File No. $370-36
Order No. SY20-0886-1

IBM Virtual Machine
Facility/370:

System Logic and
Problem Determination

Guide Volume 1
SYStems Control Program (CP)

| Release 6 PLC 1

This publication is intended for the IBM system
hardware and software support personnel. It
provides the following information for the CP
component of VM/370:

® Description of program logic
® Module descriptions and cross-references

® Abend and wait state codes
PREREQUISITE PUBLICATIONS

1BM Virtual Machine Facility/370:
Introduction, Order No. GC20-1800
Operator’s Guide, Order No. GC20-1806
System Programmer’s Guide, Order No. GC20-1807
Terminal User’s Guide, Order No. GC20-181Q

CP Command Reference for General Users,
Order No. GC20-1820

1BM System/360 Principles of Operation,
Order No. GA22-6821

1BM System/370 Principles of Operation,
Order No. GA22-7000

I1BM OS/VS, DOS/VS, and VM/370 Assembler
Language, Order No. GC33-4010



| Second Edition (March 1979)

| This is a major revision of and obsoletes SY20-0886-0 and Technical

| Hevsletters SN25-0446 and SN25-0467. This edition, SY20-0886-1,

| corresponds to Release 6 PLC 1 (Program Level Change) of the IBM Virtual
Machine Facility/370 and to all subsequent releases until otherwvise
indicated in new editions or Technical Newsletters.

Technical changes and additions to text and illustrations are indicated
by a vertical bar to the left of the change.

Changes are periodically made to the information herein; before using
this publication in connection with the operation of IBM systess,
consult the latest IBM System/370 Bibliography, Order No. GC20-0001, for
the editions that are applicable and current.

Publications are not stocked at the address given belovw; requests for
copies of IBM publications should be made to your IEM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may he addressed to
IBM Corporation, VM/370 Publications, Dept. D58, Bldg. 706~2, F.0. Box
390, Poughkeepsie, New York 12602. IBM may use or distribute any of the
information you supply in any vay it believes appropriate without
incurring any obligation whatever. You may, of course, continue to use
the information you supply.

© Copyright Internatiomal Business Machines Corporation 1977, 1979



This publication provides the IBM system
hardware and software support personnel
with the information needed to analyze

problems that may occur on the IBM Virtual
Machine Facility/370 (vM/370).

HOW THIS MANUAL IS QORGANIZED

This manual comprises three volumes:

"Yolume 1. VM/370 Control Program (CP),"

"yolume 2. Conversational Monitor System
{(CMS),® and "Volume 3. Remote Spooling
Communications Subsystem (RSCS)" contain
the 1logic description for each of the
components. Each of these volumes is
divided into four sections: Introduction,
Method of Operation, Directory, and

Diagnostic 1ids.

The method of operation and prograa
organization sections contain the functions
and relationships of the program routines
in wWM/370. They indicate the progranm
operation and organization in a general way
to serve as a guide in wunderstanding
v¥/370. They are not meant to be a
detailed analysis of VM/370 programming and
cannot be used as such.

The directories contain descriptions of
all the asseamble modules in CP, CHMS, and
RSCS. They also contain extensive
cross-references between modules and labels
within a VM/370 component.

The diagnostic aids sections contain
additional information useful for
determining the cause of a problem.

Appendix A, located in Volunme 1,
contains a description of VM/370 Extended
Control-Program Support (ECPS).

Appendix B, also located in Volume T,
describes VM/370 support for the IBM 3850
Mass Storage System (MSS).

HOW T0 USE IEIS HARUAL

——— = ——2

e 1Isolate the component of VM/370 in which
the problem occurred.

e Use the 1list of restrictions in ¥YM/370
_______ to be certain that the

operation that was being performed was

valia,

Preface

e Use the directories and use the VM/370
Data Areas apd Copntrol Block Logic to
help you to isolate the probles.

e Use the method of operation and program
organization sections, if necessary, to
understand the operation that was being
performed.

DEVICE TERMINCLOGY

The following terms in this publication
refer to the indicated support devices:

s "2305" refers to IBM 2305 Fixed Head
Storage, Models 1 and 2.

e n270x" refers to IBM 2701, 2702, and
2703 Transmission Control Units or the
Integrated Communications Adapter (ICA)
on the System/370 Hodel 13S.

e #3330" refers to the IBM 3330 Disk
Storage, Models 1, 2, or 11; the IEN
3333 pisk Storage and Control, Models 1
or 11; and the 3350 Direct Access
Storage operating in 3330/3333 Model 1
or 3330/3333 Model 11 compatibility
mode.

e n3340" refers to the IBM 3340 Disk
Storage, Models A2, B1, and B2, and the
3344 Direct Access Storage Model B2.

e n3350" refers to the 1IBM 3350 Direct
Access Storage Models A2 and B2 in
native mode.

e n3704n, "3705", or "370x"
3704 and 3705
controllers.

refers to IEM
Connunications

e The term "3705" refers to the 3705 I and
the 3705 II unless otherwise noted.

e n2741n refers +to the 1IBM 2741 and the

3767, unless otherwise specified.

e u3270" refers to a series of display
devices, namely the IBM 3275, 3276,
3277, 3278 Display Stations. A specific
device type is used cnly vwhen a
distinction is required between device
types.

Information atout display terminal usage
also applies to the IBM 3036, 3138, 3148,
and 3158 Display Consoles when used in
display mode, unless othervise noted.

Preface iii



Any information pertaining to the IBM Lata Areas and Control Block Logic,
3284 or 3286 alsc pertains to the IBM 3287, order No. SY20-0884
3288 and the 3289 printers, unless
otherwise noted.

In addition, for EREP processing the
following O0S/VS Library publications are
required:

CP COMPONENT
0S/VS Environmental Reccrding Editing and
PREREQUISITE PUBLICATIONS Printing (EREP) Programs, Order No.
GC28-0772

0S/VS Environmental Recording Editing and
Introducticn, Order No. GC20-1800 Printing (EREP) Program Logic, Order Kc.
SY28-0773

rator's Guide, order No. GC20-1806

5

Svstem Programmer's Guide, Order VNo.
GC20-1807

| If the 1IBM 3850 Mass Storage System is
Terminal User's Guide, order No. | attached, the following publications are
GC20-1810 | required:

| 0S/VS Message Likrary: Mass Storage System
| (MSS) Messages, Order No. GC38-1000

order No. GC20-1820 | IEM 3850 Mass Storage Systes (MSS)
| Principles of Operation: Thecry, Order No.
| GA32-0035

COREQUISITE PUBLICATIONS
| IEM 385¢ Mass Storage System (¥sS)
| Principles of Operation: Reference, Order
IBM Virtual Machine Facility/370 | No. GA32-C036

Planning and System Geperation Guide,
Cc2 01 SUPPLEMENTARY PUBLICATIONS

System Messages, Order No. GC20-1808

IEM System/360 Principles cf Operation,
OLTSEP and Error Recording Guide, Order Order No. GA22-6821
No. GC20-1809

IEM System/370 Principles of Operation,
Operating Systems in a Virtual Machine, | Order No. GA22-7000

Order No. GC20-1821

-
= ]

E 3270 Information Display Systenm
Service Routines Program Logic, Order | Components Description, Crder No. GA27-2749
No. SY20-0882

| Geperal Information Bipary Synchronous
| Commpunications, Order No. GA27-3004

iv IBM vu/370 System Logic and Problem Determination--vVolume 1



SUMMARY OF AMENDMERTS. . « « « « - .
CP INTRODUCTION. o « « o« o« « o« « « &«

vM/370 . . . . . . « e e e -
Introduction to the VH/370 Control

PrTOJTAM « o « =« « o = o o o o « o o
Virtual Machine Time Management. .
Virtual Machine Storage Management
Virtual Machine I/0 Management . .
5p00ling FuDCtionS « o« o o o o « «
Spool File RECOVEIYe « o o« o « o =
CP CommandsS. « « « o « 5 « o « o =
PROGRAM STATES + o ¢ o o « o o o o «

USING PROCESSOR RESOURCES. o« « « « «
Queue 1. v o o v « o o « o o o a o
QUEUE 2. v o« o o o « o « o« 2 » « o &«
FUNCTIONAL INFORMATION . . « « « « «

PERFORMANCE GUIDELINES

General Information. « « « « ¢ ¢ « &
Virtual Machine I/0. « ¢ ¢ o o o « «
Paging Considerations. . . « « « . .
Locked Pages Option. . « « . . . .
Reserved Page Frames Option. . . .
Virtual=Real Option. « « « « « « =«
Preferred vVirtual Machines . . . . .
Favored Execution. « . . . « « .« .
PrioTity o« o« o o o o o o o o « o«
Reserved Page Frames . « « « « « «
Virtual=Real « « ¢« ¢ « ¢ ¢ o« « o «
Affinity . . . . . . e o e o = @
virtual Machine l<51s+ Feature . .
VH/370 Extended Control-Progranm
Support (ECPS). v o o« ¢ o « + =«

8 & 8 & 8 5 0 8 & a2 0 0 s

Virtual Machine Communication Pacility

Special Messages Facility. . « . . <
VM/VS Handshaking. « « o« « o« = « « &

CP INTERRUPTION HANDLING .
Program Interruption . . . . .
Privileged Instructioms. . . .
I/0 Privileged Instructions. .
Non-I/0 Privileged Instructions
DIAGNOSE Instruction in a Vvirtu
Machine . . . . . . . .
I/0 Interruption . . . . .
Machine Check Interruption
SYC Interruptiom . . . . .
External Interruption. . .
Timer Interruption . . .
External Interruption. .
Extended Virtual External
Interruptions . . . . . .
System Support . . . . . . .
Free Storage Management. .
Storage Protection . . .
Executing the Pageable Cont
PIOGram « « « o« « = = = -«

s & 0

1

5 8 8 & o 82 v s e o e

LI Y S S S N Y
LI ) * s » 0
L T TR B S}
a8 0 & & 8

ol

O PFfe a2 e 0

. .
- e
| |

-

i

-\d-)_'l—ll-l—l
VOO E&W w

-
i
-
o

1-11
1-1
-1

1-13

1-25
-25
1-26
1-27
1-28
1-29
1-29
1-30
1-30
1-32
1-32
1-32
1-34
1-35

1-37
1-39
1-40
1-43

1-u6
1-u6
1-46
1-46
1-47

1-49
1-73
1-73
=74
1-76

I/C ManagemeBt . . « « . . .

Contents

System Support Modules . . .
Control Register Usage . . .
Restrictions and Conventions
Pageable CP Modules . . . .
Data Area Modules. . . . .
Virtual Timer Maintenance.

[}

ooolilbol‘!..olomooloiu‘l"]lo

I1/0 Supervisor . . . . .
Real I/0 Control Blocks.
virtual I/0 Requests . .
I/C Component States
I/0 Interruptions. . . .
Virtual I/0 Interruptions.
Scheduling I/O Requests. .
Virtual Console Simulation
Remote 3270 Programming. . .
I/0 Programs for Bisynchroncus
and Remote 3270s. . . . « .
LCata Formats - Bisynchronous
and Remote 3270s. . . . . .
Allocation Management. .
Normal Paging Requests .
DASD Storage Management.
Paging I/C . .
Paging Subsystem . . .
Page Replacement and Page Select on
Algorithm . . . . e o o o
Backing Store Allocatlon Algorlthl
Page I/C Request Queueing
Algorithm . « . &« . ¢ ¢ ¢ o o o =
Virtual Storage Paging Error
RECOVEIY. « « = « = « « « =
Virtual Relocation . . . .
Free Storage Management. .
CP Initialization. . . . .
Initialization and Terminat
Console Functions. . . .
Dispatching and 5chedu11ng
CP Spooling. « « « o « «
Spool Data and File Forlat -
Spool Buffer Management. . .
Virtval Spooling Manager (DMKYVS
Real Spooling Manager (DMKRSP)
Spooling Commands. « « « . . .
Spool File Error Recovery. .
Recovery from System Failure . .
Recovery Management Support (RMS)
System Initialization for RMS. . .
Cverview of Machine Check Handler.
System/370 Recovery Features . . .
Overview of Channel Check Handler.
Channel Control Subroutine . . . .
Individual Routines. . . . . . . .
Error Recording Interface for
Virtual Machines. . « . . . . .
Error Recording and Recovery . .
Error Record Writing . . . .
DASD Error Recovery, ERP (DHKDAS)
Alternate Track Recovery, ERP
(DMETRK) e o« o o o o 2 o o o« « o «
Tape Error Recovery, ERP (DMKTAP).
3270 Remote Support Error Recovery

- -

s & & 0 ¢ & o ¢ 2 &
e 8 8 & 0 U B 0 0 & 0 s i Fhe o

[N

li"lr‘l

-
in
es

aooi-".ln

on
v

~—

e o & e 0 2 8 06 0§ & e

*® 0 2 0

o
7]

.
s
|
-~
(Y]

o 8 8 8 6 1 6 s 8 e 8 e
- -t
e
o
£~

- 1-99

«1-103
-1-105
.1-105
<1-111
«1-113
.1-11a

. 1-114
.1-115

. 1-116

.1-116
- 1-117

«1-120

.1-122
.1-123
. 1-127
.1-128
-1-136
«1-137
.1-138
-1-139
- 1-142
<1-144
- 1-148
-1-149
- 1-149
.1-150
.1-150
-1-151
- 1-157
.1-158
. 1-159

<1-161
.1-162
<1-162
«1-163

.1-166
.1-170
<1-171

Contents v



Th
CP
P

1/
Sh

CP
0

CP
Us
L 4|

e Attached Processor Environment . .1-172
Initialization for the Attached
TOCESSOL o o o o « « =
Processor Addresses. .
PSA SetUPe o « « o o =
Locking. . . -
Machine Check Handler in Attached
ProCeSSOr « o 2 « o 2 o o« @ = o
O Subsystel. « « ¢« « ¢ o« ¢ o ¢ o o
ared Segment . .« . ¢ . . ¢ & o o .

<1-172
«1-172
.1-172
«1-173

< 1-174
<1-179
.1-180

METHOD OF OPERATION AND PROGRAM
RGANIZATION. . . = « =« o « « = - = -1-181
.1-183
.1-183
-.1-183
.1-183

Program Organization. . . . . . .
e of the Annotated Flow Diagram. .
/370 CP Interruption Processing. .
SVC Interruptions — Problem State.
SVC Interruptions - Supervisor

State . ¢ 4 . 4 4 e 4 a4 e 4
External and Clock Interruption

Reflection. « « « o ¢ ¢ o« &« o« . .
Monitor Interruption Processing. .
Program Interruption Processing. .

-1-184

-1-184
. 1-185
.1-188

Yirtual I/0 Operations and

I

vi

nterruption Processes. . « - « . « .1-189
CTCA Operations between Two Virtual
Machines. . . . . « o o

Scheduling I/0 for CP and the
Virtual Machine . . . « o o e
Standard DASD I/0 Inltlated via
DiagnosS€e o« « o o = o « o o o o o
General I/O Operation Initiated Via
DiAgnoS€e « o o « o o o o o = o o
virtual Machine I/0 Instruction
Simulation and Interruption
RefleCction. « o o o o « o o « « =
Virtual Console Simulation . . . .
Local Graphic I/0 and Interruption
Processinge « « « « o« « o o o o«
Locate and Validate an ISAM Read
Sequence. . . - e o e
Scheduling CP and V1rtua1 uachlne
I/0 Operations and Interruption
Handlinge « « « o o o o « « = o =
Terminal Console I/0 Control,
START/STOP, 3210, 3215, and Others.1-196
Console Schedullng e « o ® o o = o =1-198
3704/3705 Interruption Handler . . .1-199
Handling Remote 3270 with Binary
Synchronous Lines . « « « ¢ o« o «
Real Storage Rllocation and Page
Management. . . « . . . o o o =
Reading/Writing a DASD Page To/From
Virtual Storage . . . « » o =
Allocation and Deallocatlon of DASD
SPACe v o « 2 o o o . 1-205
Shared Segment Storage Management. .1-206
Temporary Disk Storage Management. .1-206
Paging I/0 Scheduler . . . . . . . .1-206
Release Virtual Storage Pages. . . .1-207
Free Storage Management. . . . . . .1-207
CP Initialization and Termination
ProcedUres. « « « « « o « @« o o o

.1-189
< 1-190
. 1-190
. 1-191
< 1-191
.1-192
-1-193
-1-194

- 1-195

-1-201
.1-203
- 1-204

® e @ ° e o =

«1-208

| VM/370 MSS SUPPOTt 2 = o o « « o o «

cP
cp
CP
cp

CP
En
Ccp
CP
Fu

I

AP
C

VH
S

AP

IN

Virtual Machine Initialization and
Termination . « . ¢« ¢ ¢ ¢ o ¢« ¢ &
Console Function (CP Command)
Processing. . . - e« s e e
Dispatching and SChedullng .« o o o
Spooling virtual Device to Real
Device. . . . « e s ® o »
Spooling to the Real Prlnter/Punch
Output Device . . . o o o
Spooling to the Real Input Dev1ce.
Spool File Deletion. « « « o« « o .
Recovery Management Sufpport
Operation . « « « ¢ o o« o e o o @
User Directory Routines. . . . . .
Save the 3704/3705 Control Progranm
Image PTOCESS o « o« « « « « « « « «1-224
Spool File Checkpoint and Recovery .1-224
Inter-virtual Machine Communication.1-225

<1-211

.1-213
. 1-214

.1-216

.1-218
.1—219
.1-219

«1-220
. 1-223

- 1-227
.1-229
. 1-257
.1-301

DTRECTORTES . . . . ..
Module Entry Point Dlrectory. - .
Module-to-Label Cross Reference .
Label-to-Module Cross Reference .

<1-401
.1-403
.1-803
. 1-406

DIAGNOSTIC AIDS . . « . .
try Points for CP Commands
Wait State Codes. . . . .
Abend Codes . . . -

nction Codes for DIAGNOSE
pstructions. .« « <« ¢ ¢ 4 < o .

. 1-407

PENDIX A. VM/370 Extended
cntrol-Program Support . . . . . .
/370 Extended Control-Program
upport (ECPS). . « < . « o o w o
ECPS Interaction with Other
Functions . . . . . . - -
Control By Control Reglster 6 and
MICBLOK Assist Control Field. . .
Virtual Machine Pointer List . . .
Trace Table Entries. . « « « « . .
Relationships between Hardware
ASSIStS @ o ¢ ¢ « o o s o o o o @
Control Program Assist (CP Assist)
Expanded Virtual Machine Assist. .
Virtual Interval Timer Assist. . .

.1-409
. 1-409
- 1-409

.1-409
<1-411
<1-411

- 1-411
.1-416
. 1-420
< 1-421%

«1-423
-« 1-423

PENDIX B. VM/370 MSS Support . . .

Logon a User Having a Minidisk on
an Unmcunted System Volumeud. . .
Logon a User Having a 3330V
Dedicated as a 3330V. . . . . <« .
Process DIAGNOSE Code X'78'. . . .
Generate the Channel Program Prefix
for a 3330V . . . ¢ ¢ ¢ e o o o .
Generate the Channel Program Prefix
for CHMS I/0 to a 3330Vv. . . . . .
Process a Staging Adapter Cylinder
Fault o« ¢ ¢ ¢ o« o ¢ o o o o o o o
Process an Attention Interrupt from
@ 3330V & ¢ ¢ ¢ ¢ ¢ o o s o o o =

.1-423

- 1-424
. 1-424

«1-425
«1-425
. 1-425
< 1-426
«1-427

DEX. - - - Ld - - - - - - - - - - -

IBM VM/370 System Logic and Problem Determination--Voluame 1



Figure
Figure
Figure
Figqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure

Figure

CP InitializatioONeeeccceccceass1-14
Real I/0 Control Blocks......1-15
Virtual I/O Control Blocks...1-16
SVC Interrupt Handlinge.e....1-17
External Interrupt Handling..1-18
Program Interrupt Handling...1-19
Pagingeeeecececcecnecacenanaaa1-20
Virtual Spoolingecececcencecess1-21
Real Spo0lingeecececcececceceaccesas1-22
Virtual Tracing.ceceecececccccass1-23
virtual-to-Real Address
TranslatiODececececccecccancaas =24
Storage Layout in a
Virtual=Real Machin€..ece....i-33
VMCF Control Block
RelationshipSececcecoccesaaaas1-40
Overview of Interruption
Handlingececcecoccecccccecsass 1-it7
Addressable Storage Before
and After a LOADSYS

Figure
Figure
Figure
Figure
Figure
Figure

Figure
Fiqure

Figure
Figure
Figure

Figure

16.
17.
18.
19.
20.
21.

22.
23.

24,
25,
26.

27.

FIGURES

FUDNCtiONeccescanccasncacncsas 1-68
Executable ModuleS.cccccece..1-80
Mini IOBLOK Queuingececee....1-93
Control Block Structure

for Alternate Path Request...1-93
User Dispatching States.....1-121
User Status Change€Se.ceccece..1-122
RMS Control Register
ASSignmentS..ccecceccccccaaes1-152
Summary of IOB Indicators...1-166
Modules that Obtain

Additional VMBELOK Lock......1-175
Condition/Action Table

for Uncorrectable Errers....1-177
CP Commands and Their

Module Entry PointSe.ccec....1-8403
Function Codes for

DIAGNOSE InstrucCtiONeecececeee.1-807
Hardware Assist
RelationsShipS-ccececccccecees1-812

Contents vii



viii IBM VM/370 System Logic and Problem Determination--Volume 1



3203 MODEL 5 PRINTER SUPPORT

Changed: Documentation

VM/370 supports the 3203 Model 5 printer
in the same mpanner as the 3203 Model &
printer.

SHARED SEGMENT MODIFICATIORS

New: Program and Documentation

V4/370 now places the user in console
function mode if he modifies a protected
shared segment; it returns the modified
page to free storage. VM/370 continues
to give other users of the segment
access t¢c a fresh copy of <the modified
page. This is discussed in the ®CP"

Introductiocn"® section of this
publication.
The LOADSYS diagnose function is

changed. When LOADSYS is executed, CP
finds the system name table entry for
the named system. In AP mode, two sets
of page and swap tables are built, one
for each processor. This is done for
each shared segment in attached
processor mode unless the named segment
was defined as unprotected.

New abend codes are alsc added. These
are found in the "CP Diagnostic Aids"
section of this publication.

MESSAGE NO HEADER (MSGNOH) COMMAND SUPPORT

New: Program and Documentation

This support allows service virtual
machines with privilege class B in a
¥M/370 systea to send unformatted
messages t0 other user of the systea.
The "CP Directories" section of this
publication reflects the MSGNOH update.

PASSWORD ON-THE-COMMAND-LINE SUPPRESSION

New: Program and Documentation

Summary of Asendments
for SY20-0886-1
VE/370 Release 6 PLC 1

This support is added to VM/370 to
prevent disclosure of virtual machine
and minidisk passwords on the same line
as the LOGON, AUTOLOG, and LINK
commands. To reflect +this support, the
DIAGNOSE Code X°08°' instruction has been
updated.

Changes are contained in the  ®CP
Introduction® section of this
publication.

DIAGNOSE CODE X'08' INSTRUCTION ENHANCED

Changed: Documentation

DIAGNOSE CODE X'08' has been modified to
allow the caller to chcose to have
information returned to his virtual
machine's btuffer or handled as console
line output. This information is found
in the "CP Introduction® section of this
publication.

LOGON, AUTOLOG AND LINK JOURNALING

New: Program and Documentation

VM/370 supports the Jjournaling of LOGCN
and AUTOLOG commands that specify
invalid passvwords, and the journaling of
all LINK commands. This is done via the
generation of type 04, 05, and 06
accounting records.

The "CP Directories®™ section of this
publication has been updated to reflect
this information.

DIRECTORY UPDATE IN-PLACE

New: Program and Documentation

The DIAGNOSE Code X'84' instruction is
added to VM/370 to allow certain
directory options to be changed on-line
vithout updating the directory source
file.

Sunmary of Asendments ix



This information is included in the "CP
Introducticn®™ and "CP Diagnostic Aids"
sections of this publication.

Nev modules and their entry points have
been added to the "Label-To-Module" and
"Module-To-Latel® cross references in
this publication.

v8/370 MEASUREMENT FACILITY (MONITOR)
ENHANCEMENTS SPECIAL MESSAGE FACILITY
New: Program and Documentation New: Program and Documentation
The VM/370 Measurement Facility A new CP command, SMSG, is provided to

(Monitor) has been enhanced to extend

its data collection and recording
capabilities. These enhancements
include:

e The gathering of additional data
related to utilization of channels,
devices, stolage, alternate 1/0
paths, and AP/UP PROCESSING.

e Selective seeks that allow system
programmers to select devices for
which seek information is to be
collected.

e Monitor-To-Disk support for real time
allows system programmers to specify
when the VN/370 Monitor is to close
the spool file.

A new subroutine, DMKENTTI, is added.
It is a high-frequency I/0 status
sampler that tests for busy conditions
in all control units and devices by
examining appropriate CP control blocks
and in all channels via TCH
instructiocns.

A new subroutine, DMEKENT62 samples the
data accumulated by DMKENTTI and writes
it in a newv class 6 code 2 record, after
the standard class 6 (DASTAP) code 1
record has been collected in DMKMONTI.

This information is contained in the "CP
Directories" section of this
publication.

4331 AND 4341 PROCESSOR SUPPORT

New: Documentation

¥M/370 provides support for the 4331 and
4341 processors and the 3278 Model 2A
display station as a system console for
these processors. The character set on
the 3278 Model 22 is the same as on the
carrent 3270 display systeas, plus six
additional graphic national usage
characters that are acceptable in input
and output data streams.

allow a terminal user to send a message
to another user's virtual storage. The
receiving virtwal machine rust be
prepared to receive the amessage. This
is done by issuing a VMCF AUTHORIZE and
setting SMSG ON prior to receiving a
message.

Information about Special Messages is
found in the "CP Introduction" and ®CP
Directories" sections of this
publication.

IBM 3850 MASS STORAGE SISTEM (MSS) SUPPORT

New: Program and Documentation

Virtual machines operating CMS, 0S/VS1,
or 0S/VS2 (MVS) can access mass storage
volumes containing VE/370 minidisks or
entire mass storage volumes dedicated to
the virtual machine. These volumes will
appear to .the virtual machine as 3330
volumes and will be accessed using 3330
device support. CE controls unit
allocation, volume mounting, and volume
demounting. Virtual wmachines running
0S/VS1 or 0S/Vs2 (MVS) and that contain
MSS support cam also access mass storage
volumes using dedicated device support.

Communication with the Mass Storage
control (MSC) component of MSS is
provided by service virtual machines
operating either 0S/VS1 or 0S/VS2 (MVS).
The VM/370 control program initiates
volume mounts and demounts via
intersysten communication with an
application progran (DMKMSS) running
under either 0S/VS1 or 0S/VS2 (MVS).
For information about the logic of the
DMEKMSS application prograns, see the
VM/370 Service Routipes Program Logic
Manual, Order Number SY20-0882.

DIAGNOSE Code Xv78' is added to
communicate between a virtual machine
and cp for MSS support. This
information can be found in the wcp
Introduction" section of this
publication.

IBM VM/370 System lLogic and Problem Determination--Volume 1



Appendix B is added to this publication
to show flow diagrams of functions that
utilize the MSS.

3800 PRINTING SUBSYSTEM SUPPORT

New: Program and Documentation
¥M/370 supports the full facilites of
the 3800 Printing Subsystem as a
dedicated device. Limited 3800 printer
support is provided by the VM/370
spooling facility.

DIAGNOSE Code X'74' is added to VM/370
to save or locad a named system that
contains control tables and control

modules for the 3800 printer. The new
NAME3800 macro instruction allows named
systems to be specified in the same

manner as the NAMENP macro instruction.
This information is contained in the "CP
Introducticn”, “CP Directories", and "CP

Method of Operation and Program
organizaticn® sections of this
publication.

CPp

Two nevw utility programs, GENINMAGE and
IMAGELIB construct or modify the tables
and modules that control feature
selections and printing on the 3800
printer. The IMAGELIR utility saves the
control tables and contrcl modules as a
named system. Logic details on GERIMAGE
and IMAGELIB are contained in the ¥YM/370
Service Routines pProgram Logic Manual,
Oorder Number SY20-0882.

ABEND CODES REMOVED

Changed: Documentation Only

To eliminate duplication, the CP Abend
codes have been removed from this
manual. They are found in the ¥YM/370

System Message, Order Number GC20-1808.

Sumpary of Amendments xi



Summary of Amendments

for SY20-0886-0

as updated by TNL SN25-0467
VM/370 Release 5 PLC 12

VARY PROCESSOR ONLINE/QFFLINE SUPPORT

New and Changed: Programming Support

VYM/370 attached processor (AP) provides
support to enhance the reliability,
availability, and serviceability of the
158 and 168 attached processors, and the
158 and 168 asymmetric MP systeams.

This SUEFCTt allows the attachead
processor to be taken offline to make
needed repairs, and then be brought back
online without affecting the main
processor.

xii IBM VM/370 System Logic and Problem Determination—-Volume 1



Summary of Amendments

for SY20-0886-0

as updated by TNL SN25-0446
¥¥/370 Release S5 PLC 6

3340/3344 ALTERNATE TRACK SUPPORT

Changed: Program Support

Software error recovery procedures now
provide for switching to an alternate
track vhen apn attempt to do I/0 on a
defective 3340 or 3344 track results in
a track condition check. Logic
affecting CP I/0, Diagnose I/0, and SIO
issued from a virtual machine is
changed. These 1logic changes are
reflected in this publication.

Summary of Amendments xiii






CP Introduction

This part contains the following information:

e VN/370

e Program States

e Using Processor Resources
e Functional Information

e Performance Guidelines

e CP Interruption Handling

CP Introduction 1-1



1-2 1IBM VM/370 System Logic and Problem Determination--Volume 1



VM/,/370

The VM/370 Control Program manages the resources of a single computer in
such a manner that multiple computing systems appear to exist. Each
"yirtual® computing system, or virtual machine, 1is the functional
equivalent of an IBM System/370.

A virtual machine is configured by recording appropriate information
in the VM/370 directory. The virtual machine configuration includes
counterparts of the components of a real IBM System/370:

A virtual operator's console
virtual storage

A virtual processor

Virtual I/0 devices

CP makes these components appear real to whichever operating system
is controlling the work flow of the virtual machine.

The virtual machines operate concurrently via multiprogramming
techniques. CP overlaps the idle +time of one virtual machine with
execution in another.

Each virtual machine is managed at two levels. The work to be done
by the virtual machine is scheduled and controlled by some System/360 or
System/370 operating systes. The concurrent execution of wultipie
virtual machines is managed by the Control Prograa.

VM/370 perforas some functions differently when running in attached
processor mode. For a description of the additional processing performed
wvhen in attacked processor mode, see fThe Attached Processor
Environment" in this section.

Introduction to the VM/370 Control Program

A virtual machine is created for a user when he logs on VM/370, on the
basis of information stored in his VH/370 directory entry. The entry
for each user identification includes a list of the virtual input/output
devices associated with the particular virtual machine.

Additional information about the virtual machine is kept in the
¥vM/370 directory entry. Included are the VYM/370 comaand privilege
class, accounting data, normal and wmaximum virtual storage sizes,
dispatching priority, and optional virtual machine characteristics such
as extended control mode.

The Control Program supervises the execution of virtuval machines by
(1) permitting only problem state execution except in its own routines,
and (2) receiving control after all real computing system interrupts.
CP intercepts each privileged instruction and simulates it if the
current program status word of the issuing virtual machine indicates a
virtual supervisor state; if the wvirtual wmachine is executing in
virtual problem state, the attempt to execute the privileged instruction
is reflected to the virtual machine as a program interrupt. All virtual
machine interrupts (including those caused by attempting privileged
instructions) are first handled by CP, and are reflected to the virtual
machine if an analogous interrupt would have occurred on a real machine.

CP Introduction 1-3



VIRTUAL MACHINE TIME MANAGEMENT

The real processor simulates multiple virtual processors. Virtual
machines that are executing in a conversational manner are given access
to the real processor more frequently than those that are not; these
conversational machines are assigned the smaller of two possible time
slices. CP determines execution characteristics of a virtual machine at
the end of each time slice on the basis of the recent frequency of its
console requests or terminal interrupts. The virtual machine is queued
for subsequent processor utilization according to vwhether it is a
conversational or nonconversational user of system resources.

A virtual machine can gain control of the processor only if it is not
waiting for some activity or resource. The virtual machine itself may
enter a virtual wait state after an input/output operation has begun.
The virtual machine cannot gain control of the real processor if it is
waiting for a page of storage, if it is wvaiting for an input/output
operation to be translated and started, or if it is waiting for a CP
compand to finish execution.

A virtual machine can be assigned a priority of execution. Priority
is a parameter affecting the execution of a particular virtual machine
as compared with other virtual machines that have the same general
execution characteristics. Priority is a parameter in the virtual
machine's V¥/370 directory entry. The system operator can reset the
value with the privilege class A SET command.

VIRTUAL MACHINE STORAGE MANAGEMENT

The normal and maximum storage sizes of a virtual machine are defined as
part of the virtual machine configuration in the VM/370 directory. You
may redefine virtual storage size to any value that is a multiple of 4K
and not greater than the maximum defined value. VM/370 implements this
storage as virtual storage. The storage may appear as paged or unpaged
to the virtual machine, depending upon whether or not the extended
control mode option was specified for that virtual machine. This option
is required if operating systems that control virtual storage, such as
0S/¥S1 or VM/370, are run in the virtual machine.

Storage in the virtual machine 1is logically divided into 4096-byte
areas called pages. A complete set of segment and page tables is used
to describe the storage of each virtual machine. These tables are
updated by CP and reflect the allocation of virtual storage pages to
blocks of real storage. These page and segment tables allow virtual
storage addressing in a Systems/370 machine. Storage in the real machine
is logically and physically divided into 4096-byte areas called page
frames.

Only referenced virtual storage pages are kept in real storage, thus
optimizing real storage utilization. Further, a page can be brought into
any available page frame; the necessary relocation is done during
program execution by a combination of VM/370 and dynamic address
translation on the System/370. The active pages from all 1logged on
virtual machines and from the pageable routines of CP compete for
available page frames. When the number of page frames available for
allocation falls below a threshold value, CP determines which virtual
storage pages currently allocated to real storage are relatively
inactive and initiates suitable page-out operations for theam.

Inactive pages are kept on a direct access storage device. If an
inactive page has been changed at some time during virtual machine

1-4 IBM VM/370 System Logic and Problem Determination--Volume 1



execution, CP assigns it to a paging device, selecting the fastest such
device with available space. If the page has not changed, it remains
allocated in its original direct access 1location and is paged into real
storage from there the next time the virtual machine references that
page. A virtual machine program can use the DIAGNOSE instruction to
tell CP that the information from specific pages of virtual storage is
no longer needed; CP then releases the areas of the paging devices which
vere assigned to hold the specified pages.

Paging is done on demand by CP. This means that a page of virtual
storage is not read (paged) froam the paging device to a real storage
block until it is actually needed for virtual machine execution. CP
makes no attempt to anticipate what pages might be required by a virtual
machine. While a paging operation is performed for one virtuwal machine,
another virtual machine can be executing. Any paging operation
initiated by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control mode with
translate on, then two additional sets of segment and page tables are
kept. The virtual machine operating system is responsible for mapping
the virtual storage created by it to the storage of the virtual machine.
CP uses this set of tables in conjunction with the page and segment
tables created for the virtual machine at 1logon time to build shadow
page tables for the virtual machine. These shadow tables map the
virtual storage created by the virtual machine operating system to the
storage of the real computing system. The tables created by the virtual
machine operating system may describe any page and segment size
permissible in the IBM System/370.

Storage and Processor Utilization

The system operator may assign the reserved page frames option to a
single wvirtual machine. This option, specified by the SET RESERVE
command, assigns a specific amount of the storage of the real machine to
the virtual machine. CP will dynamically build up a set of reserved
real storage page frames for this virtual machine during its execution
until the maximum number "reserved" is reached. Since the pages of
other virtual machines are not allocated from this reserved set, the
effect is that most of the active pages of the selected virtual machine
remain in real storage.

During CP system generation, the installation may specify an option
called virtual=real. With this option, the virtual machine's storage is
allocated directly from real storage at the time the virtual machine
logs on (if it has the VIRT=REAL option in its directory). All pages
except page 2zero are allocated to the corresponding real storage
locations. 1In order to control the real computing system, real page
zero must be controlled by CP. Consequently, the real storage size must
be large enough to accommodate the CP nucleus, the entire virtual=real
virtual machine, and the remaining pageable storage requirements of CP
and the other virtual machines.

The virtual=real option improves performance in the selected virtual
machine since it removes the need for CP paging operations for the
selected virtual machine. The virtual=real option is necessary vhenever
programs that contain dynamically modified channel programs (excepting
those of 0S ISAM and 0S/VS TCAM Level 5) are to execute under control of
CP. Por additional information on running systems with dynamically
mnodified channel programs, see "Dynamically Modified Channel Programs"
in ¥M/370 System Programmer's Guide.

CP Introduction 1-5



VIRTUAL MACHINE I/O MANAGEMENT

A real disk device can be shared among multiple virtual machines.
Virtual device sharing is specified in the VM/370 directory entry or by
a user command. If specified by the user, an appropriate password must
be supplied before gaining access to the virtual device. A particular
virtual machine may be assigned read-only or read/write access to a
shared disk device. CP checks each virtual machine input/output
operation against the parameters in the virtual machine configuration to
ensure device integrity.

virtual Reserve/Release support can be used to further enhance device
integrity for data on shared minidisks. Reserve/Release operation codes
are simulated on a virtual basis for minidisks, including full-extent
minidisks. For details on Reserve/Release support, refer +to the topic
"Reserve/Release," 1located under "Scheduling I/O Requests"™ in this
section.

The virtual machine operating system is responsible for the operation
of all virtual devices associated with it. These virtual devices may be
defined in the VM/370 directory entry of the virtual machine, or they
may be attached to (or detached from) the virtual machine's
configuration, dynamically, <for the duration of the terminal session.
Virtual devices may be dedicated, as when mapped to a fully equivalent
real device; shared, as when mapped to a minidisk or when specified as a
shared virtual device; or spooled by CP to intermediate direct access
storage.

In a real machine running under control of 0S, input/output
operations are normally initiated when a problem program requests OS to
issue a START I/0 instruction to a specific device. Device error
recovery is handled by the operating system. In a virtual machine, 0S
can perform these same functions, but the device address specified and
the storage locations referenced will both be virtual. It is the
responsibility of CP to translate the virtual specifications to real.

virtual I/0 can be initiated by either processor; however, all real
I/0 requests must be executed by the main processor, and all I/O
interrupts must be received on the main processor (the processor with
I/0 capability). Any I/0 requests by the attached processor (the
processor without I/0 capability) are transferred to the main processor.

In addition, the interrupts caused by the input/output operation are
reflected to the virtual machine for its interpretation and processing.
If input/output errors occur, CP records them but does not initiate
error recovery operations. The virtual wmachine operating system must
handle error recovery, but does not record the error (if SVC 76 is
used).

Input/output operations initiated by CP for its own purposes (paging
and spooling), are performed directly and are not subject to
translation.

See Appendix B of this volume for an exrlanation of additional
processing when the virtuval I/0 request results in a real I/0 request to
an MSS 3330V volume.

1-6 IBM VM/370 System Logic and Probleam Determination--Volume 1



Dedicated Channels

In most cases, the I/0 devices and control units on a channel are shared
among many virtual machines as minidisks and dedicated devices, and
shared with CP system functions such as paging and spooling. Because of
this sharing, CP has to schedule all the I/O requests to achieve a
balance between virtual machines. In addition, CP must reflect the
results of the subsequent I/0 interruption to the appropriate storage
areas of each virtual machine.

By specifying a dedicated channel (or channels) for a virtual machine
via the Class B ATTACH CHANNEL command, the CP channel scheduling
function is bypassed for that wvirtual machine. A virtual wmachine
assigned a dedicated channel has that channel and all of its devices for
its own exclusive use. CP translates the virtual storage 1locations
specified in channel commands to real 1locations and performs any
necessary paging operations, but does not perform any device address
translations. The virtual device addresses on the dedicated channel
must match the real device addresses; thus, a minidisk cannot be used.

SPOOLING FUNCTIONS

A virtual unit record device, which is mapped directly to a real unit
record device, is said to be dedicated. The real device is then
controlled completely by the virtual machine's operating systenm.

CP facilities allow multiple virtual machines to share unit record
devices. Since virtual machines controlled by CKMS ordinarily have
modest requirements for unit record input/output devices, such device
sharing is advantageous, and it 1is the standard mode of systenm
operation.

Spooling operations cease if the direct access storage space assigned
to spooling is exhausted, and the virtual unit record devices appear in
a not-ready status. The system operator may make additional spooling
space available by purging existing spool files or by assigning
additional direct access storage space to the spcoling function.

Specific files can be transferred from the spooled card punch or
printer of a virtual machine to the card reader of the same or another
virtual machine. Files transferred between virtual unit record devices
by the spooling routines are not physically punched or printed. With
this method, files can be made available to multiple virtual machines,
or to different operating systems executing at different times in the
same virtual machine.

CP spooling includes many desirable options for the virtual machine
user and the real machine operator. These ortions include printing
multiple copies of a single spool file, backspacing any number of
printer pages, and defining spooling classes for the scheduling of real
output. Each output spool file has, associated with it, a 136-byte area
known as the spool file tag. The information contained in this area and
its syntax are determined by the originator and receiver of the file.
For example, whenever an output spool file is destined for transmission
to a remote location via the Remote Spooling Ccmmunications Subsystenm,
RSCS expects to find the destination identification in the file tag. Tag
data is set, changed, and queried using the CP TAG command.

CP Introduction 1-7



It is possible to spool terminal input and output. All data sent to
the terminal, whether it be from the virtual wmsachine, the control
program or the virtual machine operator, can be spooled. spooling is
particularly desirable when a virtual machine 1is run with its console
disconnected. Console spooling is usually started via the command

SPOOL CONSOLE START

An exception to this is when a system operator logs on using a graphics
device. 1In this instance, console spooling is automatically started and
continues in effect even if the system operator should disconnect from
the graphics device and log on to a nongraphic device. In order to stop
automatic console spooling, the system operator must issue the command

SPOOL CONSOLE STOP

SPOOL FILE RECOVERY

If the system should suffer an abnormal termination, there are three
degrees of recovery for the system spool files; warm start (WARN),
checkpoint start (CKPT), and force start (FORCE). Warm start is
automatically invoked if SET DUMP AUTO is in effect. Otherwise, the
choice of recovery method is selected when the following message is
issued;

hh:mm:ss START ((COLD|WARM|CKPT|FORCE) (DRAIN)) | (SHUTDOWN) :

Note that a cold (COLD) start does not recover any spool files.

Warme Start

After a system failure, the warm start procedure copies spool file,
accounting, and system message data to warm start cylinders on an
auxiliary DasSD. When the system 1is reloaded, this information is
retrieved and the spool file chains and other system data are restored
to their original status. If the warm start procedure cannot be
implemented because certain required areas of storage are invalid, the
operator is notified to take other recovery procedures.

Any new or revised status of spool file blocks, spooling devices, and
spool hold queue blocks is dynamically copied to checkpoint cylinders on
an auxiliary DASD as they occur. When a checkpoint (CKPT) start is
requested, this is the information that is used to recreate the spool
file chains. It differs from warm start data in that only spool file
data is restored; accounting and system messages information is not
recovered. Also, the order of spool files on any particular restored
chain is not the original seguence but a randoam one.

1-8 1IBM VM/370 System Logic and Problem Determination--volume 1



Force Start

A force start is required when checkpoint start encounters 1I/0 errors
vhile reading files, or invalid data. The procedure is the same as for
checkpoint start except that unreadable or invalid files are bypassed.

CP COMMANDS

The CP commands allow you to control the virtual machine from the
terminal, much as an operator controls a real machine. Virtual machine
execution can be stopped at any time by use of the terminal’s attention
key (for 3066 and 3270 terminals, the ENTER key is used); it can be
restarted by entering the appropriate CP command. External, attention,
and device ready interrupts can be simulated on the virtual machine.
Virtual storage and virtual machine registers can be inspected and
modified, as can status words such as the PSW and the CSW. Extensive
trace facilities are provided for the virtual machine, as well as a
single-instruction mode. Commands are available to invoke the spooling
and disk sharing functions of CP.

CP commands are classified by privilege classes. The VM/370
directory entry for each user assigns one or more privilege classes.
The classes are primary system operator (class 1), system resource
operator (class B), system programmer (class C), spooling operator
(class D), system analyst (class E), service representative (class F),
and general user (class G). Commands in the system analyst class may be
used to inspect real storage locations, but =may not be used to make
modifications to real storage. Commands in the operator class provide
real resource control capabilities. System operator commands include
all commands related to virtual machine performance options, such as:
assigning a set of reserved page frames to a selected virtual machine.
For descriptions of all the CP commands, see the VM/370 CP Command
Reference for General Users and the ¥M/370 Operator's Guide.

CP Introduction 1-9



Program States

When instructions in the Control Program are being executed, the real
computer is in the supervisor state; at all other times, when running
virtual machines, the real computer is in the problem state. Therefore,
privileged instructions cannot be executed by the virtual machine.
Programs running on a virtual machine can issue privileged instructions;
but such an instruction either (1) causes an interruption that is
handled by the Control Program, or (2) is intercepted and handled by the
processor, if the virtual machine assist feature or VNM/370 Extended
Control-Program Support 1is enabled and supports that instruction. CP
examines the operating status of the virtual machine PSW. If the
virtual machine indicates that it is functioning in supervisor mode, the
privileged instruction is simulated according to its type. If the
virtual machine is in problem mode, the privileged interrupt is
reflected to the virtual machine.

Only the Control Program may operate in the supervisor state on the
real machine. A1l programs other than CP operate in the problem state
on the real machine. A1l user interrupts, including those caused by
attempted privileged operations, are handled by either the control
program or the processor (if the virtual machine assist feature or
VvM/370 Extended Control-Program Support is available). Only those
interrupts that the user program would expect from a real machine are
reflected to it. A problem program will execute on the virtual machine
in a manner identical to its execution on a real Systeam/370 processor,
as long as it does not violate the CP restrictioms. See YM/370 Systenm
Messages for a list of the restrictionms.

1-10 IBM VM/370 System Logic and Problem Determination--volume 1



Using Processor Resources

CP allocates the processor resource to virtual machines according to
their operating characteristics, priority, and the system resources
available.

Virtual machines are dynamically categorized at the end of each time
slice as interactive or noninteractive, depending upon the frequency of
operations to or from either the virtual system console or a terminal
controlled by the virtual machine.

Virtual machines are dispatched from one of two queues, called Queue
1 and Quene 2, In order to he dispatched from either queue, a virtual
machine must be considered executable (that is, not waiting for some
activity or for some other system resource). Virtual machines are not
considered dispatchable if the virtual machine:

Enters a virtual wait state after an I/0 operation has begun.

Is vaiting for a page frame of real storage.

Is waiting for an I/0 operation to be translated by CP and started.
Is waiting for CP to simulate its privileged instructionms.

Is waiting for a CP console function to be performed.

Queue 1

Virtual wachines in Queue 1 (Q1) are considered conversational or
interactive wusers, and enter this gqueue when an interrupt from a
terminal is reflected to the virtual machine. Users are considered for
dispatching from this queue on a first-in-first-out (FIFO) basis. When
a virtual machine uses more than a certain amount of processor time
without entering a virtual wait state, that user is placed in Queue 2.

Virtual machines are dropped from Q1 when they complete their time
slice of processor usage, and are placed in an "eligible list®™. Virtual
machines entering CP command mode are also dropped froa Q1. ¥When the
virtual machine becomes executable again (returns to execution mode) it
is placed at the bottom of Q1.

Queue 2

Virtual machines in Queue 2 (Q2) are considered noninteractive users.
Users are selected to enter Q2 from a list of eligible virtual machines
(the "eligible list"). The list of eligible virtual machkines is sorted
on a FIFO basis within user priority (normally defined in the user
record in the VM/370 directory, but may be altered by the system
operator).

Usually, a virtual machine is selected to enter Q2 only if its
"working set" is not greater than the number of real page frames
available for allocation at the time. The working set of a virtual
machine is calculated and saved each time a user is dropped froam Q2 and
is based on the number of virtual pages referred to by the virtual
machine during its stay in 02, and the number of its virtual pages that
are resident in real storage at the time it is dropped from the queue.

CP Introduction 1-11



If the calculated working set of the highest priority virtual machine
in the eligible list is greater than the number of page frames available
for allocation, then 75 percent of the working set for that virtual
machine is calculated. If the pages required for 75 percent of the
vorking set are available, the virtual machine is placed on Q2.
Otherwise, the virtual machine remains on the eligible list until there
are no other users on Q1 or Q2.

Executable virtual machines are sorted by "dispatching priority".
This priority is calculated each time a user is dropped from a queue and
is the ratio of processor time used while in the gqueue to elapsed tinme
in the queue. 1Infrequent processor users are placed at the top of the
list and are followed by more frequent processor users. When a
nonexecutable user becomes executable, he is placed on the gqueue based
on his dispatching priority.

When a virtual machine completes its time slice of processor usage,
it is dropped from Q2 and placed in the eligible list by user priority.
When a user request in Q2 enters CP command mode, it is removed from Q2.

Thoan +han AT A~ hAa~AmAae AvAamsbathla
«alo -l ~-Cguelo

execution mode), it is placed in the eligible 1list based on user
priority.

o m o~ =~ w3 e Y Al 3 -~
~ PORSER SR "L =T L S L T \~-< o adeD - Yda CUW A =awu.n.uc

If a user's virtual machine is not in Q1 or Q2, it is because:

e The virtual machine is on the "eligible list," waiting to be put on
Q2

e The virtual machine execution is suspended because the user is in CP
mode executing CP commands

To leave CP mode and return his virtual machine to the "eligible
list® for Q2, the user can issue one of the CP commands that transfer
control to the virtual machine operating system for execution (for
example, BEGIN, IPL, EXTERNAL, and RESTART).

In CP, interactive users (Q1), if any, are considered for dispatching
before noninteractive wusers (Q2). This means that CMS wusers entering
commands that do not involve disk or tape I/0 operations should get fast
responses from the VM/370 system even with a large number of active
users.

An installation may choose to override the CP scheduling and
dispatching scheme and force allocation of the processor resource to a
specified user, regardless of its priority or operating characteristics.
The favored execution facility allows an installation to:

1. Specify that one particular virtual machine is to receive up to a
specified percentage of processor time.

2. Specify that any number of virtual wmachines are to remain in the

queues at all times. Assignment of the favored execution optionm is
discussed in the "Preferred Virtual Machines" section.

1-12 IBM VYM/370 System Logic and Problem Determination--Volume 1



Functional Information

The functional diagrams that follow describe the program logic
associated with various control program functions. Not all CP functioms
are described. These functional diagrams are meant to describe the CP
functions about which you may want more detailed information if you are
debugging, modifying, or updating CP.

Figure 1 describes CP initialization process.

Figures 2 and 3 describe the real and virtual I/O control blocks used
by CP in its I/0 control.

Figures 4, 5, and 6 show how CP handles SVC, external, and program
interrupts.

The CP paging function is described in Pigure 7.

The CP spooling function (both virtual and real) is described in
Figures 8 and 9.

FPigure 10 shows how virtual tracing is performed.

Figure 11 shows the steps involved in translating a virtual address
to a real address and gives an example of address translation.

The functional information contained in these diagrams is intended

for system programmers and IBM Field Engineering program support
representatives.

CP Introduction 1-13



-1

| eWnToA--UOT3RUTEIS}ISQ WaTqold pue o1boT Wa3ysis QLE/WA WAI

*L 8anb1g

UOTICZTTeTITUI 4D

F INPUT

RCHBLOK
RCHCUTBL ™Y rcusLok
pE——
VMBLOK RCUDVIBLI—yRDEVBLOK
r—INPUT
— INPUT
OWNDLIST]
RCHBLOKS
o
RCHCUTBL
v ] RCUBLOKs
hLOCBLOK] ]
RCUDVTBL
[RCUDVTBL |
;RDEVBL OKs
VMBLOK

PROCESS

Load DMKCKP in X'800"

DMKCKP

For a warm start

® checkpoint active file chains,
® perform system log

—

DMKSAV (DMKSAVRS entry point)
Read copy of nucleus

Give control to DMKCPI

OUTPUT

SEGTAELE

SEGPAGE

System’s Tables

PAGTABLE

PAGSWP

DMKCP1

If attached processor requested, call
DMKAPI to perform initialization
functions.

Initialize storage and check TOD clock
Mount devices

Log on operator

Allocate Dump File

If warm start, perform that function

<

Go to Dispatcher
Wait for work

| sweTaBLE

SWPPAG

SWPCYL

CORTABLE

CORSWPNT]

RCHBLOK

CORPGPNT]

RCUBLOK

o
RCHCUTBL|
v

PAGING
DEVICE

RDEVBLOK

RCUDVTBL
v




UoT3IONpoOIIUI 4D

SiL-1

*Z @anbrg

s)Y20Tg [oIjuol O/I Teay

" "

The real ation is repr d by
a set of related control blocks. These blocks are:
& in the VM/370 nucleus
® built from macros during system generation
@ loaded at system IPL and initialized then for
operation,
There is one control block per channel, per control
unit, and per device.
The characteristics of VM/370 real 1/O control are:
® Block multiplexing (BMPX) with RPS (Rotational Position
Sensing) is used.
® Multi-path scheduling is not used.
® All 1/O opeiations are handled by VM/370
scheduling and interrupt handling.

DMKRIOCT — real channel table’

XXXX —negative value {(FFFF)
indicates that no channel exists
—positive value is an index
to the RCHBLOK

RCHBLOK — real channel block!

Channel identification
Scheduling Control

XXXX | XXXX | XXXX | XXXX
XXXX | XXXX

Control Unit
XXXX Index Table

XXXX if negative (FFFF), no control
unit exists
if positive, that value is an
index to the RCUBLOK

RCUBLOK — real control unit block?

Control Unit identification
Scheduling Control

XXXX | XXXX | XXXX [ XXXX
XXXX XXXX | XXXX

XXXX if negative {(FFFF), no
device exists
if positive, that value is
an index to RDEVBLOK

1
For a complete Gascription of CP control blocks, see /8M Virtual Machine Facility/370: Dats Areas and

Control Blocks, Order No. SY20-0884

Device
Index
Table

r— Relationship of Real I/0 Control Blocks

DMKRIOCT (part of DMKRIO)

N |

RCHBLOKs RCUBLOKs RDEVBLOKs
~ 7
A "’><
\
L
] < P 4
T o
/
11 /

RDEVBLOK — real device btock?

Device identification
Scheduling Control
Terminal Control
Spooling Control
Dedicated Control
Error Recovery
Allocation Controt

Part of the RDEVBLOK pertains to functions that are
device independent; that part of the RDEVBLOK is used
in the same way for all devices. However, some of the |
fields in the RDEVBLOK have multipte uses, depending
on the device type and function.



SL-1

L SENTOA--UOTIRUTEIDIBQ WBTQOId pue D1607T Wa3Isks OQLE/RA REI

*¢ @anbyg

S)¥00Td T0I3UOZ O/I TENIITA

The virtual machine configuration is represented by a set
of related control blocks. These blocks are:

@ built by VM/370 at LOGON from data in directory
® modified by user commands (for example, DETACH, LINK, DEFINE)

There is one control block per channel, per control unit, and per
device.

The characteristics of VM/370 virtual 1/O control are:

® BMPX (block multiplexing) is supported

® RPS (rotational position sensing) is supported

® the virtual machine operating system performs scheduling
® VM/370 uses virtual 1/O control blocks te

simulate real hardware interface

virtual unit record devices use VM/370 Spooling
virtual console is simulated on terminal
minidisks simulate DASD
dedicated devices are supported

VMCHTBL — virtual channel index table

VCHBLOK - virtual channel block’

[-——- Relationship of Virtual 1/O Ccntrol Blocks

VMCHTBL (part of VMBLOK)

g J

VCUBLOKs

VCHBLOKs VDEVBLOKs

!

T
,\

-
M~

VCUBLOK - virtual control unit block’

Channel identification Control unit identification
status status

XXXX | XXXX | XXXX | XXXX XXX | XXXX | XXXX | XXXX

XXXX | XXXX | XXXX | XXXX XXXX

XXXX

z
I XXXX l if negative (FFFF), no control if negative (FFFF), no device
unit exists exists

if positive, the value is an index

to the VCUBLOK 1o the VDEVBLOK

if positive, the value is an index

VDEVBLOK -- virtual device block!

Device identification
Status pending
Positioning
Terminal control
Spooling control
Device
Index

Table RDEVBLOK Pointer

Part of the VDEVBLOK contains device independent
information and is used identically in all VDEVBLOKSs.
However, some fields of the VDEVBLOKSs have multiple
uses, depending on the device type.

1
For a detailed description of the CP control blocks, see /8BM Virtual Machine

Facility/370: Data Areas and Control Blocks, Ocder No. SY20-0884.




*y aanbrg

Putrtpuen 3dnize3zur JAS

"UOT3IONPOIIUI dD

Ll

SVC Interrupt

— INPUT Process — OUTPUT
VMBLOK User Page
| srR1 ] [ er2 |
PSA
FOR SVC 76 If PROBLEM MODE VMPSW
e And ADSTOP SVC, simulate ‘ADSTOP’ 1o >
L virtual machine
® And an SVC 76, verity the parameters and
sve call DMKVER to build the error record. SVC OLD PswW
oLD VMESTAT o And virtual machine is in extended RUNPSW
PSW mode and/or Page 0 is not in storage, /
reflect interrupt to virtual machine SVC NEW PSW
® Otherwise, fetch Page 0, move CP PSW
to virtual SVCOPSW, and move SVCNPSW
VMBLOK to the CP PSW
® If supervisor mode, run user-LPSW
1f SVC 0 (Impossible condition or fatal error), ‘\> (dump)
dump the machine v /_

Caller’s return

GR 13 address and
> base register

—t

If SVC 8 (Link Request),

Y

pass control from one module to another

SAVE AREA OF

|NPUT——-1 MODULE CALLED

If SVC 12 (Return Request},
GR 15 return control to calling module SAVE AREA OF CALLING
MODULE

[ A (CALLED ROUTINE} |

1f DMKSVC determines that the SVC 76
1f SVC 16, release Save Area ° parameters are vahid, 1t calls DMKVER to build the

error record. If the parameters are not valid or if
DMKVER cannot build the error record, DMKSVC
1f SVC 20, yet next save area for Q reflects the SVC back to the virtual machine. If the

calling module error record is recorded, DMKVER gives control to
the dispatcher with the user’s running status set to
return to the next sequential instruction following
1f SVC 24, switch processing to ° the SVC 76.

main processor
A new save area is acquired

and passed on. The caller’s addressability
register (R 12), the save area address (R 13),
and the return address (SVCOPSW) are
saved in the new save area.

Control is returned to module issuing
SVC 16, rather than to calling module
as in SVC 12.

Return is to module issuing SVC 20.

Return is on other processor to
module issuing SVC 24,




8lL-1L

| °WnTOA--UOT3}RUTNIALISQ WSTqOoId pue o1boT we3sks 0LE/KA RAI

°G 21nb1a

futTpuer 3dnizejul TeuILa3IXy

—INPUT

PSA (Prefix Storage Area}

X'80"
INTEX + 1

External Interrupt

Process

If TOD clock comparator interrupt
® unchain from TOD clock comparator
® queue the related TRQBLOK
® place on dispatch queue
® set new clock comparator request

If CPU timer interrupt

™~ ® flag running user to be dropped from queue
{f a Timer interrupt
o if supervisor mode, ignore Timer interrupt q

I EXOPSW

> ® otherwise, save machine status

VMBLOK

VMTERM '\ RDEVBLOK (for

1f interrupt from the Console Interrupt Button (External) °

® Set the disconnect flag in VMBLOK \

® Halt any outstanding 1/0

operator)

> ® Clear any outstanding console requens?/\
o [f the running user was not interrupted,

resume where left off by LPSW of External old PSW
® Otherwise

GO TO
DISPATCHER

° External interrupt from control panel is used to disconnect
the system operator’s terminal. The system operator may
reconnect at any other terminal via the LOGON command.

—OUTPUT
VMBLOK
GO TO VMGPRS
DISPATCHER
VMEPRS
> VMPSW
VMOSTAT
GO TO
DISPATCHER
VMBLOK
—_ ] VMOSTAT
—>[ xwo
RETURN VMTERM
X00°




UOTIONPOIIUI dD

6L-1

°9 aanbtg

burtpuey 3dnazezul weaboag

Program interrupt

INPUT

Program Old PSW

_— 1

PSA

[ TINTPR

> Determine machine mode and cause of interrupt

If in supervisor mode, go to DMKDMPDK to take CP dump

Process

DuUMP

if invalid operation, go to DMKPRGRF routine “

_ _VMBLOK

VMPSW

> If recognizable privileged instruction,
simulate it

If privileged instruction is not recognized, o

>

—— OUTPUT

VMBLOK

Virtual Storage

VMPSW

issue SVC 0 and dump CP

bDump

If paging exception, call DMKPTRAN to
bring page with requested address
into real storage.

If program interrupt occurs in virtual
problem mode, reflect the

> interrupt back to the virtual

This is the entry point
to reflect SVC interrupts
(when DMKSVC could not
reflect it) and to reflect
privileged instructions that
cannot be simulated by
DMKPRVLG

machine

I°

invalid operation code
is in GR 0. The VMINST
field of the VMBLOK contains
the image of the privileged
instruction that caused the
interrupt

GO TO
DISPATCHER

VMINST

SWPTABLE

—— OUTPUT

VMBLOK

User’s Page 0

VMPSW
VMINST




0z-1

| 9ENTOA--UOTIRUTINIS}ISC WaTqoad pue O1boT weislks oLE/HA WAI

*t sanbrg

d

futhbe

— INPUT
GR 2 REQUEST GPR1
L I I Virtual Address
CORTABLE
[N SWPTABLE
SEGTABLE
CORFLAG
PAGTABLE
SWPFLAG
PAGCORE
real page
address
— INPUT

PAGING
DEVICE

Request For
Real Storage

PROC!:SS

Translate address

YES

Is requested page already in storage?

