes control to the specified entry point. 

The DCB and HIARCHY options are ignored by CMS. All 
other options of XCTL are supported. XCTL loads the 
specified program into storage (if necessary) and 
passes control to the specified entry point. 

2-38 IB~ VM/370 System Logic and Program Determination--Volume 2 



Macro-SVC IE. 
LOAD=SVC8 

GETPOOLI 
FREEPOOL 

DELETE-SVC9 

GETMAIN/ 
FREEMAIN
SYC10 

TIME-SYC11 

ABEND-SVC13 

SPIE-SVC14 

RESTORE-SYC17 

ELDL-SVC18 

FIND-SVC18 

STOi-SYC21 

Di!!~f~~£~§ ~~ I!E1~~~~!at~on 
The DCB and HIARCHY options are ignored by C~S. All 
other options of LOAD are supported. LOAD loads the 
specified program into storage (if necessary) and 
returns the address of the specified entry point in 
register zero. However, if the specified entry point 
is not in core when SVC 8 is issued, and the 
subroutine contains VCONs that cannot be resolved 
within that TXTLIB member, CMS will attempt to resolve 
these references, and may return another entry point 
address. To insure a correct address in register zero, 
the user should bring such subroutines into core 
either by the eMS LOAD/INCLUDE commands or by a VCON 
in the user program. 

All the options of GETPOOL and FREEPOOL are supported. 
GETPOOL constructs a buffer pool and stores the 
address of a buffer pool control block in the DCB. 
FREEPOOL frees a buffer pool ccnstructed by GETPOOL. 

All the options of DELETE are supported. DELETE 
decreases the use count by one and, if the result is 
zero, frees the corresponding virtual storage. Code 4 
is returned in register 15 if the phase is not found. 

All the options of GETMAIN and FREEMAIN are supported 
except SP and HIARCHY, which are ignored by CMS. 

All the options of TIME except MIC are supported. 
TIME returns the time of day to the calling program. 

The completion code parameter is supported. The DU~P 
parameter is not. If a STAB request is outstanding, 
control is 1iven to the proper STAB routine. If a 
STAB routine is not outstanding, a message indicating 
that an abend has occurred is printed on the terminal 
along with the completion code. 

All the options of SPIE are supported. The SPIE 
routine specifies interruption exit routines and 
program interruption types that yill cause the exit 
routine to receive control. 

The RESTORE routine in CMS is a NOP. It returns 
control to the user. 

BLDL is an effective NOP for LINKLIBs and JOSLIBs. 
For TXTLIBs and MACLIBs, item numbers are filled in 
the TTR field of the BLDL list; the K, Z, and user 
data fields, as described in Q~L!~ ~~i~ ~~~~g~!~~i 
Macro Instructions, are set to zeros. The "alias" bit 
of-the-c-fiela-Is-snpported, and the remaining bits in 
the C field are set to zero. 

All the options of FIND are supported. FIND sets the 
read/write pointer to the item number of the specified 
member. 

All the options of STOW are supported. The "alias" 
bit is supported, but the user data field is not 
stored in the MACLIB directory since eMS MACLIBs do 
not contain user data fields. 

CMS Introduction 2-39 



"acro-SYC No. 
OPEN/OPENJ=

SYC19/22 

CLOSE/TCLOSE
SYC20/23 

DEVTYPE-SVC24 

FEOY-SVC31 

iiu/iTOrt-Sv~35 

EXTRACT-SVC40 

IDENTIFY-SVC41 

ATTACH-SVC42 

CHAP-SYC44 

TTIMER-SVC46 

STIMER-SVC41 

DEQ-SYC48 

Q!!!g!gD£g§ !~ !.Ele!~D!at!Qn 
All the options of OPEN and OPENJ are supported except 
for the DISP and RDBACK options, which are ignored. 
OPEN creates a CMSCB (if necessary), co.pletes the 
DCB, and merges necessary fields of the DCB and CMSCB. 

All the options of CLOSE and TCLOSE are supported 
except for the DISP option, which is ignored. The DCB 
is restored to its condition before OPEN. If the 
device type is disk, the file is closed. If the 
device type is tape, the REREAt option is treated as a 
REiIND. 

All the options of DEYTYPE are supported except for 
the RPS option, which is ignored. DEYTYPE .oves 
device characteristic information for a specified data 
set into a specified user area. 

Control is returned to CMS with an error code of 4 in 
register 15. 

All options of iTO and iTOR are supported except those 
options concerned with multiple console support. iTO 
displays a message at the operator's console. iTCR 
displays a message at the operator's console, waits 
for a reply, moves the reply to the specified area, 
sets a completion bit in the specified BCB, and 
returns. 

The EXTRACT routine in CMS is essentially a Nap. The 
user-provided answer area is set to zeros and control 
is returned to the user with a return code of 4 in 
register 15. 

The IDENTIFY routine in CMS 
the load request chain for 
address. 

adds a RPQUEST block to 
the requested name and 

All the options of ATTACH are supported in CMS as in 
OS PCP. The following options are ignored by CMS: 
DCB, LPMOD, DPMOD, HIARCHY, GSPV, GSPL 1 SHSPV, SHSPL, 
SZERO, PURGE, ASYNCH, and TASKLIB. ATTACH passes 
control to the routine specified, fills in an RCB 
completion bit if an RCB is specified, passes control 
~o an exit routine if one is specified, and returns 
control to the instruction following the ATTACH. 

Since CMS is not a multitasking system, a phase 
requested by the ATTACH macro must return to CMS. 

The CHAP routine in CMS is a Nap. It returns control 
to the user. 

All the options of TTIMER are supported. 

All options of STIMER are sUFPorted except for TASK 
and WAIT. The TASK option is treated as if the REAL 
option had been specified, and the WAIT option is 
treated as a NOP; it returns centrol to the user. 

The DEQ routine in CMS is a NOP. 
to the user. 

It returns control 

2-40 IBM VM/310 System Logic and Program Determination--Yolu.e 2 



Macro-SVC No. 
siip-sic51--

ENQ-SVC56 

FREEDBUF-SVC51 

STIE-SVC60 

DETACH-SVC62 

CBKPT-SVC63 

RDJFCB-SVC64 

SYNADAF-SVC68 

SYBADRLS-SVC68 

BSP-SVC69 

TGET/TPUT
SVC93 

TCLEARQ-SVC94 

STAI-SVC96 

BOTE 

Q1!!~E~~£~2 !~ I~E1~~~~!g!1~~ 
Except for SDATA, PDATA, and DCB, all options of the 
SNAP macro are processed normally. SDATA and PDATI 
are ignored. processing for the DCB option is as 
follows. The DBC address specified with SNAP is used 
to verify that the file associated with the DCB is 
open~ If it is not open# control is returned to the 
caller with a return code of 4. If the file is open, 
then storage is dumped (unless the FCB indicates a 
DUMMY device type). SNAP always dumps output to the 
printer. The dump contains the PSi, the registers, 
and the storage specified. 

The ENQ routine in CMS is a BOP. 
to the user. 

It returns control 

All the options of FREEDBUF are supported. FREEDBUF 
returns a buffer to the buffer pool assigned to the 
specified DCB. 

are supported except for the 
set to ICTL=YES; the PURGE 
HALT; and the ASYNCH option, 
STAE creates, overlays, or 

All the options of STAE 
ICTL option, which is 
option, which is set to 
which is set to NO. 
cancels a STAB control 
is not supported. 

block as requested. STAE retry 

The DETACH routine in CMS is a NOP. 
control to the user. 

It returns 

The CHKPT routine is a NOP. It returns control to the 
user. 

All the options of RDJFCB are supported. RDJFCB 
causes a Job File Control Block (JFCB) to be read fro. 
a CMS Control Block (C!SCB) into real storage for each 
data control block specified. CMSCBs are created by 
FILEDEF commands. 

All the options of SYNADAF are supported. SYNADAF 
analyzes an I/O error and creates an error message in 
a work buffer. 

All the options of SYNADRLS are supported. SYNADRLS 
frees the work area acquired by SYNAD and deletes the 
work area froa the save area chain. 

All the options of BSP are supported. BSP decrements 
the item pointer by one block. 

TGET and TPUT operate as if EtIT and WAIT were coded. 
TGET reads a terminal line. iPUT writes a terminal 
line. 

TCLEARQ in CMS clears the input terminal queue and 
returns control to the user. 

Updates a queue of C!TAIEs each of which defines an 
attention exit level. 

All the options of NOTE are supported. BOTE returns 
the item number of the last blcck read or written. 

CMS Introduction 2-41 



!!acro-SVC !.Q. im'T----

CHECK 

DCB 

Q.E~.Q 
BPALI 
BLKSIZE 
BUPCB 
BUFL 
BUFIO 
DDNlftE 
DSOBG 
EODAD 
EXLST 
KEYLEN 
LIMCT 
LRECL 
ftlCRP 
OPTCD 
RECFft 
SYNAD 
IfCP 

~i!!~~nc~~ !~ !~£le~en!at!~~ 
All the options of POINT are supported. POINT causes 
the control program to start processing the next read 
or write operation at the specified item number. The 
TTR field in the block address is used as an item 
number. 

All the options of CHECK are supported. 
the I/O operation for errors and 
conditions. 

The following fields of a rCB may be 

CHECK tests 
exceptional 

specified, 
relative to the particular access method indicated: 

BDAM ~~AM ~~!1! ~SA] 
P,D F,D P,D F,D 
n (number) n n n 
a (address) a a a 
n n n n 
n n n n 
s (symbol) s s s 
V1 PO PS PS 

a a a 
a a a a 
n n 
n 

n n n 
R,i R,i R, i, P G,P,L,M 
A,E,F,R 
F,', U F,V,U F,V,B,S,A,M,U F,V,B,U,A,M,S 
a a a a 

n n 

ACCESS ftETHOD SUPPORT 

The manipulation of data is governed by an access method. To facilitate 
the execution of OS Code under CMS, the processing program must see data 
as OS would present it. For instance, when the processors expect an 
access method to acquire input source cards sequentially, CMS invokes 
specially written routines that simulate the as sequential access method 
and pass data to the processors in the format that the OS access methods 
would have produced. Therefore, data appears in storage as if it had 
been manipulated using an OS access method. For example, block 
descriptor words (BDi), buffer pool management, and variable records are 
updated in storage as if an OS access method had processed the data. 
The actual writing to and reading from the I/O device is handled by C~S 
file management. Note that the character string X'61FFFF61' is 
interpreted by CftS as an end of file indicator. 

The essential work of the volume table of contents (VTOC) and the 
data set control block (DSCB) is done in CMS by a master file directory 
(ftPD) which updates the disk contents, and a file status table (FSt) 
(one for each data file). All disks are formatted in physical blocks of 
800 bytes. 

CftS continues to update the OS format, within its own format, on the 
auxiliary device, for files whose filemode number is 4. That is, the 
block and record descriptor words (BDW and RDW) are written along with 
the data. If a data set consists of blocked records, the data is 
written to, and read from, the I/O device in physical blocks, rather 
than logical records. CMS also simulates the specific methods of 
manipulating data sets. 

2-42 IBft 'ft/370 System Logic and program Determination--Voluae 2 



To accomplish this simulation, CMS supports certain essential macros 
for the following access methods: 

• BDAM 

@ BPAM 

(direct) -- identifying a record by a key or by its 
relative position within the data set. 

(partitioned) -- seeking a named member within data set. 

• BSAM/QSAM (sequential) -- accessing a record in a sequence in 
relation to preceding or following records. 

• VSAM (direct or sequential) -- accessing a record sequentially 
or directly by key or address. 

!Qte: CMS support of OS VSAM files is based on DOS/iS 
Access Method Services and Virtal Storage Access Method 
(VSAM). Therefore, the as user is restricted to those 
functions a¥ailable under "DOS/VS Access Method 
Services." See the section "CMS Support for as and Des 
VSAM Functions" for details. 

eMS also updates those portions of the as control blocks that are 
needed by the as simulation routines to support a program during 
execution. Most of the simulated supervisory as control blocks are 
contained in the following two eMS control blocks: 

CMSCVT 
simulates the communication vector table. Location 16 contains 
the address of the CVT centrol section. 

CMSCB 
is allocated from system free storage whenever a FILEDEF com.and 
or an OPEN (SVC 19) is issued for a data set. The CMS Control 
Block consists of a file control block (FCB) for the data file, 
and partial simUlation of the job file control block (JFCB), 
input/output block (lOB), and data extent block (DEB). 

The data control block (nCB) and the data event control block (DECB) 
are used by the access method simulation routines of CMS. 

!Qte: The results may be unpredictable if two DCBs access the same data 
set at the sa.e time. 

The GET and PUT macros are not supported for use with spanned 
records. READ and WRITE are supported for spanned records, provided the 
file.ode number is 4, and the data set is physical sequential (BSAM) 
format. 

GET (QSAM) 
All the QSAM options of GET 
handled the same as move mode. 
number is 4, and the last block 
(X'61FFFF61') must be present 
record. 

GET (QISAM) 
QISAM is net supported in eMS. 

PUT (QSA8) 

are supported. Substitute mode is 
If the DCBRECFM is FB, the file.ode 
is a short block, an EOF indicator 

in the last block after the last 

All the QSAM options of PUT are supported. Substitute mode is 
handled the same as .ove mode. If the DCBRECFM is FB, the file.ode 
number is 4, and the last block is a short bleck, an EOF indicator is 
written in the last block after the last record. 

CMS Introduction 2-43 



PUT (QISAM) 
QISAK is not supported in CMS. 

PUTX 
PUTX support is provided only for data sets opened for QSAM-UPDATE 
with simple buffering. 

READ/WRITE (BISAM) 
BISAM is not supported in CMS. 

READ/WRITE (BSAM and BPAM) 
All the BSAM and BPAM options of READ and WRITE are supported except 
for the SE option (read backwards). 

READ (Offset Read of Keyed BDAM dataset) 
This type of READ is not supported because it is used only for 
spanned records. 

READ/WRITE (BDAM) 
All the BDAM and BSAM (create) options of READ and WRITE are 
supported except for the Rand RU option~. 

When an input or output error occurs, do not depend on OS sense 
hytes. An error code is supplied by CMS in the ECB in place of the 
sense bytes. These error codes differ for various types of devices and 
their meaning can be found in the !~~ !~Ll1Q: ~I§~g! ~g§§~g~2' under 
DMS message 120S. 

The four methods of accessing BDAM records are: 

1. Relative Block R~R 
2. Relative Track TIft 
3. Relative Track and Key TI~ey 
4. Actual Address MBBCCHfiR 

The restrictions on these access methods are as follows: 

• Only the BDAM identifiers underlined above can be used to refer to 
records, since CMS files have a two-byte record identifier. 

• CMS BDAM files are always created with 255 records on the first 
logical track, and 256 records on all other logical tracks, 
regardless of the block size. If BDAM methods 2, 3, or 4 are used 
and the RECFM is U or V, the BDAM user .ust either write 255 records 
on the first track and 256 records on every track thereafter, or he 
must not update the track indicator until a NO SPACE FOUND message is 
returned on a write. For method 3 (WRITE ADD), this message occurs 
when no more dummy records can be found on a WRITE request. For 
methods 2 and 4, this will not occur, and the track indicator will be 
updated only when the record indicator reaches 256 and overflows into 
the track indicator. 

• Two files of the same filetype, both of which use keys, cannot be 
open at the same time. If a program that is updating keys does not 
close the file it is updating for some reason, such as a system 
failure or another IPL operation, the original keys for files that 
are not fixed format are saved in a temporary file with the same 
filetype and a filename of $KEYSAVE. To finish the update, run the 
program again. 

2-44 IBM VM/370 System Logic and Program Determination--Volume 2 



• Once a file is created using keys, additions to the file must not be 
made without using keys and specifying the original length. 

• The number of records in the data set extent must be specified using 
the FILEDEF command. The default size is 50 records. 

• The minimum LRECL for a CMS BDAM file with keys is eight bytes. 

READING as DATA SETS AND DOS FILES USING as MACROS 

CMS users can read OS sequential and partitioned data sets that reside 
on OS disks. The CMS MOYEFILE command can be used to manipulate those 
data sets, and the OS QSAM, BPAM, and BSAM macros can te executed under 
CMS to read thea. 

The CMS MOYEFILE command and the same OS macros can also be used to 
manipulate and read DOS sequential files that reside on DOS disks. The 
OS macros handle the DOS data as if it vere OS data. 

The following OS Release 20.0 BSAM, BPAM, and QSAM macros can be used 
with CMS to read OS data sets and DOS files: 

BLDL ~Q RDJFCB 
BSP FIND READ 
CHECK GET SYNADAF 
CLOSE NOTE SYNADRLS 
DEQ POINT WAIT 
DEYTYPE POST 

CMS supports the following disk formats for the OS and OS/VS 
sequential and partitioned access methods: 

• Split cylinders 
• User labels 
• Track overflow 
• Alternate tracks 

As in OS, the CMS su~port of the BSP macro produces a return code of 
4 when attempting to backspace over a tape mark or when a beginning of 
an extent is found on an OS data set or a DOS file. If the data set or 
file contains split cylinders, an attempt to backspace within an extent, 
resulting in a cylinder switch, also produces a return code of 4. 

Before CMS can read an OS data set or DOS file that resides on a non-CMS 
disk, you must issue the eMS ACCESS command to make the disk on which it 
resides available to CMS. 

The format of the ACCESS command is: 

ACCESS cuu mode[/ext] 

You Must not specify options or file identification when accessing an OS 
or DOS disk. 

CMS Introduction 2-45 



You then issue the FILEDEF command to assign a CMS file identification 
to the OS data set or DOS file so that CMS can read it. The format of 
the FILEDEF command used for this purpose is: 

r r .,., r ., 
FIledef IDISK fn ft Ifmll IDSN ? I 

I l!lll IDSN q1 [q2 ••• ]1 
L L ... .J L .J 

r r ~., 

DISK Ifn ft Ifm'l 
1~!1~ gg~am~ IA11 I 
L L .J.J 

DUMMY 
r ., 

R~!~!ed Q£!i~~: IME~BER me.bernamel 
!CONCAT 
L .J 

If you are issuing a FILEDEF for a DOS file, note that the OS prograa 
that viII use the DOS file must have a DCB for it. For "ddna.e" in the 
FILEDEF com.and line, use the ddname in that DCB. With the DSN operand, 
enter the file-id of the DOS file. 

Soaetiaes, CMS issues the FILEDEF command for you. Although the CMS 
KOYEFILE co.aand, the supported CMS program product interfaces, and the 
CMS OPEN routine each issue a default FILEDEF, you should issue the 
FILBDEF co •• and yourself to ensure the appropriate file is defined. 

After you have issued the ACCESS and FILEDEF commands for an OS 
sequential or partitioned data set or DOS sequential file, C~S commands 
(such as ASSEMBLE and STATE) can refer to the OS data set or DOS file 
just as if it vere a CMS file. 

Several other CMS commands can be used vith as data sets and DOS 
files that do not reside on CMS disks. See the !~LJl~ CM~ ~2!!~~£ !~g 
~!££Q Refe!~~£~ for a complete description of the CMS ACCESS, FILEDEF, 
LISTDS, MOYEFILE, QUERY, RELEASE, and STATE co.mands. 

For restrictions on reading OS data sets and DOS files under CMS, see 
the !~Ll1Q ~l!~~i~ ~~g §I§!~! ~~~~!~!!~~ §~!g~. 

The CMS FILEDEF comaand allows you to specify the I/O device and the 
file characteristics to be used by a program at execution time. In 
conjunction with the as simulation scheme, FILEDEF simulates the 
functions of the data definition JCL statement. 

FILEDEF aay be used only with programs using OS macros and functions. 
For example: 

filedef file1 disk proga data a1 

After issuing this com.and, your program referring to FILE1 would access 
PROGA DATA on your A-disk. 

2-46 IBM VM/370 System Logic and Program Determination--Volume 2 



If you wished to supply data from your terminal for FILE1, you could 
issue the command: 

filedef file1 terminal 

and enter the data for your program without recompiling. 

fi tapein tap2 (recfm fb lrecl 50 block iOO 9track den 800) 

After issuing this co •• and, programs referring to TAPEIN will access a 
tape at virtual address 182. (Each tape unit in the CMS environment has 
a symbolic name associated with it.) The tape must have been previously 
attached to the virtual machine by the Vft/370 operator. 

The AUIPROC option can only be used by a program call to FILEDEF and not 
from the terminal. The CMS language interface programs use this feature 
for special I/O handling of certain (utility) data sets. 

The AUIPRoe option, followed by a fullword address of an auxiliary 
processing routine, allows that routine to receive control from DMSSEB 
before any device I/O is performed. At the completion of its processing, 
the auxiliary routine returns control to DMSSEB signaling whether or not 
I/O has been perfor.ed. If it has not been done, DMSSEB performs the 
appropriate device I/O. 

When control is received from DMSSEB, the general-purpose registers 
contain the following information: 

GPR2 = Data Control Block (DCB) address 
GPR3 = Base register for DMSSEB 
GPR8 = CftS OPSECT address 
GPR11 = File Control Block (FCB) address 
GPR14 Return address in DMSSEB 
GPR15 = Auxiliary processing routine address 

all other registers = Work registers 

The auxiliary processing routine must provide a save area in Wh1Ch to 
save the general registers; this routine must also perfor. the save 
operation. DMSSEB does not provide the address of a save area in 
general register 13, as is usually the case. When control returns to 
DM~SEB, the general registers must be restored to their original values. 
Control is returned to D~SSEB by branching to the address contained in 
general register 14. 

GPR15 is used by the auxiliary processing routine to inform to DMSSEB 
of the action that has been or should be taken with the data block as 
follows: 

S~qis!~f ~9~!~~! Action 
GPR15=O No I/O performed by !UIPROC routine; DMSSEB will perform I/O. 

GPR15<O 

GPR15>O 

I/O performed by !DIPROC routine and error was encountered. 
DMSSEB will take error action. 

I/O performed by AUXPROC routine with residual count in GPR15; 
DMSSEB returns nor.ally. 

GPR15=64K I/O perfor.ed by lUIPROC routine with zero residual count. 

CMS Introduction 2-47 



DOS/VS Support Under eMS 

eMS supports interactive program development for DOS/VS Release 31, 32, 
33 and 34. This includes creating, compiling, testing, debugging, and 
executing commercial application programs. The DOS/VS progra.s can be 
executed in a eMS virtual machine or in a eMS Batch Facility virtual 
.achine. 

DOS/VS files and libraries can be read under C"S~ VSA~ data sets can 
be read and written under CMS~ 

The CMS DOS environment (called CMS/DOS) provides many of the sa.e 
facilities that are available in DOS/VS. However, CMS/DOS supports only 
those facilities that are supported by a single (background) partition. 
The DOS/VS facilities supported by CMS/DOS are: 

• DOS/VS linkage editor 
F~tcn support 

• DOS/VS Supervisor and I/O macros 
• DOS/VS Supervisor control block support 
• Transient area support 
• DOS/VS VSAM macros 

This environment is entered each time the CMS SET DOS ON command is 
issued; VSAM functions are available in CMS/DOS only if the SET DOS ON 
(VSAM) command is issued. In the CMS/DOS environment, CMS supports many 
tOS/VS facilities, but does not support as simulation. When you no 
longer need DOS/VS support under CMS, you issue the SET DOS OFF command 
and DOS/VS facilities are no longer available. 

CMS/DOS can execute programs that use the sequential 
(SAM) and virtual storage access method (VSAM), and can 
libraries. 

access method 
access DOS/VS 

CMS/DOS cannot execute programs that have execution-time 
restrictions, such as programs that use sort exits, teleprocessing 
access methods, or multitasking. DOS/VS COBOL, DOS PL/I, and Assembler 
language programs are executable under CMS/DOS. 

All of the CP and CMS online debugging and testing facilities (such 
as the CP ADSTOP and STORE commands and the CMS DEBUG environment) are 
supported in the CMS/DOS environment. Also, CP disk error recording and 
recovery is supported in CMS/DOS. 

With its support of a CMS/DOS environment, CMS becomes an important 
tool for DOS/VS application program development. Because CMS/DOS was 
designed as a DOS/VS program development tool, it assumes that a DOS/VS 
system exists, and uses it. The following sections describe what is 
supported, and what is not. 

CMS SUPPORT FOR OS AND DOS VSAM FUNCTIONS 

CMS supports interactive program development for 
using VSAM. CMS supports VSAM for as programs 
as/vs COBOL, or OS PL/I programming languages; or 
in DOS/VS COBOL or DOS PL/I programming languages. 
VSAM for OS or DOS assembler language programs. 

OS and DOS programs 
written in VS BASIC, 

DOS programs written 
CMS does not support 

2-48 IBM VM/370 System Logic and program Determination--VoluMe 2 



eMS also supports Access Method Services to manipulate as and DOS 
VSAM and SAM data sets. 

Under eMS, VSAM data sets can span up to nine DASD volumes. CftS does 
not support VSAM data set sharing; however, eftS already supports the 
sharing of minidisks or full pack minidisks. 

VSAM data sets created in eMS are not in the eMS file format. 
Therefore, CMS commands currently used to manipulate CftS files cannot be 
used for VSAM data sets which are read or written in CftS. A VSAft data 
set created in CMS has a file format that is compatible with as and DOS 
VSAM data sets. Thus a VSAM data set created in CMS can later be read 
or updated by as or DOS. 

Because VSAM data sets in CMS are not a part of the CMS file system, 
eMS file size, record length, and minidisk size restrictions do not 
apply. The VSAft data sets are manipulated with Access ftethod Services 
programs executed under CMS~ instead of with the CMS file system 
commands. Also, all VSAM minidisks and full packs used in CMS must be 
initialized with the IBCDASDI program; the CMS FORMAT co •• and must not 
be used. 

CMS supports VSAM control blocks with the GENCB, MODCB, TESTCB, and 
SHOWCB macros. 

In its support of VSAM data sets, CMS uses BPS (rotational position 
sensing) wherever possible. eMS does not use RPS for 2314/2319 devices, 
or for 3340 devices that do not have the feature. 

Because CMS support of VSAM data sets is based on DOS/VS VSAM and DOS/VS 
Access Method Services, only disks supported by DOS/VS can be used for 
VSAM data sets in eMS. These disks are: 

• IBM 2314 Direct Access Storage Facility 

• IBM 2319 Disk Storage 

• IBM 3330 Disk Storage, Models 1 and 2 

• IBM 3330 Disk Storage, Model 11 

• IBM 3340 Direct Access storage Facility 

• IBM 3344 Direct Access Storage 

• IBM 3350 Direct Access Storage 

CMS Introduction 2-49 



2-50 IBM VM/370 System Logic and Program Determination--Volu.e 2 



eMS Method of Operation and Program 
Organization 

This section contains the following information: 

• Initialization of the CftS Virtual ftachine Environment 

• processing and Executing CftS Files 

• Handling I/O Operations 

• Simulating Non-CMS Operating Environments 

• Performing Miscellaneous CMS Functions 

The CMS description is in tvo parts. The first part contains figures 
showing the functional organization of CftS. The second part contains 
general information about the internal structure of CftS prograas and 
their interaction with one another. 

CMS program organization is in tvo figures. Figure 8 is an overview 
of the functional areas of eMS. Each block is nuabered and corresponds 
to a more detailed outline of the function found in Figure 9. 

CftS Method of Operation and Program Organization 2-51 



CD ,..--------, 
Process 
Commands 
that Manipulate 
the File System 

Process 
Ann 
Execute 
CMS Files 

Initialize the 
CMS Virtual 
Machine 
Environment 

Perform 
Miscellaneous 
CMS Functions 

Manage 
the CMS 
File 
System 

Simulate 
Non-CMS 
Operating 
Environments 

Handle 
I/O 
Operations 

Interruptions 

Manage 
CMS 
Storage 

Figure 8. An Overview of the Functional Areas of C!S 

2-52 IBft VK/370 System Logic and Program Determination--Voluae 2 



CD I 
Initialize the Process 
CMS Virtual and 
Machine Execute 
Environment CMS Files 

I 
I I I I I 

Maintain an Process Load and Process Perform 
Interactive and Execute Execute MODULE Library 
Console EXEC Files TEXT Files Files Support 
Environment Functions 

I I 1 I I 
DMSINI DMSINT DMSEXC DMSLOA DMSMOD I DMSLBM I 

Read the CMS 
Interpret Load a disk Process the 

Generate 

I 
Generate and 

I 
LOAD and 

nucleus CO.mmands version of a MODULE update MACLIB 
entered at the EXEC iNCLUDE 

file files 
the console processor commands 

1 1 I J 
DMSINS DMSINA DMSEXT DMSLDR DMSMOD DMSLBT 

Initialize 
Begin execution Load a 

Generate 
storage constants Handle Perform and update 
and virtual disks synonyms and EXEC of programs MODULE a TXTLIB 
for a virtual abbreviations processing in storage file library 
machine 

I I 
DMSINT I DMSSCN DMSLSB 

Handle first I Process a Process 
commands command line loader 
entered at and create options 
the consoie L 

a PL!ST 

I I 
DMSSET DMSCPF DMSLlO I 

Set virtual Pass a Create a I machine command load map 

environment iine to CP and perform I options for execution loader I/O 

I I 
DMSQRY DMSITS DMSMDP 

Query the Process 
Type a load virtual machine command 

environment functions map at a 

option settings via SVC caiis console 

I 
DMSGLB 

Define libraries 
to be searched 
during execution 
and assembly 

i 
DMSLGT 

Create a chain 
of TXTUB 
blocks for use 
during execution; 
release the chain 

I 
DMSLIB 

Search TXT U B 
libraries for 
undefined symbols; 
close TXTLIB 
libraries 

Figure 9. Details of C!! S Systell Functions and. the Routines that 
Perforll Theil (Part 1 of 4) 

CftS !ethod of Operation and Progra. Organization 2-53 



CD. r 
Process 
Commands 
that Manipulate 
the F i/e System 

T 
I 1 

Perform Perform 
General Fi/e Data 
Support Manipulation 
Functions Functions 

I I 
~-j -

DMSSTT DMSEDC, DMSEDF 
DMSEDI, DMSEDX 

Verify the 
ex istence of Create and 
a file and update files 
return its address 

I I 
DMSLST DMSUPD 

List the Update 
names of source 
files on a files 
CMS disk 

I 1 
DMSSYN DMSCPY 

Create synonyms Manipulate 

and abbreViations disk file 
for a file name records 

DMSRNM DMSCMP 

Rename Compare 
records in a file 
two files 

DMSERS DMSSRT 

Erase Sortlarrange 
records in 

a file afile 

DMSRDC 

Read a 
record 

Figure 9. Details of 
Perfor. The. 

DMSPRT 

Print a 
record 

T 
DMSPUN 

PUllch 
a record 

T 
DMSTYP 

Type a 
record 

DMSASM 

Interface 
with the 
assembler to 
assemble files 

DMSDSK 

Load card- to
disk, dump 
disk-to-card 

DMSTPE 

Process 
T APE command 
functions 

DMSMVE 

Move data 
from one 
device to 
another 

~ 

r 
Manage 
Virtual 
Disk Data 

I 
DMSA C 

Access data 
on a virtual 
disk 

I 
DMSACM 

Build an 
active disk 
table 

I 
DMSACF 

Build file 
status table 
blocks for a 
\nrtual disk 

c~S System Functions 
(Part 2 of 4) 

1 
Manage 
the CMS 
File 
SY:!Jtern 

T 
T 

Locate 
DatCl rn 
the CMS 
Fi/e System 

1 
DMSLAD 

Find an 
active disk 
table 

I 
DMSLAF 

t-ind an 
active file 
table 

I 
DMSLFS 

Find a f'le 
status 
table 

and the 

1 
Perform 
File 
Update 
Functions 

1 
DMSARE 

Clear an 
active 
disk table 

T 
DMSFNS 

Close any 
open files 
on disk 

1 
DMSALU 

Clear tables 
and free storage 
associated 
with a di~k 

DMSLAF 

Create or 
delete active 
file table 
entries 

Routines 

2-54 IBft V~/370 System Logic and Program Determination--Volume 2 

that 



0 I 

Handle 
I/O 
Operations 

I 
I I I 

Perform Perform Perform 
Console Disk Unit 
1/0 1/0 Record 

I/O 

I I I 
DMSCIT J I DMSDIO I DMSPIO 

II Reaa or I Start an write one or Perform print 
I/O operation more blocks I/O functions 

j l of disk data i 
I I 1 

DMSCWT DMSTOO, [)M~ R K~ I DMSCIO 

Waitfora Manipulate I Perform read 
console event storage 

I 
card and punch 

to complete management card I/O 
chains 

I I I 
DMSCAT DMSBRD. DMSBWR DMSCWR 

Stack a line Read or write Writea 
of console one or more line to the 
input for items on a console 
DMSCRD disk iiie 

I I 
DMSCRD DMSPNT 

Read a Set the read 

line of or write 

console pointer for a 

inpui: file to a given 
file item 

I 
DMSCWR 

Write a line 
to the console 

Figure 9. Details of 
Perform Thea 

1 I 
I 

Perform Write to 
Tape a Display 
I/O Terminal 

I I 
DMSTPD DMSSCR 

Load display 
Read a buffers to be 
PDS tape displayed on 

a screen 

I I 
DMSTIO DMSGIO 

I Issue a Read or 
write a tape 

I 
display to 

record screen 
DIAGNOSE 

I 
DMSTMA 

Read an unloaded 
PDS from tape 
and place it in 
aMACUB 

C!S systea Functions 
(Part 3 of 4) 

0 
Handle 
Interrupts 

I I 
Wait for 
1/0 to 
Complete 

I 
DMSIOW I DMSCIT 

Wait for I Handle 
an I/O event console 
to take plaoe interrupts 

l 

DMSITS 

Handle SVC ~ 
interrupts 

DMSITI 

Handle I/O -interrupts 

DMSITE 

Handle 
external 
interrupts 

DMSITP 

Handl~ 

program check 
interrupts 

and the Routines 

CftS !ethod of Operation and Progra. Organization 

Qj 
Manage 
CMS 
Storage 

I 

DMSFRE 

.~Hocate and 
release free 
system and 
user storage 

DMSHDS DMSSMN 

Set up and 
Allocate and 
release user storage 

handle user- upon request by 
defined SVC OSGETMAINI 
interrupts FREEMAN macros 

DMSHDI 

Set up and 
handle user· 
defined 1/0 
interrupts 

that 

2-55 



0, ___ rl..----, 

I 
Provide 
Access 
Method 
Support 

I 
DMSSQS 

Support 
QSAM 

I 
DMSSBS 

~~~~~r~ ,~ 
BPAM

1
DMSSBD

SuPPOrt
BDAM

1
DMSVIB

Load the
CMSfVSAM
shared system
for OS VSAM
programs

J
DMSVIP

Interface With
VSAM programs
to perform VSAM
functions for
OS VSAM programs

I
DMSVSR

Reset fields
set during VSAM
processing and
purge the CMS/
VSAM DCSS

I
DMSAMS

Support
VSAM
Access Method
Services

Figure 9.

I

Simulate
Non·CMS
Operating
Environments

1
I

Simulate
OS
Functions

I
DMSFLD

Interpret OS
JC L parameters
for use by CMS

I
DMSSVT, DMSSOP,
DMSSCT, DMSSMN,
DMSSVN, DMSSLN,
f"\"''''c:"C:::~R

Simulate OS

1
DMSSEB

Perform
I/O functions
for OS

T
DMSROS

Allow CMS to
ACCESS, STATE,
READ' NOTE,
and BACKSPAC
on OS disks

1
DMSLDS

List
information
about OS
data sets

Simulate
DOS
Functions

Initialize
DOS and
Process DOS
System Control
Commands

DMSSET

Initialize
the CMS/DOS
environment

DMSOPT

Set compiler
options

DMSASN

Associate system
or programmer
logical units
with physical units

DMSLLU

list assignments
of logical units

DMSDLB

Associate a
DTF table
filename with
a logical unit

I
DMSIFC

Checks and passes
CPEREP operands
to EREP
(IFCEREPlI

1
DMSREA

Provides records to
EREP from the
VM/370 error
recording cylinders

I
Process
DOS I/O
Functions

I
DMSBOP

Simulate
the DOSfVS
OPEN function

I
DMSOR 1, DMSOR 2
DMSOR3

Locate a
specified
file

I
DMSOPL

Access a source
statement
library for a
DOSIVS compiler

1
DMSCLS

Simulate the
DOSIVS CLOSE
function

I
DMSBTB

~oad the CMS
Batch Virtual
Machine

I
DMSBTP

Perform batch
processing
functions

J
Process
DOS Execution
Related
Functions

I
DMSDLK

Link'edit
DOSIVS
phases in
storage

I
DMSFET, DMSFCH

Load a phase;
begin program
execution

Details of
Perfor. Them

C~S System Functions
(Part 4 of 4)

l

0.r--.......I1 __

Perform
Miscellaneous
CMS Functions

I
DMSDBG

Perform
DEBUG
functions

I
DMSOVR

Load the
SVCTRACE
module,
DMSOVS

I

I
I

DMSGND

Generate
an auxiliary
directory

I
DMSASD

Provide an
auxiliary
directory

1

II---=D;.;;M~S;.;;:O~v,::,s_-l1 II---=D;...M..;;.S.;;;.LA;...D~ I

r 1 I Include an I I ~~~~~ACE auxiliary

I f ,unc_tlons----JI I ., . , . I _ • • the FST chain

r

Provide
DOS SVC
Simulation

r
DMSDOS

Handle all
CMS/DOS SVC
requests

I
Process
DOS
Service
Commands

I
DMSSRV

Copy books from
a source statement
library to an
output device

1
DMSRRV

Copy modules
from a
relocatable
library to an
output device

T
DMSPRV

Copy procedures
from a procedure
library to an
output device

I
DMSDSV

List the
directories
of libraries

I
DMSDSL

Delete, compress,
list phases of
a DOSLIB
library

and the Routines

2-56 IB~ V~/370 System Logic and Program Determination--Volume 2

I
DMSABN

Handle
abnormal
termination

I
DMSERR

Generate
error
messages

I

Terminate
the DOS
Environment

I
DMSBAB

Pass control to
an abnormaf
termination
routine via
STXIT AB macro

r
DMSITP

Process program
interrupts
and SPI E
exits

I
DMSDMP

Simulate
$$DUMP and
S$PDUMP; issue
CP DUMP
DIAGNOSE

that

Initialization of the eMS Virtual Machine
Environment

There are four steps involved in initializing a CMS virtual machine:

• Processing the IPL command for a virtual card reader.

• Processing the IPL command for a disk device or a named or saved
system.

• processing the first command line entered at the CMS virtual console.

• Setting up the options for the virtual machine operating environment.

DMSINI and DMSINS are the two routines that are mainly responsible
for the one-time initialization process in which the virtual card reader
is initial program loaded. DMSINI also handles the IPL process when a
named or saved system is loaded. The C!S command interpreter, DMSINT,
processes the first line entered from the console as a special case; the
processing performed by this code is a part of the initialization
process. DMSSET sets up the user-specified virtual machine environment
features; DMSQRY allows the user to query the status of these settings.

Initialization: Loading a CMS Virtual Machine from
Card Reader

When a virtual card reader is specified by the IPL command, for exaaple
OOC, initialization processing begins. Initialization refers to the
process of loading from a card reader as opposed to reading a nucleus
from a cylinder of a CMS minidisk or reading a named or shared system
(description follows).

IPL OOC invokes the CMS module DMSINI, which requests that the
operator enter information sucb as the address of the DASD where the
nucleus is to be written, the cylinder address where the write operation
is to begin, and which version of CMS is to be written (if there is more
than one to choose fro.).

When all questions are answered, the requested nucleus is written to
the DASD.

Once written on the DASD, a copy of the nucleus is read into virtual
.achine storage. One track at a tiae is read from the disk-resident
nucleus into virtual storage. DMSINS is then invoked to initialize
storage constants and to set up the disks and storage space required by
this virtual machine.

DMSINS performs three general functions:

• Initializes storage constants and system tables.

• Processes IPL command line parameters (SEG= and BATCH).

• Initializes for as SVC processing, in the case where a saved segment
is not available for use in processing os simUlation requests.

CMS Method of Operation and progras OrganiZation 2-57

INITIALIZES STORAGE CONTENTS AND SYSTEM TABLES

DMSINS
---Saves the address of this virtual machine in NUCON.

~~SLAD
Locates and returns the address of the ADT for this virtual machine.

DMSFRE
--~llocates free storage to be used during initialization.

DMSFRE
-- Allocates all low free storage so that the system status table

(SSTAT) will be built in high free storage.

DMSACM
---aeids the S-disk ADT entry and builds the SSTAT.

DMSFRE
--Releases the low free storage allocated above (to force SST.AT into

high storage) so that it can be used again.

DMSINS
---Stores the address of SSTAT into ASSTAT and ADTFDA in NUCON.

~~SA1!!
Sorts the entries in the SSTAT~

PROCESSES IPL COMMAND LINE PARAMETERS

DMSINS
-- Checks for parameters BATCH, and SEG=, or AUTOCR. If BATCH is

specified, DMSINS sets the flag BATFLAGS. If SEG= is specified,
DMSINS loops through again to read the segment name. At this point,
all the parameters on the com.and line have been scanned.

If SEG= is specifiad, the DIAGNOSE 64 FINtSYS function is issued
to determine whether the segment specified on the command line
exists. If it does, the DCSSIVAL flag is temForarily set.

If AUTOCR is specified, a local flag is set so that the subsequent
console read aay be bypassed and the null line input simulated. This
action causes a PROFILE EXEC to be executed.

~~SINS
Issues DIAGNOSE 24 to obtain the device type of the console.

DMSCWR
---WrItes the system id message to the console.

DMSCRD
--Reads the IPL command line from the console.

~!1~~~!
Puts the IPL command line in PLIST format.

DMSINS
----If-the FINDSYS DIAGNOSE validated the segment name specified on the

IPL command line, DMSINS issues a DIAGNOSE 64 SAVESYS function for
that segment.

2-58 IBM VM/370 System Logic and Program Determination--Volume 2

DMSINS
---Clears DCSSAiAL and ensures that all the parameters on the co •• and

line are valid; branches back to label INITLOOP to reprocess for the
segment just saved.

~~SI!~
If BATCH is specified, sets BATFLAGS and BATFLAG2 in NUCON. Saves
the name of the B~TCH saved system in SYSNAME in NUCON.

~~SA~~
Issues ACCESS 195 A to access the batch virtual machine A-disk.

DMSI!2
Issues DIAGNOSE 60 to get the size of the virtual machine; sets up
enough storage for this virtual machine~

DMSINS
---rl-the DCSSAiAL flag is set, sees if the size of the CMSSEG segment

overlaps the size of the virtual machine. If this is the case,
DMSINS sets the flag DCSSOiLP and continues the initialization
procedure for a CMS virtual machine running without the use of the
CMSSEG segment, that is, performs time-of-day processing and OS
initialization.

If the CMSSEG segment can be used, DMSINS issues the DIAGNOSE 64
LOADSYS function as the final check to see if the segment is usable.
If the segaent is loaded successfully, it can be used whenever one of
the functions contained in it is requested. Because it is not
required immediately, DMSINS issues the DIAGNOSE 64 PURGESYS function
to purge the segment.

If the segment cannot be successfully loaded, DMSINS turns off the
DCSSAiAL flag.

INITIALIZE OS SiC-HANDLING WITHOUT THE USE OF THE CMSSEG SEGMENT

DMSINS
---Checks for the availability of CMSSEG.

DMSSTT
---FInds and returns the address of DMSSiT, the CMS as SVC-handler.

~~SF~~
Acquires enough free storage to contain DMSSVT.

DMSLOA
---roads DMSSVT.

~~SI!2
Sets the flag DCSSVTLD.

DMSINS
---rf-the BATCH virtual machine is not being loaded, determines whether

there is a PROFILE EXEC or a first command line to be handled. If
so, issues SiC 202's to process these commands and passes control to
DMSINT, the CMS console manager.

~~SA~~
If the BATCH virtual machine is being
accesses the D-disk and passes control
manager.

initial program
to DMSINT, the

loaded,
console

CMS Method of Operation and Program Organization 2-59

Initializing a Named or Saved Systems

A named system is a copy of the nucleus that has been saved and naaed
with the CP SAVESYS co •• and. It is faster to IPL a na.ed syste. than to
IPL by disk address because CP maintains the named system in page for.at
instead of CMS disk for.at. That is, the saved system is on disk in
4096-byte blocks instead of 800-byte blocks. The initialization of a
saved system is also faster because the SSTAT is already built.

The shared system is a variant of the saved system. In the shared
system, reentrant portions of the nucleus are placed in storage pages
that are available to all users of the shared system. Each user has his
own copy of nonreentrant portions of the nucleus. The shared pages are
protected by CP, and may not be altered by any virtual machine.

During DMSINI processing, the virtual machine operator
the nucleus must be written (via message DMSINI607R) • If
answers no, control passes directly to DMSINS to initialize
saved system specified by the operator in his answer
DMSINI606R.

is asked if
the operator
the nailed or
to aessage

Handling the First Command Line Passed to CMS

DMSINT, the CMS console manager, contains the code to handle commands
stacked by module DMSINS during initialization processing. DMSINT
checks for the presence of a stacked command line, and if there is one
to process, processes it just as it would a ccmmand entered during a
terminal session. That is, DMSINT calls the iAITREAD subroutine and
issues an SVC 202 to execute the command. When first command processing
completes, DMSINT receives control to handle co •• ands entered at the
console for the duration of the session.

Setting and Querying Virtual Machine Environment
Options

DMSSET sets up
the publication
these settings
structured and
DMSSET.

the virtual .achine environment options, as outlined in
!~11Q ~~~ ££!!sng §~g ~§££Q B~!~f~~£~· DMSQRY displays
at the user console. Both of these modules are

relatively easy to follow, except for so.e sections of

DMSSET: SET DOS ON (VSAM) PROCESSING

DMSSET
----(label DOS) If a disk mode is specified on the command line, ensure

that it is valid.

DMSLAD
---rf-the disk mode specified is valid, locates and returns the address

of the disk.

!2~~£!!
Issues DIAGNOSE 64 FINDSYS to locate the CMSDOS segment. If the
segment is not already loaded, issues DIAGNOSE 64 LOADSYS to load it.

2-60 IBM VM/370 System Logic and Program Determination--Voluae 2

~~SSET
Sets up the $$B-transient area for use by DOS routines.

DftSSET
----If-SET DOS OFF has been specified, issues the DI1GNOSE 64 PURGESYS

function for the CftSDOS segment and, if VSlft has been loaded, for the
CftSVSA~ segment.

DftSSET: SET SYSNAftE PROCESSING

~~SSET
Determines whether the name of the CftSSEG segment is being changed.

DftSSET
---netermines whether NONSBARE is specified. If so, the segment may be

loaded and kept. If NONSBARE is not specified, the segment is purged,
because it is needed only on demand.

~~SS~!
Once a new name is placed in the SYSNAftES table replacing CftSSEG, the
DIAGNOSE 64 FINDSYS function is issued to determine whether the new
name has been entered correctly. If the FINDSYS is successful, the
size of the virtual machine is compared to beginning address of the
segment to determine whether the segment overlays virtual machine
storage.

D"SSET
---rf-the segment can be used (i.e. does not overlay the virtual machine

storage) the DIAGNOSE 64 LOADSYS function is performed. If the
LOADSYS executes successfully, control passes to D!SINT, where the
segment is purged (because it is only needed on demand).

CMS Method of operation and Program Organization 2-61

Processing and Executing eMS Files

As shown in Part 1 of Figure 9, the five general topics form the
category "Process and Execute CMS Files." Two of these topics are
discussed in this section: "Maintaining an Interactive Console
Environment" and "Loading and Executing TEXT files."

Maintaining an Interactive Console Environment

Two levels of information are discussed in the following section. The
first level is a general discussion of how CMS maintains an interactive
console environment. The second level is a more detailed discussion of
the methods of operation mainly responsible for this function.

Console Management and Command Handling in CMS

There are two major functions concerned with maintaining an interactive
terminal environment for CftS: console management and command processing.
The CMS module that manages the virtual machine console is DftSINT. The
module responsible for command frocessing is DftSITS. ftany CftS modules
are called in support of these two functions but the modules in the
following list are primarily responsible for sUPForting the functions:

DftSCRD
---aeads a line from the console.

!H!SC!!!
Writes a line to the console.

~11SS~!
converts a command line to PLIST format.

~11SI!!
Converts abbreviated commands to their full names.

DM~~f£:
Passes a command line to CP for execution.

Maintaining an Interactive Command/Response
Session

Three main lines of control maintain the continuity for an interactive
CMS session: (1) handling of commands passed to DftSINT by the
initialization module, DftSINS (2) handling of commands entered at the
console during a session, and (3) handling of co.mands entered as subset
commands. The following lists show the main logic paths for first two
functions.

2-62 IBM VM/370 System Logic and program Determination--Volume 2

EXECUTE COMMANDS PASSED VIA DMSINS

Q~SINT
On entry from DMSINA, processes any commands passed via the console
read put on the user's console by that routine; that is processes
any commands the user stacks on the line as the first read that
DMSINT processes. In handling the first read, if that read is null,
control passes to the main loop of the program, which is described
in the following section.

~~SI!~
Get the current time.

D~SCRD

--~ranch to the waitread subroutine to read a command line at the
console.

DftSSCN
---Waitread then calls D~SSCN to convert the line just read into plist

format. Once converted to plist format, an SVC 202 is issued (at
label INIT1A) to execute the function. This cycle is repeated qntil
all stacked commands are executed.

D~SFNS

---When command execution completes, calls DeSFNS (at label UPDIT) to
close any files that .ay have remained open during the command
processing.

DMSVSR
--~nsures that any fields set by VSAM processing are reset for ces.

Also ensures that the VSAM discontiguous shared segment is purged.

~~~£!~ 
Sets up an appropriate status message (CMS, CftS SUBSET, CMS/DOS, 
etc.). 

~~SC!R 
Writes the status message to the console. 

HANDLE COMftANDS ENTERED DURING A CMS TERftINAL SESSION 

Q~SI!~ 
Branches (from label INLOOP2) to the waitread subroutine to read a 
line entered at the console. 

D~SCRD 

---aeads a line entered at the console (subroutine waitread). 

~~SS£! 
Converts the command line to PLIST format (subroutine waitread). 

~~SI!! 
Determines whether the command line is a null line or a comment. 

DMSLFS 
--~f- the command line is neither a co •• and line nor a co •• eDt, 

determines whether the command is an EXEC file. 

~~SI!! (ABB~]!) 
Determines whether the command is an abbreviation and, if it is, 
returns its full name. 

CMS Method of Operation and Program Organization 2-63 



DMSITS 
---Passes the command line to DMSITS via an SVC 202. 

SVC handler. For a detailed description of the 
"Method of Operation for DMSITS." 

DMSCPF 
---r1-the command could not be executed by the SVC 

command to CP to see if CP can execute it. 

12~SF!!~ 

DMSITS is the C~S 
SVC handler, see 

handler, passes the 

On return from processing the command line (label UPDAT), closes any 
files that may have been opened during processing= 

12l!SS~!! 
Resets any flags or fields that may have been set during OS 
processing. 

DMSVSR 
--~nsures that any fields set for VSAM processing are reset for CMS. 

Also ensures that the VSAM discontiguous shared segment is purqed@ 

DMSINT 
---When the command line has been successfully executed, builds a CMS 

ready message for the user (label PRNREADY). 

DMSCWR 
---Writes the ready message to the console. 

1!~SI!!I 
Returns control to DMSINT at label INLOOP2 to continue monitoring the 
CMS terminal session. 

Method of Operation for DMSINT 

DMSINT, the console manager, maintains the continuity of operation of 
the CMS command environment. The main control loop of DMSINT is 
initiated by a call to DMSCRD to get the next command. When the command 
is entered, DMSINT calls DMSINM to initialize the CPU time for the new 
command and then puts it in standard parameter list form by calling the 
scan function program DMSSCN. After calling DMSSCN, DMSINT checks to 
see if an EXEC filetype exists with a filename of the typed-in command. 
(For example, if ABC was typed in, it checks to see if ABC FXEC exists.) 
If the EXEC file does exist, DMSINT adjusts register 1 to point to the 
saae command as set up by DMSSCN, but preceded by CLa'EXEC', and then 
issues an SVC 202 to call the corresponding EXEC procedure ('ABC EXEC' 
in the example). 

If no such EXEC file exists for the first word typed in, DMSINT makes 
a further check using the CMS abbreviation-check routine, DMSINA. If, 
for example, the first word typed in had been 'E', DMSINT looks up 'E' 
via the DMSINA routine. If an equivalent is found for 'E', DMSINT looks 
for an EXEC file with the name of the equivalent word (for example, EDIT 
EXEC); if such a file is found, DMSINT adjusts register 1 as described 
above to call EXEC and substitutes the equivalent word, EDIT, for the 
first word typed in. Thus, if 'E' is a valid abbreviation for 'EDIT' 
and the user has an EXEC file called EDIT EXEC, he invokes this when he 
merely types in 'E' from the terminal. 

If no EXEC file is found either for the entered command name or for 
any equivalent found by DMSINA, DMSINT leaves the terminal command as 
processed by DMSSCN and then issues an SVC 202 to pass control to DMSIIS 
which, in turn, passes control to the appropriate command program. 

2-64 IBM VM/310 System Logic and Program Determination--Volume 2 



When the command terminates execution, or if DMSITS cannot execute it, 
the return code is passed in register 15. 

A zero return code indicates successful completion of the command. 

A positive return code indicates that the command was completed, but 
with an- apparent error; and a negative code returned by DMSITS indicates 
that the typed in com.and could not be found or executed at all. 

In the last case, DMSINT assumes that the coamand is a CP command and 
issues a DIAGNOSE instruction to pass the command line to the CP 
environment. If the co.mand is not a CP command, DMSINT calls DMSCiR to 
type a message indicating that the command is unknown and the main 
control loop of DMSINT is entered at the beginning. 

If the return code from DMSITS is positive or zero, DMSINT saves the 
return code hriefly and calls module DMSAUD to update the Master Pile 
Directory (MFD) on the user's appropriate user's disk. DMSINT also 
frees the TXTLIB chain and releases pages of storage if required. 

After updating the master file directory, DMSINT Checks the return 
code that was passed back. If the code is zero, DMSINT types a ready 
message and the processor time used by the given command. Control is 
passed to the beginning of the main control leop of DMSINT. If the 
return code is positive, an error message is typed, along with the 
Frocessor time used. The command caused the typing of an error aessage 
of the format: DMSxxxnnnt 'text' where DMSxxx is the module name, nnn 
is the message identification number, t is the message type, and 'text' 
is the message explaining the error. Control is then passed to the 
beginning of the main control loop. 

Method of Operation for DMSITS 

DMSITS (INTSVC) is the CMS system SVC handling routine. Since CMS is 
SVC driven, the SVC interruption processor is more complex than the 
other interruption processors. 

The general operation of DMSITS is as follows: 

1. The SVC new PSi (low-storage location X'60') contains, in the 
address field, the address of DMSITS1. Thus, the DMSITS routine is 
entered whenever a supervisor call is executed. 

2. DMSITS allocates a system and user save area, as described belove 
The user save area is a register save area used by the routine, 
which is invoked later as a result of the SVC call. 

3. The called routine is invoked. 

4. Upon return 
deallocated. 

from the called routine, the save areas are 

5. Control is returned to the caller (the routine which originally 
made the SVC call). 

The following expands upon various features of the general operation 
that has just been described. 

CMS Method of Operation and Program organization 2-65 



TYPES OF SVCS AND LINKAGE CONVENTIONS 

The types of SVC calls recognized by DMSITS. and the linkage conventions 
for each are as follows: 

~!~ ~Ql: ihen a called routine returns contrel to DMSITS, the user 
storage key may be in the PSi. Because the called routine may also have 
turned on the problem bit in the PSW, the most convenient way for DMSITS 
to restore the system PSi is to cause another interruption, rather than 
to attempt the privileged Load PSi instruction. DMSITS does this by 
issuing SVC 201, which causes a recursive entry into DMSITS. DMSITS 
determines if the interruption was caused by SVC 201, and if so, 
determines if the SVC 201 was from within DHSITS. If both conditions 
are met, control returns to the instruction following the SVC 201 with a 
PSi that has the problem bit off and the system key restored. 

SVC 202: SVC 202 is the most commonly used SVC in the CMS system. It i~ 
used--tor calling nucleus resident routines and for calling routines 
written as commands. 

A typical coding sequence for an SVC 202 call is the following: 

LA R1,PLIST 
SVC 202 
DC AL4(ERRADD) 

Whenever SVC 202 is called, register 1 must point to a parameter list 
(PLIST). The format of this parameter list depends upon the actual 
routine or command being called, but the SVC handler examines the first 
8 bytes of the list to find the name of the routine or command being 
called. It searches for the routine or mOdule as described for SVC 201. 

The DC AL4(address) following the SVC 202 is opticnal, and may be 
omitted if the programmer does not expect any errors to occur in the 
routine or command being called. DMSITS can determine whether this DC 
was inserted by examining the byte following the SVC call. If it is 
nonzero, then it is an instruction; if it is zero, then it is a ntC 
AL4(address)". 

SVC 203: SVC 203 is used by CMS macros to perform various internal 
system-functions. SVC 203 is an SVC call for which no parameter list is 
Frovided. An example is DMSFREE, for which the parameters are passed in 
registers 0 and 1. 

A typical sequence for an SVC 203 call follows: 

SVC 203 
DC B'code' 

The halfword decimal code following the SVC 203 indicates the 
specific routine being called. DMSITS examines this halfword code as 
follows: (1) the absolute value of the code is taken, using an LFR 
instruction, (2) the first byte of the result is ignored, and the second 
byte of the resulting halfword is an index into a branch table, (3) the 
address of the correct routine is loaded, and control is transferred 
there, as the called routine. 

It is possible for the address in the SVC 203 index table to be zero. 
In this case, the index entry contains an 8-byte routine or command 
name, which is processed in the same way as the 8-byte name passed in 
the parameter list passed to SVC 202. 

2-66 IBM VM/370 System Logic and Program Determination--Volume 2 



The sign of the halfword code indicates whether the programmer 
expects an error return; if so, the code is negative: if not, the code 
is positive. Note that the sign of the halfword code has no effect on 
determining the routine which is to be called, because DMSITS takes the 
atsolute value of the cede to determine the called routine. 

Because only the second byte of the absolute value of the code is 
examined by DMSITS, seven bits (bits 1-7) are available as flags or for 
other uses. For example, DMSFREE uses these seven bits to indicate such 
things as conditional requests and variable requests. Therefore, DMSITS 
considers the codes H'3' and H'259' to be identical, and handles them 
the same as H'-3' and H'-259', except for error returns. 

When an SVC 203 is invoked, DMSITS stores the halfword code into the 
NUCON location CODE203, so that the called routine can interrogate the 
seven bits made available to it. 

Q~~~=~1!~1~~ ~!~§: The programmer may use the HNDSVC macro to specify 
the address of a routine that processes any SVC call for SVC numbers 0 
through 200 and 206 through 255. 

If the HNDSVC macro is used, the linkage conventions are as required 
by the user specified SVC-handling routine. 

There is no way to specify a normal or error return from a 
user-handled SVC routine& 

OS MACRO ~1~Y1!IIO! ~!~ CA11§: CMS supports certain of the SVC calls 
generated by OS macros, by simulating the effect of these macro calls. 

The proper linkages are set up by the os macro generations. DMSITS 
does not recognize any way to specify a normal or error return from an 
OS macro simulation SVC call. 

]Q~ ~!~ ~!11~: All SVC functions supported for CMSjDOS are handled by 
the CMS module DMSDOS. DMSDOS receives control from DHSITS (the CMS SVC 
handler) when that routine intercepts a DOS SVC code and finds that the 
DOSSiC flag in DOSFLAGS is set in NueON. 

DMSDOS acquires the specified SVC code from the OLDPSi field of the 
current SVC save area. Using this code, DMSEOS computes the address ef 
the routine where the sve is to be handled. 

Many eMS/DOS routines (including DMSDOS) are contained in a 
discontiguous shared segment (nCSS). Most SiC cedes are executed within 
DMSDOS, but seme are in separate modules external to DMSDOS. If the SiC 
code requested is external to DMSDOS, its address is computed using a 
table called DCSSTAB; if the code requested is executed within DMSDOS, 
the table SVCTAB is used to compute the address of the code to handle 
the SiC. 

DOS SVC calls are discussed in more detail in "Simulating a DOS 
Envi~onment Under CMS" in this section. 

INVALID SiC £!1LS: 
recognIzed-by DMSITS. 

There are several 
These are: 

types of invalid SVC calls 

• Invalid SiC number. If the SiC number does not fit into any of the 
classes described above, it is not handled by DMSITS. An error 
message is displayed at the terminal, and control is returned 
directly to the caller. 

• Invalid routine name in SVC 202 parameter list. If the routine na.ed 
in the SVC 202 parameter list is invalid or cannot be found, then 

CMS Method of Operation and Program Organization 2-67 



• 

DMSITS handles the situation in the 
return fro. a legitimate SVC routine. 

same way it handles an error 
The error code is -3. 

Invalid SVC 203 code. If an illegal code follows SVC 
message is displayed, and the ABEND routine is called 
execution. 

203, an error 
to terminate 

SEARCH HIERARCHY FOR SVC 202 

When a program issues SVC 202, and passes a routine or command name in 
the parameter list, DMSITS must search for the specified routine or 
cOllmand. (In the case of SVC 203 with a zero in the table entry for the 
specified index, the same logic must be applied.) 

The search order is as follows: 

i. A check is made to see if there is a routine with the specified 
name currently in the system transient area. If so, then tontrol 
is transferred there. 

2. The system function name table is searched to see if a command by 
this name is nucleus resident. If successful, control goes to the 
specified nucleus routine. 

3. A search is made for a disk file with the specified name as the 
filename, and MODULE as the filetype. The search is made in the 
standard disk search order. If this search is successful, then the 
specified module is loaded by LOADMOD and control passes to the 
storage location now occupied by the command. 

4. If all searches so far have failed, then rftSINA (ABBREV) is called 
to see if the specified routine name is a valid system abbreviation 
for a system com.and or function. User-defined abbreviations and 
synonyms are checked at the same time. If this search is 
successful, then steps 2 through 4 are repeated with the full 
nonabbreviated name. 

5. If all searches fail, then an error code of -3 is forced. 

USER AND TRANSIENT PROGRAM AREAS 

There are two areas which can hold program modules which 
LOADMOD from the disk. These are called the user program 
transient program area. 

are loaded by 
area and the 

The user program area starts at location X'2COOO' and extends upward 
to the loader tables. However, the high-address end of that area can be 
allocated as free storage by DMSFREE. Generally, all user programs and 
certain system commands, such as EDIT and COPYFILE, execute in the user 
program area. Because only one program can be executing in the user 
program area at one time, unless it is an overlay structure, it is 
impossible for one program in the user program area to invoke, by means 
of SVC 202, a module which is also intended to execute the user program 
area. 

The transient program area is two pages, running 
X'EOOO' to location X'10000'. It provides an area for 
that may also be invoked from the user program area by 

from location 
system commands 
means of an SVC 

2-68 IBM VM/370 System Logic and Program Determination--Volume 2 



202 call. For example, a program in the user program area may invoke 
the RENAME command, because this command is loaded into the transient 
program area. 

The transient program area also handles certain as macro simulation 
SVC calls. If DMSITS cannot find the address of a supported as macro 
simulation SVC handling routine, it calls LOADMOD to load the file 
DMSSVT module into the transient area, and lets that routine handle the 
SVC. 

A program in the transient program area may not invoke another 
program intended to execute in the transient program area, including os 
macro simulation SVC calls that are handled by DMSSVT. Thus, for 
example, a program in the transient program area may not invoke the 
RENAME command. In addition, it may not invoke the as macro iTO, which 
generates an svc 35, which is handled by nMSSVT. 

There is one further functional difference between the use of the two 
program areas. DMSITS starts a program in the user program area so 
that it is enabled for all interruptions. It starts a program in the 
transient program area so that it is disabled for all interruptions. 
Thus, the individual program may have to use the SSM (Set System Mask) 
instruction to change the current status of its system mask. 

CALLED ROUTINE START-UP TABLE 

Figures 10 and 11 show how the PSi and registers are set up when the 
called routine is entered. 

r 
I System Storage Problell 
I Called Type Mask Key Bit 

SVC 202 or 203 I Disabled System Off 
- Nuc resident I 

SVC 202 or 203 Disabled User Off 
- Transient 

area MODULE 

SVC 202 or 203 Enabled User Off 
- User Area 

U ser- handled Enabled User Off 

as - Nuc res Disabled System Off 

as - in DMSSVT Disabled Systell Off 

Figure 10. PSi Fields when Called Routine is Started 

RETURNING TO THE CALLER 

ihen the called routine is finished processing it returns control to 
DMSITS, which then must return control to the caller. 

RETURN LOCATION: The return is effected by loading the original SVC old psW--cwhich-was saved at the time DMSITS was first entered), after 

CMS Method of Operation and Program Organization 2-69 



Type 

SVC 202 
or 203 

Other 

o - 1 

Same 
as 

caller 

Same 
as 

caller 

2 - 11 I 
I I 
IUnpredict-1 
lable I 
I I 
I I 

Same 
as 

caller 

12 13 14 

Address User Return 
of save address 

called area to 
routine DftSITS 

Address User Return 
of save address 

called area to 
routine DftSITS 

Figure 11. Register Contents when Called Routine is Started 

15 

Address 
of 

called 
routine 

Same 
as 

caller 

possibly modifying the address field. How the address field is modified 
depends upon the type of SVC call, and on whether the called routine 
indicated an error return address. 

For SVC 202 and 203, the called routine indicates a normal return by 
means of a zero returned in register 1~, and an error return by means of 
a nonzero in register 15. If the called routine indicates a normal 
return, then DftSITS makes a normal return to the caller. If the called 
routine indicates an error return, then DftSITS returns to the caller's 
error return address, if one was specified, and abnormally terminates if 
none was specified. 

For SVC 202 not followed by "DC AL4(address}ft, a normal return is 
made to the instruction following the SVC instruction, and an error 
return causes an abnormal termination. For SlC 202 followed by nDC 
lL4 (address)", a normal return is made to the instruction following the 
DC, and an error return is made to the address specified in the DC. In 
either case, register 15 contains the return code passed by the called 
routine. 

For SVC 203 with a positive halfword code, a normal return is made 
to the instruction following the halfword code, and an error return 
causes an ahnormal termination. For SVC 203 with a negative halfword 
code, both normal and error returns are made to the instruction 
following the halfword code. In any case, register 15 contains the 
return code passed hack by the called routine. 

For OS macro simulation SVC calls, and for user-handled SVC calls, no 
error return is recognized by DftSITS. As a result, DftSITS always 
returns to the caller by loading the SVC old PSi that was saved when 
DMSITS was first entered. 

~~~l~I~~ ~~~IQ~!I!Q!: Upon entry to DMSITS, all registers are saved as 
they were when the SVC instruction was first executed. Upon exiting
from DMSITS, all registers are restored to the values that were saved at
entry_

The exception to this is register
return to the caller, register 15
register 15 when the called routine
completed processing.

SYSTEM AND USER SAVE AREA FORMATS

15 for SVC 202 and 203. Upon
contains the value that was in
returned to DftSITS after it had

Whenever an SVC call is made, DMSITS allocates two save areas for that
particular SVC call.

2-70 IBM VM/370 System Logic and Program Determination-~Volume 2

D!SITS uses the system save area (DSECT SSAVE) to save the value of
the SVC old PSi at the time of the SVC call# the caller's registers at
the time of the call, and any other necessary control information.
Since SVC calls can be nested, there can be several of these save areas
at one time. The system save area is allocated in protected free
storage.

The user save area contains (DSECT EXTUAREA)
fullwords), allocated in unprotected free storage.
this area at all, but simply passes to the called
this area in register 13. Thus, the called routine
a temporary work area, or as a register save area.
save area for each system save area, and the latter
to the former in the USAVEPTR field.

Load and Execute Text Files

12 doublewords (24
D!SITS does not use

routine a pointer to
can use this area as

There is one user
contains a pointer

The CMS loader consists of a nucleus resident loader (DMSLDR), a file
and message handler program (DMSLIO), a library search program (DMSLIB),
and other subroutine programs. DMSLDR starts loading at the user first
location (AUSRAREA) specified in NUCON or at a user specified location.
When performing an INCLUDE function, loading resumes at the next
available location after the previous LOAD, INCLUDE, or LOADMOD.

The loader reads in the entire user's program, which consists of one
or more control sections, each defined by a type 0 ESD record ("card").
Each control section cont~ins a type 1 ESD card for each entry point and
may contain other control cards.

Once the user's program is in storage, the loader begins to search
his files for library subprograms called by the program. The loader
reads the library subprograms into storage, re1ecating and linking them
as required. To relocate programs, the loader analyzes information on
the SLC, ICS, ESD, TXT, and REP cards. To establish linkages, it
operates on ESD, and RLD cards. Information for end-of-load transfer of
control is provided by the END and LDT cards, the ENTRY control card,
START command, or RESET option.

The loader also
INCLUDE commands.

analyzes the options specified on the LOAD
In response to specified optiens, the loader can:

• Set the load area to zeros before loading (CLEAR option).

• Load the program at a specified location (ORIGIN option) •

• Suppress creation of the load-map file on disk (NOMAP option).

and

• Suppress the printing of invalid card images in the load map (NOINV
option).

• Suppress the printing of REP card i.ages in the load map (NOREP
option).

• Load program into "transient area" (ORIGIN TRANS option) •

• Suppress TXTLIB search (NOLIBE option).

• Suppress text file search (NO AUTO option) •

• Execute the loaded program (START option) •

eMS Method of operation and program Organization 2-71

• Type the load map (TYPE option).

• set the program entry point (RESET option) •

During its operation, the loader uses a loader table (REFTBL), and
external symbol identification table (ESIDTB), and a location counter
(LOCCNT). The loader table contains the names of control sections and
entry points, their current location, and the relocation factor. (The
relocation factor is the difference between the compiler-assigned
address of a control section and the address of the storage location
where it is actually loaded.) The ESIDTB contains pointers to the
entries in REFTBL for the control section currently being processed by
the loader. The loader uses the location counter to determine where the
control section is to be loaded. Initially, the loader obtains from the
nucleus constant area the address (LOCCNT) of the next location at
which to start loading. This value is subsequently incremented by the
length indicated on an ESD (typeO), END, or ICS card, or it may be reset
by an SLC card.

The loader contains a distinct routine for each type of input card.
~he5e ~ouLill~b ~eLio£m calculations using information contained in the
nucleus constant area, the location counter, the ESIDTB, the loader
table, and the input cards. Other loader routines perform
initialization, read cards into storage, handle error conditions,
provide disk and typewritten output, search libraries, convert
hexadecimal characters to binary, process end-of-file conditions, and
begin execution of programs in core.

Following are descriptions of the individual subprocessors with LDR.

SLC CARD ROUTINE

Function
---rhis- routine sets the location counter (LOCCT) to the address

specified on an SLC card, or to the address assigned (in the REFTBL)
to a specified symbolic name.

~~trI
The routine is entered at the first instruction when it receives
control from the initial and resume loading routine. It is entered
at ORG2 whenever a loader routine requires the current address of a
symbolic location specified on an SLC card.

QE~g1ion
This routine determines which of the following situations exists, and
takes the indicated action:

1~ The SLC card does not contain an address or a symbolic name.
The SLC card routine branches, via BADCRD in the reference table
search routine, to the disk and type output routine (D~SLIO),
which generates an error message.

2. The SLC card contains an address only. The SLC card routine
sets the location counter (LOCCT) to that address and returns to
RD, in the initial and resume loading routine, to read another
card.

3. The SLC card contains a name only, and there is a reference
table entry for that name. The SLC card routine sets LOCCT to
the current address of that name (at ORG2) and returns to the
initial and resume loading routine to get another card.

2-72 IBM VM/370 System Logic and Program Determination--Voluae 2

4. The SLC card contains a name only, and there is no reference
table entry for that name. The SLC card routine branches via
ERRSLC to the Disk and Type output routine (DMSLIO), which
generates an error message for that name.

5. The SLC card contains both an address and a name. If there is a
REFTBL entry for the name, the sum of the current address of the
name and the address specified on the SLC card 1S placed 1n
LOCCT; control returns to the initial and resume loading routine
to get another card. If there is no REFTBL entry for the name,
the SLC card routine branches via ERRSLC to the Disk and Type
Output routine, which generates an error message for the name.

ICS CARD ROUTINE - C2AE1

Function ---rbIs- routine establishes a reference table entry for "the
control-seg_ent name on the ICS card if no entry for that name
exists, adjusts the location counter to a fullword boundary, if
necessary, and adds the card-specified control-segment length to the
location counter if necessary~

~ntry
This routine has one entry point,
entered from the initial and resume
ICS card.

named C2AE1. The routine is
loading routine when it finds an

QE~at!2n
1. The routine begins its operation with a test of card type. If

the card being processed is not an ICS card, the routine
branches to the ESD card analysis routine; otherwise, processing
continues in this routine.

2. The routine tests for a hexadecimal address on the ICS card. If
an address is present, the routine links to the DMSLSEA
subroutine to convert the address to binary, otherwise the
routine branches via BADCRD to the disk and type output routine
(DMSLIO).

3. The routine next links to the REFTBL search routine, which
determines whether there is a reference table entry for the
card-specified control-segment name. If such an entry is found,
the REFTBL search routine branches to the initial and resume
loading routine; otherwise, the REFTBL search routine places the
control-segment name in the reference table, and processing
continues.

4. The routine determines whether the card-specified
control-segment length is zero or greater than zero. If the
length is zero, the routine places the current location counter
value in the reference table entry as the control segment's
starting address (ORG2), and branches to the initial and resume
loading routine. If the length is greater than zero, the
routine sets the current location counter value at a fullword
boundary address. The routine then Flaces this adjusted current
location counter value in the reference table entry, adjusts the
location counter by adding the specified control-segment length
to it, and branches to RD in the initial and resume loading
routine to get another card.

CMS Method of Operation and Program Organization 2-73

ESD TYPE 0 CARD ROUTINE - C3AA3

Function
---rhis-routine creates loader table and ESID table entries for the

card-specified control section.

Inl£I
This routine has one entry point, location C3AA3. The routine is
entered from the ESD card analysis routine.

QR~ati2~
1. If this is the first section definition, its ESDID is proved.

2. This routine first determines whether a loader table (REFTBL)
entry has already been established for the card-specified
control section. To do this, the routine links to the REFTEL
search routine. The ESD type 0 card routine's subsequent
operation depends on whether there already is a REFTBL entry for
this control section. If there is such an entry, processing
continues with operation 5, below; if there is not, the REFTEL
search routine places the name of this control section in
REFTBL, and processing continues with operation 3.

3. The routine obtains the card-specified control section length
and performs operation 4.

4. The routine links to location C2AJ1 in the lCS card routine and
returns to C3AD4 to obtain the current storage address of the
control section from the REFTBL entry, inserts the REFTBL entry
position (N - where this is the Nth REFTBL entry) in the
card-specified ESID table location, and calculates the
difference between the current (relocate~ address of the
control section and its card-specified (assembled) address.
This difference is the relocation factor; it is placed in the
REFTBL entry for this control section. If previous ESD's have
been waiting for this CSECT, a branch is taken to SDDEF, where
the waiting elements are processed. A flag is set in the REFTEL
entry to indicate a section definition.

5. The entry found in the REFTBL is examined to determine whether
it had been defined by a COMMON. If so, it is converted from a
CO~"ON to a CSECT and performs operation 3.

6. If the entry had not been defined previously by an ESD type 0,
processing continues at 3.

7. If the entry had been defined previously as other than COMMON,
DMSLIO is called via ERROR" to print a warning message,
"DUPLICATE IDENTIFIER". The entry in the ESlD table is set
negative so that the CSECT will be skipped (that is, not loaded)
hy the TIT and RLD processing routines.

ESD TYPE 1 CARD ROUTINE - ENTESD

Function
--~hIs-routine establishes a loader table entry for the entry point

specified on the ESD card, unless such an entry already exists.

!D!II
This routine is entered from the ESD card analysis routine.

2-74 IBM VM/310 System Logic and Program Determination--Volume 2

QE~ati~~
1. Branches and links to REFIDR to

definition of the
find loader table entry for

text deck saved by the ESD 0 first section
routine.

2. The routine then adds the relocation factor and the address of
the ESD found in operation 1 or the address in LOCCBT if an ESD
has not yet been encountered. The sum is the current storage
address of the entry point.

3. The routine links to the REFTBL search routine to find whether
there is already a REFTBL entry for the card-specified entry
point name. If such an entry exists, the routine performs
operation 4. If there is no entry, the routine performs
operation 5.

4. Upon finding a REFTBL entry that has been previously defined for
the card-specified name~ the routine then compares the
REFTBL-specified current storage address with the address
computed in operation 2. If the addresses are different, the
routine branches and links to the DMSLIO routine (duplicate
symbol warning); if the addresses are the same, the routine
tranches to location RD in the initial and resume loading
routine to read another card. Otherwise, it is assumed that the
REFTBL entry was created as a result of previously encountered
external references to the entry. The DMSLSBC routine is called
to resolve the previous external references and adjust the
REFTBL entry. The entry point name and address are printed by
calling D~SLIO.

5. If there is no REFTBL entry for the card-specified entry point
name, the routine makes such an entry and branches to the DMSLIO
routine.

ESD TYPE 2 CIRD ROUTINE - C3lH1

Function
--~hIS- routine creates the proper ESID table entry for the

card-specified external name and places +~~ name's assigned address
(ORG2) in the reference table relocation factor for that name.

~~trI
This routine has two entry points: location C3lH1 and location ESDOO.
Location C3AH1 is entered fro. the ESD card analysis routine; this
occurs when an ESD type 2 card is being processed. Location ESDOO is
entered from:

• The ESD card analysis routine, when the card being processed is an
ESD type 2, and an absolute loading process is indicated.

• The ESD type 0 card routine and ESD type 1 card routine, as the
last operation in each of these routines.

Q~er~!!~B
1. When this routine is entered at location C3AH1, it first links

to the REFTBL search routine to determine whether there is a
REFTBL entry for the card-specified external name. If none is
found, the REFTBL search routine sets the undefined flag for the
new loader table entry.

CMS Method of operation and Program Organization 2-75

2. The routine resets a possible WEAK EXTRN flag. The routine next
places the REFTBL entry's position-key in the ESID table. If
the entry has already been defined by means of an ESD type 0, 1,
5, or 6, processing continues at operation 4. Otherwise, it
continues at operation 3.

3. The relocated address is placed in the RELFAC entry in the
external name's REFTBL entry.

4. The ESD type 2 card routine then determines (at location ESDOO)
whether there is another entry on the ESD card. If there is
another entry, the routine branches to location CA3A1 in the ESD
card analysis routine for further processing of this card;
otherwise, the routine branches to location RD in the initial
and resume loading routine.

Exits
--~his routine exits to location CA3A1 in the ESD card analysis routine

if there is another entry on the ESD card being processed, and exits
to location RD in the initial and resume loading routine if the ESD
card requires no further processing.

ESD TYPE 4 ROUTINE - PC

Function
--~hIs-routine makes loader table and ESIDTAE entries for private code

CSECT.

QE~fg!~~~
The ESD Type 4 Card Routine:

1. The routine LDRSYM is called to generate a unique character
string number of the form 00000001, which is left in the
external data area NITSYM; it is greater in value than
previously generated symbol.

2. The CSECT is then processed as a normal type 0 ESD with the
above assigned name.

ESD TYPES 5 AND 6 CARD ROUTINE - PRVESD AND COMESD

Function
This-routine creates reference table and ESIDTAE entries for common and
pseudo-register ESDs.

QEerg!~~B
The ESD type 5 and 6 card routine:

1. Links to ESIDINC in the ESD type 0 card routine, to update the
number of ESIDTB entries.

2. Links to the REFTBL search routine to determine whether a
reference table (REFTBL) entry has already been created. If there
is no entry, the REFTBL search routine places the name of the item
in the REFTBL.

3. If the REFTBL search routine had to create an entry for the ite.,
the ESD type 5 and 6 card routine indexes it in the ESIDTB, enters
the length and alignment in the entry, indicates whether it is a
PR or common, and branches to ESDOO in the ESD type 2 card routine
to determine whether the card contains additional ESD's to be

2-76 IBM VM/370 System Logic and Program Determination--Volume 2

processed. If the entry is aPR,
routine enters its displacement and
branching to ESDOO.

the ESD type 5 and 6 card
length in the REFTBL before

4. If the
card

REFTBL already contained an entry, the ESD type 5 and 6
routine indexes it in the ESIDTB, checks alignment and

branches to ESDOO.

!Ql~: The PR alignment is coded and placed into the REFTBL. It is an
error to encounter more restrictive alignment PR than previously
defined. A blank alignment factor is translated to fullvord alignment.

ESD TYPE 10 ROUTINE - WEAK EITRN

The WEAK EXTRN routine calls the search routine to find
in the loader table. If not found, set the WEAK EXTRN
loader table entry_ Exit to ESDOO.

TIT CARD ROUTINE - C4Al1

Function

the BITRi name
flag in the new

--~his-routine has tvo functions:
in storage.

address inspection and placing text

~ntrI
This routine
entered fro a
APR1, which
inspection.

QRerg!iQ~

has three entry points: location C4111, which is
the ESD card analysis routine, and locations REPENT and
are entered from the REP card routine for address

1. This routine begins its operation with a test of card type. If
the card being processed is not a TXT card, the routine branches
to the REP card routine; otherwise, processing continues in this
routine.

2. The routine then determines how many bytes of text are to be
placed in storage, and finds whether the loading process is
absolute or relocating. If the loading Frocess is absolute, the
routine performs operation 4, below; if relocating, the routine
perforas operation 3.

3. If the ESIDTB entry was negative, this is a duplicate to CSECT
and processing branches to RD. Otherwise, the routine links to
the REFIDR routine to obtain the relocation factor of the
current control segment.

4~ The routine then adds the relocation factor (0, if the loading
process is absolute) and the card-specified storage address.
The result is the address at which the text must be stored.
This routine also determines whether the address is such that
the text, when loaded starting at that address, overlays the
loader or the reference table. If a loader overlay or a
reference table overlay is found, the routine branches to the
LDRIO routine. If neither condition is detected, the routine
proceeds with address inspection.

CftS Method of Operation and Progra. Organization 2-77

5. The routine then determines whether an address has already been
saved for possible use as the end-of-Ioad branch address. If an
address has been saved, the routine performs operation 7; if
not, the routine performs operation 6.

6. The routine determines whether the text address is below
location 128. If the address is below location 128, it should
not be saved for use as a possible end-of-Ioad branch address,
and the routine performs operation 1; otherwise the routine
saves the address and then perforas operation 1.

1. The routine then stores the text at the address specified
(absolute or relocated) and branches to location RD in the
initial and resume loading routine to read another card.

Exits
---rhe routine exits to two locations, as follows:

1. The routine exits to location RD in the initial and resu.e
loading routine if it is being used to process a TXT card.

2. The routine exits to location APRIL in the REP card routine if
it is being used for REP card address inspection.

REP CARD ROUTINE - C4A13

Function
---rbIs-routine places text corrections in storage.

~~!!I
This routine has one entry point, location C4AA3. The routine is
entered from the TXT card routine.

QEer§!!~~
1. This routine begins its operation with a test of card type. If

the card being processed is not a REP card, the routine branches
to the RLD card routine; otherwise, processing continues in this
routine.

2. The routine then links to the HEXB conversion rcutine to convert
the REP card-specified correction address from hexadecimal to
binary.

3. The rcutine then links to the HEXE conversion routine again to
convert the REP card-specified ESID from hexadeciaal to binary.

4. The routine then determines whether the 2-byte correction being
processed is the first such correction on the REP card. If it
is the first correction, the routine performs operation 5;
otherwise, the routine performs operation 6.

5. When the routine is processing the first correction, it links to
location REPENT in the TXT card routine, where the REP
card-specified correction address is inspected for loader
overlay and for end-of-Ioad branch address saving; in addition,
if the loading process is relocating, the relocated address is
calculated and checked for reference table overlay. The routine
then performs operation 7.

6. When the correction being processed is not the
correction on the REP card, the routine branches
APR1 in the TXT card routine for address inspection.

first such
to location

2-78 IB! VM/310 Syste. Logic and Program Determination--Volume 2

7. The routine then links to the HEXB conversion routine to convert
the correction from hexadecimal to binary, places the correction
in storage at the absolute (card-specified) or relocated
address, and determines whether there is another correction
entry on the REP card. If there is another entry, the routine
repeats its processing from operation 4, above; otherwise, the
routine branches to location RD in the initial and resume
loading routine.

Exits
---When all the REP-card corrections have been processed, this routine

exits to location RD in the initial and resume loading routine.

Function
--~hIs-routine processes RLD cards, which are produced by the assembler

when it encounters address constants within the program being
assembled. This routine places the current storage address (absolute
or relocated) of a given defined symbol or expression into the
storage location indicated by the assembler. The routine must
calculate the proper value of the defined symbol or expression and
the proper address at which to store that value.

~.!!try
This routine has two entry points, locations C5AA1 and PASSTWO.

QEer~~!2.!! .
1. Location C5AA1 writes each RLD card into a work file (D"SLDR

CMSUT1). Exit to RD to process the next card.

Location PASSTWO reads an RLD card from the work file. At EeF
got to C6AB6 to finish this file.

2. The routine uses the relocation header CRH ESID) on the card to
obtain the current address (absolute or relocated) of the symbql
referred to by the RLD card. This address is found in the
relocation factor section of the proper reference table entry.
If the RH ESID ~s 0, the routine branches to the LDRIO routine
(invalid ESD).

3. The routine uses the position header (PH ESID) on the card to
obtain the relocation factor of the control segment in which the
DEFINE CONSTANT assembler instruction occurred. If the PH ESID
is 0, the routine branches to BADCRD in the REFTBL search
routine (invalid ESID). If the ESIDTAB entry is negative
(duplicate CSEeT), the RLD entry is skipped.

4. The routine next decrements the card-specified byte count by 4
and tests it for O. If the count is now 0, the routine branches
to location RD in the initial and resume loading routine;
otherwise, processing continues in this routine.

5* The routine determines the length, in bytes, of the address
constant referred to in the RLD card. This length is specified
on the RLD card.

6. The routine then adds the relocation factor obtained in
operation 3 (relocation factor of the control segment in which
the current address of the symbol must be stored), and the
card-specified address. The sum is the current address of the
location at which the symbol address must be stored.

CMS Method of Operation and Program Organization 2-79

7. The routine then coaputes the arithaetic value (symbol address
or expression value) that aust be placed in storage at the
address calculated in operation 6, above, and places that value
at the indicated address. If the value is undefined, the
routine branches to location DftSLSBB, where the constant is
added to a string of constants that are to be defined later.

8. The routine again decrements the byte count of information on
the RLD card and tests the result for zero. If the result is
zero, go to operation 2; otherwise, processing continues in this
routine.

9. The routine next checks the continuation flag, a part of the
data placed on the RLD card by the assembler. If the flag is
on, the routine repeats its processing for a new address only;
the processing is repeated froa operation 4. If the flag is
off, the routine repeats its processing for a new syabol; the
processing is repeated from operation 2.

~xits

This routine exits to location RD in the initial and resume loading
routine.

END CARD ROUTINE - C6AA1

Function
--~his-routine saves the END card address under certain circumstances,

and initializes the loader to load another control segment.

!Btry
This routine has one entry point, location C6AA1. The routine is
entered from the RLD card routine.

1. This routine begins its operation with
the card being processed is not an
branches to the LDT card routine;
continues in this routine.

a test of card type. If
END card, the routine
otherwise, processing

2. The routine then determines whether the END card contains an
address. If the card contains no address, the routine performs
operation 7, below; otherwise, the routine performs operation 3.

3. The routine next checks the end-address-saved switch. If this
switch is on, an address has already been saved, and the routine
perforas operation 7. If the switch is off, the routine
performs operation 4.

4. The routine deteraines whether loading is absolute or relocated.

5.

If the loading process is absolute, the routine perforas
operation 6; otherwise, the routine perforas operation 5.

The routine links to the REFADR
relocation factor, and adds this
address.

routine to obtain the current
factor to the card-specified

6. The routine stores the address (absolute or relocated) in area
BRAD, for possible use at the end-of-Ioad transfer of control to
the problem program.

2-80 IBM VM/310 System Logic and Program Determination--Voluae 2

7. Goes to location PASSTWO (in RLD routine) to process RLD cards.

8. The routine then clears the ESID table, sets the absolute load
flag on, and branches to the location specified in a general
register (see "Exits").

Exits
--~his routine exits to the location specified in a general register.

This may be either of two locations:

1. Location RD in the initial and resume loading routine. This
exit occurs when the END card routine is processing an END card.

2. The location in the LDT card routine that is specified by that
routine's linkage to the END card routine. This exit occurs
when the LDT card routine entered this routine to clear the ESID
table and set the absolute load flag on.

CONTROL CARD ROUTINE - CTLCRD1

Function
---rbIs-routine handles the ENTR~ and LIBRARY control cards.

~!tt£I
This routine has one entry point, location CTLCRD1. The routine is
entered from the LDT card routine.

QE~~!!Q!!§
1. The CMS function SCAN is called to parse the card.

2. If the card is not an ENTRY or LIBRARY card, the routine
determines whether the NOINV option (no printing of invalid card
images) was specified. If printing is suppressed, control
passes to RD in the initial and resume loading routine, where
another card is read. If printing is not suppressed, control
passes to the disk and type output routine (DeSLIO), where the
invalid card image is printed in the load map. If the card is a
valid control card, processing continues.

ENTRY Card
----3.--If the ~NTRY name is already defined in REFTBL, its

address is placed in ENTADR. Otherwise, a new entry is
REFTBL, indicating an undefined external reference
resolved by later input or library search), and this
entry's address is placed in ENTADR.

REFTBL
made in
(to be
REFTBL

4. The control card is printed by calling DftSLIO via CTLCRD; it
then exits to RD.

111U!A!i! Car d
5. only nonobligatory reference LIBRARY cards are bandIed; any

others are considered invalid.

6. Each entry-point name is individually isolated and is searched
for in the REFTBL. If it has already been loaded and defined,
nothing is done and the next entry-point name is processed.
Otherwise, the nonobligatory bit is set in the flag byte of the
REFTBL entry.

7. Processing continues at operation 4.

C~S Method of Operation and Program Organization 2-81

REFADR ROUTINE (DMSLDRB)

Function
--~bIs-routine computes the storage address of a given entry in the

reference table.

~gtrI
This routine has one entry point, location REFADR. The routine is
entered for several of the routines within the loader.

QEerg!!QB
1. Checks to see if requested ESDID is zero. If so, uses LOCCNT as

requested location; branches to the return location + 44;
otherwise continues this routine.

2. The routine first obtains, from the indicated ESID table entry,
the position (n) of the given entry within the reference table
!~h~~~ th~ ~iv~n ent~y i~ the nth HEFTEr entry~ .

3. The routine then multiplies n by 16 (the number of bytes in each
REFTBL entry) and subtracts this result from the starting
address of the reference table. The starting address of the
reference table is held in area TBLREF; this address is the
highest address in storage, and the reference table is always
built downward from that address.

4. The result of the subtraction in operation 2, above, is the
storage address of the given reference table entry. If there is
no ESD for the entry, goes to operation 5; otherwise, this
routine returns to the location specified by the calling
routine.

5. Adds an element to the chain of waiting elements. The element
contains the ESD data item information to be resolved when the
requested ESDID is encountered.

PRSERCH ROUTINE (DMSLDRD)

Function
--~bIs-routine compares each reference table entry name with the given

name determining (1) whether there is an entry for that name and (2)
what the storage address of that entry is.

~Bl£I
This routine is initially entered at PRSERCH, and subsequently at
location SEReH. The routine is entered from several routines within
the loader.

QE~~gl!Qn
1. This routine begins its operation by obtaining the number of

entries currently in the reference table (this number is
contained in area TBLCT), the size of a reference table entry
(16 bytes), and the starting address of the reference table
(always the highest address in storage, contained in area

TBLREF) .•

2-82 IBM VM/370 System Logic and Program Determination--Voluae 2

2. The routine then checks the number of entries in the reference
table. If the number is zero, the routine performs operation 5;
otherwise, the routine performs operation 3.

3. The routine next determines the address of the first (or next)
reference table entry to have its name checked, increments by
one the count it is keeping of name COMparisons, and cOmpares
the given name with the name contained in that entry. If the
names are identical, PRSERCH branches to the location specified
in the routine that linked to it. PRSERCH then returns the
address of the REFTBL entry; else PRSERCB performs operation 4.

4. The routine then determines whether there is another reference
table entry to be checked. If there is none, the routine
performs operation 5; if there is another, the routine
decrements by one the number of entries remaining and repeats
its operation starting with operation 3.

5. If all the entries have been checked, and none contains the
given name for which this routine is searching, the routine
increments by one the count it is keeping of name comparisons,
places that new value in area TBLCT, moves the given name to
form a new reference table entry, and returns to the calling
program.

Exits
--~his routine exits to either of two locations, both of which are

specified by the routine that linked to this routine. The first
location is that specified in the event that an entry for the given
name is found; the second location is that specified in the event
that such as entry is not found.

LOADER DATA BASES

ESD Card Codes (col. 25 •••)

£Qde r!~~ing
00 SD (CSECT or START)
Oi LD (ENTRY)
02 ER (EXTRN)
04 PC (Private code)
05 CM (COMMON)
06 ID (Pseudo-register)
OA WI (WEAK EXTERN)

ESIDTB ENTRY

The ESD ID table (ESIDTB) is constructed separately for each text deck
processed by the loader. The ESIDTB produces a correspondence between
ESD ID numbers (used on RLD cards) and entries in the loader reference
table (R!FTBL) as specified by the ESD cards. Thus, the ESIDTB is
constructed while processing the ESD cards. It is then used to process
the TXT and RLD cards in the text deck.

The ESIDTB is treated as an array and is accessed by using the ID
number as an index. Each ESIDTB entry is 16 bits long.

CMS Method of Operation and Program Organization 2-83

1

2

3

4-15

ftegDi.ng
If 1, this entry corresponds to a CSECT that has been previously
defined. All TXT cards and RLD cards referring to this CSECT in
this text deck should be ignored.

If 1, this entry corresponds to a CSECT definition (SD).

Waiting ESD itells exist for this ESDID.

Unused.

REFTBL entry number (for example 1, 2, 3, etc.)

Bit 1 is very crucial because it is necessary to use the VALUE field
of the REFTBL if the ID corresponds to an ER, Cft, or FR; but, the INFO
field of the REFTBL entry must be used in the ID corresponds to an SD.

REFTBI. EntA:Y
I

10(0)
- - - - - - HAftE

8 (8) 19 (9)
FLAG1 , INFO

I
12 (C) 113 (D)

NOTEl I VALUE
1

16 (10) 117(11)
FLAG2 1 ADDRESS

A REFTBL entry is 20 bytes. The fields have the following uses:

!AftE !i~!g: Contains the symbolic name from the ESD data item.

Loader
~ode

7C
7D
7E
7F
80
81
82
83
90

ESD
~~.Q~
00
01
03
07
05
04
02
05
06

Routine
~gbe.!
XBYTE
XfiALF
XFULL
XDBL
XUNDEF
XCXD
XCOMSET
iEAKEXT
CTLLIB

~~~.niDg 
PR - byte alignment 
PR - halfword alignment 
PR - fullword alignment 
PR - doubleword alignment 
Undefined symbol 
Resolve CXD 
Define common area 
Weak external reference 
TXTLIBs not to be used to resolve names 

!!FO !i~ld: Depends upon the type of the ESD item. 

