Systems

File No. S370-36
Order No. SY20-0880-1

IBM Virtual Machine
Facility/370:

Control Program (CP)
Program Logic

Release 1 PLC 9

This publication describes the internal logic of the VM/370
control program. Major sections discuss:

® The function of the control program
® The control program’s modules
® The control program’s data areas

Diagnostic information is also included.

This publication is intended for IBM personnel responsible
for program maintenance.

Prerequisites for a thorough understanding and for the ef-
fective use of this publication are:

IBM System/360 Principles of Operation, GA22-6821

IBM System/370 Principles of Operation, GA22-7000

IBM System/360 Operating System: Assembler
Language, GC28-6514

For titles and abstracts of other associated publications,
see the publication IBM System/360 and System/370
Bibliography, GA22-6822

This edition, together with Technical Newsletter SN20-2624, dated August
15, 1973, applies to Release 1 PLC 9 (Program Level Change) of IBM
Virtual Machine Facility/370 (VM/370) and to all subsequent releases
until otherwise indicated in new editions or Technical Newsletters.

Changes are continually made to the specifications herein; before using
this publication in conjunction with the operation of IBM systenms,
consult the latest IBM System/360 and System/370 Bibliography, Order No.

No. GC20-1763, for editions that are applicable and current.

Changes and additions are indicated by a vertical line to the left of
the change.

Requests for copies of IBM publications should be made to your local IBM
representative or to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Corporation, VM/370 Publications, 24 New England Executive Park,
Burlington, Massachusetts, 01803. Comments become the property of IBM.

(c) Copyright International Business Machine Corporation 1972, 1973

N bt v
R S

PREFACE

This Program Logic Manual (PLM) is a detailed guide to
the VM/370 control program. It supplements the program
listings by providing descriptive text, diagrams, and
flowcharts. It is intended for 1IBM personnel
responsible for program maintenance and is to be used
with the following PLMs for maintaining the Systen
Control Program (SCP).

Yirtual Hachine Convér§ational
Monitor System (CMS), Program Logic, SY20-0881

IBM Virtual Machine Facility/370:

IBM Virtual Machine Facility/370: Service Routines

Program Logic, SY20-0882

IBM System/360 Operating System: Assembler (F),
GY26-3700

IBM CALL/360-0S BASIC System Manual, GY20-0530

The 1logic described in this publication 1is about
programs that are discussed in the following
publication:

IBM Virtual Machine Facility/370:

GC20-1800

Introduction,

IBM Virtual Machine PFacility/370: Planning and Systen
Generation Guide, GC20-1801

IBM Virtual achine Pacility/370: Operator's Guide,

GC20-1806

IBM Virtual achine Facility/370: System Messages,

IBM Virtual Machine Facility/370: cCommand Language

——mdosas

Guide for General Users, GC20-1804

IBM Virtual Machine Pacility/370: System Programmer's

Guide, GC20-1807

Information in this publication (if any) about the
following is for planning purposes only:

e IBM System/370 Model 165 II

In this publication, the term %3330 series" is used in
reference to the IBM 3330 Disk Storage, Models 1 and 2
and the IBM 3333 Disk Storage and Control, Model 1.

MANUAL ORGANIZATION

This publication is divided into seven sections:

e The "Introduction" presents a general discussion
about the functions and program organization of the
VM/370 control program.

e The section "Method of Operation" contains a
detailed discussion about the functions of the
control program.

e Wprogram Organization" contains the tlowcharts.

e The "Directories" contain an alphabetical list of
all the CP labels that are discussed within this
manual. Accompanying the label is a brief
description of the function or for the subroutines,
the name of the module that it is in, and
cross-reference to its location in the PLA.

e The section "Data Areas" contains a detailed
description of the control program data areas.

e "Diagnostic Aids" contains cross-reference
information about commands, messages, wait codes,
and ABEND codes.

e The Appendixes contain coding conventions, systenm
equates, and DASD record formats.

Addition of the Following VM/370 Programming
Functions

New Programming Features

@ The Virtual = Real Performance option
@ The Dedicated Channel Performance option
@ The Virtual and Real Channel-to-Channel Adapter

Support for the Following Devices

New Hardware Features °

o The IBM 3211 Printer
e The IBM 3410/3411 Magnetic Tape Subsystem
o The IBM System/370 Models 155 Il and 158

Recovery Management Support
Maintenance: Program and Documentation

The section on Recovery Management Support has been
rewritten to include the following changes and additions:

@ A revised explanation of the initial state of the re-
covery mode for main storage errors.

® A revised termination procedure where recovery via
an automatic restart is attempted before placing the
system in a disabled wait state.

e The addition of a Buffer Error Routine as part of
the Machine Check Handler to perform error re-
covery on those CPUs that have high speed buffers.

Additional Modules

New: Program and Documentation

The following modules have been added as part of the

Control Program:

® The new module, DMKCPB, now simulates the
SYSTEM, EXTERNAL, READY, NOTREADY,
RESET, and REWIND commands for the virtual
machine. This function has been removed from
module DMKCIFM.

@ The new module, DMKTRC, now contains all the
TRACE processing routines. The initialization, modi-
fication, and termination of the TRACE function
remains in module DMKTRA.

@ The new module, DMKCFG, contains the SAVESYS
command processing routine. This function was
removed from module DMKCPV.

Additional Data Area

New: Program and Documentation

The “Extended Outboard Recording Block™ (XOBR3211)
has been added as a continuation of the “I/O Error In-
formation Block™” (IOERBLOK). It will hold additional

sense data for devices that return more than 24 sense bytes. .

Summary of Amendments
for SY20-0880-1
VM/370 Release 1 PLC5

Additional and Revised Flowcharts

Maintenance: Program and Documentation

The flowcharts and module/entry point directory en-
tries for the following modules have been revised to reflect
the above-cited new features and support:

DMKCCH DMKDSP DMKSPL
DMKCCW DMKFRE DMKTAP
DMKCDS DMKGEN DMKTDK
DMKCFG DMKIOE DMKTRA
DMKCFM DMKIOF DMKTRC
DMKCFP DMKIOG DMKUSO
DMKCNS DMKIOS DMKVAT
DMKCPB DMKLDG DMKVCA
DMKCPI DMKMCH DMKVCH
DMKCPV DMKNENM DMKVCN
DMKCSO DMKPAG DMKVDB
DMKDAS DMKPRG DMKVDS
DMKDEF DMKPRV DMKVIO
DMKLGD DMKPSA DMKVMI
DMKDIA DMKRSP DMKVSP
DMKDMP DMKSCN

Error Messages and Codes

Maintenance: Program and Documentation

The following Error Messages have been added:

DMKCCH605T
DMKCCH606I
DMKCFGO044E
DMKCFG170E
DMKCFG171E
DMKCFG172E
DMKCFG173E
DMKCFG435E
DMKCFP174E
DMKCPBOOSE
DMKCPBOOGE
DMKCPBO12E
DMKCPBO22E
DMKCPBO26E
DMKCPBOUOE
DMKCPI955W
DMKCPV144W
DMKCSOO036E

DMKDAS956A
DMKDIAO11E
DMKDMPI09W
DMKMCH610I
DMKMCH611I
DMKMCH6 12W
DMKMCH614T
DMKMCH616T
DMKPAGU15E
DMKPRGUS53W
DMKSPL501I
DMKSPL503A
DMKSPL504A
DMKSPL5291
DMKUDRU475T
DMKVDBO3U4E
DMKWRMI11W

(See Over)

The following Error Messages have been deleted:

DMKCFPOOS5E
DMKCFPOOG6E
DMKCFPO12E
DMKCFP022E
DMKCPVO044E

DMKCPV170E
DMKCPV171E

DMKCPV172E
DMKCPV173E

The following Wait state codes have been added:

00D

DMKDIA110E
DMKMCH610W

DMKMCH611W
DMKMCH612I

DMKMCH614W
DMKMCH616W
DMKMCH620T
DMKSPL517T
DMKWRMI10W

00F

The following ABEND codes have been added:

BLD0O1 DSPOO4 PTRO10
CFMO001 FRE0O10 SCHOO01
CNS008 PTRO0S TRCO001
DSP003 PTRO09

The following ABEND code has been deleted:

TRA0O1

Miscellaneous

Maintenance: Documentation Only

This edition includes other minor technical and
typographical changes too numerous to list.

7

BT

NEW DEVICE SUPPORT

New: Programming Feature

The IBM System/370 Model 168; the IBM 2860, 2870,
2880 standalone channels; and the IBM 2305 Fixed
Head Storage, Model 1, are now supported.

USER ACCOUNTING OPTION

New: Programming Feature

It is now possible for a user to charge another user
gor CPU time. A new diagnose code (4C) is provided
or this function. This option is described under
"Accounting Card Processing" in the section on the
"Real Spooling Manager.®™ The new diagnose code is
described in the section "Privileged Instructions."

VIRTUAL CONSOLE SPOOLING

New: Programming Feature

The virtual console is now supported for spooling
operations. Documentation of this support appears in
the section, "Virtual Spooling Manager."

New: Programming Feature

A new CP command, MONITOR, allows the user to stop
and restart the recording of real machine events in
the internal trace tabel. Previously, the tracing
was always active. This feature is described in the
section, "CP Internal Trace Table."

)

Sumnary of Amendments

for SY20-0880-1

as updated by TNL SN20-2624
VM/370 Release 1 PLC 9

STOP OPERAND AND PARAMETER PASSING FOR THE P IPL

i e s e e P ——mr e == ==

COMMAND

New: Programming Feature

The STOP operand in the CP IPL command will halt
execution and allow parameters to be passed
resulting in the loading of an alternate nucleus.
This function is described in "LOGON of User" in the
section "System User Interface."

PERFORMANCE ENHANCEMENT

s A

Maintenance: Program and Documentation

The Dispatcher/Scheduler routines have been modified
to improve performance. The section on the
Dispatcher/Scheduler has been rewritten.

ADDITIONAL MODULES

New: Program and Documentation

The following modules have been added as part of the
Control Program:

e The modules DMKSIX, DMKSEV, and DMKEIG handle the
channel logout analysis for the 2860, 2870, and
2880 standalone channels, respectively.

e The module,
spooling.

DMKGRA, handles VM/370 console

e The module, DMKLOC, locks and unlocks a system
resource. This code was previously restricted to
use in DMKUDR.

e The module, DMKMCC, handles the new CP command,

MONITOR.

e The module, DMKRSE, retries and attempts recovery
for real U/R device I/0 errors. This function was
originally in module DMKSPL.

SBEREEsScans =SS

New: Program and Documentation

ACCTBLOK -- User Accounting Block

New: Documentation Only

CCHREC -- Channel Check Handler Record
MCHAREA -- Machine Check Save Area
MCRECORD -- Machine Check Handler Record

The above blocks are defined in the "Data Areas --
control Blocks" section. :

ADDITIONAL AND REVISED FLOWCHARTS

New: Program and Documentation

DMKEIG DMKMCC DMKSIX
DMKGRA DMKRSE
DMKLOC DMKSEV

A A4 22 A

DMKACO DMKDSO DMKSPL
DMKCCH DMKHVC DMKTMR
DMKCDS DMKIOE DMKUDR
DMKCFP DMKIOG DMKUSO
DMSCFS DMKIOS DMKVCH
DMKCKP DMKLNK DMKVCN
DMKCPB DMKLOG DMKVDB
DMKCPI DMKMCH DMKVDS
DMKCPV DMKPRG DMKVMI
DMKCSP DMKRSP DMKVSP
DMKDEF DMKSCH DMKWRM

ERROR MESSAGES AND

Maintenance:

ODES

Program and Documentation

The following error messages have been added:

DMKCFP177E DMKRSES503I
DMKCPBO59E DMKRSES504A
DMKMCCOO2E DMKRSESO04I
DMKMCCO26E DMKRSES05A
DMKMCHOO3E DMKRSES508I
DMKMCHO26E DMKRSES520A
DMKRSES00I DMKRSES520I
DMKRSE5012a DMKRSES211
DMKRSES501I DMKRSES24T
DMKRSES502I DMKRSES251I
DMKRSE503A DMKRSES5291

The following error messages have been deleted:

DMKSPL500I DMKSPL505D
DMKSPL501A DMKSPL508I
DMKSPL501I DMKSPL520I
DMKSPL502D DMKSPL521I
DMKSPL5032 DMKSPL5241
DMKSPLS503I DMKSPL5251
DMKSPL504A DMKSPL5291I
DMKSPL504I

The following ABEND codes have been added:

105001 I0s003
105002 UDROO1
MISCELLANEOUS

Maintenance: Documentation Only

This Technical Newletter contains other minor
technical and typographical changes, too numerous
to mention.

)

INTRODUCTION e e cecesesccacccaccaccccnacscsacscaccsccccssed
Program StateS.cececcecccccocsccccscasccscccscsccccccncaall
Preferred Virtual Machine....cececcecsscccncacsaasaaalll
CP Interruption Handlingeccececceccccccccecsscccnceesls
Free Storage Management..ccecececececccacocccccasscaselb
Executing the Pageable Control PrograMececcesscessscesl6
System Support ModuleS.c.c.cececcscccccacscncscncnnacaell
Control Register USag@eececececcccsscsacscacsccacaccaael?
Restrictions and Coding Conventions for Pageable

Cp MOdUleS.ccececececnccscncasnsccccsccsascscancaall

HodllleS....---...........-...--..............-....-.18

METHOD OF OPERATION:ceccccccccccsscscsascccssccccccccccell
SVC InterruptionSceccccecccaccscescccccccsccccascasnell
External InterruptionSccceccecccecccccccccccacscaccaseld
Timer INterrUPtecccecccccccccoscscsscacscassscsscsaeld
External INterrupt.cccecccecccccccsccsscccscccnsasscnnss2d
Program InterruptionS.ccceccecccescaccccscssccccascssceald
Normal Paging ReqUeStSc.ccecccecesccccsccccscascasald
Virtual RelocCatiONeeccecccccccacscccnsascscacscsacaalil
Privileged INStruCtionNSeecccecccccccsccccsesscsessalld
DIAGNOSE InterfacCececccceccececncacecsccsccncsslth
Virtual Timer MaintenancC@.e.ccececscssessssese50
Virtual I/0 ReqUeStS.c.cececcscecsccsccascccssd2

I/0 SUPEIViSOCeccecccancscccccanssscsccccssccscsnnsascccsed]l
Real I/0 CONtrol BlOCKSeeccecesccsasaccacasccacssd8
I/0 Component StateSecececccescacsccsocccccsncecasabl
I/0 InterruptSeecceccecccccccccsncencancsasscanneabl
DASD Error Recovery, ERP (DMKDASD) cecececccaceeceb1

Tape EITOr RECOVEIrYeccecccscscscacccscnaccacocssbll
Handling Virtual I/O INterruptS.cccccceccecececsb5
Scheduling I/0 ReqUesStS.ccceccccessccscsccascssb5
Dispatcher/Scheduler.cecceccccccsccccsncaccscoscaneesall
User Dispatching and Machine StateSe.cceccecececeasa?0
Controlling the Depth of Multiprogramming........73
Favored Execution OptiONS..cccccssccsccccccacaascsald
Dispatching/Scheduling Support RoutineS........<.78

CP Internal Trace Table...c.ceccececcssceccnccccccecasel9
SPO0liNgecececesccacacaacecncoacssscncasccascsascncadl
Spooling Data FOrMatecececcecccscecsaccccccccscancesaBl
Spool Buffer ManagemeNte.ecececececceccececcccccssecsase82

o]
o
=
=]
=
]
w

:
|
|

Sp001ing ErrOr RECOVEIYececscscccoccsoaaccccccsssssb
CP Initialization‘I..l......l'........ll‘.l.l..l‘.‘.'86
Free Storage ManagemeNteececcececsscccccccsocnscccnscacsesaI2
Console PFUNCtiONS..cecceccsaccaccssccsacasacsscscssasedD
System/User Interfaceeccccceccccccscecscscscccaccecssdb
Virtual Console SimulatiON.ececececcscscececccccasead8
Recovery Management Support (RMS) cecceccececascececeassl105
Overview of Machine Check Handlere..c.ccceeceececesss105
System/370 Recovery FeatureS.cecceccecsccccccscacsss 107
Overview of Channel Check Handler.....ceccceeceesa112

Error Recording and RECOVEIYeeccececocccsccccccaaas 1.

PROGRAM ORGANIZATION:.ecesccccacscccsscacccscoccssscas 116
Flowcharts.'.....-.l....'.‘....l.l‘.......Q.....I'..116

DIRECTORIBS.....O..l'.....Q.....OQ.'Q.......‘.......u67
Module/Entry Point DirectoOryececccecceccccescccsccceccesesllb6?
Subroutine DireCtoOry.ceecccccecccsceccccccecacencsnesedl2

DATA AREAS —— CONTROL BLOCKSecccceccsccccascccccceceadl?
ACCTBLOK - User Accounting BloCK.eeceeeeceeeccsceaeeceaes519
ACNTBLOK - Accounting Card Buffer.c.ecceccecececcccsecseea519
ALOCBLOK - DASD Cylinder Allocation BlocKk..<.eeee....521
BUFFER - Console Function Input Buffer.ceecececcececec...522

CCHREC - Channel Check ReCOrQeccecccccccscecccssccccasd22.1

CHXBLOK and CHYBLOK - Channel-to-Channel Adapter

BlOCKSeeeasseosceeascsscoscassscscsassscccacsnascccccad22.l

CONTASK = CONSOle I/Occcececcccscccacsscncccncccascssd2l
CORTABLE - Storage Allocation Table....ceecececcesecs525
CPEXBLOK - CP Execution BloCKeewececsoeccacccsoccaessea2b
DMPINREC - Dump File Information RecOrdececcecececececcse.527
DMPKYREC - Dump File Key ReCOrQ.cecececccccccccccccsas528
DMPTBREC - Dump File Symbol Table ReCOrdeccccecescecs..529
ECBLOK - Extension to VMBLOK for Virtual Machine

With ReloCateeceeercacececccscccccacscccnscccasaaad30
IOBLOK = I/0 Control BloCK.eseeecosocccccoccscnsssaes 32
IOERBLOK - I/O Error Information BloCK..ececeeceecees.53U
XOBR3211 - Extended Outboard Recording Block........536
IRMBLOK - Intensive Error Recording Information

BlOCKeeeeoeoaosonoeasncsacsacsaascsccscscscsccscscasanscscncce 38

MCHAREA - Machine Check Save Ar€@ccecccccccsccccceesd39

Virtual Spooling ManageCLeecceecccccesccscnccccssseB2 MCRECORD - Machine Check ReCOTQececececsceacccceccaass5U0.3
‘Real Spo0ling ManagereceecescsccscsscascscssccscasseB8lol OWNDLIST - CP Ovwned VolumesS LiStececesccsscscccceass540.5
Spooling Command syste..........."0..0.........8“.“ PAGTABLE- Page Table.‘.ﬂﬂ...'..........‘.....QQ..Q.S“O.S

PSA - Prefix Storage Area (Low Storage Locations)...540.6

RCHBLOK - Real Channel BloCKe.ceceececcccscecasscesasedlbd
RCWTASK - Translate Virtual I/0 CCHeececcocsoscacecsesedli8
RDEVBLOK - Real Device BloCKeecececcecacecccccnccaccaseedl9
RECBLOK - DASD Page (Slot) Allocation BloCK..seeeaa.552
RSPLCTL - Real Spool Control BloCKecececeecesoscacceeead53
SAVEAREA.cecccacsacntccsccaccsaccsscscccsecnascccacccscecse ISl
SAVTABLE - First Page on Saved System DASD.cccece...556
SEGTABLE — Segment Table.c.ccececccccccccscaaccscacnaneasad5b
SFBLOK - Spool File BlOCk............----...-.....-.557
SHQBLOK - Spool Hold Queue BlOoCK..ceeecascacscaaccesaa’58
SHRTABLE - Named-Shared Segment SysStelS.cccecececcececss<559
SPLINK - Spool Page Buffer Linkag€eieceecceecssseassa559
SWPTABLE - Swap Table for Virtual Machine Paging....560
SYSLOCS - Systems Low Storage InformationN..ccsceccece561
TREXT - Virtual Machine Tracing Extension to VMBLOK.563
TRQBLOK - Timer Request BloCK.ccccececcceccecncccnscsad6ll
UDBFBLOK - User Directory Buffer BloCKieseceececeeoese565
UDEVBLOK - User Device BloCK.ceoseccacscosasacceneesdb65
UDIRBLOK - User Directory BloCKeeecececececcececacacceassa366
UDLKBLOK - User Directory Lock BloCKeeececeocoacaceesc567
UMACBLOK - User Machine BloCK.cccecececcecaccccoaveacess67

VCHBLOK - Virtual Channel BloCKeaecceesosecocsccaccacesH69
VCONCTL - Virtual Console Control BloCK.eceeeeceoceaee570
VCUBLOK - Virtual Control Unit BloCKeeeecesseoscocoeaad?1
VDEVBLOK - Vittual DEViCe BlOCk......--..¢..-.-.....572
VFCBBLOK - Virtual Form Control Buffer BloCK..eeeo.e.57l
VMBLOK - Virtual Machine Control BloCKeeeseeeceeccsaeea575
VSPLCTL - Virtual Spool Control BloCKeecececeeaosesaeso580

DIAGNOSTIC AIDSccecccecccccasasacscnsccscscscccncscccnsscescn8l
Command-to-Module Cross-referenCe.iccececcceccsccecesssa81
Message-to-Flowchart Cross-referenCe..cccccecccecscecss<586
CP Wait State COGeSccecccasccnccascccsassassasscccaasddl
ABEND COQ€Sceccaccaccccacccscccsnscsassassccsncansasnscaedd

APPENDIX A. VM/370 MODULE FORMAT.cececaccaccncasasea597

APPENDIX B. CODING CONVENTIONSeeccecasoacccaccasnaeed99
APPENDIX C. CP EQUATE SYMBOLSecceccccesccccccccecceab01

APPENDIX D: DASD RECORD FORMATSccccceccccccccccaaseeb07

INDEXecoceoacocscosccascnsccocsccsacocsoscscscssccsccccceaebl3

ILLUSTRATIONS
FIGURES METHOD OF OPERATIONS DIAGRAMS
Figure 1. Condition Codes for Diagnose Codes 14 Diag. 1A. Overview of Method of Operation
Aand 3b...cccccecccccccccsssacccccascccecltd DiagraMecececscsscsasasssssscacsascscccccccell
Figure 2. Overview of a Virtual SIO...cccevecccass5l Diag. 1A0. Control Block RelationshipS........ces..22
Figure 3. Summary of IOB IndicatOrSeececececccccscs bl biag. 1B1. SVC Interrupt Handlereecececceceeascccecoeses2ld
Figure 4. Overview of a Virtual I/O Interrupt.....66 Diag. 1B2. External Interrupt HandleTec.cecececeeceeees.26

Figure 5. User Dispatching StateS....ccececeeceses..72.1 Diag. 1B3. Program Interrupt Handler....cecceoeccececceal?
Figure 6. User Status ChangeS.eccecccscccccccccsssel2.2 Diag., 1B3.0 Paging OverVieW.ceececeecececcacsosceccccssel8
Figure 7. CP Trace Table Entri€S..sccecccescccceas76.2 Diag. 1B3.1 Virtual to Real Address Translation.....29
FPigure 8. Control Register Assignments For RMS...108 Diag. 1B3.2 Paging, Provide Real Storage Space€......34.1
Diag. 1B3.3 Paging, Allocate DASD SpaC€cececececscsccsee3’
Diag. 1B3.4 Release Virtual Machine PageS....ccc....38
Diag. 1B3.5 Page-in, Page-oOUtececcceccccscccccccccccesldl
Diag. 1B3.6 Virtual RelocatiONececececccccccscccaceccecld3
Diag. 1B3.7 Privileged Instruction Simulation.......46
Diag. 1B3.8 Virtual I/O0 Control BloCkSeceecececceeeae52.1
Diag. 1B3.9 Virtual I/0O RequeSt.cccccccsccccccccssesed5
Diag. 1B4.0 Real I/0 Control BloCKkSe.ceeeevecccccaessd9
Diag. 1B4.1 I/0 Interrupt HandleT.ccececoceescecccaccaseab2
Diag. 1B4.2 Virtual I/0O INnterrupPt.ececcecccecccccecsecssbbd
Diag. 1B4.3 I/0 Schedulingecccececccecacecsaceccccncescbhd
Diag. 2B. DisSpatChereiccccecccccacaccccscacacacacsselb
Diag. 3B. Scheduler.ecceccecccscscscsccscccsccncacscaaall
Diag. 4B1. Virtual Spooling ManageTeececacecssccccssee8l
Diag. 4B2. Real Spooling ManageC.eecececececccaceseceel
Diag. 5B. CP InitializatioNeececeecceccceccacecacecaaBli.2
Diag. 5B1. CP IPLecccccescssccscasccssscsacscccccsccecee88
Diag. 5B2. Check POinNt.cccecceccccccecccacccaccacecea89
Diag. 5B3. Save SySteleececcceccecceccccsacacccsansacsnsedl
Diag. 5Bl. Warm Start...ccceccececccccccscaccccccsceesdl
Diag. 6B1. Free (Provide) a Block of Storage.......93
Diag. 6B2. Return a Block of Storagecccecececceccce..9
Diag. 7B1. virtual Console Simulation, Real
Terminal OperatiONecececcccecccccceccaccocesad9
Diag. 7B2. Console Function Controleceececccececcscas 100
Diag. 7B3. Function Call Control, Command
SeleCtiON.ececececcscccccccccccccanancaslll
Diag. 7B3.1 Virtual Machine IPL.cccecececcecccccceaseass102
Diag. 7B3.2 Virtual TraciDgecececececcccccccecccsasas 103
Diag. 8B1. Machine Check Handler (MCH) ccecceececeecs..106
Diag. 8B2. Channel Check Handler (CCH).ccececeeececes113
Diag. 9A0. CP Control Block Relationships.........518

FLOWCHARTS

DMKACO
DMKBLD

DMKCCH
DMKCCW

DMKCDB

DMKCDS
DMKCFD
DMKCFG
DMKCFM
DMKCFP
DMKCFS
DMKCFT
DMKCKP
DMKCNS
DMKCPB

DMKCPI
DMKCPV

DMKCQG
DMKCQP
DMKCSO
DMKCSP
DMKCSU
DMKCVT
DMKDAS
DMKDEF

DMKDGD
DMKDIA

DMKDMP
- DMKDRD
DMKDSP
DMKEIG
DMKEPS
DMKERM
DMKFRE
DMKGEN
DMKGRA
DMKHVC
DMKIOE
DMKIOF

Accounting RoOUtinES.cecceccccccecccccccccaasll?
Build/Release Real Storage Tables; Build
VMBLOKeceecaoosooasocensosansscscnanscccancsalld
Channel Check HandleTecceesceoosoccacancaes 121
Translate a Virtual CCW List to a Real
List..Q....;.Q..QQ.‘.QQQ.‘..‘..'..I.....10123
Process DCP, DISPLAY, DMCP and DUMP
COMMANASeececcscesccsacaccevsasssccccncanccnsas 139
Process STCP and STORE CommandS.ccececccecsecs 145
Process ADSTOP and LOCATE CommandS.ecce<..148
Process SAVESYS ComMaNAecceccccccccceccccaas 150
Main Console Function Routin@ececceccccecss152
Simulate CPU Console to Virtual Machine...155
Process SET COBMAaNAdSeccccccccccccscsnsaccccs 160
Process TERMINAL Command.ececceccccccccocese 167
Checkpoint ProCeSSOTr cccecccecsccccceasccssl?0
Real Terminal (Console) Manage€Ceececeecececese.l17l
Simulate Virtual Machine Operator's
CONSO0l@ecevecacsscoscccsceccscacssccscnsccaccns 186
Control Program InitializatioN.ceecececsecs..188
Process DISABLE, HALT, SHUTDOWN, UNLOCK,

and VARY ComMMANAS ccececcccccccccccacacsccsl91
Process QUERY ComMand.ccececesccscccscascecesl196
Process QUERY ComMaNdecscecccscccccccccnscesl0l
Process Spooling COMMANAS.ececccccceccaccssea207
Process Spooling CommandS.ecccecaccscsacacsa2lll
Process Spooling CommandS.cceecccecccceceaea220
Conversion RoOUtineS.ceecccececcaccaccanscse229
DASD Error Recovery ProceduUreS.ccecccececesss231
Process DEFINE Command; Define Virtual
Storage Or @ DeviCe.icececacceccccacceaceaesa238
Perform DASD I/0 cccecccccccccccccascancesli2
Process DIAL Command, Connect to a

Virtual SySteMecececcccacacsccacacccccacsssllib
System Dump ProCeSSOCecccescsscccscassaceeslbl
Process Input Spool Fil€..ecccecceccsncesaa256
DiSpatCherecececccccccccccscccacccascaneseal60

2880 Channel MOAUlC.cccacccccccscccaccascsalbliot

Process User PasSSWOTrQeececececscascccccccasseslb5
Hessage writer.........lil...OII‘.I.Q.....266
Free Storage Manageleiececescccccscccccnscsesslb7
CMS I/0 Error Recovery Interface.ccceececes.272

System's Console ROUtiN@.cceececccccacaeaea272.1

Process DIAGNOSE INnStructionNS.ceccecceccescsea2273

Main Error Recording ProCesSSOC.ececsccacees276.1

ErrOor ReCOrA@reccccescacsccccsccccncccccscsse87

DMKIOG

DMKIOS
DMKISHM
DMKLNK

DMKLOC
DMKLOG

DMKMCC
DMKMCH
DMKMID
DMKMSG
DMKMSW
DMKNEM
DMKPAG
DMKPGS
DMKPGT
DMKPRG
DMKPRV

DMKPSA
DMKPTR
DMKQCN
DMKRPA
DMKRSE
DMKRSP
DMKSAV
DMKSCH
DMKSCN
DMKSEP
DMKSEV
DMKSIX
DMKSPL
DMKSSP

DMKSTK

DMKTAP
DMKTDK
DMKTMR

DMKTRA
DMKTRC
DMKTRM
DMKUDR

Error Recording, Initialization and
Clearingeccececcccsecccesscacsscasaccssceass8?

I/0 SUPEIViSOCecececcecccssccceccncenncccaassa2d0

Modify RCWTASK for 0S ISAM Input/Output....300
Process LINK Command; Link to a Virtual

DASDeccerececcscaccacsscasnscccccssassccccse30l

User Lock ROUtin€.cciecccccccccsscaceaccsaea3lbal

Process LOGON/LOGIN Command; Logon the
User Oor OperatOr.eccesccccccccccccccscccaccnase3ll?

Monitor Command Handlere..cesceeccecacccecceeea3dl0.2

Machine Check Handlereeccecccecsssccssccscasaldll
Change Date at Midnight.ecccecceccececceaeas36
Process ECHO, MSG, and WNG CommandSeccecces.317
ERP Message Writer.iccecececccscccccscsaseacassall9d
Translate Operation Cod€.cceccecsccaccaacasea32l
Paging I/0 Scheduler..c.ceccececaccnccaassasal2?2
Release Virtual Storage€ccceccecccccccscceccess324
Allocate DASD/Virtual Storagee..cccececceees..326
Program Interrupt Handler.ceecececececceccasacssea330
Simulate Virtual Machine Privileged

INStruCtionS.ececcececscccencscscsannacaaasea332
SVC and External Interrupt Handler.........337
Real Storage Page ManagemeNt.ceceecececccceaese.3U40
Console Message Queue MaNageCeeecssssseacesss 3’
Real Page ACCeSS ManageCeceeccccccccssasassea3bl
Real Spool Error ProcedUr€..ceccccceccscssses32

Real Spooling Managereececececccccccacacasaseea3’2.6

Save CP Nucleus Or SYSRES.c..cecececccsasass359
Schedulereeecccceccaccccsccacacsscsscsaccssacea3bl
Scan RoutineS.ccccecccecccccccacaccascsaaasal3bb
Print/Punch Output Separator.cccecccecescesse367
2870 Channel Modul€.cccccecccccacscacacscesas3b69
2860 Channel MoOQuUl€c.cececcccccccacacscacseld’2
Spooling SubroutineS.cececececcececccccacaaca3?s
Build Real I/O Blocks for Starter System

OF at IPL TiM@ececcccacacccaccccncsccccacscsceall?
Stack (queue) A CPEXBLOK or IOBLOK for
Dispatching ecccececescacecscccacccscaacaasa379
Tape Error Recovery Procedures eccececesceesse380
T-Disk Space Managereececceccscccscecssccccccss3Bb

‘Virtual CPU Timer and Clock Comparator

SiNUlatoOrecceccececscosccsccacecaccnacssccesee387

TRACE ComBand ProCeSSOCeccsccccccscccccaces388.1

TRACE Command RoutineS..cccescececcccscasssaa3qdl
Identify Terminaleccececececcaccacscaceaacaaasa39d?
User Directory Manager..ccc.ccccececescaseaassa398

DMKUNT
DMKUSO

DMKVAT
DMKVCA

DMKVCH

Virtual I/0 SubroutineS.cceccsceccacacccassaltiOl
Process DISCON, FORCE, and LOGOFF

Commands; LOGOff ROUtiNEicccecceccccccaaaas b0l
Virtual Storage Manager for a EC MODE

Virtual Machine that does Paging ecececececee 407
Simulate Channel-to-Channel Adapter

between Two Virtual MachineS.ceecceccccececse 13
Process ATTACH and DETACH CommandS.ccecceeesl23

DMKVCN
DMKVDB
DMKVDS

DMKVIO
DMKVMI
DMKVSP
DMKWRM

~~

1 H
L 7

Console I/0 SimuUlatOr cceeccscccccsccccccessld26
Process ATTACH and DETACH ComBandSeecececeees.ld431
ATTACH, DEFINE, and LINK Virtual Device

SUDrOUtiNeSececccecsccscncscccascsccnsaccscsssldlil
Virtual I/O MAQnNagelececccccccscscsssacscccccssdli3
Simulate IPL to Virtual Machin€...ccecceec...450
Virtual Spooling Managereccecececcescecsesss U5l
WATLM StACteecceccscocascscscsccnccsaacccccsoslbl

;

The VM/370 Control Program (CP) manages the resources
of a System/370 in order to provide virtual storage
support through the implementation of virtual machines.
This support is implemented in such a way that each
terminal user appears to have the complete functional
capatilities of a dedicated System/370 at his disposal,
even though many other users may be running batch,
teleprocessing, time sharing testing, or production
jobs at the same time.

A user defines the configuration he Trequires --
input/output (I/0) device addresses, and a storage size
up to 16 million bytes -- regardless of whether they
match the real machine's configuration. Virtual devices
must have real counterparts, but not always in a
one-for-one ratio. For example, many users' readers,
punches, and printers can be mapped onto common spool
disks, and their virtual disk devices may be mapped as
minidisks onto different sections of common disk packs,
effectively multiplying the number of 1logical disk
devices that are available on the real machine.

Each user's virtual machine comprises
e An operator's console (his remote terminal)

e A virtual CPU either with or without the Virtual
Storage Addressing feature

e Virtual storage of up to 16 million bytes
e Virtual I/0 devices

Virtual I/0 devices are controlled by the virtual
machine's operating system, not by the VM/370 control
program. Thus, the support for the proper number and
type of I/0 devices must be provided by the operating
system of the virtual machine for proper operation. The
VM/370 control program monitors, translates, and
schedules all real I/0 operations to provide systen
integrity. It executes all virtual machine operation in
a problem state by trapping, screening, and processing
all the interrupts, and passing on the necessary
information to the appropriate virtual machine. Only

the VM/370 control program executes in the privileged
state.

In order to increase the amount of real main storage
available to user programs, parts of the VM/370 control
program that are infrequently used are not required to
be resident in main storage. Instead, they reside on
part of the ©paging auxiliary storage used by the
system, and are brought into main storage only when
their functions are required.

Since the ©VM/370 Control Program nonresident modules
are effectively paged into main storage, the control
program itself must have virtual storage space
associated with it. This space 1is anchored at the
System VMBLOK, which 1is assembled into the resident
control program in the module DMKSYS. The VMBLOK has a
pcinter to a segment table, which in turn references a
set of page and swap tables that describe CP's virtual
storage space.

The virtual space is divided into 2 parts; the first 4
segments (256K) 1is reserved for executable control
program code, both resident and pageable; the remaining
storage (at least another 256K) is dynamically
allocated for spooling buffers and for user directory
functions. In order for a routine to be pageable, a
number of restrictions must be observed.

When the system 1is loaded, resolved, and written onto
the system residence volume, those modules that are to
be pageable must be loaded at addresses higher in main
storage than the symbol DMKCPEND, which defines the
last byte of the resident CP nucleus. This arrangement
can be accomplished by reordering the LOADLIST EXEC
used by the VMFLOAD procedure when punching out the
text decks that will compose the CP systen. Any
pageable modules are listed after the entry for DMKCPE.
In addition, each pageable module must be preceded by
the 'SPR! loader control carad. This '*Set Page
Boundary' card forces the loader to start loading the
succeeding module at the next higher 4k page boundary
and ensures that the entire module will be resident
when it is paged in.

Introduction 9

If several pageable modules perform similar or related
functions and it is felt that they are likely to be
resident at the same time, they may be included in the
same page by omitting the SPB cards that would normally
have preceded the 2nd and subsequent modules. The
group of modules to be 1loaded together must not exceed
4K as their total storage requirement; if they do, one
or more must be loaded in separate pages, since no page
boundary crossover in pageable control program is
allowed. All currently pageable CP modues punch their
own SPB card via an assembler PUNCH statement, except
those that are designed to reside in a page along with
other modules.

CP INITIALIZATION

system initialization (IPL) 1is to
Ssome of the tasks to be

The function of
prepare VM/370 for operation.
performed are:

e Main storage must be initialized
e Devices must be mounted

e Warm start records must be read from the warm start

cylinder
e Space must be allocated for the system dump file
e The system operator must be logged on

In the case of a system restart following a failure,
active files and the system log message must be written
to the checkpoint cylinder before the Control Program
nucleus can be brought into main storage. The user can
now logon.

VIRTUAL MACHINE CONTROL

A virtual machine is created for a user when he logs
into VM/370, on the basis of information stored in his
user directory entry. The entry for each user
identification includes a 1list of the virtual TI/0
devices associated with the particular virtual machine
and the real device mappings.

IBM VM/370: Control Program Logic 10

Additional information about the virtual machine is
maintained in the directory file. 1Included are the
VM/370 command privilege class, accounting data, normal
and maximum virtual storage sizes, and optional virtual
machine characteristics such as extended control mode.

The Control Program supervises the execution of virtual
machines by (1) permitting only problem state execution
except in its own routines, and (2) receiving control
after all real computing system interrupts. (094
intercepts each privileged instruction and simulates it
if the current program status word of the issuing
virtual machine indicates a virtual supervisor state;
if the virtual machine is executing in virtual problenm
state, the attempt to execute the privileged
instruction is reflected back to the virtual machine as
a program interrupt. All virtual machine interrupts
(including those caused by attempting privileged
instructions) are first handled by CcCP, and are
reflected to the virtual machine if an analogous
interrupt would have occurred on a real machine.

Virtual Machine Time Management

The real CPU is time sliced to
virtual CPUs. Virtual machines that are executing in a
conversational manner are given access to the real CPU
more frequently than those that are not; these
conversational machines are assigned the smaller of two
possible time slices. Ccp determines execution
characteristics of a virtual machine at the end of each
time slice on the basis of the recent frequency of its
console requests or terminal interrupts. The virtual
machine 1is queued for subsequent CPU utilization
according to whether it is a conversational or
nonconversational user of system resources.

simulate multiple

A virtual machine <can gain control of the CPU only if
it is not waiting for some activity or resource. The
virtual machine itself may enter a virtual wait state
after an I/0 operation has begun. The virtual machine
cannot gain control of the real CPU if it is waiting
for a page of storage, if it is waiting for an I/0
operation to be translated and started, or if it is
waiting for a CP command to finish execution.

A virtual machine can be assigned a priority of
execution. Priority is a parameter affecting the
execution of a particular virtual machine as compared
with other virtual machines that have the same general
execution characteristics., Priority may be assigned by
the real machine operator, but is more frequently a

parameter of the virtual machine's directory entry.

Virtual Machine Storage Management

The normal and maximum storage sizes of a virtual
machine are defined as part of the virtual machine
configuration in the VM/370 directory. The virtual

storage size can be temporarily
that is a multiple of 4K
maximum defined value. VM/370 implements this storage
as virtual storage. The storage may appear as paged or
nonpaged to the virtual machine, depending upon whether
the extended control mode option has been specified for
that virtual machine. This option is required if
operating systems that control virtual storage, such as
0S/VS1 or VM/370, are to be run in the virtual machine.

redefined to any value
and not greater than the

Storage in the virtual machine is logically divided
into 4096 byte areas called pages. A complete set of
segment and page tables is used to describe the storage

of each virtual machine. These tables are maintained
by CP and reflect the allocation of virtual storage
pages to blocks of real storage. Virtual storage

use of these tables
in the real machine
into 4096 byte

addressing is accomplished through
by the System/370 machine. Storage
is logically and physically divided
areas called page frames or blocks.

Only referenced virtual storage pages are kept in real
storage, thus optimizing real storage utilization.
Further, a page can be brought into any availakle page
frame; the necessary relccation is done during progranm
execution by a combination of VM/370 and dynamic
address translation on the System/370. The active
pages from all logged-in virtual machines and from the
pageable routines of CP compete for available page
frames. When the number of page frames available for
allocation falls below a threshold value, CP determines
which virtual storage pages currently allocated to real
storage are relatively inactive and initiates suitable
page-out operations for thenm.

~ ®

Inactive pages are maintained on a direct access
storage device. If an inactive page has been changed at
some time during virtual machine execution, CP assigns
it to a paging device, selecting the fastest such
device with available space. If the page has not
changed, it remains allocated in its original direct
access location and is paged into real storage from
there the next time the virtual machine references that
page. A virtual machine program can use the DIAGNOSE
instruction to communicate to CP that the information
from specific pages of virtual storage is no 1longer
needed; CP then releases the areas of the paging
devices which had been assigned to hold the specified
pages.

Paging is done on demand by CP. This means that a page
of virtual storage is not read (paged) from the paging
device to a real storage block wuntil it is actually
needed for virtual machine execution. No attempt is
made by CP to anticipate what pages might be required

by a virtual machine. While a paging operation is
being performed for one virtual machine, another
virtual machine can be executing. Any paging operation

initiated by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control
mode with +translate on, then two additional sets of
segment and page tables are maintained. The virtual
machine operating system is responsible for mapping the
virtual storage «created by it to the storage of the
virtual machine. CP uses this set of tables in
conjunction with the page and segment tables created
for the virtual machine at login time to build shadow
page tables for the virtual machine. These shadow
tables map the virtual storage created by the virtual
machine operating system to the storage of the real
computing system. The tables <created by the virtual
machine operating system may describe any page and
segment size permissible in the IBM System/370.

The system operator may assign the reserved page frames
option to a single virtual machine. This option,
specified by the SET RESERVE command, assigns a
specific amount of the storage of the real machine to
the virtual machine. CP dynamically builds a set of
reserved real storage page frames for this virtual
machine during its execution until the maximum number
"reserved" has been reached. Since other virtual
machines! pages are not allocated from this reserved

Introduction 11

set, the effect is that the most active pages of the
selected virtual machine remains in real storage.

During the process of CP system generation, the
installation may specify that a single virtual machine
is to be given an option called virtual=real. With
this option, the virtual machine's storage is allocated
directly from real storage at the time CP is initially
loaded, and remains so allocated unless released via
operator command. All pages except page 2zero are
allocated to the corresponding real storage locations.
In order to control the real computing system, real
page zero must be controlled by CP. Consequently, the
real storage size must be large enough to accommodate
the CP nucleus, the entire Virtual=Real virtual
machine, and the remaining pageable storage
requirements of CP and the other virtual machines.

The virtual=real option improves performance in the
selected virtual machine since it removes the need for
CP to perform paging operations for the selected
virtual machine. The virtual=real option is necessary
whenever programs that contain dynamically modified
channel programs (excepting those of 0S ISAM) are to
execute under control of CP.

Virtual Machine I/0 Management

A real disk device can be shared among multiple virtual
machines. Virtual device sharing is specified in the
directory entry or by a wuser command. If specified Ly
the user an appropriate password must be supplied
before gaining access to the virtual device. A
particular virtual machine may be assigned read-only or
read/write access to a shared disk device. CP verifies
each virtual machine I/0 operation against the
parameters in the virtual machine configuration to
ensure device integrity.

The virtual machine operating system is responsible for
the operation of all virtual devices associated with
it. These virtual devices may be defined in the
directory entry of the virtual wmachine, or they may be
attached to (or detached from) the virtual machine's
configuration while it remains 1lcgged on. Virtual
devices may be dedicated, as when mapped to a fully

IBM VM/370: Control Program Logic 12

equivalent real device; shared, as when mapped to a
minidisk or when specified as a shared virtual device;
or spooled by CP to intermediate direct access storage.

In a real machine running under control of 0S, I/0
operations are normally initiated when a problen
prcgram requests 0S to issue a START I/0 instruction to
a specific device. Device error recovery is handled by
the operating system. In a virtual machine, 0S can
perform these same functions, but the device address
specified and the storage locations referenced are both
virtual. It 1is the responsibility of CP to translate
the virtual specifications to real.

In addition, the interrupts caused by the I/0 operation
are reflected to the virtual machine for its
interpretation and processing. If I/0 errors occur, CP
records them but does not 1initiate error recovery
operations. These are the responsibility of the
virtual machine operating system.

I/0 operaticns initiated by CP for its own purposes
(paging and spooling), are performed directly and are
not subject to translation.

A virtual unit record device, which is mapped directly
to a real unit record device, 1is said to be dedicated.
The real device is then controlled completely by the
virtual machine's operating system.

CP facilities allow multiple virtual machines to share
unit record devices. Since virtual machines controlled
by CMS ordinarily have modest requirements for unit
record I/0, such device 'sharing is quite advantageous,
and it is the standard mode of system operation.

Spooling operations cease if the direct access storage
space assigned to spooling has been exhausted, and the
virtual unit record devices appear in a not ready
status. The system operator nmay make additional
spooling space available by purging existing spool
files or by assigning additional direct access storage
space to the spooling function.

Specific files can be transferred from the spooled card
punch or printer of a virtual wmachine +to the card
reader of the same or another virtual machine. Files
transferred between virtual unit record devices by the
spooling routines are not physically punched or
printed. With this method, files can be made available
to multiple virtual machines, or to different operating
systems executing at different times in the same
virtual machine.

CP spooling includes
virtual machine user

many desirable options for the
and the real machine operator.
These options include ©printing multiple copies of a
single spool file, backspacing any number of printer
pages, and defining spooling classes for the scheduling
of real outrput.

Console Functions

The CP console functions allow the user to control the
virtual machine from the terminal, much as an operator
controls a real machine. Virtual machine execution can
be stopped at any time by use of the terminal's
attention key; it can be restarted by typing in the
appropriate CP command. External, attention, and device
ready interrupts can be simulated on the virtual
machine. Virtual storage and virtual machine registers
can be inspected and modified, as can status words such
as the PSW and the CSW. Extensive trace facilities are
provided for the virtual machine, as well as a
single-instruction mode. Commands are available to
invoke the spooling and disk sharing functions of CP.

Console functions are divided into
The directory entry for each user assigns
privilege classes. The classes are:

privilege classes.
one or more
e System operator

e Operator

e System programmer

e Spooling operator

e Systems analysts

e Customer engineering
e General users

Commands in the system analysts class may be used to
inspect real storage locations, but may not be used to

make modifications to real storage. Commands in the
operator class provide real resource control
capabilities, System operator commands include all

those relating to virtual machine performance options,
such as assigning a set of reserved page frames to a
selected virtual machine. See the "CP Commands"
sections of this chapter for more information.

PROGRAM STATES

When instructions in the Control Program are being
executed, the real computer is in the supervisor state;
at all other times, when running virtual machines, it
is in the prohlem state. Therefore, privileged
instructions can only be executed by the Control
Program. Programs running on a virtual computer can
issue privileged instructions; such an instruction
causes an interruption that is handled by the Control
Program. CP examines the operating status of the
virtual machine PSW. If the virtual machine indicates
that it is functioning in supervisor mode, then the
privileged instruction is simulated according to its

type. If the virtual machine is in problem mode, then
the privileged interrupt is reflected to the virtual
machine.

Only the Control Program may operate in the supervisor
state on the real machine. All programs other than CP
operate in the problem state on the real machine. All
user interrupts, including those caused by attempted
privileged operations, are handled by CP, which then
reflects to the user program only those interrupts that
the user program would expect from a real machine. A
problem program executes on the virtual machine in a
manner identical to its execution on a real System/370
CPU, as lcng as it does not violate the CP
restrictions.

Introduction 13

PREFERRED VIRTUAL MACHINE

machine operating
can be applied to

CP supports four special virtual
environment functions. Each function

one virtual machine at a time. Although each function
could be applied to a different virtual nmachine,
optimum performance would not be achieved. Each

function is discussed separately fcllowing.

FAVORED EXECUTION

CP attempts to provide a specified percentage of CPU
time to a particular virtual machine. CP attempts to
provide up to the specified percentage of CPU time to a
particular virtual machine, provided that the virtual
machine is functioning so that it can fully utilize the
CPU time. At regular time intervals the CP dispatcher
checks the CPU time used by the particular virtual
machine. If the specified percentage is exceeded, the
machine becomes the lowest priority user in the systenm.
If the percentage used is lower than that specified,
the virtual machine has highest priority execution for
the remainder of the interval. The percentage of CPU
time assured 1is specified in the privileged class
command that invokes the function.

CP can also assure that a designated user will never te
dropped from the active (in queue) subset by the
scheduler. When the user is runnable, he is placed in
the dispatchatle list at his normal priority.

RESERVED PAGE FRAMES

chained lists of table entries for available
Pages for users are assigned from
which is replenished from the

CP uses
and pagealkle pages.
the available 1lists
pageable list.

in real storage are
proceeds using

Pages which are temporarily locked
not available or pageable. Paging
demand paging with a "reference bit" algorithm to
select the ktest page for swapping. The reserved page
frames option gives a particular virtual machine an

IBM VM/370: Control Program Logic 14

essentially "private" set of pages. The pages are not
locked, that is, they can be swapped, but usually only
for the specified virtual machine. The number of
reserved pages for the virtidal machine are specified as
a maximum. The page selection routine will select an
available page for a reserved user and mark that page
"reserved" if the maximum specified for the user has
nct been reached, If an available, unreferenced
"reserved" page is - encountered during page
replenishment for the reserved user, it is used whether
or not the maximum has been reached. If the page
selection routine cannot locate an available page for
other users because they are all ‘*reserved", the
routine may have to steal the reserved pages.

DEDICATED CHANNELS

Since the devices on a channel are often shared between
virtual machines (minidisks and dedicated devices) and
shared with system functions (paging and spooling), CP
schedules all the I/0 requests to achieve a balance

between machines. In addition, CP simulates the
reflection of the subsequent I/0O interrupts to the
virtual machines. By specifying a dedicated channel (s)
for a wvirtual machine, the CP channel scheduling
function is bypassed. The virtual device addresses on
the dedicated channel must match the real device
addresses. Since the channels are dedicated, CP uses

the virtual machine masking to control the real channel
masking. I/0 interrupts from the dedicated channel are
presented in the order of occurrence using a single
element stack and the real channel masking.

A single virtual machine may have multiple dedicated
channels. Also, multiple virtual machines may each have
a separate dedicated channel.

VIRTUAL=REAL

This feature requires that the CP nucleus be
reorganized to provide a "hole" in real storage large
enough to contain the entire storage area of the
virtual machine. For the virtual machine, each page

from page 1 to the last page (n) is in its true real

storage location; only page zero is relocated. The
virtual machine is still run in relocate mode, but
since the virtual page address is the same as the real
page address, no CCW translation is required for the
virtual machine. Since no CCW translation is performed,
no check is made of the I/0O data addresses. The
virtual machine must ensure that no I/0 data transfer
is specified into page zero or into any page not in the
virtual machine's domain.

There are several considerations for the virtual=real
option of preferred machine support that affect overall
system operation:

e The area of contiquous storage built for the
virtual=real machine must be large enough to contain
the entire addressing space of that machine.

e While allocated as such, the storage reserved for
the virtual=real machine can only be used by a
virtual machine with that option. It is not
available to other users for paging space nor for
VM/370 usage, even when the virtual=real machine is
not logged on. For this reason, it is expected that
the virtual=real machine will be a high
availability, high throughput machine.

The virtual=real storage can be released by the
operator. That storage is then available for paging.
Once virtual=real storage space is released by the
operator, a VM/370 IPL is necessary to again
allocate that storage to that virtual=real machine.

e The virtual machine with the virtual=real option
operates in the pre-allocated storage area with
normal CCW translation in effect until the execution
of the SET NOTRANS ON command. At that time, all
subsequent I/0 operations are performed from the
virtual CCWs 1in the virtual=real space without
translation. In this mode, the virtual machine must
not perform I/0O operations into page zero nor beyond
its addressable limit. Violation of this requirement
causes destruction of the VM/370 system and/or other
virtual machines.

e If the virtual=real machine performs a virtual reset
or IPL, then the normal CCW translation is performed
until the issuance of the SET NOTRANS ON command.

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973

Oonly the virtual=real virtuval machine can issue the
command. A message is issued if normal translation
mode is entered.

CP INTERRUPTION_ HANDLING

I/0 INTERRUPT

I/0 interrupts from completed I/0 operations initiate
various completion routines and the scheduling of
further I/0 requests. The I/0 interrupt handling
routine also gathers device sense information.

PROGRAM INTERRUPT

Program interrupts can occur in two states. If the CPU
is in supervisor state, the interrupt indicates a
system failure in the CP nucleus and causes a systen
abend. If the CPU is in problem state, then a virtual
machine is executing. If the program interrupt
indicates that the Dynamic Address Translation (DAT)
feature has an exception, a virtual machine issued a
privileged instruction, or a protection exception
occurred for a shared segment system, then CP takes
control to perform any required processing to satisfy
the exception. Usually, the interrupt is transparent
to the virtual machine execution. Most other progran
interrupts result from virtual machine processing and
are reflected to the machine for handling. For a
complete discussion of this subject, see the
appropriate explanation in the section "Method of
Operation®.

MACHINE CHECK INTERRUPT

When a machine check occurs, the CP Recovery Management
Support (RMS) gains control to save data associated
with the failure for FE maintenance. RMS analyzes the
failure to determine the extent of damage.

Introduction 15

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Damage assessment results in one of the following

actions being taken:

e System Termination

e Selective Virtual User Termination

e Refreshing of damaged information
system configuration

e Refreshing of damaged information with the defective
storage page removed from further systems use

e Error recording only for certain soft machine checks

with no affect on

The system operator is informed of all actions taken by
the RMS routines. When a machine check occurs during
VM/370 startup (before the system is set up well enough
to permit BRMS to operate successfully), the CPU goes
into a disabled wait state and places a completion code
of X'00B' in the high-order bytes of the current PSW.

SVC INTERRUPT

When an SVC interrupt occurs, the SVC interrupt routine
is entered. If the machine is in problem mode, the
type of interrupt is reflected back to the
pseudo-supervisor (that is, the supervisor operating in
the user's virtual machine). If the machine is in
supervisor mode, the SVC interrupt code is determined,
and a branch is taken to the appropriate SVC interrupt
handler.

EXTERNAL INTERRUPT

If a timer interrupt occurs, CP processes it according
to type. The interval timer indicates time-slice end
- for the running user. The clock comparator indicates
that a specified timer event has occurred, such as
midnight, scheduled shutdown, or wuser event reached.
The CPU timer indicates that a virtual machine's
allowed execution interval (time in queue) has expired.

The external console interrupt invokes CP processing to
switch from the 3210 or 3215 to an alternate operator's
console.

IBM VN/370: Control Program Logic 16

FREE STORAGE MANAGEMENT

During its execution, CP occasionally requires small
blocks of storage that are used for the duration of a
task. This storage is obtained from the free storage
area. The free storage area is divided into various
size subpools. The requestor informs the Free Storage
Manager the size of the block required and the smallest
available subpool that fulfills the request is
allocated to the requestor. When the block is no longer
needed, the requestor informs the Free Storage Manager
and the block is returned to free storage.

If the request for free storage cannot be fulfilled the
Free Storage Manager requests the temporary use of a
page of storage from the Dynamic Paging Area. If a
page is obtained, then the page is chained to the free
storage area and used for that purpose until it is no
longer needed and subsequently returned to the Dynamic
Paging Area.

If the request for a page cannot be fulfilled, the
requestor waits until free storage becomes available.

Calls to pageable routines are recognized at execution
time by the SVC 8 linkage manager in DMKPSA. For every
SVC 8, the called address (in the caller's GPR15) is
tested to see if it is within the resident nucleus. If
it is less than DMKCPEND and greater than DMKSLC, the
called routine's base address is placed in GPR12 and
control is passed to the called routine in the normal
way. However, if the called address is above DMKCPEND
or below DMKSLC, the linkage manager issues a TRANS
macro, requesting the paging manager to locate and, if

necessary, page-in the called routine. The TRANS is
issued with LOCK option. Thus, the lock count
associated with the called routine's real page

|indicates the responsibility count of the module.

e When the module is called, the count is incremented.

e When the routine exits via the count is

decremented.

SvC 12,

(-.} -

When the count reaches zero, the pageable routine is
unlocked and is eligible to be paged out of the systenm.
However, since all CP pageable modules are reentrant,
the page is never swapped out, but when stolen is
placed directly on the free page list.

Since unlocked pageable routines participate in the
paging process in a manner similar to user virtual
storage pages, the Least Recently Used approximation
used by page selection tends to make highly used
control program routines, even when not locked, remain
resident. The called routine is locked into real
storage until it exits. Thus, it can request
asynchronously scheduled function, such as I/0 or Timer
interrupts, as 1long as it dynamically - establishes the
interrupt return address for the requested operation
and does not give up control via an EXIT macro prior to
receiving the requested interrupt.

Addressability for the module while it is executing is
guaranteed since the CALL 1linkage 1loads the real
address of the paged module into GPR12 (the module base
register) prior to passing control. If all addressing
is done in a base/displacement form, the fact that the
module is executing at an address different from that
at which it was loaded is transparent. Although part
of the control program is pageable it never runs in
relocate mode. Thus, the CPU is not degraded by the
DAT feature being active, and there is no problem of
handling disabled page-faults.

SYSTEM SUPPORT MODULES

The system support modules provide CP several common
functions in the area of data conversion and control
block scanning and verification. Since most of the
routines operate at the lowest level of control, they
are linked to via the BALR option of the CALL macro,
and make use of the BALRSAVE and TEMPSAVE workareas in
DMKPSA. Two exceptions to this are the virtual and real
I/0 control block scan routines DMKSCNVU and DMKSCNRU.
These routines do not alter the contents of the
BALRSAVE area, and hence may be called by another low
level BALR routine.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

e
e

CONTROL REGISTER USAGE

Every IBM System/370 CPU provides the program with 16
logical control registers (logical registers since the
nurber that are active depends on the features
installed in the machine at any one time) that are
addressable for loading and storing from BC mode.
VM/370 provides only a single control register, control
register zero, for normal virtual machines, for
processing systems that do not require the full set of
registers (for example, CMS, DOS, or other operating
systems for System/360.

Any user whose virtual machine operating systen
requires the use of control registers other than
control register zero can request the full set of 16
registers by specifying the ECMODE option in the VM/370
user-directory entry for his virtual machine.
Specifying this option does not imply that the virtual
machine will encounter any of the additional overhead
associated with use of the Extended Control mode but
permits the use of all 16 control registers from either
BC or EC mode.

A virtual machine, which utilizes any System/370
features that use the control registers, requires the
ECMODE option. Some of these features are expanded
timer support of the System/370, (CPU timer, clock
comparator, etc.), the virtual relocate-mode and its
instructions, RRB, LRA, PTLB, virtual monitor <calls,
virtual Program Event Recording (PER), etc.

RESTRICTIONS AND CONVENTIONS FOR PAGEABLE CP MODULES

CP modules that are to be pageable must observe the
following restrictions and conventions when they are
designed and coded:

1. The module should be completely reentrant. Any
messages to be modified, temporary work or scratch
areas, or program switches must be allocated from
system free storage or from the caller's save
area.

Introduction 17

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

2. The module must be entered via the standard sSVC 8
CALL 1linkage. Modules entered via BALR or GOTO
cannot be pageable.

3. The module cannot contain any A or V type address
constants that point to locations within itself or
within other pageable modules, and it cannot
contain any CCWs that contain data address within
itself. The only exceptions are address constant
literals generated as the result of CALLs to other
modules (since these addresses are dynamically
relocated at execution time, they must be resolved
by the loader to the 1loaded address of the called
module) and a pageable module that 1locks itself
into storage. In practice, this restriction
simply means that data or instructions within the
pageable routine must be referenced via
base/displacement addressing, and the address in
register 15 for a CALL may not be generated via a
LOAD ADDRESS.

4. The pageable module must be no more than 4096
bytes in length.

If the above design and coding restrictions are adhered
to, the CP module can be added to the existing pageable
nucleus modules by wutilizing the service routine,
VMFLOAD, which is described in the "VM/370 Maintenance
Procedures" chapter of the publication IBM Virtual
Machine Facility/370: Service Routines Program Logic,
Order No. SY20-0882. Additional information can be
found in "Appendix I" of the publication IBM Virtual
Machine Pacility/370: Planning and System Generation
Guide, Order No. GC20-1801.

IBM VM/370: Control Program Logic

Executable Resident Modules

DMKCCH
DMKCCW
DMKCFM
DMKCNS
DMKCVT
DMKDAS
DMKDGD
DMKDMP
DMKDSP
DMKFRE
DMKGEN
DMKHVC
DMKIOE
DMKIOS
DMKMCH
DMKMSW
DMKPAG
DMKPGS
DMKPGT
DMKPRG
DMKPRV
DMKPSA
DMKPTR
DMKQCN
DMKRPA
DMKRSP
DMKSCH
DMKSCN
DMKSTK
DMKTMR
DMKUNT
DMKVAT
DMKVCN
DMKVIO
DMKVSP

18

Executable Pageable Modules

DMKACO
DMKBLD
DMKCDB
DMKCDS
DMKCFD
DMKCFG
DMKCFP
DMKCFS
DMKCFT
DMKCKP
DMKCPB
DMKCPI
DMKCPV
DMKCQG
DMKCQP
DMKCSO
DMKCSP
DMKCSU
DMKDEF
DMKDIA
DMKDRD
DMKEIG
DMKERM
DMKGRA
DMKIOF
DMKIOG
DMKISM
DMKLNK
DMKLOC
DMKLOG
DMKMCC
DMKMID
DMKMSG
DMKNEM
DMKRSE
DMKSAV
DMKSEP
DMKSEV
DMKSIX
DMKSPL
DMKTAP
DMKTDK
DMKTRA
DMKTRC
DMKTRM
DMKUDR
DMKUSO
DMKVCA

DMKVCH
DMKVDB
DMKVDS
DMKVMI
DMKWRM

Data Area Modules

In addition to the executable resident and pageable
modules there are certain modules that only contain
data areas and do not execute. These modules are:

Resident

Module _ Contents

DMKCPE Defines the end of the CP nucleus
DMKRIO I/0 device blocks

DMKSYS System constants

DMKTBL Terminal translate table

Pageable
Module _ Contents

DMKBOX Output separator table

DMKFCB 3211 Forms control Buffer (FCB) load tables

DMKSNT System name table

DMKSYM System symbol table

DMKUCB 3211 Universal Character Set Buffer (UCSB)
load tables

DMKUCS 1403 Universal Character Set (UCS) 1load
tables

The data areas within these modules are discussed
throughout this publication; most are illustrated in
the section "Data Areas".