NO

Determine page selection

Is page available from lists? [l VES

[FreevIsT]
[FLusHLIST]

NO

Release pages

~~ OQUTPUT

PAGING
DEVICE

Allocate DASD space

Schedule page 1/0
Mark page free

Lock — if requested

Form address
Return to requester

RITURN
° Bits defined for CORFLAG e Bits defined for SWPFLAG
CORIOLCK EQU X'80" Page locked for 1/0 SWPTRANS EQU X'80" Page in transit
CORCFLCK EQU X'40" Page locked by console function SWPRECMP EQU X'40° Page permanently assigned
CORFLUSH EQU X°20" Page is in flush list SWPALLOC EQU X"20" Page engueued for allocation
CORFREE EQU X'10° Page is in free list SWPSHR EQU X110’ Page shared
CORSHARE EQU X'08’ Page is shared SWPREF1 EQU X'08° 1st half page referenced
CORRSV EQU X'04" Page is reserved SWPCHG1 EQU xX'04’ st half page changed
CORDISA EQU X01" Page disabled — not available SWPREF2 EQU X02' 2nd haif page referenced
SWPCHG2 EQU X01 2nd half page changed

GR 2 Real Address




T0T220DOIIUT JD

-4

T4

*g 2anb

futToods Ten3ITA

i
SIO From Virtual

— OUTPUT

Real Storage

VSPLCTL :l Free

R —— Storage
Area
WORK SPLINK. |
BUFFER Read CCW |
TicC |
Dynamic Data ]
Paging Read CCW
\/ Storage TIC —
User’s virtual machine Data
page containing the Data Area ; ]

SPOOL BUFFER

Machine:
PROCESS
DMKVSP
INPUT
GR 2

Virtual CAW If spool file not open,
create VSPLCTL
get virtual buffer
save data in VSPLCTL

If Printer, Punch, or Console °
CCWs get a work buffer
get virtual CCW
move logical record (CCW and data) from
) spool buffer to work buffer
ata move data to user’s data area

post ‘interrupt’ pending and return to virtual machine

Virtual Storage

VDEVBLOK 1f a Card Reader
get a work buffer
get virtual CCW
move logical record (CCW and data) from

VDEVSPL spool buffer to work buffer
VDEV move data to virtual data area
csW post ‘interrupt’ pending and return to virtual machine.
° Virtual console spooling is the same as printer spooling except that: ‘ DMKDSPCH

® A skip to channel one CCW is inserted every 60 lines of output e

® The operator’s virtual console spoo! buffer is written for every 16 lines of output

® The Virtual spool buffer is written to the allocated spool device when the first CCW is
placed in the Virtual buffer. The buffer is kept in a pseudo closed state so that checkpoint
saves the buffer in the event of a system failure.




I SERNTOA--UOTIRUTNISISQ @8Tqold pue otboT ®e3sks QLe/WA RAI ZZ-L

*6 @anbrg

Euttoods Teay

r INPUT FOR PUNCH/PRINTER
RDEVBLOK

RDEVSPL

RSPLCTL

SFBCLAS
SFBCOPY

)

SFBLOK

INPUT FOR READER
10BLOK

10BCSW

Interrupt From
Spool Device

OUTPUT FOR PUNCH/PRINTER

SFBLOK
SFBUSER Dl

PROCESS

Find nonbusy unit record device

Find SFBLOK for that device type

Create RSPLCTL block and chain it to RDEVBLOK
Remove SFBLOK from chain and chain it to RSPLCTL

Get virtual buffer and read DASD page

Reconstruct CCWs in data page
Create 10BLOK and chain CCWs to 10BLOK

Schedule 1/O operation
When there is an interrupt from the

“unit-record device, get next DASD
page from chain

If end of file

’/‘;;;;IBUFFER

RDEVBLOK
— 1OBLOK
RDEVSTAT
RDEVTYC
RDEVSPL )

= __/

SPLINK .
CCWs TIC
Data Dl

DMKDSPCH

ccws | TIC OR
Data

OUTPUT FOR READER
Real Storage

DASD Auxiliary Storage

SPOOL BLFFER




T

*0L 2anb

futoeal Ten3aITA

INPUT

I TRACE XXX l

VMBLOK

VMTRCTL
VMTREXT

ADSTOP ADDRESS | ">

Entered from DMKCFM after
‘ADSTOP’ command entered

Entered From DMKCFM
After ‘TRACE’ Command
Entered

MKT
DMKTRA PROCESS

Pick up operands and options and check for validity
If “OF F’ specified, turn off flags
1f “END’ specified, call

DMKTRCPB to restore any instructions
altered by TRACE, turn off flags, and
return TREXT block to free storage.
Otherwise,

Issue “TRACE STARTED' message
Get trace control block ard set VMBLOK
pointer to it, if a trace control block does
not exist. Set trace flags. Call DMKTRCIT to
initialize branch or full instruction tracing,

if specified.

DMKCFM

OUTPUT
VMBLOK
TREXT

VMTREXT TREXCTL?
> / TREXCTL2
— - VMTRCTL [*— equal THEXTERM
TREXPRNT
TREXRUNF

Entry viaSVC 8
—t———PROCESS

Put trace prefix and type in output line

Convert binary addresses to hexadecimal (DMKCVT)
Get mnemonic for OP code, if applicable (DMKNEM)
Write trace line to output device

If ATTN was pressed or if halt after trace line was specified
enter console function mode and exit

CDMKCFMBK '

mMMMIIIII:lk—-‘

RETURN TO
CALLER

DMKCFDAD
Process

If “OF F'specified, restore instruction and free work buffer

COMMENTS

If this turns off the last flag, then the TREXT block|
is returned to free storage. If branch and instruction|
tracing are both turned off, DMKTRCPB is called
to put back any instructions altered by TRACE.

VMTRCTL and TREXCTL1 are identical.

Entry via SVC 8 as follows

Entry Point From
External Interrupt DMKTRCEX DMKDSP
1/0 Interrupt DMKTRCIO DMKDSP
Program Interrupt DMKTRCPG DMKPRG
Privileged Instructions DMKTRCPV DMKPRV
1/0 Operations DMKTRDSI DMKVIOEX|
Virtual and Real CSWs DMKTRCSW DMKVIOIN
SVC, branch or full DMKTRCSV DMKPSA
instruction trace
Restore user instructions DMKTRCPB DMKTRA

altered by tracing

Initialize instruction tracing DMKTRCIT DMKTRA

VMBLOK

'VMADSTOP| '\

OUTPUT

ADSTBLOK

ADSTINAD \

Otherwise, |
Get work buffer

Set VMBLOK pointer
Save instruction and its virtual address
Replace instruction with $VC B3

C DMKCFM

> Virtual Storage

L‘ 0AB3_

.




| 8WNTOA--UOTIRUTNISIBQ WOTqoId puv ot1boT we3sis OLE/HA WAI HZ-)

*LL @anbta

UOTIRISURI] SSSIPPV [28-03 -TBNIITA

Virtual Address

| |

Segmentl Page J Displacement

(¢} 7
LOCATE THE
SEGMENT TABLE
Segment Table Register (CR1)
Segment Table
Origin
8 25 26 31

Segment Table

{

Len l 1] l Page Table Origin l
0 3478 30 31

Page Table

8 16

USE AS
Al INDEX TO SEGMENT
TABLE ENTRY

LOCATE PAGE
Ml TABLE

USE AS INDEX
TO PAGE TABLE
ENTRY

SR

Block

isplacement
Number Disp!

Example

Translate Virtual Addres: 0008D424 to Real Address

Virtual Address

[ oo ]=]

Segment
Table Reg.

012460 Segment Table

F0014440

o 014440 Page Table

[
T—X

~N

3,
€

)
1

1
|
|
|
|
|
|

Locate the appropriate Segment Table
entry — The eighth entry in
the Segment Table at |ocation 014440
This entry points to the Page Table.

Locate the appropriate Page Table entry —
The 13™ entry in the Page Table at— — _/

location 014440. This entry contains /
the real block number, s Block

The block number in the Page — — —
Table entry and the disptacement in

the Virtual Address combine to provide the Real Address

= Real Address

Displacement

Real Address



Performance Guidelines

General Information

The performance characteristics of an operating system, when it is run
in a virtual machine environment, are difficult to predict. This
unpredictability is a result of several factors: .

e The System/370 model used.

e The total number of virtual machines executing.

e The type of work being done by each virtual machine.

e The speed, capacity, and number of the paging devices.
e The amount of real storage available.

e The degree of channel and control unit contention, as well as arm
contention, affecting the paging device.

e The type and number of VM/370 performance options in use by one or
more virtual machines.

e The degree of access to MSS 3330V volume.

Performance of any virtual machine may be improved up to some limit
by the choice of hardware, operating system, and VH/370 options. The
topics discussed in this section address:

1. The performance options available in VYM/370 to improve the
performance of a particular virtual machine. :

2. The system options and operational characteristics of operating
systems running in virtual machines that will affect their
execution in the virtual machine environment.

The performance ¢f a specific virtval machine may never egual that of
the same operating system running standalone on the same System/370, but
the total throughput obtained in the virtual machine environment may
equal or better that obtained on a real machine.

When executing in a virtual machine, any function that cannot be
performed wholly by the hardware causes some degree of degradation in
the virtual machine's performance. As the control program for the real
machine, CP initially processes all real interrupts. A virtual machine
operating system's instructions are always executed in problem state.
Any privileged instruction issued by the virtual machine causes a real
privileged instruction exception interruption. The amount of work to be
done by CP to analyze and handle a virtual machine-initiated interrupt
depends upon the type and complexity of the interrupt.

The simulation effort required of CP may be trivial, as for a
supervisor call (SVC) interrupt (which is generally reflected back to
the virtual machine), or may be more complex, as in the case of a Start
I/0 (SIO) interrupt, which initiates extensive CP processing.

When planning for the virtual machine environment, consideration
should be given to the number and type of privileged instructions to be
executed by the virtual machines. Any reduction in the number of
privileged instructions issued by the virtual machine's operating system
will reduce the amount of extra work CP must do to support the machine.

CP Introduction 1-25



Virtual Machine I/0

To support I/O0 processing in a virtual machine, CP must translate all
virtual machine channel command word (CCW) sequences to refer to real
storage and real devices and, in the case of minidisks, real cylinders.
When a virtual machine issues an SIO, CP must:

1. Intercept the virtual machine SIO interrupt.

2. Allocate real storage space to hold the real CCW 1list to be
created.

3. Translate the virtual device addresses referred to in the virtual
CCWHs to real addresses.

4. Page into real storage and lock, for the duration of the I/0
operation, all virtual storage pages required to support the I/0
operation.

5. Generate a new CCW sequence building a Channel Indirect Data
Address list if the real storage locations cross page boundaries.

6. Schedule the I/0O request.
7. Present the SIO condition code to the virtual machine.

8. Intercept, retranslate, and present the channel end and device end
interrupts to the appropriate virtual machine, where they must then
be processed by the virtual machine operating systesm.

CP's handling of SIOs for virtual machines can be one of the most
significant causes of reduced performance in virtual machines.

The number of SIO operations required by a virtual machine can be
significantly reduced in several ways:

e Use of 1large blocking factors (of up to 4096 bytes) for user data
sets to reduce the total number of SIOs needed.

e Use of preallocated data sets.

e Use of virtual machine operating system options (such as chained
scheduling in 0S) that reduce the number of SIO instructioms.

e Substitution of a faster resource (virtual storage) for 1I/0
operations, by building small temporary data sets in virtual storage
rather than using an I/0 device.

Prequently, there can be a performance gain when CP paging is
substituted for virtual machine I/0 operations. The performance of an
operating system such as 0S can be improved by specifying as resident as
many frequently used 0S functions (transient subroutines, ISAM indexes,
and so forth) as are possible. In this way, paging I/O is substituted
for virtual wmachine-initiated I/0. In this case, the only work to be
done by CP is to place into real storage the page that contains the
desired routine or data.

1-26 IBM VM/370 System Logic and Problem Determination--vVolume 1



Three CP performance options are available to reduce the CP overhead
associated with virtual machine I/0 instructions or other privileged
instructions used by the virtual machine's I/0 Supervisor:

1. The virtual=real option removes the need for CP to perform storage
reference translation and paging before each I/0 operation for a
specific virtual machine.

2. The virtual machine assist reduces the real supervisor state time
used by VM/370. See VM/370 Planning and System Geperation Guide
for a list of the processors on which it is available.

3. VM/370 Extended Control-Program Support further reduces the real
supervisor state time wused by V#/370. See ¥M/370 Planning apnd
System Generation Guide for a list of the processors on which it is
available.

Assignment and use of these options is discussed in "Preferred
Virtual Machines."

Paging Considerations

When virtual machines refer to virtval storage addresses that are not
currently in real storage, they cause a ©paging exception and the
asscciated CP paging activity.

The addressing characteristics of programs executing in virtual
storage have a significant effect on the number of page exceptions
experienced by that virtual wmachine. Routines that have widely
scattered storage reference tend to increase the paging 1load of a
particular virtual machine. When possible, modules of code that are
dependent upon each other should be located in the same page. Reference
tables, constants, and literals should also be located near the routines
that use then. Exception or error routines that are infrequently used
should not be placed within main routines, but located elsewhere.

When an availabie page of virtual storage contains only reenterable
code, paging activity can be reduced, since the page, although referred
to, is never changed, and thus does not cause a write operation to the
paging device. The first copy of that page is written on the paging
device when that frame is needed for some other more active page. Only
inactive pages that have changed must be paged out.

Virtual machines that reduce their paging activity by controlling
their use of addressable space improve resource management for that
virtual wmachine, the VM/370 system, and all other virtual machines. The
total paging load that must be handled by CP is reduced, and more time
is available for productive virtual machine use.

Additional dynamic paging storage may be gained by controlling free
storage allocation. The amount of free storage allocated at VM/370
initialization time can be controlled by the installation. When the
System 1is being generated, the FREE operand of the SYSCOR macro
statement may be used to specify the number of free storage pages to be
allocated at system load time.

If, at IPL time, the amount of storage that these pages represent is
greater than 25 percent of the VM/370 storage size (not including the
V=R area, if any), a default number of pages is used. The default value
is 3 pages for the first 256K bytes of storage plus 1 page for each
additiopal 64K bytes (not including the V=R size, if any).

CP Introduction 1-27



The SYSCOR macro definition can be found in V¥M/370 Planning and
System Generation Guide.

CP provides three performance options, locked pages, reserved page
frames, and a virtual=real area, to reduce the paging requirements of
virtual machines. Generally, these facilities require some dedication
of real storage to the chosen virtual machine and, therefore, improve
its performance at the expense of other virtual machines.

LOCKED PAGES OPTION

The LOCK command, which is available to the system operator (with
privilege class 1), can be used to permanently fix or lock specific user
pages of virtual storage into real storage. In so doing, all paging I/O
for these page frames is eliminated.

Since this facility reduces total real storage rtesources (real page
frames) that are available to support other virtual machines, only
frequently used pages should be locked into real storage. Since page
zero (the first 4096 bytes) of a wvirtual machine storage is referred to
and changed frequently (for example, whenever a virtual machine
interrupt occurs or when a CSW is stored), it should be the first page
of a particular virtual machine that an installation considers locking.
The virtual wmachine interrupt handler pages might also be considered
good candidates for locking.

Other pages to be locked depend wupon the work being done by the
particular virtual machine and its usage of virtual storage.

The normal CP paging mechanism selects unreferenced page frames in
real storage for replacement by active pages. Page frames belonging to
inactive virtual machines will all eventually be selected and paged out
if the real storage frames are needed to support active virtual machine
pages.

When virtual machine activity is initiated on an infrequent or
irregular basis, such as from a remote terminal in a teleprocessing
inquiry systea, some or all of its virtual storage may have been paged
out before the time the virtual machine must begin processing. Some
pages will then have to be paged in so that the virtual machine can
respond to the teleprocessing request compared with running the same
teleprocessing program on a real machine. This paging activity may cause
an increase in the time required to respond to the request compared with
running the teleprocessing program on a real machine. Further response
time is variable, depending upon the number of paging operations that
must occur.

Locking specific pages of the virtuval machine's program into real
storage may ease this problem, but it is not always easy nor possible to
identify which specific pages will always be required.

Once a page is 1locked, it remains locked until either the user logs
off or the system operator (privilege class A) issues the UNLOCK command
for that page. If the "locked pages" option is in effect and the user
loads his system again (via IPL) or 1loads ancther system, the locked
Pages are refreshed and the virtual machine's locked pages are unlocked
by the systen. The SYSTEM CLEAR command, when invoked, clears virtual
machine storage, including the user's locked pages.

1-28 1IBM VM/370 System Logic and Problem Determination--Volume 1



Note: In attached processor mode, no shared pages are locked. If the
system operator attempts to lock a shared page or an address range
containing one or more shared pages, he will receive the message

DMKCPV165I PAGE (hexloc) NOT LOCKED, SHARED PAGE

for each of the shared pages within the range.

RESERVED PAGE FRAMES OPTION

A more flexible approach than locked pages is the reserved page frames
option. This option provides a specified virtual machine with an
essentially private set of real page frames, the number of frames being
designated by the system operator, when he issues the CP SET RESERVE
command line. Pages will not be locked into these frames. They can be
paged out, but only for other active pages of the same virtual machine.
When a temporarily inactive virtual machine bhaving this option is
reactivated, these page frames are immediately available. If the
program code or data required to satisfy the request was in real storage
at the time the virtual machine became inactive, no paging activity is
required for the virtual machine to respond.

This option is usually more efficient than locked pages in that the
pages that remain in real storage are those pages with the greatest
amount of activity at that moment, as determined automatically by the
system. Although wmultiple virtual machines may use the LOCK option,
only one virtual machine at a time may have the reserved page frames
option active. Assignment of this option is discussed further in
"preferred Virtual Machines.®

The reserved page frames option provides performance that 1is
generally consistent from run to run with regard to paging activity.
This can be especially valuable for production-oriented virtual machines
with critical schedules, or those running teleprocessing applications
where response times must be kept as short as possible.

VIRTUAL=REAL OPTION

The ¥YM/370 virtual=real option eliminates CP paging for the selected
virtual machine. All pages of virtual machine storage, except page
zero, are locked in the real storage locations they would use on a real
computer. CP controls real page 2zero, but the remainder of the CP
nucleus is relocated and placed beyond the virtual=real machine in real
storage. This option is discussed in more detail in "Preferred Virtual
Machines."

Since the entire address space required by the virtuval machine is
locked, these page frames are not available for use by other virtual
machines except when the virtual=real machine is not logged omn. This
option often increases the paging activity for other virtual machine
users, and in some cases for VM/370. (Paging activity on the system may
increase substantially, since all other wvirtual machine storage
requirements must be managed with fewer remaining real page frames.)

CP Introduction 1-29



The virtual=real option may be desirable or mandatory in certain
situations. The virtuwal=real option is desirable when running a virtual
machine operating system (like DOS/VS or 0S/VS) that perforas paging of
its own Dbecause the possibility of double paging is eliminated. The
option must be used to allow programs that execute self-modifying
channel programss or have a certain degree of hardware timing
dependencies to run under VM/370.

Preferred Virtual Machine Options

VM/370 provides seven functions that create a special virtual machine
environment:

1. Favored execution

2. Priority

3. Reserved page frames
4. Virtual=real option
5. Affinity

6. Virtual machine assist

7. Extended Control-Program Support

The first five functions are designed to improve the performance of a
selected virtual machine; the last two functions improve the performance
of VM/370. Although each of the first five functions could be applied
to a different virtual machine, usually they are applied to only one if
optimum performance is required for that one specific virtual machine.
The sixth and seventh functions can be applied to as many virtual
machines as desired.

FAVORED EXECUTION

The favored execution options allow an installation to modify the normal
scheduling algorithms and force the system to devote more of its
processor resources to a given virtual wmachine than would ordinarily be
the case. The options provided are:

1. The basic favored execution option.

2. The favored execution percentage option.

The basic favored execution option means that the virtual machine so
designated is not to be dropped from the active (in queue) subset by the
scheduler, unless it becomes nonexecutable. When the virtual machine is
executable, it is to be placed in the dispatchable list at its normal
priority position. However, any active virtual machine represents
either an explicit or implicit commitment of main storage. An explicit
storage commitment can be specified by either the virtuval=real option or
the reserved page frames option. An implicit commitment exists if
neither of these options is specified, and the scheduler recomputes the
virtual machine's projected work-set at what it would normally have been
at gqueue-drop time. Multiple virtual machines can have the basic
favored execution option set. However, if their combined main storage
requirements exceed the system's capacity, performance can suffer
because of thrashing.

If the favored task is highly compute bound and must compete for the
processor with many other tasks of the same type, an installation can
define the processor allocation to be made. In this case, the favored
execution percentage option can be selected for one virtual machine.

1-30 IBM VM/370 System Logic and Problem Determination--Volume 1



This option specifies that the selected virtual machine, in addition to
remaining in queue, is guaranteed a specified minimum percentage of the
total processor time if it can use it. The favored execution option can
only be invoked by a system operator with command privilege class A.
The format of the command is as follows:

r 1

SET FAVORED userid |nn |
L 3

userid identifies the virtual machine to receive favored execution

status.
nn is any value from 1 through 99 and specifies the percentage
of the in-queue time slice that is guaranteed +o this

virtual machine.

OFF specifies that the virtual machine is +to be removed from
favored execution status.

The percentage option of the SET FAVORED command is administered as
follows:

1. The in-queue time slice is multiplied by the specified percentage
to arrive at the virtual machine's guaranteed processor time.

2. The favored virtual machine, when it 1is executable, is always
placed at the top of the dispatchable list until it has obtained
its guaranteed processor time.

3. If the virtual machine obtains its guaranteed processor time before
the end of its in-quene time slice, it 1is placed imn the
dispatchable list according to its calculated dispatching priority.

4. In either case (2 or 3), at the end of the in-queue time slice the
guarantee is recomputed as in step 1 and the process is repeated.

- s &L &

Whether or not a percentage is specified, a rtual machine with t
a

vi he
favored execution option active is kept in the dispatching queues except
under the following conditions:

Entering CP console function mode

Loading a disabled PSW

Loading an enabled PSW with no active I/0O in process
Logging on or off

When the virtual machine becomes executable again, it is put back on the
executable 1list in Q1. If dropped from Q1, the virtual machine is
placed directly in Q2 and remains there even though it may exhaust its
allotted amount of processor usage. Virtual machines with this option
are thus considered for dispatching more fregquently than other virtual
machines.

Note, however, that these options can impact the response time of

interactive users and that only one favored percentage user is allowed
at any given tinme.

CP Introduction 1-31



PRIORITY

The VM/370 operator can assign specific priority values to different
virtual machines. In so doing, the virtual machine with a higher
priority is considered for dispatching before a virtual machine with a
lower priority. User priorities are set by the following class A
command:

SET PRIORITY userid nn

where userid is the user's identification and 1nn is an integer value
from 1 to 99. The value of nn affects the user's dispatching priority
in relation to other users in the system. The priority value (nn) is
one of the factors considered in VM/370's dispatching algoritha.
Generally, the 1lower the value of nn, the more favorable the user's
position in relation to other users in VM/370's dispatch queues.

RESERVED PAGE FRAMES

VM/370 uses <chained lists of available and pageable pages. Pages for
users are assigned from the available 1list, which is replenished from
the pageable list.

Pages that are temporarily locked in real storage are not available
or pageable. The reserved page function gives a particular virtual
machine an essentially "private" set of pages. The pages are not
locked; they can be swapped, but only for the specified virtual machine.
Paging proceeds using demand paging with a "reference bit" algorithm to
select the best page for swapping. The number of reserved page frames
for the virtual machine is specified as a maximum. The page selection
algorithm selects an available page frame for a reserved user and marks
that page frame "reserved" if the maximum specified for the user has not
been reached. If an available reserved page frame is encountered for the
reserved user selection, it is used whether or not the maximum has been
reached.

The maximum number of reserved page frames is specified by a class A
conmand of the following format:

SET RESERVE userid xxx

where xxx is the maximum number required. If the page selection
algorithm cannot locate an available page for other users because they
are all reserved, the algorithm forces the use of reserved pages. This
function can be specified in only one virtual machine at any one tinme.

Note: xxx should never approach the total available pages, since CP
overhead is substantially increased in this situation, and excessive
paging activity is likely to occur in other virtual machines.

VIRTURL=REAL

For this option, the VM/370 nucleus must be reorganized to provide an
area in real storage large enough to contain the entire virtual=real
machine. In the virtual machine, each page from page 1 to the end is in
its true real storage location; only its page zero is relocated. The
virtual machine is still run in dynamic address translation mode, but

1-32 1IBM VM/370 System Logic and Problem Determination--Volume 1



since the virtual page address is the same as the real page address, no
CCW translation is required. Since CCW translation is not performed, no
check is made to ensure that I/0 data transfer does not occur into page
zero or any page beyond the end of the virtual=real machine's storage.

Systems that are generated with the virtual=real option use the
systea loader (DMKLDOOE). For information about generating a
virtual=real system, see the VM/370 Planning and System Generation
Guide.

Figure 12 is an example of a real storage layout with the
virtual=real option. The V=R area is 128K and real storage is 512K.

T 1
| Vvirtual Storage Real Storage |
| Addresses Addresses |
I r 1« OK |
| | CP PAGE 0 (MODULE DMKPSA) | |
| 4K| | 4K |
| | Virtual Page 1 | |
| | i |
| ( VIRTUAL=REAL AREA | (
| / / i
| / SIZE = 128K BYTES / |
| | Minimum size is 32K bytes.) | |
1128K | 1 128K |
| OK| Virtual Page 0 | |
| 4K\ { 132K (DMEKSLC) i
| 132K| | |
| / REMAINDER OF CP NUCLEUS / |
l / / {
| | | {
| | | End of CP Nucleus |
{ { | (DMKCPE) i
| / DINAMIC PAGING AREA / |
| / and / |
| | FREE STORAGE i |
i s 1 512K (End of real !
1 storage) |
[ J

FPigure 12. Storage Layout in a Virtual=Real Machine

There are several considerations for the virtual=real option that
affect overall system operation:

1. The area of contiguous storage built for the virtual=real machine
must be large enough to contain the entire addressing space of the
largest virtual=real machine. The virtual=real storage size that a
VM/370 system allows is defined during system generation when the
option is selected.

2. The storage reserved for the virtual=real machine can only be used
by a virtual wmachine with that option specified in the VM/370
directory. It is not available to other users for paging space, nor
for VM/370 usage until released from virtual=real status by a
system operator via the CP UNLOCK command. Once released, VM/370
must be loaded again before the virtual=real option can become
active again.

CP Introduction 1-33



3. The virtual machine with the virtual=real option operates 1in the
preallocated storage area with normal CCW translation in effect
until the CP SET NOTRANS ON command is issued. At that time, with
several exceptions, all subsequent I/O operations are performed
from the virtual CCWs in the virtual=real space without
translation. The exceptions occur under any of the following
conditions:

SI0 tracing active
First CCW not in the V=R region
I/0 operation is a sense command
I/0 device is a dial-up terminal
I/0 is for a nondedicated device
(spooled unit record console virtual CTCA
or minidisks that are less than a full volume)
e Pending device status
e I/0 device has an alternate path

Any of the above conditions will force CCW tramnslation. Since
minidisks are nondedicated devices, they may be used by programs
running in the ¥=R region even though CP SET ROTRANS OFN is in
effect.

4. 1If the virtual=real machine performs a virtual reset or IPL, then
the normal CCH translation goes into effect until the CP SET
NOTRANS ON command is again issued. This rermits simulation of an
IPL sequence by CP. Only the virtual=real virtual machine can
issue the command. A message is issued if normal translation mode
is entered.

5. 1A virtual=real machine is not allowed to IPL a named or shared
system. It must IPL by device address.

6. When NOTRANS is in effect for a virtual=real machine, no meaningful
SEEK data is collected by MONITOR operationms.

AFFIRITY

This virtual machine option allows virtual machines that operate on
attached processor systeams to select, if desired, the processor of their
choice for program execution. The selection can be made by the VN/370
directory OPTION statement, or it can be made dynamically by an operand
of the CP SET command:

For class G users

SET AFFINITY nn
OFF

For class A users

ON

SET AFFINITY userid nn
OFF

where nn is the processor address of the main or the attached processor.

In application, the affinity setting of a virtual emachine implies a
preference of operation to either (or neither) processor. Affinity of

1-34 IBM VM/370 System Logic and Problem Determination--Volume 1



operation for a virtual machine means that the program of that virtual
machine will be executed on the selected or named processor. It does
not imply that supervisory functions and the CP housekeeping functions
associated with that virtual machine will be handled by the sanme
processor.

In attached processor systems, all real I/0 operations and associated
interrupts are handled by the main processor. Virtual I/O initiated on
the attached processor that is mapped to real devices must transfer
control to the main processor for real I/0 execution. Therefore,
benefits may be realized in a virtual machine "aix" by relegating those
virtual machines that have a high I/0-to-compute ratio to the main
processor, and those virtual machines that have a high compute-to-I/0
ratio to the attached processor. Such decisions should be carefully
weighed as every virtual machine is in contention with other virtual
machines for resources of the system.

A more important use of the affinity setting would be in applications
where there are virtual machine program requirements for special
hardware features that are available on one processor and not the other.
Such features could be a performance enhancement such as virtual machine
assist (described later im the text) or a special RPQ that 1is a
requirement for a particular program's execution.

VIRTUAL MACHINE ASSIST FEATURE

The virtual machine assist feature is a processor hardware feature. It
improves the performance of ¥M/370. Virtual storage operating systeams,
which run in problem state under the control of VM/370, use nmany
privileged instructions and SVCs that cause interrupts that VM/370 must
handle. When the virtual machine assist feature is used, many of these
interrupts are intercepted and handled by the processor; and,
consequently, YM/370 performance is improved. See VM/370 Planning and
System Generation Guide for a list of the processors on which virtual
machine assist is available.

The virtual machine assist feature intercepts and handles
interruptions caused by SVCs (other than SVC 76), invalid page
conditions, and several privileged instructions. An SVC 76 is never
handled by the assist feature; it is always handled by CP. The
processing of the following privileged instructions is handled by this
feature:

LRA (load real address)
STCTL (store control)

RRB (reset reference bit)
ISK (insert storage key)
SSK (set storage key)

IPK (insert PSW key)

STNSM (store then AND system mask)
STOSM (store then OR system mask)
SSH (set system mask)

LPSW (load PSW)

SPKA (set PSW key from address)

Although the assist feature was designed to improve the performance
of YM/370, virtual machines may see a performance improvement because
more resources are available for virtual machine users.

CP Introduction 1-35



Using the virtual Machipe Assist Feature

Whenever you IPL VM/370 on a processor with the virtual machine assist
feature, the feature is available for all VM/370 virtual machines.
However, +the system operator's SET command can make the feature
unavailable to VYM/370 and, subsequently, available again for all users.
The format of the system operator's SET command is:

SET SASSIST fON } ([PROC] xX)
OFF

If you do not know whether or not the virtual machine assist feature
is available to VM/370, use the class A and E QUERY command. For a
complete description of the Class A and E QUERY and SET commands, see
the YM/370 Operator's Guide.

If the virtual machine assist feature is available to VM/370 when you
log on vonr virtnal machine, i+ iec aleo supported for your virtwval
machine. If your VM/370 directory entry has the SVCOFF option, the SVC
handling portion of the assist feature is not available when you log on.
The class G SET command can disable the assist feature (or only disable
SVC handling). It can also enable the assist feature, or if the assist
feature is available, enable the SVC handling. The format of the
command is:

SET ASSIST {[ON] [SYC ] [TMR ] }
[NOSVC ] [NOTHR ]

OFF

You can use the class G QUERY SET command line to find whether you have
full, partial, or none of the assist feature available. For a complete
description of the Class G QUERY and SET commands, see the VMN/370 CP
Command Reference for General Users.

Restricted Use of the Yirtual Machine Assist Feature

Certain interrupts must be handled by VM/370. Consequently, the assist
feature is not available under certain circuastances. vM/370
automatically turns off the assist feature in a virtual machine if it:

e Has an instruction address stop set.
e Traces SVC and program interrupts.

Since an address stop is recognized by an SVC interrupt, VN/370 must
handle SVC interrupts while address stops are set. Whenever you issue
the ADSTOP command, VM/370 automatically turns off the SVC handling
portion of the assist feature for your virtual machine. The assist
feature is turned on again after the instruction is encountered and the
address stop removed. If you issue the QUERY SET command line while an
address stop is 1in effect, the response will indicate that the SVC
handling portion of the assist feature is off.

Whenever a virtual machine issues a TRACE command with the SVC, PRIV,
BRANCH, INSTRUCT, or ALL operands, the virtual assist feature is
automatically turned off for that virtual machine. The assist feature
is turned on again when the tracing is completed. If the QUERY SET
compand 1line is issued while SVCs or program interrupts are being
traced, the response will indicate the assist feature is off.

1-36 IBM VM/370 System Logic and Problem Determination--Volume 1



VM/370 EXTENDED CORTROL-PROGRAM SUPPORT (ECPS)

VM/370 Extended Control-Program Support (ECPS) improves the performance
of the processor when executing VM/370 beyond the improvement attained
by the virtual machine assist feature described above. See Y¥YM/370
Planping apd System Geperation Guide for a 1list of the processors on
which BCPS is available. ECPS consists of three parts: CP assist,
expanded virtual machine assist, and virtuval interval timer assist. A
detailed description of ECPS is provided in "Appendix A. VM/370 Extended
Control-Program Support.”

CP Assist

The CP assist part of ECPS assists various routines that are frequently
used by VM/370. Because these routines are assisted by the hardware
vithout involving VM/370, performance of the VM/370 system is improved.
The high-use paths of the following functions are assisted:

Get Free Space (DMKFRE)

Release Free Space (DMKFRE)

Untranslate CSW (DMKUNT)

Free CCW Storage (DMKUNT)

Locate Virtual I/0 Control Block (DMKSCK)
Locate Real I/0 Control Block (DMKSCN)

Lock a page (DMKPTR)

Unlock a page (DMKPTR)

Common CCW command processing (DMKCCW)
Decode First CCW command (DMKCCW)

Decode following CCW command (DMKCCW)
TRANBRNG subroutine (DMKCCW)

TRANLOCK subroutine (DMKCCW)

Invalidate page table subroutine (DMKVAT)
Invalidate segment table subroutine (DMKVAT)
Main entry to dispatch (DMKDSP)

Dispatch a block or virtual machine (DMKDSP)
SVC 8 (LINK)

SVC 12 (RETURN)

Locate changed shared pages (DMKVMA)

Expanded virtual machine assist extends the level of handling of the
following privileged instructions:

e LPSW
e STNSM
e STOSM
e SSM

In addition, expanded virtual machine assist handles the processing
of the following privileged instructions not handled by the virtual
machine assist feature:

PTLB
SIo
SPT
SCKC
STPT
TCH

CP Introduction 1-37



Virtual Interval Timer Assist

Virtual interval timer assist provides hardware updating of the virtual
interval timer at virtual 1location X'50'. This results in an update
frequency of approximately 300 times per second, the same as for the
real interval timer. Procedures that use the virtual interval timer for
job accounting, performance measurements, and the like, will therefore
generate more accurate and repeatable time data than they would if the
virtual timer was being updated by CP routines.

Using the YM/370 Extended Control-Program Support

VM/370 Extended Control-Program Support (ECPS) is controlled at two
levels: the VM/370 system and the virtual machine.

At the ViH/370 system level, ECPS is automatically enabied when the
system is loaded. The class A command:

set cpassist off

will disable both CP assist and expanded virtual machine assist. The
class A command:

set sassist off
disables only the expanded virtual machine assist part of ECPS as well
as the virtual machine assist. CP assist is the only part of ECPS that
is truly independent.

At the virtual machine level, whenever ECPS is enabled on the system,
both expanded virtual machine assist and virtual interval timer assist
are automatically enabled when you log on. If you issue the class G
command:

set assist off

toth assists as well as the existing virtual wmachine assist are
disabled. If you issue:

set assist notmr

only the virtual interval timer assist is disabled. If CP assist is
disabled for the system, the class A command:

set sassist on
will enable the virtual machine assist. You can then enable virtual
machine assist and virtual interval timer assist for your virtual
machine by issuing the class A command:

set assist on tar

The restrictions on the use of ECPS are the same as those described for
the virtual machine assist feature with one addition. Whenever a
virtual machine traces external interrupts, the virtuval interval tiaser

1-38 1IBM VM/370 System Logic and Problem Determination--Volume 1



assist is automatically disabled. When external interrupt tracing is
completed, virtual interval timer assist is reenabled.

Virtual Machine Communication Facility

The Virtual Machine Communication Facility (VMCF) allows any logged-on
user of YM/370 to transfer messages, control data, data files, or
combinations of all three to another virtual machine running under the
same VM/370 systea. Information is transferred directly from one
virtual storage to the other wvirtual storage with CP buffering the
information. Only one data page frame must be locked at any one time.
The amount of data that can be transferred is limited only by the
virtual storage sizes of the virtual machines involved.

YMCF contains five data movepent and seven ccntrol functions and is
invoked by a virtual machine via the DIAGNOSE interface (code X'0068').
A special external interrupt code, X'4001', notifies a virtual machine
that a VMCF communication is pending. A virtual machine can have a
maximum of 50 messages active at any one time. The number of messages
is an equate in the DMKVMC module and can be changed to accoammodate
different YM/370 storage sizes.

VMCF Diagnose Interface

When a virtual machine issues a DIAGNOSE instruction with a function
code of X'0068', the rx register contains the virtual address,
doubleword-aligned, of a U0-byte parameter 1list. This parameter list
(VMCPARM) contains a hexadecimal code to identify the specific VMCF
subfuncticn. It also contains the data addresses, data lengths, and
control information that are regquired to execute the particular
subfunction.

The DIAGNOSE instruction, a privileged operation, is processed by
DMEKPRV which passes control to DMKHVC, the DIAGNOSE interface module.
DMKHVC, in turn, validates the function code and, if the code is
X°0068°, turns control over to DHRVHC, the VHCF =module. DHRVEC
validates the VMCPARM address and length, the subfunction code, and
passes control to the appropriate subroutine. The VMCF subfunctions and

their codes are as follows:

Code Subfunction

X'0000° Allow virtual machine communication

X'0001" Disallow virtual machine communication
X'0002° Initiate a SEND request

X'0003° Initiate a SEND/RECV request

X'0004" Initiate a SENDX request

X'0005" Accept data from a SEND or SEND/RECV request
X'0006" Cancel specific request you initiated
X'0007°" Reply to a SEND/RECV request

X*'0008"° Reject further incoming communicaticns
X'0009" Resume accepting coamunications

X'000A' Notify a user that you are ready for communications
X'000B"' Reject a specific incoming communication

CP Introduction 1-39



Special VMCF External Interrupt

Whenever a source virtual machine uses VMCF to correspond with another
virtual wmachine (sink), the sink 1is notified of the pending
communication via a special external interrupt (code X'4001'). When
this interrupt is unstacked and processed, a copy of the information in
the source's parameter 1list is passed to the sink in an external
interrupt buffer. The buffer is defined wvhen a wuser allows virtunal
machine communication. The contents are referred +to as the external
interrupt message header.

When certain transactions (SEND, SEND/RECV, SENRDX) have been
completed, a final response external interrupt is passed back to the
source. The message header associated with this interrupt contains
residual counts pertaining to the transferred data and data transfer
return codes.

VMCF Control Blocks and Data Areas

Figure 13 shovs the relationship between the various VMCF control blocks
and data areas. When a virtual machine allows virtual machine
communication, VMCF generates a master VMCBLOK and places it at the head
of a queue pointed to by the VMCPNT field of the user's VMBLOK. Two
fields in this master VMCBLOK define the address (VMCVADA) and length
(VMCLENA) of the user's external interrupt buffer. The length must
include the maximum size of any potential SENDX data in addition to the
40 bytes for the external interrupt message header.

When a source virtual machine executes a VMCF subfunction, a VMCBLOK
is built, initialized with data from the parameter 1list (VMCPARM), and
stacked on the VMCBLOK gqueue pointed to by the VMCPNT field in the
sink's VMBLOK. If an XINTBLOK for a X'4001' external interrupt has not
already been stacked for the sink machine, DMKVMC builds one and stacks
it on the XINTBLOK dueue pointed to by the VMPXINT field in the sink's
VMBLOK. VMCF external interrupts are assigned a sort code of
X'7FFFFFFF', giving them the lowest priority in the external interrupt
queue. Each virtual machine clears its own VMCF control blocks.

Special Messages Facility

The Special Message Facility allows users to send special messages to a
virtual wmachine via the SMSG command. In the Special Message
environment, CP acts as a source machine with the receiver of special
messages being the sink. This relieves the burden from the issuer of
SMSG of having to perform authorization and other setup necessary for
sending messages to the receiving virtual machine. This is performed by
CP.

The issuer of SMSG is responsible for sending message text that is
meaningful to the receiving virtual machine. The format and handling of
special messages is entirely up to the receiving machine, which may be
one designed by the installation or prepared by others.

Before the receiving virtual machine can accept special messages, it
must be running with the Special Message flag ON, and it must have
issued AUTHORIZE (via DIAGNOSE X'68') with CP. The authorization
includes supplying the External Interrupt Buffer address and size. To
ensure receiving the entire message, the receiving virtual wmachine

1-40 IBM VM/370 System Logic and Problem Determination--Volume 1



DIAGNOSE Instruction

X'83" | Rx | Ry X*0068’

Rx VMCPARM
4/
Subfunction
VMBLOK
VMPXINT VMCBLOK Queue
VMCPNT - Miaster
VMCBLOK
VMCVADA
XINTBLOK Queue
| X'4001' ] -
1 e

External Interrupt
Buffer

{(VMCMHDR)

Optional SENDX
Data Buffer

Figure 13, VMCF Control Block Relationships

should specify the size as 169 bytes (room for a 40-byte header and a
120- to 129-byte message buffer, depending on the length of the commard
and userid).

Setting SMSG ON can be accoaplished by setting the SMSG flag omn in
the VMCF parameter list when issuing an AUTHORIZE. It may also issue
the CP command SET SMSG ON. Either method sets the Special Message flag
on in the VMBLOK. When this is done, any other virtual machine can
issue the SMSG command to the userid of the receiving virtual machine.

CP Introduction 1-41



—— e —

— —— — — —

If the receiving virtual machine chooses not to accept special
messages at any time, it can merely issue SET SMSG OFF. CP would then
infora any machine issuing the SMSG command that the virtual machine is
not receiving special messages. When it is ready to resume accepting
special messages, the ‘virtual machine need only to issue SET SMSG ON.

The following shows the processing when an SMSG command is issued.

-1

r
| SMSG userid msgtxt |
13

T 1

| |

| CP: |

| e vValidates SMSG command. |

| e Checks that receiving virtual machine {

| has Special Message flag ON (in receiving |

i machinc's YMBLOK) If not ——|—————=——=——

| e Checks for receiving virtual machine being | {

| authorized with CP. If not-———f——=— - >1

| e Obtains storage for containing one VMCF 1 r Y -
| External Interrupt Buffer. | |Send message to |
| e Builds VMCF parmeter 1list: | lissuer that |
| - saves buffer address in VMVMVADA | |receiving machine|
| - computes message length & stores that | 1|is not receiving |
| length in VMVYMLENA | Ispecial messages |
| - moves message test into area pointed to | L | J
| BY VMCMBUF (VMCMVADA value minus 40 | |

| bytes) for the computed length of the | v

| message text i EXIT

1 - stores SENDX subfunction code in |

| VMCMFUNC |

{ - stores CPU clock value in VMCMMID as a |

| unique message-id {

| e Calls DMKVMC to execute SENDX subfunction |

| code to send the message to the receiving |

| virtual machine. {

| |

L ; ]

|
\J

Al
Receiving virtual machine processes datal
from buffer transmitted via SENDX. |

-y

During a Special Message session, the following error messages could be
sent back to the issuer of the SMSG command:

DMKMSGOO3E: INVALID OPTION - optiom

DMKMSGO20E: USERID MISSING OR INVALID

DMRKMSGO4SW: userid NOT LOGGED ON

DMKMSGO57E: userid NOT RECEIVING; [DISCONNECTED | MSG OFF |
SMSG OFF | NOT AUTHORIZED | WNG OFF]

1-42 1IBM VM/370 System Logic and Problem Determination--Volume 1



VM/VS Handshaking

The VM/VS Handshaking feature provides a communication path between CP
and virtual machine operating systems that makes each system control
program aware of certain capabilities or requirements of the other.

The following is a discussion of VM/VS Handshaking as it relates to
0S/vsS1. Functions of VM/VS Handshaking incorporated in the VM/370
control program are available and applicable to any operating system
that can be system generated to use this VM/370 enhancement.

VM/VS Handshaking for 0S/VS1 performs the following functions:

e Closes CP spool files when the ¥YS1 3job output from its DSO,
terminator, and output writer is complete

e Processes VS1 pseudo page faults

e Provides an optional nonpaging mode for VS1 when it is run in the
VM/370 environment

When a VS1 virtual wmachine with the handshaking feature is loaded
(via IPL), its initialization routines determine whether the handshaking
feature should be enabled. First, V¥S1 determines if it is running under
the control of VM/370 by issuing a STIDP (Store Processor 1ID)
instruction. STIDP returns a version code; a version code of X'FF!'
indicates VS1 is running with VM/370. If ©VS1 finds a version code of
X'FP', it then issues a DIAGNOSE (X'00') instruction to store the VM/370
extended-identification code. If an extended-identification code is
returned to ¥S1, ¥S1 knows that VM/370 supports handshaking; if nothing
is returned to VS1, VM/370 does not support handshaking. At this time
or any time after IPL, the operator of the VS1 virtual machine can issue
the CP SET PAGEX ON command to enable the pseudo page fault handling
portion of handshaking. If the VS1 virtual machine is in the nonpaging
mode and, if the pseudo page fault handling is active, full handshaking
support is available.

Because the VS1 system does no paging, any ISAM programs run under
VS1 are treated by VM/370 as though they are running in an ADDRSPC=REAL
partition. Therefore., the ISAM option is required for the VS1 machine
to successfully execute the ISAM program.

Closing CP Spool Files

If the handshaking feature is active, VS1 closes the CP spool files when
its job output from the DSO, terminator, and output writer is complete.
Once the spool files are closed, ¥YM/370 processes them and they are sent
to the real printer or punch. During its job termination processing,
¥S1 issues a DIAGNOSE (X908') instruction to pass the CP CLOSE command
to YM/370 for each CP spool file.

A page fault is a program interruption that occurs when a page marked
"not in storage" is referred to by an instruction with an active page.
The virtual machine referring to the page is placed in a wait state
while the page is brought into real storage. Without the handshaking
feature, the entire VvS1 virtual machine is placed in page wait by VM/370
until the needed page is available.

CP Introduction 1-43



However, with the handshaking feature, a mnmultiprogramming (or
multitasking) VS1 virtual machine can dispatch one task while waiting
for a page request to be ansvered for another task. VM/370 passes a
pseudo page fault (program interrupt X'14') to VS1. When VS1 recognizes
the pseudo page fault, it places only the task waiting for the page in
page wait and can dispatch another tasks.

When a page fault occurs for a VS1 virtual machine, VM/370 checks
that the pseudo page fault portion of handshaking is active and that the
¥S1 virtual machine is in EC mode and enabled for I/0 interruptioms.
Then, VM/370 reflects the page fault to VS1 by:

o Storing the virtual machine address that caused the page fault at
location X'90' (the translation exception address)

e 1Indicating a program interruption (interrupt code X'14') to VsS1
e Removing the VS1 virtual machine from page wait and execution wait

When VS1 recognizes program interruption code X'14', it places the
associated task in wait state. VS1 can then dispatch other tasks.

When the requested page becomes available in real storage, VM/370
indicates the same program interruption to VS1, except that the leftmost
bit in the translation exception address field is set on to indicate
completion. VS1 removes the task from page wait; the task is then
eligible to be dispatched.

¥S1 Nonpaging Mode

When ¥S1 runs under the control of ¥M/370, it executes in nonpaging mode
ifs

e Its virtual storage size is equal to the size of the VM/370 virtual
machine

e 1Its virtual machine size is at least 1024K bytes and no more than
4096K bytes. For VS1 Release 6, the maximum size is 16,370K bytes.

e The VYM/VS Handshaking feature is available.
WFhen VS1 executes in nonpaging mode, it uses fewer privileged
ipstructions and avoids duplicate paging. The vs1 Nucleus

Initialization Program (NIP) fixes all VS1 pages to avoid the duplicate
Paging.

Note: The working set size may be larger for a VS1 virtual machine in
nonpaging mode than for one in paging mode.

1-44 IBM VM/370 System Logic and Problem Determination--Volume 1



Miscellaneous Enhancements

A VS1 wvirtual machine with the handshaking feature avoids many of the
instructions or procedures that would duplicate the function that VM/370
provides. For exapple, ¥S1 avoids:

e ISK (Insert Storage Key) instructions and uses a key table
e Seek separation for 2314 direct access devices
e ENABLE/DISABLE sequences in the ¥S1 I/0 Supervisor (IOS)

e TCH (Test Channel) instructions preceding SI0O (Start 1/0)
instructions

Cp Introduction =45



CP Interruption Handling

Interruption processing occurs Within the CP environment. More than 30
modules control the process of interrupting events brought about by CP
or virtual machine activity. BEach module handles a particular I/0
device or class or a function of CP, (for example: timers, paging,
SVCs). For an overview of interruption handling, see Figure 14.

Program Interruption

Program interruptions occur in two states. If the CPU is in the
supervisor state, the interruption indicates a system failure in the CP
nucleus and causes a system abnoimal terminaticn. If +he CPN is in the
problem state, a virtual machine is in execution. If the progranm
interruption indicates that +the Dynamic Address Translation (DAT)
feature has an exception, a virtual machine issued a privileged
instruction, or a protection exception occurred for a shared segment
system, CP takes control and performs any required processing to satisfy
the exception. Usually, the interruption is not apparent to the virtual
machine. Most other program interruptions result from virtual machine
processing and are reflected to the virtual machine for handling.

When a program interruption occurs, the program interruption handler
(DMKPRG) is entered. Program interruptions can result from:

e Normal paging requests

e 1 paging request by a virtual machine in EC mode (virtual relocate
mode)

e Privileged instructions
e Program errors

For information about paging requests, see "Allocation Management"™ in
this section.

Privileged Instructions

If a program interruption is caused by the virtual machine issuing a
privileged instruction when it is running in supervisor state, DMKPRYLG
obtains the address of the privileged instruction and determines the
type of operation requested. If the virtual machine was running in
problem state, the interruption is reflected back to the virtual
machine.

I/0 PRIVILEGED INSTRUCTIONS

DMEKPRVYLG transfers control +to the virtual I/0 executive program
(DMKVSIEX).

1-46 IBM VM/370 System Logic and Problem Determination--Volume 1



F ¥ T
| TYPE | MODULE |
3 + §
| S¥YC { DMKSVCIN |
| External | DMKPSAEX |
{ Machine Check | DMKMCHIKN {
| I/0 | DMKIOSIN |
| Program Check | DMKPRGIN |
[ A ]

Interrupt Handler Modules

r R ] 1
{ Interrupt Froa | Action/Module {
L o R ]
| 3 L 1
| Unknown channel | Ignored - DMKDSPCH |
i Unsolicited device end i Build IOBLOK i
| and for: i [
| Console | DMECNSIN |
| 3270s on bisync lines | DMKRGA or DMKRGB |
| Local 3270, 3158, and 3066 consoles | DMKGRF |
| Unit record, real spooling | DMKRSPEX |
| Solicited device end | DMKSTKIO |
| Channel error | DMKCCHNT |
| Monitor tape I/0 operation | DMKMONIO {
| Dedicated device error - DASD | DMKDASER |
| Dedicated device error - Tape | DMKTAPER |
| 3270 bisync line and channel errors | DMKBSG |
' Recoverable | DMEKSTKIC '
i Unrecoverable | DMKIOERR |
L i ]
I/0 Interrupt Handler (DMKIOS) Actioms

r ¥ L
| Reason for Program Check { Module {
i 1 []
L L] L
| Normal paging | DMKPTRAN |
| Paging - virtual machine in EC mode | DMKVAT 1
| Supervisor State | DMKDMP |
| Privileged instruction | DMKPRVLG i
| DIAGNROSE | DMKHVC |
| Timers i DMKTMR |
| Virtual Machine I/0 | DMKVSIEX {
| console | DMEKVCNEX |
| unit record, virtual spooling | DMKVSPEX t
L ' ]

Program Check Interrupt Handler (DMKPRG) Actioms

— -—— -

Figure 14. Overview of Interruption Handling

NON-I/0 PRIVILEGED INSTRUCTIONS

DMKPRVLG simulates valid non-I/0 privileged instructions and returns
control to DMKDSPCH. For invalid non-I/0 privileged instructions, the
routine sets an invalid interruption code and reflects the interruption
to the virtual machine. For the privileged instructions (SCK, SCKC,
STCKC, SPT, and STPT) +that affect the TOD clock, CPU timer, and TCD
clock comparator, control is transferred to DMKTMR by DMKPRVLG. Other
instructions that are simulated are LPSW, SSM, SSK, ISK, IPTE, and
DIAGNOSE.

CP Introduction 1-47



Although the CS and CDS instructions are nonprivileged, they are not
part of the standard instruction set on IBM System/370 Models 135,
135-3, 138, 145, 145-3, and 148; VM/370 simulates these instructions on
these models that do not have the optional hardware feature installed.

System/370 EC mode non-I/0 privileged instruction simulation includes
the following:

Code Definition

SCK Set Clock

SCKC Set Clock Comparator

STCKC Store Clock Comparator

SPT Set CPU Timer

STPT Store CPU Timer

STNSM Store and AND System Mask
STOSM Store and OR System Mask
STIDP Store CPU Identification
STIDC Store Channel Identification
LCTL Load Control

STCTL Store Control

LRA Load Real Address

RRB Reset Reference Bit

PTLB Purge Table Look-aside Buffer
IPK Insert PSW Key

SPKA Set PSW Key From Address

1-48 IBM VM/370 System Logic and Problem Determination--Volume 1



DIAGNOSE INSTRUCTION IN A VIRTUAL MACHINE

The DIAGNOSE instruction cannot be used in a virtual machine for its
normal function. If a virtual machine atteapts to execute a DIAGNROSE
instruction, a program interrupt returns control to CP. Since a
DIAGNOSE instruction issued in a virtwal wmachine results only in
returning control to CP and not in performing normal DIAGNOSE functions,
the instruction is used for communication between a virtual machine and
CP. The machine language format of DIAGNOSE is:

< 4 bytes >
¥ L
{ 83 | Rx | RY | CODE [
1 '
where:
83 is X'83' and interpreted by the assembler as the DIAGNOSE
instruction.
Note: There is no mnemonic for DIAGNOSE.
Rx specifies a register containing the address of the VMCPARAM
parameter list.
RY is a register that contains a return code.
CODE is X'68' and specifies that you are requesting execution of a

VMCF.

The operand storage addresses, passed to the DIAGNOSE interface in Rx
and Ry, must be real addresses to the virtual machine issuing the
DIAGNOSE.

The code is a two-byte hexadecimal value that CP uses to determine
what function to perform. The codes defined for the general VM/370 user
are described in this section. The code must be a multiple of 4. Codes
X'00' through X'FC' are reserved for IBM use, and codes X'100' through
X'1FC' are reserved for users.

Because DIAGNOSE operates differently in a virtual machine than it
does in a real machine, a program should determine that it is operating
in a virtual machine before issuing a diagnose instruction, and prevent
execution of a DIAGNOSE when in a real machine. The Store Processor ID
(STIDP) instruction provides a program with information about the
processor in which it is executing, including the processor version
number. If STIDP is issued from a virtual machine, the version number
will be X'FF' in the first byte of the CPUID field.

A virtual machine issuing a diagnose instruction should rum with
interrupts disabled. This prevents loss of . status information
pertaining to the diagnose operation such as condition codes and sense
data.

CP Introduction 1-49



DIAGNOSE Code X'00' -- Store Extended-Identification Code

Execution of DIAGNOSE code X'00' allows a virtual machine to examine the
¥M/370 extended-identification code. For example, an 0S/VS1 virtual
machine issues a DIAGNOSE code X'00' instruction to determine if the
version of VM/370 under which it 1is executing supports the VM/VS
Handshaking feature. If the extended-identification code is returned to
VsS1, VM/370 supports handshaking; otherwise, it does not.

The register specified as Rx contains the doubleword aligned virtual
storage address where the VM/370 extended-identification code is to be
stored. The Ry register contains the number of bytes to be stored
entered as an unsigned binary number.

If the VM/370 system currently executing does not support the
DIAGNOSE code X'00' instruction, no data is returned +to the virtual
machine. If it does support the DIAGNOSE code X'00' instruction, the
following data is returned to the virtual machine (at the 1location
specified by Rx):

Field Description Characteristics

Systenm n"yM/370" 8 bytes, EBCDIC
Name

Version The first byte is the 3 bytes, hexadecimal
Number version number, the second

byte is the level, and the third
byte is the PLC (Program Level
Change) number.

Version VM/370 executes the STIDP 1 byte, hexadecimal
Code (Store Processor ID) instruction
to determine the version
code.
MCEL VM/370 executes the STIDP 2 bytes, hexadecimal

instruction to determine

the maximum length of the
MCEL (Machine Check Extended
Logout) area.

Processor VM/370 executes the STAP 2 bytes, hexadecimal
Address (Store Processor Address) instruction
to determine the processor
address.
Userid The userid of the virtual 8 bytes, EBCDIC
machine issuing the DIAGNOSE.
Progran Reserved for IBM use 8 bytes, hexadecimal
Product
Bit Map

If VM/370 is executing in a virtual wmachine, another 24 bytes, or
less, of extended identification data is appended to the first 24 bytes
described above. Up to five nested 1levels of VYM/370 virtual machines
are supported by this diagnose instruction resulting in a maximum of 120
bytes of data that can be returned to the virtual machine that initially
issued the diagnose instruction.

Upon return, RY contains its original value less the number of bytes
that were stored.

No completion code is returned, and the condition code remains
unchanged.

1-50 IBM VM/370 System Logic and Problem Determination--Volume 1



DIAGNOSE Code X'04' -- Examine Real Storage

Execution of a DIAGNOSE code X'04' allows a user with command privilege
class C or E to examine real storage. The register specified as Rx
contains the virtual address of a list of CP (real) addresses to be
examined. The RY register contains the count of entries in the list.
Ry+1 contains the virtual address of the result field. The result field
contains the values retrieved from the specified real locations.

Note: The request and result tables must be in the same page of virtual
storage, and that page must be resident in real storage, at the time the
DIAGNOSE is executed. This is guaranteed if the instruction itself is
also in the same page.

In the attached processor environment, each processor has a prefix
register to relocate addresses between 0 and 4095 to another page frame
in main storage. The prefix register enables each processor to use a
different page frame in order to avoid conflict with the other processor
for such activity as interrupt code recording. Thus, the range 0
through 4095 refers to different areas of storage, depending upon which
processor generates the address.

A1l references to main storage from either processor are handled as
if they were made on the main processor. Existing user programs remain
valid for performance data; in the attached processor environment, they
receive the statistics for the main processor.

References to the PSA of the attached processor may be made as
follows: first, retrieve the value ¢of PREFIXB, the value of the prefix
register for the other processor (the attached processor in this case).
Next, specify addresses that are the sum of the value of PREFIXB and the
PSA displacement. References to 0 through 4095 are made by summing the
value of PREFIXA and the PSA displacement to form the request address.
Several system values that are processor independent are maintained in 0
through 4095, such as the restart PSW and the trace table vectors.

DIAGNOSE Code X'08% —- Virtuwal Console Function

The execution of DIAGNOSE code X'08' allows a program executing in
supervisor mode in a virtual wmachine to perform a CP command. The
register specified as Rx contains the address, in virtwal storage, of
the data area defining the CP command and parameters. The Ry register
contains flags in the high-order byte, and contains the command length
(up to 132 characters) in the three low-order bytes. If the first bit
of the high-order bytes is on (X'80%), it indicates that the virtual
machine issuing the DIAGNOSE code X'08' instruction wants CP to reject
passwords from the terminal for AUTOLOG and LINK commands. This will be
done only if the installation has elected to use the password
suppression facility (PSUPRS=YES parameter of the SYSJRL macro in
DMKSYS) .

If the second bit of the high-order byte is on (X'40'), it indicates
that the virtual machine issuing the CP command requires the response to
that command to be returned to the virtual storage area specified by
register Rx+1. The length of this area must be passed in register Ry+1.
The following example illustrates how DIAGNOSE code X'08' would be
issued to perfora the CP command, QUERY, to determine the number of
input and output spool files:

CP Introduction 1-51



La 6 ,CHMD

LA 10,CMMDL
DC X'837,X'61",XL2%0008"
CMMD  DC C'QUERY FILES'
CMMDL EQU *-CMMD

If the high-order byte of the Ry register is an X'40', the output of
the command is returned to the user's virtual storage area; othervise,
it is at the user's terminal. A completion code is returned to the user
as a value 1in the register specified as Ry. In the example above, it
would be register 10. A completion code of 0 signifies normal
completion. If there is an error, the completion code is the binary
value of the numeric portion of the error message. For instance, the
error message

DMKCFMOU4S5E userid NOT LOGGED ON
returns "045" in the Ry register. The condition code remains unchanged.

If a CP command is to be executed, +the instruction acts as a no-op. 1If
Ry contains a zero, CP is entered. The BEGIN command then returns
control to your program.

The user can have the response returned in a buffer rather than to his
console. He is entirely responsible for setting up the buffer,
providing the buffer address, and examining and processing the returned
response (contents of the buffer). To have the response returned in the
buffer, the user sets up registers as follows:

BRx contains the virtual address of the CP console functioms
command and parameters.

Rx#1 contains the virtual address of the buffer +to receive the
response.

Ry contains the length of the CP console function command (up to
132 characters) with an X'40' in the high-order byte.

Ry +1 contains the length of the response buffer (a positive number
not greater than 8192).

Neither Rx nor Ry can be register 15; Rx and Ry cannot be consecutive
registers.

When returned in a buffer, the DIAGNOSE code X'08' output will also have
the following successful or unsuccessful conditions set:

e If the response fits into the user's buffer, the condition code is
set to zero and the number of response characters returned in the
user's buffer is returned in Ry+1.

e If the response does not fit in the user's buffer, the condition code
is set to one, and the amount of overflow (number of response bytes
that would not fit in the wuser's buffer) is returned in register
Ry+1.

1-52 IBM VYM/370 System Logic and Problem Determination--Volume 1



DIAGNOSE Code X'0C' -- Pseudo Timer

Execution of DIAGNOSE code X'0C' causes CP to store four doublewords of
time information in the user's virtual storage. The register specified
as Rx contains the address of the 32-byte area where the time
information is to be stored. The address must be on a doubleword
boundary.