ESD Item 
II~ 
SD (CSECT or START) 
LD (ENTRY) 
eft (COftMON) 
PR (Psuedo Register) 

INFO Field 
l1~~1!i1!g 
Relocation factor 
Zero 
Maximum length 

2-84 IBM VM/370 System Logic and Program Determination--Volume 2 



!!LU~ ~i~lg: depends upon the type of the ESD item, as does the IBPO 
field. 

ESD Item 
!I~ 

VALUE Field 
~~~]!!!!g 

SD (CSECT or START) lbsolue address
Absolue address
Absolue address
Assigned value
(starting fro. 0)

LD (ENTRY)
CM (COftMON)
PR (Pseudo register)

FLAG2 Byte

~i:! ~~g]!ing
0 Unused
i Unused
2 Unused
3 Unused

It!! l1§ni]!g
4 Unused
5 Name was located in a TITLIB
6 Section definition entry
7 Name specifically loaded from co •• and line.

Entries may be created in the loader reference table prior to tbe
actual defining of the symbol. For example, an entry is created for a
symbol if it is referenced by means of an EITRN (ER) even if the symbol
has not yet been defined or its type known. Furthermore, coa.on (CM) is
not assigned absolute addresses until prior to the start of execution by
the START command.

These circumstances are determined by the setting of the flag byte;
if the symbol's value has not yet been defined, the value field
specifies the address of a patch control block (PCB).

PATCH CONTROL BLOCK (PCB)

These are allocated from free storage and pointed at from REFTBL entries
or other PCBs.

Mea.!!i.!!.9
Address of next PCB

5-7 Location of ADCON in storage

4 Flag byte

All address constant locations in loaded program for undefined syabols
are placed on PCB chains.

LOADER INPUT RESTRICTIONS

All restrictions which apply to object files for the as linkage editor
apply to CMS loader input files.

Processing Commands that Manipulate the File
System

Figure 9 lists the CMS modules that perfora either general file systea
support functions or that perform data manipulation.

CftS Method of Operation and Program Organization 2-85

Managing the CMS File System

A description of the structure of the CftS file system and the flow of
routines that access and update the file system follows.

How CMS Files Are Organized in Storage

CMS files are organized in storage by three types of data blocks: the
file status table (FST), chain links, and file records. Figure 12 shows
how these types of data blocks relate to each other; the following text
and figures describe these relationships and the individual data blocks
in Ilore detail.

FILE STATUS TABLES

C~S files consist of 800-byte records whose attributes are described in
the file status table (FST). The file status table is defined by DSECT
FSTSECT. The FST consists of such information as the filename,
filetype, and filemode of the file, the date on which the file was last
written, and whether the file is in fixed-length or variable for.at.
Also, the FST contains a pointer to the first chain link. The first
chain link is a block that contains addresses of the data blocks that
contain the actual data for the file.

The FSTs are grouped into 800-byte blocks called FST Blocks (these
are sometimes referred to in listings as hyperblocks). Each FST block
contains 20 FST entries, each describing the attributes of a separate
file. Figure 13 shows the structure of an PST block and the fields
defined in the FST.

Master
File Directory

Address of
FSTB

File Status
Table Block (FSTB)

File Status
Table Entry

First Chain
Link (FCLl

CMS Record

Record n I
..... ---800-byte eMS Record Containing Fi!e Data Items _I

Figure 12. How C~S File Records Are Chained Together

Nth Chain
Link {NCLl

2-86 IBM VM/370 System Logic and program Determination--Volu.e 2

File Status
Table Block

FST 1

FST 2

8

Fields in a File
Status Table Entry

FILE

TYPE

~ ____ ~F:ST~4~ ____ I"llllillllrll:::::I~_1_6 __________ D_A_~_IE __ L_A_S,T_V_V_R_I~_I~_I_rC_~I~ __________ -, I FST 5 ': 20 Write Pointer 22 Read Pointer
(Number of Item) (Number of Item)

FST 6

FST 20

,

"'r

'.:

:::j'~111111r;2;4-iF~il~e~mO~d~e::~~ __ j:2~6~1~1~~~t::~\~~~f~ile~~~~ 28 Disk Address 30 Fixed 31 Flag
of 1st Chain Link Variable Byte

::

'\\\\l\l:
: .. :;:~::: ::~--------------~----------------~

36 Number of
800-B yte Data Blocks

Year

32 Item Length (F)
Max. Item Length (V)

Figure 13. Format of a File Status alack; Format of a File Status Table

CHAIN LINKS

Chain links are 200- or SOO-byte blocks of storage that chain the
records of a file in storage. There are two types of chain links: first
chain links and Nth chain links.

The first chain link points to two kinds of data. The first 80 bytes
of the first chain link contain the halfword addresses of the remaining
qO chain links used to chain the records of the file. The next 120
bytes of the file are the halfword addresses of the first 60 records of
the file.

The Nth chain links contain only half word addresses of the records
contained in the file.

Because there are 41 chain
addresses for only 60 records),
16,060 SOO-byte records.

links (of which the first
the maximu. size for any CftS

contains
file is

CftS Method of Operation and Program Organization 2-87

CftS RECORD FORftATS

CMS records are BOO-byte blocks containing the data that comprises the
file. For example, the CMS record may contain several card images or
print images, each of which is referred to a record item. Figure 14
shows how chain links are chained together.

CftS records can be
variable-length format.
single file.

stored on disk in either fixed-length or
However, the two formats may not be mixed in a

Regardless of their format, the items of a file are stored by CMS in
sequential order in as many BOO-byte records as are required to
accommodate them. Each record (except the last) is completely filled
and items that begin in one record can end on the next record. Figure
15 shows the arrangement of records in files for files containing
fixed-length records and files containing variable-length records.

The location of any item in a file containing fixed-length records is
determined by the formula:

(Item Number - 1) x Record Length
locations = ---------------------------------

800

where the quotient is the number of the item and the remainder is the
displace.ent of the item into the file.

For variable-length records, each record is preceded by a 2-byte
field specifying the length of the record.

Disk Organization

CftS virtual disks (also referred to as minidisks) are blocks
designed to externally parallel the function of real disks.
virtual disks may reside on one real disk.

of data
Several

A CftS virtual machine may have up to 10 virtual disks accessed during
a terminal session, depending on user specifications. Some disks, such
as the S-disk, are accessed during eMS initialization; however, most are
accessed dynamically as they are needed during a terminal session.

PHYSICAL ORGANIZATION OF VIRTUAL DISKS

Virtual disks are physically organized in 8CO-byte records~ Records 1
and 2 of each user disk are reserved for IPL. Record 3 contains the disk
label. Record 4 contains the master file directory. The rema~n~ng
records on the disk contain user file-related information such as the
FSTs, chain links, and the individual file records discussed above.

2-88 IBM VM/310 System Logic and Program Determination--Volume 2

Disk Address of

11
2nd Chatn Link

Disk Address of Disk Address of

3rd Chain Link 1\. Oth Data Block

I Disk .Aridress of

1 I
1\. 1st Data Block

~. \ Chain

Linkage

1 'I
Directory

l •
• Disk Address of

40th Chatn Link

I
J

• 1
Disk Address of

41 st Chatn Link r • T
Disk Address of I I 1st Data Block

I

I Disk Address of !
I I I 2nd Dala Block

-1
! I I

...l, rL

T J
Disk Address of

h 398 th Data Block

I Disk Address of

1\+ 3991h Data Block

I
D,Sk Address of

1 59th Data Block A" (n-21 • 400' 61

I I
wheren = Cha!n Link, Number

Disk Address of

60th Data Block

Figure 14. Format of the First Chain Link and Nth Chain Links

Data block structure for file consisting of fixed-length records Data block structure for file consisting of variable-length records

I
sao

1st record
~-------------------- 1 ~----l

2nd record

1st record

sao Sq«l ~--------------

L2J - - - 2nd record

-~---------- T
- ---------'------------ [9-------[9--------L3 3rd record L 4

- -------
3rd record

SOO sao ----------------1 ____ _
4th record

SOO sao

4th record
-~~--------------------~~

I L

Tt 5th record I 800

i--------------~ I
Figure 15. Arrangement of Fixed-Length Records

Records in Files
and Variable-Length

eMS Method of Operation and Program Organization 2-89

THE MASTER FILE DIRECTORY

The master file directory (MFD) is the major file management table for a
virtual disk. As mentioned earlier, it resides on cylinder 0, track 0,
record 4 of each virtual disk. Six types of information contained in
the master file directory:

• The disk addresses of the FST entries describing user files on that
disk.

• A 4-byte "sentinel," which can be either FFFD or FFFF. PFPD
specifies that extensions of the QMSK (described below) follow. PFPF
specifies that no QMSK extensions follow.

• Extensions to the QMSK, if any.

• General information describing the status of the disk:

ADTNUM -- The total number of BOO-byte blocks on the user's disk.

ADTUSED

ADTLEFT

ADTLAST
disk.

The number of blocks currently in use on the disk.

Nu.ber of blocks remaining for use (ADTNUM - ADTUSED).

Relative byte address of the last record in use on the

ADTCYL -- Number of cylinders on the user's disk.

Unit Type -- A 1-byte field describing the type of the disk: oa
for a 2314, 09 for a 3330.

A bit mask called the QMSK, which keeps track of the status of the
records on disk. The QMSK is described in more detail below.

Another bit map, called the QQMSK, which is used only for 2314
disks and performs a function similar to that of QMSK.

Figure 16 shows the structure of the master file directory. Figure
12 shows the relationship of the Master Pile Directory, which resides on
disk, to data blocks brought into storage for file management purposes,
for example, FSTs and chain links.

KEEPING TRACK OF READ/WRITE DISK STORAGE: QMSK AND QQMSK

Because large areas of disk space need not be contiguous in CMS, but are
composed of aOO-byte blocks chain-linked together, disk space management
needs to determine only the availability of blocks, not extents. The
status of the blocks on any read/write disk (which blocks are available
and which are currently in use) is stored in a table called QMSK. The
term QMSK is derived from the fact that a 2311 disk drive has four
aOO-byte blocks per track. One block is a "quarter-track", or QTRK, and
a 200-byte area is a "guarter-quarter-track", or QQTRK. The bit .ask
for 2314, 2319, 3340, or 3330 records is called the QMSK, although each
aOO-byte block represents less than a quarter of a track on these
devices.

2-90 IBM VM/370 System Logic and Program Determination--Volume 2

On a 2314 or 2319 disk, the blocks are actually grouped fifteen
aOO-byte blocks per even/odd pair of tracks. An even/odd pair of tracks
is called a track group. On a 3330 disk, the blocks are grouped
fourteen SaO-byte blocks per track. On a 3340 disk, the blocks are
grouped into eight aOO-byte blocks per track.

When the system is not in use, a user's Q~SK resides on the ~aster
File Directory; during a session it is maintained on disk, but also
resides in real storage. QMSK is of variable length, depending on how
many cylinders exist on the disk.

Each bit is associated with a particular block on the disk. The
first bit in QMSK corresponds to the first block, the second bit to the
second block, and so forth, as shown in Figure 17.

When a bit in QMSK is set to 1, it indicates that the corresponding
block is in use and not available for allocation. A O-bit indicates
that the corresponding block is available.. The data blocks are referred
to by relative block numbers throughout disk space management, and the
disk I/O routine, DMSDIO, finally converts this number to a CCHHR disk
address.

A table called QQMSK indicates which 200 byte segments (QQTRK) are
available for allocation and which are currently in use. QQ!SK contains
100 entries, which are used to indicate the status of up to 100 QQTRK
records. An entry in QQMSK contains either a disk address, pointing to
a QQTRK record that is available for allocation, or zero. QQ8SK is used
only for 2314 files; for 3330, 3340, and 3350, the first chain link
occupies the first 200-byte area of an aOO-byte block.

The QMSK and QQMSK tables for read-only disks are not brought into
storage, since no space allocation is done for a disk while it is
read-only. They remain, as is, on the disk until the disk is accessed
as a read/write disk.

CMS Method of operation and Progra. Organization 2-91

Figure 16.

OMSK for 2314 or 2319

~ 0 0 0
0 0 0

1 2 3 4
0 0 ~ 0
1 1 1
9 10 11 12

0 0 0 0

~ ~ ~ ~

1

Byte 0

Byte 364

Byte 380

Byte 382

Byte 384

Byte 599

Byte 600

.... ~ ------ 2 Bytes ---------.. ~

Disk Address of 1st FST Block

Disk Address of 2nd FST Block (if any)

· · ·
Disk Address of Nth FST Block (if any)

Sentinel

Disk Address of 1st OMSK extension (if any)

· · ·
Disk Address of Nth OMSK extension (if any)

· · ·
T

Not used - Zero filled
T · · ·

/ ADTNUM,ADTUSED,ADTLEFT,ADTLAST
(4 bytes each)

~
Not used (zero)

ADTCYL

/. First 215 Bytes of OMSK

~
V-

1 UNIT·TYPE

Entire 200·Byte OOMSK Table
~

/ TL __________ (fo_r_2_3_14_0_n_IY_) __________ ~T

Structure of the Master File Directory

1 bit 1 bit

r---- OMSK for 3330
0 0 0 0 I: 0 0 0 0
5 6 7 8
0 0 0 g 1 1 1

1 bit mt1bit

where:

g g g
1 2 3

g g g
g
4

g
13 14 15 1 C = Cylinder

H = Head
9 10 11 12

0 0 0 0

~ ~ i ~
R = Record 0 0 0 0

~ 1 J J
Bit Value Meaning

o Block available

J 1 Block in use I
Number of OMSK Extensions Number of Cylinders on Disk

Required (if any) 2314 or 2319 3330 3340 3350
0 1 - 11 1 6
1 12 - 54 7 30
2 55 - 96 31 54
3 97 - 139 55 78
4 140 - 182 79 - 102
5 183 - 203 103 - 126
6 127 - 150
7 151 - 174
8 175 - 198
9 199 -223

10 224 - 246

g
5

g
13

0
1
7

Figure 17. Disk Storage Allocation Using the QMSK Data Block

g g
6 7

g ~
14 1

0 0

a J

2-92 IBM VM/370 System Logic and Program Determination--Volume 2

g
8

~
2

0

16

J

DYNAMIC STORAGE MANAGEMENT: ACTIVE DISKS AND FILES

CMS disks and files contained on disk are physically mapped using the
data blocks described above: for disks, the QMSK, QQMSK, and the MFD;
for files, the FST, chain links, and 800-byte file records. In storage,
all of this data is accessed by means of two DSECTs whose addresses are
defined in the DSECT NUCON, ADTSECT and AFTSECT.

The ADTSECT DSECT maps information in the active disk table (ADT). This
information includes data contained in the MFD, FST blocks; the QKSK,
and QQMSK. The DSECT comprises of ten "slots," each representing one
C~S virtual ni~k_ ! slot contains siqnificant information about the
disk such as a pointer to the MFD for the disk, a pointer to the first
FST block and pointers to the QMSK and QQMSK, if the disk is a R/i disk.
Also contained in ADTSECT is information such as the number of cylinders
on the disk, the number cf records on the disk.

Each open file is represented in storage by an active file table (AFT).
The AFT (defined by the AFTSECT DSECT) contains data found on disk in
FSTs, chain links, and data records. Also contained in the AFT is such
information as the address of the first chain link for the file, the
current chain link for the file, the address of the current data block,
the fileid information for the file. Figure 1 shows the relationship
between the AFT and other CMS data blocks.

CMS ROUTINES USED TO ACCESS THE FILE SYSTEM

DMSACC ~s the control routine used to access a virtual disk. In
conjunction with DMSACM and DMSACF, DMSACC builds, in virtual storage,
the tables CMS requires for processing files contained on the disk. The
list below shows the logical flow of the main function of DKSACC.

ACCESS A VIRTUAL DISK: DKSACC

~~SACC: Scans the command line to determine which disk is specified.

DMSLAD: Looks up the address of the ADT for the disk specified on the
coHaiid line.

DMSACC: Determines whether an extension to a disk has been specified on
th;-Command line and ensures that it is correctly specified.

M~SLAD: In the case where an extension has been specified, calls DKSLAD
to ensure that the extension disk exists,.

DMSLAD: Ensures that the specified disk is not already accessed as a R/W
dIsk:--

CMS Method of Operation and Progra. Organization 2-93

DMSFNS: In the case where the specified disk is replacing a currently
accessed disk, closes any open files belonging to the duplicate disk.

~~SA~£: Verifies the parameters remaining on the command line.

DMSALU: Releases any free storage belonging to the duplicate disk via a
call-to DMSFRE. Also, clears appropriate entries in the ADT for use by
the new disk.

12l1SA~~: (Called as the first instruction by DftSACF) Reads, fro. the
Master File Directory, QMSK, and the QQftSK for the specified disk; also,
DMSACM updates the ADT for the specified disk using information from the
MFD.

DMSACF: Reads into storage all the FST blocks associated with the
specIfied disk.

DMSACC: Handles error processing or processing required to return
control to DMSINT.

Handling I/O Operations

CMS input/output operations for disk, tape, and unit record devices are
always synchronous. Disk and tape I/O is initiated via a privileged
instruction, DIAGNOSE, whose function code requests CP to perfor.
necessary error recovery. Control is not returned to CBS until the
operation is complete, except for tape rewind or rewind and unload
operations, which return control immediately after the operation is
started. No interruption is ever received as the result of DIAGNOSE
I/O. The CSW is stored only in the event of an error.

Input/output operations to a card reader, card punch, or printer are
initiated via a normal START I/O instruction. After starting the
operation, CMS enters the wait state until a device end interruption is
received frem the started device. Because the I/O is spooled by CP, CBS
does not handle any exceptional conditions other than not ready,
end-of- file, or forms overflow.

eMS input/output operations to the terminal may be either synchronous
or asynchronous. Output to the terminal is always asynchronous, but a
program may wait for all terminal input/output operations to complete by
calling the console wait routine. Input from the terminal is usually
synchronous but a user may cause CMS to issue a read by pressing the
attention key. A program may also asynchronously stack data to be read
by calling the console attention routine.

UNIT RECORD I/O PROCESSING

Seven routines handle I/O processing for CftS: DMSRDC, DftSPUR, and DBSPRT
handle the READCARD, PUNCH, and PRINT commands and pass control to te
actual I/O processors, DMSCIO (for READCARD and PURCH) or DftSPIO (for
PRINT). DMSCIO and DMSPIO issue the 510 instructions that cause I/O to
take place. Two other routines, DftSIOi and DMSITI, handle
synchronization processing for I/O operations. Figure 18 shows the
overall flow of control for I/O operations.

2-94 IBM VM/370 System Logic and Program Determination--Voluae 2

DMS
DMS
DMS

RDC
PUN
PRT

I -
1"""-

I ,

I

I I I

Channel

DMSCIO
DMSPID

--+
SIO /

DMSIOW

I ----I-
I I

-
I I

-.,..

I I

Figure 18. Flow of Control for Unit Record I/O processing

DMSITI

I

The following are more detailed descriptions of the flow of control for
the read, punch, and print unit record control functions.

~~SRDC: Initializes block length and unit record size.

Q~SC1Q: Initializes areas to read records.

Q~SC!Q: Issues an 510 command to read a record.

Q~SIQ!: Sets the wait
old PSi from NUCON.
read I/O is complete.

bit for the virtual card reader and load the I/O
This causes CMS to enter a wait state until the

DMSITI: Ensures that this interrupt is for the virtual reader. If not,
the--I/O old PSi is loaded, returning CftS to a wait state. If the
interrupt is for the reader, DKSITI resets the wait bit in the I/O old
PSi and loads it, causing control to return to D~SIOi.

Q~SIO!: Places the symbolic name of the interrupting device in the PLIST
and passes control to the calling routine.

Q~SCIO: ChecKs for SENSE information
necessary.

and handle I/O errors, if

CMS Method of Operation and Program Organization 2-95

~~SC!i: Displays a control record at the console.

~~~2~!: If another control record is encountered, formats it via D!SSCN. 

~~SC!~: Displays the new control record at the console. 

~~SFIS: Closes the file when end-of-file occurs. 

~~SR~~: Issues a CP CLOSE command to close the card reader. 

DMSPUN: Ensures that a virtual punch is available; processes PUNCH 
coiiand options. 

DMSSTT: Verifies the existence of the file and returns its starting address. 
~~~fg~: If requested, sets up a header record and calls DMSCiR to write 
it to the console.

DMSBRD: Reads a block of data into the read buffer; continues reading
untiY-the buffer is filled.

~~SC1Q: Initializes areas to punch records.

~~SCIQ: Issues the SIO instruction to punch the contents of the buffer.

~~SC1Q: Issues a call to DMSIOW to wait for completion of the punch I/O
operation.

Q~SIOW: Sets the wait bit on for the virtual punch device and loads the
I/O old PSi from NUCOI. This causes CMS to enter a wait state until the
punch operation completes.

QMSI!!: Ensures that this interrupt is for the punch. If not, the I/O
old PSi is loaded returning CMS to a wait state. If the interrupt is for
the punch, DMSITI resets the wait bit in the I/O old PSW and then loads
the PSi, returning control to DMSIOW.

DMSIOW: Places the symbolic name of the interrupting device in the PLIST
and passes control to DMSCIO.

~~SCIQ: Checks for SENSE information and handles I/O errors, if any.

~~~R~!: Handles error returns and resets constants for the next punch 
operation. 

Q~SF!~: Closes the file and returns control to the co.mand handler, 
DMSINT. 

~~in1 2 Fil~ 

~~SPi!: Determines the device type of the printer. Checks out the 
specified fileid. Checks out the options specified on the PRINT command 
line. 

DMSSCN: Verifies the existence of the file and returns its starting address. 

2-96 IBM VM/310 System Logic and Program Determination--Volume 2 



DMSPRT: Determines the record size to be printed and sets up an 
appropriate buffer area via a call to DMSFRE. 

~~SFR~: Obtains storage space to be used as a buffer. 

DMSPRT: Determines whether the file to be printed is a library member or 
an-input file. 

Q~SBRQ: Reads a record; continues reading until the buffer is filled. 
When the buffer is filled* calls DMSPIO to issue the SIO instruction to 
begin the print operation. 

~~SP!Q: Issues the print SIO instruction and then calls DMSIOW to wait 
until the the 1/0 operation completes. 

DMSIOi: Sets the wa1t D1t for tne virtual printer device and load the 
I/O-old PSW from NUCON. This causes CMS to enter a wait state until the 

~~SII!: Ensures that the interru~t is for the printer. If not, the I/O 
old PSi is reloaded, returning CMS to a wait state. If the interrupt is 
for the printer, DMSITI resets the WAIT bit in the I/O old PSi and loads 
that PSi, returning control to DMSIOW. 

Q~SIQ!: Places the symbolic name of the device in the last word of the 
PLIST and passes control to DMSPIO. 

Q~SPIQ: Performs channel testing and handles errors. TIO instructions 
and sense SIO instructions are issued during the test processing@ These 
operations are synchronized using DMSIOi and DHSITI in the manner 
described above. When the I/O completes successfully, control returns 
to DMSPRT. 

DMSPRT: Determines whether all file records have been printed. If so, 
control returns to the caller. Otherwise, the address of the buffer is 
updated and more print operations are performed. 

CMS supports the use of ASCII control characters and machine carriage 
control characters for the printed output. Part of the CMS 
implementation depends upon the fact that the set of ASCII control 
characters has almost nothing in common with the set of machine control 
characters. There are two exceptions to this, the characters X'Cl' and 
I'C3'. These two characters, when interpreted as ASCII control 
characters, have the following meanings: 

Cl Skip to channel 10 before print. 

C3 = Skip to channel 12 before print. 

The same characters, when interpreted as .achine control characters, 
have the following meanings: 

C1 Write, then skip to channel 8 after print. 

C3 = Do not write, but skip to channel 8 immediately. 

In printing lines containing carriage control characters, CMS has the 
capability of operating in two modes. In the first mode, which may be 
called ASCII control characters or machine control characters of either 
type are recognized and properly interpreted, except that the two 

CMS Method of Operation and program Organization 2-97 



conflicting characters are always interpreted as ASCII control 
characters. In the second lIode, which may be called machine-only, only 
.achine control characters are recognized, and the two conflicting 
characters are treated as machine. 

The DMSPIO function uses a bit in the plist to indicate which of the 
two modes is in effect for printing. 

The PRINTL macro always uses ASA control character or machine control 
character mode. 

The PRINT command with the CC option always runs in ASCII control 
character or machine control character mode. 

os simulation output, which is used, for example, by the "OVEFILE 
command, uses the RECFM field in the DCB or in the FILEDEF command to 
determine which mode is to be used. If FA, VA, or UA is specified, then 
ASCII control character or machine control character mode is used. If 
FM, VM, or UM is specified, then machine-only mode is used. If no 
control character specification is included with the RECFM, then it is 
assumed that thp on~pnt linp bpgins with a valid data character, rather 
than with a control character, and single spacing is always usefi. 

Handling Interruptions 

Figure 9 lists the C~S modules that process interruptions for CMS. CMS 
modules are described briefly in "C~S Module Description." SVC 9 
interruption processing is described in "Maintaining an Interactive 
Console Environment." 

Disk I/O in eMS 

Files residing on disk are read and written using DMSDIO. DMSDIO has 
two entry points: DMSDIOR, which is entered for a read I/O operation, 
and DMSDIOW, which is entered for a write operation. 

The actual disk I/O operation is performed using the DIAGNOSE code 18 
instruction. A return code of 0 from CP indicates a successful 
completion of the I/O operation. If the I/O is not successful, CP 
performs error recording, retry, recovery, or AEEND procedures for the 
virtual machine. 

READ OR WRITE DISK I/O 

Q~SD!Q: Initializes the ccw to perform read operations. 

Q~SL!Q: Obtains the address of the disk from which to read or write. 

Q~SD!Q: Determines the size of the record to be read or written. 

Q~SF!~: Gets enough storage to contain the record if the request is for 
a record longer than 800 bytes. 

DMSDIO: Reads records continually until all records for the file have 
been-read. 

2-98 IBM VM/370 System Logic and Program Determination--Volume 2 



~~SFR~: Returns the buffer to free storage if the record was longer than 
800 bytes. 

~~SD1Q: Returns to the caller. 

Managing eMS Storage 

DMSFRE handles requests for CMS free storage. The sections of CMS 
storage have the following uses: 

• DMSNUC (X'OOOOO' to approximately X'03000') - This is 
constant area. It contains pointers, flags, and 
maintained by the various system routines. 

the nucleus 
other data 

- LOw-core DMSFREE free storage area (app~oximately X'03000' to 
X'OEOOO') - This area is a free storage area, from which requests 
from DMSFREE are allocated. The top part of this area contains the 
file directory for the system disk (SSTAT). If there is enough room 
(as there will be in most cases), the FREETAB table also occupies 
this area, just below the SSTAT. 

• Transient program area (X' OEOOO' to X 110000 ') Because it is not 
essential to keep all nucleus functions resident in storage all the 
time, some of them are made "transient." This means that when they 
are needed, they are loaded from the disk into the transient program 
area. Such programs may not be longer than two pages, because that 
is the size of the transient area.. (A page is 4096 bytes of virtual 
storage. ) 

• CMS nucleus (X'10000' to X'20000') - Segment 1 of storage contains 
the reentrant code for the eMS nucleus routines. In shared CMS 
systems, this is the protected segment. That is, this segment must 
consist only of reentrant code, and may not be modified under any 
circumstances. This fact implies certain system restrictions for 
functions which require that storage be mOdified, such as the fact 
that DEBUG breakpoints or CP ADSTOP commands cannot te placed in this 
segment, in a saved system. 

• User program area (1'20000' to loader tableS) - User programs are 
loaded into this area by the LOAD command. Storage allocated by 
means of the GETMAIN macro instruction is taken from this area, 
starting from the high address of the user program. In addition, 
this storage area can be allocated from the top down by DMSFREE, if 
not enough storage is available in the low-core DMSFREE storage area. 
Thus, the effective size of the user program area is reduced by the 
amount of free storage which has been allocated from it by DMSFREE. 

• Loader tables (top pages of storage) - The top of storage is occupied 
by the loader tables, which are required by the CMS loader. These 
tables indicate which modules are currently loaded in the user 
program area (and the transient program area after a LOAD command). 
The size of the loader tables can be varied by the SET LDRTBLS 
command. 

TYPES OF ALLOCATED FREE STORAGE 

Free storage can be allocated by means of the GETMAIN or DMSFREE macros. 

Storage allocated by means of the GETMAIN macro is taken fro. the 
user program area, beginning with the high address of the user program. 

CMS Method of Operation and Program Organization 2-99 



Storage allocated by means of the DftSFREE macro can be taken from 
several areas. 

First, DMSFREE requests are allocated from the low-address free 
storage area. If requests cannot be satisfied from there, they will be 
satisfied from the user program area. 

In addition, requests are further broken down between requests for 
user storage and nucleus storage, as specified in the TYPE parameter of 
the DMSFREE macro. These two types of storage are kept in separate 4K 
pages. It is possible, if there are no 4K pages completely free in lew 
storage, for no storage of one type to be available in low storage, 
while there is storage of the other type available there. 

GETMAIN FREE STORAGE MANAGEMENT POINTERS 

All GETMAIN storage is allocated in the user program area, starting from 
the end of the user's actual program. Allocation beqins at the location 
pointed to by IUCOI pointer MAIISTRT. The location HAINHIGH in IUCON is 
the pointer to the highest address of GETMAIN storage. 

When the STRINIT macro is executed, both MAINSTRT and MAINHIGH are 
initialized to the end of the user's program, in the user progra. area. 
As storage is allocated from the . user program area to satisfy GET MAIN 
requests, the MAINHIGH pointer is adjusted upward. Such adjustments 
are always in multiples of doublewords, so that this pointer is always 
on a doubleword boundary. As the allocated stcrage is released, this 
pointer is adjusted downward. 

The pointer MAINHIGH can never be higher than FREELOWE, the pointer 
to the lowest address of DMSFREE storage allocated in the user program 
area. If a GETMAIN request cannot be satisfied without extending 
MAINHIGH above FREELOWE, GETMAIN takes an error exit, indicating that 
insufficient storage is available to satisfy the request. 

The area between MAINSTRT and MAINHIGH may contain blocks of storage 
that are not allocated, and that are therefore available for allocation 
by a GETMAIN instruction. These blocks are chained together, with the 
first one pointed to by the NUCON location MAINLIST. 

The format of an element on the GETMAIN free element chain is as 
follows: 

<-------------- 4 bytes --------------) 

FREPTR -- pointer to next free 
0(0) element in the chain, or 0 

if there is no next element 

FRELEN -- length, in bytes, of 
4(4) this element 

Remainder of this free element 

2-100 IBM VM/370 System Logic and Program Determination--Volume 2 



DMSFREE FREE STORAGE POINTERS 

The pointers FREEUPPR and FREELOWE in NUCON indicate the amount of 
storage which DMSFREE has allocated from the high portion of the user 
program area. These pointers are initialized to the teginning of the 
system loader tables. 

The pointer FREELOVE is the pointer to the levest address of D8SPREE 
storage in the user program area, As storage is allocated fros the user 
program area to satisfy D8SFREE requests, this pointer is adjusted 
downward. Such adjustments are always in multiples of 4K, so that this 
pointer is always on a 4K boundary. As the allocated storage is 
released, this pointer is adjusted upward when whole 4K pages are 
completely free. 

The pointer FREELOVE can never be lower than ftAINHIGH, the pointer to 
the highest address of GETHAIN storage. If a D5SFREE request cannot be 
satisfied without extending FREELOVE below 8AINHIGH, then D8SPBEE takes 
an error exit, indicating that insufficient storage is available to 
satisfy the request. 

The FREETAB free storage table is kept in free storage, usually just 
below the master file directory for the system disk. If there was no 
space available there, then FREETAB was allocated from the top of the 
user program areao This table contains one byte for each page ef 
virtual storage. Each such byte contains a code indicating the use of 
that page of virtual storage. The codes in this table are as follows: 

g~]g~QQ~ (1): If the page is assigned to user storage. 

!QCCQQ~ (~): If the page is assigned to nucleus storage. 

!~!~QQ~ (J): If the page is part of the transient program area. 

Q~!g~QQ~ (~): If the page is part of the user program area. 

~!~fQQ] (~): If the page is none of the above. 

In these cases, the page is assigned to system storage, system code, 
or the loader tables. 

Other DMSFREE storage pointers are maintained in the DMSFRT control 
section, in NUCON. The most important fields there are the four chain 
header blocks. 

Four chains of elements are not allocated to be associated with 
DMSFREE storage: The low-storage nucleus chain, the low-storage user 
chain, the high-storage nucleus chain, and the high-storage user chain. 
For each of these chains, exists a control block consisting of four 
words, with the following format: 

CMS Method of Operation and program organization 2-101 



These fiel~z 

<------------- 4 bytes -------------) 
.--
IPOINTER -- pointer to the first 

o (0) I 
I 
I 

free element on the chain, or 
zero, if the chain is empty. 

I NUM -- the number of elements on 
4 (4) 1 the chain. 

I 
I 
I MAX -- the value in this werd is 

8 (8) I the size of the largest free 
I element on the chain. 
I 
I FLAGS- I SKEY - I TCODE -I Unused 

12(C) I Flag IStorage IFREETAB I 
I byte I key I code , L--__________________________________ ~ 

the follcving uses; 

POINTER This field points to the first element on this chain of free 
elements. If there are no elements on this free chain, then 
the POINTER field contains a zero. 

NUM This field contains the number of elements on this chain of 
free elements. If there are no elements on this free chain, 
then this field contains a zero. 

MAX This field is used for the purpose of avoiding searches which 
will fail. It contains the size, in bytes, of the largest 
element on the free chain. Thus, a search for an element of a 
given size will not be made if that size exceeds the ftAX field. 

FLAGS The following flags are used: 

FLCLN (X' 80') 
Clean-up flag - This flag is set if the chain must be cleaned up. 
This is necessary in the following circumstances: 

- If one of the two high-core chains contains a 4K page that is 
pointed to by FREELOWE, then that page can be removed from the 
chain, and FREELOVE can be increased. 

- All completely non-allocated 4K pages are kept on the user 
chain, by convention. Thus, if one of the nucleus chains 
(low-core or high-core) contains a full page, then this page must 
be transferred to the corresponding user chain. 

FLCLB (X'40') 
Clobbered flag - Set if the chain has been destroyed. 

FL H C (X ' 20 • ) 
High-core chain - Set for both the nucleus and user high-core 
chains. 

FLHU (X' 10') 
Nucleus chain - Set for both the low-core and high-core nucleus 
chains. 

2-102 IBM VM/370 System Logic and program Deter.ination--Volume 2 



FLPA (X'OS') 
Page available - This flag is set if 
available on the chain. Note that this 
there is no such page available. 

there is a full 
flag may be set 

4K page 
even if 

SKEY This one-byte field contains the storage key assigned to storage 
on this chain. 

TCODE This ene-byte field contains the FREETAB table code for storage on 
this chain. 

Each element on the free chain has the following format: 

<------------- 4 bytes -------------) 
r--
I POINTER -- pointer to the next 

0(0) I element in the free chain 
I 
1------------------------------------
I SIZE -- size of this free 

4 (4) element, in bytes 

Remainder of this free element 

When the user issues a variable length GETMAIN, the control program 
reserves 6 1/2 pages for C~S usage; this is a designed and set value. 
If the user wants more space, fer example, fer more directories, be 
should free (from the high end of storage) some of the variable GET~AIN 
area. 

As indicated in the illustration above, the POINTER field points to 
the next element in the chain, or contains the value zero if there is no 
next element. The SIZE field contains the size of this element, in 
bytes. 

All elements within a given chain are chained together in order of 
descending stcrage address. This is done for two reasons: 

1. Because the allocation search is satisfied by the first free 
element that is large enough, the allocated elements are grouped 
together at the top of the storage area, and prevent storage 
fragmentation. This is particularly important for high-storage 
free storage allocations, because it is desirable to keep FREELOWE 
as high as possible. 

2. If free storage does become somewhat fragm~nt~d, the search causes 
as few page faults as possible. 

As a matter of convention, completely nonallccated 4K pages are kept 
on the user chain rather than the nucleus chain. This is because 
requests for large blocks of storage are made, most of the time, from 
user storage rather than from nucleus storage. Nucleus requests need to 
break up a full page less frequently than user requests. 

c~s Method of operation and Program Organization 2-103 



DMSFRE METHOD OF OPERATION 

A description of the algorithms which allocate and release blocks 
follows. The descriptions are based on the assumption that neither 
AREA=LOW nor AREA=HIGH was specified in the D~SFREE macro call. If 
either was specified, then the algorithm must be appropriately modified. 

ALLOCATING Y~~R ~R~! ~IQR!Q~: When DMSFREE with TYPE=USER (the default) 
Is-Cilled; the following steps are taken to satisfy the request. As 
soon as one of the steps succeeds, then processing can terminate. 
DMSFRE: 

1. Searches low-storage user chain for a block of the required size. 

2. Searches the high-storage user chain for a block of the required 
size. 

3. Extends high-storage user storage downward into the user program 
area, modifying FREELOWE in the process. 

4. For fixed requests, there is nothing more to try. For variable 
requests, DMSFRE puts all available storage in the user program 
area onto the high-storage user chain, and then allocates the 
largest block available on either the high-storage user chain or 
the low-storage user chain. The allocated block is not 
satisfactory, if it is not larger then the minimum requested size. 

ALLOCATING NUCLEUS FREE ~!QR!Q!: When DftSFREE with 
called;--the-following--steps are taken in an attempt 
request, until one succeeds. DMSFREE: 

TYPE=NOCLEUS 
to satisfy 

is 
the 

1. Searches the low-storage nucleus chain for a block of the required 
size. 

2. Gets free pages from low-storage user chain, if any are available, 
and removes them to the low-storage nucleus chain. 

3. Searches the high-storage nucleus chain for a block of the required 
size. 

4. Gets free pages from the high-storage user chain, if they are 
available, and removes them to the highstorage nucleus chain. 

5. Extends high-storage nucleus storage downward into the user program 
area, modifying FREELOWE in the process. 

6. For fixed requests, there is nothing more to try. For variable 
requests, DMSFRE puts all available pages from the user chains and 
the user program area onto the nucleus chains, and allocates the 
largest block available on either the low-storage nucleus chains or 
the high-storage nucleus chains. 

~~LE!~l!Q ~!QR!Q~: When DMSFRET is called, the clock teing released is 
placed on the appropriate chain. At that point, the cleanup operation 
is performed, if necessary, to advance FREELOVE, or to move pages from 
the nucleus chain to the corresponding user chain. 

Similar cleanup operations are performed, when necessary, after calls 
to DMSFREE, as well. 

2-104 IBM VM/370 System Logic and Program Determination--Volume 2 



RELATIVE EFFICIENCY OF D~SFREE REQUESTS 

The types of DMSFREE request in decreasing order of efficiency, are as 
follows: 

1. User fixed storage requests, any size. 

2. Nucleus fixed storage requests, for small blocks (less than one 
page in size). 

3. Nucleus fixed storage request, for large blocks. 

4. User variable storage requests. 
efficient than fixed requests, if 
can be allocated.) 

(Variable requests are no less 
the maximum block size requested 

5. Fixed variable storaae requests. if the maxi.um block size 
requested cannot be allocated. . 

RELEASING ALLOCATED STORAGE 

STORAGE ALLOCATED BY GET~AIN: Storage allocated by the GET!II! macro 
Instruction-iay~e released-In any of the following ways: 

• A specific block of such storage may be released by means of the 
FREEMAIN macro instruction. 

• The STRINIT macro instruction releases all storage allocated by any 
previous GETftAIN requests. 

• Almost all CMS commands call the STRINIT routine. Thus, executing 
almost any CMS command causes all GET!!IN storage to be released. 

STORAGE ALLOCATED BY DMSFREE: Storage allocated by the D!SPREE macro 
Instruction-may-be released-In either of the following ways: 

• ! specific block of such storage May be released by .eans of t~e 
DMSFRET macro instruction. 

• Whenever any user routine or eMS 
DMSABN is entered), and the ABEND 
invoked, all DMSFREE storage 
automatically. 

command abends (so that the routine 
recovery facility of the syste. is 

with TYPE=USER is released 

Except in the case of ABEND recovery, storage allocated by the DftSFREE 
.acro is never released automatically by the system. Thus, storage 
allocated by means of this macro instruction should always be released 
explicitly by .eans of the DMSFRET macro instruction. . 

DMSFRE SERVICE ROUTINES 

The system uses the DMSFRES macro instruction to request certain free 
storage management services. The options and their meanings are as 
follows: 

• INIT1--DMSINS calls this option to 
initialization routine, to allow free 

invoke the first free storage 
storage requests to access the 

CMS Method of Operation and Program Organization 2-105 



system disk. Before this routine is invcked, no free storage 
requests .ay be made. If ter" this routine bas been invoked, free 
storage requests may be made, but these are subject to the following 
restraints until the second frce storage management initialization 
routine has been invoked: 

All requests for user storage are changed to requests for nucleus 
storage. 

Only partial error checking is performed by the DMSFRET routine. 
In particular, it is possible to release a block that was never 
allocated. 

All requests that are satisfied in high stcrage must be temporary, 
because all high storage allocated is released when the second 
free storage initialization routine is invoked. 

When CP's saved system facility is used, the CMS system is saved 
at the point just after the system disk has been accessed. This 
means that it is necessary for DMSFRE to be used before the Slze of 
virtual storage is known, because the saved system can be used on any 
size virtual machine. Thus, the first initialization routine 
initializes DftSFRE so that limited functions can be requested, while 
the second initialization routine performs the initialization 
necessary to allow the full functions of DMSFRE to be requested. 

• INIT2--This option is called by DMSINS to invoke the second 
initialization routine. This routine is invoked after the size of 
virtual storage is known, and it performs the initialization 
necessary to allow all the functions of DMSFRE to be used. The 
second initialization routine performs the following steps: 

Releases all storage that has been allocated in the highstorage 
area. 

Allocates the FREETIB free storage table. This table contains one 
byte for each 4096-byte page of virtual storage, and so cannot be 
allocated until the size of virtual storage is known. It is 
allocated in the low-address free storage area, if there is enough 
room available. If not, then it is allocated in the higher free 
storage area. For a 256K virtual machine, FREETIB contains 64 
bytes; for a 16 million byte machine, it contains 4096 bytes. 

The FREETIB table is initialized, and all storage protection keys 
are initialized. 

All completely non-allocated 4K pages 
chain are removed to the user chain. 
up operations are performed. 

on the nucleus free storage 
Any other necessary cleaning 

• CHECK--This option can be called at any time for system debugging 
purposes. It invokes a routine that performs a thorough check of all 
free storage chains for consistency and correctness. Thus, it checks 
to see whether any free storage pointers have been destroyed. 

• CKON--This option turns on a flag which causes the CHECK routine 
described in the preceding paragraph to be invoked each time any call 
is made to DftSFREE or DMSFRET. This can be useful to pinpoint a 
problem that is, for example, destroying free storage management 
pointers. Care should be taken when using this option# because the 
CHECK routine is coded to be thorough rather than efficient. 

2-106 IBM VM/370 System Logic and Program Determination--Volume 2 



Thus, after the CKON option has been invoked, each call to DMSFREE or 
DMSFRET takes many times as long to be completed as before. This can 
impact the efficiency of system functions. 

• CKOFF--Use of this option turns off the flag that was turned by the 
CKON option, described in the preceding paragraph. 

• UREC--This option is called by DMSABN during the ABEND recovery 
process to release all USER storage. 

• CALOC--This option is called by DMSABN after the ABEND recovery 
process has been completed. It invokes a routine that returns, in 
register 0, the number of doublewords of free storage that have been 
allocated. This figure is used by DMSABN to determine whether ABEND 
recovery has been successful. 

STORAGE PROTECTION KEYS 

In general, the following rule applies: ~ystem storage is assigned the 
storage key of X'F', while user storage ~s assigned the key of X'E'. 
This is the storage key associated with the protected areas of storage, 
not to be confused with the PSi or CAW key used to access that storage. 

The specific key assignments are as follows: 

• The NUCON area is assigned the key of X'F', with the exception of a 
half-page containing the OPSECT and TSOBLOKS areas, which has a key 
of X'E'. 

• Free storage allocated by DMSFREE is broken up into user storage and 
nucleus storage. The user storage has a protection key of X'E', 
while the nucleus storage has a key of X'P'. 

• The transient program area has a key of X'E'. 

• The CMS nucleus code has a storage key of X'F'. In saved systems, 
this entire segment is protected by CP from modification even by the 
CMS system, and so must be entirely reentrant. 

• The user program area is assigned the storage key of X'E', except for 
those pages which contain Nucleus DMSFREE storage. These latter 
pages are assigned the key of X'F'. 

• The loader tables are assigned the key of X'F'. 

CMS SYSTEM HANDLING OF PSi KEYS 

The CMS nucleus protection scheme protects the CMS nucleus fro. 
inadvertent destruction by a user program. This mechanism, however, 
does not prevent a user from writing in system storage intentionally. 
Because a CMS user can execute privileged instructions, he can issue a 
LOAD PSi (LPSW) instruction and load any PSi key he wishes. If a user 
defeats nucleus protection in this way there is nothing to prevent his 
program from: 

• Modifying nucleus code 

CMS Method of Operation and Program Organization 2-107 



• Modifying a table or constant area 

• Losing files by modifying a CMS file directory 

In general, user programs and disk-resident CMS commands run with a 
PSi key of X'E', while nucleus code runs with PSi key of X'O'. 

There are, however, some exceptions to 
disk-resident CMS commands run with a PSi key of 
to modify nucleus pointers and storage. On the 
routines called by the GET, PUT, READ and WRITE 
PSi key of X'E', to increase efficiency. 

this rule. Certain 
X'O', because they need 
other hand, the nucleus 
macros run with a user 

Two macros, DMSKEY and DMSEXS, are available for changing the PSi 
key. The DMSKEY macro changes the PSi key to the user value or the 
nucleus value. DMSKEY NUCLEUS causes the current PSi key to be placed 
in a stack, and a value of 0 to be placed in the PSi key. DMSKEY USER 
causes the current PSi key to be placed in a stack, and a value of X'E' 
to be placed in the PSi key. DMSKEY RESET causes the top value in the 
DMSKEY stack to be removed and re-inserted into the PSW. 

It is a CMS requirement when a routine terminates, that the DMSKEY 
stack must be empty. This means that a routine should execute a DMSKEY 
RESET macro instruction for each DMSKEY NUCLEUS macro instruction and 
each DMSKEY USER macro instruction executed by the routine. 

The DMSKEY key stack has a maximum depth of seven for each routine. 
In this context, a "routine" is anything invoked by an SVC call. The 
DMSEXS ("execute in system mode") macro instruction is useful in 
situations where a routine is running with a user PSW key, but wishes to 
execute a single instruction with the nucleus PSi key. The single 
instruction may be specified as the argument to the DMSEXS macro, and 
that instruction is executed with a system PSi key. 

CP HANDLING FOR SAVED SYSTEMS 

The explanation of saved system nucleus protection depends on the VSK, 
RSK, VPK and RPK: 

1. Virtual Storage Key (VSK) - This is the storage key assigned by the 
virtual machine using the virtual SSK instruction. 

2. Real Storage Key (RSK) - This is the actual storage key assigned 
by CP to the 2K page. 

3. Virtual PSi Key (VPK) - This is the PSi storage key assigned by the 
virtual machine, by means of an instruction such as LPSW (Load 
PSi). 

4. Real PSi Key 
which is in 
running. 

(RPK) - This is the PSW storage key assigned by CP, 
the real hardware PSi when the virtual machine is 

When there are no shared segments 
storage protection works as it does on 
pages, and RPK=VPK for the PSi. 

in the virtual machine, then 
a real machine. RSK=VSK for all 

However, when there is a shared segment (as in the case of segment 1 
of CMS in the saved system), it is necessary for CP to protect the 
shared segment. For non-CMS shared systems, it does this by, 
essentially, ignoring the values of the VSKs and VPK, and assigning the 

2-108 IBM VM/370 System Logic and Program Determination--Volume 2 



real values as follows: RSK=O for each page of the shared segment, 
RSK=F for all other pages, and RPK=F, always, for the real PSi. The SSK 
instruction is ignored, except to save the key value in a table in case 
the virtual machine later does an ISK to get it back. 

For the CMS saved system, the RSKs and RPK are initialized as before, 
but resetting the virtual keys has the following effects: 

• If the virtual machine uses an SSK instruction to reset a VSK, CP 
does the following: If the new VSK is nonzero, CP resets the RSK to 
the value of the VSK; if the new VSK is zero, CP resets RSK to F. 

• If the virtual machine uses a LPSi (or other) instruction to reset 
the VPK, CP does the following: If the new VPK is zero, CP resets the 
RPK to the value of the VPK; if the new VPK is zero, CP resets RPK to 
F. 

• If the VPK=O and 
differently. In 
program to store 
storage key. But 
unless the RPK of 

the RPK=F, storage protection may be handled 
a real machine, a PSi key of 0 would allow the 
into any storage location, no matt~r what the 

under CP, the program gets a protection violation, 
the page happens to be F. 

Because of this, there is extra code in the CP program check handling 
routine. Whenever a protection violation occurs, CP checks to see if 
the following conditions hold: 

The virtual machine running is the saved CMS system, running 
with a shared segment. 

The VPK = O. The virtual machine is operating as though its PSi 
key is O. 

The RSK of the page into which the store was attempted is 
nonzero, and different from the RPK. 

If anyone of these three conditions fails to hold, then the 
protection viclation is reflected back to the virtual machine. 

If all three of these conditions hold, then the RPK (the real 
protection key in the real PSW) is reset to the RSK of the page into 
which the store was attempted. 

~XFECT Q! £~~: In CMS, this works as 
storage in protect key F (RSK = VSK = 
key E (RSK = VSK = E). 

follows: CMS keeps its system 
F), and user storage in protect 

When the CMS supervisor is running, it runs in PSi key 0 (VPK = 0, 
RPK = F), so that CMS gets a protection violation the first time it 
tries to store into user storage (VSK = RSK = E). At that point, CP 
changes the RPK to E, and lets the virtual machine re-execute the 
instruction which caused the protection violation. There is not another 
protection violation until the supervisor goes back to storing into 
system-protected storage. 

E~STB1~I10N~ Q! £MS: There are several coding restrictions which must 
be imposed on CMS if it is to run as a saved system. 

The first and most obvious one is that CftS may never modify segment 
1, the shared segment, which runs with a RSK of C, although the VSK = F. 

A less obvious, 
never modify with 

but just as important, restriction, is that eMS may 
a single machine instruction (except MVeL) a section 

CMS Method of Operation and Program Organization 2-109 



of storage which crosses the boundary between two pages with different 
storage keys. This restriction applies not only to SS instructions, 
such as MVC and ZAP, but also to RS instructions, such as STft, and to RX 
instructions, such as ST and STD, which may have nonaligned addresses on 
the Systea/370. An exception is the eVCL instruction which can be 
restarted after crossing a page boundary because the registers are 
updated when the paging exception occurs. 

This restriction also applies to I/O instructions. If the key 
specified in the CCW is zero, then the data area for input may not cross 
the boundary between two pages with different storage keys. 

Q!ER~~!Q: It can be seen that this system is most inefficient when 
"storage-key thrashing" occurs -- when the virtual machine with a VPK of 
o jumps around, storing into pages with different VSK's. 

ERROR CODES FROft DeSFREE, DeSFRES, AND DftSFRET 

! nonzero rct~rn ccde, ~po~ return f=o: ~~S!~E~, D~S!R~E or ~~Spn~T, 
indicates that the request could not be satisfied. Register 15 contains 
this return code, indicating which error has occurred. The codes below 
apply to the DMSFRES, DMSFREE and DftSFRET macros. 

Code ,--
2 

3 

ErI2I 
DMSFREE -- Insufficient storage space is available to satisfy the 
request fer free storage. In the case of a variable request, 
even the minimum request could not be satisfied. 

DftSFREE or DMSFRET User storage pointers destroyed. 

DMSFREE or DMSFRET Nucleus storage pointers destroyed. 

4 DMSFREE An invalid size was requested. This error exit is 
taken if the requested size is not greater than zero. In the 
case of variable requests, this error exit is taken if the 
minimum request is greater than the maximum request. However, 
the error is not detected if DftSPREE is able to satisfy the 
maximum request. 

5 DMSFRET An invalid size was passed to the DMSFRET macro. This 
error exit is taken if the specified length is net positive. 

6 DMSFRET -- The block of storage which is teing released was never 
allocated by DMSFREE. Such an error is detected if one of the 
following errors is found: 

a. The block is not entirely inside either the free storage area 
in low storage or the user program area between FREELOWE and 
FREEUPPR. 

b. The block crosses 
allocated for user 
type storage. 

a page-boundary which separates a page 
storage from a page allocated for nucleus 

c. The block overlaps another block already on the free storage 
chain. 

7 DMSFRET -- The address given for the block being released is not 
a doubleword boundary. 

8 DMSFRES -- An illegal request code was passed to the DMSPRES 
routine. Because all request codes are generated by the D~SFRES 
macro, this error code should never appear. 

2-110 IBM VM/370 System Logic and Program Determination--Volume 2 



9 DMSFRE, DMSFRET, or DMSFRES 
occurred. 

An unexpected internal error 

THE DMSFRES MACRO 

CMS uses the DMSFRES 
management services. 
unpredictable results. 

.acro to request special internal free storage 
Use of this macro by non-system routines causes 
The format is: 

r-------------------------------------------------~ 
I label DMSFRES option 

where "option" is one of the following: 

INITl Performs the C~s system first initialization routine. 

INIT2 Performs the CMS system second initialization routine. 

CHECK Invokes a routine that checks the validity of all current free 
storage management pointers. 

CKON Sets a flag that causes the CHECK to be invoked for each call to 
DMSFREE or DMSFRET. 

CKOFF Turns off the above flag. 

UREC Assists ABEND recovery, by releasing all USER-type DMSFREE 
storage allocations. 

CALOC Assist ABEND recovery, by computing the total amount of allocated 
storage, excluding the system disk MFD and the FREETAB table. 

For a full discussion of the meanings of these options, refer to 
"DMSFRE Service Routines." 

THE DMSKEY MACRO 

CMS uses the DMSKEY macro to modify the PSi storage protection key so 
that the nucleus code can store data into protected storage. The format 
is: 

NUCLEUS 

USER 

[label) DMSKEY {NUCLEUS[,NOSTACK]I 
USER(,NOSTACK)I 
LASTUSER[,NOSTACK]I 
RESET} 

The nucleus storage protection key is placed in the PSR, and 
the old contents of the second byte of the PSi is saved in a 
stack. Use of this option allows the program to store into 
system storage, which is ordinarily protected. 

The user storage protection key is placed in the PSi, and the 
old contents of the second byte of the PSi is saved in a 
stack. Use of this option prevents the program from 
inadvertently modifying nucleus storage, which is protected. 

CMS Method of Operation and Program Organization 2-111 



LASTUSER The SVC handler traces back through its system save areas for 
the active user routine closest to the top of the stack, and 
the storage key in effect for that routine is placed in the 
PSi. The old contents of the second tyte of the PSi is saved 
in a stack. This option should be used only by system 
routines that should enter a user exit routine. 

NOSTACK This option may be used with any of the above options to 
prevent the system from saving the second byte of the current 
PSi in a stack. If this is done, then no DMSKEY RESET need be 
issued later. 

RESET The seccnd byte of the PSW is changed to the value at the top 
of the PSi key stack, and removed from the stack. Thus, the 
effect of the last DMSKEY NUCLEUS or USER or LASTUSER request 
is reversed. This option should may not be used to reverse 
the effect of a DMSKEY macro for which the NOSTACK option was 
specified. A DMSKEY RESET macro must be executed for each 
DMSKEY NUCLEUS, USER or LASTUSER macro that was executed and 
that did not specify the NOSTACK option. Failure to observe 
this rule results in program abnormal termination. 

THE DMSEXS MACRO 

System commands running in user protect status use the DMSEXS macro to 
execute a single instruction with a system protect key in the PSi. This 
macro instruction can be used in lieu of two DMSKEY macros. The format 
is: 

r---------------------------------------------------
I [label] I DMSEXS I op-code,operands 

The op-code and the operands of the instruction to be executed must 
be given as arguments to the DMSEXS macro. 

For example, execution of the sequence, 

USING NUCON,O 
DMSEXS OI,OSSFLAGS,COMPSiT 

would cause the 01 instruction to be executed with a zero protect key in 
the PSi. This sequence would turn on the COMPSiT flag in the nucleus. 
It would be reset with 

DMSEXS NI,OSSFLAGS,255-COMPSWT 

The instruction to be executed may be an EX instruction. 

Register 1 cannot be used in any way in the instruction being 
executed. 

2-112 IBM VM/370 System Logic and Program Determination--Volume 2 



Simulate Non-eMS Operating Environments 

The following contains descriptions for: access method support for 
non-eMS operating systems, eMS simulation of as functions, and C~S 
implementation of DOS/VS functions. 

Access Method Support for Non-eMS 
Operating Environments 

OS ACCESS METHOD SUPPORT 

An access method governs the manipulation of data. To make the 
execution of OS generated code easier under eMS, the processing program 
.ust see data as OS would present it. For instance, when the processors 
expect an access method to acquire input source records sequentially, 
CMS invokes its sequential access method and passes data to the 
processors in the format that the as access methods would have produced. 
Therefore, data appears in storage as if it had been manipulated using 
an as access method. For example, block descriptor words (BDW), buffer 
pool management, and variable records are maintained in storage as if an 
os access method had processed the data. The actual writing to and 
reading from the I/O device is handled by eMS file management. 

The work of the volume table of contents (VTOC) and the data set 
control tlock (DSCB) is done by a master file directory (MFD) to 
maintain disk contents and a file status table (PST) for each data file. 
All disks are formatted in physical blocks of 800 bytes. 

CMS continues to maintain the OS format, within its own format, on 
the auxiliary device, for files whose filemode number is 4. That is, 
ihe block and record descriptor words (BDi and RDW) are written along 
with the data. If a data set consists of blocked records, the data is 
written to and read from tbe I/O device in pbysical blocks, rather than 
logical records. CMS also simulates the specific methods of 
manipulating data sets. 

To accomplish this simulation, CMS supports certain essential macros 
for the following access methods: 

• BDAM (direct)--identifying a record by a key or by its relative 
position within the data set. 

• BPAM (partitioned)--seeking a named member within an entire data set. 

• BDAM/QSAM (sequential)--accessing a record in a sequence relative to 

• VSAM (direct or sequential)--accessing a record sequentially or 
directly by key or address. CMS support of as VSAM files is 
based on DOS/VS access method services and the virtual storage 
access method (VSAM). Therefore, the OS user is restricted to 
those services available under DOS/VS A85 and VSAM. 

CMS Method of Operation and Program Organization 2-113 



eMS Support for the Virtual Storage 
Access Method 

CMS simulation of OS and DOS includes support for the virtual storage 
access method (VSAM). The description of this support is in three 
parts: 

• A description of the access method services program (AMSERV), which 
allows you to create and update VSAM files. 

• A description of support for VSAM functions under CMS/DOS. 

• A description of support for VSAM functions fer the CMS OS si.ulation 
routines. 

The routines that support VSAM reside in three discontiguous shared 
segments (DCSSs). 

The CMSAMS DCSS, which contains the DOS/VS AMS code to support 
AMSEHV processing. 

The CMSVSAM DCSS, which contains actual DOS/VS VSAM code, and the 
CMS/VSAM as interface program for processing as VSAM requests. 

The CMSDOS DCSS, which contains the cede that supports DOS 
requests under CMS. 

!2te: DMSVSR~ which performs com~letion processing for CMS/VSAM support, 
resides in the CMS nucleus. 

CREATING THE DOSCB CHAIN 

The DLBL command creates a control block called a DOSCB in CMS free 
storage. The ddname specified in this DLBL command is associated with 
the ddname parameter in the program's ACB. 

The DOSCB contains information defining the file for the system. The 
information in the DOSCB parallels the information written on the label 
information cylinder of a real DOS SYSRES unit, e.g. the name, and mode 
(volume serial number) of the data set, its logical unit specification, 
and its data set type (SAM or VSAM). The ancher for this chain is at 
location DOSFIRST in NUCON. 

Executing an AMSERV Function 

The CMS AMSERV command invokes the module DMSAMS, which is the CMS 
interface to the DOS/VS access method services (AMS) program. Module 
DMSAMS loads DOS/VS AMS code contained in the CMSAMS ncss by means cf 
the LOADSYS DIAGNOSE 64. The AMS code requires the services of DOS/VS 
code that resides in the CMSVSAM DCSS so that ncss is also loaded via 
LOADSYS DIAGNOSE 64 when the VSAM master catalog is opened. Figure 19 
shows the relationship in storage between the fnterface module DMSAMS 
and the CMSAMS and CMSVSAM DCSSs. 

The following is a general description of the DMSAMS method of 
operation. 

2-114 IBM VM/370 System Logic and Program Determination--Volume 2 



AMSERV MODULE 

BALRIDCAMS 

CMSVSAM DCSS 

CMSAMS DCSS 

---I 
IDCAMS: I 

AMS Root I 
~ase_~ 

B-disk 
for 

OS or 

DOS 

I- -l J Uses 

~ _____ ---,I ~AM F ~ 
~ 

CMS 
A-disk 

Figure 19. Relationship in Storage between the efts Interface ftodule 
DMSAMS and the CMSAMS and CftSVS!ft Desss 

DMSAMS first determines whether the user is in the CMS/DOS 
environment. If not, a SET DOS ON (VSAM) command is issued to load the 
CMSDOS segment and initialize the eMS/DOS environment. In this case, 
DMSAMS must also issue ASSGB co.mands for the disk modes in the DOSCB 
chain created by the as user's DLBL commands. An ASSGB is also issued 
for SYSCAT, the iSAK master catalog. 

DKS!MS then issues the ASSGN co.mand for the SYSIPT and SYSLST files, 
assigning them to the user's A-disk. DLBL commands are then issued 
associating these units with files on the user's A-disk. Input to the 
AKSERV processor is the SYSIPT file, which has the filetype AftSERV. 
Output from AMSERV processing is placed in the SYSLST file, which has a 
filetype of LISTING. 

DIAGNOSE 64 (LOADSYS) is then issued to load the CftSAftS DCSS, which 
contains the DOS/VS AMS code. A DOS/VS SVC 65 is issued to find the 
address of the DOS/VS AKS root phase, IDCAftS. When the SVC returns with 
the address of IDCAMS, a branch is made to IDCAftS, giving control to 
"live" DOS/VS routines. 

rnCAKS expects parameters to be passed to it when it receives 
control. DMSAKS passes duma, parameters in the list labeled AftSP1BMS. 

After the rcot phase IDCAKS receives control, the functions in the 
file specified by the filename on the AftSERV coamand are executed. 

efts Method of operation and Program Organization 2-115 



In performing the functions requested in this file, AMS may require 
execution of DOSjVS iSAM phases located in the CMSVSAM DCSS. The 
CMSVSAM DCSS is loaded when AMS opens the VSAM catalog for processing. 

On return fro. DOS/VS code, DMSAMS purges the CMSAMS DCSS, and issues 
DLBL commands for the SYSIPT and SYSLST files to clear the DOSCB's for 
these ddnames. 

Control is then passed to DMSVSR, which 
the user program was not in the CMSjDOS 
entered, the SET DOS OFF command is issued 
DMSVSR, DMSAMS performs minor housekeeping 
CMS. 

purges the CMSVSAM DCSS. If 
environment when DMSAMS was 
by DMSVSR. Upon return from 
tasks and returns control to 

Executing a VSAM Function for a DOS User 

When a VSAM function, such as an OPEN or CLOSE macro, is requested from 
~ DOS progra~r CM~ rnqt~s ~ontrol throqgh the CMSDOS ness to the CMSVS!M 
DCSS, thus giving control to DOS/VS VSAM phases. Figure 20 shows the 
relationships in storage between the user program, the CMSDOS DCSS, and 
the CMSiSAM DCSS. The description below illustrates the overall logic 
of that control flow. 

CMS/DOS SiC HANDLING 

There are four CMS/DOS routines that handle 
DMSBOP, DMSCLS, and DMSXCP. Within DMSDOS, 
support VSAM requests. These are described 
Environment Under CMS." 

VSAM requests: DMSDOS, 
several SVC functions 
in "Simulating a DOS 

DMSDOS VSAM processing involves handling of SVC 65 (CDLOAD), which 
returns the address of a specified phase to the caller. DMSDOS searches 
both the shared segment table and the nonshared segment table for the 
CMSDOS and CMSV?AM segments, because both could be in use. Both of 
these segment tables contain the name of each phase comprising that 
segment followed by the fullvord address of that phase within the 
segment. 

During SVC 65 processing, DMSDOS checks to see if the address of 
IKQLAB is being requested. IKQLAB is the VSAM routine that returns the 
label information generated by DLBLs and EXTENT cards in DOS/VS systems. 
If this is the case, DMSDOS saves the address of IKQLAB in NUCON for 
later use by DMSXCP. 

If VSAM has not been loaded, a DIAGNOSE 64 (LOADSYS) is issued to 
load the CMSVSAM DCSS. 

When DMSBOP is entered to process ACBs, it checks to see if CMSVSAM is 
loaded. If VSAM has not been loaded, DIAGNOSE 64 is issued to load the 

2-116 IBM VM/370 System Logic and program Determination--Volume 2 



I 

DOS VSAM 

Program CMSDOS DCSS 

DOS Transient 

Area 

I OPEN ACB1 

bSD~ __ ~ rl $$BOVSAM 

~--t~DMSB~ __ I 
I ----J I $$BCVSAM 

CLOSE ACB1 

B-disk 

for OS 

or DOS 
User 

$$BACLOS 

Figure 20. The Relationships in Storage between the User Program and 
the CMSDOS and CMSVSAM DCSSs 

CMSVSAM ncss. DMSBOP then 
issues a DOS OPEN via SVC 2 
into the DOS transient area. 

initializes the transient work area and 
to bring the VSAM OPEN $$BOVSAM transient 

When VSAM processing completes, control returns to the user program 
directly. 

DMSCLS processing is nearly the same as processing for DMSBOP. When 
DMSCLS is entered, it checks for an ACB to process. If there is one, 
the $$BCVSAM transient work area is initialized and SVC 2 is issued to 
FETCH the VSAM CLOSE transient $$BCVSAM into the DOS transient area. 
When the VSAM CLOSE routines complete processing, control returns to the 
user program, as in the case of OPEN. 

When DMSXCP processes an EXCP request, it determines if the request is 
from IKQLAB (that is, to read the SYSRES label information). If so, the 
label information area record is filled in from the appropriate DOSCE. 
(DMSXCP determines that the caller is IKQLAB by co.paring the address of 
the caller with the address stored in NUCOI by DMSDOS, as described 
above. ) 

CMS Method of Operation and Program Organization 2-117 



Executing a VSAM Function for an OS User 

as user requests for VSA~ services are handled by DOS/VS VSA~ code that 
resides in the C~SVSAM DCSS. To access this code, as VSAM requests are 
intercepted by the C~S module DMSVIP, the interface between the as VSAM 
requests and the CMS/DOS and DOS/VS VSAM routines. 

Because DMSVIP is in the CMSVSAM segment, it is available only when 
that segment is loaded. Module DMSVIB, which resides in the CMS 
nucleus, is a bootstrap routine to load the CMSVSAM segment and pass 
control to DMSVIP. 

DMSVIP receives control fro. VSAM request macros in three ways: via 
SVC (e.g. OPEN and CLOSE), via a direct branch using the address of 
DMSVIP in the ACB, and via a direct branch to the location of DMSVIP 
whose address is 256 bytes into the CMSCVT (CMSCVT is a CMS control 
block that simulates the as CVT control block) • 

This last technique is used by the code generated fro. the as VSAM 
control block 1I<=lnip111<=ltion 1JI::\r.ro~ {~T1,"("Fi SHOVCE i TFSTCE. MODeB)~. Tnat 
is, the address at 256 into CVT is assumed to be that of a control block 
that is at displacement 1'12' has the address of the VSAM control block 
manipulation routine. To ensure that DMSVIP receives control fro. these 
requests, the address of DMSVIP is stored at 256 bytes into CMSCVT. 
However, until the CMSVSA~ segment is loaded, the address at CMSCVT+256 
is the address of module DMSVIB rather than the address of DMSVIP. The 
address of DMSVIP replaces that of DeSVIB when CMSVSAM is loaded. Both 
DMSiIB and DMSVIP have pointers to themselves at 12 'bytes into 
themselves to ensure that this technique works. 

Figure 21 shows the relationships in storage between 
program, the os simulation and interface routines, and the 
CMSVSAM DCSSs. 

the user 
CMSDOS and 

OS VSAM 
Program 

OPEN ACBl 

CLOSE ACBl 

Figure 21. 

CMS Module 
oMSSOP DMSVIP 

oMSSOP19 oOSOPEN 

BALR 14,15 

DMSSOP20 DOSCLOSE 

BALR 14,15 

Relationship in 
Simulation and 
CMSVSAM DCSSs 

DOS Transient 
CMSDOS DCSS 

DMSDOS 

DMSBOP 

DMSCLS 

Storage between the User 
Interface Routines, and 

B-disk 
for OS 
or DOS 
User 

Program, the 
the CMSDOS 

CS 
and 

The following description illustrates the overall logic of that 
control flow. 

2-118 IBM V~/370 System Logic and Program Determination--Volume 2 



DMSVIP gains control from DMSSOP when an OS SVC 19, 20 or 23 (CLOSE 
TYPE=T) is issued. It also gains control on return from execution of a 
VSAM function, as described below. DMSVIP performs five main functions: 

• Initializes the CMS/DOS environment for OS VSAM processing. 

• Simulates an OS VSAM OPEN macro. 

• Simulates an OS VSAM CLOSE macro. 

• Simulates an OS VSAM control block manipulation macro· (GENCB, MODCB, 
SHOWCB, or TESTCB). 

• Processes as VSAM I/O macros. 

DMSVIP gets control when the first VSAM macro is encountered in the user 
program. Initialization processing begins at this time. The CMSDCS 
ncss is loaded by issuing the command SET DOS ON (VSAM) ~ ASSGN commands 
are also issued at this time according to the user-issued DLBL's as 
indicated in the DOSCB chain. Once this initialization completes, 
DMSVIP processes the VSAM request. 

After the initialization, DMSVIP first checks to determine which VSAM 
function is being requested, OPEN, CLOSE, or a control block 
manipulation macro. 

For OPEN processing, the DOSSVC bit in NUCON is set on and control 
passes to DMSBOP via SVC 2. Once the CMSjDOS reutines are in control, 
execution of the VSAM function is the same as for the DOS VSAM functions 
described abeve. 

On return from executing the OPEN routine, the address of another 
entry point to DMSVIP, at label DMSVIP2, is placed in the ACB for the 
data set just opened, the Dassvc bit is turned off~ and control is 
passed to DMSSOP, which returns to the user program. DMSVIP2 is the 
entry point fer code that performs linkage to the VSAM data management 
phase IKQVSM. This is done after the first OPEN because "it is assumed 
that, once opened, the user performs I/O for the phase, e.g., a GET or 
PUT operation. 

When the linkage routine is entered, the Dassvc bit is set on and 
control is given to the VSAM data management routine IKQVSM. On return 
from IKQVSM DMSVIP turns off the DOSSVC bit and returns control to the 
user program. (Refer to Simulate OS VSAM I/O Macros in this section.) 

For CLOSE processing, the DOSSVC bit is set on and centrol is passed to 
the CMS/DOS routine DMSCLS via SVC 2. As in the case of OPEN, once 
centrol passes to the CMS/DOS routine, execution of the VSAM function is 
the same as for the DOS VSAM functions described above. 

CMS Method of Operation and Program Organization 2-119 



On return from executing the VSAM CLOSE, the DOSSVC tit is turned off 
and control passes to DMSSOP, which returns to the user progra •• 

DMSVIP simulates the GENCB, MODCB, SHOWCB, and TESTCB control block 
.anipulation macros. 

GENCB PROCESSING: When a GENCB macro is issued with BLK=ACB or BLK=EXLST 
specIfIed~-the-GENCB PLIST is passed unmodified to IKQGEN for execution. 
If GENCB is issued with BLK=RPL and ECB=address specified, the PLIST is 
rearranged to exclude the ECB specification, hecause DOS/VS does not 
support ECB processing. The GENCB PLIST is then passed to IKQGEN for 
execution. 

~ODC], ~nOW£~, AN~ I~~I£~ fRQ~~~~!NG: When MODCE, SHOWCB, or TESTCB is 
issued, the OS ACB, RPL, and EXLST control blocks are reformatted, if 
necessary, to conform to DOS/VS formats. 

For MODCB and SHOWCB, the requests are passed to IKQTMS for 
processing. When MODCB is issued with EXLST= specified, ensure that the 
exit routines return control to entry point DMSVIP3. 

For TESTCB, check for any error routines the user may have specified. 
If the TESTCB specified RPL= and IO=COMPLETE, a not equal result is 
passed to the user. All other TESTCB requests are passed to DOS and the 
new PSW condition code indicates the results of the test. 

If an error return is provided for TESTCB, the address of DftSVIP4 is 
substituted in the PLIST. This allows DMSVIP to regain control from 
VSAM so that the DOSSVC bit can be turned off. The error routine is 
then given centrol after the address is returned to the PLIST. 