$Y20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973 Introduction 19

~ ~ O

METHOD OF OPERATION

Diag. 1A. Overview of Method of Operation Diagrams

INTERRUPT

The VM/370 Control Program (CP) is interrupt driven. Thus, when an interrupt occurs, control is passed to the appropriate Interrupt
Handler. These are:

- For SVC interrupts, the SVC Interrupt Handler %l\/ilzll(gPiABS‘V

. For External interrupts, the External Interrupt Handler %“';'z'fg .S1ABEz>X

. For Machine Check interrupts, the Machine Check Handler (MICH)

- For 1/0 interrupts, the 1/O Interrupt Handler 33';5?35'."1

DMKIOSIN passes control to the appropriate processor depending on the type of 1/0 interrupt. They are:

® From Dedicated Channel ® From a Channel ERROR, the Channel Check
DMKDSPCH DMKCCHNT
Handler

® From a dedicated device error, for either CP or a virtual machine
(DMKVCH), the ERP for:

DASD DMKDASER Tape DMKTAPER
Recoverable error? No, record error DMKIOERR

Yes

® From unknown channel, the interrupt is ignored

® From an unsolicited Device End, build an IOBLOK
and for: Console (T/P) -m
Unit Record (U/R), real spooling —w)

® From a solicited Device End DMKSTKIO to stack IOBLOK

. For Program Check interrupts, the Program Check Interrupt Handler
DMKPRGIN passes control to the appropriate processor, depending on the type of program check, as follows:

; DMKPTRAN DMKPRVLG DMKVIOEX
¢ For normal paging Diag.1B3.2 Diag.1B3.9
® For paging (virtual DMKVAT DMKPRVLG passes control as follows: DMKVIOEX passes control as follows:
machine in EC mode) Diag-183.6

DMKVCNEX
® For console Diag. 781
o For Unit Record (U/R), virtual

; P
spooling Diag. 481

® For DIAGNOSE instructions
* For timers M owkTwR)

® For virtual machine 1/0

® For Supervisor state .-

® For privileged instructions

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 Method of Operation 21

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 IBM VM/370: Control Program Logic 22

Diag. 1A0. CP Control Block Relationships

PSA (Prefix Storage Area)

ASYSVM : VMBLOK

VMOFPNT | VMQBPNT
. g

VMPNT | VMECEXT |
CORTABLE =
FARIOCH [VMSEG
ARIOCU
F ARIODV ACORETBL
SEGTABLE

VMCHSTRT | VMCUSTRT

CORFPNT ~ CORBPNT VMDVSTRT
SEGPAGE ‘
— ~ SV PAGTABLE ﬁ

SWPPAG PAGSWP

A -~ . VMTREXT I

DMKPTR
DMKPTRF1
DMKPTRU1
DMKPTRFL

A

CORFPNT CORBPNT
— -

- -~

~, ~~
CORFPNT CORBPNT VMTRQBLKl
—_— -—
CORSWPNT /
CORPGPNT TREXT
ALOCBLOK TRQBLOK
—_—
main 1/0 link
. 10BLOK
RECBLOK RDEVBLOKS VDEVBLOKs F VCUBLOKs J VCHBLOKSs ECBLOK
pu—ry T RDEVAIOB 4
|_RDEVALLN L 10BCAW xg:mf:"
L-RDEVPAGE
[—RDEVRECS | (EXTSHSEG
RECBLOK / RCWTASK
| - RDEVCUA — PTRQ | EXTCCTR
RCHBLOKs RCUBLOKs | —» cow |- VDEVIOER EXTC QI , e
S
RCUCHA /
/ RDEVIOER —] .
. IOERBLOK TRQBLOK
L—— — TRQBLOK
) I0ERLOC
RCHFIOB i VDEVCON -’\
CONTASK VCONCTL
'/ SomBuE N- VDEVSPL
CONPNT —>| RDEVCON
el cCws cews] VCONBUF | SHADOW SHADOW
—_ RCUFIOB CONBUF \ PAGTABLE SEGTABLE
4 — RDEVSPL J/\ I0BLOK L SEGPAGE
- RDEVFIOB VSPLCTL CONBUF
I0BLOK [——
-RSPLCTL VSPSFBLK CCWs
— - \
RSPSFBLK 1
- SFBLOK SFBLOK

~ o~ 0

VC INTERRUPTIONS

When an SVC interruption occurs, the SVC interruption
routine (DMKPSASV) 1is entered. If the machine is in
problem mode, DMKPSASV takes the following action:

code is examined to determine if
the interrupt was the result of an ADSTOP SVC code
X*B3'. If it was, the message ADSTOP AT XXXXX is
sent to the user's terminal, the overlaid
instruction is replaced, and the virtual machine is
placed in console function mode via DMKCFMBK;
otherwise, the virtual machine's mode (BC or EC) is
determined.

e The SVC interrupt

e If the virtual machine was in EC mode or its page 0
was not in real storage, then all general and
floating-point registers are saved, the user's
VMBELOK is flagged as being in an instruction wait,
and control is transferred (via GOTO) to DMKPRGRF to
reflect the interrupt to the virtual machine.

e If the virtual machine was in BC mode and if his
page 0 is in main stcrage, then an appropriate SVC
0ld PSW is stored in his page 0 and the interrupt is
reflected to the virtual machine, bypassing
unnecessary register saving. If the new virtual PSW
indicates the wait state, all registers are saved in
the VMBLOK and control transfers to DMKDSPB for PSW
validation.

If the machine is in supervisor mode, the SVC
interruption code is determined and a branch is taken
to the appropriate SVC interruption handler.

SVC 0: Impossible condition or fatal error. The SVCDIE

routine initiates an ABEND by going to the DMKDMPDK
routine.

SVC 4: Reserved for IBM use.

SVC 8: Link request (transfer control from calling

routine to called routine specified by register 15).
The SVCLINK routine sets up a new save area, and then
saves the caller's addressability (register 12) and
save-area address (register 13), and the return-address
(from the SVCOPSW) in the new save area. If the called

routine (specified by register 15) dis within the
resident CP nucleus, SVCLINK places its address in
register 12 and branches directly to the called
routine. If the called routine is in a pageable module,
a TRANS is performed on register 12 to ensure that the
page containing the called routine is in storage. Upon
return from the TRANS, the real address of the pageable
routine is placed in register 12 and SVCLINK branches
to the called routine. The real storage location of
DMKCPE is the end of the resident CP nucleus. Any
modules loaded at a higher real storage address are
defined as pageable modules.

SVC 12: Return request (transfer control from called
routine to calling routine). The SVCRET routine is
invoked. If the routine which issued the SVC 12 is in

the pageable module DMKPTRUL, then DMKPGSUL 1is called
to unlock the page. SVCRET then restores registers 12
and 13 (addressability and save area address saved by
SVCLINK), places the user's return address (also saved
in the area) back into the SVCOPSW, and returns control
to the calling routine by loading the SVCOPSHW.

SVC 16: Release current save area from the active chain
(remove linkage pointers to the calling routine). The
SVCRLSE routine releases the current save area by
placing the address of the next higher save area in
register 13 and returns control to the current routine
by 1loading the SVCOPSW. This SVC is wused by second
level interrupt handlers to bypass returning to the
first level handler under specific circumstances. The
base address field (register 12) in the save area being

released 1is examined to determine if the bypassed
routine is 1in a pageable module. If so, DMKPTRUL is
called to unlock the page.

SVC 20: oObtain a new save area. The SVCGET routine

places the address of the next available save area in
register 13 and the address of the previous save area
in the save area pointer field of the current save
area.

There are 35 SAVEAREAs initially set up by DMKCPINT for
use by the SVC 1linkage handlers. If the supply of
available save areas drops to zero, the 1linkage
handlers calls DMKFREE to obtain storage for additional
save areas.

Method of Operation 23

Diag.

INPUT

1B1. SVC Interrupt Handler

svec
Interrupt

PROCESS

IBM VM/370: Control Program Logic

For problem mode:

I

-SVC OLD PSW 1

VMBLOK

VMBSTAT

For supervisor mode:

GR15

A (called routine)

DMKPSASV — SVC Interrupt Handler

If problem mode:
® And ADSTOP SVC, simulate ADSTOP to virtual machine

® And INSTRUCTION/BRANCH trace SVC, call DMKTRACE

® And the virtual machine is in EC mode, and/or Page 0 is not in storage,
reflect interrupt to virtual machine via DMKPRGRF

® Otherwise, fetch page 0 and swap PSWs. Then run user via LPSW.

OUTPUT
For problem mode:
VMBLOK PSA
VMPSW

RUNPSW

(" Users Page 0

SVC OLD PSW

SVC NEW PSW

L

For supervisor mode:

If supervisor mode:
® For SVC 0 (impossible condition, unrecoverable error), dump CP.
® For SVC 8 (link request), get a new SAVEAREA and pass it on. The
caller’s base register (GR12), the SAVEAREA address (GR13), and the
return address (SVCOPSW) are saved in the new SAVEAREA.

® For SVC 12 (return request), return control to the calling module.

® For SVC 16, release SAVEAREA and return control to the module that
issued SVC 16.

® For SVC 20, get new SAVEAREA and return control to the module
that issued SVC 20.

GR13 SAVEAREA of
module called
Caller’s:
SAVEAREA of return address
calling modul, base register

DMKDMPDK

DMKDSPCH
Diag. 2B

_—

Is

EXTERNAL INTERRUPTIONS

When an external interruption occurs, the external

interruption handler (DMKPSAEX) is entered.

TIMER INTERRUPT

If DMKPSAEX is entered because of a timer interrupt,
the machine mode must be determined. If the machine was
in WAIT state, control is transferred to DMKDSPCH which
becomes idle until another interrupt occurs. If the
machine is in problem mode, the address of the current
user's VMBLOK is obtained from RUNUSER. The user's
current PSW (VMPSW) 1is updated from the external
interruption o0ld PSW, the address of the current VMBLOK
is placed in register 11, and control is transferred to
DMKDSPCH. For additional information about timers see
the section "Virtual Timer Maintenance",

EXTERNAL INTERRUPT

If DMKPSAEX is entered because of the operation of the
console interrupt button (INTERRUPT), the following
steps are taken:

1. The current system operator's VMBLOK (DMKSYSOP) is
referenced.

2. His virtual machine is disconnected.

The operator can now logon from another terminal. The
operation of the console interrupt button is used to
implement an alternate operator's console. For a
description of the processing of the EXTERNAL command
refer to module DMKCPB.

PROGRAM INTERRUPTIONS

R4 X T R XS 484

When a program interruption
interruption handler (DMKPRGIN)

occurs, the
is entered.

program
Program

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

interruptions can result from:

e Normal paging requests.

e 1A paging request by a virtual
(virtual relocation).

e privileged instructions.

e Progral errors.

machine in EC mode

DMKPRGIN determines the cause
examining the interruption code.

of the interruption by

NORMAL PAGING REQUESTS

If the program interrupt is caused by
request (it is not from a virtual
running in EC mode with translation

determines whether

a normal paging
machine that is
on), DMKPRGIN
a segmentation error (a segment of
the program occurred; if so, an invalid address
interruption code is set, and the interruption is
reflected to the user's virtual machine supervisor. If
a segmentation error has not occurred, the user's
current PSW is updated from the program old PSW
(PROPSW), the address of the current VMBLOK is placed
in register 11, and DMKPTRAN is called to obtain the
required page. When the paging operation is completed,
control is returned to DMKDSPCH.
The functions of paging are divided into three
categories: the management of virtual storage, the
management of real storage, and the management of
auxiliary storage (DASD paging devices).

Virtual Storage Management

When operating in the relocate environment provided by
CP, each user's virtual storage space is described by
two sets of tables.

e One set, the segment and page tables, describes the
location and availability of any of the user's
virtual pages that may be resident in real storage.
Locations in these tables are indexable by virtual
address, and the entries contain index values that
reference corresponding real storage addresses. In

Method of Operation 25

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 IBM VM/370: Control Program Logic 26

Diag. 1B2. External Interrupt Handler

External
Interrupt

INPUT PROCESS OUTPUT
DMKPSAEX — External Interrupt Handler TRQBLOK
PSA
For timers:
5 X'80’ ‘ AINTEX +1 l ® Clock comparator, unstack TRQBLOK from DMKSCHTQ,
1 set new comparator value, call DMKSTKIO
‘ M] ® X'80' timer, flag running user-time slice end. VMBLOK
‘ , : ® CPU timer, flag running user to be dropped from queue. VMGPRS
‘ For EXTERNAL Key on operator’s console, !‘ VMFPRS
i VMBLOK ® Set the disconnect flag (VMOSTAT = X'10') in VMBLOK \ YMPSW
L
® Halt any outstanding 1/O (operator's RDEVBLOK) ! VMOSTAT =
VMTEF:M 3‘5‘;’?};{_’3.(® Clear any outstanding console request, via DVKQCNCL. , VM)'(r::?%M -
VMTERM ® If a virtual machine was not running when the interrupt X'00°
occurred resume via ~, otherwise

EXOPSW Diag.28B

®' - - l

Diag. 1B3. Program Interrupt Handler

Program Check
Interrupt

INPUT PROCESS OUTPUT
DMKPRGIN — Program Check Interrupt Handler

Program Old PSW Determine machine mode and the cause of the interrupt (Program

Oid PSW)

PSA ® For virtual machine in EC mode

@ [f paging exception, for normal paging

NTPR ® For virtual machine in EC mode

® |f for privileged instruction,

(INTPR in PSA) ‘

® |f segment exception, snmulate User’s Page 0
VMBLOK address exception. VMBLOK
VMPSW ©® If an invalid operation reﬂect the interrupt to the virtual machine. VMPSW

(DMKPRGREF is also used by DMKPSASV to reflect SVC interrupts
it could not reflect, virtual machine in EC mode or Page 0

not in storage.)
DMKVAT
! Dla .1B3.6 DMKDMP

DMKDSPCH DMKPRVLG DMKPTRAN
Diag.2B Diag.1B3.7 Diag.1B3.2

VMINST

Method of Operation 27

Diag. 1B3.0. Paging Overview

Request for
Real Storage

IBM VM/370: Control Program Logic

OUTPUT

Return to caller
via GR2

INPUT PROCESS
GR2 GR1
owKeTR
Translate address
CORTABLE
SWPTABLE Is requested page already in storage? YES
SEGTABLE
[corrLac Y PAGTABLE I
. NO
[sweriac ['
feAaf;:ang E Determine page selection
address
Is page available from lists? Jill] YES
NO
- FREELIST
FLUSHLIST
USERLIST Release pages (DMKPGS)
Allocate DASD space (DMKPGT)
Schedule page 1/0 (DMKPAG)
Mark page free
Replenish FREELIST
Lock — if requested
Form address
Bits defined for CORFLAG Bits defined for SWPFLAG
CORIOLCK EQU X'80’ Page locked for 1/0 SWPTRANS EQU X'80' Page in transit
CORCFLCK EQU X'40’ Page locked by console function SWPRECMP EQU X'40' Page permanently assigned
CORFLUSH EQU X'20’ Page is in flush list SWPALLOC EQU X'20' Page enqueued for allocation
CORFREE EQU X'10’ Page is in free list SWPSHR EQU X'10' Page shared
CORSHARE EQU Xx'o8' Page is shared SWPREF1 EQU X'08' 1st half page referenced
CORRSV EQU X'04’ Page is reserved SWPCHG1 EQU X'04' 1st half page changed
CORDISA EQU X'01’ Page disabled — not available SWPREF2 EQU X'02' 2nd half page referenced
SWPCHG2 EQU X'01' 2nd half page changed
G W/

28

Diag. 1B3.1.

Virtual to Real Address Translation

Virtual Address Example:
I Segment | Page I Displacement] Translate Virtual Address 0008D424 to Real Address
t Table Regist i
| 0 7|8 15]16 19|20 31| Segment Table Register Virtual Address
Iol1 2141640 IOIOIOISDT4I2I4]
t 31 o 16 19] 20
J
éocate the a8
egment Index to
Table. Segment " 012460-Segment Table
Table Entry. 0
Segment Table Register 2 ; 014440 - Page Table|
Segment Table Origin I 000000] 2 D 1 2 @I
8 w2 3] 6 @ 5 ©@ 7
— 8| Fo012440 8 AWARD B
D | —~— c p#0200 [E F
I = h
Segment Table '
L/ -~ A A .
I L_, ~ A ~ ~ ~
-/ 9 w v) u
Ve ~
= iy LY v T
Length | 0000 Page Table Origin I 1] / V4
o 3|a 7}s 30|31 1 4
Locate the appropriate segment //
Y table entry - the eighth entry in 7
the segment table at location 7
012460. This entry points to , 7
h .
(s Jadn tnder o Page the page table e 020] 424
Page Table. o Table Entry, 7 Real Address
r___) 3.?:;“3 ing a Low Locate the appropriate page table - ”
entry - the 13th entry in the page P
YPage Table | table at location 014440. This _ - -
entry contains the real block number. PR
[5 _ -
-
Bloc Number I i00R Real I Address I The block number in the page table
0 1112 15| |o 11)12 23| entry and the displacement in the
virtual address combine to provide
the real address.
1 = Invalid Bit
R = Reference Bit (software)

Method of Operation

29

addition, each table entry contains an indication of
whether the corresponding virtual page is available
to the wuser in real storage. These tables are
referenced directly by the DAT feature when the
user's program is running.

e The second set of tables is a map of the locations
of the wuser's pages on the DASD devices that
comprise the system's paging or auxiliary storage.
The DASD addresses in these tables <can either
represent the source of a page of virtual storage
(the 1location to which a page may be moved, if
necessary) or a dummy address, indicating that the
given page has not yet been referenced, and thus has
a value of binary zercs.

The tables are arranged in a format indexable by
virtual storage address. In addition to containing the
address of a page, each entry contains flags and status
bytes that indicate such information as:

e The storage protection keys to be assigned to the
page when it is made resident.

e Whether the page is currently on its on its way into
or out of the system (in transit), etc.

These tables, called swap tables, are not referenced
directly by the hardware as are the page and segment
routines tables, but are used by paging management to
locate user pages that are needed to execute a progranm.

Virtual storage management is done by the technique
known as demand paging. This means that a page of
virtual storage is not ‘'paged in' from its T[CASD
auxiliary store slot until it is needed for execution.
CP does not determine the pages required by a user
before he is run. A demand for a page can tke made
either implicitly or explicitly.

e An implicit demand 1is made when a user program
attempts to reference a page that is not available
in real main storage. This attempt causes a progranm
interrupt with the interrupt code indicating a page
or segment exception. Upon recognition of this
condition, control is passed to the paging manager
to obtain a page of real main storage and to bring
in the desired page.

IBM VM/370: Control Program Logic 30

e An explicit request for virtual storage can be made
by the control program (for example, in the course
of translating a user's channel program). If, in the
process of translation, the control progranm
encounters a CCW that addresses a page that is not
resident in real storage, a «call is made to the
paging manager to make the referenced page resident.

While the requested page is being fetched, the
requesting user is unable to run; however, it may be
pcssible to run other tasks in the system, and the
control program runs these while that page is being
paged in. When the requested page is resident, the user
can be run and is dispatched in his turn.

In addition to obtaining pages by demand, users
implicitly or explicitly release pages of their virtual
storage space. Part of the space may be explicitly
released from both real and virtual storage via a
diagnose instruction which indicates to the control
program those pages that are to be released. An entire
virtual storage is released when a user IPLs a new
operating system or logs out from the systenm.

The VM/370 control ©program itself also has virtual
storage associated with it. This space is wused to
contain the control program (some parts of which need
not always be resident in real storage), and is also
used for virtual storage buffers for spooling and
system directory operations. Although the <control
program makes use of virtual storage space for its
execution, it does not run in relocate mode itself.
Thus, nonresident modules must be completely
relocatable.

Real Storage Management

It is the function of real storage management to
efficiently allocate the system's page frames of real
storage to satisfy the demands for virtual pages made
by the system's users. Efficiency of allocation
involves a trade-off; the paging manager utilizes only
enough CPU time allocating to ensure that:

1. The set of virtual storage pages which are
resident represent those pages that are most
likely to be used.

)

2. The number of <cycles available to execute

programs is sufficient.

user

Inefficiency in the first area causes a condition known
as thrashing, which means that highly used pages are
not allowed to remain resident long enough for useful
work to be performed by or on them. Thrashing could be
aggravated by the paging manager's page selection
algorithm or by a dispatcher that attempts to run more
tasks than the system can handle (the sum of their
storage requirements exceeds the real paging space
available in the system). Thus, the paging manager must
keep statistics on system and user paging activity and
make these statistics available to the dispatcher so
that a potential thrashing condition may be detected
and prevented.

Inefficiency in the second area causes an unacceptatle
ratio of control program overhead to user program time,
and in extreme case may cause the control program to
utilize excessive CPU time. In order to understand how
allocation is determined by the VM/370 control program,
it is first necessary to describe the way in which the
inventory of real storage page frames is described to
the systen.

Each page frame (4096 byte blocks) of real storage in
the system is in one of two basic states: not-pageable
or pageable. A not-pageable page must remain resident
in real storage for some finite period of time; thus,
the page frame cannot be taken from its current owner
in order to give it to someone else. Pages can be
not-pageable either permanently or temporarily,
depending on their use.

e Temporary locks usually occur when an I/0 operation
has been initiated that is moving data either to or
from the page, and the page must be kept in real
storage until the operation has completed.

e 1A page can also be temporarily not-pageable if it
contains a nonresident control program routine that
is active.

In addition, a page can be not-pageable through use of
the LOCK command. Pages locked in this fashion are
permanently resident until they are explicitly unlocked
by the UNLOCK COMMAND~ Pages that are usually
considered permanently not-pageable are those that

contain the resident portion of the control program and
those that contain the system's free storage area in
which control blocks, I/0 buffers, etc. are built.

CORTABLE:

The data area that is wused by the
management routines to control and allocate real
storage 1is the .CORTABLE. Each page frame of real
storage has a corresponding entry in the CORTABLE, and
since the table entries are fixed 1length and
contiguous, the entry for any given real page frame may
be located directly by indexing into the table. Each
entry contains pointers that indicate both the status
and ownership of the real page which it represents.
Some pointers are used to 1link page table and swap
table entries to the real page (and thus establish
ownership), while others are used to 1link the entry
into one of several lists that the paging routines use
to indicate the page's status and availability for
paging. A given CORTABLE entry may appear on one of
three lists if its real page is available for paging;
however, if the page is locked or in tranmnsit, its entry
is not in any list and is not referenced when available
page frames are being searched for swap candidates. The
lists are known as the FREELIST, the FLUSHLST, and the

page

USERLIST, and they represent various levels of page
availability.
e The FREELIST contains page frames that are

immediately available for assignment to a requesting
user. The virtual storage pages for which they were
last used have either been released by their owncrs
or they have been paged out to auxiliary storesge.
Requests for real storage are always satisfied from
the FREELIST. If the 1list has been depleted, the
requestor waits until a new page frame beconmes
available as the result of a virtual storage release
or a swap-out.

e The FLUSHLIST
those users

contains page frames that belong to
that have been dropped from an active
DISPATCHing queue. The FLUSHLST is the first place
that the page frame selection routine looks to find
a page to swap out or to assign to the FREELIST for
a user who requires real storage space.

CORETABLE entries for all
system that belong to

e The USERLIST contains the
other pageable pages in the
active users.

Method of Operation 31

Requests For Real Storage Pages

Requests for real storage fall into two general
categories; those that are requesting space for a page
of virtual storage, and those (such as requests for CP
work space) that need the real page for their own use.
The former, more general case is discussed first, since
the latter case is a subset of the first.

The main page manager routine, DMKPTRAN, maps a request
for a specific wuser's virtual storage address into a
page of real storage. This requires that:

e The virtual page be read in.

e The necessary tables be updated to show the proper
status of the page.

DMKPTRAN requires that the caller supply only the
virtual address to be translated and any options that
apply to the page to be 1located. Most calls are made
via the TRANS macro, which sets up the necessary
parameters, determines if the required page is
resident, and calls DMKPTRAN if it is not.

When DMKPTRAN receives control, it first tests to see
if the requested page is resident. This is done via the
LRA hardware translation feature. If the ©page is
resident, the routine 1locks the page if requested and
exits to the caller. If the LRA indicates that the
page is unavailable, it is still possible that the
required page is resident. This occurs if the page has
been placed on the FREELIST but has not been assigned
to another user. When the page swap routine removes a
page from a user, the unavailable bit is set 1in the
corresponding page table entry; however, the real main
storage index for the page is left unchanged. The page
table entry is set to zerc only when the corresponding
page is actually assigned to another user. Thus, if
DMKPTRAN finds the page unavailable, a further test is
made on the page table entry to see if the page can be
reclaimed. If the entry is not zero (aside from the
unavailable bit), the CCRTABLE entry for the page is
removed from the FREELIST and the page 1is returned to
the calling user.

If the page table entry corresgpcnding to the virtual
page requested is zero, the required page is not in
real 'storage and must be paged in. However, it is

IBM VM/370: Control Program Logic 32

possible that the page is already on its way into main
storage. This condition is indicated by a flaqg in the
SWPTABLE entry for the virtual page. The DMKPAGIO
routine maintains a queue of CPEXBLOKs to be dispatched
when the pending page I/0 is complete. The CPEXBLOK
for the page in transit is 1located and a new CPEXBLOK,
representing the current request, is chained to it.

Before exiting to wait for the paging operation to
complete, DMKPTRAN checks to see if the deferred return
(DEFER option) has been specified. If it has not,
DMKPTRAN returns to the caller. If the DEFER option
has been requested, DMKPTRAN exits to the dispatcher to
wait for page I/0 completion. When the requested page
has been read into real storage, the list of CPEXBLOKs
are unstacked FIFO to satisfy all requests for the page
that arrived while it was in transit.

If a page 1is not in transit, a page frame of real
storage must be allocated to £fill the request. Before
the allocation routine is called, a test is made to see
if the caller wishes the return to his routine or to be
delayed until after the requested page is available.
If the DEFER option is not requested, DMKPTRAN returns
to the caller after first building and stacking a
CPEXBLOK that allows processing of the page request to
be continued the next time the dispatcher (DMKDSPCH) is
entered.

DMKPTRAN next calls the FREELIST manager (DMKPTRFR) to
obtain the address of the next available CORTABLE
entry. DMKPTRFR maintains a FIFO list of the CORTABLE
entries for those page frames that are immediately
available for assignment. As DMKPTRFR releases these
page frames, a check is made to see if the number of
entries on the FREELIST has fallen below a dynamically
maintained minimum value. If it has, the page
selection routine (SELECT) is called to find a
suitable page for placement in the FREELIST. The number
maintained as the FREELIST threshold has a value equal
to the number of users in queuel plus the number of
users in queue2 plus 1.

The FREELIST is replenished directly by users releasing
virtual storage space. The page—out routine DMKPGSPD
calls DMKPTRFT to place released pages directly on the
FREELIST. However, most replenishment is done via the
page selecticn routine, SELECT. SELECT is called by
DMKPTRFR when the FREELIST count falls below the
current minimum, or when a user page is reclaimed from

s - e

the FREELIST. 1In either case, the selection algorithm
attempts to find a page to swap to auxiliary storage.
The highest priority candidates for a swap are those
pages whose CORTABLE entries appear on the FLUSHLST.
SELECT attempts to take a flushed page before it takes
a page from an active user. If such a page is found,
it is checked to see if it has been changed since
page-in. If not, it 1is placed in the FREELIST by
DMKPTRFT; otherwise, it is scheduled for a swap-out by
dequeueing the CORTABLE entry from the FLUSHLST,
constructing a CPEXBLOK for dispatching after I/0
completion, and exiting to DMKPAGIO via a GOTO. After
the paging I/0 is complete, the entry is placed on the
FREELIST via a call to DMKPTRFT.

If the FLUSHLST is exhausted, SELECT must take a page
from an active user by examining the pages represented
by the entries in the USERLIST to locate the 1least
recently used user page. This list is scanned from top
to bottom, and each page is tested to see if its
hardware referenced bits have been set. If a page has
been referenced, its bits are reset and it is queued to
the end of the USERLIST. This process is continued
until either an unreferenced page is found or the list
is exhausted. An unreferenced page is immediately
selected. However, if the 1list is exhausted, it is
rescanned from the top. An unreferenced page is always
found; in the worst case it is the first one tested on
the USERLIST at initial entry. However, if this
occurs, it indicates that the rate of entry to SELECT
is too low to permit differentiation between high and
low usage pages.

Once a page has been selected and its page-out is
scheduled, control is returned to DMKPTRFR, which then
passes control back to DMKPTRAN with the address of the
CORTABLE entry that was allocated. In most cases,
page-outs are completely overlapped with page-ins.
Approximately one half of all page-ins require a
corresponding page-out.

Once a real page has been assigned, DMKPTRAN checks to
see if a page-in is required. It usually is, and the
DASD address of the virtual storage page mnust be
obtained from the user's swap table entry and the I/0
operation scheduled. However, if the page has not yet
been referenced (as indicated by a DASD address of
zero), the real main storage page is set to zero. After
the page-in operation has been queued, DMKPTRAN exits
to the paging I/0 scheduler (DMKPAGIO) which initiates

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

Y

the paging operation and exits to the dispatcher
(DMKDSPCH) to await the interrupt.

After the required page has been read in or set to
zero, DMKPTRAN queues the appropriate CORTABLE entry to
the end of the USERLIST, where it eventually is
available for page selection. After developing the real
storage address that corresponds to the requested
virtual address, DMKPTRAN tests to see if the caller
has requested that the page be 1locked. If LOCK is
requested, the CORTABLE entry is de-queued from the
USERLIST and is not available for selection. A
resident page can also be locked by removing it from
the USERLIST. In addition, a LOCK count is maintained
in the CORTABLE entry so that when all locks have been
satisfied the page can again be made available for
paging (see PAGUNLOK) .

Some requests for main storage pages are handled
differently than the general case of virtual-to-real
storage mapping. In particular, it may be necessary
for CP to obtain additional free storage for control
blocks, I/0 1lists, buffers, etc. This is handled by
the free storage manager, which makes a direct call to
DMKPTRFR to obtain the needed storage. Usually this
storage is immediately available (due to the page
buffering technique previously described). However, if
the FREELIST is exhausted, the request for free storage
is recognized as a high priority call and queued first
on the list of those waiting for free pages.

The real storage manager (DMKPTR) accumulates paging
statistics which are used by the scheduler (DMKSCH) to
project user storage requirements. A count of
page-reads and page-writes is kept in each user's
VMBLOK; the corresponding total counts for the systen
are kept in DMKPSA. A running total of the number of
pages a user has resident, at each instance of
page-read, is kept in the VMBLOK. A count of the
number of times a user enters page-wait, because a page
has been stolen from him, is also kept in the VMBLOK.
The section entitled "Controlling the Depth of
Multiprogramming" under the heading
"Dispatcher/Scheduler" describes the use to which the
scheduler puts these counts.

VM/370 Virtual=Real Function: The VM/370 Virtual=Real
function involves the mapping in a one-for-one
correspondence of a virtual machine storage area with
an equivalent real storage area. For instance, virtual

1973 Method of Operation 33

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 IBM VM/370: Control Program Logic 34

page 1 is in real page frame 1 and virtual page 20 is
in real page frame 20. Virtual page 0, since it cannot
occupy real page 0, is relocated to be at the end of
the virtual storage space.

-~ ~

Diag. 1B3.2 Paging, Provide Real Storage Area

DMKPTR

)

INPUT

PROCESS OUTPUT

GR1 DMKPTRAN Translate Virtual Address to Real Address GR2

| wvirtaDDReEss. | [ReaL AbpRess |
« Hardware translate

« If not in real storage check in transit
« Defer or page wait
SEGTABLE I page

« Clear real storage if first time
PAGTABLE « Go to DMKPAGIO if not first time SVC 12 CORTABLE

« Set storage keys
« Lock page if required

« Return real address

| DMKPTRUL Unlock Pages
Check residence of page to be unlocked - If not resid N\,
Check if page locked already - If already locked ———s= Abend
gSystem

Check lock count - If zero

Decrement lock count, if zero clear lock flag and return BR 14
page to user list

SEGTABLE

PAGTABLE

CORTABLE

SWPTABLE

DMKPTRFR Obtain a “‘Free’’ Page Frame

« If not out, take from FREELIST

« If out, count times out of free pages and wait for a page
frame to become available

« If FREELIST requires replenishment, steal a page

« Reset reference bits and locate an unreferenced page

« Save storage keys

If page unchanged, place on freelist :
FLUSHLIST If changed, obtain DASD spaces via DMKPGTPG .
« Go to DMKPAGIO
FLUSHLIST
FREELIST
DMKPTRFT Return Pages
+ Go to DMKSTKCP if any stacked requests FREELIST

* Add specified entry on FREELIST

Exit-Return to
Caller

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 Method of Operation 34.1

-

The VM/370 control program nucleus is altered at system
generation to support the Virtual=Real function. Users
with Virtual=Real (specially identified in the
directory) can then 1log on and use the space reserved
for this function. That space can be used by only one
virtual machine at a time. Two virtual machines with
the Virtual=Real capability cannot occupy the same
space at the same time.

The Virtual=Real function is primarily used so that the
virtual machine may bypass the control program's CCW
translation. This is ©fpossible because I/O0 from a
virtual machine occupying a Virtual=Real space contains
a list of CCWs whose data addresses reflect the real
storage addresses. The restriction in this situation is
that the virtual machine does not perform I/O into page
0 since this would perform a data transfer into real
page 0. At the same time, it is assumed, and cannot be
checked, that the virtual machine will alsoc not attempt
to do I/0 beyond the bounds of its virtual addressing
space. To do so would cause the destruction of either
the VM/370 control program nucleus, which resides
beyond the virtual machine space, or another user's
page.

translation for the virtual
Virtual=Real space 1is only
has executed the SET
This function can only be issued
by the virtual machine occupying the Virtual=Real
space. The function initiates the bypass of CCW
translation. This functicn is automatically turned off
if the virtual machine performs an explicit reset, or
an implied reset by performing a virtual IPL. During
virtual machine IPL, it 1is required that I/O0 be
performed into page 0. For this reason, normal virtual
IPL simulation assumes CCW translation in effect 1in
order to accomplish the full simulation. Once the IPL
sequence has completed, the CCW translation function
can ke bypassed by issuing the SET NOTRANS ON command.

The bypassing of CCW
machine occurying the
invoked after the virtual machine
NOTRANS ON function.

When the virtual machine demands a page through normal
use cf the control program's page tables, the paging
routine recognizes the Virtual=Real capability. It then
assigns the virtual page to the equivalent real page
frame and does not perform a paging operation, since
all these pages are resident and are never swapped out.

~

A #

Note: The virtual machine running with Virtual=Real is
still run in System/370 relocate mode.

Virtual 270X 1lines and sense operations from the
virtual machine do not wuse the Virtual=Real feature.
These invoke CCW translation for the virtual
enable/disable 1lines and the transfer of the sense
bytes.

The UNLOCK command has an operand called VIRT=REAL and
essentially releases the Virtual=Real area for normal
system paging use. Once the area has been released, it
can only be reclaimed by an IPL of the VM/370 Systen.
The size of the Virtual=Real area is an installation
specification that is ©part of the special nucleus
generaticn procedure that is outlined in the
Planning and System Generation Guide. The size of the
area must be large enough to contain the entire
addressing space of whatever virtual machine wishes to
occupy that space. A virtual machine can use a smaller
space than 1is provided but cannot use a larger space

without regenerating the VM/370 control program
nucleus.

DASD Storage Management

Any user virtual storage pages that have Dbeen

referenced but are not resident in real storage must be
kept on the DASD paging device. DASD page space is
assigned only when the page is selected for a page-out.
Certain DASD pages may also be marked read-only. Thus,
the DASD address slot initially associated with the
page should be considered to be the source of the page

only. If the page is changed after it has been read
into real storage, a new slot must be obtained when it
is paged out. Examples of read-only pages are those

which contain portions of pageable saved systems and
pages which are part of a system SPOOL file. Slots can
be reassigned when DMKPTRAN finds that it must swap a
page out to a movable head DASD device. 1In this case,
the 0ld slot is released and the new slot is obtained.

SLOT ALLOCATION: If a new slot is required, the DMKPGT
is called to supply the address of an available slot.

DMKPGT maintains a chain of cylinder allocation maps
for each cylinder that has been assigned for either
virtual storage or spool file paging. The allocation

Method of Operation 35

chains for spooling are kept separately from those used
for paging so that they can be checkpointed in case of
a system failure. However, in other respects they are
the same. The allocation blocks for a given volume are
chained from the RDEVBLOK for the device on which the
volume is mounted. The «chains of cylinder and sloct
allocation blccks are initialized by DMKCPI. Each block
on an allocation chain represents one cylinder of space
assigned to paging, and contains a bit map indicating
which slots have been allocated and which are
available. Each block also has a pointer to the next
allocation block on the chain, a cylinder number, and a
record count. DMKPGT searches this list sequentially
until an available slot is found; its TCASD address is
then determined and passed back to the calling routine.
If DMKPGT cannot find a cylinder with a de-allocated
slot, it enters the cylinder allocation phase descrited
next. When an available cylinder is found, it
constructs a page allocation block for this cylinder
and allocates a page to the caller.

CYLINDER ALLCCATION: DMKPGT controls the paging and
spooling I/0 load of the system by allocating cylinders
evenly across . all available channels and devices. In
order for a device to be considered available for the
allocation of paging and spcoling space:

e Its volume serial number must appear in the systenm's
owned list.

e It must have at least one cylinder of temporary
space marked as available in the cylinder allocation
block which is located on cylinder 0, head 0, record
3.

At system initialization time, CPINIT reads in the
allocation records for each volume and constructs the
chains of device allocation blocks from which DMKPGT
allocates the cylinders. In managing the cylinder
allocation, DMKPGT takes three factors into
consideration: device type, device address, and
possible status as a preferred paging device.

A request for a cylinder of virtual storage page space
is satisfied by allocating on a preferred paging
device, provided that one exists on the system and that
it has page space available. Preferred paging devices
are specified by the installation at system generation
time, and generally should be devices on which
excessive seek times does not occur. A typical

IBM VM/370: Control Program Logic 36

preferred paging device would be the 1IBM 2305 Fixed
Head Storage Facility. If the 2305 is assigned as a
preferred device, it is possible to allocate some of
its space for other high priority data files without
excessively degrading paging. An example of such usage
would be for high activity read-only saved system pages
that are not shared in real storage, and high activity
system residence disks. :

It is also possible to designate moveable head DASD
devices such as the 3330 and 2314/2319 Direct Access
Storage Facilities as preferred paging devices. The
module (s) so designated should not be required to seek
outside of a relatively narrow cylinder band around the
center of the paging areas. It is advisable to share
the access arm of a moveable head preferred paging
device with only the lowest usage data files.

If one or more preferred devices are defined on the
system, CP allocates all of the page space available on
these before it allocates on any other available owned
volumes. Within the class of preferred devices, space
is allocated first on the fastest devices, and among
these on a round robin basis across channels and
devices. Allocation on nonpreferred devices is spread
out in the same manner. Cylinders for spooling space
are not allocated from preferred devices. Allocation on
a given device is done from the relative center of the
volume outward, a cylinder at a time in a zig-zag
fashion in an attempt to minimize seek times.

When a request to allocate a slot for virtual storage
paging is received by DMKPGTGT and the slot must be
allocated on a moveable-head (23142319 or 3330)
device, a cylinder and slot is selected in the
following manner:

1. An attempt is first made to allocate a slot on the
cylinder at which the arm on the selected device
is currently positioned.

2. If slots are not available on the current
cylinder, an attempt is made to allocate on a
cylinder for which paging I/0 has been queued.

3. If the above conditions cannot be met, allocation
is done as close to the center of the volume as is
possible.

)

Diag. 1B3.3. Paging, Allocate DASD Space

INPUT

DMKPGT

PROCESS

FREETABLEI

CPEXBLOK

ALOCBLOK

DMKPGTPG — Obtain DASD page address for virtual storage

® Set paging device indgx for non-spooling

RECBLOK

DMKPGTSG — Obtain DASD pw! address for spool file page buffer

ALLOCTBL
PAGTABLE
CPEXBLOK

DEFERRED
REQUEST
QUEUE

® Find available device

If none Defer execution
Warn operator

® Find page allocation block for device
If found =3 Allocate page -.

® Build page allocation block Return to
Requestor
® Allocate cylinder from which
page is to be selected

@ s allocation over 90%
e |f Y5
If No

DMKPGTPR — Deallocate DASD page space for virtual storage

DMKPGTSR — Deallocate DASD page space for spool buffer

(The deallocation is the same for virtual storage as it is
for spooling except for the dummy page allocation block
used in the spool processing)
® Find real device block
® Find page allocation block
® Deallocate page (spooling may cause more than
1 page to be deallocated))
® If last page — deallocate cylinder|

DMKPGTVG — Allocate page of virtual storage from 2nd 256K
of CP paging VMBLOK

® Allocate page from PAGETABL

1f NONe e Busild CP Request Block
Put on end of Queue

® Load address of gotten page in GPR 1

Requestor

DMKPGTVG — Release page of Virtual Storage

® Check outstanding réquests. If none, deallocate page
® Give page to be released to first stacked requestor

DMKDSPCH
Diag.2B

Return to
Requestor

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

QUTPUT

ALOCBLOK

RECBLOK

PAGTABLE

Method of Operation

37

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973 IBM VM/370: Control Program Logic 38

[Diag. 1B3.4. Release Virtual Machine Pages

, PROCESS

DMKPGSPT Release a specified part of the user’s virtual storage
from real storage and DASD

INPUT

@ Store partial pageout switch in register save area

DMKPGSPO Release entire user’s virtual space from real storage OUTPUT
and DASD

@ s page resident?

If yes 1
::> Go to DMKPTRFT to return page to ::>

SEGTABLE FREELIST and

CORTABLE
PAGTABLE

SWPTABLE CORTABLE

PAGTABLE

SWPTA
® Go to DMKPGTPR to return DASD page and BLE

return

® Are all pages released? pummmlp Yes

DMKPGSER Flush all unlocked resident pages for user dropped
from active dispatch queue

Return to
Caller

Flush
List

Before DMKIOSQR is called, the gqueue of IOBLOKs
currently scheduled on the device is examined. If
paging I/0 has already been scheduled on a device, the
paging channel programs are slot sorted and chained
together with TICs.

Paging I/0

All input/output requests for virtual storage and
spooling pages are handled by DMKPAGIO. DMKPAGIO
constructs the necessary task blocks and channel
programs, expands the compressed slot addresses, and
maintains a queue of CPEXBLOKs for pages to be moved.
Oonce the I/0 scheduled by DMKPAGIO completes, it
unchains the CPEXBLOKs that have been queued and calls
DMKSTKCP to stack them for execution. DMKPAGIO is
entered via a GOTO from:

e DMKPTRAN to read and write virtual storage pages

e DMKRPA to read and write virtual storage spool
buffers

In any case, all that need by passed to DMKPAGIO is the
address of the CORTABLE entry for the page that is to
be moved, the address of a SWPTABLE entry for the slot,
a read or write operation code, and the address of a
CPEXBLOK that is to be stacked for dispatching after
the I/0 associated with the page has completed.
DMKPAGIO obtains an IOBLOK and builds a channel program
to do the necessary I/0, and uses the device code that
is part of the page address to index into the system's
OWNDLIST and 1locate the real device to which the I/O
request should be directed. If the device is capable
of rotational position sensing, the required sector is
computed and a Set Sector command is inserted into the
channel progranm. The real SIO supervisor DMKIOSQR is
then called to schedule the operation on the proper
device,

When the interrupt for the ©paging operation is
processed by the primary I/O interrupt handler, the

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

oy

TOBLOK that controls the operation is unstacked to the
interrupt return address, WAITPAGE, in DMKPAGIO.
WAITPAGE then unchains the CPEXBLOKs that are queued to
DMKPAGQ, and then stacks the queued CPEXBLOKs,via calls
to DMKSTKCP, in the order in which they were received.
The address of the real page is filled in to the
appropriate page table entry and the pointers denoting
the ownership of the real page are filled into the
CORTABLE entry by the processing routines in DMKPTRAN.
If a fatal I/0 error occurred for the page, the
CPEXBLOKs associated with it are flagged, and the
dispatcher DMKSDPCH sets a nonzero condition code when
it activates the pending task. The error recovery
followed depends on the operation being perfornmed.
Paging I/0 errors associated with spooling operations
are discussed in the sections on "vVirtual and Real
Spooling", while errors associated with virtual storage
paging operations are discussed later in section
"virtual Storage Paging Error Recovery".

DMKPAGIO maintains its own subpool of preformatted
paging IOBLOKs. As I/0 operations complete, their
IOBLOKs are added to a list of available blocks; as new
blocks are needed, they are taken from this list. If
the list is empty, DMKFREE is called to obtain storage
for a new block. DMKPAGIO also periodically calculates
system paging overhead. After 200 pages have been moved
(read or written), the elapsed time for the 200 pages
is computed, and the paging rate is calculated in pages
per second. The recent paging load, expressed as the
percentage of time that more than one half of the
system's pages were idle due to page-wait, is averaged
with the previous load and re-projected as the expected
load for the next interval.

Virtual Storage Paging Error Recovery

Errors encountered during virtual storage (as opposed
to spooling) paging operation can denerally be
classified as either soft or hard errors. Soft errors
allow the system to continue operation without delay or
degradation. Hard errors can cause noticeable effects
such as the abnormal termination of user tasks (ABEND)
and response degradation. Errors that are successfully

Method of Operation 39

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 IBM VM/370: Control Program Logic 40

piag. 1B3.5. Page-in, Page-out

DMKPAG

PROCESS

DMKPAGIO — Construct IOBLOKS and schedule tasks
that move virtual storage pages between DASD and
real storage

| @ Get storage for paging task
| INPUT I0BLOK s DK FREE

| ©® Add new entry on in-transit queue

e Set up channel program for 1/O operation

CPEXBLOK Seek
! SWPTABLE Set sector (NOP for 2314)
I SYSTEM Search 10 equal
| OWN LIST > TIC (if not found) OUTPUT
! Read/Write
RDEVBLOK Seek Address

10BLOK Sector number

CORTABLE ® Complete IOBLOK

In-Transit ® Queue 1/0 Request < DMVKIOSQR >

® Exit |

CPEXBLOK
SWPTABLE
10BLOK

In-Transit
Queue

i WAITPAGE—Upon 1/0 interrupt

® Find Real Device Block (RDEVBLOK)
For interrupt <) DMKSCNKU

® Check for 1/0 error
If yes, set error on in CPEXBLOK

Exit to
Caller

® Unchain CPEXBLOK from in-transit queue

® Stack all requests s DMKSTKCP for
execution

® Free storage for IOBLOK

DMKDSPCH
Diag 2B

~

retried or <corrected are known only to the 1I/O
supervisor and the I/C error retry and recording
routines; they appear to the second level interrupt
handlers (such as WAITPAGE) as if the original
operation completed normally.

SOFT ERROR RECOVERY: An I/O error which occurs on a
page swap-out is considered to be a soft error.
DMKPTRAN calls DMKPGTPG to assign a different DASD page
slot and the page 1is re-queued for output. The slot
which caused the error is not de-allocated, and thus is
not assigned to another user. All other uncorrectable
paging errors are considered hard in that they may more
drastically affect system performance.

HARD ERRCR RECCVERY: Hard paging errors occur on
either I/0 errors for page reads or upon the condition
of exhausting the system's spooling and paging space.
Recovery attempted on hard errors depends upon the
nature of the task for which the read was being done.
If the operation was an attempt to place a page of a
user's virtual storage into real storage, the operation
of that particular virtual machine 1is terminated by
setting the page frame in error to zero and placing the
virtual machine in console function mode. The user and
operator are informed of the condition, and the page
frame causing the error is not de-allocated, therety
insuring that it will not be allocated to another user.

The control program functions which call DMKPTRAN (such
as spooling, pageable control program calls, and system
directory management) have the option of requesting
that unrecoveratle errors be returned to the caller. In
this case, the CP task may attempt some recovery to
keep the entire system from terminating (ABEND). 1In
general, every attempt is made to at least allow the
operator to tring the system to orderly shut-down if
continued operation is impossible.

Proper installation planning should make the occurrence
of a space exhaustion error an exception. An unusually
heavy user 1load and a backed-up spooling file could
cause this to happen. The operator is warned when 90%
of the temporary (paging/spooling) space in the systenm
is exhausted. He should take immediate steps to
alleviate the shortage. Possible remedies that exist
include preventing more users from 1logging on and
requesting users to stop output spooling operations.
More drastic measures might include the purging of low
priority spool files. If the system's paging space is

completely exhausted, the operation of virtual machines
progressively slows as more and more users have paging
requests that cannot be satisfied and operator
intervention is required.

VIRTUAL RELOCATION

CP provides the virtual machine the capability of using
the Dynamic Address Translation of the real System/370.
Programming simulation and hardware features are
combined to allow usage of all of the available
features in the real hardware, (that 1is, 2K or UK
pages, 64K or 1M segments).

For clarification, some term definitions follow:

First-level storage: The physical storage of the real
CPU, in which CP resides.

Second-level storage: - The virtual storage available to
any virtual machine, maintained by CP.

Third-level storage: The virtual storage space defined
by the system operating in second-level storage, under
control of page and segment tables which reside in
second-level storage.

Page and segment tables: Logical mapping between

first-level and second-level storage.

Virtual page and segment tables: Logical mapping
between second-level and third-level storage.

Shadow page and segment tables: Logical mapping

between first-level storage and third-level storage.

A standard, non-relocating virtual machine in CP is
provided with a single control register, control
register zero that can be used for:

e Extended masking of external interrupts.

e Special interrupt traps for SSM.

e Enabling of virtual block multiplexing.

Method of Operation 41

A virtual machine that is allowed to use the extended
control feature of System/370 is provided with a full
complement of 16 control registers, allowing virtual
monitor calls, PER, extended channel masking, and
dynamic address translation.

An extension to the normal virtual-machine VMBLOK is
built at the time that an extended control virtual
machine 1logs onto CP. This ECBLOK contains the 16
virtual control registers, 2 shadow control registers,
and several words of information for maintenance of the
shadow tables, virtual CPU timer, virtual TOD «clock
comparator, and virtual PER event data. The majority of
the processing for virtual address translation is
performed by the module DMKVAT, with additional
routines in DMKPRG, DMKPRV, DMKDSP, DMKCDB, DMKLOQG,
DMKUSO, and DMKPTR. The simulation of the
relocation~control instructions (that is, LCTL, STCTL,
PTLB, RRB, and LARA) is performed by DMKPRV. These
instructions, with the exception of LCTL and STCTL, are
not available to virtual machines which are not allowed
the extended—-control mode.

When an extended control virtual machine is first
active, it has only the real page and segment tables
provided for it by CP and operates entirely in
second-level sgtorage. DMKPRV examines each PSW loaded
via LPSW to determine when the virtual machine enters
or leaves extended control or translate mode, setting
the appropriate flag bits in the VMBLOK. Flag bits are
also set whenever the virtual machine modifies control
registers 0 or 1, the registers that control the
dynamic address translation feature. DMKDSP also
examines PSWs that are 1loaded as the result of
interrupts to determine any changes in the virtual
machine's operating mode. The virtual machine can load
or store any of the control registers, enter or leave
extended control mode, take interrupts, etc., without
invoking the address translation feature.

If the virtual machine, already in extended control
mode, turns on the translate bit in the EC mode PSW,
then the routine DMKVATMD is called to examine the
virtual control registers and build the required shadow
tables. (Shadow tables are required since the real DAT
hardware is <capable of only a first-level storage
mapping.) DMKVATMD examines virtual control registers 0
and 1 to determine if they contain valid information
for use in constructing the shadow tables. Control
register zero specifies the size of the page and

el

)
/ \

IBM VM/370: Control Program Logic 42

segment the virtual machine is using in the virtual
page and segment tables. The shadow tables constructed
by DMKVATMD are always 1in the same format as the
virtual tables.

First, the virtual segment table is copied intact from
second-level storage into first-level storage for speed
of access when handling relocation interrupts. Another
segment table of the same size, the shadow segment
table, 1is constructed in first-level storage and
initialized to indicate that all segments are
unavailable. Flags are maintained in the VMBLOK to
indicate that the shadow tables exist. DMKVATMD also
ccenstructs the shadow control registers 0 and 1. Shadow
control register 0 contains the external interrupt mask
bits used by CP, mixed with the hardware controls and
enabling bits from virtual control register 0. Shadow
control register 1 contains the segment table origin
address of the shadow segment table.

When the virtual machine 1is operating in virtual
translate mode, CP loads the shadow control registers
into the real control registers and dispatches the
user. The immediate result of attempting to execute an
instruction is a segment exception, intercepted by
DMKPRG and passed to DMKVATSX. DMKVATSX examines the
copy, in first-level storage, of the virtual segment
table in second-level storage. If the copy segment
table indicates the segment is not available, the
ccrresponding entry in the virtual segment table is
examined and if necessary, the copy segment table is
updated. If the virtual segment is not available, the
segment exception interrupt is reflected to the virtual
machine. If the virtual segment is marked available,
then DMKVATSX:

e Allocates one full segment of shadow page table, in
the format specified by virtual control register 0.

e Sets all of the page table entries to page not in
storage.

e Marks the segment available in the shadow segment
table.

e Redispatches the virtual machine via DMKDSP.
Once again, the immediate result is an interrupt, which

this time is a paging exception and control is passed
to DMKVATPX. DMKVATPX references the virtual page table

Diag. 1B3.6. Virtual Relocation

From
DMKPRG &
DMKDSP

INPUT OUTPUT
PROCESS
VMBLOK DMKVAT — Virtual Machine — EC Mode — Relocation VMBLOK
VMESTAT
DMKVATAB — Maintain virtual address translation tables 1
VMESTAT (ECBLOK and VMBLOK are updated)
ECBLOK
DMKVATMD — Allocate énd initialize shadow tables
:> (ECBLOK and UMBLOK are updated) :>
Copy - Shadow
ECBLOK DMKVATBC — Return shadow tables to free storage Seg Segment
(ECBLOK and VMBLOK are updated) Table Table
EXTCAP
DMKVATRN — Virtual-to-virtual-to-real address translation
EXTATCH
DMKVATLA — Virtual-to-virtual-to-virtual address translation
Shadow

DMKVATPX — Process paging exception for virtual machine in
EC mode

DMKVATSX — Process paging exception for virtual machine in
EC mode

DMKVATEX — Simulate page or segment exception

DMKDSPCH
Diag. 2B

Method of Operation 43

in second-level storage through the copy segment table
to determine if the virtual page is available. If the
virtual page is not available, the paging interrupt is

reflected to the virtual machine. However, if the
virtual page is marked in storage, the virtual page
table entry is wused to determine which page of
second-level storage is being referenced by the
third-level storage address provided. DMKVATPX next
determines if that ©page of second-level storage is
resident in first-level storage at that time. If so,

the appropriate entry in the shadow page table is
filled in and marked in storage. If not, the required
page is brought into first level storage via CMKPTRAN

and the shadow page table filled in as above.

As the virtual machine ccntinues execution, more shadow
tables are filled in or allocated as the third-level
storage locations are referenced. Whenever a new
segment is referenced, another segment of shadow page
tables is allocated. Whenever a new page is
referenced, the arpropriate shadow pagetable entry is
validated, etc. No changes are made in the shadow
tables if the virtual machine 1leaves translate mode
(usually via an interrupt), unless it also 1leaves
extended control mode. TLropping out of EC mode is the
signal for CF to release all of the shadow page and
segment tables and the copy of the virtual segment
table.

There are some situations that require invalidating all
of the shadow tables constructed by CP or even
releasing and reallocating them. Whenever DMKPIR swaps
out a page that belongs to a virtual relocating
machine, it sets a bit in the VMBLOK indicating that
all of the shadow page tables must be invalidated.
Invalidation of all of the tables is required since CP
does not know which third-level-storage pages map into
the second-level page which is being swapped out. The
actual invalidation is handled by DMKVATAB, called from

CMKDSP when the virtual machine 1is on the verge of
being dispatched.

The other situations which cause shadow-table
invalidation arise from the simulation of privileged

are set in the VMBLOK
whenever the virtual machine 1loads either control
register 0 or 1, and DMKPRV calls [MKVATAB to perform
whatever maintenance is required. When control register

instructions in DMKPRV. Flags

1 is loaded by the virtual machine, DMKVATAB mnmust
recopy the virtual segment table into first-level
{ |
J

IBM VM/370: Control Program Logic 44

storage and invalidate the entire shadow segment table.
When control register 0 is loaded, DMKVATAB examines
the relocation—-architecture control bits to determine
if they have <changed, (such that the format of the
virtual page and segment tables no longer matches that
of the shadow tables). If the format has not changeqd,
the shadow tables are left intact; otherwise, all of
the shadow tables and the copy segment table must be
returned to free storage and another set, in the new
format, must be allocated and initialized. The same
actions can result from modifying the control registers
via the CP console functions, in which case DMKVATAB is
called from DMKCDB. The privileged operation, PTLB also
causes the virtual segment tables to ke recopied and
all of the shadow page tables to be invalidated. since
the shadow tables are the logical equivalent of the
translation look-aside buffer.

DMKPRV provides virtual interrogation of the reference
and change bits in the virtual storage keys, which
involve the privileged instructions ISK, SSK, and RRB.
The privileged instruction LRA is simulated via
DMKVATLA, which searches the virtual page and segment
tables to translate a third-level storage address to a
second-level storage address, returning a
ccendition-code indicator to DMKPRV, or forcing an
interrupt if the tables are incorrectly formatted.

Most error situations that occur in the virtual machine
are handled by means of the extended program interrupts
associated with the real address translaticn hardware.
Whenever a virtual relocating machine loads control
registers 0 or 1 with an invalid value, DMKVAT releases
all of the shadow tables and the copy segment table
exactly as if the hardware controls had changed. The
shadow control registers are set valid, with the shadow
segment table re-allocated at a minimum size and all
segments marked unavailable. Flag bits are set in the
VMBLOK to indicate that the shadow tables are
artificially valid, and DMKVATSX reflects a translation
specificaticn exception to the virtual machine as soon
as it is dispatched. While it 1is possible for the
virtual machine to enter an interrupt loop (if the new
PSW is also a translate-mode PSW), the cited process
prevents the occurrence of a disabled-loop within CP,
which would result if the virtual wachine is never
dispatched.

-

PRIVILEGEL INSTRUCTIONS

If the program interruption is
machine issuing a privileged instruction, DMKPRVLG
obtains the address of the privileged instruction and
determines the type of operation requested.

caused by the virtual

I/0 Privileged Instructions

DMKPRVLG transfers control to the virtual I/O executive
program (DMKVIOEX).

Non-I,/0 Privileged Instructions

DMKPRVLG simulates valid non-I/0
instructions and returns control +to DMKDSPCH. For
invalid privileged instructions, the routine sets an
invalid interruption code and reflects the interruption
to the virtual machine. For the privileged instructions
SCK, SCKC, STICKC, SPT, and STPT that affect the TOD
clock, CPU timer, and TOD clock comparator, control is
transferred to DMKTMR by DMKPRVLG. Others that are
simulated are LPSW, SSM, SSK, ISK, and diagnose.

privileged

System/370 EC includes the

following:

mode privileged simulation

Ccde Definition

SCK Set clock

SCKC Set clock comparator

STCKC Store clock comparator

SPT Set CPU timer

STPT Store CPU timer

STNSM Store and AND system mask
STOSM Store and OR system mask
STIDP Store CPU identification
STIDC Store channel identification
LCTL Load control

STCTL Stcre cqntrol

LRA Load real address

RRB Reset reference bit

PTLB Purge table look-aside buffer
DIAGNOSE Interface (DMKHVC)

The diagnose command is used for communication between

a virtual machine and the VM/370 control program. In
VM/370, the machine-coded format for the diagnose
command is:
Bits O 78 11 12 15 16 31

T Al

|l 83 | rx | ry | code |

L J
83 is the Diagnose operation code.
rx is a user specified register number.
ry is a user specified register number.

Method of Operation 45

Diag.

1B3.7. Privileged Instruction Simulation

From
DMKPRG

IBM VM/370: Control Progranm Logic

46

PSA

Simulate privileged instruction
INPTR

If operation cannot be recognized

(op. code in GRO) DUMP SYSTEM

For invalid instructions other than DIAGNOSE

INPUT PROCESS OUTPUT
PGM OLD PSW DMKPRVLG — Privileged Instruction Handler VMBLOK
l Determine type of request
VMPSW
For Virtual Machine 1/0
Instruction > For DIAGNOSE VMINST
l 1 For Extended Timer

Virtual Storage

SWPTABLE

DMKPRGRF
C SCVo) CDiag.1B3) (DMKHVC

DMKDSPCH

Diag.2B

DMKVIOEX
Diag.1B3.9

) C DMKTMR j

~

Code 1is a hexadecimal value that is used to select a

particular VM/370 control program function. The codes
and their associated functions are:

Code Class Function

0004 C,E Examine data from real storage

0008 G Execute VM/370 control program console

function

000C G Pseudo-timer facility

0010 G Release virtual storage pages

0014 G Manipulate input spool files

0018 G Standard DASD I/O

001C F Clear I/0 and machine check recording

0020 G General virtual I/0 without interrupts

0024 G Virtual device type information

002C C,E,F Return DASD start of LOGREC area

0030 C,E,F Read one page of LOGREC data

0034 C,F Read system-dump spool file

0038 C,E Read system symbol table

003C 1a,B,C Dynamically update system user directory

004C Any Generate accounting cards for virtual user

Notes: Rules for diagnose codes:

Reserved for IBM use.
Reserved for users

X*00' through X'FC!
X*100*' through X'1FC!

The diagnose code must always be a multiple of 4.

DIAGNOSE CODE 4: Examine real storage, can only be
issued by users with privilege class C or E.

rx contains the virtual address of a list of CP (real)

addresses.
ry (cannot be register 15) contains a count of entries
in the list.

ry+1 contains the virtual address of the result field
that holds the values retrieved from the VM/370 control
program locatiomns.

DIAGNOSE CODE 8: Virtual console function, allows a
virtual machine to perform the VM/370 control program
console functions.

rx contains the address (virtual) of the control

program console function command and parameters.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

-

1973

ry contains the 1length of the associated console

function input, up to 132 characters.
The following illustrates the virtual console function:

LA R6,CPFUNC
LA R10,CPFUNCL
DC X*'83',X'6A',XL2°0008"

CPFUNC DC
CPFUNCL EQU

C'QUERY FILES'
*-CPFUNC

The output of the console function is to the user's
terminal, and then execution continues. Any valid and
authorized console function can be executed in this
manner.

A completion code is returned to the user as a value in
the register specified in ry. The error code = the
message nunber of the error message issued.

Pseudo timer.

DIAGNOSE CODE C:

of a 32-byte data area
which the

Irx contains the virtual address
that does not cross a page boundary, into
following data is stored:

7 8 15 16

Bytes 0 23 24 31

\
| |
|MM/DD/YY | HH:MM:SS|Virt CPU|Total CPU
| | | 1

L

e e —

Virtual and Total CPU time wused is returned as a
doubleword logical value in microseconds.

DIAGNOSE CODE 10: Release pages.

rx contains the virtual address of the first page to be
released.

ry contains the virtual address of the last page to be
released.

Method of Operation 47

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Any of the virtual pages in real
are released.

or auxiliary storage

DIAGNOSE CODE 14: Input spool file manipulation.

rx contains either a buffer address, a copy count, or a
spool-file identifier, dependent on the value of the
function subcode in ry+1i.

ry (cannot be register 15) contains the virtual address
of a spool-input card reader.

ry¢1 contains a function hexadecimal code interpreted
by DMKDRDER, as follows:

Code Function

0000 Read next spool buffer (data record)
0004 Read next print SFBLOK

0008 Read next punch SFBLOK

000cC Select a file for processing

0010 Repeat active file np times

0014 Restart active file at beginning
0018 Backspace one record

may contain error codes which further
See Figure 1 for

ry+1 on return,
define a returned condition code of 3.
Condition Code analysis.

The file manipulation is performed by DMKDRDER.

DIAGNOSE CODE 18:

Disk I/0.

L£x contains the device address of the disk.

Ly points to a CCW chain to read or write a limited

number of disk records.

Each read or write must specify no more than 2048 bytes
(usually 800 is wused), and the CCW chain is of a
standard form, as shown below. For a 3330, a SET SECTOR
command would precede each SRCH command.

the number of reads or writes in
number is two in the following
(to read or write two

Register 15 contains
the CCW chain (the
example for a typical CCW string
800-byte records):

IBM VM/370: Control Program Logic 48

SEEK,A,CC,6

SRCH,A+2,CC,5

TIC,*-8,0,0

RD or WRT,DATA,CC+SILI,800

SEEK HEAD,B,CC,6 (Omitted if HEAD WNo.

SRCH,B+2,CC,5

TIC,*-8,0,0

RD or WRT,DATA+800,SILI,800
A SEEK and SRCH arguments for first RD/WRT
B SEEK and SRCH arguments for second RD/WRT

unchanged)

DIAGNOSE CODE 1C: Clear I/0 recording, can only be
issued by a privilege class F user. This code calls
the DMKIOEFM routine to clear the I/0 error recording
data on disk.

rx contains the code value 1, 2, or 3 to clear and
reformat the I/0 error recording, M/C recording, or
both I/0 and M/C recording, respectively.

£y is ignored.

DIAGNOSE CODE 20:

General I/O0 without interrupts.

rx contains a virtual device address.

ry contains the address of CCHs to be

executed.

of the string

The CCW string 1is processed via DMKCCWTR through
DMKGENIO, providing f£full virtual I/0 in a synchronous
fashion (self-modifying CCW strings are not permitted,
however) to any virtual device specified. Control
returns to the virtual machine only after completion of
the operation or detection of a fatal error condition.
Condition codes and error codes in ry are returned to
the virtual systen.

DIAGNOSE CODE 24: Virtual device type information.

LX contains a virtual device address.

LY, which cannot be register 15, and
following upon return:

ryt+1 contain the

9

r " 8]
|Code | ry+1 | Meaning |
| I
1 0 1} | Data Transfer successful |
1 | End of file |
1 2] | File not found |
1 3 | 4 | Device address invalid |
1 3 | 8 | Device type invalid |
I 3 | 12 | Device busy |
| 3 | 16 | Fatal Paging I/O Error |
L J
Figure 1. Condition Code Analysis for
Diagnose Codes 14 and 34
Bits 0 7 8 15 16 23 24 31

L hl
ry |VDEVTYPC|VDEVTYPE|VDEVSTAT|VDEVFLAG|

| |
ry+1 |RDEVTYPC|RDEVTYPE|RDEVMDL |RDEVFIR |
L |

that the
invalid

three indicates
either

A condition code of one or
virtual device address specified is

(that is, too large), or the device does not exist.
Condition code 2 indicates the real device does not
exist.

DIAGNOSE CODE 2C: Return DASD start of LOGREC area
(Privilege class C, E, or F only).
LX on return contains the DASD location, in VM/370

control program internal format, of the first record of
the system I/0 and machine check error recording area.

ry is ignored.