The first eight bytes contain the month/day-of-month/year. The next
eight Dbytes contain the time of day in hours:minutes:seconds.
One-hundredths of seconds are not returned. The last 16 bytes contain
the virtual and total processor time used by the virtual machine that
issued the DIAGNOSE. These times are expressed as doubleword, unsigned
integers, in microseconds. No completion code is returned, and the
condition code remains unchanged.

DIAGNOSE Code X'10*' -- Release Pages

Pages of virtual storage can be released by issuing a DIAGNOSE code
X'10°. When a page 1is released, it 1is considered all zero. The
register specified by RX contains the address of the first page to be
released, and the RY register contains the address of the 1last page to
be released. Both addresses must be on page boundaries. A page
boundary is a storage address whose low-order three digits, expressed in
hexadecimal, are =zero. Fo completion code 1is returned, and the
condition code remains unchanged.

Hote: DIAGNOSE «code X'10' is not to be used to release discontiguous
storage. See DIAGNOSE code X'64' for releasing discontiguous storage.

DIAGNOSE Code X'14"' -- Input Spool File Manipulation

Execution of DIAGNOSE code X'14' causes DMKDRDER to perform input spool
file manipulation. Depending upon the value of the function subcode,
the register specified as Rx contains a buffer address, a copy count, or
a spool file identifier. The Ry register, vhich must be an even
register, contains either the virtual address of a spool input card
reader or, if Ry+#1 contains X'0OFFF', a spool file ID number. Ry+1
contains a hexadecimal code indicating the file manipulation to be
performed. The codes are:

Code Function

0000 Read next spool buffer (data record)

0004 Read next print spool file block (SFBLOK)
0008 Read next punch spool file block (SFBLOK)
000C Select a file for processing

0010 Repeat active file np times

0014 Restart active file at beginning

0018 Backspace one record

001C Read next monitor spool file block

0020 Read next monitor spool record

O FFF Retrieve subsequent file descriptor

CP Introduction 1-53



Oon return Ry+1 may contain error codes that further define a returned
condition code of 3.

Condition
Code Ry¢1 Error
0 Data transfer successful
1 End of file
2 File not found
3 4 Device address invalid
3 8 Device type invalid
3 12 Device busy
3 16 Fatal paging I/0 error
3 20 Page already locked for I/O

Subcede X'0000°

start address of fullpage virtual buffer
virtual spool reader address

o
~d
ihon

The specified device is checked for a file already activated via
DIAGNOSE and, if there is one, the next fullpage buffer is made
available to the virtual machine via a call to DMKRPAGT. If no file is
active via DIAGNOSE, the chain of reader files is searched for a file
for the calling user and connected to the virtual device for further
reading. If no file is found, virtual condition code 2 is set. When the
end of an active file is reached, the device status settings are tested
for "spool continuous."! If not set, virtual condition code 1 is set,
indicating end of file. If the device is set for continuous input, the
active file is examined to determine whether or not it is a
multiple-copy file. If it is, reading is restarted at the beginning of
the file. If it is not, the file is closed via DMKVSPCR and the reader
chain is searched for another input file. If no other file is found,
virtual condition code 1 1is set. A specific DIAGNOSE X'14' Subcode
X'0000' must be issued to get the first spooled page again.

Subcode X'0004°

virtual address of a 12-doubleword buffer
virtual spool reader address

Rx
Ry

If the specified device is in use via diagnose, the VSPLCTL block is
checked to see whether or not this is a repeated call for printer
SFBLOKs. If it is, then the chain search continues from the point where
the last SFBLOK wvas given to the virtual wmachine.  1In this case, cc = 1
is set when there are no more print files. If this is the first call for
an SFBLOK, or if there have been intervening calls for file reading, the
spool input chain is searched from the beginning, and cc=2 is set if no
files are found.

Note: The virtual buffer specified via Rx must not cross a page boundary
or a specification exception will result.

1-54 IBM VM/370 System Logic and Problem Determination--Volume 1



Subcode X*0008°*

virtual address of a 12-doubleword buffer
virtual spool reader address

Rx
Ry

Processing for subcode X'0008' is the same as for subcode X'0004°,
except that only card-image input files are processed.

Bote: For both subcode X'0004° and subcode X'0008', the format
definition for a VM/370 SFBLOK can be found in the system macro library.

file identifier of requested file
virtual spool reader address

The spool input chain 1is searched for the file specified. If it is
not found, cc=2 is set. If it is found, the file is moved to the head
of the chain so that it will be the next file processed by any of the
other functions.

Subcode X'0010¢

Rx = new copy count for the active file
Ry = virtual spool reader address

The specified device is checked for an active file. If no file is
active, cc=2 is set. Otherwise, the copy COUNT for the file 1is set to
the specified value, with a maximum of 255. If the specified count is
not positive, a specification exception is generated. If the count is
greater than 255, it is adjusted to module 256.

Subcode X'0014¢

Rx
Ry

start address of virtual fullpage buffer
virtual spool reader address

The specified device is checked for an active file. If no active file
is found, cc=2 is set. Otherwise, the VSPLCTL pointers are reset to the
beginning of the file.

Subcode X'0018!

Rx
Ry

start address of virtual fullpage buffer
virtual spool reader address

[}

CP Introduction 1-55



The specified device is checked for an active file. If no active file
is found, cc=2 is set. Otherwise, the file is backspaced one record and
the record is given to the user as in subcode X'0000'. If the file is
already positioned at the first record, the first record is given to the
user.

Subcode X'001C?
RX = virtual address of a 12-doubleword buffer
Ry = virtual spool reader address

Processing is the same as Subcode X'0008', except that only monitor

spool files, as identified by the SFBMON flag is SFBFLAG2, can be
handled.
Subcode X'0020°

Rx = start address of fullpage virtual buffer

Ry = virtual spool reader address

Processing is the same as Subcode X'0000', except that only monitor

spool files, as identified by the SFBMON flag in SFBFLAG2, can be
handled.
Subcode X'OFFF!

Rx = virtual address of a 252-byte buffer

Ry = spool file ID number

If Ry is nonzero, the spool input chain is searched for a file with a

matching ID number: If none is found or if one is found that is owned
by a different virtual machine, cc=2 1is set. The chain search is
continued from the file that was found, or from the anchor if Ry is

zero, for the next file owned by the caller, independent of file type,
class, INUSE flag, etc. If none is found, cc=1 is set. Otherwvise, the
SFBLOK and the first record of the file (generally, the TAG) are copied
to the caller's virtual storage buffer.

DIAGNOSE Code X'18' -- Standard DASD I/0

a direct access device, of the type used by
CMS, can be performed from a virtual machine using DIAGNOSE code X'18'.
No I/0 interrupts are returned by CP to the virtual machine; the
DIAGNOSE instruction is completed only when the READ or WRITE commands

Input/output operations to

associated with the DIAGNOSE are
the virtual device address of the
contains the address of a chain
standard format that CP expects
shown below. Register 15 must be
READs or WRITEs in the CCW chain.

1-56 IBM VM/370 System Logic and

completed. The Rx register contains
direct access device. The Ry register
of CCHs. The CCW chain must be 1in a
vhen DIAGNOSE code X'18' is used, as
loaded by the user with the number of

Problem Determination--Volume 1



A typical CCW string to read or write two 800-byte records is as
follows:

SEEK,A,CC,6

SET SECTOR (not used for 2314,/2319)

SRCH,A#2,CC,5

TIC,*-8,0,0

RD or WRT,DATA,CC+#SILI,800

SEEK HEAD,B,CC,6 (omitted if HEAD number unchanged)
SET SECTOR

SRCH,B+2,CC,5

TIC,*-8,0,0

RD or WRT,DATA+800,SILI,800

A SEEK and SRCH arguments for first RD/WRT
B SEEK and SRCH arguments for second RD/WRT

The condition codes and completion codes returned are as follows:
cc=0 I/0 complete with no errors
cc=1 Error condition. Register 15 contains one of the following:

R15=1 Device not attached

R15=2 Device not 2319, 2314, 3330, 3340, or 3350

R15=3 Attempt to write on a read-only disk

R15=4 Cylinder number not in range of user's disk

R15=5 Virtual device is busy or has an interrupt pending

cc=2 Error condition. Register 15 contains one of the following:

R15=5 Pointer to CCW string not doubleword-aligned.

R15=6 SEEK/SEARCH arguments not within range of user's
storage :

R15=7 READ/WRITE CCW is neither Read (06) nor Write (05)

R15=8 READ/WRITE byte count=0

R15=9 READ/WRITE byte count greater than 2048

R15=10 READ/WRITE buffer not within user's storage

R15=11 The value in R15, at entry, was not a positive number
from 1 +throungh 15, or vas not large enough for the
given CCW string.

R15=12 Cylinder number on seek head was not the same number as
on the first seek.

cc=3 Uncorrectable I/0 error:
R15=13

CSW (8 bytes) returned to user
Sense bytes are available if user issues a SENSE command

DIAGROSE Code X'1C' -- Clear Error Recording Cylinders

Execution of DIAGNOSE code X*1C' allows a user with privilege class F to
clear the error recording data on disk. The DMKIOEFM routine perforas
the clear operation. The register specified as Rx contains a one-byte
code value in the low-order byte as follows:

Code Function
X'01' Clear and reformat all error recording, leaving any
frame records intact
X'02' Clear and reformat all error recording cylinders, erasing

both frame records and error records

CP Introduction 1-57



DIAGNOSE Code X'20' -- General I/O

With DIAGNOSE code X'20%', a virtual machine user can specify any valid
CCW chain to be performed on a tape or disk device. Ko I/0 interrupts
are reflected to the virtual wmachine; the DIAGNOSE instruction is
completed only when all I/O commands in the specified CCW chain are
finished. The register specified as Rx contains the virtual device
address. The Ry register contains the address of the CCW chain.

The CCWs are processed via DMKCCWTR through DMKGIOEX, providing full
virtual I/0 in a synchronous fashion (self-modifying CCWs are not
permitted, however) to any virtual machine specified. Control returas
to the virtual machine only after completion of the operation or
detection of a fatal error condition. EREP support is provided for tape
and DASD devices only; all other devices will present an error condition
in the PSW to the virtual user. Condition codes and error codes are
returned to the virtual systea.

The condition codes and error codes returned are as follows:
cc=0 I/0 completed with no errors
cc=1 Error condition. Register 15 contains the following:
R15=1 Device is either not attached or the virtual channel is
dedicated.

R15=5 Virtual device is busy or has an interrupt pending.

cc=2 Exception conditions. Register 15 <contains one of the
following:

R15=2 Unit exception bit in device status byte=1
R15=3 ©Wrong length record detected.

cc=3 Error Condition:
R15=13 A permanent I/0 error occurred or an unsupported device

vas specified. The two rightmost positions of the
user's Ry register contain the first two sense bytes

DIAGNOSE Code X'24' -- Device Type and Features

DIAGNOSE code X'24'" requests CP to provide a virtual machine with
identifying information and status information about a specified virtual
device. The virtual machine must specify the virtual device for which
information is requested. CP returns information about the virtual
device and associated real device in the Rx, Ry, and Ry+1 registers. CP
also provides a condition code identifying the specific device
information returned to the virtual machine.

When a virtual machine issues DIAGNOSE code X'24', the RxX register
must contain the virtual device address for vwhich information is
requested or the value negative 1 (-1). Specify -1 when the device is a
virtual console whose address is unknown to the virtual machine.

When CP returns control to the virtual machine, the Ry, Ry+1, and Rx
registers contain device information. The Ry Tregister contains
information about the virtual device and the Ry+1 register information
about the real device. If -1 was specified and CP located the virtual
console, the RX register contains information about the virtual conmsole.

CP obtains device information from three control blocks: virtual
device information from the virtual device block (VDEVBLOK), and real

1-58 1IBM VM/370 System Logic and Problem Determination--Volume 1



device information from the real device block (RDEVBLOK) and from
NICBLOK. The following diagrams identify specific information returned
by CP and show how to locate this information in the Rx, Ry, and Ry+1
registers. The symbolic names used in these diagrams are the symbolic
names used with VDEVBLOK, RDEVBLOK, and NICBLOK in VYM/370 Data Areas and
Control Block Logic.

RXx Register
L R
| Byte 0 | Byte 1 | Byte 2 | Byte 3 |
| i
{ RDEVTMCD | | virtual I
i — o = H device |
{ NICTMCD | { address |
| l | | |
L ]

Symbolic Name Meaning

RDEVTMCD Terminal code bits defining the type of console and

- or - the translate table the console is using. RDEVTMCD is
BICTMCD for a 1local virtual console; NICTMCD for a remote 3270
virtual console

Ry Register
L Rl
| Byte 0 | Byte 1 | Byte 2 | Byte 3 |
| I
| VDEVTYPC | VDEVTYPE | VDEVSTAT | VDEVFLAG |
[ ']

Symbolic Rame Meaning

VDEVTYPC Virtual device type class

VDEVTYPE Virtual device type

VDEVSTAT Virtual device status

VDEVFLAG Virtual device flags

BRy+1 Register
r A
| Byte 0 | Byte 1 | Byte 2 | Byte 3 i
LI e
| BRDEVTYPC | RDEVTYPE | RDEVMDL | RDEVFTR i
| | —or- | -or- | -or - |
| | NICDTYPE | RICMDL | RDEVLLEN |
| | | | - or - |
| | | | NICLLEN |
[ (]

CP Introduction 1-59



Symbolic Name Meaning

RDEVTYPC Real device type class

RDEVTYPE Real device type

RDEVMDL Real device model number

RDEVFTR Real device feature code for a device other than a

virtual console

RDEVLLEN Current device line length for a local virtual comsole

NICDTYPE Real device type for a remote 3270 virtual console

NICMDL Real device =model number for a remote 3270 virtual
console

NICLLEN Current device line length for a remote virtual console

The following chart 1lists the condition codes CP can return for
DIAGNOSE code X'24', the meaning of each condition code, and the
registers where data is returned.

This register |
contains information |

If the condition |
|

| | l | or the virtual device
| | { | does not exist

L

|

1

{ code equals Rxt | RY | Rye12 Comments

|

i 0 | X | X | X | Normal coampletion

|

{ 1 { { { { Undefined

|

| 2 | X | X | { The virtual device

{ | | i | exists but is not asso-
{ { i | { ciated with a real

| [ | | | device

|

I 3 | | { | Invalid device address
|

|

i

i2The Rx register contains information only when DIAGNOSE code X'24"

| specifies a virtual console whose address in unknown.

|2If Ry is register 15, CP returns only virtual device information: no
| information is returned in register Ry+1.

g e S ——

IAGNOSE Code X'28' -- Channel Program Modification

2

DIAGNOSE code X'28' allows a virtual machine to correctly execute some
channel programs modified after the Start I/0 (SIO) instruction 1is
issued and before the input/output operation is completed. The channel
command word (CCW) modifications allowed are:

e A Transfer in Channel (TIC) CCW modified to a No Operation (NOP) CCW
® A TIC CCW modified to point to a new list of CCWs

e A NOP modified to a TIC CCW

1-60 IBM VM/370 System Logic and Problem Determination--Volume 1



When a virtual machine modifies a TIC CCW, it is modifying a virtual
channel program. CP has already translated that channel program and is
vaiting to execute the real CCWs. The DIAGNOSE instruction, with code
X'28', must be issued to inform CP of the change in the virtual channel
program, so that CP can make the corresponding change to the real CCW
before it is executed. In addition, when a NOP CCW is modified to point
to a nev list of CCWs, CP translates the new CCWs.

To be sure that the DIAGNOSE instruction is recognized in time to
update the real CCWN chain, the virtual machine issuing the DIAGHNOSE
instruction should have a high favored execution value and a 1low
dispatching priority value. The CP SET command should be issued:

SET FAVORED xx
SET PRIORITY nn

where xx has a high numeric value and nn has a lov numeric value. The
virtual machine issuing the DIAGNOSE code X'28' must be in the
supervisor mode at the time it issues the DIAGNOSE instruction.

When DIAGNOSE code X'28' is issued, the Rx register contains the
address of the TIC or NOP CCW that was modified by the virtual machine.
The Ry register contains the device address im bits 16 through 31. BRx
and Ry cannot be the same register. The addresses specified in the BRx
register, the new address in the modified TIC CCW, and the new CCW list
to which the modified TIC CCW points must all be addresses that appear
real to the virtual machine: CP knows these addresses are virtual, but
the virtual machine thinks they are real.

The condition codes (cc) and completion codes are as follows:

cc=0 The real channel program was successfully modified; register
15 contains a zero.

cc=1 There was probably an error in issuing the DIAGROSE
instruction. Register 15 (R15) contains one of the following
completion codes:

R15=1 The same register was specified for Rx and Ry.

R15=2 The device specified by the Ry register was not found.

R15=3 The address specified by the R¥ register was not within
the user's storage space.

R15=4 The address specified by the Rx register wvas not
doubleword aligned.

R15=5 A CCW string corresponding to the device (RyY) and
address (Rx) specified was not found.

R15=6 The CCW at the address specified by the Rx register is
not a TIC nor a NOP, or the CCW in the channel progranm
is not a TIC nor a KNOP.

R15=7 The new address in the modified TIC CCW is not within
the user's storage space.

R15=8 The new address in the modified TIC CCW is not
doubleword aligned.

cc=2 The real channel program cannot be modified because a channel
end or device end already occurred. Register 15 contains a 9.
The virtual machine should restart the modified channel
progranm.

CP Introduction 1-61



DIAGNOSE Code X'2C' —- Return DASD Start of LOGRE

Execution of DIAGNOSE code X'2C' allows a user with privilege class C,
E, or F to find the location on the disk of the error recording area,
the number of error recording cylinders, and the location of the first
error record.

The register specified as Rx contains a one-byte code in the
low-order byte, indicating the function to be performed:

X'01' - Return the DASD location of the start of the error recording
area, and the number of error recording cylinders.

X'02' - Return the HDRSTART value (DASD location of first error
record).

X'04' - Return indication of whether there are frame records on the
error recording cylinders.

On return to the issuer of DIAGNOSE '2C*':

If code '01* is specified: Register Rx Wwill contain the DASD
location (in VM/370 control program internal format) of the start of
the error recording area. RY contains, in the low-order halfword,
the number of error recording cylinders.

If code '02' is specified: Register Rx will contain the DASD
location of the first error record (in CCPD format). The value
actually points to the last frame record wvwritten, or record 2 if no
frame records present.

If code '04' is specified: Register Ry will contain a X'02' inmn the
lov-order byte if frame records are present on the error recording
cylinders; X'00' if no frame records present.

Note: Codes '02' and *'04' may both be specified (code '06') on invoking
DIAGNOSE. Both an Rx and Ry value must be specified.

DIAGNOSE Code X'30' -- Read One Page of LOGREC Data

Execution of DIAGNOSE code X'30' allows a user with privilege class C,
E, or F to read one page of the system error recording area. The
register specified as Rx contains the DASD location (in VM/370 control
program internal format) of the desired record. The Ry register
contains the virtual address of a page-size buffer to receive the data.
The DMKRPAGT routine supplies the page of data. The condition codes
returned are:

Condition
--Code __  HMeaning
0 Successful read, data available
1 End of cylinder, no data
2 I/0 error
3 Invalid cylinder, outside recording area

DIAGNOSE Code X'34' -- Read System Dump Spool File

A user with privilege class C or E can read the system spool file by
issuing a DIAGNOSE code X'34' instruction. The register specified as Rx
contains the virtual address of a page-size buffer to receive the data.
The Ry register, which must not be register 15, contains the virtual

1-62 IBM VM/370 System Logic and Problem Determination--Volume 1



address of the spool input card reader. Ry+1, on return, may contain
error codes as followvs:

Condition Ry#+1
Code Brror_Code Meaning
0 Data transfer successful
1 End of file
2 File not found
3 4 Device address invalid
3 8 Device type invalid
3 12 Device busy
3 16 Fatal paging I/0 error

The DMKDRDMP routine searches the system chain of spool input files
for the dump file belonging to the user issuing the DIAGNOSE
instruction. The first (or next) record from the dump file is provided
to th virtual zachine via DMKRPAGT and the condition code is set to

vV bue QU id il &7 Bd AN & 7 BENA ahe e

zero. The dump file is closed via ¥YM/370 console function CLOSE.

DIAGNOSE Code X'38' -- Read System Symbol Table

Execution of DIAGNOSE code X'38' causes the routine DMKDRDSY to read the
system table into storage. The register specified as Rx contains the
address of the page buffer to contain the symbol table.

DIAGNOSE Code X'3C' -- ¥M/370 Directory

Execution of DIAGNOSE code X'3C' allows a user to dynamically update the
VM/370 directory. The register specified as Rx contains the first 4
bytes of the volume identification. The first two bytes of Ry contain
the last 2 bytes of the volume identification. The routine DMKUDRDS
dynamically updates the directory.

DIAGNOSE Code X'4C' -- Generate Accounting Cards for the Virtuwal User

This code can be issued only by a user with the account option (ACCT) in
his directory.

RX contains the virtual address of either a 24-byte parameter list
identifying the "charge to" user, or a variable length data area that is
to be punched into the accounting card. The interpretation of the
address is based on a hexadecimal code supplied in RY. If the virtual
address represents a parameter list, it must be doubleword aligned; if
it represents a data area, the area must not cross a page boundary. If
Rx is interpreted as pointing to a parameter list and the value in Rx is
zeros, the accounting card is punched with the identification of the
user issuing the DIAGROSE instruction.

Ry contains a hexadecimal code interpreted by DMKHVC as follows:

Code Rx points to:

0000 a parameter list containing only a userid.

0004 a parameter list containing a userid and account number.

0008 a parameter list containing a wuserid and distribution

number.

parameter 1list containing a userid, account number, and

distribution number.

0010 a data area containing up to 70 bytes of user information to
be transferred to the accounting card starting in column

9.

0oocC

[]

CP Introduction 1-63



Note: If Ry contains X'0010', Ry cannot be register 1S5.

Ry¢1 contains the length of the data area pointed to by Rx. If Bx
points to a parameter list (Ry not equal to X'0010'), Ry+1 is ignored.

DMKHVC checks the VMACCOUN flag in VMPSTAT to verify that the user
has the account option and if not, returns control to the wuser with a
condition code of one.

If Ry contains a code of X'0010%, DNKHVC perforas the following
checks:

e If the address specified in Rx is negative or greater than the size
of the user's virtual storage, an addressing exception is generated.

e TIf the combination of the address in Rx and the 1length in Ry+1
indicates that the data area crosses a page boundary, a specification
exception is generated.

e If the value in Ry+1 is zero, negative, or greater than 70, a
specification exception is generated.

If both the virtual address and the length are valid, DMFREE is
called to obtain storage for an account buffer (ACNTBLOK) which is then
initialized to blanks. The userid of the user issuing the DIAGNOSE
instruction is placed in columns 1 through 8 and an accounting card
identification code of "CO" is placed in columns 79 and 80. The user
data pointed +to by the address in Rx is moved to the accounting card
starting at column 9 for a length equal to the value in Ry+1. A call to
DMKACOQU gqueues the ACNTBLOK for real output. If a real punch is
available, DMKACOPU is called to punch the card; othervise, the buffer
is stored in main storage until a punch is free. DMKHVC then returns
control to the user with a condition code of zero.

If Ry contains other than a X'0010' code, control is passed to DMKCPV
to generate the card. DMRCPV passes control to DMKACO to complete the
"charge to" information; either from the User Accounting Block
(ACCTBLOK), if a pointer to it exists, or from the user's VMNBLOK.
DMKCPY then punches the <card and passes control back to DMKHVC to
release the storage for the ACCTBLOK, if one exists. DMKHVC then checks
the parameter list address for the following conditions:

e If zero, control is returned to the user with a condition code of
zZero.

e If invalid, an addressing exception is generated.

e If not aligned on a doubleword boundary, a specification exception is
generated.

For a parameter list address that is nonzero and valid, the userid in
the parameter 1list is checked against the directory 1list and if not
found, control is returned to the user with a condition code of two. If
the function hexadecimal code 1is invalid, control is returned to the
user with a condition code of three. If both userid and function
hexadecimal code are valid, the User Accounting Block (ACCTBLOK) is
built and the userid, account number, and distribution number are moved
to the block from the parameter list or the User Machine Block belonging
to the userid in the parameter list. Control is then passed to the user
with a condition code of zero.

1-64 IBM VM/370 System Logic and Problem Determination--Volume 1



DIAGNCSE code X'50' (Privilege class A, B, or C only) invokes the CP
module DMKSNC to (1) validate the parameter 1list and (2) write the
page-format image of the 370X control program to the appropriate systenm
volume,

When a 370X control program load module is created, the CMS service
prograrm SAVENCP builds a communications controller 1list (CCPARM) of
control information. It passes this information to CP via a DIAGNOSE
code X'50¢,

The register specified as Rx contains +the virtual address of the
parameter list (CCPARM). The Ry register is ignored on entry.

Upon return, the Ry register contains the following error codes:

Code Meaning
o4y ‘ncpname' was not found in system name table.
171 System volume specified not currently available.
178 Insufficient space reserved for program and system control
information.
179 System volume specified is not a CP-owned volume.
435 Paging error while writing saved systeam.

DIAGNOSE Code X'54' -- Control The Function of the PA2 Function Key

DIAGNOSE code X'54' controls the function of the PA2 function key. The
PA2 function key can be used either to simulate an external interrupt to
a virtual machine or to clear the output area of a display screen.

The function performed depends upon how Rx is specified when DIAGNOSE
code X'54' is issued. If Rx contains a nonzero value, the PA2 key
simulates an external interrupt to the virtual machine. If Rx contains
a value of zero, the PA2 key clears the output area of the display
screen.

The external interrupt 1is simulated only when the display screen is
in the VB READ, HOLD, or MORE status and the TERMINAL APL ON command has
been issued.

DIAGNOSE Code X'58! 3270 virtual Console Interface

Execution of DIAGNOSE code X'58' allows a virtual machine to display
large amounts of data on a 3270 in a very rapid fashion. The interface
can display the entire 3270 screen with one write operation instead of
22 vwrites (one for each line in the output area of a 3270 screen).

The register specified as Rx contains the address of the console CCW
string. The Ry register contains (in bits 16 through 31) the device
address of the virtual comsole.

To specify the special display CCW, use the following assembler
language instructions:

DS 0D
DC X*19', AL3 (dataddr), AL1(flags), AL1(ctl), AL2(count)

where:

dataddr is the beginning address of the data to be displayed.

CP Introduction 1-65



flags is the standard cCW flag field with the suppress incorrect
length indication (SLI) bit on.

ctl is a control byte that indicates the starting output display
line. If the high order bit is on, the entire 3270 output
display area 1is erased before the new data is displayed. 1
value of X'FF' clears the screen, but writes nothing.

count is a two byte field indicating the number of bytes to be
displayed. The maximum number of bytes for the 3278 Model 21
is 1440. For other types it is 1760.

When the DIAGNOSE is executed with a valid CCW string, a buffer
(vhose length is the number of bytes specified by count) is built in
free storage. The data pointed to by dataddr is loaded into the buffer.
Data chaining may be specified in the CCW to link noncontiguous data
areas; however, command chaining is an end of data indication for the

current buffer.

Using the starting output line (ctl) and the number of bytes of
output (count), CP checks that the data will fit on the screen. CP then
does the display. A <zero condition code indicates the I/0 operation
completed successfully; a nonzero condition code indicates an I/0 error
occurred.

Note: An I/0 error occurs when the display screen is placed in NORE
status and the PA2 key is pressed to allow screen display.

DIAGNOSE Code X'5C': Error Message Editing

Execution of DIAGNOSE code X'5C' causes the editing of an error message
according to the user's setting of the EMSG function:

Rx contains the address of the message to be edited.
Ry contains the length of the message to be edited.

DMKHVC tests the VMMLEVEL field of the VMBLOK and returns to the caller
with Rx and Ry modified as follovs:

L L
{ VMMLEVEL | Registers on Return I
( { l |
| VMMCODE | VMMTEXT | RX | RY |
{ | | | {
| ON | ON | no change | no change |
( | { | |
| ON | OFF | no change { 10 (length of |
( | ( | code) |
( | | | |
{ OFF | ON { pointer to text | length of text |
| | | part of message | alone |
| | | | |
| OFF | OFF | N/A i 0 |
[ 3

Note: DIAGNOSE code X'5C' does not write the message; it merely
rearranges the starting pointer and length. For CMS error amessages, a
console write is performed following the DIAGNOSE unless Ry is returned
vith a value of 0.

1-66 1IBM VM/370 System Logic and Problem Determination--Volume 1



DIAGNOSE Code X'60' - Determining the Virtual Machine Storage Size

Execution of DIAGNOSE code X'60' allows a virtual machine to determine
its size. On return, the register specified as Rx contains the virtual
machine storage size.

DIAGNOSE Code X'64' - Finding, Loading, and Purging a Named Segment

Execution of DIAGNOSE code X'64' controls the 1linkage of discontiguous
saved segments. The type of linkage that is performed depends upon the
function subcode in the register specified as Ry.

Subcode Function
X'00°" LOADSYS - Loads a named segment in shared mode
X'our LOADSYS - Loads a named segment in nonshared mode
x'08° PURGESYS -- Releases the named segment from virtual storage
XtocC* FINDSYS - Finds the starting address of the named segment

The register specified as Rx must contain the address of the name of
the segment. The segment name must be 8 bytes long, left justified, and
padded with trailing blanks.

The LOADSYS Function

When the LOADSYS diagnose function is executed, CP finds the system name
table entry for the named system and builds the necessary page and swap
tables. Two sets of page and swap tables, one for each processor, are
built for each shared segment in attached processor mode unless the
named system was defined as unprotected. CP releases all the virtual
pages of storage that are to contain the named segment and then loads
the segment in those virtual pages. When the LOADSYS function is
executed, CP expands the virtual machine size dynamically, if necessary.
CP also expands the segment tables to match any expansion of virtual
storage.

When LOADSYS executes successfully, the address of where +the named
segment was loaded is returned in the register specified as Rx. ¥hen
the LOADSYS function 1loads a segment in shared mode, it resets
instruction and branch tracing if either was active.

After a LOADSYS function executes, the storage occupied by the named
segment is addressable by the virtual machine, even if that storage is
beyond the storage defined for +the virtual machine. However, any
storage beyond that defined for the virtual machine and below that
defined for the named segment is not addressable. Figure 15 shows the
virtual storage that is addressable before and after the LOADSYS
function executes.

CP Introduction 1-67



Before the LOADSYS After LOADSYS Function
Function Executes_ Executes

448K
{ Discontiguous Storage
{ Addressable by Virtual
( Machine

384K
SIS -
./Storage Not Addressable/.
.///by Virtual Machine////.
NI 0202020 0000200004448

Y NR——

320K r - 320K — 1
I  § | |  § |
| | | I | |
|  All Storage | | Storage Still |
{ Addressable by | { Addressable by |
{ Virtual Machine | { Virtual Machine I
| | | | | |
| A | { Y |

OKI I ] OKI | ]
CMS virtual Machine CMS Virtual Machine with
without a Named Segment a Named Segment Attached
Attached

Figure 15. Addressable Storage Before and After a LOADSYS Function

When you save a named segment that is later loaded by the LOADSYS
function, you must be sure that the addresses at which segments are
saved are correct and that they do not overlay required areas of storage
in the virtual machine. This is crucial because the LOADSYS function
invokes the PURGESYS function before it builds the new page and swap
tables. CP purges all saved systems that are overlayed in any way by
the saved systea it is loading.

A condition code of 0 in the PSW indicates that the named segment wvas
loaded successfully; the Rx register contains the load address.

A condition code of 1 in the PSW indicates the named segment was
loaded successfully within the defined storage of the virtual machine.
The RX register contains the address at which the named segment was
loaded. The Ry register contains the ending address of the storage
released before the named segment was loaded.

Note: CMS only allows named segments to be attached beyond the defined
size of the virtual machine.

A condition code of 2 in the PSW indicates the LOADSYS function did
not execute successfully. Examine the return code in the Ry register to
determine the cause of the error.

Return Code Meaning
44 Named segment does not exist
177 Paging I/0 errors

When the PURGESYS function is executed; CP releases the storage, and
associated page and swvap tables, that were acquired vhen the

1-68 IBM VYM/370 System Logic and Problem Determination--Volume 1



corresponding LOADSYS function was executed. If the storage occupied by
the named segment was beyond the defined virtual wmachine storage size,
that storage is no longer addressable by the virtual machine.

When a PURGESYS function is executed for a segment that was loaded in
nonshared wmode, the storage area 1is cleared to binary =zeros. If
PURGESYS is invoked for a named segment that was not previously loaded
via LOADSYS, the request is ignored.

A condition code of 0 in the PSW indicates successful completion.

A condition code of 1 in the PSW indicates that the named segment was
not found in the virtual machine.

A condition code of 2 in the PSW and a return code of 44 in the Ry
register indicate that the named segment either does not exist or was
not previously loaded via the LOADSYS function.

The FINDSYS Fuaction

When the FINDSYS function is executed, CP checks that the named segment
exists and that it has not been loaded previously.

A condition code of 0 in the PS¥ indicates that the named segment is
already loaded. The address at which it was loaded is returned in the
register specified as Rx and its highest address is returned in the Ry
register.

A condition code of 1 in the PSW indicates that the named segment
exists but has not been loaded. In this case, the address at which the
named segment is to be loaded is returned in the register specified as
Bx and the highest address of the named segment is returned in the Ry
register.

A condition code of 2 in the PSW indicates the FINDSYS function 4did
not execute successfully. Examine the return code in the Ry register to
determine the error that occurred.

Return Code ¥eaning
44 Named segment does not exist
177 Paging I/0 errors

DIAGNOSE Code X'68' —- virtual Machipne Communication Facility (VMCF)

The DIAGNOSE code X'68!' is used by a virtual machine to initiate a
subfunction of the Virtual Machine Communication PFacility (VMCF). The
general register specified as Rx contains the virtual address,
doubleword aligned, of a parameter list (VMCPARM). One of the entries
in this parameter list is a subfunction code, specifying the particular
request being initiated. The subfunctions and their codes are:

CP Introduction 1-69



Subfunction Code

AUTHORIZE x'0000°"
UNAUTHORIZE X'0001*
SEND x'0002"
SEND/RECYV X*0003°
SENDX X'0004°
RECEIVE X'0005"
CANCEL X'0006°
REPLY X'0007°
QUIESCE X'0008"
RESUME X'0009°*
IDENTIFY x'o00a’
REJECT X*'000B"

A description of all the fields of the VMCPARM is contained in the
¥YM/370 System Programmer's Guide.

The general register specified as Ry will contain the return code
upon completion of DIAGNOSE X'68' or the detection of an error
condi+ion, The retnrn codes are contained in the VM/370 System
Programmer's Guide.

Rx and Ry can be any general register, RO through R15. They may also
be the same register.

DIAGNOSE Code X'74' —- Load 3800 Named System Into Virtuwal Storage

DIAGNOSE code X'74' allovs a virtual machine to load a 3800 named systea
into virtual storage beginning at a specified virtual address and to
take a copy of an image library and save it in a specified named systen.
A named system is one that contains 3800 character arrangement tables,
copy modifications, and file control blocks (FCBs). These can be
referenced by name, and the data can be obtained wvhen the file
referencing them is about to print on a 3800 printer. The new data in
the named system is used to 1load into the 3800 the next time NAMED
SYSTEM is specified as the IMAGELIB parameter in a START command for a
3800 printer.

At system generation time, the NAME3800 macro instruction establishes
the name of the 3800 system in the DMKSET module. The active named
system for a particular 3800 printer will be in its RDEVBLOK.

The GENIMAGE command creates the image library in virtual storage.
This is done by interfacing with the OS IEBIMAGE utility program
(DMKIMG). The IMAGELIB command saves the image library and issues the
DIAGNOSE code X'74* to establish the named systenm.

#hen using DIAGNOSE code X'74', the registers specified by the user
as Rx and Rx+1 must contain the eight-character name of the systea
desired, left-justified and padded with trailing blanks.

The register specified by the user as RY must contain the virtual
address at which to start loading or saving the storage image of an
image library.

The register specified by the user as Ry+1 must contain a one-byte
code in the high-ordexr byte indicating the function to be performed as
follows:

X'00' - LOAD operation
X'04" - SAVE operation

1-70 IBM YM/370 System Logic and Problem Determination--Volume 1



The low-order bytes of register Ry+1 must contain the number of bytes to
load or save.

If either Rx or Ry 1is specified as register 15, or if +the virtual
address specified in Ry is not on a page boundary, a specification
exception results and the program terminates.

An addressing exception results if the end of the area to be loaded
or saved extends beyond the end of the user's virtual storage. A
privileged operation results if the user does not have privileged class
A, B, or C.

Register Ry contains a return code upon completion of processing as
follows:

Condition

Code Beaning

X'00¢* Load or save successfully performed

X'04" Named system not found

X8 Named system currently active

Xtoce Volid for system not CP-owned

X'10°* Volid for system not mounted

X'14? Too many bytes to load or save. Residual Byte
count is in register Rye¢1

X'18¢ Paging error during load or save

DIAGNOSE Code X'78' -- MSS Support

DIAGNOSE code X'78' is used to communicate between a virtual machine and
CP for MSS support. A subfunction code is placed in the Ry register.
The specific subfunction codes and their meanings are:

Subfunction
Code Meaning

X'00* The virtual machine is running 0S/VS with MSS
support and is now ready to communicate with both
Vi/370 and the mass storage control (#SC). The
Rx field of the instruction contains the number
of a register that contains the virtual device
address of the MSS communication device.

X'04° The virtual machine is ready to process an MSS
request. The request, in the form of an MSSCOM
control block, is to be placed at the virtual
machine address indicated by the register in the
Rx field of the instruction.

X'08? The MSS request, in the form of an MSSCOM control
block, located at the virtual machine address
contained in register Rx, has been processed by
the MSC.

X'10° The virtual machine is no longer able to process
MSS requests.

CP Introduction 1-71



DIAGNOSE Code X'84' -- Directory Update In-Place

DIAGNOSE code X'84' can be used to make changes to the online directory
if the change causes no expansion to the entry and when the user wants
the change to go into effect immediately. This interface is provided
for the privilege class B virtual machine that owns the directory.
Validity checking is performed on wupdate parameters and the specified
user's directory is updated in storage and written on the current DASD
copy. If any errors are encountered, either in specifications or in
DASD I/0, the update in-place is not performed and an error condition is
passed to the invoking virtual machine.

General register Rx points to a variable length parameter list.
Register Ry contains the length of the parameter list, in bytes. The
parameter list contains fixed common fields and variable fields as shown
below:

Field Name Function

Common UUSERID Userid to be updated
UCURFPASS Current logon passwerd
uoP Update operation to perform

UCMMONSZ Length of common fields

Variable UNEWPASS New logon password
USTORAGE New storage size

UPRIV Up to eight privilege classes

UPRIOR Nevw priority (a number between 0 and 99)
UEDITCH Edit characters (LE, LD, CD, ES)

UIPL New IPL name

UACCOUNT New account data

UDISTRIB New distribution data

UMDISKAD New minidisk address

UMD ISKMD Nevw minidisk link mode

UMD ISKRP New minidisk read password

UMD ISKWP New minidisk write password
UMDISKMP Nevw minidisk multiple password
UOPTIONS Up to 9 options

The variable field chosen is positioned after the UOP field. Only one
variable field can be used at one time. A separate DIAGNOSE code X'84"
must be issued for each variable function desired.

If any errors are found, the condition code is set to 1 and register
Ry may contain one of the following codes:

Return

Code Meaning

10 Error in DMKRPAPT when writing object DASD
11 Error in DMKRPAPT when writing paging DASD
20 Error during 'TRANS' of UDIR page

21 No UMAC address in UCNTRL

22 Error during 'TRANS' of UMAC page

23 No UDEV address in UCNTRL

24 No UDEV address in UCNTRL

25 Error during 'TRANS' of UDEV page

26 UDEV block not found

27 Object DASD not synchronous with DMKSYSPL
28 Operation invalid

30 Userid not found

31 Logon password mismatch

40 Storage exceeds maximum allowed

41 Maximum storage greater than 16M

42 No sign after packing new size

1-72 1IBM VM/370 System Logic and Problem Determination--Volume 1



Return

Code Meaping

43 Invalid bytes in storage data

50 Privilege operand all blanks

51 No valid privilege classes in operand

52 Error in accumulated privilege value

53 Invalid data in privilege field

60 Invalid data in priority field

61 Priority field all blanks

62 No sign after packing new priority

63 Priority greater than maximum

70 Invalid option

71 No fence of X'FF's at end of parameter list

72 Invalid accumulated option values, signifying an
option error

80 Invalid MDISK address in parameter list

81 Invalid link mode

If no errors are found, the condition code is set to zero.

1/0 Interruption

I/0 interruptions from completed I/0 operations 1initiate various
completion routines and the scheduling of further I/0O requests. The I/0
interruption handling routine also gathers device sense information.

Machine Check Interruption

When a machine check occurs, CP Recovery Management Support (RMS) gains
control to save data associated with the failure for FE maintenance.
RMS analyzes the failure and determines the extent of damage.

Damage assessment results in one or more of the following actions
being taken:

e System termination

e Attached processor varied offline (system converts to uniprocessor
mode)

e Virtual user running at the time of error is terminated

e Refreshing of damaged information with no effect on systea
configuration

e Refreshing of damaged information with the defective storage page
removed from further system use

e Error recording only for certain soft machine checks

The system operator is informed of all actions taken by the RAS
routines. When a machimne check occurs during VM/370 startup (before the
system is set up well enough to permit RMS to operate successfully), the
processor goes into a disabled wait state and places a completion code
of X'00B' in the leftmost bytes of the current PSW.

CP Introduction 1-73



SVC Interruption

When an SVC interruption occurs, the SVC interruption routine (DMKSVCIK)
is entered. If the machine is in the problem state, DMKSVCIN takes the
following action:

e If the interruption was the result of an ADSTOP (SVC code X'B3'), the
message ADSTOP AT XXXXX is sent to the user's terminal, the overlaid
instruction is replaced, and the virtual machine is placed in console
function mode (CP mode) via DMKCFMBK.

e If the interruption was the result of an error recording interface
(S¥C 76), DMKSVC checks for valid parameters and passes control to
DMKVER to convert virtual device addresses in the error record to
real device addresses. The actual recording is accomplished 1in
DMKIOE and DMKIOF. If recording is not possible, the interrupt is
reflected back to the virtual machine.

e If the virtnal wachine's page 0 was not in real storage, then all
general and floating-point registers are saved, the user's VMBLOUK is
flagged as being in an instruction wait, and control is transferred
(via GOTO) to DMKPRGRF to reflect the interruption to the virtual
machine.

e If the virtual machine's page 0 is in main storage, an appropriate
SVYC 0l1d PSH 1is stored in the user's page 0 and the interruption is
reflected to the virtual machine, bypassing unnecessary register
saving (fast reflection). If the new virtual PSW indicates a mode or
enablement change, all registers are saved in the VMBLOK and control
is transferred to DMKDSPB for PSW validation.

If the machine is in the supervisor state, the SVC interruption code
is determined and a branch is taken to the appropriate SVC interruption
handler.

SVC 0
Impossible condition or terminal error. The SVCDIE routine initiates an
abnormal termination by using the DMKDMPDK routine.

S¥C 4
Reserved for IBM use.

SYC 8

A link request that transfers control from the calling routine to the
routine specified by register 15. The SVCLINK routine sets up a new
save area, and then saves the caller's base register in register 12 and
save area address in register 13, and the return address (from the
SVCOPSW) in the new save area. If the called routine is within the
resident CP nucleus, SVCLINK places its address in register 12 and
branches directly to the called routine. If the called routine is in a
pageable module, a TRANS macro is performed for register 12 to ensure
that the page containing the called routine is in storage. Upon return
from the TRANS execution, the real address of the pageable routine is
placed in register 12 and SVCLINK branches to the called routine. The
real storage location of DMKCPE is the end of the resident CP nucleus.
Any wmodules loaded at a higher real storage address are defined as
pageable modules. If bit zero of register 15 is on when DMKSVC is
entered, then the caller has requested AFFINITY. DMKSVC turns on a bit
in the save area passed to the caller to indicate that control is to be
returned to the caller on the same processor on which it was running
before issuing the SVC. It is not ensured that control will be retained
by the initiating processor throughout <the called operation, but only
that final return will occur on the initiating processor.

1-74 IBM YM/370 System Logic and Problem Determination--vVolume 1



SYC 12

AR return request that transfers control from the called routine to the
calling routine). The SVCRET routine is invoked. If +the routine that
issued the SVC 12 is pageable, then DMKPTRUL is called to unlock the
page. SVCRET then restores registers 12 and 13 (addressability and save
area address saved by SVCLINK), places the user's return address (also
saved in this area) back into the SVCOPSH, and returns control to the
calling routine by loading the SVCOPSW.

SYC 16

Releases current save area from the active chain (removes linkage
pointers to the calling routine). The SVCRLSE routine releases the
current save area by placing the address of the next higher save area in
register 13 and returns control to +the current routine by 1loading the
SVCOPSW. This SVC is used by second level interrupt handlers to bypass
returning the first-level handler under specific circumstances. The
base address field (register 12) in the save area being released is
examined to determine if the bypassed routine is in 2 pageable module.
If so, DMKPTRUL is called to unlock the page.

svc 20

Obtain a new save area. The SVCGET routine places the address of the
next available save area in register 13 and the address of the previous
save area in the save area pointer field of the current save area.

SYC 24

In attached processor mode, SVC 24 causes the instructions following the
SVC to be executed by the main processor. This SVC is used only via the
SWITCH macro to force processing to continte on the main processor (the
processor capable of perferzing I/C). If the SWITCH macro determines
that the code is currently running on the main processor then the SVC is
not issued.

There are 35 save areas initially set up by DMKCPINT for use by the

SYC 1linkage handlers. If all the save areas are used, the 1linkage
handlers call DMKPREE to obtain additional save areas.

CP Introduaction 1-75



External Interruption
TIMER INTERRUPTION

If DMKPSAEX is entered because of a timer interruption, the state of the
machine must be determined. If the machine was in wait state, control
is transferred +to DMKDSPCH, and the machine stays idle until another
interruption occurs. If the machine is in problem state, the address of
the current user's VMBLOK is obtained <from RUNUSER. The user's current
PSW (VMPSW) is wupdated from the external interruption o0ld PSW, the
address of the current VMBLOK is placed in register 11, and control is
transferred to DMKDSPCH. For additional information about timers, see
"Yirtual Timer Maintenance."

EXTERNAL INTERRUPTION

If DMEPSARY ig5 ecntered because the Operaiodi plessed the console
interrupt button (INTERRUPT), a CPEXBLOK is stacked to do the following:

e Reference the current system operator's VMBLOK (DMKSYSOP).
e Disconnect this virtual machine.

The operator can now log on from another terminal. Pressing the
console interrupt button activates an alternate operator's console.

Note: If +this interrupt comes from the attached processor, it is
ignored.

For a description of the processing of the external interruption
command, refer to module DMKCPB in Section 2.

See "Multiprocessor External Interrupts® for a discussion of external
interrupts that occur in attached processor mode.

EXTENDED VIRTUAL EXTERNAL INTERRUPTIONS

To reflect external interruptions to a virtual wmachine, DMKDSPE queues
an XINTBLOK on a chain pointed to by VMPXINT in the VMBLOK. The
XINTBLOKs are chained sequentially by the XINTSORT field that contains
the collating number of the pending interruption. If more than one
interruption has the same collating number, the interruption codes are
ORed together in the XINTCODE field for possible simultaneous
reflection.

When a virtual machine is enabled for external interruptions, the
XINTBLOK queue for that machine is searched for an eligible block. An
XINTBLOK is eligible for reflection if one or more bits of the XINTMASK
field match the bits in the rightmost halfword of control register 0.
If the interruption was an interruption such as CPU timer or clock
comparator, the block is left chained because reflection does not reset
these interruptions. If the reflected interruption (s) does not
represent all those coded in the XINTMASK field, the block is left
chained and only the interruptions that were reflected are reset. In
all other conditions, the XINTBLOK is unchained and returned to free
storage.

1-76 IBM VM/370 System Logic and Problem Determination--Volume 1



A special external interrupt, code X'4001' notifies a virtual machine
of a pending Virtual Machine Communication Facility request. The
XINTBLOK for this interrupt is set up with an XINTSORT field of
X*7FFFFFFF', the lowest priority.

System Support
FREE STORAGE MANAGEMENT

During its execution, CP occasionally requires small blocks of storage
that are used for the durationm of a task. CP obtains this storage from
the free storage area. The free storage area is divided into various
size subpools. The requester informs the free storage manager of the
size of the block required and the smallest available subpool that
fulfills the request is allocated to the requester. W®hen the block is
no longer needed, the requester informs the free storage manager and CP
returns the block to free storage.

If the request for free storage cannot be fulfilled, the free storage
manager requests the temporary use of a page of storage from the dynamic
paging area. If a page 1is obtained, the page is chained to the free
storage area and used for that purpose wuntil it is no longer needed and
subsequently returned to the dynamic paging area.

If the request for a page cannot be fulfilled, the regquester waits
until free storage becomes available.

STORAGE PROTECTION

VM/370 provides both fetch and store protection for real storage. The
contents of real storage are protected from destruction or misuse caused
by erroneous or unauthorized storing of fetching by the program.
Storage is protected from improper storing or from both improper storing
and fetching, but not from improper fetching alone.

When the processor accesses storage, and protection applies, the
protection key of the current PSW is used as the comparand. The
protection key of the processor is bit positions 8-11 of the PSW.

If the processor access 1is prohibited because of a protection
violation, the operation 1is suppressed or terminated, and a program
interruption for a protection exception takes place.

When the reference is made to a channel, and protection applies, the
protection key associated with the I/0 operation is used as the
comparand. The protection key for an I/0 operation is in bit positions
0-3 of the CAW and is recorded in bit positions 0-3 of the CSW stored as
a result of an I/0 operation. If channel access is prohibited, the CSW
stored as a result of the operation indicates a protection-check
condition.

When a storage access is prohibited because of a store protection
violation, the contents of the protected location remain unchanged. If
a fetch protection violation occurs, the protected information is not
loaded into an addressable register, moved to another storage location,
or provided to an I/0 device.

CP Introduction 1-717



To use fetch protection, a virtual machine must execute the set
storage key (SSK) instruction referring to the data areas to be
protected, with the fetch protect bit in the key. VM/370 subsequently:

1. Checks for a fetch protection violation when handling privileged
and nonprivileged instructioas.

2. Saves and restores the fetch protection bit (in the virtual storage
key) when writing and recovering virtual wmachine pages from the
pPaging device.

3. Checks for a fetch protection violaticn on a write CC¥ {(except for
spooling or console devices).

A special case of storage protection occurs when the CMS nucleus
resides in a protected shared segment. The CMS nucleus may be protected
and still be shared by many CMS users. After a virtual machine has used
a protected shared segment, the pages are checked for changes. If any
pages have been changed, the user gets placed in console function mode
after receiviang error pessage DMKYMAUSAW, and the changed page is
returned to CP free storage.

EXECUTING THE PAGEABLE CONTROL PROGRAM

Calls to pageable routines are recognized at execution time by the SVC 8
linkage manager in DMKSVC. For every SVC 8, the called address (in the
caller's GPR15) is tested to see if it is within the resident nucleus.
If it is less than DMRCPEND and greater +than DMKSLC, the called
routine's base address is placed in GPR12 and control is passed to the
called routine in the normal way. However, if the called address is
above DMKCPEND or below DMKSLC, the 1linkage manager issues a TRAKS
macro, requesting the paging manager to locate and, if necessary,
page-in the called routine. The TRANS 1is issued with LOCK option.
Thus, the 1lock count associated with the called routine's real page
indicates the responsibility count of the module.

o When the module is called, the count is incremented.
e When the routine exits via SVC 12, the count is decremented.

When the count reaches zero, the pageable routine is unlocked and is
eligible to be paged out of the systea. However, because all CP
Pageable modules are reenterable, the page is never swapped out, but
when the page is stolen, it is placed directly on the free page list.

Because unlocked pageable routines participate in the paging process
in a manner similar to user virtual storage pages, the least recently
used approximation used by page selection tends to make highly used
control program routines, even when not locked, remain resident. The
called routine is locked into real storage until it exits. Thus, it can
request asynchronously scheduled function, such as I/0 or timer
interrupts, as long as it dynamically establishes the interruption
return address for the requested operation and does not give up control
via an EXIT macro prior to receiving the requested interruption.

Addressability for the module, while it is executing, is guaranteed
because the CALL linkage loads the real address of the paged module into
GPR12 (the module base register) prior to passing control. If all
addressing is done in a base/displacement form, the fact that the module
is executing at an address different from that at which it was loaded is
not apparent. Although part of CP is pageable, it never runs 1in
relocate mode. Thus, the processor is not degraded by the DAT feature
being active, and no problems occur because of handling disabled page
faults.

1-78 1IBM VM/370 Syster Logic and Problem Determination--Volume 1



SYSTEM SUPPORT MODULES

The system support modules provide CP with several common functions for
data conversion and control block scanning and verification. Most of
the routines are 1linked to via the BALR option of the CALL macro, and
make use use of the BALRSAVE and TEMPSAVE workareas in DNKPSA. Two
exceptions are the virtual and real I/O control block scan routines
DMKSCNVU and DMKSCNRU. These routines do not alter the contents of the
BALRSAVE area, and hence may be called by another 1low-level BALR
routine.

CONTROL REGISTER USAGE

Every 1IBM System/370 processor provides the program with 16 1logical
control registers (logical registers since the number that are active
depends on the features installed in the machine at any one time) that
are addressable for loading and storing from basic control (BC) mode.
VM/370 provides only a single control register, control register zero,
for normal virtual machines, and for processing systems that do not
require the full set of registers (for example, CMS, DOS, or other
operating systems for System/360).

Any user whose virtual machine operating system requires the use of
control registers other than control register zero, can request the full
set of 16 registers by specifying the ECMODE option in the VM/370
directory entry for his virtual machine.

A virtual machine, which utilizes any System/370 features +that use
the control registers, requires the ECMODE option. Some of these
features are expanded timer support of the System/370 CPU timer, clock
comparator, etc., the virtual relocate mode and its instructiomns, RRB,
LRA, PTLB, virtual monitor calls, virtual Program Event Recording (PER),
etc.

Pageabie CP modules must observe the following restrictions and
conventions when they are designed and coded:

e The module must be entered by the standard SVC 8 CALL linkage.
Modules entered by BALR or GOTO cannot be pageable. The module must
return to its caller by SVC also.

e The module cannot contain any A- or V-type address constants that
point to locations within itself or within other pageable modules,
and it cannot contain any CCWs that contain data addresses within
themselves. The only exceptions are address constant literals
generated as the result of calls to other modules (because these
addresses are dynamically relocated at execution time, they must be
resolved by the loader to the 1loaded address of the called module)
and a pageable wmodule that locks itself into storage. 1In practice,
this restriction means that data or instructions within the pageable
routine must be referenced via base/displacement addressing, and the
address in register 15 for a CALL may not be generated by a LOAD
ADDRESS instruction.

e The pageable module must be no more than 4096 bytes in length.

CP Introduction 1-79



If the three above design and coding restrictions are adhered to, the
CP module can be added to the existing pageable nucleus modules by
utilizing the service routine, VMFLOAD, vwhich is described in "VM/370
Maintenance Procedures" of the YM/370 Service Routines Program Logic.
Additional information can be found in the VM/370 Planning and System
Generation Guide.

Executable Resident Modules

DMKBSC DMKGRF DMKPRG | DMKSSS
DMKCCH | DMKGRT DMKPRY DMRSTK
DMKCCW DMKHVC DMKPSA DMKSYC
DMKCFM DMKIOE DMKPTR DMKTHMR
DMKCRNS DMKIOS DMEKQCN DMKTRK
DMKCVT DMKLOC DMEKRGA DMKUNT
DMKDAS DMKLOK DMKRGB DMKVAT
DMKDGD DMKMCH DMKRNH DMKVCN
DMKDMP DMKHNCT DMKRPA DMKVIO
DMKDSB DMKHMSW DHEKRSPE DHRVEA
DMKDSP DMKOPR DMEKSCH DMKVSI
DMKEXT DMKPAG DMKSCN DMKVSP
DMKFRE DMKPGT
Executable Pageable Modules

DMKACO DMKCPB DMEDIB DMKNEM DMKTRC
DMKALG DMKCPI DMKDRD DMKNES DMKTRD
DMKAPI DMKCPS DMKEIG DMKNET DMKTRM

| DMKATS | DMKCPU DMKERM DMKNLD DMKUDR
DMKBLD DMKCPY DMKGIO DMKNLE { DMKUDU
DMKCDB DMECQG DMKHVD DMKPGS DMKUSO
DMECDHM | DMKCQH DHKIOC DMKRSE DMEVCA
DMKCDS DMKCQP DMKIOF DMKSAV DMKVCH
DMKCFC DMEKCQR DMKIOG DMKSEP DNKVDA
DMKCFD DMECQY DMKISM DMKSEV DMKVDC
DMRCFG DMRCSB | DMKJRL DMEKSIX DMRVDD
DMERCFH DMRCSO DMEKLNK DMKSKC DMKVDE
DMKCFO DMKCSP DMKLOG DMKSPL DMRVDR
DMKCFP | DMKCSQ DMKLOH DMKTAP DMKVDS
DMKCFS DMKCST DMEKMCC | DMKTCS DMEKVER
DMRCFT DMKCSU DMKMID DMKTDK DMKVMC
DMKCKP | DMKCSV DMKMNI DMKTHI DMKVMI
DMECKS DMKDEF DMKMON DMKTRA DMKWRM
DHEKCLK DMKDIA DMKMSG

Figure 16. Executable Modules
DATA AREA MODULES

In addition to the executable resident and pageable modules (see Figure
16), there are certain modules that only contain data areas and do not
contain executable code. These modules are:

Resident

Bodule Contents

DMKCPE Defines the end of the CP nucleus
DMKGRW CCH's and data for 3278 model 22
DMKR IO I/0 device blocks

DMESYS System constants

DMKTBL Terminal translate table

1-80 1IBM VM/370 System Logic and Problem Determination--vVolume 1



Pageable
Module Contents

DMKBOX Output separator table

DMKBTS Bootstrap routines for 3705

DMK EMA Error message data module

DMKEMB Error message data module

DMKEMC Error message data module

DMKFCB 3203 and 3211 Forms Control Buffer (FCB) load tables
DMKSNT System name table

DMKSYM System symbol table

DMKUCB 3211 Universal Character Set Buffer (UCSB) load tables
DMKUCS 1403 Universal Character Set (UCS) load tables

DMKTBM Terminal translate tables

DMKV CC 3203 Universal Character Set Buffer (UCSB) load tables

VIRTUAL TIMER MAINTENANCE

The System/370 with EC mpode provides the system user (both real and
virtual) with four timing facilities. They are:

The interval timer at main storage location X'50¢
The time-of-day clock

The time-of-day clock comparator

The CPU timer

Before describing how CP maintains these timers for virtual machines, it
is necessary to review how VM/370 uses the timing facilities of the real
machine.

1‘

The location X'50' interval timer is used only for time-slicing.
The value placed in the timer is the maximum length of time that
the dispatched virtual machine is allowed to execute.

Because the BLIP function of CMS uses the interval timer (location
X'S50'}, +the use of STIHER can cause extra blips at the user's
terminal. To avoid extra blips, issue the CMS command SET BLIP
OFF.

The time-of-day clock is used as a time stamp for messages and
enables the scheduler to compute elapsed in-queue time for the
dispatching priority calculation.

The time-of-day clock comparator facility is used by CP to schedule
timer-driven events for both control program functions and for
virtual machines. A stack of comparator requests is maintained and
as clock comparator interrupts occur, the timer request blocks are
stacked for the dispatcher via calls to DMKSTKIO.

The processor timer facility perforams three functions:

e Accumulates CP overhead
e Detects in-queue time slice end
e Simulates virtual processor timer

The accumulation of CP overhead is accomplished as follows. The
VMTTIME field in the VMBLOK contains the total CP overhead incurred
by the virtual machine; it is initialized to the maximum positive
number in a doubleword, X'7FFFFFFF FFFFFFFF'. Whenever CP perforams

CP Introduction 1-81



a service for a virtual machine, GR 11 is loaded with the address
of the VMBLOK and the current value in VHMTTIME is placed in the
processor timer. When CP is finished with the service for that
virtual machine the processor timer, which has been decremented by
the amount of processor time used, is stored back into VMNTTIME. GR
11 is then loaded with a new VMBLOK pointer and the processor timer
is set from the new VMTTIME field. The amount of CP overhead for a
given virtual machine at any point in time is the difference
between the maximum integer and the current value in the VMTTIME
field.

Since VMTTIME only accounts for supervisor state overhead,
detection of in-queue time slice end is performed by the processor
timer when the virtual machine is dispatched in the problem state.
The VMTMOUTQ field in the VMBLOK is initialized to the amount of
problem state time that the virtual machine is allowed to
accurulate before being dropped from a queue. This initial value
is set by the scheduler (DMKSCH) when the virtual machine is added
to a queue and its value depends on the queue entered (interactive
or noninteractive) and on the processor model. For example, the
initial value of VHETHOUTQ for & user entering Q1 (interactiwe) on a
Model 145 is 300 milliseconds, while for the same user entering Q2
(noninteractive) it is 2 seconds. Each time the user is
dispatched, the value in VMTMOUTQ is entered into the processor
timer; whenever the user is interrupted, the decremented processor
timer is stored into VMTMOUTQ prior to being set from the new
VMTTIME. When the problem state time slice has been exhausted; a
processor timer interrupt occurs, the VMQSEND flag bit is set in
the VYMBLOK, and the scheduler drops the user from the queue. At
each queue drop, the problem time used in-queue (the difference
between VMTMOUTQ and the initial value) is added to the total
problem time field (VMVTIME) in the VMBLOK.

Virtual processor timer simulation is handled for EC mode virtual
machines if the value in the virtual processor timer is less than
that in VMTMOUTQ. In this case, the VMBLOK is flagged as "tracking
processor timer" and a processor timer interrupt is interpreted as
a virtual timer interrupt rather than as an in-queue time slice
end.

Virtual Timing Facilities

Vvirtual location X'50' timers are updated by the elapsed processor time
each time the dispatcher has been entered after a running user has been
interrupted. The size of the update is the difference between the value
of the timer at dispatch (saved in OQUANTUM at location X'54') and the
value of the timer at the time of the interruption (saved in QUANTUMR at
location X'4C').

Virtual clock comparator requests are handled by the virtual timer
maintenance routine, DMKTMR. They are inserted into the general
comparator request stack and the virtual machine is posted when the
interruption occurs.