DMSVIP simulates the OS GET, PUT, POINT, ENDREC, ERASE, and CHECK I/O 
macros. 

First, the OS request code in register 0 is maPFed to a DOS/VS request 
code. The RPL or chain of RPLs is rearranged to DOS for.at (unless that 
has already been done). 

If there is an ECB address in the OS RPt, a flag is set in the new 
DOS RPt and the ECB address is saved at the end cf the NPL. 

Asynchronous I/O processing is simulated by setting active exit 
returns inactive in the user EXLST. The exception to this is the JRN1D 
exit which need not be set inactive since it is not an error exit. 
Setting error exits to be inactive prevents VSAft from taking an error 
exit, thus allowing such an exit to be deferred until a CHECK can be 
issued for it. 

The DOS macro is then issued via a BALR to IKQVSft. 

2-120 IBM VM/370 System Logic and Program Determination--Volume 2 



DOS error codes returned in the RPL FDBK field that do not exist in 
os are mapped to their as equivalents. If the user has specified 
synchronous processing, this return code is passed unchanged in register 
15. 

For asynchronous processing, return codes are cleared before return 
and any exit routines set inactive are reactivated in the EXLST. Also, 
all ECBs are set to WAITING status. 

CHECK PROCESSING: For CHECK processing, return codes in the RPL FDEK 
fIeld are--checked to determine the results of the I/O operation. If 
there is an active exit routine provided for the return code, control is 
passed to that routine. Also, all WAITING ECBs are posted with an 
equivalent completion code. 

If no active exit routine is provided or if the exit routine returns 
to VSAM, the return code is placed in register 15 and control is 
returned to the instruction following the CHECK. 

Two types of support for error routine processing are provided in 
DMSVIP. Entry point DMSVIP3 provides support for user exit routines; 
entry point DMSVIP4 provides support for ERET error returns. 

~~~~ ~!!I ~Q~Il!~ f~Q~~~~I!~: DMSVIP provides support for as VSAft I/O 
error exits at entry point D3SVIP3. At this entry point the Dossve bit
is turned off and the user storage key is restored.

The address of the user routine is recovered from VIP's saved exit
list (either the primary exit list in the work area or the overflow exit
list, OEXLSA).

Control then passes to the appropr~ate exit routine. If the routine
is one that returns to VSAM, the DOSSVC flag is set ON and VSAM
processing continues.

DMSVIP can save the addresses of up to 128 exit routines during
execution of a user program.

]]BT]~~Q] ~Q~IIN] f~Q~~~~!!~: DMSVIP provides support for as VSAM BRHT
exit routines used in conjunction with the TESTCB macro. This support
is located at entry point DMSVIP4. At DMSVIP4, the Dossve bit is turned
off and the user storage key is restored. The address of the ERET
routine is recovered from the work area and control passes to that
routill~.

The ERET routine may not return control to VSAM.

COMPLETION PROCESSING FOR OS AND DOS VSA! PROGRAMS

When an as or DOS VSAM program completes, control is passed to module
DMSVSR, which "cleans up" after VSAM. DMSVSR can be called from three
routines after as processing:

• DMSINT, if processing completes without system errors or serious user
errors.

eMS Method of Operation and Program Organization 2-121

• DMSEIT, if the user program is used as part of an EIEC file.

• DMSABN, if there are system errors or the user program abnormally
terminates.

After DOS VSAM processing completes, DMSVSR is called by DMSDOS.

DMSVSR issues an SVC 2 to execute the DOS transient routine $$BACLOS.
$$BACLOS first checks for any OPEN VSAM files. If any are open, SVC 2 is
issued to $$BCLOSE (DMSCLS) to close the files.

If there are no open files or if all ACB's have been closed, $$BACLCS
issues SVC 2 to $$BEOJ4, an entry point in DMSVSR. At $$BEOJ4, a
PURGESYS DIAGNOSE 64 is issued to purge the CMSVSA! DCSS. DMSVSR then
checks to see if an os program has completed processing. If this is the
case, the SET DOS OFF command is issued and control returns to the
caller.

OS Simulation by eMS

When in a CMS environment, a processor or a user-written program is
executing and utilizing oS-type functions, as is not controlling this
action, CMS is in control. Consequently, it is not as code that is in
CMS, but routines to simulate, in terms of CMS, certain OS functions
essential to the support of OS language processors and their generated
code.

These functions are simulated to yield the same results as seen from
the processing program, as specified by OS Frogram logic manuals.
However, they are supported only to the extent stated in CMS
documentation and to the extent necessary to successfully execute OS
language processors. The user should be aware that restrictions to CS
functions as viewed from OS exist in CMS.

Certain TSO Service routines are provided to allow the Program
Products to run under CMS. The routines are the Command Scan and Parse
Service Routines and the Terminal I/O Service Routines. In addition the
user must provide some initialization as documented in TSO TMP Service
Routine initialization. The OS functions that CftS simulates are shown
in Figure 22.

TSO macros that support the use of the terminal monitor program (TMF)
service routines are contained in TSOMAC MACLIB. The macro functions are
as described in the TSO TMP documentation with the exception of PUTLINE,
GETLINE, PUTGET, and TCLEARQ.

Before using the TSO service routines, the calling program performs
the following initialization:

1. Stores the address of the command line as the first word in the
command processor parameter list (CPPL). The TSOGET macro puts the
address of the CPPL in register 1.

2. Initializes CMS storage using the STRINIT macro.

3. Clears the ECT field that contains the address of the I/O work area
(ECTIOWA) •

2-122 IBM VM/370 System Logic and program Determination--Volume 2

SVC os Macro
Number Function

simulation
Routine

00
01
02
03
04

05
06
07

08
09
10

11
13
14
17
18

19
20
21
22
23
24

25
31
35
40
41
42
44
46
47

48
51
56
57
60

62
63
64

68
69

93
94
96

XDAP
WAIT
POST
EXIT
GETMAIN

FREEMAIN
LINK
XCTL

LOAD
DELETE
GET MAIN/

FREEMAIN
GET POOL
TIME
ABEND
SPIE
RESTORE
ELDL/FIND

OPEN
CLOSE
STOW
OPEN.l
TCLOSE
DEVTYPE

TRKBAL
FEOV
WTO/WTOR
EXTRACT
IDENTIFY
ATTACH
CHAP
TTIMER
STIMER

DEQ
SNAP
ENQ
F3EEDBUF
STAB

DETACH
CHKPT
RDJFCB

SYNAD
BACKSPACE

DMSSVT
DMSSVN
DMSSVN
DMSSLN
DMSSMN

DMSSMN
DMSSLN
DMSSLN

DMSSLN
DMSSLN
DMSSMN

Df"SSMN
DMSSVT
DMSSAB
DMSSVT
DMSSVT
DMSSVT

DMSSOP
DMSSOP
DMSSVT
DMSSOP
DMSSOP
DMSSVT

DMSSVT
DMSSVT
DMSSVT
IJMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT

DMSSVT
DMSSVT
DMSSVT
DMSSVT
DMSSVT

DMSSVT
DMSSVT
DMSSVT

DMSSVT
DMSSVT

GET/PUT DMSSQS
READ/WRITE DMSSBS
NOTE/POINT DMSSCT

CHECK
TGET/TPUT
TCLEARQ
STAX

DMsscr
DMSSVN
DMSSVN
DMSSVT

-------,

Comments

Reads or writes direct access volumes
~aits for an I/O completion
Posts the I/O completion
Returns from linked phase
Conditionally acquires user free
storage

Releases user-acquired free storage
Links control to another load phase
Deletes, then links control to another
load phase

Reads another lead phase into storage
Deletes a loaded phase
Manipulates free user storage

Simulates an SVC10
Gets the time of day
Terminates processing
Processes program interruptions
Effective NOP
Manipulates simulated partitioned data
files

Activates a data file
Deactivates a data file
Manipulates partitioned directories
Activates a data file
Temporarily deactivates a data file
Obtains device-type physical
characteristics

Effective NOP
Set forced EOV error code
Communicates with the terminal
Effective NOP
Adds entry to loader table
Effective LINK
Effective NOP
Accesses or cancels timer
Sets timer interval and timer exit
routine

Effective NOP
Dumps specified storage areas
Effective NOP
Releases a free storage buffer
Allows processing program to decipher
abend condition

Effective NOP
Effective NOP
Obtains information from FILEDEF

command
Handles data set error conditions
Backs up to the beginning of the
previous record

Manipulates data recoras
Manipulates data blocks
Accesses or changes relative track
address

Tests ECB for completion and errors
Terminal processing
Clears input queue
Adds or deletes an attention exit
level

I
I

J

Figure 22. OS Functions that c~s Simulates

efts Method of Operation and Program Organization 2-123

4. Issues the STACK macro to define the terminal as the primary source
of input.

Most of the simulated supervisory as control blocks are contained in the
following two CMS control blocks:

CMSCVT simulates the communication vector table (CVT). Location 16
contains the address of the CVT control section.

CMSCB allocated fro. system free ~torage whenever a FILEDEF command or
an OPEN (SVC 19) is issued for a data set. The CMS control block
consists of the CMS file Control block (FCB) for the data file
management under CMS, and simulation of the job file control
block (JFCB), input/output block (lOB), and data extent block
(DEB). The name of the data set is contained in the FCB, and is
obtained from the FILEDEF argument list, or from a predetermined
file name supplied by the processing problem program.

CMS also utilizes portions of the supplied data control block (DCB) and
the data event control block (DECB). The TSO control blocks utilized
are the command program parameters list (CPPL), user profile table
(UPT), protected step control block (PSCB), and environment control
table (ECT).

CMS provides a nu.ber of routines to simulate certain operating system
functions used by programs such as the Assembler and the FORTRAN and
PL/I compilers. Some of the SVC simulation routines are located in the
disk resident transient module DMSSVT. Whenever one of the SVC routines
in DMSSVT or is invoked, that routine is loaded into the transient area.
The following paragraphs describe how these simulation routines work.

!~AP=~!~~: Writes and reads the source code spill file, SISUT1, during
language compilation for PL/I Optimizer and ANS COBOL Compilers.

WAIT-SVC 1: Causes the active task to wait until one of more event
control-blocks (BCBs) have been posted. For each specified BCB that has
been posted one is subtracted from the number of events specified in the
WAIT macro. If the number of events is zero by the time the last ECB is
chec~ed control is returned to the user. If the number of events is not
zero after the last ECB is checked and the number of events is not
greater than the number of ECBs, the active task is put into a wait
state until enough ECBs are posted to set the number of events at zero.
When the event count reaches zero the wait bits are turn off in any ECEs
that have not been posted and control is returned to the user. If the
number of events specified is greater than the number of ECBs the system
abnormally terminates with an error message. All options of WAIT are
supported.

~Q~I=~!~_l: Causes the specified event control block (ECB) to be set to
indicate the occurrence of an event. This event satisfies the
requirements of a WAIT macro instruction. All options of POST are
supported. The bits in the ECB are set as follows:

!!,!! ~§tting
o 0
1 1

2-7 Value of specified completion code

2-124 IBM VM/370 System Logic and program Determination--Volume 2

EXIT-SVC 3: This SiC is for CMS internal use only. It is used by the
CMS--routIne DMSSLN to acquire an SVC SAVEAREA on return fron an
executing program that had been given control by LINK (SVC 6), XTCL (SVC
7) or ATTACH (SiC 42).

§~!~Al!=SV£_~: Control is passed to the GETMAIN entry point in the
DMSS~N storage resident routine. The mode is determined: VU, VC, EC.
A call is made to GETBLK to obtain the block of storage. Control blocks
of two fullwcrds precede each section of available storage: (1) the
address of the next block, (2) the size of this block. The head of the
pointer string is located at the words MAINSTRt.- initial free block,
and MAINLIST - address of first link in chain cf free block pointers.
All options of GETMAIN are supported.

!EEE~!lN-SVC_~: Releases a block of free storage. If the block is part
of segmented storage, a control bl?ck of two full words is placed at the
beginning of the released area. Adjustment is made to include this
block in the chain of available areas. All options of FREE MAIN are
supported.

11NK=~!£_&: Program transfer is controlled by the nucleus routine,
DMSSLN. The LINK macro causes program contrel to be passed to a
designated phase. If the COMPSWT bit within the byte OSSFLAGS is on,
loading is done by calling LOADMOD to bring a CMS MODULE file into
storagee If this flag is off, dynamic loading is initiated by calling
LOAD. A GETMAIN is issued to obtain enough storage so that the loader
(DMSLDR) may relocate the phase. in storage. A chain of link request
blocks is built to record the old SiC PSi, and the location and size of
the phase storage area. If the routine is already in storage,
determined by scanning the load request chain, no LOAD or LOADMOD is
done. Control is passed directly to the routine. CMS ignores the DCB
and HIARCHY options; all other options of LINK are supported.

!~TL=~!£-1: XCTL first deletes the current phase from storage.
Processing then continues as for LINK-SVC 6, as previously described.
CMS ignores The DCB and HIARCHY options; all other options of XCTL are
supported.

LOAD-SVC 8: Control is passed to DMSSLN8 located in DMSSLN when a LOAD
macro-is-issued. If the requested phase is not in storage, a LOAD or
LOADMOD is issued to brLng it in. Control is then returned to the
caller. eMS i~nores the DCB and HIARCHY options; all other options of
LOAD are supported.

~]LE!~=SV~_~: Control is passed to D~SSLN9 located in DMSSLN when a
DELETE macro is issued. Upon entry, DELETE checks to see whether the
.odule specified was loaded using LOADMOD or dynamically loaded by LOAD
or INCLUDE. If it was loaded by LOADMOD control is returned to the
user. If it was dynamically loaded, the responsibility count is
decremented by one and if it reaches zero, the storage is released using
PREEMAIN, and centrol is returned to the user~ All options of DELETE
are supported. Code 4 is returned in register 15 if the phase is not
found.

§~TMA1!L!RE~~A!N-SV~_lQ: Control is passed to the SVC 10 entry point in
DMSSMN. Storage management is analogous to SVC 4 and 5, respectively.
All options of GETMAIN and FREEMAIN are supported. Subpool
specifications are ignored.

CMS Method of Operation and program Organization 2-125

GETPOOL: Gets control via an OS LINK macro to IECQBFGI. IECQBPGI
allocates an area of free storage using GET~AIN, sets up a buffer
control block in the free storage, stores the address of the buffer
control block in the DCB, and then returns control to the caller.

±1~~=~!£-11: This routine (TIME) located in DHSSVT receives control
when a TIME macro instruction is issued. A call is made (by SIO or
DIAGNOSE) to the RPQ software chronological timer device, X'OFP'. The
real time of day and date are returned to the calling program in a
specified form: decimal (DEC) binary (BIN), or timer units (TU). All
options of TIME except hundredths of a second HIe are supported.

!~~!Q=~Y£_lJ: This routine (DMSSAB) receives control when either an
ABEND macro or an unsupported OS/360 SVC is issued. If an SVC 13 was
issued with the DUMP option and either a SYSUDUMP or SYSABEND ddname had
been defined via a call to DMSPLD (FILEDEP), a SNAP (SVC 51) specifying
PDATA=ALL is issued to dump user storage to the defined file. A check
is made to see if there are any outstanding STAE requests. If not, or
if an unsupported SVC was issued, DMSCWR is called to type a descriptive
error message at the terminal. Next, DMSCWT is called to wait until all
terminal activity has ceased, and then, control is passed to the ABEND
recovery routine. If a STAE macro was issued, a STAE work area is built
and control is passed to the STAE exit routine~ After the exit routine
is complete, a test is made to see if a retry routine was specified. If
so, control is passed to the retry routine. Otherwise, control passes
to DMSABN unless the task that had the ABEND was a subtask. In that
case, the resume PSW in the link block for the subtask is adjusted to
point to an EXIT instruction (SVC 3). The EXIT frees the subtask, and
the attaching task is redispatched.

~gIE=~!£~: This routine (SPIE) receives centrol when a SPIE macro
instruction is issued. When it gets control, SPIE inserts the new
program interruption control area (PICA) address into the program
interruption element (PIE). The program interruption element resides in
the program interruption handler (DMSITP). It then returns the address
of the old PICA to the calling program, sets the progra. .ask in the
calling program's PSW, and returns to the calling program. All options
of SPIE are supported.

EJSTQR~=SV~_11: RESTORE is a NOP located in DHSSVT.

~~DLL!l!QJ±Y£~_Ql-S!£_l§: svc to entry points in DMSSOP. If an OS disk
is specified, DMSSVT branches and links to DHSROS. See BLDL and PIND
under description of BPAM routines in DMSSVT.

~IOW=~!~-ll: See STOW under description of BPAe routines in DMSSVT.

QgEN/Qf~NJ=~!£_12L£~: OPEN simulates the data management function of
opening one or more files. It is a nucleus routine and receives control
from DMSITS when an executing program issues an OPEN macro instruction.
The OPEN macro causes an SVC to DMSSOP. DMSSOP simulates the OPEN
macro. The DISP and RDBACK options are ignored by CMS; all other
options of OPEN and OPENJ are supported.

f10SJLIf1Q~~=~!£_20L~J: CLOSE and TCLOSE are simulated in the nucleus
routine DMSSOP~ It receives control whenever a CLOSE or TCLOSE macro
instruction is issued. The CLOSE macro causes an SVC to DMSSOP. DHSSCP
simulates the CLOSE macro. eMS ignores the DISP option; all other
options of CLOSE and TeLOS! ara supported.

~J!I!fE-~!~_~~: This routine (DEVTYPE), located in DMSSVT, receives
control when a DEVTYPE macro is issued. Upon entry, DEVTYPE moves
Device Characteristic Information for the requested data set into a user
specified area, and then returns control te the user. All options of
DEVTYPE are sUFPorted, except RPS, which is ignored.

2-126 IBM VM/370 System Logic and Program Determination--Volume 2

!~KB!~=~VC_l~: TRKBAL is a NOP located in DMSSVT.

!~OV=~!£_11: Returns control to CMS with an error code of 4 in register
15.

~IQL!!QR-~!£_l~: This routine (iTO), located in D8SSVT, receives
control when either a iTO or a iTOR macro instruction is issued. For a
iTO, it constructs a calling sequence to the DMSCiR function progra. to
type the message at the terminal. (The address of the message and its
length are provided in the parameter list that results from the
expansion of the iTO macro instruction.) It then calls the DHSCiT
function program to wait until all terminal I/O activity has ceased.
Next, it calls the DMSCiR function program to type the message at the
terminal and returns to the calling program. All options of iTO and
iTOR are supported except those concerned with multiple console support.

For a iTOR macro instruction, this routine proceeds as described for
iTO. However, after it has typed the message at the terminal it calls
the DMSCRD function program to read the user's reply from the terminal.
When the user replies with a message, it moves the message to the buffer
specified in the iTOR parameter list, sets the completion bit in the
BeB, and returns to the calling program.

]!I~!~I=~!~_~Q: This routine (EXTRACT), located in D8SSVT receives
control when an EXTRACT macro is issued. Upon entry, EXTRACT clears tbe
user provided answer area and returns control to the user with a return
code of 4 in register 15.

IDENTIFY-SVC 41: Located in DMSSVT, this routine creates a new load
request-block-with the requested name and address if both are valid. The
new entry is chained from the existing load request chain. The new name
may be used in a LINK or ATTACH macro.

!!TACH=~VC_~l: Located in DMSSLN, ATTACH operates like a LINK (SVC 6),
with additional capabilities. The user is allowed to specify an exit
address to te taken upon return from the attached phase; also, an ECB is
posted when the attached phase has completed; and a STAI routine can be
specified in case the attached phase abends. The DCB, LPMOD, DP!OD,
HIARCHY, GSPV, GSPL, SHSPV, SHSPL, SZERO, PURGE, ASYNCH, and TASKLIB
options are ignored; all other options of ATTACH are supported. Because
CMS is not a multitasking operating system, a phase requested by tbe
ATTACH macro must return to CMS.

~~AP=~!~_~~: CHAP is a NOP located in DMSSVT.

TTIMER-SVC 46: Checks to ensure that the value in the timer (hex
locaticn--SO) was set by an STIMER macro. If it <was, the value is
converted to an unsigned 32 bit binary number specifying 26 microsecond
units and is returned in register o. If the timer was not set by an
STIMER macro a zero is returned in register 0, after setting register 0,
the CANCEL oFt ion is checked. If it is not specified, control is
returned to the user. If it is specified, the timer value and exit
routine set by the STIMER macro are cancelled and control is returned to
the user. All oFtions of TTIMER are supported.

STIMER-SVC 47: Checks to see if the WAIT option is specified. If so,
control-is-returned to the user. If not, the specified timer interval
is converted to 13 microsecond units and stored in the timer (hex
location 50). If a timer completion exit routine is specified, it is
scheduled to be given control after completion of the specified time
interval. If not, no indication of the completion of the tiae interval
is scheduled. After checking and handling any specified exit routine
address, control is returned to the user. All options of STIMER are
supported. The TASK option is treated as though the REAL option bad
been specified.

CMS Method of operation and Program Organization 2-127

~~2=~!~_48: DEQ is a Nap located in DMSSVT.

~!!P-~!~_al: Control is passed to SNAP in DMSSVT when a SNAP macro is
issued. SNAP fills in a PLIST with a beginning and ending address and
calls DMPEXEC. DMPEXEC dumps the specified storage along with the
registers and low storage to the printer. Control is then returned to
SNAP and SNAP checks to see if any more addresses are specified. It
continues calling DMPEXEC until all the specified addresses havg been
dumped to the printer. Control is then returned to the user. Except
for SDATA, PDATA, and DCB, all options of the SNAP macro are processed
normally. SDATA and PDATA are ignored. processing for the DCB option
is as follows: The DCB address specified with SNAP is used to verify
that the file associated with the DCB is open. If it is not open,
control returns to the caller with a return code of 4. If the file is
open, the FCB associated with the file is checked for a device type of
DUMMY. If the device type is DUMMY, control returns to the caller with
a return code of 0 and storage is not dumped.

~!2=~!~_56: ENQ is a Nap located in DMSSVT.

FREEDBUF-SVC 57: This routine (FREEDBUF) located in DMSSVT receives controI-when-a:- l"REEDBUF macro is issued. Upon ent:ry, E'REr!DBUF sets up
the correct DSECT registers and calls the FREEtBUF routine in DMSSBD.
This routine returns the dynamically obtained buffer (BDAM) specified in
the D~CB to the DCB buffer control block chain. Control is then
returned to the DHSSYT routine which returns control to the user. All
the options of FREEDBUF are supported.

STAB-SVC 60: This routine (STAB) located in DMSSVT receives control
when-i--STAE macro is issued. Upon entry, STAE creates, overlays or
cancels a STAE control block (SCB) as requested. Control is then
returned to the user with one of the following return codes in register
15:

~~g.!ling
An SCB is successfully created, overlaid or cancelled.
The user is attempting to cancel or overlay a nonexistent
SCB.

0(0) , 1

10 or pointer to next SCBI
4 (4) ~

lexit address
8 (8) ~

I parameter list address
12 (C) I

~~TA£~=~!~_§~: DETACH is a Nap located in D8SSVT.

£~KPT-~!~_2J: CBKPT is a Nap located in DMSSVT.

..
I ,
I

-J

RDJFCB-SVC 64: This routine (RDJFCB) receives control when a RDJFCB
.aero-Instruction is issued. When it gets control, RDJFCB obtains the
address of the JFCB fro. the DCBEXLST field in the DCB and sets the JFCB
to zero. It then reads the simulated JFCB located in C8SCB that was
produced by issuing a FILEDEF into the closed area. RDJFCB calls the
STATE function program to determine if the associated file exists. If
it does, RDJFCB returns to the calling program. If the file does not
eXist, RDJFCB sets a switch in the DCB to indicate this and then returns
to the calling program. RDJFCB is located in DMSSVT. All the options
of RDJFCB are supported.

2-128 IBM VM/370 System Logic and Program Determination--Volume 2

B2te: The switch set by the RDJFCB is tested by the FORTRAN object-time
direct-access handler (DIOCS) to determine whether or not a referenced
disk file exists. If it does not, DIOCS initializes the direct access
file.

SYNAD-SVC 68: Located in DMSSVT, SYNAD attempts to simulate the
functIons-SYNADAF and SYNADRLS. SYNADAF expansion includes an SVC 68
and a high-order byte in register 15 denoting an access method. SYNAD
prepares an error message line, swap save areas and register 13
pointers. The message buffer is 120 bytes: bytes 1-50, 84-119 blank;
bytes 51-120, 1205 INPUT/OUTPUT ERROR nnn ON FILE: "dsname"; where
nnn is the CMS RDBUF/WRBUF error code. All the options of SYNAD are
supported.

SYNADRLS expansion includes SVC 68 and a
register 15. The save area is returned,
returned to free storage.

high order byte of X'FF' in
and the message buffer is

BACKSPACE-SiC 69: Also in DMSSVT. For a tape, a BSH command is issued
to~he--tape:--For a direct access data set, the CMS write and read
pointers are decremented by one~ Control is passed to BACKSPACE in
DMSSiT when a BACKSPACE macro is issued. BACKSPACE decrements tlie read
write pointer by ene and returns control to the user. No physical tape
or disk adjustments are made until the next READ or WRITE macro is
issued. All the options of BACKSPACE are supported.

IQETLIfQ!=~!£_~J: Located in DMSSiN, this routine receives control when
a TGET or TPUT macro is issued. It is provided to support TSO service
routines needed by program products. TGET reads a terminal line; TPUT
writes a terminal line. The return code is zero if the operation vas
successful and a four if an error was encountered.

!£LE!~2=SiC_~!: TCLEARQ is located in DMSSiN and causes the terminal
input .queue to be cleared via a call to DESEUF. At completion a return
is made to the user.

STAX-SiC 96: Located in DMSSiT, STAX gets and chains a CMSTAXE control
block-for-each STAX SiC issued with an exit routine address specified.
The chain is anchored by TAXEADDR in DMSNUC. If no exit address is
specified the most recently added CMSTAXE is cleared from the chain. If
an error occurs during STAI SVC processing, a return code of eight is
placed in register 15. The only option of STAX which may be specified is
EXIT ADDRESS.

§]IL~QI: See the DMSSQS prolog for description.

B]ADL!BITE: OS READ and WRITE macros branch and link to DMSSBS. DMSSES
branches and links to DMSSEB and, if the disks is an as disk, DMSSEB
branches and link to DMSROS. See DMSSBS for description.

!Q!~LRQI!IL~I!Qj!YEg_~l: as NOTE, POINT, and FIND (type c) macros
branch and link to entry points in DMSSCT. If the disk is an as disk,
DMSSCT branches and links to DMSROS. See DMSSCT for descriptions.

CBEC!: See the DMSSCT prolog for description.

CMS ~ethod of Operation and program Organization 2-129

Notes on using the as simulation routines:

• CMS files are physically blocked in aDO-byte blocks, and logically
blocked according to a logic~l record length. If the file.ode of the
file is not 4, the logical record length is equal to the DCBLRECL and
the file .ust always be referenced with the same DCBLRECL, whetber or
not the file is blocked. If tbe filemode of the file is 4, tbe
logical record length is equal to the DCBBLKSI and the file aust
always be referenced witb tbe same DCBBLKSI.

• When writing CMS files with a filemode number other than four, the OS
simulation routines deblock the output and write it on a disk in
unblocked records. The simulation routines delete each 4-byte block
descriptor word (BDW) and each 4-byte record descriptor word (RDW) of
variable length records. This makes tbe OS-created files compatible
with CMS-created files and CMS utilities. When CMS reads a eMS file
with a filemode number otber than four, CMS blocks the record input
as specifies and restores the BDW and RDi control words of variable
length records.

•

If the CMS filemode number is four, CMS does not unblock or delete
tiuws or HDWs on output. CMS assumes on input that the file is
blocked as specified and that variable length records contain block
descriptor words and record descriptor words.

To set the READ/WRITE
FILEDEF command must
option.

pointers for a file at tbe end of the file, a
be issued for the file specifying the MeD

• A file is erased and a new one created if the file is opened and all
the following conditions exist:

The OUTPUT or OUTIN option of OPEN is specified.

The TYPE option of OPEN is not J.

The dataset organization option of tbe DCE is not direct access or
partiticned.

A FILEDEF command has not been issued for data set specifying the
MOD option.

• The results are unpredictable if two DCBs read and write to the same
data set at the same time.

!~CE~~ ~Q~~A!Q fLO!: The module DMSACC gets control first wben you
invoke tbe ACCESS command. DMSACC verifies parameter list validity and
sets the necessary internal flags for latpr use. If the disk you access
specifies a target mode of anotber disk currently accessed, DMSACC calls
DMSALU to clear all pertinent information in the old active disk table.
DMSACC then calls DMSACF to bring in the user file directory of the
disk. As soon as DMSACF gets control, DMSACF calls DMSACM to read in
the master file directory of the disk. Once DMSACM reads the label cf
the disk, and determines that it is an OS disk, DMSACM calls DMSROS
(ROSACC) to complete the access of the OS disk. Upon returning from
DMSROS, DMSACM returns immediately to DMSACF, bypassing the master file
directory logic for CMS disks. DMSACF then cbecks to determine if tbe
accessed disk is an OS disk. If it is an as disk, DMSACF returns
immediately to DMSACC, bypassing all the user file directory logiC for
OS disks. DMSACC checks to determine if the accessed disk is an OS

2-130 IBM VM/370 System Logic and Program Determination--Volume 2

disk; if it is, another check determines if the accessed disk replaces
another disk to issue an information message tc that effect. Another
check determines if you specified any options or fileid and, if you did,
a warning message appears On the terminal. Control now returns to the
calling routine.

!11~~~f £Q~~!!Q FLQ~: DMSFLD gets control first when you issue a c~s
FILEDEF command. DMSFLD adds, changes, or deletes a FILEDEF control
block (C~SCB) and returns control to the calling routine.

LISTDS COMMAND FLOW: The module DMSLDS gets control first when you
Invoke the-IISTDS-comaand. DMSLDS verifies parameter list validity and
calls module DESLAD to get the active disk tatle associated with the
specified mode. DMSLDS reads all format 1 DSCB and if you specified the
PBS option and the data set is partitioned, DMSLDS calls DMSRCS
(ROSFIND) to get the members of the data set. After displaying the DSCB
(or DSCB) on you console, DMSLDS returns to the calling routine.

~QVEl11~ CO~~!!Q I1Q!: The module DMSMVE gets control first when you
issue a CMS MOVEFILE command. DMSMVE calls DMSFLD to get an input and
output CMSCB and, if the input DMSCB is for a disk file, DMSftVE calls
DMSSTT to verify the existence of the input file and get default DCB
parameters in absence of CMSCB DCB parameters. DMSMVE uses OS OPEN,
FIND, GET, PUT, and CLOSE macros to move data from the input file to the
output file. After moving the specified data, control returns to the
calling routine.

2QER! £QMMA!Q I1Q!: The module DMSQRY gets control first when you invoke
the QUERY command. DMSQRY verifies parameter list validity and calls
DMSLAD to get the active disk table associated with the specified mode.
DMSQRY displays all the information that you requested on your console.
When DMSQRY finishes, control returns to the calling routine.

B~LEA~~ £Q~~!!Q FLQ!: The module DMSARE gets control first when you
invoke the RELEASE command. DMSARE verifies parameter list validity and
checks to determine if the disk you want to release is accessed. If the
disk you want to release is currently active, DMSARE calls D8SALU to
clear all pertinent information associated with the active disk. DMSALU
first checks the active disk table for any existing CMS tables kept in
free storage. If the disk you want to release is an OS disk, DMSALU
does not find any tables associated with a CMS disk. If the disk is an
OS disk, D5SALU releases the os PST blocks (if any) and clears any OS
PST pointers in the OS file control blocks. DMSALU then clears the
active disk table and returns to DMSARE. DMSIRE then clears the device
table address for the specified disk and returns to the calling routine.

STATE £Q~~!!Q fLO!: The module DMSSTT gets control first when you invoke
the STATE command. DMSSTT verifies the parameter list validity and
calls module DMSLAD to get the active disk table associated with the
specified mode. Upon return from DMSLAD, DMSSTT calls DMSLFS to find
the file status table (FST) associated with the file you specified.
Once DMSLFS finds the associated FST, it checks to determine if the file
resides on an OS disk. If it does, DMSLFS calls DMSROS (ROSSTT) to read
the extents of the data set. Upon return from D"SROS, DMSLFS returns to
DMSSTT. DMSSTT then copies the FST (or OS FST) to the FST copy in
statefst and returns to the calling routine.

DMSACC MODULE: Once DMSACC determines that the disk you want to access
Is-an-oS-disk, it bypasses the routines that perfor. LOGIN UFD and LOGIN
ERASE.

CMS Method of Operation and Program Organization 2-131

If the disk you want to access replaces an OS disk, message DMSACC724I
appears at your terminal.

If you specified any options or fileid in the ACCESS command to an OS
disk, a warning message, DMSACC230W, appears to notify you that such
options or fileid were ignored. DMSACC returns to the calling routine
with a warning code of 4.

~~SA~! ~QQ2~~: DMSACF verifies that the disk you want to access is an OS
disk and, if it is, exits immediately.

DMSACM MODULE: DMSACM saves the disk label and VTOC address in the ADT
block- Ii-the disk is an as disk. DMSACM checks to determine if a
previous access to an os disk leaded DMSROS. If not, DMSACM calls
DMSSTT to verify that DMSROS text exists. Upon successful return from
STATE, DMSACM loads DMSROS text into the high storage area with the same
protect key and calls the OS access routine (ROSACC) of DMSROS to read
the format 4 DSCB of the disk. Upon successful return from DMSROS,
control returns to the calling routine. Any other errors are treated as
general logen errors.

DMSALU MODULE: If the disk is an os disk, DMSFRET returns the as FST
blocks clf-any) to free storage. DMSALU clears the OS FST pointer in
all active as file control blocks, decrements the DMSROS usage count
and, if the usage count is zero, clears the address of DMSROS in the
nucleus area. DMSALU also calls DMSFRET to returns to free storage the
area which DMSROS occupies.

DMSARE MODULE: DMSARE ensures that the disk you want to relase is an OS aisk:- -DMSliE calls DMSALU to release alIOS FST blocks and, if
necessary, to free the ar~a DMSROS occupies. UFon return from DMSALU,
DMSARE clears the common CMS and OS active disk table.

• DSN If you specify the parameter DSN as a question mark (1) ,
FILEDEF displays the message DMSFLD220R to request you to type in an
OS data set name with the format Q1.Q2.QN. Ql, Q2, and QN are the
qualifiers of an OS data set name. If you specify the parameter DSN
as Ql.Q2.QN, FILEDEF assumes that Ql, Q2, and QN are the qualifiers
of an OS data set name, and stores the qualifiers with the format
Ql.Q2.QN in a free storage block and chains the block to the FCB.

• CONCAT -- If you specify the CONCAT option, FILEDEF assumes that the
specified FILEDEF is unique unless a filedef is outstanding with a
matching ddna.e, filename, and filetype. This allows you to specify
more than one FILEDEF for a particular ddna.e. The CONCAT option
also sets the FCBCATML bit in the FCB to allow the OS simulation
routine to know the FCB is for a concatenated MACLI8.

• MEMBER -- If you specify the member option, filedef stores the member
name in FCBMEMBR in the FCB to indicate that the OS simulation
routine should set the read/write pointer to point to the specified
BPAM file member when OPEN occurs.

~~~bQ~ ~ODQb~: DMSLDS saves the return register, sets itself with the 
nucleus protection key, clears the dsname key, and initializes its 
internal flag. 

DMSLDS verifies parameter list validity. The data set name must not 
exceed 44 characters, and the disk mode (the last parameter before the 
options) must be valid. DMSLDS joins the quailifiers with dots (.) to 
form valid data set names. If you specify the data set name as a 
question mark (?), DMSLDS prompts you to enter the dsname in exactly the 
same form as the dsname which apFears on the disk. 

2-132 IBM VM/370 System Logic and Program Determination--Volume 2 



DMSLDS calls DMSLAD to find the active disk table block. If you 
specify file mode as an asterisk (*), DMSLAD searches for all ADT blocks. 
If you specify the filemode as alphabetic, DMSLAD finds only the AtT 
tlock for the specified filemode. 

If you specify the dsname (which is optional), DMSLDS sets the 
channel programs to read by key= If you did not specify a dsname, 
DMSLDS searches the whole VTOC for format 1 DSCES and displays all the 
requested information contained in the DSCB on your console. If you 
specify the format option, the RECFM, LRECL, ELKSI, DSCRG, DATE, LABEL, 
FMODE, and data set name appear on you console; otherwise, only the 
FMODE and data set name appear. 

If you specify the PDS option, DMSLDS calls the 'find' routine 
(rosfind) in DMSROS to read the member directory and pass back, one at a 
time, in the fcbmembr field of CMSCB the name of each member of the data 
set. This occurs if the data set is partitioned. 

After processing finishes, DMSLDS resets the nucleus key to the same 
value as the user key, puts the return code in register 15, and returns 
to the calling routine. 

~~SLI~ ~Q~Qb~: DMSLFS verifies that the FST being searched for has an CS 
disk associated with it. DMSLFS calls the DMSROS state routine (ROSSTT) 
to verify that the data set exists and eMS supports the data set 
attributes. Upon return from DMSROS, a return code of 88 indicates that 
the data set was not found, and DMSLDS starts the search again using the 
next disk in sequencee Any other errors, such as a return code 80, 
cause DMSLFS to exit immediately. A return code of 0 from DMSRCS 
indicates that the data set is on the specified disk. From this point 
on, execution occurs common to both CMS and OS disks. 

DMSMVE MODULE: If you specify the PDS option and the input is from a 
aisk;-DMSMvi-sets the FCBMVPDS bit and issues an as FIND macro before 
opening an output DCB to position the input file at the next ~ember. 
DMSMVE then stores the input member name in the output CMSCB for use as 
the output filename. After reaching end-of-file on a member, the 
message DMSMVE225I appears, DMSMVEcloses the output DCB, and passes 
control to find the next member. After moving all the members to 
separate eMS files, movefile displays message DMSMVE226I, closes the 
input and outFut DCBS, and returns control to the calling routine. 

• ROSACC Routine -- ROSACC gets control from DMSACft after DftS!CH 
determines that the label of the disk belongs to an as disk. The 
ROSACC routine reads the format 4 DSCB of the disk to further verify 
the validity of the OS disk. ROSACC updates the ADT to contain the 
address of the high extent of the VTOC (if the disk is a DOS disk) or 
the address of the last active for.at 1 DSCE (if the disk is an CS 
disk), and the number of cylinders in the disk. If the disk is a Des 
disk, ROSACC sets a flag in the ADT. Information messages appear to 
notify you that the disk was accessed in read-only mode. If the disk 
is already accessed as another disk, another information message 
appears to that effect. Finally ROSACC zeroes out the ADTFLG1 flag 
in the ADT, sets the ADRFLG2 flag to reflect that an OS disk was 
3ccessed, and returns control to the calling routine. 

• ROSSTT Routine -- Verifies the existence of an CS data set and 
verifies the support of the data set attributes. 

!2i~: Within the ROSSTT description, any reference to FCB or CMSCB 
implies a DoseB if DOS is active. 

CMS Method of Operation and Program Organization 2-133 



ROSSTT gets control from DMSSTT after DMSSTT determines that the 
STATE operation is to an OS disk. The ROSS1T routine searches for 
the correct FCB which a previous FILEDEF associated with the data 
set, If the DOS environment is active, ROSSTT locates the correct 
DOSCB that defines a data set described by a previous DLBL. If 
ROSSTT finds an active FST, control passes to ROSSTRET; otherwise, 
ROSSTT acquires the dsname bleck, places its address in the FCB, and 
moves the dsname in the FCB to the acquired block. ROSSTT acquires 
an FST block, chains it to the FST chain, and fills all general 
fields (dsname, disk address, and disk mode). ROSS1T now reads the 
format 1 DSCB for the data set and checks for unsupported options 
(BDAM, IS1M, VSAM, and read protect). 

Errors pass control back to the calling routine with an error cede. 
ROSSTT groups together all the extents of the data set (by reading 
the format 3 DSCB if necessary) and checks them for validity. ROSSTT 
bypasses any user labels that may exist and displays a message to 
that effect. Next, ROSSTT moves the DSCB1 ELKSIZE, LRECL, and RECF~ 
parameters to the OS FST and Fasses control to rosstret. 

• ROSSTRET Routine -- If t.hp. Hi~K i~ ~nt ~ DQ~ ~i£r., rc~~trct passes 
control tack to the caller. If the specified disk is a DOS disk, 
rosstret fills in the os FST BLKSIZE, LRECL, and RECFft fields that 
were not specified in the DSCB1. If the CMSCB fields are zero, 
rosstret defaults them to BLKSIZE=32760, LRECL=32670, and RECFM=O. 
Control then returns to the calling routine. 

• ROSRPS Routine ROSRPS reads the next record of an as data set. 
Upon entry to the ROSRPS entry point, ROSRPS calls CHKXTNT and, if 
the-current CCHHR is zero, SETXTNT to ensure the CCHHR and extent 
boundaries are correctly set. ROSRPS then calls DISKIO and, if 
necessary, CHKSENSE and GETALT to read the next record. If no errors 
exist or an unrecoverable error occurred, control returns to the user 
with either a zero (I/O OK) or an 80 (I/O error) in register 15. If 
an unrecoverable error occurs, ROSRPS updates the CCWS and buffer 
pointers as necessary and recalls CHKXTNT and DISKIO to read the next 
record. 

• ROSFIND Routine -- ROSFIND sets the CCHHR to point to a member 
specified in FCBMEMBR or, if the FCBMVPDS bit is on, sets the CCRHR 
to point to the next member higher than FCBftEMBR and sets a new 
member name in FCBMEMBR. 

Upon entry at the ROSFND entry point, ROSFND sets up a ccw to search 
for a higher member name if the FCBMVPDS tit is on, or an equal 
member name if the FCBMVPDS bit is off. It then calls SETXTNT, 
DISKIO and, if needed, CHKSENSE and GETALT to read in the directory 
block that contains the member name requested. After reading the 
block, it is searched for the requested member name. If the member 
name is not found, an error code 4 returns to the calling routine. 
If an I/O error occurs while trying to read the PDS block, an error 
code 8 returns to the calling routine. If the member name is found, 
TTRCNVRT is called to convert the relative track address to a CCHR 
and pass the address of the member entry to the calling routine. 

• ROSNTPTB Routine -- ROSNTPTB gets the current TTR, sets the current 
CCHHR to the value of the TTR, and backspaces to the previous record. 

Upon entry at the ROSNTPTB entry point, ROSNTPTB checks to determine 
if a NOTE, POINT, or BSP operation was requested. 

If register 0 is zero, NOTE is assumed. The note routine calls 
CBRCNVRT to convert the CCHH to a relative track and returns control 
to the calling routine with the TTR in register O. 

2-134 IBM VM/370 System Logic and Program Determination--Volu~e 2 



If register 0 is positive upon entry into D~SROS, POINT is assumed 
and ROSNTPTB loads a TTR from the address in register 0 and calls 
TTRCNVRT and SETXTNT to convert the TTR to a CCHHR. Then contrel 
returns to the calling routine. 

If register 0 is negative upon entry into DMSROS, BSP (BACKSPACE) is 
assumed. The backsFace code checks to determine if the current 
position is the beginning of a track. If not, the backspace code 
decrements the record number by one and control then returns to the 
calling routine. If the current position is the beginning of a 
track, the backspace code calls CHRCNVRT to get the current ceHB. 
The backspace code then calls rdcnt to get the current record number 
of the last record on the new track, calls setxtnt to set the new 
extent boundaries, and returns control to the calling routine. 

• NOTE Routine -- Upon entry to note, DMSSCT checks to determine if the 
DCB refers to an OS disk. If it does, DMSSCT calls DMSROS (ROSRTPTE) 
to get the current TTR. Control then returns to the user. 

• POINT Routine -- Upon entry to point, DMSSCT checks to determine if 
the DCB refers to an OS disk. If it does, DMSSCT calls D~SRCS 
(ROSNTPTB) to reset the current TTR, calls CKCONCAT and returns 
control to the calling routine~ 

• CKCONCAT Routine Upon entry to CKCONCAT, DMSSCT checks to 
determine if the FCB MACLIB CORCAT bit is on. If it is on, 
DCBRELAD+3 sets the correct OS FST pointer ~ll the FCB and returns 
control to the calling routine. If the FCE ~ACLIB CCNCAT bit is off, 
control returns to the calling routine. 

• FIND (type_C) Routine If the DCB refers to an OS disk, DMSSCT 
TTR and control returns to the 

• 

calls DMSROS (ROSNTPTB) to update the 
calling routine. 

EOBROUTN Routine If the FCB OS bit 
OSREAD. Otherwise, if no special I/O 
FCBPROC, control passes to EOB2 in DMSSEB. 

is on, 
routine 

control passes 
is specified 

to 
in 

• OSREAD Routine -- DMSSEB calls DMSROS to perform a read or write and 
then control passes to EOBRETRN which, in turn, passes control back 
to DMSSBS. DMSSBS passes control back to the routine calling the 
read or write macro operation. 

~~SSQg ~Q~Q~~ -- If the MACLIB CONCAT option is on in the CMSCB, OPEN 
checks the MACLIB names in the global list and fills in the addresses of 
OS FSTS for any MACLIBS on os disks. The CMSCB of the first MACLIB in 
the global list merges and initializes CMSCBS. 

If the CMSCB refers to a data set on an OS disk, DMSSCP checks to ensure 
that the data set is accessible and the DCB dees not specify output, 
BDAM, or a key length. If any errors occur, error message DMSSOP036E 
appears and DMSSOP does not open the DCB. DMSSOP fills them in from the 
os PST for the data set5 

CMS Method of Operation and Program Organization 2-135 



If the CMSCB fcbmembr field contains a member name (filled in by FILEDEF 
with the member option), DMSSOP issues an OS FIND macro to position the 
file pointer to the correct member. If an error occurs on the call to 
the FIND macro, error message DMSSOP036E appears and DMSSOP does not 
open the DCB. 

• BSP (backspace) Routine -- Upon entry, backspace checks for the FCB 
OS bit. If it is on, the BSP routine calls DMSROS (ROSNTPTB) to 
backspace the TTR and control returns to the calling routine. 

• FIND (type_D) Routine -- Upon entry to find, the find routine checks 
the FCB OS bit. If it is on, the FIND routine takes the as FST 
address from the CMSCB or, if the CONCAT bit is on, from the global 
MlCLIB list. The FIND routine then calls t~SROS (ROSFIND) to find 
the member name and TTR. DMSROS searches for a matching me.ber name 
or, if the FCBMVPDS option is specified, a higher member na.e. If 
the ~~~RO~ returu code i~ G OL 0, uL If the iCBCAThL bi~ is not on, 
control returns to the calling routine with the return code fro. 
DMSROS. If the return code is 4 and the FCBCATeL bit is on, DeSSVT 
checks to determine if all the global M!CLIBS were searched. If they 
were, control returns to the calling routine with the DMSROS return 
code. If they were not, DMSSVT issues the FIND on the next MACLIB in 
the global list. 

• BLDL Routine--BLDL list = FF LL NAME TTR KZC DATA 

• 

If the DCB refers to an as disk, the BLDL routine fills in the TTR, 
C-byte and data field from the os data set. 

SEARCH Routine -- The search 
currently active is included 
currently accessible. 

routine 
in the 

ensures that any as 
search order of all 

disk 
disks 

• DISK Routine -- The disk routine displays the status of any or alIOS 
disks using the following fora: 

'MODE(CUU): (NO. CILS.), TIPE RIO - OS.' 

DMSSTT MODULE -- DMSSTT verifies that the disk being searched is an OS 
dIsk:- nMSSTT calls DMSLFS to get the FST associated with the data set. 
Upon return from DMSLFS, DMSSTT checks the return code to ensure that 
CMS supports the data set attributes. A return code of 81 or 82 
indicates that CMS does not support the data set and message DftSSTT229E 
occurs to that effect. DftSSTT then clears the FST copy with binary 
zeros, and moves the filename, filetype, file.ode, BLKSIZE, LRECL, 
RECFM, and flag byte to the FST copy. From this point on, co.mon code 
execution occurs for both CMS and os disks. 

• CHRCNVRT Routine -- The CHRNCVRT routine converts a CCHH address to a 
relative track address. 

2-136 IBM VM/370 System Logic and Program Determination--Volume 2 



• CHKSENSE Routine CHKSENSE checks sense bits to determine the 
recoverability of a unit check error if one occurs. 

• CHKITNT Routine CHKITNT checks to determine if the end of split 
cylinder or the end of extent occurred, and, if so, updates to the 
next split cylinder or extent. 

• DISKIO Routine -- DISKIO starts I/O operation on a CCW string via a 
DIAGNOSE X'20'. 

• GETALT Routine -- GETALT switches reading from alternate track to 
prime track, and from prime track to alternate track. 

• RDCNT Routine -- RDCNT reads count fields on the track to deter.ine 
the last record number on the track. 

• SETXTNT Routine -- SETITNT sets OSFSTEND to the value of the end of 
the extent and, if a new extent is specified, sets CCHHR to the value 
of the start of the extent. 

Simulating a DOS Environment under eMS 

CMS/DOS is a functional enhancement to CMS that provides Des 
installations with the interactive capabilities of a VM/370 virtual 
machine. CMS/DOS operates as the background DOS partition; the other 
four partitions are unnecessary, since the CMS/DOS virtual machine is a 
one-user machine. 

CMS/DOS provides read access to real DOS data sets, but not write or 
update access. Real DOS private and system relccatable, source 
statement, and core-image libraries can be read. This read capability is 
supported to the extent required to support the CMS/DOS linkage editor, 
the DOS/PLI and DOS/VS COBOL compilers, the FETCH routine, and the 
RSERV, SSERV, and ESERV commands. No read or write capatility exists fer 
the DOS procedure library, except for copying procedures from the 
procedure library (via the PSERV command) or displaying the procedure 
library (via the DSERV command) • 

CMS/DOS does not sUPFort the standard label cylinder. 

INITIALIZING DOS AND PROCESSING DOS SYSTEM CONTROL COMMANDS 

Initialization of the CMS/DOS operating environment requires the setting 
of flags and the creation of certain data areas in storage. Once 
initialized, these flags and data areas may then be changed by routines 
invoked by the system control commands. 

Five modules are described in this section: 

• DMSSET Activates the CMS/DOS environment control blocks to be used 
during CMS/DOS processing. 

• DMSOPT Sets or resets compiler execution-time options. 

• DMSASN Relates logical units to physical units. 

• DMSLLU Lists the assignments of CMS/DOS physical units. 

• DMSDLB Associates a DTF with a logical unit for CMS/DOS processing. 

eMS Method of Operation and Program Organization 2-137 



DMSSET initializes the C"S/DOS operating environment as follows: 

• Verifies that the mode, if specified, is for a DOS formatted disk. 

• Stores appropriate data in the SYSRES LUB and PUB. 

• Locates and loads the CMS/DOS discontiguous shared segment. Saves 
(in NUCON) the addresses of the two major CMS/DOS data blocks, 
SYSCOM, BGCOM,and the address of the CMS/DOS discontiguous shared 
segment (C"SDOS). 

• Sets the DOSMODE and DOSSVC bits in DOSFLAGS in NueON. 

• Assigns (via ASSGN) the SYSLOG logical unit as the CMS virtual 
console. 

The CMS/DOS operating environ.ent is entered when the CMS SET DOS eN 
ccam~na i& i&&~~a, invoking the ~0aul~ D~~~~T. 

Several data areas are prepared for processing during initialization. 
The .ain CMS data area, NUCOH, is modified to contain the addresses of 
two DOS data areas, SYSCOM and BGCOM. 

The SYSCOM DSECT is the DOS system communications region. It 
consists mainly of address constants, including the addresses of the AB 
option table, the PUB ownership table, and the FETCH table. It also 
includes such information as the number of partitions (always one for 
CMS/DOS) and the length of the PUB table. 

The BGCOM DSECT is the partition communication region. It includes 
such information as the date, the location of the end of supervisor 
storage, the end address of the last phase loaded, the end address of 
the longest phase loaded, bytes used to set the language translator and 
supervisor options, and the addresses of many other DOS data areas such 
as the LUB, PUB, NICL, FICL, PIB, PIB2TAB, and the PCTIE. 

The LUB and PUB tables are also made available during initialization. 
The LUB is the logical unit block table. It acts as an interface 
between the user's program and the CMS/DOS physical units. It contains 
an entry for each sy.bolic device available in the system. 

Each of the symbolic names in the LUB is mapped into an element in 
the PUB, the physical unit block table. The PUB table contains an entry 
for each channel and device address for all devices physically available 
to the system and also contains such information as device type cede, 
eMS disk mode, tape mode setting, and 7-track indicator. 

Two bits are set in DOSFLAGS in NUCOH, DOSHODE and DOSSVC. DOSMODE 
specifies that this virtual machine is running in the eMS/DOS operating 
environment. DOSSVC indicates Whether OS or DOS SVCs are operative in 
the operating environment. If DOSSVC is set, DOS SVCs are used; 
otherwise, as SVCs are operative. 

2-138 IBM VM/370 System Logic and Program Determination--Volume 2 



SETTING OR RESETTING SYSTEK ENVIRONMENT OPTIONS 

Once the CKS/DOS environment is initialized, the flags and control 
blocks set during initialization can be modified and manipulated to 
perform the functions specified by commands entered at the console. 
This section describes the modules that set and reset the system 
environment options. That is, they set those options that control 
co.piler execution and that control the configuration of logical and 
Fhysical units in the system. 

The CKS/DOS OPTION command invokes module DKSOP!, which sets either the 
default options for the compiler or the options specified on the command 
line. The ncnstandard language translator options switch and the jcb 
duration indicator byte are altered. Options are set using two control 
words located in the partition communication region (EGCOM). Bits in 
bytes JCSW3 or JCSW4 are set, depending on the options specified. 

Module DMSASN is invoked when the ASSGB command is entered. DKSASN 
first scans the command line to ensure that the logical unit being 
assigned is valid for the physical unit specified (for example, SYSLCG 
must be assigned to either the virtual console or the virtual printer). 
Once the command line is checked, PUB and LUB entries are modified to 
reflect the specified assignment. 

For the PUB entry, the device type is determined (via DIAG 24) and 
the device type code is placed in the PUB. Other modifications are made 
to the PUB depending on the specified assignment. The LUB entry is then 
mapped to its corresponding PUB. 

The function of DMSLLU is to request a list of the physical units 
assigned to logical units. It performs this function by referencing 
information located in the CMS/DOS data blocks, specifically SYSCO~, 
LUB, and PUB. Another data block, the next in class (NICL) table is 
also referenced. 

The information on the com.and line is scanned and the appropriate 
items are displayed at the user's console. If an option (EXEC or 
APPEND) is specified, an EXEC file is created ($LISTIO EXEC A1) to 
contain the output. If EXEC is specified, any existing $LISTIO EXBC 11 
file is erased and a new one is created. If APPEND is specified, the 
new file is appended to the existing file. 

CKS Method of Operation and Program Organization 2-139 



DMSDLB is invoked when the CMS/DOS DLBL command is entered. DMSDLB 
associates a DTF (Define The File) table filename with a logical unit. 
This function is performed by creating a control block called a DOSCE, 
which contains information defining a DOS file used during jcb 
execution. DLBL is valid only for sequential or VSA~ disk devices. 

This information parallels the label information written on a real 
BOS SYSRES unit under DOS/VS. The DOSCB contains such information as 
the name, type, and mode of the referenced dataset, its device type 
code, its logical unit specification, and its dataset type (SAM or 
YSAM) • 

A DOSCB is created for each file specified by the user during a 
terminal session. The DOSCBs are chained to each other and are anchored 
in NUCON at the field DOSFIRST. The chain remains intact for the entire 
session, unless an abend occurs or the user specifically clears an entry 
in the the DOSCB chain. A given DOSCB is accessed when an OPEN macro is 
issued from an executing user program. 

The overall logic flow for DMSDLB is as follows: 

1. Scans the command line to ensure that any options entered are valid 
(that is, anything to the right of the open parenthesis). 

2. Processes the first operand (ddname or *). When ddname is 
specified, loop through the DOSCB chain to find a matching ddname. 
If none is found, DMSDLB calls DMSFRE to get storage to create a 
new DOSCB for this file. The old copy of the DOSCB is then saved 
so that, in case of errors during processing, it can be retrieved 
intact. The new copy of the DOSCB contains updates and DOSCB 
replaces the old copy if there are no errors. 

3. The mode specification is checked to ensure that it is a valid mode 
letter; if the file is a CMS file, the mode letter must specify a 
CMS disk. If DSN has been specified, the mode letter must be for a 
non-CMS disk. 

4. Process each option on the command line appropriately. 

5. If EXTENT or MULT is specified, a separate tlock of free storage is 
obtained to contain information about the extent, for example, a 
block is obtained to contain the DOS data set name. 

5. Check for errors. If there are errors, any blocks created during 
processing are purged and an error message is issued. If there are 
no errors, restore the old block, which has heen modified to 
reflect current processing, and return control to DHSITS. 

PROCESS CMS/DOS OPEN AND CLOSE FUNCTIONS 

The CMS/DOS OPEN routines are invoked in response to DOS OPEN macros. 
They operate on DTF (define the file) tables and ACE (access method 
control block) tables created when the DTFxx and ACB macros are issued 
from an executing user program. These tables contain information such as 
the LOG unit specification for the file, the DTF type of the file, the 
device code for the file, and so forth. The informaticn in the tables 
varies depending upon the type of DTF specified (that is, the table 
generated by a unit record DTF macro is slightly different from the 
table generated by a DTF disk macro). 

2-140 IBM VM/370 System Logic and program Determination--Volume 2 



Five routines are invoked to perform OPEN functions, DftSOPL, DeSOR1, 
D~SOR2, DMSOR3, and DMSBOP. DMSCLS perforas the CLOSE function. 

Depending on the type of OPEN .acro issued from a user program, one of 
five CMS/DOS OPEN routines could be invoked. OPENR macros give control 
to DMSOR1 and, depending on the DTF type specified, DMSOR2 or DMSOR3 .ay 
be invoked. These three routines (DMSOR1,DMSOR2, and DftSOR3) request 
the relocation of a specified file. DMSOPL is invoked by the DOS/VS 
coapilers when they need access to a source statement library. These 
routines are mainly interface routines to DMSBOP, which performs the 
.ain function of opening the specified file. Each of the routines calls 
DMSBOP. 

DMSBOP is the eMS/DOS routine that simulates the DOS/VS OPEN 
function. The basic function of DMSBOP is the initialization of DTF 
tables (that is, setting fields in specified DTFs for use by the DOS/VS 
LIOCS routines). 

When a DOS problem program is compiling, a list of DTFs and ACBs is 
built. At execution time, this list is passed to DMSBOP. The logic 
flow of DMSBOP is as follows: 

1. Scans the list of DTF and ACB addresses, handling each iteaa in the 
list in line. When the OPEN macro expands, register i points to 
the name of the SSB transient to receive control ($$BOPEN) and 
register 0 Foints to the list of DTF/ACB addresses to be opened. 

2. When an ACB is encountered in the table, control is passed directly 
to the VSAM OPEN routine, $$BOVSAM. The VSIM routine is 
responsible for opening the file and returning control to DMSBOP. 

3. When a DTF is encountered in the table, DMSBOP itself handles the 
OPEN: 

a. For reader/punch files (DTFCD), the OPEN bit in the DTF table 
is turned on. 

b. For printer files (DTFPR), if two IOAREAs are specified, the 
IOREG is loaded with the address of the appropriate IOIREI. 
Next, the PUB index byte associated with the logical unit 
specified in the DTF is checked to ensure that a physical 
device has been assigned and the PUB device code is then 
analyzed. The OPEN bit in the DTF table is then turned on. 

c. For console files (DTFCN), no OPEN logic is required. 

d. For tape files (DTFMT), the PUB device type code must specify 
TAPE. If an IOREG is specified (for output tapes only), the 
address of the appropriate rOAREI is placed in it. For input 
files, there is separate processing for tapes with standard 
label, nonstandard label, and no label. For output tapes, both 
tape data files and work tape files are treated as no label 
tapes. 

CMS Method of operation and Program Organization 2-141 



e. For disk files (DTFxx), the LUB is verified to ensure that the 
logical unit bas been assigned. 1 check is made to ensure that 
the DOSCB exists for the DTF filename. For disk output files, 
the address of the appropriate IOAREl is placed in IOREG. For 
disk input files, the existence of the file is verified via a 
call to DKSSST. Also, EXTENT information is initialized and 
the OPEl bit is posted. 

f. DTFDT and DTFCP are separate DTF types that could describe any 
of the above devices. 

4. After all files in the table have been opened, DKSBOP returns 
control to the problem program via SVC 11. 

5. If errors are encountered during DMSBOP processing, an error 
message is issued and return is .ade via SVC 6. 

The CftS/DOS routine that processes CLOSE requests is DMSCLS, whose logiC 
is analogous to that of DKSBOP, the OPEN routine described above: when 
CLOSE expands, register 1 points to $BCLOSE and register 0 points to the 
list of DTF/ACB addresses. The same table containing DTFs and lCBs used 
to open files is also used to close those files. Each entry in the 
table is processed as it occurs, with control passing to a VSAM CLOSE 
routine ($$BCVS1K) when an ICB is encountered. The OPEN bit is then 
turned off. 

PROCESS CMS/DOS EXECUTION-RELATED CONTROL CO~MlNIS 

The CMS/DOS FETCH and DOSLKED com.ands simulate the operation of the 
DOS/VS fetch routines and the DOS/VS Linkage Editor. The three CMS 
.odules that perform this simulation are: 

• DKSFET--Prcvide an interface to interpret the DOS FETCH command line 
and execute the phase, if START is specified on the command line. 

• DftSFCH--Bring into storage a specified phase from a system or private 
core-image library or from a CMS DOSLIB library. 

• DMSDLK--Link edit the relocatable output of the CMS/DOS language 
translators to create executable programs. 

The DOS/'S FETCH function is simulated by CMS .odules DMSFET and DMSFCH. 
The main control block used during a FETCH operation is FCHSECT, which 
contains addressing information required for I/O operations. 

The FETCH command line invokes module D~SFET. This module first 
validates the command line and issues a FILEDEF for the DOSLIB file. It 
then issues a FILEDEF for a DOSLIB file. DKSFE7 then issues a DOS SVC 
4, which invokes the module DMSFCH to perform the actual FETCH 
operation. 

2-142 IBM VM/370 Systea Logic and Program Determination--Volume 2 



DMSFCH first determines .here the phase to be fetched resides. The 
search order is private core-image library, DOSLIB, system core-image 
library. If the 'phase is not found in any of these libraries, DHSFCH 
assumes that the FETCH is for a phase in a system or private core-image 
library. To find a DOSLIB library member, OS OPEN ano FIND macros are 
issued (SVC 19 and 18). 

When the member is found, OS READ and CHECK macros are issued to read 
the first record of the file (the member directory). This record 
contains the number of text blocks and the length of the member. 

All addressing information is stored in FCHSECT and the text blocks 
that the phase are read into stcrage. If the read is from a CMS disk, 
issue the OS READ and CHECK macros to read the data. If the read is 
from a DOS disk, first determine whether this is the first read for the 
DOS discontiguous shared segment (DCSS) _ If this is the case, CCi 
information is relocated to ensure that the DCSS code is reentrant. For 
all reads for a DOS disk, a CP READ DIAG instruction is issued. When 
the entire file is read, it is relocated (if it is relocatable). 

If a DOSLIB is open, close it using an OS SVC 20 and return control 
to DMSFET. DMSFET then checks to see whether START is specified and, if 
so, an SVC 202 is issued for the CMS START command to execute the loaded 
file. 

When all FETCH processing is complete, control returns to the C~S 
command handler, DKSITS. 

CMS simulation of the DOS/VS Linkage Editor function directly parallels 
the DOS/VS implementation of that function. For detailed information on 
the logic of the function, see the publication DO~L!~ 1i~k2g~ ~di12£ 
~2g!£, Order Ne. SY33-8556. 

Note that the modules comprising the DOS/VS Linkage Editor are 
prefixed by the letters IJB and are separate CSECTs. ALL of these 
CSECTs have counterparts contained within the ene eMS module, DMSDLK. 
They are treated as subroutines within that module, but perform the same 
functions as their independent DOS/VS counterparts and have been named 
using the same naming conventions as for the DOS/VS CSECTs. For 
example, the IJBESD CSECT in DOS/VS is paralleled by the CMS DMSDLK 
subroutine DLKESD. 

A brief dscription of the logic follows. The CMS/DOS DOSLKED command 
invokes the module DMSDLK, which is entered at subroutine DLKINL. 
DLKINL performs initialization and is later overlaid by the text buffer 
and the linkage editor tables. DLKINL starts to read from a DOSLNK file 
and processes ACTION statements, if there are any_ 

On encountering the first non-ACTION card (or if there is no DOSLNK 
file), the main flow is entered. Depending on the input on the DOSLBK 
or the TEXT file, records from either of those files may be read or 
records from a relocatable library may be read. The type of card i.age 
read determines the subroutine to which control is given for further 
processing. 

An ENTRY card indicates the end of the input to the linkage editor. 
At this point, a map is produced by subroutine DLKMAP. DLKRLD is then 
entered to finish the editing of object .odules by relocating the 
address constants. If the phases are to be relocatable, relocation 
information is added to the output on the DOSLIB. Updating of the 
DOSLIB library is performed by DLKCAT using the OS STOW macro. 

CMS Method of operation and Program Organization 2-143 



A significant deviation from DOS/VS code is the use of OS macros, in 
S08e instances, rather than DOS/VS macros. To take advantage of CflS 
support of partitioned data sets, the OS OPEN, FIND, READ, CHECK, and 
CLOSE macros are issued rather then their DOS/VS counterparts. 

SIMULATE DOS SVC FUNCTIONS 

All SVC functions supported for CMSjDOS are handled by the CMS module 
DMSDOS. DMSDOS receives control from DMSITS (the CMS SVC handler) when 
that routine intercepts a DOS SVC code and finds that the Dossve flag in 
DOSFLAGS is set in NUCON. 

DMSDOS acquires the specified SVC code from the OLDPSW field of the 
current SVC save area. Using this code, DMSDOS computes the address of 
the routine where the SVC is to be handled. 

Many CMS/DOS routines (including DMSDOS) are contained in a 
discontiguous shared segment (DCSS) e Most SVC cedes are executed within 
DMSDOS, but some are in separate modules external to DMSDOS. If tpe SVC 
code requested is external to DMSDOS, its address is computed using a 
table called DCSSTAB; if the code requested is executed within DMSDOS, 
the table SVCTAB is used to com~ute the address of the code to handle 
the SVC. 

The items below show the SVCs supported by CMS/DeS simulation 
routines, the name of the macro that invokes a 9~ven SVC code, the C~S 
.odule that executes the code, and a brief statement describing how the 
SVC function is performed. 

~!£ Q: EICf -- Handled by .odule DMSICP ••• reads from CftS or DOS/VS 
formatted disks. CCis are converted to appropriate CflS I/O requests, 
for example, RDBUF/WRBUF, C!RDRD/CARDPH. The ceE is posted (indicating 
I/O completion) using CMS return infor.ation. If a non-zero return code 
is returned, a CANCEL is performed. I/O requests to DOS disks are 
handled using CP DIAGNOSE instructions. 

SVC 1: ~ET~~ -- Handled by DMSFCH ••• loads a problem program phase into 
core and executes it, if execution is requested. For details on how 
FETCH works, see the section "Bring a Phase into Storage fer Execution: 
DMSFET and DMSFCH." 

SVC 2: FETCH -- Handled by DMSFCH ••• loads a $$$$B-Transient phase into 
core-and--executes it, if execution is requested. For details on how 
FETCH works, see the section "Bring a Phase into Storage for Execution: 
DMSF.T and DftSFCH." 

~!£ !: XET~~ -- Handled by DMSFCH ••• loads a problem program phase into 
user storage and executes it, if execution is requested. Fer details en 
how FETCH works, see the section "Bring a Phase into Storage fer 
Execution: DMSFET and DMSFCH." 

SVC 5: MV£Q~ -- Handled by DMSDOS ••• provides the user with a way of 
altering bytes 12 through 23 of the partition communication region 
(BGCOM). Checks to ensure that the specified field is correct length 
and then moves the information to the specified field. 

SVC 6: CANCL Handled by DMSDOS ••• cancels a CMS/DOS sessione 
Processing-depends on value in register 15 on entry; if above 256 the 
request is from a system program. If below 256, request is from a user 
program. processing continues with control passing to EOJ code, 
described below. 

2-144 IBM VM/310 System Logic and program Determination--Volume 2 



~VC 1: !AI± -- Handled by DMSDOS ••• informs system programs to wait for a 
system event to take place before processing can continue. WAIT is an 
effective NOP for CMS/DOS. 

~!~ 8: Handled by DMSDOS ••• temporarily returns control to a problem 
program. The address of the problem to which control is being passed is 
contained in register O. This address is stored in the SVC save area 
OLDPSW field and control is passed to the CMS SVC handler (DMSlTS). 

~!~ 2: Handled by DMSDOS ••• returns control to system program (i.e. a 
user program has been given control, as in the case of SVC 8, and must 
return control to the system routine, a $$$$B-Transient routine, that 
called it). 

SVC 11: Handled by DMSDOS ••• returns control 
$$$$=B transient routine. Uses the SiC save 
to the calling program. 

to a problem program from a 
area OLDPSW field to return 

~!~ ll: Handled by DMSDOS ••• resets flags in the linkage control byte of 
the Partition Communication Region (BGCOM) to zero; also, provides the 
user the capability to use a mask to set the value of this same byte. 
In both cases, the SVC routine that handles the request performs an AND 
operation to accomplish the function. 

~!~ 1!: ~Q~ -- Handled by DMSDOS ••• normally terminates execution of a 
problem program. Clears control blocks and resets control words. 

SiC 16: Handled by D~SDOS ••• establishes linkage with or terminates 
IInkage to a user's program check routine. Locates the appropriate PC 
option table entry. If contents of register 0 is zero, terminates 
linkage: stores a zero into the routine address field of the PC option 
table. If register 0 is non-zero, the address of the PC routine and the 
save area address is passed to the STIlT macro. If a STXlT PC routine 
is already active, the complement of the new routine address is placed 
in the PC option table; if no STXIT PC routine is active, both the new 
routine address and the save area address are Flaced in the PC option 
table. 

~!~ 11: Handled by DMSDOS ••• provides supervisory support for the EXIT 
macro. Locates appropriate PC option table entry and restores user's 
registers and PSi. Stores the address of the PC routine in the PC 
option table and returns to the next sequential address in the 
interrupted program. 

~!~ l§: Handled by DMSDOS ••• validates address limits. Checks the limits 
passed in registers 1 and 2 and either returns control to the caller or 
writes an error message. 

~!~ JJ: ~Q~~~ Handled by DMSDOS ••• provides the address of the 
partition communication region (BGCOM). Returns the address of BGCOM in 
register 1. 

~!£ J~: Handled by DMSDOS ••• supports the GETlME macro. Updates the date 
field in the partition communications region (BGCO~). 

~!~ Jl: Handled by DMSDOS ••• establishes linkage to or terminates linkage 
from a user's abnormal termination routine. Locate the AB table entry_ 
If register 0 contains zeros, terminates linkage: if the AB routine is 
active, stores zeros into the routine address field of the AB option 
table. If the AB routine is net active, stores zeros into both the 
routine address field and the save area field of the AB option table. 

If register 0 is non-zero, establishes linkage: passes the address of 
the AB routine and the save area address to the STXIT AB macro. If 
STXlT AB is active, the complement of the AB routine address is stored 

CMS Method of Operation and program Organization 2-145 



in the AB option table. If STXIT AB is not active, both the address of 
the new AB routine and the address of the save area are placed in the 
option table. 

~!£ ~Q: ~Q~! Handled by DMSDOS ••• signals the completion of a system 
event. 

SVC 50: Handled by DMSDOS ••• issues an error message and terminates the 
ccim~nd. Issued by a LIOCS routine when that routine is requested to 
perform a function it could not perform. 

~!£ tl: GETVIS -- Handled by DMSDOS ••• used by VSAM to o~tain scratch 
storage; also~-obtains storage for a relocatable VSAM routine. Storage 
is obtained from the user. free storage area and the address of the 
storage is returned in Register 1. 

~!£ §l: 
GETVIS. 

~R~~!~~ Handled by DMSDOS ••• returns storage obtained by a 
Address of the area to be returned is pointed to by Register 1. 

~!r ~}! nSR -- H~ndlea by DMSDOS ••. VSAM uses SVC 63 to ~nsure that 
system resources are updated serially, so that two or more attempts to 
modify the same data at the same time do not succeed. A table of 
counters (RURTBL) is kept for system resources. These counters are 
posted when a request is made for system resources. If a resource is 
already in use, a return code of eight is placed in register O. If the 
resource is available, a zero is returned in Register O. 

SVC 64: RELEASE -- Handled by DMSDOS ••• VSAM uses SVC 64 to release a 
system resource-obtained via USE SVC. The appropriate counter in RURTEL 
is decremented by one each ti.e a resource is r~leased. 

SVC 65: CDLOAD -- Handled by DMSDOS •• ~loads a relocatable VSAM phase 
Into-storage-unless that phase has already been loaded. 

If an anchor table is available, it is searched for the phase. If 
the phase is found, its load pOint, entry point, and length are returned 
in registers 0, 1, and 14, respectively, and register 15 contains zeros. 

If the phase is not found in the anchor table, DHSFCH is called to 
search for it. If the phase is found in the discontiguous shared 
segment, return is made to the requestor as above. 

If the phase was found, but not loaded, storage is obtained for it 
via the GETVIS SVC. DMSFCH is called again to load the phase into the 
storage just obtained. An anchor table is then built in the user area 
(unless one already exists) and return to the caller is then made as 
described above. 

~!£ §§: RU~~QQ~ -- Handled by DMSDOS ••• determines whether the problem 
program is runn~n9 in real or virtual mode. Register 0 contains zero on 
return if the program is running in virtual .ode. 

SVC 75: ~~£!!!~ -- Handled by DMSDOS ••• used by VSAM I/O routines to 
attaIn a sector number for 3330 or 3340 devices. The appropriate sector 
value is calculated from input supplied in registers 1 and O. The 
sector number (from 0 to 127) is returned in register o. 

Certain DOS SVCs are treated as no-ops by CMSjDOS and other DOS/VS 
SVCs are Dot supported. These are listed below. 

~!£ 22: Handled by DMSDOS ••• provides supervisory support for the EXIT 
macro. The AB option of the EXIT macro provides an exit from the 
abnormal task termination routine and continues the task. 

2-146 IBM VM/370 System Logic and Program Determination--Volume 2 



The linkage to either the PC or AB routine is reestablished, and the 
cancel condition is reset by clearing the abnormal end indication in the 
partition PIB extension. Control is returned to the instruction 
following the EXIT AB .acro. 

SiCS TREATED AS NO-OP BY CMS/DOS 

~!£ Action 
10: S~ts-timer interval 
18: S'rXIT (IT) 
20: Establishes linkage to OC 
22: Seizes (interruption enable/disable) 
24; Sets timer interval 
35: Holds a track 
36: Frees a track 
41: Dequeues a resource 
42: Enqueues a resource 
52: 0 seconds returned as rema~n~ng timer interval in register 0 
67: PFIX, fixes pages in real storage 
68: PFREE, frees pages in real storage 
71: SETPFA 
85: RELPAG 
86: FCEPGOUT 
87: PAGEIN 

~!CS !QI ~Q~~QRI~Q ~I £~~QQ~: The following SiCs cause an error aessage 
to be generated and are treated as a CANCL (SVC 6). 

SV £ !f.t!.2.!! 
3: Forces dequeue 

13: Sets switches in BGCOM 
15: Heads queue and executes channel program 
19: Returns from user's IT 
21: EXIT (OC) 
23: Loads phase header 
25: Issues HIO 
27: Special HIO 
28: Returns from user's MR 
29: Multiple ilITM support 
30: Waits for a QTAM element 
31: Posts a QTAM element 
32: Reserve~ for IBM use 
38: Initializes a subtask 
39: Terminates a subtask 
43: Reserved for IBM use 
44: External unit checks record 
45: Emulator interface 
46: OLTEP in supervisor state 
47: Multiple WAITF support 
48: Fetches a CRT trans 
49: Reserved by IBM 
51: Returns phase header 
53: Reserved by IBM 
54: Frees real page frames 
55: Gets real page frames 
56: Gets or frees PUB of POWER device 
57: Makes POWER dispatchable 
58: Interface between JCL and supervisor 
59: Interface between EOJ and supervisor 
60: EREP and CRT I/O areas address 
69: REALAD 
70: VIRTAD 

CMS Method of Operation and Program Organization 2-141 



72: GETCBUF/FREECBUF 
73: SETAPP 
74: Fixes pages in real storage for restart 
76: Initializes for recording of RMSR I/O error 
77: TRANSCSW 
78: Reserved for IBM use 
79: Reserved for IBM use 
80: Reserved for IBM use 
81: Reserved for IBM use 
82: Reserved for IBM use 
83: Reserved for IBM use 
84: Reserved for IBM use 
88 and up: 

Reserved for IBM use 

PROCESS CMS/DOS SERVICE COMMANDS 

DMSSRV--Copies books from a system or private source statement library 
to a spec~fied output device. 

DMSPRV--Copies DOS procedures from a DOS system procedure library to a 
specified output device. 

DMSRRV--Copies modules from a system or private relocatable library to a 
specified output device. 

DMSDSV--Lists the directories of DOS private or system libraries. 

DMSDSL--Deletes members (phases) of a DOSLIB library; compresses a 
DOSLIB library; lists the members (phases) of a DOSLIB library. 

ESERV--De-edits, displays or punches, verifies, and updates edit 
assembler macros from the source statement library. 

TERMINATE PROCESSING THE CMS/DOS ENVIRONMENT 

DMSBAB--Gives control to an abnormal termination routine once linkage to 
such a routine has been established via the STIlT AB macro. 

DMSITP--Processes program interrupts and SPIE exits. 

DMSDMP--Simulates the $$BDUMP and $$BPDU8P routines; issues a CP DU5P 
command directing the dump to an offline printer. 

2-148 IBM VM/370 System Logic and program Determination--Volume 2 



Performing Miscellaneous eMS Functions 

The CftS Batch Facility and error printouts are described below. 

CMS BATCH FACILITY 

The CMS Batch Facility is a function of CMS. It provides a vay of 
entering individual user jobs through an active CMS machine from the 
virtual card reader rather than from the console. The batch facility 
reissues the IPL com.and after each job. 

The CMS Batch Facility consists of tvo modules: DMSBTB, the bootstrap 
routine (a nonrelocatable CMS module file) and DMSBTP, the processor 
routine (a relocatable CMS text file that runs free storage). 

The bootstrap module, DMSBTB, loads the processor routine DMSBTP and the 
user exit routines BATEXIT1 and BATEXIT2 (if they exist) into free 
storage. 

DMSBTB first ensures that DMSINS (eMS initialization) has set the 
BATRUI and BATLOAD flags on in the CMS nucleus constant area indicating 
that either an explicit batch initial program load command has been 
issued or that the CftSBATCH command has been issued immediately after 
initial program load has taken place. If not, error message DMSBTB101E 
is typed and the batch console returns to a normal CftS interactive 
environment. STATE (DMSSTT) is then called to confirm the existence of 
the processor file DftSBTP TEXT. If the file does not exist, error 
message DMSTBT100E is typed and the batch console returns to the cas 
interactive environment. 

Using the "state" copy of the file status table (FST) for DMSBTP, 
DMSBTB computes the size of D~SBTP TEXT file by multiplying the logical 
record length by the nu.ber of logical records (no DS constants). A 
free storage request is made for the size of DMSBTP and the address of 
the r9utine is then stored at ABATPROC in the NUCON area of the eMS 
nucleus. 

The existence of the user exit routines is determined by STATE. If 
they exist, their sizes are included in the request for free storage. 

The free storage address is translated into graphic hexadecimal 
for. at and the CMS LOAD command is issued to load the DMSBTP TEXT file 
into the reserved free storage area. The user exit routines, BATEXITl 
TEXT and BATEXIT2 TEXT are also loaded at this time. If these files do 
not exist, an unresolved external reference error code is returned by 
the loader, but is ignored by DMSBTB because these routines are 
optional. If an error (other than unresolved names) occurs, error 
.essage DMSBTB101E is typed and the batch console returns to the ees 
interactive environment. 

The loader tables are searched 
point DMSBTPAB in the loaded batch 

for the address of the ABEND entry 
processor. When the entry is found, 

eMS Method of Operation and program organization 2-149 



its address and that of entry DMSBTPLM are stored in ABATABND and the 
ABATLIftT respectively, in the NUCON area of the CftS nucleus. If the 
ABEID entry point is not found in the tables, error message D~SBTB101E 
is typed and the batch console returns to the CMS interactive 
environment. 

The BATLOAD flag is set off to show that DftSBTP has been loaded, the 
BATNOlX flag is set on to prevent user job execution until DMSBTP 
encounters a /JOB card and finally, control is returned to the command 
processor DftSINT. 

If an error message is issued, DMSERR is called to type the message, 
and the BATRUN and BATLOAD flags are set off before control is returned 
to CMS. This allows the normal CMS interaction to resume. 

The ~atct processoL .ouule DMSBTP simulates the tunct~on of the CftS 
console read module DMSCRD. This is accomplished by issuing reads to 
the virtual card reader, formatting the card-image record to resemble a 
console record and returning control to CMS to process the command (or 
data) request. DMSBTP also performs reads to the console stack if the 
stack is not eapty, checks for and processes the /JOB card, ensuring 
that it is the first record in the user job, traps all CP co •• ands to 
.aintain system integrity and performs job initialization, cleanup, and 
job recovery_ 

Upon receiving control, DMSBTP checks the BATCPEX flag in NUCON. If 
the flag is set on, control was received from DftSCPF and a branch is 
.ade to the CP trap routine to verify that the command is allowable 
under batch. The function of that routine is described later. If the 
BATCPEX flag is off, control was received from DftSCRD (console read 
module) and DMSBTP checks for finished reads in the real batch console 
stack. If the number of finished reads is not zero, control is returned 
to DMSCRD to process the real console finished (stacked) reads. If the 
nuaber of finished reads is zero, a record is read from the batch 
virtual card reader into the CARD buffer via an SVC call to CARDBD 
(tMSCIO). The record in th~ CARD buffer is typed on the console via the 
iRTERft macro. If the BATMOVE flag is set on (MOVEFILE executing from 
the console), the records in the file are not typed on the console. 

The record in the reader buffer is scanned to compute its length with 
trailing blanks deleted. It is then aoved to the CftS console read 
buffer and the computed length is stored in the original DftSCRD 
parameter list, whose address is passed by DftSCRD when it initially 
passes control to DMSBTP. 

If the first user record is not a /JOB card, error message DMSBTP10SE 
is typed and normal cleanup is performed with the BATTERft flag set on. 
This flag prevents another initial program load, since it is not needed 
at this time. Reads to the card reader are then issued until the next 
/JOB card is found. 

If the first record is a /JOB card, DMSBTP branches to its /JOB card 
processing routine which calls DMSSCNN via a EALB. A check is made fer 
the existence of the userid and account number on the card. If the 
fields exist, a CP DIAGNOSE X'4C' is issued to start accounting 
recording for that userid and account number. If an error is returned 
froa CP denoting an invalid userid, or if the userid or account number 
fields were missing on the /JOB card, error message DMSBTP106E is typed 
and nor.a! cleanup is performed with the BATTERft flag set on. 

2-150 IBft Vft/370 System Logic and Program Determination--Volume 2 



The jobname, if provided on the /JOB card, is saved and a message is 
issued via SVC to inform the source userid that the job has started. 
The spooling devices are closed and respooled for continuous output, a 
CP QUERY FILES command is issued for information purposes and the 
implied CP function under CKS is disabled and the protection feature set 
off via SVC calls to SET (DKSSET). The BATPROF EXEC is executed via an 
SiC to EXEC. The BATHOEX flag, which is set by D~SBTB to suppress user 
job execution until the /JOB card is detected, is set off. The BATUSEX 
flag is set on (for DKSCPF) to signal the start of the actual user job, 
and a branch is taken to read the next card from the reader file (user 
job). 