DIAGNOSE CODE 30: Read one page of LOGREC data

(Privilege class C, E, or F only).

rx contains the DASD location, in the VM/370 control
program internal format, of the desired record.

ry contains the virtual address of a page-size buffer

to receive the data.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

1973

The page of data is provided to the virtual machine via
DMKRPAGT.

cc = 0 Successful read, data available.
1 End of cylinder, no data.
2 Invalid cylinder, outside recording area

Read systen spool file

: dump
or E only).

DIAGNOSE CODE 34
(privilege class C
rx contains the virtual address of a page-size buffer
to accept the requested data.

ry (cannot be register 15) contains the virtual device
address of a spool-input card reader.

ry41 on return,
define a returned condition code of 3.
Condition Code analysis.

may contain error codes which further
See Figure 1 for

The system chain of spool input files is searched for a
dump file belonging to the user issuing the diagnose
command by DMKDRDMP. The first (or next) record from
the dump file is provided to the virtual machine via
DMKRPAGT and the condition code is set to zero. The
dump file is closed via VM/370 console function CLOSE.

DIAGNOSE CODE 38: Read system symbol table.

rx contains the start address of the page buffer that

is to contain the symbol table.
ry is ignored.

The system symbol table (DMKSYM) is read into storage
at the location specified by rx by DMKDRDSY.

DIAGNOSE CODPE 3C: Dynamically update the system user

directory.

rx contains the first 4 bytes of the volume serial
label.

ry, the first 2 bytes of the register specified (ry)

contain the last 2 bytes of the volume serial label.

The directory if dynamically updated by DMKUDRDS.

Method of Operation 49

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

DIAGNOSE CODE 4C: Generate accounting cards for the
virtual user. This code can be issued only by a user
with the account option (ACCT) in his directory.

rx contains the virtual address of a 24-byte parameter
list identifying the "charge to" user; the address must

be aligned on a doubleword boundary. If rx contains
zeros, the accounting card will be punched with the
identification of the user issuing the diagnose
instruction.

ry contains a function
DMKHVC as follows:

hexadecimal code interpreted by

Code Function

0000 The parameter list contains only a userid.

0004 The parameter list contains a userid and account
number.

0008 The parameter list conatins a userid and
distribution number.

000C The parameter list contains a userid, account

number, and distribution number.

The following condition codes are returned to the user
by DMKHVC:

cc=0 Successful operation
1 User does not have account option privileges
2 1Invalid userid in the parameter list
3 1Invalid function hexadecimal code in
error occurred in trying to read in
Machine Block (UMACBLOK)

ry or an
the User

DMKHVC checks that the user has the account option and
if not, returns a condition code of 1. If the user has
the options, control is passed to DMKCPV to generate
the card. DMKCPV passes control to DMKACO to complete
the "charge to" information; either from the User
Accounting Block (ACCTBLOK), if a pointer to it exists,
or from the user's VMBLOK. DMKCPV then punches the card

and passes control back to DMKHVC to release the
storage for the ACCTBLOK, if one exists. DMKHVC then
checks the parameter 1list address for the following
conditions:

e If zero, control is returned to the wuser with a

condition code of zero.

1973

IBM VM/370: Control Program Logic 50

e If invalid, an addressing exception is generated.

e If not aligned on a doubleword
specification exception is generated.

boundary, a

For a parameter 1list address that is non-zero and
valid, the userid in the parameter 1list is checked
against the directory list and if not found, control is
returned to the user with a condition code of two. 1If
the function hexadecimal code is invalid, control is
returned to the user with a condition code of three.
If both userid and function hexadecimal code are valid,
the User Accounting Block (ACCTBLOK) is built and the
userid, account number, and distribution number are
moved to the block from the parameter list or the User
Machine Block belonging to the userid in the parameter
list. Control is then passed to the user with a
condition code of zero.

Virtual Timer Maintenance

The System/370 with EC mode
(both real and virtual)
They are:

provides the
with four

system user
timing facilities.
1. The interval timer at main storage location X'50°¢.
2. The time-of-day clock.

3. The time-of-day clock comparator.

4. The CPU timer.

REAL TIMING FACILITIES: Before describing how CP
maintains these timers for- virtual machines, it is
necessary to review how VM/370 uses the timing

facilities of the real machine.

1. The location X'50' interval timer is used only for
time-slicing. The value placed in the timer is the
maximum length of time that the dispatched user is
allowed to execute.

2. The time-of-day clock is used as a time stamp for
messages and enables the scheduler to compute

e ~ ®

elapsed in-queue time for the dispatching priority
calculation.

3. The time-of-day clock comparator facility is used
by CP to schedule timer driven events for both
control program functions and for virtual
machines. A stack of comparator requests is
maintained and as clock comparator interrupts
occur, the timer request blocks are stacked for
the dispatcher via calls to DMKSTKIO.

4. The CPU timer facility performs three functions:

e Accumulation of CP overhead
e Detection of in-queue time slice end
e Virtual CPU timer simulation

The accumulation of CP overhead is accomplished as
follows. The VMTTIME field in the VMBLOK contains
the total CP overhead incurred by the virtual
machine; it is initialized +to the maximum sized
doubleword integer, X'7FFFFFFF FFFFFFFF'.
Whenever CP is to perform a service for a virtual
machine, GPR 11 is loaded with the address of the
VMBLOK and the current value in VMTTIME is placed
in the CPU timer. When CP is finished with the
service for that virtual machine the CPU timer,
which has been decremented by the amount of CPU
time used, is stored back into VMTTIME. GPR11 is
then loaded with a new VMBLOK pointer and the CPU
timer is set from the new VMTTIME field. The
amount of CP overhead for a given virtual machine
at any point in time is the difference between the
maximum integer and the current value in the
VMTTIME field.

Since VMTTIME only accounts for supervisor state
overhead, detection of in-queue time slice end is
performed by the CPU timer when the virtual
machine is dispatched in the problem state. The
VMTMOUTQ field in the VMBLCK is intialized to the
amount of problem state time that the virtual
machine will be allowed to accunmnulate before being
dropped from a gqueue. This initial value is set
by the scheduler (DMKSCH) when the virtual machine
is added to a queue and its value depends on the
queue entered (interactive or non-interactive) and
on the CPU model. For example, the initial value
of VMTMOUTQ for a user entering Q1 (interactive)

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

on a model 145 is 300 milliseconds, while for the
same user entering Q2 (non-interactive) it is 2
seconds. Each time the user is dispatched, the
value in VMTMOUTQ 1is entered into the CPU timer;
whenever the user is interrupted, the decremented
CPU timer is stored into VMTMOUTQ prior +to being
set from the new VMTTIME. When the problem state
time slice has been exhausted; a CPU timer
interrupt occurs, the VMQSEND flag bit is set in
the VMBLOK, and the scheduler drops the user from
the queue. At each queue drop, the problem time
used in-queue (the difference between VMTMOUTQ and
the initial value) is added to the total problem
time field (VMVTIME) in the VMBLOK.

Virtual CPU timer simulation is handled for EC
mode virtual machines if the value in their
virtual CPU timer 1is less than that in VMTMOUTOQ.
In this case, the VMBLOK is flagged as "tracking
CPU timer" and a CPU timer interrupt is
interpreted as a virtual timer interrupt rather
than as an in-queue time slice end.

VIRTUAL TIMING FACILITIES: Virtual 1location X'50!
timers are updated by the elapsed CPU time each time
the dispatcher has been entered after a running user
has been interrupted. The size of the update is the
difference between the value of the timer at dispatch
(saved in QUANTUM at location X'54') and the value of
the timer at the time of +the interrupt (saved in
QUANTUMR at location X'4Ct').

Virtual clock comparator requests are handled by the
virtual timer maintenance routine DMKTMR. They are
inserted into the general comparator request stack and
the virtual machine is posted when the interrupt goes
off.

Requests to set the virtual CPU timer place the new
value into the ECBLOK. Requests to store it update the
ECBLOK field by the virtual CPU time used since the
last entry to dispatch and pass the value to the user.
Requests to set the time of day clock are ignored.

A real interval or CPU timer is one which runs when the
user is executing or is in a self-imposed wait state
(that is, the wait bit is on in his virtual PSW). A
real timer does not run if the wuser is in a CP
pseudo-wait (for example, page wait or I/O0 wait) or if

1973 Method of Operation 51

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

he can be run but is not being dispatched due to other
user interaction. Real timers provide accurate
interrupts to programs that depend on measurement of
elapsed CPU and/or wait time. They do not accurately
measure wall time -- the TOD clock must be wused for
this function.

An EC mode virtual machine with the Real Timer option
has both a real interval timer and a real CPU timer.
Real timer requests for waiting machines are maintained
in the clock comparator stack. CPU timer requests are
added to TOD clock value at the time that they are
issued. 1Interval timer requests must have their units
converted. In addition, if +the virtual CPU timer
contains a large negative value, then a real timer
request is scheduled to occur when the virtual time
turns positive, so that the pending timer interrupt can
be unflagged. Comparator requests for real timer
interrupts are inserted into the stack whenever a user
enters a self-imposed wait. They are removed either
when the wuser resumes execution or when he is forced
(or places himself) into a pseudo wait.

Virtual I/O Regquests

The function of the virtual I/0 interface maintained by
the control program is to provide to the software
operating in the user's virtual machine the condition
codes, CSW status information, and interrupts necessary
to make it appear to the user software that it is in
fact running on a real System/370. The virtual I/O
interface consists of:

e A virtual I/0 configuration of each active user
represented by a set of I/O control blocks that are
maintained in the Control Program's free storage.
This configuration is built at LOGON time from
information contained in the user's directory file,
and can be changed by the user or the systen
operator.

e A set of routines that maintain in these blocks, the
status of the virtual I/O configuration.

|« Other system components to simulate/translate the
channel programs provided by the user to initiate
I/0 on units in the real system's configuration.

1973 IBM VM/370: Control Program Logic 52

VIRTUAL I/O CONTROL BLOCKS: The base for locating the
I/0 block structure is the user's Virtual Machine Block
(VMBLOK) . The VMBLOK contains a pointer to the start
of three control block tables, and a table of 16
channel indexes. The control block tables contain one
block for each of the virtual channels, control units,
and devices that are defined for the user's virtual
machine. The entries in the channel index table
(VMCHTBL) contain the pointers to each channel defined
for the user in the table of Virtual Channel Blocks
(VCHBLOKs) . Each VCHBLOK contains a table of pointers
that point to the Virtual Control Unit Blocks
(VCUBLOKs) for the control units attached to that
virtual channel. Each VCUBLOK contains pointers to the
virtual Device Blocks (VDEVBLOKs) attached to the
control unit. See Diag. 1B3.8 for an overview of the
virtual I/0 control blocks.

Thus, if given the unit address of any component in the
form ccu, the appropriate control blocks representing
each component in the subchannel path to the given unit
is located via the indexing schene.

VCHBLOK: There is one VCHBLOK for each virtual channel
connected to the user's virtual CPU. Each VCHBLOK
contains the channel address and flag indicating the
channel type (selector, byte multiplexer or block
multiplexer). The status of the channel and its
attached units are represented by several status and
mask bytes, as follows:

1. A status byte (VCHSTAT) indicates whether the
channel is busy or has a channel «class interrupt
pending.

2. A halfword unit address identifies the wunit
causing the channel-class interrupt (if it is

present).

3. A halfword mask (VCHCUINT) contains a bit map of
the attached control units that have interrupt,
status pending. Following these status flags and

masks 1is the table of indexes pointing to the
attached VCUBLOKs; index entries representing
addresses at which no control unit is attached

have a value of -1.

VCUBLOK: There is one VCUBLOK for each control unit in

the virtual configuration. These blocks are arranged

s ~ oA

in a table, and each contains, in addition to its base
address, status flags similar to those in the VCHBLOK
and a table of indexes to attached VDEVBLOKs. The
status flags defined for the VCUBLOK differ from those
for the VCHBLOK in that they can contain status for the
control unit and also for a subchannel.

For example, if the VCUBLOK representing a 2803 Tape
Control Unit is attached to a virtual selector channel,
both the VCHBLOK dnd the VCUBLOK are marked busy.
However, if the VCUBLOK is attached to a virtual byte
multiplexer channel and is for a control unit on a
selector subchannel of the multiplexer, the busy status
of the channel is reflected in the VCUBLOK only. Thus
the virtual multiplexer appears nonbusy to operations
on other, nonshared subchannels.

VDEVBLOK: There is one VDEVBLOK in the configuration
for each virtual device defined by the user. Each

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973

o A

VDEVBLOK contains the device portion of the unit
address, device status, and the virtual CSW for the
last interrupt taken by the device. In addition, the
VDEVBLOK contains device type specific information that
allows the I/0 translation and simulation routines to
interpret the channel programs presented by the user.
This information is not used by the I/0 interface.

Since all virtual wmachines are run in the problem
state, any attempt to issue a SIO0O instruction results
in a program interrupt that indicates a privileged
operation exception. This interrupt is handled by CP's
first 1level program interrupt handler, DMKPRGIN. It
determines if the virtual machine was in virtual
supervisor state (problem state bit in the VIRTUAL PSW
is zero). If so, the instruction causing the interrupt
is saved in the VMBLOK for the virtual machine and
control is transferred to the privileged instruction
simulator, DMKPRVLG, via a GOTO.

Method of Operation 52.1

SY20-0880-1, Page Modified by TNL SN20-2624,

Diag. 1B3.8 virtual I/0 Control Blocks

The virtual machine configuration is represented by a set
of related control blocks. These blocks are:
« built by VM/370 at LOGIN from data in directory
« modified by user commands (e.g. DETACH, LINK,
DEFINE)
There is one control block per channel, per control unit, and
per device.

The characteristics of VM/370 virtual 1/O control are:
« RSP (Rotational Position Sensing) cannot be used
on BMPX (Block Multiplexer Channel
No multi-path configurations
« The virtual machine operating system performs
scheduling
« VM/370 uses virtual 1/O control blocks to simulate
real hardware interface.
Virtual unit record devices use VIM/370 spooling
« Virtual console is simulated on tetminal
« Mini-disks simulate DASD
Dedicated devices are supported.

VMCHTBL — virtual channel index table

VCHBLOK — virtual channel block

August 15, 1973

Relationship of Virtual 1/0 Control Blocks
VMCHTBL (part of VMBLOK)

IBM VM/370: Control Program Logic

-/

VCHBLOKSs

/{é

VCUBLOKSs

VDEVBLOKSs

VCUBLOK — virtual control unit block

Control unit identification

XXXX

XXXX | XXXX Device

Index

Channel Identification Status
status

XXXX | XXXX | XXXX | XXXX

XXXX | XXXX | XXXX | XXXX XXXX
XXXX
XXX

XXXX If negative (FFFF), no control unit exists

If negative (8XXX) the control unit exists XXXX
but the VCUBLOK cannot be addressed
by the virtual machine because the
control unit is detached.
If positive, the value is on index to the
VCUBLOK.

Table

If negative (FFFF), no device exists

If negative (8XXX) the device exists
but the VDEVBLOK cannot be
addressed by the virtual machine
because the device is detached.

If positive, the value is an index to
the VDEVBLOK.

VDEVBLOK — virtual device block

Device identification
Status pending
Positioning
Terminal control
Spooling control

RDEVBLOK pointer

Part of the VDEVBLOK contains device independent
information and is used identically in all VDEVBLOKSs.
However, some fields of the VDEVBLOKs have
multiple uses, depending on the device type.

DMKPRVLG determines if the privileged operation affects
the wvirtual I/O0 configquration. DMKPRVLG simulates
non-I/0 privileged instructions (such as LPSW) itself.
If the instruction's operation code is from X'9C to
X'9F', control is transferred to DMKVIOEX.

After clearing the condition code in the user's VMBLOK,

DMKSCNVU is then called to 1locate the Virtual 1I/0
blocks representing the components (channel, control
unit and device) addressed by the instruction.

DMKVIOEX then branches
the operation requested.

to handle the request based on

VIRTUAL SIC (See Figure 2): With a SIO, the condition
code returned from DMKSCNVU is tested to verify that
all addressed components were located. If they were
not, then a condition code of 3 (unit not available) is
reflected in the VPSW and control is returned to the
dispatcher. Otherwise, the addresses of the appropriate
virtual I/0 control blccks are saved, and DMKVIOEX
tests the status of the addressed I/O units by scanning
the VCHBLOKs, VCUBLOKS, and VDEVBLOKs to locate the

block that contains the status of the addressed

subchannel. The subchannel status is indicated in:

e The VCHBLOK for a selector or block multiplexer
channel

e The VCUBLOK for a shared
byte multiplexer.

selector subchannel on a

e The VDEVBLOK for a ncnshared subchannel on a Ltyte
multiplexer.
When the block containing the status is found, the

status is tested. If the subchannel is busy or has an
interrupt pending, condition code 2 is reflected.
Otherwise, the subchannel is available and the device
and the control wunit are tested for interrupt pending
or busy. If either is found, condition code 1 is
reflected and the proper CSW status is stored in the
user's virtual page zero. If all components in the
subchannel path are free, DMKVIOEX proceeds to simulate
the SI0O by locating and loading the contents of the
user's CAW from his virtual 1location X'48' and testing
the device tyre of the unit addressed.

The device type is
VDEVEBLCK. If the
terminal or ccnsole,

determined by referencing the
device class code indicates a
control is passed to the virtual

®

console executive DMKVCNEX via a GOro. DMKVCNEX
interprets and simulates the entire channel progranm,
moving the necessary data to or from the user's virtual
storage and reflecting the proper interrupts and status
bytes. When DMKVCNEX has finished, it passes control
directly to the dispatcher DMKDSPCH.

If DMKVIOEX determines that the referenced device is a
spooled unit-record device, it passes control to
DMKVSPEX for additional processing and upon return it
passes control to DMKDSPCH. :

If the referenced device 1is not a terminal nor a
spooling device, the SIC is translated and executed
directly on the real system's I/0 device. DMKVIOEX
calls DMKFREE to obtain free storage and then it
ccnstructs an IOBLOK in the storage obtained. The
ICBLOK serves as an identifier of the I/O task to be
performed. It contains a pointer to the channel program
to be executed and the address of the routine that is
tc handle any interrupts associated with the operation.

stores the contents of the user's CAW in
sets the interrupt return address (IOBIRA)
virtual interrupt return address . (DMKVIOIN) in

DMKVIOEX
IOBCAW and
to the

DMKVIO. The CCW translation routine (DMKCCWTR) is then
called to locate and bring into real main storage all
user pages associated with the channel ©progranm,

including those containing data and CCWs.
1. The CCWs are translated.

2. A corresponding real channel

constructed.

program is

3. The data pages are locked into real storage.

DMKVIOEX. DMKVIOEX
places the user in a pseudo-wait state, IOWAIT,
and calls the real I/0 scheduler DMKIOSQV to
schedule the I/0 on the real configuration.

4, DMKCCHTR returns control to

DMKIOSQV queues the request for operation on the real
channel, control unit, and device correspcnding to the
one addressed by the user. When the real SIO is
issued, DMKIOS takes the user out of IOWAIT and
reflects the condition code for the SIO if it is zero.
If it is not zero, the operation is further analyzed by
DMKVIOIN. In any case, DMKIOSQV returns control to
DMKVIOEX, which passes control to DMKDSPCH.

Method of Operation 53

Reflect

DMKPRGIN

Program
Interrupt
lant

to User

‘ DMKDSPCH >

Perform
Subsequent
Analysis

DMKVCNEX

Virtual

DMKVSPEX

Virtual
Spooling
Manager

DMKPRVLG DMKCCWTR
Privileged
Operation Translate
Handler CCWs
DMKIOSQN
Schedule
/o
Request

l

(DMKDSPCH

DMKVIOEX

i

Virtual 1/O
Processor

-

DMKDSPCH ’

‘ DMKDSPCH ’

Figure 2. Overview of a Virtual SIO

Console
Simulation

‘ DMKDSPCH ’

IBM VM/370: Control Program Logic 54

OTHER VIRTUAL I/O INSTRUCTIONS: Other privileged I/O

instructions are handled directly by DMKVIOEX. The
general method used is to scan the virtual channel,
control unit, and device blocks in the same manner as
for +the SIO and to reflect the proper status and
condition to the user. 1In some cases (TIO), the status
of the addressed components are altered after the
status is presented.

If the operation active on the wvirtual device is
actually in progress in the real equipment, the
simulation of a HIO or HDV is somewhat more involved,
since it requires the actual execution of the
instruction. In this case, the active operation is
halted and the resultant condition code/status is
returned to the user.

VIRTUAL CHANNEL-TO-CHANNEL ADAPTER: The virtual

channel-to-channel adapter (CTCA) is simulation that
permits data transfer and control communication between
two selector channels, either on two distinct
processors or two channels on a single processor. Data
transfer is accomplished via synchronized complementary
I,/0 commands (for example, read/write, write/read)
issued to bcth parts of the CTCA. Each part of the
CTCA is identical and the operation of the unit is
completely symmetrical. The CTCA occupies an entire
control-unit slot on each of the two channels attached.
The low-order four bits of the wunit address (device
address) are ignored completely and are not available
for use.

The VM/370 control program support for virtual CTCA
includes all status, sense data, and interrupt
presentation logic necessary to simulate the operation
of the real CTCA. Data transfer, command byte
exchange, sense data, and status data presentation for
the virtual CTCA is accomplished via storage-to-storage
operations (MVCL, etc.). No real I/0 operations
(excluding paging I/0) nor I/0 interrupts are involved.
Unit errors or control errors cannot occur.

VIRTUAL SELECTOR CHANNEL I/O REQUESTS: The CCW

translator, DMKCCWTR, is called by the virtual machine
I/0 executive program (DMKVIOCEX) when an I/O task block
has been created and a 1list of virtual CCWs associated
with a user's SIO request must be translated into real
CCWs.

Diag. 1B3.9. Virtual I/O Request

The virtual machine issued a S10, HIO, TIO, or TCH

From (these are privileged instructions) and a program check
DMKPRV interrupt occurred. DMKPRG passed control to
DMKPRVLG
INPUT PROCESS OUTPUT
VMBLOK DMKVIOEX — Virtual Machine 1/0 Request User’s Page 0
Locate virtual blocks via DMKSCNVU
VCHBLOK
If device is busy
/. Get user's page 0 via DMKPTRAN
VCUBLOK

/.

VDEVBLOK

[1oBLOK >

User’s

CCWs
Data

Determine device type.

If console

If spooling

If neither, build an IOBLOK via DMKFREE

Call DMKCCWTR to translate user’s CCWs to
real CCWs

Call DMKIOSQYV to schedule 1/0 request on the
real device

=

l 10BIRA
(DMKVIOIN,
Interrupt
Return

Address
Translated

CCWs
Data

DMKVCNEX
Diag. 7B1

DMKVSPEX
Diag. 4B1

Diag.28

Method of Operation

55

self-modifying channel
program is completed, DMKUNTIS is called by DMKIOS.
When retranslation of 0S ISAM CCWs is required, the
self-modifying channel program checking portion of
DMKCCWTR calls DMKISMTR.

When the I/0 operation from a

DMKCCHWTR operates in two phases:

e A scan and a translate phase.

e A TIC-scan phase, if the ISAM option was chosen.
channel program checking function is

A self-modifying
also included.

The scan and translate phase analyzes the virtual CCW
list. Some channel commnands require additional
doublewords for control information (for example, seek
addresses). Additional control words are also allotted
(in pairs) if the data area specified by a virtual CCW
crosses 4096-byte page boundaries, or if the virtual
CCW includes an IDA (Indirect Data Address) flag.

Space is obtained from DMKFREE for the real CCW list,
and the translation phase then translates the virtual
CCW 1list into a real CCW 1list. TIC commands that
cannot be immediately translated are flagged for later
processing by the TIC-scan phase. A read or write
command that specifies data crossing 4096-byte
boundaries is revised to include an IDA flag that
points to an Indirect Data Address List (IDAL) and a
pair of words for each 4096-byte page, in which each
word handles a data-transfer of 2048 bytes (or less).
The real CCW is flagged as having a CP-generated IDA.
DMKPTRAN is called (via the TRANS macro) to lock each
4096-byte page.

If the real CCW string does not fit in the allocated
free storage block, a new block is obtained. The old
block is transferred and adjusted before being

released. The translation continues with the new block.
The process is repeated as needed to contain the real
CCW stringe.

Virtual CCWs having and IDA flag set are converted to
use translated addresses for each IDAW (Indirect Data
Address Word) in the virtual IDAL. DMKPTRAN is called

for each IDAW. The CCW flagged as having a wuser (but
not CP) generated IDA.
o/ N

IBM VM/370: Control Program Logic 56

The TIC-scan phase scans the real CCW list for flagged
(untranslated) TIC commands and creates a new virtual
CCW list fcr the untranslated commands. Scan-translate
phase processing is then repeated. When all virtual
CCWs are translated, the virtual CAW in the IOBLOK task
block is replaced by the real CAW (that is, a pointer
to the real CCW list created by DMKCCWTR), and DMKCCWTR
returns control to DMKVIOEX. The user protection key
is preserved.

0S ISAM Handling by DMKISMTR: Because many of the 0S
PCP, MFT, and MVT ISAM channel programs are
self-modifying, special handling is required by the
VM/370 control program to allow virtual machines to use
this access method. The particular CCWs that require
special handling have the following general format:

0 2) 6 8
¥ 1
A | READDATA C+7 10 bytes |
| | 1 |
B | TIC to E]
| | | | |
c 1 | | | |
i | | | |
D | | | | |
| | | | |
E | SEEK: SEEK head on D |
| | | |
F | SEARCH on D+2 |
L ']

The CCW at A reads 10 bytes of data, the
which forms the command code of the CCW at E. In
addition, the data read in forms the seek and search
arquments for the CCWs at E and F. After the CCW
string is translated by the VM/370 control program it
usually is in the following format:

last byte of

0 2 4 6 8
¥ L]
1 READDATA C+7 10 bytes 1
| | | | |
2 | TIC to 3 |
L Jd
L] L]
3 | SEEK: SEEK head on 6 |
| | | l
4 | SEARCH on D+2 |
| | | |
5 1 etc. | |
| |
| |
[N J

|
| = ISAM word

In order to accomplish an efficient and non-timing
dependent translated operation for 0S ISAM, the virtual
CCW string is modified in the following manner.

DMKISMTR is <called by DMKCCWTR if, during normal
translation, a CCW of the type at 1 is encountered.
The scan program locates the TIC at 2 by searching the
translated CCW strings. The TIC at 2 locates the seek
at 3.

The virtual address of the virtual seek CCW at E is
located from the RCWTASK header. Three doublewords of
free storage are obtained and the address of the block
is saved in the ISAM control word at 5. The three
doublewords are used to save the following information
from the translated CCW strings and from the users
virtual storage.

Before After

Ll 1
| address of | first word of |
| TIC at 2 | TIC at 2 i
address of	first word of
SEEK at E	SEEK at E
first word of	address of
CCW at F	CCW at 4
L J

The TIC at 2 is altered to TIC to the virtual CCW at E.
The CCW address field at E is translated to reference
D. The four bytes at F are modified to a TIC to the

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

CCHWs starting at 4. The completed CCW¥ string has the
following format:

0 2 4 6 8
r 1
1 1 READDATA C+7 10 bytes |
| | | |
2] TIC to E |
L)
L} 1
3 i I not used | |
| | | | |
4 | SEARCH on D+2 |
| | | | |
5 1 | etc. | |
| | | |
6 | | | ISAM WORD |
L J
TRANSLATED CCHs
0 2 4 6 8
T | |]
A | READDATA C+7 10 bytes |
| | | 1 |
B | TIC to E |
| | I | |
c 1 | | | |
| | 1 | |
b | | | | |
|- | | | |
E | SEEK: SEEK head on D |
| | | | |
F 1 TIC to U |
L]

This interrupt return address in the IOBLOK is set to
DMKUNTIS. DMKUNTIS restores the data to its original
format from the three doubleword extension and releases
the block. Normal I/0O handling is resumed by DMKVIO
and DMKUNT.

The module DMKIOS handles the I/O requirements of all
system devices except for the low-speed lines that

Method of Operation 57

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973

serve as user logon consoles. Scheduling and interrupt
supervision for these devices is essentially a
synchronous process and does not require the queuing
and restart services of DMKIOS; it is therefore handled
by the module DMKCNS.

REAL I/0O CONTROL BLOCKS

In order to control the activity of the I/0 devices of
the system and schedule I/0 requests upon them, I/O
control uses several types of control blocks. These
blocks can be separated into two basic types:

e Static blocks that describe the components of the
I/0 systenm.

e The dynamic blocks that represent active and pending
requests for I/0 operationms.

The I/0 components of the real system are described by
one control block for each channel, control unit, and
device available to the control program. Units present
but not represented by control blocks are not available
for either user initiated or control program initiated
operations.

RCHBLOK: For each channel attached to the system there
exists a Real Channel Control Block (RCHBLOK) which
contains:

its attached

e The channel portion of the address of

units,,
e Status flags reflecting its availability for
scheduling.

e A two-way queue anchor pointing to the 1list of I/0

requests waiting for its services.

IBM VM/370: Control Program Logic 58

In addition, each RCHBLOK contains 32 half-word
indexes, arranged in ascending address order, that
represent the displacement into the Real Control Unit
table of the control blocks for the contrcl units
attached to the channel. The 32 entries are required
because the control unit address may be made up of 5
bits from the unit address. To locate the control block
for a given unit, it is only necssary to:

e Index into the table in the RCHBLOK a displacement
equal to twice the control unit address.

e Load the index value.

e Add the value to the base address of the Real
Control Unit Table.

RCUBLOK: The Control Unit Table is composed of Real
Control Unit Blocks (RCUBLOK), one for each Control
unit on the system. These blocks are similar to the
RCHBLOK in that they contain the control wunit portion
of the address and status flags, and a pointer to a
queue of I/0 requests. In addition the RCUBLOK
contains a pointer to the RCHBLOK for the channel to
which it is attached. The RCUBLOK contains a table of
16 halfword entries that represent the displacment into
the Real Device Table of its attached devices. This
table is referenced in the same manner as the table in
the RCHBLOK.

Real Device Control Block (RDEVBLOK),
device portion of the unit address and status flags
similar to those in RCHBLOK and RCUBLOK. There is also
a pointer for those operations that are waiting for the
device to become available. Fields that appear in the
RDEVBLOK and not in the other blocks include a pointer
to the I/0 request that 1is currently active on the
device, SIO counts, and a pointer to error and sense
information. The RDEVBLOK contains a pointer to the
RCUBLOK for +the control unit to which it is attached
and fields of device dependent information which do not
affect the operation of I/0 control.

contains the

Diag. 1B4.0 Real I/0 Control Blocks

The real hi fig! ion is rep d by a set of
related control blocks. These blocks are:

® part of the VM/370 nucleus

©® built from macros in assembly of DMKRID

® |oaded at sy IPL and initialized then for operation.

There is one control block per channel, per control unit, and
per device.
The characteristics of VM/370 real 1/0 control are:
® Block multiplexing (BMPX) with RPS (Rotational
Position Sensing) is used.
©® Multi-path scheduling (2 ch | switching) is not used.
® All 1/O operations are handled by \7M/370 scheduling
and interrupt handling.

DMKRIOCT — Real Channel Table
See Appendix X for a plete description

| N
XXXX ~negative value (FFFF)

indicates no channel exists

—positive value is an index
to the RCHBLOK

RCHBLOK — Real Channel Block

Channel identification
Scheduling Control

.

.

.

xxxx_| xxxx_]| xxxx | xxxx |\ controt nit
Xxxx | xxe XXXX |f Index Table

| XXXX l _if negative (FFFF), no control unit exists
if positive, that value is an index to tne RCUBLOK

Relationship of Real 1/0 Control Blocks

DMKRIOCT (part of DMKRIO)

RCHBLOKs

RCUBLOKs

RDEVBLOKs

«J

]

N

RCUBLOK — Real Control Unit Block

Control Unit identification
Scheduling Control

.
.
.

Index

xxxX_ | xxxx | xxxx | xxxx }Device

XXXX,

XXXX

XXXX | XXXX |f Table

if negative (FFFF), no device exists
if positive, that value is an index to RDEVBLOK

RDEVBLOK — Real Device Block

Device identification
Scheduling Control
Terminal Control
Spooling Control
Dedicated Control
Error Recovery
Allocation Control

.

Part of the RDEVBLOK pertains to functions that are
device independent; that part of the RDEVBLOK is used
in the same way for all devices. However, some of the
fields in the RDEVBLOK have multiple uses, depending
on the device type and function.

Method of Operation

59

IO0OBLOK: I/0 requests that are active in the system are
represented by IOBLOKs. There is one IOBLOK for each
operation (that is, channel program) to be executed.
The IOBLOK is constructed by the requesting task and

contains such information as:
e The identity of the requestor
e The address of the channel program to be executed

e The address to which control is to be returned upon
completion of the operation

In addition, the IOBLOK contains status flags that
indicate the current state of the operation (such as,
whether or not an error has occurred, if an Error
Recovery Procedure (ERE) is in control, and the
condition returned frcm the SIO0) and the CSW
associated with the interrupt that signals the end of
the operation. Since IOBLOKS are queued off various
I/0 control blocks, they also contain forward and
backward queue pointers. DMKIOS builds in them the real
device address of the unit on which the operation is
started.

In general, the IOBLOK representing a given operation
progresses through the system by being queued, in turn,
from device, control unit, and channel blocks wuntil a
path is at 1last free to the device. A SIO is then
issued. After the operation is complete, the IOBLOK is
dequeued from the RDEVELOK and stacked on a gqueue
maintained in the dispatcher, DMKDSP. Each time the
dispatcher is entered, the entries on the queue are
unstacked and control is passed to the point specified
in the Interrupt Return Address (IOBIRA). After I/0
control stacks the IOBLOK for the given task, it
attempts to restart all of the components that have
been freed ky the completion of the operation.

I/0 COMPONENT STATES

The I/0 components represented by the control blocks
described in the section "Real I/0 Control Blocks" are
in one of four states and the state is indicated by the
flag bits in the block status byte. If the component is
not DISABLED, it is either BUSY, SCHEDULED, or
AVAILABLE.

IBM VM/370: Control Program Logic 60

If the DISABLED bit is on, the component has been taken
offline by the operator or the system and is at least
temporarily unavailable. A request to use a disabled
component causes the TIOBLOK to be stacked with an
indication of condition code 3 on the SIC and the real
SIO is not performed.

A component is BUSY if it is transferring data (in the
case of a channel or control wunit), or if it is in
physical motion (in the <case of a device). If a
component is BUSY, the IOBLOK for the request is queued
from the control block representing that component.

A component is SCHEDULED if it is not BUSY but will
become RUSY after a higher 1level component in the
subchannel path becomes available and an operation is
started. For example, if a request is made to read
from a tape drive and the drive and control wunit are
available, but the channel is BUSY, the IOBLOK for that
request is queued from the RCHBLOK for the BUSY channel
and the RCUBLOK and RDEVBLOK of the drive and control
unit are marked SCHEDULED. Future requests to that
drive are queued from the RDEVBLOK for the SCHEDULED
device. When the channel completes the operation, the
next pending operation is dequeued and started; the
SCHEDULED control unit and device are then marked BUSY.

The 1IOBLOKs for various I/0 requests indicate the
status of that request by a combination of the status
bits in the IOBLOK and the queue in which the block
resides. In general, an IOBLOK is queued from the
control block of the highest level componenent (taken
from device up to channel) in the subchannel path that
is not available. Once the I/C operation is started,
the IOBLOK is chained from the active IOBLOK pointer
(RDEVAIOB) in the Real Device Control Block. Flags in
the IOBLCK status fields may also indicate that a unit
check has occurred, that a sense is in progress, or
that a fatal 1I/0 error (unrecoverable) has been
recognized by ERP. After I/O control releases control
of the TITOBLOK, it is stacked on the queue of IOBLOKs
and CPEXBLOKs anchored at DMKDSPRQ in the dispatcher
and control is passed to the second level interrupt
handler whose address is stored in IOBIRA.

. -

I/0 INTERRUPTS

I/0 interrupts are usually either synchronous or
asynchronous. Asynchronous interrupts indicate the
change in status of an I/0 component from the not-ready
to ready state or busy to not-busy state. In either
case, 1if the affected component has any pending
requests gqueued from its control block, they are
restarted and whether or not the given interrupt is
processed any further depends upon the status of the
interrupting component. Channel available and control
unit end type interrupts restart the interrupting
component. An asynchronous device end is passed to the
user if the device is dedicated; otherwise, the device
is restarted.

An interrupt is considered to be synchrconous if the
interrupting device has a ncnzero pointer to an active
IOBLOK. 1In this case the processing that occurs is as
follows:

e If a unit check has <cccurred, a SENSE is scheduled,
and when the SENSE is completed, the appropriate ERP
is called.

e If an ERP is currently in control of the task
(indicated by a flag in the IOBLOK), return the
ICBLOK to the appropriate ERP.

e If the operation is incomplete (for example, channel
end is received without device end), the 1IOBLOK is
copied and the copy is stacked but the original
ICBLOK remains attached to RDEVAIOB to receive the
final interrupt; then, the control wunit and the
channel is restarted.

e If the operation is ccmplete (that is, the device is
available), the IOBLOK is unhooked from the device
and stacked, and the device, control wunit and
channel are restored.

The restart operation usually degqueues the next IOBLOK
that is queued to the restarted component and queues it
to the next higher component in the subchannel path.
When the channel level is reached, a SIO is issued and
exit is taken to the dispatcher after handling any
non-zero condition codes as previously described.

-®

Error recovery is attempted for VM/370 control program
initiated I/0 operations to its supported devices and
for wuser-initiated operations to control program
supported devices which use a diagnose interface. The
primary control blocks used for error recovery are the
RDEVBLOK, the IOBLOK and the TIOERBLOK. In addition,
auxiliary storage 1is sometimes used for recovery
channel programs and sense buffers.

The initial error is first detected by the 1I/0
interrupt handler which performs a SENSE operation if a
unit check occurs. Unit check errors are then passed to
an appropriate ERP. If a channel check is encountered,
the channel check interrupt handler determines whether
or not retry is possible and pass control to an ERP
through the I/0 interrupt handler. TCASD errors are
processed as described below.

CHANNEL ERRORS
. Channel control check is treated as seek check.

It is retried 10 times.

. Interface control check is treated as seek check.
It is retried 10 tinmes.

. Channel data check 1is treated as data check. It
is retried 10 times.

UNIT CHECK ERRORS

Equipment check: Retry the operation once.

No record found and missing address marker: Recalibrate
and retry the channel program 10 times.

No record found: Execute a READ HOME ALDRESS and check
hcme address against seek address. If they are the
same, consider the error permanent. If they are not
equal recalibrate and retry the channel program 10
times.

Method of Operation 61

IBM VM/370: Control Program Logic 62

Diag. 1B4.1. I/0 Interrupt Handler

1/0
Interrupt

PROCESS

DMKIOSIN — Process all Real 1/0 Interrupts

If a virtual machine is running at the time of interruption save
CPU status in the active VMBLOK
Call DMKSCNRU to locate RCHBLOK, RCUBLOK,
RDEVBLOK — (IOBLOK will be located and unchained
from RDEVBLOK)
1/0 Interrupt Interpret status — Restart 1/0, issue SENSE, or schedule

Psw error routine according to status

INPUT

csw
e From dedicated channel Smmp»(DMIKVIODC ouTPUT
® From unknown channel, the interrupt is 10BLOK
- ianored DMKDSPCH
Real 1/0 Device 9 Diag.2B
Blocks

Contains Interrupt
Status
RCHBLOK(s)
gg‘ée'éfgg(szs, >| ® From an unsolicited device end, build an

10BLOK I0BLOK and for: Console (T/P) >
Unit Record (U/R), real spooling-
® " From a solicited device end > (DMKSTKIO) to stack IOBLOK

e From a channel check error, the channel check
handler DMKCCHNT
o g GHAD)

o From adedicated device error, for either CP or a
virtual machine (DMKVCH), the ERP for:

DASD Sl (DMKDASER) Tape EEEp (DMKTAPER
Recoverable error? No, record error gumlpp (DMKIOERR

® Yes DMKSTKIO to stack IOBLOK

DMKDSPCH
Diag. 2B

)

Seek check: Retry the operation 10 times.

console and
will be

Intervention required: Issue a message to
wait for solicited device end. This procedure
repeated once.

Bus out check: Retry the operaticn 10 times.

Data checks: Retry the operation 256 times, with a

recalibrate being executed every 16th try.

Overrun: Retry the operation 10 times.

Environmental data present: Issue a buffer unload

command and retry the operation.

Track condition check: This error should not occur. The
VM/370 control program dces not use alternate tracks in
its paging or spooling management. When a disk pack is
formatted, any track that is marginal is marked as
permanently allocated and, therefore, made unavailable
for use by the VM/370 control progranm.

The error recovery routine keeps track of the number of
retries in the IOBRCNT field of the IOBLOK. This count
is used to determine if a retry limit has been exeeded
for a particular error. On initial entry £from DMKIOS
for an error condition, the count 1is zero. Each time a
retry is attempted the count is increased by one.

The ERP preserves the original error CSW and sense
information by placing a pointer to the original
JOERBLOK in the RDEVBLOK. Additional IOERBLOKs, which
are received from DMKIOS on failing restart attempts
are discarded. The original TIOERRLOK is thus preserved
for recording purposes.

If the specified number cf retries fails to correct the
error situation, the operator is notified and control

is returned to DMKIOS. DMKIOS is notified of the
permanent error by posting the IOBLCK
(IOBSTAT=ICBFATAL). The error is recorded by DMKIOS

via CMKIOERR.

If the error is corrected by a restart, the temporary
or transient error is not recorded. Control is
returned to DMKIOS with the error flag off.

Before returning control to DMKIOS on either a
permanent error of a successful recovery, the ERP frees
all auxiliary storage gotten for recovery CCWs,
buffers, and IOERBLOKS.

The DMKIOS interface with the ERP uses the IOBSTAT and
IOBFLAG fields of the IOBLOK to determine action
required when the ERP returns to DMKIOS.

When retry is to be attempted the ERP turns on the
restart bit of the IOBFLAG field. The ERP bit of
IOBSTAT field is also turned on to indicate to DMKIOS
that the ERP wants control back when the task has
finished. This enables the ERP to receive control even
if the retry was successful and allows the freeing of
all storage gotten for CCWs and temporary buffers. The
TOBRCAW is set to the recovery CCW string address.

In handling an intervention required situation, the ERP
sends a message to the operator and then waits for the
device end to arrive. This is accomplished by a return
to DMKIOS with the ERP bit in the IOBSTAT field set on
and the IOBSTRT bit in the IOBFLAG field set off. When
the device end interrupt arrives, the original channel
program which was interrupted is then started.

The ERP flags of the IOERBLOK are also used to indicate
when special recovery is being attempted. For example,
a READ HOME ADDRESS command when a no record found
error occurs.,

The other two indications are
explained in Figure 3.

self explanatory and are

Method of Operation 63

T 1
| Field IAction to be |
IOESTAT	IOBFLAG	IOBSTAT	Performed
IOBERP	IOBRSTRT	IOBFATAL	by DMKIOS
1	0	0	Return control
		jwhen solicited	
			device end
		larrives	
1	1	0	Restart using
]]	IOBRCAW	
			l
O	0	1	Permanent I/0
			Error
1 O | 0 | 0 |Retry successful]
L J

Figure 3. Summary of IOB Indicators

If the error is wuncorrectable or intervention is
required, the ERP calls DMKMSW for operator awareness.
The specific message is identified in the MSGPARM field
of the IOERBLOK.

Tape Error Recovery, ERP (DMKTAP)

Error recovery is attempted for user-initiated tape I/0
operations to VM/370 control program supported devices
that use the diagnose interface. The primary control
blocks used for error recovery are the RDEVLOK, the
IOBLOK, and the TIOERBLOK. In addition, auxiliary
storage is used for recovery channel programs
(repositioning and erase).

The interrupt handler, DMKIOS, performs a SENSE
operation when a unit check occurs. Tape errors are
then passed to this DMKTAP. The sense information
associated with a wunit check 1is contained in the
IOERBLOK. If a channel check 1is encountered, the
channel check interrupt handler determines if retry is
possible and passes control to the ERP through the I/0
Interrupt Handler.

When an error is encountered and ERP receives control,
DMKTAP determines if this the first entry into the ERP

IBM VM/370: Control Program Logic 64

for this task. The IOBRCNT (IOB error count) field of
the IOB 1is zero. On this first entry, the pointer to
the IOERBLOK 1is placed in the RDEVIOER field of the
RCEVBLOK This preserves the original error CSW and
sense information for recording. Thereafter, IOERBLOKS
are discarded before a retry is attempted or a
permanent error is passed to IOS.

The ERP looks for two other specific conditions. If the
error count field is not zero, entry must be due to a
recovery attempt. Thus, it may be a solicited device
end to correct an intervention required condition or a
retry attempt for either tape repositioning or channel
program re-execution.

The ERP keeps track of the number of retries in the
ICBRCNT field of the 1IOBLOK to determine if a retry
limit has been exceeded for a particular error. If the
specified number of retries fails to correct the error,
the error is recorded and DMKIOS is notified of the
permanent error by turning on a status flag in the
IOBLOK (IOESTAT=IOBFATAL).

If the error is corrected by DMKTAP, the temporary
error is not recorded and control is returned to DMKIOS
with error flags all off. When repositioning is
required to attempt recovery, additional flags
(EPPFLAGS) are «contained in the IOERBLOK to indicate
paths for specific errors (that is, data check on write
must reposition, erase, and then reissue original
channel progranm).

A1l error recovery is started the same except for
intervention required errors. The IOBFLAG is turned on
to indicate RESTART (IOBFLAG=IOBRSTRT), and the IOBRCAW
(IOBLOK Restart CAW) is filled with the restart channel
address word. In addition, an IOBSTAT flag is turned on
to indicate that the ERP is in control so that control
can be returned to ERP during all tape error recovery
(IOBSTAT=IOBERP). In the case of an intervention
required error, the ERP sends a message to the
orerator, and then returns to DMKIOS with indicatiomns
that tell DMKIOS the ERP is waiting for a device end on
this device. This is done by clearing the restart flag
and returning to DMKIOS with only the IOBERP flag on.

When ERP has determined a permanent. error situation or
successfully recovered from an error, all auxiliary

storage gotten for recovery CCWs, buffers, and
IOERBLOKs is freed before a return is made to DMKIOS
(see Figure 3 for a summary of the IOB indicators).

If the error is uncorrectable or operator intervention
is necessary, the ERP calls the message writer to write
the specific message.

Virtual I/0 Interrupts

When an I/0 interrupt is received (see Figure 4), the
IOBLOK is stacked for dispatching and control is passed
to the address specified in the TIOBIRA (Interrupt
Return Address) field. For operations requested by
DMKVIOEX, the return address 1is DMKVIONT (Virtual
Interrupt Return Address). When DMKVIONT receives
control from the dispatcher, it 1loads the virtual
address of the wunit with which the interrupt is
associated from the IOBLOK and calls DMKSCNVU to locate
the virtual device control blocks. DMKVIONT then tests
the IOBLOK status field to determine the cause for the
interrupt. If the block has been unstacked due to an
interrupt, the field is zero. If the operation was not
started, it contains the condition code from the real
SIO0.

Note: The VIRA should nct see a real condition code 2
as the result of a SIO, since channel busy conditions
are detected and reflected before any real I/0
operation is attempted.

A condition code 3 is reflected to the user and exit is
taken to the dispatcher. For condition code 1, the CSW
status field in the IOBLOK is examined to determine the
cause for the CSW stored condition. The status is
reflected to the user and various components of the
virtual configuration may be freed, if the status so
indicates. For example, if the CSW status indicated
both channel end and device end, the operation was
immediate and has completed. Thus, the CCW string
(real) may be released and all virtual components
marked available.

The CSW status status returned for a virtual interrupt
must be tested in the same manner, with the additional
requirement that the status be saved in the affected

virtual I/0 control blocks and that the CSW be saved in
the VDEVCSW field for the device causing the interrupt.
If the unit check bit is on in the status field, the
sense information saved in the associated IOERBLOK
(pointed to by the IOBLOK) must be retained so that a
sense 1initiated by the virtual machine receives the
proper information.

In any case, when an interrupt is received for a
virtual device, a bit in the interrupt mask, VCUDVINT,
for the device's control unit is set to one. The bit
that is set is the one corresponding to the relative
address of the interrupting device on the control unit.
For example, if device 235 interrupts, the fifth bit in
the VCUDVINT mask in the VCUBLOK for control unit 30 on
channel 2 1is flagged. Similarly, the bit in the
VCHCUINT in the affected VCHBLOK is also set; in this
case, bit 3 in VCHBLOK for channel 2. If the interrupt
is a channel class interrupt (PCI or CE), the address
of the interrupting wunit (235) is stored in the
VCHCEDEV field in the VCHBLOK. The final interrupt
flag is set in the VMPEND field in the VMBLOK for the
interrupted user; the bit set corresponds to the
address of the interrupting channel. The next tinme,
the user is dispatched and becomes enabled for I/O.

A task that requests an I/O0 operation must specify the
device on which the operation is to take place and must
provide an IOBLOK that describes the operation. Upon
entry to DMKIOS, Register 10 must point to the IOBLOK.
The TIOBLOK must contain at least a pointer to the
channel program to be started in IOBCAW and the address
to which the dispatcher is to pass control in IOBIRA.
In addition, the flags and status fields should be set
to zero. If the operation is a VM/370 control progranm
function such as spooling or paging, the entry point
DMKIOSQR is called. If the requestor is the virtual
I/0 executive (OMKVIDEX) attempting to start a user
operation, the entry point DMKICSQV is called and some
additional housekeeping is done. In either case, an
attempt is made to find an available subchannel path
from the device to its control wunit and channel. If a
component in the path is BUSY or SCHEDULED, the IOBLOK
for the request 1is queued to the control block of the
ccmponent.

Method of Operation 65

Figure 4. Overview of a Virtual I/O Interrupt

IBM VM/370: Control Program Logic

DMKUNT

Untranslate
BSW; Free
CCW List

1/0 i
Enable wait or
Interrupt problem state

\
DMKIOSIN DMKSTKIO
1/0 o Stack
Interrupt
Handler - 10BLOK

\
DMKDSPCH
Unstack
10BLOK

]

DMKVIOIN
Virtual I/O ee——— Save CSW, post pending
Interrupt interrupt in VMBLOK
Handler

\
DMKDSPCH
Dispatch s——= Unstack 1/0 interrupt.
user — PSW Store CSW, exchange
is Enable PSWs, and clear

pending status

LPSW-Run

User-Enable
Problem State

66

Diag. 1B4.2. Virtual I/0 Interrupt

Via Interrupt Return
DMKDSP
Address in [IOBLOK

PROCESS
Virtual 1/0 Interrupt
INPUT
DMKVIOIN — Translate the virtual interrupt
UNSTACKED |OBLOK Call DMKSCNVU to locate VCHBL_OK,
VCUBLOK, and VDEVBLOK for interrupting
device

10BLOK :>

I1f IOBLOK stacked due to nonzero CC on S10

’

VCHBLOK reflect condition code to user and store CSW
VCUBLOK status, then go to
VDEVBLOK

If interrupt is channel end, save CSW in VDEVBLOK

real CSW

If the device is free, also call DMKUNTFR to
return the real CCW list to free storage

0 Call DMKUNTRN to untranslate the address in the
o Flag interrupt pending in VMBLOK, VCHBLOK, and
VCUBLOK for virtual machine receiving the
interrupt

0 Save any sense bytes associated with this 1/0
operation.

OUTPUT

Located Virtual Device Blocks
for interrupting Device
VCHBLOK

VCUBLOK
VDEVBLOK

and save address of interrupting unit in the VCHBLOK.

VDEVBLOK with updated
‘Device status.

'VCHBLOK with interrupting
Virtual Device Address.

VMBLOK flagged with pending
interrupt

DMKDSPCH
Diag.2B

Method of Operation

67

Requests are usuélly queued first-in first out (FIFO),
except those:

e To moveable head DASD devices that are queued 1in
order of seek address.

e That release the affected component after initiation
(SEEKS and other control commands) which are queued
last-in first out (LIFO) from the control block.

Regardless of whether or not the operation has been
successfully started, the caller requesting the 1I/O
operation receives contrcl back from DMKIOS. If a free
path to the device is found, the unit address is
constructed and an SIO is issued. If the resulting
condition code is =zero, control is returned to the
caller; othervwise, the code is stored in the
requestor's IOBLOK along with any pertinent CSW status,
the IOBLCK 1is stacked, any components that Lkeconme
available are restarted, and control is returned to the
caller.

ordered Seek Cueueing: Requests to start I/0 on systenm
devices are normally handled FIFO. However, requests to
moveable head DASD devices are queued on the device in
ascending order by seek address. This ordered seek
queuing is performed to minimize intercylinder seek
times and to improve the overall throughput of the I/0
systen.

The VM/370 control program assumes that very few
virtual machines will do chained seeks; hence, the
first logical address represents where the arm will be
positioned wupon completion of the I/0 operation.
Ordered seek queueing is based on the relocated real
cylinder. DMKIOS uses the cylinder location supplied in
IOBCYL for ordered seek queuing. This field is
initialized by the «calling VM/370 control progranm
routine for paging and spooling or by the CCW
translator for virtual I/0. The CCW translator DMKCCW
supplies the IOBCYL value in the following manner.

e Read IPL record, relocated to virtual cylinder 0

e Recalitrate, issue a real recalibrate and then seek
to virtual cylinder 0

e Channel seeks, relocate to the virtual cylinder

The IOBLOK queueing subroutine of DMKIOS recognizes

IBM VM/370: Control Program Logic 68

that a request is being queued on a moveable head DASD
device by means of the device class and type fields of
RDEVBLOK. TInstead of adding the IOBLOK to the end of
the queue on the RDEVBLOK, the queueing routine sorts
the block into the queue based on the cylinder number
for the request. The cylinder number for any request to
a DASD device is recorded in the field IOBCYL. The
queue of TIOBLOKs on a real device block is sorted in
ascending order by seek address, unless the entire
device is dedicated to a given wuser. In this case,
DMKIOS does not automatically schedule the device, and
no more than one request can be outstanding at any one
time.

When an outstanding I/0 request for a device has
completed, DMKIOS attempts to restart the device by
dequeuing and starting the next IOBLOK queued on the
device. For non-DASD devices, this is the first IOBLOK
queued. However, for moveable head DASD devices, the
queued requests are dequeued in either ascending or
descending order, depending on the current position
(recorded in RDEVCYL) and the direction of motion of
the arm. If the arm is seeking up (that is, toward the
higher cylinder numbers), the queue of IOBLOKs is
scanned from the first block toward the 1last until an
ICBLOK is found with an TIOBCYL value equal to or
greater than the value in RDEVCYL, or until the end of
the queue 1is reached. At this point, the device is
flagged as seeking down and the queue is scanned from
last to first wuntil an TIOBLOK with an IOBCYL value
equal to or less than RDEVCYL is found. When IOBLOK is
found, it 1is dequeued and started. The direction of
motion is remembered in an RDEVFLAG bit and the next
request is dequeued in the down directicn until the
head of the queue is reached.

Because the queue itself is a two-way chained list, no
special handling for null or wunity set 1lists is
required, and the ordered seek algorithm returns to
FIFO queueing.

Dedicated Channel Support: One of the facilities of

the VM/370 control program allows a virtual machine to
control one or more channels on a dedicated basis. The
channels are attached to the virtual machine by using
the privileged ATTACH CHANNEL command. A virtual
machine can have one or more dedicated channels. 1In
addition, channels can be split between virtual
machines but a dedicated channel cannot be shared
between two virtual machines. For instance, channel 1

‘/'I’wt ’
~

Diag. 1B4.3. I/0O Scheduling

INPUT

10BLOK
VEDVBLOK
VMBLOK
Save Area

Fram
DMKVIOEX

DMKIOS REAL 1/0 SCHEDULING

AV

10BLOK
RDEVBLOK
Save Area

CP Generated
1/0 Request

0 Locate caller's CAW and unit address

o Issue Real SIO

)

from the RDEVBLOK and mark 1/O path busy

Condition Code =

0 - Take virtual machine out of
1/0 wait and exit to DMKDSPCH

1 - Analyze CSW status and take
approximate action

2 - Requeue 10BLOK on channel
and exit to caller

3 - Fatal error, stack lOBLOK and
return to caller

IF CC=1 and ANX 1/O component is free,
branch to the restart subroutine

Return to
Caller

DMK10SQV — Schedule and start real 1/0 OUTPUT
for a virtual machine
@ seve address of VMBLOK in 10BLOK
uw\?‘?\:/ LOK
i DEVB|
o Increment S10 count in VDEVBLOK JOBLOK
° Continue at step 0 below
DMK/OSQR — Schedule and start a CP
generated real 1/O operation
o Flag I0BLOK as CP generated 1/0
If device is busy or scheduled queue
10BLOK from the device and exit to
caller ——> otherwise 'O,B :‘ OeK Queued
RDFVBLOK for
Qehedul ion by chaining the IOBLOK Device

Marked Active
If From

Real SIO Issued

Condition Code
Returned and
Tested as Shown

SY20-0880~1, Page Modified by TNL SN20-2624, August 15, 1973

Method of Operation

69

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, ‘1973

could be dedicated to virtual machine A, and channel 2
could be dedicated to virtual machine B, or they could
be both dedicated to virtual machine A or B.

With a dedicated channel, all virtual machine device
addresses must be identical to the real machine device
addresses. For instance, virtual device 130 must be on
real device 130, and virtual device 132 must be on real
device 132. With dedicated channels, the VH/370
control program does not perform any virtual device
address mapping. With a dedicated channel in effect, a
virtual machine I/0 operation to one of the dedicated
devices on that channel results in the control program
performing the operation directly on that device and
reflecting the true condition code back to the virtual
machine. None of the I/0O operations are passed through
control program's normal channel scheduling since the
channel is completely dedicated to the virtual machine
and any conditions in the channel are a direct result
of that virtual machine's operation of that channel.

It is expected than any I/O new PSW for a virtual
machine operating system has all channels masked off.
Thus, when the VM/370 control program receives a
hardware interrupt from a dedicated channel it
immediately disables all further interrupts on that
channel. The interrupt is then vreflected to the
virtual machine. The real channel stays disabled until
the virtual machine issues an instruction to enable
that channel. At that time, the VM/370 control program
perforns a hardware function to enable the real
channel.

By using the dedicated channel feature, a virtual
machine bypasses the VM/370 control program overhead
associated with channel scheduling and virtual machine
interrupt stacking. The channel scheduling is bypassed
by performing the I/0 operation directly and the
interrupt stacking is bypassed by disabling the channel
and having the hardware perform the true interrupt
stacking.

The VM/370 control program error recording and channel
recovery procedures are still in effect for dedicated
channels. The dedicated channel support can be used in
conjunction with the Virtual=Real feature for any
virtual machine that is occupying the Virtual=Real
storage space.

IBM VM/370: Control Program Logic 70

DISPATCHER/SCHEDULER

The module that selects dispatchable users from the
population is DMKSCH, the Scheduler. The module that
tests and alters the resources of the CPU is DMKDSP,
the Dispatcher. The auxiliary routine that assists the
Scheduler and Dispatcher is the request stack
maintenance routine, DMKSTK.

In order to make decisions on both dispatching and
scheduling, the control program classes all users into
various categories, and recognizes user machines as
being in one of several states. The user categories
recognized are classed as being either interactive or
non-interactive.

® An interactive user 1is one whose use of the systen
is punctuated by regular and frequent terminal I/O,
and does not execute long CPU loops. A user becomes
eligible to enter interactive status whenever a
channel progranm for virtual console I/0 has
completed, or whenever I/0 for a dedicated or dialed
virtual telecommunications line has completed.

e A non-interactive user is one who has violated an
interactive criterion, or one who has entered an
idle wait state by entering console function mode
(equivalent to stopped state), or by loading a wait
state PSW that is not enabled for any busy channel.
The control program schedules interactive users
ahead of non-interactive users. Non-interactive
users are subdivided into several classes. Normal
non—-interactive users are scheduled via a priority
scheme described below. A user is allowed to execute
for a specified time period and he is then placed in
a list of those users who are waiting.

In order to give preference to certain classes of
users, a priority scheduling scheme allows users to be
scheduled with a priority class. The priority is a
number assigned by the directory; however, the number
may be altered by the system operator.

USER DISPATCHING LISTS AND MACHINE STATES

In order to efficiently manage the large inventory of
potential users that are logged on to the system, the
control program defines several states that a virtual
machine may occupy. The scheduler can move a virtual
machine from one state to another; however, a virtual
machine may exist in only one state at any given
instant. The control program can then make scheduling
and dispatching decisions by looking only at the subset
of users that are in the appropriate state. To
facilitate this search, it also maintains lists of
users in certain executable states.

A user's virtual machine may be in one of the following
states:

State Meaning
1 Interactive and dispatchable (in queuel, in
DISPATCH list)

2 Interactive and not dispatchable (in queueft,
not in DISPATCH list)

3 Interactive and eligible for queuel, but queuel
is full (waiting for queuel, in ELIGIBLE list)

4 In wait state with terminal read or write
active

5 Non-interactive and dispatchable (in queue2, in

DISPATCH list)

6 Non—-interactive and not dispatchable (in
queue2, not in DISPATCH list)

7 Non-interactive and eligible for queue2, but
queue2 is full (waiting for queue2, in ELIGIBLE
list)

8 Idle - waiting for asynchronous I/0 or external
interrupt, or stopped (in Console Function
Mode)

Two lists of users are maintained by the scheduler:

e The DISPATCH list
e The ELIGIBLE list

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973

Entries on the DISPATCH list are the VMBLOKS for those
users in states 1 and 5, and represent the users that
can be run at any given time. The DISPATCH list is
sorted by dispatching priority, which is the ratio of
CPU time to wait time over the life of the current user
task. A task is defined as that execution which takes
place between terminal reads or entry to enabled wait
(that is, movement from state 4 or 8 to state 1) and is
re-projected for a user each time he is dropped from a
queue. Users entering state 1 always have a priority of

The ELIGIBLE list is composed of those users in states
3 and 7; these users are potentially executable but due
to the current load on the system they are not allowed
to compete for the CPU. As soon as a user in the
DISPATCH 1list 1is dropped from gqueue, the highest
priority user(s) in the ELIGIBLE list is added to the
DISPATCH 1list, subject to the restriction that his
projected working set must not exceed the remaining
system capacity. The ELIGIBLE 1list has two components;
a section composed of those virtual machines waiting
for Q1 (interactive) and a section composed of those
virtual wmachines waiting for (@2 (non-interactive).
Each section of the list is sorted by scheduling
priority, which is determined at the time the virtual
machine is added to the ELIGIBLE list, as follows:

1. The virtual machine's projected working set size,
calculated the last time it was dropped from a
queue, is expressed as a percentage of the amount
of main storage available for paging. This
percentage, usually between 0 and 100, is
multiplied by the Paging Bias Factor (stored at
DMKSCHPB) .

2. The virtual machine's user priority (the priority
set by the directory or the class A “SET PRIORITY"
command) is multiplied by the User Bias Factor
(stored at DMKSCHUB), and is added to the Paging
Bias calculated in step 1.

3. The sum of Paging and User Bias is divided by the
sum of the Bias Factors to obtain a weighted
average.

4. A base priority is obtained by storing the TOD
clock and wusing the high order word, which
increments by 1 approximately once per second.
This word is then modified by shifting it left or

Method of Operation 71

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

5'

The VMBLOK is then sorted
of the
The effects of the various

right based on the Priority Delay Factor (stored
at DMKSCHPD). If DMKSCHPD is positive, it
indicates a right shift, thereby increasing the

delay interval of the base priority; while a
negative value indicates a left shift.
The weighted average obtained in step 3 is then

logically added to the adjusted base obtained in

step 4.

If the virtual machine is entering Q2 for the
first time after being dropped from Q1, the
Interactive Bias Factor (stored at DMKSCHIB) is
subtracted from the priority obtained in step 5.
If the virtual machine is entering Q1, or if it

was last dropped from Q2, the Interactive Bias is

not applied.

The result of steps 1 thorough 6 is the scheduling
or eligible 1list priority, and is stored in the
VMEPRIOR field of the VMBLOK.

into the appropriate section
ascending value of VMEPRIOR.
biases and the delay factor

ELIGIBLE list in

are illustrated by the following examples.

1.

Assume that two virtual machines are to be added
to the ELIGIBLE 1list for Q2. The Paging Bias
Factor is 1, the User Bias Factor is 1, and the

Virtual machine "“A"
size of 80 percent of

Priority Delay Factor is 0.
has a projected working set
available storage and a user priority of 50.
Virtual machine "B" has a projected working set
size of 20 percent of available storage and also

has a wuser priority of 50. The biases are
obtained as follows:
Paging User Weighted
User _Bias_ _Bias_ Bias__
A 80 X1 +50X 1 = 130/2 = 65
B 201 +50X%x1 =70/2 = 35

If "A" is added to the
0, its eligible list priority witll be 65.
Priority Delay Factor is 0, "B" will be added
wpw provided that "B" is eligible for
list within the next (65-35) 30

eligible list at base time
If the

entry to the

1973 IBM VM/370: Control Program Logic 72
seconds. If the Priority Delay Factor is set to
+1, the base will be incremented once every two
seconds. Therefore, although the bias difference
is still 30, the delay time is now 60 seconds.