Virtual clock comparator requests to set the virtual processor timer
place the new value into the ECBLOK. Requests to store the new value
update the ECBLOK field with the virtual processor time used since the
last entry to dispatch and pass the value to the user. Requests to set
the time-of-day clock are ignored.

A real interval timer or processor timer is one that runs when the
virtual machine is executing or is in a self-imposed wait state (that

1-82 1IBM VM/370 System Logic and Problem Determination--vVolume 1



is, the wait bit is omn in the virtual PSW). A real timer does not run
if the virtual machine is in a CP pseudo wait state (for example, page
vait or I/0 wait) or if the virtual machine can be run but is not being
dispatched because of other user interaction. Real timers provide
accurate interrupts to programs that depend on measurement of elapsed
processor and/or wait time. They do not accurately measure wall time --
the TOD clock must be used for this function.

An EC mode virtual machine with the real timer option has both a real
interval timer and a real processor timer. Real timer requests for
waiting machines are maintained in the clock comparator stack.
processor timer requests are added to TOD clock value at the time that
they are issued. Interval timer requests must have their units
converted. In addition, if the virtual processor timer contains a large
negative value, then a real timer request is scheduled to occur when the
virtual machine becomes positive, so that the pending timer interruption
can be unflagged. Comparator requests for real timer interruptions are
inserted into the stack whenever a virtual machine enters a self-imposed
vait. They are removed either when the virtual machine resumes
execution or when it is forced (or places itself) into a pseudo wait.

/0 Management
I/0 SUPERVISOR

The module, DMKIOS, handles the I/0 requirements of all system devices
except the following terminals: 1052, 3210, 3215, 2150, 2741, 3270
remote equipment, and compatible teletypewriter devices. Scheduling and
interruption handling for these devices is essentially a synchronous
process and does not regquire the gueuing and restart services of DMKIOS.
This is handled by the module DMKCNS. For handling the I/0 requirements
of 3270 remote equipment, refer to "Programming for 3270 Remote
Terminals — an Introduction" in this section.

REAL I/O CONTROL BLOCKS

To schedule I/0 requests and control the activity of the I/0 devices of
the system, I/0 control uses several types of control biocks. These
blocks are separated into two basic types.

e Static blocks that describe the components of the I/0 system.

e The dynamic blocks that represent active and pending requests for I/0
operations.

The I/0 devices of the real system are described by one control block
for each channel, control unit, and device available to the control
program. Units present but not represented by control blocks are not
available for either user-initiated or CP-initiated operationms.

Because all virtual machines are run in the problem state, any
attempt to issue a SIO instruction results in a program interruptioen
that indicates a privileged operation exception. This interruption is
handled by CP's first level program interrupt handler, DMKPRGIN. It
determines if the virtual wmachine was in virtuval supervisor state
(problem state bit in the virtual PSW is zero). If so, the instruction
causing the interruption is saved in the VMBLOK for the virtual machine
and control is transferred to the privileged instruction simulator,
DMKPRVLG, via a GOTO.

@
L 3

CP Introduction 1-83



DMKPRVLG deteramines if the privileged operation affects the virtual
1/0 configuration. DMKPRVLG simulates non-1/0 privileged instructions
(such as LPSW). If the instruction's operation code is from X'9C to
X'9FP', control is transferred to DMKVSIEX.

After clearing the condition code in the user's VMBLOK, DMKSCHNVU is
then called to 1locate the virtual I/0 blocks representing the I/0
components (channel, control unit and device) addressed by the
instruction. DMKVSIEX then branches to handle the request based on the
operation requested. )

In attached processor systems, the I/0 control blocks are protected
by forcing all critical execution paths in CP to operate on the main
processor.

VIRTUAL I/0 REQUESTS

The virtual I/0 interface maintained by CP provides to the software
operating in the user‘s virtual machine, the condition codes, US5W status
information, and interruptions necessary to make it appear to the user's
virtual machine that it is in fact running on a real System/370. The
virtual I/0 interface consists of:

e A virtual I/0 configuration for each active virtual machine that
consists of a set of I/0 control blocks that are maintained in the
Control Program's free storage. This configuration is built at logon
time from information contained in the user's directory file, and can
be changed by the user or the system operator.

e 1A set of routines that maintain the status of the virtuwual I/0
configuration.

e Other system routines that simulate or translate the channel programs
provided by the user to initiate I/0 on units in the real system's
configuration.

Virtual SIO

With a SI0, the condition code returned from DMKSCNVU is tested to
verify that all addressed components were located. If they were not,
then a condition code of 3 (unit not available) is placed in the PSW and
control returns to the dispatcher. Otherwise, the addresses of the
appropriate virtual I/0 control blocks are saved, and DMKVSIEX tests the
status of the addressed I/0 units by scanning the VCHBLOKs, VCUBLOKS,
and VDEVBLOKs to 1locate the block that contains the status of the
addressed subchannel. The subchannel status is indicated in:

e The VCHBLOK for a selector or block multiplexer channel.

e The VCUBLOK for a shared selector subchannel on a byte multiplexer
channel. '

e The VDEVBLOK for a nonshared subchannel on a byte multiplexer
channel.

When the block containing the status is found, the status is tested.
If the subchannel is busy or has an interruption pending, condition code
2 is placed in the virtual PSW. Otherwise, the subchannel is available
and the device and the control unit are tested for interruption pending

1-84 IBM VM/370 System Logic and Problem Determination--Volume 1



or busy. If either is found, condition code 1 is placed in the virtual
PSH and the proper CSH status is stored in the virtuval machine's page
zero. If all components in the subchannel path are free, DMKVSIEX
proceeds to simulate the SIO by locating and loading the contents of the
virtual machine's CAW from virtual location X'48' and testing the device
type of the unit addressed.

The device type is in the VDEVBLOK. If the device class code
indicates a terminal or console, control is passed to the module
DMEKVCNEX with a GOTO. DMKVCNEX interprets and simulates the entire
channel program, moving the necessary data to or from virtual storage
and reflecting the proper interruptions and status bytes. When DMKVCNEX
has finished, it passes control directly to the dispatcher, DMKDSPCH.

If the referenced device is a spooled unit record device, DMKVSIEX
passes control to DMKVSPEX for additional processing. When control

returns to DMKVSIEX, it passes control to DMKDSPCH.

If the device is not a terminal or a spooling device, the SIO is
translated and executed directly on the real system's I/0 device.
DMRVSIEX calls DMKFREE to obtain free storage and then it constructs an
IOBLOK in the storage obtained. The IOBLOK serves as an identifier of
the I/0 task to be performed. It contains a pointer to the channel
program to be executed and the address of the routine that is to handle
any interruptions associated with the operationmn.

DMKVSIEX stores the contents of the user's CAW in IOBCAW and sets the
interruption return address (IOBIRA) to be the same as the virtual
interruption return address (DMKVIOIN) in DMKVIO. The CCW tramnslation
routine (DMKCCWTR) is then called to locate and bring into real main
storage all user pages associated with the channel program, including
those containing data and CCWs. The following occurs:

e The CCWs are translated.
e 1A corresponding real channel program is constructed.
e The data pages are locked into real storage.

e DMKCCHTR returns control to DMKVSIEX. DMKVSIEX places the user in a
pseudo wait state, IOWAIT, and calls the real I/0 scheduler DMKIOSQYV
to schedule the I/0 on the real configuration.

DMKIOSQV queues the request for operation on the real channel,
control unit, and device corresponding to the address used by the
virtual machine. When the real SIO is issued, DMKIOS takes the user out
of IOWAIT and reflects the condition code for the SIO0 if it is zero. If
it is not zero, the operation is further analyzed by DMKVIOIN. 1In any
case, DMKIOSQV returns control to DMKVSIEX, which passes control to
DMKDSPCH.

Other Privileged I/0 Ipstructions

Other privileged I/0 instructions are handled directly by DHMKVSIEX.
DMKVSIEX scans the virtual channel, control unit, and device blocks in
the same manner as for a SI0 and reflects the proper status and
condition to the virtual machine. In some cases (TIO), the status of
the addressed devices is altered after the status is presented.

CP Introduction 1-85



If the operation active on the virtual device is actually in progress
in the real equipment, the simulation of a HIO or HDV is somewhat more
involved, since it requires the actual execution of the instruction. 1In
this case, the active operation is halted and the resultant condition
code/status is returned to the user.

Virtual Channel-to-Channel Adapter

The virtual channel-to-channel adapter (CTCA) simulates data transfer
and control communication between two selector channels, either on twWo
distinct processors or two channels on a single processor. Data
transfer is accomplished via synchronized complementary I/0 commands
(for example, read/write, write/read) issued to both parts of the CTCA.
Each part of the CTCA is identical and the operation of the unit is
completely symmetrical. The CTCA occupies an entire control unit slot
on each of the two channels attached. The rightmost four bits of the
unit address (device address) are ignored completely and are not
available for use.

The VM/370 control program support for virtual CTCA includes all
status, sense data, and interruption logic necessary to simulate the
operation of the real CTCA. Data transfer, command byte exchange, sense
data, and status data presentation for the virtual CTCA is accomplished
via storage-to-storage operations (MVCL, etc.). No real I/0 operations
(excluding paging I/0) nor I/O interruptions are involved. Unit errors
Or control errors cannot occur.

Virtual Selector Chanpnel I/0 Regquests

The CCW translator, DMKCCWTR, is called by the virtual machine I/0
executive program (DMKVSIEX) when an I/0O task block has been created and
a list of virtual CCHs associated with a user's SIO request must be
translated into real CCWs.

When the I/0 operation from a self-modifying channel program is
completed, DMKUONTIS is called by DMKIOS. When retranslation of 0S ISAM
CCis is required, the self-modifying channel program checking portion of
DMKCCWTR calls DMKISMTR.

DMKCCHTR operates in two phases:

e A scan and a translate phase.
e A TIC-scan phase.

A self-modifying channel program checking function is also included.

The scan and translate phase analyzes the virtual CCW 1list. Some
channel commands require additional doublewords for control information
(for example, seek addresses). Additional control words are also
allocated (in pairs) if the data area specified by a virtual CCW crosses
4096-byte page boundaries, or if the wvirtual CCW includes an IDA
(indirect data address) flag.

Space is obtained from DMKFREE for the real CCW 1list, and the
translation phase then translates the virtual CCW list into a real CCW
list. TIC cosmands that cannot be immediately translated are flagged for
later processing by the TIC-scan phase. A READ or WRITE command that

1-86 IBM VM/370 System Logic and Problem Determination--Volume 1



specifies that data cross 4096-byte boundaries is revised to include an
IDA flag that points to an indirect data address list (IDAL) and a pair
of words for each #096-byte page, in which each word handles a data
transfer of 2048 bytes (or less). The real CCW is flagged as having a
CP-generated IDA. DMKPTRAN is called (via the TRANS macro) to lock each
4096-byte page.

If the real CCW string does not fit in the allocated free storage
block, a new block is obtained. The o0ld block is transferred and
adjusted before being released. The translation continues with the new
block. The process is repeated, as needed, to contain the real CCW
string.

Virtual CCWs having an IDA flag set are converted to user translated
addresses for each IDAW ({(indirect data address word) in the wvirtual
IDAL. DMKPTRAN is called for each IDAW is. The CCW is flagged as
kaving a user (but not CP) generated IDA.

The TIC-scan phase scans the real CCW list for flagged (untranslated)
TIC commands and creates a new virtual CCW list for the untranslated
commands. Scan-translate phase processing is then repeated. When all
virtual CCWs are translated, the virtual CAW in the IOBLOK task block is
replaced by the real CAW (that is, a pointer to the real CCW 1list
created by DMKCCWTR), and DMKCCWTR returns control to DMKVIOEX. The
user protection key is saved.

0S ISAM Handlinag by DMKISMTR

Because many of the O0S PCP, MFT, and MVT ISAM channel programs are
self-mnodifying, special handling is required by the VM/370 control
program to allow virtual machines to use this access method. The
particular CCHs that require special handling have the following general
format:

0 2 4 6 8
L A
A i READDATA Ce7 10 bytes !
l i { | |
B | TIC to E |
( | { i i
c | | ( | |
| | | { i
D | ! { | |
| | | | 1
E | SEEK: SEEK head on D [
i | | | |
F | SEARCH on D42 |
[1 | ]

The CCWH at A reads 10 bytes of data. The tenth byte forms the
command code of the CCW at E. In addition, the data read in makes up
the seek and search arguments for the CCWs at E and F. After the CCW
string is translated by the VM/370 control program, it usually is in the
follovwing format:

CP Introduction 1-87



2 4 6

READDATA C#+7 10 bytes

| | |
TIC to 3

SEEK: SEEK head on 6
| | I
SEARCH on De¢2
1 |
etc. |
| {
| ISAM word

o (%] £ w N
-_—-—————————J [+ +)

- e = oy O

To accomplish an efficient and non-timing-dependent traanslated
operation for 0OS 1ISAM, the virtual CCW string 1is modified in the
following manner.

DMKISMTR is called by DMKCCWTR if, during normal translation, a CCW
of the type at 1 is encountered. The scan program locates the TIC at 2
by searching the translated CCW strings. The TIC at 2 locates the SEEK
at 3.

The virtual address of the virtual SEEK CCW at E is located from the
RCWTASK header. Seven doublewords of free storage are obtained and the
address of the block is saved in the ISAM control word at 5. The seven
doublewords are used to save the following information from the
translated CCW strings:

Address of Read | Address of TIC

L L
71 |
| at 1 | at 2 |

( o |

8 | Unused | Unused |
| | |

9 | Data area for READ at 1 |
| |

10 | SEEK HEAD on 9 |
| B

11 | TIC to 4 |
| |

12 | Image of READ CCW at 1 |
| |

13 | Image of TIC CCW at 2 i
4 '}

The translated read CCW (at 1) is moved to the save block at 12. The
TIC CCW (at 2) is moved to the save block at 13,-and the addresses of 1
and 2 are saved at 7. The read CCW at 1 is modified to point to a
10-byte data area at 8+7 in the save block. The seek head CCW at 3 is
copied into the save block at 10, and the seek address is modified to
point to the data area at 9. At 11, a TIC CCW is built +to rejoin the
translated CCW string at 4. The search at 4 (or any subsequent search
referencing D#2) is modified to point to 9+2. The completed CCW string
has the following format:

1-88 1IBM VM/370 System Logic and Problem Determination-~Volume 1



r R
11 Readdata 8+7 10 Bytes |
| I
2| TIC to 10 |
| |

3 | Unused |
i !

4 | Search on 9 + 2 |
{ |

5 1 Etc. {
| i

6 | l ISAM word |
| |
71 {
| | { | |

8 | | Unused | (
| { | — | I

9 j Data Area for Readdata |
| {
10 | { Seek Head on 9 |
i |
11 | TIC to &4 |
v ]

The interruption return address in the IOBLOK is set to DMKUNTIS.
CMRUNTIS restores the CCWs to their original format from the seven
doublevord extensions, moves the 10 bytes of data from 8+7 into virtual
storage (at C+7), and releases the block. Normal I/O handling is
resumed by DHKVIC and DHKUNT.

I/0 COMPONENT STATES

The I/0 components represented by the control blocks described in "Real
I/0 Control Blocks" are in one of four states and the state is indicated
by the flag bits 1in the block status byte. If the component is not
disabled, it is either busy, scheduled, or available.

If the disabled bit is on, the component has been taken offline by
the operator or the system and is at least temporarily unavailable. A
request to use a disabled component causes the IOBLOK to be stacked with
an indication of condition code 3 on the SIO and the real SIO is not
performed.

An I/0 unit is busy if it is transferring data (in the case of a
channel or control unit), or if it is in physical motion (in the case of
a device). If an I/O unit is busy, the IOBLOK for the request is queued
from the control block representing that I/0 unit.

An I/0 unit is scheduled if it is not busy but will become busy after
a higher-level component in the subchannel path becomes available and an
operation is started. For example, if a request is made to read from a
tape drive and the drive and control unit are available, but the channel
is busy, the IOBLOK for that request is queued from the RCHBLOK for the
busy channel and the RCUBLOK and RDEVBLOK of the drive and control unit
are marked as scheduled. Future requests to that drive are gueued froa
the RDEVBLOK for the scheduled device. When the channel completes the
operation, the next pending operation is dequeued and started; the
scheduled control unit and device are then marked as busy. >

The IOBLOKs for various I/O requests indicate the status of that
request by a combination of the status bits in the IOBLOK and the gqueue

CP Introduction 1-89



in which the block resides. 1In general, an IOBLOK is queued from the
control block of the highest 1level I/0 unit (taken from device up to
channel) in the subchannel path thkat is not available. Once the I/O
operation is started, the IOBLOK is chained from the active IOBLOK
pointer (RDEVAIOB) in the real device control block. Flags in the
JOBLOK status fields may also indicate that a unit check has occurred,
that a sense is in progress, or that a fatal I/0 error (unrecoverable)
has been recognized by error recovery procedures. After I/0 control
releases control of the IOBLOK, it is stacked on the gqueue of IOBLOKS
and CPEXBLOKs anchored at DMKDSPRQ in the dispatcher and control is
passed to the second-level interruption handler whose address is stored
in TOBIRA.

I/0 INTERRUPTIONS

I/0 interruptions are either synchronous or asynchronous. Asynchronous
interruptions indicate the change in status of an I/0 unit from the
not-ready to ready state or busy to not-busy state. 1In eithei case, il
the affected component has any pending requests queued from its control
block, they are restarted, and whether or not the given interrupt is
processed any further depends upon the status of the interrupting
component. Channel-available and control-unit-end interruptions restart
the interrupting component. An asynchronous device end is passed to the
user if the device is dedicated; otherwise, the device is restarted.

An interruption is considered to be synchronous if the interrupting
device has a nonzero pointer to an active IOBLOK. 1In this case, the
following processing occurs:

e If a unit check has occurred, a sense is scheduled, and vhen the
sense is completed, the appropriate ERP is called.

e If an ERP is currently in control of the task (indicated by a flag in
the IOBLOK), return the IOBLOK to the appropriate ERP.

e If the operation is incomplete (for example, channel end is received
without device end), the IOBLOK is copied and the copy is stacked but
the original IOBLOK remains attached to RDEVAIOB to receive the final
interrupt; then, the control unit and the channel is restarted.

e If the operation is complete (that is, the device is available), the
IOBLOK is detached from the device and stacked, and the device,
control unit and channel are restarted.

The restart operation usually dequeues the next IOBLOK that is queued
to the restarted component and queues it to the next higher component in
the subchannel path. When the channel level is reached, a SIO is issued
and exit is taken to the dispatcher after handling any nonzero condition
codes as previously described.

VIRTUAL I/O INTERRUPTIONS

When an I/0 interruption is received, the IOBLOK is stacked for
dispatching and control is passed to the address specified in the IOBIRA
(interrupt return address) field. For operations requested by DMKVIOEX,
the return address is DMRVIOIN (virtual interrupt return address). When
DMKVIOIN receives control from the dispatcher, it 1loads the virtual
address of the wunit with which the interruption is associated froam the
IOBLOK and calls DMKSCNVU to locate the virtual device control blocks.

1-90 IBM VM/370 System Logic and Problem Determination--Volume 1



DMRVIOIN then tests the JOBLOK status field to determine the cause for
the interruption. If the block has been unstacked because of an
interruption, the field is zero. If the operation was not started, it
contains the condition code from the real SIO.

Fote: The VIRA should not see a real condition code 2 as the result of a
SI0, since channel-busy conditions are detected and reflected before any
real I/0 operation is attempted.

A condition code of 3 is reflected virtual machine and exit is taken
to the to the dispatcher. For a condition code of 1, the CSW status
field in the IOBLOK 1is examined to determine the cause for the CSW
stored condition. The status is reflected to the virtual machine and
various components of the virtual configuration may be freed, if the
status so indicates. For example, if the CS¥ status indicated both
channel end and device end, the operation was immediate and has
completed. Thus, the CCW string (real) may be released and all virtual
components marked availabie.

The CSW status returned for a virtual interruption must be tested in
the same manner, with the additional requirement that the status be
saved in the affected virtwal I/0 control blocks and that the CSH be
saved in the VDEVCSW field for the device causing the interruption. If
the unit check bit is on in the status field, the sense information
saved in the associated IOERBLOK (pointed to by the IOBLOK) must be
retained so that a sense initiated by the virtual machine receives the
proper information.

In any case, when an interruption is received for a virtual device, a
bit in the interruption mask, VCUDVINT, for the device®s control unit is
set to 1. The bit that is set 1is the one corresponding to the relative
address of the interrupting device on the control unit. For example, if
device 235 interrupts, the fifth bit in the VCUDVINT mask in the VCUBLCK
for control unit 30 on channel 2 is flagged. Similarly, the bit in the
VCHCUINT in the affected VCHBLOK is also set; in this case, bit 3 in
VCHBLOK for channel 2. If the interruption is a channel class interrupt
(PCI or CE), the address of the interrupting unit (235) is stored in the
VCHCEDEV field in the VCHBLOK. The final interruption flag is set in
the VMPEND field in the VMBLOK for the interrupted virtual machine; the
bit set corresponds to the address of the interrupting channel. The
next time, the virtual machine is dispatched and becomes enabled for
I/0.

SCHEDULING I/O REQUESTS

A task that requests an I/0 operation must specify the device om which
the operation is to take place and must provide an IOBLOK that describes
the operation. Upon entry to DMKIOS, register 10 must point to the
IOBLOK. The IOBLOK must contain at least a pointer to the channel
program to be started in IOBCAW and the address to which the dispatcher
is to pass control in IOBIRA. In addition, the flags and status fields
should be set to zero. If the operation is a YM/370 control program
function such as for spooling or paging, the entry point DMKIOSQR is
called. If the requester is the wvirtual I/0 executive (DMKVIOEX)
attempting to start a virtual machine operation, the entry point
DMKIOSQV is called and some additional housekeeping is done. 1In either
case, an attempt is made to find an available subchannel path from the
device to its control unit and channel. If an I/O unit in the path is
busy or scheduled, the IOBLOK for the request is queued to the control
block of the I/0 unit.

CP Introduction 1-91



Requests are usually queued first-in-first-out (FIFO), except those
requests:

e To movable-head DASDs that are gueued in order of seek address

e That release the affected comronent after initiation (SEEKS and other
control commands) which are queued last-in-first-out (LIFO) from the
control block

Whether or not the operation has been successfully started, the
caller requesting the I/0 operation receives control from DMKIOS. If a
free path to the device is found, the unit address is constructed and an
SI0 is 1issued. If the resulting condition code is zero, control is
returned to the <caller; otherwise, the code is stored in the
requester's IOBLOK along with any pertinent CSW status, the IOBLOK is
stacked, any components that become available are restarted, and control
is returned to the caller.

Alternate path I/0 scheduling is performed according to the following
schene:

DMKIOS searches for an available path beginning with the primary path
to the device. If an available path to the device exists, the I/0
request is started immediately on the first available path to the
device.

If the device is busy or scheduled, the IOBLOK is queued off the
RDEVBLOK. No alternate path processing is performed at the device level.

If the device is not busy, not scheduled, nor offline, an IOBLOK for
this I/0 request is promoted upward to the RCUBLOK or RCHBLOK level in
search of an available path. If a busy or scheduled path is
encountered, an IOBLOK is gqueued to the real block and the search
continues for an available path. If more than one busy path is
encountered, multiple IOBLOKs are queued for the same I/0 request. This
is accomplished by creating mini IOBLOKs for each busy/scheduled path
after the first. The primary IOBLOK is queued off the first busy path
encountered. The mini IOBLOK is 16 bytes in length and consists of the
first tvo doublewords of the IOBLOK, which 1is the same as the current
IOBLOK structure. The IOBLOK and associated mini IOBLOKs are chained in
a single-threaded queue by means of the IOBLINK field. The active
JOBLOK pointer is not stored in the TIOBLINK field until just prior to
the SI0. Zeros are stored in IOBLINK at entry to DMKIOSQR to indicate
no mini IOBLOKs have been queued as yet. See Figure 17 for an example
of mini IOBLOK queuing.

The last two words of the mini IOBLOK (IOBFPNT and IOBBPNT) are used
as the double-threaded queue pointers for the RCUBLOK/RCHBLOK from which
it is queued. A flag is set in the mini YOBLOK to identify it as a mini
IOBLOK.

Figure 18 shows a sample control block structure when mini IOBLOKs
are queued.

1-92 1IBM VM/370 System Logic and Problem Determination--volume 1



I0OBLOK
—>

IOBFPNT IOBBPNT

| | | { IOBLINK
{ { | 1

| | | |

| I 1 | Mini IOBLOK Mini IOBLOK

| | | | ——— —

{ | i od | —l—> i —f—
r — |——t ] | + l

{ i i i { i {

| e ——eeeeeep —d | AR —— |

| | |

| v v

|

|

|

L

Figure 17. Mini IOBLOK Queuing

RCUBLOK1 RCUBLOK2
| | i i
{1 {—————1
RCUFIOB | 1 |RCULIOB —I { {—>IOBLOK3
—I | |——>IOBLOK2 | | | 1
| | | i | |
{ | { | | {
|L—.——_—.—.—J II._.__.._—_.I
[ |
( { MINI
1 IOBLOK1 { IOBLOK
t—> r Bl —> r i)
{ | ( > i |——>IOBLOK1
|——t— { [ |
IOBFPNT | { | IOBBPNT |~ —o
—1 1 |———>RCUBLOK 1 1 { |—>RCUBLOK2
{ R -
] ( | l
LT :
{ IOBLOK2 | IOBLOK 3
L > r 1 L > ¢ —
{ | | { {
|—t—] | |
| | [ RCUBLOK2 (—+——|
RCUBLOK 1<——| { |——>IOBLOK1 <—1{ |—
{—1 | —%—I |
| { { { |
————d L__._._.I|
{
{
\
MINI
IOBLOK

Pigure 18. Control Block Structure for Alternate Path Request

CP Introduction 1-93



Prior to starting an I/0 operation associated with the request, a
check is made to see if the IOBLOK is a mini IOBLOK and whether mini
IOBLOKs are queued off this IOBLOK. All mini IOBLOKs associated with
this request are dequeued from their respective queues by running the
IOBLINK chain. The storage for the blocks is released. If the active
IOBLOK is a mini IOBLOK, the IOBRADD from the mini IOBLOK is moved to
the primary IOBLOK and the I/0 started using the primary IOBLOK. Once
the storage for the mini IOBLOKs has been released and the SIO
initiated, any busy condition encountered causes the IOBLOK to be gqueued
on this same path. That is, there will be no alternate path scheduling
after the SI0O if a busy condition is encountered. The I/O0 request will
be restarted on the same path as the original request.

Reserve/Release

Reserve/release 1is supported for shared DASD as though each wvirteal
machine has a separate channel path to a shared device. Reserve/release
support prevents the occurrence of a channel lockout situation. This is
accomplished by changing reserve CCWs to sense CCWs when a reserve is
issued to a device that has alternate paths defined to it. This means
that whenever alternate paths are defined +to a device, the real reserve
does not execute on the hardware. Reserve/release support is
implemented in VM/370 on a virtual basis allowing the reserve/release
operation codes to be simulated on a virtual basis for aminidisks,
including full-extent =minidisks. When a reserve is issued against a
minidisk, the reserve is accomplished by a locking mechanism. The status
of the minidisk is maintained in the VRRBLOK that is chained froa the
VDEVBLOK.

The following matrix identifies how the reserve operation code is
handled in the various situationms.

1The 'RESERVE' keyword in the chart indicates that the
real reserve is allowed to execute on the hardware.

2The SENSE keyvword indicates that the reserve CCW is
changed to a sense CCW. Virtual Reserve/Release is
requested by means of a new option on the MDISK directory
control statement.

¥ 1 al . L b
| { | Virtual | i
| |Will Reserve/| Reserve/ | RESERVEL®L |
| Defined | Release | Release | |
| Alternate | Execute | Requested | — or — |
| Paths to | on the | for | |
| Device | Hardware | Minidisks | SENSE?2 |
] I ] ] ] ']
L
| Dedicated} NO | N/A | N/A | RESERVE [
| DASD or t ! ] 1 ]
| Tape | YES | N/A | N/A | SENSE |
] '] ] ] | ]
Minidisk | NO | NO i NO | RESERVE |
[ ] J J ) |
| NO i NO | YES | SERSE |
[ 1 ! i} ] |
| NO | YES | NO | RESERVE |
[\ '] ) | [ ] ) |
| NO { YES | YES | RESERVE |
L '] ] ] ]
{ YES | N/A | N/A ] SENSE |
J | ] ] ] i ]
|
|
|
|
|
{
]

pn o o — — g SR wmp — e S oma S ame — g

1-94 IBM VM/370 System Logic and Problem Determination--vVolume 1



DMKVIO

DMKVIO performs the following steps when virtual reserve/release
processing is requested:

1. DMEKVSI calls DMKCCW to perform CCW translation. For DASD devices,
DMKCCW checks if the virtual reserve/release feature bit is on in
the VDEVBLOK. If virtual reserve/release processing has been
requested and 1if the device is not reserved by anyone or it is
reserved by this user, processing continues normally. If the device
is reserved by another user, DMKCCW calls DMKUNTFR to restore the
CCWs to their original state and returns to the caller, unless sense
bytes have been transferred to the user's storage in which case CP
enqueues on the minidisk and waits until it is no longer reserved at
which time the I/0 can proceed. If the I/O request can continue and
the CCW chain contains a reserve command, the VDEVBLOK and the
VRRBLOK are flagged as reserved. If the CCW chain also contains a
release, the IOBLOK is flagged to indicate to DMKUNTFR to release
the virtual disk. Control returns to DMKVSI.

2. DMKVSI reflects a device-busy condition to the virtual machine if
the minidisk is currently reserved by another user.

3. DMKONT reflects a device end interrupt +to all virtual machine users
vho previously received a busy condition, when the device is
released.

Ordered Seek Queuing: Requests to start I/0 on system devices are
normally handied first in first out. However, requests to movable-head
DASD devices are gqueued on the device in ascending order by seek
address. This ordered seek queuing is performed to minimize
intercylinder seek times and to improve the overall throughput of the
I/0 systen.

CP assumes that very few virtual machines perform chained SEEKs.
Therefore, the first logical address represents the position of the ara
upon completion of the I/0 operation. ordered SEEK queuing is based on
the relocated real cylinder. DMKIOS uses the cylinder location supplied
in IOBCYL for ordered SEEK queuing. This field is initialized by the
calling CP routine for paging and spooling or by the CCW translator for
virtual I/0. The CCW translator, DMKCCW, supplies the TIOBCYL value in
the following manner:

e Reads the IPL record, relocates to virtual cylinder 0

e Recalibrates, issues a real calibrate, and then a SEEK +to virtual
cylinder 0

e Issues a channel SEEK, relocates to the virtual cylinder

The IOBLOK queuing subroutine of DMKIOS recognizes that a request is
being queued on a movable-head DASD by means of the device class and
type fields of RDEVBLOK. Instead of adding the IOBLOK to the end of the
queue on the RDEVBLOK, the queuing routine sorts the block into the
queue based on the cylinder number for the request. The cylinder number
for any request to DASD is recorded in the IOBCYL field. The queune of
IOBLOKs on a real device block is sorted in ascending order by SEEK
address, unless the entire device is dedicated to a given user. In this
case, DMKIOS does not automatically schedule the device, and no more
than one request can be outstanding at any one time.

CP Introduction 1-95



When an outstanding I/0 regquest for a device has completed, DMKIOS
attempts to restart the device by dequeuing and starting the next IOBLOK
queued on the device. For non-DASD, +this is the first IOBLOK gqueued.
However, for movable-head DASD, the queued requests are dequeued in
either ascending or descending order, depending upon the current
position (recorded in RDEVCYL) and the direction of motion of the arm.
If the arm is seeking up (that 1is, toward the higher cylinder numbers),
the queue of IOBLOKs is scanned from the first block toward the last
until an IOBLOK is found with an IOBCYL value egqual to or greater than
the value in RDEVCYL, or until the end of the queue is reached. At this
point, the device is flagged as seeking down and the queue 1is scanned
from last to first until an IOBLOK with an IOBCYL value equal to or less
than RDEVCYL is found. When the IOBLOK is found, it is dequeued and
started. The direction of motion is indicated by an RDEVFLAG bit and
the next request is dequeued downward until the head of the gqueue is
reached.

Because the queue itself is a two-way chained 1list, no special
handling for null or wunity set lists is required, and the ordered seek
algorithm returns to first-in-first-out queuing.

Dedicated Chanpel Support: One of the facilities of the VM/370 control
program allows a virtual machine to control one or more channels on a
dedicated basis. The channels are attached to the virtual wmachine by
using the privileged ATTACH CHANNEL command. A virtual machine can have
one or more dedicated channels. In addition, channels can be split
between virtual machines but a dedicated channel cannot be shared
between two virtual machines. For instance, channel 1 could be
dedicated to virtual machine A, and channel 2 could be dedicated to
virtual machine B, or both could be dedicated to virtual machine A or B.

With a dedicated channel, all virtual machine device addresses must
be identical to the real machine device addresses. For instance,
virtual device 130 must be real device 130, and virtual device 132 must
be real device 132. With dedicated channels, CP does not perform any
virtual device address mapping.

CP error recording and channel recovery procedures are still in
effect for dedicated channels. The dedicated channel support can be
used in conjunction with the virtual=real feature for any virtual
machine that is occcupying the virtual=real storage space.

VIRTUAL CONSOLE SIMULATION

DMEVCN receives control from the virtual machine I/0 executive, DMKVIO.
When control is received, the device is available with no interruptions
pending. A console control block, VCONCTL, that is obtained from storage
and chained from the virtual device control block, VDEVBLOCK, by DMKLOG
is accessed for use during the interpretation of the virtual console I/0
sequence. The user's CAW is examined for validity. If it is valid, the
TRANS macro is issued to fetch the first user CCW. This CCW is moved to
the VCONCTL block for analysis.

The CCW is analyzed to determine if it is a read, a write, a control,
a sense, a TIC, or an invalid operation. Based upon the analysis, the
appropriate processing routine in DMKVCN is invoked.

storage. The location of the buffer is set in the VCONCTL block. The
DMKQCNRD routine is called to schedule and perform an actual read to the
corresponding real device representing the user's virtual console. If

1-96 IBM VM/370 System Logic and Problem Deteramination--Volume 1



SET LINEDIT ON is specified, the buffer data is edited and translated to
EBCDIC. When the read is completed, the data is moved to the specified
user address obtained from the address portion of the virtual CCW. 1If
command chaining is specified, processing returns to fetch and analyze
the next CCW. If command chaining is not specified, the virtual CSW is
constructed in the VDEVBLOK and an interrupt is flagged as pending in
the VMBLOK.

The Write Sipulation Routine: Obtains a buffer for the construction of
the output message from free storage. The virtual machine data is
located from the virtual CCW address in the VCONCTL block and moved to
the data buffer. The DMKQCNWT routine is called to write the data in
the buffer and provide the necessary length, translation, and format
functions. Control is received at the DMKVCN module upon completion of
the writing. At this point, the virtual CCW is re-examined. If command
chaining is specified, processing continues to fetch and analyze the
next CCH. If command chaining is not specified, the virtual CSW is
constructed in the VDEVBLOK and an interruption is flagged as pending in
the YMBLOK.

The Control Simulation Routine: 1Is used for the NOP and ALARN
operations. A NOP operation requires no data transfer or I/0 operation.
An ALARM operation has no egquivalent on low-speed teleprocessing
equipment; thus, a message indicating the ALARM operation is
constructed. DMKQCNWT is called to output the constructed message. If
the command is chained, processing continues (for NOP or ALARM) to fetch
the next CCW and analyze it. If command chaining is not specified and
this is not the first CCW, a virtual CSW is constructed in the VDEVBLCK
and an interruption is flagged as pending in the VMBLOK. If this is the
first (and only) CCW, then a condition code of 1 is presented with
channel end and device end in the virtual CSW.

A Virtuoal Sense Operation: Is similar to a control operation, because no
actual I/0 operation is performed. However, there is data transfer.
The sense data from the VDEVBLOK is moved to the virtual storage
location specified in the virtual CCW address. If the command is
chained, processing continues to fetch the next CCW¥ and analyze it.
Otherwise, an interruption is flagged as pending in the VMBLOK.

A Virtual TIC Operation: Fetches the virtual CCW addressed by the TIC
address and analyzes the fetched CCW. If the fetched CCW is itself a
TIC, or if the TIC is the first CCW, a channel program check condition
is reflected to the virtuwal machine as an interruption or as a
CSW-stored condition, respectively.

Invalid Operation: Any other operation is considered invalid. Command
reject status is posted in the virtual sense byte and the operatiom is
terminated with unit check status presented in the virtual CSW.

REMOTE 3270 PROGRAMMING

For a basic understanding of CP processing of data relating to 3270
devices on binary synchronous 1lines, the information and terminology
contained in IBM 3270 Inforpation Display System Comporent Descriptioa,

_————aE R aaa==sas

A digest of some of this essential information as it applies to
VM/370 follows:

CP Introduction 1-97



Text messages to and from remote terminals and printers can only be
achieved when the bisync line is in text mode.

Text messages from a remote device can be the result of a general
poll or specific poll operation to the related device or devices on
the bisync 1line. This polling communication interface is
accomplished by each 1line-connected control wunit having unique
specific poll and general poll recognition circuitry and by the CP
terminal list of valid bisync lines and 3270 remote control unit
addresses. This list, the termipnal 1list, is generated by VM/370
system generation procedures employing TERMINAL and CLUSTER macros.
For more details about terminal list generation, see the VM/370
Planning and System Genperation Guide.

Reliability and dependability of line operation is achieved by the
use of: a double addressing scheme, control characters with a rigid
message protocol, and complex redundancy-check characters appended to
transmission messages. Examples of these techniques are shown in the
formats that follow.

Every message (text or control) that is issued by CP mayjy Of &ay not
be responded to by +the remote station or control unit. The type of
response (or absence of response) that CP receives depends on the
receptiveness of that device or control unit to the previously sent
message (is the device ready and enabled and accurately addressed)
and the content and correctness of the message (no line errors).

To establish the relationship of the line of terminal response to a
particular line or device write or read operation, CP employs an
operation "tracking® facility (TP op code) imbedded in the issued
CCWs. The function performed by the CP op code is described in the
following CCW formats.

r ]
|Operation| Address |Flags (TP Op | Count |
| Code { Field | | Code | |
| 1 byte | 3 bytes |1 byte]|1 byte|2 bytes|
L I

0 78 31 32 39 40 47 48 63

where:

Operation Code

contains the hexadecimal value of the type of operation
performed by the command.

Valid operation codes are:

X'01' WRITE
X'02' READ
X'03' NoO-OP
X*'09' POLL
X*23' SET MODE
X'27' ENABLE
X'2F"' DISABLE

Address Field

1

Depending on CCW usage, this field may address an:

98 IBM VM/370 System Logic and Problem Determination--Volume 1



Area
The address of the data area (read buffer) 1located in the
BSCBLOK at BSCREAD.

Table
The appropriate 1location in the table of data-link control
characters provided in the module DMKGRF (Example: RVI, EOT,
ENQ) .

Response
(BSCRESP). The address location of the response message in
the BSCBLOK.

List

The appropriate entry in terminal list (NICBLOKS) associated
with the READ or WRITE operation. The entry for WRITE
operation is at location BSCSEL. The entry for the READ

operation is at location BSCPOLL.

Note: To see how the key words AREA, TABLE, RESPONSE, and LIST are used,
refer to the CCW sequences described in "I/O Program Routines for Bisync
Lines and 3270 Remote Devices"™ in this section.

The flag bits turned on in the CCW: CC (channel commands), CD
{chained data), SILI (suppress incorrect 1length indication),
skip (suppress data transfer to main storage) and PCI
{(program—controlled interrupt).

TP Op Code

An imbedded teleprocessing operation code in the CCWs used in
bisync line communications. This code is inspected by the
secondary interruption handler, DMKRGAIN, when channel end and
device end are received. The code is also used by the error
processing module, DMKBSC. The code indicates the function
being performed by the associated command. For use of the TP
op codes, refer to the formatted CCWs that follow.

Count
Refers to the byte length of the CCW READ or WRITE operation.

I/0 PROGRAMS FOR BISYNCHRONOUS LINES AND REMOTE 3270S

Before data communication to remote 3270 equipment can take place, the
remote teleprocessing line, the control unit and the device(s) must be
enabled for communication. This occurs when control unit hardware
recognizes a unique string of characters transmitted on the 1line from
CP. Disabling a line occurs in a similar manner. The following is the
format of the CCWs used in the enabling/disabling operation:

CP Introduction 1-99



r B ]
|0pera- (Command | { |TP Opl| {
|tion | Code |Address [Flags|Code |Count|
{ |
|Dis- | X'2F' | 0 {fcc, t 01 | 1 |
fable | | | SILI| | |
|Line | { | | 1 |
| 1
|Set | X'23' § X'40' | cc, | 01 | 1 |
{Mode | | | SILI| L} |
| |
|Enable| X'27°' | 0 | SsILI| 01 | 1
{Line | | | | | |
1 3
Disable a Line

L 1
|0pera- |Command | { ITP Op| |
ftion | Code |Address [Flags|Code |Count|
| |
iDis- | X'2F"' | 0 { sILI| 01 | 1 |
lable | | i | { !
{Line | | | | | i

'

After a line is enabled, communication can then be directed to a
particular resource. The sequence of events (for a write disable and
write continue) is as follows:

Send a data 1link control character on the 1line that places the
control unit in control mode. This mode makes the control aunit
receptive to the specific address indicated by the second CCHW. The
third CCW is a read CCW that is needed for the acknowledgement response
from the addressed control unit. WNormally, in response, CP transamits a
block of data to that device with a write text CCW. Acknowledgement of
receipt of this data is contained by the read response (write continue)
CCW. The format of the CCW write initial and write continue operation
follows.

r L]
{Opera—{Command | | |TP Opl |
[tion | Cocde [Address |Flags|Code {Count|
| |
|[Write | 01 | Table { CC, | 02 | 1 |
lan EOT| | | SILI| | |
| |
|Wcite | 01 | List | cCc, | 03 |LIST |
lad- | | { SILI| | 1
ldress-| | | | i |
ling | l | | | |
{char. | { | { | |
| |
|[Read | 02 {Response| SILI| 05 | 2 |
|Re- | 1 | | | |
| sponse| | | | 1 |
i | ]

1-100 IBM VM/370 System Logic and Problem Determination--Volume 1



Write Continue

r 1
|0 pera- {Command | | |TP Opl| |
|tion | Code |Address |Flags|Code |Count]
{ - l
|[Write | 01 | Area | CC, | 10 |vari-|
ftext | | | SILI| {able |
i |
fRead | 02 |Response{ SILI{| 11 | 2 |
|Re- | | | | [ |
| sponse| | | | | |
i ]

In situations where the 1line is found to be in text mode, CP can
issue a write reset sequence to put the binary synchronous line in
control mode. The following format illustrates the write reset CCH.

L R
|Opera- |Command | | ITP Op| |
{tion | Code |Address |Flags|Code |Count|
| |
|Rrite | 01 | Table | SILI| 09 | 1 |
| EOT | | | { | |
L ]

In situations where the expected response from a remote station was
not received or was invalid, the channel program may request the remote
station to retransmit the response. The following write ENQ format
shows this sequence. The remote station, upon receipt of the ENQ
message, responds by transmitting the expected or valid response to the
response area indicated by the second CCW.

Write ENQ
L 1
|(0Opera- |[Command | | |TP Opl |
{tion | Code |Address {(Flags|Code |[Count|
| |
(drite | 01 | Table | CcC, { 03 | 1 |
{ ENQ | | | SILI| ( (
| |
|IRead | 02 |Response| SILI} 11 | 2 |
|Re- | | 1 1 | {
| sponse| | | | | |
L y ]

Read operations occur following a gemeral poll or a specific poll for
text messages. In a general poll sequence, CP transmits the general
Poll characters to the attached control unit on the bisync 1line. The
control unit recognizes the polling request, then the list (referred to
in the poll CCH) of enabled devices is scanned for any messages that are
queued and ready for transmission. A positive acknowledgement (yes, I
have a message to transmit) from any of the attached devices causes the
next CCH# to be skipped. The last CCW provides the read buffer and the
count necessary for the incoming data block from the first remote

CP Introduction 1-101



station on the list that had a message queued for transmission. If,
however, all remote stations respond with negative acknowledgement (no
messages queued) or any station queried for a response fails to respond,
then the channel program ends with the third CCW. The following read
initial format shows the initial read CCW sequence.

| 1
(Opera- |Command | { |'TP Op| |
{tion | Code (Address |Flags|Code |[Count]|
| {
|Fcite | 01 | Table | CcC, | 02 | 1 1
| EOT | 1 { SILI| | |
| ; i
|Poll | 09 | List | CC, | 03 |LIST |
( | | { SILI| ( I
| |
1T/0 { 03 | 0 ¢ STLTL 07 1 1 1
|No- | | | | | {
lopera- | 1 | 1 | |
ltion | | | { | |
| (
|[Read | 02 { Area | SILI| 10 | 162 |

l

J ]

|Text | | | | |
L

After CP receives a message from a remote station, it may reissue the
initial read sequence to poll the remaining stations on the 1list
(assuming the 1list of enabled devices was not exhausted on the first
pass of the initial read sequence). In the event that the 1list was
exhausted on either the first or a subsequent initial read sequence, CP
starts the poll delay, themn allows the poll delay interval to expire
before starting another read scan to the line (assuming CP has no higher
line priority tasks to process). If, in the process of receiving
messages from remote stations, CP receives a message block that is
invalid or its beginning or ending bisync control characters are not
recognized, CP can elect to send a negative response back to the remote
station. This negative response, the NAK control character, causes the
remote station to retransmit the previous message to CP; this incoming
message is processed by the second CCR of the read repeat sequence as
shown in the format below. .

Read Repeat

L e Al
|Opera- [Command | | ITP Opl| |
|tion | Code |[Address [Flags|Code |[Count|
| : |
|Write | 01 | Table | CC, | 06 | 1 1
| NAK | i { SILI| | {
1 |
|[Read | 02 | Area | SILI| 10 | 162 }
| Text | | | | | |
[ ']

Once CP message processing receives an error-free message from a
remote station, CP sends an RVI control character to the remote station
before processing the message. The remote station, upon recognition of
the RVI character, halts the sending of additional queued data and
responds with EOT (instead of the normal ACKO/ACK1 response). The

1-102 IBM VM/370 System Logic and Problem Determination--volume 1



second CCH of the read interruption sequence processes the EOT response
from the remote station as shown in the format below.

Read Interruption

L L
|[0pera- |Command | | ITP Opl |
|tion | Code |Address |Flags|Code |Count|
{ |
{WNrite | X*01' | Table | CcC, | 06 | 2 |
| RVI | | | SILI| { |
i |
fRead | X'02' |Respomnse| SILI{ 11 | 2 |
|Re- | | 1 | | 1
| sponse| | | | { {

I ]

DATA FORMATS - BISYNCHRONOUS LINES AND REMOTE 3270S

CP, in conjunction with remote 3270 support, uses the followving formats
for its text messages. Por a detailed explanation of the abbreviations
used, see the IBM 3270 Information Display System Component Description.

Write Text Data

Bessage Format

Display commands use this message format for the placement or erasure of
data anywvhere on the display screen.  The display commands that
implement this function are: WRITE (X'F1'), ERASE/WRITE (X'F7') and COPY
(X*F7%).

Hrite Data Stream

//

r L ]

ISTX|ESCICMD|RCC|BSA| Buffer | Oorders [SBA| Buffer | f ETX |

[ | i | | |Address | & Text | | Address | | |

i // ']
1 1 1 1 1 2 variable 1 2 1

L]

Write Text Messages for the Copy Command

The COPY command is limited to compatible printers located on the same
control unit. Action starts by pressing a PF key designated for the
COPY function. CP responds by sending a message to the control unit
that contains both the designated printer and the display station that
requested the action and directs the control wuwnit to print the
designated display buffer to the printer specified.

The format of the COPY messages follows:

CP Introduction 1-103



3271 Copy Data Streanm

| | X'FT* | |Address| |

r A
|STX|{ESC| CMD |[CCC| From |ETX|
|
i

v 1
ISTX|ESC| CMD |WCC|SBA|Buff |ETX|
b1 IX'F1'y | jadr | |
I B I 1(s0401 |
t ]

Re

2
3
1o
14
let
v
Ia

ead Header Message Formats

The following is representative of typical input-to-processor message
formats. The format of a multiline read operation follows.

Read Text Data Streanm

r // //
| Index |STX|CU |Dev|AID|Cursor|SBA(Buff| Text |SBA[Buff| Text |
|Byte | {Adr|Adr| | addr | {addr| i faddr| |

L

// //

EIror Status Data Stream

Another form of input message is the error status message. Error status
is processed by the DMKRGF module. The characters, %R, following the
SOH signify that this message contains sense and status data. The
format of this message followus.

i
IIndex|SOH| % |
IByte | | |
| | | |

R |STX|CU |Dev|Sense/|ETX
| |ADR|Adr | Status|
|

| 1 |Bytes |

ot et s oo

The test request message, upon receipt from display terminals, is
ignored by CP. The input inhibit mode that the display terminal enters
upon pressing the test request key can be reset only if the terminal
user presses the RESET key. The characters, %/, following SOH indicate
the test request function. The format of this message followus.

|
| Index | SOH %

i Text | ETX
| Byte | |
L

| /| STX |
| i | |

s o

1-104 IBM VM/370 System Logic and Problem Determination--Volume 1



ALLOCATION MANAGEMENT

Real storage space above the Control Program nucleus is made up of the
dynamic paging area and the free storage area. Page frames (allocation
space in real storage for a page of data) in the dynamic paging area are
allocated to virtual machines and the control program to satisfy paging
requests. Blocks of storage, requested by virtual machines and CP for
working storage, are allocated from the free storage area.

NORMAL PAGING REQUESTS

If a progranm 1nterrupt10n is caused by a normal raging request (not from
a virtual machinme that is running in BEC mode with translation on),
DMKPRGIN determines whether a segment or page translation error has
occurred. If one of these errors occurred, an invalid address
interruption code is set, and the interruption is reflected to the
virtual machine supervisor. If a segment or page translation error has
not occurred, the virtual wmachine's current PSW is updated from the
program o0ld PSW (PROPSW), the address of the current VMBLOK is placed in
register 11, and DMKPTRAN is called +to obtain the required page. When
the paging operation is completed, control is returned to DMKDSPCH.

Virtual Storage Management

When operating in the CP relocate environment, each virtual machine's
virtual storage space is described by two sets of tables.

e One set, the segment and page tables, describes the location and
availability of any of the virtual machine's virtual pages that may
be resident in real storage. Locations in these tables are indexable
by virtual address, and the entries contain index values that
reference corresponding real storage -addresses. In addition, each
table entry contains an indication of whether the corresponding
virtual page is available to the user in real storage. These tables
are referenced directly by the DAT feature when the virtual machine's
program is running.

e The second set of tables, called swap tables, is a map of the
locations of the virtual machine's pages on the DASD devices that
comprise the system's paging or auxiliary storage. The DASD
addresses in these tables can either represent the source of a page
of virtual storage (the location to which a page may be moved if
necessary) or a dummy address, indicating that the given page has not
yet been referenced and, thus, has a value of binary zeros.

The swap tables are arranged in a format indexable by virtual storage
address. In addition to containing the address of a page, each entry
contains flags and status bytes that indicate such information as:

e The storage protection keys to be assigned to the page when it is
made resident.

® Whether the page is currently on its way into or out of the systea
(in transit), etc.

These tables are not referenced directly by the hardware as are the

page and segment tables, but are used by paging management to locate
user pages that are needed to execute a progranm.

CP Introduction 1-105



Virtual storage management is done by the technique known as demand
paging. This means that a page of virtual storage is not "paged in"™ from
its DASD auxiliary storage area until it is needed. CP does not
determine the pages required by a virtual machine before the virtual
machine executes. A demand for a page can be made either implicitly by
the virtual machine or explicitly by CP.

e An implicit demand for a page is made when a program attempts to
reference a page that is not available in real main storage. This
attempt causes a program interruption with <the interruption code
indicating a page or segment exception. Upon recognition of this
condition, control is passed to the paging manager to obtain a page
frame of real main storage and to bring in the desired page.

e An explicit demand for a page can be made by CP (for example, in the
course of translating a user's channel program). If, in the process
of translation, CP encounters a CCW that addresses a page that is not
resident in real storage, a call is made to the paging manager to
make the referenced page resident.

While the requested page is being fetched, the requesting virtual
machine is unable to continue execution; however, it may be possible to
run other tasks in the system, and CP runs these while the needed page
is being paged in. When the requested page is resident, the virtual
machine can be run and is dispatched in its turn.

In addition to demanding pages, virtual machines implicitly or
explicitly release page frames of their virtual storage space. Part of
the space may be explicitly released from both real and virtual storage
via a DIAGNOSE instruction that indicates to the control program those
page frames that are to be released. An entire virtual storage is
released vhen a user loads (via IPL) a new operating system or logs off
from the systeam.

CP also has virtual storage associated with it. This space contains
CP (some parts of which need not always be resident in real storage),
and virtual storage buffers for spooling and system directory
orerations. Although CP makes use of virtual storage space for its
execution, it does not run in relocate mode. Thus, nonresident modules
must be completely relocatable.

Real Storage Management

Real storage management allocates the system's page frames of real
storage to satisfy the demands for virtual pages made by the system's
virtual machines. Efficiency of allocation involves a trade-off; the
paging manager uses only enough processor time to ensure that:

e The set of virtual storage pages that are resident represent those
pages that are most likely to be used.

e A sufficient number of cycles is available to execute virtual machine
programs.

Inefficiency in the first area causes a condition known as thrashing,
vhich means that frequently used pages are not allowed to remain
resident long enough for useful work to be performed by or on thena.
Thrashing could be aggravated by the paging manager's page frame
selection algorithm or by a dispatcher that attempts to run more tasks
than the system can handle (the sum of their storage requirements

1-106 1IBM VM/370 System Logic and Problem Determination--Volume 1



exceeds the real paging space available in the system). Thus, the
paging manager must keep statistics on system and virtual machine paging
activity and make these statistics available to the dispatcher to detect
and prevent a potential thrashing condition.

Inefficiency in the second area causes an unacceptable ratio of CP
overhead to virtual machine program time, and in extreme cases may cause
CP t0 use excessive processor time. To understand how allocation is
determined by CP, the way in which the inventory of real storage page
frames is described to the system must be understood.

Each page frame (4096-byte block) of real storage in the system is in
one of two basic states: nonpageable or pageable. A nonpageable page
must remain resident in real storage for some period of time; thus, the
page frame cannot be taken from its current owner to be given to someone
else. Pages can be either permanently or temporarily nonpageable,
depending upon their use.

Temporary locks wusually occur when an I/O operation has been
initiated that is moving data either to or from the page, and the page
must be kept in real storage until the operation has completed.

A page can also be temporarily nonpageable if it contains an active
nonresident CP routine.

In addition, a page can be nonpageable through use of the LOCK
command. Pages locked this way are permanently resident until they are
explicitly unlocked by the UNLOCK command. Pages that are usually
considered permanently nonpageable are those that contain the resident
portion of CP and those that contain the system's free storage area in
which control blocks, I/0 buffers, etc., are built.

The data area that page management routines use to control and
allocate real storage is the CORTABLE. Each page frame of real storage
has a corresponding entry in the CORTABLE, and because the table entries
are fixed in 1length and contiguous, the entry for any given real page
frame may be located directly by indexing into the table. Each entry
contains pointers that indicate both the status and ownership of the
real page that it represents. Some pointers link page table and swap
table entries to the real page (and thus establish ownership), while
others link the entry into one of several lists that the paging routines
use to indicate the page frame's status and availability for paging. 2
given CORTABLE entry may appear on either of two lists if its real page
frame is available for paging; however, if the page referenced is locked
or is in transit, its entry is not in either list and is not referenced
when available page frames are being searched for swap candidates. The
lists are known as the free list (FREELIST) and the flush 1list
(FLUSHLST), and they represent various levels of page frame
availability.

e The free list contains page frames that are immediately available for
assignment to a requesting virtual machine. The virtual storage
pages for which they were last used have either been released by
their owners or +they have been paged out to auxiliary storage.
Requests for real storage are always satisfied from the free list.
If the list has been depleted, the requestor waits until a new page
frame becomes available as the result of a virtual storage release or
a swap-out.

e The flush 1list contains page frames that belong to those virtual
machines that have been dropped from an active dispatching queue. The
flush list is the first place that the page frame selection routine
looks to find a page to swap out or to assign to the free list for a
virtual machine that requires real storage space.

CP Introduction 1-107



e The scheduler aids the page selection algorithm by notifying it of
virtual machines that are no longer eligible for dispatching (either
because they have completed or because they are being held suspended
in the eligible list). The scheduler calls the page reset routine
when a virtual machine is dropped from a dqueue and does not
immediately reenter the dispatch list. Under heavy paging loads, it
is the responsibility of the page reset routine to group all
in-storage virtual pages belonging to the virtual machine on an
available (or flush) list for easy selection by the page replacement
algoritham.

Requests for Real Storage Page Frames

Requests for real storage fall into two general categories; those that
are requesting space for a page of virtual storage, and those (such as
requests for CP work space) that need page frames for their own use. The
former, more general case is discussed first, because the latter case is
a subset of the first.

The main page manager routine, DMKPTRAN, maps a request for a
specific virtual storage address into a page frame of real storage.
This requires that the virtual page be read in and the necessary tables
be updated to show the proper status of the page frame.

DMKPTRAN requires that the caller supply only the virtual address to
be translated . and any options that apply to the page to be located.
Most calls are made via the TRANS macro, which sets up the necessary
parameters, determines whether or not the required page is resident, and
calls DMKPTRAN if it is not.

When DMKPTRAN receives control, it first tests to see if the
requested page is resident. This is done via the LRA instruction. If
the page is resident, the routine locks the page if requested and exits
to the caller. If the LRA indicates that the page is unavailable, it is
still possible that the required page is resident. This occurs if the
page frame has been placed on the FREELIST but has not been assigned to
another virtual wmachine. When the page swap routine removes a page
frame from a virtual wmachine, the wunavailable bit is set 1in the
corresponding page table entry; however, the real main storage index for
the page frame is left unchanged. The page table entry is set to zero
only vwhen the corresponding page is actually assigned to another virtual
machine. Thus, if DMKPTRAN finds the page unavailable, a further test
is made on the page table entry to see if the page can be reclaimed. If
the entry is not zero (aside from the unavailable bit), the CORTABLE
entry for the page frame is removed from the FREELIST and the page frame
is returned to the calling virtual machine.

If the page table entry corresponding to the requested virtual page
is zero, the required page is not in real storage and must be paged in.
However, it is possible that the page is already on its way into main
storage. This condition is indicated by a flag in the SWPTABLE entry for
the virtual page. The DMKPAGIO routine maintains a queue of CPEXBLOKs to
be dispatched when the pending page I/0 is complete. The CPEXBLOK for
the page in transit is located and a new CPEXBLOK, representing the
current request, is chained to it.

Before exiting to wait for the paging operation to complete, DMKPTRAN
checks to see if the deferred return (DEFER option) has been specified.
If it has not, DMKPTRAN returns to the caller. If the DEFER option has
been requested, DMKPTRAN exits to the dispatcher to wait for page I/0
completion. When the requested page has been read into real storage, the
list of CPEXBLOKs are unstacked first in first out to satisfy all
requests for the page that arrived while it was in transit.

1-108 1IBM VM/370 System Logic and Problem Determination--Volume 1



If a page is not in transit, a page frame of real storage must be
allocated to fill the request. Before the allocation routine is called,
a test is made to see if the caller wishes the return to his routine or
to be delayed until after the requested page is available. If the DEFER
option is not requested, DMKPTRAN returns to the caller after first
building and stacking a CPEXBLOK that allows processing of the page
request to be continued the next time the dispatcher (DMKDSPCH) is
entered.

DMKPTRAN next calls the FREELIST manager (DMKPTRFR) to obtain the
address of the next available CORTABLE entry. DMKPTRFR maintains a
first-in-first-out list of the CORTABLE entries for those page frames
that are immediately available for assignment. As DMKPTRFR releases
these page frames, a check is made to see if the number of entries on
the FREELIST has fallen below a dynamically maintained minimum value. If
it has, the page selection routine (SELECT) is called to find a suitable
page frame for placement in the FREELIST. The number maintained as the
FREELIST threshold has a value equal to the number of users in dqueuetl
plus the number of users in queue2 plus 1.

The FREELIST is replenished directly by users releasing virtual
storage space. The page-out routine, DMKPGSPO, calls DMKPTRFT to place
released page frames directly on the FREELIST. However, most
replenishment is done via the page selection routine, SELECT. SELECT is
called by DMKPTRFR vwhen the FREELIST count falls below the current
minimum, or when a user page is reclaimed from the FREELIST. 1In either
case, the selection algorithm attempts to find a page to swap to
auxiliary storage. The highest-priority candidates for a swap are those
page frames whose CORTABLE entries appear on the FLUSHLST. SELECT
attempts to take a flushed page frame before it takes a page frame from
an active user. If such a page frame is found, it is checked to see if
it has been changed since page-in. If it has not, it is placed in the
FREELIST by DMKPTRFT; otherwise, it is scheduled for a swap-out by
dequeuing the CORTABLE entry from the FLUSHLST, constructing a CPEXBLOK
for dispatching after I/0 completion, and exiting to DMKPAGIO by a GOTO.
After the paging I/0 is complete, the entry is placed on the FREELIST
via a call to DMKPTRFT.

If no pages are found on the PLUSHLST, the selection algorithm
examines each page im real storage, searching for an available page that
doces not have its reference bit on. It begins the search at the first
available page at the high end of real storage and searches by
descending page address. When it reaches the 1lowest available page
address, it starts again from the top of storage. When a page has been
found, that page address minus one is checkpointed. The next time the
selection algorithm is invoked, it starts from the checkpointed address.
As the selection process proceeds, those pages that were not selected
have their reference bits turned off. When the selection algorithm is
operating in this mode, a virtual page must be referenced at least once
per reset cycle (loop around real storage) to avoid selection.

Once a page frame has been selected and page-out is scheduled,
control is returned +to DMKPTRFR, which then passes control back to
DMKPTRAN with the address of the CORTABLE entry that was allocated. In
most cases, page-outs are completely overlapped with page-inms.
Approximately one half of all page-ins require a corresponding page-out.