After reading the /JOB card, DMSBTP continues reading and checks for 
a /* card, a /SET card, or a CP command. If a card is none of these, 
DMSBTP passes control back to the command processor DMSINT for 
processing of the command (or data) • 

If a 1* card is read and it is the first card of the new job, it is 
assume to te a precautionary measure and thus ignored by DMSBTP Which 
then reads the next card. If it is not the first card a check is made 
for the BATMOVE flag. If the flag is on, the /* card indicates an 
end-of-file condition for the MOVEFILE operation from the console 
(reader) and is consequently translated to a null line for the MOVEFILE 
command. 

~ 

If the BATMOVE flag is not on, the /* card is and end-of-job 
indicator and an immediate branch is taken to the end-of-job routine for 
cleanup and reloading of CMS batch. 

When a CP command is encoutered DMSBTP branches to a routine that 
first checks a table of CP commands allowable in batch. If the command 
is allowed, a check is made for a reader or other spool device in the 
command line. If the CP command is allowed but would alter the status 
of the batch reader or any spooling device or certain disks, or if the 
command is not allowed at· all, error message DMSBTP107E is typed, and 
the next card is read. 

If the CP command is LINK, the device address is stored in a table so 
that DMSBTP can detach all user disk devices at the end of the job. 

A CP DETACH command is examined for a device address corresponding to 
the system disk, the IPL disk, the batCh 195 work disk or any spool 
device. If the device to be detached is any of these, error message 
DMSBTP107E is displayed and the next card is read. Otherwise, DMSBTP 
returns control to DKSINT (or DMSCPF is the EATCPEX flag is set on) for 
processing of the command. 

When a /SET control card is encountered, the card is checked fer 
valid keywords, valid integer values (less than or equal to the 
installation default values), and if an error is detected, error message 
DMSBTP108E is typed. An abnormal termination message is also sent to 
the source userid and the job is terminated with normal cleanup 
performed. If the control card values are valid, the appropriate fields 
are updated in the user job li.it table DMSBTPLM and the next card is 
read. 

If DMSBTP detects a "not ready" condition at the reader, a message is 
typed at the console stating that batch is waiting for reader input. 
DMSBTP then issues the WAITD macro to wait for a reader interrupt. When 
first detecting the empty reader, DMSBTP calls the CP accounting 
routines via a CP diagnose '4C' to charge the wait time to the hatch 
userid. 

CMS Method of Operation and Program organization 2-151 



If a hard error is detected at the reader, DMSBTP sends an 
"intervention required" message to the system console and branches to 
its abnormal terminal routine and waits for an interruption for the 
reader by issuing the WA1TD macro. 

When a /* card is read (with the BATMOVE flag off) or when the 
end-of-file condition occurs at the reader, D"SBTP branches to the 
cleanup routine which sends the source userid a message stating that the 
job ended noraally or abnormally (if cleaning up after an abnormal 
termination) and turns off the BATUSEX flag (for DMSCPF) to signal the 
end of the user job. CONWAIT (DMSCWT) is called via SVC to allow any 
console I/O to finish, the spooling devices are closed (including the 
console), and all disks that were made available by issuing the CP LINK 
command are returned by issuing the CP DETACH command. 

DMSBTP then relinquishes central by issuing the CP 1PL command with 
the PARM BATCH option which loads a new CMS nucleus and the next job is 
started when CMS attempts its first read to the console. 

A branch is made to the CMSBTP routine when DMSBTP itself detects an 
I/O error at the re~~cr. TIo~ever, the ~riillary purp0s~ 0[ Lh~ Luutille is 
to receive central not only from DMSABN when there is an abnoraal 
termination during the user job, but also frem DMSITE, DMSPIO, and 
DMSCIO when a user job exceeds one of the batch job limits (BATXL1M flag 
is on). This routine, entry point DMSBTPAB, calls the CP DUMP routine 
via SVC and then branches to the cleanup routine which reloads CMS Batch 
and treat the remainder of the current job as a new job with no /JOB 
card. This has the effect of flushing the remainder of the job. This 
technique is used because batch must kee~ its reader spooled 
"continuous." Entry point DMSBTPAB is also used by the CMS commands 
that are disabled in CMS batch. In this case (EATDCMS flag set on), an 
error message is displayed and control returned to CMS. 

When a CP coamand is called via an SVC in DMSBTP, the CMS CP module 
(DMSCPF) is actually called to issue the DIAGNOSE instruction to invoke 
the CP coa.and. DMSBTP calls DMSCPF by issuing a direct SVC 202 or by 
issuing the LINEDIT macro with the CPCOMM option that generates an SiC 
203. 

Several CMS modules check whether CMS batch is running, and, if so, 
perform functions associated with batch operation. These are shown in 
the following list: 

~g£yl~ 
DMSINI 
DMSINS 
DMSLDR 
DMSCRD 

DMSITE 

DMSPIO 

DMSCIO 

DMSABN 
tMSERR 

DMSMVE 

Function Performed for CMS Batch 
Passes-batch-parameters-to DMS1NS. 
Uses batch 1PL parameters to reload CMS Batch. 
Loads DMSBTP into free storage. 
Passes control to DMSBTP to read from the reader rather than 
from the console. 
Accounts for virtual time used by batch job -- ABEND if over 
limit. 
Accounts for number of lines printed by batch job ABEND if 
over limit. 
Accounts for number of cards punched by batch job ABEND if 
over li.it. 
Passes control to batch ABEND routine in DMSBTP. 
Passes control to batch ABEND routine instead of entering 
disabled wait state. 
Turns the BAT~OVE flag on and off -- allows batch to treat 
moved blanks as data. 

2-152 IBM VM/370 System Logic and Program Determination--Volume 2 



DMSSET 
DMSRDC 
DMSCPF 
DMSFLD 
DMSDSK 

Disabled if batch runn~ng, except during batch initialization. 
Disabled if batch runn1ng. 
Distinguishes between CP command issued by user and by batch. 
Disallows reader device specification. 
Disk load not allowed in batch. 

ERROR PRINTOUTS 

VM/370 error recording records and records passed via the SVC 76 by 
virtual machines are accumulated in chronological order on the VM/370 
error recording cylinders. The following modules are used by CMS CPEREP 
to edit and print error records compiled ty VM/370 as well as 
SYS1.LOGREC data sets: 

DMSREA 

IFCEREP1 

Function 
CheckS-some of the operanus invoked by CPEREP for validity and 
passes the operands to IFCEREP1 for further processing. 
Reads pages from the error recording cylinder and makes the 
records available to IFCPEREP1. 
Selects error records according to sUPFlied CPEREP operands or 
default values, and formats the records for output. 

Detailed descriptions of the CPEREP command, the DMSIFC and DMSREA 
modules, and EREP (IFCEREP1) are found in the !~LJ70 g1IsEg ~~g ~!±Q£ 
]~co£ging Qyig~ and the VMLllQ ~~vi~ !QY!!n~§ ~!Qg£~! 1Qg!£ with 
aFpropriate referrals to Q~L!~ ~n!irQn!~ntg! ~~£Q!g!~g, ]g!ti~g, g~g 
g!in!~~g {~~~~) ~£QgE~!. 

CMS Method of Operation and Program Organization 2-153 



2-154 IBM VM/310 System Logic and Program Determination--Vclume 2 



eMS Directories 

This section contains the following infor.ation: 

• Module Entry Point Directory 

• Module-to-Label Cross Reference 

• Label-to-Module Cross Reference 

C~s Directories 2-155 



2-156 IBM V~/370 Systea Logic and Program Determination--Volume 2 



Module Entry Point Directory 

.- , 
I Module Entry I 
I Name Points Function I 
~I------~---------+--------'------------------------------------------~ 

DMSABN DMSABN 

DMSABNKX 

Dl'lSABNGO 

DMSABNSV 

DMSABNRT 

DMSACC ACCESS 

DMSACF READFST 

DMSACP! READfiFD 

DMSALU RELUlD 

DMSAMS Df'jSAMS 

DMSARD DMSARD 

DMSARE DMSARE 

DMSARN DMSARN 

ASMHAND 

DMSARX DMSARX 

DMSASD DMSASD 

Intercepts an abnormal termination (ABEND) and provides 
recovery from the ABEND. ~ntered by a DMKABN 
TIPCALL=BALR macro call. 
Entered by a KXCHK macro tc halt execution after HX has 
been entered after signaling attention. 
Entered by any routine that sets up ABNPSW and AENREGS 
in the work area beforehand. 
Entered as the result of a DMS!BN TYPCALL=SVC macro 
call. 
Returns entry point from tEBUG. 

Accesses data in the ADT and related information (such 
as AFT's and chain links) in virtual storage. 

Reads all file status table blocks into storage for a 
read/write disk. Reads in file management tables for a 
read - only disk. For an O/S disk, control returns to 
to the caller after a successful return from DMSACM. 

Reads the ADT, QMSK, QQMSK, and first chain link into 
virtual storage from the master file directory cn disk. 

For a specified disk, releases all tables kept in free 
storage and clears appropriate information in the 
active disk table (ADT). 

Provides an interface to DOS Access 
programs (IDCAMS). Provided for support 

Method Utility 
of CMS/VSAM. 

Provides storage for the ASM3705 assembler auxiliary 
directory. DMSARD contains no executable code. It must 
be loaded with DMSARX and the GENDIRT command must then 
be issued to fill in the auxiliary directory entries. 
GENMOD must then be issued to create the ASSEMBLE 
1I0dule. 

Releases storage used for tables pertaining to a given 
disk when that disk is no longer needed. 

This is the ASM3705 command processor. It provides the 
interface between user and the 370x Assembler. 
This is the SISUT2 processing routine called from 
DMSSOB and used during the assembly whenever any I/O 
activity pertains to the SYSUT2 file. 

Provide an interface for the ASM3705 command to the 
3705 assembler program. 
Provides storage for the assembler auxiliary directory. 
DMSASD contains no executable code. It must be loaded 
with DMSASM and the GENDIRT command must then be issued 
to fill in the aUXiliary directory entries. The GENMOD 
co •• and must then be issued to create the assemble 
module. 

CMS Directories 2-157 



Module Entry Point Directory 

, 
I Module 
I Nalle 

Entry 
Points Function 

~--------~--------~-----------------------------------------------------~ 
DMSASM 

DMSASN 

DMSAUD 

DMSBAB 

DMSBOP 

DMSBRD 

DMSBSC 

DMSBTB 

DKSBWR 

DMSCAT 

DKSCIO 

DMSASK 

ASMPROC 

DKSASN 

DKSAUD 

DMSAUDUP 

DMSBAB 

DKSBOP 

DKSBRD 
(RDBUF) 

BASIC 

DMSBTB 

DMSBTP 

DMSBTPAB 

DMSBTPLM 

DKSBWR 

DMSCAT 

DMSCIOR 
DMSCIOP 
DKSCIOSI 

Processes the ASSEMBLE command. Provides the interface 
between the user and the system assembler. 
This is the SYSUT1 precessing routine (called from 
DMSSOB) • 

Associates logical units with a physical hardware 
device. (Interface for the ASSGN command used by 
CKS/DOS and CMS/VSAM.) 

Reserves space on disk for writing a copy of disk and 
and file management tables on disk and then updates the 
master file directory~ 
Closes all eMS files, thereby updating the master file 
Directory for any disks that had an output file open. 

Give control to an abnormal termination routine once 
linkage to such a routine has been established ty STXlT 
AB lIacro. 

Opens CMS/DOS files associated with the following DTF 
(Define The File) tables: DTFCN, DTFCD, DTFPR, DTFMT, 
DTFDI, DTFCP, DTFSD. Once the files are opened and 
initialized, I/O operations can be performed using the 
file. 

Reads one or more Ruccessive itells froll a specified 
file. 

Processes the BASIC command. The BASIC command invokes 
the CALL-OS BASIC language processor to coaFile and 
execute the specified file of BASIC source code. 

This is the CMS batch bootstrap routine. It loads the 
batch processor routine (DMSBTP) and user exit routine 
(if they exist) into free storage. 

Main entry; reads from the virtual card reader each 
time CKS tries to execute a console read. 
Entry point for abnormal conditions during user job: 

• Job exectuion ABEND (from DKSABN) 
• Job liait exceeded (froa DftSITE, DMSCIO, DMSPIO) 
• Disabled CMS command (from the comlland) 

Non-executable user job limit table referenced by 
DKSITE, DMSPIO, and DMSCIO. 

Writes one or more successive items into a specified 
disk file. 

Stacks a line of console input that DftSCRD reads later 
when it is called. 

Reads one card record. 
Punches one card record. 
Punch caller's buffer. 

2-158 IBM VM/370 System Logic and program Determination--Volulle 2 



I ~odule 
I Name 
~ 

DMSCIT 

DMSCLS 

DMSCMP 

DMSCPF 

DMSCPY 

DMSCRD 

DMSCiR 

DMSCWT 

DMSDBD 

DMSDBG 

DMSDIO 

DMSDLB 

DMSDL~ 

DMKDMP 

DMSDOS 

Entry 
Points 

DMSCIT 

DMSCITA 
DMSCITB 
DMSCITDB 

DMSCLS 

COMPARE 

DMSCPF 

DMSCPY 

DMSCRD 

DMSCiR 

DMSCWT 

DMSDBD 

DMSDBG 
DMSDBGP 
DMSDBG 
DMSDIOR 

DMSDIOW 

DMSDLB 

DMSDLK 

DMKDMP 

DMSDOS 

Module Entry Point Directory 

Function 

Processes the interrupticns for all CMS terminal I/O 
operations and starts the next I/O operation upon 
completion of the current I/O operation. 
Processes terminal interruptions. 
starts next terminal I/O operation. 
Frees I/O buffers from stacks. 

Closes CMS/DOS files associated with the following DTF 
(Define The File) tables: DMTCN, DTFCD, DTFPR, DTFMT, 
DTFDI, DTFCP, and DTFSD. For reader, printer, or punch 
files, a CP CLOSE command is issued. For disk files, 
DMSFNS is called to close the file. For a disk work 
file, DMSERS is called to erase the file, unless 
DELETFL=NO is specified. 

Compares the records contained in two disk files. 

Passes a command line tc CP for execution. 

Processes the COPYFILE command to copy disk files. 

Reads an input line and makes it available to the 
caller • 

• rites an output line to the console. 

Causes the calling program to wait until all terminal 
I/O operations have been completed. 

Enables a user to dump his virtual storage from within 
an executing program. 

Enables the user to debug his program from the terminal. 
Entry point for program interruptions. 
Entry point for all other interruptions. 
Reads one or more SOO-byte records (blocks) from disk, 
or reads one 200-byte record (sut-block) from disk. 
Writes one or more 800-byte records (blocks) on disk, 
or writes one 200-byte record (subblock) on disk. 

Interface for the DOS DLBL command; allows the user to 
specify I/O devices extents, and certain file 
attributes for use by a program at execution time. 
DLBL can also be used to modify or delete proviously 
defined disk file descriptions. 

Interface for the DOS user command. Link-edit the 
relocatable output of the language processors. Once 
link-edited, these core image phases are added to the 
end of the specified DOSLIB. 

Simulates the DOS/VS $$BDU8P and $$BPDC8P 
For both functions* a CP DUMF command 
directing the dump to an offline printer. 

functions. 
is issued, 

Provides DOS SVC support. Interprets DOS SVC codes and 
passes control to appropriate routines for execution 
(for examfle, OPEN, CLOSE, FETCH, EXCP). 

CMS Directories 2-159 



Module Entry Point Directory 

r---------~----------~----------------------------------------------------------
I Module 
I Halle , 

DMSDSK 

DMSDSL 

DMSDSV 

DMSEDC 

DMSEDF 

DMSEDI 

DMSEDX 

DMSERR 

DMSERS 

DMSEXC 

DMSEXT 

DMSFCH 

DMSFET 

DMSFLD 

DMSFNC 

DMSFNS 

DMSFOR 

Entry 
Points 

DMSDSK 

DMSDSL 

DMSDSV 

DMSEDC 

DMSEDF 

DMSEDI 

DMSEDX 

DMSERR 

DMSERS 

DMSEXC 

DMSEXT 

DMSFCH 

DMSFET 

DftSFLD 

DftSFNC 
DMSFNCSV 

DMSFNST 

DMSFOR 

Function 

Dumps a disk file to cards or loads files from card to 
disk. 

Provides capability to delete me.bers (phases) of a 
DOSLIB library; also, to compress a DOSLIB library; 
also, to list the members (phases) of a DOSLIB library. 

Lists the directories of DOS private or systell packs. 

Arranges compound (overstruck) 
ordered form and disregards tab 
characters. 

characters into an 
characters as special 

Provides the Editor with the proper settings (CISE, 
TAB, FORM AT, SERIAL, etc.) by filetype. Contains 
nonexecutable code for reference by DftSEDI. 

Modifies the contents of an eXisting file or creates a 
new file for editing. 

Performs initialization fer the CMS Editor. 

Builds a message to be written at the virtual console 
by DMSCWR,. 
Deletes a file or related group of files fro. 
read/write disks. 

Bootstrap loader for disk version of EXEC. 

Processes the EXEC command. 

Bring a specified phase into storage from a system or 
private core image library or fro. a CftS DOSLIB 
library. DMSFCH is invoked via SVC 1, 2, or 4 or via 
the FETCH command. 

Provides an interface for the FETCH 
provides the capability to start 
specified phase. 

command; also, 
execution of a 

Interprets as JCL DD parameters for use by CMS. 

Nucleus resident command name table. 
Standard SVC table. 

Closes one or more input or output disk files. 
Closes a particular file without updating the directory 
or removing it from the active file table. 
Temporarily closes all output files for a given disk. 

Physically initializes a disk space for the 
management routines. For an existing 
information on the disk may be destroyed. 
may be changed and the number of cylinders 
be changed. 

CftS data 
disk, any 
The label 

allowed lIay 

2-160 IBM VM/370 system Logic and Program Determination--Volume 2 



Module Entry Point Directory 

I 

I Module 
I 

Entry I 
I Name 
r 

DMSFRE 

DMSGIO 

DMSGLB 

DMSGND 

DMSGRN 

Points I Function 
I 

DMSFREB I Called as a result of the DMSFREE and DHSFRET macro 
I calls. Allocates or releases a block of storage 
I depending upon the code in NUCON location CODE203. 

DMSFREES I Called as a result of the SVCFREE macro call. The size 
I of the block is loaded from the PLIST and a DeSFREE 
I macro is executed. Upon return, the address of the 
I allocated block is stored into the PLIST. 

DMSFRETS I Called as a result of the SVCFRET macro call. ~he size 
I and address of the block to be released are loaded from 
I the PLIST and a DMSFRET macro is executed. 

DMSFREEX I Called as a result of a EALR to the address in the 
I NUCON location AFREE. Executes the DMSFREE macro. 

DMSFRETX I Called as a result of a ElLR to the address in the 
I NUCON location AFRET. Executes the DMSFRET macro. 

DMSFRES I Called as a result of executing the DMSFRES macro. 
I DMSFRES processes the following service routines: 
I CKOFF, INIT1, INIT2, CBECKS, UREC, and CALOC. 

DMSGIO I Creates the DIAGNOSE and CCis for an I/O operation to a 
I display terminal from a virtual machine. , 

DMSGLB Defines the macro libraries to be searched during 
assembler processing. Defines text libraries to be 
searched by the loader for any unresolved external 
references. 

DMSGND Generates auxiliary system status table. 

DMSGRN Edits STAGEl output (STAGE2 input), 
assembler files, link-edits text files 
macro file. 

builds 
and an 

3705 
EXEC 

DMSHDI DMSHDI Sets the CMS interruption handling functions to 
transfer control to a given location for an I/O device 
other than those normally handled by CMS, or clears 
previously initialized I/O interraption handling. 

(HNDINT) 

DMSHDS DMSHDS 

DMSIFC DMSIFC 

I 
I DMSIFC76 
I DMSIFC18 
I DMSIFCO 
I 

DMSINA I DMSINA 
I 
I 

DMSINDEXI DMSINDEX 
I 

DMSINI 1 DMSINIR 
I DMSINIW 

Initializes the SVCINT SVC interruption handler to 
transfer control to a given location for a specific 
SVC number (other than 202) or to clear such previous 
handling. 

Scans and passes all non-special parameters to the 
IFCEREP1 module, initializing values to edit and print 
records from VM/370's error recording cylinders. 
Immediately reflects SVC76 back to the calling routine. 
BLDL handler for IFCEREP1. 
EXCP handler for IFCEREP1. 

Handles either user-defined synonyms or abbreviations 
or system-defined synonyms for command names. 

Index of CMS listings in the microfiche deck. 

Reads a nucleus into main storaJe. 
Writes a nucleus onto a DASD device. 

eMS Directories 2-161 



Module Entry Point Directory 

r---------~~--------~I----------------------------------------------------------~, 
I Module Entry I I 
I Name Points I Function I 
t I -------------------------------------------------~ 

DMSINM 

DMSINS 

DMSINS 

DMSINT 

DMSIOW 

DMSITE 

DMSITI 

DMSITI 

DMSITP 

DMSITS 

DMSLAD 

DMSINM I 
I (GETCLK) I 
I (CMSTIMER) I 
I I 
I DMSINS , 
I I 
I DMSINS I 
I I 
I DMSINT I 
I I 
I DMSINTAB I 
I SUBSET I 
I I 
J DMSIOW, I 
I WAIT, I 
I DMSIOWR, I 
I ~!ITRTN 

DMSITE, 
EXTINT, 
DMSITET, 
TRAP, 

DMSITI, 
IOINT, 

DMSITP 

DMSITS 
DMSITSl 

DMSITSCR 

DMSITSOR 

DMSITSK 
DMSITSXS 
DMSITSR 

DMSLAD, 
ADTLKP 
DMSLADN, 
ADTNXT, 
DMSLADW 

DMSLADAD 

Obtains the time from the CP timer. 

Controls initialization of the CMS nucleus. 

Controls initialization of the CMS nucleus. 

Reads eMS commands from the terminal and executes 
them. Entry is from DMSINS. 
Entry from DMSABN. 
CMS subset entry. 

Places the virtual CPU in the wait state until the 
completion of an I/O operation on one or more devices. 

Processes external interruptions. 

This module is entered when an I/O operation causes the 
I/O new PSi to be loaded. This module handles all I/O 
interruptions, passes control to the interruption pro
cessing routine, and returns control to the interrupted 
program. 

Processes program interruptions and processes SPIE 
exits. 

Avoids CP overhead due to SVC call. 
Address pointed to by the CMS SVC new PSi. This point 
is entered whenever an SVC interruption occurs. 
Return point to which a program called by a CMS SVC 
returns when it is finished processing. 
Return point to which a prograa called by an as SVC 
returns when it is finished processing. 
Called by an SVC by the DMSKEY macro. 
Called by an SVC from the DMSEXS macro. 
This is the DMSITS recovery and reinitialization 
routine, called by DHSABN. DMSABN is the ABEND recovery 
routine. 
Finds the active disk table block whose mode aatches 
the one supplied by the caller. 
Finds the first or the next ADT block in the active 
disk table. 
Finds the read or write disk according to input 
parameters. 
Modifies the file status table chain to 
auxiliary directory, or clears the auxiliary 
from the chain. 

include an 
directory ., 

I 
J 

2-162 IBM VM/370 System Logic and Program Determination--Volume 2 



Module 
Name 

DftSLAF 

DMSLBM 

DftSLBT 

DftSLDR 

DMSLDS 

DMSLFS 

DMSLGT 

DMSLIB 

DMSLIO 

DMSLKD 

DMSLLU 

Entry 
Points 

DMSLAF, 
ACTLKP 
DliSLAFNX, 
ACTNXT, 
DMSLAFFE 
ACTFREE 

DMSLAFFT 
ACTFRET 
DMSLBM 

DMSLBT, 
TITLlE, 

DMSLDRA 

DMSLDRB 

DftSLDRC 

DMSLDRD 

DMSLDS 

DMSLFS, 
TYPSRCH 

DMSLGTA 

Dl!SLGTB 

DMSLIB 

DMSLIO 

DMSLKD 

DMSLLU 

~odule Entry Point Directory 

Function 

Finds the active file table block whose filename, file
type, and filemode match the one supplied by the caller. 
Finds the next or first AFT block in the active file 
table. 
Finds an empty block in the active file table or adds a 
new block from free storage to the active file table, 
if necessary, and places a file status entry (if given) 
into the AFT block. 
Removes an AFT block from the active file table and re
turns it to free storage if necessary. 
Generates a macro library, adds macros to an existing 
library, and lists the dictionary of an existing macro 
library. 

creates a text library, adds text files to an existing 
text library, creates a disk file that lists the 
control section and entry point names in a text 
library.or types, at the terminal, the control section 
and entry point names in a text library. 

Begins execution of a group of programs loaded into 
real storage. Definition of all undefined programs is 
established at location zero. Entered from the START 
coamand or internally from DMSLDRB LDT routine if START 
is specified. 
Processes TEIT files that may contain the following 
cards: SLC, lCS, ESD, TXT, REP, RLD, END, tDT, LIERARY, 
and ENTRY. Entered from DMSLDP when the load function 
is requested. 
Does the processing required by various loader routines 
when an invalid card is detected in a text file. 
Does the processing required when a fatal I/O error 
is detected in a text file. 

Lists information about specified data sets residing on 
an OS disk. Processes the LlSTDS command. 

Finds a specified 40-byte FST entry within the FST 
blocks for read-only or read/write disks. 

Entered from DMSLDRB if not a dynamic load. Frees all 
the TITLlB blocks on the TXTLIE chain. 
Reads TITLlB directories into a chain of free storage 
directory blocks. Entered from DftSLDRB. 

Searches TEXT libraries for undefined symbols and 
closes the libraries. 

Creates the load map cn 
terminal. Performs disk 
DftSLDR. 

disk and types it at the 
and typewriter output for 

Provides an interface between CMS and the VS1 linkage 
editor. 

Lists the assignments of logical units. 

eMS Directories 2-163 



Module Entry Point Directory 

I 

I Module 
I Name 

Entry 
Points Function 

-----------------, 
I 
I 

~--------+---------~----------------------------------------------------------~ ~ 
I DMSLOA 
I 
I 
I DMSLSB , 
I 
I 
J 
I 

DMSLST 

DMSLSY 

DaSriDP 

DMSMOD 

DMSMVE 

DMSNCP 

DMSNUC 

DMSNUC 

DMSOLD 

DMSLOA 

DMSLSBA 
DMSLSBB 

DMSLBC 

DMSLBD 

DMSLSTA 

DMSLSY 

DHSoSP 

DMSMOD 

DMSMVE 

DMSNCP 

DMSNUC 

NUCON 
SYSREF 
DEVTAB 
ADTSECT 
AFTSECT 
EXTSECT 
IOSECT 
PGMSECT 
SYCSECT 
DIOSECT 
FVS 
OPSECT 
CVTSECT 
DBGSECT 
TSOBLKS 

DMSOLD 
DMSLDRC 

DMSLDRD 

Processes the LOAD 
relocating loader. 

and INCLUDE commands to invoke the I 

Hexadecimal to binary conversion routine. 
Adds a symbol to the string of locations 
an undefined symbol to be defined. 

waiting for 

Removes the undefined bit from the REFTBL 
replaces the ADCON with the relocated value. 
Processes LDR options. 

entry and 

Processes the LISTFILE command. 
about the specified files. 

Prints information 

Generates a unique character string of the form Z000001 
for private code symbols. 

Types the lead waF 
on the terminal. 

filE=! 

Processes the GENMOD command to create a file that is a 
core image copy; processes the LOADMOD command to load 
a file that is in core image form. 

Transfers data between two specified OS ddnames, the 
ddnames may specify any devices or disk files supported 
by the CMS system. 

Reads a 3705 control program module (Emulator program 
or Network Control Program) in os load module format 
and writes a page-format core image copy on a VM/370 
system volume. 

I , 
I 
I , 

Contains CSECTS for nucleus work areas and permanent I 

storage. 
Nucleus constant area. 
Nucleus address table. 
Device table. 
Active disk table. 
Active file table. 
External interruption storage. 
I/O interruption storage. 
program Interruption .storage. 
SVC interruption storage. 
Disk I/O storage. 
File system storage. 
Parameter lists. 
Simulated OS CVT. 
Debug storage. 
TSO control blocks. 

Performs initialization and processing for each loading 
operation by processing text files that contain the 
following cards: SLC, ICS, ESD, TXT, REP, RLD, END, 
LDT, LIBRARY, and ENTRY. 
Entered from DMSSLN when load requested. 
Entered when an invalid card is detected in a text 
file. 
Entered when a fatal error occurs during loading. 

2-164 IBM VM/370 System Logic and Program Determination--Volume 2 



I 
I Module 
I Name 
~ 
I DMSOPL 
I 
I 
I 
I 
I 
I DMSOPT 
I 
I 
I DMSORl 

DMSOR2 

DMSOR3 

DMSOVR 

DMSOVS 

I DMSPIO 

DMSPNT 

DMSPRT 
DMSPRV 

DMSPUN 

DMSQRY 

DMSRDC 

DMSREA 

DMSRNE 

Entry 
Points 

DMSOPL 

DMSOPT 

DMSORl 

DMSOR2 

DMSOR3 

DMSOVR 

DMSOVS 

DMSPIO 
DMSPIOCC 
DMSPIOSI 

DMSPNT 

DMSPRT 
DMSPRV 

DMSPUN 

DMSQRY 

RE1DCARD 

DMSREA 

DMSRNE 

Module Entry Point Directory 

Function 

Reads the appropriate system directory records and 
headers and determines if the specified libraries con
tain any active members. Returns the disk address of 
the specified system library and indicates whether or 
not there are active members to te accessed on the disk. 

sets DOS options in the system Communications Region as 
specified by the OPTION command. 

Relocates all DFT (Define The File) Table address 
constants to executable storage addresses. (Called by 
$$BOPENR via SVC 2e) 

Relocates all DTF (Define The File) Table address 
constants to executable storage addresses. (Called by 
DMSOR 1.) 

Relocates all DTF (Define The File) Table address 
constants to executable storage addresses. (Called by 
DMSOR2.) 

Analyzes the SVC~RACE command parameter list and 
loads the DMSOVS tracing routine. 

Provides trace information requested by the SVCTRACE 
comlland. 

Prints one line. 
Puts CCWs and data into the caller's buffer. 
Prints the caller's buffer, issues an SIO to the 
virtual printer, and analyzes the resulting status. 

Places the address of a file status table entry in the 
active file table (if necessary), and sets the read 
Fointer or write pointer for that file to a given item 
number within the file. 

Prints CMS files. 
Copies procedures from the DOS/VS system procedure 
library to a specified output device. 

Punches CMS files to the virtual card punch. 

Processes the 
terllinal, the 
tables. 

QUERY command. Displays 
status of various CMS 

at the user's 
functions and 

Reads cards and assigns the indicated filenalle. 

Reads error recording cylinder pages into 
EREP (IFCEREP1) processing. It passes 
record for each read request. 

Provides an interface for the CMS 
subcommand, which renumbers files with 
VSBASIC and FREEFORT. 

CMS Directories 

storage for 
one logical 

Editor BENUl! 
filetypes of 

2-165 



Module Entry Point Directory 

Module 
Nalle 

DMSRNM 

DMSROS 

DMSROS 

DMSRRV 

DMSSAB 

DMSSBD 

DMSSBS 

DMSSCN 

DMSSCR 

DMSSCT 

DMSSEB 

DMSSEG 

DMSSET 

DMSSLN 

DMSSMN 

DMSSOP 

DMSSQS 

Entry 
Points 

DMSRNM 

Function 

Processes the RENAME command. Changes the fileid of 
the specified file. 

DMSROS Accesses as disks. 
ROSACC 

DMSROS+4 Verifies the existence of OS disks. 
ROSSTT 

DMSROS+8 Reads OS disks. 
ROSRPS 

DMSROS+12 Finds a mellber in an OS PDS. 
ROSFIND 

DMSROS.16 Performs NOTE, POINT, and BSP functions. 
ROSNTPTB 

DMSRRV Provides the capability to copy (to an output device) 
modules residing on DOS system or private relocatable 
libraries. 

DMSSAB Processes as ABEND macros. 

DMSSBD Accesses data set records directly by item number. It 
converts record identifications given by os BDA! macros 
into item numbers and uses these item numbers to access 
records. 

Processes OS BSAM READ and WRITE lIacros. 
DMSSBSRT Entry for error return from call to DMSSBD. 

DMSSCN Transforlls the input line from a series of arguments to 
a series of 8-byte parameters. 

DMSSCR Loads display buffers and issues a lIacro resulting in a 
CP DIAGNOSE to write to the display terminal. 

DMSSCTNP 

DMSSCTCK 
DMSSCTCE 

DMSSEB 

DMSSEG 

DMSSET 

DMSSLN 

DMSSMN 

DMSSOP 

DMSSQS 

Processes OS POINT, NOTE, CHECK, and FIND (type C) 
lIacros. 
Processes as CHECK macro. 
Handles QSAM I/O errors for DMSSQS and PDS and keys 
errors for DMSSOP. 

Calls device I/O routines to do I/O and sets up ECB 
and lOB return codes. 

Contains a table of VCONS for CMS saved seg.ent 
entries. 

Processes the SET command. 

Handles OS contents management requests issued under 
CMS (LINK, LOAD, XCTL, DELETE, ATTACH, EXIT). 

Processes OS FREEMAIN and GETMAIN macros and ces calls 
DMSSMNSB and DMSSMNST. 

Processes as OPEN and CLOSE macros. 

Analyzes record formats and sets up the buffers 
for GET, PUT, and PUTX requests. 

2-166 IBM VM/370 System Logic and Program Determination--Volume 2 



Module Entry Point Directory 

I , , 
I Module Entry I I 
I Name Points I Function I 

• r-------~--------~I---------------------------------------------------~ DMSSRT 

DMSSRV 

DMSSSK 

DM$STG 

DMSSTT 

DMSSVN 
DMSSVT 

DMSSYN 

DMSTIO 

DMSTMA 

DMSTPD 

DMSTPE 

DMSTQQ 

DMSTRK 

DMSSRT 

DMSSRV 

DMSSSK 

DfI1SSTGSB 
DMSSTGST 
DMSSTGCL 
DMSSTGSV 
DMSSTGAT 

DMSSTT 

DMSSVN 
DMSSVT 

SYNONYM 

DMSTIO 

DMSTMA 

DMSTPD 

DMSTPE 

DMSTQQ 

Dr1STQQX 

DMSTRKA 
DMKSTRKX 

Arranges records within a file in descending sequential 
order. 

Provides capability to copy books from a system or 
private source statement library to a specified output 
device. 

sets storage protect key for a specified saved system. 

Processes CMS calls to DM5STGST and DMSSTGSB (STRINIT) 
and storage service routines. 
STRINIT. 

as exit reset routine. 
service routine to change nucleus variables. 
Initializes storage and sets up an anchor table. 

Locates the file status table entry for a 
and, if found, provides the caller with the 
the entry. 

given file 
address of 

Processes the as WAIT and POST macros. 
Processes OS macros: XEAP, TIME, SPIE, RESTORE, BLDL, 
FIND, STOW, DEVTYPE, lRKBAL6 iTO, WTOR, EXTRACT, 
IDENTIFY, CHAP, TTIMER, STIMER, DEQ, SNAP, ENQ, 
FREEDBUF, STAE, DETACH, CHKPT, RDJFCB, SYNAD, 
BACKSPACE, and STAX. 

Processes the SYNONYM command. Sets up user-defined 
command names and abbreviations for CMS commands. 

Reads or writes a tape record or controls 
positioning. 

tape 

Reads an IEHMOVE unloaded PDS from tape and places it 
in a CMS MACLIB. 

Reads a tape consisting cf card i.age members of a PDS 
and creates CMS disk files for each member of the data 
set. The PDS option allows reading unblocked tapes 
produced by the as IEEPTPCH utility or blocked tapes 
produced by the OS IEHHOVE utility. The UPDATE option 
provides the "./ ADD" function to blocked or unblocked 
tapes produced by the IEBUPDTE utility. 

Processes the TAPE command to perform certain tape 
functions, such as: dump a eMS file, load a eMS file, 
set tape mode, scan, skip, rewind, run, FSF, FSR, BSF, 
BSR, ERG, and WTM~ 
Allocates a 200-byte first chain link (FeL) to a 
calling program. 
Makes a 200-byte disk area no longer needed by one 
program available for allocation to another program. 

Allocates an BOO-byte disk area to a calling prcgram. 
Makes an BOO-byte disk area that is no longer needed by 
one program available for allocation to another. 

eMS Directories 2-167 



Module Entry Point Directory 

Module 
Name 

DMSTYP 

DMSUPD 

DMSVAN 

DMSVAS 

DMSVIB 

DMSVIP 

DMSVPD 

DMSVSR 

DMSV33 

DP.lSXCP 

DP.lSZAP 

DMSZAT 

DMSZIT 

DMSZNR 

DMSZUS 

Entry 
Points 

TYPE 

DMSUPD 

DPlSVAN 

DPlSVAS 

DP.lSVIB 

DMSVIP 

DMSVPD 

DMSVSR 

DMSV33 

DMSXCP 

DMSZAP 

DMSZAT 

DMSZIT 

DMSZNR 

DPlSZUS 

Function 

Processes the TYPE command. Types all or a specified 
part of a given file on the user's console. 

Processes the UPDATE command. Updates source files 
according to specifications in update files. P.lultiple 
updates can be made, according to specifications in 
control files that designate the update files. 

Contains table of Access Method Services non shared 
(nonreentrant) modules. 
Contains a table of Access Method Services shared 
(reentrant) modules. 

Loads the CMS/VSAM saved system and pass control to the 
CMS/VSAM interface routine, DMSVIP. 

Finds the CMS/DOS discontiguous shared segment (DCSS); I 

issues all necessary DOS ASSGN statements for OS user; 
maps alIOS VSAM macro requests to DOS specifications; 
equivalents, where necessary; traps all transfers of 
control between VSAM and the OS user and sets the 
aFpropriate operating environment flags. 

Reads DOS, VSA~, and 
froa a DOS PTF tape 
user's A-disk. 

Access Method Services modules 
and writes the modules to the CMS 

Resets any flags or fields set by VSAM processing; 
purges the VSAM discontiguous shared segment. 

Contains a table of VSAM shared (reentrant) aodules and 
is contained within the CMSVSAM shared system. Used by 
CMSVSAP.I and VSAMGEI to generate the CMSVSAft shared 
system, and by CDLOAD to locate the phases within 
CMSVSAM. Used for system generation from the DOS/VS 
Release 33 restored starter system. Contains no exe
cutable code. 

Simulates the DOS EXCP function (DOS SVC 0) in the 
CMS/DOS environment. EXCP (Execute Channel program) 
requests initiation of an I/O operation to a specific 
logical unit. 

Processes the ZAP 
maintain CMS LOADLIB 
command LKED. 

command. 
lIeabers 

Provides a 
as written 

Defines 8K-bytes of transient area. 

Defines the end of the CMS nucleus. 

Defines the end of IUCON (DP.lSNUC). 

Defines the start of the user area. 

facility to 
by the CMS 

L-____________________ ~ ____________________________________________________________ _ 

2-168 IBM VM/370 System Logic and Program Determination--Voluae 2 



KODULE EXTERNAL REFERENCES (LABELS AND MODULES) 

DMSABN ABATABNO ABNBIT ABNERLST ABNPAS13 AIINPSW ABNREG S ABNRR ABWSECT AOKSFREB ADTFDA ADTFFSTF ADTFLG1 AOTFLG2 
ADTFlHN ADTFQQF ADTFROS AOTHBCT ADTM ADTftFDA ADTftFON AOTPQK3 AOTSECT AFVS AINTRTBL AIOSECT AOPSECT 
AOUTRTBL ASUBFST ASUBSECT ASUBSTAT Ar.TN AUSABRV AUSRABEA AUSRILST AUSBITBL BALR BAT FLAGS BATFLAG2 BATLOAD 
BATRUN BATSYSAB CftNDLINE COOE203 CONRDCNT CONBDCOO CONBEAO CURRSAVE DBGAEN DBGEXEC DEGFLAGS DBGNSHR DBGSHR 
DCSSFLAG DCSSVTLD DKSABW DKSCAT D~ISCITDB DftSCRD DftSCWT DftSDBG DftSEBB DKSEXCAE DKSFRES DKSINTAB DftSITSR 
DMSLADAD DMSLADN DKSSTGSB DOSFIRST DOSFLAGS DOSftODE DOSNU!! DOSSVC DOSTBANS EGPRS FCBFIBST FCBNUft FBEELOWE 
FVSECT IONTABL IOSECT IPLPSW KXFLAG KXWANT LDftSBOS LOC HACDIBC MIS FLAGS NOPAGREL NBftRET HUCON 
NUft NUKFIHRD OLDPSW OPSECT OI'TFLAGS OSAOTFST OSFST OSFSTLTH OSFSTNXT OSftODLDW PGftNPSW PGMOPSW RELPAGES 
RO R1 R12 R13 R14 R15 R2 R3 R4 B5 R6 R1 R8 
R9 SSAVE SUBFLAG SUBSECT TE:XT UFDBUSY USEBKEY VSAftFLG1 VSAMBUN VS AftSOS WAIT 

S 
DMSACC ADftSFREB ADTDTA ADTFALUF AOTFDA AIITFDOS ADTFFSTF ADTFFSTV ADTFLG1 ADTFLG2 ADTFLG3 lDTFftIN ADTFORCE AOTFRO 0 AOTFROS AOTFRi ADTFSTC ADTHBCT AIITLHBA ADTM ADTftFDN ADTMSK ADTftX ADTNUft lDTPQft2 ADTPQft3 ADTRES 

ADTSECT ADTUSED ADT1ST AFINIS A'E'VS AKILLEX BALR CODE203 CURBSAVE DTID EGPRO ERRCODE FSTFftODE C. 
FSTFNAME FSTFTYPE FVSECT rADT KltFLAG KXWANT LOC MIS FLAGS NUCON NUft RESET RO R1 C 
R10 R 11 R12 R13 R14 R15 R2 B3 R4 R5 R6 R1 B8 -R9 SSAVE TEXT TEXTA TYPE UFDBUSY VCADTLKP VCADTNXT VCFSTLKP V IBru AL WRBIT CD 

I 
DKSACF ADMSFREB ADTADD ADTCFST ADTCHBA AIITFALNM ADTFALTY ADTFALUF lDTFDA ADTFFSTF ADTFLG1 lDTFLG2 IDTFLG3 ADTFftDRO .... 

ADTFORCE ADTFRO ADTFROS ADTFRW ADTFSORT ADTFSTC ADTFTIP IDTHBCT ADTLHBA ADTft lDTftFDI ADTftFDN ADTPQft2 0 ADTRES ADTSECT AFVS ARDTK A'JrYPSRCH BALR CODE203 DSKADR DSKLOC DSKLST EBBIT ERRCOD1 FSTIC I FSTRP FSTSECT FSTT FSTiP F"SECT F65535 JSRO LOC MUCON REGSA.VO REGSAV1 RiCNT RO r-R1 R10 R11 R12 R113 R14 R15 lR2 R3 R4 R5 R6 R1 
R8 R9 TYPE UFDBUSY Q) 

c:T 
DKSACM ADIOSECT ADKSFREB ADMSROS ADTADD 1\IITCYL ADTDTA ADTFLG1 ADTFLG2 lDTFLG3 ADTFItFD ADTFORCE IDTFQQF ADTFRO CD AOTFRW AOTHBCT AOTIO AOTKFDN AIITftSK AOTftX ADTftXBItL ADTNUM lDTPQM1 ADTPQlt2 lDTPQlt3 IDTOQIt ADTRES 

n ADTROX ADTSECT ADTUSEO AFVS AIIDTK BALR CDftSRCS CODE203 DIOSECT DSK1DR DSKLOC DSKLST OT1D 
0 3 DTADT ERRCOOO ERROR FFD FFE FFF FILE FVSDSKI FVSECT FVSFSTIC lVSFSTIL F800 JSRO 

til LOKSROS LOC LOCCNT KODFLGS NUCON OSlDTVTA QQDSK1 REGSAVO RWftFD RO R1 R10 R 11 .., 
tj R12 R13 R14 R15 R" R3 R4 R5 R6 R1 U8 R9 SECTNUI!! 0 J, 

~. SEEKADR SENSB SIGNAL SWTCH s,rSLOAD TBENT TEXT TYPE UFDEUSY UPBIT VCADTLKP en 11 
(1) 

lDTFLG 1 <1 DKS1LU ABGCOK ADftSFREB ADMSROS ADTFDA AIITFFSTF ADTFLG2 ADTFLG3 lDTFMI:N ADTFOQF IDTFRO IDTFROS lDTFRW en 
r1" AOTFSTC AOTFTYP ADTID ADTft AIlTtlFDN lDTItSK ADTflX ADTPQM1 lDTPQft3 ADTQQM ADTRES ADTROX ADTSECT :D 0 AFVS BALR CDMSROS CODE203 DOSFLAGS DOSI!ODE FCBDSflD FCBFIRST FCBNEXT FCBOSFST lCBSECT FLGSAVE FVSECT 11 ..,. LDKSROS LOC NUCON OSADTPST OSFST OSPSTLTH OSFSTNXT REGSAVO RO R1 R10 R 11 R12 CD 
(1) R13 R14 R15 R2 R3 R4 R5 R6 R1 R8 u9 SDISK STATEFST ~ en VCADTLKP VCADrHxr CD .., 

DftSAI!S AlftSSYS ABGCOft ADEVTAB ADtlSERL AIlftSFREB ADTI! lDTSECT AERISE ILTASIVE IPPSIVE ISCANN ASTITE ASTATEi CD 
I\,) ASYSNAKS ATIBEND BALR BGCOft CflSlftS CODE203 COftNA!E DOSDD DOSD!V DOSDSftD DOSDUft DOSEXTNO DOSEXTTB ~ I DOSPIRST DOSFLAGS DOSftODE DOSNEXT DOSRC DOSSECT DOSSVC DOSVOLNO DOSVCLTE nOSYSXXX lOTID DTIS ERRftSG .... FSTFV FSTIL FSTft FSTN FSTSECT F4096 LOC LTK LUBPT ftISFt,AGS NUCON NUft PIBPT n 
0'1 
1.0 PUBPT HELPAGES RESET RO R" R10 R11 R12 R13 R14 R15 R2 R3 CD 



1I0DULE EXTERNAL REPERENCES (LABELS AND 1I0DULES) :::c 
"-l 0 
I p., 
~ c:: 
--.J R4 R5 R6 R7 R8 R9 SYSIUl!ES SYSNEHD 'J'EXT TEXTA VCIDTLKW VIRTUAL VIISIZE ...... 
0 (I) VSAMPLG1 VSAIISERV VSIIISOS I 

r+ 
H DMSIRE ABATPROC IDTDTA IDTFLG1 ADTPLG2 IDTFLG3 ADTFNOAB ADTFRe ADTFROS li,DTFBW ADTFSTC ADTII ADTSECT AFINIS <1 b' 
tIC AUPDISK BATCPEX BATFLAGS BATLOID BATRUN BITUSEX DTAD NUCON ~mll RO R1 R10 R11 I,-f 

-.Q 
R12 R 14 R15 R2 R3 R4 R5 R6 f7 R8 R9 TEXT VCIDTLKP I» 
VCADTNXT tr 

III (1) 

"- ...... w DMSARN ADTFLG1 ADTFRW ADTft ADTftX IDTSECT AOPSECT ISTRINIT BATFLAGS I'ATBUN COftPSWT ERR CODE ERROR FCBBUFF ..,J n 
0 FCBBITE FCBCATftL FCBCLOSE FCBDD FCBDEV FCBFORft FCBIIHT FCBIOSW I'CBITEI! FCBPROC FCBPROCC FCBPROCO FCDREID H 

FCBSECT FINIS FSTL FSTI! F5TSECT IBPUT IOBCSi IOBIN IOBIOFLG IHSFLIGS NOERISE NUCON NUll 0 
til OSSFLAGS RELPAGES RESET RO Rl Rl0 Rll R12 Ii13 R14 R15 R2 R3 CJl 
~ CJl 
CJl R4 R5 R6 R7 R8 R9 TEXT VCADTLKW VIRTU At 
c+ !::o 
CD DftSARX AADTLKW ADTFLG 1 ADTFRW ADTft ADTftX ADTSECT CC CI!NDLINE COMPSWT CONCNT COBWR DEVICE DI!SARD CD • HI ERROR FCBBUFF FCBBYTE FCBCATML FCBCLOSE FCBDD FCBDEV FCBDSK F'CBDSBAM FCBFORII FCBIBIT FCBIOSW FCBITEI! CD 
t:-4 FCBPROCC FCBRDR FCBREAD FCBSECT FCBTAP FILE FLAG1 FLAG2 FREELOWE FSTFV FSTIL FSTL FSTft H 
0 FSTSECT IOBCSW IOBIN IOBIOFLG ftAINHIGH ftISFLAGS BOERISE NUCON NUft OPSECT OSIOTYPE OSSFLAGS RELPAGES CD 

\Q =' ..... RESET RO R1 R10 R11 R12 R13 R14 Ii15 R2 R3 R4 R5 n n R6 R7 R8 R9 SYSUTl TEXT (I) 

I» 
t:' DMSASM AADTLKW ADTFLGl ADTFRW ADTH ADTftX ADTSECT CC Cl!NDLINE ( OftPSWT CONCNT COBWR DEVICE DftSASD 
AI DOSFLAGS DOSSVC DUMMY ERROR FCBBUFF FCBBYTE FCBCIT!lL FCBCLOSE FCBrD FCBDEV FCBDSK FCBDSNIM FCBFORII 
'"d FCBINIT FCBIOSW FCBITEM FCBPROCC FCBRDR FCBREAD FCBSECT FCETAP FILE FLlG1 FLIG2 FREELOWE FSTFV 
H FSTIL FSTL FSTM FSTSECT IOBCSW IOBIN IOBIOFLG MAINHIGH fiX !HSFLIGS NOERISE NUCON NUM 
0 OPSECT OSIOTYPE OSSFLAGS PRFUSYS PROTFLIG RELPIGES RESET RO Iil R10 R11 R12 R13 \Q 

H 
I» 

R14 R15 R2 R3 R4 R5 R6 B1 li8 R9 SIVEREGS SYSUT1 TEXT 
a 

DMSASN ABATIBND ABGCOM ADEVTAB ADTDTA ADTFDOS ADTFLG 1 ADTFLG2 ADTFRO ADTFROS ADTFRW IDTSECT ISYSREF BATDCIIS 
t:j BATFLAGS BATFLAG2 BATRUN BGCOM CLASDASD CLASTAPE CLASURI CLASURO [EVT IE DOSFLAGS DOSMODE DOSVSAI! DTAD 
CD DTADT FLAG2 FLAG3 FTRUCS F'IR35MB NUCON NUM PICK EUBPT RO R1 R10 R11 c+ 
CD R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SYSTEft 
H TAPE 1 TAPE4 TEXT TYP1403 TYP2314 TYP2401 TYP2415 TYF2420 TYP2501 TYP2540P TYP2540R TYP3203 TYP3211 
EI TYP3340 TYP3420 TYP3525 VCADTLKP ..... 
=' I» DMSAUD ADftSFREB ADTADD ADTDTA ADTFDA ADTFLG3 ADTFNOAB ADTFUPD1 ADTRBCT ADTLAST ADTMFDA AJ::TftFDN ADTftSK ADTNUft cT ..... ADTPQM 1 ADTPQM2 ADTSECT AFVS AKILLEI ATRKLKP ATRKLKPX AWBTK EILR CODE203 DSKADR DSKLOC DSKLST 
0 DTADT FFD FFE FFF FINISLST FVSDSKA FVSECT F3 F800 KXFLAG KXWANT LOC NUCON 
=' REGSAVO RWCNT RWFSTRG RWMFD RO R1 R10 R11 R12 R13 R14 R15 R2 . I 
I R3 R4 R5 R6 R7 R8 R9 TYPE UFDBUSY UPBIT 
~ 
0 DMSBAB ABGCOM ASYSCOM BGCOM DOSRC IJBABTAB NUCON OLDPSi OSTEftP PCPTR PIBIDB PIBPT PIBSAVE PIK ...... 
d RO R1 R10 R12 R13 R14 R15 R2 R3 R4 R5 R6 R8 s R9 SSAVE SVEARA SVEPSW SVEPSW2 SVEROf" SVEROO SVER01 SVER09 SISCOft VSAMFLG1 VSAMSERV (1) 

to.,) DMSBOP ABGCOM ACBCAT ACBDDNft ACBERFLG ACBIB ACBINFLG lCBMACR1 ICBOFLGS ACBOLIGN ACBOUT ACBSTSKP ADMSERL ADftSFREB 



MODULE EXTERNAL REFERENCES (LABELS AND MODULES) 

ADTFDOS ADTFLGl ADTFLG2 ADTFLG3 AtTFMFD ADTFRO ADTFRCS ADTFRW ADTSECT AERAS! ASTATE ASYSCOM ASYSNAMS 
ASYSREF AVSAMSYS BALR BGCOM BLANKS BSR I:llJFFEB CC CMSVSIM CODE203 COMNIME CONSOLE DEC 
DEVCODE DOSBLKSZ DOS BUFF DOSDD DOSDEV DOSDSMD DOSDU! DCSEXT DOSEXTCT DOSPIBST DOSFLAGS DOSPORM DOSINIT 
DOSNEXT DOSNUM DOSOP DOSOSFST DOSRC DOSSECT DOSSYS DOSTRANS DOSUCAT DOSUCNIM DOSVSAM DOSISXXX DOUBLE 
EQCHK FILE FILETYPE FREELN FSTIC FST!! FSTSECT F7 HOLD IC IJBFLG04 IKQACB INPUT 
LaC LUBPT NICLPT NUCON NOM ON OSFST OSFSTFM OSFSTRFM OSFSTXNO OSFSTXTN PACK PIBPT 
PLIST PUBADR PUBCUU PUBDEVT PUBPT PUBTAPMl PUBTAP!!2 PUBTAP7 BEAD RESET RMSROPEN RO Rl 
R10 Rll R12 R14 R15 R2 B3 R4 R5 B6 R7 R8 R9 
SAVE 1 SAVE2 SENSE SKIP SYSCOM SYSNAMES SYSNEND TEHPSAVE TEXT TYPE TYP2314 TYP3330 TYP3340 
TYP3350 VCIDTLKP VIPSOP VMSIZE VSAMFLGl VSAMRUN VSAMSERV WRITE WTM 

DMSBRD AACTFREE AACTLKP ACTIVE ADHSFREB AFTADT AFTCLI U'TCLB AFTCLD AFTCLN AFTDBA AFTDBD IFTDBN AFTFBA 
AFTFCL AFTFCLA AFTFLG AFTFST AFTFV AFTIC AFTID AFTIL AFTIN AFTRD IFTRP AFTSECT AFTWRT 
AFVS ARDTK AUSRAREA BALR BALR9 CODE203 DJ:SK$ SEG DMSLFS FSCBt FSCElFLG FSCBFV FSTFV FSTIC 
FSTITAV FSTNOIT FSTRECAV FSTRP FSTSECT FVSECT ITEM NUCON PLIST READ READCNT REGSAV3 RWFSTRG 
RO Rl Rl0 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 
R7 R8 R9 STATEFST STATERO TYPE V"SIZE 

DHSBTB ABATABND ABATLIMT ABATPROC AFVS ALDRTBLS AUSRAREA BATDCftS BATFLAGS BATFLAG2 BATL,OAD BATNOEX BATHUN BATUSEX 
FVSECT FVSFSTIC FVSFSTIL LOCCNT NUCON NUM RESET RO Rl R12 R14 R15 R2 
R] R4 R5 R8 TBENT TEXT TYPE 

DHSBTP ABNBIT ADHSCRD AFVS ASCANN ASYSNAMS BATCPEX BATDCMS BATFLAGS EATFLAG2 BATMOVE BATNOEX BATHERR BATSTOP 
BATTERM BATUSEX BATXCPU BATXLIM BATXPRT BLK CMSSEG EDIT ERROR FVS ECT IPLADDR KEYS LINE r::J: 
NUCON NUM NUMFINRD OFF PACK RESET RO Rl Rl0 Rll R12 R13 R14 0 
R15 R2 R3 R4 RS R6 R7 R8 R9 SYSNAME SYSNAMES SYSNEND TEXT Pol 

d 
UFDBOSY I-' 

tI) 

DHSBWR AACTFREE AACTFRET AACTLKP ADMSERL ADMSFREB ADTDTA ADTFLGl ADTFLG3 ADTFRW ADTFSTC ADTFXCHN ADTI! ADTMX I 
n c+ 
::w ADTNACW ADTRES ADTSECT AFTADT AFTCLA AFTCLB AFTCLD AFTCLDX AFTCLN H'TCLX AFTD AFTDBA AFTDBC 0 
til APTDBD AFTDBF AFTDBN AFTFBA AFTFCL AFTFCLA AFTFCLX AFTFLG AFTFLG2 AFTFST AFTFULD AFTlV AFTIC I 

APTID AFTIL AFTIN AFTM AFTN AFTNEW AFTOCLDX AFTOLDCL AFTRD AFTRP AFTSECT AFTWP AFTWRT t"1 
~ ~ ..... APVS AKILLEX AQQTRK AQQTRKX ARDTK ATFINI S ATRKLKP ATRKLKPX AUPDISK AWRTK BALR CODE203 DMSERR tr 
t1 DKSLAD DMSLFSW FSTFV FSTIL F STSECT FSTWP PVSECT KXFLAG KXWANT LOC NUCON NUM PLIST ~ 
~ I-' 
0 REGSAV3 RESET RWFSTRG RO Rl R10 RlIl R12 R13 R14 R15 R2 R3 
c+ Rll R5 R6 R7 RS R9 TEXT TEXTA TYPE OFDSUSY VIRTUAL VMSIZE WRBIT n 
0 t1 
t1 0 ..... DKSCAT ADKSFREB BALR CMNDLIST CODE203 FSTFINRD MISFLAGS KSGFLIGS NEGITS NOTY1?ING NUCON NUMFINRD RO Rl Ul 
(1) R12 R14 R15 R2 B3 R4 TYPE Ul 
Ul 

~ 
DMSCIO ABATABND ABATLIMT ADMSERL BATFLAGS BATLSECT BATNOEX BATPUNC BATPUNL EATRUN BATXLIM BITXPUN BUSY CAW ('[) 

CSW DE ERRET ERRMSG NOCON NUM RO Rl Rl0 Rl1 R12 R13 R14 Hl 
(1) 

I\,) R15 R2 R3 RLi R5 R6 R7 Re TEXTA WAIT t1 
I (1) .... DHSCIT ACTIVE ADMSFREB AFVS AIOSECT ASVCSECT ATTN A'1TNHIT BALR BATFLAG2 BITS TOP CAW CE CRSTAXE ::s 

...,J 0 .... CODE203 CONCCWS CONSTACK CSW CURRIOOP DBGEXEC DBGEXINT DBGPLAGS DE DMSERR FSTFINRD FVSECT IOOPSW (1) 



I'V ftODULE EXTERNAL REFERENCES (LABELS AND ftODULES) 3: 
I 0 
~ 

OJ ....,J .:: 
I'V KXFLAG KXWANT LOC LSTFINRD fHSFLAGS !SGFLAGS NOTYPING NUCON NUftFINRD NU!PNDWR OSSFLAGS OSWAlT OVSHO ~ 

OVSON O'SSO OVSTAT PACK PENDREAD PENDWRIT RO R1 R12 R13 R14 R15 R2 (1) 
I 

H R3 R4 R5 R6 R7 R8 R9 S'CSECT TAIEIID T AIEftS GL TIIERSAV TAXEADDR TIXEEXIT r+ 
b1 TAXEEXTS TAXEFREQ TAXEIOL TAXEIOWS TIXELNK TAXERTRA TIXESTAT TAXETAIE TAXETSOF TEXT TSOATCNL TSOFLAGS UE 9 :3 

UFDBUSY WilT WAITSA'E 1:"1 
-== III 
t3: Df!SCLS ACBA!O ADf!SERL ADf!SFREB AERASE AFINIS ASYSREF I'SAeSYS AVSRWORII BALR BGCOf! BSR BUFFER CODE203 tr , 
w CPSTAT DE DE'CODE DOSDD DOSDSRlf! DOSDSTYP DOSFIRST DOS NEXT DOSSECT DOSTRINS DOSYSXXX DOUBLE FILE (1) 

~ -..J FILETYPE FREELR IKQACB LASTREC LOC LUBPT NICLPT RUCON NU! OFF PIBPT PLIST PUBADR 
0 PUBCUU PUBDEVT PUBPT PUBTAPe1 READ RESET RUN RO R1 R10 R11 R12 R13 n 
Ul R14 R 15 R2 R3 R4 R5 R6 R7 R8 R9 SENSE TAPE TEXT H 

0 
~ TYPE 'IPINIT VIPSOP VIPTCLOS VSAftFLG 1 VSA!SERV WORKFILE WRITE WTf! en 
UI en r+ 
(1) DKSCKP ADftSFREB ADTf! IDTSECT AFINIS ARDBUF AREA BALR CODE203 ERROR PILE LOC NUCOR NUK ::0 
a READ RO R1 R10 R11 R12 R14 R15 R2 R3 R4 R5 R6 (1) 

1:"1 R7 R8 R9 SAVE TEXT TYPE VIRTUIL H\ 
(1) 

0 H 
I.Q Df!SCPF ABATPROC BALRSA'E BATCPEX BATFLAGS BATLOAD BATRUN BATOSEX BS CeNDLINE CI'INDLIST RUCON RO R1 CD 
1-'- t:; 
n R10 R12 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 n 

I'D 
p) 

Df!SCPY AACTLKP AADTLKW ADTCFST ADTCHBA ADTFLG1 ADTFRW ADTe ADTSECT AFSTLKP AFSTLKW AFTIC IFTSECT BLANKS 1:::1 
AI BUFAD CL CODE DOSFLAGS DOSSVC FSTD FSTFAW FSTFB FSTFV FSTIC FSTIL FSTITAV FST! 
~ FSTN FSTSECT FSTYR HEX INPUT I'IISFLAGS NOCOR NUft OPS ECT PACK RELPAGES RESET RO 
H R1 R 10 R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 
0 R8 R9 TEXT TYPE UNPACK 

I.Q 
H 
jl) DKSCRD ABATPROC ADf!SFREB AFVS AINTRTBL AOPSECT ATTN BALR BATFLAGS BATLCAD BATRUN CODE203 CONIHBLK CORIHBUF 
a CSW Df!SCAT Df!SCITB Df!SERR FSTFINRD FVSECT F255 KXFLAG KXWSVC LOC LSTFINRD eISFLIGS eSGFLAGS 
I::' NOTYPING NOCON NUMFINRD NUf!PNDWR OPSECT PENDREID QSWITCH RO R1 R11 R12 R13 R14 
I'D R15 R2 R3 R4 R5 R6 R8 R9 TEXT TSOATCNL TSOFLAGS OCASE WAIT 
r+ WIITLST (1) 

H 
liiI Df!SCWR ADf!SFREB AF'S AOPSECT IOUTRTBL BALR CODE203 CONSOLE CONSTACK CSW C1 Df!SCITA Df!SCITB DftSERR 
1-" FVSECT F256 KXFLAG KXWSVC ftSGFLAGS NOTYPING NUCON NUftPRDWR OPSECT PENDREAD PENDWRIT REDERRID RO 1:::1 
p) R1 R10 R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 
r+ R8 R9 TEXT WAIT WAITLST 1-'-
0 
t:;; Df!SCWT AF'S AOPSECT FVSECT KXFLAG KXWSVC NOCON NUftPNDWR OPSECT PENDREID RO R1 R10 R 11 
I R12 R14 R15 R9 WAIT WAITLST I 

-== 0 Df!SDBD ADEVTAB ARGS BLINKS CAW CCWPRIRT CONHCT CPULOG DBDD!SG DBDEXIT DBGFLAGS DBGOUT DBGRECUR DBGSECT 
~ DBGSWTCH DEC DECDEC DEVTAB F4096 INPOT LISTLINE LINE LINE1 LINE11 LINE1B LINE1C !VCNT1 .:: 
EiiJ NUCOR PRINTER 1 RO R1 R10 R11 R14 R15 R2 R3 R4 R5 R6 
I'D R7 R8 R9 SAVE1 SILl TBLEND TEXT 
I'V 

Df!SDBG ABNPSW IBN REGS ABWSECT AD!SCRD AI:!SERL AIOSECT AKILLEX AOPSECT IRG!IX ARGS IRGSA' IRGSCT BILRSA'E 



KODULE EXTERNAL REFERENCES (LABELS AND 1I0DULES) 

BEGAT BITS BRKPNTBL CAW CONHCT CONHXT CORWR GONWRL COUNT CSW CORRSAVE DBGADN DBGEXEC 
DBGEXINT DBGFLAGS DBGOOT DBGPGIICK DBGRECUR DBGSAV1 DBGSAV2 DBGSECT DBGSET lDBGSWTCH DEC DECDEC DftPTITLE 
DKSABNRT DKSABW DKSCWR DftSCWT DftSDBD DftSERR DMSIOWR DftSITP DUMPLIST lUAftLC EXAftLG EXTOPSW FIRSTDftP 
FPRLOG FO F15 F6 GPRLOG HEX HEXHEI IC INPUT INPUTSIZ INPOT1 IOOPSW IPLPSW 
JFL1GS LASTDftP LINE LOWSAv:g ftVCNT KVCNT1 ftVCNT2 NOCON OFF OPSECT ORG OOTPT1 PGftOPSW 
PRFPOFF PROTFLAG RETSAV RSTNPS'1f RO R1 R10 R13 R14 n15 R2 R3 R4 
R5 R6 R7 R8 R9 SAVE1 SAVE2 SCAW SILl SSlVE STOPAT SYKT1BLE SYftTBG 
TBI.END TEXT TPFUSR TSYM TYPFLAG OSERKEY VftSIZE WAITLIST WAITRD irA ITS AVE WTRDCNT XPSW 

DftSDIO ADIOSECT ADftSFREB ADTADD ADTDTA ADTFLG1 ADTFRO ADTFRii ADTSECT AFVS llKILLEX ANOCEND EALR CAW 
CCWI cew 1 CCW 11 CCW2 CODE203 CSW DEVTYF DIAGNU M DIAGRET ])IOBIT DIOFLAG DIOFEtEE DIOSECT 
DOUBLE DTAD DTADT ERRCODlO! PREERO FVSECT INHIBIT IOCOftft IOOLD 100PSW KXFLAG KXWU1T LASTCYL 
LASTDED LASTREC LOC NOCON NUft PLIST OODSK1 QODS K,2 QOTRK HEAD RETREG RWCCi RO 
R1 R 10 R11 R12 R13 R14 R15 R2 R4 U5 R6 R7 a8 
R9 SAVEADT SECTHUft SEEKADJa SEIICCW SENSB TEXT TOOBIG TYPE TYP2314 TYP3330 TYP3350 OFDBOSY 
VCADTLKP WRITE IfRTKF XRSAVE 

DMSDLB ADKSFREB ADTFDOS ADTFLG2 ADTFRO:S ADTSECT ASYSREF BAtR BGCOM CKSOP CODE203 CONREAD CURRSAVE DOSBUFSP 
DOSCBID DOSCMS DOSDD DOSDDCilT DOSDEV DOSDOS DOSDSK DOSDSMD DOS DSNAM ])OS DSTYP DOS DUM DOSEND DOSENSIZ 
DOSEXTNO DOSEXTTB DOSFIRST DOSFLAGS DOSINIT DOSJCAT DOSMODE DOSNEXT DOSNUM ])OSOS DOSOSDSN DOSOSFST DOSPERft 
DOSSECT DOSSVC DOSSYS DOSTYPE DOSUCAT DOSUCNAft DOSVOLNC DOSVOLTB DOSXXX ])OSYSXXX DOUBLE EDIT EGPRO 
FILE LOC LUBPT NICLPT NUCON NUM POBPT READ RESET nO R1 R10 R11 
R12 R13 R14 R15 R2 83 R4 R5 R6 117 R8 R9 SAVEXT 
SSAVE SYSCODE SYSTEM TEXT VCADTLKP VIRTOAL VSAftFLG1 VSAMS ERV VSJOECAT ti: 

DftSDLK AADTLKP AADTLKW ABORT ADTFLG 1 ADTFRW ADTft ADTSECT AERASE AFINIS )lRDBOF ASTATE 
0 

AWRBUF BGCOM PI 
BLANKS BUFFER COIHUME CSW CO DATE DEC DOSDD DOSDEV l)OSDS:K DOS FIRST DOSFtAGS DOSftODE c 
DOSOP DOSOSFST DOSSECT DOSSVC ERROR ESD1 ST FREELCWE FSCBBUFF FSCBD ]~S CBF:!! FSCBFN FSCBFV FSCBITNO ~ 

(1) 
FSTFB FSTFRW FSTFRWX FSTFV FSTIC FSTIL PSTM FSTSECT F1 ]~2 F3 F4 F5 I n F6 HEX JOBDATE LABLEN LUB LUBPR LUBRES LUBRLB LUBO 14 NOAUTO NOftAP NOCON NUft r+ 

3 0 
I'.A OSFST OSFSTDSK OSFSTXTN OUTPUT PACK PLIST PO PUBADR PUBCOO l?O BDEVT PUBPT RA READLST I 

t::1 RESET RO R1 R2 R3 R4 R5 R6 R7 1t8 R9 SF SYSLINE t"1 
1-'- SYSUT1 TEXT TEXTA T'!PE WRITE ~ 

tr 
t1 (1) 
C!) DKSDKP ADKSFREB ASISREF BALR BGCOft CODE203 EOCADR LOC NUCON NOM PLIST RO R1 R12 I-' 
0 
r+ R2 R3 R4 R5 R6 R7 TEXT TYPE n 0 1"1 1"1 DMSDOS AAHSSIS ABGCOK ABNBIT ACMSRE~r ADIKQLAB IDftSERL ADftSFREB IFVS ALTISAVE ANCHERDA ANCDENTP ANCBINST ANCDLDPT 0 
1-'- en C!) ANCHLENG ANCHPHLN ANCHPBNM ANCHSECT ANCHSTSW AOSRET IPPSAVE lRFLG ARORTBL llSYSCOli ISISNAftS ISYSREF AVSAMSYS en en AVSREOJ BALR BGCO!! CALLER CLKVALftD CMSVSAM CODE203 COHNI!E CURRSAVE IlACT I'J E DATIPCftS DIRC DIRLL 

DIRN DIRNAME DIRTT DMSFCH DMSXCP DOSFLAGS DOSRC DOSTRINS DOSVSAli l!GPRO EGPR1 EGPR14 EGPR15 1:0 
C!) 

EGPR9 FCHLENG FCDTAB FREELOtiE FVSECT HEX IJBIBTAB IJBCCWT IJBFTTAB INTIN'PO JCSW2 JCSW4 JOBDATE H\ 
LOC LTK KAINDIGB KAINLI ST MAINSTRT NOTEXT NUCON RUCRSV3 NUM OLDPSW OSTEMP PCPTR PIBADR C!) 

tv 1"1 
I PIBFLG PIBPT PIBSAVE PIB2PTU PIK PNOTFND PPBEG PPEND RO Et1 R10 R 11 R12 It) 

...a. R13 R 14 R15 R2 R3 R4 R5 R6 R7 Eta R9 SSAVE SVC12SAV ::t 

..,J 
SVEARA SVEPSW SVEPSW 2 SVEROF SVEROO SVER09 SISCO! SYSNUtES SYSNEND TEXT TEXTA TPFSVO TIPFLAG 0 w CD 



~ BODULE EXTERNAL REFERENCES (LABELS AND BODULES) 3: , 0 .... p, 
..,J C 
-I=' TYP3330 TYP3340 TYP3350 U~DBUSY VIPIIIT VftSI ZE VSAlIFLG1 VSAMRUR ~'SlftS ERV WAIT I-' 

1 
H DMSDSK ABATABND ADISK ADTFTYP ADTID ADTSECT AERASE AFINIS AFVS /\KILLEX ARDBUF ASTATE ATYPSRCH AUPDISK rt' 
tl' AWRBUF BATDCMS BATFLAGS BATFLAG2 BATRUN BLARKS BUFFER CCUNT DEC ERROR FILE FNAME FSTDBC ~ 3: FSTFV FSTIC FSTIL FSTM FSTN FSTSECT FSTT FVSECT FVSFSTft F65535 F800 HOLD IADT t-t 
~ KXFLlG KXWANT NUCON NUM READ RO R1 R13 H14 R15 R2 R3 R4 C» 
til: R5 R6 R1 R8 R9 STATER1 TEXT TYPE UFDEUSY OPBIT V CFSTLKP WRBIT t:J' 

" (I) 
W I-' 
..,J DMSDSL ADTFLG1 ADTFRW ADTM ADTSECT AERASE ASTATE BUFFER DA DIRNAM! DIRR DIRTT DOSFLAGS DOSSVC 
0 ERROR FCBIOSW2 FCBITEM FCBMVPDS FCBSECT FILE FSTL FSTSECT FXD INPUT NUCOR NUft OUTPUT n 

H 
til PO PS READ RESET RO R1 R10 R12 H14 R15 R2 R3 R4 0 
~ R5 R8 SAVE1 SF TEXT VC1DTLKP WRITE en en en 
rt' 
(I) DKSDSV BGCOM BLANKS BLANK2 COMNAHE DEC DOSDD DOSFIBST DOS FLAGS !JOSHODE DOSSECT ERROR FREELOWE F1 =:tI 
II HEX INPUT LUB LUBCLB LOBP LUBPR LUBRES LUBRLB was LB LO BO 14 RUCON NUM PLIST (I) 

t"h 
t-t PUBADR PUBCUU PUBPT READ RESET RO R1 R10 H11 R12 R13 R14 R15 (I) 
0 R2 R3 R4 R5 R6 R1 R8 89 !iAVERO SEEK TEXT TIC TYPE H 

\Q VKCOKP VKDISP VMDISP1 (I) ..... I:::J 
0 0 

DKSEDC DUAL NOS EDCB RO R1 R10 R13 R14 R15 a2 R3 R4 R5 R6 (I) 
I» R7 RS R9 SAVEAR =' 
~ 

to DKSEDI ADEVTAB lDMSERL AERASE AEXTEND AFINI S AFSTFNRD lINCORE ALCHAR1 lLCHAR2 ALTLIST ARDBUl AREI ASTATE 
H ATTN ATTNLEN AUTOCNT AUTOCURR AOTOREG AWRBUF BLOC BYTE CARDINCR CARDNO CASEREAD C1SESW CHGTRUNC 
0 CHNGCNT CHNGFLAG CHNGKSG CHNGNUM CHODE CONSOLE CORITE!! CCUNT t::REIT DEC DECIMAL DEVTAB DITCNT 

\Q DMSSCR DOSFLAGS DOSSVC EDCB EDCT EDIT EDLIN EDRET ZNDELOC ENDTAES ERROR lILE FILEftS H 
C» FLAG FLAG2 FKODE FNAftE FPTR FREELEN FSIZE FTYPE '~V GETFLAG H1LF HEX INCRNO 
s INPUT INVLD IOID IOLIST IOllODE ITEM J1R LINE r.INERO LftCORR LftINCR LftST1RT ftACRO 
t::I MISFLlGS KSGFLlGS NEWMODE NEWNAME NEWTYPE NOTYPI NG NUCON NUll OFF OR PACK PADBUF PADCH1R 
(I) PLIST PTR1 PTR2 PTR3 RANGE REGSAV REGSAVX RELPAGES ~EPCNT RESET RPLIST RO R1 
c+ R10 R13 814 R15 R2 R3 R4 R5 n6 R7 R8 R9 SlVCRT (I) 
H SlVCWD SAVE SCRFLGS SCRFLG2 SEQNAftE SERSAV SERTSEQ SERTSW SIGNAL SPARES STACKAT STACKATL STRTNO 
iii TlBLIN TABS TEMPTAB TEXT TIN TOUT TRNCNUft TRUNCOL ~~VERCOL 1 TVERCOL2 TWITCH TYPE TYPFLG ..... 