2. In order to force "A" to be given a weighted bias
equal to "B,® a priority differential is
calculated as follows:

80 + A 20 + B
= -- 3+ A =B - 60
2 2
Therefore, for the biases to be equal, "A" must
have a priority of 60 less than "B." For example,
if waA®" is given a priority of 10 and "B" is given
a priority of 70, the biases would compute as
follows:
Paging User Weighted
User Bias_ Bias Bias__
A 80 X 1+ 10X 1 = 90/2 = 45
B 20 X1+ 70X 1 = 90/2 = 45

3. The 1large difference in priorities «could be
lessened by increasing the User Bias Factor. If
the User Bias Factor is set to 3 instead of 1, the
calculated priority differential is as follows:

80 + 37 20 + 3B
= -— ; 3(B- 1) =60 ; A =B - 20
4 4
Now, "A" requires a priority of only 20 less then
"B" to achieve parity. For example:
Paging User Weighted
User _Bias_ Bias_ __Bias__
A 80 X 1 + 30 X 3 = 170/4 = 42
B 20X 1 + 50 X 3 = 170/4 = 42
The above examples illustrate the following general
points about the use of the bias factors, the delay
factor, and the user priority value:

1. The Paging and User Bias Factors are a measure of

the relative importance of the bias value. A high

user bias will allow greater discrimination via
the assigned priority; while a high paging bias
makes storage requirement the primary scheduling
parameter.

2. The user priority value, in the directory, is the
means by which the paging priority may be
overriden, and the means through which selected
users will obtain improved performance.

3. The Priority Delay Factor is the measure of the
impact which the paging and user biases are to
have. The greater the delay value, the greater is
the maximum delay that can be experienced by a
given user.

4. The Interactive Bias Factor is a tool that
enhances command response to conversational
commands which require disk I/0, and which may be
partially executed in Q2.

If the Paging Bias Factor is non-zero, the net effect
of the priority scheme is to discriminate against users
who require 1large amounts of real storage. This
discrimination results in a higher level of
multiprogramming and increased CPU utilization;
however, it must be traded off against poorer
throughput for large users. The distributed Scheduler
is not biased; the bias factors are as follows:

Paging Bias Factor (DMKSCHPB)
User Bias Factor (DMKSCHUB)
Priority Delay Factor (DMKSCHPD)
Interactive Bias Factor (DMKSCHIB)

nwuwnn

0
1
0
0

Thus, the basic VM/370 Scheduler will schedule virtual
machines FIFO within user priority; the same algorithm
provided with the basic Release 1.0 systenm.

Figqure 5 1is a graphic breakdown of the user states,
showing the relationship between interactive and
non-interactive states, in-queue and not-in-queue
states, and in~-list and not-in-list states.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

)

; In-Queue | Not-in—-Queue i
:DIS?ATCH | Fo lELIgIBLE | yo :
] List | List | List | List]
{Interactivei 1 | 2 | 3 | 4 :
iNon-Inter. { 5 | 6 | 7 | 8 ;

Figure 5. User Dispatching States

Figure 6 shows the possible user—state changes and the
reasons for them; any changes not described are not
possible.

CONTROLLING THE DEPTH OF MULTIPROGRAMMING

In order to control the number of users allowed in
queue, the scheduler monitors the paging activity of
all users and of the system as a whole. A decision as
to whether or not to move a potential user from the
eligible to the dispatch list 1is based upon whether or
not that user's projected working set will exceed the
system's remaining capacity. Individual user's working
sets are calculated and projected at queue drop time
according to one of the following formulas:

P=(A+P) /2
If (LP-LA) * (P-A) < O
-— or --
P=A
If (LP-LA) * (P-R) > O
Note: See the Key for the meaning of the symbols.
The working set is added to the current system load,

which consists of the sum of the working sets for all
users currently in a queue. The sum is compared to the

system maximum, which is equal to the number of

dynamically assignable pages in the system. If the
user's projected working set will not push the systen
load over the maximum, he is placed in the gqueue and
added to the dispatchable list.

Method of Operation 73

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973

L] Ll
Status		
___Change __		
From	To	Reason for Status Change
I 1	2	PAGEWAIT, SIO-WAIT, or enabled wait for
		any busy channel
1 1	4	Enabled wait for interactive terminal
		read or vwrite
I 1 { 5	Exceeds in-queue time slice i	
1 1	7	Same as 1 to 5 except that queue2 is
		full
11	8	Wait without active I/0, disabled wait,
		or hit ATTN
2 11	¥ait condition complete	
1 2	5,7	Wait completes, but in—-gqueue time slice
		exceeded
I 3	1 {Another user drops from gqueuel and now	
{	there is room	
4	1 { Terminal I/0 completes while user is	
		waiting
4 { 3	Terminal I/0 completes, but queuel is	
[1 full 1		
5	1	Terminal I/0 completes while user is 1
		active in queue2
1 5 1 4	User puts up terminal read or write and	
		enters wait
)	1 6	PAGEWAIT, SIO-WAIT, or enabled wait for
		busy channel
I 5 {17	Dropped from queue2 due to in—queue	
		time-slice end
1 5	8	Wait without active I/0, disabled wait,
{	or hit ATTN [}	
6	S5	Wait condition completes
1 7 15	Room is found in queue2	
8 { 5,7	Asynchronous I/0 or External Interrupt,	
{ { | or BEGIN |
[B J
Figure 6. User Status Changes

Key:

A = Actual working set at queue drop time

IBM VM/370: Control Program Logic 74

LA = Last actual working set
Lp = Last projected working set
P = Current projected working set

The actual working set, A, is determined at queue drop
time by the following formula:

r h
| N |
| |
| E PR //ﬁ + Steals |
[- i |
A= | i=1 | whichever is greater
l |
| |
| — or — |
| |
| |
| Pages referenced |
L o |
Where:
N = Number of page reads while in queue.
PR = Number of pages resident at the ith page
i read.
Steals = Number of times page wait was entered due to

a stolen page.

The number of referenced pages is determined by
scanning the user's page tables for software referenced
bits. These bits are set by DMKPTRAN when the page is
taken from the user by the control program. Thus the
actual working set 1is generally the average number of
pages resident at each page read. However, this
estimate 1is sensitive to the overall system paging
activity for the following reasons:

1. If there 1is no paging 1load on the system, there
will be one page read for each resident page, and
no steals; the working set will therefore tend to
be equal to about one half of the resident page
total.

2. As paging activity increases, and the working set
locality shifts, the working set will tend to
increase toward the average number of resident
pages.

3. If paging activity becomes excessive, the number
of page steals will increase to the extent that
the working set will expand to the maximum of the
total number of pages referenced while in the
queue.

In summary, the scheduler selects the subset of
logged-on users that are allowed to compete for the
resources of the CPU, with the constraint that a new
user is not added to the active subset if his projected
main storage requirement, added to that of the other
active users, causes the current capacity of the system
to be exceeded. Selection within scheduling priority
simply means that a executable user of high priority is
always added to the active subset (to a queue) before a
executable user of lower priority. If the paging bias
mechanism is activated by setting the Paging Bias
Factor to a non-zero value, scheduler selection will be
in favor of smaller users; otherwise, selection is

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

)

J

~

A f

I round robin within priority. Once the active subset

(the set of in-queue users) has been selected, the
dispatcher allocates resources of the CPU among thenm.

The list of executable users in a queue is sorted by
dispatching (as opposed to scheduling) priority. The
dispatching priority is a running average of a given
user's CPU time/wait-time ratio. Thus, users who are
most likely to go into wait state, based on past
performance, are dispatched ahead of those whose
demands on the CPU are more extensive. This simple
ratio priority is normally altered if a user is
identified as compute bound by means of the fact that
he has executed for at 1least 50 ms. without entering
the wait state. 1In this case, he is placed at the
bottom of the dispatchable list. On the other hand,
users identified as interactive by virtue of the
frequency their requests for terminal I/O are placed at
the top of the dispatchable list.

FAVORED EXECUTION OPTIONS

When the resources of the CPU (and real storage) are
being allocated, the dispatching and scheduling
functions are implemented in such a manner that options
exist that allow an installation to designate certain
users (virtual machines) that are to receive
preferential treatment.

Method of Operation 75

5Y20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Diag. 2B. Dispatcher

Entered after each interrupt handler has furnished processing
and after each stacked CPEXBLOK, IOBLOK, /0 request,
and external interrupt has been processed.

IBM VM/370: Control Program Logic

INPUT PROCESS OUTPUT
| PSA DMKDSPCH — Dispatcher] -
| ExoPsW | cpsTATUS |=—f _
oA FrosTine |
[(runuser Executed Entered
| Stacked From
| QUANTUMR Request Wait Pv::;:::l:ﬂ
QUANTUM
STOPUSR
STARTUSR GEN. REG.
0 Stop charging time to old user and begin charging new user. e.n
VMBLOK
o Accumulate problem state time and post it in VMRTIME, EXTCPTMR, and
VMBLOK : > PROBTIME. If doing fast reflect (make new RUNPSW = PROPSW) dispatch ::
user, otherwise—>@J). VMRSTAT I
| VMPEND Accumulate total wait time (also add to page wait time if in page wait); post VMVTIME
in WAITIME and PGWAITIM. N vMTTIME
VMEXTINT
VMIOINT If external interrupt pending, enable it (VMPSW—>EXTOPSW and EXTNPSW-
VMPSW. Otherwise, check VMIOINT for 1/O interrupt to unstack. If not> ECBLOK
@ If not—>e. If so find virtual blocks for 1/0 and update status flags. Swap EXTCPTMR
PSWs VMPSW—IOOPSW and IONPSW->VMPSW. DMKDSPB. If VMPSW I——'—J
3 @ DVKDSPB. 1f VMPSW is ok, return to> (J) . otherwise call DMKSFMBK VDEVBLOK
1 to ent le function mode.
pam— , I o enter console function VCUBLOK
1f machine is idle, (led for active 1/0), flag VMRSTAT. If machi VCHBLOK
CPEXBLOKS machine is idle, (not enabled for active , flag . If machine
is disable, call DMKCFMBK to enter console function mode.
[4
IOBA.'?KS Call DMKSCHDL to alter status. If any IOBLOKS or TROBLOKS to
TRQBLOKS process, set up new user and return to caller (IRA in R12). If any
CPEXBLOKS to unstack, return them to free storage and exit via R15.
o
DMKDSPA Dispatch highest priority user. If dispatch list is empty,
DMKSCHRL (DMKSCHRL). -
| LIST OF RUNABLE USERS

76

()

Diag. 3B. Scheduler

INPUT

From
DMKDSPCH

€—> Check QUEUE Status

PROCESS

VMBLOK

VMTRQBLK
/ VMECEXT
t///— VMTIMER

| VMTLEVEL
I VMRSTAT
| VMDSTAT

VMQLEVEL
VMQSTAT

VMTMOUTQ
VMTTIME

| VMUPRIOR

TRQBLK J ECBLOK
EXTCPTR
exTcTMr| {TRAQBLOK
WAITO2

lr

i
/

VMBLOKS

o«

DMKSCHDL — Scheduler

Do real timer maintenance. If a virtual machine is:
® Runable (not waiting) cemeg 0

® Not in queue and not runable
® Was runable, drop from RUNLIST.

® Was in queue, not in a long wait (console function
mode, idle, log on/off) or an assured user

Otherwise, drop from queue, determine new dispatching
priority, chain CORTABLE entries of user’s active pages
for later flushing, and determine new projection set.

Determine user eligibility for QUEUEZ2 and if it will fit
in pageable storage. If so, add to QUEUEZ2; if not and
QUEUEZ2 is empty, add to queue. Else if in QUEUE,
put FLUSH chain on USERLIST; otherwise place in
FLUSH list scheduled

For users not scheduled for QUEUE1, drop from QUEUE
and run list, if entered. Set QUEUE1 dispatch priority and
VMQ1 flag. Add to WAITQ1 et €)

Runable user/not in a queue
Not runable/in a queue =g

Both runable and in a queue and end of time slice, set
VMOQLEVEL and at end of RUN list.

Neither runable nor in a queue and at queue drop time,
drop from queue RUN list.

If assured execution, put in QUEUE2 and RUN list; if not,
add to WAITQ1

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

OUTPUT

VMBLOK

VMECEXT I

VMPEND
VMEXTINT

VMQLEVEL

VMPRIOR
vMa1

WAITQ1

N

ECBLOK

VMBLOKS r

'

TRABLOK

EXTCPTMR

TRQVBAL

TRQBTOD

DMKDSPCH
Diag.2B

Method of

Operation

77

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

The favored execution options allow an installation to
modify the algorithms described above and force the
system to devote more of its resources to a given user
than would ordinarily be the case. The options
provided are:

1. The basic favored execution option.
2. The favored execution percentage.

The basic favored execution option means that the user
so designated is never to be dropped from the active
(in queue) subset by the scheduler. When the user is
executable, he is to be placed in the dispatchable list
at his normal priority position. However, any active
user represents either an explicit or implicit
commitment of main storage. An explicit storage
commritment can be specified by either the Virtual=Real
option or the reserved page option. An implicit
commitment exists if neither of these options are
specified, and the scheduler recomputes the user's
projected work-set at what it would normally have been
at queue-drop time. Multiple users can have the basic
favored execution option set. However, if their
combined main storage requirements exceed the sytenm's
capacity, performance can suffer due to thrashing.

The basic favored execution option removes the primary
source of elapsed time stretch-out in a loaded
time-sharing environment. However, if the favored task
is highly compute bound and must compete for the CPU
with many other tasks of the same type, an installation
can define the CPU allocation to be made. In this
case, the favored execution percentage option can be
selected for one virtual machine. This option
specifies that the selected user, in addition to
remaining in queue, receives a given minimum percentage
of the total CPU time, if he <can use it. The
percentage is assured in the following manner:

l 1. The in-queue time slice is multiplied by the

requested percentage and added to the wuser's
current total CPU time usage.
2. The favored user, when he is executable, is then

always placed at the top of the dispatchable list
until he has obtained his guarantee.

IBM VM/370: Control Program Logic 78

3. If the user obtains his guarantee before the
interval has elapsed, he is placed in the
dispatchable 1list according to his caluculated
dispatching priority.

4., 1In any case, at the end of the in-queue time slice
the percentage 1is recomputed and the process
repeated.

These options can impact the response time of

interactive users and only one favored percentage user
is allowed at any given tinme.

DISPATCHING/SCHEDULING SUPPORT ROUTINES

Most of the routines in the CP nucleus are reentrant
and multiple control program or user tasks can make use

of one routine at the same time. However, there are
certain areas where requests for a resource must be
serialized (as in paging) or delayed while previous

requests are serviced (as in requests to schedule I1I/0).

The CP Regquest Stack

The routine handling the request obtains a CPEXBLOK
from free storage and stores the caller's registers in
it; when the requested resource is free, the CPEXBLOK
is stacked for the dispatcher via a call to the Request
Stack Manager (DMKSTKCP). The dispatcher unstacks the
block and exits to the requesting routine the next time
it is entered. I/0 requests are stacked in the same
manner, except that the stacking vehicle is the IOBLOK,
and return is passed to the address specified in the
interrupt return address (IOBIRA). In either case, it
should be noted that the dispatcher always unstacks and
gives <control toe any stacked IOBLOKs and CPEXBLOKs
prior to dispatching a user. This guarantees that
control program information needed by a user (such as
page availability) is always as up-to-date as possible.

~ ~

CP INTERNAL TRACE TABLE

CP provides an internal trace table where events that
occur in the real machine may be recorded. The size of
the trace table depends on the amount of real storage
available at IPL time. For each 256K bytes (or part
thereof) of real storage available at IPL time, one
page (4096 bytes) is allocated to the CP trace table.
The storage thus allocated is contiguous and each entry
is 16 bytes long. The first byte of each trace table
-entry, the identification code, identifies the event
being recorded. Events that are traced are:

External interrupts
SVC interrupts

Program interrupts

I/0 interrupts

Free storage requests
Release of free storage
Entry into dispatch
Queue drop

Run user requests
Start 1I/0

Unstack I/0 interrupts
Storing .a virtual CSW
Test I/0

Halt device

The main initialization routine, DMKCPI, allocates
storage to the CP trace table and activates internal
tracing. If you do not wish to record events in the
trace table, the class A or E command MONITOR STOP can

$Y20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973

)

7/ N

be issued to suppress recording. The pages allocated
to the trace table are not released and recording can
be restarted at any time by issuing the MONITOR START
command. If the VM/370 system should abnormally
terminate and automatically restart, the tracing of
events on the real machine will be active. After a
VM/370 IPL (manual or automatic), CP internal tracing
is always active.

The first event traced is placed in the lowest trace
table address. Each subsequent event is recorded in the
next available trace table entry. Once the trace table
is full, events are recorded at the lowest address
(overlaying the data previously recorded there).
Tracing continues with each new entry replacing an
entry from a previous cycle.

The trace table can be used to determine the events
that preceded a CP system failure. An ABEND dump
contains the CP internal trace table along with the
pointers to it. The address of the start of the trace
table, TRACSTRT, is at location X'0C'. The address of
the byte following the end of the trace table, TRACEND,
is at 1location Xx'10°. The address of the next
available trace table entry, TRACCURR, is at location
Xt14e, The trace table entry for the last event
completed is obtained by subtracting 16 bytes (X'10')
from the address stored in TRACCURR.

There are fourteen possible types of trace table
entries, each uniquely identified by the value of the
first byte. Figure 7 describes the format of each type
and identifies the CP module that records the event.

Method of Operation 79

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 IBM VM/370: Control Program Logic 80

Identification
Type of Event Module Code Format of Trace Table Entry
(hexadecimal)
External interrupt DMKPSA o1 X01'| x'0000000000° Interrupt External Old PSW
o |1 g Code 8 15
N 1 ywerpor Instruction Interrupt
02 X'02 Vi
SVC interrupt DMKPSA o . GR 15 “ Length Code A Code e 8SVC OId PSW s
Program interrupt DMKPRG 03 x'03’ X’000000" Instruction Interrupt Program Old PSW
) 1 4 Length Code (g Code 8 15
Not used 04
1/0 interrupt DMKIOS 05 X05° Device 1/0 Old PSW + 4 : csw
0 1 2 Address 4 8 15
Free Storage (FREE) DMKFRE 06 X'06 GR 11 at entry GR Oatentry GR 1 at exit GR 14
0 1 4 8 12 15
Return storage (FRET) | DMKFRE 07 x07° GR 11 at entry GR 0 at entry GR 1 at entry GR 14
0 1 4 8 12 15,)
Contents of
Enter scheduler DMKSCH 08 VMRSTAT, VMDSTAT, Address of VMBLOK Value of GPU Timer
| o | and VMOSTAT 4 8 15 ‘
N Number of Projected Number of Current |
Queue drop DMKSCH 09 X'09" Address of VMBLOK 0ld Priority Pri;"i"y Resident Working Referenced Page load |
o | 4 6 g Pages 10 Set 12 Pages 14 PSA 45 i
Run user DMKDSP 0A X'0A' X"000000° RUNUSER value RUNPSW value from PSA
0 1 4 from PSA 8 15
. N ForCC=1,CSW+4
Start 1/0 DMKIOS 0B x'oB’| Condition Device Address of I0BLOK CAW otherwise this field is
Code Address
0 1 2 4 8 12 not used 15
Virtual
Unstack 1/0 interrupt DMKDSP oc Xoc’ X00" Device Address of VMBLOK Virtual CSW
o I 2 Address 4 8 15
Instruction Virtual §
Virtual CSW store DMKVIO 0D X'0D'l Operation Device Address of VMBLOK Virtual CSW
0 1 Code 2 Address 4 8 15
" . ForCC=1,CSW+4
Test 1/0 DMKIOS OE x'0’| Condition Device Address of IOBLOK cAW otherwise this field is
0 1 Code) Address 4 8 12 not used 15
-) ForCC=1,CSW+4
Halt Device DMKIOS OF X'OF" Condition Device Address of IOBLOK CAW otherwise this field is
0 1 Code 2 Address 4 8 12 not used 15
Figure 7. CP Trace Table Entries
P
\\\ / N/

&

SPOOLING

The spooling support in
performs three functions.

the VM/370 control program

First, to simulate the operation of the virtual unit
record devices that are attached to each user's virtual
machine configuration. The simulation is done in such
a way that it appears to the program in the virtual
machine that it is controlling a real unit record
device. This support involves the interception and
interpretation of user SIOs, the movement of data to
and from the wuser's virtual storage space, and the
reflection of the necessary interrupt codes and ending
conditions in PSW's, CSW's and sense bytes. This
support is provided by the Virtual Spooling Executive.

Second, to unit record

operate the real equipment

attached the system that is used to transcribe user
output spool files from input from the real card
readers. This function is provided by the Real

Spooling Executive.

Third, to provide an interface among the users, the
system operator, and the spooling system so that the
location, format, priority and wutilization of the

systems spooling data and resources can be controlled.

SPOOL DATA FORMAT

Spool Buffer Format

The buffers used for collecting and writing spool data
are all one page (4096 bytes) in length, and contain
both the data to be transcribed and all CCWHs necessary
for operating the unit record devices that perform the

transcription. The data is provided in the exact
format required with no compression except that
trailing blanks are suppressed. The first two

doublewords of each buffer contain linkage information
described below, followed by the data and CCWs.

Each spool logical record (card or print 1line) is
stored as one data moving CCW (READ or WRITE), a TIC to

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

)

J o

the following CCW, and the full data record. Space is
left at the end of each buffer so that a SENSE command
can be inserted in order to force concurrent channel
end and device end. For card punch channel programs
there is an additional back chain field that points to
the card previously punched so that error recovery for

punch equipment checks can back up one card. The only
exception to the format of Read/Write-TIC-Data is in
buffers of files directed to the printer. In this

case, immediate operation code CCWs (skips and spaces)
are followed immediately by the next CCW.

Spool File Format

In addition to the data and CCWs contained in each
SPOOL buffer, the first two doublewords contain forward
and backward links to the next and previous buffers in
the file. This two-way linkage allows the file to be
backspaced/restarted from any point at any time. Also,
it means that if I/0 errors are encountered while
reading one buffer, the file is put in system hold
status. If purged, all buffers except those in error
are released. The two-way chain allows this control of
the file while preventing fragmentation by allowing
pages to be assigned and released individually
regardless of their ownership.

Each SPOOL file in the systenm
File Control Block (SFBLOK) that is resident in
storage. While the file is open, these blocks are
chained from the devices (either real or virtual) that
are processing the file, and from device type file
anchors after the file is closed. There is one file
chain each for printer, reader, and punch files. Each
SFBLOK contains information about the file that
describes its owner and originator (these can be
different for transfered files), the file name and
type, and the class and number of copies for output
files. All of these attributes can be examined and most
can be changed by the file's owner or the systen
operator. The SFBLOK also contains information such
as the starting and ending buffer addresses for the
file, the record size, certain file status flags, etc.

is controlled by a Spool

Method of Operation 81

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

SPOOL BUFFER MANAGEMENT

Real/Virtual Storage Management

Buffers used for the temporary storage of spool data on
its way between DASD secondary storage and the user's
virtual machine are allocated from a pool of virtual
storage space that belongs to CP. This pool consists
of the second 256K of virtual storage associated with
the VMBLOK that controls CP's paging activities. This
pool can be enlarged as a system generation option.
Virtual storage buffers are allocated in one page
increments by DMKPGT at the time the spool file is
opened for either input or output. If no virtual
storage space is available, the user is placed in a
wait state until a buffer is freed by another user
closing a file. This places limit on the number of
concurrent spooling operations permitted by the system
because spooling operates as a high priority task.

Real main storage is not allocated for a spooling
buffer until a virtual machine actually issues a SIO
that attempts to transfer data between the buffer and
the user's virtual storage space. At this time, a page
of real main storage is allocated to the buffer via the
main storage paging manager. The buffer is locked in
main storage (that is, is wunavailable to be paged out)
only for the amount of time necessary to transfer the
data. After the data transfer 1is complete, the buffer
is treated as a normal page of virtual storage, and can
be selected to be paged out. This ensures that low
usage spool files do not have buffers in real main
storage, while the buffers for high usage files should
remain resident. The Virtual Spooling Executive is
insensitve to the location of the spool buffer in real
storage, since all references to the data therein are
accomplished through the dynamic address translation
feature of the CPU.

DASD Space Allocation

While a spool buffer is active, it resides in in real
main storage or on the paging device. After it has
been filled with data from the virtual machine or a
real input reader, it is written to a page of
secondary DASD storage. The allocation of pages on the

»

IBM VM/370: Control Program Logic 82

spooling disk(s) is managed by DMKPGT which is used to
handle requests for both pages of virtual storage and
semipermanent spool file residence. DMKPGT maintains
separate allocation block chains for virtual storage
and spooling pages. Each block contains control
information and a bit map used to allocate pages on a
single cylinder. If none of the cylinders allocated
have any available pages, DMKPGT enters its cylinder
allocation routine.

DMKPGT attempts to even out the spooling/paging I/0
load by allocating cylinders in round robin fashion
across channels and devices. 1In order to minimize seek
times on a given device, an attempt is made to allocate
cylinders as «close to the relative center of the
spooling/paging area as is possible.

Paging Device Support: All actual input/output for the

page buffers on any device is controlled by the Paging
I/0 Executive DMKPAGIO and is discussed in that section
in this publication.

VIRTUAL SPOOLING MANAGER (DMKVSP)

The two functions of the virtual spooling manager are
to simulate the operation of all spooled unit-record
devices attached to the user's virtual machine, and to
read and write the spool files associated with those
devices. The following virtual devices are supported
for spooling, with the exceptions noted:

e The 1IBM 2540 Card Reader/Punch, except for punch
feed read and column binary

e The IBM 1403 Printer Models 2 and N1 (132 positions)
e The IBM 3211 Printer (150 print positions)

e The IBM 3505 Card Reader (except for mark senses
reading)

e The IBM 3525 Punch (except for the card read, print,
and data protect features).

The following consoles and terminals are also supported
for spooling when entered into the directory as the

virtual system console:

e IBM 1052 Printer-Keyboard, Model 7
Console)

e IBM 3210 Console Printer-Keyboard, Models 1 and 2

e TIBM 3215 Console Printer-Keyboard, Model 1

(via the 2150

It is assumed that all virtual printers have the
universal character set feature. No checking is done on
the spooled printer data. However, any UCS buffer
commands issued by the virtual machine (load UCS
buffer, block data checks, etc.) are ignored. It is up
to the user and the installation to ensure that the
output is directed to the proper real printer via use
of the output CLASS feature described below. For the
3211 printer, Forms Control Buffer (FCB) commands are
accepted and simulated by means of a virtual FCB
maintained by the executive The use of the virtual FCB
is the only way to simulate end-of-form conditions
reflected by the detection of a channel 9 or 12 punch.
When the spooled file is directed to a real 3211 or
1403, the operator is responsible for loading the FCB
or mounting the proper carriage tape.

If any of the unsupported unit-record features are
required, they may be used by attaching the real device
directly to the user's virtual machine. Thus, a 3505
reader could be used for the most part as a spooling
input reader, but attached directly to a batch virtual
machine when it is necessary to read mark sense cards.

Output File Processing

DMKVSP receives control from the Virtual I/0 Executive
DMKVIO when the user 1issues a SIO to a spooled unit
record device. DMKVIO does not pass control until it
has been determined that the device is available (that
is, non-busy and with no interrupts pending). DMKVSP
first determines if the device is currently processing
a file. If it is, processing continues. If this is
the first command issued by the given device, a new
output file must be opened. An open subroutine is
called to build the control blocks necessary to manage
the file and to obtain virtual storage and DASD buffer
space. Control is then returned to DMKVSP.

DMSVSP then analyzes and interprets the channel progran

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

)

N

associated with the user's SIO. Each CCW is tested for
validity of command, address, flags, alignment,
protection, etc., and if the CCW is valid, the user's
data is moved from his own virtual storage space to the
buffer in the spooling virtual storage. When this
buffer is full, it 1is written to a page of DASD
secondary storage and a new buffer is obtained. The
interpretation of the usei's channel program continues
until there are no more CCWs or until an error
condition is detected which prohibits further
processing. In either case, the device is marked as
having the proper interrupts pending, a CSH is
contructed, and DMKVSP exits to the main dispatcher. In
contrast to nonspooled I/0, the user has remained in a
pseudo-wait (IOWAIT) for the time it took to interpret
the entire channel progranm.

The output file can be logically closed by the user
either by issuing an invalid CCW command code, or via
the CP console function CLOSE. In either case, the
device 1is cleared of pending interrupts, the file
chains are completed, and the file is either queued for
output on a real device of the proper type (printer or
punch), or, if XFER is in effect, is queued for input
to another user.

Input File Processing

Input file processing is similar to output file
processing, except for the open and close functions,
and the analysis of CCW commands and the direction of
data movement. Many common routines are utilized to
locate and verify CCWs, obtain buffer space, and to
move the spooling data.

The difference in the open function is that instead of
creating a new file, it is necessary to locate a reader
file that already exists in the system. To do this, the
open subroutine scans the SFBLOKs chained from the
anchor READERS in order to find a file with an owner
userid that matches that of the caller. If a file is
not found, a unit check/intervention required condition
is reflected to the user; otherwise, its SFBLOK is
chained to the control block for the reader and the
channel program is interpreted in the same manner as
for an output file.

Method of Operation 83

5Y20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Diag. 4B1. Virtual Spooling Manager

INPUT

'SI0 from
virtual
machine

From DMKPRG, DMKPRV, and DMKVIO

PROCESS

IBM VM/370: Control Program Logic

OUTPUT

GR 2
Virtual CAW

Users
Virtual Storage

DMKVSPEX — Virtual Spooling Manager

Real Storage

CCWs

Data

VDEVBLOK

VDEVSPL
VDEVCSW

Is spool file open (VDEVSPL#0) ?
. Yes, No
i

Call DMKFREE to create VSPLCTL and WORK BUFFER.
Open file.

For Printer, Punch or Console (see Note)
Get virtual CCW, validify its opcode, and set initial CSW status.

VSPLCTLj Free

WORK BUFFERJ

If data transfer, move CCW and Data @ from users area to
WORK BUFFER

Move CCW and Data ° to SPOOL BUFFER. if errors, termmate
channel program, post error status in VDEVCSW, and
Otherwise, process all CCWs, post interrupt pending in VDEVCSW

and return to virtual machine

For Reader:
Move CCW and Data @) from SPOOL BUFFER to WORK BUFFER
Simulate a read: Move Dataefrom WORK BUFFER to users
area and post channel end in VDEVCSW.

Dynamic
Paging

Area

User’s virtual

machine page that
contains data area

L

SPOOL BUFFER

SPLINK

Read CCW

Read CCW

1f user is chaining, repeat read operation; otherwise post device end
.in VDEVCSW and

NOTE: Virtual console spooling is the same as printer spooling except that:

® A skip to channel one CCW is inserted every 60 lines of output
©® The operator’s virtual console spool buffer is written for every 16 lines of output

@ The virtual spool buffer is written to the allocated spool device when the first
CCW is placed in the virtual buffer. The buffer is kept in a pseudo closed state
so that checkpoint saves the buffer in the event of a system failure.

DMKDSPCH
Diag.2B

84

-

\}

After the input file is exahusted, a unit exception is
reflected to the user machine, unless the user has
requested either continuous spooling or that an EOF not
be reflected. With continuous spooling, the unit
exception is not reflected until the last file for that
user is processed. If NOEOF is specified, the
simulation terminates with a unit check/intervention
required condition (similar to what happens if the EOF
button on a real reader is not pushed).

In either case, the input file is then deleted from the
system, unless the user has specifically requested that
his input files be saved. If the file is saved, it can
be re-read any number of tinmes.

Virtual Console Spooling

Support of the virtual console input and output is

provided as an option of the VM/370 spooling

capabilities. This support fulfills the following

requirements:

e Provides hardcopy support for CMS Batch virtual
machines.

e Allows DISCONNECTED virtual machines to spool

virtual console output to disk instead of losing the
output.

L3
e Improves the performance of virtual machines that
currently produce a large amount of console output.

Whenever a SIO IS ISSUED TO A VIRTUAL MACHINE CONSOLE|
THE Virtual Console Manager (DMKVCN) determines if the
spooling option is active. If it is, control is passed
to the Virtual Spooling Manager at DMKVSPBP to insert
the data into a spool file buffer. While console
spooling utilizes, basically, the same code as printer
spooling, the following exceptions are made:

e A skip to channel one CCW is inserted every 60 lines
of output.

e The operator's virtual console spool buffer is
written out every 16 lines of output.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

e The virtual space buffer is written out to the
allocated spool device when the first CCW is placed
in that virtual buffer. The 1linkage area of the
virtual spool buffer takes the form of a CLOSE file
to allow checkpoint (DMKCKP) to recover the active
spool file in the event of a shutdown due to system
failure. The data in the virtual buffer, not yet
written out to the spool device will not be

recovered.

To maintain a pseudo closed file status for comsole
spool files, DMKSPL now assigns spool
identifications to all output spool files where they
are first queued.

A virtual system reset, device reset, or IPL will
not close the virtual console spool file. The
LOGOFF, FORCE, or DETACH of virtual console commands
will close the virtual console spool file. The
SHUTDOWN command will close the operator's console
spool file. If the SHUTDOWN command is issued by a

Class A user other than the operator, the console
spool file for both the user and operator will be
closed.

REAL SPOOLING MANAGER (DMKRSP)

The real spooling manager operates the real unit record
devices that are attached to the system and that are
used to transcribe input data into reader spool files
and user output spool files onto the real printers and
punches. The executive optimizes the use of main
storage and the CPU rather than running the system unit
record devices at their rated speeds. DASD input files
are not double buffered and under periods of peak load,
input and output devices tend to rum in Dbursts.
However, command chaining is used for all unit record
channel programs so that the devices are running at
their maximum speed with a minimum of interruptions.

Method of Operation 84.1

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Diag. 4B2. Real Spooling Manager

INPUT

From DMKIOS
after spooling
device interrupt

PROCESS

For Printer/Punch:

DMKRSPEX — Real Spooling Manager

RDEVBLOK
i RDEVSPL]
| RSPLCTL
SFBLOK
\ Note:
SFBUSER Thereisa
set of these
SFBCO blocks per
output
device
i
I
For Reader:
10BLOK
10BCSW

For Printer/Punch:
If a file is active on this real device go to o
n Otherwise, build the control blocks for the available
device and locate the SFBLOK on the file chain that
matches the real device.
If file not found
Otherwise, unchain SFBLOK and chain to RSPLCTL
and inform operator of file and device status.
Print/Punch separator

0‘ Read file buffer. If file is being restarted (back-chain
field #0) skip to channel 1

If not EOF, reconstruct CCWs in data page, create
10BLOK and chain CCWs to it. Call DMK/OSQR to
start 1/0 and .

Otherwise, to make additional copies go to o

or release the DASD space and go to 0

For Reader:

Locate RDEVBLOK and determine the result of last
interrupt. If Device End (alone), open file via
DMKSPL VR, build CONBUFF and CCWs, call
DMK/IOSRR to read cards into SPOOL BUFFER and

Otherwise, determine if last interrupt was Channel End or
Control Unit End. If neither

When Control Unit End, call DMKRPAPT to write
SPOOL BUFFER to DASD and -

When Channel End, call DMKPGTSG to get next
DASD space, call DMKRPAPT to write previous
SPOOL BUFFER to DASD and

IBM VM/370: Control Program Logic

OUTPUT

For Printer/Pynch:

10BLOK

RDEVBLOK

RQEVS!AT
RDE

[RDEVSPL _| 10BCAW
Cam \]

Real Storage

SPOOL BUFFER

CCWs[TIiC [|
Data
Eemni——— R

Data

\J

For Reader:

Real Storage

SPOOL BUFFER
CCWs/TIC

Data

C IC

Data

CONBUFF

DMKDSPCH

84.2

>

Output File Processing

Both the input and output functions of DMKRSP are
interrupt driven. Thus, DMKRSP does not process unless
an internally or externally generated not-ready to
ready device end interrupt occurs. External interrupts
are generated by the hardware in the normal manner,
while internal, "psuedo interrupts,"™ are dgenerated by
the software when an output file has been queued on the
real printers or punches file chain, or when the
‘operator issues a START command to a drained device.

Upon receipt of the initial device end for a printer or
punch, DMKRSP searches the appropriate file chain for
the SFBLOK of a file whose class matches that of the
device that was made ready. When the SFBLOK is located
(provided the file is not inm a HOLD status), it is
unchained from the output queue and chained to the real
device block that services the file. A page of real
main storage is then obtained for wuse as a buffer, and
the -output separator routine (DMKSEP) 1is called to
print output identifier pages. When DMKSEP returns
control to DMKRSP, the first buffer of the file is
paged 1into real main storage, and the CCHs in the
channel program that it contains are adjusted so that
their data addresses correspond to the real addresses
at which the data resides. The real SIO supervisor
(DMKIOSQR) is then called to start the channel progranm,
and DMKRSP exits to the dispatcher (DMKDSPCH) to await
the interrupt.

When the channel end/device end interrupt for the
completed buffer is unstacked to DMKRSP, the forward

chain file 1link field is used to locate the, next
buffer. This buffer is paged-in, and the process is
repeated until the final buffer is processed. At this

of copies requested for the file is

number of copies is 0, processing
is deleted from the systenm;
as many times as is

point, the number

decremented. If the
is terminated and the file
otherwise, the process is repeated

necessary.
When file processing is complete, a scan of the
appropriate output queue is again made, and if a file

is found it is processed. If the queue is empty, or if
a file with a matching class is not found, an exit is
taken to DMKDSPCH to wait for another ready interrupt.

5Y20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

% 4

output file processing can be modified by either the
system operator via the spooling support command or as
a result of system errors. The operator commands allow
a given file to be backspaced or restarted, and the
files of individual users or the whole system to be
held and released for output in a very flexible manner.
I/0 errors also affect the spooling system, and a
description of how they are processed is in the section
"Error Recovery."

Input File Processing

Reader file processing is initiated by the receipt of
a device end interrupt from a spooling card reader. No
explicit operator command is required to start the
processing of an input file. When the device end is
unstacked to DMKRSP, an open subroutine is called to
build the necessary control blocks and to obtain the
virtual, real, and DASD buffer space required for the
file. A channel program to read 41 cards is built in
the buffer, and DMKIOSQR is called to start the reader.

When the interrupt for the first buffer is unstacked,
the first card is checked for its validity as a userid
card. The minimum information that this card must
contain is the wuserid of the owner of the input file.
It may appear anywhere on the card, with the
restriction that it mnust be the first information
punched. Optional information on the userid card can
include a file name and type and/or the class of the
virtual card reader to which the file is to be
directed. If the userid is valid, the file processing
continues; otherwise, the operator receives an error
message and processing is terminated.

After each file buffer is read, it is written onto disk
by the paging 1I/O routines in the same manner that
virtual output files are handled. When a unit
exception signaling physical end of file is received
from the reader, the file is closed by writing the
final buffer to disk and completing and queueing the
SFBLOK to the readers file chain. If the owner of the
file 1is currently 1logged in, he is given a message
indicating that a file has been read and the
appropriate card reader is posted with a device end
interrupt.

Method of Operation 84.3

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Accounting Card Processing

vVvarious routines in CP accumulate, format, and punch
account cards that contain system usage information for
certain users. These routines format the information
into an 80-column card image preceded by a punch CCW
and call DMKACOAQ to queue the card for real output.
DMKACOAQ calls DMKACOPU to punch the card on a real
punch if one is available; otherwise, the card is
queued in main storage until a punch is free. When a
punch finishes processing its last file, a test is made
to see if any accounting cards have been queued. If
they have, DMKACOPU is called to process then.

In addition to the cards generated by CP to account for
a virtual machine's use of system resources, the user
may request cards to be punched in order to account for
the use of virtual machine resources by jobs running
under his userid. In order to do so, the user must
have specified the account option (ACCT) when initially
entered into the directory.

In order to punch an accounting card, the wuser must
issue a X'004C* diagnose instruction with a pointer to
a parameter list containing the "charge tov
information. If +the pointer is zero, the accounting
card will be punched and will contain the usert's own
identification taken from his VMBLOK.

When the user accounting option is being utilized, the
user must keep in mind that each additional accounting
record requested is occupying real storage space.
Degradation of system performance will occur if
available storage becomes filled with accounting data.

SPOOLING COMMAND SYSTEM

The spooling command system provides an interface
between the user, the system operator, and the spooling
system itself. There are three types of spooling
commands.

e Those that affect virtual devices

IBM VM/370: Control Program Logic 84.4

e Those that affect real devices

e Those that affect SPOOL files that are queued within
the systen

The commands that affect virtual devices are generally
available to all system users, and a user can only
affect the status of devices that are attached to his
own virtual machine. Commands that affect +the status
of the real system's spooling devices are restricted to
use by the system operator. Commnands that affect
closed spool files that are awaiting processing are
generally available to all users, with some additional
capabilities assigned to the system operator. For
example, a user may alter the characteristics only of
those files that have an owner's userid that matches
his own, whereas the system operator may change any
SPOOL file in the systen.

File States and Attributes

Each spool file in the system has a number of
attributes that are assigned to it, either explicitly
or by default, at the time that it is created. These
attributes and their values are as follows:

. Filename and type can be 24 character fields.
Either or both «can be replaced by a user-supplied
value.

. Spoolid number is a system—assigned number between
1 and 9999. It is automatically assigned when the
file is created (input) or closed (output), and is
unique within the system. The file's owner, the
device type, and the id number are specified.
Usually, the userid defaults to the identification
of the user issuing the given command. Since the
identification number rather than the file name and
type is used as an jdentifier, duplicate
user—-assigned names do not present an
identification problen.

. The number of 1logical records (cards or print
lines) in the file is an integer between 1 and 16
million. For printer files, the record count also
includes any immediate operation code space or skip
CCWs.

N

. The Originating User is the identification of the
files creator, if the file has been internally
transfered from the originator's printer or punch

to the new owner's card reader.

. The number of copies requested for an output file
is a number between 1 and 99. Unless altered by the
user or operator, it defaults to 1.

file
the virtual

. The device type is used by DIAGNOSE for a
transferred to a reader to determine
type of output device.

In addition to those attributes, a file that is queued

for real output or virtual input always has a class
associated with it. A class is a single alphameric
character from A through Z or from 0 to 9. It is used

to control both the real or virtual device on which the
file will be printed, punched, or read, and the
relative priority and sequence of output on the device.
While each file is assigned a single class, each real
spooling output device be assigned from one to four
classes. The device then processes only files that
have a class attribute that corresponds to one of its
own, and will process these files in the order that its
own classes are specified.

Por example, if a printer is assigned the classes A, D,
2, it processes any printer file with a <class of 2
before it searches the printer output queue for a file
with class D. All <class D files are printed before
class 2 files.

The output class for a file is assigned at the time
the file is created and is the class that is associated
with the virtual device that created it. While each
real spooling device can have up to four classes, each
virtual spooling device can have only one. When a user
logs onto to the system, the class associated with a
device is the one defined in his directory entry for
that device. However, he can alter this class at any
time via the spool command. As files are created and
closed by a device, they take on the device's output
class.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

(H
‘]
W

After they are closed and are awaiting output, their
class can be changed via a CHANGE command issued either
by the file's owner or the system operator. The system
operator can alter the system generated output
class(es) of a real output device via the START
command.

Output files transferred to a user's virtual reader can
also be controlled by class. If the receiving user has
several readers, the input to each can be 1limited to
files of a certain class. In addition, the ORDER
command allows sequencing of input files by class as
well as spoolid number.

Output priorities can also be managed by altering the
hold status of a file. Individual users can alter the
hold status with the CHANGE command, while the systenm
operator can change (hold or free) the files of
specific individual users.

Command

These commands affect the status of a user's virtual

spooling devices:

Meaning

Terminates spooling operations on a specified
device. It clears the device of any pending
interrupt conditions, and for output files
completes and queues the file for real
output. Optional parameters allow the user
to specify a filename and type, and to
override for the given file any standard
class, hold/nohold or copy parameters set
into the output device by the spool command.

CLOSE

SPOOL Establishes the file attributes that apply to

files created on, or read by, the given
device. It establishes the CLASS that will
be in effect, whether: files are to be

automatically held, input files are to be
saved or purged after reading, and output
files are to be directed to the real system
printers and punches or are to be transferred
to a user's virtual reader.

Method of Operation 84.5

- o ~

Real Device Spooling Commands

The operator can use these commands to control the
activity of the real spooling devices:

Command Mean
BACKSPAC Backspaces an active spooling device for
either a specified number of pages (printers
only) or to the beginning of the file
(printers or punches).
DRAIN Stops the operation of a specified output or
input device after it has finished processing
the file on which it is currently working. A
printer must be drained prior to the issuance
of the LCADBUF command. Unit record devices
are normally drained prior to systenm
shutdown.

Restart a device after it has been drained.
Optional parameters allow the operator to
specify the spooling output class for the
output device, and if output separator
records will be created.

START

FLUSH Inmediately halt the output on the specified
device and either flush that copy of the file
from the system, or put it into the systen
hold status for future processing.

REPEAT Supplement the number of copies requested by
the user for the file when it was created.
The operator can specify a number from 1 to
99 that is added to the number specified by

the user.

Load the Universal Character Set Buffer of
the FCB of the specified printer with the
specified image. If requested, the system
verifies the loading by printing its contents
on the affected printer.

LOADEUF

SPACE Force the output on the specified printer to
be single spaced, regardless of the skipping
or spacing commands specified by the file's

creator.

\\\ }/

Spool File Management Commands: The spooling commands
are used to alter the attributes and status of closed
spool files that are queued and awaiting processing.
When a command applies to an individual file, the
device type (RDR, PUN, PRT) and the spoolid number must
be provided in order to identify the file. It should
be noted that in most commands requiring a spoolid, the
keyword class followed by a valid spool class or the
keyword ALL are acceptable substitutes for the spoolid
number. This causes the command to be executed for all
files of the given class or device type. Tke userid is
assumed to be the identificaticm of the wuser issuinrg
the conmmand, except that the system operator must
explicitly supply the identification of the user whose
files he wishes to affect or he must specify the
keyword SYSTEM which gives access to all files (valid
for CHANGE, PURGE, ORDER, and TRANSFER commands also).

Command

CHANGE Change the filename and type, the number of
copies, and the class of the specified file.
Any of the above attributes of a file can be

determined via the QUERY command.

HOLD PIace, via the system operator, the specified
file in a hold status. The file will not be
printed or punched until it is released by
the system operator. The operator can ' hold
any user files by device type.

FREE Opposite of the HOLD command. Allows a file
or group of files that were previously held
to become available for processing. However,
the wuser cannot reset a hold set by the
operator via the HOLD command.

PURGE Removes unwanted spool files from the systenm

before they are printed or punched.

ORDER Reorder the input files in a virtual card

reader. It can order files by identification

number, by class, or by any mixture of the
two.

TRANSFER Transfer a virtual input to another user's
virtual reader without any processing. The
TRANSFER command causes a changing in the
owning userid field in the file's SFBLOK.

Method of Operation 85

SPOOLING ERROR RECOVERY

Unit Record I/0 Errors

I/0 errors on real spocling unit record devices are
handled by a transient routine that is called by DMKICS
after it has sensed the unit check associated with the
error on a spooling device. If appropriate, a restart
CAW is calculated and DMKIOS is requested to retry the
operation, in some cases waiting for a device end that
signals that the failing device has been made ready
after manual corrective measures have been taken. If
after retrying the operation the error is
unrecoverable, DMKIOS is informed that a fatal error
has occurred. DMKIOS then wunstacks the interrupt,
flagged as a fatal error, and passes control to real
spooling executive. The routines that handle unstacked
interrupts in real spooling executive only see
operations that have been completed correctly or those
that are fatal errors. If a fatal error is unstacked,
the recovery mechanism depends on the operation in
progress.

For fatal reader errors, processing of the current file
is terminated and any portion of the file that has been
read and stored on disk is purged. The file's owner is
not informed of the presence of a fractional part of
the file in the systen.

For fatal printer or punch errors, the SFBLOK for the
partially ccmpleted file is re-queued to the
appropriate output 1list and processing can be resumed
by another available printer or punch, or <can bte
deferred until the failing device is repaired.

case, the failing device 1is marked 1logically
and no attempt is made by the system to use it
varies it back online via the VARY

In any
offline,
until the operator
command.

DASD Errors During Spooling

DASD I/0 errors for page writes are transparent to the

user. A new page for the buffer is assigned, the file
linkage pointers are adjusted, and the buffer is

IBM VM/370: Control Program Logic 86

rewritten. The failing page is not de-allocated and no
subsequent request for page space granted access to the
failing pages If an unrecoverable error is encountered
while reading a page, processing depends on the routine
that is reading the file. If the processing is being
done for a virtual reader, the user is informed of the
error and a unit check/intervention required condition
is reflected to the reader. If the processing is being
dcne for a real printer or punch, the failing buffer is
put into the systen hold status, and processing
ccntinues with the next file. 1In either case, the DASD
page is not de-allocated and it is not available for
the use of other tasks.

DASD Spcol Space Exhausted

allocated for paging and spooling on the
system's DASD volumes is exhausted and more is
requested by a virtual spooling function, the user
receives a message and a unit check intervention
required condition is reflected to the virtual output
device that is requesting the space, the output file is
automatically closed and it is available for future
processing. The user can clear the unit check and
retry the operation periodically in the hope that space
is free or completely restart later from the beginning

If the space

of the Jjob. If the task requesting the space is the
real spooling reader task, the operator receives an
error message and the ©partially complete file is
purged. Any time the spooling space is exhausted, the
orerator is warned by a console nmessage and alarm.
However, the system attempts to continue normal
operation.

CP INITIALIZATION

System initialization starts when the operator selects
the DASD device address of the VM/370 control progran
System's Residence Volume (SYSRES) and presses the IPL
button. The System/370 hardware reads 24 bytes from
record 1 of cylinder O on SYSRES into location 0 of
main storage. This record consists of an initial PSW
and a channel program. The channel program is used to
read the module DMKCKP into location X'800' and give it

Diag. 5B. CP Initialization
IPL
INPUT PROCESS
RCHBLOK Load DMKCKP in X ‘800’
— ——
EA—HCUTBL RCUBLOK
— DMKCKPT
RCUI F—
YMBLOK RDEVBLOK For a warm start
® Checkpoint active file chains,
® Check point system log message
Load DMKSAYV in high storage
w @ DMKSAV (DMKSAVRS entry point)
Read copy of nucleus into main storage
Give control to DMKCPI]
OWNDLIST
DMKCPINT
ALOCBLOK Initialize storage
RCHBLOES Mount devices
RcHCUTB _i Initialize TOD clock
7 RCUBL?KS LOGON operator
RCUDVTBL}— Call DMKWRM for warm start
VMBLOK #— JBDEVBLOKS Allocate Dump File
Build cylinder allocation tables

OUTPUT
SEGTABLE
SEGPAGE
PAGTABLE
PAGSWP
SWPTABLE
SWPPAG
SWPCYL —
CORTABLE
CORSWPNT|
CORPGPNT m
RCHBLOK
m
RCHCUTBLU™Y pcuBLOK
| RCUDVTELI rpEvBLOK

DMKDSPCH
Diag. 28

Method of Operation

87

| Diag. 5B1. CP IPL

INPUT

IBM VM/370: Control Progranm

All
Other

Mounted
Devices 44“
cp
Owned

—

System
Residence

FROM
DMKSAV
PROCESS
DMKCPINT Initialize nucleus, work areas and control blocks, log on system

operator, mount and verify all ready DASD, prepare system
for operation

OUTPUT

Logic

PSWs CPUID, ete.

OWNDLIST
CONTROL
ALOCBLOK VMBLOCK UNIT
INDEX
L CHANNEL UNIT
RDEVELOK INDEX INDEX
PR

Set up PSWs
Clear logout areas
Determine size of real storage (set key 0 inall)
Initialize coretable and lock resident pages
Initialize free storage
Read serial numbers of all mounted DASD (mark them
available as well as other devices really present)
Build virtual storage tables for CP virtual storage space
Issue system initial message

(for example, VM/370 Version X, Level X)

Build user directory page list — DVKUDRBV
Log on operator — DMKLOGOP
Verify all CP owned devices are mounted — DVKSCNVS
Verify sysgen size equal to real size
Test internal timer working
Is this a warm start (automatic)?

If Yes
print message
warm start

DMKWRMST
Read in check-
pointed spool
files accounting
records, etc.

If No

® Request operator information
(cold, shut or req) (default warm)

— 1 COLD or WARM

— If SHUTDOWN Load disabled wait

— If DRAIN Drain in PSwW
combination Explicit device or
with cold warm start

Allocate dump file and allocation blocks
— If drain not specified — start spool files

Request date and time from operator, if TOD clock is not set

DMKDSPCH
Diag.2B

RCHBLOK
RCUBLOK
RDEVBLOK

SWPTABLE
PAGTABLE i

CORTABLE

SPOOL
I DEVICES |

\/

88

Diag. 5B2. Check Point

From IPL
Button

INPUT

PROCESS

Address of System Owned Devices

Address of Date

Address of System Punch Table

Count of Real Device

First Real Device

DMKCKPT

® Retrieves user accounting data from the user
tables and unpunched accounting cards,
accounting information for dedicated devices,
saves system log messages, saves spool file
blocks for active and closed.

® Writes all above data on warm start cylinder.
® Loads DMKSAYV and goes to entry DMKSAVRS

System Log Messages

Warm Start Cylinder Address

:> r ® Cold Start?

Yes ® Issue halt 1/0 to all devices

Console Address

® Write accounting information to warm start
cylinder

Active users
Account cards
Dedicated devices

RCHBLOK
RCVBLOK
i RDEVBLOK

VMBLOKS

Channel Index ‘
Control Index

Device Index

® Save system log messages date and time

® Save system spool file control blocks

Active
Closed

® Save spool hold queue blocks and hold queue
switch byte

Save allocation record blocks

Was a shutdown requested?

if yes ﬁ issue shutdown

no message and

® Move ‘warm’ to IDENT

® Move ‘cold’ to IDENT

DMKSAVRS
Diag.5B3

OUTPUT

System
Residence Device
(warm start
cylinder)

LPSW
Disable Wait
State

Method of Operation

89

Diag. 5B3. Save Systenm

INPUT

From
VMFLOAD

From
DMKCKP

PROCESS

IBM VM/370: Control Program Logic 90

OUTPUT

SYSTEM
RESIDENCE
(NUCLEUS CYLINDER)

S

DEVICE TYPE FOR SYSRES

SYSTEM RESIDENCE DEVICE
ADDRESS

DMKSAVRS

Loads CP nuclear into real storage and writes out CP
nucleus onto system residence

SYSTEM

® Read CP nucleus into real storage from nucleus
cylinder on system residence volume

RESIDENCE
NUCLEUS CYLINDER

DMKSAVNC

SYSTEM RESIDENCE CLASS
AND TYPE

NUCLEUS CYLINDER
NUMBER ON SYSTEM
RESIDENCE DEVICE

SYSTEM RESIDENCE
VOLUME SERIAL

® Get svstem residence device type (2314, 3330, 2305)

® s this the correct DASD

VOLSER = System VOLSER Terminate,

If no mumunlp issue message
(Device not ready
or VOLID not

If § ves XXXXX)

® Write copy of CP nucleus on system
residence volume

Write IPL record 1

Write IPL record 2
(which is DMKCKP)

® [ssue nucleus loaded message

DMKCPINT
Diag. 581

LPSW Disable
Wait State

)

Diag. 5B4. Warm Start

INPUT

PROCESS

DMKWRMST — Warm Start

ACNTBLOK
RECBLOK
SHOBLOK
RDEVBLOK
SFBLOK

Warm
Start
Cylinder

DMKRSPAC
DMKRSPHQ
DMKRSPRD
DMKRSPPR
DMKRSPPU
DMKRSPID

DMKRSPDL

Retrieve system log messages, account cards, spool file blocks,
spooling allocation records, spool hold queue blocks from the
warm start cylinder on the IPL pack

OUTPUT

r COLD START?

[]
YES

Locate warm start cylinder

® Read account cards written by DMKCKP

Chain cards to DMKKSPAC anchor

Read system log messages written by DMKCKP
Chain messages to DMKSYSLG

Read spool file control blocks written by DMKCKP
Restore system spoolid counter, DMKRSPID

Chain blocks to DMKRSPRD (Reader)
DMKRSPPR (Printer)
DMKRSPPU (Punch)
DMKRSPDL (Delete)

Read spool record allocation blocks and chain to
real file blocks

Chain record allocation blocks to spool file blocks
Read spool hold queue blocks written by DMKCKP
Chain blocks to DMKRSPHQ

Clear record 1, warm start cylinder

ACNTBLOK
RECBLOK
SHOBLOK

SFBLOK

Return to
DMKCPI

Method of Operation

91

control. DMKCKE checks location CPID in module DMKPSA.
If this location contains the value CPCP or WARM, then
DMKCKP checkpoints the active file chains and saves the
systenm log messages and accounting informaticn;
otherwise, a cold start is performed and the
checkpointing is not done.

If 1location CPID contained the value CPCP, then
checkpoint locads a wait state PSW at this time.

If location CPID does not contain the value CPCP, then
DMKCP loads TDMKSAV and passes control to it at entry
point DMKSAVRS. DMKSAV reloads a page image copy of

the CP nucleus into real storage starting at page 0.
When DMKSAV is finished, control 1is transferred to
DMKCPI. DMKCPI perfornms the main initialization

includes calling DMKWRM to perform the
When DMKCPI has finished it, it

function. This
warm start function.

passes control to DMKDSPCH. DMKDSPCH loads a wait
state PSW to wait for work.

FREE STORAGE MANAGEMENT

DMKFRE 1is responsible for the management of free
storage, and is used within the control program for
obtaining free storage for I/0 tasks, CCW strings,

various I/0 buffers, etc. It 1is used, in fact, for
practically all such applications except real channel,
control-unit, and device-blocks, and the CORTABLE.

Block sizes of 30 doublewords or less, constituting
about 99 per cent of all calls for free storage, are
grouped into 10 subpool sizes (3 doublewords each), and
are handled by LIFO (push-down stack) logic. Blocks of
greater than 30 doublewords are strung off a chained
list in the classic manner.

Subpool blocks are generally obtained, when none are
available, from the first larger sized block at the end
of availakle free storage with the smaller sizes. Large
blocks, on the other hand, are obtained from the
high-numbered end of the last 1larger block. This
procedure tends to keep the volatile small subpool
blocks separated from the large blocks, some of which
stay in storage for much longer periods of time; thus,
undue fragmenting of available storage is avoided.

IBM VM/370: Control Program Logic 92

DMKFRE initially starts without
they are obtained from DMKFREE
on a demand basis.

any subpool blocks;
and returned to DMKFRET

The various cases of calls to DMKFREE for obtaining
free storage, or to DMKFRET for returning it, for
subpool sizes and large sizes, are handled as follows:

Call to DMKFREE for a Subpool Size

Subpool Available: If a call for a subpool size is made
and a block of the suitable size is available, the
block found is detached from the chain, the chain
patched to the next subpool block of the same size (if
any), and the given block returned to the caller.

Subpool Not Available: If there is no suitable block
when a call to DMKFREE is made for a subpool size, a
check is wmade to see if any larger subpool block can
profitably be split up into the size requested and
another subpool size. If this is feasible, the larger
block is detached from its subpool and split. The
requested block is returned to the caller, and the
remaining block is attached to its subpool: Otherwise,
the chained list of free storage is searched for a
block of equal or 1larger size. The first block of
larger or equal storage is used to satisfy the call (an
equal-size block taking priority), except that blocks
within the dynamic paging area are avoided if at all
possible. If no equal or larger block is found, all the
subpool blocks currently not in use are returned to the
main free storage chain, and then the free storage
chain is again searched for a block big enough to
satisfy the call. If there still is no block big
enough to satisfy the request, then DMKPTRFR is called
to obtain another page of storage from the dynanmic
paging area, and the process is repeated to obtain the
needed block.

Call to DMKFREE for a Large Block

If a call to DMKFREE is made for a block larger than 30
doublewords, then the chained list of free storage is
searched fcr a block of equal or larger size. If an

Diag. 6B1. Free (Provide) a Block of Storage

General
Entry
INPUT PROCESS OUTPUT

DMKFREE — Provide caller with block of Free Storage
General Reg. 0 Real Storage
0 Determine size of request.

Number of X’'00"
f;ﬂm'ds For subpools; scan SUBTABLE from size of request to end Nucleus

of SUBTABLE to obtain a subpool for requestor. If none DMKCPEND

> is available go to o , otherwise, N Free Storage

SUBTABLE ® Detach the block from the subpool Naxt 4K boundary .

® Return its address to caller P # , Pl
— 3 doubleword P'ﬂ"‘ﬂ in Dynamic
subpool ® Attach any remaining portion of the subpool to an : . “'g":‘gx‘:::’ﬁ::‘d
—6 doubleword appropriate smaller subpool 2 ._ of free area
subpool

o For large blocks, scan CHAINED list to obtain a block for
L SeeNote. 1 requestor. If none is available, attempt to create block

H i i . If iousl
Ty e — for CHAINED list by returning subpools previously

subpool done, call DMKPTRFR to get a page frame of real storage

DMKFRELS in the dynamic paging area, insert it into the CHAINED

Pointer to first fist, and go to e ; otherwise, General Reg. 1

large block on ° i

CHAINED It Detach the amount required | Block Address —|

® Return its address to caller.

caller
Note: Block sizes of 30 doublewords or less are grouped mto 10 subpools
(3,6. . .30 doubl d: of 3 doubl); the subpool
are processed LIFO. The SUBTABLE contains pomters to the
subpools. Block sizes greater than 30 doubl h

by a CHAINED list. DMKFRELS points to the flrst block on the list.

Method of Operation 93

IBM VM/370: Control Program

Diag. 6B2. Return a Block of Storage

INPUT

General Reg 8

General
entry

PROCESS OUTPUT

DMKFRET — Return a block of FREE storage

Block size

General Reg 1

IBIock address

If a subpool is not in the dynamic paging area, SUBTABLE

attach the block to an appropriate subpool chain
LIFO and

— 3 doubleword subpool

~»= 6 doubleword subpool

&

L3
i
¢

J
\ S
J
t

Otherwise, return the block to the chained list.
If possible, merge it with a block on the list to

= 30 doubleword subpool

create a larger block. If the results of a merger
is a page of storage, return the page to the

dynamic paging area via DMKPTRFT. DMKFRELS

Pointer to first large

block on chained list

Return to
caller

Logic

A h

94

w F

equal size tlock is found it is detached from the chain
and given to the caller. If at least one larger block
is found, the desired blocck size is split off the high
numbered end of the last 1larger block found, and given
to the caller. If no equal or larger block is found,
DMKETRFR is «called to obtain another page of storage
from the dynamic paging area, and the above process is
repeated (as necessary) to obtain the needed tlock.

Call to DMKFRET for a Subpool Size

If a subpool size block 1is given back via a call to
DMKFRET, the block is attached to the appropriate
subpool chain on a LIFO (push-down stack) basis, and
return is made to the caller. If, however, the block
was in a page within the dynamic paging area, the block
is returned to the reqular free storage chain instead.

Call to DMKFRET for a Large Block

If a block 1larger than 30 doublewords is returned via
DMKFRET, it 1is merged appropriately into the regular
free storage chain. Then, unless the block was
returned by DMKFRETR (see the section,
®"Initialization", a <check is made to see if the area
given back (after all merging has been done) is a page
within the dynamic paging area. If so, it is returned
to the dynamic paging area via DMKPTRFT for subsequent
use.

Initialization

The number of pages allocated to free storage depends
upon the number of storage boxes upon which the VM/370
control program is running, and is initialized by
DMKCPINT (usually 6 pages per 256K). DMKFRETR is
called by DMKCPINT to merge available blocks of storage
into the regular free storage chain regardless of their
size.

CONSOLE FUNCTIONS

DMKCFM analyzes VM/370 control program commands and
pass control to the appropriate routine to handle the
command. DMKCFM can be entered via the attention key at
the user's terminal or directly from a virtual machine.

When a console interrupt occurs via the attention key
at the user's terminal, DMKIOSIN calls DMKCNSIN to
handle the wunsolicited interrupt, then DMKCNSIN calls
DMKCFMBK.

DMKCFMBK first calls DMKFREE to obtain storage for an
18 doubleword input buffer. Next, DMKQCNWT is called to
send the message CP to the terminal to inform the user
that he has entered console function mode. DMKQCNRD is
then®called to read the console function request.

DMKCFMEN 1is the entry point for commands coming
directly from the virtual machine. DMKPRGIN enters here
when a DIAGNOSE instruction with a code of 8 is
detected. The address of an 18 doubleword input buffer
is passed in register 1; therefore, a read to the
terminal is not needed.

After either the read to the terminal or entry from the
virtual machine, DMKSCNFD is called to find the command
type. On return from DMKSCNFD, register 1 points to the
start of the command and register 0 contains the length
of the command. The entered command is matched against
a list of valid commands. The list contains a 16-byte
entry for each command. Each entry contains 8 bytes for
the name, 2 bytes for class mask, 2 bytes for an
abbreviation count, and 4 bytes containing the routine
address. If the entered command matches an entry in the
list, it 1is then checked to ensure that a valid
abbreviation for the command has been used. If this
test is not successful, DMKSCN continues to scan the
list for a valid command. Should the abbreviation be
valid, a check 1is then made to determine 1if this user
is of the proper class to use the command entered. If
this is successful, DMKCFM then calls the appropriate
routine to process the command.