Once a page frame has been assigned, DMKPTRAN checks to see 1if a
page-in is required. It usually is, and the DASD address of the virtual
storage page must be obtained from the user's swap table entry and the
I/0 operation scheduled. However, if the page frame has not yet been
referenced (as indicated by a DASD address of zero), the real main
storage page frame is set to zero, and no page-in is required. After

CP Introduction 1-109



the page-in operation has been queued, DMKPTRAN exits to the paging I/O
scheduler (DMKPAGIO), which initiates the paging operation and exits to
the dispatcher (DMKDSPCH) to await the interruption.

Some requests for main storage page frames are handled differently
from general virtual-to-real storage mapping. In particular, it may be
necessary for CP to obtain additional free storage for control blocks,
1/0 lists, buffers, etc. This is handled by the free storage manager,
vhich makes a direct call to DMKPTRFR to obtain the needed storage.
Usually, this storage is immediately available (due to the page
buffering technique previously described). However, if the FREELIST is
exhausted, the request for free storage is recognized as a high-priority
call and queued first on the list of those waiting for free page frames.

The real storage manager (DMKPTR) accumulates paging statistics that
the scheduler (DMKSCH) uses to anticipate user storage requirements. A
count of page-reads and page-writes is kept in each virtual machine's
VMBLOK; the corresponding total counts for the system are kept in
DMEPSA. A running total of the number of pages a virtual machine has
resident, at each instance of page-read, is kept in the VMBLOK. A count
of the number of times a virtual machine enters page-wait, because a
page frame has been stolen from it, is also kept in the VMBLOK. The
section entitled ®"Controlling Multiprogramming® under "Dispatching and
Scheduling®™ describes the use to which the scheduler puts these counts.

¥M/370 Virtual=Real Option: The VM/370 virtual=real option involves the
mapping in a one-for-one correspondence of a virtual machine storage
area with an equivalent real storage area. For instance, virtual page 1
is in real page frame 1 and virtual page 20 is in real page frame 20.
Virtual page O is relocated at the end of the virtual storage space
because ‘it cannot occupy real page frame O.

The CP nucleus is altered at system generation to support the
virtual=real option. Virtual machines with wvirtual=real (specially
identified in the directory) can then log on and use the space reserved
for this option. That space can be used by only one virtual machine at a
time. Two virtual machines with the virtual=real capability cannot
occupy the same space at the same time.

The virtual=real option allows the virtual machine to bypass the
control program's CCW translation. This is possible because I/0 from a
virtual machine occupying a virtual=real space contains a 1list of CCWs
whose data addresses reflect the real storage addresses. The
restriction in this situation is that the virtual machine does not
perforn I/0 into page frame 0 because this would perform a data transfer
into real page frame 0. At the same time, it is assumed, and cannot be
checked, that the virtual machine also does not attempt to do I/O beyond
the bounds of its virtual addressing space. To do so would cause the
destruction of either the CP nucleus, which resides beyond the virtual
machine space, or another user's page.

If the real I/0 device is an MSS 3330V, then CCW translation is not
bypassed since CP must still be able to recognize an MSS cylinder fault.
See Appendix B for details.

The bypassing of CCW translation for the virtual machine occupying
the virtual=real space is only invoked after the virtual machine has
executed the SET NOTRANS ON command. This command can only be issued by
the virtual machine occupying the virtual=real space. The command
initiates the bypass of CCW translation. This option is automatically
turned off if the virtual machine performs an explicit reset or an
implied reset by performing a virtual IPL. During virtual machine IPL,
I/0 must be performed into page frame 0. For this reason, normal
virtual IPL simulation assumes CCVW translation in effect to accomplish

1-110 IBM VM/370 System Logic and Problem Determination--Volume 1



the full simulation. Once the IPL sequence has completed, CCW
translation can be bypassed by issuing the SET NOTRANS ON command.

When the virtual machine demands a page frame through normal use of
CP's page tables, the paging routine recognizes the virtual=real
capability. It then assigns the virtual page to the equivalent real page
frame and does not perforsm a paging operation, because all these pages
are resident and are never swapped out.

Note: The virtual machine running with virtuwal=real is still run in
Systemn/370 relocate mode.

Virtual 270X lines and sense operations from the virtual machine do
not use the virtual=real function. These invoke CCW translation for the
virtual enable/disable lines and the transfer of the sense bytes.

The UNLOCK command has a VIRT=REAL operand that essentially releases
the virtual=real area for normal system paging use. Once the area has
been released, it can only be reclaimed for additional virtual=real
operations only by an IPL of the VM/370 system. The size of the
virtual=real area is an installation specification that is part of the
special nucleus generation procedure that is outlined in the ¥YN/370
Planning and System Generation Guide. The size of the area nmust be
large enough to contain the entire addressing space of whatever virtual
machine wishes to occupy that space. A virtual machine can use a smaller
space than is provided but cannot use a larger space without
regenerating the CP nucleus.

DASD STORAGE MANAGEMENT

Any virtual machine's virtual storage pages that have been referenced
but are not resident in real storage must be kept in slots on the DASD
paging device. DASD page space 1is assigned only when the page is
selected for a page-out. Certain DASD pages may also be marked
read-only. Thus, the DASD address slot initially associated with the
page should be considered to be the source of the page only. If the
page is changed after it has been read into real storage, a new slot
must be obtained when it is paged out. Examples of read-only pages are
those which contain portions of pageable saved systems and pages which
are part of a system spool file. Slots can be reassigned when DMKPTRAN
finds that it must swap a page out to a movable-head DASD device. In
this case, the 0ld slot is released and the new slot is obtained.

Slot Allocation

If a new slot is required, DMKPGT is <called to supply the address of an
available slot. DMKPGT maintains a chain of cylinder allocation maps for
each cylinder that has been assigned for either virtual storage or spool
file paging. The allocation chains for spooling are kept separately
from those used for paging so that they can be checkpointed in case of a
system failure. However, in other respects they are the same. The
allocation blocks for a given volume are chained from the RDEVBLOK for
the device on which the volume is mounted. The chains of cylinder and
slot allocation blocks are initialized by DMKCPI. Each block on an
allocation chain represents one cylinder of space assigned to paging,
and contains a bit map indicating which slots have been allocated and
which are available. EBach block also has a pointer to the next
allocation block on the chain, a cylinder number, and a record count.
DMKPGT searches this list sequentially until an available slot is found;

CP Introduction 1-111



its DASD address is then determined and passed back to the calling
routine. If DMKPGT cannot find a cylinder with a de-allocated slot, it
enters the cylinder allocation phase. When an available cylinder is
found, it constructs a page allocation block for +this cylinder and
allocates a page to the caller.

DMEPGT controls the paging and spooling I/0 load of the system by
allocating cylinders evenly across all available channels and devices.
In order for a device to be considered available for the allocation of
paging and spooling space:

e Its volume serial number must appear in the system's owned list.

e It mnmust have at least one cylinder of temporary space marked as
available in the cylinder allocation block which is 1located on
cylinder 0, head 0, record 3.

e It must not be an MSS 3330V volume.

At system initialization time, CPINIT reads in the allocation records
for each volume and constructs the chains of device allocation blocks
from which DMKPGT allocates the cylinders. In managing the cylinder
allocation, DMKPGT takes three factors into consideration: device type,
device address, and possible status as a preferred paging device.

A request for a cylinder of virtual storage page space is satisfied
by allocating space on a preferred paging device, provided that one
exists on the system and that it has page space available. Preferred
paging devices are specified by the installation at system generation
time, and generally should be devices on which excessive seek times do
not occur. A typical preferred paging device would be the IBHM 2305
FPixed Head Storage facility. If the 2305 is assigned as a preferred
device, it 1is ©possible to allocate some of its space for other
high-priority data files without excessively degrading paging. An
example of such usage would be for high activity read-only saved systea
pages that are not shared in real storage, and high-activity systea
residence disks.

It is also possible to designate movable-head DASD devices such as
the 3330, 3340, 3350 and 2314/2319 Direct Access Storage facilities as
preferred paging devices. The mnmodule(s) so designated should not be
required to seek outside of a relatively narrov cylinder band around the
center of the paging areas. It is advisable to share the access arm of
a movable-head preferred paging device with only the lovwest-usage data
files.

If one or more preferred devices are defined on the system, CP
allocates all of the page space available space on these before it
allocates on any other available owned volumes. Within the class of
preferred devices, space is allocated first on the fastest devices, and
these are spread out across channels and devices. Allocation on
nonpreferred devices is spread out in the same manner. Cylinders for
spooling space are not allocated from preferred devices. Allocation on
a given device is done from the relative center of the volume outward, a
cylinder at a time in a zig-zag fashion in an attempt to minimize seek
times.

1-112 IBM YM/370 System Logic and Problem Determination--Volume 1



When a regquest to allocate a slot for virtual storage paging is
received by DMKPGTGT and the slot must be allocated on a moveable head
(231472319, 3330, 3340, or 3350) device, a cylinder and slot are
selected in the following manner:

1. CP tries to allocate a space on the cylinder at which the arm on
the selected device is currently positioned.

2. 1If slots are not available on the current cylinder, CP tries to
allocate space on a cylinder for which paging I/0 has been queued.

3. If the above conditions cannot be met, CP allocates space as close
to the center of the volume as is possible.

Before DMKIOSQR is called, the queue of IOBLOKs currently scheduled
on the device is examined. If paging I/O has already been scheduled on
a device, the paging channel programs are slot-sorted and chained

3 MY -~
tcgether wit 1i({S.

PAGING I/O

DMKPAGIO handles all input/output redquests for virtual storage and
spooling pages. DMKPAGIO constructs the necessary task blocks and
channel programs, expands the compressed slot addresses, and maintains a
queue of CPEXBLOKs for pages to be moved. Once the I/0 scheduled by
DMEKPAGIO completes, it unchains the CPEXBLOKs that have been queued and
calls DMKSTECP to stack them for execution. DMKPAGIO is entered by a
GOTO from:

e DMKPTRAN to read and write virtual storage pages
s DMKRPA to read and write virtual storage spool buffers

In either case, all that needs to be passed to DMKPAGIO is the
address of the CORTABLE entry for the page that is to be moved, the
address of a SWPTABLE entry for the slot, a read or write operation
code, and the address of a CPEXBLOK that is to be stacked for
dispatching after +the I/0 associated with the page has completed.
DMKPAGIO obtains an IOBLOK and builds a channel program to do the
necessary I/0, and uses the device code that is part of the page address
to index into the system's OWNDLIST and 1locate the real device to which
the I/0 request should be directed. If the device 1is capable of
rotational position sensing, the required sector is computed and a SET
SECTOR command is inserted into the channel program. The real SIO
supervisor DMKIOSQR is then called to schedule the operation on the
proper device.

When the interruption for the paging operation is processed by the
primary I/0 interruption handler, the IOBLOK that controls the operation
is unstacked to the interruption return address, waitpage, in DMKPAGIO.
waitpage then unchains the CPEXBLOKs that are queued to DMKPAGQ, and
then stacks the queued CPEXBLOKs, by calls to DMKSTKCP, in the order in
vhich they were received. The address of the real page frame 1is filed
into the appropriate page table entry and the pointers denoting the
ownership of the real page frame are filed into the CORTABLE entry by
the processing routines in DMKPTRAN. If a fatal I/O error occurred for
the related page frame, the CPEXBLOKs associated with it are flagged,
and the dispatcher, DMKSDPCH, sets a nonzero condition code when it
activates the pending task. The error recovery followed depends on the
operation being performed. Paging I/0 errors associated with spooling
operations are discussed in ®“DASD Errors During Spooling®™ in this

CP Introduction 1-113



— v ——— — — — — —— — —

——— — — —

section, while errors associated with virtual storage paging operations
are discussed 1later in the section "vVirtual Storage Paging Error
Recovery",

DMKPAGIO maintains its own subpool of preformatted paging IOBLOKs.
As 1I/0 operations complete, their IOBLOKs are added to a list of
available blocks; as new blocks are needed, they are taken from this
list. If the list is empty, DMKFREE is called to obtain storage for a
nevw block. DMKPAGIO also periodically calculates system paging
overhead. After 200 pages have been moved (read or written), the
elapsed time for the 200 page moves is computed, and the paging rate is
calculated in page moves per second. The recent paging load, expressed
as the percentage of time that more than one half of the system's pages
were idle due to page-wait, is averaged with the previous load and
re-projected as the expected load for the next interval.

PAGING SUBSYSTEM

The paging subsystem has three major components that have resource
optimization algorithms associated with them:

e The page replacement and page selection algorithm that manages the
allocation of real storage frames and selects which virtual page to
replace.

e An algorithm for the allocation of DASD backing store pages.

e An algorithm for ordering the queue of page I/0 regests.

PAGE REPLACEMENT AND PAGE SELECTION ALGORITHM

VM/370 is a demand paging system. Programs run in virtual storage and
vhen a storage reference is made to a virtual page not currently in real
storage, a page fault occurs. A page fault is a program interruption
that occurs when a page marked "not in real storage®™ is referred to by
an active page. This page fault represents a demand for a real storage
frame in which to place the virtual page. The page replacement
algorithm chooses which real storage frame will be allocated to fulfill
such a demand. If all real frames in real storage are occupied by other
virtual pages, a real frame can only be obtained by replacing one of
those virtual pages. The selection of which virtual page to replace is
carried out by the page selection algorithm.

The scheduler aids the page selection algoritham by notifying it of
virtual machines that are no longer eligible for dispatching (either
because they have been dispatched, or because they are being held
suspended in the eligible 1list). The scheduler calls the page reset
routine when a virtual machine is dropped from a gqueue and reset routine
wvhen a virtual machine is dropped from a queue and does not immediately
reenter the dispatch 1list. Under heavy paging 1loads, it 1is the
responsibility of the page reset routine to group all in-storage virtual
pages belonging to the virtual machine; it groups them on an available
(or flush) list for easy selection by the page replacement algorithm.

The page reset routine cycles through the virtual machine's segment
table looking for valid segment entries. When it finds a valid entry,
it turns on the segment table entry invalid flag and the page reset
routine begins to process the page table associated with that segment
table entry. The page table header is timestamped, and if it is a

1-114 IBM VM/370 System Logic and Problem Determination--Volume 1



——— — — — — m— T —— —— — o o= w—) — — e . ———

shared segment, the active segment table entry count is decreased. For
a shared segment, if the active count is still greater than =zero, no
further processing is done. If the count has decreased to zero, for a
shared segment, processing continues as if it were a private segment.
Each page table entry in a segment is then examined for an in-storage
page. If one is found, it has its reference bit reset to =zero. 1In
addition, if the heavy paging condition flag has been set, the page
table entry is marked invalid, and the real page is placed on the flush
list in last-in-first-out order.

The page replacement/page selection algorithm must find a real frame to
satisfy a demand for a virtval page. It first attempts to satisfy the
demand with a page from the flush list. The flush list contains virtual
pages (if any) that belong to virtual machines that are not eligible for
dispatching, and therefore are not being used.

Note: A virtual machine may reenter the dispatch list after its pages
have been placed on the flush list. If the virtuval machine attempts to
access any of those pages, they will be reclaimed. The pages are placed
on the flush in last-in-first-out order under the assumption that the
longer they remain on the list, the higher the probability the virtual
machine will reenter the dispatch list and reclaim them.

If no pages are found on the flush 1list, the selection algorithm
examines each virtual page in real storage, searching for an available
page that does not have its reference bit on. It begins the search at
the first available virtual page at the high end of real storage and
searches by descending page address. When it reaches the lovwest
available page address, it starts again from the top of storage. When a
page has been found, that page address minus one is checkpointed. The
next time the selection algorithm is invoked, it will start from the
checkpointed address. As the selection process proceeds, those pages
that were not selected have their reference bits turned off. When the
selection algorithm is operating in this mode, a virtual page must be
referenced at least once per reset cycle (loop around real storage) to
avoid selectioan.

BACKING STORE ALLOCATION ALGORITHM

There are two parts to the algorithm for allocation of a DASD page
record. The first is to find the optimal device on which to allocate a
record. The second is then to optimize the record allocation on a
particular device.

Device Selection

CP maintains the DASD device chain in two parts. The major part is the
ordering of all devices by type and by the TEMP/PAGE classification.
211 PAGE devices are ordered before all TEMP devices. The device type
ordering is: 2305, 3350, 3340, 3330, and 2314. All devices of the same
type are chained together off +the primary chain. CP attempts to
allocate a page record on the highest-level device until all devices at
that 1level are full and then it tries the next Jlower device type.
Within a particular device type, CP allocates records in a round-robin
manner, attempting to evenly distribute the allocated records.

CP Introduction 1-115



Cylinder Selection

Once a device is selected, CP nmust determine on which cylinder to
allocate a record on that device. CP maintains a chain of cylinder
record maps, one for each allocatable cylinder on the device. For 2305
devices, CP attempts to keep cylinder map blocks at the head of the
chain. The only optimization done for a 2305 is an attempt to minimize
the amount of processor time involved in the allocation process. For
movable-arm DASD (that is, not 2305), CP attempts to allocate the first
available record found when scanning the cylinder map chain.

Page Selection Routine Support

Whenever a changed page is selected for replacement, it must first be
copied onto DASD before the real page can be made available. 1In cases
vhere there is already a DASD record allocated for the page and it is on
a movable-arm DASD, the page selection toutiine deallocates the 01d
record and requests that a new record be allocated. This occurs each
time a page is to be written and its current backing-store location is
on a movable—arm DASD. Although this represents overhead in terms of
processor use, it 1is justified because it should minimize arm movement
and reduce page wait time.

PAGE I/0 REQUEST QUEUEING ALGORITHM

The ordering of page I/0 requests that are chained together for
initiation with one SIO is done on a priority ordering basis. The
priority is:

1. In-queue requests

2. Not-in-queue requests
3. Reads

4. Writes

5. Q1 requests

6. Q2 requests

PCI flags are set for page I/0 requests. For non-2305 requests, there
is an interruption after each request. For 2305 requests, the PCI flag
is set so that there is one interruption for each revolution of the drum
(one interruption for every three requests).

Note: For installations that are much more constrained by a page I/0
bottleneck (as opposed to processor bottleneck), the 2305 PCI mode can
be changed to operate in the same way as the non-2305 processing, that
is, by allowing an interruption immediately after each request. The SET
SRM PCI DISK command causes the PCI flag to be set so there is one
interruption for each 2305 page request. SET SRM PCI DRUM changes it
back to the default mode of operation.

VIRTUAL STORAGE PAGING ERROR RECOVERY

Errors encountered during virtual storage (as opposed to spooling)
Paging operations can generally be classified as either soft or hard
errors. Soft errors allow the system to continue operation without delay
or degradation. Hard errors can cause noticeable effects such as the

1-116 1IBM VM/370 System Logic and Problem Determination--Volume 1



abnormal termination of user tasks (abend) and response degradation.
Errors that are successfully retried or corrected are known only to the
I/0 supervisor and the I/0 error retry and recording routines; they
appear to the second level interruption handlers (such as WAITPAGE) as
if the original operation completed normally.

considered to be a soft error. DMKPTRAN calls DMKPGTPG to assign a
different DASD page slot and the page is re-gqueued for output. The slot
that caused the error is not de-allocated, and thus is not assigned to
another virtual machine. All other uncorrectable paging errors are hard
because they more drastically affect system performance.

SOFT ERROR RECOVERY: An I/O error that occurs on a page swap-out is

HARD ERROR RECOVERY: Hard paging errors occur on either I/0 errors for
page reads or upon exhausting the system's spooling and paging space.
Recovery attempted on hard errors depends upon the nature of the task
for which the read Wwas being done. If the operation was an attempt to
place a page of a virtual machine's virtual storage into real storage,
the operation of that particular virtual machine is terminated by
setting the page frame in error to zero and placing the virtual machine
in console function mode. The wuser and operator are informed of the
condition, and the page frame causing the error is not de-allocated,
thereby ensuring that it is not allocated to another user.

The control program functions that call DMKPTRAN (such as spooling,
pageable control program calls, and system directory management) have
the option of requesting that unrecoverable errors be returned to the
caller. In this case, the CP task may attempt some recovery to keep the
entire system from terminating (abend). In general, every attempt is
made to at least allow the operator to bring the system to orderly
shutdown if continued operation is impossible.

Proper installation planning should make the occurrence of a space
exhaustion error an exception. An unusually heavy user 1load and a
backed-up spooling file could cause this to happen. The operator is
varned when 90% of the temporary (paging/spooling) space 1in the systen
is exhausted. He should take immediate steps to alleviate the shortage.
Possible remedies that exist include preventing more users from logging
on and requesting users to stop output spooling operations. More drastic
measures might include the purging of low-priority spool files. If the
system's paging space is completely exhausted, the operation of virtual
machines progressively slo¥s as more and more users have paging requests
that cannot be satisfied and operator intervention is required.

VIRTUAL RELOCATION

CP provides the virtual machine the capability of using the DAT feature
of the real System/370. Programming simulation and hardware features
are combined to allow usage of all of the available features in the real
hardware, (that is, 2K or 4K pages, 64K or 1M segments).

For clarification, some term definitions follow:

First-level storage: The physical storage of the real CPU, in which CP
resides.

Second-level storage: The virtual storage available to any virtual
machine, maintained by CP.

CP Introduction 1-117



Third-level storage: The virtual storage space defined by the system
operating in second-level storage, under control of page and segment
tables which reside in second-level storage.

Page and segment tables: Logical mapping between first-level and
second-level storage.

virtual page and segment tables: Logical mapping between second-level

———— e

and third-level storage.

Shadovw page and seqment tables: Logical mapping between first-level
storage and third-level storage.

A standard, nonrelocating virtual machine in CP is provided with a
single control register, control register 2zero that can be used for:

e Extended masking of externpal interruptioms
e Special interruption traps for SSM
e Enabling of wvirtual block multiplexing

A virtual machine that is alicwWed Lo use the extended control feature
of System/370 is provided wvwith a £full complement of 16 control
registers, allowing virtwal =monitor calls, PER, extended channel
masking, and dynamic address translation.

An extension to the normal virtual-machine VMBLOK is built at the
time that an extended control virtual machine logs onto CP. This ECBLOK
contains the 16 virtual control registers, 2 shadow control registers,
and several words of information for maintenance of the shadow tables,
virtual CPU timer, virtuwal TOD clock comparator, and virtual PER event
data. The majority of the processing for virtual address translatiom is
performed by the module DMKVAT, with additional routines in DMKPRG,
DMKPRV, DMKDSP, DMKCDB, DMKLOG, DMKUSO, and DMKPTR. The simulation of
the relocation-control instructions (that is, LCTL, STCTL, PTLB, RRE,
and LRA) is performed by DMKPRV. These instructions, with the exception
of LCTL and STCTL, are not available to virtual machines which are not
alloved the extended control mode.

#hen an extended-control virtual machine is first active, it has only
the real page and segment tables provided for it by CP and operates
entirely in second-level storage. DMKPRV examines each PSW loaded via
LPSW to determine when the virtual machine enters or leaves extended
control or tramnslate mode, setting the appropriate flag bits in the
VYMBLOK. Flag bits are also set whenever the virtual machine modifies
control registers 0 or 1, the registers that control the dynamic address
translation feature. DMKDSP also examines PSWs that are loaded as the
result of interruptions to determine any changes in the virtual
machine's operating mode. The virtual machine can load or store any of
the control registers, enter or 1leave extended control mode, take
interruptions, etc., without invoking the address translation feature.

If the virtual machine, already in extended control mode, turns on
the translate bit in the EC mode PSW, then the DMKVATMD routine is
called to examine +the virtual control registers and build the required
shadov tables. (Shadow tables are required because .the real DAT hardware
is capable of only a first-level storage mapping.) DMEKVATMD examines
virtual control registers 0 and 1 to determine if they contain valid
information for use in constructing the shadow tables. Control register
zero specifies the size of the page and segment the virtual machine is
using in the virtwal page and segment tables. The shadow tables
constructed by DMEKVATMD are always in the same format as the virtual
tables.

1-118 1IBX VM/370 System Logic and Problem Determination--Volume 1



The shadow segment table is constructed in first-level storage and
initialized to indicate that all segments are unavailable. Flags are
maintained in the VMBLOK to indicate that the shadow tables exist.
DMRVATMD also comnstructs the shadow control registers 0 and 1. Shadow
control register 0 contains the external interruption mask bits used by
CP, mixed with the hardwvare controls and enabling bits from virtual
control register 0. Shadow control register 1 contains the segment
table origin address of the shadow segment table.

When the virtual machine is operating in virtual translate mode, CP
loads the shadow control registers into the real control registers and
dispatches the user. The immediate result of attempting to execute an
instruction is a segment exceptiocn, intercepted by DMKPRG and passed to
DMKVATSX. DMKVATSX examines the virtual segment table in second-level
storage. If the virtual segment is not available, the segment exception
interruption 1is reflected to the virtual machine. If the virtual
segment is marked available, then DMKVATSX:

e Allocates omne full segment of shadow page table, in the format
specified by virtual control register O.

e Sets all of the page table entries to indicate page not in storage.
@ Marks the segment available in the shadow segment table.
o Redispatches the virtuval machine via DMKDSP.

Once again, the immediate result is an interruption, which is a
paging exception and control is passed to DMKVATPX. DMKVATPX references
the wvirtual page table in second-level storage to determine if the
virtual page is available. If the virtual page is not available, the
paging interruption 1is reflected to the virtual machine. However, if
the virtual page is marked in storage, the virtual page table entry
determines which page of second-level storage is being referenced by the
third-level storage address provided. DMKVATPX next determines if that
page of second-level storage is resident in first-level storage at that
time. If so, the appropriate entry in the shadow page table is filled
in and marked in storage. If not, the required page is brought into
first-level storage via DMKPTRAN and the shadow page table filled in as
above.

As the virtual machine continues execution, more shadow tables are
filled in or allocated as +the third-level storage 1locations are
referenced. Whenever a nevw segment is referenced, another segment of
shadow page tables is allocated. Whenever a new page is referenced, the
appropriate shadow page table entry is validated, etc. No changes are
made in the shadow tables if the virtual machine 1leaves translate mode
(usually via an interruption), unless it also leaves extended control
mode. Dropping out of EC mode is the signal for CP to release all of the
shadow page and segment tables and the copy of the virtual segment
table.

There are some situations that require invalidating all of the shadow
tables constructed by CP or even releasing and reallocating thea.
Whenever DMKPTR swaps out a page that belongs to a virtual relocating
machine, it sets a bit in the VMBLOK indicating that all of the shadow
page tables must be invalidated. Invalidation of all of the tables is
required since CP does not know which third-level storage pages map into
the second-level page that 1is being swapped out. The actual
invalidation is handled by DMKVATAB, called from DMKDSP when the virtual
machine is on the verge of being dispatched.

CP Introduction 1-119



The other situations which cause shadow table invalidation arise from
the simulation of privileged instructions in DMKPRV. Flags are set in
the VMBLOK whenever the virtual machine 1loads either control register 0
or 1, and DMKPRV calls DMKVATAB to perform vhatever maintenance is
required. When control register 1 is 1loaded by the virtual machine,
DMKVATAB must re-copy the virtual segment table into first-level storage
and invalidate the entire shadow segment table. When control register 0
is loaded, DMKVATAB examines the relocation-architecture control bits to
determine if they have changed, (such that the format of the virtual
page and segment tables no longer matches that of the shadow tables). If
the format has not changed, the shadow tables are 1left intact;
otherwise, all of the shadow tables must be returned to free storage and
another set, in the new format, must be allocated and initialized. The
same actions can result from modifying the control registers via the CP
console functions, in which case DMKVATAB is called from DMKCDB. The
privileged operation, PTLB, also causes the virtual segment tables to be
re-copied and all of the shadow page tables to be invalidated because
the shadow tables are the 1logical equivalent of the translation
look~aside buffer.

DMKPRV provides wvirtual interrogation of the reference and change
bits in the virtual storage keys, which involve the privileged
instructions 1ISK, SSK, and RRB. The privileged instruction LRA is
simulated via DMKVATLA, which searches the virtual page and segment
tables to translate a third-level storage address to a second-level
storage address, returning a condition code indicator to DMKPRV, or
forcing an interruption if the tables are incorrectly formatted.

Most error situations that occur in the virtual machine are handled
by means of the extended program interruptions associated with the real
address translation hardware. Whenever a virtual relocating machine
loads control registers 0 or 1 with an invalid value, DMERVAT releases
all of the shadow tables exactly as if the hardware controls had
changed. The shadow control registers are set valid, with the shadow
segment table re-allocated at a minimum size and all segments marked
unavailable. Flag bits are set in the VMBLOK to indicate that the
shadow tables are artificially valid, and DMKVATSX reflects a
translation specification exception to the virtual machine as soon as it
is dispatched. While it is possible for the virtual machine to enter an
interruption loop (if the new PSW is also a translate mode PSW), the
cited process prevents the occurrence of a disabled 1loop within CP,
which would result if the virtual machine is never dispatched.

FREE STORAGE MANAGEMENT

DMKFRE is responsible for the management of free storage, and CP uses it
to obtain free storage for I/0 tasks, CCW strings, various I/0 buffers,
etc. It is used, in fact, for practically all such applications except
real channel, control unit, and device blocks, and the CORTABLE.

Block sizes of 30 doublewords or less, constituting about 99 per cent
of all calls for free storage, are grouped into 10 subpool sizes (3
doublewords each), and are handled by LIFO (push-down stack) 1logic.
Blocks of greater than 30 doublewords are strung off a chained list in
the classic manner.

1-120 IBY VM/370 System Logic and Problem Determination--Volume 1



When subpools are exhausted, small blocks are generally obtained from
the first larger block at the end of available free storage. Large
blocks, on the other hand, are obtained from the high-numbered end of
the last larger block. This procedure tends to keep the volatile small
subpool blocks separated from the large blocks, some of which stay in
storage for much longer periods of time; thus, undue fragmenting of
available storage is avoided.

DMKFRE initially starts without any subpool blocks. They are
obtained from DMKFREE and returned to DMKFRET on a demand basis.

The various cases of calls to DMKFREE for obtaining free storage, or
to DMKFRET for returning it, for subpool sizes and large sizes, are
handled as follows:

Calling DMKFREE for a Subpool

- e s

Subpool Available: If a call for a subpool 1is made and a block of the
suitable size is available, the block found is detached from the chain,
the chain patched to the next subpool block of the same size (if any),
and the given block returned to the caller.

a call to DMKFREE is made for a subpool, the chained 1list of free
storage is searched for a block of equal or larger size. The first block
of larger or equal storage is used to satisfy the call (an equal-size
block taking priority), except that blocks within the dynamic paging
area are avoided if at all possible. If no equal or larger block is
found, all the subpool blocks currently not in use are returned to the
main free storage chain, and then the free storage chain is again
searched for a block large enougk to satisfy the call. If there still is
no block large enough to satisfy the request, then DMKPTRFR is called to
obtain another page frame of storage from the dynamic paging area, and
the process is repeated to obtain the needed block.

Calling DMKFREE for a Large Block

If a call to DMKFREE is made for a block larger than 30 doublewords, the
chained list of free storage is searched for a block of equal or larger
size. If-an equal-size block is found, it is detached from the chain and
given to the caller. If at least one larger block is found, the desired
block size is split off the high-numbered end of the 1last larger block
found, and given to the caller. If no equal or larger block is found,
DMKPTRFR is called to obtain another page frame of storage from the
dynamic paging area, and the above process is repeated (as necessary) to
oktain the needed block.

Calling DMKFRET for a Subpool

If a subpool block is given back via a call to DMKFRET, the block is
attached to the appropriate subpool chain on a LIFO (push—down stack)
basis, and return is made to the caller. If, however, the block was in a
page within the dynamic paging area, the block is returned to the
regular free storage chain instead.

CP Introduction 1-121



Calling DMKFRET for a Large Block

If a block larger than 30 doublewords is returned via DMKFRET, it is
merged appropriately into the regular free storage chain. Then, unless
the block was returned by DMKFRETR (see "Initialization") a check is
made to see if the area given back (after all merging has been domne) is
a page frame within the dynamic paging area. If so, DMKPTRFT returns it
to the dynamic paging area for subsequent use.

Free Storage Page Frame Allocation

The number of page frames allocated to free storage depends upon:
1. The real machine storage size

2. The RMSIZE operand specified in the SYSCOR macro at systen
generation time

3 The FREE operand in the SYSCOR macro

The storage size used by VM/37/0 1s the smaller of the real machine
storage size and the RMSIZE value.

If the FREE operand was not included in the SYSCOR macro statement
for DMKSYS, the default number of fixed free storage pages allocated at
IPL time for the first 256K of storage is 3 and 1 page for each 64K
thereafter, not including V=R size, if any.

If the FREE operand was included in the SYSCOR macro statement for
DMKSYS, that value is the number of fixed free storage page frames
allocated at IPL time. If those pages represent an amount of free
storage greater than 25% of the VM/370 storage size (not including V=R
size, if any) the default allocation is used.

CP INITIALIZATION

System initialization starts when the operator selects the DASD device
address of the CP system residence volume (SYSRES) and presses the IPL
button. The System/370 hardware reads 24 bytes from record 1 of
cylinder 0 on SYSRES into location O of main storage. This record
consists of an initial PSW and a channel prograr. The channel prograa
reads the module DMKCKP into location X'800' and gives it control.
DMKCKP checks location CPID in module DMKPSA.

If CPID contains the value CPCP or WARM, DMKCKP saves the spool file
control blocks, system log messages, accounting information, status of
spool devices, spool hold queue blocks, and spool record allocation
blocks and writes them on the warm start cylinders. If CPID contains
the value CPCP, DMKCKP loads a disabled wait state code X'008'.

If location CPID does not contain the value CPCP, DMKCKP now loads
DMKSAV and passes control to it at entry point DMKSAVRS. DMKSAV reloads
a page image copy of the CP nucleus into real storage starting at page
0. When DMKSAV is finished, control is transferred to DMKCPI. DMECPI
performs the main initialization function. This includes calling DMKWRHM
to retrieve the information stored on the warm start cylinder. This
also includes «calling DMKCKS to initialize the dynamic checkpoint
cylinders and to checkpoint the current status of the spool file systenm.
When DMKCPI has finished, it passes control to DMKDSPCH. DMKDSPCH loads
a wait state PSW to wait for work. See "CP 1Initialization for the
Attached Processor" for additional information.

1-122 1IBM VM/370 System Logic and Problem Determination--Volume 1



INITIALIZATION AND TERMINATION

Attaching a Virtual Machine to the Systenm

After CP has been initialized, DMKCPVEN enables the communication lines
in response to the ENABLE command. Then an individual virtual machine
is attached to the system, using the following steps:

1'

Terminal Identification

When the CP receives the ipnitial interrupt from a terminal on an
enabled 1line (normally initiated by a user dialing in on a
data-set), the DMKCNSIN routine is entered. DMEKCNSIN determines
the terminal device type, stores this information in the terminal
device block, writes the online message and puts the terminal line
in a state to receive an attention interruption.

Attention_from_User

After the online message has been displayed at the user's terminal,
and he has pressed the ATTENTION key, DMECNSIN (the console
interruption routine) calls DMKBLDVE to build a skeleton VMBLOK for
the user. At this time, the userid is LOGONXxxX, where xxX is the
terminal real device address, and a flag is set to indicate that
the user has not yet completed the logon process.

Then DMKCNSIN calls DMKCFMBK. which types a single blank at the

terminal, and issues a read to the terminal for the user to enter
his first command (normally LOGON or DIAL).

First Command from_ User

After the first command has been entered by the user, DMKCNSIN
further determines the type of terminal. If the terminal is a
2741, DMKTRMID 1is called to identify it as eitker a 2741P
(PTTC/EBCD) or a 2741C (Correspondence) terminal. 1f successful,
the correct device +type and translate tables for input and output
are set; if not, flags are set +to¢ indicate that the terminal is
not yet identified.

Then control is returned to DMKCFMBK, which determines if the first
command is valid (for example, LOGON, MSG, or DIAL). If the first
command is not valid, a restart message is given, and the read to
the terminal occurs again for the first command. If the first
compand was LOGON (or its abbreviation), DMKLOGON is called to
complete the process of attaching the virtual machine +to the
systenm.

The operations performed by DMKLOGON include the following:

e Ensures that the maximum number of virtual machines allowed on
the system is not being exceeded.

e Obtains the userid from the command 1line, and checks for a
possible password and other optional operands.

e Checks the userid and password (entered separately if not on the
LOGON command line) against entries in CP's directory of users.

CP Introduction 1-123



e Ensures that the user is not logged on at another terminal (an
error condition), or reconnects the user if he was running in
disconnect mode.

e Obtains pertinent information on the user's virtual machine from
the user machine block portion of the directory.

e Stores the correct userid (replacing the LOGONxxx userid used
until now), virtual storage size, and other vital information in
the virtual machine's VMBLOK.

e Allocates and initializes segment, rage, and swvap tables
(necessary for handling of the wvirtual wmachine's wvirtual
storage).

e Schedules MSS volume mounts for any required MSS volumes if the
MSS is available and the volume is not already mounted.

e Allocates an extended VMBLOK (ECBLOK) if the user's virtual
machine has the ability to run in the extended control mode.

e Allocates and initializes virtval device blocks, control unit
blocks, and channel blocks, using information from the user
device blocks portion of the directory.

e Establishes links (as feasible) to all DASD devices included in
the directory, the accessibility of any disk being determined by
the user access mode in the directory, and whether any other
users are presently linked to the disk, in read mode and/or
write mode.

e TInitializes all other virtual device blocks as appropriate, such
as reader, punch, printer, and terminal.

e Maps all virtual devices to real devices.
e Perforas appropriate accounting.

e Informs the user of the date and time of the most recent
revision to the system log message (LOGMSG), and of the presence
of any outstanding spooled files in his virtual reader, printer,
or punch.

» Sends a ready message to the user with the date and time (and
vweekday), and a message to the system operator indicating that
the user has logged on.

If the virtual machine has a device address or a named system in the
directory and the initialization was not suppressed via an option on the
LOGON command line, then that device or named system is then loaded (via
IPL) at the conclusion of the 1lcgon process. Otherwise, when the logon
functions are complete, the user's terminal is placed in CP read mode
ready for the entry of his first desired command.

Under the latter condition of no automatic IPL, the user can IPL an
alternate nucleus by using the STOP option in the IPL command. This
option causes the normal IPL procedure to halt execution prior to
loading the initial PSW, and issues a DIAGNOSE code 8 that places the
user's terminal in CP read mode. A hexadecimal character entered in
location X'08' changes the nucleus nanme. A hexadecimal character
entered in location X'09' changes the apparent storage size. The BEGIN
command allows the IPL procedure to continue.

1-124 1IBM VM/370 System Logic and Problem Determination--Volume 1



I/0 Reconfiguration

Three commands alter the I/0 configuration of a wuser's virtual machine
after he has logged on. Two are user commands, while the third a systen
operator command, because it affects the status of real devices attached
to the system. The ATTACH and DETACH commands are contained in DMKVDA,
DMKVDC, DMEKVDD, and DMKVDE and the DEFINE command in DMKDEF. The systesn
command scanner (DMKCFM) calls both pageable modules after their format
and privilege classes have been validated. These commands access the
same control-block building subroutines in the wmodule-- DMKVDS that
DMKLOG, the LOGON processor, uses.

Attaching a Real Device: The system operator can dedicate any real
device to a single virtual machine by issuing the ATTACH command. The
device attached is available only to the given virtual machine, and all
I/0 requests to it are handled by CCW translation. If the device is a
DASD, cylinder relocation does not occur when SEEK addresses or home
addresses are referenced. The I/0 supervisor does not queue operations
on the device, nor does it automatically restart it or do ordered seek
queuing. Nonsharable devices such as tape drives must be attached to a
virtual machine to be accessed by the virtual wmachine. A virtual
machine can also have a dedicated card reader/punch or printer.
However, +this is wusually not necessary because of the unit record
spooling facilities of CP. Unit record input or output on a dedicated
(attached) device is not spooled by CP. The unit attached may be given
a virtual address different from its real address; however, the virtual
machine may not already have a virtual device at the attached address.
A real device cannot be attached (1) if it is currently dedicated to
another virtual machine, (2) if it contains minidisks that are in use by
other vitual machines, or (3) if it is a system-owned volume that is in
use for spooling or paging.

Defining a Virtual Device: A system user can define a nevw virtual device
with the DEFINE coammand that does mnot regquire the dedication of a
corresponding real device. Devices that can be defined are comnsoles,
spooled readers, punches and printers, dialable TP 1lines, virtual
channel-to-channel adapters, pseudo timers, and temporary disks. With
the DEFINE command, the user can change any existing virtual device
address whether it corresponds to a shared or dedicated real device or
no real device unit.

The DEFINE command can also describe the virtual machine channel mode
of operation, +that is, either selector or block multiplexer. The
default mode, selector channel mode, reflects a channel busy to any SIO
operation attempted on the same channel path that has not completed the
previous channel SIO operation. Block nmultiplexer mode allows the
successful initiation of different devices on the same channel path.
Channel 0, a byte-multiplexer channel, is unaffected by the DEFIKE
command. Also, any channel with a channel-to-channel adapter (CTCA)
defaults to selector mode of operation regardless of the channel mode
selected. Use of the DEFINE command with the CHANNELS operand generates
a virtual machine reset; therefore, it should be invoked prior to the
virtual machine IPL operation.

Note: The channel mode selected has no bearing on the types of channels
that are attached to the real systenm.

Temporary disks are dynamically obtained cylinders of DASD storage
space. They are available to the user for as long as they are part of
his virtual wmachine configuration, but the data on them 1is destroyed
after the user detaches the area. For all other purposes, however, they
appear to be a standard disk.

CP Introduction 1-12%



Detaching a Virtual Device: A virtual device can be removed from a
virtual machine configuration prior +to logging off with the DETACH
command. A wuser can detach any of his own devices, and the systeam
operator can detach a real device from a virtual machine. If the
operator detaches the device, the user is informed of the operator's
action. A real device can be detached only if it is dedicated to a
single virtual machine or is attached to the system and is not in use
when the DETACH is issued.

A user may permanently or temporarily disconnect his terminal or virtual
machine from the system by a console command, or the terminal or virtual
machine may be forcibly disconnected by the operator. The system can
also log off the virtual machine. In any case, the routines that handle
the termination process are in the pageable module, DMKUSO.

PERMANENT DISCONNECT: The wuser may voluntarily remove his virtual
machine from the system via the LOGOFF command. This command terminates
all virtual machine operation, releases all storage occupied by control
blocks and virtual storage pages, and disconnects the teleprocessing
line connection to the user's terminal. If the user specifies the HOLD
option with LOGOFF, all of the above occurs, except that the
teleprocessing line remains enabled. This option is especially useful
for dialed connections that are reused immediately by another user.

The virtual machine can be forced off the system by the systen
operator via the FORCE command. This has the same effect as a
user-initiated logoff, except that the user is informed that the
operator has 1logged off his machine. A virtual machine may also be
logged off the system:

e If the time for a read of a system password expires (28 seconds).

e If the user makes a connection to the system but does not logon
within a given period.

e If the virtual machine is running disconnected (without an active
terminal) and the virtual machine attempts a terminal read or enters
a disabled wait state.

The DMKUSOLG and DMKUSOFF subroutines process the LOGOFF command.
DMKDSP calls DMKUSOFF directly by DMKDSP to force the 1logoff of a
disconnected user as previously described.

TEMPORARY DISCONNECT: A user may temporarily disconnect his terminal
from his virtual machine by using the DISCONN command, while allowing
the virtual machine to continue to run. This command flags the virtual
machine as being disconnected and releases the user's terminal and
teleprocessing line. If the HOLD option was specified in the DISCONN
command, CP allows the line to remain enabled, and another user can use
the terminal to log on. The disconnected virtual machine continues to
be dispatched until it either attempts to execute a terminal read to the
disconnected console or it enters a disabled wait state. At this time,
the dispatcher (DMKDSP) calls the routine DMKUSOFF directly to force the
machine out of the system. While the machine is disconnected from its
virtual console (real terminal) any terminal output is 1lost; in
addition, CP may apply a disconnected penalty to the machines scheduling
priority, to bias the system in favor of interactive users.

1-126 IBM VM/370 System Logic and Problem Determination--Volume 1



A user's virtual machine may also be disconnected by the system. If
the disconnected user logs on to the system while the disconnected
machine is still running, it is reconnected and can continue to interact
with the system in the usual manner.

The DMKUSO subroutine processes the DISCONR command.

CONSOLE FUNCTIONS

DMKCFM analyzes CP commands and passes control to the appropriate
routine to handle +the command. DMKCFM can be entered by the Attention
key (or equivalent) at the user's terminal or directly from a virtual
machine.

When a console interruption occurs by the Attention key at the user's
terminal, DMKIOSIN calls DMKCNSIN to handle the unsolicited
interruption, then DMKCNSIN calls DMKCFMBK.

DMKCFMBK first calls DMKFREE to obtain storage for an 18-doubleword
input buffer. Next, DMKQCNWT is called to send the CP message to the
terminal to inform the user that he has entered console function mode.
DMKQCNRD is then called to read the command line entered at the console.

DMKCFMEN is the entry point for commands coming directly from the
virtual machine. DMKPRGIN enters at DMKCFMEN here when a DIAGNOSE
instruction with a code of 8 is detected. The address of an
18-doubleword input buffer 1is passed in register 1; therefore, a read
to the terminal is not needed.

After either the read to the terminal or entry from the virtual
machine, DMKSCNFD is called to find the command type. On return from
DMKSCNFD, register 1 points to the start of the command and register 0
contains the length of the command. DMKCFCMD is then called and the
command is matched against a list of valid commands. The list contains a
16-byte entry for each command. Bach entry contains 8 bytes for the
name, 2 bytes for class mask, 2 bytes for an abbreviation count, and 4
bytes containing the routine address. If +the entered command matches an
entry in the 1list, it is then checked +to ensure that a valid
abbreviation for the command has been used. If this test is not
successful, DMKSCN continues to scan the 1list for a valid command.
Should the abbreviation be vaiid, a check is then made +to determine if
this user is of the proper class to use the command entered. If this is
successful, DMKCFM then calls the appropriate routine to process the
command.

After the command has been processed, control is returned to DMKCFH.
There are three possible returns. (1) On a normal return, the input
buffer is scanned to see if there are any more commands. If none exist,
DMKCFM returns to the virtual machine (if entered via DIAGHNOSE) or calls
DMEKQCNRD to read the next command from the terminal. (2) On a return
plus 4, the VMCFWAIT bit is turned off to allow +the virtual machine to
run. DMKFRET is called to return the input buffer storage. Then control
returns to either the virtual machine, if entered via a DIAGNOSE, or to
DMKDSPCH if entered via the Attention key. (3) On a return plus 8, the
operation is the same as plus 4 except that the VMCFWAIT bit is left on.

CP Introduction 1-127



DISPATCHING AND SCHEDULING

The scheduler, DMKSCH, selects dispatchable virtual machines from the
virtual machine population. The auxiliary routine that assists the
scheduler and dispatcher is the request stack maintenance routine,
DMKSTK.

To make decisions on dispatching and scheduling, the control program
places all virtual machines into various categories, and recognizes user
machines as being in one of several states. The virtual machine
categories either interactive or noninteractive virtual machine, are
defined in the following way:

e An interactive virtual machine is one whose use of the systea is
punctuated by regular and frequent terminal I,/0, and does not have
long processor execution times. A virtual machine becomes eligible
to enter interactive status whenever a channel program for virtual
console I/0 has completed, or whenever I/O for a dedicated or dialed
virtual telecommunications line has coapleted.

e A non-interactive virtuval machine is one that has violated an
interactive criterion, or one that has entered an idle wait state by
entering console function mode (equivalent to stopped state), or by
loading a wait state PSW that is not enabled for any busy channel.
CP schedules interactive users ahead of non-interactive users.
Non-interactive users are subdivided into several classes. Normal
non-interactive virtual machines are scheduled by a priority scheme
described below. A virtual machine is allowed to execute for a
specified time period and then it is placed in a 1list of those
machines that are waiting.

To give preference to certain classes of virtual machines, a priority
scheduling scheme allows virtual machines to be scheduled with a
priority class. The priority is a number assigned by the directory;
however, the number may be altered by the system operator.

VYirtual Machine Dispatching Lists and States

To efficiently manage the large inventory of potential virtual machines
that are 1logged on to the system, CP defines several states that a
virtual machine may occupy. The scheduler can move a virtual machine
from one state to another; however, a virtual machine may exist in only
one state at any given instant. CP can then make scheduling and
dispatching decisions by looking only at the subset of virtual machines
that are in the appropriate state. To do this search, it also maintains
lists of virtual machines in certain executable states.

A user's virtual machine may be in one of the following states:

State Meaning

Interactive and dispatchable (in queue1, in dispatch list)

Interactive and not dispatchable (in queue1, in dispatch list)

Interactive and eligible for dqueuel, but no available real
storage (waiting for queuel, in eligible list)

In wait state with terminal read or write active

Non-interactive and dispatchable (in queue2, in dispatch list)

Non-interactive and not dispatchable (in queue2, in dispatch
list)

Non-interactive and eligible for queue2, but no available real
storage (waiting for gqueue2, in eligible list)

Idle - waiting for asynchronous I/0 or external interruption, or
stopped (in console function mode)

W=

w ~J [+ 8~

1-128 1IBM VM/370 System Logic and Problem Determipation--Volume 1



Entries on the dispatch 1list are the VMBLOKs for those virtual
machines in states 1, 2, 5, and 6, and represent the virtual machines
that can be run at any given time. {(States 2 and 6 remain in the
dispatch list even though they are not dispatchable.) The dispatch list
is sorted by dispatching priority, which 1is the ratio of processor time
to wait time over the 1length of the current virtual machine +task. 2
task is dJdefined as that execution that takes ©place between terminal
reads or entry to enabled wait (that is, movement from state U4 or 8 to
state 1) and is re-projected for a virtual machine each time it is
dropped from a gqueue. Virtual machines entering state 1 always have a
priority of 0. e - s S

The eligible list contains virtual machines 1in states 3 and 7: these
virtual machines are potentially executable, but due to the current load
on the system they are not allowed to compete for the processor. As
soon as a virtual machine in the dispatch list is dropped from queue,
the highest-priority virtual machine(s) in the eligible list is added to
the dispatch list. Conditions can arise where the virtual machine that
is added to the dispatch list has a projected working set size that far
exceeds the remaining system capacity. The eligible list has tvwo
components; a section composed of those virtual machines waiting for Q1
(interactive) and a section composed of those virtual machines waiting
for Q2 (non-interactive). Each section of the 1list is sorted by
scheduling priority, which is determined at the time the virtunal machine
is added to the eligible list, as follows:

1. The virtual machine's projected working set size, calculated the
last time it was dropped from a gqueue, is expressed as a percentage
of the amount of main storage” available for paging. This
percentage, usually between 0 and 100, is multiplied by the paging
bias factor (stored at DMKSCHPB).

2. The virtual machine's priority (the priority set by the directory
or the class A SET PRIORITY command) is multiplied by the user bias
factor (stored at DMKSCHOB), and is added to the paging bias
calculated in step 1.

3. The sum of paging and user bias is divided by the sum of the bias
factors to obtain a weighted average.

4. A base priority is obtained by storing the TOD clock and using the
leftmost word, which increases by 1 approximately once per second.
This word is then modified by shifting it left or right based on
the priority delay factor (stored at DHKSCHPD). If DMKSCHPD is
positive, it indicates a right shift, thereby increasing the delay
interval of the base priority. A negative value indicates a left
shift.

5. The weighted average obtained in step 3 is then logically added to
the adjusted base obtained in step 4.

6. If the virtual machine is entering Q2 for the first time after
being dropped from Q1, the interactive bias factor (stored at
DMKSCHIB) is subtracted from the priority obtained in step 5. If
the virtual machine is entering Q1, or if it was last dropped from
Q2, the interactive bias is not applied.

7. The result of steps 1 through 6 is the scheduling or eligible list
priority, and is stored in the VMEPRIOR field of the VMBLOK.

The VMBLOK is then sorted into the appropriate section of the
eligible 1ist in ascending value of VMEPRIOR. The effects of the
various biases and the delay factor are illustrated by the following
examples.

CP Introduction 1-129



1-130

Exapple 1

Assume that +two virtual machines are to be added to the eligible
list for Q2. The paging bias factor is 1, the user bias factor is
1, and the priority delay factor is 0. Virtual machine A has a
projected working set size of 80 percent of available storage and a
user priority of 50. Virtual machine B has a projected working set
size of 20 percent of available storage and also has a user
priority of 50. The biases are obtained as follows:

Paging Userx Weighted
User _Bias_ _Bias_ __Bias__
A 80X 1 +50X1 = 130/2 = 65
B 201 #50x1 =70/2 = 35

If A is added to the eligible list at base time 0, its eligible
list priority is 65. If the priority delay factor is 0, B is added
ahead of A provided that B is eligible for entry to the list within
the next (65-35) 30 seconds. If the priority delay factor is set
to +1, the base is incremented once every two seconds. Therefore,
although the bias difference is still 30, the delay time is now 60
seconds.

Example 2
To force A to be given a weighted bias equal +to B, a priority
differential is calculated as follows:

Therefore, for the biases to be equal, A must have a priority of 60
less than B. For example, if A is given a priority of 10 and B is
given a priority of 70, the biases would compute as follows:

Paging User Weighted

User _Bias = _Bias_ —-__Bias
A 80 X 1+ 10X 1 = 9072 = 45
B 20X 1+70X 1 =90/2 = 45

Example 3

The large difference in priorities could be lessened by increasing
the user bias factor. If the user bias factor is set to 2 instead
of 1, the calculated priority differential is as follows:

80 + 33 20 + 3B —————-- = —mmee

4 4
3(B - 1) = 60
A =B- 20

Now, A requires a priority of only 20 1less than B to achieve
parity. For example:

IBM VM/370 System Logic and Problem Determination--Volume 1



Paging User Weighted
User Bias_  _Bias Bias

“a 80 X 1+ 30 X 3 = 170/4 = 42
B 20X 1+ 50 X 3 = 170/4 = 42

The above examples illustrate the following general points about the use
of the bias factors, the delay factor, and the user priority value:

1. The paging and user bias factors are a measure of the relative
importance of the bias value. A high user bias allows greater
discrimination via the assigned priority; while a high paging bias
makes storage requirement the primary scheduling parameter.

2. The virtual machine priority value, in the directory, may be
overridden, and is the means through which selected users obtain
improved performance.

3. The priority delay factor is the measure of the inpact that the
paging and user biases are to have. The greater the delay value,
the greater is the paximum delay that can be experienced by a given
user.

4. The interactive bias factor is a tool that enhances command
response to conversational commands that require disk I/O, and that
may be partially executed in Q2.

If the paging bias factor is nonzero, the net effect of the priority
scheme is to discriminate against virtual machines that require large
amounts of real storage. This discrimination results in a higher level
of multiprogramming and increased processor utilization; however, it
must be traded off against poorer throughput for large storage users.
The distributed scheduler is pnot biased; the bias factors are as
follows:

Paging bias factor (DMKSCHPB)
User bias factor (DMK SCHUB)
Priority delay factor (DMKSCHPD)
Interactive bias factor (DMKSCHIB)

o onn
OO a0

Thus, the basic VM/370 scheduler schedules virtual machines FIFO within
user priority.

Figure 19 is a graphic breakdown of the wuser states, showing the
relationship between interactive and non-interactive states, in-queue
and not-in-queue states, and in-list and not-in-list states.

r 1
| In-Queue | Not-in-Queue |
| |
|Dispatch | No [Eligible | Fo |

| List |List| List |List]|

r ! |
|Interactive| 1 I 21 3 1 4 |
{ - |
|Non~-Inter- | | | | |
| active | 5 I 61 7 | 8 |
J

Figure 19. User Dispatching States

CP Introduction 1-131



Figure 20 shows the possible user—-state changes and the reasons for
them; any changes not described are not possible.

Status
Change

From | To Reason for Status Change

Pagewait, SIO-WAIT, or enabled wait for any busy channel
Enabled wait for interactive terminal read or write
Exceeds ip-queue time slice

Same as 1 to 5 except that queuwe2 is full

Wait without active I/0, disabled WAIT or hit ATTN
Wait condition complete

Wait completes, but in-queue time slice exceeded
Another user drops from queue? and now there is room
Terminal I/0 completes while user is waiting

Terminal I/0 completes, but queuet is full

Terminal I/0 completes while user is active in queue2
User puts up terminal read or write and enters wait
Pagewait, SIO-WAIT, or enabled wait for busy channel
Dropped from queue2 due to in-queue time-slice end
Wait without active I/0, disabled WAIT, or hit ATTN
Wait condition completes

Room is found in queue2

Asynchronous I/0O or external interruption or BEGIN

NNV OONOAF a@WeaeaTaOodO8N0
-
~

ONOVOUVOUVUVNEFWNDN D=
-
~

e e - — — — — —— — —— —— — — — — —— — o o —

r
|
|
|
|
|
l
|
|
|
|
|
|
l
i
|
|
|
|
|
|
|
|
l
[

F

igare 20. User Status Changes

Controlling of Multiprogramming

To control the number of virtual machines allowed in gqueue, the
scheduler monitors the paging activity of all virtual machines and of
the total system. A decision as to whether or not +to move a potential
virtual machine from the eligible to the dispatch list is based upon
whether or not that its projected working set exceeds the systea's
remaining capacity. Individual virtual machines' working sets are
calculated and projected at gueue drop time according to one of the
following formulas:
P=(A4P) /2
If (LP-LA) * (P-b) < O
P=A
If (LP-LA) * (P-1) > O
where:
A Actual working set at queue drop time
LA Last actual working set

LP Last projected working set

P Current projected working set

1-132 1IBM VM/370 System Logic and Problem Determination--Volume 1



The working set is added to the current system load, which consists of
the sum of the working sets for all virtual machines currently in a
queue. The sum is compared to the system maximum, which is equal to the
number of dynamically assignable pages in the system. If the virtual
machine's projected working set will not push the system 1load over the
virtual machine maximum, it is placed in the queue and added to the
dispatchable list.

The actual working set, A, 1is the smaller of the two values
determined at gqueue drop time by the following formula:

r |
{ N ]
| —— |
| \ |
| > PRi / § # Steals |
| / |
| — |
A= | i=1 |
| |
| |
| -=- or == {
{ |
| |
| Pages referenced |
L E]

where:

N Number of page reads while in queue.

PR Number of pages resident at the ith page read.

Steals Number of times page wait was entered because of a

stolen page.

The number of referenced pages is determined by scanning the virtual
machine's page tables for software referenced bits. These bits are set
by DMKPTRAN when the page is taken from the virtual machine by CP. Thus
the actual working set is generally the average number of pages resident
at each page read. However, this estimate is sensitive to the coverall
system paging activity for the following reasoms:

1. If there is no paging load on the system, there is one page read
for each resident page, and no steals; the working set therefore
tends to be equal to about one half of the resident page total.

2. As paging activity increases, and the working set location shifts,
the working set tends to increase toward the average number of
resident pages.

3. 1If paging activity becomes excessive, the number of page steals
increases to the extent that the working set expands to the maximum
of the total number of pages referenced while in the queue.

In summary, the scheduler selects the subset of logged-omn virtual
machines that are allowed to compete for the resources of the processor,
with the constraint that a new virtual machine is not added to the
active subset if its projected main storage requirement, added to those
of the other active virtual machines, causes the current capacity of the

CP Introduction 1-133



system to be exceeded. Selection within scheduling priority simply
means that a executable virtual machine of high priority is always added
to the active subset (to a queue) before a executable virtual machine of
lover priority. If the paging bias mechanism is activated by setting
the paging bias factor to a nonzero value, scheduler selection is in
favor of smaller virtual machines; otherwise, selection is within
priority. Once the active subset (the set of in-queue virtual machines)
has been selected, the dispatcher allocates resources of the processor
among thena.

The 1list of executable virtual machines in a queue 1is sorted by
dispatching (as opposed to scheduling) priority. The dispatching
priority is a running average of a given virtual machine's processor
time/wait-time ratio. Thus, virtual machines who are most likely to go
into wait state, based on past performance, are dispatched ahead of
those whose demands on the processor are more extensive. This simple
ratio priority is normally altered if a virtual machine is identified as
compute-bound by means of the fact that it has executed for at least 50
ps. without entering the wait state. In this case, it is placed at the
bottom of the dispatchable list. On the other hand, virtual machines
identified as interactive by virtue of the frequency their requests for
terminal I/0 are placed at the top of the dispatchable list.

Past Redispatch

DMKDSP also provides a fast dispatch path for virtual machines that have
issued specific privileged instructions that are not handled by the
Vvirtual Machine Assist feature.

These virtual machines can be dispatched very rapidly because the
virtual machine's program 0ld PSW needs very little reconstruction to
redispatch the virtual machine, hence use of full PSW reconstruction
path is not required. The decision for using the fast dispatch path
(DMKDSPA) 1is accomplished by the module that handles privileged
operation, DMKPRV or DMKVIO. A fast redispatch path 1is also available
after I/0 interrupts. If DMEKDSP can determine that the I/0 interrupt
processing had no effect on the running virtual machine's status and it
caused no higher-priority virtual machine to become runnable, then the
virtual PSW stored at the I/0 o0ld PSW location will be used to
redispatch the virtual machine.

Enable Window

The CP supervisor runs disabled for all I/O and external interrupts.
The dispatcher, in order to alleviate part of this problem, will
temporarily enable for interrupts and then disable. There are three
occasions when the dispatcher enables for interruptions (enable
windows) :

1. When an enabled wait state is entered.
2. When an enabled problem state is entered to run a virtual machine.

3. When another part of the supervisor is entered via the unstacking
of a CP request block.

On occasions 1 and 2, the dispatcher ignores the enable since the systea
will soon be enabled for interruptions. On occasion 3, if the
dispatcher finds a CP request block to unstack, it first enables then
disables for interruptions before unstacking the request.

1-134 IBM VM/370 System Logic and Problem Determination--volume 1



Favored Execution Options

When the resources of the processor (and real storage) are being
allocated, the dispatching and scheduling functions are implemented in
such a manner that options exist which allow an installation to
designate that certain virtual machines are to receive preferential
treatment.

The favored execution options allow an installation to modify the
algorithms described above and force the system to devote more of its
resources to a given virtual machine than would ordinarily be the case.
The options provided are:

1. The favored execution option.
2. The favored execution percentage.

The favored execution opticn means +that the virtual machine so
designated is never to be dropped from the active (in-gueue) subset by
the scheduler. When the virtual machine is executable, it is to be
placed in the dispatchable 1list at its normal priority position.
However, any active virtual machine represents either an explicit or
implicit commitment of main storage. An explicit storage commitment can
be specified by either +the virtual=real option or the reserved page
option. An implicit commitment exists if neither of these options are
specified, and the scheduler recomputes the virtual machine's projected
work-set at what it would normally have been at gueue-drop time.
Multiple virtual machines can have the basic favored execution option
set. However, 1if their combined main storage requirements exceed the
sytem's capacity, performance can suffer due to thrashing.