UTILFLAG VERCOL1 VERCOL2 VERLEN XAREA XXXCWD XYCRT XYFLAG ,{AREI ZONE1 ZONE2 1:' 
I» 
c+ DMSEDX ACMSSEG ADEVTAB lDMSFREB lDTft ADTSECT AEDLIN IEXTEND AFINIS .\FLAGLOC lFSTlNRD lLINELOC ALTftODE lNUftLOC ..... 
0 ARDBUF ASTATE ASTATEW ASYSNAftS BALR BLANK1 BL1NK2 BLANK3 BLOC BOFFER C1RDINCR CISESW CHNGftSG 
t::S CLASTERft CMDBLOK CftSSEG COD£203 CONSOLE CORITElI DCSS1VAL DCSSFLIG DCSSLDED DEC DEVTAB DOSFLAGS DOSSVC 
I EDCB EDCBEID EDCBLTH EDLIN EDRET EDWORK ERDBLOC ERDTABS ERROR FILE FL1G lLAGLOC FLAG2 I 
~ FftODE FNlftE FREELEN FSTD FSTFINRD FSTFftODE FSTRECCT FSTRECFft ?TYPE FV INVLDHDR 101D IOID 
0 IOLIST IOftODE ITEK JAR LIRE LINELOC LftSTART LOC I.OCCNT ftAIN1D NUCON NUft NUftLOC 
I-' ON P1DBUF PADCHAR PLIST PTR1 PTR2 PTR3 RECS :~EPCNT RO R1 R10 R12 c .. R13 R 14 R15 R2 R3 R4 R5 R6 ~7 RS R9 SCRBUF1D SEQRlHE 
(I) SPARES SUBACT SUBFLAG SUBREJ SISNAftES SISNEND T1BS TEXT ~~IN TRUNCOL TWITCH TYPE TYPSCR 
~ TYP3271 TYP3218 VCFSTLKP VERCOLl VERCOL2 VERLEN VIRTU1L ZONEl ~~ORE2 



MODUL E EXTERNAL REFERENCES (LABELS AND MODULES) 

DMSERR ABATABND AUSERRST BATFLAGS BATFLAG 2 BATRUN BATSYSAB CALLEE CAW CONCCWS CURRSAVE DMSCWR DftSCWT DMSERT 
ERBL ERDSECT ERF1BF ERF1HD ERF1SBN ERF1SB1 ERF1TX ERF2CM ERF2DI ERF2DT ERF2PR ERF2S1 ERLET 
ERMESS ERNUM ERPAS13 ERPBFA ERPCS ERPFl ERPF2 ERPHDR ERPLET ERPNUM ERPSBA ERPTXA ERSAVE 
ERSBD ERSBF ERSBL ERSECT ERSFA ERSFL ERSFLST ERSSZ ERTEXT ERTPL ERTPLA ERTPLL ERTSIZE 
ERT1 ERT2 NUCON OLDPSW RO R1 R10 R12 R13 R14 R15 R2 R3 
U4 R5 R6 R7 R8 R9 S8 SSAVE 

DMSERS AACTFRET AACTLKP AACTNXT ADMSERL ADMSFREB ADTADD ADTCFST ADTCHBA ADTFLG1 ADTFRO ADTFRW AlDTFSTC ADTHBCT 
ADTLFST ADTLHBA ADTM ADTRES ADTSECT AFTADT AFTDBC APTFCL AFTFLG AFTPPST AFTSECT AfVS AKILLEX 
AQQTRKX ARDTK ASTATEW ATFINIS ATRKLKPX AUPDISK BALR CODE203 DMS ERR DMSLAD DMSLADW DKSLFSW DSKADR 
DSKLOC DSKLST ERBIT ERRCOD 1 ERRMSG ERSFLAG FSTBKWD FSTDBC FSTFCL FSTFWDP FSTM F5TN FSTSECT 
PSTT FVSECT FVSERASO FVSERAS1 FVSERAS2 KXFLAG KXWANT LOC BUCON NUM ON REGSAV1 RO 
R1 R10 R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 
R8 a9 SIGNAL STATEFST STATER1 TEXTA TYPE UFDBUSY 

DMSEXC ACMSSEG ADMSFREB ADTM ADTSECT AEXEC AFINI S AFVS ACPSECT ASYS NA!!S BALR CMSSEG CODE203 DCSSAVAL 
DCSSFLAG DCSSLDED DMSLFS EXADD EXECFLAG EXECRUN EXLEVEL EXNUI'! FFD FILEBUFF FILEBYTE FILEMODE FSTD 
FSTLRECL LaC MISFLAGS NEGITS NOSYS NUCON NUM OPSECT PLIST RO R1 R'10 R11 
R12 R13 R14 R15 R2 R3 RlI, R5 R6 R7 R8 R9 SYSRAMES 
SYSNEND TEXT TYPE 

DMSEXT ADMSFREB ADTFDOS ADTFLG2 ADTFMFD ADTFROS ADTM ADTSECT AFINIS AGETCLK AOPSECT APOINT ARDBUF ASCANO 
ASTATE BALR BLANKS BUFFER BUFSIZE CODE203 CONDFLG CVRRDATE CURRTIME DOSDSK DOSFLAGS DOSMODE DOSSVC 
DSKLIN ENDFREE ERR$202 ERRMSG EXADD EXLEVEL FLAG FI,AGl FHonE FHAME FREEREXT FSIZE FSTFIBBIl ::w 
F1 LABLER LASTCMND LASTEXEC LINKLEN LOC MSGFLAGS NEED NOTYPING NUCON OFF ON OPSECT 0 
OSRESET OSSFLAGS PREVCMND PREVEXEC READCNT RO R1 R10 R14 R15 R2 R3 R4 0.. 

d 
R5 R6 R7 R8 R9 SKIP SUBFLAG SVC$202 TIMEUF TY PLIN TYPLIST UNPACK VCADTLKP ..... 
VCADTLKW VIPINIT VSAMFLG1 CD 

I 
n ri-
ce DMSFCH ADMSERL ADMSFREB ANCHSIZ ASTATE ASYSREF AUSRAREA BALR BGCOM BUSOUT CC CMDREJ CODE203 COMNAME 0 
Ul CSW DAC:TIVE DATACHK DIRAAA DIRC DIREEE DIRLL DIRN DIRHAME DIRPPP DIRRR DIRTT DIRTTR I 

t"'" 
t:I DOSFIRST DOSFLAGS DOSKPAUT DOSLIBL tOSREAD DOSSVC DOSTRANS DOSVS AM EQCHK ERRMSG ERROR FCBDD FCBDEV PI ..... FCBDSK FCBDSHAM FCBINIT FCBOP FCBOSFST FCBSECT FREELCVE FBEHESPG HIPHAS HIPROG IHADEB INPUT INTREQ tr 
H LOC LUBPT MAINHIGH MAINLI ST MAINSTRT NOTEXT NUCON OSFST OSFSTDSK OSFSTXTN PCTVSAM PNOTFND PO CD 
CD ..... 
C'l PPEHD PS PUBPT READ READCNT RELPHSE RO R1 R10 Rl1 R12 R'13 R14 
("'t R15 R2 R3 R4 R5 R6 R1 R8 R9 SEARCH SEEK Sf TEXT n 
0 TIC VIRTUAL VSAMFLG1 VSAMRUN VSAMSERV VSMINSTL H 
H 0 ..... til 
CD DMSFEr ABGCOM ADMSERL ADMSFREB ALDRTBLS A SYSCOM AUSRAREA BALH BGCOM CODE203 COMNAME DACTIVE DIRN DIRHAME til 
til 

DMSERR DOSCOMP DOSFLAGS DOSHODE DOSRC DOSSVC FCHAPHNM FCHLENG FCHOPT FCHTAB HIPHAS I.JBFTTAB LASTLOC ~ 
LOC LOCCNT NOTEXT HUCON NUH PNOTFND RO R1 R12 R14 R15 R:2 R3 (1') 

R4 R5 R6 R7 S'IART STRTADDR SYSCO~ TEENT TEXT VSMINSTL t-tt 
CD 

r-..> H 
t DMSFLD ABATABHD ASTATE BATDCMS BATFLAGS BATFLAG2 BATRUN CONREAD CURRSAVE DUMMY EGPRO FCBBLKSZ FCBCASE FCBCATftL CD 
~ 

FCBCON FCBDD FCBDEV FCBDOSL FCBDSK FCBDSMD FCBDSNAM FCBDSORG FCBDSTYP FCBDU" FCBEHD FCBENSIZ FCBFIRS!' ~ 
...,J (') 
U1 FCBINIT FCBIOSW FCBLRECL FCBMEHBR PCBMODE FCBNEXT FCBNUH FCBOSDSN FCBPCH FCBPROC FCBPTR FCBRDR FCBRECPft CD 



tv "ODULE EXTERNAL REFERENCES (LABELS AND ftODULES) tc I 0 ...10 
...,J P, 

0\ FCBSECT FCBTAP FCBTAPID FCBXTENT FILE FLAG1 FLAG2 FLAG3 JFCEINt2 JFCBUFNO JFCKEYLE JFCLIPICT JFCOPTC[ ~ 
I-' 

LOC NUCON NUM PACK RESET RO R1 R10 R11 R12 R13 R14 R15 cy 
H R2 R3 R4 R5 R6 R7 R8 R9 SSAVE TABEND TEXT TYPE 
tll t+ 
tc DftSFNC ATTN CONREAD DMSABBSV DftSBWR tftSCAT DMSCIOSI DMSCITDB DMSCPF DtlSCRD DMSCWR DMSCWT DMSDBG DMSERR ~ 
-< DMSEXC DftSFET DMSFREB D!SFREES D!SFREEX DftSFRES DtlSFRETS D!!SFRETX DftSITET D!SITSK DftSITSXS DftSLADAD DMSLDRA t'"4 

C» tc DMSLO! DMS!OD DMSPIO DMSPIOCC DftSPIOSI DMSSTGAT DMSSTGCL D!!SSTGSB tMSSTGSV DMSVSR FINIS LOC NU! 0' ...... 
w RO START TRAP TYPLIB WAIT WAITRD (D 

-.J I-' 
0 DMSFBS AACTFRET AACTLKP ADIOSECT ADftSERL AtMSFREB ADTADD ADTDTA ADTFLG3 ADTFTYP ADTFUPD1 ADTFXCHN ADTBACW ADTRES n 
til ADTSECT ADTXBBEC AERASE AFTADT AFTCLA AFTCLB AFTCLD AFTCLDX AFTCLN AFTCLX AFT DBA AFTDBD AFTFBA t1 

t.c: AFTFCL AFTFCLA AFTFCLX AFTFLG AFTFLG2 AFTFST AFTFULD AFTft AFTN AFTNEW AFTPFST AFTRD AFTSECT 0 
en en 
t+ AFT USED AFTWP AFTWRT lFVS lKILLEX AQQTRKX ARDTK ATRKLKPX ATYPSRCB AUPDISK AWRTK BALR BALRSAVE en 
CD CLKVALftD CODE203 DATIPCMS DEVTYP DIOCSW DIOSECT DISK$SEG D!!SERR DMSLFSW DSKLOC DSKLST FIBISLST FBBIT r::t1 
EI FSTD FSTFB FSTIC FSTM FSTB FSTRP FSTSECT FSTT FSTWP FSTYR FVS ECT HEX KXFL1G (D 

t:"" KXWANT LOC NUCON BUM QQDSK1 REGSAV3 RWFSTRG RO R1 R10 R11 R12 a13 HI 
0 R14 R15 R2 R5 R6 R7 R8 R9 SECTNUM S EEKADR SEBSB STATEFST SUB FLAG 

(D 

H 
~ SUBINIT TEXT TYPE UFDBUSY VIRTUAL CD .... 
0 I=' 

0 
I» 

DMSFOR ADElTAB ADMSFREB ADTCYL ADTDTA ADTFALUF ADTFDA ADTFDCS ADTFFSTF ADTFLG1 ADTFLG2 ADTFQQF ADTFRO ADTFROS CD 
t:s ADTF8W lDTBBCT ADTID ADTLAST ADTLEFT ADTLBBA ADTM ADTPlSK ADTNUM ADTPQM1 ADTPQH2 ADTPQM3 ADTQQPl 
p,.o ADTRES ADTSECT ADTUSED ADT1ST AFIBIS ARDTK AUPDISK AWRTK EALR CC CODE203 DTAD FLAG 
to LOC HUCON BUH QQDSK1 RESET RO R1 R10 R11 R12 R13 R14 R15 
t1 R2 83 R4 R5 R6 R7 R8 R9 S ECTNUM SEEKADR SENSB SENSE SILl 
0 START TEXT TYPE VCADTLKP WAITRD 

\Q 
t1 
I» DHSFRE ABBPSW ABNREGS ABWSECT ACALL ADMSERL AFREETAB ASSTA'! ASVCSECT AUS RAREA BALR BATFLAGS BATLOAD BLOCKLEN 
E1 CALLER CL CODE203 CURRSAVE DMSABNGO DMSABW DMSERR DMSFRT DMSNUCU FINIS FLAGS FLCLN FLHC 
tJ FLNU FLPA FRDSECT FREEFLG1 FREEFLG2 FREEBN FREEBU FREELN FREELOWE FREELOW 1 FREELU FREESAVE FRF1B 
CD FRF1C FRF1E FRF 1H FRF1L FRF1ft FRF1N FRF1V FRF2CKE FRF2CKT FRF2CKX FRF2CL FRF2NOI FRF2SVP 
c+ LOC LOCCNT H1INHIGB tUX HAXCODE BUCCODE BUCKEl BUCOB NUM POIBTER PRFPOFF PROTFLAG RO CD R1 R10 811 R12 R13 R14 R15 R2 R3 R4 R5 R6 a7 H 
&I R8 R9 SIZE SKEY SSAVE SVCAB SVCSECT SYSCODE TCODE T RBCODE TYPE USARCODE USER CODE .... USER KEY lHSIZE t:s 
I» 
c+ DHSGIO ADEVTAB CHDBLOK CSW EDCB LOC BUCOB RO R1 R10 R13 R14 R15 R2 .... R3 R4 R5 R9 0 
I:j 

I DHSGLB AFIBIS ARDBUF ASTATE BUFFEB DOSLBSV DOSLIBL FILE LOC MACLESV HACLIBL BUCOB RO R1 I R11 812 R13 R14 R15 R2 R3 R4 R5 R7 R8 TEXT TOTLIBS ":::I 
0 TXLIBSV TXTDI8C TXTLIBS 
I-' 
d DMSGBD ALDRTBLS ASTATE DIRBAME FILE FSTD FSTDATEW FSTSECT NUCON NUH RO R1 R11 R12 II 
CD R14 815 R2 R3 R4 R5 R6 R9 STATEFST TBEBT TEXT 
tv 

DHSGRB BLABKS ERROR EXECBUN FFS FSCBFH FSCBFN FSCBFT IBPUT OUTPUT PARHLIST PROCEBR RUB RO 



MODULE EXTERNIL REFERENCES (LIBEl.S AND MODULES) 

R1 R10 R11 R12 R13 R14 R15 R2 R3 RL~ R5 R6 R1 
R8 R9 SAVE START TEXT TEXTI 

DMSHDI ADMSFREB lIOSECT IBUCEND AUSRILST A USRITBL BILR CODE203 DOSFLIGS Dossve ERRCODE P256 IONTIBL IOSECT 
LaC NUCON RO R1 R10 R12 R13 R14 R15 R2 R3 R4 R5 
R6 R1 R8 R9 VMSIZE 

DMSHDS ADMSFREB ABUCEND ASVCSECT BAI.R CODE203 DOSFLAGS DOSSVC ERRCODE F256 JFIRST JL1ST JNUMB LOC 
NUCOR RO R1 R10 R12 R13 R14 R15 R2 R3 R4 R5 R6 
R1 R8 R9 SVCSECT VMSIZE 

DMSIFC AADTLKW ADTM ADTSECT BUF'FER COMPSWT CURRSl VE DMSREA DOS FLAGS DOSSAVE DOSSVC EDIT EGPR15 ERROR 
FILE FSCBBUFF FSCBD F SCBF! FSCBFN FSCBFV FSTFV FSTIL FST! FSTS ECT IOBECB LOADLIST LOC 
HUCON NUM OLDPSW OSSFLAGS RESET RO R1 R12 R13 R14 R15 R2 R3 
R4 R5 R6 R1 Re R9 SlVERO SAVER1 SlVER14 SAVER15 SAVE2 SSlVE TEXT 
TXTDIRC TXTLIBS TYPE 

DMSINA AUSAERV BALRSAVE EDIT NOABBREV NOSTDSYN NUCON NUPI OPTFLAGS RO R1 R14 R15 R2 
R3 R4 R5 R6 R1 R8 R9 TYPE 

DMSINI ADEVTAB BLANKS CAW CC CE CHINO CLASDASD Cl.ASTERM CONSOLE CSW DE DEVTIB DMSDBGP 
DMSINS DMSINSE DMSITS 1 EXT'NPSW INSTALID IONPSW IOOPSW IPLCCW1 IPLPSW MeKM MCKNPSW NOP NUCON 
RDCONS RDDATA RO R1 R10 R11 R12 R13 R14 R15 R2 R3 R4 
R5 R6 R1 R8 R9 SDISK SEARCH SEEK SETS EC SILl SYSADDR SYSTEMID TIC a: 
TYP2305 TYP 2311 TYP 2314 TYP 321 0 TYP3330 TYP3340 TYP3350 WAIT WRDATA WRITE WRIT E1 YDISK ZEROES 0 

j:lI 

DMSINM ASUBSECT BALRSAVE CURRCPUT CURRDATE CURRVIRT NUCON RO R1 R10 R14 R15 R2 R3 
C 
I-' 

R4 R5 R8 SUB SECT TIMBUF ct> 
I 

(") r+ 
r:. DMSINS ABGCOM ACMSCVT ACMSSEG ADISK ADMSFREB ADTFDA ADTFFSTF ADTFFSTV ADTFLG1 ADTFLG3 ADTFORCE IDTFSORT ADTFSTC 0 
(,') ADTSECT AEXTSECT ALDRTBI.S AOPSECT AOSPIODL AREA ASSTA't ASTATE ASTATEXT ASYSNAMS ASYSREF A1[JSRAREA BALR I 

t"" 
t::I BATFLAGS BATFLAG2 BATIPLSS BATLOAD BATRUN BGCOM CAW CC CHANa CLKVALPID CMNDLINE CMNDLIST CMSCVT PI 
~. CMSSEG CODE203 CONRDCNT CONRDCOD CONREAD CONSOLE CURRDATE CVTMDL CVTMZOIO CVTNUCB CVTOPTA CVTSECT DATIPCM: e-
t1 DCSSAVAL DCSSFLAG DCSSOVLP DCSSVTLD DDISK DMSDBG DPiSFRES DMSLAD DMSLOA DMSSCNN DTAD EXTSECT FREELOW] (1) 

ttl I-' 
n FRERESPG FVS Fa GRAFDEV IONPSW IPLADDR IPLPSW LOADSTRT LOC LOCCNT MAINHIGH MCKM MISFLAG: 
r+ MODFLGS MSGFLAGS NOVMREAD NUCON NUM OPSECT OPTFLAGS OSPlODLDW PGMNFSlil PRFTSYS PROTFLlG REGSAV RGPRS n 
0 ao R1 R10 R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 11 
t1 0 ,...,. R1 R9 SDISK SILI SPECLF SYSLOAD SYSNA!E SYSNAMES SYSN.END SYSREF SYSTEMID TEXT TIMCHAR 111 
ttl TIMER TIMINIT TYPE VMSIZE WAIT YDISK YYDDD 111 
111 

~ 
DMSINT AACTLKP ADMSFR'EB AEXTSECT AFTM AFTN AFTSECT AF'TWP AFVS AIOSEc~r AOPSECT ASCBPTR ASUBFST ASUBRET (1) 

ASUBSECT ASUBSTAT ASVCSECT ASYSNAMS AUSRAREA BALR CMNDLINE CMSSEG CMSTIM CODE203 CONRDCNT eONRDCOD CONREAD H\ 
ct> 

tv CONWRBUF CONWRCOD CONWRITE DCSSFLAG DCSSJLNS DCSSLDED DMSCPF DMSDBG DPlSLFS DPlSSCNN DMSSTGSB DOSFLAGS DOSPIODE H 
I DOSSVC ERRET ERRNUPI EXTPSW EXTSECT FILENAME FILETYPE FINISLST FREILelfE FSTFINRD FVSECT IONTABL IOSECT ct> 
~ JNUMB LASTCMND LOC LOCCNT MISFLAGS MSGFLAGS NEGITS NOABBREV NOnIPCJ~ NOIMPEX NOPAGREL NORDYTIPI NOTYPIN( 1:1 
-..J n 
-.J NOVMREAD NUCON OPSECT OPTFLAGS OSRESET OSSFLAGS PLIST PREVCMND QSWITC13 REDERRID RlLPAGES RMSGBUF RO ct> 



rv MODULE EXTERNAL REFERENCES (LABELS AND MODULES) 01: 
I 0 
~ PI -.J j;;: 
()) Rl Rl0 Rll R12 R13 R14 R15 R2 n3 R4 R5 R6 R7 ..... 

R9 SPECLF SPIESAV STAESAV STARS STATEFST SUBACT SUBFLAG SUEREJ SUESECT SVCSECT SWTCHSAV SYSNAMES CD 
I 

H SYSNEND TIMCHAR TIMER TIMINIT TYPE VIPINIT VSAMFLGl r+ 
tD 

~ or: DMSIOW AEXTSECT CSW DBGEXINT DBGFLAGS DEVICE DMSDBG EXTFLAG EXTSECT [ONPSW IONTAEL IOOPSW NUCON REALTIMB 1:'"1 
<1 RO Rl Rl0 Rl1 R14 R15 R2 R4 a5 R6 R7 RS R9 III ::c TIMCHAR TIMER TIMINIT WAITSAVE tf 
"- CD w ~-' 
-.J DMSITE ABATABND ABATLIMT ADMSFREB AEXTSECT ARGS ASVCSECT BALR BATCPUC BATCPUL BATFLAGS EATFLAG2 BATLOAD BATLSECT 
0 BATRUN BATUSEX BATXCPU BATXLIM CMSTAXE CODE203 CONHCT CSW JBGEXEC DBGEXINT DBGFLAGS DBGOUT DBGSECT n 
en DECDEC DMSCWR DMSDBG DOSFLAG S DOSSVC EXSAVE EXSAVEl EXTFLAG EXTOPSW EXTPSW EXTRET EXTSECT FVS I"i 

0 
I'< FVSECT FO F2 F4 F6 INPUT lONPSW Ioepsw .JRl LASTUSER LINE LOC MVCNTl en 
Ul NUCON NUMPNDWR OSSFLAGS OSWAlT OVSTAT PENDREAD REALTIMR RESET :{O Rl Rl0 Rll R12 en r+ 
(1) R13 R14 R15 R2 R3 R7 RS SAVEXT ~) CAW SILl STIMEXIT SVCSECT TAXEADDR ~ 
II TAXEFREQ TAXELNK TAXESTAT TBLEND TIMCCW TIMCHAR TIMER TIMINIT 'l'RAP TSOATCNL TSOFLAGS TYPE TYPLIST ro 
1:"'1 UFDBUSY WAIT IPSW t-'h 

(I) 
0 H 

I.Q DMSITI ABNPSW ABNREGS ABWSECT ADIOSECT AFVS AIOSECT ATTNHIT BALR14 ':~MSTAXE CSW DEVICE DIOSECT DMSABNGO CD 
\-'- 1:1 n DMSABW FVSECT HOLD IONTABL IOOLD IOOPSW IOPSW leSAVE [OSECT KXFLAG KXWANT MISFLAGS NEXTO n 

NUCON OLDEST QQDSK 1 RO Rl Rl0 Rll R12 R13 R14 R15 R3 R4 (I) 
III R5 R6 R7 R8 R9 SEC'INUM SEEKADR SENSB 'l' AX EAEDR TAXEFREQ TAXEIOL TAXELNK TAXESTAT l:j 

PI TSOATCNL TSOFLAGS UFDBUSY VSTRANGE WAIT 
"0 DMSITP ABNERLST ABNPSW ABNREGS ABWSECT ADMSFREB AFVS ALTASAVE APGMSECT APPS AVE ASYSCOM ASYSREF AUPIE I"i BALR 
0 BGCOM CALLEE CODE203 CURRSAVE DMSABNGO DMSABW DMSERR DOSFLAGS DOS MeDE DOSSVC FVSECT IJBABTAB INTINFO 

I.Q LOC LTK NUCON NUM OPSW PCPTR PGMNPSW PGMOPSW I?GMS ECT PIBADR PIBPT PIBSAVE PICADDR H 
III PIE PIK PSAVE RESET RO Rl Rl0 Rl1 R12 R13 R14 R15 R2 
19 R3 R4 RS R6 R7 R8 R9 SCBPTR ")S AV E SVEARA SVEPSW SVEPSW2 SVEROO 
t:::1 SVER09 SYSCOM TPFUSR TYPE TYPFLAG UFDBUSY VSAMFLGl VSAMSERV 
CD 
r+ DMSITS ABNPSW ABNREGS ABWSECT ACMSSEG ADMSERL ADMSFREB ADMSOVS ADOSDCSS AERR AFVS AOSMODL ASVCSECT ASYSNAMS (I) 
H AWAIT BALR CALLEE CALLER CHKWRDl CHKWRD2 CMSSEG ceDE CODE203 CURRALOC CURRSAVE DCSSAVAL DCSSFLAG 
a DCSSLDED DCSSVTLD DEPTH DMSABNGO DMSABW DMSCWT DMSERB DMSFNC DMSFNC3 DMSMOD DOS FLAGS DOSSVC DUMCOM 
\-'- EFPRS EGPRS EGPRO EGPRll EGPR15 EGPR2 ERRET FLAGS FVSECT FO F6 GPRLOG ITSBIT I:' 
III JFIRST JLAST JNUMB KEYMAX KEYP KEYS KXFLAG KXWANT KXWSVC LASTALOC LASTTMOD LENOVS LOC 
r+ tlCKM MISFLAGS MODLIST NEGITS BRMRET NRMSAV RRMUSAV NUCON NUM OFF OLDPSW ON OVSAFT 
\-'- OVSECT OVSON OVSTAT PRFPOFF PRFTSYS PRF USYS PROTFLAG RGPRS RGPRll RO Rl Rl0 Rll 0 
t:=' R12 R13 R14 R15 R2 R3 R4 RS a6 R7 RS R9 SFLAG 
I SFNUC SFREN SFSYS SFTRN SSAVE SSA VENXT SSA VEFRV SSAVESZ START STRTADDR SVCAB SVCOPSW SVCOUNT I 

<1 SVeSAVE SVeSECT SVCSTOP SYSNAftES SYSREND TEMP02 TEXT TPFERT TPFNS TPFROl TPFSVO TPFUSR TSOATCNL 
0 TSOFLAGS ..... TYPE TYPFLAG UFDBUSY USAVE USAVEPTR USAVESZ USERKEY 
j;;: 

DMSLAD ADMSFREB ADTFDA ADTFFSTV ADTFLG 1 ADTFLG2 ADTFRO E ADTFRCS ADTFRW ADTFVS ADTHBCT ADTLEFT ADTft ADTPSTM 
(I) ADTPTR ADTRES ADTSECT AFVS ASVCSECT BALR CODE203 FVSECT lADT LOC NUCON REGSAVO RO 
rv Rl Rl0 a12 R13 R14 R15 R2 R3 R4 R5 R6 R7 as 

R9 SVCSECT SVLAD SVLADW TYPE 



MODULE EXTERNAL REFERENCES (LABELS AND MODULES) 

DMSLAF ADMSFREB ADTFLG 1 ADTFRW ADTi!! ADT!!X ADTSECT AFTADT AFTFB AFTFLG AFTFSF AFTFST Al~TLD AFTft 
AFTN AFTPFST AFTPTR AFTSECT AFTT AFTUSED BALR CCDE203 FSTL FSTSECT LOC NUCON RO 
R1 R 11 R12 R13 R14 R15 R2 R3 R4 R5 TYPE 

DMSLBl'! AADTLKP AADTLKW ADTFLG 1 ADTrRO ADTFRW ADTM ADTSECT BUFFER DOUELE ERRCODE ERROR FILE FLAGS 
FREELOWE FSTFV FSTIC FSTIL FSTM FSTSECT INSIZE MISFLAGS NUCON NUft PLIST PREVIOUS RELPAGES 
RESET RO R1 R10 R11 R14 R15 R2 R3 R4 R5 R6 R7 
R8 R9 TEXT TEx'rA VIRTUAL 

DMSLBT AADTLKP AADTLKW ADTFLG 1 ADTl~RO ADTFRW' ADTSECT ARDBUF AiRBUF ELANKS BUFFER DOUBLE E!IDFREE FILE 
FINIS FLAGS FMODE FSIZE MISFLAGS NOLIBE NUCON NUf'I RACD RELPAGES RESET RITEM RO 
R 1 R 10 Rl1 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 
R8 R9 SAVE TEx'r TEXTA TYPLIN 

DMSLDR ACMSRET ADHSFREB, AFINIS ALDRTBLS AOSMODL APRILB APSV ARDBUF ASCANN ASTATE AUSRAREA BALR BATFLAGS 
BATLOAD BLANKS BRAD CALLEE CLOSELIB CHD CMNtLIST CODE203 COMMONEX CRDPTR CURRSAVE C'12 C7 
C9 DHSLGTA DMSLGTB DMSLIB DMSLIO DMSLSBA DMSLSBB DftSLSBC DftSLSBD DMSLSY DftSSTGSB DOSCOftP DOSFL1GS 
DOSftODE DOSRC DOSSVC DYLlD DYNAEND EGPR1 ENDCDADlR ENTADR ENTNAftl! ES D1ST ESIDTB FDISK FINIS 
FLAGS FLAG1 FLAG2 FLAG3 FREELOWE FRSTSDID FSTXTAD18 FTYPE GPRSAV LDRADDR LtRFLAGS LDRRTCD LDRST 
LOC LOCCNT LOCCT LUNDEF ftAINHIGH HEftBOUND nODFLGS NEED NOAUTO NODUP NOINV NOLIBE ROREP 
NOSLCADR NUCON Nun NUl'fBYTE NXTSYM OSRESET OSSFLAGS OUTBUF OUTPUT PARftLIST PLISTSAV PUEXIST PRFTSYS 
PRFUSYS PRHOLD PROTFL1G PRVCNT PSW READBUF REFcnD REFLG1 REFLG2 REFLIB REFUND REG13SAV RESET ::a 
RETREG RLDCONST RO R1 R10 R11 R12 R13 R14 R15 R2 R3 R4 0 
RI) R6 R7 R8 R9 SAV67 SPEC SSAVE START STRT ADDR SYSL01D SYSUT1 TBERT At 

c:I 
TBLeT TBLREF TEMPST TEXT TMPLOC TPFOSR TXTDIBC TYPFLAG UNRES US ERKEY vns IZE ..... 

(1) 

(') DMSLDS ADMSROS ADTeYL ADTFLG1 ADTFLG2 ADTFRO ADTFROS lDTFRW lDTID ADTI! ADTSECT CC CONCNT CSW 
I 

t+ 
3 DOSFL1GS DOSSVC FCBIOSW2 FCBftEMBR FCBftVPDS FCBOSDSN FCBSECT FMODE HALF NueON Nun OIl OSADTDSK 0 
til OSADTVTA OSADTVTB PO POU RESET RO Rl Rl0 Rl1 R12 R13 R'14 R15 I 

t1 
tj R2 R3 R4 R5 R6 R7 R8 R9 TEXT VCADTLKP VCADTNXT I» ...... t:r 
H DMSLFS ADHSFREB ADMSROS ADTCHBA ADT:FDA ADTFFSTV ADTFLG 1 ADTFLG2 lDTFLG3 ADTFRO ADTFBOS ADTFRW ADTFSORT ADTPTYP (1) 
(1) ..... 
(} ADTHBCT ADTLFST ADTLHBA ADT! ADTftX ADTPSTM ADTRES lDTSECT AFVS AsveSECT BALR CODE203 DISK$SEG 
c-t DMSL1D DI!SLADN DMSSTTR FVSECT NUCON REGSAVO RO Rl Rl0 Rll R12 R"13 R14 n 
0 R15 R2 R3 R4 R5 R6 R7 R8 R9 SVCSECT SVLFS TYPE H 
H 0 ...... en 
(1) DI!SLGT ADftSFREB APSV ARDBUF BALIR CODE203 DftSLDRD PILE FMODE FlUME FTYPE LDRST LOC NOCON en 
en OUTBUF RADD READBUF RPII RITEft RLENG RNUM RO R1 Rl0 R12 R'I3 R14 !;:I:j 

R15 R3 R4 R5 R6 R7 R8 R9 SPEC TEXT TXTDIRC TITLIBS TYPE (1) 
..... 

PItHS 
(1) 

N DftSLIB ADMSFREB AFINIS APOINT APSV ASTATE BALR CLOSELIlB CODE203 DEC DftSLDRD DYftBRNft FILE H 
I FLAGS FLAG2 FMODE FRAftE F'lYPE LDRST LOC NOAUTO NOLIEE NUCON NUnBYTE OSSFLAGS OUTBUF (1) 
~ RADD READBUP RITEft RLE'NG RNun RO Rl Rll R12 R13 R14 R'I5 R5 a:s 
....J (} 

\0 R7 SEARCH SETLIB SPEC TBLCT TBLREF TXTDIRC TX'TLIBS TYPE (1) 



I'V MODULE EXTERNAL REFERENCES (LABELS AND ftODULES) 3 
I 0 

....a. p" 
(Xl ~ 
0 DMSLIO AERASE AFINIS ALIASENT APSV A iRB UF DMSERR DSKAD DSKLIN DYLD ERROR FILE FLAG1 FLAG2· ..... 

FNAME LDRADDR LDRST LINE1 NOERASE NOMAP NUCOI NUft OSSFLAGS OUTBUF OUTPUT PACK PARftLIST ~ 
H PLISTSAV RO R1 R10 R11 R13 R14 R15 R2 R3 R4 TEXT TYPE c+ 
ttl TYPEAD TYPLIN UNPACK VIRTUAL 9 3 

t-4 
.q DMSLKD AADTLKll ADTM ADTSECT CODE FILE FSTFV FSTIL FSTM FST::;ECT MIS FLAGS NUCON PROCERR RELPAGES I» 
3 RO R1 R10 R11 R12 R14 R15 R2 R3 R4 R5 R6 R7 t:J" 

" R9 SIZE SYSUT1 TEXT 
(l) 

w ~ 
-..J 
0 DMSLLU ADTFLG1 ADTFLG3 ADTFRW ADTFRllOS A!)TSECT AERASE AFINIS ASYSREF AWR eUF BGCOM BLANKS DEVTAB DEVTYP n 

H 
Ul DOSFLIGS DOSMODE DSKLST ERROR FINIS LUBPT NICLPT NUCON PUBHR PUBCUU PUBDEVT PUBDSKft PUBPT 0 
~ RO R1 R10 R11 R12 R14 R15 R2 R3 R4 R5 R6 R7 en 
en R8 TAPE TEXT VCADTLKP en 
c+ 
(I) !:O 

iii DMSLOA ALDRTBLS AUSRIREI DMSLDRB FSTXTAI:R LtRADDR LDRFLAGS LOCCNT fUINHIGH NOIIJTC NOERASE NOINV NOLIBE NOftlP ('0 

~ 
t-t NOREP NUCON PRHOLD RO R1 R12 R14 R15 R2 R6 STRTIDDR SUBACT SUBFLAG ('0 

0 SISREF TBENT TEXT TYPE UNRES H 
\.Q ('0 

..... 
CLE~ROP CODE203 ENDCDIDR 

t::1 
0 DMSLSB ADMSFREB ADTRANS IPSV AUSRAREA BALR BATFLAGS BATLOID BRAD DMSLDRC DMSLDRD n 

ENTNAME FLAGS FLAG1 FLAG2 FREELOiE FRSTSDID FSTXTADR LASTTMOD LDltiT LOC LOCCT ftAINHIGB ftODFLGS ('0 

I» NOAUTO NODUP NOINV HOLIBE NOftAP NOREP NUCON OUTBUF RESET RETT RO R1 R10 
t::1 
p" R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 

I't1 
START STRTADDR SYSLOAD TMPLOC TYPE 

H 
0 DMSLST ADTFDA ADTFLG 1 ADTFLG2 ADTFRO ADTFROS ADTFRW ADTID AI:TM ADT;:iECT AERASE BRAD COftlUftE DATE 

I.Q DEC FLAG FLAGS FMODE FNAME FTYPE NUCON NUM RETHG RO R1 R10 R11 
H R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SEARCH I» 
S TEXTA TYPE VCADTLKP VCADTNXT 
tj 

DMSLSY (l) DSYM GET1 JSYM NUCON NXTSYft RO R1 R14 R15 
:+ 
(t) DMSMDP ALDRTBLS KDPCALL MODFLGS NUCON PLIST RO R1 R14 R15 R2 R3 R4 TBENT H 
Iii TEXT ..... 
t::1 DMSMOD ACTIVE ADMSERL ADftSFREB ADTRANS AERASE AFINIS AFVS ALDRTBLS ARD8UF ARDTK ASTATE ISTATEll AUSRAREA I» 
c+ AllRBUF BALR CODE203 DMSERR DMSSTGSB DOSFLAGS DOSMODE DOSSVC DSK GIN DSKLOC DSKLST ERROR FILE ..... FREELOllE FRSTLOC FVSECT FVSFSTAD FVSFSTCL FVSFSTFV FVSFSTIC FVSFSTIL F65')35 LASTLMOD LASTTftOD LDRFLAGS LOC 
0 
I:j LOCCNT MDPCALL MODFLGS MODGNALL MOI:GNDOS NOERASE NOMAPFLG NUCON NUM PRFTSYS PRFUSYS PROTFLAG REGSAV3 
I RllCNT RO R1 R10 R11 R12 R13 R14 R15 R2 R3 R4 85 
I R6 87 88 R9 SEARCH STRTADDR SUBFLAG SYSTEM TEENT TEXT TEXTA <: 

0 
I-' DMSMVE AADTLKP ADTFLG 1 ADTFRO ADTFRll ADTSECT BATFLAGS BATl!OVE CCNFLIG I:A DDNIM DOS FLAGS DOSSVC EXSAVE 
c:; 

FCBBLKSZ FCBDD FCBDEV FCBDSK FCBDSMD FCBDSNAM FCBINIT FCBIOSll2 FCB[TEM FCBLRECL FCBMftV FCBftVFIL FCBftVPDS s 
(t) FCBOP FCBOPCB FCBOSFST FCBRECFft FCBSECT FCBTAP FCBTAFID FLAG FST?'V FSTIL FSTSECT IHADEB INPUT 
I'V NUCON NUM OSFST OSFSTBLK OSFSTLRL OSFSTRFM OUTPUT PLIST PS RESET RO R1 R10 

R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 TEXT 



MODOLE EXTERNAL REPERENCES (LABELS AND MODULES) 

DMSNCP BYTE CCPADDR CCPARM CCPCAONE: CCPENTRY CCPHBFNO CCPHBFSZ CCPMAXID CCPNAME CCPPADO CCPPAD1 CCPPSIZE CCPRESID 
CCPRSTAT CCPRSTEP CCPRSTYP CCPSIZE CCPSTOR CCPTEP CCPTEF4 CCPTNCI~ CCPTI'El' CCPTYPl~ CCPTYPE1 CCPTYPE2 CCPVPADO 
CCPVPAD1 CODE DA ERROR FILE PILE MODE FILENAME PBEELOWE FST!: FSTFMODE INPOT NICCIB:!! NICCTLR 
NICDISA NICEPMD NICGRAF NICLBSC NICLGRP NICLINE NICMLTF NICRCPU NICRSPL NICSDLC NICSWCH N ICSWB:P NICTELE 
NICTERM NUCON NUM PO QS RDBUFLN RDBUl'NO READBOF RO R1 R10 R11 R12 
R13 R14 R15 R2 R3 R4 R5 R6 R8 R9 SAVE SP TEXT 
VIRTUAL 

DMSNUC ADISK ADTB ADTC ADTD ADTE ADTP ADTG ADTS lDTY ADTZ lRGS BDISK CDISK 
CONBCT DBGOUT DDISK DECDEC DMSDBG DMSINALT DKSINA1S EDISK FDISK GDISK INPUT LINE MVCNT1 
QQDSK1 SDISK SECTNUM SEEKADR SENSB SILl TBLEND TIMCHAR YDISK ZDISK 

DMSOLD ADMSFREB ADMSLIO ADTRANS AERASE AFINIS ALDRTBLS APRILE APSV ARDBUF ASCANN ASTATE AOSRAREA AWRBUF 
BALR BATPLAGS BATLOAD BLANKS BRAD CLOSELIB Clm CKNDLIST CODE203 COMMONEX CRDPTR DMSLGT.A DHSLGTB 
DMSLIB DMSLSBA DMSLSBB D.MSLSBC DMSLSBD DtlSLSY DYLD DYNAEND ENDCIAtR ENTADR ENTNAME ESD1ST ESIDTB 
PDISK PINIS PLAGS FLAG 1 FLAG2 PLAG3 PREELeWE PSTXTADR FTYPE GPRS AV LDRADDR LDRFLAGS LDRRTCD 
LDRST LOC LOCCNT LOCCT LUNDEF MEMBOUND MODFLGS NEED NOAUTO NODOP NOINV NOLIBE NOREP 
NOSLCADR NUCON NUM NUMBYTE NX'ISYM OSRESET OSSFLAGS OUTBUF OUTPUT PARHLIST PLISTSAV PREXIST PRVCNT 
READBOP REPCHD REFLG1 REFLG2 REFLIB REPUND REG13SAV RESET RETBEG RLDCONST RO R1 R10 
R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 
SlV67 SPEC STRTADDR SYSLOAD SYSOT1 TIlE NT TBLc'r TBLREF T EMPST TMPLOC TXTDIRC UNRES WORK FILE 

DMSOPL ACTIVE ADMSPREB ASYSREP BALR BGCOM BUPFER CODE203 DOSDD DOSFIRST DOSNEXT DOSSECT DOSSYS LOC 131: 
LUBPT NUCON NUM RO R1 R12 R15 R2 R3 R4 R5 R6 R7 0 
R8 R9 SEEK TEXT TIC TYPE ~ 

d 
~ 

DMSOPT ABGCOM BGCOM DOSFLAGS DOSMODE JCSW3 JCSW4 NUCON RESET RO R1 R10 R11 R12 ~ 
n R14 R15 R2 SOB1 TEXT r+ 
tw 0 
til DMSOR 1 ADMSFREB BALR CODE 203 INPUT LOC NUCON NUK ON OUTPUT RO R1 R12 R15 I 

t""I 
t::::' R2 R5 R6 TEXT TRUN TYPE VAR ZEROES PI 
1-'- tT 
t1 DMSOR2 R1 R12 CD 
CD ~ 

n n r+ DMSOR3 CCW2 CONSOLE P7 R1 R12 R14 
0 t1 
t1 0 
1-'. DIISOVR ADMSOVS ASVCSECT BUPPER DEC DMSOVS ERROR LENOVS LaC NUCON NUM OFF ON OVAPF rn 
CD OVBPF OVP1F OVF1FS OVF1GA OVF1GB OVF1GS OVF10W OVF1PA OVF.2CM OVF2NR OVF20S OVP2WA OVSECT rn 
rn OVSBO OVSON OVSSO OVSTAT RO R1 R12 R14 R15 R3 R4 R5 R6 !XI 

R7 R8 SVCSECT TEXT TYPE CD 
HI 

CURRSA VE EPPBS EGPRS EGPRO EGPR15 FLAGS 
CD 

1'1.) DMSOVS ASVCSECT BUFFA CALLEE CALLER DEPTH NUCON OLDPSW t1 
I ON OUTPUT OVAPP OVBPF OVP1F OVF1FS OVF1GA OVP1 GB OVP1 GS OVP10N OVF1PA OVF2CM OVP2NR CD - OVF20S OVF2ST OVSAFT OVSHO OVSON OVSSO OVSTAT RFPRS RGPRS R(;;PR8 RO R1 R12 t:S 

(X) n - R13 R14 R15 R3 R4 R5 R6 R7 R8 SSAVE START SVCOUNT SVCSBCT CD 



"-> !ODOLE EXTERNAL REFERENCES (LABELS AND IIODOLES) 3 
I 0 

-10 ~ 
CD d 
"-> TEXT TEXTA TPFSVO TYPE TYPFLAG VIISIZE XCOOIT XGPRO XGPR1 XGPR15 I-' 

CD 

H DKSPIO ABATABND AB1TLI!!!T ADIISERL BATFLAGS BATLSECT BATNOEX BATPRTC BATPRTL fATRON BATXLIII B1TXPRT BOSY CAW 
I 

t+ 
ttl CC CSW DOSFLAGS ERRET ERRIISG NOCOI NO! PWAIT R1 R10 R11 R12 R13 'i t1C R1i1 R 15 R2 R3 R4 R5 R6 R7 R8 R9 SEBCCW SILl TEXTA t:-t 
~ WilT I» 
31 tJ' 
"- DKSPNT AACTFREE AACTLKP lFTIC AFTRP A1TSECT AFTWP AFVS D!lSLFS FVSECT F65535 NOCON REGSAV3 RO CD w ..... 
..,J R1 R11 R12 R13 R14 R15 R2 Ril R5 R6 
0 n 
til DKSPRT ADKSERL AD!SPIOC AFINIS ARDBOF AREA ASTATE BITS CC CLASORO CLOSIO ERRET FILE FILEBOFF H 

0 
"< FILE!ODE FILENAME FILETYPE HEX INSTALID LOC NOCON NO! RO R1 R10 R11 R12 Ul en R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 TEXTA TYP1403 if) 
t+ 
(1) TYP3203 TYP3211 ::0 

• I'D 

t-4 DMSPRV AERASE AFINIS ASYSREF AWRBOF BGCOII BOFFER CC CDISK DOS FLAGS DOS!!!ODE DSKLST ERROR FNAIIE HI 
CD 

0 FTYPE INPOT LOBPT NOCON POBADR POBCOO POBPT RDCOONT RDDATA RESET RO R1 R10 H 
I.Q R12 R14 R15 R2 R3 SEARCH SEEK SENSE TEXT TIC CD ..... I=' n n 

DMSPUN AD!SERL ADTID lDTSECT AFINI S ARDBOF ASTATE BITS CLASORO CLOSIO ERRET FILE FILEBOFF FILEMODE CD 
I» FILENAME FILETYPE FVSFSTAD LOC NOTIME NOCON NO" RO R1 Rl0 R 11 R12 R13 t;j 

AI Rli1 R15 R2 R3 R4 R5 R6 R7 R:J R9 STATEFST TEXTA TYPPUN 
I'tI DMSQRY ABGCOM ADTCYL lDTDTl ADTFDOS ADTFLG1 ADTFLG2 ADTFLG3 ADTFRO IDTFROS IDTFRW ADTFRWOS ADTFSTC ADTID H 
0 ADTM ADT"X ADTNUM ADTSECT AEXTSECT AFVS AIBTRTBL ALDRTBLS IOOTRTBL ISYSNAIIS ASYSREF AUSABRV BGCOK 

I.Q BLANKS CDISK C"SSEG DEC DECDEC D"SDBG DOSBOFSP DOSDD DOSDEV DOS DOS DOSDSN1" DOSDSTYP DOSDU!!! H 
I» DOSEXTNO DOSEXTTB DOSFIRST DOSFLAGS DOSINIT DOSKPART DOSLIBL DOSKODE DOSIUK DOSOS DOSOSDSN DOSPER! DOSSECT 
e DOSSVC DOSSYS DOSTYPE DOSOCNAK DOSVOLNO DOSVOLTB DOSXXX DTID D'[,IDT DUK!Y EDIT EXT! EXTSECT 
t; FCBDD FCBDEV FCBDSNAM FCBDSTYP FCBFIRST FCBRO! FCBSECT FCBTAPID FlrSECT INPUT LOC IIACLIBL MISFLIGS 
(I) MSGFLAGS NEGITS NOABBREV NOlftPCP NOI!PEX NOPAGREL NORDYTI" NCSTDSYN B:JceN NOM OPTFLIGS OUTPUT PRFPOFF 
t+ PROTFLAG REDERRID RO Rl Rl0 R11 R12 R13 Rlil R15 R2 R3 Ril 
CD R5 R6 R7 B8 R9 SEA.RCR SYSCO!! SYSLINE SiS RUlES SYSNEND TEXT T mccw TIMCHAR H 
IS TXTLIBS VCADTLKP VCADTNIT VIRTUAL ..... 
I=' DMSRDC ABATABRD lERASE lFINIS ASCANN A STATEW I» AWRBOF BATDC!S BATFLIGS fATFLlG2 BATRUN BOFFER CLASORI CLOSIO 
t+ DEVTYPE ERROR FILE FILEBUFF FILE!ODE FILENAME F"ODE IOAREA BiJCON NU! READ RPLIST RO ..... R1 Rl0 R11 R14 R15 R2 R3 R4 R~> R6 R1 R8 R9 0 
t;j SAVE TEXT rYPRDR 
I 
I DMSRE! NUM RO R1 R12 R13 R14 R15 R2 RJ R4 R5 R6 R1 ~ 

0 SIVERO SAVER 1 SAVER14 SAVER15 SAVER2 TEXT 
I-' 
d DMSRNE AERASE AFINIS AINCORE ARDBUF AliRBOF • ERROR F!ODE FNlftE F:HZE LOC NOCON PACK PLIST 
(1) RO R1 R10 R12 R13 R14 R15 R2 R] R4 R5 R6 R7 
"-> STRTRO TEXT rIPE VCADTLKW 



MODULE EXTERNAL REFERENCES (LABELS AND MODULES) 

DMSRNM AACTLKP ADTCHBA ADTFLG 1 ADTFRO AD'IFRW ADTFTYP ADTM ADTSECT AFTADT A'F'TSECT AFVS AKILLEX ASTATEW 
ATFINIS ATYPSRCH AUPDISK ERBIT ERRCODl ERSFLAG FILE FSTM FSTN FSTSECT FSTT FVSECT FVSERASO 
FVSERASl FVSERAS2 KXFLAG KXWANT NEWMODE NEWNAME NEWTYfE NUCON NUM ON' REGSAV 1 RO Rl 
Rl0 Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 a8 
R9 STATEFST TEXT UFDBUSY VCADTLKP VCFSTLKW 

DMSROS ADTCYL ADTDTA ADTFDOS ADTFLG 1 ADTFLG2 ADTFLG3 ADTFOBCE ADTFROS ADTFRWIQS ADTK ADTSECT BALR CC 
CSW DOSFIBST DOS FLAGS DOSSVC D'IAD FCBBLKSZ FCBDS!lD FCBDSNAM FCEDSTYP FCBFIBST FCBIOSW2 FCBLRECL FCBMEMBR 
FCBMVPDS FCBNEXT FCBOP FCBOSDSN FCEOSFST FCBPROC FCBBECFM FCESECT FILEEUFF FILEEYTE FILENAME FILEBEAD Loe 
NUCON OPSECT OSADTD SK OSADTF ST OSADTVTA OSADTVTB OSFST OSFSTALT OSl'STEI.K OSFSTCHR OSFSTDBK OSFSTDSK OSFSTDSN 
OSFSTEND OSFSTEX4 OSFSTFLG OSFSTFM OSFSTFVF OSF STLRL OSFSTLTH OSFSTMEM OSFSTM'rL OSFSTNTE OSFSTNXT OSFSTRFK OSFSTRSW 
OSFSTTRK OSFSTTYP OSFSTUMV OSFSTXNO OSFSTXTN PO PS READBLK RO Bl Rl0 R1l R12 
R14 R 15 R2 R3 R4 R5 R6 R7 R8 R9 SAVEREGS SEEK SKIP 
TEXT TYPE TYP3350 UND VAR VCADTNXT ZEROES 

DMSRRV ARRASE AFIBIS AREA ASTATE ASYSBEF AWRBUF BGCOM BLANKS CC CDISK DOSDD DOSDEV DOSDSK 
DOSFIRST DOS FLAGS DOS MODE DOSOP DOSOSFST DOSSECT DSKLST ERROR FNAME FTYPE INPUT L1[JBPT NUCON 
OSFST OSFSTDSK OSFSTXTN OUTEUF PUBPT RDCOUNT RDDATA RESET RO Rl Rl0 Rll R12 
R14 R15 R2 R3 R4 R5 R6 R7 BS R9 SAVEl SEARCH SEEK 
SENSE TExr rIC 

DMSSAB AABNSVC ACKSSEG ADKSFREB AOSMODL APGMSECT BALR CALLEE CCDE203 CURRSM'E Dess AVAL DCSSFLAG DCSSVTLD DEEDCBAD 
EGPRS EGPRO EGPRl EGPRll EGPR12 EGPR14 EGPR15 EGPR9 ERRCOtE FCBtD FCEDEV FCBDUM FCBFIRST 
FCBSECT LASTUSER LINKLAST LOC NUCON OLDPSW PGMOPSW PGMSECT RESET RETRYEIT RO Rl Rl0 13: 
Rll R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 0 

p, 
SCBPTR SCB SA V 12 SCBWORK SETUP SETUP2 SSAVE SSAVEPRV S~'AEBIT ST AIEI'r TPFUS R TYPE TYPFLAG USAVEPTR co ..... 

DMSSBD DA DATAEND DEC AREA DECKYADR DECLNGTH DECRECPT DECSDECB DF:CTYPE DMSS ES DMSSBSRT DUMMY FCBBYTE FCBITEM co 
I 

n FCBKEYS FCBOP FCBRECFM FCBSECT FCBXTENT FINIS IHADECB IOBIN IOBICFLG KEYCHNG KEYCOUT KEYLNGTH KEYNAKE c+ 
or KEYOP KEY SECT KEYTBLAD KEYTBLNO OPSECT PS RO Rl Rl0 R11 R12 R14 R15 0 
til R2 R3 R4 R5 R6 R7 R8 R9 S EBS AV SKEY T BLLNGT H V,lR I 

1:"1 
t=' III 
~. DM SSB S AOPSECT CHNGBYTE DA DEeAREA DECDCBAD DECIOBPT DECLNGTH DECSDECB DECTYPE DMSSBD DMSSEB FCEBUFF FCBBYTE t1' 
H co 
(I) FCBCATML FCBCOUT FCBDEV FCBDSMD FCBDSNAM FCBINIT FCBITEM FeBMODE FCECP FCBOS FCBPDS FCBREAD FCBSECT f-I 
n FCBTAP FCBTBSP FCBXTENT IHADEB IHADECE IOBBCSW IOBBECBP IOBEFLG IOBCSW IOBIN IOBIOFLG IOBOUT NUCON n rt' OPSECT OSIOTYPE PO PREVIOUS PS READ RO Rl Rl1 R1I2 R13 R14 R15 0 H 
11 R2 R3 R4 R5 R6 R8 TAPEDEV TAPELIST TAPEMASK T APEOPER UND V1\R WRITE 0 
~. en 
co DMSSCN BALRSAVE CMNDLIST NUCON RO Rl R12 R1I4 R15 R2 R3 R4 R5 R6 en 
en R7 RS ~ 

(1) 

DMSSCR BUFFLOC CHNGFLAG DECLTH DKSGIO EDCB EDMSK ERROR FI.AG FLAGLOC FLAG2 FMODE FNAME FTYPE 
HI 
(1) 

tv FV GIOPLIST HOLDFLAG ITEK LINELOC NUM NUMLOC PTRl PTR2 RO Rl Rl0 R 11 H 
I R12 R13 R14 R1S R2 R3 R4 R5 R6 R7 R9 SAVCNT SAVEAR co 
~ = 
(X) SCLNO SCRBUFAD SCRFLGS SCRFLG2 TABLINf TEXT TRUNCCL TWITCH TYPE TYPSCR UTILFLAG VERCOLl VERLEN n 
w Y2 (1) 



t-.l MODULE EXTERNAL REFERENCES (LABELS AND MODULES) 3: 
I 0 
~ Po 
(Xl c:: 
.&: ...... 

DMSSCT ADMSROS AOPSECT CMSOP DA DECDCBAD DECIOBPT DECSDECB FCaCATML FCECLOSE FCECOUT FCBDEV FCBDSNAM FCBINIT 
(1) 
I 

H FCBIOSW FCBITEM FCBOP FeBOS FCBOSFST FCBPDS FCBR13 FcaSECT FCIlTAF FILENAME IHADEB IHADECB IOBBFLG r+ 
t:D IOBCSW IOBIOFLG IOBOUT MACDIRC MACLIBL NUCON NUM OFSECT PS RESET RO Rl R 11 cr 3: 

R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVER14 t"" 
<I I» 
3: t1' 
"- DMSSEB ADMSROS AOPSECT DLK CMNDLINE CONRDCNT CONRDCOD CONREAD CONSOLE CONiB CONiRI!UF CONWRCNT CONiRCOD CONiRITE (1) 
w DUMMY FCBBUFF FCBBYTE FCBCASE FCBCOUT FCBDEV FCBDSI'!D FCBDSTYP FCEFOBM FCBINIT FCEIO FCBIOSi FCBIOSi2 ...... 
.,.J FCBITEM FCBMEMBR FCBMODE FCBMVFIL FCBMVPDS FCBOP FCBOPCB FCBOS FCIlPRCC FCEPRPU FCIlREAD FCBRECFM FCBRECL 0 n FCBR 13 FCBSECT FCBTAPID FXD IHADECB IOBBCSi IOBBECBC IOEBECBP IOBIN IOEIOFLG NUCON OPSECT PO t; 
til PRINTLST PS PUNCHLST RDBUFF RDCCi RDCOUNT READLST RO Rl Rl1 R13 R14 R15 0 
~ R2 R3 R8 SAVER14 SEBSA V TAPE TAPEIlOFF TAPECOUT r APEtEY T APELIST TAPEMASK TAPEOPER TAPE SIZE [J) 
[J) [J) 
r+ TSOATCNL TSOFLAGS rYPE UND VAR 
CD t;O 

• DMSSEG DMSEDC DMSEDI DMSEXT DMSGIO DMSLGT DMSLIB D!!SLSE DMSLSY DMS eLD DMSS AE DMSSBD DMSSBS DMSSCR (1) 
HI 

t""f DMSSCT DMSSEB DMSSLN DMSSMN DMSSOP DMSSQS DMSSVN DMSSVT (1) 
0 t; 

I.Q DMSSET ABArABND ABGCOM ACMSSEG ADEVTAB ADMSERL ADMSFREB ADMSFBT ADOSDCSS ADTDTA ADTFDOS ADTFLG2 ADTSECT CD ..... ADTM = 0 AEXTSECT AFREETAB AINTRTBL ALDRTBLS AL'IASAVE AOSMODL AOUTRTBL APPSAVE AREA ASTATE ASYSCOM ASYSNAMS ASYSREF 0 

I» AUSRAREA BALH BATDCMS BATFLAGS BATFLAG2 BATNOEX BATRUR BGCOM CC CMSDOS CMSSEG CMSVSAM CODE (1) 

= CODE203 CPULOG CURRDATE DCSSAVAL DCSSFLAG DCSSJLNS DCSSLDED DCSSVTLD DEC DMSDBG DOS FLAGS DOSKPART DOSMODE 
Po DOSSVC DOSTRANS DOSVSAM ERROR EX'ISECT FRDSECT FR!ELCWE FREELOil FREBESPG JCSi3 JCSi4 JOBDATE LOADSTRT 
ttj LOC LOCCNT LTK LUBPT MAINHIGH HISFLAGS MODFLGS MSGFLAGS NEG ITS NOAEBREV NOIMPCP NOIMPEX NOPAGREL 
t; NORDYMSG NORDYTIM NOVMREAD NUCKEY NUCON NUM OFF ON DPTFLAGS OSMODLDi PIBPT PPEND PRFPOFF 
0 PROTFLAG PUBPT REDERRID RESET RGPRS RO Rl Rl0 Rll R12 R14 R15 R2 I.Q 
t; R3 R4 R5 R6 R1 R8 R9 SEARCH ;) EEK SOlll STRTADDR SYSCODE SYSLINE 
S» SYSLOAD SYSNAMES SYSNEND SYSREF SYSTEM TBENT TEXT TIC 'L'IHCCW T IMCHAR TIMER TIMINIT TSOBLKS e TYPE UPSI UPTMID UPTSWS USERCODE USERKEY VCADTLKP VIRTUAL 1MS IZ E 
tj 
(1) DMSSLN ADMSFREB ADTRANS AFINIS AFVS ALDRTBLS ALIA SENT APGMSECT ARDBUF ASTATE ASVCSECT AUSRAREA BALR CODE203 r+ 
CD COMPSVT CURRSAVE DMSOLD DMSSHNSB DSKLIN DUMCOM DYLD DYLIBO OY MERNM DYNAEND EGPRS EGPRO EGPRl 
t; EGPR13 EGPR14 EGPR15 ERROR FILE FREELOiE FRSTLCC FVSECT F65535 LASTLMOD LASTTMOD LDRFLAGS LINKLAST 
iii LINKSTRT LOC LOCCNT MODLIST NUCON OLDPSi OSRESET OSSFLAGS JSTEMP PGMSECT PRFTSYS PRFUSYS PROTFLAG ..... 
= SCBPTR SSAVE STRTADDR SUBACT SUBFLAG SVCSECT SYSTE! TBENT '[,EXT USAVEPTR 
I» 
r+ DMSSMN ABGCOM AUSRAREA BAL"RSAVE BGCOM COMPSiT CURRSAVE DMSDBG EGPRl BGPB15 EOCADR FREELOVE FRERESPG LOCCNT 1-1' 
0 MAINHIGH MAINLIST MAINSTRT NUCON OSSFLAGS OSSMBU PPEND RO al Rl0 R12 R13 R14 
= R15 R2 R3 R4 R5 R6 R7 R8 89 SSAVE TEXT TIMCHAR TOTLIBS I 
I VIRTUAL 
~ 
0 DKSSOP AACTLKP ACBID ACMSCVT ADMSFREB ADTFLGl ADTFRO ADT! ADTNACi lDTSECT AERAS! AFIBIS AFTADT AFTFLG ...... 
c:: AFTFST AFTIC AFTIN AFTPFST AFTSECT AFVS AOPSECT AOSRET lSTATE AUPDISK BALR BLK CDISK • CMSCVT CKSllAME CMSOP CODE203 CURRSA VE CVTA VIB DA DCBSAV DEEDCEAD DEBDEEID DEBOPATB DEVTYP DMSSBS CD DKSSCTCE DMSSCTCK DMSSCTNP DIISSQSGT D!SSQSPT D!SSQSUP DOSDIRC DOSLIBL eGPRO EGPR1 EGPR15 EGPR2 FCBBLKSZ 
t-.) FCBBUFF FCBBYTE FCBCASE FCBCATML FCBCLEAV FCBCLOSE FCBCOI FCECOUT :~CE£CECT FCBDD FCBDEV FCBDOSL FCBDSK 

FCBDSMD FCBDSNAM FCBDSTYP FCBDUII FCBFIRST FCBFOR! FCBINIT FCBIOSi '?CBIOSi2 FCBITEtI FCEKEYS FCBLRECL FCBMEIIBR 



MODULE EXTERNAL REFERENCES (LABELS AND MODULES) 

FCBMODE FCBMVPDS FCBOP FCBOS FCBOSFST FCBPDS FCBPRCC FCBPROCC FCBPRoeo FCBRDR FCBRECFM FCBRECL FCBSECT 
FCBTAP FCBTCLOS FCBXTENT FIL]~BYTE FILEMODE FILENAME FILER1UD FILETYFE FSTD FS"f'FLAGS FSTFMODE FSTRWDSK FSTXRDSK 
FVSECT FXD F6 IHADEB IOBDCBPT lOB END IOBIN IOBIOFLG IOBNXTnD IOBSTART JFCBIRD2 JFCBtUSK JFCDSORG 
JFCKEYLE JFCLIMCT JFCOPTCD LASTUSER LOC MACDIRC MACLIEL NUCON RUM OPSECT OSFST OSFSTBLK OSFSTCHR 
OSFSTLRL OSFSTRFM OSIOTYPE PLIST PO PREVIOUS PS QS RESET RO R1 R10 Rl1 
R12 R13 R14 R15 R2 R3 R4 R5 R6 R7 R8 R9 SAVER1 
SAVER15 SSAVE STATER 0 TAPEDEV TAPELI ST TAPEMASK TAPEOFER TPFACB TYPE TYPFLAG URD USAVEPTR VAR 

DMSSQS AOPSECT BLK DEBTCBAD DMSSCTCE DMSSCTCK DMSSEB FCBBUFF FCBBYTE FCBCLCS! FCBCOUT FCBDEV FCBDSMD FCBIRIT 
FCBIORD FCBIOSi FCBIOWR FCBITEM FCBOP FCBPVMB FCBREAD FCESECT FXD IHADHE IOBECE IOBHCBPT IOBIR 
IOBIOFLG lOB OUT IOBSTART lOB UPD LOC NUCOR OPSECT OSIOTYPE PREVIOUS PS RO R1 R10 
R11 R12 R13 R14 R15 R2 R3 R4 R5 R6 R1 URD VAR 

DKSSRr ASCANO ASTRINIT DEC DOS:FLAG S DOSSVC FINIS FLAG INSIZE IHSFLAGS RUCOR RUM RHLPAGES RESET 
BO R 1 R12 R14 R15 R2 R3 R4 R5 R6 SKIP TEXT VCADTLKW 

DMSSRV AERASE AFINIS ASTATH ASYSREF AiRBUF BGCOM CC CDISK DOStD DOSDEV DOSDSK DOS FIRST DOSFLAGS 
DOSMODE DOSOP DOSOSFST DOSSECT DSKLST ERROR FNAIIE FTYPE IRPUT LUBPT NUCOR OSFST OSFSTDSK 
OSFSTXTN OUTBUF PUBPT RDCOUNT RrDATA RESET RO R1 R10 R12 R14 R'I5 R2 
R3 R4 R5 R9 SAVE1 SEARCH SEEK SENSE THXT TIC 

DMSSSK DEC HEX HUCON NUM RO R1 R12 R14 R15 R2 R3 R4 R5 
R6 R8 R9 SYSTEM TEXT VMSIZE 

13 
DMSSTG ABGCOM ADMSFREB AEXTSECT ALDRTBLS ANCHENDA ANCHSECT ANCHSIZ APGMSECT ASTATE:[T ASYSCOM ATSOCPPL AUSRAREA BALR 0 

BALRSAVE BGCOM CODE203 COMPSWT CORESIZE CURRSAVE DMSDBG DMSLGTA DOS FLAGS DOSKPART DOSVSAM meLD DYLIBO ~ 
d DYMBRNM EGPR12 EGPR14 EGPR15 EOCADR EXTSECT FREELCWE FBHRESPG F1 IJBBOX LINKLAST LINKSTRT LOC I-' 

LOCCNT MACDIRC MACLIBL MAINHIGH MAINLIST MAINSTRT PlISFLAGS NUCON OLDPSW OPTNEYTH OSSFLAGS peTVSAft PDSSHCT <D 
() PGftSECT PICADDR PPEND RELPAGES RO R1 R10 R12 R13 R14 R15 R2 R3 I 

c+ 
3 R4 R5 R6 R7 R8 R9 SCBPTB SCBWORK SSAVE STIMEX IT SYSCOM Tl\XEADDR TIHCHAR 0 
U) USAVEPTR VIPINIT VSAHFLG1 VSAHRUR VSAftSERV I 
t:1 

t"" 
I» 

1-1' DMSSTT AACTLKP ADHSERL ADTFLG1 ADTFLG2 ADTFRO ADTFROS ADTFRi ADT" ADTMX ADTSECT AFTADT AlPTFLG AFTFST 0' H AFTRD AFTSECT AFTWRT AFVS BALR12 DMSERR DftSLAD DMSLADW DMSLFS DKSLFSW FILE FSTFAP FSTFAR <D 
CD 1-1 
(} FSTFAW FSTFB FSTFRO FSTFROX FSTFRW FSTFRWX FST!! FSTSECT FVSHCT FVSFSTAD FVSFSTDT FVSFSTM FVSFSTN 
c+ NUCON OSFST OSFSTFLG OSFSTFM REGSAV3 RO R1 R10 R12 R13 R14 R'15 R2 n 
0 
H R3 R4 R5 R6 R9 STATEFST STATERO TEXT H 

0 
1-1' m 
<D DMSSVN ADMSFREB AEXTSECT AOPSECT ATTN BALR CODE203 CONRDEUF CClNRDCNT CONRrCOD CONRHAD CONSTACK CONWRBUF CORWRCNT m m 

CONWRCOD CONllRITE CURRSAVE DftSDBG EGPRO EGPR1 EGPR15 EXTFLAG HXTSEC'f FCBSHCT FSTFINRD LOC LSTFINRD !;g 

HUCON NUMFINRD NUMPNDWR OPSECT OSSFLAGS OSWAlT PENDREAD PENDWRIT PS R:F:ALTlftR RO R1 R10 <D 
R12 R13 R1q R15 R2 R3 R4 R5 R6 R8 SSAVH STIMEXIT TIftCBAR 

,...., 
<D 

tv TIMER TIMINIT TSOATCNL TSOFLAGS WAITHND H 
I <D .... I:' 

CXl DMSSVT ADMPEXEC ADHSFREB ADMSROS AERASH AEXTSECT AOPSECT APG!!SECT APIE ARDEUF ASTATE ATFINIS AI[JPDISK AWRBUF 0 
U1 BALR CALLER CHNGBYTE CMNDLINE CMSNAME Cl'lSOP CMSTAXE CODE203 CONRDCNT CONRHAD CONiRBUF CONWRCNT CONWRITE <D 



'" MODULE EXTERNAL REFERENCES (LABELS AND MODULES) 01: I 
....10 0 
O'J p. 
0'1 CORESIZE CURRDATE CURRSAVE DATAEND DATE DRCSDECB DEVTAE DEVTYPE DIAGTIME DIRNAME I:IRPTR DMSDBG DMSLGT ~ 

I-' 
DMSLSB DMSSAB DMSSBDFR DMSSBS DMSSCT DMSSLN DMSSLN3 DMSSLN42 DMSSLN6 DMSSLN7 DMSSLN8 DMSSLN9 DMSSMN CD 

H DMSSMN10 DMSSMN4 DMSSMN5 DMSSOP DMSSOP19 DMSSOP20 DMSSOF22 DMSSOP23 DMSSQS DMSSVN DMSSVN1 DMSSVN2 DMSSVN93 I 
til DMSSVN94 DOSDD DOSDIRC DOSFIRST DOSLIBL DOSNEXT DOSSECT DUl!PLIST EFPRS EGPRO EGPR1 EGPR13 EGPR14 rT 
::J: EGPR15 EGPR2 EXTSECT FCBBUFF FCBBYTE FCBCATML FCBCOUT FCEDD FCBtEV FCBDOSL FCBDSK FCBDSNAM FCBDSTYP 9 
..q FCBDUM FCBFIRST FCBFORM FCBINIT FCBIOSW2 FCBITEM FCBKEYS FCEl!MV FCEMvprs FCBOP FCBOS FCBOSFST FCBPDS t-4 

~ ::J: FCBSECT FCBTAB FCBTAP FCBTBSP FCBXTENT FILEBUFF FILEBYTE FILECOUT FILEITEM FILEMODE FILENAMl FILETYPE FLAG t1' ....... 
w IHADEB IHADECB IHAJFCB IOBIN IOBIOFLG JFCBMASK JFCLRECL KEYCHNG KEYCCUT KEY FORM KEYLNGTH KEYNAME KEYOP CD 
-.J KEYSECT KEY TABLE KEYTBLAD KEYTBLNO KEYTYPE LINKSTRT LOC LOWSAVE MACI:IRC MACLIEL NEWBLKS NUCON NUM ~ 

0 OLDPSW OPSECT OSIOTYPE OSRESET 055FLAGS OSTEMP PDSBLRSI PDSDI R PDSSECT PGMSECT PLIST PREVIOUS PS n 
en READBLK RESET RO R1 R10 R11 R12 R13 R14 R1~ R2 R3 R4 H 
'< R5 R6 R7 R8 R9 SCBPTR SEARCH SSAV'E STIMEXIT T AXEAI:DR TAXEDEF TAXEEXIT TAXELNK 0 
en en 
rT TBLLNGTH TEMPBYTE TEXTA TEXT3 TIMBUF TIMCHAR TIMER TYFF. OSAVEFTR VAR VCADTLKP VMSIZE WAIT en 
CD WAITLIST p;J .. (1) 

1:'"4 DMSSYN AFINIS AFST ARDBUF ASTATE A USABRV BLANKS ERRCODE ERROR FILE LOC NOSTDSYN NUCON NUM H'I 
0 OPTFLAGS RO R 1 R11 R12 R14 R15 R2 R3 R4 R5 R6 R7 CD 

\Q R8 SYSCOM TEXT TYPE 
H ..... (l) 

n ::s 
DMSTIO ADEVTAB ATABEND CC CSW DEVADDR DEVMISC DEVNU!E DEVSECT DEVSIZE NUCON PLIST RO R1 n 

~ CD 
::s R11 R12 R13 R14 R15 SILl TAPE 
AI 

I't1 DMSTMA BLK CSW DMSLIB ERROR FINIS FXD PACK RO R1 R10 R11 R12 R14 
H R15 R2 R3 R4 R5 R6 R7 R8 a9 SAVER10 TAPE TEXT TYPLIST 
0 VIRTUAL 

I.Q 
H 
~ DMSTPD BLK CSW DEC DOSFLAGS DOSSVC ERROR FILE FILEBUFF FILEMODE FILENAME FILETYPE FLAG FLAG2 .. FXD NUCON NUM RO R1 'R10 R11 R12 R14 R15 R2 R3 R4 
tj R5 R6 R7 R8 R9 STOP TEXT VAR "IRTU AL 
CD 
rT DMSTPE AACTLKP ADEVTAB ADTFTYP ADTM ADTSECT AERASE AFINIS AFTFST AFTSECT AFVS AKILLEX ASTATE ATABEND CD 
H ATYPSRCH AUPDISK AWRBUF BSR CL CLASTAPE DEC DEVADDR JEV MISC DEVNAME DEVSECT DEVSIZE ERROR 
s FILE FINIS FLAGS FSTD FSTDBC FSTFCL FSTFV FSTIC E'STIL FSTM FSTN FSTRP FSTSECT ..... FSTT FSTWP FTRDCONV FTRDLDRS FTRTRANS FTR7TRK FVSECT HEX [NPUT KXFLAG KXWART LOC NUCOR ::s 
I» NUM OUTPUT READ RESET RO R1 R10 R11 ~12 R13 R14 R15 R2 
rT R3 R4 R5 R6 R7 R8 R9 SAVER1 :lAVER14 TAPE TEXT TYP2401 TYP2420 ..... 

TYP34.20 UFDBUSY VCFSTLKP VCFSTLKW WRBIT WRITE WTM 0 
I:::t 
I DMSTQQ ADTDTA lDTFLG 1 ADTFLG2 ADTFMFD ADTFRW lDTQQM ADTSECT AQQTRK ~TRKLKF ATRKLKPX COURT DTADT FVSECT I 

<I F4 F65535 NUCOR QQTRK RO R1 R11 R12 1113 R14 R15 R2 R4 
0 R6 TRKLSAVE 
~ 
d 

DMSTRK ADTFLG 1 EI ADTFLG2 ADTFMFD ADTFRW ADTMSK ADTRES ADTSECT ADT1ST W R1 R10 R 11 R12 
(l) R13 R14 R15 R2 R3 R4 R5 R6 H7 RS R9 

'" DMSTYP AFIRIS ARDBUF AREA ASTATE FILE FftODE FRAME FTYPE HEX IOAREA LOC MSGFLAGS ROTYPING 



!ODULE EXTERRAL REFERENCES (LABELS AND !!O{)ULES) 

NUCON NU!! RO R1 R10 R14 815 R2 R3 R4 R5 R6 R7 
Its R9 START TEXT TYPLIN 

DKSUPD ADTFLG 1 ADTFRO ADTFRW ADT! ADT!!X ADTSECT AERISE AEXTEND AFINIS ARDBUl ASTATE AWRBUF BLANKS 
HUFFA CORITEM CTL CUE DATE DOSFLAGS DOSSVC EBBMSG EBROR FNA!!E FPTR PREEAD FREELEN 
PSTFV FSTIL FSTM F STSECT I'IEM LOC lIISFLIGS NEWNI!!E NOEBASE NOHEP NUCON NU~I OFF 
ON PLIST PTR1 PTB2 BEGSAV RELPAGES RESET RO R1 R10 R11 R12 R13 
H14 R15 B2 R3 R4 R5 R6 R7 R8 R9 SPIRES TElIPSI VE TEXT 
TEXTA TYPE VCADTLKP VCADTLKW 

DMSVIB ACMSCVT ADMSERL ASYSNAMS AVIPWOBK A VSAMSYS BILRSI VE CflSVSlfI DEC NUCON NUM RESET RO R1 
n12 R 14 R15 B2 R3 R5 SYSIU!ES SYSNEND TEXT TYPE VIRTUAL VflSIZE VSAMFLG1 
VSAKRUN 

DMSVIP lCBA!BL ACBAKO ICBBFPL ACBBUFND ACBDDNH ACBDOSID ACBDTFID ICBERFLG ICBEXLS~r ICBIBUF ACEID ICBIDD ACBLEN 
ACBLIST ACBMACRF ACBOCEXT ACBOCTER ACBOEflPT ICBOFLGS ACBOKBUF ACBOPEN ICBPBTC~r ACBST ICBSTBNO ICBSTIP ACBUAPTR 
lCMSRET lOS RET AVIPWORK AVSAflSIS BLANKS CALLEE CURBSAVE DOSDD DOSDEV DOSDSMD DOS DUM DOSEXTNO DOSEXTTB 
DOSFIRST DOSFLAGS DOS NEXT DOSRC tOSSECT DOSSVC D05VOLNO DeSVOLTB DOSISXX:IC ERRET EXENACTB EXENADDB EXLEODF 
EXLEODL EXLEODP EXLJRN EXLJRNL EXLLEN EXLLERF EXLLEBL EXLLEBP EXLSYNF EXLSINL EXLSYNP IK<l1CB IKQEXLST 
!KQRPL LOC NRMRET NUCON NUfI OLDPSW RESET RETSIV RPLACB RPLAREA RPLARG RPr .. ASI RPLBUFL 
RPLCHAIN RPLECBPR BPLEOFDS RPLFDBKC RPLFLAG RPLKEIL RPLNUF RPLOPT1 RPLOPT2 BPLRLEN RPLRTNCD RPLST RPLSTRID 
RPLUPD RPLVLERR RO R1 R10 R11 812 R13 R14 R15 R2 R3 R4 
RS R6 R7 R8 R9 SAVERO SlVER1 SAVER14 SAVER2 SSAVE SSIVEPRV TEXT TPFSVO 
TIPE TIPFLAG VIPINIT VIP SOP VIPTCLOS VIRTUAL VSA!FLG1 WAITING 

DMSVPD DEC DU!MY EDIT ERROR FNAME LOC NUP.! RO R1 R11 R12 R 11'~ R15 
R2 R3 R4 R5 R6 R1 R9 TEXT VIRTUAL WRITE 

DKSVSR AAKSSYS ABGCOK ACBLIST ACMSCVT ADIKQLAB ADMSFREB AD!lSVIB IBURTBL ASISNIM:5 AVIPWORK IVSIHSIS IVSRWOBK BALR 
HGCOM CMSAKS C!SCVT CKSVSUI CODE203 CVTAVIB DOS FLAGS DOS!ODE DOSSVC LOC NUCON PIB2PTR PIK 01: 
PPEND REGSAV RO R1 R12 R13 814 R15 R2 R3 R4 RS R6 0 
R7 R8 SYSNA!ES SISNEND VIPINIT VSUIFLG1 VSAMRUN VSI!SEBV VS AHSOS ~ 

d 
t-' 

DKSXCP ADIKQLAB AD!SERL ADMSFREB ADTDTA AI:TFDOS ADTFLG2 ADTFLG3 ADTFROS IDTFBW IDTID IDTM ADTSECT AFINIS ('D 

ARDBUF ASTITE ISISREF AWRBUF BALR BGCO! CALLEB CC CCBCCW CCBCNT CCBCO!1 CCBCO!2 CCBCSW I 
n rt 
12 CCBCSW1 CCBCSW2 CCBDC CCBEOC CCBEOF CCBER!!AP CCBILEN CCBNOBEC CCBSUCLS CCESUNU!! CCESI!U CCBUE CCBVER 0 
til CD CODE203 CONWR CSW DATACHK DMSCCB DOSBUFF DOSBUFSP DOSEITE DOSCBID DOSCOUT DOSDD DOSDEV I 

DOSDSK DOSDS!D DOSDSNAM DOSDSTIP DOSDUH DOSEXTCX DOSEXTIW DCSEXTTB DOSFIBs~r DOSFLIGS DOS FORM DOSIBIT DO SITEK t"1 
t:::I I» 
1-" DOSNEXT DOSNU! DOSOP DOSOSDSN DOSOSFST DOSBEAD DOSSAV! DCSSECT DOSSENS! DOSTAPID DOSTIPE DOSUCNAK DOSVOLNO t:t 
H DOSVOLTB DOSWORK DOSISXXX EGPR5 ERRMSG ERROR }lSTIC FSTIL FSTSECT F5 F1 INPUT LOC ('D 
CD 1UBFT NDIKQLAB RICLPT NOP NUCON OFF ON OUTPUT PUBADR PUBCUU PUBDEVT PUlBDSKK PUBPT t-' 
n 
r+ PUBTAPM1 RO R1 R10 R 11 R12 813 R14 R15 R2 R3 R4 R5 n 
0 R6 R7 B8 R9 SEEK SILl SKIP SSAVE SISTE! TIPE TEXT TIC TYPE H 
H 0 
1-" VAR VCADTLKP VCFSTLKP en 
CD en en DK SZAP ADTRARS BLANKS BUFSIZE CLOSELIB COMRAME COR SOLE DEC DOSFLAGS DOSSVC EBROR FILE FLAGS FSCBBUFF I:r:I 

CD 
~ 
~ 

(I.J FSCBD FSCBFN FSCBFT FSCBFV FSTFB FSTFRW }lSTFV FSTIC FSTIL FST! FSTSECT HEX INPUT H 
I LASTLINE LASTREC LOC KODDISP NUCON NU! RESET RO R1 R10 R 11 R12 R13 CD 
~ 1:1 
CD R14 R1S R2 R3 R4 R5 R6 R7 R8 R9 SAVESIZE TABERD TEXT n 
ooJ TIPE VIRrUAL ~ 



2-188 IBM VM/370 System Logic and Program Deterlination--Volume 2 



LABEL COUNT REFERENCES 

AABNSVC 000001 DMSSAB 
AACTFREE 000004 DMSBRD DMSEWR DMSPNT 
AACTFRET 000005 DMSBWR DMSERS DMSFNS 
AACTLKP 000013 DMSBRD DMSBWR DMSCPY tMSERS DMSFNS DMSIN'I DMSPNT DPlSRNM DMSSOP DMSSTT I:MSTPE 
AACTNXT 000001 DMSERS 
AADTLKP 000004 DMSDLK DMSLBM DMSLBT DMSMVE 
AADT1KW 000012 DMSARX DMSASM DMSCPY tMSDLK DMSIFC DMSLBPl Dl":SLBT DPlSLKD 
AAMSSYC; 000004 DMSAMS DMSDOS DMSVSR 
ABATABND 000012 DMSABN DMSASN DMSBTB tl'lSCIO Dl'ISDSK DMSERB D~SFLD DMSITE DMSll?IC DMSRDC DMSSET 
ABAT1IMT 000004 DMSBTB DMSCIO DMSITE rMSPIO 
ABATPROC 000004 DMSARE DPlSBTB DMSCPF DPlSCRD 
ABGCOM 000033 DMSA1U DMSAMS DMSASN I:MSBAB DMSEOP DMSDOS DMSFET DMSINS DMSOPT DMSQRY DMSS'ET DMSSMN r-

DMSSTG DMSVSR Q) 
ABNBIT 000004 DMSABN DMSBTP DMSDOS C" 
ABNERLST 000010 DMSABN DMSITP CD ABNPAS13 000001 DMSABN 
AENPSW 000030 DMSABN DMSDBG DMSFRE tMSITI DMSITP DPISITS I 
ABNREGS 000013 DMSABN DMSDBG DMSFRE tMSITI DMSITP DMSITS r+ 
ABNRB 000002 DMSABN 0 ABORT 000001 DMSD1K I ABWSECT 000008 DMSABN DMSDBG DMSr'RE tMSITI DMSITP DrlSITS 
ACA11 000004 DMSFRF s: 
ACBAMBL 000001 DMSVIP 0 ACBAMO 000005 DMSC1S DMSVIP 
ACEBFPL 000001 DMSVIP C. 
ACEBUFND 000001 DMSVIP C 
ACBCAT 000001 DMSBOP -ACBDDN"1 000002 DMSEOP DMSVIP CD 

n ACBDOS.ID 000001 DMSVIP 
til ACEDTFID 000001 DMSVIP n 
(A ACBERFLG 000007 DMSEOP DMSVIP ... 
t::=' ACBEXLST 000004 DMSVIP 0 
..," ACBIBUF 000001 DMSVIP 
11 leEID 000006 DMSSOP DMSVIP en 
(I) 

ACBItD 000007 DMSVIP en n 
rt" ACBIN 000001 DMSBOP :D 0 ACBINFLG 000001 DMSBOP 11 
..," ACBLEN 000001 DMSVIP CD 
(I) ACB1IST 000011 DMSVIP DMSVSR ~ 
en ACBMACRF 000001 DMS"VIP CD 

ACBMAC:l1 000002 DMSBOP ... 
ACBOCEXT 000001 DMSVIP CD 

tv ACBOCTI:R 000001 DMSVIP :l I ACBOEMPT 000001 DMSVIP - ACBOFLGS 000003 DMSEOP DMSVIP (") 
<XI 
Y) ~CBOKBUF 000001 DMSVIP CD 



"" LABEL COUNT REFE~ENCES ~ 

I C» - t:7" 
\0 (I) 

0 ACBOLIGN 000001 DMSEOP ~ 

ACBOPE'1 000002 DMSVIP I 
t+ 

H ACBOUT 000001 DMSBOP 
C? tJj ACBPRTCT 000001 DMSVIP 

::z 000001 
DC 

ACBST DI'lSVIP 0 
<I ACBSTRNO 000001 DMSVIP ~ 
::I: ACBSTSYP 000001 DMSBOP c: 
"- ACBSTYP 000001 DMSVIP ~ 
w (I) 

...,J ACBUAPTR 000001 DMSVIP n 0 ACMSCVT 000004 DI1SINS DMSSOP DMSVIB VMSVSR 11 
en ACMSRET 000004 DMSDOS DMSLDR DMSVIP 0 

'-<I ACMSSEG 000011 DMSEDX DMSEXC DMSINS Vl'lSITS DI1SSAB DMSS'I!:T til 
C/l ACTIVE 000005 DMSBRD DMSCIT DMSf'!OD I:l'iSOPL r.n 
t+ 
t1) ADEVTAE 000017 DMSAMS DMSASN DHSDBD UlSEDI DMSEDX DI1SFOIl DMSGIO DMSINI DMSSET DMSTIO DMSTP?' l:O 

Iii ADIKQLAB COOO06 DMSDOS DMSVSR DI1SXCP to 

"'" l"'" ADIOSECT 000005 DMSACI1 DMSDIO DMSFNS DI'!SITI to 
0 ADISK 000006 DMSDSK DMSINS DMSNUC 11 

\Q ADMPEXEC 000001 DMSSVT to 
~. I:' 
0 ADMSCRL 000002 DMSBTP DMSDBG 0 

ADMSERL 000053 DMSAMS DMSBOP DMSBWR rl1SCIO DI1SCLS DI1SDBG DMSDOS DMSEDI DMSERS DMSFCH DMSFET DMSfNS to 
Sl' DMSFRE DMSITS DMSMOD DMSPIO DMSPRT DI1SPUN DMSSET DMSSTT DMSVIE DMSXCP 
l:' 
AI ADMSFREB 000195 DMSABN DMSACC DMSACF tMSACM DMSALU DMSAMS DMSAUD DI1SBCP DMSBRD I:MSBWR DMSCAT DMSCI'I 

DMSCLS DMSCMP DMSCRD tl1SCWR DI1SDIO DMSDLE DMSDMP DMSI:OS DMSEDX DMSERS DMSEXC DMSEXT 
't1 DMSFCH DMSFET DMSFNS Ll'lSPOR DMSHDI DMSHDS DMSINS DMSINT DMSITE DMSITP DMSITS tMSLAD H 
0 DMSLAF DMSLDR DMSLFS Dl'ISLGT DMSLIB D~SLSE Dl'ISl10D DMSOLD DMSOPL DMSOR1 DI1SSAB DI1SSE'I 
~ DMSSLN DMSSOP DI1SSTG DMSSVN DMSSVT DMSVSIl DMSXCP 
H ADMSFRT 000002 DMSSET AI 
a ADMSLIO 000020 DMSOLD 

t:1 
ADMSOV~ 000008 DMSITS DMSOVR 

(1) ADMSPIOC 000001 DMSPRT 
t+ ADMSROS 000016 DMSACM DI1SALU DI1SLDS rMSLFS DMSSCT DMSSEE DMSSVT 
(f) ADI1SVIB 000001 DMSVSR 1'1 
EI ADOSDCSS 000002 DMSITS DMSSET ..... ADTADD 000009 DMSACF DMSACM DMSAUD I:l'lSDIO DMSERS DMSFNS 
l:' ADTB 000001 DMSNUC C» 
rt" ADTC 000001 DMSNUC ..... ADTCFST 000006 DMSACF DI1SCPY DI1SERS 0 
~ ADTCHBA 000017 DMSACF DMSCPY DI1SERS I:~SLFS DI1S~NM 
I ADTCYL 000008 DMSACM DMSFOR DMSLDS rl'lSQRY DMSROS , 

ADTD 000001 DMSNUC <I 
0 ADTDTA 000027 DMSACC DI1SACM DMSARE DMSASN DI1SAUD DMSBWIl DMSDIO I:l'ISFNS DMSFOIl DMSQRY DMSROS DMSSE'I 
...... DMSTQQ DMSXCP 
j;l 

ADTE 000001 DMSNUC lEI 
(1) ADTF 000001 DMS}lUC 

IV 
ADTFALNM 000003 DI1SACF 
ADTFALTY 000004 DMSACF 



LAEEL COUNT REFER ENCES 

ADTFAV1F 000004 DMSACC DMSACF DMSFOR 
ADTFDA 000025 DMSABN DMSACC DMSACF tMSALU DMSAUD DMSFOB DMSINS BMSLAI: BMSLFS DMSLST 
!\BTFDOS 000017 DMSACC DMSASN DMSBOP I:MStLE DMS"EXT DMSFOB DMSQRY DMSBCS D'MSS ET tMSXCP 
ADTFFSTF 000008 DMSABN DMSACC DMSACF DMSALU DMSFOR DMSINS 
ADTFFSIV 000007 DMSACC DMSINS DMSLAD tMSLFS 
ADTFLGl 000105 DMSABN flMSACC DMSACF tMSACM DMSALU DMSARE D.MSARN Dr.SARX DMSASM DMSASN DMSBOP DMSBWR 

DMSCPY DMSDIO DMSDLK tMSDSL DMSERS DMSFOB D r~ SINS DMSLAI: . tMSLAF DMSLBM tMSLET DMSLDS 
DMSLFS DMSLLU DMSLST tMSIWE DMSQRY DMSBN~ DI':SRCS DMSSCP D.MSSTT DMSTQQ DMSTRK DMSUPD 

AJ:TFLG2 000066 flMSABN DMSACC DMSACF tMS.l\CM DMSALU DMSARE DMSASN DMSECI DMSDLE DMSEXT DMSFOR DMSLAD 
DMSLDS DMSLFS DMSLST Dr.SQRY DMSROS DMSSE'I DMSSTT DMSTC( DMSTRK DMSXCP 

ADTFLG3 000030 rMSACC DMSACF DMSACM D1'1SALU DMSARE DMSAur; D[1SBOP DMSEWH DMSFNS DMSINS I:MSLFS DMSLLU 
DMSQRY DMSBOS DMSXCP 

ADTFMDRO 000003 DMSACF 
llI'TFMFD 000006 DMSACM DMSBOP DMSEXT I:MSTQQ tMSTRK 
ADTFMIN 000004 DMSABN DMSACC DMSALU 
ADTFNOAB 000002 DMSARE DMSAUD 
ADTFOBCE 000005 DMSACC DMSACF DMSACM D~SINS DMSROS 
ADTFQQF 000005 DMSABN DMSACM DM!3ALU rMSFOB 
ADTFRO 000034 DMSACC DMSACF DMSACM tMSALU DMSARE DMS.ASN DMSEOP tMStrC t~SERS tMSFOR DMSLAD DMSLBM 