After the command has been processed, control is
returned to DMKCFM. There are three possible returns.
On a normal return, the input buffer is scanned to see
if there are any more commands. If none exist, DMKCFM
returns to the virtual machine (if entered via

Method of Operation 95

DIAGNOSE) or «calls DMKQCNRD to read the next command
from the terminal. On a return plus 4, the VMCFWAIT bit
is turned off +to allow the virtual machine to run.
DMKFRET is called to return the input buffer storage.
Then control returns to either the virtual machine, if
entered via a diagnose or to DMKDSPCH, if entered via
the attention key. On a return plus 8, the operation is
the same as plus U4 except the VMCFWAIT bit is left on.

SYSTEM/USER INTERFACE

Attaching a User to the Systen

After CP has been initialized, the communication lines
are enabled by DMKCPVEN. Then an individual user is
attached to the system using the following steps:

1. Terminal Identification

When the Control Program receives the initial interrupt
from a terminal on an. enabled line (normally initiated
by a user dialing in on a data-set), the DMKCNSID
routine is entered. DMKCNSID determines the terminal
device type, stores this information in the terminal
device block, writes the online message and puts the
terminal line in a state to receive an attention.

2. Attention from User

After the online message has been typed at the user's
terminal, and he has pressed the Attention key,
DMKCNSIN (the console-interrupt routine) calls DMKBLDVM
to build a skeleton VMBLOK for the user. At this tinme,
the USERID is LOGONxxx, where xxx is the terminal real
device address, and a flag is set to indicate that the
user has not yet completed the LOGON process.

Then DMKCNSIN calls DMKCFMBK, which types a single
blank at the terminal, issues a read to the terminal,
for the user to enter his first command (normally LOGON
or DIAL).

IBM VM/370: Control Program Logic 96

3. First Command from User

command has been entered by the user,
determines the type of terminal. If
DMKTRMID is called to identify
(PTTC/EBCD) or a 2741C
(Correspondence) terminal. If successful, the correct
device type and translate tables for input and output
are set; if not, flags are set to indicate the
terminal is not yet identified.

After the first

DMKCNSIN further
the terminal is a 2741,
it as either a 2741p

Then control is returned to DMKCFMBK, which determines
if the first command is valid (for example, LOGON, MSG,
or DIAL). If the first command is not valid, a restart
message is given, and the read to the terminal posted
again for the first command. If the first command was

LOGON (or its abbreviation), DMKLOGON is called to
complete the process of attaching the user to the
systemn.

4. LOGON of User

Orerations performed by DMKLOGON include the following:

e Ensuring that the maximum number of users allowed on
the system is not being exceeded.

e Obtaining the userid from the command line, and
checking for a possible password and other optional
parameters.

e Checking the userid and password (entered separately
if not on the LOGON command line) against entries in
CP's directory of users.

o Ensuring that the wuser is not logged on at another
terminal (an error condition), or reconnecting the
user if he was running, but in the disconnect mode.

information on the user's

e Obtaining pertinent
User Machine Block portion

virtual machine from the
of the directory.

e Storing the correct userid (replacing the LOGONXXX
userid used up until now), virtual storage size, and
other vital information in the user's VMBLOK.

e Allocating and initializing segment, page, and swap
tables (necessary for handling of the user's virtual
storage) .

e Allocating an extended VMBLOK (ECBLOK) if the user's
virtual machine has the capability of running in the
extended control mode.

e Allocating and iritializing virtual device blocks,
control wunit blocks, and channel blocks, using
information from the User Device Blocks portion of
the directory.

e Establishing links (as feasible) to all DASD devices
included in the user's directory, the accessibility
of any disk being determined by the user access mode
in the wuser's directory, and whether any other
user (s) are presently linked to the disk, in
read-mode and/or write-mode.

e Initializing all other virtual device blocks as
appropriate, such as reader, punch, printer, and
terminal.

e Mapping all virtual devices to real devices.
e Performing appropriate accounting.

e Informing the user of the date-time of the nmost
recent revision to the system log message (LOGMSG),
and of the presence of any outstanding spooled files
in his virtual reader, printer, or punch.

e Sending a ready message to the user with the
date-time (and weekday), and a message to the systenm
operator indicating the user has logged on.

If the user has a device address or a named system in
his wuser directory and he has not suppressed its
initialization via an option on the LOGON command line,
then that device or named system is then 1loaded (via
IPL) at the conclusion of the LOGON process. Otherwvwise,
when the LOGON functions are complete, the user is
placed in the console function mode with a read on his
terminal, ready for the entry of his first desired
command.

Under the 1latter condition of no automatic IPL, the
user can IPL an alternate nucleus by using +the STOP
option in the IPL command. This option will cause the
normal IPL procedure to halt execution, prior to
loading the initial PSW, and issue a diagnose code 8
placing the wuser in CP console function mode. A

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

hexadecimal character entered in location X'08' will
change the nucleus name. A hexadecimal character
entered in location X'09' will change the apparent
storage size. The BEGIN command allows the IPL
procedure to continue.

User I/0 Reconfiguration

Three commands are available to alter the 1I/0
configuration of a user's virtual machine after he has
logged on to the system. Two of the commands are
available to the user, while the third is restricted to
the system operator, since it affects the status of
real devices attached to the system. The ATTACH and
DETACH commands are contained in DMKVDB and DEFINE in
DMKDEF. Both pageable modules are called by the system
command scanner (DMKCFM) after their format and
privilege classes have been validated. These commands
access the same control-block building subroutines in
the module DMKVDS that are used by the LOGON processor
DMKLOG.

Attaching a Real Device: The system operator can
dedicate a real device of any type to a single user by
issuing the ATTACH command. The device attached is
available only to the given user, and all I/O requests
to it are handled via CCW translation. If the device
is a DASD, cylinder relocation does not occur when seek
addresses or home addresses are referenced. The I/O
Supervisor does not queue operations on the device, nor
automatically restart it nor do ordered seek queueing.
Nonsharable devices such as tape drives must be
attached to a user in order to be accessed by a virtual
machine. A user can also have a dedicated card
read/punch or printer. However, this is usually not
necessary because of the unit record spooling
facilities of CP. Unit record input or output on a
dedicated (attached) device is not spooled by CP. The
unit attached may be given a different virtual address
than its real address; however, the user wmay not
already have a virtual device at the attached address.
A real device cannot be attached (1) if it is currently
dedicated to another user, (2) if it contains
mini-disks that are in use by other users, or (3) if it
is a system owned volume that is in use for spooling or

paging.

1973 Method of Operation 97

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

Defining a Virtual Device: A system user can DEFINE a
new virtual device that does not require the dedication
of a corresponding real device. Devices that can be
defined are consoles, spooled readers, punches and
printers, dialable TP lines, virtual channel-to-channel
adapters, pseudo timers, and temporary disks. With
DEFINE, the user can change any existing virtual device
address whether it corresponds to a shared or dedicated
real device or no real device unit.

are dynamically obtained cylinders of
They are available to the user for
as long as they are part of his virtual configuration,
but the data on them is destroyed after the user
detaches the area. For all other purposes, however,
they appear to be a standard disk.

Temporary disks
DASD storage space.

De in Virtual Device: A virtual device can be
removed from a users configuration prior to logout via
the DETACH command. A user can detach any of his own
devices, and the system operator can detach a real
device from a user. In this case, the user is informed
of the operator's action. A real device can be
detached only if it is dedicated to a single user or is
attached to the system and is not in use when the

DETACH is issued.

VIRTUAL CONSOLE SIMULATION

DMKVCN receives control from +the virtual machine I/O
executive, DMKVIO. When control is received, the device
is available with no interrupts pending. A console
control block, VCONCTL, that is obtained from storage
and chained from the virtual device control block,
VDEVBLOCK, by DMKLOG is accessed for use during the
interpretation of the virtual comnsole I/0 sequence. The
user's CAW is examined for wvalidity. If it is valid,
the TRANS macro is issued to fetch the first user CCW.
This CCW is moved to the VCONCTL block for analysis.

The CCW is analyzed to determine if it is a read, a
write, a control, a sense, a TIC, or an invalid
operation. Based upon the analysis, the appropriate
processing routine in DMKVCN is invoked.

Obtains a buffer for

The Read Simulation Routine:
location of the

input data from FREE storage. The

1973 IBM VM/370: Control Program Logic 98

buffer is remembered in the VCONCTL block. The
DMEKQCNRD routine is called to schedule and perform an
actual read to the corresponding real device
representing the usert's virtual console. If SET
LINEDIT ON is specified, the buffer data is edited and
translated to EBCDIC. When the read is completed, the
data is moved to the specified user address obtained
from the address portion of the virtual CCW. If
command chaining is specified, processing returns to
fetch and analyze the next CCW. If command chaining is
not specified, the virtual CSW is constructed in the
VDEVBLOK and an interrupt is flagged as sending in the
VMBLOK.

The Write Simulation Routine: Obtains a buffer for
construction of the output message from free storage.
The users data is located from the virtual CCW address
in the VCONCTL block and moved to the data buffer. The
DMKQCNWT routine is called to write the data in the
buffer and provide the necessary length, translation,
and format functions. Control is
DMKVCN module upon completion of the writing. At this
point, the virtual CCW 1is re-examined. If command
chaining is specified, processing continues to fetch
and analyze the next CCW. If command chaining is not
specified, the virtual CSW is constructed in the
VDEVBLOK and an interrupt is flagged as pending in the
VMBLOK.

The Control Simulation Routine: Is used for the NOP
and ALARM operations. A NOP operation requires no
data transfer or I/O operation. An ALARM operation has
no equivalent on low speed teleprocessing equipment;
thus, a message 1indicating the alarm operation is
constructed. DMKQCNHRT is called to output the
constructed message. If the command 1is chained,
processing continues (for NOP or ALARM) to fetch the
next CCW and analyze it. If command chaining is not
specified and this is not the first CCW, a virtual CSW
is constructed in the VDEVBLOK and an interrupt is
flagged as pending in the VMBLOK. If this is the first
(and only) CCW, then a condition code of 1 is presented
with channel end and device end in the virtual CsSW.

A Virtual Sense Operation: Is similar to a control
operation, because no actual I/0 operation is
performed. However, there is data transfer.
data from the VDEVBLOK is moved to the virtual storage
location specified in the virtual CCW address. If the
command is chained, processing continues to fetch the

received back at the

The sense:

next CCW and analyze it. Otherwise, an interrupt is
flagged as pending in the VMBLOK.

A Virtual TIC: Fetches the virtual CCW addressed by
the TIC address and analysis of the fetched CCW
continues. If the fetched CCW is itself a TIC, or if
the TIC is the first CCW, a channel program check

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Fd

condition is reflected to the virtual machine as an
interrupt or as a CSW stored condition respectively.

Any other operation is considered invalid. Command
reject status is posted in the virtual sense byte and
the operation is terminated with unit check status
presented in the virtual CSW.

Method of Operation 98.1

Diag. 7B1. Virtual Console Simulation, Real Terminal Operation

From
DMKVIO After a SIO to a virtual machine
operator’s console

INPUT PROCESS OUTPUT

DMKVCNEX — Virtual Console Simulation and DMKQCN

VDEVBLOK a Analyze virtual CCW operation: if TIC analyze next
CCW (Note. First CCW cannot be TIC.).

® SENSE — Move SENSE data from VDEVBLOK to user’s
data area. If chaining 0

® READ — Get input BUFFER and read from console into
BUFFER via DMKQCNRD
Upon return from DMKDSP, move data from BUFFER

to user’s data area and post channel end in
VDEVBLOK. If chaining a

User’s

BUFFER K > Data

Area

® WRITE — Get output BUFFER, move data from user’s
data area to buffer and write to the console
via DMKQCNWT
Upon return from DMKDSP, post channel end in
VDEVBLOK. If chaining 0

® NOP or ALARM — Post channel end and device end in
VDEVBLOK. If ALARM, print ring message/sound
alarm via DMKQCNWT
If chaining or NOP and chaining ”

® OTHERS — Post command reject in virtual sense byte
in VDEVBLOK, terminate operation, and post
unit check in VDEVCSW. If chaining 0

e If ATTENTION from virtual machine otherwise

DMKDSPCH
DMKCFMBK Diag.28
Diag.783

Method of Operation 99

IBM VM/370: Control Program Logic 100

Diag. 7B2. Console Function Control

After 1/0 interrupt resulting from
the ATTENTION key. 10BIRA
contains entry point DMKCNSIN,

INPUT PROCESS OUTPUT
DMKCNSIN — Real Terminal Manager (Console Control)
10BLOK -
0 Analyze the ATTENTION CONTASK
10BIRA o Keyboard locked and user not running
o Keyboard locked and user is running; call
DMKCFMAT to reflect ATTENTION, then o
> ® Read or Write; go to e , otherwise o
CONTASK
Diag.7B.3
- CPEXBLOK
Call DMK/OSQR to queue and start ATTENTION
channel program then ‘ >
o Delete active CONTASK
User Terminal States Get next CONTASK
S1- Idleand IF CONTASK indicates NORETurn go to 0
keyboard locked
Otherwise, stack CPEXBLOK and
S2- Receiving
output
S3- Unlocked for
input but
user has no
entered data
S4 - Unlocked for
input, user
has entered
data

Diag. 7B3. Function Call Control, Command Selection

INPUT

CPEXBLOK

From DMKCNS
DMKHVC
DMKVCN

PROCESS

DMKCFMBK — CP Console Functions and Command Selection. — — — DMKQCN

OUTPUT

User Privilege Classes

IOMMODOm>

System Operator
Operator

System Programmer
Spooling Operator

- System Analysis
Service Representative
General User
Reserved

0 If virtual machine is in CP mode, go too; otherwise, put it into CP
mode and build CONTASK via DMKFREE to write message on
console via DMKQCNWT. If from system operator:

0 Get the return address for a completed read operation, build a
CONSTASK for a read, and build a CPEXBLOK and attach it to

CONTASK. Put return address in CCEXBLOK, via DMKQCNRD
to go DMK/OSQR to queue and start 1/0, and

9 If entered directly from a virtual machine, put it into CP mode/upon
return from DMKDSP after a read perform command analysis. If
entered via DIAGNOSE, put user into console function mode and
perform command analysis. If entered via a break, do command
analysis upon return after a read.

o If an invalid command or a user entered an invalid command for
his class, then issue an error message via DVMKQCNWT and
If command and class are valid, call the appropriate command
processor (see Command-to-Module Cross-reference in the
section Diagnostic Aids)
Upon return from command processor, if the user has entered
another command, go to .
If entered via DIAGNOSE (DMKHVC),

; otherwise, go to o

CONTASK

et

CPEXBLOK

-Return
via SVC 12

DMKDSPCH
Diag.2B

Method of Operation

101

| Diag. 7B3.1. Virtual Machine IPL

INPUT

From
DMKCFMBK-
IPL Command

PROCESS

VMBLOK

SYSTABLE

SHRTABLE

DMKCFPIP — IPL Virtual Machine

C:> 0 If ‘Clear’ is specified, or previous system
was a shared segment system, release
all virtual machine pages via DMKPGGPC

o Check for IPL by name or address.

0 Bring IPL simulation routine DMKVMI
into middle of virtual storage via

DMKRPAGT

c Bring user’s page zero into real storage
and set it up for IPL

Inserted into this page are the IPL device ADDR.,
The console ADDR. and specified CYL.-NO.
Virutal PSW is set up to point to DMKVMI.

Bring into storage first saved DASD page
from SYSVOL

Page containing PSW, REGS., and keys required
to start system

o Set up and/or alter storage tables as required

The SHRTABLE is built and placed on SHRTABLE

chain if named system not already in use. The
SWPTABLE is updated with saved keys.

@ setvirtual PSW, GPRS, and FPRS

IBM VM/370: Control Program Logic

OUTPUT

User’s Virtual Storage

DMKVMI

User’s Page 0

VPSW I

VMBLOK

SEGTABLE

SWPTABLE

SHRTABLE'S

Return to
DMKCFM

N

102

~

kY E

| Diag. 7B3.2. Virtual Tracing

INPUT

TRACE XXX

VMBLOK

VMTRCTL
VMTREXT

COMMENTS

If this turns off the last flag, then the TREXT block is

o returned to free storage. If branch and instruction tracking
are both turned off, call DMKTRCPB to restore any
instructions altered by TRACE.

e VMTRCTL and TREXCTL 1 are identical

——

° Entry via SVC 8 as follows:

Entry Point From
DMKTRCEX DMKDSP
DMKTRCIO DMKDSP
DMKTRCPG DMKPRG
DMKTRCPV DMKPRV
1/0 Operations DMKTRCSI DMKVIOEX
Virtual and Real CSWs DMKTRCSW DMKVIOIN
SVC, branch or full instruction DMKTRCSV DMKPSA
trace

Restore user instructions altered DMKTRCPB DMKTRA
by tracing

Initialize instruction tracing

External Interrupt
1/0 Interrupt

Program interrupt
Privileged Instructions

DMKTRCIT DMKTRA

INPUT

ADSTOP Address

> 1f ‘OFF’ specified, restore instruction and free
work buffer

From DMKCFMBK-
TRACE Command
DMKTRACE — Virtual Tracing
Pick up operands and options and check for validity

If “OFF’ specified, turn off flags (A

If ‘END’ specified, call DMKTRCPB to restore
any instructions altered by TRACE, turn off flags
and return TREXT block to free storage

OUTPUT

VMBLOK

Otherwise,
1ssue ‘TRACE STARTED' message
Get trace control block and set VMBLOK
pointer to it, if a trace control block
does not exist

Set trace flags

Call DMKTRCIT to initialize branch or full instruction
tracing, if specified.|

Entry via SVC 8 O

Return to
DMKCFM

VMTREXT

/equat
VMTRCTL

TREXT

/ JREXCTL1
TREXCTL2
TREXTER

TREXPRNT
TREXRUNF

Put trace, prefix and type in output line

Convert binary and addresses to hexadecimal (DMDCVT)
Get mnemonic for OP code, if applicable (DMKNEM)
Write trace line to output device

1f ATTN was hit or if halt after trace
line was specified call DMKCFMBK to
enter console function mode

Otherwise

k(_

rom DMKCFMBK
ADSTOP Command Caller

DMKCFDAD

Otherwise,
Get work buffer
Set VMBLOK pointer
Save instruction and it virtual address
Replace instruction with SVC B3

OUTPUT
VMBLOK
[VMADSTOP |
ADSTBLOK
ADSTINAD

Virtual Storage

l 0AB3

Return to
DMKCFM

Method of Operation

103

DISCONNECTING A USER: A user may permanently or
temporarily disconnect himself from the system by a
console command, or he may be forcibly disconnected by
the operator or the system. In any case, the routines
that handle the termination process are in the pageable
module DMKUSO.

Permanent Disconnect: The user may voluntarily exit
from the system via the LOGOFF (or LOGOUT) command.
This command terminates all wvirtual machine operation,
releases all storage occupied by control blocks and
user virtual storage pages, and disconnects the
teleprocessing line connection to the user's terminal.
If the user specifies the HOLD option with LOGOFF, all
of the above occurs, except the teleprocessing 1line
remains enabled. This option 1is especially useful for
dialed connections that will be reused immediately by

another user.

The user can be forced off the system by the system
operator via the FORCE command. This has the same
effect as a user-initiated logoff, except that the user
is informed that the operator has logged him off. 1
user may also be logged off the system:

e If the time for a read of a system password expires
(28 seconds) .

e If he makes a connection to the system but does not
logon within a given period.

e If he is running disconnected (without an active
terminal) and his virtual machine attempts a
terminal read or enters a disabled wait state.

IBM VM/370: Control Program Logic 104

The LOGOFF command is processed by the DMKUSOLG and
DMKUSOFF subroutines. DMKUSOFF is also called directly
by DMKDSP to force the logoff of a disconnected user as
previously described.

Temporary Disconnect: A user may temporarily disconnect
his terminal from his virtual machine while allowing
the virtual machine to continue to run via the DISCONN
command. This command flags the virtual machine as
being disconnected and releases the user's terminal and
teleprocessing line. If the HOLD option was specified
in the DISCONN command, CP allows the line to remain
enabled, and another wuser can use the terminal to
LOGON. The disconnected virtual machine continues to
be dispatched wuntil it either attempts to execute a
terminal read to the disconnected console or it enters

a disabled wait state. At this time, the dispatcher

(DMKDSP) calls the routine DMKUSOFF directly to force
the machine out of the system. While the machine is
disconnected from its virtual console (real terminal)
any terminal output is lost; in addition, CP may apply
a disconnected penalty to the machines scheduling
priority, 1in order to bias the system in favor of
interactive users.

A user may also be disconnected by the system operator.
If the disconnected user logs on to the system while
his disconnected machine 1is still running, he is
reconnected and can continue to interact with the
system in the usual manner.

The DISCONN command is processed by the DMKUSO
subroutine.

P
\ //3

~ ~

RECOVERY MANAGEMENT SUPPORT (RMS)

The Machine Check Handler (MCH) minimizes the 1lost
computing time due to machine malfunction. MCH does
this by attempting to correct the malfunction

immediately, and by producing machine check records and
messages to assist the service representatives in
determining the cause of the problen.

The Channel Check Handler (CCH) aids
Supervisor (DMKIOS) in the recovery from channel
errors. CCH provides the device dependent Error
Recovery Programs (ERPs) with the information needed to
retry a channel operation which has failed.

the Input/Output

This support is standard and model independent on the
external level (from the user's point of view there are
no considerations, at system generation time, for model
dependencies) .

SYSTEM INITIALIZATION FOR RMS

DMKIOEFL is «called by DMKCPI to initialize the error
recording at cold start and warm start time. DMKIOEFL
will give control to DMKIOG to initialize the MCH area.
A store CPU ID (STIDP) instruction is performed to
determine if VM/370 is running in a virtual machine
environment, or running standalone on the real machine.
If VM/370 is running in a virtual machine the version
code will be set to a hexadecimal *FF'* by DMKPRV. If
the version code returned is hexadecimal 'FF,' the RMS
functions will not be initialized beyond putting the
wait bit on in the machine check new PSW (virtual).
The logic of this is that machine check interrupts and
channel errors (other than Channel Data Checks) will
not be reflected to any virtual machine. VM/370 running
on the real machine will make the determination as to
whether the virtual machine should be terminated.

If the version code is not X'FF,' DMKIOG determines
what channels are on line by performing a Store Channel
ID (STIDC) instruction and saves the channel type for
each channel on 1line. The maximum machine check
extended logout 1length (MCEL) indicated by the Store
CPU ID (STIDP) instruction is added to the 1length of
the MCH record header, fixed logout length and damage

SY20-0880-1, Page Modified by TNL SN20-2624, RAugust 15, 1973

~

assessment data field. DMKIOG will then call DMKFRE to
obtain the necessary storage to be allocated for the
MCH record area and the CP executing block (CPEXBLOK).
DMKIOG saves the pointers for the Machine Check Record
and the CPEXBLOK in DMKMCH. DMKIOG obtains the storage

for the I/0 extended logout area and initializes the
logout area and the ECSW to ones. The 1I,/0 extended
logout pointer is saved at location 172 and control

register 15 is initialized with the address of the
extended logout area. The length of the CCH record and
the online channel types are saved in DMKCCH. It
should be noted that the ability of a CPU to produce an
extended logout or I/O extended logout and the length

of the 1logouts are both model and channel dependent.
If VM/370 is being initialized on a Model 165 1II or
168, the 2860, 2870, and 2880 standalone channel

modules are loaded and locked by the paging supervisor
and the pointers are saved in DMKCCH. If VM/370 is
being initialized on any other model, the integrated
channel support is assumed; this support is part of the
Channel Control Subroutine of DMKCCH. Before returning
to DMKIOE the MCH/CCH recording cylinder for error
recording is initialized. DMKIOE passes control back
to DMKCPI and control register 14 is initialized with
the proper mask to record machine checks.

OVERVIEW OF MACHINE CHECK HANDLER

A machine malfunction can originate from the CPU, real
storage or control storage. When any of these fails to
work properly, an attempt to correct the malfunction is
made by the CPU.

Whenever the malfunction is corrected, the Machine
Check Handler (MCH) is notified by a machine check
interrupt and the CPU logs out fields of information in
real storage, detailing the cause and nature of the
error. The model independent data 1is stored in the
fixed 1logout area and the model dependent data is
stored in the extended logout area. The Machine Check
Handler uses these fields to analyze the error, format
an error record, and write the record out on the error
recording cylinder of SYSRES.

If the machine fails to recover from the malfunction

through its own recovery facilities, the Machine Check
Handler is notified by a machine check interrupt and an

Method of Operation 105

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Diag. 8B1. Machine Check Handler (MCH)

C

INPUT

Machine
Check
Interrupt — (MCI)

PROCESS

IBM VM/370: Control Program Logic 106

OUTPUT

X‘E8’

X‘F8’

X'2C0’

Real Storage

DMKMCHIN — Machine Check Handler (MCH)

Error Recording

Machine Check
Interrupt Code

Diagnostic

Logout
Area :>

Control Reg. 15

Real Storage

Extended
Logout

Area

Initial Analysis Disable soft MCls, if system damage of unre-
coverable error in CP, attempt to inform operator and

® |f timer damage,

® If an unrecoverable error in virtual machine area, record
error via DMK/OEMC, reset the virtual machine, mark
the page unavailable, and
or put virtual machine in console function mode via
DMKCFMBK and

® If the error is recoverable (soft error), record error via
DMKIOCEMC (if SET recording on), then for CP, correct
the error, and
For a virtual machine, mark page for refreshing and

If a threshold is set, determine the threshold setting and if

necessary, disable the recording of subsequent
soft errors.

File

VR

\L/

7

MCH/CCH
Errors

——l

1/0 Errors

LPSW
Disable
Wait State

.

DMKDSPCH
Diag.2B

interruption code, noting that the recovery attempt was
unsuccessful, is inserted in the fixed logout area. The

Machine Check Handler then analyzes the data and
attempts to keep the system as fully operational as
possible.

Recovery from machine malfunctions can be divided into
four categories: functional recovery, system recovery,

system-supported restart and system repair. These
levels of error recovery are discussed in their order
of acceptability, functional recovery being most

acceptable and system repair being least acceptable:

recovery is recovery
a machine check without adverse effect on the
system or the interrupted user. This type of recovery
can be made by the CPU Retry, the ECC facility, or the
Machine Check Handler. The CPU Retry and ECC error
correcting facilities are discussed separately in this
section since they are significant in the total error
recovery scheme. Functional recovery by MCH is made by
correcting Storage Protect Feature (SPF) Keys and
intermittent errors in real storage.

SYSTEM RECOVERY: System recovery is attempted when
functional recovery is impossible. System recovery is
the continuation of system operations at the expense of
the interruped user, who is terminated. System recovery
can only take place if the wuser in question is not
critical to continued system operation. An error in a
system routine which is considered to be <critical to
system operation precludes functional recovery and
would require a system-supported restart.

SYSTEM-SUPPORTED RESTART: When the machine check occurs
in a critical routine, the primary system operator is
notified that the system cannot continue to operate. An
automatic reload of the system occurs. This type of
recovery is tried when functional and system recovery
have failed or could not be tried.

SYSTEM REPAIR: System repair is recovery that requires
the services of maintenance personnel and takes place
at the discretion of the operator. Usually, the
operator has tried to recover by system-supported
restart one or more times with no success. An example

of this type of error is when a hard error occurs so
frequently that system-supported restart is not
successful.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

SYSTEM/370 RECOVERY FEATURES

The operation of the Machine Check Handler depends on

certain automatic recovery actions taken by the
hardware and on 1logout information given to it by the
hardware.

PU Retry
CPU errors are automatically retried by microprogram

routines. These routines save source data. before it is
altered by the operation. When the error is detected, a
microprogram returns the CPU to the beginning of the
operation, or to a point where the operation was
executing correctly, and the operation is repeated.
After several unsuccessful retries, the error is
considered permanent.

ECC Validity Checking

ECC checks the validity of data from real and control
storage, automatically correcting single-bit errors. It
also detects multiple-bit errors but does not correct
them. Data enters and leaves storage through a storage
adapter unit. This unit checks each double word for
correct parity in each byte. If a single-bit error is
detected, it is corrected. The corrected double word is

then sent back into real or control storage and on to
the CPU. When a multiple-bit error is detected, a
machine «check interruption occurs, and the error

location is placed in the fixed logout area. MCH gains
control and attempts to recover from the error.

Method of Operation 107

$Y20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

Control Registers

Two control registers are used by MCH for loading and
storing control information (see Figure 8). Control
register 14 contains mask bits which specify whether
certain conditions can cause machine check
interruptions and mask bits which control conditions
under which an extended logout can occur. Control
register 15 contains the address of the extended logout
area.

r L
|Word |Bits| Name of Field |
| i
| 14 | O |Check-Stop Control | Mch—Chk Handling |
| 16 | 1 |Synch. MCEL Ctrl. |Mch—-Chk Handling |
{ 14 | 2 |I/0 Extended Logout Ctrl.|Chan-Chk Handling|
14	4	Recovery Report Mask	Mch—Chk Handling
14	S	Degradation Report Mask	Mch-Chk Handling
14	6	External Damage Report	Mch—-Chk Handling
		Mask	
14	7	Warning Mask	Mch—-Chk Handling
14	8	Asynch. MCEL Control	Mch—Chk Handling
14 { 9	Asynch. Fixed Log Ctrl.	Mch-Chk Handling	
15	8-28	MCEL Address {Mch—-Chk Handling	
[W J

Figure 8. Control Register Assignments for RMS.

_——la=as

VM/370 Machine Check Handler (DMKMCH) consists of the
following functions:

1. Initial Analysis Subroutine

2. Main Storage Analysis Subroutine
3. SPF Analysis Subroutine

4. Recovery Facility Mode Switching
5. Operator Communication Subroutine

6. Virtual User Termination Suabroutine

IBM VM/370: Control Program Logic 108

7. sSoft Recording Subroutine
8. Buffer Error Subroutine

9. Term Subroutine

INITIAL ANALYSIS SUBROUTINE: The Initial Analysis

Subroutine of DMKMCH receives control via a machine
check interruption. To minimize the possibility of
losing logout information by recursive machine check
interrupts, the machine check new PSW gives control to
DMKMCH with the systen disabled for further
interruptions. There is always a danger that a machine
malfunction may occur immediately after DMKMCH is
entered and the system 1is disabled for interruption.
Disabling all interruptions is only a temporary measure
to give the Initial Analysis Subroutine time to make
the following emergency provisions:

1. It disables for soft machine check interruptions.
Soft recording will not be enabled until the error
is recorded.

2. It saves the contents of the fixed and extended
logout areas in the machine check record.

3. It alters the machine check new PSW to point to
the Term Subroutine. The Term Subroutine is
designed to handle second machine check errors.

4, It enables for hard machine check interrupts.

5. If a virtual user was running when the interrupt
occurred, the running status (GPRs, FPRs, PSW,
M.C. old PSW, CRs, etc.) 1is saved in the user's
VMBLOK.

6. It initially examines the machine check data for
the following types of errors:

MCIC=ZERO

PSW invalid

System damage

Timing facilities damage

The occurrence of any of these errors is
considered uncorrectable by DMKMCH; the primary
system operator is informed, the error is

»

formatted and recorded, and the system is shutdown
followed by an automatic restart function.

7. If the instruction processing damage bit is on, it
tests for the following types of malfunctions:

e Multiple-Bit Error in Main Storage =-- Control
is given to the Main Storage Analysis
Subroutine.

e SPF Key Error -- Control is given to the SPF
Analysis Subroutine.

e Retry failed -- If the CPU was in supervisor

state the error is considered uncorrectable and
the VM/370 system is terminated. If the CPU
was in problem state, the virtual user is reset
or terminated and the systen continues
operation.

8. If the CPU Retry or ECC was successful on a soft
error, control is given to the Soft Recording
Subroutine to format the record, write it out on
the error recording cylinder, and to wupdate the
count of soft error occurrences.

9. 1If external damage was
to the Soft Recording Subroutine

reported, control is given
to format the

record and write it out on the error recording
cylinder.
MAIN STORAGE ANALYSIS SUBROUTINE: The Main Storage

Analysis Subroutine is given control when it is
determined that the machine check interrupt was caused
by a multiple-bit storage error. An initial function
is performed to point the machine check new PSW to an
internal subroutine to indicate a solid machine check,
in the event of a machine check interrupt while
exercising main storage.

Damaged storage areas associated with any portion of
the CP nucleus itself cannot be refreshed; multiple-bit

storage errors in CP cause the VM/370 system to be
terminated. An automatic restart will reinitialize
vM/370.

If the damage is not in the CP nucleus, main storage is
exercised to determine if the failure is so0lid or
intermittent. If the failure is considered solid, the

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

~

1973

4K page frame 1is marked unavailable for use by the
system. If the failure is considered intermittent, the
page frame is marked invalid. The change bits
associated with the damaged page frame are checked to
determine if the page had been altered by the virtual
machine. If no alteration had occurred, VM/370 assigns
a new page frame to the virtual machine and a backup
copy of the page is brought into storage the next time
the page is referenced. If the page had been altered
VM/370 resets or terminates the virtual machine, clears
its virtual storage, and sends an appropriate message
to the user. Normal system operation continues for all
other users.

STORAGE PROTECT FEATURE (SPF) ANALYSIS SUBROUTINE: The
SPF Analysis Subroutine is given control when it is
determined that the machine check interrupt was caused
by an SPF error. An initial function is performed to
point the machine check new PSW to an internal
subroutine in the event of a machine check interrrupt
during testing and validation. The SPF Analysis
routine then determines if the error was associated
with a failure in the virtual wuser storage or in the
storage associated with CP itself.

An SPF error associated with VM/370 is a potentially
catastrophic failure. Namely, VM/370 always runs with a
PS¥ key of zero, which means that the SPF Key in memory
is not checked for an out of parity condition. The SPF
Analysis Subroutine exercises all sixteen keys in the
failing storage 2K page frame. If an SPF machine check
occurs in exercising the sixteen keys five times each,
then the error is considered solid and the operating
system is terminated with a system shutdown. The systenm
is automatically restarted and the VM/370 is
reinitialized. If an SPF machine check does not occur,
the machine check is considered intermittent. The zero
key is restored to the failing storage 2K page frame
and this is done transparent to the virtual users.

If an SPF machine check occurs which is associated with
a virtual user, the SPF Analysis subroutine exercises
all sixteen keys in the failing storage 2K page frame.

If an SPFP machine check does not occur, then the
machine <check 1is considered intermittent and the
SWPTABLE for the page associated with the failing

storage address 1is located.
failing 2K storage page frame is

The storage key for the
retrieved from the

Method of Operation 109

SY20-0880~1, Page Modified by TNL SN20-2624, August 15, 1973

SWPTABLE and the change and reference bits are masked
on in the storage key. The storage key is then stored
into the affected failing storage 2K page frame. If an
SPF machine check occurs in exercising the sixteen keys
five times each, then the machine check is considered
solid and the following actions are taken. (1) The user
is selectively reset or terminated by the virtual user
termination subroutine. (2) The 4K page frame
associated with the failing address is removed as an
available system resource. This 1is accomplished by
locating the CORTABLE for the defective page and
altering the CORFPNT and CORPBPNT pointers to make the
page unavailable:. to the systenm. The CORDISA bit in
this CORTABLE is set on to identify the reason for the
status of this page in a system dump.

RECOVERY FACILITY MODE SWITCHING: The Recovery Facility
Mode Switching subroutine (DMKMCHMS) allows the service
representative to change the mode that CPU retry and
ECC recording are operating in. This subroutine
receives control when a user with privilege class 'F!
issues some form of the SET MODE command. A check is
initially made to determine if this is VM/370 running
under VM/370. If this is the case, the request is
ignored and control is returned to the calling routine.
The format of the MODE command is as follows:

SET MODE {RETRY|MAIN} {QUIET|RECORD}

RETRY and MAIN retry and main

respectively.

imply CPU storage

the specified facility to be placed in
quiet mode. RECORD causes the count of soft errors to
be reset to zero and the specified facility to be
placed in record mode.

QUIET‘causes

OPERATOR COMMUNICATION SUBROUTINE: The Operator
Commnunciation subroutine is invoked when the integrity
of the system has degraded to a point where automatic
shutdown and reload of the system has been tried and
was unsuccessful, or could not be attempted due to the
severity of the hardware failure. A check is first made
to determine if the system operator is logged on as a
user, next a check is made to determine if the system
operator is disconnected. If either of these checks is
not affirmative a message cannot be issued directly to
the system operator. A LPSW is performed to place the

IBM VM/370: Control Program Logic 110

CPU in a disabled wait state with a recognizable wait
state code in the CPU Instruction Counter.

VIRTUAL USER TERMINATION SUBROUTINE: The virtual user

termination subroutine is used to selectively reset or
terminate a virtual user whose operation has been
interrupted by an uncorrectable machine check. First,
the user is marked non-dispatchable to prevent the
damaged user from running before reset or termination
is performed. The machine check record is formatted
and DMKIOEMC is called to record the error. Then the
user is notified by a call to DMKQCNWT that a machine
check has occurred and that his operation will be
terminated. The primary system operator is notified of
the virtual user termination via a message issued by a
call to DMKQCNWT. If the user is running in the
virtual=real area, DMKUSO is called to log the user off
the system and to return the storage previously
allocated to the user and to clear any outstanding user
I/0 Requests. The hold option of LOGOFF is invoked to
allow a wuser on a dial facility to retain the
connection and thus permit LOGON without
re-establishing the 1line connection. However, if the
user is running in the virtual area, and DMKCFM is then
called to put the virtual user in console function
mode, the user must re-initialize the system to
commence operation.

SOFT RECORDING SUBROUTINE: The soft
subroutine performs two basic functions:

recording

1. Format a machine check record and call DMKIOEMC to
record the error on the error recording cylinder.

2. Maintain the threshold for CPU RETRY and ECC
errors and switch from recording to quiet mode
when the threshold value is exceeded. In order to
accomplish this, a counter is maintained by DMKMCH
for successful CPU retry and corrected ECC events.

CPU_Retry Recording Mode: Recording mode (bit 4 of
Control Register 14 set to one) is the initialized
state, and normal operating state of VM/370 for CPU
Retry errors. Recording mode may also be entered by use
of the CP SET command. When 12 soft machine checks

—— —

CPU Retry Quiet Mode:

-

have occurred the soft recording subroutine switches
the CPU from recording mode to gquiet mode. For the
purpose of model-independent implementation this is

accomplished by setting bit 4 of Control Register 14 to

zero. Since in QUIET mode no soft machine check
interruptions occur, a switch from quiet mode to
recording mode can be made by issuing the SET MODE
RETRY |[MAIN RECORD command. While in recording mode
corrected CPU RETRY|MAIN reports are formatted and
recorded on the VM/370 error recording cylinder, but
the primary systems operator is not informed of these

incidents.

Quiet mode (bit 4 of Control
0) can be entered in one of two
12 soft machine checks have occurred,

SET MODE RETRY QUIET command is

set to
when
when the

Register 14
ways: (1)
or (2)

executed by a class 'F' user. In this mode, both CPU
retry and ECC reporting are disabled. The CPU will
remain in quiet mode until the next system IPL
(varmstart or «cold start) occurs or a SET MODE
RETRY|MAIN RECORD command is executed by a class 'F!
user.

ECC- Reporting Modes: To achieve model independent
support, RMS does not set a specific mode for ECC
reporting. The mode in which ECC reporting is
initialized depends upon the hardware design for each

specific CPU model type. For the IBM System/370 Models
135, 145, 158, and 168 the hardware initialized state
(therefore the normal operational state for VM/370) is
QUIET mode. For the IBM System/370 Models 155 II, and
165 ITI the hardware initialized state (therefore the
normal operational state for VM/370) is RECORD mode.
An automatic restart incident due to a VM/370 failure
does not RESET the ECC reporting mode in effect at the
time of failure.

The change from RECORD to QUIET mode for ECC reporting
can be initiated in either of the following ways; (1)
by issuing the SET MODE {MAIN|RETRY} QUIET command, or
(2) automatically whenever 12 soft machine checks have

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

™

X 7,;

occurred. For the purpose of model independent
implementation this will be accomplished by setting bit
4 of Control Register 14 to zero.

The change from QUIET to RECORD mode for ECC reporting
can be accomplished by use of the SET MODE MAIN RECORD
command. This recording mode option is for use by
maintenance personnel only. It should be noted that
CPU RETRY is placed in recording mode if it is not in

that state when the SET MODE MAIN RECORD command is
issued.
While in RECORDING mode, corrected ECC reports are

formatted and recorded on the error recording cylinder,
but the primary systems operator is not informed of
these incidents.

BUFFER ERROR SUBRQUTINE: On CPU models equipped with a

high speed buffer (155 II, 158, 165 II, 168) or a Data
Look Aside Table (DLAT) (165 II, 168) the deletion of
buffer blocks due to hardware failure is reported via a
DEGRADATION REPORT machine check interrupt. MCH
enables itself for degradation report machine check
interrupts at system initialization by setting bit 5 of
Control Register 14 to 1. If a machine check interrupt
occurs vwhich indicates high speed buffer or DLAT
damage, MCH formats the record and calls DMKIOEMC to
record it on the error recording cylinder, informs the
primary systems operator of the failure, and returns
control to the system to continue normal operation.

given control

TERM SUBROUTINE: The Term Subroutine is

1973

in the event of a hard machine check interrupt while
DMKMCH is in the process of handling a machine check
interrupt. Note that soft error reporting is disabled

for the entire time that MCH is processing an error.

An analysis is performed of the machine check interrupt
code of the first error to determine if it was a soft
error, and if it was, the first error is recorded, the
system status 1is restored and control is restored to
the point where the first error occurred. If the first
error was a hard error, the Operator Communication
Subroutine is given control to issue a message directly
to the system operator, and to terminate CP operation.

Method of Operation 111

"to be recorded on

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

OVERVIEW OF CHANNEL CHECK HANDLER

The Channel Check Handler (CCH) aids the I/O Supervisor
in recovering from channel errors and informs the
operator or service representative of the occurrence of
channel errors.

CCH receives control from the I/0O Supervisor when a
channel data check, channel control check, or interface
control check occurs. CCH produces an I/O Error Block
(IOERBLOK) for the error recovery program and a record
to be written on the error recording cylinder for the
system operator or service representative. The
operator or service representative may obtain a copy of
the record by using the CPEREP programs. A message
about the channel error is issued each time a record is
written on the error recording cylinder.

When the 1Input/Output Supervisor program detects a
channel error during routine status examination
following an SsIo, TIO, HIO, or amn I/O interruption it
passes control to the Channel Check Handler (DMKCCH).
DMKCCH analyzes the channel logout information and
constructs an IOERBLOK, if the error is a channel
control or interface control check, and an ECSW will be
constructed and placed in the IOERBLOK. The IOERBLOK
provides information for the device dependent error
recovery procedures., DMKCCH also constructs a record
the error recording cylinder.
Normally, CMKCCH returns control to the I/0O Supervisor
after constructing an IOCERBLOK and a record. However,
if DMKCCH determines that system integrity has been
damaged (system reset or invalid unit address, etc.)
then CP operation will be terminated. The action taken
by DMKCCH for CP termination will be to issue a message
directly to the system operator and place the CPU in a
disabled wait state with a recognizable wait code in
the CPU instruction counter.

Recovery will not be initiated for channel errors
associated with I/0 events inititated by a virtual
user, however these will cause termination of the user
after he has been notified of the failure. The error
will be recorded by DMKIOECC on the error recording
cylinder.

Normally, when DMKCCH returns control to the I/0
supervisor, the error recovery program for the device
which experienced the error is scheduled. When the ERP

IBM VM/370: Control Program Logic 112

receives control, it prepares to retry the operation if
analysis of the TIOERBLOK indicates that retry is
possible. Depending on the device type and error
condition, the ERP will either effect recovery or mark
the event fatal and Treturn control to the I/0
Supervisor. The I/0 Supervisor will call the recording
routine DMKIOE to record the channel error.

The primary system operator will be notified of the

failure, and DMKIOE will return control to the systen
and normal processing will continue.

Channel Control Subroutine

blocks (RCHBLOK,

Control is passed to the Channel Control Subroutine of
DMKCCH after a SIO with failing status stored, or an
I/0 interrupt due to a channel control check, interface
control check, or channel data check.

If "logout pending" is indicated in the CSW, the CP
termination flag is set. The existence of real device
RCUBLOK, RDEVBLOK), for the failing
device address, is determined by a call to DMKSCNRU and
an indicator is set if they do exist. An indicator is
also set if the IOBLOK for the failing device address
exists. A call to DMKFREE obtains storage space for
the channel check record and the channel control
subroutine builds the record. If the indicators show
that the real device blocks and the IOBLOK exist, a
call to DMKFREE obtains storage space and the channel
control subroutine builds the I/0 error block
(IOERBLOK) ; if these blocks do not exist, the IOERBLOK
is not built. The IOERBLOK is used for two purposes:

1. The device dependent Error Recording Program (ERP)
uses the TOERBLOK to attempt recovery on CP
initiated I/0 events. If the I/0 events that
resulted in a channel check are associated with a
virtual user, the I/O fatal flag is set in the
IOBLOK and the user's virtual machine 1is reset,
cleared, and put into console function mode with a
read up on the 1line. The length and address of
the channel check record is placed in the IOERBLOK
and the IOERBLOK is chained off the IOBLOK.

2. DMKIOECC uses the IOERBLOK to record the channel
check record on the error recording cylinder.

e
AN,
NS

~

Diag. 8B2. Channel Check Handler (CCH)

INPUT

PROCESS

OUTPUT

Real Storage

DMKCCHNT — Channel Check Handler (CCH)

X'0A0'
1/0
Communications
X'0C0" Area

If the 1/0 event was initiated by a virtual
machine, record the error via DMK/OECC,
and inform operator. (Vote: DMKIOE puts
the virtual machine into console function
mode via DMKCFMBK.)

For CP 1/0 events:

® Construct an IOERBLOK via DMKFREE
for error recovery attempt

® Return to DMKIOS to attempt error
recovery

If recoverable, record error via DMK/OECC,
and

If unrecoverable

::-)ii)ssa‘llavle Return to
Wait State, DMKI0S

$Y20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

IOERBLOK

Error Recording

—

_

l— MCH/CCH
Errors
1/0 Errors

Method of Operation 113

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

The channel control subroutine gives control to a
channel dependent error analysis routine to build or
save the extended channel status word (ECSW). When the
Channel Control Subroutine regains control, -eight

active addresses are saved in the channel check record.

If the CP termination flag is set, the I/0 extended
logout data from the channel check record is restored
to main storage for use by SEREP. If the systenm

operator is both 1logged on as a user and connected to
the system, a message (DMKCCH603W) is sent to him
advising him of the channel error. A LPSW is then

executed to place the CPU in a disabled wait state with

a wait state code of 002 in the CPU instruction
counter.
If the CP termination flag is not set, a check is made

to determine if an IOERBLOK was built by the channel
control subroutine.

If an IOERBLOK was not built, DMKIOECC is called to
record the channel check record on the error recording
cylinder. The system operator is then sent a message
(DMKCCH601I or DMKCCH602I) informing him of the error
and control is then returned to DMKIOS to continue
system operation.

If an IOERBLOK was built, control is returned to DMKIOS
which calls the appropriate ERP. Whether or not
recovery is successful, DMKIOS eventually calls DMKIOE
to record the channel check record. DMKIOE examines
the status of the error CSW in the IOERBLOK to
determine is it was a channel error; if so, it finds
the length and pointer to the channel check record and
records the error on the error recording cylinder. If
this was not a channel error, DMKIOE continues normal
processing.

Individual Routines

channel error analysis routine is provided
for each type of channel for which DMKCCH can be used.
The purpose of these routines and the Channel Control
Subroutine is to analyze the channel logout to
determine the extent of damage and to create a sequence
and termination code to be placed in the ECSW in the

A separate

IBM VM/370: Control Program Logic 114

IOERBLOK. At system initialization time the correct
model dependent channel recovery routine is loaded and
the storage necessary to support the routine is

allocated. The model dependent error analysis
subroutines and routines and their functions are as
follows:

INTEGRATED CHANNELS (Models 135, 145, 155_II, 158):
Since all of these systems have integrated channels one
common subroutine is used to handle all of these CPU

types. This subroutine:

e Indicates CP termination if +the ECSW is not
complete, the channel has been reset, or reset codes
are invalid

e Moves the ECSW to the IOERBLOK

e Moves the hardware stored unit address and the I/0
extended logout to the channel check record

e Sets the I/0 extended logout area and ECSW area to
ones

e Returns control to the Channel Control Subroutine

2860 CHANNEL (Models_165_II, 168): The 2860 logout area
is checked to determine if a complete logout exists; if
not, CP termination is necessary.

A check is made in the 1logout area for validity of the
CsSW fields and bits are set in the channel check
record's ECSW field to indicate bad fields.

The channel logout 1is then checked and sequence codes
are set based on the presence of a channel control
check, or an interface control check. If a channel
control check is present, the codes set are determined
through parity. The count determines if parity is good
and sets a resultant condition code.

The logout area is examined to ensure that the unit
address has valid parity and is the same address passed
by DMKIOS. If so, the "unit address valid" bit in the
ECSW is set. If the unit address is not valid the "unit
address valid" bit is reset to indicate the invalid
condition.

The ECSW field in the channel check record is moved to
the IOERBLOK, if one exists.
2680 routine

After completing the ECSW the moves the

| 2860 I/0 extended logout into the channel check record,

o

set the I/0 extended logout area to ones, and returns
to the Channel Control Subroutine.

2870 CHANNEL (Models 165 II, 168): If the channel
failed to logout completely, at 1least part of the
logout area is all ones. If a full word of ones is

found, a CP termination condition exists.

A check is made in the logout area for valid CSW
fields, and bits are set in the channel check record's
ECSW field to indicate bad fields.

The termination and sequence codes are set depending on
the presence of an interface control check or channel
control check. If a channel control check is present,
the codes set are determined through parity, count,
and/or data transfer checks. For the 2870, parity can
be determined directly from the channel logout.

The logout area is also examined to ensure valid parity
in the unit address and to ensure that the address is
the same as that passed to DMKCCH by DMKIOS. If so,
the "unit address valid" bit in the ECSW is set.

The 3rd word of the logout area is also analyzed for
type II errors. If one of these type 1II errors is
found, a CP termination condition exists.

The ECSW field in the channel check record is moved to
the IOERBLOK, if one exists.

Before returning to the Channel Control Subroutine, the
2870 routine moves the 2870 I/0 extended 1logout into
the channel check record and sets the I/0 extended
logout area to ones.

2880 CHANNEL (Models 165 _II and 168): This routine will
analyze 9 words of the 28 word logout.

The 2880 Analysis routine handles channel data checks,
interface control checks, and channel control checks.

not set in the
not issue systen
of zero to five are

Termination code 3 (system reset) is
ECSW because the 2880 channel does
reset to the devices. Retry codes
possible.

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

.

1973

4

conditions under
in the 2880

Note: There are several catastrophic
which the CP termination flag can be set,
analysis routine., They are:

1. The channel did not complete the logout.
2. The CSW is not reliable.

3. The unit address in the I/0 interrupt device
address field is not correct.

Only a channel check record is needed if the channel
has recognized an internal error and has recovered from
it without any damage. No recovery action is necessary
in these cases.

If the channel address in the 1I/0 interrupt device
address field does not match the channel address in the
logout, a CP termination condition exists.

If the channel was doing a scan and the unit control
word had a parity check a CP termination condition
exists. If there was no parity check, there was no
damage during the scan and only a channel check record
is required.

Depending on the sequence the channel has entered, the
termination and sequence codes are set; command
address, unit address, and unit status validity is
determined; and the sequence code is set valid. The
ECSW field in the channel check record is moved into
the IOERBLOK, if one exists.

Before returning to the Channel Control Subroutine, the
2880 routine will move the I/0 extended logout into the
channel check record and set the I/0 extended logout
area to ones.

ERROR RECORDING AND RECOVERY

The error recording facility is made up of three
modules. One module (DMKIOE) is resident and the other
two (DMKIOF and DMKIOG) are pageable.

The error recording routines records: unit checks,
machine checks, channel checks, and hardware
environmental counter .sense data on the error recording
cylinders of the system resident device in a format

Method of Operation 114.1

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973

suitable for subsequent processing by the CPEREP
program. The recorder also initializes the error
recording cylinders at IPL time if they are in an
unrecognizable format.

When the recorder is entered from DMKIOS, it is entered
at DMKIOERR. This entry is used for unit checks and
channel data checks. 1A test is made of the failing CSW
(located in the IOERBLOK) to see if the error was a
channel error. If it was, control is passed to routine
for recording channel checks.

The IOERBLOK sense data, IOBLOK flags, and VMBLOK user
class are examined to determine if the error should be
recorded. See the section "Errors Recorded" for those
that are recorded.

Writing the Record

After an error record is formatted, it is added to the
error recording cylinder using DMKRPAGT and DMKRPAPT.
The error recording cylinders have page sized records
(4096 bytes). BEach page contains a header (8 bytes)
which signifies cylinder and page number of the page (4
bytes), next available space for recording within page
(2 bytes), a page in-use indicator (1 byte), and a flag
byte. Each record within the page is recorded with a
4-byte length prefix.

If an error record is too 1large to be added into a

page, a new page is retrieved, updated with record, and
placed back on the error recording cylinder with the

IBM VM/370: Control Program Logic 114.2

paging routines.

Two cylinders are used for error recording: one
cylinder is used exclusively for recording the 1I/0
errors and the other cylinder for recording MCH/CCH
errors. The cylinders that are used for error recording
are specified by the user at system generation time. If
either error recording cylinder becomes 90 per cent
full, a message is 1issued to the operator using
DMKQCNWT to warn him of the condition. If either
cylinder becomes full, another message is issued to
inform the operator and recording is stopped on that
cylinder. Recording continues on the cylinder that is
not full.

If a channel check error is to be recorded, the
recorder is entered at DMKIOERR or DMKIOECC. The
channel check handler determines the entry. A channel
check error record is formatted.

A machine check enters at DMKIOEMC. Pointers are
passed from the machine check handler in registers 6
and 7 to locate a buffer where the machine check record
and length are saved. A machine check error record is
recorded with the saved machine check 1logout and
additional information. The machine check error record
is written onto the error recording cylinder by using
the paging routines.

Hardware environmental counter records are formed using
routine DMKIOEEV. This routine is scheduled by DMKIOS
after control is returned from the ERP. Sense data
information is stored in the IOERBLOK by the ERP. The
record formed is called a nonstandard record.

Errors Recorded

In addition to recording environmental data, the
following types of errors are recorded for DASD virtual
machines that are not Class F.

e Bus-out check

e Overrun check

e Seek check

e Track overrun check

e Missing address marker check

e Equipment check

e Permanent data check

e Unrecoverakle error for a
channel program.

control program initiated

The following 3420
not Class F:

errors are recorded if the user is

e Bus-out check
e Overrun check
e C compare check

e Write TRIG VRC check

e Feed thru check

e Vel/RESTART check

e Velocity change check
e Equipment check

CLEAR and FORMAT Recording Area: DMKIOEFM is called by
the CPEREP program via a DIAGNOSE instruction. DMKIOEFM
is invoked to reset the specified error recording
cylinders (if CLEARALL, CLEARIO, or CLEARMC was
specified) . The clear is performed by resetting each
page—-header space-available field. A pointer in storage
is then updated to point to the first page on the error
recording cylinder available for recording MCH and CCH
records and the first page available on the other error
recording cylinder for recording outboard errors.
Control is then returned to the calling routine.

Fipnding First Recording Cylinder at IPL Time: DMKIOEFL
is called by DMKCPI to find the first available page
that can be used for error recording. The paging
routines, DMKRPAPT and DMKRPAGT, are used to read the
error recording cylinder's pages (4096 byte records).
As each page record is read it is examined to see if
this record is the last recorded. If so, a pointer in
storage is saved so recording can continue on that page
record. Control is then returned to the caller. If
either error recording cylinder is in an unrecognizable
format, that cylinder is automatically reformatted by
CE.

Method of Operation 115

PROGRAM ORGANIZATION

This section contains the flowcharts for all processing
modules. The modules are in alphabetical order. To
determine the pertinent information about a module, see
the Lirectory entries DMKACO to DMKWRM.

FLOWCHARTS

FUNCTIONAL SYMBOLS

PROCESSING
BLOCK

DECISION
BLOCK

c1
ENTRY, WAIT, OR
TERMINAL BLOCK

D1
MODIFICATION
BLOCK

ET;

INPUT/OUTPUT |
BLOCK

—— F] —————)

SUBROUTINE
BLOCK

PREDEFINED \
PROCESS

IBM VM/370: Control Program Logic 116

@2
‘ RETURN ’

ON-PAGE
CONNECTOR

OFF-PAGE
‘CONNECTOR

32
‘ RETURN }

Control is returned to a variable point. (for example,

to the point at which this rout

A3
‘ HOURSRTN ’

Comments, com-
ments, comments,
comments, com-

L LINE JUNCTION
|
-
N
E G3
pa—

c

R

o

s

s

1 -

N

G H3
EXECUTF
uTLXYZ

tine was invoked.)

K31
Exit or Return
To—Module

‘The terminal block is used to show entry and exit points
of a routine or subroutine.Block A3 shows an entry point
named HOURSRTN.

This instruction at thi i
SUBNAME. Upon return from the subroutine, if an error
was detected (ERR), then processing resumes at the block
A1, part 3 of this series of charts. If an error was not de-
tected (OK), then normal processing resumes.

Comments are included to provide additionat informa-
tion about the logic being displayed.

entry connector one or more branches to this
block appear on this part of the flowchart.

Off-page entry connector. A branch to this block appears
on another part(s) of this flowchart.

The instruction st location GOTO calls either a subrou-
tine within this module or another module that is used
like a subroutine. If the name in the subroutine block
begins with DMK, then the call is to another module (see
the “Module/Entry Point Directory” to determine the
flowehart location of the called module). If the
does not with DMK, then the subroutine is in the
tlowchart series for this module (see the “Subroutine
Directory” to determine the flowchart-part location of
the called subroutine).

One-page exit connector control branches to block D3
on this part of the flowchart.

This block refers to a routine or program that is docu-
mented in some other publication.

Off-page exit connector control branches to block A1
on part 2 of this series of flowchart.

Control branches to an entry point on another flowchart.