The basic favored execution option removes the primary source of
elapsed time stretch-out in a loaded time-sharing environment. However,
if the favored task is highly compute-bound and must compete for the
processor with many other tasks of the same type, an installation can
define the processor allocation to be made. In this case, the favored
execution percentage option can be selected for the virtual machine.
This option specifies that the selected virtual machine, in addition to
remaining in gqueue, receives a given minimum percentage of the total

processor time, if he can use it. The percentage is assured in the
following manner:

SaaVRa =4al

i. The in-queue time slice is multiplied by the regquested percentage
and added to the virtual machine's current total processor time
usage.

2. When the favored virtual machine, is executable, it is always
placed at the top of the dispatchable list until it has obtained
his guarantee.

3. If the virtual machine obtains its guarantee before the interval
has elapsed, it is placed in the dispatchable list according to its
caluculated dispatching priority.

4. 1In any case, at the end of the in-queue time slice, the guarantee
is recomputed as in step 1 and the process repeated.

These options can impact the response +time of interactive virtual

machines and only one favored percentage virtual machine is allowed at
any given tiame.

CP Introduction 1-135



Dispatching and Scheduling Support Routines

Most of the routines in the CP nucleus are reenterable and multiple
control program or virtual machine tasks can make use of one routine at
the same time. However, there are certain areas where requests for a
resource must be serialized (as in paging) or delayed while previous
requests are serviced (as in requests to schedule I/0).

-3

e CP Request Stack

|

The routine handling the request obtains a CPEXBLOK from free storage
and stores the caller's registers in it; when the requested resource is
free, the CPEXBLOK is stacked for the dispatcher via a call to the
request stack manager (DMKSTK). The dispatcher unstacks the block and
exits to the requesting routine the next time it 1is entered. I/0
requests are stacked in the same manner, except that the stacking
vehicle is the IOBLOK, and return is passed to the address specified in
the interrupt return address (IOBIRA). In either case, it should be
noted that the dispatcher always unstacks and gives control to any
stacked IOBLOKs and CPEXBLOKs prior to dispatching a wuser. This
guarantees that CP information needed by a virtual machine (such as page
availability) is always as up to date as possible.

CP SPOOLING

The spooling support in CP performs three functioms.

e Simulates the operation of the virtual unit record devices that are
attached to each user's virtual wmachine configuration. The
simulation is done in such a way that it appears to the program in
the virtual machine that it is controlling a real unit record device.
This support involves the interception and interpretation of virtual
machine SIOs, the movement of data +to and from the virtual machine's
virtual storage space, and the reflection of the necessary
interruption codes and ending conditions in PSWs, CSWs, and sense
bytes. This support is provided by the virtual spooling executive.

e Operates the real unit record equipment, attached to the system, that
transcribes virtual machine output spool files to the real printer or
punch and input from the real card reader +to DASD storage. This
function is provided by the real spooling executive.

e Provides an interface among the virtual machines, the system
operator, and the spooling system so that the location, format,
priority and utilization of the systems spooling data and resources
can be controlled.

1-136 IBM VM/370 System Logic and Problem Deteraination--Volume 1



SPOOL DATA AND FILE FORMAT
Data Format

The buffers that collect and write spool data are all one page (4096
bytes) in length, and contain the data to be transcribed and all CCus
necessary for operating the unit record devices that perform the
transcription. The data is provided in the exact format required with
no compression except that trailing blanks are suppressed. The first
two doublewords of each buffer contain 1linkage information described
below, followed by the data and CCWs, except for the first spool buffer
which contains 3800-related information.

Each spool logical record (card or print line) is stored as one CCW
that moves data (READ or WRITE), a TIC to the following CCW, and the
full data record. Space is left at the end of each buffer so that a
SENSE command can be inserted to force concurrent channel end and device
end. For card punch channel programs there is an additiornal back chain
field that points to the card previously punched so that error recovery
for punch equipment checks can back up one card. The only exception to
the format of READ/WRITE-TIC-Data is in buffers of files directed to the
printer. 1In this case, immediate operation code CCHs (skips and spaces)
are followed by the next CCH.

In addition to the data and CCWs contained in each spool buffer, the
first two doublewords contain forward and backward links to the next and
previous buffers in the file. This two-way linkage allows the file to
be backspaced or restarted from any point at any time. Also, it means
that if I/0O errors are encountered while reading one buffer, the file is
put in system hold status. If purged, all buffers except those in error
are released. The two-way chain allows this control of the file while
preventing fragmentation by allowing pages to be assigned and released

S mzos . 7
individually regardless of their ownership.

The first spool buffer of an output spool file contains a special
data record called the tag record. This record immediately follows the
two doublewords containing the forward and backward buffer 1linkage
pointers. The tag record allows VM/370 users to specify information to
be associated with spool files that they generate. The information is
entered via the CP TAG command, although the tag record is not
considered a spool file data record and is not printed or punched as
part of the spool file. However, the contents may be interrogated via
the CP TAG QUERY command.

The format of the tag record is a NOP CCW, followed by a TIC to the
next CC¥ and a 136-byte data field. To differentiate the tag record
from an immediate NOP CCW (no TIC-data sequence) independently of the
comnand code, the ®"skip" bit (bit 35) in the CCW has the following
convention:

Bit 35

0 for NOP CCW, TIC, data (tag record)

1 for NOP CCW (immediate NOP command)

CP Introduction 1-137



Bach spool file in the system is controlled by a spool file control
block (SPBLOK) that is resident in storage. While the file is open,
these blocks are chained from the devices (either real or virtual) that
are processing the file, and from device type file anchors after the
file is closed. There 1is one file chain each for printer, reader, and
punch files. Each SFBLOK contains information about the file that
describes its owner and originator (these can be different for
transferred files), the filename and filetype, and the class and number
of copies for output files. All of these attributes can be examined and
most can be changed by the file's owner or the system operator. The
SFBLOK also contains information such as the starting and ending buffer
addresses for the file, the record size, certain file status flaygs, etc.

SPOOL BUFFER MANAGEMENT

Real/Virtual Storaqe Mapagement

Buffers that temporarily store spool data on its way between DASD
secondary storage and the user's virtual machine are allocated from a
pool of virtual storage space that belongs to CP. The size of this pool
varies with the real storage available to VM/370 (the storage specified
at system generation or actual real storage, whichever is less).
Allocation is as follows:

Virtual Buffers

Storage Size Available Allocated
384K to 655,360 bytes 128
655,361 bytes to 1.1 megabytes 320
1.1 megabytes to 3 megabytes 640
over 3 megabytes 1280

Virtual storage buffers are allocated in 1-page increments by DMKPGT
at the time the spool file is opened for either input or output. If no
virtual storage space is available, the virtual machine is terminated
with a PGT008 abend. This places limits on the number of concurrent
spooling operations permitted by the system because spooling operates as
a high-priority task.

Real storage is not allocated for a spooling buffer until a virtual
machine actually issues a SIO that attempts to transfer data between the
buffer and the user's virtual storage space. At this time, a page of
real storage is allocated to the buffer via the real storage paging
manager. The buffer is locked in wmain storage (that is, is unavailable
to be paged out) only for the amount of time necessary to transfer the
data. After the data +transfer is complete, the buffer is treated as a
normal page of virtual storage, and can be selected to be paged out.
This ensures that low-usage spool files do not have buffers in real
storage, while the buffers for high-usage files should remain resident.
(Two spool file buffers are maintained for a 3800 printer.) The
location of the spool buffer in real storage is transparent to the
virtual spooling executive, because all references to the data therein
are accomplished through the DAT feature of the processor.

1-138 IBM VM/370 System Logic and Problem Determination--Volume 1



DASD Space Allocation

While a spool buffer is inactive, it resides in real storage or on the
paging device. After it has been filled with data from the virtual
machine or a real input reader, it is written to a page of secondary
DASD storage. The allocation of pages on the spooling disk(s) is
managed by DMKPGT, which handles requests for both pages of virtual
storage and semipermanent spool file residence. DMKPGT maintains
separate allocation block chains for virtual storage and spooling pages.
Each block contains control information and a bit map that allocates
pages on a single cylinder. If none of the cylinders allocated have any
available pages, DMKPGT enters its cylinder allocation routine.

DMKPGT attempts to even out the spooling and paging I/O load by
allocating cylinders across channels and devices. To minimize seek
times on a given device, cylinders are allocated as close to the
relative center of the spooling or paging area as possible.

Paging Device Support: All actual I/0 for the page buffers on any device
is controlled by the paging I/0O executive DMKPAGIO.

VIRTUAL SPOOLING MANAGER (DMKVSP)

The two functions of the virtual spooling manager are (1) to simulate
the operation of all spooled unit-record devices attached to the user's
virtual machine, and (2) to read and write the spool files associated
with those devices. The following virtual devices are supported for
spooling, with the exceptions noted:

e IBM 2540 Card Reader/Punch, except for punch feed read and column
binary

e IBM 3203 Printer Model # and Model 5 (132 positions)
e IBM 1403 Printer Models 2 and N1 (132 positions)

e IBM 3211 Printer (150 print positions)

e IBM 3505 Card Reader (except for mark senses reading)

e IBM 3525 Punch (except for the card read, print, and data protect
features).

The following consoles are supported for spooling when entered into
the directory as the virtual system console:

e IBM 1052 Printer-Keyboard, Model 7 (via the 2150 Console)
e TIBM 3210 Console Printer-Keyboard, Models 1 and 2
e 1IBM 3215 Console Printer-Keyboard, Model 1

All virtual printers must have the universal character set feature.
No checking is done on the spooled printer data. However, any UCS
buffer commands issued by the virtual machine (load UCS buffer, block
data checks, etc.) are ignored. Itis up to the user and the
installation to ensure that the output is directed to the proper real
printer via use of the output CLASS feature described below. For the
3211 or 3203 printer, forms control buffer (FCB) commands are accepted

CP Introduction 1-139



and simulated by means of a virtual FCB maintained by the executive.
The use of the wvirtual FCB 1is the only way to simulate end-of-form
conditions reflected by the detection of a channel 9 or 12 punch. When
the spooled file is directed to a real 3211, 3203, or 1403, the operator
is responsible for loading the FCB or mounting the proper carriage tape.

If any of the unsupported unit record features are required, the real
device must be attached directly to the user's virtual machine. Thus, a
3505 reader could be a spooling input reader, but attached directly to a
batch virtual machine when it is necessary to read mark sense cards.

output File Processing

DMKVSP receives control from the virtual I/0 executive, DMKVIO, when the
user's machine issues a SI0 to a spooled unit record device. DMKVIO
does not pass control until it has been determined that the device is
available (that is, it is not busy and has no interruptions pending).
DMKVSP first determines if the device 1is currently processing a file.
If it is, processing continues. If this is the first command issued by
the given device, a new output file must be opened. An open subroutine
is called to build the control blocks necessary to manage the file and
to obtain virtual storage and DASD buffer space. Control is then
returned to DMKVSP.

Before the first record of an output spool file is written, DMKVSP
writes a tag record (NOP CCW, TIC, data sequence) and initializes the
136-byte data area to blanks. It then sets the spool buffer displacement
pointer to the first doubleword in the buffer beyond the tag record.
DMSVSP then analyzes and interprets the channel program associated with
the virtual machine's SIO. Each CCW is tested for validity of command,
address, flags, alignment, protection, etc., and if the CCW is valid,
the virtual machine's data is moved from his own virtual storage space
to the buffer in the spooling virtual storage. When this buffer is
full, it is written to a page of DASD secondary storage and a new buffer
is obtained. The interpretation of the virtual machine's channel
program continues until there are no more CCWs or until an error
condition is detected that prohibits further processing. In either
case, the device is marked as having the proper interruptions pending, a
CSW is constructed, and DMKVSP exits to the main dispatcher. In contrast
to nonspooled 1I/0, the virtual machine has remained in a pseudo-wait
(IOWAIT) for the time it took to interpret the entire channel program.

The output file can be logically closed by the virtual machine either
by issuing an invalid CCW command code, or by the CP CLOSE command. In
either case, DMKSPL checks for tag record information
and 3800-related information in the VSPXBLOK. (The VSPXBLOK, pointed to
by the VDEVEXTN field of the VDEVBLOK for the output spool device,
contains the tag information entered via the CP TAG command.) If tag
data exists, the first spool buffer for the file is read in, the tag
data is inserted in the tag record, and the buffer is rewritten to DASD
storage. If no tag data exists, the tag record data field is left blank.
The device is then cleared of pending interruptions, the file chains are
completed, and the file is either queuved for output on a real device of
the proper type (printer or punch), or, if XFER is in effect, is queued
for input to another virtual machine.

The 3800-related information includes:

CHARS - character arrangement table

_MODIFY - copy modification name

FCB - file control block

1-140 1IBM VM/370 System Logic and Problem Determination--Volume 1



FLASH - flash count overlay use
This information is contained in the VSPXBLOK for a wvirtual printer.

When the file is closed, the information is contained in the first DASD
buffer.

Input File Processing

Input file processing 1is similar to output file processing, except for
the open and close functions, and the analysis of CCW commands and the
direction of data movement. Many common routines are utilized to locate
and verify CCWs, obtain buffer space, and to move the spooling data.

The difference in the open function is that instead of creating a new
file, it is necessary to locate a reader file that already exists in the
system. To do this, the open subroutine scans the SFBLOKs chained from
the anchor, READERS, +to find a file with an owner userid that matches
that of the caller and is not in hold status. If a file is not found, a
unit check or intervention required condition is reflected to the
virtual machine; otherwise, 1its SFBLOK is chained to the control block
for the reader and the channel program is interpreted in the same manner
as for an output file.

After the input file is exhausted, a unit exception is reflected to
the wuser machine, unless the user has requested either continuous
spooling or that an EOF not be reflected. With continuwous spooling, the
unit exception 1is not reflected until the last file for that virtual
machine is processed. If NOEOF 1s specified, the simulation terminates
with a unit check or intervention-required condition (similar to what
happens if the EOF button on a real reader is not pushed).

In either case, the input file is then deleted from the systenm,

unless the user has specifically requested that his input files be
saved. If the file is saved, it can be re-read any number of times.

Virtual Comsole Spooling

Support of virtual console I/0 for both the virtual machine and VM/370
is provided as an option for the VM/370 spooling capabilities. This
support fulfills the following regquirements:

e Provides hardcopy support for CMS Batch Facility virtual machines.

e Provides hardcopy support for display devices used as syster or
virtual machine consoles.

e Allows disconnected virtual machines to spool virtual console output,
CP commands and system resources to disk instead of losing the
output.

e Improves the performance of virtual machines that currently produce a
large amount of console output.

Whenever a SIO is issued to a virtual machine console, the virtual
console manager (DMKVCN) determines if the spooling option is active.
If it is, control is passed to the virtual spooling manager at DMKVSPBP
to insert the data into a spool file buffer. While console spooling
utilizes, basically, the same code as printer spooling, the following
exceptions are made:

CP Introduction 1-141



e 1A skip to channel 1 CCH is inserted after every 60 lines of output.

e The operator's virtual console spool buffer is written out after
every 16 lines of output.

e The virtual spool buffer is written out to the allocated spool device
when the first CCW is placed in that virtual buffer. The linkage area
of the virtual spool buffer takes the form of a CLOSE file to allow
checkpoint (DMKCKP) to recover the active spool file in the event of
a shutdown because of system failure. If data in the virtual buffer
has not yet been vwritten to the spool device, it will not be
recovered.

To maintain a pseudo closed file status for console spool files,
DMKSPL now assigns spool identifications to all output spool files
where they are first queued.

A virtual system reset, device reset, or IPL does not close the
virtual console spool file. The LOGOFF, FORCE, or DETACH of virtual
console commands does close the virtual console spool file. The
SHUTDOWN command does close the operator's console spool file. If
the SHUTDOWN command is issued by a Class A user other than the
operator, the console spool file for both the user and operator is
closed.

The inclusion of the spool file tag record in a virtual console spool
file is processed by DMKVSP and DMKSPL as described for printer spool
files in "Output File Processing" under "Virtual Spooling Manager."

REAL SPOOLING MANAGER (DMKRSP)

The real spooling manager operates the real unit record devices that are
attached to the system and that are used to transcribe input data into
reader spool files and user output spool files onto the real printers
and punches. The executive optimizes the use of main storage and the
processor rather than running the system unit record devices at their
rated speeds. DASD input files are not double-buffered

except for a 3800 printer, and under periods of peak load, input and
output devices tend to run in bursts. However, command chaining is used
for all unit record channel programs so that the devices are running at
their maximum speed with a minimum of interruptiomns.

output File Processing

Both the input and output operations of DMKRSP are interruption driven.
Thus, DMKRSP does not process unless an internally or externally
generated not-ready to ready device end interruption occurs. External
interruptions are generated by the hardware in the normal manner, while
internal, "pseudo interruptions," are generated by the software when an
output file has been queued on the real printer or punch file chain, or
wvhen the operator issues a START command to a drained device.

Upon receipt of the initial device end for a printer or punch, DMKRSP
searches the appropriate file chain for the SFBLOK of a file whose class
matches that of the device that was made ready. If FLASH is specified
for a 3800 printer, the flash overlay name must also match. When the
SFBLOK is 1located (provided the file is not in a hold status), it is

1-142 1IBM VM/370 System Logic and Problem Determination--Volume 1



unchained from +the output queue and chained to the real device block
that services the file. A page of real main storage (two pages for a
3800 printer) is then obtained for use as a buffer, and the output
separator routine (DMKSEP) is called to print output identifier pages.
DMKTCS is then called to set up the 3800 for printing that file. When
DMKSEP returns control to DMKRSP, the first buffer of the file is paged
into real wmain storage, and the CCWs in the channel program that it
contains are adjusted so that their data addresses correspond to the
real addresses at which the data resides. The real SIO supervisor
(DMKIOSQR) is then called to start the channel program, and DMEKRSP exits
to the dispatcher (DMKDSPCH) to await the interruption.

When the channel end/device end interruption for the completed buffer
is unstacked +to DMKRSP, the forward chain file link field locates the
next buffer. This buffer is paged-in, and the process is repeated until
the final buffer is processed. At this point, the number of copies
requested for the file is decremented. If the number of copies is 0,
processing is terminated and the file 1is deleted from the systenm;
otherwise, the process is repeated as many times as necessary. For a
3800 printer, double buffering is maintained so that the second buffer
is filled while the first buffer is being printed.

Wken file ©processing is complete, a scan of the appropriate output
queue is again made, and if a file is found it is processed. If the
queue is empty, or if a file with a matching class is not found, an exit
is taken to DMKDSECH to wait for another ready interruption. If a 3800
device is used, the file is placed on the 3800 delayes purge queue. If
this queue reaches maximum size, the oldest file in the queue is deleted
from the systen.

Output file processing can be modified by either the systeam operator,
by a spooling support command or as a result of system errors. The
operator commands allow a given file %o be backspaced or restarted, and
the files of individual users or the whole system to be held and
released for output. I/O0 errors also affect the spooling system, and a
description of how they are processed 1is in the section ®"Spool File
Error Recovery."

Input File Processing

Reader file processing is initiated by the receipt of a device end
interruption from a spocling card reader. ©¥o explicit operator command
is required to start the processing of an input file. When the device
end is unstacked to DMKRSP, an open subroutine is called to build the
necessary control blocks and to obtain the virtual, real, and DASD
buffer space required for the file. 1A channel program to read 41 cards
is built in the buffer, and DMKIOSQR is called to start the reader.

When the interruption for the first buffer is unstacked, the first
card is checked for its validity as a userid card. The minimum
information that this card must contain is the userid of the owner of
the input file. It may appear anywhere on the card, with the
restriction that it must be the first information punched. Optional
information on the userid card can include a filename and type and/or
the <class of the virtual card reader to which the file is to be
directed. If the userid is wvalid, the file processing continues;
otherwise, the operator receives an error message and processing is
terminated.

After each file buffer is read, it is written onto disk by the paging
I/0 routines in the same way that virtual output files are handled.
When a unit exception signaling physical end of file is received from

CP Introduction 1-143



the reader, the file 1is closed by vwriting the final buffer to disk and
completing and gqueuing the SFBLOK to the reader's file chain. If the
owner of the file is currently logged on, he is given a nmessage
indicating that a file has been read and if he has an available card
reader, it is posted with a device end interruption. An available
reader is one of the correct class which is ready, is not busy, has no
active file, and has no pending interruptioms.

s e o s —mama Sememamem e

Various routines in CP accumulate, format, and punch account cards that
contain system usage information for certain users. These routines
format the information into an 80-column card image preceded by a punch
CCW and call DMKACOAQ to queue the card for real output. DMKACOAQ calls
DMKACOPU to punch the card on a real punch, if one is available;
otherwise, the card is queued in main storage until a punch is free.
When a punch finishes processing its last file, a test is made to see if
any accounting cards have been gqueued. If they have, DMKACOPU is called
to process then.

In addition to the cards generated by CP to account for a virtual
machine's use of system resources, the user may request cards to be
punched in order to account for the use of virtual machine resources by
jobs running under his userid. In order to do so, the user must have
the account option (ACCT) entered into the directory.

To punch an accounting card, the user must issue a code X'004C"
DIAGNOSE instruction with a pointer to either a parameter 1list
containing user-specified M"charge to" information, or a data area
containing up to 70 bytes of user-specified information to be punched
into the accounting card. DMKHVC validates the instruction operands,
builds an account buffer (ACNTBLOK), and DMKACOQU is called to queue the
card for real output. For additional information about this user
option, see "DIAGNOSE Interface (DMEHVC) " under fprivileged
Instructions."

When the user accounting option is being utilized, the user must keep
in mind that each additional accounting record requested 1is occupying
real storage space. Degradation of system performance occurs if
available storage becomes filled with accounting data.

SPOOLING COMMANDS

The spooling commands provide an interface between the user, the system
operator, and the spooling system. There are three types of spooling
commands:

e Those that affect virtual devices
e Those that affect real devices
e Those that affect spool files that are queued within the systea

The commands that affect virtual devices are generally available to
all system users, and a user can only affect the status of devices that
are attached to his own virtwal machine. Commands that affect the
status of the real system's spooling devices can be used by the systen
operator only. Commands that affect closed spool files that are
avaiting processing are generally available +to all users, with some
additional capabilities assigned to the system operator. For example, a

1-144 1IBM VM/370 System Logic and Problem Detexrsination--VYolume 1



user may alter the characteristics only of those files that have an
ovner's userid that matches his own, whereas the system operator may
change any spool file in the systenm.

File States apnd Attributes

Each spool file in the system has a number of attributes that are
assigned to it, either explicitly or by default, at the time that it is
created. These attributes and their values are as follows:

. Filename and filetype can be 24-character fields. Either or both
can be replaced by a user-supplied value.

. Spoolid number is a system—assigned number between 1 and 9900. It
is automatically assigned when the file is created (input) or closed
(output), and is unique within the system. The file‘s owner, the
device type, and the id number are specified. Usually, the userid
defaults to the identification of the user issuing the given
command. Because the identification number rather than the filename
and filetype is an identifier, duplicate user-assigned names do not
present an identification probleam.

. The number of logical records (cards or print lines) in the file is
an integer between 1 and 16 million. Por printer files, the record
count also includes any immediate operation code space or skip CCHus.

e The originating user is the identification of the file's creator, if
the file has been internally +transferred from the originator's
Printer or punch to the new owner's card reader.

° The number of copies requested for an output file is between 1 and
99. Unless altered by the user or operator, it defaults to 1.

. The device type is used by DIAGNOSE for a file transferred to a
reader to determine the virtual type of output device.

. CHARS for 3800 printer

e FCB for 3800 printer

. MODIFY for 3800 printer
. FLASH for 3800 printer

In additicn to those attributes, a file that is queued for real
output or virtual input always has a class associated with it. A class
is a single alphameric character from A through 2z or from 0 to 9. It
controls both the real or virtual device on which the file will be
printed, punched, or read, and the relative priority and sequence of
output on the device. While each file is assigned a single class, each
real spooling output device can be assigned from one to four classes.
The device then processes only files that have a class attribute that
corresponds to one of its own, and processes these files in the order
that its own classes are specified.

Por example, if a printer is assigned the classes A, D, 2, it
processes any printer file with a class of A before it searches the
printer output gqueue for a file with class D. 411 class D files are
printed before class 2 files.

The output class for a file is assigned at the time the file is

created and is the class that is associated with the virtual device that
created it. While each real spooling device can have up to four

CP Introduction 1-145



classes, each virtual spooling device can have only one. When a user
logs onto to the system, the class associated with a device is the one
defined in his directory entry for that device. However, he can alter
this class at any time by the SPOOL command. As files are created and
closed by a device, they take on the device's output class.

After they are closed and are awaiting output, their class can be
changed by a CHANGE command issued either by the file's owner or the
system operator. The system operator can alter the system generated
output class(es) of a real output device by the START command.

Output files transferred to a user's virtual reader can also be
controlled by class. If the receiving user has several readers, the
input to each can be limited to files of a certain class. In addition,
the ORDER command allows sequencing of input files by class as well as
spoolid number.

Output priorities can also be managed by altering the hold status of
a file. Individual users can alter the hold status with the CHANGE
command, while the system operator can change (hold or free) the files
of specific individual users.

SPOOL and CHANGE commands can be used to modify the CHARS, FCB, MODIFY,
and FLASH attributes of a file or a virtual printer.

¥irtual Device Spooling Commands

These commands affect the status of a user's virtual spooling devices:

Command Meaning

CLOSE Terminates spooling operations on a specified device. It
clears the device of any pending interrupt conditions, and for
output files, updates the tag record, completes and queues the
file for real output. Optional operands allow the user to
specify a filename and filetype, and to override for the given
file any standard CLASS, HOLD/NOHOLD or COPY operands set into
the output device by the SPOOL command.

SPOOL Establishes the file attributes that apply to files created
on, or read by, the given device. It establishes the class
that will be in effect, whether: files are to be automatically
held, input files are to be saved or purged after reading, and
output files are to be directed to the real system printers
and punches or are to be transferred to a user's virtual
reader. The SPOOL command also specifies 3800 attributes.

Real Device Spooling Commands

The operator can use these commands to control the activity of the real
spooling devices:

Command Meapning

BACKSPAC Backspaces an active spooling device for either a specified
number of pages (printers only) or to the beginning of the
file (printers or punches).

DRAIN Stops the operation of a specified output or input device
after it has finished processing the file on which it is
currently working. A printer must be drained prior to the
issuance of the LOADBUF command. Unit record devices are
normpally drained prior to system shutdown.

1-146 IBM VM/370 System Logic and Problem Determination--Volume 1



START Restart a device after it has been drained. Options allow the
operator to specify the spooling output class for the output
device and output separator records. For a 3800 printer, the
IMAGE CHAR, FCB and PURGE options may also be specified.

FLUSH Immediately halts the output on the specified device and
either flushes that copy of the file from the system, or puts
it into the system hold status for future processing.

REPEAT Supplements the number of copies requested by the user for the
file when it was created. The operator can specify a number
from 1 to 99 that is added to the number specified by the
user.

LOADBUF L.oads the universal character set buffer of the FCB of the
specified printer with the specified image. If requested, the
system verifies the loading by printing its contents on the
affected printer.

SPACE Forces the output on the specified printer to be single
spaced, regardless of the skipping or spacing commands
specified by the file's creator.

Spool File Management Commands: The spooling commands alter the
attributes and status of closed spool files that are gueued and awaiting
processing. When a command applies to an individual file, the device
type (RDR, PUN, PRT) and the spoolid number must be provided to identify
the file. In most commands requiring a spoolid, the keyword CLASS
followed by a valid spool class or the keyword ALL are acceptable
substitutes for the spoolid number. This causes the command to be
executed for all files of the given class or device type. The userid is
the identification of the user issuing the command, except that the
system operator nmust explicitly supply the identification of the user
whose files he wishes to affect or he must specify the keyword SYSTEHN,
which gives access to all files (valid for CHANGE, PURGE, ORDER, and
TRANSFER commands also).

Command Meaning

CHANGE Changes the filename and filetype, the number of copies, and
the class of the specified file. The CHANGE command also
specifies 3800 attributes. Any of the above attributes of a
file can be determined via the QUERY command.

HOLD Places, via the system operator, the specified file in a hold
status. The file is not printed or punched is released by the
system operator. The operator can hold any user files by
device type.

FREE Opposite of the HOLD command. Allows a file or group of files
that were previously held to become available for processing.
However, the user cannot reset a hold that was set by the
operator with the HOLD command.

PURGE Removes unwanted spool files from the system before they axe
printed or punched.

ORDER Reorders the ipput files in a virtual card reader. It can
order files by identification number, by class, or by any
combination of the two.

TRANSFER Transfers a virtual reader to another user's virtual reader

without any processing. The TRANSFER command causes a
changing in the owning userid field in the file's SFBLOK.

CP Introduction 1-147



SPOOL FILE ERROR RECOVERY

Unit Record I/0 ErIOLsS

I/0 errors on real spooling unit record devices are handled by a
transient routine that is called by DMKIOS after it has sensed the unit
check associated with the error on a spooling device. If appropriate, a
restart CAW 1is calculated and DMKIOS is requested to retry the
operation, in some cases waiting for a device end that signals that the
failing device has been made ready after manual corrective measures have
been taken. I1f, after retrying the operation, the error is
unrecoverable, DMKIOS is informed that a fatal error has occurred.
DMKIOS then wunstacks the interruption, flagged as a fatal error, and
passes control to real spooling executive. The routines that handle
unstacked interruptions in real spooling execute only module operations
that have been completed correctly or those that are fatal errors. If a
fatal error 1is unstacked, the recovery mechanism depends on the
operation in progress.

For fatal reader errors, processing of the current file is terminated
and any portion of the file that has been read and stored on disk is
purged. The owner of the file is not informed of the presence of a
fractional part of the file in the systenm.

For fatal printer or punch errors, the SFBLOK for the partially
completed file is re-queued to the appropriate output list and
processing can be resumed by another available printer or punch, or can
be deferred until the failing device is repaired.

In any case, the failing device is marked logically offline, and no
attempt is made by the system to use it until the operator varies it
back online via the VARY command.

If an invalid load wmodule is specified for a 3800 printer (refer to
DIAGNOSE code X'74'), the file involved is held or purged, and the
pPrinter queue is searched for the next file to print. 1In addition, the
user and operator are sent a message (DMKRSE241E), describing the
action.

DASD Exrors During Spooling

DASD I/0 errors for page writes are transparent to the user. A new page
for the buffer is assigned, the file linkage pointers are adjusted, and
the buffer is rewritten. The failing page is not de-allocated and no
subsequent request for page space is granted access to the failing page.
If an unrecoverable error is encountered while reading a page,
processing depends on the routine that is reading the file. If the
processing is being done for a virtual reader, the user is informed of
the error and a unit check/intervention required condition is reflected
to the reader. If the processing is being done for a real printer or
punch, the failing buffer is put into the system hold status, and
processing continues with the next file. In either case, the DASD page
is not de-allocated and it is not available for the use of other tasks.

1-148 IBM VM/370 System Logic and Problem Detersmination--Volume 1



DASD Spool Space Exhausted

——

If the space allocated for paging and spooling on the system's DASD
volumes is exhausted and more 1is requested by a virtual spooling
function, the user receives a message and a unit check intervention
required condition is reflected to the virtual output device that is
requesting the space, the output file is automatically closed and it is
available for future processing. The user can clear the unit check and
periodically retry the operation which will start when space is free or
completely restart later from the beginning of the job. If the task
requesting the space is the real spooling reader task, the operator
receives an error message and the partially complete file is purged.
Any time the spooling space is exhausted, the operator is warned by a
console message and alarm. Hovwever, the system attempts to continue
normal operation.

RECOVERY FROM SYSTEM FAILURE

Should the system suffer an abnormal termination, CP attempts to perform
a warm start. Spool £file and device data, as well as other systea
information is copied from real storage to warm start cylinders on DASD
storage. When the system 1is reinitialized, the spool data and other
systen data 1is retrieved from the warm start cylinders and operation
continues.

If the warm start data in real storage was damaged by the abnormal
termination, +the warm start procedure recognizes the situation and
notifies the operator that a warm start cannot be performed. Another
recovery method would be to attempt a checkpoint start.

The spool file recovery routines (DMKCKS) dynamically checkpoint on
DASD storage; the status of all open reader files, the status of all
closed output files, real spcoling device data, and system hold queue
information. This information is stored on checkpoint cylinders that
are allocated, along with warm start cylinders, at system generation.

When a checkpoint (CKPT) start is reguested, spool file and spooling
device information is retrieved from the checkpoint cylinders. Spool
file blocks are chained to their appropriate reader, printer or punch
chains; record allocation blocks are reconstructed; spoecling device
status is restored; and, system hold dJueues are chained to the proper
devices. System operation then continues.

If the checkpoint start procedure encounters I/0 errors or invalid
DASD data on the checkpoint cylinders, +the operator is notified. The
FORCE option of the checkpoint start performs all the checkpoint start
functions except that, invalid or unreadable files are bypassed. While
this is at best a partial recovery, the only other alternative is a cold
(COLD) start, where all spool file data is lost.

RECOVERY MANAGEMENT SUPPORT (RMS)

The machine check handler (MCH) minimizes 1lost computing time caused by
machine malfunction. MCH does this by attempting to correct the
malfunction immediately, and by producing machine check records and
messages to assist the service representatives in determining the cause
of the problenm.

CP Introduction 1-149



The channel check handler (CCH) aids the I/0 supervisor (DMKIOS) to
recover from channel errors. CCH provides the device-dependent error
recovery programs (ERPs) with the information needed to retry a channel
operation that has failed.

This support is standard and model-independent on the external level
(from the user's point of view there are no comsiderations, at system
generation time, for model dependencies).

SYSTEM INITIALIZATION FOR RMS

DMKCPI calls DMKIOEFL to initialize the error recording at cold start
and warm start. DMKIOEFL gives control to DMKIOG to initialize the MCH
area. A store CPU ID (STIDP) instruction is performed to determine if
VM/370 is running in a virtual machine environment, or running
standalone on the real machine. If VM/370 is running in a virtual
machine, the version code is set to X'FF' by DMKPRV. If the version
code returned is X'FF', the RMS functions are not initialized beyond
setting the wait bit on in the machine check new PSW (virtual). This
occurs because machine check interruptions are not reflected to any
virtual machine. VM/370, running on the real machine, determines
whether the virtual machine should be terminated.

If the version code is not X'FF', DMKIOG determines what channels are
online by performing a Store Channel ID (STIDC) instruction and saves
the channel type for each channel that is online. The maximum machine
check extended logout 1length (MCEL) indicated by the Store CPU 1ID
(STIDP) instruction is added to the length of the MCH record header,
fixed logout length and damage assessment data field. DMKIOG then calls
DMKFRE to obtain the necessary storage to be allocated for the MCH
record area (MCRECORD), the CP execution block (CPEXBLOK), MCHAREA, and
MCEL. The address of MCHAREA is put in the PSA (AMCHAREA). Pointers to
MCRECORD and the CPEXBLOK and put in MCHAREA. DMKIOG puts the address of
MCEL in control register 15. DMKIOG obtains the storage for the I/O
extended logout area and initializes the logout area and the ECSW to
ones. The I/0 extended 1logout pointer is saved at location 172 and
control register 15 is initialized with the address of the extended
logout area. The length of the CCH record and the online channel types
are saved in DMKCCH. It should be noted that the ability of a CPU to
produce an extended logout or I/0 extended 1logout and the length of the
logouts are both model- and channel-dependent. If VM/370 is - being
initialized on a Model 165 II or 168, the 2860, 2870, and 2880
standalone channel modules are loaded and locked by the paging
supervisor and the pointers are saved in DMKCCH. If VM/370 is being
initialized on any other model, the integrated channel support is
assumed; this support is part of the channel control subroutine of
DMKCCH. Before returning to DMKIOE, the VM/370 error recording
cylinders are initialized. DMKIOE passes control back to DMKCPI and
control register 14 is 1initialized with the proper mask to record
machine checks.

OVERVIEW OF MACHINE CHECK HANDLER

A machine malfunction can originate from the processor, real storage or
control storage. When any of these fails to work properly, the processor
attempts to correct the malfunction.

When the malfunction is corrected, the machine check handler (MCH) is
notified by a machine check interruption and the processor logs out
fields of information in real storage, detailing the cause and nature of
the error. The model-independent data is stored in the fixed logout area

1-150 1IBM VM/370 System Logic and Problem Determination--Volume 1



and the model-dependent data is stored in the extended logout area. The
machine check handler uses these fields to analyze the error, format an
error record, and write the record out on the error recording cylinder
of SYSRES.

If the machine fails to recover from the malfunction through its own
recovery facilities, the machine check handler is notified by a machine
check interruption. An interruption code, noting that the recovery
atteapt was unsuccessful, is inserted in the fixed logout area. The
machine check handler then analyzes the data and attempts to keep the
system as fully operational as possible.

Recovery from machirne malfunctions can be divided into the following
categories: functional recovery, system recovery, operator-initiated
restart, and system repair. These levels of error recovery are discussed
in their order of acceptability, functional recovery being most
acceptable and system repair being least acceptable:

FUNCTIONAL RECOVERY: Functional recovery is recovery from a machine
check without adverse effect on the system or the interrupted user.
This type of recovery can be made by processor retry, the ECC facility,
or the machine check handler. Processor retry and ECC error correcting
facilities are discussed separately in this section because they are
significant in the +total error recovery scheme. Functional recovery by
MCH is made by correcting storage protect feature (SPF) keys and

intermittent errors in real storage.

SYSTEM RECOVERY: System recovery is attempted when functional recovery
is impossible. System recovery is the continuvation of system operations
at the expense of the interrupted wuser, whose virtual machine operatioa
is terminated. System recovery can only take place if +the user in
question is not critical to continued system operation. An error in a
system routine that is considered to be critical to system operation
precludes functional recovery and would require logout and a system dump
followed by reloading the systenm.

OPERATOR-INITIATED RESTART: When the errors may have caused a loss of
supervisor or system integrity, the system is put into a disabled wait
state. The operator is instructed to run the standalone error recovery
(SEREP) program and then manually restart the system.

SYSTEM REPAIR: System repair is recovery that requires the services of
maintenance personnel and takes place at the discretion of the operator.
Usually, the operater bhas tried to recover by system-supported restart
one or more times with no success.

SYSTEM/370 RECOVERY FEATURES

The operation of the Machine Check Handler depends on certain automatic
recovery actions taken by the hardware and on logout information given
to it by the hardware.

Processor errors are automatically retried by microprogram routines.
These routines save source data before it is altered by the operation.
When the error is detected, a wmicroprogram returns the processor to the
beginning of the operation, or to a point where <the operation was
executing correctly, and the operation is repeated. After several
unsuccessful retries, the error is considered permanent.

CP Introduction 1-151



Ecc Validity Checking

ECC checks the validity of data from real and control storage,
automatically correcting single-bit errors. It also detects multiple-bit
errors but does not correct them. Data enters and leaves storage through
a storage adapter unit. This unit checks each doubleword for correct
parity in each byte. If a single-bit error is detected, it is corrected.
The corrected doubleword is then sent back into real or control storage
and on to the processor. When a multiple-bit error is detected, a
machine check interruption occurs, and the error location is placed in
the fixed 1logout area. MCH gains control and attempts to recover froa
the error.

Control Registers

Two control registers are used by MCH for loading and storing control
information (see Figure 21). Control register 14 contains mask bits
which specify whether certain conditions can cause wmachine check
interruptions and mask bits which control conditions under which an
extended logout camn occur. Control register 15 contains the address of
the extended logout area.

TR i |
|Word|Bits| Name of Field | Associated with |
] 4 AL L (]
1 4 T 1] L I’
| 1| 0 { Check-stop control | Mch-Chk handling |
| 14 § 1 | Synchronous MCEL control | Mch-Chk handling |
| 14 | 2 | I/0 extended logout control { Chan-Chk handling |
| 14 | 4 | Recovery report mask | Mch-Chk handling |
| 14 | 5 | Degradation report mask | Mch-Chk handling |
| 14 { 6 | External damage report mask | Mch-Chk handling |
| 14 | 7 | Warning mask { Mch-Chk handling |
| 14 § 8 | Asynchronous MCEL control { Mch-Chk handling |
| 14 1 9 | Asynchronous fixed log control | Mch-Chkx handling |
| 15 |8-28| MCEL address | Mch-Chk handling |
— 4 A L 3

Figure 21. RMS Control Register Assignments

VM/370 Machine Check Handler module (DMKMCH) consists of the following
functions:

Initial analysis subroutine

Main storage analysis subroutine
SPF analysis subroutine

Recovery facility mode switching
Operator communication subroutine
Virtual user termination subroutine
Soft recording subroutine

Buffer error subroutine

Termination subroutine

1-152 1IBM VM/370 System Logic and Problem Determination--vVolume 1



Initial Apalysis Subroutine

The initial analysis subroutine of DMKMCH receives control by a machine
check interruption. To mnminimize the possibility of 1losing 1logout
information by recursive machine check interruptions, the machine check
new PSW gives control to DMKMCH with the system disabled for further
interruptions. There is always a danger that a machine malfunction may
occur immediately after DMKMCH is entered and the system is disabled for
interruption. Disabling all interruptions is only a temporary measure
to give the initial analysis subroutine time to make the following
emergency provisions:

e It disables for soft machine check interruptions. Soft recording is
not enabled until the error is recorded.

e It saves the contents of the fixed and extended logout areas in the
machine check record.

e It alters the machine check new PSH +to point to the term subroutine.
The term subroutine handles second machine check errors.

e It enables the machine for hard machine check interruption.

e If a virtual user was running when the interruption occurred, the
running status (GPRs, FPRs, PSW, M.C. old PSW, CRs, etc.) is saved in
the user's VMBLOK.

e It initially examines the machine check data for the following error
types:

MCIC=ZERO

PSW invalid

System damage

Timing facilities damage

Channel inoperative on 3031/3032/3033 processor

The occurrence of any of these errors is considered uncorrectable by
DMKMCH; the primary system operator is informed, the error is
formatted and recorded, and the system enters a wait state, code 001
or 013.

e If the instruction processing damage bit is on, it tests for the
following types of malfunctioas:

-- Multiple-Bit Error in Main Storage -- Control is given to the main
storage analysis subroutine.

-- SPF Key Error —— Control is given to the SPF analysis subroutine.

~- Retry failed -- If the processor was in supervisor state the error
is considered uncorrectable and the VM/370 system is terminated.
If the processor was in problem state, the virtual machine is
reset or terminated and the system continues operation.

e If processor retry or ECC was successful on a soft error, control is
given to the soft recording subroutine to format the record, write it
out on the error recording cylinder, and wupdate the count of soft
error occurrences.

e If external damage was reported, control 1is given to the soft

recording subroutine to format the record and write it out on the
error recording cylinder.

CP Introduction 1-153



The main storage analysis subroutine is given control when the machine
check interruption was caused by a multiple~-bit storage error. An
initial function points the machine check new PSW to an internal
subroutine to indicate a solid machine check, in case a machine check
interruption occurs while exercising main storage.

Damaged storage areas associated with any portion of the CP nucleus
itself cannot be refreshed; multiple-bit storage errors in CP cause the
VM/370 system to be terminated. An automatic restart reinitializes
vM/370.

If the damage is not in the CP nucleus, main storage is exercised to
determine if the failure 1is so0lid or intermittent. Multiple-bit ECC
storage errors oan a 3031, 3032, or 3033 processor are always treated as
so0lid errors. If the failure is solid, the 4K page frame is marked
unavailable for use by the systen. If the failure is intermittent, the
page frame is marked invalid. The change bits associated with the
damaged page frame are checked to determine if the page had been
altered, by the virtual machine. If no alteration had occurred, VM/370
assigns a new page frame to the virtual machine and a backup copy of the
Page is brought into storage the next time the page is referenced. If
the page had been altered VM/370 resets or terminates the virtual
machine, clears its virtual storage, and sends an appropriate message to
the user. Normal system operation continues for all other users.

The SPF analysis subroutine is given control wvwhen the machine check
interruption vas caused by an SPF error. An initial function points the
machine check new PSW to an internal subroutine if a machine check
interrruption occurs during testing and validation. The SPF analysis
routine then determines if the error was associated with a failure in
virtual machine storage or in the storage associated with the control
program.

An SPF error associated with VM/370 is a potentially catastrophic
failure. Namely, VM/370 always runs with a PSY key of zero, which means
that the SPF key in main storage is not checked for an out-of-parity
condition. The SPF analysis subroutine exercises all 16 keys in the
failing storage 2K page frame. If an SPF machine check occurs in
exercising the 16 keys 5 times each, the error is considered solid and
the operating system is terminated with a system shutdown. If an SPF
machine check does not occur, the machine check 1is considered
intermittent. The zero key is restored to the failing 2K page frame and
this is transparent to the virtual machine.

If an SPF machine check occurs, which is associated with a virtual
machine, the SPF analysis subroutine exercises all 16 keys in the
failing storage 2K page frame. If an SPF machine check does not occur,
the machine <check is intermittent and +the SWPTABLE for the page
associated with the failing storage address is located. The storage key
for the failing 2K storage page frame is retrieved from the SWPTABLE and
the change and reference bits are set on in the storage key. The
storage key is then stored into the affected failing storage 2K page
frame. If an SPF machine check occurs in exercising the 16 keys 5 times
each, then the wmachine check is considered solid and the following
actions are taken. (1) The virtual machine is selectively reset or
terminated by the virtual wmachine termination subroutine; (2) The UK
page frame associated with the failing address is removed as an

1-154 IBM VM/370 System Lecgic and Problem Determination--Volume 1



available system resource. This 1is accomplished by 1locating the
CORTABLE for the defective page and altering the CORFPNT and CORPBPNT
pointers to make the page unavailable to the systenm. The CORDISA bit
in this CORTABLE is set on to identify the reason for the status of this
page in a system duap.

Recovery Facility Mode Switching

The recovery facility mode switching subroutine (DMKMCHMS) allows the
service representative to change the mode that processor retry and ECC
recording are operating in.  This subroutine receives control when a
user with privilege class F issues some form of the SET command with the
MODE operand. A check is initially made to determine if this is VM/370
running under VM/370. If this is the case, the request is 1ignored and
control is returned to the calling routine. For the format and usage of
the SET command with the MODE operand, refer to the VM/370 Operator's
Guide.

Operator Communication Subroutine

The operator communciation subroutine is invoked when the integrity of
the system has degraded to a point where automatic shutdown and reload
of the system has been tried and was unsuccessful, or could not be
attempted due to the severity of the hardware failure. A check is first
prade to determine if the system operator is logged on as a user, next a
check is made +to determine if the system operator 1is disconnected. 1If
either of these checks is not affirmative a message cannot be issued
directly tc the system operator. A LPSW is performed to place the
processor in a disabled wait state with a recognizable wait state code
in the processor instruction counter.

Virtual User Termination Subroutine

The virtual wmachine termination sibroutine selectively resets cor
terminates a virtual user whose operation has been interrupted by an
uncorrectable machine check. First, the machine is marked
nondispatchable to prevent the damaged machine from running before reset
or termination is performed. The machine check record is formatted and
DMKIOEMC is called to record the error. Then the user is notified by a
call to DMKQCNRT that a machine check has occurred and that his
operation is terminated. The primary system operator is notified of the
virtual user termination by a message issued by a call to DMKQCHKWT. If
the wvirtual machine is running in the virtual=real area, DMKUSO is
called to 1log the virtual machine off the system and to return the
storage previously allocated to the virtual machine and to clear any
outstanding virtual machine I/0 requests. The HOLD option of LOGOFF is
invoked to allow a user on a dial facility to retain the connection and
thus permit LOGON without re-establishing the line connection. However,
if the virtual machine is running in the virtual area, and DMKCFM is
then called to put the virtual machine in console function mode, the
user must re-initialize the system to commence operation.

CP Introduction 1-155



Soft Recording Subroutine

The soft recording subroutine performs two basic functions:

e Formats a machine check record and calls DMKIOEMC to record the error
on the error recording cylinder.

e Maintains the threshold for processor retry and ECC errors and
switches from recording to gquiet mode when the threshold value is
exceeded. To accomplish this, a counter is maintained by DMKMCH for
successful processor re+ry and corrected ECC events.

Processor Retry Recording Mode: Recording mode (bit 4 of control
register 14 set to one) is the initialized state, and normal operating
state of VM/370 for processor retry errors. Recording mode may also be
entered by use of the CP SET command. When 12 soft machine checks have
occurred, the soft recording subroutine switches the processor from
recording mode to gquiet mode. For the purpose of model-independent
implementation this is accomplished by setting bit 4 of control register
14 to zero. Because in quiet mode no soft machine check interruptions
occur, a switch from quiet mode to recording mode can be made by issuing
the SET MODE RETRY|{MAIN RECORD command. While in recording mode,
corrected CPU RETRY|MAIN reports are formatted and recorded on the
VM/370 error recording cylinder, but the primary systems operator is not
informed of these occurrences.

to 0) can be entered in one of two ways: (1) wvhen 12 soft machine
checks have occurred, or (2) when the SET MODE RETRY QUIET command is
executed by a class F user. In this mode, both processor retry and ECC
reporting are disabled. The processor remains in quiet mode until the
next system IPL (warm start or cold start) occurs or a SET MODE
RETRY |[MAIN RECORD command is executed by a class F user. SET MODE MNAIN
is treated as invalid on a 3031, 3032, or 3033 processor.

ECC Recording Modes: To achieve wmodel-independent support, RNS does not
set a specific mode for ECC recording. The mode in which ECC recording
is initialized depends upon the hardware design for each specific
processor model. For the IBM System/370 Models 135, 135-3, 138, 145,
145-3, 148, 158, 168, 3031, 3032, and 3033, the hardware-initialized
state (therefore the normal operational state for VM/370) is quiet mode.
For the IBM System/370 Models 155 II and 165 II, the hardware
initialized state (the normal operational state for VM/370) is record
mode. An automatic restart incident due to a VM/370 failure does not
reset the ECC recording mode in effect at the time of failure.

The change from record to gquiet mode for ECC recording can be
initiated in either of the following ways: (1) by issuing the SET MODE
{MAIN|RETRY} QUIET command, or (2) automatically whenever 12 soft
machine checks have occurred. For the purpose of model-independent
implementation, this occurs by setting bit 4 of control register 14 to
zZero.

The change from quiet to record mode for ECC recording can be
accomplished by use of the SET MODE MAIN RECORD command. This recording
mode option is for use by maintenance personnel only. It should be
noted that processor retry is placed in recording mode if it is not in
that state when the SET MODE MAIN RECORD command is issued.

¥hile 1in recording mode, corrected ECC reports are formatted and

recorded on the error recording cylinder, but the primary systeas
operator is not informed of these incidents.

1-156 IBM VM/370 Syster Logic and Problem Determination--volume 1



Buffer Error Subroutine

On processor models equipped with a high-speed buffer (155 I1I, 158, 165
11, 168, 3031, 3032, 3033) or a data 1lookaside table (DLAT) (165 II,
168, 3031, 3032, 3033) the deletion of buffer blocks because of hardware
failure is reported via a degradation report machine check interruption.
MCH enables itself for degradation report machine check interruptions at
system initialization by setting bit 5 of control register 14 to 1. If
a machine check interruption occurs that indicates high-speed buffer or
DLAT damage, MCH formats the record and calls DMKIOEMC to record it on
the error recording cylinder, informs +the primary systems operator of
the failure, and returns control to the system to continue normal
operation.

Termination Subroutine

The termination subroutine is given control if a hard machine check
interruption occurs while DMEKMCH is in the process of handling a machine
check interruption. Note that soft error reporting is disabled for the
entire time that MCH is processing an error.

An analysis 1is performed of the machine check interruption code of
the first error to determine if it was a soft error. If it was, the
first error 1is recorded, the system status is restored and control is
restored to the point where the first error occurred. If the first
error was a hard error, the operator communication subroutine is given
control to issue a message directly to the system operator, and to
terminate CP operation.

OVERVIEW OF CHANNEL CHECK HANDLER

The channel check handler (CCH) aids the I/0O supervisor in recovering
from channel errors and informs the operator or service representative
of the occurrence of channel errors.

CCH receives control from the I/0 supervisor when a channel data
check, channel <control check, or interface control check occurs. CCH
produces an I/O error block (IOERBLOK) for the error recovery prograam
and a record to be written on the error recording cylinder for the
system operator or service representative. The operator or service
representative may obtain a copy of the record by using the CMS CPEREP
comamand. 1A message about the channel error is issued to the systenm
operator each time a record is written on the error recording cylinder.

When the 1I/0 supervisor program detects a channel error during
routine status examination following an SIO, TIO, HIO, or an I/O
interruption, it passes control to the channel check handler (DMKCCH).
DMKCCH analyzes the channel 1logout information and constructs an
IOERBLOK and, if the error is a channel control or interface control
check, an ECSW is constructed and placed in the IOERBLOK. The IOERBLOK
provides information for the device-dependent error recovery procedures.
DMKCCH also constructs a record to be recorded on the error recording
cylinder. ©FNormally, DMKCCH returns control to the I/O supervisor after
constructing an IOERBLOK and a record. However, if DMKCCH determines
that system integrity has been damaged (system reset or invalid unit
address, etc.), then CP operation is terminated. CP termination causes
DMKCCH to issue a message directly to the system operator and place the
processor in a disabled wait state with a recognizable wait code in the
processor instruction counter.

CP Introduction 1-157



Normally, when DMKCCH returns control to the I/0 supervisor, the
error recovery program for the device which experienced the error is
scheduled. When the ERP Teceives control, it prepares to retry the
operation if analysis of the IOERBLOK indicates that retry is possible.
Depending on the device type and error condition, the ERP either effects
recovery or marks the event fatal and returns control to the I/0
supervisor. The I/0 supervisor calls the recording routine DMKIOE to
record the channel error.

The primary system operator is notified of the failure, and DMKIOE
returns control to the system and normal processing continues.

If the channel check 1is associated with an I/O event initiated by a
SIO in a virtual machine, the logout is reflected to the virtual machine
in one of two ways, depending upon whether the channel check occurred at
SIO time or later in an interrupt. If it occurred at SIO time, then
DMKVSI (or occasionally DMEKVIO) calls upon DMKCCHRF to reflect the
logout. If it occurred in an I/O interrupt, the dispatcher notices the
channel check as it is reflecting the I/0 interrupt to the virtual
machine, and so, at that time, DMKDSP calls upon DMKCCHRF to reflect the
logout.

CHANNEL CORTROL SUBROUTINE

Control is passed to the channel control subroutine of DMKCCH after a
SI0 with failing status stored, or an I/0 interrupt because of a channel
control check, interface control check, or channel data check.

If "logout pending"™ is indicated in the CSW, the CP termination flag
is set. The existence of real device blocks (RCHBLOK, RCUBLOK,
RDEVBLOK), for +the failing device address, is determined by a call to
DMKSCNRU and an indicator is set if they do exist. An indicator is also
set if the IOBLOK for the failing device address exists. A call to
DMKFREE obtains storage space for the channel check record and the
channel control subroutine builds the record. If the indicators show
that the real device blocks and the IOBLOK exist, a call to DMKFREE
obtains storage space and the channel control subroutine builds the I/0
error block (IOERBLOK); if these blocks do not exist, the IOERBLOK is
not built. The IOERBLOK is used for two purposes:

1. The device-dependent error recording program (ERP) uses the
JOERBLOK to attempt recovery on CP-initiated I/O events. If the
I/0 events that resulted in a channel check are associated with a
virtual machine, the I/0 fatal flag is set in the IOBLOK and the
virtual machine is reset, cleared, and put into CP read status.
The length and address of the channel check record is placed in the
IOERBLOK and the IOERBLOK is chained off the IOBLOK.

2. DMKIOECC uses the IOERBLOK to record the channel check record on
the error recording cylinder.

The channel control subroutine gives control to a channel-dependent
error analysis routine to build or save the extended channel status word
(ECSW). When the channel control subroutine regains control, eight
active addresses are saved in the channel check record.

If the CP termination flag is set, the I/0 extended logout data from
the channel check record is restored to main storage for use by SEREP.
If the system operator is both logged on as a user and connected to the
system, a message (DMKCCH603W) is sent to him advising him of the
channel error. A LPSW is then executed to place the processor in a
disabled wait state with a wait state code of 002 in the processor
instruction counter.

1-158 1IBM VM/370 System Logic and Problem Determination--Volume 1



If the CP termination flag is not set, a check is made to determine
if an IOERBLOK was built by the channel control subroutine.

If an IOERBLOK was not built, DMKIOECC is called to record the
channel check record on the error recording cylinder. The system
operator is then sent a message (DMKCCH601I or DMKCCH602I) informing hinm
of the error and control is then returned to DMKIOS +to continue systenm
operation.

If an IOERBLOK was built, control is returned to DMKIOS, which calls
the appropriate ERP. Whether or not recovery is successful, DMKICS
eventually calls DMKIOE to record the channel check record. DMKIOE
examines the status of the in CSW error in the IOERBLOK to determine if
it was a channel error; if so, it finds the length and pointer to the
channel check record and records the error on the error recording
cylinder. If +this was not a channel error, DMKIOE continues normal
processing.

INDIVIDUAL ROUTINES

A separate channel error analysis routine is provided for each type of
channel for which DMKCCH can be used. The purpose of these routines and
the channel control subroutine is to analyze the channel logout to
determine the extent of damage and +to create a sequence and termination
code to be placed in the ECSW in the TIOERBLOK. At systenm
initialization, the correct model dependent channel recovery routine is
loaded and the storage necessary to support the routine is allocated.
The model-dependent error analysis subroutines and routines and their
functions are as follows:

Since all of these systems have integrated channels one commOn
subroutine is used to handle all of these processor types. This
subroutine:

e Indicates CP termination if the ECSW is not complete, the channel has
been reset, the reset codes are invalid, or the I/O0O interface is
inoperative.

e Moves the ECSW to the IOERBLOK

e Moves the hardware stored unit address and the I/0 extended logout to
the channel check record

e Sets the I/0 extended logout area and ECSW area to ones

e Returns control to the channel control subroutine

2860 Channel (Models 165 II, 168)

The 2860 logout area is checked to determine if a complete 1logout
exists; if not, CP termination is necessary.

CP Introduction 1-159



A check is made in the logout area for validity of the CSW fields and
bits are set in the channel check record's ECSW field to indicate bad
fields.

The channel logout is then checked and sequence codes are set based
on the presence of a channel control check, or an interface control
check. If a channel control check is present, the codes set are
determined through parity. The count determines if parity is good and
sets a resultant condition code.

The logout area is examined to ensure that the unit address has valid
parity and is the same address passed by DMKIOS. If so, the
unit-address-valid bit in the ECSW is set. If the unit address is not
valid, the unit-address-valid bit is reset +to indicate the invalid
condition.

The ECSW field in the channel check record is moved to the IOERBLOK,
if one exists.

After completing the ECSW the 2680 routine moves the 2860 I/0
extended logout into the channel check record, set the I/0O extended
logout area to ones, and returns to the channel control subroutine.

2870 Channel (Models 165 II, 168)

If the channel failed to log out completely, at least part of the logout
area is all onmnes. If a fullword of ones is found, a CP termination
condition exists.

A check is made in the logout area for valid CSW fields, and bits are
set in the channel check record's ECSW field to indicate bad fields.

The termination and sequence codes are set depending on the presence
of an interface control check or channel control check. If a channel
control check is present, the codes set are determined through parity,
count, and/or data transfer checks. For the 2870, parity can be
determined directly from the channel logout.

The logout area is also examined to ensure valid parity 4in the unit
address and to ensure that the address is the same as that passed to
DMKCCH by DMKIOS. If so, the unit-address-valid bit in the ECSW is set.

The third word of the 1logout area is also analyzed for type 1II
errors. If a type II error is found, a CP termination condition exists.

The ECSW field in the channel check record is moved to the IOERBLOK,
if one exists.

Before returning to the channel control subroutine, the 2870 routine

moves the 2870 I/0 extended 1logout into the channel check record and
sets the I/0 extended logout area to ones.

2880 Channel (Models 165 II and 168)

This routine analyzes 9 words of the 28-word logout.

1-160 IBM VM/370 System Logic and Problem Determination--Volume 1



The 2880 analysis routine handles channel data checks, interface
control checks, and channel control checks.

Termination code 3 (system reset) is not set in the ECSW because the
2880 channel does not issue system reset to the devices. Retry codes of
0 to 5 are possible.

Note: There are several catastrophic conditions under which the CP
termination flag can be set, in the 2880 analysis routine. They are:

e The channel did not complete the logout.
e The CSW is not reliable.

e The unit address in the I/0 interruption device address field is not
correct.

Only a channel check record is needed if the channel has recognized
an internal error and has recovered from it without any damage. ¥o
recovery action is necessary in these cases.

If the channel address in the I/0 interruption device address field
does not match the channel address in the logout, a CP termination
condition exists.

If the channel was doing a scan and the upit control word had a
parity check a CP termination condition exists. If there was no parity
check, there was no damage during the scan and only a channel check
record is required.

Depending on the sequence the channel has entered, the termination
and sequence codes are set; command address, unit address, and unit
status validity is determined; and the sequence code is set valid. The
ECSW field in the channel check record is moved into the IOERBLOK, if
one exists.

Before returning to the channel control subroutine, the 2880 routine
moves the I/0 extended logout into the channel check record and sets the
I/0 extended logout area to ones.

ERROR RECORDING INTERFACE FOR VIRTUAL MACHINES

The error recording interface provides a means of recording errors
encountered by operating systems running in a virtual machine wunder
vM/370. If the virtual operating system is VM/370, it must be the
Release 2.0 version or later. An SVC 76 issued by a virtual machine is
used to signal YM/370 that error recording is required. The SVC
interruption handler in DMKPSA examines general registers 0 and 1 to
determine if valid parameters have been passed. If valid parameters are
not found, the SVC is reflected back to the virtual machine and no
recording takes place. If valid parameters are passed, a pageable
routine (DMKVER) processes the error record.

DMKVER validates the record passed by the virtual machine. If
invalid conditions are found, no recording takes place. Control is
returned to the SVC interruption routine in DMKPSA to reflect the SVC to
the virtual machine as an SVC interruption. The action taken by the
virtual machine is dependent on the operating system running in the
virtual machine, not VM/370. If the record is valid, it is modified by
changing virtual information to real. The actual recording is
accomplished by using existing modules in DMKIOE and DMKIOF.