DMSLBT DMSLDS DMSLFS DMSLS'I DMSMVE DMSQRY DMSRNM DMSSCF DMSSTT tMSUPD 
ADTFBOS 000033 DMSABN DMSACC DMSACF DMSALU DMSARE DMSASN DMSEOP DMSDLI: DMSEXT DMSFOR I:MSLAD DMSLDS 

DMSLFS DMSLST DM!3QRY tMSROS DMSSTT DMSXCf 
ADTFBW 000071 DMSACC DMSACF DMSACM DMSALU DMSARE DMSARN DMSARX DMSAStl DMSASN DMSEOP DMSBloIR DMSCPY 

DMSDIO DMSDLK DMSDSL LMSERS DMSFOR DMSLAD DMSLAF DMSLEN DMSLBT DMSLDS I!MSLFS DMSLLU t"1 
DMSLST DMSMVE DMSQRY DMSRNM DMSSTT DMSTQC D~STRK DMSUPI: DMSXCP I» 

t:r ADTFRWOS 000004 DMSLLU DMSQRY DMSROS (1) 
ADTFSORT 000003 DMSACF DMSINS DMSLFS ~ 

ADTFSTC 000015 DMSACC DMSACF DMSALU U'SARE DMSEWR DMSERS DMSINS DMSQRY I 
r+ 

n ADTFTYP 000012 DMSACF DMSALU DMSDSK DMSFNS DMSLFS DMSRN~ DI'lSTPE 0 
011 ADTFUPD1 000006 DMSAUD DMSFNS I 
Ul ADTFVS 000001 DMSLAD tIC 

0 
tj ADTFXCHN 000005 DMSBWR DMSFNS QI ..... ADTG 000001 DMSNUC ~ 
11 ADTHBCT 000016 DMSABN DMSACC DM:SACF D~SACM DMSAUD DMSERS D~SFOR DMSLAI: DMSLFS ~ 
CO (1) 

0 ADTID 000012 DMSACM DMSALU DM:5DSK tI1SFOR DMSLDS DMSLS'I DMSPUN DMSQRY tMSXCP 
r+ ADTLAST 000006 DMSAUD DMSFOR n 
0 ADTLEFT 000003 DMSFOR DMSLAD 11 
11 0 ..... ADTLFST 000002 DMSERS DMSLFS en 
(1) ADTLHBA 000007 DMSACC DMSACF DM:5ERS tMSFOR DMSLFS en 
en ArTM 000093 DMSABN DMSACC DMSACF DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSBWR IlMSCMP DMSCPY !:CI 

DMSDLK DMSDSL DM:5EDX DtsSERS DMS~XC DMSEXT DMSFOR DMSIFC DMSLAD DMSLAF IlMSLEM DMSLDS (1) 

DMSLFS DMSLKD DM:SLST I:MSQRY DMSRNM DMSROS DMSSET DMSSCli DMSSTT tMSTPE IiMSUPD DMSXCP t"h 
(1) 

tv ADTMFDA 000004 DMSABN DMSACF DM:SAUD 11 
I ADTMFDN 000014 DMSABN DMSACC DMSACF tMSACM DMSALU DMSAUr: (1). ... ADTMSK 000011 DMSACC DMSACM DMSALU DMSAUD DMSFOR Df'!STRI< t:' 

..0 n ... ADTMX 000030 DMSACC DMSACM DMSALU tHSARN DMSARX DMSASf! DMSBWR DMSLA]~ DMSLFS DMSQRY IlMSSTT DI!SUPD (1) 



~ LABEL COUNT REFERENCES t"4 , C» ... ~ 
\D 

ADTPlXB~L 000001 DPISACPI 
(D 

~ I-' 
ADTNACW 000008 DMSBWR DMSFNS DMSSOP I 

AtTNUPI 000012 DMSACC DMSACPI DMSAUD Dt!SFOR DMSQRY t+ 
H 9 tlJ ADTPQM1 000010 DMSACM DMS1LU DMSAUD I:!'ISFOR 
tJ: ADTPQM2 000009 DMSACC DMSACF DMSACM I:MSAUI: DMSFOR DC 

ADTPQM3 000006 DPISABN DMSACC DMSACM DI'lSALU DPISFOR 0 
ca ~ 

tIC ADTPSTM 000006 DMSLAD DMSLFS a 
"- ADTPTR 000002 DMSLAD I-' 
W ADTQQPI 000005 DMSACM DMSALU tMSFOR I:MSTQQ 

(D 
...., 
0 ADTRANS 000012 DMSLSB DMSMOD DMSOLD DMSSLN DMSZAP n 

ADTRES 000018 DMSACC DMSACF DMSACM I:MSALU DMSBWR DI1SERS Dl1SFNS DMSFCR DI1SLAt DMSLFS DMSTRK t1 
(J) 0 
~ ADTROX 000003 DMSACM DMSALU en 
en ADTS 000001 DMSNUC fJ) 

t+ ADTSECT 000120 DMSABN DMSACC DMSACF DPISACM DMSALU DMSAI1S DMSA'RE DMSABN DMSARX DtlSASM DMSASN DMSAUD ~ (D 

• DMSBOP DMSBWR DMSCMP DMSCPY DMSDIO DI1SDLE DMSDLK DMSI:SK DMSDSL I:MS'EDX tMSERS DMSEXC (I) 

DMSEXT DMSFNS DMSFOR tMSIFC DMSINS DMSLAD DMSLAF DMSLEf. tMSLET tMSLDS tMSLFS DMSLKD I-h 
t"4 DMSLLU DMSLST DMSMVE DI1SPUN DMSQRY DMSRNr! DMSROS DI1SSET DMSSOP DMSSTT DI1STPE DMSTQQ 

(1) 

0 t1 
I.Q DMSTRK DMSUPD DMSXCP (1) 

..... ADTUSED 000010 DMSACC DMSACM DMSFOR I:' 
0 0 

ADTXNREC 000005 DMSFNS (1) 

Q) ADTY 000001 DMSNUC 
I:' ADTZ 000001 DMSNUC 
~ ADT1ST 000007 DMSACC DMSFOR DI1STRK 
~ AEDLIN 000001 DMSEDX 
t1 AERASE 000045 DMSAMS DMSBOP DMSCLS tllSDLK DMSDSK DMSDSL DMSEDI DMSFNS tMSLIO 1)MSLLU DMSLST DMSMOD 
0 

\Q DMSOLD DMSPRV DMSRtC DMSRNE DMSRRV DMSSOf DMSSRV DMSSVT tMSTPF tMSUPD 
t1 AERR 000001 DMSITS 
C» AEXEC 000002 DMSEXC • AEXTEND 000007 DMSEDI DMSEDX DMSUPD 
t:1 AEXTSECT 000014 DMSINS DMSINT DMSIOW D"SITE DMSQRY DMSSET DMSSTG DMSSVN DMSSVT 
(I) 

AFINIS 000068 DMSACC DMSARE DMSCLS DMSCMP DMSDLK DMSDSI< DMSEDI DMs:nx DMSEXC DMSEXT DMSFOR DMSGLB t+ 
(1) DMSLDR DMSLIB DMSLIO DMSLLU DI1SMOD DMSOLD DMSPRT D!'ISPRV DMSPUN DMSRDC tMSRNE DMSRRV 
t1 DMSSLN DMSSOP DI1SSRV DMSSYN DMSTPE DMSTYE DMSUPD DMSXCF • ..... AFLAGLOC 000001 DI1SEDX 
I:' AFREETAB 000006 DMSFRE DMSSET 
Q) AFST 000001 DMSSYN t+ ..... AFSTFNRD 000004 DMSEDI DMSEDX 
0 AFSTLKP 000004 DMSCPY 
t::t AFSTLKW 000001 DMSCPY , , AFTADT 000024 DMSBRD DMSBWR DMSERS DMSFNS DMSLAF DMSRN~ IHISSOP DMSSTT 
ca AFTCLA 000012 DPlSBRD DPlSBWR DMSFNS 
0 
I-' AFTCLB 000010 DPlSBRD DPlSBWR DMSFNS 
Q AFTCLD 000015 DMSBRD DMSBWR DMSFNS • AFTCLDX 000005 DMSBWR DMSFNS (I) 

AFTCLN 000014 DMSERD DMSBWR DMSFNS 
tv AFTCLX 000006 DMSBWR DPlSFNS 



LABEL COUNT REFERENCES 

AFTD 000002 DftSBWR 
I.FTDBI 000019 DMSBRD DftSBWR DftSFNS 
A.FTDBC 000008 DMSBWR DftSERS 
I.FTDBD 000010 DMSBRD DftSBWR DftSFNS 
AFTDBF 000003 DftSBWR 
IFTDBN 000010 DftSBRD DftSBWR 
AFTFB 000001 DftSLAF 
lFTFBA 000005 DftSBRD DftSBWR DMSFNS 
AFTFCL 000012 DftSBRD DftSBWR DMSERS DftSFNS 
AFTFCLA 000008 DftSBRD DftSBWR DftSFNS 
AFTFCLX 000008 DMSBWR N!SFNS 
AFTFLG 000040 DMSBRD DMSBWR DftSERS I:MSFNS DMSLAF DftSSOF DI!SSTT 
AFTFLG2 000016 DMSBWR DftSFNS 
AFTFSF 000002 DftSLAF 

.AFTFST 000009 DMSBRD DftSBWR DMSFNS DI1SLAF DMSSOP DMSSTT Df§STPE 
AFTFULD 000002 DftSBWR DftSFNS 
AFTFV 000001 DftSBRD DftSBWR 
AFTIC 000012 DftSBRD DftSBWR DftSCPY tl1SPNT DftSSOP 
AFTID 000010 DftSBRD DftSBWR 
AFTIL 000006 DMSBRD DftSBWR 
AFTIN 000014 DMSERD DMSBWR DMSSOP 
AFTLD 000002 DftSLAF 
AFT" 000008 DMSBWR DMSFNS DMSINT I:l!SLAF 
AFTH 000005 DMSBWR DMSFNS DMSINT DMSLAF t"'t 
AFTNEW 000005 DMSBWR DMSFNS S» 

t7' 
AFTOCLDX 000003 DMSBWR (t) 

AFTOLDCL 000006 DMSBWR ., 
AFTPFST 000001 DMSERS DMSFNS DMSLAF U1SSOP c+ 

n AFTPTR 000012 DMSLAF 0 
til AFTRD 000006 DMSBRD DMSEWR DI1SFNS DfilSSTT I 
til U'TRP 000008 DMSBRD DMSEWR DMSPNT til 

0 
t:::f AFT SECT 000026 DMSBRD DMSBWR DMSCPY tMSERS DMSFNS DMSIN'I DMSLAF DMSPNT DMSRNM DMSSOP DMSSTT DMSTPE PJ ..... AFTT 000001 DMSLAF Q 
t1 AFTUSED 000004 DMSFNS DMSLAF 

~ 
(t) (t) 

n U'TWP 000010 DMSBWR DMSFNS DMSINT DMSPNT 
c+ AFTiRT 000008 DMSBRD DMSBWR DMSFNS DI1SSTT n 
0 t1 
t1 AFVS 000053 DMSABN DI1SACC DMSACF DMSACM DMSALU DMSAUt DMSBRD tMSETB DMSBTP DMSBWR D.MSCIT DMSCRD 0 ..... DMSCWR DMSCWT DMSDIO DMSDOS DMSDSK DMSERS DP'SEXC DMSFNS DMSINT I:MSITI D.MSITP DMSITS tn 
CD DMSLAD DMSLFS DMSMOD DMSPNT DMSQRY DMSRNf! DMSSLN DMSSCF DMSSTT EMSTPE tn 
tn 

AGETCLK 000001 DMSlXT = 
AINCORE 000005 DMSEDI DMSRNE (I) 

HI AINTRTBL 000008 DMSABN DMSCRD DMSQRY I:MSSET (I) 

N AIOSECT 000008 DMSABN DMSCIT DMSDEG tMSHDI DftSINT DMSITI t1 
I AKILLEX 000010 DMSACC DMSAUD DMSBWR I:l'lSI:BG DMSDIO DMSDSI< DI'SERS I:MSFNS miSRNM I:MSTPE (1) .... I:' 

\0 ALCHAR1 000002 DMSEDI n 
w ALCHAR2 000002 DMSEDI (1) 



tv I,AEEL COUNT REFER ENCES I;"~ 

I PI 
~ b" 
1.0 CD 
-'=' ALDRTBLS 000028 DMSBTB DMSFET DMSGND rl'!SINS DMSLDR DMSLOA DMSMDP DMSMcr DMSOLr BMSQRY r:MSSET DMSSLN ~ 

I 
DMSSTG r+ 

I--i ALIASEX'I' 000004 D MS LIO DMSSLN 9 tJj 
ALI~ELOC 000001 DMSEDX 

:3: ::c 
]ILTASA VB 000008 DMSAMS DMSDOS DMSITP r/'lSSE'I' 0 

<l ALTLIST 000008 DMSEDI Q; 

:3: llLTMODE 000008 DMSEDX ~ 

"- 1-1 
W ANCHENDA 000003 DMSDOS DMSSTG (t) 

-...J ANCHE:-:ITP 000001 DMSDOS 
0 ANCHINST 000001 DMSDOS 

(l 

H 
Ul ANCHLD:t>T 000002 DMSDOS 0 
"< flNCHL E~iG 000002 DMSDOS Ul 
Ul ANCHPHLN 000001 DMSDOS Ul 
c+ 
(I) ANCHPH~M 000005 DMSDOS :;0 

!iii ANCHSECT 000003 DMSDOS DMSSTG <1> 
1'1\ 

t"'I ANCHSIZ 000005 DMSFCH DMSSTG (1) 

0 ANCHST~W 000001 DMSDOS H 
u:l ANUCEND 000003 DMSDIO DMSHDI DMSHDS 

(1) 
..... t:I 
n ANUMLOC 000001 DMSEDX (1 

]l0PSECT 000026 DMSABN DMSARN Dl'lSCRD r:MSCWR DMSCWT DMSDEG DMSEXC DMSEXT DMSINS DMSINT BMSSBS DMSSC'I CD 
PI DMSSEB DMSSOP DMSSQS Dl'!SSVN DMSSVT t:I 
I::l.I AOSMODL 000022 DMSINS DMSITS DMSLDR DMSSAB DMSSET 

tU 
flOSHET 000003 DMSDOS DMSSOP DMSVIP 

H AQUTRTBL 000007 DMSABN DMSCWH DMSQRY r!'!SSET 
0 APGMSECT 000007 DMSITP DMSSAB Di1SSLN rMSSTG DMSSVT 

o.Q APIE 000001 DMSSVT H 
PI !\POINT 000002 DMSEXT DMSLIB 
e APPSAVE 000004 DMSAMS DMSDOS DMSITP r:MSSET 
t::1 APRILB 000006 Df'lSLDR DMSOLD 
(1) APSV 000035 DMSLDR DMSLGT DMSLIB tMSLIO DMSLSB DMSOLr 
c+ AQQTRK 000003 DMSBWR DMSTQQ (1) 

H AQQTRKX COOO06 l)MSBWR DMSERS DMSFNS 
e ARDEUF 000059 DMSCMP DMSDLK DMSDSK ttlSEDI DMSEDX DMSEX'I D~SGLB DMSLET DMSLDR DMSLGT DMSMOD DMSOL)) ..... DMSPRT DMSPUN DMSRNE DP.SSLN DMSSVT DMSSYN DMSTYP DMSUPr: tMSX CP I:' 
III ARDTK 000011 DMSACF DMSACM DMSERD rMSBWR DMSERS DMSFNS DMSFOR DMSMCr: 
c+ AREA 000029 DMSCMP DMSEDI DMSINS tl1SPRT DMSRRV DMSSF'I Dr'STYP 
1-" ARFLG 000002 DMSDOS 0 
::1 .~RGMAX 000001 DMSDBG 
I ARGS 000046 DMSDBD DMSDBG DMSITE tMSNUC 
I 
~ AHGSAV 000008 DMS~BG 

0 ARGSCT 000016 DMSDBG 
I-' ARURTBL 000006 DMSDOS DMSVSR 
~ 
1:1 ASCl\N~ 000005 DMSAMS DMSETP DMSLDR rMSOLD DMSRDC 
(1) ASCANO 000002 DMSEXT DMSSRT 
IV ASCBPTR 000002 DMSINT 

IISSTAT 000002 DMSFRE DMSINS 



LABEL COUNT REFERENCES 

ASTATE 000041 DMSAMS DMSBOP DMSDLK tMSDSK DMSDSL DMSEDI DMSEDX DMSEXT DMSFCH DMSFLt DMSGLB DMSGNt 
DMSINS DMSLDR DMSLIB tMSMOD DMSOLD DMSPR'I DMSPUN DMSRRV DMSSET DMSSLN DMSSOP DMSSRV 
DMSSVT DMSSYN DMSTPE tMSTYP DMSUPD DMSXCF 

ASTATEW 000007 DMSAMS DMSEDX DMSERS tMSMOD DMSRDC DMSRNM 
ASTATEXT 000002 DMSINS DMSSTG 
ASTRINIT 000002 DMSARN DMSSRT 
ASUEFST 000003 DMSABN DMSINT 
ASUBRET OOOOO~ DMSINT 
ASUBSECT 000006 DMSABN DMSINM DMSINT 
ASUBSTAT 000003 DMSABN DMSINT 
ASVCSECT 000028 DMSCIT DMSFRE DMSHDS tMSINT DMSITE Dl1SITS DMSLAD DM~LFS DMSOVR DMSOVS DMSSLN 
!\SYSCOM 000011 DMSBAB DI1SEOP DMSDOS tMSFET DMSITP DMSSET DHSSTG 
ASYSNAMS 000025 DMSAMS DMSBOP DMSBTP tMSDOS DMSF.DX DMSEXC DMSINS DMSINT DMSITS tMSQRY DI1SSF.T DMSVIB 

DI1SVSR 
ASYSREF 000027 DMSASN DMSBOP DMSCLS tMsrLB DMSDMP DMSDOS DHSFCH DMSINS DHSITP tMSLLU DMSOPL DMSPRV 

DMSQRY DMSRRV Dl1SSET DMSSRV DMSXCP 
ATABEND 000005 DMSAl1S Dl1STIO DMSTPE 
ATFIN IS 000006 Dl1SBWR DMSERS DMSRNM DMssv'r 
ATRKLKP 000003 DMSAUD DMSEWR DMSTQQ 
ATRKLKPX 000012 DMSAUD DMSBWR DMSERS tMSPNS DMSTQQ 
ATSOCP?L 000001 DMSSTG 
ATTN 000016 DMSABN DMSCIT DMSCRD I)MSEDI DMSPNC DfilSSVN 
ATTNHIT 000004 DMSCIT DMSITI 
ATTNLEN 000007 DMSEDI t"1 
ATYPSRCH 000005 DMSACF DMSDSK DMSFNS tMSRNM DMSTPE ~ 

AUPDISK 000016 DMSARE DMSBWR DMSDSK tMSERS DMSFNS DI1SFOR DHSRNM DMSSOP DHSSVT DMSTPE 0-
(1) 

AUPIE 000002 DMSITP tt AUSABRV 000004 DMSABN DMSINA DMSQRY tMSSYN 
AUSERRST 000003 DMSERR ti" n 0 

r::. AUSRAREA 000039 DMSABN DMSBRD DMSBTB tMSFCH DMSFET DMSFRE DMSINS DMSINT DHSLDR DMSLOA Dl1SLSB DMSMOD I 
en DMSOLD DMSSET DMSSLN DMSSMN DMSSTG r::. 

AUSRILST 000008 DMSAPN DMSHDI 0 
t::I ga 
~. AUSRITBL 000007 DMSABN DMSHDI CS 
H AUTOCNT 000005 DMSEDI ~ 
(1) (D 
n AUTOCURR 000003 DMSEDI 
ti" AUTOREG 000002 DMSEDI n 
0 AVIPWORK 000009 DMSVIB DMSVIP DMSVSR H 
H 0 
~. AVSAMSYS 000007 DMSEOP DMSCLS DMSDOS tMSVIB DMSVIP DMSVSB en 
(1) AVSREOJ 000001 DMSDOS en en AVSRWORK 000005 DMSCLS DMSVSR s:g 

AWAIT 000001 DMSITS (1) 

AWRBUF 000036 DMSDLK DMSDSK DMSEDI DMSLBT DMSLIO DMSLLU DMSMOD DMSCLD DHSPRV DMSRDC DMSRNE DMSRRV H\ 
(1) 

tv DMSSRV DMSSVT DMSTPE tMSUPD DMSXCP 1'1 
I AWRTK 000005 DMSAUD DMSBWR DMSFNS DMSFOR (1) .... BALR 000239 DMSABN DMSACC DMSACF tMSACl'I DMSALU DMSAI'IS DHSAUD DMSEOF DHSBRD DMSBWR DMSCAT DMSCIT I:' 

\D n 
U1 DMSCLS DMSCMP DMSCRD tMSCWR DMSDIO DMSDLE DMSDMP DMSDCS DUSEDX DMSERS DMSEXC DMSEXT (1) 



tv LABEL COUNT REFER'l!:NCES t""'I 
I C» 
-' t::r 
y) CT> 
0'1 DMSFCH D~SFET DMSFNS D~SFOR DMSFRE DMSHDI DMSHDS DMSINS DMSINT DMSITE DMSITP DMSITS 7 DMSLAD DMSLAF DMSLDR r:MSLFS DMSLGT DMSLI E D~SLSE DMSI'1CI: DMSOLD DMSOPL DMSOR1 DMSROS 

("t 
H DMSSAB DMSSET DMSSLN D~SSOP Dl'!SSTG DMSSVN DfolSSVT DMSVSR Df'lSXCP '? tD EALRSAVE 000027 DMSCPF DMSDBG DMSFNS Dl'lSINA Df'lSINM DMSSCN D~SS!'IN tMSSTG tMSVIE 
3 EALR12 000002 DMSSTT 3 

0 
~ EALR14 000002 DMSITI Pol 
3 EAI,.R9 000001 DMSBRD c 
"- BATCPEX 000006 DMSARE DMSBTP DMSCPF ~ 
W CD 
-.J EATCPUC 000002 DMS1:TE 
0 EATCPUL 000001 DMSITE n 

EATDCMS 000009 DMSASN DMSBTE DMSETP r:MSDSK DMSFLD DMSRDC DMSSET H 
til 0 

I.e: EAT FLAGS 000065 DMSABN DMSARE DMSARN tMSASN DMSBTB DMSBTF Df!SCIO DMSCPF DMSCRD DMSDSK DMSERR DMSFLD en 
en DMSFRE Df'lSINS DMSITE Df!SLDR DMSLSB DMSl!VE DflSOLD Dl!SHC DMSRDC 1::MSSET en 
c+ 
CD EATFLAG2 000020 D'SABN DMSASN DMSBTB r:MSBTP DMSCIT Dl!SDSK DMSERR DMSF[I: DMSINS DMSITE DMSRDC DMSSET l:tI 
iii EATIPLSS 000001 DMSINS CD 

PATLOAD 000016 DMSABN' DMSARE DMSBTB U1SCPF DMSCRD DMSFRE DMSINS 1::MS[TE DMSLDR DMSLSE DMSOLD HI 
t""'I CD 
0 EATLSECT 000003 DMSCIO DMSITE DMSPIO H 

loCI EATMOVE 000007 DMSBTP DMSMVE CD ...,. 
EATNOEX 000010 DMSBTB Df!SBTP DMSCIO DMSPIO Df!SSET ::; 

('} ('} 

EATPRTC 000002 DMSPIO CD 
C» PATPRTL 000001 DMSPIO 
1:::1 
Pol FATPUNC 000002 DMSCIO 

"tI 
EATPUNL 000001 DMSCIO 

H PATRERR 000C03 DMSBTP 
0 EATRUN 000026 DMSAEN DMSARE DMSl\RN DMSASN DMSETB DMSCIC DMSCPF r:MSCRD DMSDSK DMSERR DMSFLD DMSINS 

\,Q DMSITE DMSFIO DMSRDC r:MSSET 
H PATSTOP 000002 DMSBTP DMSCIT J» 
& EATSYSAB 000004 DMSABN DMSERR 
tj EATTERM 000005 DMSBTP 
(1) EATUSEX 000006 DMSARE DMSETB DMSBTP r:r,SCPF DMSITE 
r+ EATXCPU 000002 DMSBTP DMSITE 
(1) PATXLIM 000005 DMSETP DMSCIO DMSI'IE r:MSPIO H 
!!1!1 EATXPRT 000002 DMSBTP DMSFIO 
~. PATXPUN 000001 DMSCIO ::; 

PDISK 000001 DMSNUC J» 
r+ EEGAT 000003 DMSDBG 
~. EGCOM 000051 DMSAMS DMSASN DMSEAB r:MSBOP DMSCLS DMSDLE D~SDLK DMS8t1P DMSDOS r:MSDSV DMSFCH DMSFET 0 
t::I DMSINS DMSITP DMSLLU DMSOPL DMSOPT DMSPRV DMSQRY DMS~RV DMSSET DMSSMN tMSSRV DMSSTG 
I I'MSVSR DMSXCP 
I FITS 000009 DMSDBG DMSPRT DMSPUN oo::s 

0 PLANKS 000059 DMSBOP DMSCPY DMSDBD tMSDLK DMSDSK DMSDSV D~Sf,XT DMS·;RN DMSINI DMSLBT DMSLDR DMSLLU 
I-' DMSOLD DMSCilY DMSRRV tMSSYN DMSUPD DMSVlf DMSZAP 
C fLANK1 000001 DMSEDX iii 
(1) PLANK2 000002 DMSDSV DMSEDX 
I\.) ELANK3 000001 DMSEDX 

ELK 000015 DMSBTP DMSSEE DMSSOP tMSSQS DMSTMA DMSTP:C 



LABEL COUNT REFERENCES 

ELOC 000006 DMSED1 DMSEDX 
ELOCKLEN 000010 DMSFRE 
ERAD 000021 DMSLDR DMSI.SB DMSLS'f rMSOLD 
ERKPNTBL 000003 DMSDBG 
as 000001 DMSCPF 
BSR 000012 DMSBOP DMSCLS DMSTP1~; 

EUFAD 000009 DMSCPY 
BUFFA 000013 DMSOVS DMSUPD 
EUFFER 000163 DMSBOP DMSCLS DMSDLK rMSDSK DMSDSL DMSEDX DMSEXT DI1SGLE DMSIFC DMSLEM DMSLET DMSOPL 

DMSOVR DMSPRV DMSRDC 
SUFFLOC 000001 DMSSCR 
EUFSIZE 000008 DMSEXT DMSZAP 
BUSOUT 000001 DMSFCH 
BUSY 000002 DMSCIO DMSPIO 
EYTE 000004 DMSEDI DMSNCP 
CALLEE 000026 DMSERR DMSITP DMSITS EMSLDR DMSOVS DMSSAE DMSVIP 
CALLER 000009 DMSDOS DMSFRE DMSITS DMSOVS DMSSVT DMSXCf 
CARDINCR 000003 DMSED1 DMSEDX 
CARDNO 000003 DMSEDI 
CASEREAD 000001 DMSEDI 
CASESW 000006 DMSEDI DMSEDX 
CAW 000016 DMSCIO DMSCIT DMSDBD DI1SDBG DMSDIO DMSERIi DMSHH DMSINS DMSPIO 
CC 000309 DMSARX DMSASM DMSBOP DMSFCH DMSFOR DMSINI DMSINS DMSLDS DMSPIO DMSPRT DMSPRV DMSROS 

DMSRRV DMSSET DMSSRV DMST10 DMSXCP t"'I 
CCBCCW 000004 DMSXCP III 
CCBCNT 000017 DMSXCP t::J' 

CCBCOM1 000004 DMSXCP 
(1) 
t-I 

CCBCOM2 000012 DMSXCP I 

n CCBCSW 000003 DMSXCP M-

OIl CCBCSW1 000007 DMSXCP 
0 

til I 
CCBCSW2 000004 DMSXCP OIl 

t:1 CCBDC 000001 DMSXCP 0 .... PI 

H CCBEOC 000006 DMSXCP l:l 
(1) CCBEOF 000004 DMSXCP t-I 

n CCBERMAP 000017 DMSXCP 
(1) 

rt' CCBILEN 000004 DMSXCP n 0 
H CCBNOREC 000001 DMSXCP H .... CCBSUCLS 000002 DMSXCP 

0 
(1) Ul 

Ul CCBSUNUM 000002 DMSXCP Ul 

CCBSYMU 000002 DMSXCP ~ 
CCBUE 000006 DMSXCP (t) 

CCBVER 000006 DMSXCP t-t, 

tv CCPADDR 000001 DMSNCP 
(1) 

I H 
.-. CCPARM 000004 DMSNCP (1) 

\0 CCPCAONE 000003 DMSNCP = 
-...I CCPEN'TRY 000001 DMSNCP 

n 
(1) 



"'-> LABEL COUNT REFERENCES t"4 
I I» 

...a t:r 
\0 (I) 
(X) CCPHBFNO 000003 DftSNCP ~ 

CCPHBFSZ 000003 DftSNCP I 
r+ 

H CCPftAXID 000001 DftSNCP '? txt CCPNAME 000001 DMSNCP ::a ar 
CCPPADO 000003 DMSNCP 0 

~ CCPPADl 000003 DftSNCP p" 
::a CCPPSIZE 000003 DftSNCP Q 

"'- ~ w CCPRESID 000006 DMSNCP (I) 

"'" CCPRSTAT 000006 DftSNCP 
0 CCPRSTEP 000003 DftSNCP n 

1'1 
til CCPRSTYP 000009 DMSNCP 0 
'< CCPSIZE 000001 DMSNCP (I) 
(I) 

CCPSTOR 000001 DftSNCP til 
r+ 
(I) CCPTEP 000001 DMSNCP ::0 
iii CCPTEP4 000001 DftSNCP (I) 

CCPTNCP 000001 DftSNCP t-h 
~ (I) 
0 CCPTPEP 000003 DMSNCP 1'1 

\Q CCPTYPE 000007 DMSNCP (I) ... - = n CCPTYPEl 000002 DMSNCP n 
CCPTYP32 000001 DMSNCP (I) 

I» CCPVPADO 000001 DMSNCP I:J 
p" CCPVPADl 000001 DMSNCP 

toO CCWPRI~T 000017 DftSDBD 
1'1 CCiX 000002 DftSDIO 
0 CCWl 000006 DMSDIO 

\Q 
CCilA 000004 DMSDIO H 

I» CCi2 000003 DftSDIO DMSOR3 
B CD 000002 DMSICP 
t1 CDISK 000006 DMSNUC DMSPRV DMSQRY EMSRRV DMSSOP DMSSRV 
(I) C!'MSROS 000006 DMSACM DMSALU 
rt- CE 000004 DMSCIT DMSINI (I) 
H CHANO 000002 DMSINI DMSINS 
!iii CHGTRUNC 000002 DMSEDI 
~. CHKWRDl 000002 DMSITS I:j 
I» CHKWRD2 000002 DMSITS 
rt- CHNGBYTE 000010 DMSSBS DMSSVT 
t-'-

CHNGCNT 000003 DMSEDI 0 
~ CHNGFLAG 000021 DMSEDI DMSSCR 
I CHNGMSG 000003 DMSEDI DMSEDX I 

-<S CHNGNUM 000005 DMSEDI 
0 CL 000003 DMSCPY DMSFRE DMSTPE 
~ CLASDASD 000002 DMSASN DMSINI ~ 
&I CLASTAPE 000002 DMSASN DMSTPE 
(I) CLASTERM 000002 DMSEDX DMSINI 
t\J CLASURI 000002 DMSASN DMSRDC 

CLASURO 000004 DMSASN DMSPRT DMSPUN 



LABEL COUNT REFERENCES 

CLEAROF 000004 DMSLSB 
CLKVAL[~D 000005 DMSDOS DMSFNS DM:SINS 
CLOSELIB 000016 DMSLDR Dl'lSLIB DM:SOLD rMsZAP 
CLOSIO 000003 DMSPRT DMSPUN DMSRDC 
CMD 000006 DMSLDR DMSOLD 
CMDBLOK 000002 DMSEDX DMSGIO 
CMDQEJ 000001 DMSFCH 
CMNDLINE 000013 DMSABN DMSARX DM:SASM DMSCPF DMSINS DMSIN'I DMSSEB DMSSV~~ 

CMNDLIST 000025 DMSCAT DMSCPF DMSINS rMSLDR DMSOLD DMSSCN 
CMODE 000019 DMSEDI 
CMSAMS 000005 DMSAMS DMSVSR 
CMSCVT 000003 DMSINS DMSSOP DM:SVSR 
CMSDOS 000002 DMSSET 
CMSNAM? 000002 DMSSOP DMSSVT 
CMSOP 000016 DMSDLB DMSSCT DM:SSOP rMSSVT 
CMSSEG 000018 DMSBTP DMSEDX DM:SEXC BMSINS DMSINT DMSITS Dr-lSQRY DMSSET 
CMSTAX~ 000007 DMSCIT DMSIT'E DM:SITI DMSSVT 
CMSTIM 000007 DMSINT 
CMSVSAM 000011 DMSBOP DMSDOS DM:SSET BMSVIE DMSVSR 
CODE 000014 DMSCPY DMSITS DM:SLKD r;r-:SNCP DMSSET 
CODE203 000210 DMSABN DMSACC DM:SACF I;MSACM D~SALU DMSAMS DMSAUD I;MSECJ? DMSBRB r:MS BlVR DMSCAT DMSCI'I 

DMSCLS DMSCMP DM:SCRD I:MSCWR DMSDIO DMSDLE DHSDMP I:MSBCS DMSEDX DMSERS DMSEXC CMSEXT 
DMS?CH DMSFET DM:S:FNS BMSFOR DMSFRS DMSHDI DMSHDS DMSINS DMSINT BMSITE tMSITP Dl'1SITS 
DMSLAD DMSLAF DMSLDR rMSLFS DMSLGT DMSUE D~SLSE DMSMCI; DMSOLD tMSOPL DMSOR1 DMSSAE t-t 
DMSSET DMSSLN DMSSOP tM!:STG DMS!:VN DMSSV'I Dl'ISYSR DMSXCP ~ 

COMMONEX 000006 DMSLDR DMSOLD tr 
CD 

COMNAME 000015 DMSAMS DMSBOP DMSDLK fMSDOS DMSDSY Dr-iSFCH D~SF~T DMSLS~~ r:MSZAP I-' 
C01'lPSWT 000016 DMSARN DMSARX DMSASM rlllSIFC DMSSLN DMSSMN DMSSTG I 
CO'lCCWS 000008 DMSCIT DMSERR r+ n 0 

tJ: CONCNT 000003 DMSARX DMSASM DMSLDS I 
til CONDFLG 000011 DMSRXT :11 

t; CONFLAG 000002 DMSMVE 0 
p, 

1-'- CONHCT 000004 DMS:1BD DMSDBG DM:SITE DMSNUC .:: 
H CONHXT 000002 DMSDBG I-' 
CD CD 
<1 CONINBLK 000004 DMSCRD 
r+ CONINBUF 000005 DMSCRD n 
0 CONRDBUF 000001 DMSSVN H 
H 0 
1-" CONRDClT 000001 DMSABN DMSINS DMSINT BMSSEB DMSSVN DMSSV'I CII 
CD CONRDCOD 000007 DMSABN DMSINS DMSINT I:MSSEE DMSSVN CII 
CII 

CONREAD 000009 DMSABN DMSDLB DMSFLD fMSFNC DMSINS DMSI~'I DMSSEB DMSSVN DMSSVT !:tI 
CONSOLE 000020 DMSEOP DMSCvlR DMSEDI rMSEDX DMSINI DMSINS DMSOR3 DMSSEI~ DMSZAP CD 
CONSTACK 000008 DMSCIT DMSCWR DtiSSVN H, 

CD 
I\J CONWR 000005 DMSARX DMSASM DMSDEG tl'JSSEB DMSXCP H 
I CONWRBUF 000005 DMSINT DMSSEB DMSSVN DMSSVT CD ..... 

000004 I:' 
1.0 CONWRCNT DMSSEB DMSSVN DMSSVT <1 
1.0 CONWRCOD 000008 DMSINT DMSSEB DMSSVN CD 



I\.) LABEL COUNT REFERENCES t-' 
I DI 

'" t:7' 
0 to 
0 CONWRITE 000005 DJII!SINT :>MSSEB DMSSVN DHSSVT ..... 

CONWRL 000001 DMSDBG I 
rt 

H CORESIZE 000009 DMSSTG DMSSVT 
C? ~ CORITEM 000007 DMSEDI DMSEDX DMSUPD 

3: COUNT 000080 DMSDBG DMSDSK DMSEDI DMSTQQ CI 
0 

~ CPSTAT 000001 DMSCLS 01 
3: CPULOG 000005 DMSDBD DMSSET c:: 

" CRBIT 000002 DMSZDI 
..... 

W to 
.."J CRDPTR 000006 DHSLDR DMSOLD 
0 CSW 000055 DHSCIO DHSCIT DMSCRD tHSCWR DMSDBG DHSDIC DHSDLK DMSFCH DMSGIO DMSINI DMSIOW DMSITE n 

H 
til DMSITI DMSLDS DMSPIO DHSROS DMSTIO DMSTMA DP!STPD DHSXCP 0 

to< CTL 000002 DMSUPD rn 
rn CUE 000003 DMSUPD rn 
rt 
to CURRALOC 000013 DMSITS ~ 
II CURRCPUT 000001 DMSINM (1) 

CURRDATE 000006 DMSEXT DHSINM DHSINS tMSSET DHSSVT H\ 
t-' (1) 
0 CURRIOOP 000003 DMSCIT H 

\Q CURRSAVE 000061 DHSABN DHSACC DHSDBG tHSDLB DMSDOS DMSEBB DMSFLD DMSFBE DHSIFC DMSITP tMSITS DMSLDR (1) 
~. t:S 
('} DMSOVS DMSSAB DMSSLN DMSSHN DMSSOP DMSSTG DMSSVN DHSSVT DMSVIP ('} 

CURRTIME 000001 DMSEXT tD 
PI CURRVIRT 000002 DMSINM ts 
01 CVTAVIB 000002 D~SSOP DMSVSR 

to CVTMDL 000001 DHSINS 
H CVTMZOO 000001 DMSINS 
0 CVTNUCB 000001 DMSINS 

\Q CVTOPTA 000001 DMSINS H 
PI CVTSECT 000001 DMSINS • CO 000002 DMSDLK 
t:j C1 000001 DMSCWR 
tD C12 000001 DMSLDR 
t+ C7 000002 DMSLDR (1) 
H C9 000001 DMSLDR 
iii DA 000021 DMSDSL DMSHVE DMSNCP tMSSBD DMSSI'S DHSSC'I DHSSOP ..... 

DACTIVE 000010 DMSLOS DMSFCH DMSFET ts 
PI DA'l'ACHK 000002 DMSFCH DMSXCP 
rt" tATAEND 000015 DMSSBD DHSSVT 
~. 

DATE 000016 DMSDLK DMSLST DMSSVT tHSUPD 0 
ts tATIPCMS 000007 DMSDOS DMSFNS DMSINS 
I tBDtMSG 000003 Dl'tSDBD I 
~ DBDEXIT 000003 DMSDBD 
0 DBGABN 000005 DMSABH DMSDBG .... tBGEXEC 000005 DMSABH DMSCIT DMSDBG DMSITE c:I • DBGEXINT 000008 DMSCIT DMSDBG DMSIOW tMSITE 
CD tBGFLAGS 000040 DMSABN DMSCIT DMSDBD tHStBG DMSIOW DMSIT! 
to.,) DBGNSHR 000001 DMSABH 

tBGOUT 000034 DMSDBD DHSDBG DMSITE tMSHUC 



LABEL COUNT REFERE~CES 

I.;BGPGMCK 000004 DMSDBG 
tBGRECUR 000017 DMSDBD DMSI;BG 
rEGSAV1 000002 DMSDBG 
DBGSAV2 000001 DMSDBG 
tBGSECT 000001 DMSDBD DMSDBG DMSITE 
DBGSET 000003 DMSDBG 
I:BGSHR 000001 DMSABN 
I:BGSWTCH 000012 DMSDBD DMSDBG 
DCB,SAV 000003 DMSSOP 
CCSSAVAL 000014 DMSEDX DMSEXC DMSINS DI151TS DMSSAB D~SSE'I 

:::CSSFLAG 000043 DMSABN DMSEDX DMSEXC tMS1NS DMSINT DI'ISITS DMSSAB tMssE~r 

CCSSJLNS 000004 DMSINT DMSSET 
[CSSLDED 000010 DMSEDX Df'ISEXC DMSINT I:MSITS DMSSET 
DCSSOVLP 000001 DMSINS 
tCSSVTLD 000018 DMSABN DMSINS DMSITS tMSSAB DMSSET 
DDISK 000003 DMSINS DMSNUC 
DDNAM 000001 DMSMVE 
DE 000006 DMSCIO DMSCIT DMSCLS DMSIN1 
DEBDCBAD 000002 DMSSAB DMSSOP 
J::EEDEBID 000001 D!1SS0P 
DEBOPATB 000002 DMSSOP 
DEBTCBAD 000004 DMSSQS 
tEC 000014 DMSBOP DMSDBD DMSDBG DMSDLK DMSDSK DMSDSV DMSEDI DMSEDX DMSLIE DMSLST DMSOVR DMSQRY 

DMSSET DMSSRT DMSSSK DMSTPD DMS'IPE DMSVIE DMSVPD DMSZA:P t"1 
[ECARE! 000001 DMSSBD DMSSBS III 
tECtCEAD 000002 DMSSBS DMSSCT tr 

(1) 
tECDEC 000038 DMSDBD DMSDBG DMSITE DM5NUC DMSQRY ~ 
tECIMAL 000009 DMSEDI I 

I:ECIOEPT 000003 DMSSBS DMSSCT t+ 
n 0 
3 tECKYADR 000004 DMSSBD I 
UJ rECLNGTH 000005 DMSSBD DMSSBS til 

0 
t::I tECLTH 000002 DMSSCR ~ 
1-'. rECREC?T 000002 DMSSBD ~ 
H tECSDECE 000024 DMSSBD DMSSBS DMSSCT DMSSVT ~ 
\tI CI) 
<1 rECTYPE 000025 DMSSBD DMSSES 
t+ DEPTH 000001 DMSITS DMSOVS n 
0 

rEVADDR 000048 DMST10 DMSTPE H 
H 0 
1-'. CEVCODE 000002 DMSBOP DMSCLS (J) 
\tI DEVICE 000004 DMSARX DMSASM DMS10W tMSITI til 
(J) 

DEVIHSC 000005 DMSTIO DMSTPE 1:0 
DEVNAME 000003 DMSTIO DMSTPE (t) 

rEVSECT 000005 DMSTIO DMSTPE H\ 
(t) 

I\J DEVSIZE 000003 DMSTIO DMSTPE H 
I tEVTAB 000011 DMSASN DMSDBD DMSEDI tMSEDX DMSINI DMSLLU DMSSVT (t) 

I\J 
000021 DMSDIO DMSFNS DMSLLU DMSSOP I:' 

0 DEVTYP <1 .... [EVTYPE 000025 DMSRDC DKSSVT CI) 



tv LABEL COUNT REFERENCES t""I , 01 
tv t:7" 
0 ('0 

tv tIAGNUM 000001 DMSDIO 7' 
DIAGRET 000003 Dl'ISDIO r+ 

H tIAGTIl1E 000001 DMSSVT 9 tIl nIOBIT 000003 DMSDIO 
~ ~ 

tIOCSW 000001 DMSFNS 0 
<1 DIOFLAG 000009 DMSDIO PI 
lJI: DIOFREE 000003 DMSDIO c: 
"- ...., 
w tIOSECT 000007 DMSACl'I DMSDIO DMSFNS DMSITI ('0 

....,J DIBAAA 000001 Dl'ISFCH 
0 eIRC 000017 DMSDOS DMSFCH 

n 
11 

en [IBEEE 000001 DMSFCH 0 
I.e! DIBll 0000011 Dl'ISDOS DMSFCH en 
en DIBN 000006 DMSDOS DMSFCH DMSFET 

en 
r+ 
CD DIBNAME 000039 DMSDOS DMSDSL DMSFCH t~SFET DMSGND Dl'lSSVT !:C 

• D1BPPP 000003 DMSFCH CD 
HI 

t""I DIBPTB 000007 DMSSVT CD 
0 DIBR 000001 DMSDSL 11 

\Q DIRRR 000001 DMSFCH CD ..... ~ 

0 D1RTT 000005 DMSDOS DMSDSL DMSFCH 0 

D1RTTR 000002 DMSFCH ('0 

I:» DISK$SEG 000008 DMSBRD DMSFNS DMSLFS ~ 
p.. DITCNT 000005 DMSEDI 

I'd DMPTITLE 000003 DMSDBG 
H Dl'ISABNGO 000005 DMSFRE DMSIT1 DMSITP tMSITS 
0 DMSABNRT 000001 DMSDBG 

\Q DMSABNSV 000001 DMSFNC Ii 
I» tMSABW 000011 DMSABN DMSDBG DMSFRE tMS1T1 DMSITP DMSITS 
Ell DMSARD 000001 DMSARX 
tj DMSASD 000001 DMS!SM 
CD DMSBWR 000002 DMSFNC 
r+ DMSCAT 000004 DMSABN DMSCRD DMSFNC 
('1) 

Ii tMSCCB 000002 DMSXCP 
II lCMSCIOSI 000002 DMSFNC ..... DMSCITA 000001 DMSCWR 
~ 
III DMSCITB 000002 DMSCRD DMSCWR 
r+ DMSCITDB 000003 DMSABN DMSFNC ..... 

DMSCPF 000003 DMSFNC DMSINT 0 
t:I DMSCRD 000005 DMSABN DMSFNC 
I DMSCWR 000005 DMSDBG DMSERR DMSFNC tMSITE 
I 

<1 DMSCWT 000006 DMSABN DMSDBG DMSERR rMSFNC DMSITS 
0 DMSDBD 000001 DMSDBG ...... lDMSDBG 0000111 DMSABN DMSFNC DMSINS IMS1NT DMSIOW DMSITE DMSNUC DMSC;RY DMSS ET DMSSMN tMSSTG DMSSVN 
~ 
II DMSSVT 
CD lDMSDBGP 000001 DMSINI 
tv DMSEDC 000001 DMSSEG 

DMSED1 000001 DMSSEG 



LABEL COUNT REFERENCES 

DMSERR 000086 DMSABN DMSBWR DMSCIT DMSCRD DMSCWR DMSDBG DI.'1SERS DMSFE'I' DIMSFNC DMSFNS DMSFRE DMSITP 
DMSITS DMSLIO DMSMOD DMSSTT 

BMSERT 000002 DMSERR 
DMSEXC 000002 DMSFNC 
DMSEXCAB 000001 DMSABN 
DMSEXT 000001 DMSSEG 
DMSFCH 000003 DMSDOS 
DMSFET 000002 DMSFNC 
DMSFNC 000001 DMSITS 
DMSFNC3 000001 DMSITS 
DMSFREB 000002 DMSFNC 
BMSFREES 000002 DMSFNC 
DMSFREEX 000002 DMSFNC 
DMSFRES 000005 DMSABN DMSFNC DMSINS 
tMSFRETS 000002 DMSFNC 
DMSFRETX 000001 DMSFNC 
DMSFRT 000002 DMSFRE 
DMSGIO 000002 DMSSCR DMSSEG 
DMSINALT 000001 DMSNUC 
DMSINA1S 000001 DMSNUC 
DMSINS 000001 DMSINI 
DMSINSE 000001 DMSINI 
DMSINTAB 000001 DMSABN 
DMSIOWR 000001 DMSDBG t"'" 
DMSITET 000002 DMSFNC ~ 
DMSITP 000001 DMSDBG t:r 
BMSITSK 000001 DMSFNC CD .... 
DMSITSR 000001 DMSABN , 

n r:MSITSXS 000001 DMSFNC 
,... 
n 

tlI: DMSITSl 000001 DMSINI , 
Vl r:MSLAD 000005 DMSBWR DMSERS DMSINS tMSLFS DMSSTT ~ 

t::t rMSLADAD 000003 DMSABN DMSFNC 0 
Q. .... DMSLADN 000003 DMSABN DMSLFS t:S 

1'1 DMSLADW 000002 DMSERS DMSSTT .... 
(1) CD 
0 DMSLDRA 000002 DMSFNC 
c+ r:MSLDRB 000001 DMSLOA n 
0 tMSLDRC 000001 DMSLSB t1 
11 0 .... tMSLDRD 000003 DMSLGT DMSLIB DMSLSB en 
(1) DMSLFS 000005 DMSBRD DMSEXC DMSINT DMSPNT DMSSTT en en 

~MSLFSW 000005 DMSEWR DMSE~S DMSFNS DMSSTT = tMSLGT 000002 DMSSEG DMSSVT CD 
DMSLGTA 000003 DMSLDR DMSOLD DMSSTG Ht 

I\,) DMSLGTB 000002 DMSLDR DMSOLD CD 
t1 , DMSLIB 000004 DMSLDR DMSOLD DMSSEG tMSTMA CD 

I\,) 
UISLIO 000001 DMSLDR Cf 

0 n w fMSLOA 000005 DMSFNC DMSINS (D 



"-> LABEL COUNT REFERENCES ~ 

I aI 
"-> t:J' 
0 (0 

~ tMSLSB 000002 DMSS~G DMSSVT ~ 
I 

DMSLSBA 000002 DMSLDR DMSOLD c+ 
H DMSLSB3 000002 DMSLDR DMSOLD '1 tJ1 tMSLSBC 000002 DMSLDR DMSOLD 3: Ill: 

Dl'JSL~BD 000002 DMSLDR DMSOLD 0 
~ DMSLSY 000003 DMSLIiR DMSOLD DHSSEG PI 
:3 000005 DHSITS 

~ 

........ 
rMSMOD DMSFNC ~ 

w BMS~UCU 000001 DMSFRE (0 
...., tMSOLD 000002 DMSSEG DMSSLN n 0 rMSOVS 000001 DMSOVR t1 
Ul DMSPIO 000002 DMSFNC 0 
'< DMSPIOCC 000002 DHSFNC en 
en en 
c+ DMSPIOSI 000002 DMSFNC 
(0 IMSREA 000002 DMSIFC = 

(0 • rMSSAB 000004 DMSSEG DMSSVT H\ 
t-I DMSSBD 000002 DMSSBS DHSSEG (0 

0 rMSSBDFR 000001 DHSSVT t1 
(0 

\Q DMSSBS 000004 DHSSBD DMSSEG DMSSOP rMSSVT =s ..... 
0 DHSSBSRT 000001 DHSSBD 0 

DMSSCNN 000002 DMSINS DMSINT CD 
III 
~ DMSSCR 000002 DMSEDI DMSSEG 
PI rMSSCT 000002 DMSSEG DMSSVT 

I"d 
tMSSCTCE 000002 DMSSOP DMSSQS 

t1 tMSSCTCK 000003 DMSSOP DHSSQS 
0 rMSSC'r~~P 000001 DMSSOP 

\Q IHSSEB 000005 DMSSBS DMSSEG DMSSQS t1 
j» DMSSLN 000002 DMSSEG DMSSVT 
• tMSSLN3 000002 DMSSVT 
t:::1 DMSSLN42 000002 DMSSVT 
CD rMSSLN6 000002 DMSSVT 
c+ DMSSLN7 000002 DMSSVT 
(1) 

IMSSLN8 000002 DMSSVT t1 
iii DP'SSLN9 000002 DMSSVT ..... DMSSMN 000002 DMSSEG DMSSVT 
~ 
aI DMSSMNSB 000001 DMSSLN 
c+ DMSSMN10 000002 DMSSVT ..... 

DMSSMN4 000002 DMSSVT 0 
t::t DMSSMN5 000002 DHSSVT 
I r.MSSOP 000002 DMSSEG DMSSVT I 
~ DMSSOP19 000002 DHSSVT 
0 DMSSOP20 000002 DMSSVT 
~ tMSSOP22 000002 DHSSVT 
~ • tHSSOP23 000002 DMSSVT 
CD DHSSQS 000002 DMSSEG DMSSVT 
N tMSSQSGT 000001 DMSSOP 

rMSSQS!>T 000001 DMSSOP 



I,.ABEL COUNT REFERENCES 

DMSSQSUP 000001 DMSSOP 
D~SSTGAT 000002 DMSFNC 
NISSTGCL 000001 DMSI'NC 
~MSSTGSB 000005 DMSABN DMSFNC DMSINT tl'lSLDR DMS!'10D 
tMSSTG<;V 000003 DMSFNC 
tMSSTTR 000001 DMSLFS 
DMSSVN 000002 DMSSEG DMSSVT 
DMSSVNl 000002 DMSSVT 
DMSSVN2 000002 rMSSVT 
DMSSVN93 000002 DMSSVT 
DMSSVN94 000002 DMSSVT 
DMSSVT 000001 DMSSEG 
rMSVSR 000002 DMSFNC 
DMSXCP 000001 DMSDOS 
rOSELKSZ 000005 DMSBOP 
DOSEUFF 000012 DMSBOP DMSXCP 
DOSBUFSP 000004 DMSDLB DMSQRY DMSXCP 
!:OSEYTE 000014 DMSXCP 
DOSCEID 000002 DMSDLB DMSXCP 
DOSCMS 000002 DMSDLB 
DOSCOMP 000005 DMSFET DMSLDR 
DOSCOUT 000002 DMSXCP 
DOSDD 000027 DMSAMS DMSBOP DMSCLS rMSDLB DMSDLK Dl"!SDSV DM.50PL DMSQRY DM:5RRV DMSSRV DMSSVT DMSVIP 

DMSXCP t"1 
tOSDDCAT 000006 DMSDLB PI 
rOSDEV 000018 DMSAMS DMSBOP DMSDLE tMSDLK DMSQRY DI1SRRV DMSSRV DMSVIP I:M:5XCF 0-

CD 
DOSDIRC 000005 DMSSOP DMSSVT ...., 
rOSDOS 000004 DMSDLB DMSQRY ·1 

DOSDSK 000006 DMSDLB DMSDLK DMSEXT rf'lSRRV DMSSRV DMSXCF c+ n 0 oc rOSDSMD 000027 DMSAMS DMSBOP DMSDLB DMSVIP DMSXCP I 
Ul DOSDSNAM 000009 DMSCLS DMSDLB DMSQRY tMSXCP 131 

0 
t::I DOSDSTYP 000004 DMSCLS DMSDLB DMSQRY tMSXCP r:l.t 
~. tOSDUM 000013 DMSAMS DMSBOP DMSDLB rMSQRY DMSVIP DMSXCF Q 
t1 r;OSEND 000001 DMSDLB 

...., 
C'O CD 
0 DOSENSIZ 000006 DMSDLB 
c+ tOSEXT 000004 DMSBOP n 
0 DOSEXTCT 000002 DMSEOP t1 
H 0 
~. DOSEXTCX 000004 DMSXCP en 
CD rOSEXTNO 000013 DMSAMS DMSDLB DMSQRY DMSVIP DMSXCP en en 

DOSEXTTB 000009 DMSAMS DMSDLB DMSQRY tMSVIP DMSXCP = DOSFIRST 000027 DMSABN DMSAMS DMSJ80P DI1SCLS DMSDLB DMSDLK DM:5DSV DMSFCH DMSOPL DMSQRY DMISROS DMSRRV CD 
DMSSRV DMSSVT DMSVIP DMSXCP 

,.., 
CD 

tv DOSFLAGS 000161 DMSABN DMSALU DMSAMS DMSASM DMSASN DMSBOF DMSCPY DMSDLE DMSDLK DMSDOS DMSDSL DMSDSV t1 
I DMSEDI DMSEDX DMSEXT DMSFCH DMSFET DMSHDI DMSHDS DMSIFC DMSINT Dl1SITE DMSITP DMSITS (I) 

tv 
DMSLDR DMSLDS DMSLLU DMSKOD DKSI1VE DMSPIO DKSQRY DMSROS DM.SRRV DMSSET I=' 

0 DMSOP'l DMSPRV n 
U1 DMSSRT DMSSRV DMSSTG DMSTPD DMSUPD DMSVIP Df'!SVSR DMSXCF DMSZAP CD 



1'0.) LABEL COUNT REFERENCES 1:"'1 , 
Q) 

N ~ 
0 (D 
0'1 rOSFORI1 000009 DMSBOP DMSXCP ..... 

r:OS1NIT 000027 DMSBOP DMSDLB DMSQRY tl'!SXCP I 
c+ 

H rOS1TEM 000008 DI'!SXCP 
<? tJj DOSJCAT 000006 DT1SDLB 

131: DOSKPART 000006 DMSFCH DMSQRY DMSSET DfiSSTG til: 
0 

~ tOSLBSV 000004 DMSGLP Q, 
131: 'OOSL1BL 000007 DMSFCH DMSGLB DMSQRY DMSSOP DMSSVT -= , ..... 
W tOSMODE 000041 DMSABN DMSALU DMSAMS UlSASN DMSDLP DMSDLI< DMSDSV I:MSEXT DMSFET D(lJS1NT DMS1TP DMSLDR (D ..... DMSLLU DMSMOD DMSOPT DMSPRV DMSQRY DMSRRV DMSSET IH1SSRV D~SVSR 
0 DOSNEXT 000011 DMSAMS DMSBOP DMSCLS DMSDLE DMSOPL DMSSV'I DMSVTP I:MSXCP n 
til DOSNUM 000014 DMSABN DMSBOP DMSDLB DMSQRY DflSICP H 

0 
"< DOSOP 000037 DMSBOP DMSDLK DMSRRV tMSSRV DMSXCP (I) 
Ul rosos 000006 DMSDLB DMSCRY Ul c+ 
(D tOSOSD~N 000008 DMSDLB DflSQRY DMSXCP s:tI • rOSOSFST 000009 DMSEOP DMSDLB DMSDLK tMSRRV DflSSRV DHSXCF (D 

1:"'1 DOSPERM 000004 DMSDLB DMSQRY t-h 
(t) 

0 DOSRC 000015 DMSAMS DMSBAB DMSBOP rMSDOS DMSFET DMSLDB DMSVIP H 
\Q rOSREAD 000010 DMSFCH DMSXCP (D ..... t:S 
0 DOSSAVE 000009 DMSIFC DMSXCP 0 

PI 
DOSSECT 000029 DMSAMS DMSEOP DMSCLS tMSDLB DMSDLK DMSDSV DMSOPL I:MSQRY DMSRRV DMSSRV DMSSVT DMSV IP CO 

t:S DMSXCP 
Q, tOSSENSE 000008 DMSXCP 
'"d DOSSVC 000057 DMSABN DflSAMS DMSASM tMSCPY DMSDLB DMSDLI< DfiJSDSL I:I'lSEDI DMSEDX DMSEXT DMSFCH DMSFE'I 
H DMSHDI DMSHDS DMSIFC DMSINT DMSITE DMSITP DMSITS IlMSLDR DMSLDS DMSMOD DMSMVE DMSQRY 
0 DMSROS DMSSET DMSSRT Dl!!STPD DflSUPD DMSVIP Dl'!SVSR I:MSZAP 

\Q tOSSYS 000004 DMSBOP DMSDLB DMSOPL tMSQRY H 
PI tOSTAPID 000002 DMSXCP • rOSTRANS 000013 DMSABN DMSBOP DMSCLS tMSDOS DMSFCH DMSSE'I 
t::=' r:OSTYPE 000011 DMSDLB DHSQRY DMSXCP 
CO rOSUCAT 000006 DMSBOP DMSDLE 
c+ DOSUCNAM 000011 DMSBOP DMSDLE DMSQRY tMSXCP CO 
H DOSVOLNO 000015 DMSAMS DMSDLB DMSQRY tMSVIP DMSXCP 
• r:OSVOLTB 000009 DMSAMS DflSDLB DMSQRY tMSVIP DMSXCP .... DOSVSUI 000010 DMSASN DMSBOP DMSDOS UISFCH DMSSET D!!SSTG t:S 
I» tOSWORK 000006 DMSXCP 
r+- DOSXXX 000002 DMSDLB DMSQRY .... 
0 r:OSYSXXX 000015 DMSAMS DMSBOP DMSCLS tMSBLB DMSVIP DMSXCF 
t:t DOUBLE 000017 DMsaop DMSCLS DMSDIO BMSDLB DMSLBM DPlSLET 
I BSKAD 000002 DMSLIO I 
~ rSKADR 000006 DMSACF DMSACM DMSAUD DMSERS 
0 DSKLIN 000066 DMSEXT DMSLIO DMSMOD tMSSLN ..... 'CSKLOC 000010 DMSACF DMSACM DMSAUD tMSERS DMSFNS DMSMOt s:i • DSKLST 000021 DMSACF DMSACM DMSAUD tMSF.RS DMSFNS DMSLLU Df'lSMOD DI'lS PRY DMSRRV tMSSRV 
CO [,SYM 000002 DMSLSY 
N DTAD 000034 DMSACC DMSACM DMSAMS [MSARI DMSASN DMSDIC DMSFOR DMSINS DMSQRY DMSROS 

[TAtT 000018 DMSACM DMSASN DMSAUD U!SDIO DMSQRY DftSTQC 



LABEL COUNT REFERENCES 

DTAS 000003 DMSAMS 
J]UALNOS 000008 DMSEDC 
DUMCOM 000004 DMSITS DMSSLN 
DUMMY 000020 DMSASM DMSFLD DMS(nn r:MSSBD DI'lSSEB N1SVPI: 
J]UMPLIST 000002 DMSDBG DMSSVT 
OYLO 000012 DMSLDR DMSLIO DMSOLD I:MSSLN DMSSTG 
DYLIBO 000004 DMSSLN DMSSTG 
DYMBRNM 000005 DMSLIB DMSSLN DMSSTG 
I:YNAEND 000004 DMSLDR DMSOLD DMSSLN 
EDCB 000005 DMSEDC DMSEDI DMSIWX OMSGIO DMSSCR 
EDCBEND 000001 DMSEDX 
EDCBLTH 000002 DMSEDX 
EDCT 000026 DMSEDI 
EDISK 000002 DMSNUC 
EDIT 000066 DMSETP DMSDLB DMSIWI I:MSIFC DMSINA DMSQRY DMSVPD 
EDLIN 000013 DMSEDI DMSEDX 
EDMSK 000003 DMSSCR 
EDRET 000003 DMSEDI DMSEDX 
EDWORK 000002 DMSEDX 
EFPRS 000008 DMSITS DMSCVS DMSSVT 
EGPRS 000019 DMSABN DMSITS DMSOVS OMSSAB DMSSLN 
EGPRO 000064 DMSACC DMSDLB DMSDOS I:MSFLt DMSITS DMSOVS Dt·1SSAB DMSSLN DMSSOP r:MSSVN BMSSVT 
EGPRl 000039 DMSDOS DMSLDR DMSSAB BMSSLN DMSSMN DMSSOf D~SSVN J]MSSVT 
EGPRll 000002 DMSITS DMSSAB t"'I 
EGPR12 000003 DMSSAB DMSSTG ~ 

EGPR13 000008 DMSSLN DMSSVT t:r 
~ 

EGPR14 000007 DMSDOS DMSSAB DMSSLN tMSSTG DMSSVT ..... 
EGPR15 000039 DMSDOS DMSIFC DMSITS r:fi:SOVS DMSSAB DMSSLN DMSSMN tMSSCF tMSSTG BMSSVN r:MSSVT I 

EGPR2 000006 DMSITS DMSSOP DMSSVT t"t 
n 0 
tIC EGPR5 000003 DMSXCP I 
til EGPR9 000004 DMSDOS DMSSAE tIC 

ENDBLOC 000003 DMSEDI DMSEDX 0 
t=' QA 
1-'- ERDCDADR 000006 DMSLDR DMSLSB DMSOLD d 
H END FREE 000002 DMSEXT DMSLBT ..... 
(I) ~ 
<1 ENDTAES 000006 DMSEDI DMSEDX 
t"t ENTADR 000008 DMSLDR DMSOLD n 
0 ENTNAME 000005 DMSLDR OMSLSB DMSOLD H 
H 0 
1-'- EOCADR 000006 DMSDMP DMSSMN DMS~;TG rn 
~ EQCHK 000002 DMSBOP DMSFCH rn 
rn ERllIT 000008 DMSACF DMSERS DMSRNM !:O 

ERBL 000001 DMSERR ~ 

ERDSECT 000002 DMSERR H\ 
~ 

~ ERF1BF 000002 DMSERR H 
I ERF1HD 000003 DMSERR ~ 
~ ERF1SBN 000005 DMSERR = 0 0 
...... ERF1SBl 000003 DMSERR ~ 



~ lABEL COURT REFERENCES ~ 
t 01 
~ t:f 
0 (1) 
(X) FRF1TX 000002 DMSERR ~ 

ERF2CK 000004 DMSERR t 
t+ 

H ERF2DI 000001 DMSERR 0 
tD ERF2DT 000001 DKSERR t 
III ERF2PR 000001 DMSERR 

III 
0 

~ ERF2S1 000001 DMSERR ~ 
01 FRlET 000001 DMSERR I:i 

" ERMESS 000002 DMSERR 
~ 

w (1) 

" ERRUK 000002 DMSERR 
0 ERPAS13 000001 DMSERR n 

FRPBFA 000002 DMSERR 
t1 

til 0 
'< ERPCS 000001 DMSERR rn 
rn ERPF1 000013 DMSERR rn 
r+ 
C\) ERPF2 000010 DKSERR ~ 

• ERPHDR 000001 DMSERR (1) 

!RPlET 000001 DMSERR HI 
~ (1) 

0 ERPRUM 000001 DMSERR t1 
\Q ERPSBA 000004 DMSERR (1) 
t-J. 

ERPTXA 000003 DMSERR 
~ 

0 0 
ERR$202 000004 DMSEXT (I) 

S» FRRCODE 000065 DMSACC DKSARN DMSDIO tMSHDI DMSHDS DMSLBIt, DMSSAB tMSSYN 
t:J 
~ FRRCODO 000012 DMSACM 

." 
ERRCOD1 000020 DMSACF DMSERS DMSRNM 

t1 ERRET 000036 DMSCIO DMSINT DMSITS tl1SPIO DMSFRT DMSPUN Dr:SVIP 
0 FRRMSG 000023 DMSAMS DMSCIO DMSERS DPISEXT DMSFCH DMSPIC DMSUPD DMSXCP 

\Q ERR MUM 000002 DMSIRT 
t1 
S» ERROR 000196 DMSACM DMSARN DMSARX DMSASM DMSBTP DMSCMP DMSDLK I;MSDSK DMSDSL DMSDSV tMSEDI DMSEDX 
a DMSFCH DMSGRN DMSIFC tl1SLBM DMSLIO DMSLLU DMSMOD DMSNCP DMSOVR DMSPRV DMSRDC DMSRNE 

'=' DMSRRV DMSSCR DMSSET tMSSLM DMSSRV DMSSY8 DMSTMA IMSTFD DMSTPE DMSUPD DMSVPD DMSXCP 
(1) DMSZAP 
t+ ERSAVE 000001 DMSERR 
(1) ERSBD 000013 DMSZRR t1 

• ERSBF 000010 DMSERR 
t-J. ERSEl 000005 DMSERR 
:;:I 
S» ERSECT 000001 DMSERR 
t+ ERSFA 000004 DMSERR 
t-J. ERSFL 000005 DMSERR 0 
t:S ERSFLAG 000050 DMSERS DMSRNM 
I ERSFLST 000002 DMSERR 
t ERSSZ 000002 DMSERR 
~ 
0 ERTEXT 000004 DMSERR 
~ ERTPL 000004 DMSERR 
c:I • "ERTPLA 000006 DMSERR 
(1) ERTPLL 000008 DMSERR 
~ 

!RTSIZE 000002 DMSERR 
ERT1 000008 DMSERR 



LABEL COUNT REFERENCES 

ERT2 000013 DPISERR 
ESD1ST 000011 DPlSDLK DPlSLDR DMSOLD 
ESIDTB 000040 DPlSLDR DPISOLD 
EXADD 000008 DMSEXC DPISEXT 
EXAMLC 000005 DMSDBG 
EXAMLG 000006 DMSDBG 
!XECFLAG 000003 DMSEXC 
EXBCRUN 000004 DPlSBXC DMSGRN 
EXENACTf 000009 D"SVIP 
EXENADDR 000002 DMSVIP 
EXLEODF 000004 DMSVIP 
EXLEODL 000001 DMSVIP 
EXLEODP 000001 DMSVIP 
EXLEVEL 000006 DMSEXC DMSEXT 
EXLJRN 000002 DMSVIP 
EXLJRNI. 000004 DMSVIP 
'EXLLEN 000009 DMSVIP 
EXLLERF 000004 DMSVIP 
EXLLERL 000001 DMSVIP 
FXI.LERF 000001 DMSVIP 
EXLSYNF 000004 DMSVIP 
EXLSYNL 000002 DMSVIP 
EXL~YNP 000001 DMSVIP 
EXNUM 000003 DMS3XC ~ 
EXSAVE 000007 DMSIT~ DMSMVE PI 

EISAVE1 000009 DMSITE tT 
(1) 

EXTFLAG 000006 DMSIOV DMSITE DMSSVN tot FITM 000001 DMS~RY r+ n EXTNPSW 000001 DMSINI 0 
IX EXTOPSW 000021 DMSDBG DMSIT3 I 
til EXTPSW 000005 DMSINT DMSITE C. 

0 
t:::I FXTRET 000007 DMSITE PI 
~. EXTSEcr 000013 Dl1SINS DMSINT DMSIOW tMSITE DMSCRY IH1SSE'I DI'!SSTG DMSSVN DMSSVT d 
H ~ 
(1) FCBPLJ<SZ 000005 Df"ISFLD DMSMVE DMSROS tMSSOP (1) 
n FCBBUFF 000045 Dl'lSARN DMSARX DMSASM tMSSES DMSSEB IlMSSOf IJMSSQS DMSSVT 
r+ FCBEYTE 000052 DMSARN DMSARX DMSASM tl'l ~SBD DMSSBS DMSSEE DMSSOP l)MSSCS DMSSVT n 
0 H 
H FCBCASE 000004 DMSfLD DMSSEB DMSSOP 0 
~. FCBCATML 000019 DMSARN DMSARX DMSASM r:r'lSFLf DMS~BS DMSSCT l)MSSOP DMSSVT CIl 
(1) FCBCLEAV 000004 DMSSOP CIl 
CIl 

FC8CLOSE 000011 DMSARN DMSARX DMS1\SM U1SSCT DMSSOP DMSSQS ::tI 
FCBCON 000003 DMSFLD DMSSOP (D 

FCliCOUT 000026 DMSSBS DMSSCT DMSSEB r:MSSOP DMSSQS DMSSVT t-h 
(1) 

I'..) FCEDCBCT 000004 DMSSOP H 
I FCBDD 000022 DMSARN DMSARX DMSASM tMSFCH DMSFLD DMS~VE DMSQRY DMSSAE DMSSOP DMSSVT (1) 

I'..) = 0 FCBDEV 000054 DMSARN DMSARX DMSASM tl!!SFCH DMSFLD DMS~VF Dl1!3QRY DMSSAE DMSSES DMSSCT rMSSEE DMSSOP n 
\.0 DMSSQS DMSSVT (1) 



t-..) LABEL COUNT REFERENCES ~ 
I III 

t-..) r,-
~ (t) 
0 FCBDO SL 000007 DMSFLD DMSSOP DMSSVT I-' 

ICBDSI<' 000012 DMSARX DMSASM DMSFCH DI'!SFLr DMSMVE Dl'!SSOF DMSSVT I 
rt 

H FCBDSMD 000035 DMSALU DMSFLD DMSMVE UISROS DMSSBS DMSSEE Dr'iSSOP I:l1SSCS 0 
t::d fCBDSNTlM 000052 DMSARX DMSASM Dl1SFCH DMSFLt DMSMVE DMSQRY DMSTWS I:MSSES DMSSCT DMSSOP DMSSVT I 
tIC ::I: 

FCBD~ORG 000004 DMSfLD 0 
<I FCBDSTYP 000016 DMSFLD DMSQRY DMSROS rMSSEE DMSSOP DMSSVT 01 
::I: FCBtUM 000005 DMSFLD DMSSAB DMSSOP tl'!SSVT d 

" 000001 I-' 
w fCBEND DMSFLD (t) 
""-l FCBENSIZ 000006 DMSF'LD 
0 FCBFIRST 000016 DMSABN DMSALU DMSFLD tMSQRY DMS~OS DMSSAE Dl'iSSOP liMSSVT n 

1"1 
tn FCBFOR:1 000012 DMSARN DMSARX DMSASM r:!'lSSEP DMSSOP DMSSVT 0 
'< FCBIN rr 000069 DMSARN DMSARX DMSASM I:MSFCH DMSFLD DMSIWE DMSSPS IlMSSCT DMSSEE DMSSOP DMSSQS DNSSV'I en 
Ul FCBIO 000001 DMSSEB en 
rt 
(t) rCBIORD 000003 DMSSQS !XI 
lEI FCBIO SW 000033 DMSARN DMSARX Dl'lSASM tMSFLt DMSSCT DMSSEE rMSSOP DMSSCS (t) 

FCBIOSW2 000024 DMSDSL DMSLDS DMSf1VE rMSROS DMSSEE DMSSOF DtlSSVT HI 
~ t'O 
0 FCBIOWR 000003 DMSSQS 1"1 

IQ fCBITEM 000062 DMSARN DMSARX DMSASM tMSDSL DMSMVE DMSSBt DMSSES DMSSCT DMSSEE tMSSOP DMSSQS DMSSV'I t'O 
~. t:S 
n FCBKEY~ 000009 DMSSBD DMSSOP DMSSVT n 

FCBLRECL 000006 DMSFLD DMSMVE DMSROS DMSSOP <D 
PI FCBMEMBR 000013 DMSFLD DMSLDS DMSROS I:MSSEE DMSSOP t:S 
01 FCBMMV 000004 DMSMVE DMSSVT 

ttl 
FCBMODE 000006 DMSFLD DMSSBS DMSSEB DMSSOP 

t1 FCBMVFIL 000002 DMSMVE DMSSEE 
0 FCBMVPDS 000017 DMSDSL DMSLDS DMSMVE J:MSROS DMSSEB DMSSOf DfiSSVT 

I.Q FCBNEX'!' 000004 DMSALU DMSFLD DMSROS t1 
PI FCBNUM 000013 DMSABN DMSFLD DMSQRY 
a FCBOP 000119 DMSFCH UMSMVE DMSROS I:MSSPD DMSSBS DMSSC'I DMSSEB DMSSCP DMSSQS DMSSVT 
t1 FCBOPCE 000005 DMSMVE DMSSEB 
CD FCBOS 000017 DMSSBS DMSSCT DMSSEB DMSSOP DMSSVT 
rt FCBOSDSN 000017 DMSFLD DMSLDS DMSROS 
<D 

FCBO~FST 000020 DMSALU DMSFCH DMSMVE :C!'1SROS DMSSCT DMSSOF DMSSVT t1 .. FCBPCH 000002 DMSFLD 
~- FCBPDS 000011 DMSSBS DMSSCT DMSSOP LMSSVT t:S 
PI FCBPROC 000009 DMSARN DMSFLD DMSROS I.:MSSEB DMSSOP 
c+ fCBPROCC 000005 DMSARN DMSA'RX DMSASM Dl'!SSOP 
1-'- FCBPROCO 000003 DMSAR ~ DMSSOP 0 
::J fCBPRPU 000006 DMSSEB 
I FCBPTR 000002 DMSFLD I FCBPVMB 000003 DMSSQS <I 

0 FCBRDR 000005 DMSARX DMSASM DMSFLD DMSSOP 
I-' FCBREAD 000022 DMSARN DMSARX DMSASM DMSSES DMSSEB DfIlSSQS d 

• FCBRECFM 000007 DMSFLD DMSMVE DMSROS tl1SSBD DMSSEB DMSSCF 
<D FCBRECL 000005 DMSSEB DMSSOP 
t-..) FCBR13 000002 DMSSCT DMSSEB 

fCBSEC1' 000043 DMSALU DMSARN DMSARX Dl1SASM DI1SDSL DMSFCH Dl':SFLD IlMSLDS DMSMVE Dl1SQRY DMSROS DMSSAB 



LABEL COUNT REF2R~NCES 

DMSSBD DMSSBS DMSSCT I:MSSEE DMSSOP DMSSQS D~SSVN DMSSVT 
FCBTAB 000001 DMSSVT 
FCllTAP 000010 DMSARX DMSASM PMSPLD rMSMVE DMSSBS Df'lSSCT B~SSOP DMSSVT 
FCBTAPID 000006 DMSFLD N1SMVE DI'1S<>RY nlSSEB 
FCBTBSP 000004 DMSSBS DMSSVT 
FCBTCLOS 000003 DMSSOP 
FCBXTENT 000011 DMSFLD DMSSBD DMSSBS DMSSOP DMSSVT 
rC,HAPWHl 000002 DMSFET 
FCHLENG 000003 DMSDOS DMSFET 
FCHOPT 000002 DMSFET 
FCHTAB 000008 DMSDOS DMSFET 
FDISK 000003 DfI!SLDR DMSNUC DMSOLD 
IFD 000005 DMSACI"I DMSAUD DMSr:XC 
FFE 000002 DMSACM DMSAUD 
FFF 000004 DMSACM DffSAUD 
FPS 000005 DMSGRN 
FILE 000080 DMSACM DMSARX DMSASM I:MSBOP DMSCLS Dt1SCMP DMSDLB DMSI:SK DMSDSL DMSEDI DMSEDX D~SFLD 

Dt1SGLB DMSGND DMSIFC DMSLBM DI'1SLBT DMSLGT DMSLTB DMSLIC DMSLKD Dt1SMOD DMSNCP DMSPRT 
D!'1SPUN DMSRDC DMSHNM DMSSLN DMSSTT DMSSYN DMSTPD DMSTFE DMSTYP DMSZAP 

FILEBUFF 000023 DMSEXC DMSPRT DMSPUN rMSRDC DMSROS DMSSV'I DMSTPD 
FILEBYTE 000009 DMSEXC DMSROS DMSSOP r:MSSVT 
FIL F.COUT 000002 DMSSVT 
FILE1Tr::~ 000007 Df'lSSVT 
FILEMODE 000013 DMSEXC DMSNCP DMSPRT I:MSPUN DMSRDC DMSSOf DMSSVT BMSTPD ~ 
FILEMS 000006 DMSEDI PI 
FILENAME 000048 Dl'ISINT DMSNCP DMSPRT UlSPUN DMSRDC DMSROS DMSSCT tMSS CP DHSSVT I:MSTPD t7" 

CD 
FILEREAD 000002 DMSROS DMSSOP ~ 

FILETYPE 000013 DMSBOP DMSCLS DMSINT tMSPRT DHSPUN DMSSOf DMSSVT DMSTPt I 

FINIS 000066 DMSARN DHSFNC DMS1~RE tMSLBT DI1SLDR DMStIE DMSLLU DMSOLD DM5SBI: tMSSRT DMSTMA DMSTPE c+ 
n 0 
III FIN1SLST 000004 DMSAUD DMSFNS DMSINT I 
en FIRSTDMP 000002 DMSDBG IZ 

0 
t:1 FLAG 000136 DMSEDI DMSEDX Dl1SEXT tMSFOR DMSLST DMSMVE DMSSCR DMSSRT DMSSVT DMSTPD ell 
~. FLAGLOC 000004 DMSEDX DMSSCR ~ 
1'1 FLAGS 000164 DMSFRE DMSITS DMSLBM tMSLBT DMSLDR DMSLIE DMSLSB DMSLST DMSOLI: DMSOVS DMSTPE DMSZAP ~ 
CD CD 
0 FLAG1 000077 DMSARX DMSASM DMSEXT tl'lSFLt DMSLDR DMSLIC DMSLSE Dl'1S0LD 
c+ FLAG2 000137 DMSARX DMSASM DMS1~SN tMSEDI DMSEDX DMSFLB DMSLDR DMSL1E DM5L1O DMSLSB DMSOLD DMSSCR n 
0 DMSTPD 11 
1'1 0 
~. FLAG3 000019 DMSASN DMSFLD DMsLta DMSOLD en 
CD FLCLN 000011 DMSFRE en 
en 

FLGSAVB 000002 DMSALU I:II:f 
FLHC 000008 DMSFRE CD 
FLNU 000007 DMSFRE ~ 

CD 
~ FLPA 000016 DMSFRE 11 
I FMODE 000047 DMSEDI DMSEDX DMSHXT tMSLBT DMSLDS DMSLG'I DMSLIB DMSLST DM5RDC tMSRNE DMSSCR DMSTYP CD 
~ FNAME 000062 DMSDSK DMSEDI DMSJmX tMSEXT DMSLGT DMSLIE DMSLIO DMSLST DM5PRV DMSRNE DMSRRV DMSSCR I:t 
~ 0 ... DMSSRV DMSTYP DMSIJPD DMSVPD CD 



tv LABEL COUNT REFERENCES t-' 
I I» 

tv tT .... ('I) 

tv FNBIT 000004 DMSFNS ..... 
FPRLOG 000003 DMSDBG 

I 
c+ 

H FPTR 000008 DMSEDI DMSUPD 9 t:Jj FRDSECT 000005 DMSFRE DMSSET 
Ill: FREEAD 000003 DMSUPD 

Ill: 
0 

<1 FREEFLG1 000028 DMSFRE 0-
Ill: FREEFLG2 000036 DMSFRE c: 
"- FREEHN 000007 DMSFRE 

..... 
W ('I) 

...J FREEHU 000009 DMSFRE 
0 FREELEN 000006 DMSEDI DMSEDX DMSUPD n 

H 
tn FREELN 000014 DMSBOP DMSCLS DMS'FRE 0 
"< FREELOWE 000050 DMSABN DMSARX DMSASM ' tMSDLK DMSDOS N1SDSV Dl1SFCH IMSFRE DMSINS DMSINT tMSLEM DMSLDR U1 
U1 DMSLSB DMSMOD DMSNCP tMSOLD DKSSET D~SSLN DMSSKN IMSSTG U1 
c+ 
ct> FREELOW1 000006 DMSFRE DMSSET ~ 

IS FREELU 000006 DMSFRE (I) 

FREEN EXT 000001 DKSEXT 
H\ 

t:"" ('I) 

0 FREERO 000003 DMSDIO H 
I.Q FREESAVE 000013 DMSFRE 

('I) 

..... tj 

n FRERESPG 000007 DMSFCH DMSINS DMSSET t~SSMN DMSSTG n 
FRF1B 000002 DMSFRE ct> 

I» FRF1C 000003 DMSFRE t:S 
PI FRF1E 000003 DMSFRE 

I"d 
FRF1H 000006 DMSFRE 

H FRF1L 000006 DMSFRE 
0 FRF1M 000004 DMSFRE 

I.Q FRF1N 000003 DMSFRE 
H 
III FaF1V 000003 DMSFRE 
a FRF2CKE 000003 DMSFRE 
tj FRF2CKT 000007 DKSFRE 
,1) FRF2CKX 000003 DMSFRE 
c+ FRF2CL 000012 DMSFRE 
CD FRF2NOI 000010 DMSFRE 1'1 
EI FRF2SVP 000003 DMSFRE ..... FRSTLOC 000008 DMSMOD DMSSLN ::s 
III FRSTSDID 000002 DMSLDR DMSLSB 
rt FSCBBUFF 000007 DKSDLK DMSIFC DKSZAP ..... 