AN
N L o

7 . . -
* #oxex 0165 :
02_ 018G i
* He 3t ¢
s :
RESETCT USERCARD *
DBKACOFF bt VALL S LEE ALY DMKACODYV
R :a!szr e vIIBEL LRI R ;gi%urgocgﬂ’- %*
* DMKACOFF * * - * * v * N VCAR!
3 DHEM * e 01 = * KACoD * ACEOUNTENG * [l SR S DEVCARD DEKACON DHKACOTH
AR R Evarreresssssant [T e— CARDS it Tn go0a1s & Aggzoer copy L STE TR Lreetaserennny ;
% * DATE * IH DRVICE + DHRACON % * DMKACOTH %
* * ACCQUNTIRG * * * *
: * CARDS
* -
] *
"DHKFRgE‘ s, ‘ :H!SBT PAGE RBAD: :DEK;IE!' P : HHEHBY FRREAARER
Chil g0 ST] LS e FOMEE TR ¥ i ussream % * [ROTRSTs Srvveeen " ron <o srrmystesseresy ;
. M AR SRR * . [T T rerew—— ACCTON COPY
e BT P —— P 13 £ N * T oSREPIAg"HEs X Pt * P1bS PRoYIbED oA L.
$ oatiat 3 mam resBhoitbron LSRR EOutRd ¢
L . ST P
x* ‘
e c e
* * * PILL IN TOTAL *
#BLANK OUT CARD * RESET IOCOUNT * *BLANK QUT CARD * AND VIRTUAL * * .
: BUFFER : TO ZERO : : BUFFER : TINE é CHILI : ORI S
rraniC
* * * * M b rrrxcITREIEERE
* * COMPUTE THE * * PILL IN THE * * RETORN TO * COMPUTE THE *
CONNECT TIME INY * DEVICE CLASS ¥ 3 CaliEm = t CONNECT TIHE
* i SEC i H H [N i
[T ———
BREERD THRERARRERR wxrrany.
PRUTRO . IoEveRad H ¥ * * ;
* STORE TOD AND * +GOTO CHAINIT IN*® P e] + FILL IN PAGE *]
1 PROS CLOCKS ¢ + DEACOQN be :ngg EILEOHLL: T UREADS AND % * JONSURON S, ARRARDY F R AR K H
M M ——— IN THE CARD M M PRI S b4 M M i
AREERRRKEEREEEERR tttttt"tt!ttttil EREREERRREERRER AR * s : SET gakgzcobl : : gonrur%rsg! : |
* RETURN ON R * H
H . : M S.HS
[H b M M \
* T TEEERRERRRE AR LR i
® * .
USERCARI ¥ * h *
BT pamamael e *
PILSI I%IA‘HEH‘L : : (VDEVOPER) : : : xttttgututt:cx’t:
bt i E-3 * COMPUTE THE *
R
rarx :Ss.
01 * x* : .
OGS CELE Terxasrsrasserahs
Sern
SETUP %*
3 Haseny
* TN FERAPIREERERRS GET T H
* SET UP_NEW * *GOTO CHAINIT IN* ‘ACCOITIITING BLI(* *
3 Locowwimg % T P % 4 S IO ST rexpyeReReRTILE
M * [ETT— " M %* . -puxgcu H * P
P AR PILL 18 W0K oF } et i
M * N
* H * * TTHE MESSAGE
e ER R LETTP TP ————
B SETUP1 i
G Gt e, Frleeossannuesen:
* -*IS THE *. * *
SET PIOS CLOCK * ¥ USER *. YES *PXI.L Iy USERID * i
TO -1 (VHTTIHE) ¥ * - MCCOUNTING o* T>% ANR ACCOUNT * ARRERG2ERRREREERE |
* .‘. N ~‘. * * AEERGY FEREERERE H
* SERRRERER R R * SET CARD CODE * * ¢
NO ¥ * TO 03 M x CALLER *
>t037e : : [T :
* A1 e * ERRERRFRAEERTEREE
0
P i
° SERERHL ERRRRRER AR * >
R
* OB _USER = * * STCODE B
:ACCOUHTIIG BLK : P} i
el ,:' AAAAR RS RRRKAE A AR * * FILL IN CARD L
e eex %CODE EQR DEVICE
>%02 % *
- * A1 * AREREREEERRRERERRE b
M
P rrex i
* >#01 * |
[T SR Ry e
. B
* CALCULATE NEW % %k P 5
QUEUE _ENTRY AND——J i
3 EXIT TINES % * H
BEERAEEEE AR]
i
* |
'

| DMKACO -- Accounting Routines (Parts 1 and 2 of 4)

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 ’ Program Organization 117

SY20-0880-1, Page Modified by TNL SN20-1624, August 15, 1973

DMKACO —- Accounting Routines (Parts 3 and 4 of 4)

DBRACOQU
it SE

*
+ DuRacoow %
AR R

f I -

SWAR_TO SYSTEK *
VHBLOK

:
*

HERECIRER AR SRRY
B3

ACNTBLOK T!
BEGINRING 33 *

FRRREERRAR AR R

n1

*
*

"DHKS!SBP' t.‘!zs

NOPUNCH
*RE%%D2

DMKFRET

>*CALL T4

'0_RETURR
THE ACNTBLOK

s FURERERERAEE

%
K PUNCH BUSY*
H ACCOUNTINGX

*
| PP

SRR
Q GET A *
CUTION *
CK

FEERRRREE

Rl

tSBT RETURN 0%
+, ACTBUNCH — *

* *

tttg‘:naltttltt
*

‘Euxsl§cr
* CALL 10 STACK :

CB
rxechitol BLocks
AEREERERT SRS RRRK

ARREE
#DHKPTRL|

ICTQBXIT

et KR e ACTPUNCH DMKACOPU
fE Sk

SWAP TO USERS * * * *

VHBLOK * ACTPUNCH * * DMRACOPU %

M H * H

Aerxp3 * '

* RETORE 70 % Tt] SWAR TO SYSTEN *

* CALLER * CALL_TO GET AN * VHBLOK =

* IOBLOK * *

P — * M

LOCK THE PAGE

Hrrach FrevRCOrERRER R R

DHKACOP DHKFREE
- >k e

CALL TQ PUNCH SCALL 10 GEE AR ¥

THE CARD + "KCCOUNTING = *

* BUFFER *

PRSI 4 6 R

* * CHAIN A BLANK *

RESET BUNCH * *CARD To THE END®

BUSY NITH * #OF THE_ ACCOUNT *

ACCOUNTING : : CHAIN :

*
SET DUMMY DE IN* * SET UP IO *
TOBLOK * * REIURE TO *
* * CKCTPIRA _*
* * *
#DURSTKIQ *DMKIOSQR
Shi S ok E ks

¥TCAIL o STACK ¥
* TOBLOK M

* CALL T
+ THE CAR

ARRERGY ERREERAERE
*]

it L A
* *
$UNLOCK THE PAGEX
PO

ARERED HRERRREE
4 GOTO DMKDSECH %
AR AR REEE

FRERGSHRRERREEE
* *
% GOTC DHKDSECH *

FREEREEEREEREEE

3 H o g g 3 b 3 g6 36 3 3 I 56 I 36 I % g6 B H g G I 46 3 I 3 36 3 % K o %

IBM VM/370: Control Program Logic

ACTRIRA
SRR kKRR K

* ACTPIRA :
R

82"

§O .
—*- JFATAL

*
MARK THE PUNCH *
OFFLINE *
(RDEVDISA) %
*

P

*XD2REEEERR
* IQ ERROR *

* "SET UP *
*MSG=DHKACO425E, *

* *
RRRRERAR R

FRREKEDIRE A RA A K
$DBKCVIBE

ot PR
CALL,T0 CONVERT}
DDRESS *

R R K

KASA:

DHKERHSS
CALL TO TYPE
THE ERROR HSG

RECHAIN THE

ACNTBLOK'S NO'
PUNCHED

FREREEER R R

*
*
T *
*
*
*

ACTCLEAR
FESRRE 2R AR AR
&

BN L -

a2’

LI “x. ¥ES
_..‘.".IST lCl'l'!lOg.t—_A
e o
S

FRRRKRTHRRAARRRAE
__,kSWAR TO CALLERSY
VHBLG

| SRR

AERKBIRRAAAEREK
* RETURN TO *
* CALLER *

TREAFRREEREREEE

118

» ,
sxasx 01P4 |
J 202 ¢ ‘
P * ety .
13 s x woss |
%k PR
BLDRSEG BLDRIN, VIBTREAL
P—— S persrass - Y pererers —— !
et 's:g“';nhl,_;‘ LSIMIIALIZE * vhBSET ASSOREDS * LSeatesesens SeReaazesonnseens DAKBLDEL sipusTreses seaSersrens
* DEKBLDRT % —>*, BLOC (—>* ETRY - PAGE & —>*SECOTION PLAG * sves Ta* b4 o TTTTAITR IR, o ‘. "5 *
: . . A *SzoRE sves TN LOCATE ALL GET PAGE * AND ADDEESS *
AR RIS o TIL iy g o707 18 CORE * * —>*, CORE TABLE + (—>% TABLE ENTRIES * DERBLDRL * * TABLE LENGTH _* >% OF SEGEENT *
" WIRY % * "FOR PAGE * . - *, TABLE (FHon +
sevrenreare * s B : exsarsarsrsrens ¥ Bt T
seassensans L1
. BLD201
FRP2RARERRS FRPIERRREER B4 %, FEPSEREEEEE *
UILD REAL FADYANCE 10 *INITIALIZE * . - . sxpieeesers ssernen sxpSereners
SEGMENT, PAGE, #REXT GU-BYTE * * SWAP TABLE * = *. YES * onBERSES. . * #STORE LOCK & BELEASE BEAL Biiatiisen +LESS DISP. *
AED_SwAp + _SEGHENT TABLE * *ENTRY - ZEHOES * AREL DAMAGE (- >% DEKBLD201E _$—— DR IRELOGK 1 he PILL IN COR SEGHENT, PAGE « R§p HO- DBL * O} DEara =
il *, BLOGH OF ,* Ty PAGE ¥ - PAGES ¥ * P * * "CORE TABLE 1i5LE EirR?"Fos amD Suap * *_WORDS OF SWAP * ReTugERe Or
exsbilheses [et Tassnsusaner’ * +, ENTRY e PAcE 0 TABLES: +, TABLE ¥ *STORAGE AREA *
50 ssananreree sexassrnnns
.*. -, BLD200
el o R Turl o *
. saciatetens wsnaC PYTES TR sexxacy sxcSeRraEs
*STORAGE SIZE * 188,80 iny oEE e * EEXT BAGE § # ot uu-lm *. IES *. . . . : B .
+,T0 BURBER OF * —#!BLOCKS 70 DO_l¥ *, SWiR TABLE e LMREL IN USE -——-—» paRBL500E 'v—> * sCousors Whcxte REAL BASE, 0,15 o*GBT SBGHENT * b 1P L1 LI S
* "PAGES ESTEIES -, ‘. T T8 CORE + OF VIRT=REAL * TABLE umnss * * CALL - RETURN * DOUBLE WORDS %
R sereaseans Ca, Seararararae’ % * TABLE ENTRY * AREA * FROE VHBLOK $THE Sulp TABLE *FRON THE SIZp*
#0 rrearrrene seennsrans
xepianresas PLORPAG S psdunaan 03" ",
LSONEUTE MO.# JISEL POR 16 ¢, 1S .o iEy momE '+ * . 50 * T *ep2asneses seDIreREOEE sapusseaate astaepSaentarsres
«'T8BLE BLOCKS .+ *,RgEERE LAPE e LelpacEs 8 ?!ﬂg-' D — . fm;{'.u. Lo’ « yupiEES aup * +"sET §o. oF +*SET ADDRESS*, T et
*, BEEDED & WBICHEYER IS « SEGHENT . s * *, I8 PACE TABLE * syuesEROd PIELOSE * suun‘! 'rnu * *,0RDS oF piGE * CALL - RETURN *
R EAEREERR sariiathars Cx, kT *, TABLE ¥ 3 THE SEGEENT »
W0 * srsrernane R [rETr— sassasranss Iesssssaseinsanin
.. BLD202
SrpatErarr BLD, ﬂgtﬁ LSBT SAESERERRR *
o ADIUST e soakpiEE, % rovasce 10 % it arente. wo o pmmon- * £ + JEesees, LR ;.;;gw-nnun [TTe reee
* EoumNT rimLg * CALL - GET * BEXT SEGHENT '« 1 BNOUGH FOR lr——————>s DBKBLDIO2E % INCREMENT TO_ » ASSURED * R 812 znuﬁa . bl ‘._z_: SCLEAR SEGHENT*
he lug"gﬂgt be g}gglgh{gl o TABLE BRTRY ¢ <y USER . . . * *GET HEXT TABLE * *BXECUTION FLAG * OF SEGEENT % ntnu : * TABLE ADDRESS *
senirssinen pISEE o P rsxasrrants N erassrrens * ENTRIES ¥ * o ‘Tl'“ ESTRIES® 158 Face TASLE : *, 1N VEBLOK e
eranrraers
aeen
* * *
sP3 e
BLDHSG * *eana
34 pitbid o abhaiiied RELELOQD RELENEXT
*DAKFREE * #STORE PAGE ¥ LOAD REGS WITH *DEKERH o> o
L L L *TABLE_ADDRESS* * ppcaznenr FAGE(cORE XiD FoREddo ket T, ;;:igl #TCER BAGE % SADVANCE 10 * ST
CALL - GET 3 *, G LENGTHE I & "“““ 2076 "‘“5‘ SWAR TASLE 3 SBID ERROR 3 * ES_.+HBOBE PAGES * AR d_ kot *TABLE ADDRESS* SHEXT SEGMENT * ¥O _.% USER OWK
FoR % *SEGAENT TabLEs ADDRESS M SSAGE 3 EE5,:HORE BASE SEND BESPONSE +, (EBOM SEG ¥ >* TABLE ENTRY; * *., VIRT=REAL
SSRSEEIL IS ernssenens Trersarerven’ * *. SEGHRNT .+ BSG 0 USER *, TABLE) - % *, DECARIEND R
[z [seasenrons LIS e e
*igs
>%02 ¥ >#02 + aeen
b LI te2x * 302
P po 162 2> 01rs
regieRsares saxescosdenrsenen 63", * Teax I 1
,* ROUNR 0k, DURPREE % Bs .o"huy pacEEe * gesesGieseanenrey eegzelessanns 637 ., KN TR
BOUNDARY ; 'STORE® TGALL orr e L IES.t R R0°ES 1o ger wEXT Paitr it tana .+"DoES PAGE'. NO 1 SEGERTS. . S
* kDDRESE N ¥ * STORAGE FOR * * . 3 BRSE," . iu1, sponeRis. w0 T
ADDRESS TN | 3 Siomace ror 3 e - . SEGHENT ENTRY . + CALLER * *I TABLE EXIST . nm BiTRIEg e — *{AVEREKL) PIBLD®
AEEERERAREE FERESEEREEERRRERS o ¥ * EEERRERERSRRERS s " ‘s, akd 18 BSA
+¥0 Teansasarsaresane * % e et saasksarEas
- »
* e e
>8 >
a4 % * F3 %
* ML H
caatazsases sHgatertee o e rree
o X .
+TABLE_BLOCKS * iy snp e t * Sty sesaEsEREIRERLS
*{kvze b 38151 +siAR FAALE. TO' [xEs, 2%, 2cHSRR 0] T PRI
*TABLE ADDE .+ SPAGE TABLE * * - * g »-«';Ezis“- * cilimm :
Shiesrsraei SeranERRsES e L serenerassnnane
saan
>3 s 3 *
A
«
s *
aierens
SSTORE DISE.* Jrertadeteareies *
- LE FRON*
t‘gxcﬁ:xﬁs'gr“.t-a + CALLER * *
$TORMGE IRBI. SERRRISRRIRREES
sesrasesies %
DMKBID -- Build/Release REAL Storage Tables; Build VMBLOK (Parts 1 and 2 of 3)

Program Crganization 119

DMKELD

-- Build/Release Real Stcrage Tables;

R s
»
: DNKBLDVM :
[rr T —
BUILD NEW
VHELOK:
B8 _AT INPUT
REPEREHCES
TERMINAL REAL
DEVICE BLOCK:
D1” "%, BLDBADS
% DOES ‘¥, e
.+ TERMINAL “*. NHO + ABEND - SVC 0 *
. RDEVBLOK +¥——>% (CODING ERROR *
%, EXIST _.* # BY CALLER) _ *
., P E o
*
E

Build VMBLOK (Part 3 of 3)

bt ¥

*DMKFREE * * *

ST > ST BEER TNER..
[“SBAcE For * *, . STATE

* _ VNBLOK *
P L 1 T

*
*
rErREERERRE

* - * -
#STOP CHARGING* * INITIALIZE *
* SYSTEN; START * *TINE QUANTITIES*
CHARGING USER * *
3 H * -
ARCTERRAREE EECUEERRERE
* REFERENCE * DEPAULT *
+VMBLOK IR E11¢ #TERNINAL ‘BDIT#
#~ CLEAE ENTIRE * #CHARACTERS INTQ*
* VEBLOK % TERH, ¥

* BDEVBLOK *

ernt e ssisassrany

* . #OBTAIN AND *
* SET VM % *STORE DEFAULT*
+ CHANNEL TABLE * *LINE LENGTH FOR*
*,T0 ALL FFIS % *, TERNIBAL %

SRR EREEE

nrsres

Basasc3
‘EESCIR

* CALL - TERE
4 ADDf 1w ccu
OV £ . oo,

eruag3;
*DMRCVIBH _

* CALL - TERN
+ KDBE 1w HEX

A%JJeRREEER
*PORN USERID®
*
* VMBLOK ¥
Arerersrren

IERISEEERE

OF 'LOGONXXX'
- STORE IN *

AABYEEEETES
*REVISE THE *

*
0 *
E *

FRESPYEIREREIES
* RETURN TO ¥
* ALLE!

ARERRE R ERRREE

IBM VM/370: Control Program Logic

120

DHKCCHIS
FRRRRVREEREAAE

+ *
* DHKCCHIS *
H *
[T Trr—

HAKRRR PRFHERR R ARA
*

* SAVE CALLERS *
* ""REGISTERS *
* *

*

*
ERRREAA AR REAS

wC1RRRRRRE

ENTRY
tsw11cn EoR sxo *

EREERRAKE
xkx
201 %
D

*->[03p3

kAR

1
x
Q¥ p1ed
9E THE DEyTCET
DRESS

*
*

*
DBL
i
tsa
*AD]
H

Trersrasrsreranes

1T el
.x .
HO .* IS LOGOUT *.
o, PENDING 2 ¥

R

CCHSCAN
F1 1 TS e,
tDHKSCIBU —
H Céhk; G!T RlAL:
: o SEMesng
BeRRREER R RS A RRAE

AT IREREERE

* INDICATE *
* DEVICE BLOCK *
ADDRESS EXIST
ARERARRAEE

KT e
.*is THE b o *.
*IpLoge ao

* *
e

YES
1

sxsx
* *
* a2 *
*

e

L VI e

*

*INDICATE *
* BLOCK lDDR s, *

prTT——

FRRRRC IR EEA AR EER

CALCULATE
t LENGTS CF ' CcH x

r
* *
LU
M *

Erey
Feated VEE SR PRt

*SAVE THE DEVICE

*DATA IN THE CCH
* RECORD *

x
M
*
*

xnn
* 25
M .
Pl 1
3 T
* CALCULATE THE *
*1/0 EREOR BLK. *
* LENGTH IN *
* DOUBLEWORD *

P

HEARRBS F R ERA AR
*DHKFREE *
et e S

REOR Ck
B R

A RRCSRRRARRE RS

SAVE POINTER ¥
 30k"r 0 hREOR *
*BLK IN I/0 BLK *

O ——-] FERRERR R AR AR
HERAKD JERRAKAREEE *ADIREAERE
IDUKEREE |t * * -
oa-toronot *SEND HESSAGE * * SAVE THE USER * * SAVE PAILING *
haTa * = DHKCCHEO3W * ANAME IN THE CCH® * CsW IN T/0° *
* seSeE rof Ecn * tcnnnnzl ERRORX + " RECORD H + ERROR BLOCK *
SR et Frnorsksisns
>
RDEVBSY _ .*.
B B4 SEREXESKRARRRER AR
*+ CLEAR CCH__ * SEND MESSAGE .* DOE . *SAVE THE LENGTH*
* RECORD HEADER * *T0 OPERATOR * L+ THE 170 &°%. NO *§_ADDR. OF CCH *
* AND MOVE IN * BEFORE BUITING *DEVICE LK 4 my ¥ aBcoRd Ih 10 ¥
+ " HEADER * * SYSTEN DOWN * *. ADDRESS .* l ERROR BLK *
* * #.EXIST.* *
o e L ™
s
>
CCRYAIT . CCHDEPND
EEEHEES HRRREE R HE
* * *BOVB I8E ID. INY * *
* SAVE CPU ID. * FOR 2 * NO *GET_THE ADDRESS*
* "NUBBER AND® * cngckbolnr + % OF THE 2880 *
* FAILING CSW ¥ : EESTART % *CHANNEL ROUTINE*
A T T
*iES
g2 . AAEARG 4
M * * SET THE ¥
YES txs pornrgn *. *SAVE THE T.0.D.* +INDICATOR POR¥
ZERO 20* *CLOCK VALUE FOR¥ * A TIO
*SYSTEM RESTART * * INSTRUCTION *
o * * * *
o*
o

S

AD!

FESRNNPTS Srewa—

*
* MOVE FAILING *
* CCW INTQ CCH *
1 RECORD H
e

>
MOVE
HRERRT 2R AR
*_ SAVE THE
*PAILING DEVICE *
* TAND CHANNEL
* TYPE IN CCH
* RECORD
ARRERREREARRRREAE

AXERHIER AR IR RE

P

ARIYRRRRAEE
* *
SET_INDICATOR
* INSTRUCTION *
AR EAEBERE
e
*
* A5
*
ks

*

*
*
*

| DMKCCH -- Channel Check Handler (Parts 1 and 2 of 4)

SY20-0880-1, Page Modified by TNL SN20-2624, August 15,

36 3 36 36 36 I 36 3 36 3 36 I 36 36 I 36 % I 36 36 6 I 36 96 I I I 36 I 3 3 4 I 36 3 36 I 3 I 3 3% I o

1973

Ak
CUSCH 1

>
*INTO
*
Tees
*

axerx 0135
*02 &
Pfa
s
.

FhREA] TR RRRRERRE
* *
3GET THE ADDRESS*
* OF THE 2860 %
ICHANNEL ROUTINEX
P]

SEERRC IR RRRE
GET THE ADDRESS
* "OF THE 2870 *
1CHANNEL ROUTINEY
FEEREE R EERR

2

farsasabi sl
ACCHDEER! *

A koA
¥TGo IO CHAWNEL =
* "UDEPENDENT ~ *
* ROUTINE *
ARBERRRREERERRAEE

o* *,

.*DOES AN I/0%.

*{ ERROR BLQCK
*o EXIST 7 .

e o

* *
A

e

*
% save_TRE_ECSW :
* IN THE I/0

I eihadhtelbek ¥
FERERAREEERERRRRE

xxx 0165
*02 * 03G:
* K1 *->) 03
e et |
03K1

F e S R Ty

*
HOVE EIGHT BUSY
* CONTROL UNITS

v
=

CCH RECORD*
HEREAAEERERERR K

¥
CCHRESTO _.*. SCNEND .
TN aul Tw,
Tgoe. . .
vo s 5iREnb *. YES .* SYSTEM .
.l LOGOUT SAVED ¥<——————x_ TERMINATION .%
*OIN cCh *. INDICATED.*
R - CO]
rnax oux .
%01 * *Ho
* B3*
1
*
N CCHIOE
praeniseanseanny B4 x, i
* MOVE THE I/0 .* DOES “*.

THE LENGTH 3

:zxrzubzn LOGDUT' torr
T0 FIXED ——>}AND ADDRESS OF %

* LolhzIoN Por * *. KDDR. —.*
REP * *.EXIST.* M :
PITTT L 3 1 S- e FRREERAR AR RRERE
*iEs
e
L>201
* B3 *
*
P
sxxanCl C
b *DHKIOECC *
* RESTORE * s e S
* REGISTERS FOR * * g RECORD THE ¥
@ DMRIOSTN % + CCH RECORD ¥

AREEDG X ERAEERAR
RE

PEMRE
J¥HAS THE*
* YES .* RECORDING
b4 CALLER * ——*: SUCCESSFUL
AR R Tx. o
*

ARESEEERREE

AR5 s
znuxgcuvr

P
*SEND nsssncs ro:

* DHKCCHE0SI _ *
P e

raarax

MSGGEN
FEERKCS R REKERREE S

R
POPR T .

ARERRHS Rk RREAEREE
* o

*RESTORE FAILI
*CSW TQ LOCATIDH‘
* X140

*
OO

AXEREISERRREAE XK

RESTORE
t REGISTERS OF

exmen

ERERERAEERRRARERE

SAEEKSRERRERREE

* CALLER *
FERREARREREREE

Program Organization 121

SY20-0880-1, Page Modified by TNL SN20-1624, August 15,

DMKCCH -- Channel Check Handler (Parts 3 and 4 of 4)

*kxxk 0135
ATk
%

|

INTEGRAT .*.
a1 el

Lx *.
*Is THE ECSW¥,
VALID ?

* *

o
* =
c1
* =

EEETY

B1T T,

AS TH:
NE!

ESET
*

o

LS
L
*,

R

: c1r
o
°°"5’s¥*c|a~x;.at
* SET THE *
* SYSTEM %
* TERKINATION *
* 'INDICATOR *

TEREERE R

..
*
ES AN I1/0%.
BLQCK
IST 2_.*
*

FEPPII AP
M

% SAYE THE ECSH %
* BE_ 1/0

* lﬁl?ﬂl BLOCK *
M +

NO

o Tx,
*° IS THIS A *.

(——*. MODEL 145 2 .*
* o

. o

SRR ERRRRER AR
FGET THE LENGTH %

% OF THE I/0
EXTENDED LOGOUT
+ FOR mEX ¥

HHYC 1
FREAKBRRRERAEE K

EXTENDED 10GOUTY
REA bd

>
fi £+ T TR ST senapzaTenireesy
* b
* SAVE THE ECSW * * MOVE THE I/0 *
b L *2XTERDED LOBOUTE
* RECORD : *INTO CCH !!CORD:
+
HHnLL byt
*INITIALIZE * R
IRRETREIEE %y * 1,0 EXTENDED
trxxnn 10CaTION * 16630 AREA To ¥
: ONES b
[RETTeTrIe ERRRRRRA AR REEE
rrxe
>%02 %
081
*
o

FraenIsses L

HOVE_THE UNTT *
3 AObResSTiNRS” ¥
ATHE CCH RECORD *

AREERRRREA SRR RRK

38 10tk
L+ BETRAGED %, vES
+1 L0GOUT PTR .
. ZERO . "-1
* .
P sxsix
*io 202 &
* K1%
o
S
oL
K1 *,
+IS_THE *.
¥ 1‘0 *, YES
+" ExrEfDED
. L0GOUT .
* VALID.*
Hee s
*iio «
| a2 *
2y
) wxas
Py
02 *
* Kix
o
-

wxonx
-
Yasx
—
]
DMKCCHNT DMKCCHRT Eanand LA LS T
SEE a3 rernane L
* 170 INTERROPT * *CALL * *GET ADDRESS OF *
* ENTRY * * *VMBLOK FROM I/0%
* * : BLOCK :
[
e * .
SAVE CALLER * * *
imihi e Pummel gl
N
p i M i 3 * "1 BLOCK *
M P4 M M * M
P e e—— sacs b
NTRY * TBH
‘ISSIEETEBSUPT“ :Eﬂggg ggﬁ g/gCﬁ: OHVERT :
*
/ ENTRY RECORD ADDRESS * IDBVIC! EDDRESS *
V- PO 103 £ ..
[ETTT S
* * *MESSAGE * =
*GET THE DEVICE * B] * DMKCCREOLT ~*
* ADDRESS FROM * * GO _SEND ERROR * *CHANNEL ERROR, *
*LOGOUT (X'BA') * * HESS. T0 % USERID= ¥
* * OPERATOR * *
- AR P e Te——

F4
.
.*is TH

“x.

o*
JERA

%, EV.
«

*

.
ERE M. NO

- 6%35

0CK
7"
*

*YES

KEERES KRKFRAREEE

DUKQCHK
S L S
TCALL' SEND *
* MESSAGE TO *
* . OPERATOR
PRI L1 P
— >
CCHEND
-1 PO S
* *
* TDRE *
>+ CAELERIE ¥
v SRS b
JETETT T ———

ERRGSEEAREERAE
% RETURN TO

* ALLE
AT R RRE

1973

3 3 3t I 36 I 3 g6 I 6 3 3 g6 3 3 36 I I I 3 3 g6 I 3 96 I 6 I 3 K I I I I 3 I % I % H I 6 %

IBM VM/370: Control Program Logic

MESSAGE
B

*
% BUILT HESSAGE ¥
RO

AR RAARARAAE

GET PAILING
*DEVICE ADDRESS *

| SO

AEEXRCORFRRRAK AR
*DMKCVTB!
Pt St
STCALL! ConvERT *
* TO PRINT FORM *

FREAA SRR

D2
xixs 110
RS ARNEL . No
*.QR INTERFACE .+
. CONTROL .
*CHECK . *
Pt

*iES

FRE2EREERAR

ts!TUP nassacEe
POR CHANNEL *
" +cORtROL CHECK*

FEER R

ARPRERRRER
*

* DBKCCHG01I %

CHANNEL_CONTROL
B CHECK %

*
LT

62" "*.
-$I§ THISe.
YES . * A CHANNEL *.
[——*-goNTROL cuzcg.
R -
.
NO

s

SRRk
* SETUP THE *
* MESSAGE FOR *
* CHANNEL *
* INTERFACE *

* *
HERERFFREAE

=

JHRIREEa
hsee *

o “puxieicoar “x
CHANNEL *

e rSTERRACE &
CHEC
PR L

=

>

MSGOPERA
REEKRKERS RN AAE
#DRQCHAT

Xk
IsEND Hxssnsn rot-

FREEEEREEEERERERE

MSGEXIT
FEEER ARk
* RETURN TO IN
>% LINE CODE

EERe T

*
*

.

DHKCCHTR
LT

* *
% DEKCCHTR H
[rTTTrrr—

AXBTEEERRRS
CLEAR PLAGS

* SIGHAL FIRS'

* CCW STRING

AR

5
~
5
B
£
3
»

R i
évbavnon}
HECK DEVICE*

:cuss & TYPE ¥

Ferensronany

D1° s,
*BAsp pEVICES
*l, cass

AEEEREREREE

P,
R .
-*TAPE DEVICE*. YES
*, . CLASS .

BN
61" T,
-* ..
-* TERMINAL '#. YES
#IDEVICE CLASS
I ™
- -
o Preees
*io *03 *
.

Jormisderane

*
* (onnnr. rop
ALL *
o MaSEEET .
* -
Ersrasasnns

rann
D% *
ta2x
* A2 *
warn

| DMKCCW -~

CCWGTFRE !
REEEE QD ERERREREE

ts'mncz P38 HDRY
D CCW STRING *

*
*

FETYTS S
*CLEAR_HEADER *
* AND REAL CCW *
* STRING %

»

*

[.

FECIRERRRAE
ET R7 TO *

70 %
ING OF *
OL WORDS®
USRI

ftarct
jeteict
)

AXD2ERFERES
*INITIALIZE *

*_ _HEADER
T

FEE2ETERRRS

SRERREREREE

¥

¥O .*
*I cl

*
kN

ccwoz ¥
H2' e,

.t ..
* PIRST CCW *.

*
arne

—>*_ CALL <
RSN il

»

A2 *
*

ceuod sengesatree

o RE
YES +*ApDRESS Tor

*
l, STRING (e >% Ppsr AND _

B

*iio

Lo
>* *
* Ay *

THIS! © v
* RCWTASK
RS

*
337 Tw,

. *.

*USER'S CAW *. YES

* DBL WORD _l¥——)

. ALIGNED .
* *

A
* A%
rx

L

* 'PREVIOUS' *
* RCVTASK FRou s
*0

LD
E

HBYRE:

'THIS'
RCWTASK _*
ERRE

o

it

*CHAIN, CLEAR *
+LOCAL WORK AREA®
‘%IID FLAG BYTE'
Pee T

AECY ¥

cxraEs

* *
tsroag ApDRESS®

* OF i

AEEEEEEREE

frosd
201 *
D4 *—>
b

P el

CCRNXT1
AEEEEDY &2
*TRANBRN/
it

(—>$GET ADDR
NEXT

Arrena

ARGH XD

e

Lod: e

b

o
1

*

eI
>

KEEREEERE

ok —ttx
ESS OF *
ccH o *

pETTRT

wares

SET B8 =
u IDEVBLOK !un
ESS Cl

rEREEE

kREREE
ETOAL®

E (IN*
W3- F

Ty

e
s

D
. cun B¥iE's e
(CB ELAG " x

easbiabhans”

e

% J4 %
AADDRESS TN *
*CCH_INTO Bl *,
-

., NEEDED "
ArEEREEERE

CHAIR'*.
ATA SET IN*. NO

. *DATR
+PREVIODS cC

Translate a Virtual CCW List

to

kax 0284
401 * 0202
* ES5 & 02F2
* 0281
ol FHOTE
CCWBAD
HRESFERRE RS
CCR
Pl BYTE =
#e————>* 1037’10 FORC!
CHANNEL PROG,
CHEC
AR
anne
*01 %

+P5 %> 13D5
x x

ol
CCWBAD2
St
OP-CODE¥
* nub ADDRESS
NVALID =
t‘x'norrun' -
LrTre .

AEGHREERERE
STo!
INVALID CC
* T (RCWINVL
, FLIGBIT) _
[reTTre—

g

>%03 ¥
* 11
T w

xes

a Real

*

List (P

%
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
%
*
%
*
*
*
*
*
*
%*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ar

sxsax 01KU
*02 *
* A1*
e

ERIRERREE
REMEMBER
tvlnrvlL counlvn.
AREEEERRRRE
Posy
*02 * 9sa3
* 81 *->] 058

*

Pod
CCHNXT2
xpreREree

SREEEEREAEE

. N
I8 1T A"

L URITER CeW
*oB ConE X ¢ x ot
Tkt P
*HO
1Rk kA B2 *.
BEARCH * . ..
- *3BDRESE TN *, YES .* EITHER 00'%
R15_FROM R <———# OR TIC CCW I
' PLVS TABLE ‘ *. ¥
INDEXER * = -
* i ¥RERER %
«iio
o *
rpsasasss p2° e,
* ISOLA ~*BEAD OR*.
«Byr2oBBRT The ¥ES_.* SENSE: IS
*, B4, DECEENENT + *ISKIP PLAG SEI.*
*_'BY OHE % - .
. . o
[y .
*HO
Loxee
>*01 *
*E5
o B2
e
Kl
GO TQ CORRECT
s Byze w. o cODE ¥IX CLASS
*2 coust zzgo > (B5) & THE LAST
4 EIS OF THE
x. - cC¥ op CoDE
L)
‘YES
617 T,
= *
«* IF 0, IS__*. NO
*imaE cCh K TICIe
Ca. o 1
.ux Py
ies *01 &
* E5*
O
.
cewrIC
EEIREEREE
*SET REAL EREIRRRERIRRS
+ CODE TO 0! * GO 10 CORRECT %
* CLBIB 'IlTl‘liL - *PROCESSING CODE*
LRI
PR Tr—
wonr
> -
* A x
ML
wean

1 and 2 of

31)

JIEs

o,
th:

ccnxcl ——‘

*1
«
*28D
:
.

uxen
INITIALIZE *
WORD OF CCW®
CONNARD ¥

pr

AR

Jaguss
quls chnsx s
*

Il

rease

ADDRESS*
Ic

.

nu'

Tor To ‘%, 1ES
=0 BEGIII!IG OF .
.THIS TASK.

% Do
*io 0y *
* Bux
%
*
CCHTICE _ . -*.
. B Cxl
.. .. -
FO . PREVIOUS “* YES .* BEYOND

JFrEIREerses

-

* UHERE VE lBl >

“uid

P *
<*HAVE WEs

RELATIVES .+ BAD A CP-"%. KO
* usrucnsnr . #1GENERATED CCH I ¥y
+) FROM HERE™ #. I8 THIS ¥
eanrarsarns b
*YES
G3 - GY
i
- *. YBS WO .#'Is THIS A'%.
*1,> 16 peEs L
K .
N *
.
HO
e COHTICE s atassnn
L& ROULD ¥, ¥ MARE TIS x|
+HEW CCH BUR ADDRESS
*1 INTG OUR >eRELATLVE énon -
*. CONTROL *BEGIRNIN
* AREA % TASK)
e OO L
N0
X ceNTICIA RN
337 s, FEERRTLRCERETRRE 35"
B4 . *TICSUBI * *.
.* EXACTLY 8 *. YES B G et -*HAVE WE HAD®*. YES
*. BYTES KHEAD [+ * BESOLVE TIC * * A AUTOPOLL I¢—
‘-. ..‘ * ADDRESS * . ccw B
w8 serr Sersrerreserasens o+ seeex
§O NO *07 *
* K5 ¥ raen R * 4%
* 0% %02 % 0784 ..
ae « Ku_v->| 07U ‘ ks ¥ B
. . 07F4 o
rexs 07K
CeNTICY courics
R IRETERES JrRusarerss uns-utun
*SET PLAG TO% IGNAL _ * T*
*REMENBER TIC * < apBEBee s e “appRESE” { }. *
® *+16 FORWARD * * RELOCATABLE, *< *, 70 FORH
. TIC . * CHECK EREV.
e sexadinesns [reTrIe
sere
D% *
K5+
b sssas
e *03 *
. i
)
.

|
I

| CMKCCW -- Translate a Virtual CCW List to a Real list (Farts 3

CCHCBRPY,

o dapy’
sCu STa0S x. 1ES
*IM0D. TIPE OR .t
*. JORUARD . ¥
. TIC .%

§0

ccunxriy | ¥ exsve,
ncugg THI.
*CHAIN nlfsnsny

*s *
AR

FACTREREERE

*POINT TQ END *
QF LAST VIRTUAL

Teees 0381
03_ 103
* A2

*

CCWNEXT

SRR RRERRE
R

>‘PO§}HI'T0 l!!‘l"

ccW (B9
R EE

e
HEMBER _*
*PREVIODS CCW *
* COMNAND KND *
* " PLAGS ¥

SERREEEEREE

SRC2RERERRE

ICREMENT *
tponul TO NEXT*
REAL CCW (RE)*

*xxex OSF5
*03_%
* A3
x
=

CCRNXT18 1

>*

LTragesemare
IoBLoR: TPELL *
LN lsi:. LCAW *

AR

AT S apusesrane

*
+IDEVELOR J *
>*UELL AS 10 "Dxl‘

Fr—

[reTT e rrraarEEE
sy
* D1 *->| 051
0
P
ccll"gm'”"‘" 2] *. RkERD
comRUTE * e LN SORKISAT -
* COUNT OF .*iBBRE ROOM'+. YES - o
* VIETOAL Cews, * +1 LEFT FOR C *CALL - PERFORM .2
* " STOR] +. ANOTHER .* +EDDIzToNLL ISk -
‘..552‘.‘5‘5...‘ RSOSSN W 14 1 23 5
*
w0 L -
>+06 % '+ * *03 *
* A3+ = * E3_+->| 09E3 By X
. P =
P Sear Cee)
CORDIRL L pu v vans
‘:tns“—”na ccugg;‘g‘“"““t S,
#CQMPUTE CQUNT+ * RE
>¥CALLER (DKVIO * *_ DIse. OF ¥
* OF REAL CCWS, * N écg]l' M * VDEVBLOK _*
» SHEADER * RS et 4 B . *
[T .
P
SE3 s
e
Tt
SiERY “Zer"e
tmo‘ zrn&i 3 *
CILLBE *
R loRopRECE
e
Y axghsereresnny
PRTr Sere :E"‘”E}s‘_, :
- S
o EEKACEERE T age + CALL - INVOKE *
*LAST WORD IN * ISBECIAL TDIALY
et oy PR 1R
3%
203+
*H2 06E2
+ o
e
coumXTI6 L. CORNENYZ ¥ e
.iz'gg.ﬂf ile. tms + SIGNAL NOT *
*INEW CCW LIST 13— —>x CPIRST cCH x
~FORTAVITE.* * CSTRING %
e et Frevr—
¥o R
>01 *
¥ 2 *
3 8%
pe

J1° s
S*HAVE WE*.
<*HAD ANY UN-*. NO
PROCESSED _.
. JICS AT _.
Ta kT e
sigs _* *
akt & A3 ¥
>*05 ** *
*RG wkEEE
T w
Py

a3 0161
%03 %
* A5+
%
*

TERMINIT
P i

. réé’ niiy -

4DEVICE cuss

Fraensaeares

% P oted
YES %01 %
* az¢
B
*
i
N
wo .+''1s 1mg
. nsnlclﬂn *
e
*.
its

p5”

SETDIAL
FrEoxTrsERK
* SE:
* l(DIlL‘.lBLL
*EOR DLALED LINgs
*
REREARRE R

o
>¥01 *
* A2 %
%
p

*

#0363 3 I 96 3 96 3 36 6 3 S0 3 36 3 36 36 3 3 26 I 9 I 3 I I 3 3 36 3 3 3 H % # 3 # %

CcCw:

IBM VM/370: Control

and 4 of 31)

resax
ey o
* A1%

Al

AABIRRR RS
LSBT oL
Isiu

tcnncnlc WaNTED*

'S
@

T

>
IINDSD __.*. CCWINDED
LIRS L
=
A'1s nlecB *. YES 5 §DEDDTBL) Bors
*., DEDICA +#——————>*DEDICATED DASD *
k. o e VICES [
Ny FRRRRE AR
oe
Pt
>%01 &
A2 *
e
xrx
DikERRERS
Bt 1t
S5 2OASDIEBY) k]
"+ pEBca®
DASD DEVICE
EERRRERAARE

FRR]ERREEEL

GET VDEVPOSE = *

VIRTOAL = *
CYLINDER NUMBER¥
FEOM VDEVBLOK *

G
ADD RELOCATION
FACTOR

AR R R
* STORE AS #

* TENTATIVE *

*, WIQRCKLE'IN x

* Ok~ *

reEEAE

Jl N
.*BI!‘B!R S§30‘ NO
* " OR 23

*. DEVICE .+
Fou

o
TES

Rttt
*ser L

ccuol

AHBIERRERR

m:wfad FOR vsnt
*_"AS NEEDED ¥

cCw:

1hees 9263
*04 * 02H,
* Aux

TIC]
ET VTR A

i
* lnnr‘g) *

EraRR R RRE

e, | ozo
BY_*-> 832
s
CCHTICS
A4 4B
TICSUBX
TRY TO RESOLVE
TIC ADDRESS

e
>*01 %
* A2 *
313

* AG TO *
*RELOCATE sxnsz *.
*, BT
ARRREA AR

‘CM

o
*
*

L kb

N
* UNPROCESSED *
ERRERERRARE

ARy EESRAER
* INCREMENT *
* COUNT OF %
*_UNPROCESSED *
* TICS *

*
| ERREREERRRE

FEPUSRERRES

* p. *

* OF THIS TiC *

* PROM BEGIN OF *

*THIS RCWTASK *
FRRERRAERE

L
STORE
1 Pucsuxn‘
*OF 1ST GNPROC. *
c IR
RCWHEAD %
oL L h

T JURRERA AR
*AND SIGRAL *

Program

YES

*WE'VE HAD AN %
URPROCESSED TIC
* Ho# ¥

ARREEERRAER

e
>*05 *
A1 *

P

Logic

CCWTICY
FHEEXEERERE

124

*DISPLACENENT *
* *

OF LAS:
* UNPROCESSED *
ERRREE P

o

*xeax QUAS
*05 * 04Ji

5
a1
%
*
CCRTIC10 l
KD TEEEERER
* STORE BEW
*DISPLACEMENT
*QF DNPROCESSED *
*

FACIEERREER
*

*SIGHAL START *
*NEW_CCW STRING *
*, FORTHWITH *

R R

KD I REEEREE

*POINT TO END *
QP LAST VIKTUAL
* Cew’

*
AR AR

Rt dis it

* SET POTHIER *

* TO NEXT CCWS *

* (R9) *
et
Pooad

>%03

* D1

ok
P

CMKCCW -- Translate a Virtual CCW

srex O1K4
05 %
* Az
O
*

|

CHKCDTIC .*. CHKRDBCK _.*.
2 I
.+ REAL QP '*. O .%Is ccW READ*. NO
- conz K TIC I#—— > BACKWARD TTPE.*
Ta .+ T*. 3
¥, L *, L% KRR
*iES *iES 02 %
* Ba*
+0
*
S4B2HbRREEE SEBIREEERRE
B
SET_FLAG - * WISLEADING
tuc APTER cnuv + READ ‘BACKWARD *
*CCH APTER CD %
e . H .
rrarrnaEaE [rTTTeo—
wwx wxnr
>*01 * >*02 *
* D4 * * B1 *
0
P oo

exxrx 0351
%05 *
«Rux

)

.

TICSCAN

“%ﬂttt'ttt
+GET CNT OF *

* UNPROCESSED ‘

* MEs, SET T

* SEAfC "
P13 L
[

LB T
YES .*AHY CURi
(——*.TIC BLOCK IN ¥
* USE

*

ARCH RREA A
START BITH *
*!‘IRST RCW TASK *
*rarsxsanans
rn
s *
*
*->
xxk
TICSCAN1

DU

lbDalsst

tor SORREND BLC
BLOCK ‘n

R

>

TICSCANZ
FRRUSKTERRS

»
!
=
1
o

* OF PIRST &

UNPROCESSED TIC

* PEOH HEADER *
e

0ES_IT,
PLUS)
Tel
1es
wwnx
ok
* Gy *
P =Y
Pret]
TICSCAN3

ARGYREREREE
GET ADDRESS

* ° OF NEXT %
+HPROCESSED TIC

* *
LRI T

dppputtaeate,
AADbRESE BYRESK
IN THE T
COMHAND ™ _*
ErErerrerre

*

o]
TICSUBX
TRY_TO RESOLVE

TIC ADDRESS

xa
25
e

FEASEERRRSS
,* DECREWENT %

COUNT OF
* UNPROCESSED _*
* TICST T .

P
Feey

e

AABSEEREEE
¥ GEL DISe.

OF WEXT *
*UNPROCESSED TICK
*IN THIS TASK ¥

[T

Hcscuuns‘"“‘“

«*sen ncwnean’*
>* IN READER T0 *
* XVPFFP' %

LT

AESEEEEERE
#GET ADDRESS*
* QF NEXT CCW *
STRING (IF ANE)

.
PSR-
*COUNT = AN
B I
.71CS LEFD. l
Y e
*Ro
Logxse,* oo
>#03_*
A3 saner
P

63 3 % 36 3 3 6 3 3 3 3 3 36 3 3 36 I 2 3 3 6 3 3 36 3 3 6 3 3 3 3 3 3 3 3 I 3 I 3 I 46 3 g H o3 9

werrr O5KL saaes 0302
06_ #06_* 0961
* K2 * A3% 1362
i « & 1ich
* C:
3054
TICSCANS ccRiRooN
g SHATEERERRS
T R TO * 0 LESNR
‘ lDDB!SS IN t EPERERCE t
TIC, CLEAR * BEGINNING OF
t!IBTgQL n.m" «PRES RCATASK
rrxeesrrns -
sxp2esrssen Jrepansesany
o8 5 Q2 CoDE® .
REVIOUS #* 'GB'.I' HUMBER DP‘
tcc- AS TIRTONL * DBL WORDS IN
' *THIS RE‘TlsK"
aankererens [TTTTTTee
T ., 3k
2 Prei it
KO % WAS THIS ‘*. +or RobitioNaLe
#. WCHEIN DATA 1% % WOBDS FOR %
‘.‘TO TICH '{.IRGBR BLDCI(.¥
A FrEEEERRERE
*iEs

sxD2ERERSK
* SET VIRTUAL *
CHAIN DATA FLAG
* BIT *
REEABEREEE

>

CCHEENY
FEREREREEE
* RENEMBER *
*PREVIOUS CCH *
* COMKAND XRD &
* PLAGS +
ReE R

e
>¥03 *
* 52 %

rx

5O

CCWNRO2
CTEL ey
*

List to a Real List (Farts 5 and 6 of 31)

ARRBAD IERAE SRR EE
*DHKPREE *
it
*CALL - GET NEW *
+(LAHGER) BLOCK *
Eraaskaessrasrner

ARRCRETRRREE RS

e 2k

.x x.
.*ANY CONTROL®.
-+ WORDS IN USE (%

*REPERENCE THE®
* PREVIONS CCW =
* STRING ¥

rererrEREEr

.. CCWNRO3,
RENEN Seguserssss
. *. * REVISE
«lias tumee onpielES oo PRREVERE'
e o * RCHTASK T0
*. .+ * NEW BLOCK *
s asieserrie
*io L
sene
>%07 *
b S
M
P

sagIeenran
VISE *

ersnnnrres

Pt
*07 *

Program Organization

IBM VM7370: Control Program Logic 126

{ DMKCCW -- Translate a Virtual CCW List to a Real List (Parts 7 and 8 of 31)

_ Ladid
*xxkx 0674 =xxex 025
07 % 207 * a3 %
‘:Z:‘ 3883 * Aur .::.
- . s
* TICSUBX e "'ina:nu.. x TICSUBI
R #STORE REAL *, *xs Tazs chie. 1B Le¥Enasexnereser
»
CCUBROY tusass ccwuclg““‘“ - * % TICSUBX - R14 % —»‘mnggggxgznn.: *.CP- GENERATED. -———1 3 TICSUBT - R X
° N
. #ADD PRESENT® LT e AN +
+ ool RTER TO '* *aDoRESS (RG) *, * *LSomi t. ot AREEREEEEEERREE
*"THISY RCWTASK * * TO POl ',
10 EW BLOCK ¢ . nmﬁs H ' * : o4 s
[TETTeTT estiienne’ s
P .
* tsn’:o stant's SRR RIA Y ¥BS -+"los $EO0 B
- T REAL « .
* AT FIRST BCW * + (nsUCCESS™) & ADDRESS u-cu * T Rub VIRTOAL
oeBizaeens * *, CHAIN T« T R 3 AR
L *BECISIERS FOR® SEREEROOEE . e
*RELOCATE CCW * %*
* XDDRESSES *
sesraaseren *
wees,
- TICSUB1 TICSUBS
s : N * weec 1.--:-..-. Fecustrnees |
DOINTER * INCRENENT
CHRELLD _.*. CCWRELAD - v SET ERERTER ¥, :v -
c “"". ... Sac2eseases K %* gbas’ KCHTASK * VIETOAL gonnss
- .+iS THIS THE®. WO e *
tZ‘nnnss 2, FIES ot Anpﬁgg um * * FIRST RCWTASK.* * A-hh ek EERERIREEEE
*. BELOCATE] e - l e,
T tt.“--tt.tt b taid b4 b
Be * St
e
* * D1 "% TICSUBG pusdennne
.~‘°§'}§c§* . YES < RETORN S B INCREN
-*e, * ol
b1 e, > CCHRELZ v anussn uma ”“. * Jxm;ﬁn m; >% " ("FAILED®) ¥ tnn. Ko ss Bu
- - oipoelle ¢ %o «* apgusz e « ADERESE e e * *- sersEsRsAESILS.
YES .* *. . .x" EEEEEEESERE
. % >*ADDRESS FOR NEW* * PIRST CCW IN. *
*-Jr cous Lerg.r «2E0\RER nm. * CCH AREA ¥ *THIS RCWTASK * no aern
o, .. ,." T, PO, * T
Ho il e
R * aerr
c : 1 s,
& o *ADDRES3*. E
courBLEN .. * e SrkREoF HHIS *
FeRIaRsERS ARp2RERERES .53' .. JreBusEssrae * 't.. CHAIN _.%
* DIUST .. "%, ¥O *REPERENCE THE*® R
a:gghss gz‘gfn < «3porES3'Eie uva *IANY CCWS LEPTI®. *QRIGINAL IOBLOK® s
* ‘CO'TIOL ARER “‘ ‘.‘ “ ‘t *
seemmprens® Fexeansavenr b, [STT—
rrar B1 ¢
Ly i By *
: c1 :"" ERPIEEEREEE
hadd * * COMPUTE THE *
P2° e ¥, . *e xlncg:dxus -
lnizr .+ x. ,tmnnp:. *
o a_s_x_ ¥ % *, %" PLAGBIT B errersanes
11 < EETORN & +.1NY CCWS LEFT.* +_ALREADY SET
OLB SMALLER) : *, '.‘ N t,. ¥ *
- Tk, ¥ EEEEE
EREESEEREERRRRES ..’i;s *50 *02 % *
L).Octt‘ . ‘.Kg’
ccle . B
= ct * * .‘EI‘IDIBSS'.
LR L e
‘4 Hecusssanes . i
sxgrelusmes S * « B
#SET NEW R7 = * 3 Foat]
5CE FLAG BIE TN *
*+cONTROL WORDS® *i07080LL CCW ¢ * o
'ttttttttl‘t‘ ttl‘tutttt‘ *
wean
>:°|‘)~‘t * .‘li‘"’tl‘t
* 20 #POINT REGS *
P % N TR e
R +, ADDRESSES &
s: ISP oP x
* nn‘.‘r Crmon * * e
* 15T cC¥ IN
* TASK *
sarhareriek
¥
* R TICSUBY __.*.
«23unrs Ibpaz3se.
* LS3E AL ande. WO +"VERY . yes
*IYTRTOAL ceVS le>a! nnsw'v}fmn *
*TRANLOCK * hEN . ST
X *. ¥ ¥
* GET REAL ADDR sies s#o
I0F VIRT TIC (& *
LOcK),
AN 4 N
wnerg R T
* CoRIERLAZL: Cugifals "
DIRECTLY PRON * *, BRANCH Iiro |+
JSeRuskarer % BESEECLLERRE 1 PN
+RENENBER REAL* LT —— reraseraee
« ADDRESS OF = *
* VIRTUAL TIC % * seas L *a
ersseranen >t a3 s >t an
* .‘ttl‘ * t"’
-
sebax *
:0 'l:
* *
*

ClTBg“ ATREEERREEE

*
ICKTRLSUB - R10 *
[rrTTrTeTe—

EABIREEERES
*SET R8 = 0
AS

* 10 FLAG *
*CHTRLSUB ENTRY *
* POINT *

AR

c1’ e

* *,
YES_.*BYTE COUNT *.

8 0 LESS %

D IR RRAES
* LINIT BYTE *
* COUNT TO *
* *
* *
[T,

>

CHTRLSB]

L33 TER TR
GET ADDRESS %
tul LAST BYTE OF%

Srrrssreers

S
*DECRENENT R7 &
*, {CONTROL doRp +
*INDEXER) BY 8%

ARREERREERE

Preed
CHTRLSB2 .%.
17 .

-
" edfL Tl *

AREREADEXEXRAEEEE
*:nnlmsL

GET REAL
nnnuss OF IDAW:

e xk

e
* a4 *
*

[eed
CNTRLSB4
HEREKRUEEREEEERE
*TRANBRNG
Pt st SR

*2
*

R

*
* GET ACTUAL *
+, USER IDAW

* *
B

SRR2eREEERS

* COMPUTE *
ADDRESS OF LAST
* BYTE *
raesraraen
wxex
209 %
* P2 *->(1381
Toot
CFTILSBS
ERP2ERERRRE
GE" *
‘ BEGINNING & *
—>% ENDING *
* HALF-PAGE

* ADDRESSES *
i

62" e
. o
7 TN same”x. TES

*. HALP-PAGE .
- *
* o

*.

* s
0

senn

SRE2EREER SR
* ADJUST *
& COUNT

[Hii et

ARESERRERER
ree
*

i
t.“t

*. ALIGHED
.. *

.
*iES
Lye****
> .
12
2
are

fren
Bl 1
e i

13E1

foue
CNTRLBAD _.*.
D3 _*.
<*WAS IT *.
* CNTRLSBW _*. YES
>%. ENTRY PDII!“.
*. ..t l
$om
Ho * gSt
o
.

AS *. YES
*. DHKCCUSB .
ENT ¥
R P
N0 *03 *
* B3*
%

SRPIEER RS

*
CONTROL WORD_
* AREA, BUHP R7 *
*BY 8'FOR ITS *
* RE-USE %
AEEERER T IR

e
>#01_*
*E5 *
P

HADUARERAE
*MOVE CONTROL *
*BITES T OUR R7S
*CONTROL AR

SRREEEEERE

*rax

CNIRLEXT

FAFUsEIRRES

* SET R8 = ¥

*USUAL VALUE OF *

*1 (VDEVELOK) +
SERERREE AR

FEERCUEFEEETIEE
* RETURN - R10 %
AEREERRERREEAES

36 36 3 46 3 36 6 9 I W I I 36 I 36 % W 3 I 3 I I I 6 I I 9 I I 36 I I I e I 9 kK I I ¥ O %

a%rux 09CU
*10 *
*

A1
*
CHTRLSBS
SaeRd TEREEEKSRES
CCHCHREY %
CHECK_FOR USER *
' TORAGE
PROTECTION
P41 .
erx
10« 1162
* B2 s— 1UB2
s 2
P
o*. SRCHIDS5A
B1" s, ep2esranes
s - *SET R3,
<*0K_TO WRITE*. NO %6 B1 TO USUAL®

>#VALUES, HAKDLE &
* kS GENERAL *
. rrsbreranr

FECIRERERRE
*MOVE DATA TO *
* USER STORAGE _*

.
[roToTRsw

o
L*TANY
D
*.
3

SEEIRERRRRR

*INCREHENT
* FOR l!!lIIXlG e

AERERERREEE

* P1 %>| 09E4
%

by
CHTRLSBS
X RERRARE

GET VIRTUAL
*PAGE_ADDRESS *
+ OF REMAINING _*

* DATX *

rrrrrerEres

ARERRT I RRERRREEE
*TRANBRE!
Pttt Y
& GBT REAL &
ubnnis OF 2§D *

.
PR+ PERRY

DMKCCW —- Translate a Virtual CCW List to a Real List (Parts 9 and 1C cf 31)

b rad 13c4
100, 135
F) i
Prd PHOTE
CCWGEWRL _.%.
B3 =

>41 Pl
-

R

txsoun smapts

* 6 END ADDRESS v
OF DATA

rereareren

Pred
CCHRXTY
fersapaessarianes
STRANLOC

¥ GH REAL DATA ¢
ADDRESS %

rs' ‘s
'llTVll‘ !o
. IDDRRSS Vl].l'
Ca, .
. e*
'YES

akGIEEEREES
o §kom

DDR,
‘!LIG UnLocK Tage
* PAGE LATER *

oy

canfifiy,
*CLRSENSE
ot T
* CLEAR ANY OLD
:Sllsl BYTE DATA!

renns

CCHIOCHK

rreees

FaseRny
CLRSENS;

Cinie

AN
SENSE BYT!

CTNIT S anhanses
*

*GO CHECK FOR %
* "PROTECTION *
+, VIOLATION «
P]

v
i

23
s m2k
s o7
u

bttt bbbk bttt
OEBIIIIIIITNAANES
PO NNNRD QGGG %
SOTGIRONRAGINISE

»

Program Organization

P

«&3mmanp ok
W el DATA CHAIBED

©

%

2,*

70,
8.
%
2]

5%
B1
43
B
)
C5
P2
F3
ES
G1
3
;
i

fraNeY

ONNNNNNNONNNIN)

i
e
)

127

| DHKCCW -

e 100
0 03
H i
o w

*
A REE A REEE

cll'mr.sm
AT BERRE

*_ADJUST REGS *
* FOR REMAINING *
* DATA *

AERRERA R

DATA *
P]

BT T,

o *,
*iAs VIRTUAL®. WO

- *ADDRESS VALID
“x

*sStRy ponu".

HHGTHEE RRRE
* _MOVE *
& REMAINING _*

BYTES TO OUR R7
*CONTROL AREA *

-
ey
>*09 *
*FU ¥
%
e

SRR e ves

Translate a Virtual CCW

xxex 1033
11
*A3%
O 4

CCSHRSEG, .«

.* NO
«Tarih sulno s
*
éBGn!l

B3 x.
. -
+1S VIRTOAL *.

Eoe

ks e
*

*

§O
. *ICAW KEY 2EHO
.. o~ l
. % wrxx
YES *10 _*
* I5%
+3
*
c3” k.
L*HRITE, *.
+CONTROL, Of+. YES
SEARCH fYPE I+
. Lt
. o
. p
W0 10 *
*9s%
¢4

*xxxx 1003
1 *

* Aux

*

<
»

CCWHANYP .*.
A4

a
a

2
Exw
EH
=

<

N

*ADDRESSES OF *
s

FRRRACLY FRKEKFEREE
*IDAWSUB *
e

FOR %
TenobeR Robd AwDE
*HOW MANY TDAWS *
pTa

SADU kkak Ak
* SET REGS

* AND COUNTS *

* FOR FORWARD-
DIRECTION CCH

xR EREEE

e
*11 %
* B4 *->| 2435
+ M
s
Chatl CCWIDAY
B3 T, HRBUREREARE
L sup “x. YES A (AbENESE or'x
1S .
*. FLAG o+ 'ROL WORDS) *
*, * INTO CCW
. . * ADDRESS *
P ek askansiEans
o *10 *
3 0s%
CNTRLSBS
siichRay H
CHEC; ;OR * 'SET §D=LPEE!I; ‘*
>3CHECK FOR USER
el e B .
..Jﬁ‘}'{.ﬂn ean FRPRESHHE TP FrPR——
PETET S EARRAGUEARRRE KRR
* * *TRANLOC]
REFERENCE * t—-t B e e

*
* TOBLOK (VIA *
x« TOPLQN, (VIR

TEEEEEEEERE
%
*
R 53‘ “x.
1oV * *.
AINING * YES_.*’CoNp cODE'%.
* Dl'!'l 'ro UsER '* * EROK CCHCRKEY .+
. o
PO o
*fi0
axxx
>*09 *
LRI
)
P

HEITREEEAES
*USE KEY OF *

*, VIOLATION
prererrre

>

JRIEERRRRE
’STOBB CORR‘ECTt

AP

:IDDRESS STORE ¥
P

SRRYEREE R

WARD) *
ETE

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*

*xpex 11K4
2.8
WAl

ceaIpAY
AEEELTXEARAEERER
*

1 REAL DATA &
IDDRESS STORE *
fpaL
FETRRE 02 P

*B1 *>) 11m4
*

* (FORARD OR
* BACKWARD) *
Rt)

e
12
*C1>1 1134
* x
Pred

CCWIDA6A

*KCIRERAERR
* REMENBER = %
VALID REAL PAGE
* "ADDRESS _*

R

CCWIDALR
EsAEep Thsurkenins
+TRANLOCH
it SN

% GBI, uu nlu be

ARERAAESRARREEIEE

*
e

* PR DA |
* 31 %

*

ey
CCWIDA?
HHT TREREIRR
* SemLx
* DRE: .
 neLOCRFRBLE, *
#PAGES' Locxsb *
FOSST——

LTy

IBM VM/370: Control

List to a Real List (Parts 11 and 12 of 31)
i ST x v :

2 EE A
W SlemaL e,

worn
*

a3 *
* 22

Freed
CCWIDAS
xR IEEEEEER

xxEEEERERR

AABIRERRREE
*CVALID> REAL *
* BAGE ADDRESS

* " UINTO RZ
FRERRERERAE
Pl

*
*

>%10_*
* H3 *

.
P

FWDIDAL l
EIVER e
*

SET FOR
* FORWARD _ *
*DIRECTION CCH¥

Program Logic

128

wkxx

*
* 25 *
* *.

Ak

IDAOKS
Srtasasutessenney
*TRANLOC

+ GET REAL DATA *<—-
+ ADDRESS %

b Lo L SN

xxx
RRDUSIDA_ .%.

JFTBSRERRREX
* REMEMBER %
VALID REAL PAGE
*, ADDRESS ¥

ARRREEERERR

tTlAIBRIt
Pt e et

*
*k k%%

uaxr ADDRESS OF *
*

USER'S IDAL

*

I

wann
* P2 *
M
wx 3
. IDAWBAD
P s, Sep2earsex
L% x, * «
+*WAS VIRTUAL*. NO * SET IDAW *
* ADDRESS VALIDI* >+ TNVALID
*, * * X'FFPFFFFP
.. - * *
. .x seransrrRtE
YES
BHGIBREERER G2 .
*STORE REAL * S*HAVE WE*,
* ADDRESS IN YES .% HAD A
* IDAL: ADJUST % +1, LEAST ONE
¥ coburs & -
* POINTERS * * IDDR o
et
- IDAWBADR

ADDRES:
tRlLOClTnBLE énat

'S LOCKE
u:nuun

o,
a3 «
*

o

LU b5
it *
VIRTOALS. X0 * BNy
= nnuss VALTD# LLEFT
B ‘.
 tteanatd *
* BST 31 %
i Ot
* wen
USIDAL2
ARBUSERRORE FAESERRRRRE
RBEGS TO* CE
* BEGINNING & * *REGS TO_ NEXT *
ENDING *USER IDAL_KORD *
*JDDRESSES OF * * & REAL IDAW %
L1 N P
*IDANSUB * *TRANBENG
Pt et pit e S
* CRECK FOR % * GET REAL ADDR *
ENOUGE 'ROOH_AND *OF USER'S IDAW ¥
*HOW BANY IDAWS * b
prt i
rGUEEE 55" Tx.
..

* (ADDRESS OF * WO _.*iAS VIRTUAL*.
CONTROL KORDS) % i ADDRESS VALIDI
* ADDRESS ¥ “x. o

Pt P et
x ok *iES
2 F2 %
M
pr
R [reRSEeaRre
wssw For uum > *ser acruar s
*, KODEESS NOT USER IDAW %
s it o t -
prTTree—— arranrrins”
8" T,
o N
NO .+'Is FIRST ‘%.
I, IDAW UALID _.%
. -
*

L
YES ¥

N
CNTRLSBW * wrrrx 1333 saxss 1333
3 TR R— Rtat 1 ISPy ——— R T T It s
* * Dnsnx! ~ DASD * %* * A1* * A3%
FCNTRLSBW - R10 % % IDAWSUB - R10 * ALAST 4 BITS = 1% L F
| *
SRCHID3
%* Epthsd S anadad il FEEREL ISR RRRRAEEE DASDX2
$CNTRLSU] H TRARBEN * ek AYSaekkEE
Pt itk N * DASDX2 - DASD_*
* YIF IDa SED, GET+ *GET 5TH BYTE OF* *LAST 4 BITS = 2%
* SEARCH nytss * B ReA A REGR RS * *
FRB2RKRERRR FRRMEBIEX AR REARR * * + * errreeTErREEEE
NOTE: B8 = SpyT: * FRERERRERERAERRRR Bassrreaerearrns
ADDRESS OF DATA *TRUNCATE REGS* it e 3
TO BE STORED IN * TO 2048-BYTE & * INSE| bavd b ehd
USER STORAGE * BOUNDARIES % + “con * P ek T8t 1983
e e "o « %
ATD5 cuEgRED
. R *
bt oy 16F3 * LN s“n”uszuu:n B3" . BU k. HESBEBS K kkBEEERS
+'B3 * +'C5 - 18DB - . 1 EA o* .. .* IS IT *RUTS
2 ® * +ConTROL HoRD* .*iAS_VIRTUAL*. NO 23,02 (REAL e >02 kb
WO w b >+ IREA, BUBP R7 * +1ADDRESS VALIDI+ *IIeL) OB OfaEgle >* INSERT A SEEK %
. DASDWRIT _l. CCHFORCE *BY 8'FOR ITS * ®. o (02 + COMMAND (IF ¥
Lo RC2RRERERK cu ARCSEEEBEER * RE-USE ~* - o - Bl
. *BETATE ONLI* %k L e * % sene ox .
tVIBTnAL Iblt LIBs T ENDING >11 i *bisp nxvxcxv. YES *SKIP_AND SILI* *YES hat i *=02
*1_FLAG 'HIIUS STARTING e < EI >, xsun ONLY ————————>% "BITS IN CCW b * B3 btad
-, _,. ADDRE: * - « *, FLAG BYTE * % >0 %, . * >¥15 %
oo wxnan e ot
0 %09 * * pr pe
* K1+ X
O R o -
. .
* *RESTORE R1 TO* .+kQoM POR 3'%. YES
*ITS USUAL VALUEX *1 CCHs PLUS s
* * *.$EEK REGS. %
HADTRRER AR FEERRD2 KR XXRRAARE *eDSHRRERRS * * * .
+COMPUTE . * 103 % AERRRrRARE ek sanen
* GET ADDRESS * * IDAWS NEEDED, * cH +INTO CCW PLAGH *Ho, *15 *
*QF LAST BYTE OF% * AND STARTING' ¥ * * BYTE TO FORCE * %* Lesee, * R1x
* DATA % CONTHOL WORD % SEARCH D% * *CHANNEL PROG,* >306 %, x>
ADDRESS x % " CHECK ¥ A3 s x
EEEERERREES ta"twttttstttttt AEERE R * T
“siEs P
e .
>101 + * D3
.k toIs
P RECORD RO
. . I8VIDAY * .
LIS B2" s, EEIEERRENR HepSHAREERS *.
-* *. * FLAG AS * *FOR~ INVALID¥ -
AL cc or cp ‘4. * STATUS % *. YES +CCW WITH IDA * *
IWITHIN USER® SET IN CCW . * MODIFIER TYPE * = ——->% SET, LET BYTE *
STORAGE, : . CMMAND * . * COUNT = 1 %
B - . < * R . . *
L o Arrbb AR .t [——
*iES *IES 0
400 * Lorio™s %* HRETEESARER Sk pIaraaaREERE
* F: 1 > CHTRLEU)]
* *
o P * « azl.ocnuu . T
. SURE IDA* orREs, “EELocares
AR R AR 3" x R PERBRRERE OFF *) *
" AL20, o . o SRR SEIE e * L S St T
* ONE EXTRA_ ¥ -* * * PLAG 50 !
*DOUBLE WORD IP * *.Is IT A 3330 «* BXAY 2Rn"Bs e [S++4
#CC OR CD SET * - o *READ TNTO CP x * >*10_*
. o STOFAGE *H3 >
[T w % 1L *
*¥Es L * wrax
Iy
> >112,%,
&
wann *
o*
RS *
PP S

| DMKCCW

* *
* RETURN - R10 ¥
EREEE AR RRAE

L BYTE_CONI ¥. ¥O
*l AT LEAST
‘e

20
2

g

QNI s k)
EEGatin ity Sttt]

S B 2
S e R 8 ae?

NN
PR RC PP e
ERDRAR AN AR DR
2INEREESI0CLTY

«

Translate a Virtual CCW List to a Real lList

(Earts 13 and 14 of 31)

‘Program Organization

| DMKCCW —-

wx) rresnas
* CHANGE OP %
*CODE OF READ %
. *
, (EEAD) s
[rare——

*

B
E ALTERED *

* conunn 7016 *
'S LATER *

ExERRER RS

AECIREEEREE
* IOBLOK, LET *
I0BCYL POINT TO
* USER'S 1ST %

* YL

[RTE e

*

e

LDy
DELEAR %,

POSH
iy (nnun (R
0. *

N
o yB2ibiEE o
FEEREEEEAAK

FRRAKE R RRERRRE
$CCHPUTSK
et
§ INSERT A SEEK ¥

ARAREAERERERRRERE

AXP RIS

#INSERT READ*
*HOME ADDRESS *
* CCW_WITH SKIP *
* PLAG ON _»

R AR

ARGIEERRRES
* ADJUST R6 *
* TO POINT AT *
* THE ALTERED ¥
*READ IPL CCW *

*
SRrrRE LR,

xn
READSKIP . .*.

ZRSTR

*

*
oo
Soawe
ERaoy

SESIE

o

op s,

*x
BREEE REERREERRRE
*10 %
* 35

%

*

PASDXS eup3anrearsan
* DASDX3 - DASD *
$LAST 47BITS = 3%

]

3

It
* Wl =03_.%i6-0p {03 g*- 21
*CLEARING sxls! *<——‘——4 RECALIBRATE ¢
*

i e

513

> HANDLE
s3r' 6T

IrP
Lk

aaan
*15

* B4 ‘——I 1784
<
Tran
LRl P
N
* IOBLOK, LET *
>*I0BCYL POINT 10+
* USER'S 15T *
* CYL
e - T

RCYBRRERES
*

* CLEAR %
* VDRVBOSE IN *
* VDEVBLOK _*
ARREEEEEIEE

*xaap3;

ARUTSEEK *

Bt S SN

STINSERT A SEEK ¥

* TCONNAND (IF *

. £l *
*;

S
c
FaxssdiERithesnns

o
*o:
£

B3

.
«l %fu%% ‘HSG t
"

*
*5!
*1IS

*
*

*
IGNAL: SEEK *
DED ' (SEE %
SEEKY) ¥

G
NE]
PU’

B

ERpEREERTER

PYS TS .