CP Introduction 1-161



Control is then returned to the instruction following the SVC 76
rather than reflecting the SVC. This eliminates the duplication of
error recording in VM/370 and the operating system in the virtual
machine. If DMRVER determines that the recording represented a
permanent I/0 error, a message is sent to the primary system operator.

ERROR RECORDING AND RECOVERY

The error recording facility is made up of four modules. One module
(DMKIOE) is resident and the other three (DMKIOC, DMKIOF, and DMKIOG)
are pageable.

The error recording modules record temporary errors (statistical data
recording) for CP generated I/0 except for DASDs with a buffered log.

The error recording routines record: unit checks, statistical data
counter overflow records, selected temporary DASD errors, machine
checks, channel checks, and hardware environmental counter sense data on
the error recording cylinders of the system resident device in a format
suitable for subsequent processing by the CPEREP command (DMSIFC). The
recorder asynchronously updates the statistical data counters for
supported devices. The recorder also initializes the error recording
cylinders at IPL if they are in an unrecognizable format.

When the recorder is entered from DMKIOS, it is entered at DMKIOERR.
This entry is used for unit checks and channel data checks. A test is
made of the failing CSW (located in the IOERBLOK) to see if the error
was a channel error. If it was, control is passed to the routine for
recording channel checks.

The IOERBLOK sense data, IOBLOK flags, and VMBLOK privilege class are
examined to determine if the error should be recorded.

ERROR RECORD WRITING

After an error record is formatted, it is added to the error recording
cylinder using DMKRPAGT and DMKRPAPT. The error recording cylinders
have page-sized records (4096 bytes). Each page contains a header (8
bytes) which signifies: the cylinder and page number of the page (4
bytes), the next available space for recording within page (2 bytes), a
page-in-use indicator (7 byte), and a flag byte. Each record within the
page is recorded with a 4-byte prefix.

If an error record is too large to be added into a page, a newv page
is retrieved, updated with record, and placed back on the error
recording cylinder with the paging routines.

From two to nine cylinders are used for error recording; errors are
recorded in the order in which they occur. The cylinders that are used
for error recording are specified by the installation or systea
programnmer at system generation tinme. If the error recording cylinders
become 90 percent full, a message is issued to the operator using
DMKQCNRT to warn him of the condition. If the cylinders become full,
another message is issued to inform the operator and recording 1is
stopped.

On the 3031, 3032, and 3033 processors, frame records are read from

the SRF device and written on the error recording cylinders during
initialization if no records exist after a CPEREP CLEARF operation.

1-162 IBM VM/370 System lLogic and Problem Determination--Volume 1



If a channel check error is to be recorded, the recorder is entered
at DMKIOERR or DMKIOECC. The channel <check handler determines the
entry. A channel check error record is formatted.

A machine «check enters at DMKIOEMC. Pointers are passed from the
machine check handler in registers 6 and 7 to locate a buffer where the
machine check record and length are saved. 1A machine check error record
is recorded with the saved machine check 1logout and additional
information. The machine check error record is written onto the error
recording cylinder by using the paging routines.

Hardware environmental counter records are formed using routine
DMEIOEEV. This routine is scheduled by DMKIOS after control is returned
from the ERP. Sense data information is stored in the TIOERBLOK by the
ERP. The record formed is called a nonstandard record.

Clear and Format Recording Area

DMKIOEFM is called by DMSIFC (CPEREP command) via a DIAGNOSE
instruction. DMKIOEFM is invoked to reset the specified error recording
cylinders (if CLEAR, CLEARF, or ZERO=Y was specified). The clear is
performed by resetting each page-header, space-available field.
Pointers in storage are then updated to address the first available page
on each of the error recording cylinders. Control is then returned to
the calling routine. For details on the CPEREP command and EREP
execution, refer to the ¥VM/370 OLTSEP and Error Recording Guide and
0S/VS EREP publications.

CLEARF on a 3031, 3032, or 3033 processor clears the cylinders, then
causes the frame records to be read from the SRF device.

FPind First Recording Cylinder at IPL

DMKIOEFL is called by DMKCPI to find the first available page that can
be used for error recording. The paging routines, DMKRPAPT and
DMERPAGT, are used to read the error recording cylinders' pages
(4096-byte records). As each page record is read, it is examined to see
if this record is the 1last recorded. If so, a pointer in storage is
saved so recording can continue on that page reccerd. Control is then
returned to the «caller. If any error recording cylinder is in an
unrecognizable format, the error recording area 1is automatically
reformatted by CP.

DASD ERROR RECOVERY, ERP (DMKDAS)

Error recovery is attempted for CP-initiated I/0 operations to its
supported devices and for user-initiated operations to CP-supported
devices that use a DIAGNOSE interface. The primary control blocks used
for error recovery are the RDEVBLOK, the IOBLOK and the IOERBLOK. In
addition, auxiliary storage is sometimes used for recovery channel
programs and sense buffers.

The initial error is first detected by the I/O interruption handler
which performs a SENSE operation if a unit check occurs. Onit check
errors are then passed to an appropriate ERP. If a channel check is
encountered, the channel check interruption handler determines whether

CP Introduction 1-163



or not retry is possible and passes control to an ERP through the I/0
interruption handler. DASD errors are processed as described below.

Channel Errors

e I/0 interface inoperative on a 3031, 3032, or 3033 processor is
reflected to the virtuwal machine if the channel is dedicated.
Otherwise, a wait state X'0002' occurs.

e Channel control <check is treated as seek check. It is retried 10
times.

e Interface control check is treated as seek check. It is retried 10
times.

Channel data check is treated as data check. It is retried 10 times.

(=]
[=}

t Check Errors

Equipment check: Retry the operation 10 times for 3330, 3340, 3350, and
2305 devices; twice for the 2314 and 2319.

Ho record found and missing address marks: Recalibrate and retry the

channel program 10 times (2314,/2319).

No record found: Execute a READ HOME ADDRESS and check home address
against seek address. If they are the same, consider the error
permanent. If they are not equal recalibrate and retry the channel
program 10 times (2314/2319). For other devices, return to caller.

Seek check: Retry the operation 10 times except that 3330/3350 seek
checks are retried by hardware.

Intervention required: Issue a message to console and wait for solicited
device end. This procedure is repeated once.

|

us out check: One retry of the operation.

Data checks: For 2314/2319 retry the operation 256 times, with a
recalibrate being executed every 16th time. For the 2305/3340, retry
the operation 10 times. For the 3330/3350, the operation is retried by
hardware.

Ooverrun: Retry the operation 10 times.

Missing address marker: Retry the operation 10 times.

Command reject: The command is not retried.

Chaining check: Test for command reject. If not ©present, retry the
operation 10 times.

Environmental data present: Issue a BUFFER UNLOAD command and retry the
operation.

Track condition check: On CP I/0 and Diagnose I/0, when a track
condition check is received from a device for which CP does not provide
alternate track software recovery, the condition is treated as a
permanent error. CP does provide alternate track support for other
devices; this support is described in the section "Alternate Track
Recovery, ERP (DMKTRK)."

1-164 IBM VM/370 System Logic and Problem Determination—--Volume 1



The error recovery routine keeps track of the number of retries in
the IOBRCNT field of the IOBLOK. This count determines if a retry limit
has been exceeded for a particular error. On initial entry from DMKICS
for an error condition, the count is 2zero. Each time a retry is
attempted, the count is increased by one.

The ERP preserves the original error CSW and sense information by
Placing a pointer to the original IOERBLOK in the RDEVBLOK. Additional
IOERBLOKs, which are received from DMKIOS on failing restart attempts,
are discarded. The original IOERBLOK is thus preserved for recording
purposes.

If after a specified number of retries, DMKDAS fails to correct the
error, the operator may or may not be notified of the error. Control is
returned to DMKIOS. DMKIOS is notified of the permanent error by posting
the IOBLOK (IOBSTAT=IOBFATAL). The error is recorded via DMKIOS by
DMKIOERR, if DMKDAS and DMKIOE determine that the error warrants

Lul L § ke

recording.

If the error is corrected by a restart, the temporary or transient
error is not recorded. Control is returned to DMKIOS with the error flag
off.

Before returning control to DMKIOS on either a permanent error or a
successful recovery, the ERP frees all auxiliary storage gotten for
recovery CCWs, buffers, and IOERBLOKs, and updates the statistical
counters for 2314 and 2319 devices.

The DMKIOS interface with the ERP uses the IOBSTAT and IOBFLAG fields
of the IOBLOK to determine the action required when the ERP returns to
DMKIOS.

When retry is to be attempted, the ERP turns on the restart bit of
the IOBFLAG field. The ERP bit of the IOBFLAG field is also turned on to
indicate to DMKIOS that the ERP wants control back when the task has
finished. This enables the ERP to receive control even if the retry was
successful and allows the freeing of all storage gotten for CCWs and
temporary buffers. The IOBRCAW is set to0 the recovery CCW string
address.

In kandling an intervention-required situation., the ERP sends a
message to the operator and then waits for the device end to arrive.
This is accomplished by a return to DMKIOS with the ERP bit in the
IOBFLAG field set on and the IOBSTRT bit in the IOBPLAG field set off.
When the device end interruption arrives, the original channel progran
which was interrupted is then started.

The ERP flags of the IOERBLOK are also used to indicate when special
recovery is being attempted. For example, a READ HOME ADDRESS command
when a no record found error occurs.

The other two indicators are self-explanatory and are explained in
Figure 22.

CP Introduction 1-165



Field

IOBFLAG| IOBFLAG |IOBSTAT
IOBERP |IOBRSTRT |IOBFATAL

Action To Be performed by DMKIOS

{
I
t
{
| |
1 | 0 i 0 | Return control vwhen solicited device end
| { | arrives
| | |
1 1 | 0 | Restart using IOBRCAW
| | I
0 | 0 { 1 | Permanent I/0 error
| | |
0 | 0 | 0 { Retry successful

o — s - — . — ——
M s T s .y, T — S w— — — a— )

Figure 22. Summary of IOB Indicators

If the error is uncorrectable or intervention is required, the ERP
calls DMEKMSW to notify operator. The specific message 1is identified in
the MSGPARM field of the IOERBLOK.

ALTERNATE TRACK RECOVERY, ERP (DMKTRK)

The software alternate track recovery support described in the following
paragraphs applies only to the 3340/3344 disk. For 3330 and 3350 disks
no software support is needed since the hardware performs alternate
track recovery. No support is needed for the 2305 drum since the CE is
able to rewire the device to use spare tracks in place of defective
tracks. For the 2314 and 2319 disks no true alternate track recovery is
provided by CP. But track condition checks from any device type are
reflected back to the virtual machine. Therefore, even though CP itself
cannot use a 2314 or 2319 cylinder that contains a defective track, it
it possible for a virtual machine to use such a cylinder if it provides
its own error recovery. To facilitate this, the VM/370 version of the
IBCDASDI program allows 2314 and 2319 minidisks to be formatted with an
alternate track cylinder as the last cylinder of each minidisk rather
than using the last cylinders of the real disk for this purpose.

Overviev of 3340 Alterpate Track Support

The 3340 alternate track support applies to CP I,/0, to Diagnose I/0
(thereby giving alternate track support to CMS), and to SIO executed in
a virtual machine. PFor CP I/0O and Diagnose I/0, the alternate track
recovery support essentially consists of directing (seeking) an
interrupted channel program to an alternate +track and restarting it.
Later, in some cases, the interrupted channel program is directed back
to the original cylinder and restarted there. For SIO in a virtual
machine, the operating system in the virtual machine provides its own
error recovery when CP reflects a track condition check to the virtual
machine.

On the 3340 disk, alternate tracks are assigned in the conventional
alternate tracks cylinders at the high end of the real disk, not in the
last cylinder of each minidisk. Therefore a virtual machine may need to
seek outside of its minidisk extent. This occurs when an operating
system in a virtual machine performs its own error recovery following a
track condition check. So for SIO issued from a virtual machine, CP's

1-166 IBM VM/370 System Logic and Problem Determination--Volume 1



alternate track support must permit the virtual machine to escape froa
the confines of its minidisk to get to the alternate tracks assigned to
the defective tracks of that minidisk. Yet at the same time CP must
still prevent the virtual machine from accessing other tracks that it
does not own.

Since alternate tracks are assigned only in the conventional
alternate tracks cylinders at the high end of the real disk, CP does not
apply minidisk cylinder relocation values to a virtual machine's channel
commands that reference alternate tracks. Similarly, CP does not
unrelocate alternate track CCHH addresses returned by read home address,
by read record zero, in semse information, or for error recording.

Alternate Track Hardware Operation and Implications

The home address record (HA) on any track contains a flag byte with two
bits that are involved in alternate track assignments. One bit, when
set to one, indicates that the track is defective and that the track
should have (and ordinarily does have) an alternate track assigned. The
count field of record zero of a track with this bit set should point to
(have the CCHH address of) the assigned alternate track. The second bit
in the flag byte, when set to one, indicates that the track in which it
appears is an assigned alternate track. The count field of record zero
of an assigned alternate track should point back to (have the CCHH
address of) the flagged defective track that it is assigned to.

Before using the poirnter in record zero of a flagged track to get to
the corresponding alternate, it is considered good form for an operating
system to check the pointers both ways +to0 see that each points to the
other. CP performs two-way checks of the pointers for seeks to an
alternate track initiated by Diagnose or by SIO in a virtual machine.
For its own I/0, CP uses the forward record =zero pointer without
performing a two-way check. Performing a two-way check would decrease
performance and should not be necessary since all of the record zero
pointers were checked in both directions by the Format/Allocate progranm
(DMKFMT) when the CP-owned disk was originally formatted.

Note: the DASD Dump/Restore (DDR) program also checks the record zero
pointers both ways when a tape is restored to a disk.

Except for those channel commands that deal specifically with the
home address and record zero, any attempt to search or read or write on
a track that is flagged as defective results in a unit check with "™track
condition check" indicated in the sense data.

Operations on an assigned alternate track can also result in a unit
check with "track condition check" ipndicated in the sense data. But in
this case it occurs when an attempt is made to leave the assigned
alternate track, not when the operation is reading or writing on the
track. The situations where trying to leave the alternate track results
in a track condition check are:

e Any multi-track operation
e A record overflow operation

The hardware does pnot generate a track condition check when a seek is
used to leave the track. This applies to any kind of seek, including
seek head.

When a channel program from a virtual machine SIO (or from a

Diagnose) is allowed to access an alternate track, subsequent CCHs in
the channel program must be prevented from accessing adjacent tracks in

CP Introduction 1-167



the alternate track cylinder since these may belong to other virtual
machines. A channel program may attempt a transition from one track to
the next by any of the following:

Seek

Seek head

Multi-track search or read
Record overflow

The full seek causes no problem: since it specifies the cylinder as
well as the track, it causes the channel program to leave the alternate
track and to return to a cylinder within the ninidisk extent. It is
certain to go back to the minidisk because the seek address was verified
when the virtual CCWs were translated to real.

The multi-track operations and record overflow operations also cause
no problem, because, as explained above, these are caught by the
hardware and result in a track condition check.

The seek head is dealt with as follows. When a seek to an alternate
track is encountered in a virtual channel program by CP during the CCW
translation process, CP converts all seek head commands (in the real,
translated CCWs) to an invalid CCW opcode (X'FF'). Then when the
translated channel program is executed, it is interrupted (with a
conmand reject) at each seek head CCW so that the track to which the
channel program is seeking can be checked to see that it really belongs
to the virtual machine that requested the I/0. Note that this only
happens to channel programs that seek out of the minidisk to an
alternate track.

DMKTREVA - When DMKCCWTR finds a virtual machine seeking out of its
minidisk extent to what should be an assigned alternate track, it has to
do a check of the backward record zero pointer to verify that the
alternate belongs to that minidisk. So DMKCCHWTR calls DMKTRKVA, passing
the CCHH address of the alternate as input, and DMKTRKVA perforas CP I/0
to read record zero of the alternate and then returns the pointer found
in record zero to DMKCCHWTR.

DMKTRKFP — This is called by both DMKUNT and DMKVIO. Its function is to
handle command rejects in channel programs initiated by virtual machine
SI0 wvhen the channel program was found (by DMKCCWTR) to be seeking to an
alternate track outside the minidisk extent. The command rejects result
because, for these channel programs, any seek head commands have been
invalidated (opcode changed to X'FF') in order to trap seek heads that
might switch to another minidisk's track in the alternate track
cylinder.

Note: Even though DMKCCWTR may also find Diagnose I/0 channel programs
that seek directly to an alternate track and invalidate the seek head
opcodes on these channel programs, the command rejects resulting fros
these channel programs are handled by DMKTRKIN, not by DMKTRKFP.

DMEKTRKIN — This routine performs alternate track recovery for CP I/O and
for Diagnose I/0 both when the Diagnose channel program results in a
track condition check and when a command reject results from a seek head
vhose opcode DMKCCWTR made invalid. The routine has nothing to do with
alternate track recovery for SIO issued by a virtual machine. But it
does share a few small subroutines with DMRTRKFP.

1-168 IBM VM/370 System Logic and Problem Determination--volume 1



DMKTRKIN is called only by DMKDASER, which in turn is called only by
DMKIOS. These three routines work closely together during alternate
track error recovery and the control flow back and forth between these
routines is controlled to a great degree by flags in the IOBLOK and the
JOERBLOK.

The control blocks of major concern in this area are the RDEVBLOR,
the IOBLOK, and the IOCERBLOK. When an error occurs and DMKIOS makes the
initial call to DMKDASER (at the time of the first error associated with
this IOBLOK), an IOERBLOK containing sense data has already been
created; the IOBIOER field of the IOBLOK points to it. When DMKDASER
gets control, it notices that this is a first call and it moves the
pointer out of IOBIOER into RDEVIOER so that this first IOERBLOK,
associated with the original error, can be kept over a period of time
during which attempts may be made to retry the I/0 operation. During
these retries, further errors may cause new IOERBLOKs, pointed to by
IOBIOER, +to be sent back from DMKIOS. Generally speaking, RDEVIOER
continues to point +to the original IOERBLOK and new IOERBLOKs are
created and sent back from DMKIOS after each retry that ends with an
error. Generally, the new IOERBLOK from the failed retry is discarded
before the next retry. But occasionally a new IOERBLOK is used by
DMKDASER or DMKTRKIN to replace the original IOERBLOK, so it is pointed
to by RDEVIOER and the first original IOERBLOK is discarded before the
next retry. This happens when the new error is deemed to be more severe
than the original (DMKDASER gives priority to channel checks) or when
the original error gets corrected by a retry, but then the channel
program fails on a later CCW (DMKTRKIN does this).

Control flow back and forth between DMKIOS and DMKDASER is controlled
by the setting of the flags IOBERP, IOBRSTRT, and IOBFATAL, and has been
described earlier in the section "DASD Error Recovery, ERP (DMKDAS)."

The control flow back and forth between DMRKDASER and DMKTRKIK is
controlled by the flags IOERRDRO and IOERALTR and by a return code that
DMKTRKIN passes back in register 1. Whenever either of the two flags is
set, they cause DMKDASER to call DMKTRKIN whenever DMKDASER gets control
(vhich in this case happens after a retry), even though there is no
track condition check indicated in the new IOERBLOK. The IOERRDRO flag
indicates to DMKTRKIN that the retry being returned from was used to
execute a channel program +to read record =zero. The IOERALTR flag
indicates to DMKTRKIN that the retry being returned from is a restart of
a user channel program (not strictly error recovery CCWs) that had a
track condition check earlier. This means that invalidated seek head
opcodes can be expected.

Details of Alterpate Track Recovery for CP I/0 and Diagnose I/O

Once a CP I/0 or Diagnose I/0 channel program has to be restarted
because of a track condition check, ¢the error recovery procedure
invalidates (for Diagnose I/0 only) all seek head opcodes in the channel
program and sets the IOERALTR flag (indicating that alternate track
error recovery is in progress) before proceeding. The IOERALTR flag
remains set vhenever any portion of the users channel program is being
retried, until the channel program either ends successfully or ends with
a permanent error.

Note: The flag does not remain set continuously; there are breaks
while the error recovery procedure takes time out to use its own channel
program to read record zero (the channel program is passed back to IOS
as a "retry"). At these times the IOERRDRO flag is set instead of the
IOERALTR flag.

CP Introduction 1-169



During the further execution of a Diagnose Channel prograna,
invalidated seek head opcodes may be encountered once the IOERALTR flag
is turned on. CP channel programs do not use seek head. The number of
these opcodes encountered may be several, or none at all, depending on
the user's channel program. Also, these invalidated seek heads may be
trying to seek off of an assigned alternate track (usually to the next
logical track) or they may have no involvement with flagged tracks at
all, again depending on the nature of the wuser's channel progran.
Whenever the channel program is stopped by an invalidated seek head, a
determination is made of whether or not it is trying to get off of an
alternate track. This determination is made by looking at the current
cylinder number (available in sense data taken at the time of the
command reject) and seeing whether or not it falls within the alternate
track cylinder area at the high end of the disk. If the seek head was
not trying to get off of an alternmate track, there is no problem and the
subject channel program is restarted with a seek to the current cylinder
and to the track specified by the invalidated seek head. If +the seek
head was trying to get off of an alternate track, record zero of the
alternate track is read first to get the cylinder number of the
defective track. Then the subject channel program is restarted with a
seek to the cylinder of the defective track, but to the track specified
by the invalidated seek head.

TAPE ERROR RECOVERY, ERP (DMKTAP)

Error recovery is attempted for user-initiated tape I/0 operations to
CP-supported devices that use the DIAGNOSE interface. The primary
control blocks used for error recovery are the RDEVBLOK, the IOBLOK, and
the IOERBLOK. 1In addition, auxiliary storage is wused for recovery
channel programs (repositioning and erase).

The interruption handler, DMKIOS, performs a SENSE operation when a
unit check occurs. Tape errors are then passed to DMKTAP. The sense
information associated with a unit check is contained in the IOERBLOK.
If a channel check is encountered, the channel check interruption
handler determines if retry is possible and passes control to the ERP
through the I/0 interruption handler.

When an error is encountered and ERP receives control, DHNKTAP
determines if this is the first entry into the ERP for this task. The
IOBRCNT (IOB error count) field of the IOB is zero on initial entry. On
this first entry, the pointer to the IOERBLOK is placed in the RDEVIOER
field of the RDEVBLOK. This preserves the original error CSW and sense
information for recording. Thereafter, IOERBLOKS are discarded before a
retry is attempted or a permanent error is passed to IOS.

The ERP looks for two other specific conditions. If the error count
field is not zero, entry must be due to a recovery attempt. Thus, it may
be a solicited device end to correct an intervention-required condition
or a retry attempt for either tape repositioning or channel program
re-execution.

The ERP keeps track of the number of retries in the IOBRCNT field of
the IOBLOK to determine if a retry 1limit has been exceeded for a
particular error. If the specified number of retries fails to correct
the error, the error is recorded and DMKIOS is notified of the permanent
error by turning on a status flag in the IOBLOK (IOBSTAT=IOBFATAL).

If the error is corrected by DMKTAP, the temporary error is not
recorded and control is returned to DMRKIOS with error flags all off.
When repositioning is required in order to attempt recovery, additional
ERP flags are contained in the IOERBLOK to indicate paths for specific
errors (that 1is, data check on write must reposition, erase, and then
reissue original channel program).

1-170 IBM VM/370 System Logic and Problem Determination--Volume 1



All error recovery is started the same except for
intervention-required errors. The IOBFLAG is turned on to indicate
RESTART (IOBFLAG=IOBRSTRT), and the IOBRCAW (IOBLOK Restart CAW) is
filled with the restart channel address word. In addition, an IOBFLAG
flag is turned on to indicate that the ERP is in control so that control
can be returned +to ERP during all tape error recovery (IOBFLAG=IOBERP).
In the case of an intervention required error, the ERP sends a message
to the operator, and then returns to DMKIOS with indications that tell
DMKIOS the ERP is waiting for a device end on tkis device. This is done
by clearing the restart flag and returning to DMKIOS with only the
IOBERP flag on.

When ERP has determined a permanent error situation or successfully
recovered fror an error, all auxiliary storage obtained for recovery
CCWs, buffers, and IOERBLOKs is freed before a return is made to DMKIOS
(see Figure 22 for a summary of the IOB indicators), also, the
statistical counters for 2400, 3410, and 3420 devices are updated.

If the error is uncorrectable or operator intervention is necessary,
ERP calls the message writer to write the specific message.

3270 REMOTE SUPPORT ERROR RECOVERY

Recovery from errors associated with binary synchronous 1lines, and the
related channel and transmission control unit hardware is processed by
DMKBSC. Recovery fronm errors associated with data and control
processing by the remote station (the device) as defined by remote
status and sense byte definition (see IBM 3270 Information Display
Component Description,) is processed by DMKRGF. Control blocks
associated with these errors are the CONTASK, the RDEVBLOK, the BSCBLOK,
the NICBLOK, the IOBLOK, and the IOERBLOK.

The interruption handler, DMKIOS, performs a SENSE operation upon
detection of a unit check condition (IOERBLOK). The related sense data
is analyzed as it relates to the previous operation (CONTASK or BSCBLOK,
whichever is applicable). If a channel check is encountered by the
channel check interruption handler, the <channel check interruption
(DMKBSC) procedures determine if recovery can be attempted. If it
cannot be retried, that operation is aborted and an appropriate message
is sent to the system operator.

Depending upon the error encountered, ERP receives control and either
DMKBSC or DMKGRA and DMKGRB determines if this is the first entry into
the ERP for this task. The IOBRCNT (I0B error count) field of the IOB
is zero on initial entry. On this first entry, the pointer to the
IOERBLOK is placed in the RDEVIOER field of the RDEVBLOK. This
preserves the original error CSW and sense information for recording.
Thereafter, IOERBLOKs are discarded before a retry 1is attempted or a
permanent error is passed to IOS.

The ERP looks for two other specific conditions. If the error count
field is not =zero, entry must be due to a recovery attempt. Thus, it
may be a solicited device end to correct an intervention-regquired
condition or a retry of channel program execution.

The ERP keeps track of the number of retries in the IOBRCNT field of
the JOBLOK to determine if a retry 1limit has been exceeded for a
particular error. If the specified number of retries fails to correct
the error, the error is recorded and DMKIOS is notified of the permanent
error by turning on a status flag in the IOBLOK (IOBSTAT=IOBFATAL).

CP Introduction 1-171



If the error is corrected, the temporary error is not recorded and
control is returned to DMKIOS with all error flags off.

When ERP has determined a permanent error situation or successfully
recovered from an error, all auxiliary storage obtained for recovery
CCWs, buffers, and IOERBLOKs is freed before a return is made to DMKIOS
(see Figure 22 for a summary of the IOB indicators). Also, the
statistical counters for 3270 are updated.

The Attached Processor Environment

Attached processor support is requested by specifying AP=YES on the
SYSCOR macro. For a complete description of system generation

CP Initialization for the Attached Processor

IBM System/370 Principles of Operation, has a detailed discussion of
prefixing that 1is necessary for understanding the initialization done
for the attached processor.

PROCESSOR ADDRESSES

The CP initialization routine, DMKCPI, begins normal processing by
storing the physical, main processor address -- usually X'00' -- in the
IPUADDR field in the PSA at location absolute zero. (Prefixing has not
yet been established.) The 1logical processor address is computed by
doing a logical OR of the physical address with X'40' and is stored in
the PSA in LPUADDR. The logical value is used by the CP LOCK manager to
avoid using a zero value. The physical value is used for signaling
between the two processors.

If AP=YES was coded on the SYSCOR macro, DMKCPI uses the SIGP
function to see if the attached processor is available. If so, its
physical and 1logical addresses are stored in the PSA in IPUADDRX and
LPUADDRX, respectively. If the attached processor is not available,
APUNONLN is set to 1. If the multi-processing option is installed,
message DMKCPI959W is sent to the operator.

PSA SETUP

The top two 4K pages of storage are marked (in the CORTABLE) as being
CP-owned and are used as the PSAs for the two processors. The addresses
of these two pages are stored at PREFIXA and PREFIXB in the PSA at
location absolute zero. DMKAPI copies the information from the PSA at
location absolute zero to the new PSA locations. In the PSA designated
for the attached processor, PREFIXA and PREFIXB are switched. Thus, on
either processor PREFIXA always represents the current processor and
PREFIXB the other processor. The values of IPUADDR, LPUADDR, IPUADDRX,
and LPUADDRX are also switched so that IPUADDR and LPUADDR always
contain the processor addresses of the current processor and IPUADDRX
and LPUADDRX contain the other processor addresses.

1-172 1IBM VM/370 System Logic and Problem Determination--Volume 1



LOCKING

To provide system integrity, VM/370 attached processor support is
designed around one global system lock, a VMBLOK local lock, and several
systenr local locks for specifically identified queues or modules.

Global System Lock

All of the control program runs under the glcbal system 1lock except
specifically identified paths. If the 1lock cannot be obtained, the
function is deferred by storing the necessary information in the VMBLOK
appendage and stacking that VMBLOK for later processing. That processor
then takes a special unlocked path through the dispatcher to dispatch a
nev virtual machine. 1In some situations the processor cannot defer the
requested function and spins on the lock until it becomes available.

To ensure system integrity along the special unlocked paths, various
local locks have been defined. These 1locks are basically spin locks and
are held for short periods of time.

Each VMBLOK contains one lock, called VMLOCK, which is used by routines
that need to serialize certain virtual machine related resources. These
resources include the following:

1. Any unlocked or unshared pages belonging to the virtual machine.

2. Any of the unshared translation or backing store tables defining
the address space of the virtual machine.

3. Certain fields of the YMBLOK that are modified by routines that do
not hcld the system lock. Some of these fields are VMPSW, VMGPRS,
and VMRSTAT.

The dispatcher obtains the VMBLOK lock before a virtual machine is
dispatched and also before a CP request or an I/0 request is unstacked.
When a virtual machine is dispatched, the VMBLOK address of this wvirtual
machine is saved in the processor's PSA in the field RUNUSER. VNormally
this virtual machine is also unlocked by the dispatcher when it is
entered after an interrupt handler has finished processing. When
RUNUSER is still locked, the PSA field LASTUSER is equal to RUNUSER.
When RUNUSER is unlocked, LASTUSER is set to ASYSVM.

When a CP request or an I/0 request is unstacked, the associated
virtual machine is locked and the VMBLOK address is placed in register
11. When the dispatcher is entered after a CP request or an I/0 request
has been serviced, the virtual machine whose VMBLORK address is in
register 11 1is locked and will be unlocked by the dispatcher. This
virtual machine may not be the same virtual machine that was locked when
the CP request or the I/0 request was unstacked.

CP Introduction 1-173




A CP routine must 1lock another virtual machine for any of the
following reasons:

1. The routine, or a routine it calls, accesses any unshared page of
the virtual machine.

2. The routine, or a routine it calls, alters any field of the VMBLOK
that is serialized only by the VMBLOK lock.

3. The routine, or a routine it calls, could be interrupted and an
exit taken to the dispatcher.

The original VMBLOK lock must be released before gaining the new
lock.

Figure 23 shows the modules that obtain the VMBLOK lock for a virtual
machine other than the one requesting the service.

There are situations when a CP routine may access a virtual machine
without locking it. If the CP routine, or any routine it calls, is only
altering VMBLOK fields that are serialized by the system lock, locking
the virtual machine is not necessary. For example, to process the SET
PRIORITY command for a virtual machine, locking the virtual machine is
not necessary since the altered VMBLOK field, VMUPRIOR, is serialized by
the system 1lock. But to process the SET FAVORED command, locking the
virtual machine is necessary since some of the VMBLOK fields altered,
such as VMRSTAT, are only serialized by the VMBLOK lock.

DMKLOKFR _ Free Storage Lock
DMKLOKRL - Run List Lock

DMKLOKTR - Timer Reguest Queue Lock
DMKLOKDS - Dispatcher Queues Lock

- CPEXBLOK Queue Lock
deferred execution blocks
processor related blocks
-~ IOBLOK/TRQBLOK Queue Lock

These are system spin locks that are held for very short periods of
time. The control program code that runs without the global system lock
must manipulate these queues and these locks insure system integrity
along the unlocked paths.

User-Defined Locks

If you have user-defined areas that are used by more than one virtual
machine and you need to serialize their use, you will need to define
your own locking conventions. You can use the LOCK macro to obtain and
release a PRIVATE lock. VM/370 System Programmer's Guide has details on
how to code the LOCK macro.

MACHINE CHECK HANDLER IN ATTACHED PROCESSOR

A machine check interrupt is initially handled without the global systesn
lock. DMKMCH determines if the error requires system termination,
virtual machine termination, or simply recording and continuation. If
the system was in a vait state or a virtual machine was in control and
the system is not to be terminated, the machine check handler requests
the global system lock with the defer option. If the 1lock can be

1-174 IBM VM/370 System Logic and Problem Determination--Volume 1



r T 1
| Module | Action |
+ } 4
| DMKAPI | Locks the virtual machine that was last dispatched. |
| DMKBLDVM | Locks the virtual machine just built. |
| DMKCFO | Locks the virtual machine being set as favored. {
| DMKCNS | Locks the virtual machine associated with a teal device |
| | block. |
| DMKCPS | Locks the virtual machine vhose virtual device is being |
{ 1 reset when a real device is halted. ]
| DMKCPU | Locks each virtual machine in order to prepare the VMBLOK |
| | for uniprocessor mode. {
| DMKCPY | Locks the virtual machine whose storage is being locked or |
| | unlocked, or for whom accounting is being done. |
| DMKCSU | Locks the virtual machine receiving transferred spool |
| | files. I
| DMKDIA | Locks the virtual machine of the dialed system, the virtual |
| | machine of the 1iine being dropped (DEKDIADR), or the |
| [ virtual machine that owns the channel-to-channel adapter |
| i being coupled. |
| DMKGRF | Locks the virtual machine associated with a real device |
i | block. |
| DMKLOG | Locks the virtual machine being reconnected or the virtual |
| i machine being autologged. |
| DMKMID | Locks the virtual machines receiving messages at midnight. |
| DMKMSG | Locks the virtual machine receiving a message. |
| DMEKMSW | Locks the system operator. i
| DMENES | Locks each virtual machine active when the NETWORK SHUTDORN |
i ] command is processed. |
i DMENLD { Locks the virtual machine associated with a real device |
| | block. |
| DMKPAG | Locks the virtual machine associated with a queued I/0 |
| I request. |
| DMKPTR | Locks the virtual machine from which a page will be stolen. |
| DMKQCN | Locks the system operator. |
| DMKRGA | Locks the virtual machine associated with a NICBLOK. |
| DMKRGB { Locks the virtmal machine associated with a CONTASK or a |
i | NICBLOK. |
| DMKRNH | Locks the virtual machine of the destination user for a |
( | console task or the virtual machine associated with a |
| § remote teleprocessing line. : {
| DMKSPL | Locks the virtual machine receiving a transferred spool |
I | file or the virtual machine owning a spooled reader |
| ! file. i
| DMKVCA | Locks the virtual machine of the coupled-to CTCA. |
| DMKVCH | Locks the virtual machine +to which the channel 1is being |
| | attached, or the the virtual wmachine from which the |
| | channel is being detached. |
| DMEKVDA | Locks the virtual machine involved in attaching or |
( | detaching a real device. {
| DMKVDD | Locks the virtual machine involved in detaching a real |
| { device. |
{ DMKVMC | Locks the virtual machine to which the caller is |
| [ communicating. |
L A 2

Figure 23. Modules that Obtain Additional VMBLOK Lock

CP Introduction 1-175



ottained, normal DMKMCH processing continues. If the lock cannot be
obtained, DMKMCH stacks a CPEXBLOK with CPMCHLK set and exits to
DMKDSPRU. This CPEXBLOK causes processing to resume at DMKMCHSE with the
global system lock held. Any machine checks that occur before the
CPEXBLOK processing has completed are considered recursive machine
checks and handled appropriately. If the control program was in control
and the system is not to be terminated, the machine check handler saves
status in the CPEXBLOK, set CPMCHLK and reloads MCOPSW. CPMCHLK is set
to prevent the dispatcher from starting any nev work on this processor
until the machine check processing has completed.

DMKMCH passes control to DMKMCTPT if the system is running in
attached processor mode and a decision has been made to terminate the
system. In general, if a virtual machine was running when the machine
check occurred, only that virtual machine is terminated.

DMEMCTPT determines if the system can continue and if the processor
can continue. For the attached processor, if the machine check was not
a clock error and the control program was not in control, the virtunal
machine running at the time of the error is terminated. If the machine
check was a clock error on the main processor or the control program was
in control on either processor, the other processor is signalled to stop
and store status and a wait state PSW is loaded on the failing
processor. An attempt is made to issue message 610W to the operator
before the main processor is stopped. If the machine check was a clock
error on the attached processor and the control program was not in
control, the main processor is signalled via an external call to
initiate automatic processor recovery with an indicator to continue
processing.

The malfunction alert interrupt handler (DMKNMCTMA) receives control
from the external second level interrupt handler. If the malfunction
alert came from the main processor, a 001 wait state PSW is loaded. 1If
the malfunction alert came from the attached processor and a virtual
machine was 1in control, an indication is set to terminate the virtual
user and CPAPRPND is set for processor recovery. If the attached
Processor was in supervisor state, message 610W is sent to the operator
and a 013 wait state PSW is loaded. If the attached processor was in a
wait state, CPAPRPND is set for processor recovery.

The automatic processor recovery routine (DMKMCTPR) receives control
from the external SLIH or the dispatcher. If the system is to continue
processing, the vary processor offline routne (DMKCPUUP) is called.
DMKCPUUP examines the chain of virtual machines for attached processor
affinity and shared segment pointers. Any shared segment pointers for
the attached processor are switched to point to the main processor
shared segments. All the system control blocks and save areas necessary
to run in attached processor mode are also freed. The time from the
first timer request queue element is placed into the clock comparator
for the main processor.

While preserving the maintained fields in the absolute zero area, the
main processor's prefix storage area is copied to the absolute zero area
and prefixing is stopped. The attached processor operational flag is
turned off in the absolute zero area, and the prefix storage areas for
the main and attached processors are freed. The pages and DASD slots
held by the attached processor for shared segments are freed by DMKPGT
and DMKPTR. A message (194I) is issued, and return is made to DMKMCTPR.
For any virtual machines with affinity +to the attached processor,
DMEMCTPR resets the affinity for each, issues message 6211, and puts the
machine in console function mode (if the virtual machine is not
disconnected). If a virtual machine is to be terminated, the virtual
machine is reset, messages 6161 and 6191 issued. Normal return canses
the system to continue processing in uniprocessor mode.

1-176 1IBM VM/370 System Logic and Problem Determination--Volume 1



The action that the machine check handler takes for a given situation
is determined by the error itself,  the operating environment of VM/370,
and whether the system was performing a CP function or a virtual machine
function —— or the system was not performing at all (a loaded wait state
condition when the error occurred). Figure 24 clarifies the action the
system takes for the given situations.

-
1 VM/370 Processing |Virtual Machine Processing

|
- . | 3 - l 3 '

Error Conditionfuniprocessorjattached processor|uniprocessor|attached processor|
|

I

| | l |

|

- {
nvalid machine| 1

heck interruptl|
-ode i

Main Attached| Main attached

1 1 1 1

1 Q -4

——— - ———— — — o

|Invalid PSW
{data

|
|Register,
|{Program mask
|instruction
|address invalid

w

|Systen damages
{
{TOD or CPU
|Clock Errors
|
|Multibit

| (solid) Storage
jerror

|
|Multibit

| (intermittent)
| storage error
{
| Storage Protect
[Key (solid)

| failure

|
|Storage Protect
| (intermittent)

| failure

|
{Malfunction
lalert

!
|Channel { 1 | 1 i 1 | 1 | 1 | 1
|inoperative { { | | | i

W
«
f~4

3,2

w
LY
N

3,2

w
-
N

w
L
=

- — —— A — —— T — — s ———am T xn s — — i = —m Ema - —— —— o ———
-
W
~
N

load wait state PSW

refresh for retry operation
terminate the virtual machine
automatic processor recovery
Not applicable

W nwun Ig

|
|
|
i
!
|
|
|
|
|
|
|
i
|
|
!
|
|
|
|
i
|
|
|
|
1
|
i
|
{
|
{
|
1
|
|
(
|
|
|
|
|
|
|
|
|

L-'l—
V& wN =D

Figure 24. Condition/Action Table for Uncorrectable Errors

CP Introduction 1-177



Multiprocessor External Interrupts

For external interrupts that can occur in attached processor mode

(time-of-day sync check, malfunction alert, external call, and emergency

signal), DMKPSAEX gives control to  DMKEXTSL. DMRKEXTSL does the

following for each kind of interrupt:

Malfunction alert

e Call DMRMCTMA, which will either load a disabled wait state on the
appropriate processor or initiate automatic processor recovery, to
allow the system to run in uniprocessor =mode. If a user was running
at the time of the malfunction alert he is terminated.

SHUTDOWN Emergency Signal

Issued to the attached processor prior to shutting the system down.

e Turn off APUOPER in each PSA to indicate that the attached processor
is not operational.

e Load a 008 disabled wait PSW.

e Disable channel zero.

e Pass control to the dispatcher at DMEKDSPRU.
QUIESCE Emergency Signal

e Give control +to the dispatcher at DMKDSPRU, which will load a wait
PSW that is enabled for external calls only.

SYNC Emergency Signal

Issued by DMKCLKMP when the clocks are no longer synchronized (low order
synchronization).

e Give control +to DMKCLKAP to synchronize the clock on the attached
processor. If the set clock fails, the attached processor is
terminated with a CLK003 abend.

CLKCHK Emergency Signal

e Give control to DMKCLKCC. If the clock on the attached processor is
not synchronized with the main processor (high order synchronization)
or is not set, then a flag is set to cause DMKCLKMP on the main
processor to synchronize the clocks. The attached processor is then
put in a wait state enabled for external interrupts. If the clock is

not working, the attached processor is terminated with a CLKO0O03
abend.

APR External Call

e Give control to DMKMCTPR to allow the system to run in uniprocessor
mode.

RESUME External Call
Cancels a previous QUIESCE.

e Give control to the dispatcher at DMKDSPRU.

1-178 IBM VK/370 System Logic and Problem Determination--Volume 1



WAKEUP Exterrnal Call
"yake-up" an idle processor.
e If the system was running a user, reload the external old PSW.

e If the system was not running a user, then try to obtain the SYSTEH
lock.

e If the SYSTEM lock is obtained, give control to the dispatcher at
DMKDSPCH.

e If +the lock is not obtained, give control +to the dispatcher at
DMEKDSPRU.

DISPATCH External Call

Inform the other processor of a processor related CPEXBLOK.

e Try to obtain the global system lock.

e If the system lock is obtained, go to the dispatcher at DMKDSPCH.

e If the lock is not obtained and the system was in a wait state, go to
DMKDSPRU.

e If the lock was not obtained and the system was not in a wait state,
reload the external old PSW.

Time-of-Day SYNC Check

e Call DMRCLKSC. DMKCLKSC signals the attached processor to quiesce.
It then sends message DMKCLK970W to the operator and calls DMKCLENE.
DMKCLKMP issues a SYNC emergency signal to synchronize the clocks.
DMRKCLKSC issues a RESUME signal to allow the attached processor to
continue.

e If the SYSTEM lock is held, go to the dispatcher at DMKDSPCH.

e TIf the SYSTEM lock is not held, go to the dispatcher at DMKDSPRU.

1/0 Subsystem

The I/0 subsystem of VM/370 runs under the global system lock on either
the main processor (processor with I/0 capability) or the attached
processor (processor without I/O capability). The I/0 first level
interrupt handler (DMKIOSIN) is the only exception; it runs unlocked
during its normal error free processing. The main processor owns all
real I/0 blocks (RCHBLOK, RCUBLOK and RDEVBLOK). DMKIOSIN always runs on
the main processor because only the main processor can receive I/0
interrupts. 411 other routines that set any fields within the real I/0
control blocks or that are dependent upon the status of a real I/0
control block remaining static, must use the SWITCH macro to force their
processing to the main processor. All routines within DMKIOS with the
exception of DMKIOSRW, reissue the SWITCH macro whenever loss of control
is a possibility, to ensure that processing remains on the main
processor.

The SWITCH macro tests to see if it is running on the attached
processor or the main processor. If it is running on the attached
pProcessor it issues an SVC 24 to transfer contrcl to the main processor
and to resume execution at the next sequential instruction.

CP Introduction 1-179



If DMKIOS receives an unsolicited interrupt or am I/0 error for
scheduled I/0, a call is made to DMKFREE for either an IOBLOK, CPEXBLOK,
or an JOERBLOK. DMKFREE will ensure that control is returned to the
processor that initiated the request.

Shared Segment

The shared seqment suufunction of VM/370 (DMKATS, DMKCFG, DMKCFH,
DMKPGS, and DMKVMA) runs under the global syste®m lock on either the main
processor or the attached processor. All protected shared segments are
duplicated in a system that is generated for attached processor mode and
that is initialized on a machine with the multiprocessing feature.
DMKCFG obtains sufficient storage to construct the duplicate page and
swap tables in contiguous storage. The SHRTABLE SHRPAGE pointer points
to the page and swap tables for the main processor, and the page and
svap tables for the attached processor are at a fixed displacement from
the page and swap tables for the main processor. DMKCFG initializes
both sets of page and swap tables. Initially, the two swap tables point
to the DASD locations specified in DMKSNT. However, as the pages are
read into storage and then stolen, each shared page is allocated its own
DASD slot and is pointed to by only one swap table entry.

The last user to purge a shared system causes both sets of page and
svap tables to be released.

One shared page table is reserved for use by each processor. This
includes both problem state and supervisor state execution on behalf of
a virtual machine. To accomplish this, each time a virtual machine
running a shared system is locked, a test is made to determine whether
or not the virtual machine was last serviced on this processor. If it
was last serviced on the other processor, all of its shared page table
pointers in its segment tables are switched to this processor‘'s shared
pages.

DMKPTR is able to steal a shared page from a shared page table
reserved for the processor it is running on without notifying the other
processor. The virtual page could not appear in the look-aside buffer
of the other processor.

The dispatcher releases the VMBLOK lock on LASTUSER following the
check for pending interrupts (assuming no fast redispatch possible)
unless the virtual machine was running one or more shared systeamas. 1In
the latter case the VMBLOK lock is not released until the DMKVMA scan
for a changed page is completed.

DMEKVMA scans all protected shared segments that +the virtual machine
used. For every changed page that it finds, DMKVMA checks whether or
not the system lock is held. If the system lock is held, the changed
page is returned to CP free storage. If the system lock is not held,
DMKVMA marks the page table entry as invalid, marks the swap table entry
as in transit, and indicates that the core table entry is on the free
and flush 1lists. The other virtual machines can continue to use the
shared segments. The changed pages are replaced when the next reference
to the changed page is made.

If the shared segment is violated, an error message (DMKVMAU4S56) is
sent to the violator, and he is placed in console function mode. The
user may examine his PSW and registers to determine what caused the
violation. The user enters the BEGIN command to resume eXxecution at the
point of interruption.

1-180 IBM VM/370 System Logic and Problem Determination--volume 1



CP Method of Operation and Program
Organization

This part contains the following information:
e CP Program Organization
e Use of the Annotated Flow Diagram

e Virtual I/0 Operations and Interruption Processes

CP Method of Operation and Program Organization 1-181



1-182 1IBM VM/370 Systen Logic and Problem Determination—--Volume 1



CP Program Organization

Use of the Annotated Flow Diagram

The following text sections, which describe each major CP functiom, are
annotated flow diagrams. These diagrams, consisting of logic labels and
commentary, describe the general flow and use of CP logic modules and
their relationship to other modules while performing a specific function
or task. The annotated flow diagrams do not contain references to error
messages, abnormal termination conditions, or most control block field
labels. This avoids complexity and makes the general logic of CP and
its related tasks more understandable to the user. With
"understandability® as the key, cbtuse and complex logic that is used
for obscure and seldom used functions is not described. Also the flow
diagram does not indicate nor describe every entry point encountered in
a function. Nor do the diagrams illustrate the innumerable times that
commonly used modules are utilized. DMRKFRE and DMEKCVT, the obtaining
and returning of free storage and the number base conversion modules are
such examples. Annotated flow diagrams are arranged by function and
subfunction. Titles for these functions and subfunctions also precede
annotated flow text and 1labels. The text in the charts is prefixed by
underscored and capitalized entry points and labels. Entry points are
indicated by seven or eight characters; the first three characters are
DMK. Labels are indicated by prefixing with a comma and the
ix-character module identification.

The annotated flow diagrams in this section do not reflect VM/370 use
of the MSS. If +there is an MSS attached to the VM/370 system, consult
Appendix B in this volume for flow diagrams of those functions that
utilize the MSS (such as logging on a virtual machine that has a
mimidisk defined on an MSS 3330V volume).

Note: Annotated flow diagrams are not to be construed as trace material.
The dynamics of CP operations preclude the use of the annotated flow
diagrams, as they are shown in this manual, as traces of CP functioms.

VM/370 CP Interruption Processing

SVC INTERRUPTIORS - PROBLEM STATE

DMESYCIN
Entry for SVC interruptions from problem or supervisor states. For
problem mode and ADSTOP (SVC X 'B3'), the overlaid instruction is
replaced.
DMKCFMBK
Console function mode is entered.
DMKSVCIN
For problem state SVC 76 (X'4C') check for valid parameter passing.
DMKVERD, DMKVERO
Determine the operating SCP used in the virtual machine by examining
passed parameters in RO and R1.
DMKSYC, SVCVER
For invalid parameter passing, error recording is not performed.
DMEKIOEVR

i e e e

The SVC is reflected to the user.

CP Method of Operation and Program Organization 1-183



DMEIOFVR
On correct parameter reflection, record the error.

DMKSVC, REFSVCB
REFSVCB is called if TRACE SVC was in effect or if the virtual
machine's page zero is not in real storage. Obtains the system lock
before continuing. If the system 1lock is not immediately available,
REFSVCB defers the interrupt and exits to DMEKDSPRU.

DMKTRCSY
The DMKTRC module is called if TRACE SVC was invoked.

DMKPRGRF
If tracing is not active, flag wuser as being in instruction wait
state and refiect the SVC back to the user.

DHKSYC
If the virtual machine's page zero is in real storage, generate and
store an 0ld SVC PSW. Fetch the new SVC PSW. If there is no PSW state
change, store user's new PSW in RUNPSW, restore registers and
dispatch via LPSW.

DMKSYC, REFSVCA
If there is a PSWN state change, obtain the system lock before
continuing. If the system lock is not immediately available, defer
the interrupt and exit to DMKDSPRU.

DMKDSPB

Check the altered PSW.

SVC INTERRUPTIONS - SUPERVISOR STATE

DMESVC, SVCDIE
Entry is for a system failure and is a SVC 0 or SVC 4 abend
condition.

DMEDMPDK
Perform partial or full real storage dump.

DMECKPT ~
Checkpoint the systen.

DMECPINT
Perform an automatic IPL if indicated.

DMEKSVC, SVCLINK
Entry via SVC 8 provides linkage to a called routine in R1S.

DMEPTRUL
If called routine is not resident, page it in and return control to
the caller by loading the SAVERTN into the o01d PSW and then load the
old PSW. The caller's addressability, SAVEAREA address and return
address are maintained in a new SAVEAREA.

DMEKSVC, SVCRET
Entry via SVC 12 return control from the called routine to the
calling routine and restores addressability via R12 and R13.

DMKPTRUL
If a nonresident module, unlock page to return it to DASD.

DMKSVC, SVCRLSE
Entry via SVC 16 to release the current SAVEAREA used by SVC 8 and
12. Return to caller.

DMKSVC, SVCGET
Entry via SVC 20 to obtain a new SAVEAREA. Return to caller.

DMEKSVC, SVCSWIT
Entry via SVC 24 to switch control to the main processor.

EXTERNAL AND CLOCK INTERRUPTION REFLECTION

DMKPSAEX
Entered via the interruption key on system console, adjust accounting
to charge for supervisor overhead. If problem mode, attention
interruption, update the virtual machine PSW from the external old
PSW.

1-184 1IBM VM/370 System Logic and Problem Determination--vVolume 1



DMERPSA, EXTBUTTHN
Exit +to dispatcher, if there is no 1logged-on operator, or the
operator is disconnected, or there is no active terminal. If the
operator was logged on and the external interruption key was pressed,
disconnect the operator's terminal.
DMEQCNCL
Clear all console requests.
DMESCNRD
If the device is a terminal or graphic device, issue HIO to the real
device.
DMEDSPCH
Exit to the dispatcher.
DMKPSA, EXTBUTTN
For 3704/3705, convert resource identifier for the ©NCP terminal for
the indexable entry into the NICBLOK for the associated VMBLOK, then
DMERNEHRD
Reset all BTUs.
DMKDSPCH
Exit to the dispatcher.
DMEKPSA, EXTEXTD
Upon location X'80' timer interruption, indicate the user end of the
time slice by storing flag in the VMBLOK's VMOSTAT.
DMKDSPCH, DMKDSPRU
If the system lock is held or is available, exit to the main entry of
the dispatcher, DMKDSPCH. Otherwise, exit to DMKDSPRU.
DMKPSA, EXTTIMER
Upon processor timer interruption, VMTLEVEL in VHMBLOK as a real
processor timer interruption.
DHKTMRYT
Simulate the interruption.
DMKDSPCH, DMKDSPRU
If the system lock is held or is available, exit to the main entry of
the dispatcher, DMKDSPCH. Otherwise, exit to DMKDSPRU.
DMEKPSA, EXTCKC
Upon clock comparator interruption reflection
DMRSCHTQ
Use the printer to unchain the active TRQBLOK. Call DMKSTKIO.
DMKSTKIO
Stack the block.
DMKDSPCH, DMKDSPRU
If the system lock is held or is available, exit to the main entry of
the dispatcher, DMKDSPCH. Otherwise, exit to DHKDSPRG.

MONITOR INTERRUPTIGK PROCESSING

DMKMOR
The VM Monitor data collection component uses both sample and trace
techniques. Selected system counters are sampled by routines entered
periodically via TRQBLOK. Selected events are traced upon execution
via monitor call instructions embedded at strategic points in the
control program.

DMKMONTI
TRQBLOK gives control here every 60 seconds (unless specified
othervwise with the MONITOR INTERVAL command), and a new TRQBLOK is
immediately stacked via call to DMKSCHST, to request a return to the
same entry point 60 seconds later. Control register 8 monitor mask
is used to determine which of the three sampled data classes
(PERFORM, USER, DASTAP) are enabled. Appropriate counters are
sampled using special subroutines for each class and the data is
stored in the monitor buffers. Upon completion, goes to dispatcher.

CP Method of Operation and Program Organization 1-185



{
|
|
|
|
|
|
|
|
|
]
|
|
!

Class Code Data Items Collected
Software and hardware utilization, contention, and
activity counters
1 Corresponding items for APU
4 0 YMBLOK user resource consumption and status
0,1 DASD and tape activity counters

o
o

DMKENTTI

Entered via TRQBLOK every two seconds (unless specified otherwvise
with the MONITOR INTERVAL command). A new TRQBLOK is immediately
stacked via a call to DMKSCHST to specify return of control to the
same entry point two seconds later. This subroutine is a high
frequency (relative to the PERFORM, USER, DASTAP sampler) I/0 status
sampler. All channels are tested for a busy condition with a TCH
instruction. All control units and devices are tested for a busy
condition by examining the appropriate CP control blocks. The data
obtained is accumulated for later sampling by the DASTAP class of
data collection in a class 6 (DASTAP) code 2 (I/0 status) record.
The subroutine DMKENT62 performs this collection after the standard
class 6 (DASTAP) code 1 record has been collected by MONCOD61 in
DMKMONTI.

DMKMONMI

Entered from DMKPRG after a monitor call in a class currently enabled
(as defined in CR 8 mask) has been executed by CP in supervisor
state. The monitor call instruction number and code number stored by
the hardware in the PSA are used to index branch tables to reach the
appropriate data collection routines. As necessary, the data is
stored in the monitor I/0 buffers before output. Upon completion,
control returns to instruction after monitor call.

ode Activity Being Monitored
Begin console read
Console output
End console read
Console sleep

Class C
0
1
2
3

2 2 User dropped from queue
3
4
0
0
0

1

User added to queue

User added to eligible list

Privileged instruction being simulated

SI0 for DASD SEEK

Add queue, drop gqueue - more detailed resource
consumption data

odu

DMRMONPR

311 data collection subroutines use a common buffer management
subroutine to obtain sufficient space in the monitor buffers. When
not enough space is available, a switch is made to the next buffer in
the chain and the full buffer is scheduled for output via a CPEXBLOK.
I/0 is handled by DMKIOSQR if tape is in wuse, or by DMKMIAWO if a
spool file is in use. If data collection gets ahead of buffer output
and all the monitor buffers are filled, a temporary suspension
OCCurs. :

DMENONIO

Handles normal and abnormsal completion of buffer output to disk or
tape. For normal completion, the buffer used for I/0 is made
available for further data collection; if the next buffer is already
full, its output is immediately scheduled. If a suspension was in
effect, data collection is immediately resumed using the freed
buffer. (Note: Suspensions should be eliminated by increasing the
buffer allocation, using the MONITOR command or the SYSMOR macro.)
Special tape conditions that can be handled include end of tape and
permanent error. 2

1-186 IBM VM/370 System Logic and Problem Determinatior--Volume 1

i



DMEKENTKC
Entered via CPEXBLOK at mnidnight if automatic monitoring to spool
file is in effect and it is required to close out the current file
and continue monitoring with a new file. DMKENT satisfies the
nucleus residency requirements of CPEXBLOK entry point and acts as a
stepping stone to DMRKMIA. Goes to DHMKDSP after successful call to
DMKMIAKC.

DMRMIAKC
Sets up a request to invoke a MONITOR CLOSE command in DMKMCCCL.

DMEMCCCL
Executes MONITOR CLOSE command and calls DMKMIACC to complete
processing.

DMRMIACC
Invoked by the MONITOR CLOSE command to close the spool file and
chain the spool file block to the reader of the virtual machine where
data reduction is to take place. Starts new spool file if
appropriate.

DMKENTST
Entered via TRQBLOK due to previous determination by automatic
monitoring facilities that a MONITOR START SPOOL command should be
issued. This entry satisfies the need for CP nucleus residency and
immediately calls the pageable DMKMIAIN.

DMEMIAIN
Builds a message buffer containing a MONITOR START SPOOL command and
calls DMKHCCCL.

DMEMCCCL
Executes MONITOR START SPOOL command. DMKENTST gives control to
DMEKDSP after successful execution.

DMRENTET
Entered via TRQBLOK due to previous determination by automatic
monitoring facilities that a MONITOR STOP command should be issued at
this time. This entry satisfies the need for CP nucleus residency
and immediately calls the pageable DMKMIAEN.

DMEMIAEN
Buils a message buffer containing a MONITOR STOP command and calls
DMKMCCCL.

DMEMCCCL
Executes MONITOR STOP command. DMKENTET gives control to the
dispatcher after successful execution.

DHRHIAST
Entered from DMKCPI when it is determined that automatic monitoring
has been requested via the SYSMON macro in DMKSYS and that TRQBLOKs
should be dqueued via calls to DMKSCHST to invoke a HONITOR START
SPOOL command and a MONITOR STOP command at specified times 1in the
future. If monitoring is required to start immediately because the
start time has passeqd, a CPEXBLOK is built to give control to
DMKENTSC, which invokes the DMKMIAIN mechanism described above.

All other DMKMCC, DMKMNI and DMKMIA entry points are used as a result
of the processing of MONITOR commands or special conditions.

Three Class 0 monitor call codes have been reserved for special
purposes. They are used without actually executing monitor calls, but
as a result of MONITOR command processing. They are:

Class Code Function
0 97 Write header record after MONITOR START command
98 Write trailer record after MONITOR STOP command
99 Write suspension record when data collection resumes

CP Method of Operation and Program Organization 1-187



PROGRAM INTERRUPTION PROCESSING

DMKPRGIN
For a program interruption received vhile in supervisor mode
(indication of CP module error) and INTRDR+1 does not indicate
MONITOR CALL (X'40') exit to -
DMEPRG, CPERROR
Send abend message to the system operator.
DMKDMEPK
Dump storage and initiate loading (via IPL).
DMRPRGIN
For supervisor state and MONITOR CALL save registers in in DMKPRGPR.
DMKPRGMI
Do MONITOR CALL interruption processing (DMKMON).
For - paging exception X'11' and EC mode with translation on call
DMKVATEX.
DMEVATEX
Process the exception.
DMKPRGIN
For paging exception, x '11' and EC mode with translation off, and
enabled for I/0 interrupts and PAGEX on call DMKVATPF.
DMKVATPF
Process the pseudo page fault.

The system lock must be obtained before DMKPTRAN is called. If the
system lock is not immediately available, defer the interrupt and
exit to DMKDSPRU.

DMKPTRAN
Bring in the page from the auxiliary device.

DMEDSPCH
Exit to dispatcher.
For segment exception X'10' with EC mode on and translation omn call
DMKVATSX.

DMKVATSX
Process the exception.

DMRPRG, PRGSIMI
For the segment exception, X'10' does not follow the above
parameters; process it as an addressing exception.

Process X'12' translation exceptions.
DMKPRG, PRGO1
For privileged or operational exception of a virtual machine in
supervisor mode, examine ITRPR+1 if X'01' or '02' call DMKPRVLIG.
DMKPRVLG
Process the exception.
DMKPRY, DMKPRGSM
For virtual machines in problem mode, store the users newvw program PSW
in VMBLOK VMPSH.
DMKPSASY
When the program interrupt occurs and the users page 0 is not
resident or the virutal machine is in EC mode, paging is performed.
DMKDSPB
Check the new PSW.
DMKPRVLG
Validate the privileged operation indicated in VMINST and perform the
service.

1-188 1IBM VM/370 System Logic and Problem Determination--Volume 1



Code Operation

Xx'08¢" SSK - Set storage key

X'09°* ISK - Insert storage key

xraye EX - Execute instruction

X'80° SSM - Set system mask

x'g82¢ LPSW - Load PSW

x'9c! SI0O - Start I/0

X'9D* TIO - Test 1I/0

X'9E" HIO - Halt I/,0

X'9F? TCH - Test Channel

X'acCe STNSM - Store, then AND system mask
X'AD* STOSM - Store, then OR system mask
X'B1° LRA - Load real address

X'B202" STIDP - Store processor ID

X'B203! STIDC - Store channel ID

X'B204:" SCK - Set TOD clock

X'B206" SCKC - Set TOD clock comparator
X'B207? STCKC - Store TOD clock comparator
X'B208! SPT - Set CPU timer

X'B209! STPT - Store CPU timer

X'B20A" SPRKA - Set PSW key from address
X'B20B! IPK - Insert PSW key

X'B20D! PTLB - Purge TLB

X'B6° STCTL - Store control registers
X'B7" LCTL - Load control registers
X'BA! CS - Compare and swap

X'BB! CDS - Compare double and swap

DMEKPRV, LOCKET
The system lock must be obtained before other supervisor routines are
called. If the system lock is not immediately available, defer the
interrupt and exit to DMKDSPRU.

DMRHVCAL
On privileged operations of DIAGNOSE X'83' and the associated
function code, perform the service.

DMKVSIEX ,
Execute privileged 1/0 operations of SIO, HIO, TIO and TCH.

DMRTMRTN
Perform privileged operations related to TOD clock, TOD clock
comparator and the processor timer.

DMKPRGSHM
Program interruption is reflected back to the user on invalid
instruction operands, unsupported instructicn operand codes and
DIAGNOSE '83' function codes that are not a multiple of 4.

Virtual 1/0 Operations and Interruption Processes
CTCA OPERATIONS BETWEEN TWO VIRTUAL MACHINES

DMRVSIEX
Virtual I/0 operation is reflected to DMKVCA, the channel adapter
module, for processing.

DMKVCAST
For SI0O, <check if the CTCA is coupled. If not coupled, call
DMKDIASH.

DMEDIASM
Simpulate return status.

DMKVCA, VCRSTART
FPor a coupled CTCA, analyze operations resulting in X-side (read) and
Y-side (write) of the data transfer operation.

CP Method of Operation and Program Organization 1-189



DMRVCA, VCASIOB
Detected interruptions are presented to users via stacked IOBLOKs and
DMKSTKIO.
CTCA TIO activity is determined by examining Y-side information to
determine mode and activity.

DMRVCASH
CTCA HIO and HDV is processed by determining the conition code to
present and whether the Y-side should be notified.

DHKVCARD
CTCA process results from RESET xxXx or SYSTEM RESET commands. The
CTCA status is reset but the CTCAs are not uncoupled.

DMKVCARS
Uncoupling CTCA is achieved in the VDEVBLOK (VDEVNRDY flag) idle CTCA
Plus an invoked DETACH xxx or user LOGOFF. Return to calling
routine,

SCHEDULING I/0 FOR CP AND THE VIRTUAL MACHINE

DMKIOSQR
Entered via SVC. Entry point indicate a CP I/O event as indicated in
the IOBLOK. For start request, increment the SIO count in the
RDEVBLOK and start the device if it is available. If not (device
busy or already scheduled) gqueue the IOBLOK and return the operation
to the caller.

DMKIOSQV
Entered via SVC. Entry point indicates virtual machine initiated I/0
event. Preserve VMBLOK address in R11, turn off IOBCP bit in the
IOBLOK, add 1 to SIO count in the VDEVBLOK (or RDEVBLOK). Process
the SIO if there is any available path to the device. If not, dqueue
the IOBLOK and return the operation to the caller.

STANDARD DASD I/O INITIATED VIA DIAGNOSE

DMKDGDDK
Perform simple disk I/0 of a standard format. Entry is wvia DMKHVC
code X'18¢.
DMESCNVU
Find device related to SI0O cuu address.
DMKFREE
Allocate storage for IOBLOK and RCWTASK.
DMKGDDK
Build and check the CCW string.
DMRIOSQV
Execute I/0. On completion, post condition code (and error return
code in R15, if detected).
DMKDSPCH

Exit to dispatcher.

1-190 IBM VM/370 System Logic and Problem Detersination--Volume 1



GENERAL I/O OPERATION INITIATED VIA DIAGNOSE

DMKGIOEX
Perform general I/0 operation. Entry is via DMKHVC code 20.
DMKSCRVU
Find device related to SIO cuu address.
DMKFREE
Allocate storage for the IOBLOK.
DMRCCRIR
Build the read CCW list.
DMRIOSQV
Queue the I/0 request for execution.

If no problem encountered, free storage used for
IOBLOK.
Reflect the condition code and return code to the user.
DHKDSPCH
Exit to dispatcher.
DMKONTRN
On returned error condition, convert real CSW to virtual CSW and set
in user's page 0.
DMKGIO, GIOEXT
Exit via SVC 12.

(o]
(9]
a
1]
'.-I
3
5]
[
£
u

VIRTUAL MACHINE I/O INSTRUCTION SIMULATION AND INTERRUPTION REFLECTION

SRS SR SresRE=Smas

DMRVSIEX
Entry from DMKPRV to simulate I/0 per VMBLOK's VMINST field.
On detected SIO, call -
DMESCNVU
To locate VCHBLOK, VCUBLOK, and VDEVBLOK for the cuu called per SIO
instruction.
DMEVSIEX
Determine device availability and set condition code accordingly.
DHKIOSQV
If the operation is warranted, schedule the operation.
DMKVYSI, VIOTIO
For TIO, check device status, pending interrupts, and set appropriate
condition codes.
DMEVSI, VIOHIO
For HIO, check for dedicated channel, CE, CU, or device busy
condition, and subchannel busy and set appropriate conditiom codes.
DMEKVSI, VIOTCH
Check for dedicated selector or busy channel and check for pending
abnormal interruption and set appropriate condition code.

CP Method of Operation and Program Organization 1-191



Interruption Reflection

DMRVIOIN
Entry from DMKDSP to process the reflected virtual interruption.
DMESCNYU
Locate the VCHBLOK, VCUBLOK, and VDEVBLOK.
DMRVIOIN
Analyze blocks and reflect condition code to user. If condition code
equals 1 (cc=1), save status from the real device (if real device)
and DMKUNTFR.
DMKUNTFR
Translate and store CSW in user's page 0.
DMKVIO, VIOCC1
On TIO or HIO, free the device and set CC=1.
DMKFRET
Fret storage for the IOBLOK.
DMKDSPCH

————— e

Exit to dispatcher.

VIRTUAL CONSOLE SIMULATION

DMEKVSIEX
Entry for virtual console activity comes from the SCP stored in the
user's virtual machine. The program's generated CCWs and data are
reflected to the attached terminal used by the virtual machine
operator.

DMRVCNEX
Locate and move non-TIC CCWs from +the users virtual storage to a
VCONCTL block.

DMEKVCN, GETCCH
Update CAW and CSW in respective control block.

For read operation, build a read console buffer VCONBUF for the input
to be read from the terminal.
DMEQCNRD
Queue a console read request.
DMKVCNEX
Set return address in VCONCTL VCNRDRET field.
DMKVSPYP
Spool console activity if SPOOL CONSOLE START specified.
DMEDSPCH
Exit to dispatcher. Wait for completion.
DMEVCN, VCNWR
Calculate and obtain free storage (VCONBUF) necessary for the write
to console operation.
DMRVCN, VCHNMDAT
Translate and bring in user's data page and move it into VCONBUF.
DMEQCNHT
Queue a console write request.
DMKDSPCH
Exit to dispatcher.
DMEVCN, VCNSNCN
ON a sense operation, set CE and DE in the virtual PSW. Reflect the
PCI flag in the PSW if the PCI flag was set in the CCW. Set the IL
flag if warranted. Move the sense data from the VDEVBLOK to user
storage as designated by the CCW. Update VDEVBLOK's VDEVCSW to
reflect status and count.

1-192 IBM VM/370 System Logic and Problem Determination—-vVolume 1



DMKVCN, YCNCC1
On completion of I/0 operation, set appropriate status for command
reject, not ready protection check, incorrect length, channel program
check. Set appropriate CC and CSW in users page 0. Otherwise post
pending interruption status in VMBLOK, VCHBLOK, VCUBLOK, and
VDEVBLOK.

DMKVCN, FLAGIEST
If command chaining, process the next CCW.

DMKDSPCH
Exit to dispatcher.

LOCAL GRAPHIC I/O AND INTERRUPTION PROCESSING

DMKGRFEN
Entry for local graphic device enable and disable function (from
DMKCPVEN and unstacked CPEXBLOK). Invoking CP ENABLE/DISABLE
commands, start or terminate local 3270 display (and supported print

devices) and certain system console activity.

DUKFREE
Performs enabling function. Gets storage for IOBLOK and TRQBLOK
generation.

DMKGRF, LOGUSER
Form and write out the logo at the screen.

Unsolicited attention for RDEVBLOK (enabled).

DMKBLDVN
Build LOGON VMBLOK for logon process.

DMKCFMBK
Enter console function mode for terminal input.

DMKIOSQR
Schedule request to clear screen preparatory to logomn.

DMKDSPCH
Exit to dispatcher to wait for interruption. Successful logon per
the next interruption begins the operation of building the user's
virtual machine.

DMKSCNRU
From the TIOBLOK, locate the real device blocks related to the
interruption. Analyze IOBLOK CSW and condition code and the 1I/0
operation to determine read/vwrite sequential action. Por unit error,
retry 10 times (if applicable}. If recovery fails, log off. For
ATTN interruptions, attempt to 1log on the new user if unsolicited
ATTN occurs. Otherwise, set up for READ CCW string.

DMKFREE
Get storage for function and build CONTASK, IOBLOK, TRQBLOK.

DMRIOSQR
Issue the SIO.

DUEDSPCH
Wait for the response.

DMRGRFIN
Local 3270 display and certain system console interruption entry from
dispatcher. On response of CE and DE, go to auxiliary processing
routine address in TRQBLOK eXxtension TRQBCRT and execute the
processing routines:

Routine Function

CONRETBF Completion of a write CONTASK
RDMINT Completion of a buffer read
GRFCFM Execute console function

SETREJ Set no accepted timer

SETMOR Set more... timer delay

SETWNG Set 10 second clear warning
RDEXIT Clear bufferS after PF keys
STRTREAD Set read status

NOCTL Process next CONTASK or go idle

CP Method of Operation and Program Organization 1-193



DMRGRF, RDATA
Process read response of data plus ENTER key.
DMKCNSED
Edit and modify length count. Move data to caller's buffer.
DMEQCNNWT
Schedule rewrite to screen (unless inhibited).
DMEIOSQR
Perform start I/0.
DMKDSPCH
Exit to dispatcher.
DMEGRFIC
Entry point to process CONTASKS gqueue for 1local 3270 and 3066
devices.
DHKFREE
Get storage for IOBLOK and TRQBLOK.
DMKGRF, BLDCCHS
Execute CONTASK, if appropriate. If not -
DMEDSECH
Exit to dispatcher.
DMKGRF, RDMINT
For read return, determine function key action and write response (if
appropriate) via KEYTEL.
DMRGREFTL
Entry point for processing timer interrupts.

LOCATE AND VALIDATE AN ISAM READ SEQUENCE

DRISHTR
Entry from DMKCCW modules to locate and modify an ISAM CCW string.
Using the IOBLOKs IOBCAW locate the RCWTASK. Check for the ISAN read
CCW.

Check for the correct ISAM sequence as follows:

1. The last CCW in the RCWTASK is a TIC.

2. This RCWTASK points to the next RCWTASK with a minimum of 2
CCius.

3. The first modified CCW is in real storage.

4. The last byte of the ISAM read overlays the operation code of
the first CCW in the next RCWTASK.

S. The TIC in the RCWTASK is to the next RCWTASK's first CCHW.

6. The date address of the £first CCW in the next RCWTASK is the
same address of the ISAM read+1 as it is in real storage.

DMKFREE

Storage obtained for seven double words save block.
DMKISM, CHKTSK2

Institute the ISAM read modification as follows:

1. Set the read to point to the save block data area.

2. Set the CP TIC to point to the modified CCW in the same block.

3. Set the modified CCW (seek head) in the save block to point to
the save block data area.

4, Set the CP TIC in the save block to return to the RCWTASK
following the modified (seek head) CCW.

5. Set the search CCW in the RCWTASK to point to the data area in
the same block.

1-194 IBM VM/370 System Logic and Problem Determination--Volume 1



DOUBLEWORD SAVE BLOCK

Read Address | (2) TIC Address

Unused |

Read Data Area

4) TIC to RCWTASK

Real Read CCW

r
|

|

|

|

|

I r

| [(3) Modified CCW
|

|

|

|

|

| Real TIC CCW
[

B e G e S - —— ——— — — — —

DMKISM, CHKTSK2
Return to DMKCCW module via SVC 12.

SCHEDULING CP AND VIRTUAL MACHINE TI/0 OPERATIONS AND INTERRUPTIOR
HANDLIKNG

DMRIOSQOR
Entry to process CP generated I/0. Flag the IOBLOK as a CP generated
event. Initiate I/0 if path to real device is free {(available). If
not, queue the IOBLOK and return to caller.
DMRIOSQYV
Entry to process I/0 for virtual machine I/0O operations. Mark IOBLCK
as not CP initiated. Save VMBLOK address. If path to the VDEVBLOK
or the VDEVBLOK is busy queue the IOBLOK and return to caller.
DMKIQS, IOSTATDV
If available status, start the I/0 and return to caller.

DMEKIOS, IOBSTART
If I/0 request has not been reset, save the address of the active
IOBLOK and set device busy. If the device is being reset, unflag
scheduled device and scheduled control unit. Stack the IOBLOK and
restart the device.

DMKIOS, IOSSIO
Set the subchannel path busy and chain the active IOBLOK from the
RDEVBLOK.

DMKIOS, IOSSIO
Locate <caller's CAW and issue the SIO. Check SIO completion.
Returned condition code sets sequel action.

cc = 0 indicates successful start

cc = 1 CCW stored, initiate sense operation

cc = 2 Busy condition, retry or requeue IOBLOK

cc = 3 Fatal error (not operational), stack the IOBLOK and return to

caller

CP Method of Operation and Program Organization 1-195



HIO Operations

DMKIOSHA
Entry point for halting a device. If device is not active, return to
caller. If IOBLOK active, reset the IOBLOK to halt the device and
mark the device reset in RDEVBLOK.

DMKIOS, IOS10KI
If the channel path is busy with a burst mode operation, stack the
IOBLOK to halt the operation when the channel path becomes available.
Return to caller.

Interruption Processing

DMKIOSIN
Entry from I/O new PSW. Check o0l1ld PSW. If problem mode, save
processor status in the VMBLOK.
DMKSCNRN
Locate RCHBLOK, RCUBLOK, and RDEVBLOKs for interruption unit.
DMKVIOIN
Process dedicated channel interruption condition. If control unit
end or channel available interruption occurs, restart the operation,
if interruption does not occur stack it.
DMRIOSIN
If the IOBLOK is not active on RDEVBLOK interruption, call DMKIOS.
DMKIOS, IOSENSE
Schedule sense operation, then go to dispatcher.
DMKIOS, IOSRSTRT
For PCI or CE interruptions, copy and stack the IOBLOK.
DMKCNSIN
Process PCI or CE interruptions, if related to 1local graphic device
or nondedicated TP 1line.
DMKIOS, DOSENSE
For split seek complete interrupt, rechain the seek and reschedule
operations.
DMKSTKIO
Stack IOBLOK and restart any units freed by the interruptions.
DMEKDSPCH, DMKDSPA
If the system lock is held or is available, exit to the main entry of
the dispatcher, DMKDSPCH. Otherwise, exit +to DMKDSPA to try to
redispatch RUNUSER.

TERMINAL CONSOLE I/O CONTROL, START/STOP, 3210, 3215, ARD OTHERS

Enabling/Disabling

Per unstacked CPEXBLOK, on enable or disable function, check current

status of the current real device and set flag in RDEVFLAG. Build

CONTASK and IOBLOK.

Issue SIO for enabling or disabling function and check return.
DMKDSPCH

Exit to dispatcher.

1-196 1IBM VM/370 System Logic and Problem Determination--vVolume 1



Process CONTASK data

DMRCNSIC
Entry from DMKQCN module. Build I/0 CCW string as defined by the
console device type. Alsoc select the proper line code to interface
with the device. Place in CONTASK. For output CONTASK determine the
correct translation table applicable to terminal communications
(DMKTBL). To append proper control character to the data stream for

the particular device type, refer to the following labels:

e DMEKCNS, INCWITY

o DMKCNS, INC2741
2741, 3767

o DMKCNS, INC1050
1050, 1051

e DMKCNS, INC3210

3210, 3215

DMECNS, INCFINS
Attempt to start I/0 by halting the current operation, if the
operation is a "prepare® CCH or the input is a read and the
forthcoming output is a priority write CONTASK.

DMRFREE
Get storage to build IOBLOK, if needed.

DMECNSIN
Set return address in IOBIRA.

Start I/0. If busy condition encountered build CPEXBLOK and queue for
later execution.

DMRDSECH
Exit to dispatcher.

Start/Stop Terminal Interruption Process

DMRCNSIN, CMBREAK
For an active input task halted, RDEVFLAG=RDEVHIO to process priority
cutput task.

DMRFREE
Build CONTASK for reverse break CCWs.

DHKCNS, CNSBREAK
Move the input CONTASKE following the last priority write output
CONTASK on the chain.

s e e

For unit check with intervention required, assume an attention
interruption and build a "prepare" CCW for the 2741.
Por unit check and timeout condition - logoff the virtual machine and
re-enable the line.

DMKCNS, CNSRTRY
Por data check and other conditions, retry the previous operation.
Process completed output CONTASK.

DMKCNSIN
Interpret interruption status and CCW residual count for input
CONTASK completion.
Validate input data and control characters and translate to EBCDIC
from line code.

DHKTRMID
Attempt to identify, if applicable, the 1line code identification;
PTTC/EBCD or correspondence.

CP Method of Operation and Program Organization 1-197



DMKCNSED
Perform line editing of the input buffer.

——-fEEpare and issue control CCWs to request status information from the
terminal.

Processing the Control CONTASK Interruption

Por control task interruption return, examine the interruption status
according to control task function:

e DMECNS, CNSTAK
Reset control task.
e DMKCNS, CNSCTID
Device identification.
e DMKCNS, CNSCTPR
Attention signal.
DMECNS, CNSCTPR
Write "VM/370 Online" interpretation of response determines retry, or
build new CONTASK and execute or stack or process next CONTASK.
DMEQCNET
Process completed CONTASK requests. If no tasks remain for the
terminal, set IOBLOK's IOBIRA to DMKCNSIN and link the IOBLOK to the
user.
DMEDSPCH

Exit to dispatcher.

CONSOLE SCHEDULING

DMKQCNRD
SVC entry to build CONTASK for input data. Set the input buffer to
Zeros.

DMKFREE
Get storage to build CONTASK.

DMKQCN, ENQUEUE
Stack CONTASK on RDEVBLOK, if RDEVCON was zero. If not, exit to the
appropriate interrupt handler per RDEVTYPC and RDEVTYPE or -

DMESPCH
Exit to dispatcher.

DMEQCHNRT
SVC entry to build CONTASK for output data. Strip trailing blanks
from output message, nodify byte count and determine real device
~destination.

DMKFREE
Get storage to build output CONTASK.

Update CONTASK CCW message byte count for the message text, terminal

and line control information and (if appropriate) time stamp.
DMRCYTDT

If time stamp required, get the value for CONDATA area.

If message data contains carriage returns, X'15', create a separate
CONTASK for each line.

On first CONTASK or priority CONTASK, enqueue on chain from RDEVBLOK
in appropriate location, then call related interrupt handler.

1-198 1IBM VM/370 System Logic and Problem Determination--volume 1



DMKQCN, WAKEMUP
If NORET or DEFRET specified, build and stack CPEXBLOK to alert the
interrupticn handler and return via EXIT SVC otherwise go to
specified interruption handler.

DMEQCNTQ
Entry via SVC to disconnect and logoff a virtual machine as a
of transmission line failures. Place the virtual machine in
state, VMRSTAT=VMCFWAIT.

DMKSCHDL
Alter virtual machine to unrunnable state.

DMKFREE
Get storage for message for the system operator.

DMKSCNRN, DMKSCNRD, DMKCVTBH, DMKSYSNM
Fill in message variables.

DMKSCNR, DMKSCKRD, DMKCYTBH, DMKSYSNM

Fill in message variables.
DM? cuum

Snxzmad

Send the user disconnect message to the operator.

DMKQCN, DSCGTRQ
Build TRQBLOK, if needed, for 15 nminute delay, schedule it, and exit
via SVC.

DMKQCN, DSCTLOG
After time elapse, TRQBLOK is unstacked and VMOSTAT is set to VMKILL
for inevitable DMKUSOFF logoff operation.

DMKDSECH
Exit to dispatcher.

result
wait

)

3704/3705 INTERRUPTION HANDLER

DMRRNHIC
Entry via DMKQCN or via CPEXBLOK for 3704/3705 resource
initialization. Locate the NICBLOK and check resource avaiability.
For resource unavailable, set RC=12 in CONTASK save area and return
task via DMKQCNET.

DMKRNH, TAGTASK
For resource available, set CONTASK values per input and output task
requirements.

On 3704/3705 available condition, search NICLIST and build an IOBLCK
if required.
DMERNHIC, RNEXLST
Search the NICBLOKs for CONTASKs to be sent to 3704,/3705, build and
chain for output.
DMERNH, RNCHAIN
Perform necessary function for each resource.
DMK IOSQR
Start output I/0 operations.
DMRRNH, BNICHN1
Return via R7.
DMRRNHND
Entry via SVC to schedule resource control tasks.
DMKRNH, RNHNDTK
Build control CONTASK and enqueue it for execution.

For NORET specified, build and stack a CPEXBLOK to perform SVC exit.
DMKRNH, RNDEXIT

Attempt to start output via GOTO DMKRNHIC.
DMKRNH, RNFDISC

Entry for 3704/3705 recovery.

CP Method of Operation and Program Organization 1-199



DMENLDR
Load the 3704/3705, if it was not previously loaded.
DMKFRE
Get storage to build CKPBLOK (telecommunications control block), if
necessary.
DMERNH, RNSBITS
Record active line and enabled terminal flag bits.
DMRQCNET
Clear CONTASK chains.
DMKQCNTO
Force disconnect to all active users.
DMRNLEMP
DUMP the 3704/3705.
DMKNLDR
Reload the named progranm.
DMRRNHND
On "IPL completem signal, reenable resources.
DMKFRET
Release the CPEXBLOK.
DNKDSPCH
Exit to dispatcher.
DMERNHIN
Entry via IOBLOK to perform input and output interruption processing.
For input process failure. Analyze the failure and if related to the
370473705 and not to a particular resource, either retry or dump and
reload.
DMKRNH, READBUF
Interpret response codes for each BTU received and schedule necessary
control operations.
Generate response to a read error.
DMKRNH, CMPHRITE

Generate response to a wWrite error.

Generate response to a contact task error.

Generate response to a disconnect task error.
DMKRNH, COMCNTL

Generate response to a control task error.
DMKRNH, UNSOLIT

Generate response to a unsolicited read.
DMKQCNET

Return completed CONTASKs.

Attempt to restart the 3704,/3705.

DMKDSPCH
Exit to the dispatcher.

DMKRNHIN
Entry via IOBLOK to perform input and output interruption processing.
On output, examine interrupt status per IOBLOK values and if ATTN,
build and start a read CCW sequence.

DMKRNH, RNIOEUC
If unit check and fatal, dump and reload the 3704/3705.

Reschedule write operations.
DMKRNH, RNSLOWDN
If unit exception, set RDEVSLOW and reschedule rejected CONTASKs.
DMKQCHNET
Return only CONTASKs without CONRESP or CONSPLT set. Retain others
until final response is received.

1-200 IBM VM/370 System Logic and Problem Determination--Volume 1



DMKRNH, RNSTART

Attempt to restart the 3704,/3705.
DHRDSPCH
Exit to dispatcher.

HANDLING REMOTE 3270 WITH BINARY SYNCHRONOUS LINES

Remote Diplay Station and Bipary Synchronous Line Enabling/Disabling

DMERGBEN
Entered when the NETWORK ENABLE/DISABLE command is issued.

DMKFREE
Get storage for the necessary CONTASK, TIOBLOK, and if applicable,
BSCBLOK.

DMKRGB, LINESUP
Set up required CCWs and control data in the CONTASK for tasks.
These tasks include: enabling the binary synchronous line, enabling a
device, LOGO messages, screen formatting, and disable line or device
(lLogoff).

DMKFREE
For logon function build logon VMBLOK.

DMK IOSQR
Start line I/0 or device I/0, for not busy condition.

DMKRGB, RGFTASK
For busy condition, build CPEXBLOK and exit to caller.

Request Handler for 3270 I/0 Events

DMKRGBIC
Entry from DMKDSP. On a not available 1line condition, exit to
dispatch. For available line, process the associated CONTASKs by
queueing the related resource from the NICBLOK.

DMKIOS, RGSTART
Process POLL SI0 on a no CONTASK gueued condition.

DMEKIOSQR
Process selection SIO on available resources and not in control mode
per NICBLOK conditions and the CONTASK CONSTAT field.

DMEDSPCH
Exit to dispatcher.

Secondary Interruption Processor for 3270

e

DMEKRGAIN
Entry from DMKIOS, examine line interruption condition. Discard any
of the following and go to the dispatcher: nonbinary synchronous
line, copied IOBLOK, unsolicited interrupticn, bisync line flagged
not-in-use, nonterminal class device.

DMKRGA, FATALER
For TIOBFATAL condition or any nonzero condition code, free all
related CONTASK, IOBLOK, IOERBLOK, and BSCBLOK.
Log off all affected users on that line.

DMEMSHR
Send message to the system operator.

CP Method of Operation and Program Organization 1-201



DMKDSECH
Exit to dispatcher.

"7 If line or terminal response did not fall in the previous category,
process via TP code branch. The code in the fifth byte of the ending
CCW or IOBCSW-8.

TP Code Function

TPOO Error Handling CCW
TPO1 Enable/disable function
TPO2 ¥rite EOT (sequence prior to polling and addressing)
TPO3 Write polling or addressing characters
TPOY Handle station's status and sense message
TPOS Read response to addressing
TPO6 Write response to text
TPO7 NO-OP following POLL command
TPO8 Unit exception condition (timeout)
TPO9 A1l reset commands
TP10 Read/vwrite text
TP11 Read response to text
DMKDSPCH

Exit to the dispatcher.

3270 Binary Synchronous Line Error Recovery

DMKBSCER
Entry via DMKIOS and SVC 8 to process errors related to the binary
synchronous line unit check and channel error conditions. On first
error pass, move the IOERBLOK pointer from +the IOBLOK to the
RDEVBLOK, reset retry and fatal flags, set the ERP flag and call
DMKFREE.

DMKFREE
Get free storage for a work area for retry CCHs.

DMEKBSC, NOTFIRST
On a not first error condition, test for unrecoverable error
condition. Unrecoverable errors include:
program check, protection check, chaining check, equipment check,
interface control check and channel control checks. If one of these,
notify the system operator. Reset flags, initiate error recording
and

DMKFREE
Free IOERBLOK.

Go back to scheduler.

DMERGA
Analyze TP code, sense data CSW residual count and retry count to
determine retry or IOBFATAL flag setting.

1-202 1IBM VM/370 System Logic and Problem Determination--vVolume 1



REAL STORAGE ALLOCATION AND PAGE MANAGEMENT

Process a Page Request

DMKPTRAN
Enter via the TRANS MACRO per paging request as determined by DAT
created program interrupt (page or segment exception).
Return to caller, if virtual address in R1 is beyond range of user's
directory specified storage size.

DMRPTR, ADDROK
Check page residency via LRA (LOAD REAL ADDRESS) operation.

DMKPTR, TESTLOCK
For resident page, lock page in storage (if appropriate).

DMKPTR, GETRADD
Set real address in R2, make PAGTABLE entry valid. Set cc=0 and exit
to calier.

For page not resident but in +transit (SWPTABLE, SWPFLAG), place
virtual machine in locate mode. Locate CPEXBLOK for the real page
requested and chain another CPEXBLOK with a return address of
TRANRETN, to the same chain.

DMKPTR, TRANRETN
After page is no longer in transit, restore registers and return to
RESTART for processing.

DMKPTR, GETPAGE
Reclaims a page on FREELIST (CORETABLE).

DHKPTR, DOIO
For page that is not in storage, do setup to read im the page.

DMKPTR, CKDEFER
For DEFER option passed in R2, build CPEXBLOK to return to user after
page is in storage.

DMKPTR, PAGIN
After the page is read into storage DMKPAGIO process, remove the user
from the wait state and update the lock count (if required).

DMKPTR, GETRADD
Set real address in R2, make PAGTABLE entry valid. Set cc=0 and exit
to caller.

DMKPTRFR
Per the caller's code in R2, obtain a2 page frame -

DMKPTR, GETFREE
Obtain page frame via CORTABLE reference then exit to caller.

DMKPTRFE
Entry via CPEXBLOK, check page availability via flush 1list
(DMKPTRFL), if none available steal a user's page.

DMKPTR, SELECT
The SELECT routine is entered to replenish the FREELIST from the
flush list or user's pages that have not been referenced.

DMKPTRFT
Process pages to be returned by chaining them to the FREELIST. On
page returns DEFER page requests are processed first.

DMEPTRLK
In locking a page in Real Storage (address in R2), add 1 to lock
count; if previously 1locked, and exit to caller. If not previously
locked, unchain the CORTABLE entry from the user's page list and set
the lock count to 1.

DMKPTRUL
To unlock a locked page, reduce lock count by 1 and exit. If the
lock count is now equal to zero, place CORTABLE entry on user's page

list prior to exiting from routine.

CP Method of Operation and Program Organization 1-203



READING/WRITING A DASD PAGE TO/FROM VIRTUAL STORAGE

Virtual Storage and Management - Non-EC Mode

DMKRPAGT
Entered via SVC call to read DASD page into storage.
DMKPGTER
Release DASD space that was previously occupied by this virtual
storage page.
DMKRPA, RESIDENT
Remove resident page frames from the user list.
DMKPTRFT
Place these page frames on the free list.
DMKRPA, STORDASD
Update the SWPTABLE with disk address in RO.
DMKPTRAN
Bring the page into storage.
DMKRPA, EXIT
Put real storage address of the virtwal page is passed back to the
caller in R2.
DMKRPAT
Entered via SVC call to write out a page to DASD storage.
DMKPTRAN
Locate the page to be moved and lock it.
DMKRPAPT
Store all registers in CPEXBLOK and flag CPEXRO as a write request.
DMEPAGIO
Write the page.
DMKRPA, IORETN
Decrement page wait count. If zero results, take user out of page
wait.
DMKPTRUL
Unlock the page frame. Return to caller.

Virtual Storage Management - EC Mode

DMKVATAB
Entry via BALR wvhen an EC mode virtual machine needs a shadow table
generation and update or purge operation.

DMEVATMD
Get storage to create shadow table, Flag VMBLOK to show shadow table
existance.

DMEVATBC
Free shadow page, segment and copy segment, when user leaves EC mode
or alters CR 0.

DMRVATRN
Entry to perform third level to first level translations and third
level translations to second level address translatioms. Use TRARS
macro to access virtual segment and page tables to get the virtual
page into real storage.

DMKVATLA
Using the TRANS macro to access the virtual segment and page tables,
pass the resulting page and displacement to DMKPRVLG.

DMRVATPX
Invoked by DMKPRGIN when a paging exception is received for an EC
mode virtual machine.

Get the page.

1-204 IBM VM/370 System Logic and Problem Determination--Volume 1



DMRVATPX
Update the shadow table.

DMEVATSX
Invoked by DMKPRGIN when a segment exception is received for an EC
mode virtual machine.

DMKVAT, SETUPEX
Perform setup operation, then invalidate the shadow page table or if
none exists, allocate a new shadow table and set it invalid.

DMRVATPF
Entered via DMKVATPG from DMEPRG to simulate pseudo page fault
interrupts when a paging exception occurs with pseudo page fault
interrupts enabled.

DMEPTRAN ]
Bring in the DASD page.

DMKPRGSH
Reflect program check X'14' to the user.

DMKVAT, PAGRES
When the page becomes resident in storage. Build the PGBLORK, set
high order bit in the translation exception address field,

DMRDSPCH

Exit to dispatcher.

ALLOCATION AND DEALLOCATION OF DASD SPACE

DMKPGTPG
Entry to search and allocate a DASD page for paging/spooling.

DMRPGTSG
Search appropriate RECBLOK chain for available DASD page. If none
found, locate next available cylinder and construct a new RECBLOK,
calculate address of the allocated DASD page and place it in R1.
Return to caller.

DMKPGTPR
Entry to deallocate DASD page used for paging and spooling. Via
RDEVBLOK locate the RECBLOK and reset appropriate bit in the RECBLOKs
RECMAP and adjust the member of DASD pages in use. If all the pages
on the DASD cylinder have been deallocated, deallocate the cylinder.
Exit to caller.

DMEPGTSR
Entry to release a group of DASD pages no longer needed for spool
file use. Per R1, find RECBLOK and dummy RECBLOKs and reset the
RECMAP bits as specified. Free related RECBLOKS, if complete
deallocation occurs.

DHKPGTCG
Entry for allocation of enough DASD spool space to record a 3704,/3705
dump. Scan RDEVBLOK and associated ALOCBLOK for enough contiguous
available space to record the dump. When found, flag cylinder as
allocated and build and chain the required RECBLOKs.

DHKPGTVG
DMEPGT contains an internal table, PAGETABL, in which the allocation
of page frames for the CP paging VMBLOK 1is kept. The PAGETABL is
scanned for a zero bit denoting the page frame is available. The
page is marked allocated by setting the bit to one and the address of
the page frame is returned to the caller in R1. If no page frames
are available, a CPEXBLOK is built and queued to the deferred request
chain.

DMEPGTYG
Entry to release a page of virtual storage. Check the chain of
deferred requests. If there are none, Treset the page bit in the
PAGETBL to 0 and exit to the caller. Otherwise, give the page to the
first requestor in the deferred chain and stack his CPEXBLOK for the
dispatcher.

CP Method of Operation and Program Organization 1-205



SHARED SEGMENT STORAGE MANAGEMENT

DMEATSCF
Entry via SVC from the command processor if an ADSTOP, TRACE, or
STORE command is to alter a shared page. The virtual machine issuing
the CP command will be unshared from the named system, that is, given
a private copy.

DMKERMSG
The running virtual machine is informed of the share page violation.

DHRVMASH
Entered from DMPDSP or DMKPTR via BALR. The protected shared page
tables are examined for hardware change bit being on. The resulting
condition code is reflected to the caller.

DMRVMASH
Entered to switch the virtual machine from one set of page tables to
the other.

TEMPORARY DISK STORAGE MARAGEMENT

DMKTDKGT

Entry to allocate temporary disk space (T-disk). W®With R0 equal to
the number of cylinders required and R1 equal to the device type,
locate RDEVBLOK and related ALOCBLOK's ALOCMAP. If no allocation
space is to be found, return to caller with 0 in R8. If allocation
is successful, flag ALOCMAP, with X'AA' as allocated and put first
cylinder address in R1 and RDEVBLOK pointer in R8 and return to
caller.

PAGING I/0 SCHEDULER

DMKPAGIO
Entry to initiate Page I/0 activity. Using preformatted IOBLOK from
IOBSTACK, fill in the CCHs with DASD opcode and values derived from
CPEXBLOK swap table and core table. Chain the CPEXBLOK on the
in-transit queue.
Find the Paging RDEVBLOK.

DMKPAG, FINDIOB
Search IOBLOKs seeking the same cylinder address. If found, chain
the channel programs together with TICs.

DMEDSPCH
Exit to the dispatcher.

DMKPAG, QUEUEDIO
If no IOBLOKs with some cylinder address are found -

DMKIOSQR
Start the I/0 operation.

DMEDSECH
Exit to the dispatcher to await interrupt.

Upon interrupt return, unchain the CPEXBLOK from the intransit queue.
DMKSTRCP

Stack all deferred requests for execution.
DMKPAG, UNSTACK3

Return IOBLOK to IOBSTACK or free it.

———=a ———————

———_—t o=

Exit to dispatcher.

1-206 IBM ¥M/370 System Logic and Problem Determination--Volume 1



RELEASE VIRTUAL STORAGE PAGES

DMEPGSSS
Entry to release partial virtual storage. Per R1 (address of first
page to be released) and R2 (address of last page to be released) set
partial entry flag.

DMKPGSPO
Entry to check for shared segments and decrement usage count. Store
registers and flag full entry condition. Examine VMSHRSYS for shared
segments. If so, decrement use count. On zero use count unchain the
SHRTABLE from the active list.

DMEPGS, CECLEAR
On NOCEAR exit to caller. If not, store number of release pages in
R8.

DMEPGS, PGOUT2
Locate page and swap tables for the segment to be released and index
to the entry for the first page.

DMKPTRAN
Initiate paging, and when paging stops release the page frame.

DMKPGS, NEXTPAGE
8 value.

DMEDSPCH
Exit to caller.

DMKPGSPS
Entry to release storage containing a named system passed by the
caller. If register one is nonzero, search the page tables looking
for a header equal to the named system. If found, release the swap
and page tables and build new ones, if the address range still lies
within the wuser's virtual storage size. If register one 1is zero,
release and rebuild swap and segment tables for all segments above
the normal virtual storage size that do not have SHRTABLE entries.

FREE STORAGE MANAGEMENT

DMKFREE
Entry to obtain a block of storage, validate input doubleword request
{RO) .

DMKFRE, FREESUB
ON subpool size request, index into SUBTABLE. For correct size block
found, remove block from chain and put the address of the block in
R1. Returm to caller.

DMKFRE, FREE02
For subpool size not found get next large subpool size. Remove block
from chain, put address in R1 and return to caller.

DMKFRE TRYSPLIT
For subpool that cannot honor request, start search a 30 doubleword
end for block requirement. When a block is found, split block (if
necessary) and give caller address of his portion in R1 and chain the
remainder to the appropriate subpool size. Return to caller.

DMEKFRE, CLEARSAV
If no block can be found to honor user request, call -

DEKPTREFR
Fetch a page from the dynamic paging area. Chain it to the free
storage chain. Processing them continues. See entry DMKFRE,
FREESUB.

CP Method of Operation and Program Organization 1-207



DMEFRERS
Entry to return all subpool blocks to the free storage chain per the
SUBTABLE reference, as each subpool block is released, its address
and length are placed in R1 and R2 respectively. Branch and link to
FRET0S5 to return the block to the free storage chain (DMKFRELS).
Repeat action through all subpools. Return to caller.

DMKFRET
Entry to restore block to subpool or free storage. Per RO and R1
(number of doublewords to be released and and address of the first
double word, respectively), the subpool sized block is returned to
the appropriate subpool. Update the pointer in the SUBTABLE.

DMKFRE, FRET21
If subpool size block being returned is within the dynamic paging
area, process as a block of more than 30 doublewords.

DMKFRE, FRET20
Blocks larger than 30 doublewords to be returned are merged into the
free storage chain indicated by DMKFRELs.

DMKPTRFT
Restore page to dynamic page area; if a complete page is alloted,
blocks belonging to the dynamic paging area can be built.

Return a block of storage to free storage chain by merging into the
chain storage addresses in an ascending order of sequence. Return to
caller.

CP INITIALIZATION AND TERMINATION PROCEDURES

DMKCKPT
Initial entry point to load the system after loading the first
module, DMKCKP, from the system residence volume. Check CPID in PSA
for startup method.
DMKSAVRS
For CPID equal to not warm or not CPCP, insert COLD and 1load the
nucleus. Then branch to DMKCPINT, to perform CP initialization.
DMKCKP, NOTERM
ON CPID equal to WARM or CPCP, halt and drain all I/0 devices and
remember enabled terminals.
DMKCKP, NEXTCH
DMKRSPCY to validate warm start cylinder.

Save accounting data, log message, SDFBLOKs, and enabled terminals
and lines on checkpoint cylinders.

DMKCKP, CHKOS
Save spool records allocation and spool hold gqueue blocks on
checkpoint cylinder.

DMKCKP, SHUTSYS
If normal shutdown indicated, issue message to system operator and
load disabled wait state code X'008°',

~

1-208 IBM VM/370 System Logic and Problem Determination--Volume 1



System Initialization

DMRCPINI
Entry point to perform system initialization.

DMKCPI, KEYLOOP
Determine real storage size, initialize CORTABLE, allocate free
storage and initialize system paging tables.

Check via HIO for online and ready status of all DMKRIO generated
devices.
DMKCPI, CPISTCAW
Read volume labels and match to RDEVBLOK, RDEVSER.
DMKCIP, DMPALLOC
Allocate dump file to system device.
DMKCPI, ALOCLP

Build allocation block for CP-owned devices.
DHKCPI' MTCOMBGM

Test for virtual machine assist feature availability If available,
build MICBLOK and link to VMMICRO.

DMKCPI, NPSWS
Locate an available primary or alternate system console (PSA values).

Build user directory page list per DMKSYSUD.
DMKLOGOP
Log on the system operator.

Force nonnucleus modules to DASD page.

DMRIOEFL

Initialize error recording cylinders.
DMENLDR

Auto load 3704/3705; if appropriate.
DMEAPIPR

Initialize PSAs for each processor. Called only if the attached
processor is available.

DMECLKCK
Synchronize the TOD clocks if necessary. Called only if the attached
processor is available.

DMRCPVAE
Enable 270X lines, if appropriate.

DMKCPI, CPIDSP1
Log on the AUTOLOG user.

DMKPTRUL

" Onlock CPI as initialization is complete.
DMKDSPCH

DMKWRMST
Entry from DMKCPI initialization. Check R2=01; if it is, go to
DMKWRN, WARMCLR for cold start. Check warm start cylinder for 8 byte
X'FP's identifier.

DMKWRM, ENABLERT
If enable records on, warm start cylinder, enable appropriate
RDEVBLOKs.

DMRWRM, EN370S
If varm start record indicates, set flag for auto load of the named
NCP program.

DMEKWRM, ENR3270
Enable binary synchronous lines by clearing NICBLOK offline flag (if
appropriate).

CP Method of Operation and Program Organization 1-209



DMEKWRM, ACNTRT
Build ACNTBLOK, load it with warm start cylinder data and chain it.
DMEWRM, WARMLOG
Build buffer and load it with the saved log message.
DMKWRM, WARMSPL
Build SPFBLOKs and £ill with appropriate printer, punch, and reader
spool data.
Build SHQBLOK and move hold gueue record data to the new block and
chain it to the hold queue chain.
DMKWRM, WARMCLR
Clear 8 bytes of record 1 on the warm start cylinder. Check CPID
again.
DHRCKSHM
For CPID=CKPT or FORCE, reconstruct spool checkpoint records.
DMRCKSIN
For CPID=NOT CKPT or NOTFORCE, initialize the checkpoint cylinders.
DMKCKSPL
Files in the systems spool hold queue are added to the checkpoint
cylinder.
DMEKWRM, GETDISK
Read in the remainder of vwarm start data.

Normal Shutdown

DMKCPSSH
Entry point results from invoking CP SHUTDOWR command. Close active
spool files for callers or operator console.
DMKCPS, DASDCH
Via RDEVBLOK, locate and record DASD statistical data.
DMKCPS, DASDCHI
Put CPCP into CPID to denote shutdown.
DMKDMPRS
Set up CAW, CCWs and load CP via IPL from system residence device.
DMRCKPT
Save spooling and accounting data.
DMEKMONSH
Stop monitor tape activity.
DMKCPI SHUTSYS
Sense shutdown flag, issue DMKCPI961W, enter disabled wait state code
X'006".

Dump the System

DMEKDMPDK
Entry occurs via ABEND0OO condition or by pressing system console
RESTART button. Save PSA values. Determine if dump is full or just
CP portion.

DMEDMP, DMPMSG
Pormat and issue abend message to operator and transfer to DMKDMP and
DMPDASD.

DMKDMP, DMPDASD
Write out a defined amount of storage or all storage to selected
DASD.

Place sending record number and the system file number in the dump
file SFBLOK.

DMKDMP, RECSRCH
Chain dump file RECBLOKs to RDEVBLOK, and link dump file SFBLOK onto
the system reader chain.

.1-210 IBM VM/370 System Logic and Problem Determination--Volume 1



DMRDSP RESTART
Restart the system on warm start indication.

DMKDMP, DMPTAPE
Dump CP storage or all storage to the selected tape drive per
specified tape parameters.

DMKDMD RESTART
Restart the system if warm start is indicated.

Dump CP storage or all storage to the selected printer.
DMKDMS RESTART
Restart the system if warm start is indicated.

VIRTUAL MACHINE INITIALIZATION AND TERMINATION

Attaching a Virtual Machine to the Systeam

DMRCNSIN
Entered via interruption from a console or terminal (not displays)
device. If appropriate, determine and store device type in the
RDEVBLOK. Write the VM/370 online message. Sets up to receive
attention interruption.
DMEBLDYM
On attention interruption, build skeleton VMBLOK for LOGONXXX.
DMRCFMBK
Send read CCWs to the terminal for LOGON or DIAL response.
On response determine translate tables to be used.
DMKCFMBK
Validate command and transfer to DMKLOGON.
DMRLOGON
LOGON command execution.
DMEDIAL
Dial access linkage to multiaccess systenm.
DMKUDR
Via wuser directory access, validate user logon eligibility. On
acceptance of eligibility, that 1is the successful completion of
logon, build and allocate control blocks and linkages for the user's

virtual machine.

DMKCFGIP
For the IPL of a named saved system, the name is verified and
resources are checked for availability. Virtual storage is set up
with the saved system via SWAPTABLE, SEGTABLE, SHRTABLE updates. For
the IPL of Jdevice address, the IPL simulator is loaded in the user's
storage.

DMRVMIPL
User's page 0, set console address, IPL device address, VMBLOK flags
IPL device type and class and user CAW. Read in 24 bytes froam the
CTCA, reader, DASD or tape unit into the user's virtual 1location
zero. The CCW pointer is now set to the IPLCCW at virtual location
X'8' and the program is loaded.

DMKVMI, IPLDONE
For IPL STOP, the virtual machine is placed in console function mode
to allow change to nucleus name and apparent storage size before
continuation.

DMEVMI, LOADNOW
IPL address is inserted in X'02' if BC mode, or X'BA', if EC mode.
The user's CAW and registers are restored and control is given to the
user by loading the current PSW at virtual location 0.

CP Method of Operation and Program Organization 1-211



Virtual Machine Termination

DMEUSOLG
Entry is the result of user invoking LOGOFF. Set flags in VMBLOK
indicating logout operation.
DMKUSO, US006
Retain line communication, if HOLD operand specified.
DMKUSO, US008
Adjust return address to not run the user.
DMRUSOFF
Set VMBLOK flags.
DMKTRCHD
Called to reset tracing.
DMRPERT
Called to reset tracing.
DMEACOTM
Accounting called to compute the connect time for the LOGOFF message.
DMKQCNWT
Write the message to the user.
DNKSCHDL
Called to alter user dispatch status.
DMKCFPRR, DMKCSPO
Reset the virtual machine.
DMRVMCAN
Release or return VMCBLOKs if VMCF is active.
DMEVATBC
Release shadow tables (if any).
DMKSCHRT
Dequeue clock comparator request (if any).
DNKBLDRL
Release segment tables, page and swap tables related to the user.
DMKUSO, US094
Via DMKFRET return user VMBLOKs to free storage.
DMKUSO, US093
For the system operator, clear and reinitialize the VMBLOK.
DMKFRET
Return all other virtual machine control blocks to free storage.
DMRACOFF
Punch an accounting card for the user.
DMRUSO, US098
Free LOGOFF message area. Exit to do free storage maintenance. Exit
to DMKCFM or DMKDSPCH. :

DMKUSOFL

Entry is the result of the invoked FORCE command.
DMKSCHNAU

Locate userid VMBLOK.
DUKUSOFL

Set VMKILL in VMBLOK, build CPEXBLOK and stack it for dispatcher.
DMKDSPCH
Upon CPEXBLOK execution, process as at LOGGFF entry DMKUSOFF.
DMKUSODS
Entry from an invoked CP DISCONN command. Set disconnected VMDISCK
in VMOSTAT. i
DMKQCNWT
Send disconnect message to user.
DMKUSODS
Increment return address to DMKCFM by 4 to prevent a return read to
the user's terminal. Clear VMTERM field to indicate the user
terminal is disconnected.
DMRQCNWT
Send pwmessage to system operator informing him of user disconnect
status. Exit to DMKCFM.

1-212 IBM VM/370 System Logic and Problem Determination--Volume 1



CONSOLE FUNCTION (CP COMMAND) PROCESSING

DMRKCFMBK
Entry used when the ATTENTION key (or equivalent) is pressed once or
twice (according to the VM or CP status) to allow the user to direct
a line of input data for CP command processing. Set VMFCWAIT and
VMCF bits in VMBLOK indicating wait state and console function mode.
DMKFREE
Builds an 18-doubleword CONBUF buffer for the read operation.
DMESCNFD
Matches the 8-byte command name against the table of matching command
names, the truncations of command names, and the allowable
abbreviations, starting at COMNBEGO. The format of the table entry
is:

Field Nu
Command name

mber of Bytes

8

Class mask 2
2

4

Abbreviation count
Routine address

DMKCFM, CONFFIND
After a command @match has been made, +the privilege class of the
command is matched with the user's privilege class, VMCLEVEL in the
VMBLOK.

DNKCFM, CONFCALL

The last four bytes of a command contain the address of the routine
that processes the command.

See "CP Diagnostic Aids" for a list of all CP commands and the
associated processing modules.

DMRQCNRD
Read in the terminal input command line.

DMKCFMAT
On NULL data and ATTN key indication, post attention interrupt
pending in VDEVBLOK, VCUBLOK and VCHBLOK. Return to run the virtual
machine.

DMKCFMRQ
On receipt of CP commands ATTN or REQUEST., process the same as
previous entry, DMKCFMAT.

DMECFM
On receipt of * (asterisk) return to DMKCFMBK to set up anocther read.
If console spooling is enabled, all console input and output
including comments are spooled for printer output.

DNKCFMBE
On receipt of BEGIN, simulate the start button on the virtual machine
(If optional address is supplied with BEGIN command the supplied
address is substituted for the location counter address).

DMRCYTHB
Convert this address to binary notation.

DMKCFNSL
On receipt of the SLEEP command or SLEEP with time value (simulation
of virtual machine stop button depression) the VMBLOKs VMSLEEP bit is
set. The terminal console keyboard is now inactive until the user
hits an ATTENTION key or the SLEEP command times out.

CP Method of Operation and Program Organization 1-213



DISPATCHING AND SCHEDULING

Fast Reflection for the Dispatched Virtual Machine

DMKDSPA
Entry for fast reflection activity. If the user is no longer
runnable, or if the system is extending, the fast reflect path is not
continued and processing continues at the main dispatcher entry
point.

DMKDSP, UPVIRT
If the user is running virtual timers, wupdate and test the user's
virtual timers.

DMEDSPA1
If the user is still dispatchable, build the new RUNPSW from either
IOOPSW or PROPSW and redispatch the virtual machine.

PSW Validation

DHKDSPB

Entry to dispatcher when the user's PSW has been external to DMKDSP.
DMKDSP, CKPSW

Verify the PSW change.
DMKDSP, CEKPEND

Unstack any pending interrupts for the user (if enabled).

MAIN Dispatch Entry

DMKDSPCH
Normal dispatch entry after each interrupt handler has finished
processing, and after each CPEXBLOK, I/0O request and external
interrupt has been serviced.

DMKDSP, RUNTIME
If CPSTATUS indicates return from running a user (CPRUN on), first
ensure that supervisor time is being charged to RUNUSER. Check the
user for time-slice end or queue-slice end, store the time remaining
in the time-slice, and update processor problem state time. Also
update virtual timers if running.

DMKDSP, WAITIME
If CPSTATUS indicates return from wait (CPWAIT on), first ensure that
supervisor time is being charged to the system. Determine the type of
wait (I/0 wait, page wait, or idle wait) and save the appropriate new
wait time value.

For runnable user, check pending interruptions for the following:

e DMEDSP, CKPEND
Per interruption (VMPERPND)
Pseudo page faults (VMPGPND)
External interruptions (VMPXINT)
o DMKDSP, UNSTIO
I/0 interruptions (VMIOINT)
e DMKDSP, STORECSW
I/0 interruptions are reflected by swapping user PSWs and storing
the unit address and status in low storage.

Clear the pending bits in the VMBLOK.

1-214 IBM VM/370 Systea Logic and Problem Determination--Volume 1



DMKDSP, CKPSH
Validate the PSW.
e DMKVATBC
For virtual machine leaving EC mode, clean up the shadow tables.
e DMKVATMD
For virtual machine in BC mnode and entering translate mode,
initialize shadow tables.
DMKDSP, DSPERMSG
For PSW 1invalid, send error message to virtual machine, and place
user in CP mode. If disconnected and invalid PSW, log off user.
DMKDSP, DISPATCH
Complete processing for current user. Call DMKSCHDL 1if necessary to
alter user's dispatching priority.

Selecting the Next Unit of Work

DMKDSP, CKCPSTAK
Process a stacked request. First check the stack of IOBLOKs and
TRQBLOKs. If system is not extending, unstack normally. Otherwise,
only unstack paging or PCI IOBLOKs.

DMKDSP, WINDOW
Before examining the stack of CPEXBLOKs, open a window for interrupts
if the system is not extending.

DMKDSP, CKCPREQ
Check the stack of CPEXBLOKs. If the system is extending, only
unstack those blocks that will allow the extend to complete. If the
system is not extending, unstack normally. If a CPEXBLOK for the
other processor is encountered, give up the system lock and signal
the other processor.

DMEKDSP, CKUSERS
If no stacked regquests can be unstacked, select a user for
dispatching., If the system is locked for ruamning users (such as
during extend), load a wait state. Scan the run 1list for a
dispatchable candidate. If none is found, 1load a wait state. 1If
there is also a runnable user for the other processor, signal the
other processor. If a runnable user is found, set up to dispatch this
user.

DUKSCHDL
Main entry to maintain gueues of runnable and eligible users and to
alter the user's dispatching status and (vhen necessary) his
dispatching priority.

DMKSCH, CEKRSTAT
If the user is now not runnable, but was runnable before, mark the
user as not runnable. If the user is in the eligible list, drop him
from the list. If the user is in an idle wait state, drop him from
the queue.

DMKSCH, CKRUN
If the user is now runnable, mark him as runnable. If the user was
not in Q before, add him to the eligible list.

DMKSCH, CKWAITNG
Look through the eligible list for runnable users to add to active
queues.

CP Method of Operation and Program Organization 1-215



Other Scheduler Function

DMKSCHST

Set a clock comparator interrupt request.
DMKSCHRT

Reset a clock comparator interrupt request.
DMESCHHD

Set up a request block for midnight date change.
DMKSCH80

Process a real interrupt timer request.
DMESCHCP

Process a real CPU timer interrupt.

SPOOLING VIRTUAL DEVICE TO REAL DEVICE

Processing Virtual Output Files

DMRVSPEX
Entry from DMKVIO to initiate SIO on a spooling device that is
available (not busy and no interruptions pending).

DMRKVSP, OPEN
Determine if output device needs to be opened.

DMKSPLOV
If yes, tuild message control blocks: SFBLOK and VSPCTLBLOK.

DMKPGTYG
Obtain a virtual buffer; the address is stored in VSPVAGE.

DMEPGTSG
Obtain a DASD page; the address is stored in VSPDPAGE.

DMKVSP, BUILDCTL
Assign a spoolid and the other user, record, and device values plus
DMKCVTIDT.

DMECYTDT
Assigns the time stamp and date and stores it in SFBLOK.

DMKVSP, PRTCONT
Generate TAG record at the start of the spool data buffer.

DMEKVSP, CCHWOK
After CCW validity check, data and CCWs (if appropriate) are moved to
the work buffer. Trailing blanks are truncated and when the buffer
is full, it is written out to the DASD slot.

On comsole spooling, the following occurs:

1. Skip to channel 1 every 60 lines.

2. Write out the system console, spool file buffer every 16 lines.

3. Place the system console in a pseudo closed state for checkpoint
recovery in the event of system failure.

DMKVSP, LASTCCW
When all CCWs are processed, post interruption pending to the
VDEVBLOK, VDEVCSW and return control to the user.

Closing Virtual Output Files

DHMRVSFCO _
Entry via CP CLOSE command. If device busy, defer close operation by
building CPEXBLOK, stack it and exit to dispatcher.

on device pnot busy, write final buffer page tc DASD storage.

1-216 IBM VM/370 System Logic and Problem Deternmination--Volume 1



DMESPLCY
Queue closed wvirtual printer or punch spool file to the real spool
output device, or transfer the file to another user's virtual reader.
Also update the SFBLOK with number of copies printed/punched,
distribution code, hold status, and file owner ID. If VSPXBLOK with
TAG data exists for the spool device, copy the TAG data to the TAG
record in the first spool file data buffer.

DMRSPL, TXTXFR
If a "spooled to" file, queue to the end of the reader file chain.
Otherwise, chain the SFBLOK to the designated real spool printer or
punch.

DMKCKSPL
Checkpoint the new spool file block.

DMESPL, SETPEND
For a "spooled to" file find a virtual reader with the proper class
and in the ready state with no active file, and no pending
interrupts. Then build an IOBLOK with IOBIRA of DMKVIOIN.

DMESTKIO
Stack the IOBLOK.
Bxit to DMKVSP.

DMKSPL, TSTHOLD
For not "spooled to" files and not in wuser or system hold, £find
printer or punch with the proper class. Then build an IOBLOK with
IOBIRA of DMKRSPEX.

DMKSTKIO
Stack the IOBLOK.

DMKSPL, TSTHOLD
Exit to DMKVSP.

Processing Virtual Input Files

DMKVSP, OPENRDR
Entry to open a spool input file. If VDEVSPL=0 the file needs to be
opened. Build VSPLCTL block and a work buffer. Search the systenm
reader file chain per PSA linkage ARSPRD for a file with appropriate
user and class.

DMRVSP, SETFLAG
On file-found condition, place first DASD page address in VSPLCTL,
YSPDPAGE. Obtain a virtual buffer and retain its address in the
VSPLCTL block.

Check the CCWs for validity, move and expand the data back to its
original size and the data is moved from the work buffer to user's
virtuval storage.

On EOF, set SFBEOF bit in SFBLOK and return to caller.

Closing Virtual Input Files

DMEKVSPCR
For CLOSE operation requested via console command and the device is
busy, initiate a delayed close by constructing and stacking the
CPEXBLOK for the CLOSE.
DMRVSP, RDREOF
For normal end of file and VDEVSFLG indicates continuous read.
DMKVSP, OPENCONT
Locate the next file and continue reading.

CP Method of Operation and Program Organization 1-217



DMKVSP, LASTFILE
For last file, post end status in RDEVBLOK.
DMKVSP, FILECLR
For HOLD status file (VDEVSFLG=VDEVHOLD), call DMKCKSPL.
DMKCKSPL
Checkpoints the file.
DMKVSP, FILECLR
Unchain the file (except hold files) from the reader gqueue and call
DMKSPLDL.
DMESPLDL
Delete the file.
DMEKVSP, DVICECLR
To clear the device, call DMKRPAGT.
DHKRPAGT
Releases the storage page.
DMRRGTVR
Releases the virtual buffer.
DMKFRET

Releases storage for the work buffer and VSPLCTL block.

SPOOLING TO THE REAL PRINTER/PUNCH OUTPUT DEVICE

DERRSPEX
Entry from the dispatcher when an IOBLOK is unstacked with and
interrupted for spooling unit record device. IOBRADD points to the
RDEVBLOK RDEVTYPC input or output class.
DMKRSP, RSPLOUT
If RDEVSPOL indicates an available spool device (not active),
DMRFREE
Get storage for a work buffer and build a RSPLCTL block and link it
to RDEVBLOK.
DMERSP, PRNXTFIL
Search printer and punch SFBLOK chains for corresponding device and
class. On a found condition, unchain the block, put 1its address in
RSPSFBLK. The FLASH name specified in the SPOOL command, if FLASH is
specified, must match the flash overlay name for a 3800 printer.
DNESEPSP
If called, provides separators for output pages or cards.
DMRTCSET
If the device is a 3800 printer, call this module to set it up.
DMERSP, PROCESS1
Bring first spool data DASD page to the work buffer and convert CCW
addresses to real device addresses.
DMKIOSQR
Start the spool device.
DMKRSP, PRNXTPAG
Repeat the process until done.

Reprocess and reaccess the buffer, if multiple copies are specified.
DMKCKSPL
Checkpoint records the change to COPY count.
DMESPLDL
Delete the file on completion (unless HOLD specified). If the device
is a 3800 printer, check for delayed purge.

Processing for the device is complete as there are no more SFBLOK,
for this device or the device was drained.

DMKFRET
Release work area and completed IOBLOK storage.

DHKDSPCH

Exit to the dispatcher.

1-218 1IBM VM/370 System Logic and Problem Determination--Volume 1



SPOOLING TO THE REAL INPUT DEVICE

DMKSPLOR
Assume there is no active file being processed on the real input file
reader. The spooling operator has issued the START command to the
device to "open" the reader.
DMKSPL, BUILDCTL
Build RSPLCTL and SFBLOK.
DMEPGTYVG
Get virtual buffer and place its address in RSPVPAGE.
DMERPGTSG
Get DASD buffer and place its address in SFBSTART and RSPDPAGE, linke
together by pointers.
DMEIOSQR
Start the reader.
DRDSPCH
Await the interruption.
DMKRSP, RDERGETID
Check that the first card in the buffer is the userid header. 1If so,
proceed.
DMERSP RDRCARDS
Preload the buffer with CCHWs.
DMKIOSQR
Issue the SI0O (SIO's of 42 cards per buffer load).
DMKRSP, RDRSIO
Write the buffer to the DASD slot. Repeat until EOF detected.
DMESPLCR
Close the file on EOF. Queue the file on reader spool chains.
DMKCKSPL
Add the spool reader file bhlock to the checkpoint cylinder data.
DMESPL, RDRPEND
If the file owner is logged on, and his virtual reader is available,
an IOBLOK is constructed with device end pending -
DMESTK IO
Stacks it.
DMKRSP, RDREXIT4
Release storage for virtual buffer, RSPLCTL and the SFBLOK.
DERDSECH
Exit to the dispatcher.

SPOOL FILE DELETION

DMKPLDL
With R7 not equal to zero, place the specified SFBLOK on the delete
chain anchored to DMEKRSPDL.
DMRCKSPL
Delete the SFBLOK from checkpoint cylinder data.
DMKSPLDL
Assume the delete routine is not running, build a CPEXBLOK to call

DMKSPLDR.

DMKSPLDR
Sets the DELSW=X'80' (delete routine active).
DHKSTKCP
Stacks it and exits to caller.
DMESPLDR

On unstacking the CPEXBLOK, if the SFBLOK is a system dump file,
calls DMKDRDDD.
DMKDRDDD
Deallocates DASD buffers.
DMKSPL, NEXTSFB
For complete alloca