FSCBD 000020 DMSBRD DKSDLK DMSIFC tMSZAP 0 
:; FSCBFLG 000005 DMSBRD 
I FSCBFM 000006 DMSDLK DMSGRN DMSIFC 
I 

<1 FSCBFN 000027 DKSDLK DMSGRN DMSIFC DMSZAP 
0 FSCBFT 000007 DMSGRN DMSZAP 
1-1 FSCEFV 000005 DMSBRD DMSDLK DKSIFC rMSZAP 
d 
EiI FSCBITNO 000011 DMSDLK 
CD FSIZE 000009 DMSEDI DMSEXT DMSLBT rMSRNE 

tv FSTBKWD 000001 DMSERS 
FSTD 000012 DMSCPY DMSEDX DMSEXC rMSFNS DMSGND DMSNCF Df1SS0P fHSTPE 



LABEL COUNT REFERENCES 

FSTDATEW 000001 DMSGND 
FSTDBC 000007 DMSDSK DMSERS DMSTPE 
FST'FAP 000001 DMSSTT 
FSTFAR 000001 DMSSTT 
FSTFAW 000002 DMSCPY DMSSTT 
FSTFB 000008 DMSCPY DMSDLK DMSFNS BMSSTT DMSZAP 
FSTFCL 000003 DMSERS DMSTPE 
F'STFINRD 000012 DMSCAT DMSCIT DMSCRD BMSEDX DMSEXT DMSINT DI1SSVN 
FSTFLAGS 000003 DMSSOP 
FSTFMODE 000008 DMSACC DMSEDX DMSNCP tMSSOP 
FSTFNAME 000003 DMSACC 
FSTFRO 000001 DMSSTT 
FSTFROX 000001 DMSSTT 
FSTFRW 000003 DMSDLK DMSSTT DMSZAP 
FSTFRWX 000002 DMSDLK DMSSTT 
FSTFTYPE 000007 DMSACC 
FSTFV 000023 DMSAMS DMSARX DMSASM tMSBRD DMSBWR DI1SCPY DMSDLK DMStSK DMSIFC DMSLBI1 DMSLKD DMSMVE 

DMSTPE DMSUPD DMSZAP 
FSTFWDP 000002 DMSERS 
FSTIC 000018 DMSACF DMSBOP DMSFRD BMSCPY DMSDLK DMSDSK DMSFNS DMSLEM DMSTPE DMSXCP DMSZAP 
FSTIL 000025 DMSAMS DMSARX DMSASM DMSBWR DMSCPY DMSDLK DMSDSK DMSIFC DMSLEM DMSLKD DMSMVE D~]STPE 

DMSUPD DMSXCP DMSZAP 
FSTITAV 000003 DMSBRD DMSCPY 
FSTL 000005 DMSARN DMSARX DMSASM tl1SDSL DMSLAF 1:""1 
FSTLRECL 000001 DMSEXC I» 

FSTM 000028 DMSAMS DMSARN DMSARX DMSASM DMSEOP DMSCPY DMSDLK DMSDSK DMSERS DMSFNS DMSIFC DMSLBM C-
eo 

DMSLKD DMSRNM DMSSTT DMSTPE DMSUPD DMSZAF I-' 
F5TN 000014 DMSAMS DMSCPY DMSDSK mISERS DMSFNS DMSRNI1 DMSTPE I 

t+ 
n FSTNOIT 000001 DMSBRD 0 
1:11 F<:TRECAV 000002 DMSBRD I 
UJ FSTRECCT 000001 DMSEDX DC 

0 
tj FSTRECFM 000001 DMSEDX Pol 
"", FSTRP 000004 DMSACF DMSBRD DMSFNS tMSTPE ~ 
H FSTRWDSK 000001 DMSSOP I-' 
eo eo 
n FSTSECT 000059 DMSACF DMSAMS DMSARN I:MSARX DMSASM DMSECf DMSBRD DMSEWR DMSCPY DMSDLK tMSDSK DMSDSL 
t+ DMSERS DMSFNS DMSGND DMSIFC DMSLAF DMSLBfI D~SLKD DMSMVE DMSRNI'l DMSSTT tMSTPE DMSUPD n 
0 H 
H DMSXCP DMSZAP a 
"", FS'l1T 000009 DMSACF DMSDSK DMSERS DMSFNS DMSRNM I>MSTPE C/) 
('D FSTWP 000010 DMSACF DMSEWR DMSFNS DMSTPE C/) 
C/) 

FSTXRDSK 000002 DMSSOP 1:0 
FSTXTADR 000007 DMSLDR DMSLOA DMSLSB DMSOLD (1) 

FSTYR 000006 DMSCPY DMSFNS ..... 
(1) 

N FTR:CCONV 000001 DMSTPE H 
I FTRDLDNS 000004 DMSTPE eo 

N 
FTRTRA~rs 000001 DMs'rPE I:' .... n 

eN FTRUCS 000001 DMSASN eo 



I\.) LABEL COUNT REFERENCES t"'" 
I At 

I\.) b" .... (1) 
.c:: FTR35MB 000001 DMSASN ..... 

I FTR7TRK 000001 DMSTPE rt 
H FTYPE 000019 DMSEDI DMSEDX DHSLDR I:MSLGT DMSLIB DMSlS'I DMSOLD DMSPRV DMSRRV DMSSCR DMSSRV DMSTYP ~ ~ FV 000014 DMSEDI Dl1SEDX Dl1SSCR ::a til 

FVS 000002 DMSINS Dl1SITE 0 
<I FVSI";KA 000002 DMSACM DMSAUD "" ::a FVSECT 000065 DMSABN DMSACC T)MSACF I:liSACM DMSALU DMSAut Dt'lSBRD DMSETE DMSETP tMSBWR DMSCIT DLiSCRD a 

" ..... 
W DMSCWR DMSCWT DMSDIO DMSLOS DMSDSK DMSERS DMSFNS DMSINT DMSITE DMSITI DMSITP DMSITS (1) 
..,J DMSLAD DMSLFS DMSMOD DMSPN'I DMSQRY DMSRNl! Dl'!SSLN DMSSCP DMSSTT DIiSTPE DMSTQQ 
0 FVSERASO 000013 DMSERS DMSRNl'1 n 

11 
U) FVSERAS1 000012 DMSERS DMSRNM 0 

t..c: FVSE'RAS2 000004 DMSERS DMSRNM rn 
rn rn 
t+ FVSFSTAD 000004 DMStlOD DMSPUN DMSSTT 
(1) FVSFSTCL 000001 DMSMOD '" • FVSFSTDT 000002 DMSSTT (I) 

Ht 
l:"4 FVSFSTFV 000001 DMSMOD (I) 
0 FVSFSTIC 000003 DMSACM DMSBTB DMSMOD 11 

\Q FVSFSTIL 000003 DMSACM DMSBTB DMSMOD (I) ..... I:' 
n FVSFSTM 000002 DMSDSK DMSSTT 0 

!<VSFST~ 000001 DMSSTT CD 
III 
I:S FXD 000023 DMSDSL DMSS3B DMSSOP DMSSQS DMS'IMA DMSTPD 
~ Fa 000025 DMSDBG DMSINS DMSITE DMSITS 

toO F1 000011 DMSDLK DMSDSV DMSEXT I:MSSTG 
H F15 000005 DMSDBG 
0 F2 000015 DMSDLK DMSITE 

\Q F255 000002 DMSCRD H 
III F256 000008 DMSCWR DMSHDI DMSHDS • F3 000009 DMS~UD DMSDLK 
t:;I F4 000016 DMSDLK DMSITE DMSTQQ 
(I) F4096 000002 DMSAI1S DMSDBD 
rt IS 000008 DMSDLK DMSXCP (1) 
H F6 000033 DI"ISDPG DlIIJSDLK DMSI'IE t"SITS l'MSSOP 
iii F6553S 000007 DMSACF DMSDSK DMSMOD tMSPNT DMSSLN DMSTCC ..... 

F7 000006 DMSEOP DMSOR3 DMSXCP I:' 
PI F800 000004 DMSACM DMSi\UD DMSDSK 
t+ GDISK 000001 DMSNUC ..... 
0 GETFLAG 000001 D!1SEDI 
I:S GET1 000002 DMSLSY 
I GIOPLIST 000001 DMSSCR I 

<I GPRLOG 000011 DMSDBG DMSITS 
0 GPRSAV 000004 DMSLDR DMSOLD ..... GRAFD::V 000001 DMSINS ~ • HALF 000002 DMSEDI DMSLDS 
(1) HEX 000041 DMSCPY DMSDBG DMSDLK t~SDO~ DMSDSV DMSEDI DMSFNS D'!SPRT DMSSSK DMSTPE tMSTYP DMSZAP 
I\.) EEXHEX 000010 D!'1SDBG 

HIPHAS 000006 DMSFCH DMSFET 



LABEL COUNT REFERENCES 

HIPROG 000002 DMSFCH 
HOLD 000012 DMSBOP DMSDsr ~MSITI 
HOLDFL.lG 000015 DMSSCR 
rADT 000003 DMSACC DMSDSI<" DMSLAD 
IC ('00003 :>MS;jOP DMSDBG 
IHADEB 000020 DMSFCH DMSMVE DMSSES DMSSCT DMSSOP ]H~SSQS DMSSVT 
IHADECB 000006 DMSSBD DMSSBS DMSSCT EMSSEB DMSSVT 
IHAJFCB 000001 DMSSVT 
IJBABT'E 000004 DMSEAB DMSDOS DMSITP 
IJBEOX 000001 DMSSTG 
IJBCCWT 000001 DMSDOS 
IJBFLG04 000001 DMSPOP 
IJBFTT.\E 000004 DMSDOS DMSFET 
IKQACB 000007 DMSBOP DMSCLS DMSVIP 
IKQEXLST 000003 DMSVIP 
IKQRPL 000006 DMSVIP 
INCRNO 000003 DMSEDI 
INHIBIT 000002 DMSDIO 
INPUT 000068 DMSARN DMSBOP DMSCPY DMSDBD DMSDBG DMSDS[ DrSDSV DMSEBr DMSFCH DMSGRN DMSITE DMSMVE 

D!1SNCP DMSNUC DMSOR 1 DMSPRV DMSQRY ])MSR~V DMSSRV DMSTFE DMSKCP EMSZAP 
INPUTSIZ 000002 DMSDBG 
INPUT1 000002 DMSDBG 
INSIZE 000006 I:'MSLBM DMSSRT 
INSTALlD 000005 DMSINI DMSPRT 1:'"1 
INTINFO 000006 DMSDOS DMSITP I» 

t:1' 
nTTR~Q 000001 DMSFCH CD 
INVLD 000003 DMSEDI I-' 
INVLDHDR 000001 DMSEDX I 

I"f" 
(") lOAD 000002 DMSEDX 0 
IX IOAREA 000002 DMSRDC DMSTYP I 
til IOBBCS~ 000003 Df"ISSBS DMSSEB tJl 

0 
t::1 IOBEECBC 000002 DMSSEB c:la 
~. IOBBECB.i? 000003 DMSSBS DMSSF.B ~ 
H IOBBFLG 000002 DMSSBS DMSSC'!' I-' 
CD CD 
n lOBCSW 000006 DMSARN DMSARX DMSASM D~jSSBS DMSSCT 
I"f" lOBDCB.i?T 000001 DMSSOP n 
0 H 
H lOBeCB 000004 DMSlFC DMSSQS 0 
~. IOBECBPT 000003 DMSSQS en 
CD rOBEND 000001 DMSSOP en 
Ul 

IOBIN 000032 DMSARN DMSARX DMSASM I:MSSBD DMSSES DMSSEE DMSSOP r:~lSS cS DMSSVT !:d 
IOBIOFLG 000045 D!'1SARN DMSARX DMSA,SM BESSBD rMSSBS DMSSC'I DMSSEB DMSSCP DMSSQS DMSSVT CD 

I-h IOBNXTAD 000003 DMSSOP CD 
tv lOEOUT 000007 DMSSBS DMSSCT DMSSQS H 
I rOBSTART 000008 DMSSOP DMSSQS CD 

tv I:' .... IOBUPD 000004 DMSSQS n 
U"I IOCOMM 000007 DMSEro CD 



tv LABEL COUNT REFERENCES t"" I DI l\J tr' - (1) 
0'1 -:::OI~ 000005 D~S:;:;DI DMS'F.DX 7 IOLIST 000051 DMSEDI DMSEDX 
H rmlODE 000003 DMSI!DI DMSEDX t+ 
t:l1 rONPSW 000006 DMSINI DMSINS DMSIOi I:MSITE 9 
III 

000012 III IONTABL DMSABN DMSHDI DMSINT rMSlOW DMSITI 0 .q IOOLD 000002 DMSDIO DMSITI PI DC roopsw 000027 DMSCIT DMSDBG DMSDIO I:MSINI DMSIOW DrJStTE Dr,SITI c: "-w IOPSW 000001 DMSITI ..... 
(1) 

..,J IOSAVE 000005 DMSITI 
0 IOS"ECT 000004 DMSABN DMSHDI DMSINT D~SITI n 
tn IPLADDR 000003 DMSBTP DMSI'NS H 

0 
~ IPLCCWl 000001 DMSINI rn en IPLPSW 000009 DMSABN DMSDBG DMSINI D~SINS en t+ 
(1) ITEM 000073 DMSERD DMSEDI DMSEDX tMSSCR DMSUPD r;:o 

• ITSEIT 000007 DMSITS (1) 

t"" JAR 000003 DMSEDI DMSEDX H'I 
(1) 

0 JCSW2 000001 DMSDOS H \Q JCSW3 000016 DMSOPT DMSSET (1) 
1-" 
n JCSW4 000005 DMSDOS DMSOPT DMSSET = n 
I» 

JFCBIND2 000002 DMSFLD DMSSOP (I) 

= JFCBMAC;K 000022 DMSSOP DMSSVT 
PI JFCBUFNO 000001 DMSFLD 

I'tI .1FCDSORG 000002 DMSSOP 
t1 JFCKEYLE 000003 DMSFLD DMSSOP 
0 JFCLIMCT 000003 DMSFLD DMSSOP 

\Q JFCLRECL 000001 DMSSVT t1 
DI JFCOPTCD 000008 DMSFLD DMSSOP 
II JFIRST 000009 DMSHDS DMSITS 
tj JFLAGS 000014 DMSDBG 
(I) JLAST 000010 DMSHDS DMSITS 
t+ JNUMB 000012 DMSHDS DMSIlfT DMSITS (I) 

JOBDATE 000004 DMSDLK DMSDOS DMSSET t1 • JRl 000008 DMSITE 
1-" JSRO 000012 DMSACF DMSACM = I» JSYfil 000002 DfilSLSY 
t+ Ic-EYCHNG 000006 DfIISSBD DfIISSVT 
1-" KEYCOUT 000004 DMSSBD DMSSVT 0 
t:» KEYFORM 000002 DMSSVT 
I KEYLNGTH 000010 DfIISSBD DMSSVT I 

.q KEYMAX 000002 DMSITS 
0 KEYNAME 000007 DMSSBD DMSSVT ..... KEYOP 000009 DfIISSBD DMSSVT d • KEYP 000008 DMSITS 
(I) KEYS 000003 DMSBTP DMSITS 
tv KEYSECT 000002 DP.SSBD DMSSVT 

fCEYTABLE 000011 !H!SSVT 



LABEL COUNT REPERENCES 

KEYTBLAD 000009 DMSSBD DMSSVT 
KEYTBLNO 000016 DMSSBD DMSSVT 
KEYTYPE 000002 DMSSVT 
KXFLAG 000020 DMSABN DMSACC DMSllUD DMSBWR DMSCIT DMSCRD DMSCWR DMSCWT DMSDIO DMSDSK tl1S'ERS D~SFNS 

DMS1TI DMSITS DMSHNM DMSTPE 
I<XWANT 000013 DMSABN DMSACC DMSllUD DMSBWR DMSCIT DMSDIC D11SDSK DMSEBS DMSFNS tMSITI DMSITS DliSRNM 

DMSTPl!: 
KXWSVC 000005 DMSCRD DMSCWR DMSCWT Dl"lSITS 
LABLEN 000003 DMSDLK DMSEXT 
LASTALOC 000004 DMS1TS 
LASTCMND 000011 DMSEXT DMSINT 
LASTCYL 000003 DMSD10 
LASTDMP 000001 DMSDBG 
LASTEXEC 000002 DMSEXT 
LASTHED 000003 DMSD10 
LASTLINE 000012 DMSDBD DMSZAP 
LASTLMOD 000002 DMSMOD DMSSLN 
LASTLOC 000001 DMSFET 
LASTREC 000014 DMSCLS DMSDIO DMSZAP 
LASTTMOD 000008 DMSITS DMSLSB DMSI~OD DMSSLN 
LASTUSER 000003 Dl1S1TE DMSSAB DMSSOP 
LDMSROS 000004 DMSABN DMSACM DMSALU 
LDRADDR 000014 DMSLDR D"'SL1O DMS)~OA tMSOLD 
LDRFLAGS 000019 DMSLDR DlIlSLOA DMSl10D tMSOLt DMSSLN t"" 
LDRRTCD 000003 DMSLDR DKSOLD I» 

LDllST 000009 DKSLDR DKSLGT DMSL1B DMSLIO DMSLSB DMSOLD t1' 
(1) 

LENOVS 000003 DMSITS DMSOVR 'I LINE 000053 DMSBTP DKSDBD DMSDBG DMSEDI DMSEDX DMSITE DMSNUC 
LINELOC 000002 DMSEDX DKSSCR c+ 

n 0 
IX LINENO 000002 DKSEDI I 
tI) LINE1 000002 DMSDBD DKSLIO IX 

0 
t::=' LINE1A 000001 DMSDBD ~ 
...,- LINE1B 000001 DMSDBD ~ 
t1 LINE1C 000001 DMSDBD ~ 
(1) (1) 

n LINKLAST 000001 DMSSAB DMSSLN DMSSTG 
c+ LINKLEN 000004 DMSEXT n 
0 LINKSTRT 000009 DMSSLN DMSSTG DMSSVT t1 
t1 0 
...,- LMCURR 000005 DMSEDI en 
(1) LMINCR 000005 DMSEDI en 
en LMSTART 000010 DMSEDI DMSEDX I:tI 

LOADLIST 000001 DMSIFC (1) 

LOADSTRT 000004 DKSINS DMSSET Ht 
(1) 

t.J LOC 000156 DMSABN DMSACC DMS.~CF tMSACM DMSALU DMSAMS DMSAUD DMSECP DMSBWR DMSCIT DMSCLS DMSCMP t1 
I DMSCRD DMSDIO DMSDLB DMSDMP DMSDOS DMSEDX DMSERS DMSEXC DMSEXT DMSFCH I:~SF!T DMSFLD (1) 

t.J DMSFNC DMSFNS DMS:FOR tMSFRE DMSGIO DMSGLE DMSHDI DMSHtS DMSIFC DMSINS Dl'JSINT DMSITE = -' n 
-..J DMSITP DMSITS DMSLAD tMSLAF DMSLDR DMSLG'I DMSLIB DMSLSE DMSMOD DMSOLD tMSOPL DMSOR1 (1) 



tv LABEL COUNT REFERENCES 1:"4 
I $:I) 

tv t:J" 
~ CD 
ex> DMSOVR DMSPRT DMSPUN DMSQRY DKSRNE DKSROS DKSSAB DKSSET DMSSLN DKSSOP tKSSQS DKSSTG I-' 

DMSSVN DMSSVT DKSSYN tKSTPE DKSTYP DMSUPD DMSVIP DKSVPD DMSVSR DMSXCP DMSZAP I 

LOCCNT 000039 DMSACM DMSBTB DKSEDX tMSFET DMSFRE DKSINS DMSINT DMSLDR DMSLOA DMSMOD DMSOLD DMSSET 
("f-

H 0 
t:x1 DMSSLN DMSSMN DMSSTG I 
3 LOCCT 000025 DMSLDR DMSLSB DMSOLD 3 

0 
-< LOWSAVE 000007 DMSDBG DMSSVT C:lI 
3 LSTFINRD 000005 DMSCIT DMSCRD DMSSVN r:: 

....... LTK 000009 DMSAMS DMSDOS DMSITP DMSSET I-' 
LV CD 
...,J LUB 000004 DMSDLK DMSDSV 
0 LUBCLB 000002 DMSDSV n 

LUBP 000002 DMSDSV 
t1 

Ul 0 
"< LUBPR 000002 DMSDLK DMSDSV en 
en LUBPT 000016 DMSAMS DMSBOP DMSCLS tMSDLB DMSFCH DMSLLU DMSOPL lJMS P BV DMSBRV DMSSET DMSSBV DMSXCP en 
("f-

CD LUBRES 000003 DMSDLK DMSDSV ~ 

iii LUBRLB 000003 DMSDLK DMSDSV CD 

1:"4 LUBSLB 000001 DMSDSV 
.... 
CD 

0 LUB014 000002 DMSDLK DMSDSV t1 
\Q LUNDEF 000012 DMSLDR DMSOLD CD 
.." MACD1RC 000011 DMSABN DMSSCT DMSSOP tMSSTG DMSSVT ~ 

0 0 
MACLBSV 000004 DMSGLB CD 

$:I) MACL1BL 000009 DMSGLB DMSQRY DMSSCT tMSSOP DMSSTG DKSSVT 
:::;, 
C:lI MACRO 000003 DMSED1 

I'd 
MA1NAD 000003 DMSEDX 

t1 MA1NH1GH 000037 DMSARX DKSASM DMSDOS tMSFCH DMSFRE DMSINS DMSLDR llMSLCA DMSLSE DMSSET DMSSMN DMSSTG 
0 MAINLIST 000012 DMSDOS DMSFCH DMSSMN DMSSTG 

I.Q MA1NSTRT 000008 DMSDOS DMSFCH DMSSMN tMSSTG 
t1 MAX 000013 DMSASM DMSFRE Pol 
iii MAXCODE 000001 DMSFRE 

d MCKM 000014 DMSINI DMS1NS DMS1TS 
CD MCKNPSW 000001 DMSIN1 
("f- MDPCALL 000004 DMSMDP DMSMOD 
CO M~MBOUND 000008 DMSLDR tMSOLD t1 
II M1SFLAGS 000043 DMSABN DMSACC DMSAMS tMSARN DMSARX DMSASM DMSCAT I!MSCIT DMSCPY DMSCRD DMSEDI DMSEXC ..,. DMS1NS DMSINT DMS1T1 DKS1TS DMSLBM DMSLB'I DMSLKD N~SQRY DMSSET DMSSRT tMSSTG DMSUPD 
::J 
$:I) MODDISP 000001 DMSZAP 
("f- MODFLGS 000027 DMSACM DMS1NS DMSLDR Dl'ISLSB DMSI'1DP DMSMor NISOLD IIMSSET ..,. rODGNALL 000002 DMSMOD 
0 
:::;, MODGNDOS 000003 DMSMOD 
I MODL1ST 000002 DMSITS DMSSLN 
I MSGFLAGS 000025 N1SCAT DMSCIT DMSCRD tMSCIjoJR DMSEDI DMSEX'! DMSINS I'MSINT DMSQRY tMSSET DMSTYP 

-< 
0 MVCNT 000001 DMSDBG 
I-' MVCN'!'l 000004 DMSDBD DMSDBG DMS1TE DMSNUC 
J::l MVCNT2 000001 DMSDBG • (1) ~D1KQLAB 000002 DMSXCP 

tv NEED 000007 DMS2XT DMSLDR DMSOLD 
NEGITC; 000013 DMSCAT DMSEXC DMSINT r:~SITS DMSQRY DMSSET 



LABEL COUNT REFERE~CFS 

NFW1JLKS 000005 DMSSVT 
NElfMODE 000009 DMSEDI DMSRNM 
~EWNAME 000020 DMSEDI DMSRNM DMSUPD 
NEWTYPE 000005 DMSEDI DMSRNM 
NEXTO 000001 DMSITI 
NICCIBM 000008 DMSNCP 
~ICCTLH 000001 DMSNCP 
NICDISA 000004 DMSNCP 
~ICEPMD 000002 DMSNCP 
NICGRAF 000004 DMSNCP 
N'ICLBSC 000001 DMSNCP 
NICLGRP 000002 DMSNCP 
NICLINE 000003 DMSNCP 
NICLPT 000005 DMSEOP DMSCLS DMSDLB DMSLLU DMSXCP 
NICMLTP 000001 DMS~CP 

NICRCPU 000028 DMSNCP 
~ICRSPL 000006 DMSNCP 
~ICSDLC 000001 DI1SNCP 
NICSWCH 000001 DMSNCP 
NICSWE? 000001 DMSNCP 
:iICTEL2 000008 DI1SNCP 
:iICTERl"J 000003 DI1SNCP 
NOABBR'::V 000006 DMSINA DMSINT DMSQRY tl'lSSET 
tWAUTO 000007 DMSDLK DMSLDR DMSL.IB I:MSLOA DMSLSB DMSCLr t"" 
NOnUp 000007 DMSLDR DMSLSB DMSOLD I» 
N'OERASE 000008 DMSARN DMSARX DMSASM I:MSLIO DMSLOA DMSMCt DMSUPD 0-

(1) 
~WIMPCP 000007 DMSINT DMSCRY DMSSET t-J 
NOIMPEX 000004 DMSINT DMSCRY DMSSET I 
NOINV 000005 DMSLDR DMSLOA DMSL,SB U1SOLt c-t n () 

tIC ~WLIBE 000009 DMSLBT DKSLDR DMSLIB U1SLOA DMSLSB DMSOLI: I 
UJ ~OMAP 000007 DMSDLK DMSLIO DMSL.OA UISLSB ::a 

:iOMAPFLG 000003 DMSMOD 0 
~ ,::a, ..... Nap 000014 DMSINI DMSXCP d 
t1 NOPAGREL 000005 DMSABN DMSINT DMSQRY rMSSET t-J 
(I) (1) 
n NORDYMSG 000002 DMSSET 
c+ ~OI:lDYTIM 000006 DMSINT DMSQRY DMSSET n 
0 NOREP 000006 DMSLDR DMSLOA DMSr.SB IMSOLD DMSUPD t1 
t1 0 ..... NOSLCADR 000006 DMSLDR DMSOLD en 
(1) NOSTDSYN 000005 DMSINA DMSQRY DMSSYN en en NOSYS 000002 DMSEXC !:G 

N01EXT 000009 DMSDOS DMSFCH DMSI'ET (1) 

~WTIME 000002 DMSPUN H\ 

NO'l'YPI'IG 000011 DMSCAT DMSCIT DMSCRD £l1SCWR DMSEDI DI1SEX'I DMSTNT DMSTYP CD 
to..) H 
I NOVMRElI.D 000003 DMSINS DMSINT DI1SSET CD 

to..) 
NRl1~ET 000010 DMSABN DMSITS DMSV'IP t:J ... 0 

\Q ~RMSAV 000019 DMSITS (1) 



"> LABEL COlH'T REFERENCES t"'4 
I I:» 

"> 0-"> (I) 
0 N~MUSA'l 000001 DMSITS 7' NUCCODE 000004 DMSFRE 
H KUCKEY 000002 DMSFRE DMSSET c+ 
~ NUCON 000428 DMSABN DMSACC DMSACF tMSACM DMSALU DMSAMS DMSARE I:MSAllN DMSARX DMSASM DMSASN DMSAUD 9 
til 

DMSBAB DMSBOP DMSERD rMSBTB DMSBTP DMSHIR Dfl!SCAT DMSCIC DMSCIT I:MSCLS DMSCMP DMSCPF til 
0 

~ DMSCPY DMSCRD DMSCWR tMSCW'I DMSDBD DMSDEG DMSDIO DMSD!.E DMSDLK DMSDMP DMSDOS DMSDSK ~ 
til DMSDSL DMSDSV DHSEDI tMSEDX DI1SERR DMSERS DMSEXC rMSEXT DMSFCH DMSFET tMSFLD DMSFNS C ........ 

DMSFRE DMSHDI I:MSIIC DMSINlI DMSINI DMSINM ..... 
W DMSFOR DMSG10 rMSGLB D MSGNl' D~SHDS DMSINS (I) 
...,J DMS1NT DMSIOW I'MSITE I:I1S1T1 DMS1TP DMSITS DMSLAD DMSLlIF I'MSLEM tMSLET DMSLDR DMSLDS 
0 DMSLFS DMSLGT DMSLIB DMSL10 DMSLKD DMSLLU DMSLOA DMSLSE DMSLST DMSLSY DMSMDP DMSMOD n 
til DMSMVE DMSNCP DMSOLD tMSOPL DMSOPT DMsca1 Dl"SOVR tMSOVS DMSPIO DMSPNT DMSPRT DMSPRV i'1 

0 
~ DMSPUN DMSCRY DMSRDC rMSRNE DMSRNM DMSROS DMSRRV DMSSAE DMSSES DI1SSCN DMSSCT DMSSEE Ul 
Ul DMSSET DMSSLN DMSSMN tp.ssop DMSSQS DI1SSR'I DMSSRV rMSSSK lJl1SSTG DMSSTT DMSSVN DMSSVT Ul 
('f' 

CD DMSSYN DMSTIO DMSTPD rl']STPE DMSTQQ DMS'IYF DMSUPD DMSVIE DMSV1P DI1SVSR tMSXCP Dl'lSZAP l:O • ~UCRSV3 000001 DMSDOS CD 

t"'4 NUM 000574 DMSl\B~~ DMSACC DMSAMS tI'lSAR~ DMSARN DMSARX DMSASl1 I:MSASN Dl1SBOP I:MSETE tMSBTP DMSBWR HI 
CD 

0 Dl1SCIO DMSCLS DMSCMP DMSCPY DMSDIO DMSDLE Dt1SDLK DMStMF DMSDOS DMSDSK I:MSDSL DLiSDSV i'1 
\Q DMSEDI DMSEDX DMS'ERS rM~EXC DMSFET DMSFLr DMSFNC I:MSFNS DMSFOR DMSFRE DMSGND DMSIFC CD .... ::s 
0 DMS1NA DMSINS DMSITP I:MS1TS DMSLBM DMSLB'I DMSLDR DMSLrs DMSLIO DMSLST DMSMOD DMSMVE 0 

I:» 
~MSNCP DMSOLD DMSOPL rMSOR1 DMSOVR DMSPIC D~SPRT DMSPUN DMSQRY DMSRDC DMSREA DMSRNM CD 

t:I DMSSCR DMSSCT 1'MSSET DMSSOP DMSSRT DMSSSI< DMSSVT DMSSYN DMSTPI: DMSTPE DMSTYP DMSUPD 
~ DMSSCR DMSSCT Dl1SSET DMSSOP Dl1SSRT Dl1SSSI< DMSSVT DMSSYN DMSTPI: DMSTPE DMSTYP DMSUPt 
~ 

DMSV1B DMSVIP DMSVPD DMSZAP 
i'1 NUMBYTE 000005 DMSLDR DMSLIB DMSOLD 
0 NUI1F1N'RD 000014 DMSABN tMSBTP DMSCAT tMSC1T DMSCRD DMSSVN 

\Q NUMLOC 000002 DMSEDX 1'MSSCR i'1 
I:» NUMPNDWR 000016 DMSC1T DMSCRD DMSCWR DMSCWT DMSITE DMSSVN 
IS NXTSYM 000004 DMSLDR L·MSLSY DMSOLD 
t:1 OFF 000042 DMSBTP 1'MSCLS DMSDEG DMSEDI DMSEXT DMSITS D!"ISOVR Dl'ISSET DMSUPI: DMSXCP 
CD OLDEST 000001 DMSITI 
c+ OLDPSW 000071 DMSAEN DMSBAB DMsnos DMSERR DMSIFC Dl1SITS Dl1S0VS DMSSAE DMSSLN DMSSTG DMSSVT DMSVIP (1) 

i'1 ON 000047 DMSBOP Dl1SED1 DMSEDX DMSERS DMSEXT DMSITS D~SLDS DMSOR1 DMSOVR DMSOVS DMSRNM DMSSET 
• DMSUPD DMSXCP .... OPSECT 000029 DMSABN DMSARX DMSASM I:MSCPY DMSCRD DMSCWII DMSCWT DMSrEG DMSEXC DMSEXT DMSINS DMSIN'I t:I 
PI DMSROS DMSSBD DMSSBS DMSSCT DMSSEB DMSSOF Dt1SSQS DMSSVN DMSSVT 
r+ OPSW 000016 DMSITP .... 

OPTFLAGS 000030 DMSABN DMS1NA DI1SINS tMS1NT DMSQRY DMSSET DMSSYN 0 
t:I OPTNBYTE 000001 DMSSTG 
I ORG 000004 DMSDBG I 
~ OSADTDSK 000009 DMSLDS DMSROS 
0 OSADTFST 000005 DMSABN DMSALU DMSROS ..... OSADTVTA 000008 DMSACM DMSLDS DMSROS C • OSADTVTB 000008 DMSLDS DMSROS 
CD OSFST 000013 DMSABN DMSALU DMSBOP DMSDLK DMSFCH DMSMVE DMSROS DMSRRV DMSSOP I:MSSRV DMSSTT 
to.) OSFSTALT 000009 DMSROS 

OSFSTBLK 000005 DMSMVE 'DMSROS DMSSOP 
OSFSTCHR 000014 DMSROS DMSSOP 



LABEL COUNT REFERENCES 

OSPSTDi3K 000002 DMSBOS 
OSPSTDSK 000006 DPlSDLK DMSFCH DMSHOS D~SHRV DMSSRV 
O~FSTD:N 000002 DMSROS 
OSPSTEWD 000007 DMSROS 
OSlSTEX4 000006 DMSROS 
OSlSTFLG 000023 DMSROS DMSSTT 
OSFSTFM 000007 DMSBOP DMSROS DMSSTT 
OSllSTFVF 000002 DMSROS 
OSFSTLRL 000005 DI1SMVE DMSROS DMSSOP 
OSFSTLTH 000005 DMSABN DMS1LU DMSIWS 
OSFSTMEM 000001 DMStWS 
OSFSTMVL 000001 DMSROS 
OSFSTNTE 000011 DMSROS 
OSFSTNXT 000004 DMSABN DMSALU DMSHOS 
OSFSTRFM 000012 DI1SBOP DMSfilVE DMSR.OS tMSSOP 
OSFSTRSW 000009 DMSROS 
OSFSTTgK 000008 DMSROS 
OSFSTTYP 000003 DMSROS 
OSFSTUMV 000001 DMSROS 
OSFSTXNO 000005 DMSBOP DMSROS 
OSFSTXTN 000013 DMSBOP DMSDLK DMSF'CH UJSROS DMSijRV DMSSRV 
OSIOTYPF 000016 DMSARX DMSASM DMSSHS D~SSOP DI1SSQS DMSSVT 
OSMODLDi 000013 DI1SABN DI1SINS DMSSET 
OS-RESET 000010 DMSEXT DMSINT DMSLDR tfilSOLD DMSSLN DMSSVT ~ 
OSSFLAGS 000059 DMSARN DMSARX DMSASM tfllSC1T DMSEXT DMSIFC DMSINT DMSITE DMSLDH DMSLIB DMSL10 DMSOLD I» 

DMSSLN DMSSMN DI1SSTG DHSSVN DMSSVT t:f 
(1) 

OSSMNU 000005 DMSSMN t-I 
OSTEMP 000029 DMSBAB DMSDOS DfIISSLN U1SSV'l' I 

OSWAlT 000006 D~lSCIT DMSITE DMSSVN r+ 
n (') 

CiI OUTHUF 000053 DMSLDR DMSLGT DI1SI.IB 1:M5L1O DMSLSB DMSOLD DMSRRV DMSSRV I 
til OIJTPTl 000010 DMSDBG 3 

0 
~ OUTPUT 000034 DMSLLJ( DMSDSL DMSGRN tMSLDR DMSLlO DMSMVE D~SOLD DMSCRl DMSOVS DMSQRY tMSTPE DMSXCP a. 
..... OVAPP 000004 DMSOVR DMSOVS d 
1'1 OVBPF 000005 DMSOVR DMSOVS ~ 
(J) (1) 

0 OVF1F 000002 DMSOVR DMSOVS 
r+ OVF1FS 000002 DMSOVR DMSOV~ n 
0 OVF1GA 000002 DMSOVR DMSOVS 1'1 
1'1 0 .... OVF1GB 000003 DMSOVR DMSCVS til 
(1) OVF1GS 000002 Dl1S0VR DMSOVS til 
til OVF10N 000011 DMSOVR DMSOVS l:d 

OVF1PA 000002 Df'!SOVR DMSOVS (1) 

OVP2CM 000003 DMSOVR Drsovs H\ 
(1) 

....., OVF2NR 000003 Dl'1S0VR DMSOVS 1'1 
L OVF20S 000003 DMSOVR DMSOVS (1) 

....., 
OVF2ST 000001 DMSOVS 1:1 ....., 0 - OVF2WA 000002 DMSOVR ('0 



~ LABEL COUNT REFERENCES t'"I 
I S» 
~ t::t 
~ ('l) 
~ OVSAFT 000011 DMSITS DMSOVS ~ OVSECT 000003 DMSITS DMSOVR t+ 
H OVSHO 000004 DPISCIT DMSCVR DHSOVS ~ bj OVSON 000008 DMSCIT DMSITS DMSOVR I:MSOVS 
01: OVSSO 000006 DMSCIT DPlSOVR DPlSOVS a: 

0 
c: OVSTAT 000029 DHSCIT DMSITE DMSITS I:HSOVR Dt.lSCVS Pol 
tlC PACK 000029 DPISASN DHSBOP DHSBTP I:HSCIT DHSCPY DHSDLI< D11SEDI OMSFLI: DMSLIO DMS~NE DMSTl1A c:: 

...... 
PADBUF 000017 DHSEDI DMSEDX ~ 

w CD 
-...J PADCHAR 000007 DMSEDI DMSEDX 
0 PARMLIST 000013 DMSGRN DHSLDR DHSLIO I:MSOLD n 
til PCPTR 000004 DMSBAB DHSDOS DHSITP 11 

0 
"< PCTVSAM 000002 DMSFCH DHSSTG (Jl 

rn PDSBLKSI 000008 DHSSVT rn 
c+ 
CD PDSDIR 000003 DHSSVT !:O 
a PDSSECT 000002 DHSSTG DHSSVT CD 

PENDREAD 000022 DHSCIT DHSCRD DMSCWR I:MSCWT DMSITE DMSSVN toft 
t-t CD 
0 PENDWRIT 000011 DMSCIT DHSCWR DHSSVN 11 

I.Q PGHNPS'il 000006 DHSABN DHSINS DMSITP CD ..... 
PGMOPSW 000017 DHSABN DMSDBG DHSITP I:MSSAB I:f 

n n 
PGHSECT 000006 DHSITP DHSSAB DHSSLN I:P.SSTG DHSSVT CD 

S» PIBADR 000010 DHSBAB DHSDOS DHSITP 
I:f 
Pol PIBFLG 000001 DHSDOS 

"tI 
PIBPT 000022 DHSAMS DMSBAB DHSEOP I:MSCLS DMSDOS DPlSITf DMSSET 

11 PIBSAVE 000015 DHSBAB DHSDOS DHSITP 
0 PIB2PTR 000003 DHSDOS DMSVSR 

I.Q PICADDR 000004 DHSITP DMSSTG 
11 
S» PIE 000002 DHSITP 

• PIK 000014 DHSBAB DHSDOS DHSITP I:MSVSR 

t:1 PLIST 000123 DHSBOP DHSBRD DHSBWR I:MSCLS DHSDIO DMSDLI< DliSDMP DMSDSV DHSEDI DHSEDX I:HSEXC DMSINT 
CD DHSLBH DHSHDP DHSHVE tMSRNE DHSSOP DMSSVT DMSTIO DMSUPD 
t+ PLISTSAV 000018 DHSLDR DMSLIO DMSOLD 
CD PHOTFND 000008 DHSDOS DHSFCH DMSFET 11 .. PO 000015 DHSDLK DMSDSL DHSFCH tMSLDS DMSNCP DMSRCS Dl1SSBS DHSSEE DMSSOP .... POINTER 000026 DHSFRE 
::t 
S» POU 000001 DMSLDS 
t+ PPBEG 000002 DMSDOS .... 

PPEND 000018 DMSDOS DMSFCH DHSSET tHSSHN DMSSTG DMSVSR 
0 
I:f PREVCMND 000005 DMSEXT DMSINT 
I PREVEXEC 000001 DHSEXT 
I PREVIOUS 000017 DHSLBM DMSSBS DMSSOP I:HSSQS DMSSVT 
~ 
0 PREXIST 000006 DHSLDR DMSOLD 
~ PRFPOFF 000009 DMSDBG DMSFRE DHSITS DMSQRY DHSSFT = • PRFTSYS 000006 DMSINS DHSITS DHSLDR I:MSMOn DMSSLN 
CD PRFUSYS 000005 DMSASM DMSITS DHSLDR DI1SHOD DHSSLN 

~ 
PRHOLD 000003 DHSLDR DMSLOA 
PRINTER1 000001 DMSDBD 



LABEL COUNT REFERENCES 

flRINTLST 000001 DMSSEB 
PROCERR 000004 DMSGRN DMSLKD 
PROTFLAG 000020 DMSASM DMSDBG DMS11 RE DMSINS DMSITS DMSLDR DMSMOD DMSCRY DMSSET DMSSLN 
PRVCNT 000012 DMSLDR DMSOLD 
PS 000019 DMSDSL DMSFCH DMSUVE DMSROS DMSSBD DMSSBS DMSSCT DMSSEE DMSSOP DMSSQS DMSSVN DMssv'r 
PSAVE 000011 DMSITP 
PSW 000003 DMSLDR 
PTR1 000015 DMSEDI DMSEDX DMSSCR DMSUPD 
PTR2 000038 DMSEDI DMSEDX DMSSCR DMSUPD 
PTR3 000008 DMSEDI DMSEDX 
PUBADR 000017 DMSBOP DMSCLS DMSDLK t~SDSV DMSLLU DMSPRV DI'ISXCP 
PUBCUU 000013 DMSBOP DMSCLS DMSDLK tMSDSV DMSLLU DMSPRV Dl!SXCP 
PUBDEVT 000044 DMSBOP DMSCLS DMS])LK DMSLLU DMSXCP 
PUBDSKM 000002 DMSLLU DMSXCP 
PUBPT 000017 DMSAMS DMSASN DMSBOP I:MSCLS DMSDLB DMSDLK DMSDSV DMSFCH DMSLLU I:MSPRV DMSRRV DMSSET 

DMSSRV DMSXCP 
PUBTAPM1 000005 DMSBOP DMSCLS DMSXCP 
PUBTAPM2 000016 DMSBOP 
PUBTAP7 000001 DMSBOP 
PUNCHLST 000001 DMSSEB 
PWAIT 000001 DMSPIO 
QQDSK1 000007 DMSACM DMSDIO DMSl"NS tMSFOR DMSITI DMSNUC 
QQ'DSK2 000007 DMSDIO 
QQTRK 000006 DMSDIO DMSTQQ t"'" 
OS 000003 DMSNCP DMSSOP S» 
QSWITCH 000003 DMSCRD DMSINT t:r 

RA 000047 DMSDLK 
~ ..... 

RADD 000005 DMSLBT DMSLGT DMSLIB I 

n RANGE 000012 DMSEDI rt 
3 RDBUFF 000002 DMSSEB 

0 
I 

til RDBUFLN 000001 DMSNCP tie 

tj RDBUFNO 000001 DMSL~CP 
0 
PI 

~. aDCCW 000001 DMSSEB = 11 
to RDCONS 000001 DMSINI ..... 
n RDCOUNT 000004 DMSPRV DMSRRV DMSSEB DMSSRV ~ 

rt RDDATA 000027 DMSINI DMSPRV DMSRRV DMSSRV n 0 
H READ 000044 DMSBOP DMSBRD DMSCLS tI1SCMP DMSDIO DMSDLE DMSDSK DMSDSL DMSDSV DMSFCH Dl~SRDC DMSSBS H 
~. DMSTPE 

0 

to m 
m T:~ EADBLK 000003 DMSROS DMSSVT m 

READBUF 000031 DMSLDR DMSLGT DMSLIB rMSNCP DMSOLD ~ 
READCNT 000015 DMSBRD DMSEXT DMSPCH to 
READLST 000002 DMSDLR DMSSEB tit 

~ REALTIMR 000006 DMSIOW DMSITE DMSSVN 
(I) 
H , 

RECS 000002 DMSEDX (I) 
~ 
~ REDERRID 000005 DMSCWR DMSINT DMSQRY tMSSET r:s 

n w IIHFCMD 000004 DMSLDR DMSCLD (I) 



~ LABEL COUNT REPEIJENCES t'4 
I DI 

IV ~ 
~ (D 
~ ilEPLG1 000008 DMSLDR DMSOLD .... 

3EPLG2 000004 DMSLDR DMSOLD I 
c+ 

1-1 REFLIB 000006 D!I'SLDR DMSOLD 
Cf ~ QEFUND 000004 DMSLDR DMSOLD 

DC REGSAV 000025 DMSZDI DMSIHS Dr!SUPD tMSVSR ::. 
0 .... REGSAVX 000007 DMSEDI Q. 

DC REGSAVO 000030 DMSACF DMSACM DMSALU tI1SAUD DMSLAD DttSLFS .::: 
"- REGSAV1 000012 D~SACF DMSERS DMSRNM 

..... 
W (D 
'i RFGSAV3 000036 DMSBRD DMSBWR DMSFNS tMSMOD DMSPNT DMSSTT 
0 QEG13SAV 000003 DMSLDR DMSOLD n 
en RELPAGES 000020 DMSABN DMSAMS DMSARN t~SARX DMSASr! DMSCPY DHSEDI DMSINT DttSLEP. I:MSLBT tMSLKD DHSSR'I t1 

0 
~ DMSCiTG DMSUPD til 
til NELPHSE 000002 'DMSFCH til 
c+ 
CD 1lEPCNT 000010 DMSEDI D!'!SEDX !:O 

• RESET 000103 DMSACC DMSAMS DMSARN tMSARX DMSASr! DMSECF DMSBTB DMSETP rMSBWR DMSCLS DMSCPY DMSDLB m 
t'4 Dr!SDLK DMSDSL D!1SI'SV tl1SEDI DMSFLD DMSFOB DMSIFC I:MSITE DMSITP DMSLBM tMSLBT DMSLDR HI 

(1) 
0 DMSLDS DMSLSB DMSfHE DMSOLD DMSCPT DMSPRV DI'lSBRV DMSSAE DMSSCT NISSET DMSSOP DMSSR'I 1"1 

\Q DMSSRV DMSSVT DMSTPE DMSUPD DMSVIB DMSVlf Dro:SZAP (1) 
~. ::I 
n RETREG 000009 DI1SI:IO DMSLDR DY-SLST D~SOLr n 

'" 
RET~YBIT 000002 Dl'lSSAB (1) 

= RETSAV 000006 DMSDBG DMSVIP 
g, RETT 000005 DMSLSB 

td RFIX 000001 DMSLGT 
t1 RFPRS 000001 triSOVS 
0 RGPRS 000007 DMSINS DMSITS DMSOVS DMSSET 

\Q !iGPR11 OOOOO~ DMSITS t1 

'" RGPR8 000001 DMSOVS 
• RITEM 000007 DMSLBT DMSLGT DMSLIB 
t::1 RLDCONST 000008 DMSLDR DMSOLD 
(D ~L3NG 000002 DPlSLGT 'flMSLIB 
c+ RMC)GBUF 000011 DMSINT CD 
H RI'lSROPEN 000001 DMSEOP 
• aNUM 000002 DMSLGT DMSLIB .... aPLACB 000003 DP!SVIP I:' 

'" RPLAREA 000001 DMSVIP 
c+ ~PLARG 000001 DMSVIP 
~. 

~PLASY 000002 DMSVIP 0 
ts RPLBUFi 000001 DKSVIP 
I RPLCHAIN 000006 DMSVIP I .... ~PLECP.?~ 000004 DMSVIP 

0 RPLEOFDS 000001 D!'fSVIP .... RPLFDBKC 000003 DMSVIP a • 3PLFLAS 000004 DI1SVIP 
CD RPLIST 000005 DHS~DI DMSRDC 
t\) QPLKEYL 000001 t!'!SVIP 

RPLNUP 000001 DMSVIP 



LABEL COUNT REFERENCES 

RPLOPT 1 000004 DMSVIP 
RPLOPT2 000001 DMSVIP 
RPLRLEN 000001 DMSVIP 
RPLRTNCD 000006 DMSVIP 
RPLST 000002 DMSYIP 
RPL~TRID 000001 DMSVIP 
RPLUPD 000001 DMSVIP 
RPLVLERR 000001 DMSVIP 
RSTNPSW 000002 DMSDBG 
RUN 000003 DMSCLS DMSGRN 
RWCCW 000003 DMSDIO 
aWCNT 000004 DMSACF DMSAUD DMSMOD 
RWFSTRG 000009 DMSAUD DMSBRD DMSBWR DMSFNS 
nWMFD 000010 DMSACM DMSAUD 
aO 002423 DMSABN DMSACC DMSACF D~SACM DMSALU DMSAMS DMSARE DMSARN DI'!SARX DMSASM DMSASN DMSAUD 

DMSBAB DMSBOP DMSBRD tMSBTB DMSBTP DMSBWB DMSCAT DMSCIC DMSCIT DMSCLS DliSCMP DMSCPF 
DMSCPY DMSCRD DMSCWR DMSCWT DMSDBD DMSDBG DMSDIO DMSDLE DMSDLK DMSDMP DMSDOS DMSDSK 
DMSDSL DMSDSV DMSEDC DMSEDI DMSEDX DMSERB DMSERS DMSEXC DMSEXT DMSFCH DMSFET DMSFLD 
DMSFNC DMSFNS DMSFOR DMSFRE DMSGIO DMSGLE DMSGND DMSGHN DMSHDI DMSHDS DMSIFC DMSINA 
DMSINI DMSINM DMSINS DMSINT DMSIOW DMSITE DMSITI DMSITF DMSITS DMSLAD DIiSLAF DMSLBM 
D~SLBT DMSLDR DMSLDS D~SLFS DMSLGT DMSLIE DMSLIO DMSLKI: DMSLLU DMSLOA DMSLSB DMSLS'I 
DMSLSY DI1SMDP DMSMOD I:MSMVE DMSNCP DMSCLD DMSOPL DMSOPT DMSORl DMSOVR I:MSOVS DMSPNT 
DMSPRT DMSPRV DMSPUN r:MSQRY DMSRDC DMSBEA DMSRNE DMSRNM DMSROS DMS RBV DMSSAB DMSSBD 
DMSSBS DMSSCN DMSSCR D~SSC'I DMSSEB DI1SSET DMSSMN DMSS CP DMSSQS DMSSRT DMSSRV DMSSSK t"'1 
DMSSTG DMSSTT DMSSVN DMSSVT Dl"lSSYN DMSTIC DMSTMA tMSTFD tliSTPE DMSTQQ I:'MSTRK DMSTYP ~ 

tr DMSUPD DMSVIB DMSVIP DMSVPD DMSVSR DMSXCf LMSZAP (1) 
Hl 006574 DMSABN DMSACC DMSACF rMSACM DMSALU DI1SAMS DrSABE DMSAilN DM.S ARX DMSASM Dt1SASN DMSAUD ...... 

DMSBAB DMSBOP Dl'ISBRD DMSBTB DMSBTP DMSBWR DMSCAT DMSCIO DMSCIT DMSCLS tMSCMP DMSCPF I 
t+ 

n DMSCPY DMSC~D DMSCWR DMSCW'I Dl'lSDBD DMSDEG DMSDIO DMSI:LE DMSDLK DMSDMP DMSDOS DMSDSK 0 
011 DMSDSL DMSDSV Dl'ISEDC DMSFDI DMSRDX DMSERR t~SERS DMSEXC DMSEXT DMSFCH I:MSFET DMSFLD I 
en DMSFNS DMSFOR DMSFRE DI1SGIO DMSGLB DtlSGNt DIIlSGRN DMSHr:I DMSHtS tMSIFC DMSINA DMSINI 131 

0 
'=' DMSINM DMSINS Dl'ISINT DMSIOW Dl'ISITE DMSITI DMSITP Dl'ISITS DMSLAt DMSLAF tl~SLEM DMSLBT PI .... DMSLDR Dl'ISLDS DMSLFS DMSLGT DMSLIB DMSLIC DMSLKD D11SLLU DMSLOA DMS'LSB tMSLST DMSLSY Q 
H DMSMDP DMS~IOD DMSMVE D~SNCP DMSOLD DMSCPl D~1S0PT DMSCIl1 DMSOR2 DMSOR3 tl'lSOVR Df.:.SOVS ...... 
(1) (1) 
0 DMSPIO DMSPNT Dl'ISPRT DMSPRV DMSPUN DMSQBY D~SRDC DMS R:EA DMSRNE I:MSRNM DII1SROS DMSRRV 
t+ DMSSAB ~MSSBD Df'lSSBS DMSSCN DMSSCR DMSSC'I DMSSEB DMSSET DMSSMN tMSSOP DlHSSQS DMSSRT n 
0 H 
H DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSV'I DMSSYN DMSTIC DMSTMA DMSTPD I:MSTPE DMSTQQ 0 .... DMSTRK DMSTYP DMSUPD tMSVIB DMSVIP DMSVPr;. tMSVSR DMSXCP DMSZAP en 
ro R10 001820 DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD DMSBAE en 
en DMSBOP DMSBRD DMSBTP r:MSBWR DMSCIO DMSCLS Dl'lSCMP I:l'ISCPF DMSCPY r:MSCWR DMSCWT Dl'ISDBD ~ 

DMSDBG DMSDIO Dl'ISDLB DMSDOS DMSDSL DMSDSV DMSEDC tMSEDI D!1SEDX DMSERB DMSERS DMSEXC (1) 

DMSEXT D.MSFCH DMSFLD DMSFNS DMSFOR DMSFRE DMSGIO Dl'!SGRN DMSHDI Df'lSHI:'S DMSINJ DMSINM HI 
(1) 

tv DI1SINS DMSINT DMSIOW DMSITE DMSITI DMSITF Dl"ISITS DMSLAt DMSLBM DMSLBT DMSLDR DMSLDS H 
I DMSLFS DMSLGT DMSLIO DMSLKD DMSLLU DMSLSE DMSLST DMSMCI: DMSMVE DMSNCP tMSOLD DMSOPT (1) 

tv DMSPIO DMSPRT DMSPRV DMSPUN DMSQRY DMSRDC Dl':ISRNE tMS RNM DMSROS DMSRRV DMSSAE DMSSBD 1::1 
IV 0 
IJ1 DMSSCR DMSSET DMSSMN DMSSOP DMSSQS DMSSRV DI1SSTG DMSSTT DMSSVN DMSSVT DMSTl'IA DMSTPD (1) 



I'.) LAEEL COU8T REFEREN:ES t;-t 

I III 
I'.) tT 
I'.) (1) 

0\ DMSTPE DMSTRK Dr1STYP tMSUPD DMSVIP DMSXCF D"lC;~AP \-I 
I 

a11 000746 DMSl\CC DMSACF Dl'lSACl': nY-SALU DMSAMS DMSARE D~SARN ,)lvlSARX DMSASM DMSASN DMSAUD DMSBOP cT 
H DMSBRD DMSETP DMSBWR tMSCIO DMSCLS DMSCMF D~SCPY JMS CRD DMSCWR DMSCWT tMSDED DMSDIO 0 
tx:I DMSllLB DMSDOS DMSflSV DMS~RS Dr.SEXC DMSFCH Dl"'SFLD JMSFNS DMSFOR tMSFR~ DMSGLE DMSGND I 
:x :3 

DMSGRN DMSINI Dl1SINS DMS1NT DMSIOW DMSITE nl':SITI i)MS ITF DMS1TS DMSLAF DMSLEM DMSLBT a 
<3 DMSLDR DMSLDS DMSLFS DMSLIB DMSL10 DMSLKD DMSLLU ;;MSLSE DMSLST :CMS~Ot :CMSNCP Dl'lSOLD 01 
::s: ,!)l'!SOPT DMSP1(1 DMSPNT Dl"!SPRT DMSPUN DMSQRY DMSRDC DMSRNM DMSROS DMSRRV DMSSAB DMSSBD .:: 
'- \-I 
w DMSSBS DMSSCR DMSSCT rl'lSSEE DMSSET DMSSOF DrlSSQS ])MSSVT DMSSYN DMSTlO DMSTMA DMSTPD (!) 
....,J DMsrPE DMSTQQ DMS~RK DMSUP!::' DMSVIP DMSVPD DMSXCP J:MSZAP 
0 R12 000716 DMSABN DMSACC DMSACF DMSACM DMSALU DMSH1S DMSARE ))l'iSARN DMSARX :CMSASM DMSASN DMSAUD n 

H 
til DMSBAB DMSBOP DMS'PRD DMSBTE DMSBTP D MSP~JB DMSCAT ])MS CIC DMSClT DMSCLS DMSCMP DMSCPF 0 
"< DMSCPY DMSCRD DMSCWR :CMSCWT DMSDIO DMSDLE Dfl:SDMF 1:MS:CCS Dl1SDSL tMSDSV DMSEDX Dl'1SERR Ul 
Ul DMSERS DMSEXC DMSFCH DMSFET DMSFLD DMSFNS DMSFOR J:MSFRE DMSGLE DMSGND DMSGRN DMSHDI Ul 
cT 
co DMSHDS DMSIFC DMSINI lJMSINS I;MSINT DMS1TE L!'lSITI DMSITF DMSlTS DMSLAL DMSLAF DMSLE'I ~ 

IB DMSLDR DMSLDS DMSLFS DMSLGT DMSL1B DMSLK:C DMSLLU llMSLCA DMSLSE DMSLST DMSMOD Dl'1SMVE (!) 
H\ 

t-t DMSNCP DMSOLD Dr'lSOPL I:MSOPT DMSOR1 DMSCR2 Dr.SOR3 })MSCVR DMSOVS DMSPlO DMSPNT DMSPRT (!) 

0 DMSPRV DMSPU8 DMSQRY tMSR8A DMSRNE DMSRNf DMSROS lJMSRRV DMSSAE DMSSBD DMSSBS DMSSCN H 
lQ ;)MSSCR ])!iSSCT Dl1SSET DMSSMN DMSSOP DMSSQS LMSSRT llMSSRV DMSSSK DMSSTG DMSSTT DM~SVN 

(!) 

1-" ::I 
C) DMSSVT DMSSYr-I DMSTIO DMSTMA DMS'IPD DMS'IPE DMSTQQ IlMSTRK DMSUP:C :CMSVlE DMSVIP DMSVPD n 

DMSVSR DMSXCP DMSZAP ,1) 

$l) R13 000828 I'MSABN DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARN I:I1SARX DMSASfiJ tMSASN DMSAUD DMS13A13 ::I 
PI DMSERD DMSETP DMSBWR BMSC10 DMS:::IT DMSCLS BMSCPY IlMSCRt DMSCWR Dl'1SDBG DMSDlO DMSDLB 

I'd 
DMSDOS DMSDSK DMSDSV :CMSEDC DMSEDI DMSEDX D~SERR DMSERS DMSEXC DMSFCH DMSFLD DMSFNS 

H DMSFOR DMSFRE DMSGIO DMSGLB DMSGRN DMSHDl DMSHDS IlMSlFC DMSlNl tMSlNS DMSlNT DMS1TE 
0 DMS1T1 DMSITP DMS1TS DMSLAD DMSLAF DMSLB'I DMSLDR I,MSLDS DMSLFS DMSLGT DMSLlB DMSL10 

lQ DMSLSB DMSLST DMSMOD DMSMVE DMSNCP DMSOLD DMSOVS l!MSF1O DMSPNT DMSPRT DMSPUN DMSQRY H 
III DMSHEA DMSRNE DMSRNM tMSSAB DMSSBS DMSSCR Dl'ISSCT l'MSSE13 DMSSMN DMSSOP DMSSQS DMSSTG 
IS DMSSTT DMSSVN DMSSVT DMSTIO DMS'IPE DMSTQC DMSTRK I'MSUPD DMSVIP DMSVSR DMSXCP DMSZAP 
t::j R14 003284 DMSABN DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE IMSAFN DMSARX DMSASM DMSASN Ll1SAUD 
co DMSBAB DMSBOP DMSBRD :CMSBTB DMSB'l'P DMSBWR DMSCAT LMSCIC NiSCIT DMSCLS DMSCMP DMSCPF 
cT DMSCPY DMSCRD Dl1SCWR tMSCWT DMSDBD DMSDBG DMSDlO I'MSDLE DMSDOS DMSDSK DMSDSL DMSDSV 
(!) 

DMSEDC DMSEDI DMS~DX BMSERR DMSERS Df.SEXC DI'lSEXT UlSFCH DMSFET tMS FLD DMSFNS DMSFOR H 
a DMSFRE DMSGIO DMSGLB DMSGND DMSGRN DMSHD1 Dl'lSHDS IMSIFC DMSlNA DMSINI DMSlN~ DMS1NS ..... DMSINT DMSIOV DMSITE DMS1TI DMS1TP DMSITS DMSLAD IMSLAF DMSLBM DMSLBT DMSLBR DMSLDS ::I 
$l) D!1SLFS DMSLGT DMSLlB DMSLIO DMSLKD DMSLLU DMSLOA IMSLS13 DMS',ST DMSLSY DMSMDP DMSMOD 
cT DMSMVE DMSNCP DMSOLD DM SOP'I DMSOR3 DMSCVR DMSOVS tMSI?lC DMSPNT tMSPRT DMSPRV DMSPUN ..... DMSQQY DMSRDC DMSREA r~SRNE DMSRNM DMSROS DMSRRV 1MSSA13 DMSSBD DMSSES DMSSCN DMSSCR 0 
t:1 DMSSCT DMSSEB DMSSET DM~S!1N DMSSOP DMSSQS Df4SSRT IMSSRV DMSSSK DMSSTG DMSSTT DMSSVN 
I DMSSVT DMSSYN DMSTIO I:MSTMA DMSTPD DMS'IPE DMSTQQ Dl'lSTRK DMSTYP DMSUPD DMSVIB DMSV1P 
I '1)r.'!SVPD DMSVSR DMSXCP DMSZAP -< 

0 R15 005371 DMSABN DMSACC DMSACF DMSACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD ..... DMSEAB DMSBOP DMSBRD Dl'ISBTE DMSETP DMSEWR DMSCAT tMSCIC DMSCIT DMSCLS DMSCMP DMSCPF I:l 
II DMSCPY DMSCRD DMSCWR tMSCWT DMSDBD DMSDEG DMSDIO DMSDLE DMSDOS DMSDSK DMSDSL DMSDSV 
(!) DMSEDC DMSEDI DMSEDX DMSERR DMSERS DMSEXC DMSEXT DMSFCH DMSFET DMSFLD DMSFNS DMSFOR 
I'.) DMSFRE DMSGIO DMSGLB r:MSGND DMSGRN DMSHDI DMSHDS DMSlFC DMS1NA DMSlN1 DMSlNM DMSlNS 

DMSINT DMSIOW DMSITE DMSIT1 DMSlTP DMSITS DMSLAD DMSLAF DMSLBM DMSLET DMSLDR DMSLDS 



LABEL COUNT REFERENCES 

DMSLFS DMSLGT DMSLIB DMSLIO DMSLKD DMSLLU DMSLOA DMSLSE DMSLST DMSLSY DMSMDP DMS~OD 

DMSMVE DMSNCP DMSOLD tMSOPL DMSOPT DMSOR1 Dl"'SOVR DMSOVS DMSPIO DMSPNT tMSPRT DMSPRV 
DMSPUN DMSQRY DMSRDC tMSREA DMSRNE DMSRNr, DMSROS DMSRRV I:MSSAE DMSSBr DMSSES DMSSCN 
DMSSCR DMSSCT DMSSEB DMSSET DMSSMN DMSSOf Dl"ISSQS DMSSBT DMSS BV DMSSSK DMSSTG DI1SS'IT 
DMSSVN DMSSVT DMSSYN DMSTIO DMSTMA DMSTPt Dr.STPE rMSTC;C DMSTRK DM~TYP DMSUPD DMSVIB 
DMSVIP DMSVPD DMSVSR DMSXCP DMSZAP 

R2 003771 DMSABN DMSACC DMSACF tMSACM DMSALU DMSAMS DMSARE DMSARN DMSARX tl1SASM DMSASN DMSAUD 
DMSBAB DMSBOP DMSBRD tf'lSBTB DMSBTP DMSEWB DMSCAT DMSCIC DMSCIT tMSCLS tMSCMP D~lSCPF 

DMSCPY DMSCRD DMSCWR tMSDBD DMSDBG DMSDIC t~SDLB DMStLK DMSDMP DMSDOS DMSDSK Dl1SDSL 
DMSDSV DMSEDC DMSEDI DMSEDX DMSERR DMSEllS DMSEXC DMSEXT DMSFCH I:MSFET I:MSFLD DMSFNS 
DMSFOR DMSFRE DMSGIO DMSGLB DMSGND DMSGRN DMSHDI D~:SHDS DMSIFC DMSINA DMSINI DMS IN ~1 
DMSINS DMSINT DMSIOW , DMSITE DMSITP DMSITS DMSLAD DMSLAF D~SLEM DMSLET DMSLI:R DI1SLDS 
DMSLFS DMSLIO DMSLKl) tMSLLU DMSLOA DMSLSE DMSLST DMSMDF DMSMOr DMSMVE DMSNCP DMSOLD 
DMSOPL DMSOPT DMSOR1 r::MSPIO DMSPNT DMSPR'I DMSPRV DMSPUN DMSQRY DMSRtC DMSREA DMSRNE 
DMSRNM DMSROS DMSHRV tMSSAB DMSSBD DMSSBS DMSSCN DMSSCR DMSSCT tMSSEE I:MSSET DMSS~N 

DMSSOP DMSSQS DMSSRT DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSVT DMSSYN DMSTMA DMSTPB 
DMSTPE DMSTQQ DMSTRK I:MSTYP DMSUPD DMSVIE DMSV1P I:MSVFD DMSVSB DMSXCP Dl'lSZAP 

R3 003780 DMSABN DMSACC DMSACF tMSACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN Dl1SAUD 
DMSEAB DMSBOP DMSBRD 1:MSBTB DMSBTP DMSBWB DMSCAT DMSCIC DMSC1T BMSCLS DMSCMP DMSCPF 
DMSCPY DMSCRD DMSCWR I:MSDBD DMSDBG DMSDLE DMSDLK DMSr::MP DMSDOS DMSDSK DMSDSL DMSDSV 
DMSEDC DMSEDI DMSEDX DMSERR DMSERS DMSEXC DMS'EXT DMSFCH Br.SFET tMSFLt DMSFOR DMSFR:!:: 
DMSG10 DMSGLB DMSGND DMSGRN DMSHDI DMSHDS DMS1FC DMSINA DMSINI DMS1NM DMSINS DMSINT 
DMSITE DMSIT1 DMSITP DMS1TS DMSLAD DMSLAF D~SLBM I:MSLET DMSLDR DMSLI:S DMSLFS D£1SLGT 
DMSL10 DMSLKD DMSLLU I:MSLSB DMSLST DMSMDF DMSMOD DMSMVE DMSNCP DMSOLI: I:MSOPL DMSOVR t"" 
DMSOVS DMSPIO DMSPRT tMSPRV DMSPUN DMSQRY DMSRDC DMSRFA DMSRNF DMSRNM Dl'lSROS DMSRRV PI 
DMSSAB DMSSBD DMSSBS DMSSCN DMSSCR DMSSC'I DMSSEB DMSSET DMSSMN DMSSOP DMSSQS DMSSRT t:r 

CD 
DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSV'I DlIJSSYN DMSTMA DMSTPD DMSTPE DMSTRK DMSTYP ~ DMSUPD DMSVIB DMSVIP r::MSVPD DMSVSR DMSXCF DMSZAP 

R4 002961 DMSABN DMSACC DMSACF U1SACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD rt 
n 0 
t:c DMSBAB DMSEOF DMSBRD UISETB DMSETP DMSBWB DMSCAT DMS CIC DMSCIT r::MSCLS DMSCMP DMSCPF I 
til DMSCPY DMSCRD DMSCWR DMSDBD DMSDBG DMSDIC Dl"SDLE DMSI:LK DMSDMF DMSDOS DMSDSK DMSDSL til 

0 
t::t DMSDSV DMSEDC DMSEDI DMSEDX DMSERR DMSERS DNS1'.:XC DMSEXT DMSFCH DMSFET DMSFLD Dl1SFOR ~ 
~. DMSFRE DMSG10 DMSGLB DMSGND DMSGRN DMSHDI DMSHDS U:iSIFC DMSINA DMSINI DMSINM DMSINS c:: 
H DMSINT DMSIOW DMSITI DMS1TP DMSITS DMSLAD DMSLAF DMSLEM DMSLET DMSLDR DMSLI:S DMSLFS ~ 
CD CD 
0 DMSLGT DMSLIO DMSLKD DMSLLU DMSLSB DMSLS'I N1SMDP DMSMCD DMSMVE DMSNCP I:MSOLD Dl'1S0PL 
rt DMSOVR DMSOVS DMSP10 DMSPNT DMSPRT DMSPUN D~SQRY DMSRrc Dl'lSREA I:MSRNE DMSRNr. DMSROS n 
0 DMSRRV DMSSAB DMSSBD r::MSSBS DMSSCN DMSSCR DMSSCT DMSSET DMSSMN DMSSOP DMSSQS DMSSRT 11 
H 0 
~. DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSV'I Dl'lSSYN DMSTMA DMSTPD DMSTPE DMSTQQ DMSTRK en 
CD DMSTYP DMSUPD DMSVIP tMSVPD DMSVSR DMSXCF DMSZAP en 
en R5 003094 DMSABN DMSACC DMSACF DfI!SACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD = DMSBAB DMSBOP DMSERD 1:MSBTB DMSETP DMSEWR DMSCIO DMSC1T DMSCLS DMSCMP I:MSCPF DMSCPY CD 

DMSCRD DMSCWR DMSDBD DMSDBG DMSDIO DMSDLE DMSDLK DMSDl'lP DMSDOS CMSDSK DMSDSL DMSDSV HI 
CD 

II..) DMSEDC DMSED1 DMSEDX DMSERR DMSERS DMSEXC DMSEXT DMSFCH DMSFET I:MSFLt tMSFNS DMSFOR 11 
I DMSFRE DMSGIO DMSGLB DMSGND DMSGRN DMSHDI DMSHDS DMS1FC DMSINA DMSINI DMS1NM DMSINS (1) 

II..) 
DMSINT DMS10W DMSITI DMS1TP DMS1TS DMSLAI: DMSLAF DMSLEM DMSLBT DMSLDR DMSLDS DMSLFS = II..) 0 

-...J DMSLGT DMSL1B DMSLKD D~SLLU DMSLSB DMSLS'I DMSMOD DMSMVE DMSNCP DMSOLD DMSOPL DMSOR1 CD 



'" LABEL COUNT REFERENCES t"'4 
I '" IV t:f 

'" m en DMSOVR DMSOVS DMSPIO D!!SPNT DMSPRT DMSPUN DMSQRY DMSRtC DMSREA DMSRNE DMSRNM DMSROS ~ DMSRRV DMSSAB DMSSED DI1SSBS DMSSCN DMSSCR DMSSCT I'MSSET DMSSMN DMSSOP DMSSQS DMSSRT rt' 
H DMSSRV DMSSSK DMSSTG DMSSTT DMSSVN DMSSV'I DMSSYN [I1STI1A DMSTPD DMSTPE DMSTRK DMSTYP 9 tD DMSUPD DMSVIB DMSVIP rMSVPD DMSVSR DMSXCF DI1SZAP 
tiC tK 

R6 002670 D!!SABN DMSACC DMSACF DMSACM DftSALU DMSAI1S DMSARE [HSARN DHSARX DMSASM DI1SASN DI1SAUD 0 
<1 DMSBAB DMSEOP DMSERD tMSBTP DMSBWR DMSCIC DMSCIT IMSCLS DMSCMP DMSCPF DMSCPY DMSCRD a. 
tiC DMSCWR DMSDBD DMSDBG DMSDIO DMSDLB DMSDLI< DMSDMP tMSDCS DMSDSK DMSDSV DMSEDC DMSEDI c 
"-w DMSEDX DMSERR DMSERS tMSEXC DMSEXT DMSFCH DMSFET DI1SFLD DMSFNS DI1SFOR DI1SFRE DMSGND ..... 

(I) 
...,J DMSGRN DMSHDI DI1SHDS DMSIFC DMSINA DMSINI DMSINS I:I1SINT DMSIOW DI1SITI DMSITP DMSITS 
0 DMSLAD DI1SLBI1 DMSLBT DMSLDR DMSLDS DMSLFS DMSLGT IMSLKr DMSLLU DMSLOA DMSLSB DMSLST n 

1'1 
til DMSMOD DftSMVE DMSNCP tI1S0LD DMSOPL DMSOR1 DMSOVR DMSCVS DMSPIO DMSPNT tI1SPRT DMSPUN 0 
'< DMSQRY DMSRDC DMSREA DP"SRNE DMSRNM DMSROS DMSRRV DMSSAE DMSSBD DI1SSBS DMSSCN DMSSCR en 
Ul 
t+ DMSSCT DMSSET DMSSMN DMSSOP DMSSQS DMSSR'I DHSSSK tMSSTG DMSSTT DMSSVN DMSSVT DMSSYN en 
CI> DMSTMA DMSTPD DMSTPE DMSTQQ DMSTRK DMSTYP DMSUPD [MSVIP DMSVPD DMSVSR DMSXCP DMSZAP r::o 
I!I R7 002449 DMSABN DMSACC DMSACF tMSACI1 DMSALU DI1SAMS DMSARE f'MSARN DMSARX DMSASM DMSASN DMSAUD (I) 

t"'4 DMSBOP DMSBRD DMSBTP rMSBWR DMSCIO DMSCIT DMSCLS DMSCMP DMSCPF DMSCPY DMSCWR DMSDBD ..... 
(D 

0 DMSDBG DMSDIO DMSDLB DMSDLK DMSDMP DMSDOS DMSDSK DMSBSV DMSEDC tMSEDI DMSEDX DMSERR 1'1 
\,Q DMSERS DMSEXC DMSEXT tMSFCH DMSFET DMSFLD DMSFNS DMSFOR DMSFRE DI1SGLB DMSGRN DMSHDI (D ...,. ~ 
n DMSHDS DMSIFC DI1SINA DMSINI DMSINS DMSIN'I DMSIOW [MSITE: DMSITI DMSITP DMSITS DMSLAD n 

'" 
DMSLBM DMSLBT DMSLDR tMSLDS DMSLFS DI1SLGT DI1SLIB DMSLKB DMSLLU DI1SLSB DI1SLST DMSMOD (D 

I:' DMSMVE DI1S0LD DMSOPL DMSOVR DMSOVS DMSPIC DMSPRT rMSPUN DMSQRY DMSRDC DMSREA DMSRNE 
pJ DMSRNM DMSROS DMSRRV tMSSAB DMSSBD DMSSCN Dr,SSCR DI1SSCT DMSSET DMSSMN DMSSOP DMSSQS 

"tl DI1SSTG DMSSVT DMSSYN DMSTMA DMSTPD DMSTPE DMSTRK DMSTYP DMSUPt DMSVIP DMSVPD DMSVSR 
H DMSXCP DMSZAP 
0 R8 002110 DMSABN DMSACC DMSACF DlISACM DMSALU DMSAMS DMSARE DMSARN DMSARX DMSASM DMSASN DMSAUD 

\,Q DMSBAB DMSBOP DMSBRD tMSBTB DMSETP DMSEWR DMSCIO DMSCIT DMSCLS DMSCMP DMSCPF DMSCPY H 
PI DMSCRD DMSCWR DMSDED tMSDBG DMSDIO DMSDLE DMSDLK DMSDCS DMSDSK DMSDSL DMSDSV DMS'EDC 
II DMSEDI DMSEDX DMSERR tMS'ERS DMSEXC DMSEX'I DMSFCH DMSFLI: DMSFNS DMSFOR DMSFR'E DMSGLB 
t:.1 DMSGIlN DMSHDI DMSHDS U1SIFC DMSI'NA DMSI'NI DMSINM DMSICW DMSITE DMSITI DMSITP DMSITS 
(1) DMSLAD DMSLBM DMSLET DMSLDR DMSLDS DMSL'F'S DMSLGT rMSLLU DMSLSE DMSLST DMSMOD DMSMVE 
!+ DMSNCP DMSOLD DMSOPL rMSOVR DMSOVS DMSPIC DMSPRT DMSPUN DMSQRY DMSRDC DMSRNM DMSROS 
(1) 

H DMSRRV DMSSAB DMSSBD N!SSBS DMSSCN DMSSC'I DMSSEB rMSSET DMSSMN DMSSOP DMSSSK DMSSTG 
IIi!I DMSSVN DMSSVT DMSSYN rMSTMA DMS'IPD DMSTPE DMSTRK DMSTYF DMSUPD DMSVIP DMSVSR DriSXCP 
~. DMSZAP =' 
III R9 001869 DMSABN DMSACC DMSACF rMSACM DMSALU DMSAMS DMSARE I:MSARN DMSARX tMSASM tMSASN D::1SAUD 
!+ DMSEAB DMSBOF DMSERD rMSBTP DMSBWR DMSCI'I DMSCLS DMSCMP DMSCPF DMSCPY DMSCRD D5SCWR 
~. 

0 DMSCWT DMSDBD DMSDBG DMSI'IO DMSDLE DMSDLK DMSDOS DMStSK DMSDSV DMSEDC DNSEDI DMSEDX 
I:' DMSERR DMSERS DMSEXC rMSEXT DMSFCH DMSFLr DMSFNS tMSFCR DMSFRE DMSGIO DMSGND DMSGRN 
I DMSHDI DMSHDS DMSIFC I:MSINA DMSINI DMSINS DMSINT DMSICW DMSITI DMSITP DMSITS DMSLAD I 

<I DMSLBM DMSLBT DMSLDR D~SLDS DMSLFS DMSLG'I Dl1SLKD DMSLSE DMSLST DMSMOD DMSMVE DMSNCP 
0 DMSOLD DMSOPL DMSPIO DMSPRT DMSPUN DMSQRY DMSRDC DMSRNM DMSROS DMSRRV DMSSAB DMSSBD ..... DMSSCR DMSSCT DMSSET D~SSMN DMSSOP DMSSRV DMSSSK DMSSTG DMSS'rT DMSSVT DMSTMA DMSTPD 
~ .. DMSTPE DMSTRl{ DMSTYP Ul SUPD DMSVIP DMSVPI: DI"iSXCP DMSZAP 
CI> SAVCNT 000005 DMSEDI DMSSCR 

'" 
SAVCWD 000022 DMSEDI 
SAVE 000015 DMSCMP DMSEDI DMSGRN I:MSLBT DMSNCP DMSRDC 



LABEL COUNT REFERENCES 

SAVEAD'l' 000002 DMSrIO 
SAVZAR 000010 DMSBDC DMSSCR 
SAVEREGS 000040 DMSASM DMSBOS 
~AVERO 000021 DMSDSV DMSIFC DMSREA I:l'.lSVIP 
SAVER1 000048 DMSIFC DMSREA DMSSOP B!1STPE DMSVIP 
.?AVER10 000002 D~STMA 

~AVER14 000059 DMSIFC DMSREA DMSSCT rr:SSEB DMS'IPE DMSVIF 
SAVER1S 000013 DMSIFC DMSREA DMSSOP 
SAV~R2 000011 DMSREA DMSVIP 
SAVESIZE 000001 DMSZAP 
SAVEXT 000002 DMSDLB DI1SITE 
SAVE1 000020 D~SBOP DMsrBIl DMSDEG U:SDSL DMSRRV DMSSRV 
SAVE2 000021 DMSEOP DMSDEG DMSIFC 
SAV67 000006 DMSLDR DMSOLD 
SCAW 000003 DMSDBG DMSITE 
SCBPTR 000015 DMSITP DMSSAB DMSSLN rMSSTG DMSSVT 
SCBSAV12 000004 DMSSAB 
SCBWORK 000008 DMSSAB DMSSTG 
SCLNO 000002 DMSSCR 
SCRBUFAD 000002 DMSEDX DMSSCR 
SCRFLGS 000036 DMSEDI DMSSCR 
SCRFLG2 00001~ DMSEDI DMSSCR 
SDISK 000005 DMSALU DMSINI DMSINS BMSNUC 
SEARCH 000035 DMSFCH DMSINI DMSLIB UJSLS'I DMSMOD DMSPRV DMSQRY DMSBRV DMSSET BMSSRV DMSSVT t-1 
SEBSAV 000009 DMSSBD DMSSEE I» 

SECTNUM 000006 DMSACM DMSDIO DMS]~NS tMSFOB DMSITI DMSNUC t:t 
(1) 

SEEK 000037 DMSDSV DMSFCH DMSINI I:MSOPL DMSPRV DMSROS DMSRRV tMSSET DMSSRV tMSXCP I-' 
SEEKADR 000013 DMSACM DMSDIO DM S]~N S tl"SFOR DMSITI DMSNUC I 

rT 
n SENCCW 000002 DMSD:::O DMSPIO 0 
Ill: SENSE 000008 DMSACM DMSDIO DMSFNS tMSFOR DMSITI DMSNUC , 
til SENSE 000019 DMSBOP DMSCLS DMS]~OR DMSPRV DMSRRV Dt'!SSRV tI 

0 
'=' C:EQ~AMi:: 000004 DMSEDI DMSEDX ~ .... SERSAV 000002 DMS EDI d 
1'1 SERTSEQ 000003 DMSEUI I-' 
(1) (1) 
n SERTSW 000003 DMSBDI 
t+ SE'rLIB 000002 DMSLIB n 
0 t1 
t1 SETSEC 000002 DMSINI 0 .... ~ETUP 000013 DMSSAB en 
(1) SETUP2 000002 DMSSAB en 
en 

SF COOO07 DMSDLK DMSDSL DMSFCH 'CMSNCP !XI 
S:PLAG 000009 DMSITS ('D 

SFNUC 000002 DMSITS HI 
('D 

tV SFREN 000001 DMSITS t1 
I 5FSYS 000005 DMSITS (1) 

tV I:' 
tV SFTHN 000002 DMSITS n 
\0 SIGNAL 000057 DMSACM Df':SEDI DMSl:RS (1) 



i'J LABEL COUNT REFEREN:::ES 1:"4 
I III 

i'J t1' 
W CI) 

0 SILl 000209 DMSDBD DMSDBG DMSFOR rMSINI DMSINS DMSITE DMSNUC DMSFIC DMSTIO tMSXCP ..... 
:::IZE 000022 DMSFRE DMSLKD I 

SYEY 000003 DMSFRE DMSSBD 
("'t' 

H 9 tJj ~Y-IP 000010 DMSEOP DMSElCT DMS~OS 'CMSSRT DMSXCP 
tJC SM 000001 DMSERR tJC 

0 
~ ::;OB1 000002 DMSOPT DMSSET Q, 

tJC SPARES 000015 DMS'EDI DMSEDX DMSUPD = " SPEC 000198 DMSLDR DMSLGT DMSLIB tMSOLr. ..... 
w CI) 

-..J SPECLF 000002 DMSINS DMSINT 
0 SPIESAV 000002 DMSINT n 

SSAVE 000060 DMSABN DMSACC DMSPAE [PlSDBG DMSDLP. DMSrCS DMSERR CMSFLt DMSFRE rMSIFC I:MSITP DMSITS 1'1 
til 0 
"< DMSI.DR DMSOVS DMSSAB DMSSLN D~SSMN DMSSOf DMSSTG DMSSVN DMSSVT DMSVIP I:MSXCP en 
en SSAVENXT 000004 DMSITS en 
("'t' 
CI) SSAVEi?HV 000008 DMSITS DMSSAB DMSVIP l:tJ 
Ie SSAVESZ 000006 DMSITS CI) 

C:;TACKAT 000002 DMSEDI I"tt 
t"'4 (1) 

0 ~TACKl,.TL 000005 DMSEDI 1'1 
\.Q STAEBIT 000003 DMSSAB (1) 
..... 

STAESAV 000002 DMSINT I:' 
n n 

STAIB IT 000002 DMSSAB (1) 

III <"TARS 000001 DMSINT 
I:' 
PJ STA~T 000023 DMSFET DMSFNC DMSFOR r~SGRN DMSITS DMSLDR DMSLSE OMS CVS DHSTYP 

tU 
STATEFST 000022 DMS1I.LU DMSBRD DMSERS UISFNS DMSGND DMSIN'I DMSPUN DMSBNM DMSSTT 

1'1 STATERO 000003 DMSBRD DMSSOP DMSSTT 
0 STATER1 000005 DMSDSK DMSERS 

\Q STIMEXIT 000009 DMSITE DMSSTG DMSSVN DMSSVT 
1'1 STOP 000006 DMSTPD III 
e STOPAT 000002 Dl"'SDBG 

t:1 
STRTADDR 000034 I:MSFET DMSITS DMSLDR DMSLOA DMSLSB DMSMOI: DMSOLD DMSSET DMSSLN 

CI) STRTNO 000005 DMSEDI l'MSRNE 
("'t' SUBACT 000004 DMSEDX DMSI~T DMSLOA I:MSSLN 
CI) SUBFLAG 000028 DMSABN DMSEDX DMSEXT tMSFNS DMSINT DMSLOA DMSMOD JMSSLN 1'1 
iii SUBDIIT 000001 DMSrNS 
1-'- SUBREJ 000003 DMSEDX DMSINT 
I:' SUBSECT 000004 DMSABN DMSINM DMSINT III 
rt' SVC$202 000004 DMSEXT 
1-'- SVCAB 000008 DMSFRE DMSITS 
0 
!::t SVCOPSW 000026 DMSITS 
I SVCOUNT 000003 DMSITS DMSOVS 
I SVCSAVE 000012 DMSITS <# 

0 SVCSECT 000021 DMSCIT DMSFRS DMSHDS tMSINT DMSITE DMSITS DMSLAD jMSLFS DMSOVR DMSOVS DMSSLN ....., SVCSTOP 000001 DMSITS 
~ SVC12SAV 000004 DMSDOS iii 
en SVEARA 000007 DMSBAB DMSDOS DMSITP 

i'J 
SVEPSW 000007 DMSBAB DMSDOS DMSITP 
SVEPSW2 000008 DMSEAB DMSDOS DMSITP 



LABEL COUNT REFERENCES 

SVEROF 000004 DMSBAB DMSDOS 
~VEHOO 000015 DMSRAB DMSDOS DMSITP 
SVER01 000001 r MSEAB 
SVER09 000009 ~MSBAB rMSDOS DMSITP 
~VLAD 000006 DMSLAD 
SVLADW (100003 DMS1.I\.D 
SVLFS 000006 DMSLfS 
SWTCH 000001 DMS)l.CM 
SWTCHSAV OOOOO~ DMSINT 
SYMTABLE 000003 DMSDBG 
SYMTBG 000004 r'MSDBG 
SYSADDR 000003 DMSINl 
SYSCOD2 000005 DMSDLB DMSFRE DMSSET 
SYSCOM 000017 DMSBAB DMSBOP DMSDOS tMSFET DMSITP DMSCRY DMSSTG CMSSYN 
SYSLlN"S 000003 DMSDLK DMSQRY DMSSET 
SYSLOAD 000010 DMSACM DMSlNS DMSLDR rMSLSB DMSCLD DMSSET 
~YSNAME 000006 DMSETP DMSINS 
SYSNAMJS 000037 Dl'lSAMS Dl'lSBOP DMSBTP IMSDOS DMS".:DX DMSEXC DMSINS DMSI1iT DMSITS DMSQRY DMSSFT DMSVIB 

DMSVSR 
SYSNEND 000014 DMSAMS DMSEOP DMSPTP BMSDOS DMSEDX DMSEXC DMSINS DMSINT DMSITS DMSQRY DMSSET DMSVIB 

DMSVSR 
SYSREF 000004 DMSINS DMSLOA DMSSET 
~:YSTEM 000012 DMS!1SN DMSDLB DMSMOD IMSSET DMSSLN Dr.SSSf{ DMSXCP 
~iYSTEMID 000005 DMSINl DMSlNS t-1 
~~YSUT1 000027 DMSAaX DMSASM DMSDLK t~~SLDR DMSLKD Dl'lSCLD I» 
'~ABEND 000007 DMSFLD DMSZAP tt 

CO 'l'!'1BLIN 000016 DMSEDl DMSSCR I-' 
'rAB~ 000023 DMSEDI DMSEDX I 
'"PHElAD 000002 DMSCIT c+ 

(1 0 
tI: TAIEMSGL 000001 DMSCIT I 
til TAIERSAV 000002 DMSCIT lJI: 

TAPE \JOOO 17 DMSCLS DMSLLU DMSSEE U1STlO DMS'IMA DMSTPE DMSXCP 0 
t;; 0-1-'- 'rAPEBUFF 000001 DMSSEB d 
t1 'rAPECOlJT 000002 DMSSEB ~ 
CO CO n 'rAPEDEV 000003 DMSSBS Df'lSSEB DMSSOP 
c+ TAPELIST 000003 DMSSBS DMSSEB DMSSOP n 
0 TAPEMASK 000003 DMSSBS DMSSEB DNSSOP t1 
t1 0 1-'- 'r APEOPBR 000010 DMSSBS DMSSF.B DMSSOP en 
CD '1'AP3SIlE 000002 DMSSr;]3 en en TAPE1 000002 DMSASN 

~ 
rAPE4 000002 DMSASN CD 
TAXEADDR 000010 D!'1SClT DMSITE DMSlTl UiSSTG DMSSVT Hl 

CD 
tv TAXEDEF 000001 DMSSVT t1 
I 'rAXEEXIT 000002 DMSClT DMSSVT CD 

tv rAXEEXTS 000001 DMSClT =' w n .... 'fAXEFREQ 000006 DMSCIT DMSITE DMSITI CO 



tv LABEL COUNT REFERENCES t"I 
I S» 

tv t::I" 
W (1) 
tv TAXEIOL 000003 DMSCIT DMSITI ...., 

TAXEIOWS 000002 DMSCIT I 
r+ 

H TAXELNK 000006 DMSCIT DMSITE DMSITI DMSSVT 'f ~ TAXERTNA 000002 DMSCIT 
til: TAXESTAT 000005 DMSCIT DMSITE DMSITI 3: 

0 
.q TAXETliIE 000002 DMSCIT 0... 
3: TAXETSOF 000002 DMSCIT d 

" TBENT 000028 DMSACM DMSBTB DMSFET rMSGNC DMSLDR DMSLOA DMSMflP ])MS~ct DMSOLD I:MSSET rMSSLN I-' 
w (1) 

""'" 
TBLCT 000019 DMSLDR DMSLIB DMSOLD 

0 TBLEND 000004 DMSDBD DMSDBG DMSITE DMSNUC n 
TBLLNGTH 000005 DMSSBD DMSSVT t1 

til 0 
"< TBLREF 000020 DMSLDR DMSLIB DMSOLD til 
til TCODE 000001 DMSFRE til 
r+ 
(1) TEMPBYTE 000003 DMSSVT !:O 

• TEMPSAVE 000014 DMSBOP DMSUPD (1) 

TEMPST 000008 DMSLDR DHSOLD HI 
t"4 (1) 

0 TEMPTAB 000004 DMSEDI t1 
I.Q TEMP02 000002 DMSITS CD 
~. 

TEXT 000553 DMSABN DHSACC DMSACM DHSAMS DHSARE DMSARN DHSARX llMSAS~ DMSASN DMSBOP CMSBTB DMSETP I:J 
0 0 

DHSBWR DHSCIT DMSCLS DMSCMP DHSCPY DMSCRC DMSCWR llMSI:ED DMSDEG DMSDIO DMSDLE DMSDLK (1) 

I» DMSDMP DHSDOS DMSDSK DHSDSL DHSDSV DMSEDI DMSEDX DMSEXC DHSFCH I:MSFET I:MSFLD IiMSFNS 
I:J DMSFOR DMSGLB DMSGND DMSGRN DMSIFC DMSINS DMSITS DHSLEM rMSLET DMSLDR DMSLDS Dl1SLGT 0... 

DMSLIO DMSLKD DHSLLU I:~SLOA DMSMDP DMSt!OD DMSMVE IH1SNCP DMSOPL I:MSOPT rMSORl DMSOVR 
." DMSOVS DMSPRV DMSQRY DMSRDC DMSREA DMSRNE Dl':SRNM DMSRCS DMSRRV DMSSCR I:MSSET DMSSLN t1 
0 DMSSMN DMSSRT DMSSRV DHSSSK DMSSTT DMSSYN DlI!STMA l:MSTPr DMSTPE DHSTYP DMSUPD DMSVIE 

I.Q DMSVIP DMSVPD DMSXCP DMSZAP 
t1 TEXTA 000058 DHSACC DHSAMS DMSBWR I:HSCIO DMSDLK DMSDOS DliSERS UjSGRN DMSLEM DMSLET DMSLST DMSMOD I» • DMSOVS DMSPIO DMSPRT I:~SPON DMSSVT DHSUPD 

t=' TEXT3 000001 DMSSVT 
CD TIC 000054 DMSDSV DMSFCH DHSINI DMSOPL DMSPRV DMSBRV DMSSET LMSSFV DMSXCP 
r+ TIMBUF 000013 DMSEXT DHSINH DMSSVT 
CD TIMCCW 000005 DMSITE DMSQRY DHSSET t1 • TIHCHA~ 000024 DMSINS DMSINT DHSIOW DMSITE DMSNOC DMSCRY DMSSET L·MSSMN DPlSSTG DMSSVN DMSSVT 
~. TIMER 000016 DMSINS DMSINT DMSIOW rMSITE DMSSET D!!SSVN D!'!SSVT 
I:J TIHINIT 000011 DHSINS DHSINT DMSIOW DHSITE DMSSET DHSSVN &» 
ti' TIN 000004 DHSEDI DMSEDX 
~. TMPLOC 000008 DMSLDR DMSLSB DMSOLD 
0 TOOBIG 000003 DPISDIO I:J 
I TOTLIBS 000003 DMSGLB DMSSHN 
I TOUT 000004 DMSEDI ... 

0 TPPACB 000004 DMSSOP .... TPPERT 000003 DPISITS a TPPNS 000009 DMSITS • (I) TPFROl 000002 DMSITS 
to.) TPFSVO 000005 DHSDOS DMSITS DKSOVS tPlSVIP 

TPPOSR 000011 DPlSDBG DMSITP DKSITS I:P1SLDR DMSSAB 



LABEL COUNT REFERENCES 

TRAP 000002 DKSFNC DKSITE 
TRKLSAVE 000002 DKSTQQ 
TRNCNUM 000006 DKSEDI 
TRNCODE 000001 DKSFRE 
TRUN 000001 DMSOR1 
TRUNCOL 000016 D!IISEDI DKSEDX DMS:5CR 
TSOATCNL 000011 DKSCIT DMSCRD DKS:ITE DKSITI DKSITS DftSSEE tftSSVN 
TSOBLKS 000001 DKSSET 
TSOFLAGS 000011 DKSCIT DKSCRD DMSITE DMSITI DKSITS DMSSEE DKSSVN 
TSYK 000005 DKSDBG 
TVERCOL1 000002 DKSEDI 
TVERCOL2 000001 DKSEDI 
TWITCH 000088 DMSEDI DKSEDX DftS:SCR 
TXLlBSV 000004 DftSGLB 
TXTDIRC 000009 DMSGLB DKSIFC DKS]['DR tKSLGT DftSLIB DftSOLD 
TXTLIBS 000005 DKSGLB DKSIFC DKSJI" .. GT Dl!!SLIB DftSQRY 
TYPE 000092 DKSACC DMSACF DKS1CH I:KSAUD DftSBOP DKSBRD DP.!SBTB DftSEWB DftSCAT DftSCLS I:f!SCftP DftSCPY 

DMSDIO DKSDLK DftSDKP DMSDSK DMSDSV DMSEDI DM:SEDX DMSEBS DMSEXC DftSFLD DHSFNS DMSFOR 
DMSFRE DKSIFC DHSINA DMSINS DMSINT DftSITE DMSITP DMSITS DKSLAD tftSLAF I:MSLFS DftSLGT 
DMSLIB DMSLIO DftSf .. OA DMSLSB DftSLST DPlSOPI. DftSOB1 DftSOVB DftSOVS tKSBNE DMSROS DMSSAE 
DMSSCR DMSSEB DftSSET DftSSOP DftSSVT DftSSYN DMSUPD DftSVIE DftSVIP DftSXCP I:MSZAP 

TYPEAD 000001 DftSLIO 
TYPFLAG 000034 DKSDBG DMSDOS DKSJ[TP I:ftSITS DMSI.DB DKSOVS DftSSAB DMSSCP DftSVIP 
TYPFLG 000002 D[I!SEDI t"" 
TYPLIN 000040 DftSEXT DMSFNC DftSI~BT I:MSLIO DMSTYP ~ 

TYPLIST 000007 DfIlSEXT DMSITE DftS~rIU t:r 
CD 

TYPPUN 000001 DMSPUN 
~ TYPRDR 000001 DI1SRDC 

TYPSCR 000009 DMSEDX DKSSCR t+ n 0 a. TYP1403 000002 DMSASN DKS PBI I 
tn TYP2305 000001 DMSINI til 

t1 TYP2311 000001 DMSINI 0 
j:la 

"". TYP2314 000006 DMSASN DMSFOP DMSDIO DMSINI C 
t1 TYP2401 000002 DMSASN DMSTPE ~ 
(I) (I) 
0 TYP241S 000001 DMSASN 
t+ TYP2420 000002 DMSASN DKSTPE n 
0 TYP2501 000001 DMS1SN ... .., 

0 .... TYP2540P 000001 DKSASN en 
(I) TYP2540R 000001 DKSASN en en 

TYP3203 000002 DKSASN DMSPRT ,., 
'IYl?3210 000001 DMSIlH tD 
TYP3211 0000Q2 DI'!SASN DMSPRT .... 

CD 
N TYP3277 000001 DMSEDX t1 
• TYP3278 000001 DMSEDX (I) 

N TYP3330 000005 DMSBOP DMSDIO DMSIIOS DMSINI tI w 0 
w TYP3340 000004 DMSASN DMSBOP DMSIIOS tP!SINI CD 



N LABEL COUNT REFERENCES t"4 
I 0) 

N t1' 
W d) 
~ TYP3350 000007 DMSBOP DMSDIO DMSDOS tMSINI DMSROS 7 TYP3420 000003 DMSASN DMSTPE c+ 
H TYP3525 000001 DMSASN '1 m ueASE 000003 DMSCRD 
::I: 

UE 000001 DMSCIT 3: 
0 

ct UFDBUSY 000045 DMSABN DMSACC DMSACF tf'J~ACM DMSAUD DMSBTE DMSB~R DMSCIT DMSDIO DMSDOS tHSDSK DNSERS 0-
::I: DHSFNS DMSITE DMSITI tfllSITP DMSITS DMSRNI'l Dt'iSTPE c: 

....... 
000019 DMSSQS .-w UND ~MSROS DHSSES DMSSEB DMSSOP (I) 

...,J UNPACK 000013 DMSCPY DHSEXT DMSLIO 
0 UNRES 000005 DMSLDR DMSLOA DMSOLD n 

H 
til UPBIT 000006 DMSACM DMSAUD DHSDSK 0 
"'4 UPSI 000004 DMSSET til 
til UPTMID 000002 DHSSET til 
C"t' 
d) UPTSWS 000002 DMSSET !:tI • USARCODE 000002 DMSFRE (I) 

t"4 USAVE 000003 DMSITS ...... 
CD 

0 U!::AVEPrR 000025 DMSITS DMSSAB Dl'!SSLN DMSSOP DMS'3TG DMSSVT H 
\Q 

U~AVESZ 000005 DMSITS (I) .... ::::I n USERCODE 000004 DMSFRE DMSSET n 
USERKEY 000012 DMSABN DMSDBG DMSFRE tMSITS L'MSLtR DMSSET (I) 

~ UTILFLAG 000020 DMSEDI Dl':SSCR t:I 
P. VAR 000033 DMSORl DMSROS DMSSBD tfl.ISSBS DMSSEB DMSSOF DMSSQS DMSSVT Dl1STPI: DMSXCP 

to VCADTLKP 000029 DMSACC DMSACM DMSALU I:l~ SARB DMSASN DMSEOE DMSDIO J::MSDLE DMSDSL tMSEXT DMSFOR DMSLDS 
H DMSILU DMSLST DMSQRY El1~RNl'l DMSSE'f DMSSV'I DM!::UPD DMSXCP 
0 VCADTLlI'T,\ 000007 DMSAMS DMSARN DMSEXT I:MSRNE DMSSRT Dfilsupr 

\Q VCADTNXT 000009 DMSACC DMSALU DMSARE EMSLDS DMSLST DMSQRY DMSROS H 
~ 'lCFSTL[(P 000005 DMSACC DMSDSK DMS~DX t~STPE DMSXCP 
Ii VCFSTLKW 000004 DMSRNM DMSTPE 
~ VERCOL1 000009 DMSEDI DMSEDX DMSSCR 
CD VERCOL2 000004 DMSEDI DMSEDX 
c+ VEiUEN 000007 DMSEDI DMSEDX DMSSCR (I) 
H VIPINIT 000009 DMSCLS DMSDOS DMSEXT tt'!SINT DMSSTG DMSVIE DMSVSR 
Ia V IPSO? 000008 DMS30P DMSCLS DMSVIP .... 

VIPTCLOS 000004 DMSCLS DMSVIP =' s» VIRTUAL 000021 DMSACC DMSAMS DMSARN rMSBWR DMSCMP DMSDLE DMSEDX CMSFCH r:MS?NS DMSLEH EMSLIO DMSNCP 
c+ DMSQRY DMSSET DMSSMN DMSTMA DMS'IPD DMSV"(E DMSVIP ')MSVPI: tMSZAP ..... 
0 VMCOMP 000002 DMSDSV 
t:I VMDISP 000004 DMSDSV 
I VMDISP1 000005 DMSDSV I 
~ VMSIZE 000041 DMSAMS DMSBOP DMSERD I:MSEWR DMSDBG DMSDCS I:l'lSFRE DMSHI:I DMSHDS tMSINS DMSLDR DMSOVS 
0 DMSSET DMSSSK DMSSVT tMSVIB .- VSAMFLG1 000051 DMSABN DMSAMS DMSBAB tl'lSBOP DMSCLS DMStLE r.MSDOS DMSEXT DMSFCH tMSINT DMSITP DMSSTG ,;:: 
iii DMSVIB DMSVIP DMS1SR 
(I) VSAMRUN 000010 DMSABN DMSEOP DMSDOS tMSFCH DMSSTG DMSVIE Dr.SVSR 
N VSj\l"lSERV 000015 DMSAMS DMSBAB D~]SBOP tMSCLS DMSDLB DMSDOS DMSFCH OMSITP DMSSTG DtlSVSR 

VSAMSOS 000000 DMSABN DMSAMS DMSVSR 



LABEL COUNT REFZRE~CES 

'1SJOBC~T 000003 DMSDLB 
VSMINSTL 000005 Dl'lSFCH DMSFET 
VSTRA~GE 000001 DMSITI 
wAIT 000033 DMSABN DMSCIO DMSCIT tMSCRD DMSCWR DMSCW'I DMSDOS DMSFNC DMSINI DMSINS D~ISITE DMSITI 

DMSPIO DMSSVT 
iJAITEND 000003 DMSSVN 
k"AITING 000003 DMSVIP 
\]AITLIST 000002 DMSDBG DMSSVT 
IHITLST 000003 DMSCRD DMSCWR DMSCWT 
WAITRD 000004 DMSDBG DMSFNC DMS:POR 
WAITSAV~ 000007 DMSCIT DMSDBG DMSIOW 
WORKFILE 000005 DMSCLS Dl1S0LD 
WRBIT 000012 DMSACC Dl1SBWR DMSDSK I:HSTPE 
iiRDATA 000022 DMSINI 
WRITE 000028 DMSBOP DMSCLS DMSDIO tMSDLK DMSDSL D~SINI DMSSBS DMSTP~ DMsvpr t"1 
wRITE1 000007 Dl1SINI S» 
WRTKF 000003 DMSDIO tr 

(1) 
WTM 000011 Dl1SBOP DPlSCLS DMS'rPE 

~ WTRtCNT 000002 DMSDBG 
c+ 

n XAREA 000001 Dl1SEDI 0 
13: XCOUNT 000002 DMSOVS I 
tn XGPRO 000002 DMSOVS 3 

0 
t::I XGPR1 000001 DMSOVS At "". XGPR15 000002 DMSOVS t:: 
11 XPSW 000013 !)MSDBG DMSITE ~ 
(1) (1) 
0 XRSAVE 000003 DMSDIO 
c+ XXXCWD 000042 DMSEDI n 
0 XYCNT 000008 DMSEDI 11 
11 0 .... XYFLAG 000003 DMSEDI (Jl 
(1) YAREA 000001 DMSEDI [,1 
(Jl 

YDISK 000003 DMSINI !)l1SINS DMSNUC ~ 
YYDDD 000003 DMSINS (1) 

Y2 000001 n"1SSCR 1"1'1 
(1) 

tv ZDISK 000001 DMSNUC 11 
I ZEROES 000014 DMSINI Dl1S0R1 DMSROS (1) 

tv ZONE1 000011 DMSEDI DMSEDX I:' 
W 0 
U'1 ZONE2 000016 DMSEDI DMSEDX (1) 



2-236 IB! V!/370 System Logic and Program Determination--Voluae 2 



eMS Diagnostic Aids 

This section contains the following information: 

• A list of devices Supported by a CftS Virtual Bachine 

• D!SFREX Error Codes 

• Abend Codes 

CftS Diagnostic lids 2-231 



2-238 IBB 'B/370 System Logic and Progra. Deterlination--Voluae 2 



Supported Devices 

Figure 23 indicates those devices that are supported by a CMS 
machine. 

Virtual 
IBM Device 

3210, 3215, 1052, 
3066, 3270 

2314, 3330, 3340 
3350 

2314, 3330, 3340 
3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314, 2319, 3330, 
3340, 3350 

2314,.2319, 3330, 
3340, 3350 

1403, 3203, 3211, 
1443 
2540, 2501, 3505 
2540, 3525 
2415, 2420, 3410, 

3420 

virtual I Symbolic 
Address'l Name 

cuu 

190 

1912 

cuu 

CUll 

192 

cuu 

cuu 

CUll 

19E 

cuu 

OOE 

OOC 
OOD 
181-4 

CONl 

DSKO 

DSKl 

DSK2 

DSK3 

DSK4 

DSK5 

DSK6 

DSK7 

DSK8 

DSK9 

PRN1 

RDRl 
PCBl 

TAP1-TAP4 

Device Type 

Systell console 

System disk (read-only) 

primary disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Disk (user files) 

Line printer 

Card reader 
Card punch 
Tape drives 

tThe device addresses shown are those that are preassembled into th~ 
eMS resident device table. These need only be modified and a new 
device table made resident to change the addresses. 

2The virtual device address (cuu) of a disk for user files can be 
any valid System/370 device address, and can be specified by the 
CMS user when he activates a disk. If the user does not activate 
a disk immediately after loading CMS, C~S autoaatically activates 
the primary disk at virtual address 191. 

Figure 23. Devices Supported by a CMS Virtual ~achine 

C~s Diagnostic Aids 2-239 



DMSFREX Error Codes 

Error Codes from DMSFREE, DMSFRES, and 
DMSFRET 

A nonzero return code upon return from DftSFRES, DftSFREE, or DMSFRET 
indicates that the request could not be satisfied. Register 15 contains 
this return code, indicating which error has occurred. The codes below 
apply to the DMSFRES, DMSFREE and DMSFRET macros, described on the 
following pages. 

Code Error 
--~ (DftSFREE) Insufficient storage space is available to satisfy the 

request for free storage. In the case of a variable request, the 
minimum request could not be satisfied. 

2 (DMSFREE or DMSFRET) User storage pointers destroyed. 

3 (DMSFREE or DMSFRET) Nucleus storage pointers destroyed. 

4 (DMSFREE) An invalid size was requested. ihis error exit is taken 
if the requested size is not greater than zero. In the case of 
variable requests, this error exit is taken if the .inimum request 
is greater than the maxi.ua request. However, the error is not 
detected if DMSFREE is able to satisfy the maximum request. 

5 (DMSFRET) An invalid size was passed to the DMSFRET macro. This 
error exit is taken if the specified length is not positive. 

6 (DMSFRET) The block of storage that is being released was never 

7 

8 

allocated by DMSFREE. This error occurs if one of the following 
errors is found: 

a. The block is not entirely inside either the low-core free 
storage area or the user program area between FREELOWE ana 
FREEUPPR. 

b. The block crosses a page boundary that separates a page 
allocated for USER storage from a page allocated for NUCLEUS 
storage. 

c. The block overlaps another block already on the free storage 
chain. 

(DMSFRET) The address given for the 
doublewcrd toundary address. 

(DMSFRES) An illegal request code 
routine. Because the DMSFRES macro 
error cede should never appear. 

block being released is not a 

vas passed to the DMSFRES 
generates all codes, this 

9 (DMSFRE, D~SFRET, or DMSFRES) Unexpected internal error. 

2-240 IBM VM/370 System Logic and Program Determination--Volume 2 



Abend Codes 

Abend Recovery 

When the abend recovery routine is entered, it types out the 
~essage, followed by the line "eMS", to indicate to the user that 
type in his next com.and. 

abend 
hQ m;:av 
~- --~ 

At this point, there are two options available to the user. 

First, he may type the DEBUG command. In this case, nMSABN passes 
control to DMSDBG, to make the facilities of DEBUG available to him. 
DEBUG's PSi and registers are as they were at the time that the abend 
recovery routine was invoked. From DEBUG, the user may alter the PSi or 
registers, as he wishes, and type GO to continue processing, or type 
RETURN to return to D~SABN, so that abend recovery can continue. 

The second option available is to type in any other command. If this 
is done, DMSABN performs its abend recovery function and passes control 
to DMSINT to execute the command that has been typed in. 

The abend recovery function consists of the following steps: 

1. The SVC handler, DMSITS, is reinitialized, and all stacked save 
areas are released. 

2. "FINIS * * *u is invoked by means of SVC 202, to clese all files, 
and to update the user file directory. 

3. If the EXEC interpreter (EXECTOR module) is in 
released. 

storage, it is 

4. All link blocks allocated by the as macros simulation routine 
DMSSLN are freed. 

5. If VSAM or Access Method Services are still active, call DMSVSR for 
cleanup. 

6. All FCB and DOSCB pointers are zeroed out. 

7. All user storage is released. 

8. The amount of system free storage 
computed. This figure is co.pared 
storage that is actually allocated. 
storage recovery can be considered 
unequal, then a aessage is sent to the 

that should be allocated is 
against the amount of free 
If the two are equal, then 
successful. If they are 

user. 

CMS Diagnostic Aids 2-241 



UNRECOVERABLE TERMINATION -- THE HALT OPTION OF DMSERR 

There are certain times, such as when the SVC handler's pointers are 
.odified, that the systea can neither continue processin1 nor try to 
recover. In these cases, DMSERR with the option HALT=YES is specified 
to cause a message to be typed out, after which a disabled wait state 
PSi is loaded unless the NUCON field ~USERRST has been loaded. 

The valid address contained in AUSERRST is assumed to be the address 
of an error recovery routin9 ana will be directly branched to. The 
initialization routines of an application running under CMS must set 
this address to point to a module that might, for example, request a 
du.p and then issue an IPL coamand. If the IPL command is 

IPL CMS PARM AUTOCR 

and the PROFILE EXEC on virtual disk 191 invokes reinitialization, the 
application has the capability of automatic recovery. This capability 
is valuable for CMS service virtual machines that run permanently 
disconnected and are required to stay operational. 

In CP mode, the programmer can examine the PSi, whose address field 
contains the address of the instruction following the call to the DMSEBR 
.acro. He can also examine all the registers, which are as they were 
when the DMSERR macro was invoked. 

Figure 24 lists the CMS ABEND codes and describes the cause of the 
Abend and the action required. 

2-242 IB~ VM/370 System Logic and program Determination--Volume 2 



Abendl Module 
Code I Nalle 

001 DMSSCT 

034 DMSVIP 

OCx DMSITP 

OFO DMSITS 

OF1 DMSITS 

Cause of Abend 

The problem program encoun
tered an input/output error 
processing an as macro~ 
Either the associated DCB 
did not have a SYNAD rou
tine specified or the I/O 
error was encountered 
processing an OS CLOSE 
macro. 

The problem program encoun-
tered an I/O error while 
processing a VSAM action 
macro under DOS/VS for 
which there is no OS equi-
valent. An internal error 
occurred in a DOS VSAft rou-
tine. 

The specified hardware ex
ception occurred at a spe
cified location. "x" is 
the type of exception: 
! II£~ 
o IMPRECISE 
1 OPERATION 
2 PRIVILEGED OPERATION 
3 EXECUTE 
4 PROTECTION 
5 ADDRESSING 
6 SPECIFICATION 
1 DECIMAL DATA 
8 FIXED-POINT OVERFLOW 
9 FIlED-POINT DIVIDE 
A DECIMAL OVERFLOW 
B DECIMAL DIVIDE 
C EXPONENT OVERFLOW 
T\ 
U 

E 
F 

EXPONENT UNDERFLOW 
SIGNIFICANCE 
FLOATING-POINT DIVIDE 

Insufficient free storage 
is available to allocate a 
save area for an svc call. 

An invalid halfword code is 
associated with SVC 203. 

Figure 24. CMS Abend Codes (Part 1 of 4) 

Action 

~essage DMSSCT120S 
indicates the possible 
cause of the error. 
Examine the error 
message and take the 
action indicated. 

Refer to the DOSLVS 
~~§2gg~§ !!~fe£~, 
erder No. GC33-5319, 
to determine the cause 
of the lSAM error. 

Type DEEUG to exaaine 
the PSi and registers 
at the time of the 
exception. 

If the abend was 
caused by an error in 
the application pro
gram, correct it; if 
not, use the CP DEFINE 
command to increase 
the size of virtual 
storage and then re
start CMS. 

Inter DEBUG and type 
GO. Execution conti
nues. 

CMS Diagnostic lids 2-243 



Abendl Module 
Code, Name 

OF2 DMSITS 

OF3 DMSITS 

OF4 DMSIT~ 

l)MSTTS 

OF6 DMSITS 

OF7 DMSFRE 

OF8 DMSFRE 

101 DMSSVN 

104 DMSVIB 

155 DMSSLN 

Cause of Abend 

The CMS nesting level of 20 
has been exceeded. 

CMS SVC (202 or 203) in-
struction was executed and 
provl.sl.on was made for an 
error return from the rou-
tine processing the SVC. 

The DMSKEY key stack over-
flowed. 

ThA nMSKRV kAy st~ck nn~er
flowed. 

The DMSKEY key stack was 
not empty when control re-· 
turned from a command or 
function. 

Occurs when TYPCALL=SVC 
(the default) is specified 
in the DMSFREE or DMSFRET 
macro. 

Occurs when TYfCALL=BALR is 
specified in the DMSFREE or 
DMSFRET Macro devices. 

The wait count specified in 
an OS WAIT macro was larger 
than the number of ECBs 
specified. 

The OS interface to 
VSAM is unable to 
execution of the 
program. 

DOS/VS 
continue 

problem 

Error during LOADMOD after 
an OS LINK, LOAD, ICTL, or 
ATTACH. The compiler switch 
is on. 

Figure 24. CMS Abend Codes (Part 2 of 4) 

Action 

None. abend recovery 
takes place when the 
next command is en
tered. 

Inter DEBUG and type 
GO. Control returns to 
the point to which a 
normal return would 
have been made. 

Inter DEBUG and type 
GO. Execution conti
nues and the DftSKEY 
macro is ignored. 

Enter DEBUG and type 
GO. Control returns 
from the command or 
function as if the key 
stack had been empty. 

When a system abend 
occurs, use DEBUG to 
attempt recovery. 

When a system abend 
occurs, use DEBUG to 
attempt recovery. 

Examine the program 
for excessive wait 
count specification. 

See the additional er
ror message accompany
ing the abend message, 
correct the error, and 
reexecute the program. 

See the last LOADftOD 
(DMSMOD) error message 
for error description. 
In the case of an I/O 
error, recreate the 
module. If the module 
is missing, create it. 

2-244 IBM VM/370 System Logic and Program Determination--Volume 2 



L-

Abendl Module 
Code I Name 

15A 

174 

177 

240 

400 

704 

705 

804 
80A 

905 
90A 

DMSSLN 

DMSVIB 

DMSVIB 
DMSVIP 

DMSSVT 

DMSSVT 

DMSSMN 

DMSSMN 

DMSSMN 

DMSSMN 

Cause of Abend 

Severe error during load 
(phase not found) after an 

OS LINK, LOAD, ICTL, or 
ATTACH. The compiler switch 
is on. 

The as interace to DOS/VS 
VSAM is unable to continue 
execution of the problem 
program. 

The as interface 
VSAM is unable to 
execution of the 
program. 

to DOS/VS 
continue 

problem 

No work area vas provided 
in the parameter list for 
an as RDJFCB macro. 

An invalid or unsupported 
form of the as XDAP macro 
was issued by the problem 
program. 

An as GETMAIN macro (SVC 4) 
vas issued specifying the 
LC or 1U operand. These 
operands are not supported 
by CMS. 

An as FREEMAIN macro 
(SVC 5) ~as issued specify~ 
ing the L operand. This 
operand is not supported by 
CMS. 

An as GETMAIN macro (804-
SVC 4, 80A - SVC 10) was 
issued that requested ei
ther zero bytes of storage, 
or more storage than was 
available. 

An as FREEMAIN macro (905 -
SVC 5, 90A - SVC 10) was 
issued specifying an area 
to be released whose ad
dress was not on a double
word boundary. 

Figure 24. CMS Abend Codes (Part 3 of 4) 

Action 

See last LOAD error 
message (DMSLIO) for 
the error description. 
In the case of an I/O 
error, re-create the 
text deck or TXTLIB. 
If either is missing, 
create it. 

See the additional er
ror message accompany
ing the abend message, 
correct the error, and 
reexecute the program. 

See the additional er
ror message accompany
ing the abend message, 
correct the error, and 
reexecute the program. 

Check RDJFCB specifi
cation. 

Examine program for 
unsupported XDAP macro 
or for SVC O. 

Change the program so 
that it specifies 
allocation of only one 
area at a time. 

Change the program 
that it specifies 
release of only 
area at a time. 

so 

one 

Check the program for 
a valid GETMAIN re
quest. If more storage 
was requested than vas 
available, increase 
the size of the virtu
al machine and retry. 

Check the program for 
a valid FREEMAIN re
guest; the address may 
have been incorrectly 
specified or modified. 

CMS Diagnostic Aids 2-245 



r 
I Abendl 
I Code , 
I 
I A05 
I AOA 
I 
I 
I 
I 
I 

Module 
Halle 

DMSSMN 

Cause of Abend 

An as FREEMAIN macro (105 -
SVC 5, AOA - SVC 10) was 
issued specifying an area 
to be released which over
laps an existing free area. 

Figure 24. CMS Abend Codes (Part 4 of 4) 

Action 

Check the program for 
a valid FREEftAIN re
quest; the address 
and/or length .ay have 
been incorrectly spec
ified or modified. 

2-246 IBM V!/370 syste. Logic and program Determination--Voluae 2 



Appendix A: eMS Macro Library 

The following is a list and brief description of the CftS macros 
applicable to Release 5. 

Asterisk (*) indicates that the macro is reserved for IBM use. 

*ADT 
*ADTGEN 

*ADTSECT 
*!FT 
*AFTSECT 

BATLI!IT 

*C!SAVE 
*CMSCB 
*CMSCVT 

CO!PSWT 

*CORG 
*DBGSECT 
*DEVGEN 

*DEVSECT 
*DEVTAB 
*DIAG 
*DIOSECT 

DISPW 

DMSABN 

*DMSCCB 

*DltSABW 
*DMSDM 
*D!SERR 

*DMSERT 
DMSEXS 

DMSFREE 

*D!SFRES 
DMSFRET 

*DMSFREX 
*DPlSFRT 
*D!!SFRX 

DMSFST 

Generates a CSECT or DSECT for an active disk table. 
Generates an active disk table (ADT) for a disk; used by 

ADTSECT. 
Generates all the ADTs for CMS. 
Generates a DSECT for an active file table~ 
Generates all the AFTs for eMS. 
Table of CPU, punch, and printer limits for user jobs 

running under CMS batch. 
Equivalent to SVCSAVE macro. 
Generates a list of simulated OS control blocks. 
Generates the communication vector table as supported by 

CMS. 
Sets the compiler switch on or off. Refer to !~L37Q £~~ 
£2~~~g and Macro Reference. 

Sets the orIgrn~or-CSECT.--
Generates a CSECT or DSECT for DEBUG environment variables. 
Generates a device table for a given device; used by the 

DEVTAB macro. 
DSECT for a device table. 
Generates the device tables for the CMS nucleus. 
Issues a specified CP Diagnose instruction. 
Generates a CSECT or DSECT for all I/O information. 
Generates the calling sequence for the display terminal 
interface. Refer to !~JIQ~!~! E!Qg!~!!er'§ Quig~. 

ABEND the virtual machine. Refer to !~LJ70 ~!§!~! 
f!2gfgBB~!~ ~~!de. 

DSECT describes field of DOS command control block (CCB). 
Refer to !~JIQ Qg!g !!~g§ ang ~2Y!!2! ~12f! 199!f· 

Allocates a work area for DMSABN. 
Reserved for IBM use. 
Sets up parameter list to type out a CMS error message; 

Refer to the LINEDIT macro. 
DMSERR work area DSECT. 
Execute an instructicn without nucleus protection. Refer to 
!~LJ70 ~y§!~~ 1Qg!f g~g ~!Q~l~~ ~~!~!!!n~!!Q~ QY!B~--!21~!~ 
2. 

Gets free storage. Refer to !~L~lQ_~Y§!~! prQg!~~!~§ 
Guide. 

Calls-system free storage service routines. 
Releases free storage. Refer to !~LllQ ~I§!~ ~!Qg!g~~!~§ 

Guide. 
Calls-system free storage service routines. 
Generates a DSECT for free storage management work area. 
Submacro called by D~SFRET. 
Sets up a file status table for a given file. Refer to 
!~LJ70 ~I§!~~ f!gg!g!~er~§ Qyid~. 

Appendix A: eftS Macro Library 2-247 



*DMSLN 
*DMSLNC 
*DMSLND 
*DMSLNP 
*DMSLNU 
*DMSLNY 
*DMSLNZ 
*DMSPID 

*DMSTMS 

*EDCB 

*FQUATES 
*EXCP 
*EXTSECT 
*FCB 

FSCB 

*FSCBD 

FSCLOSE 

*FSENTR 
FSERASE 

FSOPEN 

*FSPOINT 
FSREAD 

FSSTAT2 

*FSTB 
*FSTD 

FSiRITE 

*FVS 

*GETADT 
*GETFST 

HRDEIT 

HNDINT 

HNDSVC 

*10 
*IOSECT 

*KEYSECT 
*KXCHK 

*LDM 
*LDRST 

LINEDIT 

*NUCON 

Function 
SetS-nucleus protection on or off. Refer to V~L11~ ~!21~! 
~2gi~ ~~g ~!g~!~! Q~!~!!!~~!!on Q~ig~--!g!~~~ ~. 

Called by DMSERR, LINEDIT macros. 
Called by DMSERR, LINEDIT macros. 
Called by DMSERR, LINEDIT macros. 
Called by DMSERR, LINEDIT macros. 
Called by DMSERR, LINEDIT macros. 
Called by DMSERR, LINEDIT macros. 
Called by DMSERR, LINEDIT macros. 
Passes a fileid in quotes into separate filename, filetype, 

filemode, used by FSCB, and FSPOINT. 
Used by RDTAPE, WRTAPE, and TAPECTL. 

Frees storage control blocks initialized by DeSEDI for C~S 
edit modules. 

Generates CMS equates for symbolic names. 
Issues an SVC O. 
Defines storage for the timer interrupt. 
Generates a file control block (FCB) DSECT. 
Sets UP a file system control block. Refer to VftL37Q ~~~ 

Command and Macro Reference. 
DSECT--that- describes--1Ields in CMS PLIST for related 

commands. 
Closes a file. Refer to !~L]lQ ~~~ £2!!~~g ~~g ~!£!g 

Reference. 
Used-by-eMS file system routines at entry. 
Erases a file. Refer to Y~LJ1Q ~~~ £2!!~nd ~g ~!£!g 

Reference. 
opens--a--file. Refer to !nLJ1Q ~~~ ~g!!~g ~g ~!£!g 

Reference. 
ExeCUtes-the CMS POINT function. 
Reads a record from a file. Refer to !~L]lQ ~~~ ~g!!g~g g~g 

Macro Reference. 
Checks for--an-existing file. Refer to !~L370 ~MS Co~yg 

and Macro Reference. 
Generates-a-file-status table (file directory) block. 
Entry to the file status table (file directory) block. 
Writes a record into a disk file. Refer to !!L]70 ~~~ 

Command and Macro Reference. 
DefInes-storage-for-file-5ystem variables. 

Gets a specified active disk table. 
Gets a specified file status table. 

Handles external and timer interrupts. Refer to !~L37Q ~~~ 
Co.mand and Macro Reference. 

Handles-interrupt-on--devlces. Refer to !~LJ70 ~~~ ~om!!~g 
and Macro Reference. 

Handles--SVCs:---aefer to !nLJ1Q CM~ ~Q!~ang gng ~!£!Q 
!!~fe.£g1!£~. 

Contains PLISTs needed to access eMS I/O routines. 
Defines miscellaneous I/O variables. 

Contains variables necessary for storage key handling. 
Checks to see if HI has been entered by the user. 

Loads double multiple (for floating point registers). 
CMS Loader work area. 
Types a line to the terminal. Refer to !~LJIQ ~~~ ~g!!!~£ 

and Macro Reference. 
Generates-a-nSECr-CMS nucleus constant area. 

2-248 IBM VM/370 System Logic and Program Determination--Volume 2 



*OVSECT 

*OSFST 

*PDSSECT 
*PGMSECT 

PRINTL 

PUNCHC 

RDCARD 

RDTAPE 

RDTERM 

REGEQU 

*RELPAGES 
*STDM 

STRINIT 

*SUBSECT 
*SVCENT 
*SVCSAVE 
*SVCSECT 
*SYSLOAD 

*SYSNAMES 

TAPECTL 

*TSOELKS 

*TSOGET 

*USE 
*USERSECT 

WAITD 

WAITT 

WRTAPE 

WRTERM 

DMSOVS work area. 

Defines an OS file status table for OS ACCESS. 

DSECT used for processing MACLIB files. 
Defines work area for DMSITP. 
Prints a line on the printer. Refer to !~/37~ ~8S ~2!~~g 

and Macro Reference. 
Punches--a card:---Refer to !ALJ1~ ~~§ ~2mmand gng ~!£~Q 
R~fe~~£~. 

Reads a card from the reader. Refer to !~L37~ ~es cO.I~~g 
and Macro Reference. Reads-a-record -frem tape. Refer to !~L37Q CH2 ~2!!~nd !~£ 
Macro Reference. 

Reads- a-record- from the terminal. Refer to !8/370 ~!~ 
Command and Macro Reference. 

Generates-symbolIc -register equates. Refer to !~L370 ~~~ 
~Q!!2~g 2~g ~g£f2 R~~~reR£~· 

Sets the release pages flag. 
Storage for multiple floating-point registers. 
Initializes storage. Refer to !~Ll1~ ~~~ £Q!!~Rg ~Rg ~~£~2 
Reference. 

CSECT-or-nSECT for CMS SUBSET use. 
Issues a DMSKEY macro before calling an instruction. 
System save area. 
Defines work area for DMSITS. 
Puts in a specified register the address of a specified 
routine in NUCON. 

Saves system names table loaded via C8S routines. 

positions a tape. Refer to V8Ll1~ £A§ £Q~Rg ggg 8a£~2 
Reference. 

Ccntains--CPPL, UPT, PSCB, and the BCT for TSO service 
routines. 

Gets the address of the TSO command processor parameter list 
(CPPL) • 

Generates assembler USING and DROP instructions, as needed. 
Creates user work area. 

Waits until the next interrupt occurs for the specified 
device. Refer to !nL~lQ ~A§ £Q!~~g gng ~~cro ~~fe~. 

Waits until all pending I/O to the terminal has completed. 
Refer to !~37Q CM~ ~Q!nJlg and !t~£!Q !1efer~. 

Writes a record to tape. Refer to !AL11~ CM§ ~Q!~g~g ~~g 
Macro Reference. 

wrItes -i--record to the terminal. Refer to !!L17 0 £!~ 
~Q!!~g 2~g ~~£ro R~fe~£~. 

Appendix A: eMS Macro Library 2-249 



2-250 IBM VM/370 System Logic and Program Determination--Volume 2 



Appendix B: eMS/DOS Macro Library 

C~S, in this release~ contains a DOS macro library with the followina 
significant entries. I more complete list may te -obtained by invoking 
the DOSalCRO EXEC; this EXEC produces a list of all the macros in the 
DOS library. 

~~g£ 
~CB 
CO!!RG 

EOJ 
OPEIR 
STIlT 

IKQACB 
IKQEXLST 

IKQRPL 
SISCO!! 
ABTAB 
BEOX 

BGCOa 
PICL 
NICL 
PCTAB 
PIB2TAB 
PIBTAB 
PUBOWNER 
INCBTIB 
DOSAVE 
PCHTIB 
!'lIPPUB 
POBTIB 
DOSCB 

EICPW 
LOS CON 
LOBTAB 

Function 
Generates the DOS/iS command control block. 
Returns address of background partitions coa.unication 
region; expands to SVC 33. 

Normal processing termination; expands to SiC O. 
Activates a data file; siaulated by D!!SOR1, D!!SOR2, D!!SOR3. 
Provides/terminates supervisor linkage to user's prograa 

check routines; siaulated by DaSDOS. 
DSECT for VSA!! ACB (access method control block). 
DSECT for VSA8 EXLST control block (contains addresses of 
user exit routines. 

DSECT for iSA8 RPL (request paraaeter list control block). 
DSECT of system co.munication region. 
DSECT of abnorMal termination option table. 
DSECT of Boundary Box; contains beginning and ending 
addresses of background partitions communication region. 

DSECT of background communication region. 
DSECT, CMS/DOS first in class table. 
DSECT, CMS/DOS number in class table. 
DSECT, program check option table. 
DSECT, program inforaation block extension. 
DSECT, program inforaation block. 
DSECT, physical unit block ownership table. 
DSECT, DOS/VS anchor table. 
DSECT, describes fields in the logical transient area (tTl). 
DOS/iS fetch table containing fetch/load parameter list. 
DSECT defines fields of CMS/DOS physical unit block (PUB). 
DSECT same usage as KAPPOB. 
DOS simulation control block used for the siaulation of the 
cas file control block (FCB). 

DSECT, work area for D!S!CP routine~ 
Creates CMS/DOS control blocks for DMSNUC. 
DSECT for CaS/DOS logical unit block. 

Appendix B: CMS/DOS Macro Library 2-251 



2-252 IB! Y"/310 Syste. Logic and Program Deter.ination--Yolu.e 2 



A 
arend (see abnormal termination (abend) 
ABEND macro 2-39 
abnormal termination (abend) 

eMS 
codes 2-241 
recovery 2- 241 

dump (§~~ ~1§2 CMS (Conversational 
Monitor System), dump) 

ACCESS command, accessing OS data sets 
2-45 

access methed, OS, support of 2-42 
access methods 

BDAM 2- 113 
BDAM/QSAM 2- 113 
BPAM 2-113 
fer nen-CMS environments 2-113 
os 2-113 
'SAM 2- 113 

CMS support for 2-114 
accessing 

a virtual disk, CMS 2-93 
the file system 2-93 

active disk and file storage management 
2-93 

Active Disk Table CADT) 2-93 
used in disk management 2-93 

Active File Table (AFT) 2-93 
used in file .anage.ent 2-93 

ADT (§~~ Active Disk Table (ADT» 
AFT {§~g Active File Table (AFT» 
alloca ted 

free storage, types of 2-99 
storage, releasing of 2-105 

allocating, storage 2-20 
allocation 

of nucleus free storage 2-104 
of user free storage 2-104 

AMSERV function, execution of 2-114 
ATTACH macrc 2-40 
AUSERRST, PALT option 2-242 
AUTOCR, IPL cemmand processing 2-58,2-242 

B 
batch 

CMS 2-149 
modules used in 2-152 

facility (§~~ CMS Batch Facility) 
BDAM 

CMS support of 2-113 
restrictions on 2-44 
support of 2-43 

BDAM/QSAM, CMS support of 2-113 
BLDL macro 2-39 
BPAH 

eMS support of 2-113 
support of 2-43 

BSAM/QSAM, support of 2-43 
BSP macro 2-41 

C 
called routine 

Index 

register contents~ when started 2-69 
start-up table 2-69 

caller, returning to 2-69 
carriage control characters, CMS 2-97 
chain header block 2-101 

FLCLB in 2-102 
FLCLN in 2-102 
FLHC in 2-102 
FLNU in 2-102 
FLPA in 2-103 
format 2-102 
MAX in 2-102 
NUM in 2-102 
POINTER in 2-102 
SKEY in 2-103 
TCODE in 2-103 

chain links 2-87 
Channel Address Word (§~~ CAW (Channel 

Address Word» 
Channel Status Word (§~~ CSW (Channel 

Status Word» 
CHAP macro 2-40 
CHECK macro 2-42 
CHECK processing, OS VSA! 2-121 
CHKPT macro 2-41 
CLCSE, OS VSA!, simulation of 2-119 
CLOSE/TCLOSE macros ~-4U 

C!S (Conversational !onitor system) 
(see also virtual machines) 

ABEND codes 2-241 
accessing the file system 2-93 
Batch Facility (~CMS Batch Facility) 
batch facility 2-149 

modules used in 2-152 
called routine table 2-31 
command, handling 2-62 
command language 2-2 
command processing 2-30 
commands (§~~ CMS commands) 
console management 2-62 
devices supported 2-13 
DEVTAB (Device Table) 2-12 

Index 2-253 



diagnostic aids 2-237 
directories 2-155 
disk organization 2-88 
disk sterage management 2-92 
DMSFREE 2-12 

free storage management 2-17 
macro description 2-17 
service routines 2-22 

DMSFRES macro description 2-22 
DMSFRET macro description 2-21 
DMSITS 2- 26,2- 32 
DMSNUC 2-12 
DOS/VS support 2-48 
dynamic storage management 2-93 
error codes 

DMSFREE 
DMSFRES 
DMSFRET 
DMSFREX 

file 

2-240 
2-240 
2-240 
2-240 

execution 2- 62 
processing 2-62 

file status table block 2-87 
file sta tus table forma t 2- 87 
file status tables 2-86 
file syste. 2-4,2-6 

accessing 2-93 
management 2-86 

files, storage organization of 2-86 
first command processing 2-60 
free storage management 2- 14,2- 99 

DMSFREE 2-17 
GETMAIN 2-14 

function table 2-34 
reserved names 2-34 

functienal information 2-11 
handling, of PSi keys 2-107 
initialization for OS SVC handling 2-59 
interactive console environment 2-62 
interface with display terminals 2-34 
interrupt handling 2-7 
interrupts, processing 2-98 
introduction 2- 2 
I/O control flow 2-95 
I/O operations 2-94 
IPL command processing 2-58 
label to module cross reference 2-189 
loader 2-71 
loader tables 2-14 
leading, from card reader 2-57 
lIa i ntai ni ng in te rae ti ve session 2- 62 
master file directory 2-90 
miscellaneeus functions 2-148 
module entry point directory 2-157 
module tc label cross reference 2-169 
nucleus 2-13 
OS and DOS VSAM 

functions supported 2-48 
hardware devices supported 2-49 

overview of functional areas 2-52 
printer carriage control 2-97 
printing a file 2-97 
processing, commands entered during 
2-63 

program 
development facilities 2-5 
organization 2-50 

punching a card 2-96 
read disk I/O 2-9A 
reading a card 2-95 
record formats 2-88 
register usage 2-11 
restrictions on, as a saved system 

2-109 
returning to calling routine 2-31 
routines that access the file system 

2-93 
simulation 

of DOS environment 2-137 
of OS by 2-122 

storage 
constant initialization 2-58 
lIap 2-16,2-58 
structure 2-12 

structure of DMSNUC 2-11 
SVC handling 2-26,2-32 
symbol references 2-11 
system functions 2-53 
system save area modification 2-32 
transient area 2-13,2-29 
user 

area 2-29 
program area 2-14 

USERSECT (User Area) 2-12 
virtual devices used in 2-2~9 
virtual machine initialization 2-57 
write disk I/C 2-98 

CMS commands 
ACCESS 2-45 
FILEDEF 2-46 
how to add one 2-34 

CMS macro library 2-247 
C~~AMS-CMSVSA~ DCSSs, storage relationships 

with DMS1SM 2-115 
CMSCB, defined 2-124 
C~SCVT, defined 2-124 
CMS/DOS 

CLOSE functions 2-140 
routines that perform them 2-141 

DOSLKED command 2-142 
environment, termination of 2-148 
environment termination command 

DMSEAB 2-148 
DMSDMP 2-148 
DMSITP 2-148 

execution related contrel commands 
2-142 

FETCH command 2-142 

2-254 IBM VM/370 System Logic and Proble~ Determination Guide--Volume 2 



initialization 2-138 
data areas 2-138 

initialization for OS VSAM processing 
2- 119 

OPEN functions 2-140 
routines that perform them 2-140 

service ccmmand processing 2-148 
service commands 

DI'1SDSL 2-148 
DMSDSY 2-148 
D!"lSPRY 2-148 
DMSRRV 2-148 
DMSSRV 2-148 
ESERY 2-148 

SYC functions 
CANCL-SVC 6 2-144 
CDLOAD-SYC 65 2-146 
EOJ-SVC 14 2-145 
EXCP- SVC 0 2- 144 
FETCH- SVC 1 2- 144 
FETCH-SVC 2 2-144 
FETCH-SVC 4 2-144 
FREEVIS-SVC 62 2-146 
GETVIS-SVC 61 2-146 
MVCOM-SVC 5 2-144 
POST-SVC 40 2-146 
RELEASE-SVC 64 2-146 
RUNMODE-SVC 66 2-146 
SECTVAL-SVC 75 2-146 
simulation of 2-144 
SVC 11 2-145 
SVC 12 2-145 
SVC 16 2-145 
SVC 17 2-145 
SVC 26 2-145 
SVC 33 2-145 
SVC 34 2-145 
SVC 37 2-146 
SVC 50 2-146 
SVC 8 2-145 
SVC 9 2-145 
SVC 95 2-146 
treated as NOPs 2-147 
USE-SVC 63 2-146 
WAIT- SVC 7 2-145 

SVC functicns not supported 2-147 
SVC handling 2- 116 

CMS/DOS macro library 2-251 
CMSDOS-CMSVSAM-user program storage 
relationships 2-117 

CMS/VSAM error return processing 2-121 
CMSVSAM-CMSDOS-user program storage 

relationships 2-117 
command 

handling, CMS 2- 62 
language, CMS 2- 2 
processing 

SET DOS ON 2- 62 
SET SYSNAME 2-61 

commands ~ee C~S commands* CP commands 
and RSCS commands) 

file system manipulation 2-85 
passed via DMSINS, execution of 2-63 
process of, entered during CMS 2-61 

completion proce~sing 
DOS VSAM programs 2-121 
as VSAM programs 2-121 

consoll-~ 

function (2~~ CP (Control Prog-ram» 
management, CMS 2-62 

control block* manipulation macros, 
simulation of, VSAM 2-120 

control card routine 2-81 
ENTRY card 2-81 
LIBRARY card 2-81 

control flow for I/O processing 2-94 
Control Program (§~~ CP (Control Program» 
conventions 

linkage 2-66 
SVCs 2-66 

Conversational Monitor System (§~~ CMS 
(Conversational Monitor System» 

CP (Control Program), handling of saved 
systems 2-108 

cross reference 

D 

label to module, C~S 2-189 
module to label, CMS 2-169 

data base, loader 2-83 
data set control block (DSCB) 2-42 
data sets 

as 
accessing 2-45 
defining 2-46 
reading 2-45 

DCB macro 2-42 
DDR program (2~~ DASD Dump/Restore (DDR) 

program) 
DELETE macro 2-39 
DEQ macro 2-40 
DETACH macro 2-41 
devices, CMS-supported 2-13 
DEVTAB (Device Table) 2-12 
DEVTYPE macro 2-40 
diagnostic aids, CMS 2-237 
directories, CMS 2-155 
disk 

and file storage management 2-93 
I/O, CMS 2-98 
organization in CMS 2-88 

disk storage management 
CMS 2-90 
QMSK used in 2-90 
QQMSK used in 2-90 

display terminals, CMS interface 2-34 

Index 2-255 



DISPSW macrc display terminals, DISPSW 
macro 2-34 

DMKDDR (§~g DASD Dump Restore (DDR) 
program) 

DMSABN module, batch, CMS 2-152 
DMSACC module 2-130,2-131 

used for access 2-93 
DMSACF module 2-132 
DMSACM module 2-132 
DMSALU module 2-132 
DMSAMS, operation of 2-115 
DMSAMS-CMSAMS-CMSVSAM, storage 
relationships 2-115 

DMSARE module 2- 131,2-132 
DMSASN module 2-138,2-139 
DMSBOP module 2-116,2-141 
DMSBOP VSAM processing 2-116 
DMSBTB, general operation 2-149 
DMSBTB module 2-149 
DMSBTP, general opera tion 2-150 
DMSBTP module 2-150 
Dr!SCLS IlOd.U.1e 2- 117,2.- 142 
DMSCLS VSAM processing 2-111 
DMSCPF module, batch, CMS 2-153 
DMSCRD module, batch, CMS 2-152 
DMSDLB module 2-138,2- 140 
DMSDLK module 2-143 
DMSDOS module 2-116 
DMSDOS VSAM processing 2-116 
DMSDSK module, batch, CMS 2-153 
DMSDSL, service cOliliands, Cl1SjDOS 2-148 
DMSDSV, service cODlmands, CMSjDOS 2-148 
DMSERR 

HALT option 2-242 
AUSERRST NUCON field 2-242 

DMSERR module, batch, CMS 2-152 
DMSEXS 2-25 
DMSEXS macro 

C M S 2- 1 0 8 , 2- 11 2 
forma t 2- 112 

DMSFCH module 2-142 
DMSFET module 2- 142 
DMSFLD module 2-131,2-132 

batch, CMS 2-153 
DMSFRE module 

method of operation 2-104 
used in free storage management 2-99 

DMSFRE service routine 2-105 
CALOC option of 2-101 
CHECK option of 2-106 
CKOFF opticn of 2-101 
CKON option of 2-106 
INIT1 option of 2-105 
INIT2 option of 2-106 
UREC option of 2-101 

DMSFREE 2- 12 
allocated storage 2-105 
allocating nucleus free storage 2-20 
allocating user free storage 2-20 

error codes 2-24,2-110,2-240 
free storage allocation 2-100 
free storage pointers 2-101 
operands 2-11 
request efficiency 2-104 
service routin~s 2-22 
storage management 2-17 

DMSFRES 2-22 
error codes 2-24,2-110,2-240 
operands 2-22 

DMSFRES macro 
CMS 2-111 

format 2-111 
DMSFRET 2-21 

error codes 2-24,2-110,2-240 
operan ds 2-21 
releasing storage 2-21 

DM~FREX error codes 2-240 
DMSINA 2-28 
DM~INI module, batch, eMS 2-152 
DMSINS module 

batch, CMS 2-152 
executing commands 2-63 

DM~INT 2-28 
DM~INT module 2-64 
DM~IOW 2-9 
DMSITE 2-10 
DMSITE module, batch, eMS 2-152 
DMSITI 2-1 
DMSITP 2-9 
DM~ITS 2-1,2-26,2-32 
DM~I~S module 2-65 
DMSKCP VSAM processing 2-117 
DMSKEY 2-25 
DMSKEY macro, CMS 2-108,2-111 
DMSLDR module 2-82 

batch, CMS 2-152 
DMSLDS module 2-131,2-132 
DMSLFS module 2-133 
DMSLLU module 2-138,2-139 
DeSMVE module 2-131,2- 1 33 

batch, CMS 2-152 
DMSNUC 2-11,2-12 
DMSOPT module 2-138,2-139 
DMSPIO, carriage control characters 2-97 
DMSPIO module 2-97 

batch, C~S 2-152 
D~~PRV, service commands, CMS/tOS 2-148 
DMSQRY module 2-131,2-136 
DMSRDC module, batch, eMS 2-153 
DMSROS module 2-133,2-136 
DMSRRV, service cOllmands, CMS/DOS 2-148 
DMSSCT module 2-135 
DMSSEB module 2-135 
DMSSET module 2-138 

batch, C~S 2-153 
DMSSOP module 2-135 
DMSSRV, service commands, eMS/DOS 2-148 
DMSSTT module 2-131,2-136 

2-256 IBM VM/310 System Logic and Problem Determination Guide--Volume 2 



DMSSVT module 2-136 
DMSVIP module 2-119 
DMSXCP module 2- 117 
DOS 

CLOSE functions 2-140 
environment sillluia tion under CMS 2-137 
initialization 2-137,2-138 

assign logical and physical units 
2-139 

associate a DTF table filename with a 
lo~ical unit 2-140 

data areas 2-138 
for OS VSAM processing 2-119 
list assignments of CMSjDOS logical 
units 2-139 

reseting cOllpiler options 2-139 
resetting DOS environment options 
2-139 

setting comFiler options 2-139 
setting DOS environment options 

2-139 
OPEN functions 2-140 
SVC calls 2-67 
.system centrol cOllllands, processing of 

2-137 
VSAM 

functions supported by CMS 2-48 
bardward devices supported by CMS 
2-49 

DOS commands 2-137 
DOS VSAM 

cCllpleticn processing 2-121 
execution of, for a DOS user 2-116 

DOSCB 2-140 
DOSCB chain, crea tion of 2- 114 
DOS-OS-VSAM-user proqrall storage 
relationships 2-118 

DOS/VS 
FETCH function 2-142 
Linkage Editor, CMS, simulation of 

2-143 
support, under CMS 2-48 

DSCB 2-42 
DTF tables, c~ening files associated with 

2-141 
DTFs, closing files associated with 2-142 
dump {~~~ ~l§Q CP (Control program), dump 

and eMS (Conversational Monitor System), 
dump) 

dynaaic stcrage lIanagement, active disk and 
file 2-93 

E 
END card routine 2-80 

operation 2-80 
ENQ lIacro 2- 41 
ENTRY control card 2-81 
entry point directory, CMS 2-157 

environments 
non-CMS 2-113 

access method support for 2-113 
ERET error routine processing 2-121 
error codes 2-24 

DMSFBEE 2-24,2-240 
DMSFRES 2-24,2-240 
DMSFBE! 2-24,2-240 
DMSFREX 2-240 
from D!SFREE 2-110 
from DMSFRES 2-110 
from DMSFBET 2-110 

error printouts 2-153 
error return, CMS/VSIM, processing of 

2-121 
error routine, ERET, processing of 
ESD card codes 2-83 
ESD type 0 card routine 2-74 

operation 2-74 
ESt type 1 card routine 2-74 

operation 2-75 
ESD type 10 routine 2-77 
ESC type 2 card routine 2-75 

opet:ation 2-75 
ESD type 4 card routine 2-76 

operation 2-76 
ESD type 5 card routine 2-76 

operation 2-76 
ESD type 6 card routine 2-76 

operation 2-76 
ESERV 6 service commands 6 CMS/DOS 
ESIDTB (ESD ID table) entry 2-83 
executing 

CMS files 2-62 
text files 2-71 

EXIT macro 2-38 
exit routine, user, processing of 
external interrupt 

BLIP character 2-10 
HNDEXT macro 2-10 
in CMS 2-10 
timer 2-10 

EXTRICT macro 2-40 

F 
FCB (File Control Block) 2-11 
FEOV macro 2-40 
file 

')_1')1 
~.~ " , 

2-148 

2-121 

arrangement of fixed-length records, in 
CMS 2-89 

arrangement of variable-length records, 
in C~S 2-89 

management 
CMS 2-4,2-6 

file status table (PST) 
CMS 2-87 
for.at 2-87 

file status table block, for.at 2-87 

Index 2-257 



file status tables, CMS 2-86 
file system 

CMS, management 2-86 
manipulaticn commands 2-85 

FILEDEF command 2-46 
AUXPROC option 2-47 
de fin i n g 0 S da ta se t s 2- 46 
flow 2- 131 

files, os fcrma t, support of 2- 42 
FIND macro 2-39 
first chain link format 2-89 
first command processing, CMS 2-60 
format 

DMSEXS macro, CMS 2-112 
DMSFRES macros, eMS 2-111 
DMSKSY macro, eMS 2-111 
first chain link, in CMS 2-89 
nth chain link, in CMS 2-89 
system save area 2-70 
user save area 2-70 

free chain element format 2-103 
free storage 

allocation 2-100 
management 2-99 

CMS 2-14,2-99 
pJinters 2-100 

nucleus, allocation of 2-104 
pointers, DMSFREE 2-101 
user, allocation of 2-104 

free storage table 
FREETAo 2-101 
NUCCODE 2-101 
SYSCODE 2-101 
TRNCODE 2-101 
USARCODE 2-101 
USERCODE 2- 101 

FREEDBUF macro 2-41 
FREEMAIN macro 2-38 
FREEPOOL macro 2-39 
FREETAB free storage table 2-101 
functional area, overview, eMS 2-52 

G 
GENCB processing 2-120 
GET macro 2- 43 
GETMAIN 

allocated storage 2-105 
free element chain 2-17 
free storage 

allocation 2-100 
management pointers 2-100 

GETMAIN/FREEMAIN macros 2-39 
simulation 2-17 

GETMAIN macro 2-38 
GETPOOL macro 2-39 

H 
HALT option 2-242 

AUSERRST NUCON field 2-242 

handling 
OS files 

on CMS disks 2-36 
on CS or Des disks 2-36 

high-core nucleus chain 2-101 
high-core user chain 2-101 

I 
ICS card routine 2-73 

operation 2-73 
IDENTIFY macro 2-40 
ini tializ at ion 

CMS virtual machine 2-57 
eMS/DOS, for as YSA~ processing 2-119 
DMSINS module 2-58 
DOS 2-137 
for OS SYC handling, c~S 2-59 
of a named svstem 2-60 
of a saved system 2-60 
storage constant, eMS 2-58 
system table, CMS 2-58 

input restrictions, loader 2-85 
input/output (~~ I/O) 
interactive console environment, eMS 2-62 
interrupt handling 

CMS 2-7 
input/oatput interrupts 2-8 
SYC interrupts 2-7 
terminal interrupts 2-9 

DMSITS 2-7 
external interrupts 2-10 
machine check interrupts 2-10 
program interrupts 2-9 
reader/punch/printer interrupts 2-9 
user-controlled device interrupts 2-9 

interrupts, processing 2-98 
introduction, eMS 2-2 
IN'ISYC 2-26 
I/O 

disk, CMS 2-98 
interrupt, in CMS 2-8 
macros, OS YSAM, simulation of 2-120 

I/O control flow, CMS 2-95 
I/O operations, eMS 2-94 
IPt command processing 

K 
key 

AUTOCR 2-58,2-242 
CMS 2-58 

real PSW 2-108 
real storage 2-108 
virtual PSi 2-108 
virtual storage 2-108 

keys, storage protection 2-107 

2-258 IBM YM/370 System Logic and Problem Determination Guide--Volume 2 



L 
label to module cross reference, CMS 2-189 
LIBRARY control card 2-81 
LINK macro 2-38 
linkage conventions 2-66 

SiCs 2-66 
LISTDS command flow 2-131 
LOAD macro 2-39 
loader 

CMS 2-71 
data base 2-83 
inFut restrictions 2-85 

loader tables, (CMS) 2-14 
loading 

CMS, from card reader 2-57 
from card reader, CMS 2-57 
text files 2-71 

lew-core nucleus chain 2-101 
low-core user chain 2- 101 

M 
.achine check, interrupt, in CMS 2-10 
macro library 

CMS 2-241 
eMS/DOS 2- 251 

macro processing 
I/O 

ENDREQ 2-120 
ERASE 2-120 
GET 2-120 
POINT 2-120 
PUT 2-120 

macros 
ccntrol bleck manipulation, VSAM 2-120 
GEN::B 2-120 
MODCB 2-120 
OS (2~~ OS (Opera ting System), macros) 
SHO WCB 2- 120 
TESTCB 2-120 

maintaining interactive session, CMS 2-62 
master file directory 

CMS 2-90 
structure 2-92 

miscellaneous CMS functions 2-148 
MODCB processing 2-120 
module entry Foint directory, CMS 2-157 
module to label cross reference, CMS 2-169 
MOVEFILE comma nd flow 2- 131 

N 
named system initialization 2-60 
nen-CM S cFera ti ng en vironmen ts 2- 113 
NOTE macro 2- 41 
Nth chain link, format 2-89 

nucleus 
free storage, allocation 2-104 
storage copy of 2-58 

nucleus (CMS) 2-13 

o 
OPEN, OS VSAM, simulation of 2-119 
OPEN/OPENJ macros 2-40 
operating environments 

non-CMS 2-113 
access method support for 2-113 

operation 
of DMSINT 2-64 
of DMSITS 2-65 

organization, virtual disk 2-88 
OS (Operating System) 

control block functions, CMS simulation 
of 2-123 

data management simulation 2-35 
data sets, reading 2-45 
formatted files 2-42 
handling 

files on eMS disks 2-36 
files on OS or DOS disks 2-36 

macros 
ABEND 2-39 
ATTACH 2-40 
BLDL 2-39 
ESP 2-41 
CHAP 2-40 
CHECK 2-42 
CHKPT 2-41 
CLOSE/TCLOSE 2-40 
DCB 2-42 
DELETE 2-39 
DEQ 2-40 
descriptions of 2-31 
DETACH 2-41 
DEVTYPE 2-40 
ENQ 2-41 
EXI'I 2-38 
EXTRACT 2-40 
FEOV 2-40 
FIND 2-39 
FREEDBUF 2-41 
FREEMAIN 2-38 
FREE POOL 2-39 
GET 2-43 
GE'l'MAIN 2-38 
GET MAIN/FREE MAIN 2-39 
GETPOOL 2-39 
IDENTIFY 2-40 
LINK 2-38 
LOAD 2-39 
NOTE 2-41 
OPEN/OPENJ 2-40 

Index 2-259 



POINT 2-42 
POST 2- 38 
PUT 2- 43 
PUTX 2-44 
RDJFCB 2-41 
READ 2-44 
RESTORE 2- 39 
RETURN 2-38 
SNAP 2-41 
SPIE 2-39 
STAE 2-41 
STAX 2-41 
STHIER 2-40 
STOW 2- 39 
SYNADAF 2-41 
SYNADRL S 2- 41 
TCLEARQ 2- 41 
TGET/TPUT 2-41 
TIME 2-39 
TTIMER 2-40 
Il n d e r C M S 2- 3 5 
WaIT 2- 38 
WRITE 2-44 
WTO/WTOR 2-40 
XCTL 2-38 
XDAP 2-38 

VSAM 
fanctions supported by eMS 
hardware devices supported 
2-49 

2-48 
by CMS 

os ACCESS, flew ef commands used in 2-130 
OS access method modules 

DM SACC 2- 131 
OM SAC F 2- 132 
OMSACM 2- 132 
OMS A L U 2- 1 32 
OMSARE 2-132 
OM SFLD 2- 132 

CONCAT 2-132 
OSN 2-132 
MEMBER 2-132 

OMS LOS 2- 132 
OMSLFS 2-133 
OMSMVE 2- 133 
OMS Q R Y 2- 1 36 

DISK routine 2-136 
SEARCH routine 2-136 

OM SROS 2-133 
CHKSENSE routine 2-131 
CHKXTNT routine 2-131 
CHRCNVRT routine 2-136 
common routines 2-136 
OISKIO routine 2-131 
GETALT routine 2-137 
ROCNT routine 2-131 
ROSACC routine 2-133 
ROSFIND routine 2-134 
ROSNTPTB routine 2-134 

ROSRPS routine 2-134 
ROSSTRET routi~~ 2-134 
ROSSTT routine 2-133 
SETXTNT routine 2-131 

OMSSCT 2-135 
CKCONCAT routine 2-135 
FIND(Type C) routine 2-135 
NOTE routine 2-135 
POINT routine 2-135 

DMSSEB 2-135 
EOBROUTN routine 2-135 
OSREAO routine 2-135 

OMSSOP 2-135 
OMSSTT 2-136 
OMSSVT 2-136 

BLOL Loutine 2-136 
BSP routine 2-136 
FIND {Type D) routine 2-136 

OS access method support 2-113 
OS functions 

eMS module used for 2-122 
defined 2-122 
simulated by CMS 2-122 
SVC numbers of 2-122 

OS macro simulation SVC calls 2-61 
OS simulation by CMS 2-122 
OS simulation routines 2-124 

ABEND-SVC 13 2-126 
ATTACH-SVC 42 2-121 
BACKSPACE-SVC 69 2-129 
BLDL/FIND(Type D)-SVC 18 2-126 
CHAP-SVC 44 2-121 
CHECK 2-129 
CHKPT-SVC 63 2-128 
CLOSE/TCLOSE-SVC 20/23 2-126 
DELETE-SVC 9 2-125 
DEQ-SVC 48 2-128 
DETACH-SVC 62 2-128 
DEVTYPE-SVC 24 2-126 
ENQ-SVC 56 2-128 
EXIT-SVC 3 2-125 
EXTRACT-SVC 40 2-127 
FEOV-SVC 31 2-121 
FREEDBOF-SVC 57 2-128 
FREEMAIN-SVC 5 2-125 
GETMAIN/FREEMAIN-SVC 10 2-125 
GETMAIN-SVC 4 2-125 
GETPOOL 2-126 
GET/PUT-SVC 96 2-129 
IDENTIFY-SVC 41 2-127 
LINK-SVC 6 2-125 
LOAD-S1C 8 2-125 
NOTE/peINT/FIND (Type C) 2-129 
notes on 2-130 
OPEN/OFENJ-SVC 19/22 2-126 
POST-SVC 2 2-124 
provided by CMS 2-124 
RDJFCB-SVC 64 2-128 

2-260 IBM VM/310 System Logic and Problem Determination Guide--Volume 2 



READ/WRITE 
RESTORE- SVC 
SNAP-SVC 51 
SPIE- SVC 14 
STAE-SVC 60 
STAX-SVC 96 

2-129 
17 2-126 

2-128 
2-126 
2-128 
2-129 

STIMER-SiC 47 2-127 
STOW-SVC 21 2-126 
SYNAD-SVC 68 2-129 
TCLEARQ-SVC 94 2-129 
TGET/TPUT-SVC 93 2-129 
TIME-SVC 11 2-126 
TRKBAL- SVC 25 2- 127 
TTIMER-SVC 46 2-127 
used by Assembler 2-124 
used by FORTRAN 2-124 
used by PL/I 2- 124 
WAIT-SVC 1 2-124 
iTO/iTOR-SVC 35 2-127 
XCTL- SVC 7 2-125 
XDAP-SVC 0 2-124 

OS SVC handling, initialization for, CMS 
2-59 

OS VSAM 
CHECK processing 2-121 
CLOSE, simulation of 2-119 
execution, user 2-118 
I/O macros, simulation of 2-120 
OPEN, simulation of 2-119 
frcgram ccmFletion processing 2-121 

OS-DOS-VSAM-user program storage 
relationships 2-118 

overview, CMS, functional areas 2-52 

P 
patch control block (PCB) 2- 85 
PLIST (parameter list) 2-11 
POINT macro 2-42 
pointers, free storage management 2-100 
POST macro 2-38 
printer, interruptions 2-9 
Frinting a file, CMS 2-97 
printouts, error 2-153 
processing 

CMS files 2-62 
commands entered during CMS session 
2-63 

DOS system control commands 2-137 
interrupts 2-98 

program 
interruption, in CMS 2-9 
organization, CMS 2-50 

program areas 
transient 2-68 
user 2-68 

Program Status Word (§gg PSi (program 
Status Word» 

PRSERCH routine 2-82 
operation 2-82 

PSi (Program Status Word), keys, CMS 2-25 
PSW keys, CMS handling of 2-107 
punch, interruptions 2-9 
punching a card, CMS 2-96 
PUT macro 2-43 
PUTX macros 2-44 

Q 
QMSK data block 2-92 
QUERY command flow 2-131 
querying options in the virtual machine 

environment 2~60 

R 
RDJFCB macro 2-41 
READ macro 2-44 
reader, interruptions 2-9 
reading 

a card, CMS 2-95 
as data sets 2-45 

real 
PSW key 2-108 
storage key 2-108 

record for.ats, c~s 2-88 
REFADR routine 2-82 

operation 2-82 
REFTBL 

address field 2-85 
entry 2-84 
flag1 byte 2-84 
flag2 byte 2-85 
info field 2-84 
name field 2-84 
value field 2-85 

register 
contents when called routine starts 

2-69 
restoration by called routine 2-70 

registers, usage, CMS 2-11 
RELEASE command flow 2-131 
releasing 

allocated storage 2-21,2-105 
storage 2-21,2-104 

REP card routine 2-78 
operation 2-78 

RESTORE macro 2-39 
restrictions 

BDAM 2-44 
input, loader 2-85 
on CMS as a saved system 2-109 

return location, when returning to caller 
2-69 

RETURN macro 2-38 

Index 2-261 



returning 
to caller 2-69 

register restoration 2-70 
return location 2-69 

RLD card routine 2-79 
operation 2-79 

S 
save area 

eMS system 2- 32 
eMS syste:n save area format 2-32 
user save area format 2-32 

saved system 
effect on CMS as a 2- 109 
handling of, CP 2-108 
initialization 2-60 
restrictions on CMS as a 2-109 

service routines 
DMSFRE 2-105 
TSO, sup~ort of 2-122 

SET" DOS ON comlla nd processing, VSAM 2- 60 
SET SYSNAME cemlla nd processing 2- 61 
setting ofticns in the virtual machine 
environment 2-60 

SHOWCB processing 2-120 
simulation, of OS by CMS 2-122 
simulation routines, OS (§~~ OS simulation 
routines) 

SLC card routine 2-72 
operation 2-72 

SNAP macro 2-41 
sranned records, uSage 2-43 
SPIE macro 2-39 
STAE macro 2-41 
start- up table, called routi ne 2- 69 
STATE command flow 2-131 
status tables, file, eMS 2-86 
STAX macro 2-41 
STIMER macro 2-41 
storage 

allocated by DMSFREE 2-105 
allocated by GETMAIN 2-105 
allocation 2-20 
CMS 2-17 
constant initialization, CMS 2-58 
free, allocation 2-100 
map, CMS 2-58 
organization of eMS files 2-86 
protection keys 2-107 
releasing 2-21 
releasing of 2-104 

storage relationships, DOS-OS-VSAM-user 
program 2-118 

STOW macro 2-39 
STRINIT macro 2-14 

SVC 
calls (see S VC calls) 
handling---

by user 2-27 
commands entered from terminal 2-28 
invalid SVCs 2-28 
linkage 2-26 
OS and DOS/VS SVC simulation 2-27 
type of SVC 2-26 

handling for ~MS/DOS 2-116 
interrupt 

CMS internal linkage SVCs 2-7 
other eMS SVCs 2-7 

types 2-66 
user handled 2-67 
201 2-66 
202 2-66 
203 2-66 

SVC calls 
DOS 2-67 
invalid 2-67 
as macro simulation 2-67 

SVC 201 2-66 
SVC 202 2-26,2-66 

search hierarchy 2-28 
search hierarchy for 2-68 

SVC 203 2-27,2-66 
SYNADAF macro 2-41 
SYNADRLS macro 2-40 
system 

T 

file, lIanagement 2-86 
functions, CMS 2-53 
save area format 2-70 
table initialization, eMS 2-58 

table, start-up, called routine 2-69 
table entry 

ESIDTB 2-83 
REFTBL 2-84 

TCLEARQ macro 2-41 
terminal interruptions, in eMS 2-9 
termination, abnormal (see abnormal 
termination (abend» ---

TESTeB processing 2-120 
text files 2-71 

executing 2-71 
loading 2-71 

TGET/TPUT macros 2-41 
thrashing, VPK of 0 2-110 
TIME macro 2-39 
transient area (eMS) 2-13 
transient prograll areas 2-68 
TSC service routine, support of 2-122 
TTIMER macro 2-40 
TXT card routine 2-77 

operation 2-77 

2-262 IBM VM/370 System LOlic and Problem Determination Guide--Volulle 2 



U 
user 

exit routine processing 2-121 
free stora ge, alloca tion of 2-104 
handled SVCs 2-67 
program areas 2-68 
save area format 2-70 

user program-CMSDOS-CMSVSAM storage 
relationships 2-117 

user ~rogram-VSAM-DOS-OS storage 
relationships 2-118 

user-controlled device interrupts 2-9 
USERSECT (User Area) 2-12 

V 
virtual 

devices used in CMS 2-239 
disk 

accessing 2- 9 3 
organization 2-88 
physical organization 2-88 

PSi key 2-108 
virtual machine 

environment 
querying options 2-60 
setting options 2-60 

initialization, eMS 2-57 
Virtual Machine Facility/370 (VM/370), eMS 

2-2 

virtual storage, key 2-108 
VM/370 (§~~ Virtual Machine Facility/370 

(VM/370) ) 
Volume Table of Contents (VTCe), support of 
2-42 

VPK of 0 caused overhead 2-110 
VSAM 

CLOSE, as, simulation of 2-119 
CMS support of 2-113,2-114 
control block manipulation macros, 
simulation of 2-120 

execution for OS user 2-118 
execution of, for a Des user 2-116 
OPEN, OS, simulation of 2-119 
processing, DMSDOS 2-116 
SET DOS ON command processing 2-60 
support of 2-43 

VSAM-DOS-OS-user program storage 
relationships 2-118 

W 
WAIT macro 2-38 
WRITE macro 2-44 
iTO/iTOR macros 2-40 

X 
XCTL macro 
XDAP macro 

2-38 
2-38 

Index 2-263 



~ o 
Z 

Title: IBM Virtual Machine Facility/370: 
System Logic and Problem Determination 
Guide Volume 2 

Order No. SY20-0887-1 

Please check or fill in the items; adding explanations/comments in the space provided. 

Which of the following terms best describes your job? 

o Customer Engineer o Manager o Programmer 
o Engineer o Mathematician o Sales Representative 
o instructor o Operator o Student/Trainee 

How did you use this publication? 

READER'S 
COMMENT 
FORM 

o Systems Analyst 
o Systems Engineer 
o Other ( explain below) 

o Introductory text o Reference manual o Student/ 0 Instructor text 
o Other (explain) ___________________________ _ 

Did you find the material easy to read and understand? 0 Yes 

Did you find the material organized for convenient use? 0 Yes 

Specific criticisms (explain below) 
Clarifications on pages 
Additions on pages 

Deletions on pages 

Errors on pages 

Explanations and other comments: 

o No (explain below) 

o No (explain below) 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



SY2Q-0887·' 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

1I1111 

BUSINESS REPLY MAIL 

FIRST CLASS PERMIT 40 ARMONK, NEW YORK 

Attn: VM/370 Publications 

Fold and tape 

--- ------ ---- ---- - ---- - - -----------,,-
International Business Machines Corporation 
Data Processing Division 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Department 058, Building 706-2 
PO Box 390 
Poughkeepsie, New York 12602 

Please Do Not Staple 

1133 Westchester Avenue, White Plains, N.Y: 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.V., U.S.A. 10601 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

(') 

S. 
Q 
." 
0 
a: 
~ 
0' 
::l 
IIQ 

r 
5' 
(D 

I 
--I 

Fold and tape 

I 
I 
I 

I 
I 
I 
I 
I 

I 
I 
I 

I 

OJ s: 
~ ... ..... 
C 
!!. 
s: 
CI) 
n 
::r 
:r 
CD 

'T1 
CI) 

~. 

~. -W ..... 
~ 
CI) 

-< en 
~ 
3 
r 
0 

CQ 

n' 
CI) 

~ 
C-
"'CI ... 
0 
0" 
CD 
3 
c 
CD 

S' 
3 :;. 
CI) 

!:to 
0 
~ 

C) 
c 
a: 
CD 

< 
2-
N 

"'CI ... :;. 
S' 
C-
:;. 
c 
en 
~ 

CI) 

-< 
N 
9 
0 
00 
00 
":J 
-' 



SY20-0887-' 

--...- ------ - ----------- - ---
-~-----_ .. -
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.V. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant. Route 9, North Tarrytown, N.V., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.V., U.S.A. 10601 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	2-185
	2-186
	2-187
	2-188
	2-189
	2-190
	2-191
	2-192
	2-193
	2-194
	2-195
	2-196
	2-197
	2-198
	2-199
	2-200
	2-201
	2-202
	2-203
	2-204
	2-205
	2-206
	2-207
	2-208
	2-209
	2-210
	2-211
	2-212
	2-213
	2-214
	2-215
	2-216
	2-217
	2-218
	2-219
	2-220
	2-221
	2-222
	2-223
	2-224
	2-225
	2-226
	2-227
	2-228
	2-229
	2-230
	2-231
	2-232
	2-233
	2-234
	2-235
	2-236
	2-237
	2-238
	2-239
	2-240
	2-241
	2-242
	2-243
	2-244
	2-245
	2-246
	2-247
	2-248
	2-249
	2-250
	2-251
	2-252
	2-253
	2-254
	2-255
	2-256
	2-257
	2-258
	2-259
	2-260
	2-261
	2-262
	2-263
	replyA
	replyB
	xBack