B
B80T REEEAD s

*
FEEERAERERSE

Pered
>310_*
* H3 *

Py

PRSP R eansarrerenne

4, DASDXU - DASD, &
SLAST 4 BITS = 4%

AR REREARRRERR

SADSHSERESE
* SET CP %
*CONTROL BYTE *
*, (BITE 5l> s *
* " REEDE *

[

s .‘

ot

o vrmruns

[N SBIS! Bhtes”

L PEESENI % i
H
1
1

a at e
*HO *16_*
* R1%

*

*

N
G5 %,
* .
.*"_Is IT A “%. YES
*. STHULATED Ix—
*._ 2311

*

DY .

. Peread
*io *16_%
* A2
¥

o

L5 e
.tnuocnmnt ¥0
*. FACTOR = 0 _lx—

aas
NOUNREL
ISR RS
B SET *
* RCHHMR *
*EcuiSii PuhG 1§+
4 CP CONTROL _*
= BITE
ARAREREREER
[peee
—>¥10_*
* B3 *

Py

Translate a Virtual CCW List of a Real List (Farts

3 36 36 46 3 gt 3E 36 3b 96 36 36 30 6 3 36 3 3 3 3k 3 26 36 36 3 3 36 3 3 3 3 3 3 I 36 3 I H K % K I K o H ¥

15 and 16

*rssx 1585
*16 %

= 21

%

HFDLXSEN
AH)JEERBERE
LYSENSE BITESs
% REFERENCE THE *
* 10 ERROR _*
xBE05K, 0,
FEr o

-
CALL - RELOCATE

FQ. IN
SENSE BITES
ARTEREEFREE R

>

PUTSENS

Tapisssress
LESSB .,

‘u!u islsn o!‘t

e St .
axrkRTEEREE

L TEREEEE Y

*LET _R8_POIRT *
*, T SENSE DATA *

SENSRUQK
*

RREETEEARE

FEREEPPRERRRERRRE
*CRTRLSB!
B AE .

AREEARERERETERERE

G IRERER
.

* ENSURE IDA %

* WOT ON, SET *

*$KIp FLAGBIT +
exraarraes

xxx
>¥15 *
* B2 %

* Cx
P

IBM VM/370: €ontrol Prcgram Logic

cf 31)

*eaex 156!

% CHALN'*.
L sdATh SBF Iie. vES
* PREVIOUS CCW, .
“x. -
L 2
*1!
13 52

.
-
»

xx43B28
$CHTRLSU

iEREABER 1510

FRBERRAEES:

sHCorERRREE
RESTORE R3.
& R1 IO

"""’.‘i...;..mm.
1, DASDYS - DASD, %
*LAST]
b *

ARERERERRREREEE

SEEERPIEERREEERE
2ROTSEE!

ARREREEEE RS axpan E S

APTER THE IDAL

L2,

i3 vsER_1bhv. YES
FLAG SET .

T, .*
*. o
. .x axsex
*RO, 12
ke % AU
SE11 % % %
BY
pr—

. OR .
.‘glbu..
3 *215
Cux
td
.

.

23" e,

T 23u s. YES
ﬁu 239

ol

. *
“io *
*

el

FREIEERRAR

AERERERERER

S
?3° s
3 *.
.*DASD DEVICE®.
*0, READ ONLY .

ek
*16 *
*Cy . 19cu
* s

axex
DASDSRCE
FACUREREIEE

* STATUS, *
>* MODIFIER TYPE *
* OF CONMAND s
Rk ERERRER

130

DASDX6
FERRRTERRRATRRR
* DASDX6 - DASD %
*LAST 4 BITS = 6%

* s
[T

*
. A oy

INSERT A SEEK *
(1P s
REEDED) s
LTI ETI

LA
i
ES
» snr PLAG sm-.'—.
et 3
P anear
#o *15 =
* k1
O
.
. DASDRDRO_,
Dl e ‘.
o 1160 kL "
.*" BITS ON "s. YES 238 17 23110e. yes
*: (READ_KZCORD I+ >+12374, of 2319
PR x. R
LI LY sexas
iio *io *10 *
exae * B3
17 x 03
* 2|"—> 2261
e
DASDRDO6_ .*. R4
.B‘ BZ
L+ 1sam sl WO .+ Busuge
+l CHECKING I *1gobE I3 18 on.
*. WANTED .=
Talxt ferey ‘-, i
*iES *10 * *iio
* B3* ass
b >*13 *
. *bu_*
< O
sans

xGIERRERES
*

.
* PLAG ISAN %
*READ_IN nnx 5%
*, OF cC

AR

AXH IR
*SIGHAL WE'VE *
* HAD AT LEAST
*ONE ISAN READ¥
aresarrenes

ERJIRERRRRE
*

*DISPLACEHENT *

* "OF THIS CCW #

arERaaEREr

EETSERPREEEY
* *
*RENEMBER SANE®
* IN WORK AREA *
FOR LATER USE
arsarresens

DMKCCW -- Translate a Virtual CCW List to a Real List (P

DASDXQ
BTy
310A50K0, 7, DASD &
SLAST 4 BIT: [

srkbessrreas

boscadits
2CHTRLSU!

‘ GET TH

pATTT T

c1

*EL
¥ES . *ConM
+IDATA-

*

£y
A

*5p1%
SPLAG ¥

rErERRES
A
E,SEER ¥

TrTTey

arxas

DEVBLOK

'CI ‘.
15 ccu obs. w0
«1, TCobE 00
. *
.
L vers
1ES #13
* bux
)
.
R R
* suasrgrn
* SEEK (07} Pon .
*00 0
orssrraers
srae vern
7 x 17 22F2
el 1971 4 E5 +— 2275
Senn
CC'!BIRZ L ¥ DEDDSEEK _.%.
B3l x. LB BS. Cx.
1 * SEITUER s
R!LOCI‘I‘IOI l. YES . BBBICI‘!B YES . AKD- OR*. YES
)'. CT%I':'(0 -, DASD B!VIC! A sl Dll’l’ CHAIN Bg ey
Tx : _)' .t L Cw. .+
g L babd ., . . b bt-hod
*io *10 * *Ho *Ho 10 %
l * B3+ | b3s
Ot o3
.
bid £l bhanad DASDX7 FIPSEERREES
» Haspurierienan
*CONTROL BYTE * * DASDX7 DASD_* *FLAG VDEVBLOK®
* = RCWHMR FOR * *LAST 4 BX‘I‘S =7 *FOR STAND ALONE*
*DMKUNTFR USE * * SEEK *
H » [TYTTerTrsTe— .
[T errserann
Iy -
D*16_* >%10 =
sh2'. *'83 ¥
s M . 2
pav P

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
A*
*
*
*
*
*
*
*
*
*
%*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
ar

N
‘PBI STIID ALONE*
BEK K
.
r—
—

LBV T
“x. YES

*l u.unnr Hio Ay
*

.
o

[ETT e

G
*

RELOCATE
CYLINDER IU!IBER‘

PrI1eREary
*

* STORE nun ',
*, MEQBCYLEIN x

*

arerreranes

IS
.tR!LOCITIOIt R
PACIOR =70

17 and 18

RELCCHH
AXEER2EERESRRESS
CCURELCH »
P S e
RELOCATE *
CYLINDER AND *
HEAD
ARERERIRERERRAES

ene
>*14 *
*'D1 +
*
pee

of

DASDX9,

Seesausseneetes
3.DASDX9 - DASD
SLAST 4 BITS = 9%
arerresssereres
ssserpurRsERRERSS
*PUTSE
s PP
*TINSERT A SEEK *
CoBmAND (TF
SEEDED)
serasrirarekasees
DASDSR39 o
BACIESTRRRR ca *.
* FLAG AS * «* WRITE *.
* STATUS, * >19 .* HONE ADDR *. <19
* MODIFIER TYPE *<- él?& OR .
* OF COMNARD _* *.SEARCH Ip.*
P
sexnsrarary 1% pre
=19 *13 %
* Du*
s
.
. .
D3 e, S
L *WAS CCR*. ..
«*SEABRCH HOME*. NO ‘DASB DEVICE*. YES
.ADDRESS EQUAL.—— * "READ ONLY .=
- o = .*
.. - 1} . *
L% o
YES 10 _
* B3+
H
.
. HRLI(DHAD! .
1S LIS ST
- *RELOCATION *. YES
———=>%, PACTOR = 0 .#——;
*.ETC. .
N *
*NO 10 *
:
H
.
- * SCNTKLSUB *
e _._._. +" pom 3330, e Pttt sk ST
#SUBSTITUTE READ® * " GET THE _ *
-Ancnnsur Bires . *HOKE ADDRESS * $ARCUKERT BYTES ¥
aen
*18 *
. GQ.‘—) 28ct
sare
. SETSKIP
63 .. Securereasy sxgsEErEEEY
. * * * RELOCATE
~*BOTTOM HA' RO *SET SKIP FLAG* *CYLINDER_NO.
*.0F SINULATED .%—— hd A¥D USE 0 A4 (28D _& 3RD
s 1 *, TADDRESS _* *_BYTES)
*. o * * *
. .% staas seaserrases sereerranes
*iEs 14 *
* Cis L Ebtd
B >%15 «
* K1 *
1
pee
FOTYS Soveey ns T
*
RELOCATE HEAD .'BDTYON HAL".
*NUMBER *Bf TBHL' *.0F SIMULATED
* PIRS? w2310
BEERAEREEES R
iEs
raae
>y +
*C1 *
Sens
JURTY. SUve
*
ALSO_RELOCATE
THE HEAD RUMBER
*, (BY TEN)
xerernaees
s
>e1y
* D
sere

IBM VM/370: Control Program Logic 132

| DMKCCW -- Tra‘ﬁslate a Virtual CCW List to a; Real List (Parts 19 and 20 of 31)

"PASDIE g er yensannses DA Resigeesennans "‘s'.’i‘i;;mm;m. "“:’35;;].’;;...;:;;. "“:55:;35;...;3;.'
DASDIA - DASD * % DASD] ASD = - =
:Llé; .n:g“ LSt (T B: $IAST & BITS = ILAST & BITS = D¥ $1AST 47BITS = EY
L axxe L Fotad
>%13 * >#14 &
* Dy * *
*
e e
" 'n *xspl
*PUTSEEK
st kP

HANDLE R|
HORE ABDRESS =
12 0B 9k:

c1’ el Hrssconireeray
.- *PUTSEE!
. ENsunE_0b'%. %O 3= il
*GODE 33 12 0. S InsERT A SEEK o
b * COMNAND (IF *
. - oo BEEDED) %
. . susks serrsncErrsberaen
A3
TES I vasn
- % >*18 *
. 13O0
M
p

CCWREA o*
b1 s,

o *.
*BITE COUNT *
ORLY 1

AEREREIERREERRREE
:PUT 'SEEK *

P

*.

P

JS

o *.
IS sKe
#. PLAG SET IN
*CCR .

* INSERT A SEEK
+ “coumud (1¥

NEEDED)
L)

o .
3 TveE oF s, WO
* wlxu genop.

.
el
*YEBS *16
wxEx ¥ Cuk
>%13 ¥
cu
xxx

d 3 36 3 g6 6 36 3 96 g 0 36 36 36 6 3 3 36 F g 3 36 3 3 3 b 3 3 30 3 K 3 36 % 3 3 3% 3 *

DASDXP
FRrnp RRrasEERE
3, DASDE® - DASD *
ILAST 4 BITS =

srerereeseerene

B
SPUTSEEK

TESERT 3 SEEK
COBNAND (I!
NEEDED)
s TR

i
>

c1
x SPl
>1p, . +EOUN: L +. =0F
+gET FILEA) k

*. KO

Is t_>:.conn gxcun :

Es .

ﬁn *" Tx. -

sane b3 . .* rat
3 e B ek
* Dus +E1
) « 5
* e

R Tt aad
SET TO
« BUSURE BYTE * "
*SET Piie nsp
R

AED2REEEERR
* LIMIT BYTE _*
* COUNT _T0 3 IF ¥
* WAS' > 3 %
TEERRAEEERR
e

‘Mt
Mand

DASDXFIN
g

TER TEETTY

tconﬂ or TErg 3'
AL CCNW_*

FEREEEERREE
Pl
>%10_*
* B3 %

x %
o

POUS!

i L S
* PUTSEEK -~ R10 *
* *

Lo

CCHRUTSK
HeREDIERREEES

*
#CCHPUTSK - R10 %
AEREERA RS AR

SXEIEREERER

* PLAG THAT *
* WETVE HAD A *
*+gEEK (NO LONGER®
*, NEEDED) ¥

EETTR TR

SRPIHRREEES
L SRYE cCU »
* CONSTRUCTION, *
*INSERT DUMHY *
3 SERK *
ARERRR AR

ARGIREEERS
* o
*BEEDED FIELDS®

e T eoRRARD

. MMAWD

RERRERRREE

AXEIERERERE
#FLAG THAT WE *
*HAVE 'HAD A CP- *
*GENERATED CC

[T reweww—"

A JIREAEEE
* RESTORE *
* ccd, SET P *

* REés, GO
RBLOCATE SEEK
* S *
AEEREEERERE

[esad
*20 % 21cH
FR3 > | 2104

Pres
CCWRELJE
LSRRIt
* RELOCATION *
* FACTOR TO *
*, CILINDER
* NUMBER
L

'k
*

L TRy
>% RETURN - B10
SRR RRREERRRE

*xmex 20K3
* A2
%
CCWRLC]
XAQEREEERE

* RELOCATED *
>*CYLINDER NO. IN*
#, SEEK ARG ¥
AEE REEARERRERE
* a2 %
*
rxr

B2
SERRR ISR R
'szggraTEd”. WO *
>: RETURN - R10 :
. o [rTTrp—-
%
IY!S
CCWRLCY ¥,
HRC TRRRRERE c2 *.
R L SVIRTOAL®.
SET HE No_,.*HERD NONEERS.
wunnn Bl $¢————¥I VALID (3 OR I*
= 255 . LEsS) .
+ *
[ITTTTr.
EEDIRREREER
SREADISEH R AR AR
«5EAD NERBER WAz« >% RETORN - R10 3
* INVALID % > " M
(e ——

AEAERREEAER

-

ATE HEAD®

MBER ' (ADD
TEN) *

asansnsaren

>

CCWRLC2,
LEr2sresnan

RE ¥
+EELOCRIBBCHEAD. *
* "UNUMBER = *

T

ARRRGIERRER NS

*
% RETURN - R10 %
FREEEREEREREESS

| DMKCCH -- Translate a Virtual CCW List to a Real List (Parts 21 and 22 of

CCWRELCH
FEEERY AR RREE

*
$CCHRELCH - R10 %
AREREERREERREES

: X
*.MIRIDISK .%
*.RANGE. *

E
ox
iio
cu’ e,
.+ *.
.*WAS_THE cCi*.
*. A SEEK HEAD .
(1B .
. o
.
ko

AXDYEERAE S

CCWRLC3
TRSKEEEARE

*SET CYLINDER *

~——>*NUMBER IKVALID *

* = 0095 +
BRI

rrn

>% *

a2

* *

b

36 6 I 3 G % 36 3 96 46 3 36 3 36 3 3 36 36 30 36 3 36 3 3b 3 3 3 3 3 36 3 3 3 9 H 3 K 3 H 3 3 3 3 H

DEDDX 1
RRERQTERERERARR
%, DEDDX1 - DEDD, %
$LAST 4 BIT!

s 2002
22 *

a3
Ui
DEDDX2 DEDDX3 DEDDYXY DEDDXS
| T FRREL TR R EREE SEEAQLREEERREES AFRE RS KIFTRRREK
* DEDDY¥2 - DEDD_* * DEDDX3 - DEDD_¥ * DEDDX4 = DEDD * DDX5 - DEDD _*

$LAST 4 BITS = 2% *LAST 4 BITS = 3% 4LAST 4 BITS = 4*
* * * * *

o -
>*15 * >¥15_%
31 x * 25 *
0N 30
Sarn poe
. ¥
B3 BS X,
<¥EITHER %.
o* IS +*WRITE DATA *. YES
*.)’0'0? (03) ‘a}OSL OR 'Esl’!.‘—\
+RECORD RO.*
'.il:) .
i prrey
*ko 10 %
1 +'B3s
2
arciaeeraer axcEeExTEER
>$ FLAG *, + 218, FLAG *
S_STATU * AS”STATUS «
* HODI!I!I TlPB * * MODIFIER TYPE #
* * OF COMMAND *
rersaress erserrens
anan eexn
*10 * >¥10 *
3N * B3 *
¥ B3
P pr e
"“"!2..5‘;”..... PEDP K axppusnarsnns PEPDXypy “""“: "“:’.‘snm‘; B%SB\
= DEI * DEDDX7_= DEDD_* 2, DEDDYS - DEDD ¥ %, DEDDXA - DEDD % -
,,_,53"{ BITS l-“75- -L‘n’gr T2 7 FLAST 4 BITS = 9% $LAST BITS = az $LAST 4 BITS
-
>#15 +
31
20
s
B LE. .
EA NN RS ?3° s,
e *, ¥ *.
.7 IS SKIP '*. YES .qs THE cc- *. 1ES .+is IT WRITEe. YES
x, Fide sET D A SEEK (07) * HOHE ADDHESS
* “x. -
eran . seran . e -
*15 * *NO *17 _* *RO *
* R+ exes 2 pSk M
* % D¥10 % *x %
* *# B3 * %
¥ 23
raan
1 sxgIersenns
x * PLAG AS *
o A *. WO ATU: *
2" skip’ nu‘l . * HODIFIES TYPE ¥
*., (08) OF COMMAND
'. o EEEE AERERREEERS
*iEs *10 *
Ly Fuse, & B3 wern
>¥17 * * >*10 _*
* B1 ¥ * B3
P as

31)

Program Crganization 133

DMKCCW -- Translate a Virtual CCW List to a

PR DR reatareannres
* DEDDXC - DEDD *
$LAST 4 BITS = C¥

k. TTrT—
* DEDDXD -
:Lls! 4 BITS = D:

-
>%13 *

:
* D.t'
ENS
B s
* E1 Z;II
R
ERS
B T e

L TAREX2 - Tap
SLAST 47 BITS = 2%

B2 "%l
L+ FarzE e,
o ;(conum? xng; YES
. Tho(
M R
X
53

e
* >iD, FLAG *

* s STATOS

* MODIFIER TYPE *

* OF COMBAND *
AreRRA RS
o

>+10 *

* B3 *

P

T e mariseiase
4, TAPEX3 - TAPE %
$LAST 47BITS = 3%

*
P s

o
2"

*

IBM VM/370

Real list (Parts 23 and 24 of 31)

axnn
23

1 338
*

T
e imtepeaiaee, testages :
'ng‘gnxxlllglnp ‘LISTB BITS = P‘ :LIST BITS = 'l:

L L.
nin

>‘1;1 * * B3 *

i

Eh fous

B I re—
* PEX4 - TAPE * * TAPEX E, =
:L’{gl‘ﬂg BI’l'Sl= B: ‘EIST 4 BITS 5: :I.AS‘I 4 BITS = 6%

-
>*15 %
* A5 *

l_ ot

>¥13 *
Dy »

* *

P P

L

forsd

>*13 *
* Dy %

P

P A R R A T N R E R E R R E R E R I I I R I e e R E R E R

PRX7 TAPEX9 TAPEXA

BEEEL IERRRREIES ltstlzttttttttt COREEREIERRRERERR
* TAPEX7 - TlF! ‘ ‘TAPEX9 =~ TAPE * * TAPEXA - TAPE *
"-lS‘l‘ BITS = ‘LISI BITS = 9‘ :us 4 BITS = l:

[- -

>%15 * >*13 * >*13 *
* K1 % : Dl“ * Dib *

P o e

.8 {wuv

: Control Program Logic

R
TAPEXB - TAPE
:L‘IST 4 BITS = B:

134

TAPEXC,

e
1+, TAREXC - TAPE %
$LAST 4 BITS = CF

Ly
=18, .%’s 11 °°f . =08

*4
*aize *1
*
*

Tk

o
o e

*.
widr g gt e 0
N 5&25 THE.*"

TAPEXB2,

Lepusrnnnin
SET_FLAG:
tssnsn BITES to *

*

AR
bered
>*10_*
* B3 *
x Uy
P

‘55
.*+'Is ccu.op'*. WO
*._ CODE = 0C
- .
* o
* % sexan
TES *13 *
oy * by
*24 % * ¥
*°C5 »->{ 29C5 »
.
aan
DRAWKCAB
RS

* ENSURE 0C *
* BIIS SET IN *
* REAL CCW %

FREERRAAARE

b5’ s,

. *.
.*' IS SKIP *. YES
*, FLAGON e

* K
P Ported
*H0 *15 %
* K1x
*x
*
S
5" x
SET
GPR10: IS *. YES
*. VIRTUAL IDa I+
*.FLAG SET .¥
* a *xxan
*io 212 %
* Bus
%
*

JrTTrrITs Smseey
EE:"‘Z{ PP

® CHECK FOR = *
ENQUGH ROOK AND
HOW MANY IDAWS *
FrAR-LLE 24

*
* *

FEISHEARE SR
¥ ST RECS s

AND_CQUNTS #
bR iR RD- *
#DIRECTION CCR
Fasreararen

P
%11 *
* B4 %

P

swess 2023 serex 2814
TAPEXD X TaPE R 2 * i 7 PR
Rrnasaessane AP e aorsnarsran i - FPTRR TR g aanesnrs TERM AL swpsareansare I A
3, TAPEED - TaPE o * TAPEXE - TAPE % 3, TAREXP - TAPE ¢ TERNX1 - TERN % * TERMX2 - TERM * %
$LAST 4 BITS = ILAST 4 BITS - 2} JLAST 4 BITS = SLAST 4 BITS = SLAST 4 BITS = 2%
TERNX7 TERNXY TERMXA TERMXB
bbb Lehd Lo e * EEREL TRRRERES RS ttttl20nt"‘.’l il LRt b bdhad FEEEASERSRERERR
S¥13 4+ >e13 % >e15 *):23 . >423 * * TRRAX7 - TERN_* 3, TERAXO - TEEN 2 * TERHXA - TERN * 2, TERNYD - TERN +
Dy x 3'ou Kt * *ise b L $LAST U BITS = 7% $LAST 4 BITS = 9% $LAST & BITS = A% FLAST 4 BITS =
P P ae seex ras *
. o
* C1 *
* .
ene
4 STATHODC .
* .. SPnaesarres ..
vnn axnr ex ., xs R ELac AS -
25 + %25« *25 * >27 » TATUS IS 11
783 e 2m3 170 s 2704 175 2y 215 * ‘nlﬁ nnl.s -t uogxrm nn + * INKIBIT (0A)
Eaidd Rl oy N ‘ N .t‘
e e p. . x
TERMX3 TERHYY TERNES TERNYE * 13 % s27 Ty *ies
JFErscisksssrees SEraCIerRREREES BRarcusrsensens Shercsrixaresss * Duk swrn Logeee
3, TERAE3 - TERM % * TERAXU - TERN * * TERHX5 - TERN_* 4, TERRKS - TERM ¥ LIC] >$15 %
SLAST § 3 HAST 4 BITS = 43 $LAST 4 BITS = 5% SLAST 4 BITS = 6% * =31
eraasrrarasans] Seae
* e’ 3" e,
P oad . . *.
2% * i n¥?§' 53 T oi%2788 BEshuc)iel
b2, 26c1 @, el LImE 0
. TERRSAD . o B *x * be14d Tal o v aid
ERD2EERKERE D3 *, nb *, D5 *, *13 * *YBS *10_*
» L Sres Bk +'Bax
=03 . *N * REFERENCE * * IS IT A *. YES .‘IS Is “!l? *. NO I *)‘10 ‘ % * %
*l >% REAL DEVICE * REAL_SENSE 5) *PREPARE (06) * .
s * BLOCK % ., 0 Lx . . . o
serns [rerreTr— e x setns . seres Ta 8T sraex *
e ¥o T i et T Y303 rp3TewRLs
* hAd 2310 % ¥ L>:|s1a_ . * L*SET FLAC - “
t 3‘ * *AUTOPOLL CCW ‘
Senr Tere * : *
R TERHSENS. astassarers
. SREIeRERRS
K . * Iy
3F > 13, Tie w0 WO % *SET 70 USE AN >0+
T nogz BTl ——*1poESs IT nxsm * * "OP-CODE OF B3
* SENSE (00) * * *
“x. - po
“a. fre . . sereneerres
*iEs *13 % aies
[%ens 3502 se *
>+10 % e% 25
s e *F3 +>| 2702
* * *
P o
3¢ £ hbbdtid TBHHSK;gIB# RRAER
SPORH_SAD OP* * SET SKIP * * wnan ey
#CODE_PROH_SAD* * PLAG, STORE * 226 * 326 &
0 RN K * Pl o Phoqwe
. » . * por o
[T
A e %* TERRXC TERAXD TERNXE TERBXF pIALX]
LPsarpisasesesss Seeapaerrsssnse i
TERMXC - 1ERM % + TERNID ~ TERN * * TERMIE - TERM * 4 TERMXF - TEEN ¥ * DIALX1 = DIAL #
* 'LIST BITS = c% FLAST 4 BITS = DX LAST U BITS = E3 SLAST S BITS = P¥ SIAST G BITS = 13
<
TERAST]S
iazstaress * Lo Lz
>¥13 % >423 *
. cncuunn orx 3 Do+ l s .
. W cew * Tens ! peT
EEEAEAREE * 2" e, 63" "%, Gy e,
. .. .e TS IT k.
> .*is IT BREAK®. J40 IS IT ‘s, WO <2P .+ SADTHEEE '*. >2F
* D) *. SEARCH (0E) .* ‘.“P) DISABLE.®
. * o . (25& OR_.* l
- 30 e
TERNSILI * ety Poried
Senzeeerane *i2p 13 *
* G W
* ESURE SILT *
*, FLAGBIT'ON, « B3 e *
FIRISH 02’ * e
sesenserrne
sars
>15 * *
B2
P *

| DMKCCW -- Translate a Virtual CCW List to a Real List (Parts 25 and 26 of 31)

Program Organization 135

| DMKCCW -- Translate a Virtual CCW List to a Real List

L T “wﬁqwuwrt . T - a—
* DIAL = DIAL * * D X3 =~ DIA = * II.X = Al

:!.2!1‘ BITS = 2: *LIS%L BITS = L ‘LIST 4 BITS = 0‘ :LIST BITS = 5: ‘LIST BITS = 6:
[ezee L smee [smee [

>#23 * >%25 * >#%25 * %25 *

* E1 % * C3 % : Cll" : C5 %
L L foue S

.
.
N0-0B*. YES
3)

S2nene
EITHER *.
SADZER_(13). NO
*] OR HODE-SET .
@3 e+
" anax
1ES 13 *
7. 52 208
12| BB *
[
nzu.lugn p2+bes

<REBRACE CoRx
BY HO-OP, SET
*SKIP FLAG'BTC. *

T
P
>%*25 *
*°F3 %
* " Cx
*xxr

IBM VM/370: Control Program Logic 136
(Farts 27 and 28 of 31)
%
* "1-=;z..i‘;...;;;;.. Ly, oraigy G T
. o *
% pi% e E e g DURRIgTS LRI S ot R LS
* t!ltt‘.nttttt.t "
[[-
* a2, PR i m2 s
* R EEE "attt‘
*
%
*
*
*
*
%
*
*
%
*
*
*
*
%
p
* .unn--a;;u.
.
* x J‘Eédaﬂ- .
* SRR
* >31i
: D1 *
* b
%*
*
%*
*
* P raenrese P israreres DL . sy OTHRLL v pernnsnn
=, - L * L])] * - * * -
* :LIST 4 BITS = C: :LIST 0 BITSIe D: :ngg lBI'lg H :Lgé‘%l.g!n!’gI_H.v: ‘gsggx: Elggn5l1:
1
* L L. er. Ly
* AN N AR e
faee fane Taee aee
%* Ju' *.
+* IS IT *.
* <2F_.* SADTHREE_ *. >2F
‘.‘IP) DISABLE
. 5 OR .*
* S
R
* o
*
P S
* * PLAG_NOW
* DISABLED,
REMEMBER W /DID
* VIRTUAL *
3 * DISABLE %
i
*
* b
e
*
*
*
*

oTERY2 oTARX3 OTHRXY OTHRXS, OTHRYX6
HEAK L PR R AR FRERADERERRAE R RAEKR JHRRERAR R n:quuuutu ARAEDSHRRER AR
OTHRKZ - OTHER ¥ *OTHRX3 - OTHER * *OTHRXE - OTHER * $OTHRXS - OTHER * $OTHRXE ~ OTHER *
FIAST 4 BITS = £LAST § BITS = 3% FIAST 4 BITS = 4% $LAST 4 BITS = 5: LLAST 4 BITS = 6%
- - - - -
>#15 * >¢22 * >*15 * >%10_* >x|5 .
* J1 % * A3 * * AS * * B3 % J1 *
My * ok e O
pe P Texs saan pe e
OTHRYT
itreciaresimens M“Ei?%“'ﬁﬁi”: ““:g%;;gwm.;" OTHRER pucy s sarrrsx O rxcs rmmnksnn
= *OTHRYO - R THRXA - OTHER * $OTHRXR - OTHER * SOTHRXC - OTHER
*LAST 4 BITS = 7% *LAST 4 BITS = 9% *LAST 4 BITS = A% SLAST & BITS = B* ‘\'.IS’!‘ BITS = C*
B . . * * 3 * 3 %
- - - - -
>*10 _* >*10 _* >¥15 * >*10_* 24 *
B3 * B3 1317 * B3 * +°C5 *
* 0% 2 » T
P rnr P o err
OTHR;I‘J OTHRXE OTHRXF TRIBgz!G
' H
*OTHRXD - OTHER * *OTHRXE - OTHER * *OTHRXP - OTHER * * *
+LAST 4 BITS = D% *LAST 4 BITS = EX SLAST 4 BITS = P¥ *TRANBRNG - R14 *
. . B 3 . M * *
. - -
>%10_* >+15 + —>*10_*
«'B3 % * 31 +B3 %
0
P s Faas
srpuazesase
*S)
TRBLE ORLGTH(*
*IRY 10 CET nzﬁlt
ADDRE!
PRI
(TR
* EEEAGSERERERERE
. *. YES
" SUCCESS ..l_)' RETURN - R14 *
Tk o sy
. ¥
*io

| DMKCCW

[ORTOTe Mw.

* SET R2 F
* BRING 3 DE nnnn *

Py
rEEERRERRE

sean
%29 %
30 »o>| 30c2
0
p

TRANCALL
ERERETLARER SRR RS
£DERPTRA

ik S

SCALL - BRING (%
4L6Ck|, wEEDED ¥
* Al
LTS P

ARERRUFRRRRIEE
¢ RETORN - R14 %
ERRREERRRREEREE

-
e

Hog6 36 I 36 I 6 36 3 I 36 3 3 3 F 3 I 36 I I I 3 I % 3 3 36 I 36 3 3 36 3 3 I 3 I I a6 H ¥ % *

TRANLOCK
FRRENIRERRRE RS

*
*TRANLOCK = R14 *
[T

AXBIREEERRR

AEE AR,

c1 *
o *.
.
*., Success
. .
¥
YES

reespitreessy
$DEKPTR
H

PR
+ LOCK THE PAGE %

ey
* *
s RETURN - R14 *
AR RAERREAER

-- Translate a Virtual CCW List to a Real List (Parts 29 and

s

* SET R2 FOR_ *

>*BRING ¢ DEFER +%

*LOCK OPTIONS *
e
Pt

>%23 ¥

a0 *

P

30 of 31)

CCHCHREY
Y R

* *
£CCHCHREY - R14 %
Y

*EBIREREEEE

ADDRES:
* TRUNCATED TO *
HALF PAGE #
* BOUNDARY ' *
AEREEE RIS

xe
*GET DSERTS

" SHORATE KEY
*, (POJE BITS s
* NLY) *

AEEREE AR

¥O

* *

*. IS IT ZBRO (¥

*. .
.x

¥

TES

Aax
KE

&
on Y
movn &
*

PARE KEY*
IN STORAGE TO
*KEY IN CHANNEL *

* *
[

eyt
BTDRF B14
:(culn ‘CobE. SIT)*
[USUR

Program Organization

DMKCCHSB
REEASHARRERARE

. *

* DMKCCWSB *

. *
AERERIERRRREERE

Py

ratie b A

¥tk
HVOKE ROUTINE *
$TO OBTAIN SEEK *

P]

SRS ERERREE
Rttt Tt .

ETURN -~ R14 * * CLEAR *
>: RENE" oot 'S : *CONDITION CODE_*
HaksaEEBEERERE * s

D e
AXERPUREHEREEER AEARPSERRREEARE
* RETURN - R14 RETURE TO %
>* (COND CODE 0) * * CALLER (E.G. ¥
* * DHKTEA}
FEREREEREREEERE RETO LI o2

137

DMKCCW -~ Translate a

IBM VM/370: Control

Virtual CCW List to a Real List (Part 31 of 31)

CLRSERSE
L PETRRE
* SET R8 TO *
* REFERENCE %
, VDEVBLOK _

TREEEERREER
e
482 *. ARRABIRREAE AR
.*_ VIRTUAL "*. WO
*. SENSE BITE >3 BETORN - R10 %
% Te [rTeRTP—
. x
TES
RN
c2 Cx, ARRICTRARRERERR
+SENSE BYTES*. YES *
#1,T0 BE SAVED [#————->% RETURN - R10 %
Tx o AR RRRK
L .x
§O
HRD2EERREEE

+BESET UNIT

*CHECK FLAG BIT *

¥ IN VDEVELOK *
PO

*x%%ED:

DUKFPRET

CALL - RETURN
TOERBLOK

EEP2ERRRERS

CLEAR ADDRESS
, OF IOERBLOK _

* *
RS

AERIGEERRRRREE

*
* RETURN - R10 *
SEERRERERERREE

Prcgram Logic

138

DHKCDBDI
ARERLTHREREB SR
DISPLAY VIRTUAL
= STORAGE ¥

AR AR

JPrBIRRERRER

< ser nxsle! .,
*, VIRt

*
ssrasaansn

P

01 « 9383
#C1 s> 0dBI
e 0482
wne

DISGETB
Sikdec
*DMKFREE
bt S L
*# CALL DMKFREE
* "GET QUTRUT
* BUFFER
PITTRE LS 1o - o

SADTHEREAE
T UP LINE®
* LENGTH AND
TRANSLATE *
* T COUNT. *
. *
ooy

xxx
01 03a3
* Bl %> 174
* 1Kz
P 1K,
DISGETN
Fiarspistensanses
‘Dls!l;r

:AID RErnTRALTzEY
prTTTPEPP.

.
EADY "+,
lGU!BHg. *
R
o+
*No
DISGETN1
TrrErGiessareaney
DAKSCHPD
T T :
* nnsnnxf} *

PET T

CHKO026 ..

FLIY . Ll
-+ ARGUMENT *. NO A0 "el w0 ocp DECP ORs. ¥O
*l, FOUND s >« PROCESSING l———>+! " DUHF
*, * *. DONE .. o
* . . B
*. . . ¥
*iES *iES
Lykeee
>¢03 *
14
b
P
X .. conpass
317 . a2 saiingIaasasssess
. ., . *DH
. - *. XES P e
IpISPLAY TYRR l .bnup nloussr o ————>% S2MD 1C ‘connnln
.', . “w, . *
. % Sersasiirsiseens
*¥0
ey Losee
>%03 * >%03 *
b Dy *
« 2 o 04
P P

DMKCDBE -- FErocess [CP, LDISPLAY,

CDB026,
Lo TER e
* __OPERAND ¥
>* MISSING HSG = *
* DAKCDBOZ6E _+
P

Prosd
>%03 *

%34
‘IQ‘

e

CMCP and DUMP ccmmands

#3363 3 % 3 o k% *

FO 36 3 36 3 36 3 36 3 3 3 3 3 3 36 I 3 I 3 3 I 9 96 H 3 I % H o % *

(

ey
02 *

*F2 ._—1 04B3
s
xns
DURRCRR g oskurens
* DEFAULT END *

* AND ADDRESS
*, LNCRENENT +

EEEREERAES
""’9295:@1.”........
Pt 5210 LN
% BAL BT INIT. A
BEGIN AND &
ENDING ADR.
PO L0241 LT .
YES
GPRRET
FRRRRH R EE R .ttuztntocct
* *
* LOAD NEXT ¥ s SET U *
* REGISTER TO < * DEFAULT Rop. e
: DISPLAY * * EANGE 0-15" »
ARRREREERERSREREE [T ey
sargrerasasae TR PR PEERY
*DISCOI * k3
$k_F_ k. *SET UP BETURN®
COREOR st?Ll! ‘ *REG R WITH ADR¥
*, GPERET ¢
LT

arts 1 and 2 cf 11)

.
*
.

*ssas 01
be33¢] K1
* A3

Ot

«

ERTETT T

*INSERT 'L' IN®
*, Commip
* *
ersesassns
shxs

202
83 +>| ot

DU!PTEST

*
*3er BEXLOC PLAGH
B *

* *
arrerraEes

.
.*

*IDUNP R
*

zqust '_.1
T

EDIEERIEE

Presvrerenn

ey
*DISDHPI]
Pt St

*
OUTROT DOMPID
pe

DISLOC o DISLOCR
G3 = ERGUEERERES
.
*. YES * SET UP MAX *
)’ 8!![. IIQI'IIST .'———)" REAL ADR .‘
[L
* Ho
63 *
:

K

SET UP MAX. *
.

*
*

TB3rearens
*

c3’ .

.. Lo
ihs . o ‘
Trsar®

*]

St S

SrpsEEEBORRRRE

R ERL AR

VIRT. ADR e
K

Ferersnsaren

DISLOCS
Frassrsrex

* SET Up *

>* ADDRESS ~ *

*, INCRENENT *
sxerreenans

AeesBSERIEELESS
$DISINIT *
it il

* ADR.
FrrrsaER R ERRR

saCSEERRBEE

*

#SET UP_RETURN®

* REG, GPR7 TO *

* 1SL0CA %
AxdpERREAEE

DISLOCA __.%.
JLEI

Ho ¢ 'IITBIL ..
*1_ REQUEST -
-

.
*ifs

DISLOCL
*

APSEEEEE RS
*

*LOAD WORD TO *

* BE DISPLAYED *

* *
EEEREREEE

DISCOHH
*e
4DISBLAY COMNON %
BOUTINE *

FrIveTPrrrTee.

AR SEERREEERES

*DISHEAD
—tax
*BAL R8 !DIBIT‘
+ HEADER LINE
SRRREERERERRRRRRE
e
>%03 %
* A1 %
.
e

Program Organization 139

DMKCLE -- Process DCP, DISPLAY, DMCP and DUMF Commands (Parts 3 and 4

g e

DISCONAC
£T337Y
*DHKCVTBH

#CALL - C
3 DATA T

3o

B
STORE D, 1N
OUTRUT BUFFE

1w,
R

*.
o *. _NO
. _BUFFER FULL .
* o

*, .
. %

AaDIEEEEREE

*, DISNEXTA .+
Ly

E;
DISWRITE

*
kb
COMMON QUTPUT *

BOUTINE %

00T

IS coeneansent

% GE!
>% ADDRESS
FETTT Ty

FED2EERERER
* *
L *ADD INCREHENTS
VALUE TO
" spRESEnt DR, <
PO

03_
.ogz *->} 0923

prsacons__.%.
E2

..
o
o omEgmN e,
*. ADR. > END
*., oLk

*

o*
o

ARRRPLRERRERRSE
*
4 R7 RETURE
FREEEEEERRREEAE

po—

*

YES

*
*
*

xexs 11B4
*03

*xxxx 0103
%03 *

s
. :
DUMPCHEK 3.‘.' CBBO33..A“‘1‘...‘
.
*l * MISSING G = *
e m’:p l!c“!iT ‘.leglﬂﬂgg
Cx, % AEREE SARESIRREES
*YES *01 *
R P
.
- * ID.‘-> 8415
ROV,
A%RERBI ovaR ttan‘nttt.t‘
:
pit Lt I o PARN %

*
+ OUTPUT LINE

v aEcionER"S &

Tensnersrans’

*
*.VIRTUAL DUMP .
. o
*. o
L

¥ES

it
* GP!1! *

[reseven—

aApIeEAEEEE

.
K .

¥ *
*.BRANCH TABLE .
*. *
*

i

330s, | ou
Cu_*->| 071
* ores
S 084l
CALLERN
*Cy
DAKERHS

R
¥O .*" cLEANUR ‘%,
* <=l NEEDED .
Tx. L
YES
e ey
*) V. -
"‘35 5.‘ vt
o %
‘CLSIIHP SHADOW *
* - TABLES
POt S
s
*DHKFRET
it e L
* CALL - PRET
: OUTPUT BUFFER
[OTTTs Pe

* RETURN TO *
* DMKCFM *

AEERREIARRREERE

DHKC]

DBDU
282 aseaneaneen

3 DUME VIRTOAL %

*
*
*

SRR RRRERREE

SXBSEREEERE
* *

SET DUMP *
VIRT. FLAG

* *
AxsrESEEEEE

*

o
>%01 *
C1

*

*
P

*
*
*
*
*
*
*
%
*
*
%
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
%*
*
*
%
*
*
*
*
*
*
*
*
*
*
%
*
*
*
%*
*
*
*

DMKCDBDH

*
*
*

FREER ERREREARS
DUMP REAL
STORAGE ¥

LY

..

pIeREERES

*
SET DUNP REAL
. FLAG P

. .

serarraerar
e
>+01 *
20
Sl
xan

IBM VM/370: Control Progranm

of 11)

DEKCDBDC
FEEEN2EEREASERS
* DISPLAY REAL *
% STORMGE ¥

rann
a0
* A3
3

PISCRR eupsknsurenn
* DISPLAY GEN. *
% PURPOSE REGS. ¥

SRB2ES RS

*
o SEL DISPLAY #
‘ REAL FLAG ‘s

arsrensnren’

Eoond
>%01 *
tC1*
*
P

INVALID _ *
«“oprIBREER - >
*, DHKCDBO03

ARTEEEERRRE

axex
>%03 *
*Cy

ax

Logic 140

Pt
pro9pd 0131

e .

o
=
i
5

ety
LAY *

*FLOATING POINT *
* *

P

Bu4”

SET
t!ID AND

EsERAES

*

o*

*" DISPLAY "%
VIRTUAL -

*. *

03F3

KkRE

DEFAULT

*
ADDEESS*

INCRENENT

Py

LI
.4

N0 ot
* nnn vnﬂu. >

xRy
*

rrerne

. NDUXPFER
Irsvmsarreseriny

ot

BAL BT
+INIT,BEGIN AND
NDING ADR.
oW LLELER L
anex
>%05_*
21
MY
P
karrer

*

GE 0-6

* _SET UP
* DEFAULT ADR _*
*, RAN *

*

kPl -3

kA REE

*
SET UP RETURN
*REG R7 WITH ADR¥
* PPRRET *

*

FREEERREERS

P oad
>%05 %
* A1 %

P

sxxxs OUDS
4FE

ARERRC | Rk ARk
1 *

.
DUNPKEY

*2x 0101
%05 *

FHC2REERRRE

pees 0101

105
b 3L vt b ¥
W 13 3
. .
DpIsKpUsE
[SRURTS A— DISKEY g . J—
pi - L N +DISPLEY STORMGEE sEr_appapss 1n «DIiPhay CONTROLE
BOTLD LIRE ¥ 3 REYS - —>% OUTPUT BUFPER $DISPIAY CONTROLY
‘ R : SO
5 SDISEEIT
bt WL B O
= IR’ *
SREREE ?m; < “OMRBoTTNE
Srsrerasersranes

Hacatrareas

*DNKCVTBE
Pt S * SET ADDRESS * DISNEXTA DOES * DEFAULT END *
* CALL-CH * CINCREMENT * NOT RETURN * *
* * CONTROL HERE « MTRcARRERR o

*

4260 HALY OF FeRY

* *
rrrrrEa

P aerrassrens
AREAED PERE AR nxsscng'“‘””“ 3’
*DAKCVIPR * * . .
st athes s SET UP TQ * o _.* .
#QUTBUT CRO PROK*< *. VIRTOAL CP '%
* VMBLOK * ‘-‘ ‘.’
SRR R R Tw Lt
es
FREIFERERES HEE2RRRERE FEEHE; 3" s
* * * ISCOAR - .
SRR R EoR e «oerifir ave. o+ onRoN DISELAT «yzaroaL pome’
* "DISNEXTA _* *, RANGE s Rt ., e
ERRERERERE Rk Rk L
*iBs

FEEREP £

ARP2ERERRRR
*
SET_UP RETURN
REG 7 WITH ADR.
* " KEYRET ¥

ArrrrrarERE

DISCOMM DOES
NOT RETURE
CONTROL HERE

LTS ETS ey
*

* SET OP ¥

* DEPAULT ADR. *

* BANGE 0-157 ¢
sxsrrreress

<
RSO N TRV Ao
DISWRITE DOES * GET POR % *SET_UP _RETN. *
KOT RETURN * NEXT PAGE AND * *REG 7 WITH ADR.*
CONTROL HERE : PUT IN BUFFER : * CRRET *
fsererrmsaasst sosmesenres

L e

. e
.+ SAME AS “*. YES

% LAST KEYS .
* .
*. o

AEERET DR REARARAR
*DISWRI
Pt

sk

3 OUTPUT LINE ¥
AREREERR R AR

<

CRRET
SREREIRRREE RS
* .
*LOAD DATA FRON *
*WEXT CONTROL *
* REG *

* *
FERREEEEERRCREERR

rrRIIEERREEERRR
DISCOHM *

4ok

Pt ks k%
CQMEON DISPLAY *
RODTINE ~ *

DISCOMH DOES
HOT RETURN
CONTROL HERE

O F 36 3 3 3 6 3 3 3 9 H 36 3 3 3 36 3 3 I 3 36 3 3 3 3 5t 3 I 3 3 9 3 5 I 3 I 3 I I H I #

DMKCDB —-- Process DCP, DISPLAY, DMCP and DUMP Commands (Parts 5 and 6 of 11)

Program Organization 141

DMKCLE -- Process DCP,

DISINIT
AXEA L EEERREERR
INIT, BEGIN AND
+ EED ADR. *
AR AR

*.

81" s,
o¥ *.
.* ADDRESS *. NO

IBM VM/370: Control Program

DISPLAY, DMCP and DUME Commands (Parts 7 and 8 for 11)

._SPECIFIED _.
* *

DISISCAN
C1

x.
<+HEXT SHag. %, YES
>l uxpn%l .

. Pree
“xiio #08_*
e it
A
*
DISCALFD
FAERADIRA KR ERRERE
. . *DMKSCHPD
O *. YES ke =
‘.' BLANK *v———)‘ CALL-! GKI‘ I‘BXT
. R G.
o % |
*ho
episknses B2
* - ..
*BUMP TO lll'l‘ ¥ *. NO
e CHARACTER * *. ARG. FOUND
., R * -
., L
jrr— aoe
*1ES
P2" sl
* .
. *+CHAR=COLON *. YES
*. OR HYPHEN
*. - l
.. K
o * P
*i0 *08_*
“a3%
o3
*
srG2eREReRE
«3ueeiby uAvInG. *
* AN lkGUHBl‘l't
rannesaer
sarx
.
sz
ﬂ
CKRANGE %o DISIZ!IO
CAN 2
YBS .* 1ES .tneru lbl. x.
* pavee nxous’r.«——- R
.. B “x. .t'
srean s .
#08 * *io *io
* Aysrres
% +07 *
" £ K1 +>| osr1
Tas”
HIEND
HAEER2ERRARERES
- .
.l %+ B7 ETORN ¥
rseasanraseane

YES, o

*07 08B2
Palo| i
DISIBLEK _.*.
63 *. EEGUFSERREE
. *. *
o* * SET BEGIN *
2atd >*ADDRESS TO ZERO*
B * *
YES
Y
-
CYVIBIN .
CONVERT BEGIN
ADR. TO BIN
B
* J4 08E1
N
¥ BADADDR
a3 ’.‘ FETUEEREERE

* SET UP ADR.
YALID ADDRESS. ->% AND LECTH OP‘*
a. B
.. ARRR R
*
o+
c“w"uu‘u“u Ro" e
*

R .
B unoc S ‘<———£~' v BESERS. °
nuxcpnss . *

PO

P
%03 *
* Cux

*rar
* *
tR5 %

CDBO”’I.KS"“Q.'

>tuaxsmn gss
DHKCDBOT
sarsananens’ werix
03 *
* Cu*
%

46 9 I a6 3 36 3 3 6 96 3F g 3 3 3 3 36 3 3 36 3 36 36 3 3 36 3t 96 3t 36 3 36 36 3 3 3 3 3 3 3 3 3

sxxex 07C1
08 *

He e
Ol
-
*
PESTRIPE e, IS aa s anesannes
" DYKSCHFD
* 2w, ¥O itk S
- nxx.» e nc S iCRircer mext t<
. KRGUMENT
"x. x FEERERE R
TES

rhsRABIRRERRRERE
COMPUTE LENGTHS
* OF BEGIN AND *
* CEND FIELDS *
R R
o
* *
*clx
M >
s

DISCKEND .*.

f 54 THTN A——

tcoivnm TNpING
TO BINARY ¥

-

e1’
L4

*
. *. NO
#VALID ADDRESS.*
* o
* k3

P
07 *
¥ES x07.%
Ot
*
1
AD]
HA
A Ak
*¥ *07
Fxe % G
>%07 * % %
K1
*
o

sxsus 0782
%08 *
i £
3

|

LENCHK BN
23" s,
.* *.
NO % MORE THAN *.
*. ONE CHAR.

eeax 0731
*08 *
* aux
O
*

c’)soogttlhttvﬁt‘t*

*INVALID RANGE¥
MSG = DHKCDBOO09

.. *

AR RRAEAEE
frosd
>*03 *
*Cy

P

Logic 142

*xxxx Q7K1
08_
* A5*
%
*

CDB160
AR SEREEEAE
* HEXLOC %
EXCEEDS ¥
* STORAGE HSG = x
DHKCDB1
kR KRR

ren
>%03 *
% By *
* O x
P

REELTREERARERE
*QUTPUT DUNP ID *
* *

DISDHPID
*

B
*
SAVE_BUFNXT AND*
BUFCNT FROM *
COMNEND LINE %

P ——

Hratrcivbestrenay
$DERSCH.

%
tscn “3AST DURE ¥
ADDRESSES %

TEREEEEEEEEEEERRE

b1’
.8
NO _.* *.
r———*.DUNPID FOUND .*
N D

* .
*. *

R
=11
o
1Y
ErrEw

DXSISUPP
DISHEAD
FL Ty e
+ INIT, .+ Tars g e. 1ES
: HEADING : SIIB as LIST o
.. -
o aai
*io
B3+
«
as
DISHCOB! ShuE DISHISTL
82" k. * *EBUREERERR
.1 on” . ves +PlnsT LINE *. PRST * TURN_OFF IDESERITR L
bl 717 LI o8 SUPE. TX——————>*PIRST LINE rznct * OUTPUT SUPP.
‘.' INEB: .‘ * LINES MESSAGE
*, x" T Tensnrsrrrns ARRARERER R
0 i

AEEERP TR R R
*DISWRITE *
pomcid-Su et
b *
% OUTROT DUPID ¥

PETE——

FL TP S

*
*RESTORE BUFNXT *
+ RND BUFCNT ¥

*
EXRERREEREREAEREE

[T S
* *
+ R7 RETURN *
H N

AR AA R RARARE

DMKCLE —--

DISHSAYE
sascastesseseny Fecarsannns +
*D)
kLT PUIN ¢ * TURN OFF * TRANS-HAKE *
LL-CONVERT * N >+, SUPBRESSED o< SURE *
‘RBG. NUMBER T0 * LI - .LIIIS 'LAG _* LOC. STILL IN :
ltt'tlt‘l""tttt Tk, L% ARRREEREEEE
YES
PISIELL KarkDUEERR SR SRR
% InseRr t=t I supBRESEED
* * BUFFER LINES HESSAGE FRT e
H IN BUFFER HEX ¥
e R,
* Py
* B2 *EI %
H LI =S
xann Ereed
DISHSETC DISHBUNP BN
EREEE 'IM l.‘
* -
* SET_UP 'EUllP mnnss t *. NO
* BEGINNING OF =y * TO NEXT LINE IRIISLI’K‘E .
+ ° U BUFFER «* .
* - * .. -
. erx
YES * *
L H
>#03 * s * .
*E2 % ann
. 55
P
P4 e,
FEERPRERRRREEE o o* *.
T BB RETURN ¥ IAT 2K BOUND. [*
FEEERAREREEEERE N o
P
*YES

recurResas

o STORAGE KEY *
* IO OUTRUT
* TBUFFER <

R

>

BUPUP

KRG

* SET UP XLAT *
*MREA IN BUFFER

*
PrrpRR—

LSrIuRsaaes

TRANSLATE
* IHB O BBCDIC

AP

Process DCP, DISPLAY, DMCP and

*

DUME Commands

iy 131 Ireveeven
* WRITE OUT THE *
* BUFFER *

ARRERERE RS

B1T Tw,

. *.
.*BYTE_COUNT *.

* =3ER0 I~
. *

YES

PIST R aussnannnes

- *
* DISWRTR *
* *

Wo .+ BmEar ur

xdDTRUT ros *
PRINT

XD IREERREE
*

SET UP_RETURN

,_ TO DISWRTR _

. *
[

rerrs Attt

Sttt akkk
CALL-WRITE *
B! R

LT

P .
% GOTO DHKDSPCH %
R

*
*
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
P

YES

*:DURING llI‘lB i

"
Sure
>*03 *
3
foe
ot brsgzoy
*DMKVSPR b
t_t_t.g.;.t.z.t_): i!Ig%g;ilﬁlll
:
:

>* B!
$CALL-PRINT LINE

(Parts 9 and 10 of 11)

P E
*
RS RETORN ¥

SRR RS

*
*
*

Program Organization 143

DMKCDB

Process DCP, DISPLAY,

CNVIBIN
E S SRR

#CONVERT ROUTINE}
e

AAKDIRRRRARA R

*DHKCVTDB *

Pt e S

* CALL-CONVERT %

+FROM DECINAL TO*
BINARY

PR L

c1’ e
« *

. *. NO
#YALID ADDRESS.*

*. ..
.
*TES

D
* *
* R4 RETURN *
* *
[rrr T re—

CNVTHEX
SERRACDER AR ARk
*DUKCVTHB *
AA Akt

>* CALL-CONVERT *
RESS TO
* BINARY *
P
.
p2" #
o *

. *
YALID ADDRESS:
. e
.

*fo

YES

CcRvTCOMN
D3RR

* *
>* SET CC=0 *
. *

* *
AR

exp
*R4 RETURN WITH *
H BAD CC :

*) *
* R4 RETORN %
* *

wxex
11
: G2 0131
Sxex
DISCSW ¥,
2 *

.+ vIRTOAL .
*, . REQUEST -

o

o
TES

*
S*TRANS IN USER! TRANS IN USER:
+ PAGE ZERG PAGE ZERO
-
ran g2 g
DHKCVIB *
Pt s SN P
CALL DHKCVTBH * CALL DMKCVTBH
CGNVERT LOC 64 * CONVERT LGC 72
TO_HEX TO HEX
RRERRRERERRIRE PR R+ P
biaaats
BUILD MSG. IN * BUILD MSG. IN
BUPFER % OUTPUT BUFFER
*
sxses arxas
01 % 01 *
* B1% * E1%
O %
« *

S

AN

sxsee 0131
11 *

P
DUMPPSH
AR ABU R EAAAAEAAE
*DEKCVTBH
e - S
% CALL DMKCVTBH *
RT FIRST *
* CHALF To HEX *
PR

*

3
o)

FRERRCYFERERREEE

*DHKCVTBH

Pt Sk S

* CALL DMKCVTBH *

* CONVERT LAST *
HALF TO HEX *
ST

p

ARREADYFRAARE A
* *

* BUILD MSG_IN *
% OUTBUT BUPFER *
. *
* H
TR

B
* .

. *
*.DUMP REQUEST .
*. K

DMCP and DUME Commands (Part 11 of 11)

DISLOCT
£

*
*TRAN
*

*
*x

IBM VM/370: Control Program

ASEARRERS

TURN ON ¥

SLATE FLAG ¥
*
xEEEEEEE
ol

>%02 %

*G3 *
P

Logic

104

DMKCDSTO
R ETEe——

* STORE COMMAND *
* *

DHKCDSCP
FFRRRD FRAREA AR

* *
* STCP COMMAND *
M +

14

w0 ok
XSAVE REGS ANDX
*% SET VIRTUAL **
*+ "URLAG **

*x *x
XSAVE REGS_AND#
**¥SET ReAL FLAG*%
*x %

o > pod
wran
*01 * 03K§ 1—)""‘&
£C1 x->| OAF Yol
Tans® Frns”
STONEXT e
reciasarnnn
*
381 GrR 8 JEOR®
)‘ RBT“B“
OCD ‘
l . *
rr amRaEEeEs
*
1w
A
ey
STOSCAN
£33 TEPTS Se——
tDHKSCHPD
P L Lt
¥ cALL«Gzﬂ §ERT
GHEN x
T —
awr
A
Yers
€2 %
oo
o*. STOEXIT ¥, CDS026
10w B *,
o . SEaNY k.
.+ ARGUMENT *. WO .* ARGUHENTS *. NO
U o W >%. IN COMMAND . *——)‘ L3
*., LTNE * 1
R
#¥ES S
tEs
]

o -

. *
REQUEST TYPE .
*. o

*

AR PRREARRERR

* *

$BRANCH OF GPR 8%
AERR AR R

SY20-0880-1, Pagé Modified by TNL SN20-2624, August 15, 1973

AESRRPRREERERAR
*D| *

HES: *
eI

FRRKGIREERTRERR
* RETURN TO *
* DHKCPN *
LT —

wepehemkin

(ss!us e
KCDS026

FREERREERRE

.

.

;vn: 033
301, % 0562 .
B P
* * AS *
i
e
NOVAR STOSTAT ¥
AEAYFERRERK As
B . o

* *
>*ZERO PARM REG 1+ - Bcuobx orTIon,s__—

FEEERRRRERE . Lx rre

*ies * »

bpoad 02c3 : E3 ¥
*01 % 02E3 o
* B4 *->| 0303 i

W 0363
FNOTE
catlEnm

FrBuss e

“*Loan HODULE *
t‘ IDENTIFIE

Frararenenen”

T

STORE CLOCK
COMP. AT 228

EakEw

ARKREDS R RR AR AEE KD
. -
* #STORE_CCPY TIME*
b aT 216 b4

* *
BRSO R B

B RREERESHERRAERRER
o *. *
¥O _.*'CLEAN UP '*. * STORE_PSW AT *
L= NEEDED o * 256 *
. o M M
* o I .
. x SRR
*1Es
DHKVATA 1 « 4
&k ok _k + STORE FLT,PT. &
CLEAN_UP_SHADOWX * REGS. AT 352" *
TABLES * * *
* * *
—
RETURN Lo LT m—
HECK *,
o 'PLAG = CALL¥. * STORE cp REGS ¥
(—*.,10 DMKTRCIT [s AT 384 *
NEEDED _.* x
ekt | SPE——
1ES
[TR
ox *. .
YES_.*IS USER IN #. STORE_CNTL REGS*
<l WAIT STATE % AT 448 *
x . .
*. x ForksR kR
*Ho
wrs
.
* B2 %
s 52
wrnr
P I
#DEKTRCIT
ot St
CALL - SET NEW %
* INSTRUCTION *
TRACING

RETURNX
15 T T
*+ RETURN TO *

: DHKCFM b4
TARAREARRREEREE
T0:BY4
gany
SE2
0535

*
*
*
*
*
%*
*
%
*
*
*
*
*
%*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

| DMKCDS -- Process STCP and STORE Commands (Parts 1 and 2 of 6)

STOLOCR

AERECIEREERRERS
*

* RS RETURN
B]

*

STO!

YES,
“x

LOCA

Shk ek HRRARR RS
* sToLoca
+ SUBROUTINE ¥

AR CERRERRERS

FERRRDZEERE R R EE

¥ aa RING
*’LOCATIOH IlTot’
STORA

AR AR R

E2" T,
. .

* *
*. _SHARED PAGE
* *

* .
* B8 RETURN *
M M
xEEEEEETRRRRER

CHKTRACE
SREEaueressrnnx
* CHECK *
* TRACING %
INSTRUCTIONS
AxsTexrRERRERER
B4 Tx.
. errapSEseER TR
-->f RETURY - Re *
x . Sesexxsrssrenne .
rae
P
PERS
v
ren
cpS160
PO TS e Treercurtr sy
#DHKTRCP!
EXCEED et S
>- STORAGE RsG = v $CALL - RESTORE *
DHKCDS 160 _* LD USER
* INSTRUCTIONS *
FerramRERen BakaRRKEEASRERR AR
x
—>*#01 +
* Bl
.
Texx
JeepusEaeane
Sser e
* CALL DHKTRCII .
* BEFORE E:
[T
cps161
L AEIaeaaas
[T TeS re—
>» STORRGE RSG = v + RETURN - RS *
DHKCDS 161 _* + M
* T —
wranassraes

Program Organization 145

SY20-0880-1, Page Modified by TNL SN20-1624, August 15,

DMKCDS -- Process STCP and STORE Commands (Parts 3 and 4 of

STOCRGE
34 TP PR Fe——
- #SEND WARNING TO*
*USER RE INVALID¥
*CREGO OR_CREG1 *
PHE e A

RRHHHCTHIERELXERS
#DMKERNSG
et S

KOALL - WARNING X
+MSG TO USER ¥

wxxre 01F1
03 %

xxxx 01F1
*03 *

B
i Ay
' !
¥
STOLOS 12".*. CDSO]S::‘;:xt:su STOLOC ,l“ .,
¥ . . -
<*ANY ADDRESS*. NO XLO: * No *ANY ADDRESS*.
. SPECIFIED . > IIIVALID N = #< SPECIFIED _.*%
“x - *'DHKCDSU3 "‘ ‘.'

AR

A CORRREKKRREE
*DHKCVTHB

3
L CALL-CONVERT . *
#ADR. TO BINARY %

e

TOCREG1
AR

D2
o

*.
. *. N0
.YALID ADDRESS.—-

A RK PR R KRR R
STOSCAN
P St LT
BAL GPR 8 GET *
DATA ARGUNENT %
FRRER R A

ERRER PR RER
HB *

ot i SO
*CALL-CONVERT 1 *
*BYTE TO BINARY *

STOLOCD
ERRRACY EERREERAAE
*DHKCVTEB -
FE R E kK

Bt

CDS004.
HAD Jokkkk kS

ALID *
>+ HEEO KEE = “xc
* DHKCDSOOUE R

[
Erond
>¥01 *
* BU
*
P e
STOLOCL
FRREREL SR RRAE A
#STOSCAN

ZE —k_k_k_kk
v BlL GPR 8 TO *
GET

DATA *
* RRcohbat *
P]

AFG R
tDHKCVTBB
ot e

A CatioconvERT. T+
*DATA TG BINARY ¥

T T —
e ouct
*03 * QuE3
+G3 *— 0uG1
* 9263
e 0331
L CDS005 R
G2 *. PRYE T P cu
o . u "
ara LoeX >+ HEXDRIR G = < ¥ e vaco pata ix
e # DHKCDSO05E _* *. B
- « I o
* FrTT T — . x
*YES
YES fond
>*01 *
SUBU
2
P
Py T sssspussassasass
SEUS e ad FHio L LI
G * * GET_REAL *
igbgggé * * ADDRESS *
b ERERRERERRERERERS
[ETTTRy TS NerrT— [T —
M *
* * *STORE DATA AND #*
* STORE DATA * + BUMP ADDRESS *
M M * *
. . M M
| S [T r——
rnx
* B4 *
ex
FEK IR R

* *
*BUNP_RDDRESS *
> BY 1 *

* *
kAR

1973

96 B 36 3 36 36 3 3 H 6 3 36 3 36 3 36 36 I 36 3 g0 I 36 I 36 96 I 9 I 9 3 36 I 96 I 36 3 36 I 96 I 9 3 9

6)

*xxxx Q1P1
04 *

* A1
o
.
STOPSW.
Huyreecsisens
L

SLL
DAL RE-GET | DlTA'

FREEE AR EERK

FEERKR PR ERRRA KR
*DUKCVTHB *
s e A S
* CALL-CONVERT ~*
#DATK TG BINARY ¥
B T

ICATE *
% DATA STORED) *
ARk AR
AKERE
At L S
BAL RS - CHECK *
FOR TRACING *
INSTRUCTIONS *
K BREE AR BEK

AHARE] S BRRA R

3 A
BAL RB-GET NEXTH
DATA ARGUHENT *

FRPTRRRAEE
* SET VMPSH *
* FROM DATA %
#STORED EARLIER *
* AT VHBSH+U %

EREEEEEERR

CLE N
.+ EC_MODE ‘. WO
., ALLOWED 0

o
*EXTENDED PSW .
x. o
- o
.k rrx
ES * *
L, e a3 %
>% * *

PR TIEEEY
x *

xrs

IBM VM/370: Control Program Logic

NO .
—

AAPIHARREREFEE
tDHKVlTBC

e S
oML cimaE e
3+ SHADOW TABLES *

| SO

PP S
* *
R -
XTCH ! *
t STATUS BIT _*
PES——

—

STOPSHIC

FREERA AR ERRA R

[T TS -

*
STORE DATA INTO
*TVIRTUAL PSW+d %

* *

SToRSWEX
SRR

*
«Se1 pUREXTSHOE
*, STATUS

AP

ARERECY RS AR AREEE
*DUKVATH
Pt b e AT
* CALL - ENTER *
*TRANSLATE HODE ¥
FREREEE R RRK

(-

STOPSWEC .%.

>

Du” e,
% *,
YES_.*BSW_BITS 0 *.
——————%1AND 2-4"ZERO
. e
K3
*Ho

STOPSWBD

FREG R

* CONSTRUCT *

ERROR

[~=>*SHOWING ILLEGAL*
' PSH STORED

Fesrnnarnak

JAEUsE e
eLEan 1sT 4w

*EXT!S OF VHPSH *
s *

otk
>%01 *
*xC1

P

§O
STONOTR __.%.
J2 %,

*. YES

* *
RESET FLAGBLT
#- DON'T TRY TO *
CALL DHKTRCIT

AR

cDps012

RHG A
* *

* INVALID PSW *_
* DHKCDSO12E *
Sk ARk
ey
>¥01 *
+ By *

pee

.*° ascrr
—>% (EC-HODE) BIT.*
. ON o
* B

“x
*

i
et
e

STOGPR .
a

. *.
.* ADDRESS ¥+ JJES
TELD LEWGTR .

wxahk 011
05_
* R3*
U
*

|

STOFPR o,
13 *.

§O ‘.*IDR. ux!.n *
*,

*
CALL-CONVERT ~ *
ADR. TG BINARY ¥

ot
.
1ES . *
—l szxn couvnar. <
e et
o
#io
sep1etussesiny
onnxcvr I
R ‘.._._..._.
LISTRY %
% cof T Fion :
= HEX TO BINARY
SN
aaex
P
T2k
EI =Y
.
= €Ds010
LB .
o vnxrn syn *. WO «
1] e >'HBG!STBR §§a »
e, e * BHRCDSO
P P
iEs
woxn
>$01 %
* Bu_*
Frex
R TP Sva——
ST0SCAN
b i L
> BAL KB = GET. 4
* DATA ARGUMENT *
Trsxsrssxsskaker
aran
P
TR
*
wxnx
cDS163
eagoekexsan
. L EiCEEDS s
+. 1B HAXT
> 151 >e, *SToRAGE. usg =
K DHKCDST6
[
e
>401 *
3000
p
5
UL .
CALL-CONVERT ~*
DATA T0 BINARY ¥
N
.
DATA
Lo
.
.+ axeie
iBs 203 %
* 33
3

ARRRRE SRR RERRRE
*

*STORE DATA AND *
L—+"""pgup GPR *
* ADDRESS *
ARREEERRERRRRRRRS

| DMKCLS --

Erocess STCE and

L} SN
CONVERT

ESS TO
* HARY
BV 5.- 2 S——-

c3’ Tx
o *.
. *.
.VALID ADDRESS.
* x
.. -
* .

RS

¥O

xrx
* *

x D3 *
* >
Letd
STOLE an3
*STOSCAR
st e A
4BAL R8-CET DATA
ARGUHENT

n

sxxke 01P1
* Auk
o

1

STOCRG B
A4

o*
L#iDR. PrELD . vBS
*.LEN. 0 0R 52
“x. o
*

3 ek

o o

* B2 *

o

xwe
SRERRBY KR RRERERE

*DEKCVID!
e et
* CALL-TRY %
§ il
AL 2 L
cy
.* .
o *. YBS
IVALID CONVERT.
* o
S .

% ek

#io x

. FU*

R

wann

AREREDURERRRAE KR
ADHRCYTH

AP
ChiTR
% CQNVERT From *
reed Bl el ianer
LU
o

%0 vu.m colvsu.

*DHKCVTHB
frint e
* CALL-CONVERT
$DATA 70 BINARY

. Hoxx
iES

P B2
*05 % gea x *
* P4 x->| 06D1 #xax
ok
*

STOCRGL
+S70SCAR
* ok

-
H
H
63" Tx.
e *.
o *. HO
. VALID DATA _.
*. ¥
*. o
* L. *3
YES :03 *

e KPR SR

*STORE DATA AND *
*"BUMP FPR ADR. *
* *

*

.
P ¥
.
wean

[THAEN

+ADDRESS >

*. .

. x

#0o

FREEKFY SR REEAEREK
$DERCVIED
i A e
CALL-CONVERT ~#
'Dl 470 BINARY %

H
L,

> e

+ 03

Hets

o

€Ds162
rrasEeeeer

**ruvarrp men’
>#usE = ancns!szt

‘. e
. . T
TES o

>%01 *

* B4 *
P

4 3 3 3 36 3 3 3 46 3 3 3 % I 3 3 36 36 36 3 36 36 3 6 6 6 6 96 E 36 3t 96 K 36 3 3 dF 36 3 36 3 % 3 3

serx 05K
*06 ¥
* A1
o

o .+ "zc movg' s
’——-.' MACHIRE ‘.‘

OO

>

STOCRGA
FRERED 1 RERE R
*

BUMP_ADDRESS TO
1+ NEXT CREG %

kexe 05K4
06_ .
* A3+
Ui

STOCRGO

AEERD2EEERREESS

STOCRGE
pat it
BAL (R8) - SEND*

WARNING 70 USERY

; :
[
>%05 * >
* F
:
STOCREG1
: .
* SET STATUS
*BIT 'VHINVSEG' *
‘;OR DMKVATAB *

STORE Commands (Parts S5 and 6 of 6)

ARP2EEREERE
*GQ STORE NEW *
#CR1 (5 _INDICATE®
*DATA STORED)
e

<

- * -
x . L%
Es 85
BN STOGRG]
B1T % *xxENB2
. - *CHKTRACE * *CHKTRACE
- *. ¥ES ax_as *_s.
*._ CREG 1 I#———_>*BAL B8 - CHECK * *BAL B8 - CHECK
* . TRACING * * "FOR TRACING
. - * INSTRUCTIONS * * INSTRUCTIONS
.k P FaRRRERRIETRERAE
o
i g
%sT0RE paTa INTOX * A(STOCREGO)
FTORERE < R IR0,
*INVALID VALUEY

[resTrrrre

STOCREGQ
RpIEEIRERE
.

*
ABIRTTVERERCR0 ¥
POR DNKVATAB_

FRTRTs—_.

POT TS pre

4G STORE
*+CRO (5, Ilnxcup

DATA STORED)
B

Program Organization

STOCRGC
P

* STORE CREG 0 *
>* "INTO VMBLOK *
* h
* *
AREERRTRAA SRR A A
(el

>%05 *
Py

pEe

147

DMKCFD —- Process ADSTOP and LOCATE Commands (Parts 1 and
%

DHKCEFDLO
EE I CPREERE Y

* *
$LOCATE COMMAND ¥
AEERREER R

B

SAVE BEGISTERS

LS
CALL DAKSCNFD
FIND FIRST
RGUMENT
AREEREEERER IR

sresrgistraareay

*DHKSC]

ptc

$ oMLk nnxscnn t
FIND VMBLO)

ADDRESS :
OO L N

17T,
o *

. *
*.YMBLOK FOUND
*. o

e

i

. DZ‘ 03p2

i
crnnzst‘nzttttttt

EaERREREE

VHORLY
ARJ2RERERER
*

#SBT NO BUFFER*
>* FLAS o™

* *

ARRQEEERE R
D HSG. *
* POR_VMBLOK _*
QNLY IN SAVEWRK
* ° AREA *

*
1
&
=
(3¢
=

ARRREIEERE

e

% h2+
*%
«

># IR TP EE R
[tn R

*

*

*
*

T
* D3 _+. o2cH
303,

Taes
Hovar EEDIXEFREREK

ZERQ_PARN

* *
ARREREEEER

* * * *

> u1sOTRE 3G = kem———>*. BEGISTER %<
* " DHKCFD026 ¥ * * l
*x

Pt
sxax 03
01 % 3m5 * 00 %
* E3 .—) 393 i
i, 53

CALLBIH‘RS" EERREE

D MODULE *
*

*
£3 *

-
wox

AREASPIERRASERS
DEKERNSG

¥

* Bk BRSoR

MESSAG
PR s

e
* a4 *
*

xn

sermutesene
¥
325:_&;&

* CALL DMKCVTHB

cShiERR"I50aEEss
*° TO BINARY %
P T T

I rrnnes

- 4YADDR_INVAL
.7ALID lDDlBsS.—-—-—-——)tusGDE nifcynggz'
Tk, "

s Paunsansnnsn’
ES xx
>e e
D3 s
* 03 *
e
wors scn‘“..a.’:-:
#DHRSCHV
it st S
* CALL D!KSCI'v E]
*GET VIRT. DEV, ¥
+ BLOK ADRESSES +
Pt
e
201 %
05 t-l 0283
%
Py
. CPDO4O
*ADSHIERERS
.
rouND, S D§§1§33§sg°3 "
e DHRCFDOGD %
L HerrEaRRERE
TES K
>e
ini
e
wnesazy
ADURQCERT v a_s.

* CALL DNEQCRWT
% WRITE HEADER
L2 -

AREAEPUEFREA AR
4DUKFREE,

o
Call DREFREE. +
e Rk OREE "Fons
*° MSG. BUFFER ¥
pEE R S i

REEEGY:
*DMKCVIBE _
* CALL DHKCVTBH
#CONVERT VCHBLO
* T0_HEX
bkaREAE R

ARG SR RREERE
*

DRVt

MKCVTBE *

Cul'll‘t 'CUBLOI(‘
'0_HEX.

AN 0. S

ARREKTUEESRAETRRE
£DEKCTTB

Sk k_ kA%
I Cain DAECTIEN +
#CONV. VDEVBLOK *

0 HEX.
EREEREREERSRRERRE

seguet e
*BUILD MSG. *_

*+ FOR VMBLOK

* AND VIRT, nxv *
* "BLOK ADR.

*
R et

46 36 3 36 3 36 36 3 3 6 3 3 3 3 36 3 3 3 3t 3 3 3 3 3 I 3 3 3 3 36 3 3 6 3 3t 3 3 % H o ¥ 3¢

IBM VM/370

*xeex 01
*02 * 815
* A%
Ead

L3
TS
* CALL DMKQCNWT *<——
: WRITE MESSAGE

CPDERIT,,

sxaes 0121
H

b

W3

‘°°§%22§.3.1......‘u

¥O

AHAECD:

DmRPEET
ALL DAKFRET 10
FRET BUFFER

IR apoutannrann
* RETURN TO *
* DHKCFN *
AERERRR AR

B

Control Program logic

.
* SET O BOFFER
. FLAG
-
.
aatuap3s
SDEKCVIER
* CALL DNKCVTHB
* CONVERT REAL
#ADR. TO BINAKY
EE RN 14
.. crpo21
<3 L Secusariens
EN ¥o +5ADDR_THVALIDS
. anxn znnnnss.v-—-—-—>ausc = DHRCFD02]*
e Py
P
g
>201 *
+ D3 *
b]
e
*svex3
*DEKSCHR
* CALL DHKSC!

B3 s,
- .

.- “s. WO
* :
LBLOKS POUND_

.. R
o.*

Iptremastavesseny

2DEKQCHNT

FRRERR AR ERRRE RS

*ERARG3
:Dgxgv;n

* To

* KC
tco:un BC
PR

rrEg
SDMKCVIBE
CALL DMKCVTBH
*CONYV. RDEVBLOK

PR LR L TP

AR IRERREEE
*BUTLD HSG
*FPOR REAL DEV

L——* BLOK ADE {I' *

#SAVEWRK AREA *
FrITT -

148

: N
. CHEESHR %
b RESTINST
L 1 P PPR— i TTRgNS BRING Hilazencaraner
« * *% " ADSTOP : 4
$ADSTOR CONMAND ¥ [———>$$LOCITION 1NTO % * mesmrsT ¢
! FERREREREERREEE > * FREEREREI SRR
PURTRON Sr PRt CEDT6T, psksnnars sreeepankersarees
¥ * o .. * *
b4 * .*ADDRESS TN *+. YES e XiRg " %* 3 TRANS-BRING %
SAVE REGISTERS ¥ + SHARED PEGE .#———————> STORAGE NSG = * +LOCATION I¥Tots
b4 H ., e *, DHKCFD161 * *+ " STORAGE
gt *
NO
aane *
>+01 *
B3 *
R0 N
po
GETBFR . RESTINX1 .‘.'
srxx%C2 * c2" el NN
*DHKSCHP! .+ .. % * -*
P *_x¥. YES .+ IS THERE *. v
* CALL DMKSCHPD *, ALREADY o>
1 FIND ARGUKENT *. BUFFER _.* *
.‘- e
*io *
p2° ¥ % ssxasp.
bt H ESTORE . * * -
" Angommnt e, o i L 3 mbtaperfor * #PUT BACK PIRST ¥
* POUND CALL DHKFREE ¥ * * HITH bd M BIT b4
Tx L * * INSTRUCTION * * INSTRUCTION ¥
. . GET STORAGE FORY i IusTROCTION 3} b
oot awns P-4 L SO+ SedBLANNG Trrsrerrersarenes
¥ES *01 * %*
D2 R <
«
* *
B ¥ BESTINX2 .
ADSTROFE e, SE TR e puntunnarans * LEIAREN
Bl *. vtt'gztuttttttt. ¥o ‘_l t.‘
¥o LN *STORE TNST. ANDX : 1 :
DSTOP ACTIVE. *<- *"INST. ADR. IN * * % 83" STILL 1.
* . .t" : BUPFER : SRR B RS RERE *.
Ters L T %*
*cu e jees
]
e *
geanszaes + 3
Ptk OVERLAY % % *RESTORE SECOND
* BEST! : * CALL DHKI INSTRUCTION * % BYTE OF INST.
+ INTROCTION % cONVERT A3 H FITH SVC B3 % * s
- TexnaReiibtaneens pEOOTT—
e 3
* G4 ¥
%
[td *
. CFDOOY
%G *, ARGIRXERERE WORMEXIT £ 3
*DEKFRET * * * * SaRAGUsERRERERE
P L *. KO * INVALID % *
CALL DMKFEET * ADDRESSIs————>* MEXLOC KSG = v . HKCEN *
PRET BOFFZR * N + “DERCEDOO4 *
. - * * sk rsensnsiaann
pTTrn—— .. eranerrers
1S *
aax frod
>e w >#01 *
6y x B3 * %k
]
saan P
.. CFD160 *
L2 eegressus
.’;é‘;’,‘}g ;}33}2;’;"’ >e"s00RRCE Hig = *
s, e « "DEKCFD160 _*
T SRR RRRERE
i8S *
saxe
>
2% *
P *
.
22 ..
«% PREVIOUS "*. NO %*
1 ADSTOP” ACTIVE . dmoemreeoeoo—>
et *
*ixs *
RESTIST L *
PREVIOUS
INSTRUCTION *
seksRsRISERRERE

DMKCFD -~ Process ADSTOP and LOCATE Commands (Parts 3 and 4 of U4)

Program Organization 149

| DCMKCFG —-- Process SAVESYS Command (Parts 1 and Zz of 3)

D a2 anwreress

* *
$SAVESYS COMMANDY
EREREEEEERREREEE

SAVE REGISTERS

HEERCD
DNESCHEF!
A I
CALL - GET
SYSTEM-NANE
ARGUHMERT
ARBEEEREREAREEE

02" Tk,

- *.

+* ARGUMENT *. NO
t¢' POUND

.
s

..
*.
THAN *. YES
CHAR. 1%
*. .
S
WO

*
*. ¥O
.-

L2
.%° NAMED *. KO
* :

.

*.VIRT
*

ERRRRIDERRARARERA
*DHKSCHV:
Pt St A S
% CALL - FIND *
*VOL. FOR VIRT. *

SYSRES' *
P

CPGD26”!3"‘.“‘

* MISS.
>* INVALID MSG =
* DAKCFGO26E _*

e
*01 %
* B4 0372
*
=
NOVAR
SXEGRFRRRER
* *

* *

>* ZERO PARN REG *
* *
* *

SO srunes

* SYSTEM DOES ¥

#e>*NOT EXIST M58 *—e—————>
* DHKCFGO44E ¥

*
SRR RRE

LT —
SEU I

UNLOCK SYSTBL

X JIEARRR
* SYSTEM *

*__ BXCEEDS *
* STORAGE MSG = *.
* DHKCFG170E _*

pree
201 % 02c1
Puje>) 835
+ 0% 3
P
R 13 TP SO
WDUERRESY e s
>* CALL - SEND %

ERROR HESSAGE :

*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
%
%*
*
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*

IBM VM/370:

*xxex 01K2
*02 *
* 2%
%

AERRLDERARRRRE R
DEKSCHY

*
CALL - Gi *
VIRTUAL DEVICE *

LOKS *
PO - .

CPG173

Control Progranm

-

*.
AUEEEERRE

SET UP %
* INTERRUPT *
PENDING HESSAGE

* *
[reTreer—

XKD

Dyrgosr”
CALL - SEND
MESSAGE

AEECHRRARAS KR
DNKPREE *

CALL - GET READ*
BUFFER H

AXERKD THE SRR RRAE B2 %,
*SYSTU! * o * *.
Pt St L A NO % VIRTOAL ‘%.
< + DEVICE FOUND I#
USLOCK SYSTBL ¥ - -
M - .
. o ¥
i8S
. cre172
CIRR LR RS c2" .. EARRACIR R AR ARE
o* *, *SYSTUNL
* _VADDR HOT % .#+VDEVRELN ='. NO 3
POUND HSG = #1 SISCIL #eemeee>k
* DEKCEGI73E % ., N * UNLOCK SYSTBL
AR,
aen
>401 *
* J4 %
T
Taxe
XX DD
DMKSCHYV: * *
% +. +INCOMPATIBLE *
CALL ~ FIND + SYSRES HSG = *
SYSVOL VOLUME * DAKCFG1728 *
e
>*01 *
* J4 *
*
P
B2 Tk,
VOLUME ~“*. NO
MOUNTED . *.
S
YES
e
02+
B3 ¢->| 01Kz
ans
cre171
Tk, *
"%, o A aes.
s >%]
ot UNLOCK SYSTBL *
Lx° ERERERRER AR RARERE
+iBs

.
G2
.* *
.*° INT. *. YES
* PENDING ON
L 5]
*. o
. A
*io * *
Lotass» au *
>%03 * *
3R e
P

* *
* VOLUNE NOT *
* BOUNTED KSG = x
* DEKCFGTTTE *

EEEERRERE

Pron
>%01 *
* g4 %
*
P

AADYHRREA R

#SET U RETURN®

*READ=SAVRETH *
AEBERRAARR

*

AR BURREEEREER

DHKQCNRD

CALL - READ *
REPLY

T)
* *
GOTO DMKDSECH ¥
EEREBRRREERREES

LGl uotjzeztuebip weiboid

(¢ 30 ¢ 31ed) puemmo) SASIAVS SS920Id -- 9IDARA |

F AR AR AR AR
by H
: H
* q9¥d)
* LXZN OL dWng «
, H :
e L L T
twt dungovd
-
Rde
* hE x
* LO*<
i
serversseensens . . 3 H
: * HSENDADARA % # E9¥d SIHI ¥0d #
* RILSIS AIAVS » * SXZY AIVHOLS *
* DNLIHM HOH¥T« * FHT dAVS *
* ORISVd * *
axrrknaldan wrrckkrrkkk L dkkkk
v M
sexssrserssrnsens seressrasersnenes
* * * ITEVIARNN *
* 08EZ AIVd HASO* * AD0THA *
* HSEWIIY - TIVIx * - 0Ld _TVE *<
g Ty ER St L
* OYIUNWAx * DTNALSAS*
R - e R 4
SENDAD
PR S P S
* TOASE * * ‘TOASXS
, * OI IN0 d9¥d
* EITHM - TTIVD
H Tiztuia
wxerkrkrhkl Giokkkk Qrrnk:
-
S
EAR
L
- SRUOU S,
sessessssiseres h 3 bt :
* * - T * d9¥d_SIHI * *% HOVHOLS OLNIw
* NEOIEE O1E # : SEX=RTd3¥ * NI SKEN QHY * *% ZAVS Ol FOVdas(—
* * SAX T * ‘SHAISIOAY "MSds *¢_ HISN IXAN
R GOsnnn Tx * * QIAVS FHOIS *#OHIHE - SNVEI*:
T LR EEREERRERREDRRRRR kR Rkkkl Dk kkk,
, cxt v dO0TRYEL
¥ H h H i s H
- TELSKS. * * wgdaaa * had 0¥ Z % * SSA0¥I
* ¥D0THO TIVD * * QVdH JEE TIVO# *% A9V ¥EASOD NI#* * 0L _d00¥9
AR TR TR AR ATETATETE AR R **INI8E - SNVEI** * E9¥d IXEN 139
* TOGLANRA* * ey b b *
! wkkkk kGl ek nn wrkrnenrknl Gaxks;
] dOOTAANS
sens
| s
LY %
o, :
KEEREREEERERERR AEARRRRRRRRRAR *" T *
* * * * *" SSEJ08d "k * AANS THT
* ENILINO¥ENS » * aVAY WALl o+ *: 0L Sdno¥s . *00 O SHILSIDA#C g
* + DINOISES * % WOHd NINIIE x “» E5Vd FHOW »° SHX * dZITVILIRI
e) O P tx ** *
, DTHOISES HIZEAVS € rakaanresl Uannns
FAVSOQ
!
o ,
e
3o
ZOT0 wekex
: /
:

DMKCFM -- Main Console Function

DMKCPMBK
R rrearsenes

*
* BREAK ENTRY *
PR

SAVE REGISTERS

P

c1
o
*" 18 C
* MODE
*, L0GO!
‘e,
"nuxrlsn
avt
CILL-GIT BOEEREE
R COMMAND %
L]
. CONBLANK
51 *. i
L *GSER LOGGED*. ¥O * o "x
. oN t—————-—-)*. 3D BEARR 't
ansnrssiens”
*axx
>%
x g1
HEE
xx
ARP IFEREERE
* *
% SET UB NOLL »_
LINE
*x
neskanas”
xen
*01 %
* 62 * 02r4
* e
P
CONFRITE
FHG2FRRERNE

>*
*

*

*
* SET UP HULL *
LINE >

*

Routine

COWFPREAD
FRLUEERE TR

* SET *
*READ COMMAND *

*01 * 02E4

P U

R ihid ﬂSCg
CONFBGN2

RETURN 10 Alrows
#VIRT. HACH.'TO 3<

P

FADIERREARR
* TURN OFF *
* CONSOLE __ *
*FONCTION WAIT¥
SrrrerEEREY

CONPBGN3
AEXRRIRERHEERRE
*RETURN TO ALLOW
1 ATIN ONLY ¥

SRHIRRERERS

* SET UP ‘CP' ' .
*, HESSMGE _» *

s *
naraErERe

L)
*xnn
Tt I
.
A2

¥RI
L3 PRTS N
noux C! *

HESSAGE ¥
FRERREERERAEE RS

H A S—

ETURN=CONFRRTN *

*
AR ERRRE

AREERPU AR RRRE LR

*DHRQC
Pl 32 S S
* CALL-READ *
: COMMARD *

*
O

c4 *,
- ..
*.
IN LOGOFF ..'
x o
*.

¥O

AXBUREREERR
*RESET CPWAIT
« FERE 10 ALEOW %
* USER T KON *
AR RRREERE

>

CONFNRUN_ .*.
PU4

¥ o . CONE R rsennrreses
RESET CONSOLE . *. NO *
“!VICTIDI HIG" ‘.'PIRST READ ..‘—): GOTO DMKSDPCH :
. “x. o AR AR
*YES
o
* Gy *
ARRRRG ¥ CONPEXIT
*DMRFRET TS S
G e *RETURN VIA SVC *
H = ERLA
* BUF. ARERERRRERRREER
- CONFVIRE
H3 *. e T
* ENTER VIA *. YES STORE RETURN_ *
DIIGIOSB . > *CODE IN SAVER2 :
*¥O
L

(Parts 1 and 2 of 5)

3 3 3 36 I 3 3 3 I 3 3 36 I 3 I 36 I 3 3 96 3 9 36 3 3F 36 3 48 3 3 3 3 3 I I 3 3 3 I I I 3¢ 3 ¢ It % 3t

DMKCFHEN
FEEERTRRR AR
*

*
$DIAGNOSE ERTRY ¥
R

B

SAVE REGISTERS

Prrees

e
*02 *
C1_=>| 05A4
Bt

*x
conts 1314
ARTRECTERSAEAERES
TORE COUNT ANDX

*
*
P e
o
* D1 %
* >
P
CONPSCAN

AErep teancesny

e Lk

ARPIRREERES

* SET UP TO ¥

*MATCH ARGUMENT *

#AGKINST LIST *
EERERRA AR

CONFEXEC __.*.
61

*.
. *
o *. YES
>+ ARG.=CONMAND %
o ox
*. B
s n
0 -
anrn * 25 %
PRt [
*n1 o+ wexn
=S
weax
CONPBXLE_ .*.
81T *.
.x -
TES .* IR
#IMORE COMMANDS.*
- it
.. -
¥
0

u
CONPRETN . %.

IBM VM/370: Control Progranm

xxr
* A3 %
*
ey
ERTEPTRE

* TNYALID CP
*GONBLND ngssnsst

SrrEERERREE

erxEB3
#DMRERHSC
onecie et S

* CALL - SEND
$ ERROK MESSAGE

STORE RETURN
CODE IN SAVER2

KRRERE R ERARAA AR

*
*
*

*
*
*

*.
*.

- *
* END OF LINE
* x

FES LT S

*
| LOSICAL LINE *,
b FoUND _*

s *
AREERRRAAAE

Rttt

«* pume past
* LOGICAL END t
*, CHARACTER

AEEERRAEER

Ly

>k
* D1 %

* *
erx

e
CONFLEND_ .*
B4

>%1
-

¥ *.
ENTERED VIA.
DINGNOSE

YES

Logic

Txl

CONFRIND _.%.
- el

No .+ *
(—*. VALID CLASS
*. o

*. .

*

CONFCALL
RERRRCS R RRRRRE RS

CALL THE PROPER
% ROUTINE TO ' *
$HANDLE COMMAND ¥

pETTE T r———

THE
POSS.
RETURN

CONEBGN1 - READ
NEXT COMMAND

CONFBGN2 - RUN
USER

CONPBGN3 -
ALLOW ATTRNTION

CPHOOT __.*.
a1 e,
o* *
-+ENTERED VIi*. NO
*{_DIAGNOSE _.
. B
*

*

152

ex

* «
kn

Ry + T Sowe

SET_ERROR

* CODB THE0R 2%,

.
*

TP

| DMKCFM —- Main Console Function Routine (Parts 3 and 4 o

CONPRRTH
AEERSEEEARRRE
+ BETORN FPROM *

* DHKQCNRD
ARRRRERRRRSARES

sexts 05E3
#03 =
* A3«
O]

Ietanenrer
TR R(
CESSThe
51 L

an

AEEEEDIRREE L AR
* NORMAL *
* RETURN-EEAD *
* NEXT LINE ¥

DMKCEHAT ASTERISK

Y fr I CEr——

* ATTEN * *

% SIMULATOR * % *COMMAND

* x *

FERXBYEREFRRRES

DHKRSCEV RREBEREKRAREEE
* TURN TO

cu.l.-Gn varcx* * LLER
IR RRRRREE

e
~>%02_*
* E2 %
HEX

ATRETURN
LS S

* *
3+ B4 RETORN ¥
R R

R
s
* PEN NG A%tw. ’
Fr——

>

*
*

*

*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
%
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
f

DMKCPMBE
FEEEL ERRRERARE

* *
* BEGIN COMMAWD %
rrrrEERRREREE

SAVE REGISTERS

Ty

TRERAC EEREREEERE
*DHKSCHFD *
Ptk S
* CALL-GET *
* ARGUMENT *

PETTT T —

DI '.

o nsunzﬂ * e, %o
*

" POU
*
*
*

P I
$DHKCVTED

. —x
* cukcolum‘ *
ESS *

+ ABpe
BINARY
pOINR-:11 S

r1°
B

nn

P
K2 ¥
e
wran

CPHO

oy
ARP2RERRRRS
.,

*: VlLID mnuss *—-———)‘ I!vn.In fisc

o

%
¥ES

*
li.
.
NO .+ TRACING °*.
[—*- J¥STRUCTIONS .+
* o
o .*
TES

.

L1
INSTRU
Ax e

reeagistesareesy
DEKTRCT

CALL - SEr AR %
INSTRUCTION *
TRACING = *
Tt

e T

5)

CPHOOU
s .
AREREEE RS

e
. *

*
*

BEGE:

-
>*
.

K2 *
=
axxx
Tlaasdeo
* SET UP TO
fETuRR 10 "+
RETURN
ADDRESS+4 %

AEERRERREEE

*e.

*

*

DHKCPHSL
AR AUSRREREREE

* *
* SLEEP ComEAND ¥
[RTTYTrTTree

SAVE REGISTERS

e

AXCUBREEEER
* *
* *

SET UP RETURR+8
. .

L
ren
>*01 ¥
*E3 *
*xxx

axne
04 *
*F3 % 0502
"k
axxn
CALLERN
AAPIEEAEREE
+SET UP HODULE®
>¢‘ IDENTIFIER

*rarararanes’

ARRERGIRERRRRR AR
4 DHKERMS(

—*
PR
+ EEROR WESSAGE :

EreREE O EOEE

Program Organization

| DMKCFM -- Main

Console Function Routine (Part 5 of 5

DHKCEHQU
SRR THre e
+ QDERY SCAN
* BOUTINE *

SRR

B

SAVE REGISTERS

anEnn

KRGUMENT %
*

CPH026

p1" k. AxD2ERRERER

.* *.
-* ARGUMENT "*. NO
., FOUND I

OPERAND *
>*MISSSING MSG = *
* "DHKCFM026 _*

*
Tk % e
wxan (B9 wern
P S04 *
* E1 % *
* > x
free L, e
N NXTSCAN __.*.
SELIST gyt ™ee. B2' .
151 3 « YgeniisT " x. vEs
L+FIRST SCAN'+. YES . .
*l BEEN DONE I#——————>+l SCAN HADE
. . . e
X ax
0 ‘
61 %
HR]
wxan

N0 *SCAN GENLIST *
#————>* FOR DHKCOGEN *
AR
]
SCANPRLY
G IREERIRR
* SET UP TO_*
SCAN PRIVLIST
* FOR DHKCQBRV %
® CALL *
AR
P S
QRYLOOP
1S I S——
A
ARGUMENT *
(—>* AGAINST LIST *
b4 ENTRY M
ERRERA R AR

FARREN
o
*. YES

)

-
. *. YES
*_FIRST PASS I
o *
* K
. sxer
*¥0 [0
*
A
ok

FEBIXRERERR

* SET UP TO *
*CALL DHKCQPRVS
* " AT PROPER *
*#DISPLACEMENT *

rerTrer—

c3’ Tx.
o *.
YES .* *.
(——*.CLASS B USER .*
*. o
* o
L

*Ko

D IKEREEER

* SET 0P TO *
*CALL DEKCOGEN®
* " AT PROPER = *
*DISBLACEENT *

AR

CAL!
FREARE TR RRAA AR

+ APREOPRIATE *

FRRRAEERAREERARE
o
>*03_*
* A3 *

P

*.
o
*. COMPARE -
* o

o e
NO . .
L"—*. END OF LIST l*
- o
«

axesx 0382
%05 *
* aus

*
CONNATTN .*.
LU

o Tk,
-*INPUT COUNE*.
*l, 1ERG :

IBM VM/370:

Control Program Logic 154

seavs 0382
* A5
%

CONATTN __.¥.
as’ =

%
- *INPUT couat
*, ZERG

*. *. .
. e
*YES *YES *01 *
RS .
BY *, BS *,
¥ ¥ *.
.+0SER_LOGG! L *OSER LOGGED*,. IES
* oK . oK el
*, *. o L
o
o
01 %
* Aux
s
:
ERRARCU R TR RRR SRS *¥aCS
*DHKQCHWT H DMKCFHA
et S L S
*CALL-SEND 'CP' * CALL-SINULATE
: MESSAGE : ATTENTION
e [esee
>*02 * >401
* E4 * C3 %
£ 353
p e

areas 01K
CFPIDLE 02 %

K4 5
- .
* *. NO
N RMINAL .
o TEREINAL
*. .
19:E2 *o o ot
8%!3 YES *02 *
E * Bl
Q2F3 %
0341 *
9381 e
C1 *02_*
0364 * K1+
0334 .
BkS .

DUKCEPRR FEAIEREERE RESYSTEM * A
FEEER PRREEIRRAR *SET_UP_IDLE* R L S b bdvd %* >
* SYSTEM RESET * * MESSAGE AND * *VIRTUAL SYSTEM * *
4 FRON OTHER Cp 2 (—>*RETURN ADR. OF * * RESET *
* T Y I DHKCFRRD
‘DHKVDBRL Lt Vidhibhihd
LT < RESER VIRTOAL *
‘ CALL RELEASE * * DEVICE *
* * DEVICE *
rErRarErEREE
R RESNEX T
sesexptsdorssens srrragzatessreser [T |1 ST —, * s
tDHI(Q’: WT *
RESET NOTRANS * aorrat HODE JTRESET CREG 0 In} 02+
: FLAG M 3 SMELg sEaD ¥ . FSchRERE VHBLOK * ; B"‘—> O1RY
* * Tx. .
LTI ek
RREAEE R KRR RERE *aids Traersrsrscrenen * xasgx‘al'(”m“””””
* ‘!
* CLEAR * HO YES
% 3 INTERRUPTS X a1 ourpur nzvxcz *
M - "
% T weer
ERREC IHERAR R RS HERERKCUFFRAREEERR x *
* PET T e pae— * * G2 %
* * * STORE RESET * ¥* * d
BAL R10-RESET * * GOTO DMKDSECH * * _VALUES IN % bt
VIRTUAL MACHINEX * * * CONTROL REGS *
* AR EE KRR AARR R * * *
[—— T —
.* Tl
* o *. NO -
*.CHAN-TO-CHAN »
%* *. ADAPTER .*% *
R R bbb
*1ES %01 %
% l * E2%
%
RESCTCA ¥ RESOPUT - E.
* * *. D3 *. D5
wonk 02¢3 [T S— - ..
#01 % 02¢4 * ¥BS .* .. .*"IS DEVICE *. NO x' CONSOLE ~*. YES .- *. NO
*E2, 0253 * 3 R10 RETURN % [—*" UNIT RECORD e *1 REALLY CTCA Tx— I, DEVICE [s———— >+ ACTIVE PILE l¥—
Taxr 2582z RO T e . . s
. P P weenr ok axrex
1T . RESEXIT] FTT I T cummm—— * *Ro *YES *01_* *iES 01 *
o *. FRRREDEE AR *DMKSCHR’ * E2% * E2%
¥ ANY *. NO * RETUR] B * x *
#. DEDICATED .%-——————>* CALLER b * . %* *
.CHANNELS . * #CALL - RESET IT
15 o [T r—— * .
*, i;s EREEAARRRAE A RER R * 23.‘.‘ PR P
) x. £DHKYSEC
*. *IS VIRTUAL *. NO pmaded
> * ¥ *.CTCA COUPLED . ‘ CALL - CLDSB *
. I o THE FI .
. . *
* xaas [
creez R TV N * LA ik
* 'DHKVATBC * * E2% Raidd
T UP CREG 2 * Rk ¥* e >% *
POR_DEDICATED * YOI RELEASE, + * re2
CEANNELS % * SHADOW TABLES * exex * ens
P T | * £ 10—
fTes * DEKFRET ¥ ¥ SDNKYSPCR T+
: - -3 8 -
tO(';Ib‘t_> 02¢1 * CALL - FRET * * CALL - * t cu.L - cy.osz *
i < + ICERBLK * ¥ SELECTIVE X *
* * * * DEVICE RESET
nxm“g 1 FREERR AR LOHLAREG FREREREERE AL
11 ST S Hlecurtessrnne |
* free rrrx
GET ADDRESS OP * XGET NEXT SET OP* > =>%01 > e b
>IREAT anxcnsu * FVIRTUAL pEVICE ¥ 1 E 62
’— * Ch * * BLO %* T ran
ARREERERER R R tttstitxtnntxtt‘a RESIOER
* F13 1 IIPT P
* *
* TURN OFF ONIT *
* >#CHECK FLAG AND ¥
: ZER *
L"nu.u"uuuu
I IL A —— T re— * *
*DNKPERT r62 %
$RESETDEDICATEDX it L L *
* FLAGS % CALL - RESET * * rxx
M * TRACING *
|- SO % g
“x,
lll! PEIDING‘ YES
* *. INTERROPTS I+—
‘. .
* .k seake
K . ko JY Rk kR Rk — ‘llo :032:
. * .
YES .+ . ¥O PR L % 102 % 9y F
. . * CALL-RESET _ * *°J2 *->] 03C3 *
. #VIRTUAL DEVICE * Ters” 8358
[—- * RESCONT __.%.
* +

| DMKCFP -- Simulate CPU Console to Virtual Machine (Parts 1 and 2 of 10)

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 Program Organization 155

j
1

SY20-0880-1, Page Modified by TNL

DMKCFP —--

xxsax 02K2
*03 x
* A1
e
*
RESCIAL oL
RN
% TERMINAL
‘.‘ DEVICE
Tkl .
*e o ¥
*YES

Simulate CPU Comsole to

NO

Axkex 0202
03_

RESPEND v
(LIRS Peme— peeesadareeeseny
*
* CLEAR DEVICE * RESTE CHANNEL
* TNTERRUPT % —-)tnnuus FLAG I
* STATUS *
. p

82" %,

o x *.
NO _.*CUE PENDING*

VIA DIAL —*: FORE DEVICE I+
Y e . .
. ox *
YES *YES
aheracl wrrrnC
'DHKDIAD' * *
— F KKk * CLEAR CONTROL * * RESET SUMMARY
»anL - nnop THEY * TUNIT END ¥ #PENDING FLAG IN
i1 * * * VMBLOK
* *
[[gmee
>01 * S +02 %
* E2 * > >‘0§2 *
e
e P
RESPNDCH__.*.
p2" k.

L* x.
CHANNEL END.

NO
—*- FOR DEVICE .t
x. .
.
YES

PETTRSTTS Me—
*

* CLEAR_CHANNEL *
b4 END M

* *
P P

>

RESPH!

ok 2EREEEERERE
* *
*R! LNIERRUBTY
P G, IN

DEV
ARAP
ESET
ENDI
e

o

P ettt

ARRRKALEREE R RREEE
* *

* RESET PENDING *
$FLAG IN VCHBLOKX

* *
FEEEEREERERRRER R

az' ‘t.
llO

2 rurtaRgETs |
*. FENDING . «

SN20-1624,

August 15, 1973

Virtual Machine (Parts 3 and 4 of 10)

*rran
oy 022
* AUk

* %

*
RESBUSY _ .*.
[N

o *.
NO .*VIRTUAL SUB*
(———*-CHANNEL BUSY [+

AXARRBYFRAAEEEEEE
* RESET CONTROL
* UNIT AND

* CHANNEL BUSY
FREERRE SRR RREE

*
*
*

>

RESSTAT _ ..
cu’ T
. x.

YES . DEDICATED *
EVICE

——t
*

*. o
. ¥ wx
o x02 *
* Buk
* %
*
E4T .

o *.
NO _.*"TERNINAL ~*
<—x. 'DEVCIE %

s

.
* RESET DEVICE #
* BUSY *
. M
* ¥
T
[T
o .

-
*., CONSOLE

RESHALT
TSI S—

* RESET DEVICE
b BUSY

I

*
-

xu' 't.
“+. WO
*0 rsaglvnl on .

Foel xt akwkx
*3ES *0u_*
1 * B3*
*

e

04 _*

36 36 3¢ 3 36 3 b I 36 3 g6 3 3 6 9 3 96 3 4 36 3F b g6 3 36 6 36 36 g6 3 36 3 36 I 6 I 3 I 3 I 36 I 3 I 3 I & ¢

RES!

IBM VM/370: Control Progranm

akrkk 03KU
04 _*

a3k
A%
*
SPEC oEL CKVIRT .
a1 *, A3 *.
o *. ¥ *
* IS DEVICE *. YES .*IS DEVICE A% *1s DEVICB *,
#*, REALLY CTCA .*< CTCA . DBDICIT!D *
*. ¥ * x .
*. o *. .t
* P
* *iES 1ES
M weex
H w0u *
* B3 *>| 03K4
2
Sra
B CKACTIVE__.*.
RIS 7 83" *
* IS X=SIDE *. NO +3TARTED TO *. YES trs 10 e
*, IN WAIT - IAL o *, ACTIVB NOW
. STATUS . * Rl
* . *. l Cx, o
x L% warx . ek . x
Es U *¥ES
*BU * *BY *
M
exn arx
RESVIRT
c:
*DIKSTKCF * * * *DMKIOSHA
B e s o * RESET ENABLED * e t
* CALL = STACK * * PLAG * *HALT _THE ACTIVE*
3 CPEXBLOK FOR ¥ * * * DEVICE *
RECONNECT * * * *
BN 11 4 T
R #axaD2.
*DHRSTT ARRRD IR AR
‘BBSBT X=SIDE * *
IR STRE08 . AL - STACK * GOTO DMKDSECH *
’ ‘ 'THE IOBLOK FOR *
<" "PROCESSING P
T — pETLL Fe b1
wax ok
Se >e
B4 * By *
« M
ok ok

x ok
Hwnk _'1
CFPWAIT
FERABU RRERKAK AR

.
>%G0 TO DISPATCH ¥
FREEERERREEREAE

Logic

156

CFPIQ
FEEKLS R AREERAEE

AAESREEERE AR
]

KL
§O .*"ORIGINAL ~*.
——*., IOBLOK *

FRREEDSRERARAKRAR
+DUKUNTP *

—k—kk
ICALL = RELEAGE +
* CCHS’ *

*
FERAEXEERARERRKER

AR GERRARARA R
*DMKDITADR *
it i L
* CALL - TINFORM ¥
1 BRVIOUS USER %
TR R R IR

>

PRETIOB
FRRRKASHAFEEARERE

* CALL - FRET *
* TIGERBLOK *
P

fi s L2 TP I

*DMKERET
it St

* ®
TR

* *
*.OPERATION. *
* i)

. %
*YES

S
sueas 05K1 xxsx 0531
106 * 06 %
DHKCEPIT A * A3
FRRR hkassnn . *
$IPL ENIRY FROW *
* LOGCN * L
[er— R —
FLe et TTs o NOCLRCHK, 3=%es, Fiihasrerrsennnr
i :

* .
*: SET_FLAG FOR * -*iRGUMENT =%
i STOP * .,] CHARACTER

* *
f——>% RESET NOCLEAR %

s M . . b4 *
Tersrrar ek ar . ok rkER Rk

HERIRRERRER bt e

#SET PLAGS T0 * 405+ l

* INDICATE FROM * : "

*, Locow -+ Lo, |
AR R B3 85 el

fresd o

. Lean”

*

*yoc
*l pxavmusu
*. ENTERED .

o x axns
IPLNAME * o * *
Frcossrrsns * B
SRR AR EEREE *
H b}
* *
Aearearrars % i 133 TR R
M .
1353 * :EEEH - CBECK % < o . ® e *l szgmusu
= e : :
: M"—l 0701 BAL B3 - CHECK L ’uocwn = 0
Akkk . 't *" EEEEE
R TeLEYEeN *x FEERERERRRERRER K *euits s Soers
ADTRRERARAEEE p2" " . (111 E PR — xar { * Kox
*DHKCVTBB % % * * * * %
bt 3 v . YES %+ TRANS-BRING %% Tous |
* CRL = CCIVERT * *, FROM LOGOW .% >*x TN SYSTBL **
* ARG To BINARY * .y i b4 = *) pree ‘!
- . *. CPP002
B T * .k FOTTTRT—.- ¥ .
& 02" “x. . aDyRRRRREE TARRDSERERERR AR
*NO * * . *. * *
%* o ° +* ROLERR "%, WO * * *
*. PARM FOUND *. RBREVIATION _..—.,)t OPZRMID HSG * *SET CLEAR FLAG *
*, . *. B DMKCFPOO2E * * *
* . -) B : M
" ek Frrererrres SrrexxaserrrRerer
BT HHEAE 2HK KR AA AR 3 e fio *07 %
. * . X e oo =
.‘ DHKSCH * L ¥ * * >*05 * L>%05 *
* -+HANE OVER 8%. YES B2 * * EU ¥ *HS * b
. GOOB convan PR CALL - LOCATE * »1 U CHAR. 1 * LS M s Ve 1
. NEXT ARGUHENT ¥ . L rxx e L e T
L FRERREEREAAAFEREE Ta * * [k 35 FOTS S CTROTS By sk aaran
YES *NO *] * *
oty S e
* - =
* CAL, * DHKCPBO13E ‘t
PreTTeTr—
B NAMELOOP E 3 e
Rl ¥3 aee
>305 %
.*'IPL FROM ~*. YES o .
. O0GON % ARG.—SYSTBL * S
. . rEx
* - axx 'a ." %
* o .. -*.
0 *07 * *NO 2" T*.
arrx * E1x
*05 * 0621 * % * * E3
+ 81 x> § D2 * werx
* G
Srxs 833 *
IPLSCHLE R CPROUY
Siring Hrkag [ERAEN FrrrGus s ssear
* *CHKPARM ¥ *. ’SYSUILC *
*. * *. «*LAST SYSTBL*. YES Sy g ‘-—‘
* CALL-GET NEXT * * BAL R8 - CHEK *. ENTRY ‘—)'EIL R9 - UHLOCK‘
: ARGUMENT : : IF PARM *. o STBL *
FREEREE SRR AR RRAR FRRERG 2R R RN AAEAAGIFHRRERRAEE
M * . *
Lad 06D4 * *SAVE CYL-FO IR * * SET NOCLEAR *
05_ O?E“ * SAVEWRKY * * FOUND FLAG *
canl : N :
ouitiy, 4 FoFe : : ¢ :
e ST [CT e A* L o
05 %
*GET NEXT SYSTBL® * SYSTEW DOES * *INSERT MODULE® 21080
brs ENTRY * *N§OT EXIST MSG >% IDENTIFIER * *
: : "DHKC!PONMB ‘1 t l R
LR Seaebbssukssanins Er T pre— * w2 e ”"ll‘!ﬁinzuunuu
* . .
rK2 % .*7 cyi-NWo . YES 4 :
* R sl ¢
*. LETTTTI TR
U o
*ZERO PARAMETER * bt e * % bu v
* REG 2 * 4CALL_SEND ERRORY o]
: 3 ¥ : ok
- P * PUTRTN. S
b3l bt + PLAG CIL-NO ¥
#05_* >¢07 +
* K2 * *B1 * ¥* * FoUND
o Yo") :
. * Tarsssaraneanens
. ag2eRRerEE * o
¥, ¥ES * MESSAGE NODULE eIy
*——» opTION H3G = RETURNS TO e
. * DHKCFPOO3E * DHKCFH * Teex
Yo [RST—
F]
* K2 *
M *
o TO:K2 TO: H!
oad 06¢5 8855° *
06 % 06F3 08F1
gt i
* B *

DMKCFP -- Simulate CPU Console to Virtual Machine (Parts 5 and 6 of 10)

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 Program Organization

157

SY20-0880-1, Page Modified by TNL SN20-1624, RAugust 15, 1973

DMKCFP -- Simulate CPU Console to Virtual Machine (Parts 7 and 8 of 10)

"3 8882

xn
Tk

*
0
*

¥
7
a
*
IPLSETR2 i

ARQTERERRER

*

* SET UP FOR *
CLEAR OR *

*, NoCLear »

1
L3

*

ol
* B1 *=>| 0532
o

CALLPGS

ARRREC TRARSRRERER
*DMKCFPR
%

el
1an¥n v
fe A

FIND MIDDLE
pnaz arHvlnrvlL

|-

PAG

Gl el

YES

rnx
*07 %
*7G2 * 08cs
x 7%
ey
CPR174,
G EFEREER
*

% PAGING 10 *
ROR MESSAGE =

T

x
HOVAR FRGIFRBREER
: .

* *
* ZERO PARN REG *
* *

‘PlGIIg 1/6.
.

ARBEPIIEEEEEREEE
£33

* TRANS-BRING **
*IN USER PAGE **
* ZERO **
* %

*xkkg

CALL-GET DEVICE
BLOKS

“a.
*.

* DEKCPRITUE *
R

crponotskzaltlttt

*DEY_DOES NOT *
>% EXIST HSG = *
* DHKCFRONOE _*

AR RREAEE R

Py
*05 %
* f5*

*

* *
EERRRERREEE

e
~>%05 *
rHS *
*
Taea®

LRy
* *
* Al
*
*axk
FERGRERR R
* STORE I
* gEACE 2ERO %
* DEV. & CONS. *
* ADR.,CYL-NO_*
AEBRREREERR

rrBursverar

LFSTORE VIRT.

3 DRe 0¥ TR *
*SIH. 1nT% VIRT *

P

IPL“‘E!CM‘H‘!“*
*

¥ RESET WAIT *
*, PLAGTINPSW *

* *
R KRR

FES TS S
*

* SET UP T0 *
* RETURN TO *
* DHKCPH+4 *
* *
R

>

RETORN
FEEAPUEEARREAAE
RETURK TO

*
*

ARRRRRE AR RS

3 F 36 I 9 I 3 3 3 3 3 I 3 I 3 I 3 % I 3 I 3 H 3 H 36 36 3 % 3 3 3 % Ik % I % I 3 H I 3 Ik o #

IBM VM/370: Control Program Logic 158

#xakx O5F3
08_
* A2%

%

|

NAMERIT .*.
a2 s

CFP173
fida4d Kbttt i

1BAL RO - uulocxt<

AREAEIRAAE SRR SR

S I
* *

| *REQUIRES DasDs

HSG

* DBKCFRT73E +
Rk
e

S%05_*

= HS *

Pee

o* T
*5YSTEN SIzke. YES

CFP170

*., > VMSIZE *—--.--)tnnx B
: H

* o

o
*Ho

HRRRPIARREERRERE
*DHKSCHVS
Bt
CALL-FIND %
:vs!skss VOLUKE *

PITRRT——

c2” el
o
*.VOLUME FOUND . ¥——-
.. o
.x xen
*YES *
* 33
i
rann

HD2 R AR ARRRE

ToaKseRvy

fa i Y

#CALL-GET onvrcnt
BLOKS FO

: SISRES

e

. BLOKS FOUND .*
* o*

ox
2" Tx.
A

* PROPBB voluus ol
Tl o
. .x
iEs

EREERGRRTRARARHAA
*DMKSCAV,

it b A S
¥ CALL~PIND _ *
* SYSVOL VOLUME ¥
TEERERRREEAREE R

H2' Tk,
o *,

o* *.
*]VOLUME FOUND ©
*. 3
* .
Lk
*TES

ox
327 .

. *.
.*" IS DISK “*. NO
*., CPOWNED o

* o
L
*{ES
[
>x
* oA
* 0
e

sk
*

* AL

* 0k

ok “1

* *
* SET UP PAGES *
* R SRR 4
* *
* *

FRPIRKKEARE
* STE!

*__ EXCEEDS %
* STORAGE MSG = %
* DEKCFP170E _*

HRERBU R R RRRAR R
*DMKRPAGT
Pt Aokotk
* CALL-BRING IN *
+ T SRVTABLE M

Uogeee
>#05_*
* B85 *
P
cu Tk
tPAGInc 1/0 *. YES
*., ERROR ls——
* .
* o
R
o
P S—
b =
RESTORE PSW AND
* FERS *
* *
* *
B
xu' “x.
o+ PARAMETER +. WO
I BEIIG PASSED 1
“x. o
o
*iES
cFR172
#SYSDNLCK * * *
sttt * RESTORE GPRS_ *
>*BAL R9 = UNLOCK* #NOT EFFECTED BY*
* " SYSTBL * + PARAMETER *
* . *
<
TESTEC B
xGIHEERIRS G4
. .
*INCOPATIBLE * *. NO
* SYSRES MSG = * i
*'D!KCP9172E >
[T — *x
*09 *
ek + 1
>#05_* w0k
*HS * *
P
T
* *
* *
IRESTORE EC REGS}
* *
R R
wnnn e
>%09 *
* 33 % A1 ¥
* 0 e
ok wrx
cre]71
X3 TR TTS S—
*SYSUNLCK *
ittt SN

>*BAL R9_- UNLOCK*
* SYSTBL *

FRERRARREEEERRAE

AR BEIRE

*SYSTEM V!
*NOT nou;ng use:

E*
AREERREEAEE

%
*

NAMPAGER
Trisacotsarcennns
*SYSUNLCI
ISISgNLCE

——>¥BAL RQ - unLocxt
STAB
TR
e
>*07
* G2 *
* %
.

MOVEGPRS
R ERESHRRARAERAE

:
* RESTORE ALL *
2 GPRS *
: :

*
EREEERARR AR RARE

I

a3er g8cy
* * 08H4
* Al*
WM *
i *
Knreezs.,,,i....,.,, . T T sorsepseneesenes DHKCEELD * -
o* * #DHKFREE * *DHKFRET * FEEEAS KxEEEXKES SYSUNLCK (U
+*SHARE TABLE*. HO R e] e *IPL ENTRY FROM * EEERP2RERRERRER * PARM OVER *
ﬂlunan N1 TOIP R 1 11T 3 SRyt et T >% CALL - FRET * =" DHKCEM x % * * *64 CHARACTZRS*
TO RESTORE =~ * ke p * STORAGE FOR * + TREX BLOCK ¥ * 3 sysuwck SERROR HESSAGE —*
* *. - X Wl SHRTABLE % * * e 3 FREOR BESSACE
| SR P Taad B * reareseanssss . .
ies Pt coxeararenn
= ML
e * S,
* * G3 *
B SHRTIID Sllﬂ‘.ggg kR
*DHKPREE * . M
P *GET NEXT snnuut *GET WEXT SuAREDS * SET_NOCLEAR * * :3;;5%2 T
*CALL * (——>%SEGTABLE ENTRY [—>%SEGTABLE ENTRY % * FLAG - b L L L.
#BUFFEE FOK THE ¥ * : ¥ : * TREC *, & * * cn.x.—um.oc? T
RS 3+ NP4 Teanetiy : :
* [T ——
WANEXIT
A RRC FRRERC U Rk Ak AR R R T L LT Ty *
M + * PLAG SWPTABLE * *+SYSUNLCK * £DEKSCHED
*MOVE THE SAVED * +POINT SEGTABLE * FOR THIS_ ARk X e t_d_x_x e PRSP S
*KEYS TO BUFFER * *ENTRY TO_SHARED + SEGHENT AS % —>*nu. 5o < UNLOCKY $CALL-GRT DEVICES . ,
* * * PAGTABLE * "USHARED * NANE TABLE *ADDRESS OR NAHE * + RO RETURN %
: M . b4 - : * M .
%* .
ETTRLT — P S— 03 e, ou” s Cx. *
* * *DMKF RET * ¥ o* - B .
SINITIALIZE WORK* e [xes, . *horE snnaznm .+ ECHODE "%, WO L+ RRGUEENT ‘x. ¥ES ge
* REGS * * CALL-FRET * + SEGMENTS . *1 HECHINE l#—— *1_ U FOUND k-
* * *ORIGINAL PAG & * *. * *. *
* * * SWPTABLES * . *
FETTTTTETT— PRSI £ 2%+ * srerx ¥
o 1051
<1 %k
PAGLOOE. . CPRO26, *
(T T TTR P 2" k. FrearEIsTaREresay RS-
M 1 *
FINITIALIZE FOR * *INSERT SHRTABLE* o AND *
(———>* NEXT RANGE OF * ¥ * IN CHAIW * o . " HISSING MSG = ‘
* PAGES * *., ¥ * * *. o * DMKCFPO26E
.. - 1 . . - * %
TrrrresErrREEry . % P — PR worx S E e
. *iEs *07 * po *
k07 *
*
< *
SWAPLOOP SETVMSHR
FTEE wriex e TS — *
» *
*CONPUTE lnnagsss *#STORE_SHRTABLE * * SET_VMEXTC
NEXT * ADDRESS IN * *FLAG IN VHBST!T‘ *
[#swpTaBLE ENTRY : * uRBLOK x x
- *
A RAARG AR R 62" . [TIREN *
¥STORE CCPD FOR * B - o .
#SAVED PAGE AND * CING “x. NO o7 BSH IN k. NO *
+SAYED KEYS TN ¥ * INsT/BaucHBs *. TRANSLATE .
SWPTABL! * *. MODE _.¥
Tx, o *. o
TereEEREEE R, woot ok wxwar *
*YES YES :O%H:
s
. *
B HREREL DRRAEARAA ARl R R
o* MORE _*. * * *DMKYATHD %k
YES .#ENTRIES FOR%. * RESET * Aokt ke x
t——%, THIS GROUP _.*¥ * I“ST{BRI“CH * ‘BITBR TIAHSLITE*
B o * FLACS . 0DE *
. - * b
o PP |-
o rxx %*
):O;H‘t
M
L *
AN a2" %
YBS _.* MORE PAGE'* *"ANY OTHER *. YES
L——+«!_ GcRoURS T0 . TRACING *
‘-'FIOCISS * "
Ta
N0 %*
ay *
0
ek
(SN *
- *.
.*"_SHARED ~#. YES *
.. sEenEnts oelE .
*, t.
E %
*NO
L *

DMKCFP -- Simulate CPU Console to Virtual Machine (Parts 9 and 10 of 10)

SY20-0880-1, Page Modified by TNL SN20-2624, August 15, 1973 Program Organization 159

SY20-0880-1, Page Modified by TNL SN20-1624, August 15, 1973 IBM VM/370: Control Program Logic 160

| DMKCFS —- Process SET Command (Parts 1 and 2 of 14)

srxxt 0184 Ak 0172
Ly 02+ *02_% 0764
. * azx * A3+
* AL & * «x
wxxn i
DHKCESET SETSCAY geanannn [4 R S
-,
REHKD THHBREREEE > *GET THE ADDRESS* CLASCHEK ¥ . HOVAR a3adaranx READLOG
* * SET UP TO _* * OF THE MCH " * o - * * SRR LU A
* SET COMMAND * >‘conpnnz ARG, 1 * * CONMUNICATION * . * * * % READLOG %
* * #AGAINST LIST * x ARER e VALID CLASS * ZERO PARM REG * * SUBROUTINE *
PR T e * * . pe * 0 * *
AREEEAERRE FREEREREE SRR *. * * * T,
. .x eted R
*iES *01
* Cux o
* Tk >+01 *
*C5 %
SETLOOR __.*. SETABRV P
P TE B3 BY sxBLekrrreE
* * L * * * esaagussarrasner
b * -1ac. = LIST‘ * CLEAR THE * BRANCH TO 2DHKQCN ¥
*SAVE REGISTERS * — >* VALID ABRE! * MESSAGE PLAG * PROPER P
* : * *, FIELD gggﬁg"'lﬁﬂ EROU 3 OCML - SEMD ¥
TR sraREEERRRE
e xx 0223 IR SRR
*01 * *01 * 0li
*cu *C5_%— 05K3
* 07Kb
prred p FHOTE
B CFS003 CALLERK *.
FARRRC PR R c3 ACUBRRRIER PSRy Lo T R4
* D * . *. P r—
PRI ok o) * _ INVALID *INSERT MODULE® YES, .‘HIS THAINY %, 2 . *nnxrﬁg: -
* CALL - GET % *. ENTRIES IN —>* OPTION KSC = '—» IDENTIFIER PECIFIED 2 . L*BRANCH VIA %, ok ko ko k
$FIEST ARGUAENT % * LIST * DHKCFSO03E _* . . = *I,agsT o lx nClLL 2SR READS
TRRRERRREEERRRRAE e [T — R % * BUFFER :
1ES *NO P ERRRRE SRR RS
R | e
T
*p3 % 0483
> 542
e v 522
SETBXLY, pawkanrak esspsEEba nl' e a3
* * DAKER] * * 823 R Trarrassll
*BUNP TQ NEXT * * 58w xx *ihs repTRYi%. WO 023 SET
L—x "LIST ENTRY _* SERD % *l L SPECIFLED ? — 43 + RETORN
., R §ho% nedfhls : . . 2 *§EAD 70 ABDR!SS‘
P — e ey N 3 REG
ihs 1 - .
P23 3
ann i
SRELSSREERS
DHKERMSG WIIL prrsRuEToy
RETURN TO DEKQCNRI *
DHKCEH - NOT *'aarn! nzsslce *
HERE INDIC] W CALL - READ *
HrrreEEER HESSAGE *
* RRRRRERRRRRRE R

* * >
ks
MCHUCH BADCPU,
ERRRRP PRRRAEERAEE *ERHKP L o
* .t somRRCHNS % o*cET appEEss’e
*STORE ARGUMEN — s FRARBYBRRERRAAR
* IN SAVEWRKZ/3 * FrCALLl LET MCH 3+ > R ST *
M b4 * THANDLE MODE * BAD OPTION _* * GOTO DMKDSECH *
* * * EQUEST * " * *
B PETRRE T T E R ERREA AR AR REEEREAK
Ak o
—>%0U % >¥01 *
* B2 * ® Clu *
x 'k
Pt P

*

CALL - GET
'SECOND ARGUMENTY
e T

<

"Olnszvauz: xrxx
FLAG IN*
N0 «*SEVERER] 10
P#————>*, THDICATE NO »
* * SECOND ARG. *

AREAEREEREE

i,

¥ CFS026

*. AEJ2EREREEE

o* *. OR *
.* ARGUMENT *. YES * NVALID *

. OVER EIGHT .'~———> OPERAND MSG *
‘.‘ CH2R. ’.* "DHKCPSBZGI “

S boue Mevrnasnrens

'NO

a2
e

ey
Y

footd
>*02_*
* 43 %

P

K
MOVE_SECOND
ARGUMENT INTO
SAVEWRKS/6

()

*
*
*
*
*

AREARRAREARA RS

3 H 3 B Gt 3 K g6 6 g6 I 36 g6 3 3 3 I 3 J6 3 36 36 I 6 I 3 6 3 9 3 9 K 3 3 3 9 36 36 k9

noocooocooon
ORBNMNEEE
e =ty

(Mt

w

axkex OGR4 *exxx 0202
*04 % 06F3 *04_*
* a2+ * A3
Ed Ol

TSTONOFF CKEXTRA RECGETNN SETPRIOE
(13 IR T teppensernes 11 ITTTe——— FL31 TR ST
* *EXTRA ARGUMENT * * * *DMKSCNF! *
i+ TSTONOPF % + SUBROUTINE = 3 * BECGETNN % B
rrersarrrrerens $ M acobinr 3
*

BT 4. AEEREBY EERARRERRE REREBSEXXRRRARES *
* +DAKSCNFD * DNKSCNFD SETCONP
Y _SECOND e o e * Vikappeseansens
RGUNENT #CALL - LOOK FOR¥ CALL - GET NN % RETURN TO *
. +HOKE ARGUMENTS % KEGUMENT ¥ >+ “BEKCEM .
. . * N
s * s
*
e
* * B2 *
L
* aerx
ct T c2" s cu” e, c5" s,
- = * EreaC IR EEERERS
o * 54 *. NO ¥ «* ARGUMENT *DMKSCHNAU *
*1QN SPECIFIED >*1QFF SPECIPIED*————>%] E *:, ' FoUND * it - ST
. * CALL - GET *
* -* *. .* * -* * USERS VMBLOK *
e % % ADDRESS *
*ies *ES o % PRI U S
e
* I
% D4 #— 05C2
+xxkDs * saee
Ratacibiit it . * . R * . . . DMKCVTD] p3° ‘s, CFSO4 SADLEEEEREE
*. * * *
* RS RETORN * * R10 RETURN * *+ R7 RETURN * * R10 RETORN % CALL - CONVERT b b, * *
* * * * * * * NN TO BINARY * o Ose T N >+locdEb ol Bsc
EERTR R . - S DHKCPSO45E. _*
* -
* Corrnsseens
* pyeey
>%01_*
8T
b *
- e, AEERXRIREREREEEER
.. *. NO *DEKCV
«:foon comvmnrleB ¥ 1aRcYIe
e, * * o SENRYT §
Lt freen M
iEs *01 % Sresrnssranseiins
A %
%
*
R % ‘rs‘ . ;
3 R10 RETURN : o C%, NO
R * *1goop conveat I+
. . 1
% P rern
1ES *01 %
v a2x
* 0%
.
* EEREEGIREREERERRSE
.
* * STORE NEW * .
* PRIORITY INTO *
* VHMBLOK :
* Decerrerersessssd
E 3 an
*04 *
* B3 *>| 02c2
* + By
Svex
SETPAGE E.
* LEN
g‘o'gn't. NO
* e
seeax
% *1Es *01 %
* 2%
%
* *
* seeeng
*DBKCVTDB *
pi-Ai b AT
*x #CALL - CONVERT *
:'HH‘ TO BINARY :
* EEEE R RERARS
T0:B2
9782
* 076 .
08C2 K3 e [T
09F3 * .. *
% 1181 . . YES * STORE